WO2014199480A1 - Ta粉末とその製造方法およびTa造粒粉 - Google Patents

Ta粉末とその製造方法およびTa造粒粉 Download PDF

Info

Publication number
WO2014199480A1
WO2014199480A1 PCT/JP2013/066319 JP2013066319W WO2014199480A1 WO 2014199480 A1 WO2014199480 A1 WO 2014199480A1 JP 2013066319 W JP2013066319 W JP 2013066319W WO 2014199480 A1 WO2014199480 A1 WO 2014199480A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
tacl
gas
reduction reaction
reaction field
Prior art date
Application number
PCT/JP2013/066319
Other languages
English (en)
French (fr)
Inventor
前島 貴幸
米花 康典
寿和 坂井
淳 古谷
佐藤 一生
Original Assignee
石原ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石原ケミカル株式会社 filed Critical 石原ケミカル株式会社
Priority to US14/895,187 priority Critical patent/US20160104580A1/en
Priority to PCT/JP2013/066319 priority patent/WO2014199480A1/ja
Priority to JP2014547586A priority patent/JP6141318B2/ja
Priority to EP13886682.7A priority patent/EP3009210B1/en
Publication of WO2014199480A1 publication Critical patent/WO2014199480A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • B22F2201/013Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals

Definitions

  • the present invention mainly relates to Ta powder used for an anode electrode (anode) of a small and large-capacity tantalum solid electrolytic capacitor used in electronic devices such as personal computers and mobile phones, a method for producing the same, and granulation of the Ta powder.
  • the Ta granulated powder The Ta granulated powder.
  • Capacitors are a type of electronic component used in various electronic devices such as personal computers and mobile phones, and basically have a structure in which a dielectric is sandwiched between two opposing electrode plates. When a voltage is applied, charges are stored in each electrode by the polarization action of the dielectric.
  • capacitors There are various types of capacitors, but at present, aluminum electrolytic capacitors, multilayer ceramic capacitors, tantalum electrolytic capacitors, and film capacitors are mainly used.
  • Ta capacitor tantalum solid electrolytic capacitor
  • This Ta capacitor utilizes the fact that tantalum pentoxide (Ta 2 O 5 ), which is an anodic oxide film of Ta, is excellent as a dielectric, and is formed by compressing and molding Ta powder as an anode material in a high vacuum. Sintered to produce a porous element, and then subjected to chemical conversion treatment (anodic oxidation treatment), and an oxide film (amorphous Ta 2 O 5 film) having excellent corrosion resistance and insulation on the surface of the Ta powder. That is, a dielectric film is formed as an anode, and then the porous element is impregnated with a manganese nitrate solution and thermally decomposed to form a MnO 2 layer (electrolyte) on the anodized film.
  • Ta 2 O 5 tantalum pentoxide
  • Ta 2 O 5 an anodic oxide film of Ta
  • a CV value ( ⁇ F ⁇ V / g) is used as an index for evaluating the electrical characteristics of tantalum powder for capacitors.
  • the CV value of commercially available Ta powder is generally about 50 to 100 kCV, and even high-capacity products are about 100 to 200 kCV. Therefore, development of a tantalum powder for a capacitor having a higher CV value, preferably 220 kCV or more, is strongly desired.
  • S electrode area (m 2 )
  • t distance between electrodes (m)
  • dielectric constant (F / m)
  • ⁇ s ⁇ ⁇ 0
  • ⁇ s relative permittivity of dielectric (Ta Oxide film: about 27)
  • ⁇ 0 vacuum induction rate (8.855 ⁇ 10 ⁇ 12 F / m)
  • the anode area S that is, the surface area of the Ta powder constituting the anode is increased, or the interelectrode distance t, that is, the film thickness of the anodic oxide film Ta 2 O 5 is decreased. It is effective to do.
  • the primary particle diameter of Ta powder has been miniaturized as the capacity has increased in recent years.
  • the bond part (neck part) of the metal particles becomes small, and the bond between the metal particles is broken by the oxide film formed by chemical conversion treatment, resulting in a decrease in capacitance.
  • miniaturization of primary particles causes an increase in the content of gas components such as oxygen, nitrogen, and hydrogen adsorbed on the surface, and other impurity components, which adversely affects the characteristics as a capacitor. Therefore, it is desirable that the Ta powder has a size of a certain level or more, specifically, a size of 30 nm or more.
  • the Ta powder used in the Ta capacitor is industrially produced by Na reduction method (Patent Document 1) in which K 2 TaF 7 is reduced with Na, and Mg reduction method in which Ta 2 O 5 is reduced with Mg ( Patent Document 2), pulverization method for hydrogenating and crushing Ta ingot (Patent Document 3), thermal CVD method for vaporizing TaCl 5 and reducing with H 2 (gas phase reduction method) (Patent Documents 4 and 5), etc.
  • Patent Documents 4 and 5 has an advantage that a fine Ta powder can be easily obtained, but it is difficult to control the particle size, crystallinity, or impurity level, and there are many impurities. There's a problem.
  • an anodic oxide film is adjusted with a chemical conversion treatment voltage
  • reducing this film thickness causes various problems.
  • a crystalline natural oxide film having a thickness of several nanometers formed during the production of the powder exists on the surface of the Ta powder.
  • This oxide film often contains a lot of impurities and is inferior in quality and adhesion as a dielectric layer, thus lowering the electrical characteristics.
  • a chemical conversion treatment is performed at a high voltage
  • a thick anodic oxide film is formed in the oxide film. It will not be a problem because it will be buried.
  • the chemical conversion voltage decreases and the anodized film becomes thin, the crystalline oxide film is exposed on the surface.
  • the reduction in the thickness of the oxide film reveals impurities adsorbed on the surface of the powder and film defects resulting therefrom.
  • the leakage current (LC) is increased or the life of the capacitor is adversely affected. Therefore, there is a limit to reducing the film thickness of the anodic oxide film Ta 2 O 5 to increase the capacity, and improvement of the oxide film characteristics is important.
  • the crystal phase of the metal Ta includes an ⁇ phase and a ⁇ phase.
  • the ⁇ phase is also called ⁇ -Ta and is cubic and has a specific resistance as low as about 20 ⁇ cm.
  • the ⁇ phase is called ⁇ -Ta, is tetragonal, and has a relatively high specific resistance of about 170 ⁇ cm.
  • the bulk metal of Ta including Ta powder is usually ⁇ -Ta, and ⁇ -Ta is known only as a metal thin film formed by sputtering, and there is no report as a powder.
  • ⁇ -Ta is known to exhibit better oxide film characteristics, that is, better capacitor characteristics (see, for example, Patent Document 7). .
  • JP 2002-206105 A Special Table 2002-544375 Japanese Patent Laid-Open No. 02-310301 Japanese Examined Patent Publication No. 64-073009 Japanese Patent Application Laid-Open No. 06-025701 JP 2007-335883 A JP 2002-134358 A
  • the tantalum powder used for the anode is preferably tetragonal ⁇ -Ta in order to increase the CV of the tantalum solid electrolytic capacitor and reduce the leakage current.
  • the prior art thermal CVD method and Na reduction method only Ta powder made of ⁇ -Ta is obtained, and a method for producing Ta powder made of ⁇ -Ta crystal phase or containing ⁇ -Ta crystal phase There are currently no reports on.
  • an object of the present invention is to provide a Ta powder composed of a ⁇ -Ta crystal phase or containing a ⁇ -Ta phase, suitable for use in a tantalum solid electrolytic capacitor, and to propose a method for producing the Ta powder. It is in.
  • Another object of the present invention is to provide Ta granulated powder with improved fluidity of the Ta powder.
  • the thermal CVD method vapor phase reduction method
  • the production conditions are based on the Ta powder particle size and the basic idea that a Ta powder containing a ⁇ -Ta phase may be obtained. Focusing on the effect on the crystal structure, we have made extensive studies. As a result, the supply rate of the raw material gas (TaCl 5 vapor) to the reduction reaction field in the thermal CVD method (vapor phase reduction method), the residence time of the raw material gas in the reduction reaction field, and the temperature of the reduction reaction field are in an appropriate range.
  • a Ta powder composed of a single phase of ⁇ -Ta or a mixed phase of ⁇ -Ta and ⁇ -Ta can be obtained by controlling the particle size to be within an appropriate range. Furthermore, in order to improve the fluidity of fine Ta powder, it has been found that it is important to granulate the Ta powder and control the particle size and bulk density to an appropriate range, thereby completing the present invention. It came.
  • the present invention based on the above findings is characterized by comprising a tetragonal ⁇ -Ta single phase or a mixed phase of tetragonal ⁇ -Ta and cubic ⁇ -Ta, and an average particle diameter of 30 to 150 nm. Ta powder.
  • the Ta powder of the present invention has a CV value ( ⁇ F ⁇ V / g) of 220 kCV or more.
  • the present invention heats the raw material TaCl 5 to vaporize it, supplies it together with a carrier gas to a reduction reaction field, and reduces the TaCl 5 vapor with H 2 gas in the reduction reaction field to obtain Ta powder.
  • the supply rate of TaCl 5 vapor to the reduction reaction field is 0.05 to 5.0 g / min ⁇ cm 2
  • the residence time of the TaCl 5 vapor in the reduction reaction field is 0.1 to 5 seconds.
  • the present invention is a Ta granulated powder obtained by granulating the Ta powder according to any one of the above, wherein the volume-based median diameter is 10 to 500 ⁇ m and the bulk density is 2.0 to 5.0 g / cm 3 .
  • Ta granulated powder characterized in that the fluidity measured with a funnel having an orifice diameter of 2.63 mm is 1 to 5 g / sec.
  • the Ta granulated powder of the present invention is used for an electrode of a tantalum solid electrolytic capacitor.
  • Ta powder having a ⁇ -Ta single phase or a mixed phase of ⁇ -Ta and ⁇ -Ta and having an average particle size of 30 to 150 nm can be stably produced. It is possible to improve the electrical characteristics of the anodic oxide film to be produced, and to stably provide a tantalum solid electrolytic capacitor having a high capacitance of CV value of 220 k or higher.
  • the Ta powder used in the tantalum solid electrolytic capacitor of the present invention is a Ta powder produced by a thermal CVD method (vapor phase reduction method) in which Ta chloride (TaCl 5 ) vapor is reduced with H 2 gas. It is necessary that the average particle diameter is in the range of 30 to 150 nm consisting of a single phase of ⁇ -Ta or a mixed phase of tetragonal ⁇ -Ta and cubic ⁇ -Ta.
  • vapor phase reduction method vapor phase reduction method
  • H 2 gas vapor phase reduction method
  • the average particle diameter is in the range of 30 to 150 nm consisting of a single phase of ⁇ -Ta or a mixed phase of tetragonal ⁇ -Ta and cubic ⁇ -Ta.
  • the Ta powder according to the present invention needs to be manufactured by a thermal CVD method.
  • the reason is that the thermal CVD method is suitable for producing a fine metal powder, and at present, it is considered to be the only method that can produce a ⁇ -Ta powder.
  • the Ta powder (primary particles) produced by the thermal CVD method is spherical and uniform in size as shown in FIG. 1, but the average particle size is in the range of 30 to 150 nm. It must be a thing. If the average particle size is less than 30 nm, the bonding portion (neck portion) between the particles formed when the Ta powder is sintered is weak, so the bonding portion is broken by the anodized film formed by the chemical conversion treatment, and the conductivity is increased. And decrease in capacitance. On the other hand, when the average particle diameter exceeds 150 nm, the primary particle diameter is too large, the surface area of the Ta powder is reduced, and it becomes difficult to stably obtain the target CV value (220 k or more).
  • the average particle size of the Ta powder is preferably in the range of 50 to 130 nm, and more preferably in the range of 60 to 120 nm.
  • the average particle size of the Ta powder (primary particles) is obtained by calculating the particle size of 1000 particles or more from a particle image captured by a scanning electron microscope SEM or the like.
  • Image analysis type particle size distribution software Mac-View, manufactured by Mountec This is the number-based average particle diameter when actually measured using.
  • the Ta powder of the present invention needs to be composed of a tetragonal ⁇ -Ta single phase or a mixed phase of tetragonal ⁇ -Ta and cubic ⁇ -Ta.
  • the anodized film obtained by chemical conversion of cubic ⁇ -Ta has a smaller leakage current and superior heat resistance than the anodized film obtained by chemical conversion of ⁇ -Ta. This is because it is a highly reliable dielectric film.
  • the effect described above can be obtained if the Ta powder does not need to be a ⁇ -Ta single phase, but is a mixed phase of ⁇ -Ta and ⁇ -Ta.
  • FIG. 2 shows an example of a thermal CVD apparatus that can be used for producing the Ta powder of the present invention.
  • This thermal CVD apparatus includes a reaction tube 1 having a vaporization unit 2 and a reduction reaction field 3, a vaporization furnace 4 for heating the vaporization unit 2 to a predetermined temperature, and the reduction reaction field 3 to a predetermined temperature. It comprises a reduction furnace 5 for heating.
  • a carrier gas supply pipe 6 for introducing a carrier gas into the reaction pipe and a reducing gas supply pipe 7 for supplying a reducing gas to the reduction reaction field 3 are disposed at the vaporization part side end of the reaction pipe 1.
  • an exhaust pipe 8 for discharging Ta powder generated in the reduction reaction field together with the carrier gas is disposed at the end of the reaction tube 1 on the side of the reduction reaction field, and connected to a Ta powder collector (not shown). ing.
  • an inert gas such as Ar gas, He gas, or N 2 gas is used as a carrier gas, and H 2 gas, H 2 containing gas, CO gas, or the like is used as a reducing gas.
  • a rare gas such as Ar gas or He gas is used as the carrier gas, and H 2 gas is used as the reducing gas.
  • the reason is to prevent contamination of the obtained Ta powder. That is, since Ta is a metal that easily reacts at high temperatures, it reacts with N 2 gas or CO gas, and part of the powder becomes TaN or TaC, or C produced by reduction of CO gas is contained in Ta powder. This is to prevent it from being included.
  • the vaporizing section 2 of the reaction tube is charged with a container (tray) 9 containing powdered Ta chloride (TaCl 5 ) as a raw material for Ta powder, and surrounds the circumference of the vaporizing section.
  • a container (tray) 9 containing powdered Ta chloride (TaCl 5 ) as a raw material for Ta powder and surrounds the circumference of the vaporizing section.
  • the reduction reaction field 3 is a space heated to a temperature of 1100 ° C.
  • TaCl 5 vapor supplied to the reduction reaction field 3 together with Ar gas is supplied as a reduction gas.
  • the Ta powder generated in the reduction reaction field 3 is discharged from the exhaust pipe 8 together with the carrier gas and collected by a collector 8 (not shown).
  • the feed rate of the raw material gas (TaCl 5 vapor) to the reaction field is within the range of 0.05 to 5.0 g / cm 2 ⁇ min per unit area and unit time of the reduction reaction field, and TaCl in the reduction reaction field. It is necessary to set the residence time of 5 vapors in the range of 0.1 to 5 seconds and to control the temperature of the reduction reaction field (reduction temperature) in the range of 1100 to 1600 ° C.
  • TaCl the feed rate of 5 steam in the range of 0.05 to per unit sectional area and unit of the reduction reaction field time 5.0g / cm 2 ⁇ min is, TaCl 5 feed rate 0.05 g / cm steam If it is less than 2 min, fine particles of Ta powder produced by the reduction reaction cannot be grown, so that it is difficult to make the particle size 30 nm or more, which is the object of the present invention. On the other hand, if it exceeds 5.0 g / cm 2 ⁇ min, the fine particles of Ta powder generated in the reaction field grow too much, and conversely, it becomes difficult to control the particle size of the obtained Ta powder to 150 nm or less. is there.
  • the range is preferably from 0.1 to 3.0 g / cm 2 ⁇ min.
  • the feed rate of TaCl 5 steam reason for per unit sectional area of the reduction reaction field (per unit cross-sectional area in the direction perpendicular to the direction in which the raw material gas flows), the reduction reaction itself TaCl 5 steam almost instantly This is because the effect on the reduction reaction rate is considered to be overwhelmingly larger than the length of the reduction reaction field. That is, the reaction tube 1 is usually cylindrical and has a constant cross-sectional area, but the reduction reaction of TaCl 5 vapor itself in the reduction reaction field 3 occurs instantaneously if H 2 gas is present. Therefore, the influence of the raw material supply amount on the particle size of the Ta powder produced by the reduction reaction is because the cross-sectional area direction is overwhelmingly larger than the longitudinal direction of the reaction field.
  • the reason why the residence time in the reduction reaction field of TaCl 5 vapor is 0.1 to 5 seconds is that the particle size of Ta powder generated by the reduction reaction grows as the residence time in the reduction reaction field increases. That is, it is considered to be inversely proportional to the flow rate of the gas supplied to the reduction reaction field. Therefore, if the residence time in the reduction reaction field of TaCl 5 vapor is 5 seconds or more, Ta particles grow too much and it becomes difficult to obtain a particle size of 150 nm or less. On the other hand, when the time is less than 0.1 seconds, the residence time in the reaction field is too short, and it is impossible to grow to a particle size of 30 nm or more.
  • the reason why the particle size of the Ta powder is proportional to the residence time of the TaCl 5 vapor in the reduction reaction field as described above is that the reduction reaction of the TaCl 5 vapor is completed almost instantaneously.
  • the TaCl 5 vapor supplied to the reduction reaction field by the carrier gas is not immediately mixed with the H 2 gas supplied from the reducing gas supply pipe. Further, in order for the TaCl 5 vapor to be reduced by the H 2 gas, it is necessary that the H 2 gas is diffused and mixed with the TaCl 5 vapor.
  • the reduction reaction of TaCl 5 vapor since it is believed that mixing with H 2 gas and TaCl 5 vapor is happening in the whole area of the reduction reaction field progresses, the residence time of the TaCl 5 vapor in a reducing reaction field It affects the particle size of Ta powder.
  • the residence time in the reduction reaction field can be obtained by dividing the volume of the reduction reaction field by the volume of the supply gas per unit time.
  • the supply gas at this time is thermally expanded by heating in the reduction reaction field. Therefore, it is necessary to convert the total supply amount of H 2 gas and Ar gas into the gas volume at the average temperature in the reduction reaction field according to Charles' law.
  • the mixing ratio of H 2 gas and Ar gas supplied to the reduction reaction field is not particularly limited, but the reaction efficiency can be increased as the partial pressure of H 2 gas is increased. Further, the supply amount per unit time of H 2 gas and TaCl 5 vapor needs to be at least 1 in terms of a molar ratio of H 2 to TaCl 5 from the viewpoint of complete reduction of TaCl 5 vapor. However, since the supplied H 2 gas does not react with all TaCl 5 vapors, if it is less than 2 , the reaction efficiency of the H 2 gas is low. Therefore, the molar ratio of H 2 to TaCl 5 is preferably 2 or more. On the other hand, when the molar ratio exceeds 50, the reaction efficiency increases, but the cost of H 2 gas increases, so the upper limit is preferably about 50.
  • the reason for controlling the temperature of the reduction reaction field (reduction temperature) within the range of 1100 to 1600 ° C. is that if the reduction temperature is less than 1100 ° C., as described in Patent Document 4, the progress of the reduction reaction is slow. The produced Ta powder becomes amorphous and the ⁇ -Ta phase does not appear. On the other hand, when the temperature exceeds 1600 ° C., Ta powder itself is produced, but there is currently no reaction vessel that can be used industrially at such a high temperature and chloride-containing atmosphere. This is because manufacturing becomes impossible.
  • the Ta powder of the present invention produced by satisfying the above conditions has an average particle size in the range of 30 to 150 nm.
  • the inventors further describe that the Ta powder produced by satisfying the above conditions is a tetragonal crystal. It has been newly found that it becomes a ⁇ -Ta single phase or a mixed phase of ⁇ -Ta and cubic ⁇ -Ta, that is, a phase in which at least a ⁇ -Ta phase is mixed.
  • the abundance ratio of ⁇ -Ta and ⁇ -Ta is a ratio of the X-ray strongest peak 411 diffraction line of ⁇ -Ta to the X-ray strongest peak 100 diffraction line of ⁇ -Ta when X-ray diffraction is performed. 411 ) / I ( ⁇ Ta 110 ) and can be determined semi-quantitatively.
  • tetragonal ⁇ -Ta is produced when Ta powder is produced under the above conditions.
  • a conventional method for producing ⁇ -Ta sputtering is used.
  • the thermal CVD method is similar to sputtering in that the solid phase is generated from the gas phase, it is considered that ⁇ -Ta is likely to be generated.
  • tetragonal ⁇ -Ta is more unstable than cubic ⁇ -Ta in terms of crystallography
  • ⁇ -Ta conversion of ⁇ -Ta proceeds when held at a high temperature for a certain period of time. . Therefore, the residence time in a reduction reaction field at 1100 ° C. or higher needs to be within 5 seconds.
  • the Ta powder produced in the reduction reaction field is preferably cooled within 3 seconds to 300 ° C. or lower where ⁇ -Ta is stable in order to shorten the high temperature holding time.
  • tetragonal ⁇ -Ta has a higher specific resistance than cubic ⁇ -Ta, and when subjected to chemical conversion treatment, anodized film having excellent dielectric properties ( Conversion treatment film) is obtained. Therefore, a Ta powder composed of a tetragonal ⁇ -Ta single phase or a mixture of cubic ⁇ -Ta and tetragonal ⁇ -Ta coexists with the aforementioned average particle size. , A Ta capacitor having a CV value of 220 k or more can be stably manufactured.
  • Fe and Ni are preferably controlled to 0.01 mass% or less in total, and oxygen is controlled to 5 mass% or less.
  • the Ta powder When Ta powder is used as the anode material of the capacitor, the Ta powder is generally compression molded into an anode element shape by a dry automatic molding machine.
  • the Ta powder (primary particles) produced by the thermal CVD method is fine as it is and has a low bulk density, the push allowance increases, and the density of the molded body that becomes the anode element tends to be uneven.
  • the fluidity is preferably in the range of 1 to 5 g / second as measured by a funnel having an orifice diameter of 2.63 mm.
  • the granulated Ta powder preferably has a volume-based median diameter d 50 in the range of 10 to 500 ⁇ m and a bulk density in the range of 2.0 to 5.0 g / cm 3 .
  • liquidity in this invention is the value which divided the fall time (second) measured with the funnel which has an orifice diameter of 2.63 mm according to JISZ2502, and divided the powder mass (g) used for the measurement. It is a representation.
  • the reason why the flowability range is specified to be 1 to 5 g / second is that when the flowability is less than 1 g / second, the flowability is poor, and thus the amount of powder that is automatically charged into the molding die of the automatic molding machine varies greatly. As a result, the weight variation of the anode element after compression molding becomes large. On the other hand, the granulated powder having a fluidity of more than 5 g / second has a too large particle size, and it is difficult to obtain an anode having a uniform density by compression molding.
  • the range is preferably 1.5 to 4 g / sec.
  • volume-based median diameter d 50 is in the range of 10 to 500 ⁇ m.
  • d 50 is less than 10 ⁇ m, fluidity and moldability are deteriorated and molding becomes difficult.
  • d 50 exceeds 500 ⁇ m, it becomes difficult to uniformly fill the molding die, and the density of the molded body of the anode element becomes non-uniform.
  • a preferred median diameter d 50 is in the range of 15 to 300 ⁇ m.
  • the volume-based median diameter d 50 is a value obtained by measuring a particle image captured at 100 times using a scanning electron microscope using image analysis type particle size distribution software, as with the primary particles. is there.
  • the reason why the bulk density is in the range of 2.0 to 5.0 g / cm 3 is that when the bulk density is less than 2.0 g / cm 3 , the electrostatic capacity per unit volume becomes small, and the capacitor becomes large. End up. On the other hand, if the bulk density exceeds 5.0 g / cm 3 , it becomes difficult to impregnate with manganese dioxide MnO 2 serving as a cathode after sintering.
  • a preferred bulk density is in the range of 2.5 to 4.5 g / cm 3 .
  • the said bulk density in this invention means the loose bulk density measured based on JISZ2504.
  • the method for obtaining Ta granulated powder from Ta powder (primary particles) obtained by thermal CVD is not particularly limited as long as granulated powder satisfying the above conditions is obtained.
  • a granulating agent binder
  • a rotary granulation method, a fluidized bed granulation method, a spray drying method, or the like can be preferably used.
  • the raw powder tantalum pentachloride TaCl 5 is heated and vaporized by using the thermal CVD apparatus shown in FIG. 2, and the vapor is introduced into the reduction reaction field in the reaction tube together with the carrier gas (Ar gas).
  • H 2 gas as supplied to the reduction reaction field to produce a Ta powder by reducing TaCl 5 steam, a Ta powder produced was discharged into the reaction tube outside together with a carrier gas, capturing no shown provided downstream Collected with a collector.
  • the feed rate of TaCl 5 the steam supplied to the reduction reaction field, the temperature of the residence time and the reduction reaction field in the reduction reaction field of TaCl 5 the steam is changed variously as shown in Table 1.
  • the raw material tantalum pentachloride TaCl 5 As the raw material tantalum pentachloride TaCl 5 , a high-purity product having a Ta content of 99.95 mass% or more was used. About 24 and 25 (comparative example), what contained many Fe, Fe, and Ni as an impurity was used, respectively. In addition, the raw material treatment time, that is, the reduction time was 3 hours.
  • the primary particle diameter, the BET specific surface area, and the crystal phase were measured by the following methods.
  • -Primary particle diameter The above Ta powder is observed at a magnification of 50000 using a scanning electron microscope SEM, and the diameter of 1000 arbitrarily extracted particles is measured by image processing, and the number reference average value is obtained. It was.
  • ⁇ BET specific surface area was measured using a N 2 gas as an adsorption gas.
  • -Identification of crystal phase It was specified by performing X-ray diffraction XRD on Ta powder.
  • the Ta powder (primary particles) was washed with water and dried, and then a cellulosic binder was added to obtain a granulated powder using a rotating drum, which was subjected to the following evaluation test.
  • Measurement of the median size d 50 the granulated powder was observed by 100 times using a scanning electron microscope SEM, we obtain the volume-based median size d 50 by image processing.
  • -Measurement of bulk density The loose bulk density was measured according to JIS Z2504 (2000).
  • -Measurement of fluidity According to JIS Z2502 (2000), the flowability per unit g was measured with a funnel having an orifice diameter of 2.63 mm, and the fluidity was evaluated.
  • Formability is determined by molding 20 samples with an automatic tantalum molding machine, and there are no defects such as cracks in all of the molded products, and both the standard deviation of the target dimensions and the target molding density. When the average value was within 5%, the moldability was good ( ⁇ ), and when it exceeded 5%, the moldability was poor (x).
  • Measurement of impurity elements For the powder after granulation, O and H were measured by an inert gas melting method, Fe and Ni were measured by an ICP emission analysis method, and Mg was measured by an atomic absorption method.
  • the 100 kCV powder specified in Table 1 of the Japan Electronic Machinery Manufacturers Association Standard EIAJ RC-2361A “Testing Method for Tantalum Sintered Elements for Tantalum Electrolytic Capacitors”
  • EIAJ RC-2361A Test Method for Tantalum Sintered Elements for Tantalum Electrolytic Capacitors
  • the measurement results are shown in Table 2.
  • Table 2 when Ta powder produced by the conventional Na reduction method is used, the CV value is only about 150 k.
  • the Ta powder produced under the conditions suitable for the present invention has a primary particle size in the range of 30 to 150 nm, and the crystal phase is tetragonal ⁇ -Ta single phase or ⁇ -Ta and cubic.
  • Any of the Ta capacitors produced by using Ta granulated powder which is one of ⁇ -Ta mixed phases and granulated this Ta powder in a range suitable for the present invention has an excellent CV value of 220 k or more. It can be seen that it has the characteristics.
  • the Ta powder of the present invention can be used not only for tantalum solid electrolytic capacitors but also for powder metallurgy using tantalum powder.
  • Reaction tube 2 Vaporization unit 3: Reduction reaction field 4: Vaporization furnace 5: Reduction furnace 6: Carrier gas supply pipe 7: Reducing gas supply pipe 8: Exhaust pipe

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

【課題】220kを超えるCV値を安定して得ることができるタンタル固体電解コンデンサ用のTa粉末を製造する方法を提案し、そのTa粉末と、そのTa造粒粉を提供する。【解決手段】TaClを加熱して蒸気化し、Hガスで還元してTa粉末を製造する方法において、反応場断面積1cmを1分間に通過するTaCl蒸気の供給量を0.05~5.0g/cm・min、TaCl蒸気の還元反応場での滞留時間を0.1~5秒とし、TaClの還元温度を1100~1600℃として還元することによって、正方晶系のβ-Ta単相もしくは上記β-Taと立方晶系のα-Taの混合相からなる、平均粒径が30~150nmの電解コンデンサ用Ta粉末を得る。さらに、上記Ta粉末を造粒して、Ta造粒粉を得る。

Description

Ta粉末とその製造方法およびTa造粒粉
 本発明は、主として、パソコンや携帯電話等の電子機器に使用される小型・大容量のタンタル固体電解コンデンサのアノード電極(陽極)等に用いられるTa粉末とその製造方法ならびに上記Ta粉末を造粒したTa造粒粉に関するものである。
 コンデンサは、パソコンや携帯電話等の様々な電子機器に使用される電子部品の一種であり、基本的に、2枚の対向する電極板の間に誘電体を挟んだ構造をしており、ここに直流電圧をかけると、誘電体の分極作用によって、それぞれの電極に電荷が蓄えられるものである。コンデンサには、多種多様なものがあるが、現在、アルミ電解コンデンサ、積層セラミックコンデンサ、タンタル電解コンデンサおよびフィルムコンデンサが主に用いられている。
 近年、上記コンデンサは、電子機器の小型・軽量化、高機能化に伴い、小型で高容量のものが使用されるようになってきている。そこで、やや高価ではあるが、小型・大容量で、高周波特性に優れ、電圧や温度に対して安定で、長寿命である等の優れた特性を有するタンタル固体電解コンデンサ(以降、単に「Taコンデンサ」ともいう。)が使用されている。
 このTaコンデンサは、Taの陽極酸化皮膜である五酸化タンタル(Ta)が誘電体として優れていることを利用したもので、陽極原料となるTa粉末を圧縮成型し、高真空中で焼結して、多孔質の素子を作製し、化成処理(陽極酸化処理)を施して上記Ta粉末の表面にて耐食性、絶縁性に優れる酸化皮膜(非晶質のTaの皮膜)、すなわち、誘電体皮膜を形成して陽極とし、次いで、上記多孔質の素子中に硝酸マンガン溶液を含侵させ、熱分解してMnO層(電解質)を陽極酸化皮膜上に形成して陰極とし、最後に、グラファイト、銀ペースト等でリード線を接続した後、樹脂等で外装する、というプロセスで製造されるのが一般的である。なお、最近では、上記MnOの代わりに、ポリピロール、ポリアニリン等の高導電性高分子材料を用いることで、高周波特性や大電流特性を改善したものも開発・実用化されている。
 コンデンサ用タンタル粉末の電気特性を評価する指標として、一般的にはCV値(μF・V/g)が用いられる。現在、市販されているTa粉末のCV値は、一般には50~100kCV程度であり、高容量品でも100~200kCV程度である。そこで、CV値がそれよりも高い、好ましくは220kCV以上のコンデンサ用タンタル粉末の開発が強く望まれている。
 コンデンサが蓄えることができる単位電圧当たりの電荷容量Cは、
 C=(ε・S)/t
 ここで、S:電極面積(m)、t:電極間距離(m)、ε:誘電率(F/m)、ε=ε・ε、ε:誘電体の比誘電率(Taの 酸化皮膜:約27)、ε:真空誘導率(8.855×10-12F/m)
で表わされ、電極面積Sが大きいほど、電極間距離tが小さいほど、また、誘電率εが高いほど、大きくなる。したがって、CV値を高めるためには、陽極面積S、即ち、陽極を構成しているTa粉末の表面積を大きくするか、電極間距離t、即ち、陽極酸化皮膜Taの膜厚を薄くすることが有効である。
 Ta粉末の表面積を大きくしてやるためには、Ta粉末の一次粒子径を小さくすることが有効である。そのため、Ta粉末の一次粒子径は、近年における大容量化に伴い、微細化が進行している。しかし、一次粒子径を小さくしていくと、金属粒子の結合部(ネック部)が小さくなり、化成処理による酸化皮膜によって、金属粒子同士の結合が断絶され、静電容量の低下を招くという問題がある。また、一次粒子の微細化は、表面に吸着する酸素、窒素、水素等のガス成分や、その他の不純物成分の含有量の増大を招くため、コンデンサとしての特性に悪影響を及ぼすようになる。したがって、Ta粉末は、ある程度以上、具体的には30nm以上の大きさであることが望ましい。
 現在、上記Taコンデンサに用いるTa粉末を工業的に製造する方法としては、KTaFをNaで還元するNa還元法(特許文献1)、TaをMgで還元するMg還元法(特許文献2)、Taインゴットを水素化し、粉砕する粉砕法(特許文献3)、TaClを蒸気化し、Hで還元する熱CVD法(気相還元法)(特許文献4,5)などが知られている。上記特許文献4や5に記載された熱CVD法は、微細なTa粉末を容易に得られるという利点を有する反面、粒径や結晶性、あるいは不純物レベルをコントロールすることが難しく、不純物が多いという問題がある。また、熱CVD法では、微細な粒径の粉末(一次粒子)しか得られないため、流動性が悪いという問題もある(例えば、特許文献6参照)。上記のような事情から、現在用いられているコンデンサ用Ta粉末の多くは、Na還元法で製造されている。しかし、このNa還元法には、高容量の微細なTa粉末を効率良く製造するのが難しいという問題がある。
 また、陽極酸化皮膜の膜厚は、化成処理電圧によって調整されるが、この膜厚を薄くすることは、種々の問題を引き起こす。たとえば、Ta粉末の表面には、粉末製造時に形成された厚さが数nmの結晶質の自然酸化膜が存在している。この酸化膜は、不純物を多く含むことが多く、誘電層としての品質や密着性に劣るため、電気的特性を低下させるが、高電圧で化成処理を施す場合には、厚い陽極酸化皮膜中に埋もれてしまうため特に問題とならない。しかし、化成処理電圧が低下し、陽極酸化皮膜が薄くなると、結晶質の酸化皮膜が表面に露出するようになる。さらに、酸化皮膜の膜厚低減は、粉末の表面に吸着した不純物や、それに起因する皮膜欠陥を顕在化させる。その結果、漏れ電流(LC)を増大させたり、コンデンサの寿命に悪影響を及ぼしたりするようになる。そのため、陽極酸化皮膜Taの膜厚を薄くして大容量化するには限界があり、酸化皮膜特性の改善が重要となる。
 ところで、金属Taの結晶相には、α相とβ相がある。α相はα-Taとも呼ばれ、立方晶系で、約20μΩcmと低い比抵抗を有する。それに対して、β相はβ-Taと呼ばれ、正方晶系であり、比抵抗は約170μΩcmとやや高い。Ta粉末を含めTaのバルク金属は、通常、α-Taであり、β-Taはスパッタリング成膜した金属薄膜としてのみ、その存在が知られており、粉末としての報告はない。しかしながら、薄膜上で陽極酸化し、コンデンサとしたときには、β-Taの方がより良好な酸化皮膜特性、すなわち、良好なコンデンサ特性を示すことが知られている(例えば、特許文献7参照。)。
特開2002-206105号公報 特表2002-544375号公報 特開平02-310301号公報 特公昭64-073009号公報 特開平06-025701号公報 特開2007-335883号公報 特開2002-134358号公報
 したがって、タンタル固体電解コンデンサの高CV化、および、漏れ電流の低電流化を図るためには、陽極に用いるタンタル粉末は、正方晶系のβ-Taである方が好ましいと考えられる。しかし、従来技術の熱CVD法やNa還元法では、α-TaからなるTa粉末しか得られておらず、β-Taの結晶相からなるまたはβ-Taの結晶相を含むTa粉末の製造方法については、現在のところ報告されていない。
 そこで、本発明の目的は、タンタル固体電解コンデンサに用いて好適な、β-Taの結晶相からなるまたはβ-Ta相を含むTa粉末を提供するとともに、上記Ta粉末の製造方法を提案することにある。また、本発明の他の目的は、上記Ta粉末の流動性を改善したTa造粒粉を提供することにある。
 発明者らは、TaコンデンサのCV値を高めるためには、Ta粉末(一次粒子)の粒径を適正範囲に制御してやること、および、酸化皮膜特性を改善することが重要である、また、スパッタリングの製膜技術に近い熱CVD法(気相還元法)であれば、β-Ta相を含むTa粉末が得られるのではないかとの基本思想の下、その製造条件がTa粉末の粒径および結晶構造に及ぼす影響に着目して鋭意検討を重ねた。その結果、熱CVD法(気相還元法)における還元反応場への原料ガス(TaCl蒸気)の供給速度、原料ガスの還元反応場での滞留時間、ならびに、還元反応場の温度を適正範囲に制御することによって、β-Ta単相もしくはβ-Taとα-Taの混合相からなるTa粉末を得ることができるとともに、その粒径を適正範囲に制御し得ることを見出した。さらに、微細なTa粉末の流動性を改善するためには、上記Ta粉末を造粒し、粒径と嵩密度を適正範囲に制御することが重要であることを見出し、本発明を完成させるに至った。
 上記知見に基づく本発明は、正方晶系β-Ta単相もしくは正方晶系β-Taと立方晶系のα-Taの混合相からなり、平均粒径が30~150nmであることを特徴とするTa粉末である。
 本発明の上記Ta粉末は、CV値(μF・V/g)が、220kCV以上であることを特徴とする。
 また、本発明は、原料のTaClを加熱して蒸気化し、キャリアガスとともに還元反応場に供給し、該還元反応場において前記TaCl蒸気をHガスで還元してTa粉末とするTa粉末の製造方法において、前記還元反応場へのTaCl蒸気の供給速度を0.05~5.0g/min・cmとし、TaCl蒸気の還元反応場での滞留時間を0.1~5秒として、1100~1600℃の温度でTaCl蒸気を還元することを特徴とする請求項1または2に記載のTa粉末の製造方法を提案する。
 また、本発明は、上記のいずれかに記載のTa粉末を造粒したTa造粒粉であって、体積基準メジアン径が10~500μm、嵩密度が2.0~5.0g/cmで、2.63mmのオリフィス径を有する漏斗で測定した流動性が1~5g/秒であることを特徴とするTa造粒粉である。
 本発明の上記Ta造粒粉は、タンタル固体電解コンデンサの電極用であることを特徴とする。
 本発明によれば、β-Ta単相もしくはβ-Taとα-Taとの混合相からなり、平均粒径が30~150nmのTa粉末を安定して製造することができるので、化成処理で生成する陽極酸化皮膜の電気的特性を改善し、CV値が220k以上の高い静電容量を有するタンタル固体電解コンデンサを安定して提供することが可能となる。
本発明のTa粉末(一次粒子)を走査型電子顕微鏡(SEM)で観察した写真である。 本発明のTa粉末の製造に用いる熱CVD装置の一例を示す模式図である。
 本発明のタンタル固体電解コンデンサに用いるTa粉末は、Ta塩化物(TaCl)の蒸気をHガスで還元する熱CVD法(気相還元法)で製造したTa粉末であり、正方晶系のβ-Ta単相、もしくは、正方晶系のβ-Taと立方晶系のα-Taとの混合相からなる、平均粒径が30~150nmの範囲にあるものであることが必要である。以下、その限定理由について説明する。
 まず、本発明に係るTa粉末は、熱CVD法で製造されることが必要である。その理由は、熱CVD法は、微細な金属粉末を製造するのに適していること、および、現時点においては、β-Ta粉末を製造できる唯一の方法であると考えられるからである。
 次に、上記熱CVD法により製造されるTa粉末(一次粒子)は、図1に示したように、球状で大きさの揃ったものであるが、その平均粒径は30~150nmの範囲のものであることが必要である。平均粒径が30nm未満では、Ta粉末を焼結した時に形成される粒子同士の結合部(ネック部)が弱いため、化成処理で形成される陽極酸化皮膜によって上記結合部が断裂し、導電性の低下や、静電容量の低下を招く。一方、平均粒径が150nmを超えると、一次粒子径が大き過ぎて、Ta粉末の表面積が減少し、目標とするCV値(220k以上)を安定して得ることが難しくなるからである。なお、220k以上のCV値を安定して確保する観点からは、Ta粉末の平均粒径が50~130nmの範囲であることが好ましく、60~120nmの範囲であることがより好ましい。ここで、上記Ta粉末(一次粒子)の平均粒径は、走査型電子顕微鏡SEM等で撮像した粒子画像から1000個以上の粒子径を画像解析式粒度分布ソフトウエア(マウンテック社製Mac-View)を用いて実測したときの個数基準平均粒子径のことである。
 次に、本発明のTa粉末は、正方晶系のβ-Ta単相、もしくは、正方晶系のβ-Taと立方晶系のα-Taとの混合相からなることが必要である。前述したように、立方晶系のβ-Taを化成処理して得られる陽極酸化皮膜は、α-Taを化成処理して得られる陽極酸化皮膜よりも、漏れ電流が小さく、耐熱性に優れ、信頼性の高い誘電体膜であるからである。上記効果は、Ta粉末がβ-Ta単相である必要はなく、β-Taとα-Taとの混合相であれば得られる。
 上記条件を満たすTa粉末の製造方法について説明する。
 まず、本発明のTa粉末を製造する装置は、熱CVD法(気相還元法)によるものであれば、特に限定されるものではない。図2は、本発明のTaの粉末の製造に用いることができる熱CVD装置の一例を示したものである。この熱CVD装置は、蒸気化部2と還元反応場3を有する反応管1と、上記蒸気化部2を所定の温度に加熱する蒸気化炉4と、上記還元反応場3を所定の温度に加熱する還元炉5とから構成されている。上記反応管1の蒸気化部側端部にはキャリアガスを反応管内に導入するキャリアガス供給配管6と、還元ガスを上記還元反応場3に供給する還元ガス供給配管7が配設されている。一方、上記反応管1の還元反応場側端部には還元反応場で生成したTa粉末をキャリアガスとともに排出する排気管8が配設されて、図示のないTa粉末の捕集器に接続している。
 ここで、熱CVD法では、一般的に、キャリアガスとしてはArガス、Heガス、Nガス等の不活性ガスが、また、還元ガスとしてはHガス、H含有ガス、COガス等の還元性ガスが用いられるが、本発明では、キャリアガスとしてはArガスまたはHeガス等の希ガスを、また、還元ガスとしてHガスを用いる。その理由は、得られるTa粉末の汚染を防止するためである。すなわち、Taは高温で反応しやすい金属であるため、NガスやCOガスと反応して、粉末の一部がTaNやTaCとなったり、COガスが還元されて生成したCがTa粉末中に含まれたりするのを防止するためである。
 次に、上記熱CVD装置を用いたTa粉末の製造方法について説明する。
 上記反応管の蒸気化部2には、Ta粉末の原料となる粉状のTa塩化物(TaCl)を収納した容器(トレイ)9が装入されており、蒸気化部の周囲を取り囲んで設置された蒸気化炉4でトレイ9内のTaClを約200~800℃の温度に加熱し、TaClの蒸気を発生させるとともに、キャリアガス供給配管6から供給されるArガスによってTaCl蒸気を還元反応場3に供給する。上記還元反応場3は、周囲を取り囲んで設置された還元炉5によって1100℃以上の温度に加熱された空間であり、Arガスとともに還元反応場3に供給されたTaCl蒸気は、還元ガス供給配管7から供給されるHガスによって還元され、下記の化学反応;
 TaCl+5/2・H → Ta+5HCl
により、Ta粉末を生成する。還元反応場3で生成したTa粉末は、キャリアガスとともに排気管8から排出し、図示されていない捕集器8で捕収する。
 上記の熱CVD装置を用いて、β-Ta単相もしくはβ-Taとα-Taとの混合相からなる、平均粒径が30~150nmのTa粉末を製造するためには、反応管内の還元反応場への原料ガス(TaCl蒸気)の供給速度を、還元反応場の単位断面積かつ単位時間あたり0.05~5.0g/cm・minの範囲、かつ、還元反応場でのTaCl蒸気の滞留時間を0.1~5秒の範囲とするとともに、還元反応場の温度(還元温度)を1100~1600℃の範囲に制御することが必要である。
 TaCl蒸気の供給速度を、還元反応場の単位断面積かつ単位時間あたり0.05~5.0g/cm・minの範囲とするのは、TaCl蒸気の供給速度が0.05g/cm・min未満では、還元反応で生成したTa粉末の微粒子が成長できないため微細化し、本発明が目的とする30nm以上の粒径とすることが難しくなる。一方、5.0g/cm・minを超えると、反応場内で生成したTa粉末の微粒子が成長し過ぎ、逆に、得られるTa粉末の粒径を150nm以下に制御することが難しくなるからである。好ましくは0.1~3.0g/cm・minの範囲である。
 ここで、TaCl蒸気の供給速度を、還元反応場の単位断面積あたり(原料ガスが流れる方向に垂直な方向の単位断面積あたり)とする理由は、TaCl蒸気の還元反応自体はほぼ瞬時に完了するため、還元反応速度に及ぼす影響は、還元反応場の断面積が還元反応場の長さよりも圧倒的に大きいと考えられるからである。すなわち、上記反応管1は、通常、円筒状で、断面積は一定であるが、還元反応場3でのTaCl蒸気の還元反応自体は、Hガスが存在すれば瞬時に起こる。そのため、上記還元反応によって生成するTa粉末の粒径に及ぼす原料供給量の影響は、反応場の長手方向よりも断面積方向が圧倒的に大きくなるためである。
 また、TaCl蒸気の還元反応場での滞留時間を0.1~5秒とする理由は、還元反応により生成したTa粉末の粒径は、還元反応場での滞留時間が長いほど成長する、すなわち、還元反応場に供給されるガスの流速に反比例すると考えられる。そのため、TaCl蒸気の還元反応場での滞留時間が5秒以上ではTa粒子が成長し過ぎて150nm以下の粒径とすることが難しくなる。逆に、0.1秒未満になると、反応場における滞留時間が短か過ぎ、30nm以上の粒径まで成長することができないからである。
 上記のようにTa粉末の粒径が、TaCl蒸気の還元反応場での滞留時間に比例すると考える理由は、前述したように、TaCl蒸気の還元反応はほぼ瞬時に完了する。しかし、キャリアガスによって還元反応場に供給されたTaCl蒸気は、還元ガス供給配管から供給されたHガスと、直ちに混合するわけではない。また、TaCl蒸気がHガスによって還元されるためには、Hガスが拡散してTaCl蒸気と混合していることが必要である。したがって、TaCl蒸気の還元反応は、HガスとTaCl蒸気との混合が進行する還元反応場の全域において起こっていると考えられることから、還元反応場でのTaCl蒸気の滞留時間がTa粉末の粒径に影響を及ぼす。
 なお、還元反応場での滞留時間は、還元反応場の体積を単位時間あたりの供給ガスの体積で除することにより求められるが、このときの供給ガスは、還元反応場での加熱で熱膨張を起こしているので、HガスとArガスの合計供給量を、シャルルの法則により、還元反応場での平均温度における気体体積へと変換する必要がある。
 また、還元反応場に供給するHガスとArガスとの混合比率は特に制限しないが、Hガスの分圧を高くするほど反応効率を上昇させることができる。また、HガスとTaCl蒸気の単位時間当たりの供給量は、TaCl蒸気を完全に還元する観点から、少なくともTaClに対するHのモル比で1以上とすることが必要である。ただし、供給したHガスがすべてのTaCl蒸気と反応するわけではないため、2未満では、Hガスの反応効率が低い。従って、TaClに対するHのモル比は2以上とするのが好ましい。一方、モル比で50を超えると、反応効率は高くなるが、Hガスのコストが上昇するので、上限は50程度とするのが好ましい。
 また、還元反応場の温度(還元温度)を1100~1600℃の範囲に制御する理由は、還元温度が1100℃未満では、特許文献4に記載のように、還元反応の進行が遅くなるだけでなく、生成するTa粉末がアモルファスとなり、β-Ta相が出現しない。一方、1600℃を超える温度になると、Ta粉末自体は生成するが、このような高温かつ塩化物含有雰囲気で工業的に使用可能な反応菅は現在のところ存在せず、事実上、Ta粉末の製造が不可能になるからである。
 上記の条件を満たして製造される本発明のTa粉末は、平均粒径が30~150nmの範囲となるが、発明者らは、さらに、上記条件を満たして製造されるTa粉末は、正方晶系のβ-Ta単相もしくは上記β-Taと立方晶系のα-Taの混合相となること、すなわち、少なくともβ-Ta相が混在した相となることを新規に見出した。なお、α-Taとβ-Taの存在比率は、X線回折したときのα-TaのX線最強ピーク100回折線に対するβ-TaのX線最強ピーク411回折線の比であるI(βTa411)/I(αTa110)で、半定量的に判断することができる。
 上記の条件でTa粉末を製造したときに、何故、正方晶系のβ-Taが生成するかは、現時点では十分に明らかとなっていないが、従来、β-Taを生成させる方法としてはスパッタリングのみが知られているが、熱CVD法は、気相から固相を生成させる点において、スパッタリングと類似していることから、β-Taが生成され易いものと考えられる。しかし、正方晶系のβ-Taは、結晶学上、立方晶系のα-Taよりも不安定であるため、高温で一定時間以上保持されると、β-Taのα-Ta化が進む。そのため、1100℃以上の還元反応場での滞留時間は5秒以内とする必要がある。さらに、還元反応場で生成したTa粉末は、高温保持時間を短くするため、β-Taが安定な300℃以下まで3秒以内で冷却するのが好ましい。
 なお、先述したように、正方晶系のβ-Taは、立方晶系のα-Taと比較して、比抵抗が高く、これを化成処理した場合には、誘電特性に優れる陽極酸化皮膜(化成処理皮膜)が得られる。そのめ、正方晶系のβ-Ta単相からなる、もしくは、立方晶系のα-Taと正方晶系のβ-Taとが共存するTa粉末は、先述した平均粒径を兼備することによって、CV値が220k以上の静電容量を有するTaコンデンサを安定して製造することを可能とする。
 なお、Ta粉末に含まれる不純物元素としては、重金属元素や酸素は、陽極酸化皮膜に悪影響を与え、漏れ電流が増大する原因となるので、極力低減することが望ましい。具体的には、Fe,Niは合計で0.01mass%以下に、また、酸素は5mass%以下に制御するのが好ましい。
 なお、コンデンサの陽極材料としてTa粉末を用いる場合には、Ta粉末を乾式自動成形機で陽極素子形状に圧縮成形するのが一般的である。しかし、熱CVD法で製造したTa粉末(一次粒子)は、そのままでは微細で嵩密度が低いため、押し代が大きくなり、陽極素子となる成形体の密度が不均一になり易い。また流動性に劣るため、自動成形機のメス金型への自動投入が困難になる。そこで、Ta粉末を陽極材料として使用するためには、事前に造粒して流動性を改善してやる必要がある。
 上記流動性は、2.63mmのオリフィス径を有する漏斗で測定した流動性が1~5g/秒の範囲内であることが望ましい。また、造粒後のTa粉末は、体積基準メジアン径d50が10~500μmの範囲で、嵩密度が2.0~5.0g/cmの範囲のものであることが好ましい。なお、本発明における上記流動性とは、JIS Z2502に準じて、2.63mmのオリフィス径を有する漏斗で測定した落下時間(秒)を、測定に用いた粉末質量(g)を割った値で表したものである。
 流動性の範囲を1~5g/秒に規定する理由は、上記流動性が1g/秒未満では、流動性が悪いため、自動成形機の成形金型に自動投入される粉末量のばらつきが大きくなり、結果的に圧縮成形後の陽極素子の重量ばらつきが大きくなる。一方、流動性が5g/秒を超える造粒粉は、粒径が大きくなり過ぎて、圧縮成形によって均一な密度を有する陽極を得ることが難しくなるからである。好ましくは1.5~4g/秒の範囲である。
 また、体積基準メジアン径d50を10~500μmの範囲とする理由は、d50が10μm未満では、流動性および成形性が悪化して成形することが困難となる。一方、d50が500μmを超えると、成形金型に均一に充填することが難しくなるため、陽極素子の成形体の密度が不均一になる。好ましいメジアン径d50は15~300μmの範囲である。なお、上記体積基準メジアン径d50は、走査型電子顕微鏡を用いて100倍で撮像した粒子画像を、一次粒子と同様、画像解析式粒度分布ソフトウエアを用いて測定することにより求めた値である。
 また、嵩密度を2.0~5.0g/cmの範囲とする理由は、嵩密度が2.0g/cm未満では、単位体積当りの静電容量が小さくなり、コンデンサが大型化してしまう。一方、嵩密度が5.0g/cmを超えると、焼結後、陰極となる二酸化マンガンMnOを含浸させることが難しくなるからである。好ましい嵩密度は2.5~4.5g/cmの範囲である。ここで、本発明における上記嵩密度は、JIS Z2504に準拠して測定された、ゆるめ嵩密度のことをいう。
 なお、熱CVD法で得たTa粉末(一次粒子)からTa造粒粉を得る方法としては、上記条件を満たす造粒粉が得られれば特に制限はないが、例えば、熱CVD法で得たTa粒子に造粒剤(バインダ)として、アクリル系、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、メチルセルロース、およびカルボキシルセルロース等を添加した後、回転ドラム等で転動造粒する方法や、高速回転造粒法、流動層造粒法、および噴霧乾燥法などを好ましく用いることができる。
 図2に示した熱CVD装置を用いて、原料の粉末状五塩化タンタルTaClを加熱して蒸気化し、その蒸気をキャリアガス(Arガス)とともに反応管内の還元反応場に導くとともに、還元ガスとしてのHガスを上記還元反応場に供給し、TaCl蒸気を還元してTa粉末を生成させ、生成したTa粉末をキャリアガスとともに反応管外に排出し、下流に設けた図示のない捕集器で集粉した。この際、還元反応場に供給するTaCl蒸気の供給速度、TaCl蒸気の還元反応場での滞留時間および還元反応場の温度を表1に示したように種々に変化させた。なお、原料の五塩化タンタルTaClとしては、Ta分が99.95mass%以上の高純度品を用いたが、No.24および25(比較例)については、不純物としてそれぞれFeおよびFe,Niを多く含むものを用いた。また、原料処理時間すなわち還元時間はいずれも3hrとした。
Figure JPOXMLDOC01-appb-T000001
 上記のようにして得たTa粉末(一次粒子)について、一次粒子径、BET比表面積および結晶相を、下記の方法で測定した。
・一次粒子径:上記Ta粉末を、走査型電子顕微鏡SEMを用いて50000倍で観察し、任意に抽出した1000個の粒子の直径を画像処理して測定し、それらの個数基準平均値を求めた。
・BET比表面積:吸着ガスとしてNガスを用いて測定した。
・結晶相の特定:Ta粉末をX線回折XRDすることにより特定した。
 次いで、上記Ta粉末(一次粒子)を水洗し、乾燥した後、セルロース系のバインダを添加し、回転ドラムを用いて造粒粉とし、下記の評価試験に供した。
・メジアン径d50の測定:上記造粒粉を、走査型電子顕微鏡SEMを用いて100倍で観察し、画像処理することにより体積基準メジアン径d50を求めた。
・嵩密度の測定:JIS Z2504(2000)に準拠してゆるめ嵩密度を測定した。
・流動性の測定:JIS Z2502(2000)に準拠し、2.63mmのオリフィス径をもつ漏斗で単位g当りの流下時間を測定し、流動性を評価した。
・成形性の評価:成形性は、タンタル自動成形機にて20個のサンプルを成形し、成形体の全てに割れ等の欠陥発生がなく、かつ、目標寸法および目標成形密度の標準偏差が共に、平均値の5%以内であったものを成形性良好(○)、5%超えのものを成形性不良(×)と評価した。
・不純物元素の測定:造粒後の粉末について、O,Hは不活性ガス融解法、Fe,NiはICP発光分析法、また、Mgは原子吸光法で測定した。
 さらに、上記のTa造粒粉を陽極材料に用いて、日本電子機械工業会規格EIAJ RC-2361A「タンタル電解コンデンサ用タンタル焼結素子の試験方法」附属書の表1に規定された100kCV粉末の試験条件に準拠して、タンタル焼結素子を製造し、静電容量(CV値)および漏れ電流を測定した。
 上記各測定結果を表2に示した。表2からわかるように、従来のNa還元法で製造したTa粉末を用いた場合には、CV値が150k程度でしかない。
 これに対して、本発明に適合する条件で製造したTa粉末は、一次粒子径が30~150nmの範囲であり、結晶相は正方晶系β-Ta単相もしくはβ-Taと立方晶系のα-Taの混合相のいずれかであり、しかも、このTa粉末を本発明に適合する範囲に造粒したTa造粒粉を用いて作製したTaコンデンサは、いずれもCV値が220k以上の優れた特性を有していることがわかる。
Figure JPOXMLDOC01-appb-T000002
 本発明のTa粉末は、タンタル固体電解コンデンサの他に、タンタル粉末を用いた粉末冶金にも利用することができる。
 1:反応管
 2:蒸気化部
 3:還元反応場
 4:蒸気化炉
 5:還元炉
 6:キャリアガス供給配管
 7:還元ガス供給配管
 8:排気管
 

Claims (5)

  1. 正方晶系のβ-Ta単相もしくは正方晶系のβ-Taと立方晶系のα-Taとの混合相からなり、
    平均粒径が30~150nmであることを特徴とするTa粉末。
  2. CV値(μF・V/g)が、220kCV以上であることを特徴とする請求項1に記載のTa粉末。
  3. 請求項1または2に記載のTa粉末の製造方法であって、
    原料のTaClを加熱して蒸気化し、該TaClの蒸気をキャリアガスとともに還元反応場に供給し、該還元反応場において前記TaCl蒸気をHガスで還元してTa粉末を製造する際、
    前記還元反応場へのTaCl蒸気の供給速度を0.05~5.0g/cm・minとし、TaCl蒸気の還元反応場での滞留時間を0.1~5秒として、1100~1600℃の温度でTaCl蒸気を還元することを特徴とするTa粉末の製造方法。
  4. 請求項1または2に記載のTa粉末を造粒したTa造粒粉であって、
    体積基準メジアン径が10~500μm、
    嵩密度が2.0~5.0g/cmで、
    2.63mmのオリフィス径を有する漏斗で測定した流動性が1~5g/秒であることを特徴とするTa造粒粉。
  5. 固体電解コンデンサの電極用であることを特徴とする請求項4に記載のTa造粒粉。
PCT/JP2013/066319 2013-06-13 2013-06-13 Ta粉末とその製造方法およびTa造粒粉 WO2014199480A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/895,187 US20160104580A1 (en) 2013-06-13 2013-06-13 Ta powder, production method therefor, and ta granulated powder
PCT/JP2013/066319 WO2014199480A1 (ja) 2013-06-13 2013-06-13 Ta粉末とその製造方法およびTa造粒粉
JP2014547586A JP6141318B2 (ja) 2013-06-13 2013-06-13 Ta粉末の製造方法およびTa造粒粉の製造方法
EP13886682.7A EP3009210B1 (en) 2013-06-13 2013-06-13 Production method of beta tantalum powder, granulated tantalum powder, used thereof in solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/066319 WO2014199480A1 (ja) 2013-06-13 2013-06-13 Ta粉末とその製造方法およびTa造粒粉

Publications (1)

Publication Number Publication Date
WO2014199480A1 true WO2014199480A1 (ja) 2014-12-18

Family

ID=52021811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066319 WO2014199480A1 (ja) 2013-06-13 2013-06-13 Ta粉末とその製造方法およびTa造粒粉

Country Status (4)

Country Link
US (1) US20160104580A1 (ja)
EP (1) EP3009210B1 (ja)
JP (1) JP6141318B2 (ja)
WO (1) WO2014199480A1 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016207610A1 (de) 2015-05-18 2016-11-24 Avx Corporation Festelektrolytkondensator mit hoher Kapazität
DE102016208806A1 (de) 2015-05-29 2016-12-01 Avx Corporation Festelektrolytkondensatorbaugruppe zur Verwendung bei hohen Temperaturen
DE102016208807A1 (de) 2015-05-29 2016-12-01 Avx Corporation Festelektrolytkondensatorelement zur Verwendung unter trockenen Bedingungen
DE102016208802A1 (de) 2015-05-29 2016-12-01 Avx Corporation Festelektrolytkondensatorbaugruppe zur Verwendung in einer feuchten Atmosphäre
DE102016208800A1 (de) 2015-05-29 2016-12-01 Avx Corporation Festelektrolytkondensator mit ultrahoher Kapazität
WO2017127267A1 (en) 2016-01-18 2017-07-27 Avx Corporation Solid electroltyic capacitor with improved leakage current
JPWO2016136236A1 (ja) * 2015-02-27 2017-12-07 パナソニックIpマネジメント株式会社 固体電解コンデンサ
WO2018093741A1 (en) 2016-11-15 2018-05-24 Avx Corporation Lead wire configuration for a solid electrolytic capacitor
US10065240B2 (en) * 2014-01-22 2018-09-04 Ningbo Guangbo New Nanomaterials Stock Co., Ltd. Metal powder for 3D printers and preparation method for metal powder
WO2018165065A1 (en) 2017-03-06 2018-09-13 Avx Corporation Solid electrolytic capacitor assembly
WO2019198191A1 (ja) * 2018-04-12 2019-10-17 石原ケミカル株式会社 Ta-Nb合金粉末とその製造方法ならびに固体電解コンデンサ用の陽極素子
WO2019199483A1 (en) 2018-04-13 2019-10-17 Avx Corporation Solid electrolytic capacitor containing a sequential vapor-deposited interior conductive polymer film
DE112019005962T5 (de) 2018-11-29 2021-08-12 Avx Corporation Festelektrolytkondensator, der eine sequentiell aufgedampfte dielektrische Schicht enthält
DE112019006146T5 (de) 2018-12-11 2021-08-26 Avx Corporation Festelektrolytkondensator, der ein intrinsisch leitfähiges Polymer enthält
DE112020002428T5 (de) 2019-05-17 2022-01-27 Avx Corporation Festelektrolytkondensator
DE112020002426T5 (de) 2019-05-17 2022-01-27 Avx Corporation Festelektrolytkondensator
DE112020002422T5 (de) 2019-05-17 2022-02-17 Avx Corporation Delaminierungsresistenter festelektrolytkondensator
DE112020004430T5 (de) 2019-09-18 2022-05-25 KYOCERA AVX Components Corporation Festelektrolytkondensator, der eine Sperrbeschichtung enthält
DE112020004416T5 (de) 2019-09-18 2022-06-15 KYOCERA AVX Components Corporation Festelektrolytkondensator zur Verwendung bei hohen Spannungen
DE112020006028T5 (de) 2019-12-10 2022-10-06 KYOCERA AVX Components Corporation Festelektrolytkondensator, der eine Vorbeschichtung und ein intrinsisch leitfähiges Polymer enthält
DE112020006024T5 (de) 2019-12-10 2022-10-06 KYOCERA AVX Components Corporation Tantalkondensator mit erhöhter Stabilität
DE112021004996T5 (de) 2020-09-23 2023-06-29 KYOCERA AVX Components Corporation Festelektrolytkondensator, der eine deoxidierte Anode enthält
DE112021004949T5 (de) 2020-09-23 2023-07-13 KYOCERA AVX Components Corporation Elektrolytkondensator mit niedriger Induktivität
DE112022000641T5 (de) 2021-01-15 2023-11-02 KYOCERA AVX Components Corporation Festelektrolytkondensator

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381165B2 (en) 2016-05-20 2019-08-13 Avx Corporation Solid electrolytic capacitor for use at high temperatures
CN106270482B (zh) * 2016-08-11 2019-01-04 中国振华(集团)新云电子元器件有限责任公司 钽粉性能改善方法以及该钽粉和该钽粉制备的钽电容器阳极块
US10763046B2 (en) 2016-09-15 2020-09-01 Avx Corporation Solid electrolytic capacitor with improved leakage current
WO2018075327A1 (en) 2016-10-18 2018-04-26 Avx Corporation Solid electrolytic capacitor assembly
US10741333B2 (en) 2016-10-18 2020-08-11 Avx Corporation Solid electrolytic capacitor with improved leakage current
EP3529816A4 (en) 2016-10-18 2020-09-02 AVX Corporation SOLID ELECTROLYTE CAPACITOR WITH IMPROVED PERFORMANCE AT HIGH TEMPERATURES AND VOLTAGES
US10475591B2 (en) 2016-11-15 2019-11-12 Avx Corporation Solid electrolytic capacitor for use in a humid atmosphere
US10643797B2 (en) 2016-11-15 2020-05-05 Avx Corporation Casing material for a solid electrolytic capacitor
WO2019005535A1 (en) 2017-06-29 2019-01-03 Avx Corporation MODULE CONTAINING HERMETICALLY SEALED CAPACITORS
EP3649661A4 (en) 2017-07-03 2021-03-31 AVX Corporation SOLID ELECTROLYTIC CAPACITOR CONTAINING A NANORECOAT
WO2019010157A1 (en) 2017-07-03 2019-01-10 Avx Corporation ASSEMBLY FORMING A SOLID ELECTROLYTE CAPACITOR
US11004615B2 (en) 2017-12-05 2021-05-11 Avx Corporation Solid electrolytic capacitor for use at high temperatures
US11049664B2 (en) 2018-04-13 2021-06-29 Avx Corporation Solid electrolytic capacitor containing a vapor-deposited barrier film
US11056285B2 (en) 2018-04-13 2021-07-06 Avx Corporation Solid electrolytic capacitor containing an adhesive film
CN112136194B (zh) 2018-06-21 2022-05-31 京瓷Avx元器件公司 在高温下具有稳定电性质的固体电解质电容器
EP3834217A4 (en) 2018-08-10 2022-05-11 KYOCERA AVX Components Corporation SOLID ELECTROLYTE CAPACITOR WITH INTRINSICALLY CONDUCTIVE POLYMER
US11114250B2 (en) 2018-08-10 2021-09-07 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
WO2020033817A1 (en) 2018-08-10 2020-02-13 Avx Corporation Solid electrolytic capacitor containing polyaniline
US11081288B1 (en) 2018-08-10 2021-08-03 Avx Corporation Solid electrolytic capacitor having a reduced anomalous charging characteristic
US11380492B1 (en) 2018-12-11 2022-07-05 KYOCERA AVX Components Corporation Solid electrolytic capacitor
US11270847B1 (en) 2019-05-17 2022-03-08 KYOCERA AVX Components Corporation Solid electrolytic capacitor with improved leakage current
US11756742B1 (en) 2019-12-10 2023-09-12 KYOCERA AVX Components Corporation Tantalum capacitor with improved leakage current stability at high temperatures
US11763998B1 (en) 2020-06-03 2023-09-19 KYOCERA AVX Components Corporation Solid electrolytic capacitor
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473009A (en) 1987-09-11 1989-03-17 Showa Denko Kk Production of high purity tantalum or niobium powder
JPH02310301A (ja) 1989-05-24 1990-12-26 Showa Kiyabotsuto Suupaa Metal Kk タンタル粉末及びその製造法
JPH0625701A (ja) 1992-05-04 1994-02-01 Hc Starck Gmbh & Co Kg 微粒子金属粉末
JP2000226607A (ja) * 1999-02-03 2000-08-15 Showa Kyabotto Super Metal Kk タンタル又はニオブ粉末とその製造方法
JP2002134358A (ja) 2000-10-23 2002-05-10 Hitachi Ltd 薄膜コンデンサ及びその製造方法
JP2002206105A (ja) 2000-08-09 2002-07-26 Cabot Supermetal Kk タンタル粉末の製法、タンタル粉末およびタンタル電解コンデンサ
JP2002544375A (ja) 1998-05-06 2002-12-24 エイチ・シー・スタルク・インコーポレーテツド 気体状マグネシウムを用いる酸化物の還元により製造される金属粉末
JP2007335883A (ja) 1997-02-19 2007-12-27 Hc Starck Gmbh タンタル粉末、その製造法およびそれから得られるコンデンサー用焼結アノード

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2445564A1 (de) * 1974-09-24 1976-04-01 Siemens Ag Verfahren zur beschichtung von innenflaechen von hohlkoerpern, insbesondere von rohren
WO2005099936A1 (ja) * 2004-04-15 2005-10-27 Jfe Mineral Company, Ltd. タンタル粉末およびこれを用いた固体電解コンデンサ
JP5697940B2 (ja) * 2010-10-20 2015-04-08 グローバルアドバンストメタルジャパン株式会社 タンタル粉体、その製造方法および脱酸素方法
JP2013021275A (ja) * 2011-07-14 2013-01-31 Elpida Memory Inc 半導体装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473009A (en) 1987-09-11 1989-03-17 Showa Denko Kk Production of high purity tantalum or niobium powder
JPH02310301A (ja) 1989-05-24 1990-12-26 Showa Kiyabotsuto Suupaa Metal Kk タンタル粉末及びその製造法
JPH0625701A (ja) 1992-05-04 1994-02-01 Hc Starck Gmbh & Co Kg 微粒子金属粉末
JP2007335883A (ja) 1997-02-19 2007-12-27 Hc Starck Gmbh タンタル粉末、その製造法およびそれから得られるコンデンサー用焼結アノード
JP2002544375A (ja) 1998-05-06 2002-12-24 エイチ・シー・スタルク・インコーポレーテツド 気体状マグネシウムを用いる酸化物の還元により製造される金属粉末
JP2000226607A (ja) * 1999-02-03 2000-08-15 Showa Kyabotto Super Metal Kk タンタル又はニオブ粉末とその製造方法
JP2002206105A (ja) 2000-08-09 2002-07-26 Cabot Supermetal Kk タンタル粉末の製法、タンタル粉末およびタンタル電解コンデンサ
JP2002134358A (ja) 2000-10-23 2002-05-10 Hitachi Ltd 薄膜コンデンサ及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3009210A4

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10065240B2 (en) * 2014-01-22 2018-09-04 Ningbo Guangbo New Nanomaterials Stock Co., Ltd. Metal powder for 3D printers and preparation method for metal powder
JPWO2016136236A1 (ja) * 2015-02-27 2017-12-07 パナソニックIpマネジメント株式会社 固体電解コンデンサ
US10720283B2 (en) 2015-05-18 2020-07-21 Avx Corporation Solid electrolytic capacitor having a high capacitance
DE102016207610A1 (de) 2015-05-18 2016-11-24 Avx Corporation Festelektrolytkondensator mit hoher Kapazität
DE102016208800A1 (de) 2015-05-29 2016-12-01 Avx Corporation Festelektrolytkondensator mit ultrahoher Kapazität
DE102016208802A1 (de) 2015-05-29 2016-12-01 Avx Corporation Festelektrolytkondensatorbaugruppe zur Verwendung in einer feuchten Atmosphäre
DE102016208807A1 (de) 2015-05-29 2016-12-01 Avx Corporation Festelektrolytkondensatorelement zur Verwendung unter trockenen Bedingungen
DE102016208806A1 (de) 2015-05-29 2016-12-01 Avx Corporation Festelektrolytkondensatorbaugruppe zur Verwendung bei hohen Temperaturen
WO2017127267A1 (en) 2016-01-18 2017-07-27 Avx Corporation Solid electroltyic capacitor with improved leakage current
WO2018093741A1 (en) 2016-11-15 2018-05-24 Avx Corporation Lead wire configuration for a solid electrolytic capacitor
WO2018165065A1 (en) 2017-03-06 2018-09-13 Avx Corporation Solid electrolytic capacitor assembly
WO2019198191A1 (ja) * 2018-04-12 2019-10-17 石原ケミカル株式会社 Ta-Nb合金粉末とその製造方法ならびに固体電解コンデンサ用の陽極素子
WO2019199483A1 (en) 2018-04-13 2019-10-17 Avx Corporation Solid electrolytic capacitor containing a sequential vapor-deposited interior conductive polymer film
DE112019005962T5 (de) 2018-11-29 2021-08-12 Avx Corporation Festelektrolytkondensator, der eine sequentiell aufgedampfte dielektrische Schicht enthält
DE112019006146T5 (de) 2018-12-11 2021-08-26 Avx Corporation Festelektrolytkondensator, der ein intrinsisch leitfähiges Polymer enthält
DE112020002428T5 (de) 2019-05-17 2022-01-27 Avx Corporation Festelektrolytkondensator
DE112020002426T5 (de) 2019-05-17 2022-01-27 Avx Corporation Festelektrolytkondensator
DE112020002422T5 (de) 2019-05-17 2022-02-17 Avx Corporation Delaminierungsresistenter festelektrolytkondensator
DE112020004430T5 (de) 2019-09-18 2022-05-25 KYOCERA AVX Components Corporation Festelektrolytkondensator, der eine Sperrbeschichtung enthält
DE112020004416T5 (de) 2019-09-18 2022-06-15 KYOCERA AVX Components Corporation Festelektrolytkondensator zur Verwendung bei hohen Spannungen
DE112020006028T5 (de) 2019-12-10 2022-10-06 KYOCERA AVX Components Corporation Festelektrolytkondensator, der eine Vorbeschichtung und ein intrinsisch leitfähiges Polymer enthält
DE112020006024T5 (de) 2019-12-10 2022-10-06 KYOCERA AVX Components Corporation Tantalkondensator mit erhöhter Stabilität
DE112021004996T5 (de) 2020-09-23 2023-06-29 KYOCERA AVX Components Corporation Festelektrolytkondensator, der eine deoxidierte Anode enthält
DE112021004949T5 (de) 2020-09-23 2023-07-13 KYOCERA AVX Components Corporation Elektrolytkondensator mit niedriger Induktivität
DE112022000641T5 (de) 2021-01-15 2023-11-02 KYOCERA AVX Components Corporation Festelektrolytkondensator

Also Published As

Publication number Publication date
EP3009210A4 (en) 2017-01-25
EP3009210A1 (en) 2016-04-20
EP3009210B1 (en) 2019-05-22
US20160104580A1 (en) 2016-04-14
JP6141318B2 (ja) 2017-06-07
JPWO2014199480A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6141318B2 (ja) Ta粉末の製造方法およびTa造粒粉の製造方法
JP7432927B2 (ja) 球状粉末含有陽極及びコンデンサ
US6689187B2 (en) Tantalum powder for capacitors
KR101129764B1 (ko) 아산화 니오븀의 제조 방법
JP4773355B2 (ja) ニオブ酸化物及び酸素が低減したニオブ酸化物の製造方法
RU2282264C2 (ru) Способ получения оксида ниобия
JP2005035885A (ja) 亜酸化ニオブ粉末、亜酸化ニオブアノード、および固体電解キャパシタ
JP2002524379A (ja) ある種の金属酸化物を部分的に還元する方法及び酸素が減少した金属酸化物
EP1899093A1 (en) Process for heat treating metal powder and products made from the same
JP2008516432A (ja) 固体電解質コンデンサを製造するためのタンタル粉末
JP6353912B2 (ja) Ta−Nb合金粉末および固体電解コンデンサ用陽極素子
MX2007015004A (es) Capacitor.
US7824452B2 (en) Powder modification in the manufacture of solid state capacitor anodes
JP2013170303A (ja) ニッケル合金粉末およびその製造方法
WO2014104178A1 (ja) ニオブコンデンサ陽極用化成体及びその製造方法
US9865402B2 (en) Anode body for tungsten capacitors
JP2002134368A (ja) コンデンサ用粉体、焼結体及びその焼結体を用いたコンデンサ
JP6258222B2 (ja) ニオブコンデンサ陽極用化成体及びその製造方法
JP2024018489A (ja) ニッケル合金粉末及び、ニッケル合金粉末の製造方法
JP2024018487A (ja) ニッケル合金粉末及び、ニッケル合金粉末の製造方法
WO2019198191A1 (ja) Ta-Nb合金粉末とその製造方法ならびに固体電解コンデンサ用の陽極素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014547586

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886682

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14895187

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013886682

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE