WO2006106905A1 - 会合制御によるポリペプチド製造方法 - Google Patents
会合制御によるポリペプチド製造方法 Download PDFInfo
- Publication number
- WO2006106905A1 WO2006106905A1 PCT/JP2006/306803 JP2006306803W WO2006106905A1 WO 2006106905 A1 WO2006106905 A1 WO 2006106905A1 JP 2006306803 W JP2006306803 W JP 2006306803W WO 2006106905 A1 WO2006106905 A1 WO 2006106905A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amino acid
- antibody
- polypeptide
- interface
- acid residue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/31—Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
Definitions
- the present invention relates to a method for producing a polypeptide by controlling association within each molecule or between molecules.
- the present invention relates to a polypeptide in which association within each molecule or between molecules is controlled, and a pharmaceutical composition containing the polypeptide as an active ingredient.
- Antibodies are attracting attention as pharmaceuticals because of their high stability in blood and few side effects. Among them are bispecific antibodies that can simultaneously recognize two types of antigens. MDX-210, currently undergoing clinical trials, is an IgG-type bispecific antibody that retargets monocytes that express Fc ⁇ RI to cancer cells that express HER-2 / neu. Yes (see Non-Patent Document 1). In general, a gene recombination technique is often used for producing an antibody.
- DNA encoding an antibody protein is cloned from a phage library that presents antibody-producing cells such as cells, ibridomas, sensitized lymphocytes that produce antibodies, or antibody genes, It is a technology that is incorporated into an appropriate vector and introduced into a host cell for production.
- the production of IgG-type bispecific antibodies using genetic recombination technology involves introducing a total of four genes, the H and L chain genes that make up the two types of IgG of interest, and secreting them by co-expression. . In such expression, when the wild type H chain and L chain constituent genes are expressed, two types of H chain covalent bonds and H chain and L chain noncovalent bonds occur randomly. The ratio of the target bispecific antibody is very low.
- the target bispecific antibody is only one type out of 10 and the production efficiency is lowered.
- a decrease in the production efficiency of the target antibody will increase non-uniformity such as lot-to-lot differences, which will be an obstacle to purification of the target antibody, leading to an increase in production cost.
- Patent Document 1 International Publication No. 96/27011
- Non-patent literature l Segal DM et al., Current Opinion in Immunology, 1999, Vol. 11, P.5 58-562
- Non-patent literature 2 Ridgway JB et al., Protein Engineering, 1996, Vol. 9, p.617-621
- Non-patent literature 3 Merchant AM et al., Nature Biotechnology, 1998, Vol. 16, p.677-68
- Non-Patent Document 4 Zhe Z et al., Protein Science, 1997, Vol. 6, p. 781-788
- the present invention has been made in view of such a situation, and an object of the present invention is to provide a method for controlling association of polypeptides, a polypeptide in which association is controlled, and the polypeptide. It is in providing the manufacturing method of. Another object of the present invention is to provide a method for efficiently producing a bispecific antibody by controlling the association at the interface between VH and VL. It is another object of the present invention to provide a method for efficiently producing one structural isomer of sc (Fv) 2.
- VH and VL of antibodies as polypeptides to be used for the control of association, and conducted extensive research on methods capable of controlling the association of VH and VL.
- heteromolecules by simply substituting one type of amino acid (2 amino acids in total with VH and VL) present at the interface between VH and VL. Can be formed. Further, from the viewpoint of antigenicity, fewer amino acid substitutions are better. According to one embodiment of the present invention, a heteromolecule can be efficiently formed only by substituting one amino acid present at the interface between VH and VL.
- the association between VH and VL can be controlled by the knowledge found by the present inventors.
- the present invention can be applied not only to control association between VH and VL, but also to control association between arbitrary polypeptides.
- the present inventors have confirmed that the bispecific antibody force obtained by the association control method of the present invention actually retains its function.
- the present invention relates to a method for controlling association of polypeptides, a polypeptide with controlled association, and a method for producing the polypeptide, more specifically,
- a method for producing a polypeptide having a mutation in an amino acid residue that forms an interface in a polypeptide so that association of the polypeptides is controlled comprising: (a) an amino acid that forms an interface in the polypeptide The nucleic acid encoding the residue is modified from the original nucleic acid so that association within the polypeptide is inhibited; (b) the host cell is cultured to express the nucleic acid; and (c) a host cell culture.
- a method for producing a polypeptide variant comprising recovering the polypeptide from the enzyme; [2] a heterologous abundance having a mutation in an amino acid residue that forms an interface between the polypeptides so that the association of the heterologous multimer is controlled; (A) a nucleic acid encoding an amino acid residue that forms an interface between polypeptides is modified from the original nucleic acid so that association between the polypeptides is inhibited, and (b) a host The nucleic acid expresses the cell And (c) a method for producing a heteromultimer comprising recovering the heteromultimer from a host cell culture, [3] a polypeptide capable of forming two or more structural isomers, The above structural differences The method according to [1], wherein a nucleic acid encoding an amino acid residue that forms an interface in the polypeptide is modified from the original nucleic acid so that association of the polypeptide forming the sex body is inhibited, [4] Encodes amino acid residues that form the interface
- the method according to [2], wherein the nucleic acid to be modified is modified from the original nucleic acid, [5]
- the interface in the step (a) is modified so that two or more amino acid residues forming the interface have the same kind of charge.
- step (a) is such that amino acid residue mutations are introduced into the interface such that the amino acid residues forming the hydrophobic core present at the interface become charged amino acid residues.
- the polypeptide interface is formed by two or more heavy chain constant regions [1] or [ 2),
- polypeptide is a single-chain polypeptide in which two or more heavy chain variable regions and two or more light chain variable regions are linked by a linker.
- heterologous multimer is a multispecific antibody comprising two or more heavy chain variable regions and two or more light chain variable regions
- polypeptide variant according to [25] or the heterologous multimer according to [26], wherein the polypeptide interface is formed by a heavy chain variable region and a light chain variable region of an antibody [42] a polypeptide The polypeptide variant according to [25] or the heterologous multimer according to [26], wherein the interface is formed by two or more heavy chain variable regions,
- the heterologous multimer contains two or more heavy chain variable regions and two or more light chain variable regions
- the heteromultimer according to [26] which is a multispecific antibody
- composition comprising the polypeptide variant according to [25] or the heteromultimer according to [26], and a pharmaceutically acceptable carrier,
- a method for controlling the association of polypeptides which comprises modifying the amino acid residues forming the interface in the original polypeptide so that the association in the polypeptide is inhibited.
- a method for controlling the association of heterologous multimers which involves modifying amino acid residues that form the interface between the original polypeptides so that the association between the polypeptides is inhibited.
- polypeptide is a single-chain polypeptide in which two or more heavy chain variable regions and two or more light chain variable regions are linked by a linker.
- heterologous multimer is a multispecific antibody comprising two or more heavy chain variable regions and two or more light chain variable regions
- An antibody comprising a heavy chain variable region and a light chain variable region, comprising the following (1) and (
- An antibody comprising a heavy chain variable region and a light chain variable region, wherein either one of the following (1) or (2) is an amino acid residue having a charge,
- polypeptide according to any one of [75] to [77], wherein the polypeptide is a single-chain polypeptide in which two or more heavy chain variable regions and two or more light chain variable regions are linked by a linker.
- composition comprising the antibody according to any one of [75] to [77] and a pharmaceutically acceptable carrier,
- a set of amino acid residues selected from the set of amino acid residues shown in the above (1) to (3) in the second heavy chain CH3 region, and the same type in the first heavy chain CH3 region 1 to 3 amino acid residues corresponding to the amino acid residues shown in the above (1) to (3) having opposite charges are opposite to the corresponding amino acid residues in the first heavy chain CH3 region.
- the antibody according to [87] which is a multispecific antibody comprising two or more heavy chain variable regions and two or more light chain variable regions,
- composition comprising the antibody according to [87] and a pharmaceutically acceptable carrier, [95] a nucleic acid encoding the polypeptide constituting the antibody according to [87],
- FIG. 1 Modeling the Fv region of humanized SB04, (A) H39 and L38 amino acid residues at the VH and VL interface, (B) H45 amino acid residue at the VH and VL interface Show L44! /
- FIG. 2 is a photograph showing the results of evaluating the association of H chain and L chain in the modified antibodies of H39 and L38. As a result, all the modified antibodies showed an increase in the target antibody binding ratio compared to the wild type.
- M Molecular weight marker 1: Humanized XB12 H chain (Q) + Humanized XB12 L chain), 2: Humanized XB12 H chain (Q) + Humanized SB04 L chain (Q), 3: Wild type: Humanized X B12 H chain (Q) + Human ⁇ XB12 L chain (Q) + Human ⁇ ⁇ SB04 L chain (Q), 4: D modified: humanized XB12 H chain (D) + humanized XB12 L chain (Q ) + Humanized SB04 L chain (D), 5: E modified: humanized XB12 H chain (E) + Humanized XB12 L chain (Q) + humanized SB04 L chain (E), 6: R modified: Humanized XB12 H chain (R) + Humanized XB12 H chain
- FIG. 3 shows the results of evaluation of the coagulation activity of the modified antibodies of ⁇ 39 and L38.
- the bispecific antibody obtained by modifying the XB12 chain ( ⁇ 39) and the SB04 L chain (L38) to Glu showed a coagulation activity equal to or greater than that of the wild type.
- FIG. 4 shows the evaluation results of FactorlXa binding activity of the modified antibodies of H39 and L38. As a result, all the modified antibodies showed binding activity equivalent to that of the wild type.
- FIG. 5 shows the results of evaluating FactorX binding activity of the modified antibodies of H39 and L38. As a result, all the modified antibodies showed binding activity equivalent to that of the wild type.
- FIG. 6 is a photograph showing the results of evaluating the association of H chain and L chain in the modified antibody of L44. As a result, all the modified antibodies showed an increase in the association ratio of the target antibody compared to the wild type.
- Lane description 1 Wild type: humanized XB12 H chain + humanized XB12 L chain (P) + humanized SB04 L chain (P), 2: D modified: humanized XB12 H chain + humanized XB12 L chain ( P) + humanized SB04 chain (D), 3: E modified: humanized XB12 H chain + humanized XB12 L chain (P) + humanized SB04 L chain (E), 4: R modified Type: humanized XB12 H chain + human ⁇ XB12 L chain (P) + humanized SB04 L chain (R), 5: K modified: humanized XB 12 ⁇ chain + human ⁇ XB12 L chain ( ⁇ ) + humanized SB04 L chain ( ⁇ )
- FIG. 7 shows the evaluation results of the coagulation activity of the modified L44 antibody. As a result, all the modified antibodies showed a coagulation activity exceeding that of the wild type.
- FIG. 8 shows the evaluation results of FactorX binding activity of the modified L44 antibody. As a result, all the modified antibodies showed binding activity equivalent to that of the wild type.
- FIG. 9 is a photograph showing the results of evaluating the association of H chain and L chain in modified antibodies of H39, L38 and L44. As a result, all the modified antibodies showed an increase in the association ratio of the target antibody compared to the wild type.
- Lane Description 1 Wild type: Humanized XB12 H chain (H39: Q)
- FIG. 10 shows the results of evaluating the coagulation activity of the modified antibodies of H39, L38 and L44.
- the bispecific antibody obtained by modifying the XB12 chain ( ⁇ 39) and the SB04 L chain (L38, L44) showed a coagulation activity equal to or higher than that of the wild type.
- FIG. 11 shows the evaluation results of FactorlXa binding activity in the modified antibodies of H39, L38 and L44. As a result, all the modified antibodies showed binding activity equivalent to that of the wild type.
- FIG. 12 is a diagram schematically showing an example of the structure of sc (Fv) 2 containing two types of heavy chain variable regions (VH1 and VH2) and two types of light chain variable regions (VL1 and VL2).
- Sc (Fv) 2 having the structure (a) mainly has two types of structural isomers shown in (b).
- FIG. 13 shows the results of separation by cation exchange chromatography of peakl and peak2, which are structural isomers of u2-wz4.
- FIG. 14 shows peakl and peak2 peptide mapping separated by cation exchange chromatography.
- FIG. 15 is a photograph showing the result of reduced SDS-PAGE after subtilisin treatment of u2-wz4 structural isomers, peakl and peak2, and u2_wz4 before separation. The structure of the obtained band is shown on the right.
- FIG. 16 shows the difference in degradation pattern after subtilisin limited digestion caused by the difference in structure between bivalent scFv and single chain antibody.
- the bivalent scFv structure a low molecular weight fragment surrounded by a dotted line is generated.
- FIG. 17 shows the results of gel filtration chromatography after limited degradation of u2-wz4, which is the structural isomers of u2-wz4, and subtilisin of u2-wz4 before separation.
- the arrow indicates the elution position of the low molecular weight peak.
- FIG. 18 shows the results of gel filtration chromatography of u2-wz4, modified vl, and modified v3 after purification on an MG10-GST fusion protein-immobilized column.
- FIG. 19 shows the results of cation exchange chromatography of u2-wz4, variant vl, variant v3.
- FIG. 20 is a photograph showing the results of isoelectric focusing of u2-wz4, u2-wz4 purified peakl, u2-wz4 purified peak2, variant vl, variant v3.
- FIG. 21 shows the results of gel filtration chromatography analysis after limited degradation of proteases of u2-wz4 purified peakl, u2-wz4 purified peak2, modified vl, and modified v3.
- FIG. 22 shows the results of evaluation of TPO-like agonist activity of u2-wz4 purified peakl, u2-wz4 purified peak2, variant vl, and variant v3.
- FIG. 23 shows the results of DSC analysis of u2-wz4 purified peakl, u2-wz4 purified peak2, variant vl, and variant v3.
- FIG. 24 shows the residual monomer ratio obtained by gel filtration chromatography analysis in the thermal acceleration test of u2-wz4 purified peakl, u2-wz4 purified peak2, modified vl, and modified v3.
- FIG. 25 shows the content ratio of structural isomers obtained by cation exchange chromatography analysis in thermal acceleration tests of u2-wz4 purified peakl, u2-wz4 purified peak2, modified vl, and modified v3.
- FIG. 26 shows the results of evaluating the coagulation activity of humanized bispecific antibodies (humanized A69 (hA69-PFL) / humanized B26 (hB26-PF) / humanized B BA (hAL-AQ)). Yes. As a result, chimera double special It showed a coagulation activity equivalent to or better than that of an isomeric antibody.
- FIG. 27 is a conceptual diagram for modifying the heavy chain constant region to improve the formation efficiency of the bispecific antibody.
- EU numbering Kabat EA et al. 1991. sequences of Proteins of Immunological Interest. NIH was adopted.
- FIG. 28 shows a chromatogram of IEX analysis of a humanized bispecific antibody (IgG4 type) with a modified CH3 interface.
- FIG. 29 shows the formation ratio of A-Homo, BiAb, and B-Homo obtained by IEX analysis of a humanized bispecific antibody (IgG4 type) with a modified CH3 interface.
- FIG. 30 shows the residual ratio of monomer after a 60 ° C-1W thermal acceleration test of BiAb purified from a humanized bispecific antibody (IgG4 type) with a modified CH3 interface.
- FIG. 31 shows the results of evaluating the coagulation activity of a humanized bispecific antibody (IgG4 type) with a modified CH3 interface. As a result, the coagulation activity was the same as that of the unmodified bispecific antibody.
- FIG. 32 shows the formation ratio obtained by IEX analysis of A-Homo, BiAb, and B-Homo of a humanized bispecific antibody (IgGl type) with a modified CH3 interface.
- the present invention relates to a method for controlling association of polypeptides or association of heterologous multimers constituted by polypeptides.
- the present invention relates to a polypeptide association control method, which comprises modifying an amino acid residue that forms an interface in an original polypeptide so that association in the polypeptide is inhibited.
- a method for controlling peptide association is provided.
- the polypeptide in the present invention usually refers to peptides and proteins having a length of about 10 amino acids or more.
- it is usually a biological polypeptide, but is not particularly limited, and may be, for example, a polypeptide comprising an artificially designed sequence. Further, it may be a natural polypeptide, a synthetic polypeptide, a recombinant polypeptide, or the like.
- fragments of the above polypeptides are also included in the polypeptides of the present invention.
- Polypeptide association in the present invention refers to, for example, two or more polypeptide regions. In other words, it refers to the state of interaction.
- controlling the association refers to controlling to achieve a desired state of association, more specifically, so that an undesirable association is not formed in the polypeptide. Say to control.
- the "interface” in the present invention usually refers to an association surface at the time of association (interaction), and the amino acid residues forming the interface are usually included in the polypeptide region subjected to the association.
- the interaction includes a case where amino acid residues approaching at the time of association form a hydrogen bond, an electrostatic interaction, a salt bridge, and the like.
- amino acid residue forming the interface in the present invention means, specifically, an amino acid residue contained in the polypeptide region in the polypeptide region constituting the interface.
- the polypeptide region constituting the interface refers to a polypeptide region responsible for selective binding within or between molecules of antibodies, ligands, receptors, substrates, etc., as an example. Specifically, in an antibody, a heavy chain variable region, a light chain variable region, etc. can be exemplified.
- the "modification" of an amino acid residue in the method of the present invention specifically includes substitution of the original amino acid residue with another amino acid residue, deletion of the original amino acid residue, This refers to adding a new amino acid residue, etc., but preferably refers to substituting the original amino acid residue with another amino acid residue.
- polypeptide in the present invention is preferably a polypeptide that can form two or more structural isomers.
- the structural isomers generally refer to proteins having the same amino acid sequence but different force steric structures (tertiary structures). Usually, structural isomers often differ in at least one of their chemical or physical properties.
- a preferred embodiment of the present invention relates to a method for preferentially (effectively) obtaining a desired structural isomer from among two or more structural isomers that may exist. That is, in one embodiment, in a polypeptide that can form two or more structural isomers, the association between the polypeptides that form one or more structural isomers is inhibited. Interface The present invention relates to a method for modifying an amino acid residue to be formed.
- first to fourth polypeptide regions in a polypeptide when there are first to fourth polypeptide regions in a polypeptide and any two of these regions can associate, (1) the first and second polypeptide regions associate In addition, the third and fourth polypeptide regions associate, (2) the first and third polypeptide regions associate, and the second and fourth polypeptide regions associate, (3) ) It is conceivable that the first and fourth polypeptide regions are associated, and the second and third polypeptide regions are associated, and there are mainly three structural isomers.
- the first polypeptide region contains the third and fourth polypeptides. Modification of the amino acid residues forming the interface existing in these first, third or fourth polypeptide regions can be mentioned so that the association with the peptide region is inhibited.
- the method of the present invention is also a method for controlling the association of heterologous multimers, which modifies amino acid residues that form the interface between the original polypeptides so that the association between the polypeptides is inhibited.
- the present invention relates to a method for controlling the association of heterologous multimers.
- heteromultimer refers to a multimer of proteins that are composed of a plurality of types of polypeptides and that the polypeptides can associate with each other. More particularly, a “heterologous multimer” has at least a first polypeptide and a second polypeptide, wherein the second polypeptide is at least one amino acid sequence from the first polypeptide. Molecules with different amino acid residues. Moreover, although not particularly limited, the heteromultimer preferably has binding specificity for at least two different ligands, antigens, receptors, substrates, and the like.
- the heterologous multimer may be a “heterologous dimer” formed by the first and second polypeptides, and another species of polypeptide may be present. That is, the “heterologous multimer” of the present invention is not limited to a heterodimer, and includes, for example, a heterotrimer, a heterotetramer and the like.
- the heterogeneous multimer capable of forming two or more multimers is inhibited so that the association between the polypeptides forming one or more multimers is inhibited.
- This is a method of modifying amino acid residues that form an interface between polypeptides.
- modification of an amino acid residue forming an interface of a polypeptide results in an amino acid having two or more residues forming the interface. It is a method characterized by introducing an amino acid residue mutation at the interface so that the residue has the same kind of charge.
- the two or more amino acid residues involved in the association at the interface are modified so that they have the same type of charge, and the repulsive force of the charge It is considered that the association between these amino acid residues is inhibited.
- the amino acid residues to be modified are preferably two or more amino acid residues that are close to each other at the time of association between the polypeptide regions forming the interface. .
- Amino acid residues approaching at the time of association are found, for example, by analyzing the three-dimensional structure of the polypeptide and examining the amino acid sequence of the polypeptide region that forms the interface at the time of association of the polypeptide. Can do. Amino acid residues that are close to each other at the interface are preferred targets for “modification” in the method of the present invention.
- amino acids charged amino acids are known. Generally, lysine), arginine (R), and histidine (H) are known as positively charged amino acids (positively charged amino acids). Aspartic acid (D), glutamic acid (E), and the like are known as negatively charged amino acids (negatively charged amino acids). Therefore, preferably, in the present invention, the same type of charged amino acids means amino acids having positive charges or amino acids having negative charges.
- the present invention is not necessarily limited to this.
- the amino acid residue introduced by modification is not necessarily limited. When there are a plurality of groups, these amino acid residues do not have a charge and may contain about a few amino acid residues.
- the number of amino acid residues subjected to modification in the method of the present invention is not particularly limited.
- the method of the present invention can control the association by modifying both or one of two amino acid residues that are close to each other at the interface, as shown in the examples described later.
- the “small number” represents, for example, a number of about 1 to 10, preferably about 1 to 5, more preferably about 1 to 3, most preferably 1 or 2.
- amino acid residues introduced (subjected to modification) by modification are all amino acid residues selected from the above positively charged amino acids, or Are preferably amino acid residues selected from the above negatively charged amino acids.
- amino acid residue introduced in the present invention is preferably glutamic acid (E), asparagine (D), lysine), arginine (R), or histidine (H).
- the polypeptide is close to the amino acid residue at the time of association. It is also a preferred embodiment of the present invention to modify the amino acid residue to be the same amino acid residue (or an amino acid residue having the same kind of charge) as the amino acid residue (X). In this embodiment, it is only necessary to modify one of the amino acid residues forming the interface.
- the modification of the amino acid residue forming the interface of the polypeptide results in the amino acid residue forming the hydrophobic core existing in the interface being It is a method characterized by introducing an amino acid residue mutation at the interface so as to be a charged amino acid residue.
- hydrophobic core is sparse inside an associated polypeptide. It refers to the part formed by the assembly of side chains of aqueous amino acids. Examples of hydrophobic amino acids include alanine, isoleucine, leucine, methionine, phenylalanin, proline, tryptophan, and norin.
- the formation of the hydrophobic core may involve amino acid residues other than hydrophobic amino acids (eg tyrosine).
- This hydrophobic core serves as a driving force for promoting the association of water-soluble polypeptides together with the hydrophilic surface where the side chains of hydrophilic amino acids are exposed to the outside.
- Hydrophobic amino acids of two different domains are present on the surface of the molecule, and when exposed to water molecules, entropy increases and free energy increases. Thus, the two domains associate with each other to reduce and stabilize the free energy, and the hydrophobic amino acids at the interface are buried inside the molecule, forming a hydrophobic core.
- the present invention is an association control method characterized in that an amino acid residue capable of forming a hydrophobic core at an interface is altered to an amino acid residue having a charge.
- Preferred examples of the charged amino acid residue in the above method include glutamic acid (E), aspartic acid (D), lysine), arginine (R), and histidine (H).
- the association control method of the present invention is a method for preferentially obtaining (manufacturing) a target antibody (polypeptide) in the production of an antibody or antibody fragment and a polypeptide having antibody-like activity. Can be used.
- the term “antibody” is used in the broadest sense. As long as the desired biological activity is exhibited, monoclonal antibodies, polyclonal antibodies, and antibody variants (chimeric antibodies, humanized antibodies, low molecular weight antibodies) Antibodies (including antibody fragments), multispecific antibodies, etc.).
- “antibody” may be either a polypeptide or a heteromultimer. Preferred antibodies are monoclonal antibodies, chimeric antibodies, humanized antibodies, and low molecular weight antibodies such as antibody fragments.
- the association control method of the present invention can be preferably used when obtaining (creating) these antibodies.
- multispecific antibody refers to an antibody that can specifically bind to different types of epitopes.
- a multispecific antibody is an antibody having specificity for at least two different epitopes and includes antibodies that recognize different epitopes as well as antibodies that recognize different epitopes on the same antigen.
- the antigen is a heteroreceptor
- the multispecific antibody recognizes the different domains that make up the heteroreceptor, or if the antigen is a monomer, the multispecific antibody is a monomeric antigen. Recognize multiple locations).
- such a molecule binds to two antigens (bispecific antibody: bispedfic antibody; used herein with the same meaning as “bispecific antibody”), but more It may have specificity for (for example, three types of) antigens.
- the amino acid sequence of the above-mentioned antibody is further modified by amino acid substitution, deletion, addition and Z or insertion, or chimerization or humanization. Things are included. Amino acid substitution, deletion, addition and / or insertion, and modification of the amino acid sequence such as humanization and chimerization can be performed by methods known to those skilled in the art. Similarly, the variable region and constant region of an antibody used when the antibody of the present invention is produced as a recombinant antibody are also substituted by amino acid substitution, deletion, addition and Z or insertion, or by crystallization or humanization. The amino acid sequence may be modified.
- the antibody in the present invention may be any animal-derived antibody such as a mouse antibody, a human antibody, a rat antibody, a rabbit antibody, a goat antibody, or a camel antibody.
- a modified antibody in which an amino acid sequence is substituted such as a chimeric antibody and a humanized antibody, among others, may be used.
- any antibody such as a modified antibody, an antibody fragment, or a low molecular weight antibody to which various molecules are bound may be used.
- a "chimeric antibody” is an antibody produced by combining sequences derived from different animals. For example, a mouse antibody heavy chain and light chain variable (V) region and a human antibody heavy chain and light chain constant (C) region can be exemplified.
- V antibody heavy chain and light chain variable
- C human antibody heavy chain and light chain constant
- the production of a chimeric antibody is known, for example, by linking DNA encoding an antibody V region with DNA encoding a human antibody C region, incorporating this into an expression vector, introducing it into a host, and producing it.
- Antibody can be obtained
- Humanized antibody refers to a non-human mammal, also called a reshaped human antibody.
- a complementarity determining region (CDR) of a conventional antibody, such as a mouse antibody is transplanted to a CDR of a human antibody.
- CDR complementarity determining region
- Methods for identifying CDRs are known (Kabat et al., Sequence of Proteins of Immunological Interest (1987), National Institute of Health, Bethesda, Md .; Chothia et al, Nature (1989) 342: 877).
- general gene recombination techniques are also known (see European Patent Application Publication No. EP 125023, WO 96/02576).
- DNA encoding an antibody in which the CDR and a framework region (FR) of a human antibody are linked is obtained, and a humanized antibody is usually obtained. It can be produced by a system using the above expression vector. Such DNA can be synthesized by PCR using several oligonucleotides prepared as overlapping primers in both CDR and FR terminal regions (see W098 / 13388). See the description method).
- the FR of the human antibody linked via CDR is selected such that the CDR forms a good antigen binding site.
- FR amino acids in the variable region of the antibody may be modified so that the CDRs of the reshaped human antibody form the appropriate antigen binding site (Sato et al., Cancer Res. (1993) 53 : 851-6).
- the amino acid residues in FR that can be modified include those that directly bind non-covalently to the antigen (Amit et al., Science (1986) 233: 747-53), and those that affect or act on the CDR structure (Chothia et al., J. Mol. Biol. (1987) 196: 901-17) and the portion related to the VH-VL interaction (EP239400 patent publication).
- the C region of these antibodies is preferably derived from a human antibody.
- C 1, C ⁇ 2, C ⁇ 3 and C ⁇ 4 can be used for the H chain, and C ⁇ and C ⁇ can be used for the L chain.
- the human antibody C region may be modified as necessary to improve the stability of the antibody or its production.
- the chimeric antibody in the present invention preferably comprises a variable region of a non-human mammal-derived antibody and a constant region derived from a human antibody.
- the humanized antibody preferably has the CDR of an antibody derived from a mammal other than a human and the FR and C regions derived from a human antibody.
- the variable region will be described together in (3) -3.
- the constant region derived from a human antibody has a unique amino acid sequence for each isotype such as IgG (IgG1, IgG2, IgG3, IgG4), IgM, IgA, IgD, and IgE.
- the constant region used for the humanized antibody in the present invention is an antibody belonging to any isotype. It may be a constant region of the body. Preferably, the HgG constant region is used, but is not limited thereto.
- FR derived from a human antibody used for a human rabbit antibody is not particularly limited, and may be an antibody belonging to any isotype.
- variable region and constant region of the chimeric antibody and humanized antibody in the present invention may be modified by deletion, substitution, insertion and / or addition as long as the binding specificity of the original antibody is exhibited.
- Chimeric antibodies and humanized antibodies using human-derived sequences are considered useful when administered to humans for therapeutic purposes and the like due to their reduced antigenicity in the human body.
- the low molecular weight antibody is also useful as an antibody because of its ability to be produced at low cost using Escherichia coli, plant cells, etc. from the viewpoint of the pharmacokinetic properties.
- An antibody fragment is a kind of low molecular weight antibody.
- the low molecular weight antibody includes an antibody having an antibody fragment as a part of its structure.
- the structure, production method and the like of the low molecular weight antibody in the present invention are not particularly limited as long as it has the ability to bind to an antigen.
- Some low molecular weight antibodies have higher activity than full-length antibodies (Orita et al., Blood (2005) 105: 562-5 66).
- the “antibody fragment” is not particularly limited as long as it is a part of a full-length antibody (for example, whole IgG), but may be a heavy chain variable region (VH) or a light chain variable region ( VL) is preferably included.
- Examples of preferred antibody fragments include, for example, Fab, F (ab ′) 2, Fab ′, Fv and the like.
- the amino acid sequence of VH or VL in the antibody fragment may be modified by substitution, deletion, addition and Z or insertion. Furthermore, as long as the antigen-binding ability is maintained, a part of VH and VL may be deleted.
- “Fv” is the smallest antibody fragment containing a complete antigen recognition site and a binding site.
- “Fv” is a dimer (V H-VL dimer) in which one VH and one VL are strongly bound by a non-covalent bond.
- An antigen binding site is formed on the surface of the VH-VL dimer by three complementary region determining regions (CDRs) of each variable region.
- CDRs complementary region determining regions
- Six CDRs confer antigen binding sites on the antibody.
- one variable region or half of an Fv containing only three CDRs specific to the antigen
- have the ability to Therefore, such a molecule smaller than Fv is also included in the antibody fragment in the present invention.
- the variable region of the antibody fragment is a key. If it becomes mela, it can be humanized.
- the low molecular weight antibody preferably contains both VH and VL.
- Examples of low molecular weight antibodies include antibody fragments such as Fab, Fab ', F (ab') 2 and Fv, and scFv (single chain Fv) (Huston et al. , Proc. Natl. Acad. Sci. USA (19 88) 85: 5879-83; Plickthun “The Pharmacology of Monoclonal Antibodies” Vol. 113, edited by Resenburg and Moore, Springer Verlag, New York, pp.269-315, (1994)), Diabody (Holliger et al., Proc. Natl. Acad. Sci.
- Antibody fragments can be obtained by treating an antibody with an enzyme, for example, a protease such as papain or pepsin (Morimoto et al., J. Biochem. Biophys. Methods (1992) 24: 107 -17; Brennan et al. al., Science (1985) 229: 81). It can also be produced by gene recombination based on the amino acid sequence of the antibody fragment.
- an enzyme for example, a protease such as papain or pepsin (Morimoto et al., J. Biochem. Biophys. Methods (1992) 24: 107 -17; Brennan et al. al., Science (1985) 229: 81). It can also be produced by gene recombination based on the amino acid sequence of the antibody fragment.
- a low molecular weight antibody having a structure obtained by modifying an antibody fragment can be constructed using an antibody fragment obtained by enzyme treatment or gene recombination.
- a gene encoding the entire low-molecular-weight antibody can be constructed, introduced into an expression vector, and then expressed in an appropriate host cell (for example, Co et al., J. Immunol. (1994) 152: 2968-76; Bette r and Horwitz, Methods Enzymol. (1989) 178: 476-96; Pluckthun and Skerra, Metho ds Enzymol. (1989) 178: 497—515; Lamoyi, Methods Enzymol. (1986) 121: 652—63; Rousseaux et al., Methods Enzymol. (1986) 121: 663-9; Bird and Walker, Trends Biotechnol. (1991) 9: 132-7).
- the "scFv” is a single-chain polypeptide in which two variable regions are combined through a linker or the like as necessary.
- the two variable regions included in scFv are usually 1 VH and 1 Two VLs, but two VHs or two VLs may be used.
- scFv polypeptides contain a linker between the VH and VL domains, thereby forming the VH and VL paired portions necessary for antigen binding.
- the linker that connects VH and VL is generally a peptide linker having a length of 10 amino acids or more.
- the scFv linker in the present invention is not limited to such a peptide linker as long as it does not interfere with the formation of scFv.
- a total of 13 ⁇ 4 of scFv reference can be made to Pluckthdeci he Pharmacology of Monoclonal Antibody JVol. 113 (Rosenburg and Moore ed., Springer Verlag, NY, pp. 269-315 (1994)).
- diabody (Db) refers to a bivalent antibody fragment constructed by gene fusion (P. Holliger et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993), EP404,097, W093 / 11161, etc.).
- Diabodies are dimers composed of two polypeptide chains, each of which is so short that the light chain variable region (VL) and heavy chain variable region (VH) cannot bind to each other in the same chain. For example, they are linked by a linker having about 5 residues.
- VL and VH encoded on the same polypeptide chain cannot form a single-chain V region fragment because the linker between them is short, a dimer forms two antigen-binding sites. Will have.
- VL and VH for two different epitopes (a, b) are combined with VLa-VHb and VLb-VHa and linked together by a linker of about 5 residues, bispecific Db is expressed. Secreted.
- the two different epitopes may be two different epitopes on the same antigen, or may be two epitopes in each of two different antigens.
- Diabody contains two molecules of scFv, it contains four variable regions, resulting in two antigen-binding sites. Unlike the case of scFv that does not form a dimer, when the purpose is to form diabody, the linker that connects VH and VL in each scFv molecule is usually about 5 amino acids when it is a peptide linker. Shall. However, the scFv linker that forms diabody is not limited to such peptide linkers as long as it does not interfere with scFv expression and diabody formation.
- Preferred polypeptides or heterologous multimers used in the method of the present invention include, for example, polypeptides having antibody heavy chain variable regions and light chain variable regions, or heterologous multimers.
- the body can be mentioned. More preferably, in a preferred embodiment of the present invention, association control when the polypeptide or heteromultimer of the present invention comprises two or more heavy chain variable regions and two or more light chain variable regions. Is the method.
- the polypeptide or heterologous multimer is preferably one that recognizes two or more epitopes. For example, a multispecific antibody can be exemplified.
- a bispecific antibody can be mentioned as a multispecific antibody.
- first heavy chain and second heavy chain two types of heavy chain variable regions
- first light chain two types of light chain variable regions
- second light chain for controlling the association of a bispecific antibody
- the above “first heavy chain” is one of the two H chains forming the antibody.
- One H chain, and the second H chain is the other H chain different from the first H chain. That is, any one of the two H chains can be a first H chain and the other can be a second H chain.
- the “first light chain” is one L chain of two L chains that form a bispecific antibody, and the second L chain is the other one different from the first L chain.
- One of the two L chains can optionally be the first L chain and the other can be the second L chain.
- the first L chain and the first H chain are derived from the same antibody that recognizes a certain antigen (or epitope), and the second L chain and the second H chain are also certain antigens (or epitopes). Derived from the same antibody that recognizes.
- the first H chain 'the L chain-H chain pair formed by the L chain is the first pair
- the second H chain' the L chain-H chain pair formed by the L chain is the second pair. Call it.
- the antigen (or epitope) used in preparing the antibody from which the second pair is derived is different from that used in preparing the antibody from which the first pair is derived.
- the antigens recognized by the first and second pairs may be the same, but preferably recognize different antigens (or epitopes).
- the H chain and L chain of the first pair and the second pair have different amino acid sequences.
- the first and second pairs recognize different epitopes, the first and second pairs may recognize completely different antigens, and different sites on the same antigen (different epitopes) May be recognized.
- One of them recognizes antigens such as proteins, peptides, genes, and sugars.
- cytotoxic substances such as radioactive substances, chemotherapeutic agents, and cell-derived toxins may be recognized.
- the specific H chain and L chain can be arbitrarily selected as a first pair and a second pair. Can be determined.
- the “bispecific antibody” is not necessarily limited to an antibody comprising two types of heavy chains and two types of light chains.
- two types of heavy chain variable regions and two types of light chain variable regions are used.
- a known sequence is used for the gene encoding the H chain or L chain of the antibody before mutagenesis in the method of the present invention (in this specification, it may be simply referred to as "the antibody of the present invention”). It can also be obtained by methods known to those skilled in the art. For example, it can be obtained from an antibody library, or a hybridoma that produces a monoclonal antibody can also be obtained by cloning a gene encoding the antibody.
- antibody libraries many antibody libraries are already known, and methods for preparing antibody libraries are also known, so that those skilled in the art can appropriately obtain antibody libraries. is there.
- antibody phage libraries Clackson et al., Nature 1991, 352: 624-8, Marks et al., J. Mol. Biol. 1991, 222: 581-97, Water houses et al "Nucleic Acids Res 1993, 21: 2265-6, Griffiths et al "EMBO J. 1994, 13: 3245-60, Vaughan et al., Nature Biotechnology 1996, 14: 309-14, and JP 20-504970 You can refer to the literature.
- variable region of a human antibody can be expressed as a single chain antibody (scFv) on the surface of a phage by the phage display method, and a phage that binds to an antigen can be selected.
- scFv single chain antibody
- an appropriate expression vector can be prepared based on the sequence to obtain a human antibody.
- a method for obtaining a gene encoding an antibody for the production of an antibody in that a known technique or a cell expressing a desired antigen is used as a sensitizing antigen.
- the obtained immune cells are fused with known parental cells by the usual cell fusion method, and monoclonal antibody-producing cells (nobridoma) are screened by the usual screening method.
- monoclonal antibody-producing cells nobridoma
- V region variable region
- the sensitizing antigen for obtaining the antibody gene encoding the H chain and L chain is a complete antigen having immunogenicity. And incomplete antigens including haptens that do not exhibit immunogenicity.
- a full-length protein of the target protein or a partial peptide can be used.
- substances composed of polysaccharides, nucleic acids, lipids and the like can serve as antigens, and the antigen of the antibody of the present invention is not particularly limited.
- Antigens can be prepared by methods known to those skilled in the art, for example, according to methods using baculovirus (eg, W098 / 46777).
- Hypridoma can be prepared according to, for example, the method of Milstein et al. (G. Kohler and C. Milstein, Methods Enzymol. 1981, 73: 3-46).
- the immunogenicity of the antigen is low, it may be immunized by binding to an immunogenic macromolecule such as albumin.
- a soluble antigen can be obtained by binding an antigen to other molecules as necessary.
- a transmembrane molecule such as a receptor
- the extracellular region of the receptor can be used as a fragment, or a cell expressing the transmembrane molecule on the cell surface can be used as an immunogen. .
- Antibody-producing cells can be obtained by immunizing an animal with the appropriate sensitizing antigen described above.
- antibody-producing cells can be obtained by immunizing lymphocytes capable of producing antibodies in vitro.
- mammals to be immunized various mammals can be used, but rodents, maggots, and primates are generally used. Examples include primates such as rodents such as mice, rats, mice, and mussters, maggots such as magpies, and monkeys such as cynomolgus monkeys, monkeys, baboons and chimpanzees.
- Other human antibody genes Transgenic animals with a repertoire are also known, and human antibodies can be obtained by using such animals (WO96 / 34096; Mendez et al., Nat.
- human lymphocytes are sensitized in vitro with the desired antigen or cells expressing the desired antigen, and the sensitized lymphocytes are human myeloma cells such as U266.
- the sensitized lymphocytes are human myeloma cells such as U266.
- Can be obtained to obtain a desired human antibody having an antigen-binding activity see Japanese Patent Publication No. 59878.
- a desired human antibody can be obtained by immunizing a transgenic animal having all repertoires of human antibody genes with a desired antigen (W093 / 12227, WO92 / 03918, W094 / 02602, WO96 / 34096, see W096 / 33735).
- a sensitized antigen is appropriately diluted and suspended in Phosphate-Buffered Saline (PBS) or physiological saline, etc., mixed with an adjuvant as necessary, and then emulsified. Performed by intraperitoneal or subcutaneous injection. Thereafter, preferably, a sensitizing antigen mixed with Freund's incomplete adjuvant is administered several times every 4 to 21 days. Confirmation of antibody production can be performed by measuring the desired antibody titer in the serum of animals by a conventional method.
- PBS Phosphate-Buffered Saline
- physiological saline etc.
- a sensitizing antigen mixed with Freund's incomplete adjuvant is administered several times every 4 to 21 days. Confirmation of antibody production can be performed by measuring the desired antibody titer in the serum of animals by a conventional method.
- Hyperidoma is prepared by fusing antibody-producing cells obtained from animals or lymphocytes immunized with a desired antigen with myeloma cells using a conventional fusion agent (eg, polyethylene glycol).
- a conventional fusion agent eg, polyethylene glycol
- the hybridoma cells are cultured and proliferated, and the binding specificity of the antibody produced by the hybridoma is determined by a known analysis method such as immunoprecipitation, radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), etc. taking measurement.
- the hybridoma producing the antibody having the measured specificity, affinity or activity can be subcloned by a technique such as limiting dilution.
- a probe for example, a sequence encoding an antibody constant region
- a probe capable of specifically binding the antibody from a hybridoma or an antibody-producing cell (such as sensitized lymphocyte) to a gene encoding the selected antibody.
- Complementary oligonucleotides etc. It is also possible to clone from mRNA by RT-PCR.
- Immunoglobulins fall into five different classes: IgA, IgD, IgE, IgG and IgM. In addition, these Classes are divided into several subclasses (isotypes) (eg, IgG-1, IgG-2, IgG-3, and IgG-4; IgA-1, IgA-2, etc.).
- the H chain and L chain used for antibody production in the present invention may be derived from antibodies belonging to any of these classes and subclasses, but are not particularly limited, but IgG is particularly preferred.
- chimeric antibodies, humanized antibodies and the like can be appropriately prepared.
- a chimeric antibody is an antibody consisting of the variable regions of the non-human mammal, for example, the H chain and L chain of a mouse antibody, and the constant regions of the H chain and L chain of a human antibody, and encodes the variable region of a mouse antibody.
- the DNA to be obtained can be obtained by ligating the DNA encoding the constant region of a human antibody, incorporating it into an expression vector, introducing it into a host, and producing it.
- the human rabbit antibody is also called a reshaped human antibody, and has a DNA sequence designed to link the complementarity determining regions (CDRs) of non-human mammals such as mouse antibodies.
- CDRs complementarity determining regions
- Several oligonucleotides prepared so as to have overlapping parts are synthesized by the PCR method.
- the obtained DNA is obtained by ligating with DNA encoding the constant region of a human antibody, then incorporating it into an expression vector, introducing it into a host and producing it (see EP239400; WO96 / 02576).
- the human antibody FR to be ligated via CDR is selected such that the complementarity determining region forms a good antigen-binding site. If necessary, the amino acid in the framework region of the variable region of the antibody may be substituted so that the complementarity-determining region of the reshaped human antibody forms the appropriate antigen-binding site (K. Sato et al, Cancer Res. 1993, 53: 851-856).
- antibody variants with improved biological properties are 70% or more, more preferably 80% or more, more preferably 90% or more (e.g., 95% or more, 97%, 98%, 99%, etc.) amino acids Of antibodies based on sequence homology and / or similarity It has the amino acid sequence of the variable region.
- sequence homology and / or similarity is defined as the difference between the original antibody residues after aligning the sequences and introducing gaps as necessary so that the sequence homology takes the maximum value. Defined as the percentage of amino acid residues that are homologous (same residues) or similar (amino acid residues classified into the same group based on the general amino acid side chain properties).
- Natural amino acid residues are usually based on their side chain properties: (1) Hydrophobic: alanine, isoleucine, norleucine, norin, methionine and leucine; (2) neutral hydrophilicity: asparagine, glutamine, cysteine, (3) Acidity: aspartic acid and glutamic acid; (4) Basicity: arginine, histidine and lysine; (5) Residues affecting chain orientation: glycine and proline; and (6) Aromaticity: It is classified into tyrosine, tryptophan and ferulanine groups.
- variable regions Normally, a total of six complementarity determining regions (hypervariable regions; CDR) present in the variable regions of the H and L chains interact to form the antigen-binding site of the antibody.
- CDR complementarity determining regions
- even one variable region is known to be capable of recognizing and binding to an antigen, although it has a lower affinity than that containing the entire binding site. Therefore, the antibody gene encoding the H chain and L chain of the present invention is not limited as long as the polypeptide encoded by the gene maintains the binding property with the desired antigen. It suffices if the fragment portion containing the antigen binding site is coded.
- a desired bispecific antibody can be obtained preferentially (efficiently) as described above. That is, a bispecific antibody having a monomer mixture power that is a desired heteromultimer can be efficiently formed.
- IgG type bispecific antibody having two types of heavy chain variable regions (VH1 and VH2) and two types of light chain variable regions (VL1 and VL2) will be described in more detail.
- the method of the present invention can be similarly applied to other heteromultimers.
- One epitope is recognized by the first heavy chain variable region (VH1) and the first light chain variable region (VL1), and the second heavy chain variable region (VH2) and the second light chain variable region are recognized.
- VH1 first heavy chain variable region
- VL2 first light chain variable region
- VH2 second heavy chain variable region
- VL2 variable region
- association between heavy chains (VH1 and VH2) or between light chains (VL1 and VL2) can be suppressed.
- the heavy chain variable region is usually composed of three CDR regions and an FR region.
- the amino acid residue subjected to “modification” can be appropriately selected from, for example, amino acid residues located in the CDR region or FR region.
- modification of amino acid residues in the CDR region may reduce the antigen-binding ability. Therefore, the amino acid residues to be used for “modification” in the present invention are not particularly limited, but are preferably selected appropriately from amino acid residues located in the FR region.
- sequences that can be used as FRs of antibody variable regions in organisms such as humans or mice can be appropriately obtained by those skilled in the art using public databases and the like. More specifically, FR region amino acid sequence information can be obtained by the means described in the Examples below.
- position 39 on the heavy chain variable region is shown.
- (FR2 region) e.g., position 39 in the amino acid sequence set forth in SEQ ID NO: 6)
- glutamine (Q) at position 38 FR2 region
- leucine (L2) at position 45 (FR2) for example, position 45 in the amino acid sequence set forth in SEQ ID NO: 6 on the heavy chain variable region.
- proline (P) at position 44 (FR2) on the opposite light chain variable region for example, position 50 in the amino acid sequence set forth in SEQ ID NO: 8.
- proline (P) at position 44 (FR2) on the opposite light chain variable region for example, position 50 in the amino acid sequence set forth in SEQ ID NO: 8.
- the present invention relates to an antibody (polypeptide (eg, sc (Fv) 2) or heteromultimer (eg, IgG type antibody) comprising a heavy chain variable region and a light chain variable region.
- polypeptide eg, sc (Fv) 2
- heteromultimer eg, IgG type antibody
- amino acid residues are amino acid residues having the same kind of charge.
- amino acid sequence set forth in SEQ ID NO: 6 or 8 is for more specifically illustrating the position of the amino acid residue to be modified in the present invention. Not limited to light chain variable regions with these amino acid sequences! ,.
- amino acid residues described in (1) and (2), (3) and (4) above approach each other when they are associated, as shown in the Examples and FIG. ing.
- Those skilled in the art will recognize homology modules using commercially available software for the desired heavy chain variable region or light chain variable region.
- a site corresponding to the amino acid residues described in the above (1) to (4) can be found by deringing or the like, and the amino acid residue at the site can be appropriately subjected to modification.
- amino acid residue having a charge is selected from, for example, the following (a) or (b)!
- the present invention provides an antibody (polypeptide or heteromultimer, etc.) comprising a heavy chain variable region and a light chain variable region, wherein one of the following (3) and (4) is a charge:
- An antibody which is an amino acid residue having The side chains of amino acid residues shown in (3) and (4) below are close to each other and can form a hydrophobic core.
- the "charged amino acid residue” is, for example, glutamic acid (E), aspartic acid (D), lysine (K), arginine (R), or histidine (H). I prefer that.
- amino acid residues described in (1) to (4) above are usually (1) glutamine (Q), (2) glutamine (Q), (3) leucine ( L), (4) Proline (P). Therefore, in a preferred embodiment of the present invention, these amino acid residues are subjected to modification (for example, substitution with a charged amino acid).
- the types of amino acid residues (1) to (4) are not necessarily limited to the above amino acid residues, and may be other amino acids corresponding to the amino acids.
- the amino acid corresponding to position 44 in the amino acid sequence set forth in SEQ ID NO: 8 on the light chain variable region may be, for example, histidine (H) in the case of humans.
- H histidine
- the production method for the above-mentioned antibody and the association control method of the present invention characterized by modifying the amino acid residues of (1) to (4) above are also preferred according to the present invention. It is an aspect.
- the present invention relates to an antibody containing two or more heavy chain CH3 regions and an Fc region binding protein (for example, an IgG type antibody, minibody (Alt M et al. FEBS Letters 199 9; 454: 90-94 ), Imnoadhesin (Non-patent Document 2), etc.), which are selected from the following amino acid residue pairs shown in (1) to (3) in the first heavy chain CH3 region: In which the amino acid residue has the same kind of charge.
- an antibody containing two or more heavy chain CH3 regions and an Fc region binding protein for example, an IgG type antibody, minibody (Alt M et al. FEBS Letters 199 9; 454: 90-94 ), Imnoadhesin (Non-patent Document 2), etc.
- the present invention provides a second different from the first heavy chain CH3 region.
- a set of amino acid residues selected from the set of amino acid residues shown in (1) to (3) in the heavy chain CH3 region, wherein the first heavy chain CH3 region has the same kind of charge An antibody having 1 to 3 amino acid residues corresponding to the amino acid residue groups shown in 1) to (3) having a charge opposite to that of the corresponding amino acid residue in the first heavy chain CH3 region. provide.
- the “charged amino acid residue” is preferably selected from, for example, the following (a) or (b)!
- the antibody may have the first heavy chain CH3 region and the second heavy chain CH3 region crosslinked by a disulfide bond.
- amino acid residues to be subjected to “modification” are not limited to the amino acid residues in the above-described antibody variable region or antibody constant region.
- a person skilled in the art can find amino acid residues that form an interface for polypeptide variants or heterologous multimers by homology modeling using commercially available software, etc. It is possible to subject these amino acid residues to modification.
- the method of the present invention is not essential, but may be carried out by combining known techniques. Noh.
- the amino acid side chain present in the variable region of one H chain is a larger side chain.
- the protrusion is placed in the cavity.
- the association control method of the present invention can be suitably implemented when a desired sc (Fv) 2 is acquired preferentially (efficiently).
- a desired sc (Fv) 2 is acquired preferentially (efficiently).
- sc (Fv) 2 having two types of heavy chain variable regions (HI and H2) and two types of light chain variable regions (L1 and L2) will be described in more detail.
- sc (Fv) 2 is a single-chain polypeptide in which two heavy chain variable regions (VH1 and VH2) and two light chain variable regions (VL1 and VL2) are linked by a linker. That is, sc (Fv) 2 is a low molecular weight antibody in which four antibody variable regions are linked to each other with a linker or the like to form a single chain. Usually, sc (Fv) 2 is an antibody in which four variable regions of two light chain variable regions and two heavy chain variable regions are combined with a linker or the like to form a single chain (Hudson et al, J Immunol. Methods 1999; 231: 177-189
- sc (Fv) 2 can be prepared by a method known to those skilled in the art.
- sc (Fv) 2 can be prepared by linking scFv with a linker.
- scFv contains antibody VH and VL, and these regions are present in a single polypeptide chain (for a review of scFv, see Pluckthun, The Pharmacology of Monoclonal Antibomes J Vol.llj (Rosenburg and Moore ed ( Springer Verlag, New York) pp.269-315, 1994)).
- the order of the two VHs and the two VLs is not particularly limited to the above arrangement, and may be arranged in any order. For example, the following arrangement can also be mentioned.
- sc (Fv) 2 may contain an amino acid sequence other than the antibody variable region and the linker.
- variable region of the antibody may be the full length of the variable region, or may be a partial sequence of the variable region as long as the binding activity to the antigen is maintained.
- the amino acid sequence in the variable region may be substituted, deleted, added, inserted or the like.
- chimeras may be humanized in order to reduce antigenicity.
- any peptide linker that can be introduced by genetic engineering, or a synthetic compound linker see, for example, Protein Engineering, 9 (3), 299-305, 1996)
- a peptide linker is preferable.
- the length of the peptide linker is not particularly limited, and can be appropriately selected by those skilled in the art according to the purpose, but the preferred length is 12 amino acids or more (the upper limit is not particularly limited, but usually 30 amino acids or less, Preferably, it is 20 amino acids or less), particularly preferably 15 amino acids.
- sc (Fv) 2 includes three peptide linkers, peptide linkers having the same length may be used, or peptide linkers having different lengths may be used.
- n is an integer of 1 or more.
- the length and sequence of the peptide linker can be appropriately selected by those skilled in the art according to the purpose.
- Preferred sc (Fv) 2 embodiments include, for example, the following sc (Fv) 2.
- Synthetic chemical linkers are commonly used for cross-linking peptides such as N-hydroxysuccinimide (NHS), disuccinimidyl suberate (DSS), bismuth. (Sulfosuccinimidyl) suberate (BS 3 ), dithiobis (succinimidyl propionate) (DSP), dithiopis (sulfosuccinimidyl propionate) (DTSSP), ethylene glycol Bis (succinimidyl succinate) (EGS), ethylene glycol bis (sulfosuccinimidyl succinate) (sulfo EGS), disuccinimidyl tartrate (DST), disulfosuccinimidyl tartrate (Sulfo-DST), bis [2- (succinimidoxycarboxyl) ethyl] sulfone (BSOCOES), bis [2- (sulfosuccinimidoc
- sc (Fv) 2 As structural isomers in sc (Fv) 2, for example, there are a single chain diabody type and a bivalent scFv type.
- sc (Fv) 2 are arranged in the order of [Variable region 1] (Linker 1) [Variable region 2] (Linker 1) [Variable region 3] (Linker 1) [Variable region 4]
- the bivalent scFv type refers to sc (Fv) 2 having a structure in which variable region 1 and variable region 2 are associated, and variable region 3 and variable region 4 are associated.
- the single chain diabody type refers to sc (Fv) 2 having a structure in which variable region 1 and variable region 4 are associated and variable region 2 and variable region 3 are associated.
- the single chain diabody type is, for example, sc (Fv) 2 having the structure shown on the right side of FIG. 12 (b), and the bivalent scFv type is, for example, having the structure shown on the left side of FIG. 12 (b). sc (Fv) 2.
- sc (Fv) 2 has a structure of a single chain diabody type or a bivalent scFv type can be analyzed by, for example, a protease-restricted degradation method. For example, it can be analyzed by the following method.
- test sc (Fv) 2 is subjected to limited degradation using subtilisin A, a kind of protease that can partially and limitedly degrade the linker portion of sc (Fv) 2.
- the reaction product can be analyzed by, for example, gel filtration chromatography analysis.
- the abundance ratio of the bivalent sc (Fv) 2 structure and the single chain diabody structure contained in sc (Fv) 2 can be quantitatively evaluated based on the peak area using chromatography.
- the association control method of the present invention is preferably used when it is desired to preferentially obtain one of the above-mentioned sc (Fv) 2 types, i.e., single chain diabody type or bivalent scFv type. Can do.
- the present invention can also be carried out in the same manner when sc (Fv) 2 is a monospecific antibody.
- VH and VL domains can be cross-linked by disulfide bonds (Clin Cancer Res. 1996 Feb; 2 (2): 245-52).
- an active antibody or polypeptide By utilizing the association control method of the present invention, for example, an active antibody or polypeptide can be efficiently produced.
- the activity include binding activity, neutralization activity, cytotoxic activity, antagonist activity, antagonist activity, enzyme activity and the like.
- the agonist activity is an activity that induces a change in some physiological activity, for example, when a signal is transmitted into a cell by binding an antibody to an antigen such as a receptor.
- physiological activities include proliferation activity, survival activity, differentiation activity, transcription activity, membrane transport activity, binding activity, proteolytic activity, phosphate ⁇ Z dephosphate ⁇ activity, acid ⁇ reduction activity, Examples thereof include, but are not limited to, metastasis activity, nucleolytic activity, dehydration activity, cell death inducing activity, and apoptosis inducing activity.
- the method of the present invention can efficiently produce an antibody or polypeptide that recognizes a desired antigen or binds to a desired receptor.
- the antigen is not particularly limited and may be any antigen.
- antigens include, but are not limited to, a receptor or a fragment thereof, a cancer antigen, an MHC antigen, a split antigen, and the like.
- Examples of the receptor include, for example, hematopoietic factor receptor family, site force-in receptor family, tyrosine kinase type receptor family, serine Z threonine kinase type receptor family, TNF receptor family, G Examples include receptors belonging to receptor families such as protein-coupled receptor family, GPI anchor type receptor family, tyrosine phosphatase type receptor family, adhesion factor family, hormone receptor family, and the like. There are a number of receptors belonging to these receptor families and their characteristics. For example, Cooke BA., King RJB., Van der Molen HJ. Ed. New Comp rehesive Biochemistry V0I.I8B Hormones and their Actions Part II ⁇ pp.l-46 (1988)
- Specific receptors belonging to the above receptor family include, for example, human or mouse erythroid poetin (EPO) receptor, human or mouse granulocyte colony stimulating factor (G-CSF) receptor, human or mouse thrombopoi.
- EPO erythroid poetin
- G-CSF granulocyte colony stimulating factor
- Etine (TPO) receptor human or mouse insulin receptor, human or mouse Flt-3 ligand receptor, human or mouse platelet derived growth factor (PDGF) receptor, human or mouse interferon (IFN)- ⁇ , j8 receptor , Human or mouse leptin receptor, human or mouse growth hormone (GH) receptor, human or mouse interleukin (IL) -10 receptor, human or mouse insulin-like growth factor (IGF) -I receptor, human or mouse Examples include leukemia inhibitory factor (LIF) receptor, human or mouse ciliary neurotrophic factor (CNTF) receptor (hEPOR: Simon, S. et al. (1990) Blood 76, 31-35 .; mEPO R: D'Andrea, AD. Et al.
- LIF leukemia inhibitory factor
- CNTF ciliary neurotrophic factor
- Cancer antigens are antigens that are expressed as cells become malignant, and are also called tumor-specific antigens.
- abnormal sugar chains appearing on the cell surface and protein molecules when cells become cancerous are also cancerous. It becomes an antigen and is specifically called a cancer sugar chain antigen.
- cancer antigens include CA19-9, CA 15-3, serial SSEA-1 (SLX), and the like.
- MHC antigens are roughly classified into MHC class I antigens and MHC class II antigens.
- MHC class I antigens are classified as HLA-,- ⁇ , -C, - ⁇ , -F, -G,- H is included, and MHC class II antigens include HLA-DR, -DQ, -DP.
- Anti-antigens include CDl, CD2, CD3, CD4, CD5, CD6, CD7, CD8, CD10, CDlla, CDllb, CDllc, CD13, CD14, CD15s, CD16, CD18, CD19, CD20, CD21 , CD23, CD25, CD28, CD29, CD30, CD32, CD33, CD34, CD35, CD38, CD40, CD41a, CD41b, CD42a, CD42b, CD43, CD44, CD45, CD45RO, CD48, CD49a, CD49b, CD49c, CD49d, CD49e CD49f, CD51, CD54, CD55, CD56, CD57, CD58, CD61, CD62E, CD62L, CD62P, CD64, CD69, CD71, CD73, CD95, CD102, CD106, CD122, CD126, CDwl30, etc. are included.
- the present invention also provides polypeptide variants or heteromultimers whose association is controlled by the method of the present invention. That is, the present invention relates to a polypeptide or a heteromultimer obtained by the association control method of the present invention.
- modification of amino acid residues forming an interface in a polypeptide variant is inhibited so that association in the original polypeptide is inhibited.
- polypeptide variants are provided.
- the heterologous multimer has a modification of an amino acid residue that forms an interface between the polypeptides so that association between the original polypeptides is inhibited.
- the “original polypeptide” refers to a polypeptide in a state before being modified so that association is controlled by the method of the present invention.
- polypeptide variant of the present invention a variant in which the original polypeptide can form two structural isomers can be mentioned.
- An example of the heterologous multimer is a multimer in which the original polypeptide can form two or more multimers.
- Polypeptide variants or heterologous multimers whose association is controlled by the above-described association control method of the present invention are also included in the present invention. That is, the above-mentioned meeting control method is preferred.
- a polypeptide or heterologous multimer with controlled association is also a preferred embodiment of the present invention.
- the present invention also provides a method for producing a polypeptide or multimer in which association of the polypeptide or multimer is controlled.
- a preferred embodiment of the production method of the present invention is a method for producing a polypeptide having a mutation in an amino acid residue that forms an interface in a polypeptide so that the association of the polypeptides is controlled. ) Nucleic acid encoding an amino acid residue that forms an interface in the polypeptide is modified so that the association in the polypeptide is inhibited, and (b) the host cell is cultured so that the nucleic acid is expressed. And (c) the ability to culture a host cell, a method for producing a polypeptide variant comprising recovering the polypeptide.
- a method for producing a heteromultimer having a mutation in an amino acid residue that forms an interface between polypeptides so that the association of the heteromultimers is controlled.
- a nucleic acid encoding an amino acid residue that forms an interface between polypeptides is modified from the original nucleic acid so that association between the polypeptides is inhibited, and
- the host cell is treated with the nucleic acid.
- recovering the heterologous multimer from a host cell culture.
- association control method of the present invention a nucleic acid encoding an amino acid residue that forms an interface between (in between) polypeptides is inhibited so that the association of the polypeptides is inhibited.
- the method comprising the step of modifying from the nucleic acid is also one of the preferred embodiments of the production method of the present invention.
- modifying a nucleic acid refers to modifying a nucleic acid so as to correspond to the amino acid residue introduced by the "modification" in the present invention. More specifically, it means that a nucleic acid encoding an original (before modification) amino acid residue is modified to a nucleic acid encoding an amino acid residue introduced by the modification. Usually, it means that genetic manipulation or mutation treatment is performed such that at least one base is inserted, deleted or substituted into the original nucleic acid so as to be a codon for coding the target amino acid residue. That is, the codon encoding the original amino acid residue is replaced by the codon encoding the amino acid residue introduced by the modification.
- nucleic acid modifications are known to those skilled in the art, for example, For example, site-directed mutagenesis or PCR mutagenesis can be used as appropriate.
- the nucleic acid of the present invention is usually carried (inserted) into an appropriate vector and introduced into a host cell.
- the vector is not particularly limited as long as it stably holds the inserted nucleic acid.
- Escherichia coli is used as the host, a pBluescript vector (Stratagene) is preferred as a cloning vector. It is possible to use various commercially available vectors.
- An expression vector is particularly useful when a vector is used for the purpose of producing the polypeptide of the present invention.
- the expression vector is not particularly limited as long as it is a vector that expresses a polypeptide in vitro, in E. coli, in cultured cells, or in an individual organism.
- a pBEST vector manufactured by Promega
- pET vector manufactured by Invitrogen
- pME18S-FL 3 vector GenBank Accession No. AB009864
- pME18S vector Mol Cell Biol. 8: 466-472 (1988)
- the DNA of the present invention can be inserted into a vector by a conventional method, for example, by a ligase reaction using a restriction enzyme site (Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. Wiley & Sons. Section 11.4-11.11).
- the host cell is not particularly limited, and various host cells may be used depending on the purpose.
- Examples of cells for expressing a polypeptide include bacterial cells (eg, Streptococcus, Staphylococcus, E. coli, Streptomyces, Bacillus subtilis), fungal cells (eg, yeast, Aspergillus), and insect cells (eg, Drosophila).
- S2, Spodoptera SF9 animal cells (eg CHO, COS, HeLa, C127, 3T3, BHK, HEK293, Bowes melanoma cells) and plant cells can be exemplified.
- Vector introduction into host cells can be performed by, for example, calcium phosphate precipitation method, electric pulse perforation method (Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons. Section 9.1-9.9), lipophectamine method (GIBC O-BRL) and a known method such as a microinjection method.
- calcium phosphate precipitation method for example, calcium phosphate precipitation method, electric pulse perforation method (Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons. Section 9.1-9.9), lipophectamine method (GIBC O-BRL) and a known method such as a microinjection method.
- electric pulse perforation method Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons. Section 9.1-9.9
- lipophectamine method GIBC O-BRL
- an appropriate secretion signal can be incorporated into the polypeptide of interest. These signals are endogenous to the polypeptide of interest. Or a heterogeneous signal.
- the polypeptide is recovered when the polypeptide of the present invention is extracted in the medium.
- the polypeptide of the present invention is produced in a cell, the cell is first lysed, and then the polypeptide is recovered.
- the ability of recombinant cell culture to recover and purify the polypeptides of the invention also includes ammonium sulfate or ethanol precipitation, acid extraction, cation or cation exchange chromatography, phosphocellulose chromatography, hydrophobicity.
- Known methods including interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography can be used.
- the present invention also relates to a composition (drug) comprising the polypeptide variant of the present invention or the heterologous multimer of the present invention and a pharmaceutically acceptable carrier.
- the pharmaceutical composition usually refers to a drug for treatment or prevention of a disease, or examination / diagnosis.
- the pharmaceutical composition of the present invention can be formulated by methods known to those skilled in the art. For example, it can be used parenterally in the form of a sterile solution with water or other pharmaceutically acceptable liquid, or an injection in the form of a suspension.
- a pharmacologically acceptable carrier or medium specifically, sterilized water or physiological saline, vegetable oil, emulsifier, suspension, surfactant, stabilizer, flavoring agent, excipient, vehicle, antiseptic It may be formulated in combination with drugs, binders, etc., by mixing in unit dosage forms generally required for pharmaceutical practice.
- the amount of active ingredient in these preparations is set so that an appropriate amount within the specified range can be obtained.
- Sterile compositions for injection can be formulated according to conventional pharmaceutical practice using a vehicle such as distilled water for injection.
- aqueous solutions for injection include isotonic solutions containing, for example, physiological saline, glucose and other adjuvants (eg, D-sorbitol, D-mannose, D-mannitol, sodium chloride).
- a suitable solubilizing agent such as alcohol (ethanol, etc.), polyalcohol (propylene glycol, polyethylene glycol, etc.), nonionic surfactant (polysorbate 80 (TM), HCO-50, etc.) may be used in combination.
- the oily liquid include sesame oil and soybean oil, and benzyl benzoate and Z or benzyl alcohol may be used in combination as a solubilizing agent.
- a buffer for example, phosphate buffer solution and sodium acetate buffer
- a soothing agent for example, pro-hydrochloric acid hydrochloride
- a stabilizer for example, benzyl alcohol and phenol
- an antioxidant for example, benzyl alcohol and phenol
- the pharmaceutical composition of the present invention is preferably administered by parenteral administration.
- the composition can be an injection, nasal, pulmonary, or transdermal composition.
- it can be administered systemically or locally by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, or the like.
- the administration method can be appropriately selected depending on the age and symptoms of the patient.
- the dose of the pharmaceutical thread or the composition containing the antibody or the polynucleotide encoding the antibody can be set, for example, in the range of O.OOOlmg to lOOOmg per kg body weight at a time. Or, for example, the power that can be a dose of 0.001 to 100,000 mg per patient.
- the present invention is not necessarily limited to these values.
- the dose and administration method vary depending on the weight, age, symptoms, etc. of the patient, but those skilled in the art can set an appropriate administration dose and administration method in consideration of these conditions.
- polypeptide of the present invention or the heteromultimer can be formulated in combination with other pharmaceutical ingredients.
- the present invention also provides a nucleic acid encoding the polypeptide variant of the present invention or the heterologous multimer of the present invention. Furthermore, a vector carrying the nucleic acid is also included in the present invention.
- the present invention provides a host cell having the nucleic acid.
- the host cell is not particularly limited, and examples thereof include E. coli and various animal cells.
- the host cell can be used, for example, as a production system for production and expression of the antibody or polypeptide of the present invention.
- Production systems for polypeptide production include in vitro and in vivo production systems. Examples of in vitro production systems include production systems that use eukaryotic cells and production systems that use prokaryotic cells.
- Examples of eukaryotic cells that can be used as host cells include animal cells, plant cells, and fungal cells.
- Animal cells include mammalian cells such as CHO (j. Exp. Med. (1995 108: 945), COS ⁇ 3T3, myeloma, BHK (baby hamster kidney), HeLa, Vero, etc.
- Amphibian cells such as Xenopus laevis oocytes (Valle et al., Nature (1981) 291: 338- 340), and insect cells such as S19, Sf21, Tn5.
- CHO-DG44, CH0-DX11B, COS7 cells, and BHK cells are preferably used.
- Vectors can be introduced into host cells by methods such as calcium phosphate method, DEAE dextran method, cationic ribosome DOTAP (manufactured by Boehringer Mannheim), electroporation method, lipofussion method, etc. .
- a cell derived from Nicotiana tabacum is known as a protein production system, and the antibody of the present invention can be produced by a method of culturing this cell.
- fungal cells include yeasts such as Saccharomyces saccharomyces (Saccharomyces cerevisiae, Saccharomyces pombe, etc.) and filamentous fungi such as Aspergillus.
- yeasts such as Saccharomyces saccharomyces (Saccharomyces cerevisiae, Saccharomyces pombe, etc.) and filamentous fungi such as Aspergillus.
- a protein expression system using the above-mentioned cells (such as Aspergillus niger) is known and can be used as the antibody production host of the present invention.
- prokaryotic cells there are production systems using bacterial cells.
- a production system using Bacillus subtilis in addition to the above-mentioned E. coli is known and can be used for the production of the antibody of the present invention.
- a host cell transformed with an expression vector containing a polynucleotide encoding the antibody of the present invention is cultured to express the polynucleotide.
- the culture can be performed according to a known method. For example, when animal cells are used as hosts, for example, DMEM, MEM, RPMI1640, and IMDM can be used as a culture solution. At that time, the cells may be cultured by serum-free culture, even in combination with serum supplements such as FBS and fetal calf serum (FCS).
- the pH during culture is preferably about 6-8. Cultivation is usually performed at about 30 to 40 ° C for about 15 to 200 hours, with medium exchange, aeration, and agitation as necessary.
- examples of the system for producing a polypeptide in vivo include a production system using animals and a production system using plants.
- the target poly for these animals or plants Nucleotides are introduced to produce and recover the polypeptide in the animal or plant body.
- the “host” in the present invention includes these animals and plants.
- mice When animals are used, there are production systems using mammals and insects. As mammals, goats, pigs, hidges, mice, mice, etc. can be used (Vicki Glaser, SPECTRU M Biotechnology Applications (1993)). In addition, when a mammal is used, a transgenic animal can be used.
- a polynucleotide encoding the antibody of the present invention is prepared as a fusion gene with a gene encoding a polypeptide inherently produced in milk such as goat j8 casein.
- the polynucleotide fragment containing the fusion gene is then injected into a goat embryo and the embryo is transferred to a female goat.
- the antibody of interest can be obtained from the milk produced by the transgene goat born from the goat that received the embryo or its progeny.
- hormones may be administered to Transgene goats as appropriate (Ebert et al., Bio / Technology (1994) 12: 699-702) .
- a silkworm As an insect that produces the antibody of the present invention, for example, a silkworm can be used.
- the antibody of interest can be obtained from the body fluid of the silkworm by infecting the silkworm with baculovirus inserted with a polynucleotide encoding the antibody of interest (Susumu et al, Nature (1985) 315 : 592-4).
- a plant for producing the antibody of the present invention
- tobacco can be used.
- a polynucleotide encoding the antibody of interest is inserted into a plant expression vector, such as pMON530, and this vector is introduced into a bacterium such as Agrobacterium tumefaciens.
- This bacterium is infected with tobacco, for example, Nicotiana tabacum, and the desired antibody can be obtained from the leaves of this tobacco (Ma et al., Eur. J. Immunol. (1994) 24: 131- 8)
- the antibody thus obtained can be isolated from the inside of the host cell or outside the cell (medium, milk, etc.) and purified as a substantially pure and homogeneous antibody. Separation and purification of antibodies are not limited in any way as long as separation and purification methods used in usual polypeptide purification are used. For example, chromatography column, filter, ultrafiltration , Salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing, dialysis, recrystallization, etc. Can do.
- chromatography examples include affinity chromatography, ion-exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, adsorption chromatography ⁇ , etc .; ⁇ 2 » Protein Purincation ana Charactenzatio n: A Laboratory Course Manual. Ed Daniel R. Marshak et al. (199b Cold Spring Harbor Laboratory Press)
- chromatographies are liquid phase chromatography, for example, liquid phase chromatography such as HPLC and FPLC.
- Columns used for affinity mouthmatography include protein A columns and protein G.
- columns using protein A include Hyper D, POROS, and Sepharose FF. (Pharmacia) and the like.
- an appropriate protein-modifying enzyme can be allowed to act before or after purification of the antibody to arbitrarily modify or partially remove the peptide.
- the protein modifying enzyme include trypsin, chymotrypsin, lysyl endobeptidase, protein kinase, darcosidase and the like.
- the method for producing a polypeptide variant or heteromultimer of the present invention comprising the steps of culturing the host cell of the present invention as described above and recovering the cell culture force polypeptide is also provided.
- One of the embodiments is preferred.
- Factor IXa ⁇ emulsified with FIA Factor IXa ⁇ emulsified with FIA (Freund's incomplete adjuvant (Difco lab oratories)) was subcutaneously administered at 40 ⁇ g / head. Thereafter, booster immunization was performed 3 to 7 times at weekly intervals. After confirming the increase in serum antibody titer against Factor ⁇ ⁇ ⁇ ⁇ by ELISA (Enzyme linked immunosorbent assay), PB S (-) (phosphate buffered saline without calcium and magnesium ions) was used as the final immunization. Dilute Factor IXa was administered intravenously at 40 g / head.
- Fused cells suspended in RPMI1640 medium (Invitrogen) containing 10% FBS (In vitrogen) (hereinafter referred to as 10% FBS / RPMI1640) were seeded in a 96-well culture plate, and 1, 2, 3, 5 days after the fusion
- 10% FBS / RPMI1640 10% FBS / RPMI1640
- HAT selective medium 10% FBS / RPMI1640 / 2% HAT 50x concentrate (Dainippon Pharmaceutical) / 5% BM-Condimed HI (Roche's Diagnostics)
- a hyperpridoma having Factor IXa binding activity was selected by measuring the binding activity to Factor IXa by ELISA shown in 1-2. . Subsequently, neutralization activity for the enzyme activity of Factor IXa was measured by the method shown in 5-3, and a hyperidoma having no neutralization activity for Factor IXa was selected.
- Hypridoma was cloned twice by limiting dilution by seeding one cell per well in a 96-well culture plate to establish hybridoma XB12 producing anti-factor IXa antibody.
- the plate was blocked with R) 20, 0.02% sodium azide) for 2 hours at room temperature. After removing Buffer, plate The culture supernatant of mouse antiserum or hybridoma diluted with diluent buffer was added at 100 ⁇ L / well and incubated at room temperature for 1 hour. After washing the plate 3 times, add 100 / z L / well of alkaline phosphatase-labeled goat anti-mouse IgG (H + L) (Zymed Labor atories) diluted 1/2000 with diluent buffer for 1 hour at room temperature. Incubated.
- a 400 g / mL phospholipid solution was prepared by dissolving Phospholipid (Sigma-Aldrich) in distilled water for injection and subjecting it to ultrasonic treatment.
- Phospholipid Sigma-Aldrich
- Tris buffered saline containing 0.1% ushi serum albumin hereinafter TBSB O / z L and 30 ng / mL Factor IXa jS (Enzyme Research Laboratories) 10 ⁇ L and 400 ⁇ g / mL phospholipid solution 5 L and 100 mM CaCl
- the binding activity to Factor X was measured by ELISA shown in 2-2.
- Hypridoma having Factor X binding activity was selected, and the neutral activity of Factor Xa with respect to the enzyme activity was measured by the method shown in 2-3.
- Hypridoma without neutralizing activity against Factor Xa was cloned by performing limiting dilution twice to establish a hybridoma SB04 that produces anti-Factor X antibody.
- alkaline phosphatase-labeled goat anti-mouse IgG (H + L) diluted 1/2000 in diluent buffer was added and incubated at room temperature for 1 hour.
- 100 ⁇ L / well of chromogenic substrate Blue-Phos TM Phosphate Substrate (Kirkegaad & Perry Laboratories) was added and incubated at room temperature for 20 minutes.
- Blue-Phos Stop Solution was added at 100 ⁇ L / well, and the absorbance at 595 nm was measured with Microplate Reader Model 3550 (Bio-Rad Laboratories).
- TBSB phosphatidylcholine
- phosphatidylserine 75: 25, Sigma-Aldrich
- 20 g / mL prothrombin Enzyme Research Laboratories
- 100 ng / mL activated coagulation factor V Fact or Va (Haematologic Technologies)
- the reaction was stopped by adding 10 L of 0.5 M EDTA.
- 1 mM S-2238 solution Chromogenix
- RNA was dissolved in 40 L of sterile water.
- Single-stranded cDNA was synthesized by RT-PCR using the Superscript cDNA synthesis system (Invitrogen) in accordance with the method described in the instructions, using the purified R 1 to 2 ⁇ g in a bowl shape.
- the reaction solution was subjected to 1% agarose gel electrophoresis.
- the amplification fragment of the desired size (about 400 bp) was purified using the QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the attached instruction, and eluted with 30 ⁇ 1 of sterilized water.
- the base sequence of each DNA fragment was determined using the BigDye Terminator Cycle Sequencing Kit (Applied Biosystems) and the DNA sequencer ABI PRISM 3100 Ge The determination was made using netic Analyzer (Applied Biosystems) according to the method described in the attached manual. The sequence group determined by this method was compared and analyzed with analysis software GENETYX-SV / RC Version 6.1 (Genetyx), and those having different sequences were selected.
- PCR was performed using the thermal cycler GeneAmp PCR system 9700 (Parkin Elmer) according to the efficiency of fragment amplification under the conditions A (heated at 98 ° C for 3 minutes, 98 ° C for 20 seconds, 58 ° C for 20 seconds, Reactions consisting of 72 ° C for 30 seconds and 32 cycles) or condition B (94 ° C for 20 seconds, 46 ° C for 20 seconds, 68 ° C for 30 seconds after heating at 94 ° C for 3 minutes)
- a cycle consisting of 5 cycles and a reaction consisting of 94 ° C for 20 seconds, 58 ° C for 20 seconds, and 72 ° C for 30 seconds was performed under any of the following conditions: 30 cycles for one cycle.
- the reaction solution was subjected to 1% agarose gel electrophoresis.
- the amplified fragment of the desired size (about 400 bp) was purified by QIAquick Gel Extraction Kit (QIAG EN) according to the method described in the attached instruction, and eluted with 30 L of sterilized water.
- VL Mouse antibody L chain variable region
- DNA polymerase KOD plus (Toyobo) was prepared.
- PCR was performed using a thermal cycler GeneAmp PCR system 9700 (Parkin Elmer) according to the efficiency of fragment amplification, after heating at 94 ° C for 3 minutes, 94 ° C for 20 seconds, 46 ° C for 20 seconds, 68 5 cycles of a reaction at 30 ° C for 30 seconds, and another cycle of 94 ° C for 20 seconds, 58 ° C for 20 seconds, 72 ° C for 30 seconds As 30 cycles.
- the reaction solution was subjected to 1% agarose gel electrophoresis.
- the amplified fragment of the desired size (about 400 bp) was purified by QIAqucick Gel Extractio Kit (QIAGE N) by the method described in the attached instruction, and eluted with 30 L of sterilized water.
- the fragment is in a state in which (Gly4Ser) 3-linker sequence derived from the primer LF is added to the C-terminus.
- (Gly4Ser) 3-linker sequence derived from the primer LF is added to the C-terminus.
- the IgG3 knobs-into-holes technology (Non-patent Document 3) is used to form a heteromolecule for each H chain.
- An amino acid substitution product was prepared.
- Type a (IgG4 ya) is a substitute for Y349C and T366W
- type b (IgG4 yb) is a substitute for E356C, T366S, L368A, and Y407V.
- a substitution (-ppcpScp->-ppcpPcp-) was also introduced into the hinge region of both substitutions.
- each region of the H chain or L chain ie, an animal cell signal sequence (IL3ss) (Proc Natl. Acad. Sci. USA. 1984; 81: 1075) suitable mouse antibody variable regions (VH and VL) and human IgG4 ya constant regions (SEQ ID NO: 9)! A ⁇ constant region (SEQ ID NO: 10) (pcDNA4-g4H! And pcDNA4-g4L) was prepared.
- IL3ss animal cell signal sequence
- pcDNA4 was digested with restriction enzyme cleavage sites Eco RV and Not I (Takara Bio) existing in the multicloning site.
- Chimeric bispecific antibody with appropriate antibody variable region right arm H chain tanned L chain expression unit (each 1.6 kb tanned about l.Okb) was digested with Xho 1 (Takara Bio), then QIAquick PCR
- the product was purified by Purification Kit (QIAGEN) according to the method described in the attached instruction, and reacted at 72 ° C for 10 minutes with DNA polymerase KOD (Toyobo) using the reaction liquid composition described in the attached instruction to smooth the ends.
- the blunt end fragment was purified by QIAquick PCR Purification Kit (QIAGEN) by the method described in the attached instruction, and digested with Not 1 (Takara Bio).
- the Not blunt fragment (about 1.6 kb to l.Okb, respectively) and pcDNA4 digested with Eco RV-Not I were subjected to ligation using Ligation High (Toyobo) according to the method described in the attached instructions.
- Escherichia coli DH5a strain (Competent high DH5a (Toyobo)) was transformed with the reaction solution. Plasmid DNAs were isolated from the obtained ampicillin metaclones using QIAprep Spin Miniprep Kit (QIAGEN).
- the other arm (referred to as the left arm HL molecule for the sake of convenience) is directed to the etadyson analog-derived vector pIND (Invitrogen).
- This region of the H chain or L chain ie, the signal sequence for animal cells (IL3ss) ( EMBO. J. 1987; 6: 2939) downstream of the appropriate mouse antibody variable region (VH, VL) and human IgG4 yb constant region (SEQ ID NO: 11) or ⁇ constant region (pIND-g4H Or pIND-g4L) was prepared according to the method described above, and each plasmid DNA was isolated.
- Plasmid DNAs were isolated from the target clones using QIAprep Spin Miniprep Kit (QIAGEN) and dissolved in 100 L of sterile water.
- the anti-F. IXa antibody chimeric H chain expression vector, the anti-F. IXa antibody chimeric L chain expression vector, the anti-F. X antibody chimeric H chain expression vector, and the anti-F. X antibody chimeric L chain expression vector are respectively pcDNA4- g4 They were named XB12H, pcDNA4-g4 XB1 2L, pIND-g4 SB04H and pIND-g4 SB04L.
- Antibody right arm HL molecule expression vectors (pcDNA4-g4 XB12H and pcDNA4-g4 XB12L) are induced by tetracycline. In the absence of tetracycline, the plasmid pcDNA6 / TR (Invitrogen) encoding the Tet repressor is required to completely suppress expression under circumstances.
- antibody left arm HL molecule expression vectors (pIND-g4 SB04H and p IND-g4 SB04L) are produced by the insect hormone etadyson analog (ponasterone A). Current guidance takes.
- the plasmid pVgRXR (Invitrogen) encoding etadyson receptor and retinoid X receptor that reacts with and induces Bonasterone A is required. Therefore, a total of six types of plasmid DNA mixtures were prepared for animal cell transfection. For 10 mL of cell culture medium, 3 ⁇ g each of pcDNA4- g4 XB12H, pcDNA4-g4 XB12L, pIND-g4 S B04H and pIND-g4 SB04L, and 18 ⁇ g each of pcDNA6 / TR and pVgRXR were used.
- Human embryonic kidney cancer cell-derived HEK293H strain (Invitrogen) is suspended in D MEM medium (Invitrogen) containing 10% FCS (MOREGATE), and a dish for adherent cells (diameter 10cm, CORNING, at a cell density of 5 X 10 5 cells / mL) ) 10 mL each to each dish of CO) CO incubator (37
- the cells were cultured overnight at 5 ° C. in ° C. Transfer the plasmid DNA mixture prepared in 4-1.
- the cell culture fluid force transformed as described in the previous section is also removed by aspiration, and 10 mL CHO-S-SFM-II (Invitrogen) medium containing 1 ⁇ g / mL tetracycline (Wako Pure Chemical Industries) is added. Incubate for 1 day in a CO incubator (37 ° C, 5% CO)
- Example 4 Add 100 ⁇ L of rProtein A Sepharose TM Fast Flow (Amersham Biosciences) to 10 mL of the culture supernatant obtained by the method described in 3 and mix by inverting at 4 ° C for 4 hours or more. It was. Transfer the solution to a 0.22 ⁇ m filter cup Ultrafree (R) -MC ( Millipore), wash 3 times with 500 ⁇ L of TBS containing 0.01% Tween (R) 20, and then add 100 ⁇ l of rProtein A Sepharose TM rosin. The suspension was suspended in 10 mM HC1, pH 2.0 containing 0.01% Tween (R) 20 and allowed to stand for 2 minutes, and then the antibody was eluted. Immediately, 5 ⁇ L of 1M Tris-HCl, pH 8.0 was added and neutralized.
- Goat anti-human Igu (Biosource International) was prepared in a coating buffer of “tl ⁇ g / mL and immobilized on a Nunc-Immuno plate (Nunc). After blocking with Diluent buffer (DB), DB As a standard for calculating antibody concentration, HI HgG4 (humanized anti-antigen) was diluted 1 to 11 in DB in a 3-fold series from 2000 ng / mL.
- TF antibody (see WO 99/51743) was added in the same manner 7 washes 7 This was reacted with uoat anti-human Igu and alkaline phosphatase (Biosource Internation) After 5 washes, Sigma 104 ( R) Color was developed using phosphatase substrate (Sigma-Aid rich) as a substrate, and absorbance at 405 nm was measured at a reference wavelength of 655 nm using an absorbance reader Model 3550 (Bio-Rad Laboratories) Microplate Manager III (Bio-Rad Laboretories) ) From the standard calibration curve using software, human Ig G in the culture supernatant Concentration was calculated.
- Hemophilia To determine whether bispecific antibodies correct blood clotting ability, we examined the effect of the antibody on active ⁇ partial thromboplastin time (APTT) using Fact or VIII-deficient plasma. . A mixture of 50 ⁇ L of antibody solution of various concentrations 50 ⁇ L Factor VIII deficient plasma (Biomeri eux) and 50 ⁇ L of APTT reagent (Dade Behring) was heated at 37 ° C. for 3 minutes. The coagulation reaction is initiated by adding 50 L of 20 mM CaCl (Dade Behring) to the mixture.
- APTT active ⁇ partial thromboplastin time
- SB04-L chain variable region EMBL Accession No. AB064111 (IMGT Database)
- Humanized antibodies were prepared by grafting the complementary antigen-determining regions (hereinafter CDRs) of each mouse antibody into the FRs of human antibodies (l)-(4).
- SB04- H chain variable region GenBank Accession No. BC019337
- [0198] 6-2 Construction of humanized antibody gene expression vector
- 12 synthetic oligo DNAs of about 50bases were prepared alternately so that the ends were annealed by about 20bases.
- the primer having the Sfil cleavage sequence was prepared by annealing to the 5 ′ end of the antibody variable region gene and the primer having the Xhol cleavage sequence and the 3rd end of the antibody variable region gene.
- Synthetic oligo DNA prepared in 2.5 ⁇ was mixed at 1 ⁇ L each, and lx TaKaRa Ex Taq Buffer, 0.4 mM dNTPs, 0.5 units TaKaRa Ex Taq (all Takara Shuzo) was added, and the reaction solution was added to 48 ⁇ L. It prepared so that it might become. After incubating at 94 ° C for 5 minutes, the reaction comprising 94 ° C for 2 minutes, 55 ° C for 2 minutes, and 72 ° C for 2 minutes was performed for 2 cycles to assemble and extend each synthetic oligo DNA.
- the fragment was cloned using pGEM-T Easy Vector Systems (Promega) by the method described in the attached instructions.
- the base sequence of each DNA fragment was determined using the BigDye Terminator Cycle Sequencing Kit (Applied Biosystems) with the DNA sequencer ABI PRISM 3700 DNA Sequencer (Applied Biosystems) according to the method described in the attached instructions.
- digested tetracycline was prepared in Example 3-3 inducible expression plasmid (pcDNA4-g4H, pcDNA4-g4L ) and Eguda Ison analogues inducible expression plasmid (pIND- g4H, P IND-g4L ) with EcoRI and Sfil After that, a fragment (about 5 kb) containing the antibody constant region was purified by QIAquick Gel Extraction Kit (QIAGE N) by the method described in the attached instructions and eluted with sterile water 301.
- QIAquick Gel Extraction Kit QIAquick Gel Extraction Kit
- an expression vector was prepared as follows. -Plasmids (pCAG-g4H, pCAG-g ⁇ ) in which the wild-type antibody constant region was inserted into pCAGG S (Niwa et al.
- Example 4 2 Using the humanized H chain antibody expression vector and humanized L chain antibody expression vector prepared in Example 6-3 to express a normal humanized antibody, not a bispecific antibody The gene was introduced into 1 "3 ⁇ 41 2931" [by the method shown in FIG. After transfection, 10 mL of C HO-S-SFM- ⁇ medium (Invitrogen) was added and removed, washed, and then added with 10 mL of C HO- S-SFM-II, and the CO incubator (37 Incubate for 3 days in ° C, 5% CO)
- Humanized bispecific antibody (humanized XB12 antibody (VH: hXB12f-A, VL: hXBVL) / humanized) having activity equivalent to that of XB12 / SB04 by repeated amino acid modification of FR sequence and evaluation of blood coagulation ability SB04 antibody (VH: hSB04e, VL: hSBVL-F31) was obtained, and each antibody variable region sequence is shown in the following sequence number.
- an antibody Fv region model was prepared by homology modeling using MOE software (Chemical Computing Group Inc.).
- MOE software Chemical Computing Group Inc.
- the amino acids H39 and L38 were both daltamine (Gin), confirming that hydrogen bonds were formed by the side chains of both residues (Fig. 1 (A)).
- the amino acids of H45 and L44 were leucine (Leu) and proline (Pro), respectively, and it was confirmed that the side chains of both residues were very close and formed a hydrophobic core (Fig. 1). (B)). It is reported that these two amino acid residues are highly conserved in human antibodies.
- H39 glutamine of the humanized XB12 heavy chain and the L38 glutamine of the humanized SB04 light chain are inhibited so as to inhibit the association of the humanized XB12 heavy chain and the humanized SB04 light chain.
- both amino acids H39, L38
- both amino acids have a positive charge on the side chain lysine (Lys) or arginine (Arg), so as to repel the charge by inhibiting hydrogen bonding on the side chain of glutamine
- Substitution was made with glutamic acid (Glu) or aspartic acid (Asp) having a negative charge on the side chain.
- humanized XB12 H chain (modified H39), humanized SB04 L chain (modified L38), and wild type humanized XB12 L chain.
- humanized XB12 H chain (modified H39), humanized SB04 L chain (modified L38), and wild type humanized XB12 L chain.
- Example 4-2 humanized XB12 H chain
- humanized SB04 L chain (modified L38)
- wild type humanized XB12 L chain was used to introduce a gene into HEK293H by the method shown in Example 4-2, and the antibody was secreted into the culture supernatant.
- antibody purification and antibody concentration quantification were performed by the methods shown in Sarako, Examples 4-5 and 4-6.
- the ratio (%) of the target XB12-L chain was calculated by “XB12-L chain ZL chain total amount (XB12-L chain + SB04-L chain) ⁇ 100”.
- Humanized XB12 H chain (H39) and humanized SB04 L chain (L38) amino acids are 50% when wild-type glutamine (Gin), whereas H39 and L38 are replaced. It was confirmed that the ratio of the Xenopus XB12 L chain increased, and when it was replaced with glutamic acid (Glu), it increased by 82% to 1.6%.
- the gene was introduced into HEK293H by the method shown in Example 4-2, and the antibody was secreted into the culture supernatant. Furthermore, antibody purification and antibody concentration quantification were carried out by the methods shown in Examples 45 and 46.
- proline of L44 of the humanized SB04 L chain was replaced with an amino acid having a charge on the side chain so as to inhibit the association of the humanized XB12 H chain and the humanized SB04 L chain.
- proline present in the hydrophobic core at the interface between VH and VL is lysine (Lys) or arginine (Arg) with a positive charge on the side chain, and glutamic acid (Glu) with a negative charge on the side chain.
- Aspartic acid (Asp) for replacement of the human rabbit antibody gene, mutation was introduced by the method described in the attached instruction using QuikChange Site-Directed Mutagenesis Kit (Stratagene). Each humanized antibody gene fragment in which amino acids were substituted was inserted into the bispecific antibody expression vector used in Example 6-2 or a normal antibody expression vector.
- the fluorescence intensity of the H chain and L chain bands was calculated by Image Quant ver. 4.2 (Amersham Biosciences). The results are shown in FIG. Using the calculated fluorescence intensity values, the ratio (%) of the target XB12-L chain was calculated by “XB12-L chain ZL chain total amount (XB12-L chain + SB04-L chain) ⁇ 100”.
- the amino acid of human SB04 L chain (L44) is wild-type proline (Pro), it is 47%, but when L44 is substituted, the ratio of human ⁇ XB12 L chain increases. 86-90%, a 1.8-1.9-fold increase.
- the humanized SB04 L chain (L44 modified) bispecific antibody expression vector and wild type humanized XB12 H chain, humanized XB12 L chain and humanized SB04 H chain bispecific Gene introduction and expression induction into HEK293H were carried out by the methods shown in Examples 4-2 and 4-3 using the sex antibody expression vectors pcDNA6 / TR and pVgRXR. Furthermore, antibody purification and antibody concentration quantification were carried out by the methods shown in Example 4 5 and 46.
- the gene was introduced into HEK2 93H by the method shown in Example 42 using wild type humanized SB04 H chain and human SB04 L chain (L44 modified) antibody expression vector.
- the antibody was secreted into the culture supernatant. Furthermore, the antibody concentration in the culture supernatant was quantified by the method shown in Example 46.
- the purpose is to reduce the binding activity to antigen, coagulation activity substituting FactoVin, and aquatic activity by modifying L44 of SB04 L chain and the other amino acid. It was suggested that it is possible to increase the ratio of bispecific antibodies. Examples of controlling the association without reducing the function simply by introducing a mutation at one amino acid in the polypeptide are the first findings that have not been reported so far, including methods using knobs and holes. You can say that. [Example 10] Production and evaluation of human ivy antibody modified with amino acids H39, L38 and L44
- the humanized XB12 heavy chain H39 and the humanized SB04 light chain L38 and L44 are positioned so as to inhibit the association of the humanized XB12 heavy chain and the humanized SB04 light chain.
- the amino acid was charged with a charge in the chain.
- both amino acids H39 of the human XB12 H chain and L38 of the humanized SB04 L chain were substituted with glutamic acid (Glu), which was most effective in Example 8, and L44 of the humanized SB04 L chain was used.
- the proline present in 1 was substituted with lysine (Lys) or arginine (Arg) having a positive charge in the side chain, glutamic acid (Glu) or aspartic acid (Asp) having a negative charge in the side chain.
- mutation was introduced by the method described in the attached instruction using QuikChange Site-Directed Muta genesis Kit (Stratagene). Each humanized antibody gene fragment substituted with amino acid was inserted into the bispecific antibody expression vector used in Example 6-2 or a normal antibody expression vector.
- Example 3 In order to evaluate the association control of H chain and L chain, Example 3 was carried out using three types of antibody expression vectors: modified humanized SB04 L chain, modified humanized XB12 H chain, and wild type humanized XB12 L chain.
- the gene was introduced into HEK293H by the method shown in 4-2, and the antibody was secreted into the culture supernatant. Furthermore, antibody purification and antibody concentration quantification were performed by the methods shown in Examples 4 5 and 4-6.
- the target XB12-L chain The ratio (%) was calculated by “XB12-L chain ZL chain total amount (XB12-L chain + SB04-L chain) ⁇ 100”.
- humanized XB12 heavy chain (H39) and humanized SB04 light chain (L38) amino acids are modified to glutamic acid (Glu)
- humanized SB04 light chain (L44) is wild-type proline (Pro)
- Glu glutamic acid
- Glu glutamic acid
- Glu glutamic acid
- Glu glutamic acid
- Glu glutamic acid
- the modified humanized XB12 H chain, human ⁇ XB1 2 L chain and humanized SB04 H chain bispecific antibody expression vector and wild type humanized XB12 H chain, humanized Using the XB12 L chain and humanized SB04 H chain bispecific antibody expression vectors, pcDNA6 / TR and pVgRXR, gene introduction and expression induction were performed in HEK293H by the methods shown in Examples 4-2 and 4-3. Furthermore, antibody purification and antibody concentration quantification were performed by the methods shown in Examples 45 and 46.
- the gene was introduced into HEK293 H by the method shown in Example 42, and cultured.
- the antibody was secreted during the cleansing. Further, the antibody concentration in the culture supernatant was quantified by the method shown in Example 46.
- a method for producing a humanized anti-Mpl antibody hVB22B u2-wz4 sc (Fv) 2 (hereinafter u2-wz4) is shown in WO20 05/56604.
- the gene uses a nucleotide sequence encoding a linker sequence (GlyGlyGlyGlySer) x3, and a nucleotide sequence composed of VH linker sequence VL linker sequence VH linker sequence VL (SEQ ID NO: 12; SEQ ID NO: WO2005 / 56604 : See 286).
- the DNA fragment was cloned into the expression vector PCXND3 to construct an expression vector, and the gene was introduced into CHO-DG44 cells to produce a stable expression cell line. Specifically, 0.75 mL of CHO-DG44 cells (1 X 10 7 cells / mL) suspended in PBS mixed with the expression vector (20 ⁇ g) was cooled on ice for 10 minutes and transferred to a cuvette. Thereafter, a pulse was applied using a Gene Pulser Xcell (BioRad) at a capacity of 1.5 kV and 25 ⁇ FD.
- BioRad Gene Pulser Xcell
- electoral-posure-treated cells were selected by adding them to CH OS-SFMII medium (Invitrogen) containing g / mL Geneticin (lnvitrogen), and u2-wz4 producing CHO cells Established stocks.
- the humanized antibody hVB22B u2- wz4 sc (Fv) 2 has a Flag tag attached! /, !, and thus the purification of the culture supernatant force is a recognized epitope MG10 (human The Gln213 force of the Mpl amino acid sequence was also determined using Ala 231) and the GST fusion protein.
- the MG10 and GST fusion protein was purified using Glutathione Sepharose 4B (manufactured by Amersham Biosciences) according to the manufacturer's protocol. Further, the purified MG10 and GST fusion protein was immobilized on HiTrap NHS-activated HP (Amersham Biosciences) according to the manufacturer's protocol to prepare a affinity column.
- Humanized antibody hVB22B u2-wz4 sc (Fv) 2 expression CHO cell culture supernatant is applied to the MG10-GST fusion protein-fixed column, adsorbed with human antibody hVB22B u2-wz4 sc (Fv) 2, 100 mM Elution was performed with Glycine-HCl (pH 3.5) and 0.01% Tween80. The elution fraction was immediately neutralized with 1 M Tris-HCl (pH 7.4) and subjected to gel filtration chromatography using HiLoad 16/60 Superdex200pg (Amersham Biosciences) to purify the monomer. Gel filtration chromatography buffer is 20 mM citrate buffer (pH 7.5) 300 mM NaCl, 0.01% Tween 80 was used.
- hVB22B u2-wz4 sc (Fv) 2 has the sequence of VH -linker- VL -linker- VH -linker- VL
- sc (Fv) 2 is similar to that of VB22B sc (Fv) 2, and the structure is Fv (a molecule that is non-covalently bound between VH and VL). Forming bivale
- nt scFv type VH and VL ⁇ VH and VL form Fv, respectively, single chain diabody type
- Mobile phase A 20 mM sodium phosphate, pH 7.5
- Mobile phase B 20 mM sodium phosphate, 500 mM NaCl, pH 7.5
- Peptide mapping was performed for peakl and peak2. After reductive denaturation and carboxymethylation, it was decomposed into peptide fragments using trypsin, and a peptide map was obtained by reverse phase chromatography (YMC-Pack-ODS). When the peptide maps of peakl and peak2 were compared, the mapping patterns of peakl and peak2 were the same as shown in FIG. 14, indicating that the amino acid primary structure was the same.
- hVB22B u2- wz4 sc (Fv) 2 has a sugar chain and peakl and peak2 are measured by TOF-MASS measurement Since the molecular weight is the same, and peakl and peak2 have the same mapping pattern, it was revealed that peakl and peak2 are conformational isomers having different steric structures.
- hVB22B u2- wz4 sc (Fv) 2 has the sequence VH -linker- VL -linker- VH -linker- VL
- VH and VL and VH and VL form Fv by combining Fv (molecules that are non-covalently bound between VH and VL), respectively.
- Fv type, VH and VL, VH and VL each form Fv, single chain diabody type
- peakl and peak2 were considered to be either bivalent scFv type or single chain diabody type structures, respectively.
- Gin and VL at position 39 of VH which is an amino acid forming the VH / VL interface of u2-wz4 (position 39 in the amino acid sequence described in SEQ ID NO: 13; see SEQ ID NO: 289 of WO2005 / 56604)
- the Gin at position 38 was modified as follows.
- Gin (gene codon CAG) at position 39 in VH1 is Glu (gene codon GAG), Gin at position 38 in VL2 (gene codon CAG) is Glu (gene codon GAG), and Gin at position 39 in VH3 (gene codon GAG)
- vl the nucleotide sequence is shown in SEQ ID NO: 15, and the amino acid sequence encoded by the nucleotide sequence is shown in SEQ ID NO: 16).
- Gin (gene codon CAG) at position 39 in VH 1 is Glu (gene codon GAG), Gln (gene codon CAG) at position 38 in VL2 is Lys (gene codon AAG), and Gin at position 39 in VH3 (gene codon AAG).
- Gene codon CA G is Lys (gene codon AAG), and Gin (gene codon CAG) at position 38 of VL4 is Glu (gene HVB22B u2-wz4 (v3) sc (Fv) 2 modified to codon GAG (hereinafter v3, the nucleotide sequence is shown in SEQ ID NO: 17 and the amino acid sequence encoded by the nucleotide sequence is shown in SEQ ID NO: 18) Was made.
- v3 the nucleotide sequence is shown in SEQ ID NO: 17 and the amino acid sequence encoded by the nucleotide sequence is shown in SEQ ID NO: 18
- a point mutation was introduced using QuikChange Site-Directed Mutagenesis Kit (manufactured by STRATA GENE) according to the manufacturer's protocol.
- the DNA fragment was cloned into the expression vector pCXND3 to construct an expression vector, and the gene was introduced into CHO-DG44 cells to produce a stable expression cell line.
- a vl-producing CHO cell line and a v3-producing CHO cell line were established by the method shown in Example 11.
- the modified molecules vl and v3 were purified by the method shown in Example 11 using a MG10-GST fusion protein-immobilized column. From the results of gel filtration chromatography shown in Fig. 18, in the modified vl and v3, aggregates of dimer or higher decreased in the culture supernatant, and the monomer ratio was compared with 59% of u2-wz4 before modification. It was revealed that vl increased to 89% and v3 increased to 77%. It is inferred that the modified vl and v3 inhibited the unfavorable association by charge repulsion by modifying the amino acid at the VH / VL interface and promoted the favorable association. Based on the above, we succeeded in expressing monomer molecules efficiently by controlling the association.
- the structural heterogeneity ratios of the obtained VH / VL interface variants vl and v3 and the unmodified u2-wz4 were analyzed by cation exchange chromatography and isoelectric focusing. Moreover, the structure identification by the protease limited decomposition method was implemented.
- Isoelectric focusing was performed as follows. PhastGel Dry IEF gel (Amersham Biosciences) was swollen with the following gel swelling solution for 30 minutes or more. The sample was added to the previously swollen gel and electrophoresed by PhastSystem under the following electrophoresis conditions. After electrophoresis, the sample was immersed in a 20% TCA solution for 30 minutes, then washed with Milli-Q water for 5 minutes x 3 times or more, and stained with Komashii or silver depending on the protein concentration of the sample. In Kumasi staining, staining was performed using 0.02% CBB containing 0.1% CuS 0 (w / v) as the staining solution, and 30% methanol containing 10% acetic acid.
- Step 1 2000 V 2.5 mA 3.5 W 15 ° C 75 Vh
- Step 2 200 V 2.5 mA 3.5 W 15 ° C 15 Vh
- Step 3 2000 V 2.5 mA 3.5 W 15 ° C 410 Vh
- subtilisin A u2-wz4 purified peakl and u2-wz4 purified peak2 were reacted under the following conditions, and variant vl and variant v3 were reacted. 20 mM sodium citrate, 150 mM NaCl, pH 7.5
- reaction solution was analyzed by gel filtration chromatography under the following conditions.
- the modified v3 has a low molecular weight peak similar to the u2-wz4 purified peakl, and the modified vl is low as the u2-wz4 purified peak2.
- the absence of a molecular peak indicates that variant vl is expressed as a single chain diabody-type structural isomer and variant v3 is expressed as a bivalent scFv-type structural isomer. It was.
- the anti-human Mpl antibody VB22B sc (Fv) 2 has been reported in the literature (Blood 2005; 105: 562-566) to exhibit TPO-like agonist activity. Therefore, we evaluated the TPO-like agonist activity of structural isomers isolated using BaF3-human Mp or BaF3-monkey Mpl, which show TPO-dependent growth.
- Each cell was washed twice with RPMI1640 (Invitrogen) containing 1% Fetal Bovine Serum (Invitrogen), and then suspended in RPMI 1640 containing 10% Fetal Bovine Serum so that the concentration was 4 ⁇ 10 5 cells / mL. It became cloudy and dispensed into a 96-well plate at 60 ⁇ L / well.
- concentration of rhTPO (R & D) or structural isomer sample was varied, and 40 L was added to each well and cultured at 37 ° C under 5% CO for 24 hours.
- WST-8 reagent Cell Count Reagent SF, Nacalai Tester
- Benchmark Plus The absorbance at nm (control 655 nm) was measured. Since the WST-8 reagent exhibits a 450 nm color reaction depending on the number of living cells, TPO-like antigen activity was evaluated using the change in absorbance over 2 hours as an index.
- Fig. 17 shows the results of evaluating the TPO-like antigen activity in BaF3-human Mpl and BaF3-monkey Mpl using the purified structural isomer of VB22B sc (Fv) 2. Comparing the agonist activities of the structural isomers of peakl and ⁇ eak2, it was found that peak2 is significantly higher in activity. This suggests that the anti-Mpl antibody sc (Fv) 2 must have a single chain diabody structure in order to exhibit TPO-like antigen activity.
- Tm value intermediate denaturation temperature
- Solution conditions 20 mM sodium citrate, 300 mM NaCl, pH 7.0
- Solution conditions 20 mM sodium citrate, pH 6.0
- VH / VL interface modification applied to vl and v3, it can be expressed in the state where only one of the two structural isomers exists. I found it.
- VH / VL interface control to obtain single-chain antibodies of the desired structure.
- the method of controlling the structure of bispecific diabody using knobs-into-hole technology (Protein Sci. 1997 Apr; 6 (4): 78-8, Remodeling domain interfaces to enhance heterodimer forma tion., Zhu Z, Presta LG, Zapata G, Carter P.) is known.
- the formation rate of the target heterodimer structure increased from 72% to 92% by modifying a total of 4 amino acids per VH / VL interface.
- the present invention succeeded in obtaining the target structure at a ratio of 100% without altering the thermal stability and the stability of the structural isomer by modifying the amino acid at four positions.
- anti-Factor Xa antibody A69-VH, anti-Factor X antibody B26_VH, and hybrid L chain (BBA), which have the highest effect on shortening the blood clotting time, are combined as follows. Humanization was performed.
- A69- heavy chain variable region KABATID- 000064 (Kabat Database)
- B26- H chain variable region EMBL Accession No. AB063872 (IMGT Database)
- Humanized antibodies were prepared by grafting the complementary antigen-determining regions (hereinafter referred to as CDRs) of each mouse antibody to the FRs of human antibodies (l)-(3).
- the homology search Web site http: ⁇ www.ncbi.nlm. nih. gov / BLAST / was used to search for the secretory signal sequence of a human antibody highly homologous to the human antibodies of (1)-(3). The following secretory signal sequences obtained from the search were used.
- A69- heavy chain variable region GenBank Accession No. AF062257
- 3 synthetic oligo DNAs of about 50 bases were prepared alternately so that the terminal side annealed about 20 bases. Furthermore, it anneals to the 5 ′ end of the antibody variable region gene, anneals to the 3 ′ end of the primer having the Xho I cleavage sequence and the antibody variable region gene, has the Sfil cleavage sequence, and the 5 ′ end sequence of the intron sequence.
- a coding primer was made.
- Synthetic oligo DNA prepared in 2.5 ⁇ was mixed at 1 ⁇ L each, and 1 x TaKaRa Ex Taq Buffer, 0.4 mM dNTPs, 0.5 units TaKaRa Ex Taq (all Takara Shuzo) were prepared, and reaction solution 48 ⁇ L It prepared so that it might become. After incubating at 94 ° C for 5 minutes, reactions of 94 ° C for 2 minutes, 55 ° C for 2 minutes, and 72 ° C for 2 minutes were performed for 2 cycles to assemble and extend each synthetic oligo DNA.
- the fragment was cloned using pGEM-T Easy Vector Systems (Promega) according to the method described in the attached instructions.
- the base sequence of each DNA fragment was determined using the BigDye Terminator Cycle Sequencing Kit (Applied Biosystems) with the DNA sequencer ABI PRISM 3 730xL DNA Sequencer (Applied Biosystems) according to the method described in the attached instructions.
- the H chain variable region fragment insertion plasmid confirmed to be the correct humanized antibody variable region gene sequence was digested with Xhol and Sfil, and the L chain variable region fragment insertion plasmid was digested with EcoRI. Thereafter, the reaction solution was subjected to 1% agarose gel electrophoresis. A DNA fragment of the desired size (about 400 bp) was purified using the QIAquick Gel Extraction Kit (QIAGEN) by the method described in the attached instruction, and eluted with sterilized water 301. Thereafter, an expression vector for animal cells was prepared as follows.
- IgG4 which is a heterogeneous combination of H chains
- an amino acid substitution to the CH3 part of IgG4 was used with reference to the knobs-into-hole technology of IgG1 (Non-patent Document 3).
- an amino acid substitution (-ppcpScp- ⁇ -ppcpPcp-) was also introduced into the hinge to promote dimer formation of the H chain.
- Human embryonic kidney cancer cell-derived HEK293H strain (Invitrogen) is suspended in DMEM medium (Invitrogen) containing 10% FCS (Invitrogen), and a dish for adherent cells with a cell density of 5-6 X 10 5 cells / mL (diameter 10 cm) , CORNING) 10 mL to each dish
- O-S-SFM-II (Invitrogen) medium was added. 14 Mix 1 ml / mL Polyethylenimine (Polysciences Inc.) 20.7 ⁇ L of the plasmid DNA mixture prepared in 2 with 690 L of CHO-S-SF ⁇ medium and let stand at room temperature for 10 minutes. Cells were loaded into each dish and incubated in a CO incubator (5% CO at 37 ° C) for 4-5 hours. afterwards
- Example 44 antibody purification was carried out by the method shown in Example 44 and antibody concentration was quantified by the method shown in Example 45 or the method shown below.
- ProteinA was immobilized on Sensor Chip CM5 (BIACORE) using BIAcore3000 (BIACORE). Specifically, according to the manufacturer's protocol, react the Protein A solution diluted to 50 ⁇ g / mL with 10 mM sodium acetate aqueous solution (pH 4.0, BIACORE) at 5 ⁇ L / min for 30 minutes on the activated sensor chip. Thereafter, a blocking operation was performed to prepare a ProteinA-fixed protein sensor chip. Using this sensor chip, the concentration of culture supernatant and purified product was measured using BIAcore Q.
- HBS-EP Buffer (BIACORE) was used for sensor chip fixation and concentration measurement.
- HgG4 humanized anti-TF antibody, refer to WO 99/51743
- HBS-EP Buffer diluted 6-fold with HBS-EP Buffer in a 2-fold series from 2000 ng / mL was used as a standard for concentration measurement.
- the isoelectric point of the humanized A69 heavy chain variable region is lowered and the isoelectric point of the humanized B26 heavy chain variable region is decreased.
- Amino acid modifications that increase were performed. Specifically, mutations were introduced into the humanized antibody variable region using the QuikChange Site-Directed Mutagenesis Kit (Stratagene) according to the method described in the attached instructions. After digesting the H chain variable region fragment insertion plasmid that was confirmed to be the target humanized antibody variable region gene sequence with Xhol and Sfil and the L chain variable region fragment insertion plasmid with EcoRI, the reaction solution was 1% It was subjected to agarose gel electrophoresis.
- a DNA fragment of the desired size (about 400 bp) was purified by QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the attached instruction, and eluted with 30 ⁇ 1 of sterilized water. Thereafter, an expression vector for animal cells was prepared by the method shown in Example 14-2. did. Humanized bispecific antibodies were prepared by the method shown in Example 14-3, and blood coagulation activity was evaluated by the method shown in Example 5.
- Humanized bispecific antibody humanized A69 (hA6) with activity equivalent to that of the chimeric bispecific antibody (A69 / B26 / BBA) by repeated amino acid modification of FR sequence and evaluation of blood coagulation ability 9-PFL) / humanized B26 (hB26-PF) / humanized BBA (hAL-AQ) was obtained (FIG. 26).
- Each antibody variable region sequence is shown in the following SEQ ID NOs.
- H chain constant region genes of HI HgGl and HI HgG4 were designed in a saddle type so that the nucleotide sequence encoding the 2 amino acids (Ala-Ser) on the N-terminal side of the H chain constant region would be the Nhel recognition sequence (GCTAGC) 5.
- PCR amplification of each heavy chain constant region using primers designed to have a terminal primer and an annealing at the end, and a No tl recognition site, and pBluescriptKS + vector (Toyobo) Nhel, Notl (both Takara Shuzo) PBCH (including the IgGl constant region gene) and pBCH4 (including the IgG4 constant region gene) ligated with the vector digested in (1) were prepared.
- a primer complementary to the 5 'terminal nucleotide sequence of the H chain variable region of the humanized A69 antibody and humanized B26 antibody, and having a Kozak sequence (CCACC) and EcoRI recognition sequence, and a 3' terminal nucleotide sequence having an Nhe I recognition sequence PCR was performed using primers, and the resulting PCR product was inserted into pBCH or pBCH4 digested with EcoRI and Nhel (both Takara Shuzo) to link the variable and constant regions.
- Example 14-3 For the preparation of the humanized bispecific antibody, the method shown in Example 14-3 was followed.
- the modified amino acid sites are summarized in Table 1.
- EU numbering Kabat EA et al. 1991. Sequences of Proteins of Immunological Interest. NIH was adopted.
- the alphabet before the modification site number is a single letter code of the amino acid before modification
- the alphabet after the modification site number is a single letter code of the amino acid after modification.
- KiH indicates a modified product using the Knobs-into-holes technique described in Non-Patent Document 3.
- BiAb cation exchange chromatography
- Wild type, KiH, s2, s3, slC, s2C, s3C, w3C, w3C2 BiAb was purified by fractionating the BiAb peak.
- the BiAb fraction was concentrated with Amicon Ultra, MWCO 10000 (Millipore), dialyzed against 20 mM sodium acetate, 150 mM NaCl, pH 6.0 overnight in a cold place, then collected, and the BiAb concentration was 0.1 mg / mL
- the vials were dispensed into two vials each at 60 ° C-1 week, and the stability test was conducted at 60 ° C-1 week.
- Fig. 28 shows the IEX chromatogram of wild type, si, s2, s3, and wl of IgG4. Wild type, KiH, si, s2, s3, wl, w2, w3, slC, s2C, s3C, The formation ratios of A-Homo, BiAb, and B-Homo of w3C and w3C2 are shown in FIG.
- Fig. 30 shows the residual monomer ratio after 60 ° C_1 weeks.
- the modified CH3 interface found in the present example greatly improved the target BiAb formation efficiency as compared with the wild type. Since CH3 is in the stationary region, when the natural amino acid strength is modified, the modified site should have as little force as possible from the viewpoint of antigenicity. KiH has been modified in 6 locations in total, 2 locations for introducing disulfide bonds, in addition to 4 locations for both H chains to introduce knobs and holes. Therefore, high BiAb formation efficiency is obtained as shown in FIG. However, from the results of the stability test shown in Fig. 30, the thermal stability is greatly reduced in comparison with the wild type despite the introduction of disulfide bonds. In order to develop an antibody as an ethical drug, a stable formulation is required, and therefore high thermal stability is desirable.
- the modified CH3 interface found in this example succeeded in greatly improving the target BiAb formation efficiency compared to the wild type in terms of V-shift.
- s2, s3, wl, w2, w3, and slC have a total of 2 locations less than KiH (6 locations modified).
- KiH 6 locations modified
- s2, s3, w3, w3C, and w3C2 have a high BiAb formation efficiency of 90% or more and higher thermal stability than KiH.
- S3, s2c, s3C, w3C, and w3C2 have higher thermal stability than the wild type and are useful for developing stable pharmaceutical preparations. It is.
- the purpose is to introduce molecular repulsion due to charge by modifying the amino acids of the 356th, 357th, 370th, 399th, 409th, and 439th H chains at the CH3 interface. It has been found that the BiAb formation efficiency can be greatly improved. In addition, the introduction of these single, combination, and disulfide linkages can significantly improve the BiAb formation efficiency with fewer modifications than KiH, and have higher stability than KiH and higher heat than wild type. We found that the stability of BiAb formation can be greatly improved by stability.
- Example 16 Using the IgG4 type bispecific antibody (si, s2, s3, wl, w2, w3) purified in Example 16 and having a modified CH3 interface, the coagulation activity was evaluated according to the method shown in Example 5. As shown in Fig. 31, changing the amino acid at the constant region CH3 interface does not change the coagulation activity, indicating that the amino acid modification at the CH3 interface does not affect the structure of the variable region involved in the reaction with the antigen. It was.
- the IgGl wild type, KiH, wl, w2, and w3 were analyzed by cation exchange chromatography (IEX) to evaluate the BiAb formation efficiency.
- the cation exchange chromatography analysis conditions were as follows: A-Homo, which is a homodimer of humanized A69 antibody, BiAb, which is a heterodimer of humanized A69 antibody and humanized B26 antibody, and Homodimer of humanized B26 antibody The peak area ratio of B-Homo was calculated.
- Fig. 32 shows the formation ratio of A-Homo, BiAb, and B-Homo in IgGl type wild type, KiH, wl, w2, and w3. Similar to the IgG4 type, the target BiAb formation efficiency was greatly improved compared to the wild type. Similar to IgG4 type, the modification of 4 sites less than KiH has achieved a high BiAb formation efficiency of over 90%, and the antigenic risk is considered to be smaller.
- the method for modifying amino acids at the 356th, 357th, 370th, 399th, 409th, and 439th H chains at the CH3 interface is applicable not only to IgG4 but also to IgGl. It has been found that it can be applied to IgG antibodies in general.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Immunology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Analytical Chemistry (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
Claims
Priority Applications (13)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020077025125A KR101374454B1 (ko) | 2005-03-31 | 2006-03-31 | 회합제어에 의한 폴리펩티드 제조방법 |
| ES06730751.2T ES2592271T3 (es) | 2005-03-31 | 2006-03-31 | Métodos de producción de polipéptidos mediante la regulación de la asociación de los polipéptidos |
| AU2006232287A AU2006232287B2 (en) | 2005-03-31 | 2006-03-31 | Methods for producing polypeptides by regulating polypeptide association |
| EP06730751.2A EP1870459B1 (en) | 2005-03-31 | 2006-03-31 | Methods for producing polypeptides by regulating polypeptide association |
| EP19197546.5A EP3623473A1 (en) | 2005-03-31 | 2006-03-31 | Process for production of polypeptide by regulation of assembly |
| CA2603408A CA2603408C (en) | 2005-03-31 | 2006-03-31 | Methods for producing polypeptides by regulating polypeptide association |
| US11/910,128 US10011858B2 (en) | 2005-03-31 | 2006-03-31 | Methods for producing polypeptides by regulating polypeptide association |
| CN200680018841.9A CN101198698B (zh) | 2005-03-31 | 2006-03-31 | 通过调节多肽缔合制备多肽的方法 |
| HK08109972.5A HK1114878B (en) | 2005-03-31 | 2006-03-31 | Methods for producing polypeptides by regulating polypeptide association |
| EP15194500.3A EP3050963B1 (en) | 2005-03-31 | 2006-03-31 | Process for production of polypeptide by regulation of assembly |
| JP2007511155A JP5620626B2 (ja) | 2005-03-31 | 2006-03-31 | 会合制御によるポリペプチド製造方法 |
| US15/782,256 US11168344B2 (en) | 2005-03-31 | 2017-10-12 | Methods for producing polypeptides by regulating polypeptide association |
| US17/520,368 US20220267822A1 (en) | 2005-03-31 | 2021-11-05 | Methods for producing polypeptides by regulating polypeptide association |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2005-101105 | 2005-03-31 | ||
| JP2005101105 | 2005-03-31 | ||
| JP2005378266 | 2005-12-28 | ||
| JP2005-378266 | 2005-12-28 |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/910,128 A-371-Of-International US10011858B2 (en) | 2005-03-31 | 2006-03-31 | Methods for producing polypeptides by regulating polypeptide association |
| US15/782,256 Continuation US11168344B2 (en) | 2005-03-31 | 2017-10-12 | Methods for producing polypeptides by regulating polypeptide association |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2006106905A1 true WO2006106905A1 (ja) | 2006-10-12 |
Family
ID=37073456
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2006/306803 Ceased WO2006106905A1 (ja) | 2005-03-31 | 2006-03-31 | 会合制御によるポリペプチド製造方法 |
Country Status (11)
| Country | Link |
|---|---|
| US (3) | US10011858B2 (ja) |
| EP (3) | EP3050963B1 (ja) |
| JP (2) | JP5620626B2 (ja) |
| KR (1) | KR101374454B1 (ja) |
| CN (1) | CN101198698B (ja) |
| AU (1) | AU2006232287B2 (ja) |
| CA (1) | CA2603408C (ja) |
| DK (1) | DK3050963T3 (ja) |
| ES (1) | ES2592271T3 (ja) |
| TW (2) | TWI671403B (ja) |
| WO (1) | WO2006106905A1 (ja) |
Cited By (327)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007114325A1 (ja) * | 2006-03-31 | 2007-10-11 | Chugai Seiyaku Kabushiki Kaisha | 二重特異性抗体を精製するための抗体改変方法 |
| US20100015133A1 (en) * | 2005-03-31 | 2010-01-21 | Chugai Seiyaku Kabushiki Kaisha | Methods for Producing Polypeptides by Regulating Polypeptide Association |
| JP2011508604A (ja) * | 2008-01-07 | 2011-03-17 | アムジェン インコーポレイテッド | 静電的ステアリング(electrostaticsteering)効果を用いた抗体Fcヘテロ二量体分子を作製するための方法 |
| WO2011078332A1 (ja) * | 2009-12-25 | 2011-06-30 | 中外製薬株式会社 | ポリペプチド多量体を精製するためのポリペプチドの改変方法 |
| WO2011092989A1 (ja) | 2010-01-29 | 2011-08-04 | 東レ株式会社 | ポリ乳酸系樹脂シート |
| US8062635B2 (en) | 2003-10-10 | 2011-11-22 | Chugai Seiyaku Kabushiki Kaisha | Bispecific antibody substituting for functional proteins |
| WO2012067176A1 (ja) | 2010-11-17 | 2012-05-24 | 中外製薬株式会社 | 血液凝固第viii因子の機能を代替する機能を有する多重特異性抗原結合分子 |
| WO2012073985A1 (ja) | 2010-11-30 | 2012-06-07 | 中外製薬株式会社 | 細胞傷害誘導治療剤 |
| WO2012133782A1 (ja) | 2011-03-30 | 2012-10-04 | 中外製薬株式会社 | 抗原結合分子の血漿中滞留性と免疫原性を改変する方法 |
| JP2012525149A (ja) * | 2009-04-27 | 2012-10-22 | オンコメッド ファーマシューティカルズ インコーポレイテッド | ヘテロ多量体分子を作製するための方法 |
| WO2013002362A1 (ja) | 2011-06-30 | 2013-01-03 | 中外製薬株式会社 | ヘテロ二量化ポリペプチド |
| US20130039913A1 (en) * | 2010-04-20 | 2013-02-14 | Genmab A/S | Heterodimeric antibody fc-containing proteins and methods for production thereof |
| US8409577B2 (en) | 2006-06-12 | 2013-04-02 | Emergent Product Development Seattle, Llc | Single chain multivalent binding proteins with effector function |
| KR101249607B1 (ko) | 2007-12-21 | 2013-04-02 | 에프. 호프만-라 로슈 아게 | 2가, 이중특이적 항체 |
| JP2013511281A (ja) * | 2009-11-23 | 2013-04-04 | アムジェン インコーポレイテッド | 単量体抗体Fc |
| WO2013065708A1 (ja) | 2011-10-31 | 2013-05-10 | 中外製薬株式会社 | 重鎖と軽鎖の会合が制御された抗原結合分子 |
| KR101265912B1 (ko) | 2007-12-21 | 2013-05-20 | 에프. 호프만-라 로슈 아게 | 2가, 이중특이적 항체 |
| KR101266659B1 (ko) * | 2007-12-21 | 2013-05-29 | 에프. 호프만-라 로슈 아게 | 2가, 이중특이적 항체 |
| KR101265855B1 (ko) | 2007-12-21 | 2013-05-31 | 에프. 호프만-라 로슈 아게 | 2가, 이중특이적 항체 |
| WO2013081143A1 (ja) | 2011-11-30 | 2013-06-06 | 中外製薬株式会社 | 免疫複合体を形成する細胞内への運搬体(キャリア)を含む医薬 |
| EP2604625A1 (en) | 2011-09-26 | 2013-06-19 | Merus B.V. | Generation of binding molecules |
| WO2013125667A1 (ja) | 2012-02-24 | 2013-08-29 | 中外製薬株式会社 | FcγRIIBを介して抗原の消失を促進する抗原結合分子 |
| US8597911B2 (en) | 2003-06-11 | 2013-12-03 | Chugai Seiyaku Kabushiki Kaisha | Process for producing antibodies |
| WO2013180200A1 (ja) | 2012-05-30 | 2013-12-05 | 中外製薬株式会社 | 標的組織特異的抗原結合分子 |
| WO2013187495A1 (ja) | 2012-06-14 | 2013-12-19 | 中外製薬株式会社 | 改変されたFc領域を含む抗原結合分子 |
| WO2014030728A1 (ja) | 2012-08-24 | 2014-02-27 | 中外製薬株式会社 | FcγRIIb特異的Fc領域改変体 |
| WO2014069647A1 (ja) * | 2012-11-05 | 2014-05-08 | 全薬工業株式会社 | 抗体又は抗体組成物の製造方法 |
| WO2014082179A1 (en) * | 2012-11-28 | 2014-06-05 | Zymeworks Inc. | Engineered immunoglobulin heavy chain-light chain pairs and uses thereof |
| JP2014122226A (ja) * | 2007-05-31 | 2014-07-03 | Genmab As | 安定なIgG4抗体 |
| WO2014104165A1 (ja) | 2012-12-27 | 2014-07-03 | 中外製薬株式会社 | ヘテロ二量化ポリペプチド |
| US8853366B2 (en) | 2001-01-17 | 2014-10-07 | Emergent Product Development Seattle, Llc | Binding domain-immunoglobulin fusion proteins |
| WO2014163101A1 (ja) | 2013-04-02 | 2014-10-09 | 中外製薬株式会社 | Fc領域改変体 |
| US8858941B2 (en) | 2011-09-23 | 2014-10-14 | Oncomed Pharmaceuticals, Inc. | VEGF/DLL4 binding agents and uses thereof |
| WO2015046554A1 (ja) | 2013-09-30 | 2015-04-02 | 中外製薬株式会社 | 改変されたヘルパーファージを用いて抗原結合分子を作製する方法 |
| WO2015046467A1 (ja) | 2013-09-27 | 2015-04-02 | 中外製薬株式会社 | ポリペプチド異種多量体の製造方法 |
| WO2015068847A1 (ja) | 2013-11-11 | 2015-05-14 | 中外製薬株式会社 | 改変された抗体可変領域を含む抗原結合分子 |
| WO2015083764A1 (ja) | 2013-12-04 | 2015-06-11 | 中外製薬株式会社 | 化合物の濃度に応じて抗原結合能の変化する抗原結合分子及びそのライブラリ |
| WO2015107026A1 (en) | 2014-01-15 | 2015-07-23 | F. Hoffmann-La Roche Ag | Fc-region variants with modified fcrn- and maintained protein a-binding properties |
| US9096651B2 (en) | 2007-09-26 | 2015-08-04 | Chugai Seiyaku Kabushiki Kaisha | Method of modifying isoelectric point of antibody via amino acid substitution in CDR |
| JP2015522295A (ja) * | 2012-07-25 | 2015-08-06 | スーチョウ アルファマブ カンパニー リミテッド | 電荷の斥力相互作用を使用することによりホモダイマータンパク質の混合物を調製するための方法 |
| US9101609B2 (en) | 2008-04-11 | 2015-08-11 | Emergent Product Development Seattle, Llc | CD37 immunotherapeutic and combination with bifunctional chemotherapeutic thereof |
| WO2015138920A1 (en) | 2014-03-14 | 2015-09-17 | Novartis Ag | Antibody molecules to lag-3 and uses thereof |
| WO2015142675A2 (en) | 2014-03-15 | 2015-09-24 | Novartis Ag | Treatment of cancer using chimeric antigen receptor |
| WO2015187779A1 (en) | 2014-06-03 | 2015-12-10 | Xbiotech, Inc. | Compositions and methods for treating and preventing staphylococcus aureus infections |
| US9212230B2 (en) | 2007-03-29 | 2015-12-15 | Genmab A/S | Bispecific antibodies and methods for production thereof |
| JP2015536349A (ja) * | 2012-11-21 | 2015-12-21 | アムジエン・インコーポレーテツド | ヘテロ二量体免疫グロブリン |
| US9228020B2 (en) | 2006-09-29 | 2016-01-05 | Oncomed Pharmaceuticals, Inc. | Compositions and methods for diagnosing and treating cancer |
| US9228017B2 (en) | 2009-03-19 | 2016-01-05 | Chugai Seiyaku Kabushiki Kaisha | Antibody constant region variant |
| WO2016014530A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Combinations of low, immune enhancing. doses of mtor inhibitors and cars |
| WO2016014565A2 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Treatment of cancer using humanized anti-bcma chimeric antigen receptor |
| WO2016014553A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Sortase synthesized chimeric antigen receptors |
| US9248181B2 (en) | 2012-04-20 | 2016-02-02 | Merus B.V. | Methods and means for the production of Ig-like molecules |
| WO2016025880A1 (en) | 2014-08-14 | 2016-02-18 | Novartis Ag | Treatment of cancer using gfr alpha-4 chimeric antigen receptor |
| WO2016044605A1 (en) | 2014-09-17 | 2016-03-24 | Beatty, Gregory | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
| WO2016061142A1 (en) | 2014-10-14 | 2016-04-21 | Novartis Ag | Antibody molecules to pd-l1 and uses thereof |
| WO2016090034A2 (en) | 2014-12-03 | 2016-06-09 | Novartis Ag | Methods for b cell preconditioning in car therapy |
| WO2016098357A1 (en) | 2014-12-19 | 2016-06-23 | Chugai Seiyaku Kabushiki Kaisha | Anti-myostatin antibodies, polypeptides containing variant fc regions, and methods of use |
| US9399680B2 (en) | 2007-12-05 | 2016-07-26 | Chugai Seiyaku Kabushiki Kaisha | Nucleic acids encoding anti-NR10 antibodies |
| JP2016522168A (ja) * | 2013-04-05 | 2016-07-28 | ジェネンテック, インコーポレイテッド | 抗il−4抗体及び二重特異性抗体及びその使用 |
| WO2016159213A1 (ja) * | 2015-04-01 | 2016-10-06 | 中外製薬株式会社 | ポリペプチド異種多量体の製造方法 |
| WO2016164731A2 (en) | 2015-04-08 | 2016-10-13 | Novartis Ag | Cd20 therapies, cd22 therapies, and combination therapies with a cd19 chimeric antigen receptor (car) - expressing cell |
| WO2016166014A1 (en) | 2015-04-17 | 2016-10-20 | F. Hoffmann-La Roche Ag | Combination therapy with coagulation factors and multispecific antibodies |
| WO2016172583A1 (en) | 2015-04-23 | 2016-10-27 | Novartis Ag | Treatment of cancer using chimeric antigen receptor and protein kinase a blocker |
| US9480744B2 (en) | 2010-09-10 | 2016-11-01 | Oncomed Pharmaceuticals, Inc. | Methods for treating melanoma |
| US9493578B2 (en) | 2009-09-02 | 2016-11-15 | Xencor, Inc. | Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens |
| US9499605B2 (en) | 2011-03-03 | 2016-11-22 | Zymeworks Inc. | Multivalent heteromultimer scaffold design and constructs |
| US9511139B2 (en) | 2009-10-16 | 2016-12-06 | Oncomed Pharmaceuticals, Inc. | Therapeutic combination and methods of treatment with a DLL4 antagonist and an anti-hypertensive agent |
| WO2017019897A1 (en) | 2015-07-29 | 2017-02-02 | Novartis Ag | Combination therapies comprising antibody molecules to tim-3 |
| WO2017019894A1 (en) | 2015-07-29 | 2017-02-02 | Novartis Ag | Combination therapies comprising antibody molecules to lag-3 |
| US9599620B2 (en) | 2012-10-31 | 2017-03-21 | Oncomed Pharmaceuticals, Inc. | Methods and monitoring of treatment with a DLL4 antagonist |
| US9605061B2 (en) | 2010-07-29 | 2017-03-28 | Xencor, Inc. | Antibodies with modified isoelectric points |
| US9605084B2 (en) | 2013-03-15 | 2017-03-28 | Xencor, Inc. | Heterodimeric proteins |
| WO2017070608A1 (en) | 2015-10-23 | 2017-04-27 | Eureka Therapeutics, Inc. | Antibody/t-cell receptor chimeric constructs and uses thereof |
| US9650446B2 (en) | 2013-01-14 | 2017-05-16 | Xencor, Inc. | Heterodimeric proteins |
| WO2017086419A1 (ja) | 2015-11-18 | 2017-05-26 | 中外製薬株式会社 | 液性免疫応答の増強方法 |
| WO2017086367A1 (ja) | 2015-11-18 | 2017-05-26 | 中外製薬株式会社 | 免疫抑制機能を有する細胞に対するt細胞リダイレクト抗原結合分子を用いた併用療法 |
| US9676845B2 (en) | 2009-06-16 | 2017-06-13 | Hoffmann-La Roche, Inc. | Bispecific antigen binding proteins |
| WO2017106810A2 (en) | 2015-12-17 | 2017-06-22 | Novartis Ag | Combination of c-met inhibitor with antibody molecule to pd-1 and uses thereof |
| WO2017106656A1 (en) | 2015-12-17 | 2017-06-22 | Novartis Ag | Antibody molecules to pd-1 and uses thereof |
| WO2017104783A1 (en) | 2015-12-18 | 2017-06-22 | Chugai Seiyaku Kabushiki Kaisha | Anti-myostatin antibodies, polypeptides containing variant fc regions, and methods of use |
| US9688762B2 (en) | 2007-09-26 | 2017-06-27 | Chugai Sciyaku Kabushiki Kaisha | Modified antibody constant region |
| WO2017110980A1 (ja) | 2015-12-25 | 2017-06-29 | 中外製薬株式会社 | 増強された活性を有する抗体及びその改変方法 |
| US9701759B2 (en) | 2013-01-14 | 2017-07-11 | Xencor, Inc. | Heterodimeric proteins |
| WO2017125897A1 (en) | 2016-01-21 | 2017-07-27 | Novartis Ag | Multispecific molecules targeting cll-1 |
| US9738722B2 (en) | 2013-01-15 | 2017-08-22 | Xencor, Inc. | Rapid clearance of antigen complexes using novel antibodies |
| WO2017149515A1 (en) | 2016-03-04 | 2017-09-08 | Novartis Ag | Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore |
| KR20170104635A (ko) | 2014-09-26 | 2017-09-15 | 추가이 세이야쿠 가부시키가이샤 | 세포상해 유도 치료제 |
| WO2017159287A1 (ja) | 2016-03-14 | 2017-09-21 | 中外製薬株式会社 | 癌の治療に用いるための細胞傷害誘導治療剤 |
| US9771573B2 (en) | 2012-10-03 | 2017-09-26 | Zymeworks Inc. | Methods of quantitating heavy and light chain polypeptide pairs |
| WO2017165683A1 (en) | 2016-03-23 | 2017-09-28 | Novartis Ag | Cell secreted minibodies and uses thereof |
| WO2017181119A2 (en) | 2016-04-15 | 2017-10-19 | Novartis Ag | Compositions and methods for selective protein expression |
| US9822186B2 (en) | 2014-03-28 | 2017-11-21 | Xencor, Inc. | Bispecific antibodies that bind to CD38 and CD3 |
| WO2017210617A2 (en) | 2016-06-02 | 2017-12-07 | Porter, David, L. | Therapeutic regimens for chimeric antigen receptor (car)- expressing cells |
| WO2017217525A1 (en) | 2016-06-17 | 2017-12-21 | Chugai Seiyaku Kabushiki Kaisha | Anti-myostatin antibodies and methods of use |
| US9850320B2 (en) | 2014-11-26 | 2017-12-26 | Xencor, Inc. | Heterodimeric antibodies to CD3 X CD20 |
| US9856327B2 (en) | 2014-11-26 | 2018-01-02 | Xencor, Inc. | Heterodimeric antibodies to CD3 X CD123 |
| US9868948B2 (en) | 2008-04-11 | 2018-01-16 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly |
| WO2018013918A2 (en) | 2016-07-15 | 2018-01-18 | Novartis Ag | Treatment and prevention of cytokine release syndrome using a chimeric antigen receptor in combination with a kinase inhibitor |
| WO2018023025A1 (en) | 2016-07-28 | 2018-02-01 | Novartis Ag | Combination therapies of chimeric antigen receptors adn pd-1 inhibitors |
| WO2018026819A2 (en) | 2016-08-01 | 2018-02-08 | Novartis Ag | Treatment of cancer using a chimeric antigen receptor in combination with an inhibitor of a pro-m2 macrophage molecule |
| US9914785B2 (en) | 2012-11-28 | 2018-03-13 | Zymeworks Inc. | Engineered immunoglobulin heavy chain-light chain pairs and uses thereof |
| US9914777B2 (en) | 2015-07-10 | 2018-03-13 | Merus N.V. | Human CD3 binding antibody |
| WO2018067992A1 (en) | 2016-10-07 | 2018-04-12 | Novartis Ag | Chimeric antigen receptors for the treatment of cancer |
| US9969800B2 (en) | 2015-02-05 | 2018-05-15 | Chugai Seiyaku Kabushiki Kaisha | IL-8 antibodies |
| US9982036B2 (en) | 2011-02-28 | 2018-05-29 | Hoffmann-La Roche Inc. | Dual FC antigen binding proteins |
| US10047163B2 (en) | 2013-02-08 | 2018-08-14 | Abbvie Stemcentrx Llc | Multispecific constructs |
| WO2018155611A1 (ja) | 2017-02-24 | 2018-08-30 | 中外製薬株式会社 | 薬学的組成物、抗原結合分子、治療方法、およびスクリーニング方法 |
| WO2018158719A1 (en) | 2017-03-02 | 2018-09-07 | Novartis Ag | Engineered heterodimeric proteins |
| WO2018181870A1 (ja) | 2017-03-31 | 2018-10-04 | 公立大学法人奈良県立医科大学 | 血液凝固第viii因子の機能を代替する多重特異性抗原結合分子を含有する、血液凝固第ix因子異常症の予防および/または治療に用いられる医薬組成物 |
| WO2018187227A1 (en) | 2017-04-03 | 2018-10-11 | Concologie, Inc. | Methods for treating cancer using ps-targeting antibodies with immuno-oncology agents |
| US10106624B2 (en) | 2013-03-15 | 2018-10-23 | Xencor, Inc. | Heterodimeric proteins |
| WO2018201056A1 (en) | 2017-04-28 | 2018-11-01 | Novartis Ag | Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor |
| WO2018200583A1 (en) | 2017-04-26 | 2018-11-01 | Eureka Therapeutics, Inc. | Cells expressing chimeric activating receptors and chimeric stimulating receptors and uses thereof |
| WO2018201051A1 (en) | 2017-04-28 | 2018-11-01 | Novartis Ag | Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor |
| US10131710B2 (en) | 2013-01-14 | 2018-11-20 | Xencor, Inc. | Optimized antibody variable regions |
| US10143748B2 (en) | 2005-07-25 | 2018-12-04 | Aptevo Research And Development Llc | B-cell reduction using CD37-specific and CD20-specific binding molecules |
| US10150808B2 (en) | 2009-09-24 | 2018-12-11 | Chugai Seiyaku Kabushiki Kaisha | Modified antibody constant regions |
| WO2018229612A1 (en) | 2017-06-12 | 2018-12-20 | Novartis Ag | Method of manufacturing bispecific antibodies, bispecific antibodies and therapeutic use of such antibodies |
| WO2018237157A1 (en) | 2017-06-22 | 2018-12-27 | Novartis Ag | CD73 BINDING ANTIBODY MOLECULES AND USES THEREOF |
| WO2018234575A1 (en) | 2017-06-22 | 2018-12-27 | Kymab Limited | Bispecific antibodies for factor ix and factor x |
| WO2019006007A1 (en) | 2017-06-27 | 2019-01-03 | Novartis Ag | POSOLOGICAL REGIMES FOR ANTI-TIM3 ANTIBODIES AND USES THEREOF |
| WO2019018730A1 (en) | 2017-07-20 | 2019-01-24 | Novartis Ag | DOSAGE REGIMES FOR ANTI-LAG3 ANTIBODIES AND USES THEREOF |
| KR20190015583A (ko) * | 2010-11-05 | 2019-02-13 | 자임워크스 인코포레이티드 | Fc 도메인 내의 돌연변이를 갖는 안정한 이종이량체 항체 디자인 |
| US10227410B2 (en) | 2015-12-07 | 2019-03-12 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and PSMA |
| US10227411B2 (en) | 2015-03-05 | 2019-03-12 | Xencor, Inc. | Modulation of T cells with bispecific antibodies and FC fusions |
| JP2019048814A (ja) * | 2010-04-20 | 2019-03-28 | ゲンマブ エー/エス | ヘテロ二量体抗体Fc含有タンパク質およびその産生方法 |
| JP6496095B1 (ja) * | 2017-09-29 | 2019-04-03 | 中外製薬株式会社 | 血液凝固第viii因子(fviii)補因子機能代替活性を有する多重特異性抗原結合分子および当該分子を有効成分として含有する薬学的製剤 |
| US10253100B2 (en) | 2011-09-30 | 2019-04-09 | Chugai Seiyaku Kabushiki Kaisha | Therapeutic antigen-binding molecule with a FcRn-binding domain that promotes antigen clearance |
| US10253091B2 (en) | 2009-03-19 | 2019-04-09 | Chugai Seiyaku Kabushiki Kaisha | Antibody constant region variant |
| WO2019077092A1 (en) | 2017-10-20 | 2019-04-25 | F. Hoffmann-La Roche Ag | METHOD FOR GENERATING MULTISPECIFIC ANTIBODIES FROM MONOSPECIFIC ANTIBODIES |
| WO2019086362A1 (en) | 2017-10-30 | 2019-05-09 | F. Hoffmann-La Roche Ag | Method for in vivo generation of multispecific antibodies from monospecific antibodies |
| WO2019099838A1 (en) | 2017-11-16 | 2019-05-23 | Novartis Ag | Combination therapies |
| US10316088B2 (en) | 2016-06-28 | 2019-06-11 | Xencor, Inc. | Heterodimeric antibodies that bind somatostatin receptor 2 |
| US10323099B2 (en) | 2013-10-11 | 2019-06-18 | Hoffmann-La Roche Inc. | Multispecific domain exchanged common variable light chain antibodies |
| WO2019131988A1 (en) | 2017-12-28 | 2019-07-04 | Chugai Seiyaku Kabushiki Kaisha | Cytotoxicity-inducing therapeutic agent |
| US10344050B2 (en) | 2011-10-27 | 2019-07-09 | Genmab A/S | Production of heterodimeric proteins |
| US10358479B2 (en) | 2012-07-13 | 2019-07-23 | Zymeworks Inc. | Multivalent heteromultimer scaffold design and constructs |
| EP3514179A1 (en) | 2014-01-24 | 2019-07-24 | Dana-Farber Cancer Institute, Inc. | Antibody molecules to pd-1 and uses thereof |
| WO2019152660A1 (en) | 2018-01-31 | 2019-08-08 | Novartis Ag | Combination therapy using a chimeric antigen receptor |
| US10385122B2 (en) | 2014-12-19 | 2019-08-20 | Chugai Seiyaku Kabushiki Kaisha | Nucleic acids encoding anti-C5 antibodies |
| WO2019160007A1 (ja) | 2018-02-14 | 2019-08-22 | 中外製薬株式会社 | 抗原結合分子および組合せ |
| US10428155B2 (en) | 2014-12-22 | 2019-10-01 | Xencor, Inc. | Trispecific antibodies |
| US10435458B2 (en) | 2010-03-04 | 2019-10-08 | Chugai Seiyaku Kabushiki Kaisha | Antibody constant region variants with reduced Fcgammar binding |
| WO2019200229A1 (en) | 2018-04-13 | 2019-10-17 | Novartis Ag | Dosage regimens for anti-pd-l1 antibodies and uses thereof |
| WO2019210153A1 (en) | 2018-04-27 | 2019-10-31 | Novartis Ag | Car t cell therapies with enhanced efficacy |
| US10487155B2 (en) | 2013-01-14 | 2019-11-26 | Xencor, Inc. | Heterodimeric proteins |
| WO2019226617A1 (en) | 2018-05-21 | 2019-11-28 | Compass Therapeutics Llc | Compositions and methods for enhancing the killing of target cells by nk cells |
| WO2019227003A1 (en) | 2018-05-25 | 2019-11-28 | Novartis Ag | Combination therapy with chimeric antigen receptor (car) therapies |
| WO2019226658A1 (en) | 2018-05-21 | 2019-11-28 | Compass Therapeutics Llc | Multispecific antigen-binding compositions and methods of use |
| WO2019229701A2 (en) | 2018-06-01 | 2019-12-05 | Novartis Ag | Binding molecules against bcma and uses thereof |
| WO2019232484A1 (en) | 2018-06-01 | 2019-12-05 | Compugen Ltd | Anti-pvrig/anti-tigit bispecific antibodies and methods of use |
| WO2019232244A2 (en) | 2018-05-31 | 2019-12-05 | Novartis Ag | Antibody molecules to cd73 and uses thereof |
| US10501543B2 (en) | 2016-10-14 | 2019-12-10 | Xencor, Inc. | IL15/IL15Rα heterodimeric Fc-fusion proteins |
| WO2019235420A1 (ja) | 2018-06-04 | 2019-12-12 | 中外製薬株式会社 | 複合体を検出する方法 |
| USRE47770E1 (en) | 2002-07-18 | 2019-12-17 | Merus N.V. | Recombinant production of mixtures of antibodies |
| WO2019241426A1 (en) | 2018-06-13 | 2019-12-19 | Novartis Ag | Bcma chimeric antigen receptors and uses thereof |
| WO2019244973A1 (ja) | 2018-06-20 | 2019-12-26 | 中外製薬株式会社 | 標的細胞に対する免疫反応を活性化する方法およびその組成物 |
| WO2019246293A2 (en) | 2018-06-19 | 2019-12-26 | Atarga, Llc | Antibody molecules to complement component 5 and uses thereof |
| WO2019246004A1 (en) | 2018-06-18 | 2019-12-26 | Anwita Biosciences, Inc. | Cytokine fusion proteins and uses thereof |
| US10519242B2 (en) | 2013-03-15 | 2019-12-31 | Xencor, Inc. | Targeting regulatory T cells with heterodimeric proteins |
| US10526417B2 (en) | 2014-11-26 | 2020-01-07 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and CD38 |
| WO2020012337A1 (en) | 2018-07-10 | 2020-01-16 | Novartis Ag | 3-(5-amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and their use in the treatment of i karos family zinc finger 2 (ikzf2)-dependent diseases |
| US10544187B2 (en) | 2013-03-15 | 2020-01-28 | Xencor, Inc. | Targeting regulatory T cells with heterodimeric proteins |
| WO2020021465A1 (en) | 2018-07-25 | 2020-01-30 | Advanced Accelerator Applications (Italy) S.R.L. | Method of treatment of neuroendocrine tumors |
| WO2020045545A1 (ja) | 2018-08-29 | 2020-03-05 | 中外製薬株式会社 | 抗体半分子、および抗体半分子のホモ二量体形成を抑制する方法 |
| WO2020049128A1 (en) | 2018-09-06 | 2020-03-12 | Kymab Limited | Antigen-binding molecules comprising unpaired variable domains |
| US10611825B2 (en) | 2011-02-28 | 2020-04-07 | Hoffmann La-Roche Inc. | Monovalent antigen binding proteins |
| US10618965B2 (en) | 2011-02-25 | 2020-04-14 | Chugai Seiyaku Kabushiki Kaisha | Method for altering plasma retention and immunogenicity of antigen-binding molecule |
| US10662245B2 (en) | 2008-09-26 | 2020-05-26 | Chugai Seiyaku Kabushiki Kaisha | Methods of reducing IL-6 activity for disease treatment |
| EP3660042A1 (en) | 2014-07-31 | 2020-06-03 | Novartis AG | Subset-optimized chimeric antigen receptor-containing t-cells |
| WO2020128898A1 (en) | 2018-12-20 | 2020-06-25 | Novartis Ag | Pharmaceutical combinations |
| WO2020128467A2 (en) | 2018-12-19 | 2020-06-25 | Kymab Limited | Antagonists |
| WO2020128972A1 (en) | 2018-12-20 | 2020-06-25 | Novartis Ag | Dosing regimen and pharmaceutical combination comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives |
| WO2020128049A1 (en) | 2018-12-21 | 2020-06-25 | Kymab Limited | Fixaxfx bispecific antibody with common light chain |
| WO2020165868A1 (en) | 2019-02-15 | 2020-08-20 | Perkinelmer Cellular Technologies Germany Gmbh | Low-power microscope-objective pre-scan and high-power microscope-objective scan in x,y and z-direction for imaging objects such as cells using a microscope |
| WO2020165833A1 (en) | 2019-02-15 | 2020-08-20 | Novartis Ag | 3-(1-oxo-5-(piperidin-4-yl)isoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| WO2020165834A1 (en) | 2019-02-15 | 2020-08-20 | Novartis Ag | Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| WO2020172553A1 (en) | 2019-02-22 | 2020-08-27 | Novartis Ag | Combination therapies of egfrviii chimeric antigen receptors and pd-1 inhibitors |
| US10774148B2 (en) | 2015-02-27 | 2020-09-15 | Chugai Seiyaku Kabushiki Kaisha | Composition for treating IL-6-related diseases |
| EP3712171A1 (en) | 2014-08-19 | 2020-09-23 | Novartis AG | Treatment of cancer using a cd123 chimeric antigen receptor |
| WO2020189748A1 (ja) | 2019-03-19 | 2020-09-24 | 中外製薬株式会社 | Mta依存的に抗原に対する結合活性が変化する抗原結合ドメインを含む抗原結合分子及び当該抗原結合ドメイン取得用ライブラリ |
| US10787518B2 (en) | 2016-06-14 | 2020-09-29 | Xencor, Inc. | Bispecific checkpoint inhibitor antibodies |
| US10793632B2 (en) | 2016-08-30 | 2020-10-06 | Xencor, Inc. | Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors |
| WO2020205523A1 (en) | 2019-03-29 | 2020-10-08 | Atarga, Llc | Anti fgf23 antibody |
| EP3722316A1 (en) | 2014-07-21 | 2020-10-14 | Novartis AG | Treatment of cancer using a cd33 chimeric antigen receptor |
| US10844127B2 (en) | 2014-02-28 | 2020-11-24 | Merus N.V. | Antibodies that bind EGFR and ErbB3 |
| WO2020236792A1 (en) | 2019-05-21 | 2020-11-26 | Novartis Ag | Cd19 binding molecules and uses thereof |
| WO2020236797A1 (en) | 2019-05-21 | 2020-11-26 | Novartis Ag | Variant cd58 domains and uses thereof |
| WO2020236795A2 (en) | 2019-05-21 | 2020-11-26 | Novartis Ag | Trispecific binding molecules against bcma and uses thereof |
| US10851178B2 (en) | 2011-10-10 | 2020-12-01 | Xencor, Inc. | Heterodimeric human IgG1 polypeptides with isoelectric point modifications |
| US10858417B2 (en) | 2013-03-15 | 2020-12-08 | Xencor, Inc. | Heterodimeric proteins |
| WO2020246563A1 (ja) | 2019-06-05 | 2020-12-10 | 中外製薬株式会社 | 抗体切断部位結合分子 |
| US10865253B2 (en) | 2014-12-19 | 2020-12-15 | Genmab A/S | Rodent bispecific heterodimeric proteins |
| WO2021006328A1 (en) | 2019-07-10 | 2021-01-14 | Chugai Seiyaku Kabushiki Kaisha | Claudin-6 binding molecules and uses thereof |
| US10899846B2 (en) | 2014-11-06 | 2021-01-26 | Hoffmann-La Roche Inc. | Fc-region variants with modified FcRn- and protein A-binding properties |
| US10934571B2 (en) | 2002-07-18 | 2021-03-02 | Merus N.V. | Recombinant production of mixtures of antibodies |
| US10968276B2 (en) | 2013-03-12 | 2021-04-06 | Xencor, Inc. | Optimized anti-CD3 variable regions |
| US10981992B2 (en) | 2017-11-08 | 2021-04-20 | Xencor, Inc. | Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors |
| US10982006B2 (en) | 2018-04-04 | 2021-04-20 | Xencor, Inc. | Heterodimeric antibodies that bind fibroblast activation protein |
| WO2021079188A1 (en) | 2019-10-21 | 2021-04-29 | Novartis Ag | Combination therapies with venetoclax and tim-3 inhibitors |
| WO2021079195A1 (en) | 2019-10-21 | 2021-04-29 | Novartis Ag | Tim-3 inhibitors and uses thereof |
| WO2021108661A2 (en) | 2019-11-26 | 2021-06-03 | Novartis Ag | Chimeric antigen receptors and uses thereof |
| WO2021123996A1 (en) | 2019-12-20 | 2021-06-24 | Novartis Ag | Uses of anti-tgf-beta antibodies and checkpoint inhibitors for the treatment of proliferative diseases |
| US11046760B2 (en) | 2014-10-31 | 2021-06-29 | Oncomed Pharmaceuticals, Inc. | Combination therapy for treatment of disease |
| US11046784B2 (en) | 2006-03-31 | 2021-06-29 | Chugai Seiyaku Kabushiki Kaisha | Methods for controlling blood pharmacokinetics of antibodies |
| US11046769B2 (en) | 2018-11-13 | 2021-06-29 | Compass Therapeutics Llc | Multispecific binding constructs against checkpoint molecules and uses thereof |
| WO2021131021A1 (ja) | 2019-12-27 | 2021-07-01 | 中外製薬株式会社 | 抗ctla-4抗体およびその使用 |
| US11053294B2 (en) | 2018-09-27 | 2021-07-06 | Xilio Development, Inc. | Masked cytokine polypeptides |
| US11053316B2 (en) | 2013-01-14 | 2021-07-06 | Xencor, Inc. | Optimized antibody variable regions |
| US11053308B2 (en) | 2016-08-05 | 2021-07-06 | Chugai Seiyaku Kabushiki Kaisha | Method for treating IL-8-related diseases |
| WO2021144657A1 (en) | 2020-01-17 | 2021-07-22 | Novartis Ag | Combination comprising a tim-3 inhibitor and a hypomethylating agent for use in treating myelodysplastic syndrome or chronic myelomonocytic leukemia |
| WO2021146636A1 (en) | 2020-01-17 | 2021-07-22 | Becton, Dickinson And Company | Methods and compositions for single cell secretomics |
| US11084863B2 (en) | 2017-06-30 | 2021-08-10 | Xencor, Inc. | Targeted heterodimeric Fc fusion proteins containing IL-15 IL-15alpha and antigen binding domains |
| US11091541B2 (en) | 2013-04-29 | 2021-08-17 | Hoffmann-La Roche Inc. | Human FcRn-binding modified antibodies and methods of use |
| US11104745B2 (en) | 2015-12-16 | 2021-08-31 | Amgen Inc. | Anti-TL1A/anti-TNF-alpha bispecific antigen binding proteins and uses thereof |
| WO2021173995A2 (en) | 2020-02-27 | 2021-09-02 | Novartis Ag | Methods of making chimeric antigen receptor-expressing cells |
| US11124573B2 (en) | 2014-05-02 | 2021-09-21 | Janssen Biotech, Inc. | Compositions and methods related to engineered Fc constructs |
| WO2021190980A1 (en) | 2020-03-22 | 2021-09-30 | Quadrucept Bio Limited | Multimers for viral strain evolution |
| WO2021195513A1 (en) | 2020-03-27 | 2021-09-30 | Novartis Ag | Bispecific combination therapy for treating proliferative diseases and autoimmune disorders |
| WO2021200857A1 (ja) | 2020-03-30 | 2021-10-07 | 国立大学法人三重大学 | 二重特異的抗体 |
| WO2021201087A1 (en) | 2020-03-31 | 2021-10-07 | Chugai Seiyaku Kabushiki Kaisha | Method for producing multispecific antigen-binding molecules |
| US11150254B2 (en) | 2014-09-26 | 2021-10-19 | Chugai Seiyaku Kabushiki Kaisha | Method for measuring reactivity of FVIII |
| WO2021211753A1 (en) | 2020-04-15 | 2021-10-21 | Voyager Therapeutics, Inc. | Tau binding compounds |
| US11154615B2 (en) | 2014-11-11 | 2021-10-26 | Chugai Seiyaku Kabushiki Kaisha | Library of antigen-binding molecules including modified antibody variable region |
| US11155640B2 (en) | 2016-05-23 | 2021-10-26 | Janssen Biotech, Inc. | Compositions and methods related to engineered Fc constructs |
| WO2021214460A1 (en) | 2020-04-22 | 2021-10-28 | Petmedix Ltd | Heterodimeric proteins |
| WO2021220215A1 (en) | 2020-05-01 | 2021-11-04 | Novartis Ag | Engineered immunoglobulins |
| WO2021235537A1 (ja) | 2020-05-22 | 2021-11-25 | 中外製薬株式会社 | 凝固第viii因子(f.viii)機能代替活性を有する物質を中和する抗体 |
| WO2021260528A1 (en) | 2020-06-23 | 2021-12-30 | Novartis Ag | Dosing regimen comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives |
| US11214623B2 (en) | 2014-09-26 | 2022-01-04 | Chugai Seiyaku Kabushiki Kaisha | Antibody capable of neutralizing substance having activity alternative to function of coagulation factor VIII (FVIII) |
| US11220531B2 (en) | 2017-01-06 | 2022-01-11 | Janssen Biotech, Inc. | Engineered Fc constructs |
| WO2022013787A1 (en) | 2020-07-16 | 2022-01-20 | Novartis Ag | Anti-betacellulin antibodies, fragments thereof, and multi-specific binding molecules |
| WO2022026592A2 (en) | 2020-07-28 | 2022-02-03 | Celltas Bio, Inc. | Antibody molecules to coronavirus and uses thereof |
| WO2022025220A1 (ja) | 2020-07-31 | 2022-02-03 | 中外製薬株式会社 | キメラ受容体を発現する細胞を含む医薬組成物 |
| WO2022029573A1 (en) | 2020-08-03 | 2022-02-10 | Novartis Ag | Heteroaryl substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| WO2022043557A1 (en) | 2020-08-31 | 2022-03-03 | Advanced Accelerator Applications International Sa | Method of treating psma-expressing cancers |
| WO2022043558A1 (en) | 2020-08-31 | 2022-03-03 | Advanced Accelerator Applications International Sa | Method of treating psma-expressing cancers |
| WO2022045276A1 (ja) | 2020-08-28 | 2022-03-03 | 中外製薬株式会社 | ヘテロ二量体Fcポリペプチド |
| US11274151B2 (en) | 2020-03-31 | 2022-03-15 | Chugai Seiyaku Kabushiki Kaisha | CD3-targeting and DLL3-targeting multispecific antigen-binding molecules and uses thereof |
| US11279770B2 (en) | 2014-02-28 | 2022-03-22 | Merus N.V. | Antibody that binds ErbB-2 and ErbB-3 |
| US11306156B2 (en) | 2014-05-28 | 2022-04-19 | Zymeworks Inc. | Modified antigen binding polypeptide constructs and uses thereof |
| US11312770B2 (en) | 2017-11-08 | 2022-04-26 | Xencor, Inc. | Bispecific and monospecific antibodies using novel anti-PD-1 sequences |
| US11319355B2 (en) | 2017-12-19 | 2022-05-03 | Xencor, Inc. | Engineered IL-2 Fc fusion proteins |
| WO2022097061A1 (en) | 2020-11-06 | 2022-05-12 | Novartis Ag | Anti-cd19 agent and b cell targeting agent combination therapy for treating b cell malignancies |
| WO2022097060A1 (en) | 2020-11-06 | 2022-05-12 | Novartis Ag | Cd19 binding molecules and uses thereof |
| WO2022104061A1 (en) | 2020-11-13 | 2022-05-19 | Novartis Ag | Combination therapies with chimeric antigen receptor (car)-expressing cells |
| US11339213B2 (en) | 2015-09-23 | 2022-05-24 | Mereo Biopharma 5, Inc. | Methods and compositions for treatment of cancer |
| US11352403B2 (en) | 2018-05-14 | 2022-06-07 | Werewolf Therapeutics, Inc. | Activatable interleukin-2 polypeptides and methods of use thereof |
| US11352426B2 (en) | 2015-09-21 | 2022-06-07 | Aptevo Research And Development Llc | CD3 binding polypeptides |
| US11352438B2 (en) | 2016-09-06 | 2022-06-07 | Chugai Seiyaku Kabushiki Kaisha | Methods of using a bispecific antibody that recognizes coagulation factor IX and/or activated coagulation factor IX and coagulation factor X and/or activated coagulation factor X |
| US11358999B2 (en) | 2018-10-03 | 2022-06-14 | Xencor, Inc. | IL-12 heterodimeric Fc-fusion proteins |
| US11359009B2 (en) | 2015-12-25 | 2022-06-14 | Chugai Seiyaku Kabushiki Kaisha | Anti-myostatin antibodies and methods of use |
| WO2022162569A1 (en) | 2021-01-29 | 2022-08-04 | Novartis Ag | Dosage regimes for anti-cd73 and anti-entpd2 antibodies and uses thereof |
| EP4043485A1 (en) | 2017-01-26 | 2022-08-17 | Novartis AG | Cd28 compositions and methods for chimeric antigen receptor therapy |
| WO2022184659A1 (en) | 2021-03-01 | 2022-09-09 | Quadrucept Bio Limited | Antibody domains & multimers |
| US11453710B2 (en) | 2018-05-14 | 2022-09-27 | Werewolf Therapeutics, Inc. | Activatable interleukin 12 polypeptides and methods of use thereof |
| WO2022215011A1 (en) | 2021-04-07 | 2022-10-13 | Novartis Ag | USES OF ANTI-TGFβ ANTIBODIES AND OTHER THERAPEUTIC AGENTS FOR THE TREATMENT OF PROLIFERATIVE DISEASES |
| US11472890B2 (en) | 2019-03-01 | 2022-10-18 | Xencor, Inc. | Heterodimeric antibodies that bind ENPP3 and CD3 |
| WO2022223001A1 (zh) | 2021-04-22 | 2022-10-27 | 广东菲鹏制药股份有限公司 | 双特异性多功能融合多肽 |
| US11485790B2 (en) | 2014-04-07 | 2022-11-01 | Chugai Seiyaku Kabushiki Kaisha | Immunoactivating antigen-binding molecule |
| US11505595B2 (en) | 2018-04-18 | 2022-11-22 | Xencor, Inc. | TIM-3 targeted heterodimeric fusion proteins containing IL-15/IL-15RA Fc-fusion proteins and TIM-3 antigen binding domains |
| US11505605B2 (en) | 2014-05-13 | 2022-11-22 | Chugai Seiyaku Kabushiki Kaisha | T cell-redirected antigen-binding molecule for cells having immunosuppression function |
| WO2022243846A1 (en) | 2021-05-18 | 2022-11-24 | Novartis Ag | Combination therapies |
| US11524991B2 (en) | 2018-04-18 | 2022-12-13 | Xencor, Inc. | PD-1 targeted heterodimeric fusion proteins containing IL-15/IL-15Ra Fc-fusion proteins and PD-1 antigen binding domains and uses thereof |
| WO2022270612A1 (ja) | 2021-06-25 | 2022-12-29 | 中外製薬株式会社 | 抗ctla-4抗体の使用 |
| WO2022270611A1 (ja) | 2021-06-25 | 2022-12-29 | 中外製薬株式会社 | 抗ctla-4抗体 |
| US11555067B2 (en) | 2014-01-15 | 2023-01-17 | Hoffmann-La Roche Inc. | Fc-region variants with improved protein A-binding |
| US11591401B2 (en) | 2020-08-19 | 2023-02-28 | Xencor, Inc. | Anti-CD28 compositions |
| WO2023044483A2 (en) | 2021-09-20 | 2023-03-23 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of her2 positive cancer |
| WO2023054421A1 (ja) | 2021-09-29 | 2023-04-06 | 中外製薬株式会社 | がんの治療に用いるための細胞傷害誘導治療剤 |
| WO2023058705A1 (ja) | 2021-10-08 | 2023-04-13 | 中外製薬株式会社 | 抗hla-dq2.5抗体の製剤 |
| US11649262B2 (en) | 2015-12-28 | 2023-05-16 | Chugai Seiyaku Kabushiki Kaisha | Method for promoting efficiency of purification of Fc region-containing polypeptide |
| WO2023092004A1 (en) | 2021-11-17 | 2023-05-25 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of tau-related disorders |
| US11718679B2 (en) | 2017-10-31 | 2023-08-08 | Compass Therapeutics Llc | CD137 antibodies and PD-1 antagonists and uses thereof |
| WO2023150778A1 (en) | 2022-02-07 | 2023-08-10 | Visterra, Inc. | Anti-idiotype antibody molecules and uses thereof |
| US11739144B2 (en) | 2021-03-09 | 2023-08-29 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and CLDN6 |
| US11739132B2 (en) | 2019-05-14 | 2023-08-29 | Werewolf Therapeutics, Inc. | Separation moieties and methods of use thereof |
| US11752207B2 (en) | 2017-07-11 | 2023-09-12 | Compass Therapeutics Llc | Agonist antibodies that bind human CD137 and uses thereof |
| US11773170B2 (en) | 2017-08-09 | 2023-10-03 | Merus N.V. | Antibodies that bind EGFR and cMET |
| US11780925B2 (en) | 2017-03-31 | 2023-10-10 | Merus N.V. | ErbB-2 and ErbB3 binding bispecific antibodies for use in the treatment of cells that have an NRG1 fusion gene |
| WO2023209568A1 (en) | 2022-04-26 | 2023-11-02 | Novartis Ag | Multispecific antibodies targeting il-13 and il-18 |
| WO2023220695A2 (en) | 2022-05-13 | 2023-11-16 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of her2 positive cancer |
| US11827699B2 (en) | 2011-09-30 | 2023-11-28 | Chugai Seiyaku Kabushiki Kaisha | Methods for producing antibodies promoting disappearance of antigens having plurality of biological activities |
| US11851497B2 (en) | 2017-11-20 | 2023-12-26 | Compass Therapeutics Llc | CD137 antibodies and tumor antigen-targeting antibodies and uses thereof |
| US11851486B2 (en) | 2017-05-02 | 2023-12-26 | National Center Of Neurology And Psychiatry | Method for predicting and evaluating therapeutic effect in diseases related to IL-6 and neutrophils |
| US11859012B2 (en) | 2021-03-10 | 2024-01-02 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and GPC3 |
| WO2024020429A1 (en) | 2022-07-22 | 2024-01-25 | Lyell Immunopharma, Inc. | Immune cell therapy |
| US11891434B2 (en) | 2010-11-30 | 2024-02-06 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule capable of binding to plurality of antigen molecules repeatedly |
| WO2024030976A2 (en) | 2022-08-03 | 2024-02-08 | Voyager Therapeutics, Inc. | Compositions and methods for crossing the blood brain barrier |
| JP2024023264A (ja) * | 2018-05-08 | 2024-02-21 | アムジエン・インコーポレーテツド | 切断可能なc末端電荷対タグを有する二重特異性抗体 |
| EP4324518A2 (en) | 2014-01-31 | 2024-02-21 | Novartis AG | Antibody molecules to tim-3 and uses thereof |
| US11919956B2 (en) | 2020-05-14 | 2024-03-05 | Xencor, Inc. | Heterodimeric antibodies that bind prostate specific membrane antigen (PSMA) and CD3 |
| WO2024059739A1 (en) | 2022-09-15 | 2024-03-21 | Voyager Therapeutics, Inc. | Tau binding compounds |
| US11939394B2 (en) | 2015-10-23 | 2024-03-26 | Merus N.V. | Binding molecules that inhibit cancer growth |
| GB202402048D0 (en) | 2024-02-14 | 2024-03-27 | Bivictrix Ltd | Therapeutic antibodies |
| US11952422B2 (en) | 2017-12-05 | 2024-04-09 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule comprising altered antibody variable region binding CD3 and CD137 |
| US11965030B2 (en) | 2018-12-24 | 2024-04-23 | Sanofi | Multispecific binding proteins with mutant fab domains |
| WO2024111657A1 (ja) | 2022-11-25 | 2024-05-30 | 中外製薬株式会社 | タンパク質の製造方法 |
| EP4378957A2 (en) | 2015-07-29 | 2024-06-05 | Novartis AG | Combination therapies comprising antibody molecules to pd-1 |
| WO2024131956A1 (zh) | 2022-12-23 | 2024-06-27 | 成都恩沐生物科技有限公司 | 靶向gprc5d的多特异性多肽复合物 |
| US12024559B2 (en) | 2020-10-23 | 2024-07-02 | Asher Biotherapeutics, Inc. | Fusions with CD8 antigen binding molecules for modulating immune cell function |
| WO2024143442A1 (ja) * | 2022-12-27 | 2024-07-04 | 中外製薬株式会社 | 会合が制御されたポリペプチド |
| US12036266B2 (en) | 2019-11-14 | 2024-07-16 | Werewolf Therapeutics, Inc. | Activatable cytokine polypeptides and methods of use thereof |
| US12060418B2 (en) | 2012-09-27 | 2024-08-13 | Merus N.V. | Bispecific IgG antibodies as T cell engagers |
| WO2024168061A2 (en) | 2023-02-07 | 2024-08-15 | Ayan Therapeutics Inc. | Antibody molecules binding to sars-cov-2 |
| US12122827B2 (en) | 2021-05-19 | 2024-10-22 | Asher Biotherapeutics, Inc. | IL-21 polypeptides and targeted constructs |
| US12152073B2 (en) | 2018-03-14 | 2024-11-26 | Marengo Therapeutics, Inc. | Multifunctional molecules that bind to calreticulin and uses thereof |
| US12195551B2 (en) | 2017-05-17 | 2025-01-14 | Merus N.V. | Combination of an ErbB-2/ErbB-3 bispecific antibody with endocrine therapy for breast cancer |
| WO2025037121A1 (en) | 2023-08-17 | 2025-02-20 | Bivictrix Limited | Bispecific antibodies |
| US12247060B2 (en) | 2018-01-09 | 2025-03-11 | Marengo Therapeutics, Inc. | Calreticulin binding constructs and engineered T cells for the treatment of diseases |
| US12269876B2 (en) | 2012-02-09 | 2025-04-08 | Chugai Seiyaku Kabushiki Kaisha | Modified Fc region of antibody |
| US12280120B2 (en) | 2020-11-25 | 2025-04-22 | Xilio Development, Inc. | Tumor-specific cleavable linkers |
| US12286477B2 (en) | 2018-07-03 | 2025-04-29 | Marengo Therapeutics, Inc. | Anti-TCR antibody molecules and uses thereof |
| WO2025122634A1 (en) | 2023-12-05 | 2025-06-12 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of tau-related disorders |
| US12358982B2 (en) | 2019-02-21 | 2025-07-15 | Marengo Therapeutics, Inc. | Multifunctional molecules that bind to T cell related cancer cells and uses thereof |
| WO2025155602A1 (en) | 2024-01-16 | 2025-07-24 | Genentech, Inc. | Method of treating hemophilia a |
| US12384842B2 (en) | 2019-02-21 | 2025-08-12 | Marengo Therapeutics, Inc. | Antibody molecules that bind to NKP30 and uses thereof |
| US12391759B2 (en) | 2016-03-02 | 2025-08-19 | Momenta Pharmaceuticals, Inc. | Methods related to engineered Fc constructs |
| WO2025172709A1 (en) | 2024-02-14 | 2025-08-21 | Bivictrix Limited | Therapeutic antibodies |
| US12415857B2 (en) | 2021-06-25 | 2025-09-16 | Chugai Seiyaku Kabushiki Kaisha | Anti-CTLA-4 antibody and use thereof |
| US12415859B2 (en) | 2018-12-18 | 2025-09-16 | Genmab A/S | Methods of producing heterodimeric antibodies |
| US12421322B2 (en) | 2017-11-01 | 2025-09-23 | Chugai Seiyaku Kabushiki Kaisha | Antibody variant and isoform with lowered biological activity |
| US12460014B2 (en) | 2016-04-28 | 2025-11-04 | Chugai Seiyaku Kabushiki Kaisha | Antibody-containing preparation |
| EP4643874A2 (en) | 2015-12-22 | 2025-11-05 | Novartis AG | Mesothelin chimeric antigen receptor (car) and antibody against pd-l1 inhibitor for combined use in anticancer therapy |
| US12466897B2 (en) | 2011-10-10 | 2025-11-11 | Xencor, Inc. | Heterodimeric human IgG1 polypeptides with isoelectric point modifications |
| US12486326B2 (en) | 2020-01-03 | 2025-12-02 | Marengo Therapeutics, Inc. | Anti-TCR antibody molecules and uses thereof |
| US12528863B2 (en) | 2019-07-10 | 2026-01-20 | Chugai Seiyaku Kabushiki Kaisha | Claudin-6 binding molecules and uses thereof |
Families Citing this family (541)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070281327A1 (en) * | 2003-12-12 | 2007-12-06 | Kiyotaka Nakano | Methods of Screening for Modified Antibodies With Agonistic Activities |
| US20080206229A1 (en) * | 2003-12-12 | 2008-08-28 | Koichiro Ono | Modified Antibodies Recognizing Receptor Trimers or Higher Multimers |
| TW200530269A (en) * | 2003-12-12 | 2005-09-16 | Chugai Pharmaceutical Co Ltd | Anti-Mpl antibodies |
| EP1870458B1 (en) * | 2005-03-31 | 2018-05-09 | Chugai Seiyaku Kabushiki Kaisha | sc(Fv)2 STRUCTURAL ISOMERS |
| DK1876236T3 (da) * | 2005-04-08 | 2014-10-20 | Chugai Pharmaceutical Co Ltd | Antistof som funktionel erstatning for blodkoagulationsfaktor VIII |
| AU2006256041B2 (en) * | 2005-06-10 | 2012-03-29 | Chugai Seiyaku Kabushiki Kaisha | Stabilizer for protein preparation comprising meglumine and use thereof |
| KR101360671B1 (ko) | 2005-06-10 | 2014-02-07 | 추가이 세이야쿠 가부시키가이샤 | sc(Fv)2를 함유하는 의약조성물 |
| JP5474531B2 (ja) * | 2006-03-24 | 2014-04-16 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | 操作されたヘテロ二量体タンパク質ドメイン |
| US8268314B2 (en) | 2008-10-08 | 2012-09-18 | Hoffmann-La Roche Inc. | Bispecific anti-VEGF/anti-ANG-2 antibodies |
| WO2010112194A1 (en) | 2009-04-02 | 2010-10-07 | F. Hoffmann-La Roche Ag | Antigen-binding polypeptides and multispecific antibodies comprising them |
| KR101431318B1 (ko) | 2009-04-02 | 2014-08-20 | 로슈 글리카트 아게 | 전장 항체 및 단일쇄 fab 단편을 포함하는 다중특이성 항체 |
| ES2537100T3 (es) | 2009-04-07 | 2015-06-02 | Roche Glycart Ag | Anticuerpos biespecíficos trivalentes |
| SG175081A1 (en) | 2009-04-07 | 2011-11-28 | Roche Glycart Ag | Bispecific anti-erbb-3/anti-c-met antibodies |
| SG175078A1 (en) | 2009-04-07 | 2011-11-28 | Roche Glycart Ag | Bispecific anti-erbb-1/anti-c-met antibodies |
| WO2010136172A1 (en) * | 2009-05-27 | 2010-12-02 | F. Hoffmann-La Roche Ag | Tri- or tetraspecific antibodies |
| US8703132B2 (en) * | 2009-06-18 | 2014-04-22 | Hoffmann-La Roche, Inc. | Bispecific, tetravalent antigen binding proteins |
| KR20120108967A (ko) | 2009-09-16 | 2012-10-05 | 제넨테크, 인크. | 코일드 코일 및/또는 테더 함유 단백질 복합체 및 그의 용도 |
| PT2483310E (pt) | 2009-09-29 | 2014-10-07 | Roche Glycart Ag | Anticorpos bi-específicos agonistas do receptor de morte |
| AR080794A1 (es) | 2010-03-26 | 2012-05-09 | Hoffmann La Roche | Anticuerpos bivalentes biespecificos anti- vegf/ anti-ang-2 |
| TW201138821A (en) | 2010-03-26 | 2011-11-16 | Roche Glycart Ag | Bispecific antibodies |
| AU2016219622A1 (en) * | 2010-04-20 | 2016-09-15 | Genmab A/S | Heterodimeric antibody FC-containing proteins and methods for production thereof |
| AU2013203221B2 (en) * | 2010-04-20 | 2016-06-02 | Genmab A/S | Heterodimeric antibody FC-containing proteins and methods for production thereof |
| WO2011143545A1 (en) | 2010-05-14 | 2011-11-17 | Rinat Neuroscience Corporation | Heterodimeric proteins and methods for producing and purifying them |
| CA2800785C (en) | 2010-05-27 | 2019-09-24 | Genmab A/S | Monoclonal antibodies against her2 |
| CA2807278A1 (en) | 2010-08-24 | 2012-03-01 | F. Hoffmann - La Roche Ag | Bispecific antibodies comprising a disulfide stabilized - fv fragment |
| EP2609112B1 (en) | 2010-08-24 | 2017-11-22 | Roche Glycart AG | Activatable bispecific antibodies |
| EP2643353A1 (en) | 2010-11-24 | 2013-10-02 | Novartis AG | Multispecific molecules |
| JP5766296B2 (ja) | 2010-12-23 | 2015-08-19 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | ポリペプチド−ポリヌクレオチド複合体、およびエフェクター成分の標的化された送達におけるその使用 |
| EP2699260B1 (en) | 2011-04-20 | 2024-11-20 | Genmab A/S | Bispecifc antibodies against her2 |
| JP2014514314A (ja) | 2011-04-20 | 2014-06-19 | ゲンマブ エー/エス | Her2およびcd3に対する二重特異性抗体 |
| WO2012162561A2 (en) | 2011-05-24 | 2012-11-29 | Zyngenia, Inc. | Multivalent and monovalent multispecific complexes and their uses |
| UA117901C2 (uk) | 2011-07-06 | 2018-10-25 | Ґенмаб Б.В. | Спосіб посилення ефекторної функції вихідного поліпептиду, його варіанти та їх застосування |
| KR101870555B1 (ko) | 2011-08-23 | 2018-06-22 | 로슈 글리카트 아게 | T 세포 활성화 항원 및 종양 항원에 대해 특이적인 이중특이적 항체 및 이의 사용 방법 |
| GB201116092D0 (en) | 2011-09-16 | 2011-11-02 | Bioceros B V | Antibodies and uses thereof |
| WO2013041462A1 (en) | 2011-09-23 | 2013-03-28 | Roche Glycart Ag | Bispecific anti-egfr/anti igf-1r antibodies |
| CN104093424A (zh) * | 2011-09-30 | 2014-10-08 | 中外制药株式会社 | 诱导针对靶抗原的免疫应答的抗原结合分子 |
| US9574010B2 (en) | 2011-11-04 | 2017-02-21 | Zymeworks Inc. | Stable heterodimeric antibody design with mutations in the Fc domain |
| RU2693264C2 (ru) | 2012-02-03 | 2019-07-01 | Ф.Хоффман-Ля Рош Аг | Молекулы биспецифических антител и т-клетки, трансфецированные антигеном, и их применение в медицине |
| JP6486686B2 (ja) | 2012-02-10 | 2019-03-20 | ジェネンテック, インコーポレイテッド | 単鎖抗体及び他のヘテロ多量体 |
| BR112014024903A2 (pt) | 2012-04-05 | 2017-07-11 | Hoffmann La Roche | anticorpos biespecíficos contra tweak humanao e il17 humana e seus usos |
| US9212227B2 (en) | 2012-04-30 | 2015-12-15 | Janssen Biotech, Inc. | ST2L antibody antagonists for the treatment of ST2L-mediated inflammatory pulmonary conditions |
| EP2847231B1 (en) | 2012-05-10 | 2019-07-10 | Bioatla LLC | Multi-specific monoclonal antibodies |
| RU2014149681A (ru) | 2012-05-24 | 2016-07-20 | Ф. Хоффманн-Ля Рош Аг | Антитела с множественной специфичностью |
| US9499634B2 (en) | 2012-06-25 | 2016-11-22 | Zymeworks Inc. | Process and methods for efficient manufacturing of highly pure asymmetric antibodies in mammalian cells |
| EP2867253B1 (en) | 2012-06-27 | 2016-09-14 | F. Hoffmann-La Roche AG | Method for selection and production of tailor-made highly selective and multi-specific targeting entities containing at least two different binding entities and uses thereof |
| KR20150030744A (ko) | 2012-06-27 | 2015-03-20 | 에프. 호프만-라 로슈 아게 | 표적에 특이적으로 결합하는 하나 이상의 결합 단위를 포함하는 항체 Fc-영역 접합체의 제조 방법 및 그의 용도 |
| HUE030858T2 (en) | 2012-07-04 | 2017-06-28 | Hoffmann La Roche | Covalently linked antigen-antibody conjugates |
| EP3339328A1 (en) | 2012-07-04 | 2018-06-27 | F. Hoffmann-La Roche AG | Anti-biotin antibodies and methods of use |
| BR112014030843A2 (pt) | 2012-07-04 | 2019-10-15 | Hoffmann La Roche | anticorpo anti-teofilina, formulação farmacêutica e uso do anticorpo |
| EP3632462A1 (en) | 2012-07-06 | 2020-04-08 | Genmab B.V. | Dimeric protein with triple mutations |
| SG10201605703TA (en) | 2012-07-06 | 2016-09-29 | Genmab Bv | Dimeric protein with triple mutations |
| EA032192B1 (ru) | 2012-07-13 | 2019-04-30 | Роше Гликарт Аг | Биспецифическое антитело к vegf/ang-2, нуклеиновая кислота, кодирующая это антитело, вектор, содержащий нуклеиновую кислоту, клетка-хозяин, способ получения биспецифического антитела и содержащая его фармацевтическая композиция |
| KR101963231B1 (ko) | 2012-09-11 | 2019-03-28 | 삼성전자주식회사 | 이중특이 항체의 제작을 위한 단백질 복합체 및 이를 이용한 이중특이 항체 제조 방법 |
| JP6444874B2 (ja) | 2012-10-08 | 2018-12-26 | ロシュ グリクアート アーゲー | 2つのFabフラグメントを含むFc不含抗体および使用方法 |
| HRP20182128T1 (hr) | 2012-11-21 | 2019-02-08 | Janssen Biotech, Inc. | Bispecifična egfr/c-met protutijela |
| US20170275367A1 (en) | 2012-11-21 | 2017-09-28 | Janssen Biotech, Inc. | Bispecific EGFR/C-Met Antibodies |
| KR20210096697A (ko) | 2013-01-10 | 2021-08-05 | 젠맵 비. 브이 | 인간 IgG1 Fc 영역 변이체 및 그의 용도 |
| CN104968682A (zh) | 2013-02-05 | 2015-10-07 | 英格玛布股份公司 | 针对CD3ε和BCMA的双特异性抗体 |
| EP2762497A1 (en) | 2013-02-05 | 2014-08-06 | EngMab AG | Bispecific antibodies against CD3epsilon and BCMA |
| EP2762496A1 (en) | 2013-02-05 | 2014-08-06 | EngMab AG | Method for the selection of antibodies against BCMA |
| KR20150122761A (ko) | 2013-02-26 | 2015-11-02 | 로슈 글리카트 아게 | T 세포 활성화 항원 결합 분자 |
| NZ708182A (en) | 2013-02-26 | 2019-08-30 | Roche Glycart Ag | Bispecific t cell activating antigen binding molecules |
| EP2975061A4 (en) | 2013-03-13 | 2017-03-01 | Ibentrus Inc. | Protein in which electrical interaction is introduced within hydrophobic interaction site and preparation method therefor |
| US9168300B2 (en) | 2013-03-14 | 2015-10-27 | Oncomed Pharmaceuticals, Inc. | MET-binding agents and uses thereof |
| WO2014151422A1 (en) | 2013-03-15 | 2014-09-25 | Janssen Biotech, Inc. | Interferon alpha and omega antibody antagonists |
| US10047167B2 (en) | 2013-03-15 | 2018-08-14 | Eli Lilly And Company | Methods for producing fabs and bi-specific antibodies |
| EA038918B1 (ru) | 2013-03-15 | 2021-11-09 | Зинджения, Инк. | Пептид, связывающий рецептор эпидермального фактора роста, мультиспецифические комплексы, содержащие пептид и антитела, и их применение |
| WO2014148895A1 (en) | 2013-03-18 | 2014-09-25 | Biocerox Products B.V. | Humanized anti-cd134 (ox40) antibodies and uses thereof |
| UA118028C2 (uk) | 2013-04-03 | 2018-11-12 | Рош Глікарт Аг | Біспецифічне антитіло, специфічне щодо fap і dr5, антитіло, специфічне щодо dr5, і спосіб їх застосування |
| EP2789630A1 (en) | 2013-04-09 | 2014-10-15 | EngMab AG | Bispecific antibodies against CD3e and ROR1 |
| CN105164157B (zh) | 2013-04-29 | 2024-05-28 | 豪夫迈·罗氏有限公司 | Fc-受体结合的修饰的非对称抗体及使用方法 |
| TW201920285A (zh) | 2013-04-29 | 2019-06-01 | 瑞士商赫孚孟拉羅股份公司 | 遏止FcRn結合之抗IGF-1R抗體及其治療血管性眼疾之用途 |
| US9879081B2 (en) | 2013-06-25 | 2018-01-30 | Samsung Electronics Co., Ltd. | Protein complex, bispecific antibody including the protein complex, and method of preparation thereof |
| SG11201510739TA (en) | 2013-07-05 | 2016-01-28 | Genmab As | Humanized or chimeric cd3 antibodies |
| PL3065774T3 (pl) | 2013-11-06 | 2021-12-13 | Janssen Biotech, Inc | Przeciwciała anty-ccl17 |
| CN112390883A (zh) | 2013-12-17 | 2021-02-23 | 基因泰克公司 | 抗cd3抗体及使用方法 |
| BR112016013562A2 (pt) | 2013-12-20 | 2017-10-03 | Hoffmann La Roche | Anticorpos anti-tau(ps422) humanizados, seus usos, e formulações farmacêuticas |
| JP6521464B2 (ja) | 2014-01-03 | 2019-05-29 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | 共有結合で連結されたポリペプチド毒素−抗体コンジュゲート |
| MX373856B (es) | 2014-01-03 | 2020-03-25 | Hoffmann La Roche | Conjugados helicoidales-anticuerpo anti-helicoidal unidos covalentemente y usos de los mismos. |
| JP6476194B2 (ja) | 2014-01-03 | 2019-02-27 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | 二重特異性抗ハプテン/抗血液脳関門受容体抗体、それらの複合体、及び血液脳関門シャトルとしてのそれらの使用 |
| CA2932547C (en) | 2014-01-06 | 2023-05-23 | F. Hoffmann-La Roche Ag | Monovalent blood brain barrier shuttle modules |
| US9732154B2 (en) | 2014-02-28 | 2017-08-15 | Janssen Biotech, Inc. | Anti-CD38 antibodies for treatment of acute lymphoblastic leukemia |
| UA117289C2 (uk) | 2014-04-02 | 2018-07-10 | Ф. Хоффманн-Ля Рош Аг | Мультиспецифічне антитіло |
| WO2015150446A1 (en) | 2014-04-02 | 2015-10-08 | F. Hoffmann-La Roche Ag | Method for detecting multispecific antibody light chain mispairing |
| TWI713453B (zh) | 2014-06-23 | 2020-12-21 | 美商健生生物科技公司 | 干擾素α及ω抗體拮抗劑 |
| CA2947504A1 (en) | 2014-06-26 | 2015-12-30 | F. Hoffmann-La Roche Ag | Anti-brdu antibodies and methods of use |
| AR100978A1 (es) | 2014-06-26 | 2016-11-16 | Hoffmann La Roche | LANZADERAS CEREBRALES DE ANTICUERPO HUMANIZADO ANTI-Tau(pS422) Y USOS DE LAS MISMAS |
| SG11201610777VA (en) | 2014-07-11 | 2017-01-27 | Genmab As | Antibodies binding axl |
| ES2979976T3 (es) | 2014-08-04 | 2024-09-27 | Hoffmann La Roche | Moléculas de unión a antígeno activadoras de linfocitos T biespecíficas |
| EP2982692A1 (en) * | 2014-08-04 | 2016-02-10 | EngMab AG | Bispecific antibodies against CD3epsilon and BCMA |
| JO3568B1 (ar) | 2014-09-05 | 2020-07-05 | Janssen Pharmaceutica Nv | عوامل ربط cd123 واستخداماتها |
| JP6707531B2 (ja) | 2014-09-09 | 2020-06-10 | ヤンセン バイオテツク,インコーポレーテツド | 抗cd38抗体による併用療法 |
| SG11201701627PA (en) | 2014-09-12 | 2017-03-30 | Genentech Inc | Anti-cll-1 antibodies and immunoconjugates |
| EP3194435A1 (en) | 2014-09-15 | 2017-07-26 | Amgen Inc. | Bi-specific anti-cgrp receptor/pac1 receptor antigen binding proteins and uses thereof |
| ES2850325T3 (es) | 2014-10-09 | 2021-08-27 | Engmab Sarl | Anticuerpos biespecíficos contra CD3epsilon y ROR1 |
| EP3215528B1 (en) | 2014-11-06 | 2019-08-07 | F.Hoffmann-La Roche Ag | Fc-region variants with modified fcrn-binding and methods of use |
| EP3023437A1 (en) | 2014-11-20 | 2016-05-25 | EngMab AG | Bispecific antibodies against CD3epsilon and BCMA |
| CR20170203A (es) | 2014-11-20 | 2017-06-29 | Hoffmann La Roche | Moleculas de unión a antígeno biespecíficas activadoras de células t |
| EP4141032B1 (en) | 2014-11-20 | 2024-05-29 | F. Hoffmann-La Roche AG | Combination therapy of t cell activating bispecific antigen binding molecules and pd-1 axis binding antagonists |
| SI3221357T1 (sl) | 2014-11-20 | 2020-09-30 | F. Hoffmann-La Roche Ag | Pogoste lahke verige in načini uporabe |
| WO2016087416A1 (en) | 2014-12-03 | 2016-06-09 | F. Hoffmann-La Roche Ag | Multispecific antibodies |
| TWI721959B (zh) | 2014-12-04 | 2021-03-21 | 美商健生生物科技公司 | 治療急性骨髓性白血病之抗cd38抗體 |
| MX391279B (es) | 2015-01-08 | 2025-03-21 | Genmab As | Anticuerpos biespecíficos contra cd3 y cd20. |
| MA41375A (fr) | 2015-01-22 | 2017-11-28 | Lilly Co Eli | Anticorps igg bispécifiques et leurs procédés de préparation |
| KR20180002782A (ko) | 2015-05-06 | 2018-01-08 | 얀센 바이오테크 인코포레이티드 | 전립선 특이적 막 항원(psma) 이중특이성 결합제 및 그의 용도 |
| MX389805B (es) | 2015-05-20 | 2025-03-11 | Janssen Biotech Inc | Anticuerpos anti-cd38 para el tratamiento de amiloidosis de cadena ligera y otras enfermedades malignas hematológicas positivas para cd38. |
| HRP20231134T1 (hr) | 2015-06-16 | 2024-01-05 | F. Hoffmann - La Roche Ag | Humanizirana i afinitetno zrela protutijela na fcrh5 i postupci za uporabu |
| EP3310378B1 (en) | 2015-06-16 | 2024-01-24 | F. Hoffmann-La Roche AG | Anti-cll-1 antibodies and methods of use |
| NZ777133A (en) | 2015-06-22 | 2025-05-02 | Janssen Biotech Inc | Combination therapies for heme malignancies with anti-cd38 antibodies and survivin inhibitors |
| EP3744732B1 (en) | 2015-06-24 | 2025-09-10 | F. Hoffmann-La Roche AG | Humanized anti-tau(ps422) antibodies and methods of use |
| US20160376373A1 (en) | 2015-06-24 | 2016-12-29 | Janssen Biotech, Inc. | Immune Modulation and Treatment of Solid Tumors with Antibodies that Specifically Bind CD38 |
| US20180201693A1 (en) | 2015-07-09 | 2018-07-19 | Genmab A/S | Bispecific and multispecific antibodies and method for isolation of such |
| HRP20200551T1 (hr) | 2015-07-10 | 2020-07-10 | Genmab A/S | Axl-specifični konjugati protutijelo-lijek za liječenje raka |
| US11359015B2 (en) | 2015-07-15 | 2022-06-14 | Genmab A/S | Humanized or chimeric CD3 antibodies |
| PL3331910T3 (pl) | 2015-08-03 | 2020-05-18 | Engmab Sàrl | Przeciwciała monoklonalne przeciwko ludzkiemu antygenowi dojrzewania limfocytów B (BCMA) |
| PE20180802A1 (es) | 2015-08-05 | 2018-05-09 | Janssen Biotech Inc | Anticuerpos anti-cd154 y metodos de uso de estos |
| RS60755B1 (sr) | 2015-08-17 | 2020-10-30 | Janssen Pharmaceutica Nv | Anti-bcma antitela, bispecifični antigen vezujući molekuli koji se vezuju za bcma i cd3, i njihove upotrebe |
| EP3350216A1 (en) * | 2015-09-15 | 2018-07-25 | Amgen Inc. | Tetravalent bispecific and tetraspecific antigen binding proteins and uses thereof |
| MX2018003905A (es) | 2015-09-30 | 2018-09-06 | Janssen Biotech Inc | Anticuerpos agonistas que se unen específicamente a cd40 humana y métodos de uso. |
| AR106188A1 (es) | 2015-10-01 | 2017-12-20 | Hoffmann La Roche | Anticuerpos anti-cd19 humano humanizados y métodos de utilización |
| WO2017055399A1 (en) | 2015-10-02 | 2017-04-06 | F. Hoffmann-La Roche Ag | Cellular based fret assay for the determination of simultaneous binding |
| HK1254967A1 (zh) | 2015-10-02 | 2019-08-02 | 豪夫迈‧罗氏有限公司 | 结合间皮素和cd3的双特异性t细胞活化性抗原结合分子 |
| WO2017055393A1 (en) | 2015-10-02 | 2017-04-06 | F. Hoffmann-La Roche Ag | Anti-cd3xtim-3 bispecific t cell activating antigen binding molecules |
| AR106201A1 (es) | 2015-10-02 | 2017-12-20 | Hoffmann La Roche | Moléculas biespecíficas de unión a antígeno activadoras de células t |
| WO2017055392A1 (en) | 2015-10-02 | 2017-04-06 | F. Hoffmann-La Roche Ag | Anti-cd3xcd44v6 bispecific t cell activating antigen binding molecules |
| WO2017055395A1 (en) | 2015-10-02 | 2017-04-06 | F. Hoffmann-La Roche Ag | Anti-cd3xrob04 bispecific t cell activating antigen binding molecules |
| CN108137699B (zh) | 2015-10-02 | 2022-05-27 | 豪夫迈·罗氏有限公司 | 对pd1和tim3特异性的双特异性抗体 |
| EP3150636A1 (en) | 2015-10-02 | 2017-04-05 | F. Hoffmann-La Roche AG | Tetravalent multispecific antibodies |
| US20170096495A1 (en) | 2015-10-02 | 2017-04-06 | Hoffmann-La Roche Inc. | Bispecific t cell activating antigen binding molecules |
| CN108026177B (zh) | 2015-10-02 | 2021-11-26 | 豪夫迈·罗氏有限公司 | 双特异性抗cd19xcd3 t细胞活化性抗原结合分子 |
| EP3150637A1 (en) | 2015-10-02 | 2017-04-05 | F. Hoffmann-La Roche AG | Multispecific antibodies |
| WO2017055385A1 (en) | 2015-10-02 | 2017-04-06 | F. Hoffmann-La Roche Ag | Anti-cd3xgd2 bispecific t cell activating antigen binding molecules |
| MX2018004285A (es) | 2015-10-08 | 2018-11-09 | Zymeworks Inc | Construcciones polipeptidicas de union al antigeno que comprenden cadenas ligeras kappa y lambda y usos de estas. |
| IL295756A (en) | 2015-10-29 | 2022-10-01 | Hoffmann La Roche | Anti-variant fc-region antibodies and methods of use |
| CR20180250A (es) | 2015-11-02 | 2018-10-01 | Janssen Pharmaceutica Nv | Anticuerpos anti-il1rap, moléculas de unión a antígenos biespecíficas que se unen a il1rap y cd3, y uso de estas |
| EP3370768B9 (en) | 2015-11-03 | 2022-03-16 | Janssen Biotech, Inc. | Antibodies specifically binding pd-1 and their uses |
| SMT202100192T1 (it) | 2015-11-03 | 2021-05-07 | Janssen Biotech Inc | Formulazioni sottocutanee di anticorpi anti-cd38 e loro usi. |
| CA3007033A1 (en) | 2015-12-01 | 2017-06-08 | Genmab B.V. | Anti-dr5 antibodies and methods of use thereof |
| EP3178848A1 (en) | 2015-12-09 | 2017-06-14 | F. Hoffmann-La Roche AG | Type ii anti-cd20 antibody for reducing formation of anti-drug antibodies |
| CA2997406C (en) | 2015-12-09 | 2024-05-28 | F. Hoffmann-La Roche Ag | Type ii anti-cd20 antibody for reducing formation of anti-drug antibodies or cytokine release |
| MA44072A (fr) | 2015-12-17 | 2018-10-24 | Janssen Biotech Inc | Anticorps se liant spécifiquement à hla-dr et leurs utilisations |
| WO2017113181A1 (zh) * | 2015-12-30 | 2017-07-06 | 深圳先进技术研究院 | IgG杂合型抗TNFα和IL-17A双特异性抗体 |
| US10596257B2 (en) | 2016-01-08 | 2020-03-24 | Hoffmann-La Roche Inc. | Methods of treating CEA-positive cancers using PD-1 axis binding antagonists and anti-CEA/anti-CD3 bispecific antibodies |
| AU2017238172B2 (en) | 2016-03-21 | 2024-06-27 | Marengo Therapeutics, Inc. | Multispecific and multifunctional molecules and uses thereof |
| FI3433280T3 (fi) | 2016-03-22 | 2023-06-06 | Hoffmann La Roche | Proteaasin aktivoimia t-solubispesifisiä molekyylejä |
| NZ787243A (en) | 2016-04-15 | 2025-12-19 | Alpine Immune Sciences Inc | ICOS ligand variant immunomodulatory proteins and uses thereof |
| US11078282B2 (en) | 2016-04-15 | 2021-08-03 | Alpine Immune Sciences, Inc. | CD80 variant immunomodulatory proteins and uses thereof |
| MX2018012866A (es) | 2016-04-20 | 2019-03-11 | Regeneron Pharma | Composiciones y metodos para generar anticuerpos basado en el uso de un locus potenciador de la expresion. |
| BR112018071283A2 (pt) | 2016-04-20 | 2019-02-12 | Regeneron Pharma | célula, conjunto de vetores para expressar uma proteína de ligação a antígeno biespecífica em uma célula, conjunto de vetores, método, e, método para produção de uma proteína de ligação a antígeno. |
| RU2018141360A (ru) | 2016-05-02 | 2020-06-03 | Ф. Хоффманн-Ля Рош Аг | Contorsbody - одноцепочечный связывающий мишень агент |
| CA3059010A1 (en) | 2016-06-02 | 2018-12-06 | F. Hoffmann-La Roche Ag | Type ii anti-cd20 antibody and anti-cd20/cd3 bispecific antibody for treatment of cancer |
| EP3252078A1 (en) | 2016-06-02 | 2017-12-06 | F. Hoffmann-La Roche AG | Type ii anti-cd20 antibody and anti-cd20/cd3 bispecific antibody for treatment of cancer |
| JP2019527678A (ja) | 2016-06-28 | 2019-10-03 | ユーエムセー・ユトレヒト・ホールディング・ベー・フェー | CD38に特異的に結合する抗体によるIgE媒介疾患の治療 |
| EP3478717B1 (en) | 2016-07-04 | 2022-01-05 | F. Hoffmann-La Roche AG | Novel antibody format |
| EP3484922A1 (en) | 2016-07-14 | 2019-05-22 | Genmab A/S | Multispecific antibodies against cd40 and cd137 |
| TWI781108B (zh) | 2016-07-20 | 2022-10-21 | 比利時商健生藥品公司 | 抗gprc5d抗體、結合gprc5d與cd3之雙特異性抗原結合分子及其用途 |
| US11834490B2 (en) | 2016-07-28 | 2023-12-05 | Alpine Immune Sciences, Inc. | CD112 variant immunomodulatory proteins and uses thereof |
| CN110088127A (zh) | 2016-07-28 | 2019-08-02 | 高山免疫科学股份有限公司 | Cd155变体免疫调节蛋白及其用途 |
| US20180044430A1 (en) | 2016-08-12 | 2018-02-15 | Janssen Biotech, Inc. | FC Engineered Anti-TNFR Superfamily Member Antibodies Having Enhanced Atonistic Activity and Methods of Using Them |
| CA3033661A1 (en) | 2016-08-12 | 2018-02-15 | Janssen Biotech, Inc. | Engineered antibodies and other fc-domain containing molecules with enhanced agonism and effector functions |
| EP3519437B1 (en) | 2016-09-30 | 2021-09-08 | F. Hoffmann-La Roche AG | Bispecific antibodies against p95her2 |
| EP3519820B1 (en) | 2016-09-30 | 2020-12-09 | H. Hoffnabb-La Roche Ag | Spr-based dual-binding assay for the functional analysis of multispecific molecules |
| JOP20190095A1 (ar) | 2016-10-27 | 2019-04-28 | Janssen Pharmaceutica Nv | مركبات ببتيد تيروسين-تيروسين الحلقية كمعدلات لمستقبلات الببتيد العصبي y |
| CA3041988A1 (en) | 2016-11-01 | 2018-05-11 | Genmab B.V. | Polypeptide variants and uses thereof |
| EA201990787A1 (ru) | 2016-11-02 | 2019-12-30 | Энгмаб Сарл | Биспецифичное антитело к всма и cd3 и иммунологическое лекарственное средство для комбинированного применения в лечении множественной миеломы |
| CA3042435A1 (en) | 2016-11-15 | 2018-05-24 | Genentech, Inc. | Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies |
| TW201829463A (zh) | 2016-11-18 | 2018-08-16 | 瑞士商赫孚孟拉羅股份公司 | 抗hla-g抗體及其用途 |
| US20230192896A1 (en) | 2016-11-23 | 2023-06-22 | Bioverativ Therapeutics Inc. | Bispecific antibodies binding to coagulation factor ix and coagulation factor x |
| MA46959A (fr) | 2016-12-02 | 2019-10-09 | Juno Therapeutics Inc | Cellules b modifiées et compositions et méthodes associées |
| US11129906B1 (en) | 2016-12-07 | 2021-09-28 | David Gordon Bermudes | Chimeric protein toxins for expression by therapeutic bacteria |
| WO2018122053A1 (en) | 2016-12-29 | 2018-07-05 | F. Hoffmann-La Roche Ag | Anti-angiopoietin-2 antibody formulation |
| UA128814C2 (uk) | 2017-02-10 | 2024-10-30 | Генмаб Б.В. | Поліпептид та його застосування |
| US20200291089A1 (en) | 2017-02-16 | 2020-09-17 | Elstar Therapeutics, Inc. | Multifunctional molecules comprising a trimeric ligand and uses thereof |
| AU2018231618B2 (en) | 2017-03-09 | 2025-02-13 | Genmab A/S | Antibodies against PD-L1 |
| AU2018232698B2 (en) | 2017-03-10 | 2020-06-25 | F. Hoffmann-La Roche Ag | Method for producing multispecific antibodies |
| PL3596116T3 (pl) | 2017-03-16 | 2024-05-13 | Alpine Immune Sciences, Inc. | Białka immunomodulujące wariant Pd-l1 i ich zastosowania |
| KR20190141146A (ko) | 2017-03-16 | 2019-12-23 | 알파인 이뮨 사이언시즈, 인코포레이티드 | Pd-l2 변이체 면역조절 단백질 및 그의 용도 |
| EP3596114A2 (en) | 2017-03-16 | 2020-01-22 | Alpine Immune Sciences, Inc. | Cd80 variant immunomodulatory proteins and uses thereof |
| WO2018178396A1 (en) | 2017-03-31 | 2018-10-04 | Genmab Holding B.V. | Bispecific anti-cd37 antibodies, monoclonal anti-cd37 antibodies and methods of use thereof |
| EP3606963B1 (en) | 2017-04-03 | 2023-08-30 | F. Hoffmann-La Roche AG | Antibodies binding to steap-1 |
| CR20190426A (es) | 2017-04-03 | 2019-11-01 | Hoffmann La Roche | Inmunoconjugados |
| JP7148539B2 (ja) | 2017-04-03 | 2022-10-05 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | 免疫抱合体 |
| WO2018185043A1 (en) | 2017-04-05 | 2018-10-11 | F. Hoffmann-La Roche Ag | Bispecific antibodies specifically binding to pd1 and lag3 |
| KR20190136076A (ko) | 2017-04-13 | 2019-12-09 | 에프. 호프만-라 로슈 아게 | 암 치료 방법에 사용하기 위한 인터루킨-2 면역접합체, cd40 작용제 및 임의적인 pd-1 축 결합 길항제 |
| EP3630836A1 (en) | 2017-05-31 | 2020-04-08 | Elstar Therapeutics, Inc. | Multispecific molecules that bind to myeloproliferative leukemia (mpl) protein and uses thereof |
| JP7710827B2 (ja) | 2017-06-05 | 2025-07-22 | ヤンセン バイオテツク,インコーポレーテツド | 非対称なch2-ch3領域の変異を有する、操作された多重特異性抗体及び他の多量体タンパク質 |
| CN110997712B (zh) | 2017-06-05 | 2024-03-19 | 詹森生物科技公司 | 特异性结合pd-1的抗体及其使用方法 |
| EP3635005A1 (en) | 2017-06-07 | 2020-04-15 | Genmab B.V. | Therapeutic antibodies based on mutated igg hexamers |
| AR112603A1 (es) | 2017-07-10 | 2019-11-20 | Lilly Co Eli | Anticuerpos biespecíficos inhibidores de punto de control |
| AU2018309339C1 (en) | 2017-08-04 | 2025-08-21 | BioNTech SE | Binding agents binding to PD-L1 and CD137 and use thereof |
| WO2019035938A1 (en) | 2017-08-16 | 2019-02-21 | Elstar Therapeutics, Inc. | MULTISPECIFIC MOLECULES BINDING TO BCMA AND USES THEREOF |
| JP7749319B2 (ja) | 2017-10-10 | 2025-10-06 | アルパイン イミューン サイエンシズ インコーポレイテッド | Ctla-4変異型免疫調節タンパク質およびそれらの使用 |
| EP3697810B1 (en) | 2017-10-18 | 2025-12-03 | Alpine Immune Sciences, Inc. | Variant icos ligand immunomodulatory proteins and related compositions and methods |
| PE20210844A1 (es) | 2017-11-01 | 2021-05-10 | Hoffmann La Roche | Contorsbodies 2 + biespecificos |
| JP2021500930A (ja) | 2017-11-01 | 2021-01-14 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | Compボディ−多価標的結合物質 |
| CN111246884A (zh) | 2017-11-01 | 2020-06-05 | 豪夫迈·罗氏有限公司 | 新颖的含有tnf家族配体三聚体的抗原结合分子 |
| WO2019086395A1 (en) | 2017-11-01 | 2019-05-09 | F. Hoffmann-La Roche Ag | Trifab-contorsbody |
| KR20200089312A (ko) | 2017-11-28 | 2020-07-24 | 추가이 세이야쿠 가부시키가이샤 | 리간드 결합 활성을 조정 가능한 리간드 결합 분자 |
| TWI805665B (zh) | 2017-12-21 | 2023-06-21 | 瑞士商赫孚孟拉羅股份公司 | 結合hla-a2/wt1之抗體 |
| CN109957026A (zh) * | 2017-12-22 | 2019-07-02 | 成都恩沐生物科技有限公司 | 共价多特异性抗体 |
| JP7074859B2 (ja) | 2017-12-22 | 2022-05-24 | エフ.ホフマン-ラ ロシュ アーゲー | 疎水性相互作用クロマトグラフィーによる軽鎖誤対合抗体変種の枯渇の方法 |
| AU2019205273B2 (en) | 2018-01-03 | 2024-04-04 | Alpine Immune Sciences, Inc. | Multi-domain immunomodulatory proteins and methods of use thereof |
| US12398209B2 (en) | 2018-01-22 | 2025-08-26 | Janssen Biotech, Inc. | Methods of treating cancers with antagonistic anti-PD-1 antibodies |
| MA51666A (fr) | 2018-01-24 | 2020-12-02 | Genmab Bv | Variants polypeptidiques et leurs utilisations |
| TWI786265B (zh) * | 2018-02-02 | 2022-12-11 | 美商再生元醫藥公司 | 用於表徵蛋白質二聚合之系統及方法 |
| KR20250166355A (ko) | 2018-02-06 | 2025-11-27 | 에프. 호프만-라 로슈 아게 | 안과 질환의 치료 |
| CN118772287A (zh) | 2018-02-08 | 2024-10-15 | 豪夫迈·罗氏有限公司 | 双特异性抗原结合分子和使用方法 |
| TWI829667B (zh) | 2018-02-09 | 2024-01-21 | 瑞士商赫孚孟拉羅股份公司 | 結合gprc5d之抗體 |
| WO2019173832A2 (en) | 2018-03-09 | 2019-09-12 | AskGene Pharma, Inc. | Novel cytokine prodrugs |
| PE20210339A1 (es) | 2018-03-12 | 2021-02-22 | Genmab As | Anticuerpos |
| US20210009711A1 (en) | 2018-03-14 | 2021-01-14 | Elstar Therapeutics, Inc. | Multifunctional molecules and uses thereof |
| AU2019256520A1 (en) | 2018-04-18 | 2020-11-26 | Xencor, Inc. | LAG-3 targeted heterodimeric fusion proteins containing IL-15/IL-15Ra Fc-fusion proteins and LAG-3 antigen binding domains |
| AR115052A1 (es) | 2018-04-18 | 2020-11-25 | Hoffmann La Roche | Anticuerpos multiespecíficos y utilización de los mismos |
| AR114789A1 (es) | 2018-04-18 | 2020-10-14 | Hoffmann La Roche | Anticuerpos anti-hla-g y uso de los mismos |
| CA3097625A1 (en) | 2018-04-18 | 2019-10-24 | Xencor, Inc. | Il-15/il-15ra heterodimeric fc fusion proteins and uses thereof |
| MX2020011552A (es) | 2018-05-03 | 2020-11-24 | Genmab Bv | Combinaciones de variantes de anticuerpos y usos de las mismas. |
| MY205856A (en) | 2018-05-16 | 2024-11-15 | Stichting Vumc | Methods of treating cancers and enhancing efficacy of t cell redirecting therapeutics |
| EA202092830A1 (ru) | 2018-05-23 | 2021-04-08 | Селджин Корпорейшн | Антипролиферативные соединения и биспецифические антитела к bcma и cd3 для комбинированного применения |
| AU2019274652A1 (en) | 2018-05-24 | 2020-11-26 | Janssen Biotech, Inc. | Monospecific and multispecific anti-TMEFF2 antibodies and there uses |
| CN112513085B (zh) | 2018-05-24 | 2024-06-18 | 詹森生物科技公司 | Psma结合剂及其用途 |
| JOP20190116A1 (ar) | 2018-05-24 | 2019-11-24 | Janssen Biotech Inc | الأجسام المضادة لتكتل التمايز 33 (cd33)، والأجسام المضادة ثنائية النوعية لتكتل التمايز 33 (cd33)/تكتل التمايز 3 (cd3) واستخداماتها |
| RS66901B1 (sr) | 2018-05-24 | 2025-07-31 | Janssen Biotech Inc | Anti-cd3 antitela i njihova upotreba |
| JP7539701B2 (ja) | 2018-06-14 | 2024-08-26 | バイオアトラ インコーポレイテッド | 多重特異性抗体構造体 |
| US12065476B2 (en) | 2018-06-15 | 2024-08-20 | Alpine Immune Sciences, Inc. | PD-1 variant immunomodulatory proteins and uses thereof |
| JP7513530B2 (ja) | 2018-06-22 | 2024-07-09 | ジェンマブ ホールディング ビー.ブイ. | 抗cd37抗体および抗cd20抗体、組成物、ならびにそれらの使用方法 |
| US20240254252A1 (en) | 2018-07-13 | 2024-08-01 | Genmab A/S | Trogocytosis-mediated therapy using cd38 antibodies |
| CR20210081A (es) | 2018-07-13 | 2021-06-24 | Genmab As | Variantes de anticuerpos anti-cd38 y sus usos. |
| CN112534052B (zh) | 2018-07-25 | 2024-09-20 | 奥美药业有限公司 | 全新il-21前药及使用方法 |
| EP3856778A1 (en) | 2018-09-24 | 2021-08-04 | The Medical College of Wisconsin, Inc. | System and method for the development of cd30 bispecific antibodies for immunotherapy of cd30+ malignancies |
| WO2020070313A1 (en) | 2018-10-04 | 2020-04-09 | Genmab Holding B.V. | Pharmaceutical compositions comprising bispecific anti-cd37 antibodies |
| PE20211055A1 (es) | 2018-10-12 | 2021-06-07 | Xencor Inc | Proteinas de fusion il-15 / il-15 ralpha f c dirigidas a pd-1 y usos en terapias de combinacion de las mismas |
| CN119033685A (zh) | 2018-10-29 | 2024-11-29 | 豪夫迈·罗氏有限公司 | 抗体制剂 |
| US20210369842A1 (en) | 2018-11-06 | 2021-12-02 | Genmab A/S | Antibody formulation |
| JP7713886B2 (ja) | 2018-11-30 | 2025-07-28 | アルパイン イミューン サイエンシズ インコーポレイテッド | Cd86バリアント免疫調節タンパク質およびその使用 |
| WO2020115115A1 (en) | 2018-12-05 | 2020-06-11 | Morphosys Ag | Multispecific antigen-binding molecules |
| WO2020132646A1 (en) | 2018-12-20 | 2020-06-25 | Xencor, Inc. | Targeted heterodimeric fc fusion proteins containing il-15/il-15ra and nkg2d antigen binding domains |
| PE20211603A1 (es) | 2018-12-21 | 2021-08-18 | Hoffmann La Roche | Anticuerpos que se unen a cd3 |
| WO2020136060A1 (en) | 2018-12-28 | 2020-07-02 | F. Hoffmann-La Roche Ag | A peptide-mhc-i-antibody fusion protein for therapeutic use in a patient with amplified immune response |
| TWI852977B (zh) | 2019-01-10 | 2024-08-21 | 美商健生生物科技公司 | 前列腺新抗原及其用途 |
| US20220153827A1 (en) | 2019-01-15 | 2022-05-19 | Janssen Biotech, Inc. | Anti-TNF Antibody Compositions and Methods for the Treatment of Juvenile Idiopathic Arthritis |
| IL284744B1 (en) | 2019-01-18 | 2025-10-01 | Janssen Biotech Inc | Chimeric antigen receptors gprc5d and cells expressing them |
| KR20210118878A (ko) | 2019-01-23 | 2021-10-01 | 얀센 바이오테크 인코포레이티드 | 건선성 관절염의 치료 방법에 사용하기 위한 항-tnf 항체 조성물 |
| GB2599227B (en) | 2019-02-21 | 2024-05-01 | Marengo Therapeutics Inc | Multifunctional molecules that bind to T cells and uses thereof to treat autoimmune disorders |
| SG11202109056TA (en) | 2019-02-21 | 2021-09-29 | Marengo Therapeutics Inc | Multifunctional molecules that bind to calreticulin and uses thereof |
| SG11202109122SA (en) | 2019-02-21 | 2021-09-29 | Marengo Therapeutics Inc | Anti-tcr antibody molecules and uses thereof |
| JOP20210233A1 (ar) | 2019-02-26 | 2023-01-30 | Janssen Biotech Inc | علاجات مركبة وتطابق المريض مع الأجسام ثنائية النوعية المضادة لـ EGFR/c-Met. |
| KR20210138033A (ko) | 2019-03-11 | 2021-11-18 | 얀센 바이오테크 인코포레이티드 | 항-Vβ17/항-CD123 이중특이성 항체 |
| CN113840837A (zh) | 2019-03-14 | 2021-12-24 | 詹森生物科技公司 | 用于产生抗tnf抗体组合物的方法 |
| MA55283A (fr) | 2019-03-14 | 2022-01-19 | Janssen Biotech Inc | Procédés de production de compositions d'anticorps anti-tnf |
| CN113840838A (zh) | 2019-03-14 | 2021-12-24 | 詹森生物科技公司 | 用于产生抗tnf抗体组合物的制造方法 |
| JP7660067B2 (ja) | 2019-03-14 | 2025-04-10 | ヤンセン バイオテツク,インコーポレーテツド | 抗il12/il23抗体組成物を生成するための製造方法 |
| EP3948281A1 (en) | 2019-03-29 | 2022-02-09 | F. Hoffmann-La Roche AG | Spr-based binding assay for the functional analysis of multivalent molecules |
| EP3947440A1 (en) | 2019-03-29 | 2022-02-09 | F. Hoffmann-La Roche AG | Method for generating avid-binding multispecific antibodies |
| MA55717A (fr) | 2019-04-19 | 2022-02-23 | Janssen Biotech Inc | Méthodes de traitement du cancer de la prostate avec un anticorps anti-psma/cd3 |
| AU2020263910A1 (en) | 2019-04-25 | 2021-10-21 | F. Hoffmann-La Roche Ag | Activatable therapeutic multispecific polypeptides with extended half-life |
| TW202106714A (zh) | 2019-04-25 | 2021-02-16 | 瑞士商赫孚孟拉羅股份公司 | 藉由多肽鏈交換製造抗體衍生之多肽 |
| CN113924314B (zh) | 2019-04-25 | 2024-10-18 | 豪夫迈·罗氏有限公司 | 通过多肽链交换活化的治疗性多特异性多肽 |
| US11667712B2 (en) | 2019-05-08 | 2023-06-06 | Janssen Biotech, Inc. | Materials and methods for modulating t cell mediated immunity |
| JP2022531894A (ja) | 2019-05-09 | 2022-07-12 | ゲンマブ ビー.ブイ. | がんの処置において使用するための抗dr5抗体の組み合わせの投与レジメン |
| CN113811770B (zh) | 2019-05-13 | 2024-06-28 | 豪夫迈·罗氏有限公司 | 抑制干扰的药代动力学免疫测定 |
| US11879013B2 (en) | 2019-05-14 | 2024-01-23 | Janssen Biotech, Inc. | Combination therapies with bispecific anti-EGFR/c-Met antibodies and third generation EGFR tyrosine kinase inhibitors |
| US20220323580A1 (en) | 2019-06-03 | 2022-10-13 | Janssen Biotech, Inc. | Anti-tnf antibody compositions, and methods for the treatment of psoriatic arthritis |
| KR20220020879A (ko) | 2019-06-12 | 2022-02-21 | 에스크진 파마, 아이엔씨. | 새로운 il-15 프로드럭 및 이를 사용하는 방법 |
| KR20220010024A (ko) | 2019-06-19 | 2022-01-25 | 에프. 호프만-라 로슈 아게 | Cre mrna를 이용한 표적화된 통합에 의한 단백질 발현 세포의 산출을 위한 방법 |
| WO2020260327A1 (en) | 2019-06-26 | 2020-12-30 | F. Hoffmann-La Roche Ag | Mammalian cell lines with sirt-1 gene knockout |
| EP3994169A1 (en) | 2019-07-02 | 2022-05-11 | F. Hoffmann-La Roche AG | Immunoconjugates comprising a mutant interleukin-2 and an anti-cd8 antibody |
| JP7597784B2 (ja) | 2019-07-11 | 2024-12-10 | タヴォテック バイオセラピューティクス (ホン コン) リミテッド | 胸腺間質性リンパ球新生因子(tslp)受容体シグナル伝達に干渉する薬剤 |
| US20220275069A1 (en) | 2019-07-12 | 2022-09-01 | Janssen Pharmaceutica Nv | Binding agents and uses thereof |
| AR119393A1 (es) | 2019-07-15 | 2021-12-15 | Hoffmann La Roche | Anticuerpos que se unen a nkg2d |
| CA3147239A1 (en) | 2019-07-16 | 2021-01-21 | Sanofi | Neutralizing anti-amyloid beta antibodies for the treatment of alzheimer's disease |
| BR112022001368A2 (pt) | 2019-07-26 | 2022-05-24 | Janssen Biotech Inc | Proteínas que compreendem domínios de ligação ao antígeno de peptidase 2 relacionada à calicreína e seus usos |
| KR20220028035A (ko) | 2019-07-31 | 2022-03-08 | 에프. 호프만-라 로슈 아게 | Gprc5d에 결합하는 항체 |
| GB201910900D0 (en) | 2019-07-31 | 2019-09-11 | Scancell Ltd | Modified fc-regions to enhance functional affinity of antibodies and antigen binding fragments thereof |
| WO2021018925A1 (en) | 2019-07-31 | 2021-02-04 | F. Hoffmann-La Roche Ag | Antibodies binding to gprc5d |
| CN120842426A (zh) | 2019-08-08 | 2025-10-28 | 再生元制药公司 | 新型抗原结合分子形式 |
| CN114222764B (zh) | 2019-08-12 | 2025-03-11 | 奥美药业有限公司 | 可优先结合IL-2Rα的IL-2融合蛋白 |
| TW202120537A (zh) | 2019-08-15 | 2021-06-01 | 美商健生生物科技公司 | 用於經改善的單鏈可變片段之材料及方法 |
| CN115605504A (zh) | 2019-08-21 | 2023-01-13 | 奥美药业有限公司(Us) | 新型il-21前药及其使用方法 |
| CN114401997B (zh) | 2019-09-28 | 2025-05-16 | 奥美药业有限公司 | 细胞因子前药和双前药 |
| TW202128757A (zh) | 2019-10-11 | 2021-08-01 | 美商建南德克公司 | 具有改善之特性的 PD-1 標靶 IL-15/IL-15Rα FC 融合蛋白 |
| TW202134277A (zh) | 2019-11-05 | 2021-09-16 | 美商再生元醫藥公司 | N—端scFv多特異性結合分子 |
| US20220411529A1 (en) | 2019-11-06 | 2022-12-29 | Genmab B.V. | Antibody variant combinations and uses thereof |
| MX2022005983A (es) | 2019-11-18 | 2022-09-07 | Janssen Biotech Inc | Receptores del antígeno quimérico anti-cd79, células car-t, y usos de estos. |
| EP4073111A1 (en) | 2019-12-11 | 2022-10-19 | Cilag GmbH International | Multispecific binding molecules comprising ltbr and edb binding domains and uses thereof |
| CN114828965B (zh) | 2019-12-18 | 2025-09-05 | 豪夫迈·罗氏有限公司 | 与hla-a2/mage-a4结合的抗体 |
| AU2020403913B2 (en) | 2019-12-18 | 2024-10-10 | F. Hoffmann-La Roche Ag | Bispecific anti-CCL2 antibodies |
| TWI890718B (zh) | 2019-12-20 | 2025-07-21 | 美商再生元醫藥公司 | 新穎之il2促效劑及其使用方法(一) |
| CN114930170A (zh) | 2020-01-02 | 2022-08-19 | 豪夫迈·罗氏有限公司 | 用于测定脑中的治疗性抗体量的方法 |
| WO2021138407A2 (en) | 2020-01-03 | 2021-07-08 | Marengo Therapeutics, Inc. | Multifunctional molecules that bind to cd33 and uses thereof |
| US20230108562A1 (en) | 2020-01-11 | 2023-04-06 | AskGene Pharma, Inc. | Novel masked cytokines and methods of use thereof |
| US20230272105A1 (en) | 2020-01-16 | 2023-08-31 | Genmab A/S | Formulations of cd38 antibodies and uses thereof |
| IL272194A (en) | 2020-01-22 | 2021-07-29 | Yeda Res & Dev | Multi-target antibodies for use in the treatment of diseases |
| KR20220144377A (ko) | 2020-01-30 | 2022-10-26 | 우모자 바이오파마 인코포레이티드 | 이중특이적 형질도입 촉진제 |
| IL272389A (en) | 2020-01-30 | 2021-08-31 | Yeda Res & Dev | Kits containing antibodies to PD-L1 and their uses in therapy |
| WO2021155916A1 (en) | 2020-02-04 | 2021-08-12 | BioNTech SE | Treatment involving antigen vaccination and binding agents binding to pd-l1 and cd137 |
| JOP20220184A1 (ar) | 2020-02-12 | 2023-01-30 | Janssen Biotech Inc | علاج مصابي السرطان ممن لديهم طفرات تخطي c-Met إكسون14 |
| TW202144388A (zh) | 2020-02-14 | 2021-12-01 | 美商健生生物科技公司 | 在卵巢癌中表現之新抗原及其用途 |
| TW202144389A (zh) | 2020-02-14 | 2021-12-01 | 美商健生生物科技公司 | 在多發性骨髓瘤中表現之新抗原及其用途 |
| CN115768482A (zh) | 2020-03-13 | 2023-03-07 | 詹森生物科技公司 | 结合siglec-3/cd33的材料和方法 |
| IL296362A (en) | 2020-03-18 | 2022-11-01 | Genmab As | Antibodies that bind to b7h4 |
| CA3168460A1 (en) | 2020-04-15 | 2021-10-21 | F. Hoffmann-La Roche Ag | Immunoconjugates |
| WO2021209953A1 (en) | 2020-04-16 | 2021-10-21 | Janssen Biotech, Inc. | Systems, materials, and methods for reversed-phase high performance liquid chromatography (rp-hplc) for monitoring formation of multi-specific molecules |
| GB2612450A (en) | 2020-04-24 | 2023-05-03 | Marengo Therapeutics Inc | Multifunctional molecules that bind to T cell related cancer cells and uses thereof |
| CN113563473A (zh) | 2020-04-29 | 2021-10-29 | 三生国健药业(上海)股份有限公司 | 四价双特异性抗体、其制备方法和用途 |
| AU2021263408A1 (en) | 2020-04-30 | 2022-10-27 | Bristol-Myers Squibb Company | Methods of treating cytokine-related adverse events |
| IL297986A (en) | 2020-05-08 | 2023-01-01 | Genmab As | Bispecific antibodies against cd3 and cd20 |
| WO2021226551A1 (en) | 2020-05-08 | 2021-11-11 | Alpine Immune Sciences, Inc. | April and baff inhibitory immunomodulatory proteins and methods of use thereof |
| BR112022022800A2 (pt) | 2020-05-11 | 2022-12-13 | Janssen Biotech Inc | Métodos para tratamento de mieloma múltiplo |
| CR20220576A (es) | 2020-05-11 | 2022-12-07 | Hoffmann La Roche | Tratamiento conjunto con pbmc modificadas y un inmunoconjugado |
| US11673930B2 (en) | 2020-05-12 | 2023-06-13 | Regeneran Pharmaceuticals, Inc. | IL10 agonists and methods of use thereof |
| PE20230389A1 (es) | 2020-05-27 | 2023-03-06 | Janssen Biotech Inc | Proteinas que comprenden dominios de union al antigeno de cd3 y usos de estas |
| GB202008860D0 (en) | 2020-06-11 | 2020-07-29 | Univ Oxford Innovation Ltd | BTLA antibodies |
| AR122656A1 (es) | 2020-06-19 | 2022-09-28 | Hoffmann La Roche | Anticuerpos que se unen a cd3 / folr1 |
| KR20230025665A (ko) | 2020-06-19 | 2023-02-22 | 에프. 호프만-라 로슈 아게 | Cd3에 결합하는 항체 |
| CA3153085A1 (en) | 2020-06-19 | 2021-12-23 | F. Hoffmann-La Roche Ag | Antibodies binding to cd3 and cd19 |
| CN115916827A (zh) | 2020-06-19 | 2023-04-04 | 豪夫迈·罗氏有限公司 | 免疫活化Fc结构域结合分子 |
| WO2021255146A1 (en) | 2020-06-19 | 2021-12-23 | F. Hoffmann-La Roche Ag | Antibodies binding to cd3 and cea |
| WO2022009052A2 (en) | 2020-07-06 | 2022-01-13 | Janssen Biotech, Inc. | Prostate neoantigens and their uses |
| WO2022018294A1 (en) | 2020-07-23 | 2022-01-27 | Genmab B.V. | A combination of anti-dr5 antibodies and an immunomodulatory imide drug for use in treating multiple myeloma |
| AU2021317111A1 (en) | 2020-07-29 | 2023-03-30 | Janssen Biotech, Inc. | Proteins comprising HLA-G antigen binding domains and their uses |
| CN116322776A (zh) | 2020-08-03 | 2023-06-23 | 詹森生物科技公司 | 用于病毒治疗剂中的多向生物转运的材料和方法 |
| KR20230065256A (ko) | 2020-08-06 | 2023-05-11 | 비온테크 에스이 | 코로나바이러스 s 단백질용 결합제 |
| EP4192481A4 (en) | 2020-08-10 | 2024-09-11 | Janssen Biotech, Inc. | MATERIALS AND METHODS FOR THE PRODUCTION OF VIRUS-SPECIFIC BIOMODIFIED LYMPHOCYTES |
| CN116761818A (zh) | 2020-08-26 | 2023-09-15 | 马伦戈治疗公司 | 检测trbc1或trbc2的方法 |
| JP2023542080A (ja) | 2020-08-26 | 2023-10-05 | マレンゴ・セラピューティクス,インコーポレーテッド | カルレティキュリンに結合する多機能性分子およびその使用 |
| JP2023539645A (ja) | 2020-08-26 | 2023-09-15 | マレンゴ・セラピューティクス,インコーポレーテッド | Nkp30に結合する抗体分子およびその使用 |
| EP4208200A2 (en) | 2020-09-02 | 2023-07-12 | Genmab A/S | Antibody therapy |
| AU2021341509A1 (en) | 2020-09-10 | 2023-04-13 | Genmab A/S | Bispecific antibody against CD3 and CD20 in combination therapy for treating follicular lymphoma |
| JP2023542092A (ja) | 2020-09-10 | 2023-10-05 | ジェンマブ エー/エス | びまん性大細胞型b細胞リンパ腫を治療するための併用療法におけるcd3及びcd20に対する二重特異性抗体 |
| WO2022053655A1 (en) | 2020-09-10 | 2022-03-17 | Genmab A/S | Bispecific antibody against cd3 and cd20 in combination therapy for treating follicular lymphoma |
| MX2023002545A (es) | 2020-09-10 | 2023-03-14 | Genmab As | Anticuerpo biespecifico contra cumulo de diferenciacion 3 (cd3) y cumulo de diferenciacion 20 (cd20) en terapia de combinacion para el tratamiento de linfoma difuso de celulas b grandes. |
| IL301102A (en) | 2020-09-10 | 2023-05-01 | Genmab As | Bispecific antibody against cd3 and cd20 in combination therapy for treating diffuse large b-cell lymphoma |
| MX2023002546A (es) | 2020-09-10 | 2023-03-14 | Genmab As | Anticuerpos biespecificos contra cumulo de diferenciacion 3 (cd3) y contra cumulo de diferenciacion 20 (cd20) para tratar leucemia linfocitica cronica. |
| US12448449B2 (en) | 2020-09-11 | 2025-10-21 | Janssen Biotech, Inc. | Immune targeting molecules and uses thereof |
| CA3194968A1 (en) | 2020-09-11 | 2022-03-17 | Janssen Biotech, Inc. | Methods and compositions for modulating beta chain mediated immunity |
| KR20230069187A (ko) | 2020-09-14 | 2023-05-18 | 서트로 바이오파마, 인크. | 무세포 단백질 합성 시스템을 이용한 항체의 대량 생산 방법 |
| TW202223092A (zh) | 2020-09-24 | 2022-06-16 | 瑞士商赫孚孟拉羅股份公司 | 具有基因剔除的哺乳動物細胞株 |
| KR20230080437A (ko) | 2020-10-02 | 2023-06-07 | 젠맵 에이/에스 | Ror2에 결합할 수 있는 항체 및 ror2 및 cd3에 결합하는 이중특이적 항체 |
| TW202231292A (zh) | 2020-10-13 | 2022-08-16 | 美商健生生物科技公司 | 用於調節分化簇iv及/或viii的經生物工程改造之t細胞介導之免疫力、材料、及其他方法 |
| US20240025992A1 (en) | 2020-10-22 | 2024-01-25 | Janssen Biotech, Inc. | Proteins comprising delta-like ligand 3 (dll3) antigen binding domains and their uses |
| EP4237003A4 (en) | 2020-10-28 | 2025-07-09 | Janssen Biotech Inc | COMPOSITIONS AND METHODS FOR MODULATING GAMMA DELTA CHAIN-MEDIATED IMMUNITY |
| US12161692B2 (en) | 2020-11-02 | 2024-12-10 | Attralus, Inc. | SAP FC fusion proteins and methods of use |
| TWI838660B (zh) | 2020-11-04 | 2024-04-11 | 美商建南德克公司 | 以抗cd20/抗cd3雙特異性抗體和抗cd79b抗體藥物結合物治療的給藥方法 |
| IL302396A (en) | 2020-11-04 | 2023-06-01 | Genentech Inc | Dosage for treatment with bispecific anti-CD20/anti-CD3 antibodies |
| TWI888665B (zh) | 2020-11-04 | 2025-07-01 | 美商建南德克公司 | 抗cd20/抗cd3雙特異性抗體之皮下給藥 |
| WO2022100613A1 (zh) | 2020-11-10 | 2022-05-19 | 上海齐鲁制药研究中心有限公司 | 针对密蛋白18a2和cd3的双特异性抗体及其应用 |
| IL303656A (en) | 2020-12-17 | 2023-08-01 | Hoffmann La Roche | ANTI-HLA-G antibodies and their use |
| WO2022129313A1 (en) | 2020-12-18 | 2022-06-23 | F. Hoffmann-La Roche Ag | Precursor proteins and kit for targeted therapy |
| WO2022136140A1 (en) | 2020-12-22 | 2022-06-30 | F. Hoffmann-La Roche Ag | Oligonucleotides targeting xbp1 |
| CA3207090A1 (en) | 2021-01-06 | 2022-07-14 | F. Hoffmann-La Roche Ag | Combination therapy employing a pd1-lag3 bispecific antibody and a cd20 t cell bispecific antibody |
| WO2022148853A1 (en) | 2021-01-11 | 2022-07-14 | F. Hoffmann-La Roche Ag | Immunoconjugates |
| WO2022155541A1 (en) | 2021-01-14 | 2022-07-21 | AskGene Pharma, Inc. | Interferon prodrugs and methods of making and using the same |
| CA3210246A1 (en) | 2021-01-28 | 2022-08-04 | Janssen Biotech, Inc. | Psma binding proteins and uses thereof |
| CN117500824A (zh) | 2021-02-01 | 2024-02-02 | 奥美药业有限公司 | 包含IL-10或TGF-β激动剂多肽的嵌合分子 |
| WO2022177902A1 (en) | 2021-02-16 | 2022-08-25 | Janssen Biotech, Inc. | Materials and methods for enhanced linker targeting |
| IL305144A (en) | 2021-02-16 | 2023-10-01 | Janssen Pharmaceutica Nv | Trispecific antibodies targeting BCMA, GPRC5D and CD3 |
| WO2022178103A1 (en) | 2021-02-17 | 2022-08-25 | AskGene Pharma, Inc. | Il-2 receptor beta subunit mutants |
| JP2024512240A (ja) | 2021-02-18 | 2024-03-19 | エフ. ホフマン-ラ ロシュ アーゲー | 複雑な多段階の抗体相互作用を解明するための方法 |
| JP2024509920A (ja) | 2021-03-09 | 2024-03-05 | ヤンセン バイオテツク,インコーポレーテツド | Egfr活性化変異を欠くがんの治療 |
| AU2022231895A1 (en) | 2021-03-12 | 2023-09-21 | Genmab A/S | Non-activating antibody variants |
| AU2022244453A1 (en) | 2021-03-24 | 2023-11-09 | Janssen Biotech, Inc. | Antibody targeting cd22 and cd79b |
| BR112023019458A2 (pt) | 2021-03-24 | 2023-12-05 | Janssen Biotech Inc | Proteínas que compreendem domínios de ligação ao antígeno de cd3 e usos dos mesmos |
| EP4314070A1 (en) | 2021-03-24 | 2024-02-07 | Janssen Biotech, Inc. | Trispecific antibody targeting cd79b, cd20, and cd3 |
| CA3237992A1 (en) | 2021-03-31 | 2022-10-06 | Jiangsu Hengrui Pharmaceuticals Co., Ltd. | Truncated taci polypeptide and fusion protein and use thereof |
| AU2022255506A1 (en) | 2021-04-08 | 2023-11-09 | Marengo Therapeutics, Inc. | Multifunctional molecules binding to tcr and uses thereof |
| WO2022228705A1 (en) | 2021-04-30 | 2022-11-03 | F. Hoffmann-La Roche Ag | Dosing for combination treatment with anti-cd20/anti-cd3 bispecific antibody and anti-cd79b antibody drug conjugate |
| EP4329800A1 (en) | 2021-04-30 | 2024-03-06 | F. Hoffmann-La Roche AG | Dosing for treatment with anti-cd20/anti-cd3 bispecific antibody |
| WO2022235628A1 (en) | 2021-05-04 | 2022-11-10 | Regeneron Pharmaceuticals, Inc. | Multispecific fgf21 receptor agonists and their uses |
| CN117597365A (zh) | 2021-05-04 | 2024-02-23 | 再生元制药公司 | 多特异性fgf21受体激动剂及其应用 |
| WO2022234146A1 (en) | 2021-05-07 | 2022-11-10 | Genmab A/S | PHARMACEUTICAL COMPOSITIONS COMPRISING BISPECIFIC ANTIBODIES BINDING TO B7H4 and CD3 |
| US20240279310A1 (en) | 2021-05-07 | 2024-08-22 | Alpine Immune Sciences, Inc. | Methods of dosing and treatment with a taci-fc fusion immunomodulatory protein |
| CA3218542A1 (en) | 2021-05-12 | 2022-11-17 | Hua Ying | Antigen binding molecule specifically binding to rankl and ngf, and medical use thereof |
| KR20240007196A (ko) | 2021-05-14 | 2024-01-16 | 지앙수 헨그루이 파마슈티컬스 컴퍼니 리미티드 | 항원-결합 분자 |
| MX2023013363A (es) | 2021-05-14 | 2023-11-27 | Genentech Inc | Metodos para el tratamiento de un trastorno proliferativo cd20 positivo con mosunetuzumab y polatuzumab vedotina. |
| TW202309094A (zh) | 2021-05-18 | 2023-03-01 | 美商健生生物科技公司 | 用於識別癌症患者以進行組合治療之方法 |
| AU2022295067A1 (en) | 2021-06-18 | 2023-12-21 | F. Hoffmann-La Roche Ag | Bispecific anti-ccl2 antibodies |
| IL309319A (en) | 2021-06-21 | 2024-02-01 | Genmab As | Combined dosage regimen CD137 and PD-L1 binding agents |
| WO2022269451A1 (en) | 2021-06-22 | 2022-12-29 | Novartis Ag | Bispecific antibodies for use in treatment of hidradenitis suppurativa |
| MX2023015416A (es) | 2021-07-02 | 2024-04-30 | Genentech Inc | Procedimientos y composiciones para tratar el cancer. |
| US20230040065A1 (en) | 2021-07-09 | 2023-02-09 | Janssen Biotech, Inc. | Manufacturing Methods for Producing Anti-TNF Antibody Compositions |
| JP2024527581A (ja) | 2021-07-09 | 2024-07-25 | ヤンセン バイオテツク,インコーポレーテツド | 抗il12/il23抗体組成物を生産するための製造方法 |
| EP4367137A1 (en) | 2021-07-09 | 2024-05-15 | Janssen Biotech, Inc. | Manufacturing methods for producing anti-tnf antibody compositions |
| MX2024000501A (es) | 2021-07-14 | 2024-01-31 | Jiangsu Hengrui Pharmaceuticals Co Ltd | Molecula de union a antigeno que se une especificamente a hgfr y egfr, y su uso farmaceutico. |
| WO2023002952A1 (en) * | 2021-07-19 | 2023-01-26 | Chugai Seiyaku Kabushiki Kaisha | Protease-mediated target specific cytokine delivery using fusion polypeptide |
| US12522638B2 (en) | 2021-07-19 | 2026-01-13 | Regeneron Pharmaceuticals, Inc. | IL12 receptor agonists and methods of use thereof |
| CA3219606A1 (en) | 2021-07-22 | 2023-01-26 | F. Hoffmann-La Roche Ag | Heterodimeric fc domain antibodies |
| US20250101103A1 (en) | 2021-07-27 | 2025-03-27 | Morphosys Ag | Combinations of antigen binding molecules |
| AU2022317820A1 (en) | 2021-07-28 | 2023-12-14 | F. Hoffmann-La Roche Ag | Methods and compositions for treating cancer |
| US20250277051A1 (en) | 2021-08-02 | 2025-09-04 | Hangzhou Unogen Biotech, Ltd | Anti-cd38 antibodies, anti-cd3 antibodies, and bispecific antibodies, and uses thereof |
| US20250270314A1 (en) | 2021-08-02 | 2025-08-28 | Tavotek Biotech (Suzhou) Ltd | Anti-cdh17 monoclonal and bispecific antibodies and uses thereof |
| JP2024534787A (ja) | 2021-08-16 | 2024-09-26 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | 新規なil27受容体アゴニスト及びその使用方法 |
| EP4399227A1 (en) | 2021-09-06 | 2024-07-17 | Genmab A/S | Antibodies capable of binding to cd27, variants thereof and uses thereof |
| WO2023037333A1 (en) | 2021-09-13 | 2023-03-16 | Janssen Biotech, Inc | CD33 X Vδ2 MULTISPECIFIC ANTIBODIES FOR THE TREATMENT OF CANCER |
| IL286430A (en) | 2021-09-14 | 2023-04-01 | Yeda Res & Dev | Multispecific antibodies for use in the treatment of diseases |
| JP2024534531A (ja) | 2021-09-23 | 2024-09-20 | 江▲蘇▼恒瑞医▲薬▼股▲フン▼有限公司 | 抗klb抗体及び使用 |
| EP4405392A1 (en) | 2021-09-24 | 2024-07-31 | Janssen Biotech, Inc. | Proteins comprising cd20 binding domains, and uses thereof |
| AU2022354068A1 (en) * | 2021-09-29 | 2024-04-18 | Modex Therapeutics, Inc. | Antigen binding polypeptides, antigen binding polypeptide complexes and methods of use thereof |
| TW202323304A (zh) | 2021-09-30 | 2023-06-16 | 大陸商江蘇恆瑞醫藥股份有限公司 | 抗il23抗體融合蛋白及用途 |
| CA3234153A1 (en) | 2021-10-08 | 2023-04-13 | David Satijn | Antibodies binding to cd30 and cd3 |
| JP2024537096A (ja) | 2021-10-14 | 2024-10-10 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | がんの治療のための代替的なPD1-IL7vイムノコンジュゲート |
| PE20241627A1 (es) | 2021-10-14 | 2024-08-07 | Hoffmann La Roche | Nuevos inmunoconjugados de interleucina-7 |
| US20250230248A1 (en) | 2021-10-18 | 2025-07-17 | Tavotek Biotherapeutics (Hong Kong) Limited | Anti-egfr antibodies, anti-cmet antibodies, anti-vegf antibodies, multispecific antibodies, and uses thereof |
| US20250011428A1 (en) | 2021-10-28 | 2025-01-09 | Novartis Ag | Engineered fc variants |
| MX2024005336A (es) | 2021-11-01 | 2024-07-22 | Janssen Biotech Inc | Composiciones y metodos para la modulacion de inmunidad mediada por cadena beta. |
| AU2022380722A1 (en) | 2021-11-03 | 2024-06-20 | Janssen Biotech, Inc. | Methods of treating cancers and enhancing efficacy of bcmaxcd3 bispecific antibodies |
| JP2024544534A (ja) | 2021-11-11 | 2024-12-03 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | Cd20-pd1結合分子及びその使用方法 |
| JP2024542235A (ja) | 2021-11-22 | 2024-11-13 | ヤンセン バイオテツク,インコーポレーテツド | 免疫応答のための増強された多重特異性結合剤を含む組成物 |
| EP4437344A1 (en) | 2021-11-25 | 2024-10-02 | F. Hoffmann-La Roche AG | Quantification of low amounts of antibody sideproducts |
| CN116829179A (zh) | 2021-12-06 | 2023-09-29 | 北京三诺佳邑生物技术有限责任公司 | 特异性结合肺炎克雷伯菌o2抗原和o1抗原的双特异性抗体以及组合物 |
| US20230183360A1 (en) | 2021-12-09 | 2023-06-15 | Janssen Biotech, Inc. | Use of Amivantamab to Treat Colorectal Cancer |
| AR127887A1 (es) | 2021-12-10 | 2024-03-06 | Hoffmann La Roche | Anticuerpos que se unen a cd3 y plap |
| CA3241882A1 (en) | 2021-12-29 | 2023-07-06 | Bristol-Myers Squibb Company | Generation of landing pad cell lines |
| IL314068A (en) | 2022-01-24 | 2024-09-01 | Novimmune Sa | Preparations and methods for selective activation of cytokine signaling pathways |
| JP2025503176A (ja) | 2022-01-28 | 2025-01-30 | ジェンマブ エー/エス | びまん性大細胞型b細胞リンパ腫を治療するための併用療法におけるcd3及びcd20に対する二重特異性抗体 |
| CA3243347A1 (en) | 2022-01-28 | 2023-08-03 | Genmab A/S | Bispecific anti-CD3 and anti-CD20 antibodies in polytherapy for the treatment of diffuse large B-cell lymphoma |
| JP2025505611A (ja) | 2022-02-07 | 2025-02-28 | 江蘇恒瑞医薬股▲ふん▼有限公司 | Psmaとcd3に特異的に結合する抗原結合分子及びその医薬的使用 |
| TW202342057A (zh) | 2022-02-07 | 2023-11-01 | 美商健生生物科技公司 | 用於減少用egfr/met雙特異性抗體治療之患者的輸注相關反應之方法 |
| CA3243623A1 (en) | 2022-02-11 | 2025-01-20 | Jiangsu Hengrui Pharmaceuticals Co., Ltd. | Immunoconjugated and its use |
| WO2023170474A1 (en) | 2022-03-07 | 2023-09-14 | Novimmune Sa | Cd28 bispecific antibodies for targeted t cell activation |
| IL315065A (en) | 2022-03-14 | 2024-10-01 | LamKap Bio gamma AG | GPC3XCD28 and GPC3XCD3 bispecific antibodies and their combination for targeted killing of GPC3-positive malignant cells |
| JP2025508160A (ja) | 2022-03-14 | 2025-03-21 | 江▲蘇▼恒瑞医▲薬▼股▲フン▼有限公司 | Gprc5dとcd3に特異的に結合する抗原結合分子及びその医薬的使用 |
| WO2023174521A1 (en) | 2022-03-15 | 2023-09-21 | Genmab A/S | Binding agents binding to epcam and cd137 |
| EP4496631A1 (en) | 2022-03-23 | 2025-01-29 | F. Hoffmann-La Roche AG | Combination treatment of an anti-cd20/anti-cd3 bispecific antibody and chemotherapy |
| TW202346337A (zh) | 2022-03-29 | 2023-12-01 | 美商恩格姆生物製藥公司 | Ilt3及cd3結合劑以及其使用方法 |
| US20250304689A1 (en) | 2022-04-13 | 2025-10-02 | Genmab A/S | Bispecific antibodies against cd3 and cd20 |
| AU2023251832A1 (en) | 2022-04-13 | 2024-10-17 | F. Hoffmann-La Roche Ag | Pharmaceutical compositions of anti-cd20/anti-cd3 bispecific antibodies and methods of use |
| WO2023202967A1 (en) | 2022-04-19 | 2023-10-26 | F. Hoffmann-La Roche Ag | Improved production cells |
| AU2023269792A1 (en) | 2022-05-11 | 2024-11-28 | Regeneron Pharmaceuticals, Inc. | Multispecific binding molecule proproteins and uses thereof |
| IL316632A (en) | 2022-05-12 | 2024-12-01 | Genmab As | Binding agents capable of binding to CD27 in combination therapy |
| TW202413412A (zh) | 2022-05-12 | 2024-04-01 | 丹麥商珍美寶股份有限公司 | 在組合療法中能夠結合到cd27之結合劑 |
| WO2023230594A1 (en) | 2022-05-27 | 2023-11-30 | Regeneron Pharmaceuticals, Inc. | Interleukin-2 proproteins and uses thereof |
| JP2025517572A (ja) | 2022-06-03 | 2025-06-05 | エフ. ホフマン-ラ ロシュ アーゲー | 改良された産生細胞 |
| EP4536690A1 (en) | 2022-06-04 | 2025-04-16 | Regeneron Pharmaceuticals, Inc. | Interleukin-2 proproteins and uses thereof |
| CA3259762A1 (en) | 2022-06-23 | 2025-04-07 | Jiangsu Hengrui Pharmaceuticals Co., Ltd. | Antigen-binding molecule specifically binding to DLL3 and CD3, and its pharmaceutical use |
| CN119790073A (zh) | 2022-06-30 | 2025-04-08 | 詹森生物科技公司 | 使用抗EGFR/抗Met抗体治疗胃癌或食道癌 |
| TW202413437A (zh) | 2022-08-05 | 2024-04-01 | 大陸商江蘇恆瑞醫藥股份有限公司 | 特異性結合gucy2c和cd3的抗原結合分子及其醫藥用途 |
| US20240067691A1 (en) | 2022-08-18 | 2024-02-29 | Regeneron Pharmaceuticals, Inc. | Interferon receptor agonists and uses thereof |
| JP2025529805A (ja) | 2022-08-18 | 2025-09-09 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | インターフェロンプロタンパク質及びその使用 |
| KR20250099778A (ko) | 2022-10-04 | 2025-07-02 | 알파인 이뮨 사이언시즈, 인코포레이티드 | 자가항체-매개 질환의 치료에 사용하기 위한 돌연변이된 taci-fc 융합 단백질 |
| TW202430211A (zh) | 2022-10-10 | 2024-08-01 | 瑞士商赫孚孟拉羅股份公司 | Gprc5d tcb及imid之組合療法 |
| TW202423970A (zh) | 2022-10-10 | 2024-06-16 | 瑞士商赫孚孟拉羅股份公司 | Gprc5d tcb及cd38抗體之組合療法 |
| TW202423969A (zh) | 2022-10-10 | 2024-06-16 | 瑞士商赫孚孟拉羅股份公司 | Gprc5d tcb及蛋白酶體抑制劑之組合療法 |
| EP4602371A1 (en) | 2022-10-12 | 2025-08-20 | F. Hoffmann-La Roche AG | Method for classifying cells |
| EP4606886A1 (en) | 2022-10-20 | 2025-08-27 | Beijing SoloBio Genetechnology Company Ltd. | Antibody combination specifically binding to trail or fasl, and bispecific antibody |
| CN120476144A (zh) | 2022-10-21 | 2025-08-12 | 诺夫免疫股份有限公司 | 用于免疫检查点依赖性T细胞活化的PD-L1xCD28双特异性抗体 |
| WO2024089551A1 (en) | 2022-10-25 | 2024-05-02 | Janssen Biotech, Inc. | Msln and cd3 binding agents and methods of use thereof |
| EP4612177A1 (en) | 2022-10-31 | 2025-09-10 | Genmab A/S | Cd38 antibodies and uses thereof |
| CN120051491A (zh) | 2022-11-01 | 2025-05-27 | 上海齐鲁制药研究中心有限公司 | 一种针对磷脂酰肌醇蛋白聚糖3的双特异性抗体及其应用 |
| JP2025537692A (ja) | 2022-11-02 | 2025-11-20 | ヤンセン バイオテツク,インコーポレーテツド | 癌を治療する方法 |
| JP2025537529A (ja) | 2022-11-02 | 2025-11-18 | ジェンマブ エー/エス | リヒター症候群を治療するためのcd3およびcd20に対する二重特異性抗体 |
| WO2024100170A1 (en) | 2022-11-11 | 2024-05-16 | F. Hoffmann-La Roche Ag | Antibodies binding to hla-a*02/foxp3 |
| CN120187749A (zh) | 2022-11-15 | 2025-06-20 | 豪夫迈·罗氏有限公司 | 具有可活化效应结构域的重组结合蛋白 |
| EP4619428A1 (en) | 2022-11-15 | 2025-09-24 | F. Hoffmann-La Roche AG | Antigen binding molecules |
| TW202421667A (zh) | 2022-11-29 | 2024-06-01 | 大陸商江蘇恆瑞醫藥股份有限公司 | Cldn18.2/4-1bb結合蛋白及其醫藥用途 |
| WO2024119193A2 (en) | 2022-12-02 | 2024-06-06 | AskGene Pharma, Inc. | Mutant il-2 polypeptides and il-2 prodrugs |
| EP4634220A2 (en) | 2022-12-16 | 2025-10-22 | Regeneron Pharmaceuticals, Inc. | Antigen-binding molecules that bind to aav particles and uses |
| EP4638729A1 (en) | 2022-12-23 | 2025-10-29 | Regeneron Pharmaceuticals, Inc. | Ace2 fusion proteins and uses thereof |
| US20240270836A1 (en) | 2023-01-13 | 2024-08-15 | Regeneron Pharmaceuticals, Inc. | Il12 receptor agonists and methods of use thereof |
| EP4649092A1 (en) | 2023-01-13 | 2025-11-19 | Regeneron Pharmaceuticals, Inc. | Fgfr3 binding molecules and methods of use thereof |
| WO2024153725A1 (en) | 2023-01-20 | 2024-07-25 | F. Hoffmann-La Roche Ag | Recombinant fc domain - il2 variant polypeptides and combination therapy with membrane-anchored antigen binding polypeptides |
| CN120569410A (zh) | 2023-01-25 | 2025-08-29 | 豪夫迈·罗氏有限公司 | 与csf1r和cd3结合的抗体 |
| WO2024163494A1 (en) | 2023-01-31 | 2024-08-08 | F. Hoffmann-La Roche Ag | Methods and compositions for treating non-small cell lung cancer and triple-negative breast cancer |
| WO2024163009A1 (en) | 2023-01-31 | 2024-08-08 | Genentech, Inc. | Methods and compositions for treating urothelial bladder cancer |
| WO2024166047A1 (en) | 2023-02-09 | 2024-08-15 | Janssen Biotech, Inc. | Anti-v beta 17/anti-cd123 bispecific antibodies |
| CN120603857A (zh) | 2023-02-21 | 2025-09-05 | 江苏恒瑞医药股份有限公司 | Il-36r结合蛋白及其医药用途 |
| WO2024182455A2 (en) | 2023-02-28 | 2024-09-06 | Regeneron Pharmaceuticals, Inc. | Multivalent anti-spike protein binding molecules and uses thereof |
| KR20250166361A (ko) | 2023-02-28 | 2025-11-27 | 리제너론 파아마슈티컬스, 인크. | Mhc 도메인 및 항원 펩티드를 포함하는 펩티드-mhc 착물 및 면역 세포 항원 표적화 모이어티를 포함하는 다중특이적 분자 |
| EP4676519A1 (en) | 2023-03-06 | 2026-01-14 | F. Hoffmann-La Roche AG | Combination therapy of an anti-egfrviii/anti-cd3 antibody and an tumor-targeted 4-1bb agonist |
| EP4680635A1 (en) | 2023-03-13 | 2026-01-21 | F. Hoffmann-La Roche AG | Combination therapy employing a pd1-lag3 bispecific antibody and an hla-g t cell bispecific antibody |
| AU2024236678A1 (en) | 2023-03-13 | 2025-10-30 | Janssen Biotech, Inc. | Combination therapies with bi-specific anti-egfr/c-met antibodies and anti-pd-1 antibodies |
| CN120882744A (zh) | 2023-04-03 | 2025-10-31 | 豪夫迈·罗氏有限公司 | 一体化激动性抗体 |
| CN120917044A (zh) | 2023-04-03 | 2025-11-07 | 豪夫迈·罗氏有限公司 | 激动性拆分型抗体 |
| WO2024208898A1 (en) | 2023-04-05 | 2024-10-10 | Genmab A/S | Pharmaceutical compositions comprising antibodies binding to cd30 and cd3 |
| CN121175072A (zh) | 2023-04-11 | 2025-12-19 | 浙江博锐生物制药有限公司 | 抗ror1抗体及其药物偶联物 |
| WO2024213754A1 (en) | 2023-04-13 | 2024-10-17 | Genmab A/S | Methods of treating lymphoma with bispecific antibodies against cd3 and cd20 |
| AR132623A1 (es) | 2023-05-08 | 2025-07-16 | Hoffmann La Roche | PROTEÍNAS DE FUSIÓN DE INTERFERÓN a DIRIGIDAS Y MÉTODOS DE USO |
| US20240400687A1 (en) | 2023-05-10 | 2024-12-05 | Regeneron Pharmaceuticals, Inc. | Cd20-pd1 binding molecules and methods of use thereof |
| US12410258B2 (en) | 2023-05-12 | 2025-09-09 | Ganmab A/S | Antibodies capable of binding to OX40, variants thereof and uses thereof |
| AU2024274130A1 (en) | 2023-05-12 | 2026-01-08 | Regeneron Pharmaceuticals, Inc. | Interferon receptor antagonists and uses thereof |
| CN121263435A (zh) | 2023-05-16 | 2026-01-02 | 豪夫迈·罗氏有限公司 | Pd-1调节的il-2免疫细胞因子及其用途 |
| CA3228195A1 (en) | 2023-05-23 | 2025-06-30 | Janssen Biotech, Inc. | Methods for treatment of non-small cell lung cancer (nsclc) |
| WO2024258785A1 (en) | 2023-06-11 | 2024-12-19 | Regeneron Pharmaceuticals, Inc. | Circularized antibody molecules |
| WO2024263195A1 (en) | 2023-06-23 | 2024-12-26 | Genentech, Inc. | Methods for treatment of liver cancer |
| WO2024263904A1 (en) | 2023-06-23 | 2024-12-26 | Genentech, Inc. | Methods for treatment of liver cancer |
| TW202509077A (zh) | 2023-06-30 | 2025-03-01 | 丹麥商珍美寶股份有限公司 | 與纖維母細胞活化蛋白α及死亡受體4結合之抗體 |
| US12319747B2 (en) | 2023-07-03 | 2025-06-03 | Medicovestor, Inc. | Methods of using anti-SP17 immunotherapeutics |
| WO2025021838A1 (en) | 2023-07-26 | 2025-01-30 | F. Hoffmann-La Roche Ag | Antibodies binding to cd3 |
| AR133412A1 (es) | 2023-07-30 | 2025-09-24 | Janssen Biotech Inc | Moléculas que se unen a la calreticulina mutante y usos de estas |
| WO2025032510A1 (en) | 2023-08-07 | 2025-02-13 | Janssen Biotech, Inc. | Stabilized cd3 antigen binding agents and methods of use thereof |
| US20250163182A1 (en) | 2023-08-07 | 2025-05-22 | Janssen Biotech, Inc. | Enpp3 and cd3 binding agents and methods of use thereof |
| WO2025034715A1 (en) | 2023-08-07 | 2025-02-13 | Janssen Biotech, Inc. | Gucy2c antibodies and uses thereof |
| WO2025032071A1 (en) | 2023-08-09 | 2025-02-13 | F. Hoffmann-La Roche Ag | Mono and multispecific anti-trem2 antibodies, methods and uses thereof |
| AU2024323186A1 (en) | 2023-08-09 | 2026-01-15 | F. Hoffmann-La Roche Ag | Mono and multispecific anti-trem2 antibodies, methods and uses thereof |
| WO2025036892A1 (en) | 2023-08-14 | 2025-02-20 | Morphosys Ag | Cycat halfbody molecules comprising sterically occluding moieties |
| EP4630457A1 (en) | 2023-08-18 | 2025-10-15 | Regeneron Pharmaceuticals, Inc. | Bispecific antigen-binding molecules and uses thereof |
| WO2025042742A1 (en) | 2023-08-18 | 2025-02-27 | Bristol-Myers Squibb Company | Compositions comprising antibodies that bind bcma and cd3 and methods of treatment |
| TW202525845A (zh) | 2023-08-23 | 2025-07-01 | 法商賽諾菲公司 | 基於ctla—4之溶體降解劑及其用途 |
| WO2025052273A1 (en) | 2023-09-05 | 2025-03-13 | Janssen Biotech, Inc. | Methods of treating non-small cell lung cancer |
| WO2025051895A1 (en) | 2023-09-06 | 2025-03-13 | Novimmune Sa | Combination therapy with a cea x cd28 bispecific antibody and blocking anti-pd-1 antibodies for enhanced in vivo anti-tumor activity |
| WO2025059162A1 (en) | 2023-09-11 | 2025-03-20 | Dana-Farber Cancer Institute, Inc. | Car-engager containing il-2 variants to enhance the functionality of car t cells |
| WO2025056180A1 (en) | 2023-09-15 | 2025-03-20 | BioNTech SE | Methods of treatment using agents binding to epcam and cd137 in combination with pd-1 axis binding antagonists |
| WO2025068957A1 (en) | 2023-09-29 | 2025-04-03 | Novartis Ag | Bispecific antibodies for use in lowering the risk of cardiovascular disease events in subjects known to be a carrier of clonal expansion of hematopoietic cell lines with somatic mutations |
| WO2025079020A1 (en) | 2023-10-12 | 2025-04-17 | Janssen Biotech, Inc. | First line treatment in egfr exon 20 insertion-mutated advanced non-small cell lung cancer |
| WO2025082777A1 (en) | 2023-10-17 | 2025-04-24 | Morphosys Ag | Dual-targeting of muc16 and mesothelin co-expressing tumor cells by functional complementation of cycat® halfbody molecules |
| WO2025085610A1 (en) | 2023-10-18 | 2025-04-24 | Janssen Biotech, Inc. | Combination treatment of prostate cancers with two bispecific antibodies |
| US12364777B2 (en) | 2023-10-20 | 2025-07-22 | Medicovestor, Inc. | Homodimeric antibodies for use in treating cancers and methods of use |
| TW202535406A (zh) | 2023-10-30 | 2025-09-16 | 美商壯生和壯生企業創新公司 | 用於治療肺癌之a2a受體拮抗劑 |
| TW202540169A (zh) | 2023-11-08 | 2025-10-16 | 法商賽諾菲公司 | 基於cd25的溶酶體降解物及其用途 |
| WO2025106469A1 (en) | 2023-11-14 | 2025-05-22 | Regeneron Pharmaceuticals, Inc. | Engineered heavy chain variable domains and uses thereof |
| WO2025109206A1 (en) | 2023-11-22 | 2025-05-30 | Mabylon Ag | Multispecific anti-allergen antibodies and uses thereof |
| WO2025108551A1 (en) | 2023-11-23 | 2025-05-30 | Mabylon Ag | Multispecific anti-allergen antibodies and uses thereof |
| WO2025114541A1 (en) | 2023-11-30 | 2025-06-05 | Genmab A/S | Antibodies capable of binding to ox40 in combination therapy |
| US20250179137A1 (en) | 2023-12-05 | 2025-06-05 | Regeneron Pharmaceuticals, Inc. | Il18 receptor agonists and methods of use thereof |
| TW202535947A (zh) | 2023-12-08 | 2025-09-16 | 美商健生生物科技公司 | CD33抗體、CD33/Vδ2多特異性抗體及其用途 |
| WO2025125386A1 (en) | 2023-12-14 | 2025-06-19 | F. Hoffmann-La Roche Ag | Antibodies that bind to folr1 and methods of use |
| US12116410B1 (en) | 2023-12-26 | 2024-10-15 | Medicovestor, Inc. | Methods of manufacturing dimeric antibodies |
| US12121587B1 (en) | 2023-12-26 | 2024-10-22 | Medicovestor, Inc. | Dimeric antibodies |
| WO2025153988A1 (en) | 2024-01-16 | 2025-07-24 | Janssen Biotech, Inc. | Use of amivantamab to treat colorectal cancer |
| WO2025158277A1 (en) | 2024-01-22 | 2025-07-31 | Janssen Biotech, Inc. | Use of amivantamab to treat head and neck cancer |
| US12378314B1 (en) | 2024-02-02 | 2025-08-05 | Medicovestor, Inc. | Proteins that bind folate receptor alpha including fully-human antibodies |
| US12258396B1 (en) | 2024-02-02 | 2025-03-25 | Medicovestor, Inc. | Methods of using immunotherapeutics that bind folate receptor alpha |
| US12240900B1 (en) | 2024-02-02 | 2025-03-04 | Medicovestor, Inc. | Nucleic acids, vectors, and cells that encode antibodies and other proteins that bind folate receptor alpha |
| WO2025181189A1 (en) | 2024-03-01 | 2025-09-04 | F. Hoffmann-La Roche Ag | Antibodies binding to cd3 |
| WO2025191459A1 (en) | 2024-03-11 | 2025-09-18 | Janssen Biotech, Inc. | Use of bispecific anti-egfr/c-met antibodies to treat solid tumors |
| WO2025199243A1 (en) | 2024-03-20 | 2025-09-25 | Regeneron Pharmaceuticals, Inc. | Trivalent multispecific binding molecules and methods of use thereof |
| WO2025202147A1 (en) | 2024-03-27 | 2025-10-02 | F. Hoffmann-La Roche Ag | Interleukin-7 immunoconjugates |
| WO2025221736A2 (en) | 2024-04-15 | 2025-10-23 | Janssen Biotech, Inc. | Ltbr binding molecules and uses thereof |
| WO2025219504A1 (en) | 2024-04-19 | 2025-10-23 | F. Hoffmann-La Roche Ag | Treatment of ophthalmologic diseases |
| WO2025226541A2 (en) | 2024-04-26 | 2025-10-30 | Janssen Biotech, Inc. | Klk2xcd3 antibody and an anti-cancer agent for treating prostate cancer |
| WO2025231408A2 (en) | 2024-05-03 | 2025-11-06 | Janssen Biotech, Inc. | Methods for treating multiple myeloma with car-t cells and bispecific antibodies |
| WO2025231372A2 (en) | 2024-05-03 | 2025-11-06 | Janssen Biotech, Inc. | Methods for treating multiple myeloma with car-t cells and bispecific antibodies |
| WO2025233825A1 (en) | 2024-05-06 | 2025-11-13 | Janssen Pharmaceutica Nv | Enrichment of cells expressing a bird linker |
| WO2025240335A1 (en) | 2024-05-13 | 2025-11-20 | Regeneron Pharmaceuticals, Inc. | Fgfr3 binding molecules and methods of use thereof |
| WO2025237931A1 (en) | 2024-05-15 | 2025-11-20 | F. Hoffmann-La Roche Ag | Recombinant binding proteins with conditionally activatable t cell and nk cell recruiting effector domains |
| WO2025245494A1 (en) | 2024-05-24 | 2025-11-27 | Regeneron Pharmaceuticals, Inc. | Tumor-targeted split il12 receptor agonists |
| WO2025243243A1 (en) | 2024-05-24 | 2025-11-27 | Janssen Biotech, Inc. | Bispecific antibody targeting emr2 (cd312) and the t-cell receptor trbv19 |
| WO2025255480A1 (en) | 2024-06-07 | 2025-12-11 | Regeneron Pharmaceuticals, Inc. | Tetravalent multispecific binding molecules and methods of use thereof |
| WO2025255452A2 (en) | 2024-06-07 | 2025-12-11 | Regeneron Pharmaceuticals, Inc. | Antigen-binding molecules that bind to aav particles and uses thereof |
| WO2025259718A2 (en) | 2024-06-11 | 2025-12-18 | Regeneron Pharmaceuticals, Inc. | Vegf antagonists and methods of use thereof |
| WO2026003224A2 (en) | 2024-06-26 | 2026-01-02 | Iomx Therapeutics Ag | Bispecific antigen binding proteins (abp) targeting immune checkpoint molecules and both leukocyte immunoglobulin-like receptor subfamily b1 (lilrb1) and lilrb2; combinations and uses thereof |
| WO2026011013A1 (en) | 2024-07-02 | 2026-01-08 | Epibiologics, Inc. | Binding agents and uses thereof |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH08500979A (ja) * | 1992-09-09 | 1996-02-06 | スミスクライン・ビーチヤム・コーポレーシヨン | ヒトにおいて病原体による感染に対する受動免疫を付与するための新規の抗体 |
| WO1997010354A1 (fr) * | 1995-09-11 | 1997-03-20 | Kyowa Hakko Kogyo Co., Ltd. | Anticorps de la chaine alpha du recepteur de l'interleukine 5 humaine |
| JPH11500916A (ja) * | 1995-02-28 | 1999-01-26 | ザ プロクター アンド ギャンブル カンパニー | 優れた微生物安定性を有する無炭酸飲料製品の製造 |
| JP2004086862A (ja) * | 2002-05-31 | 2004-03-18 | Celestar Lexico-Sciences Inc | タンパク質相互作用情報処理装置、タンパク質相互作用情報処理方法、プログラム、および、記録媒体 |
Family Cites Families (349)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SE370449B (ja) | 1970-08-29 | 1974-10-14 | Philips Nv | |
| JPS5334319B2 (ja) | 1971-12-28 | 1978-09-20 | ||
| JPS5717624B2 (ja) | 1974-04-17 | 1982-04-12 | ||
| JPS59878B2 (ja) | 1975-09-04 | 1984-01-09 | 松下電工株式会社 | 感知器 |
| US4208479A (en) | 1977-07-14 | 1980-06-17 | Syva Company | Label modified immunoassays |
| JPS5912436B2 (ja) | 1980-08-05 | 1984-03-23 | ファナック株式会社 | 工業用ロボットの安全機構 |
| US4474893A (en) | 1981-07-01 | 1984-10-02 | The University of Texas System Cancer Center | Recombinant monoclonal antibodies |
| US4444878A (en) | 1981-12-21 | 1984-04-24 | Boston Biomedical Research Institute, Inc. | Bispecific antibody determinants |
| JPS58201994A (ja) | 1982-05-21 | 1983-11-25 | Hideaki Hagiwara | 抗原特異的ヒト免疫グロブリンの生産方法 |
| US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
| GB8607679D0 (en) | 1986-03-27 | 1986-04-30 | Winter G P | Recombinant dna product |
| JPH0234615Y2 (ja) | 1986-08-08 | 1990-09-18 | ||
| JPH06104071B2 (ja) | 1986-08-24 | 1994-12-21 | 財団法人化学及血清療法研究所 | 第▲ix▼因子コンホメ−シヨン特異性モノクロ−ナル抗体 |
| US5004697A (en) | 1987-08-17 | 1991-04-02 | Univ. Of Ca | Cationized antibodies for delivery through the blood-brain barrier |
| US5670373A (en) | 1988-01-22 | 1997-09-23 | Kishimoto; Tadamitsu | Antibody to human interleukin-6 receptor |
| US5322678A (en) | 1988-02-17 | 1994-06-21 | Neorx Corporation | Alteration of pharmacokinetics of proteins by charge modification |
| US6010902A (en) | 1988-04-04 | 2000-01-04 | Bristol-Meyers Squibb Company | Antibody heteroconjugates and bispecific antibodies for use in regulation of lymphocyte activity |
| US5126250A (en) | 1988-09-28 | 1992-06-30 | Eli Lilly And Company | Method for the reduction of heterogeneity of monoclonal antibodies |
| IL89491A0 (en) | 1988-11-17 | 1989-09-10 | Hybritech Inc | Bifunctional chimeric antibodies |
| DE3920358A1 (de) | 1989-06-22 | 1991-01-17 | Behringwerke Ag | Bispezifische und oligospezifische, mono- und oligovalente antikoerperkonstrukte, ihre herstellung und verwendung |
| JPH0341033A (ja) | 1989-07-07 | 1991-02-21 | Kyowa Hakko Kogyo Co Ltd | 安定なモチリン類含有製剤 |
| GB8916400D0 (en) | 1989-07-18 | 1989-09-06 | Dynal As | Modified igg3 |
| WO1991008770A1 (en) | 1989-12-11 | 1991-06-27 | Immunomedics, Inc. | Method for antibody targeting of diagnostic or therapeutic agents |
| US5859205A (en) | 1989-12-21 | 1999-01-12 | Celltech Limited | Humanised antibodies |
| TW212184B (ja) | 1990-04-02 | 1993-09-01 | Takeda Pharm Industry Co Ltd | |
| JPH05184383A (ja) | 1990-06-19 | 1993-07-27 | Dainabotsuto Kk | 二重特異性抗体 |
| GB9015198D0 (en) | 1990-07-10 | 1990-08-29 | Brien Caroline J O | Binding substance |
| ATE185601T1 (de) | 1990-07-10 | 1999-10-15 | Cambridge Antibody Tech | Verfahren zur herstellung von spezifischen bindungspaargliedern |
| JPH05199894A (ja) | 1990-08-20 | 1993-08-10 | Takeda Chem Ind Ltd | 二重特異性抗体および抗体含有薬剤 |
| WO1993012227A1 (en) | 1991-12-17 | 1993-06-24 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
| WO1992003918A1 (en) | 1990-08-29 | 1992-03-19 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
| HU218140B (hu) | 1991-04-25 | 2000-06-28 | Chugai Seiyaku Kabushiki Kaisha | Humán interleukin-6-receptorral szembeni átalakított humán antitest |
| JPH05304992A (ja) | 1991-06-20 | 1993-11-19 | Takeda Chem Ind Ltd | ハイブリッド・モノクローナル抗体および抗体含有薬剤 |
| US5637481A (en) | 1993-02-01 | 1997-06-10 | Bristol-Myers Squibb Company | Expression vectors encoding bispecific fusion proteins and methods of producing biologically active bispecific fusion proteins in a mammalian cell |
| US6136310A (en) | 1991-07-25 | 2000-10-24 | Idec Pharmaceuticals Corporation | Recombinant anti-CD4 antibodies for human therapy |
| WO1993006213A1 (en) | 1991-09-23 | 1993-04-01 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
| DK0617706T3 (da) | 1991-11-25 | 2001-11-12 | Enzon Inc | Multivalente antigenbindende proteiner |
| DK1024191T3 (da) | 1991-12-02 | 2008-12-08 | Medical Res Council | Fremstilling af autoantistoffer fremvist på fag-overflader ud fra antistofsegmentbiblioteker |
| US5667988A (en) | 1992-01-27 | 1997-09-16 | The Scripps Research Institute | Methods for producing antibody libraries using universal or randomized immunoglobulin light chains |
| JPH05203652A (ja) | 1992-01-28 | 1993-08-10 | Fuji Photo Film Co Ltd | 抗体酵素免疫分析法 |
| JPH05213775A (ja) | 1992-02-05 | 1993-08-24 | Otsuka Pharmaceut Co Ltd | Bfa抗体 |
| US6749853B1 (en) | 1992-03-05 | 2004-06-15 | Board Of Regents, The University Of Texas System | Combined methods and compositions for coagulation and tumor treatment |
| EP0656941B1 (en) | 1992-03-24 | 2005-06-01 | Cambridge Antibody Technology Limited | Methods for producing members of specific binding pairs |
| US6129914A (en) | 1992-03-27 | 2000-10-10 | Protein Design Labs, Inc. | Bispecific antibody effective to treat B-cell lymphoma and cell line |
| US5744446A (en) | 1992-04-07 | 1998-04-28 | Emory University | Hybrid human/animal factor VIII |
| SG48760A1 (en) | 1992-07-24 | 2003-03-18 | Abgenix Inc | Generation of xenogenetic antibodies |
| US5639641A (en) | 1992-09-09 | 1997-06-17 | Immunogen Inc. | Resurfacing of rodent antibodies |
| EP0627932B1 (en) | 1992-11-04 | 2002-05-08 | City Of Hope | Antibody construct |
| ES2156149T3 (es) | 1992-12-04 | 2001-06-16 | Medical Res Council | Proteinas de union multivalente y multiespecificas, su fabricacion y su uso. |
| JPH06175590A (ja) | 1992-12-09 | 1994-06-24 | Ricoh Res Inst Of Gen Electron | カード型ディスプレイ装置 |
| SG55079A1 (en) | 1992-12-11 | 1998-12-21 | Dow Chemical Co | Multivalent single chain antibodies |
| GB9313509D0 (en) | 1993-06-30 | 1993-08-11 | Medical Res Council | Chemisynthetic libraries |
| CA2143126A1 (en) | 1993-07-01 | 1995-01-12 | Shamay Tang | Process for the preparation of factor x depleted plasma |
| UA40577C2 (uk) | 1993-08-02 | 2001-08-15 | Мерк Патент Гмбх | Біспецифічна молекула, що використовується для лізису пухлинних клітин, спосіб її одержання, моноклональне антитіло (варіанти), фармацевтичний препарат, фармацевтичний набір (варіанти), спосіб видалення пухлинних клітин |
| IL107742A0 (en) | 1993-11-24 | 1994-02-27 | Yeda Res & Dev | Chemically-modified binding proteins |
| WO1995015393A1 (en) | 1993-12-03 | 1995-06-08 | Asahi Kasei Kogyo Kabushiki Kaisha | Novel expression screening vector |
| WO1995015388A1 (en) | 1993-12-03 | 1995-06-08 | Medical Research Council | Recombinant binding proteins and peptides |
| US5945311A (en) | 1994-06-03 | 1999-08-31 | GSF--Forschungszentrumfur Umweltund Gesundheit | Method for producing heterologous bi-specific antibodies |
| DE122009000068I2 (de) | 1994-06-03 | 2011-06-16 | Ascenion Gmbh | Verfahren zur Herstellung von heterologen bispezifischen Antikörpern |
| US8017121B2 (en) | 1994-06-30 | 2011-09-13 | Chugai Seiyaku Kabushika Kaisha | Chronic rheumatoid arthritis therapy containing IL-6 antagonist as effective component |
| ES2153483T3 (es) | 1994-07-11 | 2001-03-01 | Univ Texas | Metodos y composiciones para la coagulacion especifica en los vasos tumorales. |
| AU701342B2 (en) | 1994-07-13 | 1999-01-28 | Chugai Seiyaku Kabushiki Kaisha | Reconstituted human antibody against human interleukin-8 |
| AU3272695A (en) | 1994-08-12 | 1996-03-07 | Immunomedics Inc. | Immunoconjugates and humanized antibodies specific for b-cell lymphoma and leukemia cells |
| US6451523B1 (en) | 1994-09-14 | 2002-09-17 | Interneuron Pharmaceuticals, Inc. | Detection of a leptin receptor variant and methods for regulating obesity |
| US6309636B1 (en) | 1995-09-14 | 2001-10-30 | Cancer Research Institute Of Contra Costa | Recombinant peptides derived from the Mc3 anti-BA46 antibody, methods of use thereof, and methods of humanizing antibody peptides |
| CA2201781C (en) | 1994-10-07 | 2010-01-12 | Tadamitsu Kishimoto | Chronic rheumatoid arthritis therapy containing il-6 antagonist as effective component |
| RU2147442C1 (ru) | 1994-10-21 | 2000-04-20 | Кисимото Тадамицу | Фармацевтическая композиция для профилактики или лечения заболеваний, вызываемых образованием il-6 |
| EP0794792A1 (en) | 1994-12-02 | 1997-09-17 | Chiron Corporation | Method of promoting an immune response with a bispecific antibody |
| US6485943B2 (en) * | 1995-01-17 | 2002-11-26 | The University Of Chicago | Method for altering antibody light chain interactions |
| US5731168A (en) | 1995-03-01 | 1998-03-24 | Genentech, Inc. | Method for making heteromultimeric polypeptides |
| AU5632296A (en) | 1995-04-27 | 1996-11-18 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
| CA2219486A1 (en) | 1995-04-28 | 1996-10-31 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
| EP0871673B1 (en) | 1995-05-03 | 2006-04-05 | Bioenhancementsments Ltd. | Bispecific antibodies in which the binding capability is reversibly inhibited by a photocleavable moiety |
| CA2241564C (en) | 1996-01-08 | 2013-09-03 | Genentech, Inc. | Wsx receptor and ligands |
| MA24512A1 (fr) | 1996-01-17 | 1998-12-31 | Univ Vermont And State Agrienl | Procede pour la preparation d'agents anticoagulants utiles dans le traitement de la thrombose |
| FR2745008A1 (fr) | 1996-02-20 | 1997-08-22 | Ass Pour Le Dev De La Rech En | Recepteur nucleaire de glucocorticoides modifie, fragments d'adn codant pour ledit recepteur et procedes dans lesquels ils sont mis en oeuvre |
| JP3032287U (ja) | 1996-06-10 | 1996-12-17 | 幸喜 高橋 | 人 形 |
| US20020147326A1 (en) | 1996-06-14 | 2002-10-10 | Smithkline Beecham Corporation | Hexameric fusion proteins and uses therefor |
| CZ399A3 (cs) | 1996-07-19 | 1999-06-16 | Amgen Inc. | Polypeptidová analoga kationaktivních polypeptidů |
| BR9713294A (pt) | 1996-09-26 | 2000-10-17 | Chugai Pharmaceutical Co Ltd | "anticorpos contra proteìna relacionada a hormÈnio de paratiróide humano" |
| JPH10165184A (ja) | 1996-12-16 | 1998-06-23 | Tosoh Corp | 抗体、遺伝子及びキメラ抗体の製法 |
| US5990286A (en) | 1996-12-18 | 1999-11-23 | Techniclone, Inc. | Antibodies with reduced net positive charge |
| US6323000B2 (en) | 1996-12-20 | 2001-11-27 | Clark A. Briggs | Variant human α7 acetylcholine receptor subunit, and methods of production and uses thereof |
| WO1998041641A1 (en) | 1997-03-20 | 1998-09-24 | The Government Of The United States As Represented By The Secretary Of The Department Of Health And Human Services | Recombinant antibodies and immunoconjugates targeted to cd-22 bearing cells and tumors |
| US6183744B1 (en) | 1997-03-24 | 2001-02-06 | Immunomedics, Inc. | Immunotherapy of B-cell malignancies using anti-CD22 antibodies |
| US6306393B1 (en) | 1997-03-24 | 2001-10-23 | Immunomedics, Inc. | Immunotherapy of B-cell malignancies using anti-CD22 antibodies |
| US6884879B1 (en) | 1997-04-07 | 2005-04-26 | Genentech, Inc. | Anti-VEGF antibodies |
| US20070059302A1 (en) | 1997-04-07 | 2007-03-15 | Genentech, Inc. | Anti-vegf antibodies |
| FR2761994B1 (fr) | 1997-04-11 | 1999-06-18 | Centre Nat Rech Scient | Preparation de recepteurs membranaires a partir de baculovirus extracellulaires |
| US20020062010A1 (en) | 1997-05-02 | 2002-05-23 | Genentech, Inc. | Method for making multispecific antibodies having heteromultimeric and common components |
| US20030207346A1 (en) | 1997-05-02 | 2003-11-06 | William R. Arathoon | Method for making multispecific antibodies having heteromultimeric and common components |
| JP4213224B2 (ja) | 1997-05-02 | 2009-01-21 | ジェネンテック,インコーポレーテッド | ヘテロマルチマー及び共通成分を有する多重特異性抗体の製造方法 |
| DE19725586C2 (de) | 1997-06-17 | 1999-06-24 | Gsf Forschungszentrum Umwelt | Verfahren zur Herstellung von Zellpräparaten zur Immunisierung mittels heterologer intakter bispezifischer und/oder trispezifischer Antikörper |
| AU8296098A (en) | 1997-07-08 | 1999-02-08 | Board Of Regents, The University Of Texas System | Compositions and methods for homoconjugates of antibodies which induce growth arrest or apoptosis of tumor cells |
| US5980893A (en) | 1997-07-17 | 1999-11-09 | Beth Israel Deaconess Medical Center, Inc. | Agonist murine monoclonal antibody as a stimulant for megakaryocytopoiesis |
| US6207805B1 (en) | 1997-07-18 | 2001-03-27 | University Of Iowa Research Foundation | Prostate cell surface antigen-specific antibodies |
| US20020187150A1 (en) | 1997-08-15 | 2002-12-12 | Chugai Seiyaku Kabushiki Kaisha | Preventive and/or therapeutic agent for systemic lupus erythematosus comprising anti-IL-6 receptor antibody as an active ingredient |
| US6342220B1 (en) | 1997-08-25 | 2002-01-29 | Genentech, Inc. | Agonist antibodies |
| JP3992298B2 (ja) | 1997-10-03 | 2007-10-17 | 中外製薬株式会社 | 天然ヒト型化抗体 |
| US6723319B1 (en) | 1998-03-17 | 2004-04-20 | Chugai Seiyaku Kabushiki Kaisha | Method of treating inflammatory intestinal diseases containing as the ingredient IL-6 receptors antibodies |
| ES2364266T3 (es) | 1998-04-03 | 2011-08-30 | Chugai Seiyaku Kabushiki Kaisha | Anticuerpo humanizado hacia el factor tisular humano (tf) y procedimiento para construir el anticuerpo humanizado. |
| DE19819846B4 (de) | 1998-05-05 | 2016-11-24 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Multivalente Antikörper-Konstrukte |
| GB9809951D0 (en) | 1998-05-08 | 1998-07-08 | Univ Cambridge Tech | Binding molecules |
| US7081360B2 (en) | 1998-07-28 | 2006-07-25 | Cadus Technologies, Inc. | Expression of G protein-coupled receptors with altered ligand binding and/or coupling properties |
| EP1105427A2 (en) | 1998-08-17 | 2001-06-13 | Abgenix, Inc. | Generation of modified molecules with increased serum half-lives |
| AU764211C (en) | 1998-12-01 | 2006-03-30 | Abbvie Biotherapeutics Inc. | Humanized antibodies to gamma-interferon |
| US6737056B1 (en) | 1999-01-15 | 2004-05-18 | Genentech, Inc. | Polypeptide variants with altered effector function |
| US6897044B1 (en) | 1999-01-28 | 2005-05-24 | Biogen Idec, Inc. | Production of tetravalent antibodies |
| US6972125B2 (en) | 1999-02-12 | 2005-12-06 | Genetics Institute, Llc | Humanized immunoglobulin reactive with B7-2 and methods of treatment therewith |
| CO5280147A1 (es) | 1999-05-18 | 2003-05-30 | Smithkline Beecham Corp | Anticuerpo humano monoclonal |
| SK782002A3 (en) | 1999-07-21 | 2003-08-05 | Lexigen Pharm Corp | FC fusion proteins for enhancing the immunogenicity of protein and peptide antigens |
| AT411997B (de) | 1999-09-14 | 2004-08-26 | Baxter Ag | Faktor ix/faktor ixa aktivierende antikörper und antikörper-derivate |
| SE9903895D0 (sv) | 1999-10-28 | 1999-10-28 | Active Biotech Ab | Novel compounds |
| AU2001264612C1 (en) | 1999-11-08 | 2007-11-22 | Biogen Idec Inc. | Treatment of B cell malignancies using combination of B cell depleting antibody and immune modulating antibody related applications |
| US20020028178A1 (en) | 2000-07-12 | 2002-03-07 | Nabil Hanna | Treatment of B cell malignancies using combination of B cell depleting antibody and immune modulating antibody related applications |
| AU1290001A (en) | 1999-11-18 | 2001-05-30 | Oxford Biomedica (Uk) Limited | Antibodies |
| WO2001044282A2 (en) | 1999-12-14 | 2001-06-21 | The Burnham Institute | Bcl-g polypeptides, encoding nucleic acids and methods of use |
| AU2001256174A1 (en) | 2000-03-01 | 2001-09-12 | Christoph Gasche | Mammalian interleukin-10 (il-10) receptor variants |
| TWI241345B (en) | 2000-03-10 | 2005-10-11 | Chugai Pharmaceutical Co Ltd | Apoptosis inducing polypeptide |
| CA2404216A1 (en) | 2000-03-22 | 2001-09-27 | Curagen Corporation | Novel polypeptides, and nucleic acids encoding the same |
| MXPA02009626A (es) | 2000-03-31 | 2003-05-14 | Idec Pharma Corp | Uso combinado de anticuerpos anti-citocina o antagonistas y anti-cd20 para el tratamiento de linfoma de celulas b. |
| US20020164668A1 (en) | 2000-04-03 | 2002-11-07 | Durham L. Kathryn | Nucleic acid molecules, polypeptides and uses therefor, including diagnosis and treatment of alzheimer's disease |
| WO2001079494A1 (fr) | 2000-04-17 | 2001-10-25 | Chugai Seiyaku Kabushiki Kaisha | Anticorps agonistes |
| MXPA02010801A (es) | 2000-05-03 | 2004-09-06 | Munich Biotech Ag | Agentes diagnosticos, de representacion y terapeuticos cationicos asociados con sitios vasculares activados. |
| CA2409991A1 (en) | 2000-05-24 | 2001-11-29 | Imclone Systems Incorporated | Bispecific immunoglobulin-like antigen binding proteins and method of production |
| CA2411102A1 (en) | 2000-06-20 | 2001-12-27 | Idec Pharmaceutical Corporation | Cold anti-cd20 antibody/radiolabeled anti-cd22 antibody combination |
| JP4908721B2 (ja) | 2000-07-17 | 2012-04-04 | 中外製薬株式会社 | 生理活性を有するリガンドのスクリーニング方法 |
| KR20040023565A (ko) | 2000-09-18 | 2004-03-18 | 아이덱 파마슈티칼즈 코포레이션 | B 세포 고갈/면역조절 항체 조합을 이용한 자가면역질환의 치료를 위한 조합 요법 |
| CA2423227C (en) | 2000-10-12 | 2011-11-29 | Genentech, Inc. | Reduced-viscosity concentrated protein formulations |
| US8034903B2 (en) | 2000-10-20 | 2011-10-11 | Chugai Seiyaku Kabushiki Kaisha | Degraded TPO agonist antibody |
| WO2002033073A1 (en) | 2000-10-20 | 2002-04-25 | Chugai Seiyaku Kabushiki Kaisha | Degraded agonist antibody |
| AU1091702A (en) | 2000-10-20 | 2002-04-29 | Chugai Pharmaceutical Co Ltd | Degraded tpo agonist antibody |
| CN1308447C (zh) | 2000-10-20 | 2007-04-04 | 中外制药株式会社 | 低分子化的激动剂抗体 |
| AU2000279625A1 (en) | 2000-10-27 | 2002-05-15 | Chugai Seiyaku Kabushiki Kaisha | Blood mmp-3 level-lowering agent containing il-6 antgonist as the active ingredient |
| ES2727425T3 (es) | 2000-12-12 | 2019-10-16 | Medimmune Llc | Moléculas con semividas prolongadas, composiciones y usos de las mismas |
| BR0207854A (pt) | 2001-03-07 | 2004-08-24 | Merck Patent Gmbh | Tecnologia de expressão para proteìnas contendo uma porção de anticorpo de isotipo hìbrido |
| AU2002307062A1 (en) | 2001-04-02 | 2002-10-15 | Purdue Pharma L.P. | Thrombopoietin (tpo) synthebody for stimulation of platelet production |
| UA80091C2 (en) | 2001-04-02 | 2007-08-27 | Chugai Pharmaceutical Co Ltd | Remedies for infant chronic arthritis-relating diseases and still's disease which contain an interleukin-6 (il-6) antagonist |
| BRPI0209792B8 (pt) | 2001-04-13 | 2021-05-25 | Biogen Idec Inc | anticorpo anti-vla-1, composição que o compreende, ácido nucléico e vetor, bem como métodos in vitro para determinar o nível de vla-1 em tecido e para identificar inibidor de domínio i de integrina |
| ATE483801T1 (de) | 2001-06-22 | 2010-10-15 | Chugai Pharmaceutical Co Ltd | Zellproliferationshemmer, die anti-glypican 3 antikörper enthalten |
| AU2002319402B2 (en) | 2001-06-28 | 2008-09-11 | Domantis Limited | Dual-specific ligand and its use |
| US6833441B2 (en) | 2001-08-01 | 2004-12-21 | Abmaxis, Inc. | Compositions and methods for generating chimeric heteromultimers |
| US20030049203A1 (en) | 2001-08-31 | 2003-03-13 | Elmaleh David R. | Targeted nucleic acid constructs and uses related thereto |
| IL161418A0 (en) | 2001-10-15 | 2004-09-27 | Immunomedics Inc | Direct targeting binding proteins |
| ES2326964T3 (es) | 2001-10-25 | 2009-10-22 | Genentech, Inc. | Composiciones de glicoproteina. |
| US20030190705A1 (en) | 2001-10-29 | 2003-10-09 | Sunol Molecular Corporation | Method of humanizing immune system molecules |
| DE10156482A1 (de) | 2001-11-12 | 2003-05-28 | Gundram Jung | Bispezifisches Antikörper-Molekül |
| KR20040082421A (ko) * | 2002-02-11 | 2004-09-24 | 제넨테크, 인크. | 빠른 항원 결합 속도를 갖는 항체 변이체 |
| US8188231B2 (en) | 2002-09-27 | 2012-05-29 | Xencor, Inc. | Optimized FC variants |
| WO2003074679A2 (en) | 2002-03-01 | 2003-09-12 | Xencor | Antibody optimization |
| US7736652B2 (en) | 2002-03-21 | 2010-06-15 | The Regents Of The University Of California | Antibody fusion proteins: effective adjuvants of protein vaccination |
| AU2003227504A1 (en) | 2002-04-15 | 2003-10-27 | Chugai Seiyaku Kabushiki Kaisha | METHOD OF CONSTRUCTING scDb LIBRARY |
| US7732149B2 (en) | 2002-04-26 | 2010-06-08 | Chugai Seiyaku Kabushiki Kaisha | Methods of screening agonistic antibodies |
| EP1510943A4 (en) | 2002-05-31 | 2007-05-09 | Celestar Lexico Sciences Inc | INTERACTION PREDICTION DEVICE |
| WO2003104425A2 (en) | 2002-06-07 | 2003-12-18 | The Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services | Novel stable anti-cd22 antibodies |
| US20060141456A1 (en) | 2002-06-12 | 2006-06-29 | Cynthia Edwards | Methods and compositions for milieu-dependent binding of a targeted agent to a target |
| EP2314629B2 (en) | 2002-07-18 | 2022-11-16 | Merus N.V. | Recombinant production of mixtures of antibodies |
| EP1539947A4 (en) | 2002-08-15 | 2006-09-06 | Epitomics Inc | HUMANIZED RABBIT ANTIBODIES |
| EP1541165A4 (en) | 2002-08-27 | 2009-06-24 | Chugai Pharmaceutical Co Ltd | METHOD FOR STABILIZING PROTEIN PREPARATION |
| JP2004086682A (ja) | 2002-08-28 | 2004-03-18 | Fujitsu Ltd | 機能ブロック設計方法および機能ブロック設計装置 |
| JPWO2004033499A1 (ja) | 2002-10-11 | 2006-02-09 | 中外製薬株式会社 | 細胞死誘導剤 |
| US7217797B2 (en) | 2002-10-15 | 2007-05-15 | Pdl Biopharma, Inc. | Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis |
| GB0224082D0 (en) | 2002-10-16 | 2002-11-27 | Celltech R&D Ltd | Biological products |
| US7098189B2 (en) * | 2002-12-16 | 2006-08-29 | Kimberly-Clark Worldwide, Inc. | Wound and skin care compositions |
| AU2003299898B2 (en) | 2002-12-24 | 2010-12-16 | Rinat Neuroscience Corp. | Anti-NGF antibodies and methods using same |
| AU2003303543A1 (en) | 2002-12-26 | 2004-07-29 | Chugai Seiyaku Kabushiki Kaisha | Agonist antibody against heteroreceptor |
| US8337841B2 (en) | 2003-01-21 | 2012-12-25 | Chugai Seiyaku Kabushiki Kaisha | Methods of screening for antibody light chains |
| JP2006517109A (ja) | 2003-02-07 | 2006-07-20 | プロテイン デザイン ラブス インコーポレイテッド | アンフィレグリン抗体ならびに癌および乾癬を処置するためのその使用 |
| JP4739954B2 (ja) | 2003-03-13 | 2011-08-03 | 中外製薬株式会社 | 変異受容体に対するアゴニスト活性を有するリガンド |
| JP2004279086A (ja) | 2003-03-13 | 2004-10-07 | Konica Minolta Holdings Inc | 放射線画像変換パネル及び放射線画像変換パネルの製造方法 |
| EP1609803A4 (en) | 2003-03-31 | 2006-05-24 | Chugai Pharmaceutical Co Ltd | MODIFIED ANTIBODY AGAINST CD22 AND ITS USE |
| JP2004321100A (ja) | 2003-04-25 | 2004-11-18 | Rikogaku Shinkokai | IgGのFc領域を含むタンパク質の変異体 |
| GB2400851B (en) | 2003-04-25 | 2004-12-15 | Bioinvent Int Ab | Identifying binding of a polypeptide to a polypeptide target |
| GB2401040A (en) | 2003-04-28 | 2004-11-03 | Chugai Pharmaceutical Co Ltd | Method for treating interleukin-6 related diseases |
| KR100973564B1 (ko) | 2003-05-02 | 2010-08-03 | 젠코어 인코포레이티드 | 최적화된 Fc 변이체 및 그의 제조 방법 |
| EP2395016A3 (en) | 2003-05-30 | 2012-12-19 | Merus B.V. | Design and use of paired variable regions of specific binding molecules |
| MXPA05012723A (es) | 2003-05-30 | 2006-02-08 | Genentech Inc | Tratamiento con anticuerpos anti-vgf. |
| PT1631313E (pt) | 2003-06-05 | 2015-07-02 | Genentech Inc | Terapêutica de combinação para distúrbios de células b |
| US8597911B2 (en) | 2003-06-11 | 2013-12-03 | Chugai Seiyaku Kabushiki Kaisha | Process for producing antibodies |
| WO2004113387A2 (en) | 2003-06-24 | 2004-12-29 | Merck Patent Gmbh | Tumour necrosis factor receptor molecules with reduced immunogenicity |
| US20050033029A1 (en) | 2003-06-30 | 2005-02-10 | Jin Lu | Engineered anti-target immunoglobulin derived proteins, compositions, methods and uses |
| US7297336B2 (en) | 2003-09-12 | 2007-11-20 | Baxter International Inc. | Factor IXa specific antibodies displaying factor VIIIa like activity |
| JP2005101105A (ja) | 2003-09-22 | 2005-04-14 | Canon Inc | 位置決め装置、露光装置、デバイス製造方法 |
| US20060134105A1 (en) | 2004-10-21 | 2006-06-22 | Xencor, Inc. | IgG immunoglobulin variants with optimized effector function |
| JP2005112514A (ja) | 2003-10-06 | 2005-04-28 | Tadano Ltd | 伸縮ブーム |
| AU2003271174A1 (en) | 2003-10-10 | 2005-04-27 | Chugai Seiyaku Kabushiki Kaisha | Double specific antibodies substituting for functional protein |
| US20080075712A1 (en) | 2003-10-14 | 2008-03-27 | Kunihiro Hattori | Double Specific Antibodies Substituting For Functional Proteins |
| EP2385069A3 (en) | 2003-11-12 | 2012-05-30 | Biogen Idec MA Inc. | Neonatal Fc rReceptor (FcRn)- binding polypeptide variants, dimeric Fc binding proteins and methods related thereto |
| US20050142133A1 (en) | 2003-12-03 | 2005-06-30 | Xencor, Inc. | Optimized proteins that target the epidermal growth factor receptor |
| HRP20120702T1 (hr) | 2003-12-10 | 2012-09-30 | Medarex | Ip-10 protutijela i njihova uporaba |
| ES2641831T3 (es) | 2003-12-10 | 2017-11-14 | E. R. Squibb & Sons, L.L.C. | Anticuerpos contra interferón alfa y sus usos |
| TW200530266A (en) | 2003-12-12 | 2005-09-16 | Chugai Pharmaceutical Co Ltd | Method of reinforcing antibody activity |
| EP1712565A4 (en) | 2003-12-12 | 2009-03-11 | Chugai Pharmaceutical Co Ltd | AGENTS INDUCING CELL DEATH |
| US20070281327A1 (en) | 2003-12-12 | 2007-12-06 | Kiyotaka Nakano | Methods of Screening for Modified Antibodies With Agonistic Activities |
| US20080206229A1 (en) | 2003-12-12 | 2008-08-28 | Koichiro Ono | Modified Antibodies Recognizing Receptor Trimers or Higher Multimers |
| TW200530269A (en) | 2003-12-12 | 2005-09-16 | Chugai Pharmaceutical Co Ltd | Anti-Mpl antibodies |
| AR048210A1 (es) | 2003-12-19 | 2006-04-12 | Chugai Pharmaceutical Co Ltd | Un agente preventivo para la vasculitis. |
| CA2550996A1 (en) | 2003-12-22 | 2005-07-14 | Centocor, Inc. | Methods for generating multimeric molecules |
| CN1922316B (zh) | 2003-12-25 | 2011-03-23 | 协和发酵麒麟株式会社 | 抗cd40抗体突变体 |
| EP1699822B1 (en) | 2003-12-30 | 2008-04-23 | MERCK PATENT GmbH | Il-7 fusion proteins with antibody portions, their preparation and their use |
| US20050266425A1 (en) | 2003-12-31 | 2005-12-01 | Vaccinex, Inc. | Methods for producing and identifying multispecific antibodies |
| TWI363762B (en) | 2004-01-09 | 2012-05-11 | Pfizer | Antibodies to madcam |
| CA2561264A1 (en) | 2004-03-24 | 2005-10-06 | Xencor, Inc. | Immunoglobulin variants outside the fc region |
| AR048335A1 (es) | 2004-03-24 | 2006-04-19 | Chugai Pharmaceutical Co Ltd | Agentes terapeuticos para trastornos del oido interno que contienen un antagonista de il- 6 como un ingrediente activo |
| WO2005100560A1 (ja) | 2004-04-09 | 2005-10-27 | Chugai Seiyaku Kabushiki Kaisha | 細胞死誘導剤 |
| WO2005112564A2 (en) | 2004-04-15 | 2005-12-01 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Germline and sequence variants of humanized antibodies and methods of making and using them |
| TW200605906A (en) | 2004-05-11 | 2006-02-16 | Chugai Pharmaceutical Co Ltd | Remedy for thrombopenia |
| KR100620554B1 (ko) | 2004-06-05 | 2006-09-06 | 한국생명공학연구원 | Tag-72에 대한 인간화 항체 |
| AR049390A1 (es) | 2004-06-09 | 2006-07-26 | Wyeth Corp | Anticuerpos contra la interleuquina-13 humana y usos de los mismos |
| CA2572133A1 (en) | 2004-06-25 | 2006-01-12 | Medimmune, Inc. | Increasing the production of recombinant antibodies in mammalian cells by site-directed mutagenesis |
| DE102004032634A1 (de) | 2004-07-06 | 2006-02-16 | Sms Demag Ag | Verfahren und Einrichtung zum Messen und Regeln der Planheit und/oder der Bandspannungen eines Edelstahlbandes oder einer Edelstahlfolie beim Kaltwalzen in einem Vielwalzengerüst, insbesondere in einem 20-Walzen-Sendizimir-Walzwerk |
| CN111925445A (zh) | 2004-07-09 | 2020-11-13 | 中外制药株式会社 | 抗-磷脂酰肌醇蛋白聚糖3抗体 |
| PL2471813T3 (pl) | 2004-07-15 | 2015-09-30 | Xencor Inc | Zoptymalizowane warianty Fc |
| MX2007002856A (es) | 2004-09-02 | 2007-09-25 | Genentech Inc | Metodos para el uso de ligandos receptores de muerte y anticuerpos c20. |
| MX2007002883A (es) | 2004-09-13 | 2007-06-15 | Macrogenics Inc | Anticuerpos humanizados contra el virus de nilo occidental y usos terapeuticos y profilacticos del mismo. |
| US20060074225A1 (en) | 2004-09-14 | 2006-04-06 | Xencor, Inc. | Monomeric immunoglobulin Fc domains |
| EP1799718A1 (en) | 2004-09-14 | 2007-06-27 | National Institute for Biological Standards and Control (NIBSC) | Vaccine |
| TWI309240B (en) | 2004-09-17 | 2009-05-01 | Hoffmann La Roche | Anti-ox40l antibodies |
| US7563443B2 (en) | 2004-09-17 | 2009-07-21 | Domantis Limited | Monovalent anti-CD40L antibody polypeptides and compositions thereof |
| EP1810979B1 (en) | 2004-09-22 | 2012-06-20 | Kyowa Hakko Kirin Co., Ltd. | STABILIZED HUMAN IgG4 ANTIBODIES |
| WO2006047350A2 (en) | 2004-10-21 | 2006-05-04 | Xencor, Inc. | IgG IMMUNOGLOBULIN VARIANTS WITH OPTIMIZED EFFECTOR FUNCTION |
| MX2007004437A (es) | 2004-10-22 | 2007-06-20 | Amgen Inc | Metodos para el repliegue de anticuerpos recombinantes. |
| US7462697B2 (en) | 2004-11-08 | 2008-12-09 | Epitomics, Inc. | Methods for antibody engineering |
| US7632497B2 (en) | 2004-11-10 | 2009-12-15 | Macrogenics, Inc. | Engineering Fc Antibody regions to confer effector function |
| CA2586803C (en) | 2004-12-14 | 2012-12-11 | Ge Healthcare Bio-Sciences Ab | Purification of immunoglobulins |
| US8728828B2 (en) | 2004-12-22 | 2014-05-20 | Ge Healthcare Bio-Sciences Ab | Purification of immunoglobulins |
| WO2006067847A1 (ja) | 2004-12-22 | 2006-06-29 | Chugai Seiyaku Kabushiki Kaisha | フコーストランスポーターの機能が阻害された細胞を用いた抗体の作製方法 |
| WO2006071877A2 (en) | 2004-12-27 | 2006-07-06 | Progenics Pharmaceuticals (Nevada), Inc. | Orally deliverable and anti-toxin antibodies and methods for making and using them |
| KR101564713B1 (ko) | 2004-12-28 | 2015-11-06 | 이나뜨 파르마 | Nkg2a에 대한 단클론 항체 |
| US8716451B2 (en) | 2005-01-12 | 2014-05-06 | Kyowa Hakko Kirin Co., Ltd | Stabilized human IgG2 and IgG3 antibodies |
| CA2595169A1 (en) | 2005-01-12 | 2006-07-20 | Xencor, Inc. | Antibodies and fc fusion proteins with altered immunogenicity |
| US7700099B2 (en) | 2005-02-14 | 2010-04-20 | Merck & Co., Inc. | Non-immunostimulatory antibody and compositions containing the same |
| EP1870458B1 (en) * | 2005-03-31 | 2018-05-09 | Chugai Seiyaku Kabushiki Kaisha | sc(Fv)2 STRUCTURAL ISOMERS |
| WO2006106905A1 (ja) | 2005-03-31 | 2006-10-12 | Chugai Seiyaku Kabushiki Kaisha | 会合制御によるポリペプチド製造方法 |
| DK1876236T3 (da) | 2005-04-08 | 2014-10-20 | Chugai Pharmaceutical Co Ltd | Antistof som funktionel erstatning for blodkoagulationsfaktor VIII |
| KR101259655B1 (ko) | 2005-04-15 | 2013-04-30 | 제넨테크, 인크. | Hgf 베타 사슬 변이체 |
| AU2006239851B2 (en) | 2005-04-26 | 2011-06-16 | Medimmune, Llc | Modulation of antibody effector function by hinge domain engineering |
| JP5047947B2 (ja) | 2005-05-05 | 2012-10-10 | デューク ユニバーシティ | 自己免疫疾患のための抗cd19抗体治療 |
| AU2006256041B2 (en) | 2005-06-10 | 2012-03-29 | Chugai Seiyaku Kabushiki Kaisha | Stabilizer for protein preparation comprising meglumine and use thereof |
| US20090028854A1 (en) | 2005-06-10 | 2009-01-29 | Chugai Seiyaku Kabushiki Kaisha | sc(Fv)2 SITE-DIRECTED MUTANT |
| KR101360671B1 (ko) | 2005-06-10 | 2014-02-07 | 추가이 세이야쿠 가부시키가이샤 | sc(Fv)2를 함유하는 의약조성물 |
| JP2008546805A (ja) | 2005-06-23 | 2008-12-25 | メディミューン,エルエルシー | 最適な凝集および断片化プロフィールを有する抗体製剤 |
| EP1907002A2 (en) | 2005-07-11 | 2008-04-09 | Macrogenics, Inc. | Methods of treating autoimmune disease using humanized anti-cd16a antibodies |
| SI2573114T1 (sl) | 2005-08-10 | 2016-08-31 | Macrogenics, Inc. | Identifikacija in inženiring protiteles z variantnimi fc regijami in postopki za njih uporabo |
| EP3327033A1 (en) | 2005-08-19 | 2018-05-30 | Wyeth LLC | Antagonist antibodies against gdf-8 and uses in treatment of als and other gdf-8-associated disorders |
| AU2006297173A1 (en) | 2005-09-29 | 2007-04-12 | Viral Logic Systems Technology Corp. | Immunomodulatory compositions and uses therefor |
| CA2625773C (en) | 2005-10-14 | 2015-05-12 | Fukuoka University | Inhibition of interleukin-6 (il-6) receptor promotes pancreatic islet transplantation |
| AR058135A1 (es) | 2005-10-21 | 2008-01-23 | Chugai Pharmaceutical Co Ltd | Agentes para el tratamiento de cardiopatias |
| WO2007060411A1 (en) | 2005-11-24 | 2007-05-31 | Ucb Pharma S.A. | Anti-tnf alpha antibodies which selectively inhibit tnf alpha signalling through the p55r |
| JP4294082B2 (ja) | 2006-03-23 | 2009-07-08 | 協和発酵キリン株式会社 | ヒトトロンボポエチン受容体に対するアゴニスト抗体 |
| JP5474531B2 (ja) | 2006-03-24 | 2014-04-16 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | 操作されたヘテロ二量体タンパク質ドメイン |
| WO2007114325A1 (ja) | 2006-03-31 | 2007-10-11 | Chugai Seiyaku Kabushiki Kaisha | 二重特異性抗体を精製するための抗体改変方法 |
| IN2014DN10515A (ja) | 2006-03-31 | 2015-08-21 | Chugai Pharmaceutical Co Ltd | |
| CA2648644C (en) | 2006-04-07 | 2016-01-05 | Osaka University | Muscle regeneration promoter |
| ES2544888T3 (es) | 2006-06-08 | 2015-09-04 | Chugai Seiyaku Kabushiki Kaisha | Prevención o remedio para enfermedades inflamatorias |
| WO2007147901A1 (en) | 2006-06-22 | 2007-12-27 | Novo Nordisk A/S | Production of bispecific antibodies |
| US20100034194A1 (en) | 2006-10-11 | 2010-02-11 | Siemens Communications Inc. | Eliminating unreachable subscribers in voice-over-ip networks |
| EP2107115A1 (en) | 2007-01-24 | 2009-10-07 | Kyowa Hakko Kirin Co., Ltd. | Genetically recombinant antibody composition capable of binding specifically to ganglioside gm2 |
| WO2008092117A2 (en) | 2007-01-25 | 2008-07-31 | Xencor, Inc. | Immunoglobulins with modifications in the fcr binding region |
| AU2008230795B2 (en) | 2007-03-27 | 2014-05-29 | Bioassets, Llc | Constructs and libraries comprising antibody surrogate light chain sequences |
| AU2008234248C1 (en) | 2007-03-29 | 2015-01-22 | Genmab A/S | Bispecific antibodies and methods for production thereof |
| US20100291023A1 (en) | 2007-05-31 | 2010-11-18 | Genmab A/S | Method for extending the half-life of exogenous or endogenous soluble molecules |
| WO2008145142A1 (en) | 2007-05-31 | 2008-12-04 | Genmab A/S | Stable igg4 antibodies |
| HUE028737T2 (en) | 2007-07-17 | 2017-01-30 | Squibb & Sons Llc | Monoclonal antibodies against glypican-3 |
| EP2031064A1 (de) | 2007-08-29 | 2009-03-04 | Boehringer Ingelheim Pharma GmbH & Co. KG | Verfahren zur Steigerung von Proteintitern |
| CA2698809C (en) | 2007-09-14 | 2023-10-17 | Amgen Inc. | Homogeneous antibody populations |
| CN101939425B (zh) | 2007-09-26 | 2014-05-14 | 中外制药株式会社 | 抗il-6受体抗体 |
| WO2009041734A1 (ja) | 2007-09-26 | 2009-04-02 | Kyowa Hakko Kirin Co., Ltd. | ヒトトロンボポエチン受容体に対するアゴニスト抗体 |
| AU2008304778B9 (en) | 2007-09-26 | 2014-05-08 | Chugai Seiyaku Kabushiki Kaisha | Method of modifying isoelectric point of antibody via amino acid substitution in CDR |
| PL3059246T3 (pl) | 2007-09-26 | 2018-11-30 | Chugai Seiyaku Kabushiki Kaisha | Zmodyfikowany region stały przeciwciała |
| CN101809162B (zh) | 2007-09-28 | 2013-06-05 | 中外制药株式会社 | 血浆中动力学被改善的磷脂酰肌醇蛋白聚糖3抗体 |
| JO3076B1 (ar) | 2007-10-17 | 2017-03-15 | Janssen Alzheimer Immunotherap | نظم العلاج المناعي المعتمد على حالة apoe |
| JP5314033B2 (ja) | 2007-10-22 | 2013-10-16 | メルク セローノ ソシエテ アノニム | 突然変異IgGFcフラグメントと融合した単一IFN−ベータ |
| JP5682995B2 (ja) | 2007-12-05 | 2015-03-11 | 中外製薬株式会社 | 抗nr10抗体、およびその利用 |
| TWI439545B (zh) | 2007-12-18 | 2014-06-01 | Bioalliance Cv | 辨別癌症細胞表現之cea與cd-43上含醣表位的抗體與其應用方法 |
| PE20091174A1 (es) | 2007-12-27 | 2009-08-03 | Chugai Pharmaceutical Co Ltd | Formulacion liquida con contenido de alta concentracion de anticuerpo |
| MX350962B (es) | 2008-01-07 | 2017-09-27 | Amgen Inc | Metodo para fabricar moleculas heterodimericas de fragmentos cristalizables de anticuerpo, utilizando efectos electrostaticos de direccion. |
| SI2250279T1 (sl) | 2008-02-08 | 2016-10-28 | Medimmune, Llc | Protitelesa anti-IFNAR1 z zmanjšano afiniteto do FC liganda |
| HRP20160209T1 (hr) | 2008-04-11 | 2016-03-25 | Chugai Pharmaceutical Co Ltd | Antigenski vežuća molekula koja se može višekratno vezati na dva ili više antigena |
| EP2620448A1 (en) | 2008-05-01 | 2013-07-31 | Amgen Inc. | Anti-hepcidin antibodies and methods of use |
| TWI440469B (zh) | 2008-09-26 | 2014-06-11 | Chugai Pharmaceutical Co Ltd | Improved antibody molecules |
| WO2010042904A2 (en) | 2008-10-10 | 2010-04-15 | Trubion Pharmaceuticals, Inc. | Tcr complex immunotherapeutics |
| AR074438A1 (es) | 2008-12-02 | 2011-01-19 | Pf Medicament | Proceso para la modulacion de la actividad antagonista de un anticuerpo monoclonal |
| WO2010064090A1 (en) | 2008-12-02 | 2010-06-10 | Pierre Fabre Medicament | Process for the modulation of the antagonistic activity of a monoclonal antibody |
| US20110279752A1 (en) | 2008-12-23 | 2011-11-17 | Sumitomo Chemical Company, Limited | Optical film and liquid crystal display device comprising same |
| WO2010080065A1 (en) | 2009-01-12 | 2010-07-15 | Ge Healthcare Bio-Sciences Ab | Affinity chromatography matrix |
| EP3674317B1 (en) | 2009-03-19 | 2024-12-11 | Chugai Seiyaku Kabushiki Kaisha | Antibody constant region variant |
| JP5717624B2 (ja) | 2009-03-19 | 2015-05-13 | 中外製薬株式会社 | 抗体定常領域改変体 |
| EP2233500A1 (en) | 2009-03-20 | 2010-09-29 | LFB Biotechnologies | Optimized Fc variants |
| ES2537100T3 (es) | 2009-04-07 | 2015-06-02 | Roche Glycart Ag | Anticuerpos biespecíficos trivalentes |
| CN102459346B (zh) | 2009-04-27 | 2016-10-26 | 昂考梅德药品有限公司 | 制造异源多聚体分子的方法 |
| PL2975051T3 (pl) | 2009-06-26 | 2021-09-20 | Regeneron Pharmaceuticals, Inc. | Wyizolowane z łatwością dwuswoiste przeciwciała o formacie natywnej immunoglobuliny |
| AU2010286518C1 (en) | 2009-08-29 | 2015-08-27 | Abbvie Inc. | Therapeutic DLL4 binding proteins |
| JP5837821B2 (ja) | 2009-09-24 | 2015-12-24 | 中外製薬株式会社 | 抗体定常領域改変体 |
| ES2777901T3 (es) | 2009-12-25 | 2020-08-06 | Chugai Pharmaceutical Co Ltd | Método de modificación de polipéptidos para purificar multímeros polipeptídicos |
| US20130089554A1 (en) | 2009-12-29 | 2013-04-11 | Emergent Product Development Seattle, Llc | RON Binding Constructs and Methods of Use Thereof |
| TWI505838B (zh) | 2010-01-20 | 2015-11-01 | Chugai Pharmaceutical Co Ltd | Stabilized antibody solution containing |
| WO2011091177A1 (en) | 2010-01-20 | 2011-07-28 | Tolerx, Inc. | Anti-ilt5 antibodies and ilt5-binding antibody fragments |
| CA2787755A1 (en) | 2010-01-20 | 2011-07-28 | Tolerx, Inc. | Immunoregulation by anti-ilt5 antibodies and ilt5-binding antibody fragments |
| JP5820800B2 (ja) | 2010-03-02 | 2015-11-24 | 協和発酵キリン株式会社 | 改変抗体組成物 |
| WO2011108714A1 (ja) | 2010-03-04 | 2011-09-09 | 中外製薬株式会社 | 抗体定常領域改変体 |
| KR20120138241A (ko) | 2010-03-11 | 2012-12-24 | 화이자 인코포레이티드 | pH 의존성 항원 결합을 갖는 항체 |
| JP5998050B2 (ja) | 2010-03-31 | 2016-09-28 | Jsr株式会社 | アフィニティークロマトグラフィー用充填剤 |
| HRP20241208T1 (hr) | 2010-04-20 | 2024-11-22 | Genmab A/S | Heterodimerni proteini koji sadrže fc fragment protutijela i postupci za njihovu proizvodnju |
| CA2796633C (en) | 2010-04-23 | 2020-10-27 | Genentech, Inc. | Production of heteromultimeric proteins |
| WO2011143545A1 (en) | 2010-05-14 | 2011-11-17 | Rinat Neuroscience Corporation | Heterodimeric proteins and methods for producing and purifying them |
| AU2011283694B2 (en) | 2010-07-29 | 2017-04-13 | Xencor, Inc. | Antibodies with modified isoelectric points |
| JP2013537416A (ja) | 2010-08-13 | 2013-10-03 | メディミューン リミテッド | 変異型Fc領域を含むモノマーポリペプチド及び使用方法 |
| CN103429620B (zh) | 2010-11-05 | 2018-03-06 | 酵活有限公司 | 在Fc结构域中具有突变的稳定异源二聚的抗体设计 |
| KR101398363B1 (ko) | 2010-11-17 | 2014-05-22 | 추가이 세이야쿠 가부시키가이샤 | 혈액응고 제viii 인자의 기능을 대체하는 기능을 갖는 다중특이성 항원 결합 분자 |
| KR102447595B1 (ko) | 2010-11-30 | 2022-09-26 | 추가이 세이야쿠 가부시키가이샤 | 세포상해 유도 치료제 |
| KR102108521B1 (ko) | 2011-03-25 | 2020-05-11 | 아이크노스 사이언스 에스. 아. | 헤테로 이량체 면역글로불린 |
| EP2699263A4 (en) | 2011-04-20 | 2014-12-24 | Liquidating Trust | METHOD FOR REDUCING AN UNWANTED IMMUNE RESPONSE TO A FOREIGN-LIKE IN A HUMAN PATIENT WITH ANTI-CD4 ANTIBODIES OR CD4-BINDING FRAGMENTS THEREOF OR CD4-BINDING MOLECULES |
| US9098611B2 (en) | 2012-11-26 | 2015-08-04 | Intouch Technologies, Inc. | Enhanced video interaction for a user interface of a telepresence network |
| CN104114579B (zh) | 2011-10-27 | 2020-01-24 | 健玛保 | 异二聚体蛋白的生成 |
| WO2013065708A1 (ja) | 2011-10-31 | 2013-05-10 | 中外製薬株式会社 | 重鎖と軽鎖の会合が制御された抗原結合分子 |
| US9574010B2 (en) | 2011-11-04 | 2017-02-21 | Zymeworks Inc. | Stable heterodimeric antibody design with mutations in the Fc domain |
| GB201203051D0 (en) | 2012-02-22 | 2012-04-04 | Ucb Pharma Sa | Biological products |
| SI2822587T1 (sl) | 2012-03-08 | 2016-04-29 | F. Hoffmann-La Roche Ag | Farmacevtska oblika abeta protitelesa |
| US9815909B2 (en) | 2012-03-13 | 2017-11-14 | Novimmune S.A. | Readily isolated bispecific antibodies with native immunoglobulin format |
| EP2832856A4 (en) | 2012-03-29 | 2016-01-27 | Chugai Pharmaceutical Co Ltd | ANTI-LAMP5 ANTIBODIES AND USE THEREOF |
| CA2871068C (en) | 2012-04-20 | 2022-06-14 | Merus B.V. | Methods and means for the production of ig-like molecules |
| RU2673153C2 (ru) | 2012-04-20 | 2018-11-22 | АПТЕВО РИСЁРЧ ЭНД ДИВЕЛОПМЕНТ ЭлЭлСи | Полипептиды, связывающиеся с cd3 |
| US20140154270A1 (en) | 2012-05-21 | 2014-06-05 | Chen Wang | Purification of non-human antibodies using kosmotropic salt enhanced protein a affinity chromatography |
| US9409994B2 (en) | 2012-06-01 | 2016-08-09 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | High-affinity monoclonal antibodies to glypican-3 and use thereof |
| KR20150041662A (ko) | 2012-08-13 | 2015-04-16 | 리제너론 파아마슈티컬스, 인크. | Ph-의존적 결합 특성을 갖는 항-pcsk9 항체 |
| JP6471095B2 (ja) | 2012-09-27 | 2019-02-20 | メルス ナムローゼ フェンノートシャップ | T細胞エンゲージャーとしての二重特異性IgG抗体 |
| JP6273205B2 (ja) | 2012-10-05 | 2018-01-31 | 協和発酵キリン株式会社 | ヘテロダイマータンパク質組成物 |
| EP2914634B1 (en) * | 2012-11-02 | 2017-12-06 | Zymeworks Inc. | Crystal structures of heterodimeric fc domains |
| CN103833852A (zh) | 2012-11-23 | 2014-06-04 | 上海市肿瘤研究所 | 针对磷脂酰肌醇蛋白多糖-3和t细胞抗原的双特异性抗体 |
| ES2699599T3 (es) | 2013-03-15 | 2019-02-11 | Abbvie Biotherapeutics Inc | Variantes de Fc |
| RU2730594C2 (ru) | 2013-09-27 | 2020-08-24 | Чугаи Сейяку Кабусики Кайся | Способ получения полипептидного гетеромультимера |
| EP3037525B1 (en) | 2013-09-30 | 2021-06-02 | Chugai Seiyaku Kabushiki Kaisha | Method for producing antigen-binding molecule using modified helper phage |
| CN110627907B (zh) | 2013-11-04 | 2024-03-29 | 艾科诺斯科技股份有限公司 | 重靶向t细胞的异源二聚免疫球蛋白的产生 |
| WO2015156268A1 (ja) | 2014-04-07 | 2015-10-15 | 中外製薬株式会社 | 免疫活性化抗原結合分子 |
| CA2947157A1 (en) | 2014-05-13 | 2015-11-19 | Chugai Seiyaku Kabushiki Kaisha | T cell-redirected antigen-binding molecule for cells having immunosuppression function |
| TWI831106B (zh) | 2014-06-20 | 2024-02-01 | 日商中外製藥股份有限公司 | 用於因第viii凝血因子及/或活化的第viii凝血因子的活性降低或欠缺而發病及/或進展的疾病之預防及/或治療之醫藥組成物 |
| AR101262A1 (es) | 2014-07-26 | 2016-12-07 | Regeneron Pharma | Plataforma de purificación para anticuerpos biespecíficos |
| MA40764A (fr) | 2014-09-26 | 2017-08-01 | Chugai Pharmaceutical Co Ltd | Agent thérapeutique induisant une cytotoxicité |
| JP6630036B2 (ja) | 2014-09-30 | 2020-01-15 | Jsr株式会社 | 標的物の精製方法、及び、ミックスモード用担体 |
| US11142587B2 (en) | 2015-04-01 | 2021-10-12 | Chugai Seiyaku Kabushiki Kaisha | Method for producing polypeptide hetero-oligomer |
| KR102057767B1 (ko) | 2015-04-17 | 2019-12-19 | 에프. 호프만-라 로슈 아게 | 응고 인자 및 다중특이적 항체의 조합 요법 |
| JP2018123055A (ja) | 2015-04-24 | 2018-08-09 | 公立大学法人奈良県立医科大学 | 血液凝固第viii因子(fviii)の機能を代替する多重特異性抗原結合分子を含有する、血液凝固第xi因子(fxi)異常症の予防および/または治療に用いられる医薬組成物 |
| JP7219005B2 (ja) | 2015-12-28 | 2023-02-07 | 中外製薬株式会社 | Fc領域含有ポリペプチドの精製を効率化するための方法 |
| TWI797073B (zh) | 2016-01-25 | 2023-04-01 | 德商安美基研究(慕尼黑)公司 | 包含雙特異性抗體建構物之醫藥組合物 |
| JP6175590B1 (ja) | 2016-03-14 | 2017-08-02 | 中外製薬株式会社 | 癌の治療に用いるための細胞傷害誘導治療剤 |
| RU2746754C2 (ru) | 2016-03-14 | 2021-04-20 | Чугаи Сейяку Кабусики Кайся | Индуцирующее повреждение клеток терапевтическое лекарственное средство, предназначенное для противораковой терапии |
| US12460014B2 (en) | 2016-04-28 | 2025-11-04 | Chugai Seiyaku Kabushiki Kaisha | Antibody-containing preparation |
| TW201836636A (zh) | 2017-03-31 | 2018-10-16 | 公立大學法人奈良縣立醫科大學 | 含有替代凝血因子viii功能之多特異性抗原結合分子之用於預防和/或治療凝血因子ix異常症的醫藥組合物 |
-
2006
- 2006-03-31 WO PCT/JP2006/306803 patent/WO2006106905A1/ja not_active Ceased
- 2006-03-31 EP EP15194500.3A patent/EP3050963B1/en not_active Revoked
- 2006-03-31 US US11/910,128 patent/US10011858B2/en active Active
- 2006-03-31 DK DK15194500T patent/DK3050963T3/da active
- 2006-03-31 JP JP2007511155A patent/JP5620626B2/ja active Active
- 2006-03-31 AU AU2006232287A patent/AU2006232287B2/en active Active
- 2006-03-31 EP EP06730751.2A patent/EP1870459B1/en active Active
- 2006-03-31 CA CA2603408A patent/CA2603408C/en active Active
- 2006-03-31 TW TW105116065A patent/TWI671403B/zh active
- 2006-03-31 TW TW095111601A patent/TWI544076B/zh active
- 2006-03-31 KR KR1020077025125A patent/KR101374454B1/ko active Active
- 2006-03-31 CN CN200680018841.9A patent/CN101198698B/zh active Active
- 2006-03-31 EP EP19197546.5A patent/EP3623473A1/en active Pending
- 2006-03-31 ES ES06730751.2T patent/ES2592271T3/es active Active
-
2012
- 2012-08-02 JP JP2012171614A patent/JP5739387B2/ja active Active
-
2017
- 2017-10-12 US US15/782,256 patent/US11168344B2/en active Active
-
2021
- 2021-11-05 US US17/520,368 patent/US20220267822A1/en not_active Abandoned
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH08500979A (ja) * | 1992-09-09 | 1996-02-06 | スミスクライン・ビーチヤム・コーポレーシヨン | ヒトにおいて病原体による感染に対する受動免疫を付与するための新規の抗体 |
| JPH11500916A (ja) * | 1995-02-28 | 1999-01-26 | ザ プロクター アンド ギャンブル カンパニー | 優れた微生物安定性を有する無炭酸飲料製品の製造 |
| WO1997010354A1 (fr) * | 1995-09-11 | 1997-03-20 | Kyowa Hakko Kogyo Co., Ltd. | Anticorps de la chaine alpha du recepteur de l'interleukine 5 humaine |
| JP2004086862A (ja) * | 2002-05-31 | 2004-03-18 | Celestar Lexico-Sciences Inc | タンパク質相互作用情報処理装置、タンパク質相互作用情報処理方法、プログラム、および、記録媒体 |
Non-Patent Citations (8)
Cited By (607)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8853366B2 (en) | 2001-01-17 | 2014-10-07 | Emergent Product Development Seattle, Llc | Binding domain-immunoglobulin fusion proteins |
| US10934571B2 (en) | 2002-07-18 | 2021-03-02 | Merus N.V. | Recombinant production of mixtures of antibodies |
| USRE47770E1 (en) | 2002-07-18 | 2019-12-17 | Merus N.V. | Recombinant production of mixtures of antibodies |
| US8597911B2 (en) | 2003-06-11 | 2013-12-03 | Chugai Seiyaku Kabushiki Kaisha | Process for producing antibodies |
| US8062635B2 (en) | 2003-10-10 | 2011-11-22 | Chugai Seiyaku Kabushiki Kaisha | Bispecific antibody substituting for functional proteins |
| US10011858B2 (en) | 2005-03-31 | 2018-07-03 | Chugai Seiyaku Kabushiki Kaisha | Methods for producing polypeptides by regulating polypeptide association |
| US20100015133A1 (en) * | 2005-03-31 | 2010-01-21 | Chugai Seiyaku Kabushiki Kaisha | Methods for Producing Polypeptides by Regulating Polypeptide Association |
| US11168344B2 (en) | 2005-03-31 | 2021-11-09 | Chugai Seiyaku Kabushiki Kaisha | Methods for producing polypeptides by regulating polypeptide association |
| US10143748B2 (en) | 2005-07-25 | 2018-12-04 | Aptevo Research And Development Llc | B-cell reduction using CD37-specific and CD20-specific binding molecules |
| US10307481B2 (en) | 2005-07-25 | 2019-06-04 | Aptevo Research And Development Llc | CD37 immunotherapeutics and uses thereof |
| US10934344B2 (en) | 2006-03-31 | 2021-03-02 | Chugai Seiyaku Kabushiki Kaisha | Methods of modifying antibodies for purification of bispecific antibodies |
| US11046784B2 (en) | 2006-03-31 | 2021-06-29 | Chugai Seiyaku Kabushiki Kaisha | Methods for controlling blood pharmacokinetics of antibodies |
| WO2007114325A1 (ja) * | 2006-03-31 | 2007-10-11 | Chugai Seiyaku Kabushiki Kaisha | 二重特異性抗体を精製するための抗体改変方法 |
| US12473375B2 (en) | 2006-03-31 | 2025-11-18 | Chugai Seiyaku Kabushiki Kaisha | Methods for controlling blood pharmacokinetics of antibodies |
| US9670269B2 (en) | 2006-03-31 | 2017-06-06 | Chugai Seiyaku Kabushiki Kaisha | Methods of modifying antibodies for purification of bispecific antibodies |
| US8409577B2 (en) | 2006-06-12 | 2013-04-02 | Emergent Product Development Seattle, Llc | Single chain multivalent binding proteins with effector function |
| US9376497B2 (en) | 2006-09-29 | 2016-06-28 | Oncomed Pharmaceuticals, Inc. | Compositions and methods for diagnosing and treating cancer |
| US9228020B2 (en) | 2006-09-29 | 2016-01-05 | Oncomed Pharmaceuticals, Inc. | Compositions and methods for diagnosing and treating cancer |
| US9212230B2 (en) | 2007-03-29 | 2015-12-15 | Genmab A/S | Bispecific antibodies and methods for production thereof |
| US10906991B2 (en) | 2007-03-29 | 2021-02-02 | Genmab A/S | Bispecific antibodies and methods for production thereof |
| JP2017071606A (ja) * | 2007-05-31 | 2017-04-13 | ゲンマブ エー/エス | 安定なIgG4抗体 |
| EP4119579A1 (en) * | 2007-05-31 | 2023-01-18 | Genmab A/S | Stable igg4 antibodies |
| US10752695B2 (en) | 2007-05-31 | 2020-08-25 | Genmab A/S | Stable IgG4 antibodies |
| JP2014122226A (ja) * | 2007-05-31 | 2014-07-03 | Genmab As | 安定なIgG4抗体 |
| US12122840B2 (en) | 2007-09-26 | 2024-10-22 | Chugai Seiyaku Kabushiki Kaisha | Method of modifying isoelectric point of antibody via amino acid substitution in CDR |
| US11248053B2 (en) | 2007-09-26 | 2022-02-15 | Chugai Seiyaku Kabushiki Kaisha | Method of modifying isoelectric point of antibody via amino acid substitution in CDR |
| US11332533B2 (en) | 2007-09-26 | 2022-05-17 | Chugai Seiyaku Kabushiki Kaisha | Modified antibody constant region |
| US9096651B2 (en) | 2007-09-26 | 2015-08-04 | Chugai Seiyaku Kabushiki Kaisha | Method of modifying isoelectric point of antibody via amino acid substitution in CDR |
| US9828429B2 (en) | 2007-09-26 | 2017-11-28 | Chugai Seiyaku Kabushiki Kaisha | Method of modifying isoelectric point of antibody via amino acid substitution in CDR |
| US9688762B2 (en) | 2007-09-26 | 2017-06-27 | Chugai Sciyaku Kabushiki Kaisha | Modified antibody constant region |
| EP2202245B1 (en) | 2007-09-26 | 2016-08-24 | Chugai Seiyaku Kabushiki Kaisha | Method of modifying isoelectric point of antibody via amino acid substitution in cdr |
| US12116414B2 (en) | 2007-09-26 | 2024-10-15 | Chugai Seiyaku Kabushiki Kaisha | Method of modifying isoelectric point of antibody via amino acid substitution in CDR |
| US9399680B2 (en) | 2007-12-05 | 2016-07-26 | Chugai Seiyaku Kabushiki Kaisha | Nucleic acids encoding anti-NR10 antibodies |
| US10138293B2 (en) | 2007-12-21 | 2018-11-27 | Hoffmann-La Roche, Inc. | Bivalent, bispecific antibodies |
| US10927163B2 (en) | 2007-12-21 | 2021-02-23 | Hoffmann-La Roche, Inc. | Bivalent, bispecific antibodies |
| KR101265855B1 (ko) | 2007-12-21 | 2013-05-31 | 에프. 호프만-라 로슈 아게 | 2가, 이중특이적 항체 |
| KR101265912B1 (ko) | 2007-12-21 | 2013-05-20 | 에프. 호프만-라 로슈 아게 | 2가, 이중특이적 항체 |
| KR101266659B1 (ko) * | 2007-12-21 | 2013-05-29 | 에프. 호프만-라 로슈 아게 | 2가, 이중특이적 항체 |
| KR101249607B1 (ko) | 2007-12-21 | 2013-04-02 | 에프. 호프만-라 로슈 아게 | 2가, 이중특이적 항체 |
| JP2016093175A (ja) * | 2008-01-07 | 2016-05-26 | アムジェン インコーポレイテッド | 静電的ステアリング(electrostaticsteering)効果を用いた抗体Fcヘテロ二量体分子を作製するための方法 |
| JP2011508604A (ja) * | 2008-01-07 | 2011-03-17 | アムジェン インコーポレイテッド | 静電的ステアリング(electrostaticsteering)効果を用いた抗体Fcヘテロ二量体分子を作製するための方法 |
| JP2018138035A (ja) * | 2008-01-07 | 2018-09-06 | アムジェン インコーポレイテッド | 静電的ステアリング(electrostatic steering)効果を用いた抗体Fcヘテロ二量体分子を作製するための方法 |
| US8592562B2 (en) | 2008-01-07 | 2013-11-26 | Amgen Inc. | Method for making antibody Fc-heterodimeric molecules using electrostatic steering effects |
| US9101609B2 (en) | 2008-04-11 | 2015-08-11 | Emergent Product Development Seattle, Llc | CD37 immunotherapeutic and combination with bifunctional chemotherapeutic thereof |
| US9890377B2 (en) | 2008-04-11 | 2018-02-13 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly |
| US11371039B2 (en) | 2008-04-11 | 2022-06-28 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly |
| US10472623B2 (en) | 2008-04-11 | 2019-11-12 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule capable of binding two or more antigen molecules repeatedly |
| US9868948B2 (en) | 2008-04-11 | 2018-01-16 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly |
| US11359194B2 (en) | 2008-04-11 | 2022-06-14 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule capable of binding two or more antigen molecules repeatedly |
| US10662245B2 (en) | 2008-09-26 | 2020-05-26 | Chugai Seiyaku Kabushiki Kaisha | Methods of reducing IL-6 activity for disease treatment |
| US10066018B2 (en) | 2009-03-19 | 2018-09-04 | Chugai Seiyaku Kabushiki Kaisha | Antibody constant region variant |
| US10253091B2 (en) | 2009-03-19 | 2019-04-09 | Chugai Seiyaku Kabushiki Kaisha | Antibody constant region variant |
| US9228017B2 (en) | 2009-03-19 | 2016-01-05 | Chugai Seiyaku Kabushiki Kaisha | Antibody constant region variant |
| JP2016116522A (ja) * | 2009-04-27 | 2016-06-30 | オンコメッド ファーマシューティカルズ インコーポレイテッド | ヘテロ多量体分子を作製するための方法 |
| US9309311B2 (en) | 2009-04-27 | 2016-04-12 | Oncomed Pharmaceuticals, Inc. | Method for making Heteromultimeric molecules |
| JP2017158569A (ja) * | 2009-04-27 | 2017-09-14 | オンコメッド ファーマシューティカルズ インコーポレイテッド | ヘテロ多量体分子を作製するための方法 |
| US9914771B2 (en) | 2009-04-27 | 2018-03-13 | Oncomed Pharmaceuticals, Inc. | Method for making heteromultimeric molecules |
| US9067986B2 (en) | 2009-04-27 | 2015-06-30 | Oncomed Pharmaceuticals, Inc. | Method for making heteromultimeric molecules |
| JP2018161141A (ja) * | 2009-04-27 | 2018-10-18 | オンコメッド ファーマシューティカルズ インコーポレイテッド | ヘテロ多量体分子を作製するための方法 |
| JP2012525149A (ja) * | 2009-04-27 | 2012-10-22 | オンコメッド ファーマシューティカルズ インコーポレイテッド | ヘテロ多量体分子を作製するための方法 |
| US11673945B2 (en) | 2009-06-16 | 2023-06-13 | Hoffmann-La Roche Inc. | Bispecific antigen binding proteins |
| US9676845B2 (en) | 2009-06-16 | 2017-06-13 | Hoffmann-La Roche, Inc. | Bispecific antigen binding proteins |
| US10640555B2 (en) | 2009-06-16 | 2020-05-05 | Hoffmann-La Roche Inc. | Bispecific antigen binding proteins |
| US9493578B2 (en) | 2009-09-02 | 2016-11-15 | Xencor, Inc. | Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens |
| US10150808B2 (en) | 2009-09-24 | 2018-12-11 | Chugai Seiyaku Kabushiki Kaisha | Modified antibody constant regions |
| US9511139B2 (en) | 2009-10-16 | 2016-12-06 | Oncomed Pharmaceuticals, Inc. | Therapeutic combination and methods of treatment with a DLL4 antagonist and an anti-hypertensive agent |
| US10870693B2 (en) | 2009-10-16 | 2020-12-22 | Oncomed Pharmaceuticals, Inc. | Therapeutic combination and methods of treatment with a DLL4 antagonist and an anti-hypertensive agent |
| US9982042B2 (en) | 2009-10-16 | 2018-05-29 | Oncomed Pharmaceuticals, Inc. | Therapeutic combination and methods of treatment with a DLL4 antagonist and an anti-hypertensive agent |
| JP2016190844A (ja) * | 2009-11-23 | 2016-11-10 | アムジェン インコーポレイテッド | 単量体抗体Fc |
| JP2013511281A (ja) * | 2009-11-23 | 2013-04-04 | アムジェン インコーポレイテッド | 単量体抗体Fc |
| KR20200038319A (ko) | 2009-12-25 | 2020-04-10 | 추가이 세이야쿠 가부시키가이샤 | 폴리펩티드 다량체를 정제하기 위한 폴리펩티드의 개변방법 |
| WO2011078332A1 (ja) * | 2009-12-25 | 2011-06-30 | 中外製薬株式会社 | ポリペプチド多量体を精製するためのポリペプチドの改変方法 |
| JPWO2011078332A1 (ja) * | 2009-12-25 | 2013-05-09 | 中外製薬株式会社 | ポリペプチド多量体を精製するためのポリペプチドの改変方法 |
| KR20180049249A (ko) | 2009-12-25 | 2018-05-10 | 추가이 세이야쿠 가부시키가이샤 | 폴리펩티드 다량체를 정제하기 위한 폴리펩티드의 개변방법 |
| US20130018174A1 (en) * | 2009-12-25 | 2013-01-17 | Chugai Seiyaku Kabushiki Kaisha | Polypeptide modification method for purifying polypeptide multimers |
| WO2011092989A1 (ja) | 2010-01-29 | 2011-08-04 | 東レ株式会社 | ポリ乳酸系樹脂シート |
| US10435458B2 (en) | 2010-03-04 | 2019-10-08 | Chugai Seiyaku Kabushiki Kaisha | Antibody constant region variants with reduced Fcgammar binding |
| US9150663B2 (en) * | 2010-04-20 | 2015-10-06 | Genmab A/S | Heterodimeric antibody Fc-containing proteins and methods for production thereof |
| JP7623325B2 (ja) | 2010-04-20 | 2025-01-28 | ジェンマブ エー/エス | ヘテロ二量体抗体Fc含有タンパク質およびその産生方法 |
| US20130039913A1 (en) * | 2010-04-20 | 2013-02-14 | Genmab A/S | Heterodimeric antibody fc-containing proteins and methods for production thereof |
| US11866514B2 (en) | 2010-04-20 | 2024-01-09 | Genmab A/S | Heterodimeric antibody Fc-containing proteins and methods for production thereof |
| JP2020114832A (ja) * | 2010-04-20 | 2020-07-30 | ゲンマブ エー/エス | ヘテロ二量体抗体Fc含有タンパク質およびその産生方法 |
| JP2019048814A (ja) * | 2010-04-20 | 2019-03-28 | ゲンマブ エー/エス | ヘテロ二量体抗体Fc含有タンパク質およびその産生方法 |
| JP2013531470A (ja) * | 2010-04-20 | 2013-08-08 | ゲンマブ エー/エス | ヘテロ二量体抗体Fc含有タンパク質およびその産生方法 |
| JP7530189B2 (ja) | 2010-04-20 | 2024-08-07 | ジェンマブ エー/エス | ヘテロ二量体抗体Fc含有タンパク質およびその産生方法 |
| US10597464B2 (en) | 2010-04-20 | 2020-03-24 | Genmab A/S | Heterodimeric antibody Fc-containing proteins and methods for production thereof |
| JP2017043621A (ja) * | 2010-04-20 | 2017-03-02 | ゲンマブ エー/エス | ヘテロ二量体抗体Fc含有タンパク質およびその産生方法 |
| JP2022160470A (ja) * | 2010-04-20 | 2022-10-19 | ジェンマブ エー/エス | ヘテロ二量体抗体Fc含有タンパク質およびその産生方法 |
| US9605061B2 (en) | 2010-07-29 | 2017-03-28 | Xencor, Inc. | Antibodies with modified isoelectric points |
| US9480744B2 (en) | 2010-09-10 | 2016-11-01 | Oncomed Pharmaceuticals, Inc. | Methods for treating melanoma |
| KR101973930B1 (ko) | 2010-11-05 | 2019-04-29 | 자임워크스 인코포레이티드 | Fc 도메인 내의 돌연변이를 갖는 안정한 이종이량체 항체 디자인 |
| KR20190015583A (ko) * | 2010-11-05 | 2019-02-13 | 자임워크스 인코포레이티드 | Fc 도메인 내의 돌연변이를 갖는 안정한 이종이량체 항체 디자인 |
| WO2012067176A1 (ja) | 2010-11-17 | 2012-05-24 | 中外製薬株式会社 | 血液凝固第viii因子の機能を代替する機能を有する多重特異性抗原結合分子 |
| US10450381B2 (en) | 2010-11-17 | 2019-10-22 | Chugai Seiyaku Kabushiki Kaisha | Methods of treatment that include the administration of bispecific antibodies |
| EP3318633A1 (en) | 2010-11-17 | 2018-05-09 | Chugai Seiyaku Kabushiki Kaisha | Multi-specific antigen-binding molecule having alternative function to function of blood coagulation factor viii |
| US9334331B2 (en) | 2010-11-17 | 2016-05-10 | Chugai Seiyaku Kabushiki Kaisha | Bispecific antibodies |
| CN109160951A (zh) * | 2010-11-30 | 2019-01-08 | 中外制药株式会社 | 细胞毒诱导治疗剂 |
| EP2647707B1 (en) | 2010-11-30 | 2018-09-12 | Chugai Seiyaku Kabushiki Kaisha | Cytotoxicity-inducing therapeutic agent |
| EP4303237A2 (en) | 2010-11-30 | 2024-01-10 | Chugai Seiyaku Kabushiki Kaisha | Cytotoxicity-inducing therapeutic agent |
| EP4279512A2 (en) | 2010-11-30 | 2023-11-22 | Chugai Seiyaku Kabushiki Kaisha | Cytotoxicity-inducing therapeutic agent |
| EP4279513A2 (en) | 2010-11-30 | 2023-11-22 | Chugai Seiyaku Kabushiki Kaisha | Cytotoxicity-inducing therapeutic agent |
| US12479929B2 (en) | 2010-11-30 | 2025-11-25 | Chugai Seiyaku Kabushiki Kaisha | Cytotoxicity-inducing therapeutic agent |
| JP2025120308A (ja) * | 2010-11-30 | 2025-08-15 | 中外製薬株式会社 | 細胞傷害誘導治療剤 |
| EP4279511A2 (en) | 2010-11-30 | 2023-11-22 | Chugai Seiyaku Kabushiki Kaisha | Cytotoxicity-inducing therapeutic agent |
| JP7717435B1 (ja) | 2010-11-30 | 2025-08-04 | 中外製薬株式会社 | 細胞傷害誘導治療剤 |
| EP3434767A1 (en) | 2010-11-30 | 2019-01-30 | Chugai Seiyaku Kabushiki Kaisha | Cytotoxicity-inducing therapeutic agent |
| JP2020202879A (ja) * | 2010-11-30 | 2020-12-24 | 中外製薬株式会社 | 細胞傷害誘導治療剤 |
| JP2020078335A (ja) * | 2010-11-30 | 2020-05-28 | 中外製薬株式会社 | 細胞傷害誘導治療剤 |
| JP2025092666A (ja) * | 2010-11-30 | 2025-06-19 | 中外製薬株式会社 | 細胞傷害誘導治療剤 |
| US11891434B2 (en) | 2010-11-30 | 2024-02-06 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule capable of binding to plurality of antigen molecules repeatedly |
| JP7686362B1 (ja) | 2010-11-30 | 2025-06-02 | 中外製薬株式会社 | 細胞傷害誘導治療剤 |
| JP2018093879A (ja) * | 2010-11-30 | 2018-06-21 | 中外製薬株式会社 | 細胞傷害誘導治療剤 |
| US11066483B2 (en) | 2010-11-30 | 2021-07-20 | Chugai Seiyaku Kabushiki Kaisha | Cytotoxicity-inducing therapeutic agent |
| JP2022023133A (ja) * | 2010-11-30 | 2022-02-07 | 中外製薬株式会社 | 細胞傷害誘導治療剤 |
| EP4303236A2 (en) | 2010-11-30 | 2024-01-10 | Chugai Seiyaku Kabushiki Kaisha | Cytotoxicity-inducing therapeutic agent |
| WO2012073985A1 (ja) | 2010-11-30 | 2012-06-07 | 中外製薬株式会社 | 細胞傷害誘導治療剤 |
| US12522669B2 (en) | 2010-11-30 | 2026-01-13 | Chugai Seiyaku Kabushiki Kaisha | Cytotoxicity-inducing therapeutic agent |
| JPWO2012073985A1 (ja) * | 2010-11-30 | 2014-05-19 | 中外製薬株式会社 | 細胞傷害誘導治療剤 |
| US11718678B2 (en) | 2011-02-25 | 2023-08-08 | Chugai Seiyaku Kabushiki Kaisha | Method for altering plasma retention and immunogenicity of antigen-binding molecule |
| US10618965B2 (en) | 2011-02-25 | 2020-04-14 | Chugai Seiyaku Kabushiki Kaisha | Method for altering plasma retention and immunogenicity of antigen-binding molecule |
| US10611825B2 (en) | 2011-02-28 | 2020-04-07 | Hoffmann La-Roche Inc. | Monovalent antigen binding proteins |
| US9982036B2 (en) | 2011-02-28 | 2018-05-29 | Hoffmann-La Roche Inc. | Dual FC antigen binding proteins |
| US10793621B2 (en) | 2011-02-28 | 2020-10-06 | Hoffmann-La Roche Inc. | Nucleic acid encoding dual Fc antigen binding proteins |
| US9499605B2 (en) | 2011-03-03 | 2016-11-22 | Zymeworks Inc. | Multivalent heteromultimer scaffold design and constructs |
| US10711051B2 (en) | 2011-03-03 | 2020-07-14 | Zymeworks Inc. | Multivalent heteromultimer scaffold design and constructs |
| US10155803B2 (en) | 2011-03-03 | 2018-12-18 | Zymeworks Inc. | Multivalent heteromultimer scaffold design and constructs |
| EP3825325A2 (en) | 2011-03-30 | 2021-05-26 | Chugai Seiyaku Kabushiki Kaisha | Retention of antigen-binding molecules in blood plasma and method for modifying immunogenicity |
| WO2012133782A1 (ja) | 2011-03-30 | 2012-10-04 | 中外製薬株式会社 | 抗原結合分子の血漿中滞留性と免疫原性を改変する方法 |
| US12371511B2 (en) | 2011-06-30 | 2025-07-29 | Chugai Seiyaku Kabushiki Kaisha | Heterodimerized polypeptide |
| WO2013002362A1 (ja) | 2011-06-30 | 2013-01-03 | 中外製薬株式会社 | ヘテロ二量化ポリペプチド |
| EP4011913A1 (en) | 2011-06-30 | 2022-06-15 | Chugai Seiyaku Kabushiki Kaisha | Heterodimerized polypeptide |
| KR20140041787A (ko) | 2011-06-30 | 2014-04-04 | 추가이 세이야쿠 가부시키가이샤 | 헤테로이량화 폴리펩티드 |
| US9890218B2 (en) | 2011-06-30 | 2018-02-13 | Chugai Seiyaku Kabushiki Kaisha | Heterodimerized polypeptide |
| US11512128B2 (en) | 2011-09-23 | 2022-11-29 | Mereo Biopharma 5, Inc. | VEGF/DLL4 binding agents and uses thereof |
| US10730940B2 (en) | 2011-09-23 | 2020-08-04 | Oncomed Pharmaceuticals, Inc. | VEGF/DLL4 binding agents and uses thereof |
| US8858941B2 (en) | 2011-09-23 | 2014-10-14 | Oncomed Pharmaceuticals, Inc. | VEGF/DLL4 binding agents and uses thereof |
| US9879084B2 (en) | 2011-09-23 | 2018-01-30 | Oncomed Pharmaceuticals, Inc. | Modified immunoglobulin molecules that specifically bind human VEGF and DLL4 |
| US9574009B2 (en) | 2011-09-23 | 2017-02-21 | Oncomed Pharmaceuticals, Inc. | Polynucleotides encoding VEGF/DLL4 binding agents |
| US9376488B2 (en) | 2011-09-23 | 2016-06-28 | Oncomed Pharmaceuticals, Inc. | VEGF binding antibodies |
| EP3263597A1 (en) | 2011-09-26 | 2018-01-03 | Merus N.V. | Generation of binding molecules |
| EP4567048A2 (en) | 2011-09-26 | 2025-06-11 | Merus N.V. | Generation of binding molecules |
| EP4086282A1 (en) | 2011-09-26 | 2022-11-09 | Merus N.V. | Generation of binding molecules |
| EP2604625A1 (en) | 2011-09-26 | 2013-06-19 | Merus B.V. | Generation of binding molecules |
| US10253100B2 (en) | 2011-09-30 | 2019-04-09 | Chugai Seiyaku Kabushiki Kaisha | Therapeutic antigen-binding molecule with a FcRn-binding domain that promotes antigen clearance |
| US11827699B2 (en) | 2011-09-30 | 2023-11-28 | Chugai Seiyaku Kabushiki Kaisha | Methods for producing antibodies promoting disappearance of antigens having plurality of biological activities |
| US12466897B2 (en) | 2011-10-10 | 2025-11-11 | Xencor, Inc. | Heterodimeric human IgG1 polypeptides with isoelectric point modifications |
| US10851178B2 (en) | 2011-10-10 | 2020-12-01 | Xencor, Inc. | Heterodimeric human IgG1 polypeptides with isoelectric point modifications |
| US10344050B2 (en) | 2011-10-27 | 2019-07-09 | Genmab A/S | Production of heterodimeric proteins |
| US11492371B2 (en) | 2011-10-27 | 2022-11-08 | Genmab A/S | Production of heterodimeric proteins |
| JP2017212981A (ja) * | 2011-10-31 | 2017-12-07 | 中外製薬株式会社 | 重鎖と軽鎖の会合が制御された抗原結合分子 |
| KR20140084249A (ko) | 2011-10-31 | 2014-07-04 | 추가이 세이야쿠 가부시키가이샤 | 중쇄와 경쇄의 회합이 제어된 항원 결합 분자 |
| CN109134658A (zh) * | 2011-10-31 | 2019-01-04 | 中外制药株式会社 | 控制了重链与轻链的缔合的抗原结合分子 |
| US11851476B2 (en) | 2011-10-31 | 2023-12-26 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule having regulated conjugation between heavy-chain and light-chain |
| EP2787078B1 (en) | 2011-10-31 | 2019-05-22 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule having regulated conjugation between heavy-chain and light-chain |
| WO2013065708A1 (ja) | 2011-10-31 | 2013-05-10 | 中外製薬株式会社 | 重鎖と軽鎖の会合が制御された抗原結合分子 |
| CN109134658B (zh) * | 2011-10-31 | 2022-10-14 | 中外制药株式会社 | 控制了重链与轻链的缔合的抗原结合分子 |
| KR20200123842A (ko) | 2011-10-31 | 2020-10-30 | 추가이 세이야쿠 가부시키가이샤 | 중쇄와 경쇄의 회합이 제어된 항원 결합 분자 |
| JPWO2013065708A1 (ja) * | 2011-10-31 | 2015-04-02 | 中外製薬株式会社 | 重鎖と軽鎖の会合が制御された抗原結合分子 |
| CN104011207A (zh) * | 2011-10-31 | 2014-08-27 | 中外制药株式会社 | 控制了重链与轻链的缔合的抗原结合分子 |
| CN104011207B (zh) * | 2011-10-31 | 2018-09-18 | 中外制药株式会社 | 控制了重链与轻链的缔合的抗原结合分子 |
| WO2013081143A1 (ja) | 2011-11-30 | 2013-06-06 | 中外製薬株式会社 | 免疫複合体を形成する細胞内への運搬体(キャリア)を含む医薬 |
| EP3517550A1 (en) | 2011-11-30 | 2019-07-31 | Chugai Seiyaku Kabushiki Kaisha | Drug containing carrier into cell for forming immune complex |
| US12269876B2 (en) | 2012-02-09 | 2025-04-08 | Chugai Seiyaku Kabushiki Kaisha | Modified Fc region of antibody |
| WO2013125667A1 (ja) | 2012-02-24 | 2013-08-29 | 中外製薬株式会社 | FcγRIIBを介して抗原の消失を促進する抗原結合分子 |
| EP3738980A1 (en) | 2012-02-24 | 2020-11-18 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule for promoting disappearance of antigen via fc gamma riib |
| US9358286B2 (en) | 2012-04-20 | 2016-06-07 | Merus B.V. | Methods and means for the production of IG-like molecules |
| US9248182B2 (en) | 2012-04-20 | 2016-02-02 | Merus B.V. | Methods and means for the production of Ig-like molecules |
| US11926859B2 (en) | 2012-04-20 | 2024-03-12 | Merus N.V. | Methods and means for the production of Ig-like molecules |
| US12123043B2 (en) | 2012-04-20 | 2024-10-22 | Merus N.V. | Methods and means for the production of Ig-like molecules |
| US9758805B2 (en) | 2012-04-20 | 2017-09-12 | Merus N.V. | Methods and means for the production of Ig-like molecules |
| US9248181B2 (en) | 2012-04-20 | 2016-02-02 | Merus B.V. | Methods and means for the production of Ig-like molecules |
| US10329596B2 (en) | 2012-04-20 | 2019-06-25 | Merus N.V. | Methods and means for the production of Ig-like molecules |
| US10337045B2 (en) | 2012-04-20 | 2019-07-02 | Merus N.V. | Methods and means for the production of Ig-like molecules |
| US10752929B2 (en) | 2012-04-20 | 2020-08-25 | Merus N.V. | Methods and means for the production of ig-like molecules |
| EP3795215A1 (en) | 2012-05-30 | 2021-03-24 | Chugai Seiyaku Kabushiki Kaisha | Target tissue-specific antigen-binding molecule |
| WO2013180200A1 (ja) | 2012-05-30 | 2013-12-05 | 中外製薬株式会社 | 標的組織特異的抗原結合分子 |
| JPWO2013187495A1 (ja) * | 2012-06-14 | 2016-02-08 | 中外製薬株式会社 | 改変されたFc領域を含む抗原結合分子 |
| EP4310191A2 (en) | 2012-06-14 | 2024-01-24 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule containing modified fc region |
| WO2013187495A1 (ja) | 2012-06-14 | 2013-12-19 | 中外製薬株式会社 | 改変されたFc領域を含む抗原結合分子 |
| US12522648B2 (en) | 2012-06-14 | 2026-01-13 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule containing modified Fc region |
| US11142563B2 (en) | 2012-06-14 | 2021-10-12 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule containing modified Fc region |
| US10358479B2 (en) | 2012-07-13 | 2019-07-23 | Zymeworks Inc. | Multivalent heteromultimer scaffold design and constructs |
| US11248037B2 (en) | 2012-07-13 | 2022-02-15 | Zymeworks Inc. | Multivalent heteromultimer scaffold design and constructs |
| JP2015522295A (ja) * | 2012-07-25 | 2015-08-06 | スーチョウ アルファマブ カンパニー リミテッド | 電荷の斥力相互作用を使用することによりホモダイマータンパク質の混合物を調製するための方法 |
| EP3721900A1 (en) | 2012-08-24 | 2020-10-14 | Chugai Seiyaku Kabushiki Kaisha | Fcgammariib-specific fc region variant |
| WO2014030728A1 (ja) | 2012-08-24 | 2014-02-27 | 中外製薬株式会社 | FcγRIIb特異的Fc領域改変体 |
| US10919953B2 (en) | 2012-08-24 | 2021-02-16 | Chugai Seiyaku Kabushiki Kaisha | FcgammaRIIB-specific Fc region variant |
| US12060418B2 (en) | 2012-09-27 | 2024-08-13 | Merus N.V. | Bispecific IgG antibodies as T cell engagers |
| US9771573B2 (en) | 2012-10-03 | 2017-09-26 | Zymeworks Inc. | Methods of quantitating heavy and light chain polypeptide pairs |
| US9599620B2 (en) | 2012-10-31 | 2017-03-21 | Oncomed Pharmaceuticals, Inc. | Methods and monitoring of treatment with a DLL4 antagonist |
| US10344099B2 (en) | 2012-11-05 | 2019-07-09 | Zenyaku Kogyo Kabushikikaisha | Antibody and antibody composition production method |
| WO2014069647A1 (ja) * | 2012-11-05 | 2014-05-08 | 全薬工業株式会社 | 抗体又は抗体組成物の製造方法 |
| JPWO2014069647A1 (ja) * | 2012-11-05 | 2016-09-08 | 全薬工業株式会社 | 抗体又は抗体組成物の製造方法 |
| US10233237B2 (en) | 2012-11-21 | 2019-03-19 | Amgen Inc. | Heterodimeric immunoglobulins |
| JP2015536349A (ja) * | 2012-11-21 | 2015-12-21 | アムジエン・インコーポレーテツド | ヘテロ二量体免疫グロブリン |
| US11466078B2 (en) | 2012-11-21 | 2022-10-11 | Amgen Inc. | Heterodimeric immunoglobulins |
| US9914785B2 (en) | 2012-11-28 | 2018-03-13 | Zymeworks Inc. | Engineered immunoglobulin heavy chain-light chain pairs and uses thereof |
| US12060436B2 (en) | 2012-11-28 | 2024-08-13 | Zymeworks Bc Inc. | Engineered immunoglobulin heavy chain-light chain pairs and uses thereof |
| US10077298B2 (en) | 2012-11-28 | 2018-09-18 | Zymeworks Inc. | Engineered immunoglobulin heavy chain-light chain pairs and uses thereof |
| US11286293B2 (en) | 2012-11-28 | 2022-03-29 | Zymeworks, Inc. | Engineered immunoglobulin heavy chain-light chain pairs and uses thereof |
| US12304945B2 (en) | 2012-11-28 | 2025-05-20 | Zymeworks Bc Inc. | Engineered immunoglobulin heavy chain-light chain pairs and uses thereof |
| US11078296B2 (en) | 2012-11-28 | 2021-08-03 | Zymeworks Inc. | Engineered immunoglobulin heavy chain-light chain pairs and uses thereof |
| WO2014082179A1 (en) * | 2012-11-28 | 2014-06-05 | Zymeworks Inc. | Engineered immunoglobulin heavy chain-light chain pairs and uses thereof |
| US10766960B2 (en) | 2012-12-27 | 2020-09-08 | Chugai Seiyaku Kabushiki Kaisha | Heterodimerized polypeptide |
| WO2014104165A1 (ja) | 2012-12-27 | 2014-07-03 | 中外製薬株式会社 | ヘテロ二量化ポリペプチド |
| KR20150097786A (ko) | 2012-12-27 | 2015-08-26 | 추가이 세이야쿠 가부시키가이샤 | 헤테로이량화 폴리펩티드 |
| US9650446B2 (en) | 2013-01-14 | 2017-05-16 | Xencor, Inc. | Heterodimeric proteins |
| US10738132B2 (en) | 2013-01-14 | 2020-08-11 | Xencor, Inc. | Heterodimeric proteins |
| US11718667B2 (en) | 2013-01-14 | 2023-08-08 | Xencor, Inc. | Optimized antibody variable regions |
| US11634506B2 (en) | 2013-01-14 | 2023-04-25 | Xencor, Inc. | Heterodimeric proteins |
| US11053316B2 (en) | 2013-01-14 | 2021-07-06 | Xencor, Inc. | Optimized antibody variable regions |
| US10131710B2 (en) | 2013-01-14 | 2018-11-20 | Xencor, Inc. | Optimized antibody variable regions |
| US9701759B2 (en) | 2013-01-14 | 2017-07-11 | Xencor, Inc. | Heterodimeric proteins |
| US10738133B2 (en) | 2013-01-14 | 2020-08-11 | Xencor, Inc. | Heterodimeric proteins |
| US10487155B2 (en) | 2013-01-14 | 2019-11-26 | Xencor, Inc. | Heterodimeric proteins |
| US10472427B2 (en) | 2013-01-14 | 2019-11-12 | Xencor, Inc. | Heterodimeric proteins |
| US9738722B2 (en) | 2013-01-15 | 2017-08-22 | Xencor, Inc. | Rapid clearance of antigen complexes using novel antibodies |
| US10047163B2 (en) | 2013-02-08 | 2018-08-14 | Abbvie Stemcentrx Llc | Multispecific constructs |
| US10968276B2 (en) | 2013-03-12 | 2021-04-06 | Xencor, Inc. | Optimized anti-CD3 variable regions |
| US9605084B2 (en) | 2013-03-15 | 2017-03-28 | Xencor, Inc. | Heterodimeric proteins |
| US11299554B2 (en) | 2013-03-15 | 2022-04-12 | Xencor, Inc. | Heterodimeric proteins |
| US11814423B2 (en) | 2013-03-15 | 2023-11-14 | Xencor, Inc. | Heterodimeric proteins |
| US10519242B2 (en) | 2013-03-15 | 2019-12-31 | Xencor, Inc. | Targeting regulatory T cells with heterodimeric proteins |
| US12415849B2 (en) | 2013-03-15 | 2025-09-16 | Xencor, Inc. | Heterodimeric proteins |
| US10858417B2 (en) | 2013-03-15 | 2020-12-08 | Xencor, Inc. | Heterodimeric proteins |
| US10544187B2 (en) | 2013-03-15 | 2020-01-28 | Xencor, Inc. | Targeting regulatory T cells with heterodimeric proteins |
| US10106624B2 (en) | 2013-03-15 | 2018-10-23 | Xencor, Inc. | Heterodimeric proteins |
| US10287364B2 (en) | 2013-03-15 | 2019-05-14 | Xencor, Inc. | Heterodimeric proteins |
| EP3783017A1 (en) | 2013-04-02 | 2021-02-24 | Chugai Seiyaku Kabushiki Kaisha | Fc region variant |
| WO2014163101A1 (ja) | 2013-04-02 | 2014-10-09 | 中外製薬株式会社 | Fc領域改変体 |
| US11267868B2 (en) | 2013-04-02 | 2022-03-08 | Chugai Seiyaku Kabushiki Kaisha | Fc region variant |
| JP2016522168A (ja) * | 2013-04-05 | 2016-07-28 | ジェネンテック, インコーポレイテッド | 抗il−4抗体及び二重特異性抗体及びその使用 |
| US11091541B2 (en) | 2013-04-29 | 2021-08-17 | Hoffmann-La Roche Inc. | Human FcRn-binding modified antibodies and methods of use |
| KR102441231B1 (ko) | 2013-09-27 | 2022-09-06 | 추가이 세이야쿠 가부시키가이샤 | 폴리펩티드 이종 다량체의 제조방법 |
| WO2015046467A1 (ja) | 2013-09-27 | 2015-04-02 | 中外製薬株式会社 | ポリペプチド異種多量体の製造方法 |
| KR20160056940A (ko) | 2013-09-27 | 2016-05-20 | 추가이 세이야쿠 가부시키가이샤 | 폴리펩티드 이종 다량체의 제조방법 |
| US11124576B2 (en) | 2013-09-27 | 2021-09-21 | Chungai Seiyaku Kabushiki Kaisha | Method for producing polypeptide heteromultimer |
| JP2019167343A (ja) * | 2013-09-27 | 2019-10-03 | 中外製薬株式会社 | ポリペプチド異種多量体の製造方法 |
| JPWO2015046467A1 (ja) * | 2013-09-27 | 2017-03-09 | 中外製薬株式会社 | ポリペプチド異種多量体の製造方法 |
| EP3940065A1 (en) | 2013-09-30 | 2022-01-19 | Chugai Seiyaku Kabushiki Kaisha | Method for producing antigen-binding molecule using modified helper phage |
| US10501737B2 (en) | 2013-09-30 | 2019-12-10 | Chugai Seiyaku Kabushiki Kaisha | Method for producing antigen-binding molecule using modified helper phage |
| KR20160062050A (ko) | 2013-09-30 | 2016-06-01 | 추가이 세이야쿠 가부시키가이샤 | 개변된 헬퍼 파지를 사용하여 항원 결합 분자를 제작하는 방법 |
| WO2015046554A1 (ja) | 2013-09-30 | 2015-04-02 | 中外製薬株式会社 | 改変されたヘルパーファージを用いて抗原結合分子を作製する方法 |
| US10323099B2 (en) | 2013-10-11 | 2019-06-18 | Hoffmann-La Roche Inc. | Multispecific domain exchanged common variable light chain antibodies |
| WO2015068847A1 (ja) | 2013-11-11 | 2015-05-14 | 中外製薬株式会社 | 改変された抗体可変領域を含む抗原結合分子 |
| EP4461751A2 (en) | 2013-11-11 | 2024-11-13 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule containing modified antibody variable region |
| US11739149B2 (en) | 2013-11-11 | 2023-08-29 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule containing modified antibody variable region |
| US12479916B2 (en) | 2013-11-11 | 2025-11-25 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule containing modified antibody variable region |
| WO2015083764A1 (ja) | 2013-12-04 | 2015-06-11 | 中外製薬株式会社 | 化合物の濃度に応じて抗原結合能の変化する抗原結合分子及びそのライブラリ |
| EP3763813A1 (en) | 2013-12-04 | 2021-01-13 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecules, the antigen-binding activity of which varies according to the concentration of compounds, and libraries of said molecules |
| US11555067B2 (en) | 2014-01-15 | 2023-01-17 | Hoffmann-La Roche Inc. | Fc-region variants with improved protein A-binding |
| EP3835318A1 (en) | 2014-01-15 | 2021-06-16 | F. Hoffmann-La Roche AG | Fc-region variants with modified fcrn- and maintained protein a-binding properties |
| WO2015107026A1 (en) | 2014-01-15 | 2015-07-23 | F. Hoffmann-La Roche Ag | Fc-region variants with modified fcrn- and maintained protein a-binding properties |
| EP3514179A1 (en) | 2014-01-24 | 2019-07-24 | Dana-Farber Cancer Institute, Inc. | Antibody molecules to pd-1 and uses thereof |
| EP4324518A2 (en) | 2014-01-31 | 2024-02-21 | Novartis AG | Antibody molecules to tim-3 and uses thereof |
| US11279770B2 (en) | 2014-02-28 | 2022-03-22 | Merus N.V. | Antibody that binds ErbB-2 and ErbB-3 |
| US12139548B2 (en) | 2014-02-28 | 2024-11-12 | Merus N.V. | Antibody that binds ErbB-2 and ErbB-3 |
| US10844127B2 (en) | 2014-02-28 | 2020-11-24 | Merus N.V. | Antibodies that bind EGFR and ErbB3 |
| US11820825B2 (en) | 2014-02-28 | 2023-11-21 | Merus N.V. | Methods of treating a subject having an EGFR-positive and/or ErbB-3-positive tumor |
| WO2015138920A1 (en) | 2014-03-14 | 2015-09-17 | Novartis Ag | Antibody molecules to lag-3 and uses thereof |
| EP3660050A1 (en) | 2014-03-14 | 2020-06-03 | Novartis AG | Antibody molecules to lag-3 and uses thereof |
| WO2015142675A2 (en) | 2014-03-15 | 2015-09-24 | Novartis Ag | Treatment of cancer using chimeric antigen receptor |
| US11840579B2 (en) | 2014-03-28 | 2023-12-12 | Xencor, Inc. | Bispecific antibodies that bind to CD38 and CD3 |
| US9822186B2 (en) | 2014-03-28 | 2017-11-21 | Xencor, Inc. | Bispecific antibodies that bind to CD38 and CD3 |
| US10858451B2 (en) | 2014-03-28 | 2020-12-08 | Xencor, Inc. | Bispecific antibodies that bind to CD38 and CD3 |
| US11485790B2 (en) | 2014-04-07 | 2022-11-01 | Chugai Seiyaku Kabushiki Kaisha | Immunoactivating antigen-binding molecule |
| US12071482B2 (en) | 2014-05-02 | 2024-08-27 | Momenta Pharmaceuticals, Inc. | Compositions and methods related to engineered Fc constructs |
| US11124573B2 (en) | 2014-05-02 | 2021-09-21 | Janssen Biotech, Inc. | Compositions and methods related to engineered Fc constructs |
| US11505605B2 (en) | 2014-05-13 | 2022-11-22 | Chugai Seiyaku Kabushiki Kaisha | T cell-redirected antigen-binding molecule for cells having immunosuppression function |
| US11306156B2 (en) | 2014-05-28 | 2022-04-19 | Zymeworks Inc. | Modified antigen binding polypeptide constructs and uses thereof |
| US12286489B2 (en) | 2014-05-28 | 2025-04-29 | Zymeworks BC, Inc. | Modified antigen binding polypeptide constructs and uses thereof |
| EP3970747A2 (en) | 2014-06-03 | 2022-03-23 | XBiotech Inc. | Compositions and methods for treating and preventing staphylococcus aureus infections |
| WO2015187779A1 (en) | 2014-06-03 | 2015-12-10 | Xbiotech, Inc. | Compositions and methods for treating and preventing staphylococcus aureus infections |
| EP3722316A1 (en) | 2014-07-21 | 2020-10-14 | Novartis AG | Treatment of cancer using a cd33 chimeric antigen receptor |
| WO2016014530A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Combinations of low, immune enhancing. doses of mtor inhibitors and cars |
| WO2016014565A2 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Treatment of cancer using humanized anti-bcma chimeric antigen receptor |
| WO2016014553A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Sortase synthesized chimeric antigen receptors |
| EP3660042A1 (en) | 2014-07-31 | 2020-06-03 | Novartis AG | Subset-optimized chimeric antigen receptor-containing t-cells |
| EP4205749A1 (en) | 2014-07-31 | 2023-07-05 | Novartis AG | Subset-optimized chimeric antigen receptor-containing cells |
| WO2016025880A1 (en) | 2014-08-14 | 2016-02-18 | Novartis Ag | Treatment of cancer using gfr alpha-4 chimeric antigen receptor |
| EP3712171A1 (en) | 2014-08-19 | 2020-09-23 | Novartis AG | Treatment of cancer using a cd123 chimeric antigen receptor |
| WO2016044605A1 (en) | 2014-09-17 | 2016-03-24 | Beatty, Gregory | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
| EP3967709A1 (en) | 2014-09-17 | 2022-03-16 | Novartis AG | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
| KR20230101934A (ko) | 2014-09-26 | 2023-07-06 | 추가이 세이야쿠 가부시키가이샤 | 세포상해 유도 치료제 |
| KR20210121268A (ko) | 2014-09-26 | 2021-10-07 | 추가이 세이야쿠 가부시키가이샤 | 세포상해 유도 치료제 |
| US11150254B2 (en) | 2014-09-26 | 2021-10-19 | Chugai Seiyaku Kabushiki Kaisha | Method for measuring reactivity of FVIII |
| EP4640236A2 (en) | 2014-09-26 | 2025-10-29 | Chugai Seiyaku Kabushiki Kaisha | Cytotoxicity-inducing therapeutic agent |
| US11001643B2 (en) | 2014-09-26 | 2021-05-11 | Chugai Seiyaku Kabushiki Kaisha | Cytotoxicity-inducing therapeutic agent |
| US9975966B2 (en) | 2014-09-26 | 2018-05-22 | Chugai Seiyaku Kabushiki Kaisha | Cytotoxicity-inducing theraputic agent |
| US11214623B2 (en) | 2014-09-26 | 2022-01-04 | Chugai Seiyaku Kabushiki Kaisha | Antibody capable of neutralizing substance having activity alternative to function of coagulation factor VIII (FVIII) |
| KR20170104635A (ko) | 2014-09-26 | 2017-09-15 | 추가이 세이야쿠 가부시키가이샤 | 세포상해 유도 치료제 |
| WO2016061142A1 (en) | 2014-10-14 | 2016-04-21 | Novartis Ag | Antibody molecules to pd-l1 and uses thereof |
| EP4245376A2 (en) | 2014-10-14 | 2023-09-20 | Novartis AG | Antibody molecules to pd-l1 and uses thereof |
| US11046760B2 (en) | 2014-10-31 | 2021-06-29 | Oncomed Pharmaceuticals, Inc. | Combination therapy for treatment of disease |
| US10899846B2 (en) | 2014-11-06 | 2021-01-26 | Hoffmann-La Roche Inc. | Fc-region variants with modified FcRn- and protein A-binding properties |
| EP3842453A1 (en) | 2014-11-06 | 2021-06-30 | F. Hoffmann-La Roche AG | Fc-region variants with modified fcrn- and protein a-binding properties |
| EP4632120A2 (en) | 2014-11-11 | 2025-10-15 | Chugai Seiyaku Kabushiki Kaisha | Library of antigen-binding molecules including modified antibody variable region |
| US12234573B2 (en) | 2014-11-11 | 2025-02-25 | Chugai Seiyaku Kabushiki Kaisha | Library of antigen-binding molecules including modified antibody variable region |
| US11154615B2 (en) | 2014-11-11 | 2021-10-26 | Chugai Seiyaku Kabushiki Kaisha | Library of antigen-binding molecules including modified antibody variable region |
| US10259887B2 (en) | 2014-11-26 | 2019-04-16 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and tumor antigens |
| US11352442B2 (en) | 2014-11-26 | 2022-06-07 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and CD38 |
| US12359002B2 (en) | 2014-11-26 | 2025-07-15 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and tumor antigens |
| US9850320B2 (en) | 2014-11-26 | 2017-12-26 | Xencor, Inc. | Heterodimeric antibodies to CD3 X CD20 |
| US10889653B2 (en) | 2014-11-26 | 2021-01-12 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and tumor antigens |
| US10913803B2 (en) | 2014-11-26 | 2021-02-09 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and tumor antigens |
| US11945880B2 (en) | 2014-11-26 | 2024-04-02 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and tumor antigens |
| US12129309B2 (en) | 2014-11-26 | 2024-10-29 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and CD38 |
| US11673972B2 (en) | 2014-11-26 | 2023-06-13 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and tumor antigens |
| US9856327B2 (en) | 2014-11-26 | 2018-01-02 | Xencor, Inc. | Heterodimeric antibodies to CD3 X CD123 |
| US10526417B2 (en) | 2014-11-26 | 2020-01-07 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and CD38 |
| US11859011B2 (en) | 2014-11-26 | 2024-01-02 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and tumor antigens |
| US11111315B2 (en) | 2014-11-26 | 2021-09-07 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and tumor antigens |
| US11225528B2 (en) | 2014-11-26 | 2022-01-18 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and tumor antigens |
| WO2016090034A2 (en) | 2014-12-03 | 2016-06-09 | Novartis Ag | Methods for b cell preconditioning in car therapy |
| US10000560B2 (en) | 2014-12-19 | 2018-06-19 | Chugai Seiyaku Kabushiki Kaisha | Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use |
| US10738111B2 (en) | 2014-12-19 | 2020-08-11 | Chugai Seiyaku Kabushiki Kaisha | Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use |
| US10865253B2 (en) | 2014-12-19 | 2020-12-15 | Genmab A/S | Rodent bispecific heterodimeric proteins |
| US12169205B2 (en) | 2014-12-19 | 2024-12-17 | Chugai Seiyaku Kabushiki Kaisha | Anti-myostatin antibodies, polypeptides containing variant fc regions, and methods of use |
| WO2016098357A1 (en) | 2014-12-19 | 2016-06-23 | Chugai Seiyaku Kabushiki Kaisha | Anti-myostatin antibodies, polypeptides containing variant fc regions, and methods of use |
| EP4600372A2 (en) | 2014-12-19 | 2025-08-13 | Chugai Seiyaku Kabushiki Kaisha | Anti-myostatin antibodies, polypeptides containing variant fc regions, and methods of use |
| US11454633B2 (en) | 2014-12-19 | 2022-09-27 | Chugai Seiyaku Kabushiki Kaisha | Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use |
| US11597760B2 (en) | 2014-12-19 | 2023-03-07 | Chugai Seiyaku Kabushiki Kaisha | Method of detecting the presence of complement C5 |
| US10385122B2 (en) | 2014-12-19 | 2019-08-20 | Chugai Seiyaku Kabushiki Kaisha | Nucleic acids encoding anti-C5 antibodies |
| US10428155B2 (en) | 2014-12-22 | 2019-10-01 | Xencor, Inc. | Trispecific antibodies |
| US9969800B2 (en) | 2015-02-05 | 2018-05-15 | Chugai Seiyaku Kabushiki Kaisha | IL-8 antibodies |
| US11180548B2 (en) | 2015-02-05 | 2021-11-23 | Chugai Seiyaku Kabushiki Kaisha | Methods of neutralizing IL-8 biological activity |
| US10519229B2 (en) | 2015-02-05 | 2019-12-31 | Chugai Seiyaku Kabushiki Kaisha | Nucleic acids encoding IL-8 antibodies |
| US10774148B2 (en) | 2015-02-27 | 2020-09-15 | Chugai Seiyaku Kabushiki Kaisha | Composition for treating IL-6-related diseases |
| US10227411B2 (en) | 2015-03-05 | 2019-03-12 | Xencor, Inc. | Modulation of T cells with bispecific antibodies and FC fusions |
| US11091548B2 (en) | 2015-03-05 | 2021-08-17 | Xencor, Inc. | Modulation of T cells with bispecific antibodies and Fc fusions |
| US11142587B2 (en) | 2015-04-01 | 2021-10-12 | Chugai Seiyaku Kabushiki Kaisha | Method for producing polypeptide hetero-oligomer |
| WO2016159213A1 (ja) * | 2015-04-01 | 2016-10-06 | 中外製薬株式会社 | ポリペプチド異種多量体の製造方法 |
| US12359001B2 (en) | 2015-04-01 | 2025-07-15 | Chugai Seiyaku Kabushiki Kaisha | Method for producing polypeptide hetero-oligomer |
| JPWO2016159213A1 (ja) * | 2015-04-01 | 2018-02-15 | 中外製薬株式会社 | ポリペプチド異種多量体の製造方法 |
| JP2021080260A (ja) * | 2015-04-01 | 2021-05-27 | 中外製薬株式会社 | ポリペプチド異種多量体の製造方法 |
| WO2016164731A2 (en) | 2015-04-08 | 2016-10-13 | Novartis Ag | Cd20 therapies, cd22 therapies, and combination therapies with a cd19 chimeric antigen receptor (car) - expressing cell |
| EP4056588A1 (en) | 2015-04-08 | 2022-09-14 | Novartis AG | Cd20 therapies, cd22 therapies, and combination therapies with a cd19 chimeric antigen receptor (car)- expressing cell |
| EP4491715A2 (en) | 2015-04-08 | 2025-01-15 | Novartis AG | Cd20 therapies, cd22 therapies, and combination therapies with a cd19 chimeric antigen receptor (car)- expressing cell |
| WO2016166014A1 (en) | 2015-04-17 | 2016-10-20 | F. Hoffmann-La Roche Ag | Combination therapy with coagulation factors and multispecific antibodies |
| WO2016172583A1 (en) | 2015-04-23 | 2016-10-27 | Novartis Ag | Treatment of cancer using chimeric antigen receptor and protein kinase a blocker |
| US11739148B2 (en) | 2015-07-10 | 2023-08-29 | Merus N.V. | Human CD3 binding antibody |
| US9914777B2 (en) | 2015-07-10 | 2018-03-13 | Merus N.V. | Human CD3 binding antibody |
| US10266593B2 (en) | 2015-07-10 | 2019-04-23 | Merus N.V. | Human CD3 binding antibody |
| WO2017019897A1 (en) | 2015-07-29 | 2017-02-02 | Novartis Ag | Combination therapies comprising antibody molecules to tim-3 |
| WO2017019894A1 (en) | 2015-07-29 | 2017-02-02 | Novartis Ag | Combination therapies comprising antibody molecules to lag-3 |
| EP3878465A1 (en) | 2015-07-29 | 2021-09-15 | Novartis AG | Combination therapies comprising antibody molecules to tim-3 |
| EP3964528A1 (en) | 2015-07-29 | 2022-03-09 | Novartis AG | Combination therapies comprising antibody molecules to lag-3 |
| EP4378957A2 (en) | 2015-07-29 | 2024-06-05 | Novartis AG | Combination therapies comprising antibody molecules to pd-1 |
| US11352426B2 (en) | 2015-09-21 | 2022-06-07 | Aptevo Research And Development Llc | CD3 binding polypeptides |
| US11339213B2 (en) | 2015-09-23 | 2022-05-24 | Mereo Biopharma 5, Inc. | Methods and compositions for treatment of cancer |
| EP3842450A1 (en) | 2015-10-23 | 2021-06-30 | Eureka Therapeutics, Inc. | Antibody/t-cell receptor chimeric constructs and uses thereof |
| US11939394B2 (en) | 2015-10-23 | 2024-03-26 | Merus N.V. | Binding molecules that inhibit cancer growth |
| US11976105B2 (en) | 2015-10-23 | 2024-05-07 | Eureka Therapeutics, Inc. | Antibody/T-cell receptor chimeric constructs and uses thereof |
| US10464988B2 (en) | 2015-10-23 | 2019-11-05 | Eureka Therapeutics, Inc. | Antibody/T-cell receptor chimeric constructs and uses thereof |
| US11421013B2 (en) | 2015-10-23 | 2022-08-23 | Eureka Therapeutics, Inc. | Antibody/T-cell receptor chimeric constructs and uses thereof |
| US10098951B2 (en) | 2015-10-23 | 2018-10-16 | Eureka Therapeutics, Inc. | Antibody/T-cell receptor chimeric constructs and uses thereof |
| US10822389B2 (en) | 2015-10-23 | 2020-11-03 | Eureka Therapeutics, Inc. | Antibody/T-cell receptor chimeric constructs and uses thereof |
| WO2017070608A1 (en) | 2015-10-23 | 2017-04-27 | Eureka Therapeutics, Inc. | Antibody/t-cell receptor chimeric constructs and uses thereof |
| US11649293B2 (en) | 2015-11-18 | 2023-05-16 | Chugai Seiyaku Kabushiki Kaisha | Method for enhancing humoral immune response |
| WO2017086367A1 (ja) | 2015-11-18 | 2017-05-26 | 中外製薬株式会社 | 免疫抑制機能を有する細胞に対するt細胞リダイレクト抗原結合分子を用いた併用療法 |
| WO2017086419A1 (ja) | 2015-11-18 | 2017-05-26 | 中外製薬株式会社 | 液性免疫応答の増強方法 |
| US11660340B2 (en) | 2015-11-18 | 2023-05-30 | Chugai Seiyaku Kabushiki Kaisha | Combination therapy using T cell redirection antigen binding molecule against cell having immunosuppressing function |
| US10227410B2 (en) | 2015-12-07 | 2019-03-12 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and PSMA |
| US11623957B2 (en) | 2015-12-07 | 2023-04-11 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and PSMA |
| EP4640705A2 (en) | 2015-12-16 | 2025-10-29 | Amgen Inc. | Anti-tl1a antigen binding proteins and uses thereof |
| US11104745B2 (en) | 2015-12-16 | 2021-08-31 | Amgen Inc. | Anti-TL1A/anti-TNF-alpha bispecific antigen binding proteins and uses thereof |
| WO2017106810A2 (en) | 2015-12-17 | 2017-06-22 | Novartis Ag | Combination of c-met inhibitor with antibody molecule to pd-1 and uses thereof |
| EP4424322A2 (en) | 2015-12-17 | 2024-09-04 | Novartis AG | Antibody molecules to pd-1 and uses thereof |
| WO2017106656A1 (en) | 2015-12-17 | 2017-06-22 | Novartis Ag | Antibody molecules to pd-1 and uses thereof |
| WO2017104783A1 (en) | 2015-12-18 | 2017-06-22 | Chugai Seiyaku Kabushiki Kaisha | Anti-myostatin antibodies, polypeptides containing variant fc regions, and methods of use |
| EP4643874A2 (en) | 2015-12-22 | 2025-11-05 | Novartis AG | Mesothelin chimeric antigen receptor (car) and antibody against pd-l1 inhibitor for combined use in anticancer therapy |
| US12252532B2 (en) | 2015-12-25 | 2025-03-18 | Chugai Seiyaku Kabushiki Kaisha | Anti-myostatin antibodies and methods of use |
| WO2017110980A1 (ja) | 2015-12-25 | 2017-06-29 | 中外製薬株式会社 | 増強された活性を有する抗体及びその改変方法 |
| US11359009B2 (en) | 2015-12-25 | 2022-06-14 | Chugai Seiyaku Kabushiki Kaisha | Anti-myostatin antibodies and methods of use |
| US12168697B2 (en) | 2015-12-25 | 2024-12-17 | Chugai Seiyaku Kabushiki Kaisha | Bispecific antibodies which bind blood coagulation factor VIII and have enhanced activity, and methods of use thereof for treating bleeding and associated conditions |
| US11649262B2 (en) | 2015-12-28 | 2023-05-16 | Chugai Seiyaku Kabushiki Kaisha | Method for promoting efficiency of purification of Fc region-containing polypeptide |
| WO2017125897A1 (en) | 2016-01-21 | 2017-07-27 | Novartis Ag | Multispecific molecules targeting cll-1 |
| EP3851457A1 (en) | 2016-01-21 | 2021-07-21 | Novartis AG | Multispecific molecules targeting cll-1 |
| US12391759B2 (en) | 2016-03-02 | 2025-08-19 | Momenta Pharmaceuticals, Inc. | Methods related to engineered Fc constructs |
| WO2017149515A1 (en) | 2016-03-04 | 2017-09-08 | Novartis Ag | Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore |
| WO2017159287A1 (ja) | 2016-03-14 | 2017-09-21 | 中外製薬株式会社 | 癌の治療に用いるための細胞傷害誘導治療剤 |
| US11072666B2 (en) | 2016-03-14 | 2021-07-27 | Chugai Seiyaku Kabushiki Kaisha | Cell injury inducing therapeutic drug for use in cancer therapy |
| WO2017165683A1 (en) | 2016-03-23 | 2017-09-28 | Novartis Ag | Cell secreted minibodies and uses thereof |
| WO2017181119A2 (en) | 2016-04-15 | 2017-10-19 | Novartis Ag | Compositions and methods for selective protein expression |
| EP4219721A2 (en) | 2016-04-15 | 2023-08-02 | Novartis AG | Compositions and methods for selective protein expression |
| US12460014B2 (en) | 2016-04-28 | 2025-11-04 | Chugai Seiyaku Kabushiki Kaisha | Antibody-containing preparation |
| US11623964B2 (en) | 2016-05-23 | 2023-04-11 | Momenta Pharmaceuticals, Inc. | Compositions and methods related to engineered Fc constructs |
| US12297291B2 (en) | 2016-05-23 | 2025-05-13 | Momenta Pharmaceuticals, Inc. | Compositions and methods related to engineered Fc constructs |
| US11155640B2 (en) | 2016-05-23 | 2021-10-26 | Janssen Biotech, Inc. | Compositions and methods related to engineered Fc constructs |
| WO2017210617A2 (en) | 2016-06-02 | 2017-12-07 | Porter, David, L. | Therapeutic regimens for chimeric antigen receptor (car)- expressing cells |
| US10787518B2 (en) | 2016-06-14 | 2020-09-29 | Xencor, Inc. | Bispecific checkpoint inhibitor antibodies |
| US11492407B2 (en) | 2016-06-14 | 2022-11-08 | Xencor, Inc. | Bispecific checkpoint inhibitor antibodies |
| US11236170B2 (en) | 2016-06-14 | 2022-02-01 | Xencor, Inc. | Bispecific checkpoint inhibitor antibodies |
| WO2017217525A1 (en) | 2016-06-17 | 2017-12-21 | Chugai Seiyaku Kabushiki Kaisha | Anti-myostatin antibodies and methods of use |
| US12054545B2 (en) | 2016-06-28 | 2024-08-06 | Xencor, Inc. | Heterodimeric antibodies that bind somatostatin receptor 2 |
| US11225521B2 (en) | 2016-06-28 | 2022-01-18 | Xencor, Inc. | Heterodimeric antibodies that bind somatostatin receptor 2 |
| US10316088B2 (en) | 2016-06-28 | 2019-06-11 | Xencor, Inc. | Heterodimeric antibodies that bind somatostatin receptor 2 |
| WO2018013918A2 (en) | 2016-07-15 | 2018-01-18 | Novartis Ag | Treatment and prevention of cytokine release syndrome using a chimeric antigen receptor in combination with a kinase inhibitor |
| WO2018023025A1 (en) | 2016-07-28 | 2018-02-01 | Novartis Ag | Combination therapies of chimeric antigen receptors adn pd-1 inhibitors |
| WO2018026819A2 (en) | 2016-08-01 | 2018-02-08 | Novartis Ag | Treatment of cancer using a chimeric antigen receptor in combination with an inhibitor of a pro-m2 macrophage molecule |
| US11780912B2 (en) | 2016-08-05 | 2023-10-10 | Chugai Seiyaku Kabushiki Kaisha | Composition for prophylaxis or treatment of IL-8 related diseases |
| US11053308B2 (en) | 2016-08-05 | 2021-07-06 | Chugai Seiyaku Kabushiki Kaisha | Method for treating IL-8-related diseases |
| US12516115B2 (en) | 2016-08-05 | 2026-01-06 | Chugai Seiyaku Kabushiki Kaisha | Composition for prophylaxis or treatment of IL-8 related diseases |
| US10793632B2 (en) | 2016-08-30 | 2020-10-06 | Xencor, Inc. | Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors |
| US11352438B2 (en) | 2016-09-06 | 2022-06-07 | Chugai Seiyaku Kabushiki Kaisha | Methods of using a bispecific antibody that recognizes coagulation factor IX and/or activated coagulation factor IX and coagulation factor X and/or activated coagulation factor X |
| WO2018067992A1 (en) | 2016-10-07 | 2018-04-12 | Novartis Ag | Chimeric antigen receptors for the treatment of cancer |
| US10550185B2 (en) | 2016-10-14 | 2020-02-04 | Xencor, Inc. | Bispecific heterodimeric fusion proteins containing IL-15-IL-15Rα Fc-fusion proteins and PD-1 antibody fragments |
| US10501543B2 (en) | 2016-10-14 | 2019-12-10 | Xencor, Inc. | IL15/IL15Rα heterodimeric Fc-fusion proteins |
| US11220531B2 (en) | 2017-01-06 | 2022-01-11 | Janssen Biotech, Inc. | Engineered Fc constructs |
| US11827682B2 (en) | 2017-01-06 | 2023-11-28 | Momenta Pharmaceuticals, Inc. | Engineered Fc constructs |
| EP4043485A1 (en) | 2017-01-26 | 2022-08-17 | Novartis AG | Cd28 compositions and methods for chimeric antigen receptor therapy |
| JP7556687B2 (ja) | 2017-02-24 | 2024-09-26 | 中外製薬株式会社 | 薬学的組成物、抗原結合分子、治療方法、およびスクリーニング方法 |
| US12054544B2 (en) | 2017-02-24 | 2024-08-06 | Chugai Seiyaku Kabushiki Kaisha | Compositions comprising antigen-binding molecules |
| WO2018155611A1 (ja) | 2017-02-24 | 2018-08-30 | 中外製薬株式会社 | 薬学的組成物、抗原結合分子、治療方法、およびスクリーニング方法 |
| WO2018158719A1 (en) | 2017-03-02 | 2018-09-07 | Novartis Ag | Engineered heterodimeric proteins |
| US12247078B2 (en) | 2017-03-31 | 2025-03-11 | Merus N.V. | ERBB-2 and ERBB-3 binding bispecific antibodies for use in the treatment of cells that have an NRG1 fusion gene |
| US11780925B2 (en) | 2017-03-31 | 2023-10-10 | Merus N.V. | ErbB-2 and ErbB3 binding bispecific antibodies for use in the treatment of cells that have an NRG1 fusion gene |
| WO2018181870A1 (ja) | 2017-03-31 | 2018-10-04 | 公立大学法人奈良県立医科大学 | 血液凝固第viii因子の機能を代替する多重特異性抗原結合分子を含有する、血液凝固第ix因子異常症の予防および/または治療に用いられる医薬組成物 |
| WO2018187227A1 (en) | 2017-04-03 | 2018-10-11 | Concologie, Inc. | Methods for treating cancer using ps-targeting antibodies with immuno-oncology agents |
| WO2018200583A1 (en) | 2017-04-26 | 2018-11-01 | Eureka Therapeutics, Inc. | Cells expressing chimeric activating receptors and chimeric stimulating receptors and uses thereof |
| US11613573B2 (en) | 2017-04-26 | 2023-03-28 | Eureka Therapeutics, Inc. | Chimeric antibody/T-cell receptor constructs and uses thereof |
| US10822413B2 (en) | 2017-04-26 | 2020-11-03 | Eureka Therapeutics, Inc. | Cells expressing chimeric activating receptors and chimeric stimulating receptors and uses thereof |
| US11965021B2 (en) | 2017-04-26 | 2024-04-23 | Eureka Therapeutics, Inc. | Cells expressing chimeric activating receptors and chimeric stimulating receptors and uses thereof |
| WO2018201051A1 (en) | 2017-04-28 | 2018-11-01 | Novartis Ag | Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor |
| WO2018201056A1 (en) | 2017-04-28 | 2018-11-01 | Novartis Ag | Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor |
| US12509511B2 (en) | 2017-05-02 | 2025-12-30 | National Center Of Neurology And Psychiatry | Method for predicting and evaluating therapeutic effect in diseases related to IL-6 and neutrophils |
| US11851486B2 (en) | 2017-05-02 | 2023-12-26 | National Center Of Neurology And Psychiatry | Method for predicting and evaluating therapeutic effect in diseases related to IL-6 and neutrophils |
| US12195551B2 (en) | 2017-05-17 | 2025-01-14 | Merus N.V. | Combination of an ErbB-2/ErbB-3 bispecific antibody with endocrine therapy for breast cancer |
| WO2018229612A1 (en) | 2017-06-12 | 2018-12-20 | Novartis Ag | Method of manufacturing bispecific antibodies, bispecific antibodies and therapeutic use of such antibodies |
| WO2018234575A1 (en) | 2017-06-22 | 2018-12-27 | Kymab Limited | Bispecific antibodies for factor ix and factor x |
| WO2018237157A1 (en) | 2017-06-22 | 2018-12-27 | Novartis Ag | CD73 BINDING ANTIBODY MOLECULES AND USES THEREOF |
| US11919969B2 (en) | 2017-06-22 | 2024-03-05 | Kymab Limited | Bispecific antibodies for factor IX and factor X |
| WO2019006007A1 (en) | 2017-06-27 | 2019-01-03 | Novartis Ag | POSOLOGICAL REGIMES FOR ANTI-TIM3 ANTIBODIES AND USES THEREOF |
| US11084863B2 (en) | 2017-06-30 | 2021-08-10 | Xencor, Inc. | Targeted heterodimeric Fc fusion proteins containing IL-15 IL-15alpha and antigen binding domains |
| US11752207B2 (en) | 2017-07-11 | 2023-09-12 | Compass Therapeutics Llc | Agonist antibodies that bind human CD137 and uses thereof |
| WO2019018730A1 (en) | 2017-07-20 | 2019-01-24 | Novartis Ag | DOSAGE REGIMES FOR ANTI-LAG3 ANTIBODIES AND USES THEREOF |
| US11773170B2 (en) | 2017-08-09 | 2023-10-03 | Merus N.V. | Antibodies that bind EGFR and cMET |
| KR20190039020A (ko) | 2017-09-29 | 2019-04-10 | 추가이 세이야쿠 가부시키가이샤 | 혈액 응고 제 viii 인자(fviii) 보인자 기능 대체 활성을 갖는 다중특이성 항원 결합 분자 및 당해 분자를 유효 성분으로서 함유하는 약학적 제제 |
| US12522668B2 (en) | 2017-09-29 | 2026-01-13 | Chugai Seiyaku Kabushiki Kaisha | Multispecific antigen-binding molecules having blood coagulation factor VIII (FVIII) cofactor function-substituting activity and pharmaceutical formulations containing such a molecule as an active ingredient |
| US10759870B2 (en) | 2017-09-29 | 2020-09-01 | Chugai Seiyaku Kabushiki Kaisha | Multispecific antigen-binding molecules having blood coagulation factor VIII (FVIII) cofactor function-substituting activity and pharmaceutical formulations containing such a molecule as an active ingredient |
| WO2019065795A1 (ja) | 2017-09-29 | 2019-04-04 | 中外製薬株式会社 | 血液凝固第viii因子(fviii)補因子機能代替活性を有する多重特異性抗原結合分子および当該分子を有効成分として含有する薬学的製剤 |
| JP6496095B1 (ja) * | 2017-09-29 | 2019-04-03 | 中外製薬株式会社 | 血液凝固第viii因子(fviii)補因子機能代替活性を有する多重特異性抗原結合分子および当該分子を有効成分として含有する薬学的製剤 |
| KR20200049764A (ko) | 2017-09-29 | 2020-05-08 | 추가이 세이야쿠 가부시키가이샤 | 혈액 응고 제 viii 인자(fviii) 보인자 기능 대체 활성을 갖는 다중특이성 항원 결합 분자 및 당해 분자를 유효 성분으로서 함유하는 약학적 제제 |
| WO2019077092A1 (en) | 2017-10-20 | 2019-04-25 | F. Hoffmann-La Roche Ag | METHOD FOR GENERATING MULTISPECIFIC ANTIBODIES FROM MONOSPECIFIC ANTIBODIES |
| WO2019086362A1 (en) | 2017-10-30 | 2019-05-09 | F. Hoffmann-La Roche Ag | Method for in vivo generation of multispecific antibodies from monospecific antibodies |
| US11718679B2 (en) | 2017-10-31 | 2023-08-08 | Compass Therapeutics Llc | CD137 antibodies and PD-1 antagonists and uses thereof |
| US12286483B2 (en) | 2017-10-31 | 2025-04-29 | Compass Therapeutics Llc | Method of treating cancer using CD137 antibodies and PD-1 antagonists |
| US12421322B2 (en) | 2017-11-01 | 2025-09-23 | Chugai Seiyaku Kabushiki Kaisha | Antibody variant and isoform with lowered biological activity |
| US11312770B2 (en) | 2017-11-08 | 2022-04-26 | Xencor, Inc. | Bispecific and monospecific antibodies using novel anti-PD-1 sequences |
| US10981992B2 (en) | 2017-11-08 | 2021-04-20 | Xencor, Inc. | Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors |
| US12152076B2 (en) | 2017-11-08 | 2024-11-26 | Xencor, Inc. | Bispecific and monospecific antibodies using novel anti-PD-1 sequences |
| WO2019099838A1 (en) | 2017-11-16 | 2019-05-23 | Novartis Ag | Combination therapies |
| US11851497B2 (en) | 2017-11-20 | 2023-12-26 | Compass Therapeutics Llc | CD137 antibodies and tumor antigen-targeting antibodies and uses thereof |
| US11952422B2 (en) | 2017-12-05 | 2024-04-09 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule comprising altered antibody variable region binding CD3 and CD137 |
| US11319355B2 (en) | 2017-12-19 | 2022-05-03 | Xencor, Inc. | Engineered IL-2 Fc fusion proteins |
| WO2019131988A1 (en) | 2017-12-28 | 2019-07-04 | Chugai Seiyaku Kabushiki Kaisha | Cytotoxicity-inducing therapeutic agent |
| US12247060B2 (en) | 2018-01-09 | 2025-03-11 | Marengo Therapeutics, Inc. | Calreticulin binding constructs and engineered T cells for the treatment of diseases |
| WO2019152660A1 (en) | 2018-01-31 | 2019-08-08 | Novartis Ag | Combination therapy using a chimeric antigen receptor |
| WO2019160007A1 (ja) | 2018-02-14 | 2019-08-22 | 中外製薬株式会社 | 抗原結合分子および組合せ |
| US12152073B2 (en) | 2018-03-14 | 2024-11-26 | Marengo Therapeutics, Inc. | Multifunctional molecules that bind to calreticulin and uses thereof |
| US12180302B2 (en) | 2018-04-04 | 2024-12-31 | Xencor, Inc. | Heterodimeric antibodies that bind fibroblast activation protein |
| US10982006B2 (en) | 2018-04-04 | 2021-04-20 | Xencor, Inc. | Heterodimeric antibodies that bind fibroblast activation protein |
| WO2019200229A1 (en) | 2018-04-13 | 2019-10-17 | Novartis Ag | Dosage regimens for anti-pd-l1 antibodies and uses thereof |
| US11505595B2 (en) | 2018-04-18 | 2022-11-22 | Xencor, Inc. | TIM-3 targeted heterodimeric fusion proteins containing IL-15/IL-15RA Fc-fusion proteins and TIM-3 antigen binding domains |
| US11524991B2 (en) | 2018-04-18 | 2022-12-13 | Xencor, Inc. | PD-1 targeted heterodimeric fusion proteins containing IL-15/IL-15Ra Fc-fusion proteins and PD-1 antigen binding domains and uses thereof |
| WO2019210153A1 (en) | 2018-04-27 | 2019-10-31 | Novartis Ag | Car t cell therapies with enhanced efficacy |
| US12384849B2 (en) | 2018-05-08 | 2025-08-12 | Amgen Inc. | Bispecific antibodies with cleavable C-terminal charge-paired tags |
| JP2024023264A (ja) * | 2018-05-08 | 2024-02-21 | アムジエン・インコーポレーテツド | 切断可能なc末端電荷対タグを有する二重特異性抗体 |
| JP7785734B2 (ja) | 2018-05-08 | 2025-12-15 | アムジエン・インコーポレーテツド | 切断可能なc末端電荷対タグを有する二重特異性抗体 |
| US12275769B2 (en) | 2018-05-14 | 2025-04-15 | Werewolf Therapeutics, Inc. | Activatable interleukin 12 polypeptides and methods of use thereof |
| US11453710B2 (en) | 2018-05-14 | 2022-09-27 | Werewolf Therapeutics, Inc. | Activatable interleukin 12 polypeptides and methods of use thereof |
| US11352403B2 (en) | 2018-05-14 | 2022-06-07 | Werewolf Therapeutics, Inc. | Activatable interleukin-2 polypeptides and methods of use thereof |
| US11535658B2 (en) | 2018-05-14 | 2022-12-27 | Werewolf Therapeutics, Inc. | Activatable interleukin-2 polypeptides and methods of use thereof |
| US11981716B2 (en) | 2018-05-14 | 2024-05-14 | Werewolf Therapeutics, Inc. | Activatable interleukin-2 polypeptides and methods of use thereof |
| WO2019226617A1 (en) | 2018-05-21 | 2019-11-28 | Compass Therapeutics Llc | Compositions and methods for enhancing the killing of target cells by nk cells |
| WO2019226658A1 (en) | 2018-05-21 | 2019-11-28 | Compass Therapeutics Llc | Multispecific antigen-binding compositions and methods of use |
| WO2019227003A1 (en) | 2018-05-25 | 2019-11-28 | Novartis Ag | Combination therapy with chimeric antigen receptor (car) therapies |
| WO2019232244A2 (en) | 2018-05-31 | 2019-12-05 | Novartis Ag | Antibody molecules to cd73 and uses thereof |
| WO2019232484A1 (en) | 2018-06-01 | 2019-12-05 | Compugen Ltd | Anti-pvrig/anti-tigit bispecific antibodies and methods of use |
| WO2019229701A2 (en) | 2018-06-01 | 2019-12-05 | Novartis Ag | Binding molecules against bcma and uses thereof |
| WO2019235420A1 (ja) | 2018-06-04 | 2019-12-12 | 中外製薬株式会社 | 複合体を検出する方法 |
| WO2019241426A1 (en) | 2018-06-13 | 2019-12-19 | Novartis Ag | Bcma chimeric antigen receptors and uses thereof |
| US12091438B2 (en) | 2018-06-18 | 2024-09-17 | Anwita Biosciences, Inc. | Anti-mesothelin constructs and uses thereof |
| WO2019246004A1 (en) | 2018-06-18 | 2019-12-26 | Anwita Biosciences, Inc. | Cytokine fusion proteins and uses thereof |
| US12215130B2 (en) | 2018-06-18 | 2025-02-04 | Anwita Biosciences, Inc. | Cytokine-albumin binding moiety fusion proteins and uses thereof |
| WO2019246293A2 (en) | 2018-06-19 | 2019-12-26 | Atarga, Llc | Antibody molecules to complement component 5 and uses thereof |
| WO2019244973A1 (ja) | 2018-06-20 | 2019-12-26 | 中外製薬株式会社 | 標的細胞に対する免疫反応を活性化する方法およびその組成物 |
| US12286477B2 (en) | 2018-07-03 | 2025-04-29 | Marengo Therapeutics, Inc. | Anti-TCR antibody molecules and uses thereof |
| US12351632B2 (en) | 2018-07-03 | 2025-07-08 | Marengo Therapeutics, Inc. | Anti-TCR antibody molecules and uses thereof |
| WO2020012337A1 (en) | 2018-07-10 | 2020-01-16 | Novartis Ag | 3-(5-amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and their use in the treatment of i karos family zinc finger 2 (ikzf2)-dependent diseases |
| WO2020021465A1 (en) | 2018-07-25 | 2020-01-30 | Advanced Accelerator Applications (Italy) S.R.L. | Method of treatment of neuroendocrine tumors |
| WO2020045545A1 (ja) | 2018-08-29 | 2020-03-05 | 中外製薬株式会社 | 抗体半分子、および抗体半分子のホモ二量体形成を抑制する方法 |
| US12473378B2 (en) | 2018-09-06 | 2025-11-18 | Kymab Limited | Antigen-binding molecules comprising unpaired variable domains |
| WO2020049128A1 (en) | 2018-09-06 | 2020-03-12 | Kymab Limited | Antigen-binding molecules comprising unpaired variable domains |
| US11866476B2 (en) | 2018-09-27 | 2024-01-09 | Xilio Development, Inc. | Masked IL-2-Fc fusion polypeptides |
| EP4321530A2 (en) | 2018-09-27 | 2024-02-14 | Xilio Development, Inc. | Masked cytokine polypeptides |
| US11053294B2 (en) | 2018-09-27 | 2021-07-06 | Xilio Development, Inc. | Masked cytokine polypeptides |
| US11827686B2 (en) | 2018-09-27 | 2023-11-28 | Xilio Development, Inc. | Masked cytokine polypeptides |
| US11827685B2 (en) | 2018-09-27 | 2023-11-28 | Xilio Development, Inc. | Masked cytokine polypeptides |
| US11718655B2 (en) | 2018-09-27 | 2023-08-08 | Xilio Development, Inc. | Masked interleukin-12 polypeptides |
| US11358999B2 (en) | 2018-10-03 | 2022-06-14 | Xencor, Inc. | IL-12 heterodimeric Fc-fusion proteins |
| US11970538B2 (en) | 2018-11-13 | 2024-04-30 | Compass Therapeutics Llc | Multispecific binding constructs against checkpoint molecules and uses thereof |
| US11046769B2 (en) | 2018-11-13 | 2021-06-29 | Compass Therapeutics Llc | Multispecific binding constructs against checkpoint molecules and uses thereof |
| US12503511B2 (en) | 2018-11-13 | 2025-12-23 | Compass Therapeutics, LLC | Multispecific binding constructs against checkpoint molecules and uses thereof |
| US12415859B2 (en) | 2018-12-18 | 2025-09-16 | Genmab A/S | Methods of producing heterodimeric antibodies |
| US12384855B2 (en) | 2018-12-19 | 2025-08-12 | Kymab Limited | PCSK9 antagonists |
| WO2020128467A2 (en) | 2018-12-19 | 2020-06-25 | Kymab Limited | Antagonists |
| WO2020128898A1 (en) | 2018-12-20 | 2020-06-25 | Novartis Ag | Pharmaceutical combinations |
| WO2020128972A1 (en) | 2018-12-20 | 2020-06-25 | Novartis Ag | Dosing regimen and pharmaceutical combination comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives |
| EP4015538A1 (en) | 2018-12-21 | 2022-06-22 | Kymab Limited | Fixaxfx bispecific antibody with common light chain |
| US11976135B2 (en) | 2018-12-21 | 2024-05-07 | Kymab Limited | FIXaxFX bispecific antibody with common light chain |
| WO2020128049A1 (en) | 2018-12-21 | 2020-06-25 | Kymab Limited | Fixaxfx bispecific antibody with common light chain |
| US11965030B2 (en) | 2018-12-24 | 2024-04-23 | Sanofi | Multispecific binding proteins with mutant fab domains |
| WO2020165833A1 (en) | 2019-02-15 | 2020-08-20 | Novartis Ag | 3-(1-oxo-5-(piperidin-4-yl)isoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| WO2020165868A1 (en) | 2019-02-15 | 2020-08-20 | Perkinelmer Cellular Technologies Germany Gmbh | Low-power microscope-objective pre-scan and high-power microscope-objective scan in x,y and z-direction for imaging objects such as cells using a microscope |
| WO2020165834A1 (en) | 2019-02-15 | 2020-08-20 | Novartis Ag | Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| US12384842B2 (en) | 2019-02-21 | 2025-08-12 | Marengo Therapeutics, Inc. | Antibody molecules that bind to NKP30 and uses thereof |
| US12358982B2 (en) | 2019-02-21 | 2025-07-15 | Marengo Therapeutics, Inc. | Multifunctional molecules that bind to T cell related cancer cells and uses thereof |
| WO2020172553A1 (en) | 2019-02-22 | 2020-08-27 | Novartis Ag | Combination therapies of egfrviii chimeric antigen receptors and pd-1 inhibitors |
| US11472890B2 (en) | 2019-03-01 | 2022-10-18 | Xencor, Inc. | Heterodimeric antibodies that bind ENPP3 and CD3 |
| WO2020189748A1 (ja) | 2019-03-19 | 2020-09-24 | 中外製薬株式会社 | Mta依存的に抗原に対する結合活性が変化する抗原結合ドメインを含む抗原結合分子及び当該抗原結合ドメイン取得用ライブラリ |
| WO2020205523A1 (en) | 2019-03-29 | 2020-10-08 | Atarga, Llc | Anti fgf23 antibody |
| US11739132B2 (en) | 2019-05-14 | 2023-08-29 | Werewolf Therapeutics, Inc. | Separation moieties and methods of use thereof |
| WO2020236792A1 (en) | 2019-05-21 | 2020-11-26 | Novartis Ag | Cd19 binding molecules and uses thereof |
| WO2020236797A1 (en) | 2019-05-21 | 2020-11-26 | Novartis Ag | Variant cd58 domains and uses thereof |
| WO2020236795A2 (en) | 2019-05-21 | 2020-11-26 | Novartis Ag | Trispecific binding molecules against bcma and uses thereof |
| WO2020246563A1 (ja) | 2019-06-05 | 2020-12-10 | 中外製薬株式会社 | 抗体切断部位結合分子 |
| WO2021006328A1 (en) | 2019-07-10 | 2021-01-14 | Chugai Seiyaku Kabushiki Kaisha | Claudin-6 binding molecules and uses thereof |
| US12528863B2 (en) | 2019-07-10 | 2026-01-20 | Chugai Seiyaku Kabushiki Kaisha | Claudin-6 binding molecules and uses thereof |
| WO2021079195A1 (en) | 2019-10-21 | 2021-04-29 | Novartis Ag | Tim-3 inhibitors and uses thereof |
| WO2021079188A1 (en) | 2019-10-21 | 2021-04-29 | Novartis Ag | Combination therapies with venetoclax and tim-3 inhibitors |
| US12036266B2 (en) | 2019-11-14 | 2024-07-16 | Werewolf Therapeutics, Inc. | Activatable cytokine polypeptides and methods of use thereof |
| US12076371B2 (en) | 2019-11-14 | 2024-09-03 | Werewolf Therapeutics, Inc. | Activatable cytokine polypeptides and methods of use thereof |
| WO2021108661A2 (en) | 2019-11-26 | 2021-06-03 | Novartis Ag | Chimeric antigen receptors and uses thereof |
| WO2021123902A1 (en) | 2019-12-20 | 2021-06-24 | Novartis Ag | Combination of anti tim-3 antibody mbg453 and anti tgf-beta antibody nis793, with or without decitabine or the anti pd-1 antibody spartalizumab, for treating myelofibrosis and myelodysplastic syndrome |
| WO2021123996A1 (en) | 2019-12-20 | 2021-06-24 | Novartis Ag | Uses of anti-tgf-beta antibodies and checkpoint inhibitors for the treatment of proliferative diseases |
| WO2021131021A1 (ja) | 2019-12-27 | 2021-07-01 | 中外製薬株式会社 | 抗ctla-4抗体およびその使用 |
| US12486326B2 (en) | 2020-01-03 | 2025-12-02 | Marengo Therapeutics, Inc. | Anti-TCR antibody molecules and uses thereof |
| WO2021144657A1 (en) | 2020-01-17 | 2021-07-22 | Novartis Ag | Combination comprising a tim-3 inhibitor and a hypomethylating agent for use in treating myelodysplastic syndrome or chronic myelomonocytic leukemia |
| WO2021146636A1 (en) | 2020-01-17 | 2021-07-22 | Becton, Dickinson And Company | Methods and compositions for single cell secretomics |
| WO2021173995A2 (en) | 2020-02-27 | 2021-09-02 | Novartis Ag | Methods of making chimeric antigen receptor-expressing cells |
| WO2021190980A1 (en) | 2020-03-22 | 2021-09-30 | Quadrucept Bio Limited | Multimers for viral strain evolution |
| WO2021195513A1 (en) | 2020-03-27 | 2021-09-30 | Novartis Ag | Bispecific combination therapy for treating proliferative diseases and autoimmune disorders |
| US11952423B2 (en) | 2020-03-30 | 2024-04-09 | Mie University | Bispecific antibody |
| KR20220160598A (ko) | 2020-03-30 | 2022-12-06 | 고쿠리츠다이가쿠호진 미에다이가쿠 | 이중 특이적 항체 |
| US12344674B2 (en) | 2020-03-30 | 2025-07-01 | Mie University | Bispecific antibody |
| WO2021200857A1 (ja) | 2020-03-30 | 2021-10-07 | 国立大学法人三重大学 | 二重特異的抗体 |
| US11718672B2 (en) | 2020-03-31 | 2023-08-08 | Chugai Seiyaki Kabushiki Kaisha | CD137- and DLL3-targeting multispecific antigen-binding molecules |
| US11274151B2 (en) | 2020-03-31 | 2022-03-15 | Chugai Seiyaku Kabushiki Kaisha | CD3-targeting and DLL3-targeting multispecific antigen-binding molecules and uses thereof |
| WO2021201087A1 (en) | 2020-03-31 | 2021-10-07 | Chugai Seiyaku Kabushiki Kaisha | Method for producing multispecific antigen-binding molecules |
| WO2021211753A1 (en) | 2020-04-15 | 2021-10-21 | Voyager Therapeutics, Inc. | Tau binding compounds |
| WO2021214460A1 (en) | 2020-04-22 | 2021-10-28 | Petmedix Ltd | Heterodimeric proteins |
| WO2021220215A1 (en) | 2020-05-01 | 2021-11-04 | Novartis Ag | Engineered immunoglobulins |
| US12404329B2 (en) | 2020-05-14 | 2025-09-02 | Xencor, Inc. | Heterodimeric antibodies that bind prostate specific membrane antigen (PSMA) and CD3 |
| US11919956B2 (en) | 2020-05-14 | 2024-03-05 | Xencor, Inc. | Heterodimeric antibodies that bind prostate specific membrane antigen (PSMA) and CD3 |
| WO2021235537A1 (ja) | 2020-05-22 | 2021-11-25 | 中外製薬株式会社 | 凝固第viii因子(f.viii)機能代替活性を有する物質を中和する抗体 |
| WO2021260528A1 (en) | 2020-06-23 | 2021-12-30 | Novartis Ag | Dosing regimen comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives |
| WO2022013787A1 (en) | 2020-07-16 | 2022-01-20 | Novartis Ag | Anti-betacellulin antibodies, fragments thereof, and multi-specific binding molecules |
| WO2022026592A2 (en) | 2020-07-28 | 2022-02-03 | Celltas Bio, Inc. | Antibody molecules to coronavirus and uses thereof |
| WO2022025220A1 (ja) | 2020-07-31 | 2022-02-03 | 中外製薬株式会社 | キメラ受容体を発現する細胞を含む医薬組成物 |
| WO2022029573A1 (en) | 2020-08-03 | 2022-02-10 | Novartis Ag | Heteroaryl substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| US11591401B2 (en) | 2020-08-19 | 2023-02-28 | Xencor, Inc. | Anti-CD28 compositions |
| US11919958B2 (en) | 2020-08-19 | 2024-03-05 | Xencor, Inc. | Anti-CD28 compositions |
| WO2022045276A1 (ja) | 2020-08-28 | 2022-03-03 | 中外製薬株式会社 | ヘテロ二量体Fcポリペプチド |
| WO2022043558A1 (en) | 2020-08-31 | 2022-03-03 | Advanced Accelerator Applications International Sa | Method of treating psma-expressing cancers |
| WO2022043557A1 (en) | 2020-08-31 | 2022-03-03 | Advanced Accelerator Applications International Sa | Method of treating psma-expressing cancers |
| US12024559B2 (en) | 2020-10-23 | 2024-07-02 | Asher Biotherapeutics, Inc. | Fusions with CD8 antigen binding molecules for modulating immune cell function |
| WO2022097061A1 (en) | 2020-11-06 | 2022-05-12 | Novartis Ag | Anti-cd19 agent and b cell targeting agent combination therapy for treating b cell malignancies |
| WO2022097060A1 (en) | 2020-11-06 | 2022-05-12 | Novartis Ag | Cd19 binding molecules and uses thereof |
| WO2022104061A1 (en) | 2020-11-13 | 2022-05-19 | Novartis Ag | Combination therapies with chimeric antigen receptor (car)-expressing cells |
| US12280120B2 (en) | 2020-11-25 | 2025-04-22 | Xilio Development, Inc. | Tumor-specific cleavable linkers |
| WO2022162569A1 (en) | 2021-01-29 | 2022-08-04 | Novartis Ag | Dosage regimes for anti-cd73 and anti-entpd2 antibodies and uses thereof |
| WO2022184659A1 (en) | 2021-03-01 | 2022-09-09 | Quadrucept Bio Limited | Antibody domains & multimers |
| US11739144B2 (en) | 2021-03-09 | 2023-08-29 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and CLDN6 |
| US12398207B2 (en) | 2021-03-09 | 2025-08-26 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and CLDN6 |
| US11859012B2 (en) | 2021-03-10 | 2024-01-02 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and GPC3 |
| WO2022215011A1 (en) | 2021-04-07 | 2022-10-13 | Novartis Ag | USES OF ANTI-TGFβ ANTIBODIES AND OTHER THERAPEUTIC AGENTS FOR THE TREATMENT OF PROLIFERATIVE DISEASES |
| WO2022223001A1 (zh) | 2021-04-22 | 2022-10-27 | 广东菲鹏制药股份有限公司 | 双特异性多功能融合多肽 |
| WO2022243846A1 (en) | 2021-05-18 | 2022-11-24 | Novartis Ag | Combination therapies |
| US12247072B2 (en) | 2021-05-19 | 2025-03-11 | Asher Biotherapeutics, Inc. | IL-21 polypeptides and targeted constructs |
| US12122827B2 (en) | 2021-05-19 | 2024-10-22 | Asher Biotherapeutics, Inc. | IL-21 polypeptides and targeted constructs |
| US12448451B2 (en) | 2021-06-25 | 2025-10-21 | Chugai Seiyaku Kabushiki Kaisha | Anti-CTLA-4 antibody and use thereof |
| WO2022270611A1 (ja) | 2021-06-25 | 2022-12-29 | 中外製薬株式会社 | 抗ctla-4抗体 |
| WO2022270612A1 (ja) | 2021-06-25 | 2022-12-29 | 中外製薬株式会社 | 抗ctla-4抗体の使用 |
| US12415857B2 (en) | 2021-06-25 | 2025-09-16 | Chugai Seiyaku Kabushiki Kaisha | Anti-CTLA-4 antibody and use thereof |
| WO2023044483A2 (en) | 2021-09-20 | 2023-03-23 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of her2 positive cancer |
| WO2023054421A1 (ja) | 2021-09-29 | 2023-04-06 | 中外製薬株式会社 | がんの治療に用いるための細胞傷害誘導治療剤 |
| WO2023058705A1 (ja) | 2021-10-08 | 2023-04-13 | 中外製薬株式会社 | 抗hla-dq2.5抗体の製剤 |
| WO2023092004A1 (en) | 2021-11-17 | 2023-05-25 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of tau-related disorders |
| WO2023150778A1 (en) | 2022-02-07 | 2023-08-10 | Visterra, Inc. | Anti-idiotype antibody molecules and uses thereof |
| WO2023209568A1 (en) | 2022-04-26 | 2023-11-02 | Novartis Ag | Multispecific antibodies targeting il-13 and il-18 |
| WO2023220695A2 (en) | 2022-05-13 | 2023-11-16 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of her2 positive cancer |
| WO2024020429A1 (en) | 2022-07-22 | 2024-01-25 | Lyell Immunopharma, Inc. | Immune cell therapy |
| WO2024030976A2 (en) | 2022-08-03 | 2024-02-08 | Voyager Therapeutics, Inc. | Compositions and methods for crossing the blood brain barrier |
| WO2024059739A1 (en) | 2022-09-15 | 2024-03-21 | Voyager Therapeutics, Inc. | Tau binding compounds |
| WO2024111657A1 (ja) | 2022-11-25 | 2024-05-30 | 中外製薬株式会社 | タンパク質の製造方法 |
| EP4624489A1 (en) | 2022-11-25 | 2025-10-01 | Chugai Seiyaku Kabushiki Kaisha | Method for producing protein |
| EP4640715A1 (en) | 2022-12-23 | 2025-10-29 | Chimagen Biosciences, Ltd | Multi-specific polypeptide complex targeting gprc5d |
| WO2024131956A1 (zh) | 2022-12-23 | 2024-06-27 | 成都恩沐生物科技有限公司 | 靶向gprc5d的多特异性多肽复合物 |
| WO2024143442A1 (ja) * | 2022-12-27 | 2024-07-04 | 中外製薬株式会社 | 会合が制御されたポリペプチド |
| WO2024168061A2 (en) | 2023-02-07 | 2024-08-15 | Ayan Therapeutics Inc. | Antibody molecules binding to sars-cov-2 |
| WO2025037121A1 (en) | 2023-08-17 | 2025-02-20 | Bivictrix Limited | Bispecific antibodies |
| WO2025122634A1 (en) | 2023-12-05 | 2025-06-12 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of tau-related disorders |
| WO2025155602A1 (en) | 2024-01-16 | 2025-07-24 | Genentech, Inc. | Method of treating hemophilia a |
| WO2025172709A1 (en) | 2024-02-14 | 2025-08-21 | Bivictrix Limited | Therapeutic antibodies |
| WO2025172708A1 (en) | 2024-02-14 | 2025-08-21 | Bivictrix Limited | Therapeutic antibodies |
| GB202402048D0 (en) | 2024-02-14 | 2024-03-27 | Bivictrix Ltd | Therapeutic antibodies |
Also Published As
| Publication number | Publication date |
|---|---|
| US20220267822A1 (en) | 2022-08-25 |
| ES2592271T3 (es) | 2016-11-29 |
| CA2603408A1 (en) | 2006-10-12 |
| HK1114878A1 (en) | 2008-11-14 |
| AU2006232287B2 (en) | 2011-10-06 |
| JPWO2006106905A1 (ja) | 2008-09-11 |
| EP1870459A1 (en) | 2007-12-26 |
| TWI671403B (zh) | 2019-09-11 |
| CA2603408C (en) | 2018-08-21 |
| TW201631154A (zh) | 2016-09-01 |
| AU2006232287A8 (en) | 2008-01-24 |
| JP5620626B2 (ja) | 2014-11-05 |
| JP5739387B2 (ja) | 2015-06-24 |
| DK3050963T3 (da) | 2019-12-09 |
| JP2013009675A (ja) | 2013-01-17 |
| US11168344B2 (en) | 2021-11-09 |
| EP1870459A4 (en) | 2010-09-01 |
| AU2006232287A1 (en) | 2006-10-12 |
| EP3050963A1 (en) | 2016-08-03 |
| KR20080013875A (ko) | 2008-02-13 |
| CN101198698B (zh) | 2014-03-19 |
| US20180051307A1 (en) | 2018-02-22 |
| TWI544076B (zh) | 2016-08-01 |
| CN101198698A (zh) | 2008-06-11 |
| US20100015133A1 (en) | 2010-01-21 |
| EP1870459B1 (en) | 2016-06-29 |
| EP3623473A1 (en) | 2020-03-18 |
| EP3050963B1 (en) | 2019-09-18 |
| KR101374454B1 (ko) | 2014-03-17 |
| TW200722517A (en) | 2007-06-16 |
| US10011858B2 (en) | 2018-07-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5620626B2 (ja) | 会合制御によるポリペプチド製造方法 | |
| JP6219877B2 (ja) | 二重特異性抗体を精製するための抗体改変方法 | |
| KR102168733B1 (ko) | 중쇄와 경쇄의 회합이 제어된 항원 결합 분자 | |
| CN101460622A (zh) | 用于纯化双特异性抗体的抗体修饰方法 | |
| HK1114878B (en) | Methods for producing polypeptides by regulating polypeptide association | |
| HK1259059B (en) | Antigen-binding molecule having regulated conjugation between heavy-chain and light-chain | |
| HK1259058B (en) | Antigen-binding molecule having regulated conjugation between heavy-chain and light-chain | |
| HK1197429A (en) | Antigen-binding molecule having regulated conjugation between heavy-chain and light-chain | |
| HK1129420A (en) | Antibody modification method for purifying bispecific antibody |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 200680018841.9 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2007511155 Country of ref document: JP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2603408 Country of ref document: CA |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2006232287 Country of ref document: AU |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2006730751 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020077025125 Country of ref document: KR |
|
| NENP | Non-entry into the national phase |
Ref country code: RU |
|
| ENP | Entry into the national phase |
Ref document number: 2006232287 Country of ref document: AU Date of ref document: 20060330 Kind code of ref document: A |
|
| WWP | Wipo information: published in national office |
Ref document number: 2006232287 Country of ref document: AU |
|
| WWP | Wipo information: published in national office |
Ref document number: 2006730751 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 11910128 Country of ref document: US |