JP2006278875A - 固体電解コンデンサ - Google Patents

固体電解コンデンサ Download PDF

Info

Publication number
JP2006278875A
JP2006278875A JP2005098029A JP2005098029A JP2006278875A JP 2006278875 A JP2006278875 A JP 2006278875A JP 2005098029 A JP2005098029 A JP 2005098029A JP 2005098029 A JP2005098029 A JP 2005098029A JP 2006278875 A JP2006278875 A JP 2006278875A
Authority
JP
Japan
Prior art keywords
layer
fuse
land
cavity
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005098029A
Other languages
English (en)
Inventor
Haruo Isono
治夫 磯野
Shintaro Sugiyama
新太郎 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005098029A priority Critical patent/JP2006278875A/ja
Publication of JP2006278875A publication Critical patent/JP2006278875A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes

Abstract

【課題】 本発明は、部品数が増えることによるコストアップや、ショート不良による歩留まり悪化を回避することができると共に、製造工程における生産性が良く、ヒューズ体が溶断しても正常品へ再生可能な、固体電解コンデンサを提供することを目的とする。
【解決手段】 コンデンサ素子、ヒューズ体、外装樹脂層を備えた固体電解コンデンサにおいて、セラミックパッケージのキャビティはそのキャビティ底面に第2のランド層を具備すると共に、キャビティ段差部には第1のランド層及び第3のランド層を具備し、コンデンサ素子は、陽極リード部材を第1のランド層に、陰極引出層を第2のランド層に接続され、ヒューズ体はその両端部を第1及び第3のランド層に接続されている固体電解コンデンサである。
【選択図】 図1

Description

本発明は、弁金属焼結体からなる陽極体と該陽極体に植立した陽極リード部材を備えた固体電解コンデンサに関する。

従来の固体電解コンデンサ1aの断面図を図6に示す。弁作用金属(タンタル、ニオブ、チタン、アルミニウム等)の粉末の成形体に弁作用金属からなる陽極部材6を植立して、真空焼結する。焼結により成形体は弁作用金属粉末の焼結体である陽極体2となる。次いで、陽極体2表面に、該陽極体2表面を酸化させた誘電体皮膜3、二酸化マンガン等の導電性無機材料、或いはTCNQ錯塩、導電性ポリマー等の導電性有機材料からなる固体電解質層4、カーボン層、銀層等からなる陰極引出層5を順次形成し、コンデンサ素子15が完成する。
絶縁性基板9aはその一面側に第1、第2及び第3の内部電極33a、33b、33cが設けられている。また、VIAホール41、42は内部に導電材料が付与されており、第1及び第2の内部電極33a、33bは、VIAホール41、42を介してそれぞれ絶縁性基板9aの他面側に設けられる第1及び第2の底面電極34、35と電気的に接続されている。そして、第2及び第3の内部電極33b、33cにヒューズ機能を有するヒューズ体10の両端部が接続されて設けられている。このヒューズ体10の上に絶縁体11を介してコンデンサ素子15が設けられており、その陰極引出層5は、第3の内部電極33cと電気的に接続されるように、導電性接着剤8により固着されると共に、そのコンデンサ素子15の陽極リード部材6が第1の内部電極33aと導電性接着剤のような接続部材12を介して電気的に接続されている。そして、コンデンサ素子15の周囲が外装樹脂層7により被覆されている。(例えば特許文献1)。
特開2001−257130(図1)

従来の固体電解コンデンサ1aでは、ヒューズ体10と絶縁性基板9aとの間に空間があるため、その空間にも外装樹脂が充填される。即ち、ヒューズ体10は絶縁体11、外装樹脂層7、第2の内部電極33b、第3の内部電極33cに取り囲まれることとなる。ヒューズ体10に定格電流よりも大きな電流が流れた場合、ヒューズ体10は溶融するが、溶融したヒューズ材の逃げ場がないヒューズ体10が溶断することができない。そのため、従来の固体電解コンデンサ1aでは、ヒューズ10が溶融した場合、確実に分離させて切断状態にするために、例えば消弧剤や弾力性のあるJCR(ジャンクションコートレジン)などからなる絶縁体11を使用する必要があり、部品数が増えてコストアップの要因となる。
尚、消弧剤は、溶融して液状体となった低融点金属を吸収し得るもので、熱容量および熱伝導率が大きい、高純度のケイ砂(SiO2)などを使用することができ、JCRは、たとえばシリコーンやポリイミドなどからなり、接合部を保護するのに適した弾力性のある樹脂である。
例えばコンデンサ素子の大きさが小さく、第1の内部電極33aと陽極リード部材6との間隔が1mm程度以下であれば、粘度が高めのAgペースト等の導電性ペーストをディスペンサ等により塗布してそのまま陽極リード部材6を埋め込み、硬化させることにより接続部材12を形成することができるが、この作業は粘度管理を厳格に行う必要があるため生産性が悪くなる。更に、所定の粘度より低い導電ペーストを使用した場合、導電性ペーストが絶縁性基板9a上に広がって第3の内部電極33cに達する虞がある。導電性ペーストが第3の内部電極33cに達するとショート不良となるため、歩留まり低下の原因となる。
又、前記間隔が広い場合には、導電性部材を第1の内部電極33a上に接着して、さらにその上に陽極リード11を導電性ペーストにより接着しなければならず、作業が煩雑となり、生産性が悪い。
更に、ヒューズ体10が溶断すると、コンデンサ素子自体には全く異常がないにもかかわらず固体電解コンデンサとしては損傷していることとなる。この状態から当該損傷した固体電解コンデンサを正常品へ再生することはできない。従って、正常なコンデンサ素子を廃棄することとなり無駄が多いという問題がある。
そこで、本発明は、上記問題に鑑み、部品数が増えることによるコストアップや、ショート不良による歩留まり悪化を回避することができると共に、製造工程における生産性が良く、ヒューズ体が溶断しても正常品へ再生可能な、固体電解コンデンサを提供することを目的とする。
第1の発明は、弁作用金属の焼結体からなる陽極体に弁作用金属からなる陽極リード部材を植立し、陽極体に誘電体皮膜、固体電解質層、陰極引出層を順次形成したコンデンサ素子と、ヒューズ機能を有するヒューズ体と、コンデンサ素子とヒューズ体を収容するためのキャビティを具備したセラミックパッケージと、キャビティ内に形成されて前記コンデンサ素子を雰囲気から隔離する外装樹脂層と、を備えた固体電解コンデンサにおいて、セラミックパッケージのキャビティはそのキャビティ底面に第2のランド層を具備すると共に、キャビティ段差部には第1のランド層及び第3のランド層を具備し、コンデンサ素子は、陽極リード部材を第1のランド層に、陰極引出層を第2のランド層に接続され、ヒューズ体はその両端部を第1及び第3のランド層に接続されている固体電解コンデンサである。
第2の発明は、弁作用金属の焼結体からなる陽極体に弁作用金属からなる陽極リード部材を植立し、前記陽極体に誘電体皮膜、固体電解質層、陰極引出層を順次形成したコンデンサ素子と、ヒューズ機能を有するヒューズ体と、コンデンサ素子とヒューズ体を収容するためのキャビティを具備したセラミックパッケージと、セラミックパッケージの上面に固定されて前記コンデンサ素子を雰囲気から隔離するフタ体と、を備えた固体電解コンデンサにおいて、セラミックパッケージのキャビティはそのキャビティ底面に第2のランド層を具備すると共に、キャビティ段差部には第1のランド層及び第3のランド層を具備し、コンデンサ素子は、陽極リード部材を第1のランド層に、陰極引出層を第2のランド層に接続され、ヒューズ体はその両端部を第1及び第3のランド層に接続されている固体電解コンデンサである。
陽極リード部材、陰極引出層、ヒューズ体を導電性接着材により固定することができる。
また、溶断したヒューズ材を流れ込ませるためのヒューズ材滞留用空洞を設けることもできる。
第1の発明において、外装樹脂層をフッ素樹脂により形成することが好ましい。
本発明の固体電解コンデンサは、絶縁体が不必要なため、従来の固体電解コンデンサに比べて部品数が減り、コストダウンを達成できる。
又、陽極リード部材と接続すべき第1のランド層は、セラミックパッケージとして一体で形成されたキャビティ段差部に設けられているため、従来の固体電解コンデンサのように、導電性ペーストをディスペンサ等により塗布して接続部材を形成する必要がなく、導電性部材を第1の内部電極上に接着する必要もない。従って、煩雑な作業がなくなり、生産性が向上すると共に、ショート不良が発生することがない。
以下、本発明の実施の形態につき、図面に沿って具体的に説明する。
(実施例1)
実施例1の固体電解コンデンサ1の断面図を図1(a)に示す。又、前記固体電解コンデンサ1から外装樹脂層7を取り除いたものの上面図を同図(b)に示す。以下に、実施例1の固体電解コンデンサの構成について説明する。
まず、コンデンサ素子15を以下の工程により準備する。弁作用金属であるタンタルの粉末の成形体にタンタルからなる陽極部材6を植立して、真空焼結する。焼結により成形体はタンタル粉末の焼結体である陽極体2となる。次いで、陽極体2表面に、該陽極体2表面を酸化させた誘電体皮膜3、導電性ポリマーであるポリピロールからなる固体電解質層4、カーボン層、銀層からなる陰極引出層5を順次形成し、コンデンサ素子15が完成する。
次に、前記コンデンサ素子15を収容するためのセラミックパッケージ9を用意する。前記セラミックパッケージ9の分解斜視図を図2に示す。前記セラミックパッケージ9は3つのセラミック層91、92、93が積層されてなるものである。
第1のセラミック層91にはVIAホール41、42、42が開設され、その内部には導電材料が充填されている。第1のセラミック層91の表面にはコンデンサ素子15が接着されるべき第2のランド層32が形成されると共に、対向する2つの側面には半円柱状の凹部の内壁に導電材料が被着されてなる側面電極43、43が設けられている。第1のセラミック層91の裏面の平面図を図3に示す。裏面には第1及び第2の底面電極34、35が形成されており、第2のランド層32はVIAホール42、42を介して第2の底面電極35と連結している。
半田リフロー法による固体電解コンデンサのマザー回路基板への実装に際しては、第1及び第2の底面電極34、35に対応するマザー回路基板のランド層と第1及び第2の底面電極34、35とが半田で接合されるが、側面電極43、43が前記マザー回路基板のランド層との間にフィレットを形成することによって、固体電解コンデンサ1のマザー回路基板に対する接合強度の向上、及び半田の状態の確認が可能となる等の効果をもたらすことができる。
第2のセラミック層92には、第1のセラミック層91に開設したVIAホール41と対応する位置にVIAホール41が開設され、その内部には導電材料が充填されている。第2のセラミック層92の表面には、後にコンデンサ素子15の陽極リード部材6及びヒューズ体10が接着されることとなる第1のランド層31が形成され、又、後にヒューズ体10が接着されることとなる第3のランド層33がVIAホール41を覆って形成されている。
第2のセラミック層92には第1及び第3の開口部51、53が開設されている。第1の開口部51はコンデンサ素子15を収容するための空間である。第3の開口部53は第1のランド層31と第3のランド層33を分離しており、溶断したヒューズ体を流れ込ませることができる。
第2のセラミック層92に形成された第3のランド層33は、第2のセラミック層92のVIAホール41及び第1のセラミック層91のVIAホール41を介して第1のセラミック層に形成された第1の底面電極34と連結している。
第3のセラミック層93は第2の開口部52を有した枠状をしている。前記第2の開口部52はコンデンサ素子15及びヒューズ体10を収容するための空間である。
上述した3つのセラミック層91、92、93が積層されることにより、第1の開口部51と第2の開口部52とからキャビティ61が形成されると共に、第3の開口部がヒューズ材滞留用空洞65となる。また、第1のセラミック層91のうち、第1の開口部51から露出した部分は、キャビティ底面62となり、第2のセラミック層92のうち、第2の開口部52から露出した部分はキャビティ段差部63となる。
コンデンサ素子15は、陽極リード部材6を前記キャビティ段差部63に設けられた第1のランド層31に、陰極引出層5を前記キャビティ底面62に設けられた第2のランド層32に、導電性接着剤8により接着・固定されている。ヒューズ体10はその両側端を前記キャビティ段差部63に設けられた第1及び第3のランド層31、33に導電性接着剤8により接着・固定されている。
さらに、キャビティ61に外装樹脂としてフッ素樹脂を充填・硬化させ、コンデンサ素子15及びヒューズ体10の周囲を外装樹脂層7で覆う。尚、ヒューズ材滞留用空洞65にはヒューズ体10がフタとなってフッ素樹脂の進入を妨げるためフッ素樹脂は充填されない。
上述した説明から明らかなように、コンデンサ素子15の陽極リード部材6はヒューズ体10を介して第1の底面電極34と、陰極引出層5は第2の底面電極35と機械的・電気的に接続していることとなる。
ヒューズ体近傍の部分断面図を図5に示す。ヒューズ体溶断前は同図(a)に示す状態となっている。 固体電解コンデンサに定格電流を越える大きな電流が流れた場合、同図(b)に示すように、ヒューズ体10が溶融するが、従来の固体電解コンデンサとは異なり、実施例1の固体電解コンデンサでは溶融したヒューズ材は、空洞となっているヒューズ材滞留用空洞65へ流れ込むため、ヒューズ体10は確実に溶断する。よって、第1のランド層31と第3のランド層33との間の電気的断絶が確実なものとなり、コンデンサ素子15の損傷を回避することができる。
(実施例2)
実施例2の固体電解コンデンサ1の断面図を図4に示す。コンデンサ素子15、セラミックパッケージ9、ヒューズ体10は、実施例1の固体電解コンデンサと同じであり、またコンデンサ素子15及びヒューズ体10は実施例1と同様にセラミックパッケージ9に収容・固定されているので、詳細な説明は省略する。又、実施例1と同じ部分には同じ参照符号を付している。
実施例2と実施例1との相異点は、外装樹脂層7がないこと、及び第3のセラミック層93の上面、即ちセラミックパッケージ9の上面に接着剤81によりフタ体94を接着して、・封止していることである。
固体電解コンデンサに定格電流を越える大きな電流が流れた場合、実施例1の固体電解コンデンサと同様に、実施例2の固体電解コンデンサでも溶融したヒューズ材は、空洞となっているヒューズ材滞留用空洞65へ流れ込むため、ヒューズ体10は確実に溶断する。よって、第1のランド層31と第3のランド層33との間の電気的断絶が確実なものとなり、コンデンサ素子15の損傷を回避することができる。
実施例2では、ヒューズ体10の周囲には外装樹脂層がないため、ヒューズ体10が溶断した場合には、フタ体94を取り外せばヒューズ体10が露出するので、溶断したヒューズ体10を取り外して新しいヒューズ体10に交換することが可能である。よって、従来及び実施例1の固体電解コンデンサではヒューズが溶断したものは破損品として再生不能であったが、実施例2の固体電解コンデンサではヒューズ体10を交換することにより再生可能となる。
なお、実施例2の固体電解コンデンサではコンデンサ素子15の周囲をフッ素樹脂等の外装樹脂層で封止していないが、フタ体94によりコンデンサ素子15をキャビティ61内に密封しているため、実施例1と同様に外気からのコンデンサ素子への水分の浸入を防止できる。
水分がコンデンサ素子に浸入すると以下の問題を招来させる。雰囲気中からコンデンサ素子に水分が浸入していると、半田リフロー法による固体電解コンデンサのマザー回路基板への実装時に、その水分が高温にさらされることにより水蒸気爆発を起こし固体電解コンデンサが損傷することがある。
また、固体電解質層4形成時において誘電体皮膜3と固体電解質層4との間に空隙ができてしまうことが多い。空隙があるとその部分はコンデンサとしては機能しないが、侵入してきた水分がその空隙に滞留するとその部分はコンデンサとして機能してしまうため、水分の侵入前よりも静電容量が大きくなる。即ち水分の滞留量の変動により静電容量が変動してしまうという問題を引き起こす。
これに対して、実施例1及び2では、水分の浸入を防止できるので、静電容量の変動、及び損傷を防止することができる。
なお、実施例1及び2では弁金属としてタンタルを用いたが、それに限定されず、例えばニオブ、チタン、アルミニウムを用いても同様の効果を得ることができる。又、VIAホール42は2個設けたがそれに限定されない。数が多ければESR(透過直列抵抗)が減少するのでより好ましい。
ヒューズ体はヒューズ機能を果たせばその形状は限定されず、直方体以外にも例えば円柱状(ワイヤ状)のものを用いることができる。第3の開口部53には外装樹脂層が形成されないことが好ましいが、少なくとも溶融したヒューズ材が流れ込んで溶断が確保される程度のヒューズ材滞留用空洞65が形成されていれば、第3の開口部53に多少の外装樹脂が充填されていても問題なく、本発明の技術的範囲に属するものである。
また、実施例では封止手段としては接着剤を用いたが、これに限定されることはない。例えば第3のセラミック層93とフタ体94の重なり合う部分に金属からなる電極を設け、封止手段として金−スズや銀−スズ、コバールリング等を用いても良い。

実施例1の固体電解コンデンサの断面図及び外装樹脂層を取り除いた状態での上面図である。 実施例1及び2の固体電解コンデンサにおけるセラミックパッケージの分解斜視図である。 実施例1及び2の固体電解コンデンサにおける第1のセラミック層の裏面の平面図である。 実施例2の固体電解コンデンサの断面図である。 溶断前後のヒューズ体近傍の部分断面図である。 従来の固体電解コンデンサの断面図である。
符号の説明

1、1a 固体電解コンデンサ
5 陰極引出層
6 陽極リード部材
7 外装樹脂層
8 導電性接着剤
9 セラミックパッケージ
10 ヒューズ体
61 キャビティ
65 ヒューズ材滞留用空洞
91、92、93 セラミック層
94 フタ体

Claims (5)

  1. 弁作用金属の焼結体からなる陽極体に弁作用金属からなる陽極リード部材を植立し、前記陽極体に誘電体皮膜、固体電解質層、陰極引出層を順次形成したコンデンサ素子と、
    ヒューズ機能を有するヒューズ体と、
    前記コンデンサ素子とヒューズ体を収容するためのキャビティを具備したセラミックパッケージと、
    前記キャビティ内に形成されて前記コンデンサ素子を雰囲気から隔離する外装樹脂層と、
    を備えた固体電解コンデンサにおいて、
    前記セラミックパッケージのキャビティはそのキャビティ底面に第2のランド層を具備すると共に、キャビティ段差部には第1のランド層及び第3のランド層を具備し、前記コンデンサ素子は、陽極リード部材を第1のランド層に、陰極引出層を第2のランド層に接続され、ヒューズ体はその両端部を第1及び第3のランド層に接続されていることを特徴とする固体電解コンデンサ。
  2. 弁作用金属の焼結体からなる陽極体に弁作用金属からなる陽極リード部材を植立し、前記陽極体に誘電体皮膜、固体電解質層、陰極引出層を順次形成したコンデンサ素子と、
    ヒューズ機能を有するヒューズ体と、
    前記コンデンサ素子とヒューズ体を収容するためのキャビティを具備したセラミックパッケージと、
    前記セラミックパッケージの上面に固定されて前記コンデンサ素子を雰囲気から隔離するフタ体と、
    を備えた固体電解コンデンサにおいて、
    前記セラミックパッケージのキャビティはそのキャビティ底面に第2のランド層を具備すると共に、キャビティ段差部には第1のランド層及び第3のランド層を具備し、前記コンデンサ素子は、陽極リード部材を第1のランド層に、陰極引出層を第2のランド層に接続され、ヒューズ体はその両端部を第1及び第3のランド層に接続されていることを特徴とする固体電解コンデンサ。
  3. 前記陽極リード部材、陰極引出層、ヒューズ体は導電性接着材により固定されていることを特徴とする請求項1又は2に記載の固体電解コンデンサ。
  4. 溶断したヒューズ材を流れ込ませるためのヒューズ材滞留用空洞を有することを特徴とする請求項1乃至3に記載の固体電解コンデンサ。
  5. 前記外装樹脂層はフッ素樹脂からなることを特徴とする請求項1、3又は4に記載の固体電解コンサ。
JP2005098029A 2005-03-30 2005-03-30 固体電解コンデンサ Pending JP2006278875A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098029A JP2006278875A (ja) 2005-03-30 2005-03-30 固体電解コンデンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098029A JP2006278875A (ja) 2005-03-30 2005-03-30 固体電解コンデンサ

Publications (1)

Publication Number Publication Date
JP2006278875A true JP2006278875A (ja) 2006-10-12

Family

ID=37213284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098029A Pending JP2006278875A (ja) 2005-03-30 2005-03-30 固体電解コンデンサ

Country Status (1)

Country Link
JP (1) JP2006278875A (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004671A (ja) * 2007-06-25 2009-01-08 Nec Tokin Corp 固体電解コンデンサ
US8094434B2 (en) * 2008-04-01 2012-01-10 Avx Corporation Hermetically sealed capacitor assembly
JP2012099812A (ja) * 2010-11-01 2012-05-24 Avx Corp 高電圧及び高温用途用の固体電解コンデンサ
US8194395B2 (en) 2009-10-08 2012-06-05 Avx Corporation Hermetically sealed capacitor assembly
US8279584B2 (en) 2010-08-12 2012-10-02 Avx Corporation Solid electrolytic capacitor assembly
US8300387B1 (en) 2011-04-07 2012-10-30 Avx Corporation Hermetically sealed electrolytic capacitor with enhanced mechanical stability
US8379372B2 (en) 2011-04-07 2013-02-19 Avx Corporation Housing configuration for a solid electrolytic capacitor
JP2013131739A (ja) * 2011-11-25 2013-07-04 Sanyo Electric Co Ltd 固体電解コンデンサ及びその製造方法
WO2014196588A1 (ja) * 2013-06-06 2014-12-11 昭和電工株式会社 固体電解コンデンサおよびその製造方法
US8947857B2 (en) 2011-04-07 2015-02-03 Avx Corporation Manganese oxide capacitor for use in extreme environments
US9214285B2 (en) 2012-04-11 2015-12-15 Avx Corporation Solid electrolytic capacitor with enhanced mechanical stability under extreme conditions
US9324503B2 (en) 2013-03-15 2016-04-26 Avx Corporation Solid electrolytic capacitor
US9472350B2 (en) 2013-05-13 2016-10-18 Avx Corporation Solid electrolytic capacitor containing a multi-layered adhesion coating
JP2017117676A (ja) * 2015-12-24 2017-06-29 太陽誘電株式会社 電気回路装置
US9754730B2 (en) 2015-03-13 2017-09-05 Avx Corporation Low profile multi-anode assembly in cylindrical housing
US9767964B2 (en) 2011-04-07 2017-09-19 Avx Corporation Multi-anode solid electrolytic capacitor assembly
US9824826B2 (en) 2013-05-13 2017-11-21 Avx Corporation Solid electrolytic capacitor containing conductive polymer particles
US9865401B2 (en) 2012-08-30 2018-01-09 Avx Corporation Method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor
US9892862B2 (en) 2013-05-13 2018-02-13 Avx Corporation Solid electrolytic capacitor containing a pre-coat layer
US9928963B2 (en) 2015-03-13 2018-03-27 Avx Corporation Thermally conductive encapsulant material for a capacitor assembly
US10014108B2 (en) 2015-03-13 2018-07-03 Avx Corporation Low profile multi-anode assembly
CN109461584A (zh) * 2018-11-03 2019-03-12 上海广吉电气有限公司 智能可控熔断器式高耐压电容器以及可控熔断器
US10297393B2 (en) 2015-03-13 2019-05-21 Avx Corporation Ultrahigh voltage capacitor assembly
JP2020072136A (ja) * 2018-10-30 2020-05-07 株式会社村田製作所 セラミック電子部品およびセラミック電子部品の製造方法
US11081288B1 (en) 2018-08-10 2021-08-03 Avx Corporation Solid electrolytic capacitor having a reduced anomalous charging characteristic
US11380492B1 (en) 2018-12-11 2022-07-05 KYOCERA AVX Components Corporation Solid electrolytic capacitor
US11756742B1 (en) 2019-12-10 2023-09-12 KYOCERA AVX Components Corporation Tantalum capacitor with improved leakage current stability at high temperatures
US11763998B1 (en) 2020-06-03 2023-09-19 KYOCERA AVX Components Corporation Solid electrolytic capacitor

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004671A (ja) * 2007-06-25 2009-01-08 Nec Tokin Corp 固体電解コンデンサ
US8094434B2 (en) * 2008-04-01 2012-01-10 Avx Corporation Hermetically sealed capacitor assembly
GB2461765B (en) * 2008-04-01 2012-06-20 Avx Corp Hermetically sealed capacitor assembly
JP2020109876A (ja) * 2008-04-01 2020-07-16 エイヴィーエックス コーポレイション 密封されたコンデンサアセンブリ
JP2016086193A (ja) * 2008-04-01 2016-05-19 エイヴィーエックス コーポレイション 密封されたコンデンサアセンブリ
US8576544B2 (en) 2008-04-01 2013-11-05 Avx Corporation Hermetically sealed capacitor assembly
US8194395B2 (en) 2009-10-08 2012-06-05 Avx Corporation Hermetically sealed capacitor assembly
US8780530B2 (en) 2009-10-08 2014-07-15 Avx Corporation Hermetically sealed capacitor assembly
US8279584B2 (en) 2010-08-12 2012-10-02 Avx Corporation Solid electrolytic capacitor assembly
US9224541B2 (en) 2010-11-01 2015-12-29 Avx Corporation Solid electrolytic capacitor for use in high voltage and high temperature applications
JP2012099812A (ja) * 2010-11-01 2012-05-24 Avx Corp 高電圧及び高温用途用の固体電解コンデンサ
US8824122B2 (en) 2010-11-01 2014-09-02 Avx Corporation Solid electrolytic capacitor for use in high voltage and high temperature applications
US10014120B2 (en) 2011-04-07 2018-07-03 Avx Corporation Manganese oxide capacitor for use in extreme environments
US9767964B2 (en) 2011-04-07 2017-09-19 Avx Corporation Multi-anode solid electrolytic capacitor assembly
US8300387B1 (en) 2011-04-07 2012-10-30 Avx Corporation Hermetically sealed electrolytic capacitor with enhanced mechanical stability
US10658123B2 (en) 2011-04-07 2020-05-19 Avx Corporation Multi-anode solid electrolytic capacitor assembly
US8379372B2 (en) 2011-04-07 2013-02-19 Avx Corporation Housing configuration for a solid electrolytic capacitor
US8947857B2 (en) 2011-04-07 2015-02-03 Avx Corporation Manganese oxide capacitor for use in extreme environments
US9508492B2 (en) 2011-04-07 2016-11-29 Avx Corporation Manganese oxide capacitor for use in extreme environments
JP2013131739A (ja) * 2011-11-25 2013-07-04 Sanyo Electric Co Ltd 固体電解コンデンサ及びその製造方法
US9214285B2 (en) 2012-04-11 2015-12-15 Avx Corporation Solid electrolytic capacitor with enhanced mechanical stability under extreme conditions
US9865401B2 (en) 2012-08-30 2018-01-09 Avx Corporation Method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor
US9324503B2 (en) 2013-03-15 2016-04-26 Avx Corporation Solid electrolytic capacitor
US9472350B2 (en) 2013-05-13 2016-10-18 Avx Corporation Solid electrolytic capacitor containing a multi-layered adhesion coating
US9824826B2 (en) 2013-05-13 2017-11-21 Avx Corporation Solid electrolytic capacitor containing conductive polymer particles
US9892862B2 (en) 2013-05-13 2018-02-13 Avx Corporation Solid electrolytic capacitor containing a pre-coat layer
JP5671663B1 (ja) * 2013-06-06 2015-02-18 昭和電工株式会社 固体電解コンデンサおよびその製造方法
CN105283935A (zh) * 2013-06-06 2016-01-27 昭和电工株式会社 固体电解电容器及其制造方法
US9721732B2 (en) 2013-06-06 2017-08-01 Showa Denko K.K. Solid electrolytic capacitor, and production method thereof
WO2014196588A1 (ja) * 2013-06-06 2014-12-11 昭和電工株式会社 固体電解コンデンサおよびその製造方法
US10297393B2 (en) 2015-03-13 2019-05-21 Avx Corporation Ultrahigh voltage capacitor assembly
US10014108B2 (en) 2015-03-13 2018-07-03 Avx Corporation Low profile multi-anode assembly
US9928963B2 (en) 2015-03-13 2018-03-27 Avx Corporation Thermally conductive encapsulant material for a capacitor assembly
US9754730B2 (en) 2015-03-13 2017-09-05 Avx Corporation Low profile multi-anode assembly in cylindrical housing
JP2017117676A (ja) * 2015-12-24 2017-06-29 太陽誘電株式会社 電気回路装置
US11081288B1 (en) 2018-08-10 2021-08-03 Avx Corporation Solid electrolytic capacitor having a reduced anomalous charging characteristic
JP2020072136A (ja) * 2018-10-30 2020-05-07 株式会社村田製作所 セラミック電子部品およびセラミック電子部品の製造方法
CN109461584A (zh) * 2018-11-03 2019-03-12 上海广吉电气有限公司 智能可控熔断器式高耐压电容器以及可控熔断器
US11380492B1 (en) 2018-12-11 2022-07-05 KYOCERA AVX Components Corporation Solid electrolytic capacitor
US11756742B1 (en) 2019-12-10 2023-09-12 KYOCERA AVX Components Corporation Tantalum capacitor with improved leakage current stability at high temperatures
US11763998B1 (en) 2020-06-03 2023-09-19 KYOCERA AVX Components Corporation Solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP2006278875A (ja) 固体電解コンデンサ
US6229688B1 (en) Chip type solid electrolytic capacitor
JP3958913B2 (ja) 固体電解コンデンサ
JP2000058401A (ja) 固体電解コンデンサ
JPH06132177A (ja) 固体電解コンデンサ
JPH0789529B2 (ja) ヒューズ付き固体電解コンデンサ
JP2738168B2 (ja) ヒューズ付きチップ状固体電解コンデンサ
JP2001244145A (ja) 固体電解コンデンサ
JP2006278876A (ja) 固体電解コンデンサ
JP2003257798A (ja) 樹脂パッケージ型電子部品及びその製造方法
TWM600460U (zh) 電解電容器封裝結構
KR20210038988A (ko) 밀폐형 표면 실장형 폴리머 커패시터
JP2017059652A (ja) 固体電解コンデンサおよびその製造方法
JP2002110461A (ja) チップ型固体電解コンデンサ
US9659714B2 (en) Solid electrolytic capacitor including insulating substrate having recessed surface
WO2022249715A1 (ja) 固体電解コンデンサ
JP4104803B2 (ja) 固体電解コンデンサの製法
JPH11288848A (ja) 固体電解コンデンサの製造方法
JP2017092421A (ja) 固体電解コンデンサおよびその製造方法
JP2640776B2 (ja) 固体電解コンデンサおよびその製造方法
JPH0113419Y2 (ja)
JP2004273511A (ja) ヒューズ付電解コンデンサ
JPH02194614A (ja) チップ型コンデンサおよびその製造方法
JPH0533002Y2 (ja)
JP5850499B2 (ja) 固体電解コンデンサ