DE102016203103A1 - Ultrahochspannungskondensatorbaugruppe - Google Patents

Ultrahochspannungskondensatorbaugruppe Download PDF

Info

Publication number
DE102016203103A1
DE102016203103A1 DE102016203103.1A DE102016203103A DE102016203103A1 DE 102016203103 A1 DE102016203103 A1 DE 102016203103A1 DE 102016203103 A DE102016203103 A DE 102016203103A DE 102016203103 A1 DE102016203103 A1 DE 102016203103A1
Authority
DE
Germany
Prior art keywords
capacitor
anode
anode terminal
capacitor assembly
capacitor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102016203103.1A
Other languages
English (en)
Inventor
Martin Biler
Jiri Navratil
Jan Petrzilek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Avx Components Corp
Original Assignee
AVX Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVX Corp filed Critical AVX Corp
Publication of DE102016203103A1 publication Critical patent/DE102016203103A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • H01G9/153Skin fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ

Abstract

Eine Kondensatorbaugruppe zur Verwendung in Umgebungen mit ultrahoher Spannung wird bereitgestellt. Um dazu beizutragen, bei solchen hohen Spannungen eine gute Leistung zu erreichen, werden in der vorliegenden Erfindung eine Vielzahl von Aspekten der Baugruppe einschließlich der Anzahl von Kondensatorelementen, der Art und Weise, wie die Kondensatorelemente angeordnet und in die Baugruppe eingearbeitet sind, und der Art und Weise, wie die Kondensatorelemente gebildet werden, gesteuert. Zum Beispiel enthält die Kondensatorbaugruppe ein Anoden-Endteil, mit dem der Anodenanschluss eines ersten Kondensatorelements elektrisch verbunden ist, und ein Kathoden-Endteil, mit dem die Kathode eines zweiten Kondensatorelements elektrisch verbunden ist. Um dazu beizutragen, die Durchschlagsspannungseigenschaften der Baugruppe zu verbessern, sind die Kondensatorelemente elektrisch in Reihe geschaltet, so dass der Anodenanschluss des zweiten Kondensatorelements über ein leitendes Element elektrisch mit der Kathode des ersten Kondensatorelements verbunden ist.

Description

  • Hintergrund der Erfindung
  • Festelektrolytkondensatoren (z. B. Tantalkondensatoren) haben hauptsächlich zur Miniaturisierung von elektronischen Schaltungen beigetragen und ermöglichten die Anwendung solcher Schaltungen in extremen Umgebungen. Herkömmliche Festelektrolytkondensatoren können dadurch gebildet werden, dass man ein Metallpulver (z. B. Tantal) um einen Metallanschlussdraht herum presst, das gepresste Teil sintert, die gesinterte Anode anodisiert und danach einen festen Elektrolyten aufträgt. Aufgrund ihres vorteilhaften niedrigen Äquivalentserienwiderstands (”ESR”) und des ”nichtbrennenden/nichtentzündlichen” Fehlermechanismus werden intrinsisch leitfähige Polymere häufig als fester Elektrolyt eingesetzt. Solche Elektrolyte können durch in-situ-Polymerisation des Monomers in Gegenwart eines Katalysators und eines Dotierungsmittels gebildet werden. Alternativ dazu können auch Aufschlämmungen eines vorgefertigten leitfähigen Polymers eingesetzt werden. Unabhängig davon, wie sie gebildet werden, besteht ein Problem bei leitfähigen Polymeren als Elektrolyten darin, dass sie inhärent schwach sind, was zuweilen dazu führen kann, dass sie während der Bildung des Kondensators oder während dessen Betrieb vom Dielektrikum abblättern. Weiterhin kann die Qualität der dielektrischen Schicht bei Anwendungen mit sehr hoher Spannung ein Versagen des Teils bewirken. Zum Beispiel geben Hochspannungsstromverteilungssysteme eine hohe Spannung an den Kondensator ab, die zu einem Einschaltstrom oder einer ”Stromspitze” führen kann, insbesondere während eines schnellen Einschaltvorgangs oder während einer Arbeitsstromspitze. Der maximale Spitzenstrom, den der Kondensator ohne Zerstörung aushalten kann, hängt vermutlich teilweise von der Qualität des Dielektrikums ab. Da die dünneren Bereiche einen geringeren Widerstand haben als die benachbarten dickeren Bereiche, ist die Verlustleistung in den dünneren Bereichen im Allgemeinen größer. Wenn eine Stromspitze angelegt wird, können sich diese dünneren Bereiche daher zu schwachen ”Hot Spots” entwickeln, die schließlich zu einem Abbau und einer Zerstörung des Dielektrikums führen.
  • Daher besteht zurzeit ein Bedürfnis nach einem Festelektrolytkondensator, der in Umgebungen mit sehr hoher Spannung eine verbesserte Leistungsfähigkeit aufweist.
  • Kurzbeschreibung der Erfindung
  • Gemäß einer Ausführungsform der vorliegenden Erfindung wird eine Kondensatorbaugruppe offenbart, die ein erstes und ein zweites Kondensatorelement enthält, welche jeweils einen gesinterten porösen Anodenkörper, eine dielektrische Schicht, die den Anodenkörper bedeckt, und einen festen Elektrolyten, der die ein leitfähiges Polymer umfassende dielektrische Schicht bedeckt, enthalten. Von dem ersten und dem zweiten Kondensatorelement ausgehend erstreckt sich ein erster bzw. ein zweiter Anodenanschluss. Ein Verbindungselement verbindet den festen Elektrolyten des ersten Kondensatorelements elektrisch mit dem Anodenanschluss des zweiten Kondensatorelements. Die Baugruppe umfasst auch ein Gehäuse, das einen inneren Hohlraum definiert, innerhalb dessen sich das erste und das zweite Kondensatorelement befinden und wo sie hermetisch abgedichtet sind, wobei der innere Hohlraum eine Gasatmosphäre, die ein Inertgas enthält, aufweist. Weiterhin befindet sich ein Anoden-Endteil in elektrischer Verbindung mit dem ersten Anodenanschluss des ersten Kondensatorelements, und ein Kathoden-Endteil befindet sich in elektrischer Verbindung mit dem festen Elektrolyten des zweiten Kondensatorelements.
  • Weitere Merkmale und Aspekte der vorliegenden Erfindung sind im Folgenden ausführlicher dargelegt.
  • Kurzbeschreibung der Zeichnungen
  • Im Rest der Beschreibung, wo auf die beigefügten Figuren Bezug genommen wird, ist insbesondere eine an den Fachmann gerichtete vollständige und nacharbeitbare Offenbarung der vorliegenden Erfindung einschließlich ihrer besten Realisierung gezeigt; dabei sind:
  • 1 eine Draufsicht auf eine Ausführungsform der Kondensatorbaugruppe der vorliegenden Erfindung; und
  • 2 eine Draufsicht auf eine andere Ausführungsform der Kondensatorbaugruppe der vorliegenden Erfindung.
  • Bei mehrfacher Verwendung von Bezugszeichen in der vorliegenden Beschreibung und den Zeichnungen sollen diese dieselben oder analoge Merkmale oder Elemente der vorliegenden Erfindung repräsentieren.
  • Ausführliche Beschreibung von repräsentativen Ausführungsformen
  • Der Fachmann sollte sich darüber im Klaren sein, dass die vorliegende Diskussion nur eine Beschreibung von beispielhaften Ausführungsformen ist und die breiteren Aspekte der vorliegenden Erfindung nicht einschränken soll, wobei diese breiteren Aspekte in der beispielhaften Konstruktion verkörpert sind.
  • Allgemein gesagt betrifft die vorliegende Erfindung eine Kondensatorbaugruppe zur Verwendung in Umgebungen mit ultrahoher Spannung, wie bei Nennspannungen von etwa 600 Volt oder mehr. Um dazu beizutragen, bei solchen hohen Spannungen eine gute Leistung zu erreichen, werden in der vorliegenden Erfindung eine Vielzahl von Aspekten der Baugruppe einschließlich der Anzahl von Kondensatorelementen, der Art und Weise, wie die Kondensatorelemente angeordnet und in die Baugruppe eingearbeitet sind, und der Art und Weise, wie die Kondensatorelemente gebildet werden, gesteuert. Zum Beispiel enthält die Kondensatorbaugruppe ein Anoden-Endteil, mit dem der Anodenanschluss eines ersten Kondensatorelements elektrisch verbunden ist, und ein Kathoden-Endteil, mit dem die Kathode (z. B. fester Elektrolyt) eines zweiten Kondensatorelements elektrisch verbunden ist. Um dazu beizutragen, die Durchschlagsspannungseigenschaften der Baugruppe zu verbessern, sind die Kondensatorelemente elektrisch in Reihe geschaltet, so dass der Anodenanschluss des zweiten Kondensatorelements über ein leitendes Element, das aus einer einzigen Komponente oder mehreren Komponenten gebildet sein kann, elektrisch mit der Kathode (z. B. fester Elektrolyt) des ersten Kondensatorelements verbunden ist. Außer dass sie in einer bestimmten Weise elektrisch verbunden sind, sind die Kondensatorelemente auch innerhalb eines Gehäuses in Gegenwart einer Gasatmosphäre, die ein Inertgas enthält, eingeschlossen und hermetisch abgedichtet, wodurch die Menge an Sauerstoff und Feuchtigkeit, die dem festen Elektrolyten des Kondensatorelements zugeführt wird, begrenzt wird.
  • Es werden jetzt verschiedene Ausführungsformen der Erfindung ausführlicher beschrieben.
  • I. Kondensatorelemente
  • A. Anode
  • Die Anode der Kondensatorelemente ist im Allgemeinen aus einer Ventilmetallzusammensetzung gebildet. Die spezifische Ladung der Zusammensetzung kann variieren, wie von etwa 2000 μF·V/g bis etwa 150000 μF·V/g, in einigen Ausführungsformen von etwa 3000 μF·V/g bis etwa 70000 μF·V/g oder mehr und in einigen Ausführungsformen von etwa 4000 μF·V/g bis etwa 50000 μF·V/g. Wie in der Technik bekannt ist, kann die spezifische Ladung dadurch bestimmt werden, dass man die Kapazität mit der eingesetzten Anodisierungsspannung multipliziert und dann dieses Produkt durch das Gewicht des anodisierten Elektrodenkörpers dividiert.
  • Die Ventilmetallzusammensetzung enthält im Allgemeinen ein Ventilmetall (d. h. ein Metall, das zur Oxidation befähigt ist) oder eine auf einem Ventilmetall basierende Verbindung, wie Tantal, Niob, Aluminium, Hafnium, Titan, Legierungen davon, Oxide davon, Nitride davon usw. Zum Beispiel kann die Ventilmetallzusammensetzung ein elektrisch leitfähiges Oxid von Niob enthalten, wie Nioboxid mit einem Atomverhältnis von Niob zu Sauerstoff von 1:1,0 ± 1,0, in einigen Ausführungsformen 1:1,0 ± 0,3, in einigen Ausführungsformen 1:1,0 ± 0,1 und in einigen Ausführungsformen 1:1,0 ± 0,05. Zum Beispiel kann es sich bei dem Nioboxid um NbO0,7, NbO1,0, NbO1,1 und NbO2 handeln. Beispiele für solche Ventilmetalloxide sind in den US-Patenten Nr. 6,322,912 (Fife), 6,391,275 (Fife et al.), 6,416,730 (Fife et al.), 6,527,937 (Fife), 6,576,099 (Kimmel et al.), 6,592,740 (Fife et al.) und 6,639,787 (Kimmel et al.) und 7,220,397 (Kimmel et al.) sowie den US-Patentanmeldungen Veröffentlichungsnummer 2005/0019581 (Schnitter), 2005/0103638 (Schnitter et al.), 2005/0013765 (Thomas et al.) beschrieben.
  • Zur Bildung des Anodenkörpers wird im Allgemeinen ein Pulver der Ventilmetallzusammensetzung eingesetzt. Das Pulver kann Teilchen mit einer Vielzahl von Formen enthalten, wie sphärolithisch, winklig, flockenförmig usw. sowie Gemische davon. In besonderen Ausführungsformen können die Teilchen insofern eine flockenartige Morphologie haben, als sie eine relativ flache oder plättchenartige Form aufweisen. Solche Teilchen können für einen kurzen Übertragungsweg zwischen der äußeren Oberfläche und dem Innern der Anode sorgen und auch für eine hochgradig kontinuierliche und dichte Draht-Anoden-Verbindung mit hoher Leitfähigkeit sorgen. Unter Anderem kann dies dazu beitragen, die Durchschlagspannung (Spannung, bei der der Kondensator versagt) zu erhöhen und den äquivalenten Serienwiderstand (”ESR”) zu senken. Die Teilchen können auch die spezifische Ladung der Anode erhöhen, wenn sie bei höheren Spannungen anodisiert werden, wodurch die Energiedichte erhöht wird. Wenn Flockenteilchen eingesetzt werden, sind sie im Wesentlichen flach. Der Grad der Flachheit ist im Allgemeinen durch das ”Aspektverhältnis” definiert, d. h. den mittleren Durchmesser oder die mittlere Breite der Teilchen, dividiert durch die mittlere Dicke (”D/T”). Zum Beispiel kann das Aspektverhältnis der Teilchen etwa 2 bis etwa 100, in einigen Ausführungsformen etwa 3 bis etwa 50, in einigen Ausführungsformen etwa 4 bis etwa 30 betragen. Die Teilchen können auch eine spezifische Oberfläche von etwa 0,5 bis etwa 10,0 m2/g, in einigen Ausführungsformen etwa 0,7 bis etwa 5,0 m2/g und in einigen Ausführungsformen etwa 1,0 bis etwa 4,0 m2/g aufweisen. Der Ausdruck ”spezifische Oberfläche” bezieht sich allgemein auf die Oberfläche, die durch das Verfahren der physikalischen Gasadsorption (B.E.T.) von Brunauer, Emmet und Teller, Journal of American Chemical Society, Band 60, 1938, S. 309, mit Stickstoff als Adsorptionsgas bestimmt wurde. Der Test kann mit einem MONOSORB® Specific Surface Area Analyzer durchgeführt werden, der von der QUANTACHROME Corporation, Syosset, NY, erhältlich ist und die Menge des adsorbierbaren Stickstoffgases, das auf einer festen Oberfläche adsorbiert wird, misst, indem er auf die Änderung der Wärmeleitfähigkeit eines strömenden Gemischs aus Adsorbat und inertem Trägergas (z. B. Helium) reagiert.
  • Die Schüttdichte (auch als Scott-Dichte bekannt) beträgt typischerweise etwa 0,1 bis etwa 2 Gramm pro Kubikzentimeter (g/cm3), in einigen Ausführungsformen etwa 0,2 g/cm3 bis etwa 1,5 g/cm3 und in einigen Ausführungsformen etwa 0,4 g/cm3 bis etwa 1 g/cm3. Die ”Schüttdichte” kann mit Hilfe eines Rieselmesstrichters und eines Dichtebechers bestimmt werden. Insbesondere kann die Pulverprobe durch den Trichter in den Becher gegossen werden, bis die Probe den Becher vollständig füllt und über den Rand des Bechers rieselt, und danach kann die Probe mit einem Spatel abgeplattet werden, ohne zu rütteln, so dass sie mit der Oberseite des Bechers gerade abschließt. Die abgeplattete Probe wird auf eine Waage übergeführt und auf 0,1 Gramm genau gewogen, um den Dichtewert zu bestimmen. Eine solche Apparatur ist von der Alcan Aluminum Corp. in Elizabeth, New Jersey, kommerziell erhältlich. Die Teilchen können auch eine mittlere Größe (z. B. Breite) von etwa 0,1 bis etwa 100 Mikrometer haben, in einigen Ausführungsformen etwa 0,5 bis etwa 70 Mikrometer und in einigen Ausführungsformen etwa 1 bis etwa 50 Mikrometer.
  • Es können auch bestimmte zusätzliche Komponenten in das Pulver mit aufgenommen werden. Zum Beispiel kann das Pulver gegebenenfalls mit einem Bindemittel und/oder Gleitmittel gemischt werden, um zu gewährleisten, dass die Teilchen ausreichend aneinander haften, wenn sie unter Bildung des Anodenkörpers verpresst werden. Das resultierende Pulver kann dann mit Hilfe einer beliebigen herkömmlichen Pulverpressvorrichtung unter Bildung eines Presslings kompaktiert werden. Das Pulver kann um einen Anodenanschluss (z. B. Tantaldraht) herum kompaktiert werden. Man sollte sich weiterhin bewusst sein, dass der Anodenanschluss alternativ dazu auch nach dem Pressen und/oder Sintern des Anodenkörpers an dem Anodenkörper befestigt (z. B. daran geschweißt) werden kann.
  • Nach dem Kompaktieren kann der resultierende Anodenkörper dann in jede gewünschte Form geschnitten werden, wie quadratisch, rechteckig, kreisförmig, oval, dreieckig, sechseckig, achteckig, siebeneckig, fünfeckig usw. Der Anodenkörper kann auch eine ”geriffelte” Form haben, indem sie eine oder mehrere Furchen, Rillen, Vertiefungen oder Einkerbungen enthält, um das Verhältnis von Oberfläche zu Volumen zu erhöhen und dadurch den ESR zu minimieren und den Frequenzgang der Kapazität auszudehnen. Der Anodenkörper kann dann einem Schritt des Erhitzens unterzogen werden, bei dem der größte Teil, wenn nicht alles, eines Bindemittels/Gleitmittels, falls vorhanden, entfernt wird. Zum Beispiel wird der Anodenkörper typischerweise in einem Ofen erhitzt, der bei einer Temperatur von etwa 150°C bis etwa 500°C arbeitet. Alternativ dazu kann das Bindemittel/Gleitmittel auch dadurch entfernt werden, dass man den Pressling mit einer wässrigen Lösung in Kontakt bringt, wie es im US-Patent Nr. 6,197,252 (Bishop et al.) beschrieben ist. Danach kann der poröse Körper unter Bildung einer integralen Masse gesintert werden. Die Temperatur, Atmosphäre und Zeit des Sinterns können von einer Vielzahl von Faktoren abhängen, wie der Art der Anode, der Größe der Anode usw. Typischerweise erfolgt das Sintern bei einer Temperatur von etwa 800°C bis etwa 1900°C, in einigen Ausführungsformen etwa 1000°C bis etwa 1500°C und in einigen Ausführungsformen etwa 1100°C bis etwa 1400°C während einer Zeit von etwa 5 Minuten bis etwa 100 Minuten und in einigen Ausführungsformen etwa 30 Minuten bis etwa 60 Minuten. Falls gewünscht, kann das Sintern in einer Atmosphäre erfolgen, die die Übertragung von Sauerstoffatomen zur Anode einschränkt. Zum Beispiel kann das Sintern in einer reduzierenden Atmosphäre, wie in einem Vakuum, Inertgas, Wasserstoff usw., erfolgen. Die reduzierende Atmosphäre kann einen Druck von etwa 10 Torr bis etwa 2000 Torr, in einigen Ausführungsformen etwa 100 Torr bis etwa 1000 Torr und in einigen Ausführungsformen etwa 100 Torr bis etwa 930 Torr aufweisen. Gemische von Wasserstoff und anderen Gasen (z. B. Argon oder Stickstoff) können ebenfalls eingesetzt werden.
  • Die resultierende Anode kann einen relativ niedrigen Kohlenstoff- und Sauerstoffgehalt aufweisen. Zum Beispiel kann es sein, dass die Anode nicht mehr als etwa 50 ppm Kohlenstoff und in einigen Ausführungsformen nicht mehr als etwa 10 ppm Kohlenstoff aufweist. Ebenso kann es sein, dass die Anode nicht mehr als etwa 3500 ppm Sauerstoff, in einigen Ausführungsformen nicht mehr als etwa 3000 ppm Sauerstoff und in einigen Ausführungsformen etwa 500 bis etwa 2500 ppm Sauerstoff aufweist. Der Sauerstoffgehalt kann mit einem LECO Oxygen Analyzer gemessen werden und umfasst Sauerstoff in natürlichem Oxid auf der Tantaloberfläche sowie Volumensauerstoff innerhalb der Tantalteilchen. Der Volumensauerstoffgehalt wird durch den Kristallgitterabstand des Tantals kontrolliert, der mit zunehmendem Sauerstoffgehalt im Tantal linear zunimmt, bis die Löslichkeitsgrenze erreicht ist. Dieses Verfahren wurde in "Critical Oxygen Content in Porous Anodes of Solid Tantalum Capacitors", Pozdeev-Freeman et al., Journal of Materials Science: Materials in Electronics 9 (1998), 309–311, beschrieben, wobei Röntgenbeugungsanalyse (XRDA) eingesetzt wurde, um den Kristallgitterabstand des Tantals zu messen. Der Sauerstoff in gesinterten Tantalanoden kann auf dünnes natürliches Oberflächenoxid beschränkt sein, während das Volumen des Tantals praktisch frei von Sauerstoff ist.
  • Wie oben erwähnt, kann auch ein Anodenanschluss, der sich in Längsrichtung erstreckt, an dem Anodenkörper befestigt werden. Der Anodenanschluss kann in Form eines Drahtes, Bleches usw. vorliegen und kann aus einem Ventilmetallmaterial, wie Tantal, Niob, Nioboxid usw., bestehen. Die Befestigung des Anschlusses kann mit Hilfe von bekannten Techniken erfolgen, wie etwa durch Schweißen des Anschlusses an den Körper oder Einbetten innerhalb des Anodenkörpers während der Bildung (z. B. vor der Kompaktierung und/oder dem Sintern).
  • B. Dielektrikum
  • Ein Dielektrikum bedeckt oder beschichtet ebenfalls den Anodenkörper. Das Dielektrikum kann dadurch gebildet werden, dass man die gesinterte Anode anodisch oxidiert (”anodisiert”), so dass auf und/oder innerhalb des Anodenkörpers eine dielektrische Schicht entsteht. Zum Beispiel kann ein Anodenkörper aus Tantal (Ta) zu Tantalpentoxid (Ta2O5) anodisiert werden. Typischerweise wird die Anodisierung durchgeführt, indem man zunächst eine Lösung auf den Anodenkörper aufträgt, etwa durch Eintauchen des Anodenkörpers in den Elektrolyten. Im allgemeinen wird ein Lösungsmittel eingesetzt, wie Wasser (z. B. entionisiertes Wasser). Um die Ionenleitfähigkeit zu verstärken, kann eine Verbindung eingesetzt werden, die in dem Lösungsmittel unter Bildung von Ionen dissoziieren kann. Beispiele für solche Verbindungen sind zum Beispiel Säuren, wie sie im Folgenden in Bezug auf den Elektrolyten beschrieben sind. Zum Beispiel kann eine Säure (z. B. Phosphorsäure) etwa 0,01 Gew.-% bis etwa 5 Gew.-%, in einigen Ausführungsformen etwa 0,05 Gew.-% bis etwa 0,8 Gew.-% und in einigen Ausführungsformen etwa 0,1 Gew.-% bis etwa 0,5 Gew.-% der Anodisierungslösung ausmachen. Falls gewünscht, können auch Gemische von Säuren eingesetzt werden.
  • Ein Strom wird durch die Anodisierungslösung geleitet, um die dielektrische Schicht zu bilden. Der Wert der Bildungsspannung entspricht der Dicke der dielektrischen Schicht. Zum Beispiel kann die Stromquelle zunächst im galvanostatischen Modus betrieben werden, bis die erforderliche Spannung erreicht ist. Danach kann die Stromquelle auf einen potentiostatischen Modus umgeschaltet werden, um zu gewährleisten, dass die gewünschte Dicke des Dielektrikums über der gesamten Oberfläche des Anodenkörpers gebildet wird. Selbstverständlich können auch andere bekannte Verfahren eingesetzt werden, wie potentiostatische Impuls- oder Schrittverfahren. Die Spannung, bei der die anodische Oxidation erfolgt, liegt typischerweise im Bereich von etwa 4 bis etwa 250 V und in einigen Ausführungsformen etwa 9 bis etwa 200 V und in einigen Ausführungsformen etwa 20 bis etwa 150 V. Während der Oxidation kann die Anodisierungslösung auf einer erhöhten Temperatur gehalten werden, wie etwa 30°C oder mehr, in einigen Ausführungsformen etwa 40°C bis etwa 200°C und in einigen Ausführungsformen etwa 50°C bis etwa 100°C. Die anodische Oxidation kann auch bei Umgebungstemperatur oder darunter durchgeführt werden. Die resultierende dielektrische Schicht kann auf einer Oberfläche des Anodenkörpers und innerhalb seiner Poren gebildet werden.
  • C. Fester Elektrolyt
  • Wie bereits erwähnt, bedeckt ein fester Elektrolyt das Dielektrikum und fungiert im Allgemeinen als Kathode für den Kondensator. Der feste Elektrolyt enthält ein leitfähiges Polymer, das typischerweise π-konjugiert ist und nach Oxidation oder Reduktion eine elektrische Leitfähigkeit aufweist, wie eine elektrische Leitfähigkeit von wenigstens etwa 1 μS/cm. Beispiele für solche π-konjugierten leitfähigen Polymere sind zum Beispiel Polyheterocyclen (z. B. Polypyrrole, Polythiophene, Polyaniline usw.), Polyacetylene, Poly-p-phenylene, Polyphenolate usw. In einer Ausführungsform ist das Polymer zum Beispiel ein substituiertes Polythiophen mit der folgenden allgemeinen Struktur:
    Figure DE102016203103A1_0002
    wobei
    T = O oder S ist;
    D ein gegebenenfalls substituierter C1- bis C5-Alkylenrest (z. B. Methylen, Ethylen, n-Propylen, n-Butylen, n-Pentylen usw.) ist;
    R7 Folgendes ist: ein linearer oder verzweigter, gegebenenfalls substituierter C1 bis C18-Alkylrest (z. B. Methyl, Ethyl, n-Propyl oder Isopropyl, n-, iso-, sek- oder tert-Butyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1-Ethylpropyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 2,2-Dimethylpropyl, n-Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Hexadecyl, n-Octadecyl usw.); ein gegebenenfalls substituierter C5- bis C12-Cycloalkylrest (z. B. Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecyl usw.); ein gegebenenfalls substituierter C6- bis C14-Arylrest (z. B. Phenyl, Naphthyl usw.); ein gegebenenfalls substituierter C7- bis C18-Aralkylrest (z. B. Benzyl, o-, m-, p-Tolyl, 2,3-, 2,4-, 2,5-, 2,6, 3,4-, 3,5-Xylyl, Mesityl usw.); ein gegebenenfalls substituierter C1- bis C4-Hydroxyalkylrest oder ein Hydroxyrest; und
    q eine ganze Zahl von 0 bis 8, in einigen Ausführungsformen 0 bis 2 und in einer Ausführungsform 0 ist; und
    n = 2 bis 5000, in einigen Ausführungsformen 4 bis 2000 und in einigen Ausführungsformen 5 bis 1000 ist. Beispiele für Substituenten für die Reste ”D” oder ”R7” sind zum Beispiel Alkyl, Cycloalkyl, Aryl, Aralkyl, Alkoxy, Halogen, Ether, Thioether, Disulfid, Sulfoxid, Sulfon, Sulfonat, Amino, Aldehyd, Keto, Carbonsäureester, Carbonsäure, Carbonat, Carboxylat, Cyano, Alkylsilan- und Alkoxysilangruppen, Carboxylamidgruppen usw.
  • Besonders gut geeignete Thiophenpolymere sind solche, bei denen ”D” ein gegebenenfalls substituierter C2- bis C3-Alkylenrest ist. Zum Beispiel kann das Polymer gegebenenfalls substituiertes Poly(3,4-ethylendioxythiophen) sein, das die folgende allgemeine Struktur hat:
    Figure DE102016203103A1_0003
  • Verfahren zur Bildung von leitfähigen Polymeren wie den oben beschriebenen sind in der Technik wohlbekannt. Zum Beispiel beschreibt das US-Patent Nr. 6,987,663 (Merker et al.), verschiedene Techniken zur Bildung von substituierten Polythiophenen aus einem monomeren Vorläufer. Der monomere Vorläufer kann zum Beispiel die folgende Struktur haben:
    Figure DE102016203103A1_0004
    wobei
    T, D, R7 und q wie oben definiert sind. Besonders gut geeignete Thiophenmonomere sind solche, bei denen ”D” ein gegebenenfalls substituierter C2- bis C3-Alkylenrest ist. Zum Beispiel können gegebenenfalls substituierte 3,4-Alkylendioxythiophene eingesetzt werden, die die folgende allgemeine Struktur haben:
    Figure DE102016203103A1_0005
    wobei R7 und q wie oben definiert sind. In einer besonderen Ausführungsform ist ”q” = 0. Ein kommerziell geeignetes Beispiel für 3,4-Ethylendioxythiophen ist von der Heraeus Clevios unter der Bezeichnung CleviosTM M erhältlich. Weitere geeignete Monomere sind auch im US-Patent Nr. 5,111,327 (Blohm et al.) und 6,635,729 (Groenendahl et al.) beschrieben. Derivate dieser Monomere, die zum Beispiel Dimere oder Trimere der obigen Monomere sind, können ebenfalls eingesetzt werden. Höhermolekulare Derivate, d. h. Tetramere, Pentamere usw., der Monomere sind zur Verwendung in der vorliegenden Erfindung geeignet. Die Derivate können aus gleichen oder verschiedenen Monomereinheiten bestehen und können in reiner Form oder in einem Gemisch miteinander und/oder mit den Monomeren verwendet werden. Oxidierte oder reduzierte Formen dieser Vorläufer können ebenfalls eingesetzt werden.
  • Verschiedene Verfahren können verwendet werden, um die leitfähige Polymerschicht zu bilden. Zum Beispiel kann eine in-situ-polymerisierte Schicht gebildet werden, indem man Monomere in Gegenwart eines oxidativen Katalysators chemisch polymerisiert. Der oxidative Katalysator umfasst typischerweise ein Übergangsmetallkation, wie Eisen(III)-, Kupfer(II)-, Chrom(VI)-, Cer(IV)-, Mangan(IV)-, Mangan(VII)-, Ruthenium(III)-Kation usw. Es kann auch ein Dotierungsmittel eingesetzt werden, um dem leitfähigen Polymer überschüssige Ladung zu verleihen und die Leitfähigkeit des Polymers zu stabilisieren. Das Dotierungsmittel umfasst typischerweise ein anorganisches oder organisches Anion, wie ein Ion einer Sulfonsäure. In bestimmten Ausführungsformen weist der oxidative Katalysator insofern sowohl eine katalytische als auch eine dotierende Funktionalität auf, als er ein Kation (z. B. Übergangsmetall) und ein Anion (z. B. Sulfonsäure) enthält. Der oxidative Katalysator kann zum Beispiel ein Übergangsmetallsalz sein, das Eisen(III)-Kationen enthält, wie Eisen(III)-Halogenide (z. B. FeCl3) oder Eisen(III)-Salze anderer anorganischer Säuren, wie Fe(ClO4)3 oder Fe2(SO4)3, und die Eisen(III)-Salze organischer Säuren und anorganischer Säuren, die organische Reste umfassen. Beispiele für Eisen(III)-Salze von anorganischen Säuren mit organischen Resten sind zum Beispiel Eisen(III)-Salze von Schwefelsäuremonoestern von C1- bis C20-Alkanolen (z. B. das Eisen(III)-Salz von Laurylsulfat). Ebenso sind Beispiele für Eisen(III)-Salze von organischen Säuren zum Beispiel Eisen(III)-Salze von C1- bis C20-Alkansulfonsäuren (z. B. Methan-, Ethan-, Propan-, Butan- oder Dodecansulfonsäure); Eisen(III)-Salze von aliphatischen Perfluorsulfonsäuren (z. B. Trifluormethansulfonsäure, Perfluorbutansulfonsäure oder Perfluoroctansulfonsäure); Eisen(III)-Salze von aliphatischen C1- bis C20-Carbonsäuren (z. B. 2-Ethylhexylcarbonsäure); Eisen(III)-Salze von aliphatischen Perfluorcarbonsäuren (z. B. Trifluoressigsäure oder Perfluoroctansäure); Eisen(III)-Salze von aromatischen Sulfonsäuren, die gegebenenfalls mit C1- bis C20-Alkylgruppen substituiert sind (z. B. Benzolsulfonsäure, o-Toluolsulfonsäure, p-Toluolsulfonsäure oder Dodecylbenzolsulfonsäure); Eisen(III)-Salze von Cycloalkansulfonsäuren (z. B. Camphersulfonsäure); usw. Gemische dieser oben genannten Eisen(III)-Salze können ebenfalls verwendet werden. Eisen(III)-p-toluolsulfonat, Eisen(III)-o-toluolsulfonat und Gemische davon sind besonders gut geeignet. Ein kommerziell geeignetes Beispiel für Eisen(III)-p-toluolsulfonat ist von der Heraeus Clevios unter der Bezeichnung CleviosTM C erhältlich.
  • Der oxidative Katalysator und das Monomer können entweder nacheinander oder zusammen aufgetragen werden, um die Polymerisationsreaktion einzuleiten. Zu den geeigneten Auftragstechniken gehören Siebdruck, Tauchbeschichtung, elektrophoretische Beschichtung und Sprühbeschichtung. Als Beispiel kann das Monomer zunächst unter Bildung einer Vorläuferlösung mit dem oxidativen Katalysator gemischt werden. Sobald das Gemisch gebildet ist, kann es auf den Anodenteil aufgetragen und polymerisieren gelassen werden, so dass auf der Oberfläche eine leitfähige Beschichtung entsteht. Alternativ dazu können der oxidative Katalysator und das Monomer auch nacheinander aufgetragen werden. In einer Ausführungsform wird der oxidative Katalysator zum Beispiel in einem organischen Lösungsmittel (z. B. Butanol) gelöst und dann als Tauchlösung aufgetragen. Das Anodenteil kann dann getrocknet werden, um das Lösungsmittel davon zu entfernen. Danach kann das Teil in eine Lösung, die das Monomer enthält, eingetaucht werden. Unabhängig davon wird die Polymerisation typischerweise bei Temperaturen von etwa –10°C bis etwa 250°C und in einigen Ausführungsformen etwa 0°C bis etwa 200°C durchgeführt, abhängig von dem verwendeten Oxidationsmittel und der gewünschten Reaktionszeit. Geeignete Polymerisationstechniken, wie sie oben beschrieben sind, sind ausführlicher in US-Patent Nr. 7,515,396 (Biler) beschrieben. Noch andere Verfahren zum Auftragen einer oder mehrerer solcher leitfähigen Polymerbeschichtungen sind in den US-Patenten Nr. 5,457,862 (Sakata et al.), 5,473,503 (Sakata et al.), 5,729,428 (Sakata et al.) und 5,812,367 (Kudoh et al.) beschrieben.
  • Außer der in-situ-Auftragung kann der feste Elektrolyt in Form des leitfähigen Polymers auch in Form einer Dispersion von leitfähigen Polymerteilchen aufgetragen werden. Ein Vorteil der Verwendung einer Dispersion besteht darin, dass dies die Anwesenheit von während der in-situ-Polymerisation erzeugten ionischen Spezies (z. B. Fe2+ oder Fe3+) minimieren kann, was unter einem hohen elektrischen Feld einen dielektrischen Durchschlag aufgrund von Ionenwanderung verursachen kann. Indem man also das leitfähige Polymer als Dispersion und nicht durch in-situ-Polymerisation aufträgt, kann der resultierende Kondensator eine relativ hohe ”Durchschlagsspannung” aufweisen. Um eine gute Imprägnierung der Anode zu ermöglichen, haben die in der Dispersion eingesetzten Teilchen typischerweise eine geringe Größe, wie eine mittlere Größe (z. B. Durchmesser) von etwa 1 bis etwa 150 Nanometer, in einigen Ausführungsformen etwa 2 bis etwa 50 Nanometer und in einigen Ausführungsformen etwa 5 bis etwa 40 Nanometer. Der Durchmesser der Teilchen kann mit Hilfe bekannter Techniken, wie mittels Ultrazentrifuge, Laserbeugung usw., bestimmt werden. Die Form der Teilchen kann ebenfalls variieren. In einer besonderen Ausführungsform haben die Teilchen zum Beispiel eine sphärische Form. Man sollte sich jedoch darüber im Klaren sein, dass in der vorliegenden Erfindung auch andere Formen in Betracht gezogen werden, wie Platten, Stäbe, Scheiben, Blöcke, Röhrchen, unregelmäßige Formen usw. Die Konzentration der Teilchen in der Dispersion kann je nach der gewünschten Viskosität der Dispersion und der besonderen Art und Weise, wie die Dispersion auf den Kondensator aufgetragen werden soll, variieren. Typischerweise jedoch machen die Teilchen etwa 0,1 bis etwa 10 Gew.-%, in einigen Ausführungsformen etwa 0,4 bis etwa 5 Gew.-% und in einigen Ausführungsformen etwa 0,5 bis etwa 4 Gew.-% der Dispersion aus.
  • Die Dispersion enthält im Allgemeinen auch ein Gegenion, das die Stabilität der Teilchen verstärkt. Das heißt, das leitfähige Polymer (z. B. Polythiophen oder ein Derivat davon) trägt typischerweise eine Ladung auf der Hauptpolymerkette, die neutral oder positiv (kationisch) ist. Polythiophen-Derivate tragen zum Beispiel typischerweise eine positive Ladung in der Hauptpolymerkette. In einigen Fällen kann das Polymer positive und negative Ladungen in der Struktureinheit besitzen, wobei sich die positive Ladung auf der Hauptkette und die negative Ladung gegebenenfalls auf den Substituenten des Restes ”R”, wie Sulfonat- oder Carboxylatgruppen, befindet. Die positiven Ladungen der Hauptkette können teilweise oder zur Gänze mit den gegebenenfalls vorhandenen anionischen Gruppen an den Resten ”R” gesättigt sein. Insgesamt gesehen können die Polythiophene in diesen Fällen kationisch, neutral oder sogar anionisch sein. Dennoch werden sie alle als kationische Polythiophene angesehen, da die Polythiophen-Hauptkette eine positive Ladung trägt.
  • Das Gegenion kann ein monomeres oder polymeres Anion sein, das der Ladung des leitfähigen Polymers entgegenwirkt. Polymere Anionen können zum Beispiel Anionen von polymeren Carbonsäuren (z. B. Polyacrylsäuren, Polymethacrylsäure, Polymaleinsäuren usw.), polymeren Sulfonsäuren (z. B. Polystyrolsulfonsäuren (”PSS”), Polyvinylsulfonsäuren usw.) usw. sein. Die Säuren können auch Copolymere, wie Copolymere von Vinylcarbon- und Vinylsulfonsäure mit anderen polymerisierbaren Monomeren, wie Acrylsäureestern und Styrol, sein. Ebenso sind geeignete monomere Anionen zum Beispiel Anionen von C1- bis C20-Alkansulfonsäuren (z. B. Dodecansulfonsäure); aliphatischen Perfluorsulfonsäuren (z. B. Trifluormethansulfonsäure, Perfluorbutansulfonsäure oder Perfluoroctansulfonsäure); aliphatischen C1- bis C20-Carbonsäuren (z. B. 2-Ethylhexylcarbonsäure); aliphatischen Perfluorcarbonsäuren (z. B. Trifluoressigsäure oder Perfluoroctansäure); aromatischen Sulfonsäuren, die gegebenenfalls mit C1- bis C20-Alkylgruppen substituiert sind (z. B. Benzolsulfonsäure, o-Toluolsulfonsäure, p-Toluolsulfonsäure oder Dodecylbenzolsulfonsäure); Cycloalkansulfonsäuren (z. B. Kamphersulfonsäure oder Tetrafluoroborate, Hexafluorophosphate, Perchlorate, Hexafluoroantimonate, Hexafluoroarsenate oder Hexachloroantimonate); usw. Besonders gut geeignete Gegenionen sind polymere Anionen, wie eine polymere Carbon- oder Sulfonsäure (z. B. Polystyrolsulfonsäure (”PSS”)). Das Molekulargewicht solcher polymeren Anionen liegt typischerweise im Bereich von etwa 1000 bis etwa 2000000 und in einigen Ausführungsformen etwa 2000 bis etwa 500000.
  • Wenn sie eingesetzt werden, beträgt das Gewichtsverhältnis solcher Gegenionen zu leitfähigen Polymeren in der Dispersion und in der resultierenden Schicht typischerweise etwa 0,5:1 bis etwa 50:1, in einigen Ausführungsformen etwa 1:1 bis etwa 30:1 und in einigen Ausführungsformen etwa 2:1 bis etwa 20:1. Das Gewicht der elektrisch leitfähigen Polymere, von dem bei den oben genannten Gewichtsverhältnissen die Rede ist, bezieht sich auf den eingewogenen Anteil der eingewogenen Monomere, wenn man annimmt, dass während der Polymerisation eine vollständige Umsetzung stattfindet. Neben leitfähigen Polymeren und Gegenionen kann die Dispersion auch ein oder mehrere Bindemittel, Dispersionsmittel, Füllstoffe, Kleber, Vernetzungsmittel usw. enthalten.
  • Die polymere Dispersion kann mit Hilfe einer Vielzahl von bekannten Techniken aufgetragen werden, wie durch Schleuderbeschichtung, Imprägnierung, Gießen, tropfenweise Auftragung, Spritzen, Sprühen, Rakeln, Bürsten oder Drucken (z. B. Tintenstrahl-, Sieb- oder Blockdruck) oder Tauchen. Obwohl sie je nach der eingesetzten Auftragungstechnik variieren kann, beträgt die Viskosität der Dispersion typischerweise etwa 0,1 bis etwa 100000 mPa·s (gemessen bei einer Scherrate von 100 s–1), in einigen Ausführungsformen etwa 1 bis etwa 10000 mPa·s, in einigen Ausführungsformen etwa 10 bis etwa 1500 mPa·s und in einigen Ausführungsformen etwa 100 bis etwa 1000 mPa·s. Einmal aufgetragen, kann die Schicht getrocknet und/oder gewaschen werden. Eine oder mehrere zusätzliche Schichten können ebenfalls in dieser Weise gebildet werden, um die gewünschte Dicke zu erreichen. Typischerweise beträgt die Gesamtdicke der durch die Partikeldispersion gebildeten Schichten etwa 1 bis etwa 50 μm und in einigen Ausführungsformen etwa 5 bis etwa 20 μm. Das Gewichtsverhältnis von Gegenionen zu leitfähigen Polymeren beträgt ebenso etwa 0,5:1 bis etwa 50:1, in einigen Ausführungsformen etwa 1:1 bis etwa 30:1 und in einigen Ausführungsformen etwa 2:1 bis etwa 20:1.
  • Falls gewünscht, kann der feste Elektrolyt auch ein hydroxyfunktionelles nichtionisches Polymer enthalten. Der Ausdruck ”hydroxyfunktionell” bedeutet im Allgemeinen, dass die Verbindung wenigstens eine hydroxyfunktionelle Gruppe enthält oder eine solche funktionelle Gruppe in Gegenwart eines Lösungsmittels besitzen kann. Ohne uns auf eine bestimmte Theorie festlegen zu wollen, glauben wir, dass hydroxyfunktionelle nichtionische Polymere den Grad des Kontakts zwischen dem leitfähigen Polymer und der Oberfläche des internen Dielektrikums, die infolge höherer Formierungsspannungen typischerweise relativ glatt ist, verbessern können. Dadurch werden unerwarteterweise die Durchschlagspannung und die Nass-zu-Trocken-Kapazität des resultierenden Kondensators erhöht. Weiterhin glauben wir, dass die Verwendung eines hydroxyfunktionellen Polymers mit einem bestimmten Molekulargewicht auch die Wahrscheinlichkeit einer chemischen Zersetzung bei hohen Spannungen minimieren kann. Zum Beispiel kann das Molekulargewicht des hydroxyfunktionellen Polymers etwa 100 bis 10000 Gramm pro Mol, in einigen Ausführungsformen etwa 200 bis 2000, in einigen Ausführungsformen etwa 300 bis etwa 1200 und in einigen Ausführungsformen etwa 400 bis etwa 800 betragen.
  • Zu diesem Zweck können im Allgemeinen eine Vielzahl von hydroxyfunktionellen nichtionischen Polymeren eingesetzt werden. In einer Ausführungsform ist das hydroxyfunktionelle Polymer zum Beispiel ein Polyalkylenether. Polyalkylenether können Polyalkylenglycole (z. B. Polyethylenglycole, Polypropylenglycole, Polytetramethylenglycole, Polyepichlorhydrine usw.), Polyoxetane, Polyphenylenether, Polyetherketone usw. umfassen. Polyalkylenether sind typischerweise vorwiegend lineare, nichtionische Polymere mit terminalen Hydroxygruppen. Besonders gut geeignet sind Polyethylenglycole, Polypropylenglycole und Polytetramethylenglycole (Polytetrahydrofurane), die durch Polyaddition von Ethylenoxid, Propylenoxid oder Tetrahydrofuran an Wasser hergestellt werden. Die Polyalkylenether können durch Polykondensationsreaktionen aus Diolen oder Polyolen hergestellt werden. Die Diolkomponente kann insbesondere aus gesättigten oder ungesättigten, verzweigten oder unverzweigten, aliphatischen Dihydroxyverbindungen, die 5 bis 36 Kohlenstoffatome enthalten, oder aromatischen Dihydroxyverbindungen, wie zum Beispiel Pentan-1,5-diol, Hexan-1,6-diol, Neopentylglycol, Bis(hydroxymethyl)cyclohexanen, Bisphenol A, Dimerdiolen, hydrierten Dimerdiolen oder auch Gemischen der genannten Diole ausgewählt sein. Außerdem können in der Polymerisationsreaktion auch mehrwertige Alkohole, einschließlich zum Beispiel Glycerin, Di- und Polyglycerin, Trimethylolpropan, Pentaerythrit oder Sorbit, verwendet werden.
  • Neben den oben genannten können in der vorliegenden Erfindung auch andere hydroxyfunktionelle nichtionische Polymere eingesetzt werden. Einige Beispiele für solche Polymere sind zum Beispiel ethoxylierte Alkylphenole, ethoxylierte oder propoxylierte C6-C24-Fettalkohole, Polyoxyethylenglycolalkylether mit der allgemeinen Formel CH3-(CH2)10-16-(O-C2H4)1-25-OH (z. B. Octaethylenglycolmonododecylether und Pentaethylenglycolmonododecylether); Polyoxypropylenglycolalkylether mit der allgemeinen Formel CH3-(CH2)10-16-(O-C3H6)1-25-OH; Polyoxyethylenglycoloctylphenolether mit der folgenden allgemeinen Formel: C8H17-(C6H4)-(O-C2H4)1-25-OH (z. B. TritonTM X-100); Polyoxyethylenglycolalkylphenolether mit der folgenden allgemeinen Formel: C9H19-(C6H4)-(O-C2H4)1-25-OH (z. B. Nonoxynol-9); Polyoxyethylenglycolester von C8-C24-Fettsäuren, wie Polyoxyethylenglycolsorbitanalkylester (z. B. Polyoxyethylen(20)sorbitanmonolaurat, Polyoxyethylen(20)sorbitanmonopalmitat, Polyoxyethylen(20)sorbitanmonostearat, Polyoxyethylen(20)sorbitanmonooleat, PEG-20-Methylglucosedistearat, PEG-20-Methylglucosesesquistearat, PEG-80-Ricinusöl und PEG-20-Ricinusöl, PEG-3-Ricinusöl, PEG-600-dioleat und PEG-400-dioleat) und Polyoxyethylenglycerinalkylester (z. B. Polyoxyethylen-23-glycerinlaurat und Polyoxyethylen-20-glycerinstearat); Polyoxyethylenglycolether von C8-C24-Fettsäuren (z. B. Polyoxyethylen-10-cetylether, Polyoxyethylen-10-stearylether, Polyoxyethylen-20-cetylether, Polyoxyethylen-10-oleylether, Polyoxyethylen-20-oleylether, Polyoxyethylen-20-isohexadecylether, Polyoxyethylen-15-tridecylether und Polyoxyethylen-6-tridecylether); Blockcopolymere von Polyethylenglycol und Polypropylenglycol (z. B. Poloxamere) usw. sowie Gemische davon.
  • Das hydroxyfunktionelle nichtionische Polymer kann auf vielerlei verschiedenen Wegen in den festen Elektrolyten eingebaut werden. In bestimmten Ausführungsformen zum Beispiel kann das nichtionische Polymer einfach in beliebige leitfähige Polymerschichten eingebaut werden, die durch das oben beschriebene Verfahren (z. B. in-situ-Polymerisation oder Dispersion vorpolymerisierter Teilchen) gebildet werden. In anderen Ausführungsformen jedoch kann das nichtionische Polymer aufgetragen werden, nachdem die erste bzw. die ersten Polymerschichten gebildet sind.
  • D. Externe Polymerbeschichtung
  • Obwohl es nicht erforderlich ist, kann eine externe Polymerbeschichtung auf den Anodenkörper aufgetragen werden und den festen Elektrolyten bedecken. Die externe Polymerbeschichtung enthält im Allgemeinen eine oder mehrere Schichten, die aus einer Dispersion von vorpolymerisierten leitfähigen Teilchen gebildet sind, wie es oben ausführlicher beschrieben ist. Die externe Beschichtung kann in der Lage sein, weiter in den Randbereich des Kondensatorkörpers einzudringen, um die Haftung am Dielektrikum zu erhöhen, und zu einem mechanisch robusteren Teil führen, was den äquivalenten Serienwiderstand und den Leckstrom reduzieren kann. Falls gewünscht, kann auch ein Vernetzungsmittel in der externen Polymerbeschichtung eingesetzt werden, um den Grad der Haftung am festen Elektrolyten zu verstärken. Typischerweise wird das Vernetzungsmittel vor der Auftragung der in der externen Beschichtung verwendeten Dispersion aufgetragen. Geeignete Vernetzungsmittel sind zum Beispiel in der US-Patentveröffentlichung Nr. 2007/0064376 (Merker et al.) beschrieben und umfassen zum Beispiel Amine (z. B. Diamine, Triamine, Oligomeramine, Polyamine usw.); mehrwertige Metallkationen, wie Salze oder Verbindungen von Mg, Al, Ca, Fe, Cr, Mn, Ba, Ti, Co, Ni, Cu, Ru, Ce oder Zn, Phosphoniumverbindungen, Sulfoniumverbindungen usw.
  • E. Andere Komponenten des Kondensators
  • Falls gewünscht, kann der Kondensator auch andere Schichten enthalten, wie in der Technik bekannt ist. Zum Beispiel kann zwischen dem Dielektrikum und dem festen Elektrolyten gegebenenfalls eine Schutzbeschichtung gebildet werden, wie etwa aus einem relativ isolierenden harzartigen Material (natürlich oder synthetisch), wie Schellackharzen. Diese und andere Schutzbeschichtungsmaterialien sind ausführlicher im US-Patent Nr. 6,674,635 (Fife et al.) beschrieben. Falls gewünscht, kann auch eine Kohlenstoffschicht (z. B. Graphit) bzw. eine Silberschicht auf das Teil aufgetragen werden. Die Silberbeschichtung kann zum Beispiel als lötbarer Leiter, Kontaktschicht und/oder Ladungskollektor für den Kondensator wirken, und die Kohlenstoffbeschichtung kann den Kontakt der Silberbeschichtung mit dem festen Elektrolyten einschränken. Solche Beschichtungen können einen Teil oder den gesamten festen Elektrolyten bedecken.
  • Allgemein gesagt ist das Kondensatorelement im Wesentlichen frei von Harzen (z. B. Epoxidharzen), die das Kondensatorelement einbetten, wie sie häufig in herkömmlichen Festelektrolytkondensatoren eingesetzt werden. Unter Anderem kann die Einbettung des Kondensatorelements zur Instabilität in extremen Umgebungen, d. h. hohe Temperatur (z. B. über etwa 175°C) und/oder hohe Spannung (z. B. über etwa 500 Volt) führen.
  • II. Gehäuse
  • Wie bereits gesagt, sind mindestens zwei Kondensatorelemente hermetisch innerhalb eines Gehäuses abgedichtet. Die hermetische Abdichtung erfolgt typischerweise in Gegenwart einer Gasatmosphäre erfolgen, die wenigstens ein Inertgas enthält, um die Oxidation des festen Elektrolyten während der Verwendung zu hemmen. Das Inertgas kann zum Beispiel Stickstoff, Helium, Argon, Xenon, Neon, Krypton, Radon usw. sowie Gemische davon umfassen. Typischerweise können Inertgase den Hauptteil der Atmosphäre innerhalb des Gehäuses bilden, wie etwa 50 Gew.-% bis 100 Gew.-%, in einigen Ausführungsformen etwa 75 Gew.-% bis 100 Gew.-% und in einigen Ausführungsformen etwa 90 Gew.-% bis etwa 99 Gew.-% der Atmosphäre. Falls gewünscht, kann auch eine relativ kleine Menge an nichtinerten Gasen, wie Kohlendioxid, Sauerstoff, Wasserdampf usw., eingesetzt werden. In solchen Fällen bilden die nichtinerten Gase jedoch typischerweise 15 Gew.-% oder weniger, in einigen Ausführungsformen 10 Gew.-% oder weniger, in einigen Ausführungsformen etwa 5 Gew.-% oder weniger, in einigen Ausführungsformen etwa 1 Gew.-% oder weniger und in einigen Ausführungsformen etwa 0,01 Gew.-% bis etwa 1 Gew.-% der Atmosphäre innerhalb des Gehäuses. Zum Beispiel kann der Feuchtigkeitsgehalt (ausgedrückt als relative Feuchtigkeit) etwa 10% oder weniger, in einigen Ausführungsformen etwa 5% oder weniger, in einigen Ausführungsformen etwa 1% oder weniger und in einigen Ausführungsformen etwa 0,01 bis etwa 5% betragen.
  • Eine Vielzahl von Materialien kann zur Bildung des Gehäuses verwendet werden, wie Metalle, Kunststoffe, Keramiken usw. In einer Ausführungsform zum Beispiel umfasst das Gehäuse eine oder mehrere Schichten aus einem Metall wie Tantal, Niob, Aluminium, Nickel, Hafnium, Titan, Kupfer, Silber, Stahl (z. B. Edelstahl), Legierungen davon (z. B. elektrisch leitfähige Oxide), Verbundstoffe davon (z. B. mit elektrisch leitfähigem Oxid beschichtetes Metall) usw. In einer anderen Ausführungsform kann das Gehäuse eine oder mehrere Schichten aus einem Keramikmaterial, wie Aluminiumnitrid, Aluminiumoxid, Siliciumoxid, Magnesiumoxid, Calciumoxid, Glas usw., sowie Kombinationen davon umfassen.
  • Die Kondensatorelemente können unter Verwendung einer Vielzahl von Techniken an dem Gehäuse befestigt werden. Obwohl es keineswegs erforderlich ist, können die Kondensatorelemente so an dem Gehäuse befestigt werden, dass außerhalb des Gehäuses Endteile zur anschließenden Integration in eine Schaltung gebildet werden. Die besondere Konfiguration der Endteile kann von dem Verwendungszweck abhängen. In einer Ausführungsform zum Beispiel kann die Kondensatorbaugruppe so gebildet sein, dass sie auf der Oberfläche montierbar und dennoch mechanisch robust ist. Zum Beispiel können der Anodenanschluss eines Kondensatorelements und die Kathode eines anderen Kondensatorelements elektrisch mit externen, auf der Oberfläche montierbaren Endteilen (z. B. Feldern, Blechen, Platten, Rahmen usw.) verbunden sein, die sich durch das Gehäuse hindurch erstrecken können, um sich mit dem Kondensator zu verbinden. Die Dicke oder Höhe der Endteile wird im Allgemeinen so gewählt, dass die Dicke der Kondensatorbaugruppe minimiert wird. Zum Beispiel kann die Dicke der Endteile in einem Bereich von etwa 0,05 Millimeter bis etwa 1 Millimeter, wie etwa 0,05 Millimeter bis etwa 0,5 Millimeter, wie etwa 0,1 Millimeter bis etwa 0,2 Millimeter, liegen. Falls gewünscht, kann die Oberfläche der Endteile, wie in der Technik bekannt ist, mit Nickel, Silber, Gold, Zinn usw. galvanisiert werden, um zu gewährleisten, dass das endgültige Teil auf der Leiterplatte montierbar ist. In einer besonderen Ausführungsform werden die Endteile mit Nickel- bzw. Silber-Schutzschichten versehen, und die Montagefläche wird auch mit einer Zinnlötschicht versehen. In einer anderen Ausführungsform werden bei den Endteilen dünne äußere Metallschichten (z. B. Gold) auf einer Grundmetallschicht (z. B. Kupferlegierung) abgeschieden, um die Leitfähigkeit weiter zu erhöhen.
  • 1 zeigt zum Beispiel eine besondere Ausführungsform einer Kondensatorbaugruppe 10, die zwei Kondensatorelemente enthält, welche jetzt ausführlicher beschrieben werden. Insbesondere umfasst die Kondensatorbaugruppe 10 ein erstes Kondensatorelement 20a und ein zweites Kondensatorelement 20b, die in Reihe geschaltet sind. In dieser Ausführungsform sind die Kondensatorelemente so ausgerichtet, dass ihre Hauptflächen in einer horizontalen Konfiguration vorliegen. Das heißt, eine Hauptfläche des Kondensatorelements 20a, die durch ihre Breite (x-Richtung) und Länge (y-Richtung) definiert ist, wird neben einer entsprechenden Hauptfläche des Kondensatorelements 20b positioniert. Somit sind die Hauptflächen im Wesentlichen coplanar. Alternativ dazu können die Kondensatorelemente auch so angeordnet sein, dass ihre Hauptflächen nicht coplanar sind, sondern in einer bestimmten Richtung, wie der z-Richtung oder x-Richtung, senkrecht zueinander stehen. Selbstverständlich brauchen sich die Kondensatorelemente nicht in dieselbe Richtung zu erstrecken.
  • Das Gehäuse der Kondensatorbaugruppe 10 umfasst eine Außenwand 23 und einander gegenüberliegende Seitenwände 124 und 125, zwischen denen ein Hohlraum 526 entsteht, der die Kondensatorelemente umfasst. Die äußere Wand 23 und die Seitenwände 124 und 125 können aus einer oder mehreren Schichten aus einem Metall, Kunststoff oder Keramikmaterial, wie es oben beschrieben ist, gebildet sein. Wie oben beschrieben, enthält die Kondensatorbaugruppe auch äußere Endteile (nicht gezeigt), zu denen die Anodenanschlüsse und die Kathode der jeweiligen Kondensatorelemente elektrisch in Reihe geschaltet sind. Innerhalb des inneren Hohlraums des Gehäuses können leitfähige Elemente eingesetzt werden, um die Bildung der äußeren Endteile in einer mechanisch stabilen Weise zu erleichtern. Bezieht man sich zum Beispiel wiederum auf 1, so kann die Kondensatorbaugruppe 10 ein erstes leitfähiges Element 62, das aus einem ersten Teil 67 und einem zweiten Teil 65 gebildet ist, umfassen. Der erste Teil 67 und der zweite Teil 65 können einstückig sein, oder es kann sich um getrennte Teile handeln, die entweder direkt oder über ein zusätzliches leitfähiges Element (z. B. Metall) miteinander verbunden sind. In der gezeigten Ausführungsform ist der zweite Teil 65 in einer Ebene bereitgestellt, die im Wesentlichen parallel zu einer Seitenrichtung, in der sich der Anschluss 6a erstreckt (z. B. y-Richtung), verläuft. Der erste Teil 67 ist in dem Sinne ”aufragend”, als er sich in einer Ebene befindet, die im Wesentlichen senkrecht zu der seitlichen Richtung steht, in der sich der Anschluss 6a erstreckt. Auf diese Weise kann der erste Teil 67 die Bewegung des Anschlusses 6a in horizontaler Richtung einschränken und dadurch den Oberflächenkontakt und die mechanische Stabilität während der Verwendung erhöhen. Falls gewünscht, kann weiterhin ein isolierendes Material 7a (z. B. eine TeflonTM-Scheibe) um den Anschluss 6a herum eingesetzt werden. Der erste Teil 67 kann einen Montagebereich (nicht gezeigt) besitzen, der mit dem Anodenanschluss 6a verbunden ist. Der Bereich kann eine ”U-Form” aufweisen, um den Oberflächenkontakt und die mechanische Stabilität des Anschlusses 6a weiter zu erhöhen.
  • Es kann auch ein zweites leitfähiges Element 29 bereitgestellt werden, das mit einer Kathode (z. B. fester Elektrolyt) eines zweiten Kondensatorelements 20b elektrisch verbunden ist. Wie gezeigt, kann das zweite Kondensatorelement 20b auch ein isolierendes Material 7b und einen Anodenanschluss 6b enthalten, der in einer Richtung orientiert ist, die der des Anodenanschlusses 6a des ersten Kondensatorelements 20a entgegengesetzt ist. Das zweite leitfähige Element 29 kann sich in einer Ebene befinden, die im Wesentlichen parallel zu einer Seitenrichtung, in der sich der Anschluss 6b erstreckt (z. B. y-Richtung), verläuft. Um die Kondensatorelemente in Reihe zu schalten, kann auch ein Verbindungselement 40 eingesetzt werden, das elektrisch mit der Kathode (z. B. fester Elektrolyt) des ersten Kondensatorelements 20a und dem Anodenanschluss 6b des zweiten Kondensatorelements 20b verbunden ist.
  • Die Befestigung der Kondensatorelemente kann im Allgemeinen unter Verwendung einer Vielzahl bekannter Techniken, wie Schweißen, Laserschweißen, leitfähige Kleber usw., bewerkstelligt werden. In einer bestimmten Ausführungsform wird zum Beispiel das erste leitfähige Element 62 durch Laserschweißen mit dem Anodenanschluss 6a verbunden, und das zweite leitfähige Element 29 wird mit einem Kleber an dem zweiten Kondensatorelement 20b befestigt. Ebenso kann das Verbindungselement 40 mit einem Kleber mit dem ersten Kondensatorelement 20a und durch Laserschweißen mit dem Anodenanschluss 6b des zweiten Kondensatorelements 20b verbunden werden. Wenn leitfähige Kleber eingesetzt werden, können sie aus leitfähigen Metallteilchen, die in einer Harzzusammensetzung enthalten sind, gebildet sein. Bei den Metallteilchen kann es sich um Silber, Kupfer, Gold, Platin, Nickel, Zink, Bismut usw. handeln. Die Harzzusammensetzung kann ein duroplastisches Harz (z. B. Epoxidharz), Härtungsmittel (z. B. Säureanhydrid) und Kopplungsmittel (z. B. Silan-Kopplungsmittel) umfassen. Geeignete leitfähige Kleber sind in der US-Patentanmeldung Veröffentlichungsnummer 2006/0038304 (Osako et al.) beschrieben.
  • Obwohl sie nicht im Einzelnen abgebildet ist, enthält die Kondensatorbaugruppe äußere Anoden- und Kathoden-Endteile, die durch die leitfähigen Elemente selbst oder durch daran befestigte separate Elemente gebildet werden können. In 1 zum Beispiel kann sich das erste leitfähige Element 62 durch die Außenwand 23 hindurch erstrecken, um das äußere Anoden-Endteil zu bilden. Alternativ dazu kann auch eine separate leitfähige Bahn (nicht gezeigt) an dem ersten leitfähigen Element 62, das sich durch die Wand 23 hindurch erstreckt, befestigt sein und bildet entweder das Anoden-Endteil oder ist mit einem zusätzlichen leitfähigen Element, das als Anoden-Endteil dient, verbunden. Ebenso kann sich das zweite leitfähige Element 29 durch die Außenwand 23 hindurch erstrecken, um das äußere Kathoden-Endteil zu bilden, oder eine separate leitfähige Bahn (nicht gezeigt) kann an dem zweiten leitfähigen Element 29, das sich durch die Wand 23 hindurch erstreckt, befestigt sein und bildet entweder das Kathoden-Endteil oder ist mit einem zusätzlichen leitfähigen Element, das als Kathoden-Endteil dient, verbunden. Selbstverständlich ist die vorliegende Erfindung zur Bildung der gewünschten Endteile keineswegs auf die Verwendung von leitfähigen Bahnen beschränkt.
  • Sobald sie in der gewünschten Weise verbunden ist, wird die resultierende Baugruppe hermetisch abgedichtet, wie es oben beschrieben ist. Bezieht man sich erneut auf 1, so kann zum Beispiel das Gehäuse auch einen Deckel (nicht gezeigt) umfassen, der auf eine obere Fläche der Seitenwände 124 und 125 platziert wird, nachdem die Kondensatorelemente innerhalb des Gehäuses positioniert sind. Der Deckel kann aus einer Keramik, einem Metall (z. B. Eisen, Kupfer, Nickel, Cobalt usw. sowie Legierungen davon), Kunststoff usw. gebildet sein. Falls gewünscht, kann sich ein Dichtungselement (nicht gezeigt) zwischen dem Deckel und den Seitenwänden 124 und 125 befinden, um dazu beizutragen, eine gute Abdichtung zu ergeben. In einer Ausführungsform zum Beispiel kann das Dichtungselement eine Glas-Metall-Dichtung, einen Kovar®-Ring (Goodfellow Cambridge Ltd.) usw. umfassen. Die Höhe der Seitenwände ist im Allgemeinen so, dass der Deckel keine Fläche der Kondensatorelemente berührt, so dass sie nicht kontaminiert werden. Wenn er in der gewünschten Position platziert ist, wird der Deckel mit Hilfe bekannter Techniken, wie Schweißen (z. B. Widerstandsschweißen, Laserschweißen usw.), Löten usw. hermetisch mit den Seitenwänden 124 und 125 versiegelt. Das hermetische Abdichten kann in Gegenwart von Inertgasen, wie sie oben beschrieben sind, erfolgen, so dass die resultierende Baugruppe im Wesentlichen frei von reaktiven Gasen, wie Sauerstoff oder Wasserdampf, ist.
  • In der Ausführungsform, die in 1 gezeigt ist, umfasst die Kondensatorbaugruppe 2 Kondensatorelemente. Wie bereits gesagt, kann jedoch in der vorliegenden Erfindung im Allgemeinen eine beliebige Anzahl von Kondensatorelementen, wie 2 oder mehr, in einigen Ausführungsformen 2 bis 10 und in einigen Ausführungsformen 3 bis 8, eingesetzt werden. 2 zeigt zum Beispiel eine Ausführungsform einer Kondensatorbaugruppe 100, die ein drittes Kondensatorelement 20c enthält, das sich zwischen dem ersten und dem zweiten Kondensatorelement 20a und 20b befindet und mit diesen in Reihe geschaltet ist. Das Kondensatorelement 20a ist mit dem ersten leitfähigen Element 62 verbunden, und das Kondensatorelement 20b ist in der oben beschriebenen Weise mit dem zweiten leitfähigen Element 29 verbunden, außer dass der Anodenanschluss 6b des zweiten Kondensatorelements 20b in derselben Richtung orientiert ist wie der Anodenanschluss 6a des ersten Kondensatorelements 20a.
  • Im Gegensatz zu der in 1 gezeigten Ausführungsform, in der das zur Verbindung der Kondensatorelemente verwendete Verbindungselement aus einer einzelnen Komponente besteht, besteht das Verbindungselement von 2 aus mehreren Komponenten. Das heißt, das Verbindungselement besteht aus einem ersten Teil 400 und einem zweiten Teil 500 sowie dem dritten Kondensatorelement 20c selbst. Insbesondere enthält das dritte Kondensatorelement 20c ein isolierendes Material 7c und einen Anodenanschluss 6c, der in einer Richtung orientiert ist, die der der Anodenanschlüsse 6a und 6b entgegengesetzt ist. Der erste Teil 400 des Verbindungselements ist elektrisch mit der Kathode (z. B. fester Elektrolyt) des ersten Kondensatorelements 20a und dem Anodenanschluss 6c des dritten Kondensatorelements 20c verbunden. Der zweite Teil 500 des Verbindungselements ist ebenso elektrisch mit der Kathode (z. B. fester Elektrolyt) des dritten Kondensatorelements 20c und dem Anodenanschluss 6b des zweiten Kondensatorelements 20b verbunden. In einer bestimmten Ausführungsform wird das erste leitfähige Element 62 durch Laserschweißen mit dem Anodenanschluss 6a verbunden, und das zweite leitfähige Element 29 wird mit einem Kleber an dem zweiten Kondensatorelement 20b befestigt. Ebenso kann der erste Teil 400 mit einem Kleber an dem ersten Kondensatorelement 20a und durch Laserschweißen mit dem Anodenanschluss 6c des dritten Kondensatorelements 20b verbunden werden, und der zweite Teil 500 kann mit einem Kleber an dem dritten Kondensatorelement 20c und durch Laserschweißen mit dem Anodenanschluss 6b des zweiten Kondensatorelements 20b verbunden werden.
  • Unabhängig von ihrer besonderen Konfiguration kann die Kondensatorbaugruppe der vorliegenden Erfindung selbst dann ausgezeichnete elektrische Eigenschaften aufweisen, wenn sie Hochspannungsumgebungen ausgesetzt ist. Zum Beispiel kann die Kondensatorbaugruppe eine relativ hohe ”Durchschlagsspannung” (Spannung, bei der der Kondensator versagt), wie etwa 500 Volt oder mehr, in einigen Ausführungsformen etwa 600 Volt oder mehr, in einigen Ausführungsformen etwa 700 Volt oder mehr und in einigen Ausführungsformen etwa 750 Volt bis etwa 1500 Volt aufweisen. Die Durchschlagsspannung kann dadurch bestimmt werden, dass man einen Kondensator mit 0,1 Milliampère auflädt (Aufladesteigung dU/dt = 10) und dann die Spannung, bei der die angelegte Spannung um mehr als 10% abnimmt, d. h. die Durchschlagsspannung, misst. Dieser Test wird typischerweise bei Raumtemperatur durchgeführt. Ebenso kann der Kondensator auch in der Lage sein, relativ hohen Stromspitzen zu widerstehen, die in Hochspannungsanwendungen ebenfalls üblich sind. Der maximale Spitzenstrom kann zum Beispiel etwa das Doppelte der Nennspannung oder mehr betragen, wie im Bereich von etwa 40 Ampère oder mehr, in einigen Ausführungsformen etwa 60 Ampère oder mehr und in einigen Ausführungsformen etwa 120 Ampère bis etwa 250 Ampère liegen.
  • Die vorliegende Erfindung wird anhand der folgenden Beispiele besser verständlich.
  • Testverfahren
  • Äquivalenter Serienwiderstand (ESR)
  • Der äquivalente Serienwiderstand kann unter Verwendung eines Agilent-E4980A-Präzisions-LCR-Messgeräts mit Kelvin-Anschlüssen, 2,2 Volt Gleichstromvorspannung und einem sinusförmigen Signal mit 0,5 Volt von Spitze zu Spitze gemessen werden. Die Arbeitsfrequenz kann 100 kHz betragen, und die Temperatur kann 23°C ± 2°C betragen.
  • Kapazität
  • Die Kapazität kann mit Hilfe eines Agilent-E4980A-Präzisions-LCR-Messgeräts mit Kelvin-Anschlüssen, 2,2 Volt Gleichstromvorspannung und einem sinusförmigen Signal mit 0,5 Volt von Spitze zu Spitze gemessen werden. Die Arbeitsfrequenz kann 120 Hz betragen, und die Temperatur kann 23°C ± 2°C betragen.
  • Beispiel 1
  • Ein Tantalpulver mit 9000 μFV/g wurde verwendet, um Anodenproben zu bilden. Jede Anodenprobe wurde zusammen mit einem Tantaldraht eingebettet, bei 1800°C gesintert und auf eine Dichte von 5,3 g/cm3 gepresst. Die resultierenden Presslinge hatten eine Größe von 4,15 × 3,70 × 2,00 mm. Die Presslinge wurden in einem flüssigen Elektrolyten bis 315 V anodisiert, um eine dielektrische Schicht zu bilden. Dann wurde eine leitfähige Polymerbeschichtung gebildet, indem man die Anoden in eine Dispersion von Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 1,1% (CleviosTM K, Heraeus) eintauchte. Nach der Beschichtung wurde das Teil dann 20 Minuten lang bei 125°C getrocknet. Dieser Vorgang wurde zehnmal wiederholt. Danach wurde das Teil in eine Dispersion von Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 2% eingetaucht und dann 20 Minuten lang bei 125°C getrocknet. Dieser Vorgang wurde achtmal wiederholt. Dann wurden die Teile in eine Graphitdispersion eingetaucht und getrocknet. Schließlich wurden die Teile in eine Silberdispersion eingetaucht und getrocknet.
  • Ein Leiterrahmenmaterial auf Kupferbasis wurde verwendet, um den Montagevorgang zum Platzieren der Kondensatorelemente in ein Keramikgehäuse abzuschließen. Wie in 2 gezeigt, umfasste die Kondensatorbaugruppe 3 Kondensatorelemente, die in Reihe geschaltet sind. Der Anodenanschluss eines Kondensatorelements und die Kathode eines anderen Kondensatorelements wurden elektrisch mit äußeren, auf der Oberfläche montierbaren Endteilen verbunden, die sich zur Verbindung mit dem Kondensator durch das Keramikgehäuse hindurch erstreckten. Der Kleber, der für alle Verbindungen eingesetzt wurde, war eine Silberpaste. Dann wurde die Baugruppe in einen Konvektionsofen gebracht, um die Paste zu verlöten. Danach handelte es sich bei dem Schweißen, das für die Anodenverbindung eingesetzt wurde, um Widerstandsschweißen, und eine Energie von 300 W wurde während 100 ms zwischen den Leiterrahmenteilen und dem vergoldeten Lötpunkt des Keramikgehäuses angewendet. Danach wurde ein polymeres Einbettungsmaterial über die Oberseite des Anoden- und des Kathodenteils des Kondensatorelements aufgetragen, und dann wurde 2 Stunden lang bei 150°C getrocknet. Ein Kovar®-Deckel wurde über die Oberseite des Behälters gestülpt, nahe an dem Dichtungsring der Keramik. Die resultierende Baugruppe wurde in eine Schweißkammer gebracht und mit Stickstoffgas gespült, bevor ein Nahtschweißen zwischen dem Dichtungsring und dem Deckel durchgeführt wurde. Auf diese Weise wurden mehrere Teile (15) von Kondensatoren mit 1 μF/750 V hergestellt.
  • Beispiel 2
  • Die Kondensatorelemente wurden in derselben Weise gebildet, wie es oben in Beispiel 1 beschrieben ist. Die fertigen Teile wurden ebenfalls so montiert, wie es in 2 gezeigt ist (3 Kondensatorelemente, die in Reihe geschaltet sind), aber ohne die Verwendung von Stickstoff-Inertgas vor dem Nahtschweißvorgang. Die resultierende Baugruppe wurde in eine Schweißkammer gebracht und mit Luft gespült, bevor ein Nahtschweißen zwischen dem Dichtungsring und dem Deckel durchgeführt wurde. Auf diese Weise wurden mehrere Teile (15) von Kondensatoren mit 1 μF/750 V hergestellt.
  • Dann wurden die Teile der Beispiele 1 und 2 während Aufbewahrungstests bei einer Temperatur von 150°C auf ihre elektrische Leistungsfähigkeit (d. h. Kapazität (”KAP”) und äquivalenter Serienwiderstand (”ESR”)) hin getestet. Die Medianwerte der Ergebnisse sind im Folgenden gezeigt.
    Zeit [h] Beispiel 1 Beispiel 2
    KAP (μF) ESR (Ohm) KAP (μF) ESR (Ohm)
    0 0,98 0,3 0,99 0,3
    150 0,98 0,4 0,96 0,6
    250 0,97 0,4 0,96 1,0
    500 0,97 0,4 0,95 3,9
    750 0,96 0,5 0,82 13,3
    1000 0,96 0,5 offener Stromkreis
    1500 0,96 0,5 -
    2000 0,96 0,6 -
    2500 0,96 0,6 -
  • Diese und andere Modifikationen und Variationen der vorliegenden Erfindung können vom Fachmann praktisch umgesetzt werden, ohne vom Wesen und Umfang der vorliegenden Erfindung abzuweichen. Außerdem sollte man sich darüber im Klaren sein, dass Aspekte der verschiedenen Ausführungsformen ganz oder teilweise gegeneinander ausgetauscht werden können. Weiterhin wird der Fachmann anerkennen, dass die obige Beschreibung nur beispielhaften Charakter hat und die Erfindung, die in den beigefügten Ansprüchen näher beschrieben ist, nicht einschränken soll.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 6322912 [0013]
    • US 6391275 [0013]
    • US 6416730 [0013]
    • US 6527937 [0013]
    • US 6576099 [0013]
    • US 6592740 [0013]
    • US 6639787 [0013]
    • US 7220397 [0013]
    • US 6197252 [0017]
    • US 6987663 [0024]
    • US 5111327 [0024]
    • US 6635729 [0024]
    • US 7515396 [0026]
    • US 5457862 [0026]
    • US 5473503 [0026]
    • US 5729428 [0026]
    • US 5812367 [0026]
    • US 2007/0064376 [0036]
    • US 6674635 [0037]
  • Zitierte Nicht-Patentliteratur
    • Brunauer, Emmet und Teller, Journal of American Chemical Society, Band 60, 1938, S. 309 [0014]
    • ”Critical Oxygen Content in Porous Anodes of Solid Tantalum Capacitors”, Pozdeev-Freeman et al., Journal of Materials Science: Materials in Electronics 9 (1998), 309–311 [0018]

Claims (19)

  1. Kondensatorbaugruppe, umfassend: ein erstes und ein zweites Kondensatorelement, die jeweils einen gesinterten porösen Anodenkörper, eine dielektrische Schicht, die den Anodenkörper bedeckt, und einen festen Elektrolyten, der die ein leitfähiges Polymer umfassende dielektrische Schicht bedeckt, enthalten, wobei sich von dem ersten und dem zweiten Kondensatorelement ausgehend ein erster bzw. ein zweiter Anodenanschluss erstreckt; ein Verbindungselement, das den festen Elektrolyten des ersten Kondensatorelements elektrisch mit dem Anodenanschluss des zweiten Kondensatorelements verbindet; ein Gehäuse, das einen inneren Hohlraum definiert, innerhalb dessen sich das erste und das zweite Kondensatorelement befinden und hermetisch abgedichtet sind, wobei der innere Hohlraum eine Gasatmosphäre, die ein Inertgas enthält, aufweist; ein äußeres Anoden-Endteil, das sich in elektrischer Verbindung mit dem ersten Anodenanschluss des ersten Kondensatorelements befindet; und ein äußeres Kathoden-Endteil, das sich in elektrischer Verbindung mit dem festen Elektrolyten des zweiten Kondensatorelements befindet.
  2. Kondensatorbaugruppe gemäß Anspruch 1, wobei Inertgase etwa 50 Gew.-% bis 100 Gew.-% der Gasatmosphäre ausmachen.
  3. Kondensatorbaugruppe gemäß Anspruch 1, wobei das Gehäuse aus einem Metall, einem Kunststoff, einer Keramik oder einer Kombination davon gebildet ist.
  4. Kondensatorbaugruppe gemäß Anspruch 1, die weiterhin ein erstes leitfähiges Element umfasst, das einen ersten Teil enthält, der im Wesentlichen senkrecht zu einer seitlichen Richtung des ersten Anodenanschlusses positioniert und damit verbunden ist.
  5. Kondensatorbaugruppe gemäß Anspruch 4, wobei das erste leitfähige Element weiterhin einen zweiten Teil enthält, der im Wesentlichen parallel zu der seitlichen Richtung, in die sich der erste Anodenanschluss erstreckt, positioniert ist.
  6. Kondensatorbaugruppe gemäß Anspruch 4, wobei das erste leitfähige Element mit dem Anodenanschluss verbunden ist.
  7. Kondensatorbaugruppe gemäß Anspruch 1, die weiterhin ein zweites leitfähiges Element umfasst, das elektrisch mit dem festen Elektrolyten des zweiten Kondensatorelements verbunden ist.
  8. Kondensatorbaugruppe gemäß Anspruch 7, wobei das zweite leitfähige Element mit dem Kathodenanschluss verbunden ist.
  9. Kondensatorbaugruppe gemäß Anspruch 1, wobei der erste Anodenanschluss und der zweite Anschluss in entgegengesetzten Richtungen orientiert sind.
  10. Kondensatorbaugruppe gemäß Anspruch 1, wobei die Kondensatorbaugruppe 2 bis 10 Kondensatorelemente umfasst.
  11. Kondensatorbaugruppe gemäß Anspruch 1, weiterhin umfassend: ein drittes Kondensatorelement, das sich zwischen dem ersten und dem zweiten Kondensatorelement befindet, wobei das dritte Kondensatorelement einen gesinterten porösen Anodenkörper, eine dielektrische Schicht, die den Anodenkörper bedeckt, und einen festen Elektrolyten, der die ein leitfähiges Polymer umfassende dielektrische Schicht bedeckt, enthält; und einen dritten Anodenanschluss, der sich ausgehend von dem dritten Kondensatorelement erstreckt.
  12. Kondensatorbaugruppe gemäß Anspruch 11, wobei der erste Anodenanschluss und der zweite Anodenanschluss in derselben Richtung orientiert sind.
  13. Kondensatorbaugruppe gemäß Anspruch 12, wobei der erste Anodenanschluss und der dritte Anodenanschluss in entgegengesetzten Richtungen orientiert sind.
  14. Kondensatorbaugruppe gemäß Anspruch 11, wobei das Verbindungselement aus einem ersten Teil, einem zweiten Teil und dem dritten Kondensatorelement gebildet ist, wobei der erste Teil den festen Elektrolyten des ersten Kondensatorelements und den dritten Anodenanschluss des dritten Kondensatorelements elektrisch miteinander verbindet und der zweite Teil den festen Elektrolyten des dritten Kondensatorelements elektrisch mit dem zweiten Anodenanschluss des zweiten Kondensatorelements verbindet.
  15. Kondensatorbaugruppe gemäß Anspruch 1, wobei der Anodenkörper aus einem Pulver gebildet ist, das Tantal, Niob oder ein elektrisch leitfähiges Oxid davon enthält.
  16. Kondensatorbaugruppe gemäß Anspruch 1, wobei das leitfähige Polymer ein substituiertes Polythiophen ist.
  17. Kondensatorbaugruppe gemäß Anspruch 16, wobei es sich bei dem substituierten Polythiophen um Poly(3,4-ethylendioxythiophen) handelt.
  18. Kondensatorbaugruppe gemäß Anspruch 1, wobei der feste Elektrolyt eine Vielzahl von vorpolymerisierten leitfähigen Polymerteilchen umfasst.
  19. Kondensatorbaugruppe gemäß einem der vorstehenden Ansprüche, wobei die Baugruppe eine Durchschlagsspannung von etwa 600 Volt oder mehr aufweist.
DE102016203103.1A 2015-03-13 2016-02-26 Ultrahochspannungskondensatorbaugruppe Withdrawn DE102016203103A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/657,208 2015-03-13
US14/657,208 US10297393B2 (en) 2015-03-13 2015-03-13 Ultrahigh voltage capacitor assembly

Publications (1)

Publication Number Publication Date
DE102016203103A1 true DE102016203103A1 (de) 2016-09-15

Family

ID=56800797

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016203103.1A Withdrawn DE102016203103A1 (de) 2015-03-13 2016-02-26 Ultrahochspannungskondensatorbaugruppe

Country Status (5)

Country Link
US (1) US10297393B2 (de)
JP (2) JP6917677B2 (de)
CN (2) CN107452507B (de)
DE (1) DE102016203103A1 (de)
IL (1) IL243142B (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018136380A1 (en) 2017-01-17 2018-07-26 Kemet Electronics Corporation Improved wire to anode connection
US11929215B2 (en) 2017-01-17 2024-03-12 Kemet Electronics Corporation Wire to anode connection
WO2019005535A1 (en) 2017-06-29 2019-01-03 Avx Corporation MODULE CONTAINING HERMETICALLY SEALED CAPACITORS
WO2022116927A1 (zh) * 2020-12-03 2022-06-09 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) 新型表面封装电容器及新型表面封装电容器的制作方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111327A (en) 1991-03-04 1992-05-05 General Electric Company Substituted 3,4-polymethylenedioxythiophenes, and polymers and electro responsive devices made therefrom
US5457862A (en) 1993-11-10 1995-10-17 Nec Corporation Method of manufacturing solid electrolytic capacitor
US5473503A (en) 1993-07-27 1995-12-05 Nec Corporation Solid electrolytic capacitor and method for manufacturing the same
US5729428A (en) 1995-04-25 1998-03-17 Nec Corporation Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same
US5812367A (en) 1996-04-04 1998-09-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative
US6197252B1 (en) 1997-01-13 2001-03-06 Avx Limited Binder removal
US6322912B1 (en) 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6391275B1 (en) 1998-09-16 2002-05-21 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6416730B1 (en) 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6576099B2 (en) 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
US6635729B1 (en) 2000-02-03 2003-10-21 Bayer Aktinegesellschaft Process for the preparation of water-soluble π-conjugated polymers
US6639787B2 (en) 2000-11-06 2003-10-28 Cabot Corporation Modified oxygen reduced valve metal oxides
US6674635B1 (en) 2001-06-11 2004-01-06 Avx Corporation Protective coating for electrolytic capacitors
US6987663B2 (en) 2003-10-17 2006-01-17 H.C. Starck Gmbh Electrolytic capacitors with a polymeric outer layer
US20070064376A1 (en) 2005-09-13 2007-03-22 H. C. Starck Gmbh Process for the production of electrolyte capacitors of high nominal voltage
US7515396B2 (en) 2007-03-21 2009-04-07 Avx Corporation Solid electrolytic capacitor containing a conductive polymer

Family Cites Families (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3345545A (en) 1964-11-27 1967-10-03 Johnson Matthey & Mallory Ltd Solid electrolytic capacitor having minimum anode impedance
GB1069685A (en) 1965-08-31 1967-05-24 Mallory & Co Inc P R Atmosphere control within the hermetic enclosure of electrolytic-capacitor assemblies
US4085435A (en) 1976-06-14 1978-04-18 Avx Corporation Tantalum chip capacitor
US3922773A (en) 1974-07-17 1975-12-02 Corning Glass Works Method of forming a hermetic enclosure
US4107762A (en) 1977-05-16 1978-08-15 Sprague Electric Company Solid electrolyte capacitor package with an exothermically-alloyable fuse
US4479168A (en) 1983-12-19 1984-10-23 Sprague Electric Company Electrolytic capacitor with a hermetic seal
US4755908A (en) 1987-08-17 1988-07-05 Gardner Edward P Capacitor
DE3843412A1 (de) 1988-04-22 1990-06-28 Bayer Ag Neue polythiophene, verfahren zu ihrer herstellung und ihre verwendung
DE3814730A1 (de) 1988-04-30 1989-11-09 Bayer Ag Feststoff-elektrolyte und diese enthaltende elektrolyt-kondensatoren
JPH03127813A (ja) 1989-10-13 1991-05-30 Kao Corp 固体電解コンデンサの製造方法
US4945452A (en) 1989-11-30 1990-07-31 Avx Corporation Tantalum capacitor and method of making same
JPH03212920A (ja) * 1990-01-18 1991-09-18 Elna Co Ltd 固体電解コンデンサおよびそのユニット
EP0440957B1 (de) 1990-02-08 1996-03-27 Bayer Ag Neue Polythiophen-Dispersionen, ihre Herstellung und ihre Verwendung
JPH03266411A (ja) * 1990-03-16 1991-11-27 Elna Co Ltd 電解コンデンサ装置
US5198968A (en) 1992-07-23 1993-03-30 Avx Corporation Compact surface mount solid state capacitor and method of making same
US5357399A (en) 1992-09-25 1994-10-18 Avx Corporation Mass production method for the manufacture of surface mount solid state capacitor and resulting capacitor
US5314606A (en) 1993-02-16 1994-05-24 Kyocera America, Inc. Leadless ceramic package with improved solderabilty
US5394295A (en) 1993-05-28 1995-02-28 Avx Corporation Manufacturing method for solid state capacitor and resulting capacitor
US5495386A (en) 1993-08-03 1996-02-27 Avx Corporation Electrical components, such as capacitors, and methods for their manufacture
JP3070408B2 (ja) 1993-12-28 2000-07-31 日本電気株式会社 固体電解コンデンサおよびその製造方法
US5638253A (en) 1994-04-28 1997-06-10 Rohm Co. Ltd. Package-type solid electrolytic capacitor
JP2770746B2 (ja) 1994-09-02 1998-07-02 日本電気株式会社 固体電解コンデンサ及びその製造方法
US5608261A (en) 1994-12-28 1997-03-04 Intel Corporation High performance and high capacitance package with improved thermal dissipation
JP2778495B2 (ja) 1994-12-28 1998-07-23 日本電気株式会社 耐熱性導電性高分子並びにその導電性高分子を用いた固体電解コンデンサ及びその製造方法
JP3127813B2 (ja) 1995-12-05 2001-01-29 ヤマハ株式会社 オーディオ用アンプの保護回路
JP3863232B2 (ja) 1996-09-27 2006-12-27 ローム株式会社 固体電解コンデンサに使用するコンデンサ素子の構造及びコンデンサ素子におけるチップ体の固め成形方法
TW388043B (en) 1997-04-15 2000-04-21 Sanyo Electric Co Solid electrolyte capacitor
JPH11112157A (ja) 1997-09-30 1999-04-23 Kyocera Corp 電子部品用ケースとこれを用いた電子部品及び電解コンデンサ
JP2000058401A (ja) 1998-08-14 2000-02-25 Rohm Co Ltd 固体電解コンデンサ
JP3403103B2 (ja) 1998-12-21 2003-05-06 三洋電機株式会社 固体電解コンデンサ
US6191936B1 (en) 1999-04-12 2001-02-20 Vishay Sprague, Inc. Capacitor having textured pellet and method for making same
JP3942000B2 (ja) 1999-06-01 2007-07-11 ローム株式会社 パッケージ型固体電解コンデンサの構造及びその製造方法
JP3959220B2 (ja) 2000-02-04 2007-08-15 株式会社エスアイアイ・マイクロパーツ 表面実装用非水電解電池および表面実装用電気二重層キャパシタ
US6654228B1 (en) * 2000-03-08 2003-11-25 Eveready Battery Company, Inc. Energy storage device having DC voltage converter
DE10016723A1 (de) 2000-04-04 2001-10-11 Bayer Ag Verfahren zur Herstellung von Dialkoxythiophenen und Alkylendioxythiophenen
DE10029075A1 (de) 2000-06-13 2001-12-20 Bayer Ag Verfahren zur Herstellung von 3,4-Alkylendioxythiophen-2,5-dicarbonsäurederivaten
US6534581B1 (en) 2000-07-20 2003-03-18 Dow Corning Corporation Silicone composition and electrically conductive silicone adhesive formed therefrom
EP2289964A3 (de) 2000-11-22 2014-01-01 Heraeus Precious Metals GmbH & Co. KG Dispergierbare Polymerpulver
US6625009B2 (en) 2001-04-05 2003-09-23 Rohm Co., Ltd. Solid electrolytic capacitor and method of making the same
DE10164260A1 (de) 2001-12-27 2003-07-17 Bayer Ag Verfahren zur Herstellung von undotiertem, neutralem Polyethylendioxythiophen, sowie entsprechende Polyethylendioxythiophene
DE10229218A1 (de) 2002-06-28 2004-01-22 H.C. Starck Gmbh Alkylendioxythiophen-Dimere und Trimere
DE10237577A1 (de) 2002-08-16 2004-02-26 H.C. Starck Gmbh Substituierte Poly(alkylendioxythiophene) als Feststoffelektrolyte in Elektrolytkondensatoren
DE10257539A1 (de) 2002-12-10 2004-07-01 H.C. Starck Gmbh Verfahren zur Herstellung von 2,2'-Di(3,4-ethylendioxythiophen)en
US6859353B2 (en) * 2002-12-16 2005-02-22 Wilson Greatbatch Technologies, Inc. Capacitor interconnect design
DE10302086A1 (de) 2003-01-21 2004-07-29 Bayer Ag Alkylendioxythiophene und Poly(alkylendioxythiophene) mit mesogenen Gruppen
US7972534B2 (en) 2003-04-02 2011-07-05 H. C. Starck Gmbh Retarding oxidants for preparing conductive polymers
DE10331673A1 (de) 2003-07-14 2005-02-10 H.C. Starck Gmbh Polythiophen mit Alkylenoxythiathiophen-Einheiten in Elektrolytkondensatoren
EP1498391B1 (de) 2003-07-15 2010-05-05 H.C. Starck GmbH Niobsuboxidpulver
DE10333156A1 (de) 2003-07-22 2005-02-24 H.C. Starck Gmbh Verfahren zur Herstellung von Niobsuboxid
DE10343873A1 (de) 2003-09-23 2005-04-21 Starck H C Gmbh Verfahren zur Reinigung von Thiophenen
DE10347702B4 (de) 2003-10-14 2007-03-29 H.C. Starck Gmbh Sinterkörper auf Basis Niobsuboxid
US7495888B2 (en) 2003-10-29 2009-02-24 Showa Denko K.K. Electrolytic capacitor
US7027290B1 (en) * 2003-11-07 2006-04-11 Maxwell Technologies, Inc. Capacitor heat reduction apparatus and method
US7203056B2 (en) * 2003-11-07 2007-04-10 Maxwell Technologies, Inc. Thermal interconnection for capacitor systems
DE10357571A1 (de) 2003-12-10 2005-07-28 H.C. Starck Gmbh Multifunktionelle 3,4-Alkylendioxythiophen-Derivate und diese enthaltende elektrisch leitfähige Polymere
US7948069B2 (en) 2004-01-28 2011-05-24 International Rectifier Corporation Surface mountable hermetically sealed package
JP2005217129A (ja) 2004-01-29 2005-08-11 Kyocera Corp セラミック容器およびそれを用いたタンタル電解コンデンサ
US7116548B2 (en) 2004-04-23 2006-10-03 Kemet Electronics Corporation Fluted anode with minimal density gradients and capacitor comprising same
DE102004022110A1 (de) 2004-05-05 2005-12-01 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
JP2006028214A (ja) 2004-07-12 2006-02-02 Nagase Chemtex Corp ポリ(3,4−ジアルコキシチオフェン)とポリ陰イオンとの複合体の水分散体の製造方法
JP4550519B2 (ja) 2004-08-10 2010-09-22 セイコーインスツル株式会社 電気化学セルおよびその製造方法
CN1737072B (zh) 2004-08-18 2011-06-08 播磨化成株式会社 导电粘合剂及使用该导电粘合剂制造物件的方法
JP2006128343A (ja) 2004-10-28 2006-05-18 Rohm Co Ltd 固体電解コンデンサ
JP4903421B2 (ja) 2005-02-23 2012-03-28 京セラ株式会社 セラミック容器およびこれを用いた電池または電気二重層キャパシタ
JP2006278875A (ja) 2005-03-30 2006-10-12 Sanyo Electric Co Ltd 固体電解コンデンサ
DE102005016727A1 (de) 2005-04-11 2006-10-26 H.C. Starck Gmbh Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zu ihrer Herstellung
US20060260713A1 (en) 2005-04-22 2006-11-23 Pyszczek Michael F Method and apparatus for providing a sealed container containing a detectable gas
DE102005033839A1 (de) 2005-07-20 2007-01-25 H.C. Starck Gmbh Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zur ihrer Herstellung
DE102005043828A1 (de) 2005-09-13 2007-03-22 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
DE102005053646A1 (de) 2005-11-10 2007-05-16 Starck H C Gmbh Co Kg Polymerbeschichtungen mit verbesserter Lösungsmittelbeständigkeit
EP1953178B1 (de) 2005-11-17 2018-06-13 Heraeus Deutschland GmbH & Co. KG Verfahren zur herstellung einer wässrigen dispersion von verbund von poly(3,4-dialkoxythiophen) mit polyanion
US7582958B2 (en) 2005-12-08 2009-09-01 International Rectifier Corporation Semiconductor package
DE102006002797A1 (de) 2006-01-20 2007-08-02 H. C. Starck Gmbh & Co. Kg Verfahren zur Herstellung von Polythiophenen
JP2007200950A (ja) 2006-01-23 2007-08-09 Fujitsu Media Device Kk 積層型固体電解コンデンサ
JP5013772B2 (ja) 2006-01-31 2012-08-29 三洋電機株式会社 電気二重層キャパシタ
DE102006020744A1 (de) 2006-05-04 2007-11-08 H. C. Starck Gmbh & Co. Kg Verfahren zur Stabilisierung von Thiophenderivaten
US7563290B2 (en) 2006-07-06 2009-07-21 Kemet Electronics Corporation High voltage solid electrolytic capacitors using conductive polymer slurries
DE102006044067A1 (de) 2006-09-20 2008-03-27 H.C. Starck Gmbh Verfahren zur Herstellung von Polythiophenen
JP4440911B2 (ja) 2006-10-13 2010-03-24 ニチコン株式会社 固体電解コンデンサ
US7554793B2 (en) 2006-11-16 2009-06-30 Kemet Electronics Corporation Low temperature curable conductive adhesive and capacitors formed thereby
JP4845699B2 (ja) 2006-12-08 2011-12-28 三洋電機株式会社 固体電解コンデンサ及び固体電解コンデンサの製造方法
CN101632142B (zh) 2007-03-08 2011-12-28 松下电器产业株式会社 壳体模制式电容器及其使用方法
DE102007041722A1 (de) 2007-09-04 2009-03-05 H.C. Starck Gmbh Verfahren zur Herstellung von leitfähigen Polymeren
DE102007046904A1 (de) 2007-09-28 2009-04-09 H.C. Starck Gmbh Partikel mit Kern-Schale-Struktur für leitfähige Schichten
DE102007048212A1 (de) 2007-10-08 2009-04-09 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Zwischenschicht
JP5041995B2 (ja) 2007-12-07 2012-10-03 三洋電機株式会社 固体電解コンデンサ
EP2231754B1 (de) 2007-12-14 2011-07-20 Henkel AG & Co. KGaA Härtbare zusammensetzungen enthaltend wässrige dispersionen von organopolysiloxanen
JP2009217759A (ja) 2008-03-13 2009-09-24 Sage Co Ltd 車両管理装置およびプログラム
US8094434B2 (en) 2008-04-01 2012-01-10 Avx Corporation Hermetically sealed capacitor assembly
DE102008023008A1 (de) 2008-05-09 2009-11-12 H.C. Starck Gmbh Neuartige Polythiophene-Polyanion-Komplexe in unpolaren organischen Lösungsmitteln
DE102008024805A1 (de) 2008-05-23 2009-12-03 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
DE102008032578A1 (de) 2008-07-11 2010-01-14 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
DE102008036525A1 (de) 2008-08-06 2010-02-11 H.C. Starck Gmbh Verfahren zur Herstellung von Polythiophenen
EP2335304A4 (de) 2008-09-09 2011-12-28 Cap Xx Ltd Gehäuse für eine elektrische vorrichtung
JP5340864B2 (ja) 2008-09-12 2013-11-13 日本碍子株式会社 SiC/Al系複合材料及びその製法
US8075640B2 (en) 2009-01-22 2011-12-13 Avx Corporation Diced electrolytic capacitor assembly and method of production yielding improved volumetric efficiency
DE102009007594A1 (de) 2009-02-05 2010-08-12 H.C. Starck Clevios Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Außenschicht.
DE102009012660A1 (de) 2009-03-13 2010-09-16 H.C. Starck Clevios Gmbh Polymerbeschichtungen mit verbesserter Temperaturstabilität
US8405956B2 (en) * 2009-06-01 2013-03-26 Avx Corporation High voltage electrolytic capacitors
JP5349112B2 (ja) * 2009-03-30 2013-11-20 三洋電機株式会社 固体電解コンデンサ
US8310815B2 (en) 2009-04-20 2012-11-13 Kemet Electronics Corporation High voltage and high efficiency polymer electrolytic capacitors
US8194395B2 (en) 2009-10-08 2012-06-05 Avx Corporation Hermetically sealed capacitor assembly
JP2012004342A (ja) * 2010-06-17 2012-01-05 Sanyo Electric Co Ltd 固体電解コンデンサ及びその製造方法
US8259436B2 (en) * 2010-08-03 2012-09-04 Avx Corporation Mechanically robust solid electrolytic capacitor assembly
US8279584B2 (en) 2010-08-12 2012-10-02 Avx Corporation Solid electrolytic capacitor assembly
US8384282B2 (en) 2010-10-04 2013-02-26 Yujia Chen LED lamps using recycled metal containers as heat sinks and the method of making the same
US8824122B2 (en) 2010-11-01 2014-09-02 Avx Corporation Solid electrolytic capacitor for use in high voltage and high temperature applications
US8300387B1 (en) 2011-04-07 2012-10-30 Avx Corporation Hermetically sealed electrolytic capacitor with enhanced mechanical stability
US8379372B2 (en) 2011-04-07 2013-02-19 Avx Corporation Housing configuration for a solid electrolytic capacitor
US8947857B2 (en) 2011-04-07 2015-02-03 Avx Corporation Manganese oxide capacitor for use in extreme environments
US9767964B2 (en) 2011-04-07 2017-09-19 Avx Corporation Multi-anode solid electrolytic capacitor assembly
JP2013131627A (ja) * 2011-12-21 2013-07-04 Nec Tokin Corp 固体電解コンデンサ及びその製造方法
DE102013101443A1 (de) * 2012-03-01 2013-09-05 Avx Corporation Ultrahigh voltage solid electrolytic capacitor
JP2013219362A (ja) 2012-04-11 2013-10-24 Avx Corp 過酷な条件下で強化された機械的安定性を有する固体電解コンデンサ
JP6142280B2 (ja) * 2012-08-31 2017-06-07 パナソニックIpマネジメント株式会社 固体電解コンデンサおよびその製造方法
US8767378B2 (en) * 2012-11-02 2014-07-01 E I Du Pont De Nemours And Company Electrically conductive paste composition
GB2512480B (en) * 2013-03-13 2018-05-30 Avx Corp Solid electrolytic capacitor for use in extreme conditions
CN105051848B (zh) 2013-04-05 2018-01-30 如碧空股份有限公司 固体电解电容器及固体电解电容器用外壳
US9236192B2 (en) 2013-08-15 2016-01-12 Avx Corporation Moisture resistant solid electrolytic capacitor assembly

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111327A (en) 1991-03-04 1992-05-05 General Electric Company Substituted 3,4-polymethylenedioxythiophenes, and polymers and electro responsive devices made therefrom
US5473503A (en) 1993-07-27 1995-12-05 Nec Corporation Solid electrolytic capacitor and method for manufacturing the same
US5457862A (en) 1993-11-10 1995-10-17 Nec Corporation Method of manufacturing solid electrolytic capacitor
US5729428A (en) 1995-04-25 1998-03-17 Nec Corporation Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same
US5812367A (en) 1996-04-04 1998-09-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative
US6197252B1 (en) 1997-01-13 2001-03-06 Avx Limited Binder removal
US6416730B1 (en) 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6391275B1 (en) 1998-09-16 2002-05-21 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6322912B1 (en) 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6527937B2 (en) 1998-09-16 2003-03-04 Cabot Corporation Method of making a capacitor anode of a pellet of niobium oxide
US6592740B2 (en) 1998-09-16 2003-07-15 Cabot Corporation Methods to make capacitors containing a partially reduced niobium metal oxide
US6635729B1 (en) 2000-02-03 2003-10-21 Bayer Aktinegesellschaft Process for the preparation of water-soluble π-conjugated polymers
US6576099B2 (en) 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
US6639787B2 (en) 2000-11-06 2003-10-28 Cabot Corporation Modified oxygen reduced valve metal oxides
US7220397B2 (en) 2000-11-06 2007-05-22 Cabot Corporation Modified oxygen reduced valve metal oxides
US6674635B1 (en) 2001-06-11 2004-01-06 Avx Corporation Protective coating for electrolytic capacitors
US6987663B2 (en) 2003-10-17 2006-01-17 H.C. Starck Gmbh Electrolytic capacitors with a polymeric outer layer
US20070064376A1 (en) 2005-09-13 2007-03-22 H. C. Starck Gmbh Process for the production of electrolyte capacitors of high nominal voltage
US7515396B2 (en) 2007-03-21 2009-04-07 Avx Corporation Solid electrolytic capacitor containing a conductive polymer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Critical Oxygen Content in Porous Anodes of Solid Tantalum Capacitors", Pozdeev-Freeman et al., Journal of Materials Science: Materials in Electronics 9 (1998), 309–311

Also Published As

Publication number Publication date
US20160268054A1 (en) 2016-09-15
JP2020145477A (ja) 2020-09-10
US10297393B2 (en) 2019-05-21
JP2016171311A (ja) 2016-09-23
CN105977026A (zh) 2016-09-28
JP6917677B2 (ja) 2021-08-11
CN107452507A (zh) 2017-12-08
CN107452507B (zh) 2019-10-25
IL243142B (en) 2019-12-31
IL243142A0 (en) 2016-02-29

Similar Documents

Publication Publication Date Title
CN111524711B (zh) 稳定的含纳米复合材料的固体电解电容器
DE102014204323A1 (de) Festelektrolytkondensator zur Verwendung unter extremen Bedingungen
DE102013214126A1 (de) Festelektrolytkondensator mit verbesserten Eigenschaften bei hohen Spannungen
DE102014208944A1 (de) Festelektrolytkondensator, der leitfähige Polymerteilchen enthält
DE102013213723A1 (de) Festelektrolytkondensator mit erhöhter Feucht-zu-Trocken-Kapazität
DE102011117192A1 (de) Festelektrolytkondensator zur Verwendung in Hochspannungs- und Hochtemperaturanwendungen
DE102012221861A1 (de) Flüssigelektrolytkondensator, der einen gelierten Arbeitselektrolyten enthält
DE102013204336A1 (de) Flüssigkeitskondensatorkathode, die ein leitfähiges Copolymer enthält
DE102016208802A1 (de) Festelektrolytkondensatorbaugruppe zur Verwendung in einer feuchten Atmosphäre
DE102016208800A1 (de) Festelektrolytkondensator mit ultrahoher Kapazität
DE102011109752A1 (de) Festelektrolytkondensator-Baugruppe
DE102016208807A1 (de) Festelektrolytkondensatorelement zur Verwendung unter trockenen Bedingungen
DE102013213728A1 (de) Nichtionisches Tensid zur Verwendung in einem festen Elektrolyten eines Elektrolytkondensators
DE102013213720A1 (de) Temperaturstabiler Festelektrolytkondensator
DE102012205589A1 (de) Gehäusekonfiguration für einen Festelektrolytkondensator
DE102016207610A1 (de) Festelektrolytkondensator mit hoher Kapazität
DE102012205607A1 (de) Hermetisch versiegelter Elektrolytkondensator mit verbesserter mechanischer Stabilität
DE102012205600A1 (de) Festelektrolytkondensatorbaugruppe mit mehreren Anoden
DE102013204358A1 (de) Flüssigkeitskondensatorkathode, die eine leitfähige Beschichtung enthält, welche durch anodische elektrochemische Polymerisation einer Mikroemulsion gebildet ist
DE102016214217A1 (de) Mehrfache Anschlussdrähte unter Verwendung eines Trägerdrahts für Elektrolytkondensatoren mit niedrigem ESR
DE102013205881A9 (de) Festelektrolytkondensator mit erhöhter mechanischer Stabilität unter extremen Bedingungen
DE102013204351A1 (de) Flüssigkeitskondensatorkathode, die eine leitfähige Beschichtung enthält, welche durch anodische elektrochemische Polymerisation einer kolloidalen Suspension gebildet ist
DE102014214966A1 (de) Anschlussbaugruppe mit dünnem Draht/dickem Draht für Elektrolytkondensator
DE102016208806A1 (de) Festelektrolytkondensatorbaugruppe zur Verwendung bei hohen Temperaturen
DE102015220954A1 (de) Flüssigelektrolytkondensator für eine implantierbare medizinische Vorrichtung

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee