DE102011113164A1 - Kathode aus einem gestrahlten leitfähigen Polymer zur Verwendung in einem Flüssigelektrolytkondensator - Google Patents

Kathode aus einem gestrahlten leitfähigen Polymer zur Verwendung in einem Flüssigelektrolytkondensator Download PDF

Info

Publication number
DE102011113164A1
DE102011113164A1 DE102011113164A DE102011113164A DE102011113164A1 DE 102011113164 A1 DE102011113164 A1 DE 102011113164A1 DE 102011113164 A DE102011113164 A DE 102011113164A DE 102011113164 A DE102011113164 A DE 102011113164A DE 102011113164 A1 DE102011113164 A1 DE 102011113164A1
Authority
DE
Germany
Prior art keywords
acid
electrolytic capacitor
electrolyte
liquid electrolytic
metal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102011113164A
Other languages
English (en)
Inventor
John Galvagni
Dirk H. Dreissig
Martin Biler
Zebbie Lynn Sebald
Frantisek Priban
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Avx Components Corp N D Ges Us
Original Assignee
AVX Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVX Corp filed Critical AVX Corp
Publication of DE102011113164A1 publication Critical patent/DE102011113164A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/0425Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/06Mounting in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Conductive Materials (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

Ein Flüssigelektrolytkondensator, der einen porösen Anodenkörper, welcher eine dielektrische Schicht enthält, einen Elektrolyten und eine Kathode, die ein gestrahltes Metallsubstrat enthält, umfasst, wird bereitgestellt. Das Strahlen kann einer Vielzahl von Zwecken dienen. Zum Beispiel kann es zu einer Oberfläche fuhren, die im Wesentlichen gleichmäßig und makroskopisch glatt ist, wodurch die Konsistent von darauf gebildeten leitfähigen Beschichtungen erhöht wird. Die gestrahlte Oberfläche besitzt zwar einen gewissen Grad von Glätte, ist aber dennoch mikroaufgeraut, so dass sie eine Vielzahl von Grübchen enthält. Die Grübchen sorgen für eine erhöhte spezifische Oberfläche und ermöglichen dadurch eine erhöhte Kathodenkapazität bei einer gegebenen Größe und/oder Kondensatoren mit einer reduzierten Größe bei einer gegebenen Kapazität. Eine leitfähige Beschichtung, die ein substituiertes Polythiophen enthält, wird auf die mikroaufgeraute Oberfläche aufgetragen. Die Anwesenheit der Grübchen auf dem Substrat erhöht den Grad des Kontakts zwischen der leitfähigen Beschichtung und dem Metallsubstrat, was zu einer verbesserten mechanischen Robustheit und verbesserten elektrischen Eigenschaften (z. B. reduziertem äquivalenten Serienwiderstand und Leckstrom) führt.

Description

  • Flüssigkeitskondensatoren werden aufgrund ihrer volumetrischen Effizienz, Zuverlässigkeit und Verfahrenskompatibilität zunehmend bei der Gestaltung von Schaltungen verwendet. Flüssigkeitskondensatoren haben typischerweise eine größere Kapazität pro Volumeneinheit als bestimmte andere Arten von Kondensatoren, wodurch sie wertvoll für elektrische Schaltungen mit hoher Stromstärke, hoher Leistung und niedriger Frequenz sind. Eine Art Flüssigkeitskondensator, der entwickelt wurde, ist ein Flüssigelektrolytkondensator, der eine Ventilmetallanode, eine Kathode und einen flüssigen Elektrolyten umfasst. Die Einzelzellspannung bei dieser Art von Kondensator ist aufgrund der Bildung eines dielektrischen Metalloxidfilms über der Anodenoberfläche im Allgemeinen höher. Flüssigelektrolytkondensatoren bieten häufig eine gute Kombination von hoher Kapazität mit geringem Leckstrom. Eine andere Art von Flüssigkeitskondensator ist ein symmetrischer Flüssigkeitskondensator, bei dem die Anode und Kathode in Bezug auf Struktur und Zusammensetzung gleich sind. Die Einzelzellspannung bei dieser Art von Kondensator ist aufgrund der unvermeidlichen Zersetzung des Elektrolyten bei hoher Spannung im Allgemeinen niedrig. Unabhängig davon, ob es sich um Elektrolyt- oder symmetrische Flüssigkeitskondensatoren handelt, umfassen ihre Kathoden jedoch typischerweise ein Substrat und eine Beschichtung, die durch einen Faradayschen oder nicht-Faradayschen Mechanismus für eine hohe Kapazität sorgt. Herkömmliche Beschichtungen umfassen Aktivkohle, Metalloxide (z. B. Rutheniumoxid) und dergleichen. Leider jedoch können sich die Beschichtungen unter bestimmten Bedingungen, wie in Gegenwart von wässrigen Elektrolyten, leicht ablösen.
  • Daher besteht zurzeit ein Bedürfnis nach einem Hochspannungsflüssigelektrolytkondensator, der gute mechanische Robustheit und gute elektrische Eigenschaften besitzt.
  • Kurzbeschreibung der Erfindung
  • Gemäß einer Ausführungsform der vorliegenden Erfindung wird ein Verfahren zur Bildung einer Kathode eines Flüssigelektrolytkondensators offenbart. Das Verfahren umfasst das Schleudern von Schleifkörpern gegen ein Metallsubstrat (”Strahlen”) zur Bildung einer mikroaufgerauten Oberfläche, die eine Vielzahl von Grübchen enthält. Auf der mikroaufgerauten Oberfläche wird eine leitfähige Beschichtung gebildet, die ein intrinsisch leitfähiges substituiertes Polythiophen umfasst.
  • Gemäß einer anderen Ausführungsform der vorliegenden Erfindung wird ein Flüssigelektrolytkondensator offenbart, der einen porösen Anodenkörper, welcher eine durch anodische Oxidation gebildete dielektrische Schicht enthält, einen flüssigen Elektrolyten und ein Metallgehäuse, innerhalb dessen sich die Anode und der flüssige Elektrolyt befinden, umfasst. Das Metallgehäuse definiert eine innere Oberfläche, die eine Vielzahl von durch Strahlen gebildeten Grübchen enthält. Eine leitfähige Beschichtung befindet sich auf der inneren Oberfläche des Gehäuses und innerhalb von deren Grübchen, wobei die leitfähige Beschichtung Poly(3,4-ethylendioxythiophen) umfasst.
  • Weitere Merkmale und Aspekte der vorliegenden Erfindung sind im Folgenden ausführlicher dargelegt.
  • Kurzbeschreibung der Zeichnungen
  • Im Rest der Beschreibung und unter Bezugnahme auf die Begleitzeichnungen ist eine vollständige und nacharbeitbare Offenbarung der vorliegenden Erfindung einschließlich ihrer besten Realisierung für den Fachmann insbesondere dargelegt; dabei sind:
  • 1 eine Querschnittsansicht einer Ausführungsform des Flüssigelektrolytkondensators der vorliegenden Erfindung;
  • 2 eine Querschnittsansicht einer Ausführungsform eines mikroaufgerauten Metallsubstrats, das in der vorliegenden Erfindung eingesetzt werden kann;
  • 3 eine SEM-Aufnahme (rasterelektronenmikroskopische Aufnahme) der Innenwand des zylindrischen Tantalbechers von Beispiel 1 (Vergrößerung 250fach);
  • 4 eine SEM-Aufnahme der Innenwand des zylindrischen Tantalbechers von Beispiel 1 (Vergrößerung 1000fach);
  • 5 eine SEM-Aufnahme der inneren Bodenfläche des zylindrischen Tantalbechers von Beispiel 1 (Vergrößerung 250fach);
  • 6 eine SEM-Aufnahme der inneren Bodenfläche des zylindrischen Tantalbechers von Beispiel 1 (Vergrößerung 1000fach);
  • 7 eine SEM-Aufnahme der Innenwand des zylindrischen Tantalbechers von Beispiel 7 (Vergrößerung 250fach);
  • 8 eine SEM-Aufnahme der Innenwand des zylindrischen Tantalbechers von Beispiel 7 (Vergrößerung 1000fach);
  • 9 eine SEM-Aufnahme der inneren Bodenfläche des zylindrischen Tantalbechers von Beispiel 7 (Vergrößerung 250fach); und
  • 10 eine SEM-Aufnahme der inneren Bodenfläche des zylindrischen Tantalbechers von Beispiel 7 (Vergrößerung 1000fach).
  • Bei mehrfacher Verwendung von Bezugszeichen in der vorliegenden Beschreibung und den Zeichnungen sollen diese dieselben oder analoge Merkmale oder Elemente der vorliegenden Erfindung repräsentieren.
  • Ausführliche Beschreibung von repräsentativen Ausführungsformen
  • Der Fachmann sollte sich darüber im Klaren sein, dass die vorliegende Diskussion nur eine Beschreibung von beispielhaften Ausführungsformen ist und die breiteren Aspekte der vorliegenden Erfindung nicht einschränken soll, wobei diese breiteren Aspekte in der beispielhaften Konstruktion verkörpert sind.
  • Allgemein gesagt betrifft die vorliegende Erfindung einen Flüssigelektrolytkondensator, der einen porösen Anodenkörper, welcher eine dielektrische Schicht enthält, einen Elektrolyten und eine Kathode, die ein gestrahltes Metallsubstrat enthält, umfasst. Das Strahlen kann einer Vielzahl von Zwecken dienen. Zum Beispiel kann es zu einer Oberfläche führen, die im Wesentlichen gleichmäßig und makroskopisch glatt ist, wodurch die Konsistenz von darauf gebildeten leitfähigen Beschichtungen erhöht wird. Die gestrahlte Oberfläche besitzt zwar einen gewissen Grad von Glätte, ist aber dennoch mikroaufgeraut, so dass sie eine Vielzahl von Grübchen enthält. Die Grübchen sorgen für eine erhöhte spezifische Oberfläche und ermöglichen dadurch eine erhöhte Kathodenkapazität bei einer gegebenen Größe und/oder Kondensatoren mit einer reduzierten Größe bei einer gegebenen Kapazität. Eine leitfähige Beschichtung, die ein substituiertes Polythiophen enthält, wird auf die mikroaufgeraute Oberfläche aufgetragen. Die Anwesenheit der Grübchen auf dem Substrat erhöht den Grad des Kontakts zwischen der leitfähigen Beschichtung und dem Metallsubstrat, was zu einer verbesserten mechanischen Robustheit und verbesserten elektrischen Eigenschaften (z. B. reduziertem äquivalenten Serienwiderstand und Leckstrom) führt.
  • Verschiedene Ausführungsformen der vorliegenden Erfindung werden im Folgenden ausführlicher beschrieben.
  • I. Kathode
  • A. Metallsubstrat
  • Das Metallsubstrat der Kathode kann ein beliebiges Metall umfassen, wie Tantal, Niob, Aluminium, Nickel, Hafnium, Titan, Kupfer, Silber, Stahl (z. B. Edelstahl), Legierungen davon (z. B. elektrisch leitfähige Oxide), Verbundstoffe davon (z. B. mit elektrisch leitfähigem Oxid beschichtetes Metall) usw. Titan und Tantal sowie Legierungen davon sind zur Verwendung in der vorliegenden Erfindung besonders gut geeignet. Die geometrische Konfiguration des Substrats kann im Allgemeinen variieren, wie dem Fachmann wohlbekannt ist, wie in Form eines Behälters, Bechers, Folie, Blech, Sieb, Netz usw. In einer Ausführungsform bildet das Metallsubstrat zum Beispiel ein Gehäuse mit einer im Wesentlichen zylindrischen Form. Man sollte sich jedoch darüber im Klaren sein, dass in der vorliegenden Erfindung jede geometrische Konfiguration eingesetzt werden kann, wie D-förmig, rechteckig, dreieckig, prismatisch usw. Das Gehäuse kann gegebenenfalls einen Deckel umfassen, der die Anode und den Elektrolyten bedeckt und aus demselben oder einem anderen Material als das Gehäuse gebildet sein kann.
  • Unabhängig von seiner besonderen Form wird das Substrat gestrahlt, indem man einen Strom von Schleifkörpern gegen wenigstens einen Teil seiner Oberfläche schleudern lässt. Unter Anderem beansprucht dies die Oberfläche physikalisch und verformt sie, so dass kleine Grübchen auf der Oberfläche entstehen und sie dadurch porös und aufgeraut wird. Diese Grübchen können den Grad, bis zu dem das leitfähige Polymer an dem Metallsubstrat haften kann, erhöhen. Weiterhin kann das Strahlen die Grübchen im Wesentlichen gleichmäßig verteilen, so dass die Oberfläche auf makroskopischer Ebene im Wesentlichen glatt ist.
  • Die spezifische Oberfläche des Substrats kann ebenfalls erhöht werden. Zum Beispiel kann die spezifische Oberfläche des Substrats vor dem Aufrauen im Bereich von etwa 0,05 bis etwa 5 Quadratzentimetern, in einigen Ausführungsformen etwa 0,1 bis etwa 3 Quadratzentimetern und in einigen Ausführungsformen etwa 0,5 bis etwa 2 Quadratzentimetern liegen. Das Verhältnis der spezifischen Oberfläche der mikroaufgerauten Oberfläche zu der der anfänglichen Oberfläche (vor dem Mikroaufrauen) kann ebenso etwa 1 bis etwa 5 und in einigen Ausführungsformen etwa 1,1 bis etwa 3 betragen. Die Erhöhung der spezifischen Oberfläche kann eine erhöhte Kathodenkapazität bei einer gegebenen Größe und/oder Kondensatoren mit einer reduzierten Größe bei einer gegebenen Kapazität ermöglichen.
  • In 2 Ist zum Beispiel eine Ausführungsform eines Metallsubstrats 200 gezeigt, das unter Bildung einer mikroaufgerauten Oberfläche 204 mit einer Vielzahl von Grübchen 206 gestrahlt wurde. Die relative Größe und der Abstand der Grübchen 206 kann je nach den gewünschten Eigenschaften des Kondensators variieren. Zum Beispiel kann die mittlere Tiefe (”D”) der Grübchen 206 etwa 200 bis etwa 2500 Nanometer, in einigen Ausführungsformen etwa 300 bis etwa 2000 Nanometer und in einigen Ausführungsformen etwa 500 bis etwa 1500 Nanometer betragen. Ebenso können benachbarte Grübchen 206 um einen ”Mitte-zu-Mitte”-Abstand (”P”) voneinander entfernt sein, der in einem Bereich von etwa 20 bis etwa 500 Mikrometern, in einigen Ausführungsformen etwa 30 bis etwa 400 Mikrometern und in einigen Ausführungsformen etwa 50 bis etwa 200 Mikrometern liegt. Die Zahl der Grübchen 206 kann auch groß genug sein, um die gewünschte Erhöhung der spezifischen Oberfläche zu bewirken. Zum Beispiel kann die Oberfläche 1 bis 20, in einigen Ausführungsformen 2 bis 15 und in einigen Ausführungsformen 3 bis 10 Grübchen pro 100 Quadratmikrometer besitzen. Die Grübchen 206 können gleichmäßig oder ungleichmäßig über die Oberfläche 202 verteilt sein. Zum Beispiel können die Grübchen 206 in einer voneinander beabstandeten Weise über die Oberfläche verteilt sein, so dass sie ”inselartige” Strukturen bilden. Man sollte sich darüber im Klaren sein, dass nicht die gesamte Oberfläche des Substrats aufgeraut zu sein braucht. Tatsächlich kann es in einigen Ausführungsformen wünschenswert sein, nur einen Teil des Metallsubstrats aufzurauen, so dass der restliche Teil relativ glatt ist, um einen Abdichtungsmechanismus zu befestigen. Zum Beispiel kann ein Teil des Substrats während des Aufrauens von einer Maskiervorrichtung (z. B. Klemmhülse, Band usw.) bedeckt sein, so dass die Grübchen nur an gewünschten Stellen entstehen. Wenn zum Beispiel ein zylindrisches Substrat eingesetzt wird, kann es wünschenswert sein, eine im Wesentlichen zylindrische Hülse zu verwenden, um den oberen Teil des Substrats zu maskieren.
  • Die zum Strahlen der Oberfläche eingesetzten Verfahren können gezielt gesteuert werden, um die gewünschten Merkmale zu erreichen. Zu den geeigneten Verfahren gehören zum Beispiel Sandstrahlen, Perlstrahlen, Pelletstrahlen usw. Die bei solchen Verfahren eingesetzten Schleifkörper können variieren und umfassen zum Beispiel Keramikteilchen, Metallteilchen, polymere Teilchen, Flüssigkeiten (z. B. Wasser) usw. Sandstrahlen ist zur Verwendung in der vorliegenden Erfindung besonders gut geeignet und beinhaltet im Allgemeinen das Schleudern eines Stroms von Keramikmedien (z. B. Siliciumcarbid, Aluminiumoxid, Titandioxid usw.) durch eine Düse gegen die Oberfläche des Substrats. Die Größe der Schleifkörper kann auf der Grundlage der Art des Substrats, des eingesetzten Drucks und der gewünschten Eigenschaften des fertigen Substrats ausgewählt werden. Zum Beispiel können die Schleifkörper eine mittlere Größe von etwa 20 Mikrometer bis etwa 150 Mikrometer aufweisen. Weiterhin können der Druck und die Zeit, unter dem bzw. während der die Schleifkörper gegen die Oberfläche geschleudert werden, im Bereich von etwa 70 bis etwa 3500 Millibar und in einigen Ausführungsformen etwa 700 bis etwa 2400 Millibar während einer Zeitdauer von etwa 1 bis etwa 50 Sekunden, in einigen Ausführungsformen etwa 5 bis etwa 40 Sekunden und in einigen Ausführungsformen etwa 10 bis etwa 30 Sekunden liegen. Unter solchen Bedingungen kann der Abstand, um den die Strahldüse von der Oberfläche des Metallsubstrats entfernt ist, auch so gesteuert werden, dass die gewünschte Grübchenbildung erreicht wird, wie etwa 2,5 mm bis etwa 127 Millimeter von der Oberfläche des Substrats. Die Düse kann stationär sein, oder sie kann während der Anwendung der Schleifkörper relativ zum Substrat bewegt werden. Wenn die innere Oberfläche eines zylindrischen Gehäuses gestrahlt wird, kann zum Beispiel die Düse gedreht werden, oder sie kann stationär bleiben, währen das Gehäuse gedreht wird. Im Allgemeinen können ein oder mehrere Strahlschritte eingesetzt werden. Sobald das Strahlen beendet ist, werden Schleifkörper, die gegebenenfalls auf der Oberfläche des Metallsubstrats verblieben sind, typischerweise entfernt, etwa durch Waschen des Substrats.
  • B. Leitfähige Beschichtung
  • Wie bereits erwähnt, wird auf der mikroaufgerauten Oberfläche des Metallsubstrats eine leitfähige Beschichtung gebildet. Die leitfähige Beschichtung enthält ein substituiertes Polythiophen, das π-konjugiert ist und eine intrinsische elektrische Leitfähigkeit aufweist (z. B. eine elektrische Leitfähigkeit von wenigstens etwa 1 μS·cm–1). Das substituierte Polythiophen kann Repetiereinheiten der allgemeinen Formel (I), Formel (II) oder von beiden aufweisen:
    Figure 00080001
    wobei
    A ein gegebenenfalls substituierter C1- bis C5-Alkylenrest (z. B. Methylen, Ethylen, n-Propylen, n-Butylen, n-Pentylen usw.) ist;
    R ein linearer oder verzweigter, gegebenenfalls substituierter C1- bis C18-Alkylrest (z. B. Methyl, Ethyl, n- oder iso-Propyl, n-, iso-, sek- oder tert-Butyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1-Ethylpropyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 2,2-Dimethylpropyl, n-Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Hexadecyl, n-Octadecyl usw.); gegebenenfalls substituierter C5- bis C12-Cycloalkylrest (z. B. Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecyl usw.); gegebenenfalls substituierter C6- bis C14-Arylrest (z. B. Phenyl, Naphthyl usw.); gegebenenfalls substituierter C7- bis C18-Aralkylrest (z. B. Benzyl, o-, m-, p-Tolyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, 3,5-Xylyl, Mesityl usw.); gegebenenfalls substituierter C1- bis C4-Hydroxyalkylrest oder Hydroxyrest ist; und
    x eine ganze Zahl von 0 bis 8, in einigen Ausführungsformen von 0 bis 2, ist und x in einigen Ausführungsformen = 0 ist. Beispiele für Substituenten für die Reste ”A” oder ”R” sind zum Beispiel Alkyl, Cycloalkyl, Aryl, Aralkyl, Alkoxy, Halogen, Ether, Thioether, Disulfid, Sulfoxid, Sulfon, Sulforat, Amino, Aldehyd, Keto, Carbonsäureester, Carbonsäure, Carbonat, Carboxylat, Cyano, Alkylsilan- und Alkoxysilangruppen, Carboxylamidgruppen usw.
  • Die Gesamtzahl der Repetiereinheiten der allgemeinen Formel (I) oder Formel (II) oder der allgemeinen Formeln (I) und (II) beträgt typischerweise 2 bis 2000 und in einigen Ausführungsformen 2 bis 100.
  • Besonders gut geeignete substituierte Polythiophene sind solche, bei denen ”A” ein gegebenenfalls substituierter C2- bis C3-Alkylenrest ist und x = 0 oder 1 ist. In einer besonderen Ausführungsform handelt es sich bei dem substituierten Polythiophen um Poly(3,4-ethylendioxythiophen) (”PEDT”), das Repetiereinheiten der Formel (II) aufweist, wobei ”A” = CH2-CH2 ist und ”x” = 0 ist. Die zur Bildung solcher Polymere verwendeten Monomere können nach Wunsch variieren. Besonders gut geeignete Monomere sind zum Beispiel substituierte 3,4-Alkylendioxythiophene mit der allgemeinen Formel (III), (IV) oder beiden:
    Figure 00100001
    wobei A, R und x wie oben definiert sind.
  • Beispiele für solche Monomere sind zum Beispiel gegebenenfalls substituierte 3,4-Ethylendioxythiophene. Ein kommerziell geeignetes Beispiel für 3,4-Ethylendioxythiophen ist von der H. C. Starck GmbH unter der Bezeichnung CleviosTM M erhältlich. Es können auch Derivate dieser Monomere eingesetzt werden, die zum Beispiel Dimere oder Trimere der obigen Monomere sind. Höhermolekulare Derivate, d. h. Tetramere, Pentamere usw., der Monomere sind zur Verwendung in der vorliegenden Erfindung geeignet. Die Derivate können aus gleichen oder verschiedenen Monomereinheiten bestehen und können in reiner Form oder in einem Gemisch miteinander und/oder mit den Monomeren verwendet werden. Oxidierte oder reduzierte Formen dieser Vorläufer können ebenfalls eingesetzt werden.
  • Die Thiophenmonomere, wie sie oben beschrieben sind, können in Gegenwart eines oxidativen Katalysators chemisch polymerisiert werden. Der oxidative Katalysator umfasst typischerweise ein Übergangsmetallkation, wie Eisen(III)-, Kupfer(II)-, Chrom(VI)-, Cer(IV)-, Mangan(IV)-, Mangan(VII)-, Ruthenium(III)-Kationen usw. Ein Dotierungsmittel kann auch eingesetzt werden, um dem leitfähigen Polymer überschüssige Ladung zu verleihen und die Leitfähigkeit des Polymers zu stabilisieren. Das Dotierungsmittel umfasst typischerweise ein anorganisches oder organisches Anion, wie ein Ion einer Sulfonsäure. In bestimmten Ausführungsformen weist der in der Vorläuferlösung eingesetzte oxidative Katalysator sowohl eine katalytische als auch eine dotierende Funktionalität auf, indem er ein Kation (z. B. Übergangsmetall) und ein Anion (z. B. Sulfonsäure) umfasst. Zum Beispiel kann der oxidative Katalysator ein Übergangsmetallsalz sein, das Eisen(III)-Kationen, wie Eisen(III)halogenide (z. B. FeCl3) oder Eisen(III)-Salze anderer anorganischer Säuren, wie Fe(ClO4)3 oder Fe2(SO4)3, und die Eisen(III)-Salze von organischen Säuren und anorganischen Säuren, die organische Reste umfassen, umfasst. Beispiele für Eisen(III)-Salze von anorganischen Säuren mit organischen Resten sind zum Beispiel Eisen(III)-Salze von Schwefelsäuremonoestern von C1- bis C20-Alkanolen (z. B. das Eisen(III)-Salz von Laurylsulfat). Ebenso sind Beispiele für Eisen(III)-Salze von organischen Säuren zum Beispiel Eisen(III)-Salze von C1- bis C20-Alkansulfonsäuren (z. B. Methan-, Ethan-, Propan-, Butan- oder Dodecansulfonsäure); Eisen(III)-Salze von aliphatischen Perfluorsulfonsäuren (z. B. Trifluormethansulfonsäure, Perfluorbutansulfonsäure oder Perfluoroctansulfonsäure); Eisen(III)-Salze von aliphatischen C1- bis C20-Carbonsäuren (z. B. 2-Ethylhexylcarbonsäure); Eisen(III)-Salze von aliphatischen Perfluorcarbonsäuren (z. B. Trifluoressigsäure oder Perfluoroctansäure); Eisen(III)-Salze von aromatischen Sulfonsäuren, die gegebenenfalls mit C1- bis C20-Alkylgruppen substituiert sind (z. B. Benzolsulfonsäure, o-Toluolsulfonsäure, p-Toluolsulfonsäure oder Dodecylbenzolsulfonsäure); Eisen(III)-Salze von Cycloalkansulfonsäuren (z. B. Camphersulfonsäure); usw. Gemische dieser oben genannten Eisen(III)-Salze können ebenfalls verwendet werden. Eisen(III)-p-toluolsulfonat, Eisen(III)-o-toluolsulfonat und Gemische davon sind zur Verwendung in der vorliegenden Erfindung besonders gut geeignet. Ein kommerziell geeignetes Beispiel für Eisen(III)-p-toluolsulfonat ist von der H. C. Starck GmbH unter der Bezeichnung CleviosTM C erhältlich.
  • Verschiedene Verfahren können verwendet werden, um die leitfähige Beschichtung auf dem mikroaufgerauten Metallsubstrat zu bilden. In einer Ausführungsform werden der oxidative Katalysator und das Monomer entweder nacheinander oder zusammen aufgetragen, so dass die Polymerisationsreaktion in situ auf dem Teil stattfindet. Geeignete Auftragstechniken, wie Siebdruck, Tauchbeschichtung, elektrophoretische Beschichtung und Sprühbeschichtung, können verwendet werden, um eine leitfähige Polymerbeschichtung zu bilden. Als Beispiel kann das Monomer zunächst unter Bildung einer Vorläuferlösung mit dem oxidativen Katalysator gemischt werden. Sobald das Gemisch gebildet ist, kann es aufgetragen und polymerisieren gelassen werden, so dass die leitfähige Beschichtung auf der Oberfläche entsteht. Alternativ dazu können der oxidative Katalysator und das Monomer auch nacheinander aufgetragen werden. In einer Ausführungsform wird der oxidative Katalysator zum Beispiel in einem organischen Lösungsmittel (z. B. Butanol) gelöst und dann als Tauchlösung aufgetragen. Das Substrat kann dann getrocknet werden, um das Lösungsmittel davon zu entfernen. Danach kann das Substrat in eine Lösung, die das Monomer enthält, eingetaucht werden.
  • Die Polymerisation wird typischerweise je nach dem verwendeten Oxidationsmittel und der gewünschten Reaktionszeit bei Temperaturen von etwa –10°C bis etwa 250°C und in einigen Ausführungsformen etwa 0°C bis etwa 200°C durchgeführt. Geeignete Polymerisationstechniken, wie sie oben beschrieben sind, sind ausführlicher in der US-Veröffentlichungs-Nr. 2008/232037 (Biler) beschrieben. Noch andere Verfahren zum Auftragen einer oder mehrerer solcher leitfähigen Polymerbeschichtungen sind in den US-Patenten Nr. 5,457,862 (Sakata et al.), 5,473,503 (Sakata et al.), 5,729,428 (Sakata et al.) und 5,812,367 (Kudoh et al.) beschrieben, auf die hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Neben der In-situ-Auftragung kann die leitfähige Beschichtung auch in Form einer Dispersion von leitfähigen Polymerteilchen auf das Substrat aufgebracht werden. Obwohl ihre Größe variieren kann, ist es typischerweise wünschenswert, dass die Teilchen einen kleinen Durchmesser besitzen, um die zum Befestigen des Anodenteils verfügbare Oberfläche zu vergrößern. Zum Beispiel können die Teilchen einen mittleren Durchmesser von etwa 1 bis etwa 500 Nanometer, in einigen Ausführungsformen etwa 5 bis etwa 400 Nanometer und in einigen Ausführungsformen etwa 10 bis etwa 300 Nanometer haben. Der D90-Wert der Teilchen (Teilchen mit einem Durchmesser kleiner oder gleich dem D90-Wert bilden 90% des Gesamtvolumens aller festen Teilchen) kann etwa 15 Mikrometer oder weniger, in einigen Ausführungsformen etwa 10 Mikrometer oder weniger und in einigen Ausführungsformen etwa 1 Nanometer bis etwa 8 Mikrometer betragen. Der Durchmesser der Teilchen kann mit Hilfe bekannter Techniken, wie mittels Ultrazentrifuge, Laserbeugung usw., bestimmt werden.
  • Die Verarbeitung der leitfähigen Polymere in eine Teilchenform kann verstärkt werden, indem man ein getrenntes Gegenion verwendet, das der positiven Ladung des substituierten Polythiophens entgegenwirken soll. In einigen Fällen kann das Polymer positive und negative Ladungen in der Struktureinheit besitzen, wobei sich die positive Ladung auf der Hauptkette und die negative Ladung gegebenenfalls auf den Substituenten des Restes ”R”, wie Sulfonat- oder Carboxylatgruppen, befindet. Die positiven Ladungen der Hauptkette können teilweise oder zur Gänze mit den gegebenenfalls vorhandenen anionischen Gruppen an den Resten ”R” gesättigt sein. Insgesamt gesehen können die Polythiophene in diesen Fällen kationisch, neutral oder sogar anionisch sein. Dennoch werden sie alle als kationische Polythiophene angesehen, da die Polythiophen-Hauptkette eine positive Ladung trägt.
  • Das Gegenion kann ein monomeres oder polymeres Anion sein. Polymere Anionen können zum Beispiel Anionen von polymeren Carbonsäuren (z. B. Polyacrylsäuren, Polymethacrylsäure, Polymaleinsäuren usw.), polymeren Sulfonsäuren (z. B. Polystyrolsulfonsauren (”PSS”), Polyvinylsulfonsäuren usw.) usw. sein. Die Säuren können auch Copolymere, wie Copolymere von Vinylcarbon- und Vinylsulfonsäure mit anderen polymerisierbaren Monomeren, wie Acrylsäureestern und Styrol, sein. Ebenso sind geeignete monomere Anionen zum Beispiel Anionen von C1- bis C20-Alkansulfonsäuren (z. B. Dodecansulfonsäure); aliphatischen Perfluorsulfonsäuren (z. B. Trifluormethansulfonsäure, Perfluorbutansulfonsäure oder Perfluoroctansulfonsäure); aliphatischen C1- bis C20-Carbonsäuren (z. B. 2-Ethylhexylcarbonsäure); aliphatischen Perfluorcarbonsäuren (z. B. Trifluoressigsäure oder Perfluoroctansäure); aromatischen Sulfonsäuren, die gegebenenfalls mit C1- bis C20-Alkylgruppen substituiert sind (z. B. Benzolsulfonsäure, o-Toluolsulfonsäure, p-Toluolsulfonsäure oder Dodecylbenzolsulfonsäure); Cycloalkansulfonsäuren (z. B. Kamphersulfonsäure oder Tetrafluoroborate, Hexafluorophosphate, Perchlorate, Hexafluoroantimonate, Hexafluoroarsenate oder Hexachloroantimonate); usw. Besonders gut geeignete Gegenionen sind polymere Anionen, wie eine polymere Carbon- oder Sulfonsäure (z. B. Polystyrolsulfonsäure (”PSS”)). Das Molekulargewicht solcher polymeren Anionen liegt typischerweise im Bereich von etwa 1000 bis etwa 2 000 000 und in einigen Ausführungsformen etwa 2000 bis etwa 500 000.
  • Wenn sie eingesetzt werden, beträgt das Gewichtsverhältnis solcher Gegenionen zu substituierten Polythiophenen in einer gegebenen Schicht typischerweise etwa 0,5:1 bis etwa 50:1, in einigen Ausführungsformen etwa 1:1 bis etwa 30:1 und in einigen Ausführungsformen etwa 2:1 bis etwa 20:1. Das Gewicht des substituierten Polythiophens, von dem bei den oben genannten Gewichtsverhältnissen die Rede ist, bezieht sich auf den eingewogenen Anteil der verwendeten Monomere, wenn man annimmt, dass während der Polymerisation eine vollständige Umsetzung stattfindet.
  • Die Dispersion kann auch ein oder mehrere Bindemittel enthalten, um die adhäsive Natur der polymeren Schicht weiter zu verstärken und auch die Stabilität der Teilchen innerhalb der Dispersion zu erhöhen. Die Bindemittel können organischer Natur sein, wie Polyvinylalkohole, Polyvinylpyrrolidone, Polyvinylchloride, Polyvinylacetate, Polyvinylbutyrate, Polyacrylsäureester, Palyacrylsäureamide, Polymethacrylsäureester, Polymethacrylsäureamide, Palyacrylnitrile, Styrol/Acrylsäureester, Vinylacetat/Acrylsäureester und Ethylen/Vinylacetat-Copolymere, Polybutadiene, Polyisoprene, Polystyrole, Polyether, Polyester, Polycarbonate, Polyurethane, Polyamide, Polyimide, Polysulfone, Melamin-Formaldehyd-Harze, Epoxyharze, Silikonharze oder Cellulosen. Es können auch Vernetzungsmittel eingesetzt werden, um die Adhäsionsfähigkeit der Bindemittel zu erhöhen. Solche Vernetzungsmittel sind zum Beispiel Melaminverbindungen, maskierte Isocyanate oder funktionelle Silane, wie 3-Glycidoxypropyltrialkoxysilan, Tetraethoxysilan und Tetraethoxysilan-Hydrolysat oder vernetzbare Polymere, wie Polyurethane, Polyacrylate oder Polyolefine, und anschließende Vernetzung. Wie in der Technik bekannt ist, können auch andere Komponenten in die Dispersion mit aufgenommen werden, wie Dispersionsmittel (z. B. Wasser), grenzflächenaktive Substanzen usw.
  • Falls gewünscht, können einer oder mehrere der oben beschriebenen Auftragungsschritte wiederholt werden, bis die gewünschte Dicke der Beschichtung erreicht ist. In einigen Ausführungsformen wird nur eine relativ dünne Schicht der Beschichtung auf einmal gebildet. Die gewünschte Gesamtdicke der Beschichtung kann im Allgemeinen je nach den gewünschten Eigenschaften des Kondensators variieren. Die resultierende leitfähige Polymerbeschichtung hat typischerweise eine Dicke von etwa 0,2 Mikrometern (”μm”) bis etwa 50 μm, in einigen Ausführungsformen etwa 0,5 μm bis etwa 20 μm und in einigen Ausführungsformen etwa 1 μm bis etwa 5 μm. Man sollte sich darüber im Klaren sein, dass die Dicke der Beschichtung nicht notwendigerweise an allen Stellen des Teils dieselbe ist. Dennoch fällt die mittlere Dicke der Beschichtung im Allgemeinen in die oben genannten Bereiche.
  • Die leitfähige Polymerbeschichtung kann gegebenenfalls geflickt werden. Das Flicken kann nach jeder Auftragung einer leitfähigen Polymerschicht erfolgen, oder es kann nach der Auftragung der gesamten leitfähigen Polymerbeschichtung erfolgen. In einigen Ausführungsformen kann das leitfähige Polymer dadurch geflickt werden, dass man den Teil in eine Elektrolytlösung eintaucht und danach eine konstante Spannung an die Lösung anlegt, bis die Stromstärke auf ein vorgewähltes Niveau reduziert ist. Falls gewünscht, kann dieses Flicken auch in mehreren Schritten bewerkstelligt werden. Zum Beispiel kann eine Elektrolytlösung eine verdünnte Lösung des Monomers, des Katalysators und des Dotierungsmittels in einem Alkohollösungsmittel (z. B. Ethanol) sein. Die Beschichtung kann auch gegebenenfalls gewaschen werden, um verschiedene Nebenprodukte, überschüssige Reagentien usw. zu entfernen.
  • Ohne uns auf eine bestimmte Theorie festlegen zu wollen, glauben wir, dass beim Aufladen des Kondensators auf eine hohe Spannung (z. B. größer als die Bildungsspannung) Ionen des Elektrolyten in Beschichtungen, die solche substituierten Polythiophene enthalten, gezwungen werden. Dies bewirkt, dass das leitfähige Polymer ”aufquillt” und die Ionen in der Nähe der Oberfläche zurückhält, wodurch die Ladungsdichte erhöht wird. Da das Polymer im Allgemeinen amorph und nichtkristallin ist, kann es auch die mit der hohen Spannung verbundene Wärme abführen und/oder absorbieren. Wir glauben auch, dass das substituierte Polythiophen beim Entladen ”entspannt” und im Elektrolyten vorhandene Ionen sich aus der Beschichtung heraus bewegen lässt. Durch diesen Aufquell- und Entspannungsmechanismus kann die Ladungsdichte in der Nähe des Metallsubstrats ohne eine chemische Reaktion mit dem Elektrolyten erhöht werden. Dementsprechend besteht ein nützlicher Aspekt der vorliegenden Erfindung darin, dass mechanische Robustheit und gute elektrische Eigenschaften erhalten werden können, ohne dass herkömmliche leitfähige Beschichtungen, wie solche aus Aktivkohle oder Metalloxiden (z. B. Rutheniumoxid), benötigt werden. Tatsächlich haben die Erfinder herausgefunden, dass ausgezeichnete Ergebnisse erreicht werden können, wenn man die Beschichtung als Hauptmaterial auf dem Metallsubstrat verwendet. Das heißt, die Beschichtung kann wenigstens etwa 90 Gew.-%, in einigen Ausführungsformen wenigstens etwa 92 Gew.-% und in einigen Ausführungsformen wenigstens etwa 95 Gew.-% der auf dem Metallsubstrat vorhandenen Materialien ausmachen. Dennoch sollte man sich darüber im Klaren sein, dass in einigen Ausführungsformen der vorliegenden Erfindung auch andere leitfähige Beschichtungen verwendet werden können.
  • II. Anode
  • Die Anode des Elektrolytkondensators umfasst einen porösen Körper, der aus einer Ventilmetallzusammensetzung bestehen kann. Die spezifische Ladung der Zusammensetzung kann variieren. In bestimmten Ausführungsformen werden zum Beispiel Zusammensetzungen mit einer hohen spezifischen Ladung eingesetzt, wie etwa 5000 μF·V/g oder mehr, in einigen Ausführungsformen etwa 25 000 μF·V/g oder mehr, in einigen Ausführungsformen etwa 40 000 μF·V/g oder mehr und in einigen Ausführungsformen etwa 70 000 μF·V/g bis etwa 300 000 μF·V/g. Die Ventilmetallzusammensetzung enthält ein Ventilmetall (d. h. ein Metall, das zur Oxidation befähigt ist) oder eine Verbindung, die auf einem Ventilmetall beruht, wie Tantal, Niob, Aluminium, Hafnium, Titan, Legierungen davon, Oxide davon, Nitride davon usw. Zum Beispiel kann die Ventilmetallzusammensetzung ein elektrisch leitfähiges Oxid von Niob enthalten, wie ein Nioboxid mit einem Atomverhältnis von Niob zu Sauerstoff von 1:1,0 ± 1,0, in einigen Ausführungsformen 1:1,0 ± 0,3, in einigen Ausführungsformen 1:1,0 ± 0,1 und in einigen Ausführungsformen 1:1,0 ± 0,05. Bei dem Nioboxid kann es sich zum Beispiel um NbO0,7, NbO1,0, NbO1,1 und NbO2 handeln. Beispiele für solche Ventilmetalloxide sind in den US-Patenten Nr. 6,322,912 (Fife), 6,391,275 (Fife et al.), 6,416,730 (Fife et al.), 6,527,937 (Fife), 6,576,099 (Kimmel et al.), 6,592,740 (Fife et al.) und 6,639,787 (Kimmel et al.) und 7,220,397 (Kimmel et al.) sowie in den US-Patentanmeldungen Veröffentlichungsnummer 2005/0019581 (Schnitter), 2005/0103638 (Schnitter et al.) und 2005/0013765 (Thomas et al.) beschrieben, auf die alle hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Zur Bildung der Anode können im Allgemeinen herkömmliche Herstellungsverfahren verwendet werden. In einer Ausführungsform wird zuerst ein Tantal- oder Nioboxidpulver mit einer bestimmten Teilchengröße ausgewählt. Zum Beispiel können die Teilchen flockenartig, eckig, knotenförmig sowie Gemische oder Variationen davon sein. Die Teilchen haben auch typischerweise eine Siebgrößenverteilung von wenigstens etwa 60 mesh, in einigen Ausführungsformen etwa 60 bis etwa 325 mesh und in einigen Ausführungsformen etwa 100 bis etwa 200 mesh. Ferner beträgt die spezifische Oberfläche etwa 0,1 bis etwa 10,0 m2/g, in einigen Ausführungsformen etwa 0,5 bis etwa 5,0 m2/g und in einigen Ausführungsformen etwa 1,0 bis etwa 2,0 m2/g. Der Ausdruck ”spezifische Oberfläche” bezieht sich auf die Oberfläche, die durch das Verfahren der physikalischen Gasadsorption (B.E.T.) von Brunauer, Emmet und Teller, Journal of American Chemical Society, Band 60, 1938, S. 309, mit Stickstoff als Adsorptionsgas bestimmt wurde. Ebenso beträgt die Schüttdichte (oder Scott-Dichte) typischerweise etwa 0,1 bis etwa 5,0 g/cm3, in einigen Ausführungsformen etwa 0,2 bis etwa 4,0 g/cm3 und in einigen Ausführungsformen etwa 0,5 bis etwa 3,0 g/cm3.
  • Um den Bau der Anode zu erleichtern, können noch weitere Komponenten zu den elektrisch leitfähigen Teilchen gegeben werden. Zum Beispiel können die elektrisch leitfähigen Teilchen gegebenenfalls mit einem Bindemittel und/oder Gleitmittel gemischt werden, um zu gewährleisten, dass die Teilchen ausreichend aneinander haften, wenn sie zum Anodenkörper gepresst werden. Zu den geeigneten Bindemitteln gehören etwa Campher, Stearin- und andere Seifenfettsäuren, Carbowax (Union Carbide), Glyptal (General Electric), Polyvinylalkohole, Naphthalin, Pflanzenwachs und Mikrowachse (gereinigte Paraffine). Das Bindemittel kann in einem Lösungsmittel gelöst und dispergiert werden. Beispielhafte Lösungsmittel sind Wasser, Alkohole usw. Wenn Bindemittel und/oder Gleitmittel verwendet werden, kann ihr Prozentanteil von etwa 0,1 bis etwa 8 Gew.-% der Gesamtmasse variieren. Man sollte sich jedoch darüber im Klaren sein, dass Bindemittel und Gleitmittel in der vorliegenden Erfindung nicht erforderlich sind.
  • Das resultierende Pulver kann kompaktiert werden, wobei man irgendeine herkömmliche Pulverpressform verwendet. Die Pressform kann zum Beispiel eine Einplatz-Kompaktierpresse sein, bei der eine Matrize und ein oder mehrere Stempel verwendet werden. Alternativ dazu können auch Kompaktierpressformen des Ambosstyps verwendet werden, bei denen nur eine Matrize und ein einziger Unterstempel verwendet werden. Einplatz-Kompaktierpressformen sind in mehreren Grundtypen erhältlich, wie Nocken-, Kniehebel- und Exzenter-/Kurbelpressen mit unterschiedlichen Fähigkeiten, wie einfach wirkend, doppelt wirkend, Schwebemantelmatrize, bewegliche Werkzeugaufspannplatte, Gegenstempel, Schnecke, Schlag, Heißpressen, Prägen oder Kalibrieren. Gegebenenfalls vorhandenes Bindemittel/Gleitmittel kann entfernt werden, indem man den Pressling mehrere Minuten lang im Vakuum auf eine bestimmte Temperatur (z. B. etwa 150°C bis etwa 500°C) erhitzt. Alternativ dazu kann das Bindemittel/Gleitmittel auch entfernt werden, indem man den Pressling mit einer wässrigen Lösung in Kontakt bringt, wie es im US-Patent Nr. 6,197,252 (Bishop et al.) beschrieben ist, auf das hier ausdrücklich für alle Zwecke Bezug genommen wird.
  • Die Größe des gepressten Anodenkörpers kann zum Teil von der gewünschten Größe des Metallsubstrats abhängen. In bestimmten Ausführungsformen kann die Länge des Anodenkörpers im Bereich von etwa 1 bis etwa 100 Millimeter, in einigen Ausführungsformen etwa 5 bis etwa 60 Millimeter und in einigen Ausführungsformen etwa 5 bis etwa 20 Millimeter liegen. Die Breite (oder der Durchmesser) des Anodenkörpers kann ebenfalls im Bereich von etwa 0,5 bis etwa 20 Millimeter, in einigen Ausführungsformen etwa 1 bis etwa 20 Millimeter und in einigen Ausführungsformen etwa 4 bis etwa 10 Millimeter liegen. Die Form des Anodenkörpers kann auch so gewählt werden, dass die elektrischen Eigenschaften des resultierenden Kondensators verbessert werden. Zum Beispiel kann der Anodenkörper eine Form haben, die zylindrisch, rechteckig, D-förmig, gekrümmt usw. ist.
  • Der Anodenkörper kann anodisch oxidiert (”anodisiert”) werden, so dass eine dielektrische Schicht auf und/oder innerhalb der Anode entsteht. Zum Beispiel kann eine Anode aus Tantal (Ta) zu Tantalpentoxid (Ta2O5) anodisiert werden. Typischerweise wird die Anodisierung durchgeführt, indem man zunächst eine Lösung auf die Anode aufträgt, etwa durch Eintauchen der Anode in den Elektrolyten. Im Allgemeinen wird ein Lösungsmittel, wie Wasser (z. B. deionisiertes Wasser), eingesetzt. Um die Ionenleitfähigkeit zu verstärken, kann eine Verbindung eingesetzt werden, die in dem Lösungsmittel unter Bildung von Ionen dissoziieren kann. Beispiele für solche Verbindungen sind zum Beispiel Säuren, wie sie im Folgenden in Bezug auf den Elektrolyten beschrieben werden. Zum Beispiel kann eine Säure (z. B. Phosphorsäure) etwa 0,01 Gew.-% bis etwa 5 Gew.-%, in einigen Ausführungsformen etwa 0,05 Gew.-% bis etwa 0,8 Gew.-% und in einigen Ausführungsformen etwa 0,1 Gew.-% bis etwa 0,5 Gew.-% der anodisierenden Lösung ausmachen. Falls gewünscht, können auch Gemische von Säuren eingesetzt werden.
  • Ein Strom wird durch die anodisierende Lösung geleitet, um die dielektrische Schicht zu bilden. Der Wert der Bildungsspannung entspricht der Dicke der dielektrischen Schicht. Zum Beispiel kann die Stromquelle zunächst im galvanostatischen Modus betrieben werden, bis die erforderliche Spannung erreicht ist. Danach kann die Stromquelle auf einen potentiostatischen Modus umgeschaltet werden, um zu gewährleisten, dass die gewünschte Dicke des Dielektrikums über der gesamten Oberfläche der Anode gebildet wird. Selbstverständlich können auch andere bekannte Verfahren eingesetzt werden, wie potentiostatische Impuls- oder Schrittverfahren. Die Spannung, bei der die anodische Oxidation erfolgt, liegt typischerweise im Bereich von etwa 4 bis etwa 250 V und in einigen Ausführungsformen etwa 9 bis etwa 200 V und in einigen Ausführungsformen etwa 20 bis etwa 150 V. Während der Oxidation kann die anodisierende Lösung auf einer erhöhten Temperatur gehalten werden, wie etwa 30°C oder mehr, in einigen Ausführungsformen etwa 40°C bis etwa 200°C und in einigen Ausführungsformen etwa 50°C bis etwa 100°C. Die anodische Oxidation kann auch bei Umgebungstemperatur oder darunter durchgeführt werden. Die resultierende dielektrische Schicht kann auf einer Oberfläche der Anode und innerhalb ihrer Poren gebildet werden.
  • III. Elektrolyt
  • Der Elektrolyt ist das elektrisch aktive Material, das für den Verbindungsweg zwischen der Anode und der Kathode sorgt. Verschiedene geeignete Elektrolyte sind in den US-Patenten Nr. 5,369,547 und 6,594,140 (Evans et al.) beschrieben, auf die hier ausdrücklich Bezug genommen wird. Typischerweise ist der Elektrolyt ionenleitend und hat eine Ionenleitfähigkeit von etwa 0,5 bis etwa 1000 Millisiemens pro Zentimeter (”mS/cm”), in einigen Ausführungsformen etwa 1 bis etwa 100 mS/cm, in einigen Ausführungsformen etwa 5 bis etwa 100 mS/cm und in einigen Ausführungsformen etwa 10 bis etwa 50 mS/cm, bestimmt bei einer Temperatur von 25°C unter Verwendung irgendeines bekannten Messgeräts für die elektrische Leitfähigkeit (z. B. Oakton Con Series 11). Innerhalb der oben genannten Bereiche ermöglicht die Ionenleitfähigkeit des Elektrolyten vermutlich eine Ausdehnung des elektrischen Felds in den Elektrolyten bis zu einer ausreichenden Länge (Debye-Länge), um zu einer signifikanten Ladungstrennung zu führen. Dadurch wird die potentielle Energie des Dielektrikums auf den Elektrolyten ausgedehnt, so dass der resultierende Kondensator noch mehr potentielle Energie speichern kann, als es durch die Dicke des Dielektrikums vorhergesagt wird. Mit anderen Worten, der Kondensator kann bis zu einer Spannung, die die Bildungsspannung des Dielektrikums übersteigt, aufgeladen werden. Das Verhältnis der Spannung, bis zu der der Kondensator aufgeladen werden kann, zur Bildungsspannung kann zum Beispiel etwa 1,0 bis 2,0, in einigen Ausführungsformen etwa 1,1 bis etwa 1,8 und in einigen Ausführungsformen etwa 1,2 bis etwa 1,6 betragen. Zum Beispiel kann die Spannung, bis zu der der Kondensator aufgeladen wird, etwa 200 bis etwa 350 V, in einigen Ausführungsformen etwa 220 bis etwa 320 V und in einigen Ausführungsformen etwa 250 bis etwa 300 V betragen.
  • Der Elektrolyt liegt im Allgemeinen in Form einer Flüssigkeit vor, wie einer Lösung (z. B. wässrig oder nichtwässrig), Vorläuferlösung, Gel usw. Zum Beispiel kann der Arbeitselektrolyt eine wässrige Lösung einer Säure (z. B. Schwefelsäure, Phosphorsäure oder Salpetersäure), Base (z. B. Kaliumhydroxid) oder eines Salzes (z. B. Ammoniumsalz, wie ein Nitrat) sowie irgendein anderer, in der Technik bekannter geeigneter Elektrolyt sein, wie ein in einem organischen Lösungsmittel aufgelöstes Salz (z. B. in einer Lösung auf Glycolbasis aufgelöstes Ammoniumsalz). Verschiedene andere Elektrolyte sind in den US-Patenten Nr. 5,369,547 und 6,594,140 (Evans et al.) beschrieben, auf die hier ausdrücklich Bezug genommen wird.
  • Die gewünschte Ionenleitfähigkeit kann dadurch erreicht werden, dass man ionische Verbindungen (z. B. Säuren, Basen, Salze usw.) innerhalb bestimmter Konzentrationsbereiche auswählt. In einer bestimmten Ausführungsform können Salze von schwachen organischen Säuren effektiv sein bezüglich des Erreichens der gewünschten Leitfähigkeit des Elektrolyten. Das Kation des Salzes kann einatomige Kationen, wie Alkalimetalle (z. B. Li+, Na+, K+, Rb+ oder Cs+), Erdalkalimetalle (z. B. Be2+, Mg2+, Ca2+, Sr2+ oder Ba2+), Übergangsmetalle (z. B. Ag+, Fe2+, Fe3+ usw.), sowie mehratomige Kationen, wie NH4 +, umfassen. Die einatomigen Ammonium (NH4 +), Natrium (Na+) und Lithium (Li+) sind besonders gut geeignete Kationen zur Verwendung in der vorliegenden Erfindung. Die zur Bildung des Anions des Salzes verwendete organische Säure ist ”schwach” in dem Sinne, dass sie typischerweise eine erste Säuredissoziationskonstante (pKa1) von etwa 0 bis etwa 11, in einigen Ausführungsformen etwa 1 bis etwa 10 und in einigen Ausführungsformen etwa 2 bis etwa 10 aufweist, bestimmt bei 25°C. In der vorliegenden Erfindung können beliebige geeignete schwache organische Säuren verwendet werden, wie Carbonsäuren, wie Acrylsäure, Methacrylsäure, Malonsäure, Bernsteinsäure, Salicylsäure, Sulfosalicylsäure, Adipinsäure, Maleinsäure, Apfelsäure, Ölsäure, Gallsäure, Weinsäure (z. B. D-Weinsäure, meso-Weinsäure usw.), Zitronensäure, Ameisensäure, Essigsäure, Glycolsäure, Oxalsäure, Propionsäure, Phthalsäure, Isophthalsäure, Glutarsäure, Gluconsäure, Milchsäure, Asparaginsäure, Glutaminsäure, Itaconsäure, Trifluoressigsäure, Barbitursäure, Zimtsäure, Benzoesäure, 4-Hydroxybenzoesäure, Aminobenzoesäure usw., Gemische davon usw. Mehrbasige Säuren (z. B. zweibasige, dreibasige usw.) sind für die Verwendung bei der Bildung des Salzes besonders gut geeignet, wie Adipinsäure (pKa1 von 4,43 und pKa2 von 5,41), α-Weinsäure (pKa1 von 2,98 und pKa2 von 4,34), meso-Weinsäure (pKa1 von 3,22 und PKa2 von 4,82), Oxalsäure (pKa1 von 1,23 und pKa2 von 4,19), Milchsäure (pKa1 von 3,13, pKa2 von 4,76 und pKa3 von 6,40) usw.
  • Während die tatsächlichen Mengen je nach dem besonderen eingesetzten Salz, seiner Löslichkeit in dem bzw. den im Elektrolyten verwendeten Lösungsmitteln und der Gegenwart anderer Komponenten, variieren können, sind solche Salze schwacher organischer Säuren in dem Elektrolyten typischerweise in einer Menge von etwa 0,1 bis etwa 25 Gew.-%, in einigen Ausführungsformen etwa 0,2 bis etwa 20 Gew.-%, in einigen Ausführungsformen etwa 0,3 bis etwa 15 Gew.-% und in einigen Ausführungsformen etwa 0,5 bis etwa 5 Gew.-% vorhanden.
  • Der Elektrolyt ist typischerweise insofern wässrig, als er ein wässriges Lösungsmittel, wie Wasser (z. B. deionisiertes Wasser), enthält. Zum Beispiel kann Wasser (z. B. deionisiertes Wasser) etwa 20 Gew.-% bis etwa 95 Gew.-%, in einigen Ausführungsformen etwa 30 Gew.-% bis etwa 90 Gew.-% und in einigen Ausführungsformen etwa 40 Gew.-% bis etwa 85 Gew.-% des Elektrolyten ausmachen. Es kann auch ein sekundäres Lösungsmittel eingesetzt werden, wobei ein Lösungsmittelgemisch entsteht. Zu den geeigneten sekundären Lösungsmitteln gehören zum Beispiel Glycole (z. B. Ethylenglycol, Propylenglycol, Butylenglycol, Triethylenglycol, Hexylenglycol, Polyethylenglycole, Ethoxydiglycol, Dipropylenglycol usw.), Glycolether (z. B. Methylglycolether, Ethylglycolether, Isopropylglycolether usw.), Alkohole (z. B. Methanol, Ethanol, n-Propanol, Isopropanol und Butanol), Ketone, (z. B. Aceton, Methylethylketon und Methylisobutylketon); Ester (z. B. Ethylacetat, Butylacetat, Diethylenglycoletheracetat, Methoxypropylacetat, Ethylencarbonat, Propylencarbonat usw.), Amide (z. B. Dimethylformamid, Dimethylacetamid, Dimethylcapryl-/caprinfettsäureamid und N-Alkylpyrrolidone), Sulfoxide oder Sulfone (z. B. Dimethylsulfoxid (DMSO) und Sulfolan) usw. Solche Lösungsmittelgemische enthalten typischerweise Wasser in einer Menge von etwa 40 Gew.-% bis etwa 80 Gew.-%, in einigen Ausführungsformen etwa 50 Gew.-% bis etwa 75 Gew.-% und in einigen Ausführungsformen etwa 55 Gew.-% bis etwa 70 Gew.-% und das bzw. die sekundären Lösungsmittel in einer Menge von etwa 20 Gew.-% bis etwa 60 Gew.-%, in einigen Ausführungsformen etwa 25 Gew.-% bis etwa 50 Gew.-% und in einigen Ausführungsformen etwa 30 Gew.-% bis etwa 45 Gew.-%. Das bzw. die sekundären Lösungsmittel können zum Beispiel etwa 5 Gew.-% bis etwa 45 Gew.-%, in einigen Ausführungsformen etwa 10 Gew.-% bis etwa 40 Gew.-% und in einigen Ausführungsformen etwa 15 Gew.-% bis etwa 35 Gew.-% des Elektrolyten ausmachen.
  • Falls gewünscht, kann der Elektrolyt relativ neutral sein und einen pH-Wert von etwa 4,5 bis etwa 7,0, in einigen Ausführungsformen etwa 5,0 bis etwa 6,5 und in einigen Ausführungsformen etwa 5,5 bis etwa 6,0 aufweisen. Ein oder mehrere pH-Regulatoren (z. B. Säuren, Basen usw.) können eingesetzt werden, um das Erreichen des gewünschten pH-Werts zu unterstützen. In einer Ausführungsform wird eine Säure eingesetzt, um den pH-Wert auf den gewünschten Bereich zu senken. Zu den geeigneten Säuren gehören zum Beispiel anorganische Säuren, wie Chlorwasserstoffsäure, Salpetersäure, Schwefelsäure, Phosphorsäure, Polyphosphorsäure, Borsäure, Boronsäure usw., organische Säuren einschließlich Carbonsäuren, wie Acrylsäure, Methacrylsäure, Malonsäure, Bernsteinsäure, Salicylsäure, Sulfosalicylsäure, Adipinsäure, Maleinsäure, Äpfelsäure, Ölsäure, Gallsäure, Weinsäure, Zitronensäure, Ameisensäure, Essigsäure, Glycolsäure, Oxalsäure, Propionsäure, Phthalsäure, Isophthalsäure, Glutarsäure, Gluconsäure, Milchsäure, Asparaginsäure, Glutaminsäure, Itaconsäure, Trifluoressigsäure, Barbitursäure, Zimtsäure, Benzoesäure, 4-Hydroxybenzoesäure, Aminobenzoesäure usw., Sulfonsäuren, wie Methansulfonsäure, Benzolsulfonsäure, Toluolsulfonsäure, Trifluormethansulfonsäure, Styrolsulfonsäure, Naphthalindisulfonsäure, Hydroxybenzolsulfonsäure usw., polymere Säuren, wie Polyacryl- oder Polymethacrylsäure und Copolymere davon (z. B. Maleinsäure-Acrylsäure-, Sulfonsäure-Acrylsäure- und Styrol-Acrylsäure-Copolymere), Carrageensäure, Carboxymethylcellulose, Alginsäure usw., usw. Die Gesamtkonzentration der pH-Regulatoren kann zwar variieren, doch sind sie typischerweise in einer Menge von etwa 0,01 Gew.-% bis etwa 10 Gew.-%, in einigen Ausführungsformen etwa 0,05 Gew.-% bis etwa 5 Gew.-% und in einigen Ausführungsformen etwa 0,1 Gew.-% bis etwa 2 Gew.-% des Elektrolyten vorhanden.
  • Der Elektrolyt kann auch andere Komponenten enthalten, die dabei helfen, die elektrischen Eigenschaften des Kondensators zu verbessern. Zum Beispiel kann ein Depolarisator in dem Elektrolyten eingesetzt werden, der dabei helfen soll, die Entwicklung von Wasserstoffgas an der Kathode des Elektrolytkondensators zu hemmen, welches andernfalls bewirken könnte, dass sich der Kondensator ausbeult und schließlich versagt. Wenn er eingesetzt wird, macht der Depolarisator normalerweise etwa 1 bis etwa 500 ppm, in einem Ausführungsformen etwa 10 bis etwa 200 ppm und in einigen Ausführungsformen etwa 20 bis etwa 150 ppm des Elektrolyten aus. Zu den geeigneten Depolarisatoren gehören nitroaromatische Verbindungen, wie 2-Nitrophenol, 3-Nitrophenol, 4-Nitrophenol, 2-Nitrobenzoesäure, 3-Nitrobenzoesäure, 4-Nitrobenzoesäure, 2-Nitroacetophenon, 3-Nitroacetophenon, 4-Nitroacetophenon, 2-Nitroanisol, 3-Nitroanisol, 4-Nitroanisol, 2-Nitrobenzaldehyd, 3-Nitrobenzaldehyd, 4-Nitrobenzaldehyd, 2-Nitrobenzylalkohol, 3-Nitrobenzylalkohol, 4-Nitrobenzylalkohol, 2-Nitrophthalsäure, 3-Nitrophthalsäure, 4-Nitrophthalsäure usw. Besonders gut geeignete nitroaromatische Depolarisatoren zur Verwendung in der vorliegenden Erfindung sind Nitrobenzoesäuren, Anhydride oder Salze davon, die mit einer oder mehreren Alkylgruppen (z. B. Methyl, Ethyl, Propyl, Butyl usw.) substituiert sind. Spezielle Beispiele für solche alkylsubstituierten Nitrobenzoeverbindungen sind zum Beispiel 2-Methyl-3-nitrobenzoesäure, 2-Methyl-6-nitrobenzoesäure, 3-Methyl-2-nitrobenzoesäure, 3-Methyl-4-nitrobenzoesäure, 3-Methyl-6-nitrobenzoesäure, 4-Methyl-3-nitrobenzoesäure, Anhydride oder Salze davon usw. Ohne sich auf eine bestimmte Theorie festlegen zu wollen, wird angenommen, dass alkylsubstituierte Nitrobenzoeverbindungen vorzugsweise elektrochemisch an den aktiven Stellen der Kathodenoberfläche adsorbiert werden können, wenn das Kathodenpotential einen niedrigen Bereich erreicht oder die Zellspannung hoch ist, und anschließend davon ausgehend in den Elektrolyten desorbiert werden können, wenn das Kathodenpotential hochgeht oder die Zellspannung gering ist. Auf diese Weise sind die Verbindungen ”elektrochemisch reversibel”, was für eine verbesserte Hemmung der Wasserstoffgasproduktion sorgen kann.
  • Die besondere Art und Weise, in der die Komponenten in den Kondensator eingebaut werden, ist nicht entscheidend und kann mit Hilfe einer Vielzahl von Techniken bewerkstelligt werden. 1 zeigt zum Beispiel eine Ausführungsform eines Elektrolytkondensators 40, der einen Elektrolyten 44 umfasst, welcher sich in elektrischem Kontakt mit einer Anode 20 und einer Kathode 43 befindet. Die Anode 20 enthält eine dielektrische Schicht (nicht gezeigt) und steht in elektrischem Kontakt mit einem Anschluss 42. Der Anschluss 42 kann aus einem beliebigen elektrisch leitfähigen Material bestehen, wie Tantal, Niob, Nickel, Aluminium, Hafnium, Titan usw. sowie Oxide und/oder Nitride davon. In bestimmten Ausführungsformen kann der elektrische Kontakt mit der Anode 20 dadurch bewerkstelligt werden, dass man den Anschluss 42 durch Widerstands- oder Laserschweißen elektrisch koppelt. Die Kathode 43 wird aus einem gestrahlten Metallsubstrat 41, wie es oben beschrieben ist, und einer leitfähigen Polymerbeschichtung 49 gebildet. In dieser Ausführungsform liegt das Kathodensubstrat 41 in Form eines zylindrisch geformten ”Bechers” mit einem daran befestigten Deckel vor. Wie gezeigt, wird die leitfähige Polymerbeschichtung 49 in dieser Ausführungsform auf einer inneren Oberfläche des Substrats 41 gebildet.
  • Eine Flüssigkeitsdichtung 23 (z. B. Glas auf Metall) kann eingesetzt werden, die die Anode 20 mit der Kathode 43 verbindet und abdichtet. Es kann auch eine elektrisch isolierende Hülse 89 (z. B. Polytetrafluorethylen (”PTFE”)) und/oder ein Träger 91 eingesetzt werden, um dabei zu helfen, die Anode 20 und den Anschluss 42 zu stabilisieren und den gewünschten Zwischenraum innerhalb des Kondensators aufrechtzuerhalten. Falls gewünscht, kann sich auch ein Separator (nicht gezeigt) zwischen der Kathode 43 und der Anode 20 befinden, um einen direkten Kontakt zwischen der Anode und der Kathode zu verhindern und dennoch einen Ionenstrom des Elektrolyten 44 zu den Elektroden zu ermöglichen. Beispiele für geeignete Materialien für diesen Zweck sind zum Beispiel poröse Polymermaterialien (z. B. Polypropylen, Polyethylen, Polycarbonat usw.), poröse anorganische Materialien (z. B. Glasfasermatten, poröses Glaspapier usw.), Ionenaustauscherharzmaterialien usw. Besondere Beispiele sind Membranen aus ionischem perfluorierten Sulfonsäurepolymer (z. B. NafionTM von E. I. DuPont de Nemours & Co.), Membranen aus sulfoniertem Fluorkohlenstoffpolymer, Membranen aus Polybenzimidazol (PBI) und Membranen aus Polyetheretherketon (PEEK). Obwohl er einen direkten Kontakt zwischen der Anode und der Kathode verhindert, ermöglicht der Separator einen Ionenstrom des Elektrolyten zu den Elektroden.
  • Unabhängig von seiner besonderen Konfiguration kann der Kondensator der vorliegenden Erfindung ausgezeichnete elektrische Eigenschaften aufweisen. Zum Beispiel kann der Kondensator der vorliegenden Erfindung zum Teil aufgrund seiner hohen Leitfähigkeit ausgezeichnete elektrische Eigenschaften erreichen und somit für die Verwendung in der Kondensatorgruppe einer implantierbaren medizinischen Vorrichtung geeignet sein. Zum Beispiel kann der äquivalente Serienwiderstand (”ESR”), also das Ausmaß, in dem der Kondensator wie ein Widerstand wirkt, wenn er in einem elektronischen Schaltkreis aufgeladen und entladen wird, kleiner als etwa 1500 Milliohm, in einigen Ausführungsformen kleiner als etwa 1000 Milliohm und in einigen Ausführungsformen kleiner als etwa 500 Milliohm sein, gemessen mit einer Vorspannung von 2 Volt und einem Signal von 1 Volt bei einer Frequenz von 120 Hz. Ebenso kann die Kapazität etwa 1 Millifarad pro Quadratzentimeter (”mF/cm2”) oder mehr, in einigen Ausführungsformen etwa 2 mF/cm2 oder mehr, in einigen Ausführungsformen etwa 5 bis etwa 50 mF/cm2 und in einigen Ausführungsformen etwa 8 bis etwa 20 mF/cm2 betragen.
  • Der Elektrolytkondensator der vorliegenden Erfindung kann in verschiedenen Anwendungen verwendet werden; dazu gehören unter anderem medizinische Geräte, wie implantierbare Defibrillatoren, Schrittmacher, Kardioverter, Nervenstimulatoren, Wirkstoffverabreichungsvorrichtungen usw., Kraftfahrzeuganwendungen, militärische Anwendungen, wie RADAR-Systeme, Unterhaltungselektronik, wie Radios, TV-Geräte usw., usw. In einer Ausführungsform kann der Kondensator zum Beispiel in einer implantierbaren medizinischen Vorrichtung eingesetzt werden, die so konfiguriert ist, dass sie für eine Behandlung eines Patienten mit einer therapeutischen Hochspannung sorgt (z. B. zwischen ungefähr 500 Volt und ungefähr 850 Volt oder wünschenswerterweise zwischen ungefähr 600 Volt und ungefähr 900 Volt). Die Vorrichtung kann einen Behälter oder ein Gehäuse enthalten, der bzw. das hermetisch abgedichtet und biologisch inert ist. Ein oder mehrere Anschlüsse werden über eine Ader elektrisch zwischen der Vorrichtung und dem Herzen des Patienten gekoppelt. Herzelektroden werden bereitgestellt, um die Herzaktivität zu überwachen und/oder eine Spannung an das Herz anzulegen. Wenigstens ein Teil der Anschlüsse (z. B. ein Endteil der Anschlüsse) kann in der Nähe oder in Kontakt mit einer Kammer und/oder einem Vorhof des Herzens bereitgestellt werden. Die Vorrichtung enthält auch eine Kondensatorgruppe, die typischerweise zwei oder mehr Kondensatoren enthält, die in Reihe geschaltet sind und mit einer Batterie gekoppelt sind, die intern oder extern in Bezug auf die Vorrichtung angeordnet ist und der Kondensatorgruppe Energie liefert. Teilweise aufgrund der hohen Leitfähigkeit kann der Kondensator der vorliegenden Erfindung ausgezeichnete elektrische Eigenschaften erreichen und somit zur Verwendung in der Kondensatorgruppe der implantierbaren medizinischen Vorrichtung geeignet sein.
  • Die vorliegende Erfindung wird anhand der folgenden Beispiele besser verständlich.
  • Testverfahren
  • Alle Testverfahren wurden in Verbindung mit einer zylindrischen Tantalanode gemessen, die auf eine Größe von 17,3 mm (Länge) × 7,2 mm (Durchmesser) gepresst wurde und ein Gewicht von 4,4 g hatte und auf 10 V anodisiert wurde. Die Anode wies eine Kapazität von 6,8 mF bei einer Frequenz von 120 Hz auf. Der Elektrolyt war eine 5,0 M wässrige Lösung von Schwefelsäure (Dichte 1,26 g/cm3). Die Nasskapazität wurde anhand der folgenden Formel bestimmt: 1/Cnass = 1/CAnode + 1/CKathode
  • Äquivalenter Serienwiderstand (ESR)
  • Der äquivalente Serienwiderstand kann mit einem Präzisions-LCZ-Messgerät Keithley 3330 mit Kelvin-Anschlussleitungen bei 2,2 Volt Vorspannung und einem sinusförmigen Signal mit 0,5 Volt Abstand zwischen den Peaks gemessen werden. Die Betriebsfrequenz betrug 100 kHz, und die Temperatur betrug 23°C ± 2°C.
  • Nasskapazität
  • Die Kapazität wurde mit einem Präzisions-LCZ-Messgerät Keithley 3330 mit Kelvin-Anschlussleitungen bei 2,2 Volt Vorspannung und einem sinusförmigen Signal mit 0,5 Volt Abstand zwischen den Peaks gemessen. Die Betriebsfrequenz betrug 120 Hz, und die Temperatur betrug 23° ± 2°C.
  • Temperatur- und Drucktest
  • Bestimmte elektrische Eigenschaften (ESR und Kapazität) wurden nach Temperatur- und Drucktests bestimmt. Insbesondere wurden 10 Proben 100 Stunden lang bei 125°C in einen Dampfkochtopf gegeben, der mit einer 5,0 M wässrigen Lösung von Schwefelsäure (Dichte 1,26 g/cm3) gefüllt war. Dann wurden die Proben in der oben beschriebenen Weise getestet.
  • Beispiel 1
  • Zunächst wurden 100 Stücke zylindrischer Tantalbecher mit einer Größe von 18,3 mm (Länge) × 9,1 mm (Innendurchmesser) mit einem JetStreem Blaster II (SCM System, Inc.) sandgestrahlt. Bei dem Sandstrahlmedium handelte es sich um schwarzen Siliciumcarbidgrieß mit einer Größe von 63 bis 106 μm. Der Russ des Mediums betrug 0,5 Gramm pro Sekunde über eine 3,2-Millimeter-Strahldüse. Alle Stücke zylindrischer Tantalbecher wurden mit Hilfe geeigneter Klemmhülsen bis zu einem Kontrollniveau von 10,7 Millimetern (von potentiellen 18,3 Millimetern) sandgestrahlt. Die Sandstrahlzeit betrug 20 Sekunden. Dann wurden diese Proben 5 Minuten lang in Wasser mit Tensiden in einem Ultraschallbad entfettet, dreimal in deionisiertem Wasser abgespült und dann 5 Minuten lang bei einer Temperatur von 85°C getrocknet. Danach wurde auf die mikroaufgeraute Oberfläche eine Vorläuferlösung aufgetragen, die vier (4) Gewichtsteile Ethanol (Sigma-Aldrich, Co.), 0,1 Gewichtsteile Methylpyrrolidon (Sigma-Aldrich, Co.), 1 Gewichtsteil 3,4-Ethylendioxythiophen (H. C. Starck GmbH unter der Bezeichnung CleviosTM M) und 10 Gewichtsteile 40%-ige Butanollösung von Eisen(III)-p-toluolsulfonat (H. C. Starck GmbH unter der Bezeichnung CleviosTM C) enthielt. Die Tantalbecher wurden bis zum Kontrollniveau mit der Polymerisationsvorläuferlösung gefüllt und fünf (5) Minuten lang stehen gelassen. Dann wurden die Becher bis zu einer (1) Minute lang mit Hilfe eines Vakuums geleert und dann 15 Minuten lang bei 85°C in einen Trockenofen gegeben. Die resultierende Struktur von Poly(3,4-ethylendioxythiophen) wurde fünf (5) Minuten lang in Methanol gewaschen, um Reaktionsnebenprodukte zu entfernen, und dann wurden die Tantalbecher fünf (5) Minuten lang bei 85°C in einen Trockenofen gegeben. Dieser Polymerisationszyklus wurde viermal (4-mal) wiederholt.
  • Von den Proben wurden auch verschiedene SEM-Aufnahmen gemacht, die in den 3 bis 6 gezeigt sind. Wie erwähnt, hatten die Becher eine im Wesentlichen glatte Oberfläche, insbesondere auf ihrer inneren Bodenfläche.
  • Beispiel 2
  • 100 Stücke zylindrischer Tantalbecher wurden so präpariert, wie es in Beispiel 1 beschrieben ist, außer dass die Sandstrahlzeit 15 Sekunden betrug.
  • Beispiel 3
  • 100 Stücke zylindrischer Tantalbecher wurden so präpariert, wie es in Beispiel 1 beschrieben ist, außer dass die Sandstrahlzeit 10 Sekunden betrug.
  • Beispiel 4
  • 100 Stücke zylindrischer Tantalbecher wurden so präpariert, wie es in Beispiel 1 beschrieben ist, außer dass die Sandstrahlzeit 5 Sekunden betrug.
  • Beispiel 5
  • 100 Stücke zylindrischer Tantalbecher wurden so sandgestrahlt, wie es in Beispiel 1 beschrieben ist. Danach wurde eine leitfähige Polymerbeschichtung gebildet, indem man die Becher fünf (5) Minuten lang in eine Butanollösung von Eisen(III)-p-toluolsulfonat (CleviosTM C, H. C. Starck) und anschließend fünf (5) Minuten lang in 3,4-Ethylendioxythiophen (CleviosTM M, H. C. Starck) eintauchte. Die Becher wurden bis zu einer (1) Minute lang mit Hilfe eines Vakuums geleert und dann 45 Minuten lang bei 30°C in einen Trockenofen gegeben. Die resultierende Struktur von Poly(3,4-ethylendioxythiophen) wurde fünf (5) Minuten lang in Methanol gewaschen, um Reaktionsnebenprodukte zu entfernen, und dann wurden die Tantalbecher fünf (5) Minuten lang bei 85°C in einen Trockenofen gegeben. Dieser Polymerisationszyklus wurde viermal (4-mal) wiederholt.
  • Beispiel 6
  • 100 Stücke zylindrischer Tantalbecher wurden so sandgestrahlt, wie es in Beispiel 1 beschrieben ist. Danach wurde eine leitfähige Polymerbeschichtung auf die mikroaufgeraute Oberfläche der Tantalbecher aufgetragen, indem man die Anode in dispergiertes Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 1,1% (CleviosTM K, H. C. Starck) eintauchte. Die Tantalbecher wurden bis zum Kontrollniveau mit dem dispergierten Poly(3,4-ethylendioxythiophen) gefüllt und fünf (5) Minuten lang stehen gelassen. Die Proben wurden bis zu einer (1) Minute lang mit Hilfe eines Vakuums geleert und dann fünfzehn (15) Minuten lang bei 125°C in einen Trockenofen gegeben. Der Beschichtungszyklus wurde viermal wiederholt.
  • Beispiel 7
  • 100 Stücke zylindrischer Tantalbecher wurden so präpariert, wie es in Beispiel 1 beschrieben ist, außer dass die Becher nicht sandgestrahlt wurden. Von den Proben wurden auch verschiedene SEM-Aufnahmen gemacht, die in den 7 bis 10 gezeigt sind. Wie erwähnt, hatten die Becher eine im Wesentlichen raue Oberfläche.
  • Sobald sie gebildet worden waren, wurden die 10 Proben der Kathoden der Beispiele 1 bis 7 dann in der oben beschriebenen Weise bezüglich Kapazität und ESR getestet. Weiterhin wurden die Kapazität und der ESR der Proben auch nach ”Temperatur/Druck-Test”, wie er oben beschrieben ist, gemessen. Die Ergebnisse sind im Folgenden in Tabelle 1 gezeigt. Tabelle 1: Temperatur/Druck-Test
    Beispiel Mittelwert (vor dem Test) Mittelwert (nach dem Test)
    CAP (mF) ESR (mΩ) CAP (mF) ESR (mΩ) ΔCAP (mF) ΔESR (mΩ) ΔCAP [%] ΔESR [%]
    1 7,38 123 7,42 115 0,04 –9 0,5 –7,0
    2 7,37 124 7,44 108 0,07 –15 1,0 –12,4
    3 7,32 125 7,38 109 0,06 –16 0,9 –12,8
    4 7,37 123 7,40 113 0,03 –11 0,4 –8,6
    5 3,46 219 2,04 194 –1,42 –25 –41,0 –11,4
    6 2,56 147 2,79 120 0,23 –27 9,1 –18,4
    7 6,43 376 5,82 590 –0,61 213 –9,4 56,7
  • Wie erwähnt, zeigten die sandgestrahlten Proben im Allgemeinen bessere elektrische Eigenschaften als die ungestrahlte Probe (Beispiel 7). Ohne uns auf eine bestimmte Theorie festlegen zu wollen, glauben wir, dass dies auf eine Ablösung der Struktur der leitfähigen Polymerkathode von den im Wesentlichen rauen Oberflächen der ungestrahlten Becher zurückzuführen ist.
  • Diese und andere Modifikationen und Variationen der vorliegenden Erfindung können vom Fachmann praktisch umgesetzt werden, ohne vom Wesen und Umfang der vorliegenden Erfindung abzuweichen. Außerdem sollte man sich darüber im Klaren sein, dass Aspekte der verschiedenen Ausführungsformen ganz oder teilweise gegeneinander ausgetauscht werden können. Weiterhin wird der Fachmann anerkennen, dass die obige Beschreibung nur beispielhaften Charakter hat und die Erfindung, die in den beigefügten Ansprüchen näher beschrieben ist, nicht einschränken soll.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 2008/232037 [0032]
    • US 5457862 [0032]
    • US 5473503 [0032]
    • US 5729428 [0032]
    • US 5812367 [0032]
    • US 6322912 [0041]
    • US 6391275 [0041]
    • US 6416730 [0041]
    • US 6527937 [0041]
    • US 6576099 [0041]
    • US 6592740 [0041]
    • US 6639787 [0041]
    • US 7220397 [0041]
    • US 6197252 [0044]
    • US 5369547 [0048, 0049]
    • US 6594140 [0048, 0049]
  • Zitierte Nicht-Patentliteratur
    • Brunauer, Emmet und Teller, Journal of American Chemical Society, Band 60, 1938, S. 309 [0042]

Claims (24)

  1. Verfahren zur Bildung einer Kathode eines Flüssigelektrolytkondensators, wobei das Verfahren Folgendes umfasst: Schleudern von Schleifkörpern gegen ein Metallsubstrat (”Strahlen”) zur Bildung einer mikroaufgerauten Oberfläche, die eine Vielzahl von Grübchen aufweist; und Bilden einer leitfähigen Beschichtung auf der mikroaufgerauten Oberfläche, wobei die leitfähige Beschichtung ein intrinsisch leitfähiges substituiertes Polythiophen umfasst.
  2. Verfahren gemäß Anspruch 1, wobei die Grübchen eine mittlere Tiefe von etwa 200 bis etwa 2500 Nanometer aufweisen.
  3. Verfahren gemäß Anspruch 1, wobei die Grübchen einen ”Mitte-zu-Mitte”-Abstand aufweisen, der in einem Bereich von etwa 30 bis etwa 400 Mikrometern liegt.
  4. Verfahren gemäß Anspruch 1, wobei die Schleifkörper Keramikteilchen umfassen.
  5. Verfahren gemäß Anspruch 1, wobei die Schleifkörper unter einem Druck von etwa 700 bis etwa 2400 Millibar gegen die Oberfläche geschleudert werden.
  6. Verfahren gemäß Anspruch 1, wobei die Schleifkörper während einer Zeit von etwa 10 bis etwa 30 Sekunden gegen die Oberfläche geschleudert werden.
  7. Verfahren gemäß Anspruch 1, wobei die Schleifkörper durch eine Düse hindurch geschleudert werden.
  8. Verfahren gemäß Anspruch 7, wobei die Düse relativ zu dem Substrat rotiert.
  9. Verfahren gemäß Anspruch 1, wobei die Schleifkörper vor dem Auftragen der Vorläuferlösung von der Oberfläche entfernt werden.
  10. Verfahren gemäß Anspruch 1, wobei das substituierte Polythiophen Repetiereinheiten der allgemeinen Formel (I), Formel (II) oder von beiden aufweist:
    Figure 00340001
    wobei A ein gegebenenfalls substituierter C1- bis C5-Alkylenrest ist; R ein linearer oder verzweigter, gegebenenfalls substituierter C1- bis C18-Alkylrest, gegebenenfalls substituierter C5- bis C12-Cycloalkylrest, gegebenenfalls substituierter C6- bis C14-Arylrest, gegebenenfalls substituierter C7- bis C18-Aralkylrest, gegebenenfalls substituierter C1- bis C4-Hydroxyalkylrest oder Hydroxyrest ist; und x eine ganze Zahl von 0 bis 8 ist.
  11. Verfahren gemäß Anspruch 10, wobei A ein gegebenenfalls substituierter C2- bis C3-Alkylenrest ist und x = 0 oder 1 ist.
  12. Verfahren gemäß Anspruch 1, wobei es sich bei dem substituierten Polythiophen um Poly(3,4-ethylendioxythiophen) handelt.
  13. Verfahren gemäß Anspruch 1, wobei das substituierte Polythiophen durch in-situ-Polymerisation eines Thiophenmonomers gebildet wird.
  14. Verfahren gemäß Anspruch 1, wobei die leitfähige Beschichtung eine Dispersion von Teilchen umfasst, wobei die Teilchen das substituierte Polythiophen umfassen.
  15. Verfahren gemäß Anspruch 1, wobei das Metallsubstrat Titan, Tantal oder eine Kombination davon umfasst.
  16. Verfahren zur Bildung eines Flüssigelektrolytkondensators, wobei das Verfahren Folgendes umfasst: das Schleudern von Schleifkörpern gegen ein Metallsubstrat (”Strahlen”) zur Bildung einer mikroaufgerauten Oberfläche, die eine Vielzahl von Grübchen aufweist; Bilden einer leitfähigen Beschichtung, die ein intrinsisch leitfähiges substituiertes Polythiophen umfasst, auf der mikroaufgerauten Oberfläche; und Bringen des beschichteten Metallsubstrats in elektrische Verbindung mit einer Anode und einem Elektrolyten, wobei die Anode aus einem porösen Anodenkörper, der eine dielektrische Schicht enthält, gebildet ist.
  17. Flüssigelektrolytkondensator, umfassend: einen porösen Anodenkörper, der eine durch anodische Oxidation gebildete dielektrische Schicht enthält; einen flüssigen Elektrolyten; ein Metallgehäuse, innerhalb dessen sich die Anode und der flüssige Elektrolyt befinden, wobei das Metallgehäuse eine innere Oberfläche definiert, die eine Vielzahl von durch Strahlen gebildeten Grübchen enthält; und eine leitfähige Beschichtung, die sich auf der inneren Oberfläche des Gehäuses und innerhalb von deren Grübchen befindet, wobei die leitfähige Beschichtung Poly(3,4-ethylendioxythiophen) umfasst.
  18. Flüssigelektrolytkondensator gemäß Anspruch 17, wobei die Beschichtung eine Dicke von etwa 0,2 μm bis etwa 50 μm aufweist.
  19. Flüssigelektrolytkondensator gemäß Anspruch 17, wobei der Anodenkörper Tantal, Niob oder ein elektrisch leitfähiges Oxid davon umfasst.
  20. Flüssigelektrolytkondensator gemäß Anspruch 17, wobei das Metallsubstrat Titan, Tantal oder eine Kombination davon umfasst.
  21. Flüssigelektrolytkondensator gemäß Anspruch 17, wobei der flüssige Elektrolyt wässrig ist.
  22. Flüssigelektrolytkondensator gemäß Anspruch 17, wobei der flüssige Elektrolyt einen pH-Wert von etwa 4,5 bis etwa 7,0 aufweist.
  23. Flüssigelektrolytkondensator gemäß Anspruch 17, wobei der flüssige Elektrolyt Schwefelsäure umfasst.
  24. Flüssigelektrolytkondensator gemäß Anspruch 17, wobei das Gehäuse im Wesentlichen zylindrisch ist.
DE102011113164A 2010-09-16 2011-09-14 Kathode aus einem gestrahlten leitfähigen Polymer zur Verwendung in einem Flüssigelektrolytkondensator Pending DE102011113164A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/883,410 2010-09-16
US12/883,410 US8605411B2 (en) 2010-09-16 2010-09-16 Abrasive blasted conductive polymer cathode for use in a wet electrolytic capacitor

Publications (1)

Publication Number Publication Date
DE102011113164A1 true DE102011113164A1 (de) 2012-05-16

Family

ID=45817573

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102011113164A Pending DE102011113164A1 (de) 2010-09-16 2011-09-14 Kathode aus einem gestrahlten leitfähigen Polymer zur Verwendung in einem Flüssigelektrolytkondensator

Country Status (6)

Country Link
US (1) US8605411B2 (de)
CN (1) CN102403132B (de)
DE (1) DE102011113164A1 (de)
FR (1) FR2965970B1 (de)
GB (1) GB2483749B (de)
HK (1) HK1165086A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8968423B2 (en) 2010-09-16 2015-03-03 Avx Corporation Technique for forming a cathode of a wet electrolytic capacitor
US8824121B2 (en) 2010-09-16 2014-09-02 Avx Corporation Conductive polymer coating for wet electrolytic capacitor
US9129747B2 (en) * 2012-03-16 2015-09-08 Avx Corporation Abrasive blasted cathode of a wet electrolytic capacitor
US9378898B2 (en) 2012-12-07 2016-06-28 Kemet Electronics Corporation Linear-hyperbranched polymers as performance additives for solid electrolytic capacitors
CN103794656B (zh) * 2013-02-07 2016-06-08 凡登(常州)新型金属材料技术有限公司 提高光伏电池组件功率的焊带及其制备方法
GB2512486B (en) 2013-03-15 2018-07-18 Avx Corp Wet electrolytic capacitor
GB2512481B (en) 2013-03-15 2018-05-30 Avx Corp Wet electrolytic capacitor for use at high temperatures
RU2538492C1 (ru) * 2013-08-06 2015-01-10 Александр Владимирович Ермаков Способ изготовления катодной обкладки танталового объемно-пористого конденсатора
US9183991B2 (en) 2013-09-16 2015-11-10 Avx Corporation Electro-polymerized coating for a wet electrolytic capacitor
US9165718B2 (en) 2013-09-16 2015-10-20 Avx Corporation Wet electrolytic capacitor containing a hydrogen protection layer
US10403444B2 (en) 2013-09-16 2019-09-03 Avx Corporation Wet electrolytic capacitor containing a composite coating
US10319535B2 (en) * 2013-09-27 2019-06-11 Intel Corporation High voltage high power energy storage devices, systems, and associated methods
CN104409213A (zh) * 2014-11-12 2015-03-11 深圳新宙邦科技股份有限公司 用于化成箔后处理的电解质胶液、电极箔和电容器
US9947479B2 (en) 2015-11-16 2018-04-17 Vishay Sprague, Inc. Volumetric efficiency wet electrolyte capacitor having a fill port and terminations for surface mounting
WO2017136640A1 (en) * 2016-02-03 2017-08-10 Cornell Dubilier Marketing, Inc. Hermetically sealed electrolytic capacitor with double case
US9870868B1 (en) 2016-06-28 2018-01-16 Avx Corporation Wet electrolytic capacitor for use in a subcutaneous implantable cardioverter-defibrillator
US9870869B1 (en) 2016-06-28 2018-01-16 Avx Corporation Wet electrolytic capacitor
US11189431B2 (en) 2018-07-16 2021-11-30 Vishay Sprague, Inc. Low profile wet electrolytic tantalum capacitor
US11024464B2 (en) 2018-08-28 2021-06-01 Vishay Israel Ltd. Hermetically sealed surface mount polymer capacitor
US11742149B2 (en) 2021-11-17 2023-08-29 Vishay Israel Ltd. Hermetically sealed high energy electrolytic capacitor and capacitor assemblies with improved shock and vibration performance

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369547A (en) 1993-03-22 1994-11-29 The Evans Findings Co., Ltd. Capacitor
US5457862A (en) 1993-11-10 1995-10-17 Nec Corporation Method of manufacturing solid electrolytic capacitor
US5473503A (en) 1993-07-27 1995-12-05 Nec Corporation Solid electrolytic capacitor and method for manufacturing the same
US5729428A (en) 1995-04-25 1998-03-17 Nec Corporation Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same
US5812367A (en) 1996-04-04 1998-09-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative
US6197252B1 (en) 1997-01-13 2001-03-06 Avx Limited Binder removal
US6322912B1 (en) 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6391275B1 (en) 1998-09-16 2002-05-21 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6416730B1 (en) 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6576099B2 (en) 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
US6594140B1 (en) 1993-03-22 2003-07-15 Evans Capacitor Company Incorporated Capacitor
US6639787B2 (en) 2000-11-06 2003-10-28 Cabot Corporation Modified oxygen reduced valve metal oxides
US20080232037A1 (en) 2007-03-21 2008-09-25 Avx Corporation Solid electrolytic capacitor containing a conductive polymer

Family Cites Families (169)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3476557A (en) 1964-12-31 1969-11-04 Nat Res Corp Electrical device
US3809552A (en) 1971-11-08 1974-05-07 Mallory & Co Inc P R Method for making an anode
US4002473A (en) 1971-11-08 1977-01-11 P. R. Mallory & Co., Inc. Method of making an anode
US4044218A (en) 1974-10-11 1977-08-23 Diamond Shamrock Corporation Dimensionally stable anode and method and apparatus for forming the same
US3956819A (en) 1974-12-02 1976-05-18 Augeri Stephen L Method of assembling a tantelum capacitor
US4025827A (en) 1976-04-07 1977-05-24 Sprague Electric Company Electrolytic capacitor having a highly strained elastomeric sealing element
NL7710775A (nl) * 1977-10-03 1979-04-05 Philips Nv Kathodefolie voor elektrolytische condensator.
GB1600029A (en) 1977-11-24 1981-10-14 Plessey Co Ltd Electrolytic capacitors
US4168351A (en) 1978-02-10 1979-09-18 P. R. Mallory & Co., Inc. Stabilized glass-to-metal seals in lithium cell environments
DE3309891A1 (de) 1983-03-18 1984-10-31 Hermann C. Starck Berlin, 1000 Berlin Verfahren zur herstellung von ventilmetallanoden fuer elektrolytkondensatoren
US4479168A (en) 1983-12-19 1984-10-23 Sprague Electric Company Electrolytic capacitor with a hermetic seal
US4538212A (en) 1984-07-30 1985-08-27 Sprague Electric Company Electrolytic capacitor
US4634631A (en) 1985-07-15 1987-01-06 Rogers Corporation Flexible circuit laminate and method of making the same
FR2602907B1 (fr) 1986-08-05 1988-11-25 Sprague France Anode de condensateur, procede de fabrication de cette anode, et condensateur la comportant
US4780797A (en) 1987-12-16 1988-10-25 Tansitor Electronic, Inc. Capacitor tantalum surface for use as a counterelectrode device and method
US5104738A (en) 1988-06-01 1992-04-14 The United States Of America As Represented By The United States Department Of Energy Sealing glasses for titanium and titanium alloys
US5284723A (en) 1989-07-14 1994-02-08 Solvay & Cie (Societe Anonyme) Electrochemical energy storage devices comprising electricaly conductive polymer and their uses
FR2650833B1 (fr) 1989-08-14 1991-11-08 Solvay Compositions de polymeres conducteurs d'electricite derives de pyrrole substitue ou non et procede pour leur obtention
US4992910A (en) 1989-11-06 1991-02-12 The Evans Findings Company, Inc. Electrical component package
US4987519A (en) 1990-03-26 1991-01-22 Sprague Electric Company Hermetically sealed aluminum electrolytic capacitor
US5136474A (en) 1990-04-03 1992-08-04 Giner, Inc. Proton exchange membrane electrochemical capacitors
JPH0787171B2 (ja) 1990-04-06 1995-09-20 ローム株式会社 固体電解コンデンサの製造方法
US5098485A (en) 1990-09-19 1992-03-24 Evans Findings Company Method of making electrically insulating metallic oxides electrically conductive
JPH04208512A (ja) 1990-11-30 1992-07-30 Nec Corp 固体電解コンデンサの製造方法
US5400211A (en) 1992-10-01 1995-03-21 The Evans Findings Company, Inc. Packaged electrical component
US5982609A (en) 1993-03-22 1999-11-09 Evans Capacitor Co., Inc. Capacitor
US5754394A (en) 1993-03-22 1998-05-19 Evans Capacitor Company Incorporated Capacitor including a cathode having a nitride coating
US5469325A (en) 1993-03-22 1995-11-21 Evans Findings Co. Capacitor
US5435874A (en) 1993-11-01 1995-07-25 Wilson Greatbatch Ltd. Process for making cathode components for use in electrochemical cells
JPH09508079A (ja) 1994-01-24 1997-08-19 ケムファブ コーポレイション フルオロポリマーと熱的非粘着性非フルオロポリマーとの複合物及びその製造方法
US5543249A (en) 1995-03-01 1996-08-06 Wilson Greatbatch Ltd. Aqueous blended electrode material for use in electrochemical cells and method of manufacture
US5726118A (en) 1995-08-08 1998-03-10 Norit Americas, Inc. Activated carbon for separation of fluids by adsorption and method for its preparation
US5786980A (en) 1996-02-02 1998-07-28 Evans Capacitor Company, Incorporated Electrical component package and packaged electrical component
JP2001110685A (ja) 1996-04-26 2001-04-20 Nippon Chemicon Corp 固体電解コンデンサ
US5714000A (en) 1996-05-06 1998-02-03 Agritec, Inc. Fine-celled foam composition and method
US5648302A (en) 1996-09-13 1997-07-15 Sandia Corporation Sealing glasses for titanium and titanium alloys
US5776632A (en) 1996-10-03 1998-07-07 Wilson Greatbatch Ltd. Hermetic seal for an electrochemical cell
US5926362A (en) 1997-05-01 1999-07-20 Wilson Greatbatch Ltd. Hermetically sealed capacitor
US5920455A (en) 1997-05-01 1999-07-06 Wilson Greatbatch Ltd. One step ultrasonically coated substrate for use in a capacitor
US5894403A (en) 1997-05-01 1999-04-13 Wilson Greatbatch Ltd. Ultrasonically coated substrate for use in a capacitor
US6599580B2 (en) 1997-05-01 2003-07-29 Wilson Greatbatch Ltd. Method for improving electrical conductivity of a metal oxide layer on a substrate utilizing high energy beam mixing
US5973913A (en) 1997-08-12 1999-10-26 Covalent Associates, Inc. Nonaqueous electrical storage device
US6024914A (en) 1997-09-01 2000-02-15 Nec Corporation Process for production of anode for solid electrolytic capacitor
US6951576B1 (en) 1997-10-21 2005-10-04 Wilson Greatbatch Ltd. Wound element electrode assembly design for use in prismatic case electrochemical cells
US6008980A (en) 1997-11-13 1999-12-28 Maxwell Energy Products, Inc. Hermetically sealed EMI feedthrough filter capacitor for human implant and other applications
US5849031A (en) 1997-12-16 1998-12-15 Medtronic, Inc. Method and apparatus for termination of tachyarrhythmias
EP0935265A3 (de) 1998-02-09 2002-06-12 Wilson Greatbatch Ltd. Durch thermische Zerstäubung beschichtetes Substrat zur Verwendung in einer elektrischen Energiespeicheranordnung und Herstellungsverfahren
US6118652A (en) 1998-04-03 2000-09-12 Medtronic, Inc. Implantable medical device having flat electrolytic capacitor with laser welded cover
US6006133A (en) 1998-04-03 1999-12-21 Medtronic, Inc. Implantable medical device having flat electrolytic capacitor with consolidated electrode assembly
US6009348A (en) 1998-04-03 1999-12-28 Medtronic, Inc. Implantable medical device having flat electrolytic capacitor with registered electrode layers
US6388866B1 (en) 1998-04-03 2002-05-14 Medtronic, Inc. Implantable medical device having flat electrolytic capacitor with tailored anode layers
US6042624A (en) 1998-04-03 2000-03-28 Medtronic, Inc. Method of making an implantable medical device having a flat electrolytic capacitor
US6157531A (en) 1998-04-03 2000-12-05 Medtronic, Inc. Implantable medical device having flat electrolytic capacitor with liquid electrolyte fill tube
US6477037B1 (en) 1998-04-03 2002-11-05 Medtronic, Inc. Implantable medical device having flat electrolytic capacitor with miniaturized epoxy connector droplet
US6493212B1 (en) 1998-04-03 2002-12-10 Medtronic, Inc. Implantable medical device having flat electrolytic capacitor with porous gas vent within electrolyte fill tube
US6099600A (en) 1998-04-03 2000-08-08 Medtronic, Inc. Method of making a vacuum-treated liquid electrolyte-filled flat electrolytic capacitor
US6402793B1 (en) 1998-04-03 2002-06-11 Medtronic, Inc. Implantable medical device having flat electrolytic capacitor with cathode/case electrical connections
US6459566B1 (en) 1998-06-24 2002-10-01 Medtronic, Inc. Implantable medical device having flat electrolytic capacitor with laser welded cover
US6208502B1 (en) 1998-07-06 2001-03-27 Aerovox, Inc. Non-symmetric capacitor
US6037077A (en) 1998-07-08 2000-03-14 Wilson Greatbatch Ltd. Electrode assembly for high energy devices
US6110622A (en) 1998-07-22 2000-08-29 Wilson Greatbatch Ltd. Chemically machined current collector design
DE69934642T2 (de) 1998-08-28 2007-10-25 Wilson Greatbatch, Ltd. Elektrolyt für einen Kondensator
US6231993B1 (en) 1998-10-01 2001-05-15 Wilson Greatbatch Ltd. Anodized tantalum pellet for an electrolytic capacitor
US6096391A (en) 1998-10-16 2000-08-01 Wilson Greatbatch Ltd. Method for improving electrical conductivity of metals, metal alloys and metal oxides
JP3366268B2 (ja) * 1998-12-01 2003-01-14 ルビコン株式会社 電解コンデンサ駆動用電解液及びこれを使用した電解コンデンサ
JP3623113B2 (ja) * 1998-12-03 2005-02-23 ルビコン株式会社 電解コンデンサ
US6094339A (en) 1998-12-04 2000-07-25 Evans Capacitor Company Incorporated Capacitor with spiral anode and planar cathode
US6332900B1 (en) * 1999-02-08 2001-12-25 Wilson Greatbatch Ltd. Physical vapor deposited electrode component and method of manufacture
US6678559B1 (en) 1999-03-23 2004-01-13 Medtronic, Inc. Implantable medical device having a capacitor assembly with liner
US7110240B2 (en) 2000-03-20 2006-09-19 Medtronic, Inc. Implantable medical device having flat electrolytic capacitor with differing sized anode and cathode layers
US6613474B2 (en) 2000-04-06 2003-09-02 Wilson Greatbatch Ltd. Electrochemical cell having a casing of mating portions
JP4792622B2 (ja) 2000-05-30 2011-10-12 旭硝子株式会社 テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体及びその製造方法
US6461759B1 (en) 2000-06-09 2002-10-08 Wilson Greatbatch, Ltd. Cathode assembly with bare current collector regions to facilitate winding
DE60113195T2 (de) 2000-06-27 2006-07-06 Asahi Glass Co., Ltd. Aktivkohlematerial, Verfahren zu dessen Herstellung und elektrischer Doppelschichtkondensator, welcher dieses verwendet
US6687118B1 (en) 2000-11-03 2004-02-03 Cardiac Pacemakers, Inc. Flat capacitor having staked foils and edge-connected connection members
US6743547B2 (en) 2000-11-17 2004-06-01 Wilson Greatbatch Ltd. Pellet process for double current collector screen cathode preparation
US6893777B2 (en) 2001-02-15 2005-05-17 Wilson Greatbatch Ltd. Current collector having non-symmetric grid pattern converging at a common focal point
US6790561B2 (en) 2001-03-15 2004-09-14 Wilson Greatbatch Ltd. Process for fabricating continuously coated electrodes on a porous current collector and cell designs incorporating said electrodes
DE10131236B4 (de) 2001-06-28 2006-03-30 Epcos Ag Kondensator
US6576524B1 (en) 2001-07-20 2003-06-10 Evans Capacitor Company Incorporated Method of making a prismatic capacitor
US7314685B2 (en) 2001-07-30 2008-01-01 Greatbatch Ltd. Oxidized titanium as a cathodic current collector
CN100456398C (zh) * 2001-09-26 2009-01-28 如碧空株式会社 电解电容器驱动用电解液和电解电容器
US6946220B2 (en) 2001-10-19 2005-09-20 Wilson Greatbatch Technologies, Inc. Electrochemical cell having a multiplate electrode assembly housed in an irregularly shaped casing
US6727022B2 (en) 2001-11-19 2004-04-27 Wilson Greatbatch Ltd. Powder process for double current collector screen cathode preparation
US7000297B2 (en) 2001-11-28 2006-02-21 Wilson Greatbatch Technologies, Inc. Electrochemical cell current collector having openings of progressively larger sizes converging at a tab
US6652729B2 (en) 2001-12-10 2003-11-25 Kemet Electronics Corporation Electrolyte for very high voltage electrolytic capacitors
US6802951B2 (en) 2002-01-28 2004-10-12 Medtronic, Inc. Methods of anodizing valve metal anodes
US6687117B2 (en) 2002-01-31 2004-02-03 Wilson Greatbatch Technologies, Inc. Electrolytes for capacitors
US6922330B2 (en) 2002-04-18 2005-07-26 Medtronic, Inc. Implantable medical device having flat electrolytic capacitor fabricated with laser welded anode sheets
US6721169B2 (en) 2002-06-19 2004-04-13 Kemet Electronics Corporation Electrolytic capacitor and separator papers therefor
US7079377B2 (en) 2002-09-30 2006-07-18 Joachim Hossick Schott Capacitor and method for producing a capacitor
US7002790B2 (en) 2002-09-30 2006-02-21 Medtronic, Inc. Capacitor in an implantable medical device
US20040240152A1 (en) 2003-05-30 2004-12-02 Schott Joachim Hossick Capacitor and method for producing a capacitor
US7342774B2 (en) 2002-11-25 2008-03-11 Medtronic, Inc. Advanced valve metal anodes with complex interior and surface features and methods for processing same
US6965509B2 (en) 2002-12-02 2005-11-15 The United States Of America As Represented By The Secretary Of The Navy Poly (3,4-alkylenedioxythiophene)-based capacitors using ionic liquids as supporting electrolytes
EP1431990A3 (de) 2002-12-16 2006-04-26 Wilson Greatbatch Technologies, Inc. Kondensator mit doppelter Anode
US6805777B1 (en) 2003-04-02 2004-10-19 Alcoa Inc. Mechanical attachment of electrical current conductor to inert anodes
US6819544B1 (en) 2003-05-30 2004-11-16 Medtronic, Inc. Dual-anode electrolytic capacitor for use in an implantable medical device
US6995971B2 (en) 2003-05-30 2006-02-07 Medtronic, Inc. Capacitors including interacting separators and surfactants
US7256982B2 (en) 2003-05-30 2007-08-14 Philip Michael Lessner Electrolytic capacitor
US6801424B1 (en) 2003-05-30 2004-10-05 Medtronic, Inc. Electrolytic capacitor for use in an implantable medical device
US20040243183A1 (en) 2003-05-30 2004-12-02 Norton John D. Wet tantalum capacitor usable without reformation and medical devices for use therewith
US6985352B2 (en) 2003-05-30 2006-01-10 Medtronic, Inc. Capacitors including track-etched separator materials
US6967828B2 (en) 2003-05-30 2005-11-22 Medtronic, Inc. Capacitors including metalized separators
US6859354B2 (en) 2003-05-30 2005-02-22 Kemet Electronic Corporation Low freezing electrolyte for an electrolytic capacitor
US6788523B1 (en) 2003-05-30 2004-09-07 Kemet Electronics Electrolyte for electrolytic capacitor
US6842328B2 (en) 2003-05-30 2005-01-11 Joachim Hossick Schott Capacitor and method for producing a capacitor
US7242572B2 (en) 2003-05-30 2007-07-10 Medtronic, Inc. Methods of applying separator members to an electrode of a capacitor
US6807048B1 (en) 2003-05-30 2004-10-19 Medtronic, Inc. Electrolytic capacitor for use in an implantable medical device
US6721170B1 (en) 2003-06-11 2004-04-13 Evans Capacitor Company, Inc. Packaged hybrid capacitor
US6888717B2 (en) 2003-06-13 2005-05-03 Kemet Electronics Corporation Working electrolyte for electrolytic capacitors
DE502004011120D1 (de) 2003-07-15 2010-06-17 Starck H C Gmbh Niobsuboxidpulver
DE10333156A1 (de) 2003-07-22 2005-02-24 H.C. Starck Gmbh Verfahren zur Herstellung von Niobsuboxid
US20080007894A1 (en) 2003-08-18 2008-01-10 Greatbatch Ltd. Poly (Alkylene) Carbonates As Binders In The Manufacture Of Valve Metal Anodes For Electrolytic Capacitors
US7116547B2 (en) 2003-08-18 2006-10-03 Wilson Greatbatch Technologies, Inc. Use of pad printing in the manufacture of capacitors
US7168142B2 (en) 2003-09-15 2007-01-30 Greatbatch-Globe Tool, Inc. Method of manufacturing a shaped titanium article
US7169284B1 (en) 2003-09-22 2007-01-30 Pacesetter, Inc. High surface area cathode for electrolytic capacitors using conductive polymer
DE10347702B4 (de) 2003-10-14 2007-03-29 H.C. Starck Gmbh Sinterkörper auf Basis Niobsuboxid
ES2329898T3 (es) 2003-10-17 2009-12-02 H.C. Starck Gmbh Condensadores electroliticos con capa externa de polimero.
US7687102B2 (en) 2003-10-23 2010-03-30 Medtronic, Inc. Methods and apparatus for producing carbon cathodes
US7224576B2 (en) 2003-10-23 2007-05-29 Medtronic, Inc. High capacitance electrode and methods of producing same
US7684171B2 (en) 2003-10-23 2010-03-23 Medtronic, Inc. Capacitors based on valve metal alloys for use in medical devices
US20050089711A1 (en) 2003-10-23 2005-04-28 Joachim Hossick-Schott Methods of producing carbon layers on titanium metal
US6965510B1 (en) 2003-12-11 2005-11-15 Wilson Greatbatch Technologies, Inc. Sintered valve metal powders for implantable capacitors
US8017178B2 (en) 2003-12-16 2011-09-13 Cardiac Pacemakers, Inc. Coatings for implantable electrodes
US7555339B2 (en) 2004-02-06 2009-06-30 Medtronic, Inc. Capacitor designs for medical devices
US7038901B2 (en) 2004-02-13 2006-05-02 Wilson Greatbatch Technologies, Inc. Silicate additives for capacitor working electrolytes
US7085126B2 (en) 2004-03-01 2006-08-01 Wilson Greatbatch Technologies, Inc. Molded polymeric cradle for containing an anode in an electrolytic capacitor from high shock and vibration conditions
EP1592031B1 (de) 2004-04-19 2016-04-13 Greatbatch Ltd. Gehäuse mit flacher rückseite für einen elektrolytkondensator
US20060091020A1 (en) 2004-10-29 2006-05-04 Medtronic, Inc. Processes and systems for formation of high voltage, anodic oxide on a valve metal anode
US7952853B2 (en) 2004-04-27 2011-05-31 Medtronic, Inc. Capacitor electrolyte
US7286336B2 (en) 2004-05-14 2007-10-23 Greatbatch Ltd. Plasma treatment of anodic oxides for electrolytic capacitors
US20080013257A1 (en) 2004-08-18 2008-01-17 Greatbatch Ltd. Poly(Alkylene) Carbonates As Binders In The Manufacture Of Valve Metal Anodes For Electrolytic Capacitors
US7727372B2 (en) 2004-12-06 2010-06-01 Greatbatch Ltd. Anodizing valve metals by self-adjusted current and power
US20060191796A1 (en) 2004-12-06 2006-08-31 Greatbatch, Inc. Anodizing Valve Metals By Controlled Power
US7099143B1 (en) 2005-05-24 2006-08-29 Avx Corporation Wet electrolytic capacitors
US7271994B2 (en) 2005-06-08 2007-09-18 Greatbatch Ltd. Energy dense electrolytic capacitor
GB0517952D0 (en) 2005-09-02 2005-10-12 Avx Ltd Method of forming anode bodies for solid state capacitors
US7092242B1 (en) 2005-09-08 2006-08-15 Greatbatch, Inc. Polymeric restraints for containing an anode in an electrolytic capacitor from high shock and vibration conditions
DE102005043829A1 (de) * 2005-09-13 2007-04-05 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit hoher Nennspannung
US7630749B2 (en) 2005-11-07 2009-12-08 Gore Enterprise Holdings, Inc. Implantable electrophysiology lead body
US7324329B2 (en) 2005-12-22 2008-01-29 Giner, Inc. Electrochemical-electrolytic capacitor and method of making the same
US7072171B1 (en) 2006-02-13 2006-07-04 Wilson Greatbatch Technologies, Inc. Electrolytic capacitor capable of insertion into the vasculature of a patient
US20070221507A1 (en) 2006-02-23 2007-09-27 Greatbatch Ltd. Anodizing Electrolytes Using A Dual Acid System For High Voltage Electrolytic Capacitor Anodes
US20070201186A1 (en) 2006-02-28 2007-08-30 Norton John D Separator systems for electrochemical cells
US7474521B2 (en) 2006-02-28 2009-01-06 Medtronic, Inc. High energy density capacitors and method of manufacturing
US7511943B2 (en) 2006-03-09 2009-03-31 Avx Corporation Wet electrolytic capacitor containing a cathode coating
US7480130B2 (en) 2006-03-09 2009-01-20 Avx Corporation Wet electrolytic capacitor
US7301754B1 (en) 2006-04-27 2007-11-27 Tantalum Pellet Company Capacitor
US7206186B1 (en) 2006-05-31 2007-04-17 Cornell Dubilier Marketing, Inc. Hermetically sealed electrolytic capacitor
US7402183B1 (en) 2006-07-19 2008-07-22 Pacesetter, Inc. High capacitance cathode foil produced by abrasion process using titanium nitride powder
US7710713B2 (en) 2006-09-20 2010-05-04 Greatbatch Ltd. Flat sealing of anode/separator assembly for use in capacitors
US20080085451A1 (en) 2006-10-06 2008-04-10 Greatbatch Ltd. Highly Compact Electrochemical Cell
US7274551B1 (en) 2006-10-26 2007-09-25 Cornell-Dubilier Marketing, Inc. Hermetically sealed electrolytic capacitor
US7483260B2 (en) 2006-12-22 2009-01-27 Greatbatch Ltd. Dual anode capacitor with internally connected anodes
US7736398B2 (en) * 2007-02-26 2010-06-15 Kaneka Corporation Method of manufacturing conductive polymer electrolytic capacitor
US7813107B1 (en) 2007-03-15 2010-10-12 Greatbatch Ltd. Wet tantalum capacitor with multiple anode connections
JP4911509B2 (ja) 2007-04-03 2012-04-04 三洋電機株式会社 電解コンデンサおよびその製造方法
US20090035652A1 (en) 2007-07-31 2009-02-05 Greatbatch Ltd. Non-prismatic electrochemical cell
US7837743B2 (en) 2007-09-24 2010-11-23 Medtronic, Inc. Tantalum anodes for high voltage capacitors employed by implantable medical devices and fabrication thereof
US20090081552A1 (en) 2007-09-24 2009-03-26 Greatbatch Ltd. Electrochemical cell with tightly held electrode assembly
US20090117457A1 (en) 2007-11-02 2009-05-07 Greatbatch Ltd. Electrochemical Cells And Method Of Manufacturing Same
US8023250B2 (en) 2008-09-12 2011-09-20 Avx Corporation Substrate for use in wet capacitors
US8279585B2 (en) 2008-12-09 2012-10-02 Avx Corporation Cathode for use in a wet capacitor
US8385052B2 (en) 2008-12-10 2013-02-26 Avx Corporation Electrochemical capacitor containing ruthenium oxide electrodes
US8405956B2 (en) 2009-06-01 2013-03-26 Avx Corporation High voltage electrolytic capacitors
US8223473B2 (en) 2009-03-23 2012-07-17 Avx Corporation Electrolytic capacitor containing a liquid electrolyte
US8824121B2 (en) 2010-09-16 2014-09-02 Avx Corporation Conductive polymer coating for wet electrolytic capacitor
US8968423B2 (en) 2010-09-16 2015-03-03 Avx Corporation Technique for forming a cathode of a wet electrolytic capacitor

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369547A (en) 1993-03-22 1994-11-29 The Evans Findings Co., Ltd. Capacitor
US6594140B1 (en) 1993-03-22 2003-07-15 Evans Capacitor Company Incorporated Capacitor
US5473503A (en) 1993-07-27 1995-12-05 Nec Corporation Solid electrolytic capacitor and method for manufacturing the same
US5457862A (en) 1993-11-10 1995-10-17 Nec Corporation Method of manufacturing solid electrolytic capacitor
US5729428A (en) 1995-04-25 1998-03-17 Nec Corporation Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same
US5812367A (en) 1996-04-04 1998-09-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative
US6197252B1 (en) 1997-01-13 2001-03-06 Avx Limited Binder removal
US6416730B1 (en) 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6391275B1 (en) 1998-09-16 2002-05-21 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6527937B2 (en) 1998-09-16 2003-03-04 Cabot Corporation Method of making a capacitor anode of a pellet of niobium oxide
US6322912B1 (en) 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6592740B2 (en) 1998-09-16 2003-07-15 Cabot Corporation Methods to make capacitors containing a partially reduced niobium metal oxide
US6576099B2 (en) 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
US6639787B2 (en) 2000-11-06 2003-10-28 Cabot Corporation Modified oxygen reduced valve metal oxides
US7220397B2 (en) 2000-11-06 2007-05-22 Cabot Corporation Modified oxygen reduced valve metal oxides
US20080232037A1 (en) 2007-03-21 2008-09-25 Avx Corporation Solid electrolytic capacitor containing a conductive polymer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Brunauer, Emmet und Teller, Journal of American Chemical Society, Band 60, 1938, S. 309

Also Published As

Publication number Publication date
GB201113380D0 (en) 2011-09-21
CN102403132A (zh) 2012-04-04
US20120069492A1 (en) 2012-03-22
GB2483749A (en) 2012-03-21
CN102403132B (zh) 2015-11-25
FR2965970B1 (fr) 2019-05-31
HK1165086A1 (zh) 2012-09-28
GB2483749B (en) 2015-04-08
FR2965970A1 (fr) 2012-04-13
US8605411B2 (en) 2013-12-10

Similar Documents

Publication Publication Date Title
DE102011113164A1 (de) Kathode aus einem gestrahlten leitfähigen Polymer zur Verwendung in einem Flüssigelektrolytkondensator
DE102011113165A1 (de) Leitfähige Polymerbeschichtung für ein Flüssigelektrolytkondensator
DE102011113166A1 (de) Verfahren zur Bildung einer Kathode eines Flüssigelektrolytkondensators
DE102012200233A1 (de) Planare Anode zur Verwendung in einem Flüssigelektrolytkondensator
DE102012223637A1 (de) Flüssigkeitskondensator, der eine verbesserte Anode enthält
DE102012216067A1 (de) Versiegelungsanordnung für einen Flüssigelektrolytkondensator
DE102011117190A1 (de) Volumetrisch effizienter Flüssigelektrolytkondensator
DE102014225816A1 (de) Stabiler Festelektrolytkondensator, der einen Nanokomposit enthält
DE102013204390A1 (de) Gestrahlte Kathode eines Flüssigelektrolytkondensators
DE102011117189A1 (de) Hermetisch versiegelter Flüssigelektrolytkondensator
DE102012200231A1 (de) Anschlussdrahtkonfiguration für eine planare Anode eines Flüssigelektrolytkondensators
DE102012221861A1 (de) Flüssigelektrolytkondensator, der einen gelierten Arbeitselektrolyten enthält
DE102014204607A1 (de) Flüssigelektrolytkondensator zur Verwendung bei hohen Temperaturen
DE102013204374A1 (de) Flüssigkeitskondensatorkathode, die ein alkylsubstituiertes Poly(3,4-ethylendioxythiophen) enthält
DE102013204336A1 (de) Flüssigkeitskondensatorkathode, die ein leitfähiges Copolymer enthält
DE102016208800A1 (de) Festelektrolytkondensator mit ultrahoher Kapazität
DE102014208944A1 (de) Festelektrolytkondensator, der leitfähige Polymerteilchen enthält
DE102013204358A1 (de) Flüssigkeitskondensatorkathode, die eine leitfähige Beschichtung enthält, welche durch anodische elektrochemische Polymerisation einer Mikroemulsion gebildet ist
DE102015220954A1 (de) Flüssigelektrolytkondensator für eine implantierbare medizinische Vorrichtung
DE102013214126A1 (de) Festelektrolytkondensator mit verbesserten Eigenschaften bei hohen Spannungen
DE102010048177A1 (de) Externe Beschichtung für einen Festelektrolytkondensator
DE102011109752A1 (de) Festelektrolytkondensator-Baugruppe
DE102013204351A1 (de) Flüssigkeitskondensatorkathode, die eine leitfähige Beschichtung enthält, welche durch anodische elektrochemische Polymerisation einer kolloidalen Suspension gebildet ist
DE102011088366A1 (de) Leitfähige Beschichtung zur Verwendung in Elektrolytkondensatoren
DE102011117192A1 (de) Festelektrolytkondensator zur Verwendung in Hochspannungs- und Hochtemperaturanwendungen

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R081 Change of applicant/patentee

Owner name: KYOCERA AVX COMPONENTS CORPORATION (N. D. GES., US

Free format text: FORMER OWNER: AVX CORPORATION, FOUNTAIN INN, SC, US

R016 Response to examination communication