DE102014204323A1 - Festelektrolytkondensator zur Verwendung unter extremen Bedingungen - Google Patents

Festelektrolytkondensator zur Verwendung unter extremen Bedingungen Download PDF

Info

Publication number
DE102014204323A1
DE102014204323A1 DE102014204323.9A DE102014204323A DE102014204323A1 DE 102014204323 A1 DE102014204323 A1 DE 102014204323A1 DE 102014204323 A DE102014204323 A DE 102014204323A DE 102014204323 A1 DE102014204323 A1 DE 102014204323A1
Authority
DE
Germany
Prior art keywords
polymer
layer
capacitor
solid electrolyte
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102014204323.9A
Other languages
English (en)
Inventor
Martin Biler
Jan Petrizlek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Avx Components Corp
Original Assignee
AVX Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVX Corp filed Critical AVX Corp
Publication of DE102014204323A1 publication Critical patent/DE102014204323A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

Eine Kondensatorbaugruppe, die unter extremen Bedingungen, wie hohen Temperaturen und/oder hohen Spannungen, leistungsfähig sein kann, wird bereitgestellt. Die Fähigkeit, bei hoher Temperatur leistungsfähig zu sein, wird zum Teil dadurch erreicht, dass das Kondensatorelement innerhalb eines Gehäuses in Gegenwart einer Gasatmosphäre, die ein Inertgas enthält, eingeschlossen und hermetisch versiegelt ist, wodurch die Menge an Sauerstoff und Feuchtigkeit, die dem festen Elektrolyten des Kondensatorelements zugeführt wird, begrenzt ist. Weiterhin haben die Erfinder auch herausgefunden, dass die Fähigkeit, bei hohen Spannungen leistungsfähig zu sein, durch eine einzigartige und gezielte Kombination von Merkmalen, die sich auf die Bildung der Anode, des Dielektrikums und des festen Elektrolyten beziehen, erreicht werden kann. Zum Beispiel wird der feste Elektrolyt aus einer Kombination eines leitfähigen Polymers und eines hydroxyfunktionellen nichtionischen Polymers gebildet.

Description

  • Hintergrund der Erfindung
  • Elektrolytkondensatoren (z. B. Tantalkondensatoren) werden aufgrund ihrer volumetrischen Effizienz, Zuverlässigkeit und Verfahrenskompatibilität zunehmend bei der Gestaltung von Schaltungen verwendet. Zum Beispiel ist ein Kondensatortyp, der entwickelt wurde, ein Festelektrolytkondensator, der eine Anode (z. B. Tantal), eine auf der Anode gebildete dielektrische Oxidschicht (z. B. Tantalpentoxid, Ta2O5), eine feste Elektrolytschicht und eine Kathode umfasst. Die feste Elektrolytschicht kann aus einem leitfähigen Polymer gebildet sein, wie es in den US-Patenten Nr. 5,457,862 (Sakata et al.), 5,473,503 (Sakata et al.), 5,729,428 (Sakata et al.) und 5,812,367 (Kudoh et al.) beschrieben ist. Leider ist die Stabilität solcher fester Elektrolyte jedoch aufgrund der Neigung zur Umwandlung aus einem dotierten in einen undotierten Zustand oder umgekehrt bei hohen Temperaturen gering. Als Reaktion auf diese und andere Probleme wurden Kondensatoren entwickelt, die hermetisch versiegelt sind, um den Kontakt von Sauerstoff mit dem leitfähigen Polymer während der Verwendung zu begrenzen. Die US-Patentanmeldung Veröffentlichungsnummer 2009/0244812 (Rawal et al.) beschreibt zum Beispiel eine Kondensatorbaugruppe, die einen Kondensator aus einem leitfähigen Polymer umfasst, der in Gegenwart eines Inertgases in einem Keramikgehäuse eingeschlossen und hermetisch versiegelt ist. Gemäß Rawal et al. begrenzt das Keramikgehäuse die Menge an Sauerstoff und Feuchtigkeit, die dem leitfähigen Polymer zugeführt wird, so dass es in Umgebungen mit hoher Temperatur weniger wahrscheinlich oxidiert, was die thermische Stabilität der Kondensatorbaugruppe erhöht. Trotz der erreichten Vorteile bleiben aber dennoch Probleme bestehen. Zum Beispiel kann das Kondensatorelement unter extremen Bedingungen (z. B. hohe Temperatur von über etwa 175°C und/oder hohe Spannung von über etwa 35 Volt) zuweilen instabil werden, was zu schlechten elektrischen Eigenschaften führt.
  • Daher besteht zurzeit ein Bedürfnis nach einer Festelektrolytkondensatorbaugruppe mit verbesserter Leistungsfähigkeit unter extremen Bedingungen.
  • Kurzbeschreibung der Erfindung
  • Gemäß einer Ausführungsform der vorliegenden Erfindung wird eine Kondensatorbaugruppe offenbart, die ein Kondensatorelement, ein Gehäuse, ein Anoden-Endteil und ein Kathoden-Endteil umfasst. Das Kondensatorelement umfasst einen gesinterten porösen Anodenkörper, eine dielektrische Schicht, die den Anodenkörper bedeckt, und einen festen Elektrolyten, der die dielektrische Schicht bedeckt. Der feste Elektrolyt umfasst ein leitfähiges Polymer und ein hydroxyfunktionelles nichtionisches Polymer. Ein Gehäuse definiert einen inneren Hohlraum, innerhalb dessen sich das Kondensatorelement befindet und dort hermetisch versiegelt ist, wobei der innere Hohlraum eine Gasatmosphäre aufweist, die ein Inertgas enthält.
  • Weitere Merkmale und Aspekte der vorliegenden Erfindung sind im Folgenden ausführlicher dargelegt.
  • Kurzbeschreibung der Zeichnungen
  • Im Rest der Beschreibung und unter Bezugnahme auf die Begleitzeichnungen ist eine vollständige und nacharbeitbare Offenbarung der vorliegenden Erfindung einschließlich ihrer besten Realisierung für den Fachmann insbesondere dargelegt; dabei sind:
  • 1 eine Querschnittsansicht einer Ausführungsform einer Kondensatorbaugruppe der Baugruppe der vorliegenden Erfindung;
  • 2 eine Querschnittsansicht einer anderen Ausführungsform einer Kondensatorbaugruppe der Baugruppe der vorliegenden Erfindung;
  • 3 eine Querschnittsansicht noch einer anderen Ausführungsform einer Kondensatorbaugruppe der Baugruppe der vorliegenden Erfindung; und
  • 4 eine Draufsicht auf noch eine andere Ausführungsform einer Kondensatorbaugruppe der Baugruppe der vorliegenden Erfindung.
  • Bei mehrfacher Verwendung von Bezugszeichen in der vorliegenden Beschreibung und den Zeichnungen sollen diese dieselben oder analoge Merkmale oder Elemente der vorliegenden Erfindung repräsentieren.
  • Ausführliche Beschreibung von repräsentativen Ausführungsformen
  • Der Fachmann sollte sich darüber im Klaren sein, dass die vorliegende Diskussion nur eine Beschreibung von beispielhaften Ausführungsformen ist und die breiteren Aspekte der vorliegenden Erfindung nicht einschränken soll, wobei diese breiteren Aspekte in der beispielhaften Konstruktion verkörpert sind.
  • Allgemein gesagt betrifft die vorliegende Erfindung eine Kondensatorbaugruppe, die unter extremen Bedingungen, wie hohen Temperaturen und/oder hohen Spannungen, leistungsfähig sein kann. Die Fähigkeit, bei hoher Temperatur leistungsfähig zu sein, wird zum Teil dadurch erreicht, dass das Kondensatorelement innerhalb eines Gehäuses in Gegenwart einer Gasatmosphäre, die ein Inertgas enthält, eingeschlossen und hermetisch versiegelt ist, wodurch die Menge an Sauerstoff und Feuchtigkeit, die dem festen Elektrolyten des Kondensatorelements zugeführt wird, begrenzt ist. Weiterhin haben die Erfinder auch herausgefunden, dass die Fähigkeit, bei hohen Spannungen leistungsfähig zu sein, durch eine einzigartige und gezielte Kombination von Merkmalen, die sich auf die Bildung der Anode, des Dielektrikums und des festen Elektrolyten beziehen, erreicht werden kann. Zum Beispiel wird der feste Elektrolyt aus einer Kombination eines leitfähigen Polymers und eines hydroxyfunktionellen nichtionischen Polymers gebildet. Ohne uns auf eine bestimmte Theorie festlegen zu wollen, glauben wir, dass hydroxyfunktionelle nichtionische Polymere den Grad des Kontakts zwischen den Polymerteilchen und der Oberfläche des internen Dielektrikums, die infolge höherer Formierungsspannungen typischerweise relativ glatt ist, verbessern können. Dadurch werden die Durchschlagspannung und die Feucht-zu-Trocken-Kapazität des resultierenden Kondensators unerwarteterweise erhöht.
  • Als Ergebnis der vorliegenden Erfindung kann die Kondensatorbaugruppe ausgezeichnete elektrische Eigenschaften aufweisen, auch wenn sie Umgebungen mit hoher Temperatur und/oder hoher Spannung ausgesetzt ist. Zum Beispiel kann die Kondensatorbaugruppe auch eine relativ hohe ”Durchschlagsspannung” (Spannung, bei der der Kondensator versagt), wie etwa 35 Volt oder mehr, in einigen Ausführungsformen etwa 50 Volt oder mehr, in einigen Ausführungsformen etwa 60 Volt oder mehr und in einigen Ausführungsformen etwa 60 Volt bis etwa 100 Volt aufweisen, die bestimmt wird, indem man die angelegte Spannung in Schritten von 3 Volt erhöht, bis der Leckstrom 1 mA erreicht. Ebenso kann es auch sein, dass der Kondensator relativ hohe Stromspitzen aushält, was bei Hochspannungsanwendungen ebenfalls üblich ist. Der maximale Spitzenstrom kann zum Beispiel etwa das Doppelte der Nennspannung oder mehr betragen, etwa in einem Bereich von etwa 40 Ampère oder mehr liegen, in einigen Ausführungsformen etwa 60 Ampère oder mehr und in einigen Ausführungsformen etwa 120 Ampère bis etwa 250 Ampère. Der Kondensator kann auch eine relativ hohe Kapazität aufweisen. Die Trockenkapazität kann der Feuchtkapazität relativ ähnlich sein, was den Kondensator in die Lage versetzt, in Gegenwart von Luftfeuchtigkeit nur einen geringen Kapazitätsverlust und/oder Fluktuation aufzuweisen. Dieses Leistungsmerkmal wird durch die ”prozentuale Feucht-zu-Trocken-Kapazität” quantifiziert, die durch die Gleichung Feucht-zu-Trocken-Kapazität = (Trockenkapazität/Feuchtkapazität) × 100 bestimmt wird.
  • Die Kondensatorbaugruppe kann zum Beispiel eine prozentuale Feucht-zu-Trocken-Kapazität von etwa 50% oder mehr, in einigen Ausführungsformen etwa 60% oder mehr, in einigen Ausführungsformen etwa 70% oder mehr und in einigen Ausführungsformen etwa 80% bis 100% aufweisen. Die Kondensatorbaugruppe kann auch einen niedrigen äquivalenten Serienwiderstand (”ESR”) aufweisen, wie weniger als etwa 100 Milliohm, in einigen Ausführungsformen weniger als etwa 75 Milliohm, in einigen Ausführungsformen etwa 0,01 bis etwa 60 Milliohm und in einigen Ausführungsformen etwa 0,05 bis etwa 50 Milliohm, gemessen bei einer Arbeitsfrequenz von 100 kHz. In bestimmten Fällen können diese verbesserte Kapazität und ESR-Eigenschaften unter einer Vielzahl unterschiedlicher Temperaturbedingungen stabil bleiben. Zum Beispiel können die Kapazität und/oder der äquivalente Serienwiderstand des Kondensators auch nach Alterung während einer erheblichen Zeitspanne bei hohen Temperaturen aufrechterhalten werden. Zum Beispiel können die Werte etwa 100 Stunden oder länger, in einigen Ausführungsformen etwa 300 Stunden bis etwa 3000 Stunden und in einigen Ausführungsformen etwa 400 Stunden bis etwa 2500 Stunden (z. B. 500 Stunden, 600 Stunden, 700 Stunden, 800 Stunden, 900 Stunden, 1000 Stunden, 1100 Stunden, 1200 Stunden oder 2000 Stunden) bei Temperaturen im Bereich von etwa 100°C bis etwa 250°C und in einigen Ausführungsformen etwa 100°C bis etwa 240°C, in einigen Ausführungsformen etwa 100°C bis etwa 230°C und in einigen Ausführungsformen etwa 175°C bis etwa 225°C (z. B. 175°C oder 200°C) aufrechterhalten werden.
  • Verschiedene Ausführungsformen der vorliegenden Erfindung werden nun ausführlicher beschrieben.
  • I. Kondensatorelement
  • A. Anode
  • Der Anodenkörper der Anode wird aus einer Ventilmetallzusammensetzung gebildet. Die spezifische Ladung der Zusammensetzung kann variieren, wie von etwa 2000 μF·V/g bis etwa 150 000 μF·V/g, in einigen Ausführungsformen von etwa 3000 μF·V/g bis etwa 70 000 μF·V/g oder mehr und in einigen Ausführungsformen von etwa 4000 bis etwa 50 000 μF·V/g. Wie in der Technik bekannt ist, kann die spezifische Ladung dadurch bestimmt werden, dass man die Kapazität mit der eingesetzten Anodisierungsspannung multipliziert und dann dieses Produkt durch das Gewicht des anodisierten Elektrodenkörpers dividiert.
  • Die Ventilmetallzusammensetzung enthält im Allgemeinen ein Ventilmetall (d. h. ein Metall, das zur Oxidation befähigt ist) oder eine Verbindung, die auf einem Ventilmetall beruht, wie Tantal, Niob, Aluminium, Hafnium, Titan, Legierungen davon, Oxide davon, Nitride davon usw.. Zum Beispiel kann die Ventilmetallzusammensetzung ein elektrisch leitfähiges Oxid von Niob enthalten, wie ein Nioboxid mit einem Atomverhältnis von Niob zu Sauerstoff von 1:1,0 ± 1,0, in einigen Ausführungsformen 1:1,0 ± 0,3, in einigen Ausführungsformen 1:1,0 ± 0,1 und in einigen Ausführungsformen 1:1,0 ± 0,05. Bei dem Nioboxid kann es sich zum Beispiel um NbO0,7, NbO1,0, NbO1,1 und NbO2 handeln. Beispiele für solche Ventilmetalloxide sind in den US-Patenten Nr. 6,322,912 (Fife), 6,391,275 (Fife et al.), 6,416,730 (Fife et al.), 6,527,937 (Fife), 6,576,099 (Kimmel et al.), 6,592,740 (Fife et al.) und 6,639,787 (Kimmel et al.) und 7,220,397 (Kimmel et al.) sowie in den US-Patentanmeldungen Veröffentlichungsnummer 2005/0019581 (Schnitter), 2005/0103638 (Schnitter et al.) und 2005/0013765 (Thomas et al.) beschrieben.
  • Zur Bildung der Anode wird im Allgemeinen ein Pulver der Ventilmetallzusammensetzung eingesetzt. Das Pulver kann Teilchen mit einer Vielzahl von Formen enthalten, wie sphärolithisch, winklig, flockenförmig usw. sowie Gemische davon. In besonderen Ausführungsformen können die Teilchen insofern eine flockenartige Morphologie haben, als sie eine relativ flache oder plättchenartige Form aufweisen. Solche Teilchen können für einen kurzen Übertragungsweg zwischen der äußeren Oberfläche und dem Innern der Anode sorgen und auch für eine hochgradig kontinuierliche und dichte Draht-Anoden-Verbindung mit hoher Leitfähigkeit sorgen. Unter Anderem kann dies dazu beitragen, die Durchschlagspannung (Spannung, bei der der Kondensator versagt) zu erhöhen und den äquivalenten Serienwiderstand (”ESR”) zu senken. Die Teilchen können auch die spezifische Ladung der Anode erhöhen, wenn sie bei höheren Spannungen anodisiert werden, wodurch die Energiedichte erhöht wird.
  • Wenn Flockenteilchen eingesetzt werden, sind sie im Wesentlichen flach. Der Grad der Flachheit ist im Allgemeinen durch das ”Aspektverhältnis” definiert, d. h. den mittleren Durchmesser oder die mittlere Breite der Teilchen, dividiert durch die mittlere Dicke (”D/T”). Zum Beispiel kann das Aspektverhältnis der Teilchen etwa 2 bis etwa 100, in einigen Ausführungsformen etwa 3 bis etwa 50, in einigen Ausführungsformen etwa 4 bis etwa 30 betragen. Die Teilchen können auch eine spezifische Oberfläche von etwa 0,5 bis etwa 10,0 m2/g, in einigen Ausführungsformen etwa 0,7 bis etwa 5,0 m2/g und in einigen Ausführungsformen etwa 1,0 bis etwa 4,0 m2/g aufweisen. Der Ausdruck ”spezifische Oberfläche” bezieht sich allgemein auf die Oberfläche, die durch das Verfahren der physikalischen Gasadsorption (B. E. T.) von Brunauer, Emmet und Teller, Journal of American Chemical Society, Band 60, 1938, S. 309, mit Stickstoff als Adsorptionsgas bestimmt wurde. Der Test kann mit einem MONOSORB® Specific Surface Area Analyzer durchgeführt werden, der von der QUANTACHROME Corporation, Syosset, NY, erhältlich ist und die Menge des adsorbierbaren Stickstoffgases, das auf einer festen Oberfläche adsorbiert wird, misst, indem er auf die Änderung der Wärmeleitfähigkeit eines strömenden Gemischs aus Adsorbat und inertem Trägergas (z. B. Helium) reagiert.
  • Die Schüttdichte (auch als Scott-Dichte bekannt) des Pulvers kann etwa 0,1 bis etwa 2 Gramm pro Kubikzentimeter (g/cm3), in einigen Ausführungsformen etwa 0,2 g/cm3 bis etwa 1,5 g/cm3 und in einigen Ausführungsformen etwa 0,4 g/cm3 bis etwa 1 g/cm3 betragen. Die ”Schüttdichte” kann mit Hilfe eines Rieselmesstrichters und eines Dichtebechers bestimmt werden. Insbesondere kann die Flockenprobe durch den Trichter in den Becher gegossen werden, bis die Probe den Becher vollständig füllt und über den Rand des Bechers rieselt, und danach kann die Probe mit einem Spatel abgeplattet werden, ohne zu rütteln, so dass sie mit der Oberseite des Bechers gerade abschließt. Die abgeplattete Probe wird auf eine Waage übergeführt und auf 0,1 Gramm genau gewogen, um den Dichtewert zu bestimmen. Eine solche Apparatur ist von der Alcan Aluminum Corp. in Elizabeth, New Jersey, kommerziell erhältlich. Die Teilchen können auch eine mittlere Größe (z. B. Breite) von etwa 0,1 bis etwa 100 Mikrometer haben, in einigen Ausführungsformen etwa 0,5 bis etwa 70 Mikrometer und in einigen Ausführungsformen etwa 1 bis etwa 50 Mikrometer.
  • Es können auch bestimmte zusätzliche Komponenten in das Pulver mit aufgenommen werden. Zum Beispiel kann das Pulver gegebenenfalls mit einem Bindemittel und/oder Gleitmittel gemischt werden, um zu gewährleisten, dass die Teilchen ausreichend aneinander haften, wenn sie unter Bildung des Anodenkörpers verpresst werden. Zu den geeigneten Bindemitteln gehören zum Beispiel Polyvinylbutyral, Polyvinylacetat, Polyvinylalkohol, Polyvinylpyrrolidon, Cellulosepolymere, wie Carboxymethylcellulose, Methylcellulose, Ethylcellulose, Hydroxyethylcellulose und Methylhydroxyethylcellulose, ataktisches Polypropylen, Polyethylen, Polyethylenglycol (z. B. Carbowax von Dow Chemical Co.), Polystyrol, Poly(butadien/styrol); Polyamide, Polyimide und Polyacrylamide, hochmolekulare Polyether; Copolymere von Ethylenoxid und Propylenoxid; Fluorpolymere, wie Polytetrafluorethylen, Polyvinylidenfluorid und Fluorolefin-Copolymere, Acrylpolymere, wie Natriumpolyacrylat, Poly(niederalkylacrylate), Poly(niederalkylmethacrylate) und Copolymere von Niederalkylacrylaten und -methacrylaten; sowie Fettsäuren und Wachse, wie Stearin- und andere Seifenfettsäuren, Pflanzenwachs, Mikrowachse (gereinigte Paraffine) usw. Das Bindemittel kann in einem Lösungsmittel gelöst und dispergiert werden. Beispielhafte Lösungsmittel sind etwa Wasser, Alkohole usw. Wenn sie verwendet werden, kann der Prozentsatz der Bindemittel und/oder Gleitmittel von etwa 0,1 bis etwa 8 Gew.-% der Gesamtmasse variieren. Man sollte sich jedoch darüber im Klaren sein, dass Bindemittel und Gleitmittel in der vorliegenden Erfindung nicht zwingend erforderlich sind.
  • Das resultierende Pulver kann dann mit Hilfe einer beliebigen herkömmlichen Pulverpressvorrichtung unter Bildung eines Presslings kompaktiert werden. Zum Beispiel kann eine Pressform eingesetzt bei der es sich um eine Einplatz-Kompaktierpresse handelt, die eine Matrize und einen oder mehrere Stempel enthält. Alternativ dazu können auch Kompaktierpressformen des Ambosstyps verwendet werden, die nur eine Matrize und einen einzigen Unterstempel verwenden. Einplatz-Kompaktierpressformen sind in mehreren Grundtypen erhältlich, wie Nocken-, Kniehebel- und Exzenter- oder Kurbelpressen mit unterschiedlichen Fähigkeiten, wie einfach wirkend, doppelt wirkend, Schwebemantelmatrize, bewegliche Werkzeugaufspannplatte, Gegenstempel, Schnecke, Schlag, Heißpressen, Prägen oder Kalibrieren. Das Pulver kann um einen Anodenanschluss (z. B. Tantaldraht) herum kompaktiert werden. Man sollte sich weiterhin bewusst sein, dass der Anodenanschluss alternativ dazu auch nach dem Pressen und/oder Sintern des Anodenkörpers an dem Anodenkörper befestigt (z. B. daran geschweißt) werden kann.
  • Nach dem Kompaktieren kann der resultierende Anodenkörper dann in jede gewünschte Form geschnitten werden, wie quadratisch, rechteckig, kreisförmig, oval, dreieckig, sechseckig, achteckig, siebeneckig, fünfeckig usw. Die Anode kann auch eine ”geriffelte” Form haben, indem sie eine oder mehrere Furchen, Rillen, Vertiefungen oder Einkerbungen enthält, um das Verhältnis von Oberfläche zu Volumen zu erhöhen und dadurch den ESR zu minimieren und den Frequenzgang der Kapazität auszudehnen. Der Anodenkörper kann dann einem Schritt des Erhitzens unterzogen werden, bei dem der größte Teil, wenn nicht alles, eines Bindemittels/Gleitmittels, falls vorhanden, entfernt wird. Zum Beispiel wird der Anodenkörper typischerweise in einem Ofen erhitzt, der bei einer Temperatur von etwa 150°C bis etwa 500°C arbeitet. Alternativ dazu kann das Bindemittel/Gleitmittel auch dadurch entfernt werden, dass man den Pressling mit einer wässrigen Lösung in Kontakt bringt, wie es im US-Patent Nr. 6,197,252 (Bishop et al.) beschrieben ist. Danach wird der poröse Körper unter Bildung einer integralen Masse gesintert. Die Temperatur, Atmosphäre und Zeit des Sinterns können von einer Vielzahl von Faktoren abhängen, wie der Art der Anode, der Größe der Anode usw. Typischerweise erfolgt das Sintern bei einer Temperatur von etwa 800°C bis etwa 1900°C, in einigen Ausführungsformen etwa 1000°C bis etwa 1500°C und in einigen Ausführungsformen etwa 1100°C bis etwa 1400°C während einer Zeit von etwa 5 Minuten bis etwa 100 Minuten und in einigen Ausführungsformen etwa 30 Minuten bis etwa 60 Minuten. Falls gewünscht, kann das Sintern in einer Atmosphäre erfolgen, die die Übertragung von Sauerstoffatomen zur Anode einschränkt. Zum Beispiel kann das Sintern in einer reduzierenden Atmosphäre, wie in einem Vakuum, Inertgas, Wasserstoff usw., erfolgen. Die reduzierende Atmosphäre kann einen Druck von etwa 10 Torr bis etwa 2000 Torr, in einigen Ausführungsformen etwa 100 Torr bis etwa 1000 Torr und in einigen Ausführungsformen etwa 100 Torr bis etwa 930 Torr aufweisen. Gemische von Wasserstoff und anderen Gasen (z. B. Argon oder Stickstoff) können ebenfalls eingesetzt werden.
  • Die resultierende Anode kann einen relativ niedrigen Kohlenstoff- und Sauerstoffgehalt aufweisen. Zum Beispiel kann es sein, dass die Anode nicht mehr als etwa 50 ppm Kohlenstoff und in einigen Ausführungsformen nicht mehr als etwa 10 ppm Kohlenstoff aufweist. Ebenso kann es sein, dass die Anode nicht mehr als etwa 3500 ppm Sauerstoff, in einigen Ausführungsformen nicht mehr als etwa 3000 ppm Sauerstoff und in einigen Ausführungsformen etwa 500 bis etwa 2500 ppm Sauerstoff aufweist. Der Sauerstoffgehalt kann mit einem LECO Oxygen Analyzer gemessen werden und umfasst Sauerstoff in natürlichem Oxid auf der Tantaloberfläche sowie Volumensauerstoff innerhalb der Tantalteilchen. Der Volumensauerstoffgehalt wird durch den Kristallgitterabstand des Tantals kontrolliert, der mit zunehmendem Sauerstoffgehalt im Tantal linear zunimmt, bis die Löslichkeitsgrenze erreicht ist. Dieses Verfahren wurde in "Critical Oxygen Content in Porous Anodes of Solid Tantalum Capacitors", Pozdeev-Freeman et al., Journal of Materials Science: Materials in Electronics 9 (1998), 309–311, beschrieben, wobei Röntgenbeugungsanalyse (XRDA) eingesetzt wurde, um den Kristallgitterabstand des Tantals zu messen. Der Sauerstoff in gesinterten Tantalanoden kann auf dünnes natürliches Oberflächenoxid beschränkt sein, während das Volumen des Tantals praktisch frei von Sauerstoff ist.
  • Wie oben erwähnt, kann auch ein Anodenanschluss, der sich in Längsrichtung erstreckt, an dem Anodenkörper befestigt werden. Der Anodenanschluss kann in Form eines Drahtes, Bleches usw. vorliegen und kann aus einer Ventilmetallverbindung, wie Tantal, Niob, Nioboxid usw., bestehen. Die Befestigung des Anschlusses kann mit Hilfe von bekannten Techniken erfolgen, wie etwa durch Schweißen des Anschlusses an den Körper oder Einbetten innerhalb des Anodenkörpers während der Bildung (z. B. vor der Kompaktierung und/oder dem Sintern).
  • B. Dielektrikum
  • Die Anode wird auch mit einem Dielektrikum überzogen oder beschichtet. Das Dielektrikum kann durch anodisches Oxidieren (”Anodisieren”) der gesinterten Anode gebildet werden, so dass eine dielektrische Schicht auf und/oder innerhalb der Anode entsteht. Zum Beispiel kann eine Anode aus Tantal (Ta) zu Tantalpentoxid (Ta2O5) anodisiert werden. Typischerweise wird die Anodisierung durchgeführt, indem man zunächst eine Lösung auf die Anode aufträgt, etwa durch Eintauchen der Anode in den Elektrolyten. Im Allgemeinen wird ein Lösungsmittel, wie Wasser (z. B. deionisiertes Wasser), eingesetzt. Um die Ionenleitfähigkeit zu verstärken, kann eine Verbindung eingesetzt werden, die in dem Lösungsmittel unter Bildung von Ionen dissoziieren kann. Beispiele für solche Verbindungen sind zum Beispiel Säuren, wie sie im Folgenden in Bezug auf den Elektrolyten beschrieben werden. Zum Beispiel kann eine Säure (z. B. Phosphorsäure) etwa 0,01 Gew.-% bis etwa 5 Gew.-%, in einigen Ausführungsformen etwa 0,05 Gew.-% bis etwa 0,8 Gew.-% und in einigen Ausführungsformen etwa 0,1 Gew.-% bis etwa 0,5 Gew.-% der anodisierenden Lösung ausmachen. Falls gewünscht, können auch Gemische von Säuren eingesetzt werden.
  • Ein Strom wird durch die anodisierende Lösung geleitet, um die dielektrische Schicht zu bilden. Der Wert der Bildungsspannung entspricht der Dicke der dielektrischen Schicht. Zum Beispiel kann die Stromquelle zunächst im galvanostatischen Modus betrieben werden, bis die erforderliche Spannung erreicht ist. Danach kann die Stromquelle auf einen potentiostatischen Modus umgeschaltet werden, um zu gewährleisten, dass die gewünschte Dicke des Dielektrikums über der gesamten Oberfläche der Anode gebildet wird. Selbstverständlich können auch andere bekannte Verfahren eingesetzt werden, wie potentiostatische Impuls- oder Schrittverfahren. Die Spannung, bei der die anodische Oxidation erfolgt, liegt typischerweise im Bereich von etwa 4 bis etwa 250 V und in einigen Ausführungsformen etwa 9 bis etwa 200 V und in einigen Ausführungsformen etwa 20 bis etwa 150 V. Während der Oxidation kann die anodisierende Lösung auf einer erhöhten Temperatur gehalten werden, wie etwa 30°C oder mehr, in einigen Ausführungsformen etwa 40°C bis etwa 200°C und in einigen Ausführungsformen etwa 50°C bis etwa 100°C. Die anodische Oxidation kann auch bei Umgebungstemperatur oder darunter durchgeführt werden. Die resultierende dielektrische Schicht kann auf einer Oberfläche der Anode und innerhalb ihrer Poren gebildet werden.
  • Obwohl es nicht erforderlich ist, kann die dielektrische Schicht in bestimmten Ausführungsformen insofern eine über die gesamte Anode unterschiedliche Dicke besitzen, als sie einen ersten Teil, der eine äußere Oberfläche der Anode bedeckt, und einen zweiten Teil, der eine innere Oberfläche der Anode bedeckt, besitzt. In solchen Ausführungsformen ist der erste Teil selektiv so geformt, dass seine Dicke größer ist als die des zweiten Teils. Man sollte sich jedoch darüber im Klaren sein, dass die Dicke der dielektrischen Schicht nicht innerhalb eines bestimmten Bereichs gleichmäßig zu sein braucht. Bestimmte Teile der dielektrischen Schicht, die an die äußere Oberfläche angrenzen, können zum Beispiel tatsächlich dünner sein als bestimmte Teile der Schicht auf der inneren Oberfläche und umgekehrt. Dennoch kann die dielektrische Schicht auch so gebildet sein, dass wenigstens ein Teil der Schicht auf der äußeren Oberfläche eine größere Dicke hat als wenigstens ein Teil auf der inneren Oberfläche. Obwohl der genaue Unterschied dieser Dicken je nach der besonderen Anwendung variieren kann, beträgt das Verhältnis der Dicke des ersten Teils zur Dicke des zweiten Teils typischerweise etwa 1,2 bis etwa 40, in einigen Ausführungsformen etwa 1,5 bis etwa 25 und in einigen Ausführungsformen etwa 2 bis etwa 20.
  • Zur Bildung einer dielektrischen Schicht mit einer unterschiedlichen Dicke wird im Allgemeinen ein Mehrstufenverfahren eingesetzt. In jeder Stufe des Verfahrens wird die gesinterte Anode unter Bildung einer dielektrischen Schicht (z. B. Tantalpentoxid) anodisch oxidiert (”anodisiert”). Während des ersten Stadiums der Anodisierung wird typischerweise eine relativ kleine Formierungsspannung eingesetzt, um zu gewährleisten, dass die gewünschte Dicke des Dielektrikums für den inneren Bereich erreicht wird, wie Formierungsspannungen im Bereich von etwa 1 bis etwa 90 Volt, in einigen Ausführungsformen etwa 2 bis etwa 50 Volt und in einigen Ausführungsformen etwa 5 bis etwa 20 Volt. Danach kann der gesinterte Körper dann in einem zweiten Stadium des Verfahrens anodisch oxidiert werden, um die Dicke des Dielektrikums auf das gewünschte Niveau zu erhöhen. Dies wird im Allgemeinen dadurch erreicht, dass in einem Elektrolyten bei einer höheren Spannung anodisiert wird, als sie während des ersten Stadiums eingesetzt wurde, wie bei Formierungsspannungen im Bereich von etwa 50 bis etwa 350 Volt, in einigen Ausführungsformen etwa 60 bis etwa 300 Volt und in einigen Ausführungsformen etwa 70 bis etwa 200 Volt. Während des ersten und/oder zweiten Stadiums kann der Elektrolyt auf einer Temperatur im Bereich von etwa 15°C bis etwa 95°C, in einigen Ausführungsformen etwa 20°C bis etwa 90°C und in einigen Ausführungsformen etwa 25°C bis etwa 85°C gehalten werden.
  • Die während des ersten und des zweiten Stadiums des Anodisierungsvorgangs eingesetzten Elektrolyte können gleich oder verschieden sein. Typischerweise ist es jedoch wünschenswert, verschiedene Lösungen einzusetzen, um das Erreichen einer größeren Dicke an den äußeren Teilen der dielektrischen Schicht zu erleichtern. Zum Beispiel kann es wünschenswert sein, dass der im zweiten Stadium eingesetzte Elektrolyt eine geringere Ionenleitfähigkeit hat als der im ersten Stadium eingesetzte Elektrolyt, um zu verhindern, dass sich auf der inneren Oberfläche der Anode eine erhebliche Menge an Oxidschicht bildet. In dieser Hinsicht kann der während des ersten Stadiums eingesetzte Elektrolyt eine saure Verbindung, wie Chlorwasserstoffsäure, Salpetersäure, Schwefelsäure, Phosphorsäure, Polyphosphorsäure, Borsäure, Boronsäure usw., enthalten. Ein solcher Elektrolyt kann eine elektrische Leitfähigkeit von etwa 0,1 bis etwa 100 mS/cm, in einigen Ausführungsformen etwa 0,2 bis etwa 20 mS/cm und in einigen Ausführungsformen etwa 1 bis etwa 10 mS/cm aufweisen, bestimmt bei einer Temperatur von 25°C. Der während des zweiten Stadiums eingesetzte Elektrolyt enthält typischerweise ein Salz einer schwachen Säure, so dass die Hydroniumionenkonzentration in den Poren infolge eines darin erfolgenden Ladungsdurchgangs zunimmt. Ionentransport oder -diffusion finden so statt, dass sich das Anion der schwachen Säure gemäß der Notwendigkeit, die elektrischen Ladungen auszugleichen, in die Poren bewegt. Als Ergebnis wird die Konzentration der hauptsächlichen leitfähigen Spezies (Hydronium-Ion) bei der Etablierung eines Gleichgewichts zwischen dem Hydroniumion, dem Säureanion und der undissoziierten Säure reduziert, und dadurch entsteht eine schlechter leitfähige Spezies. Die Reduktion der Konzentration der leitfähigen Spezies führt zu einem relativ hohen Spannungsabfall im Elektrolyten, was die weitere Anodisierung im Innern behindert, während auf der Außenseite eine dickere Oxidschicht bis zu einer höheren Formierungsspannung im Bereich der fortgesetzten hohen Leitfähigkeit aufgebaut wird. Zu den geeigneten Salzen schwacher Säuren gehören etwa zum Beispiel Ammonium- oder Alkalimetallsalze (z. B. Natrium, Kalium usw.) von Borsäure, Boronsäure, Essigsäure, Oxalsäure, Milchsäure, Adipinsäure usw. Besonders gut geeignete Salze sind Natriumtetraborat und Ammoniumpentaborat. Solche Elektrolyten weisen typischerweise eine elektrische Leitfähigkeit von etwa 0,1 bis etwa 20 mS/cm, in einigen Ausführungsformen etwa 0,5 bis etwa 10 mS/cm und in einigen Ausführungsformen etwa 1 bis etwa 5 mS/cm auf, bestimmt bei einer Temperatur von 25°C.
  • Falls gewünscht, kann jedes Stadium der Anodisierung durch einen oder mehrere Zyklen wiederholt werden, um die gewünschte Dicke des Dielektrikums zu erreichen. Weiterhin kann die Anode nach dem ersten und/oder dem zweiten Stadium auch mit einem anderen Lösungsmittel (z. B. Wasser) gespült oder gewaschen werden, um den Elektrolyten zu entfernen.
  • C. Fester Elektrolyt
  • I. Leitfähiges Polymer
  • Wie erwähnt, bedeckt ein fester Elektrolyt das Dielektrikum, das im Allgemeinen als Kathode für den Kondensator fungiert. Der feste Elektrolyt enthält ein leitfähiges Polymer, das typischerweise π-konjugiert ist und nach Oxidation oder Reduktion eine elektrische Leitfähigkeit aufweist, wie eine elektrische Leitfähigkeit von wenigstens etwa 1 μS/cm. Beispiele für solche π-konjugierten leitfähigen Polymere sind zum Beispiel Polyheterocyclen (z. B. Polypyrrole, Polythiophene, Polyaniline usw.), Polyacetylene, Poly-p-phenylene, Polyphenolate usw. In einer Ausführungsform ist das Polymer zum Beispiel ein substituiertes Polythiophen, wie solche mit der folgenden allgemeinen Struktur:
    Figure DE102014204323A1_0002
    wobei
    T = O oder S ist;
    D ein gegebenenfalls substituierter C1- bis C5-Alkylenrest (z. B. Methylen, Ethylen, n-Propylen, n-Butylen, n-Pentylen usw.) ist;
    R7 Folgendes ist: ein linearer oder verzweigter, gegebenenfalls substituierter C1 bis C18-Alkylrest (z. B. Methyl, Ethyl, n-Propyl oder Isopropyl, n-, iso-, sek- oder tert-Butyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1-Ethylpropyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 2,2-Dimethylpropyl, n-Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Hexadecyl, n-Octadecyl usw.); ein gegebenenfalls substituierter C5- bis C12-Cycloalkylrest (z. B. Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecyl usw.); ein gegebenenfalls substituierter C6- bis C14-Arylrest (z. B. Phenyl, Naphthyl usw.); ein gegebenenfalls substituierter C7- bis C18-Aralkylrest (z. B. Benzyl, o-, m-, p-Tolyl, 2,3-, 2,4-, 2,5-, 2,6, 3,4-, 3,5-Xylyl, Mesityl usw.); ein gegebenenfalls substituierter C1- bis C4-Hydroxyalkylrest oder ein Hydroxyrest; und
    q eine ganze Zahl von 0 bis 8, in einigen Ausführungsformen 0 bis 2 und in einer Ausführungsform 0 ist; und
    n = 2 bis 5000, in einigen Ausführungsformen 4 bis 2000 und in einigen Ausführungsformen 5 bis 1000 ist. Beispiele für Substituenten für die Reste ”D” oder ”R7” sind zum Beispiel Alkyl, Cycloalkyl, Aryl, Aralkyl, Alkoxy, Halogen, Ether, Thioether, Disulfid, Sulfoxid, Sulfon, Sulfonat, Amino, Aldehyd, Keto, Carbonsäureester, Carbonsäure, Carbonat, Carboxylat, Cyano, Alkylsilan- und Alkoxysilangruppen, Carboxylamidgruppen usw.
  • Besonders gut geeignete Thiophenpolymere sind solche, bei denen ”D” ein gegebenenfalls substituierter C2- bis C3-Alkylenrest ist. Zum Beispiel kann das Polymer gegebenenfalls substituiertes Poly(3,4-ethylendioxythiophen) sein, das die folgende allgemeine Struktur hat:
    Figure DE102014204323A1_0003
  • Verfahren zur Bildung von leitfähigen Polymeren wie den oben beschriebenen sind in der Technik wohlbekannt. Zum Beispiel beschreibt das US-Patent Nr. 6,987,663 (Merker et al.), auf das hier ausdrücklich für alle Zwecke Bezug genommen wird, verschiedene Techniken zur Bildung von substituierten Polythiophenen aus einem monomeren Vorläufer. Der monomere Vorläufer kann zum Beispiel die folgende Struktur haben:
    Figure DE102014204323A1_0004
    wobei
    T, D, R7 und q wie oben definiert sind. Besonders gut geeignete Thiophenmonomere sind solche, bei denen ”D” ein gegebenenfalls substituierter C2- bis C3-Alkylenrest ist. Zum Beispiel können gegebenenfalls substituierte 3,4-Alkylendioxythiophene eingesetzt werden, die die folgende allgemeine Struktur haben:
    Figure DE102014204323A1_0005
    wobei R7 und q wie oben definiert sind. In einer besonderen Ausführungsform ist ”q” = 0. Ein kommerziell geeignetes Beispiel für 3,4-Ethylendioxythiophen ist von der H. C. Starck GmbH unter der Bezeichnung CleviosTM M erhältlich. Weitere geeignete Monomere sind auch im US-Patent Nr. 5,111,327 (Blohm et al.) und 6,635,729 (Groenendahl et al.) beschrieben, auf die hier ausdrücklich für alle Zwecke Bezug genommen wird. Derivate dieser Monomere, die zum Beispiel Dimere oder Trimere der obigen Monomere sind, können ebenfalls eingesetzt werden. Höhermolekulare Derivate, d. h. Tetramere, Pentamere usw., der Monomere sind zur Verwendung in der vorliegenden Erfindung geeignet. Die Derivate können aus gleichen oder verschiedenen Monomereinheiten bestehen und können in reiner Form oder in einem Gemisch miteinander und/oder mit den Monomeren verwendet werden. Oxidierte oder reduzierte Formen dieser Vorläufer können ebenfalls eingesetzt werden.
  • Zur Bildung der leitfähigen Polymerschicht können verschiedene Verfahren verwendet werden. Zum Beispiel kann eine in situ polymerisierte Schicht gebildet werden, indem man Monomere in Gegenwart eines oxidativen Katalysators chemisch polymerisiert. Der oxidative Katalysator umfasst typischerweise ein Übergangsmetallkation, wie Eisen(III)-, Kupfer(II)-, Chrom(VI)-, Cer(IV)-, Mangan(IV)-, Mangan(VII)-, Ruthenium(III)-Kation usw. Es kann auch ein Dotierungsmittel eingesetzt werden, um dem leitfähigen Polymer überschüssige Ladung zu verleihen und die Leitfähigkeit des Polymers zu stabilisieren. Das Dotierungsmittel umfasst typischerweise ein anorganisches oder organisches Anion, wie ein Ion einer Sulfonsäure. In bestimmten Ausführungsformen weist der in der Vorläuferlösung eingesetzte oxidative Katalysator insofern sowohl eine katalytische als auch eine dotierende Funktionalität auf, als er ein Kation (z. B. Übergangsmetall) und ein Anion (z. B. Sulfonsäure) enthält. Der oxidative Katalysator kann zum Beispiel ein Übergangsmetallsalz sein, das Eisen(III)-Kationen enthält, wie Eisen(III)-Halogenide (z. B. FeCl3) oder Eisen(III)-Salze anderer anorganischer Säuren, wie Fe(ClO4)3 oder Fe2(SO4)3, und die Eisen(III)-Salze organischer Säuren und anorganischer Säuren, die organische Reste umfassen. Beispiele für Eisen(III)-Salze von anorganischen Säuren mit organischen Resten sind zum Beispiel Eisen(III)-Salze von Schwefelsäuremonoestern von C1- bis C20-Alkanolen (z. B. das Eisen(III)-Salz von Laurylsulfat). Ebenso sind Beispiele für Eisen(III)-Salze von organischen Säuren zum Beispiel Eisen(III)-Salze von C1- bis C20-Alkansulfonsäuren (z. B. Methan-, Ethan-, Propan-, Butan- oder Dodecansulfonsäure); Eisen(III)-Salze von aliphatischen Perfluorsulfonsäuren (z. B. Trifluormethansulfonsäure, Perfluorbutansulfonsäure oder Perfluoroctansulfonsäure); Eisen(III)-Salze von aliphatischen C1- bis C20-Carbonsäuren (z. B. 2-Ethylhexylcarbonsäure); Eisen(III)-Salze von aliphatischen Perfluorcarbonsäuren (z. B. Trifluoressigsäure oder Perfluoroctansäure); Eisen(III)-Salze von aromatischen Sulfonsäuren, die gegebenenfalls mit C1- bis C20-Alkylgruppen substituiert sind (z. B. Benzolsulfonsäure, o-Toluolsulfonsäure, p-Toluolsulfonsäure oder Dodecylbenzolsulfonsäure); Eisen(III)-Salze von Cycloalkansulfonsäuren (z. B. Camphersulfonsäure); usw. Gemische dieser oben genannten Eisen(III)-Salze können ebenfalls verwendet werden. Eisen(III)-p-toluolsulfonat, Eisen(III)-o-toluolsulfonat und Gemische davon sind besonders gut geeignet. Ein kommerziell geeignetes Beispiel für Eisen(III)-p-toluolsulfonat ist von der Heraeus Clevios unter der Bezeichnung CleviosTM C erhältlich.
  • Der oxidative Katalysator und das Monomer können entweder nacheinander oder zusammen aufgetragen werden, um die Polymerisationsreaktion einzuleiten. Zu den geeigneten Auftragstechniken gehören Siebdruck, Tauchbeschichtung, elektrophoretische Beschichtung und Sprühbeschichtung; sie können verwendet werden, um eine leitfähige Polymerbeschichtung zu bilden. Als Beispiel kann das Monomer zunächst unter Bildung einer Vorläuferlösung mit dem oxidativen Katalysator gemischt werden. Sobald das Gemisch gebildet ist, kann es aufgetragen und polymerisieren gelassen werden, so dass die leitfähige Beschichtung auf der Oberfläche entsteht. Alternativ dazu können der oxidative Katalysator und das Monomer auch nacheinander aufgetragen werden. In einer Ausführungsform wird der oxidative Katalysator zum Beispiel in einem organischen Lösungsmittel (z. B. Butanol) gelöst und dann als Tauchlösung aufgetragen. Das Teil kann dann getrocknet werden, um das Lösungsmittel davon zu entfernen. Danach kann das Teil in eine Lösung, die das Monomer enthält, eingetaucht werden. Unabhängig davon wird die Polymerisation typischerweise bei Temperaturen von etwa –10°C bis etwa 250°C und in einigen Ausführungsformen etwa 0°C bis etwa 200°C durchgeführt, abhängig von dem verwendeten Oxidationsmittel und der gewünschten Reaktionszeit. Geeignete Polymerisationstechniken, wie sie oben beschrieben sind, sind ausführlicher in US-Patent Nr. 7,515,396 (Biler) beschrieben. Noch andere Verfahren zum Auftragen einer oder mehrerer solcher leitfähigen Polymerbeschichtungen sind in den US-Patenten Nr. 5,457,862 (Sakata et al.), 5,473,503 (Sakata et al.), 5,729,428 (Sakata et al.) und 5,812,367 (Kudoh et al.) beschrieben, auf die hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Neben der in-situ-Auftragung kann das als fester Elektrolyt dienende leitfähige Polymer auch in Form einer Dispersion von leitfähigen Polymerteilchen aufgetragen werden. Ein Vorteil der Verwendung einer Dispersion besteht darin, dass dies die Anwesenheit von ionischen Spezies (z. B. Fe2+ oder Fe3+), die während der in-situ-Polymerisation entstehen, minimieren kann, was einen Durchschlag des Dielektrikums unter einer hohen elektrischen Feldstärke aufgrund von Ionenwanderung verursachen kann. Indem man das leitfähige Polymer also als Dispersion und nicht durch in-situ-Polymerisation aufträgt, kann der resultierende Kondensator eine relativ hohe ”Durchschlagspannung” aufweisen. Um eine gute Imprägnierung der Anode zu ermöglichen, haben die in der Dispersion eingesetzten Teilchen typischerweise eine geringe Größe, wie eine mittlere Größe (z. B. Durchmesser) von etwa 1 bis etwa 150 Nanometer, in einigen Ausführungsformen etwa 2 bis etwa 50 Nanometer und in einigen Ausführungsformen etwa 5 bis etwa 40 Nanometer. Der Durchmesser der Teilchen kann mit Hilfe bekannter Techniken, wie durch eine Ultrazentrifuge, Laserbeugung usw., bestimmt werden. Die Form der Teilchen kann ebenso variieren. In einer besonderen Ausführungsform sind die Teilchen zum Beispiel kugelförmig. Man sollte sich jedoch darüber im Klaren sein, dass auch andere Formen, wie Platten, Stäbe, Scheiben, Stangen, Rohre, unregelmäßige Formen usw., von der Erfindung in Betracht gezogen werden. Die Konzentration der Teilchen in der Dispersion kann je nach der gewünschten Viskosität der Dispersion und der besonderen Weise, in der die Dispersion auf den Kondensator aufgetragen werden soll, variieren. Typischerweise jedoch machen die Teilchen etwa 0,1 bis etwa 10 Gew.-%, in einigen Ausführungsformen etwa 0,4 bis etwa 5 Gew.-% und in einigen Ausführungsformen etwa 0,5 bis etwa 4 Gew.-% der Dispersion aus.
  • Die Dispersion enthält auch im Allgemeinen ein Gegenion, das die Stabilität der Teilchen erhöht. Das heißt, das leitfähige Polymer (z. B. Polythiophen oder ein Derivat davon) weist typischerweise eine Ladung auf der Hauptpolymerkette auf, die neutral oder positiv (kationisch) ist. Polythiophenderivate tragen zum Beispiel typischerweise eine positive Ladung in der Hauptpolymerkette. In einigen Fällen kann das Polymer positive und negative Ladungen in der Struktureinheit besitzen, wobei sich die positive Ladung auf der Hauptkette und die negative Ladung gegebenenfalls auf den Substituenten des Restes ”R”, wie Sulfonat- oder Carboxylatgruppen, befindet. Die positiven Ladungen der Hauptkette können teilweise oder zur Gänze mit den gegebenenfalls vorhandenen anionischen Gruppen an den Resten ”R” gesättigt sein. Insgesamt gesehen können die Polythiophene in diesen Fällen kationisch, neutral oder sogar anionisch sein. Dennoch werden sie alle als kationische Polythiophene angesehen, da die Polythiophen-Hauptkette eine positive Ladung trägt.
  • Das Gegenion kann ein monomeres oder polymeres Anion sein, das die Ladung des leitfähigen Polymers aufhebt. Polymere Anionen können zum Beispiel Anionen von polymeren Carbonsäuren (z. B. Polyacrylsäuren, Polymethacrylsäure, Polymaleinsäuren usw.), polymeren Sulfonsäuren (z. B. Polystyrolsulfonsäuren (”PSS”), Polyvinylsulfonsäuren usw.) usw. sein. Die Säuren können auch Copolymere, wie Copolymere von Vinylcarbon- und Vinylsulfonsäure mit anderen polymerisierbaren Monomeren, wie Acrylsäureestern und Styrol, sein. Ebenso sind geeignete monomere Anionen zum Beispiel Anionen von C1- bis C20-Alkansulfonsäuren (z. B. Dodecansulfonsäure); aliphatischen Perfluorsulfonsäuren (z. B. Trifluormethansulfonsäure, Perfluorbutansulfonsäure oder Perfluoroctansulfonsäure); aliphatischen C1- bis C20-Carbonsäuren (z. B. 2-Ethylhexylcarbonsäure); aliphatischen Perfluorcarbonsäuren (z. B. Trifluoressigsäure oder Perfluoroctansäure); aromatischen Sulfonsäuren, die gegebenenfalls mit C1- bis C20-Alkylgruppen substituiert sind (z. B. Benzolsulfonsäure, o-Toluolsulfonsäure, p-Toluolsulfonsäure oder Dodecylbenzolsulfonsäure); Cycloalkansulfonsäuren (z. B. Kamphersulfonsäure oder Tetrafluoroborate, Hexafluorophosphate, Perchlorate, Hexafluoroantimonate, Hexafluoroarsenate oder Hexachloroantimonate); usw. Besonders gut geeignete Gegenionen sind polymere Anionen, wie eine polymere Carbon- oder Sulfonsäure (z. B. Polystyrolsulfonsäure (”PSS”)). Das Molekulargewicht solcher polymeren Anionen liegt typischerweise im Bereich von etwa 1000 bis etwa 2 000 000 und in einigen Ausführungsformen etwa 2000 bis etwa 500 000.
  • Wenn sie eingesetzt werden, beträgt das Gewichtsverhältnis solcher Gegenionen zu leitfähigen Polymeren in der Dispersion und in einer gegebenen Schicht typischerweise etwa 0,5:1 bis etwa 50:1, in einigen Ausführungsformen etwa 1:1 bis etwa 30:1 und in einigen Ausführungsformen etwa 2:1 bis etwa 20:1. Das Gewicht der elektrisch leitfähigen Polymere, von dem bei den oben genannten Gewichtsverhältnissen die Rede ist, bezieht sich auf den eingewogenen Anteil der verwendeten Monomere, wenn man annimmt, dass während der Polymerisation eine vollständige Umsetzung stattfindet.
  • Neben leitfähigen Polymeren und Gegenionen kann die Dispersion auch ein oder mehrere Bindemittel enthalten, um die adhäsive Natur der polymeren Schicht weiter zu verstärken und auch die Stabilität der Teilchen innerhalb der Dispersion zu erhöhen. Die Bindemittel können organischer Natur sein, wie Polyvinylalkohole, Polyvinylpyrrolidone, Polyvinylchloride, Polyvinylacetate, Polyvinylbutyrate, Polyacrylsäureester, Polyacrylsäureamide, Polymethacrylsäureester, Polymethacrylsäureamide, Polyacrylnitrile, Styrol/Acrylsäureester, Vinylacetat/Acrylsäureester und Ethylen/Vinylacetat-Copolymere, Polybutadiene, Polyisoprene, Polystyrole, Polyether, Polyester, Polycarbonate, Polyurethane, Polyamide, Polyimide, Polysulfone, Melamin-Formaldehyd-Harze, Epoxyharze, Silikonharze oder Cellulosen. Es können auch Vernetzungsmittel eingesetzt werden, um die Adhäsionsfähigkeit der Bindemittel zu erhöhen. Solche Vernetzungsmittel sind zum Beispiel Melaminverbindungen, maskierte Isocyanate oder funktionelle Silane, wie 3-Glycidoxypropyltrialkoxysilan, Tetraethoxysilan und Tetraethoxysilan-Hydrolysat oder vernetzbare Polymere, wie Polyurethane, Polyacrylate oder Polyolefine, und anschließende Vernetzung.
  • Es können auch Dispersionsmittel eingesetzt werden, um die Bildung des festen Elektrolyten und die Fähigkeit, diesen auf den Anodenteil aufzutragen, zu erleichtern. Zu den geeigneten Dispersionsmitteln gehören Lösungsmittel, wie aliphatische Alkohole (z. B. Methanol, Ethanol, i-Propanol und Butanol), aliphatische Ketone (z. B. Aceton und Methylethylketone), aliphatische Carbonsäureester (z. B. Ethylacetat und Butylacetat), aromatische Kohlenwasserstoffe (z. B. Toluol und Xylol), aliphatische Kohlenwasserstoffe (z. B. Hexan, Heptan und Cyclohexan), chlorierte Kohlenwasserstoffe (z. B. Dichlormethan und Dichlorethan), aliphatische Nitrile (z. B. Acetonitril), aliphatische Sulfoxide und Sulfone (z. B. Dimethylsulfoxid und Sulfolan), aliphatische Carbonsäureamide (z. B. Methylacetamid, Dimethylacetamid und Dimethylformamid), aliphatische und araliphatische Ether (z. B. Diethylether und Anisol), Wasser und Gemische beliebiger der obigen Lösungsmittel. Ein besonders gut geeignetes Dispersionsmittel ist Wasser.
  • Außer den oben genannten können auch noch andere Bestandteile in der Dispersion verwendet werden. Zum Beispiel können herkömmliche Füllstoffe verwendet werden, die eine Größe von etwa 10 Nanometer bis etwa 100 Mikrometer, in einigen Ausführungsformen etwa 50 Nanometer bis etwa 50 Mikrometer und in einigen Ausführungsformen etwa 100 Nanometer bis etwa 30 Mikrometer aufweisen. Beispiele für solche Füllstoffe sind Calciumcarbonat, Silicate, Siliciumoxid, Calcium- oder Bariumsulfat, Aluminiumhydroxid, Glasfasern oder -kolben, Holzmehl, Cellulosepulver, Ruß, elektrisch leitfähige Polymere usw. Die Füllstoffe können in Pulverform in die Dispersion eingeführt werden, können jedoch auch in einer anderen Form, etwa als Fasern, vorliegen.
  • Es können auch Kleber eingesetzt werden, wie organofunktionelle Silane oder ihre Hydrolysate, zum Beispiel 3-Glycidoxypropyltrialkoxysilan, 3-Aminopropyltriethoxysilan, 3-Mercaptopropyltrimethoxysilan, 3-Methacryloxypropyltrimethoxysilan, Vinyltrimethoxysilan oder Octyltriethoxysilan. Die Dispersion kann auch Additive enthalten, die die Leitfähigkeit erhöhen, wie Ethergruppen enthaltende Verbindungen (z. B. Tetrahydrofuran), Lactongruppen enthaltende Verbindungen (z. B. γ-Butyrolacton oder γ-Valerolacton), Amid- oder Lactamgruppen enthaltende Verbindungen (z. B. Caprolactam, N-Methylcaprolactam, N,N-Dimethylacetamid, N-Methylacetamid, N,N-Dimethylformamid (DMF), N-Methylformamid, N-Methylformanilid, N-Methylpyrrolidon (NMP), N-Octylpyrrolidon oder Pyrrolidon), Sulfone und Sulfoxide (z. B. Sulfolan (Tetramethylensulfon) oder Dimethylsulfoxid (DMSO)), Zucker oder Zuckerderivate (z. B. Saccharose, Glucose, Fructose oder Lactose), Zuckeralkohole (z. B. Sorbit oder Mannit), Furanderivate (z. B. 2-Furancarbonsäure oder 3-Furancarbonsäure) und Alkohole (z. B. Ethylenglycol, Glycerin, Di- oder Triethylenglycol).
  • Die polymere Dispersion kann mit Hilfe einer Vielzahl von bekannten Techniken auf den Teil aufgetragen werden, wie durch Schleuderbeschichtung, Imprägnierung, Gießen, tropfenweise Auftragung, Spritzen, Sprühen, Rakeln, Bürsten oder Drucken (z. B. Tintenstrahl-, Sieb- oder Blockdruck) oder Tauchen. Obwohl sie je nach der eingesetzten Auftragungstechnik variieren kann, beträgt die Viskosität der Dispersion typischerweise etwa 0,1 bis etwa 100 000 mPa·s (gemessen bei einer Scherrate von 100 s–1), in einigen Ausführungsformen etwa 1 bis etwa 10 000 mPa·s, in einigen Ausführungsformen etwa 10 bis etwa 1500 mPa·s und in einigen Ausführungsformen etwa 100 bis etwa 1000 mPa·s. Einmal aufgetragen, kann die Schicht getrocknet und gewaschen werden. Eine oder mehrere zusätzliche Schichten können ebenfalls in dieser Weise gebildet werden, um die gewünschte Dicke zu erreichen. Typischerweise beträgt die Gesamtdicke der durch die Polymerdispersion gebildeten Schichten etwa 1 bis etwa 50 μm und in einigen Ausführungsformen etwa 5 bis etwa 20 μm. Das Gewichtsverhältnis von Gegenionen zu leitfähigen Polymeren beträgt ebenso etwa 0,5:1 bis etwa 50:1, in einigen Ausführungsformen etwa 1:1 bis etwa 30:1 und in einigen Ausführungsformen etwa 2:1 bis etwa 20:1.
  • II. Hydroxyfunktionelles nichtionisches Polymer
  • Neben einem in situ polymerisierten leitfähigen Polymer enthält der feste Elektrolyt auch ein hydroxyfunktionelles nichtionisches Polymer. Der Ausdruck ”hydroxyfunktionell” bedeutet im Allgemeinen, dass die Verbindung wenigstens eine hydroxyfunktionelle Gruppe enthält oder eine solche funktionelle Gruppe in Gegenwart eines Lösungsmittels besitzen kann. Ohne uns auf eine bestimmte Theorie festlegen zu wollen, glauben wir, dass hydroxyfunktionelle nichtionische Polymere den Grad des Kontakts zwischen den Polymerteilchen und der Oberfläche des internen Dielektrikums, die infolge höherer Formierungsspannungen typischerweise relativ glatt ist, verbessern können. Dadurch werden unerwarteterweise die Durchschlagspannung und die Nass-zu-Trocken-Kapazität des resultierenden Kondensators erhöht. Weiterhin glauben wir, dass die Verwendung eines hydroxyfunktionellen Polymers mit einem bestimmten Molekulargewicht auch die Wahrscheinlichkeit einer chemischen Zersetzung minimieren kann. Zum Beispiel kann das Molekulargewicht des hydroxyfunktionellen Polymers etwa 100 bis 10 000 Gramm pro Mol, in einigen Ausführungsformen etwa 200 bis 2000, in einigen Ausführungsformen etwa 300 bis etwa 1200 und in einigen Ausführungsformen etwa 400 bis etwa 800 betragen.
  • Zu diesem Zweck können im Allgemeinen eine Vielzahl von hydroxyfunktionellen nichtionischen Polymeren eingesetzt werden. In einer Ausführungsform ist das hydroxyfunktionelle Polymer zum Beispiel ein Polyalkylenether. Polyalkylenether können Polyalkylenglycole (z. B. Polyethylenglycole, Polypropylenglycole, Polytetramethylenglycole, Polyepichlorhydrine usw.), Polyoxetane, Polyphenylenether, Polyetherketone usw. umfassen. Polyalkylenether sind typischerweise vorwiegend lineare, nichtionische Polymere mit terminalen Hydroxygruppen. Besonders gut geeignet sind Polyethylenglycole, Polypropylenglycole und Polytetramethylenglycole (Polytetrahydrofurane), die durch Polyaddition von Ethylenoxid, Propylenoxid oder Tetrahydrofuran an Wasser hergestellt werden. Die Polyalkylenether können durch Polykondensationsreaktionen aus Diolen oder Polyolen hergestellt werden. Die Diolkomponente kann insbesondere aus gesättigten oder ungesättigten, verzweigten oder unverzweigten, aliphatischen Dihydroxyverbindungen, die 5 bis 36 Kohlenstoffatome enthalten, oder aromatischen Dihydroxyverbindungen, wie zum Beispiel Pentan-1,5-diol, Hexan-1,6-diol, Neopentylglycol, Bis(hydroxymethyl)cyclohexanen, Bisphenol A, Dimerdiolen, hydrierten Dimerdiolen oder auch Gemischen der genannten Diole ausgewählt sein. Außerdem können in der Polymerisationsreaktion auch mehrwertige Alkohole, einschließlich zum Beispiel Glycerin, Di- und Polyglycerin, Trimethylolpropan, Pentaerythrit oder Sorbit, verwendet werden.
  • Neben den oben genannten können in der vorliegenden Erfindung auch andere hydroxyfunktionelle nichtionische Polymere eingesetzt werden. Einige Beispiele für solche Polymere sind zum Beispiel ethoxylierte Alkylphenole, ethoxylierte oder propoxylierte C6-C24-Fettalkohole, Polyoxyethylenglycolalkylether mit der allgemeinen Formel CH3-(CH2)10-16-(O-C2H4)1-25-OH (z. B. Octaethylenglycolmonododecylether und Pentaethylenglycolmonododecylether); Polyoxypropylenglycolalkylether mit der allgemeinen Formel CH3-(CH2)10-16-(O-C3H6)1-25-OH; Polyoxyethylenglycoloctylphenolether mit der folgenden allgemeinen Formel: C8H17-(C6H4)-(O-C2H4)1-25-OH (z. B. TritonTM X-100); Polyoxyethylenglycolalkylphenolether mit der folgenden allgemeinen Formel: C9H19-(C6H4)-(O-C2H4)1-25-OH (z. B. Nonoxynol-9); Polyoxyethylenglycolester von C8-C24-Fettsäuren, wie Polyoxyethylenglycolsorbitanalkylester (z. B. Polyoxyethylen(20)sorbitanmonolaurat, Polyoxyethylen(20)sorbitanmonopalmitat, Polyoxyethylen(20)sorbitanmonostearat, Polyoxyethylen(20)sorbitanmonooleat, PEG-20-Methylglucosedistearat, PEG-20-Methylglucosesesquistearat, PEG-80-Ricinusöl und PEG-20-Ricinusöl, PEG-3-Ricinusöl, PEG-600-dioleat und PEG-400-dioleat) und Polyoxyethylenglycerinalkylester (z. B. Polyoxyethylen-23-glycerinlaurat und Polyoxyethylen-20-glycerinstearat); Polyoxyethylenglycolether von C8-C24-Fettsäuren (z. B. Polyoxyethylen-10-cetylether, Polyoxyethylen-10-stearylether, Polyoxyethylen-20-cetylether, Polyoxyethylen-10-oleylether, Polyoxyethylen-20-oleylether, Polyoxyethylen-20-isohexadecylether, Polyoxyethylen-15-tridecylether und Polyoxyethylen-6-tridecylether); Blockcopolymere von Polyethylenglycol und Polypropylenglycol (z. B. Poloxamere) usw. sowie Gemische davon.
  • Das hydroxyfunktionelle nichtionische Polymer kann auf vielerlei verschiedenen Wegen in den festen Elektrolyten eingebaut werden. In bestimmten Ausführungsformen zum Beispiel kann das nichtionische Polymer einfach in beliebige Schichten eingebaut werden, die durch das oben beschriebene in-situ-Polymerisationsverfahren gebildet werden. In solchen Ausführungsformen kann die Konzentration des nichtionischen Polymers in der Polymerisationslösung etwa 1 Gew.-% bis etwa 50 Gew.-%, in einigen Ausführungsformen etwa 5 Gew.-% bis etwa 40 Gew.-% und in einigen Ausführungsformen etwa 10 Gew.-% bis etwa 30 Gew.-% betragen.
  • In anderen Ausführungsformen jedoch kann das nichtionische Polymer aufgetragen werden, nachdem die erste bzw. die ersten Polymerschichten gebildet sind. In solchen Ausführungsformen kann die zum Auftragen des nichtionischen Polymers verwendete Technik variieren. Zum Beispiel kann das Polymer mit Hilfe von verschiedenen Verfahren, wie Tauchen, Eintauchen, Gießen, Tropfen, Spritzen, Sprühen, Ausbreiten, Streichen oder Drucken, zum Beispiel durch Tintenstrahl-, Siebdruck oder Tampondruck, in Form einer flüssigen Lösung aufgetragen werden. In der Lösung können dem Fachmann bekannte Lösungsmittel, wie Wasser, Alkohole oder ein Gemisch davon, eingesetzt werden. Die Konzentration des nichtionischen Polymers in einer solchen Lösung liegt typischerweise im Bereich von etwa 5 Gew.-% bis etwa 95 Gew.-%, in einigen Ausführungsformen etwa 10 Gew.-% bis etwa 70 Gew.-% und in einigen Ausführungsformen etwa 15 Gew.-% bis etwa 50 Gew.-% der Lösung. Falls gewünscht, können solche Lösungen im Wesentlichen frei von leitfähigen Polymeren sein. Zum Beispiel können leitfähige Polymere etwa 2 Gew.-% oder weniger, in einigen Ausführungsformen etwa 1 Gew.-% oder weniger und in einigen Ausführungsformen etwa 0,5 Gew.-% oder weniger der Lösung ausmachen.
  • Alternativ dazu kann es jedoch auch wünschenswert sein, ein leitfähiges Polymer in Kombination mit dem nichtionischen Polymer einzusetzen. Zum Beispiel wird in bestimmten Ausführungsformen eine ”zweite” Schicht, die leitfähige (z. B. in situ polymerisierte oder vorpolymerisierte) Teilchen und ein nichtionisches Polymer enthält, auf die Anode aufgetragen, nachdem die ”erste” Schicht auf den Anodenkörper aufgetragen wurde. Wenn sie eingesetzt werden, sind die leitfähigen Teilchen der zweiten Polymerschicht wie oben beschrieben, obwohl sie nicht mit den gegebenenfalls in der ersten Schicht eingesetzten identisch sein müssen. Unabhängig davon beträgt die Konzentration des nichtionischen Polymers in der zweiten Schicht typischerweise etwa 1 Gew.-% bis etwa 50 Gew.-%, in einigen Ausführungsformen etwa 5 Gew.-% bis etwa 40 Gew.-% und in einigen Ausführungsformen etwa 10 Gew.-% bis etwa 30 Gew.-%. Ebenso kann es in denjenigen Ausführungsformen, bei denen das nichtionische Polymer in einer zweiten Schicht eingesetzt wird, auch wünschenswert sein, dass die erste Schicht im Wesentlichen frei von solchen nichtionischen Polymeren ist. Zum Beispiel können nichtionische Polymere etwa 2 Gew.-% oder weniger, in einigen Ausführungsformen etwa 1 Gew.-% oder weniger und in einigen Ausführungsformen etwa 0,5 Gew.-% oder weniger der ersten Schicht ausmachen. Einmal aufgetragen, kann die zweite Schicht getrocknet und/oder gewaschen werden. Eine oder mehrere zusätzliche Schichten können ebenfalls in dieser Weise gebildet werden, um die gewünschte Dicke zu erreichen. Typischerweise beträgt die Gesamtdicke der von der zweiten Polymerdispersion gebildeten Schichten etwa 0,1 bis etwa 5 μm, in einigen Ausführungsformen etwa 0,1 bis etwa 3 μm und in einigen Ausführungsformen etwa 0,2 bis etwa 1 μm.
  • D. Externe Polymerbeschichtung
  • Obwohl es nicht erforderlich ist, kann auch eine externe Polymerbeschichtung auf den Anodenkörper aufgetragen werden und den festen Elektrolyten bedecken. Die externe Polymerbeschichtung enthält im Allgemeinen eine oder mehrere Schichten, die aus einer Dispersion von vorpolymerisierten leitfähigen Teilchen gebildet sind, wie es oben ausführlicher beschrieben ist. Die externe Beschichtung kann in der Lage sein, weiter in den Randbereich des Kondensatorkörpers einzudringen, um die Adhäsion auf dem Dielektrikum zu erhöhen, und zu einem mechanisch robusteren Teil führen, das den äquivalenten Serienwiderstand und den Leckstrom reduzieren kann. Da man im Allgemeinen den Grad der Randabdeckung verbessern und nicht das Innere der Anode imprägnieren möchte, sind die in der externen Beschichtung verwendeten Teilchen typischerweise größer als die in irgendwelchen optionalen Dispersionen des festen Elektrolyten eingesetzten. Zum Beispiel beträgt das Verhältnis der mittleren Größe der in der externen Polymerbeschichtung verwendeten Teilchen zur mittleren Größe der in irgendeiner Dispersion des festen Elektrolyten eingesetzten Teilchen typischerweise etwa 1,5 bis etwa 30, in einigen Ausführungsformen etwa 2 bis etwa 20 und in einigen Ausführungsformen etwa 5 bis etwa 15. Zum Beispiel können die in der Dispersion der externen Beschichtung eingesetzten Teilchen eine mittlere Größe von etwa 50 bis etwa 500 Nanometer, in einigen Ausführungsformen etwa 80 bis etwa 250 Nanometer und in einigen Ausführungsformen etwa 100 bis etwa 200 Nanometer aufweisen.
  • Falls gewünscht, kann auch ein Vernetzungsmittel in der externen Polymerbeschichtung eingesetzt werden, um den Grad der Adhäsion an dem festen Elektrolyten zu erhöhen. Typischerweise wird das Vernetzungsmittel vor der Auftragung der in der externen Beschichtung verwendeten Dispersion aufgetragen. Geeignete Vernetzungsmittel sind zum Beispiel in der US-Patentveröffentlichung Nr. 2007/0064376 (Merker et al.) beschrieben und umfassen zum Beispiel Amine (z. B. Diamine, Triamine, Oligomeramine, Polyamine usw.); mehrwertige Metallkationen, wie Salze oder Verbindungen von Mg, Al, Ca, Fe, Cr, Mn, Ba, Ti, Co, Ni, Cu, Ru, Ce oder Zn, Phosphoniumverbindungen, Sulfoniumverbindungen usw.
  • Besonders gut geeignete Beispiele sind zum Beispiel 1,4-Diaminocyclohexan, 1,4-Bis(aminomethyl)cyclohexan, Ethylendiamin, 1,6-Hexandiamin, 1,7-Heptandiamin, 1,8-Octandiamin, 1,9-Nonandiamin, 1,10-Decandiamin, 1,12-Dodecandiamin, N,N-Dimethylethylendiamin, N,N,N',N'-Tetramethylethylendiamin, N,N,N',N'-Tetramethyl-1,4-butandiamin usw. sowie Gemische davon.
  • Das Vernetzungsmittel wird typischerweise aus einer Lösung oder Dispersion aufgetragen, deren pH-Wert 1 bis 10, in einigen Ausführungsformen 2 bis 7 und in einigen Ausführungsformen 3 bis 6 beträgt, bestimmt bei 25°C. Saure Verbindungen können eingesetzt werden, um das Erreichen des gewünschten pH-Werts zu unterstützen. Beispiele für Lösungsmittel oder Dispergiermittel für das Vernetzungsmittel sind Wasser oder organische Lösungsmittel, wie Alkohole, Ketone, Carbonsäureester usw. Das Vernetzungsmittel kann durch irgendein bekanntes Verfahren, wie Schleuderbeschichtung, Imprägnieren, Gießen, tropfenweise Auftragung, Sprühauftragung, Aufdampfen, Sputtern, Sublimation, Rakelbeschichtung, Streichen oder Drucken, zum Beispiel durch Tintenstrahl-, Siebdruck oder Tampondruck, auf den Kondensatorkörper aufgetragen werden. Sobald es aufgetragen ist, kann das Vernetzungsmittel getrocknet werden, bevor die Polymerdispersion aufgetragen wird. Dann kann dieser Vorgang wiederholt werden, bis die gewünschte Dicke erreicht ist. Zum Beispiel kann die Gesamtdicke der gesamten externen Polymerbeschichtung einschließlich des Vernetzungsmittels und der Dispersionsschichten im Bereich von etwa 1 bis etwa 50 μm, in einigen Ausführungsformen etwa 2 bis etwa 40 μm und in einigen Ausführungsformen etwa 5 bis etwa 20 μm liegen.
  • E. Andere Komponenten des Kondensators
  • Falls gewünscht, kann der Kondensator auch andere Schichten enthalten, wie in der Technik bekannt ist. Zum Beispiel kann zwischen dem Dielektrikum und dem festen Elektrolyten gegebenenfalls eine Schutzbeschichtung gebildet werden, wie etwa aus einem relativ isolierenden harzartigen Material (natürlich oder synthetisch). Solche Materialien können einen spezifischen Widerstand von mehr als etwa 10 Ω·cm haben, in einigen Ausführungsformen mehr als etwa 100, in einigen Ausführungsformen mehr als etwa 1000 Ω·cm, in einigen Ausführungsformen mehr als etwa 1 × 105 Ω·cm und in einigen Ausführungsformen mehr als etwa 1 × 1010 Ω·cm. Einige harzartige Materialien, die in der vorliegenden Erfindung verwendet werden können, sind unter anderem Polyurethan, Polystyrol, Ester von ungesättigten oder gesättigten Fettsäuren (z. B. Glyceride) usw. Zu den geeigneten Estern von Fettsäuren gehören zum Beispiel unter anderem Ester von Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Eleostearinsäure, Ölsäure, Linolsäure, Linolensäure, Aleuritinsäure, Schellolsäure usw. Diese Ester von Fettsäuren haben sich als besonders nützlich erwiesen, wenn sie in relativ komplexen Kombinationen unter Bildung eines ”trocknenden Öls” verwendet werden, das es dem resultierenden Film ermöglicht, schnell zu einer stabilen Schicht zu polymerisieren. Zu diesen trocknenden Ölen gehören etwa Mono-, Di- und/oder Triglyceride, die ein Glyceringerüst mit einem, zwei bzw. drei Fettacylresten, die verestert sind, aufweisen. Einige geeignete trocknende Öle, die verwendet werden können, sind zum Beispiel unter anderem Olivenöl, Leinöl, Ricinusöl, Tungöl, Sojaöl und Schellack. Diese und andere Schutzbeschichtungsmaterialien sind ausführlicher im US-Patent Nr. 6,674,635 (Fife et al.) beschrieben, auf das hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Falls gewünscht, kann auch eine Kohlenstoffschicht (z. B. Graphit) bzw. eine Silberschicht auf das Teil aufgetragen werden. Die Silberbeschichtung kann zum Beispiel als lötbarer Leiter, Kontaktschicht und/oder Ladungskollektor für den Kondensator wirken, und die Kohlenstoffbeschichtung kann den Kontakt der Silberbeschichtung mit dem festen Elektrolyten einschränken. Solche Beschichtungen können einen Teil oder den gesamten festen Elektrolyten bedecken.
  • Allgemein gesagt, das Kondensatorelement ist im Wesentlichen frei von Harzen (z. B. Epoxidharzen), die das Kondensatorelement einbetten, wie sie häufig in herkömmlichen Festelektrolytkondensatoren eingesetzt werden. Unter Anderem kann die Einbettung des Kondensatorelements zu einer Instabilität in extremen Umgebungen, d. h. hohe Temperatur (z. B. über etwa 175°C) und/oder hohe Spannung (z. B. über etwa 35 Volt) führen.
  • II. Gehäuse
  • Wie erwähnt, ist das Kondensatorelement innerhalb eines Gehäuses hermetisch versiegelt. Die hermetische Versiegelung erfolgt typischerweise in Gegenwart einer Gasatmosphäre, die wenigstens ein Inertgas enthält, um die Oxidation des festen Elektrolyten während der Verwendung zu hemmen. Das Inertgas kann zum Beispiel Stickstoff, Helium, Argon, Xenon, Neon, Krypton, Radon usw. sowie Gemische davon umfassen. Typischerweise bilden Inertgase den größten Teil der Atmosphäre innerhalb des Keramikgehäuses, wie zum Beispiel 50 Gew.-% bis 100 Gew.-%, in einigen Ausführungsformen etwa 75 Gew.-% bis 100 Gew.-% und in einigen Ausführungsformen etwa 90 Gew.-% bis etwa 99 Gew.-% der Atmosphäre. Falls gewünscht, kann auch eine relativ kleine Menge an Nichtinertgasen eingesetzt werden, wie Kohlendioxid, Sauerstoff, Wasserdampf usw. In solchen Fällen bilden die Nichtinertgase jedoch typischerweise 15 Gew.-% oder weniger, in einigen Ausführungsformen 10 Gew.-% oder weniger, in einigen Ausführungsformen etwa 5 Gew.-% oder weniger, in einigen Ausführungsformen etwa 1 Gew.-% oder weniger und in einigen Ausführungsformen etwa 0,01 Gew.-% bis etwa 1 Gew.-% der Atmosphäre innerhalb des Gehäuses. Zum Beispiel kann der Feuchtigkeitsgehalt (ausgedrückt als relative Feuchtigkeit) etwa 10% oder weniger, in einigen Ausführungsformen etwa 5% oder weniger, in einigen Ausführungsformen etwa 1% oder weniger und in einigen Ausführungsformen etwa 0,01 bis etwa 5% betragen.
  • Zur Bildung des Gehäuses kann eine Vielzahl von Materialien verwendet werden, wie Metalle, Kunststoffe, Keramik usw. In einer Ausführungsform umfasst das Gehäuse zum Beispiel eine oder mehrere Schichten aus einem Metall, wie Tantal, Niob, Aluminium, Nickel, Hafnium, Titan, Kupfer, Silber, Stahl (z. B. Edelstahl), Legierungen davon (z. B. elektrisch leitfähige Oxide), Verbundstoffe davon (z. B. mit elektrisch leitfähigem Oxid beschichtetes Metall) usw. In einer anderen Ausführungsform kann das Gehäuse eine oder mehrere Schichten aus einem keramischen Material, wie Aluminiumnitrid, Aluminiumoxid, Siliciumoxid, Magnesiumoxid, Calciumoxid, Glas usw. sowie Kombinationen davon, umfassen.
  • Das Gehäuse kann jede beliebige Form haben, wie zylindrisch, D-förmig, rechteckig, dreieckig, prismatisch usw. In den 12 ist zum Beispiel eine Ausführungsform einer Kondensatorbaugruppe 100 gezeigt, die ein Gehäuse 122 und ein Kondensatorelement 120 enthält. In dieser besonderen Ausführungsform ist das Gehäuse 122 im Wesentlichen rechteckig. Typischerweise haben das Gehäuse und das Kondensatorelement dieselbe oder eine ähnliche Form, so dass das Kondensatorelement leicht im Innenraum untergebracht werden kann. In der gezeigten Ausführungsform zum Beispiel haben sowohl das Kondensatorelement 120 als auch das Gehäuse 122 eine im Wesentlichen rechteckige Form.
  • Falls gewünscht, kann die Kondensatorbaugruppe der vorliegenden Erfindung eine relativ hohe volumetrische Effizienz aufweisen. Um diese hohe Effizienz zu erleichtern, nimmt das Kondensatorelement typischerweise einen wesentlichen Teil des Volumens des Innenraums des Gehäuses ein. Zum Beispiel kann das Kondensatorelement etwa 30 Vol.-% oder mehr, in einigen Ausführungsformen etwa 50 Vol.-% oder mehr, in einigen Ausführungsformen etwa 60 Vol.-% oder mehr, in einigen Ausführungsformen etwa 70 Vol.-% oder mehr, in einigen Ausführungsformen etwa 80 Vol.-% bis etwa 98 Vol.-% und in einigen Ausführungsformen etwa 85 Vol.-% bis 97 Vol.-% des Innenraums des Gehäuses einnehmen. Zu diesem Zweck ist die Differenz zwischen den Abmessungen des Kondensatorelements und denjenigen des durch das Gehäuse definierten Innenraums typischerweise relativ gering.
  • Wenn wir uns zum Beispiel auf 1 beziehen, so kann das Kondensatorelement 120 eine Länge haben (ausschließlich der Länge des Anodenanschlusses 6), die relativ ähnlich der Länge eines durch das Gehäuse 122 definierten Innenraums 126 ist. Zum Beispiel liegt das Verhältnis der Länge der Anode zur Länge des Innenraums im Bereich von etwa 0,40 bis 1,00, in einigen Ausführungsformen etwa 0,50 bis etwa 0,99, in einigen Ausführungsformen etwa 0,60 bis 0,99 und in einigen Ausführungsformen etwa 0,70 bis etwa 0,98. Das Kondensatorelement 120 kann eine Länge von etwa 5 bis etwa 10 Millimetern aufweisen, und der Innenraum 126 kann eine Länge von etwa 6 bis etwa 15 Millimetern aufweisen. Ähnlich kann das Verhältnis der Höhe des Kondensatorelements 120 (in -z-Richtung) zur Höhe des Innenraums 126 im Bereich von etwa 0,40 bis 1,00, in einigen Ausführungsformen etwa 0,50 bis etwa 0,99, in einigen Ausführungsformen etwa 0,60 bis etwa 0,99 und in einigen Ausführungsformen etwa 0,70 bis etwa 0,98 liegen. Das Verhältnis der Breite des Kondensatorelements 120 (in -x-Richtung) zur Breite des Innenraums 126 kann auch im Bereich von etwa 0,50 bis 1,00, in einigen Ausführungsformen etwa 0,60 bis etwa 0,99, in einigen Ausführungsformen etwa 0,70 bis etwa 0,99, in einigen Ausführungsformen etwa 0,80 bis etwa 0,98 und in einigen Ausführungsformen etwa 0,85 bis etwa 0,95 liegen. Zum Beispiel kann die Breite des Kondensatorelements 120 etwa 2 bis etwa 7 Millimeter betragen, und die Breite des Innenraums 126 kann etwa 3 bis etwa 10 Millimeter betragen, und die Höhe des Kondensatorelements 120 kann etwa 0,5 bis etwa 2 Millimeter betragen, und die Breite des Innenraums 126 kann etwa 0,7 bis etwa 6 Millimeter betragen.
  • Obwohl es keineswegs erforderlich ist, kann das Kondensatorelement so an dem Gehäuse befestigt sein, dass außerhalb des Gehäuses für die anschließende Integration in eine Schaltung ein Anoden-Endteil und ein Kathoden-Endteil gebildet werden. Die besondere Konfiguration der Endteile kann von dem Verwendungszweck abhängen. In einer Ausführungsform kann die Kondensatorbaugruppe zum Beispiel so geformt werden, dass sie oberflächenmontierbar und dennoch mechanisch robust ist. Zum Beispiel kann der Anodenanschluss elektrisch mit äußeren, oberflächenmontierbaren Anoden- und Kathoden-Endteilen (z. B. Feldern, Blechen, Platten, Rahmen usw.) verbunden sein. Solche Endteile können sich durch das Gehäuse hindurch erstrecken, um den Kondensator anzuschließen. Die Dicke oder Höhe der Endteile wird im Allgemeinen so gewählt, dass die Dicke der Kondensatorbaugruppe minimiert wird. Zum Beispiel kann die Dicke der Endteile in einem Bereich von etwa 0,05 bis etwa 1 Millimeter, in einigen Ausführungsformen etwa 0,05 bis etwa 0,5 Millimeter und etwa 0,1 bis etwa 0,2 Millimeter liegen. Falls gewünscht, kann die Oberfläche der Endteile, wie in der Technik bekannt ist, mit Nickel, Silber, Gold, Zinn usw. galvanisiert werden, um zu gewährleisten, dass das endgültige Teil auf der Leiterplatte montierbar ist. In einer besonderen Ausführungsform werden die Endteile mit Nickel- bzw. Silber-Schutzschichten versehen, und die Montagefläche wird auch mit einer Zinnlötschicht versehen. In einer anderen Ausführungsform werden bei den Endteilen dünne äußere Metallschichten (z. B. Gold) auf einer Grundmetallschicht (z. B. Kupferlegierung) abgeschieden, um die Leitfähigkeit weiter zu erhöhen.
  • In bestimmten Ausführungsformen können Verbindungselemente innerhalb des Innenraums des Gehäuses eingesetzt werden, um die Verbindung mit den Endteilen in einer mechanisch stabilen Weise zu erleichtern. Wenn wir uns zum Beispiel wieder auf 1 beziehen, so kann die Kondensatorbaugruppe 100 ein Verbindungselement 162 umfassen, das aus einem ersten Teil 167 und einem zweiten Teil 165 besteht. Das Verbindungselement 162 kann aus leitfähigen Materialien ähnlich wie die äußeren Endteile bestehen. Der erste Teil 167 und der zweite Teil 165 können einstückig ausgebildet sein, oder es können separate Teile sein, die miteinander verbunden sind, entweder direkt oder über ein zusätzliches leitfähiges Element (z. B. Metall). In der gezeigten Ausführungsform befindet sich der zweite Teil 165 in einer Ebene, die im Wesentlichen parallel zu einer Längsrichtung, in der sich der Anschluss 6 erstreckt (z. B. -y-Richtung), verläuft. Der erste Teil 167 ist in dem Sinne ”hochstehend”, dass er sich in einer Ebene befindet, die im Wesentlichen senkrecht zur Längsrichtung, in der sich der Anschluss 6 erstreckt, verläuft. Auf diese Weise kann der erste Teil 167 die Bewegung des Anschlusses 6 in der horizontalen Richtung einschränken, um den Oberflächenkontakt und die mechanische Stabilität während der Verwendung zu verstärken. Falls gewünscht, kann ein isolierendes Material 7 (z. B. ein TeflonTM-Ring) um den Anschluss 6 herum eingesetzt werden.
  • Der erste Teil 167 kann auch einen Montagebereich besitzen (nicht gezeigt), der mit einem Anodenanschluss 6 verbunden ist. Der Bereich kann eine ”U-Form” aufweisen, um den Oberflächenkontakt und die mechanische Stabilität des Anschlusses 6 weiter zu verstärken. Die Verbindung des Bereichs mit dem Anschluss 6 kann mit Hilfe einer Vielzahl von Techniken bewerkstelligt werden, wie Schweißen, Laserschweißen, leitfähige Kleber usw. In einer besonderen Ausführungsform wird der Bereich zum Beispiel durch Laserschweißen an dem Anodenanschluss 6 befestigt. Unabhängig von der gewählten Technik kann der erste Teil 167 jedoch den Anodenanschluss 6 in einer im Wesentlichen horizontalen Ausrichtung halten, um die Maßhaltigkeit der Kondensatorbaugruppe 100 weiter zu verstärken.
  • Wenn wir uns wiederum auf 1 beziehen, so ist eine Ausführungsform der vorliegenden Erfindung gezeigt, bei der das Verbindungselement 162 und das Kondensatorelement 120 über ein Anoden- und ein Kathoden-Endteil 127 bzw. 129 mit dem Gehäuse 122 verbunden ist. Insbesondere umfasst das Gehäuse 122 eine untere Wand 123 und zwei einander gegenüberliegende Seitenwände 124, zwischen denen ein Hohlraum 126 gebildet ist, der das Kondensatorelement 120 umfasst. Die untere Wand 123 und die Seitenwände 124 können aus einer oder mehreren Schichten eines Metalls, Kunststoffs oder Keramikmaterials, wie es oben beschrieben ist, bestehen. In dieser besonderen Ausführungsform enthält das Anoden-Endteil 127 einen ersten Bereich 127a, der sich innerhalb des Gehäuses 122 befindet und elektrisch mit dem Verbindungselement 162 verbunden ist, und einen zweiten Bereich 127b, der sich außerhalb des Gehäuses 122 befindet und für eine Montagefläche 201 sorgt. Ähnlich enthält das Kathoden-Endteil 129 einen ersten Bereich 129a, der sich innerhalb des Gehäuses 122 befindet und elektrisch mit dem festen Elektrolyten des Kondensatorelements 120 verbunden ist, und einen zweiten Bereich 129b, der sich außerhalb des Gehäuses 122 befindet und für eine Montagefläche 203 sorgt. Man sollte sich darüber im Klaren sein, dass sich nicht der gesamte Teil solcher Bereiche innerhalb oder außerhalb des Gehäuses zu befinden braucht.
  • In der gezeigten Ausführungsform erstreckt sich eine leitfähige Bahn 127c in der Außenwand 123 des Gehäuses, um den ersten Bereich 127a und den zweiten Bereich 127b miteinander zu verbinden. Ähnlich erstreckt sich eine leitfähige Bahn 129c in der Außenwand 123 des Gehäuses, um den ersten Bereich 127a und den zweiten Bereich 127b miteinander zu verbinden. Die leitfähigen Bahnen und/oder Bereiche der Endteile können getrennt oder einstückig sein. Die Bahnen können sich nicht nur durch die Außenwand des Gehäuses erstrecken, sondern können sich auch an anderen Stellen befinden, wie außerhalb der Außenwand. Selbstverständlich ist die vorliegende Erfindung keineswegs auf die Verwendung von leitfähigen Bahnen zur Bildung der gewünschten Endteile beschränkt.
  • Unabhängig von der besonderen eingesetzten Konfiguration kann die Verbindung der Endteile 127 und 129 mit dem Kondensatorelement 120 unter Verwendung jeder bekannten Technik erfolgen, wie Schweißen, Laserschweißen, leitfähige Kleber usw. In einer besonderen Ausführungsform wird zum Beispiel ein leitfähiger Kleber 131 verwendet, um den zweiten Teil 165 des Verbindungselements 162 mit dem Anoden-Endteil 127 zu verbinden. Ähnlich wird ein leitfähiger Kleber 133 verwendet, um die Kathode des Kondensatorelements 120 mit dem Kathoden-Endteil 129 zu verbinden. Die leitfähigen Kleber können aus leitfähigen Metallteilchen, die in einer Harzzusammensetzung enthalten sind, bestehen. Bei den Metallteilchen kann es sich um Silber, Kupfer, Gold, Platin, Nickel, Zink, Bismut usw. handeln. Die Harzzusammensetzung kann ein duroplastisches Harz (z. B. Epoxidharz), Härtungsmittel (z. B. Säureanhydrid) und Kopplungsmittel (z. B. Silan-Kopplungsmittel) umfassen. Geeignete leitfähige Kleber sind in der US-Patentanmeldung Veröffentlichungsnummer 2006/0038304 (Osako et al.) beschrieben, auf die hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Gegebenenfalls kann sich auch eine polymere Einspannung in Kontakt mit einer oder mehreren Flächen des Kondensatorelements befinden, wie der hinteren Fläche, der vorderen Fläche, der oberen Fläche, der unteren Fläche, den Seitenflächen oder einer beliebigen Kombination davon. Die polymere Einspannung kann die Wahrscheinlichkeit des Abblätterns des Kondensatorelements von dem Gehäuse reduzieren. In dieser Hinsicht besitzt die polymere Einspannung typischerweise ein bestimmtes Maß an Festigkeit, das es ihr ermöglicht, das Kondensatorelement in einer relativ fixierten Position zu halten, auch wenn es Schwingungskräften ausgesetzt ist, aber nicht so fest, dass es Risse bekommt. Die Einspannung kann zum Beispiel eine Zugfestigkeit von etwa 1 bis etwa 150 Megapascal (”MPa”), in einigen Ausführungsformen etwa 2 bis etwa 100 MPa, in einigen Ausführungsformen etwa 10 bis etwa 80 MPa und in einigen Ausführungsformen etwa 20 bis etwa 70 MPa besitzen, gemessen bei einer Temperatur von etwa 25°C. Es ist normalerweise wünschenswert, dass die Einspannung nicht elektrisch leitend ist.
  • Es kann zwar eine Vielzahl von Materialien, die die oben genannten gewünschten Festigkeitseigenschaften aufweisen, eingesetzt werden, doch hat sich gezeigt, dass härtbare duroplastische Harze zur Verwendung in der vorliegenden Erfindung besonders gut geeignet sind. Beispiele für solche Harze sind etwa Epoxidharze, Polyimide, Melaminharze, Harnstoff-Formaldehyd-Harze, Polyurethane, Silikonpolymere, Phenolharze usw. In bestimmten Ausführungsformen können in der Einspannung zum Beispiel ein oder mehrere Polyorganosiloxane eingesetzt werden. Siliciumgebundene organische Gruppen, die in diesen Polymeren verwendet werden, können einwertige Kohlenwasserstoff- und/oder einwertige halogenierte Kohlenwasserstoffgruppen enthalten. Solche einwertigen Gruppen haben typischerweise 1 bis etwa 20 Kohlenstoffatome, vorzugsweise 1 bis 10 Kohlenstoffatome, und Beispiele dafür sind unter Anderem Alkyl (z. B. Methyl, Ethyl, Propyl, Pentyl, Octyl, Undecyl und Octadecyl); Cycloalkyl (z. B. Cyclohexyl); Alkenyl (z. B. Vinyl, Allyl, Butenyl und Hexenyl); Aryl (z. B. Phenyl, Tolyl, Xylyl, Benzyl und 2-Phenylethyl) und halogenierte Kohlenwasserstoffgruppen (z. B. 3,3,3-Trifluorpropyl, 3-Chlorpropyl und Dichlorphenyl). Typischerweise handelt es sich bei wenigstens 50% und besonders bevorzugt wenigstens 80% der organischen Gruppen um Methyl. Beispiele für solche Methylpolysiloxane sind etwa Polydimethylsiloxan (”PDMS”), Polymethylhydrogensiloxan usw. Noch andere geeignete Methylpolysiloxane sind etwa Dimethyldiphenylpolysiloxan, Dimethyl/methylphenylpolysiloxan, Polymethylphenylsiloxan, Methylphenyl/dimethylsiloxan, Vinyldimethyl-terminiertes Polydimethylsiloxan, Vinylmethyl/dimethylpolysiloxan, Vinyldimethyl-terminiertes Vinylmethyl/dimethylpolysiloxan, Divinylmethyl-terminiertes Polydimethylsiloxan, Vinylphenylmethyl-terminiertes Polydimethylsiloxan, Dimethylhydro-terminiertes Polydimethylsiloxan, Methylhydro/dimethylpolysiloxan, Methylhydro-terminiertes Methyloctylpolysiloxan, Methylhydro/phenylmethylpolysiloxan usw.
  • Das Organopolysiloxan kann auch eine oder mehrere seitenständige und/oder endständige polare funktionelle Gruppen enthalten, wie Hydroxy-, Epoxy-, Carboxy-, Amino-, Alkoxy-, Methacryl- oder Mercaptogruppen, die dem Polymer einen gewissen Grad der Hydrophilie verleihen. Zum Beispiel kann das Organopolysiloxan wenigstens eine Hydroxygruppe und gegebenenfalls im Durchschnitt wenigstens zwei siliciumgebundene Hydroxygruppen (Silanolgruppen) pro Molekül enthalten. Beispiele für solche Organopolysiloxane sind zum Beispiel Dihydroxypolydimethylsiloxan, Hydroxytrimethylsiloxypolydimethylsiloxan usw. Weitere Beispiele für hydroxymodifizierte Organopolysiloxane sind in der US-Patentanmeldung Veröffentlichungsnummer 2003/0105207 (Kleyer et al.) beschrieben, auf die hier ausdrücklich für alle Zwecke Bezug genommen wird. Alkoxymodifizierte Organopolysiloxane können ebenfalls eingesetzt werden, wie Dimethoxypolydimethylsiloxan, Methoxytrimethylsiloxypolydimethylsiloxan, Diethoxypolydimethylsiloxan, Ethoxytrimethylsiloxypolydimethylsiloxan usw. Noch andere geeignete Organopolysiloxane sind solche, die mit wenigstens einer aminofunktionellen Gruppe modifiziert sind. Beispiele für solche aminofunktionellen Polysiloxane sind zum Beispiel diaminofunktionelle Polydimethylsiloxane. Verschiedene andere geeignete polare funktionelle Gruppen für Organopolysiloxane sind auch in der US-Patentanmeldung Veröffentlichungsnummer 2010/00234517 (Plantenberg et al.) beschrieben, auf die hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Epoxidharze sind ebenfalls für die Verwendung in der vorliegenden Erfindung besonders gut geeignet. Beispiele für geeignete Epoxidharze sind zum Beispiel Epoxidharze des Glycidylether-Typs, wie Epoxidharze des Bisphenol-A-Typs, Epoxidharze des Bisphenol-F-Typs, Epoxidharze des Phenol-Novolak-Typs, Epoxidharze des Orthokresol-Novolak-Typs, bromierte Epoxidharze und Epoxidharze des Biphenyl-Typs, cyclische aliphatische Epoxidharze, Epoxidharze des Glycidylester-Typs, Epoxidharze des Glycidylamin-Typs, Epoxidharze des Kresol-Novolak-Typs, Epoxidharze des Naphthalin-Typs, Epoxidharze des Phenolaralkyl-Typs, Epoxidharze des Cyclopentadien-Typs, heterocyclische Epoxidharze usw. Noch weitere geeignete leitfähige Kleberharze sind auch in der US-Patentanmeldung Veröffentlichungsnummer 2006/0038304 (Osako et al.) und im US-Patent Nr. 7,554,793 (Chacko), beschrieben, auf die hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Falls gewünscht, können in der polymeren Einspannung auch Härtungsmittel eingesetzt werden, um zur Förderung der Härtung beizutragen. Die Härtungsmittel machen typischerweise etwa 0,1 bis etwa 20 Gew.-% der Einspannung aus. Beispielhafte Härtungsmittel sind zum Beispiel Amine, Peroxide, Anhydride, Phenolverbindungen, Silane, Säureanhydridverbindungen und Kombinationen davon. Spezielle Beispiele für geeignete Härtungsmittel sind Dicyandiamid, 1-(2-Cyanoethyl)-2-ethyl-4-methylimidazol, 1-Benzyl-2-methylimidazol, Ethylcyanopropylimidazol, 2-Methylimidazol, 2-Phenylimidazol, 2-Ethyl-4-methylimidazol, 2-Undecylimidazol, 1-Cyanoethyl-2-methylimidazol, 2,4-Dicyan-6,2-methylimidazolyl-(1)-ethyl-s-triazin und 2,4-Dicyano-6,2-undecylimidazolyl-(1)-ethyl-s-triazin, Imidazoliumsalze (wie 1-Cyanoethyl-2-undecylimidazoliumtrimellithat, 2-Methylimidazoliumisocyanurat, 2-Ethyl-4-methylimidazoliumtetraphenylborat und 2-Ethyl-1,4-dimethylimidazoliumtetraphenylborat usw. Noch andere geeignete Härtungsmittel sind Phosphinverbindungen, wie Tributylphosphin, Triphenylphosphin, Tris(dimethoxyphenyl)phosphin, Tris(hydroxypropyl)phosphin und Tris(cyanoethyl)phosphin; Phosphoniumsalze, wie Tetraphenylphosphoniumtetraphenylborat, Methyltributylphosphoniumtetraphenylborat und Methyltricyanoethylphosphoniumtetraphenylborat; Amine, wie 2,4,6-Tris(dimethylaminomethyl)phenol, Benzylmethylamin, Tetramethylbutylguanidin, N-Methylpiperazin und 2-Dimethylamino-1-pyrrolin; Ammoniumsalze, wie Triethylammoniumtetraphenylborat; Diazabicyclo-Verbindungen, wie 1,5-Diazabicyclo[5.4.0]-7-undecen, 1,5-Diazabicyclo[4.3.0]-5-nonen und 1,4-Diazabicyclo[2.2.2]octan; Salze von Diazabicyclo-Verbindungen, wie das Tetraphenylborat, Phenolsalz, Phenol-Novolak-Salz und 2-Ethylhexansäure-Salz usw.
  • Es können auch noch andere Additive eingesetzt werden, wie Photoinitiatoren, Viskositätsmodifikatoren, Suspensionshilfsmittel, Pigmente, Entspannungsmittel, Kopplungsmittel (z. B. Silan-Kopplungsmittel), nichtleitende Füllstoffe (z. B. Ton, Siliciumoxid, Aluminiumoxid usw.), Stabilisatoren usw. Zu den geeigneten Photoinitiatoren gehören zum Beispiel etwa Benzoin, Benzoinmethylether, Benzoinethylether, Benzoin-n-propylether, Benzoinisobutylether, 2,2-Dihydroxy-2-phenylacetophenon, 2,2-Dimethoxy-2-phenylacetophenon, 2,2-Diethoxy-2-phenylacetophenon, 2,2-Diethoxyacetophenon, Benzophenon, 4,4-Bis(diallylamino)benzophenon, 4-Dimethylaminobenzoesäure, Alkyl-4-dimethylaminobenzoat, 2-Ethylanthrachinon, Xanthon, Thioxanthon, 2-Chlorthioxanthon usw. Wenn sie eingesetzt werden, machen solche Additive typischerweise etwa 0,1 bis etwa 20 Gew.-% der gesamten Zusammensetzung aus.
  • Wenn wir uns zum Beispiel wieder auf 1 beziehen, so ist eine Ausführungsform gezeigt, in der sich eine einzige polymere Einspannung 197 in Kontakt mit einer oberen Fläche 181 und einer hinteren Fläche 177 des Kondensatorelements 120 befindet. Während in 1 eine einzelne Einspannung gezeigt ist, sollte man sich darüber im Klaren sein, dass auch getrennte Einspannungen eingesetzt werden können, um dieselbe Funktion zu erfüllen. Tatsächlich können allgemeiner gesagt eine beliebige Zahl von polymeren Einspannungen eingesetzt werden und sich in Kontakt mit jeder gewünschten Fläche des Kondensatorelements befinden. Wenn mehrere Einspannungen eingesetzt werden, können sie miteinander in Kontakt stehen oder physisch getrennt bleiben. Zum Beispiel kann in einer Ausführungsform eine zweite polymere Einspannung (nicht gezeigt) eingesetzt werden, die mit der oberen Fläche 181 und der vorderen Fläche 179 des Kondensatorelements 120 in Kontakt steht. Die erste polymere Einspannung 197 und die zweite polymere Einspannung (nicht gezeigt) können in Kontakt miteinander stehen oder auch nicht. In noch einer anderen Ausführungsform kann eine polymere Einspannung auch mit einer unteren Fläche 183 und/oder einer oder mehreren Seitenflächen des Kondensatorelements 120 in Kontakt stehen, entweder in Verbindung mit oder anstelle von anderen Flächen.
  • Unabhängig davon, wie sie angebracht wird, ist es typischerweise wünschenswert, dass sich die polymere Einspannung auch in Kontakt mit wenigstens einer Fläche des Gehäuses befindet, um dazu beizutragen, das Kondensatorelement weiter mechanisch zu stabilisieren. Zum Beispiel kann sich die Einspannung in Kontakt mit einer Innenfläche einer oder mehrerer Seitenwände, der Außenwand, des Deckels usw. befinden. In 1 befindet sich die polymere Einspannung 197 zum Beispiel in Kontakt mit einer Innenfläche 107 der Seitenwand 124 und einer Innenfläche 109 der äußeren Wand 123. Während sie sich in Kontakt mit dem Gehäuse befindet, ist es dennoch wünschenswert, dass wenigstens ein Teil des durch das Gehäuse definierten Innenraums frei bleibt, damit das Inertgas durch den Innenraum strömen und den Kontakt des festen Elektrolyten mit Sauerstoff einschränken kann. Zum Beispiel bleiben typischerweise wenigstens etwa 5% des Innenraumvolumens frei von dem Kondensatorelement und der polymeren Einspannung, und in einigen Ausführungsformen sind es etwa 10% bis etwa 50% des Innenraumvolumens.
  • Sobald sie in der gewünschten Weise verbunden ist, wird die resultierende Packung hermetisch versiegelt, wie es oben beschrieben ist. Wie zum Beispiel wiederum in 1 gezeigt ist, kann das Gehäuse 122 auch einen Deckel 125 umfassen, der auf einer oberen Fläche der Seitenwände 124 platziert wird, nachdem das Kondensatorelement 120 und die polymere Einspannung 197 innerhalb des Gehäuses 122 positioniert sind. Der Deckel 125 kann aus Keramik, Metall (z. B. Eisen, Kupfer, Nickel, Cobalt usw. sowie Legierungen davon), Kunststoff usw. bestehen. Falls gewünscht, kann sich ein Versiegelungselement 187 zwischen dem Deckel 125 und den Seitenwänden 124 befinden, um zu einer guten Abdichtung beizutragen. In einer Ausführungsform zum Beispiel kann das Versiegelungselement eine Glas-Metall-Versiegelung, einen Kovar®-Ring (Goodfellow Cambridge, Ltd.) usw. umfassen. Die Höhe der Seitenwände 124 ist im Allgemeinen so, dass der Deckel 125 nicht mit einer Fläche des Kondensatorelements 120 in Kontakt kommt, so dass er nicht kontaminiert wird. Die polymere Einspannung 197 kann mit dem Deckel 125 in Kontakt stehen oder auch nicht. Wenn er in der gewünschten Position platziert ist, wird der Deckel 125 mit Hilfe von bekannten Techniken, wie Schweißen (z. B. Widerstandsschweißen, Laserschweißen usw.), Löten usw., hermetisch an den Seitenwänden 124 versiegelt. Das hermetische Versiegeln erfolgt im Allgemeinen in Gegenwart von Inertgasen, wie es oben beschrieben ist, so dass die resultierende Baugruppe im Wesentlichen frei von reaktiven Gasen, wie Sauerstoff oder Wasserdampf, ist.
  • Man sollte sich darüber im Klaren sein, dass die beschriebenen Ausführungsformen nur beispielhaft sind und dass in der vorliegenden Erfindung auch verschiedene andere Konfigurationen eingesetzt werden können, um ein Kondensatorelement und eine polymere Einspannung hermetisch innerhalb eines Gehäuses zu versiegeln. Wenn wir uns zum Beispiel auf 2 beziehen, so ist eine andere Ausführungsform einer Kondensatorbaugruppe 200 gezeigt, bei der ein Gehäuse 222 eingesetzt wird, das eine Außenwand 123 und einen Deckel 225 umfasst, zwischen denen ein Innenraum 126 entsteht, der das Kondensatorelement 120 und die polymere Einspannung 197 umfasst. Der Deckel 225 umfasst eine Außenwand 223, die einstückig mit wenigstens einer Seitenwand 224 ausgebildet ist. In der gezeigten Ausführungsform sind zum Beispiel zwei einander gegenüberliegende Seitenwände 224 im Querschnitt gezeigt. Die Außenwände 223 und 123 erstrecken sich beide in einer seitlichen Richtung (-y-Richtung) und verlaufen im Wesentlichen parallel zu einander und zur seitlichen Richtung des Anodenanschlusses 6. Die Seitenwand 224 erstreckt sich von der Außenwand 223 ausgehend in einer Längsrichtung, die im Wesentlichen senkrecht zur Außenwand 123 steht. Ein distales Ende 500 des Deckels 225 ist durch die Außenwand 223 definiert, und ein proximales Ende 501 ist durch eine Lippe 253 der Seitenwand 224 definiert.
  • Die Lippe 253 erstreckt sich von der Seitenwand 224 ausgehend in seitlicher Richtung, die im Wesentlichen parallel zur seitlichen Richtung der Außenwand 123 stehen kann. Der Winkel zwischen der Seitenwand 224 und der Lippe 253 kann variieren, beträgt aber typischerweise etwa 60° bis etwa 120°, in einigen Ausführungsformen etwa 70° bis etwa 110° und in einigen Ausführungsformen etwa 80° bis etwa 100° (z. B. etwa 90°). Die Lippe 253 definiert auch einen umlaufenden Rand 251, der im Wesentlichen senkrecht zur seitlichen Richtung, in der sich die Lippe 253 und die Außenwand 123 erstrecken, verlaufen kann. Der umlaufende Rand 251 befindet sich jenseits des äußeren Umfangs der Seitenwand 224 und kann im Wesentlichen koplanar zu einem Rand 151 der Außenwand 123 verlaufen. Die Lippe 253 kann mit Hilfe einer beliebigen bekannten Technik, wie Schweißen (z. B. Widerstands- oder Laserschweißen), Löten, Leim usw., an der Außenwand 123 versiegelt werden. Zum Beispiel wird in der gezeigten Ausführungsform ein Versiegelungselement 287 (z. B. Glas-Metall-Siegel, Kovar®-Ring usw.) zwischen den Komponenten eingesetzt, um deren Befestigung zu erleichtern. Unabhängig davon kann die oben beschriebene Verwendung einer Lippe eine stabilere Verbindung zwischen den Komponenten ermöglichen und die Versiegelung und die mechanische Stabilität der Kondensatorbaugruppe verbessern.
  • In der vorliegenden Erfindung können noch andere mögliche Gehäusekonfigurationen eingesetzt werden. Zum Beispiel zeigt 3 eine Kondensatorbaugruppe 300 mit einer ähnlichen Gehäusekonfiguration wie in 2, außer dass Endstifte 327b bzw. 329b als externe Abschlüsse für die Anode bzw. Kathode eingesetzt werden. Insbesondere erstreckt sich der Endstift 327a durch eine in der Außenwand 323 gebildete Bahn 327c hindurch und wird mit Hilfe von bekannten Techniken (z. B. Schweißen) mit dem Anodenanschluss 6 verbunden. Ein zusätzlicher Abschnitt 327a kann eingesetzt werden, um den Stift 327b zu befestigen. Ebenso erstreckt sich der Endstift 329b durch eine in der Außenwand 323 gebildete Bahn 329c hindurch und wird über einen leitfähigen Kleber 133 mit der Kathode verbunden, wie es oben beschrieben ist.
  • Die in den 13 gezeigten Ausführungsformen werden hier in Verbindung mit einem einzigen Kondensatorelement diskutiert. Man sollte sich jedoch darüber im Klaren sein, dass auch mehrere Kondensatorelemente innerhalb eines Gehäuses hermetisch versiegelt sein können. Die mehreren Kondensatorelemente können unter Verwendung einer Vielzahl von Techniken an dem Gehäuse befestigt werden. 4 zeigt zum Beispiel eine besondere Ausführungsform einer Kondensatorbaugruppe 400, die zwei Kondensatorelemente enthält und nun ausführlicher beschrieben wird. Insbesondere umfasst die Kondensatorbaugruppe 400 ein erstes Kondensatorelement 420a in elektrischer Verbindung mit einem zweiten Kondensatorelement 420b. In dieser Ausführungsform sind die Kondensatorelemente so ausgerichtet, dass sich ihre Hauptflächen in einer horizontalen Konfiguration befinden. Das heißt, eine Hauptfläche des Kondensatorelements 420a, die durch dessen Breite (-x-Richtung) und Länge (-y-Richtung) definiert ist, befindet sich angrenzend an eine entsprechende Hauptfläche des Kondensatorelements 420b. Die Hauptflächen sind also im Wesentlichen koplanar. Alternativ dazu können die Kondensatorelemente auch so angeordnet sein, dass ihre Hauptflächen nicht koplanar sind, sondern in einer bestimmten Richtung, wie der -z-Richtung oder der -x-Richtung, senkrecht aufeinander stehen. Selbstverständlich brauchen sich die Kondensatorelemente nicht in derselben Richtung zu erstrecken.
  • Die Kondensatorelemente 420a und 420b befinden sich innerhalb eines Gehäuses 422, das eine Außenwand 423 und Seitenwände 424 und 425 enthält, die zusammen einen Innenraum 426 definieren. Obwohl es nicht gezeigt ist, kann ein Deckel eingesetzt werden, der die oberen Flächen der Seitenwände 424 und 425 bedeckt und die Baugruppe 400 versiegelt, wie es oben beschrieben ist. Gemäß der vorliegenden Erfindung wird auch eine polymere Einspannung eingesetzt, die dazu beiträgt, die Schwingung der Kondensatorelemente einzudämmen. In 4 befinden sich zum Beispiel getrennte polymere Einspannungen 497a und 497b angrenzend an und in Kontakt mit den Kondensatorelementen 420a bzw. 420b. Wie oben bereits ausführlicher diskutiert wurde, können sich die polymeren Einspannungen 497a und 497b an einer Vielzahl verschiedener Orte befinden. Weiterhin kann eine der Einspannungen weggelassen werden, oder zusätzliche Einspannungen können eingesetzt werden. In bestimmten Ausführungsformen kann es zum Beispiel wünschenswert sein, eine polymere Einspannung zwischen den Kondensatorelementen einzusetzen, um die mechanische Stabilität weiter zu verbessern.
  • Neben den Kondensatorelementen enthält die Kondensatorbaugruppe auch ein Anoden-Endteil, mit dem Anodenanschlüsse der jeweiligen Kondensatorelemente elektrisch verbunden sind, und ein Kathoden-Endteil, mit dem die Kathoden der jeweiligen Kondensatorelemente elektrisch verbunden sind. Wenn wir uns zum Beispiel wieder auf 4 beziehen, so sind die Kondensatorelemente gezeigt, wie sie parallel mit einem gemeinsamen Kathoden-Endteil 429 verbunden sind. In dieser besonderen Ausführungsform wird das Kathoden-Endteil 429 zunächst in einer Ebene bereitgestellt, die im Wesentlichen parallel zur unteren Fläche der Kondensatorelemente verläuft, und kann mit leitfähigen Bahnen (nicht gezeigt) in elektrischem Kontakt stehen. Die Kondensatorbaugruppe 400 umfasst auch Verbindungselemente 427 und 527, die mit Anodenanschlüssen 407a bzw. 407b der Kondensatorelemente 420a und 420b verbunden sind. Insbesondere enthält das Verbindungselement 427 einen hochstehenden Teil 465 und einen planaren Teil 463, der mit einem Anoden-Endteil (nicht gezeigt) in Verbindung steht. Ebenso enthält das Verbindungselement 527 einen hochstehenden Teil 565 und einen planaren Teil 563, der mit einem Anoden-Endteil (nicht gezeigt) in Verbindung steht. Selbstverständlich sollte man sich darüber im Klaren sein, dass auch eine Vielzahl anderer Typen von Verbindungsmechanismen eingesetzt werden kann.
  • Die vorliegende Erfindung wird anhand der folgenden Beispiele besser verständlich.
  • Testverfahren
  • Äquivalenter Serienwiderstand (ESR)
  • Der äquivalente Serienwiderstand kann mit einem Präzisions-LCZ-Messgerät Keithley 3330 mit Kelvin-Anschlussleitungen bei 2,2 Volt Vorspannung und einem sinusförmigen Signal mit 0,5 Volt Abstand zwischen den Peaks gemessen werden. Die Betriebsfrequenz betrug 100 kHz, und die Temperatur betrug 23°C ± 2°C.
  • Kapazität und Verlustfaktor
  • Die Kapazität und der Verlustfaktor können mit einem Präzisions-LCZ-Messgerät Keithley 3330 mit Kelvin-Anschlussleitungen bei 2,2 Volt Vorspannung und einem sinusförmigen Signal mit 0,5 Volt Abstand zwischen den Peaks gemessen werden. Die Betriebsfrequenz kann 120 Hz betragen, und die Temperatur kann 23°C ± 2°C betragen.
  • Leckstrom
  • Der Leckstrom (”DCL”) kann mit einer Leckstrom-Testeinrichtung gemessen werden, die den Leckstrom bei einer Temperatur von 23°C ± 2°C, 85°C ± 2°C und 125°C ± 2°C und der Nennspannung während 10, 20, 30, 40, 50, 60 und 300 Sekunden misst.
  • Beispiel 1
  • Ein Tantalpulver mit 34 000 μFV/g wurde verwendet, um Anodenproben zu bilden. Jede Anodenprobe wurde zusammen mit einem Tantaldraht eingebettet, bei 1800°C gesintert und auf eine Dichte von 5,6 g/cm3 gepresst. Die resultierenden Presslinge hatten eine Größe von 5,20 mm × 3,70 mm × 0,85 mm. Die Presslinge wurden bei einer Temperatur von 85°C in Wasser/Phosphorsäure-Elektrolyt (Leitfähigkeit 8,6 mS) bis 70 V anodisiert, um die dielektrische Schicht zu bilden. Die Presslinge wurden 30 Sekunden lang bei einer Temperatur von 30°C in Wasser/Borsäure/Dinatriumtetraborat (Leitfähigkeit 2,0 mS) bis 160 V erneut anodisiert, um eine dickere Oxidschicht zu bilden, die sich auf der Außenseite aufbaut. Dann wurde eine leitfähige Polymerbeschichtung gebildet, indem man die Anoden in dispergiertes Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 1,1% und einer Viskosität von 20 mPa·s (CleviosTM K, H. C. Starck) eintauchte. Nach der Beschichtung wurden die Teile 20 Minuten lang bei 125°C getrocknet. Dieser Vorgang wurde zehnmal wiederholt. Danach wurden die Teile in dispergiertes Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 2% und einer Viskosität von 20 mPa·s (CleviosTM K, H. C. Starck) eingetaucht. Nach der Beschichtung wurden die Teile 20 Minuten lang bei 125°C getrocknet. Dieser Vorgang wurde nicht wiederholt. Danach wurden die Teile in dispergiertes Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 2% und einer Viskosität von 160 mPa·s (CleviosTM K, H. C. Starck) eingetaucht. Nach der Beschichtung wurden die Teile 20 Minuten lang bei 125°C getrocknet. Dieser Vorgang wurde achtmal wiederholt. Dann wurden die Teile in eine Graphitdispersion eingetaucht und getrocknet. Schließlich wurden die Teile in eine Silberdispersion eingetaucht und getrocknet.
  • Der Tantaldraht des Kondensatorelements wurde dann durch Laserschweißen mit einem Anodenverbindungselement verbunden. Dann wurden die Anoden- und Kathodenverbindungselemente an ein Gold-Kathoden-Endteil geklebt und an ein Gold-Anoden-Endteil geschweißt, das sich innerhalb eines Keramikgehäuses mit einer Länge von 11,00 mm, einer Breite von 6,00 mm und einer Dicke von 2,20 mm befand. Das Gehäuse wies vergoldete Lötpunkte auf dem unteren Innenteil des Keramikgehäuses auf. Der für die Kathodenverbindung eingesetzte Kleber war eine Silberpaste (EPO-Tek E3035), und der Kleber wurde nur zwischen den Leiterrahmenteilen und dem vergoldeten Lötpunkt aufgetragen. Bei dem Schweißen, das für die Anodenverbindung eingesetzt wurde, handelte es sich um Widerstandsschweißen, und die Energie von 190 W wurde 90 ms lang zwischen den Leiterrahmenteilen und dem vergoldeten Lötpunkt des Keramikgehäuses angewendet. Dann wurde die Baugruppe in einen Konvektionsofen gebracht, um die Paste zu löten. Danach wurde ein Kovar®-Deckel mit einer Länge von 9,95 mm, einer Breite von 4,95 mm und einer Dicke von 0,10 mm über der Oberseite des Behälters platziert, und zwar dicht über dem Versiegelungsring des Keramikgehäuses (Kovar®-Ring mit einer Dicke von 0,30 mm), so dass es keinen direkten Kontakt zwischen der Innenfläche des Deckels und der Außenfläche des befestigten Kondensators gab. Die resultierende Baugruppe wurde in eine Schweißkammer gebracht und 120 Minuten lang bei 150°C mit Stickstoffgas gespült, bevor ein Nahtschweißverfahren zwischen dem Versiegelungsring und dem Deckel durchgeführt wurde. Nach dem Nahtschweißen wurde kein zusätzliches Einbrennen oder Flicken durchgeführt. Auf diese Weise wurden viele Teile (25) von Kondensatoren mit 33 μF/25 V hergestellt.
  • Beispiel 2
  • Kondensatoren wurden in der in Beispiel 1 beschriebenen Weise gebildet, außer dass eine andere leitfähige Polymerbeschichtung verwendet wurde. Die leitfähige Polymerbeschichtung wurde gebildet, indem man die Anoden in dispergiertes Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 1,1% und einer Viskosität von 20 mPa·s (CleviosTM K, H. C. Starck) eintauchte. Nach der Beschichtung wurden die Teile 20 Minuten lang bei 125°C getrocknet. Dieser Vorgang wurde zehnmal wiederholt. Danach wurden die Teile in dispergiertes Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 2% und einer Viskosität von 20 mPa·s (CleviosTM K, H. C. Starck) und einem zusätzlichen Feststoffgehalt von 20% von Polyethylenglycol mit einem Molekulargewicht von 600 (Sigma Aldrich®) eingetaucht. Nach der Beschichtung wurden die Teile 20 Minuten lang bei 125°C getrocknet. Dieser Vorgang wurde nicht wiederholt. Danach wurden die Teile in dispergiertes Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 2% und einer Viskosität von 160 mPa·s (CleviosTM K, H. C. Starck) eingetaucht. Nach der Beschichtung wurden die Teile 20 Minuten lang bei 125°C getrocknet. Dieser Vorgang wurde achtmal wiederholt. Dann wurden die Teile in eine Graphitdispersion eingetaucht und getrocknet. Das Zusammenbauverfahren war dasselbe, wie es in Beispiel 1 beschrieben ist. Viele Teile (25) von Kondensatoren mit 33 μF/25 V wurden auf diese Weise hergestellt.
  • Dann wurden die fertigen Kondensatoren der Beispiele auf elektrische Eigenschaften getestet. Die Medianwerte der Ergebnisse bezüglich Kapazität, Df und ESR sowie DCL sind unten in Tabelle 1–4 gezeigt. Die Feuchtkapazität betrug 38,0 μF. Tabelle 1. Elektrische Eigenschaften
    Kap. [μF] Trocken-/Feucht-Kap. [%] Df ESR [mΩ]
    Beispiel 1 30,14 79,3 0,11 90,70
    Beispiel 2 32,35 85,1 0,11 92,33
    Tabelle 2. Leckstrom [μA] bei 23 ± 2°C
    10 s 20 s 30 s 40 s 50 s 60 s 300 s
    Beispiel 1 1385,53 797,87 536,03 392,35 303,63 244,53 35,66
    Beispiel 2 11,47 4,71 2,74 1,85 1,37 1,07 0,15
    Tabelle 3. Leckstrom [μA] bei 85 ± 2°C
    10 s 20 s 30 s 40 s 50 s 60 s 300 s
    Beispiel 1 29,59 15,79 10,68 7,57 5,81 4,66 1,61
    Beispiel 2 1,61 0,96 0,72 0,57 0,50 0,44 0,18
    Tabelle 4. Leckstrom [μA] bei 125 ± 2°C
    10 s 20 s 30 s 40 s 50 s 60 s 300 s
    Beispiel 1 10,51 5,95 4,49 3,81 3,40 3,11 2,14
    Beispiel 2 3,21 1,99 1,50 1,22 1,04 0,91 0,33
  • Wie erwähnt, sind die DCL-Merkmale signifikant schlechter, wenn Polyethylenglycol eingesetzt wird (Beispiel 2).
  • Diese und andere Modifikationen und Variationen der vorliegenden Erfindung können vom Fachmann praktisch umgesetzt werden, ohne vom Wesen und Umfang der vorliegenden Erfindung abzuweichen. Außerdem sollte man sich darüber im Klaren sein, dass Aspekte der verschiedenen Ausführungsformen ganz oder teilweise gegeneinander ausgetauscht werden können. Weiterhin wird der Fachmann anerkennen, dass die obige Beschreibung nur beispielhaften Charakter hat und die Erfindung, die in den beigefügten Ansprüchen näher beschrieben ist, nicht einschränken soll.
    • 1. Kondensatorbaugruppe, umfassend: ein Kondensatorelement, das einen gesinterten porösen Anodenkörper, eine dielektrische Schicht, die den Anodenkörper bedeckt, und einen festen Elektrolyten, der die dielektrische Schicht bedeckt, umfasst, wobei der feste Elektrolyt ein leitfähiges Polymer und ein hydroxyfunktionelles nichtionisches Polymer umfasst; ein Gehäuse, das einen inneren Hohlraum definiert, innerhalb dessen sich das Kondensatorelement befindet und dort hermetisch versiegelt ist, wobei der innere Hohlraum eine Gasatmosphäre aufweist, die ein Inertgas enthält; ein Anoden-Endteil, das mit dem Anodenkörper in elektrischer Verbindung ist; und ein Kathoden-Endteil, das mit dem festen Elektrolyten in elektrischer Verbindung ist.
    • 2. Kondensatorbaugruppe gemäß Punkt 1, wobei inerte Gase etwa 50 Gew.-% bis 100 Gew.-% der Gasatmosphäre ausmachen.
    • 3. Kondensatorbaugruppe gemäß Punkt 1 oder 2, wobei das Gehäuse aus einem Metall, Kunststoff, Keramik oder einer Kombination davon gebildet ist.
    • 4. Kondensatorbaugruppe gemäß einem der obigen Punkte, weiterhin umfassend einen Anschluss, der sich ausgehend von dem porösen Anodenkörper in seitlicher Richtung erstreckt, wobei sich der Anschluss innerhalb des inneren Hohlraums des Gehäuses befindet.
    • 5. Kondensatorbaugruppe gemäß Punkt 4, weiterhin umfassend ein Verbindungselement, das einen ersten Teil enthält, der sich im Wesentlichen senkrecht zur seitlichen Richtung des Anodenanschlusses befindet und damit verbunden ist.
    • 6. Kondensatorbaugruppe gemäß Punkt 5, wobei das Verbindungselement weiterhin einen zweiten Teil enthält, der im Wesentlichen parallel zu der seitlichen Richtung, in der sich der Anodenanschluss erstreckt, verläuft.
    • 7. Kondensatorbaugruppe gemäß Punkt 6, wobei sich der zweite Teil innerhalb des Gehäuses befindet.
    • 8. Kondensatorbaugruppe gemäß einem der obigen Punkte, wobei der Anodenkörper aus einem Pulver gebildet ist, das Tantal, Niob oder ein elektrisch leitfähiges Oxid davon enthält.
    • 9. Kondensatorbaugruppe gemäß einem der obigen Punkte, wobei das leitfähige Polymer ein substituiertes Polythiophen ist.
    • 10. Kondensatorbaugruppe gemäß Punkt 9, wobei es sich bei dem substituierten Polythiophen um Poly(3,4-ethylendioxythiophen) handelt.
    • 11. Kondensatorbaugruppe gemäß einem der obigen Punkte, wobei der feste Elektrolyt eine Vielzahl von vorpolymerisierten leitfähigen Polymerteilchen umfasst.
    • 12. Kondensatorbaugruppe gemäß einem der obigen Punkte, wobei der feste Elektrolyt eine erste Schicht, die die dielektrische Schicht bedeckt, und eine zweite Schicht, die die erste Schicht bedeckt, enthält, wobei die erste Schicht das leitfähige Polymer enthält und die zweite Schicht das hydroxyfunktionelle nichtionische Polymer enthält.
    • 13. Kondensatorbaugruppe gemäß Punkt 12, wobei die zweite Schicht weiterhin eine Vielzahl von vorpolymerisierten leitfähigen Polymerteilchen enthält.
    • 14. Kondensatorbaugruppe gemäß Punkt 13, wobei die Teilchen der zweiten Schicht Poly(3,4-ethylendioxythiophen) enthalten.
    • 15. Kondensatorbaugruppe gemäß einem der obigen Punkte, wobei das hydroxyfunktionelle Polymer ein Polyalkylenether ist.
    • 16. Kondensatorbaugruppe gemäß Punkt 15, wobei der Polyalkylenether ein Polyalkylenglycol ist.
    • 17. Kondensatorbaugruppe gemäß einem der obigen Punkte, wobei das hydroxyfunktionelle Polymer ein ethoxyliertes Alkylphenol, ethoxylierter oder propoxylierter C6-C24-Fettalkohol, Polyoxyethylenglycolalkylether, Polyoxyethylenglycolalkylphenolether, Polyoxyethylenglycolester einer C8-C24-Fettsäure, Polyoxyethylenglycolether einer C8-C24-Fettsäure, Blockcopolymer von Polyethylenglycol und Polypropylenglycol oder eine Kombination davon ist.
    • 18. Kondensatorbaugruppe gemäß Punkt 17, wobei das hydroxyfunktionelle Polymer ein Polyoxyethylenglycolsorbitanalkylester ist.
    • 19. Kondensatorbaugruppe gemäß einem der obigen Punkte, weiterhin umfassend eine externe Polymerbeschichtung, die den festen Elektrolyten bedeckt, wobei die externe Polymerbeschichtung eine Vielzahl von vorpolymerisierten leitfähigen Polymerteilchen enthält.
    • 20. Kondensatorbaugruppe gemäß Punkt 19, wobei die externe Polymerbeschichtung eine erste Schicht, die den festen Elektrolyten bedeckt, und eine zweite Schicht, die die erste Schicht bedeckt, enthält, wobei die erste Schicht ein Vernetzungsmittel enthält und die zweite Schicht die vorpolymerisierten leitfähigen Polymerteilchen enthält.
    • 21. Kondensatorbaugruppe gemäß einem der obigen Punkte, wobei die Baugruppe eine Durchschlagspannung von etwa 60 Volt oder mehr aufweist.
    • 22. Kondensatorbaugruppe gemäß einem der obigen Punkte, wobei die Baugruppe eine Feucht-zu-Trocken-Kapazität von etwa 60% oder mehr aufweist.
    • 23. Verfahren zur Bildung der Kondensatorbaugruppe gemäß einem der vorstehenden Punkte, wobei das Verfahren Folgendes umfasst: Positionieren des Kondensatorelements innerhalb des inneren Hohlraums des Gehäuses; elektrisches Verbinden des Anodenkörpers des Kondensatorelements mit einem Anoden-Endteil und des festen Elektrolyten des Kondensatorelements mit einem Kathoden-Endteil; und hermetisches Versiegeln des Kondensatorelements innerhalb des Gehäuses in Gegenwart der Gasatmosphäre.
    • 24. Verfahren gemäß Punkt 23, wobei der feste Elektrolyt nach einem Verfahren gebildet wird, das das Bilden einer ersten Schicht, die das leitfähige Polymer enthält, und danach das Bilden einer zweiten Schicht, die die erste Schicht bedeckt und das hydroxyfunktionelle nichtionische Polymer enthält, umfasst.
    • 25. Verfahren gemäß Punkt 24, wobei das hydroxyfunktionelle Polymer in Form einer Dispersion, die eine Vielzahl der vorpolymerisierten leitfähigen Polymerteilchen enthält, aufgetragen wird.
    • 26. Verfahren gemäß Punkt 25, wobei die Dispersion etwa 5 Gew.-% bis etwa 40 Gew.-% des hydroxyfunktionellen nichtionischen Polymers enthält.
    • 27. Verfahren gemäß Punkt 24, wobei das hydroxyfunktionelle nichtionische Polymer in Form einer Lösung aufgetragen wird.
    • 28. Verfahren gemäß einem der Punkte 24 bis 27, wobei die erste Schicht im Wesentlichen frei von dem hydroxyfunktionellen nichtionischen Polymer ist.
    • 29. Verfahren gemäß Punkt 23, weiterhin umfassend das Bilden einer externen Polymerbeschichtung über dem festen Elektrolyten nach einem Verfahren, das das Auftragen eines Vernetzungsmittels und das Auftragen einer Dispersion von vorpolymerisierten leitfähigen Polymerteilchen umfasst.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 5457862 [0001, 0036]
    • US 5473503 [0001, 0036]
    • US 5729428 [0001, 0036]
    • US 5812367 [0001, 0036]
    • US 6322912 [0017]
    • US 6391275 [0017]
    • US 6416730 [0017]
    • US 6527937 [0017]
    • US 6576099 [0017]
    • US 6592740 [0017]
    • US 6639787 [0017]
    • US 7220397 [0017]
    • US 6197252 [0023]
    • US 6987663 [0034]
    • US 5111327 [0034]
    • US 6635729 [0034]
    • US 7515396 [0036]
    • US 2007/0064376 [0053]
    • US 6674635 [0056]
    • US 7554793 [0073]
  • Zitierte Nicht-Patentliteratur
    • (B. E. T.) von Brunauer, Emmet und Teller, Journal of American Chemical Society, Band 60, 1938, S. 309 [0019]
    • ”Critical Oxygen Content in Porous Anodes of Solid Tantalum Capacitors”, Pozdeev-Freeman et al., Journal of Materials Science: Materials in Electronics 9 (1998), 309–311 [0024]

Claims (14)

  1. Kondensatorbaugruppe, umfassend: ein Kondensatorelement, das einen gesinterten porösen Anodenkörper, eine dielektrische Schicht, die den Anodenkörper bedeckt, und einen festen Elektrolyten, der die dielektrische Schicht bedeckt, umfasst, wobei der feste Elektrolyt ein leitfähiges Polymer und ein hydroxyfunktionelles nichtionisches Polymer umfasst; ein Gehäuse, das einen inneren Hohlraum definiert, innerhalb dessen sich das Kondensatorelement befindet und dort hermetisch versiegelt ist, wobei der innere Hohlraum eine Gasatmosphäre aufweist, die ein Inertgas enthält; ein Anoden-Endteil, das mit dem Anodenkörper in elektrischer Verbindung ist; und ein Kathoden-Endteil, das mit dem festen Elektrolyten in elektrischer Verbindung ist.
  2. Kondensatorbaugruppe gemäß Anspruch 1, wobei inerte Gase etwa 50 Gew.-% bis 100 Gew.-% der Gasatmosphäre ausmachen.
  3. Kondensatorbaugruppe gemäß Anspruch 1 oder 2, wobei das Gehäuse aus einem Metall, Kunststoff, Keramik oder einer Kombination davon gebildet ist.
  4. Kondensatorbaugruppe gemäß einem der obigen Ansprüche, weiterhin umfassend einen Anschluss, der sich ausgehend von dem porösen Anodenkörper in seitlicher Richtung erstreckt, wobei sich der Anschluss innerhalb des inneren Hohlraums des Gehäuses befindet, wobei die Kondensatorbaugruppe vorzugsweise weiterhin ein Verbindungselement umfasst, das einen ersten Teil enthält, der sich im Wesentlichen senkrecht zur seitlichen Richtung des Anodenanschlusses befindet und damit verbunden ist, wobei das Verbindungselement vorzugsweise weiterhin einen zweiten Teil enthält, der im Wesentlichen parallel zu der seitlichen Richtung, in der sich der Anodenanschluss erstreckt, verläuft, wobei sich der zweite Teil vorzugsweise innerhalb des Gehäuses befindet.
  5. Kondensatorbaugruppe gemäß einem der obigen Ansprüche, wobei der Anodenkörper aus einem Pulver gebildet ist, das Tantal, Niob oder ein elektrisch leitfähiges Oxid davon enthält.
  6. Kondensatorbaugruppe gemäß einem der obigen Ansprüche, wobei das leitfähige Polymer ein substituiertes Polythiophen ist, wobei es sich bei dem substituierten Polythiophen vorzugsweise um Poly(3,4-ethylendioxythiophen) handelt, wobei der feste Elektrolyt vorzugsweise eine Vielzahl von vorpolymerisierten leitfähigen Polymerteilchen umfasst.
  7. Kondensatorbaugruppe gemäß einem der obigen Ansprüche, wobei der feste Elektrolyt eine erste Schicht, die die dielektrische Schicht bedeckt, und eine zweite Schicht, die die erste Schicht bedeckt, enthält, wobei die erste Schicht das leitfähige Polymer enthält und die zweite Schicht das hydroxyfunktionelle nichtionische Polymer enthält, wobei die zweite Schicht vorzugsweise weiterhin eine Vielzahl von vorpolymerisierten leitfähigen Polymerteilchen enthält, wobei die Teilchen der zweiten Schicht vorzugsweise Poly(3,4-ethylendioxythiophen) enthalten.
  8. Kondensatorbaugruppe gemäß einem der obigen Ansprüche, wobei das hydroxyfunktionelle Polymer ein Polyalkylenether ist, wobei der Polyalkylenether vorzugsweise ein Polyalkylenglycol ist.
  9. Kondensatorbaugruppe gemäß einem der obigen Ansprüche, wobei das hydroxyfunktionelle Polymer ein ethoxyliertes Alkylphenol, ethoxylierter oder propoxylierter C6-C24-Fettalkohol, Polyoxyethylenglycolalkylether, Polyoxyethylenglycolalkylphenolether, Polyoxyethylenglycolester einer C8-C24-Fettsäure, Polyoxyethylenglycolether einer C8-C24-Fettsäure, Blockcopolymer von Polyethylenglycol und Polypropylenglycol oder eine Kombination davon ist, wobei das hydroxyfunktionelle Polymer vorzugsweise ein Polyoxyethylenglycolsorbitanalkylester ist.
  10. Kondensatorbaugruppe gemäß einem der obigen Ansprüche, weiterhin umfassend eine externe Polymerbeschichtung, die den festen Elektrolyten bedeckt, wobei die externe Polymerbeschichtung eine Vielzahl von vorpolymerisierten leitfähigen Polymerteilchen enthält, wobei die externe Polymerbeschichtung vorzugsweise eine erste Schicht, die den festen Elektrolyten bedeckt, und eine zweite Schicht, die die erste Schicht bedeckt, enthält, wobei die erste Schicht ein Vernetzungsmittel enthält und die zweite Schicht die vorpolymerisierten leitfähigen Polymerteilchen enthält.
  11. Kondensatorbaugruppe gemäß einem der obigen Ansprüche, wobei die Baugruppe eine Durchschlagspannung von etwa 60 Volt oder mehr aufweist, wobei die Baugruppe vorzugsweise eine Feucht-zu-Trocken-Kapazität von etwa 60% oder mehr aufweist.
  12. Verfahren zur Bildung der Kondensatorbaugruppe gemäß einem der vorstehenden Ansprüche, wobei das Verfahren Folgendes umfasst: Positionieren des Kondensatorelements innerhalb des inneren Hohlraums des Gehäuses; elektrisches Verbinden des Anodenkörpers des Kondensatorelements mit einem Anoden-Endteil und des festen Elektrolyten des Kondensatorelements mit einem Kathoden-Endteil; und hermetisches Versiegeln des Kondensatorelements innerhalb des Gehäuses in Gegenwart der Gasatmosphäre.
  13. Verfahren gemäß Anspruch 12, wobei der feste Elektrolyt nach einem Verfahren gebildet wird, das das Bilden einer ersten Schicht, die das leitfähige Polymer enthält, und danach das Bilden einer zweiten Schicht, die die erste Schicht bedeckt und das hydroxyfunktionelle nichtionische Polymer enthält, umfasst, wobei das hydroxyfunktionelle Polymer vorzugsweise in Form einer Dispersion, die eine Vielzahl der vorpolymerisierten leitfähigen Polymerteilchen enthält, aufgetragen wird, wobei die Dispersion vorzugsweise etwa 5 Gew.-% bis etwa 40 Gew.-% des hydroxyfunktionellen nichtionischen Polymers enthält, wobei das hydroxyfunktionelle nichtionische Polymer vorzugsweise in Form einer Lösung aufgetragen wird, wobei die erste Schicht vorzugsweise im Wesentlichen frei von dem hydroxyfunktionellen nichtionischen Polymer ist.
  14. Verfahren gemäß Anspruch 12, weiterhin umfassend das Bilden einer externen Polymerbeschichtung über dem festen Elektrolyten nach einem Verfahren, das das Auftragen eines Vernetzungsmittels und das Auftragen einer Dispersion von vorpolymerisierten leitfähigen Polymerteilchen umfasst.
DE102014204323.9A 2013-03-13 2014-03-10 Festelektrolytkondensator zur Verwendung unter extremen Bedingungen Withdrawn DE102014204323A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361778848P 2013-03-13 2013-03-13
US61/778,848 2013-03-13

Publications (1)

Publication Number Publication Date
DE102014204323A1 true DE102014204323A1 (de) 2014-09-18

Family

ID=50482513

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014204323.9A Withdrawn DE102014204323A1 (de) 2013-03-13 2014-03-10 Festelektrolytkondensator zur Verwendung unter extremen Bedingungen

Country Status (4)

Country Link
US (2) US10224151B2 (de)
CN (1) CN104051157B (de)
DE (1) DE102014204323A1 (de)
GB (1) GB2512480B (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114759A1 (ja) * 2012-01-31 2013-08-08 三洋電機株式会社 固体電解コンデンサ及びその製造方法
GB2512480B (en) * 2013-03-13 2018-05-30 Avx Corp Solid electrolytic capacitor for use in extreme conditions
US10297393B2 (en) * 2015-03-13 2019-05-21 Avx Corporation Ultrahigh voltage capacitor assembly
US9767963B2 (en) 2015-05-29 2017-09-19 Avx Corporation Solid electrolytic capacitor with an ultrahigh capacitance
US9672989B2 (en) 2015-05-29 2017-06-06 Avx Corporation Solid electrolytic capacitor assembly for use in a humid atmosphere
US9991055B2 (en) 2015-05-29 2018-06-05 Avx Corporation Solid electrolytic capacitor assembly for use at high temperatures
US9972444B2 (en) * 2015-05-29 2018-05-15 Avx Corporation Solid electrolytic capacitor element for use in dry conditions
CN105914039A (zh) * 2016-06-24 2016-08-31 苏州华冲精密机械有限公司 耐高温高湿的干式电容器
US10763046B2 (en) * 2016-09-15 2020-09-01 Avx Corporation Solid electrolytic capacitor with improved leakage current
US10741333B2 (en) 2016-10-18 2020-08-11 Avx Corporation Solid electrolytic capacitor with improved leakage current
WO2018075327A1 (en) * 2016-10-18 2018-04-26 Avx Corporation Solid electrolytic capacitor assembly
JP7055140B2 (ja) * 2016-10-18 2022-04-15 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション 高い温度及び電圧において向上した性能を有する固体電解キャパシタ
CN110419087A (zh) 2017-03-06 2019-11-05 阿维科斯公司 固体电解电容器组装件
WO2019026961A1 (ja) * 2017-08-04 2019-02-07 綜研化学株式会社 固体電解コンデンサ及び固体電解コンデンサの製造方法
CN107731554A (zh) * 2017-09-26 2018-02-23 华为技术有限公司 一种聚合物电容器及其制备方法
US11004615B2 (en) * 2017-12-05 2021-05-11 Avx Corporation Solid electrolytic capacitor for use at high temperatures
US11081288B1 (en) * 2018-08-10 2021-08-03 Avx Corporation Solid electrolytic capacitor having a reduced anomalous charging characteristic
US11380492B1 (en) 2018-12-11 2022-07-05 KYOCERA AVX Components Corporation Solid electrolytic capacitor
US11756742B1 (en) 2019-12-10 2023-09-12 KYOCERA AVX Components Corporation Tantalum capacitor with improved leakage current stability at high temperatures
US11837415B2 (en) 2021-01-15 2023-12-05 KYOCERA AVX Components Corpration Solid electrolytic capacitor

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111327A (en) 1991-03-04 1992-05-05 General Electric Company Substituted 3,4-polymethylenedioxythiophenes, and polymers and electro responsive devices made therefrom
US5457862A (en) 1993-11-10 1995-10-17 Nec Corporation Method of manufacturing solid electrolytic capacitor
US5473503A (en) 1993-07-27 1995-12-05 Nec Corporation Solid electrolytic capacitor and method for manufacturing the same
US5729428A (en) 1995-04-25 1998-03-17 Nec Corporation Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same
US5812367A (en) 1996-04-04 1998-09-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative
US6197252B1 (en) 1997-01-13 2001-03-06 Avx Limited Binder removal
US6322912B1 (en) 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6391275B1 (en) 1998-09-16 2002-05-21 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6416730B1 (en) 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6576099B2 (en) 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
US6635729B1 (en) 2000-02-03 2003-10-21 Bayer Aktinegesellschaft Process for the preparation of water-soluble π-conjugated polymers
US6639787B2 (en) 2000-11-06 2003-10-28 Cabot Corporation Modified oxygen reduced valve metal oxides
US6674635B1 (en) 2001-06-11 2004-01-06 Avx Corporation Protective coating for electrolytic capacitors
US6987663B2 (en) 2003-10-17 2006-01-17 H.C. Starck Gmbh Electrolytic capacitors with a polymeric outer layer
US20070064376A1 (en) 2005-09-13 2007-03-22 H. C. Starck Gmbh Process for the production of electrolyte capacitors of high nominal voltage
US7515396B2 (en) 2007-03-21 2009-04-07 Avx Corporation Solid electrolytic capacitor containing a conductive polymer
US7554793B2 (en) 2006-11-16 2009-06-30 Kemet Electronics Corporation Low temperature curable conductive adhesive and capacitors formed thereby

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1069685A (en) 1965-08-31 1967-05-24 Mallory & Co Inc P R Atmosphere control within the hermetic enclosure of electrolytic-capacitor assemblies
US3440495A (en) 1966-11-07 1969-04-22 Mallory & Co Inc P R Hermetically sealed electrolytic capacitor
US3922773A (en) 1974-07-17 1975-12-02 Corning Glass Works Method of forming a hermetic enclosure
US4131520A (en) 1977-11-10 1978-12-26 Sprague Electric Company Two-stage anodization of capacitor electrodes
US4278513A (en) 1980-06-30 1981-07-14 Sprague Electric Company Two-stage differential anodization process
US4479168A (en) 1983-12-19 1984-10-23 Sprague Electric Company Electrolytic capacitor with a hermetic seal
US4508563A (en) 1984-03-19 1985-04-02 Sprague Electric Company Reducing the oxygen content of tantalum
DE3814730A1 (de) 1988-04-30 1989-11-09 Bayer Ag Feststoff-elektrolyte und diese enthaltende elektrolyt-kondensatoren
JP3694038B2 (ja) 1993-09-09 2005-09-14 日東電工株式会社 固体電解コンデンサ
JP3070408B2 (ja) 1993-12-28 2000-07-31 日本電気株式会社 固体電解コンデンサおよびその製造方法
JP2770746B2 (ja) 1994-09-02 1998-07-02 日本電気株式会社 固体電解コンデンサ及びその製造方法
JP3434041B2 (ja) 1994-09-28 2003-08-04 スタルクヴイテック株式会社 タンタル粉末及びそれを用いた電解コンデンサ
US5643432A (en) 1995-07-13 1997-07-01 Avx Corporation Selective anodization of capacitor anode body
US6231993B1 (en) 1998-10-01 2001-05-15 Wilson Greatbatch Ltd. Anodized tantalum pellet for an electrolytic capacitor
US6261434B1 (en) 1999-10-19 2001-07-17 Kemet Electronics Corporation Differential anodization process for electrolytic capacitor anode bodies
JP3585791B2 (ja) 1999-11-04 2004-11-04 Necトーキン株式会社 固体電解コンデンサ用陽極体の製造方法及びその製造方法に用いられる連続焼結装置
US6534581B1 (en) 2000-07-20 2003-03-18 Dow Corning Corporation Silicone composition and electrically conductive silicone adhesive formed therefrom
EP2289964A3 (de) 2000-11-22 2014-01-01 Heraeus Precious Metals GmbH & Co. KG Dispergierbare Polymerpulver
JP2003168633A (ja) 2001-11-30 2003-06-13 Sanyo Electric Co Ltd 固体電解コンデンサ及びその製造方法並びに導電性複合材料及びその製造方法
JP4248289B2 (ja) 2003-03-31 2009-04-02 三洋電機株式会社 固体電解コンデンサおよびその製造方法
JP4538448B2 (ja) 2003-04-02 2010-09-08 ハー・ツェー・シュタルク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 導電性ポリマー製造用の遅延酸化剤
US20040231119A1 (en) 2003-05-21 2004-11-25 Brenneman Keith R. Method of electrolytic deposition of an intrinsically conductive polymer upon a non-conductive substrate
US6798644B1 (en) 2003-07-10 2004-09-28 Kemet Electronics Corporation ESR of solid electrolytic capacitors using conductive polymer cathodes
PT1498391E (pt) 2003-07-15 2010-06-21 Starck H C Gmbh Pó de subóxido de nióbio
DE10333156A1 (de) 2003-07-22 2005-02-24 H.C. Starck Gmbh Verfahren zur Herstellung von Niobsuboxid
DE10347702B4 (de) 2003-10-14 2007-03-29 H.C. Starck Gmbh Sinterkörper auf Basis Niobsuboxid
US6804109B1 (en) 2003-10-20 2004-10-12 Kemet Electronics Corporation Solid electrolyte capacitor having transition metal oxide underlayer and conductive polymer electrolyte
US7948069B2 (en) 2004-01-28 2011-05-24 International Rectifier Corporation Surface mountable hermetically sealed package
US20050218005A1 (en) * 2004-04-01 2005-10-06 Yanming Liu Anodizing electrolytes for high voltage capacitor anodes
US20100155645A1 (en) * 2004-04-01 2010-06-24 Greatbatch Ltd. Anodizing electrolytes for high voltage capacitor anodes
DE102004022110A1 (de) 2004-05-05 2005-12-01 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
JP2006028214A (ja) 2004-07-12 2006-02-02 Nagase Chemtex Corp ポリ(3,4−ジアルコキシチオフェン)とポリ陰イオンとの複合体の水分散体の製造方法
CN1737072B (zh) 2004-08-18 2011-06-08 播磨化成株式会社 导电粘合剂及使用该导电粘合剂制造物件的方法
DE102004049040B4 (de) 2004-10-08 2008-11-27 H.C. Starck Gmbh Verfahren zur Herstellung von Festelektrolytkondensatoren
JP4903421B2 (ja) 2005-02-23 2012-03-28 京セラ株式会社 セラミック容器およびこれを用いた電池または電気二重層キャパシタ
DE102005016727A1 (de) 2005-04-11 2006-10-26 H.C. Starck Gmbh Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zu ihrer Herstellung
DE102005033839A1 (de) 2005-07-20 2007-01-25 H.C. Starck Gmbh Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zur ihrer Herstellung
DE102005043828A1 (de) 2005-09-13 2007-03-22 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
DE102005053646A1 (de) 2005-11-10 2007-05-16 Starck H C Gmbh Co Kg Polymerbeschichtungen mit verbesserter Lösungsmittelbeständigkeit
US7973180B2 (en) 2005-11-17 2011-07-05 H.C. Starck Gmbh Process for producing aqueous dispersion of composite of poly(3,4-dialkoxythiophene) with polyanion
JP4703400B2 (ja) * 2005-12-28 2011-06-15 三洋電機株式会社 固体電解コンデンサ及びその製造方法
US20070171596A1 (en) 2006-01-20 2007-07-26 Chacko Antony P Electrode compositions containing carbon nanotubes for solid electrolyte capacitors
WO2007130483A2 (en) 2006-05-05 2007-11-15 Cabot Corporation Tantalum powder with smooth surface and methods of manufacturing same
US7563290B2 (en) 2006-07-06 2009-07-21 Kemet Electronics Corporation High voltage solid electrolytic capacitors using conductive polymer slurries
WO2008029502A1 (en) 2006-08-29 2008-03-13 Unitika Ltd. Binder for electrode formation, slurry for electrode formation using the binder, electrode using the slurry, secondary battery using the electrode, and capacitor using the electrode
US7724502B2 (en) 2007-09-04 2010-05-25 Avx Corporation Laser-welded solid electrolytic capacitor
DE102007048212A1 (de) 2007-10-08 2009-04-09 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Zwischenschicht
JP5203673B2 (ja) * 2007-10-30 2013-06-05 Necトーキン株式会社 固体電解コンデンサとその製造方法
JP4931778B2 (ja) * 2007-11-21 2012-05-16 三洋電機株式会社 固体電解コンデンサ
ATE517144T1 (de) 2007-12-14 2011-08-15 Henkel Ag & Co Kgaa Härtbare zusammensetzungen enthaltend wässrige dispersionen von organopolysiloxanen
US8094434B2 (en) 2008-04-01 2012-01-10 Avx Corporation Hermetically sealed capacitor assembly
DE102008023008A1 (de) 2008-05-09 2009-11-12 H.C. Starck Gmbh Neuartige Polythiophene-Polyanion-Komplexe in unpolaren organischen Lösungsmitteln
US20090279233A1 (en) 2008-05-12 2009-11-12 Yuri Freeman High volumetric efficiency anodes for electrolytic capacitors
DE102008032578A1 (de) 2008-07-11 2010-01-14 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
US20100085685A1 (en) 2008-10-06 2010-04-08 Avx Corporation Capacitor Anode Formed From a Powder Containing Coarse Agglomerates and Fine Agglomerates
JP5340708B2 (ja) 2008-11-28 2013-11-13 三洋電機株式会社 固体電解コンデンサ
JP5289033B2 (ja) 2008-12-24 2013-09-11 三洋電機株式会社 固体電解コンデンサ
DE102009007594A1 (de) 2009-02-05 2010-08-12 H.C. Starck Clevios Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Außenschicht.
JP5273726B2 (ja) * 2009-04-07 2013-08-28 Necトーキン株式会社 固体電解コンデンサおよびその製造方法
US8310815B2 (en) 2009-04-20 2012-11-13 Kemet Electronics Corporation High voltage and high efficiency polymer electrolytic capacitors
US8194395B2 (en) 2009-10-08 2012-06-05 Avx Corporation Hermetically sealed capacitor assembly
US8125768B2 (en) * 2009-10-23 2012-02-28 Avx Corporation External coating for a solid electrolytic capacitor
JP5495311B2 (ja) 2010-01-21 2014-05-21 Necトーキン株式会社 固体電解コンデンサおよびその製造方法
JP5465025B2 (ja) 2010-01-27 2014-04-09 Necトーキン株式会社 導電性高分子懸濁液およびその製造方法、導電性高分子材料、固体電解コンデンサおよびその製造方法
EP2506275B1 (de) * 2010-02-15 2017-10-18 Panasonic Intellectual Property Management Co., Ltd. Elektrolytkondensator
JP5853160B2 (ja) * 2010-02-25 2016-02-09 パナソニックIpマネジメント株式会社 固体電解コンデンサ
US8837114B2 (en) 2010-03-31 2014-09-16 Nippon Chemi-Con Corporation Solid electrolytic capacitor
US8279584B2 (en) * 2010-08-12 2012-10-02 Avx Corporation Solid electrolytic capacitor assembly
JP2012043958A (ja) * 2010-08-19 2012-03-01 Nec Tokin Corp 固体電解コンデンサおよびその製造方法
US8808403B2 (en) 2010-09-15 2014-08-19 Kemet Electronics Corporation Process for solid electrolytic capacitors using polymer slurries
DE102010047087A1 (de) * 2010-10-01 2012-04-05 Heraeus Clevios Gmbh Verfahren zur Verbesserung der elektrischen Kenngrößen in Kondensatoren enthaltend PEDOT/PSS als Feststoffelektrolyt durch ein Polyalkylenglykol
DE102010047086A1 (de) 2010-10-01 2012-04-05 Heraeus Clevios Gmbh Schichtaufbauten mit verbesserten elektrischen Kenngrößen beinthaltend PEDOT/PSS sowie einen Stabilisator
US9508491B2 (en) * 2010-10-01 2016-11-29 Heraeus Deutschland GmbH & Co. KG Method for improving electrical parameters in capacitors comprising PEDOT/PSS as a solid electrolyte through a polyalkylene glycol
DE102010048032A1 (de) 2010-10-12 2012-04-12 Heraeus Clevios Gmbh Polythiophene beinhaltende Dispersionen mit definiertem Gehalt an Thiophen-Monomer
DE102010048031A1 (de) 2010-10-12 2012-04-12 Heraeus Clevios Gmbh Polythiophene beinhaltende Dispersionen mit definiertem Sulfat-Gehalt
US8824122B2 (en) 2010-11-01 2014-09-02 Avx Corporation Solid electrolytic capacitor for use in high voltage and high temperature applications
US8848342B2 (en) 2010-11-29 2014-09-30 Avx Corporation Multi-layered conductive polymer coatings for use in high voltage solid electrolytic capacitors
JP2014063567A (ja) 2011-01-26 2014-04-10 Sony Corp 電池パック及び電力消費機器
US9384866B2 (en) 2011-01-27 2016-07-05 Idemitsu Kosan Co., Ltd. Polyaniline composite, method for producing same, and composition
US8771381B2 (en) 2011-02-15 2014-07-08 Kemet Electronics Corporation Process for producing electrolytic capacitors and capacitors made thereby
WO2012114834A1 (ja) * 2011-02-23 2012-08-30 大日精化工業株式会社 水性液状組成物、水性塗工液、機能性塗工膜、及び複合材料
JP5995262B2 (ja) 2011-03-06 2016-09-21 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー Pedot/pssを固体電解質として含有するコンデンサにおける電気パラメータをポリグリセロールによって改善するための方法
US8379372B2 (en) 2011-04-07 2013-02-19 Avx Corporation Housing configuration for a solid electrolytic capacitor
US8300387B1 (en) 2011-04-07 2012-10-30 Avx Corporation Hermetically sealed electrolytic capacitor with enhanced mechanical stability
US8947857B2 (en) * 2011-04-07 2015-02-03 Avx Corporation Manganese oxide capacitor for use in extreme environments
US9767964B2 (en) 2011-04-07 2017-09-19 Avx Corporation Multi-anode solid electrolytic capacitor assembly
DE102011016493A1 (de) 2011-04-08 2012-10-11 Heraeus Precious Metals Gmbh & Co. Kg Verfahren zur Verbesserung der elektrischen Kenngrößen in Kondensatoren enthaltend PEDOT/PSS als Feststoffelektrolyt durch Additive
US8349030B1 (en) 2011-09-21 2013-01-08 Kemet Electronics Corporation Method for making anodes for high voltage electrolytic capacitors with high volumetric efficiency and stable D.C. leakage
EP2758786A4 (de) 2011-09-23 2015-04-29 Rhode Island Education Systeme und verfahren zur bereitstellung von mikrofluidischen vorrichtungen
JP5769742B2 (ja) 2012-02-27 2015-08-26 ケメット エレクトロニクス コーポレーション 層間架橋を用いた固体電解コンデンサ
DE102012004692A1 (de) * 2012-03-12 2013-09-12 Heraeus Precious Metals Gmbh & Co. Kg Zusatz von Polymeren zu Thiophen-Monomeren bei der In Situ-Polymerisation
JP2013219362A (ja) 2012-04-11 2013-10-24 Avx Corp 過酷な条件下で強化された機械的安定性を有する固体電解コンデンサ
US9548163B2 (en) 2012-07-19 2017-01-17 Avx Corporation Solid electrolytic capacitor with improved performance at high voltages
DE102013213720A1 (de) 2012-07-19 2014-01-23 Avx Corporation Temperaturstabiler Festelektrolytkondensator
DE102013213723A1 (de) 2012-07-19 2014-01-23 Avx Corporation Festelektrolytkondensator mit erhöhter Feucht-zu-Trocken-Kapazität
GB2512480B (en) * 2013-03-13 2018-05-30 Avx Corp Solid electrolytic capacitor for use in extreme conditions
US9343239B2 (en) 2013-05-17 2016-05-17 Kemet Electronics Corporation Solid electrolytic capacitor and improved method for manufacturing a solid electrolytic capacitor
US10014116B2 (en) 2013-07-24 2018-07-03 Kemet Electronics Corporation Conductive polymer composition with a dual crosslinker system for capacitors

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111327A (en) 1991-03-04 1992-05-05 General Electric Company Substituted 3,4-polymethylenedioxythiophenes, and polymers and electro responsive devices made therefrom
US5473503A (en) 1993-07-27 1995-12-05 Nec Corporation Solid electrolytic capacitor and method for manufacturing the same
US5457862A (en) 1993-11-10 1995-10-17 Nec Corporation Method of manufacturing solid electrolytic capacitor
US5729428A (en) 1995-04-25 1998-03-17 Nec Corporation Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same
US5812367A (en) 1996-04-04 1998-09-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative
US6197252B1 (en) 1997-01-13 2001-03-06 Avx Limited Binder removal
US6322912B1 (en) 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6391275B1 (en) 1998-09-16 2002-05-21 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6416730B1 (en) 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6527937B2 (en) 1998-09-16 2003-03-04 Cabot Corporation Method of making a capacitor anode of a pellet of niobium oxide
US6592740B2 (en) 1998-09-16 2003-07-15 Cabot Corporation Methods to make capacitors containing a partially reduced niobium metal oxide
US6635729B1 (en) 2000-02-03 2003-10-21 Bayer Aktinegesellschaft Process for the preparation of water-soluble π-conjugated polymers
US6576099B2 (en) 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
US6639787B2 (en) 2000-11-06 2003-10-28 Cabot Corporation Modified oxygen reduced valve metal oxides
US7220397B2 (en) 2000-11-06 2007-05-22 Cabot Corporation Modified oxygen reduced valve metal oxides
US6674635B1 (en) 2001-06-11 2004-01-06 Avx Corporation Protective coating for electrolytic capacitors
US6987663B2 (en) 2003-10-17 2006-01-17 H.C. Starck Gmbh Electrolytic capacitors with a polymeric outer layer
US20070064376A1 (en) 2005-09-13 2007-03-22 H. C. Starck Gmbh Process for the production of electrolyte capacitors of high nominal voltage
US7554793B2 (en) 2006-11-16 2009-06-30 Kemet Electronics Corporation Low temperature curable conductive adhesive and capacitors formed thereby
US7515396B2 (en) 2007-03-21 2009-04-07 Avx Corporation Solid electrolytic capacitor containing a conductive polymer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Critical Oxygen Content in Porous Anodes of Solid Tantalum Capacitors", Pozdeev-Freeman et al., Journal of Materials Science: Materials in Electronics 9 (1998), 309-311
(B. E. T.) von Brunauer, Emmet und Teller, Journal of American Chemical Society, Band 60, 1938, S. 309

Also Published As

Publication number Publication date
US20190198255A1 (en) 2019-06-27
GB201402995D0 (en) 2014-04-09
CN104051157A (zh) 2014-09-17
CN104051157B (zh) 2020-01-21
GB2512480B (en) 2018-05-30
US20140268501A1 (en) 2014-09-18
GB2512480A (en) 2014-10-01
US10553365B2 (en) 2020-02-04
US10224151B2 (en) 2019-03-05

Similar Documents

Publication Publication Date Title
DE102014204323A1 (de) Festelektrolytkondensator zur Verwendung unter extremen Bedingungen
US10867753B2 (en) Solid electrolytic capacitor for use in a humid atmosphere
DE102012205589A1 (de) Gehäusekonfiguration für einen Festelektrolytkondensator
DE102012205607A1 (de) Hermetisch versiegelter Elektrolytkondensator mit verbesserter mechanischer Stabilität
DE102011117192A1 (de) Festelektrolytkondensator zur Verwendung in Hochspannungs- und Hochtemperaturanwendungen
DE102016208802A1 (de) Festelektrolytkondensatorbaugruppe zur Verwendung in einer feuchten Atmosphäre
DE102014214945A1 (de) Feuchtigkeitsbeständige Festelektrolytkondensator-Baugruppe
DE102016208800A1 (de) Festelektrolytkondensator mit ultrahoher Kapazität
DE102016208807A1 (de) Festelektrolytkondensatorelement zur Verwendung unter trockenen Bedingungen
DE102013213723A1 (de) Festelektrolytkondensator mit erhöhter Feucht-zu-Trocken-Kapazität
DE102012205600A1 (de) Festelektrolytkondensatorbaugruppe mit mehreren Anoden
DE102013214126A1 (de) Festelektrolytkondensator mit verbesserten Eigenschaften bei hohen Spannungen
DE102012018976A1 (de) Verwendung von Mischungen aus selbstdotierten und fremddotierten leitfähigen Polymeren in einem Kondensator
DE102013213728A1 (de) Nichtionisches Tensid zur Verwendung in einem festen Elektrolyten eines Elektrolytkondensators
DE102013205881A1 (de) Festelektrolytkondensator mit erhöhter mechanischer Stabilität unter extremen Bedingungen
DE102011109752A1 (de) Festelektrolytkondensator-Baugruppe
DE102013213720A1 (de) Temperaturstabiler Festelektrolytkondensator
DE102014225816A1 (de) Stabiler Festelektrolytkondensator, der einen Nanokomposit enthält
DE102010048177A1 (de) Externe Beschichtung für einen Festelektrolytkondensator
DE102014208944A1 (de) Festelektrolytkondensator, der leitfähige Polymerteilchen enthält
DE102011087197A1 (de) Mehrschichtige leitfähige Polymerbeschichtungen zur Verwendung in Hochspannungs-Festelektrolytkondensatoren
DE102016208806A1 (de) Festelektrolytkondensatorbaugruppe zur Verwendung bei hohen Temperaturen
JP2019533304A (ja) 改良されたリーク電流を有する固体電解キャパシタ
DE102011088366A1 (de) Leitfähige Beschichtung zur Verwendung in Elektrolytkondensatoren
DE102011108509A1 (de) Mechanisch robuste Festelektrolytkondensator-Baugruppe

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee