JP2013131627A - 固体電解コンデンサ及びその製造方法 - Google Patents

固体電解コンデンサ及びその製造方法 Download PDF

Info

Publication number
JP2013131627A
JP2013131627A JP2011280028A JP2011280028A JP2013131627A JP 2013131627 A JP2013131627 A JP 2013131627A JP 2011280028 A JP2011280028 A JP 2011280028A JP 2011280028 A JP2011280028 A JP 2011280028A JP 2013131627 A JP2013131627 A JP 2013131627A
Authority
JP
Japan
Prior art keywords
anode
cathode
electrolytic capacitor
solid electrolytic
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011280028A
Other languages
English (en)
Inventor
Takashi Mizukoshi
崇 水越
Koji Sakata
幸治 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2011280028A priority Critical patent/JP2013131627A/ja
Priority to CN2012105482497A priority patent/CN103177880A/zh
Priority to US13/718,669 priority patent/US20130182374A1/en
Publication of JP2013131627A publication Critical patent/JP2013131627A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

【課題】 超音波溶接を実施する場合に、陽極部の切断が生じ難く、信頼性の向上が図れ、かつ体積効率を向上した固体電解コンデンサとその製造方法を提供する。
【解決手段】 コンデンサ素子11は積層されるとともに、陽極部5と陰極部4とが、それぞれ陽極端子17と陰極端子18とに電気的に接続され、絶縁材料により全面を覆う外装10を備えた固体電解コンデンサ15であって、陽極部5は、陽極端子17と接続される端部に溶接部12を備え、溶接部12と絶縁部3の間に、陽極部5の一部を束ねた集束部13を備える。
【選択図】図1

Description

本発明は、固体電解コンデンサ及びその製造方法に関するものである。
従来からタンタル、ニオブ等の弁作用金属を用いた固体電解コンデンサは、小型で静電容量が大きく、周波数特性に優れることから、CPU等の高速で動作するデバイスのスイッチング電源回路等に広く使用されている。
近年、携帯型電子機器の発展に伴い、特に固体電解コンデンサの小型化及び薄型化が進んでいる。さらに、コスト低減のために、エッチングしたアルミニウムの箔や板を用いたコンデンサ素子を複数枚積み重ねた固体電解コンデンサが使用されている。
ここで、固体電解コンデンサの構造の一例を説明する。図6は、従来の固体電解コンデンサの構成を説明する概略断面図である。
図6に示すように、陽極素体31は、表面に誘電体層(図示せず)を設けた多孔質層32を有する平板状のアルミニウム箔等からなる。陽極素体31の表面の一部には、絶縁樹脂からなる絶縁部33が帯状に設けられ、陰極部34と陽極部35とに分離される。陰極部34は、誘電体層の表面に、固体電解質層36、グラファイト層37、銀ペースト層38が順次形成されている。陽極部35は、多孔質層32が除去されたアルミニウムの金属芯部からなる。絶縁部33で分離された陽極部35と陰極部34からなるコンデンサ素子41は、それぞれ導電性接着剤39で接続され、積層される。
さらに積層された陽極部35は、電極端子である陽極端子42と溶接等で電気的に接続され、同様に積層された陰極部34は、電極端子である陰極端子43と導電性接着剤39で接続されている。その後、エポキシ樹脂等からなる外装40で覆い、積層型の固体電解コンデンサ45が得られる。
固体電解コンデンサにおいて、陽極部と陽極端子の接続状態を良好にすることは、製品における歩留まりを改善する上で重要であり、溶接における様々な検討が進められている。
特許文献1には、固体電解コンデンサにおいて、等価直列抵抗(ESR)の増加を抑制するために、アルミニウム箔からなる複数のコンデンサ素子の陽極部と陽極端子を接続する際に、貫通孔を設けた陽極端子に、抵抗溶接で接続する技術が提案されている。この構造は、抵抗溶接を用いて接続する場合、貫通孔に電流が集中し、溶接の強度の向上やESRを低減する効果がある。
また、特許文献2には、固体電解コンデンサおよびその製造方法において、アルミニウム箔からなるコンデンサ素子の陽極部における破断を抑制するために、陽極部において、酸化皮膜層を有した多孔質層を圧縮した層を形成し、レーザ溶接で接続する技術が提案されている。
金属の箔を接続する溶接方法として、抵抗溶接やレーザ溶接の他に超音波溶接がある。超音波溶接は、アルミニウム箔などの金属の箔を電気的に接続する場合、抵抗溶接に比べ導電性の高い部分が残存していても接続性が良いことや、レーザ溶接に比べて溶接部を過度に溶融させず信頼性の向上が見込めるなどの有効性があるため、固体電解コンデンサの陽極部と陽極端子の接続に用いることが検討されている。
特開2004−87893号公報 特開2005−217073号公報
しかし、特許文献1の構造は、超音波溶接を用いて接続する場合には、超音波の振動が陽極部と絶縁部の境界部にも伝わり、陽極部の切断を招く可能性があるという課題がある。
また、特許文献2の構造は、超音波溶接を用いて接続する場合には、超音波の振動が溶接部以外の陽極部にも伝わり、陽極部の切断が生じやすいという課題がある。
したがって、本発明は、上記課題を解決するためになされたもので、超音波溶接を適用しても、陽極部の切断が生じ難く、信頼性の向上が図れる固体電解コンデンサとその製造方法の提供することを目的とする。
本発明は、コンデンサ素子が積層されるとともに、陽極部と陰極部とが、それぞれ陽極端子と陰極端子とに電気的に接続され、絶縁材料により全面を覆う外装を備えた固体電解コンデンサであって、陽極部は、陽極端子と接続される端部に溶接部を備え、溶接部と絶縁部の間に、陽極部の一部を束ねた集束部を備える。
また、本発明は、溶接部と絶縁部の間の陽極部の一部を積層方向に曲げる工程と、挟持部材を用いて、陽極部の一部を積層方向に挟持し、集束部を形成する工程と、陽極部の一部を挟持した状態で、溶接部と陽極端子を超音波溶接で接続する工程とを含む。
すなわち、本発明の固体電解コンデンサは、絶縁部を設けることにより陽極部と陰極部に区分され、前記陰極部は、多孔質層を有する平板状の弁作用金属の表面に誘電体層を設け、前記誘電体層の表面に、固体電解質層、グラファイト層、銀ペースト層を順次設けて形成され、前記陽極部は、前記誘電体層および前記多孔質層を除去して形成されたコンデンサ素子を有し、前記コンデンサ素子は、複数積層されるとともに、前記陽極部と前記陰極部とが、それぞれ陽極端子と陰極端子とに電気的に接続され、絶縁材料により全面を覆う外装を備えた固体電解コンデンサであって、前記陽極部は、前記陽極端子と接続される端部に溶接部を備え、前記溶接部と前記絶縁部の間に、前記陽極部の一部を束ねた集束部を備えることを特徴とする。
また、本発明の固体電解コンデンサは、前記集束部が、前記コンデンサ素子を積層した積層体の厚みの中央部に配置されることを特徴とする。
本発明の固体電解コンデンサ法は、絶縁部により陽極部と陰極部に区分され、前記陰極部は、多孔質層を有する平板状の弁作用金属の表面に誘電体層を設け、前記誘電体層の表面に、固体電解質層、グラファイト層、銀ペースト層を順次設けて形成され、前記陽極部は、前記誘電体層および前記多孔質層が除去され形成されたコンデンサ素子を複数積層する工程と、前記陽極部は、前記陽極端子と接続される端部に溶接部を備え、前記溶接部と前記絶縁部の間における前記陽極部の一部を積層方向に曲げる工程と、挟持部材を用いて、前記陽極部の一部を積層方向に挟持し、集束部を形成する工程と、前記陽極部の一部を挟持した状態で、前記溶接部と陽極端子を超音波溶接で接続する工程と、前記陰極部を陰極端子に接続する工程と、積層した前記コンデンサ素子と前記陽極端子および前記陰極端子とを絶縁樹脂で覆い外装を設ける工程と、を含むことを特徴とする。
また、本発明の固体電解コンデンサの製造方法は、前記集束部が、前記コンデンサ素子を積層した積層体の厚みの中央部に配置される工程をふくむことを特徴とする。
また、本発明の固体電解コンデンサの製造方法は、前記挟持部材が、弾性を有する部材からなることが好ましい。
本発明では、陽極部において陽極端子と接続される端部に溶接部を備え、溶接部と絶縁部の間に、陽極部の一部を束ねた集束部を備えることによって、陽極部の切断が生じ難く、信頼性の向上が図れる固体電解コンデンサを提供することが可能になる。 また、溶接部と絶縁部の間の陽極部の一部を積層方向に曲げる工程と、挟持部材を用いて、陽極部の一部を積層方向に挟持し、集束部を形成する工程と、陽極部の一部を挟持した状態で、溶接部と陽極端子を超音波溶接で接続する工程とを含む構成とすることによって、陽極部の切断が生じ難く、信頼性の向上が図れる固体電解コンデンサ製造方法も提供することが可能になる。
本発明の固体電解コンデンサの構成を説明する概略断面図。 本発明のコンデンサ素子を積層した状態を説明する概略断面図。 本発明のコンデンサ素子をフォーミングした状態を説明する概略断面図。 本発明のコンデンサ素子の陽極部の一部を挟持した状態を説明する概略断面図。 本発明のコンデンサ素子の陽極部の一部を挟持した状態で、超音波溶接を実施する状態を説明する概略断面図。 従来の固体電解コンデンサの構成を説明する概略断面図。
本発明の実施の形態を図面を参照して説明する。
図1は、本発明の固体電解コンデンサの構成を説明する概略断面図である。図1に示すように、陽極素体1は、従来の固体電解コンデンサと同様の構成であり、表面に誘電体層(図示せず)を設けた多孔質層2を有する平板状のアルミニウム箔等からなる。陽極素体1の表面の一部には、絶縁樹脂からなる絶縁部3が帯状に設けられ、陰極部4と陽極部5とに分離される。陰極部4は、誘電体層の表面に、固体電解質層6、グラファイト層7、銀ペースト層8が順次形成されている。陽極部5は、多孔質層2が除去されたアルミニウムの金属芯部からなる。絶縁部3で分離された陽極部5と陰極部4からなるコンデンサ素子11は、それぞれ導電性接着剤9で接続され、積層される。
ここで本発明の陽極部5の一部は、絶縁部3と陽極部5の端部となる溶接部12の間で曲げられ、束ねられる集束部13を備えている。
また、陽極部5の一部が、絶縁部3と溶接部12の間で曲げられ、束ねられることによって、溶接部12と絶縁部3の間の距離を小さくできる。これにより、陰極部4の領域を大きくすることができ、コンデンサ素子11の体積効率を向上させることが可能になる。
さらに積層された陽極部5は、溶接部12において、電極端子である陽極端子17と超音波溶接で電気的に接続され、同様に積層された陰極部4は、電極端子である陰極端子18と導電性接着剤9で接続されている。その後、積層されたコンデンサ素子と電極端子は、エポキシ樹脂等からなる外装10で覆われ、従来の積層型の固体電解コンデンサ15が得られる。
なお、陽極素体1に用いる弁作用金属は、絶縁部3と陽極部5の端部となる溶接部12の間で曲げられ、超音波溶接で電気的に接続することが可能であれば、アルミニウムに限定されるものではない。
固体電解質層6は、二酸化マンガンや、ポリチオフェン、ポリピロール等の導電性高分子およびその誘導体により構成される。ポリチオフェンあるいはポリピロール等の導電性高分子は、高い導電率を得ることができるので、より低いESRを必要とする場合は、固体電解質層6を前述の導電性高分子で構成することが好ましい。
固体電解質層6の形成は、公知の方法である化学酸化重合法や電解重合法を用いて実施される。また、重合した導電性高分子を、予め水溶液へ分散または溶解させた導電性高分子懸濁溶液へ浸漬する方法でも可能である。さらには、これらの方法を組み合わせて、固体電解質層6を複数の導電性高分子層で形成することが可能である。
(製造方法)
続いて、本発明の固体電解コンデンサの製造方法を図面を用いて説明する。なお、本発明の製造方法において、コンデンサ素子を得るまでの工程は、公知の方法で実施可能であるため説明は省略する。
図2は、本発明のコンデンサ素子を積層した状態を説明する概略断面図である。図2に示すように、絶縁部3で分離され、陽極部5と陰極部4が形成された2枚のコンデンサ素子11を、それぞれの陰極部4において銀ペースト等からなる導電性接着剤9で接着する。その後、2枚のコンデンサ素子11を接着した導電性接着剤9を加熱により硬化させ、積層体を得る。その積層体を所要の平面度を備えた台46に設置する。このとき、陽極部5における多孔質層は、レーザ等により事前に除去しておく。これにより陽極部5は、アルミニウムの金属芯の状態であるため、容易に曲げることができる。
また、アルミニウムの金属芯からなる陽極部5を曲げるため、陰極部4への応力が緩和され、陰極部4の内部のクラック等の発生が減少し、漏れ電流が抑制される効果がある。
図3は、本発明のコンデンサ素子をフォーミングした状態を説明する概略断面図である。図3に示すように、フォーミング冶具16は、所定の角度を先端に備えている。材質は、ステンレス等の金属が用いられる。このフォーミング冶具16を、台46に設置された2枚のコンデンサ素子11の陽極部5の端部と絶縁部の間の陽極部5の一部に、台46の設置面の方向に押し当て、加圧する。このようにして陽極部5の一部をクランク状に曲げることができる。さらに曲げた状態で陽極部5の先端が揃うように、かつ溶接が十分実施できる長さに切断する。なお、押し当てる力や加圧時の力は、陽極部5が破損しないような値で設定することが必要である。
図4は、本発明のコンデンサ素子の陽極部の一部を挟持した状態を説明する概略断面図である。図4に示すように、2つの積層体の一方の陰極部4を、銀ペースト等からなる導電性接着剤9で陰極端子18と接続している。この状態で、クランク状に曲げてある陽極部5の端部と絶縁部の間の陽極部5の一部を、挟持部材14を用いて挟み込む。陽極部5を挟み込む時の挟持部材14の動作は、挟持部材14が陽極部5に接触する時の負荷を軽減するために、挟持部材14を絶縁部側に傾かせて実施することが好ましい。このようにして陽極部5が束ねられた集束部13が形成される。また、陽極部5における陽極端子17と接続する部分、すなわち溶接部12は、陽極端子17の二つの接続面を挟むように配置される。
また、集束部13は、超音波溶接を実施する際に、陽極部5における絶縁部からの距離を均等にし、挟持部材で挟みこむ部分や絶縁部との境界部分に加わる応力の偏りを抑制できることから、コンデンサ素子を積層した積層体の厚みの中央部に配置されることが好ましい。
なお、挟持部材14は、金属性の部材を用いても良いが、超音波溶接時の超音波の振動を吸収し易くし、溶接を施さない絶縁部側の陽極部5に振動を伝えないようにするために、弾性を有する部材が好ましい。具体的には、シリコーン樹脂、ウレタン樹脂等が挙げられる。
図5は、本発明のコンデンサ素子の陽極部の一部を挟持した状態で、超音波溶接を実施する状態を説明する概略断面図である。図5に示すように、陽極部5の一部を挟持部材14を用いて挟み込んだ状態で、超音波溶接を実施している。超音波溶接の受け金具であるアンビル19と、超音波振動の発生側金具であるホーン20を溶接部12に密着させ、陽極端子17と電気的に接続を行う。この時、挟持部材14により、集束部13である陽極部5の一部を挟み込んでいるため、溶接を必要としない陽極部5には超音波の振動が伝わりにくくなり、陽極部5の切断の発生が抑制される。特に、絶縁部3側の陽極部5の切断防止に効果がある。
図5までの工程を経た後、エポキシ樹脂等からなる絶縁樹脂の外装にて覆うことにより、陽極部と陽極端子の接続性に優れ、絶縁部側の陽極部の切断を抑制し、かつ体積効率を向上させた固体電解コンデンサを得ることが可能になる。
以下に本発明の実施例を詳述する。
(実施例1)
厚さが150μmの弁作用金属であるアルミニウム箔の表面にエッチングにより多孔質層を形成した。多孔質層の深さは、アルミニウム箔の表面から約50μmとした。さらに金型を用いて、コンデンサ素子と製造上必要な陽極部の曲げる部分等を含めた形状にアルミニウム箔を切断した。コンデンサ素子となる部分の寸法は長さ6.0mm×幅3.0mmとした。
つづいて、コンデンサ素子となる部分のアルミニウム箔を、濃度13mass%のアジピン酸二水素アンモニウム水溶液を用いて、印加電圧50Vにて陽極酸化することで誘電体酸化皮膜を形成し、誘電体層を設けた。
さらにエポキシ系のレジスト樹脂を、誘電体層が設けられたアルミニウム箔、すなわち陽極素体の表面に帯状に塗布し、陰極部と陽極部を区分する絶縁部を形成した。レジスト樹脂の塗布は、スクリーン印刷で行った。陽極素体における陰極部となる部分の寸法は、長さ4.0mm×幅3.0mmとした。
次に、陰極部となる陽極素体の表面に化学酸化重合法によりポリ(3,4−エチレンジオキシチオフェン)からなる固体電解質層を形成した。さらに固体電解質層の表面にグラファイト層、銀ペースト層を順次に形成した。
その後、陽極部となる側の陽極素体の表面に形成されている誘電体層と多孔質層をレーザにより除去した。誘電体層と多孔質層を除去した陽極部は、アルミニウムの金属芯が露出しており、容易に曲げることが可能となる。また、絶縁部側を除く陽極部の端部は、陽極端子との電気的に接続するための溶接部となっている。このようにして、本発明のコンデンサ素子を作製した。
続いて、2枚のコンデンサ素子の陰極部を対向させるように、銀フィラーを含んだ導電性接着剤で接続した。この2枚のコンデンサ素子を接着した導電性接着剤を加熱して硬化させ、積層体を作製した。その積層体を台に設置し、陽極部をステンレス製のフォーミング冶具を用いて、2箇所で曲げ、その状態で積層体の長さが6mmとなるように陽極部を切断した。同様にして、もうひとつの積層体を作製した。各々の積層体の一方の陰極部に導電性接着剤を塗布し、陰極端子の接続面を挟むようにして接続した。導電性接着剤の硬化は、180℃、20minで行った。
次に、陽極部における溶接部となる一方の端部を、陽極端子の接続面を挟むように配置した後、曲げた状態の陽極部の一部を、束ねるように挟持部材を用いて挟み込みこんだ。
この状態のままで、超音波溶接のアンビルとホーンを溶接部に密着させ、陽極端子と陽極部を電気的に接続した。この溶接工程により、絶縁部と溶接部の間の陽極部の一部を束ねた集束部が形成される。なお、挟持部材は、材質がステンレスで厚さが0.5mmのものを用いた。
超音波溶接が完了した段階で、作製したサンプルの溶接状態の評価を実施した。評価項目は、切断不良率、接続不良率、漏れ電流とした。
評価方法は、次の通りである。まず、溶接が完了した積層体の静電容量を測定し、その値と、本来得られる設計上の静電容量の値の差から切断不良や接続不良の有無を判断した。つづいて、その切断不良や接続不良が生じていると思われる積層体の溶接部や絶縁部を拡大鏡で観察し、切断不良や接続不良の判定を行った。また、漏れ電流(LC)の測定も実施した。LCは、16V電圧印加60秒後のLCの平均値を測定した。評価数は、1000個とした。
最後に、評価を完了したサンプルをガラスフィラーを含んだモールド樹脂を用いて、成型機で外装を設け本発明の固体電解コンデンサを得た。
(実施例2)
実施例2では、挟持部材の材質をシリコーン樹脂とし、厚さを0.6mmのものを用いた。そのため、陽極素体における陰極部の長さを3.9mmとした。その他は、実施例1と同様にして固体電解コンデンサを作製した。
(比較例1)
比較例1として、従来技術に近づけた構造にするために、陽極部におけるフォーミングを行わず、さらに陽極部の一部を挟持しないで超音波溶接を実施し、図6の固体電解コンデンサを作製した。なお、比較例1では、フォーミングを行っていないので溶接部と絶縁部の距離を大きくとる必要があった。そのため陽極素体における陰極部の長さを、3.4mmとした。他の条件は実施例1と同様にした。
(比較例2)
比較例2では、陽極部におけるフォーミングを、実施例1、2と同様に実施したが、陽極部の一部を挟持しないで超音波溶接を実施し、固体電解コンデンサを作製した。なお、他の条件は実施例1と同様にした。
(比較例3)
比較例3として、陽極部におけるフォーミングを、実施例1、2と同様に実施したが、陽極部の一部を挟持せず、かつ超音波溶接の出力を実施例1、2の出力に対して、80%に低下させて実施した。なお、他の条件は実施例1と同様にした。
表1に実施例と比較例におけるサンプルの評価結果を示す。評価結果における記載項目は、切断不良率、接続不良率、LCである。また、体積効率を比較するために、比較例1を基準として、実施例の陰極部がどのくらい増加可能かを算出した結果を記載した。
Figure 2013131627
表1に示すように、本発明の実施例1、2では、比較例1〜3と比べて、切断不良率が減少している。
また、比較例3は、溶接時の超音波の出力を実施例1、2の出力に対して80%としたため、比較例1より切断不良を減少させることができた。しかし、接続が不十分となり、接続不良が増加した。
また、陰極部の体積は、実施例1、2において、比較例1より大きくすることが可能であることがわかる。なお、フォーミングを実施した比較例2、3においては、溶接部と絶縁部の間隔を狭めることができ、比較例1より体積効率の増加が可能であるが、陽極部を挟持していないため切断不良や接続不良が増加してしまうため適用は難しい。
以上、実施例を用いて、この発明の実施の形態を説明したが、この発明は、これらの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。
1、31 陽極素体
2、32 多孔質層
3、33 絶縁部
4、34 陰極部
5、35 陽極部
6、36 固体電解質層
7、37 グラファイト層
8、38 銀ペースト層
9、39 導電性接着剤
10、40 外装
11、41 コンデンサ素子
12 溶接部
13 集束部
14 挟持部材
15、45 固体電解コンデンサ
16 フォーミング冶具
17、42 陽極端子
18、43 陰極端子
19 アンビル
20 ホーン
46 台

Claims (5)

  1. 絶縁部により陽極部と陰極部に区分され、前記陰極部は、多孔質層を有する平板状の弁作用金属の表面に誘電体層を設け、前記誘電体層の表面に、固体電解質層、グラファイト層、銀ペースト層を順次設けて形成され、前記陽極部は、前記誘電体層および前記多孔質層を除去して形成されたコンデンサ素子を有し、
    前記コンデンサ素子は、複数積層されるとともに、前記陽極部と前記陰極部とが、それぞれ陽極端子と陰極端子とに電気的に接続され、絶縁材料により全面を覆う外装を備えた固体電解コンデンサであって、
    前記陽極部は、前記陽極端子と接続される端部に溶接部を備え、前記溶接部と前記絶縁部の間に、前記陽極部の一部を束ねた集束部を備えることを特徴とする固体電解コンデンサ。
  2. 前記集束部が、前記コンデンサ素子を積層した積層体の厚みの中央部に配置されることを特徴とする請求項1に記載の固体電解コンデンサ。
  3. 絶縁部により陽極部と陰極部に区分され、前記陰極部は、多孔質層を有する平板状の弁作用金属の表面に誘電体層を設け、前記誘電体層の表面に、固体電解質層、グラファイト層、銀ペースト層を順次設けて形成され、前記陽極部は、前記誘電体層および前記多孔質層が除去され形成されたコンデンサ素子を複数積層する工程と、
    前記陽極部は、前記陽極端子と接続される端部に溶接部を備え、前記溶接部と前記絶縁部の間における前記陽極部の一部を積層方向に曲げる工程と、
    挟持部材を用いて、前記陽極部の一部を積層方向に挟持し、集束部を形成する工程と、
    前記陽極部の一部を挟持した状態で、前記溶接部と陽極端子を超音波溶接で接続する工程と、
    前記陰極部を陰極端子に接続する工程と、
    積層した前記コンデンサ素子と前記陽極端子および前記陰極端子とを絶縁樹脂で覆い外装を設ける工程と、
    を含むことを特徴とする固体電解コンデンサの製造方法。
  4. 前記集束部が、前記コンデンサ素子を積層した積層体の厚みの中央部に配置される工程を含むことを特徴とする請求項3に記載の固体電解コンデンサの製造方法。
  5. 前記挟持部材は、弾性を有する部材からなることを特徴とする請求項3または4に記載の固体電解コンデンサの製造方法。
JP2011280028A 2011-12-21 2011-12-21 固体電解コンデンサ及びその製造方法 Pending JP2013131627A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011280028A JP2013131627A (ja) 2011-12-21 2011-12-21 固体電解コンデンサ及びその製造方法
CN2012105482497A CN103177880A (zh) 2011-12-21 2012-12-17 固态电解电容器以及制造固态电解电容器的方法
US13/718,669 US20130182374A1 (en) 2011-12-21 2012-12-18 Solid electrolytic capacitor and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011280028A JP2013131627A (ja) 2011-12-21 2011-12-21 固体電解コンデンサ及びその製造方法

Publications (1)

Publication Number Publication Date
JP2013131627A true JP2013131627A (ja) 2013-07-04

Family

ID=48637666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011280028A Pending JP2013131627A (ja) 2011-12-21 2011-12-21 固体電解コンデンサ及びその製造方法

Country Status (3)

Country Link
US (1) US20130182374A1 (ja)
JP (1) JP2013131627A (ja)
CN (1) CN103177880A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020061516A (ja) * 2018-10-12 2020-04-16 パナソニックIpマネジメント株式会社 固体電解コンデンサおよびその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9439278B2 (en) * 2014-12-12 2016-09-06 Deere & Company Film capacitor having a package for heat transfer
US10297393B2 (en) * 2015-03-13 2019-05-21 Avx Corporation Ultrahigh voltage capacitor assembly
CN106783180B (zh) * 2016-12-28 2018-06-01 福建国光电子科技股份有限公司 一种制备高工作电压聚合物片式叠层铝电解电容器的方法
CN112340815B (zh) * 2019-08-06 2023-08-25 无锡小天鹅电器有限公司 电解组件、电解装置及衣物处理设备
WO2021132220A1 (ja) * 2019-12-25 2021-07-01 パナソニックIpマネジメント株式会社 コンデンサ素子および電解コンデンサ、ならびにこれらの製造方法
WO2021193616A1 (ja) * 2020-03-24 2021-09-30 株式会社村田製作所 コンデンサ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100350526C (zh) * 2002-06-07 2007-11-21 松下电器产业株式会社 固体电解电容器
JP5349112B2 (ja) * 2009-03-30 2013-11-20 三洋電機株式会社 固体電解コンデンサ
CN201893245U (zh) * 2009-12-09 2011-07-06 钰邦电子(无锡)有限公司 一种固态电解电容器的密封结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020061516A (ja) * 2018-10-12 2020-04-16 パナソニックIpマネジメント株式会社 固体電解コンデンサおよびその製造方法
JP7257636B2 (ja) 2018-10-12 2023-04-14 パナソニックIpマネジメント株式会社 固体電解コンデンサおよびその製造方法

Also Published As

Publication number Publication date
US20130182374A1 (en) 2013-07-18
CN103177880A (zh) 2013-06-26

Similar Documents

Publication Publication Date Title
JP2013131627A (ja) 固体電解コンデンサ及びその製造方法
KR101451685B1 (ko) 고체 전해 콘덴서
JP5132374B2 (ja) 固体電解コンデンサ及びその製造方法
JP2015230976A (ja) 固体電解コンデンサの製造方法および固体電解コンデンサ
JP5788272B2 (ja) 電気化学デバイス
TWI466155B (zh) 下表面電極型的固態電解層積電容器及其組裝體
JPH10144573A (ja) 固体電解コンデンサおよびその製造方法
KR101117013B1 (ko) 적층형 고체 전해 콘덴서 및 그의 제조 방법
JP5445673B2 (ja) 固体電解コンデンサ及びその製造方法
JP2007043197A (ja) 積層型コンデンサ
JP2007180328A (ja) 積層型固体電解コンデンサおよびコンデンサモジュール
JP2012222262A (ja) チップ型の固体電解コンデンサ及びその製造方法
WO2013046869A1 (ja) 固体電解コンデンサおよびその製造方法
JP2004088073A (ja) 固体電解コンデンサ
JP5887163B2 (ja) 固体電解コンデンサ
JP2010050218A (ja) 積層三端子型固体電解コンデンサおよびその製造方法
US8252068B2 (en) Method of manufacturing electrolytic capacitor
JP2006216786A (ja) 固体電解コンデンサの製造方法
JP5411047B2 (ja) 積層固体電解コンデンサ及びその製造方法
JP5051851B2 (ja) 積層型固体電解コンデンサ
JP5734075B2 (ja) 固体電解コンデンサ
JP5190947B2 (ja) 固体電解コンデンサ及びその製造方法
JP4780725B2 (ja) 積層型固体電解コンデンサの製造方法
JP6435499B2 (ja) 電子部品およびその製造方法
JP4780726B2 (ja) 積層型固体電解コンデンサ