JP6745580B2 - 固体電解コンデンサ及びその製造方法 - Google Patents

固体電解コンデンサ及びその製造方法 Download PDF

Info

Publication number
JP6745580B2
JP6745580B2 JP2014242367A JP2014242367A JP6745580B2 JP 6745580 B2 JP6745580 B2 JP 6745580B2 JP 2014242367 A JP2014242367 A JP 2014242367A JP 2014242367 A JP2014242367 A JP 2014242367A JP 6745580 B2 JP6745580 B2 JP 6745580B2
Authority
JP
Japan
Prior art keywords
conductive polymer
acid
capacitor element
capacitor
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014242367A
Other languages
English (en)
Other versions
JP2015165550A (ja
Inventor
良弥 小関
良弥 小関
坂倉 正郎
正郎 坂倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014242367A priority Critical patent/JP6745580B2/ja
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to PCT/JP2015/052395 priority patent/WO2015119020A1/ja
Priority to KR1020167017979A priority patent/KR102305945B1/ko
Priority to EP15746932.1A priority patent/EP3104380B1/en
Priority to CN201580002788.2A priority patent/CN105793940B/zh
Priority to TW104103359A priority patent/TWI646565B/zh
Publication of JP2015165550A publication Critical patent/JP2015165550A/ja
Priority to US15/217,798 priority patent/US10115529B2/en
Application granted granted Critical
Publication of JP6745580B2 publication Critical patent/JP6745580B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/032Inorganic semiconducting electrolytes, e.g. MnO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • H01G9/151Solid electrolytic capacitors with wound foil electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、固体電解コンデンサ及びその製造方法に係り、特に、80V以上の高圧用途に好適な固体電解コンデンサ及びその製造方法に関するものである。
タンタルあるいはアルミニウム等のような弁作用を有する金属を利用した電解コンデンサは、陽極側対向電極としての弁作用金属を焼結体あるいはエッチング箔等の形状にして誘電体を拡面化することにより、小型で大きな容量を得ることができることから、広く一般に用いられている。特に、電解質に固体電解質を用いた固体電解コンデンサは、小型、大容量、低等価直列抵抗であることに加えて、チップ化しやすく、表面実装に適している等の特質を備えていることから、電子機器の小型化、高機能化、低コスト化に欠かせないものとなっている。
この種の固体電解コンデンサにおいて、小型、大容量用途としては、一般に、アルミニウム等の弁作用金属からなる陽極箔と陰極箔をセパレータを介在させて巻回してコンデンサ素子を形成し、このコンデンサ素子に駆動用電解液を含浸し、アルミニウム等の金属製ケースや合成樹脂製のケースにコンデンサ素子を収納し、密閉した構造を有している。なお、陽極材料としては、アルミニウムを初めとしてタンタル、ニオブ、チタン等が使用され、陰極材料には、陽極材料と同種の金属が用いられる。
また、固体電解コンデンサに用いられる固体電解質としては、二酸化マンガンや7,7,8,8−テトラシアノキノジメタン(TCNQ)錯体が知られているが、近年、反応速度が緩やかで、かつ陽極電極の酸化皮膜層との密着性に優れたポリエチレンジオキシチオフェン(以下、PEDOTと記す)等の導電性ポリマーに着目した技術(特許文献1)が存在している。
このような巻回型のコンデンサ素子にPEDOT等の導電性ポリマーからなる固体電解質層を形成するタイプの固体電解コンデンサは、以下のようにして作製される。まず、アルミニウム等の弁作用金属からなる陽極箔の表面を塩化物水溶液中での電気化学的なエッチング処理により粗面化して、多数のエッチングピットを形成した後、ホウ酸アンモニウム等の水溶液中で電圧を印加して誘電体となる酸化皮膜層を形成する(化成)。陽極箔と同様に、陰極箔もアルミニウム等の弁作用金属からなり、その表面にはエッチング処理が施される。
このようにして表面に酸化皮膜層が形成された陽極箔と陰極箔とを、セパレータを介して巻回してコンデンサ素子を形成する。続いて、修復化成を施したコンデンサ素子に、3,4−エチレンジオキシチオフェン(以下、EDOTと記す)等の重合性モノマーと酸化剤溶液をそれぞれ吐出し、あるいは両者の混合液に浸漬して、コンデンサ素子内で重合反応を促進し、PEDOT等の導電性ポリマーからなる固体電解質層を生成する。その後、このコンデンサ素子を有底筒状の外装ケースに収納して固体電解コンデンサを作製する。
また、ポリピロール又はポリアニリンを含む導電性ポリマーと、γ−ブチロラクトン又はエチレングリコールを含む電解液とを組み合わせて用いて、電解液による化成皮膜の欠陥部の修復作用により、漏れ電流を低減するとともにESRを改善することが行われている(特許文献2)。
特開平2−15611号公報 特開平11−186110号公報
ところで、近年、車載用や一般電源回路用として用いられるような25Vや63V程度の低圧用途のみならず、80V以上の高圧用途に使用すべく、高温でのESR特性が良好な固体電解コンデンサが要望されている。
本発明は、上記課題を解決するために提案されたものであり、その目的は、80V以上の高圧用途での特性に優れた固体電解コンデンサ及びその製造方法を提供することにある。
本発明者等は、上記課題を解決すべく、種々検討を重ねた結果、コンデンサ素子に充填する電解液の溶質としてボロジサリチル酸塩を用い、この塩濃度を所定量以下とすることで高圧領域における高温でのESR特性が良好になるとの知見を得、この知見に基づき本発明を完成させるに至った。
すなわち、本発明の固体電解コンデンサは、陽極電極箔と陰極電極箔とをセパレータを介して巻回したコンデンサ素子に、導電性高分子の粒子が溶媒に分散した導電性高分子分散体を用いて固体電解質層を形成するとともに、該固体電解質層が形成されたコンデンサ素子内の空隙部に、溶質として無機酸と有機酸との複合化合物であるボロジサリチル酸の塩のみを1以上9wt%未満含有し、エチレングリコールを溶媒中20wt%以上含有した電解液を充填させたことを特徴とする。
また、前記のような固体電解コンデンサを製造するための方法も本発明の1つである。
本発明によれば、80V以上の高圧用途での特性に優れた固体電解コンデンサ及びその製造方法を提供することができる。
以下、本発明に係る固体電解コンデンサを製造するための代表的な製造手順を開示しつつ、本発明を更に詳しく説明する。
(固体電解コンデンサの製造方法)
本発明に係る固体電解コンデンサの製造方法の一例は、以下の通りである。すなわち、表面に酸化皮膜層が形成された陽極箔と陰極箔をセパレータを介して巻回して、コンデンサ素子を形成し、このコンデンサ素子に修復化成を施す(第1の工程)。続いて、このコンデンサ素子に、導電性高分子の粒子が溶媒に分散した導電性高分子分散体を含浸させて固体電解質層を形成する(第2の工程)。その後、このコンデンサ素子を所定の電解液に浸漬して、固体電解質層が形成されたコンデンサ素子内の空隙部にこの電解液を充填する(第3の工程)。そして、このコンデンサ素子を外装ケースに挿入し、開口端部に封口ゴムを装着して、加締め加工によって封止した後、エージングを行い、固体電解コンデンサを形成する(第4の工程)。
(電極箔)
陽極箔としては、アルミニウム等の弁作用金属からなり、その表面をエッチング処理により粗面化して多数のエッチングピットを形成している。更にこの陽極箔の表面には、ホウ酸アンモニウム等の水溶液中で電圧を印加して誘電体となる酸化皮膜層を形成している。陰極箔としては、陽極箔と同様にアルミニウム等からなり、表面にエッチング処理が施されているものを用いる。また、必要に応じて、化成処理を施したものや、金属窒化物、金属炭化物、金属炭窒化物からなる層を蒸着法により形成したもの、あるいは表面に炭素を含有したものを用いても良い。
(セパレータ)
セパレータとしては、合成繊維を主体とする不織布からなるセパレータや、ガラス繊維からなるセパレータを用いることができる。合成繊維としては、ポリエステル繊維、ナイロン繊維、レーヨン繊維等が好適である。また、天然繊維からなるセパレータを用いてもよい。
(第1の工程における修復化成の化成液)
修復化成の化成液としては、リン酸二水素アンモニウム、リン酸水素二アンモニウム等のリン酸系の化成液、ホウ酸アンモニウム等のホウ酸系の化成液、アジピン酸アンモニウム等のアジピン酸系の化成液を用いることができるが、なかでも、リン酸二水素アンモニウムを用いることが望ましい。また、浸漬時間は、5〜120分が望ましい。
(第2の工程における導電性高分子分散体)
導電性高分子分散体は、PEDOTの粉末とポリスチレンスルホン酸からなるドーパントの固形分を混合したものが好ましい。また、導電性高分子分散体の溶媒は、導電性高分子の粒子または粉末が溶解するものであれば良く、主として水が用いられる。ただし、必要に応じて分散体の溶媒としてエチレングリコールを単独で又は混合して用いてもよい。分散体の溶媒としてエチレングリコールを用いると、製品の電気的特性のうち、特にESRを低減できることが判明している。
また、導電性高分子分散体の含浸性、電導度の向上のため、導電性高分子分散体に各種添加剤を添加したり、カチオン添加による中和を行っても良い。特に、添加剤としてソルビトール又はソルビトール及び多価アルコールを用いると、ESRを低減し、鉛フリーリフロー等による耐電圧特性の劣化を防止することができる。
(導電性高分子分散体への含浸)
コンデンサ素子を導電性高分子分散体に含浸する時間は、コンデンサ素子の大きさによって決まるが、直径5mm×長さ3mm程度のコンデンサ素子では5秒以上、直径9mm×長さ5mm程度のコンデンサ素子では10秒以上が望ましく、最低でも5秒間は含浸することが必要である。なお、長時間含浸しても特性上の弊害はない。また、このように含浸した後、減圧状態で保持すると好適である。その理由は、揮発性溶媒の残留量が少なくなるためであると考えられる。また、導電性高分子分散体の含浸ならびに乾燥は、必要に応じて複数回行ってもよい。
(第3の工程における電解液)
電解液に使用できる溶媒としては、その沸点が、寿命試験温度である120℃以上の溶媒を用いることが好ましい。溶媒の例としては、γ−ブチロラクトン、エチレングリコールなどの多価アルコール、スルホラン、ジメチルホルムアミド等が挙げられる。多価アルコールとしては、エチレングリコール、ジエチレングリコール、ジプロピレングリコール、1,2−プロパンジオール、グリセリン、1,3−プロパンジオール、1,3−ブタンジオール、2−メチル−2,4−ペンタンジオールなどの低分子量の多価アルコールがよい。特に、エチレングリコールなどの低分子量の多価アルコールおよびγ−ブチロラクトンからなる混合溶媒を用いると、初期のESR特性が良好となり、さらに高温特性も良好となる。
即ち、エチレングリコールおよびγ−ブチロラクトンからなる混合溶媒を用いた場合、エチレングリコールを含まない溶媒を用いた場合と比較して、初期のESRが低下するとともに、長時間の使用において静電容量の変化率(ΔCap)が小さいことが判明している。その理由は、エチレングリコールは、導電性ポリマーのポリマー鎖の伸張を促進する効果があるため、電導度が向上し、ESRが低下すると考えられる。また、γ−ブチロラクトンやスルホランよりも、エチレングリコールのようなヒドロキシル基を有するプロトン性溶媒の方がセパレータや電極箔、導電性ポリマーとの親和性が高いため、電解コンデンサ使用時の電解液が蒸散する過程において、セパレータや電極箔、導電性ポリマーと電解液との間で電荷の受け渡しが行われやすく、ΔCapが小さくなると考えられる。また、混合溶媒中におけるエチレングリコールの添加量は、好ましくは5wt%以上、さらに好ましくは40wt%以上、最も好ましくは60wt%以上である。
また、電解液の溶媒としてγ−ブチロラクトンを所定量添加させることで、電解液のコンデンサ素子への含浸性を改善できる。比較的粘性の高いエチレングリコールと粘性が低いγ−ブチロラクトンを用いることで、コンデンサ素子への含浸性を高め、初期特性及び長時間の使用での良好な特性を維持とともに、低温での充放電特性が良好となる。混合溶媒中におけるγ−ブチロラクトンの添加量は、好ましくは、40wt%以下である。
さらに、イオン伝導性物質のエチレングリコールおよびγ−ブチロラクトンからなる混合溶媒に、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホランから選ばれる少なくとも1種の溶媒を追加的に用いてもよい。これらスルホラン系の溶媒は高沸点であるため、電解液の蒸散を抑制し、高温特性が良好になる。混合溶媒中のこれらスルホラン系の溶媒の添加量は、好ましくは、40wt%以下である。
電解液の溶質としては、有機酸と無機酸との複合化合物の塩を用いる。塩としては、少なくとも1種のアンモニウム塩、四級アンモニウム塩、四級化アミジニウム塩、アミン塩等を挙げることができる。上記有機酸としては、フタル酸、イソフタル酸、テレフタル酸、マレイン酸、アジピン酸、安息香酸、トルイル酸、エナント酸、マロン酸、1,6−デカンジカルボン酸、1,7−オクタンジカルボン酸、アゼライン酸、サリチル酸、蓚酸、グリコール酸等のカルボン酸、フェノール類が挙げられる。また、無機酸としては、ホウ酸、リン酸、亜リン酸、次亜リン酸、リン酸エステル、炭酸、ケイ酸等が挙げられる。有機酸と無機酸の複合化合物としては、ボロジサリチル酸、ボロジ蓚酸、ボロジグリコール酸等が挙げられる。
また、上記有機酸と無機酸の複合化合物の少なくとも1種の塩として、アンモニウム塩、四級アンモニウム塩、四級化アミジニウム塩、アミン塩等が挙げられる。4級アンモニウム塩の4級アンモニウムイオンとしてはテトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム等が挙げられる。四級化アミジニウムとしては、エチルジメチルイミダゾリニウム、テトラメチルイミダゾリニウムなどが挙げられる。アミン塩のアミンとしては、1級アミン、2級アミン、3級アミンが挙げられる。1級アミンとしては、メチルアミン、エチルアミン、プロピルアミンなど、2級アミンとしては、ジメチルアミン、ジエチルアミン、エチルメチルアミン、ジブチルアミンなど、3級アミンとしては、トリメチルアミン、トリエチルアミン、トリブチルアミン、エチルジイソプロピルアミン等が挙げられる。
上記電解液においては、後述する実施例の結果からも明らかなとおり、有機酸と無機酸の複合化合物の塩、特にはボロジサルチル酸塩を用いた溶質の添加量を9wt%未満、好ましくは7wt%以下、最も好ましくは5wt%未満とする。この理由については、種々の塩を評価した結果、複合化合物の塩は、電解液としての化成性の向上に加え、導電性高分子との相性が良く、高温耐久試験における導電性高分子層を劣化させにくいものと考えられ、これは溶質濃度が低いほど導電性高分子層の劣化が抑制されるものと考えられる。
さらに、電解液の添加剤として、ポリオキシエチレングリコール、ホウ酸と多糖類(マンニット、ソルビットなど)との錯化合物、ホウ酸と多価アルコールとの錯化合物、ニトロ化合物(o−ニトロ安息香酸、m−ニトロ安息香酸、p−ニトロ安息香酸、o−ニトロフェノール、m−ニトロフェノール、p−ニトロフェノールなど)、リン酸エステルなどが挙げられる。
(電解液の充填条件)
上記のような電解液をコンデンサ素子に充填する場合、その充填量は、コンデンサ素子内の空隙部に充填できれば任意であるが、コンデンサ素子内の空隙部の3〜100%が好ましい。
(作用・効果)
上記のように、コンデンサ素子内に導電性ポリマーを形成した後、このコンデンサ素子を所定の電解液に含浸させて、コンデンサ素子内の空隙部にこの電解液を充填することにより、高温でのESR特性が良好になる。
この理由については、上記のとおり作製したコンデンサ素子内には従来のような重合反応残余物がそもそも存在せず、導電性ポリマーの耐電圧より低い反応残余物による耐電圧の低下を抑制できる結果、耐電圧を向上させることができる。そしてこのような高圧の用途において、上述したように、所定の有機酸と無機酸の複合化合物を所定量用いることにより、電解液としての化成性の向上に加え、導電性高分子との相性が向上し、高温耐久試験における導電性高分子層の劣化が抑制され、高温下でのESR特性が良好となるものと考えられる。
続いて、以下のようにして製造した実施例及び比較例に基づいて本発明をさらに詳細に説明する。
まず、表1に示すように、表1に示すように、エチレングリコールとボロジサリチル酸アンモニウムとの配合比を変化させた電解液を作製し(実施例1〜4、比較例1)、また、参考例1として、エチレングリコールとフタル酸トリエチルアミンとを99:1の割合で配合した電解液を作製した。そして、これらの電解液の耐電圧を評価した。
Figure 0006745580
実施例1〜4、比較例1および参考例1で作製した電解液を測定用のコンデンサ素子に含浸し耐電圧を測定した結果を表1に併せて示す。測定方法は、酸化皮膜を有する陽極箔と陰極箔をセパレータを介して巻回したコンデンサ素子に導電性高分子層を形成せずに、実施例1〜4、比較例1および参考例1で作製した電解液を含浸し、10mAの電流密度で室温下でブレークダウン電圧を測定した。
表1の結果より、ボロジサリチル酸アンモニウムの量が9wt%では耐電圧が171Vであったが(比較例1)、7wt%で220V(実施例4)、5wt%で251V(実施例3)、3wt%で272V(実施例2)、1wt%で281V(実施例1)となり、溶質のボロジサリチル酸アンモニウムの量が減少するに従って耐電圧が向上した。また、実施例1と参考例1とを比較すると、溶質の量は同じであるにもかかわらず、耐電圧は3倍近くに向上している。
このため、ボロジサリチル酸アンモニウムの量を9wt%未満、特に7wt%以下とすることにより、耐電圧が飛躍的に向上することが判明した。
次に、表2に示すように、電解液としてエチレングリコールとボロジサリチル酸トリメチルアミンの配合比を変えたもの(実施例5〜実施例8、比較例2)について、上記と同様の方法で耐電圧を測定した。結果を表2に示す。
Figure 0006745580
表2の結果より、ボロジサリチル酸トリメチルアミンの量が9wt%では耐電圧が170Vであったが(比較例2)、7wt%で220V(実施例8)、5wt%で250V(実施例7)、3wt%で270V(実施例6)、1wt%で280V(実施例5)となり、溶質のボロジサリチル酸トリメチルアミンの量が減少するに従って耐電圧が向上した。また、実施例5と参考例1とを比較すると、溶質の量は同じであるにもかかわらず、耐電圧は3倍近くに向上している。
このため、ボロジサリチル酸トリエチルアミンの量を9wt%未満、特に7wt%以下とすることにより、耐電圧が飛躍的に向上することが判明した。
次に、導電性高分子層と電解液を備えた固体電解コンデンサについて、電解液の溶媒や溶質の種類を変えて評価を行った。実施例9〜実施例18、および参考例2の固体電解コンデンサについては、次の様に作製した。
まず、表面に酸化皮膜層が形成された陽極箔と陰極箔に電極引き出し手段を接続し、両電極箔をセパレータを介して巻回して、素子形状が直径10mm×長さ12.5mmのコンデンサ素子を形成した。そして、このコンデンサ素子をリン酸二水素アンモニウム水溶液に40分間浸漬して、修復化成を行った。その後、PEDOTの微粒子とポリスチレンスルホン酸をエチレングリコールを5wt%含む水溶液に分散した導電性高分子分散体に浸漬し、コンデンサ素子を引き上げて約150℃で乾燥した。さらに、このコンデンサ素子の導電性高分子分散体への浸漬−乾燥を複数回繰り返して、コンデンサ素子に導電性高分子からなる導電性高分子層を形成した。その後、このコンデンサ素子に、表3に示すように、電解液の種類と溶媒の配合比を変化させた電解液を充填した(実施例9〜18、および参考例2)。なお、表3に示す電解液の配合比は重量部で示している。そして、これらのコンデンサ素子を有底筒状の外装ケースに挿入し、開口端部に封口ゴムを装着して、加締め加工によって封止した。その後に、電圧印加によってエージングを行い、固体電解コンデンサを形成した。なお、この固体電解コンデンサの定格電圧は100WV、定格容量は33μFである。
これらの固体電解コンデンサにて、初期のESR特性および125℃、1500時間無負荷放置試験を行ったときのESR特性、ΔCapの結果を表3に示す。なお、本明細書において、ESR特性はすべて100kHz(20℃)における値を示している。
Figure 0006745580
表3の結果より、実施例9は、他の実施例に比べて電解液の溶媒としてエチレングリコールの含有量を100%とすることにより、初期ESR、高温試験後における特性劣化が最小となることが分かった。一方、参考例2に示す通り、電解液の溶媒としてエチレングリコールの含有量を100%とした場合であっても、電解液の溶質としてフタル酸トリエチルアミンを用いると、初期のESRがわずかに上昇した。さらに、実施例9よりも、試験後における特性劣化が大きく、特にESRは3倍近く大きいことが分かった。
また、実施例10と実施例16を比較すると、ボロジサリチル酸アンモニウムを用いた実施例10の方がボロジサリチル酸トリメチルアミンを用いた実施例16よりも、初期のESRが低く、さらに高温試験後においても特性劣化が小さいことが分かった。
また、実施例16と実施例17を比較すると、ボロジサリチル酸トリメチルアミンを用いた実施例16の方がボロジサリチル酸トリエチルアミンを用いた実施例17よりも、初期のESRが低く、さらに高温試験後においても特性劣化が小さいことが分かった。なお、別途行った耐電圧試験の結果では、実施例16と実施例17とで特性は同等であった。
さらに、実施例10と実施例18を比較すると、溶媒としてエチレングリコールだけでなくポリオキシエチレングリコールを加えた実施例18の方が、溶媒としてポリオキシエチレングリコールを用いていない実施例10よりも、高温試験後のΔCapが改善した。これにより、ポリオキシエチレングリコールは、高温試験後のΔCapの改善に効果があるものと考えられる。
次に、導電性高分子層と電解液を備えた固体電解コンデンサについて、電解液の溶媒や溶質の種類を変えて評価を行った。実施例19〜実施例21、および比較例3の固体電解コンデンサについては、次の様に作製した。
まず、表面に酸化皮膜層が形成された陽極箔と陰極箔に電極引き出し手段を接続し、両電極箔をセパレータを介して巻回して、素子形状が直径10mm×長さ12.5mmのコンデンサ素子を形成した。そして、このコンデンサ素子をリン酸二水素アンモニウム水溶液に40分間浸漬して、修復化成を行った。その後、PEDOTの微粒子とポリスチレンスルホン酸をエチレングリコールを5wt%含む水溶液に分散した導電性高分子分散体に浸漬し、コンデンサ素子を引き上げて約150℃で乾燥した。さらに、このコンデンサ素子の導電性高分子分散体への浸漬−乾燥を複数回繰り返して、コンデンサ素子に導電性高分子からなる導電性高分子層を形成した。その後、このコンデンサ素子に、表4に示すように、エチレングリコールとボロジサリチル酸アンモニウムの配合比を変化させた電解液を充填した(実施例19〜21、および比較例3)。各電解液に、添加剤としてリン酸エステルおよびニトロ化合物を添加した。添加剤の添加量は、リン酸エステルとニトロ化合物の電解液中の合計量が2.5wt%となるように調製した。そして、これらのコンデンサ素子を有底筒状の外装ケースに挿入し、開口端部に封口ゴムを装着して、加締め加工によって封止した。その後に、電圧印加によってエージングを行い、固体電解コンデンサを形成した。なお、この固体電解コンデンサの定格電圧は100WV、定格容量は33μFである。
これらの固体電解コンデンサにて、初期のESR特性および150℃、1000時間無負荷放置試験を行ったときのESR特性の結果を表4に示す。
Figure 0006745580
表4の結果より、ボロジサリチル酸アンモニウムの量が9wt%では、試験後のESRが513mΩであったが(比較例3)、7wt%で293mΩ(実施例21)、5wt%で84mΩ(実施例20)、1wt%で35mΩ(実施例19)であった。すなわち、溶質のボロジサリチル酸アンモニウムの量が減少するに従って試験後のESRが低減しており、放置試験後における特性劣化が小さいことが分かった。以上より、ボロジサリチル酸アンモニウムの量を9wt%未満、特に7wt%以下とすることにより、ESRが大幅に低減することが判明した。参考として、同仕様の素子を用いた場合であっても、電解質として電解液のみを使用した電解コンデンサの初期ESRは、470mΩ程度である。本発明のハイブリッドコンデンサでは、初期ESRはもちろん、放置試験後においてもESRが470mΩ以下であり、電気特性が優れていることが分かった。

Claims (4)

  1. 陽極電極箔と陰極電極箔とをセパレータを介して巻回したコンデンサ素子に、導電性高分子の粒子が溶媒に分散した導電性高分子分散体を用いて固体電解質層を形成するとともに、該固体電解質層が形成されたコンデンサ素子内の空隙部に、溶質として無機酸と有機酸との複合化合物であるボロジサリチル酸の塩のみを1以上9wt%未満含有し、エチレングリコールを溶媒中20wt%以上含有した電解液を充填させたことを特徴とする固体電解コンデンサ。
  2. 前記複合化合物の塩は、アンモニウム塩であることを特徴とする請求項1記載の固体電解コンデンサ。
  3. 80V以上の高圧用途に用いることを特徴とする請求項1又は2記載の固体電解コンデンサ。
  4. 陽極電極箔と陰極電極箔とをセパレータを介して巻回したコンデンサ素子に、導電性高分子の粒子が溶媒に分散した導電性高分子分散体を含浸させて固体電解質層を形成する工程と、該固体電解質層が形成されたコンデンサ素子内の空隙部に、溶質として無機酸と有機酸との複合化合物であるボロジサリチル酸の塩のみを1以上9wt%未満含有し、エチレングリコールを溶媒中20wt%以上含有した電解液を含浸させる工程と、を有することを特徴とする固体電解コンデンサの製造方法。
JP2014242367A 2014-02-05 2014-11-28 固体電解コンデンサ及びその製造方法 Active JP6745580B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2014242367A JP6745580B2 (ja) 2014-02-05 2014-11-28 固体電解コンデンサ及びその製造方法
KR1020167017979A KR102305945B1 (ko) 2014-02-05 2015-01-28 고체 전해 콘덴서 및 그 제조 방법
EP15746932.1A EP3104380B1 (en) 2014-02-05 2015-01-28 Solid electrolytic capacitor and production method for same
CN201580002788.2A CN105793940B (zh) 2014-02-05 2015-01-28 固体电解电容器及其制造方法
PCT/JP2015/052395 WO2015119020A1 (ja) 2014-02-05 2015-01-28 固体電解コンデンサ及びその製造方法
TW104103359A TWI646565B (zh) 2014-02-05 2015-02-02 固體電解電容器及其製造方法
US15/217,798 US10115529B2 (en) 2014-02-05 2016-07-22 Electrolytic capacitor having a solid electrolyte layer and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014020718 2014-02-05
JP2014020718 2014-02-05
JP2014242367A JP6745580B2 (ja) 2014-02-05 2014-11-28 固体電解コンデンサ及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019085094A Division JP6795054B2 (ja) 2014-02-05 2019-04-26 固体電解コンデンサ及びその製造方法

Publications (2)

Publication Number Publication Date
JP2015165550A JP2015165550A (ja) 2015-09-17
JP6745580B2 true JP6745580B2 (ja) 2020-08-26

Family

ID=53777827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014242367A Active JP6745580B2 (ja) 2014-02-05 2014-11-28 固体電解コンデンサ及びその製造方法

Country Status (7)

Country Link
US (1) US10115529B2 (ja)
EP (1) EP3104380B1 (ja)
JP (1) JP6745580B2 (ja)
KR (1) KR102305945B1 (ja)
CN (1) CN105793940B (ja)
TW (1) TWI646565B (ja)
WO (1) WO2015119020A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133861B (zh) * 2014-03-27 2018-11-30 松下知识产权经营株式会社 电解电容器
CN107112138B (zh) * 2014-12-26 2019-06-18 松下知识产权经营株式会社 电解电容器的制造方法
JP6967702B2 (ja) * 2015-12-04 2021-11-17 パナソニックIpマネジメント株式会社 電解コンデンサ
JP6990831B2 (ja) 2016-03-24 2022-01-12 パナソニックIpマネジメント株式会社 電解コンデンサ
US10431390B2 (en) * 2016-09-29 2019-10-01 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor and method for manufacturing same
JP6893311B2 (ja) 2016-10-31 2021-06-23 パナソニックIpマネジメント株式会社 電解コンデンサ
DE102016125733A1 (de) 2016-12-27 2018-06-28 Epcos Ag Hybrid-Polymer-Aluminium-Elektrolytkondensator und Verfahren zur Herstellung eines Kondensators
DE102017117160A1 (de) * 2017-07-28 2019-01-31 Tdk Electronics Ag Verfahren zum Herstellen eines Polymerkondensators und Polymerkondensator
DE102017124139B4 (de) * 2017-10-17 2020-02-13 Tdk Electronics Ag Elektrolytkondensator
WO2019225523A1 (ja) 2018-05-21 2019-11-28 パナソニックIpマネジメント株式会社 電解コンデンサ
JP7196919B2 (ja) * 2018-07-18 2022-12-27 日本ケミコン株式会社 固体電解コンデンサ
JPWO2020022471A1 (ja) * 2018-07-26 2021-08-02 パナソニックIpマネジメント株式会社 電解コンデンサ
US11749464B2 (en) * 2018-07-26 2023-09-05 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor
EP3834217A4 (en) 2018-08-10 2022-05-11 KYOCERA AVX Components Corporation SOLID ELECTROLYTE CAPACITOR WITH INTRINSICALLY CONDUCTIVE POLYMER
US11183342B2 (en) 2018-08-10 2021-11-23 Avx Corporation Solid electrolytic capacitor containing polyaniline
JP7442500B2 (ja) 2018-08-10 2024-03-04 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション 導電性ポリマー粒子から形成される固体電解キャパシタ
WO2020059672A1 (ja) * 2018-09-21 2020-03-26 日本ケミコン株式会社 固体電解コンデンサ
CN113196429A (zh) 2018-12-11 2021-07-30 阿维科斯公司 含有本征导电聚合物的固体电解电容器
US11670461B2 (en) 2019-09-18 2023-06-06 KYOCERA AVX Components Corporation Solid electrolytic capacitor for use at high voltages
CN114730665A (zh) * 2019-11-15 2022-07-08 富山药品工业株式会社 电解电容器用电解液和电解电容器
JP7486582B2 (ja) 2019-12-10 2024-05-17 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション プレコート及び固有導電性ポリマーを含む固体電解キャパシタ
WO2021119088A1 (en) 2019-12-10 2021-06-17 Avx Corporation Tantalum capacitor with increased stability
EP3889980A1 (en) * 2020-04-02 2021-10-06 Heraeus Deutschland GmbH & Co KG Process for producing polymer capacitors for high reliability applications
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier
CN112420391A (zh) * 2020-11-19 2021-02-26 益阳市万京源电子有限公司 一种耐大电流冲击的固态铝电解电容器及其制备方法
WO2024095891A1 (ja) * 2022-10-31 2024-05-10 パナソニックIpマネジメント株式会社 電解コンデンサおよび電解コンデンサの製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3814730A1 (de) 1988-04-30 1989-11-09 Bayer Ag Feststoff-elektrolyte und diese enthaltende elektrolyt-kondensatoren
JPH0748457B2 (ja) * 1988-09-29 1995-05-24 信英通信工業株式会社 電解コンデンサ駆動用電解液
JPH0391225A (ja) * 1989-09-04 1991-04-16 Japan Carlit Co Ltd:The 電解コンデンサ駆動用電解液
JP3212328B2 (ja) * 1991-09-02 2001-09-25 ニチコン株式会社 電解コンデンサ用電解液
JPH05144674A (ja) * 1991-11-19 1993-06-11 Nippon Chemicon Corp 電解コンデンサ用電解液
DE69432788T2 (de) * 1993-12-03 2004-04-08 Matsushita Electric Industrial Co., Ltd., Kadoma Elektrolytloesung und daraus hergestelltes elektrochemisches element
JP3459547B2 (ja) 1997-10-17 2003-10-20 三洋電機株式会社 電解コンデンサ及びその製造方法
JPH11283874A (ja) * 1998-01-28 1999-10-15 Matsushita Electric Ind Co Ltd 電解コンデンサ
CN101261900B (zh) * 2001-05-11 2011-02-02 三菱化学株式会社 电解电容器用电解液及使用该电解液的电解电容器
JP2004134458A (ja) * 2002-10-08 2004-04-30 Tomiyama Pure Chemical Industries Ltd 電解コンデンサ駆動用電解液
JP2004134655A (ja) * 2002-10-11 2004-04-30 Tomiyama Pure Chemical Industries Ltd 電解コンデンサ駆動用電解液
JP2005303062A (ja) * 2004-04-13 2005-10-27 Rubycon Corp 電解コンデンサ駆動用電解液及び電解コンデンサ
KR20070013326A (ko) * 2004-05-10 2007-01-30 가부시키가이샤 닛폰 쇼쿠바이 전해액용 재료, 이온 재료 함유 조성물 및 그 사용
WO2006028072A1 (ja) * 2004-09-07 2006-03-16 Matsushita Electric Industrial Co., Ltd. 電解コンデンサ用電解液及びそれを用いた電解コンデンサ
JP5305569B2 (ja) * 2006-06-29 2013-10-02 三洋電機株式会社 電解コンデンサの製造方法および電解コンデンサ
JP4911509B2 (ja) * 2007-04-03 2012-04-04 三洋電機株式会社 電解コンデンサおよびその製造方法
JP4836887B2 (ja) * 2007-07-09 2011-12-14 三洋電機株式会社 電解コンデンサの製造方法及び電解コンデンサ
US9562293B2 (en) * 2011-03-01 2017-02-07 Nippon Chemi-Con Corporation Polymerization solution, conductive polymer film obtained from the polymerization solution, polymer electrode, and solid electrolytic capacitor
EP2682965A4 (en) * 2011-03-01 2014-09-24 Nippon Chemicon POLYMERIZATION SOLUTION, POLYMERIC CONDUCTIVE FILM OBTAINED FROM THE POLYMERIZATION SOLUTION, AND SOLID ELECTROLYTIC CAPACITOR

Also Published As

Publication number Publication date
CN105793940A (zh) 2016-07-20
TWI646565B (zh) 2019-01-01
TW201539501A (zh) 2015-10-16
KR102305945B1 (ko) 2021-09-27
US10115529B2 (en) 2018-10-30
EP3104380B1 (en) 2020-08-12
US20160336117A1 (en) 2016-11-17
CN105793940B (zh) 2019-05-28
EP3104380A4 (en) 2017-09-20
WO2015119020A1 (ja) 2015-08-13
EP3104380A1 (en) 2016-12-14
KR20160117428A (ko) 2016-10-10
JP2015165550A (ja) 2015-09-17

Similar Documents

Publication Publication Date Title
JP6745580B2 (ja) 固体電解コンデンサ及びその製造方法
JP6737830B2 (ja) 固体電解コンデンサ及びその製造方法
KR102134497B1 (ko) 전해 콘덴서 및 그 제조 방법
JP6740579B2 (ja) 固体電解コンデンサおよび固体電解コンデンサの製造方法
JP6610264B2 (ja) 固体電解コンデンサ及びその製造方法
JP2016072284A (ja) 固体電解コンデンサ及びその製造方法
JP6911910B2 (ja) 電解コンデンサ及びその製造方法
JP7294494B2 (ja) 固体電解コンデンサ及びその製造方法
JP7067598B2 (ja) 固体電解コンデンサ及びその製造方法
JP2021170656A (ja) 電解コンデンサ及びその製造方法
JP6795054B2 (ja) 固体電解コンデンサ及びその製造方法
JP7115618B2 (ja) 固体電解コンデンサおよび固体電解コンデンサの製造方法
JP6965970B2 (ja) 固体電解コンデンサおよび固体電解コンデンサの製造方法
JP7456242B2 (ja) 固体電解コンデンサ
JP2017220679A (ja) 電解コンデンサ及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200804

R150 Certificate of patent or registration of utility model

Ref document number: 6745580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150