WO2009041734A1 - ヒトトロンボポエチン受容体に対するアゴニスト抗体 - Google Patents

ヒトトロンボポエチン受容体に対するアゴニスト抗体 Download PDF

Info

Publication number
WO2009041734A1
WO2009041734A1 PCT/JP2008/068003 JP2008068003W WO2009041734A1 WO 2009041734 A1 WO2009041734 A1 WO 2009041734A1 JP 2008068003 W JP2008068003 W JP 2008068003W WO 2009041734 A1 WO2009041734 A1 WO 2009041734A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
acid sequence
antibody
seq
human
Prior art date
Application number
PCT/JP2008/068003
Other languages
English (en)
French (fr)
Inventor
Masayuki Kai
Kazuhiro Motoki
Shiro Kataoka
Hideaki Yoshida
Tetsuya Hagiwara
Original Assignee
Kyowa Hakko Kirin Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kirin Co., Ltd. filed Critical Kyowa Hakko Kirin Co., Ltd.
Publication of WO2009041734A1 publication Critical patent/WO2009041734A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/71Decreased effector function due to an Fc-modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/75Agonist effect on antigen

Definitions

  • the present invention relates to an antibody against a human thrombopoietin receptor (also known as human C-Mpl).
  • the present invention provides clinically clarified blood containing an anti-human C-Mpl agonist antibody as an active ingredient.
  • the present invention relates to a therapeutic agent for a disease requiring an increase in the number of plates, particularly a therapeutic agent for thrombocytopenia.
  • TP0 Thrombopoietin
  • Human TP0 is a glycoprotein consisting of 332 amino acid residues in total length, and it is known that the N-terminal sequence is important for its activity. It functions by binding to the TP0 receptor on the cell membrane.
  • c-pl is the only TP0 receptor currently known.
  • Human c-Mpl is a single-transmembrane glycoprotein consisting of 635 amino acids including the signal peptide and 610 amino acids in the mature form, and belongs to the type I cytokine family. Human c-Mpl messenger RNA and protein sequences have already been reported
  • EpoR erythroid poetin receptor
  • G-CSFR G-CSF receptor
  • Receptor Homologue domain (referred to as CRH1 and CRH2 from the N-terminal side) and contains the WSXWS motif characteristic of the cytokine family.
  • the intracellular domain has two sequences called Boxl and ⁇ 2, which are essential for signal transduction.
  • TP0 binds to CRH1 and is thought to signal by c-Mpl dimerization, but the detailed mode of binding and activation has been elucidated. Not in.
  • c-Mpl dimerizes the signal transduction kinase bound to the intracellular domain is activated and a phosphorylation signal is transmitted into the cell. It is known that the Tak-Mpl signal moves Jak-STAT, PI3K-Akt, and Ras-MAPK pathways.
  • mice deficient in TP0 or c_Mpl have been reported to reduce platelet counts to about 10-20% of wild-type mice, indicating that the TP0-Mpl system is the primary system that regulates platelet counts. ing. C-Mpl expression is observed not only in megakaryocytes, but also in undifferentiated hematopoietic progenitor cells and hematopoietic stem cells.
  • CM P l-positive cell fraction in bone marrow compared with c-Mpl negative fraction has been shown to have high bone marrow reconstruction ability, also in the c-Mpl-deficient mice only megakaryocytes, platelets
  • hematopoietic stem cells are also decreased (see Non-Patent Documents 1 and 2).
  • TP0 was cloned, it is expected to be used as a therapeutic agent for thrombocytopenia, and two types of recombinant TP0 have been clinically tested so far (see Non-patent Document 3).
  • Non-Patent Documents 6 and 7 Similar to TP0, various TP0 mimetics that have the property of inputting signals via C-Mpl have been studied (see Non-Patent Documents 6 and 7).
  • the mimetics are broadly divided into peptidic small molecules, non-peptidic small molecules, antibody-derived components, and antagonistist books.
  • Examples of known anti-c-Mpl agonist antibodies include 12B5, 12E10, and 12D5 (see Patent Document 1). These are in the form of full-length antibodies (Whole ant ibodies such as Whole IgG) and have no activity against primary human cells.
  • the primary human cell used in this specification refers to a special cell line established with high sensitivity to TP0 or a TP0 receptor gene introduced by genetic recombination technology to highly express the receptor. It means cells that are the target of TP0 action in vivo, such as CD34 + cells derived from human umbilical cord blood or human bone marrow.
  • BAH_1 see Patent Document 2 and Non-Patent Document 8
  • VB22B see Patent Document 3
  • Mouse antibodies exhibit antigenicity in human blood.
  • the small molecule derived from the antibody described in the above TP0 mimetics is also a certain kind of agonist antibody, and it has been reported that diabody, -chain (Fv) 2 (sc (Fv) 2 ) modified using a part of the antibody. (See Patent Documents 1 and 3).
  • the modified antibody produced by this method has concerns about antigenicity due to significant molecular modifications, and has a problem in that it can be used as a pharmaceutical, such as a reduced half-life in blood compared to a full-length antibody. Many.
  • full-length antibodies have useful properties as pharmaceuticals, such as low antigenicity and long half-life in the blood.
  • full-length antibodies produce an antagonistic antibody with sufficient activity. It's not easy.
  • the present inventors have attempted to obtain an antagonistic antibody having sufficient activity without significantly modifying the structure of the antibody, and have achieved the acquisition. Furthermore, the modification of the hinge region of the antibody succeeded in enhancing the agonist activity.
  • the antibody produced by the present invention is considered suitable for use as a therapeutic agent for thrombocytopenia.
  • Non-Patent Document 1 Hiroshi Amagasaki, “Future Perspective of Toguchibopoetin”, Japanese Journal of Transfus ion Medicine, 46 (3), 311-316, 2000
  • Non-Patent Document 2 Murone M et al., Stem Cel l 16: 1-6, 1998
  • Non-Patent Document 3 Kuter DJ et al., Blood 100 (10): 3457-69, 2002
  • Non-Patent Document 4 Yonemura Y et al., Int J Hemat (82) 307-309, 2005
  • Non-Patent Document 5 Koraatsu N et al., Blood 96 296a, 2000
  • Non-Patent Document 6 Broudy VC et al., Cytokine. 25 (2): 52-60, 2004
  • Non-Patent Document 7 Wang B et al., Cl in Pharmacol Ther. 76 (6): 628-38, 2004
  • Non-Patent Document 8 Deng B et al., Blood 92 (6): 1981-1988, 1998
  • Non-Patent Document 9 Ji Hee Son et al., Journal of Immunological Metnods 286: 187-201, 2004
  • Patent Document 1 International Publication No. W0 99/10494 Pamphlet
  • Patent Document 2 International Publication No. W0 99/03495 Pamphlet
  • Patent Document 3 International Publication No. W0 2005/056604 Pamphlet Disclosure of Invention
  • An object of the present invention is to provide a novel anti-human c-Mplagonist antibody.
  • an antibody can have a signal equivalent to that of natural ligand TP0 to human c-Mpl, which has been difficult with a full-length antibody, and has a growth stimulating activity against primary human cells.
  • the second object of the present invention is to provide a technique for enhancing the activity of an agonist antibody without fragmenting the antibody, thereby having desirable properties as a pharmaceutical such as a long half-life inherent in the antibody molecule and low antigenicity. It is to provide a novel anti-human C-Mplagonist antibody.
  • the present inventors diligently researched anti-human C-Mplagonist antibodies. As a result, a full-length antibody produced a signal almost identical to the natural ligand, and a human antibody having activity against human primary cells was obtained. In addition, the obtained agonist antibodies were further intensively studied, and a modification method for increasing the agonist activity without fragmenting the antibodies was found, thereby completing the present invention.
  • the present invention includes the following features.
  • the constant region of the antibody is the following (1) to (3): (1) Amino acid sequences of the heavy and light chain constant regions of human antibodies,
  • a heavy chain constant region amino acid sequence obtained by exchanging heavy chain constant region domains between human antibody subclasses, and a human antibody light chain constant region amino acid sequence;
  • variable region of the antibody has the ability to bind to and activate the human thrombopoietin receptor, and (a) and / or (b) below:
  • the maximum activity is the following structure consisting of the amino acid sequence of SEQ ID NO: 1 with a peg at its heel end (PEG:
  • the heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 2 and the amino acid sequence represented by SEQ ID NO: 3 have one, several amino acid residues deleted, substituted, added or inserted into the framework region
  • a light chain variable region comprising the amino acid sequence, a heavy chain variable region selected from the group consisting of:
  • the C-terminal side after the middle hinge region of the heavy chain constant region contains a heavy chain having an amino acid sequence in which the proline 331 in Kabat EU numbering is replaced with serine in the amino acid sequence of human immunoglobulin G2. antibody.
  • the constant region of the antibody is the following (1) to (3): (1) Amino acid sequences of the heavy and light chain constant regions of human antibodies,
  • variable region of the antibody has the ability to bind to and activate the human thrombopoietin receptor, and (a) and / or (b) below:
  • the maximum activity is the following structure consisting of the amino acid sequence of SEQ ID NO: 1 in which the N-terminus is pegylated (PEG):
  • the antibody against human thrombopoietin receptor (c-Mpl) having the following properties (a) to (d) :
  • a heavy chain that is the amino acid sequence of SEQ ID NO: 95, and an amino acid sequence in which one or several amino acid residues are deleted, substituted, added, or inserted into the framework region in the amino acid sequence of SEQ ID NO: 3.
  • a heavy chain constant region comprising the amino acid represented by the amino acid sequence of SEQ ID NO: 96, and the amino acid sequence of SEQ ID NO: 3 has one or several amino acid residues deleted or substituted in the framework region;
  • Light chain containing an added or inserted amino acid sequence An antibody having a heavy chain and a light chain selected from the group consisting of:
  • a pharmaceutical composition comprising the antibody according to any one of [1] to [3] as an active ingredient.
  • a platelet increasing agent comprising the antibody according to any one of [1] to [3] as an active ingredient.
  • a therapeutic agent for thrombocytopenia comprising the antibody according to any one of [1] to [3] as an active ingredient.
  • Thrombocytopenia has the following (1) to (6):
  • IDP idiopathic thrombocytopenic purpura
  • MDS Myelodysplastic syndrome
  • a heavy chain comprising the amino acid sequence of SEQ ID NO: 96, and one or several amino acid residues deleted, substituted, added or inserted into the framework region in the amino acid sequence of SEQ ID NO: 3
  • a base sequence encoding a light chain comprising the sequence
  • a DNA comprising a base sequence encoding a heavy chain and a DNA comprising a base sequence encoding a light chain and one or more DNAs comprising a base sequence that controls the expression of those DNAs, selected from the group consisting of And expressing and purifying an expression product of DNA encoding the antibody consisting of the heavy chain and the light chain from a culture solution obtained by culturing the mammalian cell.
  • a method for producing an agonist antibody to c-Mpl A method for producing an agonist antibody to c-Mpl.
  • DNA comprising a base sequence encoding an amino acid sequence selected from the group consisting of
  • a DNA encoding a heavy chain comprising the amino acid sequence represented by SEQ ID NO: 2, wherein the C-terminal side after the middle hinge part of the antibody heavy chain is the amino acid sequence of human immunoglobulin G2 or the G2
  • a hematopoietic agent for promoting the recovery of blood cells after transplantation comprising the antibody according to any one of [1] to [3] as an active ingredient.
  • the antagonistic antibody against the human thrombopoietin receptor includes the following antibodies (1) to (6).
  • the antibody constant regions are the following (i) to (i i i):
  • variable region of the antibody has the ability to bind to and activate the human thrombopoietin receptor, and (a) and / or (b) below:
  • the activity is 50% or more of PEG-rHuMGDF having the following structure, and the 50% effective concentration (EC50) is ⁇ or less,
  • the human antibody subclass includes IgG1, IgG2, IgG3 and IgG4.
  • the sequence of the human immunoglobulin constant region and the like can be entered from, for example, the NCBI website (GenBank, UniGene, etc.).
  • the human IgGl heavy chain constant region has the registration number J00228, the human IgG2 heavy chain constant region.
  • human I g G3 heavy chain constant region registration numbers are used for X03604, registration number K01316 for the human IgG4 heavy chain constant region, the registration number for the human light chain ⁇ constant region V00557, X64135,
  • the human light chain constant region, such as X64133 may contain accession numbers X64132, X64134, etc.
  • CFU- ⁇ colony formation measurement method using human umbilical cord blood CD34 + cells means the measurement method described in Example 6 described later, and the concentration of the antibody necessary for colony formation is It can be determined based on the measurement method.
  • the proliferative ability measurement method using UT7 / TP0 cells means the measurement method described in Example 5 described later, and proliferative activity and EC50 can be determined based on this measurement method.
  • PEG-rHuMGDF refers to E. coli transformed with a plasmid containing cDNA encoding a transcribed protein containing the amino-terminal receptor binding domain of human TP0. Produced by using (Ulich et al., Blood 86: 971-976 (1995)) Polypeptide extracted, refolded, purified, and covalently linked to its amino terminus with a polyethylene dalycol (PEG) moiety
  • PEG polyethylene dalycol
  • activation of human C-Mpl refers to cells expressing human C-Mpl. In this case, it is necessary to cause intracellular signal transduction related to human c-Mpl.
  • the cell proliferation activity is 50% or more, preferably 70% or more, more preferably 90% or more of PEG-rHuMGDF, and 50% effective concentration (EC50) is 100nM or less, preferably 10nM or less.
  • the antibody according to (1) which is more preferably InM or less.
  • the maximum activity is 50% or more of PEG-rHuMGDF having the following structure, and the 50% effective concentration (EC50) is 100nM or less. .
  • the maximum activity is 70% or more of PEG-rHuMGDF, and the EC50 is 10 nM or less.
  • the antibody according to (1) above comprising a heavy chain amino acid sequence variable region and a light chain amino acid sequence variable region selected from the group consisting of the following (a) to (h): (In Katsuko, the names of the antibodies of Examples described later from which each variable region sequence is derived are shown.)
  • a heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 6 and a light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 7. (Antibody name: 6-4-50)
  • a light chain variable region comprising
  • the heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 4 and the amino acid sequence represented by SEQ ID NO: 5 have one, several amino acid residues deleted, substituted, added or inserted into the framework region Light chain variable region comprising the amino acid sequence.
  • the heavy chain variable region comprising the amino acid sequence shown by SEQ ID NO: 6 and the amino acid sequence shown by SEQ ID NO: 7 have one, several amino acid residues deleted, substituted, added or inserted into the framework region Light chain variable region comprising the amino acid sequence.
  • a heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 8, and one or several amino acid residues deleted, substituted, added or inserted into the framework region in the amino acid sequence represented by SEQ ID NO: 9
  • a light chain variable region comprising the determined amino acid sequence.
  • the heavy chain modified agonist antibody according to the present invention includes the following.
  • the upper hinge region of the heavy chain constant region has any one amino acid sequence selected from the following amino acid sequences (a) to (; b): The amino acid sequence of the amino acid sequence of human immunoglobulin G4 or the amino acid sequence of the G4 amino acid sequence in which the C-terminal side after the hinge region is unfavorable as an agonistic antibody related to ADCC (antibody-dependent cytotoxicity) activity, etc.
  • An agonist antibody comprising:
  • Upper hinge refers to the Kabat EU numbering (.Rabat, Sequences of Proteins of Immunologica ⁇ Interest, otn Ed. , Md. (1991)) refers to sequences from the 216th position onward and the N-terminal side from the 226th position.
  • the middle hinge refers to a sequence on the N-terminal side from the 231st position after the 226th position.
  • FIG. 4B shows the upper hinge, middle hinge, and the amino acid sequence before and after that for each subtype including human immunoglobulin G4.
  • CH1 is a part of the CH1 region adjacent to the upper hinge
  • CH2 is a part called a lower hinge in the CH2 region.
  • the C-terminal side of the heavy chain constant region after the middle hinge is An antibody comprising a heavy chain having the amino acid sequence of Phosphorus G4 wherein the 228 position serine in the Kabat EU numbering is substituted with porin and the 235 position leucine is replaced with glutamic acid.
  • the upper hinge part of the heavy chain constant region has any one amino acid sequence selected from the following amino acid sequences (a) to (b), and the middle hinge part of the heavy chain constant region: Subsequent C-terminal side of the amino acid sequence of human immunoglobulin G4 or a heavy chain having an amino acid sequence in which the 228 position serine in the Kabat EU numbering is replaced with proline and the 235 position leucine is replaced with glutamic acid in the G4 amino acid sequence. Including human antibody against human C-Mpl.
  • an agonistic antibody against human c-Mpl described in the above (i) selected from the group consisting of (a) to (h) below can be mentioned.
  • the heavy chain constant region includes a heavy chain having an amino acid sequence in which the C-terminal side after the middle hinge part of the heavy chain has the amino acid sequence of human immunoglobulin G2 and the proline at position 331 in Kabat EU numbering is substituted with serine.
  • the heavy chain which is the amino acid sequence of SEQ ID NO: 95, and the amino acid sequence of SEQ ID NO: 3, in which one or several amino acid residues have been deleted, substituted, added or inserted into the framework region Antibody having a light chain comprising an amino acid sequence
  • the antagonistic antibody against human C-MPL has the ability to bind to and activate the c-Mpl receptor and to stimulate the production of platelets (both in vivo and in vitro) ( “Plateletogenic activity”) and the ability to stimulate the production of platelet precursors (“megakaryocytic activity”).
  • composition comprising an agonistic antibody against human C-Mpl according to the present invention as an active ingredient
  • pharmaceutical uses include the following. (1) A pharmaceutical composition comprising as an active ingredient the antibody of any one of (1) to (6) and 2. (3) above.
  • a platelet-increasing agent comprising the antibody according to any one of (1) to (6) and 2. (3) above as an effective component.
  • a therapeutic agent for thrombocytopenia comprising the antibody according to any one of the above (1) to (6) and 2. (3) as an active ingredient.
  • thrombocytopenia is any one of the following (a) to (f).
  • Idiopathic thrombocytopenic purpura Idiopathic thrombocytopenic purpura
  • MDS Myelodysplastic syndrome
  • a hematopoietic agent comprising a human c-Mpl-containing gonist antibody as an active ingredient for promoting blood cell recovery after hematopoietic stem cell transplantation.
  • the antibody of the present invention may be produced by using a hybridoma that produces the antibody according to the present invention, or a gene encoding a monoclonal antibody is cloned from an antibody-producing cell such as a hybridoma, Recombinant antibodies produced by gene recombination techniques can also be produced by incorporating into appropriate vectors.
  • a method for producing the antibody of the present invention the following method is preferably exemplified.
  • a heavy chain comprising the amino acid sequence of SEQ ID NO: 8, and an amino acid sequence in which one or several amino acid residues are deleted, substituted, added or inserted into the framework region in the amino acid sequence of SEQ ID NO: 9.
  • a base sequence encoding a light chain comprising,
  • a heavy chain constant region containing the amino acid represented by the amino acid sequence of SEQ ID NO: 96, and one or several amino acid residues in the framework region in the amino acid sequence of SEQ ID NO: 3 are deleted, substituted, or added.
  • a method for producing an agonistic antibody against human c -Mpl, comprising isolating and purifying an expression product of DNA encoding the antibody comprising said heavy chain and light chain. 5.
  • Examples of the DNA according to the present invention include the following.
  • a novel DNA comprising a base sequence encoding the amino acid sequence of the heavy chain variable region of an antagonistic antibody against human Mpl, wherein the amino acid sequence is selected from the group consisting of the following (a) to (d): DNA containing a nucleotide sequence encoding:
  • a novel DNA comprising a base sequence encoding the amino acid sequence of the light chain variable region of an antagonistic antibody against human Mpl, wherein the amino acid sequence is selected from the group consisting of the following (a) to (h): DNA containing the coding base sequence:
  • the DNA of (1) or (2) above contains an antibody containing a variable region and a constant region, respectively. DNA encoding a weight chain or light chain.
  • the upper hinge region of the heavy chain constant region of the antibody has any one amino acid sequence selected from the following amino acid sequences of (a) and (b), and the heavy chain constant region:
  • the C-terminal side after the middle hinge is the amino acid sequence of human immunoglobulin G4 or the amino acid sequence of G4.
  • serine 2-8 is replaced with proline and leucine 2-5 is substituted with glutamic acid.
  • DNA encoding a heavy chain comprising the amino acid sequence represented by SEQ ID NO: 2, wherein the C-terminal side after the middle hinge part of the antibody heavy chain is the amino acid sequence of human immunoglobulin G2 or the amino acid of the G2 DNA having an amino acid sequence obtained by substituting serine for position 331 in Kabat EU numbering in the sequence.
  • FIG. 1 shows agonistic antibody binding activity.
  • the binding activity of each antibody shown in the figure was examined by flow cytometry (Example 2) using FDCP-hMpl cells and FDCP2 cells (FDCP parent). Each antibody was shown to bind specifically to human c-Mpl.
  • Figure 2 shows the UT7 / TP0 assembly results.
  • Figure 3 shows the CFU-Mk Atsy results. This is the result of a colony formation assay (Example 6) using human umbilical cord blood CD34 + cells.
  • FIG. 4A shows the structure of the N5KG1 vector for recombinant antibody production.
  • C is a cytomegalovirus promoter / enhancer
  • B is ushi growth hormone poly.
  • Adenylation region N 1 is neomycin phosphotransferase exon 1
  • K is human immunoglobulin ⁇ constant region
  • G 1 is human immunoglobulin ⁇ 1 constant region
  • ⁇ ⁇ ⁇ ⁇ is mouse] 3 globulin major promoter
  • ⁇ 2 is Neomycin phosphotransferase exon 2
  • D are dihydrofolate reductase
  • VH is the heavy chain variable region
  • VL is the light chain variable region.
  • Figure 4 beta illustrates a recombinant antibody production, and human immunoglobulin naturally occurring, IgG4PE, IgG4344, IgG4344hl, IgG4344uh , the amino acid sequence of the CH 1 region and the hinge region of I g G4344uhm (mediation Pahinji and Mi Doruhinji) .
  • FIG. 4C-1 (ie, FIGS. 4C-1 to 4C-3) shows N5KG1_7-10, N5KG1_4_49
  • Figure 4C-2 is a continuation of Figure 4C-1.
  • Figure 4C-3 is a continuation of Figure 4C-2.
  • Fig. 4D-1 shows this figure (ie Fig. 4D-1 to Fig. 4D-3) shows the N5KG1-6-4-50, N5KG1-6-5-2 expression vector production process for recombinant antibody production. Indicates.
  • Figure 4D-2 is a continuation of Figure 4D-1.
  • Figure 4D-3 is a continuation of Figure 4D-2.
  • Figure 4E shows the sequence of the constant regions of the various modified heavy chains shown for the production of recombinant antibodies.
  • FIG. 4F-1 (ie, FIGS. 4F-1 to 4F-2) shows the 7-10G4344uhm heavy chain nucleic acid and amino acid sequences for recombinant antibody production.
  • Figure 4 F-2 is a continuation of Figure 4 F-1.
  • FIG. 4G shows the nucleic acid and amino acid sequences of the 7-10G4344uhm light chain for recombinant antibody production.
  • FIG. 5 shows the activity of the hinge-modified antibody.
  • A Activity of 4-49G1, 4-49G3311, 4-49G3331 in UT7 / TP0 cell proliferation assay.
  • B Activity of 7-10G4344uhm and 4-49G4344uhm in UT7 / TP0 cell proliferation assay.
  • Fig. 6A shows the agonist antibody in the signal transduction analysis (Example 11).
  • Fig. 6B shows the agonist antibody 6-5-2G1, in the signal transduction analysis (Example 11).
  • 6-5- Shows the signal transduction analysis results of 2G3344.
  • FIG. 7 shows the effect of human platelet priming. This shows the result of the test described in Example 12. Human platelet priming action was demonstrated by the agonist antibody 7-10G3311, 4-49G3311. In addition, it was shown that platelet aggregation does not occur only with an agonist antibody (no ADP added).
  • FIG. 8 is a graph showing changes in the number of platelets by administration of an agonist to a power quizal. As described in Example 13, agonist antibodies were administered to force quizzes and platelet counts were monitored. Arrows indicate the first (PEG-rHuMGDF) and second (agonist antibody) administration date.
  • Fig. 9A shows peripheral blood spleen when a test substance is administered after transplanting 1,000 (right figure) or 10,000 (left figure) CD34 + cells in a NOG cord blood transplant model mouse The time course of the number of plates is shown. In the figure, Pre indicates the platelet count before administration. '
  • Figure 9B shows NOG cord blood transplantation model mice at 6 weeks after transplantation when the test substance was administered after transplanting 1,000 (right) or 10,000 (left) CD34 + cells.
  • the number of bone marrow human progenitor cells (colony count; GM + E + GEM).
  • the number of progenitor cells is the total number of cells other than megakaryocytes, GM is granulocyte / macrophage, E is erythroid, GEM is olony-formmg-umt- granulocyte- macrophage-erythro.id.
  • the results are expressed as mean soil standard deviation (mean soil SD).
  • Vehicle represents PBS (phosphate buffered saline) as a control, and NT represents non-treated.
  • Fig. 9C shows the test sample administered at 6 weeks after transplantation after transplanting 1,000 (right) or 10,000 (34) CD34 + cells in N0G cord blood transplantation model mice. Peripheral blood human chimera rate is shown. Vehicle represents PBS (phosphate buffered saline) as a control, and NT represents non-treated.
  • PBS phosphate buffered saline
  • FIG. 10 shows the time course of the platelet count after administration of the agonistist antibody to human Mpl Tg mice.
  • TP0 or vehicle (PBS) was administered to the Tg mice, and 7-10G4344uhm (10 / zg) was administered to non-Tg (wild-type; Non-Tg) mice. Indicated. The result was expressed as an average person SEM.
  • Fig. 1 1 shows the agonist antibody 7-10G4344uhm (light chain variant antibody) to FM3A-hMpl cells The binding property of is shown.
  • Figure 12 shows the results of cell proliferation assay using UT-7 / TP0 cells for agonistist antibody 7-10G4344uhm (light chain mutant antibody).
  • Fig. 13 shows the results of cell proliferation assay using UT-7 / TP0 cells for the antibody 7-10G2322uhm2 in which the heavy chain constant region of the antibody 7-10 was mutated to G2322uhm2.
  • the present invention provides an anti-human c-Mpl agonistic antibody that acts on primary human cells.
  • the antibody of the present invention is obtained by immunizing a human antibody-producing mouse (for example, KM Mouse TM (Kirinville)) with a human Mpl recombinant protein or a human Mpl-expressing cell, and using a conventional monoclonal antibody production method. Can be separated.
  • a human antibody-producing mouse for example, KM Mouse TM (Kirinville)
  • KM Mouse TM Human Mpl TM (Kirinville)
  • a human Mpl recombinant protein or a human Mpl-expressing cell can be separated.
  • an antibody means an antibody having a Fab region, a hinge region, and an Fc region, and is a naturally occurring antibody and a monoclonal antibody obtained by a method known per se in a range having a similar configuration.
  • Antibody-produced hybridomas, or antibodies that have been acquired once and genetically engineered using them, and further modified by site-directed mutagenesis and genetically engineered Includes antibodies.
  • the antagonistic antibody and heavy chain modified agonistist antibody against human cMpl according to the present invention are as described above.
  • agonist antibodies transmit signals by binding to a target molecule on the cell membrane and forming a complex.
  • Cytokine receptor family one to form a homodimer, e.g., erythropoietin receptor (EpoR), G-CSF receptor (G_CSFR), Agonisuto antibodies against Toronbopoe Chin receptor (c _Mpl), etc., bivalent antibodies It is thought that a dimer is formed by combining with two molecules. Many antagonist antibodies This suggests that the fragment alone does not show activity.
  • Example 2 As shown in Example 2 described later, the present inventors have devised the immunization method and obtained anti-human c-Mplagonist antibody having high activity with the full-length antibody. Ingenuity is, for example, immunization using high-expressing cell lines or immunization using constitutively active mutant receptor expression cells. This agonistic antibody has been shown to induce cochlear formation in the cochlear assay using human umbilical cord blood CD34 + cells described in Example 6 below, and is expected to be useful as a pharmaceutical product.
  • the agonistic antibody has been shown to induce cochlear formation in the cochlear assay using human umbilical cord blood CD34 + cells described in Example 6 below, and is expected to be useful as a pharmaceutical product.
  • the present inventors have devised to increase the flexibility of the hinge part, thereby increasing the efficiency of complex formation and enhancing the agonist activity.
  • a highly flexible sequence for example, a sequence similar to that of a glycine linker can be considered.
  • the most flexible IgG3 hinge region can be used among human IgG. In order not to impair the low antigenicity of the antibody, it is desirable to use a naturally occurring sequence as much as possible. Therefore, the hinge sequence of IgG3 is more preferable.
  • the present inventors have produced a constant region optimal for agonist antibodies having low cytotoxic activity and high hinge flexibility.
  • This constant region has an upper hinge region of human IgG3, and the region on the C-terminal side after the middle hinge is a human IgG4 or IgG2 sequence.
  • an antagonist antibody having both safety and high activity can be produced.
  • the antibody of the present invention can be produced by various methods. First, the antibody-producing hybridoma of the present invention must be obtained.
  • the antigen of the present invention as described in Example 1 described later is used to immunize mice and the like, and particularly when human antibodies are obtained, immunize non-human mammals such as human antibody-producing transgenic mice. .
  • Monoclonal antibodies were cultured and used for immunization by culturing a hybridoma obtained by fusing antibody-producing cells obtained from an immunized animal and myeloma cells (myeloma cells) without autoantibody production ability. It can be obtained by selecting a clone that produces a monoclonal antibody exhibiting a specific affinity for an antigen.
  • agonist antibodies from the acquired antibody group.
  • an established method for measuring the activity of a ligand for a receptor against which agonist antibodies act can be used, and an agonist for human C-Mpl can be used.
  • the selection of the antibody can be appropriately performed using a method already established as a method for measuring TP0 activity such as UT 7 / TP0 cell proliferation assay shown in Example 5 described later. '
  • An antagonistic antibody against human c-Mpl according to the present invention, particularly a monoclonal antibody
  • the following steps are included. (1) Purification of biopolymers used as an immunogen and / or production of cells that overexpress antigenic proteins on the cell surface, (2) After immunization by injecting antigens into animals (3) Preparation of myeloma cells (myeloma), (4) Production of antibodies, after collecting blood and testing the antibody titer to determine the timing of removal of the spleen, etc.
  • the method for producing the antibody is not limited thereto, and for example, antibody-producing cells other than spleen cells and myeloma should be used. You can also.
  • c-Mpl protein In general, when obtaining a human c-mpl antibody, the primary structure of human c_Mpl protein is known (see Genbank: NP-005364). Therefore, from the amino acid sequence of c-Mpl by a method well known to those skilled in the art. A peptide can be chemically synthesized and used as an antigen, or a solubilized c-Mpl recombinant protein lacking the transmembrane region and intracellular region of c-Mpl can also be used as an antigen.
  • human c-Mpl-expressing cell lines such as various human megakaryocyte cell lines and forced expression lines as an antigen
  • human C-Mpl-expressing cell lines various human megakaryocyte cell lines and forced expression lines are known, but the expression level of c_Mpl in these cell lines is as low as several thousand molecules per cell. Not suitable for.
  • the expression strain FDCP-hMpl FEBS Lett. 1996 Oct
  • human c_Mpl was introduced into FDCP2
  • a mouse hematopoietic cell line a mouse hematopoietic cell line.
  • mice cell line and a cell line that is compatible with MHC as much as possible, and a high expression line into which human C-Mpl is introduced.
  • the cells described in Example 1 described later pEF-MPL635 or pCMV-MPL635 carrying the full-length human c-mpl gene as an expression vector and mouse cell lines L929 and FM3A as hosts) Can be mentioned.
  • human c-immediately constitutively active mutants eg, the 508th Trp mutates to Ser and constitutively transmits an agonist signal in a ligand-independent manner.
  • a cell line in which Abe M et al., Leukemia. 2002 Aug; 16 (8): 1500-1506) is forcibly expressed in the same manner may be used.
  • Such a mutant is expected to have a different steric structure from the wild type, and an antibody having a high affinity for such a constitutively active mutant may have a strong agonist activity.
  • forced expression cell lines can also be used as an antigen in combination with human cMPL or its extracellular soluble region as appropriate.
  • the antigen obtained in the above (1) is mixed with Freund's complete or incomplete adjuvant, or an auxiliary agent such as force Limyoban, and an experimental animal is immunized as an immunogen.
  • an experimental animal a mouse (human antibody-producing mouse) having the ability to produce a human antibody by genetic modification is optimal.
  • the human antibody-producing mouse (for example, KM mouse TM ) used in the present invention is deficient in endogenous murine immunoglobulin (Ig) heavy chain and mouse / c light chain, and human Ig heavy chain gene.
  • Ig immunoglobulin
  • SC20 Chromosome 14 fragment
  • This mouse is produced by crossing a strain A mouse with a human Ig heavy chain locus with a strain B mouse with a human Ig K chain transgene.
  • Strain A is a homozygous for both endogenous Ig heavy chain and K light chain disruption and has a mouse strain carrying a progeny transferable chromosome 14 fragment (SC20) (Tomizuka. Et al.,
  • Line B is also homozygous for both the endogenous mouse Ig heavy chain and ⁇ light chain deficient, and human Ig / chain transcripts. It is a mouse strain (Nat Biotechnol., 1996 Vol4: 845) that retains Sugene (KCo5). Therefore, KM mice have the ability to produce human antibodies and are mice lacking mouse Ig heavy chain and ⁇ chain.
  • the immunogen administration method for mouse immunization may be subcutaneous injection, intraperitoneal injection, intravenous injection, intradermal injection, intramuscular injection, footpad injection, but intraperitoneal injection, footpad injection or intravenous injection Is preferred.
  • Immunization can be repeated once or multiple times at appropriate intervals (preferably at intervals of 2 to 4 weeks). Thereafter, the antibody titer against the antigen in the serum of the immunized animal is measured, and if an animal with a sufficiently high antibody titer is used as a source of antibody-producing cells, the effect of the subsequent operation can be enhanced.
  • antibody-derived cells derived from animals 3 to 5 days after the final immunization are preferably used for subsequent cell fusion.
  • the antibody titer measurement method used here includes flow cytometry, radioisotope immunoassay (hereinafter referred to as “RIA method”), solid-phase enzyme immunoassay (hereinafter referred to as “ELISA method”), fluorescence
  • RIA method radioisotope immunoassay
  • ELISA method solid-phase enzyme immunoassay
  • fluorescence Various known techniques such as antibody method and passive hemagglutination method can be mentioned. From the viewpoint of detection sensitivity, rapidity, accuracy, and possibility of automation of operation, flow cytometry method or ELISA method is more suitable. Is preferred.
  • the antibody titer in the present invention can be measured according to the following procedure.
  • a specimen containing human antibody eg mouse serum, hybridoma culture supernatant, purified antibody, etc.
  • an antibody against a fluorescently labeled human antibody is added as a secondary antibody to bind to the human antibody, and after washing, the amount of secondary antibody bound to the cells is measured by fluorescence to calculate the antibody titer.
  • mice As a myeloma, the ability to use cells having no autoantibody-producing ability derived from mammals such as mice, rats, monoremots, hamsters, rabbits or humans.
  • mammals such as mice, rats, monoremots, hamsters, rabbits or humans.
  • cell lines obtained from mice For example, 8-azaguanine resistant mice
  • FCS urinary fetal serum
  • IMDMJ Iscove's Modified Dulbecco's Medium
  • DMEM Dulbecco's Modified Eagle Medium
  • Antibody-producing cells are plasma cells and lymphocytes that are precursor cells thereof, which may be obtained from any part of the individual, and generally include the spleen, lymph nodes, bone marrow, tonsils, terminal blood, or these Spleen cells are most commonly used, although they can be obtained from appropriate combinations.
  • a site where antibody-producing cells are present such as the spleen
  • a site where antibody-producing cells are present such as the spleen
  • spleen cells that are antibody-producing cells are prepared.
  • splenocytes and myeloma can be fused.
  • the most commonly used method to fuse these spleen cells with the myeloma obtained in step (3) is a method using polyethylene glycol, which has relatively low cytotoxicity and is easy to fuse. . This method consists of the following procedures, for example.
  • Spleen cells and myeloma are thoroughly washed with serum-free medium (eg, DMEM) or phosphate buffered saline (hereinafter referred to as “PBS”), and the ratio of the number of spleen cells to myeloma is 5: 1
  • serum-free medium eg, DMEM
  • PBS phosphate buffered saline
  • HAT hypoxanthine / aminopterin / thymidine
  • spike medium normal medium containing leukin-6
  • plate 5% Incubate at 37 ° C for 2 weeks in the presence of carbon dioxide. Supplement with HAT medium as needed.
  • the myeloma cell is an 8-azaguanine resistant strain, that is, a hypoxanthine / guanine / phosphoribosyltransferase (HGPRT) deficient strain
  • HGPRT hypoxanthine / guanine / phosphoribosyltransferase
  • the myeloma cell that has not fused, and the fusion cell of myeloma cells Cannot survive in medium containing HAT.
  • fused cells between antibody-producing cells or a hybridoma between antibody-producing cells and myeloma cells can survive, but fused cells between antibody-producing cells have a long life.
  • the hybridoma that is a fusion cell of the antibody-producing cell and the myeloma cell survives, and as a result, the hybridoma can be selected.
  • change the medium to a medium in which aminopterin is removed from the HAT medium hereinafter referred to as “HT medium”.
  • HT medium a medium in which aminopterin is removed from the HAT medium
  • a part of the culture supernatant is collected, and the anti-human c-Mpl antibody titer is measured by, for example, the flow cytometry method.
  • the method using the 8-azaguanine-resistant cell line has been described above, but other cell lines can be used depending on the selection method of the hybridoma, and in this case, the composition of the medium used also changes.
  • This cloning method includes limiting dilution in which one well of the plate is diluted to contain one hybridoma, soft agar in which the colonies are collected by culturing in soft agar, and one micromanipulator.
  • limiting dilution in which one well of the plate is diluted to contain one hybridoma, soft agar in which the colonies are collected by culturing in soft agar, and one micromanipulator.
  • sorter clone there is a method of extracting and cultivating each cell and “sorter clone” in which a single cell is separated by a cell sorter, but the limiting dilution method is simple and often used.
  • a suitable method for screening includes a method in which human Mpl is expressed in mammalian cells and cell proliferation assay is performed.
  • human Mpl is expressed in mammalian cells and cell proliferation assay is performed.
  • the mouse cell line BaF3 expressing cells with human Mpl can be used (Orita et al. Blood. 2005 Jan 15; 105 (2): 562-6.).
  • human cells expressing human Mpl must be selected.
  • the growth assay method used is more preferred. Specific examples of the system using human cells include the cell proliferation assay using UT7 / TP0 cells described in Example 5 described later.
  • the hybridoma is cultured by changing the medium from HT medium to normal medium.
  • Large-scale culture is performed by rotary culture using a large culture bottle, spinner culture, or culture using a holo-fiber system.
  • an anti-human c-Mpl monoclonal antibody can be obtained.
  • a large amount of anti-human c_Mpl monoclonal antibody can be obtained by growing the hybridoma in the abdominal cavity of mice of the same strain (eg, BALB / c) or nu / nu mice, rats, guinea pigs, hamsters, or rabbits.
  • a commercially available monoclonal antibody purification kit for example, MAbTrap GII kit; manufactured by Amersham Pharmacia Biotech
  • the monoclonal antibody obtained by this method has high antigen specificity for human C- Mpl.
  • Determination of the isotype and subclass of the monoclonal antibody thus obtained can be carried out as follows. First, as an identification method, Octelrony
  • the octelloni method is simple, but concentration is necessary when the concentration of the monoclonal antibody is low.
  • the culture supernatant is reacted with the antigen-adsorbing solid phase as it is, and further, antibodies corresponding to various immunoglobulin isotypes and subclasses are used as secondary antibodies. It is possible to identify isotypes and subclasses.
  • a gene encoding a monoclonal antibody is cloned from an antibody-producing cell such as a hybridoma, inserted into an appropriate vector, and introduced into a host (eg, a mammalian cell line, yeast cell, insect cell, etc.)
  • a host eg, a mammalian cell line, yeast cell, insect cell, etc.
  • Recombinant antibodies produced using gene recombination techniques can also be prepared (PJ Delves., ANTIBODY PRODUCTION ESSENTIAL TECHNIQUES., 1997 WILEY, P. Shepherd and C. Dean., Monoclonal Antibodies., 2000 OXFORD UNIVERSITY PRESS, JW Goding., Monoclonal Antibodies: principles and practice., 1993 ACADEMIC PRESS).
  • the present invention relates to a nucleic acid comprising a gene sequence of an antibody possessed by a hyperdrioma that produces the antibody of the present invention, and in particular, a nucleic acid of a heavy chain variable region and a light chain variable region of an antibody that is produced by the following hyperlipidoma of the present invention. Is also included.
  • the nucleic acid includes DNA and RNA.
  • PCR is performed on DNA encoding the L chain V region, L chain C region, H chain V region and H chain C region of the monoclonal antibody, respectively.
  • the method of preparing by is adopted.
  • oligo DNA designed from an antibody gene or amino acid sequence can be used, and DNA prepared from a hybridoma can be used as a cage. These DNAs are incorporated into one appropriate vector and introduced into a host for expression, or these DNAs are each incorporated into an appropriate vector for co-expression.
  • the vector should be a phage or plasmid that can grow autonomously in the host microorganism. Used.
  • the plasmid DNA include plasmids derived from Escherichia coli, Bacillus subtilis, or yeast, and phage DNA includes fly phage.
  • Examples of the host used for transformation include eukaryotic cells because the three-dimensional structure of the antibody can be correctly constructed, and examples thereof include yeast, animal cells (COS cells, CH0 cells, etc.), and insect cells.
  • yeast animal cells
  • COS cells CH0 cells, etc.
  • insect cells insect cells.
  • an N5KG1-Val Lark vector UIC pharmaceuticals: US patent 6001358
  • This vector is an expression vector used to express recombinant antibodies in animal cells.It has two CMV promoters / enhancers, and each contains a heavy chain and light chain variable region cloning site downstream. Have. Further downstream, a gene sequence encoding a human ⁇ 1 chain constant region and a human c chain constant region is previously stored.
  • the light chain variable region is the human c chain constant region and the heavy chain variable region is Antibodies linked to the human ⁇ ⁇ constant region can be expressed.
  • Animal cells introduced with this vector produce antibodies (human IgGl) in the culture medium.
  • a vector containing a different heavy chain constant region gene can also be used.
  • the N5KG4PE vector (made by IDEC pharmaceuticals) is a constant region gene that has the two mutations (Ser228Pro,
  • IgG4PE having an arbitrary variable region can be expressed by incorporating an arbitrary heavy chain and light chain variable region gene sequence into the N5KG4PE vector. Furthermore, it is possible to produce antibodies with various constant regions by modifying the heavy chain or light chain gene. For example, it is possible to change the subclass between antibody domains.
  • the antibody heavy chain constant region has a domain structure of CH1-hinge-CH2-CH3 from the N-terminal side. In Example 8, it is possible to prepare a heavy chain constant region in which the hinge region as shown is the sequence of human IgG3 and CH1, CH2 and CH3 are the sequences of human IgG2 or human IgG4.
  • the expression vector for mammalian cells used in the present invention is not limited to the above.
  • another expression vector using the CMV promoter / enhancer described above may be used as a base sequence for controlling expression, or a different known promoter / enhancer (one or more) may be used as an expression control sequence. Moyore.
  • promoters examples include poliovirus, fowlpox virus (UK2211504 published July 5, 1989), adenovirus (eg, adenovirus 2), ushi papilloma virus, avian sarcoma virus, cytomegalovirus, retrovirus Promoters derived from the genome of viruses such as hepatitis B, hepatitis B virus and most preferably simian virus 40 (SV40), heterologous mammalian promoters (eg actin promoter, immunoglobulin promoter, heat shock promoter) be able to.
  • adenovirus eg, adenovirus 2
  • ushi papilloma virus eg, avian sarcoma virus
  • cytomegalovirus retrovirus Promoters derived from the genome of viruses such as hepatitis B, hepatitis B virus and most preferably simian virus 40 (SV40)
  • heterologous mammalian promoters eg act
  • Enhancers that act on promoters to increase transcription include known mammalian gene-derived enhancers (globin, elastase, albumin, ⁇ -fetoprotein, and insulin) and eukaryotic virus-derived enhancers (The late SV40 enhancer (bplOO-270), the Polio-ma enhancer, and the adenovirus enhancer on the late side of the replication origin can be used.
  • mammalian gene-derived enhancers globin, elastase, albumin, ⁇ -fetoprotein, and insulin
  • eukaryotic virus-derived enhancers The late SV40 enhancer (bplOO-270), the Polio-ma enhancer, and the adenovirus enhancer on the late side of the replication origin can be used.
  • the expression vector can contain sequences necessary for termination of transcription and stabilization of mRNA. Such sequences can usually be obtained from 5 and sometimes 3 'untranslated regions of eukaryotic or viral DNA or cDNA.
  • Methods for introducing a gene into a host include any method (for example, a method using calcium ion, an electroporation method, a spheroplast method, a lithium acetate method, a calcium phosphate method, a lipofusion method, etc.). Still, methods for introducing genes into animals described later include microinjection, ES cells Examples of such methods include gene transfer using the electroporation method and the nuclear transfer method.
  • the target antibody can be obtained by culturing the transformant and collecting it from the culture supernatant.
  • a medium suitable for the host to be used is used, and a stationary culture method, a culture method using a roller bottle, or the like is employed.
  • the antibody produced outside the cell is purified by using the culture medium as it is or by removing the cells by centrifugation, etc. Subsequently, the target antibody is isolated and purified from the culture by using general biochemical methods using various kumatography used for protein isolation and purification alone or in appropriate combination. can do.
  • transgenic animal production technology an animal host in which the gene of the target antibody is integrated into the endogenous gene, for example, a transgenic animal, a transgenic animal, a transgenic animal or a transgenic pig, is produced. It is also possible to obtain a large amount of monoclonal antibodies derived from the antibody gene in milk secreted from the transgenic animal (Wright, G., et al. (1991) Bio / Technology 9, 830-834).
  • a preferred method is the method using the gene recombination technique exemplified in 4 of the above [Means for Solving the Problems], but the method is not limited thereto. It is not something.
  • a nucleotide sequence that encodes the amino acid sequence of the heavy chain variable region of an antibody antibody against human Mpl and a nucleotide sequence that encodes an amino acid sequence selected from (a) to (d) below: Contains DNA:
  • DNA encoding the amino acid sequences (a) to (d) of these variable regions was obtained from the hybridoma strain obtained by the above-described method for obtaining a monoclonal antibody-producing hybridoma against human Mpl as described in Example 7 below. Extracted mRNA by a conventional method and obtained by 5 'RACE method using a primer based on the known antibody constant region amino acid sequence. The plasmid containing each DNA encoding the variable region is an independent administrative law. National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center An international deposit based on the Budapest Treaty was made on March 14, 2006 at Tsukuba Center No. 6).
  • the light chain variable region constituting the agonist antibody of the present invention includes, as a specific example, the amino acid sequence shown in SEQ ID NO: 3, 5, 7 or 9, and 1 in the framework region of these amino acid sequences. Or may include deletions, substitutions, additions or insertions of several amino acid residues, or at least 85%, 86%, 87%, 88% or the framework region sequences of these amino acid sequences 89%, preferably at least 90%,
  • the framework region consists of three CDRs (complementarity-determining regions) in the variable region, ie, RASQGISS (A or T) LA in the amino acid sequence shown in SEQ ID NO: 3, 5, or 7. (Amino acid positions 24-34), DASSLES (amino acid positions 50-56), and QQFNSYP (L or Y or W) T (amino acid positions 89-97), excluding the amino acids shown in SEQ ID NO: 9 In the region, RASQSVSSSYLA (amino acid positions 24-35), DASSRAT (amino Non-acid sequence 51-57), and QQYGSSPIT (amino acid positions 90-98).
  • RASQSVSSSYLA amino acid positions 24-35
  • DASSRAT amino Non-acid sequence 51-57
  • QQYGSSPIT amino acid positions 90-98.
  • the mutant antibody has almost the same agonist activity as that of the non-mutant antibody, that is, FM3A-hMpl cells. It has the ability to bind to and activate the human thrombopoietin receptor of FM3A-hMpl cells and / or to proliferate UT-7 / TP0 cells.
  • Conservative amino acids are a group of amino acids having similar properties such as charge, structure, and polarity. For example, basic amino acids (Arg, His, Lys), acidic amino acids (Glu, Asp), nonpolar amino acids (Ala, Leu, Ile, Val, Gly, Pro), polar amino acids (Ser, Thr, Cys, Met, Asn, Gin), and aromatic amino acids (Phe, Tyr, Trp).
  • sequence identity represents the degree of identity between amino acid (or nucleotide) sequences when two or more sequences are aligned and compared with gaps or without gaps. Or the number of identical amino acids (or nucleotides) relative to the number of nucleotides.
  • sequence identity can be determined by accessing a data bank such as NCBI (USA) as necessary and using a known algorithm such as BLAST or FASTA for sequence search.
  • Mutation can be introduced by applying site-directed mutagenesis, PCR (using primers containing mutations), etc. to DNA encoding an amino acid sequence that does not contain mutations. it can. Mutagenesis methods are described, for example, in Sambrook et al., Molecular A Laboratory Manual, Cold Spring Hobor Laboratory Press (1989).
  • the DNA of the present invention may further contain a base sequence encoding a heavy chain or light chain constant region in addition to the variable region.
  • a base sequence encoding a heavy chain or light chain constant region in addition to the variable region.
  • it is a nucleotide sequence encoding the heavy chain constant region obtained by modifying the heavy chain variable region described above and the heavy chain constant region described in the method for producing an antibody according to the present invention.
  • the heavy chain constant region modification described in the antibody production method of the present invention can be obtained by a well-known genetic engineering modification technique based on the deposited DNA and the known human antibody constant region sequence. it can. 4.
  • Pharmaceutical use and pharmaceutical composition of an antagonistic antibody against human c-Mpl The antagonistic antibody against human c-Mpl according to the present invention binds to and activates the c-MPL receptor and / or ( It has the ability to stimulate platelet production ("platelet producing activity”) and the ability to stimulate platelet precursor production (“megakaryocyte producing activity”), both in vivo and in vitro.
  • the human c-Mpl receptor is expressed not only in megakaryocytes but also in hematopoietic stem cells.
  • PEG-rHuMGDF administration has also been reported to increase the number of erythroblasts and granulocyte / macrophage progenitors in the bone marrow (Stem Cell, 14: 651-660, 1996).
  • stem Cell 14: 651-660, 1996.
  • proliferation of progenitor cells other than the megakaryocyte system of mice was observed by administration of PEG-rHuMGDF, but proliferation of human progenitor cells was not observed.
  • the number of human erythrocytes and granulocyte-macrophage lineage progenitor cells in the bone marrow was significantly higher in the antagonistic antibody against human c-Mpl (Example 14). This suggests that an antagonistic antibody against human c-Mpl can selectively signal human cells and promote the engraftment of not only megakaryocytes but also other cell lines.
  • a condition to be treated by a pharmaceutical composition comprising an agonistic antibody against human C-Mpl according to the present invention as an active ingredient is generally a megakaryocyte / deficiency of megakaryocytes present or expected or expected in the future.
  • a condition with platelet deficiency eg, due to planned surgery or platelet donation).
  • Such a condition may be caused by a (temporary or permanent) deficiency of active Mpl ligand in vivo.
  • the compositions of the present invention can be used to preventively or therapeutically treat thrombocytopenia in a patient in need of treatment for a platelet deficiency condition, ie, thrombocytopenia.
  • pancytopenia platelet deficiency
  • chemotherapy and other therapies with various drugs, radiation therapy, surgery, accidental bleeding, and other specific conditions.
  • Exemplary specific conditions that can be treated according to the present invention with thrombocytopenia include the following: aplastic anemia; idiopathic or immune thrombocytopenia (ITP), eg idiopathic thrombocytopenic purpura associated with breast cancer; epilepsy associated with HIV and thrombotic thrombocytopenic purpura associated with HIV; metastatic tumors causing thrombocytopenia; systemic lupus erythematosus, eg neonate Lupus syndrome splenomegaly; Fanko-syndrome; vitamin B12 deficiency; folic acid deficiency; May-Hedarin abnormality; Wiscott-Aldritzchi syndrome; chronic liver disease; myelodysplastic symptoms associated with thrombocytopenia group; Moglobinuria; acute deep thrombocytopenia after C7E3 Fab (Abciximab) therapy; alloimmune thrombocytopenia, eg maternal alloimmune
  • the antagonist antibody of the present invention For expected platelet deficiencies (eg, due to future surgery), it may be possible to administer the antagonist antibody of the present invention as an active ingredient over a period of days to hours before platelets are needed. . In emergency situations (eg, accidental and massive blood loss), it may be possible to administer the antagonist antibody of the invention along with blood or purified platelets. Alternatively, it may be possible to administer the agonist antibody of the present invention as an active ingredient against pancreatic cell deficiency (eg, by umbilical cord blood transplantation).
  • Particularly preferred treatment targets are (1) thrombocytopenia associated with idiopathic thrombocytopenic purpura or liver disease, (2) cancer chemotherapy, aplastic anemia, myelodysplastic syndrome (MDS;), bone marrow Mention may be made of thrombocytopenia and / or pancytopenia associated with transplantation or cord blood transplantation.
  • the agonist antibodies to human C-MPL of the present invention may also be useful in maintaining the viability or shelf life of platelets and Z or megakaryocytes and related cells. Thus, it would be useful to include an effective amount in a composition containing such cells.
  • the pharmaceutical composition comprising an agonistic antibody against human c-MPL according to the present invention as an active ingredient may be for injection or for oral, nasal, transdermal or other administration forms.
  • administration forms include, for example, intravenous, intradermal, intramuscular, intramammary, intraperitoneal, intrathecal, intraocular, retromedullary, intrapulmonary (eg, aerosolized drugs) or subcutaneous injection (for prolonged release) ), Sublingual, anal, vaginal or surgical transplantation, eg administration by subsplenic serosa, brain or cornea implantation.
  • the treatment may consist of a single dose or multiple doses over a period of time.
  • compositions comprising an effective amount of an agonist antibody to human C-MPL according to the present invention and a pharmaceutically acceptable diluent, preservative, solubilizer, emulsifier, adjuvant and a carrier is provided. Included in the invention.
  • Such compositions include various buffer contents (eg,
  • Tris-HC1, acetate, phosphate), pH and ionic strength diluents additives such as surfactants and solubilizers (eg Tween 80, Polysorbate 80), antioxidants (eg ascorbic acid) Sodium metabisulfite), preservatives (eg, Thimersol, benzyl alcohol) and bulking substances (eg, ratatoses, mannitol); in particulate formulations of polymer compounds such as polylactic acid, polydaricholic acid, or in ribosomes Includes encapsulated substances. If desired, it may further comprise other pharmaceutically acceptable liquid, semi-solid or solid diluents that act as pharmaceutical vehicles, excipients or vehicles.
  • additives such as surfactants and solubilizers (eg Tween 80, Polysorbate 80), antioxidants (eg ascorbic acid) Sodium metabisulfite), preservatives (eg, Thimersol, benzyl alcohol) and bulking substances (eg, ratato
  • compositions include polyoxyethylene sorbitan monolaurate, magnesium stearate, methyl- and propylhydroxybenzoate, starch, sucrose, dextrose, gum arabic, calcium phosphate, mineral oil, cocoa butter and theobroma oil. It is not limited to these.
  • the composition can be manufactured in liquid form or as a dry powder (eg, lyophilized form). Implantable sustained release formulations and transdermal formulations are also contemplated.
  • the regimen involved in the treatment of the above conditions may include a variety of factors that modify the action of the drug (eg, patient age, condition, weight, sex and diet, severity of any infection, time of administration and other It will be determined by the attending physician taking into account clinical factors).
  • the dose is 100 g to 1 mg / kg body weight, preferably 10 to 100 g / kg body weight, more preferably l lO wg / kg body weight of the antibody of the present invention per day. Or at longer or shorter intervals (eg, every other day, twice a week, weekly, or twice or three times daily) in equal doses.
  • the pharmaceutical composition comprising an agonist antibody to human c-MPL according to the present invention as an active ingredient is used alone or in combination with other cytokines, soluble Mpl receptor, hematopoietic factor, interleukin, or growth factor.
  • cytokines soluble Mpl receptor
  • hematopoietic factor hematopoietic factor
  • interleukin interleukin
  • megakaryocyte stimulating factors such as meg-CSF, stem cell factor (SCF), leukemia inhibitory factor (LIF), oncostatin M (0SM) or other molecules with megakaryocyte stimulating activity are used with Mpl ligand be able to.
  • SCF stem cell factor
  • LIF leukemia inhibitory factor
  • 0SM oncostatin M
  • Additional representative cytokines or hematopoietic factors for such co-administration include
  • IL-1 alpha IL-1 beta, IL-2, IL-3, IL-4, IL5, IL-6, IL-11, colony stimulating factor-1 (CSF-1), M-CSF, SCF, GM-CSF ⁇ granulocyte colony stimulating factor (G-CSF), EP0, interferon-anolefa (IFN-anolefa), consensus interferon,
  • IFN-beta IFN-gamma
  • IL-7 IFN-gamma
  • IL_8 IL-9, IL-10, IL-12, IL-13, IL_14, IL-15,
  • IL-16 IL-16, IL-17, IL-18, Tombopoetin (TP0), Angiopoetin, such as Ang-1,
  • Ang_2, Ang-3, Ang_4, Ang-Y human angiopoietin-like polypeptide, vascular endothelial growth factor (VEGF), angiogenin, bone morphogenic protein-1, bone morphogenetic protein-2, bone Osteogenic factor-3, osteogenic factor-4, osteogenic factor-5, osteogenic factor-6, osteogenic factor-7, osteogenic factor-8, osteogenic factor-9, osteogenic factor-10, osteogenic factor -11, Bone morphogenetic factor-12, Bone morphogenetic factor-13, Bone morphogenetic factor-14, Bone morphogenetic factor-15, Bone morphogenetic factor receptor IA, Bone morphogenetic factor receptor IB, Brain-derived neurotrophic factor, Ciliary body Neurotrophic factor, ciliary body Neurotrophic factor Q; Cytokine inducible neutrophil chemotactic factor 1, Cytokine inducible neutrophil chemotactic factor 2 ⁇ , Cytokine inducible neutrophil chemotactic factor 2 ⁇ , e
  • a pharmaceutical composition containing an agonist antibody to human c-Mpl according to the present invention as an active ingredient is a particularly effective means of stimulating the production of platelets. Is expected. Furthermore, hematopoietic stem cell production It is expected to be a useful means for stimulation. The doses listed above will be adjusted to compensate for such additional ingredients in the therapeutic composition. The progress of the treated patient can be monitored by conventional methods.
  • hMpl constitutively transmits an agonist signal in a ligand-independent manner
  • mutants are expected to differ in conformation from the wild type.
  • Antibodies with high affinity for such constitutively active mutants may exhibit strong agonist activity. Therefore, an expression vector of a constitutively active mutant (hMpl-Ser) was also prepared, and an expression cell was prepared and used for immunization.
  • humpl-Pasl2 Bartley TD et al., a plasmid DNA that holds the full-length cDNA of hMpl.
  • the amplified PCR fragments were recovered by ethanol precipitation, separated by agarose gel electrophoresis, and purified by QIAquick Gel Extraction Kit (Qiagen), which is a DNA purification kit using a membrane.
  • Qiagen QIAquick Gel Extraction Kit
  • the purified DNA fragment P CR4Blunt- T0P0 vector (Toyobo Co.) performed subcloned one Jung, plasmid DNA of the clones obtained were analyzed nucleotide sequence of Insato DNA for. M13-20FW and M13RV were used as primers for DNA base sequencing.
  • DNA sequence analysis of the inserted portion was carried out, and a plasmid DNA having no difference from the sequence of hMpl (GenBank ACCESSION: M90102) and having a primer sequence as designed was selected.
  • a plasmid DNA having no difference from the sequence of hMpl GenBank ACCESSION: M90102
  • DNA of about 2 kb was recovered and purified by agarose gel electrophoresis.
  • the purified hMpl whole-region DNA fragment was ligated to each expression vector DNA using T4 DNA ligase and introduced into E. coli DH10B to obtain transformants.
  • the DNA base sequence of the plasmid DNA of the transformant containing the insert DNA was analyzed to obtain pEF-MPL635 and PCMV-MPL635 into which the full-length cDNA of hMpl was inserted.
  • Mpl_Fl 5 '-AGAGAGAG AG GAATTCGCCA CCATGCCCTC CTGGGCCCTC TT-3' (SEQ ID NO: 12)
  • Mpl_R2 5 '-AGAGAGAGAG CGGCCGCTCA AGGCTGCTGC CAATAGCTTA GTG -3' (SEQ ID NO: 13)
  • HMpl mutant that has been reported to activate intracellular signals in a TP0-independent manner (mutant that converts 508th Trp to Ser, Abe M et al., Leukemia. 2002)
  • Mut_MplSer508 was used as the oligonucleotide for mutation introduction (5 ′ end phosphorylated). After synthesizing the mutagenized strand by annealing the oligonucleotide for mutagenesis of interest and the selection oligonucleotide included in the kit above with the vertical DNA to synthesize the mutagenized strand, only the mutant will grow in the presence of GeneEditorTM Antibiotic Selection Mix. Mutants were selected.
  • the dsDNA template was incubated under alkaline conditions (0.2 M Na0H, 0.2 raMEDTA (final concentration)) at room temperature for 5 minutes, and then 2 M ammonium acetate (pH 4.6) was added for 10 minutes.
  • a plasmid DNA was prepared from a transformed Escherichia coli cultured by transforming to competent cell BMH 71-18 mutS in the presence of GeneEditorTM Antibiotic Selection Mix, and after further transformation of competent cell JM109 with the DNA,
  • Mut_MplSer508 5,-CTGCTGCTGC TGAGGTCGCA GTTTCCTGCA CACTAC-3 '(SEQ ID NO: 16)
  • the prepared pEF-MPL635 vector (1 / z g) was mixed with Lipofectamine reagent (purchased from Invitrogen) and Lipofectamine PLUS (purchased from Invitrogen) reagent, and further mixed with serum-free Dulbecco's Modified Eagle Medium (DMEM) medium.
  • DMEM Dulbecco's Modified Eagle Medium
  • the mixture was added to L929 cells cultured in a 6-well plate at 1.5xl05cels / wel and DNA was introduced into the cells by culturing for 3 hours.
  • the cells were cultured in DMEM medium supplemented with 10% ushi fetal serum (FBS), and the next day, 10 / g / mL Blasticidin (purchased from Invitrogen) was added to the medium to select drug resistant cells.
  • FBS ushi fetal serum
  • c-Mpl-expressing cells were isolated by fluorescence activated cell sorting (FACS) using an anti-c-Mpl antibody, and a full-length human c_Mpl-expressing L929 cell line (hereinafter L929-hMpl) was established.
  • FACS fluorescence activated cell sorting
  • L929-hMpl human c_Mpl-expressing L929 cell line
  • the pEF-MPL635 vector was introduced into FM3A cells in the same manner as 3) above, and a full-length human c-Mpl-expressing FM3A cell line (hereinafter FM3A-hMpl) was established.
  • the cells were cultured and maintained in Roswell-Park Memorial Institute (RPMI) medium supplemented with 5 ⁇ g / mL Blasticidin and 10% FBS.
  • RPMI Roswell-Park Memorial Institute
  • the above pEF-MPL635-Ser vector was introduced into FM3A cells in the same manner as in 3) to establish an hMpl-Ser-expressing FM3A cell line (hereinafter FM3A-hMpl-Ser).
  • the cells were cultured and maintained in RPMI medium supplemented with 5 ⁇ g / mL Blasticidin and 10% FBS.
  • DNA encoding the solubilized human C-Mpl of the following sequence, which lacks the transmembrane region and intracellular region of human c-Mpl, was ligated to the expression vector pEAK8 (manufactured by EdgeBioSysteras). Hek293 cells with Tam reagent (available from Promega) Introduced. After selecting a stable expression strain, the culture supernatant was purified with an anti-Mpl antibody column to prepare a soluble human C-Mpl recombinant protein (hereinafter abbreviated as soluble Mpl-x, sMpl- ⁇ ).
  • the antibody of the present invention was obtained by immunizing a human antibody-producing mouse (KM mouse TM ) capable of producing a human antibody by genetic modification to produce a monoclonal antibody.
  • the KM mouse lacks endogenous murine immunoglobulin (Ig) heavy chain and mouse / c light chain, and also contains chromosome 14 fragment (SC20) and human Ig K chain containing the human Ig heavy chain gene. Holds the transgene (KCo5) at the same time. That is, the KM mouse is a mouse that has the ability to produce human antibodies and lacks the mouse Ig heavy chain and / c chain.
  • This mouse is produced by crossing a strain A mouse having a human Ig heavy chain locus with a strain B mouse having a human Ig / c chain transgene.
  • Strain A is a homozygous for both endogenous Ig heavy chain and / c light chain disruption and has a mouse strain carrying a progeny transferable chromosome 14 fragment (SC20) (Tomizuka. Et al., Proc Natl). Acad Sci USA., 2000 Vol97: 722).
  • Strain B is homozygous for both the endogenous mouse Ig heavy chain and / c light chain deficient and retains the human Ig / c chain transgene (KCo5) (Nat BiotechnoL, 1996 Vol. 4). : Refer to 845).
  • Monoclonal antibodies in this example were prepared by a known method (see Introduction to Monoclonal Antibody Experimental Procedures, written by Tamie Ando et al., Kodansha (Tokyo, Japan) published 1991).
  • the human c_Mpl used as an immunogen was the L929-hMpl cell, FM3A-hMpl cell, constitutively active c-Mpl-expressing FM3A-hMpl-Ser cell, or sMpl-x recombinant protein prepared in Example 1.
  • the animal to be immunized was a human antibody-producing mouse that produces human immunoglobulin produced in Example 2, and the immunization method described below was used.
  • Immunization method 1 L929-hMpl cells (5 ⁇ 10 6 cells) prepared in Example 1 were mixed with Ribi adjuvant in 9-week-old human antibody-producing mice, and the mice were first immunized intraperitoneally. After the initial immunization, the same cells (2 X 10 6 cells) were immunized 7 times via the tail vein at the same time as interleukin 6 (IL-6) (5 / g) every week. Furthermore, the same cells were finally immunized via the tail vein 3 days before acquisition of the spleen and lymph nodes.
  • IL-6 interleukin 6
  • Immunization 2 9-week-old human antibody-producing mice, UV irradiated to FM3A_hM P l- Ser cells prepared in Example 1 (5 X 10 6 cells), primed intraperitoneally added Ribi adjuvant did. Since the first immunization, the same cells (5 X 10 6 cells) were administered intraperitoneally and immunized 7 times per week. Furthermore, 3 days before acquisition of the spleen and lymph nodes, FM3A-hMpl cells (2 X 10 6 cells) prepared in Example 1 were added with IL-6 (5 ⁇ g) and finally immunized via the tail vein. .
  • Immunization method 3 First immunization of 9-week old human antibody-producing mice by subcutaneous administration of sMpl-X recombinant protein (lOig) prepared in Example 1 and complete Freund's adjuvant (CFA) did.
  • sMpl-X recombinant protein (Sig) was mixed with incomplete Freund's adjuvant (IFA) once a week and immunized subcutaneously.
  • IFA incomplete Freund's adjuvant
  • L929-hMpl cells (5 ⁇ 10 6 cells) were immunized intraperitoneally.
  • sMpl-x recombinant protein (5 g) and IL-6 (5 ig) were finally immunized via the tail vein 3 days before acquisition of spleen and lymph nodes.
  • mice Three days after the final immunization, the spleen and / or lymph nodes are surgically obtained from the mice,
  • Hybridomas were selected using 10% urine fetal serum (Fetal Calf Serum, FCS), hypoxanthine (H), aminopterin (A), and thymidine (T) (hereinafter referred to as “ ⁇ ”: Sigma). By culturing in DMEM medium containing In addition, 10% FCS and HT
  • Example 3 Preparation of purified antibody from hybridoma culture supernatant Purification of the anti-human c-Mpl monoclonal antibody from the culture supernatant of the hybridoma was carried out by the following method. Using rmp Protein A (Amersham Fanoresia Biotech) and 0.8 X 40cm column (BioRad) as the culture supernatant containing the antibody, PBS as the adsorption buffer and 0.02M Daricin buffer as the elution buffer The solution (pH 3) was used for affinity purification. The elution fraction was adjusted to around pH 7.2 by adding 1M Tris (pH 9.0). The prepared antibody solution was replaced with PBS using a dialysis membrane (10000 cut, manufactured by Spectrum Laboratories). MILLEX-GV membrane filter with a pore size of 0.22 / ra
  • the concentration of the purified antibody was calculated by measuring absorbance at 280 nm and lmg / ml as 1.40D.
  • the culture supernatant containing the anti-human c-Mpl monoclonal antibody was prepared by the following method.
  • the antibody-producing noble hybridoma was conditioned with 10 ng / ml Recombinant Human IL-6 (R & D Systems) and 10% Low IgG Fetal Bovine Serum (HyClone) -containing eRDF medium (Kyokuto Pharmaceutical). This acclimated high-pridoma was stored frozen. Next, some of them were treated with ushinsulin (5 ⁇ / ⁇ 1, Gibcopier L), human transferrin (5 / g / ml, Gibco BRL), ethanolamamine (0.01mM).
  • Example 4 Evaluation of binding activity of anti-human C-Mpl antibody by flow cytometry Measurement of binding activity of anti-human C-Mpl antibody by flow cytometry using a hybridoma culture supernatant or purified antibody did. The procedure is as follows. Cells are FM3A-hMpl cells or human Mpl-expressing FDCP2 cells (FDCP-hMpl) (FEBS Lett. 1996
  • Figure 1 shows the results of flow cytometry using purified antibodies for each antibody.
  • Each antibody bound to FDCP-hMpl cells, but not to its parent cell, FDCP2 cells (FDCP parent). Therefore, these antibodies were shown to bind specifically to human Mpl.
  • Example 5 Evaluation of agonist activity of anti-human c-Mpl antibody using UT7 / TP0 cells
  • a UT7 / TP0 cell proliferation assay was performed using a hybridoma supernatant or a purified antibody to evaluate agonist activity.
  • UT7 / TP0 cells are TP0-dependent human megakaryocytic cell lines (see Ozaki K et al. Blood. 1998 Dec 15; 92 (12): 4652-62.). Usually, this was cultured and maintained in Iscove's Modified Dulbecco's Medium (IMDM) supplemented with 10% FBS, 5 ng / mL PEG-rHuMGDF.
  • IMDM Iscove's Modified Dulbecco's Medium
  • the UT7 / TP0 cell culture was transferred to a 50 mL tube, and the cells were pelleted by centrifugation (1,500 rpm, 5 min, 4 ° C). Excluding medium, no addition of cytokines, 10 ° /. The pellets were suspended in IMDM medium supplemented with FBS (hereinafter referred to as growth medium). The mixture was centrifuged again and suspended in a new growth medium. Centrifugation and suspension were repeated once more.
  • the cells were centrifuged to form pellets and suspended in a growth assay medium. At this time, the cell concentration was adjusted to 6 ⁇ 10 5 cells / mL, and the cell suspension was seeded on a 96-well plate with each well.
  • Figure 2 shows UT7 / 7-7 ( Figure 2 A), 4-49 ( Figure 2 B), 6-4-50 ( Figure 2 C), 6-5-2 ( Figure 2 D) UT7 / The growth curve in a TP0 cell proliferation assembly is shown.
  • CD34 + cells prepared from human umbilical cord blood were suspended in IMDM at a concentration of 1. lxl0 5 cel ls / mL, and 0.05 mL each was added to the tube containing the medium in 1. above.
  • the chamber slide was placed in a 100 mm petri dish. To prevent drying, a 35 mm Petri dish containing 3 mL of purified water was placed in the same 100 mm Petri dish. .
  • RNA extraction reagent As a material for cDNA synthesis, IS0GEN (Nippon Gene, Japan), an RNA extraction reagent, is added to hybridoma 7-10, 4-49, 6-4-50, 6-5-2 cells and handled. Total RNA was purified according to instructions. A 1st strand cDNA was prepared from the purified total RNA using about 1 wg each as a cage.
  • the human antibody gene In order to amplify the cDNA of the human antibody gene, it is added to the 5 'end of the cDNA synthesized with the 3' primer (specific sequence is described later) and the BD SMART RACE cDNA Amplification Kit. Using the 5 'primer (Universal primer A mix) that specifically hybridizes to the sequence as a primer set for PCR and K0D_Plus-DNA polymerase (manufactured by Toyobo Co., Ltd.) as a PCR enzyme, The reaction solution was prepared and subjected to PCR.
  • 5 'primer Universal primer A mix
  • K0D_Plus-DNA polymerase manufactured by Toyobo Co., Ltd.
  • GSP Gene specinc primers
  • the heavy chain gene amplification reaction uses the UPM primer and IgGlp primer included with the SMART RACE cDNA Amplification Kit, while the light chain gene amplification uses the UPM primer.
  • Each set of mer and hk-2 primer was used.
  • IgGlp primer 5 '-TCTTGTCCACCTTGGTGTTGCTGGGCTTGTG-3' (SEQ ID NO: 18)
  • hk-2 5 '-GTT GAA GCT CTT TGT GAC GGG CGA GC -3' (SEQ ID NO: 19)
  • the reaction temperature conditions are as follows.
  • a second PCR (Nested PCR) in which 5 ⁇ 1 obtained by adding 98 ⁇ 1 of Tricine-EDTABuffer to the reaction solution and diluting it was used as a saddle and the primer was set inside the first PCR was performed.
  • the composition of the PCR reaction solution is shown below.
  • Nested Universal primer A (NUP; 10 ⁇ M) ⁇ ⁇
  • GSP Gene specific primers
  • NUPM primer included with SMART RACE cDNA amplification Kit; Betaton Dickinson 'Bioscience Clonetech
  • hh2 primer 4-49, 6-4-50, 6-5-2
  • UPM primer and hk-5 primer used for light chain gene amplification. It was.
  • the reaction temperature conditions were 94 ° C initial temperature for 1 minute followed by 94 ° C / 5 seconds, 68 ° C / 10 seconds and 72 ° C / 3 minutes cycle.
  • HV [C] The heavy chain PCR fragment amplified by the above method
  • HV is the 5 ′ untranslated region of the heavy chain, leader sequence (secretory signal sequence), variable region (HV), and part of the constant region ( [C]) Consists of.
  • LV [C] the PCR amplified fragment of the light chain
  • LV [C] contains the 5 ′ untranslated region, leader sequence (secretory signal sequence), variable region (LV), and part of the constant region ([ C])).
  • the leader sequence (secretory signal) is an amino acid sequence necessary for antibody secretion and separated from the mature antibody protein.
  • the HV [C] and LV [C] fragments are recovered from the PCR reaction solution by ethanol precipitation, separated by agarose gel electrophoresis, and placed in the QIAquick Gel Extraction Kit (Qiagen), a DNA purification kit using a membrane. And purified. Purified HV [C] amplified fragments and LV [C] amplified fragments are subcloned in the pCR 4Blunt-T0P0 vector (manufactured by Toyobo Co., Ltd.) of Zero Blunt T0P0 PCR Cloning Kit (manufactured by Invitrogen). The base sequence of the insert DNA was analyzed for the plasmid DNA of the obtained clone. M13-20FW and M13RV were used as primers for DNA sequencing.
  • hk-5 5,-AGG CAC ACA ACA GAG GCA GTT CCA GAT TTC-3 '(SEQ ID NO: 20)
  • hh2 primer 5,-GCT GGA GGG CAC GG TCA CCA CGC TG -3
  • IgG2p_134 5,-TGCACGCCGC TGGTCAGGGC GCCTGAGTTC C-3
  • SEQ ID NO: 22 DNA sequence encoding heavy chain variable region and light chain variable region of agonistist antibody 7-10, and amino acids of heavy chain variable region and light chain variable region The sequences are shown below.
  • the DNA base sequences encoding the heavy chain variable region and light chain variable region of the agonist antibody 4-49, and the amino acid sequences of the heavy chain variable region and the light chain variable region are shown below.
  • ASSLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQFNSYPYTFGQGTKLEIKR (SEQ ID NO: 30) .
  • ASSLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQFNSYPWTFGQGTKVEIKR (SEQ ID NO: 34) .
  • variable region of the antibody cloned from the hybridoma by the above method was incorporated into a human antibody expression vector to prepare a recombinant antibody expression vector having various constant regions.
  • N5KG1-Val Lark (hereinafter abbreviated as N5KG1) (see IDEC Pharmaceuticals, US patent 6001358) is a plasmid vector used for the purpose of expressing recombinant antibodies in animal cells. .
  • the structure of N5KG1 is shown in Fig. 4A.
  • N5KG1 has two CMV promoter no enhancers, each of which has a heavy chain and light chain variable region gene cloning site downstream. Further downstream, gene sequences encoding a human heavy chain constant region ( ⁇ 1) and a human light chain constant region ( ⁇ ) are previously stored.
  • the light chain variable region is human.
  • leader sequence secretory signal sequence
  • the light chain variable region is human.
  • An antibody in which a chain constant region and a heavy chain variable region are linked to a human 1 chain constant region can be expressed. Therefore, animal cells introduced with this vector produce IgGl antibodies in the culture medium.
  • the expression vector N5KG4PE (IDEC Pharmaceuticals) has the heavy chain constant region of IgG4PE.
  • IgG4PE is a sequence containing two mutations (Ser228Pro, Leu235Glu) in IgG4.
  • Ser228Pro is a mutation that suppresses monomer formation by intramolecular cross-linking (SS bond) of IgG4.
  • Leu235Glu is a mutation that reduces antibody-dependent cellular cytotoxicity (ADCC) activity.
  • the antibody heavy chain constant region has a domain structure of CH1-hinge-CH2-CH3 from the N-terminal side.
  • a heavy chain constant region was prepared by combining the sequences of each subclass in this domain unit.
  • CH1 and the hinge region were human IgG3 sequences
  • CH2 and CH3 were human IgG1 heavy chain constant regions.
  • the antibody having such a heavy chain constant region CH1 / Hin represented subclass in the order of di / CH2 / CH3, IgG3 / 3 / l / named l (or later as intends I g G3311 and Rere "/" Is omitted.)
  • a heavy chain constant region was prepared in which the hinge region is a human IgG3 sequence and CH1, CH2 and CH3 are human IgG4PE.
  • An antibody having such a heavy chain constant region was named IgG4344.
  • the antibody hinge region can be divided into an upper hinge and a middle hinge. What is Upper Hin? Kabat EU numoering (Kabat, sequences or Proteins of Immunological
  • the middle hinge refers to a sequence on the N-terminal side from 231 after 226 in the same notation.
  • the hinge region of human IgG3 is 12 amino acids for the upper hinge and 50 amino acids for the middle hinge. Consists of.
  • a mutant was prepared in which the repeat sequence of the IgG3 middle hinge was shortened to one time.
  • Such a hinge was named G3hl, and an antibody with this type of hinge was labeled as IgGx3xxhl (where X is arbitrary), together with the domain unit mutation described above.
  • a heavy chain constant region was prepared in which the repeat sequence in the latter half of the middle hinge of IgG3 was eliminated.
  • Such a hinge was named G3uh (short for upper hinge) and expressed as IgGx3xxuh.
  • a heavy chain constant region was prepared by adding mutations of L217S and R228P to the G3uh hinge. This mutation is intended to bring the G3uh hinge closer to the IgG4PE sequence. This is called G3uhm (short for upper hinge mutation), and the antibody with this is shown as IgGx3xxuhra.
  • the present inventors produced a heavy chain constant region in which a partial sequence of IgG3 upper hinge (TPLGDTTHT (SEQ ID NO: 99)) was inserted between the upper hinge and middle hinge of IgG2.
  • TPLGDTTHT SEQ ID NO: 99
  • Such a hinge was named G3uhm2, and the antibody having this was denoted IgGx3xxuhm2.
  • Fig. 4B shows the natural amino acid immunoglobulin and the amino acid sequence of the hinge region of IgG4PE, IgG4344, IgG4344hl, IgG4344uh, IgG4344uhm.
  • an antibody expression vector having the following constant regions was prepared using the variable regions of anti-Mplagonist antibodies.
  • the process for preparing the expression vector is shown in FIG. 4C.
  • the plasmid DNA containing the HV [C] and LV [C] fragments of 7-10 and 4-49, respectively (described in Example 7), is used as a saddle type and is linked to the ends.
  • K0D_Plus -Amplified by PCR with DNA polymerase K0D_Plus -Amplified by PCR with DNA polymerase.
  • the heavy chain and light chain leader sequences + variable regions amplified by this PCR are referred to as HV fragment and LV fragment, respectively.
  • reaction temperature conditions were 94 ° C / 5 seconds and 68 ° C after heating for 1 minute at an initial temperature of 94 ° C.
  • the / 45 second cycle was repeated 35 times, and finally heated at 72 ° C for 7 minutes.
  • the amplified DNA fragment is digested with restriction enzymes Sai l and Nhel, and about 430 bp in agarose gel electrophoresis.
  • DNA was recovered and purified.
  • the N5KG1 vector was sequentially treated with restriction enzymes Sal and Nhel, and then treated with Alkaline Phosphatase (E. coli i C75) (Takara Shuzo, Japan) for dephosphorylation.
  • E. coli i C75 Alkaline Phosphatase
  • Approximately 8.9 kb of DNA was recovered by agarose gel electrophoresis and DNA purification kit. These two fragments were ligated using T4 DNA ligase and introduced into E. coli DH10B to obtain transformants.
  • the DNA sequence of the resulting transformant plasmid DNA was analyzed, and a plasmid DNA with an HV fragment inserted in frame 5 and upstream of the heavy chain constant region, N5KG 7-10_Hv, and And N5KG1_4-49—Hv.
  • the LV fragment (light chain ligand) was inserted into the plasmid vector into which these HV fragments were inserted. Insertion of the sequencer + variable region).
  • plasmid DNA containing LV [C] fragment as a saddle type and primers designed to add restriction enzyme sites (5 'terminal BglII, 3' terminal BsiWI) to the ends, The LV fragment was amplified by PCR.
  • the primers for LV amplification are as follows.
  • the reaction was heated for 1 minute at an initial temperature of 94 ° C, followed by 35 cycles of 94 ° C / 5 seconds and 68 ° C / 45 seconds, with a final incubation of 72 ° C / 7 minutes. Carried out.
  • the purified amplified DNA fragment of LV was subcloned into the pCR4Blunt_T0P0 vector (manufactured by Toyobo Co., Ltd.), and the base sequence of the insert DNA was analyzed for the plasmid DNA of the obtained clone.
  • a primer for DNA sequencing M13-20FW and
  • M13RV was used.
  • T0P0_7-10_Lv and T0P0_4- 49_Lv were selected.
  • each DNA was digested with restriction enzymes Bglll and BsiWI, and about 400 1 ⁇ 1) ⁇ was collected and purified by agarose gel electrophoresis.
  • the purified DNA fragment and a vector (approx. 9.3 kb) containing 7-10 or 4-49 HV inserted with restriction enzyme treatment (Bglll, BsiWI) and dephosphorylation treatment were added to T4.
  • expression vectors were prepared by first inserting the light chain variable region and then the heavy chain variable region into the human antibody expression vector.
  • the plasmid DNA (Example 7) containing the LV [C] fragment of each of the 6-4-50 and 6-5-2 antibodies is used as a cage, and the restriction enzyme site for ligation at the end (5 'end) DNA of the LV fragment (light leader sequence + variable region) was amplified by PCR with KOD-Plus-DNA polymerase using a primer set designed to add BglII, 3 'terminal BsiWI).
  • the primers are as follows.
  • reaction temperature conditions were 94 ° C / 5 seconds and 68 ° C after heating for 1 minute at an initial temperature of 94 ° C.
  • the / 45 second cycle was repeated 35 times, and finally heated at 72 ° C for 7 minutes.
  • the amplified DNA fragment was digested with restriction enzymes Bglll and BsiWI, and about 400 bp DNA was recovered and purified by agarose gel electrophoresis.
  • the N5KG1 vector was treated with restriction enzymes Bglll and BsiWI sequentially, and then dephosphorylated with Alkaline Phosphatase (E. coli i C75).
  • Primer designed to include plasmid DNA (Example 7) containing HV [C] and add restriction enzyme sites (5 'terminal Sall, 3' terminal Nhel) for ligation at the ends.
  • the primers used are as follows.
  • the reaction was heated for 1 minute at an initial temperature of 94 ° C, followed by 35 cycles of 94 ° C / 5 seconds and 68 ° C / 45 seconds, with a final incubation of 72 ° C / 7 minutes. Carried out.
  • the amplified DNA fragment of the purified HV fragment is subcloned into the pCR4Blunt-T0P0 vector (manufactured by Toyobo Co., Ltd.) and inserted into the plasmid DNA of the resulting clone.
  • DNA base sequence was analyzed.
  • a primer for DNA sequencing As a primer for DNA sequencing,
  • the DNA is digested with restriction enzymes Sai l and Nhel, and is about 430 bp by agarose gel electrophoresis.
  • DNA was recovered and purified.
  • restriction enzyme treatment Sail and Nhel
  • the dephosphorylated 6-4-50 or 6-5-2 LV fragment inserted about 9.3 kb
  • the antibody-expressed plasmid DNA thus obtained is purified in large quantities, and it is confirmed that there are no mutations in the cloning step in the entire heavy chain region, the entire light chain region, and the DNA sequence around the insertion site. did.
  • 6-4-50_IgGl and 6-5-2-2 IgGl antibody expression vectors were named N5KG and 6-4-50, respectively, and N5KG1-6-5-2.
  • Figure 4D shows the manufacturing process of N5KGl_6_4-50 and N5KG 6-5-2.
  • N5KG4PE vector was used for the production of an IgG4PE subclass antibody expression vector.
  • N5KG4PE plasmid DNA is cleaved with the restriction enzymes Nhel and BamHI, and the fragment containing the heavy chain constant region is purified to give the same restriction as anti-c-Mpl antibodies N5KG1_7-10 and N5KG1-4-49.
  • N5KG4PE-7-10 and N5KG4PE-4-49 were prepared by switching into the enzyme site.
  • Human IgG3 expression vector N5KG3 was prepared by replacing the IgGl heavy chain constant region of N5KG1 with the IgG3 constant region of the following sequence.
  • I g G3311 expression vector as ⁇ the N5KG3, primers l inkH, 13chl- 98 ° C 1 sec R, 60 ° C30 seconds, was performed 15 times and the reaction of 72 ° C30 seconds. At the same time, the reaction was performed 15 times at 98 ° C for 1 second, 60 ° C for 30 seconds, and 72 ° C for 30 seconds using N5KG1 as a saddle and using primers 13chl and inkH2. After purifying the amplified DNA fragment with a PCR purification kit and mixing two equal amounts of the two purified DNA fragments, the reaction at 98 ° C for 1 second, 60 ° C for 30 seconds and 72 ° C for 30 seconds is performed 5 times. l InkH2 was added and reacted 15 times. The amplified DNA fragment was cleaved with Nhel and BamHI and replaced with the IgGl constant region of the N5KG1 vector. This expression vector was named N5KG3311.
  • 13chl-R GTC TTC GTG GCT CAC GTC CAC CAC CAC GCA (SEQ ID NO: 58)
  • IgG3331 expression vector uses N5KG3 as a saddle and primers linkH, CH3consR
  • the reaction at 98 ° C for 1 second, 60 ° C for 30 seconds, and 72 ° C for 30 seconds was performed 15 times.
  • N5KG1 was used as a saddle, and the reaction was performed 15 times at 98 ° C for 1 second, 60 ° C for 30 seconds, and 72 ° C for 30 seconds using primers CH3cons and inkH2.
  • Two amplified DNA fragments are purified using a PCR purification kit. After mixing equal amounts of the purified DNA fragments, the reaction at 98 ° C for 1 second, 60 ° C for 30 seconds and 72 ° C for 30 seconds was performed 5 times, and the primers l inkH and linkH2 were added and reacted 15 times.
  • the amplified DNA fragment was cleaved with Nhel and BamHI and replaced with the IgGl constant region of the N5KG1 vector. This expression vector was named N5KG3331.
  • CH3consR GGTGTACACCTGTGGCTCTCGGGGCTGCCC (SEQ ID NO: 61)
  • CH3cons GGGCAGCCCCGAGAGCCACAGGTGTACACC (allocation lj number 62)
  • IgG3344, IgG3344hl, IgG4344, IgG4344hl, IgG4344uh, IgG4344uhm, and IgG2322uhm2 are described below.
  • each constant region was amplified by PCR, and a cloned plasmid was prepared. Subsequently, these modified constant regions were replaced with IgGl constant regions such as N5KG1_7_10.
  • the IgG3344 expression vector was N5KG3331 and N5KG4PE, and the mutation was carried out using PCR (site-directed mutagenesis by the overlap extension method) according to the following procedure.
  • N5KG3331 as a saddle, using G3G4_P1_F and G3G4_P2—R as primers for 1 minute at 94 ° C initial temperature, then 94 ° C / 15 seconds, 55 ° C / 10 seconds, and 68 ° C / 1 minute This cycle was repeated 35 times and finally heated at 72 ° C for 7 minutes.
  • PCR was performed under the same conditions using the aforementioned expression vector N5KG4PE as a saddle and G3G4-P3_F and G3G4-P4_R as primers.
  • the amplified DNA fragment was recovered by agarose gel electrophoresis and purified with QIAquick Gel Extraction Kit (Qiagen). After mixing equal amounts of these purified DNA fragments, for the first 5 cycles, anneal the overlapping portions of 2 DNA fragments and heat at 94 ° C initial temperature for 1 minute,
  • G3G4-PI-F was used as a primer in the reaction solution to amplify the full length.
  • G3G4_P4_R was added, and a cycle of 94 ° C / 5 seconds and 68 ° C / 2 minutes was repeated 20 times, and finally heating at 72 ° C / 7 minutes was performed.
  • the primers for G3G4_P1_F and G3G4_P4_R use restriction enzyme sites (G3G4_P and Nam for G3G4_P4_R and BamHI sites for G3G4_P4_R) so that the coding part of the human antibody constant region can be cut out and changed to the corresponding part of the antibody expression vector. ) Exists. Amplified PCR fragments are recovered by agarose gel electrophoresis. Purified with QIAquick Gel Extraction Kit.
  • the purified amplified fragment was subcloned into the pCR 4 Blunt-T0P0 vector of Zero Blunt T0P0 PCR Cloning Kit (manufactured by Invitrogen), and the nucleotide sequence of the insert DNA was analyzed for the plasmid DNA of the obtained clone. Clones with IgG3344 and I g G3344hl constant region from the analysis of the nucleotide sequence was selected.
  • N5KG3331 is a saddle
  • G434_P5_F and G434_P6_R are used as primers, heated at 94 ° C for 1 minute, 94 ° C for 15 seconds, 55 ° C for 10 seconds, and The cycle of 68 ° C / 1 minute was repeated 35 times, and finally heated at 72 ° C / 7 minutes.
  • PCR was carried out under the same conditions using N5KG4PE as a saddle and G434_P7_F and G3G4_P2_R as primers.
  • the amplified DNA fragment was recovered by agarose gel electrophoresis and purified with a QIAquick Gel Extraction Kit (Qiagen).
  • the overlapping parts of the three types of DNA fragments were annealed and heated for 1 minute at an initial temperature of 94 ° C, then 94 ° C / 10 seconds, 55 ° C / 10 seconds 68 ° C / 1.5
  • the amplified PCR fragment was purified using the QIAquick Gel Extraction Kit, then subcloned into the pCR 4 Blunt-TOPO vector, and the base sequence of the insert DNA was analyzed for the plasmid DNA of the clone obtained.
  • a clone having IgG4344 constant region was selected by analysis of the nucleotide sequence.
  • G434_P7_F 5 '-GTGGACAAGA GAGTTGAGCT CAAAACCCCA CTTGGTGACA C-3, (SEQ ID NO: 69)
  • the IgG4344hl expression vector was prepared using N5KG4344 as a saddle, G434_P5_F, G434_P6_R as primers, heated at an initial temperature of 98 ° C for 10 seconds, then 98 ° C / 10 seconds, 55 ° C / 30 seconds, and The cycle of 72 ° C / 1 minute was repeated 7 times, then the cycle of 98 ° C / 10 seconds, 68 ° C / 1 minute was repeated 30 times, and finally heated at 72 ° C / 7 minutes. Pyrobest DNA Polymerase (Takara Bio Inc.) was used as the PCR enzyme.
  • PCR was performed under the same conditions using N5KG3344hl as a saddle and G434_P7_F and G3G4_P4_R as primers.
  • the amplified DNA fragment was recovered by agarose gel electrophoresis and purified with QIAquick Gel Extraction Kit (Qiagen).
  • the purified amplified fragment was subcloned into the pCR 4 Blunt-T0P0 vector, and the nucleotide sequence of the insert DNA was analyzed for the plasmid DNA of the obtained clone.
  • a clone having the G4344hl constant region was selected from the nucleotide sequence analysis.
  • G4344uh was prepared by using N5KG4344 as a saddle and using G434-P5-F as a primer.
  • DNA Polymerase (Takara Bio Inc.) was used.
  • N5KG3344hl As a saddle type, PCR was performed under the same conditions using 17-2F and G3G4_P4_R as primers.
  • the amplified DNA fragment was recovered by agarose gel electrophoresis and purified with the QIAquick Gel Extraction Kit.
  • the amplified PCR fragment was recovered by agarose gel electrophoresis and purified with the QI Aquick Ge 1 Extraction Kit.
  • the purified amplified fragment was subcloned into the pCR 4 Blunt-T0P0 vector, and the nucleotide sequence of the insert DNA was analyzed for the plasmid DNA of the obtained clone.
  • a clone with IgG4344uh constant region was selected by analysis of the nucleotide sequence.
  • I g G4344uhm expression vector was constructed using N5KG4PE as a saddle and primers
  • a cycle of 1 minute was repeated 25 times and finally heated at 72 ° C for 7 minutes.
  • Pyrobest DNA Polymerase was used as the PCR enzyme.
  • PCR was carried out under the same conditions using N5KG4PE as a saddle and 17m-2F and G3G4_P4-R as primers.
  • the amplified DNA fragment was recovered by agarose gel electrophoresis and purified with the QIAquick Gel Extraction Kit. After mixing equal amounts of these purified DNA fragments, the overlapping portions of the two DNA fragments are annealed, and 7 cycles of 94 ° C / 30 seconds, 55 ° C / 30 seconds, and 72 ° C / 1 minute are performed.
  • Figure 4E shows the amino acid sequences of various modified heavy chains.
  • the expression vector N5KG2_Ser for human IgG2 was prepared by replacing the IgGl heavy chain constant region of N5KG1 with the IgG2 constant region of the following sequence.
  • the following constant region sequence contains a mutation that changes the 331st proline to serine in order to reduce complement activity.
  • IgG2 heavy chain constant region amino acid sequence :
  • IgG2 heavy chain constant region nucleotide sequence 1
  • IgG2322uhm2 expression vector uses N5KG2_Ser as a saddle type and mutagenesis using PCR
  • the heavy chain sequence of 7-10_IgG2322uhm2 is shown below.
  • SEQ ID NO: 95 SEQ ID NO: 2 (variable region; underlined) + SEQ ID NO: 9 6):
  • the prepared plasmid DNA having modified heavy chain constant regions was cleaved with restriction enzymes Nhel and BamHI, and then the constant region sequences were purified and separated. Subsequently, anti-human c-Mpl antibody expression vectors N5KG1_7-10, N5KG1-4-49, N5KG1_6- 4-50, and N5KG1_6-5-2 were treated with the same enzyme to replace the constant region.
  • FIG. 4F shows the heavy chain sequence of 7-10_IgG4344uhm.
  • FIG. 4G shows the light chain sequence of 7-10_IgG4344uhm.
  • the expression vector DNA prepared in Example 8 was prepared using EndoFree Plasmid Kit (Qiagen), and free-floating 293 cells (Invitrogen Life Technologies, Inc.) using FreeStyle TM 293 Expression System (Invitrogen Life Technologies Inc.)
  • the culture supernatant containing each antibody was obtained by transient expression.
  • HiTrap rProtein A FF column volume 1 ml
  • an affinity column for antibody purification is the culture supernatant (approximately 500 ⁇ as IgG) filtered through a membrane filter (MILLIP0RE) with a pore size of 0.22 ⁇ .
  • MILLIP0RE membrane filter
  • the product was charged with Science, washed with PBS (-), eluted with 20raM citrate buffer (pH 3.4), and collected in a tube containing 200 mM phosphate buffer (pH 7.0).
  • the constructed antibody expression vector was introduced into a host cell to produce an antibody-expressing cell.
  • Host cells for expression include dhfr-deficient CHO DG44 cells (IDEC Pharmaceuticals
  • EX-CELL325PF JRH
  • Introduction of the vector into the host cells was carried out by means of an electroporation. In the electroporation, about 2 ⁇ g of the antibody expression vector was linearized with the restriction enzyme Ascl.
  • the gene was introduced into 4 ⁇ 10 6 CH0 cells under conditions of 350 V and 500 ju F and seeded in a 96-well culture plate. After the vector introduction process,
  • the sample was adsorbed and adsorbed, washed with 20 mM sodium phosphate buffer (pH 5.0), and then eluted with 1 X PBS buffer.
  • the prepared antibody solution was sterilized by filtration with a membrane filter MILLEX-GV (manufactured by Millipore) having a pore size of 0.22 zm.
  • the concentration of the purified antibody was calculated by measuring absorbance at 280 nm and setting lmg / mL to 1.40D.
  • the activity in UT7 / TP0 assembly was measured using a recombinant modified antibody. Compared to 4-49_IgGl, IgG3311 and I g G3331 is enhanced activity was observed (Fig. 5 A). 7_10_IgG4344uhm and 4-49—IgG4344uhm showed the same activity as PEG_rHuMGDF.
  • Table 3 summarizes the activity of various modified antibodies. For all agonist antibodies, enhanced activity by constant region modification was observed. 7-10, for 4-49, IgGl and I g G4PE is been filed with equal activity, I g G4344uhm was highly active compared to IgG4PE. IgG4344uhra is, I g C-terminal 4 one 7-position of the upper hinge part 7 Amino acid sequence of G4PE is replaced by 4- 1 2-position of the sequence in the upper hinge 1 2 amino acid sequence of IgG3 (Fig. 4 B reference ). Therefore, this part is considered to be important for enhancing the activity.
  • TPO When TPO binds to the receptor C-Mpl, phosphorylation of intracellular proteins occurs.
  • Three major pathways activated by TPO are known: Jak-STAT, Ras-MAPK, and PI3K_Akt.
  • Jak-STAT Ras-MAPK
  • PI3K_Akt phosphorylation signaling downstream of C-Mpl by agonistic antibodies. The analysis was performed by the Western blot method using a phosphoprotein specific antibody. The antibodies used are listed below.
  • Anti-STAT5 Cell Signaling, Cat # 9352
  • Anti-phospho-STAT5 Cell Signaling, Cat # 9351L
  • Anti-JAK2 Upstate, Cat # 06-255
  • Anti-phospho-JAK2 Upstate
  • Cat # 07-606 Anti-Erkl / 2
  • Anti-phospho-Elkl / 2 (Cel Signaling, Cat # 9271L)
  • Anti-Akt (Cel Signaling) Made by Cat # 9102), anti-phospho-Akt
  • the cells were prepared at l ⁇ 10 6 cel ls / mL and seeded on a 6-wel l plate at 2 mL / well.
  • FIG. 6A phosphorylation of Jak2 and STAT5 was not observed in IgGl but IgG3344 was phosphorylated in Jak2 and STAT5 (Fig. 6B).
  • TP0 does not cause platelet aggregation by itself, but has an action (priming action) to promote platelet aggregation by an aggregation-inducing substance such as ADP.
  • the human platelet priming effect of the antibody antibody was examined by the following procedure.
  • a monoclonal antibody was administered to a power quiz, and the fluctuation of the platelet count was analyzed.
  • PEG-rHuMGDF (l0 ⁇ g / kg) on the first day (DayO) to confirm the reactivity of the individual to TP0 was observed intravenously for 3 weeks
  • purified dogist antibody 7-10G4PE (individual A) 7-10G3344hl (individual B) was intravenously administered at a dose of lmg / kg on the first day after the first administration.
  • the results are shown in FIG. Both ⁇ and ⁇ individuals showed a transient increase in platelets due to PEG-rHuMGDF.
  • the platelet count increased after administration of the agonist antibody 7-10G3344hl. Serious toxicity due to antibody administration was not observed.
  • Example 10 In order to confirm that the agonist antibody prepared in Example 10 promotes the construction of a human hematopoietic system in a human umbilical cord blood transplantation model, an experiment was conducted according to the following procedure.
  • NOG N0D / SCID / IL2- 7 R K0
  • NOG N0D / SCID / IL2- 7 R K0
  • 2 Gray human umbilical cord blood From 1,000 to 10,000 CD34 + cells derived from the tail vein were implanted and transplanted.
  • the first test substance was administered on the first day after transplantation, and then once a week.
  • the group composition and each test substance and dose are as follows. The number of mice was 6 in each group, and administration was intraperitoneal. Body weight was measured at weekly doses.
  • V Number of transplants 10,000, TPO (PEG-rHuMGDF) administration, 5 ⁇ g / head / week
  • Peripheral blood was analyzed 1 day before transplantation and 2, 4 and 6 weeks after transplantation.
  • the procedure for peripheral blood analysis is as follows.
  • Peripheral blood (approx. 70) was collected from the orbital vein of a mouse using a pill.
  • PE-labeled anti-human CD41 antibody (Dako R7058) + FITC-labeled anti-mouse CD41 Antibodies (BD Pharmingen # 553848), B (for leukocyte analysis): APC-labeled anti-human CD45 antibody (Beckman's Coulter IM2473) + FITC-labeled anti-mouse CD45 antibody (BD Pharmingen # 553080).
  • fluorescent beads for quantification were added during analysis to enable analysis of a certain amount of blood.
  • the chimera rate was calculated using the formula: number of human cells (number of human cells + number of mouse cells) X 10 0 (%). The number of human platelets was calculated by multiplying the total platelet count in the peripheral blood by the chimera rate.
  • CFU-Mk megakaryocyte progenitor cells
  • Colony assembly that detects erythroid, granulocyte / macrophage progenitor cells can be performed using Methocult system (manufactured by Stem Cell Technologies) with EP0 (4IU / raL), SCF (100ng / mL), IL during culture. -3 (20 ng / mL) and GM-CSF (10 ng / mL) were added. They were cultured in 1 4 days at 37 ° C, 5% C0 2 , 5% 0 2 conditions. After incubation, colonies were counted under a microscope.
  • FIGS 9A, 9B and 9C illustrate the results of this experiment.
  • agonist antibodies act on cells upstream of blood cells divided into megakaryocytes, erythrocytes, granulocytes, and macrophages.
  • the body When combined with the finding that Mpl is expressed in hematopoietic stem cells, The body is likely promoting the growth of hematopoietic stem cells.
  • the antagonistic antibody of the present invention is characterized in that its activity is enhanced by modification of the hinge portion, but there is a concern that the antigenicity will increase due to the modification. Therefore, based on the amino acid sequence of the hinge modified 7-10G4344uhm, we performed antigenicity prediction on a computer.
  • APCs antigen-presenting cells
  • MHC major histocompatibility complex
  • APC antigen-presenting cells
  • TCR T cell receptor
  • Activated T cells activate B cells that express antibodies that recognize the same antigen, and antibodies against foreign proteins are produced.
  • TCR T cell receptor
  • Activated T cells activate B cells that express antibodies that recognize the same antigen, and antibodies against foreign proteins are produced.
  • Transgenic mice were introduced into which human Mpl was introduced as a gene, and experiments were conducted in which antibodies were administered.
  • the 5.5 kb promoter region of mouse Mpl was amplified by PCR and cloned into the pBluescript plasmid vector.
  • the human Mpl translation region and the 3 ′ untranslated region were amplified by PCR and ligated downstream of the mouse Mpl promoter.
  • This construct was injected into a C57BL / 6 mouse fertilized egg, and the fertilized egg was returned to the foster parent for birth.
  • genomic DNA was extracted from the tail and Tg mice were selected by PCR. The obtained Tg mouse individuals were crossed with C57BL / 6 and systematized. Expression analysis of human Mpl in bone marrow was performed.
  • a Tg mouse strain having multiple human Mpls was obtained.
  • RT-PCR confirmed that human Mpl was expressed in the 39L lineage bone marrow.
  • the efficacy of the antibody was confirmed using a 39L mouse.
  • Agonist antibody 7-10G4344uhm was administered once (3 or 10 g / mL), and the change in the number of platelets in the peripheral blood was examined using the KX-21 automated blood cell analyzer. Peripheral blood was collected from the orbital vein and measured weekly. TPO (PEG-rHu GDF) was used as a positive control.
  • the group composition is as follows (6 animals in each group).
  • Light chain variants There are three types: the light chain of Goth antibody 4-49 (V104L), and the amino acid of Agonist 6-4-50 with one amino acid substitution (A43V, G100Q).
  • V104L the light chain of Goth antibody 4-49
  • Agonist 6-4-50 with one amino acid substitution A43V, G100Q.
  • the light chain amino acid sequence and the 7-10VL amino acid sequence of each mutant are as follows. Mutations are shown in bold and underlined.
  • Binding activity analysis The concentration of each antibody was adjusted to 1, 0.1, 0.01 ⁇ g / raL, and flow cytometry was performed using FM3A_hMpl cells. The experimental method was the same as that described in Example 4. Anti-DNP (dinitrophenol) antibody was used as a control. The light chain mutant antibody showed a binding activity equivalent to 7-10G4344uhm (Fig. 11).
  • a 7_10G2322uhm2 antibody was prepared in which the heavy chain constant region of the agonistist antibody 7-10 was changed to G2322uhm2, and UT-7 / TP0 cells were prepared by the method described in Example 5.
  • the cell proliferation assay used was performed. As a result, it was shown that 7-10G2322uhm2 has almost the same agonistic activity as 7-10G4344uhm and Peg-rhMGDF (Fig. 13). Therefore, it was shown that IgG2 and IgG4 can be converted without changing the agonist activity for the heavy chain constant region other than the hinge region.
  • Example 17 As shown in Example 7, considering that there is no change in binding activity and agonist activity even when one amino acid constituting the framework region of the variable region of the light chain is substituted, It is also possible to produce an antibody having a mutation in the frame region of the light chain variable region of 7-10 (7-10VL) and the heavy chain constant region of G2322uhm2. Desirable changes in the framework region of the light chain variable region of the agonist antibody 7-10 include 7-10VL_V104L (4-49VL; SEQ ID NO: 85) and 7-10VL_G100Q (6-4-50VL) shown in Example 17. Substituent 1; SEQ ID NO: 86), and light chain variable region substitution of 7-10VL_A43V (6-4-50VL substitute 2; SEQ ID NO: 87).
  • the present invention provides a novel anti-human c-Mplagonist antibody that has desirable properties as a pharmaceutical product such as a long half-life and low antigenicity, and that acts on primary human cells. It can be used as an agent or a therapeutic agent for thrombocytopenia.
  • the human thrombopoietin receptor c-Mpl
  • c-Mpl human thrombopoietin receptor
  • An agonistic antibody against human c-Mpl is provided. This agonist antibody can be used as a therapeutic agent for various thrombocytopenia, and is expected to make a great contribution to the medical industry.
  • SEQ ID NO: 11 Mutant hinge domain UH2G3uhm
  • SEQ ID NO: 97 mutant IgG2 heavy chain constant region
  • SEQ ID NO: 98 DNA encoding mutant IgG2 heavy chain constant region

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明は、ヒトトロンボポエチン受容体(別名:ヒトc-Mpl)に対するアゴニスト抗体を提供する。 抗体の定常領域が、(1)ヒト抗体の重鎖定常領域及び軽鎖定常領域のアミノ酸配列、(2)ヒト抗体サブクラス間で重鎖定常領域のドメインを入れ替えた重鎖定常領域のアミノ酸配列、及び、ヒト抗体軽鎖定常領域のアミノ酸配列、或いは(3)前記(1)又は(2)のアミノ酸配列において1若しくは数個のアミノ酸残基が欠失、置換、付加又は挿入されたアミノ酸配列、のいずれかのアミノ酸配列を有し、且つ抗体の可変領域がヒトトロンボポエチン受容体に結合し該受容体を活性化する能力を有する、ヒトトロンボポエチン受容体に対するアゴニスト抗体、並びに、その抗体を含む血小板減少症治療用医薬組成物。

Description

ヒ ト トロンボポェチン受容体に対するァゴニスト抗体
技術分野
本発明は、 ヒ ト トロンボポェチン受容体 (別名 : ヒ ト C- Mpl) に対するァゴ- スト抗体に関する。
さらに本発明は、 抗ヒ ト C- Mpl ァゴニス ト抗体を有効成分とする、 臨床上血小 明
板を增多させる必要のある患者 疾患に対する治療剤、 特に血小板減少症治療剤 に関する。
書 背景技術
く TP0と TP0受容体について >
トロンボポェチン (Thrombopoietin: TP0) は、 生体内で巨核球および血小板の 増殖を促進する造血因子である。 ヒ ト TP0は全長 332アミノ酸残基からなる糖タ ンパタ質であり、その活性には N末端側の配列が重要であることが知られている。 細胞膜上の TP0受容体と結合することで機能を発揮する。
c- plは、 現在知られている唯一の TP0受容体である。 ヒ ト c-Mplは、 シグナ ルぺプチドを含むと 635アミノ酸、 成熟型は 610アミノ酸からなる膜一回貫通型 糖タンパク質であり、 I 型のサイ トカイン受容体ファミ リーに属している。 ヒ ト c-Mpl のメ ッセンジャー RNA およびタンパク質の配列は既に報告されている
(Genbank : NM_005373, NP_005364参照)。 同じフアミリーの分子としてエリス口 ポェチン受容体 (EpoR) や、 G-CSF受容体 (G- CSFR)、 インターロイキン 3受容体
(IL-3R)などを挙げることができる。ヒ ト c-Mplは細胞外に 2つの CRH (Cytokine
Receptor Homologue) ドメイン (N末端側から CRH1, CRH2 と呼ばれる) を持ち、 そのなかにサイ トカイン受容体ファミリ一に特徴的な WSXWSモチーフを含んでい る。 細胞内ドメインには Boxl, Βοχ2と呼ばれる二つの配列があり、 これらはシグ ナル伝達に必須である。 TP0は CRH1に結合し、 c-Mplを二量体化することでシグ ナルを入れると考えられているが、 詳細な結合および活性化の様式は解明されて いない。 c- Mpl が二量体化すると、 細胞内ドメインに結合したシグナル伝達キナ ーゼが活性化され、 リン酸化シグナルが細胞内に伝えられる。 TPO-Mpl シグナル によって Jak-STAT, PI3K-Akt, Ras-MAPKの各経路が動かされることが知られてい る。 TP0または c_Mplを欠損したマウスは、血小板数が野生型マウスの 10- 20%程 度まで減少することが報告されており、 TP0 - Mpl システムが血小板数を調節する 主要なシステムであることを示している。 C- Mpl の発現は、 巨核球のみならず、 さらに未分化な造血前駆細胞や造血幹細胞にも認められる。 骨髄中の c-MPl陽性 細胞画分は、 c-Mpl 陰性画分に比べ、 高い骨髄再構築能を持っていることが示さ れており、 また、 c-Mpl 欠損マウスでは巨核球 ·血小板だけではなく造血幹細胞 も減少していることが判っている (非特許文献 1 , 2参照)。これらの知見から、 TPO-Mpl システムが造血系に幹細胞レベルから関与していることが示唆されてい る。
TP0 がクローニングされて以来、 血小板減少症の治療薬としての利用が期待さ れ、 これまでに二種類の組換え型 TP0の臨床試験が行われている (非特許文献 3 参照)。 完全長のヒ ト TPO (rhTPO) と、 ヒ ト TP0の活性部位である N末端側 163 アミノ酸のペプチド配列をポリエチレングリコール (PEG) ィ匕した PEG_rHuMGDF
(Pegylated Recombinant Human Megakaryocyte Growth and Development Factor) である。 臨床試験において、 これらの組換え型 TPOは健常人および特発性血小板 減少性紫斑病 (Idiopathic Thrombocytopenic Purpura: ITP) 患者の血小板を増 加させることに成功している。 また、 骨髄非破壊的な化学療法に伴う血小板減少 症を軽減させる効果が示されている。 さらに、 例数は少ないながらも、 再生不良 性貧血 (Aplastic Anemia: AA) , 骨髄異开成症候群 (Myelodysplastic Syndrome: MDS) の患者に対しても組換え型 TP0の有効性が報告されている (非特許文献 4 , 5 )。
< c-Mplァゴニスト抗体について >
TP0 と同様に C- Mpl を介してシグナルを入れる性質を持ちながら、 分子として は全く異なる種々の TP0ミメテイクスが研究されている(非特許文献 6 , 7参照)。 ミメテイクスには大きく分けて、 ペプチド性低分子、 非ペプチド性低分子、 抗体 由来分、 ァゴニスト抗 ί本などが知られている。 公知の抗 c-Mplァゴニストヒ ト抗体として、 12B5, 12E10, 12D5 (特許文献 1参 照) を挙げることができる。 これらは全長抗体 (Whole ant ibody、 例えば Whole IgG) の形態でプライマリーヒ ト細胞に対する活性を持たない。 なお、 本明細書で 使用するプライマリーヒ ト細胞とは、 TP0 に対して高感受性を有する樹立された 特殊な株化細胞や TP0受容体遺伝子を遺伝子組換え技術により導入し該受容体を 高発現させた細胞ではなく、 ヒ ト臍帯血ゃヒ ト骨髄由来の CD34 +細胞等の本来生 体内で TP0の作用対象となっている細胞を意味する。
また、 公知のァゴニストマウス抗体として、 BAH_1 (特許文献 2, 非特許文献 8 参照), VB22B (特許文献 3参照)を挙げることが出来るが、 マウス抗体はヒ ト血中 において抗原性を示すことが知られており、 医薬品としての利用には適さない。 また、 一般に、 ァゴニス ト抗体を、 全長抗体で、 例えば CDR grafting等の方法を 用いて、 その活性を保ったままヒ ト化することは困難である (特許文献 3, 非特 許文献 9参照)。従って、上記のような公知のァゴニス ト抗体が存在するとしても、 プライマリー細胞に作用するァゴニス トヒ ト抗体の創出は容易ではない。
また前述の TP0ミメテイクスで述べた抗体由来の低分子も、 ある種のァゴニス ト抗体であり、 抗体の一部を利用改変した Diabody,—本鎖(Fv) 2 (sc (Fv) 2) が報 告されている (特許文献 1 , 3参照)。 しかしながら、 この方法によって作出され た改変抗体は、 分子の大幅な改変による抗原性が懸念されるうえ、 全長抗体に比 ベ血中半減期が短縮される等、 医薬品として利用するためには課題が多い。
以上、 全長抗体は低抗原性や血中半減期の長さ等、 医薬品として有用な性質を 備えている一方、 上述のように、 全長抗体で充分な活性を持つァゴニス トヒ ト抗 体を作製するのは容易ではない。
そこで、 以下に述べるように、 本発明者らは、 抗体の構造に大幅な改変を加え ることなく、 充分な活性を持ったァゴニス トヒ ト抗体の取得を試み、 その取得に 至った。 さらに抗体のヒンジ領域に改変を加え、 ァゴニス ト活性を増強すること に成功した。 本発明によって作出された抗体は血小板減少症治療薬としての利用 に適していると考えられる。
非特許文献 1: 宫崎洋, 「ト口ンボポェチンの将来展望」 , Japanese Journal of Transfus ion Medicine, 46 (3) , 311-316, 2000 非特許文献 2 Murone Mら, Stem Cel l 16 : 1-6, 1998
非特許文献 3 Kuter DJら, Blood 100 (10): 3457- 69, 2002
非特許文献 4 Yonemura Yら, Int J Hemat (82) 307-309, 2005
非特許文献 5 Koraatsu Nら, Blood 96 296a, 2000
非特許文献 6 Broudy VCら, Cytokine. 25 (2) : 52 - 60, 2004
非特許文献 7 Wang Bら, Cl in Pharmacol Ther. 76 (6): 628-38, 2004 非特許文献 8 Deng Bら, Blood 92 (6): 1981-1988, 1998
非特許文献 9 Ji Hee Son ら , Journal of Immunological Metnods 286 : 187-201, 2004
特許文献 1 国際公開第 W0 99/10494号パンフレッ ト
特許文献 2 国際公開第 W0 99/03495号パンフレッ ト
特許文献 3 国際公開第 W0 2005/056604号パンフレッ ト 発明の開示
本発明の目的は、 新規な抗ヒ ト c- Mplァゴニスト抗体を提供することである。 本発明において、 抗体とは、 これまで全長抗体では困難であった、 ヒ ト c-Mpl に対し天然のリガンドである TP0とほぼ同等のシグナルを入れることができ、 プ ライマリーヒ ト細胞に対する増殖刺激活性を有する抗体である。
本発明の第 2の目的は、 抗体の断片化を行わずにァゴニスト抗体の活性を高め る技術を提供することにより、 抗体分子が本来持つ長半減期、 低抗原性といった 医薬品として望ましい性質を有する新規な抗ヒ ト C- Mplァゴニスト抗体を提供す ることである。
上記課題を解決するため、 本発明者らは、 抗ヒ ト C- Mplァゴニスト抗体の研究 に鋭意取り組んだ。 その結果、 全長抗体で、 天然リガンドとほぼ同等のシグナル を生じ、ヒ トプライマリー細胞に対する活性を有するヒ ト抗体を取得した。また、 取得したァゴニスト抗体につき更に鋭意検討を行い、 抗体の断片化を行わずにそ のァゴニスト活性を高める改変方法を見出し、 本発明を完成するに至った。
すなわち、 本発明は、 要約すると、 以下の特徴を含む。
[1] 抗体の定常領域が、 以下の(1)〜(3) : (1) ヒ ト抗体の重鎖定常領域及び軽鎖定常領域のアミノ酸配列、
(2) ヒ ト抗体サブクラス間で重鎖定常領域のドメインを入れ替えた重鎖定常領域 のアミノ酸配列、 及び、 ヒ ト抗体軽鎖定常領域のアミノ酸配列; 或いは
(3) 前記(1)又は(2)のアミノ酸配列において 1若しくは数個のアミノ酸残基が欠 失、 置換、 付加又は挿入されたアミノ酸配列、
のいずれかのアミノ酸配列を有し、 且つ抗体の可変領域がヒ ト トロンボポェチン 受容体に結合し該受容体を活性化する能力を有する、 並びに、 以下の(a)及び/又 は(b) :
(a) ヒ ト臍帯血 CD34 +細胞を用いた CFU-MK コロニー形成測定法において、 10, OOOng/mL以下の濃度でコロニー形成を誘導すること、
(b) UT7/TP0細胞を用いた増殖能測定法において、 最大活性が、 その Ή末端がぺ グ(PEG 匕された配列番号 1のアミノ酸配列からなる下記の構造:
PEG-NH-SPAPPACDLRVLSKLLRDSHVLHSRLSQCPEVHPLPTPVLLPAVDFSLGEWKTQMEETKAQDILG
KVRFLMLVGGSTLCVRRAPPTTAVPS-COOH
を有する PEG- rHuMGDFの 50%以上であり、 且つ 50%有効濃度 (EC50) が ΙΟΟηΜ以 下であること、
の性質を有する、ヒ ト トロンボポェチン受容体(c-Mpl)に対するァゴニス ト抗体で あって、 以下の(1)〜(2) :
(1) 配列番号 2で示されるアミノ酸配列を含む重鎖可変領域及び配列番号 3で示 されるアミノ酸配列を含む軽鎖可変領域、
(2) 配列番号 2で示されるアミノ酸配列を含む重鎖可変領域、 及び配列番号 3で 示されるアミノ酸配列においてフレームワーク領域に 1若しくは数個のアミノ酸 残基が欠失、 置換、 付加又は挿入されたアミノ酸配列を含む軽鎖可変領域、 からなる群から選択される重鎖可変領域及び軽鎖可変領域を有し、
重鎖定常領域のミ ドルヒンジ部以降の C末端側が、 ヒ トイムノグロブリン G 2の ァミノ酸配列において、 Kabat EU番号付けにおける 331位プロリンがセリンに置 換されたァミノ酸配列を有する重鎖を含む抗体。
[2] 抗体の定常領域が、 以下の(1)〜(3) : (1) ヒ ト抗体の重鎖定常領域及び軽鎖定常領域のアミノ酸配列、
(2) ヒ ト抗体サブクラス間で重鎖定常領域のドメインを入れ替えた重鎖定常領域 のアミノ酸配列、 及び、 ヒ ト抗体軽鎖定常領域のアミノ酸配列、 或いは
(3) 前記(1)又は(2)のアミノ酸配列において 1若しくは数個のアミノ酸残基が欠 失、 置換、 付加又は挿入されたアミノ酸配列、
のいずれかのアミノ酸配列を有し、 且つ抗体の可変領域がヒ ト トロンボポェチン 受容体に結合し該受容体を活性化する能力を有する、 並びに、 以下の(a)及び/又 は(b) :
(a) ヒ ト臍帯血 CD34 +細胞を用いた CFU-MK コロニー形成測定法において、 10, 000ng/mL以下の濃度でコロニー形成を誘導すること、
(b) UT7/TP0細胞を用いた増殖能測定法において、 最大活性が、 その N末端がぺ グ(PEG)ィ匕された配列番号 1のアミノ酸配列からなる下記の構造:
PEG-NH-SPAPPACDLRVLSKLLRDSHVLHSRLSQCPEVHPLPTPVLLPAVDFSLGEWKTQ EETKAQDILG
KVRFLMLVGGSTLCVRRAPPTTAVPS-COOH
を有する PEG-rHuMGDFの 50%以上であり、 且つ 50%有効濃度 (EC50) が ΙΌΟηΜ以 下であること、
の性質を有する、ヒ ト トロンボポェチン受容体(c-Mpl)に対するァゴニス ト抗体で あって、 以下の (a) 〜 (d) :
(a) 配列番号 9 5のアミノ酸配列である重鎖、 及び配列番号 3のアミノ酸配列を 含む軽鎖
(b) 配列番号 9 5のアミノ酸配列である重鎖、 及び配列番号 3のアミノ酸配列に おいてフレームワーク領域に 1若しくは数個のアミノ酸残基が欠失、 置換、 付加 又は挿入されたアミノ酸配列を含む軽鎖
(c) 配列番号 9 6のアミノ酸配列で示されるアミノ酸を含む重鎖定常領域、 及び 配列番号 3のァミノ酸配列を含む軽鎖
(d) 配列番号 9 6のアミノ酸配列で示されるアミノ酸を含む重鎖定常領域、 及び 配列番号 3のァミノ酸配列においてフレームワーク領域に 1若しくは数個のアミ ノ酸残基が欠失、 置換、 付加又は挿入されたアミノ酸配列を含む軽鎖 からなる群から選択される重鎖及び軽鎖を有する抗体。
[3] ヒ ト c-Mplに対するァゴニス ト抗体がヒ ト抗体である、 前記 [1]又は [2]に 記載の抗体。
[4] 前記 [1]〜[3]のいずれかに記載の抗体を有効成分として含む医薬組成物。
[5] 前記 [1]〜[3]のいずれかに記載の抗体を有効成分として含む血小板増多剤。
[6] 骨髄移植又は臍帯血移植時の血小板回復促進用である、前記 [5]に記載の血 小板增多剤。
[7] 前記 [1]〜[3]のいずれかに記載の抗体を有効成分として含む血小板減少症 治療剤。
[8] 血小板減少症が、 以下の(1)〜(6) :
(1) 特発性血小板減少性紫斑病 (ITP)、
(2) 癌化学療法後の血小板減少症、
(3) 再生不良性貧血、 -
(4) 骨髄異形性症候群 (MDS)、
(5) 肝疾患にともなう血小板減少症、 及び
(6) 骨髄移植もしくは臍帯血移植後の血小板減少症、
からなる群から選択される疾患のいずれか 1つである、 請求項 7に記載の血小板 減少症治療剤。
[9] 以下の(1)〜(4) :
(1) 配列番号 9 5のアミノ酸配列である重鎖と、 配列番号 3のアミノ酸配列を含 む軽鎖をコードする塩基配列、
(2) 配列番号 9 5のアミノ酸配列である重鎖と、 配列番号 3のアミノ酸配列にお いてフレームワーク領域に 1若しくは数個のアミノ酸残基が欠失、 置換、 付加又 は挿入されたァミノ酸配列を含む軽鎖をコードする塩基配列、
(3) 配列番号 9 6のアミノ酸配列を含む重鎖と、 配列番号 3のアミノ酸配列を含 む軽鎖をコードする塩基配列、
(4) 配列番号 9 6のアミノ酸配列を含む重鎖と、 配列番号 3のアミノ酸配列にお いてフレームワーク領域に 1若しくは数個のアミノ酸残基が欠失、 置換、 付加又 は挿入されたアミノ酸配列を含む軽鎖をコードする塩基配列、 からなる群から選択される、 重鎖をコードする塩基配列を含む DNA及び軽鎖をコ 一ドする塩基配列を含む DNAと、 それらの DNAの発現を制御する塩基配列を含む 1又は複数の DNAとを保持する哺乳動物細胞を作製し、 該哺乳動物細胞を培養し た培養液から、 該重鎖及び軽鎖からなる抗体をコードする DNAの発現産物を単離 精製することを含む、 ヒ ト c-Mplに対するァゴニスト抗体の製造方法。
[10] 以下の(1)〜(2) :
(1) 配列番号 9 5で示されるアミノ酸配列、
(2) 配列番号 9 6で示されるアミノ酸配列、 及び
からなる群から選択されるアミノ酸配列をコードする塩基配列を含む DNA。
[11] 配列番号 2で示されるアミノ酸配列を含む重鎖をコードする DNA であつ て、抗体重鎖のミ ドルヒンジ部以降の C末端側が、 ヒ トイムノグロブリン G2のァ ミノ酸配列或いは該 G2のアミノ酸配列において Kabat EU番号付けにおける 331 位プロリンがセリン置換されたァミノ酸配列を有する DNA。
[12] 前記 [1]〜[3]のいずれかに記載の抗体を有効成分として含む造血幹細胞 移植後の血球回復促進用である血球増多剤。
1 . ヒ ト トロンボポェチン受容体に対するァゴニスト抗体
本発明にかかるヒ トトロンボポェチン受容体に対するァゴニスト抗体は、 以下 の(1)〜(6)に示す抗体を含む。
( 1 ) 抗体の定常領域が以下の(i)〜(i i i) :
(i) ヒ ト抗体の重鎖定常領域及び軽鎖定常領域のアミノ酸配列、
(ϋ) ヒ ト抗体サブクラス間で重鎖定常領域のドメインを入れ替えた重鎖定常領 域のアミノ酸配列、 及び、 ヒ ト抗体軽鎖定常領域のアミノ酸配列、 或いは
(i i i) 前記(i)又は(i i)のアミノ酸配列において 1若しくは数個のアミノ酸残基 が欠失、 置換、 付加又は挿入されたアミノ酸配列、
のいずれかのアミノ酸配列を有し、 且つ抗体の可変領域がヒ ト トロンボポェチン 受容体に結合し該受容体を活性化する能力を有する、並びに、以下の(a)及び/又 は(b) :
(a) ヒ ト臍帯血 CD34 +細胞を用いた CFU- MK コロニー形成測定法において、
10, OOOng/mL以下の濃度でコロニー形成を誘導すること、 (b) UT7/TP0 細胞を用いた増殖能測定法において、 活性が下記の構造を有する PEG- rHuMGDFの 50%以上であり、 かつ 50%有効濃度 (EC50) が ΙΟΟηΜ以下である こと、
の性質を有する、 ヒ ト トロンボポェチン受容体に対するァゴニスト抗体。
本明細書中、 ヒ ト抗体サブクラスは、 IgGl, IgG2, IgG3及び IgG4を含む。 ヒ トイムノグロブリンの定常領域等の配列は、例えば NCBIホームページ(GenBank、 UniGeneなど) から入丰可能であり、 例えばヒ ト IgGl重鎖定常領域については登 録番号 J00228、 ヒ ト IgG2重鎖定常領域については登録番号 J00230、 ヒ ト IgG3 重鎖定常領域については登録番号 X03604、 ヒ ト IgG4重鎖定常領域については登 録番号 K01316、 ヒ ト軽鎖 κ定常領域については登録番号 V00557, X64135, X64133 など、 ヒ ト軽鎖え定常領域については登録番号 X64132, X64134などを含むことが できる。
本明細書中、ヒ ト臍帯血 CD34 +細胞を用いた CFU- ΜΚコロニー形成測定法とは、 後述の実施例 6に記載した測定法を意味し、コロニー形成に必要な抗体の濃度は、 この測定法に基づき求めることができる。
本明細書中、 UT7/TP0 細胞を用いた増殖能測定法とは、 後述の実施例 5に記載 した測定法を意味し、増殖活性及び EC50はこの測定法に基づき求めることができ る。
本明細書中、 PEG-rHuMGDF とは、 ヒ ト TP0のァミノ末端受容体結合ドメインを 含むトランケ一ト化タンパク質をコードする cDNA を含有するプラスミ ドで形質 転換された大腸菌 (E. col i) を使用して産生される (Ul ichら, Blood 86 : 971-976 (1995) ) ポリペプチドを抽出し、 リフォールデイングし、 精製し、 そのアミノ末 端にポリエチレンダリコール (PEG)部分を共有結合させた配列番号 1のアミノ酸 配列を有する分子であり、 以下の構造:
PEG-NH-SPAPPACDLRVLSKLLRDSHVLHSRLSQCPEVHPLPTPVLLPAVDFSLGEWKTQMEETKAQDILG
KVRFLMLVGGSTLCVRRAPPTTAVPS-C00H
を有するものである。
本明細書中、 ヒ ト C- Mplを活性化するとは、 ヒ ト C- Mplを発現している細胞に おいてヒ ト c - Mplに係る細胞内シグナル伝達を起こすことをレ、う。
本明細書中、 数個なる用語は、 2〜約 1 0個、 例えば 2〜9個、 2〜8個、 2 〜7個、 2〜6個、 2〜5個、 2〜4個、 又は 2〜 3個の整数を意味する。
( 2 ) 上記コロニー形成測定法によりコロニー形成を誘導する活性を有し、 及び Z又は、 上記 UT7/TP0細胞を用いた増殖能測定法により細胞増殖活性を有する抗 体のうち、 コロニー形成活性については 10, OOOng/mL以下の濃度でコロニー形成 を誘導する活性を有する、 好ましくは l, 000ng/mL以下の濃度で該活性を有する、 より好ましくは lOOng/mL以下の濃度で該活性を有する上記 (1 ) の抗体。
( 3 ) 上記細胞増殖活性が PEG-rHuMGDFの 50%以上、 好ましくは 70%以上、 より好 ましくは 90%以上の活性を示し、 50%有効濃度 (EC50) 、 100nM以下, 好ましく は 10nM以下、 より好ましくは InM以下のものである上記 (1 ) の抗体。
( 4 ) 上記コロニー形成測定法及び上記増殖能測定法の両者の測定方法によりそ れぞれ以下の活性を示す上記 (1 ) の抗体。
(i) 以下の(a)および(b)の性質を有する、 ヒ ト トロンボポェチン受容体に対する ァゴニス ト抗体。
(a)ヒ ト臍帯血 CD34 +細胞を用いた CFU-MK コロニー形成測定法において、 10, 000ng/mL以下の濃度でゴロニー形成を誘導する。
(b) UT7/TP0 細胞を用いた増殖能測定法において、 最大活性が下記の構造を有す る PEG-rHuMGDFの 50%以上であり、 かつ 50%有効濃度 (EC50) が 100nM以下であ る。
(i i) 以下の(a)および(b)の性質を有する、ヒ ト C- Mplに対するァゴニスト抗体。
(a) ヒ ト臍帯血 CD34 +細胞を用いた CFU- MK コ ロニー形成測定法において、 1, OOOng/mL以下の濃度でコロニー形成を誘導する。
(b) UT7/TP0細胞を用いた増殖能測定法において、最大活性が PEG-rHuMGDFの 70% 以上であり、 かつ EC50が 10nM以下である。
(i i i) 以下の(a)および(b)の性質を有する、ヒ ト C- Mplに対するァゴニス ト抗体。
(a) ヒ ト臍帯血 CD34 +細胞を用いた CFU-MK コロニー形成測定法において、 100ng/mL以下の濃度でコロニー形成を誘導する。
(b) UT7/TP0細胞を用いた増殖能測定法において、最大活性が PEG- rHuMGDFの 90% 以上であり、 かつ EC50が InM以下である。
( 5 ) 以下の (a) 〜 (h) からなる群から選択される重鎖アミノ酸配列可変領域 及び軽鎖アミノ酸配列可変領域を有する上記 (1 ) の抗体。 (カツコ内に、 各可変 領域配列が由来する後述実施例の抗体の名称を示す。)
(a) 配列番号 2で示されるアミノ酸配列を含む重鎖可変領域及び配列番号 3で示 されるアミノ酸配列を含む軽鎖可変領域。 (抗体の名称: 7-10)
(b) 配列番号 4で示されるアミノ酸配列を含む重鎖可変領域及び配列番号 5で示 されるアミノ酸配列を含む軽鎖可変領域。 (抗体の名称: 4-49)
(c) 配列番号 6で示されるアミノ酸配列を含む重鎖可変領域及び配列番号 7で示 されるアミノ酸配列を含む軽鎖可変領域。 (抗体の名称: 6 - 4- 50)
(d) 配列番号 8で示されるアミノ酸配列を含む重鎖可変領域及び配列番号 9で示 されるアミノ酸配列を含む軽鎖可変領域。 (抗体の名称: 6-5-2)
(e) 配列番号 2で示されるアミノ酸 己列を含む重鎖可変領域、 及び配列番号 3で 示されるアミノ酸配列においてフレームワーク領域に 1若しくは数個のァミノ酸 残基が欠失、 置換、 付加又は挿入されたアミノ酸配列
を含む軽鎖可変領域。
(f) 配列番号 4で示されるアミノ酸配列を含む重鎖可変領域、 及び配列番号 5で 示されるアミノ酸配列においてフレームワーク領域に 1若しくは数個のアミノ酸 残基が欠失、 置換、 付加又は挿入されたアミノ酸配列を含む軽鎖可変領域。
(g) 配列番号 6で示されるアミノ酸配列を含む重鎖可変領域、 及び配列番号 7で 示されるアミノ酸配列においてフレームワーク領域に 1若しくは数個のアミノ酸 残基が欠失、 置換、 付加又は挿入されたアミノ酸配列を含む軽鎖可変領域。
(h) 配列番号 8で示されるアミノ酸配列を含む重鎖可変領域、 及び配列番号 9で 示されるアミノ酸配列においてフレームワーク領域に 1若しくは数個のァミノ酸 残基が欠失、 置換、 付加又は挿入されたアミノ酸配列を含む軽鎖可変領域。
( 6 ) 以下の (a) 〜 (d) からなる群から選択される上記 (1 ) の抗体
(a) 配列番号 9 5で示されるアミノ酸配列である重鎖、 及び配列番号 3で示され るアミノ酸配列を含む軽鎖を有する抗体
(b) 配列番号 9 5で示されるアミノ酸配列である重鎖、 及び配列番号 3で示され るアミノ酸配列においてフレームワーク領域に 1若しくは数個のアミノ酸残基が 欠失、 置換、 付加又は挿入されたアミノ酸配列を含む軽鎖を有する抗体
(c) 配列番号 9 6で示されるアミノ酸配列を含む重鎖定常領域、 及び配列番号 3 で示されるアミノ酸配列を含む軽鎖を有する抗体
(d) 配列番号 9 6で示されるアミノ酸配列を含む重鎖定常領域、 及び配列番号 3 で示されるアミノ酸配列においてフレームワーク領域に 1若しくは数個のァミノ 酸残基が欠失、 置換、 付加又は挿入されたアミノ酸配列を含む軽鎖を有する抗体
( 7 ) ヒ ト c - Mplに対するァゴニスト抗体がヒ ト抗体である、 上記 (1 ) 〜 (6 ) に記載の抗体。
2 . 重鎖改変ァゴニス ト抗体
本発明に係る重鎖改変ァゴニス ト抗体とは、 以下のものを含む。
( 1 ) 重鎖定常領域のアッパーヒンジ部が、 以下の(a)〜(; b)のアミノ酸配列から 選択されるいずれか 1つのアミノ酸配列を有し、 並びに、 該重鎖定常領域のミ ド ルヒンジ部以降の C末端側がヒ トイムノグロブリン G4のアミノ酸配列或いは該 G4のァミノ酸配列において ADCC (抗体依存性細胞障害)活性等に係るァゴニス ト 抗体として好ましくない性質に関する部位を変異させたアミノ酸配列を有するァ ゴニスト抗体。
(a) 配列番号 10で示されるァミノ酸配列。
(b) 配列番号 11で示されるァミノ酸配列。
本明細書の中で用いるアッパーヒンジ (Upper hinge) とは、 Kabat EU 番号付 け (.Rabat り、 Sequences of Prote ins of Immunologica丄 Interest, otn Ed. Publ ic Health Service, Nat ional Institute of Health, Bethesda, Md. (1991) ) によ る表記で 216位以降、 226位より N末端側の配列を指す。 ミ ドルヒンジ (Middle hinge) とは、 同表記で 226位以降、 231位より N末端側の配列を指す。 ヒ トイム ノグロブリン G4を含む各サブタイプにつき、 アッパーヒンジ、 ミ ドルヒンジ及び その前後のアミノ酸配列を図 4 Bに示す。図中、 CH1はアッパーヒンジに隣接する CH1領域の一部、 CH2は CH2領域中のローヮーヒンジ(lower hinge)と称される部 分である。
( 2 ) 上記重鎖定常領域のミ ドルヒンジ部以降の C末端側が、 ヒ トイムノグロブ リン G 4のアミノ酸配列において、 Kabat EU番号付けにおける 228位セリンがプ 口リンに且つ 235位ロイシンがグルタミン酸に置換されたアミノ酸配列を有する 重鎖を含む抗体。
( 3 )以下の(i)又は(i i)に示された、 ヒ ト c-Mplに対するァゴニストヒ ト抗体で ある上記 (2 ) の重鎖改変抗体。
(i) 重鎖定常領域のアッパーヒンジ部が以下の(a)〜(b)のアミノ酸配列から選択 されるいずれか一つのアミノ酸配列を有し、 並びに、 該重鎖定常領域のミ ドルヒ ンジ部以降の C末端側がヒ トイムノグロブリン G4のァミノ酸配列或いは該 G4の ァミノ酸配列において Kabat EU番号付けにおける 228位セリンがプロリンに且つ 235 位ロイシンがグルタミン酸に置換されたアミノ酸配列を有する重鎖を含むヒ ト C- Mplに対するァゴニス ト抗体。
(a) 配列番号 10で示されるアミノ酸配列。
(b) 配列番号 11で示されるアミノ酸配列。
(i i) 更に好ましい実施形態としては、 以下 (a) 〜 (h)からなる群から選択され る、 上記(i)に記載のヒ ト c-Mplに対するァゴニスト抗体を挙げることができる。
(a)配列番号 2のァミノ酸配列を含む重鎖と配列番 3のァミノ酸配列を含む軽鎖 を有する抗体。
(b)配列番号 4のァミノ酸配列を含む重鎖と配列番号 5のァミノ酸配列を含む軽 鎖を有する抗体。
(c)配列番号 6のアミノ酸配列を含む重鎖と配列番号 7のァミノ酸配列を含む軽 鎖を有する抗体。
(d)配列番号 8のアミノ酸配列を含む重鎖と配列番号 9のアミノ酸配列を含む軽 鎖を有する抗体。
(e) 配列番号 2のアミノ酸配列を含む重鎖と、 配列番号 3のアミノ酸配列におい てフレームワーク領域に 1若しくは数個のアミノ酸残基が欠失、 置換、 付加又は 挿入されたアミノ酸配列を含む軽鎖を有する抗体。
(f) 配列番号 4のアミノ酸配列を含む重鎖と、 配列番号 5のアミノ酸配列におい てフレームワーク領域に 1若しくは数個のアミノ酸残基が欠失、 置換、 付加又は 揷入されたアミノ酸配列を含む軽鎖を有する抗体。 (g) 配列番号 6のアミノ酸配列を含む重鎖と、 配列番号 7のアミノ酸配列におい てフレームワーク領域に 1若しくは数個のアミノ酸残基が欠失、 置換、 付加又は 挿入されたアミノ酸配列を含む軽鎖を有する抗体。
(h) 配列番号 8のアミノ酸配列を含む重鎖と、 配列番号 9のアミノ酸配列におい てフレームワーク領域に 1若しくは数個のアミノ酸残基が欠失、 置換、 付加又は 挿入されたアミノ酸配列を含む軽鎖を有する抗体。
( 4 ) 上記重鎖定常領域のミ ドルヒンジ部以降の C末端側が、 ヒ トイムノグロブ リン G 2のアミノ酸配列において、 Kabat EU番号付けにおける 331位プロリンが セリンに置換されたアミノ酸配列を有する重鎖を含む抗体
( 5 ) 以下の(a)又は(b)に示される、 ヒ ト c-Mplに対するァゴニストヒ ト抗体で ある上記 (4 ) の重鎖改変抗体
(a) 配列番号 9 5のァミノ酸配列である重鎖、 及び配列番号 3のァミノ酸配列を 含む軽鎖を有する抗体
(b) 配列番号 9 5のァミノ酸配列である重鎖、 及び配列番号 3のァミノ酸配列に おいてフレームワーク領域に 1若しくは数個のアミノ酸残基が欠失、 置換、 付加 又は挿入されたアミノ酸配列を含む軽鎖を有する抗体
(c) 配列番号 9 6のアミノ酸配列で示されるアミノ酸を含む重鎖定常領域、 及び 配列番号 3のアミノ酸配列を含む軽鎖を有する抗体
(d) 配列番号 9 6のアミノ酸配列で示されるアミノ酸を含む重鎖定常領域、 及び 配列番号 3のアミノ酸配列においてフレームワーク領域に 1若しくは数個のアミ ノ酸残基が欠失、 置換、 付加又は挿入されたアミノ酸配列を含む軽鎖を有する抗 体
3 . ヒ ト c -MPLに対するァゴニス ト抗体の医薬用途及び医薬組成物
本発明に係るヒ ト C - MPLに対するァゴニスト抗体は、 c-Mpl受容体に結合しそ れを活性化する能力、 およびノまたは (インビボおよびインビトロの両方で) 血 小板の産生を刺激する能力 (「血小板生成活性」) および血小板前駆体の産生を刺 激する能力 (「巨核球生成活性」) を有する。
本発明に係るヒ ト C - Mpl に対するァゴニス ト抗体を有効成分とする医薬組成 物 医薬用途としては、 具体的には次のものを挙げることができる。 (1) 上記 1. (1) 〜 (6) 及び同 2. (3) のいずれかの抗体を有効成分とす る医薬組成物。
(2) 上記 1. (1) 〜 (6) 及び同 2. (3) のいずれかに記載の抗体を有効成 分とする血小板増多剤。
(3) 骨髄移植、 臍帯血移植時の血小板回復促進用であることを特徴とする上記 (2) に記載の血小板増多剤
(4) 上記 1. (1) 〜 (6) 及び同 2. (3) のいずれかの抗体を有効成分とす る血小板減少症治療剤。
(5) 血小板減少症が、 以下の (a) 〜 (f) のいずれか 1つである、 上記 (4) に記載の血小板減少症治療剤。
(a) 特発性血小板減少性紫斑病 (ITP)、
(b) 癌化学療法後の血小板減少症、
(c) 再生不良性貧血、
(d) 骨髄異形性症候群 (MDS)、
(e) 肝疾患にともなう血小板減少症、 又は
(f) 骨髄移植もしくは臍帯血移植後の血小板減少症。
(6) 造血幹細胞移植後の血球回復促進用であるヒ ト c-Mpl了ゴニスト抗体を有 効成分として含む血球増多剤。
(7) 上記 1. (1) 〜 (6) 及び同 2. (3) のいずれかに記載の抗体を有効成 分として含む上記 (6) に記載の血球増多剤。
4. 本発明に係る抗体の製造方法
本発明の抗体は、 本発明に係る抗体を産生するハイプリ ドーマを用いて抗体を 製造してもよいし、 又は、 ハイプリ ドーマ等の抗体産生細胞からモノクロ一 ル 抗体をコードする遺伝子をクローニングし、 適当なベクターに組み込んで、 遺伝 子組換え技術を用いて産生させた組換え型抗体を製造することもできる。 本発明 の抗体の製造方法として、 好ましくは、 以下の方法が挙げられる。
下記の(a)〜(l) :
(a) 配列番号 2のァミノ酸配列を含む重鎖と配列番号 3のァミノ酸配列を含む軽 鎖をコードする塩基配列、 (b) 配列番号 4のアミノ酸配列を含む重鎖と配列番号 5のアミノ酸配列を含む軽 鎖をコードする塩基配列、
(c) 配列番号 6のアミノ酸配列を含む重鎖と配列番号 7のアミノ酸配列を含む軽 鎖をコードする塩基配列、
(d) 配列番号 8のアミノ酸配列を含む重鎖と配列番号' 9のアミノ酸配列を含む軽 鎖をコードする塩基配列、
(e) 配列番号 2のアミノ酸配列を含む重鎖と、 配列番号 3のアミノ酸配列におい てフレームワーク領域に 1若しくは数個のアミノ酸残基が欠失、 置換、 付加又は 挿入されたアミノ酸配列を含む軽鎖をコードする塩基配列、
(f) 配列番号 4のアミノ酸配列を含む重鎖と、 配列番号 5のアミノ酸配列におい てフレームワーク領域に 1若しくは数個のアミノ酸残基が欠失、 置換、 付加又は 挿入されたアミノ酸配列を含む軽鎖をコードする塩基配列、
(g) 配列番号 6のアミノ酸配列を含む重鎖と、 配列番号 7のアミノ酸配列におい てフレームワーク領域に 1若しくは数個のアミノ酸残基が欠失、 置換、 付加又は 挿入されたアミノ酸配列を含む軽鎖をコードする塩基配列、 及び
(h) 配列番号 8のアミノ酸配列を含む重鎖と、 配列番号 9のアミノ酸配列におい てフレームワーク領域に 1若しくは数個のアミノ酸残基が欠失、 置換、 付加又は 揷入されたアミノ酸配列を含む軽鎖をコードする塩基配列、
(i) 配列番号 9 5のアミノ酸配列である重鎖と、 配列番号 3のアミノ酸配列を含 む軽鎖をコードする塩基配列
(j) 配列番号 9 5のアミノ酸配列である重鎖と、 配列番号 3のアミノ酸配列にお いてフレームワーク領域に 1若しくは数個のアミノ酸残基が欠失、 置換、 付加又 は挿入されたァミノ酸配列を含む軽鎖をコードする塩基配列
(k) 配列番号 9 6のアミノ酸配列で示されるアミノ酸を含む重鎖定常領域と、 配 列番号 3のアミノ酸配列を含む軽鎖をコードする塩基配列
(1) 配列番号 9 6のアミノ酸配列で示されるアミノ酸を含む重鎖定常領域と、 配 列番号 3のアミノ酸配列においてフレームワーク領域に 1若しくは数個のァミノ 酸残基が欠失、 置換、 付加又は挿入されたァ.ミノ酸配列を含む軽鎖をコードする 塩基配列からなる群から選択される、 重鎖をコードする塩基配列を含む DNA及び 軽鎖をコードする塩基配列を含む DNAと、 それらの DNAの発現を制御する塩基配 列を含む 1又は複数の DNAとを保持する哺乳動物細胞を作製し、 該哺乳動物細胞 を培養した培養液から、 該重鎖及び軽鎖からなる抗体をコードする DNAの発現産 物を単離精製することを含む、 ヒ ト c - Mplに対するァゴニスト抗体の製造方法。 5 . 本発明に係る DNA
本発明に係る DNAとして、 以下のものを挙げることができる。
( 1 ) ヒ ト Mplに対するァゴニスト抗体の重鎖可変領域のアミノ酸配列をコード する塩基配列を含む新規な DNAであって、 以下の(a)〜(d)からなる群から選択さ れるァミノ酸配列をコードする塩基配列を含む DNA:
(a) 配列番号 2で示されるアミノ酸配列;
(b) 配列番号 4で示されるアミノ酸配列;
(c) 配列番号 6で示されるアミノ酸配列;
(d) 配列番号 8で示されるァミノ酸配列。
( 2 ) ヒ ト Mplに対するァゴニスト抗体の軽鎖可変領域のアミノ酸配列をコード する塩基配列を含む新規な DNAであって、 以下の(a)〜(h)からなる群から選択さ れるアミノ酸配列をコードする塩基配列を含む DNA :
(a) 配列番号 3で示されるアミノ酸配列;
(b) 配列番号 5で示されるァミノ酸配列;
(c) 配列番号 7で示されるアミノ酸配列;
(d) 配列番号 9で示されるァミノ酸配列;
(e) 配列番号 3のァミノ酸配列においてフレームワーク領域に 1若しくは数個の アミノ酸残基が欠失、 置換、 付加又は挿入されたアミノ酸配列;
(f) 配列番号 5のアミノ酸配列においてフレームワーク領域に 1若しくは数個の アミノ酸残基が欠失、 置換、 付加又は挿入されたアミノ酸配列;
(g) 配列番号 7のァミノ酸配列においてフレームワーク領域に 1若しくは数個の アミノ酸残基が欠失、 置換、 付加又は挿入されたアミノ酸配列;
(h) 配列番号 9のアミノ酸配列においてフレームワーク領域に 1若しくは数個の アミノ酸残基が欠失、 置換、 付加又は挿入されたアミノ酸配列。
(.3 ) 上記 (1 ) 又は (2 ) の DNAが、 それぞれ可変領域及び定常領域を含む抗 体重鎖或いは軽鎖をコードする DNA。
( 4 ) 抗体の重鎖定常領域のアッパーヒンジ部が、 以下の(a)及び(b)のアミノ酸 配列から選択されるいずれか一つのアミノ酸配列を有し、 並びに、 該重鎖定常領 域のミ ドルヒンジ部以降の C末端側がヒ トイムノグロブリン G4のアミノ酸配列或 いは該 G4のアミノ酸配列において Kabat EU番号付けにおける 2 2 8位セリンが プロリン.に且つ 2 3 5位ロイシンがグルタミン酸に置換されたアミノ酸配列を有 する、 上記 (3 ) に記載の抗体重鎖をコードする DNA。
(a) 配列番号 10で示されるァミノ酸配列。
(b) 配列番号 11で示されるアミノ酸配列。
( 5 ) 抗体の重鎖が配列番号 95で示されるアミノ酸配列をコードする DNA。
( 6 )抗体の重鎖定常領域が配列番号 96で示されるアミノ酸配列をコードする塩 基配列を含む DNA。
( 7 )配列番号 2で示されるアミノ酸配列を含む重鎖をコードする DNAであって、 抗体重鎖のミ ドルヒンジ部以降の C末端側が、ヒ トイムノグロブリン G2のァミノ 酸配列或いは該 G2のアミノ酸配列において Kabat EU番号付けにおける 331位プ 口リンがセリン置換されたアミノ酸配列を有する DNA。
本明細書は本願の優先権の基礎である日本国特許出願 2007-249687号の明細書 および/または図面に記載される内容を包含する。 図面の簡単な説明
図 1は、 ァゴニスト抗体結合活性を示す。 FDCP- hMpl細胞と FDCP2細胞 (FDCP parent) を用いたフローサイ トメ トリー (実施例 2 ) で、 図示した各抗体の結合 活性を調べた。 各抗体はヒ ト c - Mpl特異的に結合することが示された。
図 2は、 UT7/TP0 アツセィ結果を示す。 図 A〜Dに示した各精製抗体 (IgGl) の UT7/TP0細胞増殖アツセィ (実施例 5 ) における各抗体の増殖曲線を示した。 図 3は、 CFU-Mkアツセィ結果を示す。 これは、 ヒ ト臍帯血 CD34+細胞を用いた コロニー形成アツセィ (実施例 6 ) の結果である。
図 4 Aは、 組換え抗体作製に関する N5KG1ベクターの構造を示す。 図中、 Cは サイ トメガロウィルスのプロモータ一/ェンハンサー、 Bはゥシ成長ホルモンポリ アデニル化領域、 N 1はネオマイシンホスホトランスフェラーゼのェクソン 1、 Kはヒ トイムノグロブリン κ定常領域、 G 1はヒ トイムノグロブリン γ 1定常領 域、 Β Τはマウス ]3グロブリン主要プロモーター、 Ν 2はネオマイシンホスホト ランスフェラーゼのェクソン 2、 Dはジヒ ドロ葉酸レダクターゼ、 VHは重鎖可 変領域、 VLは軽鎖可変領域をそれぞれ表す。
図 4 Βは、組換え抗体作製に関する、天然型のヒ トイムノグロブリンと、 IgG4PE, IgG4344, IgG4344hl, IgG4344uh, IgG4344uhm の C H 1領域とヒンジ領域 (アツ パーヒンジ及びミ ドルヒンジ) のアミノ酸配列を示す。
図 4 C一 1 (すなわち、 図 4C-1〜図 4C-3) は、 組換え抗体作製に関する、 N5KG1_7-10, N5KG1_4_49発 | ベクター作製工程図を示す。
図 4 C— 2は、 図 4 C— 1の続き。
図 4 C— 3は、 図 4 C— 2の続き。
図 4D— 1は、 この図 (すなわち、 図 4D- 1〜図 4D- 3) は、 組換え抗体作製に関 する、 N5KG1—6-4- 50, N5KG1— 6- 5- 2発現ベクター作製工程を示す。
図 4D— 2は、 図 4D— 1の続き。
図 4D— 3は、 図 4D— 2の続き。
図 4 Eは、 組換え抗体作製に関する、 図示した各種改変重鎖の定常領域の配列 を示す。
図 4 F— 1 (すなわち、 図 4F-1〜図 4F-2) は、 組換え抗体作製に関する、 7-10G4344uhm重鎖の核酸およびァミノ酸配列を示す。
図 4 F— 2は、 図 4 F— 1の続き。
図 4Gは、 組換え抗体作製に関する、 7- 10G4344uhm軽鎖の核酸およびアミノ酸 配列を示す。
図 5は、 ヒンジ改変抗体の活性を示す。 A : UT7/TP0 細胞増殖アツセィにおけ る 4- 49G1, 4-49G3311, 4- 49G3331の活性。 B : UT7/TP0細胞増殖アツセィにおけ る 7- 10G4344uhm, 4-49G4344uhmの活性。
図 6 Aは、 シグナル伝達解析 (実施例 1 1 ) における、 ァゴニス ト抗体
7-10G4344uhra, 4- 49G4344uhmのシグナル伝達解析結果を示す。
図 6 Bは、シグナル伝達解析(実施例 1 1)における、ァゴニスト抗体 6- 5- 2G1, 6-5- 2G3344のシグナル伝達解析結果を示す。
図 7は、 ヒ ト血小板プライミング作用を示す。 これは、 実施例 12記載の試験の 結果を示す。 ァゴニスト抗体 7- 10G3311, 4- 49G3311によるヒ ト血小板プライミン グ作用が示された。 また、 ァゴニスト抗体のみ (ADP 非添加) では血小板の凝集 は起こらないことが示された。
図 8は、 力二クイザルへのァゴニスト抗体投与による血小板数の変化を示した グラフである。実施例 13に記載のように、力二クイザルにァゴニスト抗体を投与 し、 血小板数をモニターした。 矢印は一回目 (PEG-rHuMGDF) および二回目 (ァゴ ニスト抗体) の投与日を示す。
図 9 Aは、 NOG臍帯血移植モデルマウスにおいて CD34+細胞を 1, 000個 (右図) 又は 10, 000個(左図) を移植した後に被検物質を投与したときの末梢血ヒ ト血小 板数の経時的推移を示す。 図中、 Preは投与前の血小板数を示す。 '
図 9 Bは、 NOG臍帯血移植モデルマウスにおいて CD34+細胞を 1, 000個 (右図) 又は 10, 000個 (左図) を移植した後に被検物質を投与したときの、 移植後 6週に おける骨髄ヒ ト前駆細胞数(colony count ; GM+E+GEM)を示す。 前駆細胞数は、 巨 核球系以外の合計細胞数であり、 GMは顆粒球 ·マクロファージ系、 Eは赤血球系、 GEMはし olony-formmg-umt- granulocyte- macrophage- erythro.idを表わす。結果 は、 平均土標準偏差(mean土 SD)で表わしている。 また、 べヒクル (Vehicle) はコ ントロールと しての PBS (リ ン酸緩衝塩水) を表わし、 また、 NT は非処理 (Non-treated)を表わす。
図 9 Cは、 N0G臍帯血移植モデルマウスにおいて CD34+細胞を 1, 000個 (右図) 又は 10, 000個 (左図) を移植した後に被検物質を投与したときの、 移植後 6週に おける末梢血ヒ ト細胞キメラ率を示す。 べヒクル (Vehicle) は対照としての PBS (リン酸緩衝塩水) を表わし、 また、 NTは非処理(Non-treated)を表わす。
図 1 0は、 ヒ ト Mpl Tgマウスへのァゴニスト抗体投与後の血小板数の経日推移 を示す。 対照として、 該 Tgマウスへの TP0又はべヒクル(PBS)の投与、 並びに、 非 Tg (野生型; Non- Tg) マウスへの 7- 10G4344uhm (10 /z g) の投与実験を行い、 その結果も示した。 結果は、 平均士 SEMで表わした。
図 1 1は、 ァゴニスト抗体 7-10G4344uhm (軽鎖変異抗体) の FM3A- hMpl細胞へ の結合性を示す。
図 1 2は、 ァゴニスト抗体 7- 10G4344uhm (軽鎖変異抗体) に関する UT-7/TP0 細胞を用いた細胞増殖アツセィの結果を示す。
図 1 3は、ァゴニス ト抗体 7- 10の重鎖定常領域を G2322uhm2に変異させたァゴ ニス ト抗体 7-10G2322uhm2に関する UT- 7/TP0細胞を用いた細胞増殖アツセィの結 果を示す。 発明を実施するための最良の形態
以下、 本発明を詳細に説明する。
本発明は、 プライマリーヒ ト細胞に作用する抗ヒ ト c-Mplァゴニストヒ ト抗体 を提供する。
本発明における抗体は、 ヒ ト抗体産生マウス (例えば、 KMマウス™ (キリンビ ール社)) をヒ ト Mpl組換えタンパク質もしくはヒ ト Mpl発現細胞で免疫し、通常 のモノクローナル抗体作製法にて単離することができる。 また、 ハイプリ ドーマ から抗体遺伝子を単離し、 発現ベクターを構築し、 発現細胞を作製し、 その過程 で、 種々の定常領域を有する組換え抗体を作製することができる。
1 . 本発明に係る抗体について
本明細書において抗体とは、 Fab領域、 ヒンジ領域、 Fc領域を有する抗体を意 味し、 天然に存在する抗体、 及び、 同様の構成を有する範囲において、 それ自体 公知の方法で得られたモノクローナル抗体産生ハイプリ ドーマにより産生される、 或いは、 一旦抗体遺伝子を取得しそれを用いて遺伝子工学的に産生される抗体、 更に部位特異的突然変異誘発法により一部改変され遺伝子工学的に産生される抗 体を含む。 そして本発明に係るヒ ト c Mpl に対するァゴニス ト抗体及び重鎖改変 ァゴニスト抗体は前述した通りのものである。
一般に、 ァゴニス ト抗体は細胞膜上の標的分子に結合し、 複合体を形成させる ことでシグナルを伝える。ホモ二量体を形成するサイ トカイン受容体ファミリ一、 例えばエリスロポエチン受容体 (EpoR)、 G- CSF 受容体 (G_CSFR)、 トロンボポェ チン受容体 (c_Mpl) 等に対するァゴニスト抗体は、 二価の抗体が、 二つの分子と 結合することで二量体を形成させると考えられる。 多くのァゴニスト抗体が Fab 断片のみでは活性を示さないこともそれを示唆している。
複合体形成には、 二つの抗原結合部位が接近し易いことが重要と考えられる。 全長抗体では充分な活性を持たない抗体でも、 sc (Fv) 2 等の形態に低分子化する ことでァゴニスト活性が上昇するのはこのことを示唆している。 一方で、 低分子 化抗体は、 分子の大幅な改変による抗原性が懸念されるうえ、 血中半減期が短縮 される等、 医薬品として利用するためには課題が多い。 全長抗体の持つ、 低抗原 性や血中半減期の長さ等、 医薬品として有用な性質を生かすためには、 抗体の構 造に大幅な改変を加えることなく、高い活性を持ったァゴニスト抗体が望まれる。 後述の実施例 2に示すように、 本発明者らは、 免疫の方法に工夫をこらし、 全 長抗体で高い活性を持った抗ヒ ト c-Mplァゴニスト抗体を取得した。 工夫とは、 例えば高発現細胞株による免疫や恒常活性型の変異受容体発現細胞を用いた免疫 である。 該ァゴニスト抗体は後述の実施例 6に記載のヒ ト臍帯血 CD34+細胞を用 いたコ口ニーアッセィでコ口ニー形成を誘導することが示されており、 医薬品と して有用であることが期待される。
さらに、 本発明者らはヒンジ部分の柔軟性を高めることで、 複合体形成の効率 を高め、 ァゴニスト活性を増強することを考案した。 柔軟性の高い配列は、 例え ばグリシンリンカ一のような配列を考えるこどができる。 もしくは、 ヒ ト IgGの 中でも、最も柔軟性が高い IgG3のヒンジ領域を用いることができる。抗体の低抗 原性を損なわないためには、 なるべく天然に存在する配列を用いることが望まし い。 そこで、 IgG3のヒンジ配列がより好ましい。
また、 遺伝子工学的改変により、 細胞傷害活性が低く、 かつ、 高いヒンジの柔 軟性を持った、ァゴニス ト抗体に最適な定常領域として、 ヒ ト IgG3のアッパーヒ ンジ領域を持ち、 ミ ドルヒンジ以降 C末端側の領域はヒ ト IgG4もしくは IgG2の 配列とするような抗体の作製も可能である。
より具体的には、 当業者に周知である遺伝子工学的改変 (例えば、 欧州特許
EP314161公報を参照のこと) により異なるサブクラスのものに変換し、 即ち、 本 発明の抗体の可変領域をコードする DNAを用いて遺伝子工学的手法を用いて元の サブクラスとは異なるサブクラスの抗体に変更することができる。更にヒ ト IgG4 重鎖定常部分の EU番号付け (Sequences of proteins of immunological interest, IH Publ ication No. 91-3242 を参照) における 228番目のセリンをプロリンに変 異させることにより、 IgG4の分子内架橋 (S-S結合) による単量体形成を抑制す ることが、 また、 同じく 235番目ロイシンをグルタミン酸に変異させることによ り、 抗体依存性細胞傷害(Antibody-dependent cel lular cytotoxicity : ADCC)活 性を低減させることができる。 上記二つの変異を持った IgG4を IgG4PEと呼ぶ。 また、 IgG2の 331番目のプロリンをセリンに変異させることにより、 補体依存性 細胞傷害 (Complement- dependent cytotoxicity : CDC) 活性を低減させることが できる。 この変異を持った IgG2を IgG2— Serと呼ぶ。
上記の事柄を考慮し、 本発明者らは細胞傷害活性が低く、 かつ、 高いヒンジの 柔軟性を持った、 ァゴニス ト抗体に最適な定常領域を作製した。 本定常領域は、 ヒ ト IgG3のアッパーヒンジ領域を持ち、ミ ドルヒンジ以降 C末端側の領域はヒ ト IgG4又は IgG2の配列となっている。 この定常領域と抗 C- Mpl ァゴニスト抗体の 可変領域を組み合わせることにより、 安全性と高活性を兼ね備えたァゴニスト抗 体を作製することができる。
2 . 本発明に係る抗体の製造方法
本発明の抗体は、 種々の方法により生産できるが、 まずは本発明抗体産生ハイ プリ ドーマを得る必要がある。 後述の実施例 1に記載するような本発明の抗原を 用い、 マウス等を免疫し、 特にヒ ト抗体を得る場合にはヒ ト抗体産生トランスジ エニックマウスなどの非ヒ ト哺乳動物に免疫する。 モノクローナル抗体は、 定法 に従い、 免疫感作動物から得た抗体産生細胞と、 自己抗体産生能のない骨髄腫系 細胞(ミエローマ細胞)を融合することにより得られるハイプリ ドーマを培養し、 免疫に用いた抗原に対して特異的親和性を示すモノクローナル抗体を産生するク ローンを選択することによって取得することができる。 取得した抗体群から更に ァゴニス ト抗体を選択する必要があるが、 ァゴニス ト抗体の作用対象受容体に対 するリガンドの活性測定方法として確立した方法を用いればよく、 ヒ ト C- Mplに 対するァゴニスト抗体を選択する場合は、後述の実施例 5に示した UT 7 /TP0細胞 増殖アツセィ等の TP0活性測定方法として既に確立された方法を用いて適宜行う ことができる。 '
本発明に係るヒ ト c - Mplに対するァゴニスト抗体、 特にモノクローナル抗体の 製造にあたっては、 下記の工程を包含する。 すなわち、 (1) 免疫原として使用す る、生体高分子の精製及び/又は抗原タンパク質を細胞表面に過剰に発現している 細胞の作製、 (2) 抗原を動物に注射することにより免疫した後、 血液を採取しそ の抗体価を検定して脾臓等の摘出の時期を決定してから、 抗体産生細胞を調製す る工程、 (3) 骨髄腫細胞 (ミエローマ) の調製、 (4) 抗体産生細胞とミエローマ との細胞融合、 (5) 目的とする抗体を産生するハイプリ ドーマ群の選別、 (6) 単 一細胞クローンへの分割 (クローニング)、 (7) 場合によっては、 モノクローナル 抗体を大量に製造するためのハイプリ ドーマの培養、 又はハイプリ ドーマを移植 した動物の飼育、 (8) このようにして製造されたモノクローナル抗体の生理活性 及びその認識特異性の検討、 あるいは標識試薬としての特性の検定、 (9 ) モノク ローナル抗体遺伝子のクローニングと組換え抗体作製等である。
以下、 ヒ ト c_Mplに対するァゴニストモノクローナル抗体の作製法を上記工程 に沿って詳述するが、 該抗体の作製法はこれに制限されず、 例えば脾細胞以外の 抗体産生細胞及びミエローマを使用することもできる。
(1) 抗原
一般にヒ ト c - mpl抗体を得る場合には、 ヒ ト c_Mplタンパク質の一次構造が公 知 (Genbank : NP— 005364 参照) であるので、 当業者に周知の方法により、 c- Mpl のアミノ酸配列からぺプチドを化学合成し、 これを抗原として使用することがで き、 また c-Mplの細胞膜貫通領域および細胞内領域を欠損した可溶化 c-Mpl組換 えタンパク質を抗原として用いることもできる。
或いは、 各種ヒ ト巨核球系細胞株や強制発現株等のヒ ト c-Mpl発現細胞株の抗 原としての利用が挙げられる。 但し、 ヒ ト C- Mpl発現細胞株としては、 各種ヒ ト 巨核球系細胞株や強制発現株が知られているが、 これらの細胞株の c_Mpl発現量 は細胞あたり数千分子と低く、 抗原には不向きである。 実際、 マウス造血系細胞 株である FDCP2にヒ ト c_Mplを導入した発現株 FDCP- hMpl ( FEBS Lett. 1996 Oct
21; 395 (2-3): 228-34参照)をヒ ト抗体産生マウス(KMマウス TM)に免疫した場合、 抗体価上昇が不十分であり、 hMpl 特異的なヒ ト抗体を得ることができなかった。 また、 ヒ ト巨核球系細胞株を抗原として用いる場合、 他の膜分子に対する抗体も 誘導されるため、 C- Mpl 特異的な抗体を効率良く誘導するには必ずしも適切でな い。 従って、 目的とするものが単にヒ ト c-mpl抗体でなくァゴニス ト活性を有す る抗体の取得に際し抗原タンパク質を発現する細胞株を免疫に用いる場合には、 発現量が高い細胞を選択することが望ましい。 特に、 マウス細胞株、 しかも可能 な限り MHC適合した細胞株を宿主に、 ヒ ト C- Mplを導入した高発現株を用いるの が望ましい。 例として、 後述の実施例 1に記載の細胞 (発現ベクターとしてヒ ト c-mpl全長遺伝子が担持された pEF-MPL635或いは pCMV-MPL635を、宿主としてマ ウス細胞株 L929および FM3Aを用いたもの) を挙げることができる。
また、野生型のヒ ト C- mplに代えて、 ヒ ト c -即 1の恒常活性型変異体(例えば、 508番目 Trpが Serに変異しリガンド非依存性に恒常的にァゴニストシグナルを 伝達する変異体; Abe M ら、 Leukemia. 2002 Aug ; 16 (8): 1500- 1506) を同様の方 法で強制発現させた細胞株を用いてもよい。 このような変異体は野生型とは立体 構造が異なることが予想され、 そのような恒常活性型変異体に親和性が高い抗体 は、 強力なァゴニス ト活性を示す可能性がある。
また、 これら強制発現細胞株は、 ヒ ト c MPL 或いはその細胞外可溶性領域等と 適宜組み合わせて抗原として用いることもできる。
(2) 抗体産生細胞の調製工程
上記(1 )で得られた抗原と、フロインドの完全若しくは不完全アジュバント、 又は力リミヨゥバンのような助剤とを混合し、免疫原として実験動物に免疫する。 実験動物としては、 遺伝子改変によってヒ ト抗体を産生する能力を有するマウス (ヒ ト抗体産生マウス) が最適である。
本発明において用いられたヒ ト抗体産生マウス (例えば KMマウス TM) は、 内在 性マウスィムノグロブリン (Ig) 重鎖及びマウス / c軽鎖を欠損しており、 かつ、 ヒ ト Ig重鎖遺伝子を含む 14番染色体断片(SC20)及びヒ ド Ig /c鎖トランスジーン
(KCo5) を同時に保持する。 このマウスはヒ ト Ig重鎖遺伝子座を持つ系統 Aのマ ウスと、 ヒ ト Ig K鎖トランスジーンを持つ系統 Bのマウスとの交配により作製さ れる。系統 Aは、内因性 Ig重鎖及び K軽鎖破壊の両者についてホモ接合体であり、 子孫伝達可能な 14番染色体断片 (SC20)を保持するマウス系統(Tomizuka. et al. ,
Proc Natl Acad Sci USA. , 2000 Vol97 : 722) である。 また、 系統 Bは内在性マウ ス Ig重鎖及び < 軽鎖欠損の両者についてホモ接合体であり、 ヒ ト Ig / 鎖トラン スジーン (KCo5) を保持するマウス系統 (Nat Biotechnol. , 1996 Vol l4 : 845) で ある。 従って、 KMマウスはヒ ト抗体を産生する能力を持ち、 マウス Ig重鎖およ び κ鎖を欠損したマウスである。
マウス免疫の際の免疫原投与法は、 皮下注射、 腹腔内注射、 静脈内注射、 皮内 注射、 筋肉内注射、 足躕注射などいずれでもよいが、 腹腔内注射、 足躕注射又は 静脈内注射が好ましい。
免疫は、 一回、 又は、 適当な間隔で (好ましくは 2週間から 4週間間隔で) 複 数回操返し行うことができる。 その後、 免疫した動物の血清中の抗原に対する抗 体価を測定し、 抗体価が十分高くなつた動物を抗体産生細胞の供給源として用い れば、 以後の操作の効果を高めることができる。 一般的には、 最終免疫後 3〜5 日後の動物由来の抗体産生細胞を、 後の細胞融合に用いることが好ましい。
ここで用いられる抗体価の測定法としては、 フローサイ トメ トリー法、 放射性 同位元素免疫定量法(以下、「RIA法」 という)、固相酵素免疫定量法(以下、 「ELISA 法」 という)、 蛍光抗体法、 受身血球凝集反応法など種々の公知技術があげられる が、 検出感度、 迅速性、 正確性、 及び操作の自動化の可能性、 等の観点から、 フ ローサイ トメ トリー法又は ELISA法がより好適である。
本発明における抗体価の測定は、 例えばフローサイ トメ トリー法によれば、 以 下に記載するような手順により行うことができる。 まず、 抗原を発現した細胞と ヒ ト抗体を含む検体 (例えばマウス血清, ハイプリ ドーマの培養上清, 精製抗体 等) と反応させる。 さらに二次抗体として蛍光標識されたヒ ト抗体に対する抗体 を加えてヒ ト抗体に結合させ、 洗浄後、 細胞に結合した二次抗体の量を蛍光によ つて測定することにより、 抗体価を算出する。
(3) ミエローマの調製工程
ミエローマとしては、 マウス、 ラッ ト、 モノレモット、 ハムスター、 ゥサギ又は ヒ ト等の哺乳動物に由来する自己抗体産生能のない細胞を用いることが出来る力 一般的にはマウスから得られた株化細胞、 例えば 8-ァザグァニン耐性マウス
(BALBん由来) ミエローマ株 P3X63Ag8U. 1 (P3-U1) [Yelton, D. E. et al. Current
Topics in Microbiology and I讓 unology, 81, 1—7 (1978) ]、 P3/NSI/1- Ag4_l (NS- 1)
[Kohler, G. et al. European J. Immunology, 6, 511-519 (1976) ]、 Sp2/0-Agl4 (SP-2) [Shulman, M. et al. Nature, 276, 269-270 ( 1978) ]、 P3X63Ag8. 653 (653) [Kearney, J. F. et al . J. Immunology, 123, 1548—1550 ( 1979) ]、 P3X63Ag8 (X63) [Horibata, K. and Harri s, A. W. Nature, 256, 495-497 (1975) ] など を用いることが好ましい。 これらの細胞株は、 適当な培地、 例えば 8-ァザグァニ ン培地 [グルタミン、 2-メルカプトエタノール、 ゲンタマイシン及びゥシ胎児血 清 (以下、 「FCS」 とレ、う) を加えた RPMI-1640培地に 8-ァザグァニンを加えた培 地]、 イスコフ改変ダノレべッコ培地 (I scove' s Modif ied Dulbecco' s Medium;以 下、「IMDMJとレヽう)、又はダルベッコ改変イーグル培地(Dulbecco' s Modified Eagle Medium;以下、 「DMEM」 という) で継代培養するが、 細胞融合の 3〜4 日前に正常 培地 (例えば、 10% FCSを含む DMEM培地) で継代培養し、 融合当日に 2 X 107以 上の細胞数を確保しておく。
(4) 細胞融合
抗体産生細胞は、 形質細胞、 及びその前駆細胞であるリンパ球であり、 これは 個体のいずれの部位から得てもよく、 一般には脾臓、 リンパ節、 骨髄、 扁桃、 末 梢血、 又はこれらを適宜組み合わせたもの等から得ることができるが、 脾細胞が 最も一般的に用いられる。
最終免疫後、所定の抗体価が得られたマウスから抗体産生細胞が存在する部位、 例えば脾臓を摘出し、 抗体産生細胞である脾細胞を調製する。 次いで、 脾細胞と ミエローマを融合させればよい。 この脾細胞と工程 (3) で得られたミエローマを 融合させる手段として現在最も一般的に行われているのは、 細胞毒性が比較的少 なく融合操作も簡単な、 ポリエチレングリコールを用いる方法である。 この方法 は、 例えば以下の手順よりなる。
脾細胞とミエローマとを無血清培地 (例えば、 DMEM)、 又はリン酸緩衝生理食塩 液 (以下、 「PBS」 とレ、う) でよく洗浄し、 脾細胞とミエローマの細胞数の比が 5 : 1
〜10 : 1程度になるように混合し、 遠心分離する。 上清を除去し、 沈澱した細胞群 をよくほぐした後、撹拌しながら lmLの 50% (w/v) ポリエチレングリコール (分 子量 1000〜4000) を含む無血清培地を滴下する。 その後、 10mLの無血清培地をゆ つく りと加えた後遠心分離する。 再び上清を捨て、 沈澱した細胞を適量のヒポキ サンチン ·アミノプテリン ·チミジン (以下 「HAT」 という) 液及びヒ トインター ロイキン - 6 (以下、 「 - 6J という) を含む正常培地 (以下、 「ΗΑΤ培地」 という) 中に懸濁して培養用プレート (以下、 「プレート」 という) の各ゥエルに分注し、 5%炭酸ガス存在下、 37°Cで 2週間程度培養する。 途中適宜 HAT培地を補う。
(5) ハイプリ ドーマ群の選択
上記ミエローマ細胞が、 8-ァザグァニン耐性株である場合、 すなわち、 ヒポキ サンチン · グァニン ·ホスホリボシルトランスフェラーゼ (HGPRT) 欠損株である 場合、 融合しなかった該ミエローマ細胞、 及びミエローマ細胞どうしの融合細胞 は、 HAT 含有培地中では生存できない。 一方、 抗体産生細胞どうしの融合細胞、 あるいは、 抗体産生細胞とミエローマ細胞とのハイプリ ドーマは生存することが できるが、 抗体産生細胞どうしの融合細胞には寿命がある。 従って、 HAT 含有培 地中での培養を続けることによって、 抗体産生細胞とミエローマ細胞との融合細 胞であるハイプリ ドーマのみが生き残り、 結果的にハイブリ ドーマを選択するこ とができる。 コロニー状に生育してきたハイブリ ドーマについて、 HAT 培地から アミノプテリンを除いた培地 (以下、 「HT 培地」 という) への培地交換を行う。 以後、 培養上清の一部を採取し、 例えば、 フローサイ トメ トリー法により抗ヒ ト c-Mpl 抗体価を測定する。 以上、 8-ァザグァニン耐性の細胞株を用いる方法を例 示したが、 その他の細胞株もハイプリ ドーマの選択方法に応じて使用することが でき、 その場合使用する培地組成も変化する。
(6) クローニング工程
前述 (2) の記載と同様の方法で抗体価を測定することにより、 特異的抗体を産 生することが判明したハイプリ ドーマを、 別のプレートに移しクローニングを行 う。 このクローニング法としては、 プレートの 1 ゥエルに 1個のハイプリ ドーマ が含まれるように希釈して培養する限界希釈法、 軟寒天培地中で培養しコロニー を回収する軟寒天法、 マイクロマニュピレーターによって 1個ずつの細胞を取り 出し培養する方法、 セルソーターによって 1個の細胞を分離する 「ソータクロー ン」 などが挙げられるが、 限界希釈法が簡便であり、 よく用いられる。
抗体価の認められたゥエルについて、 例えば限界希釈法によるクローニングを
2〜4回繰返し、安定して抗体価の認められたものを抗ヒ ト c- Mplモノクローナノレ 抗体産生ハイプリ ドーマ株として選択する。 (7) ァゴニスト抗体の選択
得られた抗ヒ ト C- Mplモノクローナル抗体産生ハイブリ ドーマ株の培養上清或 いは後記(8)に従って該上清より精製した抗体を、種々の TP0活性測定系にて測定 することにより、 ァゴニスト抗体を選択することができる。 スクリーニングとし て好適な方法として、 哺乳動物細胞にヒ ト Mplを発現させ、 細胞増殖アツセィを 行う方法が挙げられる。例えばマウス細胞株 BaF3にヒ ト Mplを発現させた細胞に よる増殖アツセィ (Orita et al. Blood. 2005 Jan 15; 105 (2): 562-6. ) 等も使用 し得るが、 マウス細胞を用いた場合に、 ヒ ト細胞の反応を反映しているとは限ら ないことを考慮すると、 よりヒ ト細胞に強い活性を持つ抗体を選抜するにはヒ ト Mpl が発現しているヒ ト細胞を用いる増殖アツセィ方法がより好ましい。 ヒ ト細 胞による系として具体的には、 後述の実施例 5に記載の UT7/TP0細胞を用いた細 胞増殖ァッセィを挙げることができる。
(8) ハイプリ ドーマ培養によるモノクローナル抗体の調製
クローニングを完了したハイプリ ドーマは、培地を HT培地から正常培地に換え て培養される。 大量培養は、 大型培養瓶を用いた回転培養、 スピナ一培養、 ある いはホロ一ファイバーシステム等を用いた培養で行われる。 この大量培養におけ る上清を、 ゲルろ過等、 当業者に周知の方法を用いて精製することにより、 抗ヒ ト c-Mplモノクローナル抗体を得ることができる。 また、 同系統のマウス (例え ば BALB/c) 若しくは nu/nuマウス、 ラッ ト、 モルモット、 ハムスター又はゥサギ 等の腹腔内で該ハイプリ ドーマを増殖させることにより、 抗ヒ ト c_Mplモノクロ ーナル抗体を大量に含む腹水を得ることができる。 精製の簡便な方法としては、 市販のモノクローナル抗体精製キッ ト (例えば、 MAbTrap GII キッ ト ; アマシャ ムフアルマシアバイオテク社製) 等を利用することもできる。 かぐして得られる モノクローナル抗体は、 ヒ ト C-Mplに対して高い抗原特異性を有する。
(9) モノクローナル抗体の検定
かく して得られたモノクローナル抗体のアイソタイプ及びサブクラスの決定は 以下のよ うに行う ことができる。 まず、 同定法と してはォクテルロニー
(Ouchterlony) 法、 ELISA法、 又は RIA法が挙げられる。 ォクテルロニー法は簡 便ではあるが、モノクローナル抗体の濃度が低い場合には濃縮操作が必要である。 一方、 ELISA法又は RIA法を用いた場合は、 培養上清をそのまま抗原吸着固相と 反応させ、 さらに二次抗体として各種ィムノグロブリンアイソタイプ、 サブクラ スに対応する抗体を用いることにより、 モノクローナル抗体のアイソタイプ、 サ ブクラスを同定することが可能である。 さらに、 タンパク質の定量は、 フォーリ ンロウリー法、 及び 280nm における吸光度 [ 1. 4 (0D280) =ィムノグロブリン lmg/mL] より算出する方法等により行うことができる。 また、 ハイプリ ドーマか らモノクローナル抗体をコードする遺伝子をクローニングし、 配列を決定するこ とでサブクラスを特定することもできる。
(10) モノクローナル抗体をコードする遺伝子のクローユングと組換え型抗体作 製
また、 ハイプリ ドーマ等の抗体産生細胞からモノクローナル抗体をコードする 遺伝子をクローニングし、 適当なベクターに組み込んで、 これを宿主 (例えば哺 乳類細胞細胞株、 酵母細胞、 昆虫細胞など) に導入し、 遺伝子組換え技術を用い て産生させた組換え型抗体を調製することもできる (P. J. Delves. , ANTIBODY PRODUCTION ESSENTIAL TECHNIQUES., 1997 WILEY、 P. Shepherd and C. Dean. , Monoclonal Antibodies. , 2000 OXFORD UNIVERSITY PRESS, J. W. Goding. , Monoclonal Antibodies: principles and practice. , 1993 ACADEMIC PRESS)。 本発明は、 本発明の抗体を産生するハイプリ ドーマが保有する抗体の遺伝子配 列を含む核酸、 特に後述の、 本発明のハイプリ ドーマが産生する抗体の重鎖可変 領域及び軽鎖可変領域の核酸も包含する。 ここで、 核酸には DNA及び RNAが含ま れる。
ハイプリ ドーマからモノクローナル抗体をコードする遺伝子を調製するには、 モノクローナル抗体の L鎖 V領域、 L鎖 C領域、 H鎖 V領域及び H鎖 C領域をそれ ぞれコ一ドする DNAを PCR法等により調製する方法が採用される。プライマーは、 抗体遺伝子又はアミノ酸配列から設計したオリゴ DNAを、 铸型としてはハイプリ ドーマから調製した DNAを使用することができる。 これらの DNAを 1つの適当な ベクターに組み込み、これを宿主に導入して発現させる力 あるいはこれらの DNA をそれぞれ適当なベクターに組み込み、 共発現させる。
ベクターには、 宿主微生物で自律的に増殖し得るファージ又はプラスミ ドが使 用される。 プラスミ ド DNAとしては、 大腸菌、 枯草菌又は酵母由来のプラスミ ド などが挙げられ、 ファージ DNAとしてはえファージが挙げられる。
形質転換に使用する宿主としては、 抗体の立体構造を正しく構成できることか ら、 真核細胞を挙げることができ、 例えば、 酵母、 動物細胞 (COS細胞、 CH0細胞 等)、昆虫細胞が挙げられる。特に動物細胞宿主を用いる場合、ベクターとしては、 例えば N5KG1— Val Larkベクタ (IDEC pharmaceuticals : US patent 6001358)を 用いることができる。 本ベクターは、 組換え抗体を動物細胞に発現させる目的で 使用される発現ベクターで、 2つの CMV プロモーター/ェンハンサーを持ち、 そ れぞれの 下流に重鎖および軽鎖可変領域のクローニングサイ トを持つ。さらにそ の下流には、 ヒ ト γ 1鎖定常領域とヒ ト c鎖定常領域をコードする遺伝子配列を あらかじめ持っている。 本ベクターの可変領域クローニングサイ トに任意の重鎖 および軽鎖可変領域を、 読み枠 (フレーム) をあわせて組み込むことにより、 軽 鎖可変領域がヒ ト c鎖定常領域と、 重鎖可変領域がヒ ト γ ΐ 定常領域と連結され た抗体を発現させることができる。 本ベクターを導入された動物細胞は培養液中 に抗体 (ヒ ト IgGl) を産生する。 また、 異なる重鎖定常領域遺伝子を含むベクタ 一も使用することができる。 例えば N5KG4PEベクター(IDEC pharmaceuticals社 製)は定常領域遺伝子として、 ヒ ト γ 4に、 上述した二つの変異 (Ser228Pro,
Leu235Glu) が入った配列を持っている。 N5KG4PEベクターに任意の重鎖および軽 鎖可変領域遺伝子配列を組み込むことで、任意の可変領域を持つ IgG4PEを発現さ せることができる。 さらに、 重鎖または軽鎖遺伝子に改変を加えることで、 様々 な定常領域を持った抗体を作製することが可能である。 例えば、 抗体ドメイン間 のサブクラスの入れ替えによるものが考えられる。 抗体重鎖定常領域は、 N 末端 側から CH1-ヒンジ- CH2-CH3という ドメイン構造を持っている。実施例 8において、 示すようなヒンジ領域がヒ ト IgG3の配列であり、 CH1、CH2および CH3がヒ ト IgG2 又はヒ ト IgG4の配列 あるような重鎖定常領域を作成することが可能である。図
12又は図 13に示すように、ヒンジ領域以外の重鎖定常領域(CH1、CH2および CH3) を IgG2または IgG4にした場合において、 両者のァゴニスト活性に大きな差はな レヽ。 し力 し、 E. Garberと S. J. Demarest, Biocnem. Biophys. Res. Commun. 2007,
355 : 751-757及び G. -F. Zhangと E. Li lly, "Assessing conformational stabi l ity of protein therapeutics us ing circular dichroi sm and other biophysical tools, " BioProcess Analytical and Qual ity Summit June 4-6, 2007, Hi lton La Jol la Torrey Pines San Diego, CA
(http : //w w. ibcl ifesci ences. com/analyt ical/5762. xml)【こおレヽて 己載されるよ うに、 IgG2を用いた場合は、 IgG4を用いた場合に比し、 高濃度状態で凝集体が生 産されにくいという性質を有する。
もちろん、 本発明に用いる哺乳動物細胞用発現ベクターは上記のものに限定さ れるものではない。例えば発現を制御する塩基配列として前述 CMVプロモーター/ ェンハンサーを利用した他の発現ベクターを用いてもよいし、 これとは異なった 公知のプロモーター/ェンハンサー( 1若しくは複数) を発現制御配列として使つ てもよレ、。 プロモーターとしては、 例えば、 ポリオ一マウィルス、 鶏痘ウィルス ( 1989年 7月 5日公開の UK2211504)、アデノウィルス(例えばアデノウィルス 2 )、 ゥシ乳頭腫ウィルス、 鳥の肉腫ウィルス、 サイ トメガロウィルス、 レトロウィル ス、 B型肝炎ウィルスおよび最も好ましくはシミアンウィルス 40 (SV40) のよう なウィルスのゲノムから得られるプロモーター、 ヘテロローガスな哺乳動物プロ モーター (例えばァクチンプロモーター、 免疫グロブリンプロモーター、 熱衝撃 プロモーター) を挙げることができる。 プロモーターに作用し転写を増大させる ェンハンサ一としては、 公知の哺乳動物遺伝子由来のェンハンサー (グロビン、 エラスターゼ、 アルブミン、 α—フエトプロテイン、 およびインシュリン)、 およ び、 真核細胞ウィルス由来のェンハンサー (複製起点の後期側の S V40ェンハン サー (bplOO- 270)、 複製起点の後期側のポリオ一マエンハンサー、 およびアデノ ウィルスェンハンサー) を用いることができる。
また、発現ベクターには、転写の終止および mRNAの安定化に必要な配列を含む ことができる。 このような配列は普通、 真核生物のまたはウィルスの DNAまたは cDNAの 5,および時には 3 '非翻訳領域から取得することができる。
宿主への遺伝子の導入方法は公知であり、 任意の方法 (例えばカルシウムィォ ンを用いる方法、 エレク ト口ポレーシヨン法、 スフエロプラス ト法、 酢酸リチウ ム法、 リン酸カルシウム法、 リポフエクシヨン法等) が挙げられる。 まだ、 後述 の動物に遺伝子を導入する方法としては、 マイクロインジェクション法、 ES細胞 にエレク トロポレーションゃリポフエクション法を使用して遺伝子を導入する方 法、 核移植法などが挙げられる。
本発明において、 目的とする抗体は、 形質転換体を培養し、 その培養上清から 採取することにより得ることができる。 形質転換体を培養するには、 使用する宿 主に適した培地を用い、 静置培養法、 ローラーボトルによる培養法などが採用さ れる。
培養後、 細胞外に生産された抗体の精製は、 培養液をそのまま使用するか、 遠 心分離等により細胞を除去して行う。 その後、 タンパク質の単離精製に用いられ る各種ク口マトグラフィーを用いた一般的な生化学的方法を単独で又は適宜組み 合わせて用いることにより、 前記培養物中から目的の抗体を単離精製することが できる。
さらに、 トランスジエニック動物作製技術を用いて、 目的抗体の遺伝子が内在 性遺伝子に組み込まれた動物宿主、 例えばトランスジエニックゥシ、 トランスジ エニックャギ、 トランスジエニックヒッジ又はトランスジエニックブタを作製し、 そのトランスジヱニック動物から分泌されるミルク中か^その抗体遺伝子に由来 するモノクローナル抗体を大量に取得することも可能である (Wright, G. , et al. (1991) Bio/Technology 9, 830-834)。
本発明に係るヒ ト Mplに対するァゴニスト抗体の製法として、好ましい方法は、 前述の [課題を解決するための手段]の 4 . にて例示した遺伝子組換え技術による 方法であるが、 これに限定されるものではない。
3 . 本発明に係る DNA
本発明は、 上で述べたように、
(1) ヒ ト Mplに対するァゴニス ト抗体の重鎖可変領域のアミノ酸配列をコードす る塩基配列であって以下の(a)〜(d)から選択されたァミノ酸配列をコードする塩 基配列を含む DNA :
(a) 配列番号 2で示されるアミノ酸配列;
(b) 配列番号 4で示されるァミノ酸配列;
(c) 配列番号 6で示されるァミノ酸配列;
(d) 配列番号 8で示されるァミノ酸配列; 及び、
(2) ヒ ト Mplに対するァゴニス ト抗体の軽鎖可変領域のアミノ酸配列をコードす る塩基配列であって以下の(a)〜(! 1)から選択されたァミノ酸配列をコードする塩 基配列を含む DNA :
(a) 配列番号 3で示されるアミノ酸配列;
(b) 配列番号 5で示されるアミノ酸配列;
(c) 配列番号 7で示されるァミノ酸配列;
(d) 配列番号 9で示されるアミノ酸配列;
(e) 配列番号 3のァミノ酸配列においてフレームワーク領域に 1若しくは数個の アミノ酸残基が欠失、 置換、 付加又は挿入されたアミノ酸配列;
(f) 配列番号 5のァミノ酸配列においてフレームワーク領域に 1若しくは数個の アミノ酸残基が欠失、 置換、 付加又は挿入されたアミノ酸配列;
(g) 配列番号 7のアミノ酸配列においてフレームワーク領域に 1若しくは数個の アミノ酸残基が欠失、 置換、 付加又は挿入されたアミノ酸配列;
(h) 配列番号 9のアミノ酸配列においてフレームワーク領域に 1若しくは数個の アミノ酸残基が欠失、 置換、 付加又は挿入されたアミノ酸配列;
及び、
(3) 抗体の重鎖が配列番号 9 5で示されるアミノ酸配列;
及び、
(4) 抗体の重鎖定常領域が配列番号 9 6で示されるアミノ酸配列;
を提供するものであり、 上記 2 . の本発明に係るヒ ト Mplに対するァゴニスト抗 体の製法、 より具体的には、 遺伝子組換え技術を用いた抗体の製造において、 用 いることができる。
これら可変領域のァミノ酸配列(a)〜(d)をコードする DNAは、 前述のヒ ト Mpl に対するァゴニス ト抗体産生ハイプリ ドーマ取得方法によって得られたハイプリ ドーマ株より、 後述実施例 7の通り、 定法により mRNA を抽出し既知である抗体 定常領域のアミノ酸配列に基づくプライマーを用いて 5 ' RACE法により取得した ものであり、 その可変領域をコードする各 DNAを含むプラスミ ドは、 独立行政法 人産業技術総合研究所特許生物寄託センター (日本国茨城県つくば市東 1-1-1 つくばセンター中央第 6 ) に 2006年 3月 14 日付にてブダペスト条約に基づく国 際寄託がされている。
表 1
Figure imgf000037_0001
本発明のァゴニスト抗体を構成する軽鎖の可変領域は、 その特定例として、 配 列番号 3、 5、 7又は 9に示されるアミノ酸配列を含むが、 これらのアミノ酸配 列のフレームワーク領域に 1若しくは数個のアミノ酸残基の欠失、 置換、 付加又 は挿入を含んでもよいし、 或いはこれらのァミノ酸配列のフレームワーク領域の 配列と少なく とも 85%、 86%、 87%、 88%又は 89%、好ましくは少なくとも 90%、
92%、 93%又は 94%、 より好ましくは少なく とも 95%、 96%、 97%、 98%又は
99%の同一性を有する配列を含んでいてもよい。 フレームワーク領域は、 可変領 域におレヽて 3つの CDR (相補性決定部位; complementarity - determining region)、 すなわち配列番号 3、 5又は 7に示されるアミノ酸配列においては、 RASQGISS (A 又は T) LA (アミノ酸位置 24-34)、 DASSLES (ァミノ酸位置 50-56)、及び QQFNSYP (L 又は Y又は W) T (アミノ酸位置 89-97)、 を除く領域を指し、 配列番号 9に示され るアミノ酸領域においては、 RASQSVSSSYLA (アミノ酸位置 24- 35)、 DASSRAT (アミ ノ酸配列 51-57)、 及び QQYGSSPIT (アミノ酸位置 90- 98)、 を除く領域を指す。 後 述の実施例 1 7で実証するとおり、 フレームワーク領域内にアミノ酸変異が存在 しても、 変異型抗体は非変異型抗体の場合とほぼ同等のァゴニスト活性、 すなわ ち、 FM3A-hMpl細胞など FM3A- hMpl細胞の細胞のヒ ト トロンボポェチン受容体に 結合し該受容体を活性化する能力及び/又は UT- 7/TP0細胞の増殖能を有すること ができる。
そのような変異の例は、保存的アミノ酸間での置換である。保存的アミノ酸は、 電荷、 構造、 極性などの性質が類似したアミノ酸群であり、 例えば塩基性ァミノ 酸(Arg、 His、 Lys)、 酸性アミノ酸(Glu、 Asp)、 非極性アミノ酸(Ala、 Leu、 Ile、 Val、 Gly、 Pro)、 極性アミノ酸(Ser、 Thr、 Cys、 Met, Asn、 Gin)、 芳香族ァミノ 酸(Phe、 Tyr、 Trp) に分類することができる。
また、 配列同一性は、 2つ又はそれ以上の配列を、 ギャップを導入して又はギ ヤップを導入しないで整列比較したときのアミノ酸 (又はヌクレオチド) 配列間 の一致率を表わし、 一般に全アミノ酸 (又はヌクレオチド) 数に対する同一アミ ノ酸 (又はヌクレオチド) 数のパーセンテージである。 配列同一性は、 必要に応 じて NCBI (米国)などのデータバンクにアクセスし、 配列検索用の BLAST、 FASTA などの公知のアルゴリズムを利用して決定することができる。
変異の導入は、 変異を含まないアミノ酸配列をコードする DNAに対して、 例え ば部位特異的突然変異誘発法、 PCR 法 (変異を含むプライマーを使用する) など を適用することによって実施することができる。 変異導入法は、 例えば Sambrook り, Molecular し loning A Laboratory Mannual, Cold spring Hobor Laboratory Press (1989)などに記載されている。
本発明の上記 DNAはさらに、 可変領域に加え、 それぞれ重鎖或いは軽鎖の定常 領域をコードする塩基配列を含むものであってもよい。 例えば、 上記の重鎖可変. 領域と本発明に係る抗体の製造方法の項で述べた重鎖定常領域の改変がされた重 鎖定常領域をコードする塩基配列である。
また、 本発明に係る抗体の製造方法の項で述べた重鎖定常領域の改変は、 寄託 した DNA及び公知のヒ ト抗体定常領域の配列に基づき、 周知の遺伝子工学的改変 手法により得ることができる。 4 . ヒ ト c -Mplに対するァゴニスト抗体の医薬用途及び医薬組成物 本発明に係るヒ ト c -Mplに対するァゴニスト抗体は、 c- MPL受容体に結合しそ れを活性化する能力、 および/または (インビボおよびインビトロの両方で) 血 小板の産生を刺激する能力 (「血小板生成活性」) および血小板前駆体の産生を刺 激する能力 (「巨核球生成活性」) を有する。
また、 ヒ ト c-Mpl受容体は、 巨核球のみならず造血幹細胞においても発現して いるとされている。 正常動物において、 PEG-rHuMGDF 投与により骨髄中の赤芽球 系や顆粒球/マク口ファージ系の前駆細胞が増加したとの報告もある (Stem Cell, 14 : 651- 660, 1996)。 しかし、 ヒ ト臍帯血移植マウスにおいては、 PEG- rHuMGDF の投与によりマウスの巨核球系以外の前駆細胞の増殖は見られたが、 ヒ トの前駆 細胞の増殖は認められなかった。 一方、 ヒ ト c-Mplに対するァゴニスト抗体にお いては骨髄中のヒ ト赤血球および顆粒球ノマクロファージ系の前駆細胞の数が有 意に高かった (実施例 14)。 このことは、 ヒ ト c-Mpl に対するァゴニスト抗体が ヒ ト細胞に選択的にシグナルを入れ、 巨核球系のみならず、 他系列の細胞の生着 も促進できる可能性を示唆している。
本発明に係るヒ ト C - Mpl に対するァゴニスト抗体を有効成分とする医薬組成 物により治療される状態は、 一般には、 存在する巨核球ノ血小板の欠乏または将 来において予期または予想される巨核球/血小板の欠乏 (例えば、 計画されてい る手術または血小板供与によるもの) を伴う状態である。 そのような状態は、 ィ ンビボにおける活性 Mpl リガンドの (一時的または永久的な) 欠乏により生じう る。 したがって本発明の組成物は、 血小板欠乏状態即ち血小板減少症の治療を要 する患者において血小板減少症を予防的または治療的な治療するために利用可能 である。 さらに、 汎血球減少を長期間に渡って伴う造血幹細胞移植 (骨髄移植、 臍帯血移植、 末梢血幹細胞移植) 後の血球回復のための治療を要する患者におい て、 汎血球減少症を予防的または治療的な治療をするためにも利用可能である。 血小板減少症 (血小板欠乏症) は、 化学療法および種々の薬物での他の療法、 放射線療法、 手術、 不慮の出血、 および他の具体的な病態を含む種々の理由によ り生じうる。 血小板減少症を伴い本発明に従い治療されうる典型的な具体的な病 態としては以下のものが挙げられる :無形成貧血;特発性または免疫血小板減少 症 (ITP)、 例えば乳癌に伴う特発性血小板減少性紫斑病; HIVに伴う ΙΤΡおよび HIV に関連した血栓性血小板減少性紫斑病;血小板減少症を引き起こす転移性腫 瘍;全身性エリテマトーデス、 例えば新生児ループス症候群脾腫; ファンコ一- 症候群; ビタミン B12欠乏症;葉酸欠乏症;メイ-へダリンの異常; ウイスコッ ト -アルドリ ツチ症候群;慢性肝疾患;血小板減少症に関連した骨髄形成異常症候 群;発作性夜間へモグロビン尿症; C7E3 Fab (Abciximab) 療法後の急性深部血小 板減少症; 同種免疫血小板減少症、 例えば母性同種免疫血小板減少症;抗リン脂 質抗体および血栓症に関連した血小板減少症; 自己免疫血小板減少症;薬物によ り誘発された免疫血小板減少症、 例えばカルポプラチンにより誘発された血小板 減少症、 へパリンにより誘発された血小板減少症;胎児血小板減少症;妊娠血小 板減少症; ヒユージー症候群;ルポィ ド血小板減少症;不慮の及びノ又は大量の 失血;骨髄増殖性異常症;悪性疾患を有する患者における血小板減少症;血栓性 血小板減少紫斑病、 例えば癌患者におレ、て血栓性血小板減少性紫斑病 Z溶血性尿 毒症性症候群として現れる血栓性細小血管症; 自己免疫性溶血性貧血;潜在性空 腸憩室穿孔;真正赤血球系無形成症;自己免疫血小板減少症;流行性(epidemica) 腎障害;ラファンピシンに関連した急性腎不全; Paris-Trousseau血小板減少症; 新生、児同種免疫血小板減少症;発作性夜間へモグロビン尿症; 胃癌における血液 学的変化;小児における溶血性尿毒症性症候群; A 型関連ウィルスを含むウィル 'ス感染に関連した血液学的徴候および CMVに関連した血小板減少症。 また、 ある 種のエイズ治療は血小板減少症を引き起こす (例えば、 AZT)。 また、 ある種の創 傷治癒障害は、 血小板数の増加が有益であろう。 なお上記疾患においては、 血小 板減少のみならず、 その他の血球減少を伴う疾患も存在する。
予想される血小板の欠乏 (例えば、 将来の手術によるもの) に対して、 血小板 が必要となる前に数日から数時間にわたり有効成分として 本発明のァゴニス ト 抗体を投与することが可能であろう。 緊急の状況 (例えば、 不慮の及び大量の失 血) では、 血液または精製血小板と共に本発明のァゴニス ト抗体を投与すること が可能であろう。 あるいは、 汎血球の欠乏 (例えば、 臍帯血移植によるもの) に 対しても、 有効成分としての本発明のァゴニスト抗体を投与することが可能であ ろう。 特に好ましい治療対象としては、(1)特発性血小板減少性紫斑病もしくは肝疾患 にともなって起こる血小板減少症、 (2)癌化学療法、 再生不良性貧血、 骨髄異形性 症候群 (MDS;)、 骨髄移植もしくは臍帯血移植にともなって起こる血小板減少症お よび または汎血球減少症を挙げることができる。
本発明のヒ ト C -MPLに対するァゴニスト抗体はまた、血小板および Zまたは巨 核球および関連細胞の生存能または保存寿命を維持するのに有用で有り得る。 し たがって、 そのような細胞を含有する組成物中に有効量を含有させるのが有用で あろう。
本発明にかかるヒ ト c -MPL に対するァゴニスト抗体を有効成分とする医薬組 成物は、 注射用または経口、 鼻、 経皮または他の投与形態のためのものであって もよい。 それらには、 例えば、 静脈内、 皮内、 筋肉内、 乳房内、 腹腔内、 鞘内、 眼内、 延髄後方、 肺内 (例えば、 エアゾール化薬) または皮下注射 (長期にわた る放出のためのデポ投与を含む)、 舌下、 肛門、 膣または外科的移植、 例えば脾漿 膜下、 脳または角膜内の埋め込みによる投与が含まれる。 該治療は、 単回投与ま たは一定期間にわたる複数回の投与よりなるものであってもよい。 一般には、 本 発明にかかるヒ ト C - MPL に対するァゴニスト抗体の有効量と医薬上許容される 希釈剤、 保存剤、 可溶化剤、 乳化剤、 佐剤およびノまたは担体とを含む医薬組成 物が本発明に含まれる。そのような組成物は、種々のバッファー含有物(例えば、
Tris- HC1、 酢酸塩、 リン酸塩)、 pH およびイオン強度の希釈剤;添加物、 例えば 界面活性剤および可溶化剤 (例えば、 Tween 80、 Polysorbate 80) , 抗酸化剤 (例 えば、 ァスコルビン酸、 メタ重亜硫酸ナトリウム)、保存剤 (例えば、 Thimersol、 ベンジルアルコール) および増量物質 (例えば、 ラタ トース、 マンニトール) ;ポ リ乳酸、 ポリダリコール酸などの重合体化合物の粒子状製剤内またはリボソーム 内に該物質が封入されたものを含む。 所望により、 医薬ビヒクル、 賦形剤または 媒体として働く更に他の医薬上許容される液体、 半固体または固体希釈剤を含ん でいてもよい。 それらには、 ポリオキシエチレンソルビタンモノラウラート、 ス テアリン酸マグネシウム、 メチル-およびプロピルヒ ドロキシベンゾアート、デン プン、 スクロース、 デキストロース、 アラビアゴム、 リン酸カルシウム、 鉱油、 カカオ脂およびテオブロマの油が含まれる力 これらに限定されるものではない。 該組成物は、 液体形態または乾燥粉末 (例えば、 凍結乾燥形態) として製造する ことができる。 移植可能な徐放製剤、 および経皮製剤も意図される。
上記の状態の治療方法にかかわる投与計画は、 薬物の作用を改変する種々の要 因 (例えば、 患者の年齢、 状態、 体重、 性別および食事、 いずれかの感染の重症 度、 投与時間ならびに他の臨床的要因) を考慮して担当医師により決定されるで あろう。 一般には、 該用量は、 1 日当たり本発明抗体 100 g〜lmg/kg体重、 好ま しくは 10〜100 g/kg体重、より好ましくは l lO w g/kg体重であり、これらを、 1 日量で、 あるいはより長い又はより短い間隔で (例えば、 1 日おき、 1週間に 2 回、 毎週、 または毎日 2回または 3回) 同等量で投与する。
また、本発明にかかるヒ ト c - MPLに対するァゴニス ト抗体を有効成分とする医 薬組成物は、 単独で又は他のサイ トカイン、 可溶性 Mpl受容体、 造血因子、 イン ターロイキン、 増殖因子と組合せて、 血小板の欠乏および他の症状により特徴づ けられる病態の治療において使用することができる。造血の一般的な刺激因子(例 えば、 IL- 3または GM- CSF) と組合せて、 いくつかの形態の血小板減少症を治療す るのに有用であると予想される。 また、他の巨核球刺激因子、すなわち meg- CSF、 幹細胞因子 (SCF)、 白血病阻害因子 (LIF)、 オンコスタチン M (0SM) または巨核 球刺激活性を有する他の分子を、 Mpl リガンドと共に使用することができる。 そ のような共投与のための追加的な代表的なサイ トカインまたは造血因子には、
IL- 1アルファ、 IL- 1ベータ、 IL- 2、 IL- 3、 IL- 4、 IL5、 IL- 6、 IL- 11、 コロニー刺 激因子- 1 (CSF- 1)、 M - CSF、 SCF、 GM- CSFゝ顆粒球コロニー刺激因子 (G- CSF)、 EP0、 インターフェロン-ァノレファ (IFN-ァノレファ)、 コンセンサスインターフェロン、
IFN-ベータ、 IFN-ガンマ、 IL- 7、 IL_8、 IL- 9、 IL - 10、 IL - 12、 IL- 13、 IL_14、 IL- 15、
IL- 16、 IL-17、 IL- 18、 ト口ンボポェチン(TP0)、アンジォポェチン、例えば Ang-1、
Ang_2、 Ang- 3、 Ang_4、 Ang- Y、 ヒ トアンジォポェチン様ポリペプチド、 血管内皮 増殖因子 (VEGF)、 アンジォゲニン、 骨形成因子 (bone morphogenic protein) -1、 骨形成因子- 2、 骨形成因子- 3、 骨形成因子- 4、 骨形成因子- 5、 骨形成因子- 6、 骨 形成因子- 7、 骨形成因子- 8、 骨形成因子- 9、 骨形成因子- 10、 骨形成因子- 11、 骨 形成因子- 12、 骨形成因子- 13、 骨形成因子- 14、 骨形成因子- 15、 骨形成因子受容 体 IA、 骨形成因子受容体 IB、 脳由来神経栄養因子、 毛様体神経栄養因子、 毛様体 神経栄養因子 Q;、 サイ トカイン誘導性好中球走化因子 1、 サイ トカイン誘導性好 中球走化因子 2 α、サイ トカイン誘導性好中球走化因子 2 β、 e内皮細胞増殖因子、 エンドセリン 1、上皮増殖因子、上皮由来好中球誘引物質、繊維芽細胞増殖因子 4、 繊維芽細胞増殖因子 5、 繊維芽細胞増殖因子 6、 繊維芽細胞増殖因子 7、 繊維芽細 胞増殖因子 8、 繊維芽細胞増殖因子 8b、 繊維芽細胞増殖因子 8c、 繊維芽細胞増殖 因子 9、 繊維芽細胞増殖因子 10、 酸性繊維芽細胞増殖因子、 塩基性繊維芽細胞増 殖因子、 グリア細胞株由来神経栄養因子受容体《1、 グリア細胞株由来神経栄養因 子受容体 α 2、 成長関連タンパク質 (growth related protein)、 成長関連タンパ ク質 α、 成長関連タンパク質 ]3、 成長関連タンパク質 γ、 へパリン結合性上皮増 殖因子、 肝細胞増殖因子、 肝細胞増殖因子受容体、 インスリン様増殖因子 I、 ィ ンスリン様増殖因子受容体、 インスリン様増殖因子 II,インスリン様増殖因子結 合タンパク質、 角質細胞増殖因子、 白血病阻害因子、 白血病阻害因子受容体《、 神経成長因子、 神経成長因子受容体、 ニューロ トロフィン- 3、 ニューロ トロフィ ン -4、 胎盤増殖因子、 胎盤増殖因子 2、 血小板由来内皮細胞増殖因子、 血小板由 来増殖因子、 血小板由来増殖因子 Α鎖、 血小板由来増殖因子 AA、 血小板由来増殖 因子 AB、 血小板由来増殖因子 B鎖、 血小板由来増殖因子 BB、 血小板由来増殖因子 受容体 α、 血小板由来増殖因子受容体 ]3、 プレ Β細胞増殖刺激因子、 幹細胞因子 受容体、 TNF (TFN0、 TNF1、 TNF2を含む)、 トランスフォーミング増殖因子ひ、 ト ランスフォーミング増殖因子 ]3、 トランスフォーミング増殖因子 ;3 1、 トランスフ ォーミング増殖因子 i3 1. 2、 トランスフォーミング増殖因子 ]3 2、 トランスフォー ミング増殖因子 ]3 3、 トランスフォーミング増殖因子 ;3 5、 潜在 (latent) トラン スフォーミング増殖因子 ]3結合タンパク質 I、 トランスフォーミング増殖因子 ;3 結合タンパク質 II、 トランスフォーミング増殖因子) 3結合タンパク質 III、 腫瘍 壊死因子受容体 I型、腫瘍壊死因子受容体 II型、 ゥロキナーゼ型プラスミノーゲ ンァクチベータ一受容体、 血管内皮増殖因子、 ならびにそれらのキメラタンパク 質が含まれる。
したがって、本発明にかかるヒ ト c -Mplに対するァゴニス ト抗体を有効成分と する医薬組成物の投与 (成熟巨核球の数を増加させるためのもの) は、 血小板の 産生を刺激する特に有効な手段であると予想される。 さらに造血幹細胞の産生を 刺激することにおいても有用な手段であると予想される。前記で列挙した用量は、 該治療用組成物中のそのような追加的な成分を補償するように調節されるであろ う。 治療された患者の経過は、 通常の方法によりモニターすることができる。 以下、 実施例により本発明をさらに詳細に説明するが、 本発明の範囲はこれら の実施例に限定されるものではない。
[実施例 1 ] 抗原の調製
1-1 ヒ ト C- Mpl発現細胞の作製
抗原タンパク質を発現する細胞株を免疫に用いる場合、 一般的に発現量が高い ほど抗体作製には有利である。 ヒ ト c- Mpl発現細胞株としては、 各種ヒ ト巨核球 系細胞株や強制発現株が知られているが、 これらの細胞株の c_MPl発現量は細胞 あたり数千分子と低く、 抗原には不向きである。 実際、 マウス造血系細胞株であ る FDCP2 にヒ ト c - Mpl を導入した発現株 FDCP-hMpl (FEBS Lett. 1996 Oct 21 ; 395 (2-3) : 228- 34·参照) をヒ ト抗体産生マウス (KMマウス ™) に免疫した場 合、 抗体価上昇が不十分であり、 hMpl特異的なヒ ト抗体を得ることができなかつ た。 また、 ヒ ト巨核球系細胞株を抗原として用いる場合、 他の膜分子に対する抗 体も誘導されるため、 C-Mpl 特異的な抗体を効率良く誘導するためには、 マウス 細胞株、 しかも可能な限り MHC適合した細胞株を宿主に、 ヒ ト C- Mplを導入した 高発現株を用いるのが望ましい。 そこで、 ヒ ト C- Mpl (hMpl) 高発現株を作製す るために、 hMpl 発現ベクターを以下の通り作製し、 かつ 2 種類のマウス細胞株 (L929および FM3A)へ導入を行った。
更に、 hMplにはリガンド非依存性に恒常的にァゴニストシグナルを伝達する変 異型受容体が報告されている (508番目 Trpが Serに変換している変異体、 Abe M ら、 Leukemia. 2002 Aug ; 16 (8): 1500— 1506) が、 このような変異体は野生型とは 立体構造が異なることが予想される。 このような恒常活性型変異体に親和性が高 い抗体は、 強力なァゴニス ト活性を示す可能性がある。 そこで、 恒常活性型変異 体(以下 hMpl-Ser)の発現ベクターも作製し、 発現細胞を作製して免疫に用いた。 1) 抗ヒ ト C- Mpl (hMpl) 発現ベクターの調製
hMplの全長 cDNAを保持するプラスミ ド DNAである humpl- Pasl2 (Bartley TDら、
Cel l 1994 Jul 1 ; 77 (7): 1117— 1124.或は Morita H ら、 FEBS Lett. 1996 Oct 21 ; 395 (2-3) : 228-234. )の DNAを铸型として hMplのコーディング領域全域を増幅 する PCR反応を実施した。 プライマーとして、 末端に連結のための制限酵素部位
(5 '末側 EcoRI、3 '末側 Xbal)を付加するようにデザィンした、 Mpl— F1及び Mpl_R2 を用いて、 K0D- Plus- DNA ポリメラーゼ (東洋紡績 (株) 製、 日本) による PCR で増幅した。 以下、 実施例中の PCRの反応温度調節は、 ジーンアンプ PCRシステ ム 9700 ( (株) パーキンエルマ一.ジャパン社製) を使用した。 反応温度条件と しては、 94°Cの初期温度で 5分間の加熱後、 98°C/10秒間と 68°C/3分間のサイク ルを 30回反復し、 最後に 72°C/7分間加熱した。 増幅した PCR断片は、 エタノー ル沈殿で回収した後、ァガロースゲル電気泳動で分離し、メンブランを用いる DNA 精製キットである QIAquick Gel Extraction Kit (キアゲン社製) にて精製した。 精製した DNA断片を PCR4Blunt- T0P0 ベクター (東洋紡績 (株) 製) にサブクロ 一ユングを行い、 得られたクローンのプラスミ ド DNAについてィンサート DNAの 塩基配列を解析した。 DNA塩基配列決定のためのプライマーとして、 M13-20FW及 び M13RVを用いた。 挿入部分の DNA塩基配列解析を行い、 hMplの配列 (GenBank ACCESSION: M90102) と相違がなく、 また、 プライマー部分もデザインどおりの配 列を有するプラスミ ド DNAを選択した。 次に、 hMplの配列を含むプラスミ ド DNA を精製した後、制限酵素 EcoRIと Xbalで消化して、 ァガロースゲル電気泳動で約 2kb弱の DNAを回収し精製した。 他方、 ヒ ト EFプロモーターとブラストサイジン
(Bsd) 選択マーカーを有する発現ベクターである pEF6/Myc-His (インビトロジ ェン (株) 社製)、 及び、 CMV プロモーターとネオマイシン (Neo) 選択マーカー を有する pEGEP- N1ベクター (べク トン 'ディキンソン 'バイォサイエンス ·ク口 ーンテック社製) についても、 同様に制限酵素 EcoRI、 と Xbalでの消化処理を行 つた後、 脱リン酸化のために Alkal ine Phosphatase (E. col i C75) (タカラバイ ォ (株)、 日本) で処理した後に、 ァガロースゲル電気泳動と DNA 精製キットで DNAを回収した。精製した hMplの全領域 DNA断片を、それぞれの発現ベクター DNA に T4 DNA l igase を用いてライゲーシヨンして、 大腸菌 DH10Bへ導入し、 それぞ れ形質転換体を得た。 ィンサート DNAを含む形質転換体のプラスミ ド DNAについ て DNA 塩基配列を解析して、 hMpl の全長 cDNA が挿入された pEF- MPL635 及ぴ PCMV-MPL635を取得した。 Mpl_Fl : 5 ' -AGAGAGAGAG GAATTCGCCA CCATGCCCTC CTGGGCCCTC TT-3 ' (配列番号 12)
Mpl_R2 : 5 ' - AGAGAGAGAG CGGCCGCTCA AGGCTGCTGC CAATAGCTTA GTG -3' (配列番 号 13)
M13-20FW: 5 ' -GTAAAACGACGGCCAGTG-3 ' (配列番号 14)
M13RV: 5 ' -CAGGAAACAGCTATGAC-3 ' (配列番号 15)
2) 恒常活性型ヒ ト c-Mpl (hMpl-Ser) 発現ベクターの調製
TP0非依存性に細胞内のシグナル活性化が報告されている hMpl変異体 (508番 目 Trp が Ser に変換 してレ、 る 変異体、 Abe M ら 、 Leukemia. 2002
Aug ; 16 (8) : 1500-1506) の発現ベクターを作製した。 508番目のアミノ酸残基をコ 一ドするコドンを変更(TGG→TCG)するために、 pEF-MPL635の DNAを鍀型として、
GeneEditorT in vitro site- Directed Mutagenesis System (プロ, 77社) ¾用 いた部位特異的変異導入法を実施した。 変異導入用オリゴヌクレオチド (5 ' 末端 リン酸化済み) どしては、 Mut_MplSer508 を用いた。 目的の変異導入用オリゴヌ クレオチドと上記キット付属の Selection Ol igonucleotideを鎵型 DNAとァニー リングさせて変異導入鎖を合成した後、 GeneEditorTM Antibiotic Selection Mix 存在下では変異体のみが増殖することを利用して変異体を選択した。 より具体的 には、 dsDNAテンプレートをアルカリ条件下 (0. 2M Na0H、 0. 2 raMEDTA (最終濃度)) 室温で 5分間インキュベートした後、 2 M酢酸アンモニゥム (pH4. 6) を 10分の
1容量加えて中和してからエタノール沈殿により回収した。 アル力リ変性処理し た铸型 DNA に、 変異導入用オリ ゴヌクレオチドと新しい抗生物質耐性獲得用
Selection Ol igonucleotide (5 ' 末端リン酸化)、 及び、 キッ ト添付のァニーリン グバッファーを加えた後、 75°Cで 5分間保温し、 37°Cにゆっく り下げることによ りアニーリングを行なった。 次に、 変異鎖の合成と連結のために、 キット付属の
Synthesis 10 X buffer, T4 DNA Polymerase, 及び T4 DNA l igaseを加えて、 37°C で 90分反応を行なった。 GeneEditorTMAntibiotic Selection Mix存在下でコン ピテントセル BMH 71- 18 mutSに形質転換して培養した形質転換体大腸菌よりプラ スミ ド DNAを調製し、更にその DNAによりコンビテントセル JM109を形質転換後、
GeneEditorTMAntibiotic Selection Mixを含む LBプレートに播種した。 プレー トに生じた形質転換体を培養して、 プラスミ ド DNAの DNA塩基配列を解析して、 508番目のアミノ酸が変換 (Trpから Ser). した hMplを発現する pEF- MPL635- Ser ベクターを取得した。
Mut_MplSer508 : 5, - CTGCTGCTGC TGAGGTCGCA GTTTCCTGCA CACTAC- 3 ' (配列番号 16)
3) 全長ヒ ト c_Mpl発現 L929細胞の作製
作製した pEF - MPL635 ベクター (1 /z g) を、 Lipofectamine 試薬 (Invitrogen より購入) および Lipofectamine PLUS (Invitrogen より購入) 試薬と混合し、 さらに無血清 Dulbecco ' s Modified Eagle Medium (DMEM) 培地と混合した。 混 合液を 1. 5xl05cel ls/wel l で 6-well plateに培養した L929細胞に添加し、 3時 間培養することで細胞に DNAを導入した。 10%ゥシ胎児血清 (FBS) 添加 DMEM培地 にてー晚培養し、 翌日より、 培地に 10 / g/mL Blasticidin (Invitrogenより購 入) を加えて薬剤耐性細胞を選抜した。 その後、 抗 c-Mpl 抗体を用いた Fluorescence Activated Cell Sorting (FACS) 法にて c- Mpl発現細胞を単離し、 全長ヒ ト c_Mpl 発現 L929 細胞株 (以下、 L929- hMpl ) を樹立した。 FACS は FACS- Vantage (Becton Dickinson 社製) によって行った。 選抜後は 5 g/mL Blasticidin, 10%FBS添加 DMEM培地にて培養、 維持した。
4) 全長ヒ ト c-Mpl発現 FM3A細胞の作製
上記 3)と同様の方法で pEF- MPL635ベクターを FM3A細胞に導入し、 全長ヒ ト c-Mpl発現 FM3A細胞株 (以下、 FM3A- hMpl) を樹立した。 5 μ g/mL Blasticidin, 10%FBS添加 Roswell-Park Memorial Institute (RPMI) 培地にて培養、 維持した。
5) 恒常活性型ヒ ト Mpl発現 FM3A細胞作製
上記、 pEF-MPL635-Ser ベクターを、 3)と同様の方法で、 FM3A 細胞に導入し、 hMpl- Ser 発現 FM3A 細胞株 (以下、 FM3A- hMpl-Ser ) を樹立した。 5 μ g/mL Blasticidin, 10%FBS添加 RPMI培地にて培養、 維持した。
1-2 可溶化ヒ ト c-Mpl組換えタンパク質の作製
ヒ ト c - Mplの細胞膜貫通領域および細胞内領域を欠失させた、 下記配列の可溶 化型ヒ ト C- Mpl をコードする DNAを発現ベクター pEAK8 (EdgeBioSysteras社製) に結合し、 トランスフエクタム試薬 (Promega社より入手可能) にて Hek293細胞 に導入した。安定発現株を選択後、その培養上清を抗 Mpl抗体カラムにて精製し、 可溶化型ヒ ト C- Mpl組換えタンパク質 (以下 soluble Mpl- x、 sMpl-χと略記) を 調製した。
NH2-MPSWALFMVTSCLLLAPQNLAQVSSQDVSLLASDSEPLKCFSRTFEDLTCFWDEEEAAPSGTYQLLYA
Figure imgf000048_0001
VALGLQCFTLDLKNVTCQWQQQDHASSQGFFYHSRARCCPRDRYPIWENCEEEEKTNPGLQTPQFSRCHFKS RNDSIIHILVEVTTAPGTVHSYLGSPFWIHQAVRLPTPNLHWREISSGHLELEWQHPSSWAAQETCYQLRYT GEGHQDWKVLEPPLGARGGTLELRPRSRYRLQLRARLNGPTYQGPWSSWSDPTRVETATETAW-COOH (配 列番号 17)
[実施例 2 ] モノクローナル抗体の作製
本発明の抗体は、 遺伝子改変によってヒ ト抗体を産生する能力を持つヒ ト抗体 産生マウス (KMマウス TM) を免疫し、 モノクローナル抗体を作製することで得ら れた。 KMマウスは、 内在性マウスィムノグロブリン (Ig) 重鎖及びマウス / c軽鎖 を欠損しており、 かつ、 ヒ ト Ig重鎖遺伝子を含む 14番染色体断片(SC20)及びヒ ト Ig K鎖トランスジーン (KCo5) を同時に保持する。 即ち、 KMマウスはヒ ト抗体 を産生する能力を持ち、マウス Ig重鎖および/ c鎖を欠損したマウスである。 この マウスはヒ ト Ig重鎖遺伝子座を持つ系統 Aのマウスと、 ヒ ト Ig /c鎖トランスジ ーンを持つ系統 Bのマウスとの交配により作製される。 系統 Aは、 内因性 Ig重鎖 及び/ c軽鎖破壊の両者についてホモ接合体であり、子孫伝達可能な 14番染色体断 片 (SC20)を保持するマウス系統 (Tomizuka. et al. , Proc Natl Acad Sci USA. , 2000 Vol97 : 722参照) である。 また、 系統 Bは内在性マウス Ig重鎖及び/ c軽鎖 欠損の両者についてホモ接合体であり、 ヒ ト Ig /c鎖トランスジーン (KCo5) を保 持するマウス系統 (Nat BiotechnoL , 1996 Vol l4 : 845参照) である。
本実施例におけるモノクロ一ナル抗体の作製は、公知の方法によって行った (単 クローン抗体実験操作入門 安東民衛ら著作、 講談社 (東京、 日本) 発行 1991参 照)。
1) 免疫 免疫原としてのヒ ト c_Mplは、実施例 1で作製した L929- hMpl細胞、 FM3A-hMpl 細胞、 恒常活性型 c-Mpl発現 FM3A- hMpl-Ser細胞、 sMpl- x組換えタンパク質を用 いた。 被免疫動物は、 実施例 2で作製したヒ ト免疫グロブリンを産生するヒ ト抗 体産生マウス使用し、 下記の免疫方法で行った。
免疫方法 1 : 9週齢のヒ ト抗体産生マウスに、 実施例 1で作製した L929-hMpl 細胞 (5 X 106細胞) を Ribiアジュバンドと混合し、 腹腔内に初回免疫した。 初回 免疫以降、 一週間ごとに、 同細胞 (2 X 106細胞) を、 インターロイキン 6 (IL-6) (5 / g) と同時に、 尾静脈経由で 7回免疫した。 さらに、 脾臓及びリンパ節の取 得 3 日前に同細胞を尾静脈経由で最終免疫した。
免疫方法 2 : 9週齢のヒ ト抗体産生マウスに、 実施例 1 で作製した FM3A_hMPl- Ser細胞 (5 X 106細胞) に紫外線照射し、 Ribiアジュバンドを加え腹 腔内に初回免疫した。初回免疫から以降、 同細胞(5 X 106細胞) を腹腔内投与で、 一週間ごとに 7回免疫した。 さらに、 脾臓及びリンパ節の取得 3 日前に、 実施例 1で作製した FM3A- hMpl細胞 (2 X 106細胞) を IL- 6 (5 ^ g) を加えて、 尾静脈経 由で最終免疫した。
免疫方法 3 : 9週齢のヒ ト抗体産生マウスに、実施例 1で作製した sMpl- X組換 えタンパク質 (lO i g) を、 完全フロイントアジュバンド (CFA) と混合して皮下 投与で初回免疫した。 2回目から 5回目の免疫は、 一週間に一度、 sMpl- X組換え タンパク質 (S i g) を不完全フロイントアジュバンド (IFA) と混合して皮下投与 で免疫した。 6回目から 8回目の免疫では、 L929-hMpl 細胞 (5 X 106細胞) を腹 腔内に免疫した。 さらに、 脾臓及びリンパ節の取得 3 日前に、 sMpl-x組換えタン パク質 (5 g) および IL- 6 ( 5 i g) を、 尾静脈経由で最終免疫した。
2) ハイプリ ドーマ作製
最終免疫の 3 日後にマウスから脾臓及び/又はリンパ節を外科的に取得し、
350mg/ml炭酸水素ナトリ ウム、 50単位/ mlぺニシリ ン、 50 g/mlス トレプトマイ シンを含む無血清 DMEM培地 10ml中に入れ、 メッシュ (セルストレイナ一 : ファ ルコン社製) 上でスパーテルを用いてつぶした。 メッシュを通過した細胞懸濁液 を遠心して細胞を沈澱させた後、この細胞を無血清 DMEM培地で 2回洗浄してから、 無血清 DMEM培地に懸濁して細胞数を測定した。 一方、 10%FCSを含む DMEM培地 にて、 37°C、 5%炭酸ガス存在下で細胞濃度が I X 108細胞/ mlを越えないように培 養したミエローマ細胞 SP2/0 (ATCC No. CRL-1581) を同様に無血清 DMEM培地で洗 浄し、無血清 DMEM培地に懸濁して細胞数を測定した。 回収した細胞の懸濁液とマ ウスミエ口一マ懸濁液とを細胞数 5 : 1で混合し、遠心後、上清を完全に除去した。 このペレツ トに、融合剤として 50% (w/v) ポリエチレングリ コール 1500 (ベーリ ンガーマンハイム社製) 1ml を、 ピペッ トの先で撹拌しながらゆっく り添加した 後、 予め 37°Cに加温しておいた無血清 DMEM培地 lmlを 2回に分けてゆつく り添 加し、 さらに 7mlの無血清 DMEM培地を添加した。 遠心後、 上清を除去して得られ た融合細胞を、 以下に記載する限界希釈法によるスク リーニングに供した。 ハイ ブリ ドーマの選択は、 10%のゥシ胎児血清 (Fetal Calf Serum、 FCS) とヒポキサ ンチン(H)、 アミノプテリン(A)、 チミジン(T) (以下 「ΗΑΤ」 という。 :シグマ社製) を含有する DMEM培地中で培養することによって行った。 さらに、 10%FCS と HT
(シグマ社製)とを含有する DMEM培地を用いて限界希釈法によりシングルクロー ンにした。 培養は、 96穴マイクロタイタープレート (べク トンディッキンソン社 製) 中で行った。 抗ヒ ト c-Mpl ヒ トモノクローナル抗体を産生するハイブリ ドー マクローンの選択 (スクリーニング) 及び各々のハイプリ ドーマが産生するヒ ト モノクローナル抗体の特徴付けは、 実施例 4に記載のフローサイ トメ トリー、 あ るいは実施例 5に記載の UT7/TP0細胞を用いた細胞増殖アツセィによって行った。 ァゴニスト抗体の活性評価系として、 BaF3等のマウス細胞株にヒ ト Mplを発現さ せ、 細胞増殖アツセィを行うことができる (Orita et al. Blood. 2005 Jan
15;105 (2):562-6. ) I そのような細胞の反応が、 ヒ ト細胞の反応を反映してい るとは限らない。 UT7/TP0 はヒ ト由来細胞株であるため、 これをスク リーニング に用いることで、よりヒ ト細胞に強い活性を持つ抗体を選抜し易いと考えられる。 スクリ一ユングの結果、抗ヒ ト Mplァゴニスト抗体産生ハイブリ ドーマとして、 免疫方法 1によるハイプリ ドーマ 7- 10、 免疫方法 2によるハイブリ ドーマ 4-49、 免疫方法 3による ハイブリ ドーマ 6-4-50, 6-5-2の 4クローンが選抜された。 ま た、 非ァゴニスト抗体産生ハイプリ ドーマとして 2-35 (免疫方法 1により得たも の) をコントロールとして選抜した。
[実施例 3 ] ハイブリ ドーマ培養上清からの精製抗体調製 ハイブリ ドーマの培養上清からの抗ヒ ト c-Mplモノクローナル抗体の精製は以 下の方法で行った。 抗体を含む培養上清を rmp Protein A (アマシャムファノレマ シァバイオテク社製) 及び 0. 8 X 40cm カラム (バイオラッド社製) を用い、 吸着 緩衝液として PBS、 溶出緩衝液として 0. 02M ダリシン緩衝液 (pH 3) を用いてァ フィニティー精製した。 溶出画分は 1M Tris (pH 9. 0)を添加して pH7. 2付近に調 整した。 調製された抗体溶液は、 透析膜 (10000カット、 Spectrum Laboratories 社製) を用いて PBSに置換し、 孔径 0. 22 / ra のメンブランフィルター MILLEX - GV
(ミリポア社製) でろ過滅菌し、 精製抗ヒ ト c- Mplモノクローナル抗体を得た。 精製抗体の濃度は 280nmの吸光度を測定し、 lmg/ml を 1. 4 0D として算出した。 抗ヒ ト c-Mplモノクローナル抗体を含む培養上清の調製は以下の方法にて行つ た。
まず、抗体産生ノヽィブリ ドーマを 10ng/ml Recombinant Human IL-6 (R&D Systems 社製)、 10% Low IgG Fetal Bovine Serum (HyClone社製) 含有 eRDF培地 (極東 製薬社製) に馴ィ匕した。 この馴化したハイプリ ドーマを凍結保存した。 次に、 そ の一部を、 ゥシインシュリン (5 §/πι1、 ギブコピーアールエル社製)、 ヒ ト トラ ンスフェリン(5 / g/ml、ギブコビーアールエル社製)、ェタノールァミン(0. 01mM、 シグマ社製)、 亜セレン酸ナト リ ウム (2. 5x10- 5m 、 シグマ社製)、 10ng/ml Recombinant Human IL-6 (R&D Systems 社製)、 1% Low IgG Fetal Bovine Serum (HyClone社製) 含有 eRDF培地 (極東製薬社製) に馴化した。 フラスコにて培養 し、 ハイプリ ドーマの生細胞率が 9 0 %になった時点で培養上清を回収した。 回 収した上清は、 lO ju m と 0. 2 mのフィルター(ゲルマンサイエンス社製)に供し、 きよう雑物を除去した。
[実施例 4 ] フローサイ トメ トリーによる抗ヒ ト C- Mpl抗体の結合活性評価 ハイプリ ドーマ培養上清もしくは精製抗体を用いたフローサイ トメ トリーによ つて、 抗ヒ ト C- Mpl抗体の結合活性を測定した。 手順は以下の通りである。 細胞 は FM3A- hMpl細胞もしくはヒ ト Mpl発現 FDCP2細胞(FDCP- hMpl) (FEBS Lett. 1996
Oct 21 ; 395 (2-3) : 228-34.参照) を用いた。
反応あたり 4xl05個の細胞を 50 Lの FACS staining medium (2%FBS, 0. l%NaN3,
ImM EDTA in PBS) に懸濁し、 50 /z Lのハイプリ ドーマの培養上清もしくは精製ヒ ト抗体(終濃度 0. 1-1 IX g/mL)を加え、氷上にて 30分間反応させた。 FACS staining mediumによる洗浄後、 二次抗体である R-phycoerythrin (RPE) 標識ャギ抗ヒ ト Ig y F (ab' ) 抗体 (Southern Biotechnology 社製 Cat#2043-09) を加え、 再び 氷上で 30分遮光反応させた後、 再ぴ洗浄した。 細胞を Propidium Iodide (PI) を加えた FACS staining mediumに懸濁し、 解析を行った。 解析は FACS Calibur
(Becton Dickinson社製) にて行った。
図 1に各抗体の精製抗体を用いたフローサイ トメ トリーの結果を示す。 各抗体 は FDCP-hMpl細胞に結合したが、 その親細胞である FDCP2細胞 (FDCP parent) に は結合しなかった。 従って、 これらの抗体はヒ ト Mpl特異的に結合していること が示された。
[実施例 5 ] UT7/TP0細胞を用いた抗ヒ ト c-Mpl抗体のァゴニスト活性評価 ハイプリ ドーマ上清もしくは精製抗体を用いて、 UT7/TP0 細胞増殖アツセィを 行い、 ァゴニスト活性を評価した。 UT7/TP0細胞は TP0依存性のヒ ト巨核球系細 胞株である (Ozaki K et al. Blood. 1998 Dec 15 ; 92 (12) : 4652-62.参照)。 通常 は 10%FBS, 5ng/mL PEG-rHuMGDF 添カ卩 Iscove ' s Modified Dulbecco' s Medium (IMDM) で培養、 維持した。 細胞増殖アツセィの手順は以下の通りである。
(1) UT7/TP0細胞培養液を 50mLチューブに移し、遠心分離(1, 500rpm, 5min, 4°C) により細胞をペレッ トにした。 培地を除き、 サイ トカイン非添加, 10°/。FBS 添加 IMDM培地 (以下、 増殖アツセィ用培地) でペレツ トを懸濁した。 再び遠心し、 新 しい増殖アツセィ用培地で懸濁した。 遠心、 懸濁をもう一度繰り返した。
(2) 上記 1.で増殖アツセィ用培地に懸濁した細胞を 37°C, 5%C02条件下で 6時 間培養した。
(3) 培養後、細胞を遠心してペレツトにし、増殖アツセィ用培地にて懸濁した。 このとき、 細胞濃度を 6 X 105cel ls/mLにあわせ、 細胞懸濁液を、 各ゥエル で 96- well plateに播いた。
(4) 次に、 ハイブリ ドーマ培養上清 10 Lに、 増殖アツセィ用培地 40 Lを加 え、 各ゥエルに添加する。 精製抗体の場合は、 増殖アツセィ用培地 50 // Lに検体 を終濃度の 2倍の濃度で加え、 各ゥエルに添加した。
(5) 37°C, 5%C02にて、 4 8時間培養する。 (6) WST- 8試薬 (同仁化学研究所社製) を 10 /x L/wellで添加し、 2時間培養す る。
(7) 吸光マイクロプレートリーダー (TECAN社製 SUNRISE RAINBOW) にて各ゥヱ ルの吸光度を測定する。 (測定波長 450nm, 参照波長 600nm以上)
図 2に 7-10 (図 2 A) , 4-49 (図 2 B) , 6-4-50 (図 2 C) , 6-5-2 (図 2 D) 各 精製抗体を用いた UT7/TP0細胞増殖アツセィにおける増殖曲線を示す。 また、 ス ク リーニングの結果得られた抗ヒ ト C-Mpl 抗体のサブクラス、 活性の強さ (UT7/TP0細胞増殖アツセィにおける 50%有効濃度 (EC50)、 最大活性(Max) )、 各抗 体が得られた実施例 2に記載の免疫方法を表 2に示す。
表 2
ノ、イブ 1Lドーマ サブクラス UT7/TPO (EC50) UT7/TPO(Max) 免疫方法
9-35 一
非ァゴニスト 〗^1 _ " _ _ -― 1
7-10 IgG1 ++ >90% 1
4-49 IgG1 ++ >80% 2
6-4-50 IgG1 + >80% 3
6-5-2 IgG1 + >50% 3
PEG-rHuMGDF - 0.001 -0.01 nM 100% -
+: EC50 1-1 OnM
++: EC50 0.1-1 nM
[実施例 6 ] コロニーアツセィ
ヒ ト臍帯血由来 CD34+ 細胞を用いた CFU- Mk コロニー形成アツセィを行い、 精 製抗体のヒ トプライマリー細胞に対する作用を検討した。 アツセィには MegaCultTM-C (Stem Cel l Technologies社製 Cat#04972) を使用した。 手順は以 下の通りである。 ■
(1) 検体を含んだ 0. 15mLの IMDMに、 0· 85mLの MegaCultTM-C培地を加え lmL とした。
. (2) ヒ ト臍帯血より調製した CD34+細胞を 1. lxl05cel ls/mLの濃度で、 IMDMに 懸濁し、 上記 1.の培地が入ったチューブに 0. 05mLずつ添加した。
(3) 細胞を加えた各チューブをボルテックスで攪拌し、 0. 6mL の氷冷したコラ 一ゲン液を加え、 再びボルテックスで攪拌した。
- 51 -
5 (4) 上記 3.までの細胞、検体混合液をチャンバースライ ドの各ゥヱルに 0. 75mL ずつ添加した。
(5) チャンバースライ ドを、 100讓 ペトリディッシュ中に入れた。 乾燥を防ぐ ために、 3mLの精製水を入れた 35mmぺトリディッシュを同じ 100mmぺトリディッ シュ中に入れた。.
(6) チャンバースライ ドが入ったぺトリディッシュをィンキュベータ一中に静 置し、 37°C, 5%C02条件下で 1 0〜 1 2日間培養した。
(7) 培養後、 固定液 (メタノール: アセ トン = 1 : 3 ) にて固定した。
(8) 抗ヒ ト CD41抗体による免疫染色を行い、 CFU-Mk コロニーを検出した。 顕 微鏡下でコロニー数をカウントし、 各検体の CFU- Mkコロニー形成能を比較した。 図 3にコロニーアツセィの結果を示した。 7- 10_IgGl, 4- 49_IgGlによってコロ ニー形成が誘導された。
[実施例 7 ] 抗体遺伝子クローニングと配列決定
組み換え抗体を作製するために、 選抜された抗ヒ ト C- Mplァゴニスト抗体産生 ハイプリ ドーマから抗体遺伝子、 具体的には重鎖 (H鎖) をコードするヒ ト Ig y cDNAおよび軽鎖(L鎖)をコードするヒ ト Ig K cDNAを単離し、配列を決定した。 1) 各モノクローナル抗体の cDNA合成
各ハイプリ ドーマで発現するヒ ト抗体重鎖、 及び軽鎖の抗体の可変領域を含む DNA断片を取得するために、 ヒ ト Ig y、 及びヒ ト Ig /cの各々の定常領域に特異的 なプライマーを用いた 5 ' RACE (5' rapid ampl ification of cDNA ends) 法によ るクローニングを行なった。 具体的には、 BD SMART RACE cDNA Ampl ification Kit
(べク ドン ' ディキンソン 'バイオサイエンス · クローンテック社製) を用い、 添付の説明書にしたがって実施した。
cDNA合成の材料としては、 ハイブリ ドーマ 7-10, 4-49, 6-4-50, 6- 5- 2細胞に RNA抽出用試薬である IS0GEN (日本ジーン社製、 日本) を添加し、 取扱説明書に したがって Total RNAを精製した。 精製した total RNAより各約 l w gを铸型とし て用いて、 1st strand cDNAを作製した。
1st strand cDNA の合成は、
Total RNA 1 μ g/3 μ 1 5' CDS 1μ 1
SMART Oligo 1 μ 1
上記組成の反応液を 70°Cで 2分間ィンキュベートした後、
5 X Buffer 2μ 1
DTT 1 1
DNTP mi 1 μ 1
PowerScript Reverse Transcriptase 1 μ I
を加え 42°Cで 1.5時間インキュベートした。
さらに、 50μ 1の Tricine- EDTA Bufferを加えた後、 72°Cで 7分間インキュべ ートし、 1st strand cDNAを取得した。
2) PCRによる重鎖遺伝子、 軽鎖遺伝子の増幅と塩基配列の確認
2-1) PCRによる重鎖遺伝子、 軽鎖遺伝子の増幅
ヒ ト抗体遺伝子の cDNAを増幅するために、 ヒ ト抗体特異的配列を有する 3' プ ライマー (具体的な配列は後記) と BD SMART RACE cDNA Amplification Kit で 合成された cDNAの 5' 末端に付加された配列に特異的にハイブリダィズする 5' プライマー (Universal primer A mix) を PCR用のプライマーセットとして、 ま た PCR用酵素として K0D_Plus- DNAポリメラーゼ(東洋紡績(株)社製)を用いて、 下記の反応液を調製して PCRに供した。
sterile H20 28 μ 1
cDNA 2.5 μ ΐ
KOD-Plus-buffer (10X) 5 μ 1
dNTP Mix (2mM) 5 /z 1
MgS04(25mM) 2 μ 1
KOD- Plus- (1 unit/// 1) 1 μ 1
Universal primer A mix (UPM) (10X) 5 μ 1
Gene specinc primers (GSP) (10 μ M) 1.5 μ, I
Total volume 50 μ 1
重鎖遺伝子の増幅反応には、 SMART RACE cDNA Amplification Kit 付属の UPM プライマーと IgGlpプライマーを用い、 他方、 軽鎖遺伝子の増幅には UPMプライ マーと hk - 2プライマーの各セッ トを使用した。
IgGlpプライマー: 5' - TCTTGTCCACCTTGGTGTTGCTGGGCTTGTG- 3' (配列番号 18) hk-2: 5' -GTT GAA GCT CTT TGT GAC GGG CGA GC -3' (配列番号 19)
また反応温度条件は次のとおりである。
94°C /30 秒間、 72°C/3分間のサイクルを 5回反復、
94°C /30 秒間、 70°C/30秒間、 72°C/3分間のサイクルを 5回反復、
94°C /30 秒間、 68°C/30秒間、 72°C/3分間のサイクルを 25回反復した。
さらに、 この反応液 2μ 1に Tricine- EDTABuffer 98μ 1を加えて希釈したもの 5μ1を铸型とし、 第一 PCRよりも内側にプライマーを設定した第二 PCR (Nested PCR) を実施した。 PCR反応溶液の組成を次に示す。
sterile H20 30 ^ 1
第一 PCR反応液 (50倍希釈) 5μ1
KOD-Plus-buffer(lOX) 5μ 1
dNTP Mix (2mM) 5 μ 1
MgS04(25mM) 2 l
KOD— Plus -(lunit/ 1) 1 1
Nested Universal primer A (NUP; 10 μ M) Ι Ι
Gene specific primers (GSP) (10 μ M) 1 μ 1
Total volume 50 μ 1
上記反応のプライマーセットとして、 重鎖遺伝子増幅用の場合は、 NUPMプライ マー (SMART RACE cDNA amplification Kit 付属;ベタ トン ·ディキンソン 'バ ィォサイエンス ·クローンテック社製) と hh2プライマー (4-49、 6-4-50、 6-5-2 の場合)、 或は IgG2p_134 (7-10の場合) を使用して、 また、 軽鎖遺伝子の増幅の 場合は、 UPMプライマーと hk-5プライマーを用いた。反応温度条件としては、 94°C の初期温度で 1分間の後、 94°C/5秒間、 68°C/10秒及び 72°C/3分間のサイクルを
20回反復、 最後に 72°C/7分間加熱した。
2-2) 抗体遺伝子の塩基配列決定
上記の方法で増幅した重鎖 PCR断片 (以下 HV[C]と記載) は、 重鎖の 5' 非翻訳 領域、リーダー配列(分泌シグナル配列)、可変領域(HV)及び定常領域の一部( [C]) より構成される。 同様に、軽鎖の PCR増幅断片 (以下 LV [C]と記載) は、軽鎖の 5 ' 非翻訳領域、 リーダー配列 (分泌シグナル配列)、 可変領域 (LV) 及び定常領域の 一部 ([C] ) より構成される。 ここでリーダー配列 (分泌シグナル) とは抗体の分 泌に必要で、成熟抗体タンパク質からは切り離されるアミノ酸配列である。 HV [C] 断片および LV [C]断片は、 PCR反応液からェタノール沈殿で回収した後、ァガロー スゲル電気泳動で分離し、 メンブランを用いる DNA 精製キットである QIAquick Gel Extraction Kit (キアゲン社製) にて精製した。 精製した HV [C]増幅断片あ るレ、は LV [C]増幅断片は、 それぞれ Zero Blunt T0P0 PCR Cloning Kit (インビト ロジェン社製)の pCR 4Blunt-T0P0 ベクター (東洋紡績 (株) 製) にサブクロー ニングを行い、 得られたクローンのプラスミ ド DNAについてィンサート DNAの塩 基配列を解析した。 DNA塩基配列決定のためにプライマーとして、 M13- 20FW及び M13RVを用いた。
hk-5 : 5, - AGG CAC ACA ACA GAG GCA GTT CCA GAT TTC- 3 ' (配列番号 20) hh2プライマー : 5, - GCT GGA GGG CAC GG TCA CCA CGC TG -3, (配列番号 21) IgG2p_134: 5, - TGCACGCCGC TGGTCAGGGC GCCTGAGTTC C - 3, (配列番号 22) ァゴニスト抗体 7-10の重鎖可変領域、及び軽鎖可変領域をコードする DNA塩基 配列、 並びに重鎖可変領域及び軽鎖可変領域のアミノ酸配列をそれぞれ以下に示 す。
く 7- 10重鎖核酸配列〉 (ATG開始コドンより可変領域 C末端アミノ酸残基をコード する DNA配列まで)
Figure imgf000057_0001
番号 23)
く 7 - 10重鎖ァミノ酸配列〉 (リーダー配列及び可変領域まで)
(下線で示すァミノ酸残基は分泌シグナルとなるリーダー配列を示す) NSGSIGYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYYCAKNLWFGEFRYWYFD LWGRGTLVTV SS (配列番号 24)
〈7- 10軽鎖核酸配列〉 (ATG開始コドンより可変領域 C末端アミノ酸残基をコード する DNA配列まで)
Figure imgf000058_0001
GGCGGAGGGACCAAGGTGGAGATCAAA (配列番号 25)
く 7 - 10軽鎖ァミノ酸配列〉 (リーダー配列及び可変領域まで)
(下線で示すァミノ酸残基は分泌シグナルとなるリーダー配列を示す)
NSGSIGYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYYCAKNLWFGEFRYWYFDLWGRGTLVTVSS
(配列番号 26)
ァゴニスト抗体 4-49の重鎖可変領域、及び軽鎖可変領域をコードする DNA塩基 配列、 並びに重鎖可変領域及び軽鎖可変領域のアミノ酸配列をそれぞれ以下に示 す。
く 4-49重鎖核酸配列〉 (ATG開始コ ドンより可変領域 C末端アミノ酸残基をコード する DNA配列まで)
Figure imgf000058_0002
列番号 27)
〈4 - 49重鎖ァミノ酸配列〉 (リーダー配列及び可変領域まで) (下線で示すァミノ酸残基は分泌シグナルとなるリーダー配列を示す)
Figure imgf000059_0001
(配列番号 28)
く 4 - 49軽鎖核酸配列〉 (ATG開始コドンより可変領域 C末端アミノ酸残基をコード する DNA配列まで)
Figure imgf000059_0002
GGCCAGGGGACCAAGCTGGAGATCAAACGT (配列番号 29)
く 4-49軽鎖ァミノ酸配列〉 (リーダー配列及び可変領域まで)
(下線で示すァミノ酸残基は分泌シグナルとなるリーダー配列を示す)
ASSLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQFNSYPYTFGQGTKLEIKR (配列番号 30) ァゴニスト抗体 6-4-50 の重鎖可変領域、 及ぴ軽鎖可変領域をコードする DNA 塩基配列、 並びに重鎖可変領域及び軽鎖可変領域のアミノ酸配列をそれぞれ以下 に示す。
〈6 - 4- 50重鎖核酸配列〉 (ATG開始コドンより可変領域 C末端アミノ酸残基をコー ドする DNA配列まで)
Figure imgf000059_0003
:配列番号
31)
く 6- 4-50重鎖ァミノ酸配列〉 (リーダー配列及び可変領域まで) (下線で示すァミノ酸残基は分泌シグナルとなるリーダー配列を示す)
MELGLSWIFLLAILKGVQCEVQLVESGGGLVQPGRSLRLSCATSGFTFDNYAMYWVRQAP GKGLEWVSGISWNSGD I GYADSVKGRFT I SRDNAKNSLYLQ匪 SLRAEDTALYYCARDAG
FGEFHYGLDVWGQGTTVTVSS (配列番号 32)
く 6- 4- 50軽鎖核酸配列〉 (ATG開始コドンより可変領域 C末端アミノ酸残基をコー ドする DNA配列まで)
Figure imgf000060_0001
GGCCAAGGGACCAAGGTGGAAATCAAACGT (配列番号 33)
く 6 - 4-50軽鎖ァミノ酸配列〉 (リーダー配列及び可変領域まで)
(下線で示すァミノ酸残基は分泌シグナルとなるリーダー配列を示す)
ASSLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQFNSYPWTFGQGTKVEIKR (配列番号 34) ァゴニスト抗体 6-5-2の重鎖可変領域、 及び軽鎖可変領域をコードする DNA塩 基配列、 並びに重鎖可変領域及び軽鎖可変領域のアミノ酸配列をそれぞれ以下に 示す。
く 6-5- 2重鎖核酸配列〉(ATG開始コ ドンより可変領域 C末端アミノ酸残基をコード する DNA配列まで)
Figure imgf000060_0002
列番号 35)
く 6 - 5-2重鎖ァミノ酸配列〉 (リーダ一配列及び可変領域まで) (下線で示すァミノ酸残基は分泌シグナルとなるリーダー配列を示す)
Figure imgf000061_0001
(配列番号 36)
く 6-5-2軽鎖核酸配列〉 (ATG開始コドンより可変領域 C末端アミノ酸残基をコード する DNA配列まで)
Figure imgf000061_0002
CAAGGGACACGACTGGAGATTAAACGT (配列番号 37)
く 6-5-2軽鎖ァミノ酸配列〉 (リーダー配列及び可変領域まで)
(下線で示すァミノ酸残基は分泌シグナルとなるリーダー配列を示す)
SSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPITFGQGTRLEIKR (配列番号 38) [実施例 8 ] 組換え抗体発現ベクターの構築
上記の方法でハイプリ ドーマからクローニングした抗体の可変領域を、 ヒ ト抗 体発現用ベクターに組み込み、 様々な定常領域を持った組換え抗体発現ベクター を作製した。
ヒ ト抗体発現用ベクター、 N5KG1 - Val Lark (以下 N5KG1 と略記) ( IDEC Pharmaceuticals社製, US patent 6001358参照) は、 組換え抗体を動物細胞に発 現させる目的で使用されるプラスミ ドベクターである。 N5KG1 の構造を図 4 Aに 示した。 N5KG1は、 2つの CMV プロモーターノエンハンサーを持ち、 それぞれの 下流に重鎖および軽鎖可変領域遺伝子のクローニングサイ トを持つ。 さらにその 下流には、 ヒ ト重鎖定常領域 (γ 1 ) およびヒ ト軽鎖定常領域 (κ ) をコードす る遺伝子配列をあらかじめ持っている。 本ベクターの可変領域クローユングサイ トに任意の重鎖および軽鎖可変領域 (リーダー配列 =分泌シグナル配列を含む) を、 読み枠 (フレーム) をあわせて組み込むことにより、 軽鎖可変領域がヒ ト Κ 鎖定常領域と、 重鎖可変領域がヒ ト 1鎖定常領域と連結された抗体を発現させ ることができる。 従って、 本ベクターを導入された動物細胞は培養液中に IgGl 抗体を産生する。
同様に、 発現ベクター N5KG4PE (IDEC Pharmaceuticals社製) は、 IgG4PEの重 鎖定常領域を持っている。 IgG4PEとは IgG4に二つの変異(Ser228Pro, Leu235Glu) が入った配列である。 Ser228Pro は IgG4の分子内架橋 (S - S結合) による単量体 形成を抑制する変異である。 また、 Leu235Glu は抗体依存性細胞傷害 (Antibody-dependent cellular cytotoxicity : ADCC)活性を低減させる変異であ る。
また、 N5KG1の IgGl定常領域を IgG3に変換し、 N5KG3を作製した。
さらに本実施例では、 N5KG1, N5KG3, N5KG4PE をもとに、 重鎖定常領域 (特に ヒンジ領域) に種々の改変を加えた発現ベクターを作製した。
本実施例で定常領域に加えた改変は、 第一に、 抗体ドメイン間のサブクラスの 入れ替えによるものである。 抗体重鎖定常領域は、 N 末端側から CH1-ヒンジ - CH2-CH3という ドメイン構造を持っている。 本実施例では、 このドメイン単位で 各サブクラスの配列を組み合わせた重鎖定常領域を作製した。 例えば、 CH1 およ びヒンジ領域はヒ ト IgG3の配列であり、 CH2および CH3はヒ ト IgGlである重鎖 定常領域を作製した。 そして、 このような重鎖定常領域を持つ抗体を、 CH1/ヒン ジ /CH2/CH3の順にサブクラスを表記し、 IgG3/3/l/l と名付けた (以降は IgG3311 とレヽうように" /" を省略して表記する)。 また、 例えば、 ヒンジ領域はヒ ト IgG3 の配列であり、 CH1, CH2および CH3はヒ ト IgG4PEである重鎖定常領域を作製し た。 このような重鎖定常領域を持つ抗体を IgG4344と名付けた。
第二に、 ヒ ト IgG3ヒンジ領域の改変体を作製した。抗体のヒンジ領域はアツパ 一 (upper) ヒンジとミ ドル(middle)ヒンジに分けることができる。 アッパーヒン ンとは Kabat EU numoering (Kabatり、 sequences or Proteins of Immunological
Interest, 5thEd. Publ ic Health Service, National Institute of Health,
Bethesda, Md. (1991) ) による表記で 216以降、 226より N末端側の配列を指す。 ミ ドルヒンジとは、同表記で 226以降、 231より N末端側の配列を指す。 ヒ ト IgG3 のヒンジ領域は、 アッパーヒンジが 1 2アミノ酸、 ミ ドルヒンジが 5 0アミノ酸 から成る。 さらにミ ドルヒンジは、 5アミノ酸と 1 5アミノ酸 X 3回のリピート 配列に分けられる (5+15x3=50)。 本実施例では、 IgG3ミ ドルヒンジの繰り返し配 列を 1回に短縮した変異体を作製した。 このようなヒンジを G3hl と名付け、 この タイプのヒンジを持つ抗体を、前述のドメイン単位の変異とあわせて、 IgGx3xxhl (Xは任意) とレ、うように表記した。
また、 IgG3のミ ドルヒンジ後半の繰り返し配列を無く した重鎖定常領域も作製 した。 このようなヒンジを G3uh (upper hingeの略) と名付け、 IgGx3xxuh とい うように表記した。
さらに G3uh ヒンジに L217Sと R228Pの変異を加えた重鎖定常領域を作製した。 この変異には G3uh ヒンジをより IgG4PE の配列に近づける意図がある。 これを G3uhm (upper hinge mutationの略) と名付け、 これを持つ抗体を IgGx3xxuhraと 表 griしに。
また、 本発明者らは、 IgG2のアッパーヒンジとミ ドルヒンジの間に、 IgG3アツ パーヒンジの一部配列 (TPLGDTTHT (配列番号 99) ) を挿入した重鎖定常領域を作 製した。 このようなヒンジを G3uhm2 と名付け、 これをもつ抗体を IgGx3xxuhm2 と表記した。
図 4 Bに天然型のヒ トイムノグロブリ ンと、 IgG4PE, IgG4344, IgG4344hl, IgG4344uh, IgG4344uhmのヒンジ領域のァミノ酸配列を示す。
本実施例では抗 Mplァゴニスト抗体の可変領域を用いて、 以下の定常領域を持 つ抗体の発現べクタ一を作製した。
IgGl, IgG4PE, IgG3311, IgG3331, IgG3344, IgG3344hl, IgG4344, IgG4344hl, IgG4344uh, IgG4344uhra, IgG2322uhm2
以下に各発現ベクターの作製法を記載する。
1) IgGlサブクラスの抗 c- Mpl抗体発現ベクターの作製
1-1) 抗ヒ ト c-Mpl抗体 4- 49_IgGl及び 7-10— IgGl発現ベクターの作製
7-10と 4-49については、 N5KG1ベクターに最初に重鎖可変領域、 次に、 軽鎖可 変領域の順に挿入して発現べクターを作製した。
発現ベクター作製の工程を図 4 Cに示す。 7- 10及び 4-49それぞれの HV [C]およ び LV [C]断片 (実施例 7に記載) を含むプラスミ ド DNAを铸型として、 末端に連 結のための制限酵素部位 (5 ' 末側 Sal l、 3 ' 末側 Nhel) を付加するようにデザィ ンしたプライマーセットを用いて、 重鎖および軽鎖のリーダー配列と可変領域の DNAを K0D_Plus- DNAポリメラーゼによる PCRで増幅した。 この PCRにより増幅さ れた、 重鎖および軽鎖のリーダー配列 +可変領域を、 それぞれ HV断片、 LV断片 と表す。
まず、 N5KG1に 7- 10HV, 4-49HV断片の挿入を行った。 HV断片増幅用のプライマ 一は、 以下の通りである。
7-10;
HV断片 5 ' 用プライマー: 40- 3H5Sal
5, - AGAGAGAGAG GTCGACCACC ATGGAGTTGG GACTGAGCTG GATTT -3 ' (配列番号 39) HV断片 3 ' 用プライマー : 40- 3H3Nhe
5 ' - AGAGAGAGAG GCTAGCTGAG GAGACAGTGA CCAGGGTGCC A -3 ' (配列番号 40) 4-49;
HV断片 5, 用プライマー: F24HSal
5, -AGAGAGAGAGGTCGACCACCATGGAGTTGGGACTGAGCTGGATTT _3, (配列番号 41) HV断片 3 ' 用プライマー : C15H3Nhe
5, - AGAGAGAGAGGCTAGCTGAGGAGACGGTGACCGTGGT- 3, (配列番号 42)
反応温度条件としては、 94°Cの初期温度で 1分間の加熱後、 94°C/5秒間と 68°C
/45秒間のサイクルを 35回反復し、最後に 72°C/7分間加熱した。増幅された DNA 断片を制限酵素 Sai l と Nhelで消化して、 ァガロースゲル電気泳動で約 430bpの
DNAを回収し精製した。 他方、 N5KG1ベクターについては制限酵素 Sal l、 Nhel処 理を順次行った後、脱リン酸化のために Alkal ine Phosphatase (E. col i C75) (宝 酒造社製、 日本) にて処理した後に、 ァガロースゲル電気泳動と DNA精製キッ ト で約 8. 9kbの DNAを回収した。 これら 2つの断片を T4 DNA l igase を用いてライ ゲーシヨンして、 大腸菌 DH10Bへ導入して形質転換体を得た。 得られた形質転換 体のプラスミ ド DNAについて DNA塩基配列を解析して、 重鎖定常領域の 5, 上流 に、 HV断片がフレームを合わせて挿入されたプラスミ ド DNA、 N5KGし 7- 10_Hv、 及 び N5KG1_4- 49—Hvを取得した。
続いて、 これら HV断片が挿入されたプラスミ ドベクターに LV断片 (軽鎖リー ダー配列 +可変領域) の揷入を行なった。 LV [C]断片を含むプラスミ ド DNAを铸型 として、 末端に連結のための制限酵素部位 (5 ' 末側 BglII、 3 ' 末側 BsiWI) を付 加するようにデザインしたプライマーを用いて、 LV 断片を PCR で増幅した。 LV 増幅用プライマーは以下の通りである。
7-10;
LV断片 5, 用プライマー: 165_lB_L18Bgl
5' - AGAGAGAGAGATCTCTCACCATGGACATGAGGGTCCCCGCTC-3 ' (配列番号 43)
LV断片 3 ' 用プライマー : 165_lB_L18_Bsi
5 ' - AGAGAGAGAG CGTACGTTTG ATCTCCACCT TGGTCCCTCC -3, (配列番号 44) 4-49;
LV断片 5 ' 用プライマー : DNP_LlBglp
5 ' - AGAGAGAGAGATCTCTCACCATGAGGGTCCCCGCTCAGCTC - 3 ' (配列番号 45)
LV断片 3 ' 用プライマー : A27_R— N202
5' - AGAGAGAGAGCGTACGTTTGATTTCCACCTTGGTCCCTTGGC-3 ' (配列番号 46)
反応は 94°Cの初期温度で 1分間の加熱後、 94°C/5秒間と 68°C/45秒間のサイク ルを 35回反復し、 最後に 72°C/7分間の保温という条件で実施した。 精製した LV の増幅 DNA断片は、 pCR4Blunt_T0P0ベクター (東洋紡績 (株) 製) にサブクロー ニングを行い、 得られたクローンのプラスミ ド DNAについてィンサート DNAの塩 基配列を解析した。 DNA 塩基配列決定のためにプライマーとして、 M13-20FW と
M13RVを用いた。 揷入部分の DNA塩基配列解析を行い、 鎳型とした LVと相違がな く、 また、 プライマー部分もデザインどおりの配列を有するプラスミ ド DNA
(T0P0_7-10_Lv、 及び T0P0_4- 49_Lv) を選択した。 次に、 それぞれの DNAを制限 酵素 Bglll と BsiWIで消化して、ァガロースゲル電気泳動で約 400 1^の 1)^を回 収し精製した。 その精製 DNA断片と、 制限酵素処理 (Bglll, BsiWI) 及び、 脱リ ン酸化処理を施した 7-10或は 4-49の HVが挿入されたベクター(約 9. 3kb) を T4
DNA l igase によりライゲーシヨンした後、大腸菌 DH10Bへ導入して形質転換体を 得た。 形質転換体について、 DNA 配列解析や制限酵素切断パターンを解析し、 目 的のプラスミ ド DNAを含むクローンを選択した。 更に、 得られた抗体発現プラス ミ ド DNAの大量精製を行い、 重鎖全領域と軽鎖全領域、 及び、 その揷入部位周辺 の DNA 塩基配列にクローニング工程での変異がないことを確認した。 7-10一 IgGl および 4-49_I gGl発現ベクターは、各々 N5KG1_7- 10、及び N5KG 1—4-49と名付けた。 図 4 Cに N5KG1_7_10、 及び N5KGし 4- 49の作製工程を図示した。
1-2) 抗ヒ ト C- Mpl抗体 6-4-50— IgGl及び 6- 5_2_IgGl抗体発現ベクターの作製
6-4-50、 及び、 6-5-2 については、 ヒ ト抗体発現用ベクターに最初に軽鎖可変 領域、 次に、 重鎖可変領域の順に挿入して発現ベクターを作製した。
6-4-50、 及び、 6-5-2抗体それぞれの LV [C]断片を含むプラスミ ド DNA (実施例 7 ) を铸型として、 末端に連結のための制限酵素部位 (5 ' 末側 BglII、 3 ' 末側 BsiWI) を付加するようにデザインしたプライマーセットを用いて、 LV 断片 (軽 鎖のリーダー配列 +可変領域) の DNA を KOD-Plus- DNAポリメラーゼによる PCR で増幅した。 プライマーは以下の通りである。
6-4-50 ;
LV断片 5, 用プライマー : 208LF
5, -AGAGAGAGAGATCTCTCACCATGGACATGAGGGTCCCCGCTCAGC -3, (配列番号 47) LV断片 3 ' 用プライマー : 62LP3Bsi
5, - AGAGAGAGAGCGTACGTTTGATTTCCACCTTGGTCCCTTG -3' (配列番号 48)
6-5-2;
LV断片 5 ' 用プライマー: A27_F
5, -AGAGAGAGAGATCTCTCACCATGGAAACCCCAGCGCAGCTTCTCTTC -3' (配列番号 49) LV断片 3 ' 用プライマー : 202LR
5 ' - AGAGAGAGAGCGTACGTTTAATCTCCAGTCGTGTCCCTTGGC -3 ' (配列番号 50)
反応温度条件としては、 94°Cの初期温度で 1分間の加熱後、 94°C/5秒間と 68°C
/45秒間のサイクルを 35回反復し、最後に 72°C/7分間加熱した。増幅された DNA 断片を制限酵素 Bglll と BsiWIで消化して、 ァガロースゲル電気泳動で約 400bp の DNAを回収し精製した。他方、 N5KG1ベクターについては制限酵素 Bglllと BsiWI 処理を順次行った後、脱リン酸化処理として Alkal ine Phosphatase (E. col i C75)
(宝酒造社製) にて処理した後に、 ァガロースゲル電気泳動と DNA精製キッ トで 約 8. 9kbの DNAを回収した。 これら 2つの断片を T4 DNA l igase を用いてライゲ ーシヨンして、 大腸菌 DH10Bへ導入して形質転換体を得た。 インサート DNAを含 む形質転換体のプラスミ ド DNAについて DNA塩基配列を解析して、 LV断片が N5KG1 のヒ ト抗体軽鎖定常領域をコードする 5 ' 上流にフレームを合わせて揷入された プラスミ ド DNA、 N5KGし 6- 4-50一 Lv、 及び N5KG1_6- 5- 2_Lvを取得した。 引き続い て、 この LV断片が挿入されたプラスミ ドベクターに HV断片 (重鎖のリーダー配 列 +可変領域) の挿入を行なった。 HV [C]を含むプラスミ ド DNA (実施例 7 ) を铸 型として、 末端に連結のための制限酵素部位 (5 ' 末側 Sall、 3 ' 末側 Nhel) を付 加するようにデザインしたプライマーを用いて、 HV断片を PCRで増幅した。 使用 したプライマーは以下の通りである。
6-4-50 ;
HV断片 5 ' 用プライマー : 50-5-7Hsal
5, - AGAGAGAGAG GTCGACCACC ATGGAATTGG GACTGAGCTG GATTTT -3 ' (配列番号 51) HV断片 3 ' 用プライマー : C15H3Nhe
5 ' -AGAGAGAGAGGCTAGCTGAGGAGACGGTGACCGTGGT-3 ' (配列番号 52)
6-5-2;
HV断片 5 ' 用プライマー : F24HSal
5, - AGAGAGAGAGGTCGACCACCATGGAGTTGGGACTGAGCTGGATTT-3 ' (配列番号 53) HV断片 3 ' 用プライマー : L66H3Nhe
5, - AGAGAGAGAGGCTAGCTGAGGAGACGGTGACCGTGGTC-3 ' (配列番号 54)
反応は 94°Cの初期温度で 1分間の加熱後、 94°C/5秒間と 68°C/45秒間のサイク ルを 35回反復し、 最後に 72°C/7分間の保温という条件で実施した。 精製した HV 断片の増幅 DNA断片は、 一度 pCR4Blunt-T0P0ベクター (東洋紡績 (株) 製) にサ ブクロー-ングを行い、 得られたクローンのプラスミ ド DNAについてインサート
DNA の塩基配列を解析した。 DNA 塩基配列決定のためにプライマーと して、
M13-20FWと M13RVを用いた。挿入部分の DNA塩基配列解析を行い、铸型とした HV と相違がなく、 また、 プライマー部分もデザインどおりの配列を有するプラスミ ド DNA (T0P0— 6- 4- 50_Hv、 及び T0P0— 6- 5- 2_Hv) を選択した。 次に、 それぞれの
DNAを制限酵素 Sai l と Nhelで消化して、 ァガロースゲル電気泳動で約 430 bpの
DNAを回収し精製した。 並行して制限酵素処理 (Sai l と Nhel)、 及び、 脱リン酸 化処理した 6-4-50或は 6-5-2の LV断片が挿入されたベクター (約 9· 3kb) に、 ィンサートしたい DNA断片をライゲーションした後、 大腸菌 DH10Bへ導入して、 得られた形質転換体から目的のプラスミ ド DNAを持つクローンを選択した。 こう して得られた抗体発現プラスミ ド DNAの大量精製を行い、 重鎖全領域と軽鎖全領 域、 及び、 その揷入部位周辺の DNA塩基配列にクローニング工程での変異がない ことを確認した。 6-4- 50_IgGl 及ぴ 6- 5- 2— IgGl 抗体発現ベクターを、 それぞれ N5KGし 6-4-50、 及ぴ N5KG1— 6 - 5 - 2と名付けた。
図 4 Dに N5KGl_6_4-50、 及び N5KGし 6- 5-2の作製工程を図示した。
2) IgG4PEサブクラスの抗ヒ ト C- Mpl抗体の作製
IgG4PEサブクラス抗体の発現ベクター作製には前述の N5KG4PEベクターを用い た。 N5KG4PEのプラスミ ド DNAを制限酵素 Nhel と BamHIで切断して、 重鎖定常領 域を含む断片を精製して、 抗 c- Mpl抗体である N5KG1_7-10、 及び N5KG1— 4-49の 同 じ制限酵素部位内につなぎ換える こ と によ り 、 N5KG4PE— 7- 10、 及び N5KG4PE— 4- 49を作製した。
3) N5KG3の作製
ヒ ト IgG3用発現ベクター N5KG3は N5KG1の IgGl重鎖定常領域を下記配列の IgG3 定常領域に置換することで作製した。
IgG3定常領域アミノ酸配列:
Figure imgf000068_0001
KTKLREEQYNSTFRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKTKGQPREPQVYTLPPSREEMT
LHNRYTQKSLSLSPGK* (配列番号 55)
IgG3定常領域塩基配列:
CTCTGCACAACCGCTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA (配列番号 56)
4) IgG3311発現ベクターの作製
IgG3311発現ベクターは、 N5KG3を铸型として、 プライマー l inkH, 13chl- Rで 98°C 1秒、 60°C30秒、 72°C30秒の反応を 15回行った。 同時に、 N5KG1を铸型と して、 プライマー 13chl、 l inkH2を用いて、 98°C 1秒、 60°C30秒、 72°C30秒の反 応を 15回行った。 増幅した DNA断片を PCR purification kit で精製し、 2つの 精製 DNA断片を等量混合したのち、 98°C 1秒、 60°C30秒、 72°C30秒の反応を 5 回行い、 プライマー l inkH、 l inkH2を加えて、 15回反応した。 増幅した DNA断片 を Nhel, BamHIで切断し、 N5KG1ベクターの IgGl定常領域と置き換えた。 この発 現ベクターを N5KG3311 と名づけた。
l inkH : GGG TAC GTC CTC ACA TTC AGT GAT CAG (配列番号 57)
13chl-R : GTC TTC GTG GCT CAC GTC CAC CAC CAC GCA (配列番号 58)
13chl : TGC GTG GTG GTG GAC GTG AGC CAC GAA GAC (配列番号 59)
l inkH2 : TGA TCA TAC GTA GAT ATC ACG GC (配列番号 60)
5) IgG3331発現ベクターの作製
IgG3331発現ベクターは、 N5KG3を铸型として、 プライマー l inkH, CH3consRで
98°C 1秒、 60°C30秒、 72°C30秒の反応を 15回行った。 同時に、 N5KG1を铸型と して、 プライマー CH3cons、 l inkH2を用いて、 98°C 1秒、 60°C30秒、 72°C30秒の 反応を 15回行った。 増幅した DNA断片を PCR purification kit で精製し、 2つ の精製 DNA断片を等量混合したのち、 98°C 1秒、 60°C30秒、 72°C30秒の反応を 5 回行い、 プライマー l inkH、 l inkH2を加えて、 15回反応した。 増幅した DNA断片 を Nhel, BamHIで切断し、 N5KG1ベクターの IgGl定常領域と置き換えた。 この発 現ベクターを N5KG3331 と名づけた。
CH3consR : GGTGTACACCTGTGGCTCTCGGGGCTGCCC (配列番号 61)
CH3cons: GGGCAGCCCCGAGAGCCACAGGTGTACACC (配歹 lj番号 62)
以 下 に 、 IgG3344, IgG3344hl, IgG4344, IgG4344hl, IgG4344uh, IgG4344uhm, IgG2322uhm2の作製法を記す。 これらについては、 各定常領域を PCR 法によって増幅し、 それをクローニングしたプラスミ ドを作製した。 ついで、 そ れら改変定常領域を N5KG1_7_10等の IgGl定常領域と置換した。
6) IgG3344, IgG3344hl定常領域の作製
IgG3344発現ベクターは; N5KG3331および N5KG4PEを铸型として、 PCRを用い た変異導入 (Overlap Extention 法による部位特異的変異導入法) によって以下 の手順で行った。
N5KG3331 を铸型として、 プライマーとして G3G4_P1_F と G3G4_P2— R を用いて 94°Cの初期温度で 1分間の加熱後、 94°C/15秒間、 55°C/10秒間、 そして 68°C/1 分間のサイクルを 35回反復し、 最後に 72°C/7分間加熱した。 同時に、 前述発現 ベクター N5KG4PEを铸型として、 プライマーとして G3G4— P3_Fと G3G4— P4_Rを用 いて同条件にて PCRを実施した。 増幅した DNA断片をァガロースゲル電気泳動で 回収し、 QIAquick Gel Extraction Kit (キアゲン社製) にて精製した。 これら の精製 DNA断片を等量混合した後、 最初の 5サイクルについては、 2 DNA断片の オーバーラップ部分をアニーリングさせて 94°Cの初期温度で 1 分間の加熱後、
94°C/10秒間、 55°C/10秒間、 そして 68°C/1. 5分間という 5サイクルの伸長反応 を行なった後、 全長を増幅させる為に反応液にプライマーとして G3G4— PI— F と
G3G4_P4_Rを加えて、 更に 94°C/5秒間と 68°C/2分間のサイクルを 20回反復し、 最後に 72°C/7分間の加熱を行なった。 G3G4_P1_Fと G3G4_P4_Rのプライマーは、 ヒ ト抗体定常領域のコード部分を切りだして、 抗体の発現ベクターの該当する部 分に変更可能とするために制限酵素部位(G3G4_Pし Fに Nhel、 G3G4_P4_Rに BamHI 部位) が存在する。 増幅した PCR 断片は、 ァガロースゲル電気泳動で回収し、 QIAquick Gel Extraction Kitにて精製した。精製した増幅断片は、 Zero Blunt T0P0 PCR Cloning Kit (ィンビトロジェン社製)の pCR 4 Blunt- T0P0ベクターにサブク ローニングを行い、 得られたクローンのプラスミ ド DNAについてインサート DNA の塩基配列を解析した。 塩基配列の解析より IgG3344および IgG3344hl定常領域 を持つクローンを選択した。
G3G4—P1—F: 5' - AGAGAGGCTA GCACCAAGGG CCCATCG- 3' (配列番号 63)
G3G4_P2— R: 5' - GAACTCAGGT GCTGGGCACC TTGGGCACG-3 ' (配列番号 64)
G3G4—P3—F: 5, - CCAAGGTGCC CAGCACCTGA GTTCGAGGGG GGA -3 ' (配列番号 65) G3G4— P4— R: 5 ' - AGAGAGGGAT CCTCATTTAC CCAGAGACAG GGA -3, (配列番号 66) 7) IgG4344定常領域の作製
IgG4344発現ベクターの作製においては、 N5KG3331を铸型として、 プライマー として G434_P5_Fと G434_P6_Rを用いて 94°Cの初期温度で 1分間の加熱後、 94°C /15秒間、 55°C/10秒間、 そして 68°C/1分間のサイクルを 35回反復し、 最後に 72°C/7分間加熱した。同時に、 N5KG4PEを鎳型として、プライマーとして G434_P7_F と G3G4_P2_Rを用いて同条件にて PCRを実施した。 増幅した DNA断片をァガロー スゲル電気泳動で回収し、 QIAquick Gel Extraction Kit (キアゲン社製) にて精 製した。 これらの精製 2 DNA断片と、 前述した N5KG4PEを铸型として、 G3G4— P3_F と G3G4_P4_R をプライマーとして増幅 ·精製しておいた DNA断片の計 3種類の Overlap Extention反応を実施した。 すなわち、 3種類の DNA断片のォ バーラ ップ部分をアニーリングさせて 94°Cの初期温度で 1分間の加熱後、 94°C/10秒間、 55 °C / 10秒間 68 °C / 1. 5分間のサイクルを 5回反復して伸長した後、全長を増幅さ せる為に反応液にプライマーとして G434_P5_F t G3G4_P4_Rを加えて、 94°C/5秒 間と 68°C/2分間のサイクルを 20回反復し、最後に 72°C/7分間の加熱を行なつた。 増幅した PCR 断片は QIAquick Gel Extraction Kit にて精製した後、 pCR 4 Blunt-TOPOベクターにサブクローニングを行い、得られたクローンのプラスミ ド DNAについてィンサート DNAの塩基配列を解析した。塩基配列の解析より IgG4344 定常領域を持つクローンを選択した。
G434— P5—F: 5 , - AGAGAGGCTA GCACCAAGGG GCCATCC -3 ' (配列番号 67)
G434— P6— R: 5 ' - GGTTTTGAGC TCAACTCTCT TGTCCACCTT GGTGTTGC -3 ' (配列番号 68)
G434_P7_F: 5 ' - GTGGACAAGA GAGTTGAGCT CAAAACCCCA CTTGGTGACA C -3, (配列番 号 69)
8) IgG4344hl定常領域の作製
IgG4344hl発現ベクターの作製は、 N5KG4344を铸型として、 プライマーとして G434_P5_F, G434_P6_Rを用いて 98°Cの初期温度で 10秒間の加熱後、 98°C/10秒 間、 55°C/30秒間、 そして 72°C/1分間のサイクルを 7回反復し、 次いで 98°C/10 秒間、 68°C/1分間のサイクルを 30回反復して、最後に 72°C/7分間加熱した。 PCR 用酵素としては、 Pyrobest DNA Polymerase (タカラバイオ株式会社)を使用した。 同時に、 N5KG3344hlを铸型として、 プライマーとして G434_P7_Fと G3G4_P4_Rを 用いて同条件にて PCRを実施した。 増幅した DNA断片をァガロースゲル電気泳動 で回収し、 QIAquick Gel Extraction Kit (キアゲン社製) にて精製した。 これら の精製 DNA断片を等量混合した後、 2 DNA断片のオーバーラップ部分をァニーリ ングさせて、 98°Cの初期温度で 10秒間の加熱後、 98°C/10秒間、 55°C/30秒間、 そして 72°C/1分間のサイクルを 7回反復して伸長した後、全長を増幅させる為に 反応液にプライマーとして G434_P5_Fと G3G4_P4_Rを加えて、 更に 98°C/10秒間 と 68°C/1分間のサイクルを 30回反復し、 最後に 72°C/7分間の加熱を行なった。 増幅した PCR断片は、ァガロースゲル電気泳動で回収し、 QIAquick Gel Extraction Kitにて精製した。 精製した増幅断片は、 pCR 4 Blunt- T0P0ベクターにサブクロ 一二ングを行い、 得られたクローンのプラスミ ド DNAについてィンサート DNAの 塩基配列を解析した。 塩基配列の解析より G4344hl定常領域持つクローンを選択 した。
9) IgG4344uh定常領域の作製
G4344uh の作製は、 N5KG4344 を铸型として、 プライマーとして G434— P5— F と
17-1Rを用いて 98°Cの初期温度で 10秒間の加熱後、 98°C/10秒間、 50°C/30秒間、 そして 72°C/1分間のサイクルを 5回反復し、次いで 98°C/10秒間、 55°C/30秒間、 そして 72°C/1分間のサイクルを 5回反復し、 98°C/10秒間、 68°C/1分間のサイク ルを 25回反復して、最後に 72°C/7分間加熱した。 PCR用酵素としては、 Pyrobest
DNA Polymerase (タカラバイオ株式会社) を使用した。 並行して、 N5KG3344hlを 铸型として、 プライマーとして 17-2Fと G3G4_P4_Rを用いて同条件にて PCRを実 施した。 増幅した DNA 断片をァガロースゲル電気泳動で回収し、 QIAquick Gel Extraction Kitにて精製した。 これらの精製 DNA断片を等量混合した後、 2 DNA 断片のオーバーラップ部分をァニーリングさせて、 98°Cの初期温度で 10秒間の加 熱後、 98°C/10秒間、 68°C/1分間のサイクルを 5回、 さらに 98°C/10秒間、 55°C /30秒間、 そして 72°C/1分間のサイクルを 5回反復して伸長した後、 全長を増幅 させる為に反応液にプライマーとして G434_P5_F と G3G4_P4_R を加えて、 更に 94°C/30秒間と 68°C/1分間のサイクルを 30回反復し、最後に 72°C/7分間の加熱 を行なった。増幅した PCR断片は、ァガロースゲル電気泳動で回収し、 QI Aqui ck Ge 1 Extraction Kitにて精製した。 精製した増幅断片は、 pCR 4 Blunt- T0P0ベクター にサブクローニングを行い、 得られたクローンのプラスミ ド DNAについてインサ ート DNAの塩基配列を解析した。 塩基配列の解析より IgG4344uh定常領域を持つ クローンを選択した。
17-1R: 5 ' - AGGTGCTGGG CACCGTGGGC ATGTGTGAGT TGT -3, (配列番号 70)
17-2F: 5, - CACACATGCC CACGGTGCCC AGCACCTGAG TTC -3 ' (配列番号 71)
10) IgG4344uhm定常領域の作製
IgG4344uhm発現ベクターの作製は、 N5KG4PEを鋅型として、 プライマーとして
G434_P5_Fと 17m- 1Rを用いて 98°Cの初期温度で 10秒間の加熱後、 98°C/10秒間、
50°C/30秒間、そして 72°C/1分間のサイクルを 5回反復し、次いで 98°C/10秒間、
55°C/30秒間、 そして 72°C/1分間のサイクルを 5回反復し、 98°C/10秒間、 68°C
/1分間のサイクルを 25回反復して、 最後に 72°C/7分間加熱した。 PCR用酵素と しては、 Pyrobest DNA Polymeraseを使用した。並行して、 N5KG4PEを铸型として、 プライマーとして 17m-2Fと G3G4_P4— Rを用いて同条件にて PCRを実施した。増幅 した DNA断片をァガロースゲル電気泳動で回収し、 QIAquick Gel Extraction Kit にて精製した。 これらの精製 DNA断片を等量混合した後、 2 DNA断片のオーバー ラップ部分をアニーリングさせて、 94°C/30秒間、 55°C/30秒間、 そして 72°C/1 分間のサイクルを 7回反復して伸長した後、 全長を増幅させる為に反応液にブラ ィマーとして G434— P5— Fと G3G4_P4— Rを加えて、更に 94°C/30秒間と 68°C/1分間 のサイクルを 30回反復し、 最後に 72°C/7分間の加熱を行なった。 増幅した PCR 断片は、 ァガロースゲル電気泳動で回収し、 QIAquick Gel Extraction Kit にて 精製した。 精製した増幅断片は、 pCR 4 Blunt- T0P0 ベクターにサブクローニン グを行い、 得られたクローンのプラスミ ド DNAについてインサート DNAの塩基配 列を解析した。塩基配列の解析より IgG4344uhm定常領域を持つクローンを選択し た。
-3 ' (配列番号 72)
-3' (配列番号 73)
図 4 Eに各種改変重鎖のアミノ酸配列を示した。
11). N5KG2— Serの作製
ヒ ト IgG2用発現ベクター N5KG2_Serは N5KG1 の IgGl重鎖定常領域を下記配列 の IgG2定常領域に置換することで作製した。 なお、下記定常領域配列には補体活 性を低下させるために 331番目のプロリンをセリンにする変異が入っている。 IgG2重鎖定常領域ァミノ酸配列:
Figure imgf000074_0001
KTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPMLDSDGSFFLYSK LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK (配列番号 9 7 )
IgG2重鎖定常領域塩基配列:
AACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA
(配列番号 9 8 )
12) IgG2322uhm2定常領域の作製
IgG2322uhm2発現ベクターは、 N5KG2_Serを铸型として、 PCRを用いた変異導入
(Overlap Extent ion法による部位特異的変異導入法) によって、 IgG2のアツパ ーヒンジとミ ドルヒンジの間に、 IgG3アッパーヒンジの一部配列(TPLGDTTHT (配 列番号 99) ) を挿入することで作製した。 下に IgG2322uhm2定常領域のアミノ酸 配列を示す。
IgG2322uhm2重鎖定常領域ァミノ酸配列
Figure imgf000075_0001
PEVTCVVVDVSHEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDWLNGKEYKCKVSNKGL
PASIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPMLDS
DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK (配列番号 9 6 )
また、 以下に、 7- 10_IgG2322uhm2の重鎖配列を示す。
配列番号 95 (配列番号 2 (可変領域;下線部) +配列番号 9 6 ) :
Figure imgf000075_0002
NWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDWLNGKEYKCKVSNKGLPAS I EKT I SKTKGQPREPQ VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE丽 YKTTPPMLDSDGSFFLYSKLTVDKSRWQQ GNVFSCSVMHEALHNHYTQKSLSLSPGK
(ここで、 [ ]の配列は、 IgG3アッパー tンジの一部配列 (配列番号 99) を表す。 ) 13) 各種改変重鎖定常領域を持った抗体発現ベクターの作製
作製した各種改変重鎖定常領域を持つプラスミ ド DNAを、制限酵素 Nhel, BamHI で切断後、 定常領域配列を精製分離した。 続いて、 抗ヒ ト c-Mpl抗体発現べクタ 一 N5KG1_7-10, N5KG1— 4 - 49, N5KG1_6- 4- 50, N5KG1_6- 5 - 2 を同酵素で処理し、 定 常領域を置換した。
図 4 Fに 7-10_IgG4344uhmの重鎖配列を示した。
図 4 Gに 7-10_IgG4344uhmの軽鎖配列を示した。
[実施例 9 ] 抗ヒ ト C- Mpl抗体の 293F細胞での一過性発現、 及び精製
実施例 8で作製した発現ベクター DNAを EndoFree Plasmid Kit (キアゲン社) にて調製し、 FreeStyle™ 293 Expression System (インビトロジェンライフテク ノ口ジ一社) を用いて浮遊性 293細胞(インビトロジェンライフテクノロジ一社) に導入して、 一過性発現により各抗体を含む培養上清を得た。 孔径 0. 22 μ πι のメ ンブランフィルター (MILLIP0RE 製) で濾過した培養上清 (IgGとして約 500 β) を抗体精製用ァフニティーカラムである HiTrap rProtein A FF (カラム体積 1ml) (アマシャムバイオサイエンス社) にチャージし、 PBS (-)で洗浄後 20raMクェン酸 バッファー (pH3. 4) により溶出し、 200 mMリン酸バッファー (pH7. 0) を含むチ ユーブに回収した。
[実施例 1 0 ] 組換え型抗体の作製
構築した抗体発現ベクターを宿主細胞に導入して、 抗体発現細胞を作製した。 発現のための宿主細胞には、 dhfr欠損の CHO DG44 細胞 (IDEC Pharmaceuticals
Corporation) を無血清培地である EX-CELL325PF (JRH) に馴化した細胞株を用い た。 宿主細胞へのベクターの導入はエレク ト口ポレーシヨンにより実施した。 ェ レク ト口ポレーションは抗体発現べクタ一約 2 μ gを制限酵素 Asclで線状化し、
Bio- Rad electrophoreterをもちいて 350V、 500 ju Fの条件で、 4 X 106個の CH0細 胞に遺伝子を導入し、 96well culture plateに播種した。べクターの導入処理後、
G418を添加して培養を継続した。コ口ニーを確認した後、抗体発現株を選別した。 選択した CH0細胞株を EX- CELL325- PF培地 (JRH) (2raM glutamine, 100units/ml penicill in^ 100 μ g/ml streptomycin^ hypoxanthine and thymidine (HT)サプリ メント(1 : 100) (Invitrogen)を含む) で 5%C02条件下で培養した。 培養上清を Mabselect Protein A カラム (Amersham Pharmacia Biotech, Co. , Ltd. )に吸着後、 PBSで洗浄して、 20mMクェン酸- Na、 50mM NaCl (PH3. 4)バッファーで溶出した。 溶 出液は 50mM Phosphate- Na, pH7. 0にて中和した。 Mill i- Q水にて、 約 1. 5倍に希 釈して Conductivityを 4· Oms/cm以下に調製した。 次に、 Q- Sepharose (Hitrap Q HP) (Amersham Pharmacia Biotech, Co. , Ltd. )と、 SP- Sepharose (HiTrap SP FF) (Amersham Pharmacia Biotech, Co., Ltd. )を連結したカラムに、 サンプルをチヤ ージして吸着後、 20mMリン酸ナトリウム緩衝液 (pH5. 0) にて洗浄後、 1 X PBSバ ッファーにて溶出した。 調製された抗体溶液は、 孔径 0. 22 z mのメンブランフィ ルター MILLEX-GV (ミ リポア社製) でろ過滅菌した。 精製した抗体の濃度は 280nm の吸光度を測定し、 lmg/mLを 1. 4 0Dとして算出した。
組換え型の改変抗体を用いて、 UT7/TP0 アツセィ (実施例 5 ) における活性を 測定した。 4-49_IgGlに比べ、 IgG3311 と IgG3331は活性の増強が見られた (図 5 A)。 7_10_IgG4344uhmおよび 4- 49— IgG4344uhmは PEG_rHuMGDF と同等の活性を示 した。
表 3に各種改変抗体の活性をまとめた。 全てのァゴニス ト抗体に関して、 定常 領域改変による活性の増強が見られた。 7-10, 4-49に関しては、 IgGl と IgG4PE は同等の活性であつたが、 IgG4344uhm は IgG4PE に比べ高活性であった。 IgG4344uhraは、 IgG4PEのアッパーヒンジ部 7ァミノ酸配列中の C末側 4一 7位が IgG3 のアッパーヒンジ 1 2アミノ酸配列中の 4— 1 2位の配列に置き換わって いる (図 4 B参照)。 従って、 この部分が活性の増強に重要であると考えられる。
表 3
2-35 7-10 4-49 6-4-50 6-5-2
IgG1 - ++ ++ + +
IgG4PE NT ++ ++ NT NT
IgG3311 NT +++ +++ ++ ++
IgG3331 NT +++ +++ NT NT
IgG3344 NT +++ NT NT ++
IgG3344h1 NT ++ + NT NT NT
IgG4344 NT +++ NT NT NT
IgG4344h1 NT +++ NT . NT NT
IgG4344uh NT +++ NT NT NT
IgG4344uhm NT +++ +++ NT NT
+: EC50 1-1 OnM
++: EC50 0.1 -1nM
+++: EC50 0.01 -0.1 n
NT:試験せず
[実施例 1 1 ] ァゴニスト抗体によるシグナル伝達
TPOが受容体である C- Mpl に結合すると、 細胞内タンパク質のリン酸化が起こ る。 TPOによって活性化する主要な経路は、 Jak-STAT, Ras-MAPK, PI3K_Aktの 3 つが知られている。 ァゴニスト抗体による C- Mpl下流のリン酸化シグナル伝達の 解析を行った。 解析は、 リン酸化タンパク質特異的な抗体を用いたウェスタンブ ロット法で行った。 以下に使用した抗体を列記する。 抗 STAT5 (Cell Signaling 社製, Cat#9352) , 抗 phospho-STAT5 (Cell Signaling 社製, Cat#9351L) , 抗 JAK2 (Upstate社製, Cat#06- 255), 抗 phospho- JAK2 (Upstate社製, Cat#07- 606) , 抗 Erkl/2 (Cell Signaling社製, Cat#9272), 抗 phospho- Erkl/2 (Cel l Signal ing 社製, Cat#9271L) , 抗 Akt (Cel l Signal ing社製, Cat#9102) , 抗 phospho- Akt
(Cel l Signal ing社製, Cat#9101S) o
これら抗体を使用し、 以下の手順でァッセィを行った。
1) UT7/TP0細胞をサイ ト力イン非添加 IMDM培地で洗浄し、 6時間培養した。
2) 培養後、 細胞を l X 106cel ls/mLに調製し、 6-wel l プレートに 2mL/well で 播いた。
3) ゥヱルに、ァゴニスト抗体または陽性コントロールとして PEG- rHuMGDFを添 力 [1し、 細胞を刺激した。
4) 最短 5分〜最長 2時間の刺激時間の後に細胞を回収し、氷冷 PBSにて細胞を 洗浄した。
5) 遠心分離で細胞をペレッ トにし、 上清を除去後、 PhosphoSafe™ Extraction Reagent (Novagen社製, Cat#71296) でペレツトを溶解したのち、 再度遠心して、 上清 (細胞抽出液) を回収した。
6) 上記 5.の細胞抽出液を用いて、 ウェスタンブロット法でリン酸化タンパク 質を検出した。
結果を図 6に示す。 ァゴニス ト抗体 7-10G4344uhmおよび 4- 49G4344uhmによつ て、 TP0シグナルと同様の経路のリン酸化が見られた (図 6 A)。 抗体 6-5-2につ いては、 IgGlは Jak2, STAT5のリン酸化が観察されなかったが、 IgG3344は Jak2, STAT5のリン酸化が見られた (図 6 B)。
[実施例 1 2 ] ヒ ト血小板に対するプライミング作用検討
TP0はそれ自体では血小板凝集を起こさないが、 ADP等の凝集惹起物質による血 小板凝集を促進する作用 (プライミング作用) がある。 ァゴニス ト抗体によるヒ ト血小板プライミング作用を以下の手順で調べた。
1) 抗凝固剤として、 3. l/。(w/v)クェン酸三ナトリゥムを 1 0分の 1容量加えた、 健常人の末梢血を遠心分離(140g, 15min)し、多血小板血漿(Platelet Rich Plasma、 以下 PRP) を調製した。
2) さらに遠心分離(2500g, 15min) して血球成分を沈殿させ、血漿を採取した。
3) PRP に含まれる血小板数を測定し、 血漿を用いて血小板数を 3 Χ 105/ ι ί に あわせた。
4) 上記 3.で調製した血小板浮遊液 100 /z Lに検体を加え、攪拌しながら 3分間 ィンキュベーションした。
5) 30 μ Μ ADP (SIGMA社製) を 5 W L添加し、 血小板凝集による濁度の低下を測 定した。 測定には MCメディカル社製, Hematracer801を用いた。
結果を図 7に示す。 ADP 添加条件下で、 ァゴニス ト抗体によるプライミング作 用が観察された。 抗体単独 (ADPなし) では、 血小板凝集は起こらなかった。
[実施例 1 3 ] 力二クイザル投与
ァゴニス ト抗体を力二クイザルに投与し、 血小板数の変動を解析した。 使用個 体の TP0に対する反応性を確かめるため、初日 (DayO)に PEG- rHuMGDF (l0 ^ g/kg) を静脈内投与し 3週間経過を観察した後、 初回投与後 2 1 日目に精製ァゴニスト 抗体 7-10G4PE (個体 A) 7-10G3344hl (個体 B )を用量 lmg/kgで静脈内投与した。 結果を図 8に示す。 Α, Β両方の個体で PEG-rHuMGDFによる一過性の血小板上昇 が見られた。 個体 Bではァゴニス ト抗体 7-10G3344hl投与後に、 血小板数の上昇 が見られた。 また、 抗体投与による重篤な毒性は見られなかった。
[実施例 1 4 ] ヒ ト臍帯血移植モデルにおける作用検討
実施例 10で作製したァゴニスト抗体が、ヒ ト臍帯血移植モデルにおけるヒ ト造 血系の構築を促進することを確認するため、 以下の手順で実験を行った。
• NOG (N0D/SCID/IL2- 7 R K0) マウス (実験動物中央研究所 (日本国神奈川県川 崎巿) より購入) に移植前処置として放射線照射 (2 グレイ) を行い、 ヒ ト臍帯 血由来 CD34+細胞を 1, 000ないし 10, 000個、 尾静脈より注入移植した。
'移植後一日目に最初の被検物質投与を行い、その後、週に一回投与を実施した。 群構成と各々の被検物質および投与量は下記のとおりである。 匹数は各群 6匹、 投与は腹腔内投与で行った。 また、 毎週の投与時に体重測定を行った。
<群構成, 被検物質, 投与量 >
I: 移植数 10, 000, PBS (コントロール) 投与
II: 移植数 1, 000, PBS投与
III: 移植数 10, 000, 抗体 7- 10G4344uhm投与, 100 g/head/week
IV: 移植数 1, 000, 抗体 7-10G4344uhm投与, 100 μ g/head/week
V: 移植数 10, 000, TPO (PEG-rHuMGDF)投与, 5 μ g/head/week
VI: 移植数 1, 000, TPO (PEG-rHuMGDF)投与, 5 μ g/head/week
•移植前 1 日と移植後 2、 4、 6週に末梢血の解析を行った。 末梢血解析の手順 は下記のとおりである。
ぐ末梢血解析手順 >
• キヤビラリ一を用いて、 マウス眼窩静脈より末梢血 (約 70 し) を採取した。
• KX-21 自動血球解析システム (Sysmex社製) を用いて血球数を測定した。
• ヒ ト血小板および白血球のキメラ率を調べるため、 以下の Aおよび Bに挙げた 各抗体の組み合わせで染色し、 FACS Cal ibur で解析した。 A (血小板解析用) :
P E標識—抗ヒ ト CD41抗体 (Dako社製 R7058) + F I T C標識ー抗マウス CD41 抗体 (BD Pharmingen 社製 #553848)、 B (白血球解析用) : A P C標識—抗ヒ ト CD45抗体(ベックマン'コールター社製 IM2473) + F I T C標識—抗マウス CD45 抗体 (BD Pharmingen 社製 #553080)。 また、 解析の際に定量用の蛍光ビーズ (フ ローカウントビーズ) を加え、 一定量の血液を解析できるようにした。
•血小板 · 白血球ともに、 ヒ ト細胞数 (ヒ ト細胞数 +マウス細胞数) X 1 0 〇 (%)、 という式でキメラ率を算出した。末梢血中の全血小板数とキメラ率を乗じ ることにより、 ヒ ト血小板数を算出した。
• 6週目にマウスを屠殺し、 大腿骨から骨髄細胞を採取した。 それを用いてコロ ニーアツセィを行い、 ヒ トの巨核球系(MK)および赤血球系 (E)、 顆粒球 'マクロ ファージ系(GM)の前駆細胞の数を測定した。 巨核球系前駆細胞 (CFU- Mk) を検出 するコロニーアツセィは、 培養中に TPO (50ng/mL) と SCF (lOOng/mL)を加えて行 つた。 37°C、 5%C02条件下で 1 2日間の培養を行った。 コロニーの検出は実施例 6 と同様に抗ヒ ト CD41抗体を用いて行った。 赤血球系、 顆粒球 ·マクロファージ系 の前駆細胞を検出するコロニーアツセィは、 Methocult system ( Stem Cell Technologies 社製) を用いて、 培養中に EP0 (4IU/raL) , SCF (100ng/mL) , IL-3 (20ng/mL) , GM- CSF (10ng/mL)を加えて行った。 37°C, 5%C02, 5%02条件下で 1 4 日間の培養を行った。 培養後、 顕微鏡下でコロニーのカウントを行った。
図 9A、 9B及び 9Cに本実験の結果を図示した。
移植後 6週の時点において、 抗体投与群では、 他群に比べ、 末梢血ヒ ト血小板 数が有意に高かった (図 9A)。 これにより、 ァゴニス ト抗体 7- 10G4344uhmは臍帯 血移植時の血小板回復を促進することが示唆された。 さらに抗体投与群では、 骨 髄中のヒ ト赤血球系および顆粒球 · マクロファージ系前駆細胞の数が有意に高か つた (図 9B)。 またマウス白血球に対するヒ ト白血球の割を示す CD 4 5キメラ率 においても有意に高かったことから、 抗体投与群においてヒ ト白血球が増加して いることがわかる (図 9C)。 このことは 7- 10G4344uhmが巨核球系のみならず、 他 系列の細胞の生着も促進できる可能性を示唆している。
これらの知見から、 ァゴニスト抗体は、 血球が巨核球系 ·赤血球系 ·顆粒球 · マクロファージ系に分かれるより上流の細胞に作用していることが示唆された。
Mpl が造血幹細胞に発現しているという知見とあわせて考えると、 ァゴニスト抗 体は造血幹細胞の増殖を促進している可能性が高い。
ちなみに本実験では TP0投与群では同様の効果が見られなかった。 これに対し ては、 TP0がマウス造血細胞にも作用するため、 TP0投与群では骨髄中でヒ ト細胞 とマウス細胞の競合が起こり、 純粋にヒ ト細胞に対する作用を観察できていない 可能性を考慮しなければならない。 本ァゴニスト抗体は、 ヒ ト Mplにしか作用し ないことを特徴とすることから、 Mpl を介したシグナルがヒ ト臍帯血造血幹細胞 の増幅に効果があることを、 in vivoで初めて明らかにすることができた。
[実施例 1 5 ] ヒンジ改変抗体の抗原性解析
本発明のァゴニスト抗体はヒンジ部分の改変によって活性を増強していること を特徴としているが、 改変による抗原性の上昇が懸念された。 そこで、 ヒンジ改 変体である 7-10G4344uhmのアミノ酸配列をもとに、コンピュータ上での抗原性予 測を実施した。
体内に投与された外来タンパク質は樹状細胞、 マクロファージ等の抗原提示細 胞(APC)に取り込まれ、分解された後、ぺプチドが主要組織適合抗原複合体(MHC) クラス II分子 (ヒ トの場合 HLA class II, HLA-DR, DQ, DP) によって抗原提示 される。 APCによって提示されたペプチドは T細胞受容体 (TCR) によって認識さ れ、 T細胞を活性化させる。 活性化された T細胞 (ヘルパー T細胞) は同抗原を 認識する抗体を発現する B細胞を活性化し、 外来タンパク質に対する抗体が産生 される。 この機構の中で、ペプチドと MHCクラス II分子との親和性が抗原性を規 定する大きな要因となっている。 ヒ トの MHCクラス II分子には多くの型 (多型) があり、同じべプチドであってもクラス II分子の型によって親和性は大きく異な ることが知られている。
そこで、 7- 10G4344uhm と IgG4PEの定常領域を持つ別のヒ ト抗体のアミノ酸配 列を、 様々な型のヒ ト HLA-DR, DQ, DP分子との親和性を解析した (HLA分子のデ ータベースおよび、 解析のアルゴリズムは AlgoNomics社より提供された)。
その結果、 ヒンジ改変による新たなェピトープ出現はなかった。 本改変抗体を 医薬品として利用する際に抗原性の問題はないことが示唆された。
[実施例 1 6 ] ヒ ト Mpl トランスジエニックマウスへの抗体投与
本発明の抗体はマウス Mplには交叉しないため、 薬効を測定するため、 外来遺 伝子としてヒ ト Mplを導入したトランスジヱニック (Tg) マウスを作製し、 抗体 を投与する実験を行った。 まず、 マウス Mplのプロモータ領域 5. 5kbを PCRで増 幅し、 pBluescriptプラスミ ドベクターにクローニングした。 次に、 ヒ ト Mpl の 翻訳領域および 3 ' 側非翻訳領域を PCRで増幅し、 マウス Mpl プロモーター下流 に連結した。 このコンストラク トを C57BL/6マウス受精卵に注入し、 受精卵を仮 親に戻し出産させた。 生後 3週経過した時点で尻尾からゲノム DNAを抽出し、 PCR で Tgマウスを選別した。 得られた Tgマウス個体を C57BL/6と交配し、 系統化し た。 骨髄でのヒ ト Mplの発現解析を行った。
その結果、 複数のヒ ト Mplを持つ Tgマウス系統が得られた。 そのうち、 39L系 統の骨髄ではヒ ト Mplが発現していることが RT-PCRで確認された。 39L系統のマ ウスを用いて抗体の薬効を確認した。
ァゴニスト抗体 7- 10G4344uhmを単回投与 (3又は 10 g/mL) し、 末梢血中の血 小板数の推移を、 KX-21 自動血球解析装置を用いて調べた。 末梢血の採取は眼窩 静脈より行い、 毎週測定を行った。 陽性コントロールとして TPO (PEG-rHu GDF) を用いた。 群構成は以下のとおりである (各群 6匹)。
I: 7- 10G4344uhm 10 / g投与群
II: 7- 10G4344uhm 3 /i g投与群
III : TPO 3 // g投与群
IV: PBS投与群
VI: 野生型マウス 7-10G4344uhm 10 g投与群
結果を図 10に示す。 抗体投与群、 TP0投与群で血小板が増加した。 TP0投与群 は投与後 2週間でほぼベースラインに戻った。 これに対して抗体投与群は投与後 一ヶ月を経過しても血小板数は上昇したままであった。 この結果から、 ァゴニス ト抗体は血中で非常に安定であり、 単回投与で長期にわたって血小板造血を促進 できることが示唆された。 このことから、 特にァゴニス ト抗体は慢性血小板減少 症の治療に適していることが示唆された。
[実施例 1 7 ] 7- 10G4344uhm軽鎖変異体の活性評価
ァゴニス ト抗体 7-10 の軽鎖可変領域(7- 10VL)のフレームワーク領域に変異を 導入し、 結合活性及ぴァゴ二スト活性に与える影響を調べた。 軽鎖の変異体はァ ゴ-ス ト抗体 4-49の軽鎖 (V104L)、 ァゴニス ト 6- 4- 50の軽鎖のアミノ酸を 1つ 置換したもの (A43V, G100Q) の 3種である。 これら変異軽鎖と 7 _ 10G4344uhm重 鎖を組み合わせた抗体を作製したところ、 全て、 結合活性、 ァゴニス ト活性とも にオリジナルの 7-10G4344uhmと同等であった。 一方で、 ァゴニス ト抗体 7-10の 軽鎖可変領域の相補性決定領域 (CDR 領域) に変異(Y94F)を導入した場合、 結合 活性、 ァゴニスト活性ともに 10分の 1程度に低下した。 この結果から軽鎖ァミノ 酸配列には、 ある程度の自由度があることが示された。
各変異体の軽鎖ァミノ酸配列及び 7- 10VLのァミノ酸配列は、以下のとおりであ る。 なお、 変異部は太字と下線で示した。
7-10VL (配列番号 3 ) :
AIQLTQSPSSLSASVGDRV LTISSLQPEDFATYYCQQFNSYPLTFGGGTKVEIK
7- 10VL— V104L (4 - 49VL ;配列番号 85) :
AIQLTQSPSSLSASVGDRVTITCRASQGISSAL LTISSLQPEDFATYYCQQFNSYPLTFGGGTKLEIK
7- 10VL— G100Q (6-4-50VL置換体 1;配列番号 86)
AIQLTQSPSSLSASVGDRVTITCRASQGISSALAW^
LTISSLQPEDFATYYCQQFNSYPLTFGQGTKVEIK
7-10VL_A43V (6-4- 50VL置換体 2;配列番号 87)
AIQLTQSPSSLSASVGDRVTITCRASQGISSALAW^
LTISSLQPEDFATYYCQQFNSYPLTFGGGTKVEIK
7-10VL_Y94F (CDR置換体;配列番号 88) :
AIQLTQSPSSLSASVGDRVTITCRASQGISSALAW LTISSLQPEDFATYYCQQFNSFPLTFGGGTKVEIK
結合活性解析:各抗体の濃度を 1, 0. 1, 0. 01 μ g/raLに調製し、 FM3A_hMpl細胞を 用いたフローサイ トメ トリーを行った。 実験方法は実施例 4に記載の方法で行つ た。 コントロールに抗 DNP (ジニトロフエノール) 抗体を用いた。 軽鎖変異抗体 は 7- 10G4344uhmと同等の結合活性を示した (図 11)。
ァゴニスト活性解析: 実施例 5に記載の方法で、 UT- 7/TP0 細胞を用いた細胞 増殖アツセィを行った。軽鎖変異抗体は 7- 10G4344uhmと同等のァゴニス ト活性を 示した (図 12)。
[実施例 1 8 ] 7-10G2322uhm2の活性評価
実施例 1 0で記載した方法と同様の方法で、ァゴニスト抗体 7- 10の重鎖定常領 域を G2322uhm2 にした 7_10G2322uhm2 抗体を作製し、 実施例 5に記載の方法で UT- 7/TP0 細胞を用いた細胞増殖アツセィを行なった。 その結果、 7- 10G2322uhm2 は、 7- 10G4344uhmおよび Peg-rhMGDF とほぼ同等のァゴニスト活性を持っている ことが示された (図 1 3 )。 従って、 ヒンジ領域以外の重鎖定常領域に関し、 ァゴ 二ス ト活性に変化を与えず、 IgG2と IgG4を変換できることが示された。
[実施例 1 9 ] ヒ ト トロンボポェチン受容体(c-Mpl)に対するァゴニス ト抗体の 重鎖及び軽鎖の組合せ
実施例 1 7で示されたように、 軽鎖の可変領域のフレームワーク領域を構成す るアミノ酸を 1つ置換したものにおいても結合活性、 ァゴニスト活性に変化がな いことを考慮すると、 ァゴニスト抗体 7-10 (7- 10VL)の軽鎖可変領域のフレームヮ ーク領域に変異を有し、 重鎖定常領域を G2322uhm2にした抗体も作製することが できる。ァゴニス ト抗体 7-10の軽鎖可変領域のフレームワーク領域の望ましい変 異としては、実施例 1 7で示す 7-10VL_V104L (4-49VL ;配列番号 85)、7-10VL_G100Q (6-4-50VL置換体 1;配列番号 86)、及び 7- 10VL_A43V (6-4-50VL置換体 2;配列番 号 87) の軽鎖可変領域置換 が挙げられる。
以上を考慮すると、 ほぼ同等の結合活性、 ァゴニス ト活性を有する重鎖定常領 域のサブクラス及び軽鎖可変領域を入れ替えた、 さまざまなバリエーションのヒ ト トロンボポェチン受容体(c-Mpl)に対するァゴニスト抗体が作製可能なことが 示唆される。 産業上の利用可能性 ,
本発明は、 長半減期、 低抗原性といった医薬品として望ましい性質を有する、 また、 プライマリーヒ ト細胞に作用する新規な抗ヒ ト c - Mplァゴニス ト抗体を提 供し、 この抗体は、 血小板増多剤や血小板減少症治療剤として使用可能である。 本発明により、全長抗体でヒ ト トロンボポェチン受容体 (c- Mpl)を活性化しうる ヒ ト c- Mplに対するァゴニスト抗体が提供される。 このァゴニスト抗体は、 種々 の血小板減少症に対する治療薬として使用可能であり、 医療産業上多大な寄与が 期待される。
本明細書で引用した全ての刊行物、 特許および特許出願をそのまま参考として 本明細書にとり入れるものとする。 配列表フリーテキス ト
配列番号 11:変異ヒンジドメイン UH2G3uhm
配列番号 12〜16: プライマー
配列番号 18〜22: プライマー
配列番号 39〜54: プライマー
配列番号 57〜73: プライマー
配列番号 74: G3344hl
配列番号 75: G3344
配列番号 76: G4344
配列番号 77: G4344hl - 配列番号 78: G4344uh
配列番号 79: G4344uhm
配列番号 80: G4PE
配列番号 81: 7-10G4344uhm H鎖
配列番号 82: 7-10G4344uhm H鎖
配列番号 83: 7-10G4344uhm L鎖
配列番号 84: 7-10G4344uhm L鎖
配列番号 85: 7-10VL_V104L (変異体)
配列番号 86: 7-10VL_G100Q (変異体)
配列番号 87: 7 - 10VL— A43V (変異体)
配列番号 95 :変異重鎖
配列番号 96: IgG2322uhm2定常領域
配列番号 97:変異 IgG2重鎖定常領域 配列番号 98:変異 IgG2重鎖定常領域をコードする DNA

Claims

請求の範囲
1 . 抗体の定常領域が、 以下の(1)〜(3) :
(1) ヒ ト抗体の重鎖定常領域及び軽鎖定常領域のアミノ酸配列、
(2) ヒ ト抗体サブクラス間で重鎖定常領域のドメインを入れ替えた重鎖定常領域 のアミノ酸配列、 及び、 ヒ ト抗体軽鎖定常領域のアミノ酸配列、 或いは
(3) 前記(1)又は(2)のアミノ酸配列において 1若しくは数個のアミノ酸残基が欠 失、 置換、 付加又は挿入されたアミノ酸配列、
のいずれかのアミノ酸配列を有し、 且つ抗体の可変領域がヒ ト トロンボポェチン 受容体に結合し該受容体を活性化する能力を有する、 並びに、 以下の(a)及び/又 は(b) :
(a) ヒ ト臍帯血 CD34 +細胞を用いた CFU-MK コロニー形成測定法において、 10, OOOng/mL以下の濃度でコロニー形成を誘導すること、
(b) UT7/TP0細胞を用いた増殖能測定法において、 最大活性が、 その N末端がぺ グ(PEG)化された配列番号 1のァミノ酸配列からなる下記の構造:
PEG-NH-SPAPPACDLRVLSKLLRDSHVLHSRLSQCPEVHPLPTPVLLPAVDFSLGEWKTQMEETKAQDILG
KVRFLMLVGGSTLCVRRAPPTTAVPS-COOH
を有する PEG- rHuMGDFの 50%以上であり、 且つ 50%有効濃度 (EC50) が ΙΟΟηΜ以 下であること、
の性質を有する、ヒ ト トロンボポェチン受容体(c-MPl)に対するァゴニス ト抗体で あって、 以下の(1)〜(2) :
(1) 配列番号 2で示されるアミノ酸配列を含む重鎖可変領域及び配列番号 3で示 されるアミノ酸配列を含む軽鎖可変領域、
(2) 配列番号 2で示されるアミノ酸配列を含む重鎖可変領域、 及び配列番号 3で 示されるアミノ酸配列においてフレームワーク領域に 1若しくは数個のアミノ酸 残基が欠失、 置換、 付加又は挿入されたアミノ酸配列を含む軽鎖可変領域、 からなる群から選択される重鎖可変領域及び軽鎖可変領域を有し、
重鎖定常領域のミ ドルヒンジ部以降の C末端側が、ヒ トイムノグロブリン G2のァ ミノ酸配列において、 Kabat EU番号付けにおける 331位プロリンがセリンに置換 されたアミノ酸配列を有する重鎖を含む抗体。
2 . 抗体の定常領域が、 以下の(1)〜(3) :
(1) ヒ ト抗体の重鎖定常領域及び軽鎖定常領域のアミノ酸配列、
(2) ヒ ト抗体サブクラス間で重鎖定常領域のドメインを入れ替えた重鎖定常領域 のアミノ酸配列、 及び、 ヒ ト抗体軽鎖定常領域のアミノ酸配列、 或いは
(3) 前記(1)又は(2)のアミノ酸配列において 1若しくは数個のアミノ酸残基が欠 失、 置換、 付加又は挿入されたアミノ酸配列、
のいずれかのアミノ酸配列を有し、 且つ抗体の可変領域がヒ ト トロンボポェチン 受容体に結合し該受容体を活性化する能力を有する、 並びに、 以下の(a)及び/又 は(b) :
(a) ヒ ト臍帯血 CD34 +細胞を用いた CFU- MK コロニー形成測定法において、 10, 000ng/mL以下の濃度でコロニー形成を誘導すること、
(b) UT7/TP0細胞を用いた増殖能測定法において、 最大活性が、 その N末端がぺ グ(PEG)ィヒされた配列番号 1のアミノ酸配列からなる下記の構造:
PEG-NH-SPAPPACDLRVLSKLLRDSHVLHSRLSQCPEVHPLPTPVLLPAVDFSLGEWKTQMEETKAQDILG
KVRFLMLVGGSTLCVRRAPPTTAVPS-COOH
を有する PEG- rHuMGDFの 50%以上であり、 且つ 50%有効濃度 (EC50) が ΙΟΟηΜ以 下であること、
の性質を有する、ヒ ト トロンボポェチン受容体(c-Mpl)に対するァゴニス ト抗体で あって、 以下の (a) 〜 (d) :
(a) 配列番号 9 5のアミノ酸配列である重鎖、 及び配列番号 3のアミノ酸配列を 含む軽鎖
(b) 配列番号 9 5のアミノ酸配列である重鎖、 及び配列番号 3のアミノ酸配列に おいてフレームワーク領域に 1若しくは数個のアミノ酸残基が欠失、 置換、 付加 又は挿入されたアミノ酸配列を含む軽鎖
(c) 配列番号 9 6のアミノ酸配列で示されるアミノ酸を含む重鎖定常領域、 及び 配列番号 3のアミノ酸配列を含む軽鎖 (d) 配列番号 9 6のアミノ酸配列で示されるアミノ酸を含む重鎖定常領域、 及び 配列番号 3のァミノ酸配列においてフレームワーク領域に 1若しくは数個のアミ ノ酸残基が欠失、 置換、 付加又は挿入されたアミノ酸配列を含む軽鎖
からなる群から選択される重鎖及び軽鎖を有する抗体。
3 . ヒ ト c-Mplに対するァゴニスト抗体がヒ ト抗体である、 請求項 1又は 2 に記載の抗体。
4 . 請求項 1〜3のいずれか 1項に記載の抗体を有効成分として含む医薬組 成物。
5 . 請求項 1〜3のいずれか 1項に記載の抗体を有効成分として含む血小板 増多剤。
6 . 骨髄移植又は臍帯血移植時の血小板回復促進用である、 請求項 5に記載 の血小板増多剤。
7 . 請求項 1〜 3のいずれか 1項に記載の抗体を有効成分として含む血小板 減少症治療剤。
8 . 血小板減少症が、 以下の(1)〜(6) :
(1) 特発性血小板減少性紫斑病 (ITP)、
(2) 癌化学療法後の血小板減少症、
(3) 再生不良性貧血、
(4) 骨髄異形性症候群 (MDS) ,
(5) 肝疾患にともなう血小板減少症、 及び
(6) 骨髄移植もしくは臍帯血移植後の血小板減少症、
からなる群から選択される疾患のいずれか 1つである、 請求項 7に記載の血小板 減少症治療剤。
9 . 以下の(1)〜(4) :
(1) 配列番号 9 5のアミノ酸配列である重鎖と、 配列番号 3のアミノ酸配列を含 む軽鎖をコードする塩基配列、
(2) 配列番号 9 5のァミノ酸配列である重鎖と、 配列番号 3のァミノ酸配列にお いてフレームワーク領域に 1若しくは数個のアミノ酸残基が欠失、 置換、 付加又 は挿入されたアミノ酸配列を含む軽鎖をコードする塩基配列、 (3) 配列番号 9 6のアミノ酸配列を含む重鎖と、 配列番号 3のアミノ酸配列を含 む軽鎖をコードする塩基配列、
(4) 配列番号 9 6のアミノ酸配列を含む重鎖と、 配列番号 3のアミノ酸配列にお いてフレームワーク領域に 1若しくは数個のアミノ酸残基が欠失、 置換、 付加又 は挿入されたアミノ酸配列を含む軽鎖をコードする塩基配列、
からなる群から選択される、 重鎖をコードする塩基配列を含む DNA及び軽鎖をコ ードする塩基配列を含む DNAと、 それらの DNAの発現を制御する塩基配列を含む 1又は複数の DNAとを保持する哺乳動物細胞を作製し、 該哺乳動物細胞を培養し た培養液から、 該重鎖及び軽鎖からなる抗体をコードする DNAの発現産物を単離 精製することを含む、 ヒ ト C- Mplに対するァゴニスト抗体の製造方法。
1 0 . 以下の(1)〜(2) :
(1) 配列番号 9 5で示されるアミノ酸配列、
(2) 配列番号 9 6で示されるアミノ酸配列、 及び
からなる群から選択されるアミノ酸配列をコードする塩基配列を含む DNA。
1 1 . 配列番号 2で示されるアミノ酸配列を含む重鎖をコードする DNAであ つて、 抗体重鎖のミ ドルヒンジ部以降の C 末端側が、 ヒ トイムノグロブリン G2 のァミノ酸配列或いは該 G2のァミノ酸配列において Kabat EU番号付けにおける 331位プロリンがセリン置換されたアミノ酸配列を有する DNA。
1 2 . 請求項 1〜3のいずれか 1項に記載の抗体を有効成分として含む造血 幹細胞移植後の血球回復促進用である血球増多剤。
PCT/JP2008/068003 2007-09-26 2008-09-26 ヒトトロンボポエチン受容体に対するアゴニスト抗体 WO2009041734A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-249687 2007-09-26
JP2007249687 2007-09-26

Publications (1)

Publication Number Publication Date
WO2009041734A1 true WO2009041734A1 (ja) 2009-04-02

Family

ID=40511603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/068003 WO2009041734A1 (ja) 2007-09-26 2008-09-26 ヒトトロンボポエチン受容体に対するアゴニスト抗体

Country Status (1)

Country Link
WO (1) WO2009041734A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037158A1 (ja) * 2009-09-24 2011-03-31 中外製薬株式会社 抗体定常領域改変体
US9096651B2 (en) 2007-09-26 2015-08-04 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US9228017B2 (en) 2009-03-19 2016-01-05 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
US9670269B2 (en) 2006-03-31 2017-06-06 Chugai Seiyaku Kabushiki Kaisha Methods of modifying antibodies for purification of bispecific antibodies
US9688762B2 (en) 2007-09-26 2017-06-27 Chugai Sciyaku Kabushiki Kaisha Modified antibody constant region
US9868948B2 (en) 2008-04-11 2018-01-16 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
EP3332798A1 (en) * 2010-08-31 2018-06-13 Generon (Shanghai) Corporation Ltd. Use of interleukin-22 in treating viral hepatitis
US10011858B2 (en) 2005-03-31 2018-07-03 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
US10253091B2 (en) 2009-03-19 2019-04-09 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
US10435458B2 (en) 2010-03-04 2019-10-08 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variants with reduced Fcgammar binding
US10543169B2 (en) 2013-11-07 2020-01-28 Generon (Shanghai) Corporation Ltd. Use of IL-22 dimer in manufacture of a medicament for intravenous administration
US10662245B2 (en) 2008-09-26 2020-05-26 Chugai Seiyaku Kabushiki Kaisha Methods of reducing IL-6 activity for disease treatment
US10774148B2 (en) 2015-02-27 2020-09-15 Chugai Seiyaku Kabushiki Kaisha Composition for treating IL-6-related diseases
US10786551B2 (en) 2007-08-06 2020-09-29 Generon (Shanghai) Corporation Ltd. Use of interleukin-22 in the treatment of fatty liver disease
US11046784B2 (en) 2006-03-31 2021-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
US11124576B2 (en) 2013-09-27 2021-09-21 Chungai Seiyaku Kabushiki Kaisha Method for producing polypeptide heteromultimer
US11142587B2 (en) 2015-04-01 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide hetero-oligomer
US11510966B2 (en) 2016-04-15 2022-11-29 Evive Biotechnology (Shanghai) Ltd Use of IL-22 in treating necrotizing enterocolitis
US11649262B2 (en) 2015-12-28 2023-05-16 Chugai Seiyaku Kabushiki Kaisha Method for promoting efficiency of purification of Fc region-containing polypeptide
US11851486B2 (en) 2017-05-02 2023-12-26 National Center Of Neurology And Psychiatry Method for predicting and evaluating therapeutic effect in diseases related to IL-6 and neutrophils
US11891434B2 (en) 2010-11-30 2024-02-06 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to plurality of antigen molecules repeatedly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999003495A1 (en) * 1997-07-17 1999-01-28 Beth Israel Deaconess Medical Center, Inc. Agonist murine monoclonal antibody as a stimulant for megakaryocytopoiesis
WO2005063981A1 (ja) * 2003-12-25 2005-07-14 Kirin Beer Kabushiki Kaisha 抗cd40抗体の変異体
WO2006075668A1 (ja) * 2005-01-12 2006-07-20 Kirin Beer Kabushiki Kaisha 安定化されたヒトIgG2およびIgG3抗体
WO2007108559A1 (ja) * 2006-03-23 2007-09-27 Kirin Pharma Kabushiki Kaisha ヒトトロンボポエチン受容体に対するアゴニスト抗体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999003495A1 (en) * 1997-07-17 1999-01-28 Beth Israel Deaconess Medical Center, Inc. Agonist murine monoclonal antibody as a stimulant for megakaryocytopoiesis
WO2005063981A1 (ja) * 2003-12-25 2005-07-14 Kirin Beer Kabushiki Kaisha 抗cd40抗体の変異体
WO2006075668A1 (ja) * 2005-01-12 2006-07-20 Kirin Beer Kabushiki Kaisha 安定化されたヒトIgG2およびIgG3抗体
WO2007108559A1 (ja) * 2006-03-23 2007-09-27 Kirin Pharma Kabushiki Kaisha ヒトトロンボポエチン受容体に対するアゴニスト抗体

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DENG B. ET AL.: "An agonist murine monoclonal antibody to the human c-Mpl receptor stimulates megakaryocytopoiesis.", BLOOD, vol. 92, no. 6, 1998, pages 1981 - 1988 *
HIROSHI MIYAZAKI: "Thrombopoietin no Shorai Tenbo", JAPANESE JOURNAL OF TRANSFUSION MEDICINE, vol. 46, no. 3, 2000, pages 311 - 316 *
KAI M. ET AL.: "Switching constant domains enhances agonist activities of antibodies to a thrombopoietin receptor.", NATURE BIOTECHNOLOGY, vol. 26, no. 2, February 2008 (2008-02-01), pages 209 - 211 *
KAZUHIRO MOTOKI ET AL.: "Hito Senshokutai Donyu Mouse o Mochiita Hito Kotai Sakusei to sono Rinsho Oyo", IGAKU NO AYUMI, vol. 211, no. 7, 2004, pages 733 - 736 *
MASAYUKI KAI ET AL.: "Teijo Ryoiki Subclass no Henkan ni yoru Ko Thrombopoietin Juyotai Agonist Kotai no Kassei Kojo", BIO INDUSTRY, vol. 25, no. 7, July 2008 (2008-07-01), pages 83 - 91 *
MURONE M. ET AL.: "Hematopoietic deficiencies in c-mpl and TPO knockout mice.", STEM CELLS, vol. 16, 1998, pages 1 - 6 *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11168344B2 (en) 2005-03-31 2021-11-09 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
US10011858B2 (en) 2005-03-31 2018-07-03 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
US9670269B2 (en) 2006-03-31 2017-06-06 Chugai Seiyaku Kabushiki Kaisha Methods of modifying antibodies for purification of bispecific antibodies
US11046784B2 (en) 2006-03-31 2021-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
US10934344B2 (en) 2006-03-31 2021-03-02 Chugai Seiyaku Kabushiki Kaisha Methods of modifying antibodies for purification of bispecific antibodies
US10786551B2 (en) 2007-08-06 2020-09-29 Generon (Shanghai) Corporation Ltd. Use of interleukin-22 in the treatment of fatty liver disease
US9096651B2 (en) 2007-09-26 2015-08-04 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US11332533B2 (en) 2007-09-26 2022-05-17 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant region
US11248053B2 (en) 2007-09-26 2022-02-15 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US9688762B2 (en) 2007-09-26 2017-06-27 Chugai Sciyaku Kabushiki Kaisha Modified antibody constant region
US9828429B2 (en) 2007-09-26 2017-11-28 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US9890377B2 (en) 2008-04-11 2018-02-13 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US9868948B2 (en) 2008-04-11 2018-01-16 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US11371039B2 (en) 2008-04-11 2022-06-28 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US11359194B2 (en) 2008-04-11 2022-06-14 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding two or more antigen molecules repeatedly
US10472623B2 (en) 2008-04-11 2019-11-12 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding two or more antigen molecules repeatedly
US10662245B2 (en) 2008-09-26 2020-05-26 Chugai Seiyaku Kabushiki Kaisha Methods of reducing IL-6 activity for disease treatment
US9228017B2 (en) 2009-03-19 2016-01-05 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
US10253091B2 (en) 2009-03-19 2019-04-09 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
US10066018B2 (en) 2009-03-19 2018-09-04 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
WO2011037158A1 (ja) * 2009-09-24 2011-03-31 中外製薬株式会社 抗体定常領域改変体
US10150808B2 (en) 2009-09-24 2018-12-11 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant regions
JP5837821B2 (ja) * 2009-09-24 2015-12-24 中外製薬株式会社 抗体定常領域改変体
US10435458B2 (en) 2010-03-04 2019-10-08 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variants with reduced Fcgammar binding
EP3332798A1 (en) * 2010-08-31 2018-06-13 Generon (Shanghai) Corporation Ltd. Use of interleukin-22 in treating viral hepatitis
US11891434B2 (en) 2010-11-30 2024-02-06 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to plurality of antigen molecules repeatedly
US11124576B2 (en) 2013-09-27 2021-09-21 Chungai Seiyaku Kabushiki Kaisha Method for producing polypeptide heteromultimer
US10543169B2 (en) 2013-11-07 2020-01-28 Generon (Shanghai) Corporation Ltd. Use of IL-22 dimer in manufacture of a medicament for intravenous administration
US11654104B2 (en) 2013-11-07 2023-05-23 Evive Biotechnology (Shanghai) Ltd Use of IL-22 dimer in manufacture of a medicament for intravenous administration
US10774148B2 (en) 2015-02-27 2020-09-15 Chugai Seiyaku Kabushiki Kaisha Composition for treating IL-6-related diseases
US11142587B2 (en) 2015-04-01 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide hetero-oligomer
US11649262B2 (en) 2015-12-28 2023-05-16 Chugai Seiyaku Kabushiki Kaisha Method for promoting efficiency of purification of Fc region-containing polypeptide
US11510966B2 (en) 2016-04-15 2022-11-29 Evive Biotechnology (Shanghai) Ltd Use of IL-22 in treating necrotizing enterocolitis
US11851486B2 (en) 2017-05-02 2023-12-26 National Center Of Neurology And Psychiatry Method for predicting and evaluating therapeutic effect in diseases related to IL-6 and neutrophils

Similar Documents

Publication Publication Date Title
JP4294082B2 (ja) ヒトトロンボポエチン受容体に対するアゴニスト抗体
WO2009041734A1 (ja) ヒトトロンボポエチン受容体に対するアゴニスト抗体
JP7280828B2 (ja) Bcmaを標的とする抗体およびその使用
US7524498B2 (en) Human immunomodulatory monoclonal antibodies for the treatment of cancer
JP3947570B2 (ja) 変異した不活化IgG2ドメインおよびこれを組み込んだ抗CD3抗体
JP5142998B2 (ja) ヒト抗b7rp1中和抗体
TWI289668B (en) Therapeutic human anti-IL-1R1 monoclonal antibody
CN109912717B (zh) 结合cd40的抗体及其用途
US20080199463A1 (en) Method for treating multiple myeloma
WO2001053354A2 (en) Methods for treating tumors using a fusion protein comprising il-2- polypeptides and p185-specific binding molecules
CN111808192B (zh) 结合lag3的抗体及其用途
JP7093794B2 (ja) 免疫関連障害のための抗体-サイトカイングラフト化タンパク質及び使用方法
JP2022522709A (ja) Cd40に結合する抗体およびその使用
CN114369161A (zh) Mica抗体及其应用
CN101448941A (zh) 抗人血小板生成素受体激动剂抗体
JP7278623B2 (ja) 抗cd27抗体およびその使用
WO2024083021A1 (zh) 特异性结合TRAIL或FasL的抗体组合以及双特异性抗体
JP2023534683A (ja) 抗cldn-18.2抗体及びその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08833722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08833722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP