DE102011087197A1 - Mehrschichtige leitfähige Polymerbeschichtungen zur Verwendung in Hochspannungs-Festelektrolytkondensatoren - Google Patents
Mehrschichtige leitfähige Polymerbeschichtungen zur Verwendung in Hochspannungs-Festelektrolytkondensatoren Download PDFInfo
- Publication number
- DE102011087197A1 DE102011087197A1 DE102011087197A DE102011087197A DE102011087197A1 DE 102011087197 A1 DE102011087197 A1 DE 102011087197A1 DE 102011087197 A DE102011087197 A DE 102011087197A DE 102011087197 A DE102011087197 A DE 102011087197A DE 102011087197 A1 DE102011087197 A1 DE 102011087197A1
- Authority
- DE
- Germany
- Prior art keywords
- layer
- anode body
- capacitor
- conductive polymer
- dispersion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229920001940 conductive polymer Polymers 0.000 title claims abstract description 72
- 239000003990 capacitor Substances 0.000 title claims abstract description 66
- 238000000576 coating method Methods 0.000 title claims abstract description 49
- 239000007787 solid Substances 0.000 title claims abstract description 14
- 239000006185 dispersion Substances 0.000 claims abstract description 51
- 239000011248 coating agent Substances 0.000 claims abstract description 46
- 239000002245 particle Substances 0.000 claims abstract description 26
- -1 C 5 alkylene radical Chemical class 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 35
- 229920000123 polythiophene Polymers 0.000 claims description 12
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 claims description 11
- 239000011230 binding agent Substances 0.000 claims description 11
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 229910000484 niobium oxide Inorganic materials 0.000 claims description 7
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 claims description 7
- 230000015556 catabolic process Effects 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 claims description 3
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 3
- 229940005642 polystyrene sulfonic acid Drugs 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 claims 1
- 229920000642 polymer Polymers 0.000 abstract description 13
- 230000015572 biosynthetic process Effects 0.000 abstract description 7
- 230000032798 delamination Effects 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 95
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 239000000178 monomer Substances 0.000 description 12
- 239000002253 acid Substances 0.000 description 11
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- 239000002904 solvent Substances 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 8
- 150000007513 acids Chemical class 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- 150000001450 anions Chemical class 0.000 description 7
- 150000002148 esters Chemical class 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 229910052715 tantalum Inorganic materials 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000011133 lead Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical class [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 238000007743 anodising Methods 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 150000003254 radicals Chemical class 0.000 description 5
- 239000007784 solid electrolyte Substances 0.000 description 5
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 150000007522 mineralic acids Chemical class 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 239000010955 niobium Substances 0.000 description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 4
- 150000003457 sulfones Chemical class 0.000 description 4
- 229930192474 thiophene Natural products 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 3
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229920002125 Sokalan® Polymers 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 125000001931 aliphatic group Chemical class 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 150000003462 sulfoxides Chemical class 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- MIOPJNTWMNEORI-GMSGAONNSA-N (S)-camphorsulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-N 0.000 description 2
- LDMOEFOXLIZJOW-UHFFFAOYSA-N 1-dodecanesulfonic acid Chemical compound CCCCCCCCCCCCS(O)(=O)=O LDMOEFOXLIZJOW-UHFFFAOYSA-N 0.000 description 2
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 2
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 2
- SMNDYUVBFMFKNZ-UHFFFAOYSA-N 2-furoic acid Chemical compound OC(=O)C1=CC=CO1 SMNDYUVBFMFKNZ-UHFFFAOYSA-N 0.000 description 2
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- MCLMZMISZCYBBG-UHFFFAOYSA-N 3-ethylheptanoic acid Chemical compound CCCCC(CC)CC(O)=O MCLMZMISZCYBBG-UHFFFAOYSA-N 0.000 description 2
- IHCCAYCGZOLTEU-UHFFFAOYSA-N 3-furoic acid Chemical compound OC(=O)C=1C=COC=1 IHCCAYCGZOLTEU-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- OZJPLYNZGCXSJM-UHFFFAOYSA-N 5-valerolactone Chemical compound O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 2
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 238000002048 anodisation reaction Methods 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 2
- 229940092714 benzenesulfonic acid Drugs 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- JGTNAGYHADQMCM-UHFFFAOYSA-N perfluorobutanesulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F JGTNAGYHADQMCM-UHFFFAOYSA-N 0.000 description 2
- YFSUTJLHUFNCNZ-UHFFFAOYSA-N perfluorooctane-1-sulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YFSUTJLHUFNCNZ-UHFFFAOYSA-N 0.000 description 2
- SNGREZUHAYWORS-UHFFFAOYSA-N perfluorooctanoic acid Chemical compound OC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F SNGREZUHAYWORS-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000004584 polyacrylic acid Chemical class 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000011253 protective coating Substances 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 239000012260 resinous material Substances 0.000 description 2
- 150000004756 silanes Chemical class 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 2
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- CUXYLFPMQMFGPL-UHFFFAOYSA-N (9Z,11E,13E)-9,11,13-Octadecatrienoic acid Natural products CCCCC=CC=CC=CCCCCCCCC(O)=O CUXYLFPMQMFGPL-UHFFFAOYSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- MEHUJCGAYMDLEL-CABCVRRESA-N (9r,10s)-9,10,16-trihydroxyhexadecanoic acid Chemical compound OCCCCCC[C@H](O)[C@H](O)CCCCCCCC(O)=O MEHUJCGAYMDLEL-CABCVRRESA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical group CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 1
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- CCTFMNIEFHGTDU-UHFFFAOYSA-N 3-methoxypropyl acetate Chemical compound COCCCOC(C)=O CCTFMNIEFHGTDU-UHFFFAOYSA-N 0.000 description 1
- 125000003542 3-methylbutan-2-yl group Chemical group [H]C([H])([H])C([H])(*)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- UQRONKZLYKUEMO-UHFFFAOYSA-N 4-methyl-1-(2,4,6-trimethylphenyl)pent-4-en-2-one Chemical group CC(=C)CC(=O)Cc1c(C)cc(C)cc1C UQRONKZLYKUEMO-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical group NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- 229910020366 ClO 4 Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- MEHUJCGAYMDLEL-UHFFFAOYSA-N Ethyl-triacetylaleuritat Natural products OCCCCCCC(O)C(O)CCCCCCCC(O)=O MEHUJCGAYMDLEL-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229930194542 Keto Natural products 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- WPPOGHDFAVQKLN-UHFFFAOYSA-N N-Octyl-2-pyrrolidone Chemical compound CCCCCCCCN1CCCC1=O WPPOGHDFAVQKLN-UHFFFAOYSA-N 0.000 description 1
- ZWXPDGCFMMFNRW-UHFFFAOYSA-N N-methylcaprolactam Chemical compound CN1CCCCCC1=O ZWXPDGCFMMFNRW-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- OWXLRKWPEIAGAT-UHFFFAOYSA-N [Mg].[Cu] Chemical compound [Mg].[Cu] OWXLRKWPEIAGAT-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 150000001343 alkyl silanes Chemical class 0.000 description 1
- CUXYLFPMQMFGPL-SUTYWZMXSA-N all-trans-octadeca-9,11,13-trienoic acid Chemical compound CCCC\C=C\C=C\C=C\CCCCCCCC(O)=O CUXYLFPMQMFGPL-SUTYWZMXSA-N 0.000 description 1
- IYABWNGZIDDRAK-UHFFFAOYSA-N allene Chemical group C=C=C IYABWNGZIDDRAK-UHFFFAOYSA-N 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 150000005840 aryl radicals Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 150000004648 butanoic acid derivatives Chemical class 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Inorganic materials [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- ITZXULOAYIAYNU-UHFFFAOYSA-N cerium(4+) Chemical compound [Ce+4] ITZXULOAYIAYNU-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- IYRDVAUFQZOLSB-UHFFFAOYSA-N copper iron Chemical compound [Fe].[Cu] IYRDVAUFQZOLSB-UHFFFAOYSA-N 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- XTYUEDCPRIMJNG-UHFFFAOYSA-N copper zirconium Chemical compound [Cu].[Zr] XTYUEDCPRIMJNG-UHFFFAOYSA-N 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000006547 cyclononyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 229940043264 dodecyl sulfate Drugs 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 150000002190 fatty acyls Chemical group 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 150000002240 furans Chemical class 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229940051250 hexylene glycol Drugs 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000003951 lactams Chemical group 0.000 description 1
- 125000000686 lactone group Chemical group 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000007974 melamines Chemical class 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- JIKUXBYRTXDNIY-UHFFFAOYSA-N n-methyl-n-phenylformamide Chemical compound O=CN(C)C1=CC=CC=C1 JIKUXBYRTXDNIY-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- MSRJTTSHWYDFIU-UHFFFAOYSA-N octyltriethoxysilane Chemical compound CCCCCCCC[Si](OCC)(OCC)OCC MSRJTTSHWYDFIU-UHFFFAOYSA-N 0.000 description 1
- 229960003493 octyltriethoxysilane Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 229920005596 polymer binder Polymers 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000013047 polymeric layer Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 150000003470 sulfuric acid monoesters Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 239000002383 tung oil Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 239000012178 vegetable wax Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes; Absorbents
- H01G9/025—Solid electrolytes
- H01G9/028—Organic semiconducting electrolytes, e.g. TCNQ
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/48—Conductive polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/56—Solid electrolytes, e.g. gels; Additives therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/15—Solid electrolytic capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Conductive Materials (AREA)
Abstract
Ein Festelektrolytkondensator, der in einer Vielzahl von Betriebsbedingungen stabile elektrische Eigenschaften (z. B. Leckstrom und ESR) aufweisen kann, wird bereitgestellt. Der Kondensator enthält einen oxidierten Anodenkörper und eine den Anodenkörper bedeckende leitfähige Polymerbeschichtung. Die leitfähige Polymerbeschichtung enthält mehrere Schichten, die aus einer Dispersion von vorpolymerisierten leitfähigen Polymerteilchen gebildet sind. Die Erfinder haben überraschenderweise herausgefunden, dass im Unterschied zu herkömmlichen Versuchen aus solchen leitfähigen Polymerbeschichtungen gebildete Kondensatoren bei hohen Spannungen arbeiten können und auch bei relativ hohen Feuchtigkeits- und/oder Temperaturwerten gute elektrische Eigenschaften erreichen. Insbesondere haben die Erfinder herausgefunden, dass das Problem der Schichtablösung überwunden werden kann, indem man die Konfiguration der leitfähigen Polymerbeschichtung und die Art und Weise, in der sie gebildet wird, sorgfältig steuert. Die Beschichtung enthält nämlich eine erste Schicht, die den Anodenkörper nur teilweise bedeckt. Da der Anodenkörper nicht vollständig beschichtet ist, können die in der ersten Schicht entstandenen Gasblasen leichter über den unbeschichteten Teil entweichen, ohne dabei Teile der Polymerschicht wegzureißen. Dadurch wird die anschließende Bildung von Oberflächeninhomogenitäten, die ansonsten zu einer Schichtablösung führen könnte, minimiert. Ebenso kann die Beschichtung eine zweite Schicht enthalten, die über der ersten Schicht liegt und im Wesentlichen die gesamte Oberfläche des Anodenkörpers bedeckt.
Description
- Hintergrund der Erfindung
- Elektrolytkondensatoren (z. B. Tantalkondensatoren) werden aufgrund ihrer volumetrischen Effizienz, Zuverlässigkeit und Verfahrenskompatibilität zunehmend bei der Gestaltung von Schaltungen verwendet. Zum Beispiel ist ein Kondensatortyp, der entwickelt wurde, ein Festelektrolytkondensator, der eine Anode (z. B. Tantal), eine auf der Anode gebildete dielektrische Oxidschicht (z. B. Tantalpentoxid, Ta2O5), eine feste Elektrolytschicht und eine Kathode umfasst. Die feste Elektrolytschicht kann aus einem leitfähigen Polymer gebildet sein, wie es in den
US-Patenten Nr. 5,457,862 (Sakata et al.),5,473,503 (Sakata et al.),5,729,428 (Sakata et al.) und5,812,367 (Kudoh et al.) beschrieben ist. Der Hauptnachteil der vorhandenen Technik mit leitfähigem Polymer ist ihre begrenzte Fähigkeit zur Herstellung von Hochspannungskondensatoren, wie solcher mit einer Nennspannung von mehr als 25 V. - Verschiedene Versuche wurden unternommen, um dieses Problem anzugehen. Zum Beispiel beschreibt das
US-Patent Nr. 7,563,290 (Qiu et al.) einen Kondensator, der eine leitfähige Polymerschicht enthält, die dadurch gebildet wird, dass man eine anodisierte Ventilmetallanode 1- bis 15-mal während einer Zeit von etwa 0,5 Minuten bis 2 Minuten in eine Aufschlämmung eines intrinsisch leitfähigen Polymers eintaucht, um eine vollständige Bedeckung seiner Oberfläche mit der Aufschlämmung zu ermöglichen. Leider haben die Erfinder der vorliegenden Anmeldung jedoch herausgefunden, dass Kondensatoren dieser Art in Umgebungen mit hoher Feuchtigkeit und/oder hoher Temperatur, die mit vielen kommerziellen Anwendungen verbunden sind, immer noch häufig einen hohen Leckstrom und eine geringe Stabilität des äquivalenten Serienwiderstands (”ESR”) aufweisen. Ohne sich auf eine bestimmte Theorie festlegen zu wollen, glauben die Erfinder, dass sich, wenn der Anodenkörper vollständig in eine leitfähige Aufschlämmung eingetaucht wird, aufgrund der Anwesenheit von Feuchtigkeit aus der Aufschlämmung Gasblasen in der Polymerschicht bilden können. Die Gasblasen werden effektiv innerhalb der vollständig aufgetragenen Polymerschicht eingefangen. Wenn sie während des Trocknens verdampfen, können sie daher tatsächlich bewirken, dass Teile der Polymerschicht wegreißen und Inhomogenitäten oder ”Blasen” in der Oberfläche zurücklassen, die die Fähigkeit der Schicht, an dem Anodenkörper zu haften, reduzieren. Nach Einwirkung von Umgebungen mit hoher Feuchtigkeit und/oder Temperatur können diese Blasen bewirken, dass sich die Schicht von dem Anodenkörper ablöst, wodurch der Grad des elektrischen Kontakts reduziert wird und was zu einem erhöhten Leckstrom und ESR führt. - Daher besteht zurzeit ein Bedürfnis nach einem Festelektrolytkondensator, der einen leitfähigen Polymerelektrolyten enthält und der in einer Vielzahl von Anwendungen einschließlich Umgebungen mit hoher Spannung, Feuchtigkeit und/oder Temperatur gute elektrische Eigenschaften aufweisen kann.
- Kurzbeschreibung der Erfindung
- Gemäß einer Ausführungsform der vorliegenden Erfindung wird ein Festelektrolytkondensator offenbart, der einen anodisch oxidierten Anodenkörper und eine den Anodenkörper überdeckende leitfähige Polymerbeschichtung umfasst. Die leitfähige Polymerbeschichtung umfasst eine erste Schicht und eine zweite Schicht, die die erste Schicht bedeckt. Die erste und die zweite Schicht werden aus einer Dispersion von leitfähigen Polymerteilchen gebildet. Die erste Schicht bedeckt nur einen Teil einer Fläche des Anodenkörpers, und die zweite Schicht bedeckt einen größeren Teil der Fläche des Anodenkörpers als die erste Schicht.
- Gemäß einer anderen Ausführungsform der vorliegenden Erfindung wird ein Verfahren zur Bildung einer leitfähigen Polymerbeschichtung auf einem Anodenkörper eines Kondensators offenbart. Der Anodenkörper hat eine vordere Fläche, eine hintere Fläche und wenigstens eine Seitenfläche, die sich zwischen der vorderen Fläche und der hinteren Fläche erstreckt. Das Verfahren umfasst das Eintauchen eines Anodenkörpers in eine Dispersion von leitfähigen Polymerteilchen unter Bildung einer ersten Schicht, die etwa 80% oder weniger der Seitenfläche bedeckt, und danach das Eintauchen des Anodenkörpers in die Dispersion unter Bildung einer zweiten Schicht, die einen größeren Anteil der Seitenfläche bedeckt als die erste Schicht.
- Weitere Merkmale und Aspekte der vorliegenden Erfindung sind im Folgenden ausführlicher dargelegt.
- Kurzbeschreibung der Zeichnungen
- Im Rest der Beschreibung und unter Bezugnahme auf die Begleitzeichnungen ist eine vollständige und nacharbeitbare Offenbarung der vorliegenden Erfindung einschließlich ihrer besten Realisierung für den Fachmann insbesondere dargelegt; dabei sind:
-
1 eine schematische Darstellung eines Anodenkörpers, bevor er unter Bildung einer ersten Schicht der leitfähigen Polymerbeschichtung in eine Dispersion eines leitfähigen Polymers eingetaucht wird; -
2 eine schematische Darstellung des Anodenkörpers von1 , nachdem er teilweise in die Dispersion des leitfähigen Polymers eingetaucht wurde; -
3 eine schematische Darstellung des Anodenkörpers von1 , nachdem er unter Bildung einer zweiten Schicht der leitfähigen Polymerbeschichtung vollständig in die Dispersion eines leitfähigen Polymers eingetaucht wurde; -
4 eine Querschnittsansicht einer Ausführungsform des Kondensators der vorliegenden Erfindung. - Bei mehrfacher Verwendung von Bezugszeichen in der vorliegenden Beschreibung und den Zeichnungen sollen diese dieselben oder analoge Merkmale oder Elemente der vorliegenden Erfindung repräsentieren.
- Ausführliche Beschreibung von repräsentativen Ausführungsformen
- Der Fachmann sollte sich darüber im Klaren sein, dass die vorliegende Diskussion nur eine Beschreibung von beispielhaften Ausführungsformen ist und die breiteren Aspekte der vorliegenden Erfindung nicht einschränken soll, wobei diese breiteren Aspekte in der beispielhaften Konstruktion verkörpert sind.
- Allgemein gesagt betrifft die vorliegende Erfindung einen Festelektrolytkondensator, der in einer Vielzahl von Betriebsbedingungen stabile elektrische Eigenschaften (z. B. Leckstrom und ESR) aufweisen kann. Der Kondensator enthält einen oxidierten Anodenkörper und eine den Anodenkörper bedeckende leitfähige Polymerbeschichtung. Die leitfähige Polymerbeschichtung enthält mehrere Schichten, die aus einer Dispersion von vorpolymerisierten leitfähigen Polymerteilchen gebildet sind. Die Erfinder haben überraschenderweise herausgefunden, dass im Unterschied zu herkömmlichen Versuchen aus solchen leitfähigen Polymerbeschichtungen gebildete Kondensatoren bei hohen Spannungen arbeiten können und auch bei relativ hohen Feuchtigkeits- und/oder Temperaturwerten gute elektrische Eigenschaften erreichen. Insbesondere haben die Erfinder herausgefunden, dass das Problem der Schichtablösung überwunden werden kann, indem man die Konfiguration der leitfähigen Polymerbeschichtung und die Art und Weise, in der sie gebildet wird, sorgfältig steuert. Die Beschichtung enthält nämlich eine erste Schicht, die den Anodenkörper nur teilweise bedeckt. Da der Anodenkörper nicht vollständig beschichtet ist, können die in der ersten Schicht entstandenen Gasblasen leichter über den unbeschichteten Teil entweichen, ohne dabei Teile der Polymerschicht wegzureißen. Dadurch wird die anschließende Bildung von Oberflächeninhomogenitäten, die ansonsten zu einer Schichtablösung führen könnte, minimiert. Ebenso kann die Beschichtung eine zweite Schicht enthalten, die über der ersten Schicht liegt und im Wesentlichen die gesamte Oberfläche des Anodenkörpers bedeckt.
- Verschiedene Ausführungsformen der vorliegenden Erfindung werden nun ausführlicher beschrieben.
- A. Anodenkörper
- Die Anode des Festelektrolytkondensators kann aus einer Ventilmetallzusammensetzung gebildet werden, die eine spezifische Ladung aufweist, welche ungefähr im Bereich von etwa 5000 μF·V/g bis etwa 300 000 μF·V/g liegt. Wie oben beschrieben ist, kann der Kondensator der vorliegenden Erfindung für die Verwendung in Hochspannungsanwendungen besonders gut geeignet sein. Solche Hochspannungsteile können die Bildung einer relativ dicken dielektrischen Schicht erfordern, die in den Zwischenräumen und Poren der Anodenteilchen wachsen kann. Um die Fähigkeit, das Dielektrikum in dieser Weise wachsen zu lassen, zu optimieren, kann die Anode aus einem Pulver mit einer geringen spezifischen Ladung gebildet sein. Das heißt, das Pulver kann eine spezifische Ladung von weniger als etwa 70 000 Mikrofarad mal Volt pro Gramm (”μF·V/g”), in einigen Ausführungsformen etwa 2000 μF·V/g bis etwa 65 000 μF·V/g und in einigen Ausführungsformen etwa 5000 μF·V/g bis etwa 50 000 μF·V/g aufweisen.
- Die Ventilmetallzusammensetzung enthält ein Ventilmetall (d. h. ein Metall, das zur Oxidation befähigt ist) oder eine Verbindung, die auf einem Ventilmetall beruht, wie Tantal, Niob, Aluminium, Hafnium, Titan, Legierungen davon, Oxide davon, Nitride davon usw. Zum Beispiel kann die Ventilmetallzusammensetzung ein elektrisch leitfähiges Oxid von Niob enthalten, wie ein Nioboxid mit einem Atomverhältnis von Niob zu Sauerstoff von 1:1,0 ± 1,0, in einigen Ausführungsformen 1:1,0 ± 0,3, in einigen Ausführungsformen 1:1,0 ± 0,1 und in einigen Ausführungsformen 1:1,0 ± 0,05. Bei dem Nioboxid kann es sich zum Beispiel um NbO0,7, NbO1,0, NbO1,1 und NbO2 handeln. In einer bevorzugten Ausführungsform enthält die Zusammensetzung NbO1,0, ein leitfähiges Nioboxid, das auch nach Sintern bei hohen Temperaturen chemisch stabil bleiben kann. Beispiele für solche Ventilmetalloxide sind in den
US-Patenten Nr. 6,322,912 (Fife),6,391,275 (Fife et al.),6,416,730 (Fife et al.),6,527,937 (Fife),6,576,099 (Kimmel et al.),6,592,740 (Fife et al.) und6,639,787 (Kimmel et al.) und7,220,397 (Kimmel et al.) sowie in den US-Patentanmeldungen Veröffentlichungsnummer 2005/0019581 (Schnitter), 2005/0103638 (Schnitter et al.) und 2005/0013765 (Thomas et al.) beschrieben, auf die alle hier ausdrücklich für alle Zwecke Bezug genommen wird. - Zur Bildung des Anodenkörpers können im Allgemeinen herkömmliche Herstellungsverfahren verwendet werden. In einer Ausführungsform wird zuerst ein Tantal- oder Nioboxidpulver mit einer bestimmten Teilchengröße ausgewählt. Zum Beispiel können die Teilchen flockenartig, eckig, knotenförmig sowie Gemische oder Variationen davon sein. Die Teilchen haben auch typischerweise eine Siebgrößenverteilung von wenigstens etwa 60 mesh, in einigen Ausführungsformen etwa 60 bis etwa 325 mesh und in einigen Ausführungsformen etwa 100 bis etwa 200 mesh. Ferner beträgt die spezifische Oberfläche etwa 0,1 bis etwa 10,0 m2/g, in einigen Ausführungsformen etwa 0,5 bis etwa 5,0 m2/g und in einigen Ausführungsformen etwa 1,0 bis etwa 2,0 m2/g. Der Ausdruck ”spezifische Oberfläche” bezieht sich auf die Oberfläche, die durch das Verfahren der physikalischen Gasadsorption (B. E. T.) von Brunauer, Emmet und Teller, Journal of American Chemical Society, Band 60, 1938, S. 309, mit Stickstoff als Adsorptionsgas bestimmt wurde. Ebenso beträgt die Schüttdichte (oder Scott-Dichte) typischerweise etwa 0,1 bis etwa 5,0 g/cm3, in einigen Ausführungsformen etwa 0,2 bis etwa 4,0 g/cm3 und in einigen Ausführungsformen etwa 0,5 bis etwa 3,0 g/cm3.
- Um den Bau des Anodenkörpers zu erleichtern, können noch weitere Komponenten zu dem Pulver gegeben werden. Zum Beispiel kann ein Bindemittel und/oder Gleitmittel eingesetzt werden, um zu gewährleisten, dass die Teilchen ausreichend aneinander haften, wenn sie zum Anodenkörper gepresst werden. Zu den geeigneten Bindemitteln gehören etwa Campher, Stearin- und andere Seifenfettsäuren, Carbowax (Union Carbide), Glyptal (General Electric), Naphthalin, Pflanzenwachs, Mikrowachse (gereinigte Paraffine), Polymerbindemittel (z. B. Polyvinylalkohol, Poly(ethyl-2-oxazolin) usw.) usw. Das Bindemittel kann in einem Lösungsmittel gelöst und dispergiert werden. Beispielhafte Lösungsmittel sind Wasser, Alkohole usw. Wenn Bindemittel und/oder Gleitmittel verwendet werden, kann ihr Prozentanteil von etwa 0,1 bis etwa 8 Gew.-% der Gesamtmasse variieren. Man sollte sich jedoch darüber im Klaren sein, dass Bindemittel und Gleitmittel in der vorliegenden Erfindung nicht erforderlich sind.
- Das resultierende Pulver kann kompaktiert werden, wobei man irgendeine herkömmliche Pulverpressform verwendet. Die Pressform kann zum Beispiel eine Einplatz-Kompaktierpresse sein, bei der eine Matrize und ein oder mehrere Stempel verwendet werden. Alternativ dazu können auch Kompaktierpressformen des Ambosstyps verwendet werden, bei denen nur eine Matrize und ein einziger Unterstempel verwendet werden. Einplatz-Kompaktierpressformen sind in mehreren Grundtypen erhältlich, wie Nocken-, Kniehebel- und Exzenter-/Kurbelpressen mit unterschiedlichen Fähigkeiten, wie einfach wirkend, doppelt wirkend, Schwebemantelmatrize, bewegliche Werkzeugaufspannplatte, Gegenstempel, Schnecke, Schlag, Heißpressen, Prägen oder Kalibrieren. Falls gewünscht, kann Bindemittel/Gleitmittel, falls vorhanden, nach dem Pressen entfernt werden, indem man den Pressling mehrere Minuten lang im Vakuum auf eine bestimmte Temperatur (z. B. etwa 150°C bis etwa 500°C) erhitzt. Alternativ dazu kann das Bindemittel/Gleitmittel auch dadurch entfernt werden, dass man den Pressling mit einer wässrigen Lösung in Kontakt bringt, wie es im
US-Patent Nr. 6,197,252 (Bishop et al.) beschrieben ist, auf das hier ausdrücklich für alle Zwecke Bezug genommen wird. - Die Dicke des gepressten Anodenkörpers kann relativ gering sein, wie etwa 4 Millimeter oder weniger, in einigen Ausführungsformen etwa 0,05 bis etwa 2 Millimeter und in einigen Ausführungsformen etwa 0,1 bis etwa 1 Millimeter. Die Form der Anode kann ebenfalls so gewählt werden, dass die elektrischen Eigenschaften des resultierenden Kondensators verbessert werden. Zum Beispiel kann die Anode eine Form haben, die gekrümmt, wellenförmig, rechteckig, U-förmig, V-förmig usw. ist. Die Anode kann auch eine ”geriffelte” Form haben, indem sie eine oder mehrere Furchen, Rillen, Vertiefungen oder Einkerbungen enthält, um das Verhältnis von Oberfläche zu Volumen zu erhöhen und dadurch den äquivalenten Serienwiderstand (ESR) zu minimieren und den Frequenzgang der Kapazität auszudehnen. Solche ”geriffelten” Anoden sind zum Beispiel in den
US-Patenten Nr. 6,191,936 (Webber et al.),5,949,639 (Maeda et al.) und3,345,545 (Bourgault et al.) sowie in der US-Patentanmeldung Veröffentlichungsnummer 2005/0270725 (Hahn et al.) beschrieben, auf die hier ausdrücklich für alle Zwecke Bezug genommen wird. - Gegebenenfalls kann auch ein Anodenanschluss an dem Anodenkörper befestigt werden. Der Anodenanschluss kann in Form eines Drahtes, Bleches usw. vorliegen und kann aus einer Ventilmetallverbindung, wie Tantal, Niob, Nioboxid usw., bestehen. Die Befestigung des Anschlusses kann mit Hilfe von bekannten Techniken erfolgen, wie etwa durch Schweißen des Anschlusses an den Körper oder Einbetten innerhalb des Anodenkörpers während der Bildung.
- Die Anode wird auch mit einem Dielektrikum beschichtet. Das Dielektrikum kann durch anodisches Oxidieren (”Anodisieren”) der gesinterten Anode gebildet werden, so dass eine dielektrische Schicht auf und/oder innerhalb der Anode entsteht. Zum Beispiel kann eine Anode aus Tantal (Ta) zu Tantalpentoxid (Ta2O5) anodisiert werden. Typischerweise wird die Anodisierung durchgeführt, indem man zunächst eine Lösung auf die Anode aufträgt, etwa durch Eintauchen der Anode in den Elektrolyten. Im Allgemeinen wird ein Lösungsmittel, wie Wasser (z. B. deionisiertes Wasser), eingesetzt. Um die Ionenleitfähigkeit zu verstärken, kann eine Verbindung eingesetzt werden, die in dem Lösungsmittel unter Bildung von Ionen dissoziieren kann. Beispiele für solche Verbindungen sind zum Beispiel Säuren, wie sie im Folgenden in Bezug auf den Elektrolyten beschrieben werden. Zum Beispiel kann eine Säure (z. B. Phosphorsäure) etwa 0,01 Gew.-% bis etwa 5 Gew.-%, in einigen Ausführungsformen etwa 0,05 Gew.-% bis etwa 0,8 Gew.-% und in einigen Ausführungsformen etwa 0,1 Gew.-% bis etwa 0,5 Gew.-% der anodisierenden Lösung ausmachen. Falls gewünscht, können auch Gemische von Säuren eingesetzt werden.
- Ein Strom wird durch die anodisierende Lösung geleitet, um die dielektrische Schicht zu bilden. Der Wert der Bildungsspannung entspricht der Dicke der dielektrischen Schicht. Zum Beispiel kann die Stromquelle zunächst im galvanostatischen Modus betrieben werden, bis die erforderliche Spannung erreicht ist. Danach kann die Stromquelle auf einen potentiostatischen Modus umgeschaltet werden, um zu gewährleisten, dass die gewünschte Dicke des Dielektrikums über der gesamten Oberfläche der Anode gebildet wird. Selbstverständlich können auch andere bekannte Verfahren eingesetzt werden, wie potentiostatische Impuls- oder Schrittverfahren. Die Spannung, bei der die anodische Oxidation erfolgt, liegt typischerweise im Bereich von etwa 4 bis etwa 250 V und in einigen Ausführungsformen etwa 9 bis etwa 200 V und in einigen Ausführungsformen etwa 20 bis etwa 150 V. Während der Oxidation kann die anodisierende Lösung auf einer erhöhten Temperatur gehalten werden, wie etwa 30°C oder mehr, in einigen Ausführungsformen etwa 40°C bis etwa 200°C und in einigen Ausführungsformen etwa 50°C bis etwa 100°C. Die anodische Oxidation kann auch bei Umgebungstemperatur oder darunter durchgeführt werden. Die resultierende dielektrische Schicht kann auf einer Oberfläche der Anode und innerhalb ihrer Poren gebildet werden.
- II. Leitfähige Polymerbeschichtung
- Wie oben erwähnt, enthält die leitfähige Polymerbeschichtung mehrere Schichten, die aus vorpolymerisierten leitfähigen Polymerteilchen gebildet werden. Die in solchen Schichten eingesetzten leitfähigen Polymere sind typischerweise konjugiert und weisen nach Oxidation oder Reduktion eine elektrische Leitfähigkeit auf, wie eine elektrische Leitfähigkeit von wenigstens etwa 1 μS·cm–1 nach der Oxidation. Beispiele für solche π-konjugierten leitfähigen Polymere sind zum Beispiel Polyheterocyclen (z. B. Polypyrrole, Polythiophene, Polyaniline usw.), Polyacetylene, Poly-p-phenylene, Polyphenolate usw. Besonders gut geeignete leitfähige Polymere sind substituierte Polythiophene mit der folgenden allgemeinen Struktur: wobei
T = O oder S ist;
D ein gegebenenfalls substituierter C1- bis C5-Alkylenrest (z. B. Methylen, Ethylen, n-Propylen, n-Butylen, n-Pentylen usw.) ist;
R7 Folgendes ist: ein linearer oder verzweigter, gegebenenfalls substituierter C1 bis C18-Alkylrest (z. B. Methyl, Ethyl, n-Propyl oder Isopropyl, n-, iso-, sek- oder tert-Butyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1-Ethylpropyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 2,2-Dimethylpropyl, n-Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Hexadecyl, n-Octadecyl usw.); ein gegebenenfalls substituierter C5- bis C12-Cycloalkylrest (z. B. Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecyl usw.); ein gegebenenfalls substituierter C6- bis C14-Arylrest (z. B. Phenyl, Naphthyl usw.); ein gegebenenfalls substituierter C7- bis C18-Aralkylrest (z. B. Benzyl, o-, m-, p-Tolyl, 2,3-, 2,4-, 2,5-, 2,6, 3,4-, 3,5-Xylyl, Mesityl usw.); ein gegebenenfalls substituierter C1- bis C4-Hydroxyalkylrest oder ein Hydroxyrest; und
q eine ganze Zahl von 0 bis 8, in einigen Ausführungsformen 0 bis 2 und in einer Ausführungsform 0 ist; und
n = 2 bis 5000, in einigen Ausführungsformen 4 bis 2000 und in einigen Ausführungsformen 5 bis 1000 ist. Beispiele für Substituenten für die Reste ”D” oder ”R7” sind zum Beispiel Alkyl, Cycloalkyl, Aryl, Aralkyl, Alkoxy, Halogen, Ether, Thioether, Disulfid, Sulfoxid, Sulfon, Sulfonat, Amino, Aldehyd, Keto, Carbonsäureester, Carbonsäure, Carbonat, Carboxylat, Cyano, Alkylsilan- und Alkoxysilangruppen, Carboxylamidgruppen usw. -
- Verfahren zur Bildung von leitfähigen Polymeren wie den oben beschriebenen sind in der Technik wohlbekannt. Zum Beispiel beschreibt das
US-Patent Nr. 6,987,663 (Merker et al.), auf das hier ausdrücklich für alle Zwecke Bezug genommen wird, verschiedene Techniken zur Bildung von substituierten Polythiophenen aus einem monomeren Vorläufer. Der monomere Vorläufer kann zum Beispiel die folgende Struktur haben: wobei
T, D, R7 und q wie oben definiert sind. Besonders gut geeignete Thiophenmonomere sind solche, bei denen ”D” ein gegebenenfalls substituierter C2- bis C3-Alkylenrest ist. Zum Beispiel können gegebenenfalls substituierte 3,4-Alkylendioxythiophene eingesetzt werden, die die folgende allgemeine Struktur haben: wobei R7 und q wie oben definiert sind. In einer besonderen Ausführungsform ist ”q” = 0. Ein kommerziell geeignetes Beispiel für 3,4-Ethylendioxythiophen ist von der H. C. Starck GmbH unter der Bezeichnung CleviosTM M erhältlich. Weitere geeignete Monomere sind auch imUS-Patent Nr. 5,111,327 (Blohm et al.) und6,635,729 (Groenendahl et al.) beschrieben, auf die hier ausdrücklich für alle Zwecke Bezug genommen wird. Derivate dieser Monomere, die zum Beispiel Dimere oder Trimere der obigen Monomere sind, können ebenfalls eingesetzt werden. Höhermolekulare Derivate, d. h. Tetramere, Pentamere usw., der Monomere sind zur Verwendung in der vorliegenden Erfindung geeignet. Die Derivate können aus gleichen oder verschiedenen Monomereinheiten bestehen und können in reiner Form oder in einem Gemisch miteinander und/oder mit den Monomeren verwendet werden. Oxidierte oder reduzierte Formen dieser Vorläufer können ebenfalls eingesetzt werden. - Die Thiophenmonomere werden in Gegenwart eines oxidativen Katalysators chemisch polymerisiert. Der oxidative Katalysator kann ein Übergangsmetallsalz sein, wie ein Salz einer anorganischen oder organischen Säure, das Ammonium-, Natrium-, Gold-, Eisen(III)-, Kupfer(II)-, Chrom(VI)-, Cer(IV)-, Mangan(IV)-, Mangan(VII)- oder Ruthenium(III)-Kationen enthält. Besonders gut geeignete Übergangsmetallsalze sind Halogenide (z. B. FeCl3 oder HAuCl4), Salze anderer anorganischer Säuren (z. B. Fe(ClO4)3, Fe2(SO4)3, (NH4)2S2O3 oder Na3Mo12PO40) und Salze organischer Säuren und anorganischer Säuren, die organische Reste umfassen. Beispiele für Salze von anorganischen Säuren mit organischen Resten sind zum Beispiel Eisen(III)-Salze von Schwefelsäuremonoestern von C1- bis C20-Alkanolen (z. B. das Eisen(III)-Salz von Laurylsulfat). Ebenso sind Beispiele für Salze von organischen Säuren zum Beispiel Eisen(III)-Salze von C1- bis C20-Alkansulfonsäuren (z. B. Methan-, Ethan-, Propan-, Butan- oder Dodecansulfonsäure); Eisen(III)-Salze von aliphatischen Perfluorsulfonsäuren (z. B. Trifluormethansulfonsäure, Perfluorbutansulfonsäure oder Perfluoroctansulfonsäure); Eisen(III)-Salze von aliphatischen C1- bis C20-Carbonsäuren (z. B. 2-Ethylhexylcarbonsäure); Eisen(III)-Salze von aliphatischen Perfluorcarbonsäuren (z. B. Trifluoressigsäure oder Perfluoroctansäure); Eisen(III)-Salze von aromatischen Sulfonsäuren, die gegebenenfalls mit C1- bis C20-Alkylgruppen substituiert sind (z. B. Benzolsulfonsäure, o-Toluolsulfonsäure, p-Toluolsulfonsäure oder Dodecylbenzolsulfonsäure); Eisen(III)-Salze von Cycloalkansulfonsäuren (z. B. Camphersulfonsäure); usw. Gemische dieser oben genannten Salze können ebenfalls verwendet werden.
- Falls gewünscht, kann die Polymerisation des Monomers in einer Vorläuferlösung erfolgen. In der Lösung können Lösungsmittel (z. B. polar protische oder unpolare) eingesetzt werden, wie Wasser, Glycole (z. B. Ethylenglycol, Propylenglycol, Butylenglycol, Triethylenglycol, Hexylenglycol, Polyethylenglycole, Ethoxydiglycol, Dipropylenglycol usw.), Glycolether (z. B. Methylglycolether, Ethylglycolether, Isopropylglycolether usw.), Alkohole (z. B. Methanol, Ethanol, n-Propanol, Isopropanol und Butanol), Ketone, (z. B. Aceton, Methylethylketon und Methylisobutylketon); Ester (z. B. Ethylacetat, Butylacetat, Diethylenglycoletheracetat, Methoxypropylacetat, Ethylencarbonat, Propylencarbonat usw.), Amide (z. B. Dimethylformamid, Dimethylacetamid, Dimethylcapryl-/caprinfettsäureamid und N-Alkylpyrrolidone), Sulfoxide oder Sulfone (z. B. Dimethylsulfoxid (DMSO) und Sulfolan), phenolische Verbindungen (z. B. Toluol, Xylol usw.) usw. Wasser ist ein besonders gut geeignetes Lösungsmittel für die Reaktion. Wenn welche eingesetzt werden, beträgt die Gesamtmenge an Lösungsmitteln in der Vorläuferlösung etwa 40 Gew.-% bis etwa 90 Gew.-%, in einigen Ausführungsformen etwa 50 Gew.-% bis etwa 85 Gew.-% und in einigen Ausführungsformen etwa 60 Gew.-% bis etwa 80 Gew.-%.
- Die Polymerisation des Thiophenmonomers erfolgt im Allgemeinen bei einer Temperatur von etwa 10°C bis etwa 100°C und in einigen Ausführungsformen etwa 15°C bis etwa 75°C. Nach Beendigung der Reaktion können bekannte Filtrationstechniken eingesetzt werden, um Salzverunreinigungen gegebenenfalls zu entfernen. Es können auch ein oder mehrere Waschschritte eingesetzt werden, um die Dispersion zu reinigen.
- Nach der Polymerisation liegt das resultierende leitfähige Polymer im Allgemeinen in Form von Teilchen mit geringer Größe vor, wie mit einem mittleren Durchmesser von etwa 1 bis etwa 200 Nanometer, in einigen Ausführungsformen etwa 2 bis etwa 100 Nanometer und in einigen Ausführungsformen etwa 4 bis etwa 50 Nanometer. Der Durchmesser der Teilchen kann mit Hilfe bekannter Techniken, wie mittels Ultrazentrifuge, Laserbeugung usw., bestimmt werden. Die Form der Teilchen kann ebenfalls variieren. In einer bestimmten Ausführungsform sind die Teilchen zum Beispiel kugelförmig. Man sollte sich jedoch darüber im Klaren sein, dass in der vorliegenden Erfindung auch andere Formen in Betracht gezogen werden, wie Plättchen, Stäbchen, Scheiben, Stangen, Rohre, unregelmäßige Formen usw. Die Konzentration der Teilchen in der Dispersion kann je nach der gewünschten Viskosität der Dispersion und der besonderen Weise, in der die Dispersion auf den Kondensator aufgetragen wird, variieren. Typischerweise bilden die Teilchen jedoch etwa 0,1 bis etwa 10 Gew.-%, in einigen Ausführungsformen etwa 0,4 bis etwa 5 Gew.-% und in einigen Ausführungsformen etwa 0,5 bis etwa 4 Gew.-% der Dispersion.
- Falls gewünscht, kann die Verarbeitung des leitfähigen Polymers in eine Teilchenform verstärkt werden, indem man ein getrenntes Gegenion verwendet, das einem geladenen leitfähigen Polymer (z. B. Polythiophen) entgegenwirken soll. Das heißt, das in dem festen Elektrolyten verwendete leitfähige Polymer (z. B. Polythiophen oder ein Derivat davon) trägt typischerweise eine Ladung auf der Hauptpolymerkette, die neutral oder positiv (kationisch) ist. Polythiophen-Derivate tragen zum Beispiel typischerweise eine positive Ladung in der Hauptpolymerkette. In einigen Fällen kann das Polymer positive und negative Ladungen in der Struktureinheit besitzen, wobei sich die positive Ladung auf der Hauptkette und die negative Ladung gegebenenfalls auf den Substituenten des Restes ”R”, wie Sulfonat- oder Carboxylatgruppen, befindet. Die positiven Ladungen der Hauptkette können teilweise oder zur Gänze mit den gegebenenfalls vorhandenen anionischen Gruppen an den Resten ”R” gesättigt sein. Insgesamt gesehen können die Polythiophene in diesen Fällen kationisch, neutral oder sogar anionisch sein. Dennoch werden sie alle als kationische Polythiophene angesehen, da die Polythiophen-Hauptkette eine positive Ladung trägt.
- Das Gegenion kann ein monomeres oder polymeres Anion sein. Polymere Anionen können zum Beispiel Anionen von polymeren Carbonsäuren (z. B. Polyacrylsäuren, Polymethacrylsäure, Polymaleinsäuren usw.), polymeren Sulfonsäuren (z. B. Polystyrolsulfonsäuren (”PSS”), Polyvinylsulfonsäuren usw.) usw. sein. Die Säuren können auch Copolymere, wie Copolymere von Vinylcarbon- und Vinylsulfonsäure mit anderen polymerisierbaren Monomeren, wie Acrylsäureestern und Styrol, sein. Ebenso sind geeignete monomere Anionen zum Beispiel Anionen von C1- bis C20-Alkansulfonsäuren (z. B. Dodecansulfonsäure); aliphatischen Perfluorsulfonsäuren (z. B. Trifluormethansulfonsäure, Perfluorbutansulfonsäure oder Perfluoroctansulfonsäure); aliphatischen C1- bis C20-Carbonsäuren (z. B. 2-Ethylhexylcarbonsäure); aliphatischen Perfluorcarbonsäuren (z. B. Trifluoressigsäure oder Perfluoroctansäure); aromatischen Sulfonsäuren, die gegebenenfalls mit C1- bis C20-Alkylgruppen substituiert sind (z. B. Benzolsulfonsäure, o-Toluolsulfonsäure, p-Toluolsulfonsäure oder Dodecylbenzolsulfonsäure); Cycloalkansulfonsäuren (z. B. Kamphersulfonsäure oder Tetrafluoroborate, Hexafluorophosphate, Perchlorate, Hexafluoroantimonate, Hexafluoroarsenate oder Hexachloroantimonate); usw. Besonders gut geeignete Gegenionen sind polymere Anionen, wie eine polymere Carbon- oder Sulfonsäure (z. B. Polystyrolsulfonsäure (”PSS”)). Das Molekulargewicht solcher polymeren Anionen liegt typischerweise im Bereich von etwa 1000 bis etwa 2 000 000 und in einigen Ausführungsformen etwa 2000 bis etwa 500 000.
- Wenn sie eingesetzt werden, beträgt das Gewichtsverhältnis solcher Gegenionen zu leitfähigen Polymeren in einer gegebenen Schicht des festen Elektrolyten typischerweise etwa 0,5:1 bis etwa 50:1, in einigen Ausführungsformen etwa 1:1 bis etwa 30:1 und in einigen Ausführungsformen etwa 2:1 bis etwa 20:1. Das Gewicht der elektrisch leitfähigen Polymere, von dem bei den oben genannten Gewichtsverhältnissen die Rede ist, bezieht sich auf den eingewogenen Anteil der verwendeten Monomere, wenn man annimmt, dass während der Polymerisation eine vollständige Umsetzung stattfindet.
- Neben leitfähigen Polymeren und wahlfreien Gegenionen kann die Dispersion auch ein oder mehrere Bindemittel enthalten, um die adhäsive Natur der polymeren Schicht weiter zu verstärken und auch die Stabilität der Teilchen innerhalb der Dispersion zu erhöhen. Die Bindemittel können organischer Natur sein, wie Polyvinylalkohole, Polyvinylpyrrolidone, Polyvinylchloride, Polyvinylacetate, Polyvinylbutyrate, Polyacrylsäureester, Polyacrylsäureamide, Polymethacrylsäureester, Polymethacrylsäureamide, Polyacrylnitrile, Styrol/Acrylsäureester, Vinylacetat/Acrylsäureester und Ethylen/Vinylacetat-Copolymere, Polybutadiene, Polyisoprene, Polystyrole, Polyether, Polyester, Polycarbonate, Polyurethane, Polyamide, Polyimide, Polysulfone, Melamin-Formaldehyd-Harze, Epoxyharze, Silikonharze oder Cellulosen. Es können auch Vernetzungsmittel eingesetzt werden, um die Adhäsionsfähigkeit der Bindemittel zu erhöhen. Solche Vernetzungsmittel sind zum Beispiel Melaminverbindungen, maskierte Isocyanate oder funktionelle Silane, wie 3-Glycidoxypropyltrialkoxysilan, Tetraethoxysilan und Tetraethoxysilan-Hydrolysat oder vernetzbare Polymere, wie Polyurethane, Polyacrylate oder Polyolefine, und anschließende Vernetzung.
- Es können auch Dispersionsmittel eingesetzt werden, um die Bildung des festen Elektrolyten zu erleichtern und seine Auftragbarkeit auf den Anodenteil zu verbessern. Zu den geeigneten Dispersionsmitteln gehören Lösungsmittel, wie aliphatische Alkohole (z. B. Methanol, Ethanol, Isopropanol und Butanol), aliphatische Ketone (z. B. Aceton und Methylethylketone), aliphatische Carbonsäureester (z. B. Ethylacetat und Butylacetat), aromatische Kohlenwasserstoffe (z. B. Toluol und Xylol), aliphatische Kohlenwasserstoffe (z. B. Hexan, Heptan und Cyclohexan), chlorierte Kohlenwasserstoffe (z. B. Dichlormethan und Dichlorethan), aliphatische Nitrile (z. B. Acetonitril), aliphatische Sulfoxide und Sulfone (z. B. Dimethylsulfoxid und Sulfolan), aliphatische Carbonsäureamide (z. B. Methylacetamid, Dimethylacetamid und Dimethylformamid), aliphatische und araliphatische Ether (z. B. Diethylether und Anisol), Wasser sowie Gemische irgendwelcher der obigen Lösungsmittel. Ein besonders gut geeignetes Dispersionsmittel ist Wasser.
- Außer den oben genannten können auch noch andere Bestandteile in der Dispersion verwendet werden. Zum Beispiel können herkömmliche Füllstoffe verwendet werden, die eine Größe von etwa 10 Nanometer bis etwa 100 Mikrometer, in einigen Ausführungsformen etwa 50 Nanometer bis etwa 50 Mikrometer und in einigen Ausführungsformen etwa 100 Nanometer bis etwa 30 Mikrometer aufweisen. Beispiele für solche Füllstoffe sind Calciumcarbonat, Silicate, Siliciumoxid, Calcium- oder Bariumsulfat, Aluminiumhydroxid, Glasfasern oder -kolben, Holzmehl, Cellulosepulver, Ruß, elektrisch leitfähige Polymere usw. Die Füllstoffe können in Pulverform in die Dispersion eingeführt werden, können jedoch auch in einer anderen Form, etwa als Fasern, vorliegen.
- Grenzflächenaktive Substanzen, wie ionische oder nichtionische Tenside, können ebenfalls in der Dispersion eingesetzt werden. Weiterhin können Kleber eingesetzt werden, wie organofunktionelle Silane oder ihre Hydrolysate, zum Beispiel 3-Glycidoxypropyltrialkoxysilan, 3-Aminopropyltriethoxysilan, 3-Mercaptopropyltrimethoxysilan, 3-Methacryloxypropyltrimethoxysilan, Vinyltrimethoxysilan oder Octyltriethoxysilan. Die Dispersion kann auch Additive enthalten, die die Leitfähigkeit erhöhen, wie Ethergruppen enthaltende Verbindungen (z. B. Tetrahydrofuran), Lactongruppen enthaltende Verbindungen (z. B. γ-Butyrolacton oder γ-Valerolacton), Amid- oder Lactamgruppen enthaltende Verbindungen (z. B. Caprolactam, N-Methylcaprolactam, N,N-Dimethylacetamid, N-Methylacetamid, N,N-Dimethylformamid (DMF), N-Methylformamid, N-Methylformanilid, N-Methylpyrrolidon (NMP), N-Octylpyrrolidon oder Pyrrolidon), Sulfone und Sulfoxide (z. B. Sulfolan (Tetramethylensulfon) oder Dimethylsulfoxid (DMSO)), Zucker oder Zuckerderivate (z. B. Saccharose, Glucose, Fructose oder Lactose), Zuckeralkohole (z. B. Sorbit oder Mannit), Furanderivate (z. B. 2-Furancarbonsäure oder 3-Furancarbonsäure) und Alkohole (z. B. Ethylenglycol, Glycerin, Di- oder Triethylenglycol).
- Unabhängig von den besonderen eingesetzten Materialien umfasst die leitfähige Polymerbeschichtung der vorliegenden Erfindung mehrere Schichten, die aus einer Dispersion eines leitfähigen Polymers gebildet sind. Eine erste Schicht der Beschichtung bedeckt nur einen Teil des Anodenkörpers. Zum Beispiel bedeckt die erste Schicht typischerweise etwa 80% oder weniger, in einigen Ausführungsformen etwa 10% bis etwa 70% und in einigen Ausführungsformen etwa 20% bis etwa 60% der Oberfläche des Anodenkörpers. Da der Anodenkörper nur teilweise mit der ersten Schicht beschichtet ist, können gegebenenfalls entstandene Gasblasen leichter über den unbeschichteten Teil entweichen, ohne dabei Teile der Polymerschicht wegzureißen. Dadurch wird die anschließende Bildung von Oberflächeninhomogenitäten, die ansonsten zu einer Schichtablösung führen könnte, minimiert. Die erste Schicht kann eine mittlere Dicke von etwa 10 Nanometer (nm) bis etwa 20 Mikrometer (μm), in einigen Ausführungsformen etwa 50 Nanometer bis etwa 10 μm und in einigen Ausführungsformen etwa 100 Nanometer bis etwa 5 μm aufweisen.
- Die Beschichtung enthält auch eine zweite Schicht, die über der ersten Schicht liegt und einen größeren Teil des Anodenkörpers bedeckt als die erste Schicht. Zum Beispiel kann die zweite Schicht etwa 80% oder mehr, in einigen Ausführungsformen etwa 80% bis 100% und in einigen Ausführungsformen etwa 90% bis 100% der Oberfläche des Anodenkörpers bedecken. Die zweite Schicht kann eine mittlere Dicke von etwa 10 Nanometer (nm) bis etwa 20 Mikrometer (μm), in einigen Ausführungsformen etwa 50 Nanometer bis etwa 10 μm und in einigen Ausführungsformen etwa 100 Nanometer bis etwa 5 μm aufweisen. Man sollte sich selbstverständlich darüber im Klaren sein, dass die Beschichtung neben den oben genannten noch mehrere andere Schichten enthalten kann. Zum Beispiel kann es zusätzliche Schichten geben, die ähnlich wie die erste Schicht nur einen Teil des Anodenkörpers bedecken. Zum Beispiel kann die Beschichtung 1 bis 10 und in einigen Ausführungsformen 1 bis 5 Schichten enthalten, die nur einen Teil des Anodenkörpers bedecken. Ebenso kann es auch zusätzliche Schichten geben, die ähnlich wie die zweite Schicht einen wesentlichen Teil des Anodenkörpers bedecken. Zum Beispiel kann die Beschichtung 1 bis 10 und in einigen Ausführungsformen 1 bis 5 Schichten enthalten, die einen wesentlichen Teil des Anodenkörpers bedecken. Weiterhin braucht die hier so bezeichnete ”erste Schicht” nicht die Schicht zu sein, die direkt an den Anodenkörper angrenzt. Zum Beispiel kann sich in einigen Ausführungsformen eine Schicht, die die Oberfläche des Anodenkörpers entweder teilweise oder im Wesentlichen bedeckt, zwischen der ”ersten Schicht” und dem Anodenkörper befinden. Unabhängig davon liegt wenigstens eine ”erste Schicht” über dem Anodenkörper, und wenigstens eine ”zweite Schicht” liegt über der ersten Schicht. Typischerweise beträgt die Gesamtzahl der Schichten in der Beschichtung 2 bis 20, in einigen Ausführungsformen 2 bis 18 und in einigen Ausführungsformen 2 bis 15. Die resultierende leitfähige Polymerbeschichtung kann auch eine Gesamtdicke von etwa 1 Mikrometer (μm) bis etwa 200 μm, in einigen Ausführungsformen etwa 2 μm bis etwa 50 μm und in einigen Ausführungsformen etwa 5 μm bis etwa 30 μm aufweisen.
- Die Art und Weise, in der die Schichten auf den Anodenkörper aufgetragen werden, kann nach Wunsch variieren.
4 zeigt eine bestimmte Ausführungsform eines Kondensators100 , der eine im Wesentlichen rechteckige Form aufweist und einen Anodenkörper20 enthält. Der Körper20 definiert eine vordere Fläche36 , eine hintere Fläche38 , eine obere Fläche37 , eine untere Fläche39 , eine erste Seitenfläche32 und eine zweite Seitenfläche (nicht gezeigt). Ein Anodendraht50 erstreckt sich von der vorderen Fläche36 des Kondensators30 ausgehend in Längsrichtung (”y”-Richtung). Obwohl es nicht ausdrücklich gezeigt ist, ist der Anodenkörper20 anodisch oxidiert, so dass er eine dielektrische Schicht enthält. In dieser besonderen Ausführungsform enthält die leitfähige Polymerbeschichtung eine erste Schicht54 , die über dem Anodenkörper20 liegt und die gesamte hintere Fläche38 , aber nur einen Teil der oberen Fläche37 , unteren Fläche39 , ersten Seitenfläche32 und zweiten Seitenfläche (nicht gezeigt) bedeckt. Die vordere Fläche36 und der übrige Teil der oberen und der Seitenflächen bleiben frei von der ersten Schicht54 . Selbstverständlich sollte man sich darüber im Klaren sein, dass sich die erste Schicht54 nicht auf solchen Flächen des Anodenkörpers20 zu befinden braucht. Zum Beispiel kann die erste Schicht auch nur die hintere Fläche38 bedecken, oder sie kann alternativ dazu auf der oberen Fläche, der unteren Fläche und/oder den Seitenflächen fehlen. Die leitfähige Polymerbeschichtung enthält auch eine zweite Schicht52 , die über dem Anodenkörper und wenigstens einem Teil der ersten Schicht54 liegt. Typischerweise liegt die zweite Schicht52 auf jeder Fläche des Kondensators100 über dem Anodenkörper, d. h. auf der vorderen Fläche36 , hinteren Fläche38 , oberen Fläche37 , unteren Fläche39 , ersten Seitenfläche32 und zweiten Seitenfläche (nicht gezeigt). Dies ist jedoch keineswegs erforderlich. Wie bereits erwähnt, können sich gegebenenfalls zusätzliche Schichten zwischen der ersten Schicht54 und der zweiten Schicht52 sowie über der zweiten Schicht52 befinden. Solche zusätzlichen Schichten können einen beliebigen Anteil des Anodenkörpers20 bedecken. - Die Art und Weise, in der die Schichten der leitfähigen Polymerbeschichtung auf den Anodenkörper aufgetragen werden, kann nach Wunsch variieren. Zum Beispiel können die Schichten mit Hilfe von Techniken wie Tauchen, Schleuderbeschichtung, Gießen, tropfenweise Auftragung, Spritzen, Sprühen, Rakeln, Bürsten, Drucken (z. B. Tintenstrahl-, Sieb- oder Blockdruck) usw. aufgetragen werden.
- In den
1 bis3 ist zum Beispiel eine Technik zur Bildung der ersten und der zweiten Schicht der leitfähigen Polymerbeschichtung in näheren Einzelheiten gezeigt. Wie in1 gezeigt ist, wird zunächst eine Dispersion eines leitfähigen Polymers12 in einem Tank30 vorgelegt. Um die erste Schicht aufzutragen, kann ein anodisch oxidierter Anodenkörper20 so in die Dispersion12 eingetaucht werden, dass nur ein Teil der Oberfläche des Anodenkörpers darin eingetaucht wird (2 ). Zum Beispiel werden typischerweise nur etwa 80% oder weniger, in einigen Ausführungsformen etwa 10% bis etwa 70% und in einigen Ausführungsformen etwa 20% bis etwa 60% des Anodenkörpers in die Dispersion12 eingetaucht. Nach dem Eintauchen kann der Anodenkörper20 herausgezogen und die Dispersion unter Bildung der ersten Schicht54 trocknen gelassen werden (siehe4 ). Dann kann der Anodenkörper20 wiederum so in die Dispersion12 eingetaucht werden, dass im Wesentlichen seine gesamte Oberfläche bedeckt ist (3 ). Zum Beispiel werden typischerweise etwa 70% oder mehr, in einigen Ausführungsformen etwa 80% bis 100% und in einigen Ausführungsformen etwa 90% bis 100% des Anodenkörpers20 in die Dispersion12 eingetaucht. Der Anodenkörper20 kann herausgezogen und die Dispersion unter Bildung der zweiten Schicht52 trocknen gelassen werden (siehe4 ). Zusätzliche Schichten können in einer ähnlichen Weise gebildet werden. Während jedes Tauchschritts wird der Anodenkörper20 im Allgemeinen während einer Zeitdauer im Bereich von etwa 0,1 bis 10 Minuten, in einigen Ausführungsformen etwa 0,2 bis etwa 5 Minuten und in einigen Ausführungsformen etwa 0,5 bis etwa 2 Minuten in die Dispersion eingetaucht. Die Temperatur der Dispersion kann im Bereich von etwa 20°C bis etwa 100°C liegen, entspricht jedoch typischerweise der Umgebungstemperatur. - Ein Vorteil der Verwendung einer leitfähigen Polymerbeschichtung, die aus einer Dispersion von vorpolymerisierten Teilchen gebildet ist, besteht darin, dass sie die Anwesenheit von während der in-situ-Polymerisation erzeugten ionischen Spezies (z. B. Fe2+ oder Fe3+), was unter einem hohen elektrischen Feld einen dielektrischen Durchschlag aufgrund von Ionenwanderung verursachen kann, minimieren kann. Indem man also die leitfähige Polymerbeschichtung als Dispersion und nicht durch in-situ-Polymerisation aufträgt, kann der resultierende Kondensator eine relativ hohe ”Durchschlagsspannung” (Spannung, bei der der Kondensator versagt), wie etwa 60 Volt oder mehr, in einigen Ausführungsformen etwa 80 Volt oder mehr, in einigen Ausführungsformen etwa 100 Volt oder mehr und in einigen Ausführungsformen etwa 120 Volt bis etwa 200 Volt aufweisen, die bestimmt wird, indem man die angelegte Spannung in Schritten von 3 Volt erhöht, bis der Leckstrom 1 mA erreicht. Ungeachtet dessen können bei dem Kondensator der vorliegenden Erfindung dennoch auch eine oder mehrere Schichten eines durch in-situ-Polymerisation gebildeten leitfähigen Polymers verwendet werden. Die Erfinder haben jedoch Folgendes herausgefunden: Wenn gewünscht wird, sehr hohe Durchschlagsspannungen (z. B. etwa 120 bis 200 Volt) zu erreichen, wird die leitfähige Polymerbeschichtung primär aus den oben beschriebenen Polymerdispersionen gebildet und ist im Wesentlichen frei von durch in-situ-Polymerisation gebildeten leitfähigen Polymeren.
- Sobald sie gebildet wurde, kann die leitfähige Polymerbeschichtung gegebenenfalls geflickt werden. Das Flicken kann nach jeder Auftragung einer Schicht erfolgen, oder es kann nach der Auftragung der gesamten Beschichtung erfolgen. In einigen Ausführungsformen kann die leitfähige Polymerbeschichtung zum Beispiel geflickt werden, indem man den Pressling in eine Elektrolytlösung, wie eine Säurelösung, eintaucht und danach eine konstante Spannung an die Lösung anlegt, bis die Stromstärke auf ein vorgewähltes Niveau reduziert ist. Falls gewünscht, kann dieses Flicken auch in mehreren Schritten bewerkstelligt werden. Nach dem Auftragen einiger oder aller oben beschriebenen Schichten kann der resultierende Teil dann gegebenenfalls gewaschen werden, um verschiedene Nebenprodukte zu entfernen.
- Auf das Teil können gegebenenfalls eine oder mehrere zusätzliche Schichten, wie eine externe Beschichtung, die die leitfähige Polymerbeschichtung bedeckt, aufgetragen werden. Die externe Beschichtung kann wenigstens eine kohlenstoffhaltige Schicht und wenigstens eine Metallschicht, die die kohlenstoffhaltige Schicht bedeckt, enthalten. Die Metallschicht kann als lötbarer Leiter, Kontaktschicht und/oder Ladungssammler für den Kondensator wirken und kann aus einem leitfähigen Metall bestehen, wie Kupfer, Nickel, Silber, Zink, Zinn, Palladium, Blei, Aluminium, Molybdän, Titan, Eisen, Zirconium, Magnesium und Legierungen davon. Silber ist ein besonders gut geeignetes leitfähiges Metall zur Verwendung in der Schicht. Die kohlenstoffhaltige Schicht kann den Kontakt zwischen der Metallschicht und der leitfähigen Polymerbeschichtung begrenzen, was ansonsten den Widerstand des Kondensators erhöhen würde. Die kohlenstoffhaltige Schicht kann aus einer Vielzahl von bekannten kohlenstoffhaltigen Materialien, wie Graphit, Aktivkohle, Ruß usw. bestehen. Die Dicke der kohlenstoffhaltigen Schicht liegt typischerweise im Bereich von etwa 1 μm bis etwa 50 μm, in einigen Ausführungsformen etwa 2 μm bis etwa 30 μm und in einigen Ausführungsformen etwa 5 μm bis etwa 10 μm. Ebenso liegt die Dicke der Metallschicht typischerweise im Bereich von etwa 1 μm bis etwa 100 μm, in einigen Ausführungsformen etwa 5 μm bis etwa 50 μm und in einigen Ausführungsformen etwa 10 μm bis etwa 25 μm.
- Zwischen dem Dielektrikum und der leitfähigen Polymerbeschichtung können auch Schichten eingesetzt werden. Zu Beispiel kann in dieser Weise eine Schutzbeschichtung eingesetzt werden, die ein relativ isolierendes harzartiges Material (natürlich oder synthetisch) umfasst. Solche Materialien können einen spezifischen Widerstand von mehr als etwa 10 Ω·cm haben, in einigen Ausführungsformen mehr als etwa 100, in einigen Ausführungsformen mehr als etwa 1000 Ω·cm, in einigen Ausführungsformen mehr als etwa 1 × 105 Ω·cm und in einigen Ausführungsformen mehr als etwa 1 × 1010 Ω·cm. Einige harzartige Materialien, die in der vorliegenden Erfindung verwendet werden können, sind unter anderem Polyurethan, Polystyrol, Ester von ungesättigten oder gesättigten Fettsäuren (z. B. Glyceride) usw. Zu den geeigneten Estern von Fettsäuren gehören zum Beispiel unter anderem Ester von Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Eleostearinsäure, Ölsäure, Linolsäure, Linolensäure, Aleuritinsäure, Schellolsäure usw. Diese Ester von Fettsäuren haben sich als besonders nützlich erwiesen, wenn sie in relativ komplexen Kombinationen unter Bildung eines ”trocknenden Öls” verwendet werden, das es dem resultierenden Film ermöglicht, schnell zu einer stabilen Schicht zu polymerisieren. Zu diesen trocknenden Ölen gehören etwa Mono-, Di- und/oder Triglyceride, die ein Glyceringerüst mit einem, zwei bzw. drei Fettacylresten, die verestert sind, aufweisen. Einige geeignete trocknende Öle, die verwendet werden können, sind zum Beispiel unter anderem Olivenöl, Leinöl, Ricinusöl, Tungöl, Sojaöl und Schellack. Diese und andere Schutzbeschichtungsmaterialien sind ausführlicher im
US-Patent Nr. 6,674,635 (Fife et al.) beschrieben, auf das hier ausdrücklich für alle Zwecke Bezug genommen wird. - Der Elektrolytkondensator der vorliegenden Erfindung kann auch ein Anoden-Endteil, mit dem der Anodenanschluss des Kondensatorelements elektrisch verbunden wird, und ein Kathoden-Endteil, mit dem die Kathode des Kondensatorelements elektrisch verbunden wird, enthalten. Zur Bildung der Endteile kann jedes leitfähige Material eingesetzt werden, wie ein leitfähiges Metall (z. B. Kupfer, Nickel, Silber, Zink, Zinn, Palladium, Blei, Aluminium, Molybdän, Titan, Eisen, Zirconium, Magnesium und Legierungen davon). Zu den besonders gut geeigneten leitfähigen Metallen gehören zum Beispiel Kupfer, Kupferlegierungen (z. B. Kupfer-Zirconium, Kupfer-Magnesium, Kupfer-Zink oder Kupfer-Eisen), Nickel und Nickellegierungen (z. B. Nickel-Eisen). Die Dicke der Endteile wird im Allgemeinen so gewählt, dass die Dicke des Kondensators minimiert wird. Zum Beispiel kann die Dicke der Endteile in einem Bereich von etwa 0,05 bis etwa 1 Millimeter, in einigen Ausführungsformen etwa 0,05 bis etwa 0,5 Millimeter und etwa 0,07 bis etwa 0,2 Millimeter liegen. Die Endteile können unter Verwendung jeder in der Technik bekannten Methode verbunden werden, wie Schweißen, Kleben usw. In einer Ausführungsform kann zum Beispiel zunächst ein leitfähiger Kleber auf eine Fläche des Anoden- und/oder Kathoden-Endteils aufgetragen werden. Der leitfähige Kleber kann zum Beispiel leitfähige Metallteilchen umfassen, die in einer Harzzusammensetzung enthalten sind. Bei den Metallteilchen kann es sich um Silber, Kupfer, Gold, Platin, Nickel, Zink, Bismut usw. handeln. Die Harzzusammensetzung kann ein duroplastisches Harz (z. B. Epoxidharz), Härtungsmittel (z. B. Säureanhydrid) und Kopplungsmittel (z. B. Silan-Kopplungsmittel) umfassen. Geeignete leitfähige Kleber sind in der US-Patentanmeldung Veröffentlichungsnummer 2006/0038304 (Osako et al.) beschrieben, auf die hier ausdrücklich für alle Zwecke Bezug genommen wird.
- Sobald der Kondensator befestigt ist, kann der Leiterrahmen in einem Gehäuse eingeschlossen werden, das dann mit Siliciumoxid oder irgendeinem anderen bekannten Einbettungsmaterial gefüllt werden kann. Die Breite und Länge des Gehäuses kann je nach Verwendungszweck variieren. Zu den geeigneten Gehäusen gehören zum Beispiel etwa die Gehuse ”A”, ”B”, ”F”, ”G”, ”H”, ”J”, ”K”, ”L”, ”M”, ”N”, ”P”, ”R”, ”S”, ”T”, ”W”, ”I” oder ”X” (AVX Corporation).
- Unabhängig von der eingesetzten Gehäusegröße kann der Kondensator so eingebettet werden, dass wenigstens ein Teil des Anoden- und des Kathoden-Endteils exponiert bleiben. In einigen Fällen können sich die exponierten Teile des Anoden- und des Kathoden-Endteils zur Montage auf einer Leiterplatte in einer ”Facedown”-Konfiguration auf der unteren Fläche des Kondensators befinden. Dies erhöht die volumetrische Effizienz des Kondensators und reduziert ebenso dessen Platzbedarf auf der Leiterplatte. Nach der Einbettung können exponierte Teile des Anoden- und des Kathoden-Endteils altern gelassen, überprüft und auf die gewünschte Größe zurechtgeschnitten werden.
- Als Ergebnis der vorliegenden Erfindung kann die Kondensatorbaugruppe auch dann ausgezeichnete elektrische Eigenschaften aufweisen, wenn sie Umgebungen mit hoher Feuchtigkeit und/oder Temperatur ausgesetzt ist. Zum Beispiel kann die Kondensatorbaugruppe einen äquivalenten Serienwiderstand (”ESR”) von weniger als etwa 200 Milliohm, in einigen Ausführungsformen weniger als etwa 150 Milliohm, in einigen Ausführungsformen etwa 0,01 bis etwa 150 Milliohm und in einigen Ausführungsformen etwa 0,05 bis etwa 50 Milliohm aufweisen, gemessen bei einer Arbeitsfrequenz von 100 kHz. Außerdem kann der Leckstrom, der sich im Allgemeinen auf den Strom bezieht, der von einem Leiter über einen Isolator zu einem benachbarten Leiter fließt, auf relativ niedrigen Niveaus gehalten werden. Zum Beispiel ist der Zahlenwert des normierten Leckstroms eines Kondensators der vorliegenden Erfindung in einigen Ausführungsformen kleiner als etwa 1 μA/μF·V, in einigen Ausführungsformen kleiner als etwa 0,5 μA/μF·V und in einigen Ausführungsformen kleiner als etwa 0,1 μA/μF·V, wobei ”μA” Mikroampere bedeutet und ”μF·V” das Produkt aus der Kapazität und der Nennspannung ist. Solche ESR- und normierten Leckstromwerte können selbst nach Alterung während einer erheblichen Zeitspanne bei hoher Feuchtigkeit und/oder hohen Temperaturen aufrechterhalten werden. Zum Beispiel können die Werte etwa 100 Stunden oder mehr, in einigen Ausführungsformen etwa 300 Stunden bis etwa 3000 Stunden und in einigen Ausführungsformen etwa 400 Stunden bis etwa 2500 Stunden (z. B. 500 Stunden, 600 Stunden, 700 Stunden, 800 Stunden, 900 Stunden, 1000 Stunden, 1100 Stunden, 1200 Stunden oder 2000 Stunden) bei einer relativen Feuchtigkeit von etwa 60% bis 95% und in einigen Ausführungsformen etwa 70% bis etwa 90% (z. B. 85%) und/oder bei Temperaturen im Bereich von etwa 100°C bis etwa 250°C, in einigen Ausführungsformen etwa 100°C bis etwa 225°C und in einigen Ausführungsformen etwa 100°C bis etwa 225°C (z. B. 100°C, 125°C, 150°C, 175°C oder 200°C) aufrechterhalten werden.
- Der Kondensator kann auch eine hohe Energiedichte aufweisen, so dass er zur Verwendung in Anwendungen mit hohem Pulsstrom geeignet sein kann. Die Energiedichte wird im Allgemeinen gemäß der Gleichung E = 1/2·CV2 bestimmt, wobei C die Kapazität in Farad (F) ist und V die Arbeitsspannung des Kondensators in Volt (V) ist. Die Kapazität kann zum Beispiel bei einer Arbeitsfrequenz von 120 Hz und einer Temperatur von 23°C gemessen werden. Zum Beispiel kann der Kondensator eine Energiedichte von etwa 2,0 Joule pro Kubikzentimeter (J/cm3) oder mehr, in einigen Ausführungsformen etwa 3,0 J/cm3, in einigen Ausführungsformen etwa 4,0 J/cm3 bis etwa 10,0 J/cm3 und in einigen Ausführungsformen etwa 4,5 bis etwa 8,0 J/cm3 aufweisen. Ebenso kann die Kapazität etwa 1 Mikrofarad pro Quadratzentimeter (”μF/cm2”) oder mehr, in einigen Ausführungsformen etwa 2 μF/cm2 oder mehr, in einigen Ausführungsformen etwa 10 bis etwa 1000 μF/cm2 und in einigen Ausführungsformen etwa 20 bis etwa 60 μF/cm2 betragen.
- Die vorliegende Erfindung wird anhand der folgenden Beispiele besser verständlich.
- Testverfahren
- Äquivalenter Serienwiderstand (ESR)
- Der äquivalente Serienwiderstand kann mit einem Präzisions-LCZ-Messgerät Keithley 3330 mit Kelvin-Anschlussleitungen bei 2,2 Volt Vorspannung und einem sinusförmigen Signal mit 0,5 Volt Abstand zwischen den Peaks gemessen werden. Die Betriebsfrequenz betrug 100 kHz, und die Temperatur betrug 23°C ± 2°C.
- Kapazität
- Die Kapazität wurde mit einem Präzisions-LCZ-Messgerät Keithley 3330 mit Kelvin-Anschlussleitungen bei 2,2 Volt Vorspannung und einem sinusförmigen Signal mit 0,5 Volt Abstand zwischen den Peaks gemessen. Die Betriebsfrequenz betrug 120 Hz, und die Temperatur betrug 23°C ± 2°C.
- Leckstrom:
- Der Leckstrom (”DCL”) wurde mit einer Leckstrom-Testeinrichtung gemessen, die den Leckstrom bei einer Temperatur von 25°C und der Nennspannung nach mindestens 60 Sekunden misst.
- Beispiel 1
- Eine Tantalanode (5,20 mm × 3,70 mm × 0,85 mm) wurde bei 60 V in einem flüssigen Elektrolyten auf 47 μF anodisiert. Dann wurde eine leitfähige Polymerbeschichtung gebildet, indem man die gesamte Anode in eine Dispersion von Poly(3,4-ethylendioxythiophen) (”PEDT”) (CLEVIOSTM K, Feststoffgehalt 1,1%) eintauchte. Dann wurde das Teil 20 Minuten lang bei 125°C getrocknet. Dieser Vorgang wurde 6-mal wiederholt. Danach wurde das Teil mit einer Geschwindigkeit von 0,1 mm/s in eine PEDT-Dispersion (Feststoffgehalt 2,8%) so eingetaucht, dass die Dispersion die Schulter des Teils erreichte, wie es in
3 gezeigt ist. Das Teil wurde 10 Sekunden lang in der Dispersion belassen, 30 Minuten lang bei 125°C getrocknet und dann auf Raumtemperatur abgekühlt. Dieser Vorgang wurde 5-mal wiederholt. Dann wurde das Teil mit Graphit und Silber beschichtet und zusammengesetzt, indem man die Anode in eine Leiterrahmentasche klebte, den Anodendraht abschnitt und durch Laserschweißen im Leiterrahmenaufsatz befestigte und den Kondensator formte. Das fertige Teil wurde mit bleifreiem Reflow-Lötmittel behandelt. Auf diese Weise wurden mehrere Teile (1000 Stück) zum Testen hergestellt. - Beispiel 2
- Eine Tantalanode (5,20 mm × 3,70 mm × 0,85 mm) wurde bei 60 V in einem flüssigen Elektrolyten auf 47 μF anodisiert. Dann wurde eine leitfähige Polymerbeschichtung gebildet, indem man die gesamte Anode in eine Dispersion von Poly(3,4-ethylendioxythiophen) (”PEDT”) (CLEVIOSTM K, Feststoffgehalt 1,1%) eintauchte. Dann wurde das Teil 20 Minuten lang bei 125°C getrocknet. Dieser Vorgang wurde 6-mal wiederholt. Danach wurde das Teil mit einer Geschwindigkeit von 0,1 mm/s in eine PEDT-Dispersion (Feststoffgehalt 2,0%) so eingetaucht, dass die Dispersion das Teil nur teilweise erreichte, wie es in
2 gezeigt ist. Das Teil wurde 10 Sekunden lang in der Dispersion belassen, 30 Minuten lang bei 125°C getrocknet und dann auf Raumtemperatur abgekühlt. Dieser Vorgang wurde 2-mal wiederholt. Danach wurde das Teil mit einer Geschwindigkeit von 0,1 mm/s in dieselbe PEDT-Dispersion (Feststoffgehalt 2,0%) so eingetaucht, dass die Dispersion die Schulter des Teils erreichte, wie es in3 gezeigt ist. Das Teil wurde 10 Sekunden lang in der Dispersion belassen, 30 Minuten lang bei 125°C getrocknet und dann auf Raumtemperatur abgekühlt. Dieser Vorgang wurde 8-mal wiederholt. Dann wurde das Teil mit Graphit und Silber beschichtet und zusammengesetzt, indem man die Anode in eine Leiterrahmentasche klebte, den Anodendraht abschnitt und durch Laserschweißen im Leiterrahmenaufsatz befestigte und den Kondensator formte. Das fertige Teil wurde mit bleifreiem Reflow-Lötmittel behandelt. Auf diese Weise wurden mehrere Teile (1000 Stück) zum Testen hergestellt. Dann wurden die fertigen Kondensatoren der Beispiele 1 und 2 auf ihre elektrischen Eigenschaften getestet. Die mittleren Ergebnisse für den Leckstrom, den ESR und die Kapazität sind im Folgenden in Tabelle 1 dargelegt. Tabelle 1. Elektrische EigenschaftenDCL [μA] ESR [mOhm] Kap [μF] Beispiel 1 0,12 60 44,2 Beispiel 2 0,10 42 44,9 - Wie erwähnt, hatten die Teile, die aus der mehrschichtigen PEDT-Beschichtung, wie es hier beschrieben ist (Beispiel 2), gebildet wurden, einen niedrigeren Leckstrom und einen signifikant niedrigeren ESR als die Teile von Beispiel 1.
- Diese und andere Modifikationen und Variationen der vorliegenden Erfindung können vom Fachmann praktisch umgesetzt werden, ohne vom Wesen und Umfang der vorliegenden Erfindung abzuweichen. Außerdem sollte man sich darüber im Klaren sein, dass Aspekte der verschiedenen Ausführungsformen ganz oder teilweise gegeneinander ausgetauscht werden können. Weiterhin wird der Fachmann anerkennen, dass die obige Beschreibung nur beispielhaften Charakter hat und die Erfindung, die in den beigefügten Ansprüchen näher beschrieben ist, nicht einschränken soll.
- ZITATE ENTHALTEN IN DER BESCHREIBUNG
- Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
- Zitierte Patentliteratur
-
- US 5457862 [0001]
- US 5473503 [0001]
- US 5729428 [0001]
- US 5812367 [0001]
- US 7563290 [0002]
- US 6322912 [0017]
- US 6391275 [0017]
- US 6416730 [0017]
- US 6527937 [0017]
- US 6576099 [0017]
- US 6592740 [0017]
- US 6639787 [0017]
- US 7220397 [0017]
- US 6197252 [0020]
- US 6191936 [0021]
- US 5949639 [0021]
- US 3345545 [0021]
- US 6987663 [0027]
- US 5111327 [0027]
- US 6635729 [0027]
- US 6674635 [0047]
- Zitierte Nicht-Patentliteratur
-
- Schnitter et al. [0017]
- Thomas et al. [0017]
- Brunauer, Emmet und Teller, Journal of American Chemical Society, Band 60, 1938, S. 309 [0018]
- Osako et al. [0048]
Claims (30)
- Festelektrolytkondensator, der einen anodisch oxidierten Anodenkörper und eine den Anodenkörper überdeckende leitfähige Polymerbeschichtung umfasst, wobei die leitfähige Polymerbeschichtung eine erste Schicht und eine zweite Schicht, die die erste Schicht bedeckt, umfasst, wobei die erste und die zweite Schicht aus einer Dispersion von leitfähigen Polymerteilchen gebildet werden, wobei die erste Schicht nur einen Teil einer Fläche des Anodenkörpers bedeckt und wobei die zweite Schicht einen größeren Teil der Fläche des Anodenkörpers bedeckt als die erste Schicht.
- Kondensator gemäß Anspruch 1, wobei die leitfähigen Polymerteilchen ein substituiertes Polythiophen mit der folgenden allgemeinen Struktur umfassen: wobei T = O oder S ist; D ein gegebenenfalls substituierter C1- bis C5-Alkylenrest ist; R7 ein linearer oder verzweigter, gegebenenfalls substituierter C1 bis C18-Alkylrest, ein gegebenenfalls substituierter C5- bis C12-Cycloalkylrest, ein gegebenenfalls substituierter C6- bis C14-Arylrest, ein gegebenenfalls substituierter C7- bis C18-Aralkylrest, ein gegebenenfalls substituierter C1- bis C4-Hydroxyalkylrest oder ein Hydroxyrest ist; und q eine ganze Zahl von 0 bis 8 ist; und n = 2 bis 5000 ist.
- Kondensator gemäß Anspruch 1, wobei die leitfähigen Polymerteilchen Poly(3,4-ethylendioxythiophen) umfassen.
- Kondensator gemäß Anspruch 1, wobei die leitfähigen Polymerteilchen einen mittleren Durchmesser von etwa 1 bis etwa 200 Nanometer aufweisen.
- Kondensator gemäß Anspruch 1, wobei die Dispersion weiterhin ein Gegenion umfasst.
- Kondensator gemäß Anspruch 6, wobei das Gegenion eine Polystyrolsulfonsäure umfasst.
- Kondensator gemäß Anspruch 1, wobei die Dispersion weiterhin ein Bindemittel umfasst.
- Kondensator gemäß Anspruch 1, wobei der Anodenkörper einen aus Tantal oder Nioboxid gebildeten gesinterten porösen Pressling umfasst.
- Kondensator gemäß Anspruch 1, wobei die erste Schicht etwa 10% bis etwa 70% der Oberfläche des Anodenkörpers bedeckt und die zweite Schicht etwa 80% bis 100% der Oberfläche des Anodenkörpers bedeckt.
- Kondensator gemäß Anspruch 1, wobei die erste Schicht etwa 20% bis etwa 60% der Oberfläche des Anodenkörpers bedeckt und die zweite Schicht etwa 90% bis 100% der Oberfläche des Anodenkörpers bedeckt.
- Kondensator gemäß Anspruch 1, wobei der Anodenkörper eine vordere Fläche, eine hintere Fläche und wenigstens eine Seitenfläche, die sich zwischen der vorderen Fläche und der hinteren Fläche erstreckt, aufweist.
- Kondensator gemäß Anspruch 12, wobei die erste Schicht nur einen Teil der Seitenfläche des Anodenkörpers bedeckt.
- Kondensator gemäß Anspruch 13, wobei die zweite Schicht im Wesentlichen die gesamte Seitenfläche des Anodenkörpers bedeckt.
- Kondensator gemäß Anspruch 12, wobei sich ein Anodendraht von der vorderen Fläche des Anodenkörpers aus erstreckt.
- Kondensator gemäß Anspruch 15, wobei die vordere Fläche frei von der ersten Schicht ist.
- Kondensator gemäß Anspruch 1, wobei der Kondensator eine Durchschlagsspannung von etwa 60 Volt oder mehr aufweist.
- Verfahren zur Bildung einer leitfähigen Polymerbeschichtung auf einem Anodenkörper, der eine vordere Fläche, eine hintere Fläche und wenigstens eine Seitenfläche, die sich zwischen der vorderen Fläche und der hinteren Fläche erstreckt, aufweist, wobei das Verfahren das Eintauchen eines Anodenkörpers in eine Dispersion von leitfähigen Polymerteilchen unter Bildung einer ersten Schicht, die etwa 80% oder weniger der Seitenfläche bedeckt, und danach das Eintauchen des Anodenkörpers in die Dispersion unter Bildung einer zweiten Schicht, die einen größeren Anteil der Seitenfläche bedeckt als die erste Schicht, umfasst.
- Verfahren gemäß Anspruch 18, wobei der Anodenkörper einen aus Tantal oder Nioboxid gebildeten anodisch oxidierten, gesinterten porösen Pressling umfasst.
- Verfahren gemäß Anspruch 18, wobei das substituierte Polythiophen die folgende allgemeine Struktur aufweist: wobei R7 ein linearer oder verzweigter, gegebenenfalls substituierter C1 bis C18-Alkylrest, ein gegebenenfalls substituierter C5- bis C12-Cycloalkylrest, ein gegebenenfalls substituierter C6- bis C14-Arylrest, ein gegebenenfalls substituierter C7- bis C18-Aralkylrest, ein gegebenenfalls substituierter C1- bis C4-Hydroxyalkylrest oder ein Hydroxyrest ist; und q eine ganze Zahl von 0 bis 8 ist; und n = 2 bis 5000 ist.
- Verfahren gemäß Anspruch 18, wobei die leitfähigen Polymerteilchen Poly(3,4-ethylendioxythiophen) umfassen.
- Verfahren gemäß Anspruch 18, wobei die leitfähigen Polymerteilchen einen mittleren Durchmesser von etwa 1 bis etwa 200 Nanometer aufweisen.
- Verfahren gemäß Anspruch 18, wobei die leitfähigen Polymerteilchen etwa 0,1 bis etwa 10 Gew.-% der Dispersion bilden.
- Verfahren gemäß Anspruch 18, wobei der Anodenkörper so positioniert ist, dass die hintere Fläche zur Dispersion weist, bevor er unter Bildung der ersten Schicht und der zweiten Schicht hineingetaucht wird.
- Verfahren gemäß Anspruch 24, wobei die erste Schicht die hintere Fläche und etwa 10% bis etwa 70% der Seitenfläche bedeckt und wobei die zweite Schicht die hintere Fläche und etwa 80% bis 100% der Oberfläche bedeckt.
- Verfahren gemäß Anspruch 24, wobei die erste Schicht die hintere Fläche und etwa 20% bis etwa 60% der Seitenfläche bedeckt und wobei die zweite Schicht die hintere Fläche und etwa 90% bis 100% der Seitenfläche bedeckt.
- Verfahren gemäß Anspruch 24, wobei die zweite Schicht im Wesentlichen die gesamte Seitenfläche bedeckt.
- Verfahren gemäß Anspruch 24, wobei die vordere Fläche frei von der ersten Schicht ist.
- Verfahren gemäß Anspruch 18, wobei der Anodenkörper nach der Auftragung der ersten Schicht und der zweiten Schicht aus der Dispersion herausgezogen und getrocknet wird.
- Festelektrolytkondensator, gebildet nach dem Verfahren gemäß Anspruch 18.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41753410P | 2010-11-29 | 2010-11-29 | |
US61/417,534 | 2010-11-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102011087197A1 true DE102011087197A1 (de) | 2012-05-31 |
Family
ID=46049967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102011087197A Withdrawn DE102011087197A1 (de) | 2010-11-29 | 2011-11-28 | Mehrschichtige leitfähige Polymerbeschichtungen zur Verwendung in Hochspannungs-Festelektrolytkondensatoren |
Country Status (2)
Country | Link |
---|---|
US (1) | US8848342B2 (de) |
DE (1) | DE102011087197A1 (de) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2606530B1 (de) | 2010-08-20 | 2017-04-26 | Rhodia Operations | Polymerzusammensetzungen, polymerfilme, polymergele, polymerschaumstoffe und elektronische vorrichtungen mit solchen filmen; gelen und schaumstoffen |
JP5745632B2 (ja) * | 2010-09-21 | 2015-07-08 | ケメット エレクトロニクス コーポレーション | 固体電解コンデンサおよび固体電解コンデンサを製造する方法 |
JP2012191178A (ja) * | 2011-02-22 | 2012-10-04 | Sanyo Electric Co Ltd | 電解コンデンサおよび電解コンデンサの製造方法 |
US9548163B2 (en) | 2012-07-19 | 2017-01-17 | Avx Corporation | Solid electrolytic capacitor with improved performance at high voltages |
DE102013213720A1 (de) | 2012-07-19 | 2014-01-23 | Avx Corporation | Temperaturstabiler Festelektrolytkondensator |
DE102013213728A1 (de) * | 2012-07-19 | 2014-01-23 | Avx Corporation | Nichtionisches Tensid zur Verwendung in einem festen Elektrolyten eines Elektrolytkondensators |
JP6427877B2 (ja) | 2012-10-16 | 2018-11-28 | 三菱ケミカル株式会社 | 導電性組成物及び前記組成物を用いて得られる固体電解コンデンサ |
US8810893B2 (en) | 2013-01-15 | 2014-08-19 | The University Of Kentucky Research Foundation | Low voltage electrowetting device and method for making same |
GB2512480B (en) | 2013-03-13 | 2018-05-30 | Avx Corp | Solid electrolytic capacitor for use in extreme conditions |
US9236192B2 (en) * | 2013-08-15 | 2016-01-12 | Avx Corporation | Moisture resistant solid electrolytic capacitor assembly |
US10062519B2 (en) * | 2014-09-15 | 2018-08-28 | Kemet Electronics Corporation | Tantalum capacitor with polymer cathode |
US10224150B2 (en) | 2016-02-02 | 2019-03-05 | Kemet Electronics Corporation | Solid electrolytic capacitor with enhanced humidity resistance and method for producing the same |
US10737101B2 (en) * | 2016-11-14 | 2020-08-11 | Avx Corporation | Medical device containing a solid electrolytic capacitor |
US20190392995A1 (en) * | 2018-06-21 | 2019-12-26 | Avx Corporation | Delamination-Resistant Solid Electrolytic Capacitor |
JP7473537B2 (ja) | 2019-04-25 | 2024-04-23 | キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション | 固体電解コンデンサ |
US11222755B2 (en) * | 2019-05-17 | 2022-01-11 | KYOCERA AVX Components Corporation | Delamination-resistant solid electrolytic capacitor |
US11837415B2 (en) | 2021-01-15 | 2023-12-05 | KYOCERA AVX Components Corpration | Solid electrolytic capacitor |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3345545A (en) | 1964-11-27 | 1967-10-03 | Johnson Matthey & Mallory Ltd | Solid electrolytic capacitor having minimum anode impedance |
US5111327A (en) | 1991-03-04 | 1992-05-05 | General Electric Company | Substituted 3,4-polymethylenedioxythiophenes, and polymers and electro responsive devices made therefrom |
US5457862A (en) | 1993-11-10 | 1995-10-17 | Nec Corporation | Method of manufacturing solid electrolytic capacitor |
US5473503A (en) | 1993-07-27 | 1995-12-05 | Nec Corporation | Solid electrolytic capacitor and method for manufacturing the same |
US5729428A (en) | 1995-04-25 | 1998-03-17 | Nec Corporation | Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same |
US5812367A (en) | 1996-04-04 | 1998-09-22 | Matsushita Electric Industrial Co., Ltd. | Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative |
US5949639A (en) | 1996-09-27 | 1999-09-07 | Rohm Co., Ltd. | Capacitor element for solid electrolytic capacitor, device and process for making the same |
US6191936B1 (en) | 1999-04-12 | 2001-02-20 | Vishay Sprague, Inc. | Capacitor having textured pellet and method for making same |
US6197252B1 (en) | 1997-01-13 | 2001-03-06 | Avx Limited | Binder removal |
US6322912B1 (en) | 1998-09-16 | 2001-11-27 | Cabot Corporation | Electrolytic capacitor anode of valve metal oxide |
US6391275B1 (en) | 1998-09-16 | 2002-05-21 | Cabot Corporation | Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides |
US6416730B1 (en) | 1998-09-16 | 2002-07-09 | Cabot Corporation | Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides |
US6576099B2 (en) | 2000-03-23 | 2003-06-10 | Cabot Corporation | Oxygen reduced niobium oxides |
US6635729B1 (en) | 2000-02-03 | 2003-10-21 | Bayer Aktinegesellschaft | Process for the preparation of water-soluble π-conjugated polymers |
US6639787B2 (en) | 2000-11-06 | 2003-10-28 | Cabot Corporation | Modified oxygen reduced valve metal oxides |
US6674635B1 (en) | 2001-06-11 | 2004-01-06 | Avx Corporation | Protective coating for electrolytic capacitors |
US6987663B2 (en) | 2003-10-17 | 2006-01-17 | H.C. Starck Gmbh | Electrolytic capacitors with a polymeric outer layer |
US7563290B2 (en) | 2006-07-06 | 2009-07-21 | Kemet Electronics Corporation | High voltage solid electrolytic capacitors using conductive polymer slurries |
Family Cites Families (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63249323A (ja) | 1987-04-06 | 1988-10-17 | 松下電器産業株式会社 | 固体電解コンデンサ |
EP0336299B1 (de) | 1988-03-31 | 1994-09-28 | Matsushita Electric Industrial Co., Ltd. | Festelektrolytkondensator und Verfahren zu seiner Herstellung |
DE3843412A1 (de) | 1988-04-22 | 1990-06-28 | Bayer Ag | Neue polythiophene, verfahren zu ihrer herstellung und ihre verwendung |
DE3814730A1 (de) | 1988-04-30 | 1989-11-09 | Bayer Ag | Feststoff-elektrolyte und diese enthaltende elektrolyt-kondensatoren |
DE68925437T2 (de) | 1988-05-20 | 1996-08-14 | Mitsubishi Chem Corp | Verfahren zum Herstellen einer Elektrode für einen Festelektrolytkondensator |
EP0416926A3 (en) | 1989-09-06 | 1991-08-28 | Matsushita Electric Industrial Co., Ltd. | Method for manufacturing a solid electrolytic capacitor |
US5119274A (en) | 1989-12-29 | 1992-06-02 | Matsushita Electric Industrial Co., Ltd. | Solid capacitor |
EP0440957B1 (de) | 1990-02-08 | 1996-03-27 | Bayer Ag | Neue Polythiophen-Dispersionen, ihre Herstellung und ihre Verwendung |
EP0463391B1 (de) | 1990-05-25 | 1997-08-13 | Matsushita Electric Industrial Co., Ltd. | Festelektrolytkondensatoren und ihr Herstellungsverfahren |
JPH0736375B2 (ja) | 1991-04-05 | 1995-04-19 | 松下電器産業株式会社 | 固体電解コンデンサの製造方法 |
US5187650A (en) | 1991-04-15 | 1993-02-16 | Matsushita Electric Industrial Co., Ltd. | Solid electrolytic capacitors and method for manufacturing the same |
US5424907A (en) | 1992-02-21 | 1995-06-13 | Matsushita Electric Industrial Co., Ltd. | Solid electrolytic capacitors and method for manufacturing the same |
JP3307224B2 (ja) * | 1996-05-14 | 2002-07-24 | 松下電器産業株式会社 | コンデンサの製造方法 |
US6134099A (en) | 1997-06-03 | 2000-10-17 | Matsushita Electric Industrial | Electrolytic capacitor having a conducting polymer layer without containing an organic acid-type dopant |
US6168639B1 (en) | 1997-10-09 | 2001-01-02 | Sanyo Electric Co., Ltd. | Solid electrolyte capacitor, and process and apparatus for producing same |
US6088218A (en) | 1997-10-31 | 2000-07-11 | Matsushita Electric Industrial Co., Ltd. | Electrolytic capacitor and method for producing the same |
JP3350846B2 (ja) * | 1998-02-02 | 2002-11-25 | エヌイーシートーキン富山株式会社 | 導電性高分子を用いた固体電解コンデンサ及びその製造方法 |
JP3667531B2 (ja) | 1998-07-07 | 2005-07-06 | 松下電器産業株式会社 | 電解コンデンサの製造方法 |
JP4036985B2 (ja) | 1998-10-26 | 2008-01-23 | 三洋電機株式会社 | 固体電解コンデンサ |
JP2000235937A (ja) | 1999-02-16 | 2000-08-29 | Matsushita Electric Ind Co Ltd | 固体電解コンデンサおよびその製造方法 |
US6602741B1 (en) | 1999-09-14 | 2003-08-05 | Matsushita Electric Industrial Co., Ltd. | Conductive composition precursor, conductive composition, solid electrolytic capacitor, and their manufacturing method |
US6614063B2 (en) | 1999-12-03 | 2003-09-02 | Matsushita Electric Industrial Co., Ltd. | Solid electrolytic capacitor |
DE10016723A1 (de) | 2000-04-04 | 2001-10-11 | Bayer Ag | Verfahren zur Herstellung von Dialkoxythiophenen und Alkylendioxythiophenen |
US6426866B2 (en) | 2000-04-14 | 2002-07-30 | Matsushita Electric Industrial Co., Ltd. | Solid electrolytic capacitor and method of manufacturing the same |
DE10029075A1 (de) | 2000-06-13 | 2001-12-20 | Bayer Ag | Verfahren zur Herstellung von 3,4-Alkylendioxythiophen-2,5-dicarbonsäurederivaten |
JP4095894B2 (ja) | 2000-11-22 | 2008-06-04 | バイエル・ベタイリグングスフェアヴァルトゥング・ゴスラー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | 分散性ポリマー粉末 |
JP3906043B2 (ja) | 2001-08-20 | 2007-04-18 | 三洋電機株式会社 | 固体電解コンデンサの製造方法 |
US6671168B2 (en) * | 2001-11-30 | 2003-12-30 | Matsushita Electric Industrial Co., Ltd. | Solid electrolytic capacitor and method for manufacturing the same |
DE10164260A1 (de) | 2001-12-27 | 2003-07-17 | Bayer Ag | Verfahren zur Herstellung von undotiertem, neutralem Polyethylendioxythiophen, sowie entsprechende Polyethylendioxythiophene |
DE10229218A1 (de) | 2002-06-28 | 2004-01-22 | H.C. Starck Gmbh | Alkylendioxythiophen-Dimere und Trimere |
DE10237577A1 (de) | 2002-08-16 | 2004-02-26 | H.C. Starck Gmbh | Substituierte Poly(alkylendioxythiophene) als Feststoffelektrolyte in Elektrolytkondensatoren |
DE10257539A1 (de) | 2002-12-10 | 2004-07-01 | H.C. Starck Gmbh | Verfahren zur Herstellung von 2,2'-Di(3,4-ethylendioxythiophen)en |
DE10302086A1 (de) | 2003-01-21 | 2004-07-29 | Bayer Ag | Alkylendioxythiophene und Poly(alkylendioxythiophene) mit mesogenen Gruppen |
JP2004265927A (ja) | 2003-02-13 | 2004-09-24 | Sanyo Electric Co Ltd | 固体電解コンデンサの製造方法 |
US7972534B2 (en) | 2003-04-02 | 2011-07-05 | H. C. Starck Gmbh | Retarding oxidants for preparing conductive polymers |
US7157326B2 (en) | 2003-07-10 | 2007-01-02 | Sanyo Electric Co., Ltd. | Process for fabricating capacitor element |
DE10331673A1 (de) | 2003-07-14 | 2005-02-10 | H.C. Starck Gmbh | Polythiophen mit Alkylenoxythiathiophen-Einheiten in Elektrolytkondensatoren |
DE10343873A1 (de) | 2003-09-23 | 2005-04-21 | Starck H C Gmbh | Verfahren zur Reinigung von Thiophenen |
DE10357571A1 (de) | 2003-12-10 | 2005-07-28 | H.C. Starck Gmbh | Multifunktionelle 3,4-Alkylendioxythiophen-Derivate und diese enthaltende elektrisch leitfähige Polymere |
JP4315038B2 (ja) | 2004-03-29 | 2009-08-19 | パナソニック株式会社 | 固体電解コンデンサ |
DE102004022110A1 (de) | 2004-05-05 | 2005-12-01 | H.C. Starck Gmbh | Verfahren zur Herstellung von Elektrolytkondensatoren |
JP2006028214A (ja) | 2004-07-12 | 2006-02-02 | Nagase Chemtex Corp | ポリ(3,4−ジアルコキシチオフェン)とポリ陰イオンとの複合体の水分散体の製造方法 |
CN1761007B (zh) * | 2004-10-15 | 2010-05-05 | 三洋电机株式会社 | 固体电解电容器及其制造方法 |
CN100587869C (zh) * | 2004-10-15 | 2010-02-03 | 三洋电机株式会社 | 固体电解电容器及其制造方法 |
DE102005016727A1 (de) | 2005-04-11 | 2006-10-26 | H.C. Starck Gmbh | Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zu ihrer Herstellung |
WO2007001076A1 (en) * | 2005-06-27 | 2007-01-04 | Showa Denko K.K. | Solid electrolytic capacitor and production method thereof |
DE102005033839A1 (de) * | 2005-07-20 | 2007-01-25 | H.C. Starck Gmbh | Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zur ihrer Herstellung |
DE102005043829A1 (de) | 2005-09-13 | 2007-04-05 | H.C. Starck Gmbh | Verfahren zur Herstellung von Elektrolytkondensatoren mit hoher Nennspannung |
DE102005043828A1 (de) * | 2005-09-13 | 2007-03-22 | H.C. Starck Gmbh | Verfahren zur Herstellung von Elektrolytkondensatoren |
DE102005053646A1 (de) | 2005-11-10 | 2007-05-16 | Starck H C Gmbh Co Kg | Polymerbeschichtungen mit verbesserter Lösungsmittelbeständigkeit |
KR101327242B1 (ko) | 2005-11-17 | 2013-11-12 | 헤레우스 프레셔스 메탈스 게엠베하 운트 코. 카게 | 폴리(3,4-디알콕시티오펜)과 폴리음이온의 복합체의수분산체의 제조방법 |
JP4703400B2 (ja) | 2005-12-28 | 2011-06-15 | 三洋電機株式会社 | 固体電解コンデンサ及びその製造方法 |
DE102006002797A1 (de) | 2006-01-20 | 2007-08-02 | H. C. Starck Gmbh & Co. Kg | Verfahren zur Herstellung von Polythiophenen |
DE102006020744A1 (de) | 2006-05-04 | 2007-11-08 | H. C. Starck Gmbh & Co. Kg | Verfahren zur Stabilisierung von Thiophenderivaten |
JP4845645B2 (ja) | 2006-08-30 | 2011-12-28 | 三洋電機株式会社 | 固体電解コンデンサおよびその製造方法 |
DE102006044067A1 (de) | 2006-09-20 | 2008-03-27 | H.C. Starck Gmbh | Verfahren zur Herstellung von Polythiophenen |
JP4762105B2 (ja) | 2006-10-12 | 2011-08-31 | 三洋電機株式会社 | 固体電解コンデンサの製造方法 |
JP4845699B2 (ja) | 2006-12-08 | 2011-12-28 | 三洋電機株式会社 | 固体電解コンデンサ及び固体電解コンデンサの製造方法 |
JP4804336B2 (ja) | 2006-12-27 | 2011-11-02 | 三洋電機株式会社 | 固体電解コンデンサ |
KR101083465B1 (ko) | 2007-02-28 | 2011-11-16 | 산요덴키가부시키가이샤 | 고체 전해 콘덴서 및 그 제조 방법 |
US8057553B2 (en) | 2007-03-15 | 2011-11-15 | Sanyo Electric Co., Ltd. | Method for manufacturing solid electrolytic capacitor and solid electrolytic capacitor |
US7729103B2 (en) | 2007-03-20 | 2010-06-01 | Sanyo Electric Co., Ltd. | Solid electrolytic capacitor and method of producing the same |
US8696767B2 (en) | 2007-05-21 | 2014-04-15 | Showa Denko K.K. | Dipping method of forming cathode of solid electrolytic capacitor |
JP4850127B2 (ja) | 2007-05-30 | 2012-01-11 | 三洋電機株式会社 | 固体電解コンデンサおよびその製造方法 |
JP4877820B2 (ja) | 2007-06-29 | 2012-02-15 | 三洋電機株式会社 | 固体電解コンデンサ |
WO2009004857A1 (ja) | 2007-07-02 | 2009-01-08 | Sanyo Electric Co., Ltd. | 固体電解コンデンサ |
DE102007041722A1 (de) | 2007-09-04 | 2009-03-05 | H.C. Starck Gmbh | Verfahren zur Herstellung von leitfähigen Polymeren |
DE102007046904A1 (de) | 2007-09-28 | 2009-04-09 | H.C. Starck Gmbh | Partikel mit Kern-Schale-Struktur für leitfähige Schichten |
DE102007048212A1 (de) | 2007-10-08 | 2009-04-09 | H.C. Starck Gmbh | Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Zwischenschicht |
JP4931778B2 (ja) * | 2007-11-21 | 2012-05-16 | 三洋電機株式会社 | 固体電解コンデンサ |
JP2009170897A (ja) | 2007-12-21 | 2009-07-30 | Sanyo Electric Co Ltd | 固体電解コンデンサ |
TW200945389A (en) | 2008-03-31 | 2009-11-01 | Sanyo Electric Co | Method for manufacturing solid electrolytic condenser |
DE102008023008A1 (de) | 2008-05-09 | 2009-11-12 | H.C. Starck Gmbh | Neuartige Polythiophene-Polyanion-Komplexe in unpolaren organischen Lösungsmitteln |
DE102008024805A1 (de) | 2008-05-23 | 2009-12-03 | H.C. Starck Gmbh | Verfahren zur Herstellung von Elektrolytkondensatoren |
DE102008032578A1 (de) | 2008-07-11 | 2010-01-14 | H.C. Starck Gmbh | Verfahren zur Herstellung von Elektrolytkondensatoren |
DE102008036525A1 (de) | 2008-08-06 | 2010-02-11 | H.C. Starck Gmbh | Verfahren zur Herstellung von Polythiophenen |
JP5736534B2 (ja) * | 2008-09-29 | 2015-06-17 | パナソニックIpマネジメント株式会社 | 固体電解コンデンサ |
US20100110614A1 (en) * | 2008-10-31 | 2010-05-06 | Sanyo Electric Co., Ltd. | Solid electrolytic capacitor |
JP5340872B2 (ja) | 2008-11-05 | 2013-11-13 | 三洋電機株式会社 | 固体電解コンデンサの製造方法 |
JP2010129789A (ja) | 2008-11-27 | 2010-06-10 | Sanyo Electric Co Ltd | 固体電解コンデンサの製造方法 |
TW201023220A (en) | 2008-12-01 | 2010-06-16 | Sanyo Electric Co | Method of manufacturing solid electrolytic capacitor |
JP5289033B2 (ja) | 2008-12-24 | 2013-09-11 | 三洋電機株式会社 | 固体電解コンデンサ |
JP5274268B2 (ja) | 2009-01-08 | 2013-08-28 | 三洋電機株式会社 | 固体電解コンデンサとその製造方法 |
US20100193745A1 (en) | 2009-01-30 | 2010-08-05 | Sanyo Electric Co., Ltd. | Conductive polymer film, conductive polymeric material and electronic device |
DE102009007594A1 (de) | 2009-02-05 | 2010-08-12 | H.C. Starck Clevios Gmbh | Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Außenschicht. |
JP2011071087A (ja) | 2009-03-12 | 2011-04-07 | Sanyo Electric Co Ltd | 導電性高分子膜、電子デバイス、及びこれらの製造方法 |
DE102009012660A1 (de) | 2009-03-13 | 2010-09-16 | H.C. Starck Clevios Gmbh | Polymerbeschichtungen mit verbesserter Temperaturstabilität |
JP2010245113A (ja) | 2009-04-01 | 2010-10-28 | Sanyo Electric Co Ltd | 固体電解コンデンサ |
JP5484995B2 (ja) | 2009-04-28 | 2014-05-07 | 三洋電機株式会社 | 固体電解コンデンサ及びその製造方法 |
JP5461110B2 (ja) | 2009-08-28 | 2014-04-02 | 三洋電機株式会社 | 固体電解コンデンサおよびその製造方法 |
JP5526660B2 (ja) | 2009-08-31 | 2014-06-18 | 三洋電機株式会社 | 導電性高分子膜、導電性高分子膜の製造方法、および電子デバイスの製造方法 |
JP5388811B2 (ja) | 2009-11-20 | 2014-01-15 | 三洋電機株式会社 | 固体電解コンデンサおよびその製造方法 |
US8503167B2 (en) | 2010-01-27 | 2013-08-06 | Sanyo Electric Co., Ltd. | Solid electrolytic capacitor and manufacturing method thereof |
JP5853160B2 (ja) | 2010-02-25 | 2016-02-09 | パナソニックIpマネジメント株式会社 | 固体電解コンデンサ |
JP2011181611A (ja) | 2010-02-26 | 2011-09-15 | Sanyo Electric Co Ltd | 固体電解コンデンサおよび固体電解コンデンサの製造方法 |
US8206467B2 (en) | 2010-03-24 | 2012-06-26 | Sanyo Electric Co., Ltd. | Method for manufacturing a solid electrolytic capacitor |
-
2011
- 2011-08-30 US US13/220,791 patent/US8848342B2/en active Active
- 2011-11-28 DE DE102011087197A patent/DE102011087197A1/de not_active Withdrawn
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3345545A (en) | 1964-11-27 | 1967-10-03 | Johnson Matthey & Mallory Ltd | Solid electrolytic capacitor having minimum anode impedance |
US5111327A (en) | 1991-03-04 | 1992-05-05 | General Electric Company | Substituted 3,4-polymethylenedioxythiophenes, and polymers and electro responsive devices made therefrom |
US5473503A (en) | 1993-07-27 | 1995-12-05 | Nec Corporation | Solid electrolytic capacitor and method for manufacturing the same |
US5457862A (en) | 1993-11-10 | 1995-10-17 | Nec Corporation | Method of manufacturing solid electrolytic capacitor |
US5729428A (en) | 1995-04-25 | 1998-03-17 | Nec Corporation | Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same |
US5812367A (en) | 1996-04-04 | 1998-09-22 | Matsushita Electric Industrial Co., Ltd. | Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative |
US5949639A (en) | 1996-09-27 | 1999-09-07 | Rohm Co., Ltd. | Capacitor element for solid electrolytic capacitor, device and process for making the same |
US6197252B1 (en) | 1997-01-13 | 2001-03-06 | Avx Limited | Binder removal |
US6391275B1 (en) | 1998-09-16 | 2002-05-21 | Cabot Corporation | Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides |
US6322912B1 (en) | 1998-09-16 | 2001-11-27 | Cabot Corporation | Electrolytic capacitor anode of valve metal oxide |
US6416730B1 (en) | 1998-09-16 | 2002-07-09 | Cabot Corporation | Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides |
US6527937B2 (en) | 1998-09-16 | 2003-03-04 | Cabot Corporation | Method of making a capacitor anode of a pellet of niobium oxide |
US6592740B2 (en) | 1998-09-16 | 2003-07-15 | Cabot Corporation | Methods to make capacitors containing a partially reduced niobium metal oxide |
US6191936B1 (en) | 1999-04-12 | 2001-02-20 | Vishay Sprague, Inc. | Capacitor having textured pellet and method for making same |
US6635729B1 (en) | 2000-02-03 | 2003-10-21 | Bayer Aktinegesellschaft | Process for the preparation of water-soluble π-conjugated polymers |
US6576099B2 (en) | 2000-03-23 | 2003-06-10 | Cabot Corporation | Oxygen reduced niobium oxides |
US6639787B2 (en) | 2000-11-06 | 2003-10-28 | Cabot Corporation | Modified oxygen reduced valve metal oxides |
US7220397B2 (en) | 2000-11-06 | 2007-05-22 | Cabot Corporation | Modified oxygen reduced valve metal oxides |
US6674635B1 (en) | 2001-06-11 | 2004-01-06 | Avx Corporation | Protective coating for electrolytic capacitors |
US6987663B2 (en) | 2003-10-17 | 2006-01-17 | H.C. Starck Gmbh | Electrolytic capacitors with a polymeric outer layer |
US7563290B2 (en) | 2006-07-06 | 2009-07-21 | Kemet Electronics Corporation | High voltage solid electrolytic capacitors using conductive polymer slurries |
Non-Patent Citations (4)
Title |
---|
Brunauer, Emmet und Teller, Journal of American Chemical Society, Band 60, 1938, S. 309 |
Osako et al. |
Schnitter et al. |
Thomas et al. |
Also Published As
Publication number | Publication date |
---|---|
CN102709063A (zh) | 2012-10-03 |
US20120134073A1 (en) | 2012-05-31 |
US8848342B2 (en) | 2014-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102011087197A1 (de) | Mehrschichtige leitfähige Polymerbeschichtungen zur Verwendung in Hochspannungs-Festelektrolytkondensatoren | |
DE102011117192A1 (de) | Festelektrolytkondensator zur Verwendung in Hochspannungs- und Hochtemperaturanwendungen | |
DE102013214126A1 (de) | Festelektrolytkondensator mit verbesserten Eigenschaften bei hohen Spannungen | |
DE102010048177A1 (de) | Externe Beschichtung für einen Festelektrolytkondensator | |
DE102008041111B4 (de) | Laser-geschweißter Kondensator mit festem Elektrolyten | |
DE102014225816A1 (de) | Stabiler Festelektrolytkondensator, der einen Nanokomposit enthält | |
EP1927119B1 (de) | Verfahren zur herstellung von elektrolytkondensatoren mit hoher nennspannung | |
DE102016208800A1 (de) | Festelektrolytkondensator mit ultrahoher Kapazität | |
DE102013213723A1 (de) | Festelektrolytkondensator mit erhöhter Feucht-zu-Trocken-Kapazität | |
DE102014208944A1 (de) | Festelektrolytkondensator, der leitfähige Polymerteilchen enthält | |
DE102011088366A1 (de) | Leitfähige Beschichtung zur Verwendung in Elektrolytkondensatoren | |
DE102011086123A1 (de) | Festelektrolytkondensatorelement | |
DE102013213728A1 (de) | Nichtionisches Tensid zur Verwendung in einem festen Elektrolyten eines Elektrolytkondensators | |
DE102013213720A1 (de) | Temperaturstabiler Festelektrolytkondensator | |
DE102013101443A1 (de) | Ultrahigh voltage solid electrolytic capacitor | |
DE102014204323A1 (de) | Festelektrolytkondensator zur Verwendung unter extremen Bedingungen | |
DE102014207581A1 (de) | Mehrfach gekerbte Anode für Elektrolytkondensator | |
DE102012018976A1 (de) | Verwendung von Mischungen aus selbstdotierten und fremddotierten leitfähigen Polymeren in einem Kondensator | |
DE102012203422A1 (de) | Festelektrolytkondensator, der eine aus einer kolloidalen Dispersion gebildete Beschichtung enthält | |
DE102011109752A1 (de) | Festelektrolytkondensator-Baugruppe | |
DE102012205589A1 (de) | Gehäusekonfiguration für einen Festelektrolytkondensator | |
DE102016208802A1 (de) | Festelektrolytkondensatorbaugruppe zur Verwendung in einer feuchten Atmosphäre | |
DE102016208807A1 (de) | Festelektrolytkondensatorelement zur Verwendung unter trockenen Bedingungen | |
DE102011108509A1 (de) | Mechanisch robuste Festelektrolytkondensator-Baugruppe | |
DE102014214966A1 (de) | Anschlussbaugruppe mit dünnem Draht/dickem Draht für Elektrolytkondensator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R120 | Application withdrawn or ip right abandoned | ||
R120 | Application withdrawn or ip right abandoned |
Effective date: 20141206 |