DE102012205600A1 - Festelektrolytkondensatorbaugruppe mit mehreren Anoden - Google Patents

Festelektrolytkondensatorbaugruppe mit mehreren Anoden Download PDF

Info

Publication number
DE102012205600A1
DE102012205600A1 DE102012205600A DE102012205600A DE102012205600A1 DE 102012205600 A1 DE102012205600 A1 DE 102012205600A1 DE 102012205600 A DE102012205600 A DE 102012205600A DE 102012205600 A DE102012205600 A DE 102012205600A DE 102012205600 A1 DE102012205600 A1 DE 102012205600A1
Authority
DE
Germany
Prior art keywords
capacitor
housing
anode
capacitor assembly
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102012205600A
Other languages
English (en)
Inventor
Ivana Zednickova
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Avx Components Corp N D Ges Us
Original Assignee
AVX Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVX Corp filed Critical AVX Corp
Publication of DE102012205600A1 publication Critical patent/DE102012205600A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/26Structural combinations of electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices with each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/10Housing; Encapsulation
    • H01G2/103Sealings, e.g. for lead-in wires; Covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/06Mounting in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Conductive Materials (AREA)

Abstract

Eine Kondensatorbaugruppe, die unter extremen Bedingungen stabil ist, wird breitgestellt. Eine Kondensatorbaugruppe, die unter extremen Bedingungen eine hohe Kapazität erreichen kann und dennoch thermisch und mechanisch stabil bleibt. Selbst bei solchen hohen Kapazitätswerten kann eine gute mechanische Stabilität erreicht werden, indem man mehrere einzelne Kondensatorelemente mit dem Gehäuse der Baugruppe verbindet. Ohne uns auf eine bestimmte Theorie festlegen zu wollen, glauben wir, dass durch die Verwendung von mehreren Elementen die Oberfläche, über die die Elemente mit dem Gehäuse verbunden sind, vergrößert wird. Unter Anderem ermöglicht es dies den Elementen, Schwingungskräfte, die während der Verwendung auftreten, über eine größere Fläche zu verteilen, was die Wahrscheinlichkeit des Abblätterns reduziert. Die Kondensatorelemente sind auch in Gegenwart einer Gasatmosphäre, die ein Inertgas enthält, in einem einzigen Gehäuse eingeschlossen und hermetisch versiegelt, was die Menge an Sauerstoff und Feuchtigkeit, die dem festen Elektrolyten der Kondensatorelemente zugeführt wird, begrenzt. Durch die Kombination der oben genannten Merkmale kann die Kondensatorbaugruppe unter extremen Bedingungen besser funktionieren.

Description

  • Hintergrund der Erfindung
  • Elektrolytkondensatoren (z. B. Tantalkondensatoren) werden aufgrund ihrer volumetrischen Effizienz, Zuverlässigkeit und Verfahrenskompatibilität zunehmend bei der Gestaltung von Schaltungen verwendet. Zum Beispiel ist ein Kondensatortyp, der entwickelt wurde, ein Festelektrolytkondensator, der eine Anode (z. B. Tantal), eine auf der Anode gebildete dielektrische Oxidschicht (z. B. Tantalpentoxid, Ta2O5), eine feste Elektrolytschicht und eine Kathode umfasst. Die feste Elektrolytschicht kann aus einem leitfähigen Polymer gebildet sein, wie es in den US-Patenten Nr. 5,457,862 (Sakata et al.), 5,473,503 (Sakata et al.), 5,729,428 (Sakata et al.) und 5,812,367 (Kudoh et al.) beschrieben ist. Leider ist die Stabilität solcher fester Elektrolyte jedoch aufgrund der Neigung zur Umwandlung aus einem dotierten in einen undotierten Zustand oder umgekehrt bei hohen Temperaturen gering. Als Reaktion auf diese und andere Probleme wurden Kondensatoren entwickelt, die hermetisch versiegelt sind, um den Kontakt von Sauerstoff mit dem leitfähigen Polymer während der Verwendung zu begrenzen. Die US-Patentanmeldung Veröffentlichungsnummer 2009/0244812 (Rawal et al.) beschreibt zum Beispiel eine Kondensatorbaugruppe, die einen Kondensator aus einem leitfähigen Polymer umfasst, der in Gegenwart eines Inertgases in einem Keramikgehäuse eingeschlossen und hermetisch versiegelt ist. Das Gehäuse umfasst einen Deckel, der an die Seitenwände einer Grundstruktur geschweißt ist. Gemäß Rawal et al. begrenzt das Keramikgehäuse die Menge an Sauerstoff und Feuchtigkeit, die dem leitfähigen Polymer zugeführt wird, so dass es in Umgebungen mit hoher Temperatur weniger wahrscheinlich oxidiert, was die thermische Stabilität der Kondensatorbaugruppe erhöht.
  • Trotz der erreichten Vorteile bleiben aber dennoch Probleme bestehen. Zum Beispiel erfordern Anwendungen mit hoher Kapazität im Allgemeinen eine große Anodengröße, um die gewünschte Kapazität zu erreichen. Aufgrund seiner großen Größe ist das Kondensatorelement jedoch mechanisch instabil, insbesondere unter extremen Bedingungen (z. B. hohe Temperatur von über etwa 175°C und/oder hohe Spannung von über etwa 35 Volt), was zum Abblättern und zu schlechten elektrischen Eigenschaften führt.
  • Daher besteht zurzeit ein Bedürfnis nach einem Kondensator, der auch unter extremen Bedingungen eine hohe Kapazität erreichen kann und dennoch stabil bleibt.
  • Kurzbeschreibung der Erfindung
  • Gemäß einer Ausführungsform der vorliegenden Erfindung wird eine Kondensatorbaugruppe offenbart. Die Baugruppe umfasst ein Gehäuse, das einen Innenraum definiert, der eine Gasatmosphäre aufweist, die ein Inertgas enthält. Die Baugruppe umfasst auch ein erstes Kondensatorelement, das an ein zweites Kondensatorelement angrenzt, wobei sich das erste und das zweite Kondensatorelement im Innenraum befinden und mit dem Gehäuse verbunden sind. Jedes der Kondensatorelemente umfasst eine aus einem anodisch oxidierten, gesinterten porösen Körper gebildete Anode und einen die Anode bedeckenden festen Elektrolyten. Die Kondensatorelemente umfassen weiterhin einen Anodenanschluss, der sich in seitlicher Richtung von dem porösen Körper der Anode weg erstreckt, wobei sich der Anschluss innerhalb des Innenraums des Gehäuses befindet. Ein Anoden-Endteil befindet sich in elektrischer Verbindung mit dem Anodenanschluss von jedem der Kondensatorelemente, und ein Kathoden-Endteil steht in elektrischer Verbindung mit dem festen Elektrolyten von jedem der Kondensatorelemente.
  • Weitere Merkmale und Aspekte der vorliegenden Erfindung sind im Folgenden ausführlicher dargelegt.
  • Kurzbeschreibung der Zeichnungen
  • Im Rest der Beschreibung und unter Bezugnahme auf die Begleitzeichnungen ist eine vollständige und nacharbeitbare Offenbarung der vorliegenden Erfindung einschließlich ihrer besten Realisierung für den Fachmann insbesondere dargelegt; dabei sind:
  • 1 eine Vorderansicht einer Ausführungsform einer Kondensatorbaugruppe der Baugruppe der vorliegenden Erfindung;
  • 2 eine Vorderansicht der Kondensatorbaugruppe von 1, wobei der Deckel und das Versiegelungselement entfernt sind; und
  • 3 eine Querschnittsansicht der Kondensatorbaugruppe der 1 und 2 entlang einer Linie 3-3.
  • Bei mehrfacher Verwendung von Bezugszeichen in der vorliegenden Beschreibung und den Zeichnungen sollen diese dieselben oder analoge Merkmale oder Elemente der vorliegenden Erfindung repräsentieren.
  • Ausführliche Beschreibung von repräsentativen Ausführungsformen
  • Der Fachmann sollte sich darüber im Klaren sein, dass die vorliegende Diskussion nur eine Beschreibung von beispielhaften Ausführungsformen ist und die breiteren Aspekte der vorliegenden Erfindung nicht einschränken soll, wobei diese breiteren Aspekte in der beispielhaften Konstruktion verkörpert sind.
  • Allgemein gesagt betrifft die vorliegende Erfindung eine Kondensatorbaugruppe, die unter extremen Bedingungen eine hohe Kapazität erreichen kann und dennoch thermisch und mechanisch stabil bleibt. Obwohl der Kapazitätswert der Baugruppe je nach Anwendung variieren kann, kann er in einem Bereich von etwa 200 bis etwa 10000 μF, in einigen Ausführungsformen etwa 500 bis etwa 8000 μF, in einigen Ausführungsformen etwa 1000 bis etwa 6000 μF und in einigen Ausführungsformen etwa 2000 bis etwa 5000 μF liegen, gemessen bei einer Arbeitsfrequenz von 120 Hz und einer Temperatur von etwa 23°C ± etwa 2°C. Selbst bei solchen hohen Kapazitätswerten kann eine gute mechanische Stabilität erreicht werden, indem man mehrere einzelne Kondensatorelemente mit dem Gehäuse der Baugruppe verbindet. Ohne uns auf eine bestimmte Theorie festlegen zu wollen, glauben wir, dass durch die Verwendung von mehreren Elementen die Oberfläche, über die die Elemente mit dem Gehäuse verbunden sind, vergrößert wird. Unter Anderem ermöglicht es dies den Elementen, Schwingungskräfte, die während der Verwendung auftreten, über eine größere Fläche zu verteilen, was die Wahrscheinlichkeit des Abblätterns reduziert. Die Kondensatorelemente sind auch in Gegenwart einer Gasatmosphäre, die ein Inertgas enthält, in einem einzigen Gehäuse eingeschlossen und hermetisch versiegelt, was die Menge an Sauerstoff und Feuchtigkeit, die dem festen Elektrolyten der Kondensatorelemente zugeführt wird, begrenzt. Durch die Kombination der oben genannten Merkmale kann die Kondensatorbaugruppe unter extremen Bedingungen besser funktionieren.
  • Verschiedene Ausführungsformen der vorliegenden Erfindung werden nun ausführlicher beschrieben.
  • I. Kondensatorelemente
  • Wie oben erwähnt, umfasst die Kondensatorbaugruppe mehrere Kondensatoren nebeneinander. Im Allgemeinen kann eine beliebige Zahl von Kondensatorelementen eingesetzt werden. Zum Beispiel kann die Kondensatorbaugruppe 2 bis 8 Kondensatorelemente (z. B. 2, 3 oder 4), in einigen Ausführungsformen 2 bis 4 Kondensatorelemente, in einigen Ausführungsformen 2 bis 3 Kondensatorelemente und in einer besonderen Ausführungsform 2 Kondensatorelemente enthalten.
  • Unabhängig von der eingesetzten Zahl umfasst das Kondensatorelement eine Anode. Für Hochspannungsanwendungen ist es oft wünschenswert, dass die Anode aus einem Pulver mit einer relativ geringen spezifischen Ladung gebildet wird, wie weniger als etwa 70000 Mikrofarad·Volt pro Gramm (”μF·V/g”), in einigen Ausführungsformen etwa 2000 μF·V/g bis etwa 65000 μF·V/g und in einigen Ausführungsformen etwa 5000 bis etwa 50000 μF·V/g. Obwohl Pulver mit einer geringen spezifischen Ladung zuweilen wünschenswert sein mögen, ist dies selbstverständlich keineswegs eine Bedingung. Das Pulver kann nämlich auch eine relativ hohe spezifische Ladung von etwa 70000 Mikrofarad·Volt pro Gramm (”μF·V/g”) oder mehr, in einigen Ausführungsformen etwa 80000 μF·V/g oder mehr, in einigen Ausführungsformen etwa 90000 μF·V/g oder mehr, in einigen Ausführungsformen etwa 100000 μF·V/g oder mehr und in einigen Ausführungsformen etwa 120000 bis etwa 250000 μF·V/g aufweisen.
  • Das Pulver kann ein Ventilmetall (d. h. ein Metall, das zur Oxidation befähigt ist) oder eine Verbindung, die auf einem Ventilmetall beruht, wie Tantal, Niob, Aluminium, Hafnium, Titan, Legierungen davon, Oxide davon, Nitride davon usw., enthalten. Zum Beispiel kann die Ventilmetallzusammensetzung ein elektrisch leitfähiges Oxid von Niob enthalten, wie ein Nioboxid mit einem Atomverhältnis von Niob zu Sauerstoff von 1:1,0 ± 1,0, in einigen Ausführungsformen 1:1,0 ± 0,3, in einigen Ausführungsformen 1:1,0 ± 0,1 und in einigen Ausführungsformen 1:1,0 ± 0,05. Bei dem Nioboxid kann es sich zum Beispiel um NbO0,7, NbO1,0, NbO1,1 und NbO2 handeln. Beispiele für solche Ventilmetalloxide sind in den US-Patenten Nr. 6,322,912 (Fife), 6,391,275 (Fife et al.), 6,416,730 (Fife et al.), 6,527,937 (Fife), 6,576,099 (Kimmel et al.), 6,592,740 (Fife et al.) und 6,639,787 (Kimmel et al.) und 7,220,397 (Kimmel et al.) sowie in den US-Patentanmeldungen Veröffentlichungsnummer 2005/0019581 (Schnitter), 2005/0103638 (Schnitter et al.) und 2005/0013765 (Thomas et al.) beschrieben, auf die alle hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Die Teilchen des Pulvers können flockenartig, eckig, knotenförmig sowie Gemische oder Variationen davon sein. Die Teilchen haben auch typischerweise eine Siebgrößenverteilung von wenigstens etwa 60 mesh, in einigen Ausführungsformen etwa 60 bis etwa 325 mesh und in einigen Ausführungsformen etwa 100 bis etwa 200 mesh. Ferner beträgt die spezifische Oberfläche etwa 0,1 bis etwa 10,0 m2/g, in einigen Ausführungsformen etwa 0,5 bis etwa 5,0 m2/g und in einigen Ausführungsformen etwa 1,0 bis etwa 2,0 m2/g. Der Ausdruck ”spezifische Oberfläche” bezieht sich auf die Oberfläche, die durch das Verfahren der physikalischen Gasadsorption (B. E. T.) von Brunauer, Emmet und Teller, Journal of American Chemical Society, Band 60, 1938, S. 309, mit Stickstoff als Adsorptionsgas bestimmt wurde. Ebenso beträgt die Schüttdichte (oder Scott-Dichte) typischerweise etwa 0,1 bis etwa 5,0 g/cm3, in einigen Ausführungsformen etwa 0,2 bis etwa 4,0 g/cm3 und in einigen Ausführungsformen etwa 0,5 bis etwa 3,0 g/cm3.
  • Um den Bau des Anodenkörpers zu erleichtern, können noch weitere Komponenten zu dem Pulver gegeben werden. Zum Beispiel kann ein Bindemittel und/oder Gleitmittel eingesetzt werden, um zu gewährleisten, dass die Teilchen ausreichend aneinander haften, wenn sie zum Anodenkörper gepresst werden. Zu den geeigneten Bindemitteln gehören etwa Campher, Stearin- und andere Seifenfettsäuren, Carbowax (Union Carbide), Glyptal (General Electric), Polyvinylalkohole, Naphthalin, Pflanzenwachs und Mikrowachse (gereinigte Paraffine). Das Bindemittel kann in einem Lösungsmittel gelöst und dispergiert werden. Beispielhafte Lösungsmittel sind Wasser, Alkohole usw. Wenn Bindemittel und/oder Gleitmittel verwendet werden, kann ihr Prozentanteil von etwa 0,1 bis etwa 8 Gew.-% der Gesamtmasse variieren. Man sollte sich jedoch darüber im Klaren sein, dass Bindemittel und Gleitmittel in der vorliegenden Erfindung nicht erforderlich sind.
  • Das resultierende Pulver kann kompaktiert werden, wobei man irgendeine herkömmliche Pulverpressform verwendet. Die Pressform kann zum Beispiel eine Einplatz-Kompaktierpresse sein, bei der eine Matrize und ein oder mehrere Stempel verwendet werden. Alternativ dazu können auch Kompaktierpressformen des Ambosstyps verwendet werden, bei denen nur eine Matrize und ein einziger Unterstempel verwendet werden. Einplatz-Kompaktierpressformen sind in mehreren Grundtypen erhältlich, wie Nocken-, Kniehebel- und Exzenter-/Kurbelpressen mit unterschiedlichen Fähigkeiten, wie einfach wirkend, doppelt wirkend, Schwebemantelmatrize, bewegliche Werkzeugaufspannplatte, Gegenstempel, Schnecke, Schlag, Heißpressen, Prägen oder Kalibrieren. Nach dem Kompaktieren kann der resultierende Anodenkörper dann in jede gewünschte Form geschnitten werden, wie quadratisch, rechteckig, kreisförmig, oval, dreieckig, sechseckig, achteckig, siebeneckig, fünfeckig usw. Die Anode kann auch eine ”geriffelte” Form haben, indem sie eine oder mehrere Furchen, Rillen, Vertiefungen oder Einkerbungen enthält, um das Verhältnis von Oberfläche zu Volumen zu erhöhen und dadurch den ESR zu minimieren und den Frequenzgang der Kapazität auszudehnen. Der Anodenkörper kann dann einem Schritt des Erhitzens unterzogen werden, bei dem der größte Teil, wenn nicht alles, eines Bindemittels/Gleitmittels, falls vorhanden, entfernt wird. Zum Beispiel wird der Anodenkörper typischerweise in einem Ofen erhitzt, der bei einer Temperatur von etwa 150°C bis etwa 500°C arbeitet. Alternativ dazu kann das Bindemittel/Gleitmittel auch dadurch entfernt werden, dass man den Pressling mit einer wässrigen Lösung in Kontakt bringt, wie es im US-Patent Nr. 6,197,252 (Bishop et al.) beschrieben ist.
  • Sobald er gebildet ist, wird der Anodenkörper dann gesintert. Die Temperatur, Atmosphäre und Zeit des Sinterns können von einer Vielzahl von Faktoren abhängen, wie der Art der Anode, der Größe der Anode usw. Typischerweise erfolgt das Sintern bei einer Temperatur von etwa 800°C bis etwa 1900°C, in einigen Ausführungsformen etwa 1000°C bis etwa 1500°C und in einigen Ausführungsformen etwa 1100°C bis etwa 1400°C während einer Zeit von etwa 5 Minuten bis etwa 100 Minuten und in einigen Ausführungsformen etwa 30 Minuten bis etwa 60 Minuten. Falls gewünscht, kann das Sintern in einer Atmosphäre erfolgen, die die Übertragung von Sauerstoffatomen zur Anode einschränkt. Zum Beispiel kann das Sintern in einer reduzierenden Atmosphäre, wie in einem Vakuum, Inertgas, Wasserstoff usw., erfolgen. Die reduzierende Atmosphäre kann einen Druck von etwa 10 Torr bis etwa 2000 Torr, in einigen Ausführungsformen etwa 100 Torr bis etwa 1000 Torr und in einigen Ausführungsformen etwa 100 Torr bis etwa 930 Torr aufweisen. Gemische von Wasserstoff und anderen Gasen (z. B. Argon oder Stickstoff) können ebenfalls eingesetzt werden.
  • Gegebenenfalls kann auch ein Anodenanschluss an dem Anodenkörper befestigt werden, der sich in Längsrichtung erstreckt. Der Anodenanschluss kann in Form eines Drahtes, Bleches usw. vorliegen und kann aus einer Ventilmetallverbindung, wie Tantal, Niob, Nioboxid usw., bestehen. Die Befestigung des Anschlusses kann mit Hilfe von bekannten Techniken erfolgen, wie etwa durch Schweißen des Anschlusses an den Körper oder Einbetten innerhalb des Anodenkörpers während der Bildung (z. B. vor der Kompaktierung und/oder dem Sintern).
  • Die Anode wird auch mit einem Dielektrikum beschichtet. Das Dielektrikum kann durch anodisches Oxidieren (”Anodisieren”) der gesinterten Anode gebildet werden, so dass eine dielektrische Schicht auf und/oder innerhalb der Anode entsteht. Zum Beispiel kann eine Anode aus Tantal (Ta) zu Tantalpentoxid (Ta2O5) anodisiert werden. Typischerweise wird die Anodisierung durchgeführt, indem man zunächst eine Lösung auf die Anode aufträgt, etwa durch Eintauchen der Anode in den Elektrolyten. Im Allgemeinen wird ein Lösungsmittel, wie Wasser (z. B. deionisiertes Wasser), eingesetzt. Um die Ionenleitfähigkeit zu verstärken, kann eine Verbindung eingesetzt werden, die in dem Lösungsmittel unter Bildung von Ionen dissoziieren kann. Beispiele für solche Verbindungen sind zum Beispiel Säuren, wie sie im Folgenden in Bezug auf den Elektrolyten beschrieben werden. Zum Beispiel kann eine Säure (z. B. Phosphorsäure) etwa 0,01 Gew.-% bis etwa 5 Gew.-%, in einigen Ausführungsformen etwa 0,05 Gew.-% bis etwa 0,8 Gew.-% und in einigen Ausführungsformen etwa 0,1 Gew.-% bis etwa 0,5 Gew.-% der anodisierenden Lösung ausmachen. Falls gewünscht, können auch Gemische von Säuren eingesetzt werden.
  • Ein Strom wird durch die anodisierende Lösung geleitet, um die dielektrische Schicht zu bilden. Der Wert der Bildungsspannung entspricht der Dicke der dielektrischen Schicht. Zum Beispiel kann die Stromquelle zunächst im galvanostatischen Modus betrieben werden, bis die erforderliche Spannung erreicht ist. Danach kann die Stromquelle auf einen potentiostatischen Modus umgeschaltet werden, um zu gewährleisten, dass die gewünschte Dicke des Dielektrikums über der gesamten Oberfläche der Anode gebildet wird. Selbstverständlich können auch andere bekannte Verfahren eingesetzt werden, wie potentiostatische Impuls- oder Schrittverfahren. Die Spannung, bei der die anodische Oxidation erfolgt, liegt typischerweise im Bereich von etwa 4 bis etwa 250 V und in einigen Ausführungsformen etwa 9 bis etwa 200 V und in einigen Ausführungsformen etwa 20 bis etwa 150 V. Während der Oxidation kann die anodisierende Lösung auf einer erhöhten Temperatur gehalten werden, wie etwa 30°C oder mehr, in einigen Ausführungsformen etwa 40°C bis etwa 200°C und in einigen Ausführungsformen etwa 50°C bis etwa 100°C. Die anodische Oxidation kann auch bei Umgebungstemperatur oder darunter durchgeführt werden. Die resultierende dielektrische Schicht kann auf einer Oberfläche der Anode und innerhalb ihrer Poren gebildet werden.
  • Das Kondensatorelement enthält auch einen festen Elektrolyten, der als Kathode für den Kondensator fungiert. Ein fester Elektrolyt in Form von Mangandioxid kann zum Beispiel durch pyrolytische Zersetzung von Mangannitrat (Mn(NO3)2)) gebildet werden. Solche Techniken sind zum Beispiel im US-Patent Nr. 4,945,452 (Sturmer et al.) beschrieben, auf das hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Alternativ dazu kann der feste Elektrolyt auch aus einer oder mehreren leitfähigen Polymerschichten gebildet werden. Die in solchen Schichten eingesetzten leitfähigen Polymere sind typischerweise π-konjugiert und weisen nach Oxidation oder Reduktion eine elektrische Leitfähigkeit auf, wie eine elektrische Leitfähigkeit von wenigstens etwa 1 μS·cm–1 nach der Oxidation. Beispiele für solche π-konjugierten leitfähigen Polymere sind zum Beispiel Polyheterocyclen (z. B. Polypyrrole, Polythiophene, Polyaniline usw.), Polyacetylene, Poly-p-phenylene, Polyphenolate usw. Besonders gut geeignete leitfähige Polymere sind substituierte Polythiophene mit der folgenden allgemeinen Struktur:
    Figure 00100001
    wobei
    T = O oder S ist;
    D ein gegebenenfalls substituierter C1- bis C5-Alkylenrest (z. B. Methylen, Ethylen, n-Propylen, n-Butylen, n-Pentylen usw.) ist;
    R7 Folgendes ist: ein linearer oder verzweigter, gegebenenfalls substituierter C1 bis C18-Alkylrest (z. B. Methyl, Ethyl, n-Propyl oder Isopropyl, n-, iso-, sek- oder tert-Butyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1-Ethylpropyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 2,2-Dimethylpropyl, n-Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Hexadecyl, n-Octadecyl usw.); ein gegebenenfalls substituierter C5- bis C12-Cycloalkylrest (z. B. Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecyl usw.); ein gegebenenfalls substituierter C6- bis C14-Arylrest (z. B. Phenyl, Naphthyl usw.); ein gegebenenfalls substituierter C7- bis C18-Aralkylrest (z. B. Benzyl, o-, m-, p-Tolyl, 2,3-, 2,4-, 2,5-, 2,6, 3,4-, 3,5-Xylyl, Mesityl usw.); ein gegebenenfalls substituierter C1- bis C4-Hydroxyalkylrest oder ein Hydroxyrest; und
    q eine ganze Zahl von 0 bis 8, in einigen Ausführungsformen 0 bis 2 und in einer Ausführungsform 0 ist; und
    n = 2 bis 5000, in einigen Ausführungsformen 4 bis 2000 und in einigen Ausführungsformen 5 bis 1000 ist. Beispiele für Substituenten für die Reste ”D” oder ”R7” sind zum Beispiel Alkyl, Cycloalkyl, Aryl, Aralkyl, Alkoxy, Halogen, Ether, Thioether, Disulfid, Sulfoxid, Sulfon, Sulfonat, Amino, Aldehyd, Keto, Carbonsäureester, Carbonsäure, Carbonat, Carboxylat, Cyano, Alkylsilan- und Alkoxysilangruppen, Carboxylamidgruppen usw.

  • Besonders gut geeignete Thiophenpolymere sind solche, bei denen ”D” ein gegebenenfalls substituierter C2- bis C3-Alkylenrest ist. Zum Beispiel kann das Polymer gegebenenfalls substituiertes Poly(3,4-ethylendioxythiophen) sein, das die folgende allgemeine Struktur hat:
    Figure 00110001
    Verfahren zur Bildung von leitfähigen Polymeren wie den oben beschriebenen sind in der Technik wohlbekannt. Zum Beispiel beschreibt das US-Patent Nr. 6,987,663 (Merker et al.), auf das hier ausdrücklich für alle Zwecke Bezug genommen wird, verschiedene Techniken zur Bildung von substituierten Polythiophenen aus einem monomeren Vorläufer. Der monomere Vorläufer kann zum Beispiel die folgende Struktur haben:
    Figure 00110002
    wobei
    T, D, R7 und q wie oben definiert sind. Besonders gut geeignete Thiophenmonomere sind solche, bei denen ”D” ein gegebenenfalls substituierter C2- bis C3-Alkylenrest ist. Zum Beispiel können gegebenenfalls substituierte 3,4-Alkylendioxythiophene eingesetzt werden, die die folgende allgemeine Struktur haben:
    Figure 00120001
    wobei R7 und q wie oben definiert sind. In einer besonderen Ausführungsform ist ”q” = 0. Ein kommerziell geeignetes Beispiel für 3,4-Ethylendioxythiophen ist von der Heraeus Clevios unter der Bezeichnung CleviosTM M erhältlich. Weitere geeignete Monomere sind auch im US-Patent Nr. 5,111,327 (Blohm et al.) und 6,635,729 (Groenendahl et al.) beschrieben, auf die hier ausdrücklich für alle Zwecke Bezug genommen wird. Derivate dieser Monomere, die zum Beispiel Dimere oder Trimere der obigen Monomere sind, können ebenfalls eingesetzt werden. Höhermolekulare Derivate, d. h. Tetramere, Pentamere usw., der Monomere sind zur Verwendung in der vorliegenden Erfindung geeignet. Die Derivate können aus gleichen oder verschiedenen Monomereinheiten bestehen und können in reiner Form oder in einem Gemisch miteinander und/oder mit den Monomeren verwendet werden. Oxidierte oder reduzierte Formen dieser Vorläufer können ebenfalls eingesetzt werden.
  • Die Thiophenmonomere werden in Gegenwart eines oxidativen Katalysators chemisch polymerisiert. Der oxidative Katalysator umfasst typischerweise ein Übergangsmetallkation, wie Eisen(III)-, Kupfer(II)-, Chrom(VI)-, Cer(IV)-, Mangan(IV)-, Mangan(VII)-, Ruthenium(III)-Kation usw. Es kann auch ein Dotierungsmittel eingesetzt werden, um dem leitfähigen Polymer überschüssige Ladung zu verleihen und die Leitfähigkeit des Polymers zu stabilisieren. Das Dotierungsmittel umfasst typischerweise ein anorganisches oder organisches Anion, wie ein Ion einer Sulfonsäure. In bestimmten Ausführungsformen weist der in der Vorläuferlösung eingesetzte oxidative Katalysator insofern sowohl eine katalytische als auch eine dotierende Funktionalität auf, als er ein Kation (z. B. Übergangsmetall) und ein Anion (z. B. Sulfonsäure) enthält. Der oxidative Katalysator kann zum Beispiel ein Übergangsmetallsalz sein, das Eisen(III)-Kationen enthält, wie Eisen(III)-Halogenide (z. B. FeCl3) oder Eisen(III)-Salze anderer anorganischer Säuren, wie Fe(ClO4)3 oder Fe2(SO4)3, und die Eisen(III)-Salze organischer Säuren und anorganischer Säuren, die organische Reste umfassen. Beispiele für Eisen(III)-Salze von anorganischen Säuren mit organischen Resten sind zum Beispiel Eisen(III)-Salze von Schwefelsäuremonoestern von C1- bis C20-Alkanolen (z. B. das Eisen(III)-Salz von Laurylsulfat). Ebenso sind Beispiele für Eisen(III)-Salze von organischen Säuren zum Beispiel Eisen(III)-Salze von C1- bis C20-Alkansulfonsäuren (z. B. Methan-, Ethan-, Propan-, Butan- oder Dodecansulfonsäure); Eisen(III)-Salze von aliphatischen Perfluorsulfonsäuren (z. B. Trifluormethansulfonsäure, Perfluorbutansulfonsäure oder Perfluoroctansulfonsäure); Eisen(III)-Salze von aliphatischen C1- bis C20-Carbonsäuren (z. B. 2-Ethylhexylcarbonsäure); Eisen(III)-Salze von aliphatischen Perfluorcarbonsäuren (z. B. Trifluoressigsäure oder Perfluoroctansäure); Eisen(III)-Salze von aromatischen Sulfonsäuren, die gegebenenfalls mit C1- bis C2O-Alkylgruppen substituiert sind (z. B. Benzolsulfonsäure, o-Toluolsulfonsäure, p-Toluolsulfonsäure oder Dodecylbenzolsulfonsäure); Eisen(III)-Salze von Cycloalkansulfonsäuren (z. B. Camphersulfonsäure); usw. Gemische dieser oben genannten Eisen(III)-Salze können ebenfalls verwendet werden. Eisen(III)-p-toluolsulfonat, Eisen(III)-o-toluolsulfonat und Gemische davon sind besonders gut geeignet. Ein kommerziell geeignetes Beispiel für Eisen(III)-p-toluolsulfonat ist von der Heraeus Clevios unter der Bezeichnung CleviosTM C erhältlich.
  • Verschiedene Verfahren können verwendet werden, um eine leitfähige Polymerschicht zu bilden. In einer Ausführungsform werden der oxidative Katalysator und das Monomer entweder nacheinander oder zusammen aufgetragen, so dass die Polymerisationsreaktion in situ auf dem Teil stattfindet. Zu den geeigneten Auftragstechniken gehören Siebdruck, Tauchbeschichtung, elektrophoretische Beschichtung und Sprühbeschichtung; sie können verwendet werden, um eine leitfähige Polymerbeschichtung zu bilden. Als Beispiel kann das Monomer zunächst unter Bildung einer Vorläuferlösung mit dem oxidativen Katalysator gemischt werden. Sobald das Gemisch gebildet ist, kann es aufgetragen und polymerisieren gelassen werden, so dass die leitfähige Beschichtung auf der Oberfläche entsteht. Alternativ dazu können der oxidative Katalysator und das Monomer auch nacheinander aufgetragen werden. In einer Ausführungsform wird der oxidative Katalysator zum Beispiel in einem organischen Lösungsmittel (z. B. Butanol) gelöst und dann als Tauchlösung aufgetragen. Das Teil kann dann getrocknet werden, um das Lösungsmittel davon zu entfernen. Danach kann das Teil in eine Lösung, die das Monomer enthält, eingetaucht werden.
  • Die Polymerisation wird typischerweise je nach dem verwendeten Oxidationsmittel und der gewünschten Reaktionszeit bei Temperaturen von etwa –10°C bis etwa 250°C und in einigen Ausführungsformen etwa 0°C bis etwa 200°C durchgeführt. Geeignete Polymerisationstechniken, wie sie oben beschrieben sind, sind ausführlicher in der US-Veröffentlichungs-Nr. 7,515,396 (Biler) beschrieben. Noch andere Verfahren zum Auftragen einer oder mehrerer solcher leitfähigen Polymerbeschichtungen sind in den US-Patenten Nr. 5,457,862 (Sakata et al.), 5,473,503 (Sakata et al.), 5,729,428 (Sakata et al.) und 5,812,367 (Kudoh et al.) beschrieben, auf die hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Neben der in-situ-Auftragung kann eine leitfähige Polymerschicht auch in Form einer Dispersion von leitfähigen Polymerteilchen aufgetragen werden. Obwohl ihre Größe variieren kann, ist es typischerweise wünschenswert, dass die Teilchen einen kleinen Durchmesser besitzen, um die zum Befestigen des Anodenteils verfügbare Oberfläche zu vergrößern. Zum Beispiel können die Teilchen einen mittleren Durchmesser von etwa 1 bis etwa 500 Nanometer, in einigen Ausführungsformen etwa 5 bis etwa 400 Nanometer und in einigen Ausführungsformen etwa 10 bis etwa 300 Nanometer haben. Der D90-Wert der Teilchen (Teilchen mit einem Durchmesser kleiner oder gleich dem D90-Wert bilden 90% des Gesamtvolumens aller festen Teilchen) kann etwa 15 Mikrometer oder weniger, in einigen Ausführungsformen etwa 10 Mikrometer oder weniger und in einigen Ausführungsformen etwa 1 Nanometer bis etwa 8 Mikrometer betragen. Der Durchmesser der Teilchen kann mit Hilfe bekannter Techniken, wie mittels Ultrazentrifuge, Laserbeugung usw., bestimmt werden.
  • Die Verarbeitung des leitfähigen Polymers in eine Teilchenform kann verstärkt werden, indem man ein getrenntes Gegenion verwendet, das der positiven Ladung, die das substituierte Polythiophen trägt, entgegenwirken soll. In einigen Fällen kann das Polymer positive und negative Ladungen in der Struktureinheit besitzen, wobei sich die positive Ladung auf der Hauptkette und die negative Ladung gegebenenfalls auf den Substituenten des Restes ”R”, wie Sulfonat- oder Carboxylatgruppen, befindet. Die positiven Ladungen der Hauptkette können teilweise oder zur Gänze mit den gegebenenfalls vorhandenen anionischen Gruppen an den Resten ”R” gesättigt sein. Insgesamt gesehen können die Polythiophene in diesen Fällen kationisch, neutral oder sogar anionisch sein. Dennoch werden sie alle als kationische Polythiophene angesehen, da die Polythiophen-Hauptkette eine positive Ladung trägt.
  • Das Gegenion kann ein monomeres oder polymeres Anion sein. Polymere Anionen können zum Beispiel Anionen von polymeren Carbonsäuren (z. B. Polyacrylsäuren, Polymethacrylsäure, Polymaleinsäuren usw.), polymeren Sulfonsäuren (z. B. Polystyrolsulfonsäuren (”PSS”), Polyvinylsulfonsäuren usw.) usw. sein. Die Säuren können auch Copolymere, wie Copolymere von Vinylcarbon- und Vinylsulfonsäure mit anderen polymerisierbaren Monomeren, wie Acrylsäureestern und Styrol, sein. Ebenso sind geeignete monomere Anionen zum Beispiel Anionen von C1- bis C20-Alkansulfonsäuren (z. B. Dodecansulfonsäure); aliphatischen Perfluorsulfonsäuren (z. B. Trifluormethansulfonsäure, Perfluorbutansulfonsäure oder Perfluoroctansulfonsäure); aliphatischen C1- bis C20-Carbonsäuren (z. B. 2-Ethylhexylcarbonsäure); aliphatischen Perfluorcarbonsäuren (z. B. Trifluoressigsäure oder Perfluoroctansäure); aromatischen Sulfonsäuren, die gegebenenfalls mit C1- bis C20-Alkylgruppen substituiert sind (z. B. Benzolsulfonsäure, o-Toluolsulfonsäure, p-Toluolsulfonsäure oder Dodecylbenzolsulfonsäure); Cycloalkansulfonsäuren (z. B. Kamphersulfonsäure oder Tetrafluoroborate, Hexafluorophosphate, Perchlorate, Hexafluoroantimonate, Hexafluoroarsenate oder Hexachloroantimonate); usw. Besonders gut geeignete Gegenionen sind polymere Anionen, wie eine polymere Carbon- oder Sulfonsäure (z. B. Polystyrolsulfonsäure (”PSS”)). Das Molekulargewicht solcher polymeren Anionen liegt typischerweise im Bereich von etwa 1000 bis etwa 2000000 und in einigen Ausführungsformen etwa 2000 bis etwa 500000.
  • Wenn sie eingesetzt werden, beträgt das Gewichtsverhältnis solcher Gegenionen zu leitfähigen Polymeren in einer gegebenen Schicht des festen Elektrolyten typischerweise etwa 0,5:1 bis etwa 50:1, in einigen Ausführungsformen etwa 1:1 bis etwa 30:1 und in einigen Ausführungsformen etwa 2:1 bis etwa 20:1. Das Gewicht der elektrisch leitfähigen Polymere, von dem bei den oben genannten Gewichtsverhältnissen die Rede ist, bezieht sich auf den eingewogenen Anteil der verwendeten Monomere, wenn man annimmt, dass während der Polymerisation eine vollständige Umsetzung stattfindet.
  • Die Dispersion kann auch ein oder mehrere Bindemittel enthalten, um die adhäsive Natur der polymeren Schicht weiter zu verstärken und auch die Stabilität der Teilchen innerhalb der Dispersion zu erhöhen. Die Bindemittel können organischer Natur sein, wie Polyvinylalkohole, Polyvinylpyrrolidone, Polyvinylchloride, Polyvinylacetate, Polyvinylbutyrate, Polyacrylsäureester, Polyacrylsäureamide, Polymethacrylsäureester, Polymethacrylsäureamide, Polyacrylnitrile, Styrol/Acrylsäureester, Vinylacetat/Acrylsäureester und Ethylen/Vinylacetat-Copolymere, Polybutadiene, Polyisoprene, Polystyrole, Polyether, Polyester, Polycarbonate, Polyurethane, Polyamide, Polyimide, Polysulfone, Melamin-Formaldehyd-Harze, Epoxyharze, Silikonharze oder Cellulosen. Es können auch Vernetzungsmittel eingesetzt werden, um die Adhäsionsfähigkeit der Bindemittel zu erhöhen. Solche Vernetzungsmittel sind zum Beispiel Melaminverbindungen, maskierte Isocyanate oder funktionelle Silane, wie 3-Glycidoxypropyltrialkoxysilan, Tetraethoxysilan und Tetraethoxysilan-Hydrolysat oder vernetzbare Polymere, wie Polyurethane, Polyacrylate oder Polyolefine, und anschließende Vernetzung. Es können auch noch andere Bestandteile in der Dispersion vorhanden sein, wie in der Technik bekannt ist, wie Dispersionsmittel (z. B. Wasser), Tenside usw.
  • Wenn gewünscht, können ein oder mehrere der oben beschriebenen Auftragungsschritte wiederholt werden, bis die gewünschte Dicke der Beschichtung erreicht ist. In einigen Ausführungsformen wird jedes Mal nur eine relativ dünne Schicht der Beschichtung gebildet. Die gewünschte Gesamtdicke der Beschichtung kann im Allgemeinen je nach den gewünschten Eigenschaften des Kondensators variieren. Typischerweise hat die resultierende leitfähige Polymerbeschichtung eine Dicke von etwa 0,2 Mikrometer (”μm”) bis etwa 50 μm, in einigen Ausführungsformen etwa 0,5 μm bis etwa 20 μm und in einigen Ausführungsformen etwa 1 μm bis etwa 5 μm. Man sollte sich darüber im Klaren sein, dass die Dicke der Beschichtung nicht notwendigerweise an allen Stellen des Teils dieselbe ist. Dennoch fällt die mittlere Dicke der Beschichtung auf dem Substrat im Allgemeinen in die oben genannten Bereiche.
  • Die leitfähige Polymerschicht kann gegebenenfalls geflickt werden. Das Flicken kann nach jeder Auftragung einer leitfähigen Polymerschicht erfolgen, oder es kann nach der Auftragung der gesamten Beschichtung erfolgen. In einigen Ausführungsformen kann das leitfähige Polymer geflickt werden, indem man das Teil in eine Elektrolytlösung eintaucht und danach eine konstante Spannung an die Lösung anlegt, bis die Stromstärke auf ein vorgewähltes Niveau reduziert ist. Falls gewünscht, kann dieses Flicken auch in mehreren Schritten bewerkstelligt werden. Zum Beispiel kann eine Elektrolytlösung eine verdünnte Lösung des Monomers, des Katalysators und des Dotierungsmittels in einem Alkohollösungsmittel (z. B. Ethanol) sein. Die Beschichtung kann gegebenenfalls auch gewaschen werden, um verschiedene Nebenprodukte, überschüssige Reagentien usw. zu entfernen.
  • Falls gewünscht, kann der Kondensator auch andere Schichten enthalten, wie in der Technik bekannt ist. Zum Beispiel kann zwischen dem Dielektrikum und dem festen Elektrolyten gegebenenfalls eine Schutzbeschichtung gebildet werden, wie etwa aus einem relativ isolierenden harzartigen Material (natürlich oder synthetisch). Solche Materialien können einen spezifischen Widerstand von mehr als etwa 10 Ω·cm haben, in einigen Ausführungsformen mehr als etwa 100, in einigen Ausführungsformen mehr als etwa 1000 Ω·cm, in einigen Ausführungsformen mehr als etwa 1 × 105 Ω·cm und in einigen Ausführungsformen mehr als etwa 1 × 1010 Ω·cm. Einige harzartige Materialien, die in der vorliegenden Erfindung verwendet werden können, sind unter anderem Polyurethan, Polystyrol, Ester von ungesättigten oder gesättigten Fettsäuren (z. B. Glyceride) usw. Zu den geeigneten Estern von Fettsäuren gehören zum Beispiel unter anderem Ester von Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Eleostearinsäure, Ölsäure, Linolsäure, Linolensäure, Aleuritinsäure, Schellolsäure usw. Diese Ester von Fettsäuren haben sich als besonders nützlich erwiesen, wenn sie in relativ komplexen Kombinationen unter Bildung eines ”trocknenden Öls” verwendet werden, das es dem resultierenden Film ermöglicht, schnell zu einer stabilen Schicht zu polymerisieren. Zu diesen trocknenden Ölen gehören etwa Mono-, Di- und/oder Triglyceride, die ein Glyceringerüst mit einem, zwei bzw. drei Fettacylresten, die verestert sind, aufweisen. Einige geeignete trocknende Öle, die verwendet werden können, sind zum Beispiel unter anderem Olivenöl, Leinöl, Ricinusöl, Tungöl, Sojaöl und Schellack. Diese und andere Schutzbeschichtungsmaterialien sind ausführlicher im US-Patent Nr. 6,674,635 (Fife et al.) beschrieben, auf das hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Es kann auch eine Kohlenstoffschicht (z. B. Graphit) bzw. eine Silberschicht auf das Teil aufgetragen werden. Die Silberbeschichtung kann zum Beispiel als lötbarer Leiter, Kontaktschicht und/oder Ladungskollektor für den Kondensator wirken, und die Kohlenstoffbeschichtung kann den Kontakt der Silberbeschichtung mit dem festen Elektrolyten einschränken. Solche Beschichtungen können einen Teil oder den gesamten festen Elektrolyten bedecken.
  • Allgemein gesprochen, sind die Kondensatorelemente im Wesentlichen frei von Harzen, die die Elemente einbetten, wie sie häufig bei herkömmlichen Festelektrolytkondensatoren eingesetzt werden. Unter Anderem kann die Einbettung der Kondensatorelemente zu einer Instabilität in extremen Umgebungen führen, d. h. hohe Temperatur (z. B. über etwa 175°C) und/oder hohe Spannung (z. B. über etwa 35 Volt).
  • II. Gehäuse
  • Wie erwähnt, werden die Kondensatorelemente innerhalb eines Gehäuses hermetisch versiegelt. Zur Bildung des Gehäuses kann eine Vielzahl von Materialien verwendet werden, wie Metalle, Kunststoffe, Keramik usw. In einer Ausführungsform umfasst das Gehäuse zum Beispiel eine oder mehrere Schichten aus einem Metall, wie Tantal, Niob, Aluminium, Nickel, Hafnium, Titan, Kupfer, Silber, Stahl (z. B. Edelstahl), Legierungen davon (z. B. elektrisch leitfähige Oxide), Verbundstoffe davon (z. B. mit elektrisch leitfähigem Oxid beschichtetes Metall) usw. In einer anderen Ausführungsform kann das Gehäuse eine oder mehrere Schichten aus einem keramischen Material, wie Aluminiumnitrid, Aluminiumoxid, Siliciumoxid, Magnesiumoxid, Calciumoxid, Glas usw. sowie Kombinationen davon, umfassen.
  • Das Gehäuse kann jede beliebige Form haben, wie zylindrisch, D-förmig, rechteckig, dreieckig, prismatisch usw. In den 13 ist zum Beispiel eine Ausführungsform einer Kondensatorbaugruppe 100 gezeigt, die ein Gehäuse 122 und nebeneinander die Kondensatorelemente 120a und 120b enthält. In dieser besonderen Ausführungsform ist das Gehäuse 122 im Wesentlichen rechteckig. Typischerweise haben das Gehäuse und die Kondensatorelemente dieselbe oder eine ähnliche Form, so dass die Elemente leicht im Innenraum untergebracht werden können. In der gezeigten Ausführungsform zum Beispiel haben das Gehäuse 122 und die Kondensatorelemente 120a und 120b eine im Wesentlichen rechteckige Form.
  • Die Art und Weise, in der die Kondensatorelemente innerhalb des Gehäuses angeordnet sind, wird im Allgemeinen so gewählt, dass die Wahrscheinlichkeit ihres Abblätterns unter Schwingungskräften reduziert wird. In der gezeigten Ausführungsform liegen die Kondensatorelemente 120a und 120b zum Beispiel so nebeneinander, dass sich eine Seitenfläche 403a des Kondensatorelements 120a angrenzend an eine Seitenfläche 403b des Kondensatorelements 120b befindet und auf diese hin gerichtet ist, und so, dass eine Seitenfläche 405a des Kondensatorelements 120a von einer Seitenfläche 405b des Kondensatorelements 120b weg gerichtet ist. Außer dass sie aneinander angrenzend nebeneinander liegen, sind die Kondensatorelemente 120a und 120b auch so ausgerichtet, dass sie Hauptflächen (z. B. die Fläche mit dem größten Flächeninhalt) aufweisen, die in einer horizontalen Konfiguration orientiert sind. Zum Beispiel weisen das Kondensatorelement 120a und 120b jeweils eine Hauptfläche 181 und 183 auf, die sich in einer Ebene erstreckt, die durch deren Breite (–x-Richtung) und Länge (–y-Richtung) definiert ist. Auf diese Weise sind die Hauptflächen der Kondensatorelemente im Wesentlichen koplanar und erstrecken sich in dieselbe Richtung (z. B. –y-Richtung) wie die Länge des Gehäuses 122, mit dem sie verbunden ist. Dies führt zu einer Vielzahl von Vorteilen, darunter die Fähigkeit, die Kontaktfläche zwischen den Kondensatorelementen und dem Gehäuse zu erhöhen, was ihnen dabei hilft, Schwingungskräften, denen sie ausgesetzt sind, besser zu widerstehen. Selbstverständlich sollte man sich auch darüber im Klaren sein, dass die Kondensatorelemente auch so angeordnet sein können, dass ihre Hauptflächen nicht koplanar sind, sondern in einer bestimmten Richtung, wie der –z-Richtung oder der –x-Richtung, senkrecht aufeinander stehen. Die Kondensatorelemente brauchen sich auch nicht in derselben Richtung zu erstrecken.
  • Falls gewünscht, kann die Kondensatorbaugruppe der vorliegenden Erfindung eine relativ hohe volumetrische Effizienz aufweisen. Um diese hohe Effizienz zu erleichtern, nimmt das Kondensatorelement typischerweise einen wesentlichen Teil des Volumens des Innenraums des Gehäuses ein. Zum Beispiel kann das Kondensatorelement etwa 30 Vol.-% oder mehr, in einigen Ausführungsformen etwa 50 Vol.-% oder mehr, in einigen Ausführungsformen etwa 60 Vol.-% oder mehr, in einigen Ausführungsformen etwa 70 Vol.-% oder mehr, in einigen Ausführungsformen etwa 80 Vol.-% bis etwa 98 Vol.-% und in einigen Ausführungsformen etwa 85 Vol.-% bis 97 Vol.-% des Innenraums des Gehäuses einnehmen. Zu diesem Zweck ist die Differenz zwischen den Abmessungen des Kondensatorelements und denjenigen des durch das Gehäuse definierten Innenraums typischerweise relativ gering.
  • Wenn wir uns zum Beispiel auf 3 beziehen, so kann das Kondensatorelement 120a eine Länge haben (ausschließlich der Länge des Anodenanschlusses 6), die relativ ähnlich der Länge eines durch das Gehäuse 122 definierten Innenraums 126 ist. Zum Beispiel liegt das Verhältnis der Länge der Anode zur Länge des Innenraums im Bereich von etwa 0,40 bis 1,00, in einigen Ausführungsformen etwa 0,50 bis etwa 0,99, in einigen Ausführungsformen etwa 0,60 bis 0,99 und in einigen Ausführungsformen etwa 0,70 bis etwa 0,98. Das Kondensatorelement 120a kann eine Länge von etwa 5 bis etwa 10 Millimetern aufweisen, und der Innenraum 126 kann eine Länge von etwa 6 bis etwa 15 Millimetern aufweisen. Ähnlich kann das Verhältnis der Höhe des Kondensatorelements 120a (in –z-Richtung) zur Höhe des Innenraums 126 im Bereich von etwa 0,40 bis 1,00, in einigen Ausführungsformen etwa 0,50 bis etwa 0,99, in einigen Ausführungsformen etwa 0,60 bis etwa 0,99 und in einigen Ausführungsformen etwa 0,70 bis etwa 0,98 liegen. Zum Beispiel kann die Höhe des Kondensatorelements 120a etwa 0,5 bis etwa 2 Millimeter betragen, und die Höhe des Innenraums 126 kann etwa 0,7 bis etwa 6 Millimeter betragen.
  • Obwohl es keineswegs erforderlich ist, kann das Kondensatorelement so an dem Gehäuse befestigt sein, dass außerhalb des Gehäuses für die anschließende Integration in eine Schaltung ein Anoden-Endteil und ein Kathoden-Endteil gebildet werden. Die besondere Konfiguration der Endteile kann von dem Verwendungszweck abhängen. In einer Ausführungsform kann die Kondensatorbaugruppe zum Beispiel so geformt werden, dass sie oberflächenmontierbar und dennoch mechanisch robust ist. Zum Beispiel kann der Anodenanschluss elektrisch mit äußeren, oberflächenmontierbaren Anoden- und Kathoden-Endteilen (z. B. Feldern, Blechen, Platten, Rahmen usw.) verbunden sein. Solche Endteile können sich durch das Gehäuse hindurch erstrecken, um den Kondensator anzuschließen. Die Dicke oder Höhe der Endteile wird im Allgemeinen so gewählt, dass die Dicke der Kondensatorbaugruppe minimiert wird. Zum Beispiel kann die Dicke der Endteile in einem Bereich von etwa 0,05 bis etwa 1 Millimeter, in einigen Ausführungsformen etwa 0,05 bis etwa 0,5 Millimeter und etwa 0,1 bis etwa 0,2 Millimeter liegen. Falls gewünscht, kann die Oberfläche der Endteile, wie in der Technik bekannt ist, mit Nickel, Silber, Gold, Zinn usw. galvanisiert werden, um zu gewährleisten, dass das endgültige Teil auf der Leiterplatte montierbar ist. In einer besonderen Ausführungsform werden die Endteile mit Nickel- bzw. Silber-Schutzschichten versehen, und die Montagefläche wird auch mit einer Zinnlötschicht versehen. In einer anderen Ausführungsform werden bei den Endteilen dünne äußere Metallschichten (z. B. Gold) auf einer Grundmetallschicht (z. B. Kupferlegierung) abgeschieden, um die Leitfähigkeit weiter zu erhöhen.
  • In bestimmten Ausführungsformen können Verbindungselemente innerhalb des Innenraums des Gehäuses eingesetzt werden, um die Verbindung mit den Endteilen in einer mechanisch stabilen Weise zu erleichtern. Wenn wir uns zum Beispiel wieder auf 1 beziehen, so kann die Kondensatorbaugruppe 100 ein Verbindungselement 162 umfassen, das aus einem ersten Teil 167 und einem zweiten Teil 165 besteht. Das Verbindungselement 162 kann aus leitfähigen Materialien ähnlich wie die äußeren Endteile bestehen. Der erste Teil 167 und der zweite Teil 165 können einstückig ausgebildet sein, oder es können separate Teile sein, die miteinander verbunden sind, entweder direkt oder über ein zusätzliches leitfähiges Element (z. B. Metall). In der gezeigten Ausführungsform befindet sich der zweite Teil 165 in einer Ebene, die im Wesentlichen parallel zu einer Längsrichtung, in der sich der Anschluss 6 erstreckt (z. B. –y-Richtung), verläuft. Der erste Teil 167 ist in dem Sinne ”hochstehend”, dass er sich in einer Ebene befindet, die im Wesentlichen senkrecht zur Längsrichtung, in der sich der Anschluss 6 erstreckt, verläuft. Auf diese Weise kann der erste Teil 167 die Bewegung des Anschlusses 6 in der horizontalen Richtung einschränken, um den Oberflächenkontakt und die mechanische Stabilität während der Verwendung zu verstärken. Falls gewünscht, kann ein isolierendes Material 7 (z. B. ein TeflonTM-Ring) um den Anschluss 6 herum eingesetzt werden.
  • Der erste Teil 167 kann auch einen Montagebereich besitzen (nicht gezeigt), der mit dem Anodenanschluss 6 eines jeweiligen Kondensatorelements 120a oder 120b verbunden ist. Der Bereich kann eine ”U-Form” aufweisen, um den Oberflächenkontakt und die mechanische Stabilität des Anschlusses 6 weiter zu verstärken. Die Verbindung des Bereichs mit dem Anschluss 6 kann mit Hilfe einer Vielzahl von Techniken bewerkstelligt werden, wie Schweißen, Laserschweißen, leitfähige Kleber usw. In einer besonderen Ausführungsform wird der Bereich zum Beispiel durch Laserschweißen an dem Anodenanschluss 6 befestigt. Unabhängig von der gewählten Technik kann der erste Teil 167 jedoch den Anodenanschluss 6 in einer im Wesentlichen horizontalen Ausrichtung halten, um die Maßhaltigkeit der Kondensatorbaugruppe 100 weiter zu verstärken.
  • Wenn wir uns wiederum auf 1 beziehen, so ist eine Ausführungsform der vorliegenden Erfindung gezeigt, bei der das Verbindungselement 162 und das jeweilige Kondensatorelement 120a oder 120b über ein Anoden- und ein Kathoden-Endteil 127 bzw. 129 mit dem Gehäuse 122 verbunden ist. Das Anoden-Endteil 127 enthält einen ersten Bereich 127a, der sich innerhalb des Gehäuses 122 befindet und elektrisch mit dem Verbindungselement 162 verbunden ist, und einen zweiten Bereich 127b, der sich außerhalb des Gehäuses 122 befindet und für eine Montagefläche 201 sorgt. Ähnlich enthält das Kathoden-Endteil 129 einen ersten Bereich 129a, der sich innerhalb des Gehäuses 122 befindet und elektrisch mit dem festen Elektrolyten des Kondensatorelements 120 verbunden ist, und einen zweiten Bereich 129b, der sich außerhalb des Gehäuses 122 befindet und für eine Montagefläche 203 sorgt. Man sollte sich darüber im Klaren sein, dass sich nicht der gesamte Teil solcher Bereiche innerhalb oder außerhalb des Gehäuses zu befinden braucht.
  • In der gezeigten Ausführungsform erstreckt sich eine leitfähige Bahn 127c in der Außenwand 123 des Gehäuses, um den ersten Bereich 127a und den zweiten Bereich 127b miteinander zu verbinden. Ähnlich erstreckt sich eine leitfähige Bahn 129c in der Außenwand 123 des Gehäuses, um den ersten Bereich 127a und den zweiten Bereich 127b miteinander zu verbinden. Die leitfähigen Bahnen und/oder Bereiche der Endteile können getrennt oder einstückig sein. Die Bahnen können sich nicht nur durch die Außenwand des Gehäuses erstrecken, sondern können sich auch an anderen Stellen befinden, wie außerhalb der Außenwand. Selbstverständlich ist die vorliegende Erfindung keineswegs auf die Verwendung von leitfähigen Bahnen zur Bildung der gewünschten Endteile beschränkt.
  • Unabhängig von der besonderen eingesetzten Konfiguration kann die Verbindung der Endteile 127 und 129 mit den Kondensatorelementen 120a und 120b unter Verwendung jeder bekannten Technik erfolgen, wie Schweißen, Laserschweißen, leitfähige Kleber usw. In einer besonderen Ausführungsform wird zum Beispiel ein leitfähiger Kleber 131 verwendet, um den zweiten Teil 165 des Verbindungselements 162 mit dem Anoden-Endteil 127 zu verbinden. Ähnlich wird ein leitfähiger Kleber 133 verwendet, um die Kathode des Kondensatorelements 120 mit dem Kathoden-Endteil 129 zu verbinden. Die leitfähigen Kleber können aus leitfähigen Metallteilchen, die in einer Harzzusammensetzung enthalten sind, bestehen. Bei den Metallteilchen kann es sich um Silber, Kupfer, Gold, Platin, Nickel, Zink, Bismut usw. handeln. Die Harzzusammensetzung kann ein duroplastisches Harz (z. B. Epoxidharz), Härtungsmittel (z. B. Säureanhydrid) und Kopplungsmittel (z. B. Silan-Kopplungsmittel) umfassen. Geeignete leitfähige Kleber sind in der US-Patentanmeldung Veröffentlichungsnummer 2006/0038304 (Osako et al.) beschrieben, auf die hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Gegebenenfalls kann sich auch eine polymere Einspannung in Kontakt mit einer oder mehreren Flächen der Kondensatorelemente, wie der hinteren Fläche, vorderen Fläche, oberen Fläche, unteren Fläche, Seitenflächen oder irgendeiner Kombination davon befinden. Die polymere Einspannung kann die Wahrscheinlichkeit des Abblätterns des Kondensatorelements von dem Gehäuse reduzieren. In dieser Hinsicht besitzt die polymere Einspannung typischerweise ein bestimmtes Maß an Festigkeit, das es ihr ermöglicht, das Kondensatorelement in einer relativ fixierten Position zu halten, auch wenn es Schwingungskräften ausgesetzt ist, aber nicht so fest, dass es Risse bekommt. Die Einspannung kann zum Beispiel eine Zugfestigkeit von etwa 1 bis etwa 150 Megapascal (”MPa”), in einigen Ausführungsformen etwa 2 bis etwa 100 MPa, in einigen Ausführungsformen etwa 10 bis etwa 80 MPa und in einigen Ausführungsformen etwa 20 bis etwa 70 MPa besitzen, gemessen bei einer Temperatur von etwa 25°C. Es ist normalerweise wünschenswert, dass die Einspannung nicht elektrisch leitend ist.
  • Es kann zwar eine Vielzahl von Materialien, die die oben genannten gewünschten Festigkeitseigenschaften aufweisen, eingesetzt werden, doch hat sich gezeigt, dass härtbare duroplastische Harze zur Verwendung in der vorliegenden Erfindung besonders gut geeignet sind. Beispiele für solche Harze sind etwa Epoxidharze, Polyimide, Melaminharze, Harnstoff-Formaldehyd-Harze, Polyurethane, Silikonpolymere, Phenolharze usw. In bestimmten Ausführungsformen können in der Einspannung zum Beispiel ein oder mehrere Polyorganosiloxane eingesetzt werden. Siliciumgebundene organische Gruppen, die in diesen Polymeren verwendet werden, können einwertige Kohlenwasserstoff- und/oder einwertige halogenierte Kohlenwasserstoffgruppen enthalten. Solche einwertigen Gruppen haben typischerweise 1 bis etwa 20 Kohlenstoffatome, vorzugsweise 1 bis 10 Kohlenstoffatome, und Beispiele dafür sind unter Anderem Alkyl (z. B. Methyl, Ethyl, Propyl, Pentyl, Octyl, Undecyl und Octadecyl); Cycloalkyl (z. B. Cyclohexyl); Alkenyl (z. B. Vinyl, Allyl, Butenyl und Hexenyl); Aryl (z. B. Phenyl, Tolyl, Xylyl, Benzyl und 2-Phenylethyl) und halogenierte Kohlenwasserstoffgruppen (z. B. 3,3,3-Trifluorpropyl, 3-Chlorpropyl und Dichlorphenyl). Typischerweise handelt es sich bei wenigstens 50% und besonders bevorzugt wenigstens 80% der organischen Gruppen um Methyl. Beispiele für solche Methylpolysiloxane sind etwa Polydimethylsiloxan (”PDMS”), Polymethylhydrogensiloxan usw. Noch andere geeignete Methylpolysiloxane sind etwa Dimethyldiphenylpolysiloxan, Dimethyl/methylphenylpolysiloxan, Polymethylphenylsiloxan, Methylphenyl/dimethylsiloxan, Vinyldimethyl-terminiertes Polydimethylsiloxan, Vinylmethyl/dimethylpolysiloxan, Vinyldimethyl-terminiertes Vinylmethyl/dimethylpolysiloxan, Divinylmethyl-terminiertes Polydimethylsiloxan, Vinylphenylmethyl-terminiertes Polydimethylsiloxan, Dimethylhydro-terminiertes Polydimethylsiloxan, Methylhydro/dimethylpolysiloxan, Methylhydro-terminiertes Methyloctylpolysiloxan, Methylhydro/phenylmethylpolysiloxan usw.
  • Das Organopolysiloxan kann auch eine oder mehrere seitenständige und/oder endständige polare funktionelle Gruppen enthalten, wie Hydroxy-, Epoxy-, Carboxy-, Amino-, Alkoxy-, Methacryl- oder Mercaptogruppen, die dem Polymer einen gewissen Grad der Hydrophilie verleihen. Zum Beispiel kann das Organopolysiloxan wenigstens eine Hydroxygruppe und gegebenenfalls im Durchschnitt wenigstens zwei siliciumgebundene Hydroxygruppen (Silanolgruppen) pro Molekül enthalten. Beispiele für solche Organopolysiloxane sind zum Beispiel Dihydroxypolydimethylsiloxan, Hydroxytrimethylsiloxypolydimethylsiloxan usw. Weitere Beispiele für hydroxymodifizierte Organopolysiloxane sind in der US-Patentanmeldung Veröffentlichungsnummer 2003/0105207 (Klever et al.) beschrieben, auf die hier ausdrücklich für alle Zwecke Bezug genommen wird. Alkoxymodifizierte Organopolysiloxane können ebenfalls eingesetzt werden, wie Dimethoxypolydimethylsiloxan, Methoxytrimethylsiloxypolydimethylsiloxan, Diethoxypolydimethylsiloxan, Ethoxytrimethylsiloxypolydimethylsiloxan usw. Noch andere geeignete Organopolysiloxane sind solche, die mit wenigstens einer aminofunktionellen Gruppe modifiziert sind. Beispiele für solche aminofunktionellen Polysiloxane sind zum Beispiel diaminofunktionelle Polydimethylsiloxane. Verschiedene andere geeignete polare funktionelle Gruppen für Organopolysiloxane sind auch in der US-Patentanmeldung Veröffentlichungsnummer 2010/00234517 (Plantenberg et al.) beschrieben, auf die hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Epoxidharze sind ebenfalls für die Verwendung in der vorliegenden Erfindung besonders gut geeignet. Beispiele für geeignete Epoxidharze sind zum Beispiel Epoxidharze des Glycidylether-Typs, wie Epoxidharze des Bisphenol-A-Typs, Epoxidharze des Bisphenol-F-Typs, Epoxidharze des Phenol-Novolak-Typs, Epoxidharze des Orthokresol-Novolak-Typs, bromierte Epoxidharze und Epoxidharze des Biphenyl-Typs, cyclische aliphatische Epoxidharze, Epoxidharze des Glycidylester-Typs, Epoxidharze des Glycidylamin-Typs, Epoxidharze des Kresol-Novolak-Typs, Epoxidharze des Naphthalin-Typs, Epoxidharze des Phenolaralkyl-Typs, Epoxidharze des Cyclopentadien-Typs, heterocyclische Epoxidharze usw. Noch weitere geeignete leitfähige Kleberharze sind auch in der US-Patentanmeldung Veröffentlichungsnummer 2006/0038304 (Osako et al.) und im US-Patent Nr. 7,554,793 (Chacko), beschrieben, auf die hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Falls gewünscht, können in der polymeren Einspannung auch Härtungsmittel eingesetzt werden, um zur Förderung der Härtung beizutragen. Die Härtungsmittel machen typischerweise etwa 0,1 bis etwa 20 Gew.-% der Einspannung aus. Beispielhafte Härtungsmittel sind zum Beispiel Amine, Peroxide, Anhydride, Phenolverbindungen, Silane, Säureanhydridverbindungen und Kombinationen davon. Spezielle Beispiele für geeignete Härtungsmittel sind Dicyandiamid, 1-(2-Cyanoethyl)-2-ethyl-4-methylimidazol, 1-Benzyl-2-methylimidazol, Ethylcyanopropylimidazol, 2-Methylimidazol, 2-Phenylimidazol, 2-Ethyl-4-methylimidazol, 2-Undecylimidazol, 1-Cyanoethyl-2-methylimidazol, 2,4-Dicyan-6,2-methylimidazolyl-(1)-ethyl-s-triazin und 2,4-Dicyano-6,2-undecylimidazolyl-(1)-ethyl-s-triazin, Imidazoliumsalze (wie 1-Cyanoethyl-2-undecylimidazoliumtrimellithat, 2-Methylimidazoliumisocyanurat, 2-Ethyl-4-methylimidazoliumtetraphenylborat und 2-Ethyl-1,4-dimethylimidazoliumtetraphenylborat usw. Noch andere geeignete Härtungsmittel sind Phosphinverbindungen, wie Tributylphosphin, Triphenylphosphin, Tris(dimethoxyphenyl)phosphin, Tris(hydroxypropyl)phosphin und Tris(cyanoethyl)phosphin; Phosphoniumsalze, wie Tetraphenylphosphoniumtetraphenylborat, Methyltributylphosphoniumtetraphenylborat und Methyltricyanoethylphosphoniumtetraphenylborat; Amine, wie 2,4,6-Tris(dimethylaminomethyl)phenol, Benzylmethylamin, Tetramethylbutylguanidin, N-Methylpiperazin und 2-Dimethylamino-1-pyrrolin; Ammoniumsalze, wie Triethylammoniumtetraphenylborat; Diazabicyclo-Verbindungen, wie 1,5-Diazabicyclo[5.4.0]-7-undecen, 1,5-Diazabicyclo[4.3.0]-5-nonen und 1,4-Diazabicyclo[2.2.2]octan; Salze von Diazabicyclo-Verbindungen, wie das Tetraphenylborat, Phenolsalz, Phenol-Novolak-Salz und 2-Ethylhexansäure-Salz usw.
  • Es können auch noch andere Additive eingesetzt werden, wie Photoinitiatoren, Viskositätsmodifikatoren, Suspensionshilfsmittel, Pigmente, Entspannungsmittel, Kopplungsmittel (z. B. Silan-Kopplungsmittel), nichtleitende Füllstoffe (z. B. Ton, Siliciumoxid, Aluminiumoxid usw.), Stabilisatoren usw. Zu den geeigneten Photoinitiatoren gehören zum Beispiel etwa Benzoin, Benzoinmethylether, Benzoinethylether, Benzoin-n-propylether, Benzoinisobutylether, 2,2-Dihydroxy-2-phenylacetophenon, 2,2-Dimethoxy-2-phenylacetophenon, 2,2-Diethoxy-2-phenylacetophenon, 2,2-Diethoxyacetophenon, Benzophenon, 4,4-Bis(diallylamino)benzophenon, 4-Dimethylaminobenzoesäure, Alkyl-4-dimethylaminobenzoat, 2-Ethylanthrachinon, Xanthon, Thioxanthon, 2-Chlorthioxanthon usw. Wenn sie eingesetzt werden, machen solche Additive typischerweise etwa 0,1 bis etwa 20 Gew.-% der gesamten Zusammensetzung aus.
  • Wenn wir uns zum Beispiel wieder auf die 1 bis 3 beziehen, so ist eine Ausführungsform gezeigt, in der sich eine polymere Einspannung 197 in Kontakt mit einer oberen Fläche 181 und einer hinteren Fläche 177 jedes Kondensatorelements 120a und 120b befindet. Während für jedes Element eine einzelne Einspannung gezeigt ist, sollte man sich darüber im Klaren sein, dass auch getrennte Einspannungen eingesetzt werden können, um dieselbe Funktion zu erfüllen. Tatsächlich können allgemeiner gesagt eine beliebige Zahl von polymeren Einspannungen eingesetzt werden und sich in Kontakt mit jeder gewünschten Fläche der Kondensatorelemente befinden. Wenn mehrere Einspannungen eingesetzt werden, können sie miteinander in Kontakt stehen oder physisch getrennt bleiben. Zum Beispiel kann in einer Ausführungsform eine zweite polymere Einspannung (nicht gezeigt) eingesetzt werden, die mit der oberen Fläche 181 und der vorderen Fläche 179 des Kondensatorelements 120a in Kontakt steht. Die erste polymere Einspannung 197 und die zweite polymere Einspannung (nicht gezeigt) können in Kontakt miteinander stehen oder auch nicht. In noch einer anderen Ausführungsform kann eine polymere Einspannung auch mit einer unteren Fläche 183 und/oder einer Seitenfläche 403a und 405a des Kondensatorelements 120a in Kontakt stehen, entweder in Verbindung mit oder anstelle von anderen Flächen.
  • Unabhängig davon, wie sie angebracht wird, ist es typischerweise wünschenswert, dass sich die polymere Einspannung auch in Kontakt mit wenigstens einer Fläche des Gehäuses befindet, um dazu beizutragen, das Kondensatorelement weiter gegenüber möglichem Abblättern mechanisch zu stabilisieren. Zum Beispiel kann sich die Einspannung in Kontakt mit einer Innenfläche einer oder mehrerer Seitenwände, der Außenwand, des Deckels usw. befinden. In 1 befindet sich die polymere Einspannung 197 zum Beispiel in Kontakt mit einer Innenfläche 107 der Seitenwand 124 und einer Innenfläche 109 der Außenwand 123. Während die sich in Kontakt mit dem Gehäuse befindet, ist es dennoch wünschenswert, dass wenigstens ein Teil des durch das Gehäuse definierten Innenraums frei bleibt, damit das Inertgas durch den Innenraum strömen und den Kontakt des festen Elektrolyten mit Sauerstoff einschränken kann. Zum Beispiel bleiben typischerweise wenigstens etwa 5% des Innenraumvolumens frei von dem Kondensatorelement und der polymeren Einspannung, und in einigen Ausführungsformen sind es etwa 10% bis etwa 50% des Innenraumvolumens.
  • Sobald sie in der gewünschten Weise verbunden ist, wird die resultierende Packung hermetisch versiegelt, wie es oben beschrieben ist. Wie zum Beispiel wiederum in 1 gezeigt ist, kann das Gehäuse 122 auch einen Deckel 125 umfassen, der auf einer oberen Fläche der Seitenwände 124 und 525 platziert wird, nachdem die Kondensatorelemente 120a und 120b innerhalb des Gehäuses 122 positioniert sind. Der Deckel 125 kann aus Keramik, Metall (z. B. Eisen, Kupfer, Nickel, Cobalt usw. sowie Legierungen davon), Kunststoff usw. bestehen. Falls gewünscht, kann sich ein Versiegelungselement 187 zwischen dem Deckel 125 und den Seitenwänden 124 und 525 befinden, um zu einer guten Abdichtung beizutragen. In einer Ausführungsform zum Beispiel kann das Versiegelungselement eine Glas-Metall-Versiegelung, einen Kovar®-Ring (Goodfellow Cambridge, Ltd.) usw. umfassen. Die Höhe der Seitenwände 124 und 525 ist im Allgemeinen so, dass der Deckel 125 nicht mit einer Fläche der Kondensatorelemente 120a und 120b in Kontakt kommt, so dass er nicht kontaminiert wird. Die polymere Einspannung 197 kann mit dem Deckel 125 in Kontakt stehen oder auch nicht. Wenn er in der gewünschten Position platziert ist, wird der Deckel 125 mit Hilfe von bekannten Techniken, wie Schweißen (z. B. Widerstandsschweißen, Laserschweißen usw.), Löten usw., hermetisch an den Seitenwänden 124 und 525 versiegelt.
  • Das hermetische Versiegeln erfolgt typischerweise in Gegenwart einer Gasatmosphäre, die wenigstens ein Inertgas enthält, um die Oxidation des festen Elektrolyten während der Verwendung zu hemmen. Das Inertgas kann zum Beispiel Stickstoff, Helium, Argon, Xenon, Neon, Krypton, Radon usw. sowie Gemische davon umfassen. Typischerweise bilden Inertgase den größten Teil der Atmosphäre innerhalb des Keramikgehäuses, wie zum Beispiel 50 Gew.-% bis 100 Gew.-%, in einigen Ausführungsformen etwa 75 Gew.-% bis 100 Gew.-% und in einigen Ausführungsformen etwa 90 Gew.-% bis etwa 99 Gew.-% der Atmosphäre. Falls gewünscht, kann auch eine relativ kleine Menge an Nichtinertgasen eingesetzt werden, wie Kohlendioxid, Sauerstoff, Wasserdampf usw. In solchen Fällen bilden die Nichtinertgase jedoch typischerweise 15 Gew.-% oder weniger, in einigen Ausführungsformen 10 Gew.-% oder weniger, in einigen Ausführungsformen etwa 5 Gew.-% oder weniger, in einigen Ausführungsformen etwa 1 Gew.-% oder weniger und in einigen Ausführungsformen etwa 0,01 Gew.-% bis etwa 1 Gew.-% der Atmosphäre innerhalb des Gehäuses. Zum Beispiel kann der Feuchtigkeitsgehalt (ausgedrückt als relative Feuchtigkeit) etwa 10% oder weniger, in einigen Ausführungsformen etwa 5% oder weniger, in einigen Ausführungsformen etwa 1% oder weniger und in einigen Ausführungsformen etwa 0,01 bis etwa 5% betragen.
  • Man sollte sich darüber im Klaren sein, dass die beschriebenen Ausführungsformen nur beispielhaft sind und dass in der vorliegenden Erfindung auch verschiedene andere Konfigurationen eingesetzt werden können. Zum Beispiel werden die oben diskutierten Ausführungsformen unter Verwendung ähnlicher Verbindungselemente mit dem Anoden- und dem Kathoden-Endteil verbunden. Dies ist jedoch keineswegs erforderlich, und für verschiedene Kondensatorelemente kann jeweils eine Vielzahl von verschiedenen Verbindungsmechanismen eingesetzt werden. Ebenso können auch verschiedene Endteile eingesetzt werden. In einer Ausführungsform zum Beispiel können Endstifte anstelle von oberflächenmontierbaren externen Endteilen eingesetzt werden. Solche Stifte erstrecken sich gegebenenfalls durch eine Außenwand des Gehäuses hindurch.
  • Als Ergebnis der vorliegenden Erfindung kann die Kondensatorbaugruppe ausgezeichnete elektrische Eigenschaften aufweisen, auch wenn sie Umgebungen mit hoher Temperatur und hoher Spannung ausgesetzt ist. Zum Beispiel kann die Kondensatorbaugruppe auch eine relativ hohe ”Durchschlagsspannung” (Spannung, bei der der Kondensator versagt), wie etwa 35 Volt oder mehr, in einigen Ausführungsformen etwa 50 Volt oder mehr, in einigen Ausführungsformen etwa 60 Volt oder mehr und in einigen Ausführungsformen etwa 60 Volt bis etwa 100 Volt aufweisen, die bestimmt wird, indem man die angelegte Spannung in Schritten von 3 Volt erhöht, bis der Leckstrom 1 mA erreicht. Ebenso kann es auch sein, dass der Kondensator relativ hohe Stromspitzen aushält, was bei Hochspannungsanwendungen ebenfalls üblich ist. Der maximale Spitzenstrom kann zum Beispiel etwa das Doppelte der Nennspannung oder mehr betragen, etwa in einem Bereich von etwa 40 Ampère oder mehr liegen, in einigen Ausführungsformen etwa 60 Ampère oder mehr und in einigen Ausführungsformen etwa 120 Ampère bis etwa 250 Ampère.
  • Ebenso kann die Kapazität etwa 1 Millifarad pro Quadratzentimeter (”mF/cm2”) oder mehr, in einigen Ausführungsformen etwa 2 mF/cm2 oder mehr, in einigen Ausführungsformen etwa 5 bis etwa 50 mF/cm2 und in einigen Ausführungsformen etwa 8 bis etwa 20 mF/cm2 betragen. Die Kapazität kann bei einer Arbeitsfrequenz von 120 Hz und einer Temperatur von 25°C bestimmt werden. Außerdem kann der Kondensator auch einen relativ hohen Prozentsatz seiner Feuchtkapazität aufweisen, was ihn in die Lage versetzt, in Gegenwart von Luftfeuchtigkeit nur einen geringen Kapazitätsverlust und/oder Fluktuation aufzuweisen. Dieses Leistungsmerkmal wird durch die ”prozentuale Trocken-zu-Feucht-Kapazität” quantifiziert, die durch die Gleichung Trocken-zu-Feucht-Kapazität = (1 – ([Feucht – Trocken]/Feucht)) × 100 bestimmt wird.
  • Die Kondensatorbaugruppe der vorliegenden Erfindung kann zum Beispiel eine prozentuale Trocken-zu-Feucht-Kapazität von etwa 80% oder mehr aufweisen, in einigen Ausführungsformen etwa 85% oder mehr, in einigen Ausführungsformen etwa 90% oder mehr und in einigen Ausführungsformen etwa 92% bis 100%.
  • Die Kondensatorbaugruppe kann auch einen äquivalenten Serienwiderstand (”ESR”) von weniger als etwa 50 Ohm aufweisen, in einigen Ausführungsformen weniger als etwa 25 Ohm, in einigen Ausführungsformen etwa 0,01 bis etwa 10 Ohm und in einigen Ausführungsformen etwa 0,05 bis etwa 5 Ohm, gemessen bei einer Arbeitsfrequenz von 100 kHz. Außerdem kann der Leckstrom, der sich im Allgemeinen auf den Strom bezieht, der von einem Leiter über einen Isolator zu einem benachbarten Leiter fließt, auf relativ niedrigen Niveaus gehalten werden. Zum Beispiel ist der Zahlenwert des normierten Leckstroms eines Kondensators der vorliegenden Erfindung in einigen Ausführungsformen kleiner als etwa 1 μA/μF·V, in einigen Ausführungsformen kleiner als etwa 0,5 μA/μF·V und in einigen Ausführungsformen kleiner als etwa 0,1 μA/μF·V, wobei ”μA” Mikroampere bedeutet und ”μF·V” das Produkt aus der Kapazität und der Nennspannung ist.
  • Die elektrischen Eigenschaften, wie sie oben beschrieben sind, können selbst nach einer während einer erheblichen Zeitdauer bei hohen Temperaturen erfolgenden Alterung aufrechterhalten werden. Zum Beispiel können die Werte etwa 100 Stunden oder länger, in einigen Ausführungsformen etwa 300 Stunden bis etwa 3000 Stunden und in einigen Ausführungsformen etwa 400 Stunden bis etwa 2500 Stunden (z. B. 500 Stunden, 600 Stunden, 700 Stunden, 800 Stunden, 900 Stunden, 1000 Stunden, 1100 Stunden, 1200 Stunden oder 2000 Stunden) bei Temperaturen im Bereich von etwa 100°C bis etwa 250°C und in einigen Ausführungsformen etwa 100°C bis etwa 225°C (z. B. 100°C, 125°C, 150°C, 175°C oder 200°C) aufrechterhalten werden.
  • Die vorliegende Erfindung wird anhand der folgenden Beispiele besser verständlich.
  • Testverfahren
  • Äquivalenter Serienwiderstand (ESR)
  • Der äquivalente Serienwiderstand kann mit einem Präzisions-LCZ-Messgerät Keithley 3330 mit Kelvin-Anschlussleitungen bei 2,2 Volt Vorspannung und einem sinusförmigen Signal mit 0,5 Volt Abstand zwischen den Peaks gemessen werden. Die Betriebsfrequenz betrug 100 kHz, und die Temperatur betrug 23°C ± 2°C.
  • Kapazität
  • Die Kapazität wurde mit einem Präzisions-LCZ-Messgerät Keithley 3330 mit Kelvin-Anschlussleitungen bei 2,2 Volt Vorspannung und einem sinusförmigen Signal mit 0,5 Volt Abstand zwischen den Peaks gemessen. Die Betriebsfrequenz betrug 120 Hz, und die Temperatur betrug 23°C ± 2°C.
  • Schwingungsbehandlung
  • Das Teil wurde in 20 Minuten dem gesamten Frequenzbereich von 10 Hz bis 2000 Hz ausgesetzt und dann auf 10 Hz zurückgeführt und umgedreht. Dieser Zyklus wurde 12-mal in jeder der 3 Richtungen (insgesamt 36-mal) durchgeführt, so dass die Bewegung während insgesamt ungefähr 12 Stunden einwirkte. Die Schwingungsamplitude betrug 3,0 mm ausgehend von 10 Hz bis zu der höheren Übergangsfrequenz und dann 20·g Beschleunigung bis 2000 Hz. Zehn (10) Proben des Kondensators wurden auf eine Testplatte gelötet und dieser Behandlung unterzogen.
  • Beispiel 1
  • Eine Tantalanode (4,80 mm × 5,25 mm × 2,60 mm) wurde bei 30 V in einem flüssigen Elektrolyten auf 150 μF anodisiert. Dann wurde eine leitfähige Polymerbeschichtung gebildet, indem man die gesamte Anode in eine Dispersion von Poly(3,4-ethylendioxythiophen) (”PEDT”) (CleviosTM K, Feststoffgehalt 1,1%) eintauchte. Dann wurde das Teil 20 Minuten lang bei 125°C getrocknet. Dieser Vorgang wurde 10-mal wiederholt. Danach wurde das Teil mit einer Geschwindigkeit von 0,1 mm/s so in eine PEDT-Dispersion (Feststoffgehalt 2,8%) eingetaucht, dass die Dispersion die Schulter des Teils erreichte, wie es in 3 gezeigt ist. Das Teil wurde 10 Sekunden lang in der Dispersion gelassen, 30 Minuten lang bei 125°C getrocknet und dann auf Raumtemperatur abgekühlt.
  • Dieser Vorgang wurde 5-mal wiederholt. Dann wurde das Teil mit Graphit und Silber beschichtet. Ein Leiterrahmenmaterial auf Kupferbasis wurde verwendet, um den Montagevorgang fertigzustellen. Ein einzelnes Kathodenverbindungselement wurde mit Hilfe eines Silberklebers an der unteren Fläche des Kondensatorelements befestigt. Der Tantaldraht des Kondensatorelements wurde dann durch Laserschweißen mit einem Anodenverbindungselement verbunden.
  • Zwei Kondensatorelemente wurden in der oben beschriebenen Weise gebildet, und dann wurden die Anoden- und Kathodenverbindungselemente der jeweiligen Leiterrahmen an ein Gold-Kathoden-Endteil geklebt und an ein Gold-Anoden-Endteil geschweißt, das sich innerhalb eines Keramikgehäuses mit einer Länge von 11,00 mm, einer Breite von 12,50 mm und einer Dicke von 5,40 mm befand. Das Gehäuse wies vergoldete Lötpunkte auf dem unteren Innenteil des Keramikgehäuses auf. Der für die Kathodenverbindung eingesetzte Kleber war eine Silberpaste (EPO-Tek E3035), und der Kleber wurde nur zwischen den Leiterrahmenteilen und dem vergoldeten Lötpunkt aufgetragen. Bei dem Schweißen, das für die Anodenverbindung eingesetzt wurde, handelte es sich um Widerstandsschweißen, und die Energie von 190 W wurde 90 ms lang zwischen den Leiterrahmenteilen und dem vergoldeten Lötpunkt des Keramikgehäuses angewendet. Dann wurde die Baugruppe in einen Reflow-Konvektionsofen gebracht, um die Paste zu löten. Nach dem Reflow-Vorgang wurde ein polymeres Einspannungsmaterial (Dow Corning® 736 wärmebeständiges Dichtungsmittel) über die Oberseite des Anoden- und des Kathodenteils des Kondensatorelements aufgetragen und 1,5 Stunden lang bei 165°C getrocknet. Danach wurde ein Kovar®-Deckel mit einer Länge von 9,95 mm, einer Breite von 4,95 mm und einer Dicke von 0,10 mm über der Oberseite des Behälters platziert, und zwar dicht über dem Versiegelungsring des Keramikgehäuses (Kovar®-Ring mit einer Dicke von 0,30 mm), so dass es keinen direkten Kontakt zwischen der Innenfläche des Deckels und der Außenfläche des befestigten Kondensators gab. Die resultierende Baugruppe wurde in eine Schweißkammer gebracht und 120 Minuten lang mit Stickstoffgas gespült, bevor ein Nahtschweißverfahren zwischen dem Versiegelungsring und dem Deckel durchgeführt wurde. Nach dem Nahtschweißen wurde kein zusätzliches Einbrennen oder Flicken durchgeführt. Auf diese Weise wurden viele Teile (50) hergestellt.
  • Beispiel 2
  • Eine Tantalanode (4,80 mm × 10,50 mm × 2,60 mm) wurde bei 30 V in einem flüssigen Elektrolyten auf 150 μF anodisiert. Dann wurde eine leitfähige Polymerbeschichtung gebildet, indem man die gesamte Anode in eine Dispersion von Poly(3,4-ethylendioxythiophen) (”PEDT”) (CleviosTM K, Feststoffgehalt 1,1%) eintauchte. Dann wurde das Teil 20 Minuten lang bei 125°C getrocknet. Dieser Vorgang wurde 10-mal wiederholt. Danach wurde das Teil mit einer Geschwindigkeit von 0,1 mm/s so in eine PEDT-Dispersion (Feststoffgehalt 2,8%) eingetaucht, dass die Dispersion die Schulter erreichte. Das Teil wurde 10 Sekunden lang in der Dispersion gelassen, 30 Minuten lang bei 125°C getrocknet und dann auf Raumtemperatur abgekühlt. Dieser Vorgang wurde 5-mal wiederholt. Dann wurde das Teil mit Graphit und Silber beschichtet. In derselben Weise, wie es oben beschrieben ist, wurden viele Teile (50) aus den Kondensatorelementen gebildet.
  • Dann wurden die Teile der Beispiele 1 und 2 vor und nach einer ”Schwingungsbehandlung”, wie sie oben beschrieben ist, bei einer Temperatur von 25°C auf elektrische Eigenschaften (d. h. Kapazität (”CAP”) und äquivalenter Serienwiderstand (”ESR”)) getestet. Die Mittelwerte der Ergebnisse sind im Folgenden gezeigt.
    vor der Schwingungsbehandlung nach der Schwingungsbehandlung
    Probe CAP (μF) ESR (mOhm) CAP (μF) ESR (mOhm)
    Beispiel 1 270 57 263 71
    Beispiel 2 274 65 unterbrochener Stromkreis
  • Wie angegeben, waren die Kondensatorbaugruppen von Beispiel 2, die eine einzige große Anode (Länge 10,5 mm) enthielten, unter extremen Bedingungen weniger stabil als die kleineren Baugruppen mit mehreren Anoden (Länge 5,25 mm), die in Beispiel 1 eingesetzt wurden.
  • Diese und andere Modifikationen und Variationen der vorliegenden Erfindung können vom Fachmann praktisch umgesetzt werden, ohne vom Wesen und Umfang der vorliegenden Erfindung abzuweichen. Außerdem sollte man sich darüber im Klaren sein, dass Aspekte der verschiedenen Ausführungsformen ganz oder teilweise gegeneinander ausgetauscht werden können. Weiterhin wird der Fachmann anerkennen, dass die obige Beschreibung nur beispielhaften Charakter hat und die Erfindung, die in den beigefügten Ansprüchen näher beschrieben ist, nicht einschränken soll.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 5457862 [0001, 0029]
    • US 5473503 [0001, 0029]
    • US 5729428 [0001, 0029]
    • US 5812367 [0001, 0029]
    • US 6322912 [0016]
    • US 6391275 [0016]
    • US 6416730 [0016]
    • US 6527937 [0016]
    • US 6576099 [0016]
    • US 6592740 [0016]
    • US 6639787 [0016]
    • US 7220397 [0016]
    • US 6197252 [0019]
    • US 4945452 [0024]
    • US 6987663 [0026]
    • US 5111327 [0026]
    • US 6635729 [0026]
    • US 7515396 [0029]
    • US 6674635 [0037]
    • US 7554793 [0054]
  • Zitierte Nicht-Patentliteratur
    • Verfahren der physikalischen Gasadsorption (B. E. T.) von Brunauer, Emmet und Teller, Journal of American Chemical Society, Band 60, 1938, S. 309 [0017]

Claims (16)

  1. Kondensatorbaugruppe, umfassend: ein Gehäuse, das einen Innenraum definiert, der eine Gasatmosphäre aufweist, die ein Inertgas enthält; ein erstes Kondensatorelement, das sich angrenzend neben einem zweiten Kondensatorelement befindet, wobei sich das erste und das zweite Kondensatorelement im Innenraum befinden und mit dem Gehäuse verbunden sind, wobei jedes der Kondensatorelemente eine aus einem anodisch oxidierten, gesinterten porösen Körper gebildete Anode und einen die Anode bedeckenden festen Elektrolyten umfasst, wobei jedes Kondensatorelement weiterhin einen Anodenanschluss umfasst, der sich in seitlicher Richtung von dem porösen Körper der Anode weg erstreckt, wobei sich der Anschluss innerhalb des Innenraums des Gehäuses befindet; ein Anoden-Endteil, das in elektrischer Verbindung mit dem Anodenkörper jedes der Kondensatorelemente steht; und ein Kathoden-Endteil, das in elektrischer Verbindung mit dem festen Elektrolyten jedes der Kondensatorelemente steht.
  2. Kondensatorbaugruppe gemäß Anspruch 1, wobei sich eine Seitenfläche des ersten Kondensatorelements angrenzend an eine Seitenfläche des zweiten Kondensatorelements befindet und auf diese hin gerichtet ist.
  3. Kondensatorbaugruppe gemäß Anspruch 1, wobei das erste Kondensatorelement eine erste Hauptfläche aufweist und das zweite Kondensatorelement eine zweite Hauptfläche aufweist, wobei die erste Hauptfläche und die zweite Hauptfläche mit dem Gehäuse verbunden sind.
  4. Kondensatorbaugruppe gemäß Anspruch 3, wobei die erste Hauptfläche und die zweite Hauptfläche im Wesentlichen koplanar sind.
  5. Kondensatorbaugruppe gemäß Anspruch 1, die weiterhin ein Verbindungselement umfasst, das mit wenigstens einem der Kondensatorelemente elektrisch verbunden ist, wobei das Verbindungselement einen ersten Teil enthält, der im Wesentlichen senkrecht zur seitlichen Richtung des Anodenanschlusses positioniert und mit diesem verbunden ist.
  6. Kondensatorbaugruppe gemäß Anspruch 5, wobei das Verbindungselement weiterhin einen zweiten Teil enthält, der im Wesentlichen parallel zur seitlichen Richtung, in der sich der Anodenanschluss erstreckt, angeordnet ist.
  7. Kondensatorbaugruppe gemäß Anspruch 6, wobei sich der zweite Teil innerhalb des Gehäuses befindet.
  8. Kondensatorbaugruppe gemäß Anspruch 6, wobei das erste Kondensatorelement eine erste Hauptfläche aufweist, die über das Verbindungselement mit dem Gehäuse verbunden ist.
  9. Kondensatorbaugruppe gemäß Anspruch 1, wobei der poröse Körper aus Tantal oder Nioboxid gebildet ist.
  10. Kondensatorbaugruppe gemäß Anspruch 1, wobei der feste Elektrolyt ein leitfähiges Polymer umfasst.
  11. Kondensatorbaugruppe gemäß Anspruch 10, wobei das leitfähige Polymer in Form einer Teilchendispersion vorliegt.
  12. Kondensatorbaugruppe gemäß Anspruch 1, wobei der feste Elektrolyt Mangandioxid umfasst.
  13. Kondensatorbaugruppe gemäß Anspruch 1, wobei die Kondensatorelemente etwa 30 Vol.-% oder mehr des Innenraums ausfüllen.
  14. Kondensatorbaugruppe gemäß Anspruch 1, wobei Inertgase etwa 50 Gew.-% bis 100 Gew.-% der Gasatmosphäre ausmachen.
  15. Kondensatorbaugruppe gemäß Anspruch 1, die weiterhin eine polymere Einspannung umfasst, die angrenzend an und in Kontakt mit einer Fläche wenigstens eines der Kondensatorelemente und einer Fläche des Gehäuses positioniert ist.
  16. Kondensatorbaugruppe gemäß Anspruch 1, wobei in dem Innenraum des Gehäuses 2 bis 4 Kondensatorelemente positioniert sind.
DE102012205600A 2011-04-07 2012-04-04 Festelektrolytkondensatorbaugruppe mit mehreren Anoden Pending DE102012205600A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/081,967 2011-04-07
US13/081,967 US9767964B2 (en) 2011-04-07 2011-04-07 Multi-anode solid electrolytic capacitor assembly

Publications (1)

Publication Number Publication Date
DE102012205600A1 true DE102012205600A1 (de) 2012-10-11

Family

ID=46026306

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102012205600A Pending DE102012205600A1 (de) 2011-04-07 2012-04-04 Festelektrolytkondensatorbaugruppe mit mehreren Anoden

Country Status (7)

Country Link
US (2) US9767964B2 (de)
JP (1) JP5988475B2 (de)
KR (1) KR102051337B1 (de)
CN (2) CN109346328A (de)
DE (1) DE102012205600A1 (de)
FR (1) FR2973930A1 (de)
GB (1) GB2490005B (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8194395B2 (en) 2009-10-08 2012-06-05 Avx Corporation Hermetically sealed capacitor assembly
US8947857B2 (en) 2011-04-07 2015-02-03 Avx Corporation Manganese oxide capacitor for use in extreme environments
JP2013219362A (ja) 2012-04-11 2013-10-24 Avx Corp 過酷な条件下で強化された機械的安定性を有する固体電解コンデンサ
US8755171B2 (en) * 2012-09-13 2014-06-17 Apaq Technology Co., Ltd. Stacked-type solid electrolytic capacitor package structure
JP2015233026A (ja) * 2012-10-17 2015-12-24 昭和電工株式会社 固体電解コンデンサ
GB2512480B (en) 2013-03-13 2018-05-30 Avx Corp Solid electrolytic capacitor for use in extreme conditions
CN105283935B (zh) * 2013-06-06 2018-06-08 昭和电工株式会社 固体电解电容器及其制造方法
WO2014203846A1 (ja) * 2013-06-17 2014-12-24 昭和電工株式会社 固体電解コンデンサおよびその陽極リード接続方法並びに固体電解コンデンサの製造方法
US9754730B2 (en) 2015-03-13 2017-09-05 Avx Corporation Low profile multi-anode assembly in cylindrical housing
US10014108B2 (en) 2015-03-13 2018-07-03 Avx Corporation Low profile multi-anode assembly
US9928963B2 (en) 2015-03-13 2018-03-27 Avx Corporation Thermally conductive encapsulant material for a capacitor assembly
US10297393B2 (en) 2015-03-13 2019-05-21 Avx Corporation Ultrahigh voltage capacitor assembly
US9972444B2 (en) * 2015-05-29 2018-05-15 Avx Corporation Solid electrolytic capacitor element for use in dry conditions
WO2019005535A1 (en) * 2017-06-29 2019-01-03 Avx Corporation MODULE CONTAINING HERMETICALLY SEALED CAPACITORS
CN107731554A (zh) * 2017-09-26 2018-02-23 华为技术有限公司 一种聚合物电容器及其制备方法
US11916226B2 (en) * 2019-07-08 2024-02-27 StoreDot Ltd. Anode coating in lithium ion batteries
CN114521278A (zh) * 2019-09-18 2022-05-20 京瓷Avx元器件公司 用于高电压下使用的固体电解电容器

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945452A (en) 1989-11-30 1990-07-31 Avx Corporation Tantalum capacitor and method of making same
US5111327A (en) 1991-03-04 1992-05-05 General Electric Company Substituted 3,4-polymethylenedioxythiophenes, and polymers and electro responsive devices made therefrom
US5457862A (en) 1993-11-10 1995-10-17 Nec Corporation Method of manufacturing solid electrolytic capacitor
US5473503A (en) 1993-07-27 1995-12-05 Nec Corporation Solid electrolytic capacitor and method for manufacturing the same
US5729428A (en) 1995-04-25 1998-03-17 Nec Corporation Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same
US5812367A (en) 1996-04-04 1998-09-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative
US6197252B1 (en) 1997-01-13 2001-03-06 Avx Limited Binder removal
US6322912B1 (en) 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6391275B1 (en) 1998-09-16 2002-05-21 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6416730B1 (en) 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6576099B2 (en) 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
US6635729B1 (en) 2000-02-03 2003-10-21 Bayer Aktinegesellschaft Process for the preparation of water-soluble π-conjugated polymers
US6639787B2 (en) 2000-11-06 2003-10-28 Cabot Corporation Modified oxygen reduced valve metal oxides
US6674635B1 (en) 2001-06-11 2004-01-06 Avx Corporation Protective coating for electrolytic capacitors
US6987663B2 (en) 2003-10-17 2006-01-17 H.C. Starck Gmbh Electrolytic capacitors with a polymeric outer layer
US7515396B2 (en) 2007-03-21 2009-04-07 Avx Corporation Solid electrolytic capacitor containing a conductive polymer
US7554793B2 (en) 2006-11-16 2009-06-30 Kemet Electronics Corporation Low temperature curable conductive adhesive and capacitors formed thereby

Family Cites Families (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3142886A (en) 1959-08-07 1964-08-04 Texas Instruments Inc Method of making glass encased electrolytic capacitor assembly and article resultingtherefrom
US3345545A (en) 1964-11-27 1967-10-03 Johnson Matthey & Mallory Ltd Solid electrolytic capacitor having minimum anode impedance
GB1069685A (en) 1965-08-31 1967-05-24 Mallory & Co Inc P R Atmosphere control within the hermetic enclosure of electrolytic-capacitor assemblies
US3581159A (en) 1969-11-12 1971-05-25 Union Carbide Corp Solid electrolyte capacitor having improved counterelectrode system
US4085435A (en) 1976-06-14 1978-04-18 Avx Corporation Tantalum chip capacitor
US3922773A (en) 1974-07-17 1975-12-02 Corning Glass Works Method of forming a hermetic enclosure
US4479168A (en) 1983-12-19 1984-10-23 Sprague Electric Company Electrolytic capacitor with a hermetic seal
US4755908A (en) 1987-08-17 1988-07-05 Gardner Edward P Capacitor
DE3843412A1 (de) 1988-04-22 1990-06-28 Bayer Ag Neue polythiophene, verfahren zu ihrer herstellung und ihre verwendung
DE3814730A1 (de) 1988-04-30 1989-11-09 Bayer Ag Feststoff-elektrolyte und diese enthaltende elektrolyt-kondensatoren
JPH03127813A (ja) 1989-10-13 1991-05-30 Kao Corp 固体電解コンデンサの製造方法
EP0440957B1 (de) 1990-02-08 1996-03-27 Bayer Ag Neue Polythiophen-Dispersionen, ihre Herstellung und ihre Verwendung
JP2853376B2 (ja) 1991-07-10 1999-02-03 松下電器産業株式会社 コンデンサの製造方法
US5198968A (en) 1992-07-23 1993-03-30 Avx Corporation Compact surface mount solid state capacitor and method of making same
US5357399A (en) 1992-09-25 1994-10-18 Avx Corporation Mass production method for the manufacture of surface mount solid state capacitor and resulting capacitor
US5314606A (en) 1993-02-16 1994-05-24 Kyocera America, Inc. Leadless ceramic package with improved solderabilty
US5394295A (en) 1993-05-28 1995-02-28 Avx Corporation Manufacturing method for solid state capacitor and resulting capacitor
JP3085031B2 (ja) * 1993-07-05 2000-09-04 株式会社村田製作所 チップ型セラミック電子部品
US5495386A (en) 1993-08-03 1996-02-27 Avx Corporation Electrical components, such as capacitors, and methods for their manufacture
JP3070408B2 (ja) 1993-12-28 2000-07-31 日本電気株式会社 固体電解コンデンサおよびその製造方法
US5638253A (en) 1994-04-28 1997-06-10 Rohm Co. Ltd. Package-type solid electrolytic capacitor
JP2770746B2 (ja) 1994-09-02 1998-07-02 日本電気株式会社 固体電解コンデンサ及びその製造方法
JP2778495B2 (ja) 1994-12-28 1998-07-23 日本電気株式会社 耐熱性導電性高分子並びにその導電性高分子を用いた固体電解コンデンサ及びその製造方法
US5608261A (en) 1994-12-28 1997-03-04 Intel Corporation High performance and high capacitance package with improved thermal dissipation
JP3127813B2 (ja) 1995-12-05 2001-01-29 ヤマハ株式会社 オーディオ用アンプの保護回路
JP3863232B2 (ja) 1996-09-27 2006-12-27 ローム株式会社 固体電解コンデンサに使用するコンデンサ素子の構造及びコンデンサ素子におけるチップ体の固め成形方法
TW388043B (en) 1997-04-15 2000-04-21 Sanyo Electric Co Solid electrolyte capacitor
US5926362A (en) * 1997-05-01 1999-07-20 Wilson Greatbatch Ltd. Hermetically sealed capacitor
JP3157748B2 (ja) 1997-07-30 2001-04-16 富山日本電気株式会社 導電性高分子を用いた固体電解コンデンサ及びその製造方法
JPH11112157A (ja) 1997-09-30 1999-04-23 Kyocera Corp 電子部品用ケースとこれを用いた電子部品及び電解コンデンサ
US6042624A (en) 1998-04-03 2000-03-28 Medtronic, Inc. Method of making an implantable medical device having a flat electrolytic capacitor
US6191936B1 (en) 1999-04-12 2001-02-20 Vishay Sprague, Inc. Capacitor having textured pellet and method for making same
JP2001085273A (ja) * 1999-09-10 2001-03-30 Matsushita Electric Ind Co Ltd チップ形固体電解コンデンサ
JP3959220B2 (ja) 2000-02-04 2007-08-15 株式会社エスアイアイ・マイクロパーツ 表面実装用非水電解電池および表面実装用電気二重層キャパシタ
DE10016723A1 (de) 2000-04-04 2001-10-11 Bayer Ag Verfahren zur Herstellung von Dialkoxythiophenen und Alkylendioxythiophenen
DE10029075A1 (de) 2000-06-13 2001-12-20 Bayer Ag Verfahren zur Herstellung von 3,4-Alkylendioxythiophen-2,5-dicarbonsäurederivaten
US6534581B1 (en) 2000-07-20 2003-03-18 Dow Corning Corporation Silicone composition and electrically conductive silicone adhesive formed therefrom
AU2002221869A1 (en) 2000-11-22 2002-06-03 Bayer Aktiengesellschaft Dispersible polymer powders
JP4248756B2 (ja) * 2001-03-29 2009-04-02 Tdk株式会社 固体電解コンデンサ内蔵基板およびその製造方法
JP2003109877A (ja) 2001-09-28 2003-04-11 Tdk Corp 固体電解コンデンサ
JP2003109878A (ja) * 2001-09-28 2003-04-11 Tdk Corp 高分子固体電解コンデンサおよびその製造方法
US20090024481A1 (en) * 2001-11-14 2009-01-22 Retaildna, Llc Method and system for generating a real time offer or a deferred offer
DE10164260A1 (de) 2001-12-27 2003-07-17 Bayer Ag Verfahren zur Herstellung von undotiertem, neutralem Polyethylendioxythiophen, sowie entsprechende Polyethylendioxythiophene
DE10229218A1 (de) 2002-06-28 2004-01-22 H.C. Starck Gmbh Alkylendioxythiophen-Dimere und Trimere
DE10237577A1 (de) 2002-08-16 2004-02-26 H.C. Starck Gmbh Substituierte Poly(alkylendioxythiophene) als Feststoffelektrolyte in Elektrolytkondensatoren
DE10257539A1 (de) 2002-12-10 2004-07-01 H.C. Starck Gmbh Verfahren zur Herstellung von 2,2'-Di(3,4-ethylendioxythiophen)en
DE10302086A1 (de) 2003-01-21 2004-07-29 Bayer Ag Alkylendioxythiophene und Poly(alkylendioxythiophene) mit mesogenen Gruppen
RU2370838C9 (ru) 2003-04-02 2010-12-10 Х.К.Штарк ГмБХ Замедляющий окислительный агент для получения проводящих полимеров
US7348097B2 (en) 2003-06-17 2008-03-25 Medtronic, Inc. Insulative feed through assembly for electrochemical devices
JP2005039168A (ja) * 2003-06-27 2005-02-10 Kyocera Corp セラミック容器およびそれを用いたタンタル電解コンデンサ
DE10331673A1 (de) 2003-07-14 2005-02-10 H.C. Starck Gmbh Polythiophen mit Alkylenoxythiathiophen-Einheiten in Elektrolytkondensatoren
EP1498391B1 (de) 2003-07-15 2010-05-05 H.C. Starck GmbH Niobsuboxidpulver
DE10333156A1 (de) 2003-07-22 2005-02-24 H.C. Starck Gmbh Verfahren zur Herstellung von Niobsuboxid
JP5020465B2 (ja) * 2003-08-13 2012-09-05 昭和電工株式会社 チップ状固体電解コンデンサ及びその製造方法
JP2005079463A (ja) * 2003-09-02 2005-03-24 Nec Tokin Corp 積層型固体電解コンデンサおよび積層型伝送線路素子
DE10343873A1 (de) 2003-09-23 2005-04-21 Starck H C Gmbh Verfahren zur Reinigung von Thiophenen
DE10347702B4 (de) 2003-10-14 2007-03-29 H.C. Starck Gmbh Sinterkörper auf Basis Niobsuboxid
US7495888B2 (en) 2003-10-29 2009-02-24 Showa Denko K.K. Electrolytic capacitor
DE10357571A1 (de) 2003-12-10 2005-07-28 H.C. Starck Gmbh Multifunktionelle 3,4-Alkylendioxythiophen-Derivate und diese enthaltende elektrisch leitfähige Polymere
US7948069B2 (en) 2004-01-28 2011-05-24 International Rectifier Corporation Surface mountable hermetically sealed package
JP2005217129A (ja) 2004-01-29 2005-08-11 Kyocera Corp セラミック容器およびそれを用いたタンタル電解コンデンサ
JP4126021B2 (ja) * 2004-02-05 2008-07-30 ローム株式会社 固体電解コンデンサ
WO2005083729A1 (ja) * 2004-02-27 2005-09-09 Rohm Co., Ltd. 固体電解コンデンサ
US7116548B2 (en) 2004-04-23 2006-10-03 Kemet Electronics Corporation Fluted anode with minimal density gradients and capacitor comprising same
DE102004022110A1 (de) 2004-05-05 2005-12-01 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
JP2006028214A (ja) 2004-07-12 2006-02-02 Nagase Chemtex Corp ポリ(3,4−ジアルコキシチオフェン)とポリ陰イオンとの複合体の水分散体の製造方法
JP4550519B2 (ja) 2004-08-10 2010-09-22 セイコーインスツル株式会社 電気化学セルおよびその製造方法
CN1737072B (zh) 2004-08-18 2011-06-08 播磨化成株式会社 导电粘合剂及使用该导电粘合剂制造物件的方法
JP2006128343A (ja) * 2004-10-28 2006-05-18 Rohm Co Ltd 固体電解コンデンサ
JP4903421B2 (ja) 2005-02-23 2012-03-28 京セラ株式会社 セラミック容器およびこれを用いた電池または電気二重層キャパシタ
JP4813158B2 (ja) * 2005-03-08 2011-11-09 信越ポリマー株式会社 コンデンサ及びその製造方法
JP2006278875A (ja) 2005-03-30 2006-10-12 Sanyo Electric Co Ltd 固体電解コンデンサ
DE102005016727A1 (de) 2005-04-11 2006-10-26 H.C. Starck Gmbh Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zu ihrer Herstellung
US20060260713A1 (en) 2005-04-22 2006-11-23 Pyszczek Michael F Method and apparatus for providing a sealed container containing a detectable gas
JP2006319113A (ja) * 2005-05-12 2006-11-24 Rohm Co Ltd 面実装型固体電解コンデンサとその製造方法
JP2007013043A (ja) * 2005-07-04 2007-01-18 Nichicon Corp 電子素子搭載用電極アセンブリ及びこれを用いた電子部品、並びに固体電解コンデンサ
DE102005033839A1 (de) 2005-07-20 2007-01-25 H.C. Starck Gmbh Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zur ihrer Herstellung
US7092242B1 (en) 2005-09-08 2006-08-15 Greatbatch, Inc. Polymeric restraints for containing an anode in an electrolytic capacitor from high shock and vibration conditions
DE102005043828A1 (de) 2005-09-13 2007-03-22 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
DE102005043829A1 (de) 2005-09-13 2007-04-05 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit hoher Nennspannung
DE102005053646A1 (de) 2005-11-10 2007-05-16 Starck H C Gmbh Co Kg Polymerbeschichtungen mit verbesserter Lösungsmittelbeständigkeit
JP5719096B2 (ja) 2005-11-17 2015-05-13 ナガセケムテックス株式会社 ポリ(3,4−ジアルコキシチオフェン)とポリ陰イオンとの複合体の水分散体の製造方法
US7582958B2 (en) 2005-12-08 2009-09-01 International Rectifier Corporation Semiconductor package
DE102006002797A1 (de) 2006-01-20 2007-08-02 H. C. Starck Gmbh & Co. Kg Verfahren zur Herstellung von Polythiophenen
JP2007200950A (ja) 2006-01-23 2007-08-09 Fujitsu Media Device Kk 積層型固体電解コンデンサ
JP5013772B2 (ja) 2006-01-31 2012-08-29 三洋電機株式会社 電気二重層キャパシタ
US7352563B2 (en) * 2006-03-13 2008-04-01 Avx Corporation Capacitor assembly
DE102006020744A1 (de) 2006-05-04 2007-11-08 H. C. Starck Gmbh & Co. Kg Verfahren zur Stabilisierung von Thiophenderivaten
US7563290B2 (en) 2006-07-06 2009-07-21 Kemet Electronics Corporation High voltage solid electrolytic capacitors using conductive polymer slurries
US7495890B2 (en) * 2006-08-04 2009-02-24 Kemet Electronics Corporation Method of improving cathode connection integrity in solid electrolytic capacitors using secondary adhesive
DE102006044067A1 (de) 2006-09-20 2008-03-27 H.C. Starck Gmbh Verfahren zur Herstellung von Polythiophenen
JP3127813U (ja) 2006-09-29 2006-12-14 雙世國際股▲分▼有限公司 ゴルフクラブのヘッド
JP4440911B2 (ja) 2006-10-13 2010-03-24 ニチコン株式会社 固体電解コンデンサ
JP4478695B2 (ja) * 2007-03-19 2010-06-09 ニチコン株式会社 固体電解コンデンサ素子およびそれを備えた固体電解コンデンサ
DE102007041722A1 (de) 2007-09-04 2009-03-05 H.C. Starck Gmbh Verfahren zur Herstellung von leitfähigen Polymeren
DE102007046904A1 (de) 2007-09-28 2009-04-09 H.C. Starck Gmbh Partikel mit Kern-Schale-Struktur für leitfähige Schichten
DE102007048212A1 (de) 2007-10-08 2009-04-09 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Zwischenschicht
EP2231754B1 (de) 2007-12-14 2011-07-20 Henkel AG & Co. KGaA Härtbare zusammensetzungen enthaltend wässrige dispersionen von organopolysiloxanen
JP5142772B2 (ja) * 2008-03-12 2013-02-13 三洋電機株式会社 固体電解コンデンサ
JP5132374B2 (ja) 2008-03-18 2013-01-30 三洋電機株式会社 固体電解コンデンサ及びその製造方法
US8094434B2 (en) * 2008-04-01 2012-01-10 Avx Corporation Hermetically sealed capacitor assembly
DE102008023008A1 (de) 2008-05-09 2009-11-12 H.C. Starck Gmbh Neuartige Polythiophene-Polyanion-Komplexe in unpolaren organischen Lösungsmitteln
DE102008024805A1 (de) 2008-05-23 2009-12-03 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
DE102008032578A1 (de) 2008-07-11 2010-01-14 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
DE102008036525A1 (de) 2008-08-06 2010-02-11 H.C. Starck Gmbh Verfahren zur Herstellung von Polythiophenen
JP5264412B2 (ja) 2008-10-28 2013-08-14 キヤノン株式会社 画像処理装置および画像処理方法
US8075640B2 (en) 2009-01-22 2011-12-13 Avx Corporation Diced electrolytic capacitor assembly and method of production yielding improved volumetric efficiency
DE102009007594A1 (de) 2009-02-05 2010-08-12 H.C. Starck Clevios Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Außenschicht.
DE102009012660A1 (de) 2009-03-13 2010-09-16 H.C. Starck Clevios Gmbh Polymerbeschichtungen mit verbesserter Temperaturstabilität
JP5349112B2 (ja) * 2009-03-30 2013-11-20 三洋電機株式会社 固体電解コンデンサ
US8310815B2 (en) 2009-04-20 2012-11-13 Kemet Electronics Corporation High voltage and high efficiency polymer electrolytic capacitors
JP5698450B2 (ja) * 2009-09-24 2015-04-08 昭和電工株式会社 固体電解コンデンサの製造方法
US8194395B2 (en) 2009-10-08 2012-06-05 Avx Corporation Hermetically sealed capacitor assembly
US8279584B2 (en) 2010-08-12 2012-10-02 Avx Corporation Solid electrolytic capacitor assembly
US8824122B2 (en) 2010-11-01 2014-09-02 Avx Corporation Solid electrolytic capacitor for use in high voltage and high temperature applications
US8300387B1 (en) 2011-04-07 2012-10-30 Avx Corporation Hermetically sealed electrolytic capacitor with enhanced mechanical stability
US8947857B2 (en) 2011-04-07 2015-02-03 Avx Corporation Manganese oxide capacitor for use in extreme environments

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945452A (en) 1989-11-30 1990-07-31 Avx Corporation Tantalum capacitor and method of making same
US5111327A (en) 1991-03-04 1992-05-05 General Electric Company Substituted 3,4-polymethylenedioxythiophenes, and polymers and electro responsive devices made therefrom
US5473503A (en) 1993-07-27 1995-12-05 Nec Corporation Solid electrolytic capacitor and method for manufacturing the same
US5457862A (en) 1993-11-10 1995-10-17 Nec Corporation Method of manufacturing solid electrolytic capacitor
US5729428A (en) 1995-04-25 1998-03-17 Nec Corporation Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same
US5812367A (en) 1996-04-04 1998-09-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative
US6197252B1 (en) 1997-01-13 2001-03-06 Avx Limited Binder removal
US6527937B2 (en) 1998-09-16 2003-03-04 Cabot Corporation Method of making a capacitor anode of a pellet of niobium oxide
US6391275B1 (en) 1998-09-16 2002-05-21 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6416730B1 (en) 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6322912B1 (en) 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6592740B2 (en) 1998-09-16 2003-07-15 Cabot Corporation Methods to make capacitors containing a partially reduced niobium metal oxide
US6635729B1 (en) 2000-02-03 2003-10-21 Bayer Aktinegesellschaft Process for the preparation of water-soluble π-conjugated polymers
US6576099B2 (en) 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
US6639787B2 (en) 2000-11-06 2003-10-28 Cabot Corporation Modified oxygen reduced valve metal oxides
US7220397B2 (en) 2000-11-06 2007-05-22 Cabot Corporation Modified oxygen reduced valve metal oxides
US6674635B1 (en) 2001-06-11 2004-01-06 Avx Corporation Protective coating for electrolytic capacitors
US6987663B2 (en) 2003-10-17 2006-01-17 H.C. Starck Gmbh Electrolytic capacitors with a polymeric outer layer
US7554793B2 (en) 2006-11-16 2009-06-30 Kemet Electronics Corporation Low temperature curable conductive adhesive and capacitors formed thereby
US7515396B2 (en) 2007-03-21 2009-04-07 Avx Corporation Solid electrolytic capacitor containing a conductive polymer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Verfahren der physikalischen Gasadsorption (B. E. T.) von Brunauer, Emmet und Teller, Journal of American Chemical Society, Band 60, 1938, S. 309

Also Published As

Publication number Publication date
KR20120115479A (ko) 2012-10-18
CN102751106A (zh) 2012-10-24
JP5988475B2 (ja) 2016-09-07
US9767964B2 (en) 2017-09-19
GB2490005B (en) 2015-04-29
FR2973930A1 (fr) 2012-10-12
JP2012222344A (ja) 2012-11-12
US10658123B2 (en) 2020-05-19
GB201204217D0 (en) 2012-04-25
KR102051337B1 (ko) 2019-12-03
US20180025848A1 (en) 2018-01-25
US20120257325A1 (en) 2012-10-11
CN109346328A (zh) 2019-02-15
GB2490005A (en) 2012-10-17

Similar Documents

Publication Publication Date Title
DE102012205607A1 (de) Hermetisch versiegelter Elektrolytkondensator mit verbesserter mechanischer Stabilität
DE102012205589A1 (de) Gehäusekonfiguration für einen Festelektrolytkondensator
DE102012205600A1 (de) Festelektrolytkondensatorbaugruppe mit mehreren Anoden
DE102013205881A9 (de) Festelektrolytkondensator mit erhöhter mechanischer Stabilität unter extremen Bedingungen
DE102014204323A1 (de) Festelektrolytkondensator zur Verwendung unter extremen Bedingungen
DE102011109752A1 (de) Festelektrolytkondensator-Baugruppe
DE102012205529A1 (de) Manganoxid-Kondensator zur Verwendung in extremen Umgebungen
DE102011117192A1 (de) Festelektrolytkondensator zur Verwendung in Hochspannungs- und Hochtemperaturanwendungen
DE102014214945A1 (de) Feuchtigkeitsbeständige Festelektrolytkondensator-Baugruppe
DE102014225816A1 (de) Stabiler Festelektrolytkondensator, der einen Nanokomposit enthält
DE102011087197A1 (de) Mehrschichtige leitfähige Polymerbeschichtungen zur Verwendung in Hochspannungs-Festelektrolytkondensatoren
DE102011088366A1 (de) Leitfähige Beschichtung zur Verwendung in Elektrolytkondensatoren
DE102016203110A1 (de) Wärmeleitendes Einbettungsmaterial für eine Kondensatorbaugruppe
DE102013213728A1 (de) Nichtionisches Tensid zur Verwendung in einem festen Elektrolyten eines Elektrolytkondensators
DE102011108509A1 (de) Mechanisch robuste Festelektrolytkondensator-Baugruppe
DE102016214217A1 (de) Mehrfache Anschlussdrähte unter Verwendung eines Trägerdrahts für Elektrolytkondensatoren mit niedrigem ESR
DE102016207610A1 (de) Festelektrolytkondensator mit hoher Kapazität
DE102013206382A1 (de) Gecrimpter Draht zur Verbesserung des Kontakts mit Anoden eines Festelektrolytkondensators
DE102011113950A1 (de) Festelektrolytkondensator mit verbessertem Anoden-Endteil
DE112020002422T5 (de) Delaminierungsresistenter festelektrolytkondensator
DE102016203103A1 (de) Ultrahochspannungskondensatorbaugruppe
DE102016202779A1 (de) Multianodenbaugruppe mit niedrigem Profil
DE102012203416A1 (de) Festelektrolytkondensator mit verbesserter mechanischer Stabilität
DE112021004949T5 (de) Elektrolytkondensator mit niedriger Induktivität
DE102013206384A1 (de) Festelektrolytkondensator, der mehrere festgesinterte Anodenanschlussdrähte enthält

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R081 Change of applicant/patentee

Owner name: KYOCERA AVX COMPONENTS CORPORATION (N. D. GES., US

Free format text: FORMER OWNER: AVX CORPORATION, FOUNTAIN INN, SC, US

R016 Response to examination communication