DE112020006024T5 - Tantalkondensator mit erhöhter Stabilität - Google Patents
Tantalkondensator mit erhöhter Stabilität Download PDFInfo
- Publication number
- DE112020006024T5 DE112020006024T5 DE112020006024.1T DE112020006024T DE112020006024T5 DE 112020006024 T5 DE112020006024 T5 DE 112020006024T5 DE 112020006024 T DE112020006024 T DE 112020006024T DE 112020006024 T5 DE112020006024 T5 DE 112020006024T5
- Authority
- DE
- Germany
- Prior art keywords
- electrolytic capacitor
- solid electrolytic
- capacitor according
- dioxin
- dihydrothieno
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 175
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 title claims abstract description 17
- 229910052715 tantalum Inorganic materials 0.000 title claims abstract description 10
- 239000007787 solid Substances 0.000 claims abstract description 42
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 39
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 37
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims abstract description 18
- 230000001052 transient effect Effects 0.000 claims abstract description 6
- -1 cyclohexylaminomethyl Chemical group 0.000 claims description 132
- 238000000576 coating method Methods 0.000 claims description 47
- 239000011248 coating agent Substances 0.000 claims description 46
- 229920000642 polymer Polymers 0.000 claims description 41
- 239000002245 particle Substances 0.000 claims description 23
- 125000000217 alkyl group Chemical group 0.000 claims description 16
- 150000001450 anions Chemical class 0.000 claims description 14
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 12
- 125000003118 aryl group Chemical group 0.000 claims description 11
- 239000003431 cross linking reagent Substances 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 239000002923 metal particle Substances 0.000 claims description 11
- 150000002902 organometallic compounds Chemical class 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 8
- 229930192474 thiophene Natural products 0.000 claims description 8
- 125000005843 halogen group Chemical group 0.000 claims description 7
- 125000001072 heteroaryl group Chemical group 0.000 claims description 7
- 125000000623 heterocyclic group Chemical group 0.000 claims description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 7
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 claims description 6
- DGLHVZNTYXDOSR-UHFFFAOYSA-N 4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-3-ylmethoxy)butane-2-sulfonic acid Chemical compound O1C=2C(OCC1COCCC(S(=O)(=O)O)C)=CSC2 DGLHVZNTYXDOSR-UHFFFAOYSA-N 0.000 claims description 6
- 230000015556 catabolic process Effects 0.000 claims description 6
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 6
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical group CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 claims description 6
- 229910000077 silane Inorganic materials 0.000 claims description 6
- 229910052783 alkali metal Inorganic materials 0.000 claims description 5
- 150000001340 alkali metals Chemical group 0.000 claims description 5
- 125000003342 alkenyl group Chemical group 0.000 claims description 5
- 125000001188 haloalkyl group Chemical group 0.000 claims description 5
- 125000000962 organic group Chemical group 0.000 claims description 5
- 239000008188 pellet Substances 0.000 claims description 5
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 4
- CNODSORTHKVDEM-UHFFFAOYSA-N 4-trimethoxysilylaniline Chemical compound CO[Si](OC)(OC)C1=CC=C(N)C=C1 CNODSORTHKVDEM-UHFFFAOYSA-N 0.000 claims description 4
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical group CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 claims description 3
- 125000004429 atom Chemical group 0.000 claims description 3
- 150000001768 cations Chemical group 0.000 claims description 3
- 150000004985 diamines Chemical class 0.000 claims description 3
- MNEXIOKPOFUXLA-UHFFFAOYSA-N n'-(11-trimethoxysilylundecyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCCCCCCCCCNCCN MNEXIOKPOFUXLA-UHFFFAOYSA-N 0.000 claims description 3
- QNHNSPNFZFBEQR-UHFFFAOYSA-N n'-(3-trihydroxysilylpropyl)ethane-1,2-diamine Chemical compound NCCNCCC[Si](O)(O)O QNHNSPNFZFBEQR-UHFFFAOYSA-N 0.000 claims description 3
- AMVXVPUHCLLJRE-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)hexane-1,6-diamine Chemical compound CO[Si](OC)(OC)CCCNCCCCCCN AMVXVPUHCLLJRE-UHFFFAOYSA-N 0.000 claims description 3
- RRQTYXHHYIJDFB-UHFFFAOYSA-N n'-(triethoxysilylmethyl)hexane-1,6-diamine Chemical compound CCO[Si](OCC)(OCC)CNCCCCCCN RRQTYXHHYIJDFB-UHFFFAOYSA-N 0.000 claims description 3
- MQWFLKHKWJMCEN-UHFFFAOYSA-N n'-[3-[dimethoxy(methyl)silyl]propyl]ethane-1,2-diamine Chemical compound CO[Si](C)(OC)CCCNCCN MQWFLKHKWJMCEN-UHFFFAOYSA-N 0.000 claims description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 3
- JEBKVIMEQBQNPT-UHFFFAOYSA-N 1-(5-bromo-2-methoxyphenyl)sulfonylpiperidine Chemical compound COC1=CC=C(Br)C=C1S(=O)(=O)N1CCCCC1 JEBKVIMEQBQNPT-UHFFFAOYSA-N 0.000 claims description 2
- DVXHRXDVNXCARD-UHFFFAOYSA-N 1-[ethoxy-methyl-(2-methylpropyl)silyl]oxy-n-ethylethanamine Chemical compound CCNC(C)O[Si](C)(CC(C)C)OCC DVXHRXDVNXCARD-UHFFFAOYSA-N 0.000 claims description 2
- LPWZCJFZJCOBHO-UHFFFAOYSA-N 11-triethoxysilylundecan-1-amine Chemical compound CCO[Si](OCC)(OCC)CCCCCCCCCCCN LPWZCJFZJCOBHO-UHFFFAOYSA-N 0.000 claims description 2
- HXLAEGYMDGUSBD-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propan-1-amine Chemical compound CCO[Si](C)(OCC)CCCN HXLAEGYMDGUSBD-UHFFFAOYSA-N 0.000 claims description 2
- GGZBCIDSFGUWRA-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]-n-methylpropan-1-amine Chemical compound CNCCC[Si](C)(OC)OC GGZBCIDSFGUWRA-UHFFFAOYSA-N 0.000 claims description 2
- GLISOBUNKGBQCL-UHFFFAOYSA-N 3-[ethoxy(dimethyl)silyl]propan-1-amine Chemical compound CCO[Si](C)(C)CCCN GLISOBUNKGBQCL-UHFFFAOYSA-N 0.000 claims description 2
- FSMHYZUFHYGNHS-UHFFFAOYSA-N 3-[ethoxy-di(propan-2-yl)silyl]propan-1-amine Chemical compound CCO[Si](C(C)C)(C(C)C)CCCN FSMHYZUFHYGNHS-UHFFFAOYSA-N 0.000 claims description 2
- UWVCSCFFSAPGAI-UHFFFAOYSA-N 3-[tris(2-methoxyethoxy)silyl]propan-1-amine Chemical compound COCCO[Si](CCCN)(OCCOC)OCCOC UWVCSCFFSAPGAI-UHFFFAOYSA-N 0.000 claims description 2
- JTXUAHIMULPXKY-UHFFFAOYSA-N 3-trihydroxysilylpropan-1-amine Chemical compound NCCC[Si](O)(O)O JTXUAHIMULPXKY-UHFFFAOYSA-N 0.000 claims description 2
- YMTRNELCZAZKRB-UHFFFAOYSA-N 3-trimethoxysilylaniline Chemical compound CO[Si](OC)(OC)C1=CC=CC(N)=C1 YMTRNELCZAZKRB-UHFFFAOYSA-N 0.000 claims description 2
- MLYXZIDJJZFJQE-UHFFFAOYSA-N 4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-3-ylmethoxy)butane-2-sulfonate triethylazanium Chemical compound O1C=2C(OCC1COCCC(S(=O)(=O)[O-])C)=CSC2.C(C)[NH+](CC)CC MLYXZIDJJZFJQE-UHFFFAOYSA-N 0.000 claims description 2
- SWDDLRSGGCWDPH-UHFFFAOYSA-N 4-triethoxysilylbutan-1-amine Chemical compound CCO[Si](OCC)(OCC)CCCCN SWDDLRSGGCWDPH-UHFFFAOYSA-N 0.000 claims description 2
- FBRGJGRMDGNNRL-UHFFFAOYSA-N azanium 4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-3-ylmethoxy)butane-2-sulfonate Chemical compound O1C=2C(OCC1COCCC(S(=O)(=O)[O-])C)=CSC2.[NH4+] FBRGJGRMDGNNRL-UHFFFAOYSA-N 0.000 claims description 2
- HXDMXWXYZHDHLS-UHFFFAOYSA-N n'-[3-[dimethoxy(methyl)silyl]-2-methylpropyl]ethane-1,2-diamine Chemical compound CO[Si](C)(OC)CC(C)CNCCN HXDMXWXYZHDHLS-UHFFFAOYSA-N 0.000 claims description 2
- HBELKEREKFGFNM-UHFFFAOYSA-N n'-[[4-(2-trimethoxysilylethyl)phenyl]methyl]ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCC1=CC=C(CNCCN)C=C1 HBELKEREKFGFNM-UHFFFAOYSA-N 0.000 claims description 2
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 claims description 2
- XCOASYLMDUQBHW-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)butan-1-amine Chemical group CCCCNCCC[Si](OC)(OC)OC XCOASYLMDUQBHW-UHFFFAOYSA-N 0.000 claims description 2
- KGNDVXPHQJMHLX-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)cyclohexanamine Chemical compound CO[Si](OC)(OC)CCCNC1CCCCC1 KGNDVXPHQJMHLX-UHFFFAOYSA-N 0.000 claims description 2
- VNBLTKHUCJLFSB-UHFFFAOYSA-N n-(trimethoxysilylmethyl)aniline Chemical compound CO[Si](OC)(OC)CNC1=CC=CC=C1 VNBLTKHUCJLFSB-UHFFFAOYSA-N 0.000 claims description 2
- WMNHMKMPHMWRRI-UHFFFAOYSA-N n-[2-[diethoxy(methyl)silyl]ethyl]aniline Chemical compound CCO[Si](C)(OCC)CCNC1=CC=CC=C1 WMNHMKMPHMWRRI-UHFFFAOYSA-N 0.000 claims description 2
- FRDNYWXDODPUJV-UHFFFAOYSA-N n-ethyl-2-methyl-3-trimethoxysilylpropan-1-amine Chemical compound CCNCC(C)C[Si](OC)(OC)OC FRDNYWXDODPUJV-UHFFFAOYSA-N 0.000 claims description 2
- DVYVMJLSUSGYMH-UHFFFAOYSA-N n-methyl-3-trimethoxysilylpropan-1-amine Chemical compound CNCCC[Si](OC)(OC)OC DVYVMJLSUSGYMH-UHFFFAOYSA-N 0.000 claims description 2
- UBVMBXTYMSRUDX-UHFFFAOYSA-N n-prop-2-enyl-3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCNCC=C UBVMBXTYMSRUDX-UHFFFAOYSA-N 0.000 claims description 2
- QKEREOORBDZEBA-UHFFFAOYSA-M potassium 4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-3-ylmethoxy)butane-2-sulfonate Chemical compound O1C=2C(OCC1COCCC(S(=O)(=O)[O-])C)=CSC2.[K+] QKEREOORBDZEBA-UHFFFAOYSA-M 0.000 claims description 2
- XNGIBEPKTMLELL-UHFFFAOYSA-M sodium 1-(2,3-dihydrothieno[3,4-b][1,4]dioxin-3-ylmethoxy)-4-methylpentane-3-sulfonate Chemical compound O1C=2C(OCC1COCCC(S(=O)(=O)[O-])C(C)C)=CSC2.[Na+] XNGIBEPKTMLELL-UHFFFAOYSA-M 0.000 claims description 2
- CLPMBSBBTZMITH-UHFFFAOYSA-M sodium 1-(2,3-dihydrothieno[3,4-b][1,4]dioxin-3-ylmethoxy)-5-methylhexane-3-sulfonate Chemical compound O1C=2C(OCC1COCCC(S(=O)(=O)[O-])CC(C)C)=CSC2.[Na+] CLPMBSBBTZMITH-UHFFFAOYSA-M 0.000 claims description 2
- YBABFPTWQRTROH-UHFFFAOYSA-M sodium 1-(2,3-dihydrothieno[3,4-b][1,4]dioxin-3-ylmethoxy)-6-methylheptane-3-sulfonate Chemical compound O1C=2C(OCC1COCCC(S(=O)(=O)[O-])CCC(C)C)=CSC2.[Na+] YBABFPTWQRTROH-UHFFFAOYSA-M 0.000 claims description 2
- LZHCEOYHBZYMQZ-UHFFFAOYSA-M sodium 1-(2,3-dihydrothieno[3,4-b][1,4]dioxin-3-ylmethoxy)heptane-3-sulfonate Chemical compound O1C=2C(OCC1COCCC(S(=O)(=O)[O-])CCCC)=CSC2.[Na+] LZHCEOYHBZYMQZ-UHFFFAOYSA-M 0.000 claims description 2
- TWQHZBCICZFXKQ-UHFFFAOYSA-M sodium 1-(2,3-dihydrothieno[3,4-b][1,4]dioxin-3-ylmethoxy)hexane-3-sulfonate Chemical compound O1C=2C(OCC1COCCC(S(=O)(=O)[O-])CCC)=CSC2.[Na+] TWQHZBCICZFXKQ-UHFFFAOYSA-M 0.000 claims description 2
- GJBFYQRGMOQENE-UHFFFAOYSA-M sodium 1-(2,3-dihydrothieno[3,4-b][1,4]dioxin-3-ylmethoxy)nonane-3-sulfonate Chemical compound O1C=2C(OCC1COCCC(S(=O)(=O)[O-])CCCCCC)=CSC2.[Na+] GJBFYQRGMOQENE-UHFFFAOYSA-M 0.000 claims description 2
- HVBRCYUJKTYVBD-UHFFFAOYSA-M sodium 1-(2,3-dihydrothieno[3,4-b][1,4]dioxin-3-ylmethoxy)octane-3-sulfonate Chemical compound O1C=2C(OCC1COCCC(S(=O)(=O)[O-])CCCCC)=CSC2.[Na+] HVBRCYUJKTYVBD-UHFFFAOYSA-M 0.000 claims description 2
- LICOREXYQBYEPA-UHFFFAOYSA-M sodium 1-(2,3-dihydrothieno[3,4-b][1,4]dioxin-3-ylmethoxy)pentane-3-sulfonate Chemical compound O1C=2C(OCC1COCCC(S(=O)(=O)[O-])CC)=CSC2.[Na+] LICOREXYQBYEPA-UHFFFAOYSA-M 0.000 claims description 2
- OAJZFHFBPIVWMO-UHFFFAOYSA-M sodium 3-(2,3-dihydrothieno[3,4-b][1,4]dioxin-3-ylmethoxy)-1-fluoropropane-1-sulfonate Chemical compound O1C=2C(OCC1COCCC(S(=O)(=O)[O-])F)=CSC2.[Na+] OAJZFHFBPIVWMO-UHFFFAOYSA-M 0.000 claims description 2
- ZYNOESUJJLFWCB-UHFFFAOYSA-M sodium 4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-3-ylmethoxy)butane-2-sulfonate Chemical compound O1C=2C(OCC1COCCC(S(=O)(=O)[O-])C)=CSC2.[Na+] ZYNOESUJJLFWCB-UHFFFAOYSA-M 0.000 claims description 2
- MMZPUXVBQAQQDQ-UHFFFAOYSA-N triethoxy(2-pyridin-4-ylethyl)silane Chemical compound CCO[Si](OCC)(OCC)CCC1=CC=NC=C1 MMZPUXVBQAQQDQ-UHFFFAOYSA-N 0.000 claims description 2
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 claims description 2
- XVZMLSWFBPLMEA-UHFFFAOYSA-N trimethoxy(2-pyridin-2-ylethyl)silane Chemical compound CO[Si](OC)(OC)CCC1=CC=CC=N1 XVZMLSWFBPLMEA-UHFFFAOYSA-N 0.000 claims description 2
- FTDRQHXSYGDMNJ-UHFFFAOYSA-N trimethoxy(3-pyrrol-1-ylpropyl)silane Chemical compound CO[Si](OC)(OC)CCCN1C=CC=C1 FTDRQHXSYGDMNJ-UHFFFAOYSA-N 0.000 claims description 2
- PZJJKWKADRNWSW-UHFFFAOYSA-N trimethoxysilicon Chemical compound CO[Si](OC)OC PZJJKWKADRNWSW-UHFFFAOYSA-N 0.000 claims description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 2
- 150000003141 primary amines Chemical class 0.000 claims 2
- 150000003335 secondary amines Chemical class 0.000 claims 2
- 239000010410 layer Substances 0.000 description 75
- 238000000034 method Methods 0.000 description 42
- 239000006185 dispersion Substances 0.000 description 32
- 239000003792 electrolyte Substances 0.000 description 25
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 25
- 239000002904 solvent Substances 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 22
- 239000000243 solution Substances 0.000 description 22
- 229910052751 metal Inorganic materials 0.000 description 21
- 239000002184 metal Substances 0.000 description 21
- 230000008569 process Effects 0.000 description 19
- 150000003839 salts Chemical class 0.000 description 19
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 18
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 18
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 17
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 17
- 229910052799 carbon Inorganic materials 0.000 description 16
- 229910052709 silver Inorganic materials 0.000 description 16
- 239000004332 silver Substances 0.000 description 16
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 15
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 15
- 239000002253 acid Substances 0.000 description 14
- 238000003466 welding Methods 0.000 description 14
- 229910052759 nickel Inorganic materials 0.000 description 13
- 239000000843 powder Substances 0.000 description 13
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 12
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 12
- 239000000853 adhesive Substances 0.000 description 12
- 230000001070 adhesive effect Effects 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 10
- 229920001577 copolymer Polymers 0.000 description 10
- 239000011133 lead Substances 0.000 description 10
- 239000011734 sodium Substances 0.000 description 10
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- 150000007513 acids Chemical class 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 8
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 8
- 229920001002 functional polymer Polymers 0.000 description 8
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- 229910052708 sodium Inorganic materials 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000012298 atmosphere Substances 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 235000014113 dietary fatty acids Nutrition 0.000 description 7
- 239000000194 fatty acid Substances 0.000 description 7
- 229930195729 fatty acid Natural products 0.000 description 7
- 150000004665 fatty acids Chemical class 0.000 description 7
- 239000011261 inert gas Substances 0.000 description 7
- 239000003960 organic solvent Substances 0.000 description 7
- 229920001223 polyethylene glycol Polymers 0.000 description 7
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 6
- 150000001298 alcohols Chemical class 0.000 description 6
- 150000001408 amides Chemical class 0.000 description 6
- 238000007743 anodising Methods 0.000 description 6
- 150000002170 ethers Chemical class 0.000 description 6
- 150000002334 glycols Chemical class 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 6
- 238000007639 printing Methods 0.000 description 6
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229920002554 vinyl polymer Polymers 0.000 description 6
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 5
- 238000002048 anodisation reaction Methods 0.000 description 5
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 5
- 239000004327 boric acid Substances 0.000 description 5
- 150000002009 diols Chemical class 0.000 description 5
- 238000007598 dipping method Methods 0.000 description 5
- 239000002019 doping agent Substances 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 5
- 229910052700 potassium Inorganic materials 0.000 description 5
- 239000011164 primary particle Substances 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 150000004756 silanes Chemical class 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 150000003457 sulfones Chemical class 0.000 description 5
- 239000011135 tin Substances 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 4
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229920002125 Sokalan® Polymers 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000005056 compaction Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 150000008040 ionic compounds Chemical class 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 150000002576 ketones Chemical class 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 150000007522 mineralic acids Chemical class 0.000 description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 description 4
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 4
- 229920001281 polyalkylene Polymers 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 229920001451 polypropylene glycol Polymers 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000011591 potassium Substances 0.000 description 4
- 238000007650 screen-printing Methods 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 150000003462 sulfoxides Chemical class 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- LDMOEFOXLIZJOW-UHFFFAOYSA-N 1-dodecanesulfonic acid Chemical compound CCCCCCCCCCCCS(O)(=O)=O LDMOEFOXLIZJOW-UHFFFAOYSA-N 0.000 description 3
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 3
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 3
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 3
- CCTFMNIEFHGTDU-UHFFFAOYSA-N 3-methoxypropyl acetate Chemical compound COCCCOC(C)=O CCTFMNIEFHGTDU-UHFFFAOYSA-N 0.000 description 3
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 3
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 125000005396 acrylic acid ester group Chemical group 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 3
- 229940092714 benzenesulfonic acid Drugs 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 229910021538 borax Inorganic materials 0.000 description 3
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 3
- 239000004359 castor oil Substances 0.000 description 3
- 235000019438 castor oil Nutrition 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000000539 dimer Substances 0.000 description 3
- 239000004815 dispersion polymer Substances 0.000 description 3
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-O oxonium Chemical compound [OH3+] XLYOFNOQVPJJNP-UHFFFAOYSA-O 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 239000012260 resinous material Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 235000010339 sodium tetraborate Nutrition 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 150000003460 sulfonic acids Chemical class 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- MIOPJNTWMNEORI-GMSGAONNSA-N (S)-camphorsulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-N 0.000 description 2
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 2
- CHKNQQMXFCNQQZ-UHFFFAOYSA-N 1,3-bis(3-triethoxysilylpropyl)thiourea Chemical compound CCO[Si](OCC)(OCC)CCCNC(=S)NCCC[Si](OCC)(OCC)OCC CHKNQQMXFCNQQZ-UHFFFAOYSA-N 0.000 description 2
- FDCJDKXCCYFOCV-UHFFFAOYSA-N 1-hexadecoxyhexadecane Chemical compound CCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCC FDCJDKXCCYFOCV-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- VHJRQDUWYYJDBE-UHFFFAOYSA-N 11-trimethoxysilylundecane-1-thiol Chemical compound CO[Si](OC)(OC)CCCCCCCCCCCS VHJRQDUWYYJDBE-UHFFFAOYSA-N 0.000 description 2
- LVTKZSMLKHTKTB-UHFFFAOYSA-N 2,2-dimethoxythiasilolane Chemical compound CO[Si]1(OC)CCCS1 LVTKZSMLKHTKTB-UHFFFAOYSA-N 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- SMNDYUVBFMFKNZ-UHFFFAOYSA-N 2-furoic acid Chemical compound OC(=O)C1=CC=CO1 SMNDYUVBFMFKNZ-UHFFFAOYSA-N 0.000 description 2
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 2
- IKYAJDOSWUATPI-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propane-1-thiol Chemical compound CO[Si](C)(OC)CCCS IKYAJDOSWUATPI-UHFFFAOYSA-N 0.000 description 2
- MCLMZMISZCYBBG-UHFFFAOYSA-N 3-ethylheptanoic acid Chemical compound CCCCC(CC)CC(O)=O MCLMZMISZCYBBG-UHFFFAOYSA-N 0.000 description 2
- IHCCAYCGZOLTEU-UHFFFAOYSA-N 3-furoic acid Chemical compound OC(=O)C=1C=COC=1 IHCCAYCGZOLTEU-UHFFFAOYSA-N 0.000 description 2
- 125000003542 3-methylbutan-2-yl group Chemical group [H]C([H])([H])C([H])(*)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- DCQBZYNUSLHVJC-UHFFFAOYSA-N 3-triethoxysilylpropane-1-thiol Chemical compound CCO[Si](OCC)(OCC)CCCS DCQBZYNUSLHVJC-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- UQRONKZLYKUEMO-UHFFFAOYSA-N 4-methyl-1-(2,4,6-trimethylphenyl)pent-4-en-2-one Chemical group CC(=C)CC(=O)Cc1c(C)cc(C)cc1C UQRONKZLYKUEMO-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 2
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 229910020366 ClO 4 Inorganic materials 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 2
- ARIWANIATODDMH-UHFFFAOYSA-N Lauric acid monoglyceride Natural products CCCCCCCCCCCC(=O)OCC(O)CO ARIWANIATODDMH-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 2
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 229920000144 PEDOT:PSS Polymers 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- DUVRJGHTIVORLW-UHFFFAOYSA-N [diethoxy(methyl)silyl]methanethiol Chemical compound CCO[Si](C)(CS)OCC DUVRJGHTIVORLW-UHFFFAOYSA-N 0.000 description 2
- 235000011054 acetic acid Nutrition 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000005250 alkyl acrylate group Chemical group 0.000 description 2
- 150000001412 amines Chemical group 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 230000001680 brushing effect Effects 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- IYRDVAUFQZOLSB-UHFFFAOYSA-N copper iron Chemical compound [Fe].[Cu] IYRDVAUFQZOLSB-UHFFFAOYSA-N 0.000 description 2
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000006547 cyclononyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 2
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229940051250 hexylene glycol Drugs 0.000 description 2
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 229910000833 kovar Inorganic materials 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- NHBRUUFBSBSTHM-UHFFFAOYSA-N n'-[2-(3-trimethoxysilylpropylamino)ethyl]ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCNCCN NHBRUUFBSBSTHM-UHFFFAOYSA-N 0.000 description 2
- VEAZEPMQWHPHAG-UHFFFAOYSA-N n,n,n',n'-tetramethylbutane-1,4-diamine Chemical compound CN(C)CCCCN(C)C VEAZEPMQWHPHAG-UHFFFAOYSA-N 0.000 description 2
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 2
- 238000007649 pad printing Methods 0.000 description 2
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 2
- JGTNAGYHADQMCM-UHFFFAOYSA-N perfluorobutanesulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F JGTNAGYHADQMCM-UHFFFAOYSA-N 0.000 description 2
- YFSUTJLHUFNCNZ-UHFFFAOYSA-N perfluorooctane-1-sulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YFSUTJLHUFNCNZ-UHFFFAOYSA-N 0.000 description 2
- SNGREZUHAYWORS-UHFFFAOYSA-N perfluorooctanoic acid Chemical compound OC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F SNGREZUHAYWORS-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 239000004584 polyacrylic acid Chemical class 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920000137 polyphosphoric acid Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920001021 polysulfide Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 229910052701 rubidium Inorganic materials 0.000 description 2
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 2
- JPPLPDOXWBVPCW-UHFFFAOYSA-N s-(3-triethoxysilylpropyl) octanethioate Chemical compound CCCCCCCC(=O)SCCC[Si](OCC)(OCC)OCC JPPLPDOXWBVPCW-UHFFFAOYSA-N 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 150000005846 sugar alcohols Chemical class 0.000 description 2
- 150000003481 tantalum Chemical class 0.000 description 2
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 2
- 238000010345 tape casting Methods 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000003944 tolyl group Chemical group 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- VTHOKNTVYKTUPI-UHFFFAOYSA-N triethoxy-[3-(3-triethoxysilylpropyltetrasulfanyl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCSSSSCCC[Si](OCC)(OCC)OCC VTHOKNTVYKTUPI-UHFFFAOYSA-N 0.000 description 2
- IEALAANSRUPKOC-UHFFFAOYSA-N trimethoxy(3-thiophen-2-ylsulfanylpropyl)silane Chemical compound CO[Si](OC)(OC)CCCSC1=CC=CS1 IEALAANSRUPKOC-UHFFFAOYSA-N 0.000 description 2
- JGUUIHSLFPRUSA-UHFFFAOYSA-N trimethoxy-[2-(2-pyridin-2-ylethylsulfanyl)propyl]silane Chemical compound CO[Si](OC)(OC)CC(C)SCCC1=CC=CC=N1 JGUUIHSLFPRUSA-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- PWGJDPKCLMLPJW-UHFFFAOYSA-N 1,8-diaminooctane Chemical compound NCCCCCCCCN PWGJDPKCLMLPJW-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- HBXWUCXDUUJDRB-UHFFFAOYSA-N 1-octadecoxyoctadecane Chemical compound CCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCC HBXWUCXDUUJDRB-UHFFFAOYSA-N 0.000 description 1
- SIHSSUWJKIEVGQ-UHFFFAOYSA-N 14-methyl-1-(14-methylpentadecoxy)pentadecane Chemical compound CC(C)CCCCCCCCCCCCCOCCCCCCCCCCCCCC(C)C SIHSSUWJKIEVGQ-UHFFFAOYSA-N 0.000 description 1
- XYTHHAXRVHHXKO-JIUYZRCGSA-N 18-[(2r,3s,4r,5r)-4,5-dihydroxy-2-(hydroxymethyl)-6-methoxyoxan-3-yl]oxyoctadecanoic acid;ethanol Chemical compound CCO.COC1O[C@H](CO)[C@@H](OCCCCCCCCCCCCCCCCCC(O)=O)[C@H](O)[C@H]1O XYTHHAXRVHHXKO-JIUYZRCGSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- WXHLLJAMBQLULT-UHFFFAOYSA-N 2-[[6-[4-(2-hydroxyethyl)piperazin-1-yl]-2-methylpyrimidin-4-yl]amino]-n-(2-methyl-6-sulfanylphenyl)-1,3-thiazole-5-carboxamide;hydrate Chemical compound O.C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1S WXHLLJAMBQLULT-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- HCGFUIQPSOCUHI-UHFFFAOYSA-N 2-propan-2-yloxyethanol Chemical compound CC(C)OCCO HCGFUIQPSOCUHI-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- RMTFNDVZYPHUEF-XZBKPIIZSA-N 3-O-methyl-D-glucose Chemical compound O=C[C@H](O)[C@@H](OC)[C@H](O)[C@H](O)CO RMTFNDVZYPHUEF-XZBKPIIZSA-N 0.000 description 1
- PMJIKKNFJBDSHO-UHFFFAOYSA-N 3-[3-aminopropyl(diethoxy)silyl]oxy-3-methylpentane-1,5-diol Chemical compound NCCC[Si](OCC)(OCC)OC(C)(CCO)CCO PMJIKKNFJBDSHO-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 1
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 229910014332 N(SO2CF3)2 Inorganic materials 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- WPPOGHDFAVQKLN-UHFFFAOYSA-N N-Octyl-2-pyrrolidone Chemical compound CCCCCCCCN1CCCC1=O WPPOGHDFAVQKLN-UHFFFAOYSA-N 0.000 description 1
- ZWXPDGCFMMFNRW-UHFFFAOYSA-N N-methylcaprolactam Chemical compound CN1CCCCCC1=O ZWXPDGCFMMFNRW-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- OTRAYOBSWCVTIN-UHFFFAOYSA-N OB(O)O.OB(O)O.OB(O)O.OB(O)O.OB(O)O.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N Chemical compound OB(O)O.OB(O)O.OB(O)O.OB(O)O.OB(O)O.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N OTRAYOBSWCVTIN-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 1
- 229920002582 Polyethylene Glycol 600 Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 229920001219 Polysorbate 40 Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 101000611641 Rattus norvegicus Protein phosphatase 1 regulatory subunit 15A Proteins 0.000 description 1
- 229910018286 SbF 6 Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical class OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 1
- OXIKYYJDTWKERT-UHFFFAOYSA-N [4-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1CCC(CN)CC1 OXIKYYJDTWKERT-UHFFFAOYSA-N 0.000 description 1
- OWXLRKWPEIAGAT-UHFFFAOYSA-N [Mg].[Cu] Chemical compound [Mg].[Cu] OWXLRKWPEIAGAT-UHFFFAOYSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229960004050 aminobenzoic acid Drugs 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- HNYOPLTXPVRDBG-UHFFFAOYSA-N barbituric acid Chemical compound O=C1CC(=O)NC(=O)N1 HNYOPLTXPVRDBG-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- MVIOINXPSFUJEN-UHFFFAOYSA-N benzenesulfonic acid;hydrate Chemical compound O.OS(=O)(=O)C1=CC=CC=C1 MVIOINXPSFUJEN-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 229960004365 benzoic acid Drugs 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 150000004648 butanoic acid derivatives Chemical class 0.000 description 1
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 description 1
- 150000001663 caesium Chemical class 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Inorganic materials [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- ITZXULOAYIAYNU-UHFFFAOYSA-N cerium(4+) Chemical compound [Ce+4] ITZXULOAYIAYNU-UHFFFAOYSA-N 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 229910001914 chlorine tetroxide Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000002322 conducting polymer Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- XTYUEDCPRIMJNG-UHFFFAOYSA-N copper zirconium Chemical compound [Cu].[Zr] XTYUEDCPRIMJNG-UHFFFAOYSA-N 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- QUQFTIVBFKLPCL-UHFFFAOYSA-L copper;2-amino-3-[(2-amino-2-carboxylatoethyl)disulfanyl]propanoate Chemical compound [Cu+2].[O-]C(=O)C(N)CSSCC(N)C([O-])=O QUQFTIVBFKLPCL-UHFFFAOYSA-L 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- VKIRRGRTJUUZHS-UHFFFAOYSA-N cyclohexane-1,4-diamine Chemical compound NC1CCC(N)CC1 VKIRRGRTJUUZHS-UHFFFAOYSA-N 0.000 description 1
- YQLZOAVZWJBZSY-UHFFFAOYSA-N decane-1,10-diamine Chemical compound NCCCCCCCCCCN YQLZOAVZWJBZSY-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 1
- QFTYSVGGYOXFRQ-UHFFFAOYSA-N dodecane-1,12-diamine Chemical compound NCCCCCCCCCCCCN QFTYSVGGYOXFRQ-UHFFFAOYSA-N 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- ZQPPMHVWECSIRJ-MDZDMXLPSA-N elaidic acid Chemical compound CCCCCCCC\C=C\CCCCCCCC(O)=O ZQPPMHVWECSIRJ-MDZDMXLPSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 150000002240 furans Chemical class 0.000 description 1
- 229940074391 gallic acid Drugs 0.000 description 1
- 235000004515 gallic acid Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- PWSKHLMYTZNYKO-UHFFFAOYSA-N heptane-1,7-diamine Chemical compound NCCCCCCCN PWSKHLMYTZNYKO-UHFFFAOYSA-N 0.000 description 1
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 150000003951 lactams Chemical group 0.000 description 1
- 125000000686 lactone group Chemical group 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- LAPRIVJANDLWOK-UHFFFAOYSA-N laureth-5 Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCO LAPRIVJANDLWOK-UHFFFAOYSA-N 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000007974 melamines Chemical class 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 229920003087 methylethyl cellulose Polymers 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- DILRJUIACXKSQE-UHFFFAOYSA-N n',n'-dimethylethane-1,2-diamine Chemical compound CN(C)CCN DILRJUIACXKSQE-UHFFFAOYSA-N 0.000 description 1
- XKLJRDXPVLBKKA-UHFFFAOYSA-N n'-[2-[dimethoxy(2-phenylethyl)silyl]oxyethyl]ethane-1,2-diamine Chemical compound NCCNCCO[Si](OC)(OC)CCC1=CC=CC=C1 XKLJRDXPVLBKKA-UHFFFAOYSA-N 0.000 description 1
- ZLDHYRXZZNDOKU-UHFFFAOYSA-N n,n-diethyl-3-trimethoxysilylpropan-1-amine Chemical compound CCN(CC)CCC[Si](OC)(OC)OC ZLDHYRXZZNDOKU-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- UMXXGDJOCQSQBV-UHFFFAOYSA-N n-ethyl-n-(triethoxysilylmethyl)ethanamine Chemical compound CCO[Si](OCC)(OCC)CN(CC)CC UMXXGDJOCQSQBV-UHFFFAOYSA-N 0.000 description 1
- JIKUXBYRTXDNIY-UHFFFAOYSA-N n-methyl-n-phenylformamide Chemical compound O=CN(C)C1=CC=CC=C1 JIKUXBYRTXDNIY-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- YZMHQCWXYHARLS-UHFFFAOYSA-N naphthalene-1,2-disulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(S(=O)(=O)O)=CC=C21 YZMHQCWXYHARLS-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- SXJVFQLYZSNZBT-UHFFFAOYSA-N nonane-1,9-diamine Chemical compound NCCCCCCCCCN SXJVFQLYZSNZBT-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 229920004918 nonoxynol-9 Polymers 0.000 description 1
- 229940087419 nonoxynol-9 Drugs 0.000 description 1
- YYELLDKEOUKVIQ-UHFFFAOYSA-N octaethyleneglycol monododecyl ether Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCO YYELLDKEOUKVIQ-UHFFFAOYSA-N 0.000 description 1
- MSRJTTSHWYDFIU-UHFFFAOYSA-N octyltriethoxysilane Chemical compound CCCCCCCC[Si](OCC)(OCC)OCC MSRJTTSHWYDFIU-UHFFFAOYSA-N 0.000 description 1
- 229960003493 octyltriethoxysilane Drugs 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Chemical compound [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 238000009527 percussion Methods 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 150000004714 phosphonium salts Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920002755 poly(epichlorohydrin) Polymers 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000223 polyglycerol Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 239000013047 polymeric layer Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920000909 polytetrahydrofuran Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 229910052704 radon Inorganic materials 0.000 description 1
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003470 sulfuric acid monoesters Chemical class 0.000 description 1
- OEIMLTQPLAGXMX-UHFFFAOYSA-I tantalum(v) chloride Chemical compound Cl[Ta](Cl)(Cl)(Cl)Cl OEIMLTQPLAGXMX-UHFFFAOYSA-I 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- FBWNMEQMRUMQSO-UHFFFAOYSA-N tergitol NP-9 Chemical compound CCCCCCCCCC1=CC=C(OCCOCCOCCOCCOCCOCCOCCOCCOCCO)C=C1 FBWNMEQMRUMQSO-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- LAGQRLMCFUCPAJ-UHFFFAOYSA-N thieno[3,4-b][1,4]dioxin-3-ylmethanol Chemical compound O1C=2C(OC=C1CO)=CSC2 LAGQRLMCFUCPAJ-UHFFFAOYSA-N 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- FBBATURSCRIBHN-UHFFFAOYSA-N triethoxy-[3-(3-triethoxysilylpropyldisulfanyl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCSSCCC[Si](OCC)(OCC)OCC FBBATURSCRIBHN-UHFFFAOYSA-N 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N valeric aldehyde Natural products CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000012178 vegetable wax Substances 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical class OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/15—Solid electrolytic capacitors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
- C08G61/126—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L65/00—Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D165/00—Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes; Absorbents
- H01G9/025—Solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/042—Electrodes or formation of dielectric layers thereon characterised by the material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/11—Homopolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/14—Side-groups
- C08G2261/141—Side-chains having aliphatic units
- C08G2261/1412—Saturated aliphatic units
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/14—Side-groups
- C08G2261/142—Side-chains containing oxygen
- C08G2261/1424—Side-chains containing oxygen containing ether groups, including alkoxy
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/14—Side-groups
- C08G2261/145—Side-chains containing sulfur
- C08G2261/1452—Side-chains containing sulfur containing sulfonyl or sulfonate-groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/32—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
- C08G2261/322—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
- C08G2261/3223—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/50—Physical properties
- C08G2261/63—Viscosity
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/70—Post-treatment
- C08G2261/79—Post-treatment doping
- C08G2261/794—Post-treatment doping with polymeric dopants
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/90—Applications
- C08G2261/92—TFT applications
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
Ein Festelektrolytkondensator, der ein Kondensatorelement enthält, wird bereitgestellt. Das Kondensatorelement enthält einen Anodenkörper, der Tantal enthält, ein den Anodenkörper überdeckendes Dielektrikum und einen festen Elektrolyten, der das Dielektrikum überdeckt. Der feste Elektrolyt umfasst ein intrinsisch leitfähiges Polymer, das Thiophen-Repetiereinheiten enthält. Weiterhin weist der Kondensator eine Festigkeit des Dielektrikums von etwa 0,6 Volt pro Nanometer oder mehr auf. Der Kondensator weist auch eine Lade-Entlade-Kapazität, nachdem er 3000 Zyklen einer Spannungsspitze ausgesetzt war, und eine Anfangskapazität, bevor er der Spannungsspitze ausgesetzt war, auf, wobei das Verhältnis der Lade-Entlade-Kapazität zu der Anfangskapazität etwa 0,75 zu 1 beträgt.
Description
- Verwandte Anmeldungen
- Die vorliegende Anmeldung beansprucht die Priorität der am 10. Dezember 2019 eingereichten vorläufigen US-Patentanmeldung Serial-Nr.
62/945,913 62/947,014 - Hintergrund der Erfindung
- Tantalkondensatoren werden typischerweise dadurch hergestellt, dass man ein Tantalpulver um einen Metallanschlussdraht herum presst, den gepressten Teil sintert, die gesinterte Anode anodisiert und danach einen festen Elektrolyten aufträgt. Aufgrund ihres vorteilhaften niedrigen Äquivalentserienwiderstands („ESR“) und des „nichtbrennenden/nichtentzündlichen“ Fehlermechanismus werden als fester Elektrolyt häufig leitfähige Polymere eingesetzt. Zum Beispiel können solche Elektrolyte durch chemische in-situ-Polymerisation eines 3,4-Dioxythiophen-Monomers („EDOT“) in Gegenwart eines Katalysators und eines Dotierungsmittels gebildet werden. Herkömmliche Kondensatoren, in denen in-situ-polymerisierte Polymere eingesetzt werden, weisen jedoch häufig einen relativ hohen Leckstrom („DCL“) auf und versagen bei hohen Spannungen, wie sie beim schnellen Einschalten oder bei Betriebsstromspitzen auftreten. In einem Versuch, diese Probleme zu überwinden, werden auch Dispersionen eingesetzt, die aus einem Komplex von Poly(3,4-ethylendioxythiophen) und Polystyrolsulfonsäure („PEDOT:PSS“) gebildet werden. Während die PEDOT: PSS-Dispersionen zu verbesserten Leckstromwerten führen können, bleiben dennoch andere Probleme bestehen. Ein Problem mit Kondensatoren auf Polymerdispersionsbasis besteht zum Beispiel darin, dass sie eine relativ schlechte Stabilität der Kapazität aufweisen, wenn sie wiederholten Spannungs-Ladungs-Zyklen unterzogen wurden.
- Daher besteht ein Bedürfnis nach einem verbesserten Festelektrolytkondensator, der relativ stabile elektrische Eigenschaften aufweist.
- Kurzbeschreibung der Erfindung
- Gemäß einer Ausführungsform der vorliegenden Erfindung wird ein Festelektrolytkondensator offenbart, der ein Kondensatorelement enthält. Das Kondensatorelement enthält einen Anodenkörper, der Tantal enthält, ein den Anodenkörper überdeckendes Dielektrikum und einen festen Elektrolyten, der das Dielektrikum überdeckt. Der feste Elektrolyt umfasst ein intrinsisch leitfähiges Polymer, das Thiophen-Repetiereinheiten enthält. Weiterhin weist der Kondensator eine Festigkeit des Dielektrikums von etwa 0,6 Volt pro Nanometer oder mehr auf. Der Kondensator weist auch eine Lade-Entlade-Kapazität, nachdem er 3000 Zyklen einer Spannungsspitze ausgesetzt war, und eine Anfangskapazität, bevor er der Spannungsspitze ausgesetzt war, auf, wobei das Verhältnis der Lade-Entlade-Kapazität zu der Anfangskapazität etwa 0,75 zu 1 beträgt.
- Weitere Merkmale und Aspekte der vorliegenden Erfindung sind im Folgenden ausführlicher dargelegt.
- Figurenliste
- Im Rest der Beschreibung und unter Bezugnahme auf die Begleitzeichnungen ist eine vollständige und nacharbeitbare Offenbarung der vorliegenden Erfindung einschließlich ihrer besten Realisierung für den Fachmann insbesondere dargelegt, dabei sind:
-
1 eine Querschnittsansicht einer Ausführungsform eines Kondensators der Baugruppe der vorliegenden Erfindung; -
2 eine Querschnittsansicht einer anderen Ausführungsform eines Kondensators der Baugruppe der vorliegenden Erfindung; -
3 eine Querschnittsansicht noch einer anderen Ausführungsform eines Kondensators der Baugruppe der vorliegenden Erfindung; und -
4 eine Draufsicht auf noch eine andere Ausführungsform eines Kondensators der Baugruppe der vorliegenden Erfindung. - Bei mehrfacher Verwendung von Bezugszeichen in der vorliegenden Beschreibung und den Zeichnungen sollen diese dieselben oder analoge Merkmale oder Elemente der vorliegenden Erfindung repräsentieren.
- Ausführliche Beschreibung von repräsentativen Ausführungsformen
- Der Fachmann sollte sich darüber im Klaren sein, dass die vorliegende Diskussion nur eine Beschreibung von beispielhaften Ausführungsformen ist und die breiteren Aspekte der vorliegenden Erfindung nicht einschränken soll, wobei diese breiteren Aspekte in der beispielhaften Konstruktion verkörpert sind.
- Allgemein gesagt betrifft die vorliegende Erfindung einen Festelektrolytkondensator, der ein Kondensatorelement enthält, das einen Anodenkörper, der Tantal umfasst, ein den Anodenkörper überdeckendes Dielektrikum und einen festen Elektrolyten, der das Dielektrikum überdeckt und ein leitfähiges Polymer, das Thiophen-Repetiereinheiten enthält, umfasst, umfasst. Indem sie die besondere Natur des Kondensatorelements und der Materialien, aus denen es besteht, selektiv steuerten, haben die Erfinder herausgefunden, dass ein Kondensator gebildet werden kann, der einen hohen Grad an dielektrischer Festigkeit aufweisen, die die Stabilität der Kapazität verbessern kann. „Dielektrische Festigkeit“ bezieht sich allgemein auf das Verhältnis der „Durchschlagsspannung“ des Kondensators (Spannung, bei der der Kondensator versagt, in Volt, „V“) zur Dicke des Dielektrikums (in Nanometer, „nm“). Der Kondensator weist typischerweise eine dielektrische Festigkeit von etwa 0,6 V/nm oder mehr, in einigen Ausführungsformen etwa 0,65 V/nm oder mehr, in einigen Ausführungsformen etwa 0,7 V/nm oder mehr, in einigen Ausführungsformen etwa 0,75 V/nm bis etwa 1 V/nm und in einigen Ausführungsformen etwa 0,8 V/nm bis etwa 0,9 V/nm. Der Kondensator kann zum Beispiel eine relativ hohe Durchschlagsspannung aufweisen, wie etwa 55 Volt oder mehr, in einigen Ausführungsformen etwa 65 Volt oder mehr, in einigen Ausführungsformen etwa 85 Volt oder mehr, in einigen Ausführungsformen etwa 90 Volt oder mehr, in einigen Ausführungsformen etwa 95 Volt oder mehr und in einigen Ausführungsformen etwa 100 Volt bis etwa 300 Volt, die bestimmt wird, indem man die angelegte Spannung in Schritten von 3 Volt erhöht, bis der Leckstrom 1 mA erreicht. Während seine Dicke im Allgemeinen je nach der besonderen Stelle des Anodenkörpers variieren kann, wird als „Dicke des Dielektrikums“ für die Zwecke der Bestimmung der dielektrischen Festigkeit im Allgemeinen die größte Dicke des Dielektrikums angesehen, die typischerweise etwa 60 nm oder mehr, in einigen Ausführungsformen etwa 60 bis etwa 500 nm, in einigen Ausführungsformen etwa 80 bis etwa 350 nm und in einigen Ausführungsformen etwa 100 bis etwa 300 nm beträgt.
- Der resultierende Kondensator kann in der Lage sein, stabile elektrische Eigenschaften (z.B. Kapazität) über einen weiten Bereich unterschiedlicher Bedingungen aufrechtzuerhalten. Zum Beispiel kann das Verhältnis der Kapazität nach Einwirkung wiederholter Zyklen einer Spannungsspitze („Lade-Entlade-Kapazität“) zu dem Anfangskapazitätswert vor diesem Test etwa 0,7 zu 1, in einigen Ausführungsformen etwa 0,8 zu 1, in einigen Ausführungsformen etwa 0,85 zu 1, in einigen Ausführungsformen etwa 0,9 zu 1, in einigen Ausführungsformen etwa 0,91 zu 0,99 und in einigen Ausführungsformen 0,92 zu 0,99 betragen. Die Spannungsspitze kann über 1000 bis 16 000 Zyklen (z.B. 1000, 2000, 3000, 4000, 5000, 8000, 12 000 oder 16 000 Zyklen) angewendet werden. Nach 3000 Zyklen kann der Kondensator zum Beispiel eine Lade-Entlade-Kapazität von 0,75 zu 1, in einigen Ausführungsformen etwa 0,95 zu 1, in einigen Ausführungsformen etwa 0,96 zu 1 und in einigen Ausführungsformen etwa 0,97 zu 1 aufweisen.
- Außerdem kann der Kondensator auch dann stabil bleiben, nachdem er während einer erheblichen Zeitdauer, wie etwa 100 Stunden oder mehr und in einigen Ausführungsformen etwa 150 Stunden bis etwa 3000 Stunden (z.B. 3000 Stunden) einer hohen Temperatur, wie etwa 80°C oder mehr, in einigen Ausführungsformen etwa 100°C bis etwa 150 °C und in einigen Ausführungsformen etwa 105°C bis etwa 130 °C (z.B. 105°C oder 125 °C) ausgesetzt war. In einer Ausführungsform zum Beispiel kann das Verhältnis der Kapazität, nachdem der Kondensator 3000 Stunden lang der hohen Temperatur (z.B. 105°C) ausgesetzt war, zu dem Anfangskapazitätswert (z.B. bei 23°C) etwa 0,7 zu 1, in einigen Ausführungsformen etwa 0,8 zu 1, in einigen Ausführungsformen etwa 0,9 zu 1 und in einigen Ausführungsformen etwa 0,91 bis 0,99, betragen. Der tatsächliche Kapazitätswert (trocken) kann variieren, beträgt aber typischerweise etwa 1 Millifarad pro Quadratzentimeter („mF/cm2“) oder mehr, in einigen Ausführungsformen etwa 2 mF/cm2 oder mehr, in einigen Ausführungsformen etwa 5 bis etwa 50 mF/cm2 und in einigen Ausführungsformen etwa 8 bis etwa 20 mF/cm2, gemessen bei einer Frequenz von 120 Hz.
- Außer den oben genannten kann der Kondensator auch andere verbesserte elektrische Eigenschaften aufweisen. Nachdem er zum Beispiel während einer Zeitdauer von etwa 30 Minuten bis etwa 20 Stunden, in einigen Ausführungsformen etwa 1 Stunde bis etwa 18 Stunden und in einigen Ausführungsformen etwa 4 Stunden bis etwa 16 Stunden einer angelegten Spannung (z.B. 120 Volt) ausgesetzt war, kann der Kondensator einen Leckstrom („DCL“) von nur etwa 100 Mikroampere („µA“) oder weniger, in einigen Ausführungsformen etwa 70 µA oder weniger und in einigen Ausführungsformen etwa 1 bis etwa 50 µA aufweisen. Bemerkenswerterweise kann der Kondensator solche niedrigen DCL-Werte auch unter trockenen Bedingungen aufweisen, wie es oben beschrieben ist. Der Kondensator kann auch einen relativ niedrigen äquivalenten Serienwiderstand („ESR“) aufweisen, wie etwa 200 Milliohm, in einigen Ausführungsformen weniger als etwa 150 Milliohm, in einigen Ausführungsformen etwa 0,1 bis etwa 125 Milliohm und in einigen Ausführungsformen etwa 1 bis etwa 100 Milliohm, gemessen bei einer Arbeitsfrequenz von 100 kHz und einer Temperatur von 23 °C. Der Kondensator kann auch dann solche ESR-Wert aufweisen, nachdem er über eine erhebliche Zeitspanne, wie etwa 100 Stunden oder mehr und in einigen Ausführungsformen etwa 150 Stunden bis etwa 3000 Stunden (z.B. 3000 Stunden) einer Temperatur von etwa 80°C oder mehr, in einigen Ausführungsformen etwa 100°C bis etwa 150 °C und in einigen Ausführungsformen etwa 105°C bis etwa 130 °C (z.B. 105°C oder 125 °C) ausgesetzt war. In einer Ausführungsform zum Beispiel beträgt das Verhältnis des ESR des Kondensators, nachdem er 3000 Stunden lang einer hohen Temperatur (z.B. 105°C) ausgesetzt war, zu dem Anfangs-ESR-Wert des Kondensators (z.B. bei 23 °C) etwa 2,0 oder weniger, in einigen Ausführungsformen etwa 1,5 oder weniger und in einigen Ausführungsformen 1,0 bis etwa 1,3 betragen.
- Es wird auch vermutet, dass der Verlustfaktor des Kondensators auf relativ niedrigen Werten gehalten werden kann. Der Verlustfaktor bezieht sich im Allgemeinen auf Verluste, die in dem Kondensator stattfinden, und wird gewöhnlich als Prozentanteil der idealen Kondensatorleistung ausgedrückt. Zum Beispiel beträgt der Verlustfaktor des Kondensators typischerweise etwa 250% oder weniger, in einigen Ausführungsformen etwa 200% oder weniger und in einigen Ausführungsformen etwa 1% bis etwa 180%, bestimmt bei einer Frequenz von 120 Hz.
- Verschiedene Ausführungsformen der vorliegenden Erfindung werden nun ausführlicher beschrieben.
- I. Kondensatorelement
- A. Anodenkörper
- Das Kondensatorelement umfasst eine Anode, die ein Dielektrikum enthält, das auf einem Anodenkörper gebildet ist. Der Anodenkörper kann in Form einer Folie, Metallfolie, eines Netzes, Pellets usw. vorliegen. Unabhängig von seiner Form ist der Anodenkörper typischerweise aus Tantal gebildet. In einer Ausführungsform zum Beispiel kann der Anodenkörper in Form eines Pellets, das aus einem Tantalpulver besteht, vorliegen. Das Tantalpulver kann durch ein Reduktionsverfahren gebildet werden, bei dem ein Tantalsalz (z.B. Kaliumfluorotantalat (K2TaF7), Natriumfluorotantalat (Na2TaF7), Tantalpentachlorid (TaCl5) usw.) mit einem Reduktionsmittel umgesetzt wird. Das Reduktionsmittel kann in Form einer Flüssigkeit, eines Gases (z.B. Wasserstoff) oder eines Feststoffs, wie eines Metalls (z.B. Natrium), einer Metalllegierung oder eines Metallsalzes, bereitgestellt werden. In einer Ausführungsform zum Beispiel kann ein Tantalsalz (z.B. TaCl5) auf eine Temperatur von etwa 900°C bis etwa 2000°C, in einigen Ausführungsformen etwa 1000°C bis etwa 1800°C und in einigen Ausführungsformen etwa 1100°C bis etwa 1600°C erhitzt werden, um einen Dampf zu bilden, der in Gegenwart eines gasförmigen Reduktionsmittels (z.B. Wasserstoff) reduziert werden kann. Zusätzliche Einzelheiten zu einer solchen Reduktionsreaktion können in
WO 2014/199480 - Wenn es eingesetzt wird, variiert die spezifische Ladung des Pulvers typischerweise je nach gewünschter Anwendung von etwa 2000 bis etwa 600 000 Mikrofarad mal Volt pro Gramm („µF·V/g“). Zum Beispiel kann in bestimmten Ausführungsformen ein Pulver mit hoher Ladung eingesetzt werden, das eine spezifische Ladung von etwa 100 000 bis etwa 600 000 µF·V/g, in einigen Ausführungsformen etwa 120 000 bis etwa 500 000 µF·V/g und in einigen Ausführungsformen etwa 150 000 bis etwa 400 000 µF·V/g aufweist. In anderen Ausführungsformen kann ein Pulver mit niedriger Ladung eingesetzt werden, das eine spezifische Ladung von etwa 2000 bis etwa 100 000 µF·V/g, in einigen Ausführungsformen etwa 5000 bis etwa 80 000 µF·V/g und in einigen Ausführungsformen etwa 10 000 bis etwa 70 000 µF·V/g aufweist. Wie in der Technik bekannt ist, kann die spezifische Ladung dadurch bestimmt werden, dass man die Kapazität mit der eingesetzten Anodisierungsspannung multipliziert und dann dieses Produkt durch das Gewicht des anodisierten Elektrodenkörpers dividiert. Das Pulver kann ein rieselfähiges, feinteiliges Pulver sein, das primäre Teilchen enthält. Die primären Teilchen des Pulvers weisen im Allgemeinen eine mediane Größe (D50) von etwa 5 bis etwa 500 Nanometer, in einigen Ausführungsformen etwa 10 bis etwa 400 Nanometer und in einigen Ausführungsformen etwa 20 bis etwa 250 Nanometer auf, bestimmt unter Verwendung eines von der Beckman Coulter Corporation hergestellten Laser-Teilchengrößenverteilungsanalysegeräts (z.B. LS-230), gegebenenfalls nachdem man die Teilchen 70 Sekunden lang einer Ultraschallschwingung ausgesetzt hat. Die primären Teilchen weisen typischerweise eine dreidimensionale granuläre Form (z.B. sphärolithisch oder winklig) auf. Solche Teilchen weisen typischerweise ein relativ geringes „Aspektverhältnis“ auf, bei dem es sich um den mittleren Durchmesser oder die mittlere Breite der Teilchen, dividiert durch die mittlere Dicke („D/T“), handelt. Zum Beispiel kann das Aspektverhältnis der Teilchen etwa 4 oder weniger, in einigen Ausführungsformen etwa 3 oder weniger und in einigen Ausführungsformen etwa 1 bis etwa 2 betragen. Neben primären Teilchen kann das Pulver auch andere Typen von Teilchen enthalten, wie sekundäre Teilchen, die durch Aggregation (oder Agglomeration) der primären Teilchen entstehen. Solche sekundären Teilchen können eine mediane Größe (D50) von etwa 1 bis etwa 500 Mikrometer und in einigen Ausführungsformen etwa 10 bis etwa 250 Mikrometer aufweisen.
- Die Agglomeration der Teilchen kann durch Erhitzen der Teilchen und/oder durch Verwendung eines Bindemittels erfolgen. Zum Beispiel kann eine Agglomeration bei einer Temperatur von etwa 0 °C bis etwa 40 °C, in einigen Ausführungsformen etwa 5 °C bis etwa 35 °C und in einigen Ausführungsformen etwa 15 °C bis etwa 30 °C erfolgen. Zu den geeigneten Bindemitteln gehören zum Beispiel etwa Polyvinylbutyral, Polyvinylacetat, Polyvinylalkohol, Polyvinylpyrrolidon, Cellulosepolymere, wie Carboxymethylcellulose, Methylcellulose, Ethylcellulose, Hydroxyethylcellulose und Methylhydroxyethylcellulose, ataktisches Polypropylen, Polyethylen, Polyethylenglycol (z.B. Carbowax von Dow Chemical Co.), Polystyrol, Poly(butadien/styrol); Polyamide, Polyimide und Polyacrylamide, hochmolekulare Polyether; Copolymere von Ethylenoxid und Propylenoxid; Fluorpolymere, wie Polytetrafluorethylen, Polyvinylidenfluorid und Fluorolefin-Copolymere, Acrylpolymere, wie Natriumpolyacrylat, Poly(niederalkylacrylate), Poly(niederalkylmethacrylate) und Copolymere von Niederalkylacrylaten und -methacrylaten; sowie Fettsäuren und Wachse, wie Stearin- und andere Seifenfettsäuren, Pflanzenwachs, Mikrowachse (gereinigte Paraffine) usw.
- Das resultierende Pulver kann mit Hilfe einer beliebigen herkömmlichen Pulverpressvorrichtung unter Bildung eines Presslings kompaktiert werden. Zum Beispiel kann eine Pressform eingesetzt werden, bei der es sich um eine Einplatz-Kompaktierpresse handelt, die eine Matrize und einen oder mehrere Stempel enthält. Alternativ dazu können auch Kompaktierpressformen des Ambosstyps verwendet werden, die nur eine Matrize und einen einzigen Unterstempel verwenden. Einplatz-Kompaktierpressformen sind in mehreren Grundtypen erhältlich, wie Nocken-, Kniehebel- und Exzenter- oder Kurbelpressen mit unterschiedlichen Fähigkeiten, wie einfach wirkend, doppelt wirkend, Schwebemantelmatrize, bewegliche Werkzeugaufspannplatte, Gegenstempel, Schnecke, Schlag, Heißpressen, Prägen oder Kalibrieren. Das Pulver kann um einen Anodenanschluss herum kompaktiert werden, der in Form eines Drahtes, Bleches usw. vorliegen kann. Der Anschluss kann in einer Längsrichtung von dem Anodenkörper ausgehen und kann aus irgendeinem elektrisch leitfähigen Material, wie Tantal, Niob, Aluminium, Hafnium, Titan usw. sowie elektrisch leitfähigen Oxiden und/oder Nitriden davon bestehen. Die Verbindung des Anschlusses zum Anodenkörper kann auch mit Hilfe anderer bekannter Techniken erreicht werden, wie durch Schweißen des Anschlusses an den Körper oder durch Einbetten desselben in den Anodenkörper während der Bildung (z.B. vor dem Kompaktieren und/oder Sintern).
- Nach dem Pressen kann gegebenenfalls vorhandenes Bindemittel entfernt werden, indem man den Pressling mehrere Minuten lang im Vakuum auf eine bestimmte Temperatur (z.B. etwa 150 °C bis etwa 500 °C) erhitzt. Alternativ dazu kann das Bindemittel auch entfernt werden, indem man den Pressling mit einer wässrigen Lösung in Kontakt bringt, wie es im US-Patent Nr.
6,197,252 (Bishop et al.) beschrieben ist. Danach wird der Pressling unter Bildung einer porösen zusammenhängenden Masse gesintert. Der Pressling wird typischerweise bei einer Temperatur von etwa 700 °C bis etwa 1600 °C, in einigen Ausführungsformen etwa 800 °C bis etwa 1500 °C und in einigen Ausführungsformen etwa 900 °C bis etwa 1200 °C über einen Zeitraum von etwa 5 Minuten bis etwa 100 Minuten und in einigen Ausführungsformen etwa 8 Minuten bis etwa 15 Minuten gesintert. Dies kann in einem oder mehreren Schritten erfolgen. Falls gewünscht, kann das Sintern in einer Atmosphäre erfolgen, die die Übertragung von Sauerstoffatomen zum Anodenkörper einschränkt. Zum Beispiel kann das Sintern in einer reduzierenden Atmosphäre, wie in einem Vakuum, Inertgas, Wasserstoff usw., erfolgen. Die reduzierende Atmosphäre kann unter einem Druck von etwa 10 Torr bis etwa 2000 Torr, in einigen Ausführungsformen etwa 100 Torr bis etwa 1000 Torr und in einigen Ausführungsformen etwa 100 Torr bis etwa 930 Torr stehen. Gemische von Wasserstoff und anderen Gasen (z.B. Argon oder Stickstoff) können ebenfalls eingesetzt werden. - B. Dielektrikum
- Die Anode ist auch mit einem Dielektrikum beschichtet. Wie oben erwähnt, wird das Dielektrikum dadurch gebildet, dass man die Anode anodisch oxidiert („anodisiert“), so dass über und/oder innerhalb der Anode eine dielektrische Schicht gebildet wird. Zum Beispiel kann eine Anode aus Tantal (Ta) zu Tantalpentoxid (Ta2O5) anodisiert werden. Typischerweise wird die Anodisierung durchgeführt, indem man zunächst einen Elektrolyten auf die Anode aufträgt, etwa durch Eintauchen der Anode in den Elektrolyten. Der Elektrolyt liegt im Allgemeinen in Form einer Flüssigkeit, wie einer Lösung (z.B. wässrig oder nichtwässrig), Dispersion, Schmelze usw. vor. In dem Elektrolyten wird im Allgemeinen ein Lösungsmittel eingesetzt, wie Wasser (z.B. entionisiertes Wasser), Ether (z.B. Diethylether und Tetrahydrofuran), Glycole (z.B. Ethylenglycol, Propylenglycol usw.), Alkohole (z.B. Methanol, Ethanol, n-Propanol, Isopropanol und Butanol), Triglyceride, Ketone (z.B. Aceton, Methylethylketon und Methylisobutylketon); Ester (z.B. Ethylacetat, Butylacetat, Diethylenglycoletheracetat und Methoxypropylacetat), Amide (z.B. Dimethylformamid, Dimethylacetamid, Dimethylcapryl-/caprinfettsäureamid und N-Alkylpyrrolidone), Nitrile (z.B. Acetonitril, Propionitril, Butyronitril und Benzonitril), Sulfoxide oder Sulfone (z.B. Dimethylsulfoxid (DMSO) und Sulfolan) usw. Das oder die Lösungsmittel können etwa 50 Gew.-% bis etwa 99,9 Gew.-%, in einigen Ausführungsformen etwa 75 Gew.-% bis etwa 99 Gew.-% und in einigen Ausführungsformen etwa 80 Gew.-% bis etwa 95 Gew.-% des Elektrolyten ausmachen. Obwohl es nicht unbedingt erforderlich ist, ist die Verwendung eines wässrigen Lösungsmittels (z.B. Wasser) häufig erwünscht, um die Bildung eines Oxids zu erleichtern. Tatsächlich kann Wasser etwa 1 Gew.-% oder mehr, in einigen Ausführungsformen etwa 10 Gew.-% oder mehr, in einigen Ausführungsformen etwa 50 Gew.-% oder mehr, in einigen Ausführungsformen etwa 70 Gew.-% oder mehr und in einigen Ausführungsformen etwa 90 Gew.-% bis 100 Gew.-% der in dem Elektrolyten verwendeten Lösungsmittel ausmachen.
- Der Elektrolyt ist elektrisch leitfähig und kann eine elektrische Leitfähigkeit von etwa 1 Millisiemens pro Zentimeter („mS/cm“) oder mehr, in einigen Ausführungsformen etwa 30 mS/cm oder mehr und in einigen Ausführungsformen etwa 40 mS/cm bis etwa 100 mS/cm aufweisen, bestimmt bei einer Temperatur von 25 °C. Um die elektrische Leitfähigkeit des Elektrolyten zu erhöhen, wird im Allgemeinen eine ionische Verbindung eingesetzt, die in dem Lösungsmittel unter Bildung von Ionen dissoziieren kann. Geeignete ionische Verbindungen zu diesem Zweck sind zum Beispiel etwa Säuren, wie Salpetersäure, Schwefelsäure, Phosphorsäure, Polyphosphorsäure, Borsäure, Boronsäure usw., organische Säuren einschließlich Carbonsäuren, wie Acrylsäure, Methacrylsäure, Malonsäure, Bernsteinsäure, Salicylsäure, Sulfosalicylsäure, Adipinsäure, Maleinsäure, Äpfelsäure, Ölsäure, Gallsäure, Weinsäure, Zitronensäure, Ameisensäure, Essigsäure, Glycolsäure, Oxalsäure, Propionsäure, Phthalsäure, Isophthalsäure, Glutarsäure, Gluconsäure, Milchsäure, Asparaginsäure, Glutaminsäure, Itaconsäure, Trifluoressigsäure, Barbitursäure, Zimtsäure, Benzoesäure, 4-Hydroxybenzoesäure, Aminobenzoesäure usw., Sulfonsäuren, wie Methansulfonsäure, Benzolsulfonsäure, Toluolsulfonsäure, Trifluormethansulfonsäure, Styrolsulfonsäure, Naphthalindisulfonsäure, Hydroxybenzolsulfonsäure, Dodecylsulfonsäure, Dodecylbenzolsulfonsäure usw., polymere Säuren, wie Polyacryl- oder Polymethacrylsäure und Copolymere davon (z.B. Maleinsäure-Acrylsäure-, Sulfonsäure-Acrylsäure- und Styrol-Acrylsäure-Copolymere), Carrageensäure, Carboxymethylcellulose, Alginsäure usw., usw. Die Konzentration der ionischen Verbindungen wird so gewählt, dass man die gewünschte elektrische Leitfähigkeit erreicht. Zum Beispiel kann eine Säure (z.B. Phosphorsäure) etwa 0,01 Gew.-% bis etwa 5 Gew.-%, in einigen Ausführungsformen etwa 0,05 Gew.-% bis etwa 0,8 Gew.-% und in einigen Ausführungsformen etwa 0,1 Gew.-% bis etwa 0,5 Gew.-% des Elektrolyten ausmachen, Falls gewünscht, können in dem Elektrolyten auch Gemische von ionischen Verbindungen eingesetzt werden.
- Zur Bildung des Dielektrikums wird typischerweise ein Strom durch den Elektrolyten geleitet, der sich in Kontakt mit dem Anodenkörper befindet. Der Wert der Bildungsspannung entspricht der Dicke der dielektrischen Schicht. Zum Beispiel kann die Stromquelle zunächst im galvanostatischen Modus betrieben werden, bis die erforderliche Spannung erreicht ist. Danach kann die Stromquelle auf einen potentiostatischen Modus umgeschaltet werden, um zu gewährleisten, dass die gewünschte Dicke des Dielektrikums über der gesamten Oberfläche der Anode gebildet wird. Selbstverständlich können auch andere bekannte Verfahren eingesetzt werden, wie potentiostatische Impuls- oder Schrittverfahren. Die Spannung, bei der die anodische Oxidation erfolgt, liegt typischerweise im Bereich von etwa 4 bis etwa 250 V und in einigen Ausführungsformen etwa 5 bis etwa 200 V und in einigen Ausführungsformen etwa 10 bis etwa 150 V. Während der Oxidation kann der Elektrolyt auf einer erhöhten Temperatur gehalten werden, wie etwa 30 °C oder mehr, in einigen Ausführungsformen etwa 40 °C bis etwa 200 °C und in einigen Ausführungsformen etwa 50 °C bis etwa 100 °C. Die anodische Oxidation kann auch bei Umgebungstemperatur oder darunter durchgeführt werden. Die resultierende dielektrische Schicht kann auf einer Oberfläche der Anode und innerhalb ihrer Poren gebildet werden.
- Obwohl es nicht erforderlich ist, kann die dielektrische Schicht in bestimmten Ausführungsformen über die gesamte Anode hinweg eine unterschiedliche Dicke besitzen, indem sie einen ersten Teil, der eine äußere Oberfläche der Anode bedeckt, und einen zweiten Teil, der die innere Oberfläche der Anode bedeckt, besitzt. In solchen Ausführungsformen ist der erste Teil gezielt so ausgebildet, dass seine Dicke größer ist als die des zweiten Teils. Man sollte sich jedoch darüber im Klaren sein, dass die Dicke der dielektrischen Schicht nicht innerhalb eines bestimmten Bereichs gleichmäßig sein muss. Bestimmte Teile der dielektrischen Schicht, die an die äußere Oberfläche angrenzen, können zum Beispiel tatsächlich dünner sein als bestimmte Teile der Schicht an der inneren Oberfläche und umgekehrt. Dennoch kann die dielektrische Schicht so ausgebildet sein, dass wenigstens ein Teil der Schicht an der äußeren Oberfläche eine größere Dicke hat als wenigstens ein Teil an der inneren Oberfläche. Obwohl der genaue Unterschied in diesen Dicken je nach der besonderen Anwendung variieren kann, beträgt das Verhältnis der Dicke des ersten Teils zu der Dicke des zweiten Teils typischerweise etwa 1,2 bis etwa 40, in einigen Ausführungsformen etwa 1,5 bis etwa 25 und in einigen Ausführungsformen etwa 2 bis etwa 20.
- Zur Bildung einer dielektrischen Schicht mit einer unterschiedlichen Dicke kann ein mehrstufiges Verfahren eingesetzt werden. In jeder Stufe des Verfahrens wird die gesinterte Anode unter Bildung einer dielektrischen Schicht (z.B. Tantalpentoxid) anodisch oxidiert („anodisiert“). Während des ersten Stadiums der Anodisierung wird typischerweise eine relativ kleine Formierungsspannung eingesetzt, um zu gewährleisten, dass die gewünschte Dicke des Dielektrikums für den inneren Bereich erreicht wird, wie Formierungsspannungen im Bereich von etwa 1 bis etwa 90 Volt, in einigen Ausführungsformen etwa 2 bis etwa 50 Volt und in einigen Ausführungsformen etwa 5 bis etwa 20 Volt. Danach kann der gesinterte Körper dann in einem zweiten Stadium des Verfahrens anodisch oxidiert werden, um die Dicke des Dielektrikums auf das gewünschte Niveau zu erhöhen. Dies wird im Allgemeinen dadurch erreicht, dass in einem Elektrolyten bei einer höheren Spannung anodisiert wird, als sie während des ersten Stadiums eingesetzt wurde, wie bei Formierungsspannungen im Bereich von etwa 50 bis etwa 350 Volt, in einigen Ausführungsformen etwa 60 bis etwa 300 Volt und in einigen Ausführungsformen etwa 70 bis etwa 200 Volt. Während des ersten und/oder zweiten Stadiums kann der Elektrolyt auf einer Temperatur im Bereich von etwa 15 °C bis etwa 95 °C, in einigen Ausführungsformen etwa 20 °C bis etwa 90 °C und in einigen Ausführungsformen etwa 25 °C bis etwa 85 °C gehalten werden.
- Die während des ersten und des zweiten Stadiums des Anodisierungsvorgangs eingesetzten Elektrolyte können gleich oder verschieden sein. Typischerweise ist es jedoch wünschenswert, verschiedene Lösungen einzusetzen, um das Erreichen einer größeren Dicke an den äußeren Teilen der dielektrischen Schicht zu erleichtern. Zum Beispiel kann es wünschenswert sein, dass der im zweiten Stadium eingesetzte Elektrolyt eine geringere Ionenleitfähigkeit hat als der im ersten Stadium eingesetzte Elektrolyt, um zu verhindern, dass sich auf der inneren Oberfläche der Anode eine erhebliche Menge an Oxidschicht bildet. In dieser Hinsicht kann der während des ersten Stadiums eingesetzte Elektrolyt eine saure Verbindung, wie Chlorwasserstoffsäure, Salpetersäure, Schwefelsäure, Phosphorsäure, Polyphosphorsäure, Borsäure, Boronsäure usw., enthalten. Ein solcher Elektrolyt kann eine elektrische Leitfähigkeit von etwa 0,1 bis etwa 100 mS/cm, in einigen Ausführungsformen etwa 0,2 bis etwa 20 mS/cm und in einigen Ausführungsformen etwa 1 bis etwa 10 mS/cm aufweisen, bestimmt bei einer Temperatur von 25 °C. Der während des zweiten Stadiums eingesetzte Elektrolyt enthält typischerweise ein Salz einer schwachen Säure, so dass die Hydroniumionenkonzentration in den Poren infolge eines darin erfolgenden Ladungsdurchgangs zunimmt. Ionentransport oder -diffusion finden so statt, dass sich das Anion der schwachen Säure gemäß der Notwendigkeit, die elektrischen Ladungen auszugleichen, in die Poren bewegt. Als Ergebnis wird die Konzentration der hauptsächlichen leitfähigen Spezies (Hydronium-Ion) bei der Etablierung eines Gleichgewichts zwischen dem Hydroniumion, dem Säureanion und der undissoziierten Säure reduziert, und dadurch entsteht eine schlechter leitfähige Spezies. Die Reduktion der Konzentration der leitfähigen Spezies führt zu einem relativ hohen Spannungsabfall im Elektrolyten, was die weitere Anodisierung im Innern behindert, während auf der Außenseite eine dickere Oxidschicht bis zu einer höheren Formierungsspannung im Bereich der fortgesetzten hohen Leitfähigkeit aufgebaut wird. Zu den geeigneten Salzen schwacher Säuren gehören etwa zum Beispiel Ammonium- oder Alkalimetallsalze (z.B. Natrium, Kalium usw.) von Borsäure, Boronsäure, Essigsäure, Oxalsäure, Milchsäure, Adipinsäure usw. Besonders gut geeignete Salze sind Natriumtetraborat und Ammoniumpentaborat. Solche Elektrolyten weisen typischerweise eine elektrische Leitfähigkeit von etwa 0,1 bis etwa 20 mS/cm, in einigen Ausführungsformen etwa 0,5 bis etwa 10 mS/cm und in einigen Ausführungsformen etwa 1 bis etwa 5 mS/cm auf, bestimmt bei einer Temperatur von 25 °C.
- Falls gewünscht, kann jedes Stadium der Anodisierung durch einen oder mehrere Zyklen wiederholt werden, um die gewünschte Dicke des Dielektrikums zu erreichen. Weiterhin kann die Anode nach dem ersten und/oder dem zweiten Stadium auch mit einem anderen Lösungsmittel (z.B. Wasser) gespült oder gewaschen werden, um den Elektrolyten zu entfernen.
- C. Vorbeschichtung
-
- Z ein metallorganisches Atom, wie Silicium, Titan usw., ist;
- R1, R2 und R3 unabhängig Alkyl (z.B. Methyl, Ethyl, Propyl usw.) oder Hydroxyalkyl (z.B. Hydroxymethyl, Hydroxyethyl, Hydroxypropyl usw.) sind, wobei wenigstens eines aus R1, R2 und R3 Hydroxyalkyl ist;
- n eine ganze Zahl von 0 bis 8, in einigen Ausführungsformen von 1 bis 6 und in einigen Ausführungsformen von 2 bis 4 (z.B. 3) ist; und
- X eine organische oder anorganische funktionelle Gruppe, wie Glycidyl, Glycidyloxy, Mercapto, Amino, Vinyl usw., ist.
- In bestimmten Ausführungsformen kann wenigstens eines aus R1, R2 und R3 in Formel (II) Hydroxyalkyl (z.B. OCH3) sein. Zum Beispiel kann jedes aus R1, R2 und R3 Hydroxyalkyl sein. In anderen Ausführungsformen jedoch kann R1 Alkyl (z.B. CH3) sein, und R2 und R3 können Hydroxyalkyl (z.B. OCH3) sein.
-
- R1, R2 und R3 wie oben definiert sind;
- R4 und R5 unabhängig Wasserstoff, Alkyl, unabhängig Alkyl, Alkenyl, Aryl, Heteroaryl, Cycloalkyl, Heterocyclyl, Halogen, Halogenalkyl, Hydroxyalkyl sind, oder alternativ dazu N, R4 und R5 zusammen mit einem oder mehreren zusätzlichen Atomen eine Ringstruktur (z.B. Heteroaryl oder Heterocyclyl) bilden; und
- Z eine organische Gruppe ist, die das Stickstoffatom mit dem Siliciumatom verknüpft, wie Alkyl (z.B. Ethyl oder Propyl), Aryl (z.B. Phenyl) usw.
- Beispiele für monoaminfunktionelle Organosilanverbindungen sind zum Beispiel etwa primäre Aminverbindungen (z.B. 3-Aminopropyltriethoxysilan, 3-Aminopropyltrimethoxysilan, 4-Aminobutyltriethoxysilan, m-Aminophenyltrimethoxysilan, p-Aminophenyltrimethoxysilan, Aminophenyltrimethoxysilan, 3-Aminopropyltris(methoxyethoxy)silan, 11-Aminoundecyltriethoxysilan, 2(4-Pyridylethyl)triethoxysilan, 2-(Trimethoxysilylethyl)pyridin, N-(3-Trimethoxysilylpropyl)-pyrrol, 3-(m-Aminophenoxypropyl)trimethoxysilan, Aminopropylsilantriol, 3-Aminopropylmethyldiethoxysilan, 3-Aminopropyldiisopropylethoxysilan, 3-Aminopropyldimethylethoxysilan usw.); sekundäre Aminverbindungen (z.B. N-Butylaminopropyltrimethoxysilan, N-Ethylaminoisobutyltrimethoxysilan, n-Methylaminopropyltrimethoxysilan, N-Phenylaminopropyltrimethoxysilan, 3-(N-Allylamino)propyltrimethoxysilan, Cyclohexylaminomethyl)triethoxysilan, N-Cyclohexylaminopropyltrimethoxysilan, N-Ethylaminoisobutylmethyldiethoxysilan, (Phenylaminoethyl)methyldiethoxysilan, N-Phenylaminomethytrimethoxysilan, N-Methylaminopropylmethyldimethoxysilan usw.); tertiäre Aminverbindungen (z.B. Bis(2-hydroxyethyl)3-aminopropyltriethoxysilan, Diethylaminomethyltriethoxysilan, (N,N-Diethyl-3-aminopropyl)trimethoxysilan usw.); sowie Kombinationen davon. Weiterhin kann, falls gewünscht, eine zusätzliche Gruppe an das Stickstoffatom gebunden sein, so dass die Verbindung eine quartäraminfunktionelle Silanverbindung ist.
-
- R1, R2, R3, R4 und R5 wie oben definiert sind und
- Z1 eine organische Gruppe ist, die das Stickstoffatom mit dem Siliciumatom verknüpft, und Z2 eine organische Gruppe ist, die die Stickstoffatome miteinander verknüpft, wie Alkyl (z.B. Ethyl oder Propyl), Aryl (z.B. Phenyl) usw. Beispiele für solche diaminofunktionellen Silanverbindungen sind zum Beispiel etwa N-(2-Aminoethyl)aminopropyltrimethoxysilan, N-(2-Aminoethyl)-3-aminopropyltrimethoxysilan, N-(6-Aminohexyl)aminomethyltriethoxysilan, N-(6-Aminohexyl)aminopropyltrimethoxysilan, N-(2-Aminoethyl)-11-aminoundecyltrimethoxysilan), (Aminoethylaminomethyl)phenethyltrimethoxysilan, N-3-[(Amino(polypropylenoxy)]aminopropyltrimethoxysilan, N-(2-Aminoethyl)-3-aminopropylsilantriol, N-(2-Aminoethyl)-3-aminopropylmethyldimethoxysilan, N-(2-Aminoethyl)-3-aminoisobutylmethyldimethoxysilan, (Aminoethylamino)-3-isobutyldimethylmethoxysilan usw. sowie Kombinationen davon. Triaminonfunktionelle Verbindungen, wie (3-Trimethoxysilylpropyl)diethylentriamin, können ebenfalls eingesetzt werden.
- Selbstverständlich können, wie oben angegeben, auch andere funktionelle Gruppen eingesetzt werden. Zum Beispiel können in bestimmten Ausführungsformen schwefelfunktionelle Silanverbindungen eingesetzt werden, wie 3-Mercaptopropyltrimethoxysilan, 3-Mercaptopropyltriethoxysilan, 2,2-Dimethoxy-1-thia-2-silacyclopentan, 11-Mercaptoundecyltrimethoxysilan, S-(Octanoyl)-mercaptopropyltriethoxysilan, 2-(2-Pyridylethyl)thiopropyltrimethoxysilan, 2-(4-Pyridethyl)thiopropyltrimethoxysilan, 3-Thiocyantopropyltrimethoxysilan, 2-(3-Trimethoxysilylpropylthio)thiophen, Mercaptomethylmethyldiethoxysilan, 3-Mercaptopropylmethyldimethoxysilan, Bis[3-(triethoxysilyl)propyl]tetrasulfid, Bis[3-(triethoxysilyl)propyl]disulfid, Bis[m-(2-triethoxysilylethyl)tolyl]polysulfid, Bis[3-(triethoxysilyl)propyl]thioharnstoff usw. sowie Kombinationen davon.
- Die besondere Art und Weise, in der die Vorbeschichtung auf den Kondensatorkörper aufgetragen wird, kann nach Wunsch variieren. In einer bestimmten Ausführungsform wird die Verbindung in einem organischen Lösungsmittel aufgelöst und als Lösung auf das Teil aufgetragen, wie etwa durch Siebdruck, Tauchen, elektrophoretische Beschichtung, Sprühen usw. Das organische Lösungsmittel kann variieren, ist aber typischerweise ein Alkohol, wie Methanol, Ethanol usw. Metallorganische Verbindungen können etwa 0,1 Gew.-% bis etwa 10 Gew.-%, in einigen Ausführungsformen etwa 0,2 Gew.-% bis etwa 8 Gew.-% und in einigen Ausführungsformen etwa 0,5 Gew.-% bis etwa 5 Gew.-% der Lösung ausmachen. Ebenso können Lösungsmittel etwa 90 Gew.-% bis etwa 99,9 Gew.-%, in einigen Ausführungsformen etwa 92 Gew.-% bis etwa 99,8 Gew.-% und in einigen Ausführungsformen etwa 95 Gew.-% bis etwa 99,5 Gew.-% der Lösung ausmachen. Sobald sie aufgetragen ist, kann das Teil dann getrocknet werden, um das Lösungsmittel davon zu entfernen, und eine Vorbeschichtung bilden, die die metallorganische Verbindung enthält.
- D. Fester Elektrolyt
- Ein fester Elektrolyt bedeckt das Dielektrikum und die optionale Vorbeschichtung und fungiert allgemein als Kathode für den Kondensator. Typischerweise beträgt die Gesamtdicke des festen Elektrolyten etwa 1 bis etwa 50 µm und in einigen Ausführungsformen etwa 5 bis etwa 20 µm. Typischerweise enthält der feste Elektrolyt ein intrinsisch leitfähiges Polymer, das eine positive Ladung aufweist, die sich auf der Hauptkette befindet und wenigstens teilweise durch kovalent an das Polymer gebundene Anionen kompensiert wird. Ein Beispiel für ein geeignetes intrinsisch leitfähiges Polymer kann zum Beispiel Thiophen-Repetiereinheiten der folgenden allgemeinen Formel (I) aufweisen:
- R = (CH2)a-O-(CH2)b-L ist, wobei L eine Bindung oder HC([CH2]cH) ist;
- a = 0 bis 10, in einigen Ausführungsformen 0 bis 6 und in einigen Ausführungsformen 1 bis 4 (z.B 1) beträgt;
- b = 1 bis 18, in einigen Ausführungsformen 1 bis 10 und in einigen Ausführungsformen 2 bis 6 (z.B. 2, 3, 4 oder 5) beträgt;
- c = 0 bis 10, in einigen Ausführungsformen 0 bis 6 und in einigen Ausführungsformen 1 bis 4 (z.B. 1) beträgt;
- M ein Anion, wie SO3, C(O)O, BF4, CF3SO3, SbF6, N(SO2CF3)2, C4H3O4, ClO4 usw., ist;
- X ein Kation, wie Wasserstoff, ein Alkalimetall (z.B. Lithium, Natrium, Rubidium, Cäsium oder Kalium), Ammonium usw., ist.
- In einer besonderen Ausführungsform ist M in Formel (I) ein Sulfonat-Ion, so dass das intrinsisch leitfähige Polymer Repetiereinheiten der folgenden Formel (II) enthält:
- Falls gewünscht, kann das Polymer ein Copolymer sein, das andere Arten von Repetiereinheiten enthält. In solchen Ausführungsformen machen die Repetiereinheiten der Formel (I) typischerweise etwa 50 Mol-% oder mehr, in einigen Ausführungsformen etwa 75 Mol-% bis etwa 99 Mol-% und in einigen Ausführungsformen etwa 85 Mol-% bis etwa 95 Mol-% der Gesamtmenge der Repetiereinheiten in dem Copolymer aus. Selbstverständlich lann das Polymer auch insofern ein Homopolymer sein, als es 100 Mol-% der Repetiereinheiten der Formel (I) enthält.
-
- a und b wie oben definiert sind;
- R5 eine gegebenenfalls substituierte lineare oder verzweigte C1-C6-Alkylgruppe (z.B. Methyl) oder ein Halogenatom (z.B Fluor) ist;
- X ein Wasserstoffatom, ein Alkalimetall (z.B. Li, Na oder K), NH(R1)3 oder HNC5H5, wobei R1 jeweils unabhängig ein Wasserstoffatom oder eine gegebenenfalls substituierte C1-C6-Alkylgruppe ist.
- Spezielle Beispiele für Thiophenverbindungen, die zur Bildung solcher Repetiereinheiten verwendet werden, sind sind im
US-Patent Nr. 9,718,905 - Das intrinsisch leitfähige Polymer kann durch eine Vielzahl von Methoden gebildet werden, wie der Fachmann weiß. In einer besonderen Ausführungsform zum Beispiel kann eine Thiophenverbindung mit der allgemeinen Formel (I) in Gegenwart eines oxidativen Katalysators polymerisiert werden. Derivate dieser Monomere, bei denen es sich zum Beispiel um Dimere oder Trimere der obigen Verbindungen handelt, können ebenfalls eingesetzt werden. Die Derivate können aus gleichen oder unterschiedlichen Monomereinheiten bestehen und in reiner Form oder in einem Gemisch miteinander und/oder mit den Monomeren verwendet werden. Oxidierte oder reduzierte Formen dieser Vorläufer können ebenfalls eingesetzt werden. Die Menge des oxidierenden Katalysators, der in dieser Polymerisationsreaktion verwendet wird, unterliegt keiner besonderen Einschränkung und kann in einem Bereich von 1 bis 50 Äquivalenten, besonders bevorzugt 1 bis 20 Äquivalenten, der Menge der als Einsatzmaterial verwendeten Thiophenverbindung liegen. Der oxidative Katalysator kann ein Übergangsmetallsalz sein, wie ein Salz einer anorganischen oder organischen Säure, das Ammonium-, Natrium-, Gold-, Eisen(III)-, Kupfer(II)-, Chrom(VI)-, Cer(IV)-, Mangan(IV)-, Mangan(VII)- oder Ruthenium(III)-Kationen enthält. Besonders gut geeignete Übergangsmetallsalze sind Halogenide (z.B. FeCl3 oder HAuCl4), Salze anderer anorganischer Säuren (z.B. Fe(CI04)3, Fe2(SO4)3, (NH4)2S2O8 oder Na3Mo12PO40) und Salze organischer Säuren und anorganischer Säuren, die organische Reste umfassen. Beispiele für Salze von anorganischen Säuren mit organischen Resten sind zum Beispiel Eisen(III)-Salze von Schwefelsäuremonoestern von C1- bis C20-Alkanolen (z.B. das Eisen(III)-Salz von Laurylsulfat). Ebenso sind Beispiele für Salze von organischen Säuren zum Beispiel Eisen(III)-Salze von C1- bis C20-Alkansulfonsäuren (z.B. Methan-, Ethan-, Propan-, Butan- oder Dodecansulfonsäure); Eisen(III)-Salze von aliphatischen Perfluorsulfonsäuren (z.B. Trifluormethansulfonsäure, Perfluorbutansulfonsäure oder Perfluoroctansulfonsäure); Eisen(III)-Salze von aliphatischen C1- bis C20-Carbonsäuren (z.B. 2-Ethylhexylcarbonsäure); Eisen(III)-Salze von aliphatischen Perfluorcarbonsäuren (z.B. Trifluoressigsäure oder Perfluoroctansäure); Eisen(III)-Salze von aromatischen Sulfonsäuren, die gegebenenfalls mit C1- bis C20-Alkylgruppen substituiert sind (z.B. Benzolsulfonsäure, o-Toluolsulfonsäure, p-Toluolsulfonsäure oder Dodecylbenzolsulfonsäure); Eisen(III)-Salze von Cycloalkansulfonsäuren (z.B. Camphersulfonsäure); usw. Gemische dieser oben genannten Salze können ebenfalls verwendet werden.
- Die oxidative Polymerisation erfolgt im Allgemeinen in Gegenwart von einem oder mehreren Lösungsmitteln. Zu den geeigneten Lösungsmitteln gehören zum Beispiel Wasser, Glycole (z.B. Ethylenglycol, Propylenglycol, Butylenglycol, Triethylenglycol, Hexylenglycol, Polyethylenglycole, Ethoxydiglycol, Dipropylenglycol usw.), Glycolether (z.B. Methylglycolether, Ethylglycolether, Isopropylglycolether usw.), Alkohole (z.B. Methanol, Ethanol, n-Propanol, Isopropanol und Butanol), Ketone, (z.B. Aceton, Methylethylketon und Methylisobutylketon); Ester (z.B. Ethylacetat, Butylacetat, Diethylenglycoletheracetat, Methoxypropylacetat, Ethylencarbonat, Propylencarbonat usw.), Amide (z.B. Dimethylformamid, Dimethylacetamid, Dimethylcapryl-/caprinfettsäureamid und N-Alkylpyrrolidone), Sulfoxide oder Sulfone (z.B. Dimethylsulfoxid (DMSO) und Sulfolan), phenolische Verbindungen (z.B. Toluol, Xylol usw.) usw. Wasser ist ein besonders gut geeignetes Lösungsmittel für die Reaktion. Die Menge des in dieser Polymerisationsreaktion verwendeten Lösungsmittels unterliegt keiner besonderen Einschränkung, solange die als Material verwendete Thiophenverbindung in dem Lösungsmittel löslich ist, sie beträgt jedoch vorzugsweise das 0,1- bis 100-fache, besonders bevorzugt das 0,1- bis 50-fache, des Gewichts der eingesetzten Thiophenverbindung. Die Temperatur, bei der die Reaktion stattfindet, variiert typischerweise von etwa -20 °C bis etwa 140 °C und in einigen Ausführungsformen von etwa 20 °C bis etwa 100 °C. Nach Beendigung der Reaktion können bekannte Reinigungsmethoden eingesetzt werden, um alle Salzverunreinigungen zu entfernen, wie durch Waschen mit einem Lösungsmittel, Umfällung, zentrifugale Sedimentation, Ultrafiltration, Dialyse oder Behandlung mit einem Ionenaustauscherharz usw. sowie Kombinationen davon.
- Unabhängig davon, wie es gebildet wird, gilt das Polymer insofern als „intrinsisch“ leitfähig, als es eine positive Ladung aufweist, die sich auf der Hauptkette befindet und wenigstens teilweise durch kovalent an das Polymer gebundene Anionen kompensiert wird. Das Polymer kann zum Beispiel im trockenen Zustand eine relativ hohe spezifische Leitfähigkeit von etwa 1 Siemens pro Zentimeter („S/cm“) oder mehr, in einigen Ausführungsformen etwa 10 S/cm oder mehr, in einigen Ausführungsformen etwa 20 S/cm oder mehr und in einigen Ausführungsformen etwa 50 bis etwa 500 S/cm aufweisen. Als Ergebnis der intrinsischen Leitfähigkeit erfordert die Schicht keine Zugabe von herkömmlichen Dotierungsmitteln, wie Polystyrolsulfonsäure. Tatsächlich kann die Schicht im Wesentlichen frei von solchen Dotierungsmitteln sein. Dennoch sollte man sich darüber im Klaren sein, dass in bestimmten Ausführungsformen der vorliegenden Erfindung Dotierungsmittel eingesetzt werden können. Wenn sie eingesetzt werden, sind Dotierungsmittel jedoch typischerweise in der Schicht in einer Menge von etwa 5 Gew.-% oder weniger, in einigen Ausführungsformen etwa 2 Gew.-% oder weniger und in einigen Ausführungsformen etwa 1 Gew.-% oder weniger vorhanden.
- Das Polymer ist auch im Allgemeinen gut in Wasser löslich, so dass es leichter und effektiver auf die Anode aufgetragen werden kann. Das lösliche Polymer kann auch die kleinen Poren, die von dem Pulver mit der hohen spezifischen Ladung gebildet werden, leichter imprägnieren, so dass der resultierende feste Elektrolyt eine „filmartige“ Konfiguration aufweist und wenigstens einen Teil der Anode im Wesentlichen gleichmäßig beschichtet. Dadurch wird die Qualität des resultierenden Oxids sowie dessen Oberflächenbedeckung verbessert, und dadurch werden auch die elektrischen Eigenschaften der Kondensatorbaugruppe verbessert.
- i. Innere Schichten
- Der feste Elektrolyt ist im Allgemeinen aus einer oder mehreren „inneren“ leitfähigen Polymerschichten gebildet. Der Ausdruck „innere“ bezieht sich in diesem Zusammenhang auf eine oder mehrere Schichten, die aus demselben Material bestehen und die Vorbeschichtung bedecken, entweder direkt oder über eine andere Schicht (z.B. Vorbeschichtung). Die innere Schicht oder Schichten enthalten zum Beispiel typischerweise ein intrinsisch leitfähiges Polymer, wie es oben beschrieben ist. In einer bestimmten Ausführungsform ist oder sind die inneren Schichten im Wesentlichen frei von extrinsisch leitfähigen Polymeren und bestehen also primär aus intrinsisch leitfähigen Polymeren. Insbesondere können intrinsisch leitfähige Polymere etwa 50 Gew.-% oder mehr, in einigen Ausführungsformen etwa 70 Gew.-% oder mehr und in einigen Ausführungsformen etwa 90 Gew.-% oder mehr (z.B. 100 Gew.-%) der inneren Schicht oder Schichten ausmachen. Es kann eine einzige oder es können mehrere innere Schichten eingesetzt werden. Zum Beispiel enthält der feste Elektrolyt typischerweise 2 bis 30, in einigen Ausführungsformen 4 bis 20 und in einigen Ausführungsformen etwa 5 bis 15 innere Schichten (z.B. 10 Schichten).
- Die innere Schicht oder Schichten können in Form einer Lösung, die ein Lösungsmittel enthält, aufgetragen werden. Die Konzentration des Polymers kann je nach der gewünschten Viskosität der Schicht und der besonderen Art und Weise, wie sie auf die Anode aufgetragen werden soll, variieren. Typischerweise jedoch macht das Polymer etwa 0,1 bis etwa 10 Gew.-%, in einigen Ausführungsformen etwa 0,4 bis etwa 5 Gew.-% und in einigen Ausführungsformen etwa 0,5 bis etwa 4 Gew.-% der Lösung aus. Das oder die Lösungsmittel können ebenso etwa 90 Gew.-% bis etwa 99,9 Gew.-%, in einigen Ausführungsformen etwa 95 Gew.-% bis etwa 99,6 Gew.-% und in einigen Ausführungsformen etwa 96 Gew.-% bis etwa 99,5 Gew.-% der Lösung ausmachen. Während sicher auch andere Lösungsmittel eingesetzt werden können, ist es im Allgemeinen wünschenswert, dass Wasser das primäre Lösungmittel ist, so dass die Lösung als „wässrige“ Lösung gilt. In den meisten Ausführungsformen macht Wasser zum Beispiel wenigstens etwa 50 Gew.-%, in einigen Ausführungsformen wenigstens etwa 75 Gew.-% und in einigen Ausführungsformen etwa 90 Gew.-% bis 100 Gew.-% des oder der eingesetzten Lösungsmittel aus. Wenn eine Lösung eingesetzt wird, kann sie mit Hilfe irgendeiner bekannten Methode, wie Tauchen, Gießen (z.B. Vorhangbeschichtung, Schleuderbeschichtung usw.), Drucken (z.B. Tiefdruck, Offsetdruck, Siebdruck usw.) usw. auf die Anode aufgetragen werden. Die resultierende Schicht des leitfähigen Polymers kann getrocknet und/oder gewaschen werden, nachdem sie auf die Anode aufgetragen wurde.
- ii. Äußere Schichten
- Der feste Elektrolyt kann nur „innere Schichten“ enthalten, so dass er im Wesentlichen aus demselben Material, d.h. intrinsisch leitfähigen Polymeren, besteht. Dennoch kann der feste Elektrolyt in anderen Ausführungsformen auch eine oder mehrere optionale „äußere“ leitfähige Polymerschichten enthalten, die aus einem anderen Material als die innere Schicht oder Schichten bestehen und die innere Schicht oder Schichten bedecken. Zum Beispiel kann die äußere oder können die äußeren Schichten ein extrinsisch leitfähiges Polymer enthalten. In einer besonderen Ausführungsform besteht oder bestehen die äußeren Schichten insofern primär aus solchen extrinsisch leitfähigen Polymeren, als diese etwa 50 Gew.-% oder mehr, in einigen Ausführungsformen etwa 70 Gew.-% oder mehr und in einigen Ausführungsformen etwa 90 Gew.-% oder mehr (z.B. 100 Gew.-%) der jeweiligen äußeren Schicht ausmachen. Es kann eine einzige oder es können mehrere äußere Schichten eingesetzt werden. Zum Beispiel kann der feste Elektrolyt 2 bis 30, in einigen Ausführungsformen 4 bis 20 und in einigen Ausführungsformen etwa 5 bis 15 äußere Schichten enthalten.
-
- R7 Folgendes ist: ein linearer oder verzweigter C1- bis C18-Alkylrest (z.B. Methyl, Ethyl, n- oder Isopropyl, n-, iso-, sek- oder tert-Butyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1-Ethylpropyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 2,2-Dimethylpropyl, n-Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Hexadecyl, n-Octadecyl usw.); ein C5- bis C12-Cycloalkylrest (z.B. Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecyl usw.); ein C6- bis C14-Arylrest (z.B. Phenyl, Naphthyl usw.); ein C7- bis C18-Aralkylrest (z.B. Benzyl, o-, m-, p-Tolyl, 2,3-, 2,4-, 2,5-, 2,6, 3,4-, 3,5-Xylyl, Mesityl usw.); ein C1- bis C4-Hydroxyalkylrest oder Hydroxyrest; und
- q eine ganze Zahl von 0 bis 8, in einigen Ausführungsformen 0 bis 2 und in einer Ausführungsform 0 ist. In einer besonderen Ausführungsform ist „q“ = 0, und das Polymer ist Poly(3,4-ethylendioxythiophen). Ein kommerziell geeignetes Beispiel für ein Monomer, das für die Bildung eines solchen Polymers geeignet ist, ist 3,4-Ethylendioxythiophen, das von Heraeus unter der Bezeichnung Clevios™ M erhältlich ist.
- Die Polymere der Formel (IV) gelten allgemein insofern als „extrinsisch“ leitfähig, als sie typischerweise die Gegenwart eines separaten Gegenions erfordern, das nicht kovalent an das Polymer gebunden ist. Das Gegenion kann ein monomeres oder polymeres Anion sein, das der Ladung des leitfähigen Polymers entgegenwirkt. Polymere Anionen können zum Beispiel Anionen von polymeren Carbonsäuren (z.B. Polyacrylsäuren, Polymethacrylsäure, Polymaleinsäuren usw.), polymeren Sulfonsäuren (z.B. Polystyrolsulfonsäuren („PSS“), Polyvinylsulfonsäuren usw.) usw. sein. Die Säuren können auch Copolymere, wie Copolymere von Vinylcarbon- und Vinylsulfonsäure mit anderen polymerisierbaren Monomeren, wie Acrylsäureestern und Styrol, sein. Ebenso sind geeignete monomere Anionen zum Beispiel Anionen von C1- bis C20-Alkansulfonsäuren (z.B. Dodecansulfonsäure); aliphatischen Perfluorsulfonsäuren (z.B. Trifluormethansulfonsäure, Perfluorbutansulfonsäure oder Perfluoroctansulfonsäure); aliphatischen C1- bis C20-Carbonsäuren (z.B. 2-Ethylhexylcarbonsäure); aliphatischen Perfluorcarbonsäuren (z.B. Trifluoressigsäure oder Perfluoroctansäure); aromatischen Sulfonsäuren, die gegebenenfalls mit C1- bis C20-Alkylgruppen substituiert sind (z.B. Benzolsulfonsäure, o-Toluolsulfonsäure, p-Toluolsulfonsäure oder Dodecylbenzolsulfonsäure); Cycloalkansulfonsäuren (z.B. Kamphersulfonsäure oder Tetrafluoroborate, Hexafluorophosphate, Perchlorate, Hexafluoroantimonate, Hexafluoroarsenate oder Hexachloroantimonate); usw. Besonders gut geeignete Gegenionen sind polymere Anionen, wie eine polymere Carbon- oder Sulfonsäure (z.B. Polystyrolsulfonsäure („PSS“)). Das Molekulargewicht solcher polymeren Anionen liegt typischerweise im Bereich von etwa 1000 bis etwa 2 000 000 und in einigen Ausführungsformen etwa 2000 bis etwa 500 000.
- Wenn es eingesetzt wird, kann es wünschenswert sein, dass das extrinsisch leitfähige Polymer in Form einer Dispersion von vorpolymerisierten leitfähigen Teilchen aufgetragen wird. Solche Teilchen haben typischerweise eine mittlere Größe (z.B. Durchmesser) von etwa 1 bis etwa 100 Nanometer, in einigen Ausführungsformen etwa 2 bis etwa 80 Nanometer und in einigen Ausführungsformen etwa 4 bis etwa 50 Nanometer. Der Durchmesser der Teilchen kann mit Hilfe bekannter Techniken, wie mittels Ultrazentrifuge, Laserbeugung usw., bestimmt werden. Die Form der Teilchen kann ebenfalls variieren. In einer besonderen Ausführungsform haben die Teilchen zum Beispiel eine sphärische Form. Man sollte sich jedoch darüber im Klaren sein, dass in der vorliegenden Erfindung auch andere Formen in Betracht gezogen werden, wie Platten, Stäbe, Scheiben, Blöcke, Röhrchen, unregelmäßige Formen usw. Die Konzentration der Teilchen in der Dispersion kann je nach der gewünschten Viskosität der Dispersion und der besonderen Art und Weise, wie die Dispersion auf das Kondensatorelement aufgetragen werden soll, variieren. Typischerweise jedoch machen die Teilchen etwa 0,1 bis etwa 10 Gew.-%, in einigen Ausführungsformen etwa 0,4 bis etwa 5 Gew.-% und in einigen Ausführungsformen etwa 0,5 bis etwa 4 Gew.-% der Dispersion aus.
- Die Dispersion kann auch ein oder mehrere Bindemittel enthalten, um die Klebrigkeit der polymeren Schicht weiter zu erhöhen und auch die Stabilität der Teilchen innerhalb der Dispersion zu erhöhen. Die Bindemittel können organischer Natur sein, wie Polyvinylalkohole, Polyvinylpyrrolidone, Polyvinylchloride, Polyvinylacetate, Polyvinylbutyrate, Polyacrylsäureester, Polyacrylsäureamide, Polymethacrylsäureester, Polymethacrylsäureamide, Polyacrylnitrile, Styrol/Acrylsäureester, Vinylacetat/Acrylsäureester und Ethylen/Vinylacetat-Copolymere, Polybutadiene, Polyisoprene, Polystyrole, Polyether, Polyester, Polycarbonate, Polyurethane, Polyamide, Polyimide, Polysulfone, Melamin-Formaldehyd-Harze, Epoxyharze, Silikonharze oder Cellulosen. Es können auch Vernetzungsmittel eingesetzt werden, um die Adhäsionsfähigkeit der Bindemittel zu erhöhen. Solche Vernetzungsmittel sind zum Beispiel Melaminverbindungen, maskierte Isocyanate oder vernetzbare Polymere, wie Polyurethane, Polyacrylate oder Polyolefine, und anschließende Vernetzung.
- Es können auch Dispersionsmittel eingesetzt werden, um die Auftragbarkeit der Schicht auf die Anode zu verbessern. Zu den geeigneten Dispersionsmitteln gehören Lösungsmittel, wie aliphatische Alkohole (z.B. Methanol, Ethanol, Isopropanol und Butanol), aliphatische Ketone (z.B. Aceton und Methylethylketone), aliphatische Carbonsäureester (z.B. Ethylacetat und Butylacetat), aromatische Kohlenwasserstoffe (z.B. Toluol und Xylol), aliphatische Kohlenwasserstoffe (z.B.
- Hexan, Heptan und Cyclohexan), chlorierte Kohlenwasserstoffe (z.B. Dichlormethan und Dichlorethan), aliphatische Nitrile (z.B. Acetonitril), aliphatische Sulfoxide und Sulfone (z.B. Dimethylsulfoxid und Sulfolan), aliphatische Carbonsäureamide (z.B. Methylacetamid, Dimethylacetamid und Dimethylformamid), aliphatische und araliphatische Ether (z.B. Diethylether und Anisol), Wasser sowie Gemische irgendwelcher der obigen Lösungsmittel. Ein besonders gut geeignetes Dispersionsmittel ist Wasser.
- Außer den oben genannten können auch noch andere Bestandteile in der Dispersion verwendet werden. Zum Beispiel können herkömmliche Füllstoffe verwendet werden, die eine Größe von etwa 10 Nanometer bis etwa 100 Mikrometer, in einigen Ausführungsformen etwa 50 Nanometer bis etwa 50 Mikrometer und in einigen Ausführungsformen etwa 100 Nanometer bis etwa 30 Mikrometer aufweisen. Beispiele für solche Füllstoffe sind Calciumcarbonat, Silicate, Siliciumoxid, Calcium- oder Bariumsulfat, Aluminiumhydroxid, Glasfasern oder -kolben, Holzmehl, Cellulosepulver, Ruß, elektrisch leitfähige Polymere usw. Die Füllstoffe können in Pulverform in die Dispersion eingeführt werden, können jedoch auch in einer anderen Form, etwa als Fasern, vorliegen.
- Grenzflächenaktive Substanzen, wie ionische oder nichtionische Tenside, können ebenfalls in der Dispersion eingesetzt werden. Weiterhin können Kleber eingesetzt werden, wie organofunktionelle Silane oder ihre Hydrolysate, zum Beispiel 3-Glycidoxypropyltrialkoxysilan, 3-Aminopropyltriethoxysilan, 3-Mercaptopropyltrimethoxysilan, 3-Methacryloxypropyltrimethoxysilan, Vinyltrimethoxysilan oder Octyltriethoxysilan. Die Dispersion kann auch Additive enthalten, die die Leitfähigkeit erhöhen, wie Ethergruppen enthaltende Verbindungen (z.B. Tetrahydrofuran), Lactongruppen enthaltende Verbindungen (z.B. γ-Butyrolacton oder γ-Valerolacton), Amid- oder Lactamgruppen enthaltende Verbindungen (z.B. Caprolactam, N-Methylcaprolactam, N,N-Dimethylacetamid, N-Methylacetamid, N,N-Dimethylformamid (DMF), N-Methylformamid, N-Methylformanilid, N-Methylpyrrolidon (NMP), N-Octylpyrrolidon oder Pyrrolidon), Sulfone und Sulfoxide (z.B. Sulfolan (Tetramethylensulfon) oder Dimethylsulfoxid (DMSO)), Zucker oder Zuckerderivate (z.B. Saccharose, Glucose, Fructose oder Lactose), Zuckeralkohole (z.B. Sorbit oder Mannit), Furanderivate (z.B. 2-Furancarbonsäure oder 3-Furancarbonsäure) und Alkohole (z.B. Ethylenglycol, Glycerin, Di- oder Triethylenglycol).
- Die Dispersion kann mit Hilfe einer Vielzahl von bekannten Techniken auf den Teil aufgetragen werden, wie durch Schleuderbeschichtung, Imprägnierung, Gießen, tropfenweise Auftragung, Spritzen, Sprühen, Rakeln, Bürsten oder Drucken (z.B. Tintenstrahl-, Sieb- oder Blockdruck), oder Tauchen. Die Viskosität der Dispersion beträgt typischerweise etwa 0,1 bis etwa 100 000 mPa·s (gemessen bei einer Scherrate von 100 s-1), in einigen Ausführungsformen etwa 1 bis etwa 10000 mPa·s, in einigen Ausführungsformen etwa 10 bis etwa 1500 mPa·s und in einigen Ausführungsformen etwa 100 bis etwa 1000 mPa·s.
- Falls gewünscht, kann in der oder den äußeren Schichten des festen Elektrolyten auch ein hydroxyfunktionelles nichtionisches Polymer eingesetzt werden. Der Ausdruck „hydroxyfunktionell" bedeutet im Allgemeinen, dass die Verbindung wenigstens eine hydroxyfunktionelle Gruppe enthält oder eine solche funktionelle Gruppe in Gegenwart eines Lösungsmittels besitzen kann. Ohne uns auf eine bestimmte Theorie festlegen zu wollen, glauben wir, dass die Verwendung eines hydroxyfunktionellen Polymers mit einem bestimmten Molekulargewicht die Wahrscheinlichkeit einer chemischen Zersetzung bei hohen Spannungen minimieren kann. Zum Beispiel kann das Molekulargewicht des hydroxyfunktionellen Polymers etwa 100 bis 10000 Gramm pro Mol, in einigen Ausführungsformen etwa 200 bis 2000, in einigen Ausführungsformen etwa 300 bis etwa 1200 und in einigen Ausführungsformen etwa 400 bis etwa 800 betragen.
- Zu diesem Zweck können im Allgemeinen eine Vielzahl von hydroxyfunktionellen nichtionischen Polymeren eingesetzt werden. In einer Ausführungsform ist das hydroxyfunktionelle Polymer zum Beispiel ein Polyalkylenether. Polyalkylenether können Polyalkylenglycole (z. B. Polyethylenglycole, Polypropylenglycole, Polytetramethylenglycole, Polyepichlorhydrine usw.), Polyoxetane, Polyphenylenether, Polyetherketone usw. umfassen. Polyalkylenether sind typischerweise vorwiegend lineare, nichtionische Polymere mit terminalen Hydroxygruppen. Besonders gut geeignet sind Polyethylenglycole, Polypropylenglycole und Polytetramethylenglycole (Polytetrahydrofurane), die durch Polyaddition von Ethylenoxid, Propylenoxid oder Tetrahydrofuran an Wasser hergestellt werden. Die Polyalkylenether können durch Polykondensationsreaktionen aus Diolen oder Polyolen hergestellt werden. Die Diolkomponente kann insbesondere aus gesättigten oder ungesättigten, verzweigten oder unverzweigten, aliphatischen Dihydroxyverbindungen, die 5 bis 36 Kohlenstoffatome enthalten, oder aromatischen Dihydroxyverbindungen, wie zum Beispiel Pentan-1 ,5-diol, Hexan-1,6-diol, Neopentylglycol, Bis(hydroxymethyl)cyclohexanen, Bisphenol A, Dimerdiolen, hydrierten Dimerdiolen oder auch Gemischen der genannten Diole ausgewählt sein. Außerdem können in der Polymerisationsreaktion auch mehrwertige Alkohole, einschließlich zum Beispiel Glycerin, Di- und Polyglycerin, Trimethylolpropan, Pentaerythrit oder Sorbit, verwendet werden.
- Neben den oben genannten können in der vorliegenden Erfindung auch andere hydroxyfunktionelle nichtionische Polymere eingesetzt werden. Einige Beispiele für solche Polymere sind zum Beispiel ethoxylierte Alkylphenole, ethoxylierte oder propoxylierte C6-C24-Fettalkohole, Polyoxyethylenglycolalkylether mit der allgemeinen Formel CH3-(CH2)10-16-(O-C2H4)-OH (z.B. Octaethylenglycolmonododecylether und Pentaethylenglycolmonododecylether); Polyoxypropylenglycolalkylether mit der allgemeinen Formel CH3-(CH2)10-16-(O-C3H6)-OH; Polyoxyethylenglycoloctylphenolether mit der folgenden allgemeinen Formel: C8H17-(C6H4)(O-C2H4)1-25-OH (z.B. Triton™ X-100); Polyoxyethylenglycolalkylphenolether mit der folgenden allgemeinen Formel: C9H19-(C6H4)-(O-C2H4)1-25-OH (z.B. Nonoxynol-9); Polyoxyethylenglycolester von C8-C24-Fettsäuren, wie Polyoxyethylenglycolsorbitanalkylester (z.B. Polyoxyethylen(20)sorbitanmonolaurat, Polyoxyethylen(20)sorbitanmonopalmitat, Polyoxyethylen(20)sorbitanmonostearat, Polyoxyethylen(20)sorbitanmonooleat, PEG20-Methylglucosedistearat, PEG-20-Methylglucosesesquistearat, PEG-80-Ricinusöl und PEG-20-Ricinusöl, PEG-3-Ricinusöl, PEG-600-dioleat und PEG-400-dioleat) und Polyoxyethylenglycerinalkylester (z.B. Polyoxyethylen-23-glycerinlaurat und Polyoxyethylen-20-glycerinstearat); Polyoxyethylenglycolether von C8-C24-Fettsäuren (z.B. Polyoxyethylen-10-cetylether, Polyoxyethylen-10-stearylether, Polyoxyethylen-20-cetylether, Polyoxyethylen-10-oleylether, Polyoxyethylen-20-oleylether, Polyoxyethylen-20-isohexadecylether, Polyoxyethylen-15-tridecylether und Polyoxyethylen-6-tridecylether); Blockcopolymere von Polyethylenglycol und Polypropylenglycol (z.B. Poloxamere) usw. sowie Gemische davon.
- Das hydroxyfunktionelle nichtionische Polymer kann auf vielerlei verschiedenen Wegen in den festen Elektrolyten eingebaut werden. In bestimmten Ausführungsformen zum Beispiel kann das hydroxyfunktionelle Polymer einfach in beliebige Schichten eingebaut werden, die durch die oben beschriebene einleitende Dispersion gebildet werden. In solchen Ausführungsformen beträgt die Konzentration des hydroxyfunktionellen Polymers in der Dispersion typischerweise etwa 1 Gew.-% bis etwa 50 Gew.-%, in einigen Ausführungsformen etwa 5 Gew.-% bis etwa 40 Gew.-% und in einigen Ausführungsformen etwa 10 Gew.-% bis etwa 30 Gew.-%. In anderen Ausführungsformen jedoch kann das hydroxyfunktionelle Polymer aufgetragen werden, nachdem die erste Polymerdispersion auf den Anodenkörper aufgetragen wird. In solchen Ausführungsformen kann die zum Aufträgen des hydroxyfunktionellen Polymers verwendete Technik variieren. Zum Beispiel kann das Polymer mit Hilfe von verschiedenen Verfahren, wie Tauchen, Eintauchen, Gießen, Tropfen, Spritzen, Sprühen, Ausbreiten, Streichen oder Drucken, zum Beispiel durch Tintenstrahl-, Siebdruck oder Tampondruck, in Form einer flüssigen Lösung aufgetragen werden. In der Lösung können dem Fachmann bekannte Lösungsmittel, wie Wasser, Alkohole oder ein Gemisch davon, eingesetzt werden. Die Konzentration des hydroxyfunktionellen Polymers in einer solchen Lösung liegt typischerweise im Bereich von etwa 5 Gew.-% bis etwa 95 Gew.-%, in einigen Ausführungsformen etwa 10 Gew.-% bis etwa 70 Gew.-% und in einigen Ausführungsformen etwa 15 Gew.-% bis etwa 50 Gew.-% der Lösung. Falls gewünscht, können solche Lösungen im Wesentlichen frei von leitfähigen Polymeren sein. Zum Beispiel können leitfähige Polymere etwa 2 Gew.-% oder weniger, in einigen Ausführungsformen etwa 1 Gew.-% oder weniger und in einigen Ausführungsformen etwa 0,5 Gew.-% oder weniger der Lösung ausmachen.
- E. Externe Polymerbeschichtung
- Falls gewünscht, kann auch eine externe Polymerbeschichtung den festen Elektrolyten bedecken. Die externe Polymerbeschichtung kann eine oder mehrere Schichten enthalten, die aus vorpolymerisierten leitfähigen Polymerteilchen gebildet sind, wie es oben beschrieben ist. Die externe Beschichtung kann in der Lage sein, weiter in den Randbereich des Kondensatorkörpers einzudringen, um die Haftung am Dielektrikum zu erhöhen, und zu einem mechanisch robusteren Teil führen, was den äquivalenten Serienwiderstand und den Leckstrom reduzieren kann. Da man im Allgemeinen den Grad der Randabdeckung verbessern und nicht das Innere der Anode imprägnieren möchte, sind die in der externen Beschichtung verwendeten Teilchen typischerweise größer als die in irgendwelchen optionalen Dispersionen des festen Elektrolyten eingesetzten.
- Zum Beispiel beträgt das Verhältnis der mittleren Größe der in der externen Polymerbeschichtung verwendeten Teilchen zur mittleren Größe der in irgendeiner Dispersion des festen Elektrolyten eingesetzten Teilchen typischerweise etwa 1,5 bis etwa 30, in einigen Ausführungsformen etwa 2 bis etwa 20 und in einigen Ausführungsformen etwa 5 bis etwa 15. Zum Beispiel können die in der Dispersion der externen Beschichtung eingesetzten Teilchen eine mittlere Größe von etwa 50 bis etwa 800 Nanometer, in einigen Ausführungsformen etwa 80 bis etwa 600 Nanometer und in einigen Ausführungsformen etwa 100 bis etwa 500 Nanometer aufweisen.
- Gegebenenfalls kann auch ein Vernetzungsmittel in der externen Polymerbeschichtung eingesetzt werden, um den Grad der Haftung am festen Elektrolyten zu verstärken. Typischerweise wird das Vernetzungsmittel vor der Auftragung der in der externen Beschichtung verwendeten Dispersion aufgetragen. Geeignete Vernetzungsmittel sind zum Beispiel in der US-Patentveröffentlichung Nr.
2007/0064376 - Das Vernetzungsmittel wird typischerweise aus einer Lösung oder Dispersion aufgetragen, deren pH-Wert 1 bis 10, in einigen Ausführungsformen 2 bis 7 und in einigen Ausführungsformen 3 bis 6 beträgt, bestimmt bei 25 °C. Saure Verbindungen können eingesetzt werden, um das Erreichen des gewünschten pH-Werts zu unterstützen. Beispiele für Lösungsmittel oder Dispergiermittel für das Vernetzungsmittel sind Wasser oder organische Lösungsmittel, wie Alkohole, Ketone, Carbonsäureester usw. Das Vernetzungsmittel kann durch irgendein bekanntes Verfahren, wie Schleuderbeschichtung, Imprägnieren, Gießen, tropfenweise Auftragung, Sprühauftragung, Aufdampfen, Sputtern, Sublimation, Rakelbeschichtung, Streichen oder Drucken, zum Beispiel durch Tintenstrahl-, Siebdruck oder Tampondruck, auf den Kondensatorkörper aufgetragen werden.
- Sobald es aufgetragen ist, kann das Vernetzungsmittel getrocknet werden, bevor die Polymerdispersion aufgetragen wird. Dann kann dieser Vorgang wiederholt werden, bis die gewünschte Dicke erreicht ist. Zum Beispiel kann die Gesamtdicke der gesamten externen Polymerbeschichtung einschließlich des Vernetzungsmittels und der Dispersionsschichten im Bereich von etwa 1 bis etwa 50 µm, in einigen Ausführungsformen etwa 2 bis etwa 40 µm und in einigen Ausführungsformen etwa 5 bis etwa 20 µm liegen.
- F. Kathodenbeschichtung
- Falls gewünscht, kann das Kondensatorelement auch eine Kathodenbeschichtung umfassen, die den festen Elektrolyten und andere optionale Schichten (z.B. eine externe Polymerbeschichtung) bedeckt. Die Kathodenbeschichtung kann eine Metallteilchenschicht enthalten, die eine Vielzahl von innerhalb einer Polymermatrix dispergierten leitfähigen Metallteilchen umfasst. Die Teilchen machen typischerweise etwa 50 Gew.-% bis etwa 99 Gew.-%, in einigen Ausführungsformen etwa 60 Gew.-% bis etwa 98 Gew.-% und in einigen Ausführungsformen etwa 70 Gew.-% bis etwa 95 Gew.-% der Schicht aus, während die Polymermatrix typischerweise etwa 1 Gew.-% bis etwa 50 Gew.-%, in einigen Ausführungsformen etwa 2 Gew.-% bis etwa 40 Gew.-% und in einigen Ausführungsformen etwa 5 Gew.-% bis etwa 30 Gew.-% der Schicht ausmacht.
- Die leitfähigen Metallteilchen können aus einer Vielzahl verschiedener Metalle bestehen, wie Kupfer, Nickel, Silber, Nickel, Zink, Zinn, Blei, Kupfer, Aluminium, Molybdän, Titan, Eisen, Zirconium, Magnesium usw. sowie Legierungen davon. Silber ist ein besonders gut geeignetes leitfähiges Metall für die Verwendung in der Schicht. Die Metallteilchen haben häufig eine relativ geringe Größe, wie eine mittlere Größe von etwa 0,01 bis etwa 50 Mikrometer, in einigen Ausführungsformen etwa 0,1 bis etwa 40 Mikrometer und in einigen Ausführungsformen etwa 1 bis etwa 30 Mikrometer. Typischerweise wird nur eine einzige Metallteilchenschicht eingesetzt, obwohl man sich darüber im Klaren sein sollte, dass auch mehrere Schichten eingesetzt werden können, falls es gewünscht ist. Die Gesamtdicke dieser Schicht oder Schichten liegt typischerweise im Bereich von etwa 1 µm bis etwa 500 µm, in einigen Ausführungsformen etwa 5 µm bis etwa 200 µm und in einigen Ausführungsformen etwa 10 µm bis etwa 100 µm.
- Die Polymermatrix umfasst typischerweise ein Polymer, das thermoplastischer oder duroplastischer Natur sein kann. Typischerweise jedoch ist das Polymer so gewählt, dass es als Sperre für die Elektromigration von Silberionen wirken kann, und auch so, dass es eine relativ kleine Menge polarer Gruppen enthält, um den Grad der Wasseradsorption in der Kathodenbeschichtung zu minimieren. In dieser Hinsicht haben die Erfinder herausgefunden, dass Vinylacetalpolymere für diesen Zweck besonders gut geeignet sind, wie Polyvinylbutyral, Polyvinylformal usw. Polyvinylbutyral kann zum Beispiel dadurch gebildet werden, dass man Polyvinylalkohol mit einem Aldehyd (z.B. Butyraldehyd) umsetzt. Da diese Reaktion typischerweise unvollständig ist, weist das Polyvinylbutyral im Allgemeinen einen Restgehalt an Hydroxygruppen auf. Indem man diesen Gehalt minimiert, kann das Polymer jedoch einen geringeren Grad an starken polaren Gruppen besitzen, was ansonsten zu einem hohen Grad an Feuchtigkeitsadsorption und zur Migration von Silberionen führen würde. Zum Beispiel kann der Resthydroxygehalt in Polyvinylacetal etwa 35 Mol-% oder weniger, in einigen Ausführungsformen etwa 30 Mol-% oder weniger und in einigen Ausführungsformen etwa 10 Mol-% bis etwa 25 Mol-% betragen. Ein kommerziell erhältliches Beispiel für ein solches Polymer ist von Sekisui Chemical Co., Ltd. unter der Bezeichnung „BH-S“ (Polyvinylbutyral) erhältlich.
- Zur Bildung der Kathodenbeschichtung wird typischerweise eine leitfähige Paste so auf den Kondensator aufgetragen, dass sie den festen Elektrolyten bedeckt. In der Paste werden im Allgemeinen ein oder mehrere organische Lösungsmittel eingesetzt. Im Allgemeinen kann eine Vielzahl von verschiedenen organischen Lösungsmitteln eingesetzt werden, wie Glycole (z.B. Propylenglycol, Butylenglycol, Triethylenglycol, Hexylenglycol, Polyethylenglycole, Ethoxydiglycol und Dipropylenglycol), Glycolether (z.B. Methylglycolether, Ethylglycolether, und Isopropylglycolether), Ether (z.B. Diethylether und Tetrahydrofuran), Alkohole (z.B. Benzylalkohol, Methanol, Ethanol, n-Propanol, Isopropanol und Butanol), Triglyceride, Ketone (z.B. Aceton, Methylethylketon und Methylisobutylketon); Ester (z.B. Ethylacetat, Butylacetat, Diethylenglycoletheracetat und Methoxypropylacetat), Amide (z.B. Dimethylformamid, Dimethylacetamid, Dimethylcapryl-/caprinfettsäureamid und N-Alkylpyrrolidone), Sulfoxide oder Sulfone (z.B. Dimethylsulfoxid (DMSO) und Sulfolan) usw. sowie Gemische davon. Das oder die organischen Lösungsmittel machen typischerweise etwa 10 Gew.-% bis etwa 70 Gew.-%, in einigen Ausführungsformen etwa 20 Gew.-% bis etwa 65 Gew.-% und in einigen Ausführungsformen etwa 30 Gew.-% bis etwa 60 Gew.-% der Paste aus. Typischerweise machen die Metallteilchen etwa 10 Gew.-% bis etwa 60 Gew.-%, in einigen Ausführungsformen etwa 20 Gew.-% bis etwa 45 Gew.-% und in einigen Ausführungsformen etwa 25 Gew.-% bis etwa 40 Gew.-% der Paste aus, und die harzartige Matrix etwa 0,1 Gew.-% bis etwa 20 Gew.-%, in einigen Ausführungsformen etwa 0,2 Gew.-% bis etwa 10 Gew.-% und in einigen Ausführungsformen etwa 0,5 Gew.-% bis etwa 8 Gew.-% der Paste aus.
- Die Paste kann relativ niedrige Viskosität aufweisen, die ermöglicht, dass man sie leicht handhaben und auf ein Kondensatorelement auftragen kann. Die Viskosität kann zum Beispiel im Bereich von etwa 50 bis etwa 3000 Centipoise, in einigen Ausführungsformen etwa 100 bis etwa 2000 Centipoise und in einigen Ausführungsformen etwa 200 bis etwa 1000 Centipoise liegen, gemessen mit einem Brookfield-DV-1-Viskometer (Kegel und Platte), das mit einer Geschwindigkeit von 10 U/min und einer Temperatur von 25 °C arbeitet. Falls gewünscht, können Verdickungsmittel oder andere Viskositätsmodifikatoren in der Paste eingesetzt werden, um die Viskosität zu erhöhen oder zu senken. Weiterhin kann die Dicke der aufgetragenen Paste auch relativ gering sein und dennoch die gewünschten Eigenschaften erreichen. Zum Beispiel kann die Dicke der Paste etwa 0,01 bis etwa 50 Mikrometer, in einigen Ausführungsformen etwa 0,5 bis etwa 30 Mikrometer und in einigen Ausführungsformen etwa 1 bis etwa 25 Mikrometer betragen. Einmal aufgetragen, kann die Metallpaste gegebenenfalls getrocknet werden, um bestimmte Komponenten, wie die organischen Lösungsmittel, zu entfernen. Zum Beispiel kann das Trocknen bei einer Temperatur von etwa 20 °C bis etwa 150 °C, in einigen Ausführungsformen etwa 50 °C bis etwa 140 °C und in einigen Ausführungsformen etwa 80 °C bis etwa 130 °C erfolgen.
- G. Andere Komponenten
- Falls gewünscht, kann der Kondensator auch weitere Schichten enthalten, wie in der Technik bekannt ist. In bestimmten Ausführungsformen zum Beispiel kann sich zwischen dem festen Elektrolyten und der Silberschicht eine Kohlenstoffschicht (z.B. Graphit) befinden, die dabei helfen kann, den Kontakt der Silberschicht mit dem festen Elektrolyten weiter einzuschränken. Außerdem kann auch eine Vorbeschichtung eingesetzt werden, die das Dielektrikum bedeckt und eine metallorganische Verbindung, wie sie im Folgenden ausführlicher beschrieben ist, umfasst.
- II. Endteile
- Sobald es gebildet ist, kann das Kondensatorelement mit Endteilen versehen werden, insbesondere wenn es in oberflächenmontierten Anwendungen eingesetzt wird. Zum Beispiel kann der Kondensator ein Anoden-Endteil, an das ein Anodenanschlussdraht des Kondensatorelements elektrisch angeschlossen wird, und ein Kathoden-Endteil, an das der feste Elektrolyt des Kondensatorelements elektrisch angeschlossen wird, enthalten. Jedes leitfähige Material kann eingesetzt werden, um die Endteile zu bilden, wie ein leitfähiges Metall (z.B. Kupfer, Nickel, Silber, Nickel, Zink, Zinn, Palladium, Blei, Kupfer, Aluminium, Molybdän, Titan, Eisen, Zirconium, Magnesium und Legierungen davon). Zu den besonders gut geeigneten leitfähigen Metallen gehören zum Beispiel Kupfer, Kupferlegierungen (z.B. Kupfer-Zirconium, Kupfer-Magnesium, Kupfer-Zink oder Kupfer-Eisen), Nickel und Nickellegierungen (z.B. Nickel-Eisen). Die Dicke der Endteile ist im Allgemeinen so gewählt, dass die Dicke des Kondensators minimiert wird. Zum Beispiel kann die Dicke der Endteile im Bereich von etwa 0,05 bis etwa 1 Millimeter, in einigen Ausführungsformen etwa 0,05 bis etwa 0,5 Millimeter oder etwa 0,07 bis etwa 0,2 Millimeter liegen. Ein beispielhaftes leitfähiges Material ist eine Metallplatte aus einer Kupfer-Eisen-Legierung, die von Wieland (Deutschland) erhältlich ist. Falls gewünscht, kann die Oberfläche der Endteile, wie in der Technik bekannt ist, mit Nickel, Silber, Gold, Zinn usw. galvanisiert werden, um zu gewährleisten, dass das endgültige Teil auf der Leiterplatte montierbar ist. In einer besonderen Ausführungsform werden beide Flächen der Endteile mit Nickel- bzw. Silber-Schutzschichten versehen, während die Montagefläche auch mit einer Zinnlötschicht versehen wird.
- Die Endteile können unter Verwendung einer beliebigen, in der Technik bekannten Methode mit dem Kondensatorelement verbunden werden. In einer Ausführungsform zum Beispiel kann ein Leiterrahmen bereitgestellt werden, der das Kathoden-Endteil und das Anoden-Endteil definiert. Um das Kondensatorelement an dem Leiterrahmen zu befestigen, kann ein leitfähiger Kleber zunächst auf eine Fläche des Kathoden-Endteils aufgetragen werden. Der leitfähige Kleber kann zum Beispiel leitfähige Metallteilchen umfassen, die in einer Harzzusammensetzung enthalten sind. Bei den Metallteilchen kann es sich um Silber, Kupfer, Gold, Platin, Nickel, Zink, Bismut usw. handeln. Die Harzzusammensetzung kann ein duroplastisches Harz (z.B. Epoxidharz), Härtungsmittel (z.B. Säureanhydrid) und Kopplungsmittel (z.B. Silan-Kopplungsmittel) umfassen. Geeignete leitfähige Kleber sind in der US-Patentanmeldung Veröffentlichungsnummer
2006/0038304 - III. Gehäuse
- Das Kondensatorelement kann auf verschiedene Weise in ein Gehäuse eingebaut sein. In bestimmten Ausführungsformen zum Beispiel kann das Kondensatorelement in einer Hülle eingeschlossen sein, die dann mit einem harzartigen Material, wie einem duroplastischen Harz (z.B. Epoxidharz), gefüllt werden kann, das dann unter Bildung eines gehärteten Gehäuses ausgehärtet werden kann. Das harzartige Material kann das Kondensatorelement so umgeben und einkapseln, dass wenigstens ein Teil des Anoden- und des Kathoden-Endteils zur Montage auf einer Leiterplatte exponiert sind. Wenn sie in dieser Weise eingekapselt sind, bilden das Kondensatorelement und das harzartige Material einen integralen Kondensator.
- Selbstverständlich kann es in alternativen Ausführungsformen auch wünschenswert sein, das Kondensatorelement innerhalb eines Gehäuses einzuschließen, das separat und eigenständig bleibt. Auf diese Weise kann die Atmosphäre des Gehäuses gasförmig sein und wenigstens ein Inertgas enthalten, wie Stickstoff, Helium, Argon, Xenon, Neon, Krypton, Radon usw. sowie Gemische davon. Typischerweise bilden Inertgase den größten Teil der Atmosphäre innerhalb des Gehäuses, wie etwa 50 Gew.-% bis 100 Gew.-%, in einigen Ausführungsformen etwa 75 Gew.-% bis 100 Gew.-% und in einigen Ausführungsformen etwa 90 Gew.-% bis etwa 99 Gew.-% der Atmosphäre. Falls gewünscht, kann auch eine relativ kleine Menge an Nichtinertgasen eingesetzt werden, wie Kohlendioxid, Sauerstoff, Wasserdampf usw. In solchen Fällen bilden die Nichtinertgase jedoch typischerweise 15 Gew.-% oder weniger, in einigen Ausführungsformen 10 Gew.-% oder weniger, in einigen Ausführungsformen etwa 5 Gew.-% oder weniger, in einigen Ausführungsformen etwa 1 Gew.-% oder weniger und in einigen Ausführungsformen etwa 0,01 Gew.-% bis etwa 1 Gew.-% der Atmosphäre innerhalb des Gehäuses.
- Zur Bildung des Gehäuses kann eine Vielzahl von Materialien verwendet werden, wie Metalle, Kunststoffe, Keramik usw. In einer Ausführungsform umfasst das Gehäuse zum Beispiel eine oder mehrere Schichten aus einem Metall, wie Tantal, Niob, Aluminium, Nickel, Hafnium, Titan, Kupfer, Silber, Stahl (z.B. Edelstahl), Legierungen davon (z.B. elektrisch leitfähige Oxide), Verbundstoffe davon (z.B. mit elektrisch leitfähigem Oxid beschichtetes Metall) usw. In einer anderen Ausführungsform kann das Gehäuse eine oder mehrere Schichten aus einem keramischen Material, wie Aluminiumnitrid, Aluminiumoxid, Siliciumoxid, Magnesiumoxid, Calciumoxid, Glas usw. sowie Kombinationen davon, umfassen.
- Das Gehäuse kann jede beliebige Form haben, wie zylindrisch, D-förmig, rechteckig, dreieckig, prismatisch usw. In
1 ist zum Beispiel eine Ausführungsform eines Kondensators 100 gezeigt, die ein Gehäuse 122 und ein Kondensatorelement 120 enthält. In dieser besonderen Ausführungsform ist das Gehäuse 122 im Wesentlichen rechteckig. Typischerweise haben das Gehäuse und das Kondensatorelement dieselbe oder eine ähnliche Form, so dass das Kondensatorelement leicht im Innenraum untergebracht werden kann. In der gezeigten Ausführungsform zum Beispiel haben sowohl das Kondensatorelement 120 als auch das Gehäuse 122 eine im Wesentlichen rechteckige Form. - Falls gewünscht, kann die Kondensatorbaugruppe der vorliegenden Erfindung eine relativ hohe volumetrische Effizienz aufweisen. Um diese hohe Effizienz zu erleichtern, nimmt das Kondensatorelement typischerweise einen wesentlichen Teil des Volumens des Innenraums des Gehäuses ein. Zum Beispiel kann das Kondensatorelement etwa 30 Vol.-% oder mehr, in einigen Ausführungsformen etwa 50 Vol.-% oder mehr, in einigen Ausführungsformen etwa 60 Vol.-% oder mehr, in einigen Ausführungsformen etwa 70 Vol.-% oder mehr, in einigen Ausführungsformen etwa 80 Vol.-% bis etwa 98 Vol.-% und in einigen Ausführungsformen etwa 85 Vol.-% bis 97 Vol.-% des Innenraums des Gehäuses einnehmen. Zu diesem Zweck ist die Differenz zwischen den Abmessungen des Kondensatorelements und denjenigen des durch das Gehäuse definierten Innenraums typischerweise relativ gering.
- Wenn wir uns zum Beispiel auf
1 beziehen, so kann das Kondensatorelement 120 eine Länge aufweisen (ausschließlich der Länge des Anodenanschlusses 6), die relativ ähnlich der Länge eines durch das Gehäuse 122 definierten Innenraums 126 ist. Zum Beispiel liegt das Verhältnis der Länge der Anode (in -y-Richtung) zur Länge des Innenraums im Bereich von etwa 0,40 bis 1,00, in einigen Ausführungsformen etwa 0,50 bis etwa 0,99, in einigen Ausführungsformen etwa 0,60 bis 0,99 und in einigen Ausführungsformen etwa 0,70 bis etwa 0,98. Das Kondensatorelement 120 kann eine Länge von etwa 5 bis etwa 10 Millimetern aufweisen, und der Innenraum 126 kann eine Länge von etwa 6 bis etwa 15 Millimetern aufweisen. Ähnlich kann das Verhältnis der Höhe des Kondensatorelements 120 (in -z-Richtung) zur Höhe des Innenraums 126 im Bereich von etwa 0,40 bis 1,00, in einigen Ausführungsformen etwa 0,50 bis etwa 0,99, in einigen Ausführungsformen etwa 0,60 bis etwa 0,99 und in einigen Ausführungsformen etwa 0,70 bis etwa 0,98 liegen. Das Verhältnis der Breite des Kondensatorelements 120 (in -x-Richtung) zur Breite des Innenraums 126 kann auch im Bereich von etwa 0,50 bis 1,00, in einigen Ausführungsformen etwa 0,60 bis etwa 0,99, in einigen Ausführungsformen etwa 0,70 bis etwa 0,99, in einigen Ausführungsformen etwa 0,80 bis etwa 0,98 und in einigen Ausführungsformen etwa 0,85 bis etwa 0,95 liegen. Zum Beispiel kann die Breite des Kondensatorelements 120 etwa 2 bis etwa 10 Millimeter betragen, und die Breite des Innenraums 126 kann etwa 3 bis etwa 12 Millimeter betragen, und die Höhe des Kondensatorelements 120 kann etwa 0,5 bis etwa 2 Millimeter betragen, und die Breite des Innenraums 126 kann etwa 0,7 bis etwa 6 Millimeter betragen. - Obwohl es keineswegs erforderlich ist, kann das Kondensatorelement so an dem Gehäuse befestigt sein, dass außerhalb des Gehäuses ein Anoden-Endteil und ein Kathoden-Endteil für die anschließende Integration in eine Schaltung entstehen. Die besondere Konfiguration der Endteile kann von der geplanten Anwendung abhängen. In einer Ausführungsform zum Beispiel kann der Kondensator so ausgebildet sein, dass er oberflächenmontierbar und dennoch mechanisch robust ist. Zum Beispiel kann der Anodenanschluss elektrisch an das äußere, oberflächenmontierbare Anoden- und Kathoden-Endteil (z.B. Felder, Bleche, Platten, Rahmen usw.) angeschlossen sein. Solche Endteile können sich durch das Gehäuse hindurch erstrecken, um an den Kondensator angeschlossen zu sein. Die Dicke oder Höhe der Endteile wird im Allgemeinen so gewählt, dass die Dicke des Kondensators minimiert wird. Zum Beispiel kann die Dicke der Endteile im Bereich von etwa 0,05 bis etwa 1 Millimeter, in einigen Ausführungsformen etwa 0,05 bis etwa 0,5 Millimeter und etwa 0,1 bis etwa 0,2 Millimeter liegen. Falls gewünscht, kann die Oberfläche der Endteile galvanisch mit Nickel, Silber, Gold, Zinn usw. überzogen sein, wie in der Technik bekannt ist, um zu gewährleisten, dass das endgültige Teil auf der Leiterplatte montierbar ist. In einer bestimmten Ausführungsform werden auf dem oder den Endteilen Nickel- bzw. Silberpunkte abgeschieden, und die Montageoberfläche wird ebenfalls mit einer Lötzinnschicht beschichtet. In einer anderen Ausführungsform werden auf dem oder den Endteilen dünne äußere Metallschichten (z.B. Gold) auf einer unedlen Metallschicht (z.B. Kupferlegierung) abgeschieden, um die Leitfähigkeit weiter zu erhöhen.
- In bestimmten Ausführungsformen können Verbindungselemente innerhalb des Innenraums des Gehäuses eingesetzt werden, um die Verbindung mit den Endteilen in einer mechanisch stabilen Weise zu erleichtern. Wenn wir uns zum Beispiel wieder auf 1 beziehen, so kann die Kondensatorbaugruppe 100 ein Verbindungselement 162 umfassen, das aus einem ersten Teil 167 und einem zweiten Teil 165 besteht. Das Verbindungselement 162 kann aus leitfähigen Materialien, wie Metall, bestehen. Der erste Teil 167 und der zweite Teil 165 können einstückig ausgebildet sein, oder es können separate Teile sein, die miteinander verbunden sind, entweder direkt oder über ein zusätzliches leitfähiges Element (z. B. Metall). In der gezeigten Ausführungsform befindet sich der zweite Teil 165 in einer Ebene, die im Wesentlichen parallel zu einer Längsrichtung, in der sich der Anschluss 6 erstreckt (z. B. -y-Richtung), verläuft. Der erste Teil 167 ist in dem Sinne „hochstehend“, dass er sich in einer Ebene befindet, die im Wesentlichen senkrecht zur Längsrichtung, in der sich der Anschluss 6 erstreckt, verläuft. Auf diese Weise kann der erste Teil 167 die Bewegung des Anschlusses 6 in der horizontalen Richtung einschränken, um den Oberflächenkontakt und die mechanische Stabilität während der Verwendung zu verstärken. Falls gewünscht, kann ein isolierendes Material 7 (z. B. ein Teflon™-Ring) um den Anschluss 6 herum eingesetzt werden.
- Der erste Teil 167 kann auch einen Montagebereich besitzen (nicht gezeigt), der mit einem Anodenanschluss 6 verbunden ist. Der Bereich kann eine „U-Form“ aufweisen, um den Oberflächenkontakt und die mechanische Stabilität des Anschlusses 6 weiter zu verstärken. Die Verbindung des Bereichs mit dem Anschluss 6 kann mit Hilfe einer Vielzahl von Techniken bewerkstelligt werden, wie Schweißen, Laserschweißen, leitfähige Kleber usw. In einer besonderen Ausführungsform wird der Bereich zum Beispiel durch Laserschweißen an dem Anodenanschluss 6 befestigt. Unabhängig von der gewählten Technik kann der erste Teil 167 jedoch den Anodenanschluss 6 in einer im Wesentlichen horizontalen Ausrichtung halten, um die Maßhaltigkeit der Kondensatorbaugruppe 100 weiter zu verstärken.
- Wenn wir uns wiederum auf 1 beziehen, so ist eine Ausführungsform der vorliegenden Erfindung gezeigt, bei der das Verbindungselement 162 und das Kondensatorelement 120 mit dem Gehäuse 122 sowie einem Anoden- und einem Kathoden-Endteil 127 bzw. 129, die im Folgenden ausführlicher diskutiert werden, verbunden sind. Das Gehäuse 122 dieser Ausführungsform umfasst eine äußere Wand 123 und zwei einander gegenüberliegende Seitenwände 124, zwischen denen ein Hohlraum 126 gebildet wird, der das Kondensatorelement 120 umfasst. Die äußere Wand 123 und die Seitenwände 124 können aus einer oder mehreren Schichten eines Metalls, Kunststoffs oder Keramikmaterials bestehen, wie es oben beschrieben ist. Obwohl es nicht erforderlich ist, kann das Anoden-Endteil 127 einen inneren Bereich 127a, der sich innerhalb des Gehäuses 122 befindet und elektrisch mit dem Verbindungselement 162 verbunden ist, und einen äußeren Bereich 127b, der sich außerhalb des Gehäuses 122 befindet und für eine Montagefläche 201 sorgt, enthalten. Ähnlich kann das Kathoden-Endteil 129 einen inneren Bereich 129a, der sich innerhalb des Gehäuses 122 befindet und elektrisch mit dem festen Elektrolyten des Kondensatorelements 120 verbunden ist, und einen äußeren Bereich 129b, der sich außerhalb des Gehäuses 122 befindet und für eine Montagefläche 203 sorgt, enthalten. Man sollte sich darüber im Klaren sein, dass sich nicht der gesamte Teil innerhalb oder außerhalb des Gehäuses zu befinden braucht.
- In der gezeigten Ausführungsform erstreckt sich eine leitfähige Bahn 127c in der Außenwand 123 des Gehäuses, um den inneren Teil (ersten Bereich) 127a und den äußeren Teil (zweiten Bereich) 127b miteinander zu verbinden. Ähnlich erstreckt sich eine leitfähige Bahn 129c in der Außenwand 123 des Gehäuses, um den inneren Teil (ersten Bereich) 127a und den äußeren Teil (zweiten Bereich) 127b miteinander zu verbinden. Die leitfähigen Bahnen und/oder Bereiche der Endteile können getrennt oder einstückig sein. Die Bahnen können sich nicht nur durch die Außenwand des Gehäuses erstrecken, sondern können sich auch an anderen Stellen befinden, wie außerhalb der Außenwand. Selbstverständlich ist die vorliegende Erfindung keineswegs auf die Verwendung von leitfähigen Bahnen zur Bildung der gewünschten Endteile beschränkt.
- Unabhängig von der besonderen eingesetzten Konfiguration kann die Verbindung der Endteile 127 und 129 mit dem Kondensatorelement 120 unter Verwendung jeder bekannten Technik erfolgen, wie Schweißen, Laserschweißen, leitfähige Kleber usw. In einer besonderen Ausführungsform wird zum Beispiel ein leitfähiger Kleber 131 verwendet, um den zweiten Teil 165 des Verbindungselements 162 mit dem Anoden-Endteil 127 zu verbinden. Ähnlich wird ein leitfähiger Kleber 133 verwendet, um die Kathode des Kondensatorelements 120 mit dem Kathoden-Endteil 129 zu verbinden.
- Gegebenenfalls kann sich auch eine polymere Einspannung in Kontakt mit einer oder mehreren Flächen der Kondensatorelemente, wie der hinteren Fläche, vorderen Fläche, oberen Fläche, unteren Fläche, Seitenflächen oder irgendeiner Kombination davon befinden. Die polymere Einspannung kann die Wahrscheinlichkeit des Abblätterns des Kondensatorelements von dem Gehäuse reduzieren. In dieser Hinsicht besitzt die polymere Einspannung typischerweise ein bestimmtes Maß an Festigkeit, das es ihr ermöglicht, das Kondensatorelement in einer relativ fixierten Position zu halten, auch wenn es Schwingungskräften ausgesetzt ist, aber nicht so fest, dass es Risse bekommt. Die Einspannung kann zum Beispiel eine Zugfestigkeit von etwa 1 bis etwa 150 Megapascal („MPa“), in einigen Ausführungsformen etwa 2 bis etwa 100 MPa, in einigen Ausführungsformen etwa 10 bis etwa 80 MPa und in einigen Ausführungsformen etwa 20 bis etwa 70 MPa besitzen, gemessen bei einer Temperatur von etwa 25°C. Es ist normalerweise wünschenswert, dass die Einspannung nicht elektrisch leitend ist. Wenn wir uns zum Beispiel wieder auf 1 beziehen, so ist eine Ausführungsform gezeigt, in der sich eine einzige polymere Einspannung 197 in Kontakt mit einer oberen Fläche 181 und einer hinteren Fläche 177 des Kondensatorelements 120 befindet. Während in 1 eine einzelne Einspannung gezeigt ist, sollte man sich darüber im Klaren sein, dass auch getrennte Einspannungen eingesetzt werden können, um dieselbe Funktion zu erfüllen. Tatsächlich können allgemeiner gesagt eine beliebige Zahl von polymeren Einspannungen eingesetzt werden und sich in Kontakt mit jeder gewünschten Fläche des Kondensatorelements befinden. Wenn mehrere Einspannungen eingesetzt werden, können sie miteinander in Kontakt stehen oder physisch getrennt bleiben. Zum Beispiel kann in einer Ausführungsform eine zweite polymere Einspannung (nicht gezeigt) eingesetzt werden, die mit der oberen Fläche 181 und der vorderen Fläche 179 des Kondensatorelements 120 in Kontakt steht. Die erste polymere Einspannung 197 und die zweite polymere Einspannung (nicht gezeigt) können in Kontakt miteinander stehen oder auch nicht. In noch einer anderen Ausführungsform kann eine polymere Einspannung auch mit einer unteren Fläche 183 und/oder einer oder mehreren Seitenflächen des Kondensatorelements 120 in Kontakt stehen, entweder in Verbindung mit oder anstelle von anderen Flächen.
- Unabhängig davon, wie sie angebracht wird, ist es typischerweise wünschenswert, dass sich die polymere Einspannung auch in Kontakt mit wenigstens einer Fläche des Gehäuses befindet, um dazu beizutragen, das Kondensatorelement weiter gegenüber möglichem Abblättern mechanisch zu stabilisieren. Zum Beispiel kann sich die Einspannung in Kontakt mit einer Innenfläche einer oder mehrerer Seitenwände, der Außenwand, des Deckels usw. befinden. In 1 befindet sich die polymere Einspannung 197 zum Beispiel in Kontakt mit einer Innenfläche 107 der Seitenwand 124 und einer Innenfläche 109 der Außenwand 123. Während sie sich in Kontakt mit dem Gehäuse befindet, ist es dennoch wünschenswert, dass wenigstens ein Teil des durch das Gehäuse definierten Innenraums frei bleibt, damit das Inertgas durch den Innenraum strömen und den Kontakt des festen Elektrolyten mit Sauerstoff einschränken kann. Zum Beispiel bleiben typischerweise wenigstens etwa 5% des Innenraumvolumens frei von dem Kondensatorelement und der polymeren Einspannung, und in einigen Ausführungsformen sind es etwa 10% bis etwa 50% des Innenraumvolumens.
- Sobald sie in der gewünschten Weise verbunden ist, wird die resultierende Packung hermetisch versiegelt. Wie zum Beispiel wiederum in
1 gezeigt ist, kann das Gehäuse 122 auch einen Deckel 125 umfassen, der auf einer oberen Fläche von Seitenwänden 124 platziert wird, nachdem das Kondensatorelement 120 und die polymere Einspannung 197 innerhalb des Gehäuses 122 positioniert sind. Der Deckel 125 kann aus Keramik, Metall (z. B. Eisen, Kupfer, Nickel, Cobalt usw. sowie Legierungen davon), Kunststoff usw. bestehen. Falls gewünscht, kann sich ein Versiegelungselement 187 zwischen dem Deckel 125 und den Seitenwänden 124 befinden, um zu einer guten Abdichtung beizutragen. In einer Ausführungsform zum Beispiel kann das Versiegelungselement eine Glas-Metall-Versiegelung, einen Kovar®-Ring (Goodfellow Cambridge, Ltd.) usw. umfassen. Die Höhe der Seitenwände 124 ist im Allgemeinen so, dass der Deckel 125 nicht mit einer Fläche des Kondensatorelements 120 in Kontakt kommt, so dass er nicht kontaminiert wird. Die polymere Einspannung 197 kann mit dem Deckel 125 in Kontakt stehen oder auch nicht. Wenn er in der gewünschten Position platziert ist, wird der Deckel 125 mit Hilfe von bekannten Techniken, wie Schweißen (z. B. Widerstandsschweißen, Laserschweißen usw.), Löten usw., hermetisch an den Seitenwänden 124 versiegelt. Das hermetische Versiegeln erfolgt im Allgemeinen in Gegenwart von Inertgasen, wie es oben beschrieben ist, so dass die resultierende Baugruppe im Wesentlichen frei von reaktiven Gasen, wie Sauerstoff oder Wasserdampf, ist. - Man sollte sich darüber im Klaren sein, dass die beschriebenen Ausführungsformen nur beispielhaft sind und dass in der vorliegenden Erfindung auch verschiedene andere Konfigurationen eingesetzt werden können, um ein Kondensatorelement und eine polymere Einspannung hermetisch innerhalb eines Gehäuses zu versiegeln. Wenn wir uns zum Beispiel auf 2 beziehen, so ist eine andere Ausführungsform einer Kondensatorbaugruppe 200 gezeigt, bei der ein Gehäuse 222 eingesetzt wird, das eine Außenwand 123 und einen Deckel 225 umfasst, zwischen denen ein Innenraum 126 entsteht, der das Kondensatorelement 120 und die polymere Einspannung 197 umfasst. Der Deckel 225 umfasst eine Außenwand 223, die mit wenigstens einer Seitenwand 224 einstückig ausgebildet ist. In der gezeigten Ausführungsform sind zum Beispiel zwei einander gegenüberliegende Seitenwände 224 im Querschnitt gezeigt. Die Außenwände 223 und 123 erstrecken sich beide in einer seitlichen Richtung (-y-Richtung) und verlaufen im Wesentlichen parallel zu einander und zur seitlichen Richtung des Anodenanschlusses 6. Die Seitenwand 224 erstreckt sich von der Außenwand 223 ausgehend in einer Längsrichtung, die im Wesentlichen senkrecht zur Außenwand 123 steht. Ein distales Ende 500 des Deckels 225 ist durch die Außenwand 223 definiert, und ein proximales Ende 501 ist durch eine Lippe 253 der Seitenwand 224 definiert.
- Die Lippe 253 erstreckt sich von der Seitenwand 224 ausgehend in seitlicher Richtung, die im Wesentlichen parallel zur seitlichen Richtung der Außenwand 123 stehen kann. Der Winkel zwischen der Seitenwand 224 und der Lippe 253 kann variieren, beträgt aber typischerweise etwa 60° bis etwa 120°, in einigen Ausführungsformen etwa 70° bis etwa 110° und in einigen Ausführungsformen etwa 80° bis etwa 100° (z. B. etwa 90°). Die Lippe 253 definiert auch einen umlaufenden Rand 251, der im Wesentlichen senkrecht zur seitlichen Richtung, in der sich die Lippe 253 und die Außenwand 123 erstrecken, verlaufen kann. Der umlaufende Rand 251 befindet sich jenseits des äußeren Umfangs der Seitenwand 224 und kann im Wesentlichen koplanar zu einem Rand 151 der Außenwand 123 verlaufen. Die Lippe 253 kann mit Hilfe einer beliebigen bekannten Technik, wie Schweißen (z. B. Widerstands- oder Laserschweißen), Löten, Leim usw., an der Außenwand 123 versiegelt werden. Zum Beispiel wird in der gezeigten Ausführungsform ein Versiegelungselement 287 (z. B. Glas-Metall-Siegel, Kovar®-Ring usw.) zwischen den Komponenten eingesetzt, um deren Befestigung zu erleichtern. Unabhängig davon kann die oben beschriebene Verwendung einer Lippe eine stabilere Verbindung zwischen den Komponenten ermöglichen und die Versiegelung und die mechanische Stabilität der Kondensatorbaugruppe verbessern.
- In der vorliegenden Erfindung können noch andere mögliche Gehäusekonfigurationen eingesetzt werden. Zum Beispiel zeigt 3 eine Kondensatorbaugruppe 300 mit einer ähnlichen Gehäusekonfiguration wie in 2, außer dass Endstifte 327b bzw. 329b als externe Abschlüsse für die Anode bzw. Kathode eingesetzt werden. Insbesondere erstreckt sich der Endstift 327a durch eine in der Außenwand 323 gebildete Bahn 327c hindurch und wird mit Hilfe von bekannten Techniken (z. B. Schweißen) mit dem Anodenanschluss 6 verbunden. Ein zusätzlicher Abschnitt 327a kann eingesetzt werden, um den Stift 327b zu befestigen. Ebenso erstreckt sich der Endstift 329b durch eine in der Außenwand 323 gebildete Bahn 329c hindurch und wird über einen leitfähigen Kleber 133 mit der Kathode verbunden, wie es oben beschrieben ist.
- Die in den 1-3 gezeigten Ausführungsformen werden hier in Verbindung mit einem einzigen Kondensatorelement diskutiert. Man sollte sich jedoch darüber im Klaren sein, dass auch mehrere Kondensatorelemente innerhalb eines Gehäuses hermetisch versiegelt sein können. Die mehreren Kondensatorelemente können unter Verwendung einer Vielzahl von Techniken an dem Gehäuse befestigt werden. 4 zeigt zum Beispiel eine besondere Ausführungsform einer Kondensatorbaugruppe 400, die zwei Kondensatorelemente enthält und nun ausführlicher beschrieben wird. Insbesondere umfasst die Kondensatorbaugruppe 400 ein erstes Kondensatorelement 420a in elektrischer Verbindung mit einem zweiten Kondensatorelement 420b. In dieser Ausführungsform sind die Kondensatorelemente so ausgerichtet, dass sich ihre Hauptflächen in einer horizontalen Konfiguration befinden. Das heißt, eine Hauptfläche des Kondensatorelements 420a, die durch dessen Breite (-x-Richtung) und Länge (- y-Richtung) definiert ist, befindet sich angrenzend an eine entsprechende Hauptfläche des Kondensatorelements 420b. Die Hauptflächen sind also im Wesentlichen koplanar. Alternativ dazu können die Kondensatorelemente auch so angeordnet sein, dass ihre Hauptflächen nicht koplanar sind, sondern in einer bestimmten Richtung, wie der -z-Richtung oder der -x-Richtung, senkrecht aufeinander stehen. Selbstverständlich brauchen sich die Kondensatorelemente nicht in derselben Richtung zu erstrecken.
- Die Kondensatorelemente 420a und 420b befinden sich innerhalb eines Gehäuses 422, das eine Außenwand 423 und Seitenwände 424 und 425 enthält, die zusammen einen Innenraum 426 definieren. Obwohl es nicht gezeigt ist, kann ein Deckel eingesetzt werden, der die oberen Flächen der Seitenwände 424 und 425 bedeckt und die Baugruppe 400 versiegelt, wie es oben beschrieben ist. Gemäß der vorliegenden Erfindung wird auch eine polymere Einspannung eingesetzt, die dazu beiträgt, die Schwingung der Kondensatorelemente einzudämmen. In 4 befinden sich zum Beispiel getrennte polymere Einspannungen 497a und 497b angrenzend an und in Kontakt mit den Kondensatorelementen 420a bzw. 420b. Die polymeren Einspannungen 497a und 497b können sich an einer Vielzahl verschiedener Orte befinden. Weiterhin kann eine der Einspannungen weggelassen werden, oder zusätzliche Einspannungen können eingesetzt werden. In bestimmten Ausführungsformen kann es zum Beispiel wünschenswert sein, eine polymere Einspannung zwischen den Kondensatorelementen einzusetzen, um die mechanische Stabilität weiter zu verbessern.
- Neben den Kondensatorelementen enthält die Kondensatorbaugruppe auch ein Anoden-Endteil, mit dem Anodenanschlüsse der jeweiligen Kondensatorelemente elektrisch verbunden sind, und ein Kathoden-Endteil, mit dem die Kathoden der jeweiligen Kondensatorelemente elektrisch verbunden sind. Wenn wir uns zum Beispiel wieder auf 4 beziehen, so sind die Kondensatorelemente gezeigt, wie sie parallel mit einem gemeinsamen Kathoden-Endteil 429 verbunden sind. In dieser besonderen Ausführungsform wird das Kathoden-Endteil 429 zunächst in einer Ebene bereitgestellt, die im Wesentlichen parallel zur unteren Fläche der Kondensatorelemente verläuft, und kann mit leitfähigen Bahnen (nicht gezeigt) in elektrischem Kontakt stehen. Die Kondensatorbaugruppe 400 umfasst auch Verbindungselemente 427 und 527, die mit Anodenanschlüssen 407a bzw. 407b der Kondensatorelemente 420a und 420b verbunden sind. Insbesondere enthält das Verbindungselement 427 einen hochstehenden Teil 465 und einen planaren Teil 463, der mit einem Anoden-Endteil (nicht gezeigt) in Verbindung steht. Ebenso enthält das Verbindungselement 527 einen hochstehenden Teil 565 und einen planaren Teil 563, der mit einem Anoden-Endteil (nicht gezeigt) in Verbindung steht. Selbstverständlich sollte man sich darüber im Klaren sein, dass auch eine Vielzahl anderer Typen von Verbindungsmechanismen eingesetzt werden kann.
- Die vorliegende Erfindung wird anhand der folgenden Beispiele besser verständlich.
- Testverfahren
- Kapazität
- Die Kapazität wurde unter Verwendung eines Präzisions-LCZ-Messgeräts Keithley 3330 mit Kelvin-Anschlussleitungen bei 2,2 Volt Vorspannung und einem sinusförmigen Signal mit 0,5 Volt Abstand zwischen den Peaks gemessen. Die Betriebsfrequenz betrug 120 Hz, und die Temperatur kann 23 °C ± 2 °C betragen.
- Durchschlagsspannung
- Die Durchschlagsspannung wurde mit einem Keithley 2400 SourceMeter bei einer Temperatur von 23 °C ± 2 °C gemessen. Ein einzelner Kondensator wird mit konstanter Stromstärke aufgeladen, die durch die folgende Gleichung bestimmt wird:
- Äquivalenter Serienwiderstand (ESR)
- Der äquivalente Serienwiderstand kann mit einem Präzisions-LCZ-Messgerät Keithley 3330 mit Kelvin-Anschlussleitungen bei 2,2 Volt Vorspannung und einem sinusförmigen Signal mit 0,5 Volt Abstand zwischen den Peaks gemessen werden. Die Betriebsfrequenz betrug 100 kHz, und die Temperatur betrug 23 °C ± 2 °C.
- Verlustfaktor
- Der Verlustfaktor kann mit einem Präzisions-LCZ-Messgerät Keithley 3330 mit Kelvin-Anschlussleitungen bei 2,2 Volt Vorspannung und einem sinusförmigen Signal mit 0,5 Volt Abstand zwischen den Peaks gemessen werden. Die Betriebsfrequenz kann 120 Hz betragen, und die Temperatur kann 23 °C ± 2 °C betragen.
- Leckstrom
- Der Leckstrom kann mit einer Leckstrom-Testeinrichtung bei einer Temperatur von 23 °C ± 2 °C und bei der Nennspannung nach mindestens 60 Sekunden gemessen werden.
- Test der Spannungsspitzen
- Ein Test der Spannungsspitzen kann bei einer Temperatur von 85 °C ± 3 °C durchgeführt werden (10-25 Teile), und die Nennspannung wird mit 1,3 multipliziert (z.B. 45,5 V). Der in der Testschaltung verwendete Widerstand kann 33 Ohm betragen. Jeder Zyklus besteht aus 30 Sekunden Anlegen der Spannungsspitzen und dann eine Entladungszeit von 30 Sekunden. Die getesteten Proben werden vor dem Testen wenigstens 12 Stunden lang bei 125 °C getrocknet. Die Kapazität kann bei allen 1000-Puls-Zyklen bis zu 5000 Pulse nach der Erholungszeit gemessen werden.
- Dicke des Dielektrikums
- Die Dicke des Dielektrikums kann mit Hilfe einer Zeiss Sigma FESEM bei 20000-bis 50000-facher Vergrößerung gemessen werden. Die Proben können dadurch vorbereitet werden, dass man ein fertiges Teil in einer Ebene senkrecht zur längsten Abmessung des fertigen Teils schneidet. Eine Dickenmessung kann an Stellen durchgeführt werden, an denen der Schnitt in senkrechter Richtung durch die dielektrische Schicht erfolgte.
- Beispiel 1
- Ein Tantalpulver mit 40 000 µFV/g wurde verwendet, um Anodenproben zu bilden. Jede Anodenprobe wurde zusammen mit einem Tantaldraht eingebettet, auf eine Dichte von 5,3 g/cm3 gepresst und bei 1380 °C gesintert. Die resultierenden Presslinge hatten eine Größe von 5,60 × 3,65 × 0,72 mm. Die Presslinge wurden bei einer Temperatur von 40 °C in Wasser/Phosphorsäure-Elektrolyt mit einer Leitfähigkeit von 8,6 mS bis 76,0 Volt anodisiert, um die dielektrische Schicht zu bilden. Die Presslinge wurden 10 Sekunden lang bei einer Temperatur von 30 °C in Wasser/Borsäure/Dinatriumtetraborat mit einer Leitfähigkeit von 2,0 mS bis 130 Volt erneut anodisiert, um eine auf der Außenseite aufgewachsene dickere Oxidschicht zu bilden. Nach der Anodisierung wurden vier Vorbeschichtungen aus metallorganischer Verbindung verwendet, die eine Lösung von (3-Aminopropyl)trimethoxysilan in Ethanol (1,0%) enthielten. Eine leitfähige Polymerbeschichtung wurde gebildet, indem man die Anoden in eine Lösung von Poly(4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-ylmethoxy)-2-butansulfonsäure eintauchte. Nach der Beschichtung wurden die Teile 15 Minuten lang bei 125 °C getrocknet. Dieser Vorgang wurde zweimal wiederholt. Danach wurden die Teile in dispergiertes Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 1,1% und einer Viskosität von 20 mPa·s (Clevios™ K, Heraeus) eingetaucht. Nach der Beschichtung wurden die Teile 15 Minuten lang bei 125 °C getrocknet. Dieser Vorgang wurde achtmal wiederholt. Danach wurden die Teile in dispergiertes Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 2,0% und einer Viskosität von 20 mPa·s (Clevios™ K, Heraeus) eingetaucht. Nach der Beschichtung wurden die Teile 15 Minuten lang bei 125 °C getrocknet. Dieser Vorgang wurde dreimal wiederholt. Danach wurden die Teile in dispergiertes Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 2% und einer Viskosität von 160 mPa·s (Clevios™ K, Heraeus) eingetaucht. Nach der Beschichtung wurden die Teile 15 Minuten lang bei 125 °C getrocknet. Dieser Vorgang wurde 14-mal wiederholt. Dann wurden die Teile in eine Graphitdispersion eingetaucht und getrocknet. Schließlich wurden die Teile in eine Silberdispersion eingetaucht und getrocknet. Auf diese Weise wurden viele Teile (450) von Kondensatoren mit 47 µF/35 V hergestellt und in ein Siliciumoxidharz eingebettet.
- Beispiel 2
- Kondensatoren wurden in der in Beispiel 1 beschriebenen Weise gebildet, außer dass eine andere leitfähige Polymerbeschichtung verwendet wurde. Das heißt, die leitfähige Polymerbeschichtung wurde dadurch gebildet, dass man die Anoden in eine Lösung von Poly(4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-ylmethoxy)-2-butansulfonsäure eintauchte. Nach der Beschichtung wurden die Teile 15 Minuten lang bei 125 °C getrocknet. Dieser Vorgang wurde achtmal wiederholt. Danach wurden die Teile in dispergiertes Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 2,0% und einer Viskosität von 20 mPa·s (Clevios™ K, Heraeus) eingetaucht. Nach der Beschichtung wurden die Teile 15 Minuten lang bei 125 °C getrocknet. Dieser Vorgang wurde dreimal wiederholt. Danach wurden die Teile in dispergiertes Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 2% und einer Viskosität von 160 mPa·s (Clevios™ K, Heraeus) eingetaucht. Nach der Beschichtung wurden die Teile 15 Minuten lang bei 125 °C getrocknet. Dieser Vorgang wurde 14-mal wiederholt. Dann wurden die Teile in eine Graphitdispersion eingetaucht und getrocknet. Schließlich wurden die Teile in eine Silberdispersion eingetaucht und getrocknet. Auf diese Weise wurden viele Teile (450) von Kondensatoren mit 47 µF/35 V hergestellt und in ein Siliciumoxidharz eingebettet.
- Beispiel 3
- Ein Tantalpulver mit 40 000 µFV/g wurde verwendet, um Anodenproben zu bilden. Jede Anodenprobe wurde zusammen mit einem Tantaldraht eingebettet, auf eine Dichte von 5,3 g/cm3 gepresst und bei 1410 °C gesintert. Die resultierenden Presslinge hatten eine Größe von 5,60 × 3,65 × 0,80 mm. Die Presslinge wurden bei einer Temperatur von 40 °C in Wasser/Phosphorsäure-Elektrolyt mit einer Leitfähigkeit von 8,6 mS bis 76,0 Volt anodisiert, um die dielektrische Schicht zu bilden. Die Presslinge wurden 5 Sekunden lang bei einer Temperatur von 30 °C in Wasser/Borsäure/Dinatriumtetraborat mit einer Leitfähigkeit von 2,0 mS bis 150 Volt erneut anodisiert, um eine auf der Außenseite aufgewachsene dickere Oxidschicht zu bilden. Nach der Anodisierung wurden vier Vorbeschichtungen aus metallorganischer Verbindung verwendet, die eine Lösung von (3-Aminopropyl)trimethoxysilan in Ethanol (1,0%) enthielten. Eine leitfähige Polymerbeschichtung wurde gebildet, indem man die Anoden in eine Lösung von Poly(4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-ylmethoxy)-2-butansulfonsäure eintauchte. Nach der Beschichtung wurden die Teile 15 Minuten lang bei 125 °C getrocknet. Dieser Vorgang wurde zweimal wiederholt. Danach wurden die Teile in dispergiertes Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 1,1% und einer Viskosität von 20 mPa·s (Clevios™ K, Heraeus) eingetaucht. Nach der Beschichtung wurden die Teile 15 Minuten lang bei 125 °C getrocknet. Dieser Vorgang wurde achtmal wiederholt. Danach wurden die Teile in dispergiertes Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 2,0% und einer Viskosität von 20 mPa·s (Clevios™ K, Heraeus) eingetaucht. Nach der Beschichtung wurden die Teile 15 Minuten lang bei 125 °C getrocknet. Dieser Vorgang wurde dreimal wiederholt. Danach wurden die Teile in dispergiertes Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 2% und einer Viskosität von 160 mPa·s (Clevios™ K, Heraeus) eingetaucht. Nach der Beschichtung wurden die Teile 15 Minuten lang bei 125 °C getrocknet. Dieser Vorgang wurde 14-mal wiederholt. Dann wurden die Teile in eine Graphitdispersion eingetaucht und getrocknet. Schließlich wurden die Teile in eine Silberdispersion eingetaucht und getrocknet. Auf diese Weise wurden viele Teile (450) von Kondensatoren mit 47 µF/35 V hergestellt und in ein Siliciumoxidharz eingebettet.
- Beispiel 4
- Kondensatoren wurden in der in Beispiel 3 beschriebenen Weise gebildet, außer dass eine andere leitfähige Polymerbeschichtung verwendet wurde. Das heißt, die leitfähige Polymerbeschichtung wurde dadurch gebildet, dass man die Anoden in eine Lösung von Poly(4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-ylmethoxy)-2-butansulfonsäure eintauchte. Nach der Beschichtung wurden die Teile 15 Minuten lang bei 125 °C getrocknet. Dieser Vorgang wurde sechsmal wiederholt. Danach wurden die Teile in dispergiertes Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 2,0% und einer Viskosität von 20 mPa·s (Clevios™ K, Heraeus) eingetaucht. Nach der Beschichtung wurden die Teile 15 Minuten lang bei 125 °C getrocknet. Dieser Vorgang wurde dreimal wiederholt. Danach wurden die Teile in dispergiertes Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 2% und einer Viskosität von 160 mPa·s (Clevios™ K, Heraeus) eingetaucht. Nach der Beschichtung wurden die Teile 15 Minuten lang bei 125 °C getrocknet. Dieser Vorgang wurde 14-mal wiederholt. Dann wurden die Teile in eine Graphitdispersion eingetaucht und getrocknet. Schließlich wurden die Teile in eine Silberdispersion eingetaucht und getrocknet. Auf diese Weise wurden viele Teile (450) von Kondensatoren mit 47 µF/35 V hergestellt und in ein Siliciumoxidharz eingebettet.
- Der minimale, mittlere und maximale gemessene BDV-Wert und die mittlere Dicke des Dielektrikums sind in der folgenden Tabelle 1 dargelegt. Tabelle 1: BDV, Dicke des Dielektrikums und berechnete Festigkeit des Dielektrikums
Minimale BDV [V] Mittlere BDV [V] Maximale BDV [V] Mittlere Dicke des Dielektrikums [nm] Festigkeit des Dielektrikums [V/nm] Beispiel 1 68,4 70,4 72,5 113,1 0,60 Beispiel 2 68,3 69,8 72,4 112,9 0,60 Beispiel 3 69,9 76,3 85,7 113,3 0,62 Beispiel 4 74,2 77,7 80,7 113,2 0,66 - Die Medianwerte der Ergebnisse der Kapazität innerhalb der Spannungsspitzentests sind in der folgenden Tabelle 2 dargelegt. Tabelle 2: Ergebnisse der Spannungsspitzentests
Zyklen Medianwert der Kapazität (µF) Verhältnis der Kapazität nach dem Spannungsspitzentest zur Anfangskapazität Beispiel 1 0 44,54 - 1000 42,69 0,96 2000 41,08 0,92 3000 39,08 0,98 Beispiel 2 0 45,81 - 1000 45,22 0,99 2000 44,58 0,97 3000 43,54 0,95 Beispiel 3 0 48,11 - 1000 43,60 0,91 2000 40,37 0,94 3000 37,27 0,97 Beispiel 4 0 48,17 - 1000 47,81 0,99 2000 47,03 0,98 3000 47,10 0,98 - Diese und andere Modifikationen und Variationen der vorliegenden Erfindung können vom Fachmann praktisch umgesetzt werden, ohne vom Wesen und Umfang der vorliegenden Erfindung abzuweichen. Außerdem sollte man sich darüber im Klaren sein, dass Aspekte der verschiedenen Ausführungsformen ganz oder teilweise gegeneinander ausgetauscht werden können. Weiterhin wird der Fachmann anerkennen, dass die obige Beschreibung nur beispielhaften Charakter hat und die Erfindung, die in den beigefügten Ansprüchen näher beschrieben ist, nicht einschränken soll.
- ZITATE ENTHALTEN IN DER BESCHREIBUNG
- Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
- Zitierte Patentliteratur
-
- US 62/945913 [0001]
- US 62/947014 [0001]
- WO 2014/199480 [0015]
- US 6197252 [0019]
- US 9718905 [0037]
- US 2007/0064376 [0060]
- US 2006/0038304 [0070]
Claims (27)
- Festelektrolytkondensator, der ein Kondensatorelement umfasst, wobei das Kondensatorelement Folgendes umfasst: einen Anodenkörper, der Tantal enthält; ein Dielektrikum, das den Anodenkörper überdeckt; und einen festen Elektrolyten, der das Dielektrikum überdeckt, wobei der feste Elektrolyt ein intrinsisch leitfähiges Polymer umfasst, das Thiophen-Repetiereinheiten enthält, wobei der Kondensator eine Festigkeit des Dielektrikums von etwa 0,6 Volt pro Nanometer oder mehr aufweist und wobei der Kondensator weiterhin eine Lade-Entlade-Kapazität, nachdem er 3000 Zyklen einer Spannungsspitze ausgesetzt war, und eine Anfangskapazität, bevor er der Spannungsspitze ausgesetzt war, aufweist, wobei das Verhältnis der Lade-Entlade-Kapazität zu der Anfangskapazität etwa 0,75 zu 1 beträgt.
- Festelektrolytkondensator gemäß
Anspruch 1 , wobei das intrinsisch leitfähige Polymer Thiophen-Repetiereinheiten der folgenden Formel (I) enthält: - Festelektrolytkondensator gemäß
Anspruch 1 , wobei das intrinsisch leitfähige Polymer Thiophen-Repetiereinheiten der folgenden allgemeinen Formel (III) enthält: - Festelektrolytkondensator gemäß
Anspruch 3 , wobei a = 1 ist und b = 3 oder 4 ist. - Festelektrolytkondensator gemäß
Anspruch 3 , wobei R Methyl ist. - Festelektrolytkondensator gemäß
Anspruch 3 , wobei X ein Alkalimetall ist. - Festelektrolytkondensator gemäß
Anspruch 1 , wobei die Thiophen-Repetiereinheiten aus Natrium-3-[(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)-methoxy]-1-methyl-1-propansulfonat, Natrium-3-[(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)methoxy]-1-ethyl-1-propansulfonat, Natrium-3-[(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)methoxy]-1-propyl-1-propansulfonat, Natrium-3-[(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)methoxy]-1-butyl-1-propansulfonat, Natrium-3-[(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)-methoxy]-1-pentyl-1-propansulfonat, Natrium-3-[(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)methoxy]-1-hexyl-1-propansulfonat, Natrium-3-[(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)methoxy]-1-isopropyl-1-propansulfonat, Natrium-3-[(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)methoxy]-1-isobutyl-1-propansulfonat, Natrium-3-[(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)methoxy]-1-isopentyl-1-propansulfonat, Natrium-3-[(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)methoxy]-1-fluor-1-propansulfonat, Kalium-3-[(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)methoxy]-1-methyl-1-propansulfonat, 3-[(2,3-Dihydrothieno[3,4-b][1,4]dioxin-2-yl)methoxy]-1-methyl-1-propansulfonsäure, Ammonium-3-[(2,3-dihydrothieno[3,4-b]-[1,4]dioxin-2-yl)methoxy]-1-methyl-1-propansulfonat, Triethylammonium-3-[(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)methoxy]-1-methyl-1-propansulfonat usw. sowie Kombinationen davon gebildet sind. - Festelektrolytkondensator gemäß
Anspruch 1 , wobei das Polymer eine spezifische Leitfähigkeit von etwa 20 S/cm oder mehr aufweist. - Festelektrolytkondensator gemäß
Anspruch 1 , wobei der feste Elektrolyt wenigstens eine innere Schicht enthält, die das intrinsisch leitfähige Polymer umfasst. - Festelektrolytkondensator gemäß
Anspruch 9 , wobei die innere Schicht im Wesentlichen frei von einem extrinsisch leitfähigen Polymer ist. - Festelektrolytkondensator gemäß
Anspruch 1 , wobei der feste Elektrolyt wenigstens eine äußere Schicht enthält. - Festelektrolytkondensator gemäß
Anspruch 11 , wobei die äußere Schicht aus Teilchen besteht, die ein polymeres Gegenion und ein extrinsisch leitfähiges Polymer enthalten. - Festelektrolytkondensator gemäß
Anspruch 1 , weiterhin umfassend eine Vorbeschichtung, die den Anodenkörper bedeckt, wobei die Vorbeschichtung aus einer metallorganischen Verbindung gebildet ist. - Festelektrolytkondensator gemäß
Anspruch 1 , wobei die metallorganische Verbindung ein monoaminfunktionelles Silan mit der folgenden allgemeinen Formel (II) ist: - Festelektrolytkondensator gemäß
Anspruch 14 , wobei das monoaminfunktionelle Silan ein primäres Amin ist. - Festelektrolytkondensator gemäß
Anspruch 15 , wobei es sich bei dem primären Amin um 3-Aminopropyltriethoxysilan, 3-Aminopropyltrimethoxysilan, 4-Aminobutyltriethoxysilan, m-Aminophenyltrimethoxysilan, p-Aminophenyltrimethoxysilan, Aminophenyltrimethoxysilan, 3-Aminopropyltris(methoxyethoxy)silan, 11-Aminoundecyltriethoxysilan, 2(4-Pyridylethyl)triethoxysilan, 2-(Trimethoxysilylethyl)pyridin, N-(3-Trimethoxysilylpropyl)pyrrol, 3-(m-Aminophenoxypropyl)trimethoxysilan, Aminopropylsilantriol, 3-Aminopropylmethyldiethoxysilan, 3-Aminopropyldiisopropylethoxysilan, 3-Aminopropyldimethylethoxysilan oder eine Kombination davon handelt. - Festelektrolytkondensator gemäß
Anspruch 14 , wobei das monoaminfunktionelle Silan ein sekundäres Amin ist. - Festelektrolytkondensator gemäß
Anspruch 17 , wobei es sich bei dem sekundären Amin um N-Butylaminopropyltrimethoxysilan, N-Ethylaminoisobutyltrimethoxysilan, n-Methylaminopropyltrimethoxysilan, N-Phenylaminopropyltrimethoxysilan, 3-(N-Allylamino)propyltrimethoxysilan, Cyclohexylaminomethyl)triethoxysilan, N-Cyclohexylaminopropyltrimethoxysilan, N-Ethylaminoisobutylmethyldiethoxysilan, (Phenylaminoethyl)-methyldiethoxysilan, N-Phenylaminomethytrimethoxysilan, N-Methylaminopropylmethyldimethoxysilan oder eine Kombination davon handelt. - Festelektrolytkondensator gemäß
Anspruch 1 , wobei die metallorganische Verbindung ein diaminfunktionelles Silan mit der folgenden allgemeinen Formel (III) ist: - Festelektrolytkondensator gemäß
Anspruch 19 , wobei es sich bei dem diaminfunktionelles Silan um N-(2-Aminoethyl)aminopropyltrimethoxysilan, N-(2-Aminoethyl)-3-aminopropyltrimethoxysilan, N-(6-Aminohexyl)-aminomethyltriethoxysilan, N-(6-Aminohexyl)aminopropyltrimethoxysilan, N-(2-Aminoethyl)-11-aminoundecyltrimethoxysilan), (Aminoethylaminomethyl)phenethyltrimethoxysilan, N-3-[(Amino(polypropylenoxy)]aminopropyltrimethoxysilan, N-(2-Aminoethyl)-3-aminopropylsilantriol, N-(2-Aminoethyl)-3-aminopropylmethyldimethoxysilan, N-(2-Aminoethyl)-3-aminoisobutylmethyldimethoxysilan, (Aminoethylamino)-3-isobutyldimethylmethoxysilan oder eine Kombination davon handelt. - Festelektrolytkondensator gemäß
Anspruch 1 , weiterhin umfassend eine externe Polymerbeschichtung, die den festen Elektrolyten bedeckt und leitfähige Polymerteilchen enthält. - Festelektrolytkondensator gemäß
Anspruch 21 , wobei das externe Polymer weiterhin ein Vernetzungsmittel umfasst. - Festelektrolytkondensator gemäß
Anspruch 1 , wobei der Anodenkörper ein gesintertes Pellet ist. - Festelektrolytkondensator gemäß
Anspruch 1 , weiterhin umfassend ein Gehäuse, in dem das Kondensatorelement eingeschlossen ist. - Festelektrolytkondensator gemäß
Anspruch 1 , wobei das Kondensatorelement weiterhin eine Kathodenbeschichtung umfasst, die eine Metallteilchenschicht enthält und den festen Elektrolyten bedeckt, wobei die Metallteilchenschicht eine Vielzahl von leitfähigen Metallteilchen umfasst. - Festelektrolytkondensator gemäß
Anspruch 1 , wobei der Kondensator eine Durchschlagsspannung von etwa 55 Volt oder mehr aufweist. - Festelektrolytkondensator gemäß
Anspruch 1 , wobei das Dielektrikum eine Dicke von etwa 60 Nanometer oder mehr aufweist.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962945913P | 2019-12-10 | 2019-12-10 | |
US62/945,913 | 2019-12-10 | ||
US201962947014P | 2019-12-12 | 2019-12-12 | |
US62/947,014 | 2019-12-12 | ||
PCT/US2020/063946 WO2021119088A1 (en) | 2019-12-10 | 2020-12-09 | Tantalum capacitor with increased stability |
Publications (1)
Publication Number | Publication Date |
---|---|
DE112020006024T5 true DE112020006024T5 (de) | 2022-10-06 |
Family
ID=76209061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE112020006024.1T Pending DE112020006024T5 (de) | 2019-12-10 | 2020-12-09 | Tantalkondensator mit erhöhter Stabilität |
Country Status (6)
Country | Link |
---|---|
US (1) | US11776759B2 (de) |
JP (1) | JP2023506716A (de) |
KR (1) | KR20220113704A (de) |
CN (1) | CN114787951A (de) |
DE (1) | DE112020006024T5 (de) |
WO (1) | WO2021119088A1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11776760B2 (en) * | 2020-02-13 | 2023-10-03 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor containing polyaniline |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6197252B1 (en) | 1997-01-13 | 2001-03-06 | Avx Limited | Binder removal |
US20060038304A1 (en) | 2004-08-18 | 2006-02-23 | Harima Chemicals, Inc. | Conductive adhesive agent and process for manufacturing article using the conductive adhesive agent |
US20070064376A1 (en) | 2005-09-13 | 2007-03-22 | H. C. Starck Gmbh | Process for the production of electrolyte capacitors of high nominal voltage |
WO2014199480A1 (ja) | 2013-06-13 | 2014-12-18 | 石原ケミカル株式会社 | Ta粉末とその製造方法およびTa造粒粉 |
US9718905B2 (en) | 2012-07-03 | 2017-08-01 | Tosoh Corporation | Polythiophene, water-soluble electrically conductive polymer using it, and method for producing it |
Family Cites Families (273)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3889357A (en) | 1973-07-05 | 1975-06-17 | Sprague Electric Co | Screen printed solid electrolytic capacitor |
CA2010320C (en) | 1989-02-20 | 2001-04-17 | Yohzoh Yamamoto | Sheet or film of cyclo-olefin polymer |
US5111327A (en) | 1991-03-04 | 1992-05-05 | General Electric Company | Substituted 3,4-polymethylenedioxythiophenes, and polymers and electro responsive devices made therefrom |
JP2765462B2 (ja) | 1993-07-27 | 1998-06-18 | 日本電気株式会社 | 固体電解コンデンサおよびその製造方法 |
JPH07135126A (ja) | 1993-11-10 | 1995-05-23 | Nec Corp | 固体電解コンデンサ及びその製造方法 |
JP3068430B2 (ja) | 1995-04-25 | 2000-07-24 | 富山日本電気株式会社 | 固体電解コンデンサ及びその製造方法 |
US5812367A (en) | 1996-04-04 | 1998-09-22 | Matsushita Electric Industrial Co., Ltd. | Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative |
EP1100097B1 (de) | 1998-06-25 | 2008-08-06 | Nichicon Corporation | Verfahren zur herstellung eines festelektrolytkondensators |
JP4422918B2 (ja) | 1999-05-20 | 2010-03-03 | エイチ・シー・スタルク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | π−共役ポリマーの製造方法 |
DE10004725A1 (de) | 2000-02-03 | 2001-08-09 | Bayer Ag | Verfahren zur Herstellung von wasserlöslichen pi-konjugierten Polymeren |
DE10016723A1 (de) | 2000-04-04 | 2001-10-11 | Bayer Ag | Verfahren zur Herstellung von Dialkoxythiophenen und Alkylendioxythiophenen |
DE10029075A1 (de) | 2000-06-13 | 2001-12-20 | Bayer Ag | Verfahren zur Herstellung von 3,4-Alkylendioxythiophen-2,5-dicarbonsäurederivaten |
US6449140B1 (en) | 2000-07-07 | 2002-09-10 | Showa Denko K.K. | Solid electrolytic capacitor element and method for producing the same |
DE10058116A1 (de) | 2000-11-22 | 2002-05-23 | Bayer Ag | Polythiophene |
JP4095894B2 (ja) | 2000-11-22 | 2008-06-04 | バイエル・ベタイリグングスフェアヴァルトゥング・ゴスラー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | 分散性ポリマー粉末 |
DE10103416A1 (de) | 2001-01-26 | 2002-08-01 | Bayer Ag | Elektrolumineszierende Anordnungen |
DE10111790A1 (de) | 2001-03-12 | 2002-09-26 | Bayer Ag | Neue Polythiophen-Dispersionen |
US6674635B1 (en) | 2001-06-11 | 2004-01-06 | Avx Corporation | Protective coating for electrolytic capacitors |
FI115356B (fi) | 2001-06-29 | 2005-04-15 | Nokia Corp | Menetelmä audiovisuaalisen informaation käsittelemiseksi elektroniikkalaitteessa, järjestelmä ja elektroniikkalaite |
JP2003133183A (ja) | 2001-10-26 | 2003-05-09 | Matsushita Electric Ind Co Ltd | 固体電解コンデンサおよびその製造方法 |
DE10229218A1 (de) | 2002-06-28 | 2004-01-22 | H.C. Starck Gmbh | Alkylendioxythiophen-Dimere und Trimere |
JP4077675B2 (ja) | 2002-07-26 | 2008-04-16 | ナガセケムテックス株式会社 | ポリ(3,4−ジアルコキシチオフェン)とポリ陰イオンとの複合体の水分散体およびその製造方法 |
DE10237577A1 (de) | 2002-08-16 | 2004-02-26 | H.C. Starck Gmbh | Substituierte Poly(alkylendioxythiophene) als Feststoffelektrolyte in Elektrolytkondensatoren |
DE10248876B4 (de) | 2002-10-18 | 2006-07-06 | H.C. Starck Gmbh | Verfahren zur Herstellung linearer organischer Oligomere |
DE10257539A1 (de) | 2002-12-10 | 2004-07-01 | H.C. Starck Gmbh | Verfahren zur Herstellung von 2,2'-Di(3,4-ethylendioxythiophen)en |
DE10302086A1 (de) | 2003-01-21 | 2004-07-29 | Bayer Ag | Alkylendioxythiophene und Poly(alkylendioxythiophene) mit mesogenen Gruppen |
US7972534B2 (en) | 2003-04-02 | 2011-07-05 | H. C. Starck Gmbh | Retarding oxidants for preparing conductive polymers |
DE10331673A1 (de) | 2003-07-14 | 2005-02-10 | H.C. Starck Gmbh | Polythiophen mit Alkylenoxythiathiophen-Einheiten in Elektrolytkondensatoren |
DE10343873A1 (de) | 2003-09-23 | 2005-04-21 | Starck H C Gmbh | Verfahren zur Reinigung von Thiophenen |
DE502004009915D1 (de) | 2003-10-17 | 2009-10-01 | Starck H C Gmbh | Elektrolytkondensatoren mit polymerer Aussenschicht |
DE10353094A1 (de) | 2003-11-12 | 2005-06-09 | H.C. Starck Gmbh | Verfahren zur Herstellung linearer organischer Thiophen-Phenylen-Oligomere |
JP4959192B2 (ja) | 2003-11-28 | 2012-06-20 | 出光興産株式会社 | 導電性ポリアニリン組成物、その製造方法及びそれからなる成形体 |
DE10357571A1 (de) | 2003-12-10 | 2005-07-28 | H.C. Starck Gmbh | Multifunktionelle 3,4-Alkylendioxythiophen-Derivate und diese enthaltende elektrisch leitfähige Polymere |
DE10359796A1 (de) | 2003-12-19 | 2005-07-28 | H.C. Starck Gmbh | 3,4-Dioxythiophen-Derivate |
US20050175861A1 (en) | 2004-02-10 | 2005-08-11 | H.C. Starck Gmbh | Polythiophene compositions for improving organic light-emitting diodes |
DE102004006583A1 (de) | 2004-02-10 | 2005-09-01 | H.C. Starck Gmbh | Polythiophenformulierungen zur Verbesserung von organischen Leuchtdioden |
US7342775B2 (en) | 2004-04-23 | 2008-03-11 | Kemet Electronics Corporation | Fluted anode with minimal density gradients and capacitor comprising same |
JP2006028214A (ja) | 2004-07-12 | 2006-02-02 | Nagase Chemtex Corp | ポリ(3,4−ジアルコキシチオフェン)とポリ陰イオンとの複合体の水分散体の製造方法 |
WO2006088033A1 (ja) | 2005-02-17 | 2006-08-24 | Kaneka Corporation | 金属表面コーティング用組成物、導電性高分子の製造方法、金属表面のコーティング方法、ならびに電解コンデンサおよびその製造方法 |
DE102005016727A1 (de) | 2005-04-11 | 2006-10-26 | H.C. Starck Gmbh | Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zu ihrer Herstellung |
EP1884354A4 (de) | 2005-05-27 | 2008-08-06 | Idemitsu Kosan Co | Leitfähiger mehrschichtiger polymerkörper |
DE102005031349A1 (de) | 2005-07-05 | 2007-01-11 | H.C. Starck Gmbh | Verfahren zur Herstellung von Polyethylendioxythiophenen |
DE102005033839A1 (de) | 2005-07-20 | 2007-01-25 | H.C. Starck Gmbh | Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zur ihrer Herstellung |
JP2007073498A (ja) | 2005-08-09 | 2007-03-22 | Idemitsu Kosan Co Ltd | 導電性積層体 |
DE102005043828A1 (de) | 2005-09-13 | 2007-03-22 | H.C. Starck Gmbh | Verfahren zur Herstellung von Elektrolytkondensatoren |
DE102005053646A1 (de) | 2005-11-10 | 2007-05-16 | Starck H C Gmbh Co Kg | Polymerbeschichtungen mit verbesserter Lösungsmittelbeständigkeit |
KR101327242B1 (ko) | 2005-11-17 | 2013-11-12 | 헤레우스 프레셔스 메탈스 게엠베하 운트 코. 카게 | 폴리(3,4-디알콕시티오펜)과 폴리음이온의 복합체의수분산체의 제조방법 |
TWI408710B (zh) | 2005-11-22 | 2013-09-11 | Murata Manufacturing Co | 固體電解電容器,其製法,及固體電解電容器用基材 |
DE102005060159A1 (de) | 2005-12-14 | 2007-06-21 | H. C. Starck Gmbh & Co. Kg | Transparente polymere Elektrode für elektro-optische Aufbauten |
DE102006020744A1 (de) | 2006-05-04 | 2007-11-08 | H. C. Starck Gmbh & Co. Kg | Verfahren zur Stabilisierung von Thiophenderivaten |
US7154742B1 (en) | 2006-05-10 | 2006-12-26 | Kemet Electronics Corporation | Fluted anode with improved capacitance and capacitor comprising same |
JP5305569B2 (ja) | 2006-06-29 | 2013-10-02 | 三洋電機株式会社 | 電解コンデンサの製造方法および電解コンデンサ |
US7563290B2 (en) | 2006-07-06 | 2009-07-21 | Kemet Electronics Corporation | High voltage solid electrolytic capacitors using conductive polymer slurries |
JP2008066502A (ja) | 2006-09-07 | 2008-03-21 | Matsushita Electric Ind Co Ltd | 電解コンデンサ |
US7649730B2 (en) | 2007-03-20 | 2010-01-19 | Avx Corporation | Wet electrolytic capacitor containing a plurality of thin powder-formed anodes |
US7515396B2 (en) | 2007-03-21 | 2009-04-07 | Avx Corporation | Solid electrolytic capacitor containing a conductive polymer |
JP4911509B2 (ja) | 2007-04-03 | 2012-04-04 | 三洋電機株式会社 | 電解コンデンサおよびその製造方法 |
US8696767B2 (en) | 2007-05-21 | 2014-04-15 | Showa Denko K.K. | Dipping method of forming cathode of solid electrolytic capacitor |
JP4737775B2 (ja) | 2007-06-18 | 2011-08-03 | Necトーキン株式会社 | 固体電解コンデンサおよびその製造方法 |
JP4836887B2 (ja) | 2007-07-09 | 2011-12-14 | 三洋電機株式会社 | 電解コンデンサの製造方法及び電解コンデンサ |
DE102007041722A1 (de) | 2007-09-04 | 2009-03-05 | H.C. Starck Gmbh | Verfahren zur Herstellung von leitfähigen Polymeren |
DE102007048212A1 (de) | 2007-10-08 | 2009-04-09 | H.C. Starck Gmbh | Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Zwischenschicht |
US8195490B2 (en) | 2007-10-15 | 2012-06-05 | University Of Southern California | Agent security via approximate solvers |
US20130273514A1 (en) | 2007-10-15 | 2013-10-17 | University Of Southern California | Optimal Strategies in Security Games |
US8224681B2 (en) | 2007-10-15 | 2012-07-17 | University Of Southern California | Optimizing a security patrolling strategy using decomposed optimal Bayesian Stackelberg solver |
JP4916416B2 (ja) | 2007-10-30 | 2012-04-11 | サン電子工業株式会社 | 電解コンデンサの製造方法及び電解コンデンサ |
FR2923020B1 (fr) | 2007-10-30 | 2009-11-13 | Mge Ups Systems | Procede et dispositif de prediction de defaillances de condensateur electrolytique, convertisseur et alimentation sans interruption equipes d'un tel dispositif |
DE102008005568A1 (de) | 2008-01-22 | 2009-07-23 | H.C. Starck Gmbh | Verfahren zur Herstellung von leitfähigen Polymeren |
DE112009000875T5 (de) | 2008-04-16 | 2011-09-29 | Nec Tokin Corp. | Elektrisch leitfähige Polymersuspension, elektrisch leitfähige Polymerzusammensetzung, Festelektrolytkondensator und Verfahren zu seiner Herstellung |
JP4454042B2 (ja) | 2008-04-21 | 2010-04-21 | テイカ株式会社 | 導電性組成物の分散液、導電性組成物および固体電解コンデンサ |
DE102008023008A1 (de) | 2008-05-09 | 2009-11-12 | H.C. Starck Gmbh | Neuartige Polythiophene-Polyanion-Komplexe in unpolaren organischen Lösungsmitteln |
DE102008024805A1 (de) | 2008-05-23 | 2009-12-03 | H.C. Starck Gmbh | Verfahren zur Herstellung von Elektrolytkondensatoren |
DE102008032578A1 (de) | 2008-07-11 | 2010-01-14 | H.C. Starck Gmbh | Verfahren zur Herstellung von Elektrolytkondensatoren |
JP2010129651A (ja) | 2008-11-26 | 2010-06-10 | Nichicon Corp | 固体電解コンデンサの製造方法 |
JP2010153625A (ja) | 2008-12-25 | 2010-07-08 | Hitachi Chemical Electronics Co Ltd | チップ形固体電解コンデンサおよびその製造方法 |
DE102009007594A1 (de) | 2009-02-05 | 2010-08-12 | H.C. Starck Clevios Gmbh | Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Außenschicht. |
KR101295763B1 (ko) | 2009-02-17 | 2013-08-12 | 소켄 케미칼 앤드 엔지니어링 캄파니, 리미티드 | 복합 전기 전도성 폴리머 조성물, 이의 제조 방법, 이를 함유하는 용액, 및 이의 용도 |
JP5869881B2 (ja) | 2009-02-17 | 2016-02-24 | 綜研化学株式会社 | 複合導電性高分子溶液およびその製造方法 |
WO2010095650A1 (ja) | 2009-02-17 | 2010-08-26 | 綜研化学株式会社 | 複合導電性高分子組成物、その製造方法、当該組成物を含有する溶液、および当該組成物の用途 |
JP5869880B2 (ja) | 2009-02-17 | 2016-02-24 | 綜研化学株式会社 | 複合導電性高分子溶液およびその製造方法 |
KR101295762B1 (ko) | 2009-02-17 | 2013-08-12 | 소켄 케미칼 앤드 엔지니어링 캄파니, 리미티드 | 복합 전기 전도성 폴리머 조성물, 이의 제조 방법, 이를 함유하는 용액, 및 이의 용도 |
DE102009012660A1 (de) | 2009-03-13 | 2010-09-16 | H.C. Starck Clevios Gmbh | Polymerbeschichtungen mit verbesserter Temperaturstabilität |
US8310815B2 (en) | 2009-04-20 | 2012-11-13 | Kemet Electronics Corporation | High voltage and high efficiency polymer electrolytic capacitors |
JP2011009568A (ja) | 2009-06-26 | 2011-01-13 | Kaneka Corp | 導電性高分子コンデンサ用電解質の形成方法 |
JP2011009499A (ja) | 2009-06-26 | 2011-01-13 | Kaneka Corp | 導電性高分子コンデンサ用電解質の形成方法 |
JP2011009569A (ja) | 2009-06-26 | 2011-01-13 | Kaneka Corp | 導電性高分子電解コンデンサの製造方法 |
WO2011004831A1 (ja) | 2009-07-08 | 2011-01-13 | 綜研化学株式会社 | 導電性高分子組成物およびその製造方法 |
TWI478957B (zh) | 2009-09-07 | 2015-04-01 | Idemitsu Kosan Co | Conductive composition |
KR101516838B1 (ko) | 2009-09-30 | 2015-05-07 | 헤레우스 프레셔스 메탈스 게엠베하 운트 코. 카게 | 안정화된 티오펜 유도체 |
EP2305686B1 (de) | 2009-09-30 | 2013-04-03 | Heraeus Precious Metals GmbH & Co. KG | Monomere von ausgewählten Farbnummern und Kondensatoren daraus |
US8194395B2 (en) | 2009-10-08 | 2012-06-05 | Avx Corporation | Hermetically sealed capacitor assembly |
US8125768B2 (en) | 2009-10-23 | 2012-02-28 | Avx Corporation | External coating for a solid electrolytic capacitor |
JP5371710B2 (ja) | 2009-11-20 | 2013-12-18 | 三洋電機株式会社 | 固体電解コンデンサの製造方法 |
JP2011114208A (ja) | 2009-11-27 | 2011-06-09 | Kaneka Corp | 導電性高分子コンデンサの製造方法 |
JP5663871B2 (ja) | 2009-12-24 | 2015-02-04 | 東ソー株式会社 | チオフェン類の製造方法 |
JP2011135020A (ja) | 2009-12-25 | 2011-07-07 | Nec Tokin Corp | 固体電解コンデンサおよびその製造方法 |
CN102763181B (zh) | 2010-02-15 | 2017-02-15 | 松下知识产权经营株式会社 | 电解电容器 |
JP5514596B2 (ja) | 2010-03-23 | 2014-06-04 | 出光興産株式会社 | 導電性分散液 |
JP2011199088A (ja) | 2010-03-23 | 2011-10-06 | Nippon Chemicon Corp | 固体電解コンデンサ |
JP2011199086A (ja) | 2010-03-23 | 2011-10-06 | Nippon Chemicon Corp | 固体電解コンデンサ |
JP2011199087A (ja) | 2010-03-23 | 2011-10-06 | Nippon Chemicon Corp | 固体電解コンデンサ |
JP5491246B2 (ja) | 2010-03-25 | 2014-05-14 | Necトーキン株式会社 | 導電性高分子およびその製造方法、導電性高分子分散液、ならびに固体電解コンデンサおよびその製造方法 |
JP2011216752A (ja) | 2010-03-31 | 2011-10-27 | Nippon Chemicon Corp | 固体電解コンデンサ |
WO2011121995A1 (ja) | 2010-03-31 | 2011-10-06 | 日本ケミコン株式会社 | 固体電解コンデンサ |
JP2011253878A (ja) | 2010-06-01 | 2011-12-15 | Holy Stone Polytech Co Ltd | 固体電解コンデンサ |
JP5551529B2 (ja) | 2010-07-05 | 2014-07-16 | Necトーキン株式会社 | 固体電解コンデンサとその製造方法 |
KR101452883B1 (ko) | 2010-07-26 | 2014-10-22 | 소켄 케미칼 앤드 엔지니어링 캄파니, 리미티드 | 폴리티오펜 중합용 촉매 및 폴리(치환 티오펜)의 제조 방법 |
JP2012025887A (ja) | 2010-07-26 | 2012-02-09 | Soken Chem & Eng Co Ltd | ポリ(3−置換チオフェン)の製造方法 |
KR101139040B1 (ko) | 2010-08-19 | 2012-04-30 | 데이카 가부시키가이샤 | 도전성 고분자 제조용 산화제겸 도판트 용액, 도전성 고분자와 고체 전해 콘덴서 |
JP5535831B2 (ja) | 2010-08-30 | 2014-07-02 | 三洋電機株式会社 | 固体電解コンデンサの製造方法 |
US8808403B2 (en) | 2010-09-15 | 2014-08-19 | Kemet Electronics Corporation | Process for solid electrolytic capacitors using polymer slurries |
US8824121B2 (en) | 2010-09-16 | 2014-09-02 | Avx Corporation | Conductive polymer coating for wet electrolytic capacitor |
DE102010047086A1 (de) | 2010-10-01 | 2012-04-05 | Heraeus Clevios Gmbh | Schichtaufbauten mit verbesserten elektrischen Kenngrößen beinthaltend PEDOT/PSS sowie einen Stabilisator |
US9508491B2 (en) | 2010-10-01 | 2016-11-29 | Heraeus Deutschland GmbH & Co. KG | Method for improving electrical parameters in capacitors comprising PEDOT/PSS as a solid electrolyte through a polyalkylene glycol |
DE102010048031A1 (de) | 2010-10-12 | 2012-04-12 | Heraeus Clevios Gmbh | Polythiophene beinhaltende Dispersionen mit definiertem Sulfat-Gehalt |
DE102010048032A1 (de) | 2010-10-12 | 2012-04-12 | Heraeus Clevios Gmbh | Polythiophene beinhaltende Dispersionen mit definiertem Gehalt an Thiophen-Monomer |
TWI537301B (zh) | 2010-11-03 | 2016-06-11 | 黑拉耶烏斯貴金屬公司 | 有機溶劑中的pedot分散液 |
JP5807997B2 (ja) | 2010-12-07 | 2015-11-10 | テイカ株式会社 | 固体電解コンデンサの製造方法 |
US8493713B2 (en) | 2010-12-14 | 2013-07-23 | Avx Corporation | Conductive coating for use in electrolytic capacitors |
US8576543B2 (en) | 2010-12-14 | 2013-11-05 | Avx Corporation | Solid electrolytic capacitor containing a poly(3,4-ethylenedioxythiophene) quaternary onium salt |
WO2012102017A1 (ja) | 2011-01-27 | 2012-08-02 | 出光興産株式会社 | ポリアニリン複合体、その製造方法及び組成物 |
JP5745881B2 (ja) | 2011-02-14 | 2015-07-08 | テイカ株式会社 | 固体電解コンデンサ |
US8771381B2 (en) | 2011-02-15 | 2014-07-08 | Kemet Electronics Corporation | Process for producing electrolytic capacitors and capacitors made thereby |
JP6060381B2 (ja) | 2011-02-18 | 2017-01-18 | パナソニックIpマネジメント株式会社 | 電解コンデンサ及びその製造方法 |
JP2012174948A (ja) | 2011-02-23 | 2012-09-10 | Nec Tokin Corp | 固体電解コンデンサ及びその製造方法 |
JP5995262B2 (ja) | 2011-03-06 | 2016-09-21 | ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー | Pedot/pssを固体電解質として含有するコンデンサにおける電気パラメータをポリグリセロールによって改善するための方法 |
JP2012188400A (ja) | 2011-03-11 | 2012-10-04 | Tosoh Corp | ジチエノベンゾジチオフェンの製造方法 |
US8451588B2 (en) | 2011-03-11 | 2013-05-28 | Avx Corporation | Solid electrolytic capacitor containing a conductive coating formed from a colloidal dispersion |
JP2012191127A (ja) | 2011-03-14 | 2012-10-04 | San Denshi Kogyo Kk | 電解コンデンサの製造方法 |
JP2012199364A (ja) | 2011-03-22 | 2012-10-18 | Nec Tokin Corp | 固体電解コンデンサおよびその製造方法 |
US9373448B2 (en) | 2011-03-25 | 2016-06-21 | Panasonic Intellectual Property Management Co., Ltd. | Method of manufacturing electrolytic capacitor |
KR101775620B1 (ko) | 2011-04-06 | 2017-09-07 | 에스케이케미칼주식회사 | 코팅용 폴리에스테르 바인더 수지 및 이를 함유하는 코팅 조성물 |
US9466432B2 (en) | 2011-04-13 | 2016-10-11 | Panasonic Intellectual Property Management Co., Ltd. | Process for producing solution having electrically conductive polymer dispersed therein, and electrolytic capacitor |
TWI494959B (zh) | 2011-05-12 | 2015-08-01 | 帝化股份有限公司 | 固體電解電容器之製造方法 |
JP5441952B2 (ja) | 2011-05-17 | 2014-03-12 | Necトーキン株式会社 | 導電性高分子懸濁溶液およびその製造方法、導電性高分子材料、ならびに電解コンデンサおよびその製造方法 |
JP2012244077A (ja) | 2011-05-24 | 2012-12-10 | Japan Carlit Co Ltd:The | 固体電解コンデンサの製造方法 |
CN107103997B (zh) | 2011-05-24 | 2019-09-06 | 凯米特电子公司 | 电容器以及形成电容器的方法 |
JP2013006969A (ja) | 2011-06-24 | 2013-01-10 | Tosoh Corp | 表面処理剤、導電性モノマー含有組成物及びそれを用いた導電性高分子膜 |
JP5939454B2 (ja) | 2011-09-06 | 2016-06-22 | 日本ケミコン株式会社 | 固体電解コンデンサ用分散液の製造方法及び固体電解コンデンサの製造方法 |
KR101644770B1 (ko) | 2011-09-06 | 2016-08-01 | 데이카 가부시키가이샤 | 도전성 고분자의 분산액, 도전성 고분자 및 그 용도 |
JP2013074212A (ja) | 2011-09-28 | 2013-04-22 | Nippon Chemicon Corp | 固体電解コンデンサ用分散液の製造方法及び固体電解コンデンサ用分散液、この分散液を用いた固体電解コンデンサの製造方法及び固体電解コンデンサ |
JP5892535B2 (ja) | 2011-10-06 | 2016-03-23 | テイカ株式会社 | 導電性高分子製造用酸化剤兼ドーパント、導電性高分子製造用酸化剤兼ドーパント溶液、導電性高分子および固体電解コンデンサ |
JP5998836B2 (ja) | 2011-10-19 | 2016-09-28 | 東ソー株式会社 | チオフェンスルホン酸エステル |
CN103958552B (zh) | 2011-11-16 | 2016-11-16 | 东曹有机化学株式会社 | 高纯度对苯乙烯磺酸钠的制造方法以及聚苯乙烯磺酸钠的制造方法 |
JP2013116939A (ja) | 2011-12-01 | 2013-06-13 | Tosoh Corp | ポリチオフェン誘導体複合物及びその製造方法、並びにその用途 |
JP2013127045A (ja) | 2011-12-19 | 2013-06-27 | Tosoh Corp | 導電性高分子及びその製造方法 |
CN104040658B (zh) | 2011-12-19 | 2016-06-22 | 帝化株式会社 | 电解电容器及其制造方法 |
CN104105738B (zh) | 2012-01-25 | 2017-04-05 | 凯米特电子公司 | 制备导电性聚合物的聚合方法 |
JP6024264B2 (ja) | 2012-02-02 | 2016-11-16 | 東ソー株式会社 | チオフェン誘導体、水溶性導電性ポリマー及びその水溶液、並びにそれらの製造方法 |
JP2013163793A (ja) | 2012-02-13 | 2013-08-22 | Tosoh Corp | 導電性モノマー用アミノ酸誘導体 |
US9941055B2 (en) | 2012-02-27 | 2018-04-10 | Kemet Electronics Corporation | Solid electrolytic capacitor with interlayer crosslinking |
JP5769742B2 (ja) | 2012-02-27 | 2015-08-26 | ケメット エレクトロニクス コーポレーション | 層間架橋を用いた固体電解コンデンサ |
US10879010B2 (en) | 2012-02-27 | 2020-12-29 | Kemet Electronics Corporation | Electrolytic capacitor having a higher cap recovery and lower ESR |
JP5152882B1 (ja) | 2012-03-07 | 2013-02-27 | Necトーキン株式会社 | 導電性高分子溶液、導電性高分子組成物、並びにそれを用いた固体電解コンデンサ及びその製造方法 |
DE102012004692A1 (de) | 2012-03-12 | 2013-09-12 | Heraeus Precious Metals Gmbh & Co. Kg | Zusatz von Polymeren zu Thiophen-Monomeren bei der In Situ-Polymerisation |
US8971020B2 (en) | 2012-03-16 | 2015-03-03 | Avx Corporation | Wet capacitor cathode containing a conductive copolymer |
JP5911136B2 (ja) | 2012-04-10 | 2016-04-27 | テイカ株式会社 | 固体電解コンデンサの製造方法 |
JP2013251408A (ja) | 2012-05-31 | 2013-12-12 | Nippon Chemicon Corp | 固体電解コンデンサの製造方法 |
JP6233952B2 (ja) | 2012-05-31 | 2017-11-22 | カーリットホールディングス株式会社 | 固体電解コンデンサ製造用導電性高分子分散液及びそれを用いて作製した固体電解コンデンサ |
JP5892547B2 (ja) | 2012-05-31 | 2016-03-23 | カーリットホールディングス株式会社 | 固体電解コンデンサ製造用導電性高分子分散液及びそれを用いて作製した固体電解コンデンサ |
TWI450907B (zh) | 2012-06-26 | 2014-09-01 | Far Eastern New Century Corp | 製造導電聚合物分散液的方法、由其形成之導電聚合物材料及利用該導電聚合物材料之固態電容 |
JP6068021B2 (ja) | 2012-06-28 | 2017-01-25 | カーリットホールディングス株式会社 | 固体電解コンデンサ製造用導電性高分子分散液及びそれを用いて作製した固体電解コンデンサ |
JP2014011222A (ja) | 2012-06-28 | 2014-01-20 | Japan Carlit Co Ltd | 固体電解コンデンサ製造用導電性高分子分散液及びそれを用いて作製した固体電解コンデンサ |
JP5637544B2 (ja) | 2012-07-13 | 2014-12-10 | テイカ株式会社 | 固体電解コンデンサ |
US9548163B2 (en) | 2012-07-19 | 2017-01-17 | Avx Corporation | Solid electrolytic capacitor with improved performance at high voltages |
DE102013213723A1 (de) | 2012-07-19 | 2014-01-23 | Avx Corporation | Festelektrolytkondensator mit erhöhter Feucht-zu-Trocken-Kapazität |
JP2014027040A (ja) | 2012-07-25 | 2014-02-06 | Japan Carlit Co Ltd | 固体電解コンデンサ製造用導電性高分子分散液及びそれを用いて作製した固体電解コンデンサ |
JP2014024905A (ja) | 2012-07-25 | 2014-02-06 | Tosoh Corp | 導電性膜用高分子分散体 |
JP6618106B2 (ja) | 2012-07-31 | 2019-12-11 | 日本ケミコン株式会社 | 固体電解コンデンサ及びその製造方法 |
CN102768903A (zh) | 2012-08-09 | 2012-11-07 | 中国振华(集团)新云电子元器件有限责任公司 | 高压导电聚合物电解质电容器的制作方法 |
JP2014041888A (ja) | 2012-08-22 | 2014-03-06 | Japan Carlit Co Ltd | 固体電解コンデンサ製造用導電性高分子分散液及びそれを用いて作製した固体電解コンデンサ |
JP6015244B2 (ja) | 2012-08-24 | 2016-10-26 | 東ソー株式会社 | フェノール誘導体を含有するポリチオフェン組成物、及びそれからなる導電性被覆物 |
JP2014043500A (ja) | 2012-08-24 | 2014-03-13 | Tosoh Corp | チオフェン芳香族スルホン酸エステル、それを含む共重合体、及びその共重合体からなる導電性被覆物 |
JP6015243B2 (ja) | 2012-08-24 | 2016-10-26 | 東ソー株式会社 | カルバモイルオキシチオフェン類、それを含む共重合体、及びその共重合体からなる導電性被覆物 |
JP2014060231A (ja) | 2012-09-17 | 2014-04-03 | Murata Mfg Co Ltd | 固体電解コンデンサの製造方法 |
DE102012018976A1 (de) | 2012-09-27 | 2014-03-27 | Heraeus Precious Metals Gmbh & Co. Kg | Verwendung von Mischungen aus selbstdotierten und fremddotierten leitfähigen Polymeren in einem Kondensator |
DE102012018978A1 (de) | 2012-09-27 | 2014-03-27 | Heraeus Precious Metals Gmbh & Co. Kg | Verwendung von PEDOT/PSS-Dispersionen mit hohem PEDOT-Anteil zur Herstellung von Kondensatoren und Solarzellen |
JP6180010B2 (ja) | 2012-10-18 | 2017-08-16 | テイカ株式会社 | 電解コンデンサの製造方法 |
JP5988824B2 (ja) | 2012-10-22 | 2016-09-07 | テイカ株式会社 | 電解コンデンサの製造方法 |
JP5988831B2 (ja) | 2012-10-31 | 2016-09-07 | テイカ株式会社 | 電解コンデンサの製造方法 |
JP2014093417A (ja) | 2012-11-02 | 2014-05-19 | Nichicon Corp | 固体電解コンデンサ及びその製造方法 |
JP6285138B2 (ja) | 2012-11-08 | 2018-02-28 | ローム株式会社 | 固体電解コンデンサ |
JP2014123685A (ja) | 2012-12-21 | 2014-07-03 | Nippon Chemicon Corp | 電解コンデンサ及びその製造方法 |
JP5955786B2 (ja) | 2013-01-07 | 2016-07-20 | 出光興産株式会社 | 導電性高分子組成物 |
JP6405534B2 (ja) | 2013-01-31 | 2018-10-17 | パナソニックIpマネジメント株式会社 | 電解コンデンサ及びその製造方法 |
US9530568B2 (en) | 2013-03-29 | 2016-12-27 | Panasonic Intellectual Property Management Co., Ltd. | Method of manufacturing conductive polymer microparticle dispersion and method of manufacturing electrolytic capacitor containing the conductive polymer microparticle dispersion |
JP5978467B2 (ja) | 2013-03-29 | 2016-08-24 | パナソニックIpマネジメント株式会社 | 導電性高分子微粒子分散体の製造方法およびその導電性高分子微粒子分散体を用いた電解コンデンサの製造方法 |
WO2014155420A1 (ja) | 2013-03-29 | 2014-10-02 | パナソニック株式会社 | 導電性高分子微粒子分散体とそれを用いた電解コンデンサ、およびそれらの製造方法 |
WO2014155421A1 (ja) | 2013-03-29 | 2014-10-02 | パナソニック株式会社 | 導電性高分子微粒子分散体の製造方法およびその導電性高分子微粒子分散体を用いた電解コンデンサの製造方法 |
JP2014201545A (ja) | 2013-04-04 | 2014-10-27 | 東ソー株式会社 | 2−ヒドロキシメチル−2,3−ジヒドロ−チエノ[3,4−b][1,4]ジオキシン−5,7−ジカルボン酸ジアルキルエステルの製造方法 |
JP6379523B2 (ja) | 2013-04-04 | 2018-08-29 | 東ソー株式会社 | 導電性高分子水溶液、及び導電性高分子膜 |
JP6539913B2 (ja) | 2013-04-05 | 2019-07-10 | 昭和電工株式会社 | 固体電解コンデンサの製造方法 |
US9761347B2 (en) | 2013-05-17 | 2017-09-12 | Kemet Electronics Corporation | Process to improve coverage and electrical performance of solid electrolytic capacitor |
US9343239B2 (en) | 2013-05-17 | 2016-05-17 | Kemet Electronics Corporation | Solid electrolytic capacitor and improved method for manufacturing a solid electrolytic capacitor |
US9761378B2 (en) | 2015-03-30 | 2017-09-12 | Kemet Electronics Corporation | Process to improve coverage and electrical performance of solid electrolytic capacitors |
JP6256970B2 (ja) | 2013-06-17 | 2018-01-10 | テイカ株式会社 | 電解コンデンサおよびその製造方法 |
JP6183835B2 (ja) | 2013-07-22 | 2017-08-23 | 富山薬品工業株式会社 | 導電性ポリマー分散液の製造方法 |
US9928964B1 (en) | 2013-08-28 | 2018-03-27 | Kemet Electronics Corporation | Preparation of conjugated dimer and products formed therefrom |
JP5543001B2 (ja) | 2013-09-02 | 2014-07-09 | 三洋電機株式会社 | 電解コンデンサの製造方法 |
CN105531298B (zh) | 2013-09-11 | 2017-11-28 | 帝化株式会社 | 导电性高分子制造用单体液及使用其的电解电容器的制造方法 |
JP6201595B2 (ja) | 2013-10-01 | 2017-09-27 | 東ソー株式会社 | 2−ヒドロキシメチル−2,3−ジヒドロ−チエノ[3,4−b][1,4]ジオキシンの製造方法 |
US9236193B2 (en) | 2013-10-02 | 2016-01-12 | Avx Corporation | Solid electrolytic capacitor for use under high temperature and humidity conditions |
JP6384896B2 (ja) | 2013-11-14 | 2018-09-05 | ニチコン株式会社 | 固体電解コンデンサおよびその製造方法 |
JP2015105315A (ja) | 2013-11-29 | 2015-06-08 | 東ソー有機化学株式会社 | 有機溶剤への溶解性と耐熱性に優れたスチレンスルホン酸リチウム共重合体、ならびに当該スチレンスルホン酸リチウム共重合体を用いた帯電防止剤 |
JP6358646B2 (ja) | 2013-12-17 | 2018-07-18 | ニチコン株式会社 | 固体電解コンデンサおよびその製造方法 |
JP6311355B2 (ja) | 2014-01-27 | 2018-04-18 | 東ソー株式会社 | 導電性高分子水溶液、及び導電性高分子膜 |
JP5948592B2 (ja) | 2014-01-31 | 2016-07-06 | パナソニックIpマネジメント株式会社 | 導電性高分子微粒子分散体の製造方法およびその導電性高分子微粒子分散体を用いた電解コンデンサの製造方法 |
WO2015119047A1 (ja) | 2014-02-05 | 2015-08-13 | 日本ケミコン株式会社 | 固体電解コンデンサ及びその製造方法 |
JP6745580B2 (ja) | 2014-02-05 | 2020-08-26 | 日本ケミコン株式会社 | 固体電解コンデンサ及びその製造方法 |
JP6427887B2 (ja) | 2014-02-05 | 2018-11-28 | 東ソー株式会社 | 導電性高分子水溶液、及び導電性高分子膜 |
WO2015129515A1 (ja) | 2014-02-27 | 2015-09-03 | テイカ株式会社 | 導電性高分子製造用酸化剤兼ドーパント、その溶液、それらのいずれかを用いて製造した導電性高分子およびその導電性高分子を電解質として用いた電解コンデンサ |
JP6273917B2 (ja) | 2014-03-10 | 2018-02-07 | 東ソー株式会社 | チオフェン共重合体及びその水溶液、並びにチオフェンモノマー組成物及びその製造方法 |
CN103854868B (zh) | 2014-03-12 | 2016-06-29 | 中国振华(集团)新云电子元器件有限责任公司 | 适用于75v以上高额定电压固体电解电容器的制作方法 |
JP6515609B2 (ja) * | 2014-04-23 | 2019-05-22 | 東ソー株式会社 | 導電性高分子水溶液、及び導電性高分子膜並びに該被覆物品 |
JP5895136B2 (ja) | 2014-04-28 | 2016-03-30 | パナソニックIpマネジメント株式会社 | 電解コンデンサの製造方法 |
EP2950317B1 (de) | 2014-05-30 | 2017-08-23 | Heraeus Deutschland GmbH & Co. KG | Doppel- oder polyfunktionelle Verbindungen als Haftvermittler für leitfähige Polymere |
EP2950316B1 (de) | 2014-05-30 | 2019-11-06 | Heraeus Deutschland GmbH & Co. KG | Monofunktionelle Amine als Haftgrundierungen für leitfähige Polymere |
JP6485074B2 (ja) | 2014-06-19 | 2019-03-20 | 東ソー株式会社 | 共重合体、その製造方法、その導電性ポリマー水溶液、及びその用途 |
JP2016009770A (ja) | 2014-06-25 | 2016-01-18 | カーリットホールディングス株式会社 | 電解コンデンサ及びその製造方法 |
US9277618B2 (en) | 2014-06-27 | 2016-03-01 | Bridgelux, Inc. | Monolithic LED chip in an integrated control module with active circuitry |
KR102405380B1 (ko) | 2014-07-11 | 2022-06-03 | 이데미쓰 고산 가부시키가이샤 | 폴리아닐린 복합체 조성물의 제조 방법 및 폴리아닐린 복합체 조성물 |
JP6462255B2 (ja) | 2014-07-14 | 2019-01-30 | テイカ株式会社 | 電解コンデンサおよびその製造方法 |
JP6415146B2 (ja) | 2014-07-14 | 2018-10-31 | テイカ株式会社 | 電解コンデンサ製造用の導電性高分子の分散液およびそれを用いて製造した電解コンデンサ。 |
EP2977993A1 (de) | 2014-07-25 | 2016-01-27 | Heraeus Deutschland GmbH & Co. KG | Formulierungen mit Metallnanodrähten und PEDOT |
JP6096727B2 (ja) | 2014-09-12 | 2017-03-15 | 東ソー有機化学株式会社 | 導電性ポリマー塗膜及びその製造方法 |
US10062519B2 (en) | 2014-09-15 | 2018-08-28 | Kemet Electronics Corporation | Tantalum capacitor with polymer cathode |
CN105405657A (zh) | 2014-09-16 | 2016-03-16 | 立隆电子工业股份有限公司 | 电解电容器的制造方法及其制品 |
CN104409213A (zh) | 2014-11-12 | 2015-03-11 | 深圳新宙邦科技股份有限公司 | 用于化成箔后处理的电解质胶液、电极箔和电容器 |
EP3037497A1 (de) | 2014-12-23 | 2016-06-29 | Heraeus Deutschland GmbH & Co. KG | Verfahren zur Herstellung funktionalisierter Polythiopene |
CN107112139B (zh) | 2014-12-25 | 2019-07-26 | 松下知识产权经营株式会社 | 电解电容器的制造方法 |
TWI675033B (zh) | 2015-01-05 | 2019-10-21 | 日商綜研化學股份有限公司 | 含有雜環的化合物、使用該化合物的聚合物及其用途 |
CN104637687B (zh) | 2015-02-06 | 2017-07-14 | 肇庆绿宝石电子科技股份有限公司 | 一种高压固体电解质铝电解电容器的制造方法 |
EP3067948B1 (de) | 2015-03-09 | 2018-08-08 | Heraeus Deutschland GmbH & Co. KG | Leitfähiges Polymer in organischem Lösungsmittel mit fluorierter nichtionischer Verbindung |
EP3070765B1 (de) | 2015-03-16 | 2019-05-08 | Heraeus Battery Technology GmbH | Verwendung von pedot/pss in einer kathode einer elektrochemischen lithiumschwefelzelle |
CN107406586B (zh) | 2015-03-27 | 2020-03-27 | 综研化学株式会社 | 聚合物、氧化聚合物、聚合物组合物、凝胶状聚合物组合物及其用途 |
JP2016188348A (ja) | 2015-03-30 | 2016-11-04 | 東ソー株式会社 | チオフェンポリマー、その組成物、及びその用途 |
US9991055B2 (en) | 2015-05-29 | 2018-06-05 | Avx Corporation | Solid electrolytic capacitor assembly for use at high temperatures |
US9972444B2 (en) | 2015-05-29 | 2018-05-15 | Avx Corporation | Solid electrolytic capacitor element for use in dry conditions |
US9767963B2 (en) | 2015-05-29 | 2017-09-19 | Avx Corporation | Solid electrolytic capacitor with an ultrahigh capacitance |
US9672989B2 (en) | 2015-05-29 | 2017-06-06 | Avx Corporation | Solid electrolytic capacitor assembly for use in a humid atmosphere |
US9905368B2 (en) | 2015-08-04 | 2018-02-27 | Avx Corporation | Multiple leadwires using carrier wire for low ESR electrolytic capacitors |
JP6639153B2 (ja) | 2015-08-27 | 2020-02-05 | テイカ株式会社 | 電解コンデンサ |
JP6580424B2 (ja) | 2015-09-01 | 2019-09-25 | テイカ株式会社 | 導電性高分子組成物、その分散液、その製造方法およびその用途 |
JP6580436B2 (ja) | 2015-09-16 | 2019-09-25 | テイカ株式会社 | 導電性高分子組成物およびその用途 |
JP6645138B2 (ja) | 2015-11-24 | 2020-02-12 | 東ソー株式会社 | 導電性高分子水溶液、及び導電性高分子膜並びに該被覆物品 |
JP6645141B2 (ja) | 2015-11-30 | 2020-02-12 | 東ソー株式会社 | 導電性高分子水溶液、及び導電性高分子膜並びに該被覆物品 |
CN105405661A (zh) | 2015-12-24 | 2016-03-16 | 丰宾电子(深圳)有限公司 | 一种固态电解电容的制作方法 |
US10186382B2 (en) | 2016-01-18 | 2019-01-22 | Avx Corporation | Solid electrolytic capacitor with improved leakage current |
JP6686500B2 (ja) | 2016-02-12 | 2020-04-22 | 東ソー株式会社 | 導電性高分子水溶液、及び導電性高分子膜 |
CN108701546B (zh) | 2016-02-29 | 2022-03-08 | 出光兴产株式会社 | 导电性高分子组合物、多孔体及其制造方法、以及固体电解电容器及其制造方法 |
JP6753098B2 (ja) | 2016-03-23 | 2020-09-09 | 東ソー株式会社 | 自己ドープ型ポリチオフェンの製造方法 |
JP2017188640A (ja) | 2016-03-31 | 2017-10-12 | 出光興産株式会社 | 電解液並びにそれを用いた蓄電デバイス及び電界コンデンサ |
WO2017200936A1 (en) * | 2016-05-19 | 2017-11-23 | Kemet Electronics Corporation | Polyanion copolymers for use with conducting polymers in solid electrolytic capacitors |
WO2018020985A1 (ja) | 2016-07-29 | 2018-02-01 | パナソニックIpマネジメント株式会社 | 電解コンデンサおよびその製造方法 |
CN206040440U (zh) | 2016-07-30 | 2017-03-22 | 江苏泗阳欣宏电子科技有限公司 | 一种全密封的铝电解电容器结构 |
US11387047B2 (en) | 2016-10-18 | 2022-07-12 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor with improved performance at high temperatures and voltages |
WO2018075330A2 (en) | 2016-10-18 | 2018-04-26 | Avx Corporation | Solid electrolytic capacitor with improved leakage current |
EP3318589A1 (de) | 2016-11-02 | 2018-05-09 | Heraeus Deutschland GmbH & Co. KG | Pedot/pss mit grober partikelgrösse und hohem pedot-gehalt |
US10475591B2 (en) | 2016-11-15 | 2019-11-12 | Avx Corporation | Solid electrolytic capacitor for use in a humid atmosphere |
CN109983057A (zh) | 2016-11-22 | 2019-07-05 | 综研化学株式会社 | 导电性高分子用掺杂剂、利用其的导电性高分子、以及导电性高分子的制造方法 |
JP6870351B2 (ja) | 2016-11-25 | 2021-05-12 | 東ソー株式会社 | 導電性組成物及びその用途 |
JP6902876B2 (ja) | 2017-01-31 | 2021-07-14 | 東ソー株式会社 | ポリチオフェン及びその組成物、並びにその用途 |
US10014016B1 (en) | 2017-03-20 | 2018-07-03 | Seagate Technology Llc | Secondary alignment waveguide with polarization rotator |
JP2018184586A (ja) | 2017-04-21 | 2018-11-22 | 東ソー株式会社 | 導電性高分子水溶液 |
JP2018193513A (ja) | 2017-05-22 | 2018-12-06 | 綜研化学株式会社 | 重合体粒子 |
JP7100029B2 (ja) | 2017-05-31 | 2022-07-12 | 綜研化学株式会社 | 導電性高分子固体電解コンデンサの製造方法及び導電性高分子 |
JP7181873B2 (ja) | 2017-08-04 | 2022-12-01 | 綜研化学株式会社 | 固体電解コンデンサ及び固体電解コンデンサの製造方法 |
US10658121B2 (en) | 2017-10-18 | 2020-05-19 | Kemet Electronics Corporation | Process for forming a solid electrolytic capacitor |
US10943742B2 (en) | 2017-10-18 | 2021-03-09 | Kemet Electronics Corporation | Conductive polymer dispersion for improved reliability |
WO2020033820A1 (en) | 2018-08-10 | 2020-02-13 | Avx Corporation | Solid electrolytic capacitor formed from conductive polymer particles |
JP7426986B2 (ja) | 2018-08-10 | 2024-02-02 | キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション | ポリアニリンを含む固体電解キャパシタ |
CN112889123A (zh) | 2018-08-10 | 2021-06-01 | 阿维科斯公司 | 包含本征导电聚合物的固体电解电容器 |
WO2020123577A1 (en) | 2018-12-11 | 2020-06-18 | Avx Corporation | Solid electrolytic capacitor containing an intrinsically conductive polymer |
-
2020
- 2020-12-09 WO PCT/US2020/063946 patent/WO2021119088A1/en active Application Filing
- 2020-12-09 CN CN202080086125.4A patent/CN114787951A/zh active Pending
- 2020-12-09 US US17/116,044 patent/US11776759B2/en active Active
- 2020-12-09 DE DE112020006024.1T patent/DE112020006024T5/de active Pending
- 2020-12-09 JP JP2022532646A patent/JP2023506716A/ja active Pending
- 2020-12-09 KR KR1020227019554A patent/KR20220113704A/ko not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6197252B1 (en) | 1997-01-13 | 2001-03-06 | Avx Limited | Binder removal |
US20060038304A1 (en) | 2004-08-18 | 2006-02-23 | Harima Chemicals, Inc. | Conductive adhesive agent and process for manufacturing article using the conductive adhesive agent |
US20070064376A1 (en) | 2005-09-13 | 2007-03-22 | H. C. Starck Gmbh | Process for the production of electrolyte capacitors of high nominal voltage |
US9718905B2 (en) | 2012-07-03 | 2017-08-01 | Tosoh Corporation | Polythiophene, water-soluble electrically conductive polymer using it, and method for producing it |
WO2014199480A1 (ja) | 2013-06-13 | 2014-12-18 | 石原ケミカル株式会社 | Ta粉末とその製造方法およびTa造粒粉 |
Also Published As
Publication number | Publication date |
---|---|
CN114787951A (zh) | 2022-07-22 |
US20210175022A1 (en) | 2021-06-10 |
US11776759B2 (en) | 2023-10-03 |
WO2021119088A1 (en) | 2021-06-17 |
JP2023506716A (ja) | 2023-02-20 |
KR20220113704A (ko) | 2022-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102016208802A1 (de) | Festelektrolytkondensatorbaugruppe zur Verwendung in einer feuchten Atmosphäre | |
DE102016208807A1 (de) | Festelektrolytkondensatorelement zur Verwendung unter trockenen Bedingungen | |
DE102014204323A1 (de) | Festelektrolytkondensator zur Verwendung unter extremen Bedingungen | |
DE102016208800A1 (de) | Festelektrolytkondensator mit ultrahoher Kapazität | |
DE102013214126A1 (de) | Festelektrolytkondensator mit verbesserten Eigenschaften bei hohen Spannungen | |
DE102013213723A1 (de) | Festelektrolytkondensator mit erhöhter Feucht-zu-Trocken-Kapazität | |
DE102012205607B4 (de) | Hermetisch versiegelter Elektrolytkondensator mit verbesserter mechanischer Stabilität | |
JP2022046729A (ja) | 高い温度及び電圧において向上した性能を有する固体電解キャパシタ | |
DE102012018976A1 (de) | Verwendung von Mischungen aus selbstdotierten und fremddotierten leitfähigen Polymeren in einem Kondensator | |
DE112019006146T5 (de) | Festelektrolytkondensator, der ein intrinsisch leitfähiges Polymer enthält | |
JP7209631B2 (ja) | 固体電解キャパシタアセンブリ | |
DE102016208806A1 (de) | Festelektrolytkondensatorbaugruppe zur Verwendung bei hohen Temperaturen | |
DE102014208944A1 (de) | Festelektrolytkondensator, der leitfähige Polymerteilchen enthält | |
DE102013213720A1 (de) | Temperaturstabiler Festelektrolytkondensator | |
DE102013213728A1 (de) | Nichtionisches Tensid zur Verwendung in einem festen Elektrolyten eines Elektrolytkondensators | |
DE102011117192A1 (de) | Festelektrolytkondensator zur Verwendung in Hochspannungs- und Hochtemperaturanwendungen | |
DE102014225816A1 (de) | Stabiler Festelektrolytkondensator, der einen Nanokomposit enthält | |
DE102011088366A1 (de) | Leitfähige Beschichtung zur Verwendung in Elektrolytkondensatoren | |
DE102014214945A1 (de) | Feuchtigkeitsbeständige Festelektrolytkondensator-Baugruppe | |
DE102012018978A1 (de) | Verwendung von PEDOT/PSS-Dispersionen mit hohem PEDOT-Anteil zur Herstellung von Kondensatoren und Solarzellen | |
DE102014207581A1 (de) | Mehrfach gekerbte Anode für Elektrolytkondensator | |
DE102011087197A1 (de) | Mehrschichtige leitfähige Polymerbeschichtungen zur Verwendung in Hochspannungs-Festelektrolytkondensatoren | |
DE102013101443A1 (de) | Ultrahigh voltage solid electrolytic capacitor | |
DE102011108509A1 (de) | Mechanisch robuste Festelektrolytkondensator-Baugruppe | |
DE102016207610A1 (de) | Festelektrolytkondensator mit hoher Kapazität |