DE102014225816A1 - Stabiler Festelektrolytkondensator, der einen Nanokomposit enthält - Google Patents

Stabiler Festelektrolytkondensator, der einen Nanokomposit enthält Download PDF

Info

Publication number
DE102014225816A1
DE102014225816A1 DE102014225816.2A DE102014225816A DE102014225816A1 DE 102014225816 A1 DE102014225816 A1 DE 102014225816A1 DE 102014225816 A DE102014225816 A DE 102014225816A DE 102014225816 A1 DE102014225816 A1 DE 102014225816A1
Authority
DE
Germany
Prior art keywords
electrolytic capacitor
solid electrolytic
capacitor according
nanofibrils
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102014225816.2A
Other languages
English (en)
Inventor
Ladislav Vilc
Irena Pfitznerova
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Avx Components Corp
Original Assignee
AVX Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVX Corp filed Critical AVX Corp
Publication of DE102014225816A1 publication Critical patent/DE102014225816A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

Ein Festelektrolytkondensator, der einen Anodenkörper, ein Dielektrikum, das den Anodenkörper bedeckt, und einen festen Elektrolyten, der das Dielektrikum bedeckt, umfasst, wird bereitgestellt. Der feste Elektrolyt umfasst einen Nanokomposit, der eine Vielzahl von Nanofibrillen enthält, die innerhalb einer leitfähigen Polymermatrix dispergiert sind. Die Nanofibrillen weisen eine relativ geringe Größe und ein hohes Aspektverhältnis auf, und die Erfinder haben herausgefunden, dass dadurch die thermomechanische Stabilität und Robustheit des resultierenden Kondensators erheblich verbessert werden kann.

Description

  • Festelektrolytkondensatoren (z. B. Tantalkondensatoren) haben hauptsächlich zur Miniaturisierung von elektronischen Schaltungen beigetragen und ermöglichten die Anwendung solcher Schaltungen in extremen Umgebungen. Herkömmliche Festelektrolytkondensatoren werden häufig dadurch gebildet, dass man ein Metallpulver (z. B. Tantal) um einen Metallanschlussdraht herum presst, das gepresste Teil sintert, die gesinterte Anode anodisiert und danach einen festen Elektrolyten aufträgt. Die feste Elektrolytschicht kann aus einem leitfähigen Polymer (z. B. Poly(3,4-ethylendioxythiophen)) gebildet sein, wie es in den US-Patenten Nr. 5,457,862 (Sakata et al.), 5,473,503 (Sakata et al.), 5,729,428 (Sakata et al.) und 5,812,367 (Kudoh et al.) beschrieben ist. Der leitfähige Polymerelektrolyt dieser Kondensatoren wird herkömmlicherweise durch sukzessives Eintauchen in getrennte Lösungen, die die Bestandteile der Polymerschicht enthalten, gebildet. Zum Beispiel wird häufig das zur Bildung des leitfähigen Polymers verwendete Monomer in einer Lösung aufgetragen, während der Katalysator und das Dotierungsmittel in einer oder mehreren getrennten Lösungen aufgetragen werden. Ein Problem bei dieser Technik besteht jedoch darin, dass es häufig schwierig und teuer ist, einen relativ dicken festen Elektrolyten zu erreichen, was hilfreich wäre, um eine gute mechanische Robustheit und gute elektrische Eigenschaften zu erreichen. Verschiedene Versuche wurden unternommen, um dieses Problem anzugehen. Das US-Patent Nr. 6,987,663 (Merker et al.) zum Beispiel beschreibt die Verwendung einer polymeren äußeren Schicht, die eine Oberfläche des festen Elektrolyten bedeckt. Leider ist diese Technik insofern noch problematisch, als es schwierig ist, eine gute mechanische Robustheit und Haftung der polymeren äußeren Schicht an der zum Anschluss des Festelektrolytkondensators verwendeten Graphit/Silber-Schicht zu erreichen.
  • Daher besteht immer noch ein Bedürfnis nach einem Festelektrolytkondensator, der eine gute mechanische Robustheit und gute elektrische Eigenschaften besitzt.
  • Kurzbeschreibung der Erfindung
  • Gemäß einer Ausführungsform der vorliegenden Erfindung wird ein Festelektrolytkondensator offenbart, der einen Anodenkörper, ein Dielektrikum, das den Anodenkörper bedeckt, und einen festen Elektrolyten, der das Dielektrikum bedeckt, umfasst. Der feste Elektrolyt umfasst einen Nanokomposit, der eine Vielzahl von Nanofibrillen enthält, die innerhalb einer leitfähigen Polymermatrix dispergiert sind. Die Nanofibrillen weisen ein Zahlenmittel der Querschnittsabmessung von etwa 500 Nanometer oder weniger und ein Aspektverhältnis von etwa 25 bis etwa 500 auf.
  • Weitere Merkmale und Aspekte der vorliegenden Erfindung sind im Folgenden ausführlicher dargelegt.
  • Kurzbeschreibung der Zeichnung
  • Im Rest der Beschreibung, wo auf die beigefügte Figur Bezug genommen wird, ist eine an den Fachmann gerichtete vollständige und nacharbeitbare Offenbarung der vorliegenden Erfindung einschließlich ihrer besten Realisierung gezeigt; dabei ist:
  • 1 eine schematische Darstellung einer Ausführungsform eines Kondensators, der gemäß der vorliegenden Erfindung gebildet werden kann.
  • Bei mehrfacher Verwendung von Bezugszeichen in der vorliegenden Beschreibung und der Zeichnung sollen diese dieselben oder analoge Merkmale oder Elemente der vorliegenden Erfindung repräsentieren.
  • Ausführliche Beschreibung von repräsentativen Ausführungsformen
  • Der Fachmann sollte sich darüber im Klaren sein, dass die vorliegende Diskussion nur eine Beschreibung von beispielhaften Ausführungsformen ist und die breiteren Aspekte der vorliegenden Erfindung nicht einschränken soll, wobei diese breiteren Aspekte in der beispielhaften Konstruktion verkörpert sind.
  • Allgemein gesagt betrifft die vorliegende Erfindung einen Festelektrolytkondensator, der einen Anodenkörper, ein Dielektrikum, das den Anodenkörper bedeckt, und einen festen Elektrolyten, der das Dielektrikum bedeckt, umfasst. Der feste Elektrolyt umfasst einen Nanokomposit, der eine Vielzahl von Nanofibrillen und eine leitfähige Polymermatrix enthält. Die Nanofibrillen können innerhalb der Matrix dispergiert sein oder sich als getrennte Schicht in dem Nanokomposit befinden. Unabhängig davon weisen die Nanofibrillen eine relativ geringe Größe und ein hohes Aspektverhältnis auf, und die Erfinder haben herausgefunden, dass dadurch die thermomechanische Stabilität und Robustheit des resultierenden Kondensators erheblich verbessert werden kann. Die Nanofibrillen können zum Beispiel ein Zahlenmittel der Querschnittsabmessung (z. B. Durchmesser) von etwa 500 Nanometer oder weniger, in einigen Ausführungsformen etwa 1 bis etwa 100 Nanometer und in einigen Ausführungsformen etwa 2 bis etwa 40 Nanometer aufweisen. Ebenso können die Nanofibrillen ein Aspektverhältnis (mittlere Länge dividiert durch mittleren Durchmesser) von etwa 25 bis etwa 500, in einigen Ausführungsformen von etwa 50 bis etwa 300 und in einigen Ausführungsformen etwa 100 bis etwa 200 aufweisen. Die Nanofibrillen können zum Beispiel ein Zahlenmittel der Länge von 0,1 bis etwa 10 Mikrometer, in einigen Ausführungsformen etwa 0,2 bis etwa 5 Mikrometer und in einigen Ausführungsformen etwa 0,5 bis etwa 3 Mikrometer aufweisen. Das Zahlenmittel des Durchmessers und der Länge können nach jeder dem Fachmann bekannten Technik bestimmt werden, wie durch Transmissionselektronenmikroskopie (”TEM”), gekoppelt mit einer Software-Bildanalysetechnik.
  • Es werden jetzt verschiedene Ausführungsformen der vorliegenden Erfindung ausführlicher beschrieben.
  • I. Nanokomposit
  • Wie bereits angedeutet, können die Nanofibrillen in bestimmten Ausführungsformen der vorliegenden Erfindung innerhalb der leitfähigen Polymermatrix dispergiert sein. In anderen Ausführungsformen können die Nanofibrillen und die leitfähige Polymermatrix auch als getrennte Schichten des Nanokomposits vorliegen. In solchen Ausführungsformen kann die Nanofibrillenschicht das Dielektrikum bedecken, und die leitfähige Polymermatrix kann die Nanofibrillenschicht bedecken oder sich zwischen dem Dielektrikum und der Nanofibrillenschicht befinden. Unabhängig davon kann die relative Menge der Nanofibrillen in dem Nanokomposit gezielt so gesteuert werden, dass sie dazu beiträgt, die gewünschten mechanischen Eigenschaften zu erreichen, ohne andere Eigenschaften zu beeinträchtigen. Zum Beispiel können die Nanofibrillen etwa 0,5 Gew.-% bis etwa 40 Gew.-%, in einigen Ausführungsformen etwa 1 Gew.-% bis etwa 30 Gew.-% und in einigen Ausführungsformen etwa 5 Gew.-% bis etwa 20 Gew.-% des Nanokomposits ausmachen. Ebenso kann die leitfähige Polymermatrix etwa 60 Gew.-% bis etwa 99,5 Gew.-%, in einigen Ausführungsformen etwa 70 Gew.-% bis etwa 99 Gew.-% und in einigen Ausführungsformen etwa 80 Gew.-% bis etwa 95 Gew.-% des Nanokomposits ausmachen.
  • A. Nanofibrillen
  • In der vorliegenden Erfindung kann im Allgemeinen eine Vielzahl von Nanofibrillen eingesetzt werden, die die oben erwähnten Merkmale aufweisen. Beispiele für solche Nanofibrillen sind zum Beispiel nichtleitfähige Nanofibrillen, wie Glasnanofasern, mineralische Nanoteilchen (z. B. Talk, Glimmer, Ton, Aluminiumoxid, Siliciumoxid usw.) usw.; leitfähige Nanofibrillen, wie Ruß, Kohlenstoff-Nanoröhrchen, Kohlenstoff-Nanofasern, Metall-Nanoplättchen usw.; sowie Kombinationen davon. Leitfähige Nanofibrillen sind besonders gut geeignet, um den ESR des resultierenden Kondensators zu minimieren. In einer besonderen Ausführungsform zum Beispiel werden Kohlenstoff-Nanoröhrchen in dem Nanokomposit eingesetzt. Der Ausdruck ”Kohlenstoff-Nanoröhrchen” bezieht sich allgemein auf eine Nanostruktur, die wenigstens eine Schicht Graphen in Form eines Hohlzylinders enthält. Der Zylinder kann unter speziellen und diskreten chiralen Winkeln aufgerollt sein und kann an einem oder beiden Enden mit Fulleren verkappt sein. Die Kohlenstoff-Nanoröhrchen können nur eine einzige Graphen-Monoschicht enthalten, und in diesem Fall sind sie als Einzelwand-Nanoröhrchen (”SWNT”) bekannt. Bei den Kohlenstoff-Nanoröhrchen kann es sich auch um eine koaxiale Anordnung von mehreren Einzelwand-Nanoröhrchen unterschiedlicher Durchmesser handeln, und in diesem Fall sind sie allgemein als Mehrwand-Nanoröhrchen (MWNT) bekannt. Mehrwand-Nanoröhrchen, die zum Beispiel 2 bis 100 und in einigen Ausführungsformen 5 bis 50 koaxiale Einzelwandnanoröhrchen umfassen, sind für die Verwendung in der vorliegenden Erfindung besonders gut geeignet. Solche Mehrwand-Nanoröhrchen sind unter der Handelsbezeichnung Nanocyl® kommerziell erhältlich. Nanocyl® NC210 und NC7000 sind zum Beispiel Mehrwand-Nanoröhrchen mit mittleren Durchmessern von 3,5 Nanometer bzw. 9,5 Nanometer (mit Längen zwischen 1 und 10 Mikrometer).
  • Zur Bildung der Kohlenstoff-Nanoröhrchen kann eine Vielzahl bekannter Techniken, wie katalytische Kohlenstoff-Aufdampfung, eingesetzt werden. Unabhängig davon weisen die resultierenden Kohlenstoff-Nanoröhrchen typischerweise einen hohen Kohlenstoffreinheitsgrad auf und ergeben dadurch eine gezieltere und engere Größenverteilung. Zum Beispiel kann die Kohlenstoffreinheit etwa 80% oder mehr, in einigen Ausführungsformen etwa 85% oder mehr und in einigen Ausführungsformen etwa 90% bis 100% betragen. Falls gewünscht, können die Kohlenstoff-Nanoröhrchen gegebenenfalls durch funktionelle Gruppen chemisch modifiziert sein, um zum Beispiel ihren hydrophilen Charakter zu verbessern. Zu den geeigneten funktionellen Gruppen gehören zum Beispiel etwa Carboxygruppen, Amingruppen, Thiolgruppen, Hydroxygruppen usw.
  • B. Leitfähige Polymermatrix
  • Die leitfähige Polymermatrix enthält im Allgemeinen ein oder mehrere leitfähige Polymere. Das oder die in der Matrix eingesetzten leitfähigen Polymere sind typischerweise π-konjugiert und weisen nach Oxidation oder Reduktion eine elektrische Leitfähigkeit auf, wie eine elektrische Leitfähigkeit von wenigstens etwa 1 μS/cm. Beispiele für solche π-konjugierten leitfähigen Polymere sind zum Beispiel Polyheterocyclen (z. B. Polypyrrole, Polythiophene, Polyaniline usw.), Polyacetylene, Poly-p-phenylene, Polyphenolate usw. In einer Ausführungsform ist das Polymer zum Beispiel ein substituiertes Polythiophen, wie solche mit der folgenden allgemeinen Struktur:
    Figure DE102014225816A1_0002
    wobei
    T = O oder S ist;
    D ein gegebenenfalls substituierter C1- bis C5-Alkylenrest (z. B. Methylen, Ethylen, n-Propylen, n-Butylen, n-Pentylen usw.) ist;
    R7 Folgendes ist: ein linearer oder verzweigter, gegebenenfalls substituierter C1 bis C18-Alkylrest (z. B. Methyl, Ethyl, n-Propyl oder Isopropyl, n-, iso-, sek- oder tert-Butyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1-Ethylpropyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 2,2-Dimethylpropyl, n-Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Hexadecyl, n-Octadecyl usw.); ein gegebenenfalls substituierter C5- bis C12-Cycloalkylrest (z. B. Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecyl usw.); ein gegebenenfalls substituierter C6- bis C14-Arylrest (z. B. Phenyl, Naphthyl usw.); ein gegebenenfalls substituierter C7- bis C18-Aralkylrest (z. B. Benzyl, o-, m-, p-Tolyl, 2,3-, 2,4-, 2,5-, 2,6, 3,4-, 3,5-Xylyl, Mesityl usw.); ein gegebenenfalls substituierter C1- bis C4-Hydroxyalkylrest oder ein Hydroxyrest; und
    q eine ganze Zahl von 0 bis 8, in einigen Ausführungsformen 0 bis 2 und in einer Ausführungsform 0 ist; und
    n = 2 bis 5000, in einigen Ausführungsformen 4 bis 2000 und in einigen Ausführungsformen 5 bis 1000 ist. Beispiele für Substituenten für die Reste ”D” oder ”R7” sind zum Beispiel Alkyl, Cycloalkyl, Aryl, Aralkyl, Alkoxy, Halogen, Ether, Thioether, Disulfid, Sulfoxid, Sulfon, Sulfonat, Amino, Aldehyd, Keto, Carbonsäureester, Carbonsäure, Carbonat, Carboxylat, Cyano, Alkylsilan- und Alkoxysilangruppen, Carboxylamidgruppen usw.
  • Besonders gut geeignete Thiophenpolymere sind solche, bei denen ”D” ein gegebenenfalls substituierter C2- bis C3-Alkylenrest ist. Zum Beispiel kann das Polymer gegebenenfalls substituiertes Poly(3,4-ethylendioxythiophen) sein, das die folgende allgemeine Struktur hat:
    Figure DE102014225816A1_0003
  • Verfahren zur Bildung von leitfähigen Polymeren wie den oben beschriebenen sind in der Technik wohlbekannt. Zum Beispiel beschreibt das US-Patent Nr. 6,987,663 (Merker et al.) verschiedene Techniken zur Bildung von substituierten Polythiophenen aus einem monomeren Vorläufer. Der monomere Vorläufer kann zum Beispiel die folgende Struktur haben:
    Figure DE102014225816A1_0004
    wobei
    T, D, R7 und q wie oben definiert sind. Besonders gut geeignete Thiophenmonomere sind solche, bei denen ”D” ein gegebenenfalls substituierter C2- bis C3-Alkylenrest ist. Zum Beispiel können gegebenenfalls substituierte 3,4-Alkylendioxythiophene eingesetzt werden, die die folgende allgemeine Struktur haben:
    Figure DE102014225816A1_0005
    wobei R7 und q wie oben definiert sind. In einer besonderen Ausführungsform ist ”q” = 0. Ein kommerziell geeignetes Beispiel für 3,4-Ethylendioxythiophen ist von der Heraeus Precious Metals GmbH & Co. KG unter der Bezeichnung CleviosTM M erhältlich. Weitere geeignete Monomere sind auch im US-Patent Nr. 5,111,327 (Blohm et al.) und 6,635,729 (Groenendahl et al.) beschrieben. Derivate dieser Monomere, die zum Beispiel Dimere oder Trimere der obigen Monomere sind, können ebenfalls eingesetzt werden. Höhermolekulare Derivate, d. h. Tetramere, Pentamere usw., der Monomere sind zur Verwendung in der vorliegenden Erfindung geeignet. Die Derivate können aus gleichen oder verschiedenen Monomereinheiten bestehen und können in reiner Form oder in einem Gemisch miteinander und/oder mit den Monomeren verwendet werden. Oxidierte oder reduzierte Formen dieser Vorläufer können ebenfalls eingesetzt werden.
  • Zur Bildung der leitfähigen Polymermatrix kann im Allgemeinen eine Vielzahl von Techniken eingesetzt werden. In einer besonderen Ausführungsform können leitfähige Polymere zum Beispiel durch chemische oder elektrochemische Polymerisationstechniken in situ auf den Kondensator polymerisiert werden, gegebenenfalls in Gegenwart eines Dotierungsmittels, was dazu beiträgt, die Leitfähigkeit zu erhöhen. Zum Beispiel kann das Monomer in Gegenwart eines Dotierungsmittels polymerisiert werden, das insofern auch eine oxidative Fähigkeit aufweist, als es ein Kation (z. B. Übergangsmetall) und ein Anion (z. B. Sulfonsäure) umfasst. Das Dotierungsmittel kann zum Beispiel ein Übergangsmetallsalz sein, das Eisen(III)-Kationen enthält, wie Eisen(III)-Halogenide (z. B. FeCl3) oder Eisen(III)-Salze anderer anorganischer Säuren, wie Fe(ClO4)3 oder Fe2(SO4)3, und die Eisen(III)-Salze organischer Säuren und anorganischer Säuren, die organische Reste umfassen. Beispiele für Eisen(III)-Salze von anorganischen Säuren mit organischen Resten sind zum Beispiel Eisen(III)-Salze von Schwefelsäuremonoestern von C1- bis C20-Alkanolen (z. B. das Eisen(III)-Salz von Laurylsulfat). Ebenso sind Beispiele für Eisen(III)-Salze von organischen Säuren zum Beispiel Eisen(III)-Salze von C1- bis C20-Alkansulfonsäuren (z. B. Methan-, Ethan-, Propan-, Butan- oder Dodecansulfonsäure); Eisen(III)-Salze von aliphatischen Perfluorsulfonsäuren (z. B. Trifluormethansulfonsäure, Perfluorbutansulfonsäure oder Perfluoroctansulfonsäure); Eisen(III)-Salze von aliphatischen C1- bis C20-Carbonsäuren (z. B. 2-Ethylhexylcarbonsäure); Eisen(III)-Salze von aliphatischen Perfluorcarbonsäuren (z. B. Trifluoressigsäure oder Perfluoroctansäure); Eisen(III)-Salze von aromatischen Sulfonsäuren, die gegebenenfalls mit C1- bis C20-Alkylgruppen substituiert sind (z. B. Benzolsulfonsäure, o-Toluolsulfonsäure, p-Toluolsulfonsäure oder Dodecylbenzolsulfonsäure); Eisen(III)-Salze von Cycloalkansulfonsäuren (z. B. Camphersulfonsäure); usw. Gemische dieser oben genannten Eisen(III)-Salze können ebenfalls verwendet werden. Eisen(III)-p-toluolsulfonat, Eisen(III)-o-toluolsulfonat und Gemische davon sind besonders gut geeignet. Ein kommerziell geeignetes Beispiel für Eisen(III)-p-toluolsulfonat ist von der Heraeus Precious Metals GmbH & Co. KG unter der Bezeichnung CleviosTM C erhältlich.
  • Das Monomer und das Dotierungsmittel können entweder nacheinander oder zusammen aufgetragen werden, um die in-situ-Polymerisationsreaktion einzuleiten. Zu den geeigneten Auftragstechniken zum Auftragen dieser Komponenten gehören Siebdruck, Tauchbeschichtung, elektrophoretische Beschichtung und Sprühbeschichtung. Als Beispiel kann das Monomer zunächst unter Bildung einer Vorläuferlösung mit einem Dotierungsmittel gemischt werden. Sobald das Gemisch gebildet ist, kann es auf den Anodenteil aufgetragen und polymerisieren gelassen werden, so dass die leitfähige Beschichtung auf der Oberfläche entsteht. Alternativ dazu können das Dotierungsmittel und das Monomer auch nacheinander aufgetragen werden. In einer Ausführungsform wird das Dotierungsmittel zum Beispiel in einem organischen Lösungsmittel (z. B. Butanol) gelöst und dann als Tauchlösung aufgetragen. Das Anodenteil kann dann getrocknet werden, um das Lösungsmittel davon zu entfernen. Danach kann das Teil in eine Lösung, die das Monomer enthält, eingetaucht werden. Unabhängig davon wird die Polymerisation typischerweise bei Temperaturen von etwa –10°C bis etwa 250°C und in einigen Ausführungsformen etwa 0°C bis etwa 200°C durchgeführt, abhängig von dem verwendeten Oxidationsmittel und der gewünschten Reaktionszeit. Geeignete Polymerisationstechniken, wie sie oben beschrieben sind, sind ausführlicher in US-Patent Nr. 7,515,396 (Biler) beschrieben. Noch andere Verfahren zum Auftragen einer oder mehrerer solcher leitfähigen Polymerbeschichtungen sind in den US-Patenten Nr. 5,457,862 (Sakata et al.), 5,473,503 (Sakata et al.), 5,729,428 (Sakata et al.) und 5,812,367 (Kudoh et al.) beschrieben.
  • Neben der in-situ-Polymerisation kann die leitfähige Polymermatrix auch aus einer Dispersion von vorpolymerisierten Teilchen gebildet werden. Ein Vorteil der Verwendung einer Dispersion besteht darin, dass dies die Anwesenheit von ionischen Spezies (z. B. Fe2+ oder Fe3+), die während herkömmlicher in-situ-Polymerisationsverfahren entstehen, minimieren kann. Indem man also das leitfähige Polymer als Dispersion aufträgt, kann der resultierende Kondensator eine relativ hohe Durchschlagspannung aufweisen. Die Form der Teilchen in der Dispersion kann variieren. In einer besonderen Ausführungsform sind die Teilchen zum Beispiel kugelförmig. Man sollte sich jedoch darüber im Klaren sein, dass auch andere Formen, wie Platten, Stäbe, Scheiben, Stangen, Rohre, unregelmäßige Formen usw., von der Erfindung in Betracht gezogen werden. Die Konzentration der Teilchen in der Dispersion kann je nach der gewünschten Viskosität der Dispersion und der besonderen Weise, in der die Dispersion auf den Kondensator aufgetragen werden soll, variieren. Typischerweise jedoch machen die Teilchen etwa 0,1 bis etwa 10 Gew.-%, in einigen Ausführungsformen etwa 0,4 bis etwa 5 Gew.-% und in einigen Ausführungsformen etwa 0,5 bis etwa 4 Gew.-% der Dispersion aus. Ebenso können ein oder mehrere Lösungsmittel etwa 90 Gew.-% bis etwa 99,9 Gew.-%, in einigen Ausführungsformen etwa 95 Gew.-% bis etwa 99,6 Gew.-% und in einigen Ausführungsformen etwa 96 Gew.-% bis etwa 99,5 Gew.-% der Dispersion ausmachen. Die Art des Lösungsmittels kann in Abhängigkeit von dem beabsichtigten Auftragungsverfahren variieren. In einer Ausführungsform kann zum Beispiel Wasser das primäre Lösungsmittel sein, so dass die Dispersion als ”wässrige” Dispersion angesehen wird. In solchen Ausführungsformen kann Wasser wenigstens etwa 50 Gew.-%, in einigen Ausführungsformen wenigstens etwa 75 Gew.-% und in einigen Ausführungsformen etwa 90 Gew.-% bis 100 Gew.-% des oder der in der Dispersion verwendeten Lösungsmittel ausmachen. In anderen Ausführungsformen jedoch können organische Lösungsmittel (z. B. Methanol, Ethanol, Aceton, 2-Butanon, Dimethylformamid, Dimethylacetamid, N-Methylpyrrolidon usw.) in der Dispersion eingesetzt werden. Zum Beispiel sind organische Lösungsmittel die eingesetzten primären Lösungsmittel und machen wenigstens etwa 50 Gew.-%, in einigen Ausführungsformen wenigstens etwa 75 Gew.-% und in einigen Ausführungsformen etwa 90 Gew.-% bis 100 Gew.-% des oder der in der Dispersion verwendeten Lösungsmittel aus.
  • Die polymere Dispersion kann auch ein Gegenion enthalten, das die Stabilität der Teilchen erhöht. Das heißt, das leitfähige Polymer (z. B. Polythiophen oder ein Derivat davon) weist typischerweise eine Ladung auf der Hauptpolymerkette auf, die neutral oder positiv (kationisch) ist. Polythiophenderivate tragen zum Beispiel typischerweise eine positive Ladung in der Hauptpolymerkette. In einigen Fällen kann das Polymer positive und negative Ladungen in der Struktureinheit besitzen, wobei sich die positive Ladung auf der Hauptkette und die negative Ladung gegebenenfalls auf den Substituenten des Restes ”R”, wie Sulfonat- oder Carboxylatgruppen, befindet. Die positiven Ladungen der Hauptkette können teilweise oder zur Gänze mit den gegebenenfalls vorhandenen anionischen Gruppen an den Resten ”R” gesättigt sein. Insgesamt gesehen können die Polythiophene in diesen Fällen kationisch, neutral oder sogar anionisch sein. Dennoch werden sie alle als kationische Polythiophene angesehen, da die Polythiophen-Hauptkette eine positive Ladung trägt.
  • Das Gegenion kann ein monomeres oder polymeres Anion sein, das die Ladung des leitfähigen Polymers aufhebt. Polymere Anionen können zum Beispiel Anionen von polymeren Carbonsäuren (z. B. Polyacrylsäuren, Polymethacrylsäure, Polymaleinsäuren usw.), polymeren Sulfonsäuren (z. B. Polystyrolsulfonsäuren (”PSS”), Polyvinylsulfonsäuren usw.) usw. sein. Die Säuren können auch Copolymere, wie Copolymere von Vinylcarbon- und Vinylsulfonsäure mit anderen polymerisierbaren Monomeren, wie Acrylsäureestern und Styrol, sein. Ebenso umfassen geeignete monomere Anionen zum Beispiel Sulfonsäuren, wie sie oben beschrieben sind. Wenn sie eingesetzt werden, beträgt das Gewichtsverhältnis solcher Gegenionen zu leitfähigen Polymeren in der Dispersion und in der resultierenden Schicht typischerweise etwa 0,5:1 bis etwa 50:1, in einigen Ausführungsformen etwa 1:1 bis etwa 30:1 und in einigen Ausführungsformen etwa 2:1 bis etwa 20:1. Das Gewicht der elektrisch leitfähigen Polymere, von dem bei den oben genannten Gewichtsverhältnissen die Rede ist, bezieht sich auf den eingewogenen Anteil der verwendeten Monomere, wenn man annimmt, dass während der Polymerisation eine vollständige Umsetzung stattfindet.
  • Neben leitfähigen Polymeren und wahlfreien Gegenionen kann die Dispersion auch ein oder mehrere Bindemittel enthalten, um die adhäsive Natur der polymeren Schicht weiter zu verstärken und auch die Stabilität der Teilchen innerhalb der Dispersion zu erhöhen. Die Bindemittel können organischer Natur sein, wie Polyvinylalkohole, Polyvinylpyrrolidone, Polyvinylchloride, Polyvinylacetate, Polyvinylbutyrate, Polyacrylsäureester, Polyacrylsäureamide, Polymethacrylsäureester, Polymethacrylsäureamide, Polyacrylnitrile, Styrol/Acrylsäureester, Vinylacetat/Acrylsäureester und Ethylen/Vinylacetat-Copolymere, Polybutadiene, Polyisoprene, Polystyrole, Polyether, Polyester, Polycarbonate, Polyurethane, Polyamide, Polyimide, Polysulfone, Melamin-Formaldehyd-Harze, Epoxyharze, Silikonharze oder Cellulosen. Es können auch Vernetzungsmittel eingesetzt werden, um die Adhäsionsfähigkeit der Bindemittel zu erhöhen. Solche Vernetzungsmittel sind zum Beispiel Melaminverbindungen, maskierte Isocyanate oder funktionelle Silane, wie 3-Glycidoxypropyltrialkoxysilan, Tetraethoxysilan und Tetraethoxysilan-Hydrolysat oder vernetzbare Polymere, wie Polyurethane, Polyacrylate oder Polyolefine, und anschließende Vernetzung.
  • Die polymere Dispersion kann mit Hilfe einer Vielzahl von bekannten Techniken auf den Teil aufgetragen werden, wie durch Schleuderbeschichtung, Imprägnierung, Gießen, tropfenweise Auftragung, Spritzen, Sprühen, Rakeln, Bürsten, Drucken (z. B. Tintenstrahl-, Sieb- oder Blockdruck) oder Tauchen. Obwohl sie je nach der eingesetzten Auftragungstechnik variieren kann, beträgt die Viskosität der Dispersion typischerweise etwa 0,1 bis etwa 100000 mPa·s (gemessen bei einer Scherrate von 100 s–1), in einigen Ausführungsformen etwa 1 bis etwa 10000 mPa·s, in einigen Ausführungsformen etwa 10 bis etwa 1500 mPa·s und in einigen Ausführungsformen etwa 100 bis etwa 1000 mPa·s. Einmal aufgetragen, kann die Schicht getrocknet und gewaschen werden.
  • Unabhängig von der Art und Weise, in der die leitfähige Polymermatrix gebildet wird, kann eine Vielzahl von Techniken eingesetzt werden, um die Nanofibrillen in den Kondensator einzuarbeiten. Zum Beispiel können die Nanofibrillen einfach als wässrige Dispersion hinzugefügt werden, und danach kann die leitfähige Polymermatrix aufgetragen werden. Alternativ dazu können die Nanofibrillen auch mit der zur Bildung der Polymermatrix verwendeten Lösung oder Dispersion gemischt werden. In einer besonderen Ausführungsform werden die Nanofibrillen mit einer Dispersion gemischt, die vorpolymerisierte leitfähige Polymerteilchen enthält, wie es oben beschrieben ist. Um das Auftragungsverfahren zu unterstützen, können die Nanofibrillen auch in Form einer Dispersion bereitgestellt werden. In solchen Ausführungsformen machen die Nanofibrillen typischerweise etwa 0,1 bis etwa 10 Gew.-%, in einigen Ausführungsformen etwa 0,4 bis etwa 5 Gew.-% und in einigen Ausführungsformen etwa 0,5 bis etwa 4 Gew.-% der Dispersion aus. Ebenso können Lösungsmittel etwa 90 bis etwa 99,9 Gew.-%, in einigen Ausführungsformen etwa 95 bis etwa 99,6 Gew.-% und in einigen Ausführungsformen etwa 96 bis etwa 99,5 Gew.-% der Dispersion ausmachen. Die Art des Lösungsmittels kann variieren, wie es oben beschrieben ist. In einer Ausführungsform kann zum Beispiel Wasser das primäre Lösungsmittel sein, so dass die Dispersion als ”wässrige” Dispersion angesehen wird.
  • C. Andere Komponenten
  • Man sollte sich darüber im Klaren sein, dass der Nanokomposit außer Nanofibrillen und der leitfähigen Polymermatrix gegebenenfalls auch andere Komponenten enthalten kann. In einer Ausführungsform zum Beispiel kann auch ein Vernetzungsmittel in dem Nanokomposit eingesetzt werden, um den Grad der Adhäsion zu erhöhen. Geeignete Vernetzungsmittel sind zum Beispiel in der US-Patentveröffentlichung Nr. 2007/0064376 (Merker et al.) beschrieben und umfassen zum Beispiel Amine (z. B. Diamine, Triamine, Oligomeramine, Polyamine usw.); mehrwertige Metallkationen, wie Salze oder Verbindungen von Mg, Al, Ca, Fe, Cr, Mn, Ba, Ti, Co, Ni, Cu, Ru, Ce oder Zn, Phosphoniumverbindungen, Sulfoniumverbindungen usw. Besonders gut geeignete Beispiele sind zum Beispiel 1,4-Diaminocyclohexan, 1,4-Bis(aminomethyl)cyclohexan, Ethylendiamin, 1,6-Hexandiamin, 1,7-Heptandiamin, 1,8-Octandiamin, 1,9-Nonandiamin, 1,10-Decandiamin, 1,12-Dodecandiamin, N,N-Dimethylethylendiamin, N,N,N',N'-Tetramethylethylendiamin, N,N,N',N'-Tetramethyl-1,4-butandiamin usw. sowie Gemische davon. Das Vernetzungsmittel wird typischerweise aus einer Lösung oder Dispersion aufgetragen, deren pH-Wert 1 bis 10, in einigen Ausführungsformen 2 bis 7 und in einigen Ausführungsformen 3 bis 6 beträgt, bestimmt bei 25°C. Saure Verbindungen können eingesetzt werden, um das Erreichen des gewünschten pH-Werts zu unterstützen. Beispiele für Lösungsmittel oder Dispergiermittel für das Vernetzungsmittel sind Wasser oder organische Lösungsmittel, wie Alkohole, Ketone, Carbonsäureester usw. Das Vernetzungsmittel kann durch irgendein bekanntes Verfahren, wie Schleuderbeschichtung, Imprägnieren, Gießen, tropfenweise Auftragung, Sprühauftragung, Aufdampfen, Sputtern, Sublimation, Rakelbeschichtung, Streichen oder Drucken, zum Beispiel durch Tintenstrahl-, Siebdruck oder Tampondruck, aufgetragen werden.
  • Falls gewünscht, kann der Nanokomposit auch ein hydroxyfunktionelles nichtionisches Polymer enthalten. Der Ausdruck ”hydroxyfunktionell” bedeutet im Allgemeinen, dass die Verbindung wenigstens eine hydroxyfunktionelle Gruppe enthält oder eine solche funktionelle Gruppe in Gegenwart eines Lösungsmittels besitzen kann. Ohne uns auf eine bestimmte Theorie festlegen zu wollen, glauben wir, dass hydroxyfunktionelle nichtionische Polymere den Grad des Kontakts zwischen den Polymerteilchen und der Oberfläche des internen Dielektrikums, die infolge höherer Formierungsspannungen typischerweise relativ glatt ist, verbessern können. Dadurch werden unerwarteterweise die Durchschlagspannung und die Nass-zu-Trocken-Kapazität des resultierenden Kondensators erhöht. Weiterhin glauben wir, dass die Verwendung eines hydroxyfunktionellen Polymers mit einem bestimmten Molekulargewicht auch die Wahrscheinlichkeit einer chemischen Zersetzung bei hohen Spannungen minimieren kann. Zum Beispiel kann das Molekulargewicht des hydroxyfunktionellen Polymers etwa 100 bis 10000 Gramm pro Mol, in einigen Ausführungsformen etwa 200 bis 2000, in einigen Ausführungsformen etwa 300 bis etwa 1200 und in einigen Ausführungsformen etwa 400 bis etwa 800 betragen.
  • Zu diesem Zweck können im Allgemeinen eine Vielzahl von hydroxyfunktionellen nichtionischen Polymeren eingesetzt werden. In einer Ausführungsform ist das hydroxyfunktionelle Polymer zum Beispiel ein Polyalkylenether. Polyalkylenether können Polyalkylenglycole (z. B. Polyethylenglycole, Polypropylenglycole, Polytetramethylenglycole, Polyepichlorhydrine usw.), Polyoxetane, Polyphenylenether, Polyetherketone usw. umfassen. Polyalkylenether sind typischerweise vorwiegend lineare, nichtionische Polymere mit terminalen Hydroxygruppen. Besonders gut geeignet sind Polyethylenglycole, Polypropylenglycole und Polytetramethylenglycole (Polytetrahydrofurane), die durch Polyaddition von Ethylenoxid, Propylenoxid oder Tetrahydrofuran an Wasser hergestellt werden. Die Polyalkylenether können durch Polykondensationsreaktionen aus Diolen oder Polyolen hergestellt werden. Die Diolkomponente kann insbesondere aus gesättigten oder ungesättigten, verzweigten oder unverzweigten, aliphatischen Dihydroxyverbindungen, die 5 bis 36 Kohlenstoffatome enthalten, oder aromatischen Dihydroxyverbindungen, wie zum Beispiel Pentan-1,5-diol, Hexan-1,6-diol, Neopentylglycol, Bis(hydroxymethyl)cyclohexanen, Bisphenol A, Dimerdiolen, hydrierten Dimerdiolen oder auch Gemischen der genannten Diole ausgewählt sein. Außerdem können in der Polymerisationsreaktion auch mehrwertige Alkohole, einschließlich zum Beispiel Glycerin, Di- und Polyglycerin, Trimethylolpropan, Pentaerythrit oder Sorbit, verwendet werden.
  • Neben den oben genannten können in der vorliegenden Erfindung auch andere hydroxyfunktionelle nichtionische Polymere eingesetzt werden. Einige Beispiele für solche Polymere sind zum Beispiel ethoxylierte Alkylphenole, ethoxylierte oder propoxylierte C6-C24-Fettalkohole, Polyoxyethylenglycolalkylether mit der allgemeinen Formel CH3-(CH2)10-16-(O-C2H4)1-25-OH (z. B. Octaethylenglycolmonododecylether und Pentaethylenglycolmonododecylether); Polyoxypropylenglycolalkylether mit der allgemeinen Formel CH3-(CH2)10-16-(O-C3H6)1-25-OH; Polyoxyethylenglycoloctylphenolether mit der folgenden allgemeinen Formel: C8H17-(C6H4)-(O-C2H4)1-25-OH (z. B. TritonTM X-100); Polyoxyethylenglycolalkylphenolether mit der folgenden allgemeinen Formel: C9H19-(C6H4)-(O-C2H4)1-25-OH (z. B. Nonoxynol-9); Polyoxyethylenglycolester von C8-C24-Fettsäuren, wie Polyoxyethylenglycolsorbitanalkylester (z. B. Polyoxyethylen(20)sorbitanmonolaurat, Polyoxyethylen(20)sorbitanmonopalmitat, Polyoxyethylen(20)sorbitanmonostearat, Polyoxyethylen(20)sorbitanmonooleat, PEG-20-Methylglucosedistearat, PEG-20-Methylglucosesesquistearat, PEG-80-Ricinusöl und PEG-20-Ricinusöl, PEG-3-Ricinusöl, PEG-600-dioleat und PEG-400-dioleat) und Polyoxyethylenglycerinalkylester (z. B. Polyoxyethylen-23-glycerinlaurat und Polyoxyethylen-20-glycerinstearat); Polyoxyethylenglycolether von C8-C24-Fettsäuren (z. B. Polyoxyethylen-10-cetylether, Polyoxyethylen-10-stearylether, Polyoxyethylen-20-cetylether, Polyoxyethylen-10-oleylether, Polyoxyethylen-20-oleylether, Polyoxyethylen-20-isohexadecylether, Polyoxyethylen-15-tridecylether und Polyoxyethylen-6-tridecylether); Blockcopolymere von Polyethylenglycol und Polypropylenglycol (z. B. Poloxamere) usw. sowie Gemische davon.
  • II. Aufbau des Kondensators
  • Wie bereits erwähnt, wird der Nanokomposit der vorliegenden Erfindung im Allgemeinen in einen festen Elektrolyten eines Kondensators eingearbeitet, der eine Anode bedeckt, die einen Anodenkörper und ein Dielektrikum enthält. Die Art und Weise, in der der Nanokomposit in den festen Elektrolyten eingearbeitet wird, kann je nach der gewünschten Anwendung variieren. Dennoch sind im Folgenden verschiedene beispielhafte Ausführungsformen des Kondensators ausführlicher beschrieben.
  • A. Fester Elektrolyt
  • Der feste Elektrolyt des Kondensators kann eine oder mehrere leitfähige Polymerschichten enthalten, von denen wenigstens eine den Nanokomposit der vorliegenden Erfindung enthält. In einer bestimmten Ausführungsform kann der feste Elektrolyt zum Beispiel eine innere leitfähige Polymerschicht und eine äußere leitfähige Polymerschicht enthalten. Die innere Schicht soll in die Poren des Anodenkörpers eindringen, während die äußere Schicht den Randbereich des Kondensatorkörpers bedecken soll, wodurch die Haftung an dem Dielektrikum erhöht wird und ein mechanisch robusteres Teil erhalten wird. Man sollte sich darüber im Klaren sein, dass der Ausdruck ”äußere”, wie er hier verwendet wird, einfach bedeutet, dass die Schicht die innere Schicht bedeckt. Es können sich auch zusätzliche Polymerschichten über einer äußeren Schicht oder unter der inneren Schicht sowie zwischen einer inneren Schicht und einer äußeren Schicht befinden.
  • Unabhängig davon liegt das in wenigstens einer der inneren und äußeren Schichten eingesetzte leitfähige Polymer typischerweise in Form von vorpolymerisierten Teilchen vor, wie es oben beschrieben ist. In einer Ausführungsform wird zum Beispiel die innere Schicht durch in-situ-Polymerisation eines Monomers gebildet, aber die äußere Schicht wird aus vorpolymerisierten Teilchen gebildet. In noch anderen Ausführungsformen werden beide Schichten aus vorpolymerisierten Teilchen gebildet. Um eine gute Imprägnierung des Anodenkörpers zu ermöglichen, haben die in der Dispersion eingesetzten Teilchen typischerweise eine geringe Größe, wie eine mittlere Größe (z. B. Durchmesser) von etwa 1 bis etwa 150 Nanometer, in einigen Ausführungsformen etwa 2 bis etwa 50 Nanometer und in einigen Ausführungsformen etwa 5 bis etwa 40 Nanometer. Da man im Allgemeinen den Grad der Randabdeckung verbessern möchte, können die in der äußeren Schicht verwendeten Teilchen größer sein als die in der inneren Schicht verwendeten. Zum Beispiel beträgt das Verhältnis der mittleren Größe der in der äußeren Schicht eingesetzten Teilchen zur mittleren Größe der in der inneren Schicht eingesetzten Teilchen typischerweise etwa 1,5 bis etwa 30, in einigen Ausführungsformen etwa 2 bis etwa 20 und in einigen Ausführungsformen etwa 5 bis etwa 15. Die in der Dispersion der äußeren Schicht eingesetzten Teilchen können eine mittlere Größe von etwa 50 bis etwa 500 Nanometer, in einigen Ausführungsformen etwa 80 bis etwa 250 Nanometer und in einigen Ausführungsformen etwa 100 bis etwa 200 Nanometer aufweisen. Man sollte sich darüber im Klaren sein, dass aus den Dispersionen auch mehrere innere und äußere Schichten gebildet werden können, um die gewünschte Gesamtdicke zu erreichen. Zum Beispiel beträgt die Gesamtdicke der gebildeten inneren Schichten etwa 0,1 bis etwa 5 μm, in einigen Ausführungsformen etwa 0,1 bis etwa 3 μm und in einigen Ausführungsformen etwa 0,2 bis etwa 1 μm. Ebenso kann die Gesamtdicke der äußeren Schichten im Bereich von etwa 1 bis etwa 50 μm, in einigen Ausführungsformen etwa 2 bis etwa 40 μm und in einigen Ausführungsformen etwa 5 bis etwa 20 μm liegen.
  • Falls gewünscht, können auch Zwischenschichten zwischen den inneren und äußeren Schichten eingesetzt werden. In einer Ausführungsform wird zum Beispiel eine Zwischenschicht eingesetzt, die aus einer Dispersion von vorpolymerisierten Teilchen in Kombination mit einem hydroxyfunktionellen Polymer gebildet wird, wie es oben beschrieben ist. In solchen Ausführungsformen können die innere Schicht und/oder die äußere Schicht im Wesentlichen frei von solchen hydroxyfunktionellen nichtionischen Polymeren sein.
  • Unabhängig von seiner besonderen Konfiguration kann der Nanokomposit der vorliegenden Erfindung im Allgemeinen in jedem Teil des festen Elektrolyten eingesetzt werden. In bestimmten Ausführungsformen kann der Nanokomposit zum Beispiel so eingesetzt werden, dass er eine oder mehrere der äußeren Schichten des festen Elektrolyten bildet, so dass die gewünschte mechanische Robustheit erreicht wird. Selbstverständlich sollte man sich darüber im Klaren sein, dass der Nanokomposit auch in einer oder mehreren der inneren Schichten, einer oder mehreren der Zwischenschichten sowie in Kombinationen solcher Schichten eingesetzt werden kann.
  • B. Anode
  • Der Anodenkörper der Anode kann aus einer Ventilmetallzusammensetzung gebildet werden. Die spezifische Ladung der Zusammensetzung kann variieren, wie von etwa 2000 μF·V/g bis etwa 250000 μF·V/g, in einigen Ausführungsformen von etwa 3000 μF·V/g bis etwa 200000 μF·V/g oder mehr und in einigen Ausführungsformen etwa 5000 bis etwa 150000 μF·V/g. Wie in der Technik bekannt ist, kann die spezifische Ladung dadurch bestimmt werden, dass man die Kapazität mit der eingesetzten Anodisierungsspannung multipliziert und dann dieses Produkt durch das Gewicht des anodisierten Elektrodenkörpers dividiert. Die Ventilmetallzusammensetzung enthält im Allgemeinen ein Ventilmetall (d. h. ein Metall, das zur Oxidation befähigt ist) oder eine auf einem Ventilmetall basierende Verbindung, wie Tantal, Niob, Aluminium, Hafnium, Titan, Legierungen davon, Oxide davon, Nitride davon usw. Zum Beispiel kann die Ventilmetallzusammensetzung ein elektrisch leitfähiges Oxid von Niob enthalten, wie Nioboxid mit einem Atomverhältnis von Niob zu Sauerstoff von 1:1,0 ± 1,0, in einigen Ausführungsformen 1:1,0 ± 0,3, in einigen Ausführungsformen 1:1,0 ± 0,1 und in einigen Ausführungsformen 1:1,0 ± 0,05. Zum Beispiel kann es sich bei dem Nioboxid um NbO0,7, NbO1,0, NbO1,1 und NbO2 handeln. Beispiele für solche Ventilmetalloxide sind in den US-Patenten Nr. 6,322,912 (Fife), 6,391,275 (Fife et al.), 6,416,730 (Fife et al.), 6,527,937 (Fife), 6,576,099 (Kimmel et al.), 6,592,740 (Fife et al.) und 6,639,787 (Kimmel et al.) und 7,220,397 (Kimmel et al.) sowie den US-Patentanmeldungen Veröffentlichungsnummer 2005/0019581 (Schnitter), 2005/0103638 (Schnitter et al.), 2005/0013765 (Thomas et al.) beschrieben.
  • Zur Bildung des Anodenkörpers wird im Allgemeinen ein Pulver der Ventilmetallzusammensetzung eingesetzt. Das Pulver kann Teilchen mit einer Vielzahl von Formen enthalten, wie sphärolithisch, winklig, flockenförmig usw., sowie Gemische davon. Es können auch bestimmte zusätzliche Komponenten in das Pulver mit aufgenommen werden. Zum Beispiel kann das Pulver gegebenenfalls mit einem Bindemittel und/oder Gleitmittel gemischt werden, um zu gewährleisten, dass die Teilchen ausreichend aneinander haften, wenn sie unter Bildung des Anodenkörpers verpresst werden. Zu den geeigneten Bindemitteln gehören zum Beispiel Polyvinylbutyral, Polyvinylacetat, Polyvinylalkohol, Polyvinylpyrrolidon, Cellulosepolymere, wie Carboxymethylcellulose, Methylcellulose, Ethylcellulose, Hydroxyethylcellulose und Methylhydroxyethylcellulose, ataktisches Polypropylen, Polyethylen, Polyethylenglycol (z. B. Carbowax von Dow Chemical Co.), Polystyrol, Poly(butadien/styrol); Polyamide, Polyimide und Polyacrylamide, hochmolekulare Polyether; Copolymere von Ethylenoxid und Propylenoxid; Fluorpolymere, wie Polytetrafluorethylen, Polyvinylidenfluorid und Fluorolefin-Copolymere, Acrylpolymere, wie Natriumpolyacrylat, Poly(niederalkylacrylate), Poly(niederalkylmethacrylate) und Copolymere von Niederalkylacrylaten und -methacrylaten; sowie Fettsäuren und Wachse, wie Stearin- und andere Seifenfettsäuren, Pflanzenwachs, Mikrowachse (gereinigte Paraffine) usw. Das Bindemittel kann in einem Lösungsmittel gelöst und dispergiert werden. Beispielhafte Lösungsmittel sind etwa Wasser, Alkohole usw. Wenn sie verwendet werden, kann der Prozentsatz der Bindemittel und/oder Gleitmittel von etwa 0,1 bis etwa 8 Gew.-% der Gesamtmasse variieren. Man sollte sich jedoch darüber im Klaren sein, dass Bindemittel und Gleitmittel in der vorliegenden Erfindung nicht zwingend erforderlich sind.
  • Das resultierende Pulver kann dann mit Hilfe einer beliebigen herkömmlichen Pulverpressvorrichtung unter Bildung eines Presslings kompaktiert werden. Zum Beispiel kann eine Pressform eingesetzt werden, bei der es sich um eine Einplatz-Kompaktierpresse handelt, die eine Matrize und einen oder mehrere Stempel enthält. Alternativ dazu können auch Kompaktierpressformen des Ambosstyps verwendet werden, die nur eine Matrize und einen einzigen Unterstempel verwenden. Einplatz-Kompaktierpressformen sind in mehreren Grundtypen erhältlich, wie Nocken-, Kniehebel- und Exzenter- oder Kurbelpressen mit unterschiedlichen Fähigkeiten, wie einfach wirkend, doppelt wirkend, Schwebemantelmatrize, bewegliche Werkzeugaufspannplatte, Gegenstempel, Schnecke, Schlag, Heißpressen, Prägen oder Kalibrieren. Das Pulver kann um einen Anodenanschluss (z. B. Tantaldraht) herum kompaktiert werden. Es sollte weiterhin anerkannt werden, dass der Anodenanschluss alternativ auch nach dem Pressen und/oder Sintern des Anodenkörpers an der Anode befestigt (z. B. daran geschweißt) werden kann.
  • Nach der Kompaktierung kann der resultierende Anodenkörper dann in jede gewünschte Form geschnitten werden, wie quadratisch, rechteckig, kreisförmig, oval, dreieckig, sechseckig, achteckig, siebeneckig, fünfeckig usw. Die Anode kann auch eine ”geriffelte” Form haben, indem sie eine oder mehrere Furchen, Rillen, Vertiefungen oder Einkerbungen enthält, um das Verhältnis von Oberfläche zu Volumen zu erhöhen und dadurch den ESR zu minimieren und den Frequenzgang der Kapazität auszudehnen. Der Anodenkörper kann dann einem Schritt des Erhitzens unterzogen werden, bei dem der größte Teil, wenn nicht alles, eines Bindemittels/Gleitmittels, falls vorhanden, entfernt wird. Zum Beispiel wird der Anodenkörper typischerweise in einem Ofen erhitzt, der bei einer Temperatur von etwa 150°C bis etwa 500°C arbeitet. Alternativ dazu kann das Bindemittel/Gleitmittel auch dadurch entfernt werden, dass man den Pressling mit einer wässrigen Lösung in Kontakt bringt, wie es im US-Patent Nr. 6,197,252 (Bishop et al.) beschrieben ist. Danach wird der poröse Körper unter Bildung einer integralen Masse gesintert. Die Temperatur, Atmosphäre und Zeit des Sinterns können von einer Vielzahl von Faktoren abhängen, wie der Art der Anode, der Größe der Anode usw. Typischerweise erfolgt das Sintern bei einer Temperatur von etwa 800°C bis etwa 1900°C, in einigen Ausführungsformen etwa 1000°C bis etwa 1500°C und in einigen Ausführungsformen etwa 1100°C bis etwa 1400°C während einer Zeit von etwa 5 Minuten bis etwa 100 Minuten und in einigen Ausführungsformen etwa 30 Minuten bis etwa 60 Minuten. Falls gewünscht, kann das Sintern in einer Atmosphäre erfolgen, die die Übertragung von Sauerstoffatomen zur Anode einschränkt. Zum Beispiel kann das Sintern in einer reduzierenden Atmosphäre, wie in einem Vakuum, Inertgas, Wasserstoff usw., erfolgen. Die reduzierende Atmosphäre kann einen Druck von etwa 10 Torr bis etwa 2000 Torr, in einigen Ausführungsformen etwa 100 Torr bis etwa 1000 Torr und in einigen Ausführungsformen etwa 100 Torr bis etwa 930 Torr aufweisen. Gemische von Wasserstoff und anderen Gasen (z. B. Argon oder Stickstoff) können ebenfalls eingesetzt werden.
  • Die resultierende Anode kann einen relativ niedrigen Kohlenstoff- und Sauerstoffgehalt aufweisen. Zum Beispiel kann es sein, dass die Anode nicht mehr als etwa 50 ppm Kohlenstoff und in einigen Ausführungsformen nicht mehr als etwa 10 ppm Kohlenstoff aufweist. Ebenso kann es sein, dass die Anode nicht mehr als etwa 3500 ppm Sauerstoff und in einigen Ausführungsformen nicht mehr als etwa 3000 ppm Sauerstoff und in einigen Ausführungsformen etwa 500 bis etwa 2500 ppm Sauerstoff aufweist. Der Sauerstoffgehalt kann mit einem LECO Oxygen Analyzer gemessen werden und umfasst Sauerstoff in natürlichem Oxid auf der Tantaloberfläche sowie Volumensauerstoff innerhalb der Tantalteilchen. Der Volumensauerstoffgehalt wird durch den Kristallgitterabstand des Tantals kontrolliert, der mit zunehmendem Sauerstoffgehalt im Tantal linear zunimmt, bis die Löslichkeitsgrenze erreicht ist. Dieses Verfahren wurde in "Critical Oxygen Content in Porous Anodes of Solid Tantalum Capacitors", Pozdeev-Freeman et al., Journal of materials Science: Materials in Electronics 9 (1998), 309–311, beschrieben, wobei Röntgenbeugungsanalyse (XRDA) eingesetzt wurde, um den Kristallgitterabstand des Tantals zu messen. Der Sauerstoff in gesinterten Tantalanoden kann auf dünnes natürliches Oberflächenoxid beschränkt sein, während das Volumen des Tantals praktisch frei von Sauerstoff ist.
  • Wie oben erwähnt, kann auch ein Anodenanschluss, der sich in Längsrichtung erstreckt, an dem Anodenkörper befestigt werden. Der Anodenanschluss kann in Form eines Drahtes, Bleches usw. vorliegen und kann aus einer Ventilmetallverbindung, wie Tantal, Niob, Nioboxid usw., bestehen. Die Befestigung des Anschlusses kann mit Hilfe von bekannten Techniken erfolgen, wie etwa durch Schweißen des Anschlusses an den Körper oder Einbetten innerhalb des Anodenkörpers während der Bildung (z. B. vor der Kompaktierung und/oder dem Sintern).
  • Der Anodenkörper wird auch mit einem Dielektrikum überzogen oder beschichtet. Das Dielektrikum kann durch anodisches Oxidieren (”Anodisieren”) der gesinterten Anode gebildet werden, so dass eine dielektrische Schicht auf und/oder innerhalb des Anodenkörpers entsteht. Zum Beispiel kann ein Anodenkörper aus Tantal (Ta) zu Tantalpentoxid (Ta2O5) anodisiert werden. Typischerweise wird die Anodisierung durchgeführt, indem man zunächst eine Lösung auf den Anodenkörper aufträgt, etwa durch Eintauchen des Anodenkörpers in den Elektrolyten. Im Allgemeinen wird ein Lösungsmittel, wie Wasser (z. B. deionisiertes Wasser), eingesetzt. Um die Ionenleitfähigkeit zu verstärken, kann eine Verbindung eingesetzt werden, die in dem Lösungsmittel unter Bildung von Ionen dissoziieren kann. Beispiele für solche Verbindungen sind zum Beispiel Säuren, wie sie im Folgenden in Bezug auf den Elektrolyten beschrieben werden. Zum Beispiel kann eine Säure (z. B. Phosphorsäure) etwa 0,01 Gew.-% bis etwa 5 Gew.-%, in einigen Ausführungsformen etwa 0,05 Gew.-% bis etwa 0,8 Gew.-% und in einigen Ausführungsformen etwa 0,1 Gew.-% bis etwa 0,5 Gew.-% der anodisierenden Lösung ausmachen. Falls gewünscht, können auch Gemische von Säuren eingesetzt werden.
  • Ein Strom wird durch die anodisierende Lösung geleitet, um die dielektrische Schicht zu bilden. Der Wert der Bildungsspannung entspricht der Dicke der dielektrischen Schicht. Zum Beispiel kann die Stromquelle zunächst im galvanostatischen Modus betrieben werden, bis die erforderliche Spannung erreicht ist. Danach kann die Stromquelle auf einen potentiostatischen Modus umgeschaltet werden, um zu gewährleisten, dass die gewünschte Dicke des Dielektrikums über der gesamten Oberfläche der Anode gebildet wird. Selbstverständlich können auch andere bekannte Verfahren eingesetzt werden, wie potentiostatische Impuls- oder Schrittverfahren. Die Spannung, bei der die anodische Oxidation erfolgt, liegt typischerweise im Bereich von etwa 4 bis etwa 250 V und in einigen Ausführungsformen etwa 9 bis etwa 200 V und in einigen Ausführungsformen etwa 20 bis etwa 150 V. Während der Oxidation kann die anodisierende Lösung auf einer erhöhten Temperatur gehalten werden, wie etwa 30°C oder mehr, in einigen Ausführungsformen etwa 40°C bis etwa 200°C und in einigen Ausführungsformen etwa 50°C bis etwa 100°C. Die anodische Oxidation kann auch bei Umgebungstemperatur oder darunter durchgeführt werden. Die resultierende dielektrische Schicht kann auf einer Oberfläche des Anodenkörpers und innerhalb seiner Poren gebildet werden.
  • C. Andere Schichten
  • Falls gewünscht, kann der Kondensator auch andere Schichten enthalten, wie in der Technik bekannt ist. Zum Beispiel kann zwischen dem Dielektrikum und dem festen Elektrolyten gegebenenfalls eine Schutzbeschichtung gebildet werden, wie etwa aus einem relativ isolierenden harzartigen Material (natürlich oder synthetisch). Solche Materialien können einen spezifischen Widerstand von mehr als etwa 10 Ω·cm haben, in einigen Ausführungsformen mehr als etwa 100, in einigen Ausführungsformen mehr als etwa 1000 Ω·cm, in einigen Ausführungsformen mehr als etwa 1 × 105 Ω·cm und in einigen Ausführungsformen mehr als etwa 1 × 1010 Ω·cm. Einige harzartige Materialien, die in der vorliegenden Erfindung verwendet werden können, sind unter anderem Polyurethan, Polystyrol, Ester von ungesättigten oder gesättigten Fettsäuren (z. B. Glyceride) usw. Zu den geeigneten Estern von Fettsäuren gehören zum Beispiel unter anderem Ester von Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Eleostearinsäure, Ölsäure, Linolsäure, Linolensäure, Aleuritinsäure, Schellolsäure usw. Diese Ester von Fettsäuren haben sich als besonders nützlich erwiesen, wenn sie in relativ komplexen Kombinationen unter Bildung eines ”trocknenden Öls” verwendet werden, das es dem resultierenden Film ermöglicht, schnell zu einer stabilen Schicht zu polymerisieren. Zu diesen trocknenden Ölen gehören etwa Mono-, Di- und/oder Triglyceride, die ein Glyceringerüst mit einem, zwei bzw. drei Fettacylresten, die verestert sind, aufweisen. Einige geeignete trocknende Öle, die verwendet werden können, sind zum Beispiel unter anderem Olivenöl, Leinöl, Ricinusöl, Tungöl, Sojaöl und Schellack. Diese und andere Schutzbeschichtungsmaterialien sind ausführlicher im US-Patent Nr. 6,674,635 (Fife et al.) beschrieben.
  • Falls gewünscht, kann auch eine Kohlenstoffschicht (z. B. Graphit) bzw. eine Silberschicht auf das Teil aufgetragen werden. Die Silberbeschichtung kann zum Beispiel als lötbarer Leiter, Kontaktschicht und/oder Ladungskollektor für den Kondensator wirken, und die Kohlenstoffbeschichtung kann den Kontakt der Silberbeschichtung mit dem festen Elektrolyten einschränken. Solche Beschichtungen können einen Teil oder den gesamten festen Elektrolyten bedecken.
  • D. Montage
  • Der Kondensator kann auch mit Endteilen versehen sein, insbesondere wenn er in Oberflächenmontageanwendungen eingesetzt wird. Zum Beispiel kann der Kondensator ein Anoden-Endteil, an das der Anodenanschlussdraht des Kondensatorelements elektrisch angeschlossen wird, und einen Kathoden-Endteil, an das die Kathode des Kondensatorelements elektrisch angeschlossen wird, enthalten. Jedes beliebige leitfähige Material kann eingesetzt werden, um die Endteile zu bilden, wie ein leitfähiges Metall (z. B. Kupfer, Nickel, Silber, Zink, Zinn, Palladium, Blei, Kupfer, Aluminium, Molybdän, Titan, Eisen, Zirconium, Magnesium und Legierungen davon). Zu den besonders gut geeigneten leitfähigen Metallen gehören zum Beispiel Kupfer, Kupferlegierungen (z. B. Kupfer-Zirconium, Kupfer-Magnesium, Kupfer-Zink oder Kupfer-Eisen), Nickel und Nickellegierungen (z. B. Nickel-Eisen). Die Dicke der Endteile ist im Allgemeinen so gewählt, dass die Dicke des Kondensators minimiert wird. Zum Beispiel kann die Dicke der Endteile im Bereich von etwa 0,05 bis etwa 1 Millimeter, in einigen Ausführungsformen etwa 0,05 bis etwa 0,5 Millimeter und etwa 0,07 bis etwa 0,2 Millimeter liegen. Ein beispielhaftes leitfähiges Material ist eine Metallplatte aus einer Kupfer-Eisen-Legierung, die von Wieland (Deutschland) erhältlich ist.
  • Falls gewünscht, kann die Oberfläche der Endteile, wie in der Technik bekannt ist, mit Nickel, Silber, Gold, Zinn usw. galvanisiert werden, um zu gewährleisten, dass das endgültige Teil auf der Leiterplatte montierbar ist. In einer besonderen Ausführungsform werden beide Flächen der Endteile mit Nickel- bzw. Silber-Schutzschichten versehen, während die Montagefläche auch mit einer Zinnlötschicht versehen wird.
  • 1 zeigt eine Ausführungsform eines Elektrolytkondensators 30, die ein Anoden-Endteil 62 und ein Kathoden-Endteil 72 in elektrischer Verbindung mit einem Kondensatorelement 33 umfasst. Das Kondensatorelement 33 weist eine obere Fläche 37, eine untere Fläche 39, eine vordere Fläche 36 und eine hintere Fläche 38 auf. Das Kathoden-Endteil 72 kann zwar in elektrischem Kontakt mit einer beliebigen Fläche des Kondensatorelements 33 sein, befindet sich aber in der gezeigten Ausführungsform in elektrischem Kontakt mit der unteren Fläche 39 und der hinteren Fläche 38. Insbesondere enthält das Kathoden-Endteil 72 eine erste Komponente 73, die im Wesentlichen senkrecht zu einer zweiten Komponente 74 positioniert ist. Die erste Komponente 73 befindet sich in elektrischem Kontakt und im Wesentlichen parallel zur unteren Fläche 39 des Kondensatorelements 33. Die zweite Komponente 74 befindet sich in elektrischem Kontakt und im Wesentlichen parallel zur hinteren Fläche 38 des Kondensatorelements 33. Obwohl sie als einstückig abgebildet sind, sollte man sich darüber im Klaren sein, dass diese Teile alternativ dazu auch getrennte Stücke sein können, die entweder direkt oder über ein zusätzliches leitfähiges Element (z. B. Metall) miteinander verbunden sind. Außerdem sollte man sich darüber im Klaren sein, dass in bestimmten Ausführungsformen die zweite Komponente 74 aus dem Kathoden-Endteil 72 entfernt sein kann. Das Anoden-Endteil 62 enthält ebenso eine erste Komponente 63, die im Wesentlichen senkrecht zu einer zweiten Komponente 64 positioniert ist. Die erste Komponente 63 befindet sich in elektrischem Kontakt und im Wesentlichen parallel zur unteren Fläche 39 des Kondensatorelements 33. Die zweite Komponente 64 enthält einen Bereich 51, der einen Anodenanschlussdraht 16 trägt. In der gezeigten Ausführungsform besitzt der Bereich 51 eine ”U-Form”, um den Oberflächenkontakt und die mechanische Stabilität des Anschlussdrahts 16 weiter zu erhöhen.
  • Die Endteile können unter Verwendung einer beliebigen, in der Technik bekannten Methode mit dem Kondensatorelement verbunden werden. In einer Ausführungsform zum Beispiel kann ein Leiterrahmen bereitgestellt werden, der das Kathoden-Endteil 72 und das Anoden-Endteil 62 definiert. Um das Elektrolytkondensatorelement 33 an dem Leiterrahmen zu befestigen, kann ein leitfähiger Kleber zunächst auf eine Fläche des Kathoden-Endteils 72 aufgetragen werden. Der leitfähige Kleber kann zum Beispiel leitfähige Metallteilchen umfassen, die in einer Harzzusammensetzung enthalten sind. Bei den Metallteilchen kann es sich um Silber, Kupfer, Gold, Platin, Nickel, Zink, Bismut usw. handeln. Die Harzzusammensetzung kann ein duroplastisches Harz (z. B. Epoxidharz), Härtungsmittel (z. B. Säureanhydrid) und Kopplungsmittel (z. B. Silan-Kopplungsmittel) umfassen. Geeignete leitfähige Kleber sind in der US-Patentanmeldung Veröffentlichungsnummer 2006/0038304 (Osako et al.) beschrieben. Eine Vielzahl von Techniken kann verwendet werden, um den leitfähigen Kleber auf das Kathoden-Endteil 72 aufzutragen. Aufgrund ihres praktischen und kostensparenden Nutzens können zum Beispiel Drucktechniken eingesetzt werden.
  • Im Allgemeinen kann eine Vielzahl von Methoden eingesetzt werden, um die Endteile an dem Kondensator zu befestigen. In einer Ausführungsform zum Beispiel sind die zweite Komponente 64 des Anoden-Endteils 62 und die zweite Komponente 74 des Kathoden-Endteils 72 zunächst in die in 1 gezeigte Position aufwärts gebogen. Danach wird das Kondensatorelement 33 auf dem Kathoden-Endteil 72 positioniert, so dass seine untere Fläche 39 mit dem Kleber in Kontakt kommt und der Anoden-Anschlussdraht 16 von dem oberen U-förmigen Bereich 51 aufgenommen wird. Falls gewünscht, kann sich ein Isolationsmaterial (nicht gezeigt), wie ein Kunststoffpolster oder -band, zwischen der unteren Fläche 39 des Kondensatorelements 33 und der ersten Komponente 63 des Anoden-Endteils 62 befinden, um das Anoden- und das Kathoden-Endteil elektrisch voneinander zu isolieren.
  • Dann wird der Anodenanschluss 16 mit Hilfe einer in der Technik bekannten Methode, wie mechanisches Schweißen, Laserschweißen, leitfähige Kleber usw., elektrisch mit dem Bereich 51 verbunden. Zum Beispiel kann der Anodenanschluss 16 mit Hilfe eines Lasers an den Anoden-Endteil 62 geschweißt werden. Laser enthalten im Allgemeinen Resonatoren, die ein Lasermedium enthalten, das Photonen durch stimulierte Emission freisetzen kann, und eine Energiequelle, die die Elemente des Lasermediums anregt. Ein Typ von geeignetem Laser ist einer, bei dem das Lasermedium aus einem Aluminium-Yttrium-Granat (YAG) besteht, der mit Neodym (Nd) dotiert ist. Die angeregten Teilchen sind Neodymionen Nd3+. Die Energiequelle kann kontinuierliche Energie zu dem Lasermedium liefern, um einen kontinuierlichen Laserstrahl zu emittieren, oder Energieentladungen, um einen gepulsten Laserstrahl zu emittieren. Nach dem elektrischen Verbinden des Anodenanschlusses 16 mit dem Anoden-Endteil 62 kann der leitfähige Kleber dann gehärtet werden. Zum Beispiel kann eine Heizpresse verwendet werden, um Wärme und Druck anzuwenden und so zu gewährleisten, dass das Elektrolytkondensatorelement 33 durch den Kleber ausreichend stark an den Kathoden-Endteil 72 geklebt wird.
  • Sobald das Kondensatorelement befestigt ist, kann der Leiterrahmen in einem Harzgehäuse eingeschlossen werden, das dann mit Siliciumoxid oder irgendeinem anderen bekannten Einbettungsmaterial gefüllt werden kann. Die Breite und Länge des Gehäuses kann je nach Verwendungszweck variieren. Zu den geeigneten Gehäusen gehören zum Beispiel etwa die Gehäuse ”A”, ”B”, ”C”, ”D”, ”E”, ”F”, ”G”, ”H”, ”J”, ”K”, ”L”, ”M”, ”N”, ”P”, ”R”, ”S”, ”T”, ”V”, ”W”, ”Y”, ”X” oder ”Z” (AVX Corporation). Unabhängig von der eingesetzten Gehäusegröße wird das Kondensatorelement so eingebettet, dass wenigstens ein Teil des Anoden- und des Kathoden-Endteils zur Montage auf einer Leiterplatte exponiert bleiben. Wie zum Beispiel in 1 gezeigt ist, ist das Kondensatorelement 33 so in einem Gehäuse 28 eingebettet, dass ein Teil des Anoden-Endteils 62 und ein Teil des Kathoden-Endteils 72 exponiert sind.
  • Unabhängig von der besonderen Art und Weise, wie er gebildet wird, kann der resultierende Kondensator ausgezeichnete elektrische Eigenschaften aufweisen. Der äquivalente Serienwiderstand (”ESR”) kann zum Beispiel etwa 1200 Milliohm oder weniger, in einigen Ausführungsformen etwa 300 Milliohm oder weniger, in einigen Ausführungsformen etwa 200 Milliohm oder weniger und in einigen Ausführungsformen etwa 1 bis etwa 100 Milliohm betragen, gemessen mit 2,2 Volt Vorspannung und einem sinusförmigen Signal mit 0,5 Volt von Spitze zu Spitze, das frei von Harmonischen ist, bei einer Frequenz von 100 kHz. Außerdem kann der Leckstrom, der sich im Allgemeinen auf den Strom bezieht, der von einem Leiter über einen Isolator zu einem benachbarten Leiter fließt, auf relativ niedrigen Niveaus gehalten werden. Zum Beispiel kann der Leckstrom etwa 40 μA oder weniger, in einigen Ausführungsformen etwa 25 μA oder weniger und in einigen Ausführungsformen etwa 15 μA oder weniger betragen. Ebenso kann der Zahlenwert des normierten Leckstroms des Kondensators etwa 0,2 μA/μF·V oder weniger, in einigen Ausführungsformen etwa 0,1 μA/μF·V oder weniger und in einigen Ausführungsformen etwa 0,05 μA/μF·V oder weniger betragen, wobei ”μA” Mikroampére bedeutet und ”μF·V” das Produkt aus der Kapazität und der Nennspannung ist. Der ESR und die normierten Leckstromwerte können selbst bei relativ hohen Temperaturen aufrechterhalten werden. Zum Beispiel können die Werte nach dem Reflow (z. B. 10 Sekunden lang) bei einer Temperatur von etwa 100°C bis etwa 350°C und in einigen Ausführungsformen etwa 200°C bis etwa 300°C (z. B. 240°C) aufrechterhalten werden.
  • Der Kondensator kann auch eine relativ hohe ”Durchschlagspannung” (Spannung, bei der der Kondensator versagt) aufweisen, wie etwa 35 Volt oder mehr, in einigen Ausführungsformen etwa 50 Volt oder mehr und in einigen Ausführungsformen etwa 60 Volt oder mehr. Der Kondensator kann auch eine relativ hohe prozentuale Feuchtkapazität aufweisen, was ihn in die Lage versetzt, in Gegenwart von Luftfeuchtigkeit nur einen geringen Kapazitätsverlust und/oder Fluktuation aufzuweisen. Dieses Leistungsmerkmal wird durch die ”prozentuale Feucht-zu-Trocken-Kapazität” quantifiziert, die durch die Gleichung Feucht-zu-Trocken-Kapazität = (Trocken kapazität/Feuchtkapazität) × 100 bestimmt wird.
  • Zum Beispiel kann der Kondensator der vorliegenden Erfindung eine prozentuale Feucht-zu-Trocken-Kapazität von etwa 50% oder mehr, in einigen Ausführungsformen etwa 60% oder mehr, in einigen Ausführungsformen etwa 70% oder mehr und in einigen Ausführungsformen etwa 80% bis 100% aufweisen.
  • Die vorliegende Erfindung wird anhand der folgenden Beispiele besser verständlich.
  • Testverfahren
  • Äquivalenter Serienwiderstand (ESR)
  • Der äquivalente Serienwiderstand kann mit Hilfe eines Keithley-3330-Precision-LCZ-Meters mit Kelvin-Anschlüssen, 2,2 Volt Vorspannung und einem sinusförmigen Signal mit 0,5 Volt von Spitze zu Spitze gemessen werden. Die Arbeitsfrequenz kann 100 kHz betragen, und die Temperatur kann 23°C ± 2°C betragen.
  • Kapazität (KAP)
  • Die Kapazität kann mit Hilfe eines Keithley-3330-Precision-LCZ-Meters mit Kelvin-Anschlüssen, 2,2 Volt Vorspannung und einem sinusförmigen Signal mit 0,5 Volt von Spitze zu Spitze gemessen werden. Die Arbeitsfrequenz kann 120 Hz betragen, und die Temperatur kann 23°C ± 2°C betragen.
  • Leckstrom (DCL)
  • Der Leckstrom kann unter Verwendung eines Lecktestmessgeräts gemessen werden, das den Leckstrom bei einer Temperatur von 23°C ± 2°C und bei der Nennspannung nach mindestens 60 Sekunden misst.
  • Die Stabilität wurde bei der Reflow-Temperatur getestet. Der ESR, KAP und DCL eines einzelnen Kondensators wurden jeweils nach der ersten, zweiten und dritten Reflow-Behandlung aufgezeichnet.
  • Beispiel 1
  • Ein Tantalpulver mit 40000 μFV/g wurde verwendet, um Anodenproben zu bilden. Jede Anodenprobe wurde zusammen mit einem Tantaldraht eingebettet, bei 1500°C gesintert und auf eine Dichte von 5,3 g/cm3 gepresst. Die resultierenden Presslinge hatten eine Größe von 1,20 × 1,85 × 2,50 mm. Die Presslinge wurden in Wasser/Phosphorsäure als Elektrolyt mit einer Leitfähigkeit von 8,6 mS bei einer Temperatur von 85°C bis 75 V anodisiert, um die dielektrische Schicht zu bilden. Dann wurde eine leitfähige Polymerbeschichtung gebildet, indem man die Anoden 5 Sekunden lang in eine Butanollösung von Eisen(III)toluolsulfonat (CleviosTM C, H. C. Starck) und anschließend 1 Minute lang in 3,4-Ethylendioxythiophen (CleviosTM M, H. C. Starck) eintauchte. Nach 45 Minuten Polymerisation wurde eine dünne Schicht von Poly(3,4-ethylendioxythiophen) auf der Oberfläche des Dielektrikums gebildet. Die Teile wurden in Methanol gewaschen, um Nebenprodukte der Reaktion zu entfernen, in einem flüssigen Elektrolyten anodisiert und erneut in Methanol gewaschen. Der Polymerisationszyklus wurde sechsmal wiederholt. Danach wurden die Teile in dispergiertes Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 2% und einer Viskosität von 20 mPa·s (CleviosTM K, H. C. Starck) eingetaucht. Nach der Beschichtung wurden die Teile 20 Minuten lang bei 125°C getrocknet. Dieser Vorgang wurde nicht wiederholt. Danach wurden die Teile in dispergiertes Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 2% und einer Viskosität von 160 mPa·s (CleviosTM K, H. C. Starck) eingetaucht. Nach der Beschichtung wurden die Teile 20 Minuten lang bei 125°C getrocknet. Dieser Vorgang wurde achtmal wiederholt.
  • Dann wurden die Teile in eine Graphitdispersion eingetaucht und getrocknet. Schließlich wurden die Teile in eine Silberdispersion eingetaucht und getrocknet. Viele Teile (250) von Kondensatoren mit 10 μF/25 V wurden auf diese Weise hergestellt.
  • Beispiel 2
  • Kondensatoren wurden in der in Beispiel 1 beschriebenen Weise gebildet, außer dass eine andere leitfähige Polymerbeschichtung verwendet wurde. Insbesondere wurden die Teile nach der Beschichtung mit dem dispergierten Poly(3,4-ethylendioxythiophen) in Mehrwand-Nanoröhrchen eingetaucht, die in einem Wassergemisch mit einem Feststoffgehalt von 2% und einer Viskosität von 1250 mPa·s (AquacylTM, Nanocyl) dispergiert waren. Nach der Beschichtung wurden die Teile 20 Minuten lang bei 125°C getrocknet. Dieser Vorgang wurde zweimal wiederholt. Dann wurden die Teile in eine Graphitdispersion eingetaucht und getrocknet. Schließlich wurden die Teile in eine Silberdispersion eingetaucht und getrocknet. Viele Teile (250) von Kondensatoren mit 10 μF/25 V wurden auf diese Weise hergestellt.
  • Beispiel 3
  • Kondensatoren wurden in der in Beispiel 1 beschriebenen Weise gebildet, außer dass eine andere leitfähige Polymerbeschichtung verwendet wurde. Insbesondere wurden die Teile nach der Beschichtung mit dem dispergierten Poly(3,4-ethylendioxythiophen) in eine Dispersion, die Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 2% und einer Viskosität von 160 mPa·s (CleviosTM K, H. C. Starck) enthielt, und in Mehrwand-Nanoröhrchen mit einem Feststoffgehalt von 2% (Nanocyl) eingetaucht. Nach der Beschichtung wurden die Teile 20 Minuten lang bei 125°C getrocknet. Dieser Vorgang wurde achtmal wiederholt. Dann wurden die Teile in eine Graphitdispersion eingetaucht und getrocknet. Schließlich wurden die Teile in eine Silberdispersion eingetaucht und getrocknet. Viele Teile (250) von Kondensatoren mit 10 μF/25 V wurden auf diese Weise hergestellt.
  • Dann wurden die fertigen Kondensatoren der Beispiele 1 bis 3 auf Reflow-Stabilitätsmerkmale getestet. Die Medianergebnisse von ESR, KAP und DCL sind im Folgenden in Tabelle 1, 2 und 3 dargelegt. Tabelle 1: Temperaturstabilitätsmerkmale (ESR [mΩ])
    - erste zweite dritte
    Beispiel 1 94,5 122,1 133,7 139,2
    Beispiel 2 90,0 104,2 105,0 106,6
    Beispiel 3 92,3 119,4 130,5 131,0
    Tabelle 2: Temperaturstabilitätsmerkmale (KAP [μF])
    - erste zweite dritte
    Beispiel 1 10,14 9,59 9,46 9,35
    Beispiel 2 9,80 9,61 9,50 9,41
    Beispiel 3 10,16 9,74 9,59 9,47
    Tabelle 3: Temperaturstabilitätsmerkmale (DCL [μA])
    - erste zweite dritte
    Beispiel 1 0,147 0,196 0,245 0,270
    Beispiel 2 0,196 0,294 0,588 1,568
    Beispiel 3 0,147 0,220 0,294 0,514
  • Wie angegeben, wiesen die aus Mehrwand-Nanoröhrchen gebildeten Teile eine erhöhte Reflow-Stabilität des ESR auf.
  • Diese und andere Modifikationen und Variationen der vorliegenden Erfindung können vom Fachmann praktisch umgesetzt werden, ohne vom Wesen und Umfang der vorliegenden Erfindung abzuweichen. Außerdem sollte man sich darüber im Klaren sein, dass Aspekte der verschiedenen Ausführungsformen ganz oder teilweise gegeneinander ausgetauscht werden können. Weiterhin wird der Fachmann anerkennen, dass die obige Beschreibung nur beispielhaften Charakter hat und die Erfindung, die in den beigefügten Ansprüchen näher beschrieben ist, nicht einschränken soll.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 5457862 [0001, 0018]
    • US 5473503 [0001, 0001, 0018]
    • US 5729428 [0001, 0018]
    • US 6987663 [0001, 0016]
    • US 5111327 [0016]
    • US 6635729 [0016]
    • US 7515396 [0018]
    • US 5812367 [0018]
    • US 2007/0064376 [0025]
    • US 6322912 [0034]
    • US 6391275 [0034]
    • US 6416730 [0034]
    • US 6527937 [0034]
    • US 6576099 [0034]
    • US 6592740 [0034]
    • US 6639787 [0034]
    • US 7220397 [0034]
    • US 6197252 [0037]
    • US 6674635 [0042]
  • Zitierte Nicht-Patentliteratur
    • ”Critical Oxygen Content in Porous Anodes of Solid Tantalum Capacitors”, Pozdeev-Freeman et al., Journal of materials Science: Materials in Electronics 9 (1998), 309–311 [0038]

Claims (20)

  1. Festelektrolytkondensator, der einen Anodenkörper, ein Dielektrikum, das den Anodenkörper bedeckt, und einen festen Elektrolyten, der das Dielektrikum bedeckt, umfasst, wobei der feste Elektrolyt einen Nanokomposit, der eine Vielzahl von Nanofibrillen und eine leitfähige Polymermatrix enthält, umfasst, wobei die Nanofibrillen ein Zahlenmittel der Querschnittsabmessung von etwa 500 Nanometer oder weniger und ein Aspektverhältnis von etwa 25 bis etwa 500 aufweisen.
  2. Festelektrolytkondensator gemäß Anspruch 1, wobei die Nanofibrillen ein Zahlenmittel der Querschnittsabmessung von etwa 1 bis etwa 100 Nanometer und vorzugsweise etwa 2 bis etwa 40 Nanometer aufweisen.
  3. Festelektrolytkondensator gemäß Anspruch 1, wobei die Nanofibrillen ein Aspektverhältnis von etwa 50 bis etwa 300 aufweisen.
  4. Festelektrolytkondensator gemäß Anspruch 1, wobei die Nanofibrillen ein Zahlenmittel der Länge von 0,1 bis etwa 10 Mikrometer aufweisen.
  5. Festelektrolytkondensator gemäß Anspruch 1, wobei die Nanofibrillen nichtleitend sind.
  6. Festelektrolytkondensator gemäß Anspruch 1, wobei die Nanofibrillen leitend sind.
  7. Festelektrolytkondensator gemäß Anspruch 6, wobei die leitenden Nanofibrillen Kohlenstoff-Nanoröhrchen umfassen.
  8. Festelektrolytkondensator gemäß Anspruch 7, wobei die Kohlenstoff-Nanoröhrchen Mehrwand-Kohlenstoff-Nanoröhrchen sind.
  9. Festelektrolytkondensator gemäß Anspruch 1, wobei die Nanofibrillen und die leitfähige Polymermatrix getrennte Schichten des Nanokomposits bilden.
  10. Festelektrolytkondensator gemäß Anspruch 1, wobei die Nanofibrillen innerhalb der leitfähigen Polymermatrix dispergiert sind.
  11. Festelektrolytkondensator gemäß Anspruch 1, wobei es sich bei dem leitfähigen Polymer um Poly(3,4-ethylendioxythiophen) handelt.
  12. Festelektrolytkondensator gemäß Anspruch 1, wobei die leitfähige Polymermatrix aus vorpolymerisierten leitfähigen Polymerteilchen gebildet ist.
  13. Festelektrolytkondensator gemäß Anspruch 1, wobei der feste Elektrolyt eine innere Schicht und eine äußere Schicht enthält und wobei die äußere Schicht den Nanokomposit enthält.
  14. Festelektrolytkondensator gemäß Anspruch 13, wobei die äußere Schicht vorpolymerisierte leitfähige Polymerteilchen mit einer mittleren Größe von etwa 50 bis etwa 500 Nanometer, vorzugsweise etwa 80 bis etwa 250 Nanometer und besonders bevorzugt etwa 100 bis etwa 200 Nanometer enthält.
  15. Festelektrolytkondensator gemäß Anspruch 1, wobei der Nanokomposit weiterhin ein Vernetzungsmittel umfasst.
  16. Festelektrolytkondensator gemäß Anspruch 1, wobei der Anodenkörper aus einem Pulver gebildet ist, das Tantal, Niob oder ein elektrisch leitfähiges Oxid davon enthält.
  17. Festelektrolytkondensator gemäß Anspruch 1, der weiterhin ein Anoden-Endteil, das sich in elektrischer Verbindung mit dem Anodenkörper befindet, und ein Kathoden-Endteil, das sich in elektrischer Verbindung mit dem festen Elektrolyten befindet, umfasst.
  18. Festelektrolytkondensator gemäß Anspruch 17, wobei sich ein Anodenanschluss ausgehend vom Anodenkörper erstreckt und mit dem Anoden-Endteil verbunden ist.
  19. Verfahren zur Bildung des Festelektrolytkondensators gemäß Anspruch 1, wobei das Verfahren das Auftragen der Nanofibrillen über das Dielektrikum und danach das Auftragen einer Dispersion von vorpolymerisierten leitfähigen Polymerteilchen umfasst.
  20. Verfahren gemäß Anspruch 19, wobei die Nanofibrillen in Form einer wässrigen Dispersion vorliegen.
DE102014225816.2A 2013-12-17 2014-12-15 Stabiler Festelektrolytkondensator, der einen Nanokomposit enthält Withdrawn DE102014225816A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/108,726 US9589733B2 (en) 2013-12-17 2013-12-17 Stable solid electrolytic capacitor containing a nanocomposite
US14/108,726 2013-12-17

Publications (1)

Publication Number Publication Date
DE102014225816A1 true DE102014225816A1 (de) 2015-06-18

Family

ID=53192942

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014225816.2A Withdrawn DE102014225816A1 (de) 2013-12-17 2014-12-15 Stabiler Festelektrolytkondensator, der einen Nanokomposit enthält

Country Status (7)

Country Link
US (1) US9589733B2 (de)
JP (1) JP6681138B2 (de)
KR (1) KR102278453B1 (de)
CN (2) CN111524711B (de)
DE (1) DE102014225816A1 (de)
FR (1) FR3015106A1 (de)
HK (1) HK1207202A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106558418B (zh) * 2015-09-28 2019-08-23 无锡市惠诚石墨烯技术应用有限公司 一种固态电解电容器及其固态电解质的制备方法
US10186382B2 (en) 2016-01-18 2019-01-22 Avx Corporation Solid electrolytic capacitor with improved leakage current
JP2017174915A (ja) * 2016-03-23 2017-09-28 カーリットホールディングス株式会社 導電性高分子分散液及びそれを用いた固体電解コンデンサの製造方法
US10763046B2 (en) 2016-09-15 2020-09-01 Avx Corporation Solid electrolytic capacitor with improved leakage current
WO2018075330A2 (en) 2016-10-18 2018-04-26 Avx Corporation Solid electrolytic capacitor with improved leakage current
US11387047B2 (en) * 2016-10-18 2022-07-12 KYOCERA AVX Components Corporation Solid electrolytic capacitor with improved performance at high temperatures and voltages
JP7209631B2 (ja) * 2016-10-18 2023-01-20 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション 固体電解キャパシタアセンブリ
TWI632169B (zh) * 2016-12-09 2018-08-11 鈺邦科技股份有限公司 高分子複合材料、高分子複合材料的製造方法,使用高分子複合材料的電容器封裝結構及電容器封裝結構的製造方法
JP2020509599A (ja) 2017-03-06 2020-03-26 エイブイエックス コーポレイション 固体電解キャパシタアセンブリ
US10770238B2 (en) 2017-07-03 2020-09-08 Avx Corporation Solid electrolytic capacitor assembly with hydrophobic coatings
US11257628B2 (en) * 2017-07-03 2022-02-22 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a nanocoating
TWI651743B (zh) * 2017-12-25 2019-02-21 鈺邦科技股份有限公司 具有功能性塗層的電容器封裝結構及其製造方法
US11049664B2 (en) * 2018-04-13 2021-06-29 Avx Corporation Solid electrolytic capacitor containing a vapor-deposited barrier film
KR102412561B1 (ko) * 2018-04-13 2022-06-23 교세라 에이브이엑스 컴포넌츠 코포레이션 순차적으로 증착된 내부 전도성 폴리머 필름을 포함하는 고체 전해 커패시터
US11081288B1 (en) * 2018-08-10 2021-08-03 Avx Corporation Solid electrolytic capacitor having a reduced anomalous charging characteristic
WO2020123577A1 (en) * 2018-12-11 2020-06-18 Avx Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11380492B1 (en) 2018-12-11 2022-07-05 KYOCERA AVX Components Corporation Solid electrolytic capacitor
CN109768318A (zh) * 2019-03-12 2019-05-17 浙江锋锂新能源科技有限公司 一种混合固液电解质锂蓄电池
JPWO2020230835A1 (de) * 2019-05-16 2020-11-19
US11756742B1 (en) 2019-12-10 2023-09-12 KYOCERA AVX Components Corporation Tantalum capacitor with improved leakage current stability at high temperatures
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier
US11837415B2 (en) 2021-01-15 2023-12-05 KYOCERA AVX Components Corpration Solid electrolytic capacitor
CN114783776B (zh) * 2022-04-11 2023-12-01 湖南艾华集团股份有限公司 一种固态铝电解电容器及其制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111327A (en) 1991-03-04 1992-05-05 General Electric Company Substituted 3,4-polymethylenedioxythiophenes, and polymers and electro responsive devices made therefrom
US5457862A (en) 1993-11-10 1995-10-17 Nec Corporation Method of manufacturing solid electrolytic capacitor
US5473503A (en) 1993-07-27 1995-12-05 Nec Corporation Solid electrolytic capacitor and method for manufacturing the same
US5729428A (en) 1995-04-25 1998-03-17 Nec Corporation Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same
US5812367A (en) 1996-04-04 1998-09-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative
US6197252B1 (en) 1997-01-13 2001-03-06 Avx Limited Binder removal
US6322912B1 (en) 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6391275B1 (en) 1998-09-16 2002-05-21 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6416730B1 (en) 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6576099B2 (en) 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
US6635729B1 (en) 2000-02-03 2003-10-21 Bayer Aktinegesellschaft Process for the preparation of water-soluble π-conjugated polymers
US6639787B2 (en) 2000-11-06 2003-10-28 Cabot Corporation Modified oxygen reduced valve metal oxides
US6674635B1 (en) 2001-06-11 2004-01-06 Avx Corporation Protective coating for electrolytic capacitors
US6987663B2 (en) 2003-10-17 2006-01-17 H.C. Starck Gmbh Electrolytic capacitors with a polymeric outer layer
US20070064376A1 (en) 2005-09-13 2007-03-22 H. C. Starck Gmbh Process for the production of electrolyte capacitors of high nominal voltage
US7515396B2 (en) 2007-03-21 2009-04-07 Avx Corporation Solid electrolytic capacitor containing a conductive polymer

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3814730A1 (de) 1988-04-30 1989-11-09 Bayer Ag Feststoff-elektrolyte und diese enthaltende elektrolyt-kondensatoren
US5424907A (en) 1992-02-21 1995-06-13 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors and method for manufacturing the same
JP3070408B2 (ja) 1993-12-28 2000-07-31 日本電気株式会社 固体電解コンデンサおよびその製造方法
JP2770746B2 (ja) 1994-09-02 1998-07-02 日本電気株式会社 固体電解コンデンサ及びその製造方法
US6602741B1 (en) 1999-09-14 2003-08-05 Matsushita Electric Industrial Co., Ltd. Conductive composition precursor, conductive composition, solid electrolytic capacitor, and their manufacturing method
DE10029075A1 (de) 2000-06-13 2001-12-20 Bayer Ag Verfahren zur Herstellung von 3,4-Alkylendioxythiophen-2,5-dicarbonsäurederivaten
JP2003086464A (ja) * 2001-09-11 2003-03-20 Sanyo Electric Co Ltd 固体電解コンデンサ
JP2003168633A (ja) * 2001-11-30 2003-06-13 Sanyo Electric Co Ltd 固体電解コンデンサ及びその製造方法並びに導電性複合材料及びその製造方法
DE10237577A1 (de) 2002-08-16 2004-02-26 H.C. Starck Gmbh Substituierte Poly(alkylendioxythiophene) als Feststoffelektrolyte in Elektrolytkondensatoren
JP2004168966A (ja) * 2002-11-22 2004-06-17 Hitachi Chem Co Ltd 導電性樹脂組成物及びこれを用いた電子部品
DE10302086A1 (de) 2003-01-21 2004-07-29 Bayer Ag Alkylendioxythiophene und Poly(alkylendioxythiophene) mit mesogenen Gruppen
US20040231119A1 (en) 2003-05-21 2004-11-25 Brenneman Keith R. Method of electrolytic deposition of an intrinsically conductive polymer upon a non-conductive substrate
US6798644B1 (en) 2003-07-10 2004-09-28 Kemet Electronics Corporation ESR of solid electrolytic capacitors using conductive polymer cathodes
JP4418198B2 (ja) * 2003-09-08 2010-02-17 三菱レイヨン株式会社 固体電解コンデンサおよびその製造方法
JP4315038B2 (ja) 2004-03-29 2009-08-19 パナソニック株式会社 固体電解コンデンサ
DE102004022110A1 (de) 2004-05-05 2005-12-01 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
CN1737072B (zh) 2004-08-18 2011-06-08 播磨化成株式会社 导电粘合剂及使用该导电粘合剂制造物件的方法
CN100587869C (zh) 2004-10-15 2010-02-03 三洋电机株式会社 固体电解电容器及其制造方法
DE102005016727A1 (de) 2005-04-11 2006-10-26 H.C. Starck Gmbh Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zu ihrer Herstellung
DE102005033839A1 (de) * 2005-07-20 2007-01-25 H.C. Starck Gmbh Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zur ihrer Herstellung
DE102005043828A1 (de) 2005-09-13 2007-03-22 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
DE102005053646A1 (de) 2005-11-10 2007-05-16 Starck H C Gmbh Co Kg Polymerbeschichtungen mit verbesserter Lösungsmittelbeständigkeit
US20070171596A1 (en) * 2006-01-20 2007-07-26 Chacko Antony P Electrode compositions containing carbon nanotubes for solid electrolyte capacitors
US7563290B2 (en) 2006-07-06 2009-07-21 Kemet Electronics Corporation High voltage solid electrolytic capacitors using conductive polymer slurries
JP4845645B2 (ja) 2006-08-30 2011-12-28 三洋電機株式会社 固体電解コンデンサおよびその製造方法
US7554793B2 (en) 2006-11-16 2009-06-30 Kemet Electronics Corporation Low temperature curable conductive adhesive and capacitors formed thereby
KR101083465B1 (ko) 2007-02-28 2011-11-16 산요덴키가부시키가이샤 고체 전해 콘덴서 및 그 제조 방법
US8057553B2 (en) 2007-03-15 2011-11-15 Sanyo Electric Co., Ltd. Method for manufacturing solid electrolytic capacitor and solid electrolytic capacitor
JP2008235771A (ja) * 2007-03-23 2008-10-02 Nec Tokin Corp 固体電解コンデンサの製造方法
JP4877820B2 (ja) 2007-06-29 2012-02-15 三洋電機株式会社 固体電解コンデンサ
DE102007048212A1 (de) 2007-10-08 2009-04-09 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Zwischenschicht
JP5203673B2 (ja) * 2007-10-30 2013-06-05 Necトーキン株式会社 固体電解コンデンサとその製造方法
JP2009170897A (ja) 2007-12-21 2009-07-30 Sanyo Electric Co Ltd 固体電解コンデンサ
US8094434B2 (en) 2008-04-01 2012-01-10 Avx Corporation Hermetically sealed capacitor assembly
US20090279233A1 (en) 2008-05-12 2009-11-12 Yuri Freeman High volumetric efficiency anodes for electrolytic capacitors
DE102008032578A1 (de) 2008-07-11 2010-01-14 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
JP5736534B2 (ja) 2008-09-29 2015-06-17 パナソニックIpマネジメント株式会社 固体電解コンデンサ
TW201023220A (en) 2008-12-01 2010-06-16 Sanyo Electric Co Method of manufacturing solid electrolytic capacitor
JP5289033B2 (ja) * 2008-12-24 2013-09-11 三洋電機株式会社 固体電解コンデンサ
JP5274268B2 (ja) 2009-01-08 2013-08-28 三洋電機株式会社 固体電解コンデンサとその製造方法
DE102009007594A1 (de) 2009-02-05 2010-08-12 H.C. Starck Clevios Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Außenschicht.
DE102009012660A1 (de) 2009-03-13 2010-09-16 H.C. Starck Clevios Gmbh Polymerbeschichtungen mit verbesserter Temperaturstabilität
JP5274340B2 (ja) 2009-03-31 2013-08-28 三洋電機株式会社 固体電解コンデンサ
US8310815B2 (en) 2009-04-20 2012-11-13 Kemet Electronics Corporation High voltage and high efficiency polymer electrolytic capacitors
JP5461110B2 (ja) 2009-08-28 2014-04-02 三洋電機株式会社 固体電解コンデンサおよびその製造方法
US8194395B2 (en) 2009-10-08 2012-06-05 Avx Corporation Hermetically sealed capacitor assembly
US8503167B2 (en) 2010-01-27 2013-08-06 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and manufacturing method thereof
JP2011178878A (ja) * 2010-03-01 2011-09-15 Mitsubishi Rayon Co Ltd カーボンナノチューブ含有組成物、その製造方法、及びそれらから得られる導電層を有する固体電解コンデンサ
JP2011253878A (ja) * 2010-06-01 2011-12-15 Holy Stone Polytech Co Ltd 固体電解コンデンサ
JP5551529B2 (ja) * 2010-07-05 2014-07-16 Necトーキン株式会社 固体電解コンデンサとその製造方法
US8279584B2 (en) 2010-08-12 2012-10-02 Avx Corporation Solid electrolytic capacitor assembly
JP2012043958A (ja) * 2010-08-19 2012-03-01 Nec Tokin Corp 固体電解コンデンサおよびその製造方法
US8808403B2 (en) 2010-09-15 2014-08-19 Kemet Electronics Corporation Process for solid electrolytic capacitors using polymer slurries
DE102010047087A1 (de) 2010-10-01 2012-04-05 Heraeus Clevios Gmbh Verfahren zur Verbesserung der elektrischen Kenngrößen in Kondensatoren enthaltend PEDOT/PSS als Feststoffelektrolyt durch ein Polyalkylenglykol
DE102010047086A1 (de) 2010-10-01 2012-04-05 Heraeus Clevios Gmbh Schichtaufbauten mit verbesserten elektrischen Kenngrößen beinthaltend PEDOT/PSS sowie einen Stabilisator
DE102010048031A1 (de) 2010-10-12 2012-04-12 Heraeus Clevios Gmbh Polythiophene beinhaltende Dispersionen mit definiertem Sulfat-Gehalt
DE102010048032A1 (de) 2010-10-12 2012-04-12 Heraeus Clevios Gmbh Polythiophene beinhaltende Dispersionen mit definiertem Gehalt an Thiophen-Monomer
US8824122B2 (en) 2010-11-01 2014-09-02 Avx Corporation Solid electrolytic capacitor for use in high voltage and high temperature applications
JP2012119427A (ja) 2010-11-30 2012-06-21 Sanyo Electric Co Ltd 固体電解コンデンサおよび固体電解コンデンサの製造方法
JP5995262B2 (ja) 2011-03-06 2016-09-21 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー Pedot/pssを固体電解質として含有するコンデンサにおける電気パラメータをポリグリセロールによって改善するための方法
DE102011016493A1 (de) 2011-04-08 2012-10-11 Heraeus Precious Metals Gmbh & Co. Kg Verfahren zur Verbesserung der elektrischen Kenngrößen in Kondensatoren enthaltend PEDOT/PSS als Feststoffelektrolyt durch Additive
US8349030B1 (en) 2011-09-21 2013-01-08 Kemet Electronics Corporation Method for making anodes for high voltage electrolytic capacitors with high volumetric efficiency and stable D.C. leakage
DE102013101443A1 (de) * 2012-03-01 2013-09-05 Avx Corporation Ultrahigh voltage solid electrolytic capacitor
JP5892547B2 (ja) * 2012-05-31 2016-03-23 カーリットホールディングス株式会社 固体電解コンデンサ製造用導電性高分子分散液及びそれを用いて作製した固体電解コンデンサ

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111327A (en) 1991-03-04 1992-05-05 General Electric Company Substituted 3,4-polymethylenedioxythiophenes, and polymers and electro responsive devices made therefrom
US5473503A (en) 1993-07-27 1995-12-05 Nec Corporation Solid electrolytic capacitor and method for manufacturing the same
US5457862A (en) 1993-11-10 1995-10-17 Nec Corporation Method of manufacturing solid electrolytic capacitor
US5729428A (en) 1995-04-25 1998-03-17 Nec Corporation Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same
US5812367A (en) 1996-04-04 1998-09-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative
US6197252B1 (en) 1997-01-13 2001-03-06 Avx Limited Binder removal
US6416730B1 (en) 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6391275B1 (en) 1998-09-16 2002-05-21 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6322912B1 (en) 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6527937B2 (en) 1998-09-16 2003-03-04 Cabot Corporation Method of making a capacitor anode of a pellet of niobium oxide
US6592740B2 (en) 1998-09-16 2003-07-15 Cabot Corporation Methods to make capacitors containing a partially reduced niobium metal oxide
US6635729B1 (en) 2000-02-03 2003-10-21 Bayer Aktinegesellschaft Process for the preparation of water-soluble π-conjugated polymers
US6576099B2 (en) 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
US6639787B2 (en) 2000-11-06 2003-10-28 Cabot Corporation Modified oxygen reduced valve metal oxides
US7220397B2 (en) 2000-11-06 2007-05-22 Cabot Corporation Modified oxygen reduced valve metal oxides
US6674635B1 (en) 2001-06-11 2004-01-06 Avx Corporation Protective coating for electrolytic capacitors
US6987663B2 (en) 2003-10-17 2006-01-17 H.C. Starck Gmbh Electrolytic capacitors with a polymeric outer layer
US20070064376A1 (en) 2005-09-13 2007-03-22 H. C. Starck Gmbh Process for the production of electrolyte capacitors of high nominal voltage
US7515396B2 (en) 2007-03-21 2009-04-07 Avx Corporation Solid electrolytic capacitor containing a conductive polymer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Critical Oxygen Content in Porous Anodes of Solid Tantalum Capacitors", Pozdeev-Freeman et al., Journal of materials Science: Materials in Electronics 9 (1998), 309-311

Also Published As

Publication number Publication date
JP2015119183A (ja) 2015-06-25
KR102278453B1 (ko) 2021-07-20
KR20150070965A (ko) 2015-06-25
US9589733B2 (en) 2017-03-07
CN111524711B (zh) 2021-08-31
FR3015106A1 (fr) 2015-06-19
JP6681138B2 (ja) 2020-04-15
CN104715930A (zh) 2015-06-17
US20150170844A1 (en) 2015-06-18
HK1207202A1 (en) 2016-01-22
CN111524711A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
DE102014225816A1 (de) Stabiler Festelektrolytkondensator, der einen Nanokomposit enthält
DE102013214126A1 (de) Festelektrolytkondensator mit verbesserten Eigenschaften bei hohen Spannungen
DE102013213723A1 (de) Festelektrolytkondensator mit erhöhter Feucht-zu-Trocken-Kapazität
DE102014208944A1 (de) Festelektrolytkondensator, der leitfähige Polymerteilchen enthält
DE102016208800A1 (de) Festelektrolytkondensator mit ultrahoher Kapazität
DE102013213720A1 (de) Temperaturstabiler Festelektrolytkondensator
DE102011117192A1 (de) Festelektrolytkondensator zur Verwendung in Hochspannungs- und Hochtemperaturanwendungen
DE102013213728A1 (de) Nichtionisches Tensid zur Verwendung in einem festen Elektrolyten eines Elektrolytkondensators
DE102011087197A1 (de) Mehrschichtige leitfähige Polymerbeschichtungen zur Verwendung in Hochspannungs-Festelektrolytkondensatoren
DE102014214945A1 (de) Feuchtigkeitsbeständige Festelektrolytkondensator-Baugruppe
DE102010048177A1 (de) Externe Beschichtung für einen Festelektrolytkondensator
DE102016208802A1 (de) Festelektrolytkondensatorbaugruppe zur Verwendung in einer feuchten Atmosphäre
DE102011088366A1 (de) Leitfähige Beschichtung zur Verwendung in Elektrolytkondensatoren
DE102016207610A1 (de) Festelektrolytkondensator mit hoher Kapazität
DE102011109752A1 (de) Festelektrolytkondensator-Baugruppe
DE102014204323A1 (de) Festelektrolytkondensator zur Verwendung unter extremen Bedingungen
DE102010021361A1 (de) Festelektrolytkondensator mit Facedown-Enden
DE102014214966A1 (de) Anschlussbaugruppe mit dünnem Draht/dickem Draht für Elektrolytkondensator
DE102012200233A1 (de) Planare Anode zur Verwendung in einem Flüssigelektrolytkondensator
DE102012223637A1 (de) Flüssigkeitskondensator, der eine verbesserte Anode enthält
DE102016208807A1 (de) Festelektrolytkondensatorelement zur Verwendung unter trockenen Bedingungen
DE102013101443A1 (de) Ultrahigh voltage solid electrolytic capacitor
DE102011086123A1 (de) Festelektrolytkondensatorelement
DE102016214217A1 (de) Mehrfache Anschlussdrähte unter Verwendung eines Trägerdrahts für Elektrolytkondensatoren mit niedrigem ESR
DE102014207581A1 (de) Mehrfach gekerbte Anode für Elektrolytkondensator

Legal Events

Date Code Title Description
R082 Change of representative

Representative=s name: DOMPATENT VON KREISLER SELTING WERNER - PARTNE, DE

Representative=s name: VON KREISLER SELTING WERNER - PARTNERSCHAFT VO, DE

R120 Application withdrawn or ip right abandoned