WO2019198191A1 - Ta-Nb合金粉末とその製造方法ならびに固体電解コンデンサ用の陽極素子 - Google Patents
Ta-Nb合金粉末とその製造方法ならびに固体電解コンデンサ用の陽極素子 Download PDFInfo
- Publication number
- WO2019198191A1 WO2019198191A1 PCT/JP2018/015321 JP2018015321W WO2019198191A1 WO 2019198191 A1 WO2019198191 A1 WO 2019198191A1 JP 2018015321 W JP2018015321 W JP 2018015321W WO 2019198191 A1 WO2019198191 A1 WO 2019198191A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- alloy powder
- content
- oxide film
- heat treatment
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 168
- 229910001257 Nb alloy Inorganic materials 0.000 title claims abstract description 147
- 239000003990 capacitor Substances 0.000 title claims abstract description 53
- 239000007787 solid Substances 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 199
- 238000011282 treatment Methods 0.000 claims abstract description 94
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 55
- 230000003647 oxidation Effects 0.000 claims abstract description 54
- 239000011164 primary particle Substances 0.000 claims abstract description 47
- 238000000034 method Methods 0.000 claims abstract description 44
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 27
- 239000000956 alloy Substances 0.000 claims abstract description 27
- 238000002230 thermal chemical vapour deposition Methods 0.000 claims abstract description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 102
- 239000001301 oxygen Substances 0.000 claims description 102
- 229910052715 tantalum Inorganic materials 0.000 claims description 85
- 229910052758 niobium Inorganic materials 0.000 claims description 84
- 238000010438 heat treatment Methods 0.000 claims description 75
- 239000000126 substance Substances 0.000 claims description 32
- 238000006243 chemical reaction Methods 0.000 claims description 31
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 22
- 229910004168 TaNb Inorganic materials 0.000 claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 239000011261 inert gas Substances 0.000 claims description 10
- 230000002829 reductive effect Effects 0.000 claims description 8
- 239000002245 particle Substances 0.000 abstract description 38
- 239000000463 material Substances 0.000 abstract description 12
- 238000012545 processing Methods 0.000 abstract description 4
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 239000012141 concentrate Substances 0.000 abstract 1
- 239000010955 niobium Substances 0.000 description 192
- 239000010410 layer Substances 0.000 description 45
- 238000005245 sintering Methods 0.000 description 29
- 238000002474 experimental method Methods 0.000 description 22
- 230000007423 decrease Effects 0.000 description 13
- 239000002994 raw material Substances 0.000 description 12
- 238000011161 development Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- BFRGSJVXBIWTCF-UHFFFAOYSA-N niobium monoxide Chemical compound [Nb]=O BFRGSJVXBIWTCF-UHFFFAOYSA-N 0.000 description 9
- 239000002344 surface layer Substances 0.000 description 8
- 239000010407 anodic oxide Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 7
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000007547 defect Effects 0.000 description 5
- 238000005469 granulation Methods 0.000 description 5
- 230000003179 granulation Effects 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 238000003917 TEM image Methods 0.000 description 4
- 238000000748 compression moulding Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- HFLAMWCKUFHSAZ-UHFFFAOYSA-N niobium dioxide Chemical compound O=[Nb]=O HFLAMWCKUFHSAZ-UHFFFAOYSA-N 0.000 description 4
- 238000005121 nitriding Methods 0.000 description 4
- 239000010405 anode material Substances 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- PRQMJCKNUXGWPX-UHFFFAOYSA-N [O--].[Nb+5].[Nb+5].[Nb+5].[Nb+5].[Nb+5].[Nb+5] Chemical compound [O--].[Nb+5].[Nb+5].[Nb+5].[Nb+5].[Nb+5].[Nb+5] PRQMJCKNUXGWPX-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003985 ceramic capacitor Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/16—Metallic particles coated with a non-metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/048—Electrodes or formation of dielectric layers thereon characterised by their structure
- H01G9/052—Sintered electrodes
Definitions
- the present invention relates to a Ta—Nb alloy powder suitable for use as an anode element for a small-sized and large-capacity solid electrolytic capacitor mainly used in electronic devices such as personal computers and mobile phones, a production method thereof, and an alloy powder thereof.
- the present invention relates to an anode element for the solid electrolytic capacitor used.
- Capacitors are a type of electronic component used in various electronic devices such as personal computers and mobile phones, and basically have a structure in which a dielectric is sandwiched between two opposing electrode plates. When applied, charge is stored in each electrode by the polarization action of the dielectric.
- capacitors There are many types of capacitors, but at present, aluminum electrolytic capacitors, multilayer ceramic capacitors, tantalum electrolytic capacitors, and film capacitors are mainly used.
- Ta tantalum solid electrolytic capacitor
- This Ta capacitor utilizes the fact that tantalum pentoxide (Ta 2 O 5 ), which is an anodic oxide film of Ta, is excellent as a dielectric, and compression molding Ta powder and sintering it in a high vacuum. After producing a porous element, a chemical conversion treatment (anodic oxidation treatment) is performed, and an amorphous oxide film (Ta 2 O 5 film) having excellent insulating properties, that is, a dielectric film is applied to the surface of the Ta powder.
- Ta 2 O 5 tantalum pentoxide
- Ta 2 O 5 film amorphous oxide film having excellent insulating properties
- the anode in the device is impregnated with a manganese nitrate solution, and the thermal decomposition process is repeated several times to form a MnO 2 layer (electrolyte) on the anodized film to serve as the cathode.
- MnO 2 layer electrophilic layer
- it is generally manufactured by a series of processes in which lead wires are connected with graphite, silver paste or the like and then covered with resin or the like.
- a highly conductive polymer material such as polypyrrole or polyaniline is used to lower ESR (equivalent series resistance), stabilize temperature characteristics, improve safety, A product with a long life has been developed and put into practical use.
- a CV value ( ⁇ F ⁇ V / g), which is the product of capacitance and formation voltage, is generally used.
- commercially available Ta powder has a CV value of 50 to 150 kF / V / g, that is, about 50 to 150 kCV, and even a high-capacity product has a value of only 100 to 250 kF / V / g. Therefore, development of a tantalum powder having a higher CV value, specifically, 250 kCV or more, further 300 kCV or more is strongly desired.
- S electrode area (m 2 )
- t distance between electrodes (m)
- ⁇ dielectric constant (F / m)
- ⁇ s relative dielectric constant of dielectric (Ta oxide film: about 27)
- ⁇ 0 Vacuum induction electric power (8.855 ⁇ 10 ⁇ 12 F / m)
- the anode area S that is, the surface area of the Ta powder constituting the anode is increased, or the interelectrode distance t, that is, the film thickness of the anodic oxide film Ta 2 O 5 is decreased.
- the interelectrode distance t that is, the film thickness of the anodic oxide film Ta 2 O 5 is decreased.
- the primary particle size of Ta powder has been miniaturized with the recent demand for larger capacity.
- the bonding part (neck part) of the metal particles formed when sintered into an element is weakened. Therefore, the bonding part is broken by the growth of the oxide film by the chemical conversion treatment, and the static part is static. There is a problem in that the capacity decreases. Therefore, it is desirable that the Ta powder has a size of a certain level or more, specifically, a size of 30 nm or more.
- the film thickness of the anodized film can be adjusted by the chemical conversion voltage, but reducing this film thickness causes various problems.
- an amorphous natural oxide film having a thickness of about 2 to 3 nm formed during the production of the powder exists on the surface of the Ta powder.
- This oxide film often contains impurities and defects, and is inferior in characteristics and adhesion as a dielectric, thus deteriorating electrical characteristics.
- This problem is not particularly apparent when the chemical conversion treatment is performed at a high voltage because it is buried in a thick anodic oxide film (dielectric).
- the anodic oxide film is made thinner for higher capacity, defects in the natural oxide film will be exposed on the surface. As a result, the leakage current (LC) increases or the life of the capacitor is adversely affected. Therefore, there is a limit to increasing the capacity by reducing the thickness of the anodized film.
- Ta is a rare metal with a small reserve, it is difficult to stably supply, is expensive, and has a large price fluctuation. Therefore, there is an increasing need for a solid electrolytic capacitor using a metal other than Ta. Therefore, development and research of a niobium solid electrolytic capacitor using Nb, which has similar chemical characteristics and physical properties to Ta, is rich in reserves and is inexpensive, and has been put to practical use.
- the dielectric of the niobium solid electrolytic capacitor (hereinafter also referred to as “Nb capacitor”) is an oxide (niobium pentoxide Nb 2 O 5 ), and its dielectric constant is tantalum. Since it is 41, which is about 1.5 times that of the oxide Ta 2 O 5, a higher CV value can be obtained than a Ta capacitor.
- the Nb capacitor has a poor thermal stability of the dielectric layer, and the dielectric layer changes in quality due to thermal stress during heat treatment when forming the cathode or reflow processing when the capacitor is mounted. It has been pointed out that the characteristics such as the leakage current are deteriorated, in particular, the latter leakage current is increased.
- the cause of thermal instability when using niobium metal powder as the anode material of the capacitor is that Nb is more reactive than Ta, and niobium oxide is less stable than tantalum oxide. 2 O 5 ) oxygen is diffused toward the Nb metal side of the anode, which is considered to be caused by defects in the dielectric or formation of a conductive oxide layer. Yes.
- Patent Document 3 discloses that the composition of the dielectric oxide film and the thermal strain between the niobium powder and the niobium monoxide powder include niobium monoxide powder and hexaniobium monoxide in the niobium powder. Is a technique for relaxing the dielectric oxide film and suppressing deterioration of the dielectric oxide film.
- Patent Document 4 discloses a method such as liquid nitriding, ion nitriding, gas nitriding to niobium powder having an average particle size of 0.2 ⁇ m or more and less than 3 ⁇ m.
- Patent Document 5 Mn is contained in a contact portion between an anode containing Nb and a dielectric layer formed in close contact with the anode, so that the number of oxygen atoms bonded to Nb is kept constant.
- Patent Document 6 discloses that a dielectric layer is formed by including fluorine in a dielectric layer formed on the surface of an anode containing an oxide made of niobium monoxide or niobium dioxide and a metal made of niobium or a niobium alloy.
- Patent Documents 3 to 6 require that the anode raw material manufacturer or the capacitor manufacturer perform special treatment on the Nb powder or the anode element manufactured from the powder. However, it has the problem of incurring an increase in raw material costs and manufacturing costs.
- an object of the present invention is to provide a Ta—Nb alloy powder for a solid electrolytic capacitor that is stable and has a high capacity and a small leakage current even after being subjected to a heat treatment such as a reflow process, and a method for producing the same.
- the object is to propose an anode element for a solid electrolytic capacitor using an alloy powder.
- a specific development target of the present invention is to develop an anode element having a capacitance of 300 kCV / g or more after heat treatment, that is, after mounting, and a leakage current of 50 ⁇ A / ⁇ FV ⁇ 10 ⁇ 4 or less. .
- the inventors have conducted intensive studies focusing on the influence of the oxide film formed on the surface of the alloy powder on the characteristics of the capacitor when producing Ta—Nb alloy powder (primary particles). Piled up. As a result, the ultrafine Ta—Nb alloy powder (primary particles) produced using the thermal CVD method is oxidized to enrich the oxygen content to an appropriate amount according to the Nb content. By forming an oxide film consisting only of amorphous on the surface of the alloy powder, it is suitable for use as an anode element for a solid electrolytic capacitor having a high capacity and a small leakage current even after being subjected to a heat treatment such as a reflow process. The present inventors have found that Ta—Nb alloy powder can be obtained and have completed the present invention.
- the present invention provides a Ta—Nb alloy powder having an Nb content of 10 to 80 mass% and a primary particle diameter of 30 to 200 nm. It has a coating layer, and the content of O is related to the content of Nb (Nb: 10 mass%, O: 4.5 mass%), (Nb: 20 mass%, O: 5.5 mass%), ( Nb: 40 mass%, O: 7.3 mass%), (Nb: 60 mass%, O: 7.5 mass%), (Nb: 80 mass%, O: 7.5 mass%), (Nb: 80 mass%, O: 6 .5 mass%), (Nb: 60 mass%, O: 6.0 mass%), (Nb: 40 mass%, O: 4.8 mass%), (Nb: 20 mass%, O: 3.5 mass%) and (Nb: 10mass%, O: 3.0mass%) is Ta-Nb alloy powder, characterized in that in the range surrounded by points.
- the Nb content refers to the mass ratio of Nb to the total mass
- the Ta—Nb alloy powder of the present invention when subjected to a heat treatment at 850 to 1500 ° C. ⁇ 5 to 60 min, has a crystalline portion formed on the metal portion at the center of the Ta—Nb alloy and the surface (outside) thereof. It has a three-layer structure composed of monoxide (Ta, Nb) O and a natural oxide film formed on its surface (outermost surface).
- the present invention provides an oxidation treatment of Ta—Nb alloy powder produced by a thermal CVD method and having a Nb content of 10 to 80 mass% and a primary particle diameter in the range of 30 to 200 nm.
- Nb content (Nb: 10 mass%, O: 4.5 mass%), (Nb: 20 mass%, O: 5.5 mass%), (Nb: 40 mass%, O: 7) .3 mass%), (Nb: 60 mass%, O: 7.5 mass%), (Nb: 80 mass%, O: 7.5 mass%), (Nb: 80 mass%, O: 6.5 mass%), (Nb: 60 mass%, O: 6.0 mass%), (Nb: 40 mass%, O: 4.8 mass%), (Nb: 20 mass%, O: 3.5 mass%) and (Nb: 10 mass%, O: Proposed method for producing Ta-Nb alloy powder, characterized by forming an oxide film layer consisting only of amorphous material on the surface of the alloy powder of primary particles.
- the oxidation treatment is performed in an inert gas atmosphere containing water vapor at a temperature of 150 to 400 ° C. and a water content of 6.1 to 51.1 g / m 3. It is characterized by performing.
- the method for producing the Ta—Nb alloy powder of the present invention is characterized in that the oxidation treatment is performed in an inert gas atmosphere containing a temperature of 100 to 250 ° C. and oxygen of 0.1 to 5 vol%. To do.
- the present invention is an anode element for a solid electrolytic capacitor, characterized by comprising the above Ta—Nb alloy powder.
- the anode element of the present invention is, after the chemical conversion treatment, the metal portion at the center of the Ta—Nb alloy powder, the crystalline monoxide (Ta, Nb) O formed on the surface (outside), Further, it has a three-layer structure composed of an amorphous oxide film (Ta, Nb) 2 O 5 formed on the surface (outermost surface).
- the anode element of the present invention has a CV value per unit mass of 300 kCV / g or more and a leakage current of 50 ⁇ A / ⁇ FV ⁇ 10 ⁇ 4 or less after heat treatment under vacuum at 260 ° C. for 30 minutes. It is characterized by being.
- the present invention it is possible to provide a Ta-Nb alloy powder that is excellent in thermal stability of a dielectric layer formed by chemical conversion treatment, so that even after being subjected to heat treatment such as reflow treatment during capacitor mounting, A solid electrolytic capacitor having a high capacity and a small leakage current can be stably manufactured, which greatly contributes to downsizing and large capacity of electronic equipment.
- 6 is a graph showing the influence of oxygen content on the electrostatic properties of Ta-40 mass% Nb alloy powder having a primary particle size of 130 nm.
- 6 is a graph showing a range of oxygen content in a Ta—Nb alloy powder in which a capacitance after heat treatment is 300 kCV / g or more and a leakage current is 50 ⁇ A / ⁇ FV ⁇ 10 ⁇ 4 or less.
- the reason why the thermal stability of the solid electrolytic capacitor using the Ta—Nb alloy powder is unstable is that the anodic oxide film formed by chemical conversion treatment is included in (Ta, Nb) 2 O 5 . This is considered to be because the oxygen atoms move to the metal side inside the particles by heat treatment such as reflow treatment, and the anodic oxide film is altered.
- an amorphous oxide film formed at the time of powder production exists on the surface of Ta—Nb alloy particles after being formed into an anode element shape and before being sintered.
- the amorphous oxide film after being molded into the anode element shape and before sintering is formed by the properties of the oxide film after being molded into the anode element and sintered, and the subsequent anodizing (chemical conversion treatment).
- Thermal stability of the amorphous oxide film (dielectric layer) formed that is, the capacitance after receiving heat treatment such as heat treatment during anode formation and reflow treatment during mounting after forming a solid electrolytic capacitor
- a Ta—Nb alloy powder having a Nb content of 40 mass% and a primary particle diameter of 70 nm is manufactured using a thermal CVD method (vapor phase reduction method) in which Ta and Nb chloride vapor is reduced with hydrogen gas.
- the alloy powder is exposed to high temperature steam containing 150 to 500 ° C. of water containing 12.8 to 39.6 g / m 3 (15 to 35 ° C. saturated water vapor) of moisture in Ar gas for various times.
- Experiments were carried out to enrich the various amounts of oxygen and to form oxide films having various thicknesses on the surface of the Ta—Nb alloy powder by performing the oxidation treatment.
- the oxygen content of the Ta—Nb alloy powder used in the experiment before the oxidation treatment was 4.1 mass%.
- the Nb content (mass%) in the Ta—Nb alloy powder refers to the mass ratio of Nb to the total mass of Ta and Nb, and the oxygen content (mass%) in the Ta—Nb alloy powder. ) Means the mass ratio of O to the total mass of Ta, Nb and O (hereinafter the same).
- the primary particle size of the Ta—Nb alloy powder used in the present invention is 1000 or more primary particle sizes from particle images taken with a scanning electron microscope SEM or the like. This is the number-based average particle diameter measured using -View) (hereinafter the same).
- FIG. 1 (a) shows the relationship between the oxidation treatment conditions (water vapor temperature, holding time) and the oxygen content after the oxidation treatment. From this figure, it can be seen that the oxygen content of the Ta—Nb alloy powder can be arbitrarily adjusted by adjusting the temperature and holding time of the water vapor.
- the Ta—Nb alloy powder having the oxygen content of 4.1 mass%, the Nb content of 40 mass%, and the primary particle size of 70 nm immediately after being manufactured by the thermal CVD method is the same as the alloy powder used in Experiment 1 above.
- the oxygen content can be reduced by performing an oxidation treatment for holding at various times under high temperature steam at a temperature of 200 to 250 ° C. containing 12.8 to 39.6 g / m 3 of moisture in the Ar gas.
- Various different Ta—Nb alloy powders were produced.
- the oxidized Ta—Nb alloy powder is compression-molded to form a cylindrical element shape of 3 mm ⁇ ⁇ 4.5 mm (density: 2.9 g / mm 3 ) at a temperature of 1100 ° C. in a vacuum atmosphere.
- a chemical conversion treatment was performed for 2 hours at a voltage of 10 V in a 0.05 mass% phosphoric acid aqueous solution at 80 ° C. to produce an anode element.
- an anode element was produced in the same manner for a Ta—Nb alloy powder (oxygen content: 4.1 mass%) without oxidation treatment.
- the reason why the heat treatment conditions are harsher than the actual reflow treatment is that, when manufacturing a solid electrolytic capacitor, in addition to the above reflow treatment, a plurality of heat treatments are performed at a temperature close to 250 ° C. at the time of cathode formation. This is because of taking into account the fact that the element is applied and the individual difference (variation) of the elements.
- FIG. 2 shows the oxygen content after oxidation treatment on the capacitance and leakage current before and after the heat treatment (hereinafter also simply referred to as “electrostatic characteristics”) in Ta-40 mass% Nb alloy powder having a primary particle diameter of 70 nm. The effect of quantity was shown.
- FIG. 2 (a) shows the measurement results of the electrostatic properties before the heat treatment. From this figure, the capacitance before the heat treatment gradually decreases as the oxygen content increases. When it exceeds 7 mass%, it rapidly decreases and becomes the development target of 300 kCV / g or less.
- the leakage current shows a relatively high value of 50 ⁇ m / CV ⁇ 10 ⁇ 4 or less, which is the development target, before the oxidation treatment, but it decreases as the oxygen content increases and shows a stable low value.
- FIG. 2 (b) shows the measurement results of the electrostatic properties after the heat treatment, and the capacitance after the heat treatment shows a higher value than before the heat treatment.
- the oxygen content gradually decreases as the oxygen content increases, and if it exceeds about 7 mass%, it becomes a value lower than the development target of 300 kCV / g.
- the leakage current shows the same tendency as before the heat treatment in the region where the oxygen content is about 7 mass% or less, but increases as a whole by the heat treatment, and on the low oxygen side of about 5 mass% or less, the development target is 50 ⁇ m. A value larger than / CV ⁇ 10 ⁇ 4 .
- the leakage current increases rapidly, and shows a value greatly exceeding 50 ⁇ m / CV ⁇ 10 ⁇ 4 .
- an amorphous oxide film having a thickness of 2.9 nm was formed on the surface of the Ta—Nb alloy powder having an oxygen content of 4.1 mass% as produced by the thermal CVD method.
- the surface of the Ta—Nb alloy powder after compression molding into an element shape and sintering is between the Ta—Nb alloy portion (metal portion) inside the particles and the amorphous oxide film on the outermost layer.
- a thin crystalline layer made of monoxide (Ta, Nb) O was formed. Further, after the chemical conversion treatment is performed on this, the crystalline layer of monoxide (Ta, Nb) O is reduced, and an amorphous oxide having a thickness of 33 nm serving as a capacitor dielectric layer is formed thereon.
- a film (Ta—Nb) 2 O 5 was formed. Further, after the chemical conversion treatment, after the heat treatment at 250 ° C. for 30 minutes, no particular change was observed in the structure of the oxide film as far as it was observed by TEM. However, as shown in FIG. 3, with this heat treatment, the electrostatic characteristics of the anode element increased the leakage current from 42 ⁇ A / ⁇ FV ⁇ 10 ⁇ 4 to 74 ⁇ A / ⁇ FV ⁇ 10 ⁇ 4 , and the oxygen content increased. It was confirmed that the thermal stability of the anode element was inferior at 4.1 mass%.
- FIG. 4 (a) shows the Ta—Nb alloy powder after sintering by line analysis with EDX attached to the transmission electron microscope TEM, and Ta, Nb and O in one particle of the alloy powder. The result of having measured the density distribution of this is shown. From this figure, it can be seen that the concentrations of Ta and Nb increase as they go to the center of the particle, whereas the concentration of O shows a trapezoidal distribution.
- the table of FIG. 4B shows the result of obtaining the ratio (O / (Ta + Nb)) between the measured intensity of O in the particle and (measured intensity of Ta + measured intensity of Nb) from the above measurement results. Is.
- FIG. 5 is a TEM image obtained by observing the surface layer portion of the sintered Ta—Nb alloy powder with TEM. From this figure, the sintered Ta—Nb alloy powder particles consist of a metal part in the center, a crystalline oxide layer formed on the surface, and an amorphous oxide formed on the surface. It can be seen that the structure is a three-layer structure. It has been confirmed from the XRD measurement results that the crystalline oxide is monoxide (Ta, Nb) O. The presence of the metal portion in the central portion makes it easier to form a neck than particles having no metal portion in the central portion (particles that are entirely oxide) when the anode element is molded and sintered.
- the uppermost amorphous oxide was not confirmed by XRD, but is considered to be a natural oxide film formed after sintering. This natural oxide film has the effect of suppressing rapid additional oxidation when exposed to the atmosphere.
- the Ta—Nb alloy powder produced by the thermal CVD method is subjected to an oxidation treatment, and in the alloy powder enriched with an oxygen content of 5.5 mass%, the amorphous oxide film after the oxidation treatment has a thickness of Has grown to 4.5 nm. Then, the surface of the alloy powder after compression molding into an element shape and sintering is between the Ta—Nb alloy and the amorphous oxide film, and is thicker than the above-described oxidation treatment without the oxidation treatment. A (Ta, Nb) O layer was formed.
- a crystalline layer of monoxide (Ta, Nb) O remains with a certain thickness, and a thickness of 34 nm as a dielectric layer is formed on the crystalline layer.
- An amorphous oxide film (Ta—Nb) 2 O 5 was formed. Furthermore, no apparent change was observed in the structure of the oxide film after the heat treatment at 250 ° C. for 30 minutes was performed on the oxide film after the chemical conversion treatment.
- FIG. 6 shows a photograph of the surface layer of Ta—Nb alloy powder having an oxygen content of 5.5 mass% and 7.5 mass% observed with a TEM.
- the surface layer portion of the Ta—Nb alloy powder having an oxygen content of 5.5 mass% is formed only of an amorphous oxide film, but the Ta—Nb alloy powder having an oxygen content of 7.5 mass% has an oxide film.
- the inventors consider the change in the thermal stability of the anode element depending on the oxygen content as follows.
- the surface layer of the metal portion of the Ta—Nb alloy powder is formed by sintering.
- this amorphous oxide film (Ta, Nb) 2 O 5 contains Nb, when it is subjected to heat treatment, it releases O like the dielectric layer Nb 2 O 5 in the Nb capacitor. In addition, it is transformed into a low oxide index suboxide, and the released O diffuses into the Ta—Nb alloy side (metal part side) inside the particle, and a new low oxide index suboxide is added to the Ta—Nb alloy. Form. Since these suboxides are conductive, they do not function as a dielectric layer. As a result, the dielectric layer after the heat treatment becomes thinner than that before the heat treatment, so that a leak occurs locally and the leakage current increases.
- the surface layer of the metal portion of Ta—Nb alloy powder is moderately produced by sintering.
- an oxide film made of thick crystalline monoxide (Ta, Nb) O and an amorphous (Ta, Nb) 2 O 5 layer serving as a dielectric is formed thereon.
- the amorphous oxide film (Ta, Nb) 2 O 5 releases O and attempts to be transformed into a suboxide having a low oxidation index.
- the oxide (Ta, Nb) O layer suppresses the diffusion of the released O to the Ta—Nb alloy side, and also suppresses the formation of new suboxides in the Ta—Nb alloy. . For this reason, the thickness of the amorphous (Ta, Nb) 2 O 5 layer that becomes a dielectric decreases even after heat treatment, but a necessary and sufficient amount remains as a capacitor. Can be suppressed.
- the Ta—Nb alloy powder having an oxygen content of 4.1 mass% not subjected to the oxidation treatment and the oxygen content subjected to the oxidation treatment of 5.5 mass%.
- the value of (P TaNbO / P TaNb ) tends to increase with an increase in oxygen content, but both are 0.4 or less.
- the value of (P TaNbO / P TaNb ) is higher than 0.6. There was a big difference between the two.
- the (P TaNbO / P TaNb ) value in the present invention is a condition that is maintained at a temperature of 850 to 1500 ° C. for 5 to 60 minutes under a vacuum of 10 ⁇ 4 to 10 ⁇ 5 Pa in accordance with the above conditions.
- the measured value of the Ta—Nb alloy powder after heat treatment may be any value, and not only the anode element sintered under the above conditions after being formed into an element shape, but also the Ta—Nb alloy powder as a raw material. It may be Ta—Nb alloy powder that has been subjected to heat treatment under conditions. That is, the above value does not need to be measured after being molded into an anode element and then sintered, and is measured after heat treatment of 850 to 1500 ° C. ⁇ 5 to 60 min is applied to the raw material Ta—Nb alloy powder. Also good.
- the value of (P TaNbO / P TaNb ) is significantly lower than after the sintering, but the same tendency is observed.
- the value of ( PTaNbO 2 / P TaNb ) increases the oxygen content.
- FIG. 9A shows the measurement results of the electrostatic characteristics before the oxidation treatment
- FIG. 9B shows the measurement results of the electrostatic characteristics after the oxidation treatment.
- the capacitance the tendency to improve by heat treatment as compared with that before heat treatment is the same as that when the primary particle size is 70 nm.
- the primary particle size is 130 nm, the rapid decrease in the region where the oxygen content is high is The capacitance after heat treatment was 300 kCV / g or more in all the ranges tested. Therefore, the range of the appropriate oxygen content with a primary particle size of 130 nm is determined by the leakage current.
- the primary particle diameter is 130 nm
- the inventors consider the reason why a rapid decrease in capacitance is not recognized even when the oxygen content is excessive.
- the primary particle diameter is relatively small, such as 70 nm
- non-conductive (Ta, Nb) O 2 formed by excessive oxygen treatment or (Ta, Nb) 2 O 5 increases the frequency with which the bond between alloy particles is broken.
- the primary particle diameter is as large as 130 nm
- the bonding portion between the alloy particles is strong, and therefore bonding by non-conductive (Ta, Nb) O 2 or (Ta, Nb) 2 O 5
- the division is less likely to occur. For this reason, it is considered that a rapid decrease in capacitance is suppressed.
- the inventors have described that the metal part and I think that it is in the balance of the oxide part.
- the surface area per unit mass of Ta—Nb alloy particles having a primary particle size of 130 nm is calculated to decrease by about 54% with respect to the primary particle size of 70 nm. Therefore, when the amount of oxygen is the same, the thickness of the oxide formed on the surface of the alloy particle having a primary particle size of 130 nm is about 1.9 times that of the primary particle size of 70 nm.
- the volume of the Ta—Nb alloy that accepts oxygen O released during the heat treatment from amorphous (Ta, Nb) 2 O 5 formed by the chemical conversion treatment is also about 6.4 times.
- the role of the monoxide (Ta, Nb) O layer formed on the surface of the Ta—Nb alloy particles during the sintering is the amorphous (Ta, Nb) formed by the chemical conversion treatment.
- the primary particle diameter is changed from 70 nm to 130 nm. Since the volume of the alloy is about 6.4 times, in order to suppress oxygen diffusion and prevent sub-oxidation of amorphous (Ta, Nb) 2 O 5 , monoxide (Ta, Nb)
- the thickness of the O layer is also required to be thick as such. That is, as the primary particle size increases, it is necessary to increase the thickness of the oxide layer formed by the oxidation treatment, and as a result, the range of the appropriate oxygen amount is constant regardless of the primary particle size. It is considered to be.
- the optimum oxygen content range in which the capacitance after heat treatment is 300 kCV / g or more and the leakage current is 50 ⁇ A / ⁇ FV ⁇ 10 ⁇ 4 or less is in all regions where the Nb content is 10 to 80 mass%. It has been found that the optimum range depends on the Nb content and becomes higher as the Nb content increases. Specifically, as shown in FIG.
- the inventors consider the reason why the range of the appropriate oxygen content is increased as the Nb content is increased as follows.
- the atomic weight of Ta is 180.95 and the specific gravity is 16.65
- the atomic weight of Nb is 92.91 and the specific gravity is only 8.57. That is, since Nb atoms are only about half as heavy as Ta atoms, when compared with the same mass, the number of Nb atoms contained therein is about twice that of Ta.
- the number of oxygen bonded to Ta and Nb is the same as TaO 2 and NbO 2 , Ta 2 O 5 and Nb 2 O 5 . Therefore, if the affinity of Ta and Nb for oxygen is the same, the oxygen content contained in the Ta—Nb alloy having the same mass increases as the Nb content increases.
- the present invention has been completed by further studying the above findings.
- Ta—Nb alloy powder material suitable for use in the anode element of the solid electrolytic capacitor of the present invention
- the Ta—Nb alloy powder (raw material) used as a raw material for the anode element in the present invention is preferably produced by a thermal CVD method (vapor phase reduction method).
- the thermal CVD method is the only method that can stably produce ultrafine Ta—Nb alloy powder at the present time, and it is easy to adjust the alloy components and produce an alloy powder with a small composition fluctuation range. Because it can be done.
- the specific method and conditions of the above thermal CVD method are not particularly limited, but for example, any method disclosed in Japanese Patent Application Laid-Open No. 2004-52026 can be suitably used. However, as long as an alloy powder of nm unit can be easily obtained, it is needless to say that those manufactured by other methods may be used.
- the Ta—Nb alloy powder (raw material) of the present invention is required to have an average primary particle size in the range of 30 to 200 nm. If the average particle size is less than 30 nm, the bonding between the particles formed when the Ta—Nb alloy powder is sintered is weak, so there is an oxide film formed by excessive oxidation treatment or an amorphous oxide film formed by chemical conversion treatment. The joint portion is broken, resulting in a decrease in conductivity and a decrease in capacitance. On the other hand, if the average particle size exceeds 200 nm and becomes too large, the surface area of the Ta—Nb alloy powder decreases, making it difficult to stably secure the target CV value (300 k ⁇ F ⁇ V / g or more). It is.
- one particle of Ta—Nb alloy powder has an average particle size in the range of 50 to 150 nm, and 70 to 130 nm. More preferably, it is the range.
- the average particle diameter of the Ta—Nb alloy powder is the number-based average particle diameter measured with a scanning electron microscope SEM or the like.
- the Ta—Nb alloy powder (raw material) of the present invention has a Nb content in the range of 10 to 80 mass%.
- the Nb content is less than 10 mass%, the effect of increasing the capacitance by adding Nb is small.
- the content of Nb exceeds 80 mass%, the characteristics of Nb itself become remarkable, and even if the oxidation treatment of the present invention is performed, an increase in leakage current cannot be suppressed.
- the Nb content is in the range of 20 to 70 mass%.
- the range of 20 to 60 mass% is more preferable, and the range of 30 to 60 mass% is more preferable.
- the Ta—Nb alloy powder of the present invention is obtained by subjecting the above Ta—Nb alloy powder material to an oxidation treatment and enriching it with an appropriate amount of oxygen, so that only the surface of the Ta—Nb alloy powder material is amorphous. It can obtain by forming the oxide film which consists of.
- the appropriate range for enriching oxygen varies depending on the Nb content (Nb: 10 mass%, O: 4.5 mass%), (Nb: 20 mass%, O: 5.5 mass%).
- Conductive oxides (Ta, Nb) O 2 and (Ta, Nb) 2 O 5 are formed, which adversely affects the amorphous oxide film to be formed later, such as reflow treatment. This is because the leakage current after the heat treatment increases rapidly.
- the preferred oxygen content is (Nb: 10 mass%, O: 4.2 mass%), (Nb: 20 mass%, O: 5.2 mass%), (Nb: 40 mass%, O: 7.0 mass%), (Nb: 60 mass%, O: 7.2 mass%), (Nb: 80 mass%, O: 7.2 mass%), (Nb: 80 mass%, O: 6.7 mass%), (Nb: 60 mass%, O: 6.2 mass%), (Nb: 40 mass%, O: 5.0 mass%), (Nb: 20 mass%, O: 3.7 mass%) and (Nb: 10 mass%, O: 3.2 mass%) Within the enclosed range.
- the thickness of the amorphous oxide film at the oxygen content stipulated by the present invention is different, although there is a difference depending on the particle diameter.
- the thickness is approximately 4.0 to 13.0 nm, and the thickness of the amorphous oxide film at a preferable oxygen content is approximately 4.5 to 11.5 nm.
- the method for the oxidation treatment is not particularly limited as long as it can form an amorphous oxide film on the surface of the Ta—Nb alloy powder.
- a method of exposing to a water vapor-containing inert gas atmosphere for a predetermined time can be used.
- He, Ne, Ar gas or the like can be used as the inert gas in the water vapor-containing inert gas atmosphere, but Ar gas is preferable in terms of cost.
- the content of water vapor as described above is preferably in the range of 6.1 ⁇ 51.1g / m 3 in the water content, more preferably in the range of 17.3 ⁇ 30.4g / m 3.
- the temperature of the water vapor is preferably in the range of 150 to 400 ° C, more preferably in the range of 200 to 300 ° C. This is because within this range, it is easy to control the oxygen content when industrially carried out.
- the oxidation rate (the increase rate of O content) in the preferable temperature range and the more preferable temperature range that can be read from FIG. 1A are 0.07 to 7.42 mass% / hr and 0.67 to 3.21 mass, respectively. % / Hr.
- an oxygen-containing inert gas atmosphere may be used instead of the water vapor-containing atmosphere.
- the oxygen content is preferably in the range of 0.1 to 5 vol%, and the temperature is preferably in the range of 100 to 250 ° C. More preferably, the oxygen content is in the range of 1 to 3 vol% and the temperature is in the range of 125 to 230 ° C.
- FIG. 1B the change in oxygen content (oxidation rate) was measured when the oxidation treatment was performed by changing the temperature of the Ar gas atmosphere containing 2 vol% oxygen in the range of 125 to 250 ° C. The results are shown.
- Ta—Nb alloy powder material
- the Ta—Nb alloy powder (primary particles) produced by the thermal CVD method has a fine particle diameter, a low bulk density, and a large pushing allowance, the density of the molded body serving as the anode element is not uniform. Easy to be.
- alkaline earth metals such as Mg
- the method of adding and granulating binders such as an acrylic type, polyvinyl alcohol (PVA), and polyvinyl butyral (PVB)
- PVA polyvinyl alcohol
- PVB polyvinyl butyral
- the oxidation treatment for the Ta—Nb alloy powder of the present invention may be performed at either the primary particle stage of the Ta—Nb alloy powder or after the above granulation process, and the same effect can be obtained. Can do.
- Ta—Nb alloy powders (materials) in which the Nb content was changed to various values in the range of 0 to 100 mass% and the average particle size was changed in the range of 20 to 220 nm. ) Is produced by a thermal CVD method, and then held for 1 to 16 hours in an argon gas atmosphere at a temperature of 200 to 250 ° C. containing 12.8 to 39.6 g / m 3 of water vapor with respect to the alloy powder (material).
- Ta—Nb alloy powders having various oxygen contents were produced.
- the Ta—Nb alloy powder after the oxidation treatment As for the Ta—Nb alloy powder after the oxidation treatment, an amorphous oxide film on the particle surface is observed with a TEM, and crystalline (Ta, Nb) O 2 , (Ta, Nb) 2 O 5, etc. The presence or absence was confirmed.
- the molding density of the element is in the range of 2.2 to 3.5 (2.3 to 4.2) g / cm 3 which is 1/4 of the specific gravity according to the Nb content described above.
- a preliminary experiment was conducted in a temperature range of 850 to 1500 ° C., which is a sintering temperature of a general element, and a temperature at which the highest capacitance was obtained was adopted as the sintering temperature.
- the molding density is a “relaxed bulk density” measured according to JIS Z2504.
- the element was subjected to a chemical conversion treatment at a voltage of 10 V for 2 hours in a 0.05 mass% phosphoric acid solution having a temperature of 80 ° C. to form an anodic oxide film on the surface of the metal particles, and then described in EIAJ RC-2361A
- the capacitance CV and the leakage current LC were measured according to the method.
- the capacitance CV was measured in a 41 mass% sulfuric acid solution at a voltage of 1 V, a bias voltage of 1.5 Vdc, and a frequency of 120 Hz.
- 7V voltage was applied over 1 minute as leakage current LC, and the leakage current after 2 minutes was measured.
- the element after the above measurement was subjected to a heat treatment simulating a reflow process at 250 ° C. for 30 minutes in a vacuum atmosphere, and the capacitance CV and the leakage current LC after the heat treatment were measured under the same conditions as described above. .
- Ta—Nb alloy powder consisting only of an amorphous oxide film formed on the surface of the powder particles after the oxidation treatment can be obtained, and this Ta—Nb alloy powder can be used as an anode raw material. It can be seen that a solid electrolytic capacitor having a capacitance after reflow treatment of 300 kCV / g or more and a leakage current of 50 ⁇ A / ⁇ FV ⁇ 10 ⁇ 4 or less can be obtained stably.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Powder Metallurgy (AREA)
Abstract
リフロー処理後でも、高容量で漏れ電流が小さい固体電解コンデンサ用のTa-Nb合金粉末とその製造方法と、その合金粉末を用いた陽極素子を提供することを目的とし、熱CVD法で得た、Nbが10~80mass%で、一次粒子径が30~200nmのTa-Nb合金粉末に酸化処理を施して、粒子全体に対するO含有量を、Nbの含有量との関係において、maass%で(Nb:10%、O:4.5%)、(Nb:20%、O:5.5%)、(Nb:40%、O:7.3%)、(Nb:60%、O:7.5%)、(Nb:80%、O:7.5%)、(Nb:80%、O:6.5%)、(Nb:60%、O:6.0%)、(Nb:40%、O:4.8%)、(Nb:20%、O:3.5%)および(Nb:10%、O:3.0%)の点で囲まれる範囲内に富化し、一次粒子の表面に非晶質のみからなる酸化皮膜層を有するTa-Nb合金粉末とする。
Description
本発明は、主としてパソコンや携帯電話等の電子機器に使用される小型・大容量の固体電解コンデンサ用の陽極素子に用いて好適なTa-Nb合金粉末とその製造方法、ならびに、その合金粉末を用いた固体電解コンデンサ用の陽極素子に関するものである。
コンデンサは、パソコンや携帯電話等の様々な電子機器に使用される電子部品の一種であり、基本的に2枚の対向する電極板の間に誘電体を挟んだ構造をしており、これに電圧をかけると、誘電体の分極作用によってそれぞれの電極に電荷が蓄えられるものである。コンデンサには、多くの種類が存在するが、現在では主としてアルミ電解コンデンサ、積層セラミックコンデンサ、タンタル電解コンデンサおよびフィルムコンデンサが用いられている。
近年、電子機器の小型・軽量化、高機能化に伴い、上記コンデンサには、小型で高容量のものが求められるようになってきている。そこで、やや高価ではあるが、小型・大容量で、高周波特性に優れ、電圧や温度に対しても安定で、長寿命である等の優れた特性を有するタンタル固体電解コンデンサ(以降、単に「Taコンデンサ」ともいう。)が多く使用されるようになってきている。
このTaコンデンサは、Taの陽極酸化皮膜である五酸化タンタル(Ta2O5)が誘電体として優れていることを利用したもので、Ta粉末を圧縮成形し、高真空中で焼結して多孔質の素子を作製した後、化成処理(陽極酸化処理)を施して、上記Ta粉末の表面に絶縁性に優れる非晶質の酸化皮膜(Ta2O5皮膜)、すなわち、誘電体皮膜を形成して陽極とし、次いで、上記素子中の空孔内に硝酸マンガン溶液を含浸させ、熱分解する工程を数回繰り返して上記陽極酸化皮膜上にMnO2層(電解質)を形成して陰極とし、最後に、グラファイト、銀ペースト等でリード線を接続した後、樹脂等で外装するという一連のプロセスで製造されるのが一般的である。なお、最近では、上記MnO2の代わりに、ポリピロール、ポリアニリン等の高導電性高分子材料を用いることで、ESR(等価直列抵抗)を低くし、温度特性を安定化し、安全性の向上や長寿命化を図ったものも開発・実用化されている。
上記Taコンデンサに用いるTa粉末の電気特性を評価する指標としては、一般的に、静電容量と化成電圧の積であるCV値(μF・V/g)が用いられている。現在、市販されているTa粉末のCV値は50~150kμF・V/g、即ち、50~150kCV程度であり、高容量品でも100~250kμF・V/g程度でしかない。そのため、CV値がより高い、具体的には、250kCV以上、さらには300kCV以上の特性を有するタンタル粉末の開発が強く望まれている。
コンデンサが蓄えることができる単位電圧当たりの電荷容量Cは、
C=(ε・S)/t=(εs・ε0・S)/t
ここで、S:電極面積(m2)、t:電極間距離(m)、ε:誘電率(F/m)、εs:誘電体の比誘電率(Taの酸化皮膜:約27)、ε0:真空誘導電率(8.855×10-12F/m)
で表わされ、電極面積Sが大きいほど、電極間距離tが小さいほど、また、誘電率εが高いほど、大きくなる。したがって、CV値を高めるためには、陽極面積S、即ち、陽極を構成しているTa粉末の表面積を大きくするか、電極間距離t、即ち、陽極酸化皮膜Ta2O5の膜厚を薄くするか、誘電率εの高い材料を用いる必要がある。
C=(ε・S)/t=(εs・ε0・S)/t
ここで、S:電極面積(m2)、t:電極間距離(m)、ε:誘電率(F/m)、εs:誘電体の比誘電率(Taの酸化皮膜:約27)、ε0:真空誘導電率(8.855×10-12F/m)
で表わされ、電極面積Sが大きいほど、電極間距離tが小さいほど、また、誘電率εが高いほど、大きくなる。したがって、CV値を高めるためには、陽極面積S、即ち、陽極を構成しているTa粉末の表面積を大きくするか、電極間距離t、即ち、陽極酸化皮膜Ta2O5の膜厚を薄くするか、誘電率εの高い材料を用いる必要がある。
Ta粉末の表面積を大きくしてやるためには、Ta粉末の一次粒子径を小さくすることが有効である。そのため、Ta粉末の一次粒子径は、近年における大容量化への要求に伴い、微細化が進行している。しかし、一次粒子径を小さくすると、焼結して素子とするときに形成される金属粒子の結合部(ネック部)が弱くなるため、化成処理による酸化皮膜の成長によって結合部が断絶され、静電容量の低下を招くという問題がある。したがって、Ta粉末は、ある程度以上、具体的には30nm以上の大きさであることが望ましい。
また、陽極酸化皮膜の膜厚は、化成処理電圧によって調整することができるが、この膜厚を薄くすることは、種々の問題を引き起こす。たとえば、Ta粉末の表面には、粉末製造時に形成された厚さが2,3nm程度の非晶質の自然酸化皮膜が存在している。この酸化皮膜は、不純物や欠陥を含むことが多く、誘電体としての特性や密着性にも劣るため、電気的特性を低下させる。この問題は、化成処理を高電圧で施す場合には、厚い陽極酸化皮膜(誘電体)中に埋もれてしまうため特に顕在化することはない。しかし、高容量化のため陽極酸化皮膜を薄くしていくと、自然酸化皮膜の欠陥が表面に露出するようになる。その結果、漏れ電流(LC)が増大したり、コンデンサの寿命に悪影響を及ぼしたりするようになる。そのため、陽極酸化皮膜の膜厚を薄くして大容量化するには限界がある。
ところで、Taは、埋蔵量が少ない希少金属であるため、安定供給に難があり、高価で価格変動も大きいため、Ta以外の金属を用いた固体電解コンデンサに対するニーズが高まっている。そこで、Taと化学的、物理的特性が類似しており、埋蔵量が豊富で安価なNbを用いたニオブ固体電解コンデンサの開発・研究も進められ、実用化されている。
ニオブ固体電解コンデンサ(以降、「Nbコンデンサ」ともいう)の誘電体は、タンタル固体電解コンデンサ(Taコンデンサ)と同様、酸化物(五酸化ニオブNb2O5)であり、その誘電率は、タンタル酸化物Ta2O5の約1.5倍の41であるため、Taコンデンサよりも高CV値が得られる。しかし、Nbコンデンサは、誘電体層の熱的安定性が悪く、陰極を形成する際の熱処理や、コンデンサを実装する際のリフロー処理等における熱ストレスによって、誘電体層が変質し、静電容量や漏れ電流等の特性が劣化する、特に、後者の漏れ電流が増加するという問題点が指摘されている。
そこで、Taの一部をNbで置換したTa-Nb合金粉末をコンデンサの陽極原料として用いる技術が提案されている(例えば、特許文献1、2等)。しかし、Ta-Nb合金粉末を陽極原料として用いた固体電解コンデンサは、容量の面では現在のTaコンデンサよりも優れているが、発明者らの研究によれば、熱的不安定性(漏れ電流の増加)については、Nbコンデンサと同様の問題を抱えており、特に、Nbの割合が高いほどその傾向は大きくなることを知見した。
ニオブ金属粉末をコンデンサの陽極原料として用いるときの熱的不安定性の原因は、NbはTaよりも反応性が高く、ニオブ酸化物はタンタル酸化物に比べて安定性が悪いため、誘電体(Nb2O5)内の酸素が陽極のNb金属側に向かって拡散し、誘電体内に欠陥を生じたり、導電性をもった酸化物層を形成したりすることに起因していると考えられている。
そこで、上記問題点を解決するため、例えば、特許文献3には、ニオブ粉末中に一酸化ニオブ粉末および一酸化六ニオブを含有させることによって、誘電体酸化皮膜の組成とニオブ粉との熱歪を緩和し、誘電体酸化皮膜の劣化を抑制する技術が、また、特許文献4には、平均粒径が0.2μm以上3μm未満のニオブ粉末に、液体窒化、イオン窒化、ガス窒化等の方法で500~7000massppmの窒化を施し、これをコンデンサの焼結原料として用いる技術が開示されている。また、特許文献5には、Nbを含む陽極と、この陽極に密着して形成された誘電体層との接触部分にMnを含有させることにより、Nbに結合した酸素原子数を一定に保持する技術が開示されている。また、特許文献6には、一酸化ニオブまたは二酸化ニオブからなる酸化物とニオブまたはニオブ合金からなる金属とを含む陽極の表面に形成された誘電体層中にフッ素を含有させることにより、誘電体層内部に欠陥が発生するのを抑制し、リフロー処理等の熱処理における酸素の陽極側への拡散を抑制するとともに、一酸化ニオブまたは二酸化ニオブ中の酸素によって誘電体層内の欠陥を修復することで、漏れ電流を抑制する技術が開示されている。
しかしながら、上記特許文献3~6に開示された技術は、いずれも、陽極原料製造メーカ、あるいは、コンデンサーメーカにおいて、Nb粉末や該粉末から製造した陽極素子に特殊な処理を施すことが必要であり、原料コストや製造コストの上昇を招くという問題点を抱えている。
そこで、本発明の目的は、リフロー処理等の熱処理を施された後においても、安定して高容量で、漏れ電流が小さい固体電解コンデンサ用のTa-Nb合金粉末とその製造方法、ならびに、その合金粉末を用いた固体電解コンデンサ用の陽極素子を提案することにある。なお、本発明の具体的な開発目標は、熱処理後、すなわち、実装後の静電容量が300kCV/g以上で、漏れ電流が50μA/μFV×10-4以下の陽極素子を開発することにある。
発明者らは、上記課題の解決に向け、Ta-Nb合金粉末(一次粒子)を製造する際、合金粉末の表面に形成される酸化皮膜がコンデンサの特性に及ぼす影響に着目して鋭意検討を重ねた。その結果、熱CVD法を用いて製造した超微細なTa-Nb合金粉末(一次粒子)に酸化処理を施し、酸素の含有量をNbの含有量に応じた適正量に富化し、一次粒子の合金粉末の表面に非晶質のみからなる酸化皮膜を形成することによって、リフロー処理等の熱処理を受けた後においても、高容量かつ漏れ電流の小さい固体電解コンデンサ用の陽極素子に用いて好適なTa-Nb合金粉末を得ることができることを見出し、本発明を完成するに至った。
上記知見に基く本発明は、Nbの含有量が10~80mass%で、一次粒子径が30~200nmのTa-Nb合金粉末において、上記一次粒子の合金粉末の表面に非晶質のみからなる酸化皮膜層を有し、Oの含有量が、Nbの含有量との関係において、(Nb:10mass%、O:4.5mass%)、(Nb:20mass%、O:5.5mass%)、(Nb:40mass%、O:7.3mass%)、(Nb:60mass%、O:7.5mass%)、(Nb:80mass%、O:7.5mass%)、(Nb:80mass%、O:6.5mass%)、(Nb:60mass%、O:6.0mass%)、(Nb:40mass%、O:4.8mass%)、(Nb:20mass%、O:3.5mass%)および(Nb:10mass%、O:3.0mass%)の点で囲まれる範囲内にあることを特徴とするTa-Nb合金粉末である。ここで、上記Nb含有量とは、TaおよびNbの合計質量に対するNbの質量比率のことを、また、上記酸素含有量とは、Ta,NbおよびOの合計質量に対するOの質量比率のことをいう。
本発明の上記Ta-Nb合金粉末は、850~1500℃×5~60minの熱処理を施したとき、Ta-Nb合金の中心部の金属部分と、その表面(外側)に形成された結晶性の一酸化物(Ta,Nb)Oと、さらにその表面(最外面)に形成され自然酸化皮膜とからなる3層構造を有することを特徴とする。
また、本発明の上記Ta-Nb合金粉末は、850~1500℃×5~60minの熱処理を施した後、XRDで分析したときのTa-Nb合金粉末の金属部分のピーク強度と一酸化物(Ta,Nb)Oのピーク強度の比(PTaNbO/PTaNb)をy、Nb含有量(mass%)をxとしたとき、上記(PTaNbO/PTaNb)が、y=0.0071x、y=0.0163x、y=0.70、x=10およびx=80の直線で囲まれる範囲内にあることを特徴とする。
また、本発明は、熱CVD法で製造した、Nbの含有量が10~80mass%で、一次粒子径が30~200nmの範囲内にあるTa-Nb合金粉末に酸化処理を施して、Oの含有量を、Nbの含有量との関係において、(Nb:10mass%、O:4.5mass%)、(Nb:20mass%、O:5.5mass%)、(Nb:40mass%、O:7.3mass%)、(Nb:60mass%、O:7.5mass%)、(Nb:80mass%、O:7.5mass%)、(Nb:80mass%、O:6.5mass%)、(Nb:60mass%、O:6.0mass%)、(Nb:40mass%、O:4.8mass%)、(Nb:20mass%、O:3.5mass%)および(Nb:10mass%、O:3.0mass%)の点で囲まれる範囲内に富化し、一次粒子の合金粉末の表面に非晶質のみからなる酸化皮膜層を形成することを特徴とするTa-Nb合金粉末の製造方法を提案する。ここで、上記Nb含有量とは、TaおよびNbの合計質量に対するNbの質量比率のことを、また、上記酸素含有量とは、Ta,NbおよびOの合計質量に対するOの質量比率のことをいう。
本発明の上記Ta-Nb合金粉末の製造方法は、上記酸化処理を、温度が150~400℃で、水分量として6.1~51.1g/m3の水蒸気を含む不活性ガス雰囲気下で行うことを特徴とする。
また、本発明の上記Ta-Nb合金粉末の製造方法は、上記酸化処理を、温度が100~250℃で、酸素を0.1~5vol%含有する不活性ガス雰囲気下で行うことを特徴とする。
また、本発明は、上記のTa-Nb合金粉末からなることを特徴とする固体電解コンデンサ用の陽極素子である。
また、本発明の上記陽極素子は、化成処理後、Ta-Nb合金粉末の中心部の金属部分と、その表面(外側)に形成された結晶性の一酸化物(Ta,Nb)Oと、さらにその表面(最外面)に形成された非晶質酸化皮膜(Ta,Nb)2O5とからなる3層構造を有することを特徴とする。
また、本発明の上記陽極素子は、真空下で260℃×30分の熱処理を施した後の単位質量当たりのCV値が300kCV/g以上で、漏れ電流が50μA/μFV×10-4以下であることを特徴とする。
本発明によれば、化成処理で形成される誘電体層の熱的安定性に優れるTa-Nb合金粉末を提供することができるので、コンデンサ実装時のリフロー処理等の熱処理を受けた後でも、高容量で、漏れ電流の小さい固体電解コンデンサを安定して製造することが可能となり、電子機器の小型化、大容量化に大いに寄与する。
まず、本発明を開発する契機となった実験について説明する。
前述したように、Ta-Nb合金粉末を用いた固体電解コンデンサの熱的安定性が不安定である原因は、化成処理で形成された陽極酸化皮膜を構成する(Ta,Nb)2O5内の酸素原子が、リフロー処理等の熱処理によって粒子内部の金属側に移動し、陽極酸化皮膜が変質するからであると考えられる。一方、陽極素子形状に成形後、焼結する前のTa-Nb合金粒子の表面には、粉末製造時に形成された非晶質の酸化皮膜が存在する。
そこで、上記陽極素子形状に成形後、焼結する前の非晶質の酸化皮膜が、陽極素子に成形し、焼結した後の酸化皮膜の性状や、その後の陽極処理(化成処理)で形成される非晶質酸化皮膜(誘電体層)の熱的安定性、すなわち、陽極形成時の熱処理や、固体電解コンデンサとした後の実装時におけるリフロー処理等の熱処理を受けた後の静電容量および漏れ電流に及ぼす影響を調査するため、以下に説明する一連の実験を行った。
前述したように、Ta-Nb合金粉末を用いた固体電解コンデンサの熱的安定性が不安定である原因は、化成処理で形成された陽極酸化皮膜を構成する(Ta,Nb)2O5内の酸素原子が、リフロー処理等の熱処理によって粒子内部の金属側に移動し、陽極酸化皮膜が変質するからであると考えられる。一方、陽極素子形状に成形後、焼結する前のTa-Nb合金粒子の表面には、粉末製造時に形成された非晶質の酸化皮膜が存在する。
そこで、上記陽極素子形状に成形後、焼結する前の非晶質の酸化皮膜が、陽極素子に成形し、焼結した後の酸化皮膜の性状や、その後の陽極処理(化成処理)で形成される非晶質酸化皮膜(誘電体層)の熱的安定性、すなわち、陽極形成時の熱処理や、固体電解コンデンサとした後の実装時におけるリフロー処理等の熱処理を受けた後の静電容量および漏れ電流に及ぼす影響を調査するため、以下に説明する一連の実験を行った。
<実験1>
TaとNbの塩化物の蒸気を水素ガスで還元する熱CVD法(気相還元法)を用いて、Nbの含有量が40mass%で、一次粒子径が70nmのTa-Nb合金粉末を製造し、この合金粉末を、Arガス中に12.8~39.6g/m3(15~35℃の飽和水蒸気量)の水分を含有する温度が150~500℃の高温水蒸気下に種々の時間曝す酸化処理を施すことにより、種々の量の酸素を富化し、Ta-Nb合金粉末の表面に種々の厚さを有する酸化皮膜を形成する実験を行った。なお、上記実験に用いたTa-Nb合金粉末の酸化処理前の酸素含有量は4.1mass%であった。
TaとNbの塩化物の蒸気を水素ガスで還元する熱CVD法(気相還元法)を用いて、Nbの含有量が40mass%で、一次粒子径が70nmのTa-Nb合金粉末を製造し、この合金粉末を、Arガス中に12.8~39.6g/m3(15~35℃の飽和水蒸気量)の水分を含有する温度が150~500℃の高温水蒸気下に種々の時間曝す酸化処理を施すことにより、種々の量の酸素を富化し、Ta-Nb合金粉末の表面に種々の厚さを有する酸化皮膜を形成する実験を行った。なお、上記実験に用いたTa-Nb合金粉末の酸化処理前の酸素含有量は4.1mass%であった。
ここで、上記Ta-Nb合金粉末におけるNb含有量(mass%)とは、TaおよびNbの合計質量に対するNbの質量比率のことを、また、上記Ta-Nb合金粉末における酸素含有量(mass%)とは、Ta,NbおよびOの合計質量に対するOの質量比率のことをいう(以降、同様とする)。
また、本発明で用いたTa-Nb合金粉末の一次粒子径は、走査型電子顕微鏡SEM等で撮像した粒子画像から1000個以上の一次粒子径を画像解析式粒度分布ソフトウエア(マウンテック社製Mac-View)を用いて実測したときの個数基準平均粒子径のことをいう(以降、同様とする)。
図1(a)は、酸化処理条件(水蒸気温度、保持時間)と、酸化処理後の酸素含有量との関係を示したものである。この図から、水蒸気の温度と保持時間を調整することで、Ta-Nb合金粉末の酸素の含有量を任意に調整することができることがわかる。
<実験2>
そこで、上記実験1に用いた合金粉末と同じ、熱CVD法で製造した直後の酸素含有量が4.1mass%で、Nbの含有量が40mass%、一次粒子径が70nmのTa-Nb合金粉末に対して、Arガス中に水分を12.8~39.6g/m3含有する温度が200~250℃の高温水蒸気下で種々の時間に保持する酸化処理を施すことで、酸素含有量が種々に異なるTa-Nb合金粉末を製造した。次いで、上記酸化処理後のTa-Nb合金粉末を圧縮成形して、3mmφ×4.5mm(密度:2.9g/mm3)の円柱形の素子形状とし、真空雰囲気下で1100℃の温度で焼結した後、80℃の0.05mass%リン酸水溶液中において、電圧10Vで2hrの化成処理を施して陽極素子を作製した。なお、参考として、酸化処理無しのTa-Nb合金粉末(酸素含有量:4.1mass%)についても、同様にして陽極素子を作製した。
そこで、上記実験1に用いた合金粉末と同じ、熱CVD法で製造した直後の酸素含有量が4.1mass%で、Nbの含有量が40mass%、一次粒子径が70nmのTa-Nb合金粉末に対して、Arガス中に水分を12.8~39.6g/m3含有する温度が200~250℃の高温水蒸気下で種々の時間に保持する酸化処理を施すことで、酸素含有量が種々に異なるTa-Nb合金粉末を製造した。次いで、上記酸化処理後のTa-Nb合金粉末を圧縮成形して、3mmφ×4.5mm(密度:2.9g/mm3)の円柱形の素子形状とし、真空雰囲気下で1100℃の温度で焼結した後、80℃の0.05mass%リン酸水溶液中において、電圧10Vで2hrの化成処理を施して陽極素子を作製した。なお、参考として、酸化処理無しのTa-Nb合金粉末(酸素含有量:4.1mass%)についても、同様にして陽極素子を作製した。
次いで、上記陽極素子の静電容量および漏れ電流を湿式で測定した後、一般的に行われている実装時のリフロー処理条件(250~260℃×1~2min)よりも過酷な条件の熱処理(真空下で250℃×30min)を施し、再度、上記陽極素子の静電容量および漏れ電流を湿式で測定した。ここで、静電容量および漏れ電流を熱処理前だけでなく熱処理後も測定する理由は、固体電解コンデンサが電子機器に実装される際には、はんだ付けのためにリフロー処理が施されることから、コンデンサの特性を評価するには、リフロー処理前よりも、リフロー処理後の特性が重要となるからである。また、熱処理条件を、実際のリフロー処理よりも過酷な条件とした理由は、固体電解コンデンサを製造する際には、上記リフロー処理の他に、陰極形成時にも250℃近い温度で複数回の熱処理が施されることや、素子の個体差(バラツキ)等を考慮したためである。
図2に、一次粒子径が70nmのTa-40mass%Nb合金粉末における、熱処理前後の静電容量および漏れ電流(以降、これらを単に「静電特性」ともいう)に及ぼす酸化処理後の酸素含有量の影響を示した。
ここで、図2(a)は、熱処理前の静電特性の測定結果を示したものであり、この図から、熱処理前の静電容量は、酸素含有量が多くなるほど徐々に低下し、約7mass%を超えると、急激に低下して開発目標である300kCV/g以下となる。また、漏れ電流は、酸化処理前は、開発目標である50μm/CV×10-4以下の比較的高い値を示しているが、酸素含有量が増加すると減少し、安定して低い値を示していることがわかる。
ここで、図2(a)は、熱処理前の静電特性の測定結果を示したものであり、この図から、熱処理前の静電容量は、酸素含有量が多くなるほど徐々に低下し、約7mass%を超えると、急激に低下して開発目標である300kCV/g以下となる。また、漏れ電流は、酸化処理前は、開発目標である50μm/CV×10-4以下の比較的高い値を示しているが、酸素含有量が増加すると減少し、安定して低い値を示していることがわかる。
一方、図2(b)は、熱処理後の静電特性の測定結果を示したものであり、熱処理後の静電容量は、熱処理前よりも高い値を示しているが、熱処理前と同様、酸素含有量が増すほど徐々に低下し、さらに約7mass%を超えると、開発目標である300kCV/gよりも低い値となってしまう。また、漏れ電流は、酸素含有量が約7mass%以下の領域では、熱処理前と同じ傾向を示すが、熱処理によって全体的に増大し、約5mass%以下の低酸素側では、開発目標である50μm/CV×10-4より大きな値となる。一方、酸素含有量が約7mass%を超えると、熱処理前とは異なり、漏れ電流が急激に増加し、50μm/CV×10-4を大きく上回る値を示すようになる。
上記図2(b)の結果から、熱処理後においても良好な静電特性を得るためには、適正な酸素含有量の範囲が存在していること、具体的には、250℃×30minの熱処理後においても、開発目標である静電容量が300kCV/g以上かつ漏れ電流が50μA/μFV×10-4以下を満たすためには、酸素含有量が4.8~7.3mass%の範囲にあることが必要であることがわかった。
<実験3>
次いで、発明者らは、上記の<実験2>の結果が示すように、熱処理後の静電容量が300kCV/g以上かつ漏れ電流が50μA/μFV×10-4以下を満たす最適な酸素含有量の範囲が存在する理由について調査するため、熱CVD法で製造したままのTa-Nb合金粉末(酸素含有量:4.1mass%)と、それに酸化処理を施し、酸素含有量が、熱処理後も優れた静電特性が得られる適正範囲内の5.5mass%に富化したTa-Nb合金粉末、および、上記適正範囲の上限から外れる7.5mass%に富化したTa-Nb合金粉末を準備し、それぞれの合金粉末について、製造まま(酸化処理前)、酸化処理後、素子形状に圧縮成形して焼結した後、化成処理した後、および、250℃×30minの熱処理を施した後のそれぞれの段階における合金粉末表面に形成された酸化皮膜を、TEMやXRD等を用いて詳細な調査を行うとともに、熱処理前後の静電容量および漏れ電流の変化を調査した。なお、焼結条件、化成処理条件および熱処理条件は上記<実験2>と同じとした。
次いで、発明者らは、上記の<実験2>の結果が示すように、熱処理後の静電容量が300kCV/g以上かつ漏れ電流が50μA/μFV×10-4以下を満たす最適な酸素含有量の範囲が存在する理由について調査するため、熱CVD法で製造したままのTa-Nb合金粉末(酸素含有量:4.1mass%)と、それに酸化処理を施し、酸素含有量が、熱処理後も優れた静電特性が得られる適正範囲内の5.5mass%に富化したTa-Nb合金粉末、および、上記適正範囲の上限から外れる7.5mass%に富化したTa-Nb合金粉末を準備し、それぞれの合金粉末について、製造まま(酸化処理前)、酸化処理後、素子形状に圧縮成形して焼結した後、化成処理した後、および、250℃×30minの熱処理を施した後のそれぞれの段階における合金粉末表面に形成された酸化皮膜を、TEMやXRD等を用いて詳細な調査を行うとともに、熱処理前後の静電容量および漏れ電流の変化を調査した。なお、焼結条件、化成処理条件および熱処理条件は上記<実験2>と同じとした。
その結果は、以下の通りであった。
まず、熱CVD法で製造したままの酸素含有量が4.1mass%のTa-Nb合金粉末の表面には、厚さが2.9nmの非晶質の酸化皮膜が形成されていた。そして、素子形状に圧縮成形後、焼結した後のTa-Nb合金粉末の表面には、粒子内部のTa-Nb合金部分(金属部分)と最表層の非晶質酸化皮膜との間に、一酸化物(Ta,Nb)Oからなる薄い結晶質の層が形成されていた。
さらに、これに化成処理を施した後は、一酸化物(Ta,Nb)Oの結晶質層は減少し、その上層に、コンデンサの誘電体層となる厚さが33nmの非晶質の酸化皮膜(Ta-Nb)2O5が形成されていた。さらに、この化成処理後の酸化皮膜に、250℃×30minの熱処理を施した後は、TEMで観察した限りでは、酸化皮膜の構造に特に変化は認められなかった。
しかし、図3に示したように、この熱処理によって、陽極素子の静電特性は、漏れ電流が42μA/μFV×10-4から74μA/μFV×10-4に上昇しており、酸素含有量が4.1mass%では、陽極素子の熱的安定性に劣っていることが確認された。
まず、熱CVD法で製造したままの酸素含有量が4.1mass%のTa-Nb合金粉末の表面には、厚さが2.9nmの非晶質の酸化皮膜が形成されていた。そして、素子形状に圧縮成形後、焼結した後のTa-Nb合金粉末の表面には、粒子内部のTa-Nb合金部分(金属部分)と最表層の非晶質酸化皮膜との間に、一酸化物(Ta,Nb)Oからなる薄い結晶質の層が形成されていた。
さらに、これに化成処理を施した後は、一酸化物(Ta,Nb)Oの結晶質層は減少し、その上層に、コンデンサの誘電体層となる厚さが33nmの非晶質の酸化皮膜(Ta-Nb)2O5が形成されていた。さらに、この化成処理後の酸化皮膜に、250℃×30minの熱処理を施した後は、TEMで観察した限りでは、酸化皮膜の構造に特に変化は認められなかった。
しかし、図3に示したように、この熱処理によって、陽極素子の静電特性は、漏れ電流が42μA/μFV×10-4から74μA/μFV×10-4に上昇しており、酸素含有量が4.1mass%では、陽極素子の熱的安定性に劣っていることが確認された。
ここで、図4(a)の図は、焼結後のTa-Nb合金粉末について、透過型電子顕微鏡TEMに付属のEDXで線分析を行い、合金粉末の1粒子内のTa,NbおよびOの濃度分布を測定した結果を示したものである。この図から、TaおよびNbの濃度は粒子の中心部にいくに従い高くなっているのに対して、Oの濃度は台形分布を示していることがわかる。また、図4(b)の表は、上記測定結果から、粒子内のOの測定強度と(Taの測定強度+Nbの測定強度)の比(O/(Ta+Nb))を求めた結果を示したものである。この表から、焼結後のTa-Nb合金粉末粒子の(O/(Ta+Nb))は、周辺部よりも中心部が小さくなっていること、したがって、合金粉末粒子の内部はTa-Nb合金のままで、その周囲に酸化物層が形成されていると推察された。
また、図5は、同じく焼結後のTa-Nb合金粉末の表層部をTEMで観察したときのTEM像である。この図から、焼結後のTa-Nb合金粉末の粒子は、中心部の金属部分と、その表面に形成された結晶質の酸化物層と、さらにその表面に形成された非晶質の酸化物層の三層構造となっていることがわかる。そして、上記結晶質の酸化物は一酸化物(Ta,Nb)Oであることが、XRDの測定結果から確認されている。この中心部に金属部分があることによって、陽極素子を成型して焼結する際、中心部分に金属部分を持たない粒子(全体が酸化物となっている粒子)よりもネックが形成され易くなる、つまり、低温でも焼結が進み易くなるという効果がある。また、電気抵抗が小さくなるため、ESRなどの電気特性にも好ましい効果がある。なお、最上層の非晶質の酸化物は、XRDでは確認できなかったが、焼結以降で形成された自然酸化皮膜であると考えられる。この自然酸化皮膜は、大気中に暴露したときの急激な追加酸化を抑止する効果がある。
次に、熱CVD法で製造したTa-Nb合金粉末に酸化処理を施し、酸素含有量を5.5mass%に富化した合金粉末では、酸化処理後の非晶質の酸化皮膜は、厚さが4.5nmまで成長していた。そして、素子形状に圧縮成形し、焼結した後の合金粉末表面には、Ta-Nb合金と非晶質酸化皮膜との間に、前述した酸化処理なしのときより厚い結晶質の一酸化物(Ta,Nb)Oの層が形成されていた。
そして、これに化成処理を施した後では、一酸化物(Ta,Nb)Oの結晶質層がある程度の厚さで残存しており、その上層に、誘電体層となる厚さが34nmの非晶質の酸化皮膜(Ta-Nb)2O5が形成されていた。さらに、この化成処理後の酸化皮膜に、250℃×30minの熱処理を施した後では、酸化皮膜の構造に見掛け上の変化は認められなかった。
また、この熱処理によって、陽極素子の静電特性は、漏れ電流が3μA/μFV×10-4から19μA/μFV×10-4に若干上昇したものの、その値は50μm/CV×10-4以下に留まっていた(図3参照)。この結果から、酸素含有量が5.5mass%では、陽極素子の熱的安定性に優れていることが確認された。
そして、これに化成処理を施した後では、一酸化物(Ta,Nb)Oの結晶質層がある程度の厚さで残存しており、その上層に、誘電体層となる厚さが34nmの非晶質の酸化皮膜(Ta-Nb)2O5が形成されていた。さらに、この化成処理後の酸化皮膜に、250℃×30minの熱処理を施した後では、酸化皮膜の構造に見掛け上の変化は認められなかった。
また、この熱処理によって、陽極素子の静電特性は、漏れ電流が3μA/μFV×10-4から19μA/μFV×10-4に若干上昇したものの、その値は50μm/CV×10-4以下に留まっていた(図3参照)。この結果から、酸素含有量が5.5mass%では、陽極素子の熱的安定性に優れていることが確認された。
また、酸化処理で酸素含有量を7.5mass%まで過度に富化したTa-Nb合金粉末では、酸化処理後の非晶質酸化皮膜の厚さは6.3nmに成長するとともに、その非晶質の酸化皮膜内の一部には結晶質の(Ta,Nb)O2や(Ta,Nb)2O5が認められた。図6に、酸素含有量が5.5mass%と7.5mass%のTa-Nb合金粉末の表層部を、TEMで観察した写真を示した。酸素含有量が5.5mass%のTa-Nb合金粉末の表層部は非晶質酸化皮膜のみで形成されているが、酸素含有量が7.5mass%のTa-Nb合金粉末には、酸化皮膜内に、非晶質部分と結晶化した部分とが共存していることがわかる。そして、この粉末を素子形状に圧縮成形し、焼結した後では、Ta-Nb合金と非晶質の酸化皮膜との間に、前述した酸素含有量が5.5mass%のときよりもさらに厚い結晶質の一酸化物(Ta,Nb)Oの層が形成されており、さらにその中には、結晶質の(Ta,Nb)O2や(Ta,Nb)2O5が存在していた。
そして、これに化成処理を施した後では、一酸化物(Ta,Nb)Oと結晶質の(Ta,Nb)O2や(Ta,Nb)2O5が共存した層の上に、誘電体層となる厚さが36nmの非晶質の酸化皮膜(Ta-Nb)2O5が形成されていた。
そして、この化成処理後の酸化皮膜に、250℃×30minの熱処理を施した後は、酸化皮膜の構造に見掛け上の変化は認められなかった。
しかし、この粉末から製造した陽極素子の静電特性は、静電容量が、熱処理前は235kCV/g、熱処理後は84kCV/gでしかなかった。また、漏れ電流も、熱処理前では4μA/μFV×10-4であったにも拘わらず、熱処理後は128μA/μFV×10-4へと大きく上昇し、いずれも開発目標(熱処理後の静電容量:300kCV/g以上、漏れ電量:50μA/μFV×10-4以下)から大きく外れていた(図3参照)。
そして、これに化成処理を施した後では、一酸化物(Ta,Nb)Oと結晶質の(Ta,Nb)O2や(Ta,Nb)2O5が共存した層の上に、誘電体層となる厚さが36nmの非晶質の酸化皮膜(Ta-Nb)2O5が形成されていた。
そして、この化成処理後の酸化皮膜に、250℃×30minの熱処理を施した後は、酸化皮膜の構造に見掛け上の変化は認められなかった。
しかし、この粉末から製造した陽極素子の静電特性は、静電容量が、熱処理前は235kCV/g、熱処理後は84kCV/gでしかなかった。また、漏れ電流も、熱処理前では4μA/μFV×10-4であったにも拘わらず、熱処理後は128μA/μFV×10-4へと大きく上昇し、いずれも開発目標(熱処理後の静電容量:300kCV/g以上、漏れ電量:50μA/μFV×10-4以下)から大きく外れていた(図3参照)。
上記<実験3>の結果から、発明者らは、酸素含有量による陽極素子の熱的安定性の変化について、以下のように考えている。
まず、製造したままのTa-Nb合金粉末(酸素含有量:4.1mass%)から製造した化成処理後の陽極素子の場合、Ta-Nb合金粉末の金属部分の表層には、焼結で生成した結晶質の一酸化物(Ta,Nb)Oからなる薄い酸化皮膜があり、その上層に、誘電体となる非晶質の(Ta,Nb)2O5層が形成されている。しかし、この非晶質の酸化皮膜(Ta,Nb)2O5は、Nbを含有しているため、熱処理を受けると、Nbコンデンサにおける誘電体層Nb2O5と同様、Oを放出して、低酸化指数の亜酸化物に変質するとともに、放出されたOは粒子内部のTa-Nb合金側(金属部分側)に拡散し、Ta-Nb合金中に新たな低酸化指数の亜酸化物を形成する。これらの亜酸化物は導電性であるため、誘電体層としては機能しない。その結果、熱処理後の誘電体層は熱処理前より薄くなるので、局部的にリークを起こすようになり、漏れ電流が上昇する。
まず、製造したままのTa-Nb合金粉末(酸素含有量:4.1mass%)から製造した化成処理後の陽極素子の場合、Ta-Nb合金粉末の金属部分の表層には、焼結で生成した結晶質の一酸化物(Ta,Nb)Oからなる薄い酸化皮膜があり、その上層に、誘電体となる非晶質の(Ta,Nb)2O5層が形成されている。しかし、この非晶質の酸化皮膜(Ta,Nb)2O5は、Nbを含有しているため、熱処理を受けると、Nbコンデンサにおける誘電体層Nb2O5と同様、Oを放出して、低酸化指数の亜酸化物に変質するとともに、放出されたOは粒子内部のTa-Nb合金側(金属部分側)に拡散し、Ta-Nb合金中に新たな低酸化指数の亜酸化物を形成する。これらの亜酸化物は導電性であるため、誘電体層としては機能しない。その結果、熱処理後の誘電体層は熱処理前より薄くなるので、局部的にリークを起こすようになり、漏れ電流が上昇する。
これに対して、酸化処理で適度な酸素含有量にしたTa-Nb合金粉末を用いて製造した陽極素子の場合、Ta-Nb合金粉末の金属部分の表層には、焼結で生成した適度に厚い結晶質の一酸化物(Ta,Nb)Oからなる酸化皮膜があり、その上層に、誘電体となる非晶質の(Ta,Nb)2O5層が形成されている。そして、この状態で熱処理を受けると、非晶質の酸化皮膜(Ta,Nb)2O5はOを放出して、低酸化指数の亜酸化物に変質しようとするが、適度な厚さの一酸化物(Ta,Nb)O層によって、上記放出されたOのTa-Nb合金側への拡散が抑制されると同時に、Ta-Nb合金中における新たな亜酸化物の形成も抑制される。そのため、熱処理を受けても、誘電体となる非晶質の(Ta,Nb)2O5層の厚さは低下するものの、コンデンサとして必要十分な量が残存するので、漏れ電流の上昇も軽度に抑えられる。
しかし、Ta-Nb合金粉末に過度の酸化処理を施したTa-Nb合金粉末を用いて製造した化成処理後の陽極素子の場合には、Ta-Nb合金粉末の金属部分の表層には、焼結で生成した結晶質の一酸化物(Ta,Nb)O層の中に結晶質の(Ta,Nb)O2や(Ta,Nb)2O5が混在する厚い酸化皮膜層が存在し、その上層に、誘電体となる非晶質の(Ta,Nb)2O5層が形成されている。このような場合、熱処理前は、健全な非晶質の(Ta,Nb)2O5層が形成されているため、漏れ電流は小さい。しかし、熱処理を受けたときは、結晶質である(Ta,Nb)Oや(Ta,Nb)O2、(Ta,Nb)2O5との間の熱膨張係数の違いに起因した熱歪により、非晶質の(Ta,Nb)2O5層の内部に亀裂が生じて急激な漏れ電流の上昇が起こる。一方、静電容量については、焼結時に形成される結晶質の(Ta,Nb)O2や(Ta,Nb)2O5は、一酸化物(Ta,Nb)Oと異なり、非導電性であるため、一次粒子径が比較的小さい合金粒子の場合、(Ta,Nb)O2や(Ta,Nb)2O5が形成されることによって合金粒子間の結合が断絶し、導通し難くなる。さらに、これに熱処理を施しても、結晶質の(Ta,Nb)O2や(Ta,Nb)2O5は変化しないため、合金粒子間の断絶は改善されない。そのため、過度の酸化処理を施した場合には、熱処理前後とも静電容量が大きく低下すると考えられる。
<実験4>
次いで、上記のような過度の酸化を、酸素濃度以外の指数で評価するため、酸素含有量の違いによる、焼結後に形成される結晶質の一酸化物(Ta,Nb)Oの量に着目し、以下の実験を行った。
上記実験3に用いた酸素含有量が異なる3種のTa-Nb合金粉末を素子形状に圧縮成形し、1100℃で焼結した後、X線回折XRDを行い、結晶質であるTa-Nb合金粉末の金属部分の強度比に対する結晶質の一酸化物(Ta,Nb)Oの強度比(PTaNbO/PTaNb)を求めた。この際、PTaNbOは111反射(2θ=36.95°;Cukα)、PTaNbは110反射(2θ=38.47°;Cukα)を使用した。
同様にして、上記焼結後の粉末に対して化成処理を施し、さらに、350℃×30minの熱処理を施した後のTa-Nb合金粉末についても、同様の測定を行い、(PTaNbO/PTaNb)を求めた。
次いで、上記のような過度の酸化を、酸素濃度以外の指数で評価するため、酸素含有量の違いによる、焼結後に形成される結晶質の一酸化物(Ta,Nb)Oの量に着目し、以下の実験を行った。
上記実験3に用いた酸素含有量が異なる3種のTa-Nb合金粉末を素子形状に圧縮成形し、1100℃で焼結した後、X線回折XRDを行い、結晶質であるTa-Nb合金粉末の金属部分の強度比に対する結晶質の一酸化物(Ta,Nb)Oの強度比(PTaNbO/PTaNb)を求めた。この際、PTaNbOは111反射(2θ=36.95°;Cukα)、PTaNbは110反射(2θ=38.47°;Cukα)を使用した。
同様にして、上記焼結後の粉末に対して化成処理を施し、さらに、350℃×30minの熱処理を施した後のTa-Nb合金粉末についても、同様の測定を行い、(PTaNbO/PTaNb)を求めた。
上記測定の結果を、図7に示した。この図から、焼結後で化成処理前の陽極素子では、酸化処理を施さない酸素含有量が4.1mass%のTa-Nb合金粉末、および、酸化処理した酸素含有量が5.5mass%のTa-Nb合金粉末では、上記(PTaNbO/PTaNb)の値が酸素含有量の増加に伴い増加する傾向があるがいずれも0.4以下である。これに対して、過剰な酸化処理を施した酸素含有量が7.5mass%のTa-Nb合金の粉末では、上記(PTaNbO/PTaNb)の値が、0.6を上回る値を示しており、両者に大きな違いが認められた。
なお、上記図7において、(PTaNbO/PTaNb)の値が、焼結後より化成処理後および熱処理後で大きく低下している理由は、結晶質の一酸化物(Ta,Nb)Oが、化成処理による非晶質酸化皮膜の形成によって消費されたためと考えられる。
また、上記図7から、酸素含有量の適正範囲4.8~7.3mass%における焼結後の(PTaNbO/PTaNb)の値を求めると、0.29~0.66の範囲にあることがわかった。そこで、Nb含有量の範囲をさらに拡大して、酸素含有量が適正範囲内にあるTa-Nb合金粉末の焼結後の(PTaNbO/PTaNb)の範囲を調査した。その結果、図8に示したように、(PTaNbO/PTaNb)をy、Nb含有量(mass%)をxとしたとき、上記(PTaNbO/PTaNb)が、y=0.0071x、y=0.0163x、y=0.70、x=10およびx=80の直線で囲まれる範囲内にあるという結果が得られた。すなわち、焼結後のTa-Nb合金粉末の(PTaNbO/PTaNb)を上記の範囲内となるよう制御することで、静電特性だけでなく、熱的安定性にも優れる陽極素子を得ることができることがわかった。
なお、Ta-Nb合金粉末から陽極素子を製造するときの焼結は、10-4~10-5Paの真空下において、850~1500℃の温度に20℃/min程度で昇温し、5~60min間保持する条件で行われるのが一般的である。したがって、本発明における上記(PTaNbO/PTaNb)値は、上記条件に合わせて、10-4~10-5Paの真空下において、850~1500℃の温度に5~60min間保持する条件で熱処理を施した後のTa-Nb合金粉末を測定した値であればよく、素子形状に成形後、上記条件で焼結がなされた陽極素子だけでなく、原料であるTa-Nb合金粉末に上記条件の熱処理を施したTa-Nb合金粉末であってもよい。すなわち、上記値は、陽極素子に成形後、焼結してから測定する必要はなく、原料であるTa-Nb合金粉末に850~1500℃×5~60minの熱処理を施した後、測定してもよい。
一方、化成処理後で熱処理前の陽極素子、および、熱処理後の陽極素子では、(PTaNbO/PTaNb)の値は、焼結後より大きく低下するが、同様の傾向が認められ、酸素含有量が4.1mass%のTa-Nb合金粉末、および、酸化処理した酸素含有量が5.5mass%のTa-Nb合金粉末では、上記(PTaNbO/PTaNb)の値が酸素含有量の増加に伴い増加するがいずれも0.2以下であるのに対して、過剰な酸化処理を施した酸素含有量が7.5mass%のTa-Nb合金の粉末では、上記(PTaNbO/PTaNb)の値が、0.3を上回る値を示しており、両者に大きな違いが認められた。
そして、この結果から、酸素含有量の適正範囲4.8~7.3mass%における化成処理後の(PTaNbO/PTaNb)の値を求めると、0.14~0.35の範囲であることがわかった。したがって、化成処理後の(PTaNbO/PTaNb)の値を0.14~0.35の範囲に制御することで、静電特性だけでなく、熱的安定性にも優れる陽極素子を得ることができることがわかった。
そして、この結果から、酸素含有量の適正範囲4.8~7.3mass%における化成処理後の(PTaNbO/PTaNb)の値を求めると、0.14~0.35の範囲であることがわかった。したがって、化成処理後の(PTaNbO/PTaNb)の値を0.14~0.35の範囲に制御することで、静電特性だけでなく、熱的安定性にも優れる陽極素子を得ることができることがわかった。
<実験5>
次いで、発明者らは、上記した最適な酸素含有量の範囲に対する、Ta-Nb合金の一次粒子径の影響を調査するため、Nbの含有量が40mass%で、一次粒子径が130nmのTa-Nb合金粉末を熱CVD法で製造し、上記<実験2>と同様の実験を行い、酸化処理後の酸素含有量と静電特性(静電容量、漏れ電流)との関係を熱処理前後で測定し、酸化処理前の静電特性の測定結果を図9(a)に、酸化処理後の静電特性の測定結果を図9(b)に示した。
次いで、発明者らは、上記した最適な酸素含有量の範囲に対する、Ta-Nb合金の一次粒子径の影響を調査するため、Nbの含有量が40mass%で、一次粒子径が130nmのTa-Nb合金粉末を熱CVD法で製造し、上記<実験2>と同様の実験を行い、酸化処理後の酸素含有量と静電特性(静電容量、漏れ電流)との関係を熱処理前後で測定し、酸化処理前の静電特性の測定結果を図9(a)に、酸化処理後の静電特性の測定結果を図9(b)に示した。
これらの図から、一次粒子径が130nmの場合にも、一次粒子径が70nmのときと同様の傾向が認められ、酸化処理後の酸素含有量が4.8~7.3mass%の範囲で、熱処理後の静電容量および漏れ電流が、開発目標であるが300kCV/g以上、50μA/μFV×10-4以下を満たしていることがわかった。
ただし、静電容量については、熱処理によって熱処理前よりも向上する傾向は一次粒子径が70nmのときと同様であるが、一次粒子径が130nmでは、酸素含有量が高い領域での急激な低下は認められず、実験したすべての範囲で熱処理後の静電容量が300kCV/g以上であった。したがって、一次粒子径が130nmの適正酸素含有量の範囲は、漏れ電流によって決定されている。
このように、一次粒子径が130nmでは、過度の酸素含有量でも静電容量の急激な低下が認められなくなる理由について、発明者らは以下のように考えている。
一次粒子径が70nmと比較的小さい場合、焼結によって形成されるTa-Nb合金粒子間の結合部が小さいため、過度の酸素処理によって形成される非導電性の(Ta,Nb)O2や(Ta,Nb)2O5によって、合金粒子間の結合部が断絶される頻度が高くなる。これに対して、一次粒子径が130nmと大きい場合には、合金粒子間の結合部は強固であるため、非導電性の(Ta,Nb)O2や(Ta,Nb)2O5による結合部の断絶は起こり難くなる。そのため、静電容量の急激な低下が抑止されると考えられる。
一次粒子径が70nmと比較的小さい場合、焼結によって形成されるTa-Nb合金粒子間の結合部が小さいため、過度の酸素処理によって形成される非導電性の(Ta,Nb)O2や(Ta,Nb)2O5によって、合金粒子間の結合部が断絶される頻度が高くなる。これに対して、一次粒子径が130nmと大きい場合には、合金粒子間の結合部は強固であるため、非導電性の(Ta,Nb)O2や(Ta,Nb)2O5による結合部の断絶は起こり難くなる。そのため、静電容量の急激な低下が抑止されると考えられる。
また、一次粒子径が70nmと130nmとで、最適な酸素含有量がほぼ同じとなる理由については、まだ十分に解明されていないが、発明者らは、以下に説明するように、金属部分と酸化物部分のバランスにあると考えている。
一次粒子径が130nmのTa-Nb合金粒子の単位質量当たりの表面積は、計算上、一次粒子径が70nmに対して約54%減少する。したがって、酸素量が同じ場合、一次粒子径が130nmの合金粒子の表面に形成される酸化物の厚さは、一次粒子径が70nmの約1.9倍となる。
一方、1つのTa-Nb合金粒子について考えると、一次粒子径が70nmから130nmになると、その体積は約6.4倍となる。したがって、化成処理で形成された非晶質の(Ta,Nb)2O5から熱処理時に放出される酸素Oを受容するTa-Nb合金の体積も約6.4倍となる。
ここで、焼結時にTa-Nb合金粒子の表面に形成された一酸化物(Ta,Nb)O層の役割が、前述したように、化成処理で形成された非晶質の(Ta,Nb)2O5から熱処理時に放出される酸素のTa-Nb合金側への拡散を抑止することにあるとすると、一次粒子径が70nmから130nmとなることによって、酸素を受容する側のTa-Nb合金の体積が約6.4倍となるから、酸素の拡散を抑止して非晶質の(Ta,Nb)2O5の亜酸化物化を防止するには、一酸化物(Ta,Nb)O層の厚さも、それなりに厚いことが必要となる。すなわち、一次粒子径が大きくなると、それに対応して、酸化処理で形成される酸化物層の厚さを増す必要があり、結果として、一次粒子径によらず、適正酸素量の範囲は一定となるものと考えられる。
一次粒子径が130nmのTa-Nb合金粒子の単位質量当たりの表面積は、計算上、一次粒子径が70nmに対して約54%減少する。したがって、酸素量が同じ場合、一次粒子径が130nmの合金粒子の表面に形成される酸化物の厚さは、一次粒子径が70nmの約1.9倍となる。
一方、1つのTa-Nb合金粒子について考えると、一次粒子径が70nmから130nmになると、その体積は約6.4倍となる。したがって、化成処理で形成された非晶質の(Ta,Nb)2O5から熱処理時に放出される酸素Oを受容するTa-Nb合金の体積も約6.4倍となる。
ここで、焼結時にTa-Nb合金粒子の表面に形成された一酸化物(Ta,Nb)O層の役割が、前述したように、化成処理で形成された非晶質の(Ta,Nb)2O5から熱処理時に放出される酸素のTa-Nb合金側への拡散を抑止することにあるとすると、一次粒子径が70nmから130nmとなることによって、酸素を受容する側のTa-Nb合金の体積が約6.4倍となるから、酸素の拡散を抑止して非晶質の(Ta,Nb)2O5の亜酸化物化を防止するには、一酸化物(Ta,Nb)O層の厚さも、それなりに厚いことが必要となる。すなわち、一次粒子径が大きくなると、それに対応して、酸化処理で形成される酸化物層の厚さを増す必要があり、結果として、一次粒子径によらず、適正酸素量の範囲は一定となるものと考えられる。
<実験6>
次に、発明者らは、実験の範囲をさらに拡大し、Nbの含有量を0~100mass%の範囲で種々に変化させた一次粒子径が70nmと130nmのTa-Nb合金粉末を熱CVD法で製造し、上記<実験2>と同様の実験を行い、250℃×30minの熱処理後の静電容量が300kCV/g以上かつ漏れ電流が50μA/μFV×10-4以下となる最適な酸素含有量の範囲を調査した。
次に、発明者らは、実験の範囲をさらに拡大し、Nbの含有量を0~100mass%の範囲で種々に変化させた一次粒子径が70nmと130nmのTa-Nb合金粉末を熱CVD法で製造し、上記<実験2>と同様の実験を行い、250℃×30minの熱処理後の静電容量が300kCV/g以上かつ漏れ電流が50μA/μFV×10-4以下となる最適な酸素含有量の範囲を調査した。
その結果、熱処理後の静電容量が300kCV/g以上かつ漏れ電流が50μA/μFV×10-4以下となる最適な酸素含有量の範囲は、Nb含有量が10~80mass%のすべての領域に存在しており、その最適範囲はNb含有量に依存し、Nb含有量が多くなるほど高くなることが明らかとなった。具体的には、図10に示したように、Oの含有量がNbの含有量との関係において、(Nb:10mass%、O:4.5mass%)、(Nb:20mass%、O:5.5mass%)、(Nb:40mass%、O:7.3mass%)、(Nb:60mass%、O:7.5mass%)、(Nb:80mass%、O:7.5mass%)、(Nb:80mass%、O:6.5mass%)、(Nb:60mass%、O:6.0mass%)、(Nb:40mass%、O:4.8mass%)、(Nb:20mass%、O:3.5mass%)および(Nb:10mass%、O:3.0mass%)の点で囲まれる範囲内において、リフロー処理後の静電容量、漏れ電流がともに優れていることがわかった。
なお、上記のように、適正な酸素含有量の範囲がNb含有量の増加に伴って上昇している理由について、発明者らは以下のように考えている。
Taの原子量は180.95、比重は16.65であるのに対し、Nbの原子量は92.91、比重は8.57でしかない。すなわち、Nb原子はTa原子の1/2程度の重さしかないため、同じ質量で比較した場合、その中に含まれるNbの原子数はTaの約2倍となる。また、TaO2とNbO2、Ta2O5とNb2O5のように、TaとNbと結合する酸素数は同じである。したがって、TaとNbの酸素との親和力が同じとすれば、Nbの含有量が増加するほど、同じ質量のTa-Nb合金中に含まれる酸素含有量が増加することになる。
本発明は、上記の知見に、さらに検討を加えて完成したものである。
Taの原子量は180.95、比重は16.65であるのに対し、Nbの原子量は92.91、比重は8.57でしかない。すなわち、Nb原子はTa原子の1/2程度の重さしかないため、同じ質量で比較した場合、その中に含まれるNbの原子数はTaの約2倍となる。また、TaO2とNbO2、Ta2O5とNb2O5のように、TaとNbと結合する酸素数は同じである。したがって、TaとNbの酸素との親和力が同じとすれば、Nbの含有量が増加するほど、同じ質量のTa-Nb合金中に含まれる酸素含有量が増加することになる。
本発明は、上記の知見に、さらに検討を加えて完成したものである。
次に、本発明の固体電解コンデンサの陽極素子に用いて好適なTa-Nb合金粉末の素材(以降、「Ta-Nb合金粉末(素材)」と表記する)について説明する。
本発明が陽極素子の原料として用いるTa-Nb合金粉末(素材)は、熱CVD法(気相還元法)で製造したものであることが好ましい。先述したように、熱CVD法は、現時点において、超微細なTa-Nb合金粉末を安定して製造できる唯一の方法であり、合金成分の調整も容易でかつ組成変動幅の小さい合金粉末を製造することができるからである。なお、上記熱CVD法の具体的方法、条件については、特に制限しないが、例えば、特開2004-52026号公報に開示の方法であれば好適に用いることができる。ただし、nm単位の合金粉末を容易に得られるならば、他の方法で製造されたものを用いてもよいことは勿論である。
本発明が陽極素子の原料として用いるTa-Nb合金粉末(素材)は、熱CVD法(気相還元法)で製造したものであることが好ましい。先述したように、熱CVD法は、現時点において、超微細なTa-Nb合金粉末を安定して製造できる唯一の方法であり、合金成分の調整も容易でかつ組成変動幅の小さい合金粉末を製造することができるからである。なお、上記熱CVD法の具体的方法、条件については、特に制限しないが、例えば、特開2004-52026号公報に開示の方法であれば好適に用いることができる。ただし、nm単位の合金粉末を容易に得られるならば、他の方法で製造されたものを用いてもよいことは勿論である。
また、本発明の上記Ta-Nb合金粉末(素材)は、その一次粒子の平均粒径が30~200nmの範囲のものであることが必要である。平均粒径が30nm未満では、Ta-Nb合金粉末を焼結した時に形成される粒子同士の結合が弱いため、過剰な酸化処理による酸化皮膜や、化成処理で形成される非晶質酸化皮膜によって上記結合部が断裂し、導電性の低下や、静電容量の低下を招く。一方、平均粒径が200nmを超えて大きくなり過ぎると、Ta-Nb合金粉末の表面積が減少し、目標とするCV値(300kμF・V/g以上)を安定して確保することが難しくなるからである。なお、300kμF・V/g以上の高容量を安定して実現するためには、Ta-Nb合金粉末の一粒粒子は、平均粒径が50~150nmの範囲であることが好ましく、70~130nmの範囲であることがより好ましい。なお、前述したように、上記Ta-Nb合金粉末(一次粒子)の平均粒径は、走査型電子顕微鏡SEM等で実測したときの個数基準平均粒子径のことである。
さらに、本発明の上記Ta-Nb合金粉末(素材)は、Nb含有量が10~80mass%の範囲のものであることが重要である。Nbの含有量が10mass%未満では、Nb添加による静電容量の増加効果が小さい。一方、Nbの含有量が80mass%を超えると、Nb自体が有する特性が顕著となり、本発明の酸化処理を施しても、漏れ電流の増大を抑制することができなくなるからである。なお、高い静電容量と低い漏れ電流の特性を両立することができる酸素含有量の範囲が広く、安定製造性に優れているという観点からは、Nbの含有量が20~70mass%の範囲が好ましく、20~60mass%の範囲がより好ましく、30~60mass%の範囲がさらに好ましい。
次に、上記Ta-Nb合金粉末(素材)を用いて、本発明の固体電解コンデンサに用いて好適なTa-Nb合金粉末を製造する方法について説明する。
本発明のTa-Nb合金粉末は、上記したTa-Nb合金粉末素材に酸化処理を施し、適正量の酸素を富化することによって、Ta-Nb合金粉末素材の粒子の表面に非晶質のみからなる酸化皮膜を形成させることにより得ることができる。その酸素を富化する適正範囲は、先述したように、Nbの含有量により変化し、(Nb:10mass%、O:4.5mass%)、(Nb:20mass%、O:5.5mass%)、(Nb:40mass%、O:7.3mass%)、(Nb:60mass%、O:7.5mass%)、(Nb:80mass%、O:7.5mass%)、(Nb:80mass%、O:6.5mass%)、(Nb:60mass%、O:6.0mass%)、(Nb:40mass%、O:4.8mass%)、(Nb:20mass%、O:3.5mass%)および(Nb:10mass%、O:3.0mass%)の点で囲まれる範囲内である。上記範囲より酸素含有量が低いと、酸素富化による漏れ電流抑制効果が十分に得られず、一方、上記範囲を超えると、酸化処理で成長させる非晶質酸化皮膜内に、結晶質で非導電性の酸化物である(Ta,Nb)O2や(Ta、Nb)2O5が形成され、その後に形成される誘電体となる非晶質酸化皮膜に悪影響を及ぼし、リフロー処理等の熱処理後の漏れ電流が急激に上昇するからである。なお、好ましい酸素含有量は、(Nb:10mass%、O:4.2mass%)、(Nb:20mass%、O:5.2mass%)、(Nb:40mass%、O:7.0mass%)、(Nb:60mass%、O:7.2mass%)、(Nb:80mass%、O:7.2mass%)、(Nb:80mass%、O:6.7mass%)、(Nb:60mass%、O:6.2mass%)、(Nb:40mass%、O:5.0mass%)、(Nb:20mass%、O:3.7mass%)および(Nb:10mass%、O:3.2mass%)の点で囲まれる範囲内である。
因みに、酸素含有量とTEM像から得られる非晶質酸化皮膜の厚さを照らし合わせると、粒子径によって差が出るものの、本願発明が規定している酸素含有量における非晶質酸化皮膜の厚さは概ね4.0~13.0nmであり、好ましい酸素含有量における非晶質酸化皮膜の厚さは概ね4.5~11.5nmである。
本発明のTa-Nb合金粉末は、上記したTa-Nb合金粉末素材に酸化処理を施し、適正量の酸素を富化することによって、Ta-Nb合金粉末素材の粒子の表面に非晶質のみからなる酸化皮膜を形成させることにより得ることができる。その酸素を富化する適正範囲は、先述したように、Nbの含有量により変化し、(Nb:10mass%、O:4.5mass%)、(Nb:20mass%、O:5.5mass%)、(Nb:40mass%、O:7.3mass%)、(Nb:60mass%、O:7.5mass%)、(Nb:80mass%、O:7.5mass%)、(Nb:80mass%、O:6.5mass%)、(Nb:60mass%、O:6.0mass%)、(Nb:40mass%、O:4.8mass%)、(Nb:20mass%、O:3.5mass%)および(Nb:10mass%、O:3.0mass%)の点で囲まれる範囲内である。上記範囲より酸素含有量が低いと、酸素富化による漏れ電流抑制効果が十分に得られず、一方、上記範囲を超えると、酸化処理で成長させる非晶質酸化皮膜内に、結晶質で非導電性の酸化物である(Ta,Nb)O2や(Ta、Nb)2O5が形成され、その後に形成される誘電体となる非晶質酸化皮膜に悪影響を及ぼし、リフロー処理等の熱処理後の漏れ電流が急激に上昇するからである。なお、好ましい酸素含有量は、(Nb:10mass%、O:4.2mass%)、(Nb:20mass%、O:5.2mass%)、(Nb:40mass%、O:7.0mass%)、(Nb:60mass%、O:7.2mass%)、(Nb:80mass%、O:7.2mass%)、(Nb:80mass%、O:6.7mass%)、(Nb:60mass%、O:6.2mass%)、(Nb:40mass%、O:5.0mass%)、(Nb:20mass%、O:3.7mass%)および(Nb:10mass%、O:3.2mass%)の点で囲まれる範囲内である。
因みに、酸素含有量とTEM像から得られる非晶質酸化皮膜の厚さを照らし合わせると、粒子径によって差が出るものの、本願発明が規定している酸素含有量における非晶質酸化皮膜の厚さは概ね4.0~13.0nmであり、好ましい酸素含有量における非晶質酸化皮膜の厚さは概ね4.5~11.5nmである。
なお、上記酸化処理の方法としては、Ta-Nb合金粉末の表面に非晶質の酸化皮膜性形成することができるものであればよく、特に制限されないが、前述したTa-Nb合金粉末を高温の水蒸気含有不活性ガス雰囲気下に所定の時間曝す方法を用いることができる。ここで、上記水蒸気含有不活性ガス雰囲気における、不活性ガスは、He,Ne,Arガス等が使用できるが、Arガスがコスト的に好ましい。このときに、水蒸気の含有量は前述したように、水分量にして6.1~51.1g/m3の範囲が好ましく、17.3~30.4g/m3の範囲がより好ましい。また、水蒸気の温度は、150~400℃の範囲が好ましく、200~300℃の範囲とするのがより好ましい。この範囲内であれば、工業的に実施するときの酸素含有量の制御が容易だからである。因みに、図1(a)から読み取れる上記好ましい温度範囲、より好ましい温度範囲の酸化速度(O含有量の増加速度)は、それぞれ0.07~7.42mass%/hr、0.67~3.21mass%/hrの範囲である。
また、上記水蒸気含有雰囲気に代えて、酸素含有不活性ガス雰囲気を用いてもよい。この場合の、酸素含有量は0.1~5vol%の範囲、温度は、100~250℃の範囲とするのが好ましい。より好ましくは、酸素含有量が1~3vol%、温度が125~230℃の範囲である。なお、図1(b)に、酸素を2vol%含有したArガス雰囲気の温度を125~250℃の範囲で変化させて酸化処理を行なったときの酸素含有量の変化(酸化速度)を測定した結果を示したものである。
なお、Ta-Nb合金粉末(素材)をコンデンサの陽極素子の原料として用いる場合には、Ta-Nb合金粉末を自動成形機等で陽極素子の形状に圧縮成形するのが一般的である。しかし、熱CVD法で製造したTa-Nb合金粉末(一次粒子)は、そのままでは粒子径が微細で、嵩密度が低く、押し代が大きいため、陽極素子となる成形体の密度が不均一になり易い。また、そのままでは流動性に劣るため、成形金型への自動装入が困難である。そこで、Ta-Nb合金粉末は、陽極材料として使用する前に、造粒処理を施し、流動性を改善しておくことが好ましい。
上記造粒方法としては、特に制限はなく、例えば、アクリル系やポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)等のバインダーを添加して造粒する方法、還元剤としてMg等のアルカリ土類金属の存在下で集塊化する、すなわち、加熱・脱酸して造粒する方法、加熱のみで造粒する方法等を用いることができる。
また、本発明のTa-Nb合金粉末に対する酸化処理は、Ta-Nb合金粉末の一次粒子の段階、上記の造粒工程を経た後の段階のいずれで行ってもよく、同様の効果を得ることができる。
表1に示したように、Nb含有量を0~100mass%の範囲で種々の値に変化させ、かつ、平均粒径を20~220nmの範囲で種々に変化させたTa-Nb合金粉末(素材)を熱CVD法で製造した後、上記合金粉末(素材)に対して、水蒸気を12.8~39.6g/m3含有する200~250℃の温度のアルゴンガス雰囲気下で1~16hr保持する酸化処理を施し、種々の酸素含有量を有するTa-Nb合金粉末を製造した。
なお、上記酸化処理後のTa-Nb合金粉末については、TEMで粒子表面の非晶質酸化皮膜を観察し、結晶質の(Ta,Nb)O2や(Ta,Nb)2O5等の存在有無を確認した。
次いで、上記酸化処理後のTa-Nb合金粉末を用いて、日本電子機械工業会規格EIAJ RC-2361A「タンタル電解コンデンサ用タンタル焼結素子の試験方法」附属書の表1に規定された100kCV粉末の試験条件に準拠して焼結素子を作製した。この際、素子(ペレット)の成形密度は、前述したNb含有量に応じて、比重の1/4となる2.2~3.5(2.3~4.2)g/cm3の範囲内となるよう調整し、また、焼結温度は、一般的な素子の焼結温度である850~1500℃の温度範囲で予備実験し、最も高い静電容量が得られる温度を採用した。なお、上記成形密度は、JIS Z2504に準拠して測定した「ゆるめ嵩密度」である。
なお、上記酸化処理後のTa-Nb合金粉末については、TEMで粒子表面の非晶質酸化皮膜を観察し、結晶質の(Ta,Nb)O2や(Ta,Nb)2O5等の存在有無を確認した。
次いで、上記酸化処理後のTa-Nb合金粉末を用いて、日本電子機械工業会規格EIAJ RC-2361A「タンタル電解コンデンサ用タンタル焼結素子の試験方法」附属書の表1に規定された100kCV粉末の試験条件に準拠して焼結素子を作製した。この際、素子(ペレット)の成形密度は、前述したNb含有量に応じて、比重の1/4となる2.2~3.5(2.3~4.2)g/cm3の範囲内となるよう調整し、また、焼結温度は、一般的な素子の焼結温度である850~1500℃の温度範囲で予備実験し、最も高い静電容量が得られる温度を採用した。なお、上記成形密度は、JIS Z2504に準拠して測定した「ゆるめ嵩密度」である。
次いで、上記素子に、温度が80℃の0.05mass%のリン酸溶液中で、電圧10Vで2hrの化成処理を施して金属粒子表面に陽極酸化皮膜を形成した後、EIAJ RC-2361Aに記載の方法に準拠して、静電容量CVおよび漏れ電流LCを測定した。なお、静電容量CVは、41mass%の硫酸溶液中で、電圧1V,バイアス電圧1.5Vdc、周波数120Hzで測定した。また、漏れ電流LCは、7V電圧を1分間かけて印加し、2min経過後の漏れ電流を測定した。
また、上記測定後の素子に対して、真空雰囲気中で、250℃×30minのリフロー処理を模擬した熱処理を施し、上記と同条件で、熱処理後の静電容量CVおよび漏れ電流LCを測定した。
また、上記測定後の素子に対して、真空雰囲気中で、250℃×30minのリフロー処理を模擬した熱処理を施し、上記と同条件で、熱処理後の静電容量CVおよび漏れ電流LCを測定した。
上記測定の結果を表1中に併記した。この結果から、熱CVD法で製造した一次粒子径が30~200nmのTa-Nb合金粉末(素材)に、酸化処理を施し、酸素含有量を本発明が規定する範囲、すなわち、(Nb:10mass%、O:4.5mass%)、(Nb:20mass%、O:5.5mass%)、(Nb:40mass%、O:7.3mass%)、(Nb:60mass%、O:7.5mass%)、(Nb:80mass%、O:7.5mass%)、(Nb:80mass%、O:6.5mass%)、(Nb:60mass%、O:6.0mass%)、(Nb:40mass%、O:4.8mass%)、(Nb:20mass%、O:3.5mass%)および(Nb:10mass%、O:3.0mass%)の点で囲まれる範囲内に酸素含有量を制御することにより、酸化処理後、粉末粒子表面に形成された酸化皮膜は非晶質のみからなるTa-Nb合金粉末が得られ、また、このTa-Nb合金粉末を陽極原料として用いることで、リフロー処理後の静電容量が300kCV/g以上で、かつ、漏れ電流が50μA/μFV×10-4以下の固体電解コンデンサを安定して得ることができることがわかる。
Claims (9)
- Nbの含有量が10~80mass%で、一次粒子径が30~200nmのTa-Nb合金粉末において、
上記一次粒子の合金粉末の表面に非晶質のみからなる酸化皮膜層を有し、
Oの含有量が、Nbの含有量との関係において、(Nb:10mass%、O:4.5mass%)、(Nb:20mass%、O:5.5mass%)、(Nb:40mass%、O:7.3mass%)、(Nb:60mass%、O:7.5mass%)、(Nb:80mass%、O:7.5mass%)、(Nb:80mass%、O:6.5mass%)、(Nb:60mass%、O:6.0mass%)、(Nb:40mass%、O:4.8mass%)、(Nb:20mass%、O:3.5mass%)および(Nb:10mass%、O:3.0mass%)の点で囲まれる範囲内にあることを特徴とするTa-Nb合金粉末。ここで、上記Nb含有量とは、TaおよびNbの合計質量に対するNbの質量比率のことを、また、上記酸素含有量とは、Ta,NbおよびOの合計質量に対するOの質量比率のことをいう。 - 850~1500℃×5~60minの熱処理を施したとき、Ta-Nb合金の中心部の金属部分と、その表面に形成された結晶性の一酸化物(Ta,Nb)Oと、さらにその表面に形成され自然酸化皮膜とからなる3層構造を有することを特徴とする請求項1に記載のTa-Nb合金粉末。
- 850~1500℃×5~60minの熱処理を施した後、XRDで分析したときのTa-Nb合金粉末の金属部分のピーク強度と一酸化物(Ta,Nb)Oのピーク強度の比(PTaNbO/PTaNb)をy、Nb含有量(mass%)をxとしたとき、上記(PTaNbO/PTaNb)が、y=0.0071x、y=0.0163x、y=0.70、x=10およびx=80の直線で囲まれる範囲内にあることを特徴とする請求項1または2に記載のTa-Nb合金粉末。
- 熱CVD法で製造した、Nbの含有量が10~80mass%で、一次粒子径が30~200nmの範囲内にあるTa-Nb合金粉末に酸化処理を施して、Oの含有量を、Nbの含有量との関係において、(Nb:10mass%、O:4.5mass%)、(Nb:20mass%、O:5.5mass%)、(Nb:40mass%、O:7.3mass%)、(Nb:60mass%、O:7.5mass%)、(Nb:80mass%、O:7.5mass%)、(Nb:80mass%、O:6.5mass%)、(Nb:60mass%、O:6.0mass%)、(Nb:40mass%、O:4.8mass%)、(Nb:20mass%、O:3.5mass%)および(Nb:10mass%、O:3.0mass%)の点で囲まれる範囲内に富化し、一次粒子の合金粉末の表面に非晶質のみからなる酸化皮膜層を形成することを特徴とするTa-Nb合金粉末の製造方法。ここで、上記Nb含有量とは、TaおよびNbの合計質量に対するNbの質量比率のことを、また、上記酸素含有量とは、Ta,NbおよびOの合計質量に対するOの質量比率のことをいう。
- 上記酸化処理を、温度が150~400℃で、水分量として6.1~51.1g/m3の水蒸気を含む不活性ガス雰囲気下で行うことを特徴とする請求項4に記載のTa-Nb合金粉末の製造方法。
- 上記酸化処理を、温度が100~250℃で、酸素を0.1~5vol%含有する不活性ガス雰囲気下で行うことを特徴とする請求項4に記載のTa-Nb合金粉末の製造方法。
- 請求項1に記載のTa-Nb合金粉末からなることを特徴とする固体電解コンデンサ用の陽極素子。
- 化成処理後、Ta-Nb合金粉末の中心部の金属部分と、その表面に形成された結晶性の一酸化物(Ta,Nb)Oと、さらにその表面に形成された非晶質酸化皮膜(Ta,Nb)2O5とからなる3層構造を有することを特徴とする請求項7に記載の陽極素子。
- 真空下で260℃×30分の熱処理を施した後の単位質量当たりのCV値が300kCV/g以上で、漏れ電流が50μA/μFV×10-4以下であることを特徴とする請求項7または8に記載の陽極素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/015321 WO2019198191A1 (ja) | 2018-04-12 | 2018-04-12 | Ta-Nb合金粉末とその製造方法ならびに固体電解コンデンサ用の陽極素子 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/015321 WO2019198191A1 (ja) | 2018-04-12 | 2018-04-12 | Ta-Nb合金粉末とその製造方法ならびに固体電解コンデンサ用の陽極素子 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019198191A1 true WO2019198191A1 (ja) | 2019-10-17 |
Family
ID=68164196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/015321 WO2019198191A1 (ja) | 2018-04-12 | 2018-04-12 | Ta-Nb合金粉末とその製造方法ならびに固体電解コンデンサ用の陽極素子 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019198191A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002544375A (ja) * | 1998-05-06 | 2002-12-24 | エイチ・シー・スタルク・インコーポレーテツド | 気体状マグネシウムを用いる酸化物の還元により製造される金属粉末 |
WO2014199480A1 (ja) * | 2013-06-13 | 2014-12-18 | 石原ケミカル株式会社 | Ta粉末とその製造方法およびTa造粒粉 |
WO2016038711A1 (ja) * | 2014-09-11 | 2016-03-17 | 石原ケミカル株式会社 | Ta-Nb合金粉末および固体電解コンデンサ用陽極素子 |
-
2018
- 2018-04-12 WO PCT/JP2018/015321 patent/WO2019198191A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002544375A (ja) * | 1998-05-06 | 2002-12-24 | エイチ・シー・スタルク・インコーポレーテツド | 気体状マグネシウムを用いる酸化物の還元により製造される金属粉末 |
WO2014199480A1 (ja) * | 2013-06-13 | 2014-12-18 | 石原ケミカル株式会社 | Ta粉末とその製造方法およびTa造粒粉 |
WO2016038711A1 (ja) * | 2014-09-11 | 2016-03-17 | 石原ケミカル株式会社 | Ta-Nb合金粉末および固体電解コンデンサ用陽極素子 |
Non-Patent Citations (1)
Title |
---|
KREHL, M. ET AL.: "SINTERING OF PREALLOYED Nb-Ta POWDERS FOR USE IN ELECTROLYTIC CAPACITORS", MOD DEV POWDER METALL, vol. 17, 1985, pages 629 - 640 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6141318B2 (ja) | Ta粉末の製造方法およびTa造粒粉の製造方法 | |
RU2230031C2 (ru) | Способ частичного восстановления оксида металла и оксид металла с пониженным содержанием кислорода | |
KR101129764B1 (ko) | 아산화 니오븀의 제조 방법 | |
RU2414990C2 (ru) | Танталовый порошок для изготовления конденсаторов с твердым электролитом | |
US6521013B1 (en) | Niobium sintered body for capacitor and replace with process for producing same | |
JP2010500771A (ja) | 構造化した焼結活性表面を有する半製品およびその製造方法 | |
US7729104B2 (en) | Tantalum powder and solid electrolyte capacitor including the same | |
US10329644B2 (en) | Ta—Nb alloy powder and anode element for solid electrolytic capacitor | |
EP1275125A2 (en) | Niobium sintered body, production method therefor, and capacitor using the same | |
AU2002218510B2 (en) | Powder for capacitor, sintered body thereof and capacitor using the sintered body | |
WO2019198191A1 (ja) | Ta-Nb合金粉末とその製造方法ならびに固体電解コンデンサ用の陽極素子 | |
JP2008072003A (ja) | 電極基体および電極基材の製造方法 | |
JP2006344886A (ja) | Nb化合物の微粉末、多孔質焼結体、これを用いた固体電解コンデンサ、およびこれらの製造方法 | |
US20040107797A1 (en) | Niobium powder for capacitor, sintered body thereof and capacitor using the sintered body | |
US9704652B2 (en) | Method for manufacturing tungsten-based capacitor element | |
JP2005325448A (ja) | タンタル粉末およびこれを用いた固体電解コンデンサ | |
TWI266661B (en) | Niobium powder and solid electrolytic capacitor | |
EP1227508A1 (en) | Niobium powder and anode for solid electrolytic capacitors made therefrom | |
JP2009152273A (ja) | 電解コンデンサ用多孔質電極およびその製造方法 | |
JP2908830B2 (ja) | 電解コンデンサの製造方法 | |
JP2004035989A (ja) | ニオブ粉末、固体電解コンデンサ用アノード及び固体電解コンデンサ | |
JP2001073001A (ja) | ニッケル粉の製造方法およびニッケル粉 | |
JPS63268233A (ja) | 固体電解コンデンサの製造法 | |
JP2012121800A (ja) | Nb化合物の微粉末、多孔質焼結体、これを用いた固体電解コンデンサ、およびこれらの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18914176 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18914176 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |