DE102010048177A1 - Externe Beschichtung für einen Festelektrolytkondensator - Google Patents

Externe Beschichtung für einen Festelektrolytkondensator Download PDF

Info

Publication number
DE102010048177A1
DE102010048177A1 DE102010048177A DE102010048177A DE102010048177A1 DE 102010048177 A1 DE102010048177 A1 DE 102010048177A1 DE 102010048177 A DE102010048177 A DE 102010048177A DE 102010048177 A DE102010048177 A DE 102010048177A DE 102010048177 A1 DE102010048177 A1 DE 102010048177A1
Authority
DE
Germany
Prior art keywords
conductive polymer
layer
electrolytic capacitor
solid electrolytic
polymer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102010048177A
Other languages
English (en)
Inventor
Ivan Horacek
Jan Petrzilek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Avx Components Corp
Original Assignee
AVX Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVX Corp filed Critical AVX Corp
Publication of DE102010048177A1 publication Critical patent/DE102010048177A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/0425Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Paints Or Removers (AREA)

Abstract

Ein Festelektrolytkondensator, der einen Anodenkörper, ein den Anodenkörper bedeckendes Dielektrikum, einen das Dielektrikum bedeckenden festen Elektrolyten und eine externe Beschichtung, die den festen Elektrolyten bedeckt, umfasst, wird bereitgestellt. Die externe Beschichtung umfasst wenigstens eine kohlenstoffhaltige Schicht (z. B. Graphit) und wenigstens eine Metallschicht (z. B. Silber). Außer den oben genannten Schichten umfasst die externe Beschichtung auch wenigstens eine leitfähige Polymerschicht, die sich zwischen der kohlenstoffhaltigen Schicht und der Metallschicht befindet. Unter Anderem kann eine solche leitfähige Polymerschicht die Wahrscheinlichkeit reduzieren, dass die kohlenstoffhaltige Schicht während der Verwendung von dem festen Elektrolyten abblättert. Dies kann die mechanische Robustheit der Komponente erhöhen und ihre elektrische Leistungsfähigkeit verbessern.

Description

  • Hintergrund der Erfindung
  • Festelektrolytkondensatoren (z. B. Tantalkondensatoren) haben hauptsächlich zur Miniaturisierung von elektronischen Schaltungen beigetragen und ermöglichten die Anwendung solcher Schaltungen in extremen Umgebungen. Herkömmliche Festelektrolytkondensatoren werden häufig dadurch gebildet, dass man ein Metallpulver (z. B. Tantal) um einen Metallanschlussdraht herum presst, den gepressten Teil sintert, die gesinterte Anode anodisiert und danach einen festen Elektrolyten aufträgt. Die Festelektrolytschicht kann aus einem leitfähigen Polymer (z. B. Poly-3,4-ethylendioxythiophen) gebildet werden, wie es in den US-Patenten Nr. 5,457,862 (Sakata et al.), 5,473,503 (Sakata et al.), 5,729,428 (Sakata et al.) und 5,812,367 (Kudoh et al.) beschrieben ist. Der leitfähige Polymerelektrolyt dieser Kondensatoren wird herkömmlicherweise durch nacheinander erfolgendes Eintauchen in getrennte Lösungen, die die Ausgangsstoffe der Polymerschicht enthalten, gebildet. Zum Beispiel wird das zur Bildung des leitfähigen Polymers verwendete Monomer häufig in einer Lösung aufgetragen, während der Katalysator und das Dotierungsmittel in einer oder mehreren getrennten Lösungen aufgetragen werden. Ein Problem mit dieser Technik besteht jedoch darin, dass es häufig schwierig und kostspielig ist, einen relativ dicken festen Elektrolyten zu erreichen, was hilfreich ist, um gute mechanische Robustheit und elektrische Leistungsfähigkeit zu erreichen. Verschiedene Versuche wurden unternommen, um dieses Problem anzugehen. Das US-Patent Nr. 6,987,663 (Merker et al.) beschreibt zum Beispiel die Verwendung einer polymeren äußeren Schicht, die die Oberfläche des festen Elektrolyten abdeckt. Leider ist diese Technik insofern noch problematisch, als es schwierig ist, eine gute Haftung der polymeren äußeren Schicht an der Graphit/Silber-Schicht, die verwendet wird, um den Festelektrolytkondensator mit einem Ende zu versehen, sowie mechanische Robustheit zu erreichen.
  • Daher besteht weiterhin ein Bedürfnis nach einem Festelektrolytkondensator, der gute mechanische Robustheit und elektrische Leistungsfähigkeit besitzt.
  • Kurzbeschreibung der Erfindung
  • Gemäß einer Ausführungsform der vorliegenden Erfindung wird ein Festelektrolytkondensator offenbart, der einen Anodenkörper, eine den Anodenkörper bedeckende dielektrische Schicht, einen die dielektrische Schicht bedeckenden festen Elektrolyten und eine externe Beschichtung, die den festen Elektrolyten bedeckt, umfasst. Der feste Elektrolyt enthält eine erste leitfähige Polymerschicht. Die externe Beschichtung enthält eine kohlenstoffhaltige Schicht und eine Metallschicht, die die kohlenstoffhaltige Schicht bedeckt. Die externe Beschichtung enthält weiterhin eine zweite leitfähige Polymerschicht, die sich zwischen der kohlenstoffhaltigen Schicht und der Metallschicht befindet.
  • Weitere Merkmale und Aspekte der vorliegenden Erfindung sind im Folgenden ausführlicher dargelegt.
  • Kurzbeschreibung der Zeichnungen
  • Im Rest der Beschreibung ist eine vollständige und nacharbeitbare Offenbarung der vorliegenden Erfindung einschließlich ihrer besten Realisierung für den Fachmann insbesondere dargelegt; dabei wird Bezug auf die beigefügte Figur genommen, wobei:
  • 1 eine Querschnittsansicht einer Ausführungsform des Festelektrolytkondensators der vorliegenden Erfindung ist.
  • Bei mehrfacher Verwendung von Bezugszeichen in der vorliegenden Beschreibung und den Zeichnungen sollen diese dieselben oder analoge Merkmale oder Elemente der vorliegenden Erfindung repräsentieren.
  • Ausführliche Beschreibung von repräsentativen Ausführungsformen
  • Der Fachmann sollte sich darüber im Klaren sein, dass die vorliegende Diskussion nur eine Beschreibung von beispielhaften Ausführungsformen ist und die breiteren Aspekte der vorliegenden Erfindung nicht einschränken soll.
  • Allgemein gesagt betrifft die vorliegende Erfindung einen Festelektrolytkondensator, der einen Anodenkörper, ein den Anodenkörper bedeckendes Dielektrikum, einen das Dielektrikum bedeckenden festen Elektrolyten, der ein oder mehrere leitfähige Polymere enthält, und eine externe Beschichtung, die den festen Elektrolyten bedeckt, umfasst. Die externe Beschichtung enthält wenigstens eine kohlenstoffhaltige Schicht (z. B. Graphit) und wenigstens eine Metallschicht (z. B. Silber). Außer den oben genannten Schichten umfasst die externe Beschichtung auch wenigstens eine leitfähige Polymerschicht, die sich zwischen der kohlenstoffhaltigen Schicht und der Metallschicht befindet. Unter Anderem kann eine solche leitfähige Polymerschicht die Wahrscheinlichkeit reduzieren, dass die kohlenstoffhaltige Schicht während der Verwendung von dem festen Elektrolyten abblättert. Dies kann die mechanische Robustheit der Komponente erhöhen und ihre elektrische Leistungsfähigkeit verbessern.
  • Verschiedene Ausführungsformen der vorliegenden Erfindung werden nun ausführlicher beschrieben.
  • I. Anodenkörper
  • Der Anodenkörper kann aus einer Ventilmetallzusammensetzung mit einer hohen spezifischen Ladung gebildet werden, wie etwa 40 000 μF·V/g oder mehr, in einigen Ausführungsformen etwa 50 000 μF·V/g oder mehr, in einigen Ausführungsformen etwa 60 000 μF·V/g oder mehr und in einigen Ausführungsformen etwa 70 000 μF·V/g bis etwa 700 000 μF·V/g. Die Ventilmetallzusammensetzung enthält ein Ventilmetall (d. h. ein Metall, das zur Oxidation befähigt ist) oder eine Verbindung, die auf einem Ventilmetall beruht, wie Tantal, Niob, Aluminium, Hafnium, Titan, Legierungen davon, Oxide davon, Nitride davon usw. Zum Beispiel kann die Ventilmetallzusammensetzung ein elektrisch leitfähiges Oxid von Niob enthalten, wie ein Nioboxid mit einem Atomverhältnis von Niob zu Sauerstoff von 1:1,0 ± 1,0, in einigen Ausführungsformen 1:1,0 ± 0,3, in einigen Ausführungsformen 1:1,0 ± 0,1 und in einigen Ausführungsformen 1:1,0 ± 0,05. Bei dem Nioboxid kann es sich zum Beispiel um NbO0,7, NbO1,0, NbO1,1 und NbO2 handeln. In einer bevorzugten Ausführungsform enthält die Zusammensetzung NbO1,0, ein leitfähiges Nioboxid, das auch nach dem Sintern bei hohen Temperaturen chemisch stabil bleiben kann. Beispiele für solche Ventilmetalloxide sind in den US-Patenten Nr. 6,322,912 (Fife), 6,391,275 (Fife et al.), 6,416,730 (Fife et al.), 6,527,937 (Fife), 6,576,099 (Kimmel et al.), 6,592,740 (Fife et al.) und 6,639,787 (Kimmel et al.) und 7,220,397 (Kimmel et al.) sowie in den US-Patentanmeldungen Veröffentlichungsnummer 2005/0019581 (Schnitter), 2005/0103638 (Schnitter et al.) und 2005/0013765 (Thomas et al.) beschrieben, auf die alle hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Zur Bildung des Anodenkörpers können im Allgemeinen herkömmliche Herstellungsverfahren verwendet werden. In einer Ausführungsform wird zuerst ein Tantal- oder Nioboxidpulver mit einer bestimmten Teilchengröße ausgewählt. Zum Beispiel können die Teilchen flockenartig, eckig, knotenförmig sowie Gemische und Variationen davon sein. Die Teilchen haben auch typischerweise eine Siebgrößenverteilung von wenigstens etwa 60 mesh, in einigen Ausführungsformen etwa 60 bis etwa 325 mesh und in einigen Ausführungsformen etwa 100 bis etwa 200 mesh. Ferner beträgt die spezifische Oberfläche etwa 0,1 bis etwa 10,0 m2/g, in einigen Ausführungsformen etwa 0,5 bis etwa 5,0 m2/g und in einigen Ausführungsformen etwa 1,0 bis etwa 2,0 m2/g. Der Ausdruck ”spezifische Oberfläche” bezieht sich auf die Oberfläche, die durch das Verfahren der physikalischen Gasadsorption (B. E. T.) von Brunauer, Emmet und Teller, Journal of American Chemical Society, Band 60, 1938, S. 309, mit Stickstoff als Adsorptionsgas bestimmt wurde. Ebenso beträgt die Schüttdichte (oder Scott-Dichte) typischerweise etwa 0,1 bis etwa 5,0 g/cm3, in einigen Ausführungsformen etwa 0,2 bis etwa 4,0 g/cm3 und in einigen Ausführungsformen etwa 0,5 bis etwa 3,0 g/cm3.
  • Um den Bau des Anodenkörpers zu erleichtern, können noch weitere Komponenten zu den elektrisch leitfähigen Teilchen gegeben werden. Zum Beispiel können die elektrisch leitfähigen Teilchen gegebenenfalls mit einem Bindemittel und/oder Gleitmittel gemischt werden, um zu gewährleisten, dass die Teilchen ausreichend aneinander haften, wenn sie zum Anodenkörper gepresst werden. Zu den geeigneten Bindemitteln gehören etwa Campher, Stearin- und andere Seifenfettsäuren, Carbowax (Union Carbide), Glyptal (General Electric), Naphthalin, Pflanzenwachs, Mikrowachse (gereinigte Paraffine), polymere Bindemittel (z. B. Polyvinylalkohol, Poly(ethyl-2-oxazolin) usw.) usw. Das Bindemittel kann in einem Lösungsmittel gelöst und dispergiert werden. Beispielhafte Lösungsmittel sind Wasser, Alkohole usw. Wenn Bindemittel und/oder Gleitmittel verwendet werden, kann ihr Prozentanteil von etwa 0,1 bis etwa 8 Gew.-% der Gesamtmasse variieren. Man sollte sich jedoch darüber im Klaren sein, dass Bindemittel und Gleitmittel in der vorliegenden Erfindung nicht erforderlich sind.
  • Das resultierende Pulver kann kompaktiert werden, wobei man irgendeine herkömmliche Pulverpressvorrichtung verwendet. Die Pressform kann zum Beispiel eine Einplatz-Kompaktierpresse sein, bei der eine Matrize und ein oder mehrere Stempel verwendet werden. Alternativ dazu können auch Kompaktierpressformen des Ambosstyps verwendet werden, bei denen nur eine Matrize und ein einziger Unterstempel verwendet werden. Einplatz-Kompaktierpressformen sind in mehreren Grundtypen erhältlich, wie Nocken-, Kniehebel- und Exzenter-/Kurbelpressen mit unterschiedlichen Fähigkeiten, wie einfach wirkend, doppelt wirkend, Schwebemantelmatrize, bewegliche Werkzeugaufspannplatte, Gegenstempel, Schnecke, Schlag, Heißpressen, Prägen oder Kalibrieren. Falls gewünscht, kann gegebenenfalls vorhandenes Bindemittel/Gleitmittel nach dem Pressen entfernt werden, indem man den Pressling mehrere Minuten lang im Vakuum auf eine bestimmte Temperatur (z. B. etwa 150°C bis etwa 500°C) erhitzt. Alternativ dazu kann das Bindemittel/Gleitmittel auch entfernt werden, indem man den Pressling mit einer wässrigen Lösung in Kontakt bringt, wie es im US-Patent Nr. 6,197,252 (Eishop et al.) beschrieben ist, auf das hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Die Dicke des gepressten Anodenkörpers kann relativ gering sein, wie etwa 4 Millimeter oder weniger, in einigen Ausführungsformen etwa 0,05 bis etwa 2 Millimeter und in einigen Ausführungsformen etwa 0,1 bis etwa 1 Millimeter. Die Form der Anode kann ebenfalls so gewählt werden, dass die elektrischen Eigenschaften des resultierenden Kondensators verbessert werden. Zum Beispiel kann die Anode eine Form haben, die gekrümmt, wellenförmig, rechteckig, U-förmig, V-förmig usw. ist. Die Anode kann auch eine ”geriffelte” Form haben, indem sie eine oder mehrere Furchen, Rillen, Vertiefungen oder Einkerbungen enthält, um das Verhältnis von Oberfläche zu Volumen zu erhöhen und dadurch den äquivalenten Serienwiderstand (ESR) zu minimieren und den Frequenzgang der Kapazität auszudehnen. Solche ”geriffelten” Anoden sind zum Beispiel in den US-Patenten Nr. 6,191,936 (Webber et al.), 5,949,639 (Maeda et al.) und 3,345,545 (Bourgault et al.) sowie in der US-Patentanmeldung Veröffentlichungsnummer 2005/0270725 (Hahn et al.) beschrieben, auf die hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Gegebenenfalls kann auch ein Anodenanschluss an dem Anodenkörper befestigt werden. Der Anodenanschluss kann in Form eines Drahtes, Bleches usw. vorliegen und kann aus einer Ventilmetallverbindung, wie Tantal, Niob, Nioboxid usw., bestehen. Die Befestigung des Anschlusses kann mit Hilf von bekannten Techniken erfolgen, wie etwa durch Schweißen des Anschlusses an den Körper oder Einbetten innerhalb des Anodenkörpers während der Bildung.
  • II. Dielektrikum
  • Der Anodenkörper kann anodisiert werden, so dass ein Dielektrikum auf und/oder innerhalb der Anode entsteht. Anodisierung ist ein elektrochemisches Verfahren, bei dem die Anode oxidiert wird, so dass ein Material mit einer relativ hohen Dielektrizitätskonstante entsteht. Zum Beispiel kann eine Tantalanode zu Tantalpentoxid (Ta2O5) anodisiert werden. Typischerweise wird die Anodisierung durchgeführt, indem man zunächst einen Elektrolyten auf die Anode aufträgt, etwa durch Eintauchen der Anode in den Elektrolyten. Der Elektrolyt liegt im Allgemeinen in Form einer Flüssigkeit vor, etwa als Lösung (z. B. wässrig oder nichtwässrig), Dispersion, Schmelze usw. In dem Elektrolyten wird im Allgemeinen ein Lösungsmittel eingesetzt, wie Wasser (z. B. deionisiertes Wasser), Ether (z. B. Diethylether und Tetrahydrofuran), Alkohole (z. B. Methanol, Ethanol, n-Propanol, Isopropanol und Butanol), Triglyceride, Ketone, (z. B. Aceton, Methylethylketon und Methylisobutylketon); Ester (z. B. Ethylacetat, Butylacetat, Diethylenglycoletheracetat und Methoxypropylacetat); Amide (z. B. Dimethylformamid, Dimethylacetamid, Dimethylcapryl-/caprinfettsäureamid und N-Alkylpyrrolidone), Nitrile (z. B. Acetonitril, Propionitril, Butyronitril und Benzonitril), Sulfoxide oder Sulfone (z. B. Dimethylsulfoxid (DMSO) und Sulfolan) usw. Das Lösungsmittel kann etwa 50 Gew.-% bis etwa 99,9 Gew.-%, in einigen Ausführungsformen etwa 75 Gew.-% bis etwa 99 Gew.-% und in einigen Ausführungsformen etwa 80 Gew.-% bis etwa 95 Gew.-% des Elektrolyten ausmachen. Obwohl es nicht unbedingt erforderlich ist, ist die Verwendung eines wässrigen Lösungsmittels (z. B. Wasser) häufig wünschenswert, um dabei zu helfen, das gewünschte Oxid zu erreichen. Tatsächlich kann Wasser etwa 50 Gew.-% oder mehr, in einigen Ausführungsformen etwa 70 Gew.-% oder mehr und in einigen Ausführungsformen etwa 90 Gew.-% bis 100 Gew.-% der in dem Elektrolyten verwendeten Lösungsmittel ausmachen.
  • Der Elektrolyt ist ionenleitend und kann eine Ionenleitfähigkeit von etwa 1 Millisiemens pro Zentimeter (”mS/cm”) oder mehr aufweisen, in einigen Ausführungsformen etwa 30 mS/cm oder mehr und in einigen Ausführungsformen etwa 40 mS/cm bis etwa 100 mS/cm, bestimmt bei einer Temperatur von 25°C. Um die Ionenleitfähigkeit des Elektrolyten zu verstärken, kann eine Verbindung eingesetzt werden, die in dem Lösungsmittel unter Bildung von Ionen dissoziieren kann. Geeignete ionische Verbindungen für diesen Zweck sind zum Beispiel Säuren, wie Chlorwasserstoffsäure, Salpetersäure, Schwefelsäure, Phosphorsäure, Polyphosphorsäure, Borsäure, Boronsäure usw., organische Säuren einschließlich Carbonsäuren, wie Acrylsäure, Methacrylsäure, Malonsäure, Bernsteinsäure, Salicylsäure, Sulfosalicylsäure, Adipinsäure, Maleinsäure, Äpfelsäure, Ölsäure, Gallsäure, Weinsäure, Zitronensäure, Ameisensäure, Essigsäure, Glycolsäure, Oxalsäure, Propionsäure, Phthalsäure, Isophthalsäure, Glutarsäure, Gluconsäure, Milchsäure, Asparaginsäure, Glutaminsäure, Itaconsäure, Trifluoressigsäure, Barbitursäure, Zimtsäure, Benzoesäure, 4-Hydroxybenzoesäure, Aminobenzoesäure usw., Sulfonsäuren, wie Methansulfonsäure, Benzolsulfonsäure, Toluolsulfonsäure, Trifluormethansulfonsäure, Styrolsulfonsäure, Naphthalindisulfonsäure, Hydroxybenzolsulfonsäure, Dodecylsulfonsäure, Dodecylbenzolsulfonsäure usw., polymere Säuren, wie Polyacryl- oder Polymethacrylsäure und Copolymere davon (z. B. Maleinsäure-Acrylsäure-, Sulfonsäure-Acrylsäure und Styrol-Acrylsäure-Copolymere), Carrageensäure, Carboxymethylcellulose, Alginsäure usw., usw. Die Konzentration der ionischen Verbindungen wird so gewählt, dass die gewünschte Ionenleitfähigkeit erreicht wird. Zum Beispiel kann eine Säure (z. B. Phosphorsäure) etwa 0,01 Gew.-% bis etwa 5 Gew.-%, in einigen Ausführungsformen etwa 0,05 Gew.-% bis etwa 0,8 Gew.-% und in einigen Ausfüh rungsformen etwa 0,1 Gew.-% bis etwa 0,5 Gew.-% des Elektrolyten ausma chen. Falls gewünscht, können in dem Elektrolyten auch Gemische von ionischen Verbindungen eingesetzt werden.
  • Ein Strom wird durch den Elektrolyten geleitet, um die dielektrische Schicht zu bilden. Der Wert der Spannung entspricht der Dicke der dielektrischen Schicht. Zum Beispiel kann die Stromquelle zunächst im galvanostatischen Modus betrieben werden, bis die erforderliche Spannung erreicht ist. Danach kann die Stromquelle auf einen potentiostatischen Modus umgeschaltet werden, um zu gewährleisten, dass die gewünschte Dicke des Dielektrikums über der Oberfläche der Anode gebildet wird. Selbstverständlich können auch andere bekannte Verfahren eingesetzt werden, wie potentiostatische Impuls- oder Schrittverfahren. Die Spannung liegt typischerweise im Bereich von etwa 4 bis etwa 200 V und in einigen Ausführungsformen etwa 9 bis etwa 100 V. Während der anodischen Oxidation kann der Elektrolyt auf einer erhöhten Temperatur gehalten werden, wie etwa 30°C oder mehr, in einigen Ausführungsformen etwa 40°C bis etwa 200°C und in einigen Ausführungsformen etwa 50°C bis etwa 100°C. Die anodische Oxidation kann auch bei Umgebungstemperatur oder darunter durchgeführt werden. Die resultierende dielektrische Schicht kann auf einer Oberfläche der Anode oder innerhalb ihrer Poren gebildet werden.
  • III. Fester Elektrolyt
  • Der feste Elektrolyt bedeckt das Dielektrikum und besteht im Allgemeinen aus einer oder mehreren leitfähigen Polymerschichten. Das bzw. die in solchen Schichten eingesetzten leitfähigen Polymere sind typischerweise π-konjugiert und weisen nach Oxidation oder Reduktion eine elektrische Leitfähigkeit auf, wie eine elektrische Leitfähigkeit von wenigstens etwa 1 μS·cm–1 nach der Oxidation. Beispiele für solche π-konjugierten leitfähigen Polymere sind zum Beispiel Polyheterocyclen (z. B. Polypyrrole, Polythiophene, Polyaniline usw.), Polyacetylene, Poly-p-phenylene, Polyphenolate usw. Zu den geeigneten Polythiophenen gehören zum Beispiel Polythiophen und Derivate davon, wie Poly(3,4-ethylendioxythiophen) (”PEDT”). In einer besonderen Ausführungsform wird ein Polythiophenderivat mit Repetiereinheiten der allgemeinen Formel (I) oder Formel (II) oder Repetiereinheiten der allgemeinen Formeln (I) und (II) eingesetzt:
    Figure 00090001
    wobei
    A ein gegebenenfalls substituierter C1- bis C5-Alkylenrest (z. B. Methylen, Ethylen, n-Propylen, n-Butylen, n-Pentylen usw.) ist;
    R ein linearer oder verzweigter, gegebenenfalls substituierter C1- bis C18-Alkylrest (z. B. Methyl, Ethyl, n- oder iso-Propyl, n-, iso-, sek- oder tert-Butyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1-Ethylpropyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 2,2-Dimethylpropyl, n-Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Hexadecyl, n-Octadecyl usw.); gegebenenfalls substituierter C5- bis C12-Cycloalkylrest (z. B. Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecyl usw.); gegebenenfalls substituierter C6- bis C14-Arylrest (z. B. Phenyl, Naphthyl usw.); gegebenenfalls substituierter C7- bis C18-Aralkylrest (z. B. Benzyl, o-, m-, p-Tolyl, 2,3-, 2,4-, 2,5-, 2,6, 3,4-, 3,5-Xylyl, Mesityl usw.); gegebenenfalls substituierter C1- bis C4-Hydroxyalkylrest oder Hydroxyrest ist; und
    x eine ganze Zahl von 0 bis 8, in einigen Ausführungsformen von 0 bis 2, ist und x in einigen Ausführungsformen = 0 ist. Beispiele für Substituenten für die Reste ”A” oder ”R” sind zum Beispiel Alkyl, Cycloalkyl, Aryl, Aralkyl, Alkoxy, Halogen, Ether, Thioether, Disulfid, Sulfoxid, Sulfon, Sulfonat, Amino, Aldehyd, Keto, Carbonsäureester, Carbonsäure, Carbonat, Carboxylat, Cyano, Alkylsilan- und Alkoxysilangruppen, Carboxylamidgruppen usw.
  • Die Gesamtzahl der Repetiereinheiten der allgemeinen Formel (I) oder Formel (II) oder der allgemeinen Formeln (I) und (II) beträgt typischerweise 2 bis 2000 und in einigen Ausführungsformen 2 bis 100.
  • Besonders gut geeignete Polythiophenderivate sind solche, bei denen ”A” ein gegebenenfalls substituierter C2- bis C3-Alkylenrest ist und x = 0 oder 1 ist. In einer besonderen Ausführungsform handelt es sich bei dem Polythiophenderivat um PEDT, und es weist Repetiereinheiten der Formel (II) auf, wobei ”A” = CH2-CH2 ist und ”x” = 0 ist. Verfahren zur Bildung solcher Polythiophenderivate sind in der Technik wohlbekannt und sind zum Beispiel im US-Patent Nr. 6,987,663 (Merker et al.) beschrieben, auf das hier ausdrücklich für alle Zwecke Bezug genommen wird. Zum Beispiel können die Polythiophenderivate aus einem monomeren Vorläufer, wie gegebenenfalls substituierten Thiophenen, gebildet werden. Besonders gut geeignete monomere Vorläufer sind substituierte 3,4-Alkylendioxythiophene mit der allgemeinen Formel (III), (IV) oder ein Gemisch von Thiophenen der allgemeinen Formeln (III) und (IV):
    Figure 00110001
    wobei A, R und X wie oben definiert sind.
  • Beispiele für solche monomeren Vorläufer sind zum Beispiel gegebenenfalls substituierte 3,4-Ethylendioxythiophene. Derivate dieser monomeren Vorläufer, die zum Beispiel Dimere oder Trimere der obigen monomeren Vorläufer sind, können ebenfalls eingesetzt werden. Höhermolekulare Derivate, d. h. Tetramere, Pentamere usw., der monomeren Vorläufer sind zur Verwendung in der vorliegenden Erfindung geeignet. Die Derivate können aus gleichen oder verschiedenen Monomereinheiten bestehen und können in reiner Form oder in einem Gemisch miteinander und/oder mit den monomeren Vorläufern verwendet werden. Oxidierte oder reduzierte Formen dieser Vorläufer können ebenfalls eingesetzt werden.
  • Zur Herstellung des gewünschten leitfähigen Polymers werden monomere Vorläufer, wie sie oben beschrieben sind, typischerweise einer oxidativen Polymerisation in Gegenwart eines Oxidationsmittels unterzogen. Das Oxidationsmittel kann ein Übergangsmetallsalz sein, wie ein Salz einer anorganischen oder organischen Säure, das Eisen(III)-, Kupfer(II)-, Chrom(VI)-, Cer(IV)-, Mangan(IV)-, Mangan(VII)- oder Ruthenium(III)-Kationen enthält. Besonders gut geeignete Übergangsmetallsalze enthalten Eisen(III)-Kationen, wie Eisen(III)halogenide (z. B. FeCl3) oder Eisen(III)-Salze anderer anorganischer Säuren, wie Fe(ClO4)3 oder Fe2(SO4)3, und die Eisen(III)-Salze von organischen Säuren und anorganischen Säuren, die organische Reste umfassen. Beispiele für Eisen(III)-Salze von anorganischen Säuren mit organischen Resten sind zum Beispiel Eisen(III)-Salze von Schwefelsäuremonoestern von C1- bis C20-Alkanolen (z. B. das Eisen(III)-Salz von Laurylsulfat). Ebenso sind Beispiele für Eisen(III)-Salze von organischen Säuren zum Beispiel Eisen(III)-Salze von C1- bis C20-Alkansulfonsäuren (z. B. Methan-, Ethan-, Propan-, Butan- oder Dodecansulfonsäure); Eisen(III)-Salze von aliphatischen Perfluorsulfonsäuren (z. B. Trifluormethansulfonsäure, Perfluorbutansulfonsäure oder Perfluoroctansulfonsäure); Eisen(III)-Salze von aliphatischen C1- bis C20-Carbonsäuren (z. B. 2-Ethylhexylcarbonsäure); Eisen(III)-Salze von aliphatischen Perfluorcarbonsäuren (z. B. Trifluoressigsäure oder Perfluoroctansäure); Eisen(III)-Salze von aromatischen Sulfonsäuren, die gegebenenfalls mit C1- bis C20-Alkylgruppen substituiert sind (z. B. Benzolsulfonsäure, o-Toluolsulfonsäure, p-Toluolsulfonsäure oder Dodecylbenzolsulfonsäure); Eisen(III)-Salze von Cycloalkansulfonsäuren (z. B. Camphersulfonsäure); usw. Gemische dieser oben genannten Eisen(III)-Salze können ebenfalls verwendet werden. Eisen(III)-p-toluolsulfonat, Eisen(III)-o-toluolsulfonat und Gemische davon sind zur Verwendung in der vorliegenden Erfindung besonders gut geeignet.
  • Verschiedene Verfahren können verwendet werden, um den festen Elektrolyten auf den Anodenteil aufzutragen. In einer Ausführungsform werden das Oxidationsmittel und der monomere Vorläufer entweder nacheinander oder zusammen aufgetragen, so dass die Polymerisationsreaktion in situ auf dem Teil stattfindet. Geeignete Auftragstechniken, wie Siebdruck, Tauchbeschichtung, elektrophoretische Beschichtung und Sprühbeschichtung, können verwendet werden, um eine leitfähige Polymerbeschichtung zu bilden. Als Beispiel kann der monomere Vorläufer (z. B. 3,4-Ethylendioxythiophen) zunächst unter Bildung einer Lösung mit dem Oxidationsmittel gemischt werden. Ein geeignetes Oxidationsmittel ist CLEVIOSTM C, bei dem es sich um Eisen(III)toluolsulfonat handelt und das von H. C. Starck vertrieben wird. CLEVIOSTM C ist ein kommerziell erhältlicher Katalysator für CLEVIOSTM M, bei dem es sich um 3,4-Ethylendioxythiophen handelt, ein PEDT-Monomer, das ebenfalls von H. C. Starck vertrieben wird. Sobald das Gemisch gebildet ist, kann der Anodenteil dann in die Lösung eingetaucht werden, so dass das Polymer auf der Oberfläche des Anodenteils entsteht. Alternativ dazu können das Oxidationsmittel und der Vorläufer auch getrennt auf den Anodenteil aufgetragen werden. In einer Ausführungsform wird das Oxidationsmittel zum Beispiel in einem organischen Lösungsmittel (z. B. Butanol) gelöst und dann als Tauchlösung auf den Anodenteil aufgetragen. Der Anodenteil kann dann getrocknet werden, um das Lösungsmittel davon zu entfernen. Danach kann der Anodenteil in eine Lösung, die das geeignete Monomer enthält, eingetaucht werden.
  • Wenn das Monomer mit der Oberfläche des Anodenteils, der das Oxidationsmittel enthält, in Kontakt tritt, kann es chemisch darauf polymerisieren. Die Polymerisation kann je nach dem verwendeten Oxidationsmittel und der gewünschten Reaktionszeit bei Temperaturen von etwa –10°C bis etwa 250°C und in einigen Ausführungsformen etwa 0°C bis etwa 200°C durchgeführt werden. Geeignete Polymerisationstechniken, wie sie oben beschrieben sind, sind ausführlicher in der US-Veröffentlichungs-Nr. 2008/232037 (Biler) beschrieben. Noch andere Verfahren zum Auftragen einer oder mehrerer solcher leitfähigen Polymerbeschichtungen sind in den US-Patenten Nr. 5,457,862 (Sakata et al.), 5,473,503 (Sakata et al.), 5,729,428 (Sakata et al.) und 5,812,367 (Kudoh et al.) beschrieben, auf die hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Neben der in-situ-Auftragung kann der feste Elektrolyt auch in Form einer Dispersion von festen leitfähigen Polymerteilchen auf den Teil aufgetragen werden. Obwohl ihre Größe variieren kann, ist es typischerweise wünschenswert, dass die Teilchen einen kleinen Durchmesser besitzen, um die zum Befestigen des Anodenteils verfügbare Oberfläche zu vergrößern. Zum Beispiel können die Teilchen einen mittleren Durchmesser von etwa 1 bis etwa 500 Nanometer, in einigen Ausführungsformen etwa 5 bis etwa 400 Nanometer und in einigen Ausführungsformen etwa 10 bis etwa 300 Nanometer haben. Der D90-Wert der Teilchen (Teilchen mit einem Durchmesser kleiner oder gleich dem D90-Wert bilden 90% des Gesamtvolumens aller festen Teilchen) kann etwa 15 Mikrometer oder weniger, in einigen Ausführungsformen etwa 10 Mikrometer oder weniger und in einigen Ausführungsformen etwa 1 Nanometer bis etwa 8 Mikrometer betragen. Der Durchmesser der Teilchen kann mit Hilfe bekannter Techniken, wie mittels Ultrazentrifuge, Laserbeugung usw., bestimmt werden.
  • Die Verarbeitung der leitfähigen Polymere in eine Teilchenform kann verstärkt werden, indem man ein getrenntes Gegenion verwendet, das einem geladenen leitfähigen Polymer (z. B. Polythiophen) entgegenwirken soll. Das heißt, das in dem festen Elektrolyten verwendete leitfähige Polymer (z. B. Polythiophen oder ein Derivat davon) trägt typischerweise eine Ladung auf der Hauptpolymerkette, die neutral oder positiv (kationisch) ist. Polythiophen-Derivate tragen zum Beispiel typischerweise eine positive Ladung in der Hauptpolymerkette. In einigen Fällen kann das Polymer positive und negative Ladungen in der Struktureinheit besitzen, wobei sich die positive Ladung auf der Hauptkette und die negative Ladung gegebenenfalls auf den Substituenten des Restes ”R”, wie Sulfonat- oder Carboxylatgruppen, befindet. Die positiven Ladungen der Hauptkette können teilweise oder zur Gänze mit den gegebenenfalls vorhandenen anionischen Gruppen an den Resten ”R” gesättigt sein. Insgesamt gesehen können die Polythiophene in diesen Fällen kationisch, neutral oder sogar anionisch sein. Dennoch werden sie alle als kationische Polythiophene angesehen, da die Polythiophen-Hauptkette eine positive Ladung trägt.
  • Das Gegenion kann ein monomeres oder polymeres Anion sein. Polymere Anionen können zum Beispiel Anionen von polymeren Carbonsäuren (z. B. Polyacrylsäuren, Polymethacrylsäure, Polymaleinsäuren usw.), polymeren Sulfonsäuren (z. B. Polystyrolsulfonsäuren (”PSS”), Polyvinylsulfonsäuren usw.) usw. sein. Die Säuren können auch Copolymere, wie Copolymere von Vinylcarbon- und Vinylsulfonsäure mit anderen polymerisierbaren Monomeren, wie Acrylsäureestern und Styrol, sein. Ebenso sind geeignete monomere Anionen zum Beispiel Anionen von C1- bis C20-Alkansulfonsäuren (z. B. Dodecansulfonsäure); aliphatischen Perfluorsulfonsäuren (z. B. Trifluormethansulfonsäure, Perfluorbutansulfonsäure oder Perfluoroctansulfonsäure); aliphatischen C1- bis C20-Carbonsäuren (z. B. 2-Ethylhexylcarbonsäure); aliphatischen Perfluorcarbonsäuren (z. B. Trifluoressigsäure oder Perfluoroctansäure); aromatischen Sulfonsäure, die gegebenenfalls mit C1- bis C20-Alkylgruppen substituiert sind (z. B. Benzolsulfonsäure, o-Toluolsulfonsäure, p-Toluolsulfonsäure oder Dodecylbenzolsulfonsäure); Cycloalkansulfonsäuren (z. B. Camphersulfonsäure oder Tetrafluoroborate, Hexafluorophosphate, Perchlorate, Hexafluoroantimonate, Hexafluoroarsenate oder Hexachloroantimonate); usw. Besonders gut geeignete Gegenionen sind polymere Anionen, wie eine polymere Carbon- oder Sulfonsäure (z. B. Polystyrolsulfonsäure (”PSS”)). Das Molekulargewicht solcher polymeren Anionen liegt typischerweise im Bereich von etwa 1000 bis etwa 2 000 000 und in einigen Ausführungsformen etwa 2000 bis etwa 500 000.
  • Wenn sie eingesetzt werden, beträgt das Gewichtsverhältnis solcher Gegenionen zu leitfähigen Polymeren in einer gegebenen Schicht des festen Elektrolyten typischerweise etwa 0,5:1 bis etwa 50:1, in einigen Ausführungsformen etwa 1:1 bis etwa 30:1 und in einigen Ausführungsformen etwa 2:1 bis etwa 20:1. Das Gewicht der elektrisch leitfähigen Polymere, von dem bei den oben genannten Gewichtsverhältnissen die Rede ist, bezieht sich auf den eingewogenen Anteil der verwendeten Monomere, wenn man annimmt, dass während der Polymerisation eine vollständige Umsetzung stattfindet.
  • Neben leitfähigen Polymeren und wahlfreien Gegenionen kann die Dispersion auch ein oder mehrere Bindemittel enthalten, um die adhäsive Natur der polymeren Schicht weiter zu verstärken und auch die Stabilität der Teilchen innerhalb der Dispersion zu erhöhen. Die Bindemittel können organischer Natur sein, wie Polyvinylalkohole, Polyvinylpyrrolidone, Polyvinylchloride, Polyvinylacetate, Polyvinylbutyrate, Polyacrylsäureester, Polyacrylsäureamide, Polymethacrylsäureester, Polymethacrylsäureamide, Polyacrylnitrile, Styrol/Acrylsäureester, Vinylacetat/Acrylsäureester und Ethylen/Vinylacetat-Copolymere, Polybutadiene, Polyisoprene, Polystyrole, Polyether, Polyester, Polycarbonate, Polyurethane, Polyamide, Polyimide, Polysulfone, Melamin-Formaldehyd-Harze, Epoxyharze, Silikonharze oder Cellulosen. Es können auch Vernetzungsmittel eingesetzt werden, um die Adhäsionsfähigkeit der Bindemittel zu erhöhen. Solche Vernetzungsmittel sind zum Beispiel Melaminverbindungen, maskierte Isocyanate oder funktionelle Silane, wie 3-Glycidoxypropyltrialkoxysilan, Tetraethoxysilan und Tetraethoxysilan-Hydrolysat oder vernetzbare Polymere, wie Polyurethane, Polyacrylates oder Polyolefine, und anschließende Vernetzung.
  • Es können auch Dispersionsmittel eingesetzt werden, um die Bildung des festen Elektrolyten zu erleichtern und seine Auftragbarkeit auf den Anodenteil zu verbessern. Zu den geeigneten Dispersionsmitteln gehören Lösungsmittel, wie aliphatische Alkohole (z. B. Methanol, Ethanol, Isopropanol und Butanol), aliphatische Ketone (z. B. Aceton und Methylethylketone), aliphatische Carbonsäureester (z. B. Ethylacetat und Butylacetat), aromatische Kohlenwasserstoffe (z. B. Toluol und Xylol), aliphatische Kohlenwasserstoffe (z. B. Hexan, Heptan und Cyclohexan), chlorierte Kohlenwasserstoffe (z. B. Dichlormethan und Dichlorethan), aliphatische Nitrile (z. B. Acetonitril), aliphatische Sulfoxide und Sulfone (z. B. Dimethylsulfoxid und Sulfolan), aliphatische Carbonsäureamide (z. B. Methylacetamid, Dimethylacetamid und Dimethylformamid), aliphatische und araliphatische Ether (z. B. Diethylether und Anisol), Wasser sowie Gemische irgendwelcher der obigen Lösungsmittel. Ein besonders gut geeignetes Dispersionsmittel ist Wasser.
  • Außer den oben genannten können auch noch andere Bestandteile in der Dispersion verwendet werden. Zum Beispiel können herkömmliche Füllstoffe verwendet werden, die eine Größe von etwa 10 Nanometer bis etwa 100 Mikrometer, in einigen Ausführungsformen etwa 50 Nanometer bis etwa 50 Mikrometer und in einigen Ausführungsformen etwa 100 Nanometer bis etwa 30 Mikrometer. Beispiele für solche Füllstoffe sind Calciumcarbonat, Silicate, Siliciumoxid, Calcium- oder Bariumsulfat, Aluminiumhydroxid, Glasfasern oder -kolben, Holzmehl, Cellulosepulver, Ruß, elektrisch leitfähige Polymere usw. Die Füllstoffe können in Pulverform in die Dispersion eingeführt werden, können jedoch auch in einer anderen Form, etwa als Fasern, vorliegen.
  • Grenzflächenaktive Substanzen, wie ionische oder nichtionische Tenside, können ebenfalls in der Dispersion eingesetzt werden. Weiterhin können Kleber eingesetzt werden, wie organofunktionelle Silane oder ihre Hydrolysate, zum Beispiel 3-Glycidoxypropyltrialkoxysilan, 3-Aminopropyltriethoxysilan, 3-Mercaptopropyltrimethoxysilan, 3-Methacryloxypropyltrimethoxysilan, Vinyltrimethoxysilan oder Octyltriethoxysilan. Die Dispersion kann auch Additive enthalten, die die Leitfähigkeit erhöhen, wie Ethergruppen enthaltende Verbindungen (z. B. Tetrahydrofuran), Lactongruppen enthaltende Verbindungen (z. B. γ-Butyrolacton oder γ-Valerolacton), Amid- oder Lactamgruppen enthaltende Verbindungen (z. B. Caprolactam, N-Methylcaprolactam, N,N-Dimethylacetamid, N-Methylacetamid, N,N-Dimethylformamid (DMF), N-Methylformamid, N-Methylformanilid, N-Methylpyrrolidon (NMP), N-Octylpyrrolidon oder Pyrrolidon), Sulfone und Sulfoxide (z. B. Sulfolan (Tetramethylensulfon) oder Dimethylsulfoxid (DMSO)), Zucker oder Zuckerderivate (z. B. Saccharose, Glucose, Fructose oder Lactose), Zuckeralkohole (z. B. Sorbit oder Mannit), Furanderivate (z. B. 2-Furancarbonsäure oder 3-Furancarbonsäure) und Alkohole (z. B. Ethylenglycol, Glycerin, Di- oder Triethylenglycol).
  • Die polymere Dispersion kann mit Hilfe einer Vielzahl von bekannten Techniken auf den Teil aufgetragen werden, wie durch Schleuderbeschichtung, Imprägnierung, Gießen, tropfenweise Auftragung, Spritzen, Sprühen, Rakeln, Bürsten oder Drucken (z. B. Tintenstrahl-, Sieb- oder Blockdruck). Obwohl sie je nach der eingesetzten Auftragungstechnik variieren kann, beträgt die Viskosität der Dispersion typischerweise etwa 0,1 bis etwa 100 000 mPa·s (gemessen bei einer Scherrate von 100 s–1), in einigen Ausführungsformen etwa 1 bis etwa 10 000 mPa·s, in einigen Ausführungsformen etwa 10 bis etwa 1500 mPa·s und in einigen Ausführungsformen etwa 100 bis etwa 1000 mPa·s. Einmal aufgetragen, kann die Schicht getrocknet und gewaschen werden.
  • Wie bereits gesagt, kann der feste Elektrolyt aus einer oder mehreren Schichten gebildet werden. Wenn mehrere Schichten eingesetzt werden, können sie aus einem leitfähigen Polymer, das in situ gebildet wird, und/oder aus einer polymeren Dispersion gebildet werden. Jede Schicht kann mit Hilfe von einem oder mehreren Beschichtungsschritten gebildet werden.
  • In 1 ist zum Beispiel eine Ausführungsform eines Kondensators 10 gezeigt, der einen aus mehreren Schichten gebildeten festen Elektrolyten 12 enthält. Insbesondere umfasst der feste Elektrolyt 12 eine erste leitfähige Polymerschicht 14, die in Kontakt mit einem Dielektrikum 13 steht, welches einen Anodenkörper 11 bedeckt, der mit einem Anschluss 15 eingebettet ist. In einer Ausführungsform kann die erste Schicht 14 ein leitfähiges Polymer (z. B. PEDT) enthalten, das durch in-situ-Polymerisation eines Oxidationsmittels und eines monomeren Vorläufers gebildet wird. Der feste Elektrolyt 12 enthält auch eine zweite leitfähige Polymerschicht 16, die die erste Schicht 14 im Wesentlichen bedeckt. Die zweite Schicht 16 kann aus einer Dispersion von Teilchen gebildet werden, die ein leitfähiges Polymer (z. B. PEDT), Bindemittel und ein wahlfreies Gegenion (z. B. PSS) enthält. Ein Vorteil der Verwendung einer solchen Dispersion besteht darin, dass sie möglicherweise in den Randbereich des Kondensatorkörpers eindringen kann, um einen guten elektrischen Kontakt mit der inneren Schicht zu erreichen und die Haftung am Kondensatorkörper zu erhöhen. Dies führt zu einem mechanisch robusteren Teil, bei dem der äquivalente Serienwiderstand und der Leckstrom reduziert sein können. Der resultierende feste Elektrolyt 12 hat typischerweise eine Gesamtdicke von etwa 1 Mikrometer (μm) bis etwa 200 μm, in einigen Ausführungsformen etwa 2 μm bis etwa 50 μm und in einigen Ausführungsformen etwa 5 μm bis etwa 30 μm. Zum Beispiel kann die innere Schicht 14 eine Gesamtdicke von etwa 0,1 μm bis etwa 100 μm, in einigen Ausführungsformen etwa 0,5 μm bis etwa 20 μm und in einigen Ausführungsformen etwa 1 μm bis etwa 5 μm haben, während die äußere Schicht 16 eine Gesamtdicke von etwa 0,2 μm bis etwa 100 μm, in einigen Ausführungsformen etwa 1 μm bis etwa 40 μm und in einigen Ausführungsformen etwa 3 μm bis etwa 10 μm haben kann.
  • Unabhängig von der besonderen Weise, in der er gebildet wird, kann der feste Elektrolyt nach Auftragung auf den Anodenteil geflickt werden. Das Flicken kann nach jeder Auftragung einer festen Elektrolytschicht erfolgen, oder es kann nach der Auftragung der gesamten Beschichtung erfolgen, wenn mehrere Schichten eingesetzt werden. In einigen Ausführungsformen kann der feste Elektrolyt zum Beispiel geflickt werden, indem man den Pressling in eine Elektrolytlösung, wie eine Säurelösung, eintaucht und danach eine konstante Spannung an die Lösung anlegt, bis die Stromstärke auf ein vorgewähltes Niveau reduziert ist. Falls gewünscht, kann dieses Flicken auch in mehreren Schritten bewerkstelligt werden. Nach dem Auftragen einiger oder aller oben beschriebenen Schichten kann der resultierende Teil dann gegebenenfalls gewaschen werden, um verschiedene Nebenprodukte, überschüssige Oxidationsmittel usw. zu entfernen. Weiterhin kann in einigen Fällen nach einem Teil oder allen oben beschriebenen Eintauchvorgängen getrocknet werden. Ein Trocknen kann zum Beispiel wünschenswert sein, nachdem das Oxidationsmittel aufgetragen und/oder nachdem der Pressling gewaschen wurde, um die Poren des Teils zu öffnen, so dass er bei anschließenden Tauchschritten eine Flüssigkeit aufnehmen kann.
  • IV Externe Beschichtung
  • Der Kondensator der vorliegenden Erfindung enthält auch eine externe Beschichtung, die den festen Elektrolyten bedeckt. Die externe Beschichtung enthält wenigstens eine kohlenstoffhaltige Schicht und wenigstens eine Metallschicht, die die kohlenstoffhaltige Schicht bedeckt. Die Metallschicht kann als lötbarer Leiter, Kontaktschicht und/oder Ladungssammler für den Kondensator wirken und kann aus einem leitfähigen Metall bestehen, wie Kupfer, Nickel, Silber, Zink, Zinn, Palladium, Blei, Aluminium, Molybdän, Titan, Eisen, Zirconium, Magnesium und Legierungen davon. Silber ist ein besonders gut geeignetes leitfähiges Metall zur Verwendung in der Schicht. Die kohlenstoffhaltige Schicht kann den Kontakt zwischen der Metallschicht und dem festen Elektrolyten begrenzen, was ansonsten den Widerstand des Kondensators erhöhen würde. Die kohlenstoffhaltige Schicht kann aus einer Vielzahl von bekannten kohlenstoffhaltigen Materialien, wie Graphit, Aktivkohle, Ruß usw. bestehen. Die Dicke der kohlenstoffhaltigen Schicht liegt typischerweise im Bereich von etwa 1 μm bis etwa 50 μm, in einigen Ausführungsformen etwa 2 μm bis etwa 30 μm und in einigen Ausführungsformen etwa 5 μm bis etwa 10 μm. Ebenso liegt die Dicke der Metallschicht typischerweise im Bereich von etwa 1 μm bis etwa 100 μm, in einigen Ausführungsformen etwa 5 μm bis etwa 50 μm und in einigen Ausführungsformen etwa 10 μm bis etwa 25 μm.
  • Außer den oben genannten Schichten enthält die externe Beschichtung auch wenigstens eine Polymerschicht, die sich zwischen der Metallschicht und der kohlenstoffhaltigen Schicht befindet. Unter Anderem hilft diese Schicht, das Abblättern der kohlenstoffhaltigen Schicht vom Anodenteil zu hemmen. Die Dicke der Schicht liegt typischerweise im Bereich von etwa 0,1 μm bis etwa 30 μm, in einigen Ausführungsformen etwa 0,2 μm bis etwa 20 μm, in einigen Ausführungsformen etwa 0,5 μm bis etwa 5 μm und in einigen Ausführungsformen etwa 1 μm bis etwa 3 μm. Um die elektrische Leistungsfähigkeit des Kondensators zu optimieren, ist die polymere Schicht im Allgemeinen leitfähig. Zum Beispiel hat die Schicht typischerweise eine spezifische Leitfähigkeit im trockenen Zustand von etwa 1 Siemens pro Zentimeter (”S/cm”) oder mehr, in einigen Ausführungsformen etwa 10 S/cm oder mehr, in einigen Ausführungsformen etwa 20 S/cm oder mehr und in einigen Ausführungsformen etwa 50 bis etwa 500 S/cm. Eine solche Leitfähigkeit erhält man durch die Verwendung eines leitfähigen Polymers, wie der oben beschriebenen π-konjugierten leitfähigen Polymere, zum Beispiel Polyheterocyclen (z. B. Polypyrrole, Polythiophene, Polyaniline usw.), Polyacetylene, Poly-p-phenylene, Polyphenolate usw. Zu den besonders gut geeigneten Polythiophenen gehören zum Beispiel Polythiophen und Derivate davon, wie Poly(3,4-ethylendioxythiophen) (”PEDT”).
  • Die leitfähige Polymerschicht kann durch in-situ-Polymerisation, Dispersionen usw. in der oben beschriebenen Weise gebildet werden. In einer Ausführungsform enthält die Schicht zum Beispiel ein leitfähiges Polymer (z. B. PEDT), das durch in-situ-Polymerisation eines Oxidationsmittels und eines monomeren Vorläufers gebildet wird. In einer anderen Ausführungsform wird die leitfähige Polymerschicht aus einer Dispersion von leitfähigen Polymerteilchen gebildet. Die Teilchen können einen mittleren Durchmesser von etwa 1 bis etwa 500 Nanometer (nm), in einigen Ausführungsformen etwa 5 bis etwa 400 Nanometer und in einigen Ausführungsformen etwa 10 bis etwa 300 Nanometer haben. Der D90-Wert der Teilchen kann etwa 15 μm oder weniger, in einigen Ausführungsformen etwa 10 μm oder weniger und in einigen Ausführungsformen etwa 1 nm bis etwa 8 μm betragen. Ein Gegenion (z. B. Polystyrolsulfonsäure) kann ebenfalls eingesetzt werden, wie es oben beschrieben ist, um die Bildung der Teilchen zu unterstützen. Das Gewichtsverhältnis solcher Gegenionen zu leitfähigen Polymeren kann etwa 0,5:1 bis etwa 50:1, in einigen Ausführungsformen etwa 1:1 bis etwa 30:1 und in einigen Ausführungsformen etwa 2:1 bis etwa 20:1 betragen. Neben leitfähigen Polymeren und wahlfreien Gegenionen kann die Dispersion auch andere Komponenten enthalten, wie es oben beschrieben ist. Zum Beispiel können Bindemittel eingesetzt werden, um die adhäsive Natur der Schicht zu verstärken und die Stabilität zu erhöhen. Typischerweise jedoch bilden die leitfähigen Polymere etwa 0,1 Gew.-% bis etwa 20 Gew.-%, in einigen Ausführungsformen etwa 0,5 Gew.-% bis etwa 10 Gew.-% und in einigen Ausführungsformen etwa 1 Gew.-% bis etwa 5 Gew.-% der Dispersion. Andere Bestandteile können ebenfalls eingesetzt werden, wie es oben beschrieben ist, wie Dispersionsmittel (z. B. Wasser), Füllstoffe, grenzflächenaktive Substanzen, Kleber, Additive, die die Leitfähigkeit erhöhen, usw.
  • Noch andere Schichten können ebenfalls in der externen Beschichtung eingesetzt werden. Zum Beispiel kann gegebenenfalls eine zusätzliche kohlenstoffhaltige Schicht zwischen der leitfähigen Polymerdispersion und der Metallschicht eingesetzt werden. In dieser Weise ist die Dispersion beidseitig zwischen kohlenstoffhaltigen Schichten eingeschlossen. Eine solche zusätzliche kohlenstoffhaltige Schicht kann dabei helfen, die Wahrscheinlichkeit, dass irgendein Metall unabsichtlich mit dem festen Elektrolyten des Kondensators in Kontakt kommt, weiter zu reduzieren. Wenn sie eingesetzt wird, kann eine solche zusätzliche Schicht eine Dicke von etwa 1 μm bis etwa 50 μm, in einigen Ausführungsformen etwa 2 μm bis etwa 20 μm und in einigen Ausführungsformen etwa 5 μm bis etwa 10 μm aufweisen.
  • Wir beziehen uns wiederum auf 1. Eine besondere Ausführungsform einer externen Beschichtung 20 ist gezeigt, die eine leitfähige Polymerschicht enthält, welche beidseitig zwischen mehreren kohlenstoffhaltigen Schichten eingeschlossen ist. Insbesondere umfasst die externe Beschichtung 20 eine leitfähige Polymerschicht 22, die sich zwischen einer ersten kohlenstoffhaltigen Schicht 24 und einer zweiten kohlenstoffhaltigen Schicht 26 und in Kontakt mit denselben befindet. In einer Ausführungsform wird die Schicht 22 durch in-situ-Polymerisation eines Oxidationsmittels und eines monomeren Vorläufers gebildet. In einer anderen Ausführungsform wird die Schicht 22 aus einer Dispersion von Teilchen gebildet, die ein leitfähiges Polymer (z. B. PEDT) und ein wahlfreies Gegenion (z. B. PSS) enthält. Die erste kohlenstoffhaltige Schicht 24 bedeckt und berührt den festen Elektrolyten 12 des Kondensators 10. Weiterhin umfasst die externe Beschichtung 20 auch eine Metallschicht 28 (z. B. Silber), die die zweite kohlenstoffhaltige Schicht 26 bedeckt und berührt. In dieser besonderen Ausführungsform definiert die Metallschicht 28 eine äußere Oberfläche des Kondensators 10. Typischerweise hat die resultierende externe Beschichtung 20 eine Gesamtdicke von etwa 5 μm bis etwa 300 μm, in einigen Ausführungsformen etwa 10 μm bis etwa 100 μm und in einigen Ausführungsformen etwa 20 μm bis etwa 50 μm.
  • Der Elektrolytkondensator der vorliegenden Erfindung kann auch ein Anodenende, mit dem der Anodenanschluss des Kondensatorelements elektrisch verbunden ist, und ein Kathodenende, mit dem die Kathode des Kondensatorelements elektrisch verbunden ist, enthalten. Jedes beliebige leitfähige Material kann eingesetzt werden, um die Enden zu bilden, wie ein leitfähiges Metall (z. B. Kupfer, Nickel, Silber, Zink, Zinn, Palladium, Blei, Kupfer, Aluminium, Molybdän, Titan, Eisen, Zirconium, Magnesium und Legierungen davon). Zu den besonders gut geeigneten leitfähigen Metallen gehören zum Beispiel Kupfer, Kupferlegierungen (z. B. Kupfer-Zirconium, Kupfer-Magnesium, Kupfer-Zink oder Kupfer-Eisen), Nickel und Nickellegierungen (z. B. Nickel-Eisen). Die Dicke der Enden ist im Allgemeinen so gewählt, dass die Dicke des Kondensators minimiert wird. Zum Beispiel kann die Dicke der Enden im Bereich von etwa 0,05 bis etwa 1 Millimeter, in einigen Ausführungsformen etwa 0,05 bis etwa 0,5 Millimeter oder etwa 0,07 bis etwa 0,2 Millimeter liegen. Die Enden können mit Hilfe einer beliebigen, in der Technik bekannten Methode, wie Schweißen, Kleben usw., verbunden werden. In einer Ausführungsform kann zum Beispiel ein leitfähiger Kleber zunächst auf eine Fläche des Anoden- und/oder Kathodenendes aufgetragen werden. Der leitfähige Kleber kann zum Beispiel leitfähige Metallteilchen umfassen, die in einer Harzzusammensetzung enthalten sind. Bei den Metallteilchen kann es sich um Silber, Kupfer, Gold, Platin, Nickel, Zink, Eismut usw. handeln. Die Harzzusammensetzung kann ein duroplastisches Harz (z. B. Epoxidharz), Härtungsmittel (z. B. Säureanhydrid) und Kopplungsmittel (z. B. Silan-Kopplungsmittel) umfassen. Geeignete leitfähige Kleber sind in der US-Patentanmeldung Veröffentlichungsnummer 2006/0038304 (Osako et al.) beschrieben, auf die hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Sobald das Kondensatorelement befestigt ist, kann der Leiterrahmen in einem Gehäuse eingeschlossen werden, das dann mit Siliciumoxid oder irgendeinem anderen bekannten Einbettungsmaterial gefüllt werden kann. Die Breite und Länge des Gehäuses kann je nach Verwendungszweck variieren. Zu den geeigneten Gehäusen gehören zum Beispiel etwa die Gehäuse ”A”, ”B”, ”F”, ”G”, ”H”, ”J”, ”K”, ”L”, ”M”, ”N”, ”P”, ”R”, ”S”, ”T”, ”W”, ”Y” oder ”X” (AVX Corporation). Unabhängig von der eingesetzten Gehäusegröße wird das Kondensatorelement so eingebettet, dass wenigstens ein Teil des Anoden- und des Kathodenendes exponiert bleiben. In einigen Fällen kann sich der exponierte Teil des Anoden- und des Kathodenendes zur Montage auf einer Leiterplatte in einer ”Facedown”-Konfiguration auf der unteren Fläche des Kondensators befinden. Dies erhöht die volumetrische Effizienz des Kondensators und reduziert ebenso dessen Platzbedarf auf der Leiterplatte. Nach der Einbettung können exponierte Teile des Anoden- und des Kathodenendes altern gelassen, überprüft und auf die gewünschte Größe zurechtgeschnitten werden.
  • Die vorliegende Erfindung wird anhand der folgenden Beispiele besser verständlich.
  • Testverfahren
  • Äquivalenter Serienwiderstand (ESR), Kapazität und Verlustfaktor:
  • Der äquivalente Serienwiderstand und die Impedanz wurden mit einem Präzisions-LCZ-Messgerät Keithley 3330 mit Kelvin-Anschlussleitungen bei 0 Volt Vorspannung und 1 Volt Signal gemessen. Die Betriebsfrequenz betrug 100 kHz. Die Kapazität und der Verlustfaktor wurden mit einem Präzisions-LCZ-Messgerät Keithley 3330 mit Kelvin-Anschlussleitungen bei 2 Volt Vorspannung und 1 Volt Signal gemessen. Die Betriebsfrequenz betrug 120 Hz, und die Temperatur betrug 23°C ± 2°C.
  • Leckstrom:
  • Der Leckstrom (”DCL”) wurde mit einer Leckstrom-Testeinrichtung MC 190 von Mantracourt Electronics LTD, UK, gemessen. Der Test mit dem MC 190 misst den Leckstrom bei einer Temperatur von 25°C und einer bestimmten Nennspannung nach 10 Sekunden.
  • Beispiel 1
  • Tantalpulver mit 70 000 μF-V/g wurde verwendet, um verschiedene Anodenproben zu bilden. Jede Anodenprobe wurde mit einem Tantaldraht eingebettet, bei 1300°C gesintert und zu einer Dichte von 5,3 g/cm3 gepresst. Die resultierenden Presslinge hatten eine Größe von 1,65 × 2,70 × 2,85 mm. Die Presslinge wurden in einem Phosphorsäureelektrolyten in Wasser bei einer Temperatur von 85°C anodisiert und anschließend einer Schalenformung in Wasser/Ethylenglycol-Elektrolyt unterzogen, wobei die dielektrische Schicht entstand. Dann wurden die Proben nacheinander in eine Lösung von Eisen(III)-p-toluolsulfonat in n-Butanol (CLEVIOS CB40, H. C. Starck) und in eine Lösung von 3,4-Ethylendioxythiophen (CLEVIOS M, H. C. Starck) eingetaucht und danach in-situ-polymerisiert, wobei eine PEDT-Schicht entstand. Dann wurden die Teile in eine PEDT/PSS-Polymerdispersion (CLEVIOS K, H. C. Starck) eingetaucht, polymerisiert und getrocknet, wobei eine zusätzliche PEDT-Schicht entstand.
  • Nach der Bildung des festen Elektrolyten wurden die Teile in eine Graphitdispersion (DuPont) eingetaucht und getrocknet. Dann wurden die Teile nacheinander in eine Lösung von Eisen(III)-p-toluolsulfonat in n-Butanol (CLEVIOS CB40, H. C. Starck) und in eine Lösung von 3,4-Ethylendioxythiophen (CLEVIOS M, H. C. Starck) eingetaucht und danach in-situ-polymerisiert. Dann wurden die Teile noch einmal in eine Graphitdispersion (DuPont) eingetaucht und getrocknet. Schließlich wurden die Teile in eine Silberdispersion (Lord) eingetaucht und getrocknet. Die fertigen Teile wurden durch herkömmliche Montagetechnik fertiggestellt.
  • Beispiel 2
  • Tantalanodenproben wurden gebildet und anodisiert, wie es oben in Beispiel 1 beschrieben ist. Dann wurden die Proben nacheinander in eine Lösung von Eisen(III)-p-toluolsulfonat in n-Butanol (CLEVIOS CB40, H. C. Starck) und in eine Lösung von 3,4-Ethylendioxythiophen (CLEVIOS M, H. C. Starck) eingetaucht und danach in-situ-polymerisiert, wobei eine PEDT-Schicht entstand. Dann wurden die Teile in eine PEDT/PSS-Polymerdispersion (CLEVIOS K, H. C. Starck) eingetaucht, polymerisiert und getrocknet, wobei eine zusätzliche PEDT-Schicht entstand. Nach der Bildung des festen Elektrolyten wurden die Teile in eine Graphitdispersion (DuPont) eingetaucht und getrocknet. Dann wurden die Teile in eine PEDT/PSS-Polymerdispersion (CLEVIOS K, H. C. Starck) eingetaucht und polymerisiert. Dann wurden die Teile noch einmal in eine Graphitdispersion (DuPont) eingetaucht und getrocknet. Schließlich wurden die Teile in eine Silberdispersion (Lord) eingetaucht und getrocknet. Die fertigen Teile wurden durch herkömmliche Montagetechnik fertiggestellt.
  • Vergleichsbeispiel
  • Tantalanodenproben wurden gebildet und anodisiert, wie es oben in Beispiel 1 beschrieben ist. Dann wurden die Proben nacheinander in eine Lösung von Eisen(III)-p-toluolsulfonat in n-Butanol (CLEVIOS CB40, H. C. Starck) und in eine Lösung von 3,4-Ethylendioxythiophen (CLEVIOS M, H. C. Starck) eingetaucht und danach in-situ-polymerisiert, wobei eine PEDT-Schicht entstand. Dann wurden die Teile in eine PEDT/PSS-Polymerdispersion (CLEVIOS K, H. C. Starck) eingetaucht, polymerisiert und getrocknet, wobei eine zusätzliche PEDT-Schicht entstand. Dann wurden die Teile in eine Silberdispersion (Lord) eingetaucht und getrocknet. Die fertigen Teile wurden durch herkömmliche Montagetechnik fertiggestellt.
  • Dann wurden die in den oben genannten Beispielen hergestellten Teile auf elektrische Leistungsfähigkeit (d. h. Leckstrom (”DCL”), Kapazität, Verlustfaktor (”Df”) und äquivalenter Serienwiderstand (”ESR”)) getestet. Die Ergebnisse sind unten dargelegt.
    Beispiel Nr. Mittlere Anodenabmessung (mm) Median der elektrischen Eigenschaften
    Breite Dicke DCL [μA] KAP [μF] Df ESR []
    1 2,533 1,452 3,03 145,47 0,022 0,050
    2 2,534 1,452 2,98 145,47 0,022 0,050
    Vergl. 2,530 1,478 8,83 145,65 0,021 0,046
  • Wie angegeben, war der Leckstrom für die Beispiele 1 und 2 erheblich besser als für das Vergleichsbeispiel.
  • Diese und andere Modifikationen und Variationen der vorliegenden Erfindung können vom Fachmann praktisch umgesetzt werden, ohne vom Wesen und Umfang der vorliegenden Erfindung abzuweichen. Außerdem sollte man sich darüber im Klaren sein, dass Aspekte der verschiedenen Ausführungsformen ganz oder teilweise gegeneinander ausgetauscht werden können. Weiterhin wird der Fachmann anerkennen, dass die obige Beschreibung nur beispielhaften Charakter hat und die Erfindung, die in den beigefügten Ansprüchen näher beschrieben ist, nicht einschränken soll.
    • 1. Festelektrolytkondensator, umfassend: einen Anodenkörper; ein den Anodenkörper bedeckendes Dielektrikum; einen das Dielektrikum bedeckenden festen Elektrolyten, wobei der feste Elektrolyt eine erste leitfähige Polymerschicht enthält; und eine externe Beschichtung, die den festen Elektrolyten bedeckt und eine kohlenstoffhaltige Schicht und eine Metallschicht, die die kohlenstoffhaltige Schicht bedeckt, enthält, wobei die externe Beschichtung weiterhin eine zweite leitfähige Polymerschicht, die sich zwischen der kohlenstoffhaltigen Schicht und der Metallschicht befindet, enthält.
    • 2. Festelektrolytkondensator gemäß Punkt 1, wobei die erste leitfähige Polymerschicht, die zweite leitfähige Polymerschicht oder beide ein Polypyrrol, Polythiophen, Polyanilin, Polyacetylen, Poly-p-phenylen, Polyphenolat oder eine Kombination davon enthalten.
    • 3. Festelektrolytkondensator gemäß Punkt 2, wobei die erste leitfähige Polymerschicht, die zweite leitfähige Polymerschicht oder beide ein Polythiophenderivat enthalten, das Repetiereinheiten der allgemeinen Formel (I) oder Formel (II) oder Repetiereinheiten der allgemeinen Formel (I) und (II) aufweist:
      Figure 00280001
      wobei A ein gegebenenfalls substituierter C1- bis C5-Alkylenrest ist; R ein linearer oder verzweigter, gegebenenfalls substituierter C1- bis C18-Alkylrest; gegebenenfalls substituierter C5- bis C12-Cycloalkylrest; gegebenenfalls substituierter C6- bis C14-Arylrest; gegebenenfalls substituierter C7- bis C18-Aralkylrest; gegebenenfalls substituierter C1- bis C4-Hydroxyalkylrest oder Hydroxyrest ist; und x eine ganze Zahl von 0 bis 8 ist.
    • 4. Festelektrolytkondensator gemäß Punkt 3, wobei A ein gegebenenfalls substituierter C2- bis C3-Alkylenrest ist und x = 0 oder 1 ist.
    • 5. Festelektrolytkondensator gemäß Punkt 3, wobei es sich bei dem Polythiophenderivat um Poly-3,4-ethylendioxythiophen handelt.
    • 6. Festelektrolytkondensator gemäß Punkt 1, wobei der feste Elektrolyt weiterhin eine dritte leitfähige Polymerschicht enthält, wobei die erste leitfähige Polymerschicht das Dielektrikum bedeckt und die dritte leitfähige Polymerschicht die erste leitfähige Polymerschicht bedeckt.
    • 7. Festelektrolytkondensator gemäß Punkt 6, wobei die dritte leitfähige Polymerschicht aus einer Dispersion von leitfähigen Polymerteilchen gebildet wird.
    • 8. Festelektrolytkondensator gemäß Punkt 7, wobei die erste leitfähige Polymerschicht durch in-situ-Polymerisation eines monomeren Vorläufers und eines Oxidationsmittels gebildet wird.
    • 9. Festelektrolytkondensator gemäß Punkt 1, wobei die kohlenstoffhaltige Schicht Graphit enthält.
    • 10. Festelektrolytkondensator gemäß Punkt 1, wobei die Metallschicht Silber enthält.
    • 11. Festelektrolytkondensator gemäß Punkt 1, wobei die externe Beschichtung eine zusätzliche kohlenstoffhaltige Schicht umfasst, die sich zwischen der zweiten leitfähigen Polymerschicht und der Metallschicht befindet.
    • 12. Festelektrolytkondensator gemäß Punkt 1, wobei die zweite leitfähige Polymerschicht durch in-situ-Polymerisation eines monomeren Vorläufers und eines Oxidationsmittels gebildet wird.
    • 13. Festelektrolytkondensator gemäß Punkt 1, wobei die zweite leitfähige Polymerschicht aus einer Dispersion von leitfähigen Polymerteilchen gebildet wird.
    • 14. Festelektrolytkondensator gemäß Punkt 13, wobei die Teilchen einen mittleren Durchmesser von etwa 1 bis etwa 500 Nanometer haben.
    • 15. Festelektrolytkondensator gemäß Punkt 13, wobei die Teilchen einen mittleren Durchmesser von etwa 10 bis etwa 300 Nanometer haben.
    • 16. Festelektrolytkondensator gemäß Punkt 13, wobei die Dispersion ein polymeres Anion enthält.
    • 17. Festelektrolytkondensator gemäß Punkt 13, wobei es sich bei dem polymeren Anion um Polystyrolsulfonsäure handelt.
    • 18. Festelektrolytkondensator gemäß Punkt 1, wobei die zweite leitfähige Polymerschicht eine Dicke von etwa 0,2 μm bis etwa 20 μm hat.
    • 19. Festelektrolytkondensator gemäß Punkt 1, wobei die externe Beschichtung eine Gesamtdicke von etwa 5 μm bis etwa 300 μm hat.
    • 20. Festelektrolytkondensator gemäß Punkt 1, wobei der Anodenkörper Tantal, Niob oder ein elektrisch leitfähiges Oxid davon umfasst.
    • 21. Festelektrolytkondensator gemäß Punkt 20, wobei der Anodenkörper Tantal umfasst und der Anodenkörper Tantalpentoxid umfasst.
    • 22. Festelektrolytkondensator gemäß Punkt 20, wobei der Anodenkörper Nioboxid umfasst und der Anodenkörper Niobpentoxid umfasst.
    • 23. Festelektrolytkondensator, umfassend: einen Anodenkörper; ein den Anodenkörper bedeckendes Dielektrikum; einen das Dielektrikum bedeckenden festen Elektrolyten, wobei der feste Elektrolyt eine erste leitfähige Polymerschicht, die durch in-situ-Polymerisation gebildet wird und das Dielektrikum bedeckt, und eine zweite leitfähige Polymerschicht, die aus einer Dispersion von leitfähigen Polymerteilchen gebildet wird, enthält, wobei die zweite leitfähige Polymerschicht die erste leitfähige Polymerschicht bedeckt; eine externe Beschichtung, die den festen Elektrolyten bedeckt und eine kohlenstoffhaltige Schicht und eine Metallschicht, die die kohlenstoffhaltige Schicht bedeckt, enthält, wobei die externe Beschichtung weiterhin eine dritte leitfähige Polymerschicht, die sich zwischen der kohlenstoffhaltigen Schicht und der Metallschicht befindet, enthält.
    • 24. Festelektrolytkondensator gemäß Punkt 23, wobei die erste leitfähige Polymerschicht, die zweite leitfähige Polymerschicht und die dritte leitfähige Polymerschicht Polythiophen oder ein Derivat davon enthalten.
    • 25. Festelektrolytkondensator gemäß Punkt 24, wobei es sich bei dem Polythiophen-Derivat um Poly-3,4-ethylendioxythiophen handelt.
    • 26. Festelektrolytkondensator gemäß Punkt 23, wobei die kohlenstoffhaltige Schicht Graphit enthält und die Metallschicht Silber enthält.
    • 27. Festelektrolytkondensator gemäß Punkt 23, wobei die externe Beschichtung eine zusätzliche kohlenstoffhaltige Schicht umfasst, die sich zwischen der dritten leitfähigen Polymerschicht und der Metallschicht befindet.
    • 28. Festelektrolytkondensator gemäß Punkt 23, wobei die dritte leitfähige Polymerschicht durch in-situ-Polymerisation eines monomeren Vorläufers und eines Oxidationsmittels gebildet wird.
    • 29. Festelektrolytkondensator gemäß Punkt 23, wobei die dritte leitfähige Polymerschicht aus einer Dispersion von leitfähigen Polymerteilchen gebildet wird.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 5457862 [0001, 0026]
    • US 5473503 [0001, 0026]
    • US 5729428 [0001, 0026]
    • US 5812367 [0001, 0026]
    • US 6987663 [0001, 0022]
    • US 6322912 [0011]
    • US 6391275 [0011]
    • US 6416730 [0011]
    • US 6527937 [0011]
    • US 6576099 [0011]
    • US 6592740 [0011]
    • US 6639787 [0011]
    • US 7220397 [0011]
    • US 6197252 [0014]
    • US 6191936 [0015]
    • US 5949639 [0015]
    • US 3345545 [0015]

Claims (15)

  1. Festelektrolytkondensator, umfassend: einen Anodenkörper; ein den Anodenkörper bedeckendes Dielektrikum; einen das Dielektrikum bedeckenden festen Elektrolyten, wobei der feste Elektrolyt eine erste leitfähige Polymerschicht enthält; und eine externe Beschichtung, die den festen Elektrolyten bedeckt und eine kohlenstoffhaltige Schicht und eine Metallschicht, die die kohlenstoffhaltige Schicht bedeckt, enthält, wobei die externe Beschichtung weiterhin eine zweite leitfähige Polymerschicht, die sich zwischen der kohlenstoffhaltigen Schicht und der Metallschicht befindet, enthält.
  2. Festelektrolytkondensator gemäß Anspruch 1, wobei die erste leitfähige Polymerschicht, die zweite leitfähige Polymerschicht oder beide ein Polythiophenderivat enthalten, das Repetiereinheiten der allgemeinen Formel (I) oder Formel (II) oder Repetiereinheiten der allgemeinen Formel (I) und (II) aufweist:
    Figure 00320001
    wobei A ein gegebenenfalls substituierter C1- bis C5-Alkylenrest ist; R ein linearer oder verzweigter, gegebenenfalls substituierter C1- bis C18-Alkylrest; gegebenenfalls substituierter C5- bis C12-Cycloalkylrest; gegebenenfalls substituierter C6- bis C14-Arylrest; gegebenenfalls substituierter C7- bis C18-Aralkylrest; gegebenenfalls substituierter C1- bis C4-Hydroxyalkylrest oder Hydroxyrest ist; und x eine ganze Zahl von 0 bis 8 ist.
  3. Festelektrolytkondensator gemäß Anspruch 2, wobei A ein gegebenenfalls substituierter C2- bis C3-Alkylenrest ist und x = 0 oder 1 ist.
  4. Festelektrolytkondensator gemäß Anspruch 2, wobei es sich bei dem Polythiophenderivat um Poly-3,4-ethylendioxythiophen handelt.
  5. Festelektrolytkondensator gemäß einem der vorstehenden Ansprüche, wobei der feste Elektrolyt weiterhin eine dritte leitfähige Polymerschicht enthält, wobei die erste leitfähige Polymerschicht das Dielektrikum bedeckt und die dritte leitfähige Polymerschicht die erste leitfähige Polymerschicht bedeckt.
  6. Festelektrolytkondensator gemäß Anspruch 5, wobei die dritte leitfähige Polymerschicht aus einer Dispersion von leitfähigen Polymerteilchen gebildet wird.
  7. Festelektrolytkondensator gemäß Anspruch 6, wobei die erste leitfähige Polymerschicht durch in-situ-Polymerisation eines monomeren Vorläufers und eines Oxidationsmittels gebildet wird.
  8. Festelektrolytkondensator gemäß einem der vorstehenden Ansprüche, wobei die kohlenstoffhaltige Schicht Graphit enthält und die Metallschicht Silber enthält.
  9. Festelektrolytkondensator gemäß einem der vorstehenden Ansprüche, wobei die externe Beschichtung eine zusätzliche kohlenstoffhaltige Schicht umfasst, die sich zwischen der zweiten leitfähigen Polymerschicht und der Metallschicht befindet.
  10. Festelektrolytkondensator gemäß wenigstens einem der Ansprüche 1 bis 9, wobei die zweite leitfähige Polymerschicht durch in-situ-Polymerisation eines monomeren Vorläufers und eines Oxidationsmittels gebildet wird.
  11. Festelektrolytkondensator gemäß wenigstens einem der Ansprüche 1 bis 9, wobei die zweite leitfähige Polymerschicht aus einer Dispersion von leitfähigen Polymerteilchen gebildet wird.
  12. Festelektrolytkondensator gemäß Anspruch 11, wobei die Teilchen einen mittleren Durchmesser von etwa 1 bis etwa 500 Nanometer und vorzugsweise von etwa 10 bis etwa 300 Nanometer haben.
  13. Festelektrolytkondensator gemäß Anspruch 11 oder 12, wobei die Dispersion ein polymeres Anion enthält.
  14. Festelektrolytkondensator gemäß einem der vorstehenden Ansprüche, wobei der Anodenkörper Tantal, Niob oder ein elektrisch leitfähiges Oxid davon umfasst.
  15. Festelektrolytkondensator, umfassend: einen Anodenkörper; ein den Anodenkörper bedeckendes Dielektrikum; einen das Dielektrikum bedeckenden festen Elektrolyten, wobei der feste Elektrolyt eine erste leitfähige Polymerschicht, die durch in-situ-Polymerisation gebildet wird und das Dielektrikum bedeckt, und eine zweite leitfähige Polymerschicht, die aus einer Dispersion von leitfähigen Polymerteilchen gebildet wird, enthält, wobei die zweite leitfähige Polymerschicht die erste leitfähige Polymerschicht bedeckt; eine externe Beschichtung, die den festen Elektrolyten bedeckt und eine kohlenstoffhaltige Schicht und eine Metallschicht, die die kohlenstoffhaltige Schicht bedeckt, enthält, wobei die externe Beschichtung weiterhin eine dritte leitfähige Polymerschicht, die sich zwischen der kohlenstoffhaltigen Schicht und der Metallschicht befindet, enthält.
DE102010048177A 2009-10-23 2010-10-13 Externe Beschichtung für einen Festelektrolytkondensator Withdrawn DE102010048177A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/604,633 US8125768B2 (en) 2009-10-23 2009-10-23 External coating for a solid electrolytic capacitor
US12/604,633 2009-10-23

Publications (1)

Publication Number Publication Date
DE102010048177A1 true DE102010048177A1 (de) 2011-04-28

Family

ID=43127970

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010048177A Withdrawn DE102010048177A1 (de) 2009-10-23 2010-10-13 Externe Beschichtung für einen Festelektrolytkondensator

Country Status (5)

Country Link
US (1) US8125768B2 (de)
JP (1) JP5852778B2 (de)
CN (1) CN102054588B (de)
DE (1) DE102010048177A1 (de)
GB (1) GB2474747B (de)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5853160B2 (ja) * 2010-02-25 2016-02-09 パナソニックIpマネジメント株式会社 固体電解コンデンサ
US8199460B2 (en) * 2010-09-27 2012-06-12 Avx Corporation Solid electrolytic capacitor with improved anode termination
DE102013101443A1 (de) * 2012-03-01 2013-09-05 Avx Corporation Ultrahigh voltage solid electrolytic capacitor
US8971019B2 (en) * 2012-03-16 2015-03-03 Avx Corporation Wet capacitor cathode containing an alkyl-substituted poly(3,4-ethylenedioxythiophene)
US9548163B2 (en) 2012-07-19 2017-01-17 Avx Corporation Solid electrolytic capacitor with improved performance at high voltages
DE102013213728A1 (de) 2012-07-19 2014-01-23 Avx Corporation Nichtionisches Tensid zur Verwendung in einem festen Elektrolyten eines Elektrolytkondensators
DE102013213720A1 (de) 2012-07-19 2014-01-23 Avx Corporation Temperaturstabiler Festelektrolytkondensator
CN102820135A (zh) * 2012-08-24 2012-12-12 中国振华(集团)新云电子元器件有限责任公司 一种降低铌电容器高温电容量变化率的工艺方法
WO2014087617A1 (ja) * 2012-12-07 2014-06-12 パナソニック株式会社 固体電解コンデンサの製造方法
CN103065798A (zh) * 2013-01-15 2013-04-24 中国振华(集团)新云电子元器件有限责任公司 一种片式氧化铌电容器石墨、银浆层制备方法
WO2014130500A1 (en) * 2013-02-19 2014-08-28 Kemet Electronics Corporation Low esr capacitor
GB2512480B (en) * 2013-03-13 2018-05-30 Avx Corp Solid electrolytic capacitor for use in extreme conditions
US9240285B2 (en) * 2013-04-29 2016-01-19 Avx Corporation Multi-notched anode for electrolytic capacitor
GB2517019B (en) * 2013-05-13 2018-08-29 Avx Corp Solid electrolytic capacitor containing conductive polymer particles
US9236192B2 (en) * 2013-08-15 2016-01-12 Avx Corporation Moisture resistant solid electrolytic capacitor assembly
US10381165B2 (en) 2016-05-20 2019-08-13 Avx Corporation Solid electrolytic capacitor for use at high temperatures
CN109643610B (zh) * 2016-08-31 2021-02-09 松下知识产权经营株式会社 电解电容器及其制造方法
US10475591B2 (en) 2016-11-15 2019-11-12 Avx Corporation Solid electrolytic capacitor for use in a humid atmosphere
US10643797B2 (en) 2016-11-15 2020-05-05 Avx Corporation Casing material for a solid electrolytic capacitor
US10504657B2 (en) 2016-11-15 2019-12-10 Avx Corporation Lead wire configuration for a solid electrolytic capacitor
DK3673531T3 (da) * 2017-08-24 2021-07-12 Fraunhofer Ges Forschung Solid-state-batteri baseret på en ionledende matrix af kamfer eller 2-adamantanon
US11004615B2 (en) 2017-12-05 2021-05-11 Avx Corporation Solid electrolytic capacitor for use at high temperatures
JP7216111B2 (ja) * 2018-04-13 2023-01-31 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション 順次蒸着された内側導電性ポリマー膜を含む固体電解キャパシタ
WO2019199484A1 (en) 2018-04-13 2019-10-17 Avx Corporation Solid electrolytic capacitor containing a vapor-deposited barrier film
WO2019199485A1 (en) 2018-04-13 2019-10-17 Avx Corporation Solid electrolytic capacitor containing an adhesive film
US20190392998A1 (en) * 2018-06-21 2019-12-26 Jan Petrzilek Solid Electrolytic Capacitor
WO2019246505A1 (en) 2018-06-21 2019-12-26 Avx Corporation Solid electrolytic capacitor with stable electrical properties at high temperatures
US11183339B2 (en) 2018-11-29 2021-11-23 Avx Corporation Solid electrolytic capacitor containing a sequential vapor-deposited dielectric film
CN118213199A (zh) * 2018-12-11 2024-06-18 京瓷Avx元器件公司 含有本征导电聚合物的固体电解电容器
DE112020002428T5 (de) 2019-05-17 2022-01-27 Avx Corporation Festelektrolytkondensator
WO2020236566A1 (en) 2019-05-17 2020-11-26 Avx Corporation Delamination-resistant solid electrolytic capacitor
CN110349762B (zh) * 2019-07-22 2021-06-11 丰宾电子(深圳)有限公司 一种固体电解质铝电解电容器的制造方法
DE112020004430T5 (de) 2019-09-18 2022-05-25 KYOCERA AVX Components Corporation Festelektrolytkondensator, der eine Sperrbeschichtung enthält
DE112020004416T5 (de) * 2019-09-18 2022-06-15 KYOCERA AVX Components Corporation Festelektrolytkondensator zur Verwendung bei hohen Spannungen
DE112020006024T5 (de) 2019-12-10 2022-10-06 KYOCERA AVX Components Corporation Tantalkondensator mit erhöhter Stabilität
DE112020006028T5 (de) 2019-12-10 2022-10-06 KYOCERA AVX Components Corporation Festelektrolytkondensator, der eine Vorbeschichtung und ein intrinsisch leitfähiges Polymer enthält
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier
US11837415B2 (en) 2021-01-15 2023-12-05 KYOCERA AVX Components Corpration Solid electrolytic capacitor
US12002631B2 (en) 2021-10-20 2024-06-04 KYOCERA AVX Components Corporation Electrodeposited dielectric for a solid electrolytic capacitor

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3345545A (en) 1964-11-27 1967-10-03 Johnson Matthey & Mallory Ltd Solid electrolytic capacitor having minimum anode impedance
US5457862A (en) 1993-11-10 1995-10-17 Nec Corporation Method of manufacturing solid electrolytic capacitor
US5473503A (en) 1993-07-27 1995-12-05 Nec Corporation Solid electrolytic capacitor and method for manufacturing the same
US5729428A (en) 1995-04-25 1998-03-17 Nec Corporation Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same
US5812367A (en) 1996-04-04 1998-09-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative
US5949639A (en) 1996-09-27 1999-09-07 Rohm Co., Ltd. Capacitor element for solid electrolytic capacitor, device and process for making the same
US6191936B1 (en) 1999-04-12 2001-02-20 Vishay Sprague, Inc. Capacitor having textured pellet and method for making same
US6197252B1 (en) 1997-01-13 2001-03-06 Avx Limited Binder removal
US6322912B1 (en) 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6391275B1 (en) 1998-09-16 2002-05-21 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6416730B1 (en) 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6576099B2 (en) 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
US6639787B2 (en) 2000-11-06 2003-10-28 Cabot Corporation Modified oxygen reduced valve metal oxides
US6987663B2 (en) 2003-10-17 2006-01-17 H.C. Starck Gmbh Electrolytic capacitors with a polymeric outer layer

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3843412A1 (de) 1988-04-22 1990-06-28 Bayer Ag Neue polythiophene, verfahren zu ihrer herstellung und ihre verwendung
DE3814730A1 (de) 1988-04-30 1989-11-09 Bayer Ag Feststoff-elektrolyte und diese enthaltende elektrolyt-kondensatoren
DE59010247D1 (de) 1990-02-08 1996-05-02 Bayer Ag Neue Polythiophen-Dispersionen, ihre Herstellung und ihre Verwendung
JPH0797368A (ja) * 1993-09-29 1995-04-11 Tokuyama Corp 保護水酸基含有複素環化合物の製造方法
JP2858075B2 (ja) * 1993-12-27 1999-02-17 富士通東和エレクトロン株式会社 固体電解コンデンサ
JP2792441B2 (ja) * 1994-08-22 1998-09-03 日本電気株式会社 固体電解コンデンサの製造方法
JP3157748B2 (ja) 1997-07-30 2001-04-16 富山日本電気株式会社 導電性高分子を用いた固体電解コンデンサ及びその製造方法
JP3202668B2 (ja) * 1997-10-21 2001-08-27 富山日本電気株式会社 固体電解コンデンサの製造方法
WO1999067797A1 (fr) 1998-06-25 1999-12-29 Nichicon Corporation Condensateur a electrolyte solide et procede de fabrication
JP3478987B2 (ja) * 1999-02-10 2003-12-15 松下電器産業株式会社 固体電解コンデンサの製造方法
JP2001167980A (ja) * 1999-12-03 2001-06-22 Matsushita Electric Ind Co Ltd 固体電解コンデンサの製造方法
CN1184653C (zh) * 1999-12-03 2005-01-12 松下电器产业株式会社 固体电解电容器的制作方法及固体电解电容器
JP3515938B2 (ja) * 2000-02-02 2004-04-05 松下電器産業株式会社 固体電解コンデンサおよびその製造方法
DE10016723A1 (de) 2000-04-04 2001-10-11 Bayer Ag Verfahren zur Herstellung von Dialkoxythiophenen und Alkylendioxythiophenen
JP2001338847A (ja) * 2000-05-30 2001-12-07 Nichicon Corp 固体電解コンデンサ
DE10029075A1 (de) 2000-06-13 2001-12-20 Bayer Ag Verfahren zur Herstellung von 3,4-Alkylendioxythiophen-2,5-dicarbonsäurederivaten
JP3586182B2 (ja) * 2000-10-06 2004-11-10 Necトーキン株式会社 固体電解コンデンサの製造方法
US6504705B2 (en) * 2000-10-12 2003-01-07 Matsushita Electric Industrial Co., Ltd. Electrolytic capacitor, circuit board containing electrolytic capacitor, and method for producing the same
EP1339772B1 (de) 2000-11-22 2011-01-12 H.C. Starck Clevios GmbH Dispergierbare polymerpulver
US6674635B1 (en) 2001-06-11 2004-01-06 Avx Corporation Protective coating for electrolytic capacitors
JP4050097B2 (ja) * 2001-10-30 2008-02-20 松下電器産業株式会社 固体電解コンデンサおよびその製造方法
DE10164260A1 (de) 2001-12-27 2003-07-17 Bayer Ag Verfahren zur Herstellung von undotiertem, neutralem Polyethylendioxythiophen, sowie entsprechende Polyethylendioxythiophene
US6864147B1 (en) 2002-06-11 2005-03-08 Avx Corporation Protective coating for electrolytic capacitors
DE10229218A1 (de) 2002-06-28 2004-01-22 H.C. Starck Gmbh Alkylendioxythiophen-Dimere und Trimere
DE10237577A1 (de) 2002-08-16 2004-02-26 H.C. Starck Gmbh Substituierte Poly(alkylendioxythiophene) als Feststoffelektrolyte in Elektrolytkondensatoren
DE10257539A1 (de) 2002-12-10 2004-07-01 H.C. Starck Gmbh Verfahren zur Herstellung von 2,2'-Di(3,4-ethylendioxythiophen)en
EP1614122A1 (de) 2003-04-02 2006-01-11 H.C. Starck GmbH & Co. KG Spezielle oxidationsmittel zur herstellung leitfähiger polymere
US6798644B1 (en) * 2003-07-10 2004-09-28 Kemet Electronics Corporation ESR of solid electrolytic capacitors using conductive polymer cathodes
DE10331673A1 (de) 2003-07-14 2005-02-10 H.C. Starck Gmbh Polythiophen mit Alkylenoxythiathiophen-Einheiten in Elektrolytkondensatoren
DE502004011120D1 (de) 2003-07-15 2010-06-17 Starck H C Gmbh Niobsuboxidpulver
DE10333156A1 (de) 2003-07-22 2005-02-24 H.C. Starck Gmbh Verfahren zur Herstellung von Niobsuboxid
JP4870327B2 (ja) * 2003-09-11 2012-02-08 ホリストン ポリテック株式会社 固体電解コンデンサ
DE10347702B4 (de) 2003-10-14 2007-03-29 H.C. Starck Gmbh Sinterkörper auf Basis Niobsuboxid
US7116548B2 (en) 2004-04-23 2006-10-03 Kemet Electronics Corporation Fluted anode with minimal density gradients and capacitor comprising same
DE102004022110A1 (de) 2004-05-05 2005-12-01 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
CN1737072B (zh) 2004-08-18 2011-06-08 播磨化成株式会社 导电粘合剂及使用该导电粘合剂制造物件的方法
DE102005016727A1 (de) 2005-04-11 2006-10-26 H.C. Starck Gmbh Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zu ihrer Herstellung
DE102005033839A1 (de) 2005-07-20 2007-01-25 H.C. Starck Gmbh Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zur ihrer Herstellung
DE102005043829A1 (de) 2005-09-13 2007-04-05 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit hoher Nennspannung
DE102005043828A1 (de) 2005-09-13 2007-03-22 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
KR101327242B1 (ko) 2005-11-17 2013-11-12 헤레우스 프레셔스 메탈스 게엠베하 운트 코. 카게 폴리(3,4-디알콕시티오펜)과 폴리음이온의 복합체의수분산체의 제조방법
US7468882B2 (en) 2006-04-28 2008-12-23 Avx Corporation Solid electrolytic capacitor assembly
US7563290B2 (en) 2006-07-06 2009-07-21 Kemet Electronics Corporation High voltage solid electrolytic capacitors using conductive polymer slurries
US7460358B2 (en) 2007-03-21 2008-12-02 Avx Corporation Solid electrolytic capacitor containing a protective adhesive layer
US7515396B2 (en) 2007-03-21 2009-04-07 Avx Corporation Solid electrolytic capacitor containing a conductive polymer
US7483259B2 (en) 2007-03-21 2009-01-27 Avx Corporation Solid electrolytic capacitor containing a barrier layer
JP2008235771A (ja) 2007-03-23 2008-10-02 Nec Tokin Corp 固体電解コンデンサの製造方法
DE102007041722A1 (de) 2007-09-04 2009-03-05 H.C. Starck Gmbh Verfahren zur Herstellung von leitfähigen Polymeren
DE102007046904A1 (de) 2007-09-28 2009-04-09 H.C. Starck Gmbh Partikel mit Kern-Schale-Struktur für leitfähige Schichten
DE102007048212A1 (de) 2007-10-08 2009-04-09 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Zwischenschicht
JP4873572B2 (ja) * 2007-12-14 2012-02-08 Necトーキン株式会社 固体電解コンデンサとその製造方法
JP2010056444A (ja) 2008-08-29 2010-03-11 Sanyo Electric Co Ltd ニオブ固体電解コンデンサ

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3345545A (en) 1964-11-27 1967-10-03 Johnson Matthey & Mallory Ltd Solid electrolytic capacitor having minimum anode impedance
US5473503A (en) 1993-07-27 1995-12-05 Nec Corporation Solid electrolytic capacitor and method for manufacturing the same
US5457862A (en) 1993-11-10 1995-10-17 Nec Corporation Method of manufacturing solid electrolytic capacitor
US5729428A (en) 1995-04-25 1998-03-17 Nec Corporation Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same
US5812367A (en) 1996-04-04 1998-09-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative
US5949639A (en) 1996-09-27 1999-09-07 Rohm Co., Ltd. Capacitor element for solid electrolytic capacitor, device and process for making the same
US6197252B1 (en) 1997-01-13 2001-03-06 Avx Limited Binder removal
US6322912B1 (en) 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6391275B1 (en) 1998-09-16 2002-05-21 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6416730B1 (en) 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6527937B2 (en) 1998-09-16 2003-03-04 Cabot Corporation Method of making a capacitor anode of a pellet of niobium oxide
US6592740B2 (en) 1998-09-16 2003-07-15 Cabot Corporation Methods to make capacitors containing a partially reduced niobium metal oxide
US6191936B1 (en) 1999-04-12 2001-02-20 Vishay Sprague, Inc. Capacitor having textured pellet and method for making same
US6576099B2 (en) 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
US6639787B2 (en) 2000-11-06 2003-10-28 Cabot Corporation Modified oxygen reduced valve metal oxides
US7220397B2 (en) 2000-11-06 2007-05-22 Cabot Corporation Modified oxygen reduced valve metal oxides
US6987663B2 (en) 2003-10-17 2006-01-17 H.C. Starck Gmbh Electrolytic capacitors with a polymeric outer layer

Also Published As

Publication number Publication date
CN102054588B (zh) 2015-07-15
US20110096466A1 (en) 2011-04-28
JP5852778B2 (ja) 2016-02-03
US8125768B2 (en) 2012-02-28
GB2474747A (en) 2011-04-27
CN102054588A (zh) 2011-05-11
GB2474747B (en) 2013-11-20
JP2011091413A (ja) 2011-05-06
GB201016153D0 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
DE102010048177A1 (de) Externe Beschichtung für einen Festelektrolytkondensator
EP1927119B1 (de) Verfahren zur herstellung von elektrolytkondensatoren mit hoher nennspannung
EP2297753B1 (de) Verfahren zur herstellung von festelektrolytkondensatoren
EP1713103B1 (de) Elektrolytkondensatoren mit polymerer Aussenschicht und Verfahren zu ihrer Herstellung
EP1927120B1 (de) Verfahren zur herstellung von elektrolytkondensatoren
DE102013214126A1 (de) Festelektrolytkondensator mit verbesserten Eigenschaften bei hohen Spannungen
DE102011117192A1 (de) Festelektrolytkondensator zur Verwendung in Hochspannungs- und Hochtemperaturanwendungen
DE102016208800A1 (de) Festelektrolytkondensator mit ultrahoher Kapazität
DE102011087197A1 (de) Mehrschichtige leitfähige Polymerbeschichtungen zur Verwendung in Hochspannungs-Festelektrolytkondensatoren
DE102014207581A1 (de) Mehrfach gekerbte Anode für Elektrolytkondensator
DE102011108509A1 (de) Mechanisch robuste Festelektrolytkondensator-Baugruppe
DE102014225816A1 (de) Stabiler Festelektrolytkondensator, der einen Nanokomposit enthält
DE102013213723A1 (de) Festelektrolytkondensator mit erhöhter Feucht-zu-Trocken-Kapazität
DE102014208944A1 (de) Festelektrolytkondensator, der leitfähige Polymerteilchen enthält
DE102013101443A1 (de) Ultrahigh voltage solid electrolytic capacitor
DE102011086123A1 (de) Festelektrolytkondensatorelement
DE102013213720A1 (de) Temperaturstabiler Festelektrolytkondensator
DE102013213728A1 (de) Nichtionisches Tensid zur Verwendung in einem festen Elektrolyten eines Elektrolytkondensators
DE102011088366A1 (de) Leitfähige Beschichtung zur Verwendung in Elektrolytkondensatoren
DE102014204323A1 (de) Festelektrolytkondensator zur Verwendung unter extremen Bedingungen
DE102012203422A1 (de) Festelektrolytkondensator, der eine aus einer kolloidalen Dispersion gebildete Beschichtung enthält
DE102012223637A1 (de) Flüssigkeitskondensator, der eine verbesserte Anode enthält
DE102011088368A1 (de) Festelektrolytkondensator, der ein Poly(3,4-ethylendioxythiophen)-quartäres-Oniumsalz enthält
DE102012018976A1 (de) Verwendung von Mischungen aus selbstdotierten und fremddotierten leitfähigen Polymeren in einem Kondensator
DE102011109752A1 (de) Festelektrolytkondensator-Baugruppe

Legal Events

Date Code Title Description
R120 Application withdrawn or ip right abandoned
R120 Application withdrawn or ip right abandoned

Effective date: 20141206