US10062519B2 - Tantalum capacitor with polymer cathode - Google Patents
Tantalum capacitor with polymer cathode Download PDFInfo
- Publication number
- US10062519B2 US10062519B2 US14/853,493 US201514853493A US10062519B2 US 10062519 B2 US10062519 B2 US 10062519B2 US 201514853493 A US201514853493 A US 201514853493A US 10062519 B2 US10062519 B2 US 10062519B2
- Authority
- US
- United States
- Prior art keywords
- capacitor
- forming
- voltage
- anode
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 83
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 229910052715 tantalum Inorganic materials 0.000 title claims abstract description 16
- 229920000642 polymer Polymers 0.000 title claims description 28
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims abstract description 27
- 230000015556 catabolic process Effects 0.000 claims abstract description 25
- 239000000843 powder Substances 0.000 claims abstract description 17
- 238000002048 anodisation reaction Methods 0.000 claims abstract description 3
- 229920001940 conductive polymer Polymers 0.000 claims description 23
- 239000002002 slurry Substances 0.000 claims description 12
- 238000007598 dipping method Methods 0.000 claims description 9
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 238000005245 sintering Methods 0.000 claims description 4
- 229920000123 polythiophene Polymers 0.000 claims description 3
- 230000003635 deoxygenating effect Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 description 12
- -1 copper or nickel Chemical class 0.000 description 11
- 230000008901 benefit Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 3
- 125000006552 (C3-C8) cycloalkyl group Chemical group 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 3
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 description 2
- QOIXLGYJPBDQSK-UHFFFAOYSA-N 3,6-dioxocyclohexa-1,4-diene-1-sulfonic acid Chemical class OS(=O)(=O)C1=CC(=O)C=CC1=O QOIXLGYJPBDQSK-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 239000002322 conducting polymer Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical group 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000128 polypyrrole Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 150000003460 sulfonic acids Chemical class 0.000 description 2
- 229940117958 vinyl acetate Drugs 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 125000003161 (C1-C6) alkylene group Chemical group 0.000 description 1
- MIOPJNTWMNEORI-GMSGAONNSA-N (S)-camphorsulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- WXHLLJAMBQLULT-UHFFFAOYSA-N 2-[[6-[4-(2-hydroxyethyl)piperazin-1-yl]-2-methylpyrimidin-4-yl]amino]-n-(2-methyl-6-sulfanylphenyl)-1,3-thiazole-5-carboxamide;hydrate Chemical compound O.C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1S WXHLLJAMBQLULT-UHFFFAOYSA-N 0.000 description 1
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 1
- YZTJKOLMWJNVFH-UHFFFAOYSA-N 2-sulfobenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1S(O)(=O)=O YZTJKOLMWJNVFH-UHFFFAOYSA-N 0.000 description 1
- 125000002373 5 membered heterocyclic group Chemical group 0.000 description 1
- FLDCSPABIQBYKP-UHFFFAOYSA-N 5-chloro-1,2-dimethylbenzimidazole Chemical compound ClC1=CC=C2N(C)C(C)=NC2=C1 FLDCSPABIQBYKP-UHFFFAOYSA-N 0.000 description 1
- 125000004070 6 membered heterocyclic group Chemical group 0.000 description 1
- 125000003341 7 membered heterocyclic group Chemical group 0.000 description 1
- 239000001741 Ammonium adipate Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 101001102158 Homo sapiens Phosphatidylserine synthase 1 Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 102100039298 Phosphatidylserine synthase 1 Human genes 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000006307 alkoxy benzyl group Chemical group 0.000 description 1
- 125000005036 alkoxyphenyl group Chemical group 0.000 description 1
- 125000006177 alkyl benzyl group Chemical group 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000019293 ammonium adipate Nutrition 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000010407 anodic oxide Substances 0.000 description 1
- ILFFFKFZHRGICY-UHFFFAOYSA-N anthracene-1-sulfonic acid Chemical compound C1=CC=C2C=C3C(S(=O)(=O)O)=CC=CC3=CC2=C1 ILFFFKFZHRGICY-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- MIAUJDCQDVWHEV-UHFFFAOYSA-N benzene-1,2-disulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1S(O)(=O)=O MIAUJDCQDVWHEV-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 150000008107 benzenesulfonic acids Chemical class 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 125000006277 halobenzyl group Chemical group 0.000 description 1
- 125000005059 halophenyl group Chemical group 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- IXHBTMCLRNMKHZ-LBPRGKRZSA-N levobunolol Chemical compound O=C1CCCC2=C1C=CC=C2OC[C@@H](O)CNC(C)(C)C IXHBTMCLRNMKHZ-LBPRGKRZSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000002794 monomerizing effect Effects 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical class C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 238000012667 polymer degradation Methods 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/008—Terminals
- H01G9/012—Terminals specially adapted for solid capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G13/00—Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
- H01G13/003—Apparatus or processes for encapsulating capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/0029—Processes of manufacture
- H01G9/0036—Formation of the solid electrolyte layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/042—Electrodes or formation of dielectric layers thereon characterised by the material
- H01G9/0425—Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/048—Electrodes or formation of dielectric layers thereon characterised by their structure
- H01G9/052—Sintered electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/08—Housing; Encapsulation
- H01G9/10—Sealing, e.g. of lead-in wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/15—Solid electrolytic capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/042—Electrodes or formation of dielectric layers thereon characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/14—Structural combinations or circuits for modifying, or compensating for, electric characteristics of electrolytic capacitors
Definitions
- the present invention is related to an electrolytic capacitor. More specifically the present invention is related to an electrolytic capacitor comprising intrinsically conductive polymeric cathode layers capable of achieving a high break down voltage (BDV) wherein the BDV exceeds the dielectric formation voltage which was previously not considered feasible with polymeric cathode layers.
- BDV break down voltage
- Intrinsically conductive polymer is electrically conductive in the molecular level.
- a single molecule (a polymer chain) of this type of polymer is conductive, which distinguishes itself from other groups of polymeric materials whose electrical conductivity is due to percolation between conductive particles within the polymer.
- the example of the latter is non-conductive polyester filled with conductive carbon back particles.
- the intrinsically conducting polymer can exist in many physical forms including solid, solution, and liquid dispersion.
- the backbone of a conductive polymer consists of a conjugated bonding structure.
- the polymer can exist in two general states, an undoped, non-conductive state, and a doped, conductive state.
- the doped state the polymer is conductive but of poor processibility due to a high degree of conjugation along the polymer chain, while in its undoped form, the same polymer loses its conductivity but can be processed more easily because it is more soluble.
- the polymer incorporates anionic moieties as constituents on its positively charged backbone.
- the conductive polymers used in the capacitor must be in doped form after the completion of processing, although during the process, the polymer can be undoped/doped to achieve certain process advantages.
- conductive polymers including polypyrrole, polyaniline, and polythiophene are described for use in Ta capacitors.
- capacitors with a conductive polymer cathode fail in a closed circuit mode, wherein the capacitor essentially represents an electrical short, which can be detrimental to the circuit.
- a particular feature of the invention is the ability to achieve a breakdown voltage, with a conductive polymer cathode, which is higher than the formation voltage which previously not considered achievable.
- Yet another advantage is the ability to form a capacitor at a given voltage and rate the capacitor at a rated voltage which is over 60% of the formation voltage thereby decreasing the energy demand in capacitor formation.
- the method comprises forming a tantalum anode from a tantalum powder with a powder charge of no more than 40,000 ⁇ C/g; forming a dielectric on the anode by anodization at a formation voltage of no more than 100 V; and forming a conductive polymeric cathode on the dielectric wherein the capacitor has a breakdown voltage higher than the formation voltage.
- a capacitor comprising a tantalum anode with a dielectric on the anode a conductive polymeric cathode on the dielectric.
- the capacitor has a breakdown voltage of at least 1 V to no more than 100 V and an open circuit failure mode when exposed to voltage above the breakdown voltage.
- FIG. 1 is a schematic representation of an embodiment of the invention.
- FIG. 2 is a graphical representation of breakdown voltage as a function of formation voltage.
- FIG. 3 is a graphical representation of breakdown voltage testing.
- the present invention is directed to an electrolytic capacitor with a conductive polymer cathode wherein the capacitor has a high breakdown voltage and an open circuit failure mode. More specifically, the present invention is related to a capacitor with a breakdown voltage which is higher than the formation voltage.
- the rated voltage for Ta capacitors is primarily a function of dielectric thickness.
- the formation voltage is controlled by dielectric thickness wherein increasing the formation voltage increases the dielectric thickness. It is estimated that for every volt applied during the dielectric formation process, about 1.7 to about 2 nm of dielectric is formed on the surface. For a given anode, increasing dielectric thickness is at a cost of capacitance loss since the anode capacitance is inversely proportional to dielectric thickness. It is a common practice for solid Ta capacitor manufacturers to use a formation voltage 2.5 to 4 times higher than the anode rated voltage. This ensures high reliability during applications. For example, a 10V rated capacitor often employs an anode formed at about 30V.
- the present invention allows a capacitor to be rated at a maximum rated voltage of 60-90% of the formation voltage wherein the maximum rated voltage is the highest voltage a capacitor can withstand with low and stable DC leakage during long-term life test or field application at 85° C., the highest operating temperature without de-rating.
- the present invention allows a capacitor to be rated at a maximum rated voltage of 50-85% of the breakdown voltage.
- Breakdown voltage is one indication of dielectric quality. Measured BDV for tantalum capacitors normally does not exceed formation voltage (V f ) and can be significantly less. It is generally desirable to have a BDV which exceeds rated voltage (V r ) by about a factor of 1.5 to 2 times. Therefore, V r is less than V f by a factor that usually ranges from 2 to 4 times. This ratio leads to a decrease in efficiency because CV r is less than CV f . It has been considered impossible to manufacture a tantalum capacitor whose BDV exceeds its formation voltage and which fails in an open circuit mode. Remarkably, we found that for certain tantalum capacitors manufactured with slurry polymer under certain conditions of V f that BDV can exceed V f by a significant amount.
- Tantalum powder can be obtained with a wide range of powder charge, which is measured in ⁇ C/g.
- artisans have sought as high a powder charge as possible for given rated voltage. It has been surprisingly realized that lower powder charges, less than 40,000 ⁇ C/g, when formed as described herein can achieve a higher breakdown voltage, relative to formation voltage, and a open circuit failure mode both of which were not previously considered possible with conductive polymer cathodes. It is therefore quite surprising to find, as disclosed herein, that the combination of tantalum powder with a powder charge of no more than 40,000 ⁇ C/g and a conductive polymer cathode provides a breakdown voltage which is actually higher than the dielectric formation voltage at a formation voltage of less than 100 V.
- the formation voltage is at least 25 V, more preferably at least 35 V and even more preferably at least 40 V. It is preferable that the powder charge be at least 5,000 ⁇ C/g. It is particularly preferred that the powder charge be at least 10,000 ⁇ C/g to no more than 25,000 ⁇ C/g. Above about 40,000 ⁇ C/g the pore size does not allow for sufficient slurry polymer penetration and therefore the capacitance is insufficient. Below about 5,000 ⁇ C/g the capacitance is insufficient. It is also surprising that the capacitor formed with the inventive combination fails in an open circuit configuration instead of a closed circuit configuration.
- the Ta powder is mechanically pressed to make Ta metal pellets.
- the pellets are subsequently sintered at high temperature under vacuum or with a decarbonizing and deoxidizing steps as set forth in The Journal of Electrochemical Society, 156(6) G65-G70 (2009) with alkanolamine, as set forth in U.S. Pat. No. 6,319,459, which is incorporated herein by reference, or with a reducing agent with a higher oxygen affinity than tantalum such as an alkali metal, alkaline earth metal or aluminum as set forth in U.S. Pat. No. 8,349,030, which is incorporated herein by reference.
- the sintered anodes are then anodized in a liquid electrolyte at elevated temperature to form a cohesive dielectric layer of Ta 2 O 5 on the anode surface.
- Increasing formation voltage increases the dielectric thickness, which determines the maximum voltage the anodes can withstand.
- Polymer cathodes can be applied to tantalum capacitors by dipping into a slurry of preformed polymer.
- the polymer can be formed by synthesis from the monomer and an oxidizing agent in a process known as ‘in-situ’ polymerization.
- the in-situ polymerization includes the steps of dipping in oxidizing agent, drying, dipping in monomer, reacting the monomer and oxidizing agent to form conductive polymer and washing of byproducts not necessarily in this order.
- a reform step may be applied after washing to reduce DC leakage of finished capacitors.
- it is preferable to use a polymer slurry due to the lack of by-products that are difficult to wash out from porous anodes and can the by-products may contaminate dielectric-polymer interface.
- FIG. 1 a cross-sectional schematic view of a capacitor is shown as represented at 10 .
- the capacitor comprises an anode, 11 , comprising tantalum.
- a dielectric layer, 12 is provided on the surface of the anode, 11 , and may cover the entire surface of the anode.
- the dielectric layer is preferably formed as an oxide of tantalum as further described herein.
- Coated on the surface of the dielectric layer, 12 is a polymeric conducting layer, 13 , as further described herein. It would be understood to those of skill in the art that the polymeric conducting layer does not have direct electrical conductivity with the anode.
- anode lead wire, 18 is in electrical contact with the anode.
- An anode lead is attached to the anode.
- the anode lead wire is inserted into the tantalum powder prior to pressing wherein a portion of the anode wire is encased by pressure.
- the anode lead be welded to the pressed and pre-sintered anode.
- the anode lead wire is in electrical contact with an anode lead, 19 , such as through a lead frame, 23 , wherein the anode lead and lead frame may be integral components.
- the entire element, except for the terminus of the anode lead and cathode lead is then preferably encased in an exterior molding, 20 , which is not electrically conductive.
- the exterior molding is preferably an organic and more preferably an epoxy resin.
- the tantalum anode is typically attached to a carrier thereby allowing large numbers of elements to be processed at the same time.
- the dielectric of the anode be an oxide of tantalum.
- the oxide is preferably formed by dipping the valve metal into an electrolyte solution and applying a positive voltage to the valve metal thereby forming anodic oxide Ta 2 O 5 .
- the formation electrolytes are not particularly limiting herein.
- Preferred electrolytes for the formation of the oxide on the tantalum metal include diluted inorganic acids such as sulphuric acid, nitric acid, phosphoric acids or aqueous solutions of dicarboxylic acids, such as ammonium adipate.
- Other materials may be incorporated into the oxide such as phosphates, citrates, etc. to impart thermal stability or chemical or hydration resistance to the oxide layer.
- the conductive polymer layer is preferably formed by dipping the anodized valve metal anodes into a water based dispersion which is a slurry of intrinsically conductive polymer. It is preferred that the anode be dipped into the slurry from 1 to 15 times to insure internal impregnation of the porous anodes and formation of an adequate external coating. The anode should remain in the slurry for a period of about 0.5 minute to 5 minutes to allow complete slurry coverage of its surface.
- the conductive polymer is preferably selected from polyaniline, polypyrrole and polythiophene or substitutional derivatives thereof.
- a particularly preferred conducting polymer is represented by Formula I:
- R 1 and R 2 are chosen to prohibit polymerization at the ⁇ -site of the ring. It is most preferred that only ⁇ -site polymerization be allowed to proceed. Therefore, it is preferred that R 1 and R 2 are not hydrogen. More preferably, R 1 and R 2 are ⁇ -directors. Therefore, ether linkages are preferable over alkyl linkages. It is most preferred that the groups be small to avoid steric interferences. For these reasons R 1 and R 2 taken together as —O—(CH 2 ) 2 —O— is most preferred.
- X is S or N and most preferable X is S.
- a particularly preferred conductive polymer is polymerized 3,4-polyethylene dioxythiophene (PEDT).
- R 1 and R 2 independently represent linear or branched C1-C16 alkyl or C2-C18 alkoxyalkyl; or are C3-C8 cycloalkyl, phenyl or benzyl which are unsubstituted or substituted by C1-C6 alkyl, C1-C6 alkoxy, halogen or OR3; or R1 and R2, taken together, are linear C1-C6 alkylene which is unsubstituted or substituted by C1-C6 alkyl, C1-C6 alkoxy, halogen, C3-C8 cycloalkyl, phenyl, benzyl, C1-C4 alkylphenyl, C1-C4 alkoxyphenyl, halophenyl, C1-C4 alkylbenzyl, C1-C4 alkoxybenzyl or halobenzyl, 5-, 6-, or 7-membered heterocyclic structure containing two oxygen elements.
- R3 preferably represents hydrogen, linear or branched C1-C16 alkyl or C2-C18 alkoxyalkyl; or are C3-C8 cycloalkyl, phenyl or benzyl which are unsubstituted or substituted by C1-C6 alkyl.
- Dopants can be incorporated into the polymer during the polymerization process.
- Dopants can be derived from various acids or salts, including aromatic sulfonic acids, aromatic polysulfonic acids, organic sulfonic acids with hydroxy group, organic sulfonic acids with carboxylhydroxyl group, alicyclic sulfonic acids and benzoquinone sulfonic acids, benzene disulfonic acid, sulfosalicylic acid, sulfoisophthalic acid, camphorsulfonic acid, benzoquinone sulfonic acid, dodecylbenzenesulfonic acid, toluenesulfonic acid.
- Suitable dopants include sulfoquinone, anthracenemonosulfonic acid, substituted naphthalenemonosulfonic acid, substituted benzenesulfonic acid or heterocyclic sulfonic acids as exemplified in U.S. Pat. No. 6,381,121 which is included herein by reference thereto.
- Binders and cross-linkers can be also incorporated into the conductive polymer layer if desired.
- Suitable materials include poly(vinyl acetate), polycarbonate, poly(vinyl butyrate), polyacrylates, polymethacrylates, polystyrene, polyacrylonitrile, poly(vinyl chloride), polybutadiene, polyisoprene, polyethers, polyesters, silicones, and pyrrole/acrylate, vinylacetate/acrylate and ethylene/vinyl acetate copolymers.
- adjuvants, coatings, and related elements can be incorporated into a capacitor, as known in the art, without diverting from the present invention. Mentioned, as a non-limiting summary include, protective layers, multiple capacitive levels, terminals, leads, etc.
- Conductive polymeric cathodes have long been considered incompatible with moisture once formed. In direct contradiction to the expectations of those of skill in the art it has been realized herein that treatment in controlled moist atmosphere benefits the capacitor. While not limited to any theory, instead of the expected polymer degradation it is now believed that treatment in moist atmosphere plasticizes or hydrates the polymer thereby improving the polymer chains ionic mobility which improves the electrical properties of the capacitor. In one embodiment it is preferable to treat the formed capacitor in moist atmosphere, preferably prior to encapsulation, at a temperature of at least 0° C. to no more than 100° C. at a humidity of at least 50% relative humidity to no more than 90% relative humidity for a period of at least 2 hours to no more than 24 hours.
- the atmosphere may contain inert gas or consist essentially of inert gas. It is more preferred that a temperature range of about 15° C. to 40° C. be used due to cost considerations.
- the preferred humidity range is 50% to 70% relative humidity.
- Temperature, humidity and time are synergistic in that a higher humidity, lower temperature and longer time may provide a similar result to treatment at a higher temperature for a shorter time. Below about 0° C. the temperature is insufficient to achieve the desired results using a reasonable humidity and a reasonable time and the moisture may condense and freeze which is undesirable. Above 100° C. the ability to efficiently hydrate the polymer is not increased and the energy consumption is not desirable.
- the temperature, humidity and time are optimized to obtain a moisture content within the polymer of up to the maximum amount of water absorbed which can be determined gravimetrically. A temperature, humidity or time beyond that necessary to achieve up to the maximum moisture adds no additional value. It is preferably that the temperature, humidity and time be optimized such that the moisture absorbed by the polymer is at least 20% to no more than 90% of the maximum moisture the polymer can absorb, without free water of condensation, as measured either gravimetrically or by increase in capacitance.
- a comparative capacitor was prepared by compacting tantalum powder with a nominal charge of 12,000 ⁇ C/g to achieve a cylindrical anode with a diameter of 5 mm (0.20 inches) and a length of 10.7 mm (0.42 inches), with a tantalum wire extending therefrom, and sintering in vacuum.
- the dielectric was formed by conventional means at a formation voltage (V f ) of 75.2 volts.
- a conductive polymer cathode layer was formed by repeated dipping of the anode into a slurry of commercially available polyethylene dioxythiophene:polystyrene sulfonic acid (PEDT:PSSA) dispersion, which is commercially available as Clevios P from Hereaus.
- PEDT:PSSA polyethylene dioxythiophene:polystyrene sulfonic acid
- Table 1 illustrate that the Ta 2 O 5 dielectric formed at 75.2 V provided a capacitor with a break down voltage of only 74.8 V which is below the formation voltage. This is undesirable.
- a series of inventive capacitors were formed in a manner identical to the formation of the comparative capacitor with the addition of decarbonizing and deoxidizing sintering steps.
- the samples are referred to as PHS F1/Slurry.
- the formation voltage and the optional humidity treatment are reported in Table 2.
- the powder had a nominal charge of 12,000 ⁇ C/g and was used as obtained by H. C. Stark.
- Some of the samples were tested dry at ambient temperature and some were treated at a temperature of 25° C. at a humidity of 60% for 24 hours.
- a graphical representation of the break down voltage as a function of formation voltage is provided in FIG. 2 .
- the BDV trace and electrical parameters before and after breakdown are illustrated graphically in FIG. 3 . Life test results demonstrated commercially viable long term leakage stability at 85° C.
- Capacitors formed by traditional methods must be rated at no more than about 40% of the dielectric formation voltage. The ability to rate a capacitor at a voltage closer to the formation voltage represents a major advance in the art with regards to energy efficiency in manufacturing.
- the BDV exceeds the formation voltage at a formation voltage of less than 100 V with an improved BDV realized for humidified parts.
- the resistance of the capacitor after failure was several M ⁇ which is considered to be the practical equivalent of an ‘open circuit’ failure mode as opposed to the short circuit failure mode found with comparative capacitors.
- an open circuit failure mode is defined as capacitor having a resistance of at last 1,000 ⁇ after breakdown failure due to excessive voltage. More preferably, the capacitor has a resistance of at least 100,000 ⁇ after breakdown failure.
- Samples were prepared for demonstrating the impact of powder charge and humidification. Multiple samples were prepared in accordance with the comparative example with the exception of the powder charge, humidity treatment and formation voltage with each parameter reported in Table 2.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
Description
wherein R1 and R2 are chosen to prohibit polymerization at the β-site of the ring. It is most preferred that only α-site polymerization be allowed to proceed. Therefore, it is preferred that R1 and R2 are not hydrogen. More preferably, R1 and R2 are α-directors. Therefore, ether linkages are preferable over alkyl linkages. It is most preferred that the groups be small to avoid steric interferences. For these reasons R1 and R2 taken together as —O—(CH2)2—O— is most preferred. In Formula 1, X is S or N and most preferable X is S. A particularly preferred conductive polymer is polymerized 3,4-polyethylene dioxythiophene (PEDT).
TABLE 1 | ||||||
DC | R after | |||||
CAP | DF | ESR | Leakage | Vf | BDV | BD |
(μF) | (%) | (Ω) | (μA) | (V) | (V) | (Ω) |
342 | 4.9 | 0.06 | 1.66 | 75.2 | 74.8 | 0.4 |
TABLE 2 | ||||||||
Humidifi- | ||||||||
Powder | cation | DC | R after | |||||
Charge | Time | Cap | DF | ESR | L | Vf | BDV | BD |
(μC/g) | (hrs) | (μF) | (%) | (Ω) | (μA) | (V) | (V) | (Ω) |
12,000 | 0 | 320 | 3.7 | 0.04 | 0.7 | 45 | 57 | 200K |
12,000 | 8 | 361 | 4.4 | 0.04 | 0.6 | 45 | 72.8 | 900K |
12,000 | 24 | 375 | 3.7 | 0.04 | 0.5 | 45 | 73.3 | 2.9M |
25,000 | 24 | 573 | 13.6 | 45 | 69.4 | 286K | ||
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/853,493 US10062519B2 (en) | 2014-09-15 | 2015-09-14 | Tantalum capacitor with polymer cathode |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462050504P | 2014-09-15 | 2014-09-15 | |
US14/853,493 US10062519B2 (en) | 2014-09-15 | 2015-09-14 | Tantalum capacitor with polymer cathode |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160079004A1 US20160079004A1 (en) | 2016-03-17 |
US10062519B2 true US10062519B2 (en) | 2018-08-28 |
Family
ID=54347805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/853,493 Active 2035-12-31 US10062519B2 (en) | 2014-09-15 | 2015-09-14 | Tantalum capacitor with polymer cathode |
Country Status (4)
Country | Link |
---|---|
US (1) | US10062519B2 (en) |
CN (1) | CN107077972B (en) |
DE (1) | DE112015004199T5 (en) |
WO (1) | WO2016044203A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11114250B2 (en) | 2018-08-10 | 2021-09-07 | Avx Corporation | Solid electrolytic capacitor formed from conductive polymer particles |
US11183342B2 (en) | 2018-08-10 | 2021-11-23 | Avx Corporation | Solid electrolytic capacitor containing polyaniline |
US11315740B2 (en) | 2019-05-17 | 2022-04-26 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor |
US11462366B2 (en) | 2018-08-10 | 2022-10-04 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor containing an intrinsically conductive polymer |
US11631548B2 (en) | 2020-06-08 | 2023-04-18 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor containing a moisture barrier |
US11670461B2 (en) | 2019-09-18 | 2023-06-06 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor for use at high voltages |
US11776759B2 (en) | 2019-12-10 | 2023-10-03 | KYOCER AVX Components Corporation | Tantalum capacitor with increased stability |
US11823846B2 (en) | 2019-12-10 | 2023-11-21 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor containing a pre-coat and intrinsically conductive polymer |
US11955294B2 (en) | 2018-12-11 | 2024-04-09 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor containing an intrinsically conductive polymer |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10879010B2 (en) * | 2012-02-27 | 2020-12-29 | Kemet Electronics Corporation | Electrolytic capacitor having a higher cap recovery and lower ESR |
DE112019003778T5 (en) * | 2018-07-26 | 2021-05-20 | Kemet Electronics Corporation | METHOD OF FORMING AN ELECTROLYTE CONDENSER WITH HIGHER CAPACITY RESTORATION AND LOWER ESR |
CN116210066A (en) * | 2020-09-23 | 2023-06-02 | 京瓷Avx元器件公司 | Solid electrolytic capacitor containing deoxidized anode |
CN114156089B (en) * | 2021-11-24 | 2024-10-01 | 北京七一八友益电子有限责任公司 | Chip conductive polymer tantalum capacitor and preparation method thereof |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4224656A (en) * | 1978-12-04 | 1980-09-23 | Union Carbide Corporation | Fused electrolytic capacitor assembly |
US4539146A (en) * | 1984-08-13 | 1985-09-03 | Emhart Industries, Inc. | Electrolyte for electrolytic capacitors |
US4569693A (en) * | 1982-08-30 | 1986-02-11 | Hermann C. Starck Berlin | Process for improving the flowability and increasing the bulk density of high-surface area valve metal powders |
US5560761A (en) | 1994-09-28 | 1996-10-01 | Starck Vtech Ltd. | Tantalum powder and electrolytic capacitor using same |
US6319459B1 (en) | 1999-10-18 | 2001-11-20 | Kemet Electronics Corporation | Removal of organic acid based binders from powder metallurgy compacts |
US7268996B1 (en) * | 2003-01-10 | 2007-09-11 | Pacesetter, Inc. | Electrolyte for very high voltage electrolytic capacitors |
US20070214857A1 (en) * | 2006-03-17 | 2007-09-20 | James Wong | Valve metal ribbon type fibers for solid electrolytic capacitors |
US20070221507A1 (en) * | 2006-02-23 | 2007-09-27 | Greatbatch Ltd. | Anodizing Electrolytes Using A Dual Acid System For High Voltage Electrolytic Capacitor Anodes |
US20080010797A1 (en) * | 2006-07-06 | 2008-01-17 | Yongjian Qiu | High voltage solid electrolytic capacitors using conductive polymer slurries |
US7423862B2 (en) * | 2004-12-24 | 2008-09-09 | Showa Denko K.K. | Solid electrolytic capacitor element, solid electrolytic capacitor and production method thereof |
US20090103247A1 (en) * | 2007-10-22 | 2009-04-23 | Avx Corporation | Doped Ceramic Powder for Use in Forming Capacitor Anodes |
US20100265634A1 (en) * | 2009-04-20 | 2010-10-21 | Yuri Freeman | High voltage and high efficiency polymer electrolytic capacitors |
US20110317334A1 (en) * | 2010-06-23 | 2011-12-29 | Avx Corporation | Solid Electrolytic Capacitor for Use in High Voltage Applications |
US20120134073A1 (en) * | 2010-11-29 | 2012-05-31 | Avx Corporation | Multi-Layered Conductive Polymer Coatings for Use in High Voltage solid Electrolytic Capacitors |
US20120300370A1 (en) * | 2011-05-24 | 2012-11-29 | Kemet Electronics Corporation | Conductive polymer dispersions for solid electrolytic capacitors |
US8349030B1 (en) | 2011-09-21 | 2013-01-08 | Kemet Electronics Corporation | Method for making anodes for high voltage electrolytic capacitors with high volumetric efficiency and stable D.C. leakage |
US20130242464A1 (en) * | 2012-03-16 | 2013-09-19 | Avx Corporation | Wet Capacitor Cathode Containing a Conductive Copolymer |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6381121B1 (en) | 1999-05-24 | 2002-04-30 | Showa Denko Kabushiki Kaisha | Solid electrolytic capacitor |
-
2015
- 2015-09-14 US US14/853,493 patent/US10062519B2/en active Active
- 2015-09-15 CN CN201580049866.4A patent/CN107077972B/en active Active
- 2015-09-15 WO PCT/US2015/050078 patent/WO2016044203A1/en active Application Filing
- 2015-09-15 DE DE112015004199.0T patent/DE112015004199T5/en active Pending
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4224656A (en) * | 1978-12-04 | 1980-09-23 | Union Carbide Corporation | Fused electrolytic capacitor assembly |
US4569693A (en) * | 1982-08-30 | 1986-02-11 | Hermann C. Starck Berlin | Process for improving the flowability and increasing the bulk density of high-surface area valve metal powders |
US4539146A (en) * | 1984-08-13 | 1985-09-03 | Emhart Industries, Inc. | Electrolyte for electrolytic capacitors |
US5560761A (en) | 1994-09-28 | 1996-10-01 | Starck Vtech Ltd. | Tantalum powder and electrolytic capacitor using same |
US6319459B1 (en) | 1999-10-18 | 2001-11-20 | Kemet Electronics Corporation | Removal of organic acid based binders from powder metallurgy compacts |
US7268996B1 (en) * | 2003-01-10 | 2007-09-11 | Pacesetter, Inc. | Electrolyte for very high voltage electrolytic capacitors |
US7423862B2 (en) * | 2004-12-24 | 2008-09-09 | Showa Denko K.K. | Solid electrolytic capacitor element, solid electrolytic capacitor and production method thereof |
US20070221507A1 (en) * | 2006-02-23 | 2007-09-27 | Greatbatch Ltd. | Anodizing Electrolytes Using A Dual Acid System For High Voltage Electrolytic Capacitor Anodes |
US20070214857A1 (en) * | 2006-03-17 | 2007-09-20 | James Wong | Valve metal ribbon type fibers for solid electrolytic capacitors |
US20080010797A1 (en) * | 2006-07-06 | 2008-01-17 | Yongjian Qiu | High voltage solid electrolytic capacitors using conductive polymer slurries |
US20090103247A1 (en) * | 2007-10-22 | 2009-04-23 | Avx Corporation | Doped Ceramic Powder for Use in Forming Capacitor Anodes |
US20100265634A1 (en) * | 2009-04-20 | 2010-10-21 | Yuri Freeman | High voltage and high efficiency polymer electrolytic capacitors |
US20110317334A1 (en) * | 2010-06-23 | 2011-12-29 | Avx Corporation | Solid Electrolytic Capacitor for Use in High Voltage Applications |
US20120134073A1 (en) * | 2010-11-29 | 2012-05-31 | Avx Corporation | Multi-Layered Conductive Polymer Coatings for Use in High Voltage solid Electrolytic Capacitors |
US20120300370A1 (en) * | 2011-05-24 | 2012-11-29 | Kemet Electronics Corporation | Conductive polymer dispersions for solid electrolytic capacitors |
US8349030B1 (en) | 2011-09-21 | 2013-01-08 | Kemet Electronics Corporation | Method for making anodes for high voltage electrolytic capacitors with high volumetric efficiency and stable D.C. leakage |
US20130242464A1 (en) * | 2012-03-16 | 2013-09-19 | Avx Corporation | Wet Capacitor Cathode Containing a Conductive Copolymer |
Non-Patent Citations (2)
Title |
---|
Y. Freeman et al., "Anomalous Currents in Low Voltage Polymer Tantalum Capacitors", ECS Journal of Solid State Science and Technology. |
Yuri Freeman et al., "Electrical Characterization of Tantalum Capacitors with Poly (3,4-ethylenedioxythiophene) Counter Electrodes"; Journal of the Electrochemical Society. |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11114250B2 (en) | 2018-08-10 | 2021-09-07 | Avx Corporation | Solid electrolytic capacitor formed from conductive polymer particles |
US11183342B2 (en) | 2018-08-10 | 2021-11-23 | Avx Corporation | Solid electrolytic capacitor containing polyaniline |
US11462366B2 (en) | 2018-08-10 | 2022-10-04 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor containing an intrinsically conductive polymer |
US11756746B2 (en) | 2018-08-10 | 2023-09-12 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor containing an intrinsically conductive polymer |
US11791106B2 (en) | 2018-08-10 | 2023-10-17 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor containing polyaniline |
US11955294B2 (en) | 2018-12-11 | 2024-04-09 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor containing an intrinsically conductive polymer |
US11315740B2 (en) | 2019-05-17 | 2022-04-26 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor |
US11670461B2 (en) | 2019-09-18 | 2023-06-06 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor for use at high voltages |
US11776759B2 (en) | 2019-12-10 | 2023-10-03 | KYOCER AVX Components Corporation | Tantalum capacitor with increased stability |
US11823846B2 (en) | 2019-12-10 | 2023-11-21 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor containing a pre-coat and intrinsically conductive polymer |
US11631548B2 (en) | 2020-06-08 | 2023-04-18 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor containing a moisture barrier |
Also Published As
Publication number | Publication date |
---|---|
DE112015004199T5 (en) | 2017-06-14 |
CN107077972B (en) | 2019-06-28 |
US20160079004A1 (en) | 2016-03-17 |
WO2016044203A1 (en) | 2016-03-24 |
CN107077972A (en) | 2017-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10062519B2 (en) | Tantalum capacitor with polymer cathode | |
US8323361B2 (en) | High voltage and high efficiency polymer electrolytic capacitors | |
US7563290B2 (en) | High voltage solid electrolytic capacitors using conductive polymer slurries | |
US8771381B2 (en) | Process for producing electrolytic capacitors and capacitors made thereby | |
KR102305945B1 (en) | Solid electrolytic capacitor and production method for same | |
TWI595521B (en) | Solid electrolytic capacitors | |
US7515396B2 (en) | Solid electrolytic capacitor containing a conductive polymer | |
US10068713B2 (en) | Hybrid capacitor and method of manufacturing a capacitor | |
JP5388811B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP6535409B1 (en) | Method of manufacturing solid electrolytic capacitor | |
JP5340708B2 (en) | Solid electrolytic capacitor | |
KR102104424B1 (en) | Method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor | |
US20010018788A1 (en) | Method for making conductive polymer capacitor | |
US20240145178A1 (en) | Solid electrolytic capacitor and solid electrolytic capacitor manufacturing method | |
US8257449B2 (en) | Method for manufacturing niobium solid electrolytic capacitor | |
JP6493963B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP4780893B2 (en) | Solid electrolytic capacitor | |
JP5541756B2 (en) | Manufacturing method of solid electrolytic capacitor | |
KR20050089483A (en) | Method for manufacturing a capacitor using conducting polymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KEMET ELECTRONICS CORPORATION, SOUTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FREEMAN, YURI;HUSSEY, STEVE C.;CISSON, JIMMY DALE;AND OTHERS;REEL/FRAME:036561/0360 Effective date: 20150813 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH Free format text: SECURITY AGREEMENT;ASSIGNORS:KEMET CORPORATION;KEMET ELECTRONICS CORPORATION;KEMET BLUE POWDER CORPORATION;REEL/FRAME:042523/0639 Effective date: 20170505 Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH CAROLINA Free format text: SECURITY AGREEMENT;ASSIGNORS:KEMET CORPORATION;KEMET ELECTRONICS CORPORATION;KEMET BLUE POWDER CORPORATION;REEL/FRAME:042523/0639 Effective date: 20170505 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: KEMET CORPORATION,, FLORIDA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:047450/0926 Effective date: 20181107 Owner name: KEMET BLUE POWDER CORPORATION, NEVADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:047450/0926 Effective date: 20181107 Owner name: KEMET ELECTRONICS CORPORATION, FLORIDA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:047450/0926 Effective date: 20181107 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |