WO2014163101A1 - Fc領域改変体 - Google Patents

Fc領域改変体 Download PDF

Info

Publication number
WO2014163101A1
WO2014163101A1 PCT/JP2014/059706 JP2014059706W WO2014163101A1 WO 2014163101 A1 WO2014163101 A1 WO 2014163101A1 JP 2014059706 W JP2014059706 W JP 2014059706W WO 2014163101 A1 WO2014163101 A1 WO 2014163101A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
region
antigen
numbering
binding
Prior art date
Application number
PCT/JP2014/059706
Other languages
English (en)
French (fr)
Inventor
風太 味元
仁 堅田
智之 井川
Original Assignee
中外製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112015024587-0A priority Critical patent/BR112015024587B1/pt
Priority to US14/781,069 priority patent/US11267868B2/en
Application filed by 中外製薬株式会社 filed Critical 中外製薬株式会社
Priority to EP20192392.7A priority patent/EP3783017A1/en
Priority to EP14778553.9A priority patent/EP2982689B1/en
Priority to RU2015146769A priority patent/RU2757124C9/ru
Priority to KR1020217033927A priority patent/KR20210130260A/ko
Priority to KR1020157030650A priority patent/KR102318483B1/ko
Priority to MX2015014017A priority patent/MX2015014017A/es
Priority to JP2015510113A priority patent/JP6598680B2/ja
Priority to SG11201508170TA priority patent/SG11201508170TA/en
Priority to AU2014250434A priority patent/AU2014250434B2/en
Priority to CN201480031490.XA priority patent/CN105246914B/zh
Priority to CA2908350A priority patent/CA2908350C/en
Publication of WO2014163101A1 publication Critical patent/WO2014163101A1/ja
Priority to HK16102873.0A priority patent/HK1215034A1/zh
Priority to US17/671,185 priority patent/US20220411483A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/02Nasal agents, e.g. decongestants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/16Central respiratory analeptics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/06Antiabortive agents; Labour repressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/08Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/04Antipruritics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/14Drugs for dermatological disorders for baldness or alopecia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/06Antigout agents, e.g. antihyperuricemic or uricosuric agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/02Muscle relaxants, e.g. for tetanus or cramps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/06Drugs for disorders of the endocrine system of the anterior pituitary hormones, e.g. TSH, ACTH, FSH, LH, PRL, GH
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/38Drugs for disorders of the endocrine system of the suprarenal hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/472Complement proteins, e.g. anaphylatoxin, C3a, C5a
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/71Decreased effector function due to an Fc-modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/734Complement-dependent cytotoxicity [CDC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention introduces amino acid modifications into the Fc region of an antibody, so that when compared to a polypeptide containing the Fc region of natural human IgG, while maintaining the binding activity to Fc ⁇ RIIb, all active Fc ⁇ R
  • the present invention relates to an Fc region variant capable of reducing the binding activity to Fc ⁇ RIIa (R type), a polypeptide containing the Fc region variant, and a pharmaceutical composition containing the polypeptide.
  • Non-patent Documents 1 and 2 various technologies have been developed as technologies applicable to second-generation antibody drugs, such as technologies that improve effector function, antigen binding ability, pharmacokinetics, stability, or reduce immunogenicity risk, etc. has been reported (Non-Patent Document 3). Since antibody drugs generally have a very high dose, it is considered that it is difficult to produce a subcutaneously administered preparation and that the production cost is high. As a method for reducing the dose of the antibody drug, a method for improving the pharmacokinetics of the antibody and a method for improving the affinity between the antibody and the antigen can be considered.
  • Non-patent Documents 4 and 5 As a method for improving the pharmacokinetics of antibodies, artificial amino acid substitution in the constant region has been reported (Non-patent Documents 4 and 5). Affinity maturation technique (Non-patent Document 6) has been reported as a technique for enhancing antigen-binding ability and antigen-neutralizing ability. By introducing mutations into amino acids such as CDR regions of variable regions, binding activity to antigens is reported. Can be enhanced. It is possible to improve the biological activity of in vitro or reduce the dose by enhancing the antigen-binding ability, and further improve the drug efficacy in in vivo (in vivo) (Non-patent Document 7). ).
  • the amount of antigen that can be neutralized per antibody molecule depends on the affinity, and it is possible to neutralize the antigen with a small amount of antibody by increasing the affinity, and increase the affinity of the antibody by various methods. Is possible (Non-Patent Document 6). Furthermore, if it is possible to covalently bind to an antigen and make the affinity infinite, it is possible to neutralize one molecule of antigen (two antigens in the case of bivalence) with one molecule of antibody. However, in the conventional methods, one molecule of antibody is limited to bind to one molecule of antigen (in the case of bivalent, two antigens).
  • Non-Patent Document 8 discloses an antigen-binding molecule that binds to an antigen in a pH-dependent manner.
  • the pH-dependent antigen-binding molecule binds strongly to the antigen under neutral conditions in plasma and dissociates the antigen under acidic conditions within the endosome.
  • the antigen-binding molecule is recycled into the plasma by FcRn after dissociating the antigen, it can bind to the antigen again, so it can bind to multiple antigens repeatedly with one pH-dependent antigen-binding molecule. It becomes possible.
  • pH-dependent antigen-binding molecules modified to enhance FcRn binding under neutral conditions have the effect of repeatedly binding to the antigen and the effect of eliminating the antigen from plasma. Therefore, it has been reported that it is possible to remove an antigen from plasma by administration of such an antigen-binding molecule (Patent Document 2).
  • a pH-dependent antigen-binding molecule containing the Fc region of a normal IgG antibody hardly binds to FcRn under neutral conditions. Therefore, it is considered that the complex of the antigen-binding molecule and the antigen is taken up into the cell mainly due to non-specific uptake.
  • pH-dependent antigen-binding molecules modified to enhance FcRn binding under neutral conditions are more potent than pH-dependent antigen-binding molecules containing the Fc region of normal IgG antibodies. It is possible to further accelerate the disappearance of the antigen (Patent Document 2).
  • antigens Since the retention of antigens in plasma is very short compared to antibodies that have a recycling mechanism through FcRn, antigens must bind to antibodies that have the recycling mechanism in plasma (its binding is not pH-dependent). As a result, the retention in plasma is usually prolonged and the antigen concentration in plasma is increased. For example, when an antigen in plasma has multiple types of physiological functions, even if one type of physiological activity is blocked by antibody binding, the plasma concentration of the antigen may cause other physiological functions due to antibody binding. It may be possible to exacerbate the symptoms. From this point of view, there are cases where it is preferable to eliminate the antigen in plasma.
  • Non-patent Documents 12 and 13 It has been suggested that platelets aggregate through the blood vessels, resulting in the formation of a thrombus.
  • Non-patent Document 14 In patients with systemic lupus erythematosus, which is one of the autoimmune diseases, it is reported that platelets are activated by an Fc ⁇ RIIa-dependent mechanism, and that platelet activation correlates with severity (Non-patent Document 14). Further, studies using animal models so far have also reported that immune complexes of antibodies and multivalent antigens induce anaphylaxis via active Fc ⁇ R (Non-patent Document 15).
  • Non-patent Document 16 Non-patent Document 17
  • an antibody against the antibody drug itself may be easily produced.
  • the blood kinetics may deteriorate, or the neutralizing antibody may reduce the effect of the drug.
  • the antibody binds to the multivalent antigen to form an immune complex, and that the complex interacts with active Fc ⁇ R to induce various side effects. Detracts from value.
  • the present invention has been made in view of such circumstances, and its purpose is to introduce an amino acid modification in the Fc region of an antibody to accelerate the disappearance of an antigen, while originating from the binding to active Fc ⁇ R. It is an object of the present invention to provide a molecule that overcomes the shortcomings. That is, the binding activity to Fc ⁇ RIIb is maintained when compared with the polypeptide containing the Fc region of the natural IgG antibody, but the binding activity to all active Fc ⁇ Rs, especially the binding activity to Fc ⁇ RIIa (R type) is reduced. Another object is to provide an Fc region variant that can be prepared, a polypeptide containing the Fc region variant, and a pharmaceutical composition containing the polypeptide.
  • the present inventors introduced all amino acid Fc ⁇ Rs, particularly Fc ⁇ RIIa, while maintaining the binding activity to Fc ⁇ RIIb, by introducing an amino acid modification in the Fc region, as compared with a polypeptide containing the Fc region of natural IgG.
  • Fc region variants capable of reducing the binding activity to (R-type) and polypeptides containing the Fc region variants.
  • the present inventors combined Fc region variants in which the Fc region EU numbering 238th amino acid was modified with other amino acid modifications, while maintaining the binding activity to Fc ⁇ RIIb. It was found that the binding activity against type Fc ⁇ R, particularly the binding activity against Fc ⁇ RIIa (R type), can be reduced.
  • the present invention relates to the following.
  • the variant in which the binding activity to Fc ⁇ RIIb of the variant is maintained and the binding activity to all active Fc ⁇ Rs is decreased.
  • EU numbering of Fc region 241st amino acid, 268th amino acid, 296th amino acid and 324th amino acid (2) Fc region EU numbering 237th amino acid, 241st amino acid, 296th amino acid and 330th amino acid (3) EU numbering in the Fc region 235th amino acid, 237th amino acid, 241st amino acid and 296th amino acid [3] EU numbering in the Fc region 238th amino acid is Asp, and the following (a ) To (k) of the Fc region variant, wherein the binding activity of the variant to Fc ⁇ RIIb is maintained when compared with the Fc region of native IgG, and all A variant having reduced binding activity to active Fc ⁇ R.
  • Fc region EU numbering 235th amino acid is Phe
  • b EU numbering in the Fc region The amino acid at position 237 is Gln or Asp
  • Fc region EU numbering 241st amino acid is Met or Leu
  • Fc region EU numbering 268th amino acid is Pro
  • EU numbering 296th amino acid of Fc region is Glu, His, Asn or Asp
  • EU numbering 298th amino acid of Fc region is Ala or Met
  • EU numbering 323rd amino acid of Fc region is Ile
  • EU numbering 324th amino acid of Fc region is Asn or His
  • EU numbering 330th amino acid of Fc region is His or Tyr
  • at least two amino acids selected from (a) to (j) [4] EU numbering 238th amino acid of Fc region is Asp and any one of the following (1) to (3)
  • the Fc region variant having reduced binding to complement contains the amino acid modification at the EU numbering 322 in the Fc region, or the amino acid modification at positions 327, 330 and 331 in the EU numbering in the Fc region.
  • Fc region EU numbering 322th amino acid is Ala or Glu
  • Fc region EU numbering 327th amino acid is Gly
  • 330th amino acid is Ser
  • 331st amino acid is Ser
  • Fc region Fc region variant comprising amino acid modification of amino acid 238, 271 amino acid, 327 amino acid, 330 amino acid and 331 amino acid of Fc region, A variant in which the binding activity to Fc ⁇ RIIb of the variant is maintained and the binding activity to all active Fc ⁇ Rs is reduced when compared with the region.
  • the modified product according to [12] further including the amino acid modification described in any of (a) to (e) below.
  • the ratio of the relative binding activity of the polypeptide containing the Fc region of native IgG compared to the binding activity to Fc ⁇ RIIb is at least 0.75, and the ratio of the binding activity to all active Fc ⁇ R is 0.2 or less.
  • a pharmaceutical composition comprising the polypeptide according to any one of [21] to [23] and a medically acceptable carrier.
  • ion concentration condition is a calcium ion concentration condition.
  • the antigen-binding domain is an antigen-binding domain whose binding activity to an antigen under conditions of low calcium ion concentration is lower than binding activity to an antigen under conditions of high calcium ion concentration
  • the described polypeptide [28] The polypeptide according to any one of [25] to [27], wherein the ion concentration condition is a pH condition.
  • the antigen-binding domain is an antigen-binding domain whose binding activity to an antigen in an acidic pH range is lower than the binding activity to an antigen in a neutral pH range.
  • a pharmaceutical composition comprising the polypeptide according to any one of [25] to [31] and a medically acceptable carrier.
  • the pharmaceutical composition is an antigen in plasma that binds to the antigen-binding domain of the polypeptide of any one of [25] to [31], and promotes disappearance of the antigen from the plasma Therefore, the pharmaceutical composition according to [32] above.
  • a polypeptide comprising an Fc region, the EU numbering 238th amino acid of the Fc region, and the 235th amino acid, 237th amino acid, 241st amino acid, 268th amino acid, 295th amino acid of the EU numbering of the Fc region
  • the Fc ⁇ RIIb of the polypeptide is modified by changing at least one amino acid selected from the amino acids of 296, 296, 298, 323, 324 and 330 to another amino acid.
  • the amino acid modification of the Fc region is the substitution of the EU numbering 238th amino acid to Asp, the 235th amino acid to Phe, the 237th amino acid to Gln, the 241st amino acid Met or Substitution to Leu, substitution of amino acid at position 268 to Pro, substitution of amino acid at position 295 to Met or Val, substitution of amino acid at position 296 to Glu, His, Asn or Asp, substitution of amino acid 298 at position Ala or The method according to [35] above, which is substitution to Met, substitution of amino acid 323 to Ile, substitution of amino acid 324 to Asn or His, substitution of amino acid 330 to His or Tyr.
  • Fc region amino acid modification is EU numbering 238th amino acid substitution to Asp, 235th amino acid substitution to Phe, 237th amino acid substitution to Gln, 241st amino acid Met or Substitution to Leu, substitution of amino acid at position 268 to Pro, substitution of amino acid at position 295 to Met or Val, substitution of amino acid at position 296 to Glu, His, Asn or Asp, substitution of amino acid 298 at position Ala or The method according to [37] above, which is substitution to Met, substitution of amino acid 323 to Ile, substitution of amino acid 324 to Asn or His, substitution of amino acid 330 to His or Tyr.
  • a combination of an amino acid modification in which the binding activity to Fc ⁇ RIIb is more than twice that of the Fc region of natural IgG and an amino acid modification that reduces the binding activity to all Fc ⁇ Rs A method for reducing the binding activity to all active Fc ⁇ Rs while maintaining the binding activity to Fc ⁇ RIIb at the same level as that of natural IgG. [40] The method according to [39] above, wherein the amino acid modification whose binding activity to Fc ⁇ RIIb is twice or more compared to the Fc region of natural IgG is the amino acid modification described in Table 11.
  • amino acid modification that reduces the binding activity to all Fc ⁇ Rs, EU numbering of Fc region 234th amino acid, 235th amino acid, 236th amino acid, 237th amino acid, 239th amino acid, 265th amino acid
  • the amino acid is a modification of at least one amino acid selected from the 267th amino acid and the 297th amino acid to another amino acid.
  • Fc region amino acid modification includes EU numbering 234th amino acid substitution to Ala, His, Asn, Lys or Arg, 235th amino acid substitution to Ala, 236rd amino acid substitution to Gln , Substitution of the 237th amino acid with Arg or Lys, substitution of the 239th amino acid with Lys, substitution of the 265th amino acid with Lys, Asn, Arg, Ser or Val, substitution of the 267th amino acid with Lys, Arg or The method according to any one of [39] to [41] above, which is substitution to Tyr and substitution of the 297th amino acid to Ala.
  • the binding activity to Fc ⁇ RIIb maintains at least 80% of the binding amount of the Fc region of natural IgG, and the binding activity to Fc ⁇ RIIaR decreases to 30% or less of the binding amount of the Fc region of natural IgG. [35], [36], and the method according to any one of [39] to [42]. [44] The ratio of the relative binding activity of the polypeptide containing the Fc region of native IgG to the binding activity to Fc ⁇ RIIb is maintained at least 0.75, and the ratio of the binding activity to all active Fc ⁇ R is reduced to 0.2 or less. The method according to any one of [35], [36], and [39] to [43].
  • amino acid modification that causes the binding activity to Fc ⁇ RIIb to be twice or more compared to the Fc region of natural IgG is the amino acid modification described in Table 11.
  • Amino acid modification that reduces the binding activity to all Fc ⁇ Rs, the Fc region EU numbering 234th amino acid, 235th amino acid, 236th amino acid, 237th amino acid, 239th amino acid, 265th amino acid is the amino acid modification described in Table 11.
  • Fc region amino acid modification includes EU numbering 234th amino acid substitution to Ala, His, Asn, Lys or Arg, 235th amino acid substitution to Ala, 236rd amino acid substitution to Gln , Substitution of the 237th amino acid with Arg or Lys, substitution of the 239th amino acid with Lys, substitution of the 265th amino acid with Lys, Asn, Arg, Ser or Val, substitution of the 267th amino acid with Lys, Arg or The method according to any one of [46] to [48] above, wherein the substitution is for Tyr and the substitution of the 297th amino acid for Ala.
  • the binding activity to Fc ⁇ RIIb maintains at least 80% of the binding amount of the Fc region of natural IgG, and the binding activity to all active Fc ⁇ Rs is 30% or less of the binding amount of the Fc region of natural IgG.
  • the ratio of the relative binding activity of the polypeptide containing the Fc region of native IgG compared to the binding activity to Fc ⁇ RIIb is maintained at least 0.75, and the ratio of the binding activity to all active Fc ⁇ Rs is reduced to 0.2 or less.
  • Modifications that reduce binding to complement include substitution of the Fc region EU numbering 322th amino acid with Ala or Glu, or substitution of the Fc region EU numbering 327th amino acid with Gly, 330th The method according to [53] above, wherein the amino acid is substituted with Ser and the 331st amino acid is substituted with Ser.
  • Fc region amino acid modification is Fc region EU numbering 238th amino acid substitution to Asp, 271st amino acid substitution to Gly, 327th amino acid substitution to Gly, 330th amino acid Substitution to Ser, 331rd amino acid Ser substitution, 233rd amino acid substitution to Asp, 237th amino acid substitution to Asp, 264th amino acid substitution to Ile, 267th amino acid Ala
  • Fc region EU numbering By changing at least one amino acid selected from the 233rd amino acid, the 237th amino acid, the 264th amino acid, the 267th amino acid, and the 268th amino acid to another amino acid, compared to before modification, Fc ⁇ RIIb
  • Fc region amino acid modification includes substitution of Fc region EU numbering 238th amino acid to Asp, 271st amino acid to Gly, 327th amino acid to Gly, 330th amino acid Substitution to Ser, 331rd amino acid Ser substitution, 233rd amino acid substitution to Asp, 237th amino acid substitution to Asp, 264th amino acid substitution to Ile, 267th amino acid Ala
  • substitution at position 268 is Asp or Glu.
  • the present invention maintains the binding activity to Fc ⁇ RIIb of the Fc region by introducing amino acid modification of the Fc region of the present invention, and also binds to all active Fc ⁇ Rs, particularly to Fc ⁇ RIIa (R type).
  • the present invention relates to a method for reducing binding activity.
  • the present invention also relates to a method for suppressing production of an antibody against a polypeptide containing the Fc region by introducing an amino acid modification of the Fc region of the present invention.
  • the present invention provides an Fc region variant in which an amino acid modification of the Fc region of the present invention has been introduced, and a binding activity to a pathogenic antigen present in a soluble form in plasma, and the condition of ion concentration Relates to a method of promoting the disappearance of the antigen in plasma by a polypeptide comprising an antigen-binding domain whose binding activity to the antigen is changed.
  • the Fc region variant in which amino acid modification of the Fc region of the present invention is introduced and a binding activity to a pathogenic antigen present in a soluble form in plasma, and the antigen depending on the condition of ion concentration
  • the present invention relates to the use of a polypeptide comprising an antigen-binding domain whose binding activity to is changed to promote disappearance of the antigen in plasma.
  • the present invention also relates to a therapeutic or prophylactic agent for immunoinflammatory diseases comprising the polypeptide of the present invention.
  • the present invention also relates to a method for treating or preventing an immunoinflammatory disease, comprising the step of administering the polypeptide of the present invention to a subject.
  • the present invention also relates to a kit for use in the method for treating or preventing the immunoinflammatory disease of the present invention, comprising the polypeptide of the present invention.
  • the present invention also relates to the use of the polypeptide of the present invention in the manufacture of a therapeutic or prophylactic agent for immunoinflammatory diseases.
  • the present invention also relates to the polypeptide of the present invention for use in the method for treating or preventing the immunoinflammatory disease of the present invention.
  • the present invention also relates to a B cell, mast cell, dendritic cell and / or basophil activation inhibitor comprising the polypeptide of the present invention.
  • the present invention also relates to a method for inhibiting activation of B cells, mast cells, dendritic cells and / or basophils, comprising the step of administering the polypeptide of the present invention to a subject.
  • the present invention also relates to a kit for use in the method for inhibiting activation of B cells, mast cells, dendritic cells and / or basophils of the present invention comprising the polypeptide of the present invention.
  • the present invention also relates to the use of the polypeptide of the present invention in the production of a B cell, mast cell, dendritic cell and / or basophil activation inhibitor.
  • the present invention also relates to the polypeptide of the present invention for use in the method for inhibiting activation of B cells, mast cells, dendritic cells and / or basophils of the present invention.
  • the present invention also relates to a therapeutic agent for a disease deficient in a protein necessary for a living body containing the polypeptide of the present invention.
  • the present invention also relates to a method for treating a disease deficient in a protein necessary for a living body, comprising a step of administering the polypeptide of the present invention to a subject.
  • the present invention also relates to a kit for use in a method for treating a disease deficient in a protein necessary for the living body of the present invention, comprising the polypeptide of the present invention.
  • the present invention also relates to the use of the polypeptide of the present invention in the manufacture of a therapeutic agent for a disease lacking a protein necessary for a living body.
  • the present invention also relates to the polypeptide of the present invention for use in the method for treating a disease lacking a protein necessary for the living body of the present invention.
  • the present invention also relates to a virus growth inhibitor comprising the polypeptide of the present invention.
  • the present invention also relates to a method for inhibiting virus growth, comprising the step of administering the polypeptide of the present invention to a subject.
  • the present invention also relates to a kit for use in the method for inhibiting the growth of the virus of the present invention, comprising the polypeptide of the present invention.
  • the present invention also relates to the use of the polypeptide of the present invention in the production of a viral growth inhibitor.
  • the present invention also relates to the polypeptide of the present invention for use in the method for inhibiting viral growth of the present invention.
  • Fc region modification is maintained with binding activity to Fc ⁇ RIIb and has reduced binding activity to all active Fc ⁇ Rs, particularly binding activity to Fc ⁇ RIIa (R type)
  • the body was provided. Inflammation via ITIM phosphorylation of Fc ⁇ RIIb while maintaining the ability to eliminate immune complexes mediated by Fc ⁇ RIIb to the same level as native IgG by using the polypeptide containing the modified Fc region It becomes possible to enhance the suppressive signal of the immune response.
  • by giving the Fc region the property of selectively binding to Fc ⁇ RIIb, it may be possible to suppress the production of anti-antibodies.
  • FIG. 3 is a view showing the expression of CD62p (p-selectin) on the surface of a washed platelet membrane when an Fc variant is added.
  • the solid line represents the case where 5c8-F648 was added and ADP stimulation was applied, and the solid line represents the case where 5c8-P600 was added and ADP stimulation was applied. It is the figure which confirmed the expression of the active type integrin (PAC-1) on the washing
  • the solid line represents the case where 5c8-F648 was added and ADP stimulation was applied, and the solid line represents the case where 5c8-P600 was added and ADP stimulation was applied. It is a figure which shows that a pH dependence binding antibody bind
  • antibody binds to soluble antigen, (ii) ⁇ non-specifically is taken into the cell by pinocytosis, (iii) antibody binds to FcRn in endosome, and soluble antigen is antibody (Iv) soluble antigen is transferred to lysosome and decomposed, (v) soluble antigen dissociated antibody is recycled into plasma by FcRn, (vi) recycled antibody is It becomes possible to bind to the soluble antigen again. It is a figure which shows further improving the effect that a pH dependent binding antibody can couple
  • antibody binds to soluble antigen, (ii) is taken into the cell by pinocytosis via FcRn, (iii) soluble antigen dissociates from the antibody in endosome, (iv) Soluble antigens are transferred to lysosomes and degraded.
  • the antibody that dissociates the soluble antigen is recycled into the plasma by FcRn.
  • the recycled antibody binds to the soluble antigen again. It becomes possible to do. It is a figure which shows the sensorgram which shows the interaction with the human IgA in pH7.4 and pH5.8, Ca2 + 1.2 mM, and Ca2 + 3micromol of the anti-human IgA antibody using Biacore.
  • Fv4-mIgG1, mouse Fc ⁇ RIIb, Fv4-mIgG1-mF44, a variant of Fv4-mIgG1 with enhanced binding to mouse Fc ⁇ RIII, and Fv4-mIgG1 with enhanced binding to mouse Fc ⁇ RIIb, mouse Fc ⁇ RIII It is a figure which shows the human IL-6 receptor concentration transition in the plasma of the said mouse
  • Fv4-mIgG1, mouse Fc ⁇ RIIb, Fv4-mIgG1-mF44, a variant of Fv4-mIgG1 with enhanced binding to mouse Fc ⁇ RIII, and Fv4-mIgG1 with enhanced binding to mouse Fc ⁇ RIIb, mouse Fc ⁇ RIII It is a figure which shows the human IL-6 receptor concentration transition in the plasma of the said mouse
  • Fv4-mIgG1, mouse Fc ⁇ RIIb, Fv4-mIgG1-mF44, a variant of Fv4-mIgG1 with enhanced binding to mouse Fc ⁇ RIII, and Fv4-mIgG1 with enhanced binding to mouse Fc ⁇ RIIb, mouse Fc ⁇ RIII It is a figure which shows the human IL-6 receptor density transition in the plasma of the said mouse
  • mouth plasma when Fv4-mIgG1-mF46 is administered to the Fc ⁇ RIIb-deficient mouse.
  • a diagram illustrating the efficiency of antigen-removal per molecule of a multispecific pH / Ca-dependent antibody suitable for recognizing two or more epitopes present in a monomeric antigen and forming a large immune complex. is there.
  • the present invention maintains the binding activity to Fc ⁇ RIIb when compared with a polypeptide containing the Fc region of a natural IgG antibody, but binding activity to all active Fc ⁇ Rs, particularly binding activity to Fc ⁇ RIIa (R type) Fc region variants capable of reducing the above, and polypeptides comprising the Fc region variants are provided.
  • an Fc region variant comprising an amino acid sequence in which the 238th amino acid modification of EU numbering and other specific amino acid alterations are combined, and a polypeptide comprising the Fc region variant are provided. Furthermore, the present invention introduces the amino acid modification into the Fc region, so that the binding activity to all active Fc ⁇ Rs is maintained while maintaining the binding activity to Fc ⁇ RIIb as compared to the polypeptide containing the Fc region of the natural IgG antibody.
  • the method of reducing the binding activity to Fc ⁇ RIIa (R type), and the introduction of the amino acid modification into the Fc region, the binding activity to Fc ⁇ RIIb compared to the polypeptide containing the Fc region of natural IgG antibody are provided.
  • the present invention introduces the amino acid modification into the Fc region, so that the binding activity to all active Fc ⁇ Rs is maintained while maintaining the binding activity to Fc ⁇ RIIb as compared to the polypeptide containing the Fc region of the natural IgG antibody.
  • a method for producing a polypeptide comprising an Fc region variant in which the binding activity to all active Fc ⁇ Rs, particularly the binding activity to Fc ⁇ RIIa (R-type) is reduced while maintaining the activity.
  • the Fc region variant in which the amino acid modification is introduced into the Fc region, and a binding antigen to a pathogenic antigen existing in a soluble form in plasma, and binding activity to the antigen depending on the condition of ion concentration A polypeptide comprising an antigen-binding domain that changes, and a method for promoting the disappearance of the antigen in plasma by the polypeptide.
  • polypeptide usually refers to peptides and proteins having a length of about 10 amino acids or more. Moreover, although it is normally a polypeptide derived from a living organism
  • polypeptide of the present invention include antibodies. Further preferred examples include natural IgG, particularly natural human IgG.
  • Native IgG refers to a polypeptide that includes the same amino acid sequence as an IgG found in nature and belongs to the class of antibodies substantially encoded by immunoglobulin gamma genes.
  • natural human IgG means natural human IgG1, natural human IgG2, natural human IgG3, natural human IgG4, and the like.
  • Naturally-occurring IgG includes naturally occurring mutants.
  • IgK secreta, secretor
  • IgL1, IgL2, IgL3, IgL6, IgL7 (Lambda, ⁇ chain) type in the light chain constant region of the antibody. May be.
  • human IgK (Kappa) constant region and human IgL7 (Lambda) constant region multiple allotype sequences due to gene polymorphisms are described in Sequences of proteins of immunological interest, NIH Publication No.91-3242. Any of them may be used.
  • the light chain constant region may be a light chain constant region in which alterations such as amino acid substitution, addition, deletion, insertion and / or modification have been performed.
  • the Fc region of the antibody examples include IgA1, IgA2, IgD, IgE, IgG1, IgG2, IgG3, IgG4, and IgM type Fc regions.
  • the Fc region of the antibody of the present invention for example, the Fc region of a human IgG antibody can be used, and preferably the Fc region of a human IgG1 antibody.
  • a constant region of natural IgG specifically, a constant region originating from natural human IgG1 (SEQ ID NO: 31), a constant region originating from natural human IgG2 (sequence No.
  • FIG. 18 shows the sequences of the constant regions of natural IgG1, IgG2, IgG3, and IgG4.
  • the constant region of natural IgG includes mutants naturally occurring therefrom.
  • constant regions of human IgG1, human IgG2, human IgG3, and human IgG4 antibodies multiple allotype sequences due to gene polymorphisms are described in SequencesSof proteins of immunological interest, NIH Publication No.91-3242. Any of them may be used.
  • the amino acid sequence of EU numbering 356-358 may be DEL or EEM.
  • the Fc ⁇ receptor (which may be described as Fc ⁇ receptor, Fc ⁇ R or FcgR in the present specification) refers to a receptor that can bind to the Fc region of IgG1, IgG2, IgG3, or IgG4 monoclonal antibody, and is substantially Fc ⁇ receptor.
  • Fc ⁇ receptor refers to a receptor that can bind to the Fc region of IgG1, IgG2, IgG3, or IgG4 monoclonal antibody, and is substantially Fc ⁇ receptor.
  • this family includes Fc ⁇ RI (CD64), including isoforms Fc ⁇ RIa, Fc ⁇ RIb and Fc ⁇ RIc; isoforms Fc ⁇ RIIa (including allotypes H131 (H) and R131 (R)), Fc ⁇ RIIb (Fc ⁇ RIIb-1 and Fc ⁇ RIIb- 2) and Fc ⁇ RII (CD32) including Fc ⁇ RIIc; and Fc ⁇ RIII (CD16) including isoforms Fc ⁇ RIIIa (including allotypes V158 and F158) and Fc ⁇ RIIIb (including allotypes Fc ⁇ RIIIb-NA1 and Fc ⁇ RIIIb-NA2), and any undiscovered Human Fc ⁇ Rs or Fc ⁇ R isoforms or allotypes, but are not limited to these.
  • Fc ⁇ RIIb1 and Fc ⁇ RIIb2 have been reported as splicing variants for human Fc ⁇ RIIb.
  • Fc ⁇ RIIb3 a splicing variant called Fc ⁇ RIIb3 has also been reported (J. Exp. Med, 1989, 170: 1369).
  • Human Fc ⁇ RIIb includes all of these splicing variants, as well as splicing variants of NP_001002273.1, NP_001002274.1, NP_001002275.1, NP_001177757.1, and NP_003992.3 registered in NCBI.
  • human Fc ⁇ RIIb includes all the reported polymorphisms of Fc ⁇ RIIb (Arthritis Rheum, 2003, 48: 3242-52, Hum Mol Genet, 2005, 14: 2881-92, Arthritis Rheum. 2002 May; 46 (5): 1242-54.), And any genetic polymorphisms reported in the future.
  • Fc ⁇ R includes, but is not limited to, those derived from human, mouse, rat, rabbit and monkey, and may be derived from any organism.
  • Mouse Fc ⁇ Rs include Fc ⁇ RI (CD64), Fc ⁇ RII (CD32), Fc ⁇ RIII (CD16) and Fc ⁇ RIII-2 (CD16-2), as well as any undiscovered mouse Fc ⁇ Rs or Fc ⁇ R isoforms or allotypes. It is not limited to. Suitable examples of such Fc ⁇ receptors include human Fc ⁇ RI (CD64), Fc ⁇ RIIA (CD32), Fc ⁇ RIIB (CD32), Fc ⁇ RIIIA (CD16) and / or Fc ⁇ RIIIB (CD16).
  • the polynucleotide sequence and amino acid sequence of Fc ⁇ RI are shown in SEQ ID NOs: 35 (NM_000566.3) and 36 (NP_000557.1), respectively.
  • the polynucleotide sequence and amino acid sequence of Fc ⁇ RIIA are shown in SEQ ID NOs: 37 (BC020823.1) and 38 (AAH20823.1), respectively.
  • the polynucleotide sequence and amino acid sequence of Fc ⁇ RIIB are shown in SEQ ID NOs: 39 (BC146678.1) and 40 (AAI46679.1), respectively.
  • the polynucleotide and amino acid sequences of Fc ⁇ RIIIA are shown in SEQ ID NOs: 41 (BC033678.1) and 42 (AAH33678.1), respectively.
  • the polynucleotide sequence and amino acid sequence of Fc ⁇ RIIIB are described in SEQ ID NOs: 43 (BC128562.1) and 44 (AAI28563.1), respectively (the RefSeq registration number
  • Fc ⁇ RIIa has two gene polymorphisms in which the 131st amino acid of Fc ⁇ RIIa is substituted with histidine (H type) or arginine (R type) (J. Exp. Med, 172, 19-25, 1990).
  • Fc ⁇ RIa, including Fc ⁇ RIa, Fc ⁇ RIb and Fc ⁇ RIc (including CD64), and Fc ⁇ RIIIa (including allotypes V158 and F158) including Fc ⁇ RIIIa (CD16) transmit an activation signal into the ⁇ chain that binds to the Fc portion of IgG and into the cell.
  • Fc ⁇ RIIIb (including allotypes Fc ⁇ RIIIb-NA1 and Fc ⁇ RIIIb-NA2) is a GPI anchor protein.
  • ITAM is contained in its own cytoplasmic domain of isoforms Fc ⁇ RIIa (including allotypes H131 and R131) and Fc ⁇ RIIc (CD32) including Fc ⁇ RIIc.
  • Fc ⁇ RIIa including allotypes H131 and R131
  • Fc ⁇ RIIc CD32
  • These receptors are expressed in many immune cells such as macrophages, mast cells, and antigen-presenting cells. Activation signals transmitted by binding of these receptors to the Fc portion of IgG promote phagocytic ability of macrophages, production of inflammatory cytokines, degranulation of mast cells, and enhancement of function of antigen-presenting cells.
  • the Fc ⁇ receptor having the ability to transmit an activation signal as described above is also referred to as an active Fc ⁇ receptor in the present invention.
  • the cytoplasmic domain of Fc ⁇ RIIb (including Fc ⁇ RIIb-1 and Fc ⁇ RIIb-2) contains ITIM that transmits an inhibitory signal.
  • the activation signal from BCR is suppressed by cross-linking of Fc ⁇ RIIb and B cell receptor (BCR), resulting in suppression of BCR antibody production.
  • BCR B cell receptor
  • phagocytic ability and ability to produce inflammatory cytokines are suppressed by cross-linking of Fc ⁇ RIII and Fc ⁇ RIIb.
  • the Fc ⁇ receptor having the ability to transmit an inhibitory signal as described above is also referred to as an inhibitory Fc ⁇ receptor in the present invention.
  • the “modified Fc region” means an Fc region in which at least one amino acid of the present invention is modified with another amino acid in an Fc region into which the amino acid modification of the present invention has not been introduced.
  • “at least one amino acid is altered to another amino acid” includes an Fc region into which the amino acid alteration has been introduced and an Fc region comprising the same amino acid sequence.
  • Natural IgG refers to a polypeptide that includes the same amino acid sequence as IgG found in nature and belongs to the class of antibodies substantially encoded by immunoglobulin gamma genes.
  • natural human IgG means natural human IgG1, natural human IgG2, natural human IgG3, natural human IgG4, and the like.
  • Naturally-occurring IgG includes naturally occurring mutants, IgG introduced with modifications that do not substantially affect the binding activity to Fc ⁇ R, and the like.
  • the Fc region of natural IgG means an Fc region including the same amino acid sequence as an Fc region originating from IgG found in nature.
  • the heavy chain constant region of natural IgG is shown in FIG. 18 (SEQ ID NOs: 31 to 34).
  • the Fc region in the heavy chain constant region originating from natural human IgG1 in FIG. 18, natural human IgG2 The Fc region in the heavy chain constant region originating from, the Fc region in the heavy chain constant region originating from natural human IgG3, and the Fc region in the heavy chain constant region originating from natural human IgG4.
  • Naturally-occurring IgG Fc regions include naturally occurring mutants, Fc regions introduced with modifications that do not substantially affect the binding activity to Fc ⁇ R, and the like.
  • the polypeptide containing the Fc region variant of the present invention or the Fc region variant has enhanced binding activity to various Fc ⁇ Rs, or whether the binding activity has been maintained or decreased, for example, in this Example or Reference Implementation
  • BIACORE an interaction analysis instrument that utilizes the surface plasmon resonance (SPR) phenomenon, the antibody is immobilized on a sensor chip, or Protein A, Protein L, Protein A / G, Protein G, and anti-lamda chain
  • KD dissociation constant
  • a sensor chip in which Fc ⁇ R is directly immobilized on a sensor chip or immobilized via an anti-tag antibody, etc. it is obtained from analysis of a sensorgram in which a sample such as an antibody to be evaluated interacts as an analyte. It can be judged by whether the value of the dissociation constant (KD) has decreased or increased.
  • KD dissociation constant
  • the value of the sensorgram before and after the Fc ⁇ R directly immobilized on the sensor chip or the sample of the antibody to be evaluated against the sensor chip immobilized via an anti-tag antibody is interacted as an analyte. It can also be determined whether the amount of change has decreased or increased.
  • Fc region modified Fc ⁇ receptor binding activity includes ELISA and FACS (fluorescence (activated cell sorting), ALPHA screen (Amplified Luminescent Proximity Homogeneous Assay) and BIACORE using surface plasmon resonance (SPR) phenomenon (Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010).
  • ALPHA screen is implemented based on the following principle by ALPHA technology using two beads of donor and acceptor.
  • a luminescent signal is detected only when the molecule bound to the donor bead interacts biologically with the molecule bound to the acceptor bead and the two beads are in close proximity.
  • a photosensitizer in the donor bead excited by the laser converts ambient oxygen into excited singlet oxygen. Singlet oxygen diffuses around the donor bead, and when it reaches the adjacent acceptor bead, it causes a chemiluminescence reaction in the bead, and finally light is emitted.
  • the chemiluminescence reaction does not occur because the singlet oxygen produced by the donor bead does not reach the acceptor bead.
  • biotin-labeled polypeptide aggregates are bound to donor beads, and Fc ⁇ receptors tagged with glutathione S-transferase (GST) are bound to acceptor beads.
  • GST glutathione S-transferase
  • the polypeptide assembly containing the wild-type Fc region interacts with the Fc ⁇ receptor to produce a signal of 520-620 nm.
  • Polypeptide aggregates containing untagged mutant Fc regions compete with the interaction between polypeptide aggregates containing wild-type Fc regions and Fc ⁇ receptors. Relative binding activity can be determined by quantifying the decrease in fluorescence that results from competition.
  • biotinylate polypeptide aggregates such as antibodies using Sulfo-NHS-biotin and the like.
  • a method of tagging the Fc ⁇ receptor with GST it is expressed in a cell or the like holding a fusion gene in which a polynucleotide encoding the Fc ⁇ receptor and a polynucleotide encoding GST are fused in-frame.
  • a method of purification using a glutathione column can be appropriately employed.
  • the obtained signal is suitably analyzed by fitting to a one-site competition model using nonlinear regression analysis using software such as GRAPHPAD PRISM (GraphPad, San Diego).
  • the Biacore system takes the shift amount, that is, the mass change at the sensor chip surface on the vertical axis, and displays the time change of mass as measurement data (sensorgram).
  • the amount of analyte bound to the ligand captured on the sensor chip surface is determined from the sensorgram. Further, the kinetics: association rate constant (ka) and dissociation rate constant (kd) are obtained from the sensorgram curve, and the dissociation constant (KD) is obtained from the ratio of the constants.
  • an inhibition measurement method is also preferably used. Examples of inhibition assays are described in Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010.
  • the Fc region in which the binding activity to Fc ⁇ RIIb is maintained or the polypeptide containing the Fc region is a polypeptide containing an Fc region of a natural IgG (also referred to as a polypeptide containing a parent Fc region or a parent polypeptide) and the Fc region.
  • Equivalent binding with essentially no change when compared to the parent polypeptide when assayed with essentially the same amount of polypeptide comprising the amino acid modification of the invention in the region (polypeptide comprising an Fc region variant) The one that binds to Fc ⁇ RIIb with activity. Specifically, it refers to a variant of the Fc region that maintains at least 55.5% of the binding of the polypeptide containing the parent Fc region to FcgRIIb.
  • an Fc region having a reduced, reduced, or attenuated binding activity to active Fc ⁇ R or a polypeptide containing the Fc region refers to a polypeptide containing an Fc region of a natural IgG (a polypeptide containing a parent Fc region or a parent polypeptide).
  • the polypeptide containing the parent Fc region is also included.
  • Whether the Fc region variant of the present invention maintains the binding activity to Fc ⁇ RIIb of the Fc region of natural IgG is determined according to the above example, for example, against the Fc ⁇ RIIb of the polypeptide containing the Fc region variant of the present invention. It can be determined by comparing the KD value with the KD value of Fc ⁇ RIIb of a polypeptide containing the Fc region of natural IgG. Specifically, when the KD value of the polypeptide containing the Fc region variant of the present invention is equal to or lower than that of the polypeptide containing the parent Fc region, the polypeptide containing the Fc region variant of the present invention is used.
  • the peptide maintained the binding activity to Fc ⁇ RIIb compared to the polypeptide containing the parent Fc region variant. Further, whether or not the Fc region variant of the present invention is less than the binding activity of the Fc region of natural IgG to the active Fc ⁇ R, for example, similarly, the Fc region modification of the present invention obtained according to the above example was determined. It is possible to judge by comparing the KD value for the active Fc ⁇ R of the polypeptide containing the body with the KD value for the active Fc ⁇ R of the polypeptide containing the Fc region of the natural IgG.
  • the polypeptide comprising the Fc region variant of the present invention is It can be determined that the binding activity to the active Fc ⁇ R has decreased as compared to the polypeptide containing the Fc region variant.
  • the binding activity to Fc ⁇ RIIa (R type) is more likely to correlate with the binding activity to Fc ⁇ RIIb than to other active Fc ⁇ Rs, so the binding activity to Fc ⁇ RIIa (R type) is decreased while maintaining the binding activity to Fc ⁇ RIIb.
  • Finding possible amino acid modifications is the most difficult task in selectively reducing the binding activity to other active Fc ⁇ Rs other than Fc ⁇ RIIb.
  • the binding activity to Fc ⁇ RIIb is equivalent or maintained, for example, in the KD value measured by the above-mentioned measurement method, including [KD value for Fc ⁇ RIIb of polypeptide containing parental Fc region] / [Fc region variant]
  • the KD value ratio of the polypeptide to the KD value of Fc ⁇ RIIb] preferably has at least 0.75, more preferably at least 0.8, and even more preferably at least 0.9. Further, it is sufficient that the KD value ratio is about 5, and it is not necessary that the binding activity to Fc ⁇ RIIb is equal or maintained.
  • the binding activity to active Fc ⁇ R is reduced, reduced, or attenuated, for example, in the KD value measured by the above-mentioned measurement method, [KD value for active Fc ⁇ R of polypeptide containing parent Fc region] / [Fc region modification]
  • the ratio of the KD value of the polypeptide containing the body to the active Fc ⁇ R] is preferably 0.2 or less, more preferably 0.15 or less, and even more preferably 0.1 or less.
  • Fc ⁇ RIIa is 93% identical in sequence to the extracellular region of Fc ⁇ RIIb, and is very similar in structure.As for binding to Fc ⁇ RIIa R, which is difficult to reduce the binding activity while maintaining the binding activity to Fc ⁇ RIIb,
  • the KD ratio of [KD value of Fc ⁇ RIIa R for the polypeptide containing the parent Fc region] / [KD value of Fc ⁇ RIIa R of the polypeptide containing the Fc region variant] is preferably 0.1 or less, more preferably 0.05. preferable.
  • Whether the binding activity of the polypeptide of the present invention to various Fc ⁇ Rs has been maintained, enhanced, or decreased can also be determined by the increase or decrease in the amount of binding of various Fc ⁇ Rs to the polypeptide of the present invention determined according to the above example.
  • the amount of each Fc ⁇ R bound to the polypeptide captures the polypeptide on the sensor chip, and the difference in the RU value in the sensorgram changed before and after the various Fc ⁇ R analytes interacted with each polypeptide. It means the value divided by the difference in the RU values in the sensorgram that changed before and after.
  • the Fc region with improved selectivity for Fc ⁇ RIIb or a polypeptide containing the Fc region, or the Fc region with selectively reduced binding activity to active Fc ⁇ R or the polypeptide containing the Fc region is Fc ⁇ RIIb.
  • the Fc region variant of the present invention is not particularly limited in the KD value (mol / L) for Fc ⁇ RIIb and active Fc ⁇ R.
  • the value for Fc ⁇ RIIb may be 7.0 ⁇ 10 ⁇ 6 or less, preferably 6.0 ⁇ 10 ⁇ 6 or less, more preferably 5.0 ⁇ 10 ⁇ 6 or less
  • the value for active Fc ⁇ R may be 2.5 ⁇ 10 ⁇ 9 or more, preferably 3.0 ⁇ 10 ⁇ 9 or more, more preferably 3.5 ⁇ 10 -9 or more, and particularly preferably values for the Fc [gamma] RIIa (R type) 2.0 ⁇ 10 -5 or more.
  • Fc region refers to a fragment consisting of a hinge region or a part thereof, CH2 and CH3 domains in an antibody molecule.
  • the Fc region of the IgG class is EU numbering (also referred to as EU INDEX in this specification) (see Fig. 18), which means, for example, from the 226th cysteine to the C terminus, or from the 230th proline to the C terminus. It is not limited to.
  • the Fc region is preferably obtained by partially eluting IgG1, IgG2, IgG3, IgG4 monoclonal antibodies, etc. with a protease such as pepsin, and then re-eluting the fraction adsorbed on the protein A and protein G columns. obtain.
  • protease such as pepsin
  • Such proteolytic enzymes are not particularly limited as long as full-length antibodies can be digested so that Fab and F (ab ') 2 can be produced in a limited manner by appropriately setting the reaction conditions of the enzyme such as pH. For example, pepsin, papain, etc. can be illustrated.
  • the Fc region of human IgG (IgG1, IgG2, IgG3, IgG4) is modified to any other amino acid at the 238th EU numbering amino acid and any of the following (a) to (k):
  • Fc region variants comprising amino acid modifications that combine modifications of the described amino acids to other amino acids.
  • Fc region EU numbering 235th amino acid (b) EU numbering 237th amino acid in Fc region (c) Fc region EU numbering 241st amino acid (d) Fc region EU numbering 268th amino acid (e) EU numbering 295th amino acid in Fc region (f) EU numbering 296th amino acid in Fc region (g) EU numbering 298th amino acid in Fc region (h) EU numbering 323rd amino acid in Fc region (i) EU numbering 324th amino acid in Fc region (j) EU numbering 330th amino acid of Fc region (k) at least two amino acids selected from (a) to (j)
  • the combination of at least two amino acids selected in the above (k) includes binding to all active Fc ⁇ R binding activities while maintaining the binding activity to Fc ⁇ RIIb as compared to the polypeptide containing the Fc region of natural IgG.
  • the following combinations (1) to (3) are preferable.
  • the amino acid selected as the modified amino acid is particularly selected as long as the binding activity to all active Fc ⁇ Rs decreases while maintaining the binding activity to Fc ⁇ RIIb as compared to the polypeptide containing the Fc region of natural IgG.
  • EU numbering 238th amino acid is Asp
  • 235th amino acid is Phe
  • 237th amino acid is Gln or Asp
  • 241st amino acid is Met or Leu
  • 268th amino acid is Pro
  • 295th amino acid is Met or Val
  • 296th amino acid is Glu
  • His Asn or Asp
  • 298th amino acid is Ala or Met
  • 323rd amino acid is Ile
  • 324th amino acid is Asn or His
  • 330th amino acid is His or Tyr
  • the present invention also relates to the Fc region of human IgG, the EU numbering 238th amino acid and 271nd amino acid modification to other amino acids, and any one of the following (a) to (h) An Fc region variant comprising an amino acid modification combining an amino acid modification to another amino acid is provided.
  • the modification By introducing the modification into the Fc region, the binding activity to all active Fc ⁇ Rs, particularly Fc ⁇ RIIa (R type), while maintaining the binding activity to Fc ⁇ RIIb compared to the polypeptide containing the Fc region of native IgG It is possible to provide polypeptides comprising Fc region variants with reduced binding activity to.
  • amino acids described in (a) to (h) above can also be combined as an amino acid modification combined with modification of the amino acid number 238 at EU numbering and the other amino acid at position 271.
  • Such a combination of amino acids is not particularly limited, but a combination of modifications selected from the following (1) to (3) is preferable.
  • the amino acid selected as the modified amino acid is particularly selected as long as the binding activity to all active Fc ⁇ Rs decreases while maintaining the binding activity to Fc ⁇ RIIb as compared to the polypeptide containing the Fc region of natural IgG.
  • EU numbering 238th amino acid is Asp
  • 271st amino acid is Gly
  • 234th amino acid is Ala
  • 235th amino acid is Ala
  • 236th amino acid is Gln
  • the amino acid is Arg or Lys
  • the 239th amino acid is Lys
  • the 265th amino acid is Lys
  • the 267th amino acid is Lys, Arg or Tyr
  • the 297th amino acid is Ala. Is preferred.
  • amino acid selected as the amino acid after modification in the above (1) to (3) (1) EU numbering of the Fc region Asp at the 233rd amino acid, Asp at the 238th amino acid, Ile at the 264th amino acid, Arg at the 267th amino acid, Glu at the 268th amino acid and Gly at the 271st amino acid (2) EU numbering of the Fc region Asp at the 233rd amino acid, Asp at the 237th amino acid, Asp at the 238th amino acid, Ile at the 264th amino acid, Ala at the 267th amino acid, Glu at the 268th amino acid 271st amino acid is Gly, 296th amino acid is Asp, 297th amino acid is Ala, 330th amino acid is Arg and 396th amino acid is Met (3) EU numbering of the Fc region Asp at the 233rd amino acid, Asp at the 238th amino acid, Ile at the 264th amino acid, Arg at the 267th amino acid, Pro
  • the present invention also includes modifications of the Fc region of human IgG to other amino acids at the EU numbering 238th amino acid, 271st amino acid, 327th amino acid, 330th amino acid and 331st amino acid.
  • Fc region variants are provided.
  • the variant further provides an Fc region variant containing an amino acid modification obtained by combining modifications of the amino acids described in any of the following (a) to (e) with other amino acids.
  • amino acids described in (a) to (e) above can be combined as an amino acid modification to be combined with the modification of the amino acid at position 238 and the amino acid at position 271 of the EU.
  • Such a combination of amino acids is not particularly limited, but a combination of modifications selected from the following (1) to (4) is preferable.
  • the amino acid selected as the modified amino acid is particularly selected as long as the binding activity to all active Fc ⁇ Rs decreases while maintaining the binding activity to Fc ⁇ RIIb as compared to the polypeptide containing the Fc region of natural IgG.
  • EU numbering 238th amino acid is Asp
  • 271st amino acid is Gly
  • 327th amino acid is Gly
  • 330th amino acid is Ser
  • 331st amino acid is Ser
  • 233rd amino acid is Asp
  • 237th
  • the amino acid is Asp
  • the 264th amino acid is Ile
  • the 267th amino acid is Ala
  • the 268th amino acid is Asp or Glu.
  • (1) EU numbering of the Fc region Asp at the 237th amino acid, Asp at the 238th amino acid, Asp or Glu at the 268th amino acid, Gly at the 271st amino acid, Gly at the 327th amino acid, and the amino acid at the 330th amino acid Ser and 331rd amino acid are Ser (2) EU numbering of the Fc region Asp at the 233rd amino acid, Asp at the 237th amino acid, Asp at the 238th amino acid, Asp at the 268th amino acid, Gly at the 271st amino acid, Gly at the 327th amino acid,
  • the 330th amino acid is Ser and the 331st amino acid is Ser (3) EU numbering of the Fc region Asp at the 238th amino acid, Ala at the 267th amino acid, Glu at the 268th amino acid, Gly at the 271st amino acid, Gly at the 327th amino acid, Ser
  • the present invention can further modify at least one other Fc region.
  • modifications include, for example, modifications that reduce the binding activity to complement.
  • the Fc region EU numbering 322th amino acid modification, or the Fc region EU numbering 327th, 330th and 331th amino acid modification combination are examples of modifications that reduce the binding activity to complement.
  • the amino acid selected as the modified amino acid maintains binding activity to Fc ⁇ RIIb compared to the polypeptide containing the Fc region of native IgG, and binding to complement is reduced while binding activity to all active Fc ⁇ Rs is reduced.
  • the EU numbering 322th amino acid is Ala or Glu
  • the 327th amino acid is Gly
  • the 330th amino acid is Ser
  • the 331st amino acid is Ser.
  • whether the polypeptide comprising the Fc region variant of the present invention or the Fc region variant has a reduced binding activity to complement is the same as the method for confirming whether the above-mentioned Fc ⁇ R binding activity has been reduced. It can be confirmed by the method.
  • the antibody to be evaluated is immobilized on a sensor chip using BIACORE, which is an interaction analysis instrument using surface plasmon resonance (SPR) phenomenon, or Protein A, Protein L , Obtained from analysis results of sensorgram obtained by interacting complement as an analyte to a sensor chip captured with ProteinA / G, ProteinG, anti-lamda chain antibody, anti-kappa chain antibody, antigen peptide, antigen protein, etc. It can be judged by whether the value of the dissociation constant (KD) has increased.
  • KD dissociation constant
  • the antibody to be evaluated on the sensor chip immobilized on the sensor chip or captured with Protein A, Protein L, Protein A / G, Protein G, anti-lamda chain antibody, anti-kappa chain antibody, antigen peptide, antigen protein, etc.
  • the amount of change in the resonance unit (RU) value on the sensorgram before and after interacting with complement as an analyte, and the amount of change in the resonance unit (RU) before and after the antibody was immobilized or captured on the sensor chip It can also be determined whether the value divided by increases.
  • a sensor chip in which complement is directly immobilized on the sensor chip or via an anti-tag antibody, etc. it is obtained from analysis of a sensorgram in which a sample such as an antibody to be evaluated interacts as an analyte. It can be judged whether or not the value of the dissociation constant (KD) obtained has increased.
  • KD dissociation constant
  • the amount of binding can be determined by ELISA by adding complement to the plate on which the antibody to be evaluated is immobilized via antigen or directly, and then adding anti-human C1q antibody labeled with peroxidase. Is possible.
  • polypeptide containing the modified Fc region of the present invention can be combined with amino acid modification performed for other purposes.
  • amino acid substitution J Immunol. 2006 Jan 1; 176 (1): 346-56, J Biol Chem. 2006 Aug 18; 281 (33): 23514-24.
  • Int Immunol. 2006 Dec improves the binding activity to FcRn 18 (12): 1759-69., Nat Biotechnol. 2010 Feb; 28 (2): 157-9.
  • WO / 2006/019447, WO / 2006/053301, WO / 2009/086320 antibody heterogeni Amino acid substitution (WO / 2009/041613) for improving tea and stability may be added.
  • a polypeptide comprising the modified Fc region of the present invention and a polypeptide imparted with a property for promoting the disappearance of the antigen described in WO2011 / 122011, PCT / JP2011 / 072550, WO2009 / 125825, PCT / JP2011 Polypeptides imparted with the property of repeatedly binding to multiple molecule antigens described in / 077619 are also included in the present invention.
  • the polypeptide containing the Fc region variant of the present invention may be combined with an amino acid modification (WO / 2012/016227) that lowers the pI of the constant region for the purpose of increasing blood retention.
  • the amino acid modification described in EP1752471 or EP1772465 may be combined with CH3 for the purpose of using the polypeptide containing the Fc region variant of the present invention to have the ability to bind to other antigens.
  • the polypeptide containing the Fc region variant of the present invention contains an antigen-binding domain such as an antibody, in order to enhance the antigen elimination effect from the plasma of the polypeptide, the binding activity to the antigen depending on the ionic concentration conditions Amino acid modifications to change can be combined.
  • any structure domain can be used as long as it binds to the antigen of interest.
  • domains include, for example, a variable domain of antibody heavy and light chains, a module called an A domain of about 35 amino acids contained in Avimer, a cell membrane protein present in vivo (International Publication WO2004 / 044011, WO2005 / 040229), Adnectin (international publication WO2002 / 032925) containing a 10Fn3 domain that binds to the protein in fibronectin, a glycoprotein expressed on the cell membrane, and a bundle of three helices consisting of 58 amino acids of ProteinA Affibody having IgG binding domain comprising as scaffold (International Publication WO1995 / 001937), ankyrin repeat having a structure in which a turn containing 33 amino acid residues and two antiparallel helix and loop subunits are repeatedly stacked DARPins (Designed Ankyrin Repeat proteins) (International Publication WO2002 / 020565
  • antigen-binding domain of the present invention include antigen-binding domains comprising antibody heavy and light chain variable regions.
  • antigen binding domains include “scFv (single chain Fv)”, “single chain antibody”, “Fv”, “scFv2 (single chain Fv 2)”, “Fab” or “F ( ab ′) 2 ”and the like are preferable.
  • ion concentration includes, for example, metal ion concentration.
  • Metal ion means group I such as alkali metal and copper group excluding hydrogen, group II such as alkaline earth metal and zinc group, group III excluding boron, group IV excluding carbon and silicon, It refers to ions of elements belonging to Group A, Group VIII, Group V, Group VI, Group VII such as platinum group, and metal elements such as antimony, bismuth and polonium. Metal atoms have the property of releasing valence electrons and becoming cations, which is called ionization tendency. A metal having a large ionization tendency is considered to be chemically active.
  • An example of a metal ion suitable for the present invention is calcium ion.
  • Calcium ions are involved in the regulation of many life phenomena, such as contraction of muscles such as skeletal muscle, smooth muscle and heart muscle, activation of leukocyte movement and phagocytosis, activation of platelet deformation and secretion, lymphocytes, etc.
  • Activation, mast cell activation such as histamine secretion, cellular response via catecholamine alpha receptor and acetylcholine receptor, exocytosis, release of transmitter from neuronal terminals, neuronal axon flow, etc. Ions are involved.
  • intracellular calcium ion receptors are troponin C, calmodulin, parvalbumin, myosin light chain, etc., which have multiple calcium ion binding sites and are thought to originate from a common source in molecular evolution. Many of its binding motifs are also known. For example, cadherin domain, EF hand contained in calmodulin, C2 domain contained in Protein kinase C, Gla domain contained in blood clotting protein FactorIX, C-type lectin contained in asialoglycoprotein receptor and mannose binding receptor, LDL receptor The included A domain, annexin, thrombospondin type 3 domain and EGF-like domain are well known.
  • the calcium ion concentration condition when the metal ion is calcium ion, the calcium ion concentration condition includes a low calcium ion concentration condition and a high calcium ion concentration condition.
  • the binding activity changes depending on the calcium ion concentration condition means that the binding activity of the antigen-binding molecule to the antigen changes depending on the difference between the low calcium ion concentration and the high calcium ion concentration.
  • the binding activity of an antigen-binding molecule to an antigen under a high calcium ion concentration condition is higher than the binding activity of the antigen-binding molecule to an antigen under low calcium ion concentration conditions.
  • the high calcium ion concentration is not particularly limited to a unique numerical value, but may preferably be a concentration selected from 100 ⁇ M to 10 ⁇ m. In another embodiment, the concentration may be selected from 200 ⁇ M to 5 ⁇ M. In another embodiment, the concentration may be selected from 400 ⁇ M to 3 ⁇ mM, and in another embodiment, the concentration may be selected from 200 ⁇ M to 2 ⁇ mM. Furthermore, it may be a concentration selected from between 400 ⁇ M and 1 ⁇ mM. Particularly preferred is a concentration selected from 500 ⁇ M to 2.5 ⁇ mM, which is close to the calcium ion concentration in plasma (blood) in vivo.
  • the low calcium ion concentration is not particularly limited to a unique numerical value, but may preferably be a concentration selected from 0.1 ⁇ M to 30 ⁇ M. In another embodiment, it may also be a concentration selected from between 0.2 ⁇ M and 20 ⁇ M. In another embodiment, the concentration may be selected from 0.5 ⁇ M to 10 ⁇ M, and in another embodiment, the concentration may be selected from 1 ⁇ M to 5 ⁇ M. It can also be a concentration selected between 2 ⁇ M and 4 ⁇ M. Particularly preferred is a concentration selected from 1 ⁇ M to 5 ⁇ M close to the ionized calcium concentration in the early endosome in vivo.
  • the binding activity to the antigen under the condition of low calcium ion concentration is lower than the binding activity to the antigen under the condition of high calcium ion concentration is a calcium ion concentration selected from 0.1 ⁇ M to 30 ⁇ M of the antigen binding molecule.
  • the binding activity to the antigen is weaker than the binding activity to the antigen at a calcium ion concentration selected between 100 ⁇ M and 10 ⁇ mM.
  • the antigen-binding molecule has a weaker binding activity against an antigen at a calcium ion concentration selected between 0.5 ⁇ M and 10 ⁇ M than the binding activity against an antigen at a calcium ion concentration selected between 200 ⁇ M and 5 ⁇ mM.
  • the antigen binding activity at the calcium ion concentration in the early endosome in the living body is weaker than the antigen binding activity at the calcium ion concentration in the plasma in the living body, specifically, the antigen
  • the binding activity of the binding molecule to the antigen at a calcium ion concentration selected between 1 ⁇ M and 5 ⁇ M is weaker than the binding activity to the antigen at a calcium ion concentration selected between 500 ⁇ M and 2.5 ⁇ M.
  • Whether or not the binding activity of the antigen-binding molecule to the antigen is changed depending on the condition of the metal ion concentration can be determined, for example, by using a known measurement method as described in the above-mentioned binding activity section. For example, in order to confirm that the binding activity of an antigen-binding molecule to an antigen under a high calcium ion concentration condition changes higher than the binding activity of the antigen-binding molecule to an antigen under a low calcium ion concentration condition, The binding activity of the antigen binding molecule to the antigen under conditions of low calcium ion concentration and high calcium ion concentration is compared.
  • the expression “the binding activity to the antigen under the condition of low calcium ion concentration is lower than the binding activity to the antigen under the condition of high calcium ion concentration” means that the antigen binding molecule binds to the antigen under the condition of high calcium ion concentration. It can also be expressed that the activity is higher than the binding activity to the antigen under low calcium ion concentration conditions.
  • “the binding activity to the antigen under the condition of low calcium ion concentration is lower than the binding activity to the antigen under the condition of high calcium ion concentration” is referred to as “the antigen binding ability under the condition of low calcium ion concentration is high calcium ion concentration.
  • the antigen-binding ability under the calcium ion concentration condition may be weaker than the antigen-binding ability under the high calcium ion concentration condition.
  • Conditions other than the calcium ion concentration when measuring the binding activity to the antigen can be appropriately selected by those skilled in the art and are not particularly limited.
  • measurement can be performed under the conditions of HEPES buffer and 37 ° C.
  • it can be measured using Biacore (GE Healthcare).
  • the antigen is a soluble antigen
  • the binding activity to the soluble antigen can be measured by flowing the antigen as an analyte to the chip on which the antigen-binding molecule is immobilized.
  • the antigen is a membrane-type antigen
  • it is possible to evaluate the binding activity to the membrane-type antigen by flowing the antigen-binding molecule as an analyte to the chip on which the antigen is immobilized. It is.
  • the binding activity to the antigen under the condition of low calcium ion concentration is weaker than the binding activity to the antigen under the condition of high calcium ion concentration
  • the binding activity to the antigen under the low calcium ion concentration condition and high calcium is not particularly limited, but is preferably the ratio of KD (Dissociation constant: dissociation constant) to the antigen and KD under the high calcium ion concentration condition.
  • the value of (Ca 3 ⁇ M) / KD (Ca 2 mM) is 2 or more, more preferably the value of KD (Ca 3 ⁇ M) / KD (Ca 2 mM) is 10 or more, more preferably KD (Ca 3 ⁇ M)
  • the value of / KD (Ca 2 mM) is 40 or more.
  • the upper limit of the value of KD (Ca 3 ⁇ M) / KD (Ca 2 mM) is not particularly limited, and may be any value such as 400, 1000, 10000, etc., as long as it can be produced by a person skilled in the art.
  • KD dissociation constant
  • apparent KD ApparentKDdissociation constant
  • KD dissociation constant
  • apparent KD apparent dissociation constant
  • the dissociation rate constant kd (Dissociation ⁇ rate constant: dissociation rate constant) may also be suitably used.
  • kd dissociation rate constant
  • KD dissociation constant
  • the ratio of kd (low calcium concentration condition) / kd (high calcium concentration condition), which is the ratio of rate constants, is preferably 2 or more, more preferably 5 or more, and even more preferably 10 or more. More preferably, it is 30 or more.
  • the upper limit of the value of Kd (conditions for low calcium concentration) / kd (conditions for high calcium concentration) is not particularly limited, and may be any value such as 50, 100, 200, etc. as long as it can be produced by the common general knowledge of those skilled in the art.
  • kd dissociation rate constant
  • apparent kd Apparent dissociation rate constant
  • kd (dissociation rate constant) and apparent kd can be measured by methods known to those skilled in the art. For example, Biacore (GE healthcare), a flow cytometer or the like can be used. Is possible.
  • Biacore GE healthcare
  • a flow cytometer or the like can be used. Is possible.
  • the conditions other than the calcium concentration are preferably the same.
  • an antigen-binding domain or antigen-binding molecule whose binding activity to an antigen under conditions of low calcium ion concentration, which is one embodiment provided by the present invention, is lower than the binding activity to an antigen under conditions of high calcium ion concentration is as follows: It can be obtained by screening an antigen binding domain or antibody comprising (a)-(c).
  • an antigen-binding domain or antigen-binding molecule that has a lower binding activity to an antigen under conditions of a low calcium ion concentration which is one aspect provided by the present invention, is lower than the binding activity to an antigen under a condition of a high calcium ion concentration, as follows: It can be obtained by screening an antigen binding domain or antigen binding molecule comprising (a)-(c) or a library thereof.
  • step (a) contacting an antigen-binding domain or antigen-binding molecule or a library thereof under high calcium concentration conditions with an antigen; (b) placing the antigen-binding domain or antigen-binding molecule bound to the antigen in step (a) under low calcium concentration conditions; (c) A step of isolating the antigen-binding domain or antigen-binding molecule dissociated in the step (b).
  • an antigen-binding domain or an antigen-binding molecule whose binding activity to an antigen under conditions of a low calcium ion concentration, which is one embodiment provided by the present invention, is lower than the binding activity to an antigen under conditions of a high calcium ion concentration is as follows: It can be obtained by screening an antigen binding domain or antigen binding molecule comprising (a) to (d) or a library thereof.
  • step (a) contacting the antigen-binding domain or library of antigen-binding molecules with the antigen under low calcium concentration conditions; (b) selecting an antigen-binding domain or antigen-binding molecule that does not bind to an antigen in the step (a), (c) binding the antigen-binding domain or antigen-binding molecule selected in step (b) to an antigen under high calcium concentration conditions; (d) A step of isolating the antigen-binding domain or antigen-binding molecule bound to the antigen in the step (c).
  • an antigen-binding domain or antigen-binding molecule whose binding activity to an antigen in a low calcium ion concentration condition, which is one embodiment provided by the present invention, is lower than the binding activity to an antigen in a high calcium ion concentration condition is as follows: It can be obtained by a screening method comprising (a) to (c).
  • step (a) contacting the antigen-immobilized column with a library of antigen-binding domains or antigen-binding molecules under high calcium concentration conditions; (b) a step of eluting the antigen-binding domain or antigen-binding molecule bound to the column in the step (a) from the column under a low calcium concentration condition, (c) A step of isolating the antigen-binding domain or antigen-binding molecule eluted in the step (b).
  • an antigen-binding domain or antigen-binding molecule whose binding activity to an antigen in a low calcium ion concentration condition, which is one embodiment provided by the present invention, is lower than the binding activity to an antigen in a high calcium ion concentration condition is as follows: It can be obtained by a screening method comprising (a) to (d).
  • step (a) passing an antigen-binding domain or a library of antigen-binding molecules through a column immobilized with an antigen under a low calcium concentration condition; (b) collecting the antigen-binding domain or antigen-binding molecule eluted without binding to the column in the step (a), (c) a step of binding the antigen-binding domain or antigen-binding molecule recovered in the step (b) to an antigen under a high calcium concentration condition, (d) A step of isolating the antigen-binding domain or antigen-binding molecule bound to the antigen in the step (c).
  • an antigen-binding domain or antigen-binding molecule whose binding activity to an antigen in a low calcium ion concentration condition, which is one embodiment provided by the present invention, is lower than the binding activity to an antigen in a high calcium ion concentration condition is as follows: It can be obtained by a screening method comprising (a) to (d).
  • step (a) contacting the antigen binding domain or library of antigen binding molecules with the antigen under high calcium concentration conditions; (b) obtaining an antigen-binding domain or antigen-binding molecule bound to the antigen in the step (a), (c) placing the antigen-binding domain or antigen-binding molecule obtained in step (b) under low calcium concentration conditions, (d) isolating an antigen-binding domain or antigen-binding molecule whose antigen-binding activity in the step (c) is weaker than the criterion selected in the step (b).
  • the above process may be repeated twice or more. Therefore, according to the present invention, in the screening method described above, the conditions for the low calcium ion concentration obtained by the screening method further comprising the step of repeating steps (a) to (c) or (a) to (d) twice or more.
  • An antigen-binding domain or an antigen-binding molecule is provided that has a lower binding activity to an antigen than the binding activity to an antigen under conditions of high calcium ion concentration.
  • the number of times the steps (a) to (c) or (a) to (d) are repeated is not particularly limited, but is usually within 10 times.
  • the antigen-binding activity of the antigen-binding domain or antigen-binding molecule under low calcium concentration conditions is not particularly limited as long as the ion-binding calcium concentration is between 0.1 ⁇ M and 30 ⁇ M.
  • an antigen-binding activity between 0.5 ⁇ M and 10 ⁇ M can be mentioned.
  • a more preferable ionized calcium concentration includes an ionized calcium concentration in an early endosome in a living body, and specifically includes an antigen binding activity at 1 ⁇ M to 5 ⁇ M.
  • the antigen-binding activity of the antigen-binding domain or antigen-binding molecule under high calcium concentration conditions is not particularly limited as long as the ion-binding calcium concentration is between 100 ⁇ M and 10 ⁇ m, but a preferable ionized calcium concentration is 200 ⁇ M to Mention may be made of antigen binding activity between 5 mM. More preferable ionized calcium concentration includes ionized calcium concentration in plasma in a living body, specifically, antigen-binding activity at 0.5 to 2.5 mM.
  • WO2012 is a screening method using an antigen-binding domain or an antigen-binding molecule whose binding activity to an antigen under conditions of low calcium ion concentration, which is one embodiment provided by the present invention, is lower than the binding activity to antigen under conditions of high calcium ion concentration.
  • the method described in / 073992 etc. (for example, paragraph 0200-0213) can also be illustrated.
  • the antigen-binding activity of the antigen-binding domain or antigen-binding molecule can be measured by a method known to those skilled in the art, and conditions other than the ionized calcium concentration can be appropriately determined by those skilled in the art.
  • Antigen-binding activity of an antigen-binding domain or antigen-binding molecule is KD (Dissociation constant: dissociation constant), apparent KD (Apparent dissociation constant: apparent dissociation constant), kd (dissociation rate: dissociation rate constant), Alternatively, it can be evaluated as an apparent kd (Apparent dissociation).
  • KD Dissociation constant: dissociation constant
  • apparent KD Apparent dissociation constant
  • kd dissociation rate constant
  • it can be evaluated as an apparent kd (Apparent dissociation).
  • Biacore GE healthcare
  • Scatchard plot FACS and the like
  • the step of selecting an antigen-binding domain or antigen-binding molecule whose antigen-binding activity under a high calcium concentration condition is higher than that under a low calcium concentration condition is that the antigen-binding activity under a low calcium concentration condition is high calcium. This is the same meaning as the step of selecting an antigen-binding domain or antigen-binding molecule lower than the antigen-binding activity under concentration conditions.
  • the difference between the antigen binding activity under the high calcium concentration condition and the antigen binding activity under the low calcium concentration condition is not particularly limited,
  • the antigen binding activity under a high calcium concentration condition is 2 times or more of the antigen binding activity under a low calcium concentration condition, more preferably 10 times or more, and more preferably 40 times or more.
  • the antigen-binding domain or antigen-binding molecule of the present invention to be screened by the above screening method may be any antigen-binding domain or antigen-binding molecule.
  • the above-described antigen-binding domain or antigen-binding molecule can be screened.
  • an antigen-binding domain or antigen-binding molecule having a natural sequence may be screened, or an antigen-binding domain or antigen-binding molecule having an amino acid sequence substituted may be screened.
  • WO2012 is a screening method for an antigen-binding domain or an antigen-binding molecule, which is one embodiment provided by the present invention and has a lower binding activity to an antigen under conditions of low calcium ion concentration than the binding activity to antigen under conditions of high calcium ion concentration.
  • the method described in / 073992 etc. (for example, paragraph 0200-0213) can be illustrated.
  • the antigen-binding domain or antigen-binding molecule that changes the binding activity to the antigen according to the conditions of the calcium ion concentration of the present invention to be screened by the above screening method may be prepared in any way, for example, when the metal ion is at the calcium ion concentration.
  • pre-existing antigen-binding domains or antigen-binding molecules pre-existing libraries (such as phage libraries), hybridomas obtained from immunization to animals, or B cells from immunized animals
  • Antibodies or libraries amino acids capable of chelating calcium to these antibodies or libraries (for example, aspartic acid or glutamic acid) or antibodies or libraries introduced with unnatural amino acid mutations (amino acids capable of chelating calcium (for example, aspartic acid or It is possible to use a library in which the content of glutamic acid or unnatural amino acid is increased, an amino acid capable of chelating calcium at a specific position (for example, a library in which an unnatural amino acid mutation is introduced) or the like.
  • an amino acid that changes the binding activity of an antigen-binding molecule to an antigen depending on the condition of the ion concentration as described above for example, when the metal ion is a calcium ion, if it is an amino acid that forms a calcium-binding motif, Any type.
  • Calcium binding motifs are well known to those skilled in the art and have been described in detail (eg, Springer et al. (Cell (2000) 102, 275-277), Kawasaki and Kretsinger (Protein Prof. (1995) 2, 305-490) Moncrief et al. (J. Mol. Evol. (1990) 30, 522-562), Chauvaux et al. (Biochem. J.
  • any known calcium-binding motif such as C-type lectin such as ASGPR, CD23, MBR, DC-SIGN and the like can be included in the antigen-binding molecule of the present invention.
  • a calcium binding motif contained in the antigen binding domain described in SEQ ID NO: 45 can also be mentioned.
  • an amino acid having a metal chelate action can be suitably used as an example of an amino acid that changes the binding activity to the antigen depending on the calcium ion concentration condition of the antigen-binding domain contained in the antigen-binding molecule of the present invention.
  • amino acids having a metal chelating action include, for example, serine (Ser (S)), threonine (Thr (T)), asparagine (Asn (N)), glutamine (Gln (Q)), aspartic acid (Asp (D) ) And glutamic acid (Glu (E)) and the like.
  • the position of the antigen-binding domain containing the amino acid is not limited to a specific position. As long as the binding activity of the antigen-binding molecule to the antigen is changed depending on the condition of calcium ion concentration, the heavy chain variable region that forms the antigen-binding domain or It can be at any position in the light chain variable region.
  • the antigen-binding domain of the present invention comprises antigens having different sequences from each other, wherein the heavy-chain antigen-binding domain contains amino acids that change the binding activity of the antigen-binding molecule to the antigen depending on calcium ion concentration conditions. It can be obtained from a library consisting primarily of binding molecules.
  • the antigen-binding domain of the present invention can be obtained from a library mainly composed of antigen-binding molecules having different sequences from each other, the amino acids of which are contained in heavy chain CDR3.
  • the antigen-binding domain of the present invention comprises antigens having different sequences from each other, wherein the amino acids are contained at positions 95, 96, 100a and / or 101 represented by the Kabat numbering of heavy chain CDR3. It can be obtained from a library consisting primarily of binding molecules.
  • the antigen-binding domain of the present invention contains an amino acid that changes the binding activity of the antigen-binding molecule to the antigen depending on the calcium ion concentration condition in the antigen-binding domain of the light chain. It can be obtained from a library mainly composed of antigen-binding molecules having different sequences. Further, in another non-limiting embodiment, the antigen-binding domain of the present invention can be obtained from a library mainly composed of antigen-binding molecules having different sequences from each other, the amino acids of which are contained in light chain CDR1.
  • the antigen-binding domain of the present invention is an antigen-binding domain comprising antigen-binding molecules having different sequences from each other, which are contained in positions 30, 31, and / or 32 represented by Kabat numbering of light chain CDR1. It can be obtained from the main library.
  • the antigen-binding domain of the present invention can be obtained from a library mainly composed of antigen-binding molecules having different amino acid residues contained in the light chain CDR2 and having different sequences.
  • the antigen-binding domain of the present invention can be obtained from a library mainly composed of antigen-binding molecules having different amino acid residues contained in the light chain CDR3.
  • the antigen-binding domain of the present invention is obtained from a library mainly composed of antigen-binding molecules having different sequences, wherein the amino acid residue is contained in position 92 represented by Kabat numbering of light chain CDR3. obtain.
  • the antigen-binding domain of the present invention has an antigen-binding sequence in which the amino acid residues are different in sequence from each other contained in two or three CDRs selected from CDR1, CDR2 and CDR3 of the light chain described above. It can be obtained as a different embodiment of the present invention from a library consisting mainly of molecules. Furthermore, the antigen-binding domain of the present invention includes the amino acid residue at any one or more of positions 30, 31, 32, 50, and / or 92 represented by the Kabat numbering of the light chain. It can be obtained from a library mainly composed of antigen-binding molecules having different sequences.
  • the framework sequence of the light chain and / or heavy chain variable region of the antigen-binding molecule comprises a human germline framework sequence.
  • the antigen binding molecule of the invention will have little or no immunogenic response when administered to a human (eg, treatment of disease). It is thought not to cause.
  • a moth containing a germline sequence in the present invention means that a part of the framework sequence in the present invention is the same as a part of any human germline framework sequence.
  • the sequence of the heavy chain FR2 of the antigen-binding molecule of the present invention is a sequence in which the heavy chain FR2 sequences of a plurality of different human germline framework sequences are combined, An antigen binding molecule.
  • V-Base http://vbase.mrc-cpe.cam.ac.uk/
  • a preferred arrangement is the work area.
  • These framework region sequences can be appropriately used as germline sequences contained in the antigen-binding molecule of the present invention. Germline sequences can be classified on the basis of their similarity (Tomlinson et al. (J. Mol. Biol. (1992) 227, 776-798) Williams and Winter (Eur. J. Immunol. (1993) 23, 1456 -1461) and Cox et al. (Nat. Genetics (1994) 7, 162-168)).
  • a suitable germline sequence can be appropriately selected from V ⁇ classified into 7 subgroups, V ⁇ classified into 10 subgroups, and VH classified into 7 subgroups.
  • VH1 subgroups eg, VH1-2, VH1-3, VH1-8, VH1-18, VH1-24, VH1-45).
  • VH1-46, VH1-58, VH1-69) VH2 subgroups (eg VH2-5, VH2-26, VH2-70)
  • VH3 subgroups VH3-7, VH3-9, VH3-11, VH3 -13, VH3-15, VH3-16, VH3-20, VH3-21, VH3-23, VH3-30, VH3-33, VH3-35, VH3-38, VH3-43, VH3-48, VH3-49 , VH3-53, VH3-64, VH3-66, VH3-72, VH3-73, VH3-74), VH4 subgroup (VH4-4, VH4-28, VH4-31, VH4-34, VH4-39,
  • the fully human V ⁇ sequence is not limited to the following, for example, A20, A30, L1, L4, L5, L8, L9, L11, L12, L14, L15, which are classified into the Vk1 subgroup, A1, A2, A3, A5, A7, A17, A18, A19, A23, O1, O11 classified into L18, L19, L22, L23, L24, O2, O4, O8, O12, O14, O18, Vk2 subgroups A11, A27, L2, L6, L10, L16, L20, L25, Bk classified into Vk4 subgroup, B2 classified into Vk5 subgroup (in this specification, Vk5-2 A10, A14, A26 etc. (Kawasaki et al.
  • the fully human V ⁇ sequence is not limited to the following, but for example, V1-2, V1-3, V1-4, V1-5, V1-7, V1- 9, V1-11, V1-13, V1-16, V1-17, V1-18, V1-19, V1-20, V1-22, VL1 subgroup V2-1, V2-6, V2 -7, V2-8, V2-11, V2-13, V2-14, V2-15, V2-17, V2-19, V3-2, V3-3, V3-4, classified into VL3 subgroup V4-1, V4-2, V4-3, V4-4, V4-6 classified into VL4 subgroup, V5-1, V5-2, V5-4, V5-6 etc. classified into VL5 subgroup (Kawasaki et al. (Genome Res. (1997) 7, 250-261)) is preferable.
  • framework sequences differ from each other by the difference in one or more amino acid residues.
  • These framework sequences can be used in the present invention together with “at least one amino acid residue that changes the binding activity of an antigen-binding molecule to an antigen depending on ion concentration conditions”.
  • Examples of fully human frameworks used together with “at least one amino acid residue that changes the binding activity of an antigen-binding molecule to an antigen depending on ion concentration conditions” in the present invention are not limited to this.
  • Others include KOL, NEWM, REI, EU, TUR, TEI, LAY, POM and the like (for example, Kabat et al. (1991) and Wu et al. (J. Exp. Med. (1970) 132, 211-250)).
  • germline sequences are expected to eliminate adverse immune responses in most individuals. It has been. Affinity maturation steps that occur during normal immune responses frequently result in somatic mutations in the variable regions of immunoglobulins. These mutations occur primarily around CDRs whose sequences are hypervariable, but also affect residues in framework regions. These framework mutations are not present in germline genes and are unlikely to be immunogenic in patients. On the other hand, normal human populations are exposed to the majority of framework sequences expressed by germline genes, and as a result of immune tolerance, these germline frameworks are less immunogenic in patients Alternatively, it is expected to be non-immunogenic. In order to maximize the potential for immune tolerance, the gene encoding the variable region can be selected from a set of functional germline genes that normally exist.
  • the amino acid that changes the binding activity of the antigen-binding molecule to the antigen according to the condition of the calcium ion concentration of the present invention is the above-mentioned variable region sequence, heavy chain variable region or light chain variable region sequence, or CDR sequence or framework sequence
  • There are known methods such as site-directed mutagenesis (Kunkel et al. (Proc. Natl. Acad. Sci. 1985 USA (1985) 82, 488-492)) and Overlap extension ⁇ ⁇ PCR to produce antigen-binding molecules contained in It can be adopted as appropriate.
  • a light chain variable region selected as a framework sequence that includes at least one amino acid residue that changes the binding activity of an antigen-binding molecule to an antigen depending on calcium ion concentration conditions and a randomized variable region sequence library
  • a library containing a plurality of antigen binding molecules having different sequences from each other of the present invention can be prepared.
  • the ion concentration is the calcium ion concentration
  • a light chain variable region sequence and a randomized variable region sequence library described in SEQ ID NO: 45 (Vk5-2) A library combining the prepared heavy chain variable region is preferable.
  • various amino acids are included as residues other than the amino acid residues.
  • such a residue is referred to as a flexible residue.
  • the binding activity of the antigen-binding domain or antigen-binding molecule of the present invention to the antigen varies depending on the condition of ion concentration, the number and position of the flexible residues are not limited to a specific embodiment.
  • one or more flexible residues can be included in the CDR and / or FR sequences of the heavy and / or light chain.
  • the ion concentration is a calcium ion concentration
  • Table 1 or Examples include the amino acid residues listed in Table 2.
  • flexible residues are light and heavy chains having several different amino acids that are presented at that position when comparing amino acid sequences of known and / or natural antibodies or antigen binding domains.
  • Kabat Sequences of Proteins of Immunological Interest (National Institute of Health Bethesda Md.) (1987 and 1991) provides in determining the highly diverse positions of known and / or natural antibodies. The data to be used is valid.
  • the amino acids are preferably from about 2 to about 20, preferably from about 3 to about 19, preferably from about 4 to about 18, preferably from 5 to 17, preferably from 6 to 16, preferably from 7 to 7 at certain positions. If it has a diversity of 15, preferably 8 to 14, preferably 9 to 13, preferably 10 to 12 possible different amino acid residues, the position is very diverse.
  • an amino acid position preferably has at least about 2, preferably at least about 4, preferably at least about 6, preferably at least about 8, preferably about 10, preferably about 12 possible different amino acids. Can have residue diversity.
  • the ion concentration is a calcium ion concentration
  • a library combining a heavy chain variable region prepared as a randomized variable region sequence library is preferable.
  • Non-limiting examples of the amino acid residues include amino acid residues contained in the light chain CDR1.
  • non-limiting examples of the amino acid residues include amino acid residues contained in the light chain CDR2.
  • an amino acid residue contained in CDR3 of the light chain is also exemplified.
  • amino acid residues in which the amino acid residue is contained in CDR1 of the light chain positions 30, 31 and / or represented by EU numbering in the CDR1 of the light chain variable region
  • amino acid residue at position 32 is mentioned.
  • amino acid residue at position 50 represented by Kabat numbering in CDR2 of the light chain variable region.
  • amino acid residue at position 92 represented by Kabat numbering in the CDR3 of the light chain variable region.
  • these amino acid residues can be included alone as long as these amino acid residues form a calcium-binding motif and / or the binding activity of the antigen-binding molecule to the antigen varies depending on the calcium ion concentration conditions.
  • two or more of these amino acids may be included in combination.
  • troponin C, calmodulin, parvalbumin, myosin light chain, etc. which have multiple calcium ion binding sites and are thought to be derived from a common origin in molecular evolution, are known to contain the binding motif. It is also possible to design light chain CDR1, CDR2 and / or CDR3.
  • cadherin domain for the above purpose, EF hand contained in calmodulin, C2 domain contained in Protein kinase C, Gla domain contained in blood coagulation protein FactorIX, C-type lectin contained in asialoglycoprotein receptor and mannose binding receptor, The A domain, annexin, thrombospondin type 3 domain and EGF-like domain contained in the LDL receptor can be appropriately used.
  • a light chain variable region into which at least one amino acid residue that changes the binding activity of an antigen-binding molecule to an antigen is changed according to the above ion concentration conditions and a heavy chain variable region prepared as a randomized variable region sequence library are combined. Even in such a case, it is possible to design such that the flexible residue is included in the sequence of the light chain variable region, as described above.
  • the number and position of the flexible residues are not limited to a specific embodiment. That is, one or more flexible residues can be included in the CDR and / or FR sequences of the heavy and / or light chain.
  • the ion concentration is a calcium ion concentration
  • non-limiting examples of flexible residues introduced into the light chain variable region sequence include amino acid residues described in Table 1 or Table 2.
  • a randomized variable region library is preferably mentioned.
  • Known methods are appropriately combined with the method for producing the randomized variable region library.
  • an antibody gene derived from an animal immunized with a specific antigen, an infectious disease patient, a human who has been vaccinated, has increased blood antibody titer, a cancer patient, or an autoimmune disease lymphocyte.
  • the originally constructed immune library can be suitably used as a randomized variable region library.
  • the V gene in genomic DNA ⁇ and the CDR sequence of the reconstructed functional V gene are replaced with a synthetic oligonucleotide set containing a sequence encoding a codon set of an appropriate length.
  • the synthesized library can also be suitably used as a randomized variable region library.
  • a criterion for generating amino acid diversity in the variable region of an antigen-binding molecule is to provide diversity for amino acid residues at positions exposed on the surface of the antigen-binding molecule.
  • a surface exposed position is a position that can be exposed and / or contacted with an antigen based on the structure, structural ensemble, and / or modeled structure of the antigen-binding molecule. Generally speaking, it is the CDR.
  • the position exposed on the surface is determined using coordinates from a three-dimensional model of the antigen binding molecule using a computer program such as the Insight II program (Accelrys).
  • the position exposed on the surface can be determined using algorithms known in the art (eg, Lee and Richards (J. Mol. Biol. (1971) 55, 379-400), Connolly (J. Appl. Cryst. (1983) 16, 1983). 548-558)).
  • the determination of the position exposed on the surface can be performed using software suitable for protein modeling and three-dimensional structural information obtained from antibodies.
  • SYBYL biopolymer module software (Tripos Associates) is preferably exemplified as software that can be used for such a purpose.
  • the “size” of the probe used in the calculation is set to a radius of about 1.4 angstroms or less.
  • Pacios Comput. Chem. (1994) 18 (4), 377-386 and J. Mol. Model. (1995) 1 , 46-53).
  • a naive library consisting of a naive sequence that is an antibody sequence constructed from an antibody gene derived from a lymphocyte of a healthy person and having no bias in its repertoire is also a randomized variable region library.
  • a naive sequence that is an antibody sequence constructed from an antibody gene derived from a lymphocyte of a healthy person and having no bias in its repertoire is also a randomized variable region library.
  • the antigen-binding domain of the present invention can be obtained from a library containing a plurality of antigen-binding molecules of different sequences of the present invention by combining with a light chain variable region prepared as a randomized variable region sequence library.
  • the ion concentration is a calcium ion concentration
  • SEQ ID NO: 50 (6RL # 9-IgG1) or SEQ ID NO: 51 (6KC4-1 # 85-IgG1)
  • the light chain variable region prepared as a randomized variable region sequence library it can be prepared by appropriately selecting from light chain variable regions having germline sequences.
  • a heavy chain variable region sequence described in SEQ ID NO: 50 (6RL # 9-IgG1) or SEQ ID NO: 51 (6KC4-1 # 85-IgG1) and a light chain variable region having a germline sequence A combined library is preferred.
  • sequence of the heavy chain variable region selected as a framework sequence containing in advance “at least one amino acid residue that changes the binding activity of the antigen-binding molecule to the antigen depending on the ion concentration conditions” is flexible. It can also be designed to include residues. As long as the binding activity of the antigen-binding molecule of the present invention to the antigen varies depending on the condition of ion concentration, the number and position of the flexible residues are not limited to a specific embodiment. That is, one or more flexible residues can be included in the CDR and / or FR sequences of the heavy and / or light chain.
  • a non-limiting example of a flexible residue introduced into the heavy chain variable region sequence described in SEQ ID NO: 50 is examples include all amino acid residues of the chains CDR1 and CDR2, as well as amino acid residues of CDR3 other than positions 95, 96 and / or 100a of the heavy chain CDR3.
  • a flexible residue introduced into the heavy chain variable region sequence set forth in SEQ ID NO: 51 (6KC4-1 # 85-IgG1), all amino acid residues of heavy chain CDR1 and CDR2
  • Other amino acid residues of CDR3 other than positions 95 and / or 101 of heavy chain CDR3 are also mentioned.
  • the light chain variable region prepared as a heavy chain variable region and a randomized variable region sequence library introduced with the above-described “at least one amino acid residue that changes the binding activity of an antigen-binding molecule to an antigen depending on ion concentration conditions”
  • a library containing a plurality of antigen binding molecules with different sequences can also be generated.
  • the ion concentration is the calcium ion concentration
  • a specific residue of the heavy chain variable region exhibits the binding activity of the antigen-binding molecule to the antigen depending on the condition of the calcium ion concentration.
  • a library combining a heavy chain variable region sequence substituted with at least one amino acid residue to be changed and a light chain variable region prepared as a randomized variable region sequence library or a light chain variable region having a germline sequence Preferably mentioned.
  • the amino acid residues include amino acid residues contained in heavy chain CDR1.
  • non-limiting examples of the amino acid residues include amino acid residues contained in heavy chain CDR2.
  • an amino acid residue contained in heavy chain CDR3 is also exemplified.
  • Non-limiting examples of the amino acid residues contained in the heavy chain CDR3 include amino acid residues at positions 95, 96, 100a and / or 101 represented by Kabat numbering in the heavy chain variable region CDR3.
  • amino acids examples include amino acids.
  • these amino acid residues can be included alone as long as these amino acid residues form a calcium-binding motif and / or the binding activity of the antigen-binding molecule to the antigen varies depending on the calcium ion concentration conditions.
  • two or more of these amino acids may be included in combination.
  • Light chain variable region or reproductive region prepared as a heavy chain variable region and randomized variable region sequence library introduced with at least one amino acid residue that changes the binding activity of the antigen-binding molecule to the antigen depending on the ion concentration conditions.
  • a flexible residue is included in the sequence of the heavy chain variable region as described above.
  • the number and position of the flexible residues are not limited to a specific embodiment. That is, one or more flexible residues may be included in the heavy chain CDR and / or FR sequences.
  • a randomized variable region library can also be suitably used as the CDR1, CDR2 and / or CDR3 amino acid sequence of the heavy chain variable region other than the amino acid residue that changes the binding activity of the antigen-binding molecule to the antigen depending on the ion concentration conditions.
  • a germline sequence is used as the light chain variable region, for example, SEQ ID NO: 46 (Vk1), SEQ ID NO: 47 (Vk2), SEQ ID NO: 48 (Vk3), SEQ ID NO: 49 (Vk4)
  • Non-limiting examples include germline sequences such as
  • any amino acid can be preferably used as long as it forms a calcium-binding motif.
  • An amino acid having an electron donating property may be mentioned.
  • Preferred examples of such an electron-donating amino acid include serine, threonine, asparagine, glutamine, aspartic acid, and glutamic acid.
  • examples of the “ion concentration condition” of the present invention include “pH condition”.
  • the pH condition can also be referred to as a hydrogen ion concentration condition.
  • the condition of the concentration of protons that is, the nuclei of hydrogen atoms, is treated synonymously with the condition of hydrogen index (pH).
  • the pH is defined as -log10aH +. If the ionic strength in the aqueous solution is low (eg, less than 10 ⁇ 3 ), aH + is approximately equal to the hydrogen ion strength. For example, since the ion product of water at 25 ° C.
  • an aqueous solution having a pH lower than 7 is acidic
  • an aqueous solution having a pH higher than 7 is alkaline.
  • the pH condition when a pH condition is used as the ion concentration condition, the pH condition is a high hydrogen ion concentration or low pH, that is, a pH acidic range condition, and a low hydrogen ion concentration or high pH, that is, a neutral pH range. These conditions are listed.
  • the binding activity of the antigen-binding domain contained in the antigen-binding molecule of the present invention varies depending on the pH conditions.
  • the high hydrogen ion concentration or low pH (pH acidic range) and the low hydrogen ion concentration or high pH It means that the antigen-binding activity of the antigen-binding domain contained in the antigen-binding molecule changes depending on the difference in the pH neutral range.
  • the binding activity of the antigen-binding molecule to the antigen under neutral pH conditions is higher than the binding activity of the antigen-binding molecule to the antigen under acidic pH conditions.
  • the case where the binding activity of the antigen-binding molecule to the antigen under acidic pH conditions is higher than the binding activity of the antigen-binding molecule to the antigen under neutral pH conditions.
  • the neutral pH range is not particularly limited to a unique value, but can be preferably selected from pH 6.7 to pH 10.0.
  • the pH can be selected between pH 6.7 and pH 9.5.
  • the pH can be selected from between pH 7.0 and pH 9.0, and in other embodiments, the pH can be selected from between pH 7.0 and pH 8.0.
  • Particularly preferred is pH 7.4, which is close to the pH in plasma (blood) in vivo.
  • the acidic pH range is not particularly limited to an unambiguous numerical value, but may preferably be selected from pH 4.0 to pH 6.5.
  • the pH can be selected between pH 4.5 and pH 6.5.
  • it can be selected from between pH 5.0 and pH 6.5, and in other embodiments it can be selected from between pH 5.5 and pH 6.5.
  • Particularly preferred is pH 5.8 that is close to the ionized calcium concentration in the early endosome in vivo.
  • the binding activity to an antigen under conditions of high hydrogen ion concentration or low pH is lower than the binding activity to antigen under conditions of low hydrogen ion concentration or high pH (pH neutral range)
  • the antigen-binding domain of the present invention or the antigen-binding molecule containing the domain has an antigen-binding activity at a pH selected between pH 4.0 and pH 6.5, selected between pH 6.7 and pH 10.0. It is weaker than the binding activity to the antigen at a certain pH.
  • the antigen-binding domain of the present invention or the antigen-binding molecule comprising the domain has an antigen-binding activity at a pH selected from between pH 4.5 and pH 6.5 between pH 6.7 and pH 9.5.
  • the binding activity of the antigen binding molecule to the antigen at a pH selected between pH 5.0 and pH 6.5 is pH 7.0. Is weaker than the binding activity to the antigen at a pH selected between pH 9.0 and pH 9.0.
  • the antigen-binding molecule has an antigen-binding activity at a pH selected between pH 5.5 and pH 6.5, and has an antigen-binding activity at a pH selected between pH 7.0 and pH 8.0. Means weaker.
  • the antigen-binding activity at the pH in the early endosome in vivo is weaker than the antigen-binding activity at the pH in plasma in vivo, specifically, the antigen-binding molecule at pH 5.8. It means that the binding activity to the antigen is weaker than the binding activity to the antigen at pH 7.4.
  • the binding activity of the antigen-binding domain to the antigen or the antigen-binding molecule containing the domain is changed depending on the pH condition, for example, use a known measurement method as described in the above-mentioned section of binding activity. Can be determined by For example, the binding activity under different pH conditions is measured in the measurement method. For example, the antigen-binding domain for antigen under the acidic pH condition or the binding activity of the antigen-binding molecule containing the domain has a higher change in the domain or the antigen-binding activity for the antigen under neutral pH conditions. In order to confirm this, the binding activity of the domain or molecule to the antigen under conditions of acidic pH range and neutral pH range is compared.
  • the binding activity to an antigen under conditions of high hydrogen ion concentration or low pH, ie pH acidic range is lower than the binding activity to antigen under conditions of low hydrogen ion concentration or high pH ie pH neutral”.
  • the expression indicates that the binding activity of the antigen-binding domain or antigen-binding molecule containing the domain to the antigen under conditions of low hydrogen ion concentration or high pH, ie, pH neutral range, is high under conditions of high hydrogen ion concentration or low pH, ie pH acidic range. It can also be expressed as higher than the binding activity to the antigen.
  • the binding activity to the antigen under conditions of high hydrogen ion concentration or low pH, ie pH acidic range is lower than the binding activity to antigen under conditions of low hydrogen ion concentration or high pH ie pH neutral”.
  • the binding activity to the antigen is weaker than the binding ability to the antigen under the conditions of high hydrogen ion concentration or low pH or pH acidic range.
  • the binding activity to the antigen under conditions of high hydrogen ion concentration or low pH, ie pH acidic range is lower than the binding activity to antigen under conditions of low hydrogen ion concentration or high pH ie pH neutral” ⁇
  • the binding activity against the antigen under conditions of high hydrogen ion concentration or low pH, i.e. acidic pH range is low hydrogen ion concentration or high It may be described as “weaker than the ability to bind to an antigen under pH, ie, neutral pH range conditions”.
  • Conditions other than the hydrogen ion concentration or pH when measuring the binding activity to the antigen can be appropriately selected by those skilled in the art and are not particularly limited.
  • measurement can be performed under the conditions of HEPES buffer and 37 ° C.
  • it can be measured using Biacore (GE Healthcare).
  • Measurement of the binding activity between an antigen-binding domain or an antigen-binding molecule containing the domain and the antigen is carried out by measuring the antigen-binding domain or a chip on which the antigen-binding molecule containing the domain is immobilized, when the antigen is a soluble antigen. It is possible to evaluate the binding activity to a soluble antigen by flowing the antigen as an analyte.
  • the antigen-binding domain or the domain is added to the chip on which the antigen is immobilized. It is possible to evaluate the binding activity to the membrane antigen by flowing the antigen-binding molecule contained therein as an analyte.
  • the antigen-binding molecule of the present invention as long as the binding activity to an antigen in a condition of high hydrogen ion concentration or low pH, ie pH acidic range is weaker than the binding activity to the antigen in a condition of low hydrogen ion concentration or high pH ie pH neutral range
  • the ratio of the binding activity to the antigen under conditions of high hydrogen ion concentration or low pH or pH acidic range to the binding activity to the antigen under conditions of low hydrogen ion concentration or high pH or pH neutral range is not particularly limited, but preferably Is the ratio of KD (dissociation constant) for high hydrogen ion concentration or low pH or acidic pH range to antigen and KD (pH5.) For low hydrogen ion concentration or high pH or neutral pH range.
  • the value of / KD (pH 7.4) is 2 or more, more preferably the value of KD (pH 5.8) / KD (pH 7.4) is 10 or more, more preferably KD (pH 5.8) / KD (pH7.4) The value is 40 or more.
  • the upper limit of the value of KD (pH 5.8) / KD (pH 7.4) is not particularly limited, and may be any value such as 400, 1000, 10000, etc. as long as it can be produced by a person skilled in the art.
  • the antigen-binding domain of the present invention or the antigen-binding molecule containing the domain has a high hydrogen ion concentration or low pH, ie pH acidic range, and the antigen binding activity and low hydrogen ion concentration, or high pH, pH neutral range condition.
  • kd Dissociation rate constant
  • kd dissociation rate constant
  • kd dissociation rate constant
  • KD dissociation constant
  • kd dissociation rate constant
  • pH acidic range for antigen
  • the value of hydrogen ion concentration or the ratio of kd (dissociation rate constant) at high pH, that is, pH neutral range is preferably the value of kd (in acidic pH range) / kd (in neutral pH range) It is 2 or more, more preferably 5 or more, further preferably 10 or more, more preferably 30 or more.
  • Kd (in the acidic pH range) / kd (in the neutral pH range) value is not particularly limited, and any value such as 50, 100, 200, etc., as long as it can be prepared by the common general knowledge of those skilled in the art But you can.
  • kd dissociation rate constant
  • apparent kd Apparent dissociation rate constant
  • Biacore GE healthcare
  • a flow cytometer or the like
  • the conditions other than the hydrogen ion concentration, that is, pH are the same.
  • the binding activity to an antigen under conditions of high hydrogen ion concentration or low pH, that is, pH acidic range is binding to antigen under conditions of low hydrogen ion concentration or high pH, that is, pH neutral range.
  • An antigen-binding domain or antigen-binding molecule having a lower activity can be obtained by screening an antigen-binding domain or antigen-binding molecule comprising the following steps (a) to (c).
  • the binding activity to the antigen under conditions of high hydrogen ion concentration or low pH, ie pH acidic range which is one aspect provided by the present invention, is binding to antigen under conditions of low hydrogen ion concentration or high pH, ie pH neutral range.
  • An antigen-binding domain or antigen-binding molecule with lower activity can be obtained by screening an antigen-binding domain or antigen-binding molecule or library thereof comprising the following steps (a) to (c).
  • step (a) contacting an antigen-binding domain or antigen-binding molecule or a library thereof in a neutral pH range with an antigen; (b) placing the antigen-binding domain or antigen-binding molecule bound to the antigen in the step (a) under conditions of an acidic pH range; (c) A step of isolating the antigen-binding domain or antigen-binding molecule dissociated in the step (b).
  • the binding activity to an antigen under conditions of high hydrogen ion concentration or low pH, ie pH acidic range which is one aspect provided by the present invention, is binding to antigen under conditions of low hydrogen ion concentration or high pH, ie pH neutral range.
  • An antigen-binding domain or antigen-binding molecule with lower activity can be obtained by screening an antigen-binding domain or antigen-binding molecule or library thereof comprising the following steps (a) to (d).
  • step (a) contacting an antigen-binding domain or a library of antigen-binding molecules with an antigen under acidic pH conditions; (b) selecting an antigen-binding domain or antigen-binding molecule that does not bind to an antigen in the step (a), (c) a step of binding the antigen-binding domain or antigen-binding molecule selected in the step (b) to an antigen under pH neutral conditions; (d) A step of isolating the antigen-binding domain or antigen-binding molecule bound to the antigen in the step (c).
  • the binding activity to the antigen under conditions of high hydrogen ion concentration or low pH, ie pH acidic range which is one aspect provided by the present invention, is binding to antigen under conditions of low hydrogen ion concentration or high pH, ie pH neutral range.
  • An antigen-binding domain or antigen-binding molecule having a lower activity can be obtained by a screening method including the following steps (a) to (c).
  • step (a) contacting an antigen-binding domain or a library of antigen-binding molecules with a column immobilized with an antigen under neutral pH conditions; (b) a step of eluting the antigen-binding domain or antigen-binding molecule bound to the column in the step (a) from the column under pH acidic conditions; (c) A step of isolating the antigen-binding domain or antigen-binding molecule eluted in the step (b).
  • the binding activity to the antigen under conditions of high hydrogen ion concentration or low pH, ie pH acidic range which is one aspect provided by the present invention, is binding to antigen under conditions of low hydrogen ion concentration or high pH, ie pH neutral range.
  • An antigen-binding domain or antigen-binding molecule having a lower activity can be obtained by a screening method including the following steps (a) to (d).
  • step (a) passing an antigen-binding domain or a library of antigen-binding molecules through an antigen-immobilized column under acidic pH conditions; (b) collecting the antigen-binding domain or antigen-binding molecule eluted without binding to the column in the step (a), (c) a step of binding the antigen-binding domain or antigen-binding molecule recovered in the step (b) to an antigen under a neutral pH condition; (d) A step of isolating the antigen-binding domain or antigen-binding molecule bound to the antigen in the step (c).
  • the binding activity to the antigen under conditions of high hydrogen ion concentration or low pH, ie pH acidic range which is one aspect provided by the present invention, is binding to antigen under conditions of low hydrogen ion concentration or high pH, ie pH neutral range.
  • An antigen-binding domain or antigen-binding molecule having a lower activity can be obtained by a screening method including the following steps (a) to (d).
  • step (a) contacting the antigen-binding domain or the library of antigen-binding molecules with the antigen under neutral pH conditions; (b) obtaining an antigen-binding domain or antigen-binding molecule bound to the antigen in the step (a), (c) placing the antigen-binding domain or antigen-binding molecule obtained in the step (b) under conditions of acidic pH range; (d) isolating an antigen-binding domain or antigen-binding molecule whose antigen-binding activity in the step (c) is weaker than the criterion selected in the step (b).
  • the above process may be repeated twice or more. Therefore, according to the present invention, in the above-described screening method, in the conditions in the acidic pH range obtained by the screening method further comprising the step of repeating the steps (a) to (c) or (a) to (d) twice or more.
  • An antigen-binding domain or antigen-binding molecule is provided that has an antigen-binding activity that is lower than the antigen-binding activity at pH neutral conditions.
  • the number of times the steps (a) to (c) or (a) to (d) are repeated is not particularly limited, but is usually within 10 times.
  • the antigen-binding activity of the antigen-binding domain or antigen-binding molecule in a high hydrogen ion concentration condition or at a low pH is not particularly limited as long as the antigen-binding activity is between pH 4.0 and 6.5.
  • an antigen binding activity having a pH of 4.5 to 6.6 can be exemplified.
  • an antigen binding activity between pH 5.0 and 6.5, and further an antigen binding activity between pH 5.5 and 6.5 can be mentioned.
  • More preferable pH includes the pH in the early endosome in the living body, specifically, the antigen binding activity at pH 5.8.
  • the antigen-binding activity of the antigen-binding domain or antigen-binding molecule at low hydrogen ion concentration conditions or high pH, that is, neutral pH range is not particularly limited as long as the antigen-binding activity is between pH 6.7 and 10, but is preferably at a preferable pH.
  • an antigen binding activity having a pH of 6.7 to 9.5 can be mentioned.
  • an antigen binding activity between pH 7.0 and 9.5, and further an antigen binding activity between pH 7.0 and 8.0 can be mentioned.
  • a more preferable pH can be a pH in plasma in a living body, specifically, an antigen binding activity at a pH of 7.4.
  • the antigen-binding activity of the antigen-binding domain or antigen-binding molecule can be measured by a method known to those skilled in the art, and conditions other than the ionized calcium concentration can be appropriately determined by those skilled in the art.
  • Antigen-binding activity of an antigen-binding domain or antigen-binding molecule is KD (Dissociation constant: dissociation constant), apparent KD (Apparent dissociation constant: apparent dissociation constant), kd (dissociation rate: dissociation rate constant), Alternatively, it can be evaluated as an apparent kd (Apparent dissociation).
  • KD Dissociation constant: dissociation constant
  • apparent KD Apparent dissociation constant
  • kd dissociation rate constant
  • it can be evaluated as an apparent kd (Apparent dissociation).
  • Biacore GE healthcare
  • Scatchard plot FACS and the like
  • an antigen-binding domain or an antigen-binding molecule having an antigen-binding activity at a low hydrogen ion concentration or at a high pH, that is, a neutral pH range is higher than that at a high hydrogen ion concentration or at a low pH, ie, a pH acidic region
  • the step of selecting an antigen-binding domain or antigen-binding molecule has a lower antigen binding activity under conditions of high hydrogen ion concentration or low pH or pH acidic range than antigen binding activity under conditions of low hydrogen ion concentration or high pH or pH neutral range. This is the same meaning as the step of selecting.
  • the antigen binding activity at low hydrogen ion concentration or high pH or pH neutral conditions is higher than the antigen binding activity at high hydrogen ion concentration or low pH or pH acidic conditions, in low hydrogen ion concentration or high pH or pH
  • the antigen binding activity in is at least 2 times the antigen binding activity under the conditions of high hydrogen ion concentration or low pH, ie, pH acidic range, more preferably 10 times or more, and more preferably 40 times or more.
  • the antigen-binding domain or antigen-binding molecule that changes the binding activity to the antigen according to the conditions of the hydrogen ion concentration of the present invention to be screened by the above screening method may be prepared in any way, for example, pre-existing antigen binding Molecules, pre-existing libraries (phage libraries, etc.), antibodies or libraries made from hybridomas obtained from immunization to animals or B cells from immunized animals, and these antibodies and libraries have a side chain pKa of 4.0 -8.0 Amino acid (eg histidine or glutamic acid) or non-natural amino acid mutation introduced antibody or library (side chain pKa 4.0-8.0 amino acid (eg histidine or glutamic acid) or non-natural amino acid content increased Amino acids whose side chain pKa is 4.0-8.0 in the library or at specific locations (For example, histidine or glutamic acid) or a library into which an unnatural amino acid mutation is introduced).
  • Antigen-binding activity or antigen-binding molecules prepared from hybridomas obtained from animal immunization or B cells from immunized animals have high hydrogen-binding activity at low hydrogen ion concentration or high pH, ie, neutral pH range.
  • a method for obtaining an antigen-binding domain or antigen-binding molecule having an ion concentration or higher than the antigen-binding activity under conditions of low pH, that is, pH acidic range for example, an antigen-binding domain or antigen-binding molecule as described in International Publication WO2009 / 125825
  • At least one of the amino acids in the side chain is substituted with an amino acid having a side chain pKa of 4.0-8.0 (for example, histidine or glutamic acid) or an unnatural amino acid mutation, or in the antigen binding domain or antigen binding molecule, the side chain pKa
  • An amino acid eg, histidine or glutamic acid
  • antigen binding activity in the acidic pH range is higher than before substitution or insertion. It becomes weaker than the antigen-binding activity in the neutral pH range (the value of KD (pH acidic range) / KD (pH neutral range) increases, or the value of kd (pH acidic range) / kd (pH neutral range) Any part may be used as long as it becomes larger.
  • the antigen-binding molecule is an antibody, an antibody variable region, CDR, and the like are preferably exemplified.
  • a person skilled in the art can appropriately determine the number of amino acids to be replaced with amino acids (for example, histidine and glutamic acid) whose side chain has a pKa of 4.0-8.0, unnatural amino acids, or amino acids to be inserted. It can be replaced by one amino acid (eg histidine or glutamic acid) with a pKa of 4.0-8.0 or an unnatural amino acid, or one amino acid (eg histidine or glutamic acid) with a pKa of 4.0-8.0 or an unnatural amino acid Can be inserted, replaced by two or more amino acids with side chain pKa of 4.0-8.0 (eg histidine or glutamic acid) or unnatural amino acids, and two with side chain pKa of 4.0-8.0
  • the above amino acids (for example, histidine and glutamic acid) and unnatural amino acids can be inserted.
  • substitution of amino acids with side chain pKa of 4.0-8.0 for example, histidine or glutamic acid
  • non-natural amino acids for example, amino acids with side chain pKa of 4.0-8.0
  • insertion of amino acids with side chain pKa of 4.0-8.0 for example, histidine or glutamic acid
  • unnatural amino acids for example, amino acids with side chain pKa of 4.0-8.0
  • other amino acid deletions, additions, insertions and / or substitutions can be performed simultaneously.
  • Substitution with amino acids with side chain pKa of 4.0-8.0 or non-natural amino acids or insertion of amino acids with side chain pKa of 4.0-8.0 (eg histidine or glutamic acid) or unnatural amino acids
  • An amino acid (such as histidine or glutamic acid) whose side chain pKa is 4.0-8.0 or an unnatural amino acid, which can be randomly performed by a method such as histidine or the like in which alanine in alanine scanning is replaced by histidine or the like KD (pH acidic range) / KD (pH neutral range) or kd (pH acidic range) / kd from antigen-binding domains or antibodies in which substitution or insertion mutations are randomly introduced compared to before the mutation
  • Antigen-binding molecules with increased (pH neutral range) values can be selected.
  • an amino acid having a side chain pKa of 4.0-8.0 for example, histidine or glutamic acid
  • a non-natural amino acid is mutated, and the antigen binding activity in the acidic pH range is an antigen in the neutral pH range.
  • antigen-binding molecules with lower than binding activity include, for example, antigen binding in the neutral pH range after mutation to amino acids (eg histidine or glutamic acid) whose side chain has a pKa of 4.0-8.0 or unnatural amino acids
  • Preferred examples include an antigen-binding molecule whose activity is equivalent to that of an amino acid having a side chain pKa of 4.0-8.0 (for example, histidine or glutamic acid) or an antigen-binding activity in a neutral pH range before mutation to an unnatural amino acid. It is done.
  • an amino acid having a side chain pKa of 4.0-8.0 (for example, histidine or glutamic acid) or an antigen-binding molecule after mutation of a non-natural amino acid is an amino acid having a side chain pKa of 4.0-8.0 (for example, histidine Or glutamic acid) or an antigen-binding molecule equivalent to the antigen-binding molecule before the mutation of the unnatural amino acid means that the amino acid whose side chain has a pKa of 4.0-8.0 (for example, histidine or glutamic acid) or before the mutation of the unnatural amino acid
  • the antigen-binding activity of an antigen-binding molecule is 100%
  • the antigen-binding activity of the antigen-binding molecule after mutation of an amino acid (for example, histidine or glutamic acid) whose side chain is pKa 4.0-8.0 or an unnatural amino acid is It means at least 10% or more, preferably 50% or more, more preferably 80% or more, more
  • the antigen-binding activity of an antigen-binding molecule is reduced by substitution or insertion into an amino acid (for example, histidine or glutamic acid) whose side chain has a pKa of 4.0-8.0 or an unnatural amino acid, Antigen binding activity by substitution, deletion, addition and / or insertion of multiple amino acids, etc.
  • amino acids eg histidine or glutamic acid
  • side chain has a pKa of 4.0-8.0 or unnatural amino acids
  • substitution, deletion, addition and / or insertion of one or more amino acids after substitution or insertion of an amino acid (for example, histidine or glutamic acid) having a side chain pKa of 4.0-8.0 or an unnatural amino acid are also included.
  • antigen-binding molecules whose binding activity is equivalent by performing.
  • a light chain variable region and a randomized variable region into which “at least one amino acid residue that changes the binding activity of an antigen-binding domain or antigen-binding molecule to an antigen depending on the condition of hydrogen ion concentration” is introduced.
  • a heavy chain variable region prepared as a sequence library a library containing a plurality of antigen-binding domains or antigen-binding molecules of the present invention having different sequences can be prepared.
  • Non-limiting examples of the amino acid residues include amino acid residues contained in the light chain CDR1.
  • non-limiting examples of the amino acid residues include amino acid residues contained in the light chain CDR2.
  • an amino acid residue contained in CDR3 of the light chain is also exemplified.
  • amino acid residues in which the amino acid residue is contained in CDR1 of the light chain positions 24, 27, 28, represented by Kabat numbering in CDR1 of the light chain variable region
  • amino acid residues at positions 31, 32 and / or 34 examples include amino acid residues at positions 31, 32 and / or 34.
  • amino acid residues that is included in the light chain CDR2 of the amino acid residue examples include amino acid residues at positions 54, 55 and / or 56.
  • amino acid residue is included in the CDR3 of the light chain, and as a non-limiting example of the amino acid residue, positions 89, 90, 91, 92, represented by Kabat numbering in the CDR3 of the light chain variable region, Examples include amino acid residues at positions 93, 94 and / or 95A.
  • these amino acid residues can be included alone, or two or more of these amino acid residues can be combined as long as the binding activity of the antigen-binding molecule to the antigen changes depending on the hydrogen ion concentration conditions. Can be included.
  • a flexible residue is included in the sequence of the light chain variable region.
  • one or more flexible residues can be included in the CDR and / or FR sequences of the heavy and / or light chain.
  • flexible residues introduced into the light chain variable region sequence include the amino acid residues listed in Table 3 or Table 4.
  • amino acid sequences of light chain variable regions other than amino acid residues and flexible residues that change the binding activity of the antigen-binding domain or antigen-binding molecule to the antigen depending on the hydrogen ion concentration conditions include, but are not limited to, Vk1 (sequence No. 46), Vk2 (SEQ ID NO: 47), Vk3 (SEQ ID NO: 48), Vk4 (SEQ ID NO: 49), and other germline sequences can be suitably used.
  • any amino acid residue can be preferably used.
  • an amino acid having a side chain pKa of 4.0 to 8.0 can be mentioned.
  • amino acids having such electron donating properties natural amino acids such as histidine or glutamic acid, histidine analog (US2009 / 0035836), m-NO2-Tyr (pKayr7.45), 3,5-Br2-Tyr (pKa 7.21)
  • non-natural amino acids such as 3,5-I2-Tyr (pKa 7.38) (Bioorg. Med. Chem. (2003) 11 (17), 3761-3768 are preferably exemplified.
  • Particularly preferred examples include amino acids having a side chain pKa of 6.0 to 7.0, and histidine is a preferred example of such an amino acid having an electron donating property.
  • a randomized variable region library is preferably mentioned.
  • Known methods are appropriately combined with the method for producing the randomized variable region library.
  • an antibody gene derived from an animal immunized with a specific antigen, an infectious disease patient, a human who has been vaccinated, has increased blood antibody titer, a cancer patient, or an autoimmune disease lymphocyte.
  • the originally constructed immune library can be suitably used as a randomized variable region library.
  • the V gene in genomic DNA or the reconstructed functional V gene CDR sequence includes a sequence encoding a codon set of an appropriate length.
  • Synthetic libraries substituted with oligonucleotide sets can also be suitably used as randomized variable region libraries.
  • a criterion for generating amino acid diversity in the variable region of an antigen-binding molecule is to provide diversity for amino acid residues at positions exposed on the surface of the antigen-binding molecule.
  • a surface exposed position is a position that can be exposed to the surface and / or contacted with an antigen based on the structure, structural ensemble, and / or modeled structure of the antigen-binding molecule. Generally speaking, it is its CDR.
  • the position exposed on the surface is determined using coordinates from a three-dimensional model of the antigen binding molecule using a computer program such as the Insight II program (Accelrys).
  • the position exposed on the surface can be determined using algorithms known in the art (eg, Lee and Richards (J. Mol. Biol. (1971) 55, 379-400), Connolly (J. Appl. Cryst. (1983) 16, 548-558)).
  • the determination of the position exposed on the surface can be performed using software suitable for protein modeling and three-dimensional structural information obtained from antibodies.
  • SYBYL biopolymer module software (Tripos Associates) is preferably exemplified as software that can be used for such a purpose.
  • the “size” of the probe used in the calculation is set to a radius of about 1.4 angstroms or less.
  • Pacios Comput. Chem. (1994) 18 (4), 377-386 and J. Mol. Model. (1995) 1 , 46-53).
  • a naive library consisting of a naive sequence that is an antibody sequence constructed from an antibody gene derived from a lymphocyte of a healthy person and having no bias in its repertoire is also a randomized variable region library.
  • amino acid modification for enhancing human FcRn binding activity under acidic pH conditions can be combined. More specifically, for example, as a modification used to enhance human FcRn binding activity under pH acidic conditions, Met at position 428 represented by EU numbering of IgG antibody is substituted with Leu, 434 Substitution of Asn to Ser (Nat Biotechnol, 2010 28: 157-159.), Substitution of Asn at 434 to Ala (Drug Metab Dispos.
  • Such modifications that reduce the binding activity to rheumatoid factors include 248-257, 305-314, 342-352, 380-386, 388, 414-421, 423, 425-437, represented by EU numbering. Modifications to positions 439, 441-444 are used. Preferably, modifications to positions 387, 422, 424, 426, 433, 436, 438, and 440 are preferably used.
  • a modification for replacing Val at position 422 with Glu or Ser a modification for replacing Ser at position 424 with Arg, a modification for replacing His at position 433 with Asp, a modification for replacing Tyr at position 436 with Thr, Modifications in which Gln at position 438 is replaced with Arg or Lys and modifications in which Ser at position 440 is replaced with Glu or Asp are used. These modifications may be used alone or in combination of a plurality of places.
  • an additional sequence of N-type sugar chain may be introduced at the site.
  • Asn-Xxx-Ser / Thr (where Xxx is any amino acid except Pro) is known as an N-type glycosylation sequence.
  • a modification for adding an N-type sugar chain preferably, a modification that replaces Lys at position 248 with Asn, a modification that replaces Ser at position 424 with Asn, a Tyr at position 436 with Asn, and a Gln at position 438 A modification is used in which is replaced with Thr, and Gln at position 438 is replaced with Asn.
  • a modification in which Ser at position 424 is substituted with Asn is used.
  • a polypeptide containing at least one associated Fc region variant such as an IgG antibody
  • an IgG antibody used as the antibody
  • the type of the constant region is not limited, and it is possible to use IgG of an isotype (subclass) such as IgG1, IgG2, IgG3, and IgG4.
  • the IgG antibody of the present invention is preferably human IgG, more preferably human IgG1 and human IgG4, and the amino acid sequences of the heavy chain constant regions of human IgG1 and human IgG4 are known.
  • amino acid alteration means any one of substitution, deletion, addition, insertion or modification, or a combination thereof.
  • amino acid modification can be rephrased as amino acid mutation and is used interchangeably.
  • substituting an amino acid residue the purpose is to modify, for example, the following points (a) to (c) by substituting with another amino acid residue.
  • Amino acid residues are divided into the following groups based on general side chain properties: (1) Hydrophobicity: norleucine, met, ala, val, leu, ile; (2) Neutral hydrophilicity: cys, ser, thr, asn, gln; (3) Acidity: asp, glu; (4) Basicity: his, lys, arg; (5) Residues that affect chain orientation: gly, pro; and (6) Aromaticity: trp, tyr, phe.
  • substitution of amino acid residues within each of these groups is called conservative substitution, while the substitution of amino acid residues between other groups is called non-conservative substitution.
  • the substitution in the present invention may be a conservative substitution, a non-conservative substitution, or a combination of a conservative substitution and a non-conservative substitution.
  • the modification of the amino acid sequence is prepared by various methods known in the art. These methods include, but are not limited to, site-directed mutagenesis (Hashimoto-Gotoh, T, Mizuno, T, Ogasahara, Y, and Nakagawa, M. (1995) An oligodeoxyribonucleotide- directed dual amber method for site-directed mutagenesis. Gene 152, 271-275, Zoller, MJ, and Smith, M.
  • the amino acid modifications of the present invention include post-translational modifications.
  • post-translational modifications addition or deletion of sugar chains can be shown.
  • the 297th amino acid residue of the EU numbering can be modified with a sugar chain.
  • the sugar chain structure to be modified is not limited.
  • antibodies expressed in eukaryotic cells contain glycosylation in the constant region. Therefore, antibodies expressed in the following cells are usually modified with some sugar chain.
  • Mammalian antibody-producing cells ⁇ Eukaryotic cells transformed with an expression vector containing DNA encoding the antibody
  • the eukaryotic cells shown here include yeast and animal cells.
  • CHO cells and HEK293H cells are representative animal cells for transformation with an expression vector containing DNA encoding an antibody.
  • those having no sugar chain modification at this position are also included in the constant region of the present invention.
  • An antibody whose constant region is not modified with a sugar chain can be obtained by expressing a gene encoding the antibody in a prokaryotic cell such as Escherichia coli.
  • saccharides in the Fc region may be added with sialic acid (MAbs. 2010 2010 Sep-Oct; 2 (5): 519-27.).
  • the present invention provides an antibody comprising any of the Fc region variants described above.
  • antibody in the present invention is used in the broadest sense, and as long as the desired biological activity is exhibited, monoclonal antibodies (including full-length monoclonal antibodies), polyclonal antibodies, antibody variants, antibody fragments, multispecificity Any antibody such as an antibody (multispecific antibody) (for example, a bispecific antibody (bispecific antibody)), a chimeric antibody, or a humanized antibody is included.
  • the antibody of the present invention is not limited to the type of antigen, the origin of the antibody, etc., and may be any antibody.
  • the origin of the antibody is not particularly limited, and examples thereof include a human antibody, a mouse antibody, a rat antibody, and a rabbit antibody.
  • monoclonal antibodies can be produced by the hybridoma method (Kohler and Milstein, steinNature 256: 495 (1975)) or recombinant methods (US Pat. No. 4,816,567). May be. Alternatively, it may be isolated from a phage antibody library (Clackson et al., Nature 352: 624-628 (1991); Marks et al., J. Mol. Biol. 222: 581-597 (1991)).
  • Humanized antibodies are also referred to as reshaped human antibodies.
  • non-human animals for example, humanized antibodies obtained by grafting mouse antibody CDRs to human antibodies are known.
  • General genetic recombination techniques for obtaining humanized antibodies are also known.
  • Overlap-Extension-PCR is known as a method for transplanting mouse antibody CDRs into human FRs.
  • FR amino acid residues can be substituted so that the CDR of the reshaped human antibody forms an appropriate antigen-binding site.
  • amino acid sequence mutations can be introduced into FRs by applying the PCR method used for transplantation of mouse CDRs into human FRs.
  • Transgenic animals having all repertoires of human antibody genes are used as immunized animals, and desired by DNA immunization. Human antibodies can be obtained.
  • the V region of a human antibody is expressed as a single chain antibody (scFv) on the surface of the phage by the phage display method.
  • Phages expressing scFv that bind to the antigen can be selected.
  • the DNA sequence encoding the V region of the human antibody that binds to the antigen can be determined.
  • the V region sequence is fused in-frame with the sequence of the desired human antibody C region, and then inserted into an appropriate expression vector, whereby an expression vector can be prepared.
  • the human antibody is obtained by introducing the expression vector into a suitable expression cell as described above and expressing the gene encoding the human antibody.
  • These methods are already known (see International Publications WO1992 / 001047, WO1992 / 020791, WO1993 / 006213, WO1993 / 011236, WO1993 / 019172, WO1995 / 001438, WO1995 / 015388).
  • variable region constituting the antibody of the present invention can be a variable region that recognizes an arbitrary antigen.
  • the antigen is not particularly limited, and any antigen may be used.
  • an antigen for example, a ligand (cytokine, chemokine, etc.), a receptor, a cancer antigen, an MHC antigen, a differentiation antigen, an immunoglobulin and an immune complex partially containing an immunoglobulin are preferably exemplified.
  • cytokines examples include interleukins 1-18, colony stimulating factors (G-CSF, M-CSF, GM-CSF, etc.), interferons (IFN- ⁇ , IFN- ⁇ , IFN- ⁇ , etc.), growth factors ( EGF, FGF, IGF, NGF, PDGF, TGF, HGF, etc.), tumor necrosis factor (TNF- ⁇ , TNF- ⁇ ), lymphotoxin, erythropoietin, leptin, SCF, TPO, MCAF, BMP.
  • chemokines examples include CC chemokines such as CCL1 to CCL28, CXC chemokines such as CXCL1 to CXCL17, C chemokines such as XCL1 to XCL2, and CX3C chemokines such as CX3CL1.
  • receptors include, for example, hematopoietic factor receptor family, cytokine receptor family, tyrosine kinase type receptor family, serine / threonine kinase type receptor family, TNF receptor family, G protein coupled receptor family, GPI Examples include receptors belonging to the receptor family such as anchor type receptor family, tyrosine phosphatase type receptor family, adhesion factor family, hormone receptor family and the like. Regarding the receptors belonging to these receptor families and their characteristics, a number of documents such as Cooke BA., King RJB., Van der Molen HJ. Ed. New Comprehesive Biochemistry Vol.
  • Specific receptors belonging to the above receptor family include, for example, human or mouse erythropoietin (EPO) receptors (Blood (1990) 76 (1), 31-35, Cell (1989) 57 (2), 277- 285), human or mouse granulocyte colony stimulating factor (G-CSF) receptor (Proc. Natl. Acad. Sci. USA. (1990) 87 (22), 8702-8706, mG-CSFR, Cell (1990) 61 (2), 341-350), human or mouse thrombopoietin (TPO) receptor (Proc Natl Acad Sci U S A. (1992) 89 (12), 5640-5644, EMBO J.
  • EPO erythropoietin
  • human or mouse leptin receptor human or mouse growth hormone (GH) receptor, human or mouse Interleukin (IL) -10 receptor, human or mouse insulin-like growth factor (IGF) -I receptor, human or mouse leukemia inhibitory factor (LIF) receptor, human or mouse ciliary neurotrophic factor (CNTF) receptor A body etc. are illustrated suitably.
  • GH growth hormone
  • IL Interleukin
  • IGF insulin-like growth factor
  • LIF human or mouse leukemia inhibitory factor
  • CNTF ciliary neurotrophic factor
  • Cancer antigens are antigens that are expressed as cells become malignant and are also called tumor-specific antigens.
  • abnormal sugar chains appearing on the cell surface and protein molecules when cells become cancerous are also cancer antigens and are also called cancer sugar chain antigens.
  • cancer antigens include, for example, GPC3 (Int J Cancer. (2003) 103 (4) that belongs to the GPI-anchored receptor family as the above receptor but is expressed in several cancers including liver cancer. , 455-65), EpCAM expressed in multiple cancers including lung cancer (Proc Natl Acad Sci U S A. (1989) 86 (1), ⁇ ⁇ 27-31), CA19-9, CA15-3, serial SSEA -1 (SLX) and the like are preferable.
  • GPC3 Int J Cancer. (2003) 103 (4) that belongs to the GPI-anchored receptor family as the above receptor but is expressed in several cancers including liver cancer. , 455-65
  • EpCAM expressed in multiple cancers including lung cancer Proc Natl Acad Sci U S A. (19
  • MHC antigens are mainly classified into MHC class I antigen and MHC class II antigen, which includes HLA-A, -B, -C, -E, -F, -G, -H.
  • MHC class II antigens include HLA-DR, -DQ, and -DP.
  • Differentiation antigens include CD1, CD2, CD4, CD5, CD6, CD7, CD8, CD10, CD11a, CD11b, CD11c, CD13, CD14, CD15s, CD16, CD18, CD19, CD20, CD21, CD23, CD25, CD28, CD29 , CD30, CD32, CD33, CD34, CD35, CD38, CD40, CD41a, CD41b, CD42a, CD42b, CD43, CD44, CD45, CD45RO, CD48, CD49a, CD49b, CD49c, CD49d, CD49e, CD49f, CD51, CD54, CD55 , CD56, CD57, CD58, CD61, CD62E, CD62L, CD62P, CD64, CD69, CD71, CD73, CD95, CD102, CD106, CD122, CD126, CDw130.
  • Immunoglobulins include IgA, IgM, IgD, IgG, and IgE.
  • the immune complex includes at least any component of immunoglobulin.
  • Other antigens include the following molecules: 17-IA, 4-1BB, 4Dc, 6-keto-PGF1a, 8-iso-PGF2a, 8-oxo-dG, A1 adenosine receptor, A33, ACE, ACE- 2, Activin, Activin A, Activin AB, Activin B, Activin C, Activin RIA, Activin RIA ALK-2, Activin RIB ALK-4, Activin RIIA, Activin RIIB, ADAM10, ADAM12, ADAM15, ADAM17 / TACE, ADAM8 , ADAM9, ADAMTS, ADAMTS4, ADAMTS5, addressin, aFGF, ALCAM, ALK, ALK-1, ALK-7, alpha-1-antitry
  • the site to be modified and the number of amino acids to be modified are not particularly limited.
  • amino acids present in CDR and / or FR can be appropriately modified.
  • the amino acid of the variable region is modified, although not particularly limited, it is preferable that the binding activity is maintained, for example, 50% or more, preferably 80% or more, more preferably 100% or more compared to before modification. It preferably has binding activity. Further, the binding activity may be increased by amino acid modification. For example, the binding activity may be 2 times, 5 times, 10 times, etc., compared to before the modification.
  • the alteration of the amino acid sequence can be at least one of substitution, addition, deletion, and modification of amino acid residues.
  • the modification to pyroglutamic acid by pyroglutamylation of N-terminal glutamine of the variable region is a modification well known to those skilled in the art. Therefore, the antibody of the present invention comprises a variable region in which the heavy chain is modified with pyroglutamic acid when the N-terminus of the heavy chain is glutamine.
  • variable region of the antibody of the present invention may be of any sequence, mouse antibody, rat antibody, rabbit antibody, goat antibody, camel antibody, humanized antibody obtained by humanizing these non-human antibodies, and human It may be a variable region of an antibody of any origin, such as an antibody.
  • “Humanized antibody” refers to an antibody derived from a mammal other than a human, also referred to as a reshaped human antibody, such as the complementarity determination region (CDR) of a mouse antibody to the CDR of a human antibody. It is transplanted.
  • CDR complementarity determination region
  • variable region of the antibody of the present invention may be capable of repeatedly binding to an antigen by having pH dependency for binding to the antigen (WO2009 / 125825).
  • the light chain constant region of an antibody has a ⁇ chain and ⁇ chain type constant region, but any light chain constant region may be used. Furthermore, in the present invention, the light chain constant region may be a light chain constant region that has been modified by amino acid substitution, deletion, addition, and / or insertion.
  • the heavy chain constant region of the antibody of the present invention for example, the heavy chain constant region of a human IgG antibody can be used, and preferably the heavy chain constant region of a human IgG1 antibody or human IgG4 antibody.
  • Fc region variant of the present invention can be combined with other proteins, bioactive peptides and the like to form Fc fusion protein molecules.
  • a fusion protein refers to a chimeric polypeptide comprising at least two different polypeptides that are not naturally linked in nature.
  • proteins and bioactive peptides include, but are not limited to, receptors, adhesion molecules, ligands, and enzymes.
  • Fc fusion protein molecule of the present invention include a protein in which an Fc region is fused to a receptor protein that binds to a target.
  • a protein in which an Fc region is fused to a receptor protein that binds to a target For example, TNFR-Fc fusion protein, IL1R-Fc fusion protein, VEGFR-Fc fusion protein, CTLA4 -Fc fusion proteins and the like (Nat Med. 2003 Jan; 9 (1): 47-52, BioDrugs. 2006; 20 (3): 151-60.).
  • the protein to be fused to the polypeptide of the present invention may be any molecule as long as it binds to the target molecule.
  • scFv molecule WO2005 / 037989
  • single domain antibody molecule WO2004 / 058821, WO2003 / 002609
  • antibody -Like molecule a multispecific antibody that binds to multiple types of target molecules or epitopes.
  • DARPins WO2002 / 020565
  • Affibody WO1995 / 001937
  • Avimer WO2004 / 044011, WO2005 / 040229
  • Adnectin WO2002 / 032925
  • the antibody and Fc fusion protein molecule may also be a multispecific antibody that binds to multiple types of target molecules or epitopes.
  • the antibodies of the present invention also include modified antibodies.
  • modified antibody include antibodies bound to various molecules such as polyethylene glycol (PEG) and cytotoxic substances.
  • PEG polyethylene glycol
  • Such a modified antibody can be obtained by chemically modifying the antibody of the present invention. Methods for modifying antibodies have already been established in this field.
  • the antibody of the present invention may be a bispecific antibody.
  • a bispecific antibody refers to an antibody having variable regions that recognize different epitopes in the same antibody molecule, but the epitope may exist in different molecules or in the same molecule. It may be.
  • polypeptide of the present invention can be produced by methods known to those skilled in the art.
  • the antibody can be prepared by the following method, but is not limited thereto.
  • DNA encoding the heavy chain of an antibody the DNA encoding the heavy chain in which one or more amino acid residues in the Fc region are substituted with other amino acids of interest, and the DNA encoding the light chain of the antibody
  • DNA encoding a heavy chain in which one or more amino acid residues in the Fc region are substituted with other amino acids of interest for example, obtain the Fc region portion of the DNA encoding the natural heavy chain, It can be obtained by introducing appropriate substitutions so that a codon encoding a specific amino acid in the region encodes another amino acid of interest.
  • DNA encoding a protein in which one or more amino acid residues in the Fc region of the natural heavy chain are substituted with other amino acids of interest By designing a DNA encoding a protein in which one or more amino acid residues in the Fc region of the natural heavy chain are substituted with other amino acids of interest, and chemically synthesizing the DNA, It is also possible to obtain DNA encoding a heavy chain in which one or more amino acid residues in the Fc region are substituted with other amino acids of interest.
  • the amino acid substitution site and the type of substitution are not particularly limited. Moreover, it is not restricted to substitution, Any of deletion, addition, insertion, or those combinations may be sufficient.
  • DNA encoding a heavy chain in which one or more amino acid residues in the Fc region are substituted with other amino acids of interest can be produced by dividing into partial DNAs.
  • Examples of combinations of partial DNAs include DNA encoding a variable region and DNA encoding a constant region, or DNA encoding a Fab region and DNA encoding an Fc region, but are not limited to these combinations. is not.
  • the DNA encoding the light chain can also be produced by dividing it into partial DNAs.
  • DNA encoding a heavy chain variable region is incorporated into an expression vector together with DNA encoding a heavy chain constant region to construct a heavy chain expression vector.
  • DNA encoding a light chain variable region is incorporated into an expression vector together with DNA encoding a light chain constant region to construct a light chain expression vector.
  • the DNA encoding the target antibody When the DNA encoding the target antibody is incorporated into an expression vector, it is incorporated into the expression vector so that it is expressed under the control of an expression control region such as an enhancer or promoter. Next, host cells are transformed with this expression vector to express the antibody. In that case, a combination of an appropriate host and an expression vector can be used.
  • vectors examples include M13 vectors, pUC vectors, pBR322, pBluescript, and pCR-Script.
  • pGEM-T pDIRECT, pT7 and the like can be used in addition to the above vector.
  • an expression vector is particularly useful.
  • an expression vector for example, when the host is E. coli such as JM109, DH5 ⁇ , HB101, XL1-Blue, a promoter that can be efficiently expressed in E. coli, such as the lacZ promoter (Ward et al., Nature (1989) 341). , 544-546; FASEB J. (1992) 6, 2422-2427, incorporated herein by reference in its entirety, araB promoter (Better et al., Science (1988) 240, 1041-1043, in its entirety by reference) Are incorporated herein), or have a T7 promoter or the like.
  • such vectors include pGEX-5X-1 (Pharmacia), “QIAexpress® system” (QIAGEN), pEGFP, or pET (in this case, the host expresses T7 RNA polymerase).
  • pGEX-5X-1 Pulacia
  • QIAexpress® system QIAGEN
  • pEGFP pEGFP
  • pET in this case, the host expresses T7 RNA polymerase.
  • BL21 is preferred).
  • the vector may also contain a signal sequence for polypeptide secretion.
  • a signal sequence for polypeptide secretion the pelB signal sequence (Lei, S. P. et al J. Built in).
  • Introduction of a vector into a host cell can be performed using, for example, the lipofectin method, the calcium phosphate method, or the DEAE-Dextran method.
  • vectors for producing the polypeptide of the present invention include mammalian-derived expression vectors (for example, pcDNA3 (manufactured by Invitrogen), pEGF-BOS® (Nucleic® Acids.® Res.
  • pEF Bacillus subtilis-derived expression vectors
  • pCDM8 Bacillus subtilis-derived expression vectors
  • insect cell-derived expression vectors eg, “Bac-to-BACBAbaculovairus expression system” (GIBCO BRL), pBacPAK8
  • plant-derived expression vectors eg, pMH1, pMH2
  • animal virus-derived expression vectors eg, pHSV, pMV, pAdexLcw
  • retrovirus-derived expression vectors eg, pZIPneo
  • yeast-derived expression vectors eg, “Pichia® Expression® Kit” (manufactured by Invitrogen), pNV11, SP-Q01
  • Bacillus subtilis-derived expression vectors for example, pPL608, pKTH50.
  • promoters required for expression in cells such as the SV40 promoter (Mulligan et al., Nature (1979) 277, 108, see MMTV-LTR promoter, EF1 ⁇ promoter (Mizushima et al., Nucleic Acids Res. (1990) 18, 5322, which is hereby incorporated by reference in its entirety), CAG promoter ( Gene. (1991) 108, 193, which is incorporated herein by reference in its entirety, is essential to have a CMV promoter, etc., and a gene (eg, drug (neomycin) for selecting transformed cells. And drug resistance genes that can be discriminated by G418, etc.).
  • Examples of such a vector include pMAM, pDR2, pBK-RSV, pBK-CMV, pOPRSV, and pOP13.
  • a vector having a DHFR gene complementary to the CHO cell lacking the nucleic acid synthesis pathway for example, , PCHOI, etc.
  • amplifying with methotrexate (MTX) for example, COS with a gene expressing SV40 T antigen on the chromosome
  • COS with a gene expressing SV40 T antigen on the chromosome An example is a method of transforming a cell with a vector (such as pcD) having an SV40 replication origin.
  • a vector such as pcD
  • the replication origin those derived from polyoma virus, adenovirus, bovine papilloma virus (BPV) and the like can also be used.
  • the expression vectors are selectable markers: aminoglycoside transferase (APH) gene, thymidine kinase (TK) gene, E. coli xanthine guanine phosphoribosyltransferase (Ecogpt) gene, dihydrofolate reductase ( dhfr) gene and the like.
  • APH aminoglycoside transferase
  • TK thymidine kinase
  • Ecogpt E. coli xanthine guanine phosphoribosyltransferase
  • dhfr dihydrofolate reductase
  • Antibody recovery can be performed, for example, by culturing transformed cells and then separating them from the inside of the cell or the culture solution of molecularly transformed cells.
  • methods such as centrifugation, ammonium sulfate fractionation, salting out, ultrafiltration, 1q, FcRn, protein A, protein G column, affinity chromatography, ion exchange chromatography, and gel filtration chromatography are used. It can carry out in combination as appropriate.
  • the Fc region variant of the present invention includes an antigen-binding domain that has a binding activity to a pathogenic antigen that exists in a soluble form in plasma, and the binding activity to the antigen changes depending on ion concentration conditions
  • a method for promoting the disappearance of the antigen in plasma is provided.
  • a pH-dependent antigen-binding molecule that has been modified to further enhance FcRn binding under neutral conditions (pH 7.4) Since it has the effect of repeatedly binding to the antigen and the effect of eliminating the antigen from the plasma, it may be possible to remove the antigen from the plasma by administering a polypeptide having such an antigen-binding domain. It has been reported (International Publication No. WO2011 / 122011). However, no method has been reported so far for accelerating the removal of antigens by methods other than enhancing FcRn binding under neutral conditions.
  • the polypeptide containing an antigen-binding domain whose antigen-binding activity changes depending on pH conditions, it contains a natural IgG1-derived Fc region that does not enhance binding to FcRn in the neutral pH range.
  • the disappearance of the antigen in plasma was accelerated more than that of the antigen alone through the binding with Fc ⁇ R.
  • the following mechanism is exemplified as the reason why this occurs in the clone 278 and the like.
  • an antigen-binding domain When there is only one site (ie, a homomonomer) to which an antigen-binding domain can bind, such as sIL-6R, two molecules of antigen bind to one molecule of antibody that contains a bivalent antigen-binding domain. Forms a complex with two molecules of an antigen molecule comprising one molecule of anti-sIL-6R antibody and two units of antigen binding unit. Therefore, such an antigen-antibody complex has only one Fc region (Fc region of natural IgG1) as shown in FIG. Since the complex binds to one molecule of Fc ⁇ R or two molecules of FcRn through one Fc region, the affinity for these receptors is the same as that of ordinary IgG antibodies, and the uptake into cells is the main. It can be considered to occur non-specifically.
  • Fc region of natural IgG1 Fc region of natural IgG1
  • the antigen binding domain when there are two epitopes to which the antigen binding domain binds, such as a dimer of a hetero complex of heavy and light chains such as human IgE, it is included in one molecule of anti-IgE antibody It is considered that it is difficult to bind each bivalent individual antigen-binding domain to two units of epitope present in one molecule of IgE molecule from the viewpoint of epitope arrangement and the like. As a result, another anti-IgE antibody molecule binds to two antigen-binding units present in two molecules of IgE that bind to the bivalent antigen-binding domain present in one molecule of anti-IgE antibody.
  • an antigen-antibody complex comprising at least four molecules (that is, two molecules of IgE which is an antigen molecule and two molecules of an anti-IgE antibody which is a polypeptide containing an antigen-binding domain) is formed.
  • the immune complex is Fc ⁇ R, It is possible to strongly bind to FcRn, complement receptor, etc. with avidity through at least two or more multivalent Fc regions.
  • the immunocomplex of a polypeptide containing the antigen-binding domain and the antigen molecule has an affinity for these receptors via the Fc region. It is not enough compared to the case of forming an immune complex. The immune complex is then taken up with high efficiency into cells that express these receptors.
  • the polypeptide of the present invention has an antigen-binding domain whose binding to the antigen varies depending on the ion concentration conditions such as pH-dependent binding
  • the polypeptide is, for example, an antibody, an antigen-antibody complex (immunocomplex) consisting of at least four molecules (bimolecular antigen and bimolecular antibody) or more is formed in plasma, and the immune complex is a cell.
  • the antigen is dissociated from the antibody in the endosome because the condition of its ion concentration is different from that in plasma.
  • the formation of the immune complex is eliminated in the endosome of the cell into which the immune complex has been taken up. Since the dissociated antigen cannot bind to FcRn within the endosome, it is degraded after transfer to the lysosome. On the other hand, it is considered that the antibody dissociated from the antigen is recycled into plasma after binding to FcRn in the endosome. Similar recycling is possible depending on ion concentration conditions other than the pH conditions of this example. In Reference Examples 3 to 6, instead of pH-dependent conditions, antigens whose antigen-binding activity varies depending on calcium concentration conditions. It has been shown that binding domains can be used to accelerate the disappearance of antigens in plasma.
  • a complex formed by an antigen and a polypeptide having an antigen-binding domain for the antigen has a structure in which the immune complex has two or more multivalent Fc regions for Fc ⁇ R, FcRn, complement receptor, etc. It is possible to accelerate the disappearance of the antigen.
  • Fc ⁇ RIIB which is an inhibitory Fc ⁇ R, contributes the most to the removal of antigens via Fc ⁇ R. That is, even if the binding to Fc ⁇ R is reduced, if the binding to Fc ⁇ RIIB can be maintained, the ability of the antibody to eliminate the antigen via Fc ⁇ R can be maintained.
  • Multivalent antigens include GDF, GDF-1, GDF-3 (Vgr-2), GDF-5 (BMP-14, CDMP-1), GDF-6 (BMP-13, CDMP-2) , GDF-7 (BMP-12, CDMP-3), GDF-8 (myostatin), GDF-9, GDF-15 (MIC-1), TNF, TNF-alpha, TNF-alpha beta, TNF-beta 2, TNFSF10 (TRAIL Apo-2 ligand, TL2), TNFSF11 (TRANCE / RANK ligand ODF, OPG ligand), TNFSF12 (TWEAK Apo-3 ligand, DR3 ligand), TNFSF13 (APRIL TALL2), TNFSF13B (BAFF BLYS, TALL1, THANK, TNFSF
  • Fc ⁇ RIIB of Fc ⁇ R plays a major role in the removal of antigens through Fc ⁇ R of antibodies, and side effects derived from interaction with Fc ⁇ R interact with active Fc ⁇ R. Due to the action, while maintaining the binding to Fc ⁇ RIIB, by selectively attenuating the binding to other active Fc ⁇ R, the side effects derived from active Fc ⁇ R were reduced without losing the ability to eliminate antigen. Excellent antibodies can be produced.
  • the Fc region variant of the present invention and a polypeptide containing an antigen-binding domain whose binding activity to the antigen varies depending on the condition of the ionic concentration, the antigen that is present in a soluble form in plasma and causes pathogenesis It is possible to obtain an excellent acceleration effect against disappearance.
  • the antigen to which the polypeptide binds is an antigen (monomer antigen) having only one site to which the antigen binding domain can bind.
  • an antigen monomer antigen
  • a method of promoting disappearance of monomeric antigen from plasma using a cocktail of polypeptides having an antigen-binding domain can be mentioned.
  • the antigen is a multimeric antigen (eg, a non-limiting example, an immunoglobulin such as IgA or IgE, or a TNF superfamily such as TNF or CD154), two or more antigen-binding molecules and two It is considered that a large immune complex including the above antigen-binding unit may be formed.
  • a multimeric antigen eg, a non-limiting example, an immunoglobulin such as IgA or IgE, or a TNF superfamily such as TNF or CD154
  • the antigen is a monomeric antigen
  • it is a polypeptide comprising two or more appropriate antigen-binding domains that bind to different epitopes present in the monomeric antigen, and ions (such as pH or Ca)
  • ions such as pH or Ca
  • a mixture of polypeptides whose binding to the epitope changes depending on the concentration conditions is also a polypeptide containing two or more antigen-binding domains and a large immune complex containing binding sites (monomer antigens) for two or more antigen-binding domains It is thought that can be formed.
  • a polypeptide comprising two or more appropriate antigen binding domains that each bind to a different epitope present in a monomeric antigen, wherein the polypeptide binds to the epitope depending on the condition of ionic concentration (such as pH or Ca).
  • a mixture of antigen-binding molecules that change is called an antigen-binding molecule cocktail.
  • at least one polypeptide that forms an immune complex among the polypeptides that contain an antigen-binding domain is an antigen-binding domain whose binding activity to the antigen varies depending on the ion concentration conditions. Good.
  • Other examples include a method of promoting elimination of monomeric antigens from plasma using a polypeptide containing a multispecific or multiparatopic antigen binding domain.
  • Antigen-binding molecules comprising an antigen-binding domain whose binding to the epitope of the domain varies with ionic concentration conditions (such as pH or Ca) also comprise a polypeptide comprising two or more antigen-binding domains and two or more antigen-binding units (single It is believed that it is possible to form large immune complexes that include (mer antigens).
  • a multispecific antibody or a multiparatopic antibody comprising an appropriate variable region that binds to different epitopes present in a monomeric antigen Is exemplified.
  • the variable region has a pH or Ca-dependent binding antibody (epitope A as shown in FIG. 19).
  • a bispecific or biparatopic antibody comprising a right arm variable region recognizing and a left arm variable region recognizing epitope B also comprises two or more antibodies and two or more antigens It is believed that it is possible to form large immune complexes that contain binding units (monomer antigens).
  • the ion concentration conditions for changing the binding activity of each of the multispecific or multiparatopic antigen-binding domains with respect to each epitope may be the same or different ion concentration conditions. .
  • a bispecific or biparatopic antigen binding domain whose binding activity to an epitope of one of the antigen binding domains varies depending on pH conditions or metal ion concentration conditions such as Ca ion concentration
  • An antigen binding molecule comprising a sex or dual paratopic antigen binding domain is exemplified as a non-limiting embodiment of the antigen binding molecule of the present invention.
  • the binding activity of a bispecific or dual paratopic antigen binding domain to an epitope of one antigen binding domain varies depending on pH conditions, and the binding activity to an epitope of the other antigen binding domain is Ca.
  • An antigen-binding molecule containing a bispecific or dual paratopic antigen-binding domain that varies depending on conditions of metal ion concentration such as ion concentration is exemplified as a non-limiting embodiment of the antigen-binding molecule of the present invention.
  • the binding activity of a bispecific or dual paratopic antigen-binding domain to an epitope of one antigen-binding domain varies depending on the pH condition, and the binding activity to the epitope of the other antigen-binding domain also depends on the pH condition.
  • an antigen binding molecule of the invention is an antigen binding molecule comprising a bispecific or dual paratopic antigen binding domain that varies by Furthermore, the binding activity of a bispecific or dual paratopic antigen-binding domain to an epitope of one antigen-binding domain varies depending on the conditions of metal ion concentration such as Ca ion concentration, and the epitope of the other antigen-binding domain Polypeptide antigen-binding molecules comprising a bispecific or dual paratopic antigen-binding domain whose binding activity to an antibody varies depending on conditions of metal ion concentration such as Ca ion concentration are also non-limiting antigen-binding molecules of the present invention. As an example.
  • At least one antigen-binding domain binds to a first epitope in the antigen molecule
  • a polypeptide comprising at least two antigen-binding domains characterized in that at least one other antigen-binding domain binds to a second epitope in the antigen molecule is a multispecific antigen binding in terms of the specificity of the reaction. Called a molecule.
  • the antigen-binding molecule When the antigen-binding molecule binds to two different epitopes by two types of antigen-binding domains contained in a single antigen-binding molecule, the antigen-binding molecule is called a bispecific antigen-binding molecule. Further, when the antigen-binding molecule binds to three different epitopes by three kinds of antigen-binding domains contained in one molecule of the antigen-binding molecule, the antigen-binding molecule is called a trispecific antigen-binding molecule.
  • the paratope in the antigen-binding domain that binds to the first epitope in the antigen molecule and the paratope in the antigen-binding domain that binds to the second epitope that has a different structure from the first epitope have different structures.
  • at least two antigen-binding domains have the characteristic of binding to a first epitope in an antigen molecule and the at least one other antigen-binding domain binds to a second epitope in the antigen molecule.
  • An antigen-binding molecule containing an antigen-binding domain is called a multiparatopic antigen-binding molecule from the viewpoint of its structural specificity.
  • the antigen-binding molecule When the antigen-binding molecule binds to two different epitopes by two types of antigen-binding domains contained in a single antigen-binding molecule, the antigen-binding molecule is called a double paratopic antigen-binding molecule. Further, when the antigen-binding molecule binds to three different epitopes by three types of antigen-binding domains contained in one molecule of the antigen-binding molecule, the antigen-binding molecule is called a triple paratopic antigen-binding molecule.
  • Multivalent multispecific or multiparatopic antigen binding molecules comprising one or more antigen binding domains and methods for their preparation are described in Conrath et al. (J. Biol. Chem. (2001) 276 (10) 7346-7350), Non-patent literature such as Muyldermans (Rev. Mol. Etc. are also described.
  • the multispecific or multiparatopic antigen-binding molecules described therein and the preparation method thereof it is possible to produce the antigen-binding molecules of the present invention.
  • Bispecific antibodies are antibodies that contain two types of variable regions that specifically bind to different epitopes.
  • An IgG-type bispecific antibody can be secreted by hybrid hybroma (quadroma) produced by fusing two hybridomas producing IgG antibody (Milstein et al. (Nature (1983) 305, 537-540) .
  • a gene encoding a heavy chain containing the two variable regions of interest is introduced into the cell and used together.
  • a method of expression can be employed. However, just considering the combination of heavy chains in such a co-expression method, (i) a heavy chain containing a variable region binding to the first epitope and a heavy chain containing a variable region binding to the second epitope are paired. (Ii) a heavy chain combination in which only a heavy chain containing a variable region that binds to the first epitope is paired, and (iii) a heavy that contains a variable region that binds to the second epitope.
  • a combination of heavy chains in which only the chains are paired becomes a mixture present in a ratio of the number of molecules of 2: 1: 1. It is difficult to purify an antigen-binding molecule containing the desired heavy chain combination from a mixture of these three heavy chain combinations.
  • a bispecific antibody containing a heavy chain of a heterogeneous combination can be obtained by adding an appropriate amino acid substitution modification to the CH3 domain constituting the heavy chain. It can be preferentially secreted.
  • the amino acid side chain present in the CH3 domain of one heavy chain is replaced with a larger side chain (knob (meaning “protrusion”)), and the amino acid side present in the CH3 domain of the other heavy chain
  • Replacing a chain with a smaller side chain allows the protrusions to be placed in the gap, thereby promoting heterogeneous heavy chain formation and inhibiting homologous heavy chain formation (International publication WO1996 / 027011, Ridgway et al. (Protein Engineering (1996) 9, 617-621), Merchant et al. (Nat. Biotech. (1998) 16, 677-681)).
  • a technique for producing a bispecific antibody by utilizing a method for controlling association of polypeptides or association of heterologous multimers constituted by polypeptides for heavy chain association is also known. That is, by modifying the amino acid residues that form the interface in the heavy chain, the association of heavy chains having the same sequence is inhibited, and a method of controlling so that two heavy chains having different sequences are formed is doubled. It can be employed for the production of specific antibodies (International Publication WO2006 / 106905). Furthermore, a technique for obtaining bispecific antibodies by obtaining two types of monoclonal antibodies and mixing them in the presence of a reducing agent in vitro has been reported (International Publication WO2008 / 119353).
  • “promoting disappearance of an antigen from plasma” means that a polypeptide containing an antigen-binding domain (hereinafter also referred to as an antigen-binding molecule) is administered in vivo, or the antigen-binding molecule is in vivo. This refers to an improvement in the ability of an antigen present in plasma to disappear from plasma when secretion occurs.
  • an antigen-binding molecule when an antigen-binding molecule is administered, an antigen-binding molecule containing an antigen-binding domain whose antigen-binding activity does not change depending on the ion concentration, and an antigen containing an FcRn-binding domain that has no FcRn-binding activity under acidic pH conditions Compared with the administration of a binding molecule or an antigen-binding molecule containing an Fc ⁇ receptor-binding domain that does not have selective binding activity to the Fc ⁇ receptor, the rate at which the antigen disappears from plasma should be faster.
  • Whether or not the antigen-dissolving ability of the antigen-binding molecule in the plasma has increased is determined, for example, by administering the soluble antigen and the antigen-binding molecule in vivo and measuring the plasma concentration of the soluble antigen after administration. It is possible to judge by this.
  • Antigen-binding domain whose binding activity to antigen changes depending on the condition of ion concentration, FcRn-binding domain that has binding activity to FcRn under acidic pH conditions, and Fc ⁇ receptor-binding domain that has selective binding activity to Fc ⁇ receptor (selection When the concentration of soluble antigen in the plasma after administration of antigen-binding molecule containing soluble Fc ⁇ R binding domain) and soluble antigen is decreased, the antigen-dissolving ability of antigen-binding molecule in plasma increased. It can be judged.
  • the selective Fc ⁇ R binding domain refers to a domain in which binding to Fc ⁇ RIIb is maintained while binding to active Fc ⁇ R is reduced.
  • the soluble antigen may be an antigen that binds to an antigen-binding molecule in plasma or an antigen that does not bind to an antigen-binding molecule, and the concentrations thereof are “plasma antigen-binding molecule-bound antigen concentration” and It can be determined as “plasma antigen-binding molecule non-binding antigen concentration” (the latter is synonymous with “plasma free antigen concentration”).
  • Plasma total antigen concentration means the total concentration of antigen-binding molecule-bound antigen and antigen-bound molecule-unbound antigen, or “plasma free antigen concentration” which is the concentration of antigen-bound molecule-unbound antigen.
  • the soluble antigen concentration can be determined as “the total antigen concentration in plasma”.
  • Various methods for measuring “total plasma antigen concentration” or “free plasma antigen concentration” are well known in the art, as described herein below.
  • “improved pharmacokinetics”, “improved pharmacokinetics”, and “excellent pharmacokinetics” are “improved plasma (blood) retention”, “plasma (blood) retention”. It can be rephrased as “improved”, “excellent plasma (blood) retention”, “longer plasma (blood) retention”, and these terms are used interchangeably.
  • the pharmacokinetics is improved means that an antigen-binding molecule is administered to humans or non-human animals such as mice, rats, monkeys, rabbits, dogs, etc., and disappears from plasma (for example, cells Until the antigen-binding molecule is unable to return to the plasma due to degradation in the body), and the time until the antigen-binding molecule is degraded and disappears. It also includes a period of time during which plasma stays in plasma in a state where it can bind to an antigen (for example, a state where an antigen-binding molecule is not bound to an antigen). Human IgG having a natural Fc region can bind to FcRn derived from a non-human animal.
  • administration can be preferably performed using a mouse.
  • a mouse Methodhods Mol. Biol. (2010) 602, 93-104 in which the original FcRn gene is disrupted and expressed with a transgene for the human FcRn gene is also described below.
  • it can be used for administration.
  • “improving pharmacokinetics” also includes increasing the time until an antigen-binding molecule that is not bound to an antigen (antigen-unbound antigen-binding molecule) is degraded and disappears. Even if an antigen-binding molecule is present in plasma, if the antigen is already bound to the antigen-binding molecule, the antigen-binding molecule cannot bind to a new antigen. Therefore, if the time during which the antigen-binding molecule is not bound to the antigen becomes longer, the time for binding to the new antigen becomes longer (the opportunity for binding to the new antigen increases), and the antigen binds to the antigen-binding molecule in vivo.
  • the time during which the antigen is not bound can be reduced, and the time during which the antigen is bound to the antigen-binding molecule can be increased. If the disappearance of the antigen from the plasma can be accelerated by administration of the antigen-binding molecule, the plasma concentration of the non-antigen-binding antigen-binding molecule will increase, and the time that the antigen will bind to the antigen-binding molecule will be longer. Become.
  • “improvement of pharmacokinetics of antigen-binding molecule” means improvement of pharmacokinetic parameters of any non-antigen-binding antigen-binding molecule (increase in plasma half-life, increase in mean plasma residence time, Either a decrease in plasma clearance), or an increase in the time during which the antigen is bound to the antigen-binding molecule after administration of the antigen-binding molecule, or accelerated disappearance of the antigen from the plasma by the antigen-binding molecule, including.
  • Judgment by measuring any of the parameters of the antigen-binding molecule or non-antigen-binding antigen-binding molecule such as plasma half-life, mean plasma residence time, and plasma clearance (pharmacokinetics, understanding through exercises (Nanzan Hall)) Is possible.
  • plasma half-life a plasma half-life
  • mean plasma residence time a plasma residence time
  • plasma clearance pharmacokinetics, understanding through exercises (Nanzan Hall)
  • the parameters are appropriately evaluated by noncompartmental analysis according to the attached procedure manual. be able to.
  • Measurement of the plasma concentration of an antigen-binding molecule that is not bound to an antigen can be performed by a method known to those skilled in the art, for example, as measured in Clin. Pharmacol. (2008) 48 (4), 406-417. Can be used.
  • the pharmacokinetics is improved includes that the time during which the antigen is bound to the antigen-binding molecule is prolonged after administration of the antigen-binding molecule. Whether or not the time during which the antigen is bound to the antigen-binding molecule is prolonged after administration of the antigen-binding molecule is determined by measuring the plasma concentration of the free antigen, or the free antigen concentration relative to the total antigen concentration. It is possible to judge based on the time until the ratio increases.
  • the plasma concentration of free antigen not bound to the antigen-binding molecule or the ratio of the free antigen concentration to the total antigen concentration can be determined by methods known to those skilled in the art. For example, it can be determined using the method used in Pharm. Res. (2006) 23 (1), 95-103.
  • an antigen exhibits some function in vivo
  • whether the antigen is bound to an antigen-binding molecule (antagonist molecule) that neutralizes the function of the antigen is evaluated based on whether the function of the antigen is neutralized. It is also possible to do. Whether the antigen function is neutralized can be assessed by measuring any in vivo marker that reflects the antigen function.
  • Whether an antigen is bound to an antigen-binding molecule (agonist molecule) that activates the function of the antigen can be evaluated by measuring some in vivo marker that reflects the function of the antigen.
  • Measurement of free antigen in plasma, measurement of ratio of plasma free antigen to total plasma antigen, measurement of in vivo marker, etc. are not particularly limited, but fixed after administration of antigen-binding molecule It is preferably performed after a lapse of time.
  • the time after a fixed time has elapsed since the administration of the antigen-binding molecule is not particularly limited, and can be determined by a person skilled in the art according to the nature of the administered antigen-binding molecule. 1 day after administration of the molecule, 3 days after administration of the antigen binding molecule, 7 days after administration of the antigen binding molecule, 14 days after administration of the antigen binding molecule, For example, 28 days after administration.
  • plasma antigen concentration means “total plasma antigen concentration”, which is the sum of antigen-binding molecule-bound antigen and antigen-binding molecule-unbound antigen, or antigen-binding molecule-unbound antigen concentration. It is a concept that includes any of “plasma free antigen concentration”.
  • the total antigen concentration in plasma is an antigen-binding molecule containing an antigen-binding molecule whose antigen-binding activity is independent of ion concentration as an antigen-binding molecule, or an antigen-binding molecule containing an Fc region with impaired Fc ⁇ R-binding activity.
  • an antigen-binding molecule of the present invention is not administered, by administration of the antigen-binding molecule of the present invention, 2 times, 5 times, 10 times, 20 times, 50 times , 100 times, 200 times, 500 times, 1,000 times or more.
  • the antigen elimination efficiency per antigen-binding molecule is higher, and when the C value is larger, the antigen elimination efficiency per antigen-binding molecule is lower.
  • the antigen / antigen binding molecule molar ratio can be calculated as described above.
  • the antigen / antigen-binding molecule molar ratio is an antigen-binding molecule that contains an antigen-binding domain whose antigen-binding activity does not change depending on the ion concentration as an antigen-binding molecule.
  • an antigen-binding molecule of the present invention or an antigen-binding molecule containing an Fc ⁇ receptor-binding domain that does not have selective binding activity to the Fc ⁇ receptor.
  • an antigen-binding molecule containing an antigen-binding domain whose antigen-binding activity does not change depending on the ion concentration an antigen-binding molecule containing an FcRn-binding domain that does not have, or an antigen-binding molecule containing an Fc ⁇ receptor-binding domain that does not have a selective binding activity to the Fc ⁇ receptor is used.
  • mice are administered a mixture of antigen-binding molecules and antigens.
  • mice are implanted with an infusion pump filled with an antigen solution to achieve a constant plasma antigen concentration, and then antigen binding molecules are injected into the mouse.
  • Test antigen binding molecules are administered at the same dose. Plasma total antigen concentration, plasma free antigen concentration, and plasma antigen-binding molecule concentration are measured at appropriate time points using methods known to those skilled in the art.
  • a decrease in plasma total antigen concentration or antigen / antibody molar ratio is when antigen-binding molecules do not cross-react with mouse counterpart antigens.
  • an antigen-binding molecule cross-reacts with a mouse counterpart, it can also be evaluated by simply injecting the antigen-binding molecule into a commonly used C57BL / 6J mouse (Charles River Japan).
  • mice In the simultaneous injection model, a mixture of antigen-binding molecule and antigen is administered to mice.
  • mice are implanted with an infusion pump filled with an antigen solution to achieve a constant plasma antigen concentration, and then antigen binding molecules are injected into the mouse.
  • Test antigen binding molecules are administered at the same dose. Plasma total antigen concentration, plasma free antigen concentration, and plasma antigen-binding molecule concentration are measured at appropriate time points using methods known to those skilled in the art.
  • the long-term plasma antigen concentration is determined to be 2 days, 4 days, 7 days, 14 days, 28 days, 56 days after administration of the antigen binding molecule, or It is determined after 84 days by measuring the total or free antigen concentration and the antigen / antigen binding molecule molar ratio in the plasma. Whether a reduction in plasma antigen concentration or antigen / antigen binding molecule molar ratio is achieved by an antigen binding molecule according to the present invention is assessed at any one or more of the time points described above. Can be determined.
  • the short-term effect of the present invention can be evaluated.
  • the short-term plasma antigen concentration is 15 minutes, 1 hour, 2 hours, 4 hours, 8 hours after administration of the antigen-binding molecule. , 12 hours, or 24 hours later, by measuring the total or free antigen concentration and the antigen / antigen binding molecule molar ratio in plasma.
  • the administration route of the antigen-binding molecule of the present invention can be selected from intradermal injection, intravenous injection, intravitreal injection, subcutaneous injection, intraperitoneal injection, parenteral injection, and intramuscular injection.
  • mice eg., normal mice, human antigen-expressing transgenic mice, human FcRn-expressing transgenic mice, etc.
  • monkeys eg, cynomolgus monkeys
  • “improvement of pharmacokinetics of antigen-binding molecule, improvement of plasma retention” means that any pharmacokinetic parameter when an antigen-binding molecule is administered to a living body is improved (the half-life in plasma is reduced). Any increase (increase in mean plasma residence time, decrease in plasma clearance, bioavailability)) means that the plasma concentration of the antigen-binding molecule at an appropriate time after administration is improved. It can be determined by measuring any of the parameters of the antigen-binding molecule such as plasma half-life, mean plasma residence time, plasma clearance, bioavailability (pharmacokinetics understanding through exercises (Nanzan Hall)). is there.
  • the plasma concentration of antigen-binding molecules is measured, and each parameter is calculated, It can be said that the pharmacokinetics of the antigen-binding molecule has improved, for example, when the plasma half-life is increased or the average plasma residence time is increased.
  • These parameters can be measured by methods known to those skilled in the art. For example, using the pharmacokinetic analysis software WinNonlin (Pharsight), the parameters are appropriately evaluated by noncompartmental analysis according to the attached procedure manual. be able to.
  • Fc ⁇ Rs In mice, four types of Fc ⁇ Rs, Fc ⁇ RI, Fc ⁇ RIIb, Fc ⁇ RIII, and Fc ⁇ RIV, have been found so far. In humans, Fc ⁇ RI, Fc ⁇ RIIa, Fc ⁇ RIIb, Fc ⁇ RIIIa, Fc ⁇ RIIIa, and Fc ⁇ RIIIb have been found as Fc ⁇ R corresponding to them. Of these Fc ⁇ Rs, Fc ⁇ RIIb, which is considered to be the only inhibitory type, is conserved in both humans and mice.
  • Fc ⁇ Rs except for Fc ⁇ RIIIb, transmit activation signals via immunoreceptor tyriosine-based activating motifAM (ITAM), while Fc ⁇ RIIb transmits inhibitory signals via imunoreceptor tyrosine-based inhibitory motif (ITIM) (Nat. Rev. Immunol. (2008) 8, 34-47).
  • ITAM immunoreceptor tyriosine-based activating motifAM
  • ITIM imunoreceptor tyrosine-based inhibitory motif
  • Fc ⁇ RIIb1 and Fc ⁇ RIIb2 have been reported as splicing variants of Fc ⁇ RIIb.
  • Fc ⁇ RIIb1 has a longer intracellular domain compared to Fc ⁇ RIIb2, and Fc ⁇ RIIb1 is confirmed to be expressed in B cells. It has been confirmed that it is expressed in neutrophils and eosinophils (J. Clin. Immunol. (2005) 25 (1), 1-18).
  • Fc ⁇ RIIb dysfunction and decreased expression correlate with the development of autoimmune diseases.
  • some SLE patients have reported cases in which the expression of Fc ⁇ RIIb is decreased due to the weakening of Fc ⁇ RIIb expression due to the influence of the gene polymorphism in the expression promoter region of Fc ⁇ RIIb (Hum. Genet. ( 2005) 117, 220-227, J. Immunol. (2004) 172, 7192-7199, J. Immunol. (2004) 172, 7186-7191).
  • two types of gene polymorphisms in which the 233rd amino acid of Fc ⁇ RIIb is Ile or Thr have been reported in SLE patients.
  • Fc ⁇ RIIb regulates humoral immunity in mice as well as in humans.
  • Fc ⁇ RIIb1 and Fc ⁇ RIIb2 exist as splicing variants of Fc ⁇ RIIb. However, it has been reported that the latter is mainly involved in the endocytosis of the antibody-antigen immune complex (J. Immunol. ( 1994), 152-574-585, Science (1992) 256, 1808-1812, Cell (1989) 58, 317-327).
  • Fc ⁇ RIIb1 does not cause endocytosis unlike Fc ⁇ RIIb2.
  • Fc ⁇ RIIb1 has an insertion sequence in the intracellular domain that is not found in Fc ⁇ RIIb2. This sequence is thought to inhibit uptake of Fc ⁇ RIIb1 into clathrin-coated pits, resulting in inhibition of endocytosis (J. Cell. Biol. (1992) 116, 875-888, J. Cell Biol. (1989) 109, 3291-3302).
  • Fc ⁇ RIIb1 has an insertion sequence in the same part of Fc ⁇ RIIb2 as in mice, a difference in the endocytic ability between Fc ⁇ RIIb1 and Fc ⁇ RIIb2 is expected to occur due to a similar mechanism.
  • Fc ⁇ RIIb2 has taken up immune complexes into cells at the same rate as mice even in humans.
  • Fc ⁇ RIIb has only ITIM in the cell in both humans and mice, and the distribution of the expressed cells is the same. Therefore, it can be assumed that the functions in the control of immunity are the same. In addition, considering the fact that immune complexes are taken into cells at the same rate in both humans and mice, it is considered that the effect of antigen elimination by antibodies mediated by Fc ⁇ RIIb in humans can be predicted by using mice. .
  • Reference Example 7 compared to mIgG1, which is an antigen-binding molecule that binds to a soluble antigen in a pH-dependent manner, it has a property that binds to a soluble antigen in a pH-dependent manner against mouse Fc ⁇ RIIb and Fc ⁇ RIII. It was shown that when mF44 and mF46, antigen-binding molecules with enhanced affiity, were administered to normal mice, clearance of the antigen was increased compared to when mIgG1 was administered.
  • Fc ⁇ RIIb is mainly involved in the removal of immune complexes via Fc ⁇ R, and as long as the binding of Fc ⁇ R to Fc ⁇ RIIb is maintained, the immune complex of the antibody via Fc ⁇ R It was inferred that the efficiency of removing the body was also maintained.
  • the present invention also relates to a polypeptide comprising an antibody Fc region variant, wherein the Fc region variant has a binding activity to Fc ⁇ RIIb as compared to a polypeptide comprising a parent Fc region, comprising adding at least one amino acid modification to the Fc region variant.
  • a method for producing a polypeptide comprising a modified Fc region with reduced binding activity to active Fc ⁇ R while maintaining the same is provided.
  • a production method including the following steps can be mentioned; (A) in a polypeptide containing an Fc region, a step of modifying at least one amino acid in the Fc region; (B) measuring the binding activity to the Fc ⁇ RIIb and the binding activity to the active Fc ⁇ R of the polypeptide modified in the step (a), and (c) comparing with the polypeptide containing the parent Fc region, to the Fc ⁇ RIIb A step of selecting a polypeptide containing an Fc region variant with reduced binding activity to active Fc ⁇ R while maintaining binding activity.
  • a preferred embodiment is a method for producing a polypeptide containing a modified Fc region, (A) modifying the nucleic acid encoding the polypeptide so that the binding activity to the active Fc ⁇ R is decreased while maintaining the binding activity to Fc ⁇ RIIb as compared to the polypeptide containing the parent Fc region; (B) introducing the nucleic acid into a host cell and culturing it so as to express it, (C) recovering the polypeptide from the host cell culture.
  • antibodies and Fc fusion protein molecules produced by the production method are also included in the present invention.
  • the present invention also relates to a polypeptide comprising an antibody Fc region variant, wherein the Fc region variant has a binding activity to Fc ⁇ RIIb as compared to a polypeptide comprising a parent Fc region, comprising adding at least one amino acid modification to the Fc region variant.
  • a method including the following steps can be mentioned; (A) in a polypeptide containing an Fc region, a step of modifying at least one amino acid in the Fc region; (B) a step of measuring the binding activity to Fc ⁇ RIIa and the binding activity to Fc ⁇ RIIb of the polypeptide modified in the step (a), and (c) the binding activity to Fc ⁇ RIIb as compared with the polypeptide containing the parent Fc region.
  • a polypeptide comprising an Fc region variant with reduced binding activity to Fc ⁇ RIIa (R type) while maintaining the above.
  • Preferred embodiments include a method of reducing the binding activity to all active Fc ⁇ Rs, particularly Fc ⁇ RIIa (R type), while maintaining the binding activity of the polypeptide containing the parent Fc region to Fc ⁇ RIIb, or an Fc region variant.
  • a method for producing a polypeptide comprising: (A) a step of modifying a nucleic acid encoding the polypeptide so that the binding activity to Fc ⁇ RIIa (R type) is decreased while maintaining the binding activity to Fc ⁇ RIIb as compared to the polypeptide containing the parent Fc region; (B) introducing the nucleic acid into a host cell and culturing it so as to express it, (C) recovering the polypeptide from the host cell culture.
  • antibodies and Fc fusion protein molecules produced by the production method are also included in the present invention.
  • the present invention also provides a polypeptide comprising an Fc region, wherein the polypeptide comprises, when administered to a living body, comprising at least one amino acid modification to the Fc region, as compared to a polypeptide comprising a parent Fc region.
  • a method for suppressing the production of an antibody against a peptide or a method for producing a polypeptide in which the production of an antibody against the polypeptide is inhibited.
  • a method including the following steps can be mentioned; (A) a polypeptide comprising an Fc region, wherein at least one amino acid modification is applied to the Fc region; and (b) a polypeptide comprising the Fc region modified in the step (a) is administered to a living body. And a step of confirming that the production of the antibody is suppressed as compared with the polypeptide containing the parent Fc region.
  • Such a polypeptide is thought to be useful as a pharmaceutical because it can suppress the production of antibodies without activating activated Fc ⁇ R.
  • the EU numbering 238th amino acid is changed to another amino acid, and the Fc region EU numbering 235th amino acid, 237th amino acid, 241st amino acid 268th amino acid, 295th amino acid, 296th amino acid, 298th amino acid, 323rd amino acid, 324th amino acid and at least one amino acid selected from the 330th amino acid
  • the Fc region is modified so that modifications to other amino acids are introduced.
  • amino acid modifications combined with the amino acid modification at EU numbering 238, two or more amino acids may be selected from the above and combined. Preferred combinations include the following (1) to (3).
  • Amino acids selected as modified amino acids are particularly limited as long as the binding selectivity to all active Fc ⁇ Rs, particularly Fc ⁇ RIIa (R), is reduced while maintaining the binding activity to Fc ⁇ RIIb as compared to that before modification.
  • the EU numbering 238th amino acid is Asp
  • the EU numbering 235th amino acid is Phe
  • the 237th amino acid is Gln or Asp
  • the 241st amino acid is Met or Leu
  • the 268th amino acid is Pro
  • 295th amino acid is Met or Val
  • 296th amino acid is Glu
  • 298th amino acid is Ala or Met
  • 323rd amino acid is Ile
  • 324th amino acid is Asn or His
  • the amino acid is preferably His or Tyr ⁇ ⁇ .
  • an Fc region variant in which an amino acid modification that causes a binding activity to Fc ⁇ RIIb to be twice or more compared to the Fc region of natural IgG is introduced;
  • the Fc region is modified so that all amino acid modifications that reduce the binding activity to Fc ⁇ R are introduced in combination.
  • amino acid modification whose binding activity to Fc ⁇ RIIb is 2 times or more compared to the Fc region of natural IgG is not particularly limited, and examples thereof include amino acid modifications described in Table 11.
  • amino acid modification that reduces the binding activity to all Fc ⁇ Rs is not particularly limited, but for example, the Fc region EU numbering 234th amino acid, 235th amino acid, 236th amino acid, 237 And at least one amino acid selected from the amino acid at position 239, amino acid at position 239, amino acid at position 265, amino acid at position 267, and amino acid at position 297.
  • the amino acid modification in which the binding activity to Fc ⁇ RIIb is 2 times or more compared to the Fc region of natural IgG is the EU numbering 238th amino acid and 271st amino acid of the Fc region, Amino acid modification that reduces the binding activity to Fc ⁇ R, EU numbering of Fc region 234th amino acid, 235th amino acid, 236th amino acid, 237th amino acid, 239th amino acid, 265th amino acid, 267th amino acid And at least one amino acid selected from the 297th amino acid.
  • Amino acids selected as modified amino acids are particularly limited as long as the binding selectivity to all active Fc ⁇ Rs, particularly Fc ⁇ RIIa (R), is reduced while maintaining the binding activity to Fc ⁇ RIIb as compared to that before modification.
  • EU numbering 238th amino acid is Asp
  • 271st amino acid is Gly
  • EU numbering 234th amino acid is Ala
  • 235th amino acid is Ala
  • 236th amino acid is Gln
  • 237th amino acid is Arg or Lys
  • 239th amino acid is Lys
  • 265th amino acid is Lys
  • 267th amino acid is Lys
  • Arg or Tyr 297th amino acid is Ala It is preferable that
  • EU numbering 238th amino acid, 271st amino acid, 327th amino acid, 330th amino acid and 331st amino acid to other amino acids The Fc region is modified so that the modification is introduced. Furthermore, at least one amino acid selected from at least one amino acid selected from the 233rd amino acid, the 237th amino acid, the 264th amino acid, the 267th amino acid and the 268th amino acid is introduced into another amino acid.
  • two or more amino acids may be selected from the above and combined. Preferred combinations include the following (1) to (4).
  • Amino acids selected as modified amino acids are particularly limited as long as the binding selectivity to all active Fc ⁇ Rs, particularly Fc ⁇ RIIa (R), is reduced while maintaining the binding activity to Fc ⁇ RIIb as compared to that before modification.
  • EU numbering 238th amino acid is Asp
  • 271st amino acid is Gly
  • 327th amino acid is Gly
  • 330th amino acid is Ser
  • 331st amino acid is Ser
  • 233rd amino acid is Asp
  • 237th Preferably, the amino acid is Asp
  • the 264th amino acid is Ile
  • the 267th amino acid is Ala
  • the 268th amino acid is Asp or Glu.
  • the present invention provides a polypeptide for producing a polypeptide having reduced binding activity to active Fc ⁇ R, particularly Fc ⁇ RIIa (R-type) while maintaining binding activity to Fc ⁇ RIIb as compared to a polypeptide containing a parent Fc region.
  • a method of modifying The present invention also provides a polypeptide for producing a polypeptide having a reduced binding activity to active Fc ⁇ R, particularly Fc ⁇ RIIa (R type), while maintaining binding activity to Fc ⁇ RIIb as compared to a polypeptide comprising a parent Fc region.
  • Methods for modifying peptides are provided.
  • the present invention also provides a method for modifying a polypeptide to produce a polypeptide in which antibody production is suppressed when administered to a living body as compared to a polypeptide containing a parent Fc region.
  • Fc ⁇ RIIa R type
  • Fc ⁇ RIIb R type
  • a combination of amino acid modifications can be used. Such modifications include, for example, modifications that reduce the binding activity to complement.
  • the Fc region EU numbering 322th amino acid modification or the Fc region EU numbering 327th, 330th and 331th amino acid modification combination.
  • the amino acid selected as the modified amino acid maintains binding activity to Fc ⁇ RIIb compared to the polypeptide containing the Fc region of native IgG, and binding to complement is reduced while binding activity to all active Fc ⁇ Rs is reduced.
  • the EU numbering 322th amino acid is Ala or Glu
  • the 327th amino acid is Gly
  • the 330th amino acid is Ser
  • the 331st amino acid is Ser.
  • the present invention relates to a polypeptide containing an Fc region, wherein at least one amino acid is modified, and compared with a polypeptide containing a parent Fc region, while maintaining binding activity to Fc ⁇ RIIb, active Fc ⁇ R, particularly Fc ⁇ RIIa
  • a nucleic acid encoding a polypeptide comprising an Fc region variant with reduced binding activity to (R-type) is provided.
  • the present invention also relates to a polypeptide comprising an Fc region, wherein at least one amino acid is modified and maintains binding activity to Fc ⁇ RIIb as compared to a polypeptide comprising a parent Fc region, while maintaining an active Fc ⁇ R, particularly Fc ⁇ RIIa.
  • a nucleic acid encoding a polypeptide comprising an Fc region variant with reduced binding activity to (R-type) binding activity may be in any form such as DNA or RNA.
  • the present invention provides a vector containing the nucleic acid of the present invention.
  • the type of vector can be appropriately selected by those skilled in the art depending on the host cell into which the vector is introduced. For example, the above-described vectors can be used.
  • the present invention further relates to a host cell transformed with the vector of the present invention.
  • the host cell can be appropriately selected by those skilled in the art.
  • the above-described host cell can be used.
  • Specific examples include the following host cells.
  • eukaryotic cells are used as host cells, animal cells, plant cells, or fungal cells can be used as appropriate.
  • the following cells can be exemplified as animal cells.
  • Mammalian cells CHO (Chinese hamster ovary cell line), COS (Monkey kidney cell line), myeloma (Sp2 / O, NS0, etc.), BHK (baby hamster kidney cell line), Hela, Vero, HEK293 (human embryonic kidney cell line with sheared adenovirus (Ad) 5 DNA), Freestyle 293, PER.C6 cell (human embryonic retinal cell line transformed with the Adenovirus Type 5 (Ad5) E1A and E1B genes), etc. (Current Protocols in Protein Science (May , 2001, Unit 5.9, Table 5.9.1))
  • Amphibian cells Xenopus oocytes, etc.
  • Insect cells sf9, sf21, Tn5, etc.
  • Nicotiana such as Nicotiana tabacum
  • Callus cultured cells can be used as appropriate for transformation of plant cells.
  • -Yeast Saccharomyces genus such as Saccharomyces serevisiae, Pichia genus such as methanol-utilizing yeast (Pichia pastoris)-Filamentous fungi: Aspergillus genus such as Aspergillus niger
  • the present invention relates to a polypeptide comprising an Fc region, comprising at least one amino acid modification in the Fc region, while maintaining the binding activity to Fc ⁇ RIIb, as compared to a polypeptide comprising a parent Fc region.
  • the present invention also provides a polypeptide comprising an Fc region, wherein the polypeptide comprises, when administered to a living body, comprising at least one amino acid modification to the Fc region, as compared to a polypeptide comprising a parent Fc region.
  • a method for suppressing the production of antibodies against a peptide is provided.
  • Fc ⁇ RIIa R type
  • a polypeptide produced by any of the above methods is also included in the present invention.
  • the present invention provides a pharmaceutical composition comprising a polypeptide comprising the Fc region variant of the present invention.
  • the pharmaceutical composition of the present invention can be formulated by a known method by introducing a pharmaceutically acceptable carrier in addition to the antibody or Fc fusion protein molecule of the present invention.
  • a pharmaceutically acceptable carrier for example, it can be used parenterally in the form of a sterile solution with water or other pharmaceutically acceptable liquid, or an injection of suspension.
  • a pharmacologically acceptable carrier or medium specifically, sterile water or physiological saline, vegetable oil, emulsifier, suspension, surfactant, stabilizer, flavoring agent, excipient, vehicle, preservative It is conceivable to prepare a pharmaceutical preparation by combining with a binder or the like as appropriate and mixing in a unit dosage form generally required for pharmaceutical practice.
  • aqueous solutions for injection examples include isotonic solutions containing physiological saline, glucose and other adjuvants such as D-sorbitol, D-mannose, D-mannitol, sodium chloride, and suitable solubilizers such as Alcohols, specifically ethanol, polyalcohols such as propylene glycol, polyethylene glycol, nonionic surfactants such as polysorbate 80 (TM), HCO-50 may be used in combination.
  • oily liquid examples include sesame oil and soybean oil, which may be used in combination with benzyl benzoate or benzyl alcohol as a solubilizing agent.
  • oily liquid examples include sesame oil and soybean oil, which may be used in combination with benzyl benzoate or benzyl alcohol as a solubilizing agent.
  • buffer for example, phosphate buffer, sodium acetate buffer, a soothing agent, for example, procaine hydrochloride, stabilizer, for example, benzyl alcohol, phenol, antioxidant.
  • the prepared injection solution is usually filled into a suitable ampoule.
  • Administration is preferably parenteral administration, and specific examples include injection, nasal administration, pulmonary administration, and transdermal administration.
  • the injection dosage form can be administered systemically or locally by, for example, intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection and the like.
  • the administration method of the pharmaceutical composition of the present invention can be appropriately selected depending on the age and symptoms of the patient.
  • the dose of the pharmaceutical composition containing the antibody or the polynucleotide encoding the antibody can be selected, for example, in the range of 0.0001 mg to 1000 mg per kg body weight. Alternatively, for example, the dose can be selected in the range of 0.001 to 100,000 mg / body per patient, but is not necessarily limited to these values.
  • the dose and administration method vary depending on the weight, age, symptoms, etc. of the patient, but can be appropriately selected by those skilled in the art.
  • the polypeptide containing the modified Fc region of the present invention is useful as an active ingredient of a drug that suppresses the activation of B cells, mast cells, dendritic cells and / or basophils.
  • the polypeptide comprising the Fc region variant of the present invention activates B cells, mast cells, dendritic cells and / or basophils by selectively acting on Fc ⁇ RIIb without activating activated Fc ⁇ R. Can be suppressed.
  • Activation of B cells includes proliferation, IgE production, IgM production, IgA production and the like.
  • the above-described polypeptide containing the Fc region variant of the present invention suppresses B cell IgE production by cross-linking Fc ⁇ RIIb and IgE, and suppresses B cell IgM production by cross-linking with IgM and cross-links with IgA. This suppresses IgA production.
  • molecules expressed on B cells such as BCR, CD19, CD79b, etc. that contain ITAM domain in the cell or that interact with ITAM domain directly or indirectly crosslink Fc ⁇ RIIb.
  • the activation of mast cells includes proliferation, activation by IgE, degranulation and the like.
  • the polypeptide containing the Fc region variant of the present invention contains an ITAM domain expressed on mast cells such as Fc ⁇ RI, DAP12, and CD200R3 which are IgE receptors in mast cells, or interacts with the ITAM domain.
  • ITAM domain expressed on mast cells such as Fc ⁇ RI, DAP12, and CD200R3 which are IgE receptors in mast cells, or interacts with the ITAM domain.
  • the activation of dendritic cells includes proliferation, degranulation and the like.
  • the polypeptide comprising the Fc region variant of the present invention is also a dendritic cell, a molecule on the cell membrane that contains an ITAM domain in the cell or interacts with the ITAM domain directly and indirectly. By crosslinking, activation, degranulation and proliferation can be suppressed.
  • the polypeptide comprising the Fc region variant of the present invention is useful as an active ingredient of a therapeutic or prophylactic agent for immunoinflammatory diseases.
  • the polypeptide containing the Fc region variant of the present invention can suppress the activation of B cells, mast cells, dendritic cells and / or basophils, and as a result, the present invention It is possible to treat or prevent an immunoinflammatory disease by administering a polypeptide containing the modified Fc region.
  • Immunoinflammatory disease includes, but is not limited to: rheumatoid arthritis, autoimmune hepatitis, autoimmune thyroiditis, autoimmune blistering, autoimmune corticosteroids , Autoimmune hemolytic anemia, autoimmune thrombocytopenic purpura, megacytic anemia, autoimmune atrophic gastritis, autoimmune neutropenia, autoimmune orchitis, autoimmune encephalomyelitis , Autoimmune receptor disease, autoimmune infertility, chronic active hepatitis, glomerulonephritis, interstitial pulmonary fibrosis, multiple sclerosis, Paget's disease, osteoporosis, multiple myeloma, uveitis, acute And chronic spondylitis, gouty arthritis, inflammatory bowel disease, adult respiratory distress syndrome (ARDS), psoriasis, Crohn's disease, Graves' disease, juvenile diabetes, Addison's disease, myasthenia grav
  • the polypeptide comprising the Fc region variant of the present invention suppresses the production of the autoantibody in an autoimmune disease in which the production of an antibody against the autoantigen (autoantibody) is considered to be the cause of the disease. It is useful as an active ingredient of a drug for treating or preventing immune diseases. It has been reported that by using a molecule that fuses AchR, an autoantigen of myasthenia gravis, with the Fc part of an antibody, it suppresses the proliferation of B cells expressing BCR that recognizes AchR and induces apoptosis. (J Neuroimmunol, 227, 35-43, 2010).
  • the BCR of the B cell that expresses the BCR against the self antigen and Fc ⁇ RIIb are cross-linked to express the BCR against the self antigen. It is possible to suppress the proliferation of B cells and induce apoptosis.
  • Such autoimmune diseases include Guillain-Barre syndrome, myasthenia gravis, chronic atrophic gastritis, autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis, autoimmune pancreatitis, aortitis syndrome , Goodpasture syndrome, rapid progressive glomerulonephritis, giant erythroblastic anemia, autoimmune hemolytic anemia, autoimmune neutropenia, idiopathic thrombocytopenic purpura, Graves' disease, Hashimoto's disease, primary Hypothyroidism, idiopathic Addison's disease, insulin-dependent diabetes mellitus, chronic discoid lupus erythematosus, localized scleroderma, pemphigus, pemphigoid, gestational herpes zoster, linear IgA bullous dermatosis, acquired epidermis Includes bullous disease, alopecia areata,
  • the polypeptide containing the Fc region variant of the present invention is useful as an active ingredient of a therapeutic agent for a disease lacking a protein necessary for a living body.
  • a treatment method is used in which the protein is administered and supplemented as a drug, but since the patient originally lacks the protein, the protein supplemented from the outside is It is recognized as a foreign substance and an antibody against the protein is produced. As a result, the protein is easily removed, and the effect as a drug is diminished.
  • a fusion protein of such a protein and the antibody Fc region described in the present invention it is possible to crosslink BCR and Fc ⁇ RIIb on B cells that recognize the protein, and to suppress antibody production against the protein. It is.
  • Proteins to be supplemented include Factor VIII, Factor IX, TPO, EPO, ⁇ -iduronidase, iduronate sulfatase, A type heparan N-sulfatase, B type ⁇ -N-acetylglucosaminidase, C type acetyl CoA: ⁇ -glucosaminidase acetyltransferase, D type N -acetylglucosamine 6-sulfatase, galactose 6-sulfatase, N-acetylgalactosamine 4-sulfatase, ⁇ -glucuronidase, ⁇ -galactosidase, acidic ⁇ -galactosidase, glucocerebrosidase.
  • the polypeptide containing the modified Fc region of the present invention is useful as an active ingredient of an antiviral agent.
  • An antibody against a virus and containing an Fc region according to the present invention is capable of suppressing antibody-dependent infection enhancement that is found in an antibody against a virus.
  • Antibody-dependent infection enhancement is a phenomenon in which a virus is phagocytosed via an active Fc ⁇ R using a neutralizing antibody against the virus and infects Fc ⁇ R-expressing cells, thereby spreading the infection. It has been reported that the binding of neutralizing antibodies to dengue virus to Fc ⁇ RIIb plays an important role in suppressing the enhancement of antibody-dependent infection (Proc Natl Acad Sci USA, 108, 12479-12484, 2011).
  • Viruses include dengue viruses (DENV1, DENV2, DENV4) and HIV. However, it is not limited only to these.
  • the polypeptide containing the modified Fc region of the present invention is useful as an active ingredient of an arteriosclerosis preventive or therapeutic agent.
  • An antibody against oxidized LDL that causes arteriosclerosis and comprising an Fc region according to the present invention can prevent Fc ⁇ RIIa-dependent inflammatory cell adhesion.
  • Antioxidant LDL antibody inhibits the interaction between oxidized LDL and CD36.
  • Antioxidant LDL antibody binds to endothelial cells, and the Fc part is recognized by Fc ⁇ RIIa or Fc ⁇ RI dependently and adheres to it. Reported (Immunol Lett, 108, 52-61, 2007).
  • an antibody containing the Fc region described in the present invention for such an antibody, it is considered that Fc ⁇ RIIa-dependent binding is inhibited and that monosite adhesion is suppressed by a suppression signal via Fc ⁇ RIIb. .
  • the polypeptide comprising the Fc region variant of the present invention is useful as an active ingredient of a therapeutic or prophylactic agent for cancer.
  • the agonist antibody using the Fc region variant described in the present invention is useful for the treatment or prevention of cancer.
  • the Fc region variants described in the present invention include, for example, Aliases, CD120a, CD120b, Lymphotoxin ⁇ receptor, CD134, CD40, FAS, TNFRSF6B, CD27, CD30, CD137, TNFRSF10A, TNFRSF10B, TNFRSF10C, TNFRSF10D, Agonist antibodies to TNF receptor family such as RANK, Osteoprotegerin, TNFRSF12A, TNFRSF13B, TNFRSF13C, TNFRSF14, Nerve growth factor receptor, TNFRSF17, TNFRSF18, TNFRSF19, TNFRSF21, TNFRSF25, Ectodysplasin A2 receptor Can be used for prevention.
  • TNF receptor family such as RANK, Osteoprotegerin, TNFRSF12A, TNFRSF13B, TNFRSF13C, TNFRSF14, Nerve growth factor receptor, TNFRSF17, TNFR
  • the agonist activity of an agonist antibody against a molecule that requires interaction with Fc ⁇ RIIb is also enhanced.
  • the present invention provides a polypeptide having a binding activity to a molecule that suppresses cell growth by being cross-linked with Fc ⁇ RIIb, such as Kit, which is one of Receptor Tyrosine kinase (RTK).
  • Kit which is one of Receptor Tyrosine kinase (RTK).
  • Cancers include, but are not limited to: lung cancer (including small cell lung cancer, non-small cell lung cancer, lung adenocarcinoma and squamous cell carcinoma), colon cancer, rectal cancer, colon cancer, Breast cancer, liver cancer, stomach cancer, pancreatic cancer, renal cancer, prostate cancer, ovarian cancer, thyroid cancer, bile duct cancer, peritoneal cancer, mesothelioma, squamous cell carcinoma, cervical cancer, endometrial cancer, bladder cancer, esophageal cancer, head and neck Cancer, nasopharyngeal cancer, salivary gland tumor, thymoma, skin cancer, basal cell tumor, malignant melanoma, anal cancer, penile cancer, testicular cancer, Wilms tumor, acute myeloid leukemia (acute myelocytic leukemia, acute myeloblasts) Leukemia, acute promyelocytic leukemia, acute myelomonocytic leukemia and acute monocy
  • the present invention also includes a step of administering to a subject (patient) a polypeptide containing the Fc region variant of the present invention or a polypeptide containing the Fc region variant produced by the production method of the present invention.
  • the present invention relates to a method for the treatment or prevention.
  • the present invention also provides a treatment of the present invention comprising at least a polypeptide comprising an Fc region variant of the present invention or a polypeptide comprising an Fc region variant produced by the production method of the present invention, or a pharmaceutical composition of the present invention.
  • a kit for use in a method or prophylactic method is provided.
  • the kit may be packaged with a pharmaceutically acceptable carrier, a medium, instructions describing the method of use, and the like.
  • the present invention also relates to the use of a polypeptide comprising the Fc region variant of the present invention or a polypeptide comprising the Fc region variant produced by the production method of the present invention in the manufacture of a therapeutic or prophylactic agent for immunoinflammatory diseases.
  • the present invention also relates to a polypeptide comprising the Fc region variant of the present invention or a polypeptide comprising the Fc region variant produced by the production method of the present invention for use in the treatment method or prevention method of the present invention.
  • Example 1 Acquisition of pH-dependent anti-IgE antibody (1-1) Obtaining anti-human IgE antibody
  • human IgE as an antigen (heavy chain SEQ ID NO: 13, light chain SEQ ID NO: 14) (the variable region is anti-human).
  • Glypican3 antibody was expressed using FreeStyle293 (Life Technologies). The expressed human IgE was prepared by purification by a general column chromatography method known to those skilled in the art.
  • antibodies that bind to human IgE in a pH-dependent manner and that form a large immune complex composed of two or more anti-IgE antibodies and two or more IgE antibodies were selected.
  • the selected anti-human IgE antibody was expressed and purified using human IgG1 heavy chain constant region and human light chain constant region.
  • the prepared antibody was named clone 278 (IgG1) (heavy chain SEQ ID NO: 10, light chain SEQ ID NO: 11).
  • the binding activity (dissociation constant K D (M)) of clone 278 and Xolair to hIgE was evaluated using Biacore T200 (GE Healthcare). Measurements were made using the following three running buffers. 1.2 mmol / l CaCl 2 /0.05% tween20, 20 mmol / l ACES, 150 mmol / l NaCl, pH7.4 ⁇ 1.2 mmol / l CaCl 2 /0.05% tween20, 20 mmol / l ACES, 150 mmol / l NaCl, pH5.8 ⁇ 3 ⁇ mol / l CaCl 2 /0.05% tween20, 20 mmol / l ACES, 150 mmol / l NaCl, pH5.8
  • biotinylated GPC3 peptide A peptide in which biotin is added to Lys present at the C-terminus of a chemically synthesized human glypican 3 protein-derived sequence (SEQ ID NO: 12) added in an appropriate amount (hereinafter referred to as “biotinylated GPC3 peptide”) is streptavidin. And immobilized on Sensor chip SA (GE Healthcare) using the affinity of biotin. The human IgE was immobilized on the chip by injecting an appropriate concentration of human IgE and allowing it to be captured by the biotinylated GPC3 peptide. A suitable concentration of clone 278 as an analyte was injected and allowed to interact with human IgE on the sensor chip.
  • Clone 278 is a large immune complex comprising human IgE and two or more anti-IgE antibodies and two or more IgE antibodies under neutral conditions (pH 7.4). And the immune complex dissociated under acidic conditions (pH 5.8) was evaluated by gel filtration chromatography. Clone 278 dialyzed to 100 mM NaCl is 20 mM Tris-HCl, 150 mM NaCl, 1.2 mM CaCl 2 , pH 7.4 buffer as neutral sample, 20 mM Bis-tris-HCl as acidic sample , 150 mM NaCl, 3 ⁇ M CaCl 2 , pH 5.8 buffer.
  • a mixture of human IgE hIgE (Asp6) 100 ⁇ g / mL (0.60 ⁇ M) and clone 278 mixed at a molar ratio of 1: 1 and 1: 6 is left at room temperature or 25 ° C autosampler for 2 hours or longer. And analyzed by gel filtration chromatography. Under neutral conditions, a mobile phase of 20 mM Tris-HCl, 300 mM NaCl, 1.2 mM CaCl 2 , pH 7.4, and under acidic conditions, a mobile phase of 20 mM Bis-tris-HCl, 300 mM NaCl, 3 uM CaCl 2 , pH 5.8 Each was used.
  • clone 278 and human IgE consist of a tetramer and a multimer having an apparent molecular weight of about 670 kDa (assuming that one antibody molecule is a monomer) under neutral conditions. It was confirmed that a large immune complex was formed. Furthermore, since no such immune complexes were observed under acidic conditions, it was confirmed that these immune complexes were dissociated in a pH-dependent manner, as in the above-described evaluation of binding using Biacore. It was.
  • hIgE human IgE for in vivo evaluation consisting of a heavy chain (SEQ ID NO: 15) and a light chain (SEQ ID NO: 14) ( Asp6) (variable region is anti-human Glypican3 antibody) was prepared in the same manner as in Example 1.
  • hIgE (Asp6) is a human IgE N-type sugar chain in order to prevent the heterogeneity of the N-type sugar chain of human IgE from being affected by changes in the plasma concentration of the human IgE antigen. It is a molecule in which asparagine at the chain binding site is modified to aspartic acid.
  • hIgE (Asp6) concentration in plasma of normal mice The hIgE (Asp6) concentration in mouse plasma was measured by ELISA. Calibration curve samples with plasma concentrations of 192, 96, 48, 24, 12, 6, 3 ng / mL were prepared. To homogenize the immune complex of hIgE (Asp6) and anti-hIgE antibody, add Xolair (Novartis) to the calibration curve and mouse plasma measurement sample to 10 ⁇ g / mL and let stand at room temperature for 30 minutes It was.
  • Xolair Novartis
  • FIG. 2 shows the change in plasma hIgE (Asp6) concentration after intravenous administration measured by this method.
  • clone 278 was labeled 278-IgG1
  • Xolair was labeled Xolair-IgG1.
  • the calibration curve after standing and the mouse plasma measurement sample were dispensed onto an immunoplate (Nunc-Immuno Plate, MaxiSorp (Nalge nunc International)) on which Anti-Human Kappa Light Chain Antibody (Bethyl Laboratories) was immobilized. Or left at 4 ° C. overnight. Thereafter, Rabbit anti-Human IgG (Fc) Secondary antibody, Biotin conjugate (Pierce Biotechnology) and Streptavidin-Poly HRP80 (Stereospecific Detection Technologies) were each reacted sequentially for 1 hour.
  • an IgG1 antibody that binds to a human IL-6 receptor (hsIL-6R) but whose binding is not pH-dependent (H54L28-IgG1) is defined as an antigen.
  • hsIL-6R human IL-6 receptor
  • H54L28-IgG1 pH-dependent
  • the result obtained in this example is a result that the disappearance of the antigen is accelerated by administering the antibody simultaneously with the antigen, compared with the case where the antigen alone is administered, and seems to contradict the past reports. .
  • IgE which is the antigen used in this embodiment, is a divalent antigen and hsIL-6R is a monovalent antigen.
  • an anti-IgE antibody is added to IgE, two antibodies can bind to one antigen, and an immunity comprising a plurality of antigens and antibodies as observed in Example (1-3). Form a complex.
  • Fc ⁇ R which is an IgG receptor
  • avidity On the other hand, in the case of hsIL-6R, only one antibody can bind to one antigen. Therefore, the immune complex composed of the antigen and the antibody can bind to Fc ⁇ R only with affinity and binds with avidity. Compared to the case, the interaction is very weak. That is, it was considered that the immune complex formed from IgE and its antibody strongly bound to Fc ⁇ R with avidity, and as a result, it was rapidly removed from the blood via the liver where Fc ⁇ R is expressed.
  • the antigen when an antibody binds to IgE as an antigen in a pH-dependent manner, the antigen is dissociated in the endosome after the immune complex of the antigen and the antibody is taken into the cell. Thereafter, the antigen is not recycled together with the antibody via FcRn, and the dissociated antigen is degraded in the lysosome. As a result, it was considered that the antigen was rapidly eliminated as compared with the case where the antibody binding to the antigen was not pH-dependent.
  • Example 3 In vivo evaluation of clone 278 with reduced Fc ⁇ R binding and Xolair (3-1) Acquisition of anti-human IgE antibody with reduced Fc ⁇ R binding Next, it is verified whether the acceleration of antigen disappearance observed in Example 2 is due to the interaction between the immune complex and Fc ⁇ R. In order to achieve this, a variant in which binding to mouse Fc ⁇ R was reduced with respect to 278-IgG1 binding to human IgE in a pH-dependent manner was prepared.
  • 278-F760 (light chain SEQ ID NO: 11) in which Leu at position 235 represented by EU numbering of 278-IgG1 was replaced by Arg and Ser at position 239 was replaced by Lys ) was produced.
  • DNA sequences encoding these genes were incorporated into animal expression plasmids by methods known to those skilled in the art. Using animal cells into which the plasmid was introduced, the concentrations of these antibody variants expressed by the method described above were measured after purification.
  • FIG. 4 shows changes in plasma hIgE concentration after intravenous administration measured by this method. For comparison, the figure also shows the transition of plasma hIgE concentration during administration of 278-IgG1 obtained in (2-3).
  • FIG. 5 shows the change in plasma antibody concentration after intravenous administration measured by this method. For comparison, the figure also shows the change in plasma antibody concentration of 278-IgG1 obtained in (2-3).
  • FcgRIIb Since the residue corresponding to this residue is Arg in FcgRIIb, FcgRIIb is similar in sequence due to the FcgRIIa R form. Therefore, it was considered that it is a particularly difficult task to distinguish the FcgRIIa R form from the FcgRIIb among the FcgRIIa.
  • a modification for improving the binding selectivity to FcgRIIb with respect to FcgRIIaR a modification in which Pro at the 238th EU numbering is replaced with Asp is reported in WO2012 / 115241.
  • variable region (SEQ ID NO: 17) of the antibody variable region of human interleukin 6 receptor disclosed in WO2009 / 125825 as the antibody heavy chain variable region is used as the antibody heavy chain constant region.
  • IL6R-G1d (SEQ ID NO: 3) having G1d from which terminal Gly and Lys were removed was prepared.
  • IL6R-F648 was prepared by substituting Asp for the 238th Pro of EU numbering IL6R-G1d.
  • IL6R-F652 (SEQ ID NO: 1) with M252Y and N434Y introduced into IL6R-F648, and IL6R-BF648 (sequence with K439E introduced into IL6R-F648) Number: 2)
  • Two types of candy were prepared. Eighteen kinds of amino acids except the original amino acid and Cys were introduced into the above sites of IL6R-F652 or IL6R-BF648.
  • IL6R-L (SEQ ID NO: 6) was commonly used as the antibody L chain, and the antibody was expressed and purified with each H chain according to the method of Reference Example 1.
  • Table 7 shows the relative binding activities to IL6R-F652 / IL6R-L
  • Table 8 shows the relative binding activities to FcgRIIaR and FcgRIIb of the modifications found by comprehensive modification introduction performed on IL6R-BF648 / IL6R-L. Indicated. This is a value obtained by dividing the value of the binding amount of each variant to FcgRIIaR or FcgRIIb by the value of the binding amount of IL6R-F652 / IL6R-L or IL6R-BF648 / IL6R-L to each FcgR and multiplying by 100. is there.
  • Table 9 shows the relative binding activity of each variant to FcgRIIaR and FcgRIIb. This is a value obtained by dividing the value of the binding amount of each variant to FcgRIIaR or FcgRIIb by the value of the binding amount of IL6R-G1d / IL6R-L to FcgRIIaR or FcgRIIb and multiplying by 100.
  • Table 9 shows the variant in which the binding to FcgRIIb is maintained at 80% or more compared to that of IL6R-G1d / IL6R-L and the binding to FcgRIIaR is reduced to 30% or less
  • Table 10 shows the KD values for each FcgR.
  • the relative binding activity in the table is the value obtained by dividing the KD value of IL6R-G1d / IL6R-L by the KD value of each variant, and the KD value for each FcgR of IL6R-G1d / IL6R-L is 1.
  • the relative binding activity of each variant is shown.
  • the binding to FcgRIIaR was most reduced in P600 introduced with S298A, and the binding to FcgRIIaR was reduced by 0.026 times while maintaining the binding to FcgRIIb at 1.2 times that of G1d.
  • the binding to FcgRIIb was 1.0 times or more compared to G1d, and the binding to FcgRIIaR was the most reduced It was P727.
  • the binding of P727 to FcgRIIb was maintained 1.1 times that of G1d, and the binding to FcgRIIaR was attenuated 0.012 times.
  • the binding to FcgRIa is 0.0014 times that of G1d
  • the binding to FcgRIIaH is 0.007 times
  • the binding to FcgRIIIaV is attenuated to 0.005 times
  • the binding to active FcgR other than FcgRIIb is extremely selective. It was an excellent variant that attenuated.
  • IL6R-B3 (SEQ ID NO: 4) was first prepared by introducing K439E into IL6R-G1d (SEQ ID NO: 3). By introducing a combination of selective binding of FcgRIIb to IL6R-B3, a variant that selectively enhanced binding to FcgRIIb was produced.
  • IL6R-L (SEQ ID NO: 6) was commonly used as the antibody L chain, and the antibody was expressed and purified with each H chain according to the method of Reference Example 1. The binding of the obtained variants to FcgRIa, FcgRIIaR, FcgRIIaH, FcgRIIb, and FcgRIIIaV was evaluated according to the method of Reference Example 2.
  • Table 11 shows the binding activity of the prepared variants to each FcgR.
  • the relative binding activity in the table is the value obtained by dividing the KD value of IL6R-B3 / IL6R-L by the KD value of each variant, and the KD value for each FcgR of IL6R-B3 / IL6R-L is 1.
  • the relative binding activity of each variant is shown.
  • KD (IIaR) / KD (IIb) is the value obtained by dividing the KD value of each variant against FcgRIIaR by the KD value against FcgRIIb, and the higher this value, the higher the selectivity for FcgRIIb. .
  • IL6R-B3 / IL6R-L had a KD (IIaR) / KD (IIb) of 0.3, whereas the variants listed in Table 11 ranged from 8.7 to 64.4, and all the variants were selective for FcgRIIb ( KD (IIaR) / KD (IIb)) was improved as compared with IL6R-B3 / IL6R-L.
  • the binding to FcgRIIb is maintained at the same level as IgG1, while other active FcgRRs are maintained.
  • the FcgRIIb binding enhancement modification used in IL6R-BP568 / IL6R-L and IL6R-BP489 / IL6R-L is introduced into IL6R-G1d to selectively enhance binding to two types of FcgRIIb.
  • Variants IL6R-P577 and IL6R-P587 were created.
  • IL6R-L (SEQ ID NO: 6) was commonly used as the antibody L chain, and the antibody was expressed and purified with each H chain according to the method of Reference Example 1. Table 12 shows the KD values of these two variants for each FcgR.
  • the binding of P577 to FcgRIIaR was 21.9 times that of G1d, and the binding to FcgRIIb was 3370.7 times.
  • the binding of P587 to FcgRIIaR was 1.4 times that of G1d, and the binding to FcgRIIb was 255.6 times.
  • FcgRIIb binding-enhanced variants prepared are introduced with modifications that reduce the binding to all FcgRs, while maintaining the same level of binding to FcgRIIb as that of native IgG1, while maintaining other FcgRs, especially FcgRIIaR.
  • EU numbering 234, 235, 236, 237, and 239 of IL6R-F652 / IL6R-L shown in Example 4-1 comprehensive to FcgRIIb selective enhancement variants Tampering was implemented.
  • the FcgRIIb enhancement modified kit (E233D / G237D / H268E / P271G) reported in WO2012 / 115241 was introduced into IL6R-BF648 (SEQ ID NO: 2) to produce IL6R-BP267 (SEQ ID NO: 5).
  • IL6R-BP267 EU numbering 265th, 266th, 267th, 269th modified by replacing the original amino acid and 18 kinds of amino acids except Cys were prepared.
  • IL6R-L (SEQ ID NO: 6) was commonly used as the antibody L chain, and the antibody was expressed and purified with each H chain according to the method of Reference Example 1.
  • N297A was introduced into IL6R-P577 and IL6R-P587 according to the method of Reference Example 1 in order to remove the N-type sugar chain added to Asn297.
  • IL6R-L SEQ ID NO: 6
  • the binding of the obtained variants to FcgRIa, FcgRIIaR, FcgRIIaH, FcgRIIb, and FcgRIIIaV was evaluated according to the method of Reference Example 2.
  • Table 15 shows the relative binding activity of each variant to FcgRIIaR and FcgRIIb.
  • the KD to each FcgR of the variant in which binding to FcgRIIb is maintained at 80% or more of G1d and binding to FcgRIIaR is suppressed to 30% or less of G1d is shown in Table 16 It was shown to.
  • the relative binding activity in the table is the value obtained by dividing the KD value of IL6R-G1d / IL6R-L by the KD value of each variant, and the KD value for each FcgR of IL6R-G1d / IL6R-L is 1.
  • the relative binding activity of each variant is shown.
  • the binding to FcgRIIaR was most reduced in P636 in which S267R was introduced into P587.
  • the KD for FcgRIIaR was 0.023 times that of G1d, but the KD for FcgRIIb remained 1.8 times that of G1d.
  • the binding to FcgRIa was suppressed to 0.0007 times that of G1d
  • the binding to FcgRIIaH was 0.006 times
  • the binding to FcgRIIIaV was suppressed to 0.008 times.
  • the one that most reduced the binding to FcgRIIaR was P712 introduced by combining S267R, H268P, and Y296E with respect to FcgRIIb selective binding enhancement variant P587, and to FcgRIIb.
  • the binding to FcgRIIaR was reduced to 0.017 times that of G1d while the binding of was maintained at 1.5 times that of G1d. Further, the binding to FcgRIa was suppressed 0.0005 times that of G1d, the binding to FcgRIIaH was 0.003 times, and the binding to FcgRIIIaV was suppressed 0.004 times.
  • Example 5 Preparation of a variant that maintains the binding to FcgRIIb at the same level as the natural type, attenuates the binding to other FcgR, and attenuates the binding to complement CDC (complement-dependent cytotoxicity) Like ADCC, is an effector function that elicits an immune response. All of the variants prepared so far have greatly reduced binding activity to active receptors other than FcgRIIb, and ADCC activity is considered to be greatly attenuated. However, since the binding site between the antibody and complement is different from the binding site between the antibody and FcgR, the binding activity to complement may be maintained. Accordingly, the binding activity of each variant to complement was evaluated, and a variant with reduced binding to complement was prepared by combining alterations that reduce binding to complement.
  • complement CDC complement-dependent cytotoxicity
  • the interaction analysis between the antibody and human C1q was performed using Biacore T200 (GE Healthcare). HBS-EP + (GE Healthcare) was used as the running buffer, and the measurement temperature was 25 ° C. A chip in which Protein L (ACTIGEN or BioVision) was immobilized on the Series S sensor Chip CM4 (GE Healthcare) by the amine coupling method was used. The target antibody was captured by these sensor chips, human complement C1q (PROSPEC or Calbiochem) diluted with a running buffer was allowed to interact, and the binding amount to the antibody was measured and compared between the antibodies. However, since the binding amount of C1q depends on the amount of captured antibody, comparison was made with a correction value obtained by dividing the binding amount of C1q by the capture amount of each antibody.
  • the antibody captured on the sensor chip was washed by reacting with 10 mM glycine-HCl, pH 1.5, and the sensor chip was regenerated and used repeatedly.
  • K322A described in the prior literature (J. Immunol, 2003, 164, 4178-4184) was used.
  • K322E was also examined because it was expected that the substitution of Glu with the opposite charge at the EU numbering 322th Lys would reduce the binding to C1q.
  • IgG4 has significantly lower CDC activity than IgG1, which is reported to be caused by a difference in the sequence of the C-terminal of the CH2 domain (J. Exp. Med., 1991, 173, 1025-1028) . Therefore, IgG1 EU numbering 327th Ala as Gly, 330th Ala as Ser, 331th Pro as Ser, and IgG4 type sequence to reduce binding to C1q went.
  • the binding to the human C1q of a variant with enhanced binding to FcgRIIb or a variant with reduced binding to other FcgR while maintaining binding to FcgRIIb was evaluated.
  • bonding to C1q with respect to them was produced and evaluated.
  • the binding to each FcgR of the variant prepared according to the method of Reference Example 2 was evaluated for all the variants.
  • Human IgG4 was used as a negative control in the evaluation of binding to C1q.
  • the 228th Ser of EU numbering of human IgG4 was replaced with Pro to prepare IL6R-G4d (SEQ ID NO: 52) having G4d from which Cly terminal Gly and Lys were removed.
  • IL6R-L (SEQ ID NO: 6) was commonly used as the antibody L chain.
  • Table 18 shows the results of evaluating the produced variants and the binding to human C1q. “The amount of C1q binding when G1d is 100” in the table is the amount of C1q binding to each variant divided by the amount captured by each variant. Dividing the amount of C1q binding by the capture amount of IL6R-G1d / IL6R-L, and then multiplying by 100. That is, it shows how much C1q binds to IL6R-G1d / IL6R-L.
  • G4d As a negative control was 15.5.
  • G1dK322A, G1dK322E, and G1dGSS with G1d modified to reduce the binding to C1q bind to C1q at 20.5, 2.3, and 15.2 respectively, and are equal to or less than G4d before modification. It was found that the bond of was greatly reduced.
  • F648 introduced with the P238D modification that selectively enhances binding to FcgRIIB has the same degree of binding to C1q as G4d without using the modification for reducing binding to C1q.
  • the binding ability of P741, P742, and P743 into which C1q binding reduction modification was further introduced was all equal to or less than that of G4d.
  • P600, P691, P727, P729, P733, and 737P737 which are variants that maintain the binding to FcgRIIb at the same level as the natural type and attenuate the binding ability to other FcgR, P600, P691, P729, P733 All had C1q binding activity comparable to that of G4d.
  • P727 and P737 were greatly attenuated compared to G1d, they showed more than twice the binding ability compared to G4d. It is considered that the modification of A330H was introduced into both variants in common, thereby enhancing the binding to C1q.
  • the binding activity to C1q was suppressed to G4d or less by introducing K322A or K322E, which is a C1q binding reduction modification.
  • P587, P588, P769, P112, P555, P556, P559, P562, P763, P764, and P765, which are variants with enhanced FcgRIIb binding P587 and P588 have the same or higher binding to C1q than G1d It became clear. Although P769, P556, P559, P562, P763, and P765 were greatly attenuated compared to G1d, they showed about twice the binding ability compared to G4d. On the other hand, P112 and P764 had C1q binding activity comparable to G4d. Moreover, it was shown that the binding activity to C1q was suppressed to the same level or lower than that of G4d by introducing the C1q binding lowering modification in any of the variants.
  • Table 19 shows the relative binding activity of each variant to FcgRIIaR and FcgRIIb. This is a value obtained by dividing the value of the binding amount of each variant to FcgRIIaR or FcgRIIb by the value of the binding amount of IL6R-G1d / IL6R-L to FcgRIIaR or FcgRIIb and multiplying by 100.
  • a variant containing a modification that reduces binding to complement shown in Table 19 has a relative binding activity to FcgRIIaR of 105% or less compared to G1d and a relative binding activity to FcgRIIb compared to G1d. And maintained more than 48%.
  • Table 20 shows the binding of these variants to each FcgR.
  • the relative binding activity in the table is the value obtained by dividing the KD value of IL6R-G1d / IL6R-L by the KD value of each variant, and the KD value for each FcgR of IL6R-G1d / IL6R-L is 1.
  • the relative binding activity of each variant is shown.
  • the KD values in the table among the KD values in the table, the values filled in gray are weakly bound to each variant of FcgR, and it was determined that the kinetic analysis could not correctly analyze, [Formula 2] described in Reference Example 2 This is a value calculated using.
  • G1dK322A with K322A introduced to G1d was 1.0 times G1d, G1dK322E with K322E introduced 1.1 times, A327G / A330S / P331S introduced In the G1dGSS, 0.91 fold, any C1q binding reduction modification hardly affects the binding to FcgRIIb.
  • P741 introduced with K322A or P742 introduced K322E with respect to F648 containing the P238D modification that selectively enhances the binding to FcgRIIb has almost the same binding to hFcgRIIb as compared to F648 before the introduction of the modification.
  • the binding to FcgRIIb is 0.7 times compared to G1d in P744 with K322A introduced into P600, and 0.7 times with P745 into which K322E was introduced, but 0.2 times in P781 with A327G / A330S / P331S introduced. It is falling.
  • A327G / A330S / P331S which is a sequence of natural human IgG4, rather than introducing K322A or K322E. Therefore, when a modification for reducing C1q binding is introduced into a variant into which a modification that enhances binding to FcgRIIb is introduced, the A327G / A330S / P331S modification may be more preferable.
  • All of the variants with enhanced or maintained binding to FcgRIIb and reduced complement binding produced in this study had a binding to FcgRIIb of 0.2 or more times that of G1d, and the binding to FcgRIIaR was 1.0 of G1d. It was suppressed to less than double.
  • the binding to FcgRIa was suppressed to 0.85 times or less of G1d, the binding to FcgRIIaH was 0.036 times or less, and the binding to FcgRIIIaV was suppressed to 0.012 times or less.
  • Example 6 Evaluation of the ability of Fc variants to activate dendritic cells (DC) (6-1) Evaluation of the ability of Fc variants to activate dendritic cells (DC) It is reported that dendritic cells are activated by cross-linking active Fc ⁇ R expressed on the cell surface, particularly Fc ⁇ RIIa via the cell (The Journal of Clinical Investigation, 2005, 115, 2914 -2923, The Journal of Immunology, 2003, 170, 3963-3970). It was verified whether or not the ability to activate dendritic cells via the Fc portion of the antibody was reduced in the Fc variant that selectively reduced the binding to the active Fc ⁇ R prepared in Example 4.
  • Example 7 Evaluation of platelet aggregation ability of an antibody containing an Fc region with an existing modification that enhances binding to Fc ⁇ RIIb (7-1) Background of platelet activation and aggregation of IgG1 antibody It has been reported that IgG1 antibody induces platelet activation through interaction with Fc ⁇ R and exhibits side effects. For example, it is known that the risk of thromboembolism is increased in a group of patients to whom bevacizumab, an antibody against VEGF, is administered (J. Natl. Cancer Inst. (2007) 99 (16), 1232-1239).
  • Platelet activation was evaluated by the following method. First, about 50 mL of whole blood from a donor of the Fc ⁇ RIIa gene polymorphism (R131 / R131) was collected in aliquots into a 4.5 mL vacuum blood collection tube containing 0.5 mL of 3.2% sodium citrate. The supernatant collected by centrifuging whole blood at 200 g for 15 minutes was used as Platelet Rich Plasma (PRP).
  • PRP Platelet Rich Plasma
  • buffer A 137 mM NaCl, 2.7 mM KCl, 12 mM NaHCO 3 , 0.42 mM NaH 2 PO 4 , 2 mM MgCl 2 , 5 mM HEPES, 5.55 mM dextrose, 1.5 U / mL apyrase, 0.35% BSA
  • buffer B 137 mM NaCl, 2.7 mM KCl, 12 mM NaHCO 3 , 0.42 mM NaH 2 PO 4 , 2 mM MgCl 2 , 5 mM HEPES, 5.55 mM dextrose, 2 mM CaCl 2 , 0.35 % BSA).
  • washed platelets with a density of about 300,000 / ⁇ L were prepared.
  • 168 ⁇ L of washed platelets was dispensed into a measurement cuvette including a stir bar installed in a platelet aggregation measuring apparatus. Platelets were stirred at 1000 rpm with a stir bar in a cuvette maintained at 37.0 ° C. in the apparatus.
  • 42 ⁇ L of each antibody-antigen immune complex prepared so that the final concentration was 120 ⁇ g / mL of antibody and 111 ⁇ g / mL of antigen was added thereto, and platelets were allowed to react with the immune complex for 5 minutes.
  • adenosine diphosphate ADP, SIGMA
  • Platelet activation can be measured by increasing the expression of an activation marker such as CD62p (p-selectin) or activated integrin (PAC-1) on the platelet membrane surface.
  • an activation marker such as CD62p (p-selectin) or activated integrin (PAC-1) on the platelet membrane surface.
  • PAC-1 activated integrin
  • a negative control a sample to which a phosphate buffer (pH 7.4) (Gibco) was added instead of an immune complex was used.
  • an antibody comprising an Fc region modified with reduced binding to human Fc ⁇ RIIa in which the Pro at position 238 represented by EU numbering of the Fc region of IgG1 is replaced with Asp and the Ser at position 298 is replaced with Ala.
  • the antigen-binding molecule containing the Fc region of the present invention that more selectively reduces binding to Fc ⁇ RIIa activates platelets without impairing the properties of natural IgG1, which rapidly reduces the plasma concentration of antigen. The possibility that it is an excellent molecule that overcomes the problem of being transformed is shown.
  • the prepared plasmid was transiently introduced into a human fetal kidney cancer cell-derived HEK293H strain (Invitrogen) or FreeStyle293 cells (Invitrogen) to express the antibody.
  • the culture supernatant was obtained through a 0.22 ⁇ m filter MILLEX®-GV (Millipore) or a 0.45 ⁇ m filter MILLEX®-GV (Millipore).
  • the antibody was purified by a method known to those skilled in the art using rProtein A Sepharose Fast Flow (GE Healthcare) or Protein G Sepharose 4 Fast Flow (GE Healthcare).
  • the purified antibody concentration was measured by measuring the absorbance at 280 nm using a spectrophotometer, and the antibody concentration was calculated from the obtained value using an extinction coefficient calculated by a method such as PACE (Protein Science 1995; 4: 2411-2423).
  • Fc ⁇ RIIIb was prepared with reference to J. Clin. Invest., 1989, 84, 1688-1691.
  • the obtained gene fragment was inserted into an animal cell expression vector to prepare an expression vector.
  • the produced expression vector was transiently introduced into human fetal kidney cancer cell-derived FreeStyle293 cells (Invitrogen) to express the target protein.
  • the target protein was expressed in the presence of Kifunesine at a final concentration of 10 ⁇ g / mL so that the sugar chain added to Fc ⁇ RIIb became a high mannose type.
  • the culture supernatant was obtained through a 0.22 ⁇ m filter. In principle, the obtained culture supernatant was purified by the following four steps.
  • the first step is cation exchange column chromatography (SP Sepharose FF)
  • the second step is affinity column chromatography against His tag (HisTrap ⁇ ⁇ ⁇ ⁇ HP)
  • the third step is gel filtration column chromatography (Superdex200)
  • the fourth step is aseptic Filtration was performed.
  • Fc ⁇ RI anion exchange column chromatography using Q ⁇ ⁇ sepharose FF in the first step was performed.
  • the absorbance at 280 nm was measured using a spectrophotometer, and the concentration of the purified protein was calculated from the obtained value using the extinction coefficient calculated by the method of PACE or the like (Protein Science 1995; 4: 2411-2423).
  • Biacore® T100 GE Healthcare
  • Biacore® T200 GE Healthcare
  • Biacore® A100 GE Healthcare
  • Biacore® 4000 an interaction analysis between each modified antibody and the Fc ⁇ receptor prepared above was performed.
  • HBS-EP + GE Healthcare
  • Series S Sensor Chip CM5 GE Healthcare
  • Series S sensor Chip CM4 GE Healthcare
  • antigen peptide ProteinA (Thermo Scientific)
  • Protein A / G Thermo Scientific
  • ProteinProL ACTIGEN
  • a chip on which BioVision was immobilized, or an antigen peptide that had been biotinylated in advance against Series ⁇ ⁇ S Sensor Chip SA (certified) (GE Healthcare) and immobilized was used.
  • the target antibody was captured by these sensor chips, the Fc ⁇ receptor diluted with the running buffer was allowed to interact, the binding amount to the antibody was measured, and the antibodies were compared. However, since the binding amount of Fc ⁇ receptor depends on the amount of captured antibody, comparison was made with a correction value obtained by dividing the binding amount of Fc ⁇ receptor by the capture amount of each antibody. Further, the antibody captured on the sensor chip was washed by reacting 10 mM mM glycine-HCl, pH 1.5, and the sensor chip was regenerated and used repeatedly.
  • hIgA Human IgA
  • hIgA Human IgA
  • HIgA expressed by culturing a host cell containing a recombinant vector containing H (WT) -IgA1 (SEQ ID NO: 19) and L (WT) (SEQ ID NO: 20) can be obtained by methods known to those skilled in the art. Purified using ion exchange chromatography and gel filtration chromatography.
  • H54 / L28-IgG1 described in International Publication WO2009 / 125825 is a humanized anti-IL-6 receptor antibody, and Fv4-IgG1 is against H54 / L28-IgG1. It is a humanized anti-IL-6 receptor antibody having the property of binding to soluble human IL-6 receptor in a pH-dependent manner (binding under neutral conditions and dissociating under acidic conditions).
  • Fv4-IgG1 and antigen were compared with the group administered with a mixture of H54 / L28-IgG1 and soluble human IL-6 receptor as antigen. It was shown that the disappearance of soluble human IL-6 receptor was significantly accelerated in the group administered with the soluble human IL-6 receptor mixture.
  • Soluble human IL-6 receptor bound to an antibody that binds to normal soluble human IL-6 receptor is recycled into plasma by FcRn together with the antibody.
  • an antibody that binds to a soluble human IL-6 receptor in a pH-dependent manner dissociates the soluble human IL-6 receptor bound to the antibody under acidic conditions in the endosome. Since the dissociated soluble human IL-6 receptor is degraded by lysosomes, it is possible to greatly accelerate the disappearance of the soluble human IL-6 receptor from plasma, and the soluble form depends on pH.
  • the antibody that binds to the human IL-6 receptor is released into the plasma by FcRn after dissociating the soluble human IL-6 receptor, and the recycled antibody can bind to the soluble human IL-6 receptor again. .
  • the above cycle incorpororation of antigen-bound antibody into cells> dissociation of antigen from antibody> antigen degradation and antibody recirculation into plasma
  • one antibody molecule is produced several times. It becomes possible to bind to the soluble human IL-6 receptor repeatedly (FIG. 9).
  • H54 / L28-IgG1 is a humanized anti-IL-6 receptor antibody
  • Fv4-IgG1 is soluble human IL against H54 / L28-IgG1.
  • Is a humanized anti-IL-6 receptor antibody that has the property of binding to the -6 receptor in a pH-dependent manner (binding under neutral conditions and dissociating under acidic conditions)
  • Fv4-IgG1-v2 is Fv4-IgG1-v2
  • it is a humanized anti-IL-6 receptor antibody with enhanced binding to FcRn under pH neutral conditions.
  • the enhanced modified antibody can repeatedly bind to the antigen, and the antigen It has been reported that the effect of promoting the disappearance of plasma from the plasma is further improved, and it is possible to eliminate the antigen from the plasma by administering the antibody (FIG. 10).
  • the environmental difference in plasma and endosome that is, the difference in pH (in plasma: pH 7.4, in endosome: pH 6.0)
  • the property of an antibody that binds strongly to an antigen in plasma and dissociates the antigen in endosomes is utilized.
  • the difference in pH is the difference in hydrogen ion concentration.
  • the hydrogen ion concentration in plasma at pH 7.4 is about 40 nM
  • the hydrogen ion concentration in endosomes at pH 6.0 is about 1000 nM, so environmental factors in plasma and endosomes
  • the difference in the hydrogen ion concentration considered as one is about 25 times as large.
  • the difference is different from the difference in the hydrogen ion concentration in plasma and endosome. It was thought that antibodies that bind to the antigen depending on large environmental factors should be used. Calcium was found as a result of the search for environmental factors with a large concentration difference between plasma and endosome. While the ionized calcium concentration in plasma is about 1.1-1.3 mM, while the ionized calcium concentration in endosomes is about 3 ⁇ M, the concentration of calcium ions considered as one of environmental factors in plasma and endosomes The difference was found to be approximately 400 times larger, which was found to be greater than the hydrogen ion concentration difference (25 times).
  • a cell suspension of human fetal kidney cell-derived FreeStyle 293-F strain (Invitrogen) in FreeStyle 293 Expression Medium medium (Invitrogen) was added to each well of a 6-well plate at a cell density of 1.33 x 10 6 cells / mL. 3 mL each was seeded.
  • the plasmid prepared by the lipofection method was introduced into the cells.
  • the cells were cultured in a CO 2 incubator (37 ° C., 8% CO 2 , 90 rpm) for 4 days, and the isolated culture supernatant was known to those skilled in the art using rProtein A Sepharose TM Fast Flow (Amersham Biosciences).
  • the antibody was purified by this method.
  • the absorbance (wavelength: 280 nm) of the purified antibody solution was measured using a spectrophotometer.
  • the antibody concentration was calculated from the measured value using the extinction coefficient calculated by the PACE method (Protein Science (1995) 4, 2411-2423).
  • the antibody was bound to Sensor chip CM5 (GE Healthcare) in which an appropriate amount of recombinant protein A / G (Thermo Scientific) was immobilized by an amino coupling method.
  • hIgA and the antibody on the sensor chip were allowed to interact by injecting an appropriate concentration of hIgA (described in (1-1)) as an analyte. Measurements were made at 37 ° C.
  • the sensor chip was regenerated by injecting 10 mmol / L Glycine-HCl, pH 1.5.
  • Biacore T200 Evaluation Software GE Healthcare
  • the dissociation constant K D (M) was calculated from the measurement results by analysis by curve fitting and equilibrium value analysis. The results are shown in Table 21.
  • the obtained sensorgram is shown in FIG.
  • GA2-IgG1 was shown to bind strongly to hIgA at a Ca 2+ concentration of 1.2 mM, but weakly bind to hIgA at a Ca 2+ concentration of 3 ⁇ M.
  • GA2-IgG1 was shown to bind strongly to human IgA at pH 7.4 and weakly bind to human IgA at pH 5.8 under the condition of Ca 2+ concentration of 1.2 mM. That is, it was revealed that GA2-IgG1 binds to human IgA in a pH-dependent and calcium-dependent manner.
  • the concentration of these antibody variants expressed by the above-described method was: Measured after purification. As shown in Reference Example 5, the antibody containing this modification had significantly enhanced binding to mouse Fc ⁇ R.
  • the hIgA concentration in the mixed solution was 80 ⁇ g / mL, and the anti-hIgA antibody concentration was 2.69 mg / mL. At this time, since a sufficient amount of anti-hIgA antibody was present in excess of hIgA, it was considered that most of hIgA was bound to the antibody.
  • blood was collected from the mice 5 minutes, 7 hours, 1 day, 2 days, 3 days, and 7 days after the administration.
  • In the group to which GA-F1087 was administered blood was collected from mice 5 minutes, 30 minutes, 1 hour, 2 hours, 1 day, 3 days, and 7 days after administration. Plasma was obtained by immediately centrifuging the collected blood at 4 ° C. and 12,000 rpm for 15 minutes. The separated plasma was stored in a freezer set to ⁇ 20 ° C. or lower until measurement was performed.
  • An anti-hIgA antibody calibration curve sample prepared at 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.01563, 0.007813 ⁇ g / mL as a standard solution for plasma concentration and a mouse plasma measurement sample diluted 100-fold or more are the above-mentioned Anti -After dispensing into human IgG immobilized plates, the plates were incubated at 25 ° C for 1 hour. Thereafter, Goat Anti-Human IgG ( ⁇ chain specific) Biotin (BIOT) Conjugate (Southern Biotechnology Associats Inc.) was dispensed to each well of the plate, and then the plate was reacted at 25 ° C. for 1 hour.
  • Goat Anti-Human IgG ( ⁇ chain specific) Biotin (BIOT) Conjugate Pacificn Biotechnology Associats Inc.
  • Streptavidin-PolyHRP80 (Stereospecific Detection Technologies) was dispensed into each well of the plate, and then the plate was reacted at 25 ° C. for 1 hour. After the color development reaction using TMB One Component HRP Microwell Substrate (BioFX Laboratories) as a substrate was stopped using 1N-Sulfuric acid (Showa Chemical), the absorbance at 450 nm of the reaction solution in each well using a microplate reader was measured. The anti-hIgA antibody concentration in mouse plasma was calculated from the absorbance of the calibration curve using analysis software SOFTmax PRO (Molecular Devices). FIG.
  • Streptavidin-PolyHRP80 (Stereospecific Detection Technologies) was dispensed to each well of the plate, and then the plate was reacted at room temperature for 1 hour. After the color development reaction using TMB One Component HRP Microwell Substrate (BioFX Laboratories) as a substrate was stopped using 1N-Sulfuric acid (Showa Chemical), the absorbance at 450 nm of the reaction solution in each well using a microplate reader was measured. The mouse plasma concentration was calculated from the absorbance of the calibration curve using the analysis software SOFTmax PRO (Molecular Devices). FIG. 13 shows the transition of plasma hIgA concentration in normal mice after intravenous administration measured by this method.
  • hIgAh was accelerated compared to hIgA alone in mice administered with hIgA and GA2-IgG1 having a Ca-dependent binding activity of 100 times or more simultaneously with the disappearance of hIgA alone.
  • the hIgA concentration decreased from the measurement range (0.006 ⁇ g / mL or more) one day after administration, and GA-IgG1 Disappearance of hIgA was significantly accelerated compared to that in the plasma of mice administered.
  • mice administered with hIgA and anti-hIgA antibodies that form immune complexes the effect of removing antigen (hIgA) from plasma by antibodies with enhanced binding to Fc ⁇ R was enhanced in binding to Fc ⁇ R. It was shown that it was enhanced compared with the antigen (hIgA) removal effect of the antibody as the antibody.
  • VH3-mIgG1 (SEQ ID NO: 25)
  • light chain as the heavy chain of mouse IgG1 antibody having the property of binding to human IL-6 receptor in a pH-dependent manner As VL3-mk1 (SEQ ID NO: 26) was prepared using the method of Reference Example 1.
  • VH3-mIgG1-mF44 in which Ala at position 327 represented by EU numbering was substituted with Asp was prepared.
  • VH3-mIgG1-mF46 in which Ser at position 239 represented by EU numbering of VH3-mIgG1 was replaced with Asp and Ala at position 327 was replaced with Asp was produced.
  • VV3-mIgG1, VH3-mIgG1-mF44 or VH3-mIgG1-mF46 as a heavy chain, VL3-mk1 as a light chain, Fv4-mIgG1, Fv4-mIgG1-mF44 or Fv4-mIgG1-mF46 is a reference example 1 was used.
  • VH3-mIgG1, VH3-mIgG1-mF44 or VH3-mIgG1-mF46 is included as a heavy chain
  • L (WT) -CK (SEQ ID NO: 27) is included as a light chain
  • VH3 / L (WT) -mIgG1, VH3 / L (WT) -mIgG1-mF44 or VH3 / L (WT) -mIgG1-mF46 was prepared by the method of Reference Example 1.
  • the binding activity of these antibodies to mouse Fc ⁇ R was evaluated by the method of Reference Example 2. The results are shown in Table 22.
  • Table 23 shows how many times the binding activity of each variant to mouse Fc ⁇ R is enhanced compared to mIgG1 before the alteration.
  • VH3 / L (WT) -mIgG1 was expressed as mIgG1, VH3 / L (WT) -mIgG1-mF44 as mF44, and VH3 / L (WT) -mIgG1-mF46 as mF46.
  • Example 4 VH3 / L (WT) -mIgG1 having the Fc region of a natural mouse IgG1 antibody showed no binding to mouse Fc ⁇ RI and mouse Fc ⁇ RIV, but only binding to mouse Fc ⁇ RIIb and mouse Fc ⁇ RIII From these examination results, it is suggested that mouse Fc ⁇ R important for lowering the antigen concentration is mouse Fc ⁇ RII and / or mouse Fc ⁇ RIII).
  • VH3 / L (WT) -mIgG-mF44 and VH3 / L (WT) -mIgG1-mF46 mouse Fc ⁇ RIIb and VH3 / L (WT) -mIgG1-mF46 introduced with modifications that are thought to enhance the binding activity of VH3 / L (WT) -mIgG1 to Fc ⁇ R It was shown that the binding activity to mouse Fc ⁇ RIII was enhanced.
  • an infusion pump filled with 92.8 ⁇ g / mL soluble human IL-6 receptor was implanted subcutaneously in the back of the mouse.
  • the anti-human IL-6 receptor antibody was administered once at 1 mg / kg into the tail vein.
  • Blood was collected from the mice 15 minutes, 7 hours, 1 day, 2 days, 4 days, 7 days, 14 days (or 15 days), 21 days (or 22 days) after administration of anti-human IL-6 receptor antibody It was done.
  • Plasma was obtained by immediately centrifuging the collected blood at 4 ° C. and 15,000 rpm for 15 minutes. The separated plasma was stored in a freezer set to ⁇ 20 ° C. or lower until measurement was performed.
  • the concentration of soluble human IL-6 receptor in plasma was measured by the electrochemiluminescence method while the concentration of hsIL-6R soluble human IL-6 receptor in plasma of mice was measured.
  • the hsIL-6R soluble human IL-6 receptor calibration curve sample prepared at 2000, 1000, 500, 250, 125, 62.5, 31.25 pg / mL and mouse plasma measurement sample diluted more than 50 times were prepared using SULFO-TAG. Reacted overnight at 37 ° C by mixing with Monoclonal Anti-human IL-6R Antibody (R & D) and Biotinylated Anti-human IL-6 R Antibody (R & D) and Tocilizumab ruthenated with NHS Ester (Meso Scale Discovery) .
  • the final concentration of Tocilizumab was adjusted to 333 ⁇ g / mL. Thereafter, the reaction solution was dispensed into MA400®PR®Streptavidin®Plate (Meso®Scale®Discovery). Furthermore, after washing the reaction solution reacted at room temperature for 1 hour, Read Buffer T ( ⁇ 4) (Meso Scale Discovery) was dispensed. Immediately thereafter, measurements were taken with a SECTOR PR-400 reader (Meso Scale Discovery). The concentration of hsIL-6R soluble human IL-6 receptor was calculated from the response of the calibration curve using the analysis software SOFTmax®PRO (Molecular® Devices). The results are shown in FIG.
  • mice administered with mF44 and mF46 in which a modification that enhances the binding activity of mIgG1 (natural mouse IgG1) to mouse Fc ⁇ RIIb and mouse Fc ⁇ RIII was administered plasma was compared to that of mice administered with mIgG1. Any significant decrease in the concentration of intermediate IL-6 receptor was confirmed.
  • the plasma IL-6 receptor concentration in the mF44 administration group was about 6 times that in the antibody non-administration group and about 6 times that in the mIgG1 administration group. It was 10 times lower.
  • the plasma IL-6 receptor concentration in the mF46 administration group was about 30 times that in the non-antibody administration group, and about 50 times that in the mIgG1 administration group. It was significantly reduced.
  • the antigen-binding molecule having the Fc region of the mouse IgG1 antibody has the binding activity to the mouse Fc ⁇ R of the antigen-binding molecule having the Fc region of the mouse IgG1 antibody in the same manner as the antibody in which the binding activity of the antigen-binding molecule having the Fc region of the human IgG1 antibody is enhanced. It was also shown that the disappearance of soluble IL-6 receptor in plasma was accelerated in mice administered with the enhanced antibody. Although not bound by a specific theory, the phenomenon seen here can be explained as follows.
  • an antibody that binds to a soluble antigen in a pH-dependent manner and enhances the binding activity to Fc ⁇ R is administered to mice, it is actively taken up mainly by cells expressing Fc ⁇ R on the cell membrane.
  • the incorporated antibody is recycled into plasma via FcRn after dissociating the soluble antigen under conditions of acidic pH in the endosome. Therefore, one of the factors that bring about the effect of eliminating the soluble antigen in plasma by such an antibody is the strength of the binding activity of the antibody to Fc ⁇ R. That is, it is considered that the stronger the binding activity to Fc ⁇ R, the more actively it is taken into Fc ⁇ R-expressing cells and the faster the soluble antigen in plasma can be eliminated.
  • the plasma IL-6 receptor concentration of Fc ⁇ RIII-deficient mice administered with mF44 and mF46 mimicking the situation in which the binding activity of mIgG1 (natural mouse IgG1) to mouse Fc ⁇ RIIb was selectively enhanced was In both cases, it was confirmed that all significantly decreased as compared to the plasma IL-6 receptor concentration of mice administered with mIgG1. Particularly, the plasma IL-6 receptor concentration in the mF44 administration group was reduced to about 3 times that in the mIgG1 administration group, and the accumulation of antigen concentration caused by antibody administration was suppressed.
  • the plasma IL-6 receptor concentration in the mF46 administration group was about 6 times the plasma IL-6 receptor concentration in the non-antibody administration group on the third day after administration, and the plasma IL- Compared to the 6 receptor concentration, it was about 25 times lower. From this result, the higher the binding activity of mouse anti-human IL-6 receptor antibody that binds to antigen in a pH-dependent manner to mouse Fc ⁇ RIIb, the lower the plasma IL-6 receptor concentration in mice when it is administered. was shown to be possible.
  • mF44 and mF46 were administered that mimic the situation in which only the binding activity to mouse Fc ⁇ RIIb was selectively enhanced relative to mIgG1 (natural mouse IgG1).
  • the plasma IL-6 receptor concentration of Fc receptor ⁇ chain-deficient mice was significantly lower than that of Fc receptor ⁇ -chain-deficient mice treated with mIgG1.
  • the plasma IL-6 receptor concentration in the mF44 administration group is about 3 times lower than the plasma IL-6 receptor concentration in the mIgG1 administration group, and the accumulation of antigen concentration caused by antibody administration is suppressed. It was.
  • the plasma IL-6 receptor concentration in the mF46 administration group was about 5 times higher than the plasma IL-6 receptor concentration in the antibody non-administration group on the third day after administration, and the plasma IL-6 concentration in the mIgG1 administration group. Compared to the receptor concentration, it was about 15 times lower.
  • mF44 and mF46 which are antibodies that selectively enhance the binding activity of mIgG1 (natural mouse IgG1) to mouse Fc ⁇ RIIb and mouse Fc ⁇ RIII, are taken up into cells expressing Fc ⁇ R mainly via mouse Fc ⁇ RIIb.
  • mIgG1 naturally mouse IgG1
  • mouse Fc ⁇ RIIb mouse Fc ⁇ RIII
  • the uptake of antibody-antigen complexes via Fc ⁇ RIII into Fc ⁇ R-expressing cells does not greatly contribute to the disappearance of soluble antigens in plasma.
  • soluble IL-6 receptor in plasma of mice administered with Fv4-IgG1-F1087 (heavy chain SEQ ID NO: 28, light chain SEQ ID NO: 29) having improved binding activity to mouse Fc ⁇ RIIb and mouse Fc ⁇ RIII While the concentration was significantly reduced, the elimination effect of soluble IL-6 receptor in plasma of mice administered with Fv4-IgG1-F1182 whose binding activity to mouse Fc ⁇ RI and mouse Fc ⁇ RIV was improved was Fv4-IgG1 -It was also confirmed that it was smaller than that of F1087.
  • mouse Fc ⁇ RIIb plays a main role among a plurality of mouse Fc ⁇ Rs in uptake of antibodies into Fc ⁇ R-expressing cells in mice. Therefore, although not particularly limited, it can be considered that a mutation that enhances binding to mouse Fc ⁇ RIIb is particularly preferable as a mutation introduced into the mouse Fc ⁇ R binding domain.
  • an antigen-binding molecule that binds to a soluble antigen in a pH-dependent manner and enhances the binding activity to Fc ⁇ RIIb accelerates the disappearance of the soluble antigen in plasma when administered in vivo. It was clarified that the soluble antigen concentration in plasma can be effectively reduced and exhibits extremely effective action.
  • the binding activity to all Fc ⁇ Rs is reduced while maintaining the binding activity to Fc ⁇ RIIb as compared with the polypeptide containing the Fc region of natural IgG.
  • Fc region variants and polypeptides comprising the Fc region variants are provided.
  • the polypeptide it becomes possible to transmit an inhibitory signal of an inflammatory immune response via phosphorylation of Icy of Fc ⁇ RIIb.
  • the Fc of an antibody the property of selectively binding to Fc ⁇ RIIb, there is a possibility that anti-antibody production can be suppressed through an immunosuppressive action via Fc ⁇ RIIb.

Abstract

EUナンバリング238番目のアミノ酸改変と、他の特定のアミノ酸改変が組み合わされているアミノ酸配列を含む抗体Fc領域改変体を含むポリペプチドは、天然型IgGのFc領域を含むポリペプチドと比較して、FcγRIIbに対する結合活性を維持しつつ、すべての活性型FcγR、中でもFcγRIIa(R型)に対する結合活性を減少することを見出した。

Description

Fc領域改変体
 本発明は、抗体のFc領域にアミノ酸改変を導入することで、天然型ヒトIgGのFc領域を含むポリペプチドと比較した場合に、FcγRIIbに対する結合活性を維持しつつ、かつ、すべての活性型FcγRに対する結合活性、特にFcγRIIa(R型)に対する結合活性を低減させることが可能なFc領域改変体、該Fc領域改変体を含むポリペプチド及び該ポリペプチドを含有する医薬組成物に関する。
 抗体は血漿中での安定性が高く、副作用も少ないことから医薬品として注目されている。中でもIgG型の抗体医薬は多数上市されており、現在も数多くの抗体医薬が開発されている(非特許文献1、および非特許文献2)。一方、第二世代の抗体医薬に適用可能な技術として様々な技術が開発されており、エフェクター機能、抗原結合能、薬物動態、安定性を向上させる、あるいは、免疫原性リスクを低減させる技術等が報告されている(非特許文献3)。抗体医薬は一般に投与量が非常に高いため、皮下投与製剤の作製が困難であること、製造コストが高いこと等が課題として考えられる。抗体医薬の投与量を低減させる方法として、抗体の薬物動態を向上する方法と、抗体と抗原のアフィニティーを向上する方法が考えられる。
 抗体の薬物動態を向上させる方法として、定常領域の人工的なアミノ酸置換が報告されている(非特許文献4、および非特許文献5)。抗原結合能、抗原中和能を増強させる技術として、アフィニティーマチュレーション技術(非特許文献6)が報告されており、可変領域のCDR領域などのアミノ酸に変異を導入することで抗原への結合活性を増強することが可能である。抗原結合能の増強によりin vitroの生物活性を向上させる、あるいは投与量を低減することが可能であり、さらにin vivo(生体内)での薬効を向上させることも可能である(非特許文献7)。
 一方、抗体一分子あたりが中和できる抗原量はアフィニティーに依存し、アフィニティーを強くすることで少ない抗体量で抗原を中和することが可能であり、様々な方法で抗体のアフィニティーを強くすることが可能である(非特許文献6)。さらに抗原に共有結合的に結合し、アフィニティーを無限大にすることができれば一分子の抗体で一分子の抗原(二価の場合は二抗原)を中和することが可能である。しかしながら、これまでの方法では一分子の抗体は、一分子の抗原(二価の場合は二抗原)に結合することが限界であった。一方、最近になって抗原に対してpH依存的に結合する抗原結合分子を用いることで、一分子の抗原結合分子が複数分子の抗原に結合することが可能であることが報告された(特許文献1、非特許文献8)。pH依存的抗原結合分子は、抗原に対して血漿中の中性条件下においては強く結合し、エンドソーム内の酸性条件下において抗原を解離する。さらに抗原を解離した後に当該抗原結合分子がFcRnによって血漿中にリサイクルされると再び抗原に結合することが可能であるため、一つのpH依存的抗原結合分子で複数の抗原に繰り返し結合することが可能となる。
 さらに、中性条件下(pH7.4)におけるFcRn結合を増強するように改変されたpH依存的抗原結合分子は、抗原に繰り返し結合できる効果、および、血漿中から抗原を消失させる効果を有しているため、こうした抗原結合分子の投与によって血漿中から抗原を除去することが可能であることが報告された(特許文献2)。通常のIgG抗体のFc領域を含むpH依存的抗原結合分子は、中性条件下においてFcRnに対してほとんど結合が認められない。そのため、当該抗原結合分子と抗原の複合体が細胞内に取り込まれるのは、主に非特異的な取込みによると考えられる。この報告によれば、中性条件下(pH7.4)におけるFcRn結合を増強するように改変されたpH依存的抗原結合分子は、通常のIgG抗体のFc領域を含むpH依存的抗原結合分子よりも、その抗原消失をさらに加速することが可能である(特許文献2)。
 抗原の血漿中滞留性は、FcRnを介したリサイクル機構を有する抗体と比較して非常に短いため、抗原は血漿中で当該リサイクル機構を有する(その結合がpH依存的でない)抗体と結合することによって、通常血漿中滞留性が長くなり、血漿中抗原濃度は上昇する。例えば、血漿中抗原が複数種類の生理機能を有する場合、仮に抗体の結合によって一種類の生理活性が遮断されたとしても、当該抗原の血漿中濃度が抗体の結合によって他の生理機能が病因となる症状を増悪することも考えられる。このような観点から血漿中の抗原を消失させることが好ましい場合があるところ、抗原の消失を加速する目的で上記のようなFcRnへの結合を増強するFc領域に対する改変を加える方法が報告されているが、それ以外の方法で抗原の消失を加速する方法はこれまでに報告されていない。
 加えて、いくつかの抗体医薬においてはIgGとFcγRとの相互作用に由来する副作用が報告されている。例えば、VEGFに対する抗体であるbevacizumabが投与された患者群では血栓塞栓症の頻度が上昇することが知られている(非特許文献9)。また、CD40リガンドに対する抗体の臨床開発試験においても同様に血栓塞栓症が観察され、臨床試験が中止された(非特許文献10)。血小板の細胞上には活性型FcγレセプターであるFcγRIIaが発現している(非特許文献11)が、動物モデルなどを使ったその後の研究により、投与されたいずれの抗体も血小板上のFcγRIIaに対する結合を介して血小板が凝集し、その結果血栓を形成することが示唆されている(非特許文献12、 非特許文献13)。自己免疫疾患の一つである全身性エリテマトーデスの患者においてはFcγRIIa依存的な機構によって血小板が活性化し、血小板の活性化が重症度と相関すると報告されている(非特許文献14)。
 また、これまでに動物モデルを用いた研究により、抗体と多価抗原の免疫複合体が活性型FcγRを介してアナフィラキシーを誘導することも報告されている(非特許文献15)。
 加えて、活性型のFcγRを介して多価抗原と抗体の免疫複合体が取り込まれることにより、その抗原に対する抗体価の産生が高くなることが報告されている(非特許文献16、非特許文献17)。この結果は多価抗原を認識する抗体医薬品の場合、抗体医薬品自身に対する抗体が産生しやすくなる可能性を示唆している。抗体医薬品に対する抗体が産生された場合、その血中動態が悪化する、あるいは中和抗体が医薬品の効果を減弱させることが考えられる。
 このように、抗体が多価抗原と結合することで免疫複合体を形成し、その複合体が活性型FcγRと相互作用することで様々な副作用を誘導することが考えられ、抗体の医薬品としての価値を減じてしまう。
国際公開第WO2009/125825号 国際公開第WO2011/122011号
Monoclonal antibody successes in the clinic, Janice M Reichert, Clark J Rosensweig, Laura B Faden & Matthew C Dewitz, Nat. Biotechnol. (2005) 23, 1073 - 1078 Pavlou AK, Belsey MJ., The therapeutic antibodies market to 2008., Eur. J. Pharm. Biopharm. (2005) 59 (3), 389-396 Kim SJ, Park Y, Hong HJ., Antibody engineering for the development of therapeutic antibodies., Mol. Cells. (2005) 20 (1), 17-29 Hinton PR, Xiong JM, Johlfs MG, Tang MT, Keller S, Tsurushita N, J. Immunol. (2006) 176 (1), 346-356 Ghetie V, Popov S, Borvak J, Radu C, Matesoi D, Medesan C, Ober RJ, Ward ES., Nat. Biotechnol. (1997) 15 (7), 637-640 Rajpal A, Beyaz N, Haber L, Cappuccilli G, Yee H, Bhatt RR, Takeuchi T, Lerner RA, Crea R., Proc. Natl. Acad. Sci. USA. (2005) 102 (24), 8466-8471 Wu H, Pfarr DS, Johnson S, Brewah YA, Woods RM, Patel NK, White WI, Young JF, Kiener PA., J. Mol. Biol. (2007) 368, 652-665 Igawa T, et al., Nat. Biotechnol. (2010) 28, 1203-1207 Scappaticci FA, Skillings JR, Holden SN, Gerber HP, Miller K, Kabbinavar F, Bergsland E, Ngai J, Holmgren E, Wang J, Hurwitz H., Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab., J. Natl. Cancer Inst. (2007) 99 (16), 1232-1239 Boumpas DT, Furie R, Manzi S, Illei GG, Wallace DJ, Balow JE, Vaishnaw A, A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis., Arthritis. Rheum. (2003) 48 (3), 719-727. Mackay M, Stanevsky A, Wang T, Aranow C, Li M, Koenig S, Ravetch JV, Diamond B., Selective dysregulation of the FcgammaIIB receptor on memory B cells in SLE., J. Exp. Med. (2006) 203 (9), 2157-2164 Meyer T, Robles-Carrillo L, Robson T, Langer F, Desai H, Davila M, Amaya M, Francis JL, Amirkhosravi A., Bevacizumab immune complexes activate platelets and induce thrombosis in FCGR2A transgenic mice., J. Thromb. Haemost. (2009) 7 (1), 171-181 Robles-Carrillo L, Meyer T, Hatfield M, Desai H, Davila M, Langer F, Amaya M, Garber E, Francis JL, Hsu YM, Amirkhosravi A., Anti-CD40L immune complexes potently activate platelets in vitro and cause thrombosis in FCGR2A transgenic mice., J. Immunol. (2010) 185 (3), 1577-1583 Duffau P, Seneschal J, Nicco C, Richez C, Lazaro E, Douchet I, Bordes C, Viallard JF, Goulvestre C, Pellegrin JL, Weil B, Moreau JF, Batteux F, Blanco P., Platelet CD154 potentiates interferon-alpha secretion by plasmacytoid dendritic cells in systemic lupus erythematosus., Sci. Transl. Med. (2010) 2 (47), 47-63 Bruhns P., Properties of mouse and human IgG receptors and their contribution to disease models. Blood. (2012) 119, 5640-9. Hjelm F, Carlsson F, Getahun A, Heyman B., Antibody-mediated regulation of the immune response. Scand J Immunol. (2006) 64(3), 177-84. Wernersson S, Karlsson MC, Dahlstrom J, Mattsson R, Verbeek JS, Heyman B., IgG-mediated enhancement of antibody responses is low in Fc receptor gamma chain-deficient mice and increased in Fc gamma RII-deficient mice. J Immunol. (1999) 163, 618-22.
 本発明はこのような状況に鑑みて為されたものであり、その目的は、抗体のFc領域にアミノ酸改変を導入することで、抗原の消失を加速させる一方で、活性型FcγRに対する結合に由来する欠点を克服した分子を提供することにある。すなわち、天然型IgG抗体のFc領域を含むポリペプチドと比較した場合に、FcγRIIbに対する結合活性は維持されているが、すべての活性型FcγRに対する結合活性、中でもFcγRIIa(R型)に対する結合活性を低減させることが可能なFc領域改変体、該Fc領域改変体を含むポリペプチド及び該ポリペプチドを含有する医薬組成物を提供することにある。
 本発明者らは、Fc領域にアミノ酸改変を導入することで、天然型IgGのFc領域を含むポリペプチドと比較した場合に、FcγRIIbに対する結合活性を維持しつつ、すべての活性型FcγR、中でもFcγRIIa(R型)に対する結合活性を低減させることが可能なFc領域改変体、当該Fc領域改変体を含むポリペプチドについて鋭意研究を行った。その結果、本発明者らは、Fc領域のEUナンバリング238番目のアミノ酸が改変されているFc領域改変体に、他のアミノ酸改変を組み合わせることで、FcγRIIbに対する結合活性を維持しつつ、すべての活性型FcγRに対する結合活性、特にFcγRIIa(R型)に対する結合活性を低減させることが可能となることを見出した。
 すなわち本発明は、以下に関する。
〔1〕Fc領域のEUナンバリング238番目のアミノ酸、並びに、下記の(a)~(k)のいずれかに記載のアミノ酸改変を含むFc領域改変体であって、天然型IgGのFc領域と比較した場合に、該改変体のFcγRIIbに対する結合活性が維持され、かつ、すべての活性型FcγRに対する結合活性が減少している、改変体。
(a)Fc領域のEUナンバリング235番目のアミノ酸
(b)Fc領域のEUナンバリング237番目のアミノ酸
(c) Fc領域のEUナンバリング241番目のアミノ酸
(d) Fc領域のEUナンバリング268番目のアミノ酸
(e) Fc領域のEUナンバリング295番目のアミノ酸
(f) Fc領域のEUナンバリング296番目のアミノ酸
(g) Fc領域のEUナンバリング298番目のアミノ酸
(h) Fc領域のEUナンバリング323番目のアミノ酸
(i) Fc領域のEUナンバリング324番目のアミノ酸
(j) Fc領域のEUナンバリング330番目のアミノ酸
(k) (a)~(j)から選ばれる少なくとも2つのアミノ酸
〔2〕前記〔1〕の(k)で選ばれる少なくとも2つのアミノ酸が、下記(1)~(3)のいずれかに記載のアミノ酸の組合せである、前記〔1〕に記載の改変体。
(1)Fc領域のEUナンバリング241番目のアミノ酸、268番目のアミノ酸、296番目のアミノ酸及び324番目のアミノ酸
(2) Fc領域のEUナンバリング237番目のアミノ酸、241番目のアミノ酸、296番目のアミノ酸及び330番目のアミノ酸
(3) Fc領域のEUナンバリング235番目のアミノ酸、237番目のアミノ酸、241番目のアミノ酸及び296番目のアミノ酸
〔3〕Fc領域のEUナンバリング238番目のアミノ酸がAspであり、かつ、下記の(a)~(k)のいずれかに記載のアミノ酸を有するFc領域改変体であって、天然型IgGのFc領域と比較した場合に、該改変体のFcγRIIbに対する結合活性が維持され、かつ、すべての活性型FcγRに対する結合活性が減少している、改変体。
(a)Fc領域のEUナンバリング235番目のアミノ酸がPhe
(b) Fc領域のEUナンバリング237番目のアミノ酸がGln又はAsp
(c) Fc領域のEUナンバリング241番目のアミノ酸がMet又はLeu
(d) Fc領域のEUナンバリング268番目のアミノ酸がPro
(e) Fc領域のEUナンバリング295番目のアミノ酸がMet又はVal、
(f) Fc領域のEUナンバリング296番目のアミノ酸がGlu、His、Asn又はAsp、
(g) Fc領域のEUナンバリング298番目のアミノ酸がAla又はMet、
(h) Fc領域のEUナンバリング323番目のアミノ酸がIle、
(i) Fc領域のEUナンバリング324番目のアミノ酸がAsn又はHis
(j) Fc領域のEUナンバリング330番目のアミノ酸がHis又はTyr
(k) (a)~(j)から選ばれる少なくとも2つのアミノ酸
〔4〕Fc領域のEUナンバリング238番目のアミノ酸がAspであり、かつ、下記(1)~(3)のいずれかに記載のアミノ酸を有するFc領域改変体。
(1)Fc領域のEUナンバリング241番目のアミノ酸がMet、268番目のアミノ酸がPro、296番目のアミノ酸がGlu及び324番目のアミノ酸がHis
(2) Fc領域のEUナンバリング237番目のアミノ酸がGln又はAsp、241番目のアミノ酸がMet、296番目のアミノ酸がGlu及び330番目のアミノ酸がHis
(3) Fc領域のEUナンバリング235番目のアミノ酸がPhe、237番目のアミノ酸がGln又はAsp、241番目のアミノ酸がMet及び296番目のアミノ酸がGlu
〔5〕Fc領域のEUナンバリング238番目のアミノ酸及び271番目のアミノ酸、並びに、下記の(a)~(h)のいずれかに記載のアミノ酸改変を含むFc領域改変体であって、天然型IgGのFc領域と比較した場合に、該改変体のFcγRIIbに対する結合活性が維持され、かつ、すべての活性型FcγRに対する結合活性が減少している、改変体。
(a)Fc領域のEUナンバリング234番目のアミノ酸
(b)Fc領域のEUナンバリング235番目のアミノ酸
(c)Fc領域のEUナンバリング236番目のアミノ酸
(d)Fc領域のEUナンバリング237番目のアミノ酸
(e)Fc領域のEUナンバリング239番目のアミノ酸
(f) Fc領域のEUナンバリング265番目のアミノ酸
(g) Fc領域のEUナンバリング267番目のアミノ酸
(h) Fc領域のEUナンバリング297番目のアミノ酸
〔6〕前記アミノ酸改変が、下記の(1)~(3)のいずれかに記載のアミノ酸改変の組合せである、前記〔5〕に記載の改変体。
(1) Fc領域のEUナンバリング233番目のアミノ酸、238番目のアミノ酸、264番目のアミノ酸、267番目のアミノ酸、268番目のアミノ酸及び271番目のアミノ酸
(2)Fc領域のEUナンバリング233番目のアミノ酸、237番目のアミノ酸、238番目のアミノ酸、264番目のアミノ酸、267番目のアミノ酸、268番目のアミノ酸、271番目のアミノ酸、296番目のアミノ酸、297番目のアミノ酸、330番目のアミノ酸及び396番目のアミノ酸
(3) Fc領域のEUナンバリング233番目のアミノ酸、238番目のアミノ酸、264番目のアミノ酸、267番目のアミノ酸、268番目のアミノ酸、271番目のアミノ酸及び296番目のアミノ酸
〔7〕Fc領域のEUナンバリング238番目のアミノ酸がAsp及び271番目のアミノ酸がGlyであり、かつ、下記の(a)~(h)のいずれかに記載のアミノ酸を有するFc領域改変体であって、天然型IgGのFc領域と比較した場合に、該改変体のFcγRIIbに対する結合活性が維持され、かつ、すべての活性型FcγRに対する結合活性が減少している、改変体。
(a)Fc領域のEUナンバリング234番目のアミノ酸がAla、His、Asn、Lys又はArg
(b)Fc領域のEUナンバリング235番目のアミノ酸がAla
(c)Fc領域のEUナンバリング236番目のアミノ酸がGln
(d)Fc領域のEUナンバリング237番目のアミノ酸がArg又はLys
(e)Fc領域のEUナンバリング239番目のアミノ酸がLys
(f) Fc領域のEUナンバリング265番目のアミノ酸がLys、Asn、Arg、Ser又はVal
(g) Fc領域のEUナンバリング267番目のアミノ酸がLys、Arg又はTyr
(h) Fc領域のEUナンバリング297番目のアミノ酸がAla
〔8〕Fc領域のEUナンバリング238番目のアミノ酸がAsp及び271番目のアミノ酸がGlyであり、かつ、下記の(1)~(3)のいずれかに記載のアミノ酸を含む、Fc領域改変体。
(1) Fc領域のEUナンバリング233番目のアミノ酸がAsp、238番目のアミノ酸がAsp、264番目のアミノ酸がIle、267番目のアミノ酸がArg、268番目のアミノ酸がGlu及び271番目のアミノ酸がGly
(2)Fc領域のEUナンバリング233番目のアミノ酸がAsp、237番目のアミノ酸がAsp、238番目のアミノ酸がAsp、264番目のアミノ酸がIle、267番目のアミノ酸がAla、268番目のアミノ酸がGlu、271番目のアミノ酸がGly、296番目のアミノ酸がAsp、297番目のアミノ酸がAla、330番目のアミノ酸がArg及び396番目のアミノ酸がMet
(3) Fc領域のEUナンバリング233番目のアミノ酸がAsp、238番目のアミノ酸がAsp、264番目のアミノ酸がIle、267番目のアミノ酸がArg、268番目のアミノ酸がPro、271番目のアミノ酸がGly及び296番目のアミノ酸がGlu
〔9〕更に、補体への結合が減少している、前記〔1〕から〔8〕のいずれかに記載のFc領域改変体。
〔10〕補体への結合が減少しているFc領域改変体が、Fc領域のEUナンバリング322番目のアミノ酸改変、又は、Fc領域のEUナンバリング327番目、330番目及び331番目のアミノ酸改変を含む、前記〔9〕に記載のFc領域改変体。
〔11〕Fc領域のEUナンバリング322番目のアミノ酸がAla又はGlu、若しくは、Fc領域のEUナンバリング327番目のアミノ酸がGly、330番目のアミノ酸がSer及び331番目のアミノ酸がSerである、前記〔9〕に記載のFc領域改変体。
〔12〕Fc領域のEUナンバリング238番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸のアミノ酸改変を含むFc領域改変体であって、天然型IgGのFc領域と比較した場合に、該改変体のFcγRIIbに対する結合活性が維持され、かつ、すべての活性型FcγRに対する結合活性が減少している、改変体。
〔13〕更に、下記の(a)~(e)のいずれかに記載のアミノ酸改変を含む、前記〔12〕に記載の改変体。
(a)Fc領域のEUナンバリング233番目のアミノ酸
(b)Fc領域のEUナンバリング237番目のアミノ酸
(c)Fc領域のEUナンバリング264番目のアミノ酸
(d)Fc領域のEUナンバリング267番目のアミノ酸
(e)Fc領域のEUナンバリング268番目のアミノ酸
〔14〕前記アミノ酸改変が、下記の(1)~(4)のいずれかに記載のアミノ酸改変の組合せである、前記〔13〕に記載の改変体。
(1) Fc領域のEUナンバリング237番目のアミノ酸、238番目のアミノ酸、268番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸
(2)Fc領域のEUナンバリング233番目のアミノ酸、237番目のアミノ酸、238番目のアミノ酸、268番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸
(3) Fc領域のEUナンバリング238番目のアミノ酸、267番目のアミノ酸、268番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸
(4) Fc領域のEUナンバリング238番目のアミノ酸、264番目のアミノ酸、267番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸
〔15〕Fc領域のEUナンバリング238番目のアミノ酸がAsp、271番目のアミノ酸がGly、327番目のアミノ酸がGly、330番目のアミノ酸がSer及び331番目のアミノ酸がSerであるFc領域改変体であって、天然型IgGのFc領域と比較した場合に、該改変体のFcγRIIbに対する結合活性が維持され、かつ、すべての活性型FcγRに対する結合活性が減少している、改変体。
〔16〕更に、下記の(a)~(h)のいずれかに記載のアミノ酸を有する前記〔15〕に記載の改変体。
(a)Fc領域のEUナンバリング233番目のアミノ酸がAsp
(b)Fc領域のEUナンバリング237番目のアミノ酸がAsp
(c)Fc領域のEUナンバリング264番目のアミノ酸がIle
(d)Fc領域のEUナンバリング267番目のアミノ酸がAla
(e)Fc領域のEUナンバリング268番目のアミノ酸がAsp又はGlu
〔17〕Fc領域のEUナンバリング238番目のアミノ酸がAsp及び271番目のアミノ酸がGlyであり、かつ、下記の(1)~(4)のいずれかに記載のアミノ酸を含む、Fc領域改変体。
(1) Fc領域のEUナンバリング237番目のアミノ酸がAsp、238番目のアミノ酸がAsp、268番目のアミノ酸がAsp又はGlu、271番目のアミノ酸がGly、327番目のアミノ酸がGly、330番目のアミノ酸がSer及び331番目のアミノ酸がSer
(2)Fc領域のEUナンバリング233番目のアミノ酸がAsp、237番目のアミノ酸がAsp、238番目のアミノ酸がAsp、268番目のアミノ酸がAsp、271番目のアミノ酸がGly、327番目のアミノ酸がGly、330番目のアミノ酸がSer及び331番目のアミノ酸がSer
(3) Fc領域のEUナンバリング238番目のアミノ酸がAsp、267番目のアミノ酸がAla、268番目のアミノ酸がGlu、271番目のアミノ酸がGly、327番目のアミノ酸がGly、330番目のアミノ酸がSer及び331番目のアミノ酸がSer
(4) Fc領域のEUナンバリング238番目のアミノ酸がAsp、264番目のアミノ酸がIle、267番目のアミノ酸がAla、271番目のアミノ酸がGly、327番目のアミノ酸がGly、330番目のアミノ酸がSer及び331番目のアミノ酸がSer
〔18〕FcγRIIbに対する結合活性が、天然型IgGのFc領域の結合量の少なくとも80%を有し、FcγRIIaRに対する結合活性が、天然型IgGのFc領域の結合量の30%以下である、前記〔1〕から〔17〕のいずれかに記載のFc領域改変体。
〔19〕天然型IgGのFc領域を含むポリペプチドのFcγRIIb に対する結合活性と比較した相対的な結合活性の比が少なくとも0.75であり、すべての活性型FcγRに対する結合活性の比が0.2以下である、前記〔1〕から〔18〕のいずれかに記載のFc領域改変体。
〔20〕更に、天然型IgGのFc領域を含むポリペプチドのFcγRIIa R に対する結合活性と比較した相対的な結合活性の比が0.1以下である、前記〔19〕に記載のFc領域改変体。
〔21〕前記〔1〕から〔20〕のいずれかに記載のFc領域改変体を含むポリペプチド。
〔22〕前記Fc領域改変体を含むポリペプチドがIgG抗体である、前記〔21〕に記載のポリペプチド。
〔23〕前記Fc領域改変体を含むポリペプチドがFc融合タンパク質分子である、前記〔21〕に記載のポリペプチド。
〔24〕前記〔21〕から〔23〕のいずれかに記載のポリペプチド及び医学的に許容し得る担体を含む、医薬組成物。
〔25〕更に、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメインを含む、前記〔21〕に記載のポリペプチド。
〔26〕イオン濃度の条件が、カルシウムイオン濃度の条件である、前記〔25〕に記載のポリペプチド。
〔27〕前記抗原結合ドメインが、低カルシウムイオン濃度の条件下での抗原に対する結合活性が高カルシウムイオン濃度の条件下での抗原に対する結合活性よりも低い抗原結合ドメインである、前記〔26〕に記載のポリペプチド。
〔28〕イオン濃度の条件が、pHの条件である、前記〔25〕から〔27〕のいずれかに記載のポリペプチド。
〔29〕前記抗原結合ドメインが、pH酸性域における抗原に対する結合活性がpH中性域の条件における抗原に対する結合活性よりも低い抗原結合ドメインである、前記〔28〕に記載のポリペプチド。
〔30〕前記Fc領域改変体を含むポリペプチドがIgG抗体である、前記〔25〕から〔29〕のいずれかに記載のポリペプチド。
〔31〕前記Fc領域改変体を含むポリペプチドがFc融合タンパク質分子である、前記〔25〕から〔29〕のいずれかに記載のポリペプチド。
〔32〕前記〔25〕から〔31〕のいずれかに記載のポリペプチド及び医学的に許容し得る担体を含む、医薬組成物。
〔33〕医薬用組成物が、前記〔25〕から〔31〕のいずれかに記載のポリペプチドの抗原結合ドメインと結合する血漿中の抗原であって、当該抗原の血漿中からの消失を促進するための、前記〔32〕に記載の医薬組成物。
〔34〕前記〔25〕から〔31〕のいずれかに記載のポリペプチドの抗原結合ドメインと結合する血漿中の抗原であって、当該抗原の血漿中からの消失を促進するための該ポリペプチドの使用。
〔35〕Fc領域を含むポリペプチドにおいて、Fc領域のEUナンバリング238番目のアミノ酸、並びに、Fc領域のEUナンバリング235番目のアミノ酸、237番目のアミノ酸、241番目のアミノ酸、268番目のアミノ酸、295番目のアミノ酸、296番目のアミノ酸、298番目のアミノ酸、323番目のアミノ酸、324番目のアミノ酸及び330番目のアミノ酸から選ばれる少なくとも1つのアミノ酸を他のアミノ酸に改変することによる、該ポリペプチドのFcγRIIbに対する結合活性が維持されつつ、すべての活性型FcγRに対する結合を低減する方法。
〔36〕Fc領域のアミノ酸の改変が、EUナンバリング238番目のアミノ酸のAspへの置換、235番目のアミノ酸のPheへの置換、 237番目のアミノ酸のGlnへの置換、241番目のアミノ酸のMet又はLeuへの置換、268番目のアミノ酸のProへの置換、295番目のアミノ酸のMet又はValへの置換、296番目のアミノ酸のGlu、His、Asn又はAspへの置換、298番目のアミノ酸のAla又はMetへの置換、323番目のアミノ酸のIleへの置換、324番目のアミノ酸のAsn又はHisへの置換、330番目のアミノ酸のHis又はTyrへの置換である、前記〔35〕に記載の方法。
〔37〕Fc領域のEUナンバリング238番目のアミノ酸、並びに、Fc領域のEUナンバリング235番目のアミノ酸、237番目のアミノ酸、241番目のアミノ酸、268番目のアミノ酸、295番目のアミノ酸、296番目のアミノ酸、298番目のアミノ酸、323番目のアミノ酸、324番目のアミノ酸及び330番目のアミノ酸から選ばれる少なくとも1つのアミノ酸を他のアミノ酸に改変することによる、改変前と比較してFcγRIIbに対する結合活性が維持されつつ、すべての活性型FcγRに対する結合が低減しているFc領域改変体を含むポリペプチドの製造方法。
〔38〕Fc領域のアミノ酸の改変が、EUナンバリング238番目のアミノ酸のAspへの置換、235番目のアミノ酸のPheへの置換、 237番目のアミノ酸のGlnへの置換、241番目のアミノ酸のMet又はLeuへの置換、268番目のアミノ酸のProへの置換、295番目のアミノ酸のMet又はValへの置換、296番目のアミノ酸のGlu、His、Asn又はAspへの置換、298番目のアミノ酸のAla又はMetへの置換、323番目のアミノ酸のIleへの置換、324番目のアミノ酸のAsn又はHisへの置換、330番目のアミノ酸のHis又はTyrへの置換である、前記〔37〕に記載の方法。
〔39〕Fc領域を含むポリペプチドにおいて、FcγRIIbに対する結合活性が天然型IgGのFc領域と比較して2倍以上となるアミノ酸改変と、全てのFcγRに対する結合活性を低減させるアミノ酸改変とを組み合わせて導入することによる、天然型IgGと比較して、FcγRIIbに対する結合活性を同程度に維持しつつ、すべての活性型FcγRに対する結合活性を低減する方法。
〔40〕FcγRIIbに対する結合活性が天然型IgGのFc領域と比較して2倍以上となるアミノ酸改変が表11に記載のアミノ酸改変である、前記〔39〕に記載の方法。
〔41〕全てのFcγRに対する結合活性を低減させるアミノ酸改変が、Fc領域のEUナンバリング234番目のアミノ酸、235番目のアミノ酸、236番目のアミノ酸、237番目のアミノ酸、239番目のアミノ酸、265番目のアミノ酸、267番目のアミノ酸及び297番目のアミノ酸から選ばれる少なくとも1つのアミノ酸の他のアミノ酸への改変である、前記〔39〕または〔40〕に記載の方法。
〔42〕Fc領域のアミノ酸の改変が、EUナンバリング234番目のアミノ酸のAla、His、Asn、Lys又はArgへの置換、235番目のアミノ酸のAlaへの置換、236番目のアミノ酸のGlnへの置換、237番目のアミノ酸のArg又はLysへの置換、239番目のアミノ酸のLysへの置換、265番目のアミノ酸のLys、Asn、Arg、Ser又はValへの置換、267番目のアミノ酸のLys、Arg又はTyrへの置換、297番目のアミノ酸のAlaへの置換である、前記〔39〕から〔41〕のいずれかに記載の方法。
〔43〕FcγRIIbに対する結合活性が、天然型IgGのFc領域の結合量の少なくとも80%を維持し、FcγRIIaRに対する結合活性が、天然型IgGのFc領域の結合量の30%以下に低減する、前記〔35〕、〔36〕、および〔39〕から〔42〕のいずれかに記載の方法。
〔44〕天然型IgGのFc領域を含むポリペプチドのFcγRIIbに対する結合活性と比較した相対的な結合活性の比が少なくとも0.75を維持し、すべての活性型FcγRに対する結合活性の比が0.2以下に低減する、前記〔35〕、〔36〕、および〔39〕から〔43〕のいずれかに記載の方法。
〔45〕更に、天然型IgGのFc領域を含むポリペプチドのFcγRIIa Rに対する結合活性と比較した相対的な結合活性の比が0.05以下に低減する、前記〔44〕に記載の方法。
〔46〕FcγRIIbに対する結合活性が天然型IgGのFc領域と比較して2倍以上となるアミノ酸改変と、全てのFcγRに対する結合活性を低減させるアミノ酸改変とを組み合わせて導入することによる、天然型IgG と比較して、FcγRIIbに対する結合活性を同程度に維持しつつ、すべての活性型FcγRに対する結合活性が低減しているFc領域改変体を含むポリペプチドの製造方法。
〔47〕FcγRIIbに対する結合活性が天然型IgGのFc領域と比較して2倍以上となるアミノ酸改変が表11に記載のアミノ酸改変である、前記〔46〕に記載の方法。
〔48〕全てのFcγRに対する結合活性を低減させるアミノ酸改変が、Fc領域のEUナンバリング234番目のアミノ酸、235番目のアミノ酸、236番目のアミノ酸、237番目のアミノ酸、239番目のアミノ酸、265番目のアミノ酸、267番目のアミノ酸及び297番目のアミノ酸から選ばれる少なくとも1つのアミノ酸の他のアミノ酸への改変である、前記〔46〕または〔47〕に記載の方法。
〔49〕Fc領域のアミノ酸の改変が、EUナンバリング234番目のアミノ酸のAla、His、Asn、Lys又はArgへの置換、235番目のアミノ酸のAlaへの置換、236番目のアミノ酸のGlnへの置換、237番目のアミノ酸のArg又はLysへの置換、239番目のアミノ酸のLysへの置換、265番目のアミノ酸のLys、Asn、Arg、Ser又はValへの置換、267番目のアミノ酸のLys、Arg又はTyrへの置換、297番目のアミノ酸のAlaへの置換である、前記〔46〕から〔48〕のいずれかに記載の方法。
〔50〕FcγRIIbに対する結合活性が、天然型IgGのFc領域の結合量の少なくとも80%を維持し、すべての活性型FcγRに対する結合活性が、天然型IgGのFc領域の結合量の30%以下に低減する、前記〔37〕、〔38〕、および〔46〕から〔49〕のいずれかに記載の方法。
〔51〕天然型IgGのFc領域を含むポリペプチドのFcγRIIb に対する結合活性と比較した相対的な結合活性の比が少なくとも0.75を維持し、すべての活性型FcγRに対する結合活性の比が0.2以下に低減する、前記〔37〕、〔38〕、および〔46〕から〔50〕のいずれかに記載の方法。
〔52〕更に、天然型IgGのFc領域を含むポリペプチドのFcγRIIa R に対する結合活性と比較した相対的な結合活性の比が0.1以下に低減する、前記〔51〕に記載の方法。
〔53〕更に、補体への結合を減少させる改変を組み合わせて導入する、前記〔37〕、〔38〕、および〔46〕から〔52〕のいずれかに記載の方法。
〔54〕補体への結合を減少させる改変が、Fc領域のEUナンバリング322番目のアミノ酸改変、又は、Fc領域のEUナンバリング327番目、330番目及び331番目のアミノ酸改変である、前記〔53〕に記載の方法。
〔55〕補体への結合を減少させる改変が、Fc領域のEUナンバリング322番目のアミノ酸のAla又はGluへの置換、若しくは、Fc領域のEUナンバリング327番目のアミノ酸のGlyへの置換、330番目のアミノ酸のSerへの置換及び331番目のアミノ酸のSerへの置換である、前記〔53〕に記載の方法。
〔56〕Fc領域を含むポリペプチドにおいて、Fc領域のEUナンバリング238番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸、若しくは、更に、Fc領域のEUナンバリング233番目のアミノ酸、237番目のアミノ酸、264番目のアミノ酸、267番目のアミノ酸、及び268番目のアミノ酸から選ばれる少なくとも1つのアミノ酸を他のアミノ酸に改変することによる、該ポリペプチドのFcγRIIbに対する結合活性が維持されつつ、すべての活性型FcγRに対する結合を低減する方法。
〔57〕Fc領域のアミノ酸の改変が、Fc領域のEUナンバリング238番目のアミノ酸のAspへの置換、271番目のアミノ酸のGlyへの置換、327番目のアミノ酸のGlyへの置換、330番目のアミノ酸のSerへの置換、331番目のアミノ酸のSer置換、233番目のアミノ酸のAspへの置換、237番目のアミノ酸のAspへの置換、264番目のアミノ酸のIleへの置換、267番目のアミノ酸のAlaへの置換、268番目のアミノ酸のAsp又はGluへの置換である、前記〔56〕に記載の方法。
〔58〕Fc領域を含むポリペプチドにおいて、Fc領域のEUナンバリング238番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸、若しくは、更に、Fc領域のEUナンバリング233番目のアミノ酸、237番目のアミノ酸、264番目のアミノ酸、267番目のアミノ酸、及び268番目のアミノ酸から選ばれる少なくとも1つのアミノ酸を他のアミノ酸に改変することによる、改変前と比較してFcγRIIbに対する結合活性が維持され、すべての活性型FcγRに対する結合が低減しつつ、かつ、補体への結合が低減しているFc領域改変体を含むポリペプチドの製造方法。
〔59〕Fc領域のアミノ酸の改変が、Fc領域のEUナンバリング238番目のアミノ酸のAspへの置換、271番目のアミノ酸のGlyへの置換、327番目のアミノ酸のGlyへの置換、330番目のアミノ酸のSerへの置換、331番目のアミノ酸のSer置換、233番目のアミノ酸のAspへの置換、237番目のアミノ酸のAspへの置換、264番目のアミノ酸のIleへの置換、267番目のアミノ酸のAlaへの置換、268番目のアミノ酸のAsp又はGluへの置換である、前記〔58〕に記載の方法。
 また本発明は、本発明のFc領域のアミノ酸改変を導入することによる、該Fc領域のFcγRIIbに対する結合活性を維持しつつ、かつ、すべての活性型FcγRに対する結合活性、特にFcγRIIa(R型)に対する結合活性を低減させる方法に関する。また、本発明のFc領域のアミノ酸改変を導入することによる、該Fc領域を含むポリペプチドに対する抗体の産生を抑制する方法に関する。
 さらに本発明は、本発明のFc領域のアミノ酸改変が導入されたFc領域改変体、及び、血漿中に可溶型で存在し病因となる抗原に対して結合活性を有し、イオン濃度の条件によって当該抗原に対する結合活性が変化する抗原結合ドメインを含むポリペプチドによる、血漿中の当該抗原の消失を促進する方法に関する。また、本発明のFc領域のアミノ酸改変が導入されたFc領域改変体、及び、血漿中に可溶型で存在し病因となる抗原に対して結合活性を有し、イオン濃度の条件によって当該抗原に対する結合活性が変化する抗原結合ドメインを含むポリペプチドの、血漿中の当該抗原の消失を促進させるための使用に関する。
 また、本発明は、本発明のポリペプチドを含む免疫炎症性疾患の治療又は予防剤に関する。また、本発明のポリペプチドを対象へ投与する工程を含む、免疫炎症性疾患の治療方法または予防方法に関する。また本発明は、本発明のポリペプチドを含む、本発明の免疫炎症性疾患の治療方法または予防方法に用いるためのキットに関する。また本発明は、本発明のポリペプチドの、免疫炎症性疾患の治療剤または予防剤の製造における使用に関する。また本発明は、本発明の免疫炎症性疾患の治療方法または予防方法に使用するための、本発明のポリペプチドに関する。
 また、本発明は、本発明のポリペプチドを含む、B細胞、マスト細胞、樹状細胞および/または好塩基球の活性化抑制剤に関する。また、本発明のポリペプチドを対象へ投与する工程を含む、B細胞、マスト細胞、樹状細胞および/または好塩基球の活性化抑制方法に関する。また本発明は、本発明のポリペプチドを含む、本発明のB細胞、マスト細胞、樹状細胞および/または好塩基球の活性化抑制方法に用いるためのキットに関する。また本発明は、本発明のポリペプチドの、B細胞、マスト細胞、樹状細胞および/または好塩基球の活性化抑制剤の製造における使用に関する。また本発明は、本発明のB細胞、マスト細胞、樹状細胞および/または好塩基球の活性化抑制方法に使用するための、本発明のポリペプチドに関する。
 また、本発明は、本発明のポリペプチドを含む生体に必要なタンパク質を欠損する疾患の治療剤に関する。また、本発明のポリペプチドを対象へ投与する工程を含む、生体に必要なタンパク質を欠損する疾患の治療方法に関する。また本発明は、本発明のポリペプチドを含む、本発明の生体に必要なタンパク質を欠損する疾患の治療方法に用いるためのキットに関する。また本発明は、本発明のポリペプチドの、生体に必要なタンパク質を欠損する疾患の治療剤の製造における使用に関する。また本発明は、本発明の生体に必要なタンパク質を欠損する疾患の治療方法に使用するための、本発明のポリペプチドに関する。
 また、本発明は、本発明のポリペプチドを含む、ウィルスの増殖抑制剤に関する。また、本発明のポリペプチドを対象へ投与する工程を含む、ウィルスの増殖抑制方法に関する。また本発明は、本発明のポリペプチドを含む、本発明のウィルスの増殖抑制方法に用いるためのキットに関する。また本発明は、本発明のポリペプチドの、ウィルスの増殖抑制剤の製造における使用に関する。また本発明は、本発明のウィルスの増殖抑制方法に使用するための、本発明のポリペプチドに関する。
 本発明によって、天然型IgGのFc領域と比較して、FcγRIIbに対する結合活性を維持しつつ、且つ、すべての活性型FcγRに対する結合活性、特にFcγRIIa(R型)に対する結合活性が低減したFc領域改変体が提供された。該Fc領域改変体を含むポリペプチドを用いることにより、FcγRIIb を介した免疫複合体を消失させる性質が天然型IgGと同程度に維持された状態で、FcγRIIbのITIMのリン酸化を介した炎症性免疫反応の抑制性シグナルを増強することが可能となる。また、FcγRIIbに選択的に結合する性質をFc領域に付与することにより、抗抗体の産生の抑制が可能となる可能性がある。また、活性型FcγRに対する結合を低減することにより、血小板上のFcγRIIaと免疫複合体の相互作用を介した血小板の活性化、活性型FcγRの架橋による樹状細胞の活性化を回避することが可能となる。
ヒトIgEとpH依存的抗IgE抗体であるクローン278がpH依存的に大きな免疫複合体を形成することを確認したゲルろ過クロマトグラフィー分析の結果を示す図である。 ヒトIgE単独投与群、ヒトIgE+クローン278抗体投与群、および、ヒトIgE+クローン278抗体投与群のノーマルマウス血漿中ヒトIgEの濃度推移を示す図である。 ヒトIgE+クローン278投与群およびヒトIgE+Xolair抗体投与群のノーマルマウス血漿中抗体濃度推移を示す図である。 ヒトIgE単独投与群、ヒトIgE+278-IgG1抗体投与群、および、ヒトIgE+278-F760抗体投与群のノーマルマウス血漿中ヒトIgEの濃度推移を示す図である。 ヒトIgE+278-IgG1抗体投与群、および、ヒトIgE+278-F760抗体投与群のノーマルマウス抗体濃度推移を示す図である。 Fc改変体によるDCの活性化をIL-8の発現量を指標にして評価した結果の図である。 Fc改変体を加えた際の洗浄血小板膜表面のCD62p (p-selectin)の発現を確認した図である。実線は5c8-F648を添加しADP刺激を加えた場合、塗りつぶしは5c8-P600を添加しADP刺激を加えた場合を表す。 Fc改変体を加えた際の洗浄血小板膜表面の活性型インテグリン(PAC-1)の発現を確認した図である。実線は5c8-F648を添加しADP刺激を加えた場合、塗りつぶしは5c8-P600を添加しADP刺激を加えた場合を表す。 pH依存的結合抗体が繰り返し可溶型抗原に結合することを示す図である。(i) 抗体が可溶型抗原と結合する、(ii) 非特異的に、ピノサイトーシスにより細胞内へ取り込まれる、(iii) エンドソーム内で抗体はFcRnと結合し、可溶型抗原は抗体から解離する、(iv) 可溶型抗原はライソソームに移行し分解される、(v) 可溶型抗原が解離した抗体はFcRnにより血漿中にリサイクルされる、(vi) リサイクルされた抗体は、再び可溶型抗原へ結合することが可能となる。 中性条件下でFcRnへの結合を増強することによって、pH依存的結合抗体が抗原に繰り返し結合できる効果をさらに向上させることを示す図である。(i) 抗体が可溶型抗原と結合する、(ii) FcRnを介して、ピノサイトーシスにより細胞内へ取り込まれる、(iii) エンドソーム内で可溶型抗原は抗体から解離する、(iv) 可溶型抗原はライソソームに移行し分解される、(v) 可溶型抗原が解離した抗体はFcRnにより血漿中にリサイクルされる、(vi) リサイクルされた抗体は、再び可溶型抗原へ結合することが可能となる。 Biacoreを用いた抗ヒトIgA抗体のpH7.4およびpH5.8、Ca2+1.2 mM およびCa2+ 3μM におけるヒトIgAへの相互作用を示すセンサーグラムを示す図である。 ノーマルマウスにおけるGA2-IgG1およびGA2-F1087の血漿中抗体濃度推移を示した図である。 hIgA単独、GA2-IgG1およびGA2-F1087が投与されたノーマルマウスにおける血漿中hIgA濃度推移を示した図である。 Fv4-mIgG1、マウスFcγRIIb、マウスFcγRIIIに対する結合が増強されたFv4-mIgG1の改変体であるFv4-mIgG1-mF44、および更にマウスFcγRIIb、マウスFcγRIIIに対する結合が増強されたFv4-mIgG1の改変体であるFv4-mIgG1-mF46が、ノーマルマウスに投与されたときの当該マウスの血漿中のヒトIL-6レセプター濃度推移を示す図である。 Fv4-mIgG1、マウスFcγRIIb、マウスFcγRIIIに対する結合が増強されたFv4-mIgG1の改変体であるFv4-mIgG1-mF44、および更にマウスFcγRIIb、マウスFcγRIIIに対する結合が増強されたFv4-mIgG1の改変体であるFv4-mIgG1-mF46が、FcγRIII欠損マウスに投与されたときの当該マウスの血漿中のヒトIL-6レセプター濃度推移を示す図である。 Fv4-mIgG1、マウスFcγRIIb、マウスFcγRIIIに対する結合が増強されたFv4-mIgG1の改変体であるFv4-mIgG1-mF44、および更にマウスFcγRIIb、マウスFcγRIIIに対する結合が増強されたFv4-mIgG1の改変体であるFv4-mIgG1-mF46が、Fc受容体γ鎖欠損マウスに投与されたときの当該マウスの血漿中のヒトIL-6レセプター濃度推移を示す図である。 Fv4-mIgG1、マウスFcγRIIb、マウスFcγRIIIに対する結合が増強されたFv4-mIgG1の改変体であるFv4-mIgG1-mF44、および更にマウスFcγRIIb、マウスFcγRIIIに対する結合が増強されたFv4-mIgG1の改変体であるFv4-mIgG1-mF46が、FcγRIIb欠損マウスに投与されたときの当該マウスの血漿中のヒトIL-6レセプター濃度推移を示す図である。 IgG1、IgG2、IgG3及びIgG4の定常領域を構成するアミノ酸残基と、EUナンバリング(本明細書においてEU INDEXとも呼ばれる)との関係を表す図である。 単量体抗原に存在する2つ以上のエピトープを認識し大きな免疫複合体を形成するのに適切なmultispecific pH/Ca依存性抗体の、抗体1分子あたりの抗原を消失させる効率を例示する図である。
 本発明は、天然型IgG抗体のFc領域を含むポリペプチドと比較した場合に、FcγRIIbに対する結合活性は維持されているが、すべての活性型FcγRに対する結合活性、中でもFcγRIIa(R型)に対する結合活性を低減させることが可能なFc領域改変体、当該Fc領域改変体を含むポリペプチドを提供する。
 より具体的には、EUナンバリング238番目のアミノ酸改変と、他の特定のアミノ酸改変が組み合わされているアミノ酸配列を含むFc領域改変体、及び、当該Fc領域改変体を含むポリペプチドを提供する。さらに本発明は、Fc領域に該アミノ酸改変を導入することで、天然型IgG抗体のFc領域を含むポリペプチドと比較して、FcγRIIbに対する結合活性を維持しつつ、すべての活性型FcγRに対する結合活性、中でもFcγRIIa(R型)に対する結合活性を低減する方法、及び、Fc領域に該アミノ酸改変を導入することで、天然型IgG抗体のFc領域を含むポリペプチドと比較して、FcγRIIbに対する結合活性を維持しつつ、すべての活性型FcγRに対する結合活性、中でもFcγRIIa(R型)に対する結合活性が低減されたFc領域改変体を含むポリペプチドの製造方法を提供する。またFc領域に該アミノ酸改変が導入されたFc領域改変体、及び、血漿中に可溶型で存在し病因となる抗原に対して結合活性を有し、イオン濃度の条件によって当該抗原に対する結合活性が変化する抗原結合ドメインを含むポリペプチド、当該ポリペプチドによる、血漿中の当該抗原の消失を促進する方法を提供する。
 本発明における「ポリペプチド」とは、通常、10アミノ酸程度以上の長さを有するペプチド、およびタンパク質を指す。また、通常、生物由来のポリペプチドであるが、特に限定されず、例えば、人工的に設計された配列からなるポリペプチドであってもよい。また、天然ポリペプチド、あるいは合成ポリペプチド、組換えポリペプチド等のいずれであってもよい。
 本発明のポリペプチドの好ましい例として、抗体を挙げることができる。更に好ましい例として、天然型IgG、特に天然型ヒトIgGを挙げることができる。天然型IgGとは、天然に見出されるIgGと同一のアミノ酸配列を包含し、免疫グロブリンガンマ遺伝子により実質的にコードされる抗体のクラスに属するポリペプチドを意味する。例えば天然型ヒトIgGとは天然型ヒトIgG1、天然型ヒトIgG2、天然型ヒトIgG3、天然型ヒトIgG4などを意味する。天然型IgGにはそれから自然に生じる変異体等も含まれる。
 抗体の軽鎖定常領域にはIgK(Kappa、κ鎖)、IgL1、IgL2、IgL3、IgL6、IgL7 (Lambda、λ鎖)タイプの定常領域が存在しているが、いずれの軽鎖定常領域であってもよい。ヒトIgK(Kappa)定常領域とヒトIgL7 (Lambda)定常領域としては、遺伝子多型による複数のアロタイプ配列がSequences of proteins of immunological interest, NIH Publication No.91-3242に記載されているが、本発明においてはそのいずれであっても良い。さらに、本発明において軽鎖定常領域は、アミノ酸の置換、付加、欠損、挿入および/または修飾などの改変が行われた軽鎖定常領域であってもよい。抗体のFc領域としては、例えばIgA1、IgA2、IgD、IgE、IgG1、IgG2、IgG3、IgG4、IgMタイプのFc領域が存在している。本発明の抗体のFc領域は、例えばヒトIgG抗体のFc領域を用いることができ、好ましくはヒトIgG1抗体のFc領域である。本発明のFc領域として、例えば、天然型IgGの定常領域、具体的には、天然型ヒトIgG1を起源とする定常領域(配列番号:31)、天然型ヒトIgG2を起源とする定常領域(配列番号:32)、天然型ヒトIgG3を起源とする定常領域(配列番号:33)、天然型ヒトIgG4を起源とする定常領域(配列番号:34)由来のFc領域を用いることができる。図18には天然型IgG1、IgG2、IgG3、IgG4の定常領域の配列を示す。天然型IgGの定常領域にはそれから自然に生じる変異体等も含まれる。ヒトIgG1、ヒトIgG2、ヒトIgG3、ヒトIgG4抗体の定常領域としては、遺伝子多型による複数のアロタイプ配列がSequences of proteins of immunological interest, NIH Publication No.91-3242に記載されているが、本発明においてはそのいずれであっても良い。特にヒトIgG1の配列としては、EUナンバリング356-358番目のアミノ酸配列がDELであってもEEMであってもよい。
 Fcγ受容体(本明細書ではFcγレセプター、FcγRまたはFcgRと記載することがある)とは、IgG1、IgG2、IgG3、IgG4モノクローナル抗体のFc領域に結合し得る受容体をいい、実質的にFcγ受容体遺伝子にコードされるタンパク質のファミリーのいかなるメンバーをも意味する。ヒトでは、このファミリーには、アイソフォームFcγRIa、FcγRIbおよびFcγRIcを含むFcγRI(CD64);アイソフォームFcγRIIa(アロタイプH131(H型)およびR131(R型)を含む)、FcγRIIb(FcγRIIb-1およびFcγRIIb-2を含む)およびFcγRIIcを含むFcγRII(CD32);およびアイソフォームFcγRIIIa(アロタイプV158およびF158を含む)およびFcγRIIIb(アロタイプFcγRIIIb-NA1およびFcγRIIIb-NA2を含む)を含むFcγRIII(CD16)、並びにいかなる未発見のヒトFcγR類またはFcγRアイソフォームまたはアロタイプも含まれるが、これらに限定されるものではない。また、ヒトFcγRIIbにはスプライシングバリアントとしてFcγRIIb1とFcγRIIb2とが報告されている。また、それ以外にもFcγRIIb3というスプライシングバリアントも報告されている(J. Exp. Med, 1989, 170: 1369)。ヒトFcγRIIbにはこれのスプライシングバリアント、加えて、NCBIに登録されているNP_001002273.1、NP_001002274.1、NP_001002275.1、NP_001177757.1、NP_003992.3のスプライシングバリアントを全て含む。また、ヒトFcγRIIbには既存の報告されたあらゆる遺伝子多型を含み、FcγRIIb(Arthritis Rheum, 2003, 48: 3242-52, Hum Mol Genet, 2005, 14: 2881-92、Arthritis Rheum. 2002 May;46(5):1242-54.)も含まれ、また今後報告されるあらゆる遺伝子多型も含まれる。
FcγRは、ヒト、マウス、ラット、ウサギおよびサル由来のものが含まれるが、これらに限定されず、いかなる生物由来でもよい。マウスFcγR類には、FcγRI(CD64)、FcγRII(CD32)、FcγRIII(CD16)およびFcγRIII-2(CD16-2)、並びにいかなる未発見のマウスFcγR類またはFcγRアイソフォームまたはアロタイプも含まれるが、これらに限定されない。こうしたFcγ受容体の好適な例としてはヒトFcγRI(CD64)、FcγRIIA(CD32)、FcγRIIB(CD32)、FcγRIIIA(CD16)及び/又はFcγRIIIB(CD16)が挙げられる。
 FcγRIのポリヌクレオチド配列及びアミノ酸配列は、それぞれ配列番号:35(NM_000566.3)及び36(NP_000557.1)に、
FcγRIIAのポリヌクレオチド配列及びアミノ酸配列は、それぞれ配列番号:37(BC020823.1)及び38(AAH20823.1)に、
FcγRIIBのポリヌクレオチド配列及びアミノ酸配列は、それぞれ配列番号:39(BC146678.1)及び40(AAI46679.1)に、
FcγRIIIAのポリヌクレオチド配列及びアミノ酸配列は、それぞれ配列番号:41(BC033678.1)及び42(AAH33678.1)に、及び
FcγRIIIBのポリヌクレオチド配列及びアミノ酸配列は、それぞれ配列番号:43(BC128562.1)及び44(AAI28563.1)に記載されている(カッコ内はRefSeq登録番号を示す)。
 尚、FcγRIIaには、FcγRIIaの131番目のアミノ酸がヒスチジン(H型)あるいはアルギニン(R型)に置換された2種類の遺伝子多型が存在する(J. Exp. Med, 172, 19-25, 1990)。
 FcγRIa、FcγRIbおよびFcγRIcを含むFcγRI(CD64)ならびにアイソフォームFcγRIIIa(アロタイプV158およびF158を含む)を含むFcγRIII(CD16)は、IgGのFc部分と結合するα鎖と細胞内に活性化シグナルを伝達するITAMを有する共通γ鎖が会合する。FcγRIIIb(アロタイプFcγRIIIb-NA1およびFcγRIIIb-NA2を含む)はGPIアンカータンパク質である。一方、アイソフォームFcγRIIa(アロタイプH131およびR131を含む)およびFcγRIIcを含むFcγRII(CD32)の自身の細胞質ドメインにはITAMが含まれている。これらのレセプターは、マクロファージやマスト細胞、抗原提示細胞等の多くの免疫細胞に発現している。これらのレセプターがIgGのFc部分に結合することによって伝達される活性化シグナルによって、マクロファージの貪食能や炎症性サイトカインの産生、マスト細胞の脱顆粒、抗原提示細胞の機能亢進が促進される。上記のように活性化シグナルを伝達する能力を有するFcγレセプターは、本発明においても活性型Fcγレセプターと呼ばれる。
 一方、FcγRIIb(FcγRIIb-1およびFcγRIIb-2を含む)の自身の細胞質内ドメインには抑制型シグナルを伝達するITIMが含まれている。B細胞ではFcγRIIbとB細胞レセプター(BCR)との架橋によってBCRからの活性化シグナルが抑制される結果BCRの抗体産生が抑制される。マクロファージでは、FcγRIIIとFcγRIIbとの架橋によって貪食能や炎症性サイトカインの産生能が抑制される。上記のように抑制化シグナルを伝達する能力を有するFcγレセプターは、本発明においても抑制型Fcγレセプターと呼ばれる。
 本発明において「Fc領域改変体」は、本発明のアミノ酸改変が導入されていないFc領域に、本発明の少なくとも1つのアミノ酸が他のアミノ酸に改変されているFc領域を意味する。ここで「少なくとも1つのアミノ酸が他のアミノ酸に改変されている」ことには、当該アミノ酸改変が導入されたFc領域及びそれと同一のアミノ酸配列からなるFc領域が含まれる。
 天然型IgGとは天然に見出されるIgGと同一のアミノ酸配列を包含し、免疫グロブリンガンマ遺伝子により実質的にコードされる抗体のクラスに属するポリペプチドを意味する。例えば天然型ヒトIgGとは天然型ヒトIgG1、天然型ヒトIgG2、天然型ヒトIgG3、天然型ヒトIgG4などを意味する。天然型IgGにはそれから自然に生じる変異体、FcγRに対する結合活性に実質的な影響を与えない改変が導入されたIgG等も含まれる。
 天然型IgGのFc領域とは、天然に見出されるIgGを起源とするFc領域と同一のアミノ酸配列を包含するFc領域を意味する。天然型IgGの重鎖定常領域は図18(配列番号:31~34)に示しているが、例えば図18の天然型ヒトIgG1を起源とする重鎖定常領域中のFc領域、天然型ヒトIgG2を起源とする重鎖定常領域中のFc領域、天然型ヒトIgG3を起源とする重鎖定常領域中のFc領域、天然型ヒトIgG4を起源とする重鎖定常領域中のFc領域を意味する。天然型IgGのFc領域にはそれから自然に生じる変異体、FcγRに対する結合活性に実質的な影響を与えない改変が導入されたFc領域等も含まれる。
 本発明において、本発明のFc領域改変体を含むポリペプチド又はFc領域改変体が各種FcγRに対する結合活性が増強した、あるいは、結合活性が維持あるいは減少したかどうかは、例えば本実施例又は参考実施例に示されるように、表面プラズモン共鳴(SPR)現象を利用した相互作用解析機器であるBIACOREを用いて、抗体をセンサーチップ上に固定化あるいはProteinA、ProteinL、ProteinA/G、ProteinG、抗lamda鎖抗体、抗kappa鎖抗体、抗原ペプチド、抗原タンパク質等でキャプチャーしたセンサーチップに対して各種FcγRをアナライトとして相互作用させたセンサーグラムの解析結果から得られる解離定数(KD)の値が低下した、あるいは増加したかどうかで判断可能である。または、センサーチップ上に固定化したあるいはProteinA、ProteinL、ProteinA/G、ProteinG、抗lamda鎖抗体、抗kappa鎖抗体、抗原ペプチド、抗原タンパク質等でキャプチャーしたセンサーチップ上の抗体に対して、各種FcγRをアナライトとして相互作用させた前後でのセンサーグラム上のレゾナンスユニット(RU)値の変化量を、センサーチップに抗体を固定化又はキャプチャーさせた前後でのレゾナンスユニット(RU)の変化量で割った値が低下した、あるいは増加したかどうかでも判断可能である。また、FcγRをセンサーチップに直接固定化した、あるいは抗タグ抗体などを介して固定化したセンサーチップを使って、評価したい抗体等の試料をアナライトとして相互作用させたセンサーグラムの解析から得られる解離定数(KD)の値が低下した、あるいは増加したかどうかで判断可能である。または、FcγRをセンサーチップに直接固定化した、あるいは抗タグ抗体などを介して固定化したセンサーチップに対して評価したい抗体等の試料をアナライトとして相互作用させた前後でのセンサーグラムの値の変化量が低下した、あるいは増加したかどうかでも判断可能である。
 具体的には、Fc領域改変体のFcγ受容体に対する結合活性はELISAやFACS(fluorescence activated cell sorting)の他、ALPHAスクリーン(Amplified Luminescent Proximity Homogeneous Assay)や表面プラズモン共鳴(SPR)現象を利用したBIACORE法等によって測定することができる(Proc.Natl.Acad.Sci.USA (2006) 103 (11), 4005-4010)。
 ALPHAスクリーンは、ドナーとアクセプターの2つのビーズを使用するALPHAテクノロジーによって下記の原理に基づいて実施される。ドナービーズに結合した分子が、アクセプタービーズに結合した分子と生物学的に相互作用し、2つのビーズが近接した状態の時にのみ、発光シグナルが検出される。レーザーによって励起されたドナービーズ内のフォトセンシタイザーは、周辺の酸素を励起状態の一重項酸素に変換する。一重項酸素はドナービーズ周辺に拡散し、近接しているアクセプタービーズに到達するとビーズ内の化学発光反応を引き起こし、最終的に光が放出される。ドナービーズに結合した分子とアクセプタービーズに結合した分子が相互作用しないときは、ドナービーズの産生する一重項酸素がアクセプタービーズに到達しないため、化学発光反応は起きない。
 例えば、ドナービーズにビオチン標識されたポリペプチド会合体が結合され、アクセプタービーズにはグルタチオンSトランスフェラーゼ(GST)でタグ化されたFcγ受容体が結合される。競合するFc領域改変体を含むポリペプチド会合体の非存在下では、野生型Fc領域を含むポリペプチド会合体とFcγ受容体とは相互作用し520-620 nmのシグナルを生ずる。タグ化されていない変異Fc領域を含むポリペプチド会合体は、野生型Fc領域を含むポリペプチド会合体とFcγ受容体間の相互作用と競合する。競合の結果表れる蛍光の減少を定量することによって相対的な結合活性が決定され得る。抗体等のポリペプチド会合体をSulfo-NHS-ビオチン等を用いてビオチン化することは公知である。Fcγ受容体をGSTでタグ化する方法としては、Fcγ受容体をコードするポリヌクレオチドとGSTをコードするポリヌクレオチドをインフレームで融合した融合遺伝子を発現可能なベクターに保持した細胞等において発現し、グルタチオンカラムを用いて精製する方法等が適宜採用され得る。得られたシグナルは例えばGRAPHPAD PRISM(GraphPad社、San Diego)等のソフトウエアを用いて非線形回帰解析を利用する一部位競合(one-site competition)モデルに適合させることにより好適に解析される。
 相互作用を観察する物質の一方(リガンド)をセンサーチップの金薄膜上に固定し、センサーチップの裏側から金薄膜とガラスの境界面で全反射するように光を当てると、反射光の一部に反射強度が低下した部分(SPRシグナル)が形成される。相互作用を観察する物質の他方(アナライト)をセンサーチップの表面に流しリガンドとアナライトが結合すると、固定化されているリガンド分子の質量が増加し、センサーチップ表面の溶媒の屈折率が変化する。この屈折率の変化により、SPRシグナルの位置がシフトする(逆に結合が解離するとシグナルの位置は戻る)。Biacoreシステムは上記のシフトする量、すなわちセンサーチップ表面での質量変化を縦軸にとり、質量の時間変化を測定データとして表示する(センサーグラム)。センサーグラムからセンサーチップ表面に捕捉したリガンドに対するアナライトの結合量が求められる。また、センサーグラムのカーブからカイネティクス:結合速度定数(ka)と解離速度定数(kd)が、当該定数の比から解離定数(KD)が求められる。BIACORE法では阻害測定法も好適に用いられる。阻害測定法の例はProc.Natl.Acad.Sci.USA (2006) 103 (11), 4005-4010において記載されている。
 FcγRIIbに対する結合活性が維持されたFc領域又は当該Fc領域を含むポリペプチドとは、天然型IgGのFc領域を含むポリペプチド(親Fc領域を含むポリペプチド又は親ポリペプチドともいう)と、当該Fc領域に本発明のアミノ酸改変を含むポリペプチド(Fc領域改変体を含むポリペプチド)の量を本質的に同じにしてアッセイを行った時に、親ポリペプチドと本質的に変化のない、同等の結合活性でFcγRIIbと結合するものをいう。具体的には、親Fc領域を含むポリペプチドのFcgRIIbへの結合を少なくとも55.5%維持しているFc領域改変体をいう。
 また、活性型FcγRに対する結合活性が減少、低減、あるいは減弱したFc領域又は当該Fc領域を含むポリペプチドとは、天然型IgGのFc領域を含むポリペプチド(親Fc領域を含むポリペプチド又は親ポリペプチドともいう)と、当該Fc領域に本発明のアミノ酸改変を含むポリペプチド(Fc領域改変体を含むポリペプチド)の量を本質的に同じにしてアッセイを行った時に、親Fc領域を含むポリペプチドよりも本質的により弱い結合活性で活性型FcγRと結合するFc領域改変体又は当該Fc領域改変体を含むポリペプチドをいう。
 本発明のFc領域改変体が、天然型IgGのFc領域のFcγRIIbに対する結合活性を維持しているかどうかは、例えば、上記例に従って求めた、本発明のFc領域改変体を含むポリペプチドのFcγRIIbに対するKD値と天然型IgGのFc領域を含むポリぺプチドのFcγRIIbに対するKD値とを比較することによって判断することが可能である。具体的には、親Fc領域を含むポリペプチドに比べて本発明のFc領域改変体を含むポリペプチドのKD値が同等かそれ以下の値である場合、本発明のFc領域改変体を含むポリペプチドは、親Fc領域改変体を含むポリペプチドに比べて、FcγRIIbに対する結合活性を維持したと判断することができる。また、本発明のFc領域改変体が、天然型IgGのFc領域の活性型FcγRに対する結合活性より減少しているかどうかについても、例えば、同様に、上記例に従って求めた、本発明のFc領域改変体を含むポリペプチドの活性型FcγRに対するKD値と天然型IgGのFc領域を含むポリぺプチドの活性型FcγRに対するKD値とを比較することによって判断することが可能である。具体的には、親Fc領域を含むポリペプチドに比べて本発明のFc領域改変体を含むポリペプチドのKD値が増大している場合、本発明のFc領域改変体を含むポリペプチドは、親Fc領域改変体を含むポリペプチドに比べて、活性型FcγRに対する結合活性が減少したと判断することができる。特にFcγRIIa(R型)に対する結合活性は、他の活性型FcγRに対するものよりも、FcγRIIbに対する結合活性と相関しやすいため、FcγRIIbに対する結合活性を維持しつつ、FcγRIIa(R型)に対する結合活性を減少できるアミノ酸改変を見出すことが、FcγRIIb以外の他の活性型FcγRに対する結合活性を選択的に減少させる上で最も困難な課題である。
 FcγRIIbに対する結合活性が同等、あるいは維持されているとは、例えば、上記の測定法で測定したKD値において、〔親Fc領域を含むポリペプチドのFcγRIIbに対するKD値〕/〔Fc領域改変体を含むポリペプチドのFcγRIIbに対するKD値〕のKD値比が、好ましくは少なくとも0.75、より好ましくは、少なくとも0.8、さらにより好ましくは、少なくとも0.9を有する。また、当該KD値比は5程度あれば十分であり、FcγRIIbに対する結合活性が同等、あるいは維持されているというためにはそれ以上高い必要はない。
 活性型FcγRに対する結合活性が減少、低減、あるいは減弱とは、例えば、上記の測定法で測定したKD値において、〔親Fc領域を含むポリペプチドの活性型FcγRに対するKD値〕/〔Fc領域改変体を含むポリペプチドの活性型FcγRに対するKD値〕のKD値比が、好ましくは0.2以下、より好ましくは、0.15以下、さらにより好ましくは0.1以下である。
 特に、FcγRIIaは、FcγRIIbと細胞外領域の配列が93%一致し、極めて構造が類似するため、FcγRIIbに対する結合活性を維持しつつ、結合活性を減少させることが困難なFcγRIIa Rに対する結合については、〔親Fc領域を含むポリペプチドのFcγRIIa Rに対するKD値〕/〔Fc領域改変体を含むポリペプチドのFcγRIIa Rに対するKD値〕のKD値比が 0.1以下が好ましく、0.05であることがより好ましい。
 また本発明のポリペプチドの各種FcγRに対する結合活性が維持、増強、あるいは減少したかどうかは、上記例に従って求めた各種FcγRの本発明のポリペプチドに対する結合量の増減により判断することもできる。ここで、各種FcγRのポリペプチドに対する結合量は、各ポリペプチドに対してアナライトである各種FcγRを相互作用させた前後で変化したセンサーグラムにおけるRU値の差を、センサーチップにポリペプチドを捕捉させた前後で変化したセンサーグラムにおけるRU値の差で割った値を意味する。
 また、FcγRIIbに対する選択性が向上したFc領域又は当該Fc領域を含むポリペプチドとは、あるいは活性型FcγRに対する結合活性が選択的に低減されたFc領域又は当該Fc領域を含むポリペプチドとは、FcγRIIbに対する結合活性は維持しつつも、活性型FcγRに対する結合活性が減少、低減、あるいは減弱したFc領域又は当該Fc領域を含むポリペプチドをいう。
 また本発明のFc領域改変体としては、FcγRIIbおよび活性型FcγRに対するKD値(mol/L)に特に制限はないが、例えばFcγRIIb に対する値が7.0×10-6以下であってよく、好ましくは6.0×10-6以下、より好ましくは5.0×10-6以下であり、活性型FcγRに対する値が2.5×10-9以上であってよく、好ましくは3.0×10-9以上、より好ましくは3.5×10-9以上、特にFcγRIIa(R型)に対する値が2.0×10-5以上であることが好ましい。
 「Fc領域」は、抗体分子中の、ヒンジ部若しくはその一部、CH2、CH3ドメインからなるフラグメントのことをいう。IgGクラスのFc領域は、EU ナンバリング(本明細書ではEU INDEXとも呼ばれる)(図18参照)で、例えば226番目のシステインからC末端、あるいは230番目のプロリンからC末端までを意味するが、これに限定されない。
 Fc領域は、IgG1、IgG2、IgG3、IgG4モノクローナル抗体等をペプシン等の蛋白質分解酵素にて部分消化した後に、プロテインA、プロテインGカラムに吸着された画分を再溶出することによって好適に取得され得る。かかる蛋白分解酵素としてはpH等の酵素の反応条件を適切に設定することにより制限的にFabやF(ab')2を生じるように全長抗体を消化し得るものであれば特段の限定はされず、例えば、ペプシンやパパイン等が例示できる。
 本発明は、ヒトIgG(IgG1、IgG2、IgG3、IgG4)のFc領域に対して、EUナンバリング238番目のアミノ酸の他のアミノ酸への改変と、下記の(a)~(k)のいずれかに記載のアミノ酸の他のアミノ酸への改変を組み合わせたアミノ酸改変を含むFc領域改変体を提供する。当該改変をFc領域に導入することにより、天然型IgGのFc領域を含むポリペプチドと比較して、FcγRIIbに対する結合活性を維持しつつ、すべての活性型FcγRに対する結合活性、中でもFcγRIIa(R型)に対する結合活性が減少したFc領域改変体を含むポリペプチドを提供することが可能である。
(a)Fc領域のEUナンバリング235番目のアミノ酸
(b)Fc領域のEUナンバリング237番目のアミノ酸
(c) Fc領域のEUナンバリング241番目のアミノ酸
(d) Fc領域のEUナンバリング268番目のアミノ酸
(e) Fc領域のEUナンバリング295番目のアミノ酸
(f) Fc領域のEUナンバリング296番目のアミノ酸
(g) Fc領域のEUナンバリング298番目のアミノ酸
(h) Fc領域のEUナンバリング323番目のアミノ酸
(i) Fc領域のEUナンバリング324番目のアミノ酸
(j) Fc領域のEUナンバリング330番目のアミノ酸
(k) (a)~(j)から選ばれる少なくとも2つのアミノ酸
 上記(k)で選ばれる少なくとも2つのアミノ酸の組合せとしては、天然型IgGのFc領域を含むポリペプチドと比較して、FcγRIIbに対する結合活性を維持しつつ、すべての活性型FcγRに対する結合活性に対する結合活性が減少するかぎり特に限定されないが、下記の(1)~(3)の組合せが好ましい。
(1)Fc領域のEUナンバリング241番目のアミノ酸、268番目のアミノ酸、296番目のアミノ酸及び324番目のアミノ酸
(2) Fc領域のEUナンバリング237番目のアミノ酸、241番目のアミノ酸、296番目のアミノ酸及び330番目のアミノ酸
(3) Fc領域のEUナンバリング235番目のアミノ酸、237番目のアミノ酸、241番目のアミノ酸及び296番目のアミノ酸
 改変後のアミノ酸として選択されるアミノ酸は、天然型IgGのFc領域を含むポリペプチドと比較してFcγRIIbに対する結合活性を維持しつつ、すべての活性型FcγRに対する結合活性が減少するものであれば特に限定されないが、EUナンバリング238番目のアミノ酸がAsp、235番目のアミノ酸がPhe、237番目のアミノ酸がGln又はAsp、241番目のアミノ酸がMet又はLeu、268番目のアミノ酸がPro、295番目のアミノ酸がMet又はVal、296番目のアミノ酸がGlu、His、Asn又はAsp、298番目のアミノ酸がAla又はMet、323番目のアミノ酸がIle、324番目のアミノ酸がAsn又はHis、330番目のアミノ酸がHis又はTyrであることが好ましい。また、上述の(1)から(3)で改変後のアミノ酸として選択されるアミノ酸としては、
(1)Fc領域のEUナンバリング241番目のアミノ酸がMet、268番目のアミノ酸がPro、296番目のアミノ酸がGlu及び324番目のアミノ酸がHis
(2) Fc領域のEUナンバリング237番目のアミノ酸がGln又はAsp、241番目のアミノ酸がMet、296番目のアミノ酸がGlu及び330番目のアミノ酸がHis
(3) Fc領域のEUナンバリング235番目のアミノ酸がPhe、237番目のアミノ酸がGln又はAsp、241番目のアミノ酸がMet及び296番目のアミノ酸がGlu
が好ましい。
 また、本発明は、ヒトIgGのFc領域に対して、EUナンバリング238番目のアミノ酸及び271番目のアミノ酸の他のアミノ酸への改変と、下記の(a)~(h)のいずれかに記載のアミノ酸の他のアミノ酸への改変を組み合わせたアミノ酸改変を含むFc領域改変体を提供する。当該改変をFc領域に導入することにより、天然型IgGのFc領域を含むポリペプチドと比較して、FcγRIIbに対する結合活性を維持しつつ、すべての活性型FcγRに対する結合活性、中でもFcγRIIa(R型)に対する結合活性が減少したFc領域改変体を含むポリペプチドを提供することが可能である。
(a)Fc領域のEUナンバリング234番目のアミノ酸
(b)Fc領域のEUナンバリング235番目のアミノ酸
(c)Fc領域のEUナンバリング236番目のアミノ酸
(d)Fc領域のEUナンバリング237番目のアミノ酸
(e)Fc領域のEUナンバリング239番目のアミノ酸
(f) Fc領域のEUナンバリング265番目のアミノ酸
(g) Fc領域のEUナンバリング267番目のアミノ酸
(h) Fc領域のEUナンバリング297番目のアミノ酸
 EUナンバリング238番目のアミノ酸及び271番目のアミノ酸の他のアミノ酸への改変と組みあわせるアミノ酸改変としては、上記(a)から(h)に記載のアミノ酸に加えてさらに別のアミノ酸を組み合わせることもできる。そのようなアミノ酸の組合せは、特に限定されないが、下記の(1)から(3)から選ばれる改変の組合せが好ましい。
(1) Fc領域のEUナンバリング233番目のアミノ酸、238番目のアミノ酸、264番目のアミノ酸、267番目のアミノ酸、268番目のアミノ酸及び271番目のアミノ酸
(2)Fc領域のEUナンバリング233番目のアミノ酸、237番目のアミノ酸、238番目のアミノ酸、264番目のアミノ酸、267番目のアミノ酸、268番目のアミノ酸、271番目のアミノ酸、296番目のアミノ酸、297番目のアミノ酸、330番目のアミノ酸及び396番目のアミノ酸
(3) Fc領域のEUナンバリング233番目のアミノ酸、238番目のアミノ酸、264番目のアミノ酸、267番目のアミノ酸、268番目のアミノ酸、271番目のアミノ酸及び296番目のアミノ酸
 改変後のアミノ酸として選択されるアミノ酸は、天然型IgGのFc領域を含むポリペプチドと比較してFcγRIIbに対する結合活性を維持しつつ、すべての活性型FcγRに対する結合活性が減少するものであれば特に限定されないが、EUナンバリング238番目のアミノ酸がAsp、271番目のアミノ酸がGly、234番目のアミノ酸がAla、His、Asn、Lys又はArg、235番目のアミノ酸がAla、236番目のアミノ酸がGln、237番目のアミノ酸がArg又はLys、239番目のアミノ酸がLys、265番目のアミノ酸がLys、Asn、Arg、Ser又はVal、267番目のアミノ酸がLys、Arg又はTyr、297番目のアミノ酸がAlaであることが好ましい。
 また、上述の(1)から(3)で改変後のアミノ酸として選択されるアミノ酸としては、
(1) Fc領域のEUナンバリング233番目のアミノ酸がAsp、238番目のアミノ酸がAsp、264番目のアミノ酸がIle、267番目のアミノ酸がArg、268番目のアミノ酸がGlu及び271番目のアミノ酸がGly
(2)Fc領域のEUナンバリング233番目のアミノ酸がAsp、237番目のアミノ酸がAsp、238番目のアミノ酸がAsp、264番目のアミノ酸がIle、267番目のアミノ酸がAla、268番目のアミノ酸がGlu、271番目のアミノ酸がGly、296番目のアミノ酸がAsp、297番目のアミノ酸がAla、330番目のアミノ酸がArg及び396番目のアミノ酸がMet
(3) Fc領域のEUナンバリング233番目のアミノ酸がAsp、238番目のアミノ酸がAsp、264番目のアミノ酸がIle、267番目のアミノ酸がArg、268番目のアミノ酸がPro、271番目のアミノ酸がGly及び296番目のアミノ酸がGlu
が好ましい。
 また、本発明は、ヒトIgGのFc領域に対して、EUナンバリング238番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸の他のアミノ酸への改変を含むFc領域改変体を提供する。当該改変体には、更に、下記の(a)~(e)のいずれかに記載のアミノ酸の他のアミノ酸への改変を組み合わせたアミノ酸改変を含むFc領域改変体を提供する。当該改変をFc領域に導入することにより、天然型IgGのFc領域を含むポリペプチドと比較して、FcγRIIbに対する結合活性を維持しつつ、すべての活性型FcγRに対する結合活性、中でもFcγRIIa(R型)に対する結合活性が減少したFc領域改変体を含むポリペプチドを提供することが可能である。
(a)Fc領域のEUナンバリング233番目のアミノ酸
(b)Fc領域のEUナンバリング237番目のアミノ酸
(c)Fc領域のEUナンバリング264番目のアミノ酸
(d)Fc領域のEUナンバリング267番目のアミノ酸
(e)Fc領域のEUナンバリング268番目のアミノ酸
 EUナンバリング238番目のアミノ酸及び271番目のアミノ酸の他のアミノ酸への改変と組みあわせるアミノ酸改変としては、上記(a)から(e)に記載のアミノ酸に加えてさらに別のアミノ酸を組み合わせることもできる。そのようなアミノ酸の組合せは、特に限定されないが、下記の(1)から(4)から選ばれる改変の組合せが好ましい。
(1) Fc領域のEUナンバリング237番目のアミノ酸、238番目のアミノ酸、268番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸
(2)Fc領域のEUナンバリング233番目のアミノ酸、237番目のアミノ酸、238番目のアミノ酸、268番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸
(3) Fc領域のEUナンバリング238番目のアミノ酸、267番目のアミノ酸、268番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸
(4) Fc領域のEUナンバリング238番目のアミノ酸、264番目のアミノ酸、267番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸
 改変後のアミノ酸として選択されるアミノ酸は、天然型IgGのFc領域を含むポリペプチドと比較してFcγRIIbに対する結合活性を維持しつつ、すべての活性型FcγRに対する結合活性が減少するものであれば特に限定されないが、EUナンバリング238番目のアミノ酸がAsp、271番目のアミノ酸がGly、327番目のアミノ酸がGly、330番目のアミノ酸がSer、331番目のアミノ酸がSer、233番目のアミノ酸がAsp、237番目のアミノ酸がAsp、264番目のアミノ酸がIle、267番目のアミノ酸がAla、268番目のアミノ酸がAsp又はGluであることが好ましい。
 また、上述の(1)から(4)で改変後のアミノ酸として選択されるアミノ酸としては、
(1) Fc領域のEUナンバリング237番目のアミノ酸がAsp、238番目のアミノ酸がAsp、268番目のアミノ酸がAsp又はGlu、271番目のアミノ酸がGly、327番目のアミノ酸がGly、330番目のアミノ酸がSer及び331番目のアミノ酸がSer
(2)Fc領域のEUナンバリング233番目のアミノ酸がAsp、237番目のアミノ酸がAsp、238番目のアミノ酸がAsp、268番目のアミノ酸がAsp、271番目のアミノ酸がGly、327番目のアミノ酸がGly、330番目のアミノ酸がSer及び331番目のアミノ酸がSer
(3) Fc領域のEUナンバリング238番目のアミノ酸がAsp、267番目のアミノ酸がAla、268番目のアミノ酸がGlu、271番目のアミノ酸がGly、327番目のアミノ酸がGly、330番目のアミノ酸がSer及び331番目のアミノ酸がSer
(4) Fc領域のEUナンバリング238番目のアミノ酸がAsp、264番目のアミノ酸がIle、267番目のアミノ酸がAla、271番目のアミノ酸がGly、327番目のアミノ酸がGly、330番目のアミノ酸がSer及び331番目のアミノ酸がSer 
が好ましい。
 本発明は、これらの改変に加えて、さらに別の少なくとも一つのFc領域に対する改変を加えることが可能である。FcγRIIbに対する結合活性を維持しつつ、活性型FcγRに対する結合活性を減少させるものであれば特に限定されない。
 そのような改変としては、例えば、補体に対する結合活性を減少させる改変が挙げられる。具体的には、例えば、Fc領域のEUナンバリング322番目のアミノ酸改変、或いは、Fc領域のEUナンバリング327番目、330番目及び331番目のアミノ酸改変の組合せが挙げられる。改変後のアミノ酸として選択されるアミノ酸は、天然型IgGのFc領域を含むポリペプチドと比較してFcγRIIbに対する結合活性が維持され、すべての活性型FcγRに対する結合活性が減少されつつ、補体に対する結合活性を減少させるものでれば特に限定されないが、EUナンバリング322番目のアミノ酸がAla又はGlu、327番目のアミノ酸がGly、330番目のアミノ酸がSer、331番目のアミノ酸がSerであることが好ましい。
 本発明において、本発明のFc領域改変体を含むポリペプチド又はFc領域改変体が補体に対する結合活性が減少したかどうかは、上述のFcγRに対する結合活性が減少したかどうかを確認する方法と同様の方法にて確認することができる。具体的には、例えば本実施例に示されるように、表面プラズモン共鳴(SPR)現象を利用した相互作用解析機器であるBIACOREを用いて、評価したい抗体をセンサーチップ上に固定化あるいはProteinA、ProteinL、ProteinA/G、ProteinG、抗lamda鎖抗体、抗kappa鎖抗体、抗原ペプチド、抗原タンパク質等でキャプチャーしたセンサーチップに対して、補体をアナライトとして相互作用させたセンサーグラムの解析結果から得られる解離定数(KD)の値が増加したかどうかで判断可能である。または、センサーチップ上に固定化したあるいはProteinA、ProteinL、ProteinA/G、ProteinG、抗lamda鎖抗体、抗kappa鎖抗体、抗原ペプチド、抗原タンパク質等でキャプチャーしたセンサーチップ上の評価したい抗体に対して、補体をアナライトとして相互作用させた前後でのセンサーグラム上のレゾナンスユニット(RU)値の変化量を、センサーチップに抗体を固定化又はキャプチャーさせた前後でのレゾナンスユニット(RU)の変化量で割った値が増加したかどうかでも判断可能である。また、補体をセンサーチップに直接固定化した、あるいは抗タグ抗体などを介して固定化したセンサーチップを使って、評価したい抗体等の試料をアナライトとして相互作用させたセンサーグラムの解析から得られる解離定数(KD)の値が増加したかどうかで判断可能である。または、補体をセンサーチップに直接固定化した、あるいは抗タグ抗体などを介して固定化したセンサーチップに対して評価したい抗体等の試料をアナライトとして相互作用させた前後でのセンサーグラムの値の変化量が増加したかどうかでも判断可能である。または、抗原を介して、あるいは直接評価したい抗体を固相化したプレートに対して補体を添加し、その後ペルオキシダーゼなどで標識された抗ヒトC1q抗体を加えるELISAによって結合量を評価することでも判断可能である。
 また本発明のFc領域改変体を含むポリペプチドには他の目的で行われるアミノ酸改変を組み合わせることもできる。例えばFcRnに対する結合活性を向上させるアミノ酸置換(J Immunol. 2006 Jan 1;176(1):346-56、J Biol Chem. 2006 Aug 18;281(33):23514-24.、Int Immunol. 2006 Dec;18(12):1759-69.、Nat Biotechnol. 2010 Feb;28(2):157-9.、WO/2006/019447、WO/2006/053301、WO/2009/086320)、抗体のヘテロジェニティーや安定性を向上させるためのアミノ酸置換(WO/2009/041613)を加えてもよい。あるいは、本発明のFc領域改変体を含むポリペプチドに、WO2011/122011、PCT/JP2011/072550に記載の抗原の消失を促進するための性質を付与したポリペプチドや、WO2009/125825、PCT/JP2011/077619に記載の複数分子の抗原に繰り返し結合するための性質を付与したポリペプチドも本発明に含まれる。あるいは、本発明のFc領域改変体を含むポリペプチドに、血中滞留性を高める目的で定常領域のpIを低下させるアミノ酸改変(WO/2012/016227)を組み合わせてもよい。あるいは、本発明のFc領域改変体を含むポリペプチドに、使って他の抗原に対する結合能を持たせる目的でCH3にEP1752471、EP1772465に記載のアミノ酸改変を組み合わせてもよい。
 本発明のFc領域改変体を含むポリペプチドが、抗体のような抗原結合ドメインを含む場合には、当該ポリペプチドの血漿中からの抗原消失効果を高めるために、イオン濃度条件によって抗原に対する結合活性を変化させるためのアミノ酸改変を組み合わせることができる。
 本明細書において、「抗原結合ドメイン」は目的とする抗原に結合するかぎりどのような構造のドメインも使用され得る。そのようなドメインの例として、例えば、抗体の重鎖および軽鎖の可変領域、生体内に存在する細胞膜タンパクであるAvimerに含まれる35アミノ酸程度のAドメインと呼ばれるモジュール(国際公開WO2004/044011、WO2005/040229)、細胞膜に発現する糖たんぱく質であるfibronectin中のタンパク質に結合するドメインである10Fn3ドメインを含むAdnectin(国際公開WO2002/032925)、ProteinAの58アミノ酸からなる3つのヘリックスの束(bundle)を構成するIgG結合ドメインをscaffoldとするAffibody(国際公開WO1995/001937)、33アミノ酸残基を含むターンと2つの逆並行ヘリックスおよびループのサブユニットが繰り返し積み重なった構造を有するアンキリン反復(ankyrin repeat:AR)の分子表面に露出する領域であるDARPins(Designed Ankyrin Repeat proteins)(国際公開WO2002/020565)、好中球ゲラチナーゼ結合リポカリン(neutrophil gelatinase-associated lipocalin(NGAL))等のリポカリン分子において高度に保存された8つの逆並行ストランドが中央方向にねじれたバレル構造の片側を支える4つのループ領域であるAnticalin等(国際公開WO2003/029462)、ヤツメウナギ、ヌタウナギなど無顎類の獲得免疫システムとしてイムノグロブリンの構造を有さない可変性リンパ球受容体(variable lymphocyte receptor(VLR))のロイシン残基に富んだリピート(leucine-rich-repeat(LRR))モジュールが繰り返し積み重なった馬てい形の構造の内部の並行型シート構造のくぼんだ領域(国際公開WO2008/016854)が好適に挙げられる。本発明の抗原結合ドメインの好適な例として、抗体の重鎖および軽鎖の可変領域を含む抗原結合ドメインが挙げられる。こうした抗原結合ドメインの例としては、「scFv(single chain Fv)」、「単鎖抗体(single chain antibody)」、「Fv」、「scFv2(single chain Fv 2)」、「Fab」または「F(ab')2」等が好適に挙げられる。
 本明細書における「イオン濃度」とは、例えば、金属イオン濃度を挙げることができる。「金属イオン」とは、水素を除くアルカリ金属および銅族等の第I族、アルカリ土類金属および亜鉛族等の第II族、ホウ素を除く第III族、炭素とケイ素を除く第IV族、鉄族および白金族等の第VIII族、V、VIおよびVII族の各A亜族に属する元素と、アンチモン、ビスマス、ポロニウム等の金属元素のイオンをいう。金属原子は原子価電子を放出して陽イオンになる性質を有しており、これをイオン化傾向という。イオン化傾向の大きい金属は、化学的に活性に富むとされる。
 本発明で好適な金属イオンの例としてカルシウムイオンが挙げられる。カルシウムイオンは多くの生命現象の調節に関与しており、骨格筋、平滑筋および心筋等の筋肉の収縮、白血球の運動および貪食等の活性化、血小板の変形および分泌等の活性化、リンパ球の活性化、ヒスタミンの分泌等の肥満細胞の活性化、カテコールアミンα受容体やアセチルコリン受容体を介する細胞の応答、エキソサイトーシス、ニューロン終末からの伝達物質の放出、ニューロンの軸策流等にカルシウムイオンが関与している。細胞内のカルシウムイオン受容体として、複数個のカルシウムイオン結合部位を有し、分子進化上共通の起源から由来したと考えられるトロポニンC、カルモジュリン、パルブアルブミン、ミオシン軽鎖等が知られており、その結合モチーフも数多く知られている。例えば 、カドヘリンドメイン、カルモジュリンに含まれるEFハンド、Protein kinase Cに含まれるC2ドメイン、血液凝固タンパク質FactorIXに含まれるGlaドメイン、アシアログライコプロテインレセプターやマンノース結合レセプターに含まれるC型レクチン、LDL受容体に含まれるAドメイン、アネキシン、トロンボスポンジン3型ドメインおよびEGF様ドメインがよく知られている。
 本発明においては、金属イオンがカルシウムイオンの場合には、カルシウムイオン濃度の条件として低カルシウムイオン濃度の条件と高カルシウムイオン濃度の条件が挙げられる。カルシウムイオン濃度の条件によって結合活性が変化するとは、低カルシウムイオン濃度と高カルシウムイオン濃度の条件の違いによって抗原に対する抗原結合分子の結合活性が変化することをいう。例えば、低カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性よりも高カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性の方が高い場合が挙げられる。また、高カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性よりも低カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性の方が高い場合もまた挙げられる。
 本明細書において、高カルシウムイオン濃度とはとくに一義的な数値に限定されるわけではないが、好適には100μMから10 mMの間から選択される濃度であり得る。また、別の態様では、200μMから5 mMの間から選択される濃度でもあり得る。また、異なる態様では400μMから3 mMの間から選択される濃度でもあり得るし、ほかの態様では200μMから2 mMの間から選択される濃度でもあり得る。さらに400μMから1 mMの間から選択される濃度でもあり得る。特に生体内の血漿中(血中)でのカルシウムイオン濃度に近い500μMから2.5 mMの間から選択される濃度が好適に挙げられる。
 本明細書において、低カルシウムイオン濃度とはとくに一義的な数値に限定されるわけではないが、好適には0.1μMから30μMの間から選択される濃度であり得る。また、別の態様では、0.2μMから20μMの間から選択される濃度でもあり得る。また、異なる態様では0.5μMから10μMの間から選択される濃度でもあり得るし、ほかの態様では1μMから5μMの間から選択される濃度でもあり得る。さらに2μMから4μMの間から選択される濃度でもあり得る。特に生体内の早期エンドソーム内でのイオン化カルシウム濃度に近い1μMから5μMの間から選択される濃度が好適に挙げられる。
 本発明において、低カルシウムイオン濃度の条件における抗原に対する結合活性が高カルシウムイオン濃度の条件における抗原に対する結合活性より低いとは、抗原結合分子の0.1μMから30μMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性が、100μMから10 mMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性より弱いことを意味する。好ましくは、抗原結合分子の0.5μMから10μMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性が、200μMから5 mMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性より弱いことを意味し、特に好ましくは、生体内の早期エンドソーム内のカルシウムイオン濃度における抗原結合活性が、生体内の血漿中のカルシウムイオン濃度における抗原結合活性より弱いことを意味し、具体的には、抗原結合分子の1μMから5μMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性が、500μMから2.5 mMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性より弱いことを意味する。
 金属イオン濃度の条件によって抗原に対する抗原結合分子の結合活性が変化しているか否かは、例えば前記の結合活性の項で記載されたような公知の測定方法を使用することによって決定され得る。例えば、低カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性よりも高カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性の方が高く変化することを確認するためには、低カルシウムイオン濃度および高カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性が比較される。
 さらに本発明において、「低カルシウムイオン濃度の条件における抗原に対する結合活性が高カルシウムイオン濃度の条件における抗原に対する結合活性より低い」という表現は、抗原結合分子の高カルシウムイオン濃度条件下における抗原に対する結合活性が低カルシウムイオン濃度条件下における抗原に対する結合活性よりも高いと表現することもできる。なお本発明においては、「低カルシウムイオン濃度の条件における抗原に対する結合活性が高カルシウムイオン濃度の条件における抗原に対する結合活性より低い」を「低カルシウムイオン濃度条件下における抗原結合能が高カルシウムイオン濃度条件下における抗原に対する結合能よりも弱い」と記載する場合もあり、また、「低カルシウムイオン濃度の条件における抗原結合活性を高カルシウムイオン濃度の条件における抗原に対する結合活性より低下させる」を「低カルシウムイオン濃度条件下における抗原結合能を高カルシウムイオン濃度条件下における抗原に対する結合能よりも弱くする」と記載する場合もある。
 抗原への結合活性を測定する際のカルシウムイオン濃度以外の条件は、当業者が適宜選択することが可能であり、特に限定されない。例えば、HEPESバッファー、37℃の条件において測定することが可能である。例えば、Biacore(GE Healthcare)などを用いて測定することが可能である。抗原結合分子と抗原との結合活性の測定は、抗原が可溶型抗原である場合は、抗原結合分子を固定化したチップへ、抗原をアナライトとして流すことで可溶型抗原への結合活性を評価することが可能であり、抗原が膜型抗原である場合は、抗原を固定化したチップへ、抗原結合分子をアナライトとして流すことで膜型抗原への結合活性を評価することが可能である。
 本発明の抗原結合分子において、低カルシウムイオン濃度の条件における抗原に対する結合活性が高カルシウムイオン濃度の条件における抗原に対する結合活性よりも弱い限り、低カルシウムイオン濃度条件下における抗原に対する結合活性と高カルシウムイオン濃度条件下における抗原に対する結合活性の比は特に限定されないが、好ましくは抗原に対する低カルシウムイオン濃度の条件におけるKD(Dissociation constant:解離定数)と高カルシウムイオン濃度の条件におけるKDの比であるKD (Ca 3μM)/KD (Ca 2 mM)の値が2以上であり、さらに好ましくはKD (Ca 3μM)/KD (Ca 2 mM)の値が10以上であり、さらに好ましくはKD (Ca 3μM)/KD (Ca 2 mM)の値が40以上である。KD (Ca 3μM)/KD (Ca 2 mM)の値の上限は特に限定されず、当業者の技術において作製可能な限り、400、1000、10000等、いかなる値でもよい。
 抗原に対する結合活性の値として、抗原が可溶型抗原の場合はKD(解離定数)を用いることが可能であるが、抗原が膜型抗原の場合は見かけのKD(Apparent dissociation constant:見かけの解離定数)を用いることが可能である。KD(解離定数)、および、見かけのKD(見かけの解離定数)は、当業者公知の方法で測定することが可能であり、例えばBiacore(GE healthcare)、スキャッチャードプロット、フローサイトメーター等を用いることが可能である。
 また、本発明の抗原結合分子の低カルシウム濃度の条件における抗原に対する結合活性と高カルシウム濃度の条件における抗原に対する結合活性の比を示す他の指標として、例えば、解離速度定数であるkd(Dissociation rate constant:解離速度定数)もまた好適に用いられ得る。結合活性の比を示す指標としてKD(解離定数)の代わりにkd(解離速度定数)を用いる場合、抗原に対する低カルシウム濃度の条件におけるkd(解離速度定数)と高カルシウム濃度の条件におけるkd(解離速度定数)の比であるkd(低カルシウム濃度の条件)/kd(高カルシウム濃度の条件)の値は、好ましくは2以上であり、さらに好ましくは5以上であり、さらに好ましくは10以上であり、より好ましくは30以上である。Kd(低カルシウム濃度の条件)/kd(高カルシウム濃度の条件)の値の上限は特に限定されず、当業者の技術常識において作製可能な限り、50、100、200等、いかなる値でもよい。
 抗原結合活性の値として、抗原が可溶型抗原の場合はkd(解離速度定数)を用いることが可能であり、抗原が膜型抗原の場合は見かけのkd(Apparent dissociation rate constant:見かけの解離速度定数)を用いることが可能である。kd(解離速度定数)、および、見かけのkd(見かけの解離速度定数)は、当業者公知の方法で測定することが可能であり、例えばBiacore(GE healthcare)、フローサイトメーター等を用いることが可能である。なお本発明において、異なるカルシウムイオン濃度における抗原結合分子の抗原に対する結合活性を測定する際は、カルシウム濃度以外の条件は同一とすることが好ましい。
 例えば、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗原結合分子は、以下の工程(a)~(c)を含む抗原結合ドメインまたは抗体のスクリーニングによって取得され得る。
 (a) 低カルシウム濃度の条件における抗原結合ドメインまたは抗原結合分子の抗原結合活性を得る工程、
 (b) 高カルシウム濃度の条件における抗原結合ドメインまたは抗原結合分子の抗原結合活性を得る工程、
 (c) 低カルシウム濃度の条件における抗原結合活性が、高カルシウム濃度の条件における抗原結合活性より低い抗原結合ドメインまたは抗原結合分子を選択する工程。
 さらに、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗原結合分子は、以下の工程(a)~(c)を含む抗原結合ドメインまたは抗原結合分子もしくはそれらのライブラリのスクリーニングによって取得され得る。
 (a) 高カルシウム濃度の条件における抗原結合ドメインまたは抗原結合分子もしくはそれらのライブラリを抗原に接触させる工程、
 (b) 前記工程(a)で抗原に結合した抗原結合ドメインまたは抗原結合分子を低カルシウム濃度条件下に置く工程、
 (c) 前記工程(b)で解離した抗原結合ドメインまたは抗原結合分子を単離する工程。
 また、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗原結合分子は、以下の工程(a)~(d)を含む抗原結合ドメインまたは抗原結合分子若しくはそれらのライブラリのスクリーニングによって取得され得る。
 (a) 低カルシウム濃度条件下で抗原結合ドメイン又は抗原結合分子のライブラリを抗原に接触させる工程、
 (b) 前記工程(a)で抗原に結合しない抗原結合ドメイン又は抗原結合分子を選択する工程、
 (c) 前記工程(b)で選択された抗原結合ドメイン又は抗原結合分子を高カルシウム濃度条件下で抗原に結合させる工程、
 (d) 前記工程(c)で抗原に結合した抗原結合ドメイン又は抗原結合分子を単離する工程。
 さらに、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗原結合分子は、以下の工程(a)~(c)を含むスクリーニング方法によって取得され得る。
 (a) 抗原を固定したカラムに高カルシウム濃度条件下で抗原結合ドメイン又は抗原結合分子のライブラリを接触させる工程、
 (b) 前記工程(a)でカラムに結合した抗原結合ドメイン又は抗原結合分子を低カルシウム濃度条件下でカラムから溶出する工程、
 (c) 前記工程(b)で溶出された抗原結合ドメイン又は抗原結合分子を単離する工程。
 さらに、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗原結合分子は、以下の工程(a)~(d)を含むスクリーニング方法によって取得され得る。
 (a) 抗原を固定したカラムに低カルシウム濃度条件下で抗原結合ドメイン又は抗原結合分子のライブラリを通過させる工程、
 (b) 前記工程(a)でカラムに結合せずに溶出した抗原結合ドメイン又は抗原結合分子を回収する工程、
 (c) 前記工程(b)で回収された抗原結合ドメイン又は抗原結合分子を高カルシウム濃度条件下で抗原に結合させる工程、
 (d) 前記工程(c)で抗原に結合した抗原結合ドメイン又は抗原結合分子を単離する工程。
 さらに、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗原結合分子は、以下の工程(a)~(d)を含むスクリーニング方法によって取得され得る。
 (a) 高カルシウム濃度条件下で抗原結合ドメイン又は抗原結合分子のライブラリを抗原に接触させる工程、
 (b) 前記工程(a)で抗原に結合した抗原結合ドメイン又は抗原結合分子を取得する工程、
 (c) 前記工程(b)で取得した抗原結合ドメイン又は抗原結合分子を低カルシウム濃度条件下に置く工程、
 (d) 前記工程(c)で抗原結合活性が、前記工程(b)で選択した基準より弱い抗原結合ドメイン又は抗原結合分子を単離する工程。
 なお、前記の工程は2回以上繰り返されてもよい。従って、本発明によって、上述のスクリーニング方法において、(a)~(c)あるいは(a)~(d)の工程を2回以上繰り返す工程をさらに含むスクリーニング方法によって取得された低カルシウムイオン濃度の条件における抗原に対する結合活性が高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗原結合分子が提供される。(a)~(c)あるいは(a)~(d)の工程が繰り返される回数は特に限定されないが、通常10回以内である。
 上記スクリーニング方法において、低カルシウム濃度条件下における抗原結合ドメイン又は抗原結合分子の抗原結合活性は、イオン化カルシウム濃度が0.1μM~30μMの間の抗原結合活性であれば特に限定されないが、好ましいイオン化カルシウム濃度として、0.5μM~10μMの間の抗原結合活性を挙げることができる。より好ましいイオン化カルシウム濃度として、生体内の早期エンドソーム内のイオン化カルシウム濃度が挙げられ、具体的には1μM~5μMにおける抗原結合活性を挙げることができる。また、高カルシウム濃度条件下における抗原結合ドメイン又は抗原結合分子の抗原結合活性は、イオン化カルシウム濃度が100μM~10 mMの間の抗原結合活性であれば特に限定されないが、好ましいイオン化カルシウム濃度として200μM~5 mMの間の抗原結合活性を挙げることができる。より好ましいイオン化カルシウム濃度として、生体内の血漿中でのイオン化カルシウム濃度を挙げることができ、具体的には0.5 mM~2.5 mMにおける抗原結合活性を挙げることができる。
 また、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗原結合分子をスクリーニング方法としてWO2012/073992等(例えば段落0200-0213)に記載された方法も例示され得る。
 抗原結合ドメイン又は抗原結合分子の抗原結合活性は当業者に公知の方法により測定することが可能であり、イオン化カルシウム濃度以外の条件については当業者が適宜決定することが可能である。抗原結合ドメイン又は抗原結合分子の抗原結合活性は、KD(Dissociation constant:解離定数)、見かけのKD(Apparent dissociation constant:見かけの解離定数)、解離速度であるkd(Dissociation rate:解離速度定数)、又は見かけのkd(Apparent dissociation:見かけの解離速度定数)等として評価することが可能である。これらは当業者公知の方法で測定することが可能であり、例えばBiacore(GE healthcare)、スキャッチャードプロット、FACS等を用いることが可能である。
 本発明において、高カルシウム濃度条件下における抗原結合活性が低カルシウム濃度条件下における抗原結合活性より高い抗原結合ドメイン又は抗原結合分子を選択する工程は、低カルシウム濃度条件下における抗原結合活性が高カルシウム濃度条件下における抗原結合活性より低い抗原結合ドメイン又は抗原結合分子を選択する工程と同じ意味である。
 高カルシウム濃度条件下における抗原結合活性が低カルシウム濃度条件下における抗原結合活性より高い限り、高カルシウム濃度条件下における抗原結合活性と低カルシウム濃度条件下における抗原結合活性の差は特に限定されないが、好ましくは高カルシウム濃度条件下における抗原結合活性が低カルシウム濃度条件下における抗原結合活性の2倍以上であり、さらに好ましくは10倍以上であり、より好ましくは40倍以上である。
 前記のスクリーニング方法によりスクリーニングされる本発明の抗原結合ドメイン又は抗原結合分子はいかなる抗原結合ドメイン又は抗原結合分子でもよく、例えば上述の抗原結合ドメイン又は抗原結合分子をスクリーニングすることが可能である。例えば、天然の配列を有する抗原結合ドメイン又は抗原結合分子をスクリーニングしてもよいし、アミノ酸配列が置換された抗原結合ドメイン又は抗原結合分子をスクリーニングしてもよい。
 例えば、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗原結合分子のスクリーニング方法としてWO2012/073992等(例えば段落0200-0213)に記載された方法が例示され得る。
 前記のスクリーニング方法によってスクリーニングされる本発明のカルシウムイオン濃度の条件によって抗原に対する結合活性を変化させる抗原結合ドメインまたは抗原結合分子はどのように調製されてもよく、例えば、金属イオンがカルシウムイオン濃度である場合には、あらかじめ存在している抗原結合ドメインまたは抗原結合分子、あらかじめ存在しているライブラリ(ファージライブラリ等)、動物への免疫から得られたハイブリドーマや免疫動物からのB細胞から作製された抗体またはライブラリ、これらの抗体やライブラリにカルシウムをキレート可能なアミノ酸(例えばアスパラギン酸やグルタミン酸)や非天然アミノ酸変異を導入した抗体またはライブラリ(カルシウムをキレート可能なアミノ酸(例えばアスパラギン酸やグルタミン酸)または非天然アミノ酸の含有率を高くしたライブラリや特定箇所にカルシウムをキレート可能なアミノ酸(例えばアスパラギン酸やグルタミン酸)または非天然アミノ酸変異を導入したライブラリ等)などを用いることが可能である。
 前記のようにイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸の例として、例えば、金属イオンがカルシウムイオンである場合には、カルシウム結合モチーフを形成するアミノ酸であれば、その種類は問わない。カルシウム結合モチーフは、当業者に周知であり、詳細に記載されている(例えばSpringerら(Cell (2000) 102, 275-277)、KawasakiおよびKretsinger(Protein Prof. (1995) 2, 305-490)、Moncriefら(J. Mol. Evol. (1990) 30, 522-562)、Chauvauxら(Biochem. J. (1990) 265, 261-265)、BairochおよびCox(FEBS Lett. (1990) 269, 454-456)、Davis(New Biol. (1990) 2, 410-419)、Schaeferら(Genomics (1995) 25, 638~643)、Economouら(EMBO J. (1990) 9, 349-354)、Wurzburgら(Structure. (2006) 14, 6, 1049-1058))。すなわち、ASGPR, CD23、MBR、DC-SIGN等のC型レクチン等の任意の公知のカルシウム結合モチーフが、本発明の抗原結合分子に含まれ得る。このようなカルシウム結合モチーフの好適な例として、上記のほかには配列番号:45に記載される抗原結合ドメインに含まれるカルシウム結合モチーフも挙げられ得る。
 また、本発明の抗原結合分子に含まれる抗原結合ドメインのカルシウムイオン濃度の条件によって抗原に対する結合活性を変化させるアミノ酸の例として、金属キレート作用を有するアミノ酸も好適に用いられ得る。金属キレート作用を有するアミノ酸の例として、例えばセリン(Ser(S))、スレオニン(Thr(T))、アスパラギン(Asn(N))、グルタミン(Gln(Q))、アスパラギン酸(Asp(D))およびグルタミン酸(Glu(E))等が好適に挙げられる。
 前記のアミノ酸が含まれる抗原結合ドメインの位置は特定の位置に限定されず、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる限り、抗原結合ドメインを形成する重鎖可変領域または軽鎖可変領域中のいずれの位置でもあり得る。非限定な一態様では、本発明の抗原結合ドメインは、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸が重鎖の抗原結合ドメインに含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。また、非限定な別の一態様では、本発明の抗原結合ドメインは、当該アミノ酸が重鎖のCDR3に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。そのほかの態様では、本発明の抗原結合ドメインは、当該アミノ酸が重鎖のCDR3のKabatナンバリングで表される95位、96位、100a位および/または101位に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。
 また、本発明の非限定な一態様では、本発明の抗原結合ドメインは、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸が軽鎖の抗原結合ドメインに含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。また、非限定な別の一態様では、本発明の抗原結合ドメインは、当該アミノ酸が軽鎖のCDR1に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。そのほかの態様では、本発明の抗原結合ドメインは、当該アミノ酸が軽鎖のCDR1のKabatナンバリングで表される30位、31位および/または32位に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。
 また、別の非限定な一態様では、本発明の抗原結合ドメインは、当該アミノ酸残基が軽鎖のCDR2に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。そのほかの非限定な一態様では、当該アミノ酸残基が軽鎖のCDR2のKabatナンバリングで表される50位に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリが提供される。
 さらに別の態様では、本発明の抗原結合ドメインは、当該アミノ酸残基が軽鎖のCDR3に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。そのほかの態様では、本発明の抗原結合ドメインは、当該アミノ酸残基が軽鎖のCDR3のKabatナンバリングで表される92位に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。
 また、本発明の抗原結合ドメインは、当該アミノ酸残基が、前記に記載された軽鎖のCDR1、CDR2およびCDR3から選択される2つまたは3つのCDRに含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから本発明の異なる態様として取得され得る。さらに、本発明の抗原結合ドメインは、当該アミノ酸残基が軽鎖のKabatナンバリングで表される30位、31位、32位、50位および/または92位のいずれかひとつ以上に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。
 特に好適な実施形態では、抗原結合分子の軽鎖および/または重鎖可変領域のフレームワーク配列は、ヒトの生殖細胞系フレームワーク配列を有していることが望ましい。したがって、本発明の一態様においてフレームワーク配列が完全にヒトの配列であるならば、ヒトに投与(例えば疾病の治療)された場合、本発明の抗原結合分子は免疫原性反応を殆どあるいは全く引き起こさないと考えられる。上記の意味から、本発明における「生殖細胞系列の配列を含む 」とは、本発明におけるフレームワーク配列の一部が、いずれかのヒトの生殖細胞系フレームワーク配列の一部と同一であることを意味する。例えば、本発明の抗原結合分子の重鎖FR2の配列が複数の異なるヒトの生殖細胞系フレームワーク配列の重鎖FR2配列が組み合わされた配列である場合も、本発明における「生殖細胞系列の配列を含む」抗原結合分子である。
 フレームワークの例としては、例えばV-Base(http://vbase.mrc-cpe.cam.ac.uk/)等のウェブサイトに含まれている、現在知られている完全にヒト型のフレームワーク領域の配列が好適に挙げられる。 これらのフレームワーク領域の配列が本発明の抗原結合分子に含まれる生殖細胞系列の配列として適宜使用され得る。生殖細胞系列の配列はその類似性にもとづいて分類され得る(Tomlinsonら(J. Mol. Biol. (1992) 227, 776-798)WilliamsおよびWinter(Eur. J. Immunol. (1993) 23, 1456-1461)およびCoxら(Nat. Genetics (1994) 7, 162-168))。 7つのサブグループに分類されるVκ、10のサブグループに分類されるVλ、7つのサブグループに分類されるVHから好適な生殖細胞系列の配列が適宜選択され得る。
 完全にヒト型のVH配列は、下記のみに限定されるものではないが、例えばVH1サブグループ(例えば、VH1-2、VH1-3、VH1-8、VH1-18、VH1-24、VH1-45、VH1-46、VH1-58、VH1-69)、VH2サブグループ(例えば、VH2-5、VH2-26、VH2-70)、VH3サブグループ(VH3-7、VH3-9、VH3-11、VH3-13、VH3-15、VH3-16、VH3-20、VH3-21、VH3-23、VH3-30、VH3-33、VH3-35、VH3-38、VH3-43、VH3-48、VH3-49、VH3-53、VH3-64、VH3-66、VH3-72、VH3-73、VH3-74)、VH4サブグループ(VH4-4、VH4-28、VH4-31、VH4-34、VH4-39、VH4-59、VH4-61)、VH5サブグループ(VH5-51)、VH6サブグループ(VH6-1)、VH7サブグループ(VH7-4、VH7-81)のVH配列等が好適に挙げられる。これらは公知文献(Matsudaら(J. Exp. Med. (1998) 188, 1973-1975))等にも記載されており、当業者はこれらの配列情報をもとに本発明の抗原結合分子を適宜設計することが可能である。これら以外の完全にヒト型のフレームワークまたはフレームワークの準領域も好適に使用され得る。
 完全にヒト型のVκ配列は、下記のみに限定されるものではないが、例えばVk1サブグループに分類されるA20、A30、L1、L4、L5、L8、L9、L11、L12、L14、L15、L18、L19、L22、L23、L24、O2、O4、O8、O12、O14、O18、Vk2サブグループに分類されるA1、A2、A3、A5、A7、A17、A18、A19、A23、O1、O11、Vk3サブグループに分類されるA11、A27、L2、L6、L10、L16、L20、L25、Vk4サブグループに分類されるB3、Vk5サブグループに分類されるB2(本明細書においてはVk5-2とも指称される))、Vk6サブグループに分類されるA10、A14、A26等(Kawasakiら(Eur. J. Immunol. (2001) 31, 1017-1028)、SchableおよびZachau(Biol. Chem. Hoppe Seyler (1993) 374, 1001-1022)およびBrensing-Kuppersら(Gene (1997) 191, 173-181))が好適に挙げられる。
 完全にヒト型のVλ配列は、下記のみに限定されるものではないが、例えばVL1サブグループに分類されるV1-2、V1-3、V1-4、V1-5、V1-7、V1-9、V1-11、V1-13、V1-16、V1-17、V1-18、V1-19、V1-20、V1-22、VL1サブグループに分類されるV2-1、V2-6、V2-7、V2-8、V2-11、V2-13、V2-14、V2-15、V2-17、V2-19、VL3サブグループに分類されるV3-2、V3-3、V3-4、VL4サブグループに分類されるV4-1、V4-2、V4-3、V4-4、V4-6、VL5サブグループに分類されるV5-1、V5-2、V5-4、V5-6等(Kawasakiら(Genome Res. (1997) 7, 250-261))が好適に挙げられる。
 通常これらのフレームワーク配列は一またはそれ以上のアミノ酸残基の相違により互いに異なっている。これらのフレームワーク配列は本発明における「イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基」と共に使用され得る。本発明における「イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基」と共に使用される完全にヒト型のフレームワークの例としては、これだけに限定されるわけではないが、ほかにもKOL、NEWM、REI、EU、TUR、TEI、LAY、POM等が挙げられる(例えば、前記のKabatら (1991)およびWuら(J. Exp. Med. (1970) 132, 211-250))。
 本発明は特定の理論に拘束されるものではないが、生殖細胞系の配列の使用がほとんどの個人において有害な免疫反応を排除すると期待されている一つの理由は、以下のとおりであると考えられている。通常の免疫反応中に生じる親和性成熟ステップの結果、免疫グロブリンの可変領域に体細胞の突然変異が頻繁に生じる。これらの突然変異は主にその配列が超可変的であるCDRの周辺に生じるが、フレームワーク領域の残基にも影響を及ぼす。これらのフレームワークの突然変異は生殖細胞系の遺伝子には存在せず、また患者の免疫原性になる可能性は少ない。一方、通常のヒトの集団は生殖細胞系の遺伝子によって発現されるフレームワーク配列の大多数にさらされており、免疫寛容の結果、これらの生殖細胞系のフレームワークは患者において免疫原性が低いあるいは非免疫原性であると予想される。免疫寛容の可能性を最大にするため、可変領域をコード化する遺伝子が普通に存在する機能的な生殖細胞系遺伝子の集合から選択され得る。
 本発明の、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸が前記の可変領域配列の配列、重鎖可変領域または軽鎖可変領域の配列、もしくはCDR配列またはフレームワーク配列に含まれる抗原結合分子を作製するために部位特異的変異誘発法(Kunkelら(Proc. Natl. Acad. Sci. USA (1985) 82, 488-492))やOverlap extension PCR等の公知の方法が適宜採用され得る。
 例えば、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基が予め含まれているフレームワーク配列として選択された軽鎖可変領域と、ランダム化可変領域配列ライブラリとして作製された重鎖可変領域と組み合わせることによって本発明の複数の互いに配列の異なる抗原結合分子を含むライブラリが作製され得る。このような非限定的な例として、イオン濃度がカルシウムイオン濃度である場合には、例えば、配列番号:45(Vk5-2)に記載された軽鎖可変領域配列とランダム化可変領域配列ライブラリとして作製された重鎖可変領域とを組み合わせたライブラリが好適に挙げられる。
 また、前記のカルシウムイオン濃度の条件によって抗原に対する抗原結合ドメインまたは抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基が予め含まれているフレームワーク配列として選択された軽鎖可変領域の配列に、当該アミノ酸残基以外の残基として多様なアミノ酸が含まれるように設計することも可能である。本発明においてそのような残基は、フレキシブル残基と指称される。本発明の抗原結合ドメインまたは抗原結合分子の抗原に対する結合活性が、イオン濃度の条件によって変化する限り、当該フレキシブル残基の数および位置は特定の態様に限定されることはない。すなわち、重鎖および/または軽鎖のCDR配列および/またはFR配列に一つまたはそれ以上のフレキシブル残基が含まれ得る。例えば、イオン濃度がカルシウムイオン濃度である場合には、配列番号:45(Vk5-2)に記載された軽鎖可変領域配列に導入されるフレキシブル残基の非限定的な例として、表1または表2に記載されたアミノ酸残基が挙げられる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本明細書においては、フレキシブル残基とは、公知のかつ/または天然抗体または抗原結合ドメインのアミノ酸配列を比較した場合に、その位置で提示されるいくつかの異なるアミノ酸を持つ軽鎖および重鎖可変領域上のアミノ酸が非常に多様である位置に存在するアミノ酸残基のバリエーションをいう。非常に多様である位置は一般的にCDR領域に存在する。一態様では、公知のかつ/または天然抗体の非常に多様な位置を決定する際には、Kabat, Sequences of Proteins of Immunological Interest (National Institute of Health Bethesda Md.) (1987年および1991年)が提供するデータが有効である。また、インターネット上の複数のデータベース(http://vbase.mrc-cpe.cam.ac.uk/、http://www.bioinf.org.uk/abs/index.html)では収集された多数のヒト軽鎖および重鎖の配列とその配置が提供されており、これらの配列とその配置の情報は本発明における非常に多様な位置の決定に有用である。本発明によると、アミノ酸がある位置で好ましくは約2から約20、好ましくは約3から約19、好ましくは約4から約18、好ましくは5から17、好ましくは6から16、好ましくは7から15、好ましくは8から14、好ましくは9から13、好ましくは10から12個の可能な異なるアミノ酸残基の多様性を有する場合は、その位置は非常に多様といえる。いくつかの実施形態では、あるアミノ酸位置は、好ましくは少なくとも約2、好ましくは少なくとも約4、好ましくは少なくとも約6、好ましくは少なくとも約8、好ましくは約10、好ましくは約12の可能な異なるアミノ酸残基の多様性を有し得る。
 また、前記のイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基が導入された軽鎖可変領域とランダム化可変領域配列ライブラリとして作製された重鎖可変領域とを組み合わせることによっても、本発明の複数の互いに配列の異なる抗原結合分子を含むライブラリが作製され得る。このような非限定的な例として、イオン濃度がカルシウムイオン濃度である場合には、例えば、配列番号:46(Vk1)、配列番号:47(Vk2)、配列番号:48(Vk3)、配列番号:49(Vk4)等の生殖細胞系列の特定の残基が、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基に置換された軽鎖可変領域配列とランダム化可変領域配列ライブラリとして作製された重鎖可変領域とを組み合わせたライブラリが好適に挙げられる。当該アミノ酸残基の非限定な例として軽鎖のCDR1に含まれるアミノ酸残基が例示される。ほかにも、当該アミノ酸残基の非限定な例として軽鎖のCDR2に含まれるアミノ酸残基が例示される。また、当該アミノ酸残基の非限定な別の例として軽鎖のCDR3に含まれるアミノ酸残基もまた例示される。
 前記のように、当該アミノ酸残基が軽鎖のCDR1に含まれるアミノ酸残基の非限定な例として、軽鎖可変領域のCDR1中のEUナンバリングで表される30位、31位、および/または32位のアミノ酸残基が挙げられる。また、当該アミノ酸残基が軽鎖のCDR2に含まれるアミノ酸残基の非限定な例として、軽鎖可変領域のCDR2中のKabatナンバリングで表される50位のアミノ酸残基が挙げられる。さらに、当該アミノ酸残基が軽鎖のCDR3に含まれアミノ酸残基の非限定な例として、軽鎖可変領域のCDR3中のKabatナンバリングで表される92位のアミノ酸残基が挙げられる。また、これらのアミノ酸残基が、カルシウム結合モチーフを形成し、および/または、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性が変化する限り、これらのアミノ酸残基が単独で含まれ得るし、これらのアミノ酸が二つ以上組み合わされて含まれ得る。また、複数個のカルシウムイオン結合部位を有し、分子進化上共通の起源から由来したと考えられるトロポニンC、カルモジュリン、パルブアルブミン、ミオシン軽鎖等が知られており、その結合モチーフが含まれるように軽鎖CDR1、CDR2および/またはCDR3を設計することも可能である。例えば、上記の目的でカドヘリンドメイン、カルモジュリンに含まれるEFハンド、Protein kinase Cに含まれるC2ドメイン、血液凝固タンパク質FactorIXに含まれるGlaドメイン、アシアログライコプロテインレセプターやマンノース結合レセプターに含まれるC型レクチン、LDL受容体に含まれるAドメイン、アネキシン、トロンボスポンジン3型ドメインおよびEGF様ドメインが適宜使用され得る。
 前記のイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基が導入された軽鎖可変領域とランダム化可変領域配列ライブラリとして作製された重鎖可変領域とを組み合わせる場合でも、前記と同様に、フレキシブル残基が当該軽鎖可変領域の配列に含まれるように設計することも可能である。本発明の抗原結合分子の抗原に対する結合活性が、イオン濃度の条件によって変化する限り、当該フレキシブル残基の数および位置は特定の態様に限定されることはない。すなわち、重鎖および/または軽鎖のCDR配列および/またはFR配列に一つまたはそれ以上のフレキシブル残基が含まれ得る。例えば、イオン濃度がカルシウムイオン濃度である場合には、軽鎖可変領域配列に導入されるフレキシブル残基の非限定的な例として、表1または表2に記載されたアミノ酸残基が挙げられる。
 組み合わされる重鎖可変領域の例として、ランダム化可変領域ライブラリが好適に挙げられる。ランダム化可変領域ライブラリの作製方法は公知の方法が適宜組み合わされる。本発明の非限定な一態様では、特定の抗原で免疫された動物、感染症患者やワクチン接種して血中抗体価が上昇したヒト、癌患者、自己免疫疾患のリンパ球由来の抗体遺伝子をもとに構築された免疫ライブラリが、ランダム化可変領域ライブラリとして好適に使用され得る。
 また、本発明の非限定な一態様では、ゲノムDNA におけるV 遺伝子や再構築され機能的なV遺伝子のCDR配列が、適当な長さのコドンセットをコードする配列を含む合成オリゴヌクレオチドセットで置換された合成ライブラリもまた、ランダム化可変領域ライブラリとして好適に使用され得る。この場合、重鎖のCDR3の遺伝子配列の多様性が観察されることから、CDR3の配列のみを置換することもまた可能である。抗原結合分子の可変領域においてアミノ酸の多様性を生み出す基準は、抗原結合分子の表面に露出した位置のアミノ酸残基に多様性を持たせることである。表面に露出した位置とは、抗原結合分子の構造、構造アンサンブル、および/またはモデル化された構造にもとづいて、表面露出が可能、かつ/または抗原との接触が可能と判断される位置のことをいうが、一般的にはそのCDRである。好ましくは、表面に露出した位置は、InsightIIプログラム(Accelrys)のようなコンピュータプログラムを用いて、抗原結合分子の3次元モデルからの座標を使って決定される。表面に露出した位置は、当技術分野で公知のアルゴリズム(例えば、LeeおよびRichards(J.Mol.Biol. (1971) 55, 379-400)、Connolly(J.Appl.Cryst. (1983) 16, 548-558))を使用して決定され得る。表面に露出した位置の決定は、タンパク質モデリングに適したソフトウェアおよび抗体から得られる三次元構造情報を使って行われ得る。このような目的のために利用できるソフトウェアとして、SYBYL生体高分子モジュールソフトウェア(Tripos Associates)が好適に挙げられる。一般的に、また好ましくは、アルゴリズムがユーザーの入力サイズパラメータを必要とする場合は、計算において使われるプローブの「サイズ」は半径約1.4オングストローム以下に設定される。さらに、パーソナルコンピュータ用のソフトウェアを使用した表面に露出した領域およびエリアの決定法が、Pacios(Comput.Chem. (1994) 18 (4), 377-386およびJ.Mol.Model. (1995) 1, 46-53)に記載されている。
 さらに、本発明の非限定な一態様では、健常人のリンパ球由来の抗体遺伝子から構築され、そのレパートリーにバイアスを含まない抗体配列であるナイーブ配列からなるナイーブライブラリもまた、ランダム化可変領域ライブラリとして特に好適に使用され得る(Gejimaら(Human Antibodies (2002) 11,121-129)およびCardosoら(Scand. J. Immunol. (2000) 51, 337-344))。本発明で記載されるナイーブ配列を含むアミノ酸配列とは、このようなナイーブライブラリから取得されるアミノ酸配列をいう。
 本発明の一つの態様では、「イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基」が予め含まれているフレームワーク配列として選択された重鎖可変領域と、ランダム化可変領域配列ライブラリとして作製された軽鎖可変領域とを組み合わせることによって本発明の複数の互いに配列の異なる抗原結合分子を含むライブラリから、本発明の抗原結合ドメインが取得され得る。このような非限定的な例として、イオン濃度がカルシウムイオン濃度である場合には、例えば、配列番号:50(6RL#9-IgG1)または配列番号:51(6KC4-1#85-IgG1)に記載された重鎖可変領域配列とランダム化可変領域配列ライブラリとして作製された軽鎖可変領域とを組み合わせたライブラリが好適に挙げられる。また、ランダム化可変領域配列ライブラリとして作製された軽鎖可変領域の代わりに、生殖細胞系列の配列を有する軽鎖可変領域の中から適宜選択することによって作製され得る。例えば、配列番号:50(6RL#9-IgG1)または配列番号:51(6KC4-1#85-IgG1)に記載された重鎖可変領域配列と生殖細胞系列の配列を有する軽鎖可変領域とを組み合わせたライブラリが好適に挙げられる。
 また、前記の「イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基」が予め含まれているフレームワーク配列として選択された重鎖可変領域の配列に、フレキシブル残基が含まれるように設計することも可能である。本発明の抗原結合分子の抗原に対する結合活性が、イオン濃度の条件によって変化する限り、当該フレキシブル残基の数および位置は特定の態様に限定されることはない。すなわち、重鎖および/または軽鎖のCDR配列および/またはFR配列に一つまたはそれ以上のフレキシブル残基が含まれ得る。例えば、イオン濃度がカルシウムイオン濃度である場合には、配列番号:50(6RL#9-IgG1)に記載された重鎖可変領域配列に導入されるフレキシブル残基の非限定的な例として、重鎖CDR1およびCDR2の全てのアミノ酸残基のほか重鎖CDR3の95位、96位および/または100a位以外のCDR3のアミノ酸残基が挙げられる。または配列番号:51(6KC4-1#85-IgG1)に記載された重鎖可変領域配列に導入されるフレキシブル残基の非限定的な例として、重鎖CDR1およびCDR2の全てのアミノ酸残基のほか重鎖CDR3の95位および/または101位以外のCDR3のアミノ酸残基もまた挙げられる。
 また、前記の「イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基」が導入された重鎖可変領域とランダム化可変領域配列ライブラリとして作製された軽鎖可変領域または生殖細胞系列の配列を有する軽鎖可変領域とを組み合わせることによっても、複数の互いに配列の異なる抗原結合分子を含むライブラリが作製され得る。このような非限定的な例として、イオン濃度がカルシウムイオン濃度である場合には、例えば、重鎖可変領域の特定の残基が、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基に置換された重鎖可変領域配列とランダム化可変領域配列ライブラリとして作製された軽鎖可変領域または生殖細胞系列の配列を有する軽鎖可変領域とを組み合わせたライブラリが好適に挙げられる。当該アミノ酸残基の非限定な例として重鎖のCDR1に含まれるアミノ酸残基が例示される。ほかにも、当該アミノ酸残基の非限定な例として重鎖のCDR2に含まれるアミノ酸残基が例示される。また、当該アミノ酸残基の非限定な別の例として重鎖のCDR3に含まれるアミノ酸残基もまた例示される。当該アミノ酸残基が重鎖のCDR3に含まれアミノ酸残基の非限定な例として、重鎖可変領域のCDR3中のKabatナンバリングで表される95位、96位、100a位および/または101位のアミノ酸が挙げられる。また、これらのアミノ酸残基が、カルシウム結合モチーフを形成し、および/または、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性が変化する限り、これらのアミノ酸残基が単独で含まれ得るし、これらのアミノ酸が二つ以上組み合わされて含まれ得る。
 前記の、イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基が導入された重鎖可変領域とランダム化可変領域配列ライブラリとして作製された軽鎖可変領域または生殖細胞系列の配列を有する軽鎖可変領域とを組み合わせる場合でも、前記と同様に、フレキシブル残基が当該重鎖可変領域の配列に含まれるように設計することも可能である。本発明の抗原結合分子の抗原に対する結合活性が、イオン濃度の条件によって変化する限り、当該フレキシブル残基の数および位置は特定の態様に限定されることはない。すなわち、重鎖のCDR配列および/またはFR配列に一つまたはそれ以上のフレキシブル残基が含まれ得る。また、イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸残基以外の重鎖可変領域のCDR1、CDR2および/またはCDR3のアミノ酸配列としてランダム化可変領域ライブラリも好適に使用され得る。軽鎖可変領域として生殖細胞系列の配列が用いられる場合には、例えば、配列番号:46(Vk1)、配列番号:47(Vk2)、配列番号:48(Vk3)、配列番号:49(Vk4)等の生殖細胞系列の配列が非限定な例として挙げられ得る。
 前記の、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸としては、カルシウム結合モチーフを形成する限り、いずれのアミノ酸も好適に使用され得るが、そのようなアミノ酸としては具体的に電子供与性を有するアミノ酸が挙げられる。こうした電子供与性を有するアミノ酸としては、セリン、スレオニン、アスパラギン、グルタミン、アスパラギン酸またはグルタミン酸が好適に例示される。
 また、本発明の「イオン濃度の条件」として、例えば「pHの条件」を挙げることもできる。pHの条件は、水素イオン濃度の条件ということもできる。本発明で、プロトンすなわち水素原子の原子核の濃度の条件は、水素指数(pH)の条件とも同義に取り扱われる。水溶液中の水素イオンの活動量をaH+で表すと、pHは-log10aH+と定義される。水溶液中のイオン強度が(例えば10-3より)低ければ、aH+は水素イオン強度にほぼ等しい。例えば25℃、1気圧における水のイオン積はKw=aH+aOH=10-14であるため、純水ではaH+=aOH=10-7である。この場合のpH=7が中性であり、pHが7より小さい水溶液は酸性、pHが7より大きい水溶液はアルカリ性である。 
 本発明においては、イオン濃度の条件としてpHの条件が用いられる場合には、pHの条件として高水素イオン濃度または低pHすなわちpH酸性域の条件と低水素イオン濃度または高pHすなわちpH中性域の条件が挙げられる。本発明の抗原結合分子に含まれる抗原結合ドメインの抗原に対する結合活性がpHの条件によって結合活性が変化するとは、高水素イオン濃度または低pH(pH酸性域)と低水素イオン濃度または高pH(pH中性域)の条件の違いによって抗原結合分子に含まれる抗原結合ドメインの抗原に対する結合活性が変化することをいう。例えば、pH酸性域の条件下における抗原に対する抗原結合分子の結合活性よりもpH中性域の条件下における抗原に対する抗原結合分子の結合活性の方が高い場合が挙げられる。また、pH中性域の条件下における抗原に対する抗原結合分子の結合活性よりもpH酸性域の条件下における抗原に対する抗原結合分子の結合活性の方が高い場合もまた挙げられる。
 本明細書において、pH中性域とはとくに一義的な数値に限定されるわけではないが、好適にはpH6.7からpH10.0の間から選択され得る。また、別の態様では、pH6.7からpH9.5の間から選択され得る。また、異なる態様ではpH7.0からpH9.0の間から選択され得るし、ほかの態様ではpH7.0からpH8.0の間から選択され得る。特に生体内の血漿中(血中)でのpHに近いpH7.4が好適に挙げられる。
 本明細書において、pH酸性域とはとくに一義的な数値に限定されるわけではないが、好適にはpH4.0からpH6.5の間から選択され得る。また、別の態様では、pH4.5からpH6.5の間から選択され得る。また、異なる態様ではpH5.0からpH6.5の間から選択され得るし、ほかの態様ではpH5.5からpH6.5の間から選択され得る。特に生体内の早期エンドソーム内でのイオン化カルシウム濃度に近いpH5.8が好適に挙げられる。
 本発明において、高水素イオン濃度または低pH(pH酸性域)の条件下における抗原に対する結合活性が低水素イオン濃度または高pH(pH中性域)の条件下における抗原に対する結合活性より低いとは、本発明の抗原結合ドメインまたは当該ドメインを含む抗原結合分子のpH4.0からpH6.5の間から選択されるpHでの抗原に対する結合活性が、pH6.7からpH10.0の間から選択されるpHでの抗原に対する結合活性より弱いことを意味する。好ましくは、本発明の抗原結合ドメインまたは当該ドメインを含む抗原結合分子のpH4.5からpH6.5の間から選択されるpHでの抗原に対する結合活性が、pH6.7からpH9.5の間から選択されるpHでの抗原に対する結合活性より弱いことを意味し、より好ましくは、抗原結合分子のpH5.0からpH6.5の間から選択されるpHでの抗原に対する結合活性が、pH7.0からpH9.0の間から選択されるpHでの抗原に対する結合活性より弱いことを意味する。また、好ましくは抗原結合分子のpH5.5からpH6.5の間から選択されるpHでの抗原に対する結合活性が、pH7.0からpH8.0の間から選択されるpHでの抗原に対する結合活性より弱いことを意味する。特に好ましくは、生体内の早期エンドソーム内のpHにおける抗原結合活性が、生体内の血漿中のpHにおける抗原結合活性より弱いことを意味し、具体的には、抗原結合分子のpH5.8での抗原に対する結合活性が、pH7.4での抗原に対する結合活性より弱いことを意味する。
 pHの条件によって抗原に対する抗原結合ドメインまたは当該ドメインを含む抗原結合分子の結合活性が変化しているか否かは、例えば前記の結合活性の項で記載されたような公知の測定方法を使用することによって決定され得る。例えば、当該測定方法に際して異なるpHの条件下での結合活性が測定される。例えば、pH酸性域の条件下における抗原に対する抗原結合ドメインまたは当該ドメインを含む抗原結合分子の結合活性よりもpH中性域の条件下における抗原に対する前記ドメインまたは前記の結合活性の方が高く変化することを確認するためには、pH酸性域およびpH中性域の条件下における抗原に対する前記ドメインまたは前記分子の結合活性が比較される。
 さらに本発明において、「高水素イオン濃度または低pHすなわちpH酸性域の条件下における抗原に対する結合活性が低水素イオン濃度または高pHすなわちpH中性域の条件下における抗原に対する結合活性より低い」という表現は、抗原結合ドメインまたは当該ドメインを含む抗原結合分子の低水素イオン濃度または高pHすなわちpH中性域の条件下における抗原に対する結合活性が高水素イオン濃度または低pHすなわちpH酸性域の条件下における抗原に対する結合活性よりも高いと表現することもできる。なお本発明においては、「高水素イオン濃度または低pHすなわちpH酸性域の条件下における抗原に対する結合活性が低水素イオン濃度または高pHすなわちpH中性域の条件下における抗原に対する結合活性より低い」を「高水素イオン濃度または低pHすなわちpH酸性域の条件下における抗原に対する結合活性が低水素イオン濃度または高pHすなわちpH中性域の条件下における抗原に対する結合能よりも弱い」と記載する場合もあり、また、「高水素イオン濃度または低pHすなわちpH酸性域の条件下における抗原に対する結合活性が低水素イオン濃度または高pHすなわちpH中性域の条件下における抗原に対する結合活性より低下させる」を「高水素イオン濃度または低pHすなわちpH酸性域の条件下における抗原に対する結合活性が低水素イオン濃度または高pHすなわちpH中性域の条件下における抗原に対する結合能よりも弱くする」と記載する場合もある。
 抗原に対する結合活性を測定する際の水素イオン濃度またはpH以外の条件は、当業者が適宜選択することが可能であり、特に限定されない。例えば、HEPESバッファー、37℃の条件において測定することが可能である。例えば、Biacore(GE Healthcare)などを用いて測定することが可能である。抗原結合ドメインまたは当該ドメインを含む抗原結合分子と抗原との結合活性の測定は、抗原が可溶型抗原である場合は、抗原結合ドメインまたは当該ドメインを含む抗原結合分子を固定化したチップへ、抗原をアナライトとして流すことで可溶型抗原への結合活性を評価することが可能であり、抗原が膜型抗原である場合は、抗原を固定化したチップへ、抗原結合ドメインまたは当該ドメインを含む抗原結合分子をアナライトとして流すことで膜型抗原への結合活性を評価することが可能である。
 本発明の抗原結合分子において、高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性よりも弱い限り、高水素イオン濃度または低pHすなわちpH酸性域の条件下における抗原に対する結合活性と低水素イオン濃度または高pHすなわちpH中性域の条件下における抗原に対する結合活性の比は特に限定されないが、好ましくは抗原に対する高水素イオン濃度または低pHすなわちpH酸性域の条件におけるKD(Dissociation constant:解離定数)と低水素イオン濃度または高pHすなわちpH中性域の条件におけるKDの比であるKD (pH5.8)/KD (pH7.4)の値が2以上であり、さらに好ましくはKD (pH5.8)/KD (pH7.4)の値が10以上であり、さらに好ましくはKD (pH5.8)/KD (pH7.4)の値が40以上である。KD (pH5.8)/KD (pH7.4)の値の上限は特に限定されず、当業者の技術において作製可能な限り、400、1000、10000等、いかなる値でもよい。
 また、本発明の抗原結合ドメインまたは当該ドメインを含む抗原結合分子の高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性と低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性の比を示す他の指標として、例えば、解離速度定数であるkd(Dissociation rate constant:解離速度定数)もまた好適に用いられ得る。結合活性の比を示す指標としてKD(解離定数)の代わりにkd(解離速度定数)を用いる場合、抗原に対する高水素イオン濃度または低pHすなわちpH酸性域の条件におけるkd(解離速度定数)と低水素イオン濃度または高pHすなわちpH中性域の条件におけるkd(解離速度定数)の比であるkd(pH酸性域の条件における)/kd(pH中性域の条件における)の値は、好ましくは2以上であり、さらに好ましくは5以上であり、さらに好ましくは10以上であり、より好ましくは30以上である。Kd(pH酸性域の条件における)/kd(pH中性域の条件における)の値の上限は特に限定されず、当業者の技術常識において作製可能な限り、50、100、200等、いかなる値でもよい。
 抗原結合活性の値として、抗原が可溶型抗原の場合はkd(解離速度定数)を用いることが可能であり、抗原が膜型抗原の場合は見かけのkd(Apparent dissociation rate constant:見かけの解離速度定数)を用いることが可能である。kd(解離速度定数)、および、見かけのkd(見かけの解離速度定数)は、当業者公知の方法で測定することが可能であり、例えばBiacore(GE healthcare)、フローサイトメーター等を用いることが可能である。なお本発明において、異なる水素イオン濃度すなわちpHにおける抗原結合ドメインまたは当該ドメインを含む抗原結合分子の抗原に対する結合活性を測定する際は、水素イオン濃度すなわちpH以外の条件は同一とすることが好ましい。
 例えば、本発明が提供する一つの態様である高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗原結合分子は、以下の工程(a)~(c)を含む抗原結合ドメインまたは抗原結合分子のスクリーニングによって取得され得る。
(a) pH酸性域の条件における抗原結合ドメインまたは抗原結合分子の抗原結合活性を得る工程、
(b) pH中性域の条件における抗原結合ドメインまたは抗原結合分子の抗原結合活性を得る工程、
(c) pH酸性域の条件における抗原結合活性が、pH中性域の条件における抗原結合活性より低い抗原結合ドメインまたは抗原結合分子を選択する工程。
 さらに、本発明が提供する一つの態様である高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗原結合分子は、以下の工程(a)~(c)を含む抗原結合ドメインまたは抗原結合分子もしくはそれらのライブラリのスクリーニングによって取得され得る。
(a) pH中性域の条件における抗原結合ドメインまたは抗原結合分子もしくはそれらのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメインまたは抗原結合分子をpH酸性域の条件に置く工程、
(c) 前記工程(b)で解離した抗原結合ドメインまたは抗原結合分子を単離する工程。
 また、本発明が提供する一つの態様である高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗原結合分子は、以下の工程(a)~(d)を含む抗原結合ドメインまたは抗原結合分子若しくはそれらのライブラリのスクリーニングによって取得され得る。
(a) pH酸性域の条件で抗原結合ドメイン又は抗原結合分子のライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合しない抗原結合ドメイン又は抗原結合分子を選択する工程、
(c) 前記工程(b)で選択された抗原結合ドメイン又は抗原結合分子をpH中性域の条件で抗原に結合させる工程、
(d) 前記工程(c)で抗原に結合した抗原結合ドメイン又は抗原結合分子を単離する工程。
 さらに、本発明が提供する一つの態様である高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗原結合分子は、以下の工程(a)~(c)を含むスクリーニング方法によって取得され得る。
(a) 抗原を固定したカラムにpH中性域の条件で抗原結合ドメイン又は抗原結合分子のライブラリを接触させる工程、
(b) 前記工程(a)でカラムに結合した抗原結合ドメイン又は抗原結合分子をpH酸性域の条件でカラムから溶出する工程、
(c) 前記工程(b)で溶出された抗原結合ドメイン又は抗原結合分子を単離する工程。
 さらに、本発明が提供する一つの態様である高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗原結合分子は、以下の工程(a)~(d)を含むスクリーニング方法によって取得され得る。
(a) 抗原を固定したカラムにpH酸性域の条件で抗原結合ドメイン又は抗原結合分子のライブラリを通過させる工程、
(b) 前記工程(a)でカラムに結合せずに溶出した抗原結合ドメイン又は抗原結合分子を回収する工程、
(c) 前記工程(b)で回収された抗原結合ドメイン又は抗原結合分子をpH中性域の条件で抗原に結合させる工程、
(d) 前記工程(c)で抗原に結合した抗原結合ドメイン又は抗原結合分子を単離する工程。
 さらに、本発明が提供する一つの態様である高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗原結合分子は、以下の工程(a)~(d)を含むスクリーニング方法によって取得され得る。
(a) pH中性域の条件で抗原結合ドメイン又は抗原結合分子のライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメイン又は抗原結合分子を取得する工程、
(c) 前記工程(b)で取得した抗原結合ドメイン又は抗原結合分子をpH酸性域の条件に置く工程、
(d) 前記工程(c)で抗原結合活性が、前記工程(b)で選択した基準より弱い抗原結合ドメイン又は抗原結合分子を単離する工程。
 なお、前記の工程は2回以上繰り返されてもよい。従って、本発明によって、上述のスクリーニング方法において、(a)~(c)あるいは(a)~(d)の工程を2回以上繰り返す工程をさらに含むスクリーニング方法によって取得されたpH酸性域の条件における抗原に対する結合活性がpH中性域の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗原結合分子が提供される。(a)~(c)あるいは(a)~(d)の工程が繰り返される回数は特に限定されないが、通常10回以内である。
 本発明のスクリーニング方法において、高水素イオン濃度条件または低pHすなわちpH酸性域における抗原結合ドメイン又は抗原結合分子の抗原結合活性は、pHが4.0~6.5の間の抗原結合活性であれば特に限定されないが、好ましいpHとして、pHが4.5~6.6の間の抗原結合活性を挙げることができる。別の好ましいpHとして、pHが5.0~6.5の間の抗原結合活性、さらにpHが5.5~6.5の間の抗原結合活性を挙げることができる。より好ましいpHとして、生体内の早期エンドソーム内のpHが挙げられ、具体的にはpH5.8における抗原結合活性を挙げることができる。また、低水素イオン濃度条件または高pHすなわちpH中性域における抗原結合ドメイン又は抗原結合分子の抗原結合活性は、pHが6.7~10の間の抗原結合活性であれば特に限定されないが、好ましいpHとしてpHが6.7~9.5の間の抗原結合活性を挙げることができる。別の好ましいpHとして、pHが7.0~9.5の間の抗原結合活性、さらにpHが7.0~8.0の間の抗原結合活性を挙げることができる。より好ましいpHとして、生体内の血漿中でのpHを挙げることができ、具体的にはpHが7.4における抗原結合活性を挙げることができる。
 抗原結合ドメイン又は抗原結合分子の抗原結合活性は当業者に公知の方法により測定することが可能であり、イオン化カルシウム濃度以外の条件については当業者が適宜決定することが可能である。抗原結合ドメイン又は抗原結合分子の抗原結合活性は、KD(Dissociation constant:解離定数)、見かけのKD(Apparent dissociation constant:見かけの解離定数)、解離速度であるkd(Dissociation rate:解離速度定数)、又は見かけのkd(Apparent dissociation:見かけの解離速度定数)等として評価することが可能である。これらは当業者公知の方法で測定することが可能であり、例えばBiacore(GE healthcare)、スキャッチャードプロット、FACS等を用いることが可能である。
 本発明において、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原結合活性が高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原結合活性より高い抗原結合ドメイン又は抗原結合分子を選択する工程は、高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原結合活性が低水素イオン濃度または高pHすなわちpH中性域の条件における抗原結合活性より低い抗原結合ドメイン又は抗原結合分子を選択する工程と同じ意味である。
 低水素イオン濃度または高pHすなわちpH中性域の条件における抗原結合活性が高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原結合活性より高い限り、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原結合活性と高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原結合活性の差は特に限定されないが、好ましくは低水素イオン濃度または高pHすなわちpH中性域の条件における抗原結合活性が高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原結合活性の2倍以上であり、さらに好ましくは10倍以上であり、より好ましくは40倍以上である。
 前記のスクリーニング方法によってスクリーニングされる本発明の水素イオン濃度の条件によって抗原に対する結合活性を変化させる抗原結合ドメイン又は抗原結合分子はどのように調製されてもよく、例えば、あらかじめ存在している抗原結合分子、あらかじめ存在しているライブラリ(ファージライブラリ等)、動物への免疫から得られたハイブリドーマや免疫動物からのB細胞から作製された抗体又はライブラリ、これらの抗体やライブラリに側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸変異を導入した抗体又はライブラリ(側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)又は非天然アミノ酸の含有率を高くしたライブラリや特定箇所に側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)又は非天然アミノ酸変異を導入したライブラリ等)などを用いることが可能である。
 動物への免疫から得られたハイブリドーマや免疫動物からのB細胞から作製された抗原結合ドメインまたは抗原結合分子から、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原結合活性が高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原結合活性より高い抗原結合ドメイン又は抗原結合分子を取得する方法として、例えば、国際公開WO2009/125825で記載されるような抗原結合ドメインまたは抗原結合分子中のアミノ酸の少なくとも一つが、側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸変異に置換されているもしくは抗原結合ドメインまたは抗原結合分子中に、側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸が挿入されている抗原結合分子または抗原結合分子が好適に挙げられる。
 側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異が導入される位置は特に限定されず、置換または挿入前と比較してpH酸性域における抗原結合活性がpH中性域における抗原結合活性より弱くなる(KD(pH酸性域)/KD(pH中性域)の値が大きくなる、又はkd(pH酸性域)/kd(pH中性域)の値が大きくなる)限り、如何なる部位でもよい。例えば、抗原結合分子が抗体の場合には、抗体の可変領域やCDRなどが好適に挙げられる。側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸に置換されるアミノ酸の数、又は挿入されるアミノ酸の数は当業者が適宜決定することができ、側鎖のpKaが4.0-8.0である1つのアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸によって置換され得るし、側鎖のpKaが4.0-8.0である1つのアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸が挿入され得るし、側鎖のpKaが4.0-8.0である2つ以上の複数のアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸によって置換され得るし、側鎖のpKaが4.0-8.0である2つ以上のアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸が挿入され得る。又、側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸への置換又は側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の挿入以外に、他のアミノ酸の欠失、付加、挿入および/または置換などが同時に行われ得る。側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸への置換又は側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の挿入は、当業者の公知のアラニンscanningのアラニンをヒスチジン等に置き換えたヒスチジン等scanning等の方法によってランダムに行われ得るし、側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の置換または挿入の変異がランダムに導入された抗原結合ドメインまたは抗体の中から、変異前と比較してKD(pH酸性域)/KD(pH中性域)又はkd(pH酸性域)/kd(pH中性域)の値が大きくなった抗原結合分子が選択され得る。
 前記のようにその側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸への変異が行われ、かつpH酸性域での抗原結合活性がpH中性域での抗原結合活性よりも低い抗原結合分子の好ましい例として、例えば、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸への変異後のpH中性域での抗原結合活性が、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸への変異前のpH中性域での抗原結合活性と同等である抗原結合分子が好適に挙げられる。本発明において、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異後の抗原結合分子が、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異前の抗原結合分子と同等の抗原結合活性を有するとは、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異前の抗原結合分子の抗原結合活性を100%とした場合に、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異後の抗原結合分子の抗原結合活性が少なくとも10%以上、好ましくは50%以上、さらに好ましくは80%以上、より好ましくは90%以上であることをいう。その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異後のpH7.4での抗原結合活性が、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異前のpH7.4での抗原結合活性より高くなってもよい。その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸への置換または挿入により抗原結合分子の抗原結合活性が低くなった場合には、抗原結合分子中の1又は複数のアミノ酸の置換、欠失、付加及び/又は挿入などによって、抗原結合活性が、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の置換又は挿入前の抗原結合活性と同等にされ得る。本発明においては、そのような側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の置換又は挿入後に1又は複数のアミノ酸の置換、欠失、付加及び/又は挿入を行うことによって結合活性が同等となった抗原結合分子も含まれる。
 本発明の一つの態様として、「水素イオン濃度の条件によって抗原に対する抗原結合ドメインまたは抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基」が導入された軽鎖可変領域とランダム化可変領域配列ライブラリとして作製された重鎖可変領域とを組み合わせることによっても、本発明の複数の互いに配列の異なる抗原結合ドメインまたは抗原結合分子を含むライブラリが作製され得る。
 当該アミノ酸残基の非限定な例として軽鎖のCDR1に含まれるアミノ酸残基が例示される。ほかにも、当該アミノ酸残基の非限定な例として軽鎖のCDR2に含まれるアミノ酸残基が例示される。また、当該アミノ酸残基の非限定な別の例として軽鎖のCDR3に含まれるアミノ酸残基もまた例示される。
 前記のように、当該アミノ酸残基が軽鎖のCDR1に含まれるアミノ酸残基の非限定な例として、軽鎖可変領域のCDR1中のKabatナンバリングで表される24位、27位、28位、31位、32位および/または34位のアミノ酸残基が挙げられる。また、当該アミノ酸残基が軽鎖のCDR2に含まれるアミノ酸残基の非限定な例として、軽鎖可変領域のCDR2中のKabatナンバリングで表される50位、51位、52位、53位、54位、55位および/または56位のアミノ酸残基が挙げられる。さらに、当該アミノ酸残基が軽鎖のCDR3に含まれアミノ酸残基の非限定な例として、軽鎖可変領域のCDR3中のKabatナンバリングで表される89位、90位、91位、92位、93位、94位および/または95A位のアミノ酸残基が挙げられる。また、これらのアミノ酸残基が、水素イオン濃度の条件によって抗原に対する抗原結合分子の結合活性が変化する限り、これらのアミノ酸残基が単独で含まれ得るし、これらのアミノ酸が二つ以上組み合わされて含まれ得る。
 前記の「水素イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基」が導入された軽鎖可変領域とランダム化可変領域配列ライブラリとして作製された重鎖可変領域とを組み合わせる場合でも、前記と同様に、フレキシブル残基が当該軽鎖可変領域の配列に含まれるように設計することも可能である。本発明の抗原結合ドメインまたは抗原結合分子の抗原に対する結合活性が、水素イオン濃度の条件によって変化する限り、当該フレキシブル残基の数および位置は特定の態様に限定されることはない。すなわち、重鎖および/または軽鎖のCDR配列および/またはFR配列に一つまたはそれ以上のフレキシブル残基が含まれ得る。例えば、軽鎖可変領域配列に導入されるフレキシブル残基の非限定的な例として、表3または表4に記載されたアミノ酸残基が挙げられる。また、水素イオン濃度の条件によって抗原に対する抗原結合ドメインまたは抗原結合分子の結合活性を変化させるアミノ酸残基やフレキシブル残基以外の軽鎖可変領域のアミノ酸配列としては、非限定な例としてVk1(配列番号:46)、Vk2(配列番号:47)、Vk3(配列番号:48)、Vk4(配列番号:49)等の生殖細胞系列の配列が好適に使用され得る。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 前記の、水素イオン濃度の条件によって抗原に対する抗原結合ドメインまたは抗原結合分子の結合活性を変化させるアミノ酸残基としては、いずれのアミノ酸残基も好適に使用され得るが、そのようなアミノ酸残基としては、具体的に側鎖のpKaが4.0-8.0であるアミノ酸が挙げられる。こうした電子供与性を有するアミノ酸としては、ヒスチジンまたはグルタミン酸等の天然のアミノ酸のほか、ヒスチジンアナログ(US2009/0035836)もしくはm-NO2-Tyr(pKa 7.45)、3,5-Br2-Tyr(pKa 7.21)または3,5-I2-Tyr(pKa 7.38)等の非天然のアミノ酸(Bioorg. Med. Chem. (2003) 11 (17), 3761-3768が好適に例示される。また、当該アミノ酸残基の特に好適な例としては、側鎖のpKaが6.0-7.0であるアミノ酸が挙げられる。こうした電子供与性を有するアミノ酸としては、ヒスチジンが好適に例示される。
 組み合わされる重鎖可変領域の例として、ランダム化可変領域ライブラリが好適に挙げられる。ランダム化可変領域ライブラリの作製方法は公知の方法が適宜組み合わされる。本発明の非限定な一態様では、特定の抗原で免疫された動物、感染症患者やワクチン接種して血中抗体価が上昇したヒト、癌患者、自己免疫疾患のリンパ球由来の抗体遺伝子をもとに構築された免疫ライブラリが、ランダム化可変領域ライブラリとして好適に使用され得る。
 また、本発明の非限定な一態様では、前記と同様に、ゲノムDNAにおけるV遺伝子や再構築され機能的なV遺伝子のCDR配列が、適当な長さのコドンセットをコードする配列を含む合成オリゴヌクレオチドセットで置換された合成ライブラリもまた、ランダム化可変領域ライブラリとして好適に使用され得る。この場合、重鎖のCDR3の遺伝子配列の多様性が観察されることから、CDR3の配列のみを置換することもまた可能である。抗原結合分子の可変領域においてアミノ酸の多様性を生み出す基準は、抗原結合分子の表面に露出した位置のアミノ酸残基に多様性を持たせることである。表面に露出した位置とは、抗原結合分子の構造、構造アンサンブル、および/またはモデル化された構造にもとづいて、表面に露出が可能、かつ/または抗原との接触が可能と判断される位置のことをいうが、一般的にはそのCDRである。好ましくは、表面に露出した位置は、InsightIIプログラム(Accelrys)のようなコンピュータプログラムを用いて、抗原結合分子の3次元モデルからの座標を使って決定される。表面に露出した位置は、当技術分野で公知のアルゴリズム(例えば、LeeおよびRichards(J. Mol. Biol. (1971) 55, 379-400)、Connolly(J. Appl. Cryst. (1983) 16, 548-558))を使用して決定され得る。表面に露出した位置の決定は、タンパク質モデリングに適したソフトウェアおよび抗体から得られる三次元構造情報を使って行われ得る。このような目的のために利用できるソフトウェアとして、SYBYL生体高分子モジュールソフトウェア(Tripos Associates)が好適に挙げられる。一般的に、また好ましくは、アルゴリズムがユーザーの入力サイズパラメータを必要とする場合は、計算において使われるプローブの「サイズ」は半径約1.4オングストローム以下に設定される。さらに、パーソナルコンピュータ用のソフトウェアを使用した表面に露出した領域およびエリアの決定法が、Pacios(Comput. Chem. (1994) 18 (4), 377-386およびJ. Mol. Model. (1995) 1, 46-53)に記載されている。
 さらに、本発明の非限定な一態様では、健常人のリンパ球由来の抗体遺伝子から構築され、そのレパートリーにバイアスを含まない抗体配列であるナイーブ配列からなるナイーブライブラリもまた、ランダム化可変領域ライブラリとして特に好適に使用され得る(Gejimaら(Human Antibodies (2002) 11,121-129)およびCardosoら(Scand. J. Immunol. (2000) 51, 337-344))。
 また、更にpH酸性域の条件下におけるヒトFcRn結合活性を増強させるためのアミノ酸改変を組み合わせることができる。より具体的には、例えば、pH酸性域の条件下におけるヒトFcRn結合活性を増強させるために用いられる改変としては、IgG抗体のEUナンバリングで表される428位のMetをLeuに置換し、434位のAsnをSerに置換する方法(Nat Biotechnol, 2010 28:157-159.)、434位のAsnをAlaに置換する方法(Drug Metab Dispos. 2010 Apr;38(4):600-5.)、252位のMetをTyrに置換し、254位のSerをThrに置換し、256位のThrをGluに置換する方法(J Biol Chem, 2006, 281:23514-23524)、250位のThrをGlnに置換し、428位のMetをLeuに置換する方法(J Immunol. 2006, 176(1):346-56)、434位のAsnをHisに置換する方法(Clinical Pharmacology & Therapeutics (2011) 89(2):283-290.)、ならびにWO2010106180、WO2010045193、WO2009058492、 WO2008022152、WO2006050166、WO2006053301、WO2006031370、WO2005123780、WO2005047327、WO2005037867、WO2004035752、WO2002060919などにおいて記載されるような改変を用いることによっても実施が可能であると考えられる。
 また、近年、ヒト化抗CD4抗体に対して、pH酸性域の条件下においてヒトFcRnに対する結合活性を増強し、血漿中滞留性を向上させるために、EUナンバリングで表される434位のAsnをHisに置換した抗体分子が、リウマチ因子(Rheumatiod factor、RF)に対して結合することが報告された(Clin Pharmacol Ther. 2011 Feb;89(2):283-90)。この抗体はヒトIgG1のFc領域を有しているが、FcRnに対する結合部位に位置する434位のAsnをHisに置換することにより、その置換箇所を認識するリウマチ因子が結合することが示されている。
 上述の通り、pH酸性域の条件下においてヒトFcRnに対する結合活性を増強するための改変として、様々なものが報告されているが、これらの改変をFc領域の中のFcRn結合部位に導入することによって、当該部位を認識するリウマチ因子に対する結合性を増強してしまう可能性がある。
 しかしながら、Fc領域の当該部位に、FcRnに対する結合活性を低下させることなく、リウマチ因子に対する結合活性のみを低下させる改変を導入することにより、リウマチ因子に対する結合性を持たずにpH酸性域の条件下におけるヒトFcRnに対する結合活性を増強させた抗原結合分子を作製することが可能である。
 そのような、リウマチ因子に対する結合活性を低下させる改変としては、EUナンバリングによって表される248-257, 305-314, 342-352, 380-386, 388, 414-421, 423, 425-437, 439, 441-444位への改変が用いられる。好ましくは、387, 422, 424, 426, 433, 436, 438, 440位への改変が好ましく用いられる。特に好ましくは、422位のValをGluまたはSerに置換する改変、424位のSerをArgに置換する改変、433位のHisをAspに置換する改変、436位のTyrをThrへ置換する改変、438位のGlnをArgまたはLysに置換する改変、440位のSerをGluまたはAspに置換する改変が用いられる。これらの改変は、単独で用いられても良いし、複数箇所を組み合わせて用いても良い。
 あるいは、リウマチ因子に対する結合活性を低下させるために、当該部位にN型糖鎖の付加配列を導入しても良い。具体的には、N型糖鎖付加配列としてAsn-Xxx-Ser/Thr(XxxはProを除く任意のアミノ酸)が知られているが、この配列をFc領域の当該部位に導入することによりN型糖鎖を付加させ、N型糖鎖の立体障害によってRFとの結合を阻害することが可能である。N型糖鎖を付加するための改変として、好ましくは、248位のLysをAsnに置換する改変、424位のSerをAsnに置換する改変、436位のTyrをAsnに置換し438位のGlnをThrに置換する改変、438位のGlnをAsnに置換する改変が用いられる。特に好ましくは、424位のSerをAsnに置換する改変が用いられる。
 本発明のFc領域改変体を含むポリペプチドの好ましい例として、IgG抗体のように少なくとも1つの会合している2つのFc領域改変体が含まれるポリペプチドを挙げることができる。抗体としてIgG抗体を用いる場合、その定常領域の種類は限定されず、IgG1、IgG2、IgG3、IgG4などのアイソタイプ(サブクラス)のIgGを用いることが可能である。本発明のIgG抗体は、好ましくはヒトIgGであり、さらに好ましくはヒトIgG1、ヒトIgG4であり、ヒトIgG1及びヒトIgG4の重鎖定常領域のアミノ酸配列は公知である。ヒトIgG1定常領域としては、遺伝子多型による複数のアロタイプ配列がSequences of proteins of immunological interest, NIH Publication No.91-3242に記載されているが、本発明においてはそのいずれであっても良い。
 本発明においてアミノ酸の改変とは、置換、欠損、付加、挿入あるいは修飾のいずれか、又はそれらの組み合わせを意味する。本発明においては、アミノ酸の改変はアミノ酸の変異と言い換えることが可能であり、同じ意味で使用される。
 アミノ酸残基を置換する場合には、別のアミノ酸残基に置換することで、例えば次の(a)~(c)のような点について改変することを目的とする。
(a) シート構造、若しくは、らせん構造の領域におけるポリペプチドの背骨構造;
(b) 標的部位における電荷若しくは疎水性、または
(c) 側鎖の大きさ。
 アミノ酸残基は一般の側鎖の特性に基づいて以下のグループに分類される:
(1) 疎水性: ノルロイシン、met、ala、val、leu、ile;
(2) 中性親水性: cys、ser、thr、asn、gln;
(3) 酸性: asp、glu;
(4) 塩基性: his、lys、arg;
(5) 鎖の配向に影響する残基: gly、pro;及び
(6) 芳香族性: trp、tyr、phe。
 これらの各グループ内でのアミノ酸残基の置換は保存的置換と呼ばれ、一方、他グループ間同士でのアミノ酸残基の置換は非保存的置換と呼ばれる。本発明における置換は、保存的置換であってもよく、非保存的置換であってもよく、また保存的置換と非保存的置換の組合せであってもよい。
 アミノ酸配列の改変は、当分野において公知の種々の方法により調製される。これらの方法には、次のものに限定されるわけではないが、部位特異的変異誘導法(Hashimoto-Gotoh, T, Mizuno, T, Ogasahara, Y, and Nakagawa, M. (1995) An oligodeoxyribonucleotide-directed dual amber method for site-directed mutagenesis. Gene 152, 271-275、Zoller, MJ, and Smith, M.(1983) Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors.Methods Enzymol. 100, 468-500、Kramer,W, Drutsa,V, Jansen,HW, Kramer,B, Pflugfelder,M, and Fritz,HJ(1984) The gapped duplex DNA approach to oligonucleotide-directed mutation construction. Nucleic Acids Res. 12, 9441-9456、Kramer W, and Fritz HJ(1987) Oligonucleotide-directed construction of mutations via gapped duplex DNA Methods. Enzymol. 154, 350-367、Kunkel,TA(1985) Rapid and efficient site-specific mutagenesis without phenotypic selection.Proc Natl Acad Sci U S A. 82, 488-492)、PCR変異法、カセット変異法等の方法により行うことができる。
 本発明のアミノ酸の修飾には、翻訳後修飾が含まれる。具体的な翻訳後修飾として、糖鎖の付加あるいは欠損を示すことができる。たとえば、配列番号:31に記載のアミノ酸配列からなるIgG1定常領域において、EUナンバリングの297番目のアミノ酸残基は、糖鎖で修飾されたものであることができる。修飾される糖鎖構造は限定されない。一般的に、真核細胞で発現される抗体は、定常領域に糖鎖修飾を含む。したがって、以下のような細胞で発現される抗体は、通常、何らかの糖鎖で修飾される。
  ・哺乳動物の抗体産生細胞
  ・抗体をコードするDNAを含む発現ベクターで形質転換された真核細胞
 ここに示した真核細胞には、酵母や動物細胞が含まれる。たとえばCHO細胞やHEK293H細胞は、抗体をコードするDNAを含む発現ベクターで形質転換するための代表的な動物細胞である。他方、当該位置に糖鎖修飾が無いものも本発明の定常領域に含まれる。定常領域が糖鎖で修飾されていない抗体は、抗体をコードする遺伝子を大腸菌などの原核細胞で発現させて得ることができる。
 より具体的には、例えばFc領域の糖鎖にシアル酸を付加したものであってもよい(MAbs. 2010 Sep-Oct;2(5):519-27.)。
 さらに、本発明は上述のいずれかに記載のFc領域改変体を含む抗体を提供する。
 本発明における「抗体」という用語は、最も広い意味で使用され、所望の生物学的活性を示す限り、モノクローナル抗体(全長モノクローナル抗体を含む)、ポリクローナル抗体、抗体変異体、抗体断片、多特異性抗体(多重特異性抗体)(例えば、二特異性抗体(二重特異性抗体))、キメラ抗体、ヒト化抗体等、如何なる抗体も含まれる。
 本発明の抗体は、抗原の種類、抗体の由来などは限定されず、いかなる抗体でもよい。抗体の由来としては、特に限定されないが、ヒト抗体、マウス抗体、ラット抗体、ウサギ抗体などを挙げることができる。
 抗体を作製する方法は当業者によく知られているが、例えばモノクローナル抗体の場合ハイブリドーマ法(Kohler and Milstein, Nature 256:495 (1975))、組換え方法(米国特許第4,816,567号)により製造してもよい。また、ファージ抗体ライブラリーから単離してもよい(Clackson et al., Nature 352:624-628 (1991) ; Marks et al., J.Mol.Biol. 222:581-597 (1991))。
 ヒト化抗体は、再構成(reshaped)ヒト抗体とも称される。具体的には、ヒト以外の動物、たとえばマウス抗体のCDRをヒト抗体に移植したヒト化抗体などが公知である。ヒト化抗体を得るための一般的な遺伝子組換え手法も知られている。具体的には、マウスの抗体のCDRをヒトのFRに移植するための方法として、たとえばOverlap Extension PCRが公知である。
 3つのCDRと4つのFRが連結された抗体可変領域をコードするDNAとヒト抗体定常領域をコードするDNAとをインフレームで融合するように発現ベクター中に挿入することによって、ヒト化抗体発現用ベクターが作成できる。該組込みベクターを宿主に導入して組換え細胞を樹立した後に、該組換え細胞を培養し、該ヒト化抗体をコードするDNAを発現させることによって、該ヒト化抗体が該培養細胞の培養物中に産生される(欧州特許公開EP 239400、国際公開WO1996/002576参照)。
 必要に応じ、再構成ヒト抗体のCDRが適切な抗原結合部位を形成するようにFRのアミノ酸残基を置換することもできる。たとえば、マウスCDRのヒトFRへの移植に用いたPCR法を応用して、FRにアミノ酸配列の変異を導入することができる。
 ヒト抗体遺伝子の全てのレパートリーを有するトランスジェニック動物(国際公開WO1993/012227、WO1992/003918、WO1994/002602、WO1994/025585、WO1996/034096、WO1996/033735参照)を免疫動物とし、DNA免疫により所望のヒト抗体が取得され得る。
 さらに、ヒト抗体ライブラリーを用いて、パンニングによりヒト抗体を取得する技術も知られている。例えば、ヒト抗体のV領域が一本鎖抗体(scFv)としてファージディスプレイ法によりファージの表面に発現される。抗原に結合するscFvを発現するファージが選択され得る。選択されたファージの遺伝子を解析することにより、抗原に結合するヒト抗体のV領域をコードするDNA配列が決定できる。抗原に結合するscFvのDNA配列を決定した後、当該V領域配列を所望のヒト抗体C領域の配列とインフレームで融合させた後に適当な発現ベクターに挿入することによって発現ベクターが作製され得る。当該発現ベクターを上記に挙げたような好適な発現細胞中に導入し、該ヒト抗体をコードする遺伝子を発現させることにより当該ヒト抗体が取得される。これらの方法は既に公知である(国際公開WO1992/001047、WO1992/020791、WO1993/006213、WO1993/011236、WO1993/019172、WO1995/001438、WO1995/015388参照)。
 本発明の抗体を構成する可変領域は、任意の抗原を認識する可変領域であることが出来る。
 本明細書において抗原は特に限定されず、どのような抗原でもよい。抗原の例としては、例えば、リガンド(サイトカイン、ケモカインなど)、受容体、癌抗原、MHC抗原、分化抗原、免疫グロブリンおよび免疫グロブリンを一部に含む免疫複合体が好適に挙げられる。
 サイトカインの例としては、インターロイキン1~18、コロニー刺激因子(G-CSF、M-CSF、GM-CSFなど)、インターフェロン(IFN-α、IFN-β、IFN-γ、など)、成長因子(EGF、FGF、IGF、NGF、PDGF、TGF、HGFなど)、腫瘍壊死因子(TNF-α、TNF-β)、リンホトキシン、エリスロポエチン、レプチン、SCF、TPO、MCAF、BMPを挙げることができる。
 ケモカインの例としては、CCL1~CCL28などのCCケモカイン、CXCL1~CXCL17などのCXCケモカイン、XCL1~XCL2などのCケモカイン、CX3CL1などのCX3Cケモカインを挙げることができる。
 受容体の例としては、例えば、造血因子受容体ファミリー、サイトカイン受容体ファミリー、チロシンキナーゼ型受容体ファミリー、セリン/スレオニンキナーゼ型受容体ファミリー、TNF受容体ファミリー、Gタンパク質共役型受容体ファミリー、GPIアンカー型受容体ファミリー、チロシンホスファターゼ型受容体ファミリー、接着因子ファミリー、ホルモン受容体ファミリー、等の受容体ファミリーに属する受容体などを挙げることができる。これら受容体ファミリーに属する受容体、及びその特徴に関しては、多数の文献、例えば、Cooke BA., King RJB., van der Molen HJ. ed. New Comprehesive Biochemistry Vol.18B "Hormones and their Actions Part II" pp.1-46 (1988) Elsevier Science Publishers BV.、Patthy(Cell (1990) 61 (1), 13-14)、Ullrichら(Cell (1990) 61 (2), 203-212)、Massague(eにはアキュート・アクセント記号が付く)(Cell (1992) 69 (6), 1067-1070)、Miyajimaら(Annu. Rev. Immunol. (1992) 10, 295-331)、Tagaら(FASEB J. (1992) 6, 3387-3396)、Fantlら(Annu. Rev. Biochem. (1993), 62, 453-481)、Smithら(Cell (1994) 76 (6) 959-962)、Flower DR.(Biochim. Biophys. Acta (1999) 1422 (3) 207-234)等に記載されている。
 上記受容体ファミリーに属する具体的な受容体としては、例えば、ヒト又はマウスエリスロポエチン(EPO)受容体(Blood (1990) 76 (1), 31-35、Cell (1989) 57 (2), 277-285)、ヒト又はマウス顆粒球コロニー刺激因子(G-CSF)受容体(Proc. Natl. Acad. Sci. USA. (1990) 87 (22), 8702-8706、mG-CSFR、Cell (1990) 61 (2), 341-350)、ヒト又はマウストロンボポイエチン(TPO)受容体(Proc Natl Acad Sci U S A. (1992) 89 (12), 5640-5644、EMBO J. (1993) 12(7), 2645-53)、ヒト又はマウスインスリン受容体(Nature (1985) 313 (6005), 756-761)、ヒト又はマウスFlt-3リガンド受容体(Proc. Natl. Acad. Sci. USA. (1994) 91 (2), 459-463)、ヒト又はマウス血小板由来増殖因子(PDGF)受容体(Proc. Natl. Acad. Sci. USA. (1988) 85 (10) 3435-3439)、ヒト又はマウスインターフェロン(IFN)-α、β受容体(Cell (1990) 60 (2), 225-234.及びCell (1994) 77 (3), 391-400)、ヒト又はマウスレプチン受容体、ヒト又はマウス成長ホルモン(GH)受容体、ヒト又はマウスインターロイキン(IL)-10受容体、ヒト又はマウスインスリン様増殖因子(IGF)-I受容体、ヒト又はマウス白血病抑制因子(LIF)受容体、ヒト又はマウス毛様体神経栄養因子(CNTF)受容体等が好適に例示される。
 癌抗原は細胞の悪性化に伴って発現する抗原であり、腫瘍特異性抗原とも呼ばれる。又、細胞が癌化した際に細胞表面やタンパク質分子上に現れる異常な糖鎖も癌抗原であり、癌糖鎖抗原とも呼ばれる。癌抗原の例としては、例えば、上記の受容体としてGPIアンカー型受容体ファミリーに属するが肝癌を初めとする幾つかの癌において発現しているGPC3(Int J Cancer. (2003) 103 (4), 455-65)、肺癌を初めとする複数の癌で発現するEpCAM(Proc Natl Acad Sci U S A. (1989) 86 (1), 27-31)、CA19-9、CA15-3、シリアルSSEA-1(SLX)等が好適に挙げられる。
 MHC抗原は、主にMHC class I抗原とMHC class II抗原に分類され、MHC class I抗原には、HLA-A、-B、-C、-E、-F、-G、-Hが含まれ、MHC class II抗原には、HLA-DR、-DQ、-DPが含まれる。
 分化抗原には、CD1、CD2、CD4、CD5、CD6、CD7、CD8、CD10、CD11a、CD11b、CD11c、CD13、CD14、CD15s、CD16、CD18、CD19、CD20、CD21、CD23、CD25、CD28、CD29、CD30、CD32、CD33、CD34、CD35、CD38、CD40、CD41a、CD41b、CD42a、CD42b、CD43、CD44、CD45、CD45RO、CD48、CD49a、CD49b、CD49c、CD49d、CD49e、CD49f、CD51、CD54、CD55、CD56、CD57、CD58、CD61、CD62E、CD62L、CD62P、CD64、CD69、CD71、CD73、CD95、CD102、CD106、CD122、CD126、CDw130が含まれ得る。
 免疫グロブリンにはIgA、IgM、IgD、IgG、IgEが含まれる。また免疫複合体は少なくとも免疫グロブリンのいずれかの成分を含む。
 その他の抗原としては下記のような分子;17-IA、4-1BB、4Dc、6-ケト-PGF1a、8-イソ-PGF2a、8-オキソ-dG、A1 アデノシン受容体、A33、ACE、ACE-2、アクチビン、アクチビンA、アクチビンAB、アクチビンB、アクチビンC、アクチビンRIA、アクチビンRIA ALK-2、アクチビンRIB ALK-4、アクチビンRIIA、アクチビンRIIB、ADAM、ADAM10、ADAM12、ADAM15、ADAM17/TACE、ADAM8、ADAM9、ADAMTS、ADAMTS4、ADAMTS5、アドレシン、aFGF、ALCAM、ALK、ALK-1、ALK-7、アルファ-1-アンチトリプシン、アルファ-V/ベータ-1アンタゴニスト、ANG、Ang、APAF-1、APE、APJ、APP、APRIL、AR、ARC、ART、アルテミン、抗Id、ASPARTIC、心房性ナトリウム利尿因子、av/b3インテグリン、Axl、b2M、B7-1、B7-2、B7-H、B-リンパ球刺激因子(BlyS)、BACE、BACE-1、Bad、BAFF、BAFF-R、Bag-1、BAK、Bax、BCA-1、BCAM、Bcl、BCMA、BDNF、b-ECGF、bFGF、BID、Bik、BIM、BLC、BL-CAM、BLK、BMP、BMP-2 BMP-2a、BMP-3 オステオゲニン(Osteogenin)、BMP-4 BMP-2b、BMP-5、BMP-6 Vgr-1、BMP-7(OP-1)、BMP-8(BMP-8a、OP-2)、BMPR、BMPR-IA(ALK-3)、BMPR-IB(ALK-6)、BRK-2、RPK-1、BMPR-II(BRK-3)、BMP、b-NGF、BOK、ボンベシン、骨由来神経栄養因子、BPDE、BPDE-DNA、BTC、補体因子3(C3)、C3a、C4、C5、C5a、C10、CA125、CAD-8、カルシトニン、cAMP、癌胎児性抗原(CEA)、癌関連抗原、カテプシンA、カテプシンB、カテプシンC/DPPI、カテプシンD、カテプシンE、カテプシンH、カテプシンL、カテプシンO、カテプシンS、カテプシンV、カテプシンX/Z/P、CBL、CCI、CCK2、CCL、CCL1、CCL11、CCL12、CCL13、CCL14、CCL15、CCL16、CCL17、CCL18、CCL19、CCL2、CCL20、CCL21、CCL22、CCL23、CCL24、CCL25、CCL26、CCL27、CCL28、CCL3、CCL4、CCL5、CCL6、CCL7、CCL8、CCL9/10、CCR、CCR1、CCR10、CCR10、CCR2、CCR3、CCR4、CCR5、CCR6、CCR7、CCR8、CCR9、CD1、CD2、CD3、CD3E、CD4、CD5、CD6、CD7、CD8、CD10、CD11a、CD11b、CD11c、CD13、CD14、CD15、CD16、CD18、CD19、CD20、CD21、CD22、CD23、CD25、CD27L、CD28、CD29、CD30、CD30L、CD32、CD33(p67タンパク質)、CD34、CD38、CD40、CD40L、CD44、CD45、CD46、CD49a、CD52、CD54、CD55、CD56、CD61、CD64、CD66e、CD74、CD80(B7-1)、CD89、CD95、CD123、CD137、CD138、CD140a、CD146、CD147、CD148、CD152、CD164、CEACAM5、CFTR、cGMP、CINC、ボツリヌス菌毒素、ウェルシュ菌毒素、CKb8-1、CLC、CMV、CMV UL、CNTF、CNTN-1、COX、C-Ret、CRG-2、CT-1、CTACK、CTGF、CTLA-4、CX3CL1、CX3CR1、CXCL、CXCL1、CXCL2、CXCL3、CXCL4、CXCL5、CXCL6、CXCL7、CXCL8、CXCL9、CXCL10、CXCL11、CXCL12、CXCL13、CXCL14、CXCL15、CXCL16、CXCR、CXCR1、CXCR2、CXCR3、CXCR4、CXCR5、CXCR6、サイトケラチン腫瘍関連抗原、DAN、DCC、DcR3、DC-SIGN、補体制御因子(Decay accelerating factor)、des(1-3)-IGF-I(脳IGF-1)、Dhh、ジゴキシン、DNAM-1、Dnase、Dpp、DPPIV/CD26、Dtk、ECAD、EDA、EDA-A1、EDA-A2、EDAR、EGF、EGFR(ErbB-1)、EMA、EMMPRIN、ENA、エンドセリン受容体、エンケファリナーゼ、eNOS、Eot、エオタキシン1、EpCAM、エフリンB2/EphB4、EPO、ERCC、E-セレクチン、ET-1、ファクターIIa、ファクターVII、ファクターVIIIc、ファクターIX、線維芽細胞活性化タンパク質(FAP)、Fas、FcR1、FEN-1、フェリチン、FGF、FGF-19、FGF-2、FGF3、FGF-8、FGFR、FGFR-3、フィブリン、FL、FLIP、Flt-3、Flt-4、卵胞刺激ホルモン、フラクタルカイン、FZD1、FZD2、FZD3、FZD4、FZD5、FZD6、FZD7、FZD8、FZD9、FZD10、G250、Gas6、GCP-2、GCSF、GD2、GD3、GDF、GDF-1、GDF-3(Vgr-2)、GDF-5(BMP-14、CDMP-1)、GDF-6(BMP-13、CDMP-2)、GDF-7(BMP-12、CDMP-3)、GDF-8(ミオスタチン)、GDF-9、GDF-15(MIC-1)、GDNF、GDNF、GFAP、GFRa-1、GFR-アルファ1、GFR-アルファ2、GFR-アルファ3、GITR、グルカゴン、Glut4、糖タンパク質IIb/IIIa(GPIIb/IIIa)、GM-CSF、gp130、gp72、GRO、成長ホルモン放出因子、ハプテン(NP-capまたはNIP-cap)、HB-EGF、HCC、HCMV gBエンベロープ糖タンパク質、HCMV gHエンベロープ糖タンパク質、HCMV UL、造血成長因子(HGF)、Hep B gp120、ヘパラナーゼ、Her2、Her2/neu(ErbB-2)、Her3(ErbB-3)、Her4(ErbB-4)、単純ヘルペスウイルス(HSV) gB糖タンパク質、HSV gD糖タンパク質、HGFA、高分子量黒色腫関連抗原(HMW-MAA)、HIV gp120、HIV IIIB gp 120 V3ループ、HLA、HLA-DR、HM1.24、HMFG PEM、HRG、Hrk、ヒト心臓ミオシン、ヒトサイトメガロウイルス(HCMV)、ヒト成長ホルモン(HGH)、HVEM、I-309、IAP、ICAM、ICAM-1、ICAM-3、ICE、ICOS、IFNg、Ig、IgA受容体、IgE、IGF、IGF結合タンパク質、IGF-1R、IGFBP、IGF-I、IGF-II、IL、IL-1、IL-1R、IL-2、IL-2R、IL-4、IL-4R、IL-5、IL-5R、IL-6、IL-6R、IL-8、IL-9、IL-10、IL-12、IL-13、IL-15、IL-18、IL-18R、IL-23、インターフェロン(INF)-アルファ、INF-ベータ、INF-ガンマ、インヒビン、iNOS、インスリンA鎖、インスリンB鎖、インスリン様増殖因子1、インテグリンアルファ2、インテグリンアルファ3、インテグリンアルファ4、インテグリンアルファ4/ベータ1、インテグリンアルファ4/ベータ7、インテグリンアルファ5(アルファV)、インテグリンアルファ5/ベータ1、インテグリンアルファ5/ベータ3、インテグリンアルファ6、インテグリンベータ1、インテグリンベータ2、インターフェロンガンマ、IP-10、I-TAC、JE、カリクレイン2、カリクレイン5、カリクレイン6、カリクレイン11、カリクレイン12、カリクレイン14、カリクレイン15、カリクレインL1、カリクレインL2、カリクレインL3、カリクレインL4、KC、KDR、ケラチノサイト増殖因子(KGF)、ラミニン5、LAMP、LAP、LAP(TGF-1)、潜在的TGF-1、潜在的TGF-1 bp1、LBP、LDGF、LECT2、レフティ、ルイス-Y抗原、ルイス-Y関連抗原、LFA-1、LFA-3、Lfo、LIF、LIGHT、リポタンパク質、LIX、LKN、Lptn、L-セレクチン、LT-a、LT-b、LTB4、LTBP-1、肺表面、黄体形成ホルモン、リンホトキシンベータ受容体、Mac-1、MAdCAM、MAG、MAP2、MARC、MCAM、MCAM、MCK-2、MCP、M-CSF、MDC、Mer、METALLOPROTEASES、MGDF受容体、MGMT、MHC(HLA-DR)、MIF、MIG、MIP、MIP-1-アルファ、MK、MMAC1、MMP、MMP-1、MMP-10、MMP-11、MMP-12、MMP-13、MMP-14、MMP-15、MMP-2、MMP-24、MMP-3、MMP-7、MMP-8、MMP-9、MPIF、Mpo、MSK、MSP、ムチン(Muc1)、MUC18、ミュラー管抑制物質、Mug、MuSK、NAIP、NAP、NCAD、N-Cアドヘリン、NCA 90、NCAM、NCAM、ネプリライシン、ニューロトロフィン-3、-4、または-6、ニュールツリン、神経成長因子(NGF)、NGFR、NGF-ベータ、nNOS、NO、NOS、Npn、NRG-3、NT、NTN、OB、OGG1、OPG、OPN、OSM、OX40L、OX40R、p150、p95、PADPr、副甲状腺ホルモン、PARC、PARP、PBR、PBSF、PCAD、P-カドヘリン、PCNA、PDGF、PDGF、PDK-1、PECAM、PEM、PF4、PGE、PGF、PGI2、PGJ2、PIN、PLA2、胎盤性アルカリホスファターゼ(PLAP)、PlGF、PLP、PP14、プロインスリン、プロレラキシン、プロテインC、PS、PSA、PSCA、前立腺特異的膜抗原(PSMA)、PTEN、PTHrp、Ptk、PTN、R51、RANK、RANKL、RANTES、RANTES、レラキシンA鎖、レラキシンB鎖、レニン、呼吸器多核体ウイルス(RSV)F、RSV Fgp、Ret、リウマイド因子、RLIP76、RPA2、RSK、S100、SCF/KL、SDF-1、SERINE、血清アルブミン、sFRP-3、Shh、SIGIRR、SK-1、SLAM、SLPI、SMAC、SMDF、SMOH、SOD、SPARC、Stat、STEAP、STEAP-II、TACE、TACI、TAG-72(腫瘍関連糖タンパク質-72)、TARC、TCA-3、T細胞受容体(例えば、T細胞受容体アルファ/ベータ)、TdT、TECK、TEM1、TEM5、TEM7、TEM8、TERT、睾丸PLAP様アルカリホスファターゼ、TfR、TGF、TGF-アルファ、TGF-ベータ、TGF-ベータ Pan Specific、TGF-ベータRI(ALK-5)、TGF-ベータRII、TGF-ベータRIIb、TGF-ベータRIII、TGF-ベータ1、TGF-ベータ2、TGF-ベータ3、TGF-ベータ4、TGF-ベータ5、トロンビン、胸腺Ck-1、甲状腺刺激ホルモン、Tie、TIMP、TIQ、組織因子、TMEFF2、Tmpo、TMPRSS2、TNF、TNF-アルファ、TNF-アルファベータ、TNF-ベータ2、TNFc、TNF-RI、TNF-RII、TNFRSF10A(TRAIL R1 Apo-2、DR4)、TNFRSF10B(TRAIL R2 DR5、KILLER、TRICK-2A、TRICK-B)、TNFRSF10C(TRAIL R3 DcR1、LIT、TRID)、TNFRSF10D(TRAIL R4 DcR2、TRUNDD)、TNFRSF11A(RANK ODF R、TRANCE R)、TNFRSF11B(OPG OCIF、TR1)、TNFRSF12(TWEAK R FN14)、TNFRSF13B(TACI)、TNFRSF13C(BAFF R)、TNFRSF14(HVEM ATAR、HveA、LIGHT R、TR2)、TNFRSF16(NGFR p75NTR)、TNFRSF17(BCMA)、TNFRSF18(GITR AITR)、TNFRSF19(TROY TAJ、TRADE)、TNFRSF19L(RELT)、TNFRSF1A(TNF RI CD120a、p55-60)、TNFRSF1B(TNF RII CD120b、p75-80)、TNFRSF26(TNFRH3)、TNFRSF3(LTbR TNF RIII、TNFC R)、TNFRSF4(OX40 ACT35、TXGP1 R)、TNFRSF5(CD40 p50)、TNFRSF6(Fas Apo-1、APT1、CD95)、TNFRSF6B(DcR3 M68、TR6)、TNFRSF7(CD27)、TNFRSF8(CD30)、TNFRSF9(4-1BB CD137、ILA)、TNFRSF21(DR6)、TNFRSF22(DcTRAIL R2 TNFRH2)、TNFRST23(DcTRAIL R1 TNFRH1)、TNFRSF25(DR3 Apo-3、LARD、TR-3、TRAMP、WSL-1)、TNFSF10(TRAIL Apo-2リガンド、TL2)、TNFSF11(TRANCE/RANKリガンド ODF、OPGリガンド)、TNFSF12(TWEAK Apo-3リガンド、DR3リガンド)、TNFSF13(APRIL TALL2)、TNFSF13B(BAFF BLYS、TALL1、THANK、TNFSF20)、TNFSF14(LIGHT HVEMリガンド、LTg)、TNFSF15(TL1A/VEGI)、TNFSF18(GITRリガンド AITRリガンド、TL6)、TNFSF1A(TNF-a コネクチン(Conectin)、DIF、TNFSF2)、TNFSF1B(TNF-b LTa、TNFSF1)、TNFSF3(LTb TNFC、p33)、TNFSF4(OX40リガンド gp34、TXGP1)、TNFSF5(CD40リガンド CD154、gp39、HIGM1、IMD3、TRAP)、TNFSF6(Fasリガンド Apo-1リガンド、APT1リガンド)、TNFSF7(CD27リガンド CD70)、TNFSF8(CD30リガンド CD153)、TNFSF9(4-1BBリガンド CD137リガンド)、TP-1、t-PA、Tpo、TRAIL、TRAIL R、TRAIL-R1、TRAIL-R2、TRANCE、トランスフェリン受容体、TRF、Trk、TROP-2、TSG、TSLP、腫瘍関連抗原CA125、腫瘍関連抗原発現ルイスY関連炭水化物、TWEAK、TXB2、Ung、uPAR、uPAR-1、ウロキナーゼ、VCAM、VCAM-1、VECAD、VE-Cadherin、VE-cadherin-2、VEFGR-1(flt-1)、VEGF、VEGFR、VEGFR-3(flt-4)、VEGI、VIM、ウイルス抗原、VLA、VLA-1、VLA-4、VNRインテグリン、フォン・ヴィレブランド因子、WIF-1、WNT1、WNT2、WNT2B/13、WNT3、WNT3A、WNT4、WNT5A、WNT5B、WNT6、WNT7A、WNT7B、WNT8A、WNT8B、WNT9A、WNT9A、WNT9B、WNT10A、WNT10B、WNT11、WNT16、XCL1、XCL2、XCR1、XCR1、XEDAR、XIAP、XPD、HMGB1、IgA、Aβ、CD81, CD97, CD98, DDR1, DKK1, EREG、Hsp90, IL-17/IL-17R、IL-20/IL-20R、酸化LDL, PCSK9, prekallikrein , RON, TMEM16F、SOD1, Chromogranin A, Chromogranin B、tau, VAP1、高分子キニノーゲン、IL-31、IL-31R、Nav1.1、Nav1.2、Nav1.3、Nav1.4、Nav1.5、Nav1.6、Nav1.7、Nav1.8、Nav1.9、EPCR、C1, C1q, C1r, C1s, C2, C2a, C2b, C3, C3a, C3b, C4, C4a, C4b, C5, C5a, C5b, C6, C7, C8, C9, factor B, factor D, factor H, properdin、sclerostin、fibrinogen, fibrin, prothrombin, thrombin, 組織因子, factor V, factor Va, factor VII, factor VIIa, factor VIII, factor VIIIa, factor IX, factor IXa, factor X, factor Xa, factor XI, factor XIa, factor XII, factor XIIa, factor XIII, factor XIIIa, TFPI, antithrombin III, EPCR, トロンボモデュリン、TAPI, tPA, plasminogen, plasmin, PAI-1, PAI-2、GPC3、Syndecan-1、Syndecan-2、Syndecan-3、Syndecan-4、LPA、S1Pならびにホルモンおよび成長因子のための受容体が例示され得る。
 可変領域を構成するアミノ酸配列は、その抗原結合活性が維持される限り、1または複数のアミノ酸残基の改変が許容される。可変領域のアミノ酸配列を改変する場合、改変される部位や改変されるアミノ酸の数は特に限定されない。例えば、CDRおよび/またはFRに存在するアミノ酸を適宜、改変することができる。可変領域のアミノ酸を改変する場合、特に限定されないが、結合活性が維持されていることが好ましく、例えば、改変前と比較して50%以上、好ましくは80%以上、さらに好ましくは100%以上の結合活性を有していることが好ましい。又、アミノ酸改変により結合活性が上昇していてもよく、例えば結合活性が改変前と比較して2倍、5倍、10倍等になっていてもよい。本発明の抗体において、アミノ酸配列の改変とは、アミノ酸残基の置換、付加、欠損、および修飾の少なくとも1つであることができる。
 例えば、可変領域のN末端のグルタミンのピログルタミル化によるピログルタミン酸への修飾は当業者によく知られた修飾である。したがって、本発明の抗体は、その重鎖のN末端がグルタミンの場合には、それがピログルタミン酸に修飾された可変領域を含む。
 本発明の抗体の可変領域は、任意の配列であってよく、マウス抗体、ラット抗体、ウサギ抗体、ヤギ抗体、ラクダ抗体、および、これらの非ヒト抗体をヒト化したヒト化抗体、および、ヒト抗体など、どのような由来の抗体の可変領域でもよい。「ヒト化抗体」とは、再構成(reshaped)ヒト抗体とも称される、ヒト以外の哺乳動物由来の抗体、例えばマウス抗体の相補性決定領域(CDR;complementarity determining region)をヒト抗体のCDRへ移植したものである。CDRを同定するための方法は公知である(Kabat et al., Sequence of Proteins of Immunological Interest (1987), National Institute of Health, Bethesda, Md.; Chothia et al., Nature (1989) 342: 877)。また、その一般的な遺伝子組換え手法も公知である(欧州特許出願公開番号EP 125023号公報、WO 96/02576 号公報参照)。また、これらの抗体の可変領域に対して、抗原への結合、薬物動態、安定性、抗原性を改善するために、様々なアミノ酸置換を導入したものであってもよい。本発明の抗体の可変領域は抗原に対する結合にpH依存性を有することで、抗原に対して繰り返し結合することができてもよい(WO2009/125825)。
 抗体の軽鎖定常領域にはκ鎖とλ鎖タイプの定常領域が存在しているが、いずれの軽鎖定常領域であってもよい。さらに、本発明において軽鎖定常領域は、アミノ酸の置換、欠損、付加および/または挿入などの改変が行われた軽鎖定常領域であってもよい。
 本発明の抗体の重鎖定常領域としては、例えばヒトIgG抗体の重鎖定常領域を用いることができ、好ましくはヒトIgG1抗体、ヒトIgG4抗体の重鎖定常領域である。
 また、本発明のFc領域改変体は、他のタンパク質、生理活性ペプチドなどと結合させてFc融合タンパク質分子とすることが可能である。ここで、融合タンパク質とは、天然ではそれが自然に連結しない少なくとも2つの異なるポリペプチドを含むキメラポリペプチドをいう。他のタンパク質、生理活性ペプチドとしては、例えば受容体、接着分子、リガンド、酵素が挙げられるが、これらに限定されるものではない。
 本発明のFc融合タンパク質分子の好ましい例として、標的に結合するレセプタータンパク質にFc領域を融合したタンパク質が挙げられ、例えば、TNFR-Fc融合タンパク、IL1R-Fc融合タンパク、VEGFR-Fc融合タンパク、CTLA4-Fc融合タンパク等(Nat Med. 2003 Jan;9(1):47-52、BioDrugs. 2006;20(3):151-60.)が挙げられる。また、本発明のポリペプチドに融合させるタンパク質は標的分子に結合する限り如何なる分子であってもよく、例えばscFv分子(WO2005/037989)、単ドメイン抗体分子(WO2004/058821, WO2003/002609)、抗体様分子(Current Opinion in Biotechnology 2006, 17:653-658、Current Opinion in Biotechnology 2007, 18:1-10、Current Opinion in Structural Biology 1997, 7:463-469、Protein Science 2006, 15:14-27)、例えば、DARPins(WO2002/020565)、Affibody(WO1995/001937)、Avimer(WO2004/044011, WO2005/040229)、Adnectin(WO2002/032925)等が挙げられる。また、抗体およびFc融合タンパク質分子は、複数種類の標的分子あるいはエピトープに結合する多重特異性抗体であってもよい。
 また本発明の抗体には、抗体の修飾物も含まれる。抗体の修飾物の例としては、例えば、ポリエチレングリコール(PEG)や細胞障害性物質等の各種分子と結合させた抗体を挙げることができる。このような抗体修飾物は、本発明の抗体に化学的な修飾を施すことによって得ることができる。抗体の修飾方法はこの分野においてすでに確立されている。
 さらに、本発明の抗体は二重特異性抗体(bispecific antibody)であってもよい。二重特異性抗体とは、異なるエピトープを認識する可変領域を同一の抗体分子内に有する抗体をいうが、当該エピトープは異なる分子中に存在していてもよいし、同一の分子中に存在していてもよい。
 本発明のポリペプチドは当業者に公知の方法により製造することができる。例えば、抗体は以下の方法で作製することができるが、これに限定されるものではない。
 抗体の重鎖をコードするDNAであって、Fc領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換された重鎖をコードするDNA、および抗体の軽鎖をコードするDNAを発現させる。Fc領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換された重鎖をコードするDNAは、例えば、天然型の重鎖をコードするDNAのFc領域部分を取得し、該Fc領域中の特定のアミノ酸をコードするコドンが目的の他のアミノ酸をコードするよう、適宜置換を導入することによって得ることが出来る。
 また、あらかじめ、天然型重鎖のFc領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換されたタンパク質をコードするDNAを設計し、該DNAを化学的に合成することによって、Fc領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換された重鎖をコードするDNAを得ることも可能である。アミノ酸の置換部位、置換の種類としては、特に限定されるものではない。また置換に限られず、欠損、付加、挿入のいずれか、又はそれらの組み合わせであってもよい。
 また、Fc領域中において1又は複数のアミノ酸残基が目的の他のアミノ酸に置換された重鎖をコードするDNAは、部分DNAに分けて製造することができる。部分DNAの組み合わせとしては、例えば、可変領域をコードするDNAと定常領域をコードするDNA、あるいはFab領域をコードするDNAとFc領域をコードするDNAなどが挙げられるが、これら組み合わせに限定されるものではない。軽鎖をコードするDNAもまた、同様に部分DNAに分けて製造することができる。
 上記DNAを発現させる方法としては、以下の方法が挙げられる。例えば、重鎖可変領域をコードするDNAを、重鎖定常領域をコードするDNAとともに発現ベクターに組み込み重鎖発現ベクターを構築する。同様に、軽鎖可変領域をコードするDNAを、軽鎖定常領域をコードするDNAとともに発現ベクターに組み込み軽鎖発現ベクターを構築する。これらの重鎖、軽鎖の遺伝子を単一のベクターに組み込むことも出来る。
 目的とする抗体をコードするDNAを発現ベクターへ組み込む際、発現制御領域、例えば、エンハンサー、プロモーターの制御のもとで発現するよう発現ベクターに組み込む。次に、この発現ベクターにより宿主細胞を形質転換し、抗体を発現させる。その際には、適当な宿主と発現ベクターの組み合わせを使用することができる。
 ベクターの例としては、M13系ベクター、pUC系ベクター、pBR322、pBluescript、pCR-Scriptなどが挙げられる。また、cDNAのサブクローニング、切り出しを目的とした場合、上記ベクターの他に、例えば、pGEM-T、pDIRECT、pT7などを用いることができる。
 本発明のポリペプチドを生産する目的においてベクターを使用する場合には、特に、発現ベクターが有用である。発現ベクターとしては、例えば、宿主をJM109、DH5α、HB101、XL1-Blueなどの大腸菌とした場合においては、大腸菌で効率よく発現できるようなプロモーター、例えば、lacZプロモーター(Wardら, Nature (1989) 341, 544-546;FASEB J. (1992) 6, 2422-2427、参照によりその全体が本明細書に組み込まれる)、araBプロモーター(Betterら, Science (1988) 240, 1041-1043、参照によりその全体が本明細書に組み込まれる)、またはT7プロモーターなどを持っていることが不可欠である。このようなベクターとしては、上記ベクターの他にpGEX-5X-1(Pharmacia社製)、「QIAexpress system」(QIAGEN社製)、pEGFP、またはpET(この場合、宿主はT7 RNAポリメラーゼを発現しているBL21が好ましい)などが挙げられる。
 また、ベクターには、ポリペプチド分泌のためのシグナル配列が含まれていてもよい。ポリペプチド分泌のためのシグナル配列としては、大腸菌のペリプラズムに産生させる場合、pelBシグナル配列(Lei, S. P. et al J. Bacteriol. (1987) 169, 4397、参照によりその全体が本明細書に組み込まれる)を使用すればよい。宿主細胞へのベクターの導入は、例えばリポフェクチン法、リン酸カルシウム法、DEAE-Dextran法を用いて行うことができる。
 大腸菌発現ベクターの他、例えば、本発明のポリペプチドを製造するためのベクターとしては、哺乳動物由来の発現ベクター(例えば、pcDNA3(Invitrogen社製)や、pEGF-BOS (Nucleic Acids. Res.1990, 18(17),p5322、参照によりその全体が本明細書に組み込まれる)、pEF、pCDM8)、昆虫細胞由来の発現ベクター(例えば「Bac-to-BAC baculovairus expression system」(GIBCO BRL社製)、pBacPAK8)、植物由来の発現ベクター(例えばpMH1、pMH2)、動物ウィルス由来の発現ベクター(例えば、pHSV、pMV、pAdexLcw)、レトロウィルス由来の発現ベクター(例えば、pZIPneo)、酵母由来の発現ベクター(例えば、「Pichia Expression Kit」(Invitrogen社製)、pNV11、SP-Q01)、枯草菌由来の発現ベクター(例えば、pPL608、pKTH50)が挙げられる。
 CHO細胞、COS細胞、NIH3T3細胞等の動物細胞での発現を目的とした場合には、細胞内で発現させるために必要なプロモーター、例えばSV40プロモーター(Mulliganら, Nature (1979) 277, 108、参照によりその全体が本明細書に組み込まれる)、MMTV-LTRプロモーター、EF1αプロモーター(Mizushimaら, Nucleic Acids Res. (1990) 18, 5322、参照によりその全体が本明細書に組み込まれる)、CAGプロモーター(Gene. (1991) 108, 193、参照によりその全体が本明細書に組み込まれる)、CMVプロモーターなどを持っていることが不可欠であり、形質転換細胞を選抜するための遺伝子(例えば、薬剤(ネオマイシン、G418など)により判別できるような薬剤耐性遺伝子)を有すればさらに好ましい。このような特性を有するベクターとしては、例えば、pMAM、pDR2、pBK-RSV、pBK-CMV、pOPRSV、pOP13などが挙げられる。
 さらに、遺伝子を安定的に発現させ、かつ、細胞内での遺伝子のコピー数の増幅を目的とする場合には、核酸合成経路を欠損したCHO細胞にそれを相補するDHFR遺伝子を有するベクター(例えば、pCHOIなど)を導入し、メトトレキセート(MTX)により増幅させる方法が挙げられ、また、遺伝子の一過性の発現を目的とする場合には、SV40 T抗原を発現する遺伝子を染色体上に持つCOS細胞を用いてSV40の複製起点を持つベクター(pcDなど)で形質転換する方法が挙げられる。複製開始点としては、また、ポリオーマウィルス、アデノウィルス、ウシパピローマウィルス(BPV)等の由来のものを用いることもできる。さらに、宿主細胞系で遺伝子コピー数増幅のため、発現ベクターは選択マーカーとして、アミノグリコシドトランスフェラーゼ(APH)遺伝子、チミジンキナーゼ(TK)遺伝子、大腸菌キサンチングアニンホスホリボシルトランスフェラーゼ(Ecogpt)遺伝子、ジヒドロ葉酸還元酵素(dhfr)遺伝子等を含むことができる。
 抗体の回収は、例えば、形質転換した細胞を培養した後、分子形質転換した細胞の細胞内又は培養液より分離することによって行うことが出来る。抗体の分離、精製には、遠心分離、硫安分画、塩析、限外濾過、1q、FcRn、プロテインA、プロテインGカラム、アフィニティークロマトグラフィー、イオン交換クロマトグラフィー、ゲル濾過クロマトグラフィーなどの方法を適宜組み合わせて行うことができる。
 また本発明のFc領域改変体と、血漿中に可溶型で存在し病因となる抗原に対して結合活性を有し、イオン濃度の条件によって当該抗原に対する結合活性が変化する抗原結合ドメインを含むポリペプチドを用いることで、血漿中の当該抗原の消失を促進する方法を提供する。
 国際公開第WO2011/122011号に記載されているように、pH依存的抗原結合分子をさらに中性条件下(pH7.4)におけるFcRn結合を増強するように改変されたpH依存的抗原結合分子は、抗原に繰り返し結合できる効果、および、血漿中から抗原を消失させる効果を有しているため、こうした抗原結合ドメインを有するポリペプチドの投与によって血漿中から抗原を除去することが可能であることが報告されている(国際公開第WO2011/122011号)。しかし、これまでに中性条件下でのFcRn結合を増強させる以外の方法で、抗原の除去を加速する方法は報告されていない。
 本実施例では、pHの条件によって抗原に対する結合活性が変化する抗原結合ドメインを含むポリペプチドが、pH中性域におけるFcRnに対する結合を増強していない天然型IgG1由来のFc領域を含むにも関わらず、FcγRとの結合を介して、血漿中の抗原の消失を抗原単独よりも加速することが確認された。特定の理論に拘束されるものではないが、このようなことがクローン278等において起こる理由として以下のメカニズムが例示される。
 sIL-6R等のように抗原結合ドメインが結合できる部位が1つ(すなわちホモ単量体)である場合、二価の抗原結合ドメインを含む一分子の抗体に対して二分子の抗原が結合し、一分子の抗sIL-6R抗体と二単位の抗原結合単位を含む二分子の抗原分子と複合体を形成する。そのため、このような抗原と抗体の複合体は、図9に示すように一つのFc領域(天然型IgG1のFc領域)しか有しない。当該複合体は一つのFc領域を介して一分子のFcγR、または二分子のFcRnに結合するため、これらの受容体に対する親和性は通常のIgG抗体と同様であり、細胞内への取込みは主に非特異的に起こると考えられ得る。
 一方、抗原がヒトIgE等のように重鎖および軽鎖のヘテロ複合体の二量体のように、抗原結合ドメインが結合するエピトープが二ヶ所存在する場合、一分子の抗IgE抗体に含まれる二価の個々の抗原結合ドメインが、一分子のIgE分子に存在する二単位のエピトープに各々結合することはエピトープの配置等の点から困難であることが考えられる。その結果、一分子の抗IgE抗体中に存在する二価の抗原結合ドメインに結合する二分子のIgE中に存在する二単位の抗原結合単位には、別の抗IgE抗体分子が結合することによって、少なくとも四分子(すなわち抗原分子であるIgEの二つの分子と抗原結合ドメインを含むポリペプチドである抗IgE抗体の二つの分子)を含む抗原抗体複合体(免疫複合体)を形成すると考えられる。
 そのため、抗原結合ドメインが結合できる部位を二以上含む抗原分子に結合する抗体等の抗原結合ドメインを含むポリペプチドが少なくとも四量体の大きな免疫複合体を形成する場合、当該免疫複合体はFcγR、FcRn、補体レセプター等に対して少なくとも二つ以上の多価のFc領域を介してavidityで強固に結合することが可能である。しかしながら、抗原結合ドメインが結合できる部位が1つである抗原分子の場合、抗原結合ドメインを含むポリペプチドと抗原分子との免疫複合体は、これらのレセプターに対するFc領域を介した親和性は、上記免疫複合体を形成する場合と比べると十分ではない。そうすると、当該免疫複合体は、これらのレセプターを発現する細胞に高い効率で取り込まれる。
 抗原分子が二以上の抗原結合ドメインに結合する部位を含む場合、本発明のポリペプチドがpH依存的結合等のようにイオン濃度の条件によって抗原に対する結合が変化する抗原結合ドメインを有することで、当該ポリペプチドが例えば抗体の場合には、血漿中で少なくとも四分子(二分子の抗原および二分子の抗体)以上からなる抗原抗体複合体(免疫複合体)を形成し、当該免疫複合体が細胞内に取り込まれると、そのイオン濃度の条件が血漿中の条件とは異なることから、エンドソーム内で抗原が当該抗体から解離する。そのため、当該免疫複合体が取り込まれた細胞のエンドソーム内では、当該免疫複合体の形成が解消される。解離した抗原はエンドソーム内でFcRnに結合することができないため、ライソソームに移行した後に分解される。一方、抗原を解離した抗体は、エンドソーム内でFcRnに結合した後に血漿中にリサイクルされると考えられる。本実施例のpH条件以外のイオン濃度の条件によって同様のリサイクルは可能であり、参考実施例3~6では、pH依存の条件の代わりに、カルシウム濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメインを用いて、血漿中の抗原の消失を加速することが可能であることが示されている。
 したがって、抗原と当該抗原に対する抗原結合ドメインを有するポリペプチドが形成する複合体が、当該免疫複合体はFcγR、FcRn、補体レセプター等に対して二つ以上の多価のFc領域を有することで、当該抗原の消失を加速することが可能である。
 加えて、参考実施例7~9の検討から、FcγRを介した抗原の除去には、FcγRの中でも、抑制型FcγRであるFcγRIIBの寄与が最も大きいことが示されている。すなわち、仮に、FcγRに対する結合を低下させたとしても、FcγRIIBに対する結合を維持することができれば、抗体のFcγRを介した抗原の消失能を維持することが可能である。
 これまでに、いくつかの抗体医薬においてはIgGとFcγRとの相互作用に由来する副作用が報告されている。例えば、VEGFに対する抗体であるbevacizumabが投与された患者群では血栓塞栓症の頻度が上昇することが知られている(J. Natl. Cancer Inst. (2007) 99 (16), 1232-1239)。また、CD40リガンドに対する抗体の臨床開発試験においても同様に血栓塞栓症が観察され、臨床試験が中止された(Arthritis. Rheum. (2003) 48 (3), 719-727.)。血小板の細胞上には抑制型FcγレセプターであるFcγRIIbではなく活性型FcγレセプターであるFcγRIIaが発現している(J. Exp. Med. (2006) 203 (9), 2157-2164)が、動物モデルなどを使ったその後の研究により、投与されたいずれの抗体も血小板上のFcγRIIaに対する結合を介して血小板が凝集し、その結果血栓を形成することが示唆されている(J. Thromb. Haemost. (2009) 7 (1), 171-181、 J. Immunol. (2010) 185 (3), 1577-1583)。自己免疫疾患の一つである全身性エリテマトーデスの患者においてはFcγRIIa依存的な機構によって血小板が活性化し、血小板の活性化が重症度と相関すると報告されている(Sci. Transl. Med. (2010) 2 (47), 47-63)。
 また、これまでに動物モデルを用いた研究により、抗体と多価抗原の免疫複合体が活性型FcγRを介してアナフィラキシーを誘導することも報告されている(Bruhns P., Blood. (2012) 119(24):5640-9.)。
 加えて、活性型のFcγRを介して多価抗原と抗体の免疫複合体が取り込まれることにより、その抗原に対する抗体価の産生が高くなることが報告されている(Scand J Immunol. (2006)64(3):177-84.; J Immunol. (1999) 163:618-22.)。多価抗原を認識する抗体医薬品の場合、抗体医薬品自身に対する抗体が産生しやすくなる可能性を示唆している。抗体医薬品に対する抗体が産生された場合、その血中動態が悪化し、効果が減弱することが考えられる。
 このように、抗体が多価抗原と結合することで免疫複合体を形成し、その免疫複合体が活性型FcγRと相互作用することで様々な副作用を誘導することが考えられ、抗体の医薬品としての価値を減じてしまう。多価抗原(多量体抗原)としてはGDF、GDF-1、GDF-3(Vgr-2)、GDF-5(BMP-14、CDMP-1)、GDF-6(BMP-13、CDMP-2)、GDF-7(BMP-12、CDMP-3)、GDF-8(ミオスタチン)、GDF-9、GDF-15(MIC-1)、TNF、TNF-アルファ、TNF-アルファベータ、TNF-ベータ2、TNFSF10(TRAIL Apo-2リガンド、TL2)、TNFSF11(TRANCE/RANKリガンド ODF、OPGリガンド)、TNFSF12(TWEAK Apo-3リガンド、DR3リガンド)、TNFSF13(APRIL TALL2)、TNFSF13B(BAFF BLYS、TALL1、THANK、TNFSF20)、TNFSF14(LIGHT HVEMリガンド、LTg)、TNFSF15(TL1A/VEGI)、TNFSF18(GITRリガンド AITRリガンド、TL6)、TNFSF1A(TNF-a コネクチン(Conectin)、DIF、TNFSF2)、TNFSF1B(TNF-b LTa、TNFSF1)、TNFSF3(LTb TNFC、p33)、TNFSF4(OX40リガンド gp34、TXGP1)、TNFSF5(CD40リガンド CD154、gp39、HIGM1、IMD3、TRAP)、TNFSF6(Fasリガンド Apo-1リガンド、APT1リガンド)、TNFSF7(CD27リガンド CD70)、TNFSF8(CD30リガンド CD153)、TNFSF9(4-1BBリガンド CD137リガンド)、VEGF、IgE、IgA、IgG、IgM、RANKL、TGF-アルファ、TGF-ベータ、TGF-ベータ Pan Specific、またはIL-8などが例として挙げられる。
 これらの問題を解決するための方法としては、FcγRに対する結合を減弱する方法が考えられる。しかし、すべてのFcγRに対する結合を減じてしまった場合、その抗体を用いてもFcγRを介した抗原の除去を加速することはできないと考えられる。
 先に述べたように、抗体のFcγRを介した抗原の除去には、FcγRのうち、FcγRIIBが主な役割を担っていること、FcγRとの相互作用に由来する副作用は活性型FcγRとの相互作用に起因することから、FcγRIIBに対する結合は維持しつつ、他の活性型FcγRに対する結合を選択的に減弱することによって、抗原消失能を失わせることなく、活性型FcγRに由来する副作用を低減した優れた抗体を作製可能である。
 そのため、本発明のFc領域改変体とイオン濃度の条件によって当該抗原に対する結合活性が変化する抗原結合ドメインを含むポリペプチドによって、血漿中に可溶型で存在し病因となる抗原の血漿中からの消失に対して、優れた促進効果を得ることが可能である。
 また、本発明のポリペプチドを利用することで、当該ポリペプチドが結合する抗原が、抗原結合ドメインが結合することができる部位を1つしか有していない抗原(単量体抗原)であっても同様の効果を得ることができる。
 そのような例として、抗原結合ドメインを有するポリペプチドのカクテルを用いた単量体抗原の血漿中からの消失を促進する方法を挙げることができる。
 上述したように、抗原が多量体抗原(例えば、非限定な一例としてIgA, IgE等のイムノグロブリン、もしくは、TNFまたはCD154等のTNFスーパーファミリー)であるときは、二以上の抗原結合分子および二以上の抗原結合単位を含む大きな免疫複合体が形成される場合があると考えられる。一方、抗原が単量体抗原の場合でも、当該単量体抗原に存在する異なるエピトープに各々結合する適切な二以上の抗原結合ドメインを含むポリペプチドであって、(pHまたはCa等の)イオン濃度の条件によって当該エピトープに対する結合が変化するポリペプチドの混合物もまた、二以上の抗原結合ドメインを含むポリペプチドおよび二以上の抗原結合ドメインに対する結合部位(単量体抗原)を含む大きな免疫複合体を形成することが可能であると考えられる。本明細書において、単量体抗原に存在する異なるエピトープに各々結合する適切な二以上の抗原結合ドメインを含むポリペプチドであって、(pHまたはCa等の)イオン濃度の条件によって当該エピトープに対する結合が変化する抗原結合分子の混合物を抗原結合分子カクテルと呼ぶ。このうち抗原結合ドメインを含むポリペプチドのうち、免疫複合体を形成する少なくとも一つのポリペプチド(に含まれる抗原結合ドメイン)がイオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメインであればよい。
 また、その他の例として、多重特異性または多重パラトピックな抗原結合ドメインを含むポリペプチドを用いた単量体抗原の血漿中からの消失を促進する方法を挙げることができる。
 また、抗原が単量体抗原の場合でも、抗原結合ドメインを含むポリペプチドに含まれる各抗原結合ドメインが当該単量体抗原に存在する異なるエピトープに各々結合する特徴を有し、個々の抗原結合ドメインのエピトープに対する結合が(pHまたはCa等の)イオン濃度の条件によって変化する抗原結合ドメインを含む抗原結合分子もまた、二以上の抗原結合ドメインを含むポリペプチドおよび二以上の抗原結合単位(単量体抗原)を含む大きな免疫複合体を形成することが可能であると考えられる。上記のようなポリペプチドの非限定な一態様として、単量体抗原に存在する互いに異なるエピトープに結合する適切な可変領域を含む多重特異性(multispecific)抗体、または多重パラトピックな(multiparatopic)抗体が例示される。そのような多重特異性(multispecific)抗体、または多重パラトピックな(multiparatopic)抗体の非限定な一態様として、その可変領域がpHまたはCa依存的な結合抗体(図19に示すようなエピトープAを認識する右腕の可変領域とエピトープBを認識する左腕の可変領域を含む、二重特異性(bispecific)抗体あるいは二重パラトピック(biparatopic)抗体)もまた、二以上の抗体、および二以上の抗原結合単位(単量体抗原)を含む大きな免疫複合体を形成することが可能であると考えられる。
 単量体抗原の異なるエピトープに対する抗原結合ドメインであって、当該各エピトープに対する結合活性がイオン濃度の条件によって変化し、上述されるレセプターに対してavidityで結合することが可能な抗原結合ドメインの組合せをスクリーニングすることによって、単量体抗原の血漿中からの消失をさらに加速させる抗原結合分子を取得することが可能である。多重特異性または多重パラトピックな抗原結合ドメインの、各エピトープに対する結合活性を変化させるイオン濃度の条件は同一のイオン濃度の条件であってもよいし、異なるいイオン濃度の条件であってもよい。例えば、二重特異性または二重パラトピックな抗原結合ドメインの、一方の抗原結合ドメインのエピトープに対する結合活性がpHの条件、またはCaイオン濃度等の金属イオン濃度の条件によって変化する、二重特異性または二重パラトピックな抗原結合ドメインを含む抗原結合分子は、本発明の抗原結合分子の非限定な一態様として例示される。さらに、例えば、二重特異性または二重パラトピックな抗原結合ドメインの、一方の抗原結合ドメインのエピトープに対する結合活性がpHの条件によって変化し、もう一方の抗原結合ドメインのエピトープに対する結合活性がCaイオン濃度等の金属イオン濃度の条件によって変化する、二重特異性または二重パラトピックな抗原結合ドメインを含む抗原結合分子は、本発明の抗原結合分子の非限定な一態様として例示される。また、二重特異性または二重パラトピックな抗原結合ドメインの、一方の抗原結合ドメインのエピトープ対する結合活性がpHの条件によって変化し、もう一方の抗原結合ドメインのエピトープに対する結合活性もpHの条件によって変化する、二重特異性または二重パラトピックな抗原結合ドメインを含む抗原結合分子もまた、本発明の抗原結合分子の非限定な一態様として例示される。さらに、二重特異性または二重パラトピックな抗原結合ドメインの、一方の抗原結合ドメインのエピトープに対する結合活性がCaイオン濃度等の金属イオン濃度の条件によって変化し、もう一方の抗原結合ドメインのエピトープに対する結合活性がCaイオン濃度等の金属イオン濃度の条件によって変化する、二重特異性または二重パラトピックな抗原結合ドメインを含むポリペプチド抗原結合分子もまた、本発明の抗原結合分子の非限定な一態様として例示される。
 本発明の多重特異性抗原結合ドメインを含むポリペプチド、または多重パラトピックな抗原結合ドメインを含むポリペプチド分子としては、その少なくとも一つの抗原結合ドメインが抗原分子中の第一のエピトープに結合し、その少なくとも一つの別の抗原結合ドメインが抗原分子中の第二のエピトープに結合する特徴を有する、少なくとも二つの抗原結合ドメインを含むポリペプチドは、その反応の特異性という観点から多重特異性抗原結合分子と呼ばれる。一分子の抗原結合分子に含まれる二種類の抗原結合ドメインによって当該抗原結合分子が、二つの異なるエピトープに結合する場合、当該抗原結合分子は二重特異性抗原結合分子と呼ばれる。また、一分子の抗原結合分子に含まれる三種類の抗原結合ドメインによって当該抗原結合分子が、三つの異なるエピトープに結合する場合、当該抗原結合分子は三重特異性抗原結合分子と呼ばれる。
 抗原分子中の第一のエピトープに結合する抗原結合ドメイン中のパラトープと、第一のエピトープと構造の異なる第二のエピトープに結合する抗原結合ドメイン中のパラトープとはその構造が互いに異なる。ゆえに、その少なくとも一つの抗原結合ドメインが抗原分子中の第一のエピトープに結合し、その少なくとも一つの別の抗原結合ドメインが抗原分子中の第二のエピトープに結合する特徴を有する、少なくとも二つの抗原結合ドメインを含む抗原結合分子は、その構造の特異性という観点から多重パラトピック抗原結合分子と呼ばれる。一分子の抗原結合分子に含まれる二種類の抗原結合ドメインによって当該抗原結合分子が、二つの異なるエピトープに結合する場合、当該抗原結合分子は二重パラトピック抗原結合分子と呼ばれる。また、一分子の抗原結合分子に含まれる三種類の抗原結合ドメインによって当該抗原結合分子が、三つの異なるエピトープに結合する場合、当該抗原結合分子は三重パラトピック抗原結合分子と呼ばれる。
 一つまたは複数の抗原結合ドメインを含む多価の多重特異性または多重パラトピック抗原結合分子とその調製方法は、Conrathら(J.Biol.Chem. (2001) 276 (10) 7346-7350)、Muyldermans(Rev. Mol. Biotech. (2001) 74, 277-302)およびKontermann R.E. (2011) Bispecific Antibodies(Springer-Verlag)等の非特許文献、ならびに国際公開WO1996/034103またはWO1999/023221等の特許文献等にも記載されている。これらに記載された多重特異性または多重パラトピック抗原結合分子とその調製方法を用いることによって、本発明の抗原結合分子を作製することが可能である。
 前記のような多重特異性または多重パラトピック抗原結合分子とその調製方法の一態様として、二重特異性抗体とその作製方法が下記に例示される。二重特異性抗体とは、異なるエピトープに対して特異的に結合する二種類の可変領域を含む抗体である。IgG型の二重特異性抗体はIgG抗体を産生するハイブリドーマ二種を融合することによって生じるhybrid hybridoma(quadroma)によって分泌させることが可能である(Milsteinら(Nature (1983) 305, 537-540)。
 二重特異性抗体を前記の抗体の項で記載されたような組換え手法を用いて製造する場合、目的の二種の可変領域を含む重鎖をコードする遺伝子を細胞に導入しそれらを共発現させる方法が採用され得る。しかしながら、こうした共発現させる方法における重鎖の組合せを考慮するだけでも、(i) 第一のエピトープに結合する可変領域を含む重鎖と第二のエピトープに結合する可変領域を含む重鎖が一対となった重鎖の組合せ、(ii) 第一のエピトープに結合する可変領域を含む重鎖のみが一対となった重鎖の組合せ、(iii) 第二のエピトープに結合する可変領域を含む重鎖のみが一対となった重鎖の組合せが、2:1:1の分子数の割合で存在する混合物となる。これら三種類の重鎖の組合せの混合物から目的の重鎖の組合せを含む抗原結合分子を精製することは困難である。
 こうした組換え手法を用いて二重特異性抗体を製造する際に、重鎖を構成するCH3ドメインに適当なアミノ酸置換の改変を加えることによってヘテロな組合せの重鎖を含む二重特異性抗体が優先的に分泌され得る。具体的には、一方の重鎖のCH3ドメインに存在するアミノ酸側鎖をより大きい側鎖(knob(「突起」の意))に置換し、もう一方の重鎖のCH3ドメインに存在するアミノ酸側鎖をより小さい側鎖(hole(「空隙」の意))に置換することによって、突起が空隙内に配置され得るようにして異種の重鎖形成の促進および同種の重鎖形成の阻害を引き起こす方法である(国際公開WO1996/027011、Ridgwayら(Protein Engineering (1996) 9, 617-621)、Merchantら(Nat. Biotech. (1998) 16, 677-681))。
 また、ポリペプチドの会合、またはポリペプチドによって構成される異種多量体の会合の制御方法を、重鎖の会合に利用することによって二重特異性抗体を作製する技術も知られている。即ち、重鎖内の界面を形成するアミノ酸残基を改変することによって、同一配列を有する重鎖の会合が阻害され、配列の異なる二つの重鎖が形成されるように制御する方法が二重特異性抗体の作製に採用され得る(国際公開WO2006/106905)。
 さらに、二種類のモノクローナル抗体をそれぞれ取得し、それらをin vitroで還元剤存在下混合することで二重特異性抗体を取得する技術も報告されている(国際公開WO2008/119353)。本手法は二種類のモノクローナル抗体が還元剤によって半分子ずつに開裂し、これらが再会合することによって一定の割合で二重特異性抗体を得るものである。またCH3ドメインに存在するアミノ酸を置換することで半分子の再会合を制御し、より効率良く二重特異性抗体を得る方法も報告されている(国際公開WO2011/131746)。このような方法も二重特異性抗体を製造する際に、採用され得る。
 本発明において、「抗原の血漿中からの消失を促進」とは、抗原結合ドメインを含むポリペプチド(以下、抗原結合分子ともいう)が生体内に投与された、あるいは、抗原結合分子の生体内への分泌が生じた際に、血漿中に存在する抗原を血漿中から消失させる能力が向上することをいう。従って、抗原結合分子を投与した際に、抗原に対する結合活性がイオン濃度によって変化しない抗原結合ドメインを含む抗原結合分子、pH酸性域の条件下でFcRnに対する結合活性を有しないFcRn結合ドメインを含む抗原結合分子、またはFcγレセプターに対する選択的な結合活性を有しないFcγレセプター結合ドメインを含む抗原結合分子を投与したときと比較して、血漿中から抗原が消失する速さが速くなっていればよい。抗原結合分子の血漿中抗原消失能が増加したか否かは、例えば、可溶型抗原と抗原結合分子とを生体内に投与し、投与後の可溶型抗原の血漿中濃度を測定することにより判断することが可能である。抗原に対する結合活性がイオン濃度の条件によって変化する抗原結合ドメイン、pH酸性域の条件下でFcRnに対する結合活性を有するFcRn結合ドメイン、およびFcγレセプターに対する選択的な結合活性を有するFcγレセプター結合ドメイン(選択的FcγR結合ドメイン)を含む抗原結合分子と可溶型抗原を投与した後の血漿中の可溶型抗原の濃度が低下している場合には、抗原結合分子の血漿中抗原消失能が増加したと判断することができる。ここで選択的FcγR結合ドメインとはFcγRIIbに対する結合は維持しつつ、活性型FcγRに対する結合は低減したドメインをいう。可溶型抗原は、血漿中において抗原結合分子に結合する抗原であっても、または抗原結合分子が結合しない抗原であってもよく、その濃度はそれぞれ「血漿中抗原結合分子結合抗原濃度」および「血漿中抗原結合分子非結合抗原濃度」として決定することができる(後者は「血漿中遊離抗原濃度」と同義である)。「血漿中総抗原濃度」とは、抗原結合分子結合抗原と抗原結合分子非結合抗原とを合計した濃度、または抗原結合分子非結合抗原濃度である「血漿中遊離抗原濃度」を意味することから、可溶型抗原濃度は「血漿中総抗原濃度」として決定することができる。「血漿中総抗原濃度」または「血漿中遊離抗原濃度」を測定する様々な方法が、本明細書において以下に記載するように当技術分野において周知である。
 本発明において、「薬物動態の向上」、「薬物動態の改善」、および「優れた薬物動態」は、「血漿中(血中)滞留性の向上」、「血漿中(血中)滞留性の改善」、「優れた血漿中(血中)滞留性」、「血漿中(血中)滞留性を長くする」と言い換えることが可能であり、これらの語句は同じ意味で使用される。
 本発明において「薬物動態が改善する」とは、抗原結合分子がヒト、またはマウス、ラット、サル、ウサギ、イヌなどの非ヒト動物に投与されてから、血漿中から消失するまで(例えば、細胞内で分解される等して抗原結合分子が血漿中に戻ることが不可能な状態になるまで)の時間が長くなることのみならず、抗原結合分子が投与されてから分解されて消失するまでの間に抗原に結合可能な状態(例えば、抗原結合分子が抗原に結合していない状態)で血漿中に滞留する時間が長くなることも含む。天然型Fc領域を有するヒトIgGは、非ヒト動物由来のFcRnに結合することができる。例えば、天然型Fc領域を有するヒトIgGはヒトFcRnよりマウスFcRnに強く結合することができることから(Int. Immunol. (2001) 13 (12), 1551-1559)、本発明の抗原結合分子の特性を確認する目的で、好ましくはマウスを用いて投与を行うことができる。別の例として、本来のFcRn遺伝子が破壊されており、ヒトFcRn遺伝子に関するトランスジーンを有して発現するマウス(Methods Mol. Biol. (2010) 602, 93-104)もまた、以下に記載する本発明の抗原結合分子の特性を確認する目的で、投与を行うために用いることができる。具体的には、「薬物動態が改善する」とはまた、抗原に結合していない抗原結合分子(抗原非結合型抗原結合分子)が分解されて消失するまでの時間が長くなることを含む。抗原結合分子が血漿中に存在していても、その抗原結合分子にすでに抗原が結合している場合は、その抗原結合分子は新たな抗原に結合できない。そのため抗原結合分子が抗原に結合していない時間が長くなれば、新たな抗原に結合できる時間が長くなり(新たな抗原に結合できる機会が多くなり)、生体内で抗原が抗原結合分子に結合していない時間を減少させることができ、抗原が抗原結合分子に結合している時間を長くすることが可能となる。抗原結合分子の投与によって血漿中からの抗原の消失を加速することができれば、抗原非結合型抗原結合分子の血漿中濃度が増加し、また、抗原が抗原結合分子に結合している時間が長くなる。つまり、本発明における「抗原結合分子の薬物動態の改善」とは、抗原非結合型抗原結合分子のいずれかの薬物動態パラメーターの改善(血漿中半減期の増加、平均血漿中滞留時間の増加、血漿中クリアランスの低下のいずれか)、あるいは、抗原結合分子投与後に抗原が抗原結合分子に結合している時間の延長、あるいは、抗原結合分子による血漿中からの抗原の消失が加速されること、を含む。抗原結合分子あるいは抗原非結合型抗原結合分子の血漿中半減期、平均血漿中滞留時間、血漿中クリアランス等のいずれかのパラメーター(ファーマコキネティクス 演習による理解(南山堂))を測定することにより判断することが可能である。例えば、抗原結合分子をマウス、ラット、サル、ウサギ、イヌ、ヒトなどに投与した場合、抗原結合分子あるいは抗原非結合型抗原結合分子の血漿中濃度を測定し、各パラメーターを算出し、血漿中半減期が長くなった又は平均血漿中滞留時間が長くなった場合等には、抗原結合分子の薬物動態が改善したといえる。これらのパラメーターは当業者に公知の方法により測定することが可能であり、例えば、薬物動態解析ソフトWinNonlin(Pharsight)を用いて、付属の手順書に従いノンコンパートメント(Noncompartmental)解析することによって適宜評価することができる。抗原に結合していない抗原結合分子の血漿中濃度の測定は当業者公知の方法で実施することが可能であり、例えば、Clin. Pharmacol. (2008) 48 (4), 406-417において測定されている方法を用いることができる。
 本発明において「薬物動態が改善する」とは、抗原結合分子投与後に抗原が抗原結合分子に結合している時間が延長されたことも含む。抗原結合分子投与後に抗原が抗原結合分子に結合している時間が延長されたか否かは、遊離抗原の血漿中濃度を測定し、遊離抗原の血漿中濃度、あるいは、総抗原濃度に対する遊離抗原濃度の割合が上昇してくるまでの時間により判断することが可能である。
 抗原結合分子に結合していない遊離抗原の血漿中濃度、あるいは、総抗原濃度に対する遊離抗原濃度の割合は当業者公知の方法で決定され得る。例えば、Pharm. Res. (2006) 23 (1), 95-103において使用されている方法を用いて決定され得る。また、抗原が何らかの機能を生体内で示す場合、抗原が抗原の機能を中和する抗原結合分子(アンタゴニスト分子)と結合しているかどうかは、その抗原の機能が中和されているかどうかで評価することも可能である。抗原の機能が中和されているかどうかは、抗原の機能を反映する何らかの生体内マーカーを測定することによって評価され得る。抗原が抗原の機能を活性化する抗原結合分子(アゴニスト分子)と結合しているかどうかは、抗原の機能を反映する何らかの生体内マーカーを測定することによって評価され得る。
 遊離抗原の血漿中濃度の測定、血漿中の総抗原量に対する血漿中の遊離抗原量の割合の測定、生体内マーカーの測定などの測定は特に限定されないが、抗原結合分子が投与されてから一定時間が経過した後に行われることが好ましい。本発明において抗原結合分子が投与されてから一定時間が経過した後とは、特に限定されず、投与された抗原結合分子の性質等により当業者が適時決定することが可能であり、例えば抗原結合分子を投与してから1日経過後、抗原結合分子を投与してから3日経過後、抗原結合分子を投与してから7日経過後、抗原結合分子を投与してから14日経過後、抗原結合分子を投与してから28日経過後などが挙げられる。本発明において、「血漿中抗原濃度」とは、抗原結合分子結合抗原と抗原結合分子非結合抗原とを合計した濃度である「血漿中総抗原濃度」、または抗原結合分子非結合抗原濃度である「血漿中遊離抗原濃度」のいずれも含まれる概念である。
 血漿中総抗原濃度は、抗原結合分子として、抗原に対する結合活性がイオン濃度非依存的である抗原結合ドメインを含む抗原結合分子、または、FcγRに対する結合活性が損なわれたFc領域を含む抗原結合分子、を投与した場合と比較して、または本発明の抗原結合分子を投与しない場合と比較して、本発明の抗原結合分子の投与により、2倍、5倍、10倍、20倍、50倍、100倍、200倍、500倍、1,000倍またはそれ以上低減し得る。
 抗原/抗原結合分子モル比は、以下に示す通りに算出され得る:
A値=各時点での抗原のモル濃度
B値=各時点での抗原結合分子のモル濃度
C値=各時点での抗原結合分子のモル濃度あたりの抗原のモル濃度(抗原/抗原結合分子モル比)
C=A/B。
 C値がより小さい場合は、抗原結合分子あたりの抗原消失効率がより高いことを示し、C値がより大きい場合は、抗原結合分子あたりの抗原消失効率がより低いことを示す。
 抗原/抗原結合分子モル比は、上記のように算出され得る。
 抗原/抗原結合分子モル比は、抗原結合分子として、抗原に対する結合活性がイオン濃度によって変化しない抗原結合ドメインを含む抗原結合分子、pH酸性域の条件下でFcRnに対する結合活性を有しないFcRn結合ドメインを含む抗原結合分子、またはFcγレセプターに対する選択的な結合活性を有しないFcγレセプター結合ドメインを含む抗原結合分子、を投与した場合と比較して、本発明の抗原結合分子の投与により2倍、5倍、10倍、20倍、50倍、100倍、200倍、500倍、1,000倍またはそれ以上低減しうる。
 本発明において、本発明の抗原結合分子と比較する参照抗原結合分子として、抗原に対する結合活性がイオン濃度によって変化しない抗原結合ドメインを含む抗原結合分子、pH酸性域の条件下でFcRnに対する結合活性を有しないFcRn結合ドメインを含む抗原結合分子、またはFcγレセプターに対する選択的な結合活性を有しないFcγレセプター結合ドメインを含む抗原結合分子、が用いられる。
 pH酸性域の条件下でFcRnに対する結合活性を有するFcRn結合ドメインの影響を評価する場合において、血漿中総抗原濃度または抗原/抗体モル比の減少は、抗原結合分子がマウスカウンターパート抗原と交差反応しないときは、ヒトFcRnトランスジェニックマウス系統32または系統276(Jackson Laboratories, Methods Mol. Biol. (2010) 602, 93-104)を用い、抗原抗体同時注射モデルまたは定常状態抗原注入モデルのいずれかによって評価することもできる。抗原結合分子がマウスカウンターパートと交差反応するときは、ヒトFcRnトランスジェニックマウス系統32または系統276(Jackson Laboratories)に抗原結合分子を単に注射することによって評価することもできる。同時注射モデルでは、抗原結合分子と抗原の混合物をマウスに投与する。定常状態抗原注入モデルでは、一定の血漿中抗原濃度を達成するためにマウスに抗原溶液を充填した注入ポンプを埋め込んで、次に抗原結合分子をマウスに注射する。試験抗原結合分子を同じ用量で投与する。血漿中総抗原濃度、血漿中遊離抗原濃度、および血漿中抗原結合分子濃度を、当業者公知の方法を用いて適切な時点で測定する。
 Fcγレセプターに対する選択的な結合活性を有するFcγレセプター結合ドメインの影響を評価する場合において、血漿中総抗原濃度または抗原/抗体モル比の減少は、抗原結合分子がマウスカウンターパート抗原と交差反応しない場合は、通常用いられるC57BL/6Jマウス(Charles River Japan)を用い、抗原抗体同時注射モデルまたは定常状態抗原注入モデルのいずれかによって評価することもできる。抗原結合分子がマウスカウンターパートと交差反応する場合は、通常用いられるC57BL/6Jマウス(Charles River Japan)に抗原結合分子を単に注射することによって評価することもできる。
 同時注射モデルでは、抗原結合分子と抗原の混合物をマウスに投与する。定常状態抗原注入モデルでは、一定の血漿中抗原濃度を達成するためにマウスに抗原溶液を充填した注入ポンプを埋め込んで、次に抗原結合分子をマウスに注射する。試験抗原結合分子を同じ用量で投与する。血漿中総抗原濃度、血漿中遊離抗原濃度、および血漿中抗原結合分子濃度を、当業者公知の方法を用いて適切な時点で測定する。
 投与2日後、4日後、7日後、14日後、28日後、56日後、または84日後に血漿中の総抗原濃度または遊離抗原濃度および抗原/抗原結合分子モル比を測定して、本発明の長期効果を評価することができる。言い換えれば、本発明の抗原結合分子の特性を評価する目的で、長期間の血漿中抗原濃度が、抗原結合分子の投与2日後、4日後、7日後、14日後、28日後、56日後、または84日後に血漿中の総抗原濃度または遊離抗原濃度および抗原/抗原結合分子モル比を測定することによって決定される。本発明に記載の抗原結合分子によって血漿中抗原濃度または抗原/抗原結合分子モル比の減少が達成されるか否かは、先に記載した任意の1つまたは複数の時点でその減少を評価することにより決定され得る。
 投与15分後、1時間後、2時間後、4時間後、8時間後、12時間後、または24時間後に、血漿中の総抗原濃度または遊離抗原濃度および抗原/抗原結合分子モル比を測定して、本発明の短期効果を評価することができる。言い換えれば、本発明の抗原結合分子の特性を評価する目的で、短期間の血漿中抗原濃度が、抗原結合分子の投与15分後、1時間後、2時間後、4時間後、8時間後、12時間後、または24時間後に血漿中の総抗原濃度または遊離抗原濃度および抗原/抗原結合分子モル比を測定することによって決定される。
 本発明の抗原結合分子の投与経路は、皮内注射、静脈内注射、硝子体内注射、皮下注射、腹腔内注射、非経口注射、および筋肉内注射から選択することができる。
 本発明においては、ヒトにおける抗原結合分子の薬物動態が改善することが好ましい。ヒトでの血漿中滞留性を測定することが困難である場合には、マウス(例えば、正常マウス、ヒト抗原発現トランスジェニックマウス、ヒトFcRn発現トランスジェニックマウス、等)またはサル(例えば、カニクイザルなど)での血漿中滞留性をもとに、ヒトでの血漿中滞留性を予測することができる。
 本発明における「抗原結合分子の薬物動態の改善、血漿中滞留性の向上」とは抗原結合分子を生体に投与した際のいずれかの薬物動態パラメーターが改善されていること(血漿中半減期の増加、平均血漿中滞留時間の増加、血漿中クリアランスの低下、バイオアベイラビリティのいずれか)、あるいは、投与後の適切な時間における抗原結合分子の血漿中濃度が向上していることを意味する。抗原結合分子の血漿中半減期、平均血漿中滞留時間、血漿中クリアランス、バイオアベイラビリティ等のいずれかのパラメーター(ファーマコキネティクス 演習による理解(南山堂))を測定することにより判断することが可能である。例えば、抗原結合分子をマウス(ノーマルマウスおよびヒトFcRnトランスジェニックマウス)、ラット、サル、ウサギ、イヌ、ヒトなどに投与した場合、抗原結合分子の血漿中濃度を測定し、各パラメーターを算出し、血漿中半減期が長くなった又は平均血漿中滞留時間が長くなった場合等には、抗原結合分子の薬物動態が改善したといえる。これらのパラメーターは当業者に公知の方法により測定することが可能であり、例えば、薬物動態解析ソフトWinNonlin(Pharsight)を用いて、付属の手順書に従いノンコンパートメント(Noncompartmental)解析することによって適宜評価することができる。
 マウスにおいて、FcγRI、FcγRIIb、FcγRIII、FcγRIVの、4種類のFcγRがこれまでに見出されている。ヒトにおいてもそれらに対応するFcγRとして、FcγRI、FcγRIIa、FcγRIIb、FcγRIIIa、FcγRIIIa、FcγRIIIbが見出されている。これらのFcγRの中で唯一抑制型と考えられているFcγRIIbはヒト、マウスのいずれにおいても保存されている。他のFcγRはFcγRIIIbを除いてImmunoreceptor tyriosine-based activating motif (ITAM)を介して活性化シグナルを伝達するが、FcγRIIbは細胞内に有するimunoreceptor tyrosine-based inhibitory motif(ITIM)を介して抑制シグナルを伝達している(Nat. Rev. Immunol. (2008) 8, 34-47)。
 FcγRIIbのスプライシングバリアントとしてFcγRIIb1とFcγRIIb2とが報告されている。ヒトおよびマウスのいずれにおいてもFcγRIIb1はFcγRIIb2に比べて長い細胞内ドメインを有しており、FcγRIIb1はB細胞で発現することが確認され、FcγRIIb2はマクロファージ、肥満細胞、樹状細胞、好塩基球、好中球、好酸球で発現することが確認されている(J. Clin. Immunol. (2005) 25 (1), 1-18)。
 これまでに、ヒトにおいてFcγRIIbの機能不全、発現低下は自己免疫疾患の発症と相関があることが報告されている。例えば、SLE患者の中にはFcγRIIbの発現プロモーター領域にある遺伝子多型の影響によって転写活性化因子の結合が弱まり、FcγRIIbの発現が低下している例が報告されている(Hum. Genet. (2005) 117, 220-227、J. Immunol. (2004) 172, 7192-7199、J. Immunol. (2004) 172, 7186-7191)。また、SLE患者の中にはFcγRIIbの233番目のアミノ酸がIleまたはThrという二種類の遺伝子多型が報告されている。この部位はFcγRIIbの細胞膜貫通領域に存在し、233番目のアミノ酸がThrの場合、Ileの場合と比べて、FcγRIIbがリピッドラフトに存在しにくくなり、結果としてFcγRIIbのシグナル伝達機能が低下することが報告されている(Nat. Med. (2005) 11, 1056-1058、Hum. Mol. Genet., (2005) 14, 2881-2892)。マウスにおいても、C57BL/6マウスのFcγRIIb遺伝子が破壊されたノックアウトマウスは、自己抗体の産生や糸球体腎炎等のSLE様の症状を呈することが報告されている(Immunity 13 (2000) 277-285、J. Exp. Med. (2002) 195, 1167-1174)。また、これまでにSLEの自然発症モデルと考えられてきているマウスにおいてもFcγRIIbの発現量の低下などが報告されている(Immunogenetics (2000) 51, 429-435、Int. Immunol. (1999) 11, 1685-1691、Curr. Biol. (2000) 10, 227-230、J. Immunol. (2002) 169, 4340-4346)。これらのことから、マウスにおいても、ヒト同様にFcγRIIbは液性免疫を制御していると考えられる。
 本発明のFcを有する抗体がFcγRIIbを介して抗原を消失させる際には、FcγRIIbの機能のうち、FcγRIIbのエンドサイトーシスの機能が最も重要な寄与をしていると考えられる。上述したようにFcγRIIbのスプライシングバリアントとしてFcγRIIb1とFcγRIIb2が存在するが、抗体と抗原の免疫複合体のエンドサイトーシスには後者が主に関与していることが報告されている(J. Immunol. (1994), 152 574-585、Science (1992) 256, 1808-1812、Cell (1989) 58, 317-327)。これまでにマウスのFcγRIIb2はクラスリン被覆ピットに取り込まれて、エンドサイトーシスを起こすことが報告されている(Cell (1989) 58, 317-327)。また、FcγRIIb2を介したエンドサイトーシスにはdileucine motifが必要と報告されているが、ヒトおよびマウスのいずれにおいてもdileucine motifは保存されている(EMBO J. (1994) 13 (13), 2963-2969)。このことからも、ヒトにおいてもマウス同様にFcγRIIb2はエンドサイトーシス能を有すると考えられる。
 その一方で、FcγRIIb1はFcγRIIb2と異なり、エンドサイトーシスを起こさないことが報告されている。FcγRIIb1はFcγRIIb2にはみられない、細胞内ドメイン中の挿入配列が存在する。この配列がFcγRIIb1のクラスリン被覆ピットへの取り込みを阻害し、その結果としてエンドサイトーシスが阻害されると考えられている(J. Cell. Biol. (1992) 116, 875-888、J. Cell. Biol. (1989) 109, 3291-3302)。ヒトにおいても、マウス同様にFcγRIIb1にはFcγRIIb2の同様の部分に挿入配列が存在するため、類似のメカニズムでFcγRIIb1とFcγRIIb2のエンドサイトーシス能の違いが生じていると予想される。また、ヒトにおいても、マウスにおいても20分間に細胞表面上の約40%の免疫複合体が細胞内へ取り込まれることが報告されている(Mol. Immunol. (2011) 49, 329-337、Science (1992) 256, 1808-1812)。このことから、ヒトにおいてもFcγRIIb2はマウス同様の速度で免疫複合体を細胞内に取り込んでいると予想される。
 FcγR familyのうちFcγRIIbはヒトでもマウスでも唯一細胞内にITIMを有し、発現細胞の分布も同一であることから、免疫の制御における機能も同様であると推測できる。またヒトでもマウスでも同様の速度で免疫複合体が細胞内へ取り込まれるという事実を考慮すると、マウスを用いることで、ヒトにおけるFcγRIIbを介した抗体による抗原の消失効果が予測可能であると考えられる。実際に、参考実施例7において、pH依存的に可溶性抗原に結合する性質を有する抗原結合分子であるmIgG1と比較して、pH依存的に可溶性抗原に結合する性質を有しマウスFcγRIIbおよびFcγRIIIに対するaffiityが増強した抗原結合分子であるmF44およびmF46がノーマルマウスに投与されたときに、mIgG1が投与された場合と比べて抗原のクリアランスを増加することが示された。
 また、後述される参考実施例8においてFc受容体γ鎖欠損マウスを使って同様の実験が実施された。マウスの場合、FcγRIIb以外のFcγRはgamma chainの共存在下でしか発現しないことが報告されているため、Fc受容体γ鎖欠損マウスではFcγRIIbしか発現していない。Fc受容体γ鎖欠損マウスにpH依存的に可溶性抗原に結合する性質を有する抗原結合分子であるmF44、mF46を投与することで、FcγRIIb選択的に結合を増強した際の、抗原消失を加速する効果を考察することが可能である。参考実施例8の結果から、Fc受容体γ鎖欠損マウスに投与されたpH依存的に可溶性抗原に結合する性質を有する抗原結合分子であるmF44およびmF46は、同マウスに投与されたpH依存的に可溶性抗原に結合する性質を有する抗原結合分子であるmIgG1と比べて、抗原のクリアランスを増加することが示された。また、参考実施例8の結果から、mF44およびmF46はFc受容体γ鎖欠損マウスに投与された場合でもノーマルマウスに投与された場合とほぼ同程度に抗原を消失させることが明らかとなった。
 参考実施例8においてFcγRIII欠損マウスを使って同様の実験が実施された。mIgG1およびmF44、mF46はmFcγRのうちFcγRIIbおよびFcγRIIIにのみ結合することから、FcγRIII欠損マウスにこれらの抗体を投与することで、FcγRIIb選択的に結合を増強した際の、抗原消失を加速する効果を考察することが可能である。参考実施例8の結果から、FcγRIII欠損マウスに投与されたmF44およびmF46は同マウスに投与されたmIgG1と比べて、抗原のクリアランスを増加することが示された。また、参考実施例8の結果から、mF44およびmF46はFcγRIII欠損マウスに投与された場合でもノーマルマウスに投与された場合、およびFc受容体γ鎖欠損マウスに投与された場合とほぼ同程度に抗原を消失させることが明らかとなった。
 これらの結果から、活性型FcγRに対する結合は増強せず、FcγRIIbにだけ選択的に結合を増強することで、抗原消失を加速することが可能であることが明らかとなった。すなわちFcγRを介した免疫複合体の除去には主にFcγRIIbが関与していることを示しており、FcγRのうちFcγRIIbに対する結合を維持しておきさえすれば、その抗体のFcγRを介した免疫複合体の除去する効率も維持されると推察された。
 先に考察したこれまでの文献報告に加えて、上記のマウスを使った検証結果から、ヒトの生体中においても、マウスと同様にFcγRIIbを介した免疫複合体の細胞内への取り込みが生じ、その結果ヒトFcγRIIbに対して選択的に結合を増強したFcを有する抗体はその抗原の消失を速めることが可能であると考えられる。また、先に考察したように、マウスとヒトとではFcγRIIbを介した免疫複合体の細胞内への取り込みが同程度の速度で生じると考えられることから、マウスFcγRIIbに対するaffinityを増強したFcを有する抗体の抗原消失を速める効果と同程度の効果が、ヒトFcγRIIbに対するaffinityを同程度に増強したFcを用いることでヒトの生体内においても達成することが可能であると考えられた。
 また本発明は、抗体Fc領域改変体を含むポリペプチドにおいて、該Fc領域改変体に少なくとも一つのアミノ酸改変を加えることを含む、親Fc領域を含むポリペプチドと比較して、FcγRIIbに対する結合活性を維持しつつ、活性型FcγRに対する結合活性が減少したFc領域改変体を含むポリペプチドの製造方法を提供する。
 例えば以下の工程を含む製造方法を挙げることができる;
(a)Fc領域を含むポリペプチドにおいて、該Fc領域に少なくとも一つのアミノ酸改変を加える工程、
(b)前記工程(a)で改変されたポリペプチドの、FcγRIIbに対する結合活性及び活性型FcγRに対する結合活性を測定する工程、および
(c)親Fc領域を含むポリペプチドと比較して、FcγRIIbに対する結合活性を維持しつつ、活性型FcγRに対する結合活性が減少したFc領域改変体を含むポリペプチドを選択する工程。
 好ましい態様としては、Fc領域改変体を含むポリペプチドの製造方法であって、
(a)親Fc領域を含むポリペプチドと比較して、FcγRIIbに対する結合活性を維持しつつ、活性型FcγRに対する結合活性が減少するように、当該ポリペプチドをコードする核酸を改変する工程、
(b)宿主細胞に当該核酸を導入し発現するように培養する工程、
(c)宿主細胞培養物から当該ポリペプチドを回収する工程、を含む方法である。
 さらに当該製造方法によって製造される抗体及びFc融合タンパク質分子も本発明に含まれる。
 また本発明は、抗体Fc領域改変体を含むポリペプチドにおいて、該Fc領域改変体に少なくとも一つのアミノ酸改変を加えることを含む、親Fc領域を含むポリペプチドと比較して、FcγRIIbに対する結合活性を維持しつつ、すべての活性型FcγR、中でもFcγRIIa(R型)に対する結合活性を低減する方法、或いは、本発明のFc領域改変体を含むポリペプチドの製造方法を提供する。
 例えば、以下の工程を含む方法を挙げることができる;
(a)Fc領域を含むポリペプチドにおいて、該Fc領域に少なくとも一つのアミノ酸改変を加える工程、
(b)前記工程(a)で改変されたポリペプチドの、FcγRIIaに対する結合活性およびFcγRIIbに対する結合活性を測定する工程、および
(c)親Fc領域を含むポリペプチドと比較して、FcγRIIbに対する結合活性を維持しつつ、FcγRIIa(R型)に対する結合活性が減少したFc領域改変体を含むポリペプチドを選択する工程。
 好ましい態様としては、親Fc領域を含むポリペプチドのFcγRIIbに対する結合活性を維持しつつ、すべての活性型FcγR、中でもFcγRIIa(R型)に対する結合活性を低減する方法、或いは、Fc領域改変体を含むポリペプチドの製造方法であって、
(a)親Fc領域を含むポリペプチドと比較して、FcγRIIbに対する結合活性を維持しつつ、FcγRIIa(R型)に対する結合活性が減少するように、当該ポリペプチドをコードする核酸を改変する工程、
(b)宿主細胞に当該核酸を導入し発現するように培養する工程、
(c)宿主細胞培養物から当該ポリペプチドを回収する工程、を含む方法である。
 さらに当該製造方法によって製造される抗体及びFc融合タンパク質分子も本発明に含まれる。
 また本発明は、Fc領域を含むポリペプチドにおいて、該Fc領域に少なくとも一つのアミノ酸改変を加えることを含む、生体に投与された場合に、親Fc領域を含むポリペプチドと比較して、該ポリペプチドに対する抗体の産生を抑制する方法、或いは、該ポリペプチドに対する抗体の産生が抑制されたポリペプチドの製造方法を提供する。
  例えば以下の工程を含む方法を挙げることができる;
 (a)Fc領域を含むポリペプチドにおいて、該Fc領域に少なくとも一つのアミノ酸改変を加える工程、および
 (b)前記工程(a)で改変されたFc領域を含むポリペプチドが生体に投与された場合に、親Fc領域を含むポリペプチドと比較して、抗体の産生が抑制されることを確認する工程。
 そのようなポリペプチドは、活性型FcγRを活性化することなく、抗体の産生を抑制することができるため、医薬品として有用であると考えられる。
 上記方法においては、FcγRIIbに対する結合活性を維持しつつ、すべての活性型FcγR、中でもFcγRIIa(R型)に対する結合活性を減少させるようにすることが好ましい。
 上記方法における好ましい態様としては、例えばヒトIgGのFc領域において、EUナンバリング238番目のアミノ酸の他のアミノ酸への改変と、Fc領域のEUナンバリング235番目のアミノ酸、237番目のアミノ酸、241番目のアミノ酸、268番目のアミノ酸、295番目のアミノ酸、296番目のアミノ酸、298番目のアミノ酸、323番目のアミノ酸、324番目のアミノ酸及び330番目のアミノ酸から選ばれる少なくとも1つのアミノ酸から選ばれる少なくとも1つのアミノ酸の他のアミノ酸への改変とが導入されるよう、当該Fc領域を改変する。EUナンバリング238番目のアミノ酸改変と組み合わされる他のアミノ酸改変としては、上記の中から2以上のアミノ酸を選択して組み合わせてもよい。好ましい組合せとしては、下記の(1)から(3)が挙げられる。
(1)Fc領域のEUナンバリング241番目のアミノ酸、268番目のアミノ酸、296番目のアミノ酸及び324番目のアミノ酸
(2) Fc領域のEUナンバリング237番目のアミノ酸、241番目のアミノ酸、296番目のアミノ酸及び330番目のアミノ酸
(3) Fc領域のEUナンバリング235番目のアミノ酸、237番目のアミノ酸、241番目のアミノ酸及び296番目のアミノ酸
 改変後のアミノ酸として選択されるアミノ酸は、改変前と比較してFcγRIIbに対する結合活性を維持しつつ、すべての活性型FcγR、中でもFcγRIIa(R)に対する結合選択性が減少するものであれば特に限定されないが、EUナンバリング238番目のアミノ酸がAspであり、更に、EUナンバリング235番目のアミノ酸がPhe、237番目のアミノ酸がGln又はAsp、241番目のアミノ酸がMet又はLeu、268番目のアミノ酸がPro、295番目のアミノ酸がMet又はVal、296番目のアミノ酸がGlu、His、Asn又はAsp、298番目のアミノ酸がAla又はMet、323番目のアミノ酸がIle、324番目のアミノ酸がAsn又はHis、330番目のアミノ酸がHis又はTyr であることが好ましい。
 また、上記方法における好ましい態様としては、例えばヒトIgGのFc領域において、FcγRIIbに対する結合活性が天然型IgGのFc領域と比較して2倍以上となるアミノ酸改変が導入されたFc領域改変体と、全てのFcγRに対する結合活性を低減させるアミノ酸改変とが組み合わされて導入されるよう、当該Fc領域を改変する。
 本発明において、「FcγRIIbに対する結合活性が天然型IgGのFc領域と比較して2倍以上となるアミノ酸改変」としては、特に限定されないが、例えば、表11に記載のアミノ酸改変が挙げられる。
 また、本発明において、「全てのFcγRに対する結合活性を低減させるアミノ酸改変」としては、特に限定されないが、例えば、Fc領域のEUナンバリング234番目のアミノ酸、235番目のアミノ酸、236番目のアミノ酸、237番目のアミノ酸、239番目のアミノ酸、265番目のアミノ酸、267番目のアミノ酸及び297番目のアミノ酸から選ばれる少なくとも1つのアミノ酸が挙げられる。
 好ましい組合せとしては、例えば、FcγRIIbに対する結合活性が天然型IgGのFc領域と比較して2倍以上となるアミノ酸改変が、Fc領域のEUナンバリング238番目のアミノ酸及び271番目のアミノ酸であり、全てのFcγRに対する結合活性を低減させるアミノ酸改変が、Fc領域のEUナンバリング234番目のアミノ酸、235番目のアミノ酸、236番目のアミノ酸、237番目のアミノ酸、239番目のアミノ酸、265番目のアミノ酸、267番目のアミノ酸及び297番目のアミノ酸から選ばれる少なくとも1つのアミノ酸が挙げられる。
 具体的には、下記の(1)~(3)に記載のアミノ酸改変の組合せを好ましい改変の組合せとして挙げることができる。
(1) Fc領域のEUナンバリング233番目のアミノ酸、238番目のアミノ酸、264番目のアミノ酸、267番目のアミノ酸、268番目のアミノ酸及び271番目のアミノ酸
(2)Fc領域のEUナンバリング233番目のアミノ酸、237番目のアミノ酸、238番目のアミノ酸、264番目のアミノ酸、267番目のアミノ酸、268番目のアミノ酸、271番目のアミノ酸、296番目のアミノ酸、297番目のアミノ酸、330番目のアミノ酸及び396番目のアミノ酸
(3) Fc領域のEUナンバリング233番目のアミノ酸、238番目のアミノ酸、264番目のアミノ酸、267番目のアミノ酸、268番目のアミノ酸、271番目のアミノ酸及び296番目のアミノ酸
 改変後のアミノ酸として選択されるアミノ酸は、改変前と比較してFcγRIIbに対する結合活性を維持しつつ、すべての活性型FcγR、中でもFcγRIIa(R)に対する結合選択性が減少するものであれば特に限定されないが、EUナンバリング238番目のアミノ酸がAsp、271番目のアミノ酸がGlyであり、EUナンバリング234番目のアミノ酸がAla、His、Asn、Lys又はArg、235番目のアミノ酸がAla、236番目のアミノ酸がGln、237番目のアミノ酸がArg又はLys、239番目のアミノ酸がLys、265番目のアミノ酸がLys、Asn、Arg、Ser又はVal、267番目のアミノ酸がLys、Arg又はTyr、297番目のアミノ酸がAlaであることが好ましい。
 また、上記方法における好ましい態様としては、例えばヒトIgGのFc領域において、EUナンバリング238番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸の他のアミノ酸への改変が導入されるよう、当該Fc領域を改変する。更に、233番目のアミノ酸、237番目のアミノ酸、264番目のアミノ酸、267番目のアミノ酸及び268番目のアミノ酸から選ばれる少なくとも1つのアミノ酸から選ばれる少なくとも1つのアミノ酸の他のアミノ酸への改変とが導入されるよう、当該Fc領域を改変する。組み合わされる他のアミノ酸改変としては、上記の中から2以上のアミノ酸を選択して組み合わせてもよい。好ましい組合せとしては、下記の(1)から(4)が挙げられる。
(1) Fc領域のEUナンバリング237番目のアミノ酸、238番目のアミノ酸、268番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸
(2)Fc領域のEUナンバリング233番目のアミノ酸、237番目のアミノ酸、238番目のアミノ酸、268番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸
(3) Fc領域のEUナンバリング238番目のアミノ酸、267番目のアミノ酸、268番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸
(4) Fc領域のEUナンバリング238番目のアミノ酸、264番目のアミノ酸、267番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸
 改変後のアミノ酸として選択されるアミノ酸は、改変前と比較してFcγRIIbに対する結合活性を維持しつつ、すべての活性型FcγR、中でもFcγRIIa(R)に対する結合選択性が減少するものであれば特に限定されないが、EUナンバリング238番目のアミノ酸がAsp、271番目のアミノ酸がGly、327番目のアミノ酸がGly、330番目のアミノ酸がSer、331番目のアミノ酸がSer、233番目のアミノ酸がAsp、237番目のアミノ酸がAsp、264番目のアミノ酸がIle、267番目のアミノ酸がAla、268番目のアミノ酸がAsp又はGluであることが好ましい。
 さらに本発明は、親Fc領域を含むポリペプチドに比べて、FcγRIIbに対する結合活性を維持しつつ活性型FcγR、特にFcγRIIa(R型)に対する結合活性が減少したポリペプチドを作製するための、ポリペプチドを改変する方法を提供する。また本発明は、親Fc領域を含むポリペプチドに比べて、FcγRIIbに対する結合活性を維持しつつ、活性型FcγR、特にFcγRIIa(R型)に対する結合活性が減少したポリペプチドを作製するための、ポリペプチドを改変する方法を提供する。
 また本発明は、生体に投与された場合に、親Fc領域を含むポリペプチドと比較して、抗体の産生が抑制されたポリペプチドを作製するための、ポリペプチドを改変する方法を提供する。
 好ましい態様としては、例えば、上述のFcγRIIbに対する結合活性を維持しつつ、活性型FcγR、特にFcγRIIa(R型)に対する結合活性が減少したFc領域改変体を含むポリペプチドの製造方法に記載のアミノ酸改変の組み合わせが挙げられる。
 また、上述の各種方法には、天然型IgGのFc領域を含むポリペプチドと比較してFcγRIIbに対する結合活性が維持され、かつ、すべての活性型FcγRに対する結合活性が減少されていれば、他のアミノ酸改変を組み合わせて用いることができる。そのような改変としては、例えば、補体に対する結合活性を減少させる改変が挙げられる。具体的には、例えば、Fc領域のEUナンバリング322番目のアミノ酸改変、或いは、Fc領域のEUナンバリング327番目、330番目及び331番目のアミノ酸改変の組合せが挙げられる。改変後のアミノ酸として選択されるアミノ酸は、天然型IgGのFc領域を含むポリペプチドと比較してFcγRIIbに対する結合活性が維持され、すべての活性型FcγRに対する結合活性が減少されつつ、補体に対する結合活性を減少させるものでれば特に限定されないが、EUナンバリング322番目のアミノ酸がAla又はGlu、327番目のアミノ酸がGly、330番目のアミノ酸がSer、331番目のアミノ酸がSerであることが好ましい。
 さらに本発明は、Fc領域を含むポリペプチドであって、少なくとも一つのアミノ酸が改変され、親Fc領域を含むポリペプチドと比較して、FcγRIIbに対する結合活性を維持しつつ、活性型FcγR、特にFcγRIIa(R型)に対する結合活性が減少したFc領域改変体を含むポリペプチドをコードする核酸を提供する。また本発明は、Fc領域を含むポリペプチドであって、少なくとも一つのアミノ酸が改変され、親Fc領域を含むポリペプチドと比較して、FcγRIIbに対する結合活性を維持しつつ、活性型FcγR、特にFcγRIIa(R型)に対する結合活性に対する結合活性が減少したFc領域改変体を含むポリペプチドをコードする核酸を提供する。本発明の該核酸はDNA、RNAなど、如何なる形態でもよい。
 さらに本発明は、上記本発明の核酸を含むベクターを提供する。ベクターの種類はベクターが導入される宿主細胞に応じて当業者が適宜選択することができ、例えば上述のベクターを用いることができる。
 さらに本発明は、上記本発明のベクターにより形質転換された宿主細胞に関する。宿主細胞は当業者が適宜選択することができ、例えば上述の宿主細胞を用いることができる。 具体的には例えば、以下のような宿主細胞が挙げられる。
真核細胞が宿主細胞として使用される場合、動物細胞、植物細胞、あるいは真菌細胞が適宜使用され得る。具体的には、動物細胞としては、次のような細胞が例示され得る。
(1)哺乳類細胞、:CHO(Chinese hamster ovary cell line)、COS(Monkey kidney cell line)、ミエローマ(Sp2/O、NS0等)、BHK (baby hamster kidney cell line)、Hela、Vero、HEK293(human embryonic kidney cell line with sheared adenovirus (Ad)5 DNA)、Freestyle 293,PER.C6 cell (human embryonic retinal cell line transformed with the Adenovirus Type 5 (Ad5) E1A and E1B genes)など(Current Protocols in Protein Science (May, 2001, Unit 5.9, Table 5.9.1))
(2)両生類細胞:アフリカツメガエル卵母細胞など
(3)昆虫細胞:sf9、sf21、Tn5など
 あるいは植物細胞としては、ニコティアナ・タバカム(Nicotiana tabacum)などのニコティアナ(Nicotiana)属由来の細胞による抗体遺伝子の発現系が公知である。植物細胞の形質転換には、カルス培養した細胞が適宜利用され得る。
 更に真菌細胞としては、次のような細胞を利用することができる。
-酵母:サッカロミセス・セレビシエ(Saccharomyces serevisiae)などのサッカロミセス(Saccharomyces )属、メタノール資化酵母(Pichia pastoris)などのPichia属
-糸状菌:アスペスギルス・ニガー(Aspergillus niger)などのアスペルギルス(Aspergillus )属
 さらに本発明は、Fc領域を含むポリペプチドにおいて、該Fc領域に少なくとも一つのアミノ酸改変を加えることを含む、親Fc領域を含むポリペプチドと比較して、FcγRIIbに対する結合活性を維持しつつ、活性型FcγR、特にFcγRIIa(R型)に対する結合活性を減少する方法を提供する。
 また本発明は、Fc領域を含むポリペプチドにおいて、該Fc領域に少なくとも一つのアミノ酸改変を加えることを含む、生体に投与された場合に、親Fc領域を含むポリペプチドと比較して、該ポリペプチドに対する抗体の産生を抑制する方法を提供する。
 好ましい態様としては、例えば、上述のFcγRIIbに対する結合活性を維持しつつ、活性型FcγR、特にFcγRIIa(R型)に対する結合活性が減少したFc領域改変体を含むポリペプチドの製造方法に記載のアミノ酸改変の組み合わせが挙げられる。
 また、上記のいずれかの方法により製造されたポリペプチドも本発明に含まれる。
 本発明は、本発明のFc領域改変体を含むポリペプチドを含有する医薬組成物を提供する。
 本発明の医薬組成物は、本発明の上記抗体又はFc融合タンパク質分子に加えて医薬的に許容し得る担体を導入し、公知の方法で製剤化することが可能である。例えば、水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、又は懸濁液剤の注射剤の形で非経口的に使用できる。例えば、薬理学上許容される担体もしくは媒体、具体的には、滅菌水や生理食塩水、植物油、乳化剤、懸濁剤、界面活性剤、安定剤、香味剤、賦形剤、ベヒクル、防腐剤、結合剤などと適宜組み合わせて、一般に認められた製薬実施に要求される単位用量形態で混和することによって製剤化することが考えられる。具体的には、軽質無水ケイ酸、乳糖、結晶セルロース、マンニトール、デンプン、カルメロースカルシウム、カルメロースナトリウム、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルアセタールジエチルアミノアセテート、ポリビニルピロリドン、ゼラチン、中鎖脂肪酸トリグリセライド、ポリオキシエチレン硬化ヒマシ油60、白糖、カルボキシメチルセルロース、コーンスターチ、無機塩類等を担体として挙げることができる。これら製剤における有効成分量は指示された範囲の適当な用量が得られるようにするものである。
 注射のための無菌組成物は注射用蒸留水のようなベヒクルを用いて通常の製剤実施に従って処方することができる。
 注射用の水溶液としては、例えば生理食塩水、ブドウ糖やその他の補助薬を含む等張液、例えばD-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウムが挙げられ、適当な溶解補助剤、例えばアルコール、具体的にはエタノール、ポリアルコール、例えばプロピレングリコール、ポリエチレングリコール、非イオン性界面活性剤、例えばポリソルベート80(TM)、HCO-50と併用してもよい。
 油性液としてはゴマ油、大豆油があげられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコールと併用してもよい。また、緩衝剤、例えばリン酸塩緩衝液、酢酸ナトリウム緩衝液、無痛化剤、例えば、塩酸プロカイン、安定剤、例えばベンジルアルコール、フェノール、酸化防止剤と配合してもよい。調製された注射液は通常、適当なアンプルに充填させる。
 投与は好ましくは非経口投与であり、具体的には、注射剤型、経鼻投与剤型、経肺投与剤型、経皮投与剤型などが挙げられる。注射剤型は、例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などにより全身または局部的に投与することができる。
 また本発明の医薬組成物は、患者の年齢、症状により適宜投与方法を選択することができる。抗体または抗体をコードするポリヌクレオチドを含有する医薬組成物の投与量としては、例えば、一回につき体重1kgあたり0.0001 mgから1000 mgの範囲で選ぶことが可能である。あるいは、例えば、患者あたり0.001から100000 mg/bodyの範囲で投与量を選ぶことができるが、これらの数値に必ずしも制限されるものではない。投与量、投与方法は、患者の体重や年齢、症状などにより変動するが、当業者であれば適宜選択することが可能である。
 上記本発明のFc領域改変体を含むポリペプチドは、B細胞、マスト細胞、樹状細胞および/または好塩基球の活性化を抑制する薬剤の有効成分として有用である。本発明のFc領域改変体を含むポリペプチドは、活性型FcγRを活性化することなく、FcγRIIbに選択的に作用して、B細胞、マスト細胞、樹状細胞および/または好塩基球の活性化を抑制することが可能である。B細胞の活性化とは、増殖、IgE産生、IgM産生、IgA産生などを含む。上記本発明のFc領域改変体を含むポリペプチドは、FcγRIIbとIgEを架橋することでB細胞のIgE産生を抑制し、IgMと架橋することでB細胞のIgM産生を抑制し、IgAと架橋することでIgA産生を抑制する。それ以外にも、BCR、CD19、CD79b、等のB細胞上に発現している分子でITAMドメインを細胞内に含むあるいはITAMドメインと相互作用する分子とFcγRIIbとを直接的又は間接的に架橋することで、上記と同様な抑制作用を発揮する。また、マスト細胞の活性化とは、増殖、IgE等による活性化、脱顆粒などを含む。上記本発明のFc領域改変体を含むポリペプチドは、マスト細胞においては、IgE受容体であるFcεRI、DAP12、CD200R3等のマスト細胞上に発現しているITAMドメインを含むあるいはITAMドメインと相互作用する分子とFcγRIIbとを直接的、間接的に架橋することで、増殖、IgE等による活性化、脱顆粒の抑制をすることが可能である。また、好塩基球の活性化とは、増殖、脱顆粒などを含む。上記本発明のFc領域改変体を含むポリペプチドは、好塩基球においても、FcγRIIbと細胞膜上の分子でITAMドメインを細胞内に含むあるいはITAMドメインと相互作用する分子とを直接的又は間接的に架橋することにより活性化、脱顆粒、増殖を抑制することが可能である。また、樹状細胞の活性化とは、増殖、脱顆粒などを含む。上記本発明のFc領域改変体を含むポリペプチドは、樹状細胞においても、細胞膜上の分子でITAMドメインを細胞内に含むあるいはITAMドメインと相互作用する分子とFcγRIIbとを直接的又は間接的に架橋することで、活性化、脱顆粒、増殖を抑制することが可能である。
 本発明においては、上記本発明のFc領域改変体を含むポリペプチドは、免疫炎症性疾患の治療剤又は予防剤の有効成分として有用である。上述のように、本発明のFc領域改変体を含むポリペプチドは、B細胞、マスト細胞、樹状細胞および/または好塩基球の活性化を抑制することができるので、その結果として、本発明のFc領域改変体を含むポリペプチドを投与することにより、免疫炎症性疾患を治療又は予防することが可能である。「免疫炎症性疾患」は、次のものを包含するが、但しそれらだけには限定されない:関節リウマチ、自己免疫性肝炎、自己免疫性甲状腺炎、自己免疫性水疱症、自己免疫性副腎皮質炎、自己免疫性溶血性貧血、自己免疫性血小板減少性紫斑病、巨赤血球性貧血、自己免疫性萎縮性胃炎、自己免疫性好中球減少症、自己免疫性精巣炎、自己免疫性脳脊髄炎、自己免疫性レセプター病、自己免疫不妊、慢性活動型肝炎、糸球体腎炎、間質性肺腺維症、多発性硬化症、パジェット病、オステオポローシス、多発性骨髄腫、ブドウ膜炎、急性及び慢性脊椎炎、痛風性関節炎、炎症性腸疾患、成人呼吸促進症候群(ARDS)、乾癬、クローン病、バセドウ病、若年性糖尿病、アジソン病、重症筋無力症、水晶体性ブドウ膜炎、全身性エリテマトーデス、アレルギー性鼻炎、アレルギー性皮膚炎、潰瘍性大腸炎、過敏症、筋肉変性、悪液質、全身性強皮症、限局性強皮症、シェーグレン症候群、ベーチェット病、ライター症候群、I型及びII型糖尿病、骨吸収疾患、移植片対宿主反応、虚血性再灌流外傷、アテローム硬化症、脳トラウマ、大脳マラリア、敗血症、敗血性ショック、トキシックショック症候群、発熱、染色によるマルギアス(malgias)、再生不良性貧血、溶血性貧血、突発性血小板減少症、グッドパスチャー症候群、ギラン・バレー症候群、橋本病、天疱瘡、IgA腎症、花粉症、抗リン脂質抗体症候群、多発性筋炎、ウェゲナー肉芽腫症、結節性動脈炎、混合性結合組織病、線維筋痛症、喘息、アトピー性皮膚炎、慢性萎縮性胃炎、原発性胆汁性肝硬変、原発性硬化性胆管炎、自己免疫性膵炎、大動脈炎症候群、急速進行性糸球体腎炎、巨赤芽球性貧血、特発性血小板減少性紫斑病、原発性甲状腺機能低下症、特発性アジソン病、インスリン依存性糖尿病、慢性円板状エリテマトーデス、類天疱瘡、妊娠性疱疹、線状IgA水疱性皮膚症、後天性表皮水疱症、円形脱毛症、尋常性白斑、サットン後天性遠心性白斑、原田病、自己免疫性視神経症、特発性無精子症、習慣性流産、低血糖症、慢性蕁麻疹、強直性脊椎炎、乾癬性関節炎、腸疾患性関節炎、反応性関節炎、脊椎関節症、腱付着部炎、過敏性腸症候群、慢性疲労症候群、皮膚筋炎、封入体筋炎、シュミット症候群、グレーブス病、悪性貧血、ルポイド肝炎、初老期痴呆、アルツハイマー病、脱髄性疾患、筋萎縮性側索硬化症、副甲状腺機能低下症、ドレスラー症候群、イートン-ランバート症候群、疱疹状皮膚炎、脱毛症、進行性全身性硬化症、CREST症候群(石灰沈着症、レイノー現象、食道運動障害、強指症および毛細血管拡張症)、サルコイドーシス、リウマチ熱、多形性紅斑、クッシング症候群、輸血反応、ハンセン病、高安動脈炎、リウマチ性多発筋痛症、側頭動脈炎、巨細胞動脈炎、湿疹、リンパ腫様肉芽腫症、川崎病、心内膜炎、心内膜心筋線維症、眼内炎、胎児赤芽球症、好酸球性筋膜炎、フェルティ症候群、ヘノッホ-シェーンライン紫斑病、移植拒絶反応、ムンプス、心筋症、化膿性関節炎、家族性地中海熱、マックル-ウェルズ症候群、高IgD症候群。
 また、上記本発明のFc領域改変体を含むポリペプチドは、自己抗原に対する抗体(自己抗体)の産生が疾患の原因と考えられる自己免疫疾患において、その自己抗体の産生を抑制して、当該自己免疫疾患を治療又は予防する薬剤の有効成分として有用である。重症筋無力症の自己抗原であるAchRと抗体のFc部分とを融合した分子を用いることで、AchRを認識するBCRを発現するB細胞の増殖を抑制し、アポトーシスを誘導することが報告されている (J Neuroimmunol, 227, 35-43, 2010)。自己抗体が認識する抗原と本発明に記載の抗体Fc領域との融合タンパク質を使うことで、その自己抗原に対するBCRを発現するB細胞のBCRとFcγRIIbとを架橋し、自己抗原に対するBCRを発現するB細胞の増殖を抑制し、アポトーシスを誘導することが可能である。このような自己免疫疾患には、ギラン・バレー症候群、重症筋無力症、慢性萎縮性胃炎、自己免疫性肝炎、原発性胆汁性肝硬変、原発性硬化性胆管炎、自己免疫性膵炎、大動脈炎症候群、グッドパスチャー症候群、急速進行性糸球体腎炎、巨赤芽球性貧血、自己免疫性溶血性貧血、自己免疫性好中球減少症、特発性血小板減少性紫斑病、バセドウ病、橋本病、原発性甲状腺機能低下症、特発性アジソン病、インスリン依存性糖尿病、慢性円板状エリテマトーデス、限局性強皮症、天疱瘡、類天疱瘡、妊娠性疱疹、線状IgA水疱性皮膚症、後天性表皮水疱症、円形脱毛症、尋常性白斑、サットン後天性遠心性白斑、原田病、自己免疫性視神経症、特発性無精子症、習慣性流産、二型糖尿病、低血糖症、慢性蕁麻疹が含まれるが、これらだけには限定されない。
 また、上記本発明のFc領域改変体を含むポリペプチドは、生体に必要なタンパク質を欠損する疾患の治療剤の有効成分として有用である。生体に必要なタンパク質を欠損する疾患に対して、そのタンパク質を薬剤として投与し補充する治療法が用いられるが、患者は元来そのタンパク質を欠損しているため、外部から補充されたそのタンパク質は異物として認識され、そのタンパク質に対する抗体が産生されてしまう。その結果として、そのタンパク質が除去されやすくなってしまい、薬剤としての効果が減弱してしまう。そのようなタンパク質と本発明に記載の抗体Fc領域との融合タンパク質を使うことで、当該タンパク質を認識するB細胞上においてBCRとFcγRIIbとを架橋し、当該タンパク質に対する抗体産生を抑制することが可能である。補充するタンパク質としてはFactor VIII、Factor IX、TPO、EPO、α-iduronidase、iduronate sulfatase、A型heparan N-sulfatase,B型α-N-acetylglucosaminidase, C型acetyl CoA:α-glucosaminidase acetyltransferase,D型N-acetylglucosamine 6-sulfatase、galactose 6-sulfatase、N-acetylgalactosamine 4-sulfatase、β-glucuronidase、α-galactosidase、acidic α-galactosidase、glucocerebrosidaseが含まれる。また、これらのタンパク質を補充する疾患としては、血友病、特発性血小板減少性紫斑病、腎性貧血、ライソソーム病(ムコ多糖症、ファブリー病、ポンペ病、ゴーシェ病)等が含まれる。ただし、これらに限定されない。
 また、上記本発明のFc領域改変体を含むポリペプチドは、抗ウィルス剤の有効成分として有用である。ウィルスに対する抗体であって本発明に記載のFc領域を含む抗体は、ウィルスに対する抗体に見られる抗体依存性感染増強 (antibody-dependent enhancement) を抑制することが可能である。抗体依存性感染増強とは、ウィルスが、そのウィルスに対する中和抗体を利用して、活性型FcγRを介して貪食されFcγR発現細胞に感染することで、感染を拡大する現象である。デングウィルスに対する中和抗体のFcγRIIbに対する結合が、抗体依存性感染増強を抑制するのに重要な役割を果たしていることが報告されている(Proc Natl Acad Sci USA, 108, 12479-12484, 2011)。デングウィルスに対する中和抗体が形成するデングウィルスとの免疫複合体がFcγRIIbを架橋することで、FcγRを介した貪食を阻害し、その結果として抗体依存性感染増強を抑制する。ウィルスにはデングウィルス(DENV1、DENV2、DENV4)やHIVが含まれる。ただし、これらだけに限定されない。
 また、上記本発明のFc領域改変体を含むポリペプチドは、動脈硬化予防剤または治療剤の有効成分として有用である。動脈硬化の原因である酸化LDLに対する抗体であって、本発明に記載のFc領域を含む抗体はFcγRIIa依存的な炎症性細胞の接着を防ぐことが可能である。抗酸化LDL抗体は酸化LDLとCD36の相互作用を阻害するが、抗酸化LDL抗体が内皮細胞に対して結合し、そのFc部分をモノサイトがFcγRIIaやFcγRI依存的に認識し、接着することが報告されている (Immunol Lett, 108, 52-61, 2007)。このような抗体に、本発明に記載のFc領域を含む抗体を利用することで、FcγRIIa依存的な結合は阻害され、かつFcγRIIbを介した抑制シグナルによってモノサイトの接着を抑制することが考えられる。
 本発明においては、上記本発明のFc領域改変体を含むポリペプチドは、癌に対する治療剤又は予防剤の有効成分として有用である。上述のように、FcγRIIbに対する結合を維持し、かつ、すべての活性型FcγRに対する結合を低減することで、アゴニスト抗体のアゴニスト活性を維持しつつ、FcγRIIaに依存的な機構による血小板の活性化を抑制し、血栓塞栓症等のリスクを低減することが可能である。そのため、本発明に記載のFc領域改変体を用いたアゴニスト抗体は、癌の治療又は予防に有用である。具体的には、本発明に記載のFc領域改変体は、例えば、Aliases、CD120a、CD120b、Lymphotoxin β receptor、CD134、CD40、FAS、TNFRSF6B、CD27、CD30、CD137、TNFRSF10A、TNFRSF10B、TNFRSF10C、TNFRSF10D、RANK、Osteoprotegerin、TNFRSF12A、TNFRSF13B、TNFRSF13C、TNFRSF14、Nerve growth factor receptor、TNFRSF17、TNFRSF18、TNFRSF19、TNFRSF21、TNFRSF25、Ectodysplasin A2 receptor等のTNF受容体ファミリーに対するアゴニスト抗体のアゴニスト活性を増強し、癌の治療又は予防に利用することができる。また、上記以外にも、そのアゴニスト活性にFcγRIIbとの相互作用が必要とされる分子に対するアゴニスト抗体のアゴニスト活性も増強する。加えて、Receptor Tyrosine kinase(RTK)の一つであるKitのように、FcγRIIbと架橋されることで、細胞の増殖が抑制されるような分子に対して結合活性を有するポリペプチドに、本発明のFc領域改変体を含ませることで、当該分子を発現した細胞に対する抑制作用を増強することが可能となる。癌は次のものを包含するが、但しそれらだけには限定されない:肺癌(小細胞肺癌、非小細胞肺癌、肺腺癌および肺扁平上皮癌を含む)、大腸癌、直腸癌、結腸癌、乳癌、肝癌、胃癌、膵癌、腎癌、前立腺癌、卵巣癌、甲状腺癌、胆管癌、腹膜癌、中皮腫、扁平上皮癌、子宮頸癌、子宮体癌、膀胱癌、食道癌、頭頚部癌、鼻咽頭癌、唾液腺腫瘍、胸腺腫、皮膚癌、基底細胞腫、悪性黒色腫、肛門癌、陰茎癌、精巣癌、ウィルムス腫瘍、急性骨髄性白血病(急性骨髄球性白血病、急性骨髄芽球性白血病、急性前骨髄球性白血病、急性骨髄単球性白血病および急性単球性白血病を含む)、慢性骨髄性白血病、急性リンパ性白血病、慢性リンパ性白血病、ホジキンリンパ腫、非ホジキンリンパ腫(バーキットリンパ腫、慢性リンパ球性白血病、菌状息肉腫、マントル細胞リンパ腫、濾胞性リンパ腫、びまん性大細胞型リンパ腫、辺縁帯リンパ腫、毛様細胞白血病形質細胞腫、末梢性T細胞リンパ腫および成人T細胞白血病/リンパ腫)、ランゲルハンス細胞組織球症、多発性骨髄腫、骨髄異形成症候群、脳腫瘍(神経膠腫、星細胞腫、グリア芽細胞腫、髄膜腫および上衣腫を含む)、神経芽細胞腫、網膜芽細胞腫、骨肉腫、カポジ肉腫、ユーイング肉腫、血管肉腫、血管外皮細胞腫。
 また本発明は、本発明のFc領域改変体を含むポリペプチドもしくは本発明の製造方法により製造されたFc領域改変体を含むポリペプチドを対象(患者)へ投与する工程を含む、免疫炎症性疾患の治療方法または予防方法に関する。
 また本発明は、少なくとも本発明のFc領域改変体を含むポリペプチドもしくは本発明の製造方法により製造されたFc領域改変体を含むポリペプチド、または本発明の医薬組成物を含む、本発明の治療方法または予防方法に用いるためのキットを提供する。該キットには、その他、薬学的に許容される担体、媒体、使用方法を記載した指示書等をパッケージしておくこともできる。また本発明は、本発明のFc領域改変体を含むポリペプチドもしくは本発明の製造方法により製造されたFc領域改変体を含むポリペプチドの、免疫炎症性疾患の治療剤または予防剤の製造における使用に関する。また本発明は、本発明の治療方法または予防方法に使用するための、本発明のFc領域改変体を含むポリペプチドまたは本発明の製造方法により製造されたFc領域改変体を含むポリペプチドに関する。
 なお本明細書で用いられているアミノ酸の3文字表記と1文字表記の対応は以下の通りである。
アラニン:Ala:A
アルギニン:Arg:R
アスパラギン:Asn:N
アスパラギン酸:Asp:D
システイン:Cys:C
グルタミン:Gln:Q
グルタミン酸:Glu:E
グリシン:Gly:G
ヒスチジン:His:H
イソロイシン:Ile:I
ロイシン:Leu:L
リジン:Lys:K
メチオニン:Met:M
フェニルアラニン:Phe:F
プロリン:Pro:P
セリン:Ser:S
スレオニン:Thr:T
トリプトファン:Trp:W
チロシン:Tyr:Y
バリン:Val:V
 なお本明細書において引用された全ての先行技術文献は、参照として本明細書に組み入れられる。
 本発明は、以下の実施例によってさらに例示されるが、下記の実施例に限定されるものではない。
〔実施例1〕pH依存的抗IgE抗体の取得
(1-1)抗ヒトIgE抗体の取得
 pH依存的抗ヒトIgE抗体を取得するために、抗原であるヒトIgE(重鎖配列番号:13、軽鎖配列番号:14)(可変領域は抗ヒトGlypican3抗体からなる)をFreeStyle293(Life Technologies)を用いて発現させた。発現したヒトIgEは当業者公知の一般的なカラムクロマトグラフィー法により精製して、調製された。
 取得された多数の抗体の中から、ヒトIgEにpH依存的に結合し、且つ、二分子の抗IgE抗体および二分子のIgE以上からなる大きな免疫複合体を形成する抗体が選抜された。選抜された抗ヒトIgE抗体をヒトIgG1重鎖定常領域、および、ヒト軽鎖定常領域を用いて発現、精製した。作製された抗体はクローン278(IgG1)(重鎖配列番号:10、軽鎖配列番号:11)と命名された。
(1-2)抗ヒトIgE抗体の結合活性およびpH依存的結合活性の評価
 エンドソーム内で抗原を解離することができる抗体は、抗原に対してpH依存的に結合するだけでなく、Ca依存的に結合する抗原に結合することによっても創製することが可能である。そこで、クローン278およびコントロールとなるpH依存的IgE結合能を有さないXolair (omalizumab, Novartis)の、ヒトIgE(hIgE)に対するpH依存的結合能およびpH/Ca依存的結合能が評価された。
 すなわち、Biacore T200(GE Healthcare)を用いて、クローン278およびXolairのhIgEに対する結合活性(解離定数KD (M))が評価された。ランニングバッファーとして以下3種を用いて測定が行われた。
・1.2 mmol/l CaCl/0.05% tween20, 20 mmol/l ACES, 150 mmol/l NaCl, pH7.4
・1.2 mmol/l CaCl/0.05% tween20, 20 mmol/l ACES, 150 mmol/l NaCl, pH5.8
・3 μmol/l CaCl/0.05% tween20, 20 mmol/l ACES, 150 mmol/l NaCl, pH5.8
 適当量添加された化学合成されたヒトグリピカン3タンパク質由来配列(配列番号:12)のC末端に存在するLysにビオチンが付加されたペプチド(以下「ビオチン化GPC3ペプチド」と記載する)が、ストレプトアビジンとビオチンの親和性を利用してSensor chip SA(GE Healthcare)上に固定化された。適切な濃度のヒトIgEをインジェクトして、ビオチン化GPC3ペプチドに捕捉させることで、ヒトIgEがチップ上に固定化された。アナライトとして適切な濃度のクローン278をインジェクトして、センサーチップ上のヒトIgEと相互作用させた。その後、10 mmol/L Glycine-HCl, pH1.5をインジェクトして、センサーチップが再生された。相互作用は全て37℃で測定された。Biacore T200 Evaluation Software(GE Healthcare)を用いた、カーブフィッティングによる測定結果の解析により、結合速度定数ka (1/Ms)及び解離速度定数kd (1/s)が算出された。これらの定数を元に解離定数KD (M)が算出された。さらに、pH5.8, 1.2 mM Ca条件とpH7.4, 1.2 mM Ca条件の下での各抗体のKD比を算出してpH依存性結合が、pH5.8, 3μM Ca条件とpH7.4, 1.2 mM Ca条件の下での各抗体のKD比を算出してpH/Ca依存性結合が評価された。その結果を表5に示した。
Figure JPOXMLDOC01-appb-T000005
(1-3)クローン278、Xolairの免疫複合体の形成評価
 クローン278がヒトIgEと中性条件下(pH7.4)において二分子の抗IgE抗体および二分子のIgE以上からなる大きな免疫複合体を形成すること、またその免疫複合体が酸性条件下(pH5.8)において解離することがゲルろ過クロマトグラフィーにより評価された。100 mM NaClに透析処理されたクローン278は、中性条件下のサンプルとして20mM Tris-HCl, 150mM NaCl, 1.2mM CaCl2, pH7.4のバッファー、酸性条件下のサンプルとして20mM Bis-tris-HCl, 150mM NaCl, 3μM CaCl2, pH5.8のバッファーを用いて希釈された。ヒトIgEであるhIgE(Asp6)100μg/mL(0.60μM)とクローン278が1:1、1:6のモル比で混合された混合液が、室温または25℃オートサンプラー中で2時間以上放置後、ゲルろ過クロマトグラフィーで分析された。中性条件下では20mM Tris-HCl, 300mM NaCl, 1.2mM CaCl2, pH7.4の移動相、酸性条件下では20mM Bis-tris-HCl, 300mM NaCl, 3uM CaCl2, pH5.8の移動相がそれぞれ用いられた。カラムはG4000SWxl (TOSOH)を用い、流速0.5mL/min、25℃の条件下で分析された。その結果を図1に示した。図1に示すとおり、クローン278とヒトIgEは、中性条件下において、見かけの分子量670kDa程度からなる(抗体一分子を一量体と仮定した場合における)4量体およびそれ以上の多量体からなる大きな免疫複合体を形成したことが確認された。さらに、酸性条件下においては、このような免疫複合体は認められなかったことから、上述のBiacoreを用いた結合の評価と同様、pH依存的にこれらの免疫複合体は解離することが確認された。
〔実施例2〕クローン278とXolairのin vivo評価
(2-1)In vivo評価用のヒトIgE(hIgE(Asp6))の調製
 重鎖(配列番号:15)および軽鎖(配列番号:14)からなるin vivo評価用のヒトIgEであるhIgE (Asp6)(可変領域は抗ヒトGlypican3抗体)は、実施例1と同様の方法で調製された。hIgE(Asp6)は、ヒトIgEのN型糖鎖のヘテロジェニティーが、抗原であるヒトIgEの血漿中濃度推移の影響を受けないようにするために、ヒトIgEの6か所のN型糖鎖結合サイトのアスパラギンがアスパラギン酸に改変された分子である。
(2-2)ノーマルマウスを用いたクローン278とXolairのヒトIgEの消失加速効果の検証
 C57BL/6Jマウス(Charles river Japan)にhIgE(Asp6)を単独投与、もしくはhIgE(Asp6)および抗hIgE抗体(クローン278またはXolair)を同時投与した後のhIgE(Asp6)および抗ヒトIgE抗体の体内動態が評価された。hIgE(Asp6)(20μg/mL)もしくはhIgE(Asp6)および抗ヒトIgE抗体の混合溶液(濃度は表6に記載)が尾静脈から10mL/kgで単回投与された。このとき、hIgE(Asp6)に対して各抗体は十分量過剰に存在することから、hIgE(Asp6)はほぼ全て抗体に結合していると考えられる。投与後5分間、2時間、7時間、1日間、2日間、4日間もしくは5日間、7日間、14日間、21日間、28日間で当該マウスから血液が採血された。採取された血液をただちに4℃、15,000 rpmで5分間遠心分離して、血漿が得られた。分離された血漿は、測定を実施するまで、-20℃以下に設定された冷凍庫に保存された。
Figure JPOXMLDOC01-appb-T000006
(2-3)ノーマルマウスの血漿中hIgE(Asp6)濃度の測定
 マウス血漿中hIgE(Asp6)濃度はELISA法にて測定された。血漿中濃度として192、96、48、24、12、6、3 ng/mLの検量線試料が調製された。hIgE(Asp6)と抗hIgE抗体の免疫複合体を均一にするため、検量線およびマウス血漿測定試料には、10μg/mLとなるようにXolair(Novartis)を添加し、室温で30分静置させた。静置後の検量線およびマウス血漿測定試料をanti-human IgEが固相化されたイムノプレート(MABTECH)もしくは、anti-human IgE(clone 107、MABTECH)が固相化されたイムノプレート(Nunc F96 MicroWell Plate(Nalge nunc International))に分注し、室温で2時間静置もしくは4℃で一晩静置させた。その後、human GPC3 core protein(配列番号:16)、NHS-PEG4-Biotin(Thermo Fisher Scientific)でbiotin化された抗GPC3抗体(社内調製)、Sterptavidin-PolyHRP80(Stereospecific Detection Technologies)をそれぞれ1時間順次反応させた。TMB One Component HRP Microwell Substrate(BioFX Laboratories)を基質として用いた発色反応を1 N-Sulfuric acid(Showa Chemical)で反応停止後、当該発色をマイクロプレートリーダーにて450nmの吸光度を測定する方法、もしくはSuperSignal(r) ELISA Pico Chemiluminescent Substrate(Thermo Fisher Scientific)を基質として発光反応を行い、マイクロプレートリーダーにて発光強度を測定する方法によってマウス血漿中濃度が測定された。マウス血漿中濃度は検量線の吸光度もしくは発光強度から解析ソフトウェアSOFTmax PRO(Molecular Devices)を用いて算出された。この方法で測定された静脈内投与後の血漿中hIgE(Asp6)濃度推移を図2に示した。図中でクローン278は278-IgG1、XolairはXolair-IgG1と表記された。
(2-4)ノーマルマウスの血漿中抗ヒトIgE抗体濃度の測定
 マウス血漿中の抗hIgE抗体濃度はELISA法にて測定された。血漿中濃度として0.4、0.2、0.1、0.05、0.025、0.0125、0.00625μg/mLの検量線試料が調製された。hIgE(Asp6)と抗hIgE抗体の免疫複合体を均一にするため、検量線およびマウス血漿測定試料は、1μg/mLとなるようにhIgE(Asp6)が添加された後、室温で30分静置した。静置後の検量線およびマウス血漿測定試料をAnti-Human Kappa Light Chain Antibody(Bethyl Laboratories)が固相化されたイムノプレート(Nunc-Immuno Plate, MaxiSorp(Nalge nunc International))に分注し、室温で2時間静置もしくは4℃で一晩静置させた。その後、Rabbit anti-Human IgG (Fc) Secondary antibody, Biotin conjugate(Pierce Biotechnology)およびStreptavidin-Poly HRP80(Stereospecific Detection Technologies)をそれぞれ1時間順次反応させた。TMB One Component HRP Microwell Substrate(BioFX Laboratories)を基質として用いた発色反応を1 N-Sulfuric acid(Showa Chemical)で反応停止後、当該発色をマクロプレートリーダーにて450nmの吸光度を測定する方法によってマウス血漿中濃度が測定された。マウス血漿中濃度は検量線の吸光度から解析ソフトウェアSOFTmax PRO(Molecular Devices)を用いて算出された。この方法で測定された静脈内投与後の血漿中IgE抗体濃度推移を図3に示した。図中でクローン278は278-IgG1、XolairはXolair-IgG1と表記された。
 その結果、ヒトIgE単独の消失に対して、ヒトIgEとコントロール抗IgE抗体であるXolairを同時に投与した場合は、ヒトIgEの消失は遅くなった。それに対して、ヒトIgEに対してpH依存的な結合活性を有するクローン278を同時に投与した場合は、ヒトIgEの消失をヒトIgE単独と比較して大幅に加速することが確認された。
 国際公開第WO2011/122011号においてヒトIL-6レセプター (hsIL-6R)に対して結合する抗体とhsIL-6Rとを用いて同様の実験が実施されているが、その結果は本実施例の結果と異なっていた。国際公開第WO2011/122011号の実施例3においては、ヒトIL-6レセプター (hsIL-6R)に対して結合するが、その結合がpH依存的ではない抗体(H54L28-IgG1)のIgG1抗体を抗原と同時にノーマルマウス(C57BL/6Jマウス)に投与した場合には、抗原単独を投与した場合と比較して、抗原であるヒトIL-6レセプターの消失は加速されておらず、むしろ遅くなっていた。pH依存的に抗原に結合する抗体(Fv4-IgG1)を抗原と同時に投与した場合も、H54L28-IgG1を投与した場合と比較して抗原の消失は加速されているものの、抗原単独で投与した場合よりは抗原の消失は遅くなっていた。これは抗体を投与することにより、抗体が抗原に結合した結果、抗原が抗体とともに挙動することにより、抗体同様にFcRnを介してリサイクルされ、血中から消失されにくくなるためであると考えられる。
 本実施例で得られた結果は、抗原と同時に抗体を投与することにより、抗原単独を投与した場合よりも、抗原の消失が加速するという結果であり、過去の報告と一見矛盾するようである。しかし、本実施で用いた抗原であるIgEは二価抗原であり、hsIL-6Rは一価抗原であるという点が異なる。IgEに対して抗IgE抗体を加えると、一つの抗原に対して二つの抗体が結合することが可能であり、実施例(1-3)で観察されたような複数の抗原と抗体から成る免疫複合体を形成する。抗体単独であれば、IgGの受容体であるFcγRに対して一価(affinity)で結合することしかできないが、上述のような複数の抗原と抗体から成る免疫複合体の場合には、FcγRに対して複数価(avidity)で結合することが可能である。一方、hsIL-6Rの場合は一つの抗原に対して一つの抗体しか結合できず、したがってその抗原と抗体からなる免疫複合体はFcγRと一価(affinity)でしか結合できず、avidityで結合した場合と比較してその相互作用は極めて弱い。すなわち、IgEとその抗体から形成される免疫複合体はFcγRに対してavidityで強く結合し、その結果FcγRが発現する肝臓等を介して血中から速やかに除去されたと考えられた。
 さらに、抗体がpH依存的に抗原であるIgEに結合する場合は、抗原と抗体の免疫複合体が細胞内に取り込まれた後に、エンドソーム内で抗原が解離される。その後、抗原は抗体とともにFcRnを介してリサイクルされず、解離した抗原はライソソーム内で分解される。その結果、抗体が抗原に対する結合がpH依存的ではない場合と比較して、抗原が速やかに消失させられたと考えられた。
〔実施例3〕FcγR結合を低減させたクローン278とXolairのin vivo評価
(3-1)FcγR結合を低減させた抗ヒトIgE抗体の取得
 次に、実施例2で観察された抗原の消失の加速が免疫複合体とFcγRとの相互作用に由来するものであるか検証するために、pH依存的にヒトIgEに結合する278-IgG1に対してマウスFcγRに対する結合が低減された改変体が作製された。マウスFcγRに対する結合を低減させることを目的に、278-IgG1のEUナンバリングで表される235位のLeuがArgに、239位のSerがLysに置換された278-F760(軽鎖配列番号:11)が作製された。これらの遺伝子をコードするDNA配列が当業者に公知の方法で動物発現用プラスミドに組み込まれた。当該プラスミドが導入された動物細胞を用いて、上述の方法で発現したこれらの抗体改変体の濃度が、その精製後に測定された。
(3-2)ノーマルマウスを用いたFcγR結合を低減させたクローン278とXolairのヒトIgEの消失加速効果の検証
 (2-2)と同様の方法でノーマルマウスを用いて、マウスFcγRに対する結合を低減させた278-F760(軽鎖配列番号:11)を投与した際のIgEの消失効果を検証した。
(3-3)ノーマルマウスの血漿中hIgE(Asp6)濃度の測定
 (2-3)と同様の方法でノーマルマウスの血漿中hIgE濃度を測定した。この方法で測定された静脈内投与後の血漿中hIgE濃度推移を図4に示した。比較のために、図中には(2-3)で得られた278-IgG1投与時の血漿中hIgE濃度推移も示した。
(3-4)ノーマルマウスの血漿中抗ヒトIgE抗体濃度の測定
 (2-4)と同様の方法でノーマルマウスの血漿中抗hIgE抗体濃度を測定した。
この方法で測定された静脈内投与後の血漿中抗体濃度推移を図5に示した。比較のために、図中には(2-3)で得られた278-IgG1の血漿中抗体濃度推移も示した。
 本実施例の結果では、抗体とFcγRの結合を低減することによって、血漿中の抗体濃度の推移に大きな変化は観察されなかったが、実施例2で観察されたクローン278のIgG1抗体投与時の抗原の消失を加速させる効果が著しく減弱することが示された。すなわち、実施例2で観察された抗IgE抗体の同時投与時に観察されたIgEの消失の加速は、投与した抗体とFcγRとの相互作用に由来することが示された。
 これらのことから、抗体を用いて、標的とする抗原を効率的に除去させるためには、複数の抗原と抗体か成る免疫複合体を形成させること、その抗体のFcγR結合が天然型IgG1抗体と同程度に維持していること、好ましくは抗体が抗原に対してpH依存的に結合すること(pH酸性条件下における抗原に対する結合が、中性条件下における結合よりも低下していること)が必要であることが考えられる。
〔実施例4〕FcgRIIbへの結合を天然型と同程度に維持し、その他のFcgRへの結合を減弱させた改変体の作製
(4-1)P238D改変と組み合わせることでFcgRIIbへの結合を維持し、FcgRIIaRへの結合を低減させる改変の検討
FcgRIIbへの結合を天然型IgG1のそれと同程度に維持しつつ、活性型FcgRへの結合のみを選択的に低減した抗体を作製するにあたり、最も困難と考えられる課題はアミノ酸配列の相同性が極めて高いFcgRIIaをFcgRIIbと区別して、選択的に結合活性を低減させることであると考えられた。FcgRIIaには131番目のアミノ酸がArgである遺伝子多型とHisである遺伝子多型とが存在する。この残基に対応する残基がFcgRIIbではArgであるため、FcgRIIbはFcgRIIa R型により配列が類似している。そのため、FcgRIIaのうちでも、FcgRIIa R型をFcgRIIbと区別することが特に困難な課題であると考えられた。このFcgRIIaRに対するFcgRIIbへの結合選択性を向上させるための改変として、EUナンバリング238番目のProをAspに置換する改変がWO2012/115241において報告されている。本検討ではこの改変を含む抗体を鋳型にしてFcgRIIbへの結合を天然型IgG1と同程度に維持したまま他のFcgRへの結合を可能な限り減弱させた改変体の作製を目指した。
 WO2012/115241の実施例5で得られたFc (P238D)とFcγRIIb細胞外領域との複合体のX線結晶構造解析の結果に基づき、EUナンバリング238番目のProをAspに置換した改変Fc上で、FcγRIIbとの相互作用に影響を与えることが予測される部位(EUナンバリング233番目、234番目、235番目、236番目、237番目、239番目、240番目、241番目、263番目、265番目、266番目、267番目、268番目、271番目、273番目、295番目、296番目、298番目、300番目、323番目、325番目、326番目、327番目、328番目、330番目、332番目、334番目の残基)に対して網羅的な改変を導入し、各FcγRとの相互作用を評価した。
 抗体H鎖可変領域としてWO2009/125825に開示されているヒトインターロイキン6レセプターに対する抗体の可変領域であるIL6R-Hの可変領域(配列番号:17)を、抗体H鎖定常領域としてヒトIgG1のC末端のGlyおよびLysを除去したG1dを有するIL6R-G1d(配列番号:3)を作製した。次に、参考実施例1の方法に従い、IL6R-G1dのEUナンバリング238番目のProをAspに置換したIL6R-F648を作製した。網羅的改変を導入する鋳型H鎖としては、IL6R-F648に対してM252YおよびN434Yを導入したIL6R-F652(配列番号:1)と、IL6R-F648に対してK439Eを導入したIL6R-BF648(配列番号:2) の二種類を用意した。IL6R-F652あるいはIL6R-BF648の上記の部位に対して、元のアミノ酸とCysを除く18種類のアミノ酸を導入した。抗体L鎖としてはIL6R-L(配列番号:6)を共通に用い、それぞれのH鎖と共に参考実施例1の方法に従って抗体を発現、精製した。これらの改変体を参考実施例1の方法に従い、抗体を発現、精製し、参考実施例2の方法により各FcγR(FcγRIa、 FcγRIIa H型、FcγRIIa R型、FcγRIIb、FcγRIIIa V型)に対する結合を網羅的に評価した。
 その結果、この中でL235F, G237Q, F241M, F241L, H268P, Q295M, Q295V, Y296E, Y296H, Y296N, Y296D, S298A, S298M, V323I, S324N, S324H, A330H, A330YがP238D改変と組み合わせることで、FcgRIIbへの結合を大きく低下させることなくFcgRIIaRに対する結合を低減させる改変として見出された(表7および表8)。
 表7はIL6R-F652/IL6R-Lに対して、表8はIL6R-BF648/IL6R-Lに対して行った網羅的改変導入により見出された改変のFcgRIIaRおよびFcgRIIbへの相対的結合活性を示した。これは、各改変体のFcgRIIaRあるいはFcgRIIbに対する結合量の値を、IL6R-F652/IL6R-L、あるいはIL6R-BF648/IL6R-Lの各FcgRへの結合量の値で割り、100倍した値である。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表7および表8に示した結果から、これらの改変はいずれも、改変導入前と比較してFcgRIIbへの結合を少なくとも55.5%以上に維持しつつも、FcgRIIaRへの結合を低減させる改変であることが見出された。
 そこで本検討では、更にこれらの改変を組み合わせることにより、FcgRIIbへの結合をIgG1と同程度に維持したままFcgRIIaRへの結合を可能な限り低減した改変体の作製を検討した。具体的には、表7および表8中で改変導入前と比較して、活性型FcgRに対する結合を選択的に低減していると考えられる改変、あるいはそれらを組み合わせてIL6R-F648に導入した。抗体L鎖としてはIL6R-L(配列番号:6)を共通に用い、それぞれのH鎖と共に参考実施例1の方法に従って抗体を発現、精製した。得られた改変体のFcgRIa, FcgRIIaR, FcgRIIaH, FcgRIIb, FcgRIIIaVに対する結合は参考実施例2の方法に従って評価した。ここで表9には、各改変体のFcgRIIaRおよびFcgRIIbに対する相対的結合活性を示した。これは、各改変体のFcgRIIaRあるいはFcgRIIbに対する結合量の値を、IL6R-G1d/IL6R-LのFcgRIIaRあるいはFcgRIIbへの結合量の値で割り、100倍した値である。
Figure JPOXMLDOC01-appb-T000009
 表9に示した改変体の中から、FcgRIIbへの結合がIL6R-G1d/IL6R-Lのそれと比較して80%以上を維持し、FcgRIIaRへの結合が30%以下に低減されている改変体について、各FcgRへのKD値を表10に示した。表中の相対的結合活性とは、IL6R-G1d/IL6R-LのKD値を各改変体のKD値で割った値であり、IL6R-G1d/IL6R-Lの各FcgRに対するKD値を1としたときの各改変体の相対的結合活性を示す。表中のKD値のうち、灰色で塗りつぶされた値は、FcgRの各改変体に対する結合が微弱であり、速度論的な解析では正しく解析できないと判断されたため、参考実施例2に記載の
〔式2〕
Figure JPOXMLDOC01-appb-I000010
を利用して算出した値である。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-I000012
 本検討で導入された改変のうち、Y296Eを導入したP589、F241Mを導入したP590、F241Lを導入したP594、Q295Vを導入したP595、 Y296Hを導入したP597、S298Aを導入したP600、S298Mを導入したP601、H268Pを導入したP718、S324Nを導入したP719、S324Hを導入したP720、A330Hを導入したP721、A330Yを導入したP722、L235Fを導入したP723、G237Qを導入したP724、Y296Dを導入したP725は、FcgRIIbへの結合をG1dと同程度かそれ以上に維持したまま、FcgRIIaRへの結合を改変導入前のF648よりも低減する効果があることが示された。これらの中で、最もFcgRIIaRへの結合を低減していたのはS298Aを導入したP600で、FcgRIIbへの結合をG1dの1.2倍に維持したままFcgRIIaRへの結合を0.026倍に低減していた。
 活性型FcgRに対する結合を選択的に低減する効果のあった改変同士を組み合わせて検討した結果、FcgRIIbへの結合がG1dと比較して1.0倍以上であり、かつFcgRIIaRへの結合が最も低減されていたのは、P727であった。P727はFcgRIIbへの結合がG1dの1.1倍に維持され、FcgRIIaRへの結合が0.012倍に減弱されていた。またFcgRIaに対する結合がG1dの0.0014倍に、FcgRIIaHへの結合が0.007倍に、FcgRIIIaVへの結合が0.005倍に減弱されており、FcgRIIb以外の、活性型FcgRに対して極めて選択的に結合を減弱する優れた改変体であった。
(4-2)FcgRIIbへの結合を増強した改変体に対するFcgRIIaRへの結合低減検討
 次に、FcgRIIbへの結合を選択的に増強し、他のFcgRに対する結合は増強しないか、あるいは低減した改変体を鋳型にして、FcgRIIbも含む全FcgRに対する結合を低減させる改変を導入することで、FcgRIIbに対する結合はIgG1と同程度に維持する一方で、他のFcgRに対する結合がIgG1と比較して低減している改変体が得られることが期待された。
 そこでまず、IL6R-G1d(配列番号:3)に対してK439Eを導入したIL6R-B3 (配列番号:4)が作製された。IL6R-B3に対してFcgRIIb選択的結合を組み合わせて導入することにより、FcgRIIbへの結合を選択的に増強した改変体が作製された。抗体L鎖としてはIL6R-L(配列番号:6)を共通に用い、それぞれのH鎖と共に参考実施例1の方法に従って抗体を発現、精製した。得られた改変体のFcgRIa, FcgRIIaR, FcgRIIaH, FcgRIIb, FcgRIIIaVに対する結合は参考実施例2の方法に従って評価した。作製された改変体の各FcgRに対する結合活性を表11に示す。表中の相対的結合活性とは、IL6R-B3/IL6R-LのKD値を各改変体のKD値で割った値であり、IL6R-B3/IL6R-Lの各FcgRに対するKD値を1としたときの各改変体の相対的結合活性を示す。「KD(IIaR)/KD(IIb)」とは、各改変体のFcgRIIaRに対するKD値をFcgRIIbに対するKD値で割った値であり、この値が大きければ大きいほどFcgRIIbに対する選択性が高いことを示す。表中のKD値のうち、灰色で塗りつぶされた値は、FcgRの各改変体に対する結合が微弱であり、速度論的な解析では正しく解析できないと判断されたため、参考実施例2に記載の
〔式2〕
Figure JPOXMLDOC01-appb-I000013
を利用して算出した値である。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
 表11に記載した改変体はいずれもFcgRIIbへの結合がIL6R-B3/IL6R-Lと比較して増強されており、そのFcgRIIbへの結合の増強の程度はIL6R-B3/IL6R-Lの2.6倍から3090倍であった。またIL6R-B3/IL6R-L のKD(IIaR)/KD(IIb)が0.3であったのに対し、表11に記載した改変体は8.7から64.4と、いずれの改変体もFcgRIIbに対する選択性(KD(IIaR)/KD(IIb))がIL6R-B3/IL6R-Lと比較して向上していた。
 これらのFcgRIIbに対して選択的に結合増強した改変体に対し、全FcgRに対する結合を低減させる改変を導入することで、FcgRIIbに対する結合はIgG1と同程度に維持する一方で、他の活性型FcgRに対する結合がIgG1と比較して選択的に低減している改変体が得られると予測された。そこで、実際に、IL6R-BP568/IL6R-LおよびIL6R-BP489/IL6R-Lに導入された2種類のFcgRIIb選択的結合増強改変体を用いて、上述の予測通りの改変体が得られるかを確認した。具体的には上記2つのFcgRIIb選択的結合増強改変を導入した改変体を鋳型として用い、FcgRIIbに対する結合はIgG1と同程度に維持する一方で、他の活性型FcgRに対する結合がIgG1と比較して選択的に低減している改変体を得ることが可能であることを確認した。具体的には、IL6R-BP568/IL6R-LおよびIL6R-BP489/IL6R-Lに用いられたFcgRIIb結合増強改変をIL6R-G1dに導入することで、二種類のFcgRIIbに対する結合を選択的に増強する改変体IL6R-P577およびIL6R-P587が作製された。抗体L鎖としてはIL6R-L(配列番号:6)を共通に用い、それぞれのH鎖と共に参考実施例1の方法に従って抗体を発現、精製した。これら二つの改変体の各FcgRに対するKD値を表12に示す。
Figure JPOXMLDOC01-appb-T000018
 P577のFcgRIIaRへの結合はG1dと比較して21.9倍、FcgRIIbへの結合は3370.7倍であった。またP587のFcgRIIaRへの結合はG1dと比較して1.4倍、FcgRIIbへの結合は255.6倍であった。
 作製された二種類のFcgRIIb結合増強改変体に対し、全FcgRに対する結合を低減させる改変を導入することで、FcgRIIbへの結合を天然型IgG1と同程度に維持しながら、他のFcgR、特にFcgRIIaRに対する結合を可能な限り減弱した改変体の作製を検討した。FcgRIIaRに対する結合を大幅に低減する改変は、FcgRとの相互作用残基に網羅的に改変を導入する検討を実施することで見出された。実施例4-1で示したIL6R-F652/IL6R-LのEUナンバリング234番目、235番目、236番目、237番目、239番目に対する網羅的改変導入に加えて、FcgRIIb選択的増強改変体に対する網羅的改変導入が実施された。
 WO2012/115241において報告されているFcgRIIb増強改変 (E233D/G237D/H268E/P271G) をIL6R-BF648 (配列番号:2) に導入し、IL6R-BP267 (配列番号:5) が作製された。IL6R-BP267のEUナンバリング265番目、266番目、267番目、269番目を元のアミノ酸とCysを除く18種類のアミノ酸に置換した改変体が作製された。抗体L鎖としてはIL6R-L (配列番号:6) を共通に用い、それぞれのH鎖と共に参考実施例1の方法に従って抗体を発現、精製した。これらの改変体を参考実施例1の方法に従い、抗体を発現、精製し、参考実施例2の方法により各FcγR(FcγRIa、 FcγRIIa H型、FcγRIIa R型、FcγRIIb、FcγRIIIa V型)に対する結合を網羅的に評価した。表13はIL6R-F652/IL6R-Lに対して、表14はIL6R-BP267/IL6R-Lに対して行った網羅的改変導入により見出された改変のFcgRIIaRおよびFcgRIIbへの相対的結合活性を示した。これは、各改変体のFcgRIIaRあるいはFcgRIIbに対する結合量の値を、IL6R-F652/IL6R-L、あるいはIL6R-BP267/IL6R-Lの各FcgRへの結合量の値で割り、100倍した値である。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 表13および表14の結果から、これらの改変は、改変導入前と比較してFcgRIIaRへの結合を少なくとも67%以下に低減し、中にはその結合を完全に失わせる改変も含まれることが示された。
 次に、これらの改変をFcgRIIb選択的結合増強改変体に導入、検討した。具体的には、表13および表14に示した17改変が参考実施例1の方法に従ってIL6R-P577、IL6R-P587に対して導入された。また、抗体はFc領域のEUナンバリング297番目のAsnに付加されたN型糖鎖を取り除くことにより、FcgRに対する結合が著しく低減されることが報告されている(The Journal of Biological Chemistry, 2000, 276, 6591-6604)。そのため、本実施例では上述の17改変に加えて、Asn297に付加されているN型糖鎖を取り除くためにN297Aが参考実施例1の方法に従ってIL6R-P577、IL6R-P587に対して導入された。抗体L鎖としてはIL6R-L (配列番号:6) を共通に用い、それぞれのH鎖と共に参考実施例1の方法に従って抗体を発現、精製した。得られた改変体のFcgRIa, FcgRIIaR, FcgRIIaH, FcgRIIb, FcgRIIIaVに対する結合は参考実施例2の方法に従って評価した。ここで表15には、各改変体のFcgRIIaRおよびFcgRIIbに対する相対的結合活性を示した。これは、各改変体のFcgRIIaRあるいはFcgRIIbに対する結合量の値を、IL6R-G1d/IL6R-LのFcgRIIaRあるいはFcgRIIbへの結合量の値で割り、100倍した値である。
Figure JPOXMLDOC01-appb-T000021
 表15に示すようにS239Kを導入した改変体P606、P607、D265Kを導入したP630、P645、D265Rを導入したP632、P647、D265Vを導入したP634、P649はFcgRIIaR、FcgRIIbへの結合がほとんど確認されなかった。つまりこれらの改変はFcgRIIbに対する結合を増強した改変体に導入したとしても、FcgRIIbに対する結合活性も著しく減じてしまう改変である。一方で、P587に対してS267Rを導入したP636や、P577に対してN297Aを導入したP665は、FcgRIIbへの結合がG1dとほぼ同程度であり、その一方でFcgRIIaRに対する結合が大幅に低減されていた。
 表15に示した改変体のうち、FcgRIIbへの結合がG1dの80%以上を維持し、FcgRIIaRへの結合がG1dの30%以下に抑えられている改変体の各FcgRへのKDを表16に示した。表中の相対的結合活性とは、IL6R-G1d/IL6R-LのKD値を各改変体のKD値で割った値であり、IL6R-G1d/IL6R-Lの各FcgRに対するKD値を1としたときの各改変体の相対的結合活性を示す。表中のKD値のうち、灰色で塗りつぶされた値は、FcgRの各改変体に対する結合が微弱であり、速度論的な解析では正しく解析できないと判断されたため、参考実施例2に記載の
〔式2〕
Figure JPOXMLDOC01-appb-I000022
を利用して算出した値である。
Figure JPOXMLDOC01-appb-T000023
 これらの改変体の中で、FcgRIIaRへの結合が最も低減されていたのは、P587に対してS267Rを導入したP636であった。P636はFcgRIIaRに対するKDがG1dの0.023倍であったが、FcgRIIbへのKDはG1dの1.8倍を維持していた。またFcgRIaに対する結合がG1dの0.0007倍に、FcgRIIaHに対する結合が0.006倍に、FcgRIIIaVへの結合が0.008倍に抑制されていた。以上の結果からFcgRIIbに対して選択的に結合増強した改変体に対し、全FcgRへの結合を低減する改変を導入することでFcgRIIbに対する結合はIgG1と同程度を維持しつつ、他のFcgRに対する結合をIgG1よりも低減した改変体が得られることが示された。
(4-3)FcgRIIaRへの結合低減効果のある改変の組み合わせ検討
 4-1、4-2において見出されたFcgRIIbへの結合をG1dと同程度に維持しつつ、FcgRIIaRへの結合が低減された改変を組み合わせ、より優れた改変体の作製を検討した。
 表17に組み合わせ検討結果を示す。表中の相対的結合活性とは、IL6R-G1d/IL6R-LのKD値を各改変体のKD値で割った値であり、IL6R-G1d/IL6R-Lの各FcgRに対するKD値を1としたときの各改変体の相対的結合活性を示す。表中のKD値のうち、表中のKD値のうち、灰色で塗りつぶされた値は、FcgRの各改変体に対する結合が微弱であり、速度論的な解析では正しく解析できないと判断されたため、参考実施例2に記載の
〔式2〕
Figure JPOXMLDOC01-appb-I000024
を利用して算出した値である。
Figure JPOXMLDOC01-appb-T000025
 表17に記載した改変体のうち、FcgRIIaRに対する結合を最も低減していたのは、FcgRIIb選択的結合増強改変体P587に対して、S267R、H268P、Y296Eを組み合わせて導入したP712であり、FcgRIIbへの結合がG1dと比較して1.5倍に維持されたままFcgRIIaRへの結合がG1dと比較して0.017倍に低減されていた。またFcgRIaに対する結合はG1dと比較して0.0005倍に、FcgRIIaHに対する結合が0.003倍に、FcgRIIIaVに対する結合が0.004倍に抑制されていた。
〔実施例5〕 FcgRIIbへの結合を天然型と同程度に維持し、その他のFcgRへの結合を減弱させ、かつ補体への結合を減弱させた改変体の作製
 CDC (complement-dependent cytotoxicity)はADCC同様、免疫反応を惹起するエフェクター機能である。ここまでで作製した改変体はいずれもFcgRIIb以外の活性型レセプターに対する結合活性が大きく低減されており、ADCC活性は大きく減弱されていると考えられる。しかしながら抗体と補体との結合部位は抗体とFcgRとの結合部位とは異なるため、補体に対する結合活性は維持されている可能性がある。そこで各改変体の補体への結合活性を評価し、補体への結合を低減させる改変を組み合わせることで、補体への結合についても減弱させた改変体を作製することとした。
 抗体とヒトC1qとの相互作用解析は、Biacore T200(GEヘルスケア)を用いて行った。ランニングバッファーにはHBS-EP+(GEヘルスケア)を用い、測定温度は25℃とした。Series S sensor Chip CM4(GEヘルスケア)に、アミンカップリング法によりProtein L(ACTIGENまたはBioVision)を固定化したチップを用いた。
 これらのセンサーチップに目的の抗体をキャプチャーさせ、ランニングバッファーで希釈したhuman complement C1q(PROSPECあるいはCalbiochem)を相互作用させ、抗体に対する結合量を測定し、抗体間で比較した。ただし、C1qの結合量はキャプチャーした抗体の量に依存するため、各抗体のキャプチャー量でC1qの結合量を除した補正値で比較した。また、10 mM glycine-HCl、pH1.5を反応させることで、センサーチップにキャプチャーした抗体を洗浄し、センサーチップを再生して繰り返し用いた。
 C1qへの結合を低減させる改変としては、先行文献(J. Immunol, 2003, 164, 4178-4184)に記載のK322Aを用いた。さらに、EUナンバリング322番目のLysを逆の電荷を有するGluに置換することでもC1qとの結合が低減されると期待されたため、K322Eについても検討した。また、IgG4はIgG1と比較してCDC活性が著しく低く、これはCH2ドメインC末端の配列の違いに起因することが報告されている(J. Exp. Med., 1991, 173, 1025-1028)。そこで、IgG1のEUナンバリング327番目のAlaをGlyに、330番目のAlaをSerに、331番目のProをSerとし、IgG4型の配列とすることでC1qへの結合を低減する検討についてもあわせて行った。
 具体的には、FcgRIIbへの結合を増強した改変体、あるいはFcgRIIbへの結合を維持したまま他のFcgRへの結合を低減した改変体のヒトC1qへの結合を評価した。また、それらに対してC1qへの結合を低減させる改変を組み合わせた改変体を作製し、評価した。また全ての改変体に対して、参考実施例2の方法に従って作製した改変体の各FcgRへの結合を評価した。C1qへの結合評価におけるネガティブコントロールとして、ヒトIgG4を用いた。ヒトIgG4 のEUナンバリング228番目のSerをProに置換し、C末端のGlyおよびLysを除去したG4dを有するIL6R-G4d(配列番号:52)を作製した。抗体L鎖としてはIL6R-L(配列番号:6)を共通して用いた。
 表18は、作製した改変体とヒトC1qへの結合を評価した結果である。表中の「G1dを100としたときのC1qに対する結合量」とは、各改変体に対するC1qの結合量を各改変体のキャプチャー量で除したもので、それをIL6R-G1d/IL6R-LのC1qへの結合量をIL6R-G1d/IL6R-Lのキャプチャー量で除した値で割り、さらに100倍した値である。すなわち、IL6R-G1d/IL6R-Lと比較してどの程度C1qに結合するかを示すものである。
Figure JPOXMLDOC01-appb-T000026
 天然型の配列を有するG1dを100とした場合、ネガティブコントロールであるG4dは15.5であった。また、C1qへの結合を低減する改変をG1dに導入したG1dK322A, G1dK322E, G1dGSSのC1qへの結合はそれぞれ、20.5、2.3、15.2でG4dと同等以下であり、改変導入前と比較してC1qへの結合が大きく低減されていることが分かった。また、FcgRIIBに対して選択的に結合を増強するP238D改変を導入したF648はC1qへの結合低減改変を用いなくともC1qへの結合がG4dと同程度であることが明らかとなった。またこれに対してさらにC1q結合低減改変を導入したP741, P742, P743のC1qへの結合能は、いずれもG4dと同等以下であった。
 FcgRIIbへの結合を天然型と同程度に維持し、その他のFcgRへの結合能を減弱させた改変体であるP600, P691, P727, P729, P733, P737のうち、P600, P691, P729, P733はいずれもG4dと同程度のC1q結合活性であった。一方でP727, P737は、G1dと比較すると大きく減弱されているものの、G4dと比較して2倍以上の結合能を示した。両改変体には共通してA330Hの改変が導入されており、これによってC1qへの結合が増強されたものと考えられる。しかしながらいずれの改変体においても、C1q結合低減改変であるK322AあるいはK322Eを導入することでC1qへの結合活性がG4d以下に抑制された。
 FcgRIIbへの結合を増強した改変体であるP587, P588, P769, P112, P555, P556, P559, P562, P763, P764, P765のうち、P587およびP588はC1qへの結合がG1dと同等以上であることが明らかとなった。またP769, P556, P559, P562, P763, P765はG1dと比較すると大きく減弱されているものの、G4dと比較して2倍程度の結合能を示した。一方でP112, P764はG4dと同程度のC1q結合活性であった。またいずれの改変体においてもC1q結合低下改変を導入することによりC1qへの結合活性がG4dと同等以下に抑制されることが示された。
 表19には、各改変体のFcgRIIaRおよびFcgRIIbに対する相対的結合活性を示した。これは、各改変体のFcgRIIaRあるいはFcgRIIbに対する結合量の値を、IL6R-G1d/IL6R-LのFcgRIIaRあるいはFcgRIIbへの結合量の値で割り、100倍した値である。 
Figure JPOXMLDOC01-appb-T000027
 表19に示された補体への結合を低減する改変を含む改変体は、FcgRIIaRに対する相対的結合活性がG1dと比較して105%以下に、またFcgRIIbへの相対的結合活性がG1dと比較して48%以上を維持していた。
 表20にはこれらの改変体の各FcgRへの結合を示した。表中の相対的結合活性とは、IL6R-G1d/IL6R-LのKD値を各改変体のKD値で割った値であり、IL6R-G1d/IL6R-Lの各FcgRに対するKD値を1としたときの各改変体の相対的結合活性を示す。表中のKD値のうち、表中のKD値のうち、灰色で塗りつぶされた値は、FcgRの各改変体に対する結合が微弱であり、速度論的な解析では正しく解析できないと判断されたため、参考実施例2に記載の
〔式2〕
Figure JPOXMLDOC01-appb-I000028
を利用して算出した値である。
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-I000030
 C1q結合低減改変のFcgRIIbに対する結合能への影響を比較すると、G1dに対してK322Aを導入したG1dK322AではG1dと比較して1.0倍、K322Eを導入したG1dK322Eでは1.1倍、A327G/A330S/P331Sを導入したG1dGSSでは0.9倍と、いずれのC1q結合低減改変もFcgRIIbへの結合にほとんど影響しない。FcgRIIbへの結合を選択的に増強するP238D改変を含むF648に対してK322Aを導入したP741、あるいはK322Eを導入したP742では、改変導入前のF648と比較してhFcgRIIbへの結合がほとんど変わらないのに対し、A327G/A330S/P331Sを導入したP743ではFcgRIIbへの結合能が若干低下し、G1dの0.6倍となった。以上の結果からP238D改変と組み合わせた場合、K322AやK322E改変はFcgRIIbへの結合能を低下させることなくC1qへの結合能を減弱させるが、A327G/A330S/P331S改変はFcgRIIbへの結合能を若干低下させることが明らかになった。この結果はその他のP238D改変を含む改変体に対して導入した場合であっても同様である。例えばP600に対してK322Aを導入したP744ではFcgRIIbへの結合はG1dと比較して0.7倍、K322Eを導入したP745では0.7倍であるが、A327G/A330S/P331Sを導入したP781では0.2倍と若干低下している。
一方で免疫原性という観点からは、K322AやK322Eを導入するよりも天然型ヒトIgG4の配列であるA327G/A330S/P331Sを導入する方が好ましいと考えられる。そのため、FcgRIIbへの結合を増強する改変が導入された改変体にC1q結合低減するための改変を導入する場合は、A327G/A330S/P331S改変がより好ましい場合がある。例えばP781に対してE233DとG237Dを組み合わせたP787では、A327G/A330S/P331S改変の導入によってC1q結合が低減されている一方で、活性型FcgRへの結合は大きく増強することなく、FcgRIIbへの結合が0.2倍から0.5倍へと向上している。
 本検討で作製したFcgRIIbへの結合を増強、あるいは維持し、かつ補体への結合を低減した改変体は、いずれもFcgRIIbへの結合がG1dの0.2倍以上でFcgRIIaRへの結合がG1dの1.0倍以下に抑えられていた。またFcgRIaへの結合はG1dの0.85倍以下に、FcgRIIaHへの結合は0.036倍以下に、 FcgRIIIaVへの結合は0.012倍以下に抑制されていた。これらの中でも、A327G/A330S/P331S改変を導入した改変体のうちP756, P757, P758, P759, P760, P761, P762, P766, P767, P768, P770, P784はいずれもFcgRIIbへの結合がG1dよりも増強されており、FcgRIIaRへの結合がG1dの1.0倍以下であった。
 以上の結果から、FcgRIIbへの結合を増強あるいはFcgRIIbへの結合を天然型と同程度に維持し、他のFcgRへの結合を減弱させた改変体に補体への結合を低減させる改変を導入することで、FcgRIIbへの結合選択性に優れ、かつC1qへの結合が減弱された改変体が作製可能であることが示された。
〔実施例6〕Fc改変体の樹状細胞(DC)の活性化能の評価
(6-1)Fc改変体の樹状細胞(DC)の活性化能の評価
 これまでに、抗体のFc部分を介して細胞表面上に発現している活性型FcγR、特にFcγRIIaが架橋されることで、樹状細胞が活性化されることが報告されている (The Journal of Clinical Investigation, 2005, 115, 2914-2923, The Journal of Immunology, 2003, 170, 3963-3970)。実施例4で作製した活性型FcγRに対する結合を選択的に低減したFc改変体について、抗体のFc部分を介した樹状細胞活性化能が低減されているかを検証した。
(6-2)Fc改変体の調製
 参考実施例1の方法に従い、XolairH-G1d (配列番号:18), XolairH-G1dのEUナンバリング238番目のProをAspに置換したXolairH-F648、XolairH-G1dのEUナンバリング238番目のProをAspに、298番目のSerをAlaに置換したXolairH-P600を作製した。抗体L鎖としてはXolairL-k0 (配列番号:7) を共通に用い、それぞれのH鎖と共に参考実施例1の方法に従って抗体を発現、精製した。各Fc改変体はそれぞれG1d,F648,P600と表記する。
(6-3)monocyteの単離と樹状細胞への分化誘導
 ヒト全血と等量のRPMI培地を混合し、ficolで白血球層を分離する。白血球層から、Monocyte Isolation Kit II (Miltenyi Biotec)を用いてmonocyteを単離した。MonocyteをRPMI培地(10% FBS, 100ng/ml hIL-4 (R&D systems), 250ng/ml hGM-CSF (R&D systems))で5×105 cells/ mLに調製し、37度で7日間培養し、DCへ分化誘導した。
(6-4)プレートコートとDCの刺激
 96well plate (maxisorp, nunc) にPBSで希釈した各Fc改変体(G1d,F648,P600)が含まれる溶液 (50ug/ml)またはPBSを100ul/wellで添加し、室温で1時間振盪した。PBSで3回洗浄し、DCを2×105 cells/ wellで播種した。37度で4時間インキュベートした後に細胞を回収し、RNeasy 96 Kit (QIAGEN) を用いてRNAを抽出した。
(6-5)IL-8発現の評価
 QuantiTect Probe RT-PCR(QIAGEN) を用い、GAPDHおよびIL-8のmRNAの発現量をreal-time PCR (Applied Biosystems 7900HT Fast Real Time PCR System) により測定した。IL-8の発現量はGAPDHの発現量で補正した。この評価系において、ポジティブコントロールであるG1dを用いた場合には、IL-8の発現量が8.2に上がり、抗体溶液の代わりにPBSを加えた場合にはIL-8の発現量が0.03であることが確認された。
 本評価系において、Fc改変体であるF648とP600をそれぞれ加えた場合の、DCのIL-8の発現量を比較したところ、図6の結果が得られた。
 この結果から、P600はF648と比較して、DCのIL-8発現量を抑制すること、すなわち、DCを活性化する性質が低減されることが見出された。P600はF648と比較して、活性型FcγRであるFcγRIIaに対する結合が低減している。これらのことから、P600は特にFcγRIIaに対する結合が低減した結果として、DCのIL-8発現量を低減、DCの活性化を抑制したことが考えられた。
 すなわち、FcγRIIaを含む活性型FcγRに対してより選択的に結合を低減した本発明のFc領域を含む抗原結合分子は、抗原の血漿中濃度を速やかに低減するという天然型IgG1の性質を損なうことなく、免疫細胞を活性化するという問題点を克服した優れた分子である可能性が示された。
〔実施例7〕FcγRIIbに対する結合を増強する既存の改変が加えられたFc領域を含む抗体の血小板凝集能の評価
(7-1)IgG1抗体の血小板活性化、凝集の背景
 これまでにいくつかのIgG1抗体がFcγRとの相互作用を介して、血小板活性化を誘導し、副作用を呈することが報告されている。例えば、VEGFに対する抗体であるbevacizumabが投与された患者群では血栓塞栓症のリスクが上昇することが知られている(J. Natl. Cancer Inst. (2007) 99 (16), 1232-1239)。また、CD40リガンド(CD154)に対する抗体の臨床開発試験においても同様に血栓塞栓症が観察され、臨床試験が中止された(Arthritis. Rheum. (2003) 48 (3), 719-727.)。血小板の細胞上には抑制型FcγレセプターであるFcγRIIbではなく活性型FcγレセプターであるFcγRIIaが発現している(J. Exp. Med. (2006) 203 (9), 2157-2164)が、動物モデルなどを使ったその後の研究により、投与されたいずれの抗体も血小板上のFcγRIIaに対する結合を介して血小板が凝集し、その結果血栓を形成することが示唆されている(J. Thromb. Haemost. (2009) 7 (1), 171-181、 J. Immunol. (2010) 185 (3), 1577-1583)。自己免疫疾患の一つである全身性エリテマトーデスの患者においてはFcγRIIa依存的な機構によって血小板が活性化し、血小板の活性化が重症度と相関すると報告されている(Sci. Transl. Med. (2010) 2 (47), 47-63)。このように天然に存在するIgG1抗体であっても、血小板を活性化し、重篤な副作用を呈する可能性がある。
(7-2)抗CD154抗体を用いた血小板活性化の評価
 血小板の活性化は血小板上に発現するFcγRIIaとIgG1のFcとの相互作用に由来するとの報告があることから、IgG1のFcγRIIaに対する結合を低減した抗体を用いることにより、この血小板活性化が回避できるかを検証した。
 参考実施例2の方法を用いて、CD40リガンドに対するIgG1抗体である5c8-G1d(重鎖配列番号:8、軽鎖配列番号:9)を用意した。次に、参考実施例2の方法を用いて、FcγRIIaに対する結合を低減させた既存の技術である5c8-G1dのFc領域におけるEUナンバリングで表される238位のProがAspに置換されたFc 領域を含む抗体5c8-F648(軽鎖配列番号:9)を用意した。加えて、参考実施例2の方法を用いて、既存技術よりもさらにFcγRIIaに対する結合を低減させた5c8-G1dのFc領域におけるEUナンバリングで表される238位のProがGluに、298位のSerがAlaに置換されたFc 領域を含む抗体5c8-P600(軽鎖配列番号:9)を用意した。5c8-G1d、5c8-F648、5c8-P600はそれぞれ以下でG1d、F648、P600として示した。これらのFc改変体の血小板凝集能が評価された。
 血小板の活性化は以下の方法で評価した。まず、FcγRIIaの遺伝子多型(R131/R131)のドナー由来の約50 mLの全血を、0.5 mLの3.2%クエン酸ナトリウムを含む4.5 mL真空採血管に一定分量ずつ採取された約50 mLの全血を200 gで15分間、遠心分離することによって回収された上清がPlatelet Rich Plasma(PRP)として使用された。緩衝液A(137 mM NaCl、2.7 mM KCl、12 mM NaHCO3、0.42 mM NaH2PO4、2 mM MgCl2、5 mM HEPES、5.55 mM dextrose、1.5 U/mL apyrase、0.35 % BSA)を用いて洗浄されたPRPは、さらに緩衝液B(137 mM NaCl、2.7 mM KCl、12 mM NaHCO3、0.42 mM NaH2PO4、2 mM MgCl2、5 mM HEPES、5.55 mM dextrose、2 mM CaCl2、0.35 % BSA)に置換された。その結果、約300,000/μLの密度の洗浄血小板が調製された。血小板凝集能測定装置に設置された、攪拌棒を含む測定用キュベットに168 μLの洗浄血小板が分注された。当該装置内で37.0℃に維持されたキュベット内で、血小板は攪拌棒により1000 rpmで攪拌された。そこに最終濃度が抗体120 μg/mL、抗原111 μg/mLとなるように調製された各抗体と抗原の免疫複合体を42 μL加え、血小板と当該免疫複合体を5分間反応させた。さらに、二次凝集を起こさない濃度のアデノシン2リン酸(ADP、SIGMA)が反応液に加えられ、活性化が増強されるかが確認された。
 血小板の活性化は、CD62p(p-selectin)もしくは活性型インテグリン(PAC-1)といった活性化マーカーの血小板膜表面における発現増加によって測定することができる。先述の方法により調製された洗浄血小板8μLの洗浄血小板に免疫複合体を2μL添加し室温で5分間反応させた後、さらに軽微な活性化を誘導する濃度のADPを添加して活性化が惹起され、免疫複合体によってADPによる活性化が増強されるかが確認された。陰性対照には免疫複合体の代わりにリン酸緩衝液(pH7.4)(Gibco)を添加したサンプルが用いられた。反応後の各サンプルにPE標識抗CD62抗体(BECTON DICKINSON)、PerCP標識抗CD61抗体、FITC標識PAC-1抗体(BD bioscience)を加えることによって染色された。各染色の蛍光強度がフローサイトメーター(FACS CantoII、 BD bioscience)を用いて測定された。このアッセイ系でポジティブコントロールの5c8-G1dを添加した場合、血小板のCD62pおよびPAC-1の発現が亢進することが確認された。
 このアッセイ系を用いてF648およびP600の血小板活性化能を比較した。各Fc改変体添加時のCD62p発現の結果を図7に、活性化インテグリン発現の結果を図8に示した。ADP刺激により血小板膜表面に発現誘導されるCD62p及び活性型インテグリンは、F648を加えた場合では発現の亢進が観察されたが、P600を加えた場合では観察されなかった。
 これらの結果から、IgG1のFc領域のEUナンバリングで表される238位のProがAsp 、298位のSerがAlaに置換されたヒトFcγRIIaに対する結合を低減した改変が加えられたFc領域を含む抗体は既存技術のFcγRIIbに対する結合を選択的に増強したFc改変体と比較して抑制することが明らかとなった。
 すなわち、FcγRIIaに対してより選択的に結合を低減した本発明のFc領域を含む抗原結合分子は、抗原の血漿中濃度を速やかに低減するという天然型IgG1の性質を損なうことなく、血小板を活性化するという問題点を克服した優れた分子である可能性が示された。
〔参考実施例1〕抗体の発現ベクターの作製および抗体の発現と精製
 抗体の可変領域のH鎖およびL鎖の塩基配列をコードする全長の遺伝子の合成は、Assemble PCR等を用いて、当業者公知の方法で作製した。アミノ酸置換の導入はPCR等を用いて当業者公知の方法で行った。得られたプラスミド断片を動物細胞発現ベクターに挿入し、H鎖発現ベクターおよびL鎖発現ベクターを作製した。得られた発現ベクターの塩基配列は当業者公知の方法で決定した。作製したプラスミドをヒト胎児腎癌細胞由来HEK293H株(Invitrogen社)、またはFreeStyle293細胞(Invitrogen社)に、一過性に導入し、抗体の発現を行った。得られた培養上清を回収した後、0.22μmフィルターMILLEX(R)-GV(Millipore)、または0.45μmフィルターMILLEX(R)-GV(Millipore)を通して培養上清を得た。得られた培養上清から、rProtein A Sepharose Fast Flow(GEヘルスケア)またはProtein G Sepharose 4 Fast Flow(GEヘルスケア)を用いて当業者公知の方法で、抗体を精製した。精製抗体濃度は、分光光度計を用いて280 nmでの吸光度を測定し、得られた値からPACE等の方法により算出された吸光係数を用いて抗体濃度を算出した(Protein Science 1995 ; 4 : 2411-2423)。
〔参考実施例2〕FcγRの調製方法および改変抗体とFcγRとの相互作用解析方法
 FcγRの細胞外ドメインを以下の方法で調製した。まずFcγRの細胞外ドメインの遺伝子の合成を当業者公知の方法で実施した。その際、各FcγRの配列はNCBIに登録されている情報に基づき作製した。具体的には、FcγRIについてはNCBIのアクセッション番号NM_000566.3の配列、FcγRIIaについてはNCBIのアクセッション番号NM_001136219.1の配列、FcγRIIbについてはNCBIのアクセッション番号NM_004001.3の配列、FcγRIIIaについてはNCBIのアクセッション番号NM_001127593.1の配列、FcγRIIIbについてはNCBIのアクセッション番号NM_000570.3の配列に基づいて作製し、C末端にHisタグを付加した。またFcγRIIa、FcγRIIIa、FcγRIIIbについては多型が知られているが、多型部位についてはFcγRIIaについてはJ. Exp. Med., 1990, 172: 19-25、FcγRIIIaについてはJ. Clin. Invest., 1997, 100 (5): 1059-1070, FcγRIIIbについてはJ. Clin. Invest., 1989, 84, 1688-1691を参考にして作製した。
 得られた遺伝子断片を動物細胞発現ベクターに挿入し、発現ベクターを作製した。作製した発現ベクターをヒト胎児腎癌細胞由来FreeStyle293細胞(Invitrogen社)に、一過性に導入し、目的タンパク質を発現させた。なお、結晶構造解析用に用いたFcγRIIbについては、終濃度10 μg/mLのKifunesine存在下で目的タンパク質を発現させ、FcγRIIbに付加される糖鎖が高マンノース型になるようにした。培養し、得られた培養上清を回収した後、0.22μmフィルターを通して培養上清を得た。得られた培養上清は原則として次の4ステップで精製した。第1ステップは陽イオン交換カラムクロマトグラフィー(SP Sepharose FF)、第2ステップはHisタグに対するアフィニティカラムクロマトグラフィー(HisTrap HP)、第3ステップはゲルろ過カラムクロマトグラフィー(Superdex200)、第4ステップは無菌ろ過、を実施した。ただし、FcγRIについては、第1ステップにQ sepharose FFを用いた陰イオン交換カラムクロマトグラフィーを実施した。精製したタンパク質については分光光度計を用いて280 nmでの吸光度を測定し、得られた値からPACE等の方法により算出された吸光係数を用いて精製タンパク質の濃度を算出した(Protein Science 1995 ; 4 : 2411-2423)。
 Biacore T100(GEヘルスケア)、Biacore T200(GEヘルスケア)、Biacore A100、Biacore 4000を用いて、各改変抗体と上記で調製したFcγレセプターとの相互作用解析を行った。ランニングバッファーにはHBS-EP+(GEヘルスケア)を用い、測定温度は25℃とした。Series S Sensor Chip CM5(GEヘルスケア)またはSeries S sensor Chip CM4(GEヘルスケア)に、アミンカップリング法により抗原ペプチド、ProteinA(Thermo Scientific)、Protein A/G(Thermo Scientific)、Protein L(ACTIGENまたはBioVision)を固定化したチップ、あるいはSeries S Sensor Chip SA(certified)(GEヘルスケア)に対して予めビオチン化しておいた抗原ペプチドを相互作用させ、固定化したチップを用いた。
 これらのセンサーチップに目的の抗体をキャプチャーさせ、ランニングバッファーで希釈したFcγレセプターを相互作用させ、抗体に対する結合量を測定し、抗体間で比較した。ただし、Fcγレセプターの結合量はキャプチャーした抗体の量に依存するため、各抗体のキャプチャー量でFcγレセプターの結合量を除した補正値で比較した。また、10 mM glycine-HCl、pH1.5を反応させることで、センサーチップにキャプチャーした抗体を洗浄し、センサーチップを再生して繰り返し用いた。
 また、各改変抗体のFcγRに対するKD値を算出するため速度論的な解析は以下の方法にしたがって実施した。まず、上記のセンサーチップに目的の抗体をキャプチャーさせ、ランニングバッファーで希釈したFcγレセプターを相互作用させ、得られたセンサーグラムに対してBiacore Evaluation Softwareにより測定結果を1:1 Langmuir binding modelでglobal fittingさせることで結合速度定数ka (L/mol/s)、解離速度定数kd(1/s)を算出し、その値から解離定数KD (mol/L) を算出した。
 また、各改変抗体とFcγRとの相互作用が微弱で、上記の速度論的な解析では正しく解析できないと判断された場合、その相互作用についてはBiacore T100 Software Handbook BR1006-48 Edition AEに記載の以下の1:1結合モデル式を利用してKDを算出した。
 1:1 binding modelで相互作用する分子のBiacore上での挙動は以下の式1によって表わすことができる。
〔式1〕
Figure JPOXMLDOC01-appb-I000031
 Req:a plot of steady state binding levels against analyte concentration
 C: concentration
 RI:bulk refractive index contribution in the sample
 Rmax:analyte binding capacity of the surface
 この式を変形すると、KDは以下の式2のように表わすことができる。
〔式2〕
Figure JPOXMLDOC01-appb-I000032
 この式にRmax、RI、Cの値を代入することで、KDを算出することが可能である。RI、Cについては測定結果のセンサーグラム、測定条件から値を求めることができる。Rmaxの算出については、以下の方法にしたがった。その測定回に同時に評価した比較対象となる相互作用が十分強い抗体について、上記の1:1 Langmuir binding modelでglobal fittingさせた際に得られたRmaxの値を、比較対象となる抗体のセンサーチップへのキャプチャー量で除し、評価したい改変抗体のキャプチャー量で乗じて得られた値をRmaxとした。
〔参考実施例3〕カルシウム依存的にヒトIgAに結合する抗体の調製
(3-1)ヒトIgA(hIgA)の調製
 抗原であるヒトIgA(以下hIgAとも呼ばれる)は以下のような組換え技術を用いて調製された。H (WT)-IgA1(配列番号:19)とL (WT)(配列番号:20)を含む組み組換えベクターを含む宿主細胞を培養することによって発現されたhIgAが、当業者公知の方法によってイオン交換クロマトグラフィーおよびゲルろ過クロマトグラフィーを用いて精製された。
(3-2)カルシウム依存的結合抗体について
 国際公開WO2009/125825に記載されているH54/L28-IgG1はヒト化抗IL-6レセプター抗体であり、Fv4-IgG1は、H54/L28-IgG1に対して可溶型ヒトIL-6レセプターに対してpH依存的に結合する(中性条件下において結合し、酸性条件下において解離する)特性を有するヒト化抗IL-6レセプター抗体である。国際公開WO2009/125825に記載されているマウスのin vivo試験では、H54/L28-IgG1と抗原である可溶型ヒトIL-6レセプターの混合物を投与した群と比較して、Fv4-IgG1と抗原である可溶型ヒトIL-6レセプターの混合物を投与した群において、可溶型ヒトIL-6レセプターの消失が大幅に加速されていることが示された。
 通常の可溶型ヒトIL-6レセプターに結合する抗体に結合した可溶型ヒトIL-6レセプターは、抗体とともにFcRnによって血漿中にリサイクルされる。これに対して、pH依存的に可溶型ヒトIL-6レセプターに結合する抗体は、エンドソーム内の酸性条件下において抗体に結合した可溶型ヒトIL-6レセプターを解離する。解離した可溶型ヒトIL-6レセプターはライソソームによって分解されるため、可溶型ヒトIL-6レセプターの血漿中からの消失を大幅に加速することが可能となり、さらにpH依存的に可溶型ヒトIL-6レセプターに結合する抗体は可溶型ヒトIL-6レセプターを解離した後FcRnによって血漿中にリサイクルされ、リサイクルされた抗体は再び可溶型ヒトIL-6レセプターに結合することができる。上記のサイクル(抗原を結合した抗体の細胞内への取込>抗体からの抗原の解離>抗原の分解と抗体の血漿中への再循環)が繰り返されることによって、ひとつの抗体分子が複数回繰り返して可溶型ヒトIL-6レセプターに結合することが可能となる(図9)。
 さらに、国際公開WO2011/122011に記載されているように、H54/L28-IgG1はヒト化抗IL-6レセプター抗体であり、Fv4-IgG1は、H54/L28-IgG1に対して可溶型ヒトIL-6レセプターへpH依存的に結合する(中性条件下において結合し、酸性条件下において解離する)特性を有するヒト化抗IL-6レセプター抗体であり、Fv4-IgG1-v2は、Fv4-IgG1に対してpH中性の条件下においてFcRnへの結合が増強されたヒト化抗IL-6レセプター抗体である。国際公開WO2011/122011に記載されているマウスのin vivo試験では、Fv4-IgG1と抗原である可溶型ヒトIL-6レセプターの混合物を投与した群と比較して、Fv4-IgG1-v2と抗原である可溶型ヒトIL-6レセプターの混合物を投与した群において、可溶型ヒトIL-6レセプターの消失が大幅に加速されていることが示された。すなわち、pH依存的に抗原に結合する抗体の、pH中性の条件下(pH7.4)におけるFcRnに対する結合を増強することによって、増強された改変抗体が抗原に繰り返し結合できる効果、および、抗原の血漿中からの消失を促進する効果がさらに向上し、当該抗体を投与することによって血漿中からの抗原を消失することが可能であることが報告された(図10)。
 図9および図10に示されたpH依存的に抗原に結合する抗体による作用では、血漿中とエンドソーム内の環境の相違、すなわちpHの相違(血漿中:pH7.4、エンドソーム内:pH6.0)を利用して、血漿中では抗原に強く結合させ、エンドソーム内では抗原を解離する抗体の性質が活用されている。血漿中とエンドソーム内でpH依存的に結合する抗体の抗原への結合能にこのような差異を活用するためには、血漿中とエンドソーム内の環境因子の性質とその相違の大きさが重要である。pHの相違はすなわち水素イオン濃度の相違である。すなわち、pH7.4の血漿中の水素イオン濃度は約40 nMである一方で、pH6.0のエンドソーム内の水素イオン濃度は約1000 nMであることから、血漿中とエンドソーム内での環境因子の一つとして考えられる水素イオン濃度の相違は約25倍の大きさである。
 さらに、図9および図10に示した作用を異なる態様で達成するため、または、これらの態様を併せて達成するするために、血漿中とエンドソーム内の水素イオン濃度の相違以外で、その相違が大きい環境因子に依存して抗原に結合する抗体を使用すれば良いと考えられた。血漿中とエンドソーム内で濃度の相違が大きい環境因子が探索された結果、カルシウムが見出された。血漿中のイオン化カルシウム濃度は1.1-1.3 mM程度である一方で、エンドソーム内のイオン化カルシウム濃度は3μM程度であることから、血漿中とエンドソーム内での環境因子の一つとして考えられるカルシウムイオン濃度の相違は約400倍の大きさであって、その大きさは水素イオン濃度差(25倍)よりも大きいことが見出された。すなわち、高カルシウム濃度条件下(1.1-1.3 mM)で抗原に結合し、低カルシウム濃度条件下(3μM)で抗原を解離するイオン化カルシウム濃度依存的に抗原に結合する抗体を用いることによって、pH依存的に抗原に結合する抗体と同等またはそれ以上にエンドソーム内で抗原を抗体から解離することが可能であると考えられた。
(3-3)hIgAに結合する抗体の発現と精製
 GA1-IgG1(重鎖配列番号:21、軽鎖配列番号:22)、GA2-IgG1(重鎖配列番号:23、軽鎖配列番号:24)はhIgAに結合する抗体である。GA1-IgG1(重鎖配列番号:21、軽鎖配列番号:22)およびGA2-IgG1(重鎖配列番号:23、軽鎖配列番号:24)をコードするDNA配列が動物細胞発現用プラスミドに当業者公知の方法で組み込まれた。抗体の発現は以下の方法を用いて行われた。ヒト胎児腎細胞由来FreeStyle 293-F株(Invitrogen)をFreeStyle 293 Expression Medium培地(Invitrogen)に懸濁させた細胞懸濁液が、1.33 x 106個/mLの細胞密度で6 well plateの各ウェルへ3 mLずつ播種された。次に、リポフェクション法により調製されたプラスミドが細胞へ導入された。当該細胞はCO2インキュベーター(37℃、8%CO2, 90 rpm)で4日間培養され、単離されたその培養上清から、rProtein A SepharoseTM Fast Flow(Amersham Biosciences)を用いて当業者公知の方法で抗体が精製された。精製された抗体溶液の吸光度(波長:280nm)が、分光光度計を用いて測定された。得られた測定値からPACE法によって算出された吸光係数を用いて抗体濃度が算出された(Protein Science (1995) 4, 2411-2423)。
(3-4)取得された抗体のhIgAに対するカルシウム依存的結合能の評価
 Biacore T200(GE Healthcare)を用いて、(1-3)で単離された抗体のhIgA結合活性(解離定数KD (M))が評価された。ランニングバッファーとして3μMまたは1.2 mM CaCl2を含有する0.05% tween20、20 mmol/L ACES、150 mmol/L NaCl(pH7.4またはpH5.8)、または0.1μMもしくは10 mM CaCl2を含有する0.05% tween20、20 mmol/L ACES、150 mmol/L NaCl、pH8.0を用いて測定が行われた。
 アミノカップリング法で適切な量の組換え型プロテインA/G(Thermo Scientific)が適当量固定化されたSensor chip CM5(GE Healthcare)に、抗体を結合させた。次に、アナライトとして適切な濃度のhIgA((1-1)に記載)をインジェクトすることによって、hIgAとセンサーチップ上の抗体を相互作用させた。測定は37℃で行われた。測定後、10 mmol/L Glycine-HCl、 pH1.5をインジェクトすることによって、センサーチップが再生された。Biacore T200 Evaluation Software(GE Healthcare)を用いて、カーブフィッティングによる解析および平衡値解析により、測定結果から解離定数KD(M)が算出された。その結果を表21に示した。また、得られたセンサーグラムを図11に示した。GA2-IgG1はCa2+濃度が1.2 mMにおいてはhIgAに強く結合するが、Ca2+濃度が3μMにおいてはhIgAに弱く結合することが示された。また、GA2-IgG1はCa2+濃度が1.2 mMの条件下で、pH7.4においてはヒトIgAに強く結合するが、pH5.8においてはヒトIgAに弱く結合することが示された。すなわち、GA2-IgG1は、ヒトIgAに対して、pH依存的、および、カルシウム依存的に結合することが明らかとなった。
Figure JPOXMLDOC01-appb-T000033
〔参考実施例4〕カルシウム依存的にhIgAに結合する抗体の改変体の調製
 さらに、血漿中からの抗原(hIgA)の消失をさらに増大させるために、カルシウム依存的にhIgAに結合するGA2-IgG1に対してマウスFcRnに対するpH7.4における結合を増強するためにN434Wのアミノ酸置換を導入したGA2-N434W(軽鎖配列番号:24)を作製した。また、GA2-IgG1に対してFcγRに対する結合を欠損させるためにL235R、S239Kのアミノ酸置換を導入したGA2-FcγR(-)(軽鎖配列番号:24)を作製した。GA2-N434W(軽鎖配列番号:24)およびGA2-FcγR(-)(軽鎖配列番号:24)をコードするDNA配列が当業者に公知の方法で組み込まれた動物発現用プラスミドを用いて、上述の方法で発現したこれらの抗体改変体の濃度が、精製後に測定された。GA2-FcγR(-)の各種マウスFcγR(mFcγRI、mFcγRII、mFcγRIII、mFcγRIV)に対する結合を評価した結果、いずれのレセプターに対しても結合が認められなかった。
〔参考実施例5〕カルシウム依存的にhIgAに結合する抗体の改変体の調製
 次に、血漿中からの抗原(hIgA)の消失をさらに増大させることを目的に、カルシウム依存的にhIgAに結合するGA2-IgG1に対してマウスFcγRに対する結合を増強するためにGA2-IgG1のEUナンバリングで表される328位のLeuがTyrに置換されたGA2-F1087が作製された。GA2-F1087(軽鎖配列番号:24)をコードするDNA配列が当業者に公知の方法で組み込まれた動物発現用プラスミドを用いて、上述の方法で発現したこれらの抗体改変体の濃度が、精製後に測定された。この改変を含む抗体は参考実施例5に示されるように、マウスFcγRに対する結合が大幅に増強していた。
〔参考実施例6〕Ca依存性hIgA結合抗体が投与されたノーマルマウスにおける抗原の血漿中滞留性への影響の評価
(6-1)ノーマルマウスが用いられたin vivo試験
 ノーマルマウス(C57BL/6J mouse、Charles River Japan)に対してhIgA(ヒトIgA:参考実施例(3-1)にて作製)が単独で投与された、またはhIgAおよび抗hIgA抗体が同時に投与された後の、hIgAおよび抗hIgA抗体の体内動態が評価された。hIgA溶液(80μg/mL)、または、hIgAと抗hIgA抗体の混合溶液が尾静脈に10 mL/kgの用量で単回投与された。抗hIgA抗体としては、上述のGA2-IgG1およびGA2-F1087が使用された。
 混合溶液中のhIgA濃度は全て80μg/mLであり、抗hIgA抗体濃度は2.69 mg/mLであった。このとき、hIgAに対して抗hIgA抗体は十分量過剰に存在することから、hIgAは大部分が抗体に結合していると考えられた。GA-IgG1が投与された群では、投与後5分間、7時間、1日間、2日間、3日間、7日間でマウスから採血が行われた。またGA-F1087が投与された群では、投与後5分間、30分間、1時間、2時間、1日間、3日間、7日間でマウスから採血が行われた。採取された血液を直ちに4℃、12,000 rpmで15分間遠心分離することによって、血漿が得られた。分離された血漿は、測定を実施するまで-20℃以下に設定された冷凍庫に保存された。
(6-2)ELISA法によるノーマルマウス血漿中の抗hIgA抗体濃度測定
 マウス血漿中の抗hIgA抗体濃度はELISA法にて測定された。まずAnti-Human IgG(γ-chain specific) F(ab')2 Fragment of Antibody(SIGMA)がその各ウェルに分注されたNunc-Immuno Plate, MaxiSorp(Nalge nunc International)を4℃で1晩静置することによってAnti-Human IgG固相化プレートが作成された。血漿中濃度の標準液として0.5、0.25、0.125、0.0625、0.03125、0.01563、0.007813μg/mLに調製された抗hIgA抗体の検量線試料と100倍以上希釈されたマウス血漿測定試料が、前記のAnti-Human IgG固相化プレートに分注された後、当該プレートが25℃で1時間インキュベーションされた。その後、Goat Anti-Human IgG (γ chain specific) Biotin (BIOT) Conjugate(Southern Biotechnology Associats Inc.)が前記プレートの各ウェルに分注された後、当該プレートを25℃で1時間反応させた。さらに、Streptavidin-PolyHRP80(Stereospecific Detection Technologies)が前記プレートの各ウェルに分注された後、当該プレートを25℃で1時間反応させた。TMB One Component HRP Microwell Substrate(BioFX Laboratories)を基質として用いた発色反応が1N-Sulfuric acid(Showa Chemical)を用いて停止された後、マイクロプレートリーダーを用いて各ウェルの反応液の450 nmの吸光度が測定された。マウス血漿中の抗hIgA抗体濃度は検量線の吸光度から解析ソフトウェアSOFTmax PRO(Molecular Devices)を用いて算出された。この方法で測定された静脈内投与後のノーマルマウスにおけるGA2-IgG1およびGA2-F1087の血漿中抗体濃度推移を図12に示した。その結果、hIgAと強いpHおよびCa依存的な結合活性を有するクローンGA2-IgG1はFcγRとの結合を増強したとしても、その血漿中抗体濃度が大きく低下しないことが確認された。
(6-3)ELISA法による血漿中hIgA濃度測定
 マウスの血漿中hIgA濃度はELISA法にて測定された。まずGoat anti-Human IgA Antibody(BETHYL)がその各ウェルに分注されたNunc-Immuno Plate, MaxiSoup(Nalge nunc International)を4℃で1晩静置することによってAnti-Human IgA固相化プレートが作成された。血漿中濃度の標準液として0.4、0.2、0.1、0.05、0.025、0.0125、0.00625μg/mLに調製されたhIgAの検量線試料が用いられた。検量線試料および100倍以上希釈されたマウス血漿測定試料の各100μLに対し、500ng/mLhsIL6Rを200μL加えて混合し、室温で1時間静置した。その後、混合溶液100μLが分注された前記のAnti-Human IgA固相化プレートプレートは室温で1時間静置された。次に、Biotinylated Anti-human IL-6 R Antibody(R&D)が前記プレートの各ウェルに分注された後、当該プレートを室温で1時間反応させた。更にStreptavidin-PolyHRP80(Stereospecific Detection Technologies)が前記プレートの各ウェルに分注された後、当該プレートを室温で1時間反応させた。TMB One Component HRP Microwell Substrate(BioFX Laboratories)を基質として用いた発色反応が1N-Sulfuric acid(Showa Chemical)を用いて停止された後、マイクロプレートリーダーを用いて各ウェルの反応液の450 nmの吸光度が測定された。マウス血漿中濃度は検量線の吸光度から解析ソフトウェアSOFTmax PRO(Molecular Devices)を用いて算出された。この方法で測定した静脈内投与後のノーマルマウスにおける血漿中hIgA濃度推移を図13に示した。
 その結果、hIgA単独の消失に対して、hIgA と100倍以上のCa依存的な結合活性を有するGA2-IgG1が同時に投与されたマウスでは、hIgA の消失がhIgA単独と比較して加速された。さらに、hIgAとFcγRに対して結合が増強されたGA2-F1087が投与されたマウスの血漿中では、投与一日後に測定範囲(0.006μg/mL以上)よりhIgAの濃度が低下し、GA-IgG1が投与されたマウスの血漿中よりも大幅にhIgAの消失が加速された。以上から、免疫複合体を形成するhIgAと抗hIgA抗体が投与されたマウスにおいて、FcγRに対する結合が増強された抗体による抗原(hIgA)の血漿中からの除去効果が、FcγRに対する結合の増強された抗体のもととなる抗体による抗原(hIgA)の除去効果と比較して増強されていることが示された。
〔参考実施例7〕FcγRに対する結合活性が天然型マウスIgGのFc領域の結合活性より高い抗原結合分子の血漿中からの抗原消失効果
(7-1)FcγRに対する結合活性を増強したマウス抗体の抗原消失効果
 マウスFcRnを有するノーマルマウスにおいて、マウス抗体のFc領域を有し、pH依存的にヒトIL-6レセプターに結合する性質を有する抗原結合分子が、当該マウスの血漿中可溶型ヒトIL-6レセプターの消失を早める効果を有するかどうかが、以下に示す方法によって検証された。
(7-2)FcγRに対する結合活性を増強したマウス抗体の作製
 pH依存的にヒトIL-6レセプターに結合する性質を有するマウスIgG1抗体の重鎖としてVH3-mIgG1(配列番号:25)、軽鎖としてVL3-mk1(配列番号:26)が参考実施例1の方法を用いて作製された。また、VH3-mIgG1のマウスFcγRに対する結合活性を増強するために、EUナンバリングで表される327位のAlaがAspに置換されたVH3-mIgG1-mF44が作製された。同様に、VH3-mIgG1のEUナンバリングで表される239位のSerがAspに置換され、327位のAlaがAspに置換されたVH3-mIgG1-mF46が作製された。VH3-mIgG1、VH3-mIgG1-mF44あるいはVH3-mIgG1-mF46を重鎖として含み、VL3-mk1を軽鎖として含む、Fv4-mIgG1、Fv4-mIgG1-mF44あるいはFv4-mIgG1-mF46が、参考実施例1の方法を用いて作製された。
(7-3)マウスFcγRに対する結合活性の確認
 VH3-mIgG1、VH3-mIgG1-mF44あるいはVH3-mIgG1-mF46を重鎖として含み、L (WT)-CK(配列番号:27)を軽鎖として含むVH3/L (WT)-mIgG1、VH3/L (WT)-mIgG1-mF44あるいはVH3/L (WT)-mIgG1-mF46が参考実施例1の方法で作製された。これらの抗体のマウスFcγRに対する結合活性が、参考実施例2の方法で評価された。その結果を表22に示した。また、それぞれの改変体のマウスFcγRに対する結合活性が、改変を加える前のmIgG1に比較して何倍増強しているかを表23に示した。なお、表中では、VH3/L (WT)-mIgG1はmIgG1、VH3/L (WT)-mIgG1-mF44はmF44、VH3/L (WT)-mIgG1-mF46はmF46と表記した。
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
 天然型マウスIgG1抗体のFc領域を有するVH3/L (WT)-mIgG1は、マウスFcγRIおよびマウスFcγRIVに対しては結合を示さず、マウスFcγRIIb およびマウスFcγRIIIに対してのみ結合を示した実施例4の検討結果から、抗原濃度を低下させるのに重要なマウスFcγRはマウスFcγRIIおよび、あるいはマウスFcγRIIIであることが示唆されている)。また、VH3/L (WT)-mIgG1のFcγRに対する結合活性を増強すると考えられる改変が導入されたVH3/L (WT)-mIgG-mF44およびVH3/L (WT)-mIgG1-mF46のマウスFcγRIIbおよびマウスFcγRIIIに対する結合活性はいずれも増強していることが示された。
(7-4)ノーマルマウスにおける血漿中可溶型IL-6レセプター濃度の低減効果の確認
 抗ヒトIL-6レセプター抗体としてFv4-mIgG1、Fv4-mIgG1-mF44あるいはFv4-mIgG1mF46が投与されたノーマルマウスの血漿中可溶型IL-6レセプターの消失効果が以下のように検証された。
 ノーマルマウス(C57BL/6J mouse、Charles River Japan)の背部皮下に可溶型ヒトIL-6レセプターが充填されたinfusion pump(MINI-OSMOTIC PUMP MODEL2004、alzet)を埋め込むことで、血漿中可溶型ヒトIL-6レセプター濃度が定常状態に維持される動物モデルが作製された。その動物モデルに抗ヒトIL-6レセプター抗体を投与した後の可溶型ヒトIL-6レセプターの体内動態が評価された。可溶型ヒトIL-6レセプターに対する抗体の産生を抑制するため、モノクローナル抗マウスCD4抗体が尾静脈に20 mg/kgで単回投与された。その後、92.8μg/mLの可溶型ヒトIL-6レセプターが充填されたinfusion pumpがマウス背部皮下へ埋め込まれた。Infusion pumpが埋め込まれた3日後に、抗ヒトIL-6レセプター抗体が1 mg/kgで尾静脈に単回投与された。抗ヒトIL-6レセプター抗体投与後15分、7時間、1日、2日、4日、7日、14日(あるいは15日)、21日(あるいは22日)が経過した後に当該マウスから採血された。採取された血液を直ちに4℃、15,000 rpmで15分間遠心分離することによって、血漿が得られた。分離された血漿は、測定を実施するまで-20℃以下に設定された冷凍庫に保存された。
 血漿中の可溶型ヒトIL-6レセプター濃度は、マウスの血漿中hsIL-6R可溶型ヒトIL-6レセプター濃度は電気化学発光法にて測定された。2000、1000、500、250、125、62.5、31.25 pg/mLに調製されたhsIL-6R可溶型ヒトIL-6レセプター検量線試料および50倍以上希釈されたマウス血漿測定試料を、SULFO-TAG NHS Ester(Meso Scale Discovery)でルテニウム化したMonoclonal Anti-human IL-6R Antibody(R&D)およびBiotinylated Anti-human IL-6 R Antibody (R&D)およびTocilizumabと混合することによって37℃で1晩反応させた。Tocilizumabの終濃度は333μg/mLとなるように調製された。その後、反応液がMA400 PR Streptavidin Plate(Meso Scale Discovery)に分注された。さらに室温で1時間反応させた反応液を洗浄後、Read Buffer T(×4)(Meso Scale Discovery)が分注された。その後ただちにSECTOR PR 400 reader(Meso Scale Discovery)で測定が行われた。hsIL-6R可溶型ヒトIL-6レセプター濃度は検量線のレスポンスから解析ソフトウェアSOFTmax PRO(Molecular Devices)を用いて算出された。その結果を図14に示した。
 驚くべきことに、mIgG1(天然型マウスIgG1)のマウスFcγRIIbおよびマウスFcγRIIIに対する結合活性を増強する改変が導入されたmF44およびmF46が投与されたマウスでは、mIgG1が投与されたマウスに比較して血漿中IL-6レセプター濃度の顕著な低下がいずれも確認された。特に、mF44の投与後21日目においても、mF44投与群の血漿中IL-6レセプター濃度は抗体非投与群の血漿中IL-6レセプター濃度に比べて約6倍、mIgG1投与群に比較すると約10倍低下していた。一方、mF46の投与後7日目において、mF46投与群の血漿中IL-6レセプター濃度は抗体非投与群の血漿中IL-6レセプター濃度に比べて約30倍、mIgG1投与群に比較すると約50倍と、顕著に低下していた。
 以上のことから、ヒトIgG1抗体のFc領域を有する抗原結合分子のマウスFcγRに対する結合活性が増強している抗体と同様に、マウスIgG1抗体のFc領域を有する抗原結合分子のマウスFcγRに対する結合活性が増強している抗体が投与されたマウスにおいても、血漿中可溶型IL-6レセプターの消失が加速していることが示された。特定の理論に拘束されるものではないが、ここでみられた現象は以下のように説明することも可能である。
 pH依存的に可溶型抗原に結合し、かつFcγRに対する結合活性を増強している抗体がマウスに投与されると、主に細胞膜上にFcγRを発現している細胞に積極的に取り込まれる。取り込まれた抗体はエンドソーム内の酸性pHの条件下において可溶型抗原を解離した後にFcRnを介して血漿中にリサイクルされる。そのため、このような抗体による血漿中の可溶型抗原を消失させる効果をもたらす要素の一つとしては、当該抗体のFcγRに対する結合活性の強さが挙げられる。すなわち、FcγRに対する結合活性が強いほど、より積極的にFcγR発現細胞へと取り込まれ、血漿中の可溶型抗原を速く消失させることが可能であると考えられる。また、そのような効果は、抗体に含まれるFc領域の由来がヒトIgG1であってもマウスIgG1であっても、FcγRに対する結合活性が増強している限りは、同様に検証できると考えられる。つまり、ヒトIgG1、ヒトIgG2、ヒトIgG3、ヒトIgG4、マウスIgG1、マウスIgG2a、マウスIgG2b、マウスIgG3、ラットIgG、サルIgG、ウサギIgGなど、いかなる動物種のFc領域であっても、投与される動物種のFcγRに対する結合活性が増強している限りは、いずれを用いても検証することが可能であると考えられる。
〔参考実施例8〕FcγRIIb選択的に結合を増強した抗体による抗原消失効果
(8-1)FcγRIIbに対する結合活性を選択的に増強した抗体の抗原消失効果
 FcγRIII欠損マウス(B6.129P2-FcgrR3tm1Sjv/J mouse, Jackson Laboratories)は、マウスFcγRI、マウスFcγRIIb、マウスFcγRIVを発現しているが、マウスFcγRIIIを発現しないマウスである。一方、Fc受容体γ鎖欠損マウス(Fcer1g mouse, Taconic, Cell (1994) 76, 519-529)は、マウスFcγRIIbのみを発現し、マウスFcγRI、マウスFcγRIII、マウスFcγRIVを発現しないマウスである。
 参考実施例7において、天然型マウスIgG1に対してFcγRへの結合活性を増強させたmF44およびmF46は、マウスFcγRIIbおよびマウスFcγRIIIに対して選択的に結合が増強されていることが示された。この選択的に増強された抗体の結合活性を利用し、マウスFcγRIIIを発現しない、マウスFcγRIII欠損マウスまたはFc受容体γ鎖欠損マウスにmF44およびmF46を投与することにより、マウスFcγRIIbに対する結合が選択的に増強された抗体を投与する状況を模倣することが可能であると考えられた。
(8-2)FcγRIII欠損マウスを用いたマウスFcγRIIb選択的結合増強による抗原消失効果の検証
 抗ヒトIL-6レセプター抗体としてFv4-mIgG1、Fv4-mIgG1-mF44あるいはFv4-mIgG1-mF46が投与されたFcγRIII欠損マウスの血漿中可溶型IL-6レセプターの消失効果が、実施例5の方法と同様に検証された。当該マウスの血漿中の可溶型ヒトIL-6レセプター濃度は、上記参考実施例(7-4)の方法で測定された。その結果を図15に示した。
 驚くべきことに、mIgG1(天然型マウスIgG1)のマウスFcγRIIbに対する結合活性が選択的に増強された状況が模倣されたmF44およびmF46が投与されたFcγRIII欠損マウスの血漿中IL-6レセプター濃度は、いずれも、mIgG1が投与されたマウスの血漿中IL-6レセプター濃度に比較していずれも顕著に低下したことが確認された。特に、mF44の投与群の血漿中IL-6レセプター濃度は、mIgG1投与群のそれに比較して約3倍程度に低下させ、抗体投与によって起こる抗原濃度の蓄積が抑制されていた。一方、mF46の投与群の血漿中IL-6レセプター濃度は、投与後3日目において、抗体非投与群の血漿中IL-6レセプター濃度に比べて約6倍、mIgG1投与群の血漿中IL-6レセプター濃度に比較すると約25倍と、顕著に低下した。この結果から、pH依存的に抗原に結合する抗ヒトIL-6レセプター抗体のマウスFcγRIIbに対する結合活性が高いほど、それが投与されたときにマウスの血漿中IL-6レセプター濃度をより低下させることが可能であることが示された。
(8-3)Fc受容体γ鎖欠損マウスを用いたマウスFcγRIIb選択的結合増強による抗原消失効果の検証
 抗ヒトIL-6レセプター抗体としてFv4-mIgG1、Fv4-mIgG1-mF44またはFv4-mIgG1mF46が投与されたFc受容体γ鎖欠損マウスの血漿中可溶型IL-6レセプターの消失効果が、実施例6の方法と同様に検証された。当該マウスの血漿中の可溶型ヒトIL-6レセプター濃度は、上記参考実施例(7-4)の方法で測定された。その結果を図16に示した。
 FcγRIII欠損マウスにmF44およびmF46が投与されたときと同様に、mIgG1(天然型マウスIgG1)に対してマウスFcγRIIbに対する結合活性のみが選択的に増強された状況が模倣されたmF44およびmF46が投与されたFc受容体γ鎖欠損マウスの血漿中IL-6レセプター濃度は、いずれも、mIgG1が投与されたFc受容体γ鎖欠損マウスの血漿中IL-6レセプター濃度に比較して顕著に低下したことが確認された。特に、mF44の投与群の血漿中IL-6レセプター濃度は、mIgG1投与群の血漿中IL-6レセプター濃度に比較して約3倍程度に低下し、抗体投与によって起こる抗原濃度の蓄積が抑制されていた。一方、mF46の投与群の血漿中IL-6レセプター濃度は投与後3日目において、抗体非投与群の血漿中IL-6レセプター濃度に比べて約5倍、mIgG1投与群の血漿中IL-6レセプター濃度に比較すると約15倍と、顕著に低下した。
 参考実施例(8-2)および(8-3)の結果から、pH依存的に可溶型抗原に結合し、マウスFcγRIIbに対する結合活性が選択的に増強した抗体の投与群の血漿中の可溶型抗原濃度は大幅に低下する可能性が示された。
〔参考実施例9〕FcγRIII選択的に結合を増強した抗体による抗原消失効果
(9-1)FcγRIIIに対する結合活性を選択的に増強した抗体の抗原消失効果
 FcγRIIb欠損マウス(Fcgr2b(FcγRII) mouse, Taconic)(Nature (1996) 379 (6563), 346-349)は、マウスFcγRI、マウスFcγRIII、マウスFcγRIVは発現するが、マウスFcγRIIbを発現しないマウスである。実施例5において、天然型マウスIgG1のFcγRへの結合活性を増強させたmF44およびmF46は、マウスFcγRIIbおよびマウスFcγRIIIに対して選択的に結合が増強していることが示された。この選択的に増強された抗体の結合活性を利用し、マウスFcγRIIbを発現しないマウスFcγRIIb欠損マウスにmF44およびmF46を投与することにより、マウスFcγRIIIに対する結合が選択的に増強された抗体を投与する状況を模倣することが可能であると考えられた。
 参考実施例8において、マウスFcγRIIbに対する結合活性が選択的に増強された抗体が投与された状況が模倣されたFcγRIII欠損マウスの血漿中の可溶型抗原濃度が低下することが示された。一方で、マウスFcγRIIIに対する結合活性が選択的に増強した抗体が投与された状況が模倣されたFcγRIIb欠損マウスの血漿中の可溶型抗原濃度が低下するかどうかが以下の試験によって確認された。
(9-2)FcγRIIb欠損マウスを用いたマウスFcγRIII選択的結合増強による抗原消失効果の検証
 FcγRIIb欠損マウスに抗ヒトIL-6レセプター抗体としてFv4-mIgG1、Fv4-mIgG1-mF44あるいはFv4-mIgG1mF46が投与されたFcγRIIb欠損マウスの血漿中可溶型IL-6レセプターの消失効果が、実施例5の方法と同様に検証された。血漿中の可溶型ヒトIL-6レセプター濃度は、上記参考実施例(7-4)の方法で測定された。その結果を図17に示した。
 驚くべきことに、mIgG1(天然型マウスIgG1)のマウスFcγRIIIに対する結合活性が選択的に増強したことが模倣されたmF44およびmF46の投与群では、血漿中IL-6レセプター濃度は低下したが参考実施例8で示されたほどの顕著な低下は確認されなかった。
 特定の理論に拘束されるものではないが、参考実施例7、8および9の結果から、以下のように考察することも可能である。mIgG1(天然型マウスIgG1)のマウスFcγRIIbおよびマウスFcγRIIIに対する結合活性が選択的に増強されたmF44およびmF46が投与されたマウスFcγRIIbおよびマウスFcγRIIIの両方を発現するノーマルマウスの血漿中可溶型IL-6レセプターの消失は顕著に加速することが確認された。また、マウスFcγRIIbは発現するものの、マウスFcγRIIIを発現していないマウス(FcγRIII欠損マウス、および、Fc受容体γ鎖欠損マウス)に、mF44およびmF46が投与された場合でも当該マウスの血漿中可溶型IL-6レセプターの消失は顕著に加速することが確認された。一方で、マウスFcγRIIIは発現するものの、マウスFcγRIIbを発現していないマウス(FcγRII欠損マウス)に、mF44およびmF46が投与された場合には、当該マウスの血漿中可溶型IL-6レセプターの消失は顕著には加速されなかった。
 以上のことから、mIgG1(天然型マウスIgG1)のマウスFcγRIIbおよびマウスFcγRIIIに対する結合活性が選択的に増強された抗体であるmF44およびmF46は、主にマウスFcγRIIbを介してFcγRを発現する細胞に取り込まれることによって、当該抗体に結合する血漿中の可溶型抗原が消失していると考えられる。一方で、FcγRIIIを介した抗体抗原複合体のFcγR発現細胞への取込みは、血漿中の可溶型抗原の消失に対して大きく寄与していないと考えられる。
 また、マウスFcγRIIbおよびマウスFcγRIIIに対する結合活性が向上しているFv4-IgG1-F1087(重鎖配列番号:28、軽鎖配列番号:29)が投与されたマウスの血漿中可溶型IL-6レセプター濃度は顕著に低下した一方で、マウスFcγRIおよびマウスFcγRIVに対する結合活性が向上しているFv4-IgG1-F1182が投与されたマウスの血漿中可溶型IL-6レセプターの消失効果は、Fv4-IgG1-F1087のそれと比較すると小さいことも確認された。
 さらに、低フコース型糖鎖を有するためにマウスFcγRIVに対する結合活性が大幅に増強されている(Science (2005) 310 (5753) 1510-1512)Fv4-IgG1-Fuc(フコーストランスポーター遺伝子を欠損させたCHO細胞(WO2006/067913)を宿主細胞として用いてFv4-IgG1(重鎖配列番号:30、軽鎖配列番号:29)を発現することにより作製)が投与されたマウスの血漿中可溶型IL-6レセプター濃度は、Fv4-IgG1が投与されたマウスの血漿中可溶型IL-6レセプター濃度と比較すると低下したものの、その低下の効果は2倍程度と小さいことが確認された。そのため、マウスFcγRIVを介した抗体のFcγR発現細胞への取り込みは、血漿中の可溶型抗原の消失に対して大きく寄与していないと考えられる。
 これらのことから、マウスにおいて抗体のFcγR発現細胞への取込みには、複数あるマウスFcγRの中で、マウスFcγRIIbが主な役割を発揮していることが見出された。そのため、特に限定されるものではないが、マウスFcγR結合ドメインに導入される変異としては、マウスFcγRIIbに対する結合を増強する変異が特に好ましいとも考えられ得る。
 本検討によって、pH依存的に可溶型抗原に結合し、FcγRに対する結合活性が増強された抗原結合分子を投与することによって、抗体が投与された生体の血漿中の可溶型抗原の消失を早めることが可能であることが示された。このFcγRを介した血漿中の可溶型抗原の消失が、FcγRの中でも主にFcγRIIbを介して起きていることがマウスにおいて示された。すなわち、抗体と抗原の複合体とFcγRとの相互作用を利用して血漿中の可溶型抗原の消失を早めるためには、FcγRの中でもFcγRIIbが特に重要であり、FcγRIIbに対する結合を維持しさえすれば、その消失効果は維持される。これにより、pH依存的に可溶型抗原に結合し、FcγRIIbに対する結合活性を増強させた抗原結合分子は、生体内に投与された場合に、血漿中の可溶型抗原の消失を早めて、血漿中の可溶型抗原濃度を効果的に低下させることが可能であり、極めて有効な作用を示すことが明らかとなった。
 本発明によって、天然型IgGのFc領域を含むポリペプチドと比較して、FcγRIIbに対する結合活性を維持しつつ、且つ、すべての活性型FcγRに対する結合活性、特にFcγRIIa(R型)に対する結合活性が低減したFc領域改変体、該Fc領域改変体を含むポリペプチドが提供された。該ポリペプチドを用いることにより、FcγRIIbのITIMのリン酸化を介した炎症性免疫反応の抑制性シグナルを伝達することが可能となる。また、FcγRIIbに選択的に結合する性質を抗体のFcに付与することにより、FcγRIIbを介した免疫抑制的な作用を通じて、抗抗体の産生を抑制できる可能性がある。

Claims (59)

  1.  Fc領域のEUナンバリング238番目のアミノ酸、並びに、下記の(a)~(k)のいずれかに記載のアミノ酸改変を含むFc領域改変体であって、天然型IgGのFc領域と比較した場合に、該改変体のFcγRIIbに対する結合活性が維持され、かつ、すべての活性型FcγRに対する結合活性が減少している、改変体。
    (a)Fc領域のEUナンバリング235番目のアミノ酸
    (b)Fc領域のEUナンバリング237番目のアミノ酸
    (c) Fc領域のEUナンバリング241番目のアミノ酸
    (d) Fc領域のEUナンバリング268番目のアミノ酸
    (e) Fc領域のEUナンバリング295番目のアミノ酸
    (f) Fc領域のEUナンバリング296番目のアミノ酸
    (g) Fc領域のEUナンバリング298番目のアミノ酸
    (h) Fc領域のEUナンバリング323番目のアミノ酸
    (i) Fc領域のEUナンバリング324番目のアミノ酸
    (j) Fc領域のEUナンバリング330番目のアミノ酸
    (k) (a)~(j)から選ばれる少なくとも2つのアミノ酸
  2.  請求項1の(k)で選ばれる少なくとも2つのアミノ酸が、下記(1)~(3)のいずれかに記載のアミノ酸の組合せである、請求項1に記載の改変体。
    (1)Fc領域のEUナンバリング241番目のアミノ酸、268番目のアミノ酸、296番目のアミノ酸及び324番目のアミノ酸
    (2) Fc領域のEUナンバリング237番目のアミノ酸、241番目のアミノ酸、296番目のアミノ酸及び330番目のアミノ酸
    (3) Fc領域のEUナンバリング235番目のアミノ酸、237番目のアミノ酸、241番目のアミノ酸及び296番目のアミノ酸
  3.  Fc領域のEUナンバリング238番目のアミノ酸がAspであり、かつ、下記の(a)~(k)のいずれかに記載のアミノ酸を有するFc領域改変体であって、天然型IgGのFc領域と比較した場合に、該改変体のFcγRIIbに対する結合活性が維持され、かつ、すべての活性型FcγRに対する結合活性が減少している、改変体。
    (a)Fc領域のEUナンバリング235番目のアミノ酸がPhe
    (b) Fc領域のEUナンバリング237番目のアミノ酸がGln又はAsp
    (c) Fc領域のEUナンバリング241番目のアミノ酸がMet又はLeu
    (d) Fc領域のEUナンバリング268番目のアミノ酸がPro
    (e) Fc領域のEUナンバリング295番目のアミノ酸がMet又はVal、
    (f) Fc領域のEUナンバリング296番目のアミノ酸がGlu、His、Asn又はAsp、
    (g) Fc領域のEUナンバリング298番目のアミノ酸がAla又はMet、
    (h) Fc領域のEUナンバリング323番目のアミノ酸がIle、
    (i) Fc領域のEUナンバリング324番目のアミノ酸がAsn又はHis
    (j) Fc領域のEUナンバリング330番目のアミノ酸がHis又はTyr
    (k) (a)~(j)から選ばれる少なくとも2つのアミノ酸
  4.  Fc領域のEUナンバリング238番目のアミノ酸がAspであり、かつ、下記(1)~(3)のいずれかに記載のアミノ酸を有するFc領域改変体。
    (1)Fc領域のEUナンバリング241番目のアミノ酸がMet、268番目のアミノ酸がPro、296番目のアミノ酸がGlu及び324番目のアミノ酸がHis
    (2) Fc領域のEUナンバリング237番目のアミノ酸がGln又はAsp、241番目のアミノ酸がMet、296番目のアミノ酸がGlu及び330番目のアミノ酸がHis
    (3) Fc領域のEUナンバリング235番目のアミノ酸がPhe、237番目のアミノ酸がGln又はAsp、241番目のアミノ酸がMet及び296番目のアミノ酸がGlu
  5.  Fc領域のEUナンバリング238番目のアミノ酸及び271番目のアミノ酸、並びに、下記の(a)~(h)のいずれかに記載のアミノ酸改変を含むFc領域改変体であって、天然型IgGのFc領域と比較した場合に、該改変体のFcγRIIbに対する結合活性が維持され、かつ、すべての活性型FcγRに対する結合活性が減少している、改変体。
    (a)Fc領域のEUナンバリング234番目のアミノ酸
    (b)Fc領域のEUナンバリング235番目のアミノ酸
    (c)Fc領域のEUナンバリング236番目のアミノ酸
    (d)Fc領域のEUナンバリング237番目のアミノ酸
    (e)Fc領域のEUナンバリング239番目のアミノ酸
    (f) Fc領域のEUナンバリング265番目のアミノ酸
    (g) Fc領域のEUナンバリング267番目のアミノ酸
    (h) Fc領域のEUナンバリング297番目のアミノ酸
  6.  前記アミノ酸改変が、下記の(1)~(3)のいずれかに記載のアミノ酸改変の組合せである、請求項5に記載の改変体。
    (1) Fc領域のEUナンバリング233番目のアミノ酸、238番目のアミノ酸、264番目のアミノ酸、267番目のアミノ酸、268番目のアミノ酸及び271番目のアミノ酸
    (2)Fc領域のEUナンバリング233番目のアミノ酸、237番目のアミノ酸、238番目のアミノ酸、264番目のアミノ酸、267番目のアミノ酸、268番目のアミノ酸、271番目のアミノ酸、296番目のアミノ酸、297番目のアミノ酸、330番目のアミノ酸及び396番目のアミノ酸
    (3) Fc領域のEUナンバリング233番目のアミノ酸、238番目のアミノ酸、264番目のアミノ酸、267番目のアミノ酸、268番目のアミノ酸、271番目のアミノ酸及び296番目のアミノ酸
  7.  Fc領域のEUナンバリング238番目のアミノ酸がAsp及び271番目のアミノ酸がGlyであり、かつ、下記の(a)~(h)のいずれかに記載のアミノ酸を有するFc領域改変体であって、天然型IgGのFc領域と比較した場合に、該改変体のFcγRIIbに対する結合活性が維持され、かつ、すべての活性型FcγRに対する結合活性が減少している、改変体。
    (a)Fc領域のEUナンバリング234番目のアミノ酸がAla、His、Asn、Lys又はArg
    (b)Fc領域のEUナンバリング235番目のアミノ酸がAla
    (c)Fc領域のEUナンバリング236番目のアミノ酸がGln
    (d)Fc領域のEUナンバリング237番目のアミノ酸がArg又はLys
    (e)Fc領域のEUナンバリング239番目のアミノ酸がLys
    (f) Fc領域のEUナンバリング265番目のアミノ酸がLys、Asn、Arg、Ser又はVal
    (g) Fc領域のEUナンバリング267番目のアミノ酸がLys、Arg又はTyr
    (h) Fc領域のEUナンバリング297番目のアミノ酸がAla
  8.  Fc領域のEUナンバリング238番目のアミノ酸がAsp及び271番目のアミノ酸がGlyであり、かつ、下記の(1)~(3)のいずれかに記載のアミノ酸を含む、Fc領域改変体。
    (1) Fc領域のEUナンバリング233番目のアミノ酸がAsp、238番目のアミノ酸がAsp、264番目のアミノ酸がIle、267番目のアミノ酸がArg、268番目のアミノ酸がGlu及び271番目のアミノ酸がGly
    (2)Fc領域のEUナンバリング233番目のアミノ酸がAsp、237番目のアミノ酸がAsp、238番目のアミノ酸がAsp、264番目のアミノ酸がIle、267番目のアミノ酸がAla、268番目のアミノ酸がGlu、271番目のアミノ酸がGly、296番目のアミノ酸がAsp、297番目のアミノ酸がAla、330番目のアミノ酸がArg及び396番目のアミノ酸がMet
    (3) Fc領域のEUナンバリング233番目のアミノ酸がAsp、238番目のアミノ酸がAsp、264番目のアミノ酸がIle、267番目のアミノ酸がArg、268番目のアミノ酸がPro、271番目のアミノ酸がGly及び296番目のアミノ酸がGlu
  9.  更に、補体への結合が減少している、請求項1から8のいずれかに記載のFc領域改変体。
  10.  補体への結合が減少しているFc領域改変体が、Fc領域のEUナンバリング322番目のアミノ酸改変、又は、Fc領域のEUナンバリング327番目、330番目及び331番目のアミノ酸改変を含む、請求項9に記載のFc領域改変体。
  11.  Fc領域のEUナンバリング322番目のアミノ酸がAla又はGlu、若しくは、Fc領域のEUナンバリング327番目のアミノ酸がGly、330番目のアミノ酸がSer及び331番目のアミノ酸がSerである、請求項9に記載のFc領域改変体。
  12.  Fc領域のEUナンバリング238番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸のアミノ酸改変を含むFc領域改変体であって、天然型IgGのFc領域と比較した場合に、該改変体のFcγRIIbに対する結合活性が維持され、かつ、すべての活性型FcγRに対する結合活性が減少している、改変体。
  13.  更に、下記の(a)~(e)のいずれかに記載のアミノ酸改変を含む、請求項12に記載の改変体。
    (a)Fc領域のEUナンバリング233番目のアミノ酸
    (b)Fc領域のEUナンバリング237番目のアミノ酸
    (c)Fc領域のEUナンバリング264番目のアミノ酸
    (d)Fc領域のEUナンバリング267番目のアミノ酸
    (e)Fc領域のEUナンバリング268番目のアミノ酸
  14.  前記アミノ酸改変が、下記の(1)~(4)のいずれかに記載のアミノ酸改変の組合せである、請求項13に記載の改変体。
    (1) Fc領域のEUナンバリング237番目のアミノ酸、238番目のアミノ酸、268番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸
    (2)Fc領域のEUナンバリング233番目のアミノ酸、237番目のアミノ酸、238番目のアミノ酸、268番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸
    (3) Fc領域のEUナンバリング238番目のアミノ酸、267番目のアミノ酸、268番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸
    (4) Fc領域のEUナンバリング238番目のアミノ酸、264番目のアミノ酸、267番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸
  15.  Fc領域のEUナンバリング238番目のアミノ酸がAsp、271番目のアミノ酸がGly、327番目のアミノ酸がGly、330番目のアミノ酸がSer及び331番目のアミノ酸がSerであるFc領域改変体であって、天然型IgGのFc領域と比較した場合に、該改変体のFcγRIIbに対する結合活性が維持され、かつ、すべての活性型FcγRに対する結合活性が減少している、改変体。
  16.  更に、下記の(a)~(h)のいずれかに記載のアミノ酸を有する請求項15に記載の改変体。
    (a)Fc領域のEUナンバリング233番目のアミノ酸がAsp
    (b)Fc領域のEUナンバリング237番目のアミノ酸がAsp
    (c)Fc領域のEUナンバリング264番目のアミノ酸がIle
    (d)Fc領域のEUナンバリング267番目のアミノ酸がAla
    (e)Fc領域のEUナンバリング268番目のアミノ酸がAsp又はGlu
  17.  Fc領域のEUナンバリング238番目のアミノ酸がAsp及び271番目のアミノ酸がGlyであり、かつ、下記の(1)~(4)のいずれかに記載のアミノ酸を含む、Fc領域改変体。
    (1) Fc領域のEUナンバリング237番目のアミノ酸がAsp、238番目のアミノ酸がAsp、268番目のアミノ酸がAsp又はGlu、271番目のアミノ酸がGly、327番目のアミノ酸がGly、330番目のアミノ酸がSer及び331番目のアミノ酸がSer
    (2)Fc領域のEUナンバリング233番目のアミノ酸がAsp、237番目のアミノ酸がAsp、238番目のアミノ酸がAsp、268番目のアミノ酸がAsp、271番目のアミノ酸がGly、327番目のアミノ酸がGly、330番目のアミノ酸がSer及び331番目のアミノ酸がSer
    (3) Fc領域のEUナンバリング238番目のアミノ酸がAsp、267番目のアミノ酸がAla、268番目のアミノ酸がGlu、271番目のアミノ酸がGly、327番目のアミノ酸がGly、330番目のアミノ酸がSer及び331番目のアミノ酸がSer
    (4) Fc領域のEUナンバリング238番目のアミノ酸がAsp、264番目のアミノ酸がIle、267番目のアミノ酸がAla、271番目のアミノ酸がGly、327番目のアミノ酸がGly、330番目のアミノ酸がSer及び331番目のアミノ酸がSer
  18.  FcγRIIbに対する結合活性が、天然型IgGのFc領域の結合量の少なくとも80%を有し、FcγRIIaRに対する結合活性が、天然型IgGのFc領域の結合量の30%以下である、請求項1から17のいずれか一項に記載のFc領域改変体。
  19.  天然型IgGのFc領域を含むポリペプチドのFcγRIIb に対する結合活性と比較した相対的な結合活性の比が少なくとも0.75であり、すべての活性型FcγRに対する結合活性の比が0.2以下である、請求項1から18のいずれか一項に記載のFc領域改変体。
  20.  更に、天然型IgGのFc領域を含むポリペプチドのFcγRIIa R に対する結合活性と比較した相対的な結合活性の比が0.1以下である、請求項19に記載のFc領域改変体。
  21.  請求項1から20のいずれか一項に記載のFc領域改変体を含むポリペプチド。
  22.  前記Fc領域改変体を含むポリペプチドがIgG抗体である、請求項21に記載のポリペプチド。
  23.  前記Fc領域改変体を含むポリペプチドがFc融合タンパク質分子である、請求項21に記載のポリペプチド。
  24.  請求項21から23のいずれか一項に記載のポリペプチド及び医学的に許容し得る担体を含む、医薬組成物。
  25.  更に、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメインを含む、請求項21に記載のポリペプチド。
  26.  イオン濃度の条件が、カルシウムイオン濃度の条件である、請求項25に記載のポリペプチド。
  27.  前記抗原結合ドメインが、低カルシウムイオン濃度の条件下での抗原に対する結合活性が高カルシウムイオン濃度の条件下での抗原に対する結合活性よりも低い抗原結合ドメインである、請求項26に記載のポリペプチド。
  28.  イオン濃度の条件が、pHの条件である、請求項25から27のいずれか一項に記載のポリペプチド。
  29.  前記抗原結合ドメインが、pH酸性域における抗原に対する結合活性がpH中性域の条件における抗原に対する結合活性よりも低い抗原結合ドメインである、請求項28に記載のポリペプチド。
  30.  前記Fc領域改変体を含むポリペプチドがIgG抗体である、請求項25から29のいずれか一項に記載のポリペプチド。
  31.  前記Fc領域改変体を含むポリペプチドがFc融合タンパク質分子である、請求項25から29のいずれか一項に記載のポリペプチド。
  32.  請求項25から31のいずれか一項に記載のポリペプチド及び医学的に許容し得る担体を含む、医薬組成物。
  33.  医薬用組成物が、請求項25から31のいずれか一項に記載のポリペプチドの抗原結合ドメインと結合する血漿中の抗原であって、当該抗原の血漿中からの消失を促進するための、請求項32に記載の医薬組成物。
  34.  請求項25から31のいずれか一項に記載のポリペプチドの抗原結合ドメインと結合する血漿中の抗原であって、当該抗原の血漿中からの消失を促進するための該ポリペプチドの使用。
  35.  Fc領域を含むポリペプチドにおいて、Fc領域のEUナンバリング238番目のアミノ酸、並びに、Fc領域のEUナンバリング235番目のアミノ酸、237番目のアミノ酸、241番目のアミノ酸、268番目のアミノ酸、295番目のアミノ酸、296番目のアミノ酸、298番目のアミノ酸、323番目のアミノ酸、324番目のアミノ酸及び330番目のアミノ酸から選ばれる少なくとも1つのアミノ酸を他のアミノ酸に改変することによる、該ポリペプチドのFcγRIIbに対する結合活性が維持されつつ、すべての活性型FcγRに対する結合を低減する方法。
  36.  Fc領域のアミノ酸の改変が、EUナンバリング238番目のアミノ酸のAspへの置換、235番目のアミノ酸のPheへの置換、 237番目のアミノ酸のGlnへの置換、241番目のアミノ酸のMet又はLeuへの置換、268番目のアミノ酸のProへの置換、295番目のアミノ酸のMet又はValへの置換、296番目のアミノ酸のGlu、His、Asn又はAspへの置換、298番目のアミノ酸のAla又はMetへの置換、323番目のアミノ酸のIleへの置換、324番目のアミノ酸のAsn又はHisへの置換、330番目のアミノ酸のHis又はTyrへの置換である、請求項35に記載の方法。
  37.  Fc領域のEUナンバリング238番目のアミノ酸、並びに、Fc領域のEUナンバリング235番目のアミノ酸、237番目のアミノ酸、241番目のアミノ酸、268番目のアミノ酸、295番目のアミノ酸、296番目のアミノ酸、298番目のアミノ酸、323番目のアミノ酸、324番目のアミノ酸及び330番目のアミノ酸から選ばれる少なくとも1つのアミノ酸を他のアミノ酸に改変することによる、改変前と比較してFcγRIIbに対する結合活性が維持されつつ、すべての活性型FcγRに対する結合が低減しているFc領域改変体を含むポリペプチドの製造方法。
  38.  Fc領域のアミノ酸の改変が、EUナンバリング238番目のアミノ酸のAspへの置換、235番目のアミノ酸のPheへの置換、 237番目のアミノ酸のGlnへの置換、241番目のアミノ酸のMet又はLeuへの置換、268番目のアミノ酸のProへの置換、295番目のアミノ酸のMet又はValへの置換、296番目のアミノ酸のGlu、His、Asn又はAspへの置換、298番目のアミノ酸のAla又はMetへの置換、323番目のアミノ酸のIleへの置換、324番目のアミノ酸のAsn又はHisへの置換、330番目のアミノ酸のHis又はTyrへの置換である、請求項37に記載の方法。
  39.  Fc領域を含むポリペプチドにおいて、FcγRIIbに対する結合活性が天然型IgGのFc領域と比較して2倍以上となるアミノ酸改変と、全てのFcγRに対する結合活性を低減させるアミノ酸改変とを組み合わせて導入することによる、天然型IgGと比較して、FcγRIIbに対する結合活性を同程度に維持しつつ、すべての活性型FcγRに対する結合活性を低減する方法。
  40.  FcγRIIbに対する結合活性が天然型IgGのFc領域と比較して2倍以上となるアミノ酸改変が表11に記載のアミノ酸改変である、請求項39に記載の方法。
  41.  全てのFcγRに対する結合活性を低減させるアミノ酸改変が、Fc領域のEUナンバリング234番目のアミノ酸、235番目のアミノ酸、236番目のアミノ酸、237番目のアミノ酸、239番目のアミノ酸、265番目のアミノ酸、267番目のアミノ酸及び297番目のアミノ酸から選ばれる少なくとも1つのアミノ酸の他のアミノ酸への改変である、請求項39または40に記載の方法。
  42.  Fc領域のアミノ酸の改変が、EUナンバリング234番目のアミノ酸のAla、His、Asn、Lys又はArgへの置換、235番目のアミノ酸のAlaへの置換、236番目のアミノ酸のGlnへの置換、237番目のアミノ酸のArg又はLysへの置換、239番目のアミノ酸のLysへの置換、265番目のアミノ酸のLys、Asn、Arg、Ser又はValへの置換、267番目のアミノ酸のLys、Arg又はTyrへの置換、297番目のアミノ酸のAlaへの置換である、請求項39から41のいずれか一項に記載の方法。
  43.  FcγRIIbに対する結合活性が、天然型IgGのFc領域の結合量の少なくとも80%を維持し、FcγRIIaRに対する結合活性が、天然型IgGのFc領域の結合量の30%以下に低減する、請求項35、36、および39から42のいずれか一項に記載の方法。
  44.  天然型IgGのFc領域を含むポリペプチドのFcγRIIbに対する結合活性と比較した相対的な結合活性の比が少なくとも0.75を維持し、すべての活性型FcγRに対する結合活性の比が0.2以下に低減する、請求項35、36、および39から43のいずれか一項に記載の方法。
  45.  更に、天然型IgGのFc領域を含むポリペプチドのFcγRIIa Rに対する結合活性と比較した相対的な結合活性の比が0.05以下に低減する、請求項44に記載の方法。
  46.  FcγRIIbに対する結合活性が天然型IgGのFc領域と比較して2倍以上となるアミノ酸改変と、全てのFcγRに対する結合活性を低減させるアミノ酸改変とを組み合わせて導入することによる、天然型IgG と比較して、FcγRIIbに対する結合活性を同程度に維持しつつ、すべての活性型FcγRに対する結合活性が低減しているFc領域改変体を含むポリペプチドの製造方法。
  47.  FcγRIIbに対する結合活性が天然型IgGのFc領域と比較して2倍以上となるアミノ酸改変が表11に記載のアミノ酸改変である、請求項46に記載の方法。
  48.  全てのFcγRに対する結合活性を低減させるアミノ酸改変が、Fc領域のEUナンバリング234番目のアミノ酸、235番目のアミノ酸、236番目のアミノ酸、237番目のアミノ酸、239番目のアミノ酸、265番目のアミノ酸、267番目のアミノ酸及び297番目のアミノ酸から選ばれる少なくとも1つのアミノ酸の他のアミノ酸への改変である、請求項46または47に記載の方法。
  49.  Fc領域のアミノ酸の改変が、EUナンバリング234番目のアミノ酸のAla、His、Asn、Lys又はArgへの置換、235番目のアミノ酸のAlaへの置換、236番目のアミノ酸のGlnへの置換、237番目のアミノ酸のArg又はLysへの置換、239番目のアミノ酸のLysへの置換、265番目のアミノ酸のLys、Asn、Arg、Ser又はValへの置換、267番目のアミノ酸のLys、Arg又はTyrへの置換、297番目のアミノ酸のAlaへの置換である、請求項46から48のいずれか一項に記載の方法。
  50.  FcγRIIbに対する結合活性が、天然型IgGのFc領域の結合量の少なくとも80%を維持し、すべての活性型FcγRに対する結合活性が、天然型IgGのFc領域の結合量の30%以下に低減する、請求項37、38、および46から49のいずれか一項に記載の方法。
  51.  天然型IgGのFc領域を含むポリペプチドのFcγRIIb に対する結合活性と比較した相対的な結合活性の比が少なくとも0.75を維持し、すべての活性型FcγRに対する結合活性の比が0.2以下に低減する、請求項37、38、および46から50のいずれかに記載の方法。
  52.  更に、天然型IgGのFc領域を含むポリペプチドのFcγRIIa R に対する結合活性と比較した相対的な結合活性の比が0.1以下に低減する、請求項51に記載の方法。
  53. 更に、補体への結合を減少させる改変を組み合わせて導入する、請求項37、38、および46から52のいずれかに記載の方法。
  54. 補体への結合を減少させる改変が、Fc領域のEUナンバリング322番目のアミノ酸改変、又は、Fc領域のEUナンバリング327番目、330番目及び331番目のアミノ酸改変である、請求項53に記載の方法。
  55. 補体への結合を減少させる改変が、Fc領域のEUナンバリング322番目のアミノ酸のAla又はGluへの置換、若しくは、Fc領域のEUナンバリング327番目のアミノ酸のGlyへの置換、330番目のアミノ酸のSerへの置換及び331番目のアミノ酸のSerへの置換である、請求項53に記載の方法。
  56.  Fc領域を含むポリペプチドにおいて、Fc領域のEUナンバリング238番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸、若しくは、更に、Fc領域のEUナンバリング233番目のアミノ酸、237番目のアミノ酸、264番目のアミノ酸、267番目のアミノ酸、及び268番目のアミノ酸から選ばれる少なくとも1つのアミノ酸を他のアミノ酸に改変することによる、該ポリペプチドのFcγRIIbに対する結合活性が維持されつつ、すべての活性型FcγRに対する結合を低減する方法。
  57.  Fc領域のアミノ酸の改変が、Fc領域のEUナンバリング238番目のアミノ酸のAspへの置換、271番目のアミノ酸のGlyへの置換、327番目のアミノ酸のGlyへの置換、330番目のアミノ酸のSerへの置換、331番目のアミノ酸のSer置換、233番目のアミノ酸のAspへの置換、237番目のアミノ酸のAspへの置換、264番目のアミノ酸のIleへの置換、267番目のアミノ酸のAlaへの置換、268番目のアミノ酸のAsp又はGluへの置換である、請求項56に記載の方法。
  58.  Fc領域を含むポリペプチドにおいて、Fc領域のEUナンバリング238番目のアミノ酸、271番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸及び331番目のアミノ酸、若しくは、更に、Fc領域のEUナンバリング233番目のアミノ酸、237番目のアミノ酸、264番目のアミノ酸、267番目のアミノ酸、及び268番目のアミノ酸から選ばれる少なくとも1つのアミノ酸を他のアミノ酸に改変することによる、改変前と比較してFcγRIIbに対する結合活性が維持され、すべての活性型FcγRに対する結合が低減しつつ、かつ、補体への結合が低減しているFc領域改変体を含むポリペプチドの製造方法。
  59.  Fc領域のアミノ酸の改変が、Fc領域のEUナンバリング238番目のアミノ酸のAspへの置換、271番目のアミノ酸のGlyへの置換、327番目のアミノ酸のGlyへの置換、330番目のアミノ酸のSerへの置換、331番目のアミノ酸のSer置換、233番目のアミノ酸のAspへの置換、237番目のアミノ酸のAspへの置換、264番目のアミノ酸のIleへの置換、267番目のアミノ酸のAlaへの置換、268番目のアミノ酸のAsp又はGluへの置換である、請求項58に記載の方法。
PCT/JP2014/059706 2013-04-02 2014-04-02 Fc領域改変体 WO2014163101A1 (ja)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP2015510113A JP6598680B2 (ja) 2013-04-02 2014-04-02 Fc領域改変体
MX2015014017A MX2015014017A (es) 2013-04-02 2014-04-02 Variante de la region fc.
EP20192392.7A EP3783017A1 (en) 2013-04-02 2014-04-02 Fc region variant
US14/781,069 US11267868B2 (en) 2013-04-02 2014-04-02 Fc region variant
RU2015146769A RU2757124C9 (ru) 2013-04-02 2014-04-02 ВАРИАНТ Fc-ОБЛАСТИ
KR1020217033927A KR20210130260A (ko) 2013-04-02 2014-04-02 Fc영역 개변체
SG11201508170TA SG11201508170TA (en) 2013-04-02 2014-04-02 Fc REGION VARIANT
BR112015024587-0A BR112015024587B1 (pt) 2013-04-02 2014-04-02 Variante de região fc de igg1 humana, polipeptídeo compreendendo a mesma, seu método de produção e composição farmacêutica
EP14778553.9A EP2982689B1 (en) 2013-04-02 2014-04-02 Fc region variant
KR1020157030650A KR102318483B1 (ko) 2013-04-02 2014-04-02 Fc영역 개변체
AU2014250434A AU2014250434B2 (en) 2013-04-02 2014-04-02 Fc region variant
CN201480031490.XA CN105246914B (zh) 2013-04-02 2014-04-02 Fc区变体
CA2908350A CA2908350C (en) 2013-04-02 2014-04-02 Fc region variant
HK16102873.0A HK1215034A1 (zh) 2013-04-02 2016-03-14 區變體
US17/671,185 US20220411483A1 (en) 2013-04-02 2022-02-14 Fc REGION VARIANT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013077239 2013-04-02
JP2013-077239 2013-04-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/781,069 A-371-Of-International US11267868B2 (en) 2013-04-02 2014-04-02 Fc region variant
US17/671,185 Division US20220411483A1 (en) 2013-04-02 2022-02-14 Fc REGION VARIANT

Publications (1)

Publication Number Publication Date
WO2014163101A1 true WO2014163101A1 (ja) 2014-10-09

Family

ID=51658394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059706 WO2014163101A1 (ja) 2013-04-02 2014-04-02 Fc領域改変体

Country Status (13)

Country Link
US (2) US11267868B2 (ja)
EP (2) EP3783017A1 (ja)
JP (3) JP6598680B2 (ja)
KR (2) KR20210130260A (ja)
CN (2) CN105246914B (ja)
AU (1) AU2014250434B2 (ja)
BR (1) BR112015024587B1 (ja)
CA (1) CA2908350C (ja)
HK (1) HK1215034A1 (ja)
MX (1) MX2015014017A (ja)
SG (1) SG11201508170TA (ja)
TW (1) TWI636062B (ja)
WO (1) WO2014163101A1 (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125495A1 (en) 2015-02-05 2016-08-11 Chugai Seiyaku Kabushiki Kaisha Antibodies comprising an ion concentration dependent antigen-binding domain, fc region variants, il-8-binding antibodies, and uses therof
WO2017046994A1 (en) 2015-09-18 2017-03-23 Chugai Seiyaku Kabushiki Kaisha Il-8-binding antibodies and uses thereof
US9828429B2 (en) 2007-09-26 2017-11-28 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US9868948B2 (en) 2008-04-11 2018-01-16 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US10000560B2 (en) 2014-12-19 2018-06-19 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use
KR20190009272A (ko) 2016-06-17 2019-01-28 추가이 세이야쿠 가부시키가이샤 항-마이오스타틴 항체 및 사용 방법
US10253100B2 (en) 2011-09-30 2019-04-09 Chugai Seiyaku Kabushiki Kaisha Therapeutic antigen-binding molecule with a FcRn-binding domain that promotes antigen clearance
JP2020502046A (ja) * 2016-11-01 2020-01-23 ゲンマブ ビー.ブイ. ポリペプチド変異体およびその使用
WO2020032230A1 (ja) 2018-08-10 2020-02-13 中外製薬株式会社 抗cd137抗原結合分子およびその使用
US10604561B2 (en) 2016-09-16 2020-03-31 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies, polypeptides containing variant Fc regions, and methods of use
US10618965B2 (en) 2011-02-25 2020-04-14 Chugai Seiyaku Kabushiki Kaisha Method for altering plasma retention and immunogenicity of antigen-binding molecule
US10766960B2 (en) 2012-12-27 2020-09-08 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
US10919953B2 (en) 2012-08-24 2021-02-16 Chugai Seiyaku Kabushiki Kaisha FcgammaRIIB-specific Fc region variant
US10961530B2 (en) 2013-12-04 2021-03-30 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecules, the antigen-binding activity of which varies according to the concentration of compounds, and libraries of said molecules
JP2021054826A (ja) * 2015-02-03 2021-04-08 エイエルエス・セラピー・デベロップメント・インスティテュートALS Therapy Development Institute Cd40l関連疾患または障害を治療するための抗cd40l抗体及び方法
US11046784B2 (en) 2006-03-31 2021-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
US11053308B2 (en) 2016-08-05 2021-07-06 Chugai Seiyaku Kabushiki Kaisha Method for treating IL-8-related diseases
WO2021162020A1 (ja) 2020-02-12 2021-08-19 中外製薬株式会社 癌の治療に用いるための抗cd137抗原結合分子
US11142563B2 (en) 2012-06-14 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing modified Fc region
US11236168B2 (en) 2012-08-24 2022-02-01 Chugai Seiyaku Kabushiki Kaisha Mouse FcγammaRII-specific Fc antibody
US11267868B2 (en) 2013-04-02 2022-03-08 Chugai Seiyaku Kabushiki Kaisha Fc region variant
US11359009B2 (en) 2015-12-25 2022-06-14 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies and methods of use
US11384152B2 (en) 2017-05-24 2022-07-12 Als Therapy Development Institute Therapeutic anti-CD40 ligand antibodies
US11673947B2 (en) 2012-05-30 2023-06-13 Chugai Seiyaku Kabushiki Kaisha Target tissue-specific antigen-binding molecule
US11780910B1 (en) 2022-05-02 2023-10-10 Novo Nordisk A/S Anti-ANGPTL3 antibodies suitable for high concentration compositions and subcutaneous administration
US11820793B2 (en) 2011-11-30 2023-11-21 Chugai Seiyaku Kabushiki Kaisha Drug containing carrier into cell for forming immune complex
US11827699B2 (en) 2011-09-30 2023-11-28 Chugai Seiyaku Kabushiki Kaisha Methods for producing antibodies promoting disappearance of antigens having plurality of biological activities
US11891434B2 (en) 2010-11-30 2024-02-06 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to plurality of antigen molecules repeatedly
US11891432B2 (en) 2018-03-15 2024-02-06 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies having cross-reactivity to Zika virus and methods of use

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI440469B (zh) 2008-09-26 2014-06-11 Chugai Pharmaceutical Co Ltd Improved antibody molecules
TWI687439B (zh) 2011-06-30 2020-03-11 中外製藥股份有限公司 異源二聚化多胜肽
EP3233921B1 (en) 2014-12-19 2021-09-29 Chugai Seiyaku Kabushiki Kaisha Anti-c5 antibodies and methods of use
CA2972393A1 (en) 2015-02-27 2016-09-01 Chugai Seiyaku Kabushiki Kaisha Composition for treating il-6-related diseases
EP3574010A4 (en) 2017-01-30 2020-12-16 Chugai Seiyaku Kabushiki Kaisha ANTI-SCLEROSTIN ANTIBODIES AND METHOD OF USE
WO2018183520A1 (en) * 2017-03-28 2018-10-04 Lyvgen Biopharma Holdings Limited Therapeutic agents and methods for enhancing immune responses in tumor microenvironment
US11851486B2 (en) 2017-05-02 2023-12-26 National Center Of Neurology And Psychiatry Method for predicting and evaluating therapeutic effect in diseases related to IL-6 and neutrophils
JP7257335B2 (ja) 2017-05-25 2023-04-13 ブリストル-マイヤーズ スクイブ カンパニー アンタゴニスト性cd40モノクローナル抗体およびその使用
MX2020000037A (es) * 2017-07-07 2020-08-06 Hanmi Pharm Ind Co Ltd Novedosa proteína terapéutica de fusión enzimática y uso de la misma.
KR20190013615A (ko) * 2017-07-28 2019-02-11 한미약품 주식회사 이두로네이트 2-설파타제 결합체
JP6935383B2 (ja) * 2018-09-27 2021-09-15 公益財団法人実験動物中央研究所 免疫不全マウス
AR117091A1 (es) 2018-11-19 2021-07-07 Bristol Myers Squibb Co Anticuerpos monoclonales antagonistas contra cd40 y sus usos
JP2022540187A (ja) * 2019-07-08 2022-09-14 プロジェン・カンパニー・リミテッド 新規融合タンパク質及びその用途
CN116948012A (zh) * 2022-04-13 2023-10-27 星奕昂(上海)生物科技有限公司 增强细胞功能的cd16抗剪切突变体

Citations (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0125023A1 (en) 1983-04-08 1984-11-14 Genentech, Inc. Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1992020791A1 (en) 1990-07-10 1992-11-26 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1993006213A1 (en) 1991-09-23 1993-04-01 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993019172A1 (en) 1992-03-24 1993-09-30 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1995001438A1 (en) 1993-06-30 1995-01-12 Medical Research Council Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof
WO1995001937A1 (fr) 1993-07-09 1995-01-19 Association Gradient Procede de traitement de residus de combustion et installation de mise en ×uvre dudit procede
WO1995015388A1 (en) 1993-12-03 1995-06-08 Medical Research Council Recombinant binding proteins and peptides
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
WO1996027011A1 (en) 1995-03-01 1996-09-06 Genentech, Inc. A method for making heteromultimeric polypeptides
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034103A1 (en) 1995-04-25 1996-10-31 Vrije Universiteit Brussel Variable fragments of immunoglobulins - use for therapeutic or veterinary purposes
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1999023221A2 (en) 1997-10-27 1999-05-14 Unilever Plc Multivalent antigen-binding proteins
WO2002020565A2 (en) 2000-09-08 2002-03-14 Universität Zürich Collections of repeat proteins comprising repeat modules
WO2002032925A2 (en) 2000-10-16 2002-04-25 Phylos, Inc. Protein scaffolds for antibody mimics and other binding proteins
WO2002060919A2 (en) 2000-12-12 2002-08-08 Medimmune, Inc. Molecules with extended half-lives, compositions and uses thereof
WO2003002609A2 (en) 2001-06-28 2003-01-09 Domantis Limited Dual-specific ligand and its use
WO2003029462A1 (en) 2001-09-27 2003-04-10 Pieris Proteolab Ag Muteins of human neutrophil gelatinase-associated lipocalin and related proteins
WO2004035752A2 (en) 2002-10-15 2004-04-29 Protein Design Labs, Inc. ALTERATION OF FcRn BINDING AFFINITIES OR SERUM HALF-LIVES OF ANTIBODIES BY MUTAGENESIS
WO2004044011A2 (en) 2002-11-06 2004-05-27 Avidia Research Institute Combinatorial libraries of monomer domains
WO2004058821A2 (en) 2002-12-27 2004-07-15 Domantis Limited Dual specific single domain antibodies specific for a ligand and for the receptor of the ligand
WO2005037867A1 (en) 2003-10-15 2005-04-28 Pdl Biopharma, Inc. ALTERATION OF Fc-FUSION PROTEIN SERUM HALF-LIVES BY MUTAGENESIS OF POSITIONS 250, 314 AND/OR 428 OF THE HEAVY CHAIN CONSTANT REGION OF IG
WO2005037989A2 (en) 2001-01-17 2005-04-28 Trubion Pharmaceuticals, Inc. Binding domain-immunoglobulin fusion proteins
WO2005040229A2 (en) 2003-10-24 2005-05-06 Avidia, Inc. Ldl receptor class a and egf domain monomers and multimers
WO2005047327A2 (en) 2003-11-12 2005-05-26 Biogen Idec Ma Inc. NEONATAL Fc RECEPTOR (FcRn)-BINDING POLYPEPTIDE VARIANTS, DIMERIC Fc BINDING PROTEINS AND METHODS RELATED THERETO
WO2005123780A2 (en) 2004-04-09 2005-12-29 Protein Design Labs, Inc. Alteration of fcrn binding affinities or serum half-lives of antibodies by mutagenesis
WO2006019447A1 (en) 2004-07-15 2006-02-23 Xencor, Inc. Optimized fc variants
WO2006031370A2 (en) 2004-08-19 2006-03-23 Genentech, Inc. Polypeptide variants with altered effector function
WO2006050166A2 (en) 2004-10-29 2006-05-11 Medimmune, Inc. Methods of preventing and treating rsv infections and related conditions
WO2006053301A2 (en) 2004-11-12 2006-05-18 Xencor, Inc. Fc variants with altered binding to fcrn
WO2006067913A1 (ja) 2004-12-22 2006-06-29 Chugai Seiyaku Kabushiki Kaisha フコーストランスポーターの機能が阻害された細胞を用いた抗体の作製方法
WO2006106905A1 (ja) 2005-03-31 2006-10-12 Chugai Seiyaku Kabushiki Kaisha 会合制御によるポリペプチド製造方法
EP1752471A1 (en) 2005-01-05 2007-02-14 f-star Biotechnologische Forschungs- und Entwicklungsges.m.b.H. Synthetic immunoglobulin domains with binding properties engineered in regions of the molecule different from the complementarity determining regions
WO2008016854A2 (en) 2006-08-02 2008-02-07 The Uab Research Foundation Methods and compositions related to soluble monoclonal variable lymphocyte receptors of defined antigen specificity
WO2008022152A2 (en) 2006-08-14 2008-02-21 Xencor, Inc. Optimized antibodies that target cd19
WO2008119353A1 (en) 2007-03-29 2008-10-09 Genmab A/S Bispecific antibodies and methods for production thereof
US20090035836A1 (en) 2004-03-30 2009-02-05 California Institute Of Technology Modulating ph-sensitive binding using non-natural amino acids
WO2009041613A1 (ja) 2007-09-26 2009-04-02 Chugai Seiyaku Kabushiki Kaisha 抗体定常領域改変体
WO2009058492A2 (en) 2007-10-31 2009-05-07 Xencor, Inc Fc variants with altered binding to fcrn
WO2009086320A1 (en) 2007-12-26 2009-07-09 Xencor, Inc Fc variants with altered binding to fcrn
WO2009125825A1 (ja) 2008-04-11 2009-10-15 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子
WO2010045193A1 (en) 2008-10-14 2010-04-22 Genentech, Inc. Immunoglobulin variants and uses thereof
WO2010106180A2 (en) 2009-03-20 2010-09-23 Lfb Biotechnologies Optimized fc variants
WO2011122011A2 (en) 2010-03-30 2011-10-06 Chugai Seiyaku Kabushiki Kaisha Antibodies with modified affinity to fcrn that promote antigen clearance
WO2011131746A2 (en) 2010-04-20 2011-10-27 Genmab A/S Heterodimeric antibody fc-containing proteins and methods for production thereof
WO2012016227A2 (en) 2010-07-29 2012-02-02 Xencor, Inc. Antibodies with modified isoelectric points
WO2012073992A1 (ja) 2010-11-30 2012-06-07 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子
WO2012115241A1 (ja) 2011-02-25 2012-08-30 中外製薬株式会社 FcγRIIb特異的Fc抗体
WO2012133782A1 (ja) * 2011-03-30 2012-10-04 中外製薬株式会社 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
WO2012132067A1 (ja) * 2011-03-30 2012-10-04 中外製薬株式会社 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
WO2014030728A1 (ja) * 2012-08-24 2014-02-27 中外製薬株式会社 FcγRIIb特異的Fc領域改変体

Family Cites Families (313)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932411U (ja) 1982-08-24 1984-02-29 エヌオーケー株式会社 離型装置
US4689299A (en) 1982-09-30 1987-08-25 University Of Rochester Human monoclonal antibodies against bacterial toxins
US4801687A (en) 1986-10-27 1989-01-31 Bioprobe International, Inc. Monoclonal antibody purification process using protein A
US4851341A (en) 1986-12-19 1989-07-25 Immunex Corporation Immunoaffinity purification system
JPH01144991A (ja) 1987-12-02 1989-06-07 Kagaku Oyobi Ketsusei Riyouhou Kenkyusho 血液凝固第8因子の精製方法
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
JPH0636741B2 (ja) 1989-11-08 1994-05-18 帝人株式会社 ヒト・プロテインcの分離方法
US5130129A (en) 1990-03-06 1992-07-14 The Regents Of The University Of California Method for enhancing antibody transport through capillary barriers
CA2118508A1 (en) 1992-04-24 1993-11-11 Elizabeth S. Ward Recombinant production of immunoglobulin-like domains in prokaryotic cells
DK0690873T3 (da) 1993-03-19 2003-09-29 Univ Johns Hopkins Med Vækstdifferentieringsfaktor-8
US7393682B1 (en) 1993-03-19 2008-07-01 The Johns Hopkins University School Of Medicine Polynucleotides encoding promyostatin polypeptides
GB9314271D0 (en) 1993-07-09 1993-08-18 Inst Of Cancer The Research Cell growth factor receptors
US5421161A (en) 1993-09-27 1995-06-06 Minnesota Valley Engineering, Inc. Storage system for cryogenic fluids
IL107742A0 (en) 1993-11-24 1994-02-27 Yeda Res & Dev Chemically-modified binding proteins
US6074642A (en) 1994-05-02 2000-06-13 Alexion Pharmaceuticals, Inc. Use of antibodies specific to human complement component C5 for the treatment of glomerulonephritis
US6048972A (en) 1994-07-13 2000-04-11 Chugai Pharmaceutical Co., Ltd. Recombinant materials for producing humanized anti-IL-8 antibodies
CN1156460A (zh) 1994-07-13 1997-08-06 中外制药株式会社 抗人白细胞介素-8的重构人抗体
TW416960B (en) 1994-07-13 2001-01-01 Chugai Pharmaceutical Co Ltd Reshaped human antibody to human interleukin-8
JP3865418B2 (ja) 1994-07-13 2007-01-10 中外製薬株式会社 ヒトインターロイキン−8に対する再構成ヒト抗体
DE69731289D1 (de) 1996-03-18 2004-11-25 Univ Texas Immunglobulinähnliche domäne mit erhöhten halbwertszeiten
ES2300113T3 (es) 1996-08-02 2008-06-01 Bristol-Myers Squibb Company Un procedimiento para inhibir toxicidad inducida por inmunoglobulinas que resulta del uso de inmunoglobulinas en terapia y diagnostico in vivo.
US7247302B1 (en) 1996-08-02 2007-07-24 Bristol-Myers Squibb Company Method for inhibiting immunoglobulin-induced toxicity resulting from the use of immunoglobulins in therapy and in vivo diagnosis
US6025158A (en) 1997-02-21 2000-02-15 Genentech, Inc. Nucleic acids encoding humanized anti-IL-8 monoclonal antibodies
US6277375B1 (en) 1997-03-03 2001-08-21 Board Of Regents, The University Of Texas System Immunoglobulin-like domains with increased half-lives
US7951917B1 (en) 1997-05-02 2011-05-31 Genentech, Inc. Method for making multispecific antibodies having heteromultimeric and common components
CN1068524C (zh) 1997-06-23 2001-07-18 叶庆炜 一种治疗顽症牛皮癣的药物
US6458355B1 (en) 1998-01-22 2002-10-01 Genentech, Inc. Methods of treating inflammatory disease with anti-IL-8 antibody fragment-polymer conjugates
KR20010024899A (ko) 1998-02-06 2001-03-26 일렉서스 피티와이 리미티드 Fc 수용체의 삼차원 구조 및 모델 및 그의 용도
EP1068241B1 (en) 1998-04-02 2007-10-10 Genentech, Inc. Antibody variants and fragments thereof
GB9809951D0 (en) 1998-05-08 1998-07-08 Univ Cambridge Tech Binding molecules
RU2236222C2 (ru) 1998-09-11 2004-09-20 Айлексус Пти Лимитед Модуляторы fc-рецептора и их применение
CA2343414C (en) 1998-09-11 2011-11-08 Ilexus Pty. Limited Fc receptor modulators and uses thereof
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
US7183387B1 (en) 1999-01-15 2007-02-27 Genentech, Inc. Polypeptide variants with altered effector function
CN1763097B (zh) 1999-01-15 2011-04-13 杰南技术公司 具有改变的效应功能的多肽变体
AU2006225302B2 (en) 1999-03-25 2010-08-12 AbbVie Deutschland GmbH & Co. KG Human antibodies that bind human IL-12 and methods for producing
US7572619B2 (en) 2000-03-22 2009-08-11 Octagene Gmbh Recombinant blood clotting factors
FR2807767B1 (fr) 2000-04-12 2005-01-14 Lab Francais Du Fractionnement Anticorps monoclonaux anti-d
AU2011244851A1 (en) 2000-07-27 2011-11-24 The John Hopkins University School Of Medicine Promyostatin peptides and methods of using same
US20040002450A1 (en) 2000-12-29 2004-01-01 Janette Lazarovits Y17 - isolated molecules comprising epitopes containing sulfated moieties, antibodies to such epitopes, and uses thereof
US20040001839A1 (en) 2000-12-29 2004-01-01 Avigdor Levanon Multimers - isolated molecules comprising epitopes containing sulfated moieties, antibodies to such epitopes, and uses thereof
US20040001822A1 (en) 2000-12-29 2004-01-01 Avigdor Levanon Y1-isolated molecules comprising epitopes containing sulfated moieties, antibodies to such epitopes, and uses thereof
US7320789B2 (en) 2001-09-26 2008-01-22 Wyeth Antibody inhibitors of GDF-8 and uses thereof
WO2003048731A2 (en) 2001-12-03 2003-06-12 Abgenix, Inc. Antibody categorization based on binding characteristics
US20050171339A1 (en) 2001-12-28 2005-08-04 Izumi Sugo Method of stabilizing protein
AR038568A1 (es) 2002-02-20 2005-01-19 Hoffmann La Roche Anticuerpos anti-a beta y su uso
US20080199471A1 (en) 2002-03-01 2008-08-21 Bernett Matthew J Optimized cd40 antibodies and methods of using the same
AU2003217912A1 (en) 2002-03-01 2003-09-16 Xencor Antibody optimization
US7662925B2 (en) 2002-03-01 2010-02-16 Xencor, Inc. Optimized Fc variants and methods for their generation
US8188231B2 (en) 2002-09-27 2012-05-29 Xencor, Inc. Optimized FC variants
US20040132101A1 (en) 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
WO2003102580A1 (en) 2002-05-31 2003-12-11 Biacore Ab Method of coupling binding agents to a substrate surface
WO2003105757A2 (en) 2002-06-12 2003-12-24 Genencor International, Inc. Methods and compositions for milieu-dependent binding of a targeted agent to a target
ITMI20021527A1 (it) 2002-07-11 2004-01-12 Consiglio Nazionale Ricerche Anticorpi anti componente c5 del complemento e loro uso
US8193318B2 (en) 2002-08-14 2012-06-05 Macrogenics, Inc. FcγRIIB specific antibodies and methods of use thereof
WO2004024092A2 (en) 2002-09-16 2004-03-25 Wyeth Metalloprotease activation of myostatin, and methods of modulating myostatin activity
EP2364996B1 (en) 2002-09-27 2016-11-09 Xencor Inc. Optimized FC variants and methods for their generation
RU2325186C2 (ru) 2002-09-27 2008-05-27 Ксенкор, Инк. АНТИТЕЛО, СОДЕРЖАЩЕЕ Fc-ВАРИАНТНУЮ ЧАСТЬ (ВАРИАНТЫ), ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ, СОДЕРЖАЩАЯ АНТИТЕЛО, И СПОСОБ ЛЕЧЕНИЯ МЛЕКОПИТАЮЩЕГО
US7217797B2 (en) 2002-10-15 2007-05-15 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
US7261893B2 (en) 2002-10-22 2007-08-28 Wyeth Neutralizing antibodies against GDF-8 and uses therefor
ES2373947T3 (es) 2002-12-16 2012-02-10 Genmab A/S Anticuerpos monoclonales humanos contra interleucina 8 (il-8).
US7960512B2 (en) 2003-01-09 2011-06-14 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
US7355008B2 (en) 2003-01-09 2008-04-08 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
US8388955B2 (en) 2003-03-03 2013-03-05 Xencor, Inc. Fc variants
US20090010920A1 (en) 2003-03-03 2009-01-08 Xencor, Inc. Fc Variants Having Decreased Affinity for FcyRIIb
CA2766627C (en) 2003-05-02 2019-12-03 Xencor, Inc. Optimized fc variants and methods for their generation
US9051373B2 (en) 2003-05-02 2015-06-09 Xencor, Inc. Optimized Fc variants
KR20060026860A (ko) 2003-06-02 2006-03-24 와이어쓰 신경근 장애의 치료를 위한, 코르티코스테로이드와 조합된미오스타틴 (gdf8) 저해제의 용도
WO2005023193A2 (en) 2003-09-04 2005-03-17 Interleukin Genetics, Inc. Methods of treating endometriosis
AU2004273791A1 (en) 2003-09-05 2005-03-31 Genentech, Inc. Antibodies with altered effector functions
US8101720B2 (en) 2004-10-21 2012-01-24 Xencor, Inc. Immunoglobulin insertions, deletions and substitutions
US7288638B2 (en) 2003-10-10 2007-10-30 Bristol-Myers Squibb Company Fully human antibodies against human 4-1BB
DK1689777T3 (da) 2003-11-05 2007-06-11 Ares Trading Sa Fremgangsmåde til oprensning af il18-bindende protein
WO2005063815A2 (en) 2003-11-12 2005-07-14 Biogen Idec Ma Inc. Fcϝ receptor-binding polypeptide variants and methods related thereto
US20050100965A1 (en) 2003-11-12 2005-05-12 Tariq Ghayur IL-18 binding proteins
EP1701979A2 (en) 2003-12-03 2006-09-20 Xencor, Inc. Optimized antibodies that target the epidermal growth factor receptor
EP1697741A4 (en) 2003-12-04 2008-02-13 Xencor Inc PROCESS FOR PRODUCING PROTEIN VARIANTS WITH INCREASED HOST STRUCTURE CONTENT AND COMPOSITIONS THEREOF
EP2418220B1 (en) 2003-12-10 2017-08-02 E. R. Squibb & Sons, L.L.C. Interferon alpha antibodies and their uses
US20050249723A1 (en) 2003-12-22 2005-11-10 Xencor, Inc. Fc polypeptides with novel Fc ligand binding sites
MXPA06007514A (es) 2003-12-31 2006-08-31 Schering Plough Ltd Vacuna para mejorar el crecimiento a base de epitopes neutralizantes.
PL1706424T3 (pl) 2004-01-12 2010-04-30 Mentrik Biotech Llc Warianty regionu Fc
EA014112B1 (ru) 2004-03-23 2010-10-29 Эли Лилли Энд Компани Моноклональное антитело к миостатину и способы его применения
EP2053062A1 (en) 2004-03-24 2009-04-29 Xencor, Inc. Immunoglobin variants outside the Fc region
SG173322A1 (en) 2004-04-16 2011-08-29 Macrogenics Inc Dw Us Fc gammad riib - specific antibodies and methods of use thereof
RU2006142852A (ru) 2004-05-05 2008-06-10 Ксенкор, Инк. (Us) Оптимизированные fc-варианты
US20070048785A1 (en) 2004-06-09 2007-03-01 Lin Laura L Anti-IL-13 antibodies and complexes
KR101699142B1 (ko) 2004-06-18 2017-01-23 암브룩스, 인코포레이티드 신규 항원-결합 폴리펩티드 및 이의 용도
US7771730B2 (en) 2004-06-18 2010-08-10 Novartis Vaccines And Diagnostics, Inc. Methods and reagents for diagnosing hantavirus infection
EP1773391A4 (en) 2004-06-25 2009-01-21 Medimmune Inc INCREASING THE PRODUCTION OF RECOMBINANT ANTIBODIES IN MAMMALIAN CELLS BY MUTAGENESIS ON THE SITE
WO2006085967A2 (en) 2004-07-09 2006-08-17 Xencor, Inc. OPTIMIZED ANTI-CD20 MONOCONAL ANTIBODIES HAVING Fc VARIANTS
MX2007000404A (es) * 2004-07-12 2008-03-04 Macrogenics Inc Identificacion de ingenieria de anticuerpos con regiones de fc variante y metodos para usar las mismas.
TWI355389B (en) 2004-07-30 2012-01-01 Rinat Neuroscience Corp Antibodies directed against amyloid-beta peptide a
JP5055603B2 (ja) 2004-08-04 2012-10-24 メントリック・バイオテック・リミテッド・ライアビリティ・カンパニー 変異Fc領域
EP1773885B1 (en) 2004-08-05 2010-04-21 Genentech, Inc. Humanized anti-cmet antagonists
EP1787998A4 (en) 2004-08-11 2008-08-27 Mitsubishi Chem Corp ANTIBODIES AND USE RELATING THERETO
CA2577370A1 (en) 2004-08-16 2006-03-02 Medimmune, Inc. Integrin antagonists with enhanced antibody dependent cell-mediated cytotoxicity activity
WO2006047350A2 (en) 2004-10-21 2006-05-04 Xencor, Inc. IgG IMMUNOGLOBULIN VARIANTS WITH OPTIMIZED EFFECTOR FUNCTION
AU2005333602B2 (en) 2004-10-22 2012-04-12 Medimmune, Llc High affinity antibodies against HMGB1 and methods of use thereof
WO2007024249A2 (en) 2004-11-10 2007-03-01 Macrogenics, Inc. Engineering fc antibody regions to confer effector function
RU2412200C2 (ru) 2004-11-12 2011-02-20 Ксенкор, Инк. Fc-ВАРИАНТЫ С ИЗМЕНЕННЫМ СВЯЗЫВАНИЕМ С FcRn
US8367805B2 (en) 2004-11-12 2013-02-05 Xencor, Inc. Fc variants with altered binding to FcRn
US8329186B2 (en) 2004-12-20 2012-12-11 Isu Abxis Co., Ltd Treatment of inflammation using BST2 inhibitor
AU2005321974B2 (en) 2004-12-27 2011-11-17 Progenics Pharmaceuticals (Nevada), Inc. Orally deliverable and anti-toxin antibodies and methods for making and using them
CA2595169A1 (en) 2005-01-12 2006-07-20 Xencor, Inc. Antibodies and fc fusion proteins with altered immunogenicity
NZ538097A (en) 2005-02-07 2006-07-28 Ovita Ltd Method and compositions for improving wound healing
JP5153613B2 (ja) 2005-03-18 2013-02-27 メディミューン,エルエルシー 抗体のフレームワーク・シャッフル
WO2006105338A2 (en) 2005-03-31 2006-10-05 Xencor, Inc. Fc VARIANTS WITH OPTIMIZED PROPERTIES
JP4909988B2 (ja) 2005-04-20 2012-04-04 アムジエン・フレモント・インコーポレイテツド インターロイキン‐8に対する高親和性の完全ヒトモノクローナル抗体、およびそのような抗体のエピトープ
AP2007004243A0 (en) 2005-04-25 2007-12-31 Pfizer Antibodies to myostatin
CA2606102C (en) 2005-04-26 2014-09-30 Medimmune, Inc. Modulation of antibody effector function by hinge domain engineering
CA2605781A1 (en) * 2005-05-09 2007-04-12 Glycart Biotechnology Ag Antigen binding molecules having modified fc regions and altered binding to fc receptors
US8163881B2 (en) 2005-05-31 2012-04-24 The Board Of Regents Of The University Of Texas System Immunoglobulin molecules with improved characteristics
WO2006133486A1 (en) 2005-06-14 2006-12-21 The Macfarlane Burnet Institute For Medical Research And Public Health Limited CRYSTAL STRUCTURES AND MODELS FOR Fc RECEPTOR:Fc COMPLEXES AND USES THEREOF
CA2652434A1 (en) 2005-07-08 2007-01-18 Xencor, Inc. Optimized proteins that target ep-cam
SI1919503T1 (sl) 2005-08-10 2015-02-27 Macrogenics, Inc. Identifikacija in inĺ˝eniring protiteles z variantnimi fc regijami in postopki za njih uporabo
EP1928495A2 (en) 2005-08-19 2008-06-11 Cerus Corporation Antibody-mediated enhancement of immune response
DK2407486T3 (en) 2005-08-19 2018-02-19 Wyeth Llc Antagonist antibodies to GDF-8 and uses in the treatment of ALS and other GDF-8-associated disorders
CA2624189A1 (en) 2005-10-03 2007-04-12 Xencor, Inc. Fc variants with optimized fc receptor binding properties
CN101277976B (zh) 2005-10-06 2012-04-11 伊莱利利公司 抗肌抑制素抗体
CA2625998C (en) 2005-10-06 2015-12-01 Xencor, Inc. Optimized anti-cd30 antibodies
UA92504C2 (en) 2005-10-12 2010-11-10 Эли Лилли Энд Компани Anti-myostatin monoclonal antibody
CA2625619A1 (en) 2005-10-14 2007-04-26 Medimmune, Inc. Cell display of antibody libraries
ES2577292T3 (es) 2005-11-07 2016-07-14 Genentech, Inc. Polipéptidos de unión con secuencias hipervariables de VH/VL diversificadas y consenso
WO2007076200A2 (en) 2005-11-28 2007-07-05 Medimmune, Inc. Antagonists of hmgb1 and/or rage and methods of use thereof
JP2009519236A (ja) 2005-11-30 2009-05-14 キャン−ファイト・バイオファーマ・リミテッド A3アデノシンレセプター抗体の治療的使用
WO2007092772A2 (en) 2006-02-03 2007-08-16 Medimmune, Inc. Protein formulations
US20070190056A1 (en) 2006-02-07 2007-08-16 Ravi Kambadur Muscle regeneration compositions and uses therefor
EA015992B1 (ru) 2006-03-17 2012-01-30 Байоджен Айдек Эмэй Инк. Стабилизированное антитело и многовалентная антигенсвязывающая молекула на его основе, способы получения и использования вышеназванного стабилизированного антитела
CA2646406A1 (en) 2006-03-28 2007-11-08 Biogen Idec Ma Inc. Anti-igf-ir antibodies and uses thereof
US11046784B2 (en) 2006-03-31 2021-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
EP3345616A1 (en) 2006-03-31 2018-07-11 Chugai Seiyaku Kabushiki Kaisha Antibody modification method for purifying bispecific antibody
TWI395754B (zh) 2006-04-24 2013-05-11 Amgen Inc 人類化之c-kit抗體
WO2008105886A2 (en) 2006-05-26 2008-09-04 Macrogenics, Inc. HUMANIZED FCγRIIB-SPECIFIC ANTIBODIES AND METHODS OF USE THEREOF
CL2007001829A1 (es) 2006-06-23 2008-01-25 Smithkline Beecham Corp P-toluensulfonato de n-[4-cloro-2-hidroxi-3-(piperazina-1-sulfonil)fenil]-n-(2-cloro-3-fluorofenil)urea;procedimiento de preparacion;composicion farmaceutica;combinacion farmaceutica;y uso en el tratamiento de una enfermedad mediada por la quiimioquina il-8, tales como asma y epoc.
WO2008002933A2 (en) 2006-06-26 2008-01-03 Macrogenics, Inc. Combination of fcgammariib antibodies and cd20-specific antibodies and methods of use thereof
AR062223A1 (es) 2006-08-09 2008-10-22 Glycart Biotechnology Ag Moleculas de adhesion al antigeno que se adhieren a egfr, vectores que los codifican, y sus usos de estas
BRPI0716249A2 (pt) 2006-09-05 2013-09-03 Lilly Co Eli anticorpos antimiostatina
AU2007294575B2 (en) 2006-09-08 2013-06-27 Viela Bio, Inc. Humanized anti-CD19 antibodies and their use in treatment of oncology, transplantation and autoimmune disease
CA2660795C (en) 2006-09-18 2014-11-18 Xencor, Inc. Optimized antibodies that target hm1.24
US20100034194A1 (en) 2006-10-11 2010-02-11 Siemens Communications Inc. Eliminating unreachable subscribers in voice-over-ip networks
WO2008121160A2 (en) 2006-11-21 2008-10-09 Xencor, Inc. Optimized antibodies that target cd5
CN100455598C (zh) 2006-11-29 2009-01-28 中国抗体制药有限公司 功能人源化抗人cd20抗体及其应用
US8652466B2 (en) 2006-12-08 2014-02-18 Macrogenics, Inc. Methods for the treatment of disease using immunoglobulins having Fc regions with altered affinities for FcγRactivating and FcγRinhibiting
WO2008091798A2 (en) 2007-01-22 2008-07-31 Xencor, Inc. Optimized ca9 antibodies and methods of using the same
WO2008091954A2 (en) 2007-01-23 2008-07-31 Xencor, Inc. Optimized cd40 antibodies and methods of using the same
WO2008092117A2 (en) 2007-01-25 2008-07-31 Xencor, Inc. Immunoglobulins with modifications in the fcr binding region
WO2008098115A2 (en) 2007-02-07 2008-08-14 Xencor, Inc. Optimized igf-1r antibodies and methods of using the same
WO2008114011A2 (en) 2007-03-19 2008-09-25 Medimmune Limited Fc polypeptide variants obtained by ribosome display methodology
CL2008001071A1 (es) 2007-04-17 2009-05-22 Smithkline Beecham Corp Metodo para obtener anticuerpo penta-especifico contra il-8/cxcl8, gro-alfa/cxcl1, gro-beta/cxcl2), gro-gama/cxcl3 y ena-78/cxcl5 humanas; anticuerpo penta-especifico; proceso de produccion del mismo; vector, hbridoma o celela que lo comprende; composicion farmceutica; uso para tratar copd, otras enfermedades.
JP5398703B2 (ja) 2007-05-14 2014-01-29 バイオジェン・アイデック・エムエイ・インコーポレイテッド 一本鎖FC(ScFc)領域、それを含む結合ポリペプチド、およびそれに関連する方法
EP3392273A1 (en) 2007-05-30 2018-10-24 Xencor, Inc. Methods and compositions for inhibiting cd32b expressing cells
PT2164961E (pt) 2007-06-25 2015-04-08 Esbatech Alcon Biomed Res Unit Manipulação baseada em sequências e otimização de anticorpos de cadeia única
JP5611820B2 (ja) 2007-06-25 2014-10-22 エスバテック − ア ノバルティスカンパニー エルエルシー 抗体の修飾方法並びに改善された機能特性を有する修飾された抗体
WO2009008529A1 (ja) 2007-07-06 2009-01-15 Tokyo Metropolitan Organization For Medical Research Tdp-43凝集物に特異的に結合する抗体
US20110105724A1 (en) 2007-08-16 2011-05-05 Stephanie Jane Clegg Novel compounds
JOP20080381B1 (ar) 2007-08-23 2023-03-28 Amgen Inc بروتينات مرتبطة بمولدات مضادات تتفاعل مع بروبروتين كونفيرتاز سيتيليزين ككسين من النوع 9 (pcsk9)
US20090092614A1 (en) 2007-08-28 2009-04-09 Biogen Idec Ma Inc. Anti-IGF-1R Antibodies and Uses Thereof
WO2009032782A2 (en) 2007-08-28 2009-03-12 Biogen Idec Ma Inc. Compositions that bind multiple epitopes of igf-1r
US9096651B2 (en) 2007-09-26 2015-08-04 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
PE20140132A1 (es) 2007-09-26 2014-02-14 Chugai Pharmaceutical Co Ltd Anticuerpo anti-receptor de il-6
EP2196541B1 (en) 2007-09-28 2012-11-07 Chugai Seiyaku Kabushiki Kaisha Anti-glypican-3 antibody having improved kinetics in plasma
KR100888133B1 (ko) 2007-10-02 2009-03-13 에스케이에너지 주식회사 4종의 금속성분으로 구성된 다성분계 비스무스몰리브데이트 촉매 제조방법 및 상기촉매를 이용하여1,3-부타디엔을 제조하는 방법
EP2203474A1 (en) 2007-10-22 2010-07-07 Merck Serono S.A. Method for purifying fc-fusion proteins
PE20091163A1 (es) 2007-11-01 2009-08-09 Wyeth Corp Anticuerpos para gdf8
WO2009062083A2 (en) 2007-11-08 2009-05-14 Pikamab, Inc. Methods and compositions for antibody therapy
EP2235064B1 (en) 2008-01-07 2015-11-25 Amgen Inc. Method for making antibody fc-heterodimeric molecules using electrostatic steering effects
US8426141B2 (en) 2008-01-18 2013-04-23 Stichting Sanquin Bloedvoorziening Methods for increasing the therapeutic efficacy of immunoglobulin G class 3 (IgG3) antibodies
EP2245065A1 (en) 2008-01-23 2010-11-03 Xencor, Inc. Optimized cd40 antibodies and methods of using the same
WO2009095235A1 (en) 2008-01-29 2009-08-06 Ablynx N.V. Methods to stabilize proteins and polypeptides
AU2015227424A1 (en) 2008-04-11 2015-10-01 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
KR101634719B1 (ko) 2008-04-25 2016-06-29 다이액스 코포레이션 Fcrn에 대한 항체 및 이들의 용도
EP2294087B1 (en) 2008-05-01 2014-05-14 Amgen, Inc. Anti-hepcidin antibodies and methods of use
MX2010012437A (es) 2008-05-14 2011-06-01 Agriculture Victoria Serv Pty Uso de angiogenina o agonistas de angiogenina para tratar enfermedades y trastornos.
JP6146949B2 (ja) 2008-06-20 2017-06-21 ノバルティス アーゲー 凝集が低減された免疫グロブリン
NZ590634A (en) 2008-08-05 2012-07-27 Novartis Ag Compositions and methods for antibodies targeting complement protein c5
HUE042901T2 (hu) 2008-09-17 2019-07-29 Xencor Inc Készítmények és eljárások IgE által közvetített rendellenességek kezelésére
JP5028372B2 (ja) 2008-09-26 2012-09-19 京セラドキュメントソリューションズ株式会社 画像処理装置、画像処理方法及び画像処理プログラム
TWI440469B (zh) 2008-09-26 2014-06-11 Chugai Pharmaceutical Co Ltd Improved antibody molecules
JP5807300B2 (ja) 2008-11-18 2015-11-10 株式会社シノテスト 試料中のc反応性蛋白質の測定方法及び測定試薬
JO3672B1 (ar) 2008-12-15 2020-08-27 Regeneron Pharma أجسام مضادة بشرية عالية التفاعل الكيماوي بالنسبة لإنزيم سبتيليسين كنفرتيز بروبروتين / كيكسين نوع 9 (pcsk9).
TW201029662A (en) 2008-12-19 2010-08-16 Glaxo Group Ltd Novel antigen binding proteins
CN106995495A (zh) 2009-01-12 2017-08-01 希托马克斯医疗有限责任公司 修饰抗体组合物及其制备和使用方法
WO2010085682A2 (en) 2009-01-23 2010-07-29 Biogen Idec Ma Inc. Stabilized fc polypeptides with reduced effector function and methods of use
EP2400981A4 (en) 2009-02-26 2013-02-27 Lpath Inc DESGIN FOR HUMANIZED THROMBOZYTE ACTIVATION FACTOR ANTIBODIES BY ANTI-LIPID ANTIBODY TEMPLATES
WO2010107110A1 (ja) 2009-03-19 2010-09-23 中外製薬株式会社 抗体定常領域改変体
SG10201900451SA (en) 2009-03-19 2019-02-27 Chugai Pharmaceutical Co Ltd Pharmaceutical formulation containing improved antibody molecules
TWI544077B (zh) 2009-03-19 2016-08-01 Chugai Pharmaceutical Co Ltd Antibody constant region change body
CA2700030C (en) 2009-04-16 2019-11-05 Accenture Global Services Gmbh Touchpoint customization system
WO2010131733A1 (ja) 2009-05-15 2010-11-18 中外製薬株式会社 抗axl抗体
HUP0900319A2 (en) 2009-05-25 2011-01-28 Eotvos Lorand Tudomanyegyetem New peptides, method of producing therof and use thereof
EP2435079A4 (en) 2009-05-26 2012-11-14 Univ Johns Hopkins NEW DESMINPHOSPHORYLATION ORTE FOR DIAGNOSIS AND INFLUENCING DISEASES
US8609097B2 (en) 2009-06-10 2013-12-17 Hoffmann-La Roche Inc. Use of an anti-Tau pS422 antibody for the treatment of brain diseases
US8945511B2 (en) 2009-06-25 2015-02-03 Paul Weinberger Sensitive methods for detecting the presence of cancer associated with the over-expression of galectin-3 using biomarkers derived from galectin-3
MX342623B (es) 2009-06-26 2016-10-06 Regeneron Pharma Anticuerpos biespecificos facilmente aislados con formato de inmunoglobulina original.
CA2766065C (en) 2009-06-30 2020-07-21 Research Development Foundation Immunoglobulin fc polypeptides
GB0914691D0 (en) 2009-08-21 2009-09-30 Lonza Biologics Plc Immunoglobulin variants
RU2595409C2 (ru) 2009-09-03 2016-08-27 Мерк Шарп И Доум Корп., Анти-gitr-антитела
WO2011043643A1 (en) 2009-10-06 2011-04-14 Medimmune Ltd Rsv-specific binding molecule
US8568726B2 (en) 2009-10-06 2013-10-29 Medimmune Limited RSV specific binding molecule
LT2486141T (lt) 2009-10-07 2018-05-25 Macrogenics, Inc. Fc regioną turintys polipeptidai, pasižymintys pagerinta efektorine funkcija dėl fukozilinimo laipsnio pasikeitimų, ir jų naudojimo būdai
WO2011051350A1 (en) 2009-10-27 2011-05-05 Ucb Pharma S.A. Function modifying nav 1.7 antibodies
JP2013511281A (ja) 2009-11-23 2013-04-04 アムジェン インコーポレイテッド 単量体抗体Fc
US8362210B2 (en) 2010-01-19 2013-01-29 Xencor, Inc. Antibody variants with enhanced complement activity
US20120315267A1 (en) 2010-02-09 2012-12-13 Glaxosmithkline Llc Novel uses
WO2011103584A2 (en) 2010-02-19 2011-08-25 Xencor, Inc. Novel ctla4-ig immunoadhesins
US8653242B2 (en) 2010-03-01 2014-02-18 Lostam Pharmaceuticals Ltd. Therapeutic antibodies against flagellated Pseudomonas aeruginosa
EP2543730B1 (en) 2010-03-04 2018-10-31 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
PE20130393A1 (es) 2010-03-11 2013-04-07 Rinat Neuroscience Corp Anticuerpos con union de antigenos dependiente de ph
JP2011184418A (ja) 2010-03-11 2011-09-22 Tokyo Institute Of Technology 親和性可変抗体
RU2745989C9 (ru) 2010-03-30 2022-03-18 Чугаи Сейяку Кабусики Кайся АНТИТЕЛА С МОДИФИЦИРОВАННОЙ АФФИННОСТЬЮ К FcRn, КОТОРЫЕ УВЕЛИЧИВАЮТ КЛИРЕНС АНТИГЕНОВ
JO3340B1 (ar) 2010-05-26 2019-03-13 Regeneron Pharma مضادات حيوية لـعامل تمايز النمو 8 البشري
UY33421A (es) 2010-06-03 2011-12-30 Glaxo Wellcome House Proteinas de union al antígeno humanizados
SG187867A1 (en) 2010-08-16 2013-03-28 Amgen Inc Antibodies that bind myostatin, compositions and methods
MX349622B (es) 2010-09-08 2017-08-07 Halozyme Inc Metodos para evaluar e identificar o evolucionar proteinas terapeuticas condicionalmente activas.
WO2012032433A1 (en) 2010-09-09 2012-03-15 Pfizer Inc. 4-1bb binding molecules
JP6173911B2 (ja) 2010-09-10 2017-08-09 メディミューン リミテド 抗体誘導体
EP2622074B1 (en) 2010-09-30 2014-11-12 Board Of Trustees Of Northern Illinois University Library-based methods and compositions for introducing molecular switch functionality into protein affinity reagents
KR101973930B1 (ko) 2010-11-05 2019-04-29 자임워크스 인코포레이티드 Fc 도메인 내의 돌연변이를 갖는 안정한 이종이량체 항체 디자인
EP3539991A1 (en) 2011-01-07 2019-09-18 Chugai Seiyaku Kabushiki Kaisha Method for improving physical properties of antibody
CA2830254C (en) 2011-03-16 2019-09-10 Amgen Inc. Fc variants
MX339239B (es) 2011-04-29 2016-05-18 Apexigen Inc Anticuerpos anti-cd40 y metodos de uso.
JP5891298B2 (ja) 2011-05-04 2016-03-22 オメロス コーポレーション Masp−2依存性の補体活性化を阻害するための組成物
EP2714732A4 (en) 2011-05-25 2014-12-10 Merck Sharp & Dohme PROCESS FOR PREPARING FC-CONTAINING POLYPEPTIDES WITH IMPROVED PROPERTIES
TWI687439B (zh) 2011-06-30 2020-03-11 中外製藥股份有限公司 異源二聚化多胜肽
UA117901C2 (uk) 2011-07-06 2018-10-25 Ґенмаб Б.В. Спосіб посилення ефекторної функції вихідного поліпептиду, його варіанти та їх застосування
WO2013012733A1 (en) 2011-07-15 2013-01-24 Biogen Idec Ma Inc. Heterodimeric fc regions, binding molecules comprising same, and methods relating thereto
EP2762564B1 (en) 2011-09-30 2020-09-16 Chugai Seiyaku Kabushiki Kaisha Ion concentration-dependent binding molecule library
TW201817744A (zh) 2011-09-30 2018-05-16 日商中外製藥股份有限公司 具有促進抗原清除之FcRn結合域的治療性抗原結合分子
BR112014007687B1 (pt) 2011-09-30 2022-12-06 Chugai Seiyaku Kabushiki Kaisha Composiçâo farmacêutica de anticorpos para eliminação de antígenos no plasma
RU2722829C9 (ru) 2011-09-30 2020-09-22 Чугаи Сейяку Кабусики Кайся Антигенсвязывающая молекула, индуцирующая иммунный ответ на антиген-мишень
EP2762493B1 (en) 2011-09-30 2021-06-09 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule promoting disappearance of antigens having plurality of biological activities
US20150299313A1 (en) 2011-10-05 2015-10-22 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule for promoting clearance from plasma of antigen comprising suger chain receptor-binding domain
KR102052774B1 (ko) 2011-11-04 2019-12-04 자임워크스 인코포레이티드 Fc 도메인 내의 돌연변이를 갖는 안정한 이종이합체 항체 설계
KR20210074395A (ko) 2011-11-30 2021-06-21 추가이 세이야쿠 가부시키가이샤 면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약
SG10201704849PA (en) 2012-02-09 2017-07-28 Chugai Pharmaceutical Co Ltd Modified fc region of antibody
SG11201405137QA (en) 2012-02-24 2014-12-30 Chugai Pharmaceutical Co Ltd ANTIGEN-BINDING MOLECULE FOR PROMOTING DISAPPEARANCE OF ANTIGEN VIA FcγRIIB
AU2013204581B2 (en) 2012-03-16 2015-06-25 Regeneron Pharmaceuticals, Inc. Non-human animals expressing pH-sensitive immunoglobulin sequences
CA2865643A1 (en) 2012-03-16 2013-09-19 Regeneron Pharmaceuticals, Inc. Histidine engineered light chain antibodies and genetically modified non-human animals for generating the same
RU2664473C2 (ru) 2012-03-16 2018-08-17 Регенерон Фармасьютикалз, Инк. ОТЛИЧНЫЕ ОТ ЧЕЛОВЕКА ЖИВОТНЫЕ, ЭКСПРЕССИРУЮЩИЕ ЧУВСТВИТЕЛЬНЫЕ К pН ПОСЛЕДОВАТЕЛЬНОСТИ ИММУНОГЛОБУЛИНОВ
TWI619729B (zh) 2012-04-02 2018-04-01 再生元醫藥公司 抗-hla-b*27抗體及其用途
EP2844290A4 (en) 2012-05-01 2015-12-16 Glaxosmithkline Llc NOVEL ANTIBODIES
US9255154B2 (en) 2012-05-08 2016-02-09 Alderbio Holdings, Llc Anti-PCSK9 antibodies and use thereof
WO2013180201A1 (ja) 2012-05-30 2013-12-05 中外製薬株式会社 会合化した抗原を消失させる抗原結合分子
US20150166654A1 (en) * 2012-05-30 2015-06-18 Chugai Seiyaku Kabushiki Kaisha Target tissue-specific antigen-binding molecule
JP6628966B2 (ja) 2012-06-14 2020-01-15 中外製薬株式会社 改変されたFc領域を含む抗原結合分子
JP6433889B2 (ja) 2012-06-15 2018-12-05 ファイザー・インク Gdf−8に対する改善された拮抗抗体およびその使用
CN109908352A (zh) 2012-06-18 2019-06-21 奥默罗斯公司 抑制masp-1和/或masp-2和/或masp-3的组合物和方法
US11180572B2 (en) 2012-07-06 2021-11-23 Genmab B.V. Dimeric protein with triple mutations
EA028244B1 (ru) 2012-08-13 2017-10-31 Ридженерон Фармасьютикалз, Инк. АНТИТЕЛА К PCSK9 C pH-ЗАВИСИМЫМИ ХАРАКТЕРИСТИКАМИ СВЯЗЫВАНИЯ
WO2014030750A1 (ja) 2012-08-24 2014-02-27 中外製薬株式会社 マウスFcγRII特異的Fc抗体
TWI595007B (zh) 2012-09-10 2017-08-11 Neotope Biosciences Ltd 抗mcam抗體及相關使用方法
EP3564258B1 (en) 2012-09-13 2021-04-28 Bristol-Myers Squibb Company Fibronectin based scaffold domain proteins that bind to myostatin
CN110818798A (zh) 2012-10-25 2020-02-21 美国比奥维拉迪维股份有限公司 抗补体C1s抗体和其用途
EP2914291B1 (en) 2012-11-02 2022-02-23 Bioverativ USA Inc. Anti-complement c1s antibodies and uses thereof
US20150284455A1 (en) 2012-11-06 2015-10-08 Scholar Rock, Inc. Compositions and methods for modulating cell signaling
EA038645B1 (ru) 2012-12-21 2021-09-28 Авео Фармасьютикалз, Инк. Антитела к gdf15
JP6433297B2 (ja) 2012-12-27 2018-12-05 中外製薬株式会社 ヘテロ二量化ポリペプチド
US9701759B2 (en) 2013-01-14 2017-07-11 Xencor, Inc. Heterodimeric proteins
BR112015017619A2 (pt) 2013-01-24 2017-11-21 Glaxosmithkline Ip Dev Ltd formulação líquida, uso de uma formulação, e, kit
JO3532B1 (ar) 2013-03-13 2020-07-05 Regeneron Pharma الأجسام المضادة لمضاد انترلوكين-33 واستعمالاتها
US9481725B2 (en) 2013-03-14 2016-11-01 Alderbio Holdings, Llc Antibodies to HGF and compositions containing
CA2906835A1 (en) 2013-03-15 2014-09-18 Amgen Inc. Myostatin antagonism in human subjects
CN111138543A (zh) 2013-03-15 2020-05-12 Xencor股份有限公司 异二聚体蛋白
WO2014145159A2 (en) 2013-03-15 2014-09-18 Permeon Biologics, Inc. Charge-engineered antibodies or compositions of penetration-enhanced targeting proteins and methods of use
WO2014144080A2 (en) 2013-03-15 2014-09-18 Amgen Inc. Human antigen binding proteins that bind to proprotein convertase subtilisin kexin type 9
CN105209482B (zh) 2013-03-15 2022-04-29 阿菲博迪公司 新的多肽
US10858417B2 (en) 2013-03-15 2020-12-08 Xencor, Inc. Heterodimeric proteins
US20160039945A1 (en) 2013-03-15 2016-02-11 Amgen Inc. Human antigen binding proteins that bind to proprotein convertase subtilisin kexin type 9
DK2970497T3 (da) 2013-03-15 2018-01-29 Bayer Healthcare Llc Anti-tfpi-antistofvarianter med differentiel binding over et ph-interval til forbedret farmakokinetik
AU2014250434B2 (en) * 2013-04-02 2019-08-08 Chugai Seiyaku Kabushiki Kaisha Fc region variant
WO2014169076A1 (en) 2013-04-09 2014-10-16 Annexon,,Inc. Methods of treatment for neuromyelitis optica
JP2016521283A (ja) 2013-05-06 2016-07-21 スカラー ロック インコーポレイテッドScholar Rock,Inc. 成長因子モジュレーションのための組成物および方法
WO2014186599A2 (en) 2013-05-15 2014-11-20 Annexon, Inc. Anti-complement factor c1s antibodies and uses thereof
SG11201509284VA (en) 2013-05-17 2015-12-30 Centre Nat Rech Scient Anti-cxcl1, cxcl7 and cxcl8 antibodies and their applications
US10111953B2 (en) 2013-05-30 2018-10-30 Regeneron Pharmaceuticals, Inc. Methods for reducing remnant cholesterol and other lipoprotein fractions by administering an inhibitor of proprotein convertase subtilisin kexin-9 (PCSK9)
RU2655439C2 (ru) 2013-05-31 2018-05-28 Займворкс Инк. Гетеромультимеры с уменьшенной или подавленной эффекторной функцией
WO2015013671A1 (en) 2013-07-25 2015-01-29 Cytomx Therapeutics, Inc. Multispecific antibodies, multispecific activatable antibodies and methods of using the same
TN2016000057A1 (en) 2013-08-14 2017-07-05 Novartis Ag Methods of treating sporadic inclusion body myositis
PT3046412T (pt) 2013-09-18 2019-07-16 Regeneron Pharma Anticorpos de cadeia leve com modificações de histidina e animais não humanos geneticamente modificados para os produzir
EP2853898B1 (en) 2013-09-27 2017-01-04 Medizinische Hochschule Hannover Analysis of myostatin in serum
PT3050896T (pt) 2013-09-27 2021-08-24 Chugai Pharmaceutical Co Ltd Processo para a produção de heteromultímeros de polipéptidos
KR20160086942A (ko) 2013-11-20 2016-07-20 리제너론 파아마슈티컬스, 인크. Aplnr 조절물질 및 이들의 용도
DK3078744T3 (da) 2013-12-04 2020-09-28 Chugai Pharmaceutical Co Ltd Antigen-bindende molekyler, antigen-bindingsaktiviteten af hvilke varierer i henhold til koncentrationen af forbindelser, og biblioteker af molekylerne
EP3100056A2 (en) 2014-01-27 2016-12-07 Novartis AG Biomarkers predictive of muscle atrophy, method and use
NZ631007A (en) 2014-03-07 2015-10-30 Alexion Pharma Inc Anti-c5 antibodies having improved pharmacokinetics
TW201622746A (zh) 2014-04-24 2016-07-01 諾華公司 改善或加速髖部骨折術後身體復原之方法
US11168137B2 (en) 2014-06-11 2021-11-09 Idac Theranostics, Inc. Method for reducing side effects of immune checkpoint control agent
WO2016000813A1 (en) 2014-06-30 2016-01-07 Merck Patent Gmbh Anti-tnfa antibodies with ph-dependent antigen binding
WO2016073879A2 (en) 2014-11-06 2016-05-12 Scholar Rock, Inc. Transforming growth factor-related antibodies and uses thereof
US10307480B2 (en) 2014-11-06 2019-06-04 Scholar Rock, Inc. Anti-pro/latent-myostatin antibodies and uses thereof
WO2016092439A1 (en) 2014-12-08 2016-06-16 Novartis Ag Myostatin or activin antagonists for the treatment of sarcopenia
KR102650420B1 (ko) 2014-12-19 2024-03-21 추가이 세이야쿠 가부시키가이샤 항-마이오스타틴 항체, 변이체 Fc 영역을 함유하는 폴리펩타이드, 및 사용 방법
EP3233921B1 (en) 2014-12-19 2021-09-29 Chugai Seiyaku Kabushiki Kaisha Anti-c5 antibodies and methods of use
SG10201907215QA (en) 2015-02-05 2019-09-27 Chugai Pharmaceutical Co Ltd Antibodies Comprising An Ion Concentration Dependent Antigen-Binding Domain, Fc Region Variants, Il-8-Binding Antibodies, And Uses Therof
CN108348598B (zh) 2015-04-06 2023-09-01 比奥贝拉蒂美国公司 人源化抗C1s抗体及其使用方法
WO2016168613A1 (en) 2015-04-15 2016-10-20 Regeneron Pharmaceuticals, Inc. Methods of increasing strength and functionality with gdf8 inhibitors
US10293058B2 (en) 2015-04-22 2019-05-21 Curevac Ag RNA containing composition for treatment of tumor diseases
EP3305322A4 (en) 2015-06-05 2018-12-26 Chugai Seiyaku Kabushiki Kaisha Combined use of immune activators
US10940126B2 (en) 2015-07-03 2021-03-09 Camilla Svensson Inhibition of IL-8 in the treatment of pain and/or bone loss
EP3350220B1 (en) 2015-09-15 2021-05-19 Scholar Rock, Inc. Anti-pro/latent-myostatin antibodies and uses thereof
IL258088B2 (en) 2015-09-18 2024-02-01 Chugai Pharmaceutical Co Ltd Antibodies that bind to IL-8 and their uses
WO2017091719A1 (en) 2015-11-24 2017-06-01 Annexon, Inc. Anti-complement factor c1q fab fragments and uses thereof
CN108473562B (zh) 2015-12-18 2022-06-17 中外制药株式会社 抗-肌肉生长抑制因子抗体、包含变体fc区的多肽及使用方法
WO2017110981A1 (en) 2015-12-25 2017-06-29 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies and methods of use
CN109071645A (zh) 2016-01-08 2018-12-21 供石公司 抗-原肌生长抑制素/潜伏肌生长抑制素抗体及其使用方法
EP4218804A3 (en) 2016-06-13 2023-09-13 Scholar Rock, Inc. Use of myostatin inhibitors and combination therapies
TWI611811B (zh) 2016-06-17 2018-01-21 中外製藥股份有限公司 抗肌抑素抗體及使用方法
CN116271014A (zh) 2016-08-05 2023-06-23 中外制药株式会社 用于预防或治疗il-8相关疾病的组合物
KR20190128198A (ko) 2017-03-14 2019-11-15 파이브 프라임 테라퓨틱스, 인크. 산성 pH에서 VISTA에 결합하는 항체
EP3710589A4 (en) 2017-11-14 2021-11-10 Chugai Seiyaku Kabushiki Kaisha ANTI-C1S ANTIBODIES AND METHODS OF USE
WO2019198807A1 (en) 2018-04-13 2019-10-17 Chugai Seiyaku Kabushiki Kaisha Anti-complement component antibodies and methods of use
BR112021002037A2 (pt) 2018-08-10 2021-05-04 Chugai Seiyaku Kabushiki Kaisha molécula de ligação de antígeno anti-cd137 e uso da mesma

Patent Citations (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0125023A1 (en) 1983-04-08 1984-11-14 Genentech, Inc. Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992020791A1 (en) 1990-07-10 1992-11-26 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993006213A1 (en) 1991-09-23 1993-04-01 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993019172A1 (en) 1992-03-24 1993-09-30 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1995001438A1 (en) 1993-06-30 1995-01-12 Medical Research Council Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof
WO1995001937A1 (fr) 1993-07-09 1995-01-19 Association Gradient Procede de traitement de residus de combustion et installation de mise en ×uvre dudit procede
WO1995015388A1 (en) 1993-12-03 1995-06-08 Medical Research Council Recombinant binding proteins and peptides
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
WO1996027011A1 (en) 1995-03-01 1996-09-06 Genentech, Inc. A method for making heteromultimeric polypeptides
WO1996034103A1 (en) 1995-04-25 1996-10-31 Vrije Universiteit Brussel Variable fragments of immunoglobulins - use for therapeutic or veterinary purposes
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1999023221A2 (en) 1997-10-27 1999-05-14 Unilever Plc Multivalent antigen-binding proteins
WO2002020565A2 (en) 2000-09-08 2002-03-14 Universität Zürich Collections of repeat proteins comprising repeat modules
WO2002032925A2 (en) 2000-10-16 2002-04-25 Phylos, Inc. Protein scaffolds for antibody mimics and other binding proteins
WO2002060919A2 (en) 2000-12-12 2002-08-08 Medimmune, Inc. Molecules with extended half-lives, compositions and uses thereof
WO2005037989A2 (en) 2001-01-17 2005-04-28 Trubion Pharmaceuticals, Inc. Binding domain-immunoglobulin fusion proteins
WO2003002609A2 (en) 2001-06-28 2003-01-09 Domantis Limited Dual-specific ligand and its use
WO2003029462A1 (en) 2001-09-27 2003-04-10 Pieris Proteolab Ag Muteins of human neutrophil gelatinase-associated lipocalin and related proteins
WO2004035752A2 (en) 2002-10-15 2004-04-29 Protein Design Labs, Inc. ALTERATION OF FcRn BINDING AFFINITIES OR SERUM HALF-LIVES OF ANTIBODIES BY MUTAGENESIS
WO2004044011A2 (en) 2002-11-06 2004-05-27 Avidia Research Institute Combinatorial libraries of monomer domains
WO2004058821A2 (en) 2002-12-27 2004-07-15 Domantis Limited Dual specific single domain antibodies specific for a ligand and for the receptor of the ligand
WO2005037867A1 (en) 2003-10-15 2005-04-28 Pdl Biopharma, Inc. ALTERATION OF Fc-FUSION PROTEIN SERUM HALF-LIVES BY MUTAGENESIS OF POSITIONS 250, 314 AND/OR 428 OF THE HEAVY CHAIN CONSTANT REGION OF IG
WO2005040229A2 (en) 2003-10-24 2005-05-06 Avidia, Inc. Ldl receptor class a and egf domain monomers and multimers
WO2005047327A2 (en) 2003-11-12 2005-05-26 Biogen Idec Ma Inc. NEONATAL Fc RECEPTOR (FcRn)-BINDING POLYPEPTIDE VARIANTS, DIMERIC Fc BINDING PROTEINS AND METHODS RELATED THERETO
US20090035836A1 (en) 2004-03-30 2009-02-05 California Institute Of Technology Modulating ph-sensitive binding using non-natural amino acids
WO2005123780A2 (en) 2004-04-09 2005-12-29 Protein Design Labs, Inc. Alteration of fcrn binding affinities or serum half-lives of antibodies by mutagenesis
WO2006019447A1 (en) 2004-07-15 2006-02-23 Xencor, Inc. Optimized fc variants
WO2006031370A2 (en) 2004-08-19 2006-03-23 Genentech, Inc. Polypeptide variants with altered effector function
WO2006050166A2 (en) 2004-10-29 2006-05-11 Medimmune, Inc. Methods of preventing and treating rsv infections and related conditions
WO2006053301A2 (en) 2004-11-12 2006-05-18 Xencor, Inc. Fc variants with altered binding to fcrn
WO2006067913A1 (ja) 2004-12-22 2006-06-29 Chugai Seiyaku Kabushiki Kaisha フコーストランスポーターの機能が阻害された細胞を用いた抗体の作製方法
EP1752471A1 (en) 2005-01-05 2007-02-14 f-star Biotechnologische Forschungs- und Entwicklungsges.m.b.H. Synthetic immunoglobulin domains with binding properties engineered in regions of the molecule different from the complementarity determining regions
EP1772465A1 (en) 2005-01-05 2007-04-11 f-star Biotechnologische Forschungs- und Entwicklungsges.m.b.H. Synthetic immunoglobulin domains with binding properties engineered in regions of the molecule different from the complementarity determining regions
WO2006106905A1 (ja) 2005-03-31 2006-10-12 Chugai Seiyaku Kabushiki Kaisha 会合制御によるポリペプチド製造方法
WO2008016854A2 (en) 2006-08-02 2008-02-07 The Uab Research Foundation Methods and compositions related to soluble monoclonal variable lymphocyte receptors of defined antigen specificity
WO2008022152A2 (en) 2006-08-14 2008-02-21 Xencor, Inc. Optimized antibodies that target cd19
WO2008119353A1 (en) 2007-03-29 2008-10-09 Genmab A/S Bispecific antibodies and methods for production thereof
WO2009041613A1 (ja) 2007-09-26 2009-04-02 Chugai Seiyaku Kabushiki Kaisha 抗体定常領域改変体
WO2009058492A2 (en) 2007-10-31 2009-05-07 Xencor, Inc Fc variants with altered binding to fcrn
WO2009086320A1 (en) 2007-12-26 2009-07-09 Xencor, Inc Fc variants with altered binding to fcrn
WO2009125825A1 (ja) 2008-04-11 2009-10-15 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子
WO2010045193A1 (en) 2008-10-14 2010-04-22 Genentech, Inc. Immunoglobulin variants and uses thereof
WO2010106180A2 (en) 2009-03-20 2010-09-23 Lfb Biotechnologies Optimized fc variants
WO2011122011A2 (en) 2010-03-30 2011-10-06 Chugai Seiyaku Kabushiki Kaisha Antibodies with modified affinity to fcrn that promote antigen clearance
WO2011131746A2 (en) 2010-04-20 2011-10-27 Genmab A/S Heterodimeric antibody fc-containing proteins and methods for production thereof
WO2012016227A2 (en) 2010-07-29 2012-02-02 Xencor, Inc. Antibodies with modified isoelectric points
WO2012073992A1 (ja) 2010-11-30 2012-06-07 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子
WO2012115241A1 (ja) 2011-02-25 2012-08-30 中外製薬株式会社 FcγRIIb特異的Fc抗体
WO2012133782A1 (ja) * 2011-03-30 2012-10-04 中外製薬株式会社 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
WO2012132067A1 (ja) * 2011-03-30 2012-10-04 中外製薬株式会社 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
WO2014030728A1 (ja) * 2012-08-24 2014-02-27 中外製薬株式会社 FcγRIIb特異的Fc領域改変体

Non-Patent Citations (164)

* Cited by examiner, † Cited by third party
Title
ARTHRITIS RHEUM, vol. 48, 2003, pages 3242 - 52
ARTHRITIS RHEUM., vol. 46, no. 5, May 2002 (2002-05-01), pages 1242 - 54
ARTHRITIS. RHEUM., vol. 48, no. 3, 2003, pages 719 - 727
BAIROCH; COX, FEBS LETT., vol. 269, 1990, pages 454 - 456
BETTER ET AL., SCIENCE, vol. 240, 1988, pages 1041 - 1043
BIODRUGS, vol. 20, no. 3, 2006, pages 151 - 60
BIOORG. MED. CHEM., vol. 11, no. 17, 2003, pages 3761 - 3768
BLOOD, vol. 76, no. 1, 1990, pages 31 - 35
BOUMPAS DT; FURIE R; MANZI S; ILLEI GG; WALLACE DJ; BALOW JE; VAISHNAW A: "A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis", ARTHRITIS. RHEUM., vol. 48, no. 3, 2003, pages 719 - 727
BRENSING-KUPPERS ET AL., GENE, vol. 191, 1997, pages 173 - 181
BRUHNS P., BLOOD, vol. 119, no. 24, 2012, pages 5640 - 9
BRUHNS P.: "Properties of mouse and human IgG receptors and their contribution to disease models", BLOOD, vol. 119, 2012, pages 5640 - 9
CARDOSO ET AL., SCAND. J. IMMUNOL., vol. 51, 2000, pages 337 - 344
CELL, vol. 57, no. 2, 1989, pages 277 - 285
CELL, vol. 58, 1989, pages 317 - 327
CELL, vol. 60, no. 2, 1990, pages 225 - 234
CELL, vol. 61, no. 2, 1990, pages 341 - 350
CELL, vol. 76, 1994, pages 519 - 529
CELL, vol. 77, no. 3, 1994, pages 391 - 400
CHAUVAUX ET AL., BIOCHEM. J., vol. 265, 1990, pages 261 - 265
CHOTHIA ET AL., NATURE, vol. 342, 1989, pages 877
CLACKSON ET AL., NATURE, vol. 352, 1991, pages 624 - 628
CLIN PHARMACOL THER., vol. 89, no. 2, February 2011 (2011-02-01), pages 283 - 90
CLIN PHARMACOL., vol. 48, no. 4, April 2008 (2008-04-01), pages 406 - 417
CLINICAL PHARMACOLOGY & THERAPEUTICS, vol. 89, no. 2, 2011, pages 283 - 290
CONNOLLY, J. APPL. CRYST., vol. 16, 1983, pages 548 - 558
CONRATH ET AL., J. BIOL. CHEM., vol. 276, no. 10, 2001, pages 7346 - 7350
COOKE BA., KING RJB., VAN DER MOLEN HJ.: "New Comprehesive Biochemistry", vol. 18B, 1988, ELSEVIER SCIENCE PUBLISHERS BV, article "Hormones and their Actions Part II", pages: 1 - 46
COX ET AL., NAT. GENETICS, vol. 7, 1994, pages 162 - 168
CURR. BIOL., vol. 10, 2000, pages 227 - 230
CURRENT OPINION IN BIOTECHNOLOGY, vol. 17, 2006, pages 653 - 658
CURRENT OPINION IN BIOTECHNOLOGY, vol. 18, 2007, pages 1 - 10
CURRENT OPINION IN STRUCTURAL BIOLOGY, vol. 7, 1997, pages 463 - 469
DAVIS, NEW BIOL., vol. 2, 1990, pages 410 - 419
DRUG METAB DISPOS., vol. 38, no. 4, April 2010 (2010-04-01), pages 600 - 5
DUFFAU P; SENESCHAL J; NICCO C; RICHEZ C; LAZARO E; DOUCHET I; BORDES C; VIALLARD JF; GOULVESTRE C; PELLEGRIN JL: "Platelet CD154 potentiates interferon-alpha secretion by plasmacytoid dendritic cells in systemic lupus erythematosus", SCI. TRANSL. MED., vol. 2, no. 47, 2010, pages 47 - 63
ECONOMOU ET AL., EMBO J., vol. 9, 1990, pages 349 - 354
EMBO J., vol. 12, no. 7, 1993, pages 2645 - 53
EMBO J., vol. 13, no. 13, 1994, pages 2963 - 2969
FANTL ET AL., ANNU. REV. BIOCHEM., vol. 62, 1993, pages 453 - 481
FASEB J., vol. 6, 1992, pages 2422 - 2427
FLOWER DR. FLOWER, BIOCHIM. BIOPHYS. ACTA, vol. 1422, no. 3, 1999, pages 207 - 234
GE HEALTHCARE: "Biacore T100 Software Handbook BR 1006-48", July 2008
GEJIMA ET AL., HUMAN ANTIBODIES, vol. 11, 2002, pages 121 - 129
GENE, vol. 18, 1990, pages 5322
GHETIE V; POPOV S; BORVAK J; RADU C; MATESOI D; MEDESAN C; OBER RJ; WARD ES., NAT. BIOTECHNOL., vol. 15, no. 7, 1997, pages 637 - 640
HASHIMOTO-GOTOH, T; MIZUNO, T; OGASAHARA, Y; NAKAGAWA, M.: "An oligodeoxyribonucleotide-directed dual amber method for site-directed mutagenesis", GENE, vol. 152, 1995, pages 271 - 275
HINTON PR; XIONG JM; JOHLFS MG; TANG MT; KELLER S; TSURUSHITA N, J. IMMUNOL., vol. 176, no. 1, 2006, pages 346 - 356
HJELM F; CARLSSON F; GETAHUN A; HEYMAN B: "Antibody-mediated regulation of the immune response", SCAND J IMMUNOL., vol. 64, no. 3, 2006, pages 177 - 84
HUM MOL GENET, vol. 14, 2005, pages 2881 - 92
HUM. GENET., vol. 117, 2005, pages 220 - 227
HUM. MOL. GENET., vol. 14, 2005, pages 2881 - 2892
IDUSOGIE E. E. ET AL.: "Mapping of the C1q Binding Site on Rituxan, a Chimeric Antibody with a Human IgG1 Fc", THE JOURNAL OF IMMUNOLOGY, vol. 164, 2000, pages 4178 - 4184, XP002965858 *
IGAWA T ET AL., NAT. BIOTECHNOL., vol. 28, 2010, pages 1203 - 1207
IMMUNITY, vol. 13, 2000, pages 277 - 285
IMMUNOGENETICS, vol. 51, 2000, pages 429 - 435
IMMUNOL. LETT., vol. 108, 2007, pages 52 - 61
INT IMMUNOL., vol. 13, no. 12, 2001, pages 1551 - 1559
INT J CANCER, vol. 103, no. 4, 2003, pages 455 - 65
INT. IMMUNOL., vol. 11, 1999, pages 1685 - 1691
INT. IMMUNOL., vol. 18, no. 12, December 2006 (2006-12-01), pages 1759 - 69
J BIOL CHEM, vol. 281, 2006, pages 23514 - 23524
J BIOL CHEM., vol. 281, no. 33, 18 August 2006 (2006-08-18), pages 23514 - 24
J IMMUNOL., vol. 163, 1999, pages 618 - 22
J IMMUNOL., vol. 176, no. 1, 2006, pages 346 - 56
J. CELL. BIOL., vol. 109, 1989, pages 3291 - 3302
J. CELL. BIOL., vol. 116, 1992, pages 875 - 888
J. CLIN. IMMUNOL., vol. 25, no. 1, 2005, pages 1 - 18
J. CLIN. INVEST., vol. 100, no. 5, 1997, pages 1059 - 1070
J. CLIN. INVEST., vol. 84, 1989, pages 1688 - 1691
J. EXP. MED, vol. 172, 1990, pages 19 - 25
J. EXP. MED., vol. 172, 1990, pages 19 - 25
J. EXP. MED., vol. 173, 1991, pages 1025 - 1028
J. EXP. MED., vol. 195, 2002, pages 1167 - 1174
J. EXP. MED., vol. 203, no. 9, 2006, pages 2157 - 2164
J. IMMUNOL, vol. 164, 2003, pages 4178 - 4184
J. IMMUNOL., vol. 152, 1994, pages 574 - 585
J. IMMUNOL., vol. 169, 2002, pages 4340 - 4346
J. IMMUNOL., vol. 172, 2004, pages 7186 - 7191
J. IMMUNOL., vol. 172, 2004, pages 7192 - 7199
J. IMMUNOL., vol. 176, no. 1, 1 January 2006 (2006-01-01), pages 346 - 56
J. IMMUNOL., vol. 185, no. 3, 2010, pages 1577 - 1583
J. MOL. MODEL., vol. 1, 1995, pages 46 - 53
J. NATL. CANCER INST., vol. 99, no. 16, 2007, pages 1232 - 1239
J. NEUROIMMUNOL, vol. 227, 2010, pages 35 - 43
J. THROMB. HAEMOST., vol. 7, no. 1, 2009, pages 171 - 181
JANICE M REICHERT; CLARK J ROSENSWEIG; LAURA B FADEN; MATTHEW C DEWITZ: "Monoclonal antibody successes in the clinic", NAT. BIOTECHNOL., vol. 23, 2005, pages 1073 - 1078
KABAT ET AL.: "Sequence of Proteins of Immunological Interest", 1987, NATIONAL INSTITUTE OF HEALTH
KABAT: "Sequences of Proteins of Immunological Interest", 1987, NATIONAL INSTITUTE OF HEALTH BETHESDA MD
KAWASAKI ET AL., EUR. J. IMMUNOL., vol. 31, 2001, pages 1017 - 1028
KAWASAKI ET AL., GENOME RES., vol. 7, 1997, pages 250 - 261
KAWASAKI; KRETSINGER, PROTEIN PROF., vol. 2, 1995, pages 305 - 490
KIM SJ; PARK Y; HONG HJ.: "Antibody engineering for the development of therapeutic antibodies", MOL. CELLS, vol. 20, no. 1, 2005, pages 17 - 29
KOHLER; MILSTEIN, NATURE, vol. 256, 1975, pages 495
KONTERMANN R.E.: "Bispecific Antibodies", 2011, SPRINGER-VERLAG
KRAMER W; FRITZ HJ: "Oligonucleotide-directed construction of mutations via gapped duplex DNA Methods", ENZYMOL., vol. 154, 1987, pages 350 - 367
KRAMER, W; DRUTSA, V; JANSEN, HW; KRAMER, B; PFLUGFELDER, M; FRITZ, HJ: "The gapped duplex DNA approach to oligonucleotide-directed mutation construction", NUCLEIC ACIDS RES., vol. 12, 1984, pages 9441 - 9456
KUNKEL ET AL., PROC. NATL. ACAD. SCI. USA, vol. 82, 1985, pages 488 - 492
KUNKEL, TA: "Rapid and efficient site-specific mutagenesis without phenotypic selection", PROC NATL ACAD SCI USA., vol. 82, 1985, pages 488 - 492
LEE; RICHARDS, J. MOL. BIOL., vol. 55, 1971, pages 379 - 400
LEI, S. P. ET AL., J. BACTERIOL., vol. 169, 1987, pages 4397
MABS., vol. 2, no. 5, September 2010 (2010-09-01), pages 519 - 27
MACKAY M; STANEVSKY A; WANG T; ARANOW C; LI M; KOENIG S; RAVETCH JV; DIAMOND B.: "Selective dysregulation of the FcgammaIIB receptor on memory B cells in SLE", J. EXP. MED., vol. 203, no. 9, 2006, pages 2157 - 2164
MARKS ET AL., J.MOL.BIOL., vol. 222, 1991, pages 581 - 597
MASSAGUE, CELL, vol. 69, no. 6, 1992, pages 1067 - 1070
MATSUDA ET AL., J. EXP. MED., vol. 188, 1998, pages 1973 - 1975
MERCHANT ET AL., NAT. BIOTECH., vol. 16, 1998, pages 677 - 681
METHODS MOL BIOL., vol. 602, 2010, pages 93 - 104
METHODS MOL. BIOL., vol. 602, 2010, pages 93 - 104
MEYER T; ROBLES-CARRILLO L; ROBSON T; LANGER F; DESAI H; DAVILA M; AMAYA M; FRANCIS JL; AMIRKHOSRAVI A.: "Bevacizumab immune complexes activate platelets and induce thrombosis in FCGR2A transgenic mice", J. THROMB. HAEMOST., vol. 7, no. 1, 2009, pages 171 - 181
MILSTEIN ET AL., NATURE, vol. 305, 1983, pages 537 - 540
MIYAJIMA ET AL., ANNU. REV. IMMUNOL., vol. 10, 1992, pages 295 - 331
MIZUSHIMA ET AL., NUCLEIC ACIDS RES., vol. 18, 1990, pages 5322
MOL. IMMUNOL., vol. 49, 2011, pages 329 - 337
MONCRIEF ET AL., J. MOL. EVOL., vol. 30, 1990, pages 522 - 562
MULLIGAN ET AL., NATURE, vol. 277, 1979, pages 108
MUYLDERMANS, REV. MOL. BIOTECH., vol. 74, 2001, pages 277 - 302
NAT BIOTECHNOL, vol. 28, 2010, pages 157 - 159
NAT BIOTECHNOL., vol. 28, no. 2, February 2010 (2010-02-01), pages 157 - 9
NAT MED., vol. 9, no. 1, January 2003 (2003-01-01), pages 47 - 52
NAT. MED., vol. 11, 2005, pages 1056 - 1058
NAT. REV. IMMUNOL, vol. 8, 2008, pages 34 - 47
NATURE, vol. 313, no. 6005, 1985, pages 756 - 761
NATURE, vol. 379, no. 6563, 1996, pages 346 - 349
NUCLEIC ACIDS. RES., vol. 18, no. 17, 1990, pages 5322
PACIOS, COMPUT. CHEM., vol. 18, no. 4, 1994, pages 377 - 386
PATTHY, CELL, vol. 61, no. 1, 1990, pages 13 - 14
PAVLOU AK; BELSEY MJ.: "The therapeutic antibodies market to 2008", EUR. J. PHARM. BIOPHARM., vol. 59, no. 3, 2005, pages 389 - 396
PHARM RES., vol. 23, no. 1, January 2006 (2006-01-01), pages 95 - 103
PROC NATL ACAD SCI USA., vol. 86, no. 1, 1989, pages 27 - 31
PROC NATL ACAD SCI USA., vol. 89, no. 12, 1992, pages 5640 - 5644
PROC. NATL. ACAD. SCI USA, vol. 103, no. 11, 2006, pages 4005 - 4010
PROC. NATL. ACAD. SCI. USA, vol. 103, no. 11, 2006, pages 4005 - 4010
PROC. NATL. ACAD. SCI. USA, vol. 108, 2011, pages 12479 - 12484
PROC. NATL. ACAD. SCI. USA., vol. 85, no. 10, 1988, pages 3435 - 3439
PROC. NATL. ACAD. SCI. USA., vol. 87, no. 22, 1990, pages 8702 - 8706
PROC. NATL. ACAD. SCI. USA., vol. 91, no. 2, 1994, pages 459 - 463
PROTEIN SCIENCE, vol. 15, 2006, pages 14 - 27
PROTEIN SCIENCE, vol. 4, 1995, pages 2411 - 2423
RAJPAL A; BEYAZ N; HABER L; CAPPUCCILLI G; YEE H; BHATT RR; TAKEUCHI T; LERNER RA; CREA R., PROC. NATL. ACAD. SCI. USA., vol. 102, no. 24, 2005, pages 8466 - 8471
RIDGWAY ET AL., PROTEIN ENGINEERING, vol. 9, 1996, pages 617 - 621
ROBLES-CARRILLO L; MEYER T; HATFIELD M; DESAI H; DAVILA M; LANGER F; AMAYA M; GARBER E; FRANCIS JL; HSU YM: "Anti-CD40L immune complexes potently activate platelets in vitro and cause thrombosis in FCGR2A transgenic mice", J. IMMUNOL., vol. 185, no. 3, 2010, pages 1577 - 1583
SCAND J IMMUNOL., vol. 64, no. 3, 2006, pages 177 - 84
SCAPPATICCI FA; SKILLINGS JR; HOLDEN SN; GERBER HP; MILLER K; KABBINAVAR F; BERGSLAND E; NGAI J; HOLMGREN E; WANG J: "Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab.", J. NATL. CANCER INST., vol. 99, no. 16, 2007, pages 1232 - 1239
SCHABLE; ZACHAU, BIOL. CHEM. HOPPE SEYLER, vol. 374, 1993, pages 1001 - 1022
SCHAEFER ET AL., GENOMICS, vol. 25, 1995, pages 638 - 643
SCI. TRANSL. MED., vol. 2, no. 47, 2010, pages 47 - 63
SCIENCE, vol. 256, 1992, pages 1808 - 1812
SCIENCE, vol. 310, no. 5753, 2005, pages 1510 - 1512
SMITH ET AL., CELL, vol. 76, no. 6, 1994, pages 959 - 962
SPRINGER ET AL., CELL, vol. 102, 2000, pages 275 - 277
TAGA ET AL., FASEB J., vol. 6, 1992, pages 3387 - 3396
THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276, 2000, pages 6591 - 6604
THE JOURNAL OF CLINICAL INVESTIGATION, vol. 115, 2005, pages 2914 - 2923
THE JOURNAL OF IMMUNOLOGY, vol. 170, 2003, pages 3963 - 3970
TOMLINSON ET AL., J. MOL. BIOL., vol. 227, 1992, pages 776 - 798
ULLRICH ET AL., CELL, vol. 61, no. 2, 1990, pages 203 - 212
WARD ET AL., NATURE, vol. 341, 1989, pages 544 - 546
WERNERSSON S; KARLSSON MC; DAHLSTROM J; MATTSSON R; VERBEEK JS; HEYMAN B.: "IgG-mediated enhancement of antibody responses is low in Fc receptor gamma chain-deficient mice and increased in Fc gamma RII-deficient mice", J IMMUNOL., vol. 163, 1999, pages 618 - 22
WILLIAMS; WINTER, EUR. J. IMMUNOL., vol. 23, 1993, pages 1456 - 1461
WU ET AL., J. EXP. MED., vol. 132, 1970, pages 211 - 250
WU H; PFARR DS; JOHNSON S; BREWAH YA; WOODS RM; PATEL NK; WHITE WI; YOUNG JF; KIENER PA., J. MOL. BIOL., vol. 368, 2007, pages 652 - 665
WURZBURG ET AL., STRUCTURE, vol. 14, no. 6, 2006, pages 1049 - 1058
ZOLLER, MJ; SMITH, M.: "Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors", METHODS ENZYMOL., vol. 100, 1983, pages 468 - 500

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11046784B2 (en) 2006-03-31 2021-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
US9828429B2 (en) 2007-09-26 2017-11-28 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US11248053B2 (en) 2007-09-26 2022-02-15 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US11371039B2 (en) 2008-04-11 2022-06-28 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US9868948B2 (en) 2008-04-11 2018-01-16 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US9890377B2 (en) 2008-04-11 2018-02-13 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US11359194B2 (en) 2008-04-11 2022-06-14 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding two or more antigen molecules repeatedly
US10472623B2 (en) 2008-04-11 2019-11-12 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding two or more antigen molecules repeatedly
US11891434B2 (en) 2010-11-30 2024-02-06 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to plurality of antigen molecules repeatedly
US11718678B2 (en) 2011-02-25 2023-08-08 Chugai Seiyaku Kabushiki Kaisha Method for altering plasma retention and immunogenicity of antigen-binding molecule
US10618965B2 (en) 2011-02-25 2020-04-14 Chugai Seiyaku Kabushiki Kaisha Method for altering plasma retention and immunogenicity of antigen-binding molecule
US10253100B2 (en) 2011-09-30 2019-04-09 Chugai Seiyaku Kabushiki Kaisha Therapeutic antigen-binding molecule with a FcRn-binding domain that promotes antigen clearance
US11827699B2 (en) 2011-09-30 2023-11-28 Chugai Seiyaku Kabushiki Kaisha Methods for producing antibodies promoting disappearance of antigens having plurality of biological activities
US11820793B2 (en) 2011-11-30 2023-11-21 Chugai Seiyaku Kabushiki Kaisha Drug containing carrier into cell for forming immune complex
US11673947B2 (en) 2012-05-30 2023-06-13 Chugai Seiyaku Kabushiki Kaisha Target tissue-specific antigen-binding molecule
US11142563B2 (en) 2012-06-14 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing modified Fc region
US11236168B2 (en) 2012-08-24 2022-02-01 Chugai Seiyaku Kabushiki Kaisha Mouse FcγammaRII-specific Fc antibody
US10919953B2 (en) 2012-08-24 2021-02-16 Chugai Seiyaku Kabushiki Kaisha FcgammaRIIB-specific Fc region variant
US10766960B2 (en) 2012-12-27 2020-09-08 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
US11267868B2 (en) 2013-04-02 2022-03-08 Chugai Seiyaku Kabushiki Kaisha Fc region variant
US11912989B2 (en) 2013-12-04 2024-02-27 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecules, the antigen-binding activity of which varies according to the concentration of compounds, and libraries of said molecules
US10961530B2 (en) 2013-12-04 2021-03-30 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecules, the antigen-binding activity of which varies according to the concentration of compounds, and libraries of said molecules
US10738111B2 (en) 2014-12-19 2020-08-11 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use
US10000560B2 (en) 2014-12-19 2018-06-19 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use
KR20220034918A (ko) 2014-12-19 2022-03-18 추가이 세이야쿠 가부시키가이샤 항-마이오스타틴 항체, 변이체 Fc 영역을 함유하는 폴리펩타이드, 및 사용 방법
US11454633B2 (en) 2014-12-19 2022-09-27 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use
JP2021054826A (ja) * 2015-02-03 2021-04-08 エイエルエス・セラピー・デベロップメント・インスティテュートALS Therapy Development Institute Cd40l関連疾患または障害を治療するための抗cd40l抗体及び方法
US11692040B2 (en) 2015-02-03 2023-07-04 Als Therapy Development Institute Anti-CD40L antibodies and methods for treating CD40L-related diseases or disorders
US11180548B2 (en) 2015-02-05 2021-11-23 Chugai Seiyaku Kabushiki Kaisha Methods of neutralizing IL-8 biological activity
US10519229B2 (en) 2015-02-05 2019-12-31 Chugai Seiyaku Kabushiki Kaisha Nucleic acids encoding IL-8 antibodies
EP3816179A3 (en) * 2015-02-05 2021-08-04 Chugai Seiyaku Kabushiki Kaisha Fc region variant comprising a modified fcrn-binding domain
EP3816179A2 (en) 2015-02-05 2021-05-05 Chugai Seiyaku Kabushiki Kaisha Fc region variant comprising a modified fcrn-binding domain
KR20210009435A (ko) 2015-02-05 2021-01-26 추가이 세이야쿠 가부시키가이샤 이온 농도 의존적 항원 결합 도메인을 포함하는 항체, Fc 영역 개변체, IL-8에 결합하는 항체, 및 그들의 사용
WO2016125495A1 (en) 2015-02-05 2016-08-11 Chugai Seiyaku Kabushiki Kaisha Antibodies comprising an ion concentration dependent antigen-binding domain, fc region variants, il-8-binding antibodies, and uses therof
US9969800B2 (en) 2015-02-05 2018-05-15 Chugai Seiyaku Kabushiki Kaisha IL-8 antibodies
KR20230079500A (ko) 2015-09-18 2023-06-07 추가이 세이야쿠 가부시키가이샤 Il-8에 결합하는 항체 및 그의 사용
KR20180125036A (ko) 2015-09-18 2018-11-21 추가이 세이야쿠 가부시키가이샤 Il-8에 결합하는 항체 및 그의 사용
WO2017046994A1 (en) 2015-09-18 2017-03-23 Chugai Seiyaku Kabushiki Kaisha Il-8-binding antibodies and uses thereof
US11359009B2 (en) 2015-12-25 2022-06-14 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies and methods of use
KR20220143961A (ko) 2016-06-17 2022-10-25 추가이 세이야쿠 가부시키가이샤 항-마이오스타틴 항체 및 사용 방법
KR20220038530A (ko) 2016-06-17 2022-03-28 추가이 세이야쿠 가부시키가이샤 항-마이오스타틴 항체 및 사용 방법
KR20210118979A (ko) 2016-06-17 2021-10-01 추가이 세이야쿠 가부시키가이샤 항-마이오스타틴 항체 및 사용 방법
KR20190009272A (ko) 2016-06-17 2019-01-28 추가이 세이야쿠 가부시키가이샤 항-마이오스타틴 항체 및 사용 방법
US11053308B2 (en) 2016-08-05 2021-07-06 Chugai Seiyaku Kabushiki Kaisha Method for treating IL-8-related diseases
US11780912B2 (en) 2016-08-05 2023-10-10 Chugai Seiyaku Kabushiki Kaisha Composition for prophylaxis or treatment of IL-8 related diseases
US10844113B2 (en) 2016-09-16 2020-11-24 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies, polypeptides containing variant Fc regions, and methods of use
US11780908B2 (en) 2016-09-16 2023-10-10 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies, polypeptides containing variant FC regions, and methods of use
US10604561B2 (en) 2016-09-16 2020-03-31 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies, polypeptides containing variant Fc regions, and methods of use
JP7277363B2 (ja) 2016-11-01 2023-05-18 ジェンマブ ビー.ブイ. ポリペプチド変異体およびその使用
JP2020502046A (ja) * 2016-11-01 2020-01-23 ゲンマブ ビー.ブイ. ポリペプチド変異体およびその使用
US11384152B2 (en) 2017-05-24 2022-07-12 Als Therapy Development Institute Therapeutic anti-CD40 ligand antibodies
US11891432B2 (en) 2018-03-15 2024-02-06 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies having cross-reactivity to Zika virus and methods of use
WO2020032230A1 (ja) 2018-08-10 2020-02-13 中外製薬株式会社 抗cd137抗原結合分子およびその使用
WO2021162020A1 (ja) 2020-02-12 2021-08-19 中外製薬株式会社 癌の治療に用いるための抗cd137抗原結合分子
WO2023213779A1 (en) 2022-05-02 2023-11-09 Novo Nordisk A/S Novel anti-angptl3 antibodies suitable for high concentration compositions and subcutaneous administration
US11780910B1 (en) 2022-05-02 2023-10-10 Novo Nordisk A/S Anti-ANGPTL3 antibodies suitable for high concentration compositions and subcutaneous administration

Also Published As

Publication number Publication date
MX2015014017A (es) 2016-02-10
BR112015024587A2 (pt) 2017-10-31
SG11201508170TA (en) 2015-11-27
CN105246914A (zh) 2016-01-13
US11267868B2 (en) 2022-03-08
US20160039912A1 (en) 2016-02-11
EP2982689A4 (en) 2016-11-02
JP6598680B2 (ja) 2019-10-30
AU2014250434B2 (en) 2019-08-08
RU2015146769A (ru) 2017-05-10
KR20210130260A (ko) 2021-10-29
US20220411483A1 (en) 2022-12-29
BR112015024587B1 (pt) 2022-11-29
EP3783017A1 (en) 2021-02-24
JPWO2014163101A1 (ja) 2017-02-16
EP2982689A1 (en) 2016-02-10
HK1215034A1 (zh) 2016-08-12
KR102318483B1 (ko) 2021-10-27
JP7157031B2 (ja) 2022-10-19
JP2020059700A (ja) 2020-04-16
CN113621057A (zh) 2021-11-09
RU2757124C2 (ru) 2021-10-11
AU2014250434A1 (en) 2015-10-15
EP2982689B1 (en) 2020-08-26
CA2908350A1 (en) 2014-10-09
CN105246914B (zh) 2021-08-27
TW201529599A (zh) 2015-08-01
CA2908350C (en) 2023-08-08
KR20150136514A (ko) 2015-12-07
JP2022160603A (ja) 2022-10-19
TWI636062B (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
JP7157031B2 (ja) Fc領域改変体
JP7441284B2 (ja) 免疫複合体を形成する細胞内への運搬体(キャリア)を含む医薬
JP7411698B2 (ja) FcγRIIBを介して抗原の消失を促進する抗原結合分子
JP2020079296A (ja) 抗原の消失を促進する抗原結合分子
WO2012132067A1 (ja) 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
RU2757124C9 (ru) ВАРИАНТ Fc-ОБЛАСТИ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778553

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015510113

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2908350

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14781069

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/014017

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2014250434

Country of ref document: AU

Date of ref document: 20140402

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014778553

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157030650

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015146769

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015024587

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015024587

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150924