DE102013204358A1 - Flüssigkeitskondensatorkathode, die eine leitfähige Beschichtung enthält, welche durch anodische elektrochemische Polymerisation einer Mikroemulsion gebildet ist - Google Patents

Flüssigkeitskondensatorkathode, die eine leitfähige Beschichtung enthält, welche durch anodische elektrochemische Polymerisation einer Mikroemulsion gebildet ist Download PDF

Info

Publication number
DE102013204358A1
DE102013204358A1 DE102013204358A DE102013204358A DE102013204358A1 DE 102013204358 A1 DE102013204358 A1 DE 102013204358A1 DE 102013204358 A DE102013204358 A DE 102013204358A DE 102013204358 A DE102013204358 A DE 102013204358A DE 102013204358 A1 DE102013204358 A1 DE 102013204358A1
Authority
DE
Germany
Prior art keywords
polyoxyethylene
electrolytic capacitor
microemulsion
capacitor according
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102013204358A
Other languages
English (en)
Inventor
Mitchell D. Weaver
David Masheder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Avx Components Corp N D Ges Us
Original Assignee
AVX Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVX Corp filed Critical AVX Corp
Publication of DE102013204358A1 publication Critical patent/DE102013204358A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/0425Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4476Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications comprising polymerisation in situ
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Metallurgy (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

Ein Flüssigelektrolytkondensator, der einen anodisch oxidierten porösen Anodenkörper, eine Kathode, die ein mit einer leitfähigen Beschichtung beschichtetes Metallsubstrat enthält, und einen Arbeitselektrolyten, der das Dielektrikum auf der Anode benetzt, enthält. Die leitfähige Beschichtung wird durch anodische elektrochemische Polymerisation (”Elektropolymerisation”) einer Mikroemulsion auf der Oberfläche des Metallsubstrats gebildet. Die Mikroemulsion ist ein thermodynamisch stabiles, isotropes Flüssigkeitsgemisch, das ein Vorläufermonomer, eine Sulfonsäure, ein nichtionisches Tensid und ein Lösungsmittel enthält.

Description

  • Verwandte Anmeldungen
  • Die vorliegende Anmeldung beansprucht die Priorität der am 16. März 2012 eingereichten vorläufigen US-Anmeldung Serial Nr. 61/611,717, auf die hier ausdrücklich Bezug genommen wird.
  • Hintergrund der Erfindung
  • Flüssigkeitskondensatoren werden aufgrund ihrer volumetrischen Effizienz, Zuverlässigkeit und Verfahrenskompatibilität zunehmend bei der Gestaltung von Schaltungen verwendet. Flüssigkeitskondensatoren haben typischerweise eine größere Kapazität pro Volumeneinheit als bestimmte andere Arten von Kondensatoren, wodurch sie wertvoll für elektrische Schaltungen mit hoher Stromstärke, hoher Leistung und niedriger Frequenz sind. Ein Typ von Flüssigkeitskondensator, der entwickelt wurde, ist ein Flüssigelektrolytkondensator, der eine Ventilmetallanode, eine Kathode und einen flüssigen Elektrolyten umfasst. Die Einzelzellspannung bei dieser Art von Kondensator ist aufgrund der Bildung eines dielektrischen Metalloxidfilms über der Anodenoberfläche im Allgemeinen höher. Flüssigelektrolytkondensatoren, die ein Dielektrikum aus einem Ventilmetall enthalten, bieten häufig eine gute Kombination von hoher Kapazität mit einem niedrigen Leckstrom. Ein anderer Typ Flüssigkeitskondensator ist ein symmetrischer Flüssigkeitskondensator, bei dem die Anode und die Kathode bezüglich Struktur und Zusammensetzung gleich sind. Die Einzelzellspannung bei dieser Art von Kondensator ist aufgrund der unvermeidlichen Zersetzung des Elektrolyten bei hoher Spannung im Allgemeinen gering. Ob elektrolytisch oder symmetrisch, die Kathoden von Flüssigkeitskondensatoren umfassen jedoch typischerweise ein Metallsubstrat und eine leitfähige Beschichtung, die Schutz vor dem flüssigen Elektrolyten bietet. Die Kapazität der leitfähigen Beschichtung wird entweder über einen faradischen Strom, zum Beispiel einen elektrochemischen Vorgang, oder einen nichtfaradischen Mechanismus (z. B. Doppelschichtbildung) gemessen. Herkömmliche Beschichtungen umfassen Aktivkohle, Metalloxide (z. B. Niobdioxid) und dergleichen. Leider sind die Beschichtungen jedoch kostspielig und können sich unter bestimmten Bedingungen leicht ablösen.
  • Daher besteht immer noch ein Bedürfnis nach einem Flüssigelektrolytkondensator, der gute thermische Eigenschaften, mechanische Robustheit und elektrische Eigenschaften besitzt.
  • Kurzbeschreibung der Erfindung
  • Gemäß einer Ausführungsform der vorliegenden Erfindung wird ein Flüssigelektrolytkondensator offenbart, der eine Anode, eine Kathode und einen flüssigen Arbeitselektrolyten in Verbindung mit der Anode und Kathode umfasst. Die Anode umfasst einen gesinterten porösen Anodenkörper, der mit einem Dielektrikum beschichtet ist. Die Kathode umfasst ein Metallsubstrat, über dem sich eine leitfähige Polymerbeschichtung befindet. Die leitfähige Polymerbeschichtung wird durch anodische elektrochemische Polymerisation einer Mikroemulsion gebildet, und die Mikroemulsion umfasst ein Vorläufermonomer, ein nichtionisches Tensid, eine Sulfonsäure und ein Lösungsmittel.
  • Gemäß einer anderen Ausführungsform der vorliegenden Erfindung wird ein Flüssigelektrolytkondensator offenbart, der eine Anode, einen flüssigen Arbeitselektrolyten und ein im Wesentlichen zylindrisches Metallgehäuse, in dem sich die Anode und der flüssige Elektrolyt befinden, umfasst. Die Anode enthält einen im Wesentlichen zylindrischen gesinterten porösen Anodenkörper, der mit einem Dielektrikum beschichtet ist und Tantal enthält. Die Anode umfasst weiterhin einen Anodenanschlussdraht, der sich ausgehend von einem proximalen Ende der Anode in Längsrichtung erstreckt. Eine leitfähige Polymerbeschichtung befindet sich auf dem Metallgehäuse, so dass die Beschichtung mit dem flüssigen Elektrolyten in Verbindung steht. Die leitfähige Polymerbeschichtung wird durch anodische elektrochemische Polymerisation einer Mikroemulsion gebildet, wobei die Mikroemulsion ein Vorläufermonomer, ein nichtionisches Tensid, eine Sulfonsäure und ein Lösungsmittel umfasst.
  • Gemäß noch einer anderen Ausführungsform der vorliegenden Erfindung wird ein Verfahren zur Bildung einer Kathode eines Flüssigkeitskondensators offenbart, das das Auftragen einer Mikroemulsion auf ein Metallsubstrat, wobei die Mikroemulsion ein Vorläufermonomer, ein nichtionisches Tensid, eine Sulfonsäure und ein Lösungsmittel umfasst, das In-Kontakt-Bringen einer Elektrode mit dem Metallsubstrat und das Zuführen eines Stroms zu der Elektrode, um eine Elektrolyse und oxidative Polymerisation des Vorläufermonomers zu induzieren, wodurch eine leitfähige Polymerbeschichtung entsteht, umfasst.
  • Weitere Merkmale und Aspekte der vorliegenden Erfindung sind im Folgenden ausführlicher beschrieben.
  • Kurzbeschreibung der Zeichnungen
  • Im Rest der Beschreibung und unter Bezugnahme auf die Begleitzeichnungen ist eine vollständige und nacharbeitbare Offenbarung der vorliegenden Erfindung einschließlich ihrer besten Realisierung für den Fachmann insbesondere dargelegt; dabei sind:
  • 1 eine Querschnittsansicht einer Ausführungsform des Flüssigelektrolytkondensators der vorliegenden Erfindung;
  • 2 eine perspektivische Ansicht einer Ausführungsform einer Anode, die in dem Flüssigelektrolytkondensator eingesetzt werden kann;
  • 3 eine Seitenansicht der Anode von 2; und
  • 4 eine Draufsicht auf die Anode von 2;
  • 5 eine Draufsicht auf eine andere Ausführungsform einer Anode, die in dem Flüssigelektrolytkondensator der vorliegenden Erfindung eingesetzt werden kann.
  • Bei mehrfacher Verwendung von Bezugszeichen in der vorliegenden Beschreibung und den Zeichnungen sollen diese dieselben oder analoge Merkmale oder Elemente der vorliegenden Erfindung repräsentieren.
  • Ausführliche Beschreibung von repräsentativen Ausführungsformen
  • Der Fachmann sollte sich darüber im Klaren sein, dass die vorliegende Diskussion nur eine Beschreibung von beispielhaften Ausführungsformen ist und die breiteren Aspekte der vorliegenden Erfindung nicht einschränken soll, wobei diese breiteren Aspekte in der beispielhaften Konstruktion verkörpert sind.
  • Die vorliegende Erfindung bezieht sich allgemein auf einen Flüssigelektrolytkondensator, der einen anodisch oxidierten porösen Anodenkörper, eine Kathode, die ein mit einer leitfähigen Beschichtung beschichtetes Metallsubstrat enthält, und einen Arbeitselektrolyten, der das Dielektrikum auf der Anode benetzt, enthält. Der Grad des Oberflächenkontakts zwischen der leitfähigen Beschichtung und der Oberfläche des Metallsubstrats wird in der vorliegenden Erfindung dadurch verstärkt, dass man die Art und Weise, wie die leitfähige Beschichtung gebildet wird, gezielt steuert. Insbesondere wird die leitfähige Beschichtung durch anodische elektrochemische Polymerisation (”Elektropolymerisation”) einer Mikroemulsion auf der Oberfläche des Metallsubstrats gebildet. Die Mikroemulsion ist ein thermodynamisch stabiles, isotropes Flüssigkeitsgemisch, das ein Vorläufermonomer, eine Sulfonsäure, ein nichtionisches Tensid und ein Lösungsmittel enthält. Die Erfinder haben herausgefunden, dass durch die gezielte Steuerung der Komponenten der Mikroemulsion ein vielfältiger Nutzen erreicht werden kann. Zum Beispiel kann der pH-Wert der Mikroemulsion auf einem relativ neutralen Wert gehalten werden, um das Ausmaß, in dem das Monomer unter sauren Bedingungen einer vorzeitigen Polymerisation unterliegt, zu minimieren und dadurch die Betriebslebensdauer der Mikroemulsion zu verlängern. Dies kann durch die Verwendung eines Tensids, das nichtionisch anstatt ionisch ist, und durch gezielte Steuerung der relativen Konzentration der ionischen Sulfonsäurekomponente relativ zu anderen nichtionischen Komponenten der Mikroemulsion erreicht werden. Die Erfinder haben auch herausgefunden, dass die Art der Mikroemulsion es ihr ermöglichen kann, die Oberfläche des Substrats im Wesentlichen gleichmäßig zu bedecken und, wenn sie polymerisiert ist, auch das Wachstum oligomerer Ketten in unmittelbarer Nachbarschaft der Oberfläche des Metallsubstrats und innerhalb der Grübchen zu erleichtern, was die Robustheit und mechanische Stabilität erhöhen kann.
  • Es werden jetzt verschiedene Ausführungsformen der vorliegenden Erfindung ausführlicher beschrieben.
  • I. Kathode
  • A. Metallsubstrat
  • Das Substrat kann ein Metall, wie Tantal, Niob, Aluminium, Nickel, Hafnium, Titan, Kupfer, Silber, Stahl (z. B. Edelstahl), Legierungen davon (z. B. elektrisch leitfähige Oxide), Verbundstoffe davon (z. B. mit elektrisch leitfähigem Oxid beschichtetes Metall) usw. umfassen. Titan und Tantal sowie Legierungen davon sind zur Verwendung in der vorliegenden Erfindung besonders gut geeignet. Die geometrische Konfiguration des Substrats kann im Allgemeinen variieren, wie dem Fachmann wohlbekannt ist, wie in Form eines Behälters, Bechers, Folie, Blech, Sieb, Netz usw. In einer Ausführungsform zum Beispiel bildet das Metallsubstrat ein Gehäuse mit einer im Wesentlichen zylindrischen Form. Man sollte sich jedoch darüber im Klaren sein, dass in der vorliegenden Erfindung jede geometrische Konfiguration eingesetzt werden kann, wie D-förmig, rechteckig, dreieckig, prismatisch usw. Das Gehäuse kann gegebenenfalls einen Deckel umfassen, der die Anode und den Elektrolyten bedeckt und aus demselben oder einem anderen Material als das Gehäuse gebildet sein kann.
  • Falls gewünscht, kann das Substrat aufgeraut werden, um seine spezifische Oberfläche zu erhöhen und den Grad, bis zu dem das leitfähige Polymer daran haften kann, zu erhöhen. In einer Ausführungsform zum Beispiel wird die Oberfläche chemisch geätzt, etwa durch Auftragen einer Lösung einer ätzenden Substanz (z. B. Salzsäure) auf die Oberfläche. Die Oberfläche kann auch elektrochemisch geätzt werden, etwa durch Anlegen einer Spannung an eine Lösung der ätzenden Substanz, so dass diese eine Elektrolyse erfährt. Die Spannung kann auf ein ausreichend hohes Niveau erhöht werden, um eine ”Funkenbildung” an der Oberfläche des Substrats auszulösen, was vermutlich ausreichend hohe lokale Oberflächentemperaturen erzeugt, die das Substrat wegätzen. Diese Technik ist ausführlicher in der US-Patentanmeldung Veröffentlichungs-Nr. 2010/0142124 (Dreissig et al.) beschrieben. Neben chemischen oder elektrochemischen Aufrauungstechniken kann auch mechanisches Aufrauen eingesetzt werden. In einer Ausführungsform zum Beispiel kann die Oberfläche des Metallsubstrats gestrahlt werden, indem man einen Strom von Schleifkörpern (z. B. Sand) gegen wenigstens einen Teil seiner Oberfläche schleudern lässt.
  • B. Mikroemulsion
  • Die Mikroemulsion, die für die anodische elektrochemische Polymerisation eingesetzt wird, enthält im Allgemeinen ein Lösungsmittel, das als kontinuierliche Phase dient, in der das Vorläufermonomer dispergiert ist. In der Mikroemulsion kann eine Vielzahl verschiedener Lösungsmittel, wie Alkohole, Glycole, Wasser usw., eingesetzt werden. In einer besonderen Ausführungsform ist die Mikroemulsion eine wässrige Mikroemulsion. Unabhängig davon können Lösungsmittel (z. B. Wasser) etwa 50 Gew.-% bis etwa 99 Gew.-%, in einigen Ausführungsformen etwa 70 Gew.-% bis etwa 98 Gew.-% und in einigen Ausführungsformen etwa 80 Gew.-% bis etwa 95 Gew.-% ausmachen. Die übrigen Komponenten der Mikroemulsion (z. B. Vorläufermonomere, ionische Tenside und Sulfonsäuren) können ebenso etwa 1 Gew.-% bis etwa 50 Gew.-%, in einigen Ausführungsformen etwa 2 Gew.-% bis etwa 30 Gew.-% und in einigen Ausführungsformen etwa 5 Gew.-% bis etwa 20 Gew.-% der Mikroemulsion ausmachen.
  • i. Vorläufermonomer
  • In der Mikroemulsion kann eine Vielzahl von Vorläufermonomeren eingesetzt werden, die unter Bildung eines leitfähigen Polymers polymerisiert werden können. Spezielle Beispiele für solche Monomere sind zum Beispiel Pyrrole (z. B. Pyrrol, Alkylpyrrole usw.), Thiophene (z. B. 3,4-Ethylendioxythiophen), Aniline (z. B. Alkylaniline, wie Methylanilin, und Alkoxyaniline, wie Methoxyanilin) sowie Derivate und Kombinationen davon. Ein einzelnes Monomer kann zur Bildung eines Homopolymers verwendet werden, oder es können zwei oder mehr Monomere zur Bildung eines Copolymers eingesetzt werden. In einer besonderen Ausführungsform zum Beispiel kann ein Monomer in Form eines Thiophenderivats eingesetzt werden, das die folgende allgemeine Struktur aufweist:
    Figure 00070001
    wobei
    T = O oder S ist;
    D ein gegebenenfalls substituierter C1- bis C5-Alkylenrest (z. B. Methylen, Ethylen, n-Propylen, n-Butylen, n-Pentylen usw.) ist;
    R7 unabhängig ausgewählt ist aus einem linearen oder verzweigten, gegebenenfalls substituierten C1- bis C18-Alkylrest (z. B. Methyl, Ethyl, n-Propyl oder Isopropyl, n-, iso-, sek- oder tert-Butyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1-Ethylpropyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 2,2-Dimethylpropyl, n-Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Hexadecyl, n-Octadecyl usw.); einem gegebenenfalls substituierten C5- bis C12-Cycloalkylrest (z. B. Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecyl usw.); einem gegebenenfalls substituierten C6- bis C14-Arylrest (z. B. Phenyl, Naphthyl usw.); einem gegebenenfalls substituierten C7- bis C18-Aralkylrest (z. B. Benzyl, o-, m-, p-Tolyl, 2,3-, 2,4-, 2,5-, 2,6, 3,4-, 3,5-Xylyl, Mesityl usw.); einem gegebenenfalls substituierten C1- bis C4-Hydroxyalkylrest oder einem Hydroxyrest; und
    q eine ganze Zahl von 0 bis 8, in einigen Ausführungsformen 0 bis 2 und in einer Ausführungsform 0 ist. Man sollte sich darüber im Klaren sein, dass die R7-Gruppen an ein oder mehrere der Kohlenstoffatome des Ringsystems gebunden sein können.
  • Beispiele für Substituenten für die Reste ”D” oder ”R7” sind zum Beispiel Hydroxy, Alkyl, Cycloalkyl, Aryl, Aralkyl, Alkoxy, Halogen, Ether, Thioether, Disulfid, Sulfoxid, Sulfon, Sulfonat, Amino, Aldehyd, Keto, Carbonsäureester, Carbonsäure, Carbonat, Carboxylat, Cyano, Alkylsilan- und Alkoxysilangruppen, Carboxylamidgruppen usw. Besonders gut geeignete Thiophenpolymere sind solche, bei denen ”D” ein gegebenenfalls substituierter C2- bis C3-Alkylenrest ist. Zum Beispiel kann das Polymer gegebenenfalls substituiertes 3,4-Ethylendioxythiophen sein, das die folgende allgemeine Struktur hat:
    Figure 00090001
    wobei R7 und q wie oben definiert sind. In einer besonderen Ausführungsform ist ”q” = 0, so dass es sich bei dem Monomer um 3,4-Ethylendioxythiophen handelt. Ein kommerziell geeignetes Beispiel für 3,4-Ethylendioxythiophen ist von der Heraeus Clevios unter der Bezeichnung CleviosTM M erhältlich. Wie oben erwähnt, können selbstverständlich auch Derivate von 3,4-Ethylendioxythiophen eingesetzt werden. Die Derivate können aus gleichen oder verschiedenen Monomereinheiten bestehen und können in reiner Form oder in einem Gemisch miteinander und/oder mit den Monomeren verwendet werden. Zum Beispiel können geeignete Derivate von 3,4-Ethylendioxythiophen solche mit der folgenden allgemeinen Struktur umfassen:
    Figure 00090002
    wobei
    y = 1 bis 10, in einigen Ausführungsformen 1 bis 5, in einigen Ausführungsformen 1 bis 3 und in einigen Ausführungsformen 1 bis 2 (z. B. 2) beträgt; und
    R Folgendes ist: ein linearer oder verzweigter, gegebenenfalls substituierter C1- bis C18-Alkylrest (z. B. Methyl, Ethyl, n-Propyl oder Isopropyl, n-, iso-, sek- oder tert-Butyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1-Ethylpropyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 2,2-Dimethylpropyl, n-Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Hexadecyl, n-Octadecyl usw.); ein gegebenenfalls substituierter C5- bis C12-Cycloalkylrest (z. B. Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecyl usw.); ein gegebenenfalls substituierter C6- bis C14-Arylrest (z. B. Phenyl, Naphthyl usw.); ein gegebenenfalls substituierter C7- bis C18-Aralkylrest (z. B. Benzyl, o-, m-, p-Tolyl, 2,3-, 2,4-, 2,5-, 2,6, 3,4-, 3,5-Xylyl, Mesityl usw.); ein gegebenenfalls substituierter C1- bis C4-Hydroxyalkylrest, ein Hydroxyrest oder eine Kombination davon. Beispiele für Substituenten für die Reste ”R” sind zum Beispiel Hydroxy, Alkyl, Cycloalkyl, Aryl, Aralkyl, Alkoxy, Halogen, Ether, Thioether, Disulfid, Sulfoxid, Sulfon, Sulfonat, Amino, Aldehyd, Keto, Carbonsäureester, Carbonsäure, Carbonat, Carboxylat, Cyano, Alkylsilan- und Alkoxysilangruppen, Carboxylamidgruppen usw. Besondere Beispiele für solche Polymere sind hydroxyethyliertes Poly(3,4-ethylendioxythiophen) (y = 2 und R = OH) und hydroxymethyliertes Poly(3,4-ethylendioxythiophen) (y = 1 und R = OH). Man sollte sich darüber im Klaren sein, dass auch andere ”R”-Gruppen an ein oder mehrere andere Kohlenstoffatome des Ringsystems gebunden sein können.
  • Geeignete Pyrrolmonomere können ebenso solche mit der folgenden allgemeinen Struktur umfassen:
    Figure 00100001
    wobei
    R1 unabhängig aus Wasserstoff, Alkyl, Alkenyl, Alkoxy, Alkanoyl, Alkylthio, Aryloxy, Alkylthioalkyl, Alkylaryl, Arylalkyl, Amino, Alkylamino, Dialkylamino, Aryl, Alkylsulfinyl, Alkoxyalkyl, Alkylsulfonyl, Arylthio, Arylsulfinyl, Alkoxycarbonyl, Arylsulfonyl, Acrylsäure, Phosphorsäure, Phosphonsäure, Halogen, Nitro, Cyano, Hydroxy, Epoxy, Silan, Siloxan, Alkohol, Benzyl, Carboxylat, Ether, Amidosulfonat, Ethercarboxylat, Ethersulfonat, Estersulfonat, Urethan und Kombinationen davon ausgewählt ist oder beide R1-Gruppen zusammen eine Alkylen- oder Alkenylenkette, die einen 3-, 4-, 5-, 6- oder 7-gliedrigen aromatischen oder alicyclischen Ring vervollständigt, bilden können, wobei der Ring gegebenenfalls ein oder mehrere zweiwertige Stickstoff-, Schwefel- oder Sauerstoffatome umfassen kann; und
    R2 Wasserstoff, Alkyl, Alkenyl, Aryl, Alkanoyl, Alkylthioalkyl, Alkylaryl, Arylalkyl, Amino, Epoxy, Silan, Siloxan, Alkohol, Benzyl, Carboxylat, Ether, Ethercarboxylat, Ethersulfonat, Estersulfonat und Urethan ist. In einer besonderen Ausführungsform sind sowohl R1 als auch R2 Wasserstoff. Weitere geeignete Pyrrole sind etwa 3-Alkylpyrrole, wie 3-Hexylpyrrol, 3,4-Dialkylpyrrole, wie 3,4-Dihexylpyrrol, 3-Alkoxypyrrole, wie 3-Methoxypyrrol, und 3,4-Dialkoxypyrrole, wie 3,4-Dimethoxypyrrol.
  • Die Gesamtkonzentration der in der Mikroemulsion eingesetzten Monomere kann variieren, beträgt aber typischerweise etwa 0,1 Gew.-% bis etwa 15 Gew.-%, in einigen Ausführungsformen etwa 0,4 Gew.-% bis etwa 10 Gew.-% und in einigen Ausführungsformen etwa 0,5 Gew.-% bis etwa 5 Gew.-% der Mikroemulsion.
  • ii. Nichtionisches Tensid
  • Ein nichtionisches Tensid wird ebenfalls in der Mikroemulsion eingesetzt. Die Anwesenheit nichtionischer Mizellen führt zu einer Erhöhung der Löslichkeit, wobei eine mikroskopisch homogene Verteilung dieser Mizellen und in einigen Fällen eine Lösung des Vorläufermonomers entsteht. Nichtionische Tenside weisen typischerweise eine hydrophobe Base, wie eine langkettige Alkylgruppe oder eine alkylierte Arylgruppe, und eine hydrophile Kette, die eine bestimmte Anzahl (z. B. 1 bis etwa 30) an Ethoxy- und/oder Propoxy-Struktureinheiten enthält, auf. Obwohl es nicht unbedingt notwendig ist, können nichtionische Tenside, die einen bestimmten Hydrophilen/Lipophilen-Gleichgewichtswert (”HLB”) aufweisen, dazu beitragen, die Stabilität der kolloidalen Suspension zu verbessern. Der HLB-Index ist in der Technik wohlbekannt und ist eine Skala, die das Gleichgewicht zwischen den hydrophilen und lipophilen Lösungstendenzen einer Verbindung misst, wobei kleinere Zahlen für hochgradig lipophile Tendenzen stehen und die höheren Zahlen für hochgradig hydrophile Tendenzen stehen. In einigen Ausführungsformen der vorliegenden Erfindung beträgt der HLB-Wert des nichtionischen Tensids etwa 5 bis etwa 20, in einigen Ausführungsformen etwa 10 bis etwa 19 und in einigen Ausführungsformen etwa 11 bis etwa 18. Falls gewünscht, können zwei oder mehr Tenside eingesetzt werden, die HLB-Werte entweder unterhalb oder oberhalb des gewünschten Werts aufweisen, aber zusammen einen durchschnittlichen HLB-Wert innerhalb des gewünschten Bereichs aufweisen.
  • Zu den geeigneten nichtionischen Tensiden gehören zum Beispiel etwa Polyoxyethylen-Ketten als hydrophile Gruppen, Polyglycerinfettsäureester, Polyglycerinfettalkoholether, Saccharosefettsäureester und Hydrocarbylpolyglycoside. In einer Ausführungsform umfasst das nichtionische Tensid Polyoxyethylen-Ketten als hydrophile Gruppen und ist aus der Gruppe ausgewählt, die aus Polyoxyethylenfettsäureestern, Polyoxyethylenfettalkoholethern, Polyoxyethylensorbitolanhydridfettsäureestern, Polyoxyethylenglycerinmonofettsäureestern, Polyoxyethylen-hydriertem-Ricinusöl und Polyoxyethylen-hydriertes-Ricinusölmonofettsäureestern usw. sowie Kombinationen davon besteht. Besonders gut geeignet sind Polyoxyethylenfettalkoholether, bei denen der Fettalkohol, der den Polyoxyethylenfettalkoholether bildet, gesättigt oder ungesättigt ist und 8 bis 22 Kohlenstoffatome (z. B. 8 bis 14) aufweist und die Polyoxyethylen-Struktureinheit im Durchschnitt 4 bis 60 Ethylenoxid-Repetiereinheiten (z. B. 4 bis 12) aufweist. Beispiele für solche Tenside sind Polyoxyethylenoctylether (z. B. Polyoxyethylen-5-octylether), Polyoxyethylendecylether, Polyoxyethylenlaurylether (z. B. Polyoxyethylen-8-laurylether oder Polyoxyethylen-10-laurylether), Polyoxyethylenmyristylether, Polyoxyethylenpalmitylether, Polyoxyethylenisostearylether, Polyoxyethylenstearylether, Polyoxyethylenoleylether, Polyoxyethylenbehenylether usw.
  • Unabhängig von seiner besonderen Form kann das nichtionische Tensid die Bildung einer kolloidalen Suspension von Monomertröpfchen erleichtern. Ohne uns auf eine bestimmte Theorie festlegen zu wollen, glauben wir, dass solche Tröpfchen zur Bildung von relativ kleinen Polymereinheiten auf der Oberfläche des Kathodensubstrats während der anodischen elektrochemischen Polymerisation führen können. Solche kleineren Polymereinheiten können wiederum zu einer Beschichtung führen, die im Wesentlichen gleichmäßig mit ausgezeichneter Flächenbedeckung ist. Die Tröpfchen können zum Beispiel einen mittleren Durchmesser von etwa 5 Mikrometer oder weniger, in einigen Ausführungsformen etwa 4 Mikrometer oder weniger, in einigen Ausführungsformen etwa 10 Nanometer bis etwa 2 Mikrometer und in einigen Ausführungsformen etwa 20 Nanometer bis etwa 1 Mikrometer aufweisen. Der Ausdruck ”Durchmesser” kann sich auf den ”hydrodynamischen Äquivalenzdurchmesser” eines Teilchens beziehen, wie er mit Hilfe bekannter Techniken, wie Photonenkorrelationsspektroskopie, dynamischer Lichtstreuung, quasielastischer Lichtstreuung usw. bestimmt wird. Diese Verfahren beruhen im Allgemeinen auf der Korrelation der Teilchengröße mit Diffusionseigenschaften von Teilchen, die aus Messungen der Brownschen Bewegung erhalten werden. Die Brownsche Bewegung ist die statistische Bewegung der Teilchen aufgrund der Stöße durch die Lösungsmittelmoleküle, die die Teilchen umgeben. Je größer das Teilchen, desto langsamer ist die Brownsche Bewegung. Die Geschwindigkeit ist durch den translationalen Diffusionskoeffizienten definiert. Der gemessene Teilchengrößewert bezieht sich also darauf, wie sich das Teilchen innerhalb einer Flüssigkeit bewegt und wird der ”hydrodynamische Durchmesser” genannt. Verschiedene Teilchengröße-Analysegeräte können eingesetzt werden, um den Durchmesser in dieser Weise zu messen. Ein besonderes Beispiel ist ein Cordouan VASCO 3 Particle Size Analyzer.
  • Um dazu beizutragen, die gewünschte Verbesserung der Flächenbedeckung zu erreichen, ist es auch im Allgemeinen erwünscht, dass die Konzentration des nichtionischen Tensids selektiv innerhalb eines bestimmten Bereichs relativ zu den Vorläufermonomeren gesteuert wird. Zum Beispiel kann das Verhältnis des Gewichts von nichtionischen Tensiden zu dem Gewicht von Vorläufermonomeren innerhalb der Mikroemulsion etwa 0,5 bis etwa 1,5, in einigen Ausführungsformen etwa 0,6 bis etwa 1,4 und in einigen Ausführungsformen etwa 0,8 bis etwa 1,2 betragen. Nichtionische Tenside können zum Beispiel etwa 0,2 Gew.-% bis etwa 10 Gew.-%, in einigen Ausführungsformen etwa 0,5 Gew.-% bis etwa 8 Gew.-% und in einigen Ausführungsformen etwa 1 Gew.-% bis etwa 5 Gew.-% der Mikroemulsion ausmachen.
  • iii. Sulfonsäure
  • Die Mikroemulsion der vorliegenden Erfindung enthält auch eine Sulfonsäure, die als sekundäres Dotierungsmittel wirken kann, um das leitfähige Polymer mit überschüssiger Ladung zu versehen und seine Leitfähigkeit zu stabilisieren. Solche Säuren können zum Beispiel zu einer Mikroemulsion führen, die eine elektrische Leitfähigkeit von etwa 1 bis etwa 100 Millisiemens pro Zentimeter (”mS/cm”), in einigen Ausführungsformen etwa 5 bis etwa 60 mS/cm und in einigen Ausführungsformen etwa 15 bis etwa 50 mS/cm aufweist, bestimmt bei einer Temperatur von 23°C unter Verwendung irgendeines bekannten Messgeräts für die elektrische Leitfähigkeit (z. B. Oakton Con Series 11). Die Art der Sulfonsäure sowie ihre relative Konzentration kann ebenfalls gezielt gesteuert werden, so dass der pH-Wert der Mikroemulsion relativ neutral bleibt, wie es oben erwähnt ist, wie etwa im Bereich von etwa 5,0 bis etwa 8,5, in einigen Ausführungsformen etwa 5,5 bis etwa 8,0 und in einigen Ausführungsformen etwa 6,0 bis etwa 7,5. Zum Beispiel beträgt das Verhältnis des Gewichts von Sulfonsäuren zu dem Gewicht von Vorläufermonomeren innerhalb der Mikroemulsion etwa 0,2 bis etwa 1,2, in einigen Ausführungsformen etwa 0,4 bis etwa 1,1 und in einigen Ausführungsformen etwa 0,6 bis etwa 1,0. Ebenso beträgt das Verhältnis des Gewichts von Sulfonsäuren zu dem Gewicht von nichtionischen Tensiden innerhalb der Mikroemulsion etwa 0,2 bis etwa 1,2, in einigen Ausführungsformen etwa 0,3 bis etwa 0,9 und in einigen Ausführungsformen etwa 0,4 bis etwa 0,8.
  • Die Sulfonsäure ist typischerweise eine niedermolekulare Monosulfonsäure, Disulfonsäure oder Trisulfonsäure auf organischer Basis. Spezielle Beispiele für solche Säuren sind zum Beispiel Alkylsulfonsäuren (z. B. 2-Acrylamid-2-methylpropansulfonsäure usw.); Arylensulfonsäuren, wie Benzolsulfonsäuren (z. B. Phenolsulfonsäure, Styrolsulfonsäure, p-Toluolsulfonsäure, Dodecylbenzolsulfonsäure usw.) und Naphthalinsulfonsäuren (z. B. 1-Naphthalinsulfonsäure, 2-Naphthalinsulfonsäure, 1,3-Naphthalindisulfonsäure, 1,3,6-Naphthalintrisulfonsäure, 6-Ethyl-1-naphthalinsulfonsäure usw.); Anthrachinonsulfonsäuren (z. B. Anthrachinon-1-sulfonsäure, Anthrachinon-2-sulfonsäure, Anthrachinon-2,6-disulfonsäure, 2-Methylanthrachinon-6-sulfonsäure usw.); Camphersulfonsäuren sowie Derivate und Gemische davon. Arylensulfonsäuren sind für die Verwendung in der Mikroemulsion besonders gut geeignet, wie 1-Naphthalinsulfonsäure, 2-Naphthalinsulfonsäure und/oder p-Toluolsulfonsäure.
  • Man sollte sich darüber im Klaren sein, dass der hier verwendete Ausdruck ”Sulfonsäure” auch Salze von Säuren, wie die oben erwähnten, die in einer wässrigen Lösung dissoziieren können, umfassen, wie Natriumsalze, Lithiumsalze, Kaliumsalze usw. In einer Ausführungsform kann die Sulfonsäure zum Beispiel ein Natrium- oder Kaliumsalz von 1-Naphthalinsulfonsäure, 2-Naphthalinsulfonsäure und/oder p-Toluolsulfonsäure sein.
  • iv. Andere Komponenten
  • Neben den oben genannten Komponenten kann die Mikroemulsion auch verschiedene andere Additive enthalten. Zum Beispiel kann in bestimmten Ausführungsformen ein Entschäumungsmittel eingesetzt werden, um den Grad der Schaumbildung durch das nichtionische Tensid während der anodischen elektrochemischen Polymerisation zu reduzieren. Geeignete Entschäumungsmittel sind zum Beispiel etwa Öle, Ester, Ether, Glycole, Polysiloxane, langkettige sauerstoffhaltige Kohlenwasserstoffe (z. B. C5- bis C12-Alkohole) usw. sowie Gemische davon. Besonders gut geeignete Entschäumungsmittel sind langkettige sauerstoffhaltige Kohlenwasserstoffe, wie Octanol, Decanol und Polyethylenglycole. Wenn solche Entschäumungsmittel eingesetzt werden, können sie etwa 0,01 Gew.-% bis etwa 5 Gew.-%, in einigen Ausführungsformen etwa 0,05 Gew.-% bis etwa 4 Gew.-% und in einigen Ausführungsformen etwa 0,1 Gew.-% bis etwa 2 Gew.-% der Mikroemulsion ausmachen. Neben Entschäumungsmitteln kann in der Mikroemulsion auch eine Vielzahl anderer Additive eingesetzt werden. Dennoch besteht ein besonderer Nutzen der vorliegenden Erfindung darin, dass die Mikroemulsion und die resultierende leitfähige Polymerbeschichtung im Wesentlichen frei von Eisenionen (z. B. Fe2+- oder Fe3+-Ionen) sein können, welche häufig in den oxidativen Katalysatoren (z. B. Eisen(III)-p-toluolsulfonat oder Eisen(III)-o-toluolsulfonat) eingesetzt werden, die während der chemischen Polymerisation von leitfähigen Polymeren verwendet werden, was bei den hohen Spannungen, die häufig während der Verwendung des Flüssigkeitskondensators eingesetzt werden, zum Abbau des Dielektrikums führen kann. Zum Beispiel enthält die Mikroemulsion typischerweise weniger als etwa 0,5 Gew.-%, in einigen Ausführungsformen weniger als etwa 0,1 Gew.-% und in einigen Ausführungsformen weniger als etwa 0,05 Gew.-% (z. B. 0 Gew.-%) solcher auf Eisen beruhender oxidativer Katalysatoren.
  • B. Anodische elektrochemische Polymerisation
  • Zum Auftragen der Mikroemulsion auf das Metallsubstrat kann eine Vielzahl von geeigneten Auftragungstechniken eingesetzt werden, wie Siebdruck, Tauchen, elektrophoretische Beschichtung, Sprühen usw. Unabhängig davon, wie es aufgetragen wird, kann das Monomer innerhalb der Mikroemulsion anodisch elektrochemisch polymerisiert werden, um auf der Oberfläche des Metallsubstrats eine leitfähige Polymerbeschichtung zu bilden. In einer Ausführungsform zum Beispiel wird das Metallsubstrat in ein Bad eingetaucht, das die Mikroemulsion der vorliegenden Erfindung enthält. In dem Bad kann sich für die Elektrolyse ein Elektrodenpaar befinden. Eine Elektrode kann mit dem positiven Pol einer Stromquelle verbunden sein und auch in Kontakt mit dem Metallsubstrat stehen. Die andere Elektrode kann mit dem negativen Pol der Stromquelle und einem zusätzlichen inerten Metall verbunden sein. Während des Betriebs liefert die Stromquelle einen Strom zu den Elektroden in der elektrochemischen Zelle und induziert dadurch eine Elektrolyse des Elektrolyten und eine oxidative Polymerisation des Monomers in der Mikroemulsion oder Lösung auf das Metallsubstrat. Die anodische elektrochemische Polymerisation wird im Allgemeinen bei Umgebungstemperatur durchgeführt, um zu gewährleisten, dass die Mikroemulsion keine Phasentrennung erfährt. Zum Beispiel kann die Mikroemulsion bei einer Temperatur von etwa 15°C bis etwa 80°C, in einigen Ausführungsformen etwa 20°C bis etwa 75°C und in einigen Ausführungsformen etwa 25°C bis etwa 50°C gehalten werden. Die Zeitdauer, während der das Metallsubstrat während der anodischen elektrochemischen Polymerisation mit der Mikroemulsion in Kontakt ist, kann variieren. Zum Beispiel kann das Metallsubstrat während einer Zeit im Bereich von etwa 10 Sekunden bis etwa 10 Minuten in eine solche Lösung eingetaucht werden.
  • Falls gewünscht, können mehrere Polymerisationsschritte wiederholt werden, bis die gewünschte Dicke der Beschichtung erreicht ist. In solchen Fällen kann bzw. können die zusätzlichen Schichten unter Verwendung der Technik und Mikroemulsion der vorliegenden Erfindung oder unter Verwendung anderer Verfahren, wie chemische Polymerisation, polymerisiert werden. Die zusätzlichen Schichten (z. B. chemisch polymerisierte Schicht) können sich auch direkt auf dem Metallsubstrat oder über der elektropolymerisierten Schicht befinden. Unabhängig davon kann die angestrebte Gesamtdicke der Beschichtung im Allgemeinen je nach den gewünschten Eigenschaften des Kondensators variieren. Typischerweise weist die resultierende leitfähige Polymerbeschichtung eine Dicke von etwa 0,2 Mikrometer (”μm”) bis etwa 50 μm, in einigen Ausführungsformen etwa 0,5 μm bis etwa 20 μm und in einigen Ausführungsformen etwa 1 μm bis etwa 5 μm auf. Man sollte sich darüber im Klaren sein, dass die Dicke der Beschichtung nicht notwendigerweise an allen Orten auf dem Substrat dieselbe ist. Dennoch fällt die mittlere Dicke der Beschichtung auf dem Substrat im Allgemeinen in die oben genannten Bereiche.
  • Die resultierende leitfähige Polymerbeschichtung umfasst leitfähige Polymere, die typischerweise π-konjugierte Ketten von aromatischen heterocyclischen Einheiten sind und nach der Oxidation eine erhöhte elektrische Leitfähigkeit aufweisen. Da das Copolymer im Allgemeinen semikristallin oder amorph ist, kann es die mit der hohen Spannung verbundene Wärme ableiten und/oder aufnehmen. Dies verhindert wiederum Phasenübergänge (von flüssig nach gasförmig) des flüssigen Elektrolyten an der Grenzfläche. Das leitfähige Polymer quillt durch die Absorption eines gewissen Volumens des flüssigen Elektrolyten etwas auf. Beispiele für solche π-konjugierten leitfähigen Polymere, die gemäß der vorliegenden Erfindung gebildet werden können, sind Polyheterocyclen (z. B. Polypyrrole, Polythiophene, Polyaniline usw.), Polyacetylene, Poly-p-phenylene, Polyphenolate usw. In einer besonderen Ausführungsform weist das substituierte Polythiophen die folgende allgemeine Struktur auf:
    Figure 00180001
    wobei
    T, D, R7 und q wie oben definiert sind und
    n = 1 bis 2000, in einigen Ausführungsformen 2 bis 500 und in einigen Ausführungsformen 4 bis 350 ist. Besonders gut geeignete Thiophenpolymere sind solche, bei denen ”D” ein gegebenenfalls substituierter C2- bis C3-Alkylenrest ist. Zum Beispiel kann das Polymer gegebenenfalls substituiertes Poly(3,4-ethylendioxythiophen) sein, das die folgende allgemeine Struktur hat:
    Figure 00180002
  • II. Anode
  • Die Anode kann einen gesinterten porösen Körper umfassen, der aus einer Ventilmetallzusammensetzung gebildet ist. Die Ventilmetallzusammensetzung kann ein Ventilmetall (d. h. ein Metall, das zur Oxidation befähigt ist) oder eine Verbindung, die auf einem Ventilmetall beruht, wie Tantal, Niob, Aluminium, Hafnium, Titan, Legierungen davon, Oxide davon, Nitride davon usw., enthalten. Zum Beispiel kann die Ventilmetallzusammensetzung ein elektrisch leitfähiges Oxid von Niob enthalten, wie ein Nioboxid mit einem Atomverhältnis von Niob zu Sauerstoff von 1:1,0 ± 1,0, in einigen Ausführungsformen 1:1,0 ± 0,3, in einigen Ausführungsformen 1:1,0 ± 0,1 und in einigen Ausführungsformen 1:1,0 ± 0,05. Bei dem Nioboxid kann es sich um NbO0,7, NbO1,0, NbO1,1 und NbO2 handeln. Beispiele für solche Ventilmetalloxide sind in den US-Patenten Nr. 6,322,912 (Fife), 6,391,275 (Fife et al.), 6,416,730 (Fife et al.), 6,527,937 (Fife), 6,576,099 (Kimmel et al.), 6,592,740 (Fife et al.) und 6,639,787 (Kimmel et al.) und 7,220,397 (Kimmel et al.) sowie in den US-Patentanmeldungen Veröffentlichungsnummer 2005/0019581 (Schnitter), 2005/0103638 (Schnitter et al.) und 2005/0013765 (Thomas et al.) beschrieben, auf die alle hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Zur Bildung der Anode wird im Allgemeinen ein Pulver der Ventilmetallzusammensetzung eingesetzt. Das Pulver kann Teilchen mit einer Vielzahl von Formen enthalten, wie sphärolithisch, winklig, flockenförmig usw. sowie Gemische davon. Besonders gut geeignete Pulver sind Tantalpulver, die von der Cabot Corp. (z. B. flockiges Pulver C255, flockiges/sphärolithisches Pulver TU4D usw.) und H. C. Starck (z. B. sphärolithisches Pulver NH175) erhältlich sind. In bestimmten Fällen kann das Pulver eine niedrige spezifische Ladung aufweisen, um die Fähigkeit zur Bildung einer dicken dielektrischen Schicht, die hohen Arbeitsspannungen widerstehen kann, zu optimieren. Das heißt, das Pulver kann eine spezifische Ladung von weniger als etwa 20000 Mikrofarad mal Volt pro Gramm (”μF·V/g”), in einigen Ausführungsformen etwa von 1000 μF·V/g bis etwa 20000 μF·V/g und in einigen Ausführungsformen von etwa 2000 bis etwa 15000 μF·V/g, aufweisen. Es können jedoch auch Pulver mit einer relativ hohen spezifischen Ladung eingesetzt werden. Zum Beispiel können solche Pulver mit hoher spezifischer Ladung eine spezifische Ladung von etwa 20000 bis etwa 450000 μF·V/g, in einigen Ausführungsformen etwa 30000 bis etwa 350000 μF·V/g oder mehr, in einigen Ausführungsformen etwa 40000 bis etwa 300000 μF·V/g und in einigen Ausführungsformen etwa 50000 bis etwa 200000 μF·V/g aufweisen.
  • Das Pulver kann mit Hilfe von dem Fachmann bekannten Techniken gebildet werden. Ein Vorläufer-Tantalpulver kann zum Beispiel gebildet werden, indem man ein Tantalsalz (z. B. Kaliumfluorotantalat (K2TaF7), Natriumfluorotantalat (Na2TaF7), Tantalpentachlorid (TaCl5) usw.) mit einem Reduktionsmittel (z. B. Wasserstoff, Natrium, Kalium, Magnesium, Calcium usw.) reduziert. Solche Pulver können agglomeriert werden, wie etwa durch einen oder mehrere Wärmebehandlungsschritte in einer inerten oder reduzierenden Atmosphäre. Das Pulver kann auch verschiedenen anderen optionalen Techniken unterzogen werden, die in der Technik bekannt sind, wie Mahlen, Deoxidieren, Laugen, Dotieren usw.
  • Das Pulver kann auch mit einem Bindemittel und/oder Gleitmittel gemischt werden, um zu gewährleisten, dass die Teilchen ausreichend aneinander haften, wenn sie unter Bildung des Anodenkörpers verpresst werden. Zu den geeigneten Bindemitteln gehören zum Beispiel Polyvinylbutyral, Polyvinylacetat, Polyvinylalkohol, Polyvinylpyrrolidon, Cellulosepolymere, wie Carboxymethylcellulose, Methylcellulose, Ethylcellulose, Hydroxyethylcellulose und Methylhydroxyethylcellulose, ataktisches Polypropylen, Polyethylen, Polyethylenglycol (z. B. Carbowax von Dow Chemical Co.), Polystyrol, Poly(butadien/styrol); Polyamide, Polyimide und Polyacrylamide, hochmolekulare Polyether; Copolymere von Ethylenoxid und Propylenoxid; Fluorpolymere, wie Polytetrafluorethylen, Polyvinylidenfluorid und Fluorolefin-Copolymere, Acrylpolymere, wie Natriumpolyacrylat, Poly(niederalkylacrylate), Poly(niederalkylmethacrylate) und Copolymere von Niederalkylacrylaten und -methacrylaten; sowie Fettsäuren und Wachse, wie Stearin- und andere Seifenfettsäuren, Pflanzenwachs, Mikrowachse (gereinigte Paraffine) usw. Das Bindemittel kann in einem Lösungsmittel gelöst und dispergiert werden. Beispielhafte Lösungsmittel sind etwa Wasser, Alkohole usw. Wenn sie verwendet werden, kann der Prozentsatz der Bindemittel und/oder Gleitmittel von etwa 0,1 bis etwa 8 Gew.-% der Gesamtmasse variieren. Man sollte sich jedoch darüber im Klaren sein, dass Bindemittel und Gleitmittel in der vorliegenden Erfindung nicht zwingend erforderlich sind.
  • Das resultierende Pulver kann mit Hilfe einer beliebigen herkömmlichen Pulverpressvorrichtung unter Bildung eines Presslings kompaktiert werden. Zum Beispiel kann eine Pressform eingesetzt werden, bei der es sich um eine Einplatz-Kompaktierpresse handelt, die eine Matrize und einen oder mehrere Stempel enthält. Alternativ dazu können auch Kompaktierpressformen des Ambosstyps verwendet werden, die nur eine Matrize und einen einzigen Unterstempel verwenden. Einplatz-Kompaktierpressformen sind in mehreren Grundtypen erhältlich, wie Nocken-, Kniehebel- und Exzenter- oder Kurbelpressen mit unterschiedlichen Fähigkeiten, wie einfach wirkend, doppelt wirkend, Schwebemantelmatrize, bewegliche Werkzeugaufspannplatte, Gegenstempel, Schnecke, Schlag, Heißpressen, Prägen oder Kalibrieren. Das Pulver kann um einen Anodenanschluss (z. B. Tantaldraht) herum kompaktiert werden. Es sollte weiterhin anerkannt werden, dass der Anodenanschluss alternativ auch nach dem Pressen und/oder Sintern des Anodenkörpers an der Anode befestigt (z. B. daran geschweißt) werden kann.
  • Nach der Kompaktierung kann gegebenenfalls vorhandenes Bindemittel/Gleitmittel unter Verwendung einer Vielzahl verschiedener Techniken entfernt werden. In bestimmten Ausführungsformen zum Beispiel wird der Pressling mehrere Minuten lang im Vakuum auf eine bestimmte Temperatur (z. B. etwa 150°C bis etwa 500°C) erhitzt, um das Bindemittel/Gleitmittel auszutreiben. Der Pressling kann auch mit einer flüssigen Lösung (z. B. wässrigen Lösung) gewaschen werden, um die Entfernung des Bindemittels/Gleitmittels zu unterstützen, wie es im US-Patent Nr. 6,197,252 (Bishop et al.) beschrieben ist, auf das hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Sobald er gebildet ist, kann der Anodenkörper dann gesintert werden. Die Temperatur, Atmosphäre und Zeit des Sinterns können von einer Vielzahl von Faktoren abhängen, wie der Art der Anode, der Größe der Anode usw. Typischerweise erfolgt das Sintern bei einer Temperatur von etwa 800°C bis etwa 1900°C, in einigen Ausführungsformen etwa 1000°C bis etwa 1500°C und in einigen Ausführungsformen etwa 1100°C bis etwa 1400°C während einer Zeit von etwa 5 Minuten bis etwa 100 Minuten und in einigen Ausführungsformen etwa 30 Minuten bis etwa 60 Minuten. Falls gewünscht, kann das Sintern in einer Atmosphäre erfolgen, die die Übertragung von Sauerstoffatomen zur Anode einschränkt. Zum Beispiel kann das Sintern in einer reduzierenden Atmosphäre, wie in einem Vakuum, Inertgas, Wasserstoff usw., erfolgen. Die reduzierende Atmosphäre kann einen Druck von etwa 10 Torr bis etwa 2000 Torr, in einigen Ausführungsformen etwa 100 Torr bis etwa 1000 Torr und in einigen Ausführungsformen etwa 100 Torr bis etwa 930 Torr aufweisen. Gemische von Wasserstoff und anderen Gasen (z. B. Argon oder Stickstoff) können ebenfalls eingesetzt werden.
  • Beziehen wir uns nun auf die 2 bis 4, so ist zum Beispiel eine Ausführungsform einer Anode 20 gezeigt, die einen porösen gesinterten Körper 22 enthält, der wenigstens eine Seitenwand 24 aufweist, die sich zwischen einem proximalen Ende 34 und einem entgegengesetzten distalen Ende 36 befindet. Die Querschnittsform des proximalen Endes 34 und/oder des distalen Endes 36 kann auf der Grundlage der gewünschten Form des Anodenkörpers 22 im Allgemeinen variieren. In dieser besonderen Ausführungsform haben zum Beispiel beide Enden 34 und 36 einen kreisförmigen Querschnitt, so dass der Anodenkörper 22 im Wesentlichen zylindrisch ist. Weitere geeignete Formen sind zum Beispiel quadratisch, rechteckig, dreieckig, hexagonal, octagonal, heptagonal, pentagonal, trapezförmig, elliptisch, sternförmig, wellenförmig usw. Der Anodenkörper 22 hat auch eine Länge in der Längsrichtung ”z”, die zwischen den Enden 34 und 36 definiert ist, und eine Breite in der ”x”-Richtung und Tiefe in der ”y”-Richtung. In der gezeigten Ausführungsform sind die Breite und Tiefe beide zwischen den Seitenwänden 24 definiert. Obwohl es keineswegs ein Erfordernis ist, ist die Länge des Anodenkörpers 22 typischerweise größer als seine Breite und/oder Tiefe. Zum Beispiel kann in bestimmten Ausführungsformen das Verhältnis der Länge sowohl zur Breite als auch zur Tiefe etwa 1 bis etwa 30, in einigen Ausführungsformen etwa 1,1 bis etwa 10 und in einigen Ausführungsformen etwa 1,5 bis etwa 5 betragen. Die Länge der Anode 20 kann zum Beispiel im Bereich von etwa 0,5 bis etwa 100 Millimeter, in einigen Ausführungsformen etwa 1 bis etwa 60 Millimeter und in einigen Ausführungsformen etwa 5 bis etwa 30 Millimeter liegen. Die Breite des Anodenkörpers 22 kann im Bereich von etwa 0,5 bis etwa 50 Millimeter, in einigen Ausführungsformen etwa 1 bis etwa 40 Millimeter und in einigen Ausführungsformen etwa 4 bis etwa 30 Millimeter liegen. Ebenso kann die Tiefe des Anodenkörpers 22 im Bereich von etwa 0,5 bis etwa 50 Millimeter, in einigen Ausführungsformen etwa 1 bis etwa 40 Millimeter und in einigen Ausführungsformen etwa 4 bis etwa 30 Millimeter liegen. Wenn der Anodenkörper zylindrisch ist, sind seine Breite und Tiefe selbstverständlich gleich.
  • In bestimmten Ausführungsformen ist wenigstens ein sich längs erstreckender Kanal in den Anodenkörper eingelassen. Solche Kanäle können während des Pressens gebildet werden, wie dem Fachmann bekannt sein dürfte. Zum Beispiel kann die Pressform eine oder mehrere Vertiefungen in Längsrichtung aufweisen, die der gewünschten Form der Kanäle entsprechen. Auf diese Weise wird das Pulver um die Vertiefungen herum verpresst, so dass der resultierende Anodenkörper, wenn er aus der Form entnommen wird, in den Bereichen, wo sich die in Längsrichtung verlaufenden Vertiefungen in der Form befanden, in Längsrichtung verlaufende Kanäle enthält.
  • Die Kanäle können ein relativ hohes Aspektverhältnis (Länge dividiert durch Breite), wie etwa 2 oder mehr, in einigen Ausführungsformen etwa 5 oder mehr, in einigen Ausführungsformen etwa 10 bis etwa 200, in einigen Ausführungsformen etwa 15 bis etwa 150, in einigen Ausführungsformen etwa 20 bis etwa 100 und in einigen Ausführungsformen etwa 30 bis etwa 60, aufweisen. Solche Kanäle können die äußere Oberfläche der Anode erheblich erhöhen, was den Grad, bis zu dem die Anode Wärme ableiten kann, erhöhen und die Wahrscheinlichkeit, dass der anodisierende Elektrolyt während der anodischen Oxidation in die Poren des Anodenkörpers eindringt, erhöhen kann. Beziehen wir uns zum Beispiel wieder auf die 2 bis 4, so kann der Anodenkörper 22 Kanäle 28 enthalten, die in die Seitenwand 24 eingelassen sind. Die Kanäle 28 ”erstrecken sich in Längsrichtung” in dem Sinne, dass sie eine Länge in der Längsrichtung ”z” des Anodenkörpers 22 besitzen. Während die Kanäle 28 der 2 bis 4 im Wesentlichen parallel zur Längsrichtung verlaufen, ist dies jedoch keineswegs ein Erfordernis. Zum Beispiel können andere geeignete Ausführungsformen einen oder mehrere sich in Längsrichtung erstreckende Kanäle umfassen, die in Form einer Spirale, Helix usw. vorliegen und nicht parallel zur Längsrichtung des Anodenkörpers verlaufen. Die Zahl dieser sich in Längsrichtung erstreckenden Kanäle kann variieren, beträgt aber typischerweise 1 bis 20, in einigen Ausführungsformen 2 bis 15 und in einigen Ausführungsformen 4 bis 10. Wenn mehrere Kanäle eingesetzt werden, ist es im Allgemeinen wünschenswert, dass sie symmetrisch und äquidistant um eine zentrale Längsachse der Anode herum verteilt sind, obwohl dies keineswegs ein Erfordernis ist. In den 2 bis 4 enthält der abgebildete Anodenkörper 22 zum Beispiel fünf (5) separate Kanäle 28. 5 zeigt andererseits eine alternative Ausführungsform, bei der sechs (6) separate Kanäle 228 eingesetzt werden. In jeder der besonderen Ausführungsformen sind die Kanäle jedoch im Wesentlichen symmetrisch um die zentrale Längsachse ”C” des Anodenkörpers herum verteilt.
  • Wenigstens ein Teil der Kanäle 28 kann ein relativ hohes Aspektverhältnis (Länge geteilt durch Breite) aufweisen. Die Länge ”L1” (3) der Kanäle 28 kann zum Beispiel im Bereich von etwa 0,5 bis etwa 100 Millimeter, in einigen Ausführungsformen etwa 1 bis etwa 60 Millimeter und in einigen Ausführungsformen etwa 5 bis etwa 30 Millimeter liegen. Die Breite ”W1” der Kanäle 28 (3 und 4) kann ebenso im Bereich von etwa 0,01 bis etwa 20 Millimeter, in einigen Ausführungsformen etwa 0,02 bis etwa 15 Millimeter, in einigen Ausführungsformen etwa 0,05 bis etwa 4 Millimeter und in einigen Ausführungsformen etwa 0,1 bis etwa 2 Millimeter liegen. Die in den 2 bis 4 gezeigten Kanäle 28 erstrecken sich in der Längsrichtung ”L” entlang der gesamten Länge des Anodenkörpers 22 und schneiden sowohl das proximale Ende 34 als auch das distale Ende 36. Man sollte sich jedoch darüber im Klaren sein, dass sich auch ein oder mehrere Kanäle nur entlang eines Teils der Länge des Anodenkörpers erstrecken können, so dass sie nur ein Ende des Anodenkörpers schneiden oder keines der beiden Enden schneiden.
  • Das Ausmaß, in dem die Kanäle in den Anodenkörper eingelassen sind, kann in der vorliegenden Erfindung gezielt gesteuert werden, um so ein ausgewogenes Verhältnis zwischen der erhöhten Oberfläche und der Integrität der Anodenstruktur zu erreichen. Das heißt, wenn die Tiefe der Kanäle zu groß ist, kann es schwierig sein, die Anode zu einer physikalisch festen Struktur zu pressen. Wenn die Tiefe zu gering ist, können ebenso die gewünschten Vorteile nicht erreicht werden. In den meisten Ausführungsformen sind die Kanäle also so weit eingelassen, dass sie sich in einer Tiefe, die etwa 2% bis etwa 60%, in einigen Ausführungsformen etwa 5% bis etwa 50% und in einigen Ausführungsformen etwa 10% bis etwa 45% der Dicke des Anodenkörpers in derselben Richtung entspricht, erstrecken. Wenn wir uns wiederum auf 3 beziehen, so ist zum Beispiel einer der Kanäle 28 so gezeigt, dass er sich in einer Richtung ”T” erstreckt. In dieser Ausführungsform liegt die Länge des Kanals 28 in der Richtung ”T”, dividiert durch die Dicke des porösen Körpers 22 in der Richtung ”T”, multipliziert mit 100, innerhalb der oben genannten Prozentwerte.
  • Selbstverständlich braucht die Tiefe der Kanäle nicht jeweils gleich zu sein. Wenn wir uns zum Beispiel auf 5 beziehen, so ist eine Ausführungsform einer Anode 220 gezeigt, die erste Kanäle 228 und zweite Kanäle 229 enthält. In dieser besonderen Ausführungsform erstrecken sich die ersten Kanäle 228 weiter in den Anodenkörper hinein als die zweiten Kanäle 229. Einer der ersten Kanäle 228 kann sich zum Beispiel in einer Richtung ”T1” erstrecken, die etwa 15% bis etwa 60%, in einigen Ausführungsformen etwa 20% bis etwa 50% und in einigen Ausführungsformen etwa 25% bis etwa 45% der Dicke des Anodenkörpers in derselben Richtung entspricht. Ebenso kann sich einer der zweiten Kanäle 229 in einer Richtung ”T2” erstrecken, die etwa 2% bis etwa 40%, in einigen Ausführungsformen etwa 5% bis etwa 35% und in einigen Ausführungsformen etwa 10% bis etwa 25% des Anodenkörpers in derselben Richtung entspricht. Eine solche Konfiguration kann die Vorteile der tieferen Kanäle (z. B. größere Oberfläche) effektiv mit denjenigen der flacheren Kanäle (z. B. größere physikalische Integrität) kombinieren. In solchen Ausführungsformen kann die Zahl der tieferen Kanäle 1 bis 10, in einigen Ausführungsformen 2 bis 6 und in einigen Ausführungsformen 2 bis 4 betragen, und die Zahl der flacheren Kanäle kann ebenso 1 bis 10, in einigen Ausführungsformen 2 bis 6 und in einigen Ausführungsformen 2 bis 4 betragen.
  • Typischerweise enthält die Anode auch einen Anodenanschlussdraht, der dazu beiträgt, die Anode mit den Anschlüssen des resultierenden Kondensators zu verbinden. Der Anschlussdraht kann aus einem beliebigen elektrisch leitfähigen Material, wie Tantal, Niob, Nickel, Aluminium, Hafnium, Titan usw. sowie Oxiden und/oder Nitriden davon bestehen. Obwohl es nicht unbedingt erforderlich ist, ist es häufig wünschenswert, dass sich der Anschlussdraht in derselben Längsrichtung erstreckt wie die Kanäle. In der Ausführungsform der 2 bis 4 erstreckt sich ein Anodenanschlussdraht 30 zum Beispiel in der Längsrichtung ”z” ausgehend vom proximalen Ende 34 des Anodenkörpers 22. Der elektrische Kontakt mit der Anode 20 kann auf vielerlei Weise erreicht werden, wie etwa durch Koppeln des Anschlussdrahts 30 mit Hilfe von Widerstands- oder Laserschweißen. Alternativ dazu kann der Anschlussdraht 30 auch während der Bildung des Anodenkörpers (z. B. vor dem Sintern) in diesen eingebettet werden.
  • Unabhängig davon, ob Kanäle vorhanden sind, kann der poröse Anodenkörper anodisch oxidiert (”anodisiert”) werden, so dass eine dielektrische Schicht über und/oder innerhalb der Anode entsteht. Zum Beispiel kann eine Anode aus Tantal (Ta) zu Tantalpentoxid (Ta2O5) anodisiert werden. Typischerweise wird die Anodisierung durchgeführt, indem man zunächst eine Lösung auf die Anode aufträgt, etwa indem man die Anode in den Elektrolyten eintaucht. Im Allgemeinen wird ein Lösungsmittel eingesetzt, wie Wasser (z. B. deionisiertes Wasser). Um die Ionenleitfähigkeit zu verstärken, kann eine Verbindung eingesetzt werden, die in dem Lösungsmittel unter Bildung von Ionen dissoziieren kann. Beispiele für solche Verbindungen sind zum Beispiel Säuren, wie sie im Folgenden in Bezug auf den Elektrolyten beschrieben sind. Zum Beispiel kann eine Säure (z. B. Phosphorsäure) etwa 0,01 Gew.-% bis etwa 5 Gew.-%, in einigen Ausführungsformen etwa 0,05 Gew.-% bis etwa 0,8 Gew.-% und in einigen Ausführungsformen etwa 0,1 Gew.-% bis etwa 0,5 Gew.-% der Anodisierungslösung ausmachen. Falls gewünscht, können auch Gemische von Säuren eingesetzt werden.
  • Ein Strom wird durch die Anodisierungslösung geleitet, um die dielektrische Schicht zu bilden. Der Wert der Formierungsspannung entspricht der Dicke der dielektrischen Schicht. Zum Beispiel kann die Stromquelle zunächst im galvanostatischen Modus betrieben werden, bis die erforderliche Spannung erreicht ist. Danach kann die Stromquelle auf einen potentiostatischen Modus umgeschaltet werden, um zu gewährleisten, dass die gewünschte Dicke des Dielektrikums über der gesamten Oberfläche der Anode gebildet wird. Selbstverständlich können auch andere bekannte Verfahren eingesetzt werden, wie potentiostatische Impuls- oder Schrittverfahren. Die Spannung, bei der die anodische Oxidation erfolgt, liegt typischerweise im Bereich von etwa 4 bis etwa 250 Volt, in einigen Ausführungsformen etwa 9 bis etwa 200 Volt und in einigen Ausführungsformen etwa 20 bis etwa 150 Volt. Während der Oxidation kann die Anodisierungslösung auf einer erhöhten Temperatur gehalten werden, wie etwa 30°C oder mehr, in einigen Ausführungsformen etwa 40°C bis etwa 200°C und in einigen Ausführungsformen etwa 50°C bis etwa 100°C. Die anodische Oxidation kann auch bei Umgebungstemperatur oder darunter erfolgen. Die resultierende dielektrische Schicht kann auf einer Oberfläche der Anode und innerhalb ihrer Poren gebildet werden.
  • III. Arbeitselektrolyt
  • Der Arbeitselektrolyt ist eine Flüssigkeit, mit der die Anode imprägniert sein kann, oder sie kann in einem späteren Stadium der Produktion zu dem Kondensator gegeben werden. Der Elektrolyt ist das Material, das für den Verbindungsweg zwischen der Anode und der Kathode sorgt. Verschiedene geeignete Elektrolyte sind in den US-Patenten Nr. 5,369,547 und 6,594,140 (Evans et al.) beschrieben. Typischerweise ist der Elektrolyt ionenleitend und hat eine Ionenleitfähigkeit von etwa 0,1 bis etwa 20 Siemens pro Zentimeter (”S/cm”), in einigen Ausführungsformen etwa 0,2 bis etwa 10 S/cm, in einigen Ausführungsformen etwa 0,5 bis etwa 5 S/cm, bestimmt bei einer Temperatur von 23°C unter Verwendung irgendeines bekannten Messgeräts für die elektrische Leitfähigkeit (z. B. Oakton Con Series 11). Innerhalb der oben genannten Bereiche ermöglicht die Ionenleitfähigkeit des Elektrolyten vermutlich eine Ausdehnung des elektrischen Felds in den Elektrolyten bis zu einer ausreichenden Länge (Debye-Länge), um zu einer signifikanten Ladungstrennung zu führen. Dadurch wird die potentielle Energie des Dielektrikums auf den Elektrolyten ausgedehnt, so dass der resultierende Kondensator noch mehr potentielle Energie speichern kann, als es durch die Dicke des Dielektrikums vorhergesagt wird. Mit anderen Worten, der Kondensator kann bis zu einer Spannung, die die Bildungsspannung des Dielektrikums übersteigt, aufgeladen werden. Das Verhältnis der Spannung, bis zu der der Kondensator aufgeladen werden kann, zur Bildungsspannung kann zum Beispiel etwa 1,0 bis 2,0, in einigen Ausführungsformen etwa 1,1 bis etwa 1,8 und in einigen Ausführungsformen etwa 1,2 bis etwa 1,6 betragen. Zum Beispiel kann die Spannung, bis zu der der Kondensator aufgeladen wird, etwa 200 bis etwa 350 V, in einigen Ausführungsformen etwa 220 bis etwa 320 V und in einigen Ausführungsformen etwa 250 bis etwa 300 V betragen.
  • Der flüssige Elektrolyt liegt im Allgemeinen in Form einer Flüssigkeit vor, wie einer Lösung (z. B. wässrig oder nichtwässrig), Dispersion, Gel usw. Zum Beispiel kann der Arbeitselektrolyt eine wässrige Lösung einer Säure (z. B. Schwefelsäure, Phosphorsäure oder Salpetersäure), Base (z. B. Kaliumhydroxid) oder eines Salzes (z. B. Ammoniumsalz, wie ein Nitrat) sowie irgendein anderer, in der Technik bekannter geeigneter Elektrolyt sein, wie ein in einem organischen Lösungsmittel aufgelöstes Salz (z. B. in einer Lösung auf Glycolbasis aufgelöstes Ammoniumsalz). Verschiedene andere Elektrolyte sind in den US-Patenten Nr. 5,369,547 und 6,594,140 (Evans et al.) beschrieben.
  • Die gewünschte Ionenleitfähigkeit kann dadurch erreicht werden, dass man ionische Verbindungen (z. B. Säuren, Basen, Salze usw.) innerhalb bestimmter Konzentrationsbereiche auswählt. In einer bestimmten Ausführungsform können Salze von schwachen organischen Säuren effektiv sein bezüglich des Erreichens der gewünschten Leitfähigkeit des Elektrolyten. Das Kation des Salzes kann einatomige Kationen, wie Alkalimetalle (z. B. Li+, Na+, K+, Rb+ oder Cs+), Erdalkalimetalle (z. B. Be2+, Mg2+, Ca2+, Sr2+ oder Ba2+), Übergangsmetalle (z. B. Ag+, Fe2+, Fe3+ usw.), sowie mehratomige Kationen, wie NH4 +, umfassen. Die einwertigen Ammonium (NH4 +), Natrium (K+) und Lithium (Li+) sind besonders gut geeignete Kationen zur Verwendung in der vorliegenden Erfindung. Die zur Bildung des Anions des Salzes verwendete organische Säure ist ”schwach” in dem Sinne, dass sie typischerweise eine erste Säuredissoziationskonstante (pKa1) von etwa 0 bis etwa 11, in einigen Ausführungsformen etwa 1 bis etwa 10 und in einigen Ausführungsformen etwa 2 bis etwa 10 aufweist, bestimmt bei 23°C. In der vorliegenden Erfindung können beliebige geeignete schwache organische Säuren verwendet werden, wie Carbonsäuren, wie Acrylsäure, Methacrylsäure, Malonsäure, Bernsteinsäure, Salicylsäure, Sulfosalicylsäure, Adipinsäure, Maleinsäure, Äpfelsäure, Ölsäure, Gallsäure, Weinsäure (z. B. D-Weinsäure, meso-Weinsäure usw.), Zitronensäure, Ameisensäure, Essigsäure, Glycolsäure, Oxalsäure, Propionsäure, Phthalsäure, Isophthalsäure, Glutarsäure, Gluconsäure, Milchsäure, Asparaginsäure, Glutaminsäure, Itaconsäure, Trifluoressigsäure, Barbitursäure, Zimtsäure, Benzoesäure, 4-Hydroxybenzoesäure, Aminobenzoesäure usw., Gemische davon usw. Mehrbasige Säuren (z. B. zweibasige, dreibasige usw.) sind für die Verwendung bei der Bildung des Salzes besonders gut geeignet, wie Adipinsäure (pKa1 von 4,43 und pKa2 von 5,41), α-Weinsäure (PKa1 von 2,98 und pKa2 von 4,34), meso-Weinsäure (pKa1 von 3,22 und pKa2 von 4,82), Oxalsäure (pKa1 von 1,23 und pKa2 von 4,19), Milchsäure (pKa1 von 3,13, pKa2 von 4,76 und pKa3 von 6,40) usw.
  • Während die tatsächlichen Mengen je nach dem besonderen eingesetzten Salz, seiner Löslichkeit in dem bzw. den im Elektrolyten verwendeten Lösungsmitteln und der Gegenwart anderer Komponenten, variieren können, sind solche Salze schwacher organischer Säuren in dem Elektrolyten typischerweise in einer Menge von etwa 0,1 bis etwa 25 Gew.-%, in einigen Ausführungsformen etwa 0,2 bis etwa 20 Gew.-%, in einigen Ausführungsformen etwa 0,3 bis etwa 15 Gew.-% und in einigen Ausführungsformen etwa 0,5 bis etwa 5 Gew.-% vorhanden.
  • Der Elektrolyt ist typischerweise insofern wässrig, als er ein wässriges Lösungsmittel, wie Wasser (z. B. deionisiertes Wasser), enthält. Zum Beispiel kann Wasser (z. B. deionisiertes Wasser) etwa 20 Gew.-% bis etwa 95 Gew.-%, in einigen Ausführungsformen etwa 30 Gew.-% bis etwa 90 Gew.-% und in einigen Ausführungsformen etwa 40 Gew.-% bis etwa 85 Gew.-% des Elektrolyten ausmachen. Es kann auch ein sekundäres Lösungsmittel eingesetzt werden, wobei ein Lösungsmittelgemisch entsteht. Zu den geeigneten sekundären Lösungsmitteln gehören zum Beispiel Glycole (z. B. Ethylenglycol, Propylenglycol, Butylenglycol, Triethylenglycol, Hexylenglycol, Polyethylenglycole, Ethoxydiglycol, Dipropylenglycol usw.), Glycolether (z. B. Methylglycolether, Ethylglycolether, Isopropylglycolether usw.), Alkohole (z. B. Methanol, Ethanol, n-Propanol, Isopropanol und Butanol), Ketone, (z. B. Aceton, Methylethylketon und Methylisobutylketon); Ester (z. B. Ethylacetat, Butylacetat, Diethylenglycoletheracetat, Methoxypropylacetat, Ethylencarbonat, Propylencarbonat usw.), Amide (z. B. Dimethylformamid, Dimethylacetamid, Dimethylcapryl-/caprinfettsäureamid und N-Alkylpyrrolidone), Sulfoxide oder Sulfone (z. B. Dimethylsulfoxid (DMSO) und Sulfolan) usw. Solche Lösungsmittelgemische enthalten typischerweise Wasser in einer Menge von etwa 40 Gew.-% bis etwa 80 Gew.-%, in einigen Ausführungsformen etwa 50 Gew.-% bis etwa 75 Gew.-% und in einigen Ausführungsformen etwa 55 Gew.-% bis etwa 70 Gew.-% und das bzw. die sekundären Lösungsmittel in einer Menge von etwa 20 Gew.-% bis etwa 60 Gew.-%, in einigen Ausführungsformen etwa 25 Gew.-% bis etwa 50 Gew.-% und in einigen Ausführungsformen etwa 30 Gew.-% bis etwa 45 Gew.-%. Das bzw. die sekundären Lösungsmittel können zum Beispiel etwa 5 Gew.-% bis etwa 45 Gew.-%, in einigen Ausführungsformen etwa 10 Gew.-% bis etwa 40 Gew.-% und in einigen Ausführungsformen etwa 15 Gew.-% bis etwa 35 Gew.-% des Elektrolyten ausmachen.
  • Falls gewünscht, kann der Elektrolyt relativ neutral sein und einen pH-Wert von etwa 4,5 bis etwa 7,0, in einigen Ausführungsformen etwa 5,0 bis etwa 6,5 und in einigen Ausführungsformen etwa 5,5 bis etwa 6,0 aufweisen. Ein oder mehrere pH-Regulatoren (z. B. Säuren, Basen usw.) können eingesetzt werden, um das Erreichen des gewünschten pH-Werts zu unterstützen. In einer Ausführungsform wird eine Säure eingesetzt, um den pH-Wert auf den gewünschten Bereich zu senken. Zu den geeigneten Säuren gehören zum Beispiel organische Säuren, wie oben beschrieben, anorganische Säuren, wie Chlorwasserstoffsäure, Salpetersäure, Schwefelsäure, Phosphorsäure, Polyphosphorsäure, Borsäure, Boronsäure usw., und Mischungen hiervon. Die Gesamtkonzentration der pH-Regulatoren kann zwar variieren, doch sind sie typischerweise in einer Menge von etwa 0,01 Gew.-% bis etwa 10 Gew.-%, in einigen Ausführungsformen etwa 0,05 Gew.-% bis etwa 5 Gew.-% und in einigen Ausführungsformen etwa 0,1 Gew.-% bis etwa 2 Gew.-% des Elektrolyten vorhanden.
  • Der Elektrolyt kann auch andere Komponenten enthalten, die dabei helfen, die elektrischen Eigenschaften des Kondensators zu verbessern. Zum Beispiel kann ein Depolarisator in dem Elektrolyten eingesetzt werden, der dabei helfen soll, die Entwicklung von Wasserstoffgas an der Kathode des Elektrolytkondensators zu hemmen, welches andernfalls bewirken könnte, dass sich der Kondensator ausbeult und schließlich versagt. Wenn er eingesetzt wird, macht der Depolarisator normalerweise etwa 1 bis etwa 500 ppm, in einigen Ausführungsformen etwa 10 bis etwa 200 ppm und in einigen Ausführungsformen etwa 20 bis etwa 150 ppm des Elektrolyten aus. Zu den geeigneten Depolarisatoren gehören nitroaromatische Verbindungen, wie 2-Nitrophenol, 3-Nitrophenol, 4-Nitrophenol, 2-Nitrobenzoesäure, 3-Nitrobenzoesäure, 4-Nitrobenzoesäure, 2-Nitroacetophenon, 3-Nitroacetophenon, 4-Nitroacetophenon, 2-Nitroanisol, 3-Nitroanisol, 4-Nitroanisol, 2-Nitrobenzaldehyd, 3-Nitrobenzaldehyd, 4-Nitrobenzaldehyd, 2-Nitrobenzylalkohol, 3-Nitrobenzylalkohol, 4-Nitrobenzylalkohol, 2-Nitrophthalsäure, 3-Nitrophthalsäure, 4-Nitrophthalsäure usw. Besonders gut geeignete nitroaromatische Depolarisatoren zur Verwendung in der vorliegenden Erfindung sind Nitrobenzoesäuren, Anhydride oder Salze davon, die mit einer oder mehreren Alkylgruppen (z. B. Methyl, Ethyl, Propyl, Butyl usw.) substituiert sind. Spezielle Beispiele für solche alkylsubstituierten Nitrobenzoeverbindungen sind zum Beispiel 2-Methyl-3-nitrobenzoesäure, 2-Methyl-6-nitrobenzoesäure, 3-Methyl-2-nitrobenzoesäure, 3-Methyl-4-nitrobenzoesäure, 3-Methyl-6-nitrobenzoesäure, 4-Methyl-3-nitrobenzoesäure, Anhydride oder Salze davon usw.
  • Die besondere Art und Weise, wie die Komponenten in den Kondensator eingebaut werden, ist nicht entscheidend, und der Einbau kann mit Hilfe einer Vielzahl von Techniken bewerkstelligt werden. In 1 ist zum Beispiel eine Ausführungsform eines Elektrolytkondensators 40 gezeigt, die einen Arbeitselektrolyten 44 umfasst, der sich in elektrischem Kontakt mit der Anode 20 und einer Kathode 43 befindet, gebildet gemäß der vorliegenden Erfindung. Die Kathode 43 kann im Allgemeinen aus einem Substrat 41 bestehen, das gegebenenfalls mit einem elektrochemisch aktiven Material 49 beschichtet ist. In der gezeigten Ausführungsform bildet das Substrat 41 ein Gehäuse mit einer im Wesentlichen zylindrischen Form. Man sollte sich jedoch darüber im Klaren sein, dass in der vorliegenden Erfindung jede geometrische Konfiguration eingesetzt werden kann, wie rechteckig, dreieckig, prismatisch usw. Das Gehäuse kann gegebenenfalls einen Deckel umfassen, der die Anode und den Elektrolyten bedeckt und aus demselben oder einem anderen Material als das Gehäuse gebildet sein kann.
  • Es kann auch eine Versiegelung 23 (z. B. Glas zu Metall) eingesetzt werden, die die Anode 20 mit der Kathode 43 verbindet und versiegelt. Eine elektrisch isolierende Hülse 89 (z. B. Polytetrafluorethylen (”PTFE”)) und/oder ein Träger 91 kann ebenfalls eingesetzt werden, um dazu beizutragen, die Anode 20 und den Anschluss 42 zu stabilisieren und den gewünschten Abstand innerhalb des Kondensators aufrechtzuerhalten. Falls gewünscht, kann sich auch ein Separator (nicht gezeigt) zwischen der Kathode 43 und der Anode 20 befinden, um einen direkten Kontakt zwischen der Anode und der Kathode zu verhindern. Beispiele für geeignete Materialien für diesen Zweck sind zum Beispiel poröse Polymermaterialien (z. B. Polypropylen, Polyethylen, Polycarbonat usw.), poröse anorganische Materialien (z. B. Glasfasermatten, poröses Glaspapier usw.), Ionenaustauscherharzmaterialien usw. Besondere Beispiele sind Membranen aus ionischem perfluorierten Sulfonsäurepolymer (z. B. NafionTM von E. I. DuPont de Nemours & Co.), Membranen aus sulfoniertem Fluorkohlenstoffpolymer, Membranen aus Polybenzimidazol (PBI) und Membranen aus Polyetheretherketon (PEEK). Um die volumetrische Effizienz des Kondensators zu optimieren, ist es im Allgemeinen wünschenswert, dass der Separator eine relativ geringe Dicke aufweist. Zum Beispiel liegt die Dicke des Separators, wenn einer eingesetzt wird, typischerweise im Bereich von etwa 5 bis etwa 250 Mikrometer, in einigen Ausführungsformen etwa 10 bis etwa 150 Mikrometer und in einigen Ausführungsformen etwa 15 bis etwa 100 Mikrometer.
  • Der Deckel oder das Gehäuse kann eine innere Öffnung definieren, durch die sich ein leitfähiges Rohr 56 erstreckt, das im Wesentlichen hohl ist und eine ausreichende Größe und Form aufweist, um einen Anodenanschluss unterzubringen. Das leitfähige Rohr 56 besteht typischerweise aus einem Metall, wie Tantal, Niob, Aluminium, Nickel, Hafnium, Titan, Kupfer, Silber, Stahl (z. B. Edelstahl), Legierungen davon (z. B. elektrisch leitfähige Oxide), Verbundstoffe davon (z. B. mit elektrisch leitfähigem Oxid beschichtetes Metall) usw. Während und/oder nach dem Zusammensetzen und Versiegeln (z. B. Schweißen) kann der Elektrolyt durch einen Einfüllanschluss in das Gehäuse eingeführt werden. Das Einfüllen kann dadurch bewerkstelligt werden, dass man den Kondensator so in einer Vakuumkammer platziert, dass sich der Einfüllanschluss in ein Reservoir des Elektrolyten hinein erstreckt. Wenn die Kammer evakuiert wird, wird der Druck innerhalb des Kondensators reduziert. Wenn das Vakuum aufgehoben wird, kommt der Druck innerhalb des Kondensators wieder ins Gleichgewicht, und der Elektrolyt wird durch den Einfüllanschluss in den Behälter gesogen.
  • Unabhängig von seiner besonderen Konfiguration kann der Kondensator der vorliegenden Erfindung ausgezeichnete elektrische Eigenschaften aufweisen, Zum Beispiel kann der Kondensator eine hohe volumetrische Effizienz aufweisen, wie etwa 50000 μF·V/cm3 bis etwa 300000 μF·V/cm3, in einigen Ausführungsformen etwa 60000 μF·V/cm3 bis etwa 200000 μF·V/cm3 und in einigen Ausführungsformen etwa 80000 μF·V/cm3 bis etwa 150000 μF·V/cm3, bestimmt bei einer Frequenz von 120 Hz und bei Raumtemperatur (z. B. 25°C). Die volumetrische Effizienz wird bestimmt, indem man die Formierungsspannung eines Teils mit seiner Kapazität multipliziert und dann das Produkt durch das Volumen des Teils dividiert. Zum Beispiel kann die Formierungsspannung 175 Volt für ein Teil mit einer Kapazität von 520 μF betragen, was zu einem Produkt von 91000 μF·V führt. Wenn das Teil ein Volumen von etwa 0,8 cm3 einnimmt, führt dies zu einer volumetrischen Effizienz von etwa 113750 μF·V/cm3.
  • Der Kondensator kann auch eine gespeicherte Energie aufweisen, der ihn für die Verwendung in Hochpulsanwendungen geeignet macht. Die Energie wird im Allgemeinen gemäß der Gleichung E = 1/2·CV2 bestimmt, wobei C die Kapazität in Farad (F) ist und V die Arbeitsspannung des Kondensators in Volt (V) ist. Die Kapazität kann zum Beispiel mit einem Kapazitätsmesser (z. B. Präzisions-LCZ-Messgerät Keithley 3330 mit Kelvin-Anschlussleitungen, 2 Volt Vorspannung und 1 Volt Signal) bei Betriebsfrequenzen von 10 bis 120 Hz (z. B. 120 Hz) und einer Temperatur von etwa 23°C gemessen werden. Zum Beispiel kann der Kondensator eine Dichte der gespeicherten Energie von etwa 2,0 Joule pro Kubikzentimeter (J/cm3) oder mehr, in einigen Ausführungsformen etwa 3,0 J/cm3, in einigen Ausführungsformen etwa 3,5 J/cm3 bis etwa 10,0 J/cm3 und in einigen Ausführungsformen etwa 4,0 bis etwa 8,0 J/cm3 aufweisen. Die Kapazität kann ebenso etwa 1 Millifarad pro Quadratzentimeter (”mF/cm2”) oder mehr, in einigen Ausführungsformen etwa 2 mF/cm2 oder mehr, in einigen Ausführungsformen etwa 5 bis etwa 50 mF/cm2 und in einigen Ausführungsformen etwa 8 bis etwa 20 mF/cm2 betragen. Der Kondensator kann auch eine relativ hohe ”Durchschlagspannung” (Spannung, bei der der Kondensator versagt), wie etwa 180 Volt oder mehr, in einigen Ausführungsformen etwa 200 Volt oder mehr und in einigen Ausführungsformen etwa 210 Volt bis etwa 260 Volt aufweisen.
  • Der äquivalente Serienwiderstand (”ESR”), also das Ausmaß, bis zu dem der Kondensator beim Aufladen und Entladen in einer elektronischen Schaltung wie ein Widerstand wirkt, kann auch weniger als etwa 15000 Milliohm, in einigen Ausführungsformen weniger als etwa 10000 Milliohm, in einigen Ausführungsformen weniger als etwa 5000 Milliohm und in einigen Ausführungsformen etwa 1 bis etwa 4500 Milliohm betragen, gemessen mit 2 Volt Vorspannung und einem 1-Volt-Signal bei einer Frequenz von 120 Hz. Außerdem kann der Leckstrom, der sich allgemein auf den Strom bezieht, der von einem Leiter durch einen Isolator hindurch zu einem benachbarten Leiter fließt, auf relativ niedrigen Niveaus gehalten werden. Zum Beispiel beträgt der numerische Wert des normierten Leckstroms eines Kondensators der vorliegenden Erfindung in einigen Ausführungsformen weniger als etwa 1 μA/μF·V, in einigen Ausführungsformen weniger als etwa 0,5 μA/μF·V und in einigen Ausführungsformen weniger als etwa 0,1 μA/μF·V, wobei ”μA” Mikroampère bedeutet und μF·V das Produkt aus Nennkapazität und Nennspannung ist. Der Leckstrom kann mit einer Leckstrom-Testeinrichtung (z. B. MC 190 Leakage Test, Mantracourt Electronics LTD, UK) bei einer Temperatur von etwa 23°C und einer bestimmten Nennspannung nach einer Aufladungszeit von etwa 60 bis etwa 300 Sekunden gemessen werden. Solche ESR- und normierten Leckstromwerte können sogar nach Alterung während einer erheblichen Zeitspanne bei hohen Temperaturen aufrechterhalten werden. Zum Beispiel können die Werte etwa 100 Stunden oder mehr, in einigen Ausführungsformen etwa 300 Stunden bis etwa 2500 Stunden und in einigen Ausführungsformen etwa 400 Stunden bis etwa 1500 Stunden (z. B. 500 Stunden, 600 Stunden, 700 Stunden, 800 Stunden, 900 Stunden, 1000 Stunden, 1100 Stunden oder 1200 Stunden) bei Temperaturen im Bereich von etwa 100°C bis etwa 250°C und in einigen Ausführungsformen etwa 100°C bis etwa 200°C (z. B. 100°C, 125°C, 150°C, 175°C oder 200°C) aufrechterhalten werden.
  • Der Elektrolytkondensator der vorliegenden Erfindung kann in verschiedenen Anwendungen verwendet werden; dazu gehören unter anderem medizinische Geräte, wie implantierbare Defibrillatoren, Schrittmacher, Kardioverter, Nervenstimulatoren, Wirkstoffverabreichungsvorrichtungen usw., Kraftfahrzeuganwendungen, militärische Anwendungen, wie RADAR-Systeme, Unterhaltungselektronik, wie Radios, TV-Geräte usw., usw. In einer Ausführungsform kann der Kondensator zum Beispiel in einer implantierbaren medizinischen Vorrichtung eingesetzt werden, die so konfiguriert ist, dass sie eine therapeutische Hochspannungsbehandlung (z. B. zwischen ungefähr 500 Volt und ungefähr 850 Volt oder wünschenswerterweise zwischen ungefähr 600 Volt und ungefähr 900 Volt) für einen Patienten bietet. Die Vorrichtung kann einen Behälter oder ein Gehäuse enthalten, der bzw. das hermetisch abgedichtet und biologisch inert ist. Ein oder mehrere Anschlussdrähte sind über eine Vene elektrisch zwischen der Vorrichtung und dem Herzen des Patienten eingekoppelt. Herzelektroden werden bereitgestellt, um die Herzaktivität abzugreifen und/oder eine Spannung für das Herz bereitzustellen. Wenigstens ein Teil der Anschlüsse (z. B. ein Endteil der Anschlüsse) kann in der Nachbarschaft oder in Kontakt mit einer Herzklappe und/oder einer Herzkammer bereitgestellt werden. Die Vorrichtung kann auch eine Kondensatorbank enthalten, die typischerweise zwei oder mehr Kondensatoren enthält, welche in Reihe geschaltet und an eine Batterie gekoppelt sind, die sich innerhalb oder außerhalb der Vorrichtung befindet und Energie an die Kondensatorbank liefert. Zum Teil aufgrund der hohen Leitfähigkeit kann der Kondensator der vorliegenden Erfindung ausgezeichnete elektrische Eigenschaften erreichen und somit für die Verwendung in der Kondensatorbank der implantierbaren medizinischen Vorrichtung geeignet sein.
  • Die vorliegende Erfindung wird anhand der folgenden Beispiele besser verständlich.
  • Eingesetzte Materialien
  • In den Beispielen wurden die folgenden Materialien eingesetzt.
  • EDT
    = 3,4-Ethylendioxythiophen (Heraeus)
    TSA
    = p-Toluolsulfonsäure, Natriumsalz; und
    POE-10-LE
    = Polyoxyethylen-10-laurylether (oder Decaethylenglycolmonodecylether)
  • Testverfahren
  • Äquivalenter Serienwiderstand (ESR)
  • Der äquivalente Serienwiderstand kann mit einem Präzisions-LCZ-Messgerät Keithley 3330 mit Kelvin-Anschlussleitungen bei 2,2 Volt Vorspannung und einem sinusförmigen Signal mit 0,5 Volt Abstand zwischen den Peaks gemessen werden. Die Betriebsfrequenz betrug 120 Hz, und die Temperatur betrug 23°C ± 2°C
  • Kapazität
  • Die Kapazität wurde mit einem Präzisions-LCZ-Messgerät Keithley 3330 mit Kelvin-Anschlussleitungen bei 2,2 Volt Vorspannung und einem sinusförmigen Signal mit 0,5 Volt Abstand zwischen den Peaks gemessen. Die Betriebsfrequenz betrug 120 Hz, und die Temperatur betrug 23°C ± 2°C.
  • Leckstrom
  • Der Leckstrom (”DCL”) wurde mit einer Leckstrom-Testeinrichtung gemessen, die den Leckstrom bei einer Temperatur von 23°C ± 2°C und der Nennspannung nach mindestens 60 Sekunden misst.
  • Beispiele 1–7
  • Sieben (7) zylindrische Tantalbecher wurden mit einem JetStreem Blaster II (SCM System, Inc.) etwa 20 Sekunden lang sandgestrahlt. Dann wurden die Proben in Wasser in einem Ultraschallbad entfettet und dann 5 Minuten lang bei einer Temperatur von 85°C getrocknet. Eine Menge von 18,78 g Decaethylenglycolmonododecylether wurde zu 80 ml deionisiertem Wasser von 40°C in einem 100-ml-Kolben gegeben. Das Gemisch wurde gerührt, bis der gesamte zu lösende Stoff aufgelöst war, und die Lösung wurde auf Raumtemperatur abkühlen gelassen. Dann wurde eine Menge von 1,94 g Natrium-p-toluolsulfonat hinzugefügt, und das Gemisch wurde erneut gerührt, bis der gesamte zu lösende Stoff aufgelöst war. Ein Monomer in Form von 3,4-Ethylendioxythiophen wurde in einer Menge von 4,26 g hinzugefügt, und der Kolben wurde sachte gerührt, um eine thermodynamische Reaktion zu erreichen. Schließlich wurden 20 ml deionisiertes Wasser von Raumtemperatur hinzugefügt, wobei eine Mikroemulsion entstand. Jeder der oben genannten Becher wurde mit der Mikroemulsion gefüllt und in einen Kupferbehälter gebracht, wobei der Becher an den positiven Pol einer Stromquelle angeschlossen wurde. Ein Pt-Draht wurde elektrisch an den negativen Pol der Stromquelle angeschlossen und in den Becher und die Mikroemulsion eingefügt. Eine Elektropolymerisation wurde etwa 30 Minuten lang unter Verwendung einer konstanten Stromstärkeeinstellung von 5 mA durchgeführt, wobei eine Struktur aus Poly(3,4-ethylendioxythiophen) entstand. Dann wurden die Becher in Methanol ausgespült, um Nebenprodukte der Reaktion zu entfernen, und 5 Minuten lang bei 85°C getrocknet.
  • Gepresste und gesinterte zylindrische Ta-Anoden mit einer Nennkapazität von 560 μF/125 V wurden mit einer 5,0 M wässrigen Lösung von Schwefelsäure (Dichte 1,26 g/cm3) imprägniert. Dann wurden die Kondensatoren mit Hilfe von herkömmlichen Ta-Flüssigkeitskondensator-Praktiken zusammengesetzt. Die fertigen Flüssigkeitskondensatoren wurden auf elektrische Eigenschaften (d. h. Leckstrom, ESR und Kapazität) getestet. Die Messungen wurden bei 23°C ± 2°C durchgeführt. Die Ergebnisse sind im Folgenden dargelegt.
    Probe Elektrische Eigenschaften bei 23°C
    Kapazität [μF] ESR [mΩ] DCL [μA]
    Beispiel 1 155,6 0,694 0,388
    Beispiel 2 155,5 0,636 0,467
    Beispiel 3 154,9 0,569 0,394
    Beispiel 4 155,4 0,838 0,488
    Beispiel 5 155,2 0,796 0,451
    Beispiel 6 155,7 0,584 0,693
    Beispiel 7 154,4 0,714 0,456
  • Diese und andere Modifikationen und Variationen der vorliegenden Erfindung können vom Fachmann praktisch umgesetzt werden, ohne vom Wesen und Umfang der vorliegenden Erfindung abzuweichen. Außerdem sollte man sich darüber im Klaren sein, dass Aspekte der verschiedenen Ausführungsformen ganz oder teilweise gegeneinander ausgetauscht werden können. Weiterhin wird der Fachmann anerkennen, dass die obige Beschreibung nur beispielhaften Charakter hat und die Erfindung, die in den beigefügten Ansprüchen näher beschrieben ist, nicht einschränken soll.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 6322912 [0036]
    • US 6391275 [0036]
    • US 6416730 [0036]
    • US 6527937 [0036]
    • US 6576099 [0036]
    • US 6592740 [0036]
    • US 6639787 [0036]
    • US 7220397 [0036]
    • US 6197252 [0041]
    • US 5369547 [0052, 0053]
    • US 6594140 [0052, 0053]

Claims (29)

  1. Flüssigelektrolytkondensator, umfassend: eine Anode, die einen gesinterten porösen Anodenkörper, der mit einem Dielektrikum beschichtet ist, umfasst; eine Kathode, die ein Metallsubstrat umfasst, über dem sich eine leitfähige Polymerbeschichtung befindet, wobei die leitfähige Polymerbeschichtung durch elektrolytische Polymerisation einer Mikroemulsion gebildet wird, wobei die Mikroemulsion ein Vorläufermonomer, ein nichtionisches Tensid, eine Sulfonsäure und ein Lösungsmittel umfasst; und einen flüssigen Arbeitselektrolyten in Verbindung mit der Anode und der Kathode.
  2. Flüssigelektrolytkondensator gemäß Anspruch 1, wobei das Metallsubstrat Titan oder Tantal umfasst.
  3. Flüssigelektrolytkondensator gemäß Anspruch 1 oder 2, wobei das Metallsubstrat eine im Wesentlichen zylindrische Form aufweist.
  4. Flüssigelektrolytkondensator gemäß einem der vorstehenden Ansprüche, wobei das Vorläufermonomer ein Pyrrol, Anilin, Thiophen oder eine Kombination davon umfasst.
  5. Flüssigelektrolytkondensator gemäß einem der vorstehenden Ansprüche, wobei das Vorläufermonomer die folgende allgemeine Struktur aufweist:
    Figure 00390001
    wobei T = O oder S ist; D ein gegebenenfalls substituierter C1- bis C5-Alkylenrest ist; R7 unabhängig ausgewählt ist aus einem linearen oder verzweigten, gegebenenfalls substituierten C1 bis C18-Alkylrest, einem gegebenenfalls substituierten C5- bis C12-Cycloalkylrest, einem gegebenenfalls substituierten C6- bis C14-Arylrest, einem gegebenenfalls substituierten C7- bis C18-Aralkylrest, einem gegebenenfalls substituierten C1- bis C4-Hydroxyalkylrest oder einem Hydroxyrest; und q eine ganze Zahl von 0 bis 8 ist.
  6. Flüssigelektrolytkondensator gemäß einem der vorstehenden Ansprüche, wobei das Vorläufermonomer 3,4-Alkylendioxythiophen oder ein Derivat davon umfasst.
  7. Flüssigelektrolytkondensator gemäß einem der vorstehenden Ansprüche, wobei das nichtionische Tensid einen HLB-Wert von etwa 11 bis etwa 18 aufweist.
  8. Flüssigelektrolytkondensator gemäß einem der vorstehenden Ansprüche, wobei das nichtionische Tensid ein Polyglycerinfettsäureester, Polyglycerinfettalkoholether, Saccharosefettsäureester, Hydrocarbylpolyglycosid oder eine Kombination davon ist.
  9. Flüssigelektrolytkondensator gemäß einem der vorstehenden Ansprüche, wobei das nichtionische Tensid ein Polyoxyethylenfettsäureester, Polyoxyethylenfettalkoholether, Polyoxyethylensorbitolanhydridfettsäureester, Polyoxyethylenglycerinmonofettsäureester, Polyoxyethylen-hydriertes-Ricinusöl, Polyoxyethylen-hydriertes-Ricinusölmonofettsäureester oder eine Kombination davon ist.
  10. Flüssigelektrolytkondensator gemäß einem der vorstehenden Ansprüche, wobei das nichtionische Tensid ein Polyoxyethylenfettalkoholether ist, wobei der Fettalkohol gesättigt oder ungesättigt ist und 8 bis 22 Kohlenstoffatome aufweist und wobei die Polyoxyethylen-Struktureinheit im Durchschnitt 4 bis 60 Ethylenoxid-Repetiereinheiten enthält.
  11. Flüssigelektrolytkondensator gemäß Anspruch 10, wobei der Polyoxyethylenfettalkoholether ein Polyoxyethylenoctylether, Polyoxyethylendecylether, Polyoxyethylenlaurylether, Polyoxyethylenmyristylether, Polyoxyethylenpalmitylether, Polyoxyethylenisostearylether, Polyoxyethylenstearylether, Polyoxyethylenoleylether, Polyoxyethylenbehenylether oder eine Kombination davon ist.
  12. Flüssigelektrolytkondensator gemäß einem der vorstehenden Ansprüche, wobei die Sulfonsäure eine Arylensulfonsäure umfasst.
  13. Flüssigelektrolytkondensator gemäß Anspruch 12, wobei die Arylensulfonsäure p-Toluolsulfonsäure, 1-Naphthalinsulfonsäure, 2-Naphthalinsulfonsäure oder eine Kombination davon umfasst.
  14. Flüssigelektrolytkondensator gemäß einem der vorstehenden Ansprüche, wobei die leitfähige Polymerbeschichtung frei von energiereichen Eisenradikalen ist.
  15. Flüssigelektrolytkondensator gemäß einem der vorstehenden Ansprüche, wobei der poröse Körper aus einem Tantalpulver gebildet ist.
  16. Flüssigelektrolytkondensator gemäß einem der vorstehenden Ansprüche, wobei der flüssige Elektrolyt wässrig ist.
  17. Flüssigelektrolytkondensator gemäß einem der vorstehenden Ansprüche, wobei der flüssige Elektrolyt Schwefelsäure umfasst.
  18. Flüssigelektrolytkondensator gemäß einem der vorstehenden Ansprüche, wobei das Substrat in Form eines Gehäuses vorliegt, in dem sich die Anode und der flüssige Elektrolyt befinden.
  19. Flüssigelektrolytkondensator gemäß einem der vorstehenden Ansprüche, wobei der Anodenkörper eine Seitenwand enthält, die sich zwischen einem proximalen Ende und einem entgegengesetzten distalen Ende befindet, wobei eine Vielzahl sich längs erstreckender Kanäle in die Seitenwand eingelassen sind.
  20. Flüssigelektrolytkondensator gemäß einem der vorstehenden Ansprüche, wobei der Anodenkörper eine im Wesentlichen zylindrische Form aufweist.
  21. Verfahren zur Bildung einer Kathode eines Flüssigkeitskondensators, wobei das Verfahren Folgendes umfasst: das Auftragen einer Mikroemulsion auf ein Metallsubstrat, wie Tantal oder Titan, wobei die Mikroemulsion ein Vorläufermonomer, wie ein Pyrrol, Anilin, Thiophen oder eine Kombination davon, ein nichtionisches Tensid, wie einen Polyglycerinfettsäureester, Polyglycerinfettalkoholether, Saccharosefettsäureester, ein Hydrocarbylpolyglycosid oder eine Kombination davon, und eine Sulfonsäure, wie Arylensulfonsäure, und ein Lösungsmittel, wie Wasser, umfasst; das In-Kontakt-Bringen einer Elektrode mit dem Metallsubstrat; und das Zuführen eines Stroms zu der Elektrode, um eine Elektrolyse und oxidative Polymerisation des Vorläufermonomers zu induzieren, wodurch eine leitfähige Polymerbeschichtung entsteht.
  22. Verfahren gemäß Anspruch 21, wobei das nichtionische Tensid einen HLB-Wert von etwa 11 bis etwa 18 aufweist.
  23. Verfahren gemäß Anspruch 21, wobei das nichtionische Tensid ein Polyoxyethylenfettsäureester, Polyoxyethylenfettalkoholether, Polyoxyethylensorbitolanhydridfettsäureester, Polyoxyethylenglycerinmonofettsäureester, Polyoxyethylen-hydriertes-Ricinusöl, Polyoxyethylen-hydriertes-Ricinusölmonofettsäureester oder eine Kombination davon ist.
  24. Verfahren gemäß Anspruch 21, wobei die Arylensulfonsäure p-Toluolsulfonsäure, 1-Naphthalinsulfonsäure, 2-Naphthalinsulfonsäure oder eine Kombination davon umfasst.
  25. Verfahren gemäß Anspruch 21, wobei die Mikroemulsion und die leitfähige Polymerbeschichtung beide frei von energiereichen Eisenradikalen sind.
  26. Verfahren gemäß Anspruch 21, wobei das Verhältnis des Gewichts von nichtionischen Tensiden zum Gewicht der Vorläufermonomere in der Mikroemulsion etwa 0,5 bis etwa 1,5 beträgt.
  27. Verfahren gemäß Anspruch 21, wobei das Verhältnis des Gewichts von Sulfonsäuren zum Gewicht der Vorläufermonomere in der Mikroemulsion etwa 0,2 bis etwa 1,2 beträgt.
  28. Verfahren gemäß Anspruch 21, wobei der pH-Wert der Mikroemulsion etwa 5,0 bis etwa 8,5 beträgt.
  29. Verfahren gemäß Anspruch 21, wobei die Mikroemulsion eine Temperatur von etwa 40°C bis etwa 70°C aufweist.
DE102013204358A 2012-03-16 2013-03-13 Flüssigkeitskondensatorkathode, die eine leitfähige Beschichtung enthält, welche durch anodische elektrochemische Polymerisation einer Mikroemulsion gebildet ist Pending DE102013204358A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261611717P 2012-03-16 2012-03-16
US61/611,717 2012-03-16

Publications (1)

Publication Number Publication Date
DE102013204358A1 true DE102013204358A1 (de) 2013-09-19

Family

ID=48189524

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102013204358A Pending DE102013204358A1 (de) 2012-03-16 2013-03-13 Flüssigkeitskondensatorkathode, die eine leitfähige Beschichtung enthält, welche durch anodische elektrochemische Polymerisation einer Mikroemulsion gebildet ist

Country Status (5)

Country Link
US (1) US9076592B2 (de)
CN (1) CN103310984B (de)
DE (1) DE102013204358A1 (de)
FR (1) FR2988209B1 (de)
GB (1) GB2500988B (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2661469A1 (en) * 2008-04-11 2009-10-11 Andre Foucault Leg rehabilitation apparatus
US8971019B2 (en) 2012-03-16 2015-03-03 Avx Corporation Wet capacitor cathode containing an alkyl-substituted poly(3,4-ethylenedioxythiophene)
US9053861B2 (en) * 2012-03-16 2015-06-09 Avx Corporation Wet capacitor cathode containing a conductive coating formed anodic electrochemical polymerization of a colloidal suspension
JP5689567B2 (ja) 2012-07-25 2015-03-25 昭和電工株式会社 導電性高分子の製造方法および固体電解コンデンサの製造方法
GB2512481B (en) 2013-03-15 2018-05-30 Avx Corp Wet electrolytic capacitor for use at high temperatures
GB2512486B (en) 2013-03-15 2018-07-18 Avx Corp Wet electrolytic capacitor
US10403444B2 (en) 2013-09-16 2019-09-03 Avx Corporation Wet electrolytic capacitor containing a composite coating
US9165718B2 (en) * 2013-09-16 2015-10-20 Avx Corporation Wet electrolytic capacitor containing a hydrogen protection layer
US9183991B2 (en) 2013-09-16 2015-11-10 Avx Corporation Electro-polymerized coating for a wet electrolytic capacitor
US10290430B2 (en) * 2014-11-24 2019-05-14 Avx Corporation Wet Electrolytic Capacitor for an Implantable Medical Device
US9672989B2 (en) * 2015-05-29 2017-06-06 Avx Corporation Solid electrolytic capacitor assembly for use in a humid atmosphere
US9972444B2 (en) * 2015-05-29 2018-05-15 Avx Corporation Solid electrolytic capacitor element for use in dry conditions
US9947479B2 (en) 2015-11-16 2018-04-17 Vishay Sprague, Inc. Volumetric efficiency wet electrolyte capacitor having a fill port and terminations for surface mounting
US10381166B2 (en) * 2016-05-25 2019-08-13 Vishay Sprague, Inc. High performance and reliability solid electrolytic tantalum capacitors and screening method
US9870868B1 (en) 2016-06-28 2018-01-16 Avx Corporation Wet electrolytic capacitor for use in a subcutaneous implantable cardioverter-defibrillator
US9870869B1 (en) 2016-06-28 2018-01-16 Avx Corporation Wet electrolytic capacitor
US11189431B2 (en) 2018-07-16 2021-11-30 Vishay Sprague, Inc. Low profile wet electrolytic tantalum capacitor
US11024464B2 (en) 2018-08-28 2021-06-01 Vishay Israel Ltd. Hermetically sealed surface mount polymer capacitor
PT3899996T (pt) * 2018-12-20 2024-02-12 Victoria Link Ltd Composições de eletrólito
US11742149B2 (en) 2021-11-17 2023-08-29 Vishay Israel Ltd. Hermetically sealed high energy electrolytic capacitor and capacitor assemblies with improved shock and vibration performance
CN116313533B (zh) * 2023-05-11 2024-04-26 益阳市安兴电子有限公司 一种固态铝电解电容器及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369547A (en) 1993-03-22 1994-11-29 The Evans Findings Co., Ltd. Capacitor
US6197252B1 (en) 1997-01-13 2001-03-06 Avx Limited Binder removal
US6322912B1 (en) 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6391275B1 (en) 1998-09-16 2002-05-21 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6416730B1 (en) 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6576099B2 (en) 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
US6594140B1 (en) 1993-03-22 2003-07-15 Evans Capacitor Company Incorporated Capacitor
US6639787B2 (en) 2000-11-06 2003-10-28 Cabot Corporation Modified oxygen reduced valve metal oxides

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3345545A (en) * 1964-11-27 1967-10-03 Johnson Matthey & Mallory Ltd Solid electrolytic capacitor having minimum anode impedance
JPS63249323A (ja) 1987-04-06 1988-10-17 松下電器産業株式会社 固体電解コンデンサ
DE68918486T2 (de) 1988-03-31 1995-05-18 Matsushita Electric Ind Co Ltd Festelektrolytkondensator und Verfahren zu seiner Herstellung.
EP0342998B1 (de) 1988-05-20 1996-01-17 Sanyo Electric Co., Ltd Verfahren zum Herstellen einer Elektrode für einen Festelektrolytkondensator
US5284723A (en) 1989-07-14 1994-02-08 Solvay & Cie (Societe Anonyme) Electrochemical energy storage devices comprising electricaly conductive polymer and their uses
FR2650833B1 (fr) 1989-08-14 1991-11-08 Solvay Compositions de polymeres conducteurs d'electricite derives de pyrrole substitue ou non et procede pour leur obtention
US5071521A (en) 1989-09-06 1991-12-10 Matsushita Electric Industrial Co., Ltd. Method for manufacturing a solid electrolytic capacitor
US5119274A (en) 1989-12-29 1992-06-02 Matsushita Electric Industrial Co., Ltd. Solid capacitor
EP0463391B1 (de) 1990-05-25 1997-08-13 Matsushita Electric Industrial Co., Ltd. Festelektrolytkondensatoren und ihr Herstellungsverfahren
JPH0736375B2 (ja) 1991-04-05 1995-04-19 松下電器産業株式会社 固体電解コンデンサの製造方法
US5187650A (en) 1991-04-15 1993-02-16 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors and method for manufacturing the same
US5424907A (en) 1992-02-21 1995-06-13 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors and method for manufacturing the same
US5754394A (en) 1993-03-22 1998-05-19 Evans Capacitor Company Incorporated Capacitor including a cathode having a nitride coating
JP3068430B2 (ja) * 1995-04-25 2000-07-24 富山日本電気株式会社 固体電解コンデンサ及びその製造方法
JP3741539B2 (ja) 1997-06-03 2006-02-01 松下電器産業株式会社 電解コンデンサおよびその製造方法
US6168639B1 (en) 1997-10-09 2001-01-02 Sanyo Electric Co., Ltd. Solid electrolyte capacitor, and process and apparatus for producing same
US6088218A (en) 1997-10-31 2000-07-11 Matsushita Electric Industrial Co., Ltd. Electrolytic capacitor and method for producing the same
US6239965B1 (en) 1998-05-22 2001-05-29 Matsushita Electric Industrial Co., Ltd. Electrolytic capacitor and method of producing the same
JP3667531B2 (ja) 1998-07-07 2005-07-06 松下電器産業株式会社 電解コンデンサの製造方法
JP4036985B2 (ja) 1998-10-26 2008-01-23 三洋電機株式会社 固体電解コンデンサ
JP2000235937A (ja) 1999-02-16 2000-08-29 Matsushita Electric Ind Co Ltd 固体電解コンデンサおよびその製造方法
US6602741B1 (en) 1999-09-14 2003-08-05 Matsushita Electric Industrial Co., Ltd. Conductive composition precursor, conductive composition, solid electrolytic capacitor, and their manufacturing method
US6614063B2 (en) 1999-12-03 2003-09-02 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor
US6426866B2 (en) 2000-04-14 2002-07-30 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method of manufacturing the same
JP3906043B2 (ja) 2001-08-20 2007-04-18 三洋電機株式会社 固体電解コンデンサの製造方法
US6671168B2 (en) 2001-11-30 2003-12-30 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method for manufacturing the same
US7002790B2 (en) 2002-09-30 2006-02-21 Medtronic, Inc. Capacitor in an implantable medical device
US7079377B2 (en) 2002-09-30 2006-07-18 Joachim Hossick Schott Capacitor and method for producing a capacitor
JP2004265927A (ja) 2003-02-13 2004-09-24 Sanyo Electric Co Ltd 固体電解コンデンサの製造方法
JP2004303940A (ja) 2003-03-31 2004-10-28 Matsushita Electric Ind Co Ltd 電解コンデンサ
US6842328B2 (en) 2003-05-30 2005-01-11 Joachim Hossick Schott Capacitor and method for producing a capacitor
US7256982B2 (en) 2003-05-30 2007-08-14 Philip Michael Lessner Electrolytic capacitor
US7157326B2 (en) 2003-07-10 2007-01-02 Sanyo Electric Co., Ltd. Process for fabricating capacitor element
US7687102B2 (en) 2003-10-23 2010-03-30 Medtronic, Inc. Methods and apparatus for producing carbon cathodes
US7224576B2 (en) 2003-10-23 2007-05-29 Medtronic, Inc. High capacitance electrode and methods of producing same
JP4315038B2 (ja) 2004-03-29 2009-08-19 パナソニック株式会社 固体電解コンデンサ
CN100587869C (zh) 2004-10-15 2010-02-03 三洋电机株式会社 固体电解电容器及其制造方法
JP5323478B2 (ja) 2005-06-27 2013-10-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 導電性ポリマー組成物
JP4703400B2 (ja) 2005-12-28 2011-06-15 三洋電機株式会社 固体電解コンデンサ及びその製造方法
US7785741B2 (en) 2006-02-28 2010-08-31 Medtronic, Inc. Flat electrochemical cells and method for manufacture
JP4845645B2 (ja) 2006-08-30 2011-12-28 三洋電機株式会社 固体電解コンデンサおよびその製造方法
JP4762105B2 (ja) 2006-10-12 2011-08-31 三洋電機株式会社 固体電解コンデンサの製造方法
JP4845699B2 (ja) 2006-12-08 2011-12-28 三洋電機株式会社 固体電解コンデンサ及び固体電解コンデンサの製造方法
JP4804336B2 (ja) 2006-12-27 2011-11-02 三洋電機株式会社 固体電解コンデンサ
TWI456612B (zh) 2007-02-28 2014-10-11 Sanyo Electric Co 固體電解電容器及其製造方法
US8057553B2 (en) 2007-03-15 2011-11-15 Sanyo Electric Co., Ltd. Method for manufacturing solid electrolytic capacitor and solid electrolytic capacitor
US7729103B2 (en) 2007-03-20 2010-06-01 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and method of producing the same
US7515396B2 (en) 2007-03-21 2009-04-07 Avx Corporation Solid electrolytic capacitor containing a conductive polymer
JP4850127B2 (ja) 2007-05-30 2012-01-11 三洋電機株式会社 固体電解コンデンサおよびその製造方法
JP4877820B2 (ja) 2007-06-29 2012-02-15 三洋電機株式会社 固体電解コンデンサ
CN101689428B (zh) 2007-07-02 2012-05-30 三洋电机株式会社 固体电解电容器
US8218290B2 (en) 2007-08-22 2012-07-10 Sanyo Electric Co., Ltd. Solid electrolytic capacitor
US8213158B2 (en) 2007-09-28 2012-07-03 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and its production method
JP4931778B2 (ja) 2007-11-21 2012-05-16 三洋電機株式会社 固体電解コンデンサ
JP2009170897A (ja) 2007-12-21 2009-07-30 Sanyo Electric Co Ltd 固体電解コンデンサ
JP5020128B2 (ja) 2008-03-13 2012-09-05 三洋電機株式会社 固体電解コンデンサ
TW200945389A (en) 2008-03-31 2009-11-01 Sanyo Electric Co Method for manufacturing solid electrolytic condenser
JP5736534B2 (ja) 2008-09-29 2015-06-17 パナソニックIpマネジメント株式会社 固体電解コンデンサ
JP5340872B2 (ja) 2008-11-05 2013-11-13 三洋電機株式会社 固体電解コンデンサの製造方法
JP2010129789A (ja) 2008-11-27 2010-06-10 Sanyo Electric Co Ltd 固体電解コンデンサの製造方法
TW201023220A (en) 2008-12-01 2010-06-16 Sanyo Electric Co Method of manufacturing solid electrolytic capacitor
US8279585B2 (en) 2008-12-09 2012-10-02 Avx Corporation Cathode for use in a wet capacitor
JP5289033B2 (ja) 2008-12-24 2013-09-11 三洋電機株式会社 固体電解コンデンサ
JP5274268B2 (ja) 2009-01-08 2013-08-28 三洋電機株式会社 固体電解コンデンサとその製造方法
US20100193745A1 (en) 2009-01-30 2010-08-05 Sanyo Electric Co., Ltd. Conductive polymer film, conductive polymeric material and electronic device
JP2011071087A (ja) 2009-03-12 2011-04-07 Sanyo Electric Co Ltd 導電性高分子膜、電子デバイス、及びこれらの製造方法
US8223473B2 (en) * 2009-03-23 2012-07-17 Avx Corporation Electrolytic capacitor containing a liquid electrolyte
US8405956B2 (en) * 2009-06-01 2013-03-26 Avx Corporation High voltage electrolytic capacitors
JP2010245113A (ja) 2009-04-01 2010-10-28 Sanyo Electric Co Ltd 固体電解コンデンサ
JP5484995B2 (ja) 2009-04-28 2014-05-07 三洋電機株式会社 固体電解コンデンサ及びその製造方法
JP2010275378A (ja) 2009-05-27 2010-12-09 Nec Tokin Corp 導電性高分子懸濁液およびその製造方法、導電性高分子材料並びに、固体電解コンデンサおよびその製造方法
JP5461110B2 (ja) 2009-08-28 2014-04-02 三洋電機株式会社 固体電解コンデンサおよびその製造方法
JP5526660B2 (ja) 2009-08-31 2014-06-18 三洋電機株式会社 導電性高分子膜、導電性高分子膜の製造方法、および電子デバイスの製造方法
JP5388811B2 (ja) 2009-11-20 2014-01-15 三洋電機株式会社 固体電解コンデンサおよびその製造方法
JP5410251B2 (ja) 2009-11-26 2014-02-05 Necトーキン株式会社 導電性高分子懸濁液およびその製造方法、導電性高分子材料、電解コンデンサ、ならびに固体電解コンデンサおよびその製造方法
JP5465025B2 (ja) 2010-01-27 2014-04-09 Necトーキン株式会社 導電性高分子懸濁液およびその製造方法、導電性高分子材料、固体電解コンデンサおよびその製造方法
US8503167B2 (en) 2010-01-27 2013-08-06 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and manufacturing method thereof
JP5853160B2 (ja) 2010-02-25 2016-02-09 パナソニックIpマネジメント株式会社 固体電解コンデンサ
JP2011181611A (ja) 2010-02-26 2011-09-15 Sanyo Electric Co Ltd 固体電解コンデンサおよび固体電解コンデンサの製造方法
US8206467B2 (en) 2010-03-24 2012-06-26 Sanyo Electric Co., Ltd. Method for manufacturing a solid electrolytic capacitor
JP5491246B2 (ja) 2010-03-25 2014-05-14 Necトーキン株式会社 導電性高分子およびその製造方法、導電性高分子分散液、ならびに固体電解コンデンサおよびその製造方法
US9129747B2 (en) * 2012-03-16 2015-09-08 Avx Corporation Abrasive blasted cathode of a wet electrolytic capacitor
US9053861B2 (en) * 2012-03-16 2015-06-09 Avx Corporation Wet capacitor cathode containing a conductive coating formed anodic electrochemical polymerization of a colloidal suspension

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369547A (en) 1993-03-22 1994-11-29 The Evans Findings Co., Ltd. Capacitor
US6594140B1 (en) 1993-03-22 2003-07-15 Evans Capacitor Company Incorporated Capacitor
US6197252B1 (en) 1997-01-13 2001-03-06 Avx Limited Binder removal
US6322912B1 (en) 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6391275B1 (en) 1998-09-16 2002-05-21 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6416730B1 (en) 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6527937B2 (en) 1998-09-16 2003-03-04 Cabot Corporation Method of making a capacitor anode of a pellet of niobium oxide
US6592740B2 (en) 1998-09-16 2003-07-15 Cabot Corporation Methods to make capacitors containing a partially reduced niobium metal oxide
US6576099B2 (en) 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
US6639787B2 (en) 2000-11-06 2003-10-28 Cabot Corporation Modified oxygen reduced valve metal oxides
US7220397B2 (en) 2000-11-06 2007-05-22 Cabot Corporation Modified oxygen reduced valve metal oxides

Also Published As

Publication number Publication date
CN103310984B (zh) 2017-10-31
CN103310984A (zh) 2013-09-18
US20130242466A1 (en) 2013-09-19
GB2500988A (en) 2013-10-09
GB201304127D0 (en) 2013-04-24
FR2988209B1 (fr) 2016-08-05
GB2500988B (en) 2016-01-06
FR2988209A1 (fr) 2013-09-20
US9076592B2 (en) 2015-07-07

Similar Documents

Publication Publication Date Title
DE102013204358A1 (de) Flüssigkeitskondensatorkathode, die eine leitfähige Beschichtung enthält, welche durch anodische elektrochemische Polymerisation einer Mikroemulsion gebildet ist
DE102013204336A1 (de) Flüssigkeitskondensatorkathode, die ein leitfähiges Copolymer enthält
DE102013204374A1 (de) Flüssigkeitskondensatorkathode, die ein alkylsubstituiertes Poly(3,4-ethylendioxythiophen) enthält
DE102013204351A1 (de) Flüssigkeitskondensatorkathode, die eine leitfähige Beschichtung enthält, welche durch anodische elektrochemische Polymerisation einer kolloidalen Suspension gebildet ist
DE102012223637A1 (de) Flüssigkeitskondensator, der eine verbesserte Anode enthält
DE102011117190A1 (de) Volumetrisch effizienter Flüssigelektrolytkondensator
DE102012221861A1 (de) Flüssigelektrolytkondensator, der einen gelierten Arbeitselektrolyten enthält
DE102012200233A1 (de) Planare Anode zur Verwendung in einem Flüssigelektrolytkondensator
DE102013204390A1 (de) Gestrahlte Kathode eines Flüssigelektrolytkondensators
DE102012200231A1 (de) Anschlussdrahtkonfiguration für eine planare Anode eines Flüssigelektrolytkondensators
DE102014225816A1 (de) Stabiler Festelektrolytkondensator, der einen Nanokomposit enthält
DE102015220954A1 (de) Flüssigelektrolytkondensator für eine implantierbare medizinische Vorrichtung
DE102014208944A1 (de) Festelektrolytkondensator, der leitfähige Polymerteilchen enthält
DE102014204607A1 (de) Flüssigelektrolytkondensator zur Verwendung bei hohen Temperaturen
DE102012216067A1 (de) Versiegelungsanordnung für einen Flüssigelektrolytkondensator
DE102011113165A1 (de) Leitfähige Polymerbeschichtung für ein Flüssigelektrolytkondensator
DE102013214126A1 (de) Festelektrolytkondensator mit verbesserten Eigenschaften bei hohen Spannungen
DE102010012373A1 (de) Elektrolytkondensator, der einen flüssigen Elektrolyten enthält
DE102016208802A1 (de) Festelektrolytkondensatorbaugruppe zur Verwendung in einer feuchten Atmosphäre
DE102011117192A1 (de) Festelektrolytkondensator zur Verwendung in Hochspannungs- und Hochtemperaturanwendungen
DE102011088366A1 (de) Leitfähige Beschichtung zur Verwendung in Elektrolytkondensatoren
DE102014204323A1 (de) Festelektrolytkondensator zur Verwendung unter extremen Bedingungen
DE102011113164A1 (de) Kathode aus einem gestrahlten leitfähigen Polymer zur Verwendung in einem Flüssigelektrolytkondensator
DE102016208807A1 (de) Festelektrolytkondensatorelement zur Verwendung unter trockenen Bedingungen
DE102011117189A1 (de) Hermetisch versiegelter Flüssigelektrolytkondensator

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R081 Change of applicant/patentee

Owner name: KYOCERA AVX COMPONENTS CORPORATION (N. D. GES., US

Free format text: FORMER OWNER: AVX CORPORATION, FOUNTAIN INN, SC, US

R016 Response to examination communication