DE112019006146T5 - Festelektrolytkondensator, der ein intrinsisch leitfähiges Polymer enthält - Google Patents

Festelektrolytkondensator, der ein intrinsisch leitfähiges Polymer enthält Download PDF

Info

Publication number
DE112019006146T5
DE112019006146T5 DE112019006146.1T DE112019006146T DE112019006146T5 DE 112019006146 T5 DE112019006146 T5 DE 112019006146T5 DE 112019006146 T DE112019006146 T DE 112019006146T DE 112019006146 T5 DE112019006146 T5 DE 112019006146T5
Authority
DE
Germany
Prior art keywords
electrolytic capacitor
solid electrolytic
optionally substituted
capacitor according
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE112019006146.1T
Other languages
English (en)
Inventor
Miloslav Uher
Kiyofumi Aoki
Pavel Kucharczyk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Avx Components Corp N D Ges Us
Original Assignee
AVX Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVX Corp filed Critical AVX Corp
Publication of DE112019006146T5 publication Critical patent/DE112019006146T5/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Abstract

Ein Festelektrolytkondensator, der ein Kondensatorelement enthält, wird bereitgestellt. Das Kondensatorelement enthält einen gesinterten porösen Anodenkörper, ein Dielektrikum, das den Anodenkörper bedeckt, einen festen Elektrolyten, der das Dielektrikum bedeckt, und eine externe Beschichtung, die den festen Elektrolyten bedeckt und leitfähige Polymerteilchen umfasst. Der feste Elektrolyt umfasst ein leitfähiges Polymer, das Thiophen-Repetiereinheiten einer bestimmten enthält.

Description

  • Querverweis auf verwandte Anmeldung
  • Die vorliegende Anmeldung beansprucht die Priorität der am 11. Dezember 2018 eingereichten vorläufigen US-Patentanmeldung Serial-Nr. 62/772,916 , auf die in ihrer Gesamtheit hiermit ausdrücklich Bezug genommen wird.
  • Hintergrund der Erfindung
  • Festelektrolytkondensatoren (z.B. Tantalkondensatoren) werden typischerweise dadurch hergestellt, dass man ein Metallpulver (z.B. Tantal) um einen Metallanschlussdraht herum presst, das gepresste Teil sintert, die gesinterte Anode anodisiert und danach einen festen Elektrolyten aufträgt. Aufgrund ihres vorteilhaften niedrigen Äquivalentserienwiderstands („ESR“) und des „nichtbrennenden/nichtentzündlichen“ Fehlermechanismus werden häufig intrinsisch leitfähige Polymere als fester Elektrolyt eingesetzt. Zum Beispiel können solche Elektrolyte durch chemische in-situ-Polymerisation eines 3,4-Dioxythiophen-Monomers („EDOT“) in Gegenwart eines Katalysators und eines Dotierungsmittels gebildet werden. Herkömmliche Kondensatoren, in denen in-situ-polymerisierte Polymere eingesetzt werden, weisen jedoch häufig einen relativ hohen Leckstrom („DCL“) auf und versagen bei hohen Spannungen, wie sie beim schnellen Einschalten oder bei Betriebsstromspitzen auftreten. In einem Versuch, diese Probleme zu überwinden, werden auch Dispersionen eingesetzt, die aus einem Komplex von Poly(3,4-ethylendioxythiophen) und Polystyrolsulfonsäure („PEDOT:PSS“) gebildet werden. Während die PEDOT:PSS-Dispersionen zu verbesserten Leckstromwerten führen können, bleiben jedoch andere Probleme bestehen. Ein Problem bei Kondensatoren auf Polymeraufschlämmungsbasis besteht zum Beispiel darin, dass sie nur einen relativ geringen Prozentsatz ihrer Nasskapazität erreichen können, was bedeutet, dass sie in Gegenwart von Luftfeuchtigkeit einen relativ großen Kapazitätsverlust und/oder -fluktuation aufweisen.
  • Daher besteht ein Bedürfnis nach einem verbesserten Festelektrolytkondensator, der relativ stabile elektrische Eigenschaften aufweist.
  • Kurzbeschreibung der Erfindung
  • Gemäß einer Ausführungsform der vorliegenden Erfindung wird ein Festelektrolytkondensator offenbart, der ein Kondensatorelement enthält. Das Kondensatorelement enthält einen gesinterten porösen Anodenkörper, ein Dielektrikum, das den Anodenkörper bedeckt, einen festen Elektrolyten, der das Dielektrikum bedeckt, und eine externe Polymerbeschichtung, die den festen Elektrolyten bedeckt und leitfähige Polymerteilchen umfasst. Der feste Elektrolyt umfasst ein leitfähiges Polymer, das Thiophen-Repetiereinheiten der folgenden allgemeinen Formel (1) und/oder (2) enthält:
    Figure DE112019006146T5_0001
    Figure DE112019006146T5_0002
    wobei
    X1 und X2 unabhängig Wasserstoff, ein gegebenenfalls substituiertes Alkyl (z.B. Alkyl mit 1 bis 12 Kohlenstoffatomen), gegebenenfalls substituiertes Alkoxy (z.B. Alkoxy mit 1 bis 12 Kohlenstoffatomen), gegebenenfalls substituiertes Alkylenoxid (z.B. mit 1 bis 12 Kohlenstoffatomen), gegebenenfalls substituiertes Thiocyano, gegebenenfalls substituiertes Thioalkyl oder gegebenenfalls substituiertes Amino sind oder wobei X1 und X2 unter Bildung eines gegebenenfalls substituierten Alkylendioxy (z.B. mit 1 bis 12 Kohlenstoffatomen) oder einer gegebenenfalls substituierten Alkylendithiogruppe (z.B. mit 1 bis 12 Kohlenstoffatomen) miteinander kombiniert sind; und
    R ein gegebenenfalls substituiertes Alkyl (z.B. Alkyl mit 1 bis 12 Kohlenstoffatomen), gegebenenfalls substituiertes Alkoxy (z.B. Alkoxy mit 1 bis 12 Kohlenstoffatomen), gegebenenfalls substituiertes Alkylenoxid (z.B. mit 1 bis 12 Kohlenstoffatomen), gegebenenfalls substituiertes Aryl (z.B. Phenyl), gegebenenfalls substituierter Heterocyclus, gegebenenfalls substituierte kondensierte Ringgruppe oder ein Salz oder eine Säure eines der obigen ist.
  • Weitere Merkmale und Aspekte der vorliegenden Erfindung sind im Folgenden ausführlicher dargelegt.
  • Figurenliste
  • Im Rest der Beschreibung und unter Bezugnahme auf die Begleitzeichnungen ist eine vollständige und nacharbeitbare Offenbarung der vorliegenden Erfindung einschließlich ihrer besten Realisierung für den Fachmann insbesondere dargelegt; dabei sind:
    • 1 eine Querschnittsansicht einer Ausführungsform eines Kondensators der Baugruppe der vorliegenden Erfindung;
    • 2 eine Querschnittsansicht einer anderen Ausführungsform eines Kondensators der Baugruppe der vorliegenden Erfindung;
    • 3 eine Querschnittsansicht noch einer anderen Ausführungsform eines Kondensators der Baugruppe der vorliegenden Erfindung; und
    • 4 eine Draufsicht auf noch eine weitere Ausführungsform eines Kondensators der Baugruppe der vorliegenden Erfindung.
  • Bei mehrfacher Verwendung von Bezugszeichen in der vorliegenden Beschreibung und den Zeichnungen sollen diese dieselben oder analoge Merkmale oder Elemente der vorliegenden Erfindung repräsentieren.
  • Ausführliche Beschreibung von repräsentativen Ausführungsformen
  • Der Fachmann sollte sich darüber im Klaren sein, dass die vorliegende Diskussion nur eine Beschreibung von beispielhaften Ausführungsformen ist und die breiteren Aspekte der vorliegenden Erfindung nicht einschränken soll, wobei diese breiteren Aspekte in der beispielhaften Konstruktion verkörpert sind.
  • Allgemein gesagt betrifft die vorliegende Erfindung einen Festelektrolytkondensator, der ein Kondensatorelement enthält, das einen porösen Anodenkörper, ein Dielektrikum, das den Anodenkörper bedeckt, einen festen Elektrolyten, der das Dielektrikum bedeckt, und eine externe Polymerbeschichtung, die leitfähige Polymerteilchen enthält, enthält. Um dazu beizutragen, die Verwendung des Kondensators in Hochspannungsanwendungen zu erleichtern, umfasst der feste Elektrolyt ein leitfähiges Polymer, das Thiophen-Repetiereinheiten der folgenden allgemeinen Formel (1) und/oder (2) enthält:
    Figure DE112019006146T5_0003
    Figure DE112019006146T5_0004
    wobei
    X1 und X2 unabhängig Wasserstoff, ein gegebenenfalls substituiertes Alkyl (z.B. Alkyl mit 1 bis 12 Kohlenstoffatomen), gegebenenfalls substituiertes Alkoxy (z.B. Alkoxy mit 1 bis 12 Kohlenstoffatomen), gegebenenfalls substituiertes Alkylenoxid (z.B. mit 1 bis 12 Kohlenstoffatomen), gegebenenfalls substituiertes Thiocyano, gegebenenfalls substituiertes Thioalkyl oder gegebenenfalls substituiertes Amino sind oder wobei X1 und X2 unter Bildung eines gegebenenfalls substituierten Alkylendioxy (z.B. mit 1 bis 12 Kohlenstoffatomen) oder einer gegebenenfalls substituierten Alkylendithiogruppe (z.B. mit 1 bis 12 Kohlenstoffatomen) miteinander kombiniert sind; und
    R ein gegebenenfalls substituiertes Alkyl (z.B. Alkyl mit 1 bis 12 Kohlenstoffatomen), gegebenenfalls substituiertes Alkoxy (z.B. Alkoxy mit 1 bis 12 Kohlenstoffatomen), gegebenenfalls substituiertes Alkylenoxid (z.B. mit 1 bis 12 Kohlenstoffatomen), gegebenenfalls substituiertes Aryl (z.B. Phenyl), gegebenenfalls substituierter Heterocyclus, gegebenenfalls substituierte kondensierte Ringgruppe oder ein Salz oder eine Säure eines der obigen ist.
  • Ohne uns auf eine bestimmte Theorie festlegen zu wollen, glauben wir, dass ein solches Polymer dazu beitragen kann, bestimmte elektrische Eigenschaften des resultierenden Kondensators zu verbessern. Der Kondensator kann zum Beispiel eine relativ hohe „Durchschlagspannung“ (Spannung, bei der der Kondensator versagt) aufweisen, wie etwa 50 Volt oder mehr, in einigen Ausführungsformen etwa 70 Volt oder mehr, in einigen Ausführungsformen etwa 85 Volt oder mehr, in einigen Ausführungsformen etwa 90 Volt oder mehr, in einigen Ausführungsformen etwa 95 Volt oder mehr und in einigen Ausführungsformen etwa 100 Volt bis etwa 300 Volt, aufweisen, welche dadurch bestimmt wird, dass man die angelegte Spannung in Schritten von 3 Volt erhöht, bis der Leckstrom 1 mA erreicht. Ebenso kann der Kondensator auch in der Lage sein, relativ hohe Spitzenströme auszuhalten, die in Hochspannungsanwendungen ebenfalls üblich sind. Der maximale Spitzenstrom kann zum Beispiel etwa 100 Ampere oder mehr, in einigen Ausführungsformen etwa 200 Ampere oder mehr und in einigen Ausführungsformen etwa 300 Ampere bis etwa 800 Ampere betragen. Der Kondensator kann auch einen hohen Prozentanteil seiner Feuchtkapazität aufweisen, was ihn in die Lage versetzt, in Gegenwart von Luftfeuchtigkeit nur einen geringen Kapazitätsverlust und/oder Fluktuation aufzuweisen. Dieses Leistungsmerkmal wird durch die „Kapazitätsrückbildung“ quantifiziert, die durch die Gleichung R u ¨ ckbildung = ( Trockenkapazit a ¨ t / Feuchtkapazit a ¨ t ) × 100
    Figure DE112019006146T5_0005
    bestimmt wird.
  • Der Kondensator kann eine Kapazitätsrückbildung von etwa 90% oder mehr, in einigen Ausführungsformen etwa 92% oder mehr und in einigen Ausführungsformen etwa 93% bis 100% aufweisen. Die Trockenkapazität kann etwa 1 Millifarad pro Quadratzentimeter („mF/cm2“) oder mehr, in einigen Ausführungsformen etwa 2 mF/cm2 oder mehr, in einigen Ausführungsformen etwa 5 bis etwa 50 mF/cm2 und in einigen Ausführungsformen etwa 8 bis etwa 20 mF/cm2 betragen, gemessen bei einer Frequenz von 120 Hz.
  • Der Kondensator kann auch andere verbesserte elektrische Eigenschaften aufweisen. Zum Beispiel kann der Kondensator, nachdem er während einer Zeitdauer von etwa 30 Minuten bis etwa 20 Stunden, in einigen Ausführungsformen etwa 1 Stunde bis etwa 18 Stunden und in einigen Ausführungsformen etwa 4 Stunden bis etwa 16 Stunden einer angelegten Spannung (z.B. 120 Volt) ausgesetzt war, einen Leckstrom („DCL“) von nur etwa 100 Mikroampere („µA“) oder weniger, in einigen Ausführungsformen etwa 70 µA oder weniger und in einigen Ausführungsformen etwa 1 bis etwa 50 µA aufweisen. Bemerkenswerterweise kann der Kondensator auch unter trockenen Bedingungen, wie es oben beschrieben ist, solche niedrigen DCL-Werte aufweisen.
  • Andere elektrische Eigenschaften des Kondensators können ebenfalls gut sein und unter verschiedenen Bedingungen stabil bleiben. Zum Beispiel kann der Kondensator einen relativ niedrigen äquivalenten Serienwiderstand („ESR“) aufweisen, wie etwa 200 Milliohm, in einigen Ausführungsformen weniger als etwa 150 Milliohm, in einigen Ausführungsformen etwa 0,01 bis etwa 125 Milliohm und in einigen Ausführungsformen etwa 0,1 bis etwa 100 Milliohm, gemessen bei einer Arbeitsfrequenz von 100 kHz und einer Temperatur von 23 °C. Der Kondensator kann auch eine Trockenkapazität von etwa 30 Nanofarad pro Quadratzentimeter („nF/cm2“) oder mehr, in einigen Ausführungsformen etwa 100 nF/cm2 oder mehr, in einigen Ausführungsformen etwa 200 bis etwa 3000 nF/cm2 und in einigen Ausführungsformen etwa 400 bis etwa 2000 nF/cm2 aufweisen, gemessen bei einer Frequenz von 120 Hz und einer Temperatur von 23 °C. Bemerkenswerterweise können solche elektrischen Eigenschaften (z.B. ESR und/oder Kapazität) selbst bei hohen Temperaturen und/oder unter trockenen Bedingungen, wie es oben erwähnt ist, stabil bleiben. Zum Beispiel kann der Kondensator auch dann einen ESR und/oder Kapazitätswert innerhalb der oben genannten Bereiche aufweisen, wenn er über eine erhebliche Zeitdauer, wie etwa 100 Stunden oder mehr, in einigen Ausführungsformen etwa 150 Stunden bis etwa 3000 Stunden und in einigen Ausführungsformen etwa 200 Stunden bis etwa 2500 Stunden (z.B. 240 Stunden) einer Temperatur von etwa 80°C oder mehr, in einigen Ausführungsformen etwa 100°C bis etwa 150 °C und in einigen Ausführungsformen etwa 105°C bis etwa 130 °C (z.B. 105°C oder 125 °C) ausgesetzt war. In einer Ausführungsform zum Beispiel beträgt das Verhältnis des ESR und/oder des Kapazitätswerts des Kondensators, nachdem er 240 Stunden lang der hohen Temperatur (z.B. 125°C) ausgesetzt war, zu dem anfänglichen ESR und/oder Kapazitätswert des Kondensators (z.B. bei 23°C) etwa 2,0 oder weniger, in einigen Ausführungsformen etwa 1,5 oder weniger und in einigen Ausführungsformen 1,0 bis etwa 1,3.
  • Es wird auch vermutet, dass der Verlustfaktor des Kondensators auf relativ niedrigen Werten gehalten werden kann. Der Verlustfaktor bezieht sich allgemein auf Verluste, die in dem Kondensator auftreten, und wird gewöhnlich als Prozentsatz der idealen Kondensatorleistung ausgedrückt. Zum Beispiel beträgt der Verlustfaktor des Kondensators typischerweise etwa 250% oder weniger, in einigen Ausführungsformen etwa 200% oder weniger und in einigen Ausführungsformen etwa 1% bis etwa 180%, bestimmt bei einer Frequenz von 120 Hz.
  • Verschiedene Ausführungsformen der vorliegenden Erfindung werden nun ausführlicher beschrieben.
  • Kondensatorelement
  • Anodenkörper
  • Das Kondensatorelement umfasst eine Anode, die ein Dielektrikum enthält, das auf einem gesinterten porösen Körper gebildet ist. Der poröse Anodenkörper kann aus einem Pulver gebildet sein, das ein Ventilmetall (d.h. ein Metall, das zur Oxidation befähigt ist) oder eine auf einem Ventilmetall basierende Verbindung, wie Tantal, Niob, Aluminium, Hafnium, Titan, Legierungen davon, Oxide davon, Nitride davon usw. enthält. Das Pulver ist typischerweise durch ein Reduktionsverfahren gebildet, bei dem ein Tantalsalz (z.B. Kaliumfluorotantalat (K2TaF7), Natriumfluorotantalat (Na2TaF7), Tantalpentachlorid (TaCl5) usw.) mit einem Reduktionsmittel umgesetzt wird, gebildet werden. Das Reduktionsmittel kann in Form einer Flüssigkeit, eines Gases (z.B. Wasserstoff) oder eines Feststoffs, wie eines Metalls (z.B. Natrium), einer Metalllegierung oder eines Metallsalzes, bereitgestellt werden. In einer Ausführungsform zum Beispiel kann ein Tantalsalz (z.B. TaCl5) auf eine Temperatur von etwa 900°C bis etwa 2000°C, in einigen Ausführungsformen etwa 1000°C bis etwa 1800°C und in einigen Ausführungsformen etwa 1100°C bis etwa 1600°C erhitzt werden, um einen Dampf zu bilden, der in Gegenwart eines gasförmigen Reduktionsmittels (z.B. Wasserstoff) reduziert werden kann. Zusätzliche Einzelheiten zu einer solchen Reduktionsreaktion können in WO 2014/199480 (Maeshima et al.) beschrieben werden. Nach der Reduktion kann das Produkt abgekühlt, zerkleinert und gewaschen werden, wobei ein Pulver entsteht.
  • Die spezifische Ladung des Pulvers variiert typischerweise je nach gewünschter Anwendung von etwa 2000 bis etwa 600 000 Mikrofarad mal Volt pro Gramm („µF·V/g“). Zum Beispiel kann in bestimmten Ausführungsformen ein Pulver mit hoher Ladung eingesetzt werden, das eine spezifische Ladung von etwa 100 000 bis etwa 600 000 µF·V/g, in einigen Ausführungsformen etwa 120 000 bis etwa 500 000 µF·V/g und in einigen Ausführungsformen etwa 150 000 bis etwa 400 000 µF·V/g aufweist. In anderen Ausführungsformen kann ein Pulver mit niedriger Ladung eingesetzt werden, das eine spezifische Ladung von etwa 2000 bis etwa 100 000 µF·V/g, in einigen Ausführungsformen etwa 5000 bis etwa 80 000 µF·V/g und in einigen Ausführungsformen etwa 10 000 bis etwa 70 000 µF·V/g aufweist. Wie in der Technik bekannt ist, kann die spezifische Ladung dadurch bestimmt werden, dass man die Kapazität mit der eingesetzten Anodisierungsspannung multipliziert und dann dieses Produkt durch das Gewicht des anodisierten Elektrodenkörpers dividiert.
  • Das Pulver kann ein rieselfähiges, feinteiliges Pulver sein, das primäre Teilchen enthält. Die primären Teilchen des Pulvers weisen im Allgemeinen eine mediane Größe (D50) von etwa 5 bis etwa 500 Nanometer, in einigen Ausführungsformen etwa 10 bis etwa 400 Nanometer und in einigen Ausführungsformen etwa 20 bis etwa 250 Nanometer auf, bestimmt unter Verwendung eines von der Beckman Coulter Corporation (z.B. LS-230) hergestellten Laser-Teilchengrößenverteilungsanalysegeräts, gegebenenfalls nachdem man die Teilchen 70 Sekunden lang einer Ultraschallschwingung ausgesetzt hat. Die primären Teilchen weisen typischerweise eine dreidimensionale granuläre Form (z.B. sphärolithisch oder winklig) auf. Solche Teilchen weisen typischerweise ein relativ geringes „Aspektverhältnis“ auf, bei dem es sich um den mittleren Durchmesser oder die mittlere Breite der Teilchen, dividiert durch die mittlere Dicke („D/T“), handelt. Zum Beispiel kann das Aspektverhältnis der Teilchen etwa 4 oder weniger, in einigen Ausführungsformen etwa 3 oder weniger und in einigen Ausführungsformen etwa 1 bis etwa 2 betragen. Neben primären Teilchen kann das Pulver auch andere Typen von Teilchen enthalten, wie sekundäre Teilchen, die durch Aggregation (oder Agglomeration) der primären Teilchen entstehen. Solche sekundären Teilchen können eine mediane Größe (D50) von etwa 1 bis etwa 500 Mikrometer und in einigen Ausführungsformen etwa 10 bis etwa 250 Mikrometer aufweisen.
  • Die Agglomeration der Teilchen kann durch Erhitzen der Teilchen und/oder durch Verwendung eines Bindemittels erfolgen. Zum Beispiel kann eine Agglomeration bei einer Temperatur von etwa 0 °C bis etwa 40°C, in einigen Ausführungsformen etwa 5 °C bis etwa 35°C und in einigen Ausführungsformen etwa 15°C bis etwa 30°C erfolgen. Zu den geeigneten Bindemitteln gehören zum Beispiel etwa Polyvinylbutyral, Polyvinylacetat, Polyvinylalkohol, Polyvinylpyrrolidon, Cellulosepolymere, wie Carboxymethylcellulose, Methylcellulose, Ethylcellulose, Hydroxyethylcellulose und Methylhydroxyethylcellulose, ataktisches Polypropylen, Polyethylen, Polyethylenglycol (z.B. Carbowax von Dow Chemical Co.), Polystyrol, Poly(butadien/styrol); Polyamide, Polyimide und Polyacrylamide, hochmolekulare Polyether; Copolymere von Ethylenoxid und Propylenoxid; Fluorpolymere, wie Polytetrafluorethylen, Polyvinylidenfluorid und Fluorolefin-Copolymere, Acrylpolymere, wie Natriumpolyacrylat, Poly(niederalkylacrylate), Poly(niederalkylmethacrylate) und Copolymere von Niederalkylacrylaten und -methacrylaten; sowie Fettsäuren und Wachse, wie Stearin- und andere Seifenfettsäuren, Pflanzenwachs, Mikrowachse (gereinigte Paraffine) usw.
  • Das resultierende Pulver kann mit Hilfe einer beliebigen herkömmlichen Pulverpressvorrichtung unter Bildung eines Presslings kompaktiert werden. Zum Beispiel kann eine Pressform eingesetzt werden, bei der es sich um eine Einplatz-Kompaktierpresse handelt, die eine Matrize und einen oder mehrere Stempel enthält. Alternativ dazu können auch Kompaktierpressformen des Ambosstyps verwendet werden, die nur eine Matrize und einen einzigen Unterstempel verwenden. Einplatz-Kompaktierpressformen sind in mehreren Grundtypen erhältlich, wie Nocken-, Kniehebel- und Exzenter- oder Kurbelpressen mit unterschiedlichen Fähigkeiten, wie einfach wirkend, doppelt wirkend, Schwebemantelmatrize, bewegliche Werkzeugaufspannplatte, Gegenstempel, Schnecke, Schlag, Heißpressen, Prägen oder Kalibrieren. Das Pulver kann um einen Anodenanschluss herum kompaktiert werden, der in Form eines Drahtes, Bleches usw. vorliegen kann. Der Anschluss kann in einer Längsrichtung von dem Anodenkörper ausgehen und kann aus irgendeinem elektrisch leitfähigen Material, wie Tantal, Niob, Aluminium, Hafnium, Titan usw. sowie elektrisch leitfähigen Oxiden und/oder Nitriden davon bestehen. Die Verbindung des Anschlusses zum Anodenkörper kann auch mit Hilfe anderer bekannter Techniken erreicht werden, wie durch Schweißen des Anschlusses an den Körper oder durch Einbetten desselben in den Anodenkörper während der Bildung (z.B. vor dem Kompaktieren und/oder Sintern).
  • Nach dem Pressen kann gegebenenfalls vorhandenes Bindemittel entfernt werden, indem man den Pressling mehrere Minuten lang im Vakuum auf eine bestimmte Temperatur (z.B. etwa 150°C bis etwa 500°C) erhitzt. Alternativ dazu kann das Bindemittel auch entfernt werden, indem man den Pressling mit einer wässrigen Lösung in Kontakt bringt, wie es im US-Patent Nr. 6,197,252 (Bishop et al.) beschrieben ist. Danach wird der Pressling unter Bildung einer porösen zusammenhängenden Masse gesintert. Der Pressling wird typischerweise bei einer Temperatur von etwa 700°C bis etwa 1600°C, in einigen Ausführungsformen etwa 800°C bis etwa 1500°C und in einigen Ausführungsformen etwa 900 °C bis etwa 1200 °C über einen Zeitraum von etwa 5 Minuten bis etwa 100 Minuten und in einigen Ausführungsformen etwa 8 Minuten bis etwa 15 Minuten gesintert. Dies kann in einem oder mehreren Schritten erfolgen. Falls gewünscht, kann das Sintern in einer Atmosphäre erfolgen, die die Übertragung von Sauerstoffatomen zum Anodenkörper einschränkt. Zum Beispiel kann das Sintern in einer reduzierenden Atmosphäre, wie in einem Vakuum, Inertgas, Wasserstoff usw., erfolgen. Die reduzierende Atmosphäre kann unter einem Druck von etwa 10 Torr bis etwa 2000 Torr, in einigen Ausführungsformen etwa 100 Torr bis etwa 1000 Torr und in einigen Ausführungsformen etwa 100 Torr bis etwa 930 Torr stehen. Gemische von Wasserstoff und anderen Gasen (z.B. Argon oder Stickstoff) können ebenfalls eingesetzt werden.
  • Dielektrikum
  • Die Anode ist auch mit einem Dielektrikum beschichtet. Wie oben angemerkt, wird das Dielektrikum dadurch gebildet, dass man die gesinterte Anode anodisch oxidiert („anodisiert“), so dass über und/oder innerhalb der Anode eine dielektrische Schicht gebildet wird. Zum Beispiel kann eine Anode aus Tantal (Ta) zu Tantalpentoxid (Ta2O5) anodisiert werden.
  • Typischerweise wird die Anodisierung durchgeführt, indem man zunächst einen Elektrolyten auf die Anode aufträgt, etwa durch Eintauchen der Anode in den Elektrolyten. Der Elektrolyt liegt im Allgemeinen in Form einer Flüssigkeit vor, wie einer Lösung (z.B. wässrig oder nichtwässrig), Dispersion, Schmelze usw. In dem Elektrolyten wird im Allgemeinen ein Lösungsmittel eingesetzt, wie Wasser (z.B. deionisiertes Wasser), Ether (z.B. Diethylether und Tetrahydrofuran), Glycole (z.B. Ethylenglycol, Propylenglycol usw.), Alkohole (z.B. Methanol, Ethanol, n-Propanol, Isopropanol und Butanol), Triglyceride, Ketone (z.B. Aceton, Methylethylketon und Methylisobutylketon); Ester (z.B. Ethylacetat, Butylacetat, Diethylenglycoletheracetat und Methoxypropylacetat), Amide (z.B. Dimethylformamid, Dimethylacetamid, Dimethylcapryl-/caprinfettsäureamid und N-Alkylpyrrolidone), Nitrile (z.B. Acetonitril, Propionitril, Butyronitril und Benzonitril), Sulfoxide oder Sulfone (z.B. Dimethylsulfoxid (DMSO) und Sulfolan) usw. Das oder die organischen Lösungsmittel können etwa 50 Gew.-% bis etwa 99,9 Gew.-%, in einigen Ausführungsformen etwa 750 Gew.-% bis etwa 99 Gew.-% und in einigen Ausführungsformen etwa 80 Gew.-% bis etwa 95 Gew.-% des Elektrolyten aus. Obwohl es nicht unbedingt notwendig ist, ist die Verwendung eines wässrigen Lösungsmittels (z.B. Wasser) häufig wünschenswert, um die Bildung eines Oxids zu erleichtern. Tatsächlich kann Wasser etwa 1 Gew.-% oder mehr, in einigen Ausführungsformen etwa 10 Gew.-% oder mehr, in einigen Ausführungsformen etwa 50 Gew.-% oder mehr, in einigen Ausführungsformen etwa 70 Gew.-% oder mehr und in einigen Ausführungsformen etwa 90 Gew.-% bis 100 Gew.-% des bzw. der in dem Elektrolyten verwendeten Lösungsmittel ausmachen.
  • Der Elektrolyt ist elektrisch leitfähig und kann eine elektrische Leitfähigkeit von etwa 1 Millisiemens pro Zentimeter („mS/cm“) oder mehr, in einigen Ausführungsformen etwa 30 mS/cm oder mehr und in einigen Ausführungsformen etwa 40 mS/cm bis etwa 100 mS/cm aufweisen, bestimmt bei einer Temperatur von 25 °C. Um die elektrische Leitfähigkeit des Elektrolyten zu erhöhen, wird im Allgemeinen eine ionische Verbindung eingesetzt, die in dem Lösungsmittel unter Bildung von Ionen dissoziieren kann. Geeignete ionische Verbindungen für diesen Zweck sind zum Beispiel etwa Säuren, wie Salpetersäure, Schwefelsäure, Phosphorsäure, Polyphosphorsäure, Borsäure, Boronsäure usw..; organische Säuren einschließlich Carbonsäuren, wie Acrylsäure, Methacrylsäure, Malonsäure, Bernsteinsäure, Salicylsäure, Sulfosalicylsäure, Adipinsäure, Maleinsäure, Äpfelsäure, Ölsäure, Gallussäure, Weinsäure, Zitronensäure, Ameisensäure, Essigsäure, Glycolsäure, Oxalsäure, Propionsäure, Phthalsäure, Isophthalsäure, Glutarsäure, Gluconsäure, Milchsäure, Asparaginsäure, Glutaminsäure, Itaconsäure, Trifluoressigsäure, Barbitursäure, Zimtsäure, Benzoesäure, 4-Hydroxybenzosäure, Aminobenzoesäure usw.; Sulfonsäuren, wie Methansulfonsäure, Benzolsulfonsäure, Toluolsulfonsäure, Trifluormethansulfonsäure, Styrolsulfonsäure, Naphthalindisulfonsäure, Hydroxybenzolsulfonsäure, Dodecylsulfonsäure, Dodecylbenzolsulfonsäure usw.; polymere Säuren, wie Polyacryl- oder Polymethacrylsäure und Copolymere davon (z.B. Maleinsäure-Acrylsäure-, Sulfonsäure-Acrylsäure- und Styrol-Acrylsäure-Copolymer), Carageensäure, Carboxymethylcellulose, Alginsäure usw.; und so fort. Die Konzentration an ionischen Verbindungen wird so gewählt, dass man die gewünschte elektrische Leitfähigkeit erreicht. Zum Beispiel kann eine Säure (z.B. Phosphorsäure) etwa 0,01 Gew.-% bis etwa 5 Gew.-%, in einigen Ausführungsformen etwa 0,05 Gew.-% bis etwa 0,8 Gew.-% und in einigen Ausführungsformen etwa 0,1 Gew.-% bis etwa 0,5 Gew.-% des Elektrolyten ausmachen. Falls gewünscht, können auch Gemische von ionischen Verbindungen in dem Elektrolyten eingesetzt werden.
  • Zur Bildung des Dielektrikums wird typischerweise ein Strom durch den Elektrolyten geleitet, während er sich in Kontakt mit dem Anodenkörper befindet. Der Wert der Formierungsspannung bewirkt die Dicke der dielektrischen Schicht. Zum Beispiel kann die Stromquelle zunächst im galvanostatischen Modus betrieben werden, bis die erforderliche Spannung erreicht ist. Danach kann die Stromquelle auf einen potentiostatischen Modus umgeschaltet werden, um zu gewährleisten, dass die gewünschte Dicke des Dielektrikums über der gesamten Oberfläche der Anode gebildet wird.
  • Selbstverständlich können auch andere bekannte Verfahren eingesetzt werden, wie potentiostatische Impuls- oder Schrittverfahren. Die Spannung, bei der die anodische Oxidation stattfindet, liegt typischerweise im Bereich von etwa 4 bis etwa 250 V und in einigen Ausführungsformen etwa 5 bis etwa 200 V und in einigen Ausführungsformen etwa 10 bis etwa 150 V. Während der Oxidation kann der Elektrolyt auf einer erhöhten Temperatur gehalten werden, wie etwa 30 °C oder mehr, in einigen Ausführungsformen etwa 40 °C bis etwa 200 °C und in einigen Ausführungsformen etwa 50 °C bis etwa 100 °C. Die anodische Oxidation kann auch bei Umgebungstemperatur oder darunter durchgeführt werden. Die resultierende dielektrische Schicht kann auf einer Oberfläche der Anode und innerhalb ihrer Poren gebildet werden.
  • Obwohl es nicht erforderlich ist, kann die dielektrische Schicht in bestimmten Ausführungsformen insofern eine über die gesamte Anode unterschiedliche Dicke besitzen, als sie einen ersten Teil, der eine äußere Oberfläche der Anode bedeckt, und einen zweiten Teil, der eine innere Oberfläche der Anode bedeckt, besitzt. In solchen Ausführungsformen ist der erste Teil selektiv so geformt, dass seine Dicke größer ist als die des zweiten Teils. Man sollte sich jedoch darüber im Klaren sein, dass die Dicke der dielektrischen Schicht nicht innerhalb eines bestimmten Bereichs gleichmäßig zu sein braucht. Bestimmte Teile der dielektrischen Schicht, die an die äußere Oberfläche angrenzen, können zum Beispiel tatsächlich dünner sein als bestimmte Teile der Schicht auf der inneren Oberfläche und umgekehrt. Dennoch kann die dielektrische Schicht auch so gebildet sein, dass wenigstens ein Teil der Schicht auf der äußeren Oberfläche eine größere Dicke hat als wenigstens ein Teil auf der inneren Oberfläche. Obwohl der genaue Unterschied dieser Dicken je nach der besonderen Anwendung variieren kann, beträgt das Verhältnis der Dicke des ersten Teils zur Dicke des zweiten Teils typischerweise etwa 1,2 bis etwa 40, in einigen Ausführungsformen etwa 1,5 bis etwa 25 und in einigen Ausführungsformen etwa 2 bis etwa 20.
  • Zur Bildung einer dielektrischen Schicht mit einer unterschiedlichen Dicke wird im Allgemeinen ein Mehrstufenverfahren eingesetzt. In jeder Stufe des Verfahrens wird die gesinterte Anode unter Bildung einer dielektrischen Schicht (z.B. Tantalpentoxid) anodisch oxidiert („anodisiert“). Während des ersten Stadiums der Anodisierung wird typischerweise eine relativ kleine Formierungsspannung eingesetzt, um zu gewährleisten, dass die gewünschte Dicke des Dielektrikums für den inneren Bereich erreicht wird, wie Formierungsspannungen im Bereich von etwa 1 bis etwa 90 Volt, in einigen Ausführungsformen etwa 2 bis etwa 50 Volt und in einigen Ausführungsformen etwa 5 bis etwa 20 Volt. Danach kann der gesinterte Körper dann in einem zweiten Stadium des Verfahrens anodisch oxidiert werden, um die Dicke des Dielektrikums auf das gewünschte Niveau zu erhöhen. Dies wird im Allgemeinen dadurch erreicht, dass in einem Elektrolyten bei einer höheren Spannung anodisiert wird, als sie während des ersten Stadiums eingesetzt wurde, wie bei Formierungsspannungen im Bereich von etwa 50 bis etwa 350 Volt, in einigen Ausführungsformen etwa 60 bis etwa 300 Volt und in einigen Ausführungsformen etwa 70 bis etwa 200 Volt. Während des ersten und/oder zweiten Stadiums kann der Elektrolyt auf einer Temperatur im Bereich von etwa 15 °C bis etwa 95 °C, in einigen Ausführungsformen etwa 20 °C bis etwa 90 °C und in einigen Ausführungsformen etwa 25 °C bis etwa 85 °C gehalten werden.
  • Die während des ersten und des zweiten Stadiums des Anodisierungsvorgangs eingesetzten Elektrolyte können gleich oder verschieden sein. Typischerweise ist es jedoch wünschenswert, verschiedene Lösungen einzusetzen, um das Erreichen einer größeren Dicke an den äußeren Teilen der dielektrischen Schicht zu erleichtern. Zum Beispiel kann es wünschenswert sein, dass der im zweiten Stadium eingesetzte Elektrolyt eine geringere Ionenleitfähigkeit hat als der im ersten Stadium eingesetzte Elektrolyt, um zu verhindern, dass sich auf der inneren Oberfläche der Anode eine erhebliche Menge an Oxidschicht bildet. In dieser Hinsicht kann der während des ersten Stadiums eingesetzte Elektrolyt eine saure Verbindung, wie Chlorwasserstoffsäure, Salpetersäure, Schwefelsäure, Phosphorsäure, Polyphosphorsäure, Borsäure, Boronsäure usw., enthalten. Ein solcher Elektrolyt kann eine elektrische Leitfähigkeit von etwa 0,1 bis etwa 100 mS/cm, in einigen Ausführungsformen etwa 0,2 bis etwa 20 mS/cm und in einigen Ausführungsformen etwa 1 bis etwa 10 mS/cm aufweisen, bestimmt bei einer Temperatur von 25 °C. Der während des zweiten Stadiums eingesetzte Elektrolyt enthält typischerweise ein Salz einer schwachen Säure, so dass die Hydroniumionenkonzentration in den Poren infolge eines darin erfolgenden Ladungsdurchgangs zunimmt. Ionentransport oder -diffusion finden so statt, dass sich das Anion der schwachen Säure gemäß der Notwendigkeit, die elektrischen Ladungen auszugleichen, in die Poren bewegt. Als Ergebnis wird die Konzentration der hauptsächlichen leitfähigen Spezies (Hydronium-Ion) bei der Etablierung eines Gleichgewichts zwischen dem Hydronium-Ion, dem Säureanion und der undissoziierten Säure reduziert, und dadurch entsteht eine schlechter leitfähige Spezies. Die Reduktion der Konzentration der leitfähigen Spezies führt zu einem relativ hohen Spannungsabfall im Elektrolyten, was die weitere Anodisierung im Innern behindert, während auf der Außenseite eine dickere Oxidschicht bis zu einer höheren Formierungsspannung im Bereich der fortgesetzten hohen Leitfähigkeit aufgebaut wird. Zu den geeigneten Salzen schwacher Säuren gehören etwa zum Beispiel Ammonium- oder Alkalimetallsalze (z.B. Natrium, Kalium usw.) von Borsäure, Boronsäure, Essigsäure, Oxalsäure, Milchsäure, Adipinsäure usw. Besonders gut geeignete Salze sind Natriumtetraborat und Ammoniumpentaborat. Solche Elektrolyten weisen typischerweise eine elektrische Leitfähigkeit von etwa 0,1 bis etwa 20 mS/cm, in einigen Ausführungsformen etwa 0,5 bis etwa 10 mS/cm und in einigen Ausführungsformen etwa 1 bis etwa 5 mS/cm auf, bestimmt bei einer Temperatur von 25 °C.
  • Falls gewünscht, kann jedes Stadium der Anodisierung durch einen oder mehrere Zyklen wiederholt werden, um die gewünschte Dicke des Dielektrikums zu erreichen. Weiterhin kann die Anode nach dem ersten und/oder dem zweiten Stadium auch mit einem anderen Lösungsmittel (z.B. Wasser) gespült oder gewaschen werden, um den Elektrolyten zu entfernen.
  • Fester Elektrolyt
  • Ein fester Elektrolyt bedeckt das Dielektrikum und fungiert allgemein als Kathode für den Kondensator. Typischerweise beträgt die Gesamtdicke des festen Elektrolyten etwa 1 bis etwa 50 µm und in einigen Ausführungsformen etwa 5 bis etwa 20 µm. Wie oben erwähnt, enthält der feste Elektrolyt ein leitfähiges Polymer, das Thiophen-Repetiereinheiten der folgenden allgemeinen Formel (1) und/oder (2) enthält:
    Figure DE112019006146T5_0006
    Figure DE112019006146T5_0007
    wobei
    X1 und X2 unabhängig Wasserstoff, ein gegebenenfalls substituiertes Alkyl (z.B. Alkyl mit 1 bis 12 Kohlenstoffatomen), gegebenenfalls substituiertes Alkoxy (z.B. Alkoxy mit 1 bis 12 Kohlenstoffatomen), gegebenenfalls substituiertes Alkylenoxid (z.B. mit 1 bis 12 Kohlenstoffatomen), gegebenenfalls substituiertes Thiocyano, gegebenenfalls substituiertes Thioalkyl oder gegebenenfalls substituiertes Amino sind oder wobei X1 und X2 unter Bildung eines gegebenenfalls substituierten Alkylendioxy (z.B. mit 1 bis 12 Kohlenstoffatomen) oder einer gegebenenfalls substituierten Alkylendithiogruppe (z.B. mit 1 bis 12 Kohlenstoffatomen) miteinander kombiniert sind; und
    R ein gegebenenfalls substituiertes Alkyl (z.B. Alkyl mit 1 bis 12 Kohlenstoffatomen), gegebenenfalls substituiertes Alkoxy (z.B. Alkoxy mit 1 bis 12 Kohlenstoffatomen), gegebenenfalls substituiertes Alkylenoxid (z.B. mit 1 bis 12 Kohlenstoffatomen), gegebenenfalls substituiertes Aryl (z.B. Phenyl), gegebenenfalls substituierter Heterocyclus, gegebenenfalls substituierte kondensierte Ringgruppe oder ein Salz oder eine Säure eines der obigen ist. In einer Ausführungsform zum Beispiel ist R eine Alkylgruppe, wie solche mit 1 bis 20 Kohlenstoffatomen, und in einigen Ausführungsformen 1 bis 20 Kohlenstoffatome (z.B. 1 Kohlenstoffatom).
  • In einer besonderen Ausführungsform können X1 und X2 in Formel (1) und/oder Formel (2) unter Bildung der folgenden Struktur miteinander kombiniert werden:
    Figure DE112019006146T5_0008
    wobei
    Y1 und Y2 unabhängig 0 oder S sind; und
    eine Alkylengruppe mit 1 bis 12 Kohlenstoffatomen ist, die gegebenenfalls einen Substituenten und/oder eine sauerstoffanaloge, stickstoffanaloge oder schwefelanaloge Struktur innerhalb der Alkylengruppe aufweist. In einer Ausführungsform zum Beispiel kann X5 Ethylen sein.
  • Das leitfähige Polymer kann durch eine Vielzahl von Techniken gebildet werden, worüber sich der Fachmann im Klaren wäre, wie es im US-Patent Veröffentlichungs-Nr. 2018/0244838 beschrieben ist, auf das hier in seiner Gesamtheit ausdrücklich Bezug genommen wird. In einer besonderen Ausführungsform kann zum Beispiel ein Thiophenpolymer mit der allgemeinen Formel (1) und/oder (2) durch die Reaktion eines Thiophenpolymers (z.B. 3,4-Ethylendioxythiophen) und eines Aldehydderivats polymerisiert werden. Geeignete Aldehydderivate sind zum Beispiel aromatische Aldehyde (z.B. Benzaldehyd, Natrium-2-sulfobenzaldehyd usw.), aliphatische Aldehyde usw. Um die Reaktion einzuleiten, können ein Lösungsmittel und eine Säure zu dem Polymerisationsgemisch gegeben werden. Zu den geeigneten Lösungsmitteln gehören zum Beispiel Ethylacetat, Tetrahydrofuran, tert-Butylmethylether, Acetonitril usw. Ebenso können geeignete Säuren Perchlorsäure, Schwefelsäure, Methansulfonsäure, Trifluoressigsäure, p-Toluolsulfonsäure usw. umfassen. Das resultierende Polymer kann entweder eine einzige Struktur oder eine gemischte Struktur aus einer durch die chemische Formel (1) dargestellten Struktureinheit und einer durch die chemische Formel (2) dargestellten Struktureinheit aufweisen, wie oben erwähnt ist. Falls gewünscht, kann der Anteil der durch die chemische Formel (2) dargestellten Struktureinheit erhöht werden, indem man die Menge der Thiophenverbindung relativ zu dem Aldehydderivat erhöht. Sobald das Polymer gebildet ist, kann es gegebenenfalls in Gegenwart eines Oxidationsmittels dotiert werden, wie eines Peroxids (z.B. Ammoniumperoxodisulfat (APS), Natriumpersulfat und Kaliumpersulfat), Wasserstoffperoxid, Chinon (z.B. p-Benzochinon und Chloranil), Eisen(III)chlorid, Eisen(III)sulfat, Eisen(III)hydroxid, Eisen(III)tetrafluoroborat, Eisen(III)hexafluorophosphat, Kupfer(II)sulfat, Kupfer(II)chlorid, Kupfer(II)tetrafluoroborat und Kupfer(II)hexafluorophosphat usw. Die Oxidation erfolgt typischerweise in Gegenwart von einem oder mehreren Lösungsmitteln, wie Wasser, Glycolen (z.B. Ethylenglycol, Propylenglycol, Butylenglycol, Triethylenglycol, Hexylenglycol, Polyethylenglycole, Ethoxydiglycol, Dipropylenglycol usw.); Glycolether (z.B. Methylglycolether, Ethylglycolether, Isopropylglycolether usw.); Alkohole (z.B. Methanol, Ethanol, n-Propanol, Isopropanol und Butanol); Ketone (z.B. Aceton, Methylethylketon und Methylisobutylketon); Ester (z.B. Ethylacetat, Butylacetat, Diethylenglycoletheracetat, Methoxypropylacetat, Ethylencarbonat, Propylencarbonat usw.); Amide (z.B. Dimethylformamid, Dimethylacetamid, Dimethylcapryl-/-caprin-Fettsäureamid und N-Alkylpyrrolidone); Sulfoxide oder Sulfone (z.B. Dimethylsulfoxid (DMSO) und Sulfolan); phenolische Verbindungen (z.B. Toluol, Xylol usw.) usw.
  • Unabhängig davon, wie es gebildet wird, gilt das Polymer insofern als „intrinsisch“ leitfähig, als es eine positive Ladung aufweist, die sich auf der Hauptkette befindet und wenigstens teilweise von Anionen, die kovalent an das Polymer gebunden sind, kompensiert wird. Das Polymer kann zum Beispiel im trockenen Zustand eine relativ hohe spezifische Leitfähigkeit von etwa 1 Siemens pro Zentimeter („S/cm“) oder mehr, in einigen Ausführungsformen etwa 10 S/cm oder mehr, in einigen Ausführungsformen etwa 20 S/cm oder mehr und in einigen Ausführungsformen etwa 50 bis etwa 500 S/cm aufweisen. Als Ergebnis der intrinsischen Leitfähigkeit erfordert der feste Elektrolyt keine Zugabe von herkömmlichen Dotierungsmitteln, wie Polystyrolsulfonsäure. Tatsächlich kann der feste Elektrolyt im Wesentlichen frei von solchen Dotierungsmitteln sein. Dennoch sollte man sich darüber im Klaren sein, dass in bestimmten Ausführungsformen der vorliegenden Erfindung Dotierungsmittel eingesetzt werden können. Wenn sie eingesetzt werden, sind Dotierungsmittel jedoch typischerweise in dem festen Elektrolyten in einer Menge von etwa 5 Gew.-% oder weniger, in einigen Ausführungsformen etwa 2 Gew.-% oder weniger und in einigen Ausführungsformen etwa 1 Gew.-% oder weniger vorhanden.
  • Das Polymer ist auch im Allgemeinen gut in Wasser löslich, so dass es leichter und effektiver auf die Anode aufgetragen werden kann. Das lösliche Polymer kann auch die kleinen Poren, die von dem Pulver mit der hohen spezifischen Ladung gebildet werden, leichter imprägnieren, so dass der resultierende feste Elektrolyt eine „filmartige“ Konfiguration aufweist und wenigstens einen Teil der Anode im Wesentlichen gleichmäßig beschichtet. Dadurch wird die Qualität des resultierenden Oxids sowie dessen Oberflächenbedeckung verbessert, und dadurch werden auch die elektrischen Eigenschaften der Kondensatorbaugruppe verbessert.
  • Innere Schichten
  • Der feste Elektrolyt besteht im Allgemeinen aus einer oder mehreren „inneren“ leitfähigen Polymerschichten. Der Ausdruck „innere“ bezieht sich in diesem Zusammenhang auf eine oder mehrere Schichten, die aus demselben Material bestehen und das Dielektrikum bedecken, entweder direkt oder über eine andere Schicht (z.B. Kleberschicht). Die innere Schicht oder die inneren Schichten enthalten zum Beispiel typischerweise ein intrinsisch leitfähiges Polymer, wie es oben beschrieben ist. Die Erfinder haben herausgefunden, dass durch die Verwendung eines solchen Polymers das Kondensatorelement eine bessere Leistungsfähigkeit unter trockenen Bedingungen aufweisen kann. In einer besonderen Ausführungsform ist (sind) die innere(n) Schicht(en) im Allgemeinen frei von extrinsisch leitfähigen Polymeren und enthält (enthalten) also in erster Linie intrinsisch leitfähige Polymere. Insbesondere können intrinsisch leitfähige Polymere etwa 50 Gew.-% oder mehr, in einigen Ausführungsformen etwa 70 Gew.-% oder mehr und in einigen Ausführungsformen etwa 90 Gew.-% oder mehr (z.B. 100 Gew.-%) der inneren Schicht(en) ausmachen. Es können eine oder mehrere innere Schichten eingesetzt werden. Zum Beispiel enthält der feste Elektrolyt typischerweise 2 bis 30, in einigen Ausführungsformen 4 bis 20 und in einigen Ausführungsformen etwa 5 bis 15 innere Schichten (z.B. 10 Schichten).
  • Die innere(n) Schicht(en) kann (können) in Form einer Lösung aufgetragen werden, die ein Lösungsmittel enthält. Die Konzentration des Polymers kann je nach der gewünschten Viskosität der Schicht und je nach der besonderen Art und Weise, wie die Schicht auf die Anode aufgetragen werden soll, variieren. Typischerweise jedoch macht das Polymer etwa 0,1 bis etwa 10 Gew.-%, in einigen Ausführungsformen etwa 0,4 bis etwa 5 Gew.-% und in einigen Ausführungsformen etwa 0,5 bis etwa 4 Gew.-% der Lösung aus. Ebenso können Lösungsmittel etwa 90 Gew.-% bis etwa 99,9 Gew.-%, in einigen Ausführungsformen etwa 95 Gew.-% bis etwa 99,6 Gew.-% und in einigen Ausführungsformen etwa 96 Gew.-% bis etwa 99,5 Gew.-% der Lösung ausmachen. Während gewiss auch andere Lösungsmittel eingesetzt werden können, ist es im Allgemeinen wünschenswert, dass Wasser das primäre Lösungsmittel ist, so dass die Lösung als „wässrige“ Lösung gilt. In den meisten Ausführungsformen zum Beispiel bildet Wasser wenigstens etwa 50 Gew.-%, in einigen Ausführungsformen wenigstens etwa 75 Gew.-% und in einigen Ausführungsformen etwa 90 Gew.-% bis 100 Gew.-% der eingesetzten Lösungsmittel. Wenn eine Lösung eingesetzt wird, kann sie mit Hilfe jeder bekannten Technik auf die Anode aufgetragen werden, wie Tauchen, Gießen (z.B. Vorhangbeschichtung, Schleuderbeschichtung usw.), Drucken (z.B. Tiefdruck, Offsetdruck, Siebdruck usw.) usw. Die resultierende leitfähige Polymerschicht kann, nachdem sie auf die Anode aufgetragen wurde, getrocknet und/oder gewaschen werden.
  • ii. Äußere Schichten
  • Der feste Elektrolyt kann nur „innere Schichten“ enthalten, so dass er im Wesentlichen aus demselben Material besteht, d.h. intrinsisch leitfähigen Polymeren. Dennoch kann der feste Elektrolyt in anderen Ausführungsformen auch eine oder mehrere optionale „äußere“ leitfähige Polymerschichten enthalten, die aus einem anderen Material als die innere(n) Schicht(en) bestehen und die innere(n) Schicht(en) bedecken. Zum Beispiel kann (können) die äußere(n) Schicht(en) aus einer Dispersion von extrinsisch leitfähigen Polymerteilchen gebildet sein. In einer besonderen Ausführungsform ist (sind) die äußere(n) Schicht(en) insofern primär aus solchen extrinsisch leitfähigen Polymerteilchen gebildet, als diese etwa 50 Gew.-% oder mehr, in einigen Ausführungsformen etwa 70 Gew.-% oder mehr und in einigen Ausführungsformen etwa 90 Gew.-% oder mehr (z.B. 100 Gew.-%) einer jeweiligen äußeren Schicht ausmachen. Es können eine oder mehrere äußere Schichten eingesetzt werden. Zum Beispiel kann der feste Elektrolyt 2 bis 30, in einigen Ausführungsformen 4 bis 20 und in einigen Ausführungsformen etwa 5 bis 15 äußere Schichten enthalten.
  • Falls eines eingesetzt wird, kann das extrinsisch leitfähige Polymer zum Beispiel Repetiereinheiten der folgenden Formel (III) haben:
    Figure DE112019006146T5_0009
    wobei
    R7 Folgendes ist: ein linearer oder verzweigter, C1 bis C18-Alkylrest (z.B. Methyl, Ethyl, n-Propyl oder Isopropyl, n-, iso-, sek- oder tert-Butyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1-Ethylpropyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 2,2-Dimethylpropyl, n-Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Hexadecyl, n-Octadecyl usw.); ein C5- bis C12-Cycloalkylrest (z.B. Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecyl usw.); ein C6- bis C14-Arylrest (z.B. Phenyl, Naphthyl usw.); ein C7- bis C18-Aralkylrest (z.B. Benzyl, o-, m-, p-Tolyl, 2,3-, 2,4-, 2,5-, 2,6, 3,4-, 3,5-Xylyl, Mesityl usw.); ein C1- bis C4-Hydroxyalkylrest oder ein Hydroxyrest; und
    q eine ganze Zahl von 0 bis 8, in einigen Ausführungsformen 0 bis 2 und in einer Ausführungsform 0 ist. In einer besonderen Ausführungsform ist „q“ = 0, und das Polymer ist Poly(3,4-ethylendioxythiophen). Ein kommerziell geeignetes Beispiel für ein Monomer, das für die Bildung eines solchen Polymers geeignet ist, ist 3,4-Ethylendioxythiophen, das von Heraeus unter der Bezeichnung Clevios™ M erhältlich ist.
  • Die Polymere der Formel (III) gelten im Allgemeinen insofern als „extrinsisch“ leitfähig, als sie die Anwesenheit eines getrennten Gegenions erfordern, das nicht kovalent an das Polymer gebunden ist. Das Gegenion kann ein monomeres oder polymeres Anion sein, das die Ladung des leitfähigen Polymers ausgleicht. Polymere Anionen können zum Beispiel Anionen von polymeren Carbonsäuren (z.B. Polyacrylsäuren, Polymethacrylsäure, Polymaleinsäuren usw.), polymeren Sulfonsäuren (z.B. Polystyrolsulfonsäuren („PSS“), Polyvinylsulfonsäuren usw.) usw. sein. Die Säuren können auch Copolymere, wie Copolymere von Vinylcarbon- und Vinylsulfonsäure mit anderen polymerisierbaren Monomeren, wie Acrylsäureestern und Styrol, sein. Ebenso sind geeignete monomere Anionen zum Beispiel Anionen von C1- bis C20-Alkansulfonsäuren (z.B. Dodecansulfonsäure); aliphatischen Perfluorsulfonsäuren (z.B. Trifluormethansulfonsäure, Perfluorbutansulfonsäure oder Perfluoroctansulfonsäure); aliphatischen C1- bis C20-Carbonsäuren (z.B. 2-Ethylhexylcarbonsäure); aliphatischen Perfluorcarbonsäuren (z.B. Trifluoressigsäure oder Perfluoroctansäure); aromatischen Sulfonsäuren, die gegebenenfalls mit C1- bis C20-Alkylgruppen substituiert sind (z.B. Benzolsulfonsäure, o-Toluolsulfonsäure, p-Toluolsulfonsäure oder Dodecylbenzolsulfonsäure); Cycloalkansulfonsäuren (z.B. Kamphersulfonsäure oder Tetrafluoroborate, Hexafluorophosphate, Perchlorate, Hexafluoroantimonate, Hexafluoroarsenate oder Hexachloroantimonate); usw. Besonders gut geeignete Gegenionen sind polymere Anionen, wie eine polymere Carbon- oder Sulfonsäure (z.B. Polystyrolsulfonsäure („PSS“)). Das Molekulargewicht solcher polymeren Anionen liegt typischerweise im Bereich von etwa 1000 bis etwa 2 000 000 und in einigen Ausführungsformen etwa 2000 bis etwa 500 000.
  • Falls sie eingesetzt werden, kann es wünschenswert sein, dass das extrinsisch leitfähige Polymer in Form einer Dispersion von vorpolymerisierten leitfähigen Teilchen aufgetragen wird. Solche Teilchen haben typischerweise eine mittlere Größe (z.B. Durchmesser) von etwa 1 bis etwa 150 Nanometer, in einigen Ausführungsformen etwa 2 bis etwa 50 Nanometer und in einigen Ausführungsformen etwa 5 bis etwa 40 Nanometer. Der Durchmesser der Teilchen kann mit Hilfe bekannter Techniken, wie mittels Ultrazentrifuge, Laserbeugung usw., bestimmt werden. Die Form der Teilchen kann ebenfalls variieren. In einer besonderen Ausführungsform haben die Teilchen zum Beispiel eine sphärische Form. Man sollte sich jedoch darüber im Klaren sein, dass in der vorliegenden Erfindung auch andere Formen in Betracht gezogen werden, wie Platten, Stäbe, Scheiben, Blöcke, Röhrchen, unregelmäßige Formen usw. Die Konzentration der Teilchen in der Dispersion kann je nach der gewünschten Viskosität der Dispersion und der besonderen Art und Weise, wie die Dispersion auf das Kondensatorelement aufgetragen werden soll, variieren. Typischerweise jedoch machen die Teilchen etwa 0,1 bis etwa 10 Gew.-%, in einigen Ausführungsformen etwa 0,4 bis etwa 5 Gew.-% und in einigen Ausführungsformen etwa 0,5 bis etwa 4 Gew.-% der Dispersion aus.
  • Die Dispersion kann auch ein oder mehrere Bindemittel enthalten, um die adhäsive Natur der polymeren Schicht weiter zu verstärken und auch die Stabilität der Teilchen innerhalb der Dispersion zu erhöhen. Die Bindemittel können organischer Natur sein, wie Polyvinylalkohole, Polyvinylpyrrolidone, Polyvinylchloride, Polyvinylacetate, Polyvinylbutyrate, Polyacrylsäureester, Polyacrylsäureamide, Polymethacrylsäureester, Polymethacrylsäureamide, Polyacrylnitrile, Styrol/Acrylsäureester, Vinylacetat/Acrylsäureester und Ethylen/Vinylacetat-Copolymere, Polybutadiene, Polyisoprene, Polystyrole, Polyether, Polyester, Polycarbonate, Polyurethane, Polyamide, Polyimide, Polysulfone, Melamin-Formaldehyd-Harze, Epoxyharze, Silikonharze oder Cellulosen. Es können auch Vernetzungsmittel eingesetzt werden, um die Adhäsionsfähigkeit der Bindemittel zu erhöhen. Solche Vernetzungsmittel sind zum Beispiel Melaminverbindungen, maskierte Isocyanate oder funktionelle Silane, wie 3-Glycidoxypropyltrialkoxysilan, Tetraethoxysilan und Tetraethoxysilan-Hydrolysat oder vernetzbare Polymere, wie Polyurethane, Polyacrylate oder Polyolefine, und anschließende Vernetzung.
  • Es können auch Dispersionsmittel eingesetzt werden, um die Auftragbarkeit der Schicht auf die Anode zu verbessern. Zu den geeigneten Dispersionsmitteln gehören Lösungsmittel, wie aliphatische Alkohole (z.B. Methanol, Ethanol, Isopropanol und Butanol), aliphatische Ketone (z.B. Aceton und Methylethylketone), aliphatische Carbonsäureester (z.B. Ethylacetat und Butylacetat), aromatische Kohlenwasserstoffe (z.B. Toluol und Xylol), aliphatische Kohlenwasserstoffe (z.B. Hexan, Heptan und Cyclohexan), chlorierte Kohlenwasserstoffe (z.B. Dichlormethan und Dichlorethan), aliphatische Nitrile (z.B. Acetonitril), aliphatische Sulfoxide und Sulfone (z.B. Dimethylsulfoxid und Sulfolan), aliphatische Carbonsäureamide (z.B. Methylacetamid, Dimethylacetamid und Dimethylformamid), aliphatische und araliphatische Ether (z.B. Diethylether und Anisol), Wasser sowie Gemische irgendwelcher der obigen Lösungsmittel. Ein besonders gut geeignetes Dispersionsmittel ist Wasser.
  • Außer den oben genannten können auch noch andere Bestandteile in der Dispersion verwendet werden. Zum Beispiel können herkömmliche Füllstoffe verwendet werden, die eine Größe von etwa 10 Nanometer bis etwa 100 Mikrometer, in einigen Ausführungsformen etwa 50 Nanometer bis etwa 50 Mikrometer und in einigen Ausführungsformen etwa 100 Nanometer bis etwa 30 Mikrometer aufweisen. Beispiele für solche Füllstoffe sind Calciumcarbonat, Silicate, Siliciumoxid, Calcium- oder Bariumsulfat, Aluminiumhydroxid, Glasfasern oder -kolben, Holzmehl, Cellulosepulver, Ruß, elektrisch leitfähige Polymere usw. Die Füllstoffe können in Pulverform in die Dispersion eingeführt werden, können jedoch auch in einer anderen Form, etwa als Fasern, vorliegen.
  • Grenzflächenaktive Substanzen, wie ionische oder nichtionische Tenside, können ebenfalls in der Dispersion eingesetzt werden. Weiterhin können Kleber eingesetzt werden, wie organofunktionelle Silane oder ihre Hydrolysate, zum Beispiel 3-Glycidoxypropyltrialkoxysilan, 3-Aminopropyltriethoxysilan, 3-Mercaptopropyltrimethoxysilan, 3-Methacryloxypropyltrimethoxysilan, Vinyltrimethoxysilan oder Octyltriethoxysilan. Die Dispersion kann auch Additive enthalten, die die Leitfähigkeit erhöhen, wie Ethergruppen enthaltende Verbindungen (z.B. Tetrahydrofuran), Lactongruppen enthaltende Verbindungen (z.B. γ-Butyrolacton oder γ-Valerolacton), Amid- oder Lactamgruppen enthaltende Verbindungen (z.B. Caprolactam, N-Methylcaprolactam, N,N-Dimethylacetamid, N-Methylacetamid, N,N-Dimethylformamid (DMF), N-Methylformamid, N-Methylformanilid, N-Methylpyrrolidon (NMP), N-Octylpyrrolidon oder Pyrrolidon), Sulfone und Sulfoxide (z.B. Sulfolan (Tetramethylensulfon) oder Dimethylsulfoxid (DMSO)), Zucker oder Zuckerderivate (z.B. Saccharose, Glucose, Fructose oder Lactose), Zuckeralkohole (z.B. Sorbit oder Mannit), Furanderivate (z.B. 2-Furancarbonsäure oder 3-Furancarbonsäure) und Alkohole (z.B. Ethylenglycol, Glycerin, Di- oder Triethylenglycol).
  • Die Dispersion kann mit Hilfe einer Vielzahl von bekannten Techniken auf den Teil aufgetragen werden, wie durch Schleuderbeschichtung, Imprägnierung, Gießen, tropfenweise Auftragung, Spritzen, Sprühen, Rakeln, Bürsten oder Drucken (z.B. Tintenstrahl-, Sieb- oder Blockdruck), oder Tauchen. Die Viskosität der Dispersion beträgt typischerweise etwa 0,1 bis etwa 100 000 mPa·s (gemessen bei einer Scherrate von 100 s-1), in einigen Ausführungsformen etwa 1 bis etwa 10 000 mPa·s, in einigen Ausführungsformen etwa 10 bis etwa 1500 mPa·s und in einigen Ausführungsformen etwa 100 bis etwa 1000 mPa·s.
  • Falls gewünscht, kann in der (den) äußeren Schicht(en) des festen Elektrolyten auch ein hydroxyfunktionelles nichtionisches Polymer eingesetzt werden. Der Ausdruck „hydroxyfunktionell“ bedeutet im Allgemeinen, dass die Verbindung wenigstens eine hydroxyfunktionelle Gruppe enthält oder eine solche funktionelle Gruppe in Gegenwart eines Lösungsmittels besitzen kann. Ohne uns auf eine bestimmte Theorie festlegen zu wollen, glauben wir, dass die Verwendung eines hydroxyfunktionellen Polymers mit einem bestimmten Molekulargewicht die Wahrscheinlichkeit einer chemischen Zersetzung bei hohen Spannungen minimieren kann. Zum Beispiel kann das Molekulargewicht des hydroxyfunktionellen Polymers etwa 100 bis 10000 Gramm pro Mol, in einigen Ausführungsformen etwa 200 bis 2000, in einigen Ausführungsformen etwa 300 bis etwa 1200 und in einigen Ausführungsformen etwa 400 bis etwa 800 betragen.
  • Zu diesem Zweck können im Allgemeinen eine Vielzahl von hydroxyfunktionellen nichtionischen Polymeren eingesetzt werden. In einer Ausführungsform ist das hydroxyfunktionelle Polymer zum Beispiel ein Polyalkylenether. Polyalkylenether können Polyalkylenglycole (z.B. Polyethylenglycole, Polypropylenglycole, Polytetramethylenglycole, Polyepichlorhydrine usw.), Polyoxetane, Polyphenylenether, Polyetherketone usw. umfassen. Polyalkylenether sind typischerweise vorwiegend lineare, nichtionische Polymere mit terminalen Hydroxygruppen. Besonders gut geeignet sind Polyethylenglycole, Polypropylenglycole und Polytetramethylenglycole (Polytetrahydrofurane), die durch Polyaddition von Ethylenoxid, Propylenoxid oder Tetrahydrofuran an Wasser hergestellt werden. Die Polyalkylenether können durch Polykondensationsreaktionen aus Diolen oder Polyolen hergestellt werden. Die Diolkomponente kann insbesondere aus gesättigten oder ungesättigten, verzweigten oder unverzweigten, aliphatischen Dihydroxyverbindungen, die 5 bis 36 Kohlenstoffatome enthalten, oder aromatischen Dihydroxyverbindungen, wie zum Beispiel Pentan-1,5-diol, Hexan-1,6-diol, Neopentylglycol, Bis(hydroxymethyl)cyclohexanen, Bisphenol A, Dimerdiolen, hydrierten Dimerdiolen oder auch Gemischen der genannten Diole ausgewählt sein. Außerdem können in der Polymerisationsreaktion auch mehrwertige Alkohole, einschließlich zum Beispiel Glycerin, Di- und Polyglycerin, Trimethylolpropan, Pentaerythrit oder Sorbit, verwendet werden.
  • Neben den oben genannten können in der vorliegenden Erfindung auch andere hydroxyfunktionelle nichtionische Polymere eingesetzt werden. Einige Beispiele für solche Polymere sind zum Beispiel ethoxylierte Alkylphenole, ethoxylierte oder propoxylierte C6-C24-Fettalkohole, Polyoxyethylenglycolalkylether mit der allgemeinen Formel CH3(CH3)10-16-(O-C2H4)1-25-OH (z.B. Octaethylenglycolmonododecylether und Pentaethylenglycolmonododecylether); Polyoxypropylenglycolalkylether mit der allgemeinen Formel CH3-(CH2)10-16-(O-C3H6)1-25-OH; Polyoxyethylenglycoloctylphenolether mit der folgenden allgemeinen Formel: C8H17-(C6H4)-(O-C2H4)1-25-OH (z.B. TritonTM X-100); Polyoxyethylenglycolalkylphenolether mit der folgenden allgemeinen Formel: C9H19-(C6H4)-(O-C2H4)1-25-OH (z.B. Nonoxynol-9); Polyoxyethylenglycolester von C8-C24-Fettsäuren, wie Polyoxyethylenglycolsorbitanalkylester (z.B. Polyoxyethylen(20)sorbitanmonolaurat, Polyoxyethylen(20)sorbitanmonopalmitat, Polyoxyethylen(20)sorbitanmonostearat, Polyoxyethylen(20)sorbitanmonooleat, PEG-20-Methylglucosedistearat, PEG-20-Methylglucosesesquistearat, PEG-80-Ricinusöl und PEG-20-Ricinusöl, PEG-3-Ricinusöl, PEG-600-dioleat und PEG-400-dioleat) und Polyoxyethylenglycerinalkylester (z.B. Polyoxyethylen-23-glycerinlaurat und Polyoxyethylen-20-glycerinstearat); Polyoxyethylenglycolether von C8-C24-Fettsäuren (z.B. Polyoxyethylen-10-cetylether, Polyoxyethylen-10-stearylether, Polyoxyethylen-20-cetylether, Polyoxyethylen-10-oleylether, Polyoxyethylen-20-oleylether, Polyoxyethylen-20-isohexadecylether, Polyoxyethylen-15-tridecylether und Polyoxyethylen-6-tridecylether); Blockcopolymere von Polyethylenglycol und Polypropylenglycol (z.B. Poloxamere) usw. sowie Gemische davon.
  • Das hydroxyfunktionelle nichtionische Polymer kann auf vielerlei verschiedenen Wegen in den festen Elektrolyten eingebaut werden. In bestimmten Ausführungsformen zum Beispiel kann das nichtionische Polymer einfach in die Dispersion der extrinsisch leitfähigen Polymere eingearbeitet werden. In solchen Ausführungsformen kann die Konzentration des nichtionischen Polymers in der Schicht etwa 1 Gew.-% bis etwa 50 Gew.-%, in einigen Ausführungsformen etwa 5 Gew.-% bis etwa 40 Gew.-% und in einigen Ausführungsformen etwa 10 Gew.-% bis etwa 30 Gew.-% betragen. In anderen Ausführungsformen jedoch kann das nichtionische Polymer aufgetragen werden, nachdem die erste bzw. die ersten äußeren Schichten gebildet sind. In solchen Ausführungsformen kann die zum Auftragen des nichtionischen Polymers verwendete Technik variieren. Zum Beispiel kann das nichtionische Polymer mit Hilfe von verschiedenen Verfahren, wie Tauchen, Eintauchen, Gießen, Tropfen, Spritzen, Sprühen, Ausbreiten, Streichen oder Drucken, zum Beispiel durch Tintenstrahl-, Siebdruck oder Tampondruck, in Form einer flüssigen Lösung aufgetragen werden. In der Lösung können dem Fachmann bekannte Lösungsmittel, wie Wasser, Alkohole oder ein Gemisch davon, eingesetzt werden. Die Konzentration des nichtionischen Polymers in einer solchen Lösung liegt typischerweise im Bereich von etwa 5 Gew.-% bis etwa 95 Gew.-%, in einigen Ausführungsformen etwa 10 Gew.-% bis etwa 70 Gew.-% und in einigen Ausführungsformen etwa 15 Gew.-% bis etwa 50 Gew.-% der Lösung. Falls gewünscht, können solche Lösungen im Wesentlichen frei von leitfähigen Polymeren sein. Zum Beispiel können leitfähige Polymere etwa 2 Gew.-% oder weniger, in einigen Ausführungsformen etwa 1 Gew.-% oder weniger und in einigen Ausführungsformen etwa 0,5 Gew.-% oder weniger der Lösung ausmachen.
  • Externe Polymerbeschichtung
  • Wie bereits erwähnt, wird auch eine externe Polymerbeschichtung kann auf die Anode, die den festen Elektrolyten bedeckt, aufgetragen. Die externe Polymerbeschichtung enthält im Allgemeinen eine oder mehrere Schichten, die aus leitfähigen Polymerteilchen gebildet sind, wie es oben beschrieben ist (z.B. aus einem extrinsisch leitfähigen Polymer gebildet). Die externe Beschichtung kann in der Lage sein, weiter in den Randbereich des Kondensatorkörpers einzudringen, um die Haftung am Dielektrikum zu erhöhen, und zu einem mechanisch robusteren Teil führen, was den äquivalenten Serienwiderstand und den Leckstrom reduzieren kann. Da man im Allgemeinen den Grad der Randabdeckung verbessern und nicht das Innere der Anode imprägnieren möchte, sind die in der externen Beschichtung verwendeten Teilchen typischerweise größer als die in irgendwelchen optionalen Teilchen des festen Elektrolyten (z.B. in der oder den äußeren Schichten) eingesetzten. Zum Beispiel beträgt das Verhältnis der mittleren Größe der in der externen Polymerbeschichtung verwendeten Teilchen zur mittleren Größe irgendwelcher in dem festen Elektrolyten eingesetzten Teilchen typischerweise etwa 1,5 bis etwa 30, in einigen Ausführungsformen etwa 2 bis etwa 20 und in einigen Ausführungsformen etwa 5 bis etwa 15. Zum Beispiel können die in der externen Beschichtung eingesetzten Teilchen eine mittlere Größe von etwa 50 bis etwa 500 Nanometer, in einigen Ausführungsformen etwa 80 bis etwa 600 Nanometer und in einigen Ausführungsformen etwa 100 bis etwa 500 Nanometer aufweisen.
  • Ein Vernetzungsmittel kann ebenfalls in der externen Polymerbeschichtung eingesetzt werden, um den Grad der Haftung am festen Elektrolyten zu verstärken. Typischerweise wird das Vernetzungsmittel vor der Auftragung der in der externen Beschichtung verwendeten Dispersion aufgetragen. Geeignete Vernetzungsmittel sind zum Beispiel in der US-Patentveröffentlichung Nr. 2007/0064376 (Merker et al.) beschrieben und umfassen zum Beispiel Amine (z.B. Diamine, Triamine, Oligomeramine, Polyamine usw.); mehrwertige Metallkationen, wie Salze oder Verbindungen von Mg, Al, Ca, Fe, Cr, Mn, Ba, Ti, Co, Ni, Cu, Ru, Ce oder Zn, Phosphoniumverbindungen, Sulfoniumverbindungen usw. Besonders gut geeignete Beispiele sind zum Beispiel 1,4-Diaminocyclohexan, 1,4-Bis(aminomethyl)cyclohexan, Ethylendiamin, 1,6-Hexandiamin, 1,7-Heptandiamin, 1,8-Octandiamin, 1,9-Nonandiamin, 1,10-Decandiamin, 1,12-Dodecandiamin, N,N-Dimethylethylendiamin, N,N,N',N'-Tetramethylethylendiamin, N,N,N',N'-Tetramethyl-1,4-butandiamin usw. sowie Gemische davon.
  • Das Vernetzungsmittel wird typischerweise aus einer Lösung oder Dispersion aufgetragen, deren pH-Wert 1 bis 10, in einigen Ausführungsformen 2 bis 7 und in einigen Ausführungsformen 3 bis 6 beträgt, bestimmt bei 25 °C. Saure Verbindungen können eingesetzt werden, um das Erreichen des gewünschten pH-Werts zu unterstützen. Beispiele für Lösungsmittel oder Dispergiermittel für das Vernetzungsmittel sind Wasser oder organische Lösungsmittel, wie Alkohole, Ketone, Carbonsäureester usw. Das Vernetzungsmittel kann durch irgendein bekanntes Verfahren, wie Schleuderbeschichtung, Imprägnieren, Gießen, tropfenweise Auftragung, Sprühauftragung, Aufdampfen, Sputtern, Sublimation, Rakelbeschichtung, Streichen oder Drucken, zum Beispiel durch Tintenstrahl-, Siebdruck oder Tampondruck, auf den Kondensatorkörper aufgetragen werden. Sobald es aufgetragen ist, kann das Vernetzungsmittel getrocknet werden, bevor die Polymerdispersion aufgetragen wird. Dann kann dieser Vorgang wiederholt werden, bis die gewünschte Dicke erreicht ist. Zum Beispiel kann die Gesamtdicke der gesamten externen Polymerbeschichtung einschließlich des Vernetzungsmittels und der Dispersionsschichten im Bereich von etwa 1 bis etwa 50 µm, in einigen Ausführungsformen etwa 2 bis etwa 40 µm und in einigen Ausführungsformen etwa 5 bis etwa 20 µm liegen.
  • Kathodenbeschichtung
  • Falls gewünscht, kann das Kondensatorelement auch eine Kathodenbeschichtung umfassen, die den festen Elektrolyten und die externe Polymerbeschichtung bedeckt. Die Kathodenbeschichtung kann eine Metallteilchenschicht enthalten, die eine Vielzahl von innerhalb einer Polymermatrix dispergierten leitfähigen Metallteilchen umfasst. Die Teilchen machen typischerweise etwa 50 Gew.-% bis etwa 99 Gew.-%, in einigen Ausführungsformen etwa 60 Gew.-% bis etwa 98 Gew.-% und in einigen Ausführungsformen etwa 70 Gew.-% bis etwa 95 Gew.-% der Schicht aus, während die Polymermatrix typischerweise etwa 1 Gew.-% bis etwa 50 Gew.-%, in einigen Ausführungsformen etwa 2 Gew.-% bis etwa 40 Gew.-% und in einigen Ausführungsformen etwa 5 Gew.-% bis etwa 30 Gew.-% der Schicht ausmacht.
  • Die leitfähigen Metallteilchen können aus einer Vielzahl verschiedener Metalle bestehen, wie Kupfer, Nickel, Silber, Nickel, Zink, Zinn, Blei, Kupfer, Aluminium, Molybdän, Titan, Eisen, Zirconium, Magnesium usw. sowie Legierungen davon. Silber ist ein besonders gut geeignetes leitfähiges Metall für die Verwendung in der Schicht. Die Metallteilchen haben häufig eine relativ geringe Größe, wie eine mittlere Größe von etwa 0,01 bis etwa 50 Mikrometer, in einigen Ausführungsformen etwa 0,1 bis etwa 40 Mikrometer und in einigen Ausführungsformen etwa 1 bis etwa 30 Mikrometer. Typischerweise wird nur eine einzige Metallteilchenschicht eingesetzt, obwohl man sich darüber im Klaren sein sollte, dass auch mehrere Schichten eingesetzt werden können, falls es gewünscht ist. Die Gesamtdicke dieser Schicht oder Schichten liegt typischerweise im Bereich von etwa 1 µm bis etwa 500 µm, in einigen Ausführungsformen etwa 5 µm bis etwa 200 µm und in einigen Ausführungsformen etwa 10 µm bis etwa 100 µm.
  • Die Polymermatrix umfasst typischerweise ein Polymer, das thermoplastischer oder duroplastischer Natur sein kann. Typischerweise jedoch ist das Polymer so gewählt, dass es als Sperre für die Elektromigration von Silberionen wirken kann, und auch so, dass es eine relativ kleine Menge polarer Gruppen enthält, um den Grad der Wasseradsorption in der Kathodenbeschichtung zu minimieren. In dieser Hinsicht haben die Erfinder herausgefunden, dass Vinylacetalpolymere für diesen Zweck besonders gut geeignet sind, wie Polyvinylbutyral, Polyvinylformal usw. Polyvinylbutyral kann zum Beispiel dadurch gebildet werden, dass man Polyvinylalkohol mit einem Aldehyd (z.B. Butyraldehyd) umsetzt. Da diese Reaktion typischerweise unvollständig ist, weist das Polyvinylbutyral im Allgemeinen einen Restgehalt an Hydroxygruppen auf. Indem man diesen Gehalt minimiert, kann das Polymer jedoch einen geringeren Grad an starken polaren Gruppen besitzen, was ansonsten zu einem hohen Grad an Feuchtigkeitsadsorption und zur Migration von Silberionen führen würde. Zum Beispiel kann der Resthydroxygehalt in Polyvinylacetal etwa 35 Mol-% oder weniger, in einigen Ausführungsformen etwa 30 Mol-% oder weniger und in einigen Ausführungsformen etwa 10 Mol-% bis etwa 25 Mol-% betragen. Ein kommerziell erhältliches Beispiel für ein solches Polymer ist von Sekisui Chemical Co., Ltd. unter der Bezeichnung „BH-S“ (Polyvinylbutyral) erhältlich.
  • Zur Bildung der Kathodenbeschichtung wird typischerweise eine leitfähige Paste so auf den Kondensator aufgetragen, dass sie den festen Elektrolyten bedeckt. In der Paste werden im Allgemeinen ein oder mehrere organische Lösungsmittel eingesetzt. Im Allgemeinen kann eine Vielzahl von verschiedenen organischen Lösungsmitteln eingesetzt werden, wie Glycole (z.B. Propylenglycol, Butylenglycol, Triethylenglycol, Hexylenglycol, Polyethylenglycole, Ethoxydiglycol und Dipropylenglycol), Glycolether (z.B. Methylglycolether, Ethylglycolether, und Isopropylglycolether), Ether (z.B. Diethylether und Tetrahydrofuran), Alkohole (z.B. Benzylalkohol, Methanol, Ethanol, n-Propanol, Isopropanol und Butanol), Triglyceride, Ketone (z.B. Aceton, Methylethylketon und Methylisobutylketon); Ester (z.B. Ethylacetat, Butylacetat, Diethylenglycoletheracetat und Methoxypropylacetat), Amide (z.B. Dimethylformamid, Dimethylacetamid, Dimethylcapryl-/caprinfettsäureamid und N-Alkylpyrrolidone), Sulfoxide oder Sulfone (z.B. Dimethylsulfoxid (DMSO) und Sulfolan) usw. sowie Gemische davon. Das oder die organischen Lösungsmittel machen typischerweise etwa 10 Gew.-% bis etwa 70 Gew.-%, in einigen Ausführungsformen etwa 20 Gew.-% bis etwa 65 Gew.-% und in einigen Ausführungsformen etwa 30 Gew.-% bis etwa 60 Gew.-% der Paste aus. Typischerweise machen die Metallteilchen etwa 10 Gew.-% bis etwa 60 Gew.-%, in einigen Ausführungsformen etwa 20 Gew.-% bis etwa 45 Gew.-% und in einigen Ausführungsformen etwa 25 Gew.-% bis etwa 40 Gew.-% der Paste aus, und die harzartige Matrix etwa 0,1 Gew.-% bis etwa 20 Gew.-%, in einigen Ausführungsformen etwa 0,2 Gew.-% bis etwa 10 Gew.-% und in einigen Ausführungsformen etwa 0,5 Gew.-% bis etwa 8 Gew.-% der Paste aus.
  • Die Paste kann relativ niedrige Viskosität aufweisen, die ermöglicht, dass man sie leicht handhaben und auf ein Kondensatorelement auftragen kann. Die Viskosität kann zum Beispiel im Bereich von etwa 50 bis etwa 3000 Centipoise, in einigen Ausführungsformen etwa 100 bis etwa 2000 Centipoise und in einigen Ausführungsformen etwa 200 bis etwa 1000 Centipoise liegen, gemessen mit einem Brookfield-DV-1-Viskometer (Kegel und Platte), das mit einer Geschwindigkeit von 10 U/min und einer Temperatur von 25 °C arbeitet. Falls gewünscht, können Verdickungsmittel oder andere Viskositätsmodifikatoren in der Paste eingesetzt werden, um die Viskosität zu erhöhen oder zu senken. Weiterhin kann die Dicke der aufgetragenen Paste auch relativ gering sein und dennoch die gewünschten Eigenschaften erreichen. Zum Beispiel kann die Dicke der Paste etwa 0,01 bis etwa 50 Mikrometer, in einigen Ausführungsformen etwa 0,5 bis etwa 30 Mikrometer und in einigen Ausführungsformen etwa 1 bis etwa 25 Mikrometer betragen. Einmal aufgetragen, kann die Metallpaste gegebenenfalls getrocknet werden, um bestimmte Komponenten, wie die organischen Lösungsmittel, zu entfernen. Zum Beispiel kann das Trocknen bei einer Temperatur von etwa 20 °C bis etwa 150 °C, in einigen Ausführungsformen etwa 50 °C bis etwa 140 °C und in einigen Ausführungsformen etwa 80 °C bis etwa 130 °C erfolgen.
  • Andere Komponenten
  • Falls gewünscht, kann der Kondensator auch andere Schichten enthalten, wie in der Technik bekannt ist. In bestimmten Ausführungsformen zum Beispiel kann sich zwischen dem festen Elektrolyten und der Silberschicht eine Kohlenstoffschicht (z.B. Graphit) befinden, die dabei helfen kann, den Kontakt der Silberschicht mit dem festen Elektrolyten weiter einzuschränken. Außerdem kann auch eine Vorbeschichtung eingesetzt werden, die das Dielektrikum bedeckt und eine metallorganische Verbindung umfasst.
  • II. Endteile
  • Sobald das Kondensatorelement gebildet ist, kann es mit Endteilen versehen werden, insbesondere wenn es in Oberflächenmontage anwendungen eingesetzt wird. Zum Beispiel kann der Kondensator ein Anoden-Endteil, an das der Anodenanschlussdraht des Kondensatorelements elektrisch angeschlossen wird, und ein Kathoden-Endteil, an das die Kathode des Kondensators elektrisch angeschlossen wird, enthalten. Jedes leitfähige Material kann eingesetzt werden, um die Endteile zu bilden, wie ein leitfähiges Metall (z.B. Kupfer, Nickel, Silber, Nickel, Zink, Zinn, Palladium, Blei, Kupfer, Aluminium, Molybdän, Titan, Eisen, Zirconium, Magnesium und Legierungen davon). Zu den besonders gut geeigneten leitfähigen Metallen gehören zum Beispiel Kupfer, Kupferlegierungen (z.B. Kupfer-Zirconium, Kupfer-Magnesium, Kupfer-Zink oder Kupfer-Eisen), Nickel und Nickellegierungen (z.B. Nickel-Eisen). Die Dicke der Endteile ist im Allgemeinen so gewählt, dass die Dicke des Kondensators minimiert wird. Zum Beispiel kann die Dicke der Endteile im Bereich von etwa 0,05 bis etwa 1 Millimeter, in einigen Ausführungsformen etwa 0,05 bis etwa 0,5 Millimeter oder etwa 0,07 bis etwa 0,2 Millimeter liegen. Ein beispielhaftes leitfähiges Material ist eine Metallplatte aus einer Kupfer-Eisen-Legierung, die von Wieland (Deutschland) erhältlich ist. Falls gewünscht, kann die Oberfläche der Endteile, wie in der Technik bekannt ist, mit Nickel, Silber, Gold, Zinn usw. galvanisiert werden, um zu gewährleisten, dass das endgültige Teil auf der Leiterplatte montierbar ist. In einer besonderen Ausführungsform werden beide Flächen der Endteile mit Nickel- bzw. Silber-Schutzschichten versehen, während die Montagefläche auch mit einer Zinnlötschicht versehen wird.
  • Die Endteile können unter Verwendung einer beliebigen, in der Technik bekannten Methode mit dem Kondensatorelement verbunden werden. In einer Ausführungsform zum Beispiel kann ein Leiterrahmen bereitgestellt werden, der das Kathoden-Endteil und das Anoden-Endteil definiert. Um das Elektrolytkondensatorelement an dem Leiterrahmen zu befestigen, kann ein leitfähiger Kleber zunächst auf eine Fläche des Kathoden-Endteils aufgetragen werden. Der leitfähige Kleber kann zum Beispiel leitfähige Metallteilchen umfassen, die in einer Harzzusammensetzung enthalten sind. Bei den Metallteilchen kann es sich um Silber, Kupfer, Gold, Platin, Nickel, Zink, Bismut usw. handeln. Die Harzzusammensetzung kann ein duroplastisches Harz (z.B. Epoxidharz), Härtungsmittel (z.B. Säureanhydrid) und Kopplungsmittel (z.B. Silan-Kopplungsmittel) umfassen. Geeignete leitfähige Kleber sind in der US-Patentanmeldung Veröffentlichungsnummer 2006/0038304 (Osako et al.) beschrieben. Eine Vielzahl von Techniken kann verwendet werden, um den leitfähigen Kleber auf das Kathoden-Endteil aufzutragen. Aufgrund ihres praktischen und kostensparenden Nutzens können zum Beispiel Drucktechniken eingesetzt werden. Der Anodenanschluss kann auch mit Hilfe irgendeiner in der Technik bekannten Methode, wie mechanisches Schweißen, Laserschweißen, leitfähige Kleber usw., elektrisch mit dem Anoden-Endteil verbunden werden. Nach dem elektrischen Verbinden des Anodenanschlusses mit dem Anoden-Endteil kann der leitfähige Kleber dann gehärtet werden, um zu gewährleisten, dass das Elektrolytkondensatorelement ausreichend stark an den Kathoden-Endteil geklebt wird.
  • III. Gehäuse
  • Das Kondensatorelement kann in unterschiedlicher Art und Weise in einem Gehäuse eingebaut sein. In bestimmten Ausführungsformen zum Beispiel kann das Kondensatorelement in einer Hülle eingeschlossen sein, die dann mit einem harzartigen Material, wie einem duroplastischen Harz (z.B. Epoxidharz), gefüllt werden kann, das dann unter Bildung eines gehärteten Gehäuses ausgehärtet werden kann. Das harzartige Material kann das Kondensatorelement so umgeben und einkapseln, dass wenigstens ein Teil des Anoden- und des Kathoden-Endteils zur Montage auf einer Leiterplatte exponiert sind. Wenn sie in dieser Weise eingekapselt sind, bilden das Kondensatorelement und das harzartige Material eine integrale Kondensatorbaugruppe.
  • Selbstverständlich kann es in alternativen Ausführungsformen auch wünschenswert sein, das Kondensatorelement innerhalb eines Gehäuses einzuschließen, das separat und eigenständig bleibt. Auf diese Weise kann die Atmosphäre des Gehäuses selektiv gesteuert werden, so dass sie trocken ist, was den Grad der Fecuhtigkeit, die mit dem Kondensatorelement in Kontakt kommen kann, einschränkt. Zum Beispiel kann der Feuchtigkeitsgehalt der Atmosphäre (ausgedrückt als relative Feuchtigkeit) etwa 10% oder weniger, in einigen Ausführungsformen etwa 5% oder weniger, in einigen Ausführungsformen etwa 3% oder weniger und in einigen Ausführungsformen etwa 0,001 bis etwa 1% betragen. Zum Beispiel kann die Atmosphäre gasförmig sein und wenigstens ein Inertgas enthalten, wie Stickstoff, Helium, Argon, Xenon, Neon, Krypton, Radon usw. sowie Gemische davon. Typischerweise bilden Inertgase den größten Teil der Atmosphäre innerhalb des Gehäuses, wie etwa 50 Gew.-% bis 100 Gew.-%, in einigen Ausführungsformen etwa 75 Gew.-% bis 100 Gew.-% und in einigen Ausführungsformen etwa 90 Gew.-% bis etwa 99 Gew.-% der Atmosphäre. Falls gewünscht, kann auch eine relativ kleine Menge an Nichtinertgasen eingesetzt werden, wie Kohlendioxid, Sauerstoff, Wasserdampf usw. In solchen Fällen bilden die Nichtinertgase jedoch typischerweise 15 Gew.-% oder weniger, in einigen Ausführungsformen 10 Gew.-% oder weniger, in einigen Ausführungsformen etwa 5 Gew.-% oder weniger, in einigen Ausführungsformen etwa 1 Gew.-% oder weniger und in einigen Ausführungsformen etwa 0,01 Gew.-% bis etwa 1 Gew.-% der Atmosphäre innerhalb des Gehäuses.
  • Zur Bildung des Gehäuses kann eine Vielzahl von Materialien verwendet werden, wie Metalle, Kunststoffe, Keramik usw. In einer Ausführungsform umfasst das Gehäuse zum Beispiel eine oder mehrere Schichten aus einem Metall, wie Tantal, Niob, Aluminium, Nickel, Hafnium, Titan, Kupfer, Silber, Stahl (z.B. Edelstahl), Legierungen davon (z.B. elektrisch leitfähige Oxide), Verbundstoffe davon (z.B. mit elektrisch leitfähigem Oxid beschichtetes Metall) usw. In einer anderen Ausführungsform kann das Gehäuse eine oder mehrere Schichten aus einem keramischen Material, wie Aluminiumnitrid, Aluminiumoxid, Siliciumoxid, Magnesiumoxid, Calciumoxid, Glas usw. sowie Kombinationen davon, umfassen.
  • Das Gehäuse kann jede beliebige Form haben, wie zylindrisch, D-förmig, rechteckig, dreieckig, prismatisch usw. In 1 ist zum Beispiel eine Ausführungsform einer Kondensatorbaugruppe 100 gezeigt, die ein Gehäuse 122 und ein Kondensatorelement 120 enthält. In dieser besonderen Ausführungsform ist das Gehäuse 122 im Wesentlichen rechteckig. Typischerweise haben das Gehäuse und das Kondensatorelement dieselbe oder eine ähnliche Form, so dass das Kondensatorelement leicht im Innenraum untergebracht werden kann. In der gezeigten Ausführungsform zum Beispiel haben sowohl das Kondensatorelement 120 als auch das Gehäuse 122 eine im Wesentlichen rechteckige Form.
  • Falls gewünscht, kann die Kondensatorbaugruppe der vorliegenden Erfindung eine relativ hohe volumetrische Effizienz aufweisen. Um diese hohe Effizienz zu erleichtern, nimmt das Kondensatorelement typischerweise einen wesentlichen Teil des Volumens des Innenraums des Gehäuses ein. Zum Beispiel kann das Kondensatorelement etwa 30 Vol.-% oder mehr, in einigen Ausführungsformen etwa 50 Vol.-% oder mehr, in einigen Ausführungsformen etwa 60 Vol.-% oder mehr, in einigen Ausführungsformen etwa 70 Vol.-% oder mehr, in einigen Ausführungsformen etwa 80 Vol.-% bis etwa 98 Vol.-% und in einigen Ausführungsformen etwa 85 Vol.-% bis 97 Vol.-% des Innenraums des Gehäuses einnehmen. Zu diesem Zweck ist die Differenz zwischen den Abmessungen des Kondensatorelements und denjenigen des durch das Gehäuse definierten Innenraums typischerweise relativ gering.
  • Wenn wir uns zum Beispiel auf 1 beziehen, so kann das Kondensatorelement 120 eine Länge haben (ausschließlich der Länge des Anodenanschlusses 6), die relativ ähnlich der Länge eines durch das Gehäuse 122 definierten Innenraums 126 ist. Zum Beispiel liegt das Verhältnis der Länge der Anode zur Länge des Innenraums im Bereich von etwa 0,40 bis 1,00, in einigen Ausführungsformen etwa 0,50 bis etwa 0,99, in einigen Ausführungsformen etwa 0,60 bis 0,99 und in einigen Ausführungsformen etwa 0,70 bis etwa 0,98. Das Kondensatorelement 120 kann eine Länge von etwa 5 bis etwa 10 Millimetern aufweisen, und der Innenraum 126 kann eine Länge von etwa 6 bis etwa 15 Millimetern aufweisen. Ähnlich kann das Verhältnis der Höhe des Kondensatorelements 120 (in -z-Richtung) zur Höhe des Innenraums 126 im Bereich von etwa 0,40 bis 1,00, in einigen Ausführungsformen etwa 0,50 bis etwa 0,99, in einigen Ausführungsformen etwa 0,60 bis etwa 0,99 und in einigen Ausführungsformen etwa 0,70 bis etwa 0,98 liegen. Das Verhältnis der Breite des Kondensatorelements 120 (in -x-Richtung) zur Breite des Innenraums 126 kann auch im Bereich von etwa 0,50 bis 1,00, in einigen Ausführungsformen etwa 0,60 bis etwa 0,99, in einigen Ausführungsformen etwa 0,70 bis etwa 0,99, in einigen Ausführungsformen etwa 0,80 bis etwa 0,98 und in einigen Ausführungsformen etwa 0,85 bis etwa 0,95 liegen. Zum Beispiel kann die Breite des Kondensatorelements 120 etwa 2 bis etwa 7 Millimeter betragen, und die Breite des Innenraums 126 kann etwa 3 bis etwa 10 Millimeter betragen, und die Höhe des Kondensatorelements 120 kann etwa 0,5 bis etwa 2 Millimeter betragen, und die Breite des Innenraums 126 kann etwa 0,7 bis etwa 6 Millimeter betragen.
  • Obwohl es keineswegs erforderlich ist, kann das Kondensatorelement so an dem Gehäuse befestigt sein, dass außerhalb des Gehäuses für die anschließende Integration in eine Schaltung ein Anoden-Endteil und ein Kathoden-Endteil gebildet werden. Die besondere Konfiguration der Endteile kann von dem Verwendungszweck abhängen. In einer Ausführungsform kann die Kondensatorbaugruppe zum Beispiel so geformt werden, dass sie oberflächenmontierbar und dennoch mechanisch robust ist. Zum Beispiel kann der Anodenanschluss elektrisch mit äußeren, oberflächenmontierbaren Anoden- und Kathoden-Endteilen (z.B. Feldern, Blechen, Platten, Rahmen usw.) verbunden sein. Solche Endteile können sich durch das Gehäuse hindurch erstrecken, um den Kondensator anzuschließen. Die Dicke oder Höhe der Endteile wird im Allgemeinen so gewählt, dass die Dicke der Kondensatorbaugruppe minimiert wird. Zum Beispiel kann die Dicke der Endteile in einem Bereich von etwa 0,05 bis etwa 1 Millimeter, in einigen Ausführungsformen etwa 0,05 bis etwa 0,5 Millimeter und etwa 0,1 bis etwa 0,2 Millimeter liegen. Falls gewünscht, kann die Oberfläche der Endteile, wie in der Technik bekannt ist, mit Nickel, Silber, Gold, Zinn usw. galvanisiert werden, um zu gewährleisten, dass das endgültige Teil auf der Leiterplatte montierbar ist. In einer besonderen Ausführungsform werden die Endteile mit Nickel- bzw. Silber-Schutzschichten versehen, und die Montagefläche wird auch mit einer Zinnlötschicht versehen. In einer anderen Ausführungsform werden bei den Endteilen dünne äußere Metallschichten (z.B. Gold) auf einer Grundmetallschicht (z.B. Kupferlegierung) abgeschieden, um die Leitfähigkeit weiter zu erhöhen.
  • In bestimmten Ausführungsformen können Verbindungselemente innerhalb des Innenraums des Gehäuses eingesetzt werden, um die Verbindung mit den Endteilen in einer mechanisch stabilen Weise zu erleichtern. Wenn wir uns zum Beispiel wieder auf 1 beziehen, so kann die Kondensatorbaugruppe 100 ein Verbindungselement 162 umfassen, das aus einem ersten Teil 167 und einem zweiten Teil 165 besteht. Das Verbindungselement 162 kann aus leitfähigen Materialien ähnlich wie die äußeren Endteile bestehen. Der erste Teil 167 und der zweite Teil 165 können einstückig ausgebildet sein, oder es können separate Teile sein, die miteinander verbunden sind, entweder direkt oder über ein zusätzliches leitfähiges Element (z.B. Metall). In der gezeigten Ausführungsform befindet sich der zweite Teil 165 in einer Ebene, die im Wesentlichen parallel zu einer Längsrichtung, in der sich der Anschluss 6 erstreckt (z.B. -y-Richtung), verläuft. Der erste Teil 167 ist in dem Sinne „hochstehend“, dass er sich in einer Ebene befindet, die im Wesentlichen senkrecht zur Längsrichtung, in der sich der Anschluss 6 erstreckt, verläuft. Auf diese Weise kann der erste Teil 167 die Bewegung des Anschlusses 6 in der horizontalen Richtung einschränken, um den Oberflächenkontakt und die mechanische Stabilität während der Verwendung zu verstärken. Falls gewünscht, kann ein isolierendes Material 7 (z.B. ein Teflon™-Ring) um den Anschluss 6 herum eingesetzt werden.
  • Der erste Teil 167 kann auch einen Montagebereich besitzen (nicht gezeigt), der mit einem Anodenanschluss 6 verbunden ist. Der Bereich kann eine „U-Form“ aufweisen, um den Oberflächenkontakt und die mechanische Stabilität des Anschlusses 6 weiter zu verstärken. Die Verbindung des Bereichs mit dem Anschluss 6 kann mit Hilfe einer Vielzahl von Techniken bewerkstelligt werden, wie Schweißen, Laserschweißen, leitfähige Kleber usw. In einer besonderen Ausführungsform wird der Bereich zum Beispiel durch Laserschweißen an dem Anodenanschluss 6 befestigt. Unabhängig von der gewählten Technik kann der erste Teil 167 jedoch den Anodenanschluss 6 in einer im Wesentlichen horizontalen Ausrichtung halten, um die Maßhaltigkeit der Kondensatorbaugruppe 100 weiter zu verstärken.
  • Wenn wir uns wiederum auf 1 beziehen, so ist eine Ausführungsform der vorliegenden Erfindung gezeigt, bei der das Verbindungselement 162 und das Kondensatorelement 120 über ein Anoden- und ein Kathoden-Endteil 127 bzw. 129 mit dem Gehäuse 122 verbunden ist. Insbesondere umfasst das Gehäuse 122 dieser Ausführungsform eine äußere Wand 123 und zwei einander gegenüberliegende Seitenwände 124, zwischen denen ein Hohlraum 126 gebildet ist, der das Kondensatorelement 120 umfasst. Die äußere Wand 123 und die Seitenwände 124 können aus einer oder mehreren Schichten eines Metalls, Kunststoffs oder Keramikmaterials, wie es oben beschrieben ist, bestehen. In dieser besonderen Ausführungsform enthält das Anoden-Endteil 127 einen ersten Bereich 127a, der sich innerhalb des Gehäuses 122 befindet und elektrisch mit dem Verbindungselement 162 verbunden ist, und einen zweiten Bereich 127b, der sich außerhalb des Gehäuses 122 befindet und für eine Montagefläche 201 sorgt. Ähnlich enthält das Kathoden-Endteil 129 einen ersten Bereich 129a, der sich innerhalb des Gehäuses 122 befindet und elektrisch mit dem festen Elektrolyten des Kondensatorelements 120 verbunden ist, und einen zweiten Bereich 129b, der sich außerhalb des Gehäuses 122 befindet und für eine Montagefläche 203 sorgt. Man sollte sich darüber im Klaren sein, dass sich nicht der gesamte Teil solcher Bereiche innerhalb oder außerhalb des Gehäuses zu befinden braucht.
  • In der gezeigten Ausführungsform erstreckt sich eine leitfähige Bahn 127c in der Außenwand 123 des Gehäuses, um den ersten Bereich 127a und den zweiten Bereich 127b miteinander zu verbinden. Ähnlich erstreckt sich eine leitfähige Bahn 129c in der Außenwand 123 des Gehäuses, um den ersten Bereich 127a und den zweiten Bereich 127b miteinander zu verbinden. Die leitfähigen Bahnen und/oder Bereiche der Endteile können getrennt oder einstückig sein. Die Bahnen können sich nicht nur durch die Außenwand des Gehäuses erstrecken, sondern können sich auch an anderen Stellen befinden, wie außerhalb der Außenwand. Selbstverständlich ist die vorliegende Erfindung keineswegs auf die Verwendung von leitfähigen Bahnen zur Bildung der gewünschten Endteile beschränkt.
  • Unabhängig von der besonderen eingesetzten Konfiguration kann die Verbindung der Endteile 127 und 129 mit dem Kondensatorelement 120 unter Verwendung jeder bekannten Technik erfolgen, wie Schweißen, Laserschweißen, leitfähige Kleber usw. In einer besonderen Ausführungsform wird zum Beispiel ein leitfähiger Kleber 131 verwendet, um den zweiten Teil 165 des Verbindungselements 162 mit dem Anoden-Endteil 127 zu verbinden. Ähnlich wird ein leitfähiger Kleber 133 verwendet, um die Kathode des Kondensatorelements 120 mit dem Kathoden-Endteil 129 zu verbinden.
  • Gegebenenfalls kann sich auch eine polymere Einspannung in Kontakt mit einer oder mehreren Flächen des Kondensatorelements befinden, wie der hinteren Fläche, der vorderen Fläche, der oberen Fläche, der unteren Fläche, den Seitenflächen oder einer beliebigen Kombination davon. Die polymere Einspannung kann die Wahrscheinlichkeit des Abblätterns des Kondensatorelements von dem Gehäuse reduzieren. In dieser Hinsicht besitzt die polymere Einspannung typischerweise ein bestimmtes Maß an Festigkeit, das es ihr ermöglicht, das Kondensatorelement in einer relativ fixierten Position zu halten, auch wenn es Schwingungskräften ausgesetzt ist, aber nicht so fest, dass es Risse bekommt. Die Einspannung kann zum Beispiel eine Zugfestigkeit von etwa 1 bis etwa 150 Megapascal („MPa“), in einigen Ausführungsformen etwa 2 bis etwa 100 MPa, in einigen Ausführungsformen etwa 10 bis etwa 80 MPa und in einigen Ausführungsformen etwa 20 bis etwa 70 MPa besitzen, gemessen bei einer Temperatur von etwa 25 °C. Es ist normalerweise wünschenswert, dass die Einspannung nicht elektrisch leitend ist. Wenn wir uns zum Beispiel wieder auf 1 beziehen, so ist eine Ausführungsform gezeigt, in der sich eine einzige polymere Einspannung 197 in Kontakt mit einer oberen Fläche 181 und einer hinteren Fläche 177 des Kondensatorelements 120 befindet. Während in 1 eine einzelne Einspannung gezeigt ist, sollte man sich darüber im Klaren sein, dass auch getrennte Einspannungen eingesetzt werden können, um dieselbe Funktion zu erfüllen. Tatsächlich können allgemeiner gesagt eine beliebige Zahl von polymeren Einspannungen eingesetzt werden und sich in Kontakt mit jeder gewünschten Fläche des Kondensatorelements befinden. Wenn mehrere Einspannungen eingesetzt werden, können sie miteinander in Kontakt stehen oder physisch getrennt bleiben. Zum Beispiel kann in einer Ausführungsform eine zweite polymere Einspannung (nicht gezeigt) eingesetzt werden, die mit der oberen Fläche 181 und der vorderen Fläche 179 des Kondensatorelements 120 in Kontakt steht. Die erste polymere Einspannung 197 und die zweite polymere Einspannung (nicht gezeigt) können in Kontakt miteinander stehen oder auch nicht. In noch einer anderen Ausführungsform kann eine polymere Einspannung auch mit einer unteren Fläche 183 und/oder einer oder mehreren Seitenflächen des Kondensatorelements 120 in Kontakt stehen, entweder in Verbindung mit oder anstelle von anderen Flächen.
  • Unabhängig davon, wie sie angebracht wird, ist es typischerweise wünschenswert, dass sich die polymere Einspannung auch in Kontakt mit wenigstens einer Fläche des Gehäuses befindet, um dazu beizutragen, das Kondensatorelement weiter gegen eventuelle Delamination mechanisch zu stabilisieren. Zum Beispiel kann sich die Einspannung in Kontakt mit einer Innenfläche einer oder mehrerer Seitenwände, der Außenwand, des Deckels usw. befinden. In 1 befindet sich die polymere Einspannung 197 zum Beispiel in Kontakt mit einer Innenfläche 107 der Seitenwand 124 und einer Innenfläche 109 der äußeren Wand 123. Während sie sich in Kontakt mit dem Gehäuse befindet, ist es dennoch wünschenswert, dass wenigstens ein Teil des durch das Gehäuse definierten Innenraums frei bleibt, damit das Inertgas durch den Innenraum strömen und den Kontakt des festen Elektrolyten mit Sauerstoff einschränken kann. Zum Beispiel bleiben typischerweise wenigstens etwa 5% des Innenraumvolumens frei von dem Kondensatorelement und der polymeren Einspannung, und in einigen Ausführungsformen sind es etwa 10% bis etwa 50% des Innenraumvolumens.
  • Sobald sie in der gewünschten Weise verbunden ist, wird die resultierende Packung hermetisch versiegelt, wie es oben beschrieben ist. Wie zum Beispiel wiederum in 1 gezeigt ist, kann das Gehäuse 122 auch einen Deckel 125 umfassen, der auf einer oberen Fläche der Seitenwände 124 platziert wird, nachdem das Kondensatorelement 120 und die polymere Einspannung 197 innerhalb des Gehäuses 122 positioniert sind. Der Deckel 125 kann aus Keramik, Metall (z.B. Eisen, Kupfer, Nickel, Cobalt usw. sowie Legierungen davon), Kunststoff usw. bestehen. Falls gewünscht, kann sich ein Versiegelungselement 187 zwischen dem Deckel 125 und den Seitenwänden 124 befinden, um zu einer guten Abdichtung beizutragen. In einer Ausführungsform zum Beispiel kann das Versiegelungselement eine Glas-Metall-Versiegelung, einen Kovar®-Ring (Goodfellow Cambridge, Ltd.) usw. umfassen. Die Höhe der Seitenwände 124 ist im Allgemeinen so, dass der Deckel 125 nicht mit einer Fläche des Kondensatorelements 120 in Kontakt kommt, so dass er nicht kontaminiert wird. Die polymere Einspannung 197 kann mit dem Deckel 125 in Kontakt stehen oder auch nicht. Wenn er in der gewünschten Position platziert ist, wird der Deckel 125 mit Hilfe von bekannten Techniken, wie Schweißen (z.B. Widerstandsschweißen, Laserschweißen usw.), Löten usw., hermetisch an den Seitenwänden 124 versiegelt. Das hermetische Versiegeln erfolgt im Allgemeinen in Gegenwart von Inertgasen, wie es oben beschrieben ist, so dass die resultierende Baugruppe im Wesentlichen frei von reaktiven Gasen, wie Sauerstoff oder Wasserdampf, ist.
  • Man sollte sich darüber im Klaren sein, dass die beschriebenen Ausführungsformen nur beispielhaft sind und dass in der vorliegenden Erfindung auch verschiedene andere Konfigurationen eingesetzt werden können, um ein Kondensatorelement hermetisch innerhalb eines Gehäuses zu versiegeln. Wenn wir uns zum Beispiel auf 2 beziehen, so ist eine andere Ausführungsform einer Kondensatorbaugruppe 200 gezeigt, bei der ein Gehäuse 222 eingesetzt wird, das eine Außenwand 123 und einen Deckel 225 umfasst, zwischen denen ein Innenraum 126 entsteht, der das Kondensatorelement 120 und die polymere Einspannung 197 umfasst. Der Deckel 225 umfasst eine Außenwand 223, die einstückig mit wenigstens einer Seitenwand 224 ausgebildet ist. In der gezeigten Ausführungsform sind zum Beispiel zwei einander gegenüberliegende Seitenwände 224 im Querschnitt gezeigt. Die Außenwände 223 und 123 erstrecken sich beide in einer seitlichen Richtung (-y-Richtung) und verlaufen im Wesentlichen parallel zu einander und zur seitlichen Richtung des Anodenanschlusses 6. Die Seitenwand 224 erstreckt sich von der Außenwand 223 ausgehend in einer Längsrichtung, die im Wesentlichen senkrecht zur Außenwand 123 steht. Ein distales Ende 500 des Deckels 225 ist durch die Außenwand 223 definiert, und ein proximales Ende 501 ist durch eine Lippe 253 der Seitenwand 224 definiert.
  • Die Lippe 253 erstreckt sich von der Seitenwand 224 ausgehend in seitlicher Richtung, die im Wesentlichen parallel zur seitlichen Richtung der Außenwand 123 stehen kann. Der Winkel zwischen der Seitenwand 224 und der Lippe 253 kann variieren, beträgt aber typischerweise etwa 60° bis etwa 120°, in einigen Ausführungsformen etwa 70° bis etwa 110° und in einigen Ausführungsformen etwa 80° bis etwa 100° (z.B. etwa 90°). Die Lippe 253 definiert auch einen umlaufenden Rand 251, der im Wesentlichen senkrecht zur seitlichen Richtung, in der sich die Lippe 253 und die Außenwand 123 erstrecken, verlaufen kann. Der umlaufende Rand 251 befindet sich jenseits des äußeren Umfangs der Seitenwand 224 und kann im Wesentlichen koplanar zu einem Rand 151 der Außenwand 123 verlaufen. Die Lippe 253 kann mit Hilfe einer beliebigen bekannten Technik, wie Schweißen (z.B. Widerstands- oder Laserschweißen), Löten, Leim usw., an der Außenwand 123 versiegelt werden. Zum Beispiel wird in der gezeigten Ausführungsform ein Versiegelungselement 287 (z.B. Glas-Metall-Siegel, Kovar®-Ring usw.) zwischen den Komponenten eingesetzt, um deren Befestigung zu erleichtern. Unabhängig davon kann die oben beschriebene Verwendung einer Lippe eine stabilere Verbindung zwischen den Komponenten ermöglichen und die Versiegelung und die mechanische Stabilität der Kondensatorbaugruppe verbessern.
  • In der vorliegenden Erfindung können noch andere mögliche Gehäusekonfigurationen eingesetzt werden. Zum Beispiel zeigt 3 eine Kondensatorbaugruppe 300 mit einer ähnlichen Gehäusekonfiguration wie in 2, außer dass Endstifte 327b bzw. 329b als externe Abschlüsse für die Anode bzw. Kathode eingesetzt werden. Insbesondere erstreckt sich der Endstift 327a durch eine in der Außenwand 323 gebildete Bahn 327c hindurch und wird mit Hilfe von bekannten Techniken (z.B. Schweißen) mit dem Anodenanschluss 6 verbunden. Ein zusätzlicher Abschnitt 327a kann eingesetzt werden, um den Stift 327b zu befestigen. Ebenso erstreckt sich der Endstift 329b durch eine in der Außenwand 323 gebildete Bahn 329c hindurch und wird über einen leitfähigen Kleber 133 mit der Kathode verbunden, wie es oben beschrieben ist.
  • Die in den 1-3 gezeigten Ausführungsformen werden hier in Verbindung mit einem einzigen Kondensatorelement diskutiert. Man sollte sich jedoch darüber im Klaren sein, dass auch mehrere Kondensatorelemente innerhalb eines Gehäuses hermetisch versiegelt sein können. Die mehreren Kondensatorelemente können unter Verwendung einer Vielzahl von Techniken an dem Gehäuse befestigt werden. 4 zeigt zum Beispiel eine besondere Ausführungsform einer Kondensatorbaugruppe 400, die zwei Kondensatorelemente enthält und nun ausführlicher beschrieben wird. Insbesondere umfasst die Kondensatorbaugruppe 400 ein erstes Kondensatorelement 420a in elektrischer Verbindung mit einem zweiten Kondensatorelement 420b. In dieser Ausführungsform sind die Kondensatorelemente so ausgerichtet, dass sich ihre Hauptflächen in einer horizontalen Konfiguration befinden. Das heißt, eine Hauptfläche des Kondensatorelements 420a, die durch dessen Breite (-x-Richtung) und Länge (-y-Richtung) definiert ist, befindet sich angrenzend an eine entsprechende Hauptfläche des Kondensatorelements 420b. Die Hauptflächen sind also im Wesentlichen koplanar. Alternativ dazu können die Kondensatorelemente auch so angeordnet sein, dass ihre Hauptflächen nicht koplanar sind, sondern in einer bestimmten Richtung, wie der -z-Richtung oder der -x-Richtung, senkrecht aufeinander stehen. Selbstverständlich brauchen sich die Kondensatorelemente nicht in derselben Richtung zu erstrecken.
  • Die Kondensatorelemente 420a und 420b befinden sich innerhalb eines Gehäuses 422, das eine Außenwand 423 und Seitenwände 424 und 425 enthält, die zusammen einen Innenraum 426 definieren. Obwohl es nicht gezeigt ist, kann ein Deckel eingesetzt werden, der die oberen Flächen der Seitenwände 424 und 425 bedeckt und die Baugruppe 400 versiegelt, wie es oben beschrieben ist. Gegebenenfalls kann auch eine polymere Einspannung eingesetzt werden, die dazu beiträgt, die Schwingung der Kondensatorelemente einzudämmen. In 4 befinden sich zum Beispiel getrennte polymere Einspannungen 497a und 497b angrenzend an und in Kontakt mit den Kondensatorelementen 420a bzw. 420b. Die polymeren Einspannungen 497a und 497b können sich an einer Vielzahl verschiedener Orte befinden. Weiterhin kann eine der Einspannungen weggelassen werden, oder zusätzliche Einspannungen können eingesetzt werden. In bestimmten Ausführungsformen kann es zum Beispiel wünschenswert sein, eine polymere Einspannung zwischen den Kondensatorelementen einzusetzen, um die mechanische Stabilität weiter zu verbessern.
  • Neben den Kondensatorelementen enthält die Kondensatorbaugruppe auch ein Anoden-Endteil, mit dem Anodenanschlüsse der jeweiligen Kondensatorelemente elektrisch verbunden sind, und ein Kathoden-Endteil, mit dem die Kathoden der jeweiligen Kondensatorelemente elektrisch verbunden sind. Wenn wir uns zum Beispiel wieder auf 4 beziehen, so sind die Kondensatorelemente gezeigt, wie sie parallel mit einem gemeinsamen Kathoden-Endteil 429 verbunden sind. In dieser besonderen Ausführungsform wird das Kathoden-Endteil 429 zunächst in einer Ebene bereitgestellt, die im Wesentlichen parallel zur unteren Fläche der Kondensatorelemente verläuft, und kann mit leitfähigen Bahnen (nicht gezeigt) in elektrischem Kontakt stehen. Die Kondensatorbaugruppe 400 umfasst auch Verbindungselemente 427 und 527, die mit Anodenanschlüssen 407a bzw. 407b der Kondensatorelemente 420a und 420b verbunden sind. Insbesondere enthält das Verbindungselement 427 einen hochstehenden Teil 465 und einen planaren Teil 463, der mit einem Anoden-Endteil (nicht gezeigt) in Verbindung steht. Ebenso enthält das Verbindungselement 527 einen hochstehenden Teil 565 und einen planaren Teil 563, der mit einem Anoden-Endteil (nicht gezeigt) in Verbindung steht. Selbstverständlich sollte man sich darüber im Klaren sein, dass auch eine Vielzahl anderer Typen von Verbindungsmechanismen eingesetzt werden kann.
  • Die vorliegende Erfindung wird anhand der folgenden Beispiele besser verständlich.
  • Testverfahren
  • Äquivalenter Serienwiderstand (ESR)
  • Der äquivalente Serienwiderstand kann mit einem Präzisions-LCZ-Messgerät Keithley 3330 mit Kelvin-Anschlussleitungen bei 2,2 Volt Vorspannung und einem sinusförmigen Signal mit 0,5 Volt Abstand zwischen den Peaks gemessen werden. Die Betriebsfrequenz kann 100 kHz betragen, und die Temperatur kann 23 °C ± 2°C betragen.
  • Verlustfaktor
  • Der Verlustfaktor kann mit einem Präzisions-LCZ-Messgerät Keithley 3330 mit Kelvin-Anschlussleitungen bei 2,2 Volt Vorspannung und einem sinusförmigen Signal mit 0,5 Volt Abstand zwischen den Peaks gemessen werden. Die Betriebsfrequenz kann 120 Hz betragen, und die Temperatur kann 23 °C ± 2 °C betragen.
  • Kapazität
  • Zur Bestimmung der Kapazität (feucht) können die Proben vollständig in einer wässrige Lösung von Phosphorsäure mit einer Leitfähigkeit von 8600 µS/cm eingetaucht werden. Dann kann die Kapazität unter Verwendung eines Autolab 85429 mit 0,5 Volt Vorspannung und einem sinusförmigen Signal mit 0,3 Volt Abstand zwischen den Peaks gemessen werden. Die Betriebsfrequenz kann 0,5 Hz betragen, und die Temperatur kann 23°C ± 2°C betragen. Zur Bestimmung der Kapazität (trocken) können die Proben wenigstens 24 Stunden lang bei 125°C getrocknet werden, und dann kann die Kapazität unter Verwendung eines Präzisions-LCZ-Messgeräts Keithley 3330 mit Kelvin-Anschlussleitungen bei 2,2 Volt Vorspannung und einem sinusförmigen Signal mit 0,5 Volt Abstand zwischen den Peaks gemessen werden. Die Betriebsfrequenz kann 120 Hz betragen, und die Temperatur kann 23°C ± 2°C betragen. Die „Kapazitätsrückbildung“ kann durch die Gleichung R u ¨ ckbildung ( % ) = ( Trockenkapazit a ¨ t / Feuchtkapazit a ¨ t ) × 100
    Figure DE112019006146T5_0010
    bestimmt werden.
  • Leckstrom
  • Der Leckstrom kann mit einer Leckstrom-Testeinrichtung bei einer Temperatur von 23 °C ± 2°C und bei der Nennspannung mindestens 60 Sekunden lang gemessen werden.
  • Feuchtigkeitsaufnahme:
    • Fünf (5) Proben können wenigstens 24 Stunden lang bei 125°C getrocknet werden, um alle Spuren von Wasser im Innern zu entfernen. Danach können die Proben 192 Srunden lang in eine Atmosphäre mit einer Temperatur von 30°C und einer relativen Feuchtigkeit von 60% eingebracht werden. Nach der Einwirkung der Feuchtigkeit können die Proben auf einem TGA-Analysegerät (z.B. TA Instruments, TGA 550) analysiert werden, um den Gewichtsverlust und somit die Menge des Wassers, die während der Einwirkung der Feuchtigkeit in die Proben eingedrungen ist, zu bewerten. Das TGA-Verfahren beinhaltet einen Temperaturanstieg von Raumtemperatur bis 125°C mit einer Geschwindigkeit von 10 °C/min und dann 12 Stunden konstantes Trocknen bei 125 °C. Der Gewichtsverlust kann am Ende des Trocknungsvorgangs bewertet und verwendet werden, um den Wassergehalt jeder Probe zu bestimmen.
  • Beispiel 1
  • Ein Tantalpulver mit 40 000 µFV/g wurde verwendet, um Anodenproben zu bilden. Jede Anodenprobe wurde zusammen mit einem Tantaldraht eingebettet, auf eine Dichte von 5,3 g/cm3 gepresst und bei 1410 °C gesintert. Die resultierenden Presslinge hatten eine Größe von 5,60 x 3,65 x 0,80 mm. Die Presslinge wurden bei einer Temperatur von 40 °C in Wasser/Phosphorsäure-Elektrolyt mit einer Leitfähigkeit von 8,6 mS/cm bis 76,0 V anodisiert, um die dielektrische Schicht zu bilden. Die Presslinge wurden 8 Sekunden lang bei einer Temperatur von 30 °C in Wasser/Borsäure/Dinatriumtetraborat mit einer Leitfähigkeit von 2,0 mS bis 150 V erneut anodisiert, um eine auf der Außenseite aufgewachsene dickere Oxidschicht zu bilden. Eine leitfähige Polymerbeschichtung wurde gebildet, indem man die Anoden in eine Lösung von Poly(4-(2,3-dihydrothieno[3,4-b]dioxin-2-ylmethoxy)-1-butansulfonsäure mit einem Feststoffgehalt von 2,0% eintauchte. Nach der Beschichtung wurden die Teile 15 Minuten lang bei 125 °C getrocknet. Dieser Vorgang wurde sechsmal wiederholt. Danach wurden die Teile in dispergiertes Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 1% und einer Viskosität von 20 mPa·s (Clevios™ K, Heraeus) eingetaucht. Nach der Beschichtung wurden die Teile 15 Minuten lang bei 125 °C getrocknet. Dieser Vorgang wurde dreimal wiederholt. Danach wurden die Teile in dispergiertes Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 2% und einer Viskosität von 160 mPa·s (Clevios™ K, Heraeus) eingetaucht. Nach der Beschichtung wurden die Teile 15 Minuten lang bei 125 °C getrocknet. Dieser Vorgang wurde 14-mal wiederholt. Dann wurden die Teile in eine Graphitdispersion eingetaucht und getrocknet. Schließlich wurden die Teile in eine Silberdispersion eingetaucht und getrocknet. Auf diese Weise wurden viele Teile (200) von Kondensatoren mit 47 µF/35 V hergestellt und in ein Siliciumoxidharz eingebettet.
  • Beispiel 2
  • Kondensatoren wurden in der in Beispiel 1 beschriebenen Weise gebildet, außer dass eine zusätzliche leitfähige Polymerbeschichtung verwendet wurde. Eine leitfähige Polymerbeschichtung wurde gebildet, indem man die Anoden in eine Lösung von Poly(4-(2,3-dihydrothieno[3,4-b]dioxin-2-ylmethoxy)-1-butansulfonsäure mit einem Feststoffgehalt von 2,0% eintauchte. Nach der Beschichtung wurden die Teile 15 Minuten lang bei 125 °C getrocknet. Dieser Vorgang wurde sechsmal wiederholt. Danach wurden die Teile in eine Thiophenpolymerdispersion, wie sie hier beschrieben wird, eingetaucht. Nach der Beschichtung wurden die Teile 60 Minuten lang bei 150 °C getrocknet. Dieser Vorgang wurde zweimal wiederholt. Danach wurden die Teile in dispergiertes Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 2,0% und einer Viskosität von 20 mPa·s (Clevios™ K, Heraeus) eingetaucht. Nach der Beschichtung wurden die Teile 15 Minuten lang bei 125 °C getrocknet. Dieser Vorgang wurde dreimal wiederholt. Danach wurden die Teile in dispergiertes Poly(3,4-ethylendioxythiophen) mit einem Feststoffgehalt von 2% und einer Viskosität von 160 mPa·s (Clevios™ K, Heraeus) eingetaucht. Nach der Beschichtung wurden die Teile 15 Minuten lang bei 125 °C getrocknet. Dieser Vorgang wurde 14-mal wiederholt. Dann wurden die Teile in eine Graphitdispersion eingetaucht und getrocknet. Schließlich wurden die Teile in eine Silberdispersion eingetaucht und getrocknet. Auf diese Weise wurden viele Teile (180) von Kondensatoren mit 47 µF/35 V hergestellt und in ein Siliciumoxidharz eingebettet.
  • Die Medianwerte der Ergebnisse für die Feucht- und Trockenkapazität in µF mit Berechnung der Kapazitätsrückbildung sind unten in Tabelle 1 dargelegt. Tabelle 1: Kapazitätsergebnisse
    Nasskapazität [µF] Trockenkapazität [µF] Kapazitätsrückbildung [%]
    Beispiel 1 52,02 46,02 88,5
    Beispiel 2 51,99 48,83 93,9
  • Die mittleren Ergebnisse für den durch TGA gemessenen Wassergehalt sind unten in Tabelle 2 dargelegt. Tabelle 2: Gewicht von in einem Kondensator aufgesaugtem Wasser
    Wassergewicht [µg/Probe]
    Beispiel 1 93,3
    Beispiel 2 79,9
  • Diese und andere Modifikationen und Variationen der vorliegenden Erfindung können vom Fachmann praktisch umgesetzt werden, ohne vom Wesen und Umfang der vorliegenden Erfindung abzuweichen. Außerdem sollte man sich darüber im Klaren sein, dass Aspekte der verschiedenen Ausführungsformen ganz oder teilweise gegeneinander ausgetauscht werden können. Weiterhin wird der Fachmann anerkennen, dass die obige Beschreibung nur beispielhaften Charakter hat und die Erfindung, die in den beigefügten Ansprüchen näher beschrieben ist, nicht einschränken soll.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 62/772916 [0001]
    • WO 2014/199480 [0016]
    • US 6197252 [0021]
    • US 2007/0064376 [0052]
    • US 2006/0038304 [0061]

Claims (22)

  1. Festelektrolytkondensator, der ein Kondensatorelement umfasst, wobei das Kondensatorelement Folgendes umfasst: einen gesinterten porösen Anodenkörper; ein Dielektrikum, das den Anodenkörper bedeckt; einen das Dielektrikum bedeckenden festen Elektrolyten, wobei der feste Elektrolyt ein leitfähiges Polymer umfasst, das Thiophen-Repetiereinheiten der folgenden allgemeinen Formel (1) und/oder (2) enthält:
    Figure DE112019006146T5_0011
    Figure DE112019006146T5_0012
    wobei X1 und X2 unabhängig Wasserstoff, ein gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Alkoxy, gegebenenfalls substituiertes Alkylenoxid, gegebenenfalls substituiertes Thiocyano, gegebenenfalls substituiertes Thioalkyl oder gegebenenfalls substituiertes Amino sind oder wobei X1 und X2 unter Bildung eines gegebenenfalls substituierten Alkylendioxy oder einer gegebenenfalls substituierten Alkylendithiogruppe miteinander kombiniert sind; und R ein gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Alkoxy, gegebenenfalls substituiertes Alkylenoxid, gegebenenfalls substituiertes Aryl, gegebenenfalls substituierter Heterocyclus, gegebenenfalls substituierte kondensierte Ringgruppe oder ein Salz oder eine Säure eines der obigen ist; und eine externe Polymerbeschichtung, die den festen Elektrolyten bedeckt und leitfähige Polymerteilchen umfasst.
  2. Festelektrolytkondensator gemäß Anspruch 1, wobei R eine Alkylgruppe ist.
  3. Festelektrolytkondensator gemäß Anspruch 1, wobei X1 und X2 in Formel (1) und/oder Formel (2) unter Bildung der folgenden Struktur miteinander kombiniert sind:
    Figure DE112019006146T5_0013
    wobei Y1 und Y2 unabhängig O oder S sind; und X5 eine Alkylengruppe mit 1 bis 12 Kohlenstoffatomen ist, die gegebenenfalls einen Substituenten und/oder eine sauerstoffanaloge, stickstoffanaloge oder schwefelanaloge Struktur innerhalb der Alkylengruppe aufweist.
  4. Festelektrolytkondensator gemäß Anspruch 3, wobei Y1 und Y2 = O sind.
  5. Festelektrolytkondensator gemäß Anspruch 3, wobei X5 Ethylen ist.
  6. Festelektrolytkondensator gemäß Anspruch 1, wobei der feste Elektrolyt wenigstens eine innere Schicht enthält, die das leitfähige Polymer umfasst.
  7. Festelektrolytkondensator gemäß Anspruch 6, wobei die innere Schicht im Wesentlichen frei von einem extrinsisch leitfähigen Polymer ist.
  8. Festelektrolytkondensator gemäß Anspruch 1, wobei der feste Elektrolyt wenigstens eine äußere Schicht enthält.
  9. Festelektrolytkondensator gemäß Anspruch 8, wobei die äußere Schicht aus Teilchen besteht, die ein polymeres Gegenion und ein extrinsisch leitfähiges Polymer enthalten.
  10. Festelektrolytkondensator gemäß Anspruch 8, wobei die äußere Schicht ein hydroxyfunktionelles nichtionisches Polymer enthält.
  11. Festelektrolytkondensator gemäß Anspruch 1, wobei die leitfähigen Polymerteilchen ein extrinsisch leitfähiges Thiophenpolymer und ein Gegenion umfassen.
  12. Festelektrolytkondensator gemäß Anspruch 11, wobei die externe Polymerbeschichtung weiterhin ein Vernetzungsmittel umfasst.
  13. Festelektrolytkondensator gemäß Anspruch 1, wobei die leitfähigen Polymerteilchen eine mittlere Größe von etwa 80 bis etwa 600 Nanometer aufweisen.
  14. Festelektrolytkondensator gemäß Anspruch 1, weiterhin umfassend einen Anodenanschlussdraht, der sich von dem Kondensatorelement weg erstreckt.
  15. Festelektrolytkondensator gemäß Anspruch 14, weiterhin umfassend ein Anodenendteil, das sich in elektrischem Kontakt mit dem Anodenanschlussdraht befindet, und ein Kathodenendteil, das sich in elektrischem Kontakt mit dem festen Elektrolyten befindet.
  16. Festelektrolytkondensator gemäß Anspruch 1, weiterhin umfassend ein Gehäuse, in dem das Kondensatorelement eingeschlossen ist.
  17. Festelektrolytkondensator gemäß Anspruch 16, wobei das Gehäuse aus einem harzartigen Material besteht, in das das Kondensatorelement eingekapselt ist.
  18. Festelektrolytkondensator gemäß Anspruch 16, wobei das Gehäuse einen inneren Hohlraum definiert, in dem sich das Kondensatorelement befindet, wobei der innere Hohlraum eine Gasatmosphäre aufweist.
  19. Festelektrolytkondensator gemäß Anspruch 1, wobei der Anodenkörper Tantal umfasst.
  20. Festelektrolytkondensator gemäß Anspruch 1, wobei das Kondensatorelement weiterhin eine Kathodenbeschichtung umfasst, die eine den festen Elektrolyten bedeckende Metallteilchenschicht enthält, wobei die Metallteilchenschicht eine Vielzahl von leitfähigen Metallteilchen umfasst.
  21. Festelektrolytkondensator gemäß Anspruch 1, wobei der Kondensator eine Durchschlagspannung von etwa 85 Volt oder mehr aufweist.
  22. Festelektrolytkondensator gemäß Anspruch 1, wobei der Kondensator eine Kapazitätsrückbildung von etwa 90% oder mehr aufweist.
DE112019006146.1T 2018-12-11 2019-12-11 Festelektrolytkondensator, der ein intrinsisch leitfähiges Polymer enthält Pending DE112019006146T5 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862777916P 2018-12-11 2018-12-11
US62/777,916 2018-12-11
PCT/US2019/065588 WO2020123577A1 (en) 2018-12-11 2019-12-11 Solid electrolytic capacitor containing an intrinsically conductive polymer

Publications (1)

Publication Number Publication Date
DE112019006146T5 true DE112019006146T5 (de) 2021-08-26

Family

ID=70972140

Family Applications (1)

Application Number Title Priority Date Filing Date
DE112019006146.1T Pending DE112019006146T5 (de) 2018-12-11 2019-12-11 Festelektrolytkondensator, der ein intrinsisch leitfähiges Polymer enthält

Country Status (5)

Country Link
US (1) US11955294B2 (de)
JP (1) JP7220791B2 (de)
CN (1) CN113196429A (de)
DE (1) DE112019006146T5 (de)
WO (1) WO2020123577A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018075330A2 (en) * 2016-10-18 2018-04-26 Avx Corporation Solid electrolytic capacitor with improved leakage current
US11183342B2 (en) 2018-08-10 2021-11-23 Avx Corporation Solid electrolytic capacitor containing polyaniline
WO2020033820A1 (en) 2018-08-10 2020-02-13 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
EP3834217A4 (de) 2018-08-10 2022-05-11 KYOCERA AVX Components Corporation Festelektrolytkondensator mit intrinsisch leitfähigem polymer
WO2021055707A1 (en) * 2019-09-18 2021-03-25 Avx Corporation Solid electroltyic capacitor for use at high voltages
JP2023506714A (ja) 2019-12-10 2023-02-20 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション プレコート及び固有導電性ポリマーを含む固体電解キャパシタ
DE112020006024T5 (de) 2019-12-10 2022-10-06 KYOCERA AVX Components Corporation Tantalkondensator mit erhöhter Stabilität

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197252B1 (en) 1997-01-13 2001-03-06 Avx Limited Binder removal
US20060038304A1 (en) 2004-08-18 2006-02-23 Harima Chemicals, Inc. Conductive adhesive agent and process for manufacturing article using the conductive adhesive agent
US20070064376A1 (en) 2005-09-13 2007-03-22 H. C. Starck Gmbh Process for the production of electrolyte capacitors of high nominal voltage
WO2014199480A1 (ja) 2013-06-13 2014-12-18 石原ケミカル株式会社 Ta粉末とその製造方法およびTa造粒粉

Family Cites Families (279)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3889357A (en) 1973-07-05 1975-06-17 Sprague Electric Co Screen printed solid electrolytic capacitor
CA2010320C (en) 1989-02-20 2001-04-17 Yohzoh Yamamoto Sheet or film of cyclo-olefin polymer
US5111327A (en) 1991-03-04 1992-05-05 General Electric Company Substituted 3,4-polymethylenedioxythiophenes, and polymers and electro responsive devices made therefrom
JP2765462B2 (ja) 1993-07-27 1998-06-18 日本電気株式会社 固体電解コンデンサおよびその製造方法
JPH07135126A (ja) 1993-11-10 1995-05-23 Nec Corp 固体電解コンデンサ及びその製造方法
JP3068430B2 (ja) 1995-04-25 2000-07-24 富山日本電気株式会社 固体電解コンデンサ及びその製造方法
US5812367A (en) 1996-04-04 1998-09-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative
US6430033B1 (en) 1998-06-25 2002-08-06 Nichicon Corporation Solid electrolytic capacitor and method of making same
AU4562900A (en) 1999-05-20 2000-12-12 Bayer Aktiengesellschaft Method of producing pi-conjugated polymers
DE10004725A1 (de) 2000-02-03 2001-08-09 Bayer Ag Verfahren zur Herstellung von wasserlöslichen pi-konjugierten Polymeren
DE10016723A1 (de) 2000-04-04 2001-10-11 Bayer Ag Verfahren zur Herstellung von Dialkoxythiophenen und Alkylendioxythiophenen
DE10029075A1 (de) 2000-06-13 2001-12-20 Bayer Ag Verfahren zur Herstellung von 3,4-Alkylendioxythiophen-2,5-dicarbonsäurederivaten
US6449140B1 (en) * 2000-07-07 2002-09-10 Showa Denko K.K. Solid electrolytic capacitor element and method for producing the same
AU2002221869A1 (en) 2000-11-22 2002-06-03 Bayer Aktiengesellschaft Dispersible polymer powders
DE10058116A1 (de) 2000-11-22 2002-05-23 Bayer Ag Polythiophene
DE10103416A1 (de) 2001-01-26 2002-08-01 Bayer Ag Elektrolumineszierende Anordnungen
DE10111790A1 (de) 2001-03-12 2002-09-26 Bayer Ag Neue Polythiophen-Dispersionen
US6674635B1 (en) 2001-06-11 2004-01-06 Avx Corporation Protective coating for electrolytic capacitors
FI115356B (fi) 2001-06-29 2005-04-15 Nokia Corp Menetelmä audiovisuaalisen informaation käsittelemiseksi elektroniikkalaitteessa, järjestelmä ja elektroniikkalaite
JP2003133183A (ja) 2001-10-26 2003-05-09 Matsushita Electric Ind Co Ltd 固体電解コンデンサおよびその製造方法
DE10229218A1 (de) 2002-06-28 2004-01-22 H.C. Starck Gmbh Alkylendioxythiophen-Dimere und Trimere
JP4077675B2 (ja) 2002-07-26 2008-04-16 ナガセケムテックス株式会社 ポリ(3,4−ジアルコキシチオフェン)とポリ陰イオンとの複合体の水分散体およびその製造方法
DE10237577A1 (de) 2002-08-16 2004-02-26 H.C. Starck Gmbh Substituierte Poly(alkylendioxythiophene) als Feststoffelektrolyte in Elektrolytkondensatoren
DE10248876B4 (de) 2002-10-18 2006-07-06 H.C. Starck Gmbh Verfahren zur Herstellung linearer organischer Oligomere
DE10257539A1 (de) 2002-12-10 2004-07-01 H.C. Starck Gmbh Verfahren zur Herstellung von 2,2'-Di(3,4-ethylendioxythiophen)en
DE10302086A1 (de) 2003-01-21 2004-07-29 Bayer Ag Alkylendioxythiophene und Poly(alkylendioxythiophene) mit mesogenen Gruppen
MXPA05010361A (es) 2003-04-02 2005-11-17 Starck H C Gmbh Agentes de oxidacion especificos para producir polimeros conductores.
DE10331673A1 (de) 2003-07-14 2005-02-10 H.C. Starck Gmbh Polythiophen mit Alkylenoxythiathiophen-Einheiten in Elektrolytkondensatoren
DE10343873A1 (de) 2003-09-23 2005-04-21 Starck H C Gmbh Verfahren zur Reinigung von Thiophenen
EP1524678B2 (de) 2003-10-17 2018-06-20 Heraeus Deutschland GmbH & Co. KG Elektrolytkondensatoren mit polymerer Aussenschicht
DE10353094A1 (de) 2003-11-12 2005-06-09 H.C. Starck Gmbh Verfahren zur Herstellung linearer organischer Thiophen-Phenylen-Oligomere
JP4959192B2 (ja) 2003-11-28 2012-06-20 出光興産株式会社 導電性ポリアニリン組成物、その製造方法及びそれからなる成形体
DE10357571A1 (de) 2003-12-10 2005-07-28 H.C. Starck Gmbh Multifunktionelle 3,4-Alkylendioxythiophen-Derivate und diese enthaltende elektrisch leitfähige Polymere
DE10359796A1 (de) 2003-12-19 2005-07-28 H.C. Starck Gmbh 3,4-Dioxythiophen-Derivate
DE102004006583A1 (de) 2004-02-10 2005-09-01 H.C. Starck Gmbh Polythiophenformulierungen zur Verbesserung von organischen Leuchtdioden
US20050175861A1 (en) 2004-02-10 2005-08-11 H.C. Starck Gmbh Polythiophene compositions for improving organic light-emitting diodes
US7342775B2 (en) 2004-04-23 2008-03-11 Kemet Electronics Corporation Fluted anode with minimal density gradients and capacitor comprising same
JP2006028214A (ja) 2004-07-12 2006-02-02 Nagase Chemtex Corp ポリ(3,4−ジアルコキシチオフェン)とポリ陰イオンとの複合体の水分散体の製造方法
WO2006088033A1 (ja) 2005-02-17 2006-08-24 Kaneka Corporation 金属表面コーティング用組成物、導電性高分子の製造方法、金属表面のコーティング方法、ならびに電解コンデンサおよびその製造方法
DE102005016727A1 (de) 2005-04-11 2006-10-26 H.C. Starck Gmbh Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zu ihrer Herstellung
JP5114197B2 (ja) 2005-05-27 2013-01-09 出光興産株式会社 導電性高分子積層体
DE102005031349A1 (de) 2005-07-05 2007-01-11 H.C. Starck Gmbh Verfahren zur Herstellung von Polyethylendioxythiophenen
DE102005033839A1 (de) 2005-07-20 2007-01-25 H.C. Starck Gmbh Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zur ihrer Herstellung
JP2007073498A (ja) 2005-08-09 2007-03-22 Idemitsu Kosan Co Ltd 導電性積層体
DE102005043828A1 (de) 2005-09-13 2007-03-22 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
DE102005053646A1 (de) 2005-11-10 2007-05-16 Starck H C Gmbh Co Kg Polymerbeschichtungen mit verbesserter Lösungsmittelbeständigkeit
US7973180B2 (en) 2005-11-17 2011-07-05 H.C. Starck Gmbh Process for producing aqueous dispersion of composite of poly(3,4-dialkoxythiophene) with polyanion
CN101361147A (zh) 2005-11-22 2009-02-04 昭和电工株式会社 固体电解电容器及其制造方法以及固体电解电容器用基材
DE102005060159A1 (de) 2005-12-14 2007-06-21 H. C. Starck Gmbh & Co. Kg Transparente polymere Elektrode für elektro-optische Aufbauten
JP2007273502A (ja) 2006-03-30 2007-10-18 Tdk Corp 固体電解コンデンサ
DE102006020744A1 (de) 2006-05-04 2007-11-08 H. C. Starck Gmbh & Co. Kg Verfahren zur Stabilisierung von Thiophenderivaten
US7154742B1 (en) * 2006-05-10 2006-12-26 Kemet Electronics Corporation Fluted anode with improved capacitance and capacitor comprising same
JP5305569B2 (ja) 2006-06-29 2013-10-02 三洋電機株式会社 電解コンデンサの製造方法および電解コンデンサ
US7563290B2 (en) 2006-07-06 2009-07-21 Kemet Electronics Corporation High voltage solid electrolytic capacitors using conductive polymer slurries
JP2008066502A (ja) 2006-09-07 2008-03-21 Matsushita Electric Ind Co Ltd 電解コンデンサ
US7649730B2 (en) 2007-03-20 2010-01-19 Avx Corporation Wet electrolytic capacitor containing a plurality of thin powder-formed anodes
US7515396B2 (en) 2007-03-21 2009-04-07 Avx Corporation Solid electrolytic capacitor containing a conductive polymer
JP4911509B2 (ja) 2007-04-03 2012-04-04 三洋電機株式会社 電解コンデンサおよびその製造方法
WO2008143234A1 (ja) 2007-05-21 2008-11-27 Showa Denko K. K. 固体電解コンデンサの製造方法及び装置
JP4737775B2 (ja) 2007-06-18 2011-08-03 Necトーキン株式会社 固体電解コンデンサおよびその製造方法
JP4836887B2 (ja) 2007-07-09 2011-12-14 三洋電機株式会社 電解コンデンサの製造方法及び電解コンデンサ
DE102007041722A1 (de) 2007-09-04 2009-03-05 H.C. Starck Gmbh Verfahren zur Herstellung von leitfähigen Polymeren
DE102007048212A1 (de) 2007-10-08 2009-04-09 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Zwischenschicht
US20130273514A1 (en) 2007-10-15 2013-10-17 University Of Southern California Optimal Strategies in Security Games
US8195490B2 (en) 2007-10-15 2012-06-05 University Of Southern California Agent security via approximate solvers
US8224681B2 (en) 2007-10-15 2012-07-17 University Of Southern California Optimizing a security patrolling strategy using decomposed optimal Bayesian Stackelberg solver
FR2923020B1 (fr) 2007-10-30 2009-11-13 Mge Ups Systems Procede et dispositif de prediction de defaillances de condensateur electrolytique, convertisseur et alimentation sans interruption equipes d'un tel dispositif
JP4916416B2 (ja) 2007-10-30 2012-04-11 サン電子工業株式会社 電解コンデンサの製造方法及び電解コンデンサ
DE102008005568A1 (de) 2008-01-22 2009-07-23 H.C. Starck Gmbh Verfahren zur Herstellung von leitfähigen Polymeren
DE112009000875T5 (de) 2008-04-16 2011-09-29 Nec Tokin Corp. Elektrisch leitfähige Polymersuspension, elektrisch leitfähige Polymerzusammensetzung, Festelektrolytkondensator und Verfahren zu seiner Herstellung
EP2270092B1 (de) 2008-04-21 2015-03-11 Tayca Corporation Dispersion einer elektrisch leitenden zusammensetzung, elektrisch leitende zusammensetzung und festelektrolytkondensator
DE102008023008A1 (de) 2008-05-09 2009-11-12 H.C. Starck Gmbh Neuartige Polythiophene-Polyanion-Komplexe in unpolaren organischen Lösungsmitteln
DE102008024805A1 (de) 2008-05-23 2009-12-03 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
DE102008032578A1 (de) 2008-07-11 2010-01-14 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
JP2010129651A (ja) 2008-11-26 2010-06-10 Nichicon Corp 固体電解コンデンサの製造方法
JP2010153625A (ja) 2008-12-25 2010-07-08 Hitachi Chemical Electronics Co Ltd チップ形固体電解コンデンサおよびその製造方法
DE102009007594A1 (de) 2009-02-05 2010-08-12 H.C. Starck Clevios Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Außenschicht.
WO2010095650A1 (ja) 2009-02-17 2010-08-26 綜研化学株式会社 複合導電性高分子組成物、その製造方法、当該組成物を含有する溶液、および当該組成物の用途
US9034211B2 (en) 2009-02-17 2015-05-19 Soken & Chemical & Engineering Co., Ltd. Composite conductive polymer composition, method of manufacturing the same, solution containing the composition, use of the composition
KR101295762B1 (ko) 2009-02-17 2013-08-12 소켄 케미칼 앤드 엔지니어링 캄파니, 리미티드 복합 전기 전도성 폴리머 조성물, 이의 제조 방법, 이를 함유하는 용액, 및 이의 용도
JP5869880B2 (ja) 2009-02-17 2016-02-24 綜研化学株式会社 複合導電性高分子溶液およびその製造方法
DE102009012660A1 (de) 2009-03-13 2010-09-16 H.C. Starck Clevios Gmbh Polymerbeschichtungen mit verbesserter Temperaturstabilität
US8310815B2 (en) 2009-04-20 2012-11-13 Kemet Electronics Corporation High voltage and high efficiency polymer electrolytic capacitors
JP2011009568A (ja) 2009-06-26 2011-01-13 Kaneka Corp 導電性高分子コンデンサ用電解質の形成方法
JP2011009569A (ja) 2009-06-26 2011-01-13 Kaneka Corp 導電性高分子電解コンデンサの製造方法
JP2011009499A (ja) 2009-06-26 2011-01-13 Kaneka Corp 導電性高分子コンデンサ用電解質の形成方法
EP2452982B1 (de) 2009-07-08 2018-02-28 Soken Chemical & Engineering Co., Ltd. Elektrisch leitfähige polymerzusammensetzung und verfahren zu ihrer herstellung
JP5701761B2 (ja) 2009-09-07 2015-04-15 出光興産株式会社 導電性組成物
EP2305686B1 (de) 2009-09-30 2013-04-03 Heraeus Precious Metals GmbH & Co. KG Monomere von ausgewählten Farbnummern und Kondensatoren daraus
KR101516838B1 (ko) 2009-09-30 2015-05-07 헤레우스 프레셔스 메탈스 게엠베하 운트 코. 카게 안정화된 티오펜 유도체
US8194395B2 (en) * 2009-10-08 2012-06-05 Avx Corporation Hermetically sealed capacitor assembly
US8125768B2 (en) * 2009-10-23 2012-02-28 Avx Corporation External coating for a solid electrolytic capacitor
JP5371710B2 (ja) 2009-11-20 2013-12-18 三洋電機株式会社 固体電解コンデンサの製造方法
JP2011114208A (ja) 2009-11-27 2011-06-09 Kaneka Corp 導電性高分子コンデンサの製造方法
JP5663871B2 (ja) 2009-12-24 2015-02-04 東ソー株式会社 チオフェン類の製造方法
JP2011135020A (ja) 2009-12-25 2011-07-07 Nec Tokin Corp 固体電解コンデンサおよびその製造方法
JP5810292B2 (ja) 2010-02-15 2015-11-11 パナソニックIpマネジメント株式会社 電解コンデンサ
JP2011199087A (ja) 2010-03-23 2011-10-06 Nippon Chemicon Corp 固体電解コンデンサ
JP5514596B2 (ja) 2010-03-23 2014-06-04 出光興産株式会社 導電性分散液
JP2011199086A (ja) 2010-03-23 2011-10-06 Nippon Chemicon Corp 固体電解コンデンサ
JP2011199088A (ja) 2010-03-23 2011-10-06 Nippon Chemicon Corp 固体電解コンデンサ
JP5491246B2 (ja) 2010-03-25 2014-05-14 Necトーキン株式会社 導電性高分子およびその製造方法、導電性高分子分散液、ならびに固体電解コンデンサおよびその製造方法
JPWO2011121995A1 (ja) 2010-03-31 2013-07-04 日本ケミコン株式会社 固体電解コンデンサ
JP2011216752A (ja) 2010-03-31 2011-10-27 Nippon Chemicon Corp 固体電解コンデンサ
JP2011253878A (ja) 2010-06-01 2011-12-15 Holy Stone Polytech Co Ltd 固体電解コンデンサ
JP5551529B2 (ja) 2010-07-05 2014-07-16 Necトーキン株式会社 固体電解コンデンサとその製造方法
JP2012025887A (ja) 2010-07-26 2012-02-09 Soken Chem & Eng Co Ltd ポリ(3−置換チオフェン)の製造方法
KR101452883B1 (ko) 2010-07-26 2014-10-22 소켄 케미칼 앤드 엔지니어링 캄파니, 리미티드 폴리티오펜 중합용 촉매 및 폴리(치환 티오펜)의 제조 방법
CN102510871B (zh) 2010-08-19 2013-04-24 帝化株式会社 导电性高分子制造用氧化剂兼掺杂剂溶液、导电性高分子和固体电解电容器
JP5535831B2 (ja) 2010-08-30 2014-07-02 三洋電機株式会社 固体電解コンデンサの製造方法
US8808403B2 (en) 2010-09-15 2014-08-19 Kemet Electronics Corporation Process for solid electrolytic capacitors using polymer slurries
US8824121B2 (en) * 2010-09-16 2014-09-02 Avx Corporation Conductive polymer coating for wet electrolytic capacitor
US9508491B2 (en) 2010-10-01 2016-11-29 Heraeus Deutschland GmbH & Co. KG Method for improving electrical parameters in capacitors comprising PEDOT/PSS as a solid electrolyte through a polyalkylene glycol
DE102010047086A1 (de) 2010-10-01 2012-04-05 Heraeus Clevios Gmbh Schichtaufbauten mit verbesserten elektrischen Kenngrößen beinthaltend PEDOT/PSS sowie einen Stabilisator
DE102010048032A1 (de) 2010-10-12 2012-04-12 Heraeus Clevios Gmbh Polythiophene beinhaltende Dispersionen mit definiertem Gehalt an Thiophen-Monomer
DE102010048031A1 (de) 2010-10-12 2012-04-12 Heraeus Clevios Gmbh Polythiophene beinhaltende Dispersionen mit definiertem Sulfat-Gehalt
US9087994B2 (en) 2010-11-03 2015-07-21 Heraeus Precious Metals Gmbh & Co. Kg PEDOT dispersions in organic solvents
JP5807997B2 (ja) 2010-12-07 2015-11-10 テイカ株式会社 固体電解コンデンサの製造方法
US8493713B2 (en) 2010-12-14 2013-07-23 Avx Corporation Conductive coating for use in electrolytic capacitors
US8576543B2 (en) 2010-12-14 2013-11-05 Avx Corporation Solid electrolytic capacitor containing a poly(3,4-ethylenedioxythiophene) quaternary onium salt
EP2669315B1 (de) 2011-01-27 2021-06-02 Idemitsu Kosan Co., Ltd. Polyanilinverbundstoff, herstellungsverfahren dafür und zusammensetzung damit
JP5745881B2 (ja) 2011-02-14 2015-07-08 テイカ株式会社 固体電解コンデンサ
US9030807B2 (en) 2011-02-15 2015-05-12 Kemet Electronics Corporation Materials and methods for improving corner and edge coverage of solid electrolytic capacitors
WO2012111319A1 (ja) 2011-02-18 2012-08-23 パナソニック株式会社 電解コンデンサ及びその製造方法
JP2012174948A (ja) 2011-02-23 2012-09-10 Nec Tokin Corp 固体電解コンデンサ及びその製造方法
JP5995262B2 (ja) 2011-03-06 2016-09-21 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー Pedot/pssを固体電解質として含有するコンデンサにおける電気パラメータをポリグリセロールによって改善するための方法
US8451588B2 (en) 2011-03-11 2013-05-28 Avx Corporation Solid electrolytic capacitor containing a conductive coating formed from a colloidal dispersion
JP2012188400A (ja) 2011-03-11 2012-10-04 Tosoh Corp ジチエノベンゾジチオフェンの製造方法
JP2012191127A (ja) 2011-03-14 2012-10-04 San Denshi Kogyo Kk 電解コンデンサの製造方法
JP2012199364A (ja) 2011-03-22 2012-10-18 Nec Tokin Corp 固体電解コンデンサおよびその製造方法
JP5168436B2 (ja) 2011-03-25 2013-03-21 パナソニック株式会社 電解コンデンサの製造方法
KR101775620B1 (ko) 2011-04-06 2017-09-07 에스케이케미칼주식회사 코팅용 폴리에스테르 바인더 수지 및 이를 함유하는 코팅 조성물
US8300387B1 (en) * 2011-04-07 2012-10-30 Avx Corporation Hermetically sealed electrolytic capacitor with enhanced mechanical stability
US8379372B2 (en) * 2011-04-07 2013-02-19 Avx Corporation Housing configuration for a solid electrolytic capacitor
US9466432B2 (en) 2011-04-13 2016-10-11 Panasonic Intellectual Property Management Co., Ltd. Process for producing solution having electrically conductive polymer dispersed therein, and electrolytic capacitor
WO2012153790A1 (ja) 2011-05-12 2012-11-15 テイカ株式会社 固体電解コンデンサの製造方法
JP5441952B2 (ja) * 2011-05-17 2014-03-12 Necトーキン株式会社 導電性高分子懸濁溶液およびその製造方法、導電性高分子材料、ならびに電解コンデンサおよびその製造方法
JP2012244077A (ja) 2011-05-24 2012-12-10 Japan Carlit Co Ltd:The 固体電解コンデンサの製造方法
EP2715753B1 (de) 2011-05-24 2018-10-17 Kemet Electronics Corporation Leitfähige polymerdispersionen für fest-elektrolytkondensatoren
JP2013006969A (ja) 2011-06-24 2013-01-10 Tosoh Corp 表面処理剤、導電性モノマー含有組成物及びそれを用いた導電性高分子膜
JP5939454B2 (ja) 2011-09-06 2016-06-22 日本ケミコン株式会社 固体電解コンデンサ用分散液の製造方法及び固体電解コンデンサの製造方法
CN103748164B (zh) 2011-09-06 2016-09-14 帝化株式会社 导电性高分子分散液、导电性高分子及其用途
JP2013074212A (ja) 2011-09-28 2013-04-22 Nippon Chemicon Corp 固体電解コンデンサ用分散液の製造方法及び固体電解コンデンサ用分散液、この分散液を用いた固体電解コンデンサの製造方法及び固体電解コンデンサ
JP5892535B2 (ja) 2011-10-06 2016-03-23 テイカ株式会社 導電性高分子製造用酸化剤兼ドーパント、導電性高分子製造用酸化剤兼ドーパント溶液、導電性高分子および固体電解コンデンサ
JP5998836B2 (ja) 2011-10-19 2016-09-28 東ソー株式会社 チオフェンスルホン酸エステル
JP5954798B2 (ja) 2011-11-16 2016-07-20 東ソー有機化学株式会社 高純度パラスチレンスルホン酸(塩)、それを用いたポリスチレンスルホン酸(塩)、およびポリスチレンスルホン酸(塩)を用いた、分散剤、導電性ポリマードーパント、ナノカーボン材料水性分散体、導電性ポリマー水性分散体、ならびにポリスチレンスルホン酸(塩)の製造方法
JP2013116939A (ja) 2011-12-01 2013-06-13 Tosoh Corp ポリチオフェン誘導体複合物及びその製造方法、並びにその用途
JP2013127045A (ja) 2011-12-19 2013-06-27 Tosoh Corp 導電性高分子及びその製造方法
KR101660604B1 (ko) 2011-12-19 2016-09-27 데이카 가부시키가이샤 전해 컨덴서 및 그 제조방법
CN104105738B (zh) 2012-01-25 2017-04-05 凯米特电子公司 制备导电性聚合物的聚合方法
JP6024264B2 (ja) 2012-02-02 2016-11-16 東ソー株式会社 チオフェン誘導体、水溶性導電性ポリマー及びその水溶液、並びにそれらの製造方法
JP2013163793A (ja) 2012-02-13 2013-08-22 Tosoh Corp 導電性モノマー用アミノ酸誘導体
JP5769742B2 (ja) 2012-02-27 2015-08-26 ケメット エレクトロニクス コーポレーション 層間架橋を用いた固体電解コンデンサ
US9941055B2 (en) 2012-02-27 2018-04-10 Kemet Electronics Corporation Solid electrolytic capacitor with interlayer crosslinking
US10879010B2 (en) 2012-02-27 2020-12-29 Kemet Electronics Corporation Electrolytic capacitor having a higher cap recovery and lower ESR
JP5152882B1 (ja) 2012-03-07 2013-02-27 Necトーキン株式会社 導電性高分子溶液、導電性高分子組成物、並びにそれを用いた固体電解コンデンサ及びその製造方法
DE102012004692A1 (de) 2012-03-12 2013-09-12 Heraeus Precious Metals Gmbh & Co. Kg Zusatz von Polymeren zu Thiophen-Monomeren bei der In Situ-Polymerisation
US8971020B2 (en) 2012-03-16 2015-03-03 Avx Corporation Wet capacitor cathode containing a conductive copolymer
JP5911136B2 (ja) 2012-04-10 2016-04-27 テイカ株式会社 固体電解コンデンサの製造方法
JP6233952B2 (ja) 2012-05-31 2017-11-22 カーリットホールディングス株式会社 固体電解コンデンサ製造用導電性高分子分散液及びそれを用いて作製した固体電解コンデンサ
JP2013251408A (ja) 2012-05-31 2013-12-12 Nippon Chemicon Corp 固体電解コンデンサの製造方法
JP5892547B2 (ja) 2012-05-31 2016-03-23 カーリットホールディングス株式会社 固体電解コンデンサ製造用導電性高分子分散液及びそれを用いて作製した固体電解コンデンサ
TWI450907B (zh) 2012-06-26 2014-09-01 Far Eastern New Century Corp 製造導電聚合物分散液的方法、由其形成之導電聚合物材料及利用該導電聚合物材料之固態電容
JP2014011222A (ja) 2012-06-28 2014-01-20 Japan Carlit Co Ltd 固体電解コンデンサ製造用導電性高分子分散液及びそれを用いて作製した固体電解コンデンサ
JP6068021B2 (ja) 2012-06-28 2017-01-25 カーリットホールディングス株式会社 固体電解コンデンサ製造用導電性高分子分散液及びそれを用いて作製した固体電解コンデンサ
US9718905B2 (en) 2012-07-03 2017-08-01 Tosoh Corporation Polythiophene, water-soluble electrically conductive polymer using it, and method for producing it
JP5637544B2 (ja) 2012-07-13 2014-12-10 テイカ株式会社 固体電解コンデンサ
US9548163B2 (en) * 2012-07-19 2017-01-17 Avx Corporation Solid electrolytic capacitor with improved performance at high voltages
DE102013213723A1 (de) 2012-07-19 2014-01-23 Avx Corporation Festelektrolytkondensator mit erhöhter Feucht-zu-Trocken-Kapazität
JP2014027040A (ja) 2012-07-25 2014-02-06 Japan Carlit Co Ltd 固体電解コンデンサ製造用導電性高分子分散液及びそれを用いて作製した固体電解コンデンサ
JP2014024905A (ja) 2012-07-25 2014-02-06 Tosoh Corp 導電性膜用高分子分散体
KR20150037906A (ko) 2012-07-31 2015-04-08 닛뽄 케미콘 가부시끼가이샤 고체 전해 콘덴서 및 그 제조 방법
CN102768903A (zh) 2012-08-09 2012-11-07 中国振华(集团)新云电子元器件有限责任公司 高压导电聚合物电解质电容器的制作方法
JP2014041888A (ja) 2012-08-22 2014-03-06 Japan Carlit Co Ltd 固体電解コンデンサ製造用導電性高分子分散液及びそれを用いて作製した固体電解コンデンサ
JP6015243B2 (ja) 2012-08-24 2016-10-26 東ソー株式会社 カルバモイルオキシチオフェン類、それを含む共重合体、及びその共重合体からなる導電性被覆物
JP2014043500A (ja) 2012-08-24 2014-03-13 Tosoh Corp チオフェン芳香族スルホン酸エステル、それを含む共重合体、及びその共重合体からなる導電性被覆物
JP6015244B2 (ja) 2012-08-24 2016-10-26 東ソー株式会社 フェノール誘導体を含有するポリチオフェン組成物、及びそれからなる導電性被覆物
JP2014060231A (ja) 2012-09-17 2014-04-03 Murata Mfg Co Ltd 固体電解コンデンサの製造方法
DE102012018976A1 (de) 2012-09-27 2014-03-27 Heraeus Precious Metals Gmbh & Co. Kg Verwendung von Mischungen aus selbstdotierten und fremddotierten leitfähigen Polymeren in einem Kondensator
DE102012018978A1 (de) 2012-09-27 2014-03-27 Heraeus Precious Metals Gmbh & Co. Kg Verwendung von PEDOT/PSS-Dispersionen mit hohem PEDOT-Anteil zur Herstellung von Kondensatoren und Solarzellen
JP6180010B2 (ja) 2012-10-18 2017-08-16 テイカ株式会社 電解コンデンサの製造方法
JP5988824B2 (ja) 2012-10-22 2016-09-07 テイカ株式会社 電解コンデンサの製造方法
JP5988831B2 (ja) 2012-10-31 2016-09-07 テイカ株式会社 電解コンデンサの製造方法
JP2014093417A (ja) 2012-11-02 2014-05-19 Nichicon Corp 固体電解コンデンサ及びその製造方法
JP6285138B2 (ja) 2012-11-08 2018-02-28 ローム株式会社 固体電解コンデンサ
JP2014123685A (ja) 2012-12-21 2014-07-03 Nippon Chemicon Corp 電解コンデンサ及びその製造方法
JP5955786B2 (ja) 2013-01-07 2016-07-20 出光興産株式会社 導電性高分子組成物
JP6405534B2 (ja) 2013-01-31 2018-10-17 パナソニックIpマネジメント株式会社 電解コンデンサ及びその製造方法
CN105073825B (zh) 2013-03-29 2018-02-27 松下知识产权经营株式会社 导电性高分子微粒分散体的制造方法及使用该导电性高分子微粒分散体的电解电容器的制造方法
WO2014155422A1 (ja) 2013-03-29 2014-10-02 パナソニック株式会社 導電性高分子微粒子分散体の製造方法およびその導電性高分子微粒子分散体を用いた電解コンデンサの製造方法
JP5978468B2 (ja) 2013-03-29 2016-08-24 パナソニックIpマネジメント株式会社 導電性高分子微粒子分散体とそれを用いた電解コンデンサ、およびそれらの製造方法
CN105073885B (zh) 2013-03-29 2017-09-22 松下知识产权经营株式会社 导电性高分子微粒分散体的制造方法及使用该导电性高分子微粒分散体的电解电容器的制造方法
JP2014201545A (ja) 2013-04-04 2014-10-27 東ソー株式会社 2−ヒドロキシメチル−2,3−ジヒドロ−チエノ[3,4−b][1,4]ジオキシン−5,7−ジカルボン酸ジアルキルエステルの製造方法
JP6379523B2 (ja) 2013-04-04 2018-08-29 東ソー株式会社 導電性高分子水溶液、及び導電性高分子膜
WO2014163202A1 (ja) 2013-04-05 2014-10-09 昭和電工株式会社 固体電解コンデンサの製造方法
US9343239B2 (en) 2013-05-17 2016-05-17 Kemet Electronics Corporation Solid electrolytic capacitor and improved method for manufacturing a solid electrolytic capacitor
US9761347B2 (en) 2013-05-17 2017-09-12 Kemet Electronics Corporation Process to improve coverage and electrical performance of solid electrolytic capacitor
US9761378B2 (en) 2015-03-30 2017-09-12 Kemet Electronics Corporation Process to improve coverage and electrical performance of solid electrolytic capacitors
JP6256970B2 (ja) 2013-06-17 2018-01-10 テイカ株式会社 電解コンデンサおよびその製造方法
JP6183835B2 (ja) 2013-07-22 2017-08-23 富山薬品工業株式会社 導電性ポリマー分散液の製造方法
US9928964B1 (en) 2013-08-28 2018-03-27 Kemet Electronics Corporation Preparation of conjugated dimer and products formed therefrom
JP5543001B2 (ja) 2013-09-02 2014-07-09 三洋電機株式会社 電解コンデンサの製造方法
US10049822B2 (en) 2013-09-11 2018-08-14 Tayca Corporation Monomer liquid for of conductive polymer production and a manufacturing method of an electrolyte capacitor using the same
JP6201595B2 (ja) 2013-10-01 2017-09-27 東ソー株式会社 2−ヒドロキシメチル−2,3−ジヒドロ−チエノ[3,4−b][1,4]ジオキシンの製造方法
US9236193B2 (en) 2013-10-02 2016-01-12 Avx Corporation Solid electrolytic capacitor for use under high temperature and humidity conditions
JP6384896B2 (ja) 2013-11-14 2018-09-05 ニチコン株式会社 固体電解コンデンサおよびその製造方法
JP2015105315A (ja) 2013-11-29 2015-06-08 東ソー有機化学株式会社 有機溶剤への溶解性と耐熱性に優れたスチレンスルホン酸リチウム共重合体、ならびに当該スチレンスルホン酸リチウム共重合体を用いた帯電防止剤
US9589733B2 (en) * 2013-12-17 2017-03-07 Avx Corporation Stable solid electrolytic capacitor containing a nanocomposite
JP6358646B2 (ja) 2013-12-17 2018-07-18 ニチコン株式会社 固体電解コンデンサおよびその製造方法
JP6311355B2 (ja) 2014-01-27 2018-04-18 東ソー株式会社 導電性高分子水溶液、及び導電性高分子膜
JP5948592B2 (ja) 2014-01-31 2016-07-06 パナソニックIpマネジメント株式会社 導電性高分子微粒子分散体の製造方法およびその導電性高分子微粒子分散体を用いた電解コンデンサの製造方法
JP6427887B2 (ja) 2014-02-05 2018-11-28 東ソー株式会社 導電性高分子水溶液、及び導電性高分子膜
JP6745580B2 (ja) 2014-02-05 2020-08-26 日本ケミコン株式会社 固体電解コンデンサ及びその製造方法
JP6610264B2 (ja) 2014-02-05 2019-11-27 日本ケミコン株式会社 固体電解コンデンサ及びその製造方法
WO2015129515A1 (ja) 2014-02-27 2015-09-03 テイカ株式会社 導電性高分子製造用酸化剤兼ドーパント、その溶液、それらのいずれかを用いて製造した導電性高分子およびその導電性高分子を電解質として用いた電解コンデンサ
JP6273917B2 (ja) 2014-03-10 2018-02-07 東ソー株式会社 チオフェン共重合体及びその水溶液、並びにチオフェンモノマー組成物及びその製造方法
CN103854868B (zh) 2014-03-12 2016-06-29 中国振华(集团)新云电子元器件有限责任公司 适用于75v以上高额定电压固体电解电容器的制作方法
JP6515609B2 (ja) 2014-04-23 2019-05-22 東ソー株式会社 導電性高分子水溶液、及び導電性高分子膜並びに該被覆物品
JP5895136B2 (ja) 2014-04-28 2016-03-30 パナソニックIpマネジメント株式会社 電解コンデンサの製造方法
EP2950316B1 (de) 2014-05-30 2019-11-06 Heraeus Deutschland GmbH & Co. KG Monofunktionelle Amine als Haftgrundierungen für leitfähige Polymere
EP2950317B1 (de) 2014-05-30 2017-08-23 Heraeus Deutschland GmbH & Co. KG Doppel- oder polyfunktionelle Verbindungen als Haftvermittler für leitfähige Polymere
JP6485074B2 (ja) 2014-06-19 2019-03-20 東ソー株式会社 共重合体、その製造方法、その導電性ポリマー水溶液、及びその用途
JP2016009770A (ja) 2014-06-25 2016-01-18 カーリットホールディングス株式会社 電解コンデンサ及びその製造方法
US9277618B2 (en) 2014-06-27 2016-03-01 Bridgelux, Inc. Monolithic LED chip in an integrated control module with active circuitry
CN106459463B (zh) 2014-07-11 2020-08-04 出光兴产株式会社 聚苯胺复合物组合物的制造方法以及聚苯胺复合物组合物
JP6462255B2 (ja) 2014-07-14 2019-01-30 テイカ株式会社 電解コンデンサおよびその製造方法
JP6415146B2 (ja) 2014-07-14 2018-10-31 テイカ株式会社 電解コンデンサ製造用の導電性高分子の分散液およびそれを用いて製造した電解コンデンサ。
EP2977993A1 (de) 2014-07-25 2016-01-27 Heraeus Deutschland GmbH & Co. KG Formulierungen mit Metallnanodrähten und PEDOT
JP6096727B2 (ja) 2014-09-12 2017-03-15 東ソー有機化学株式会社 導電性ポリマー塗膜及びその製造方法
US10062519B2 (en) 2014-09-15 2018-08-28 Kemet Electronics Corporation Tantalum capacitor with polymer cathode
CN105405657A (zh) 2014-09-16 2016-03-16 立隆电子工业股份有限公司 电解电容器的制造方法及其制品
CN104409213A (zh) 2014-11-12 2015-03-11 深圳新宙邦科技股份有限公司 用于化成箔后处理的电解质胶液、电极箔和电容器
EP3037497A1 (de) 2014-12-23 2016-06-29 Heraeus Deutschland GmbH & Co. KG Verfahren zur Herstellung funktionalisierter Polythiopene
JP6735448B2 (ja) 2014-12-25 2020-08-05 パナソニックIpマネジメント株式会社 電解コンデンサの製造方法
TWI675033B (zh) * 2015-01-05 2019-10-21 日商綜研化學股份有限公司 含有雜環的化合物、使用該化合物的聚合物及其用途
CN104637687B (zh) 2015-02-06 2017-07-14 肇庆绿宝石电子科技股份有限公司 一种高压固体电解质铝电解电容器的制造方法
EP3067948B1 (de) 2015-03-09 2018-08-08 Heraeus Deutschland GmbH & Co. KG Leitfähiges Polymer in organischem Lösungsmittel mit fluorierter nichtionischer Verbindung
EP3070765B1 (de) 2015-03-16 2019-05-08 Heraeus Battery Technology GmbH Verwendung von pedot/pss in einer kathode einer elektrochemischen lithiumschwefelzelle
US20180244838A1 (en) 2015-03-27 2018-08-30 Soken Chemical & Engineering Co., Ltd. Polymer, oxidized polymer, polymer composition, gel-type polymer composition, and use thereof
JP2016188348A (ja) 2015-03-30 2016-11-04 東ソー株式会社 チオフェンポリマー、その組成物、及びその用途
US9767963B2 (en) 2015-05-29 2017-09-19 Avx Corporation Solid electrolytic capacitor with an ultrahigh capacitance
US9972444B2 (en) * 2015-05-29 2018-05-15 Avx Corporation Solid electrolytic capacitor element for use in dry conditions
US9672989B2 (en) 2015-05-29 2017-06-06 Avx Corporation Solid electrolytic capacitor assembly for use in a humid atmosphere
US9991055B2 (en) 2015-05-29 2018-06-05 Avx Corporation Solid electrolytic capacitor assembly for use at high temperatures
US9905368B2 (en) * 2015-08-04 2018-02-27 Avx Corporation Multiple leadwires using carrier wire for low ESR electrolytic capacitors
JP6639153B2 (ja) 2015-08-27 2020-02-05 テイカ株式会社 電解コンデンサ
JP6580424B2 (ja) 2015-09-01 2019-09-25 テイカ株式会社 導電性高分子組成物、その分散液、その製造方法およびその用途
JP6580436B2 (ja) 2015-09-16 2019-09-25 テイカ株式会社 導電性高分子組成物およびその用途
JP6645138B2 (ja) 2015-11-24 2020-02-12 東ソー株式会社 導電性高分子水溶液、及び導電性高分子膜並びに該被覆物品
JP6645141B2 (ja) 2015-11-30 2020-02-12 東ソー株式会社 導電性高分子水溶液、及び導電性高分子膜並びに該被覆物品
CN105405661A (zh) 2015-12-24 2016-03-16 丰宾电子(深圳)有限公司 一种固态电解电容的制作方法
US10186382B2 (en) * 2016-01-18 2019-01-22 Avx Corporation Solid electrolytic capacitor with improved leakage current
JP6686500B2 (ja) 2016-02-12 2020-04-22 東ソー株式会社 導電性高分子水溶液、及び導電性高分子膜
JP7153557B2 (ja) 2016-02-29 2022-10-14 出光興産株式会社 導電性高分子組成物、導電性高分子含有多孔質体及びその製造方法並びに固体電解コンデンサ及びその製造方法
JP6753098B2 (ja) 2016-03-23 2020-09-09 東ソー株式会社 自己ドープ型ポリチオフェンの製造方法
JP2017188640A (ja) 2016-03-31 2017-10-12 出光興産株式会社 電解液並びにそれを用いた蓄電デバイス及び電界コンデンサ
JP6900401B2 (ja) 2016-05-19 2021-07-07 ケメット エレクトロニクス コーポレーション 固体電解コンデンサにおいて導電性ポリマーと共に使用するためのポリアニオンコポリマー
US10381165B2 (en) 2016-05-20 2019-08-13 Avx Corporation Solid electrolytic capacitor for use at high temperatures
CN109478466B (zh) 2016-07-29 2021-03-09 松下知识产权经营株式会社 电解电容器及其制造方法
CN206040440U (zh) 2016-07-30 2017-03-22 江苏泗阳欣宏电子科技有限公司 一种全密封的铝电解电容器结构
US9672898B1 (en) 2016-08-15 2017-06-06 Samsung Electronics Co., Ltd. Read column select negative boost driver circuit, system, and method
WO2018075330A2 (en) * 2016-10-18 2018-04-26 Avx Corporation Solid electrolytic capacitor with improved leakage current
WO2018075327A1 (en) 2016-10-18 2018-04-26 Avx Corporation Solid electrolytic capacitor assembly
JP7055140B2 (ja) 2016-10-18 2022-04-15 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション 高い温度及び電圧において向上した性能を有する固体電解キャパシタ
EP3318589A1 (de) 2016-11-02 2018-05-09 Heraeus Deutschland GmbH & Co. KG Pedot/pss mit grober partikelgrösse und hohem pedot-gehalt
US10475591B2 (en) 2016-11-15 2019-11-12 Avx Corporation Solid electrolytic capacitor for use in a humid atmosphere
JP6964089B2 (ja) 2016-11-22 2021-11-10 綜研化学株式会社 導電性高分子用ドーパント及びそれを用いた導電性高分子、並びに導電性高分子の製造方法
JP6870351B2 (ja) 2016-11-25 2021-05-12 東ソー株式会社 導電性組成物及びその用途
JP6902876B2 (ja) 2017-01-31 2021-07-14 東ソー株式会社 ポリチオフェン及びその組成物、並びにその用途
US10014016B1 (en) 2017-03-20 2018-07-03 Seagate Technology Llc Secondary alignment waveguide with polarization rotator
JP2018184586A (ja) 2017-04-21 2018-11-22 東ソー株式会社 導電性高分子水溶液
JP2018193513A (ja) 2017-05-22 2018-12-06 綜研化学株式会社 重合体粒子
JP7100029B2 (ja) 2017-05-31 2022-07-12 綜研化学株式会社 導電性高分子固体電解コンデンサの製造方法及び導電性高分子
EP3664112B1 (de) 2017-08-04 2022-10-05 Soken Chemical & Engineering Co., Ltd. Festelektrolytkondensator und verfahren zur herstellung eines festelektrolytkondensators
US10943742B2 (en) 2017-10-18 2021-03-09 Kemet Electronics Corporation Conductive polymer dispersion for improved reliability
US10658121B2 (en) 2017-10-18 2020-05-19 Kemet Electronics Corporation Process for forming a solid electrolytic capacitor
WO2020033820A1 (en) 2018-08-10 2020-02-13 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
US11183342B2 (en) 2018-08-10 2021-11-23 Avx Corporation Solid electrolytic capacitor containing polyaniline
EP3834217A4 (de) 2018-08-10 2022-05-11 KYOCERA AVX Components Corporation Festelektrolytkondensator mit intrinsisch leitfähigem polymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197252B1 (en) 1997-01-13 2001-03-06 Avx Limited Binder removal
US20060038304A1 (en) 2004-08-18 2006-02-23 Harima Chemicals, Inc. Conductive adhesive agent and process for manufacturing article using the conductive adhesive agent
US20070064376A1 (en) 2005-09-13 2007-03-22 H. C. Starck Gmbh Process for the production of electrolyte capacitors of high nominal voltage
WO2014199480A1 (ja) 2013-06-13 2014-12-18 石原ケミカル株式会社 Ta粉末とその製造方法およびTa造粒粉

Also Published As

Publication number Publication date
US20200185157A1 (en) 2020-06-11
WO2020123577A1 (en) 2020-06-18
JP2022512163A (ja) 2022-02-02
US11955294B2 (en) 2024-04-09
JP7220791B2 (ja) 2023-02-10
CN113196429A (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
DE102016208802A1 (de) Festelektrolytkondensatorbaugruppe zur Verwendung in einer feuchten Atmosphäre
DE102016208800A1 (de) Festelektrolytkondensator mit ultrahoher Kapazität
DE102016208807A1 (de) Festelektrolytkondensatorelement zur Verwendung unter trockenen Bedingungen
DE112019006146T5 (de) Festelektrolytkondensator, der ein intrinsisch leitfähiges Polymer enthält
DE102013214126A1 (de) Festelektrolytkondensator mit verbesserten Eigenschaften bei hohen Spannungen
DE102013213723A1 (de) Festelektrolytkondensator mit erhöhter Feucht-zu-Trocken-Kapazität
DE102016208806A1 (de) Festelektrolytkondensatorbaugruppe zur Verwendung bei hohen Temperaturen
DE102013213720A1 (de) Temperaturstabiler Festelektrolytkondensator
DE102014208944A1 (de) Festelektrolytkondensator, der leitfähige Polymerteilchen enthält
DE102014204323A1 (de) Festelektrolytkondensator zur Verwendung unter extremen Bedingungen
DE102012018976A1 (de) Verwendung von Mischungen aus selbstdotierten und fremddotierten leitfähigen Polymeren in einem Kondensator
DE102011117192A1 (de) Festelektrolytkondensator zur Verwendung in Hochspannungs- und Hochtemperaturanwendungen
DE102010021361A1 (de) Festelektrolytkondensator mit Facedown-Enden
DE102014225816A1 (de) Stabiler Festelektrolytkondensator, der einen Nanokomposit enthält
DE102011086123A1 (de) Festelektrolytkondensatorelement
DE102013213728A1 (de) Nichtionisches Tensid zur Verwendung in einem festen Elektrolyten eines Elektrolytkondensators
DE102010048177A1 (de) Externe Beschichtung für einen Festelektrolytkondensator
DE102011087197A1 (de) Mehrschichtige leitfähige Polymerbeschichtungen zur Verwendung in Hochspannungs-Festelektrolytkondensatoren
DE102012018978A1 (de) Verwendung von PEDOT/PSS-Dispersionen mit hohem PEDOT-Anteil zur Herstellung von Kondensatoren und Solarzellen
DE102011088366A1 (de) Leitfähige Beschichtung zur Verwendung in Elektrolytkondensatoren
DE102008000333A1 (de) Anode zur Verwendung in Elektrolytkondensatoren
DE102013101443A1 (de) Ultrahigh voltage solid electrolytic capacitor
DE102011113165A1 (de) Leitfähige Polymerbeschichtung für ein Flüssigelektrolytkondensator
DE102013204358A1 (de) Flüssigkeitskondensatorkathode, die eine leitfähige Beschichtung enthält, welche durch anodische elektrochemische Polymerisation einer Mikroemulsion gebildet ist
DE102010047087A1 (de) Verfahren zur Verbesserung der elektrischen Kenngrößen in Kondensatoren enthaltend PEDOT/PSS als Feststoffelektrolyt durch ein Polyalkylenglykol

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R081 Change of applicant/patentee

Owner name: KYOCERA AVX COMPONENTS CORPORATION (N. D. GES., US

Free format text: FORMER OWNER: AVX CORPORATION, FOUTAIN INN, SC, US