JP2002544375A - 気体状マグネシウムを用いる酸化物の還元により製造される金属粉末 - Google Patents

気体状マグネシウムを用いる酸化物の還元により製造される金属粉末

Info

Publication number
JP2002544375A
JP2002544375A JP2000616950A JP2000616950A JP2002544375A JP 2002544375 A JP2002544375 A JP 2002544375A JP 2000616950 A JP2000616950 A JP 2000616950A JP 2000616950 A JP2000616950 A JP 2000616950A JP 2002544375 A JP2002544375 A JP 2002544375A
Authority
JP
Japan
Prior art keywords
powder
metal
oxide
niobium
tantalum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000616950A
Other languages
English (en)
Other versions
JP4202609B2 (ja
Inventor
シエクター,レオニド・エヌ
トリツプ,テランス・ビー
ラニン,レオニド・エル
ライヘルト,カールハインツ
トマス,オリフアー
フイーレツゲ,ヨアヒム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Starck GmbH
Original Assignee
HC Starck GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40121784&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2002544375(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US09/073,488 external-priority patent/US6171363B1/en
Priority claimed from DE19831280A external-priority patent/DE19831280A1/de
Application filed by HC Starck GmbH filed Critical HC Starck GmbH
Priority claimed from PCT/US1999/009772 external-priority patent/WO2000067936A1/en
Publication of JP2002544375A publication Critical patent/JP2002544375A/ja
Application granted granted Critical
Publication of JP4202609B2 publication Critical patent/JP4202609B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1268Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/24Obtaining niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/12Dry methods smelting of sulfides or formation of mattes by gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor

Abstract

(57)【要約】 金属粉末Taおよび/またはNbを、群Ta、Nb、Ti、Mo、W、V、ZrおよびHfからの金属または複数の金属と共にまたはそれらなしに、気体状還元剤、好ましくはアルカリ土類金属との接触による金属酸化物のほぼ完全な還元に至るまでの還元、浸出、さらなる脱酸素反応および集塊化により微細な粉末形態に製造し、このようにして製造された粉末を焼結してコンデンサーアノード形態にすることができ且つ他の使用法のために処理することができる。

Description

【発明の詳細な説明】
【0001】 (発明の分野および背景) 本発明は気体状活性金属、例えば気体形態のMg、Ca並びに物質を還元する
他の元素および化合物、を用いる対応する金属酸化物の還元によるタンタル、ニ
オブおよび他の金属粉末並びにそれらの合金の製造に関する。
【0002】 タンタルおよびニオブはそれらの化合物、特にそれらの酸化物の一部、の安定
性の理由のために遊離状態で単離することが難しい金属群の構成員である。タン
タルを製造するために開発された方法の検討はこれらの金属の典型的な製造方法
の歴史を説明するのに役立つであろう。タンタル金属粉末は最初に商業的規模で
ドイツにおいて20世紀始めに複塩であるヘプタフルオロタンタル酸カリウム(
2TaF7)のナトリウムを用いる還元により製造された。ナトリウムの小片を
タンタルを含有する塩と混合しそして鋼管の中に密封した。管を頂部でリングバ
ーナーで加熱し、そして発火後に、還元は急速に管を下方に進行した。反応混合
物を放冷しそしてタンタル金属粉末、未反応のK2TaF7およびナトリウム、並
びに他の還元生成物からなる固体物質を手によって鑿を用いて除去した。混合物
を粉砕しそして次に希酸で浸出させてタンタルを成分から分離した。この方法は
調節が難しく、危険であり、且つ粗大な汚染された粉末を製造するが、それにも
かかわらずその後の数年にわたり高純度タンタル製造の主要手段となった。
【0003】 米国におけるタンタル金属の商業的な製造は1930年代に始まった。酸化タ
ンタル(Ta25)を含有するK2TaF7の溶融混合物を鋼製レトルトの中で7
00℃において電気分解した。還元が完了した時に、系を冷却しそして固体物質
を電解室から除去し、そして次に粉砕しそして浸出させて粗大なタンタル粉末を
他の反応生成物から分離した。樹木模様のある粉末はコンデンサー用途における
直接的な使用には適さなかった。
【0004】 タンタルを製造するための現代的な方法は1950年代にヘリエル(Hellier)
およびマーチン(Martin)により開発された(Hellier, E.G. and Martin, G.L.、
米国特許第2950185号、1960)。ヘリエルおよびマーチン法、並びに
多くのその後に記載された実施法または変法によると、K2TaF7および希塩、
典型的にはNaCl、の溶融混合物が撹拌反応器の中で溶融ナトリウムで還元さ
れる。このシステムを用いると、例えば還元温度、反応速度、および反応組成の
如き重要な反応変数の調節が容易であった。長年にわたり、この方法は改良され
そして20,000cm2/gmを越える表面積を有する高品質の粉末が製造され
そして5000〜8000cm2/gm範囲の表面積を有する物質が典型的であ
るような点まで完成された。この製造方法はレトルトからの固体反応生成物の除
去、浸出による塩からのタンタル粉末の分離、および物理的性質を改良するため
の集塊化のような処理を依然として必要とする。ほとんどのコンデンサー等級の
タンタル粉末は酸素含有量を最少にするためにマグネシウムを用いる脱酸素反応
にかけられる(Albrecht, W.W., Hoppe, H., Papp, V. and Wolf, R.、米国特許
第4537641号、1985)。一次粒子から二次粒子形態への予備集塊化お
よびキャパシタンスを増加させるための物質(例えば、P、N、Si、およびC
)のドーピングの人為操作も現在知られている。
【0005】 Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, Volume A2
6, p.80, 1993 によると、ナトリウムを用いるK2TaF7の還元が高性能の高品
質タンタル粉末製造産業を可能にしたが、コンデンサー用タンタルの消費量は毎
年約1000トンというタンタルの世界生産量の50%を越える水準にすでに達
しており、一方でニオブ用の原料ベースはタンタル用のものよりかなり広く且つ
粉末製造およびコンデンサー製造方法に関する文献のほとんどがニオブ並びにタ
ンタルを記載しているが、コンデンサー用のニオブの使用は本質的になされてい
なかった。
【0006】 この方法をニオブに応用する際の難点の一部は下記の通りである: 塩溶融物中でのナトリウムによるヘプタフルオロタンタル酸カリウムの還元に
関するヘリエルおよびマーチン法(米国特許第2,950,185号)に示された
タイプの製造方法は原則的にはヘプタフルオロニオブ酸カリウムによる高純度ニ
オブ粉末の製造用に利用可能であるが、それは実際にはうまくいかない。これは
、一部は、対応するヘプタフルオロニオブ酸塩の沈澱の難しさのためでありそし
て、一部は、そのような塩の攻撃的な反応性および腐食性によるため、この方法
により製造されるニオブは非常に不純である。さらに、酸化ニオブは一般的に不
安定である。例えば、N.F. Jackson et al, Electrocomponent Science & Techn
ology, Vol.1, pp.27-37 (1974) 参照。
【0007】 従って、ニオブはコンデンサー産業においては非常に少ない程度、主として比
較的低品質条件の分野、でのみ使用されていた。
【0008】 しかしながら、酸化ニオブ誘電定数は同様な酸化タンタル層のものの約1.5
倍であり、そのためニオブコンデンサーの比較的高いキャパシタンスに関しては
原則として安定性および他の要素を考慮しなければならない。
【0009】 タンタルそれ自体に関しては、K2TaF7/ナトリウム還元方法の成功にもか
かわらず、この方法には幾つかの欠点がある。
【0010】 それは系に固有の変動を受けるバッチ方法であり、その結果として、バッチ毎
の一貫性は難しい。後還元処理(機械的および湿式冶金的分離、濾過)は複雑で
あり、かなりの人的および資本投資が必要であり且つそれには時間がかかる。弗
化物および塩化物を含有する大量の反応生成物の廃棄も問題となりうる。基本的
な意味で、この方法は製造されるタンタル粉末の性能における意義ある利点が期
待されるような成熟状態に進行してきた。
【0011】 長年にわたり、タンタルおよびNb−化合物を包含する同様な金属化合物を金
属状態に還元するための代替方法を開発するための多くの試みがなされた(Mill
er, G.L. "Tantalum and Niobium," London, 1959, pp. 188-94; Marden, J.W.
and Rich, M.H.、米国特許第1728941号、1927;および Gardner, D.
、米国特許第2516863号 1946;Hurd、米国特許第4687632号
)。これらの中にはナトリウム以外の活性金属、例えばカルシウム、マグネシウ
ムおよびアルミニウム、並びに例えば五酸化タンタルおよび塩化タンタルの如き
原料の使用があった。以下の表Iに見られるように、負のギッブス(Gibbs)自由
エネルギー変化はTa、Nbおよび他の金属の酸化物の金属状態へのマグネシウ
ムを用いる還元が好ましいことを示しており、反応速度および方法がこの方式を
商業的規模で高品質粉末を製造するために使用できるかを決める。今日まで、こ
れらの方式が高品質粉末を製造しないため、これらはいずれも意義あるほど商業
化されなかった。明らかに、これらの方式が過去に失敗した理由は還元剤を金属
酸化物と配合することにより還元を行ったためである。反応は溶融した還元剤と
接触した状態でそして高度の発熱反応の温度調節を不可能にするような条件下で
起きた。従って、生成物の形態および残存還元性金属含有量を調節することがで
きない。
【0012】
【表1】
【0013】 脱酸素反応を行うためまたはタンタル金属の酸素含有量を減ずるためのマグネ
シウムの使用は既知である。この方法は金属粉末を1〜3%のマグネシウムと配
合しそして加熱して還元工程を行うことを包含する。マグネシウムは一部の加熱
時間中に溶融状態にある。この場合には、目的は1000〜3000ppmの酸
を除去することでありそして低濃度のMgOだけが生ずる。しかしながら、非常
に大量の酸化タンタルが還元される時には大量の酸化マグネシウムが発生する。
生じたマグネシウム、酸化タンタルおよび酸化マグネシウムの混合物は調節が難
しい温度条件下ではタンタル−マグネシウム−酸素複合体を生成し、それらをタ
ンタル金属から分離することは難しい。
【0014】 本発明の主な目的は、従来の複塩還元およびその後の処理の1つもしくはそれ
以上、好ましくは全て、の問題を除く手段を与える高性能のコンデンサー等級の
タンタルおよびニオブ粉末の新規な製造方式を提供することである。
【0015】 本発明の別の目的は連続的な製造工程を可能にすることである。
【0016】 本発明の別の目的は改良された金属形態を提供することである。
【0017】 他の目的はコンデンサー等級の品質および形態のニオブ/タンタル合金粉末を
提供することである。
【0018】 (発明の要旨) 我々は、大量の例えばTa25およびNb25の如き金属酸化物並びに亜酸化
物を気体形態のマグネシウムを用いて、実質的にまたは好ましくは完全に、還元
する場合に先行技術の問題を排除できることを発見した。酸化物源は実質的にま
たは好ましくは完全に固体でなければならない。酸化物はその集合体全体にわた
り気体状還元剤が良く到達できるような多孔性固体の形態で供給される。
【0019】 本発明により効率的に単独でまたは複数で製造する(共−製造する)ことがで
きる金属はTa、Nb、およびTa/Nb合金の群にあり、これらは単独であっ
てもよくまたは加えられるかもしくは共−製造されるTi、Mo、V、W、Hf
および/またはZrを包含してもよい。金属は製造中もしくは製造後に混合また
は合金化することもできおよび/またはそのような金属の有用な化合物に製造す
ることもできる。これらの金属の各々の安定なおよび不安定な酸化物形態を原料
として使用することができる。金属合金を、例えば酸化物用の適当な前駆体の共
沈澱から生ずる、合金にされた酸化物前駆体から製造してもよい。
【0020】 還元剤の一部の蒸気圧を以下に示す:
【0021】
【表2】
【0022】
【表3】
【0023】 還元の温度は使用する還元剤に依存してかなり変動する。(Ta,Nb)酸化
物の還元に関する温度範囲は、 Mg(気体)−800〜1,100℃、Al(気体)−1,100〜1,500℃
、Li(気体)−1,000〜1,400℃、Ba(気体)−1,300〜1,90
0℃ である。
【0024】 還元により製造される金属粉末の異なる物理的性質および形態は有効な還元範
囲内の温度および他の処理条件の変動により達成することができる。
【0025】 本発明の1つの態様は選択される1種もしくはそれ以上の金属の酸化物源を還
元して金属価の80〜100(重量)%を一次粉末粒子として遊離させ、次に浸
出させるかまたは他の湿式冶金段階でにかけて残存する還元剤酸化物および還元
反応の他の副生物からそして残存する液化した還元剤(場合により)から金属を
分離する第一段階、その後の第一の全般的な還元段階より濃度の低い試薬条件下
での(そして還元剤の溶融状態のより良好な耐性での)1回もしくはそれ以上の
脱酸素反応段階を包含し、次に必要ならさらなる分離が行われる。
【0026】 この第一態様によると、本発明は (a)1種もしくはそれ以上の金属の酸化物または混合酸化物を、酸化物それ自
体を気体が通過できるような形態で供給し、 (b)気体状還元剤を酸化物集合体の外側の部位で発生させそして気体を集合体
の中に高められた温度で通し、 (c)1種もしくはそれ以上の酸化物を実質的に完全に還元してその金属部分を
遊離させ、反応中に生成した還元剤の残存酸化物を容易に除去できるように、反
応物の選択、酸化物の多孔度、還元反応の温度および時間を選択する 段階を含んでなり、それにより金属または合金粉末の製造における溶融状態の還
元剤の使用を本質的に回避する方法で高表面積の流動性金属粉末を生成せしめる
、上記の金属粉末の製造のための一段階還元方法を提供する。
【0027】 第一態様のこの還元方法で使用される好ましい還元剤はMg、Caおよび/ま
たはそれらの水素化物である。Mgが特に好ましい。
【0028】 場合により互いに並びに/またはTi、Mo、W、Hf、VおよびZrよりな
る群から選択される合金用元素と合金化されていてもよい、Nbおよび/または
Ta金属の製造が好ましい。
【0029】 本発明の第二態様は、 (a)1種もしくはそれ以上の金属の酸化物または混合酸化物を、酸化物それ自
体を気体が通過できるような形態で供給し、 (b)水素含有気体を、単独でまたは気体状希釈剤と共に、集合体の中に高めら
れた温度で1種もしくはそれ以上の酸化物の部分的還元用のやり方で通し、 (c)酸化物中に含有される酸素の少なくとも20%を除去して亜酸化物を製造
するように、酸化物の多孔度、還元反応の温度および時間を選択し、 (d)亜酸化物を1種もしくはそれ以上の還元性金属および1種もしくはそれ以
上の還元性金属の水素化物で還元し、それにより酸化物を実質的に完全に還元し
てその金属部分を遊離させる 段階を含んでなる二段階還元方法を提供する。
【0030】 好ましくは、還元性金属および/または金属水素化物を気体形態の亜酸化物と
接触させる。
【0031】 この第二態様の第二還元段階における好ましい還元性金属はMgおよび/もし
くはCa並びに/またはそれらの水素化物である。Mgが特に好ましい。
【0032】 (Mgに関する)還元温度は好ましくは850℃から通常の沸点(1150℃
)までの間で選択される。
【0033】 本発明に従う方法(両方の態様)は特にコンデンサー等級のタンタルおよびニ
オブ並びにタンタルニオブ合金粉末並びにTa/Nb材料または同等な純度およ
び/または形態条件の用途を与えるために開発された。現状の最大の欠陥は本発
明により得られるコンデンサー等級のニオブの入手により部分的に満たされ、タ
ンタル技術の一部もそれにより進歩する。全ての場合に、タンタルおよび/また
はニオブはタンタル/ニオブ製造用の還元反応中またはその後に他の材料との合
金製造または化合により増強される。そのような粉末に関する条件の中には、圧
縮および焼結後に付着性の多孔性物質を生じて漸減する直径を有する孔溝の内部
連結システムを与えてアノード処理用の電解室およびマンガン処理用の硝酸マン
ガン溶液[Mn(NO3)2]の容易な加入を可能にするようなほぼ球形の一次粒子
の高い比表面を有する予備焼結された集塊構造に関する要望がある。
【0034】 少なくとも最初の還元段階中の気体状還元剤を用いる酸化物の還元が還元中の
温度調節を容易にして過度の予備焼結を回避する。さらに、液体還元性金属を用
いる先行技術の提案と比べて、気体状還元性金属を用いる調節された還元は還元
された金属格子中への導入による還元性金属での還元された金属の汚染をもたら
さない。そのような汚染は主として(Nbの場合には)Nb25からNbO2
の最初の還元中に起きることが見いだされた。亜酸化ニオブ(NbO2)は五酸
化ニオブ(NbO2.5)より20%だけ少ない酸素を含有しているため、これは
最初は驚異的にみえた。この効果は、亜酸化物が五酸化物よりかなり密集してい
る結晶格子を形成するという事実に戻される。NbO2.5の密度は4.47g/c
3であるが、NbO2のものは7.28g/cm3であり、すなわち、酸素の20
%だけの除去により密度が1.6倍増加する。ニオブおよび酸素の異なる原子量
を考慮に入れると、42%の減量がNbO2.5からNbO2への還元に伴われる。
従って、出願人は(それにより本発明の範囲を限定するものではないが)本発明
に従う効果は五酸化物の還元中に酸化物と接触しているマグネシウムが格子中を
比較的容易に拡散することができ、そこでそれが高い可動性を有するが、亜酸化
物格子中のマグネシウムの可動性はかなり減じられるという点で説明することが
できる。従って、亜酸化物の還元中に、マグネシウムは表面上に実質的に残りそ
して洗浄用の酸による攻撃を受けやすい状態で残る。
【0035】 これは気体状マグネシウムを用いる調節された還元の場合にも適用される。明
らかに、この場合には還元は酸化物の表面においてのみ亜酸化物への重要な最初
の還元中にも起き、そして還元中に生成した酸化マグネシウムは酸化物または亜
酸化物粉末の中に入らない。マグネシウム気体を用いる還元中の好ましい温度は
900〜1100℃の間、特に好ましくは900〜1000℃の間、である。
【0036】 酸素の少なくとも20%を除去した後に予備焼結を改良するために温度を12
00℃まで高めてもよい。
【0037】 水素を用いる五酸化物の還元が安定な焼結した架橋を含んでなる集塊の生成を
伴うすでに焼結した亜酸化物を製造し、それはコンデンサー材料としての使用に
とって好ましい構造を有する。
【0038】 より低い温度はより長い還元時間を必要とする。さらに、製造しようとする金
属粉末の焼結度は予め決めうるやり方で還元温度および還元時間の選択により調
節することができる。反応器は好ましくは汚染を避けるためにモリブデンシート
でまたはH2により還元されないセラミックにより裏打ちされる。
【0039】 さらに、還元時間および還元温度は酸素の少なくとも20%が五酸化物から除
去されるように選択すべきである。より高い還元度は有害ではない。しかしなが
ら、一般的には実施可能な時間内で且つ許容可能な温度において酸素の60%以
上を還元することはできない。
【0040】 20%もしくはそれ以上の還元度に達した後に、亜酸化物が存在する。この方
法の態様によると、還元生成物は好ましくは依然としてある時間にわたり、最も
好ましくは約60〜360分間にわたり、1000℃より上の温度に保たれる(
焼きなまされる)。これが新規な密集している結晶構造を形成し且つ安定化させ
うることを可能にするようである。還元度に応じて還元速度は非常にかなり減少
するため、亜酸化物を水素下で還元温度に加熱することで充分であり、場合によ
り温度のわずかな低下を伴う。1100〜1500℃の温度範囲内での2〜6時
間の還元および焼きなまし時間で典型的には充分である。さらに、水素を用いる
還元はコンデンサー用途にとっては危機的である例えばF、ClおよびCの如き
不純物が10ppmより少なく、好ましくは2ppmより少なく、減少するとい
う利点も有する。
【0041】 亜酸化物を引き続き還元装置の中で室温(<100℃)に冷却し、亜酸化物粉
末を還元性金属または金属水素化物の微細分割状粉末と混合しそして混合物を不
活性気体下で第二段階の還元温度に加熱する。還元性金属または金属水素化物は
好ましくは酸土類金属亜酸化物の残存酸素に関する化学量論的量で使用され、そ
して最も好ましくは化学量論的量よりわずかに過剰な量で使用される。
【0042】 一つの特に好ましい工程は第一段階における撹拌床の使用および中間体を冷却
せずに同一反応器中で還元性金属または金属水素化物を導入することによる第二
段階の実施からなる。マグネシウムが還元性金属として使用される場合には、マ
グネシウムは好ましくはマグネシウム気体として導入され、その理由はこの方法
では金属粉末を生成するための反応を容易に調節できるからである。
【0043】 一段階または二段階還元法のいずれであろうとも金属への還元が完了した後に
、金属を冷却し、そして金属粉末を不活性化するために酸素の含有量を徐々に増
加させながら不活性気体を引き続き反応器の中に通す。還元性金属の酸化物は当
該技術で既知のやり方で酸による洗浄により除去される。
【0044】 五酸化タンタルおよびニオブは好ましくは微細分割状粉末の形態で使用される
。五酸化物粉末の一次粒子寸法は製造しようとする金属粉末の所望する一次粒子
寸法の約2〜3倍に相当すべきである。五酸化物粒子は好ましくは、最も好まし
い50〜300μmの流動性寸法の特に好ましいより狭い範囲を包含する、20
〜1000μmの平均粒子寸法を有する自由流動性の集塊からなる。
【0045】 気体状還元剤を用いる酸化ニオブの還元は撹拌または静止床、例えば回転炉、
流動床、ラック炉の中で、またはスライディング・バット炉の中で実施すること
ができる。静止床が使用される場合には、還元性気体が床の中を浸透できるよう
にするために床の深さは5〜15cmを越えてはならない。を気体が下から内部
を流れるような床パッキングを使用する場合には、それより大きい床の深さが可
能である。タンタルに関すると、好ましい装置の選択は実施例2および実施例2
と3の間の章に以下で図1〜4を参照しながら記載されている。
【0046】 本発明に従う特に好ましいニオブ粉末は100〜1000nmの一次粒子寸法
を有する集塊化した一次粒子の形態で得られ、ここで集塊はマスターサイザー(M
astersizer)(ASTM−B822)により測定してD10=3〜80μm、特
に好ましくは3〜7μm、D50=20〜250μm、特に好ましくは70〜2
50μm、最も好ましくは130〜180μmおよびD90=30〜400、特
に好ましくは230〜400μm、最も好ましくは280〜350μmに相当す
る粒子寸法分布を有する。本発明に従う粉末は顕著な流動性質および圧縮強度を
有し、それらがコンデンサーを製造するためのそれらの加工性を決定する。集塊
は安定な焼結された架橋により特徴づけられ、それによりコンデンサーを成形す
るための加工後の好ましい多孔度が確実になる。
【0047】 好ましくは本発明に従うニオブ粉末は酸素を2500〜4500ppm/m2
の表面の量で含有しそしてその他に酸素中に低い、10,000ppmまでの窒
素および150ppmまでの炭素を含有し、そして合金用金属の含有量を考慮に
入れないで350ppmの最大含有量の他の金属を有し、ここで金属含有量は主
として還元性金属または水素化触媒金属のものである。他の金属の合計含有量は
100ppm以下である。F、Cl、Sの合計含有量は10ppmより少ない。
【0048】 本発明による好ましいニオブ粉末から、不活性化およびメッシュ寸法400μ
mのふるいを通すふるいかけの直後に、コンデンサーを製造することができる。
1100℃における3,5g/cm3の圧縮密度における焼結および40Vにおけ
る成形後に、これらのコンデンサーは80,000〜250,000μFV/gの
(燐酸中で測定される)比キャパシタンスおよび2nA/μFVより低い比漏れ
電流密度を有する。1150℃における焼結および40Vにおける成形後に、比
コンデンサーキャパシタンスは40,000〜150,000μFV/gであり、
1nA/μFVより低い比漏れ電流密度であった。1250℃における焼結およ
び40Vにおける成形後に、30,000〜80,000μFV/gの(燐酸中で
測定される)比キャパシタンスおよび1nA/μFVより低い比漏れ電流密度を
有するコンデンサーが得られる。
【0049】 本発明による好ましいニオブ粉末は1.5〜30m2/g、好ましくは2〜10
2/g、のBET比表面を有する。
【0050】 驚くべきことに、コンデンサーをNb/Ta−合金粉末から、純粋なNb−お
よび純粋なTa−粉末から製造されるコンデンサーから得られるかまたは簡単な
線状内挿により合金に関して予測されるかなり高い比キャパシタンスを有するよ
うな方法で製造できることが見いだされた。同一表面積を有する焼結されたNb
−粉末アノードおよび焼結されたTa−粉末アノードを有するコンデンサーのキ
ャパシタンス(μFV)はほぼ等しい。この理由は、絶縁性酸化ニオブ層のより
高い誘電定数(酸化タンタルの26に比べた41)はアノード処理中に生成する
ボルト(アノード処理電圧)当たりの酸化物層のより大きい厚さにより相殺され
るためである。1ボルト当たりのNbの酸化物層厚さはTa上で生成するものの
約2倍である(Taの場合の約1.8nm/VおよびNbの場合の約3.75nm
/V)。本発明はNb粉末コンデンサーとTa粉末コンデンサーとの間の線状内
挿から予測される値より約1.5〜1.7高い合金粉末コンデンサーの表面関連キ
ャパシタンス(μFV/m2)を与えることができる。これは、本発明の合金粉
末の1ボルトのアノード処理電圧当たりの酸化物層厚さはTaのものに近いが酸
化物層の誘電定数はNbのものに近いことを示しているようである。合金の前記
の驚異的に高いキャパシタンスは純粋なNb粉末の表面上の酸化物の構造と比べ
た合金成分の酸化物の異なる構造形態と関連するかもしれない。実際に、予備測
定は15at.−%Ta−85at.−%Nb合金の酸化物層成長がほとんど2.
75nm/ボルトであることを示した。
【0051】 本発明は従って、主としてニオブからなりそしてNbおよびTaの合計含有量
を基準として40at.−%までのタンタルを含有する電解質コンデンサーの製
造における使用のための合金粉末をさらに含んでなる。本発明に従う合金粉末は
、少量のTa−成分がニオブ金属の通常の不純物量より多い量で、すなわち0.
2重量%(2000ppm、Taに関して2at.−%に相当する)より多い量
で、存在するであろうことを意味するであろう。
【0052】 好ましくは、Taの含有量は、NbおよびTaの合計含有量を基準として、少
なくとも2at.−%のタンタル、特に好ましくは少なくとも5at.−%のタン
タル、最も好ましくは少なくとも12at.−%のタンタルである。
【0053】 好ましくは、本発明に従う合金粉末中のタンタルの含有量は34at.−%よ
り少ないタンタルである。キャパシタンス増加の効果は約3のNb−対Ta−原
子の比まで徐々に増加する。NbおよびTaの合計含有量を基準として25at
.−%より高いTaは効果をわずかだけさらに増加させる。
【0054】 本発明に従う合金粉末は好ましくは8〜250(m2/g)×(g/cm3)の
間の、特に好ましくは15〜80(m2/g)×(g/cm3)の間の、BET−
表面と合金密度の積を有する。合金材料の密度はNbおよびTaのそれぞれの原
子比とそれぞれNbおよびTaの密度の積から計算することができる。
【0055】 合金化のキャパシタンス増加の効果は集塊化した球状粒子の構造を有する粉末
に限定されない。従って、本発明に従う合金化された粉末は好ましくは8〜45
(m2/g)×(g/cm3)の間のBET−表面と密度の積を有する集塊化した
フレークの形状の形態を有することもできる。
【0056】 特に好ましい合金粉末は15〜60(m2/g)×(g/cm3)のBET−表
面と密度の積を有する実質的に球状の一次粒子の集塊である。一次合金粉末(粒
子)は100〜1500nm、好ましくは100〜300nm、の間の平均直径
を有する。好ましくは平均粒子直径からの一次粒子の直径の逸脱は両方向とも因
子2より小さい。
【0057】 集塊の粉末は以上でニオブ粉末に関して開示されているようなASTM−B8
22(マスターサイザー)に従い測定した平均粒子寸法を有する。
【0058】 特に好ましい合金粉末は1.5〜3(g/インチ3)/(g/cm3)の間のス
コット密度および合金密度の比を有する。
【0059】 タンタルのみを含有する前駆体の代わりに金属粉末合金で所望されるNbおよ
びTaの概略原子比でニオブおよびタンタルを含有する合金にされた前駆体であ
る前駆体が使用される限り、コンデンサー等級のタンタル粉末の製造用の当該技
術で既知のいずれの製造方法でも使用することができる。
【0060】 有用な合金前駆体は水溶性Nb−およびTa−化合物を含有する水溶液からの
(Nb,Ta)−化合物の共沈澱、例えばヘプタフルオロ錯体の水溶液からの(
Nb,Ta)−オキシ水和物の共沈澱、からアンモニアの添加およびその後のオ
キシ水和物から酸化物へのか焼により、得ることができる。
【0061】 高純度の酸化タンタルおよびニオブの配合物の電子線溶融、溶融インゴットの
還元、高められた温度におけるインゴットの水素化、および脆い合金の粉砕、合
金粉末の脱水素化およびフレークへの成形によりフレーク状にされた粉末が得ら
れる。フレークをその後に例えばMgの如き還元性金属の存在下で、場合により
Pおよび/またはNでドーピングして、1100〜1400℃に加熱することに
より集塊化する。「インゴット由来」粉末のこの製造方法は一般的にタンタルの
フレーク状にされた粉末の製造に関してはUS−A4,740,238からそして
ニオブのフレーク状にされた粉末に関してはWO98/19811から知られて
いる。
【0062】 集塊化した球状粒子の形態を有する特に好ましいNb−Ta−合金粉末は混合
(Nb,Ta)−酸化物からここに記載されたような気体状還元剤を用いる還元
により製造される。
【0063】 製造された金属粉末は電子コンデンサー並びに例えば複合電子−光学的超伝導
性および他の金属およびセラミック化合物、例えばPMN構造体並びに高温形態
の金属および酸化物の製造を包含する他の用途における使用に適する。
【0064】 本発明は該粉末、該粉末の製造方法、該粉末から製造されるある種の誘導製品
および該誘導製品を製造するための方法を含んでなる。
【0065】 コンデンサー使用法は例えば焼結密集化を遅らせるかまたは最終製品のキャパ
シタンス、漏れおよび電圧降伏を別のやり方で増加させるための試薬のドーピン
グの如き他の既知のコンデンサー製造技術の方式を伴ってもよい。
【0066】 本発明はその種々の適用分野のいくつかで数種の顕著な進歩を可能にする。
【0067】 まず、コンピューター/テレコミュンニケーション等級の固体電解質の小寸法
のコンデンサー(単位容量当たりの高いキャパシタンスおよび安定な性能特性)
を製造するための既知の高性能タンタル粉末を価格、複雑さおよび時間を実質的
に真に節約しながら今回製造することができる。
【0068】 第二に、他の反応性金属−特にNbおよび合金、例えばTa−Nb、Ta−T
i、Nb−Ti、をある種の用途でコンデンサー中にTaの代わりに価格を節約
しながらまたははるかに良好な性能を有する高級な最後のAl市場の代替品とし
て加えることができ、特にはるかに小さい寸法でも固体電解質と同等なキャパシ
タンスおよび使用を可能にする。商業用のアルミニウム電解質コンデンサーは湿
式電解質システムを使用する。
【0069】 他の目的、特徴および利点は添付図面と関連させた以下の好ましい態様の詳細
な記述から明らかになるであろう。
【0070】 (好ましい態様の詳細な記述) 実施例1(比較例) Ta25およびマグネシウムの混合物をタンタルトレーの中に充填しそしてタ
ンタル箔で覆った。マグネシウム化学量論は酸化タンタルを完全に還元するのに
必要なものの109%であった。混合物をアルゴン雰囲気下で1000°に6時
間にわたり加熱した。還元工程中には混合物を撹拌しなかった。冷却後に、生成
物をプログラムされた酸素の添加により不動態化した。還元工程の結果は破壊し
にくい黒色のスポンジ状物質であった。生成物を希鉱酸で浸出させて酸化マグネ
シウムを除去し、乾燥しそしてふるいにかけた。粗い(+40メッシュ)物質の
収率は25%で高かった。+40および−40部分の各々の不純物含有量(%ま
たはppm)および表面積(SA、cm2/gm)は以下の表1.1に示されてい
る。マグネシウムおよび酸素含有量の両者は高かった。粗い物質の大きい割合お
よび生成物の劣悪な性質のためそれはコンデンサー用途における使用に適さなか
った。
【0071】
【表4】
【0072】 実施例2 図1を参照すると、200グラムの五酸化タンタルの床(3)をタンタルボー
トの中に含有されたマグネシウム金属片(5)の上に懸垂された多孔性タンタル
板4の上においた。容器をタンタルの蓋で覆いそしてノズル(6)を介して密封
容積の中を通過するアルゴン(Ar)と共に密封されたレトルトの中に密封した
。ボートをアルゴン/マグネシウム気体雰囲気中で酸化物床から完全に離れた領
域中に保たれている固体マグネシウム片の床(5)を利用して1000℃に加熱
しそして6時間保った。室温に冷却した後に、それぞれ2、4、8、15インチ
(Hg、分圧)のO2(g)を含有するアルゴン−酸素混合物を炉の中に加える
ことにより生成物である混合物を不動態化した。各混合物を粉末と30分間にわ
たり接触させた。空気を用いる最終的不動態化のための保持時間は60分間であ
った。
【0073】 酸化マグネシウムをタンタル粉末から希硫酸を用いる浸出により分離しそして
次に高純度水ですすいで酸残渣を除去した。生成物は自由流動性の粉末であった
。生成物のサンプル(TaGR−2Dと表示される)は図5A、5B、4Cの走
査電子顕微鏡写真(SEM)に、それぞれ15キロボルトで操作された電子顕微
鏡で撮られた15,700、30,900および60,300倍率で示されている
。ナトリウム還元により製造されたタンタル粉末の70,000倍率(x)であ
る図5Dおよび5Eに比較例が示されている。図5A、5B、5Cのタンタル粉
末の性質は以下の表2.1に示されている。
【0074】
【表5】
【0075】 酸素濃度対表面積比は表面酸素だけと一致し、酸化タンタルが完全に還元され
たことを示す。
【0076】 図1に示され(そして実施例2で論じられ)たものとは別の形態の反応器が図
2〜4に示されている。図2はヒーター24、金属酸化物の供給源25および還
元剤(例えばMg)蒸気(アルゴン中に混合されている)の源26、アルゴン出
口26′並びに金属および還元剤の酸化物用の収集器28により囲まれた垂直管
を有するフラッシュ反応器20を示す。弁V1、V2が装備されている。酸化物
の粒子が管を通って落下しそしてフラッシュ還元される。図3は傾斜している回
転管32、ヒーター34、酸化物ホッパー35、気体源(還元剤および希釈剤、
例えばアルゴン)および出口36、36′、並びに金属および還元剤酸化物用の
収集器38を有する回転炉30を示す。図4は回転トレー43およびスプライン
を付けたパドル43、ヒーター44、酸化物源45、気体源および出口46、4
6′および収集器48を含有するレトルト42を有する複数炉床40を示す。例
えばそれ自体は普遍的な流動床炉反応器またはコントップ(Contop)、キヴセット
(KIVCET)タイプの如きさらに別の形態の反応器を使用することができる。
【0077】 実施例3 実施例2の工程に従って製造された57,000cm2/gmの表面積を有する
タンタル粉末を2W/W%のMgと配合しそしてアルゴン雰囲気中で850℃に
2時間にわたり加熱することにより該粉末を脱酸素反応にかけた。還元剤源およ
び酸化物の分離はこのフォローアップ脱酸素反応段階では必要ない。脱酸素反応
にかけられた粉末を放冷しそして次に不動態化し、浸出させ、そして乾燥した。
脱酸素反応にかけられた(仕上げられた)粉末のSEM(100,000x)は
図7Aに示されそして仕上げられたナトリウムで還元された粉末のSEM(70
,000x)は図7Bに示され、形態の差は明らかである。適当な量のNH42
PO4を添加することにより100ppmのPでドーピングした後に、粉末を5.
0g/ccの圧縮密度で圧縮して0.14グラムの重量のペレットにした。別の
脱酸素反応にかけられた粉末のSEMは図6に示されている。ペレットを真空中
で1200℃で20分間にわたり焼結した。ペレットを0.1容量%(V/V%
)H3PO4溶液中で80℃において30ボルトまでアノード処理した。生成電流
密度は100mA/gmでありそして化成電圧における保持時間は2時間であっ
た。アノード処理したペレットの平均キャパシタンスは105,000μF(V
)/gmでありそして21Vの5分間適用後に測定された漏れ電流は0.1nA
/μF(V)であった。
【0078】 実施例4 実施例2に記載された通りにして製造された133,000cm2/gmの表面
積および27.3g/m3のかさ密度を有する粉末を実施例3の通りにして処理し
た。仕上げられた粉末のSEM(56,600x)は図7Cに示されている。脱
酸素反応にかけられた粉末から製造されたペレットを実施例3の条件を使用して
16Vにアノード処理した。アノード処理したペレットの平均キャパシタンスは
160,000μF(V)/gmであった。
【0079】 実施例5 900グラムのTa25を気体状マグネシウムを用いて900℃で2時間にわ
たり還元した。酸化マグネシウムを還元生成物から希硫酸を用いる浸出により除
去した。生じた粉末は70,000cm2/gmの表面積を有しそして8W/W%
のマグネシウムを用いて850℃で2時間にわたり脱酸素反応にかけた。1(1
.0)W/W%のNH4Clを充填物に加えてタンタルを窒化した。脱酸素反応に
かけた粉末を実施例3に記載された通りにして処理した。Pのドーピング水準は
200ppmであった。粉末を再び同一の時間および温度プロフィールを用いて
2.0W/W%のMgを用い且つNH4Clを用いずに脱酸素反応にかけた。残存
マグネシウムおよび酸化マグネシウムを希鉱酸を用いる浸出により除去した。粉
末の化学的性質は以下の表5.1に示されている。粉末は9,000cm2/gm
の表面積および優れた流動性を有していた。圧縮ペレットを1,350℃で20
分間にわたり焼結しそして0.1V/V%のH3PO4中で80℃で16Vにアノ
ード処理した。
【0080】 アノード処理したペレットのキャパシタンスは27,500μF(V)/gm
でありそして漏れは0.43nA/μF(V)であった。
【0081】
【表6】
【0082】 実施例6 500グラムのTa25を1,000℃で6時間にわたり気体状マグネシウム
を用いて還元した。このようにして製造された一次粉末の性質は以下の表6.1
に示されている。
【0083】
【表7】
【0084】 一次粉末を850℃で2時間にわたり脱酸素反応にかけた。4W/W%のMg
および1W/W%のNH4Clを加えた。MgOを鉱酸を用いて浸出させた。次
に粉末に等量のNH42PO4を加えることにより200ppmのPでドーピン
グした。粉末を850℃で2時間にわたり2回目の脱酸素反応にかけそして次に
325℃において80%のアルゴンおよび20%の窒素を含有する気体状酸素を
加えることにより窒化した。仕上げられた粉末の一部の性質は以下の表6.2に
示されている。
【0085】
【表8】
【0086】 ペレットを粉末から5.0gm/ccの圧縮密度で製造した。焼結したペレッ
トを80℃で0.1W/W%のH3PO4溶液中で16ボルトにアノード処理した
。焼結温度の関数としてのキャパシタンスおよび漏れは以下の表6.3に示され
ている。
【0087】
【表9】
【0088】 実施例7(比較例) ヘプタフルオロニオブ酸カリウム(K2NbF7)をナトリウムを用いてヘリエ
ル(Hellier)他およびヒルドレス(Hildreth)他の米国特許第5,442,978号
により記載された方法と同様な撹拌反応器溶融塩方法を用いて還元した。希釈剤
である塩は塩化ナトリウムでありそして反応器はインコネル(Inconel)合金から
製造された。ニオブ金属粉末を塩マトリックスから希硝酸(HNO3)を用いて
浸出させそして次に水ですすぐことにより分離した。選択された物理的および化
学的性質は以下の表7.1に示されている。金属元素であるニッケル、鉄および
クロムの非常に高い濃度のために粉末のコンデンサー等級材料としての使用は適
さない。K2NbF7に固有な腐食性のために汚染が生じた。この性質のためにナ
トリウム還元法はコンデンサー等級のニオブ粉末の製造には適さない。
【0089】
【表10】
【0090】 SBD=スコットかさ密度(g/in3)、FAPD=フィッシャー平均粒子直
径(μ) 実施例8 200グラムの五酸化ニオブを実施例2に記載された通りにして還元した。生
じた粉末は自由流動性の黒色粉末でありそして200,800cm2/gmの表面
積を有していた。不動態化された生成物を希硝酸溶液で浸出させて酸化マグネシ
ウムおよび残存マグネシウムを除去しそして次に高純度水で浸出させて残存酸を
除去した。この物質を10(10.0)W/W%のMgと配合しそして850℃
で2時間にわたり脱酸素反応にかけた。粉末の物理的および化学的性質は以下の
表8.1に挙げられている。粉末に実施例3に記載された通りにして100pp
mのPでドーピングした。
【0091】
【表11】
【0092】 液体ナトリウム(実施例7)およびマグネシウム気体(実施例8)還元により 製造されたニオブ粉末に関するSEM(70,000x)はそれぞれ図8Aおよ び8Bに示されている。大粒子上のバーナクル状の小粒子の密集化は図8Bでは
8Aよりはるかに顕著であることに注目すること。図8C、8Dはそれぞれナト
リウム還元およびマグネシウム気体還元により製造されたニオブ粉末のSEM(
2,000x)である。
【0093】 液体ナトリウム還元により製造されたニオブ粉末は突出した大きい(>700
nm)結合した(300nm+)粒子および面を有しており、生成物を塊の形状
およびバーナクル状の微細粒子物質(10nmの桁であるが一部は75nmまで
)を与えるが、マグネシウム気体還元により製造されたニオブ粉末は約400n
mのベース粒子寸法およびその上にある多くの約20nmの多くのそれより小さ
い粒子を有し、より小さいその粒子の多くはそれら自体で100nmまでの寸法
の集塊となる。
【0094】 実施例9 0.14gmの重さのペレットを実施例8で製造されたニオブ粉末から製造し
た。ペレットを0.1V/V%のH3PO4溶液中で80℃でアノード処理した。
電流密度は100mA/gmでありそして化成電圧における保持時間は2時間で
あった。ペレット圧縮密度、化成電圧および焼結温度の関数としての電気的結果
は以下の表9.1に示されている。
【0095】
【表12】
【0096】 実施例10 酸化ニオブを実施例8に記載された通りにして気体状マグネシウムを用いて還
元した。生じた粉末を脱酸素反応に2回かけた。第1回目の脱酸素反応中に、2
.0W/W%のNH4Clを充填物に加えて粉末を窒化した。脱酸素反応条件は7
.0W/W%のMgを用いる2時間にわたる850℃であった。浸出および乾燥
後に、粉末に200ppmのPでドーピングした。第2回目の脱酸素反応を2.
5W/W%のMgを用いて850℃において2時間にわたり行った。仕上げられ
た粉末は22,000cm2/gmの表面積および良好な流動性を有する。化学的
性質は以下の表10.1に示されている。ペレットを0.1V/V%のH3PO4
液中で80℃において100mA/gの電流密度および2時間の保持時間を用い
て16ボルトにアノード処理した。電気的性質は以下の表10.2に示されてい
る。
【0097】
【表13】
【0098】
【表14】
【0099】 実施例11 a)使用したNb25はFSSS(フィッシャー・サブ・シーブ・サイザー(Fis
her Sub Sieve Sizer))により測定して1.7μmの粒子寸法を有しておりそし
て下記の含有量の不純物を含んでなっていた: 合計(Na、K、Ca、Mg) 11ppm 合計(Al、Co、Cr、Cu、Fe、Ga、 Mn、Mo、Ni、Pb、Sb、Sn、 Ti、V、W、Zn、Zr) 19ppm Ta 8ppm Si 7ppm C <1ppm Cl <3ppm F 5ppm S <1ppm Nb25をモリブデンボート中でスライディング・バット炉の中にゆっくり流
れる水素雰囲気下で通し、そして炉の熱い領域の中に3.5時間保った。
【0100】 得られた亜酸化物はNbO2に相当する組成を有していた。 b)生成物を微細メッシュのグリッド上に置き、その下には亜酸化物の酸素含有
量に関する化学量論の1.1倍のマグネシウムを含有する坩堝が置かれていた。
【0101】 グリッドおよび坩堝を含んでなる配置を1000℃でアルゴン保護気体下で6
時間にわたり処理した。この工程中に、マグネシウムが蒸発しそして上にある亜
酸化物と反応した。炉を引き続き冷却し(<100℃)そして金属粉末の表面を
不動態化するために空気を徐々に導入した。
【0102】 濾液中でマグネシウムがもはや検出できなくなるまで生成物を硫酸で洗浄し、
そしてその後に中性となるまで脱イオン水で洗浄しそして乾燥した。
【0103】 ニオブ粉末の分析は下記の不純物含有量を与えた: O 20,000ppm(3300ppm/m2) Mg 200ppm Fe 8ppm Cr 13ppm Ni 3ppm Ta 110ppm C 19ppm N 4150ppm マスターサイザーにより測定した粒子寸法分布は D10 4.27μm D50 160.90μm D90 318.33μm に相当した。
【0104】 一次粒子寸法は約500nmであると視覚的に測定された。スコットかさ密度
は15.5g/インチ3であった。BET比表面積は6.08m2/gであった。ホ
ール・フロー(Hall Flow)として測定された流動性は38秒間であった。
【0105】 c)3mmの直径、5.66mmの長さ、0.14gのアノード質量および3.
5g/cm3の圧縮密度を有するアノードをニオブ粉末からニオブ線上で表11.
1に示された時間および温度で焼結することにより製造した。
【0106】 チャチロン(Chatillon)に従い測定されたアノードの圧縮強度は6.37kgで
あった。アノードを80℃において0.1容量%のH3PO4を含有する電解質の
中で100/150mAの電流密度で表11.1に示された電圧で製造しそして
コンデンサー特性を測定した;表11.1参照
【0107】
【表15】
【0108】 実施例12 第1回目の還元段階における温度が1300℃であったこと以外は実施例11
を繰り返した。
【0109】 金属粉末は下記の性質を有していた: マスターサイザーD10 69.67μm D50 183.57μm D90 294.5μm 一次粒子寸法(視覚的) 300〜400nm BET比表面積 5m2/g 自由流動性。
【0110】 圧縮強度は非常に高かった: 3.5g/cm3の圧縮密度における13kg、および 3g/cm3の圧縮密度における8kg。
【0111】 1100℃において20分間焼結(圧縮密度3g/m3)した後、および40
Vで製造した後に、222,498μFV/gのキャパシタンスおよび0.19n
A/μFVの漏れ電流が測定された。
【0112】 実施例13 この実施例はニオブ粉末の性質に対する第1段階における還元温度の影響を示
す。
【0113】 五酸化ニオブの3つのバッチを水素下で1100℃、1300℃または150
0℃において、その他は同じ条件下で、4時間にわたり処理した。
【0114】 バッチを引き続きMg気体を用いてニオブ金属に還元した(6時間、1000
℃)。反応工程中に生成したMgOを、過剰のMgと一緒に、硫酸で洗浄除去し
た。下記の粉末性質が得られた: 還元温度 1100℃ 1300℃ 1500℃亜酸化物 : BET m2/g1) 1.03 0.49 0.16 ホール・フロー2) 非流動性 48秒間で 20秒間で 25g 25gニオブ金属 : BET m2/g 9.93 7.8 5.23 FSSS μm3) 0.6 0.7 6.8 ホール・フロー 非流動性 85秒間で 19秒間で 25g 25g SD g/インチ4) 16.8 16.5 16.8 Mg ppm 240 144 210 O ppm 40,000 28,100 16,6001) BET比表面2) 流動性3) フィッシャー・サブ・シーブ・サイザーにより測定した粒子寸法4) かさ密度 実施例14 撹拌しながらのアンモニアの添加およびその後のオキシ水和物(oxyhydrate)か
ら酸化物へのか焼によるニオブおよびタンタルヘプタフルオロ錯体の混合水溶液
からの(Nb,Ta)−オキシ水和物の共沈澱により(Nbx,Ta1-x25前駆
体を製造する。
【0115】 Nb:Ta=90:10(重量比)の公称組成を有する多くの混合酸化物粉末
をモリブデンボートの中に入れそしてスライディング・バット炉の中にゆっくり
流動する水素雰囲気下で通しそして炉の熱い領域の中で1300℃に4時間にわ
たり保った。室温に冷却した後に、重量損失から組成はほぼ(Nb0.944Ta0.0 54 )Oであると測定された。
【0116】 亜酸化物を微細メッシュのグリッド上に置き、その下には亜酸化物の酸素含有
量に関する化学量論の1.2倍のマグネシウムを含有する坩堝が置かれていた。
グリッドおよび坩堝を含んでなる配置を1000℃においてアルゴン保護気体下
で6時間にわたり処理した。炉を引き続き100℃以下に冷却しそして金属粉末
の表面を不動態化するために空気を徐々に導入した。
【0117】 濾液中でマグネシウムがもはや検出できなくなるまで生成物を硫酸で洗浄し、
そしてその後に中性となるまで脱イオン水で洗浄しそして乾燥した。
【0118】 合金粉末の分析は9.73wt.−%のタンタル含有量および下記の不純物含有
量を与えた: O:20500、Mg:24、C:39、Fe:11、Cr:19、Ni:2、
Mo:100。
【0119】 一次粒子寸法は約450nmであると視覚的に測定された。BET比表面は6
.4m2/gであり、スコット密度は15.1g/in3であり、粒子寸法(FSS
S)は0.87μmであった。
【0120】 2.94mmの直径、3.2mmの長さおよび3.23g/cm3の圧縮密度を有
するアノードを合金粉末からニオブ線上で1150℃において20分間にわたり
焼結することにより製造した。焼結密度は3.42g/cm3であった。電極を0
.25%のH3PO4を含有する電解質の中で40Vの最終電圧までアノード処理
した。
【0121】 コンデンサー特性は10%H3PO4水溶液を用いることにより下記の通りであ
ると測定された:キャパシタンス:209117μFV/g、漏れ電流:0.5
5nA/μFV。
【0122】 実施例15 Nb:Ta=75:25(重量比)の公称組成を有する酸化物粉末を用いて
、実施例14の通りにして合金粉末を製造した。
【0123】 金属合金粉末の分析が26.74wt.−%のタンタル含有量および下記の不純
物含有量(ppm)を与えた: O:15000、Mg:25、C:43、Fe:9、Cr:20、Ni:2、M
o:7、N:247。
【0124】 一次粒子寸法は約400nmであると視覚的に測定された。BET比表面は3
.9m2/gであり、スコット密度は17.86g/in3であり、粒子寸法(FS
SS)は2.95μmであり、ホール・フローは27.0秒間であった。
【0125】 2.99mmの直径、3.23mmの長さおよび3.05g/cm3の圧縮密度を
有するアノードを合金粉末からニオブ線上で1,150℃において20分間にわ
たり焼結することにより製造した。電極を0.25%のH3PO4を含有する電解
質の中で40Vの最終電圧までアノード処理した。
【0126】 コンデンサー特性は10%H3PO4水溶液を用いることにより下記の通りであ
ると測定された:キャパシタンス:290173μFV/g、漏れ電流:0.4
4nA/μFg。
【0127】 実施例16 水酸化タンタルをタンタルフルオロ錯体水溶液からアンモニアの添加により沈
澱させた。沈澱した水酸化物を1100℃で4時間にわたりか焼して下記の物理
的データを有するTa25前駆体を与えた:フィッシャー・サブ・シーブ・サイ
ザー(FSSS)での平均粒子直径:7.3μm、かさ密度(スコット):27.
8g/インチ3、比表面積(BET):0.36m2/g、超音波を用いずに測定
されたマスター・サイザーS上でのレーザー回折による粒子寸法分布:D10=
15.07μm、D50=23.65μm、D90=34.03μm。
【0128】 集塊化した球の形態は図9A〜9C(SEM−写真)に示されている。
【0129】 300gの前駆体である五酸化物をふるいの上に置きそして124gのMg(
五酸化物を金属に還元するのに必要な化学量論量の1.5倍)を図1に示された
レトルトの底に置いた。
【0130】 レトルトを空にし、アルゴンを充填しそして950℃に12時間にわたり加熱
した。100℃以下への冷却および不動態化後に、生成物を23wt.−%の硫
酸および5.5wt.−%の過酸化水素を含有する水溶液で浸出させそしてその後
に水で中性となるまで洗浄した。生成物を50℃で一夜乾燥しそしてふるいにか
けて<400μmにした。
【0131】 タンタル粉末は下記の分析データを示した: 平均粒子寸法(FSSS):1.21μm、 かさ密度(スコット):25.5g/インチ3、 BET表面:2.20m2/g、 良好な流動性、 マスター・サイザーD10=12.38μm、D50=21.47μm、D90=
32.38μm、 形態:図10A〜10C(SEM−写真)参照。 化学的分析: O:7150ppm N:488ppm H:195ppm C:50ppm Si:30ppm F:2ppm Mg:6ppm Na:1ppm Fe:3ppm Cr:<2ppm Ni:<3ppm。
【0132】 粉末を静かに撹拌しながら1ml当たり1mgのPを含有するNH42PO4
−溶液で洗浄し、150ppmのPでドーピングするために50℃で一夜乾燥し
そしてふるいにかけて<400μmにした。
【0133】 コンデンサーアノードを0.047gのTa−粉末から各々5.0g/cm3
圧縮密度において1260℃における10分間の保持時間で焼結することにより
製造した。
【0134】 製造用電解質として0.1wt.−%のH3PO4溶液を用いて85℃で100分
間にわたり保持された16Vの最終電圧までで生じた電流密度は150mA/g
であった。 試験結果: 焼結密度:4.6g/cm3、 キャパシタンス:100577μFV/g 漏れ電流:0.73nA/μFV。
【0135】 実施例17 高純度の光学等級Ta25を最初に1700℃で4時間にわたりそしてその後
900℃で16時間にわたりか焼してより密集しそしてより粗大な前駆体粒子を
与えた。五酸化物粉末の物理的性質は以下の通りである: 平均粒子寸法(FSSS):20μm かさ密度(スコット):39g/インチ3 スクリーン分析:400〜500μm 8.7% 200〜400μm 63.6% 125〜200μm 15.0% 80〜125μm 7.2% 45〜 80μm 3.8% <45μm 1.7% 形態は図11A〜11C(SEM−写真)に示されている。
【0136】 酸化物粉末を実施例16に記載されている通りであるが1000℃において6
時間にわたり還元して金属にした。 浸出およびP−ドーピングは実施例16の通りであった。
【0137】 タンタル粉末は下記の分析データを示した: 平均粒子寸法(FSSS):2.8μm、 かさ密度(スコット):28.9g/インチ3、 BET表面:2.11m2/g、 60°の角度および0.1インチの開口部を有する非振動漏斗中の流動性:35
秒間で25g、 マスター・サイザーD10=103.29μm、D50=294.63μm、D9
0=508.5μm、 形態:図12A〜12C(SEM−写真)参照。 化学的分析: O:7350ppm N:207ppm H:174ppm C:62ppm Mg:9ppm Fe:5ppm Cr:<2ppm Ni:<3ppm。 P:150ppm コンデンサーアノードを実施例16の通りにして製造しそしてアノード処理し
た。 試験結果: 焼結密度:4.8g/cm3、 キャパシタンス:89201μFV/g 漏れ電流:0.49nA/μFV 第2シリーズのコンデンサーを焼結温度を同じ方法であるが1310℃に高め
て製造した。 試験結果: 焼結密度:5.1g/cm3、 キャパシタンス:84201μFV/g 漏れ電流:0.68nA/μFV 実施例18 各々が約25グラムのWO3、ZrO2、およびV23の7つのサンプルを気体
状マグネシウムを用いて950℃において6時間にわたり個別に還元した。還元
生成物を希硫酸を用いて浸出させて残存する酸化マグネシウムを除去した。生成
物は各場合とも黒色の金属粉末であった。タングステンおよびジルコニウム粉末
はそれぞれ5.9および9.6W/W%の酸素含有量を有しており、金属酸化物が
金属状態に還元されたことを示している。
【0138】 この方法は高品質の化学的に還元されたニオブ粉末を製造する唯一の例示方法
であるようである。ここに示されているようなマグネシウムの如き気体状還元剤
を用いる金属酸化物の還元は従って金属−金属酸化物コンデンサー基質として使
用可能な粉末を製造するために特に適する。この還元方法はマグネシウム気体源
と接触している床の中で金属酸化物を用いて行われるが、マグネシウムまたは他
の還元剤が気体状態で供給される限り還元を流動床、回転炉、フラッシュ反応器
、複数炉床または同様なシステムの中で行うことができる。この方法は気体状マ
グネシウムまたは他の還元剤を用いる還元反応が負のギッブス自由エネルギー変
化を有するような他の金属酸化物または金属酸化物混合物を用いても行われるで
あろう。
【0139】 ここに記載された気体状還元方法には幾つかの利点がある。還元生成物の処理
が溶融塩システムにおけるK2TaF7のナトリウム還元のような液相反応により
製造されるタンタル粉末の後還元処理よりはるかに複雑でなく且つ費用がかから
ない。この方法では弗化物または塩化物残渣は製造されない。このことが考えら
れる深刻な廃棄問題や非常のかかる廃物回収システムを設置する必要性を除く。
気体状還元剤を用いる金属酸化物の還元は溶融塩/ナトリウム還元方法により製
造される粉末よりはるかに高い表面積を有する粉末を与える。新規な方法は従来
方法と比べて非常に高い表面積を有する粉末を容易に製造し、マグネシウムまた
は他の気体状還元剤を用いて非常に高性能のコンデンサー等級の粉末を製造する
能力が大きい。
【0140】 本発明はさらにコンデンサーの製造における使用のためのTa−Nb合金粉末
の優秀性を初めて示すものである。
【0141】 図16は合金組成に関する得られうる最大キャパシタンス(μFV/g)およ
び粉末のBET−表面(m2/g)の比を示す。AおよびCはこの実施例16で
測定された純粋なTa−、Nb−粉末をそれぞれ表す。BはWO98/3724
9の実施例2、5および7に開示された純粋なTa粉末コンデンサーの既知の最
高値を表す。線1は純粋なTa、およびNb粉末コンデンサーからの線状内挿に
よる合金粉末コンデンサーに関する予測値を表す。Eは絶縁酸化物層がTa粉末
コンデンサー中と同じボルト当たりの厚さを有するが酸化ニオブの誘電定数が異
なる架空のNb−粉末コンデンサーを表す。線11はBとEの間の線状内挿を表
す。Dは本実施例15で示されているような25wt.−%のTa/75wt.−
%のNb合金粉末の測定値を表す。曲線IIIは本発明に従う合金粉末コンデンサ
ーの合金組成に対するキャパシタンスの推定依存性を表す。
【0142】 図13は本発明の電解コンデンサー使用法を行うための段階のブロックダイア
グラムである。これらの段階は気体状還元剤を用いる金属酸化物の還元、生じた
金属の集合体からの還元剤酸化物の分離、粉末形態および/または一次粉末粒子
寸法への崩壊、分類、場合により、集塊化した二次粒子を得るための予備焼結(
調節された機械的方法および最初の還元または分離段階の調節も集塊を得るため
に有効である)、酸素濃度を減ずるための脱酸素反応、圧縮用結合剤または潤滑
剤を用いてのまたは用いない冷均衡圧縮による一次または二次粒子から多孔性付
着集合体への圧縮、多孔性アノード形態(これは細長い円筒状、またはスラブま
たは例えば片の如き短い長さのものでありうる)への焼結、焼結されたアノード
密集体への焼結または溶接前のアノード中への埋設によるアノード線連結、誘電
性酸化物層を制定するための電解酸化による多孔性アノード内での露呈された金
属表面の形成、多孔性集合体中への前駆体の含浸および含浸の1つもしくはそれ
以上の段階または他の方法での熱分解による固体電極含浸、カソード完成、並び
に包装を含んでなる。クリーニングおよび試験の種々の追加段階は示されていな
い。最終生成物は図15にTaもしくはNb(またはTa−Nb−合金)コンデ
ンサー101として、逆−電極(カソード)104と溶接連結部107によりア
ノードに連結されているTaまたはNb(一般的には粉末組成と合致する)の密
度の高いリード線106を有する包装用外装105とによって囲まれた固体電解
質を含浸させた多孔性のTaもしくはNb(またはTa−Nb−合金)アノード
102として、部分的な一部切り取り形で(円筒状形態で)示されている。以上
で述べたように、それ自体既知である他のコンデンサー形態(異なる形状要素、
異なる金属、異なる電解質システムアノード線連結器など)を本発明により得る
ことができる。
【0143】 図14はさらなる反応および/または焼結、熱均衡圧縮(H.I.P.)もしく
は焼結/H.I.P.方法による強化のための片状の、成形形態のおよびルーズパ
ック形態での粉末の使用を包含する本発明の他の誘導製品の一部の製造および用
途をまとめて説明するブロックダイアグラムである。粉末それ自体および/また
は強化されたものは、複合体の製造において、燃焼において、化学合成において
(還元剤として)または触媒作用において、合金製造(例えば鉄冶金)において
そしてコーテイングにおいて使用することができる。強化された粉末は粉砕製品
および組み立て部品を製造するために使用することができる。
【0144】 ある場合には、気体還元で製造された粉末を用いて製造した最終用途製品は当
該技術の従来法で製造された(例えば還元された)粉末の状態と似ているであろ
うしそして他の場合には製品は新規でありそして気体状還元剤による還元により
製造された粉末のここに記載されたような独特な形態から生ずる独特な物理的、
化学的または電気的特性を有するであろう。粉末製造から最終製品または最終用
途へ進行する工程は粉末の程度、それを製造する方法に応じて変更され、変更し
た不純物特徴および形態を生ずる。
【0145】 粉砕製品および組み立て部品の製造は再溶融、鋳造、焼きなまし、分散強化お
よびそれ自体既知である他の人為操作を包含することができる。金属粉末のさら
なる反応により製造される最終製品は高純度の酸化物、窒化物、珪化物およびさ
らに別の誘導体、例えば強誘電体中および光学用途で使用される複合セラミック
、例えば灰チタン石(perovskite)構造のPMW化合物、を包含しうる。
【0146】 当業者には、前記の開示の字句および精神に一致しそして請求の範囲によって
のみ限定される本特許の範囲内にある他の態様、改良、詳細事項、および使用を
同等性の原理を包含する特許法に従い行えることがここに明らかであろう。
【図面の簡単な説明】
【図1〜4】 本発明の実施のための処理システムの略図を示す。
【図5A〜12C】 本発明に従い製造された粉末の走査電子顕微鏡写真(SEM)であり、当該技
術の現状のまたは本発明に従わずに別の方法で製造された金属粉末の比較例の幾
つかのSEMを包含する。
【図13および14】 粉末および誘導体の多様な使用法を示すフローチャートである。
【図15】 コンデンサー(コンデンサー使用法の数種の形態の1つ)としての使用法に従
う最終製品の図式的表示である。
【図16】 合金組成についてのTa−Nb合金粉末のキャパシタンスおよび表面積の記録
結果である。
【手続補正書】
【提出日】平成14年6月13日(2002.6.13)
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】特許請求の範囲
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項】 還元剤がマグネシウムである請求項1または2に記載の方法
【請求項】 100〜1000nmの粒子寸法を有する集塊化した一次
粒子の形態のニオブ粉末であって、ここで集塊がマスターサイザーにより測定し
てD10=3〜80μm、D50=20〜250μmおよびD90=30〜40
0μmに相当する粒子寸法を有するニオブ粉末。
【請求項】 合計金属含有量を基準として、40at.−%までのTa
を単独でまたはTi、Mo、W、Hf、VおよびZrの群から選択される少なく
とも1種の金属の1種もしくはそれ以上と共に含有する請求項に記載のニオ
ブ粉末。
【請求項】 2500〜4500ppm/m2のBET−表面の量の酸
素、10,000ppmまでの窒素、150ppmまでの炭素および合計で50
0ppmより少ない不純物金属を含有する請求項4または5に記載のニオブ粉末
【請求項】 請求項4〜6の1つに記載の粉末の焼結およびアノード処理
により得られるコンデンサーアノード。
【請求項】 請求項に記載のアノードを含有するコンデンサー。
【請求項】 本質的にニオブからなりそしてNbおよびTaの合計含有量
を基準として40at.−%までのタンタルを含有し、8〜45(m2/g)×(
g/cm3)のBET表面積と合金密度の積を有する集塊化したフレークの形態
の合金粉末を製造する方法であって、 (a)NbおよびNbとTaの合計含有量を基準として40at.−%までのT
aを含有する電子線溶融合金インゴットを水素化し、そして (b)該水素化した合金インゴットを粉砕し、そして (c)段階(b)から得られた粉砕された合金を脱水素化し、そして (d)該粉砕された合金を成形してフレークにし、そして (e)該フレークを800〜1150℃の温度で還元剤としてのアルカリ土類金
属の存在下で集塊化し、そして (f)集塊化した合金フレークを浸出および洗浄して残渣および還元剤の残存生
成物を除去する 段階を含んでなる合金粉末の製造方法。
【請求項10】 集塊化段階中に合金粉末を燐および/または窒素でドーピ
ングする請求項に記載の方法
───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,CY, DE,DK,ES,FI,FR,GB,GR,IE,I T,LU,MC,NL,PT,SE),OA(BF,BJ ,CF,CG,CI,CM,GA,GN,GW,ML, MR,NE,SN,TD,TG),AP(GH,GM,K E,LS,MW,SD,SL,SZ,UG,ZW),E A(AM,AZ,BY,KG,KZ,MD,RU,TJ ,TM),AL,AM,AT,AU,AZ,BA,BB ,BG,BR,BY,CA,CH,CN,CU,CZ, DE,DK,EE,ES,FI,GB,GE,GH,G M,HR,HU,ID,IL,IN,IS,JP,KE ,KG,KP,KR,KZ,LC,LK,LR,LS, LT,LU,LV,MD,MG,MK,MN,MW,M X,NO,NZ,PL,PT,RO,RU,SD,SE ,SG,SI,SK,SL,TJ,TM,TR,TT, UA,UG,US,UZ,VN,YU,ZA,ZW (72)発明者 シエクター,レオニド・エヌ アメリカ合衆国マサチユセツツ州02461− 1951ニユートン・インダストリアルプレイ ス45・エイチ・シー・スタルク・インコー ポレーテツド内 (72)発明者 トリツプ,テランス・ビー アメリカ合衆国マサチユセツツ州02461− 1951ニユートン・インダストリアルプレイ ス45・エイチ・シー・スタルク・インコー ポレーテツド内 (72)発明者 ラニン,レオニド・エル アメリカ合衆国マサチユセツツ州02461− 1951ニユートン・インダストリアルプレイ ス45・エイチ・シー・スタルク・インコー ポレーテツド内 (72)発明者 ライヘルト,カールハインツ ドイツ・デー−38304ボルフエンブツテ ル・イムシユタツトフエルト43 (72)発明者 トマス,オリフアー ドイツ・デー−38667バトハルツブルク・ フエルトシユトラーセ7 (72)発明者 フイーレツゲ,ヨアヒム ドイツ・デー−38642ゴスラー・フイルコ ウシユトラーセ24 Fターム(参考) 4K017 BA07 BB04 BB08 BB09 DA08 EA03 EH01 EH14 EH18 FB03 FB05 FB06 4K018 AA40 BA20 CA11 DA01 DA11 KA39

Claims (56)

    【特許請求の範囲】
  1. 【請求項1】 (a)1種もしくはそれ以上の金属の酸化物または混合酸化
    物を、酸化物それ自体を気体が通過できるような形態で供給し、 (b)気体状還元剤を酸化物集合体(mass)の外側の部位で発生させそして気体を
    集合体の中に高められた温度で通し、 (c)1種もしくはそれ以上の酸化物を実質的に完全に還元してその金属部分を
    遊離させ、反応中に生成した還元剤の残存酸化物を容易に除去できるように、反
    応物の選択、酸化物の多孔度、還元反応の温度および時間を選択する 段階を含んでなり、それにより金属または合金粉末の製造における溶融状態の還
    元剤の使用を本質的に回避する方法で高表面積粉末を生成せしめる、Taおよび
    Nb、並びにそれらの全てよりなる群から選択される金属粉末を、単独でまたは
    それに加えられるかもしくはそれと共に製造されるTi、Mo、W、Hf、Vお
    よびZrよりなる群から選択される1種もしくはそれ以上の金属と共に製造する
    方法。
  2. 【請求項2】 (a)1種もしくはそれ以上の金属の酸化物または混合酸化
    物を、酸化物それ自体を気体が通過できるような形態で供給し、 (b)水素含有気体を集合体の中に高められた温度で通し、 (c)酸化物中に含有される酸素の少なくとも20%を除去して亜酸化物を製造
    するように、酸化物の多孔度、還元反応の温度および時間を選択し、 (d)第二段階で亜酸化物を還元性金属および還元性金属の水素化物の群から選
    択される還元剤でさらに還元し、それにより酸化物を実質的に完全に還元してそ
    の金属部分を遊離させる 段階を含んでなる、Taおよび/またはNb並びにそれらの全てよりなる群から
    の金属粉末を、単独でまたはTi、Mo、W、HfおよびVおよびZrの群から
    選択される1種もしくはそれ以上の金属と共に製造する方法。
  3. 【請求項3】 還元剤がMg、Ca、Al、Li、Ba、Srおよびそれら
    の水素化物よりなる群から選択される請求項1または2に記載の方法。
  4. 【請求項4】 金属または合金粉末を処理して集塊化した(agglomerated)二
    次形態にする請求項1〜3の1つに記載の方法。
  5. 【請求項5】 金属粉末を気体状還元剤への新たな露呈によりさらに脱酸素
    反応させる請求項1〜4の1つに記載の方法。
  6. 【請求項6】 第一段階における還元を少なくとも固体物質の容量が35〜
    50%減少するまで行うことを特徴とする請求項2に記載の方法。
  7. 【請求項7】 第一段階における還元をMeOx[式中、MeはTaおよび
    /またはNbを示しそしてxは1〜2の値を推定する]まで行うことを特徴とす
    る請求項2または6に記載の方法。
  8. 【請求項8】 第一段階からの還元生成物をほぼ還元温度でさらに60〜3
    60分間にわたり保つことを特徴とする請求項2、6または7の1つに記載の方
    法。
  9. 【請求項9】 Mg、Caおよび/またはそれらの水素化物を第二段階にお
    ける還元剤として使用することを特徴とする請求項2または6〜8の1つに記載
    の方法。
  10. 【請求項10】 金属が本質的にタンタルからなりそして酸化物が五酸化タ
    ンタルである請求項1〜9の1つに記載の方法。
  11. 【請求項11】 金属がニオブを含んでなりそして酸化物が五酸化ニオブま
    たは亜酸化ニオブを含んでなる請求項1〜10の1つに記載の方法。
  12. 【請求項12】 酸化物がタンタルを金属の合計含有量を基準として50a
    t.−%までの量で含有する請求項11に記載の方法。
  13. 【請求項13】 気体が通過できる酸化物集合体の形態が少なくとも90%
    の空隙容積を与える請求項1〜12の1つに記載の方法。
  14. 【請求項14】 酸化物が100〜1000nmの間の直径および10〜1
    000μmの平均集塊寸法(マスターサイザー(Mastersizer)D50)を有する
    集塊化した一次酸化物粒子の形態で供給される請求項1〜13の1つに記載の方
    法。
  15. 【請求項15】 還元剤がマグネシウムである請求項1〜14の1つに記載
    の方法。
  16. 【請求項16】 酸化物集合体中に気体状還元剤を通す間の高められた温度
    が0.5TMより低く、ここでTMは金属粉末の融点を意味する請求項1〜15
    の1つに記載の方法。
  17. 【請求項17】 温度が0.4TMより低い請求項16に記載の方法。
  18. 【請求項18】 一次金属粉末をさらなる脱酸素反応処理にかけて仕上げら
    れた粉末を製造する請求項1〜17の1つに記載の方法。
  19. 【請求項19】 1つもしくはそれ以上の仕上げ脱酸素反応段階が還元反応
    の延長として提供される請求項18に記載の方法。
  20. 【請求項20】 仕上げ脱酸素反応が別個の処理である請求項19に記載の
    方法。
  21. 【請求項21】 金属粉末を処理して集塊化した二次形態にする請求項1〜
    20の1つに記載の方法。
  22. 【請求項22】 脱酸素反応段階が粉末の集塊化した二次形態に適用される
    請求項21に記載の方法。
  23. 【請求項23】 金属粉末をさらに付着性の多孔性集合体に成形する請求項
    1〜22の1つに記載の方法。
  24. 【請求項24】 100〜1000nmの粒子寸法を有する集塊化した一次
    粒子の形態のニオブ粉末であって、ここで集塊がマスターサイザーにより測定し
    てD10=3〜80μm、D50=20〜250μmおよびD90=30〜40
    0μmに相当する粒子寸法を有するニオブ粉末。
  25. 【請求項25】 合計金属含有量を基準として、40at.−%までのTa
    を単独でまたはTi、Mo、W、Hf、VおよびZrの群から選択される少なく
    とも1種の金属の1種もしくはそれ以上と共に含有する請求項24に記載のニオ
    ブ粉末。
  26. 【請求項26】 少なくとも2at.−%の1種もしくはそれ以上の他の金
    属を含有する請求項25に記載のニオブ粉末。
  27. 【請求項27】 少なくとも3.5at.−%の1種もしくはそれ以上の他の
    金属を含有する請求項25に記載のニオブ粉末。
  28. 【請求項28】 少なくとも5at.−%の1種もしくはそれ以上の他の金
    属を含有する請求項25に記載のニオブ粉末。
  29. 【請求項29】 少なくとも10at.−%の1種もしくはそれ以上の他の
    金属を含有する請求項25に記載のニオブ粉末。
  30. 【請求項30】 34at.−%までの1種もしくはそれ以上の他の金属を
    含有する請求項25〜29に記載のニオブ粉末。
  31. 【請求項31】 タンタルを他の金属として含有する請求項25〜30の1
    つに記載のニオブ粉末。
  32. 【請求項32】 100〜1500nm直径の集塊化した実質的に球状の一
    次粉末粒子の形態の請求項24〜31の1つに記載の粉末。
  33. 【請求項33】 8〜250(m2/g)×(g/cm3)のBET−表面と
    合金密度の積を有する請求項24〜32の1つに記載の粉末。
  34. 【請求項34】 1.5〜2.3(g/インチ3/(g/cm3)のスコット−
    密度(Scott-density)と合金密度の比を有する請求項24〜33の1つに記載の
    粉末。
  35. 【請求項35】 マスターサイザーに従うD50−値として測定して20〜
    300μの集塊粒子寸法を有する請求項32に記載の粉末。
  36. 【請求項36】 2500〜4500ppm/m2のBET−表面の量の酸
    素、10,000ppmまでの窒素、150ppmまでの炭素および合計で50
    0ppmより少ない不純物金属を含有する請求項24〜35の1つに記載のニオ
    ブ粉末。
  37. 【請求項37】 1100℃における焼結および40Vにおける成形後に8
    0,000〜250,000μFV/gの比コンデンサーキャパシタンスおよび2
    nA/μFVより小さい比漏れ電流密度を示す請求項24〜35の1つに記載の
    ニオブ粉末。
  38. 【請求項38】 1250℃における焼結および40Vにおける成形後に3
    0,000〜80,000μFV/gの比コンデンサーキャパシタンスおよび1n
    A/μFVより小さい比漏れ電流密度を示す請求項24〜35の1つに記載のニ
    オブ粉末。
  39. 【請求項39】 請求項24〜38の1つに記載の粉末の焼結およびアノー
    ド処理により得られるコンデンサーアノード。
  40. 【請求項40】 請求項39に記載のアノードを含有するコンデンサー。
  41. 【請求項41】 固体電解質コンデンサーとしての請求項40に記載のコン
    デンサー。
  42. 【請求項42】 本質的にニオブからなりそしてNbおよびTaの合計含有
    量を基準として40at.−%までのタンタルを含有する電解質コンデンサーの
    製造における使用のための合金粉末。
  43. 【請求項43】 少なくとも2at.−%のタンタルを含有する請求項42
    に記載の粉末。
  44. 【請求項44】 少なくとも3.5at.−%のタンタルを含有する請求項4
    3に記載の粉末。
  45. 【請求項45】 少なくとも5at.−%のタンタルを含有する請求項43
    に記載の粉末。
  46. 【請求項46】 少なくとも10at.−%のタンタルを含有する請求項4
    3に記載の粉末。
  47. 【請求項47】 12〜34at.−%のタンタルを含有する請求項42に
    記載の粉末。
  48. 【請求項48】 8〜45(m2/g)×(g/cm3)のBET表面積と合
    金密度の積を有する集塊化したフレークの形態の請求項42〜47の1つに記載
    の粉末。
  49. 【請求項49】 100〜1500nmの直径を有し且つ15〜60(m2
    /g)×(g/cm3)のBET表面と密度の積を有する集塊化した実質的に球
    状の一次粒子の形態の請求項42〜47の1つに記載の粉末。
  50. 【請求項50】 20〜250μmのマスターサイザーに従う平均粒子寸法
    D50−値を有する請求項7または8に記載の粉末。
  51. 【請求項51】 1.5〜3(g/インチ3)/(g/cm3)のスコット密
    度を有する請求項42〜50の1つに記載の粉末。
  52. 【請求項52】 請求項42〜51の1つに記載の粉末の焼結およびアノー
    ド処理により得られるコンデンサーアノード。
  53. 【請求項53】 請求項52に記載のアノードを含んでなるコンデンサー。
  54. 【請求項54】 (a)NbおよびNbとTaの合計含有量を基準として4
    0at.−%までのTaを含有する電子線溶融合金インゴットを水素化し、そし
    て (b)該水素化した合金インゴットを粉砕し、そして (c)段階(b)から得られた粉砕された合金を脱水素化し、そして (d)該粉砕された合金を成形してフレークにし、そして (e)該フレークを800〜1150℃の温度で還元剤としてのアルカリ土類金
    属の存在下で集塊化し、そして (f)集塊化した合金フレークを浸出および洗浄して残渣および還元剤の残存生
    成物を除去する 段階を含んでなる請求項48に記載の合金粉末の製造方法。
  55. 【請求項55】 集塊化段階中に合金粉末を燐および/または窒素でドーピ
    ングする請求項54に記載の粉末。
  56. 【請求項56】 焼結および成形後に65,000(μFV/g)(m2/g
    )より大きい、好ましくは70,000(μFV/g)(m2/g)より大きい比
    キャパシタンスおよび粉末BET表面の比を達成することができるニオブ−タン
    タル合金粉末。
JP2000616950A 1998-05-06 1999-05-05 気体状マグネシウムを用いる酸化物の還元により製造される金属粉末 Expired - Lifetime JP4202609B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US09/073,488 US6171363B1 (en) 1998-05-06 1998-05-06 Method for producing tantallum/niobium metal powders by the reduction of their oxides with gaseous magnesium
DE19831280.6 1998-07-13
DE19831280A DE19831280A1 (de) 1998-07-13 1998-07-13 Verfahren zur Herstellung von Erdsäuremetallpulvern, insbesondere Niobpulvern
DE09/073,488 1998-07-13
PCT/US1999/009772 WO2000067936A1 (en) 1998-05-06 1999-05-05 Metal powders produced by the reduction of the oxides with gaseous magnesium

Related Child Applications (4)

Application Number Title Priority Date Filing Date
JP2007274870A Division JP5008523B2 (ja) 1998-05-06 2007-10-23 気体状マグネシウムを用いる酸化物の還元により製造される金属粉末
JP2007275024A Division JP5008524B2 (ja) 1998-05-06 2007-10-23 気体状マグネシウムを用いる酸化物の還元により製造される金属粉末
JP2007275178A Division JP2008094716A (ja) 1998-05-06 2007-10-23 気体状マグネシウムを用いる酸化物の還元により製造される金属粉末
JP2008175539A Division JP5119065B2 (ja) 1998-05-06 2008-07-04 金属粉末の製造方法

Publications (2)

Publication Number Publication Date
JP2002544375A true JP2002544375A (ja) 2002-12-24
JP4202609B2 JP4202609B2 (ja) 2008-12-24

Family

ID=40121784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000616950A Expired - Lifetime JP4202609B2 (ja) 1998-05-06 1999-05-05 気体状マグネシウムを用いる酸化物の還元により製造される金属粉末

Country Status (6)

Country Link
EP (1) EP1144147B8 (ja)
JP (1) JP4202609B2 (ja)
AU (1) AU757790B2 (ja)
BR (3) BR9911008A (ja)
DE (1) DE69940030D1 (ja)
HK (1) HK1039087B (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307963A (ja) * 2000-04-21 2001-11-02 Showa Denko Kk コンデンサ用ニオブ粉、それを用いた焼結体及びそれを用いたコンデンサ
JP2002544677A (ja) * 1999-05-12 2002-12-24 キャボット コーポレイション 高キャパシタンスニオブ粉末及び電解キャパシターアノード
JP2003514378A (ja) * 1999-11-09 2003-04-15 エイチ・シー・スタルク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング コンデンサー粉末
JP2006517722A (ja) * 2003-01-17 2006-07-27 エヴァレディ・バッテリー・カンパニー・インコーポレイテッド 金属粉体の凝集体を製造する方法及びこの凝集体を組み込んだ物品
JP2007533854A (ja) * 2004-04-23 2007-11-22 ハー ツェー シュタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンデイトゲゼルシヤフト ニオブ粉末及びタンタル粉末の製造方法
JP2008504436A (ja) * 2004-06-24 2008-02-14 ハー ツェー シュタルク インコーポレイテッド 改善された物理的性質および電気的性質を有するバルブメタルの製造
JP2008514822A (ja) * 2004-09-29 2008-05-08 ハー ツェー シュタルク インコーポレイテッド マグネシウム還元金属粉末からのマグネシウムの除去
JP2008516082A (ja) * 2004-10-08 2008-05-15 ハー ツェー シュタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンデイトゲゼルシヤフト バルブメタル粉末の製造法
JP2009507998A (ja) * 2005-08-19 2009-02-26 ナノシス・インク. 電子グレード金属ナノ構造
JP2010533642A (ja) * 2007-07-18 2010-10-28 キャボット コーポレイション 高電圧ニオブ酸化物およびそれを含むキャパシター
JP4754755B2 (ja) * 2000-03-23 2011-08-24 キャボット コーポレイション 酸素が減少した酸化ニオブ
JP2014109070A (ja) * 2012-11-30 2014-06-12 Korea Institute Of Geoscience And Mineral Resources 三酸化モリブデンの還元及び低酸素モリブデン粉末の製造装置
WO2014199480A1 (ja) 2013-06-13 2014-12-18 石原ケミカル株式会社 Ta粉末とその製造方法およびTa造粒粉
US8979975B2 (en) 2012-11-29 2015-03-17 Korea Institute Of Geoscience And Mineral Resources Method of producing low oxygen-content molybdenum powder by reducing molybdenum trioxide
JP2016222536A (ja) * 2011-02-04 2016-12-28 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツングH.C. Starck GmbH 純相の多成分系の製造方法、純相の多成分系をベースとするセラミック材料並びにそれらから形成された成形体及び複合体
US10329644B2 (en) 2014-09-11 2019-06-25 Ishihara Chemical Co., Ltd. Ta—Nb alloy powder and anode element for solid electrolytic capacitor
WO2019198191A1 (ja) * 2018-04-12 2019-10-17 石原ケミカル株式会社 Ta-Nb合金粉末とその製造方法ならびに固体電解コンデンサ用の陽極素子
US10927433B2 (en) 2016-08-02 2021-02-23 Sri Lanka Institute of Nanotechnology (Pvt) Ltd. Method of producing titanium from titanium oxides through magnesium vapour reduction

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6416730B1 (en) 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
DE10030387A1 (de) * 2000-06-21 2002-01-03 Starck H C Gmbh Co Kg Kondensatorpulver
KR100759290B1 (ko) * 2000-08-10 2007-09-17 쇼와 덴코 가부시키가이샤 니오브합금분, 그 소결체 및 그것을 사용한 콘덴서
MX2019000450A (es) * 2016-07-13 2019-09-23 Ningxia Orient Tantalum Ind Co Ltd Polvo de tantalio escamoso y metodo de preparacion del mismo.
DE102019217654A1 (de) 2019-11-15 2021-05-20 Taniobis Gmbh Sphärisches Pulver zur Fertigung von dreidimensionalen Objekten

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1123326A (fr) * 1955-02-28 1956-09-20 Onera (Off Nat Aerospatiale) Procédé de fabrication de métaux en poudre
US4017302A (en) * 1976-02-04 1977-04-12 Fansteel Inc. Tantalum metal powder
DE3130392C2 (de) 1981-07-31 1985-10-17 Hermann C. Starck Berlin, 1000 Berlin Verfahren zur Herstellung reiner agglomerierter Ventilmetallpulver für Elektrolytkondensatoren, deren Verwendung und Verfahren zur Herstellung von Sinteranoden
US4740238A (en) * 1987-03-26 1988-04-26 Fansteel Inc. Platelet-containing tantalum powders
US4836849A (en) * 1987-04-30 1989-06-06 Westinghouse Electric Corp. Oxidation resistant niobium alloy
US5448447A (en) * 1993-04-26 1995-09-05 Cabot Corporation Process for making an improved tantalum powder and high capacitance low leakage electrode made therefrom
JPH0897096A (ja) 1994-09-28 1996-04-12 Sutaruku Buitetsuku Kk タンタル粉末及びそれを用いた電解コンデンサ
US6338832B1 (en) 1995-10-12 2002-01-15 Cabot Corporation Process for producing niobium and tantalum compounds
US6165623A (en) 1996-11-07 2000-12-26 Cabot Corporation Niobium powders and niobium electrolytic capacitors
DE19847012A1 (de) 1998-10-13 2000-04-20 Starck H C Gmbh Co Kg Niobpulver und Verfahren zu dessen Herstellung

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002544677A (ja) * 1999-05-12 2002-12-24 キャボット コーポレイション 高キャパシタンスニオブ粉末及び電解キャパシターアノード
JP2011023745A (ja) * 1999-05-12 2011-02-03 Cabot Corp 高キャパシタンスニオブ粉末及び電解キャパシターアノード
JP2003514378A (ja) * 1999-11-09 2003-04-15 エイチ・シー・スタルク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング コンデンサー粉末
JP4999135B2 (ja) * 1999-11-09 2012-08-15 エイチ・シー・スタルク・ゲゼルシヤフト・ミツト・ベシュレンクテル・ハフツング コンデンサー粉末
JP4754755B2 (ja) * 2000-03-23 2011-08-24 キャボット コーポレイション 酸素が減少した酸化ニオブ
JP2001307963A (ja) * 2000-04-21 2001-11-02 Showa Denko Kk コンデンサ用ニオブ粉、それを用いた焼結体及びそれを用いたコンデンサ
JP4647744B2 (ja) * 2000-04-21 2011-03-09 昭和電工株式会社 コンデンサ用ニオブ粉、それを用いた焼結体及びそれを用いたコンデンサ
JP4658035B2 (ja) * 2003-01-17 2011-03-23 エバレデイ バツテリ カンパニー インコーポレーテツド 金属粉体の凝集体を製造する方法及びこの凝集体を組み込んだ物品
JP2006517722A (ja) * 2003-01-17 2006-07-27 エヴァレディ・バッテリー・カンパニー・インコーポレイテッド 金属粉体の凝集体を製造する方法及びこの凝集体を組み込んだ物品
JP2007533854A (ja) * 2004-04-23 2007-11-22 ハー ツェー シュタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンデイトゲゼルシヤフト ニオブ粉末及びタンタル粉末の製造方法
KR101156870B1 (ko) 2004-04-23 2012-06-20 하. 체. 스타르크 엘티디. 밸브 금속 분말 또는 탄탈륨 분말의 제조 방법 및 탄탈륨 분말
JP2008504436A (ja) * 2004-06-24 2008-02-14 ハー ツェー シュタルク インコーポレイテッド 改善された物理的性質および電気的性質を有するバルブメタルの製造
JP2008514822A (ja) * 2004-09-29 2008-05-08 ハー ツェー シュタルク インコーポレイテッド マグネシウム還元金属粉末からのマグネシウムの除去
JP2017150081A (ja) * 2004-10-08 2017-08-31 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツングH.C. Starck GmbH バルブメタル粉末
JP2008516082A (ja) * 2004-10-08 2008-05-15 ハー ツェー シュタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンデイトゲゼルシヤフト バルブメタル粉末の製造法
KR101311146B1 (ko) * 2004-10-08 2013-09-24 하.체. 스타르크 게엠베하 운트 코. 카게 밸브 금속 분말의 제조를 위한 방법
JP2009507998A (ja) * 2005-08-19 2009-02-26 ナノシス・インク. 電子グレード金属ナノ構造
JP2010533642A (ja) * 2007-07-18 2010-10-28 キャボット コーポレイション 高電圧ニオブ酸化物およびそれを含むキャパシター
JP2016222536A (ja) * 2011-02-04 2016-12-28 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツングH.C. Starck GmbH 純相の多成分系の製造方法、純相の多成分系をベースとするセラミック材料並びにそれらから形成された成形体及び複合体
US8979975B2 (en) 2012-11-29 2015-03-17 Korea Institute Of Geoscience And Mineral Resources Method of producing low oxygen-content molybdenum powder by reducing molybdenum trioxide
JP2014109070A (ja) * 2012-11-30 2014-06-12 Korea Institute Of Geoscience And Mineral Resources 三酸化モリブデンの還元及び低酸素モリブデン粉末の製造装置
US8986603B2 (en) 2012-11-30 2015-03-24 Korea Institute Of Geoscience And Mineral Resources Apparatus for producing low-oxygen content molybdenum powder
WO2014199480A1 (ja) 2013-06-13 2014-12-18 石原ケミカル株式会社 Ta粉末とその製造方法およびTa造粒粉
US10329644B2 (en) 2014-09-11 2019-06-25 Ishihara Chemical Co., Ltd. Ta—Nb alloy powder and anode element for solid electrolytic capacitor
US10927433B2 (en) 2016-08-02 2021-02-23 Sri Lanka Institute of Nanotechnology (Pvt) Ltd. Method of producing titanium from titanium oxides through magnesium vapour reduction
WO2019198191A1 (ja) * 2018-04-12 2019-10-17 石原ケミカル株式会社 Ta-Nb合金粉末とその製造方法ならびに固体電解コンデンサ用の陽極素子

Also Published As

Publication number Publication date
BR9911008A (pt) 2002-04-30
BRPI9911008B1 (pt) 2018-09-25
HK1039087A1 (en) 2002-04-12
JP4202609B2 (ja) 2008-12-24
EP1144147B1 (en) 2008-12-03
BRPI9917635B1 (pt) 2017-06-06
DE69940030D1 (de) 2009-01-15
EP1144147A1 (en) 2001-10-17
EP1144147A4 (en) 2005-04-27
HK1039087B (zh) 2007-01-19
EP1144147B2 (en) 2012-02-15
AU5896599A (en) 2000-11-21
AU757790B2 (en) 2003-03-06
EP1144147B8 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP5008523B2 (ja) 気体状マグネシウムを用いる酸化物の還元により製造される金属粉末
US6558447B1 (en) Metal powders produced by the reduction of the oxides with gaseous magnesium
JP2002544375A (ja) 気体状マグネシウムを用いる酸化物の還元により製造される金属粉末
WO2000067936A1 (en) Metal powders produced by the reduction of the oxides with gaseous magnesium
CZ302249B6 (cs) Zpusob výroby kovových prášku
CA1174083A (en) Process for the preparation of alloy powders which can be sintered and which are based on titanium
US6238456B1 (en) Tantalum powder, method for producing same powder and sintered anodes obtained from it
AU2008246253B2 (en) Metalothermic reduction of refractory metal oxides
CN111819016A (zh) 球形钽粉末、含其的产品以及其制造方法
KR101629816B1 (ko) 커패시터용 탄탈륨 분말의 제조방법
JP2009143804A (ja) 亜酸化ニオブ、亜酸化ニオブの製造方法ならびに亜酸化ニオブを含有するアノードを有するキャパシタ
RU2230629C2 (ru) Металлические порошки, полученные восстановлением оксидов газообразным магнием
AU2001296793A1 (en) Metalothermic reduction of refractory metal oxides
CA2331707C (en) Reduction of nb or ta oxide powder by a gaseous light metal or a hydride thereof
CA2525259C (en) Metal powders produced by the reduction of the oxides with gaseous magnesium
MXPA00010861A (en) Metal powders produced by the reduction of the oxides with gaseous magnesium
TH22629C3 (th) กระบวนการผลิตผงโลหะและผงโลหะที่ถูกผลิตโดยการรีดักชันของออกไซด์ด้วยแมกนีเซียมที่เป็นแก๊ส
TH44452A3 (th) กระบวนการผลิตผงโลหะและผงโลหะที่ถูกผลิตโดยการรีดักชันของออกไซด์ด้วยแมกนีเซียมที่เป็นแก๊ส

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060822

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070723

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080517

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080604

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080611

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081009

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term