ES2769530T3 - Sistemas de inspección de tomografía de rayos X - Google Patents

Sistemas de inspección de tomografía de rayos X Download PDF

Info

Publication number
ES2769530T3
ES2769530T3 ES08016552T ES08016552T ES2769530T3 ES 2769530 T3 ES2769530 T3 ES 2769530T3 ES 08016552 T ES08016552 T ES 08016552T ES 08016552 T ES08016552 T ES 08016552T ES 2769530 T3 ES2769530 T3 ES 2769530T3
Authority
ES
Spain
Prior art keywords
ray
data
detectors
image
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES08016552T
Other languages
English (en)
Inventor
Edward James Morton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CXR Ltd
Original Assignee
CXR Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CXR Ltd filed Critical CXR Ltd
Application granted granted Critical
Publication of ES2769530T3 publication Critical patent/ES2769530T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by using a combination of at least two measurements at least one being a transmission measurement and one a scatter measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/10Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being confined in a container, e.g. in a luggage X-ray scanners
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/246Measuring radiation intensity with semiconductor detectors utilizing latent read-out, e.g. charge stored and read-out later
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/247Detector read-out circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/222Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays measuring scattered radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/226Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays using tomography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/143Segmentation; Edge detection involving probabilistic approaches, e.g. Markov random field [MRF] modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/187Segmentation; Edge detection involving region growing; involving region merging; involving connected component labelling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3304Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts helicoidal scan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3307Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts source and detector fixed; object moves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3308Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts object translates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/401Imaging image processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/421Imaging digitised image, analysed in real time (recognition algorithms)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/50Detectors
    • G01N2223/501Detectors array
    • G01N2223/5015Detectors array linear array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/639Specific applications or type of materials material in a container
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/643Specific applications or type of materials object on conveyor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Software Systems (AREA)
  • Pulmonology (AREA)
  • Probability & Statistics with Applications (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • X-Ray Techniques (AREA)

Abstract

Sistema de escaneado de rayos X que comprende una fuente de rayos X dispuesta para generar rayos X desde una pluralidad de posiciones de fuente alrededor de una región de escaneado, un conjunto de detectores cilíndricos (422) compuesto por una pluralidad de conjuntos circulares (422a, 422b) de detectores de dispersión dispuestos para detectar rayos X dispersados dentro de la región de escaneado, y un sistema de recogida de datos que comprende una memoria (506) que tiene una pluralidad de áreas (508) estando cada una asociada con un volumen secundario de un volumen de imágenes, medios de entrada de datos dispuestos para recibir datos de entrada desde los detectores de retrodispersión en una secuencia predeterminada, en el que el sistema comprende además una tabla de consulta que tiene entradas almacenadas en la misma que, para cada una de las posiciones de fuente, asocian cada uno de los detectores de retrodispersión con un volumen secundario del volumen de imágenes, y medios de procesamiento dispuestos para generar a partir de los datos de dispersión de rayos X de datos de entrada asociados con cada uno de los volúmenes secundarios del volumen de imágenes, y para almacenar los datos de dispersión de rayos X en las áreas de memoria apropiadas (508) usando la tabla de consulta, en el que los medios de procesamiento están dispuestos para almacenar los datos de dispersión de rayos X en la memoria (506) para cada uno de una pluralidad de escaneos tomográficos de un objeto a medida que el objeto se mueve a través de una región de imágenes, y para extraer los datos de dispersión de rayos X desde la memoria después de cada uno de los escaneos de modo que los datos de dispersión de rayos X durante un escaneo posterior pueden almacenarse en la memoria.

Description

DESCRIPCIÓN
Sistemas de inspección de tomografía de rayos X
La presente invención se refiere al escaneado de rayos X. Tiene una aplicación particular en el examen de seguridad de equipaje, paquetes y otros objetos sospechosos, aunque se podría utilizar igualmente en otras aplicaciones adecuadas.
Los escáneres de tomografía computarizada (TC) de rayos X se han utilizado en el examen de seguridad en aeropuertos durante varios años. Un sistema convencional comprende un tubo de rayos X que se hace rotar alrededor de un eje con un detector de rayos X arqueado también rotado a la misma velocidad alrededor del mismo eje. La cinta transportadora sobre la que se transporta el equipaje se coloca dentro de una abertura adecuada alrededor del eje central de rotación, y se mueve a lo largo del eje a medida que se hace rotar el tubo. Un haz en abanico de radiación X pasa desde la fuente a través del objeto que se va a inspeccionar al conjunto de detectores de rayos X.
El conjunto de detectores de rayos X registra la intensidad de rayos X que pasan a través del objeto que se va a inspección en varias ubicaciones a lo largo de su longitud. Un conjunto de datos de proyección se registra en cada uno de una serie de ángulos fuente. A partir de estas intensidades de rayos X registradas, es posible formar una imagen tomográfica (en sección transversal), habitualmente por medio de un algoritmo de retroproyección filtrada. Para producir una imagen tomográfica precisa de un objeto, como una bolsa o paquete, puede mostrarse que existe un requisito de que la fuente de rayos X pase a través de cada plano a través del objeto. En la disposición descrita anteriormente, esto se consigue mediante el escaneado rotacional de la fuente de rayos X, y el movimiento longitudinal de la cinta transportadora sobre la que se transporta el objeto.
En este tipo de sistema, la velocidad a la que pueden recogerse los escaneos tomográficos de rayos X es dependiente de la velocidad de rotación del túnel que sostiene la fuente de rayos X y el conjunto de detectores. En un túnel de TC moderno, todo el conjunto del detector de tubos y el túnel completarán de dos a cuatro revoluciones por segundo. Esto permite que se recojan hasta cuatro u ocho escaneos tomográficos por segundo, respectivamente.
A medida que el estado de la técnica se ha desarrollado, el anillo único de detectores de rayos X se ha reemplazado por múltiples anillos de detectores. Esto permite que se escaneen muchos cortes (habitualmente 8) simultáneamente y que se reconstruyan utilizando métodos de retroproyección filtrada adaptados a partir de las máquinas de escaneo único. Con un movimiento continuo de la cinta transportadora a través del sistema de imágenes, la fuente describe un movimiento de escaneado helicoidal sobre el objeto. Esto permite que se aplique un método más sofisticado de reconstrucción de imagen de haz cónico que, en principio, puede ofrecer una reconstrucción de imágenes volumétrica más precisa.
En un desarrollo adicional, los escáneres de haz de electrones de barrido se han demostrado en aplicaciones médicas mediante lo cual se elimina el movimiento de escaneado mecánico de la fuente de rayos X y los detectores, que se reemplazan por un anillo continuo (o anillos) de detectores de rayos X que rodean el objeto bajo inspección con una fuente de rayos X en movimiento que se genera como resultado de barrer un haz de electrones alrededor de un ánodo arqueado. Esto permite que las imágenes se obtengan más rápidamente que en los escáneres convencionales. Sin embargo, debido a que la fuente de electrones se encuentra en el eje de rotación, tales escáneres de haz de barrido no son compatibles con los sistemas de cinta transportadora que pasan cerca por sí mismos, y paralelos, al eje de rotación. El documento US 2002/0097836 da a conocer un sistema que incluye una fuente para emitir haces de radiación secuenciales desde un objetivo en un conjunto de direcciones sustancialmente paralelas, un detector para detectar radiación después de la interacción con el contenido de un contenedor y generar un conjunto de señales que corresponden a cada una de las direcciones paralelas y un controlador para caracterizar el contenido basándose en las señales.
El documento US 2002/0097836 da a conocer un aparato y método para generar haces electrónicamente dirigibles de radiación de penetración secuencial en los que partículas cargadas desde una fuente se forman para dar un haz y se aceleran a un objetivo. La radiación electromagnética generada por el objetivo se emite con una distribución angular que es una función del grosor de objetivo y la energía de las partículas.
El documento US 2003/0076924 da a conocer un sistema de rayos X de escaneado tomográfico en el que se transmite radiación de rayos X a través de y se dispersan desde un objeto bajo inspección para detectar armas, narcóticos, explosivos u otros bienes de contrabando.
El documento US 5.974.111 da a conocer un dispositivo de inspección de rayos X para detectar un material específico de interés en artículos de diversos tamaños y formas, que incluye un sistema de fuente de rayos X ubicado en una región de inspección y construido para exponer el artículo examinado a al menos un haz de radiación de rayos X, y uno o más sistemas de detección de rayos X.
El documento US 6.269.142 da a conocer un método de imágenes de haz interrumpido por ventilador, que produce imágenes de rayos X retrodispersados a partir de sistemas de escaneo de línea convencionales, tal como aquellos usados para inspección de equipaje y mercancías.
El documento US 6.546.072 da a conocer un aparato y método para potenciar una imagen de radiación de penetración dispersada por objetos ocultos dentro de un contenedor.
El documento US 2005/0031075 da a conocer un sistema y método para verificar la identidad de un objeto dentro de un artículo encerrado. El sistema incluye un subsistema de adquisición que utiliza un detector y fuente de radiación estacionaria, un subsistema de reconstrucción, un subsistema de detección asistida por ordenador (CAD) y un subsistema de visualización 2D/3D.
El documento JP 2004-347328 da a conocer un método de imágenes radiográficas en el que dos clases de datos fotográficos de un sujeto adquiridos por radiografía de energía dual se usan como variables, y se usa una función aproximada para derivar directamente una imagen de efecto fotoeléctrico y una imagen dispersada de efecto Compton a partir de las dos variables.
La presente invención proporciona un sistema de escaneado de rayos X que comprende una fuente de rayos X dispuesta para generar rayos X desde una pluralidad de posiciones de fuente alrededor de una región de escaneado, un conjunto de detectores cilíndricos compuesto por una pluralidad de conjuntos circulares de detectores de dispersión dispuestos para detectar rayos X dispersados dentro de la región de escaneado, y un sistema de recogida de datos que comprende una memoria que tiene una pluralidad de áreas estando cada una asociada con un volumen secundario respectivo de un volumen de imágenes, medios de entrada de datos dispuestos para recibir datos de entrada desde los detectores de retrodispersión en una secuencia predeterminada, en el que el sistema comprende además una tabla de consulta que tiene entradas almacenadas en la misma que, para cada una de las posiciones de fuente, asocian cada uno de los detectores de retrodispersión con un volumen secundario respectivo del volumen de imágenes, y medios de procesamiento dispuestos para generar a partir de los datos de dispersión de rayos X de datos de entrada asociados con cada uno de los volúmenes secundarios del volumen de imágenes, y para almacenar los datos de dispersión de rayos X en las áreas de memoria apropiadas usando la tabla de consulta, en el que los medios de procesamiento están dispuestos para almacenar los datos de dispersión de rayos X en la memoria para cada uno de una pluralidad de escaneos tomográficos de un objeto a medida que el objeto se mueve a través de una región de imágenes, y para extraer los datos de dispersión de rayos X desde la memoria después de cada uno de los escaneos de modo que los datos de dispersión de rayos X durante un escaneo posterior pueden almacenarse en la memoria. La figura 1 es una sección longitudinal de un sistema de escaneado de seguridad de tomografía en tiempo real que forma parte de una primera realización de la invención;
la figura 1a es una vista en perspectiva de una fuente de rayos X del sistema de la figura 1;
la figura 2 es una vista en planta del sistema de la figura 1 ;
la figura 3 es una vista lateral esquemática del sistema de la figura 1;
la figura 4 es un diagrama esquemático de un sistema de adquisición de datos que forma parte del sistema de la figura 1 ;
la figura 5 es un diagrama esquemático de un sistema de detección de amenazas que forma parte del sistema de la figura 1 ;
la figura 6 es un diagrama esquemático de un sistema de clasificación de equipaje que incluye el sistema de escaneado de la figura 1 ;
la figura 7 es un diagrama esquemático de un sistema de clasificación de equipaje;
las figuras 8a, 8b y 8c son diagramas esquemáticos de sistemas de clasificación de equipaje;
la figura 9 es un diagrama esquemático de un sistema de clasificación de equipaje en red según una realización adicional de la invención;
la figura 10 es una vista en planta esquemática de un sistema de escaneado autónomo;
la figura 11 es una vista lateral esquemática del sistema de la figura 10 ;
la figura 12 es una vista lateral esquemática de un sistema de escaneado modular;
la figura 13 es un diagrama de un evento de dispersión de rayos X;
la figura 14 es una sección longitudinal a través de un sistema de escaneado de seguridad según la primera realización de la invención;
la figura 15 es una sección longitudinal adicional a través del sistema de la figura 14 que muestra cómo se detectan diferentes eventos de dispersión;
la figura 16 es una sección transversal a través del sistema de la figura 14;
la figura 17 es un diagrama esquemático de un sistema de adquisición de datos del sistema de escaneado de la figura 14;
la figura 18 es una vista parcial de un escáner de energía dual que forma parte de una realización adicional de la invención;
la figura 19 es una vista parcial adicional del escáner de la figura 18;
la figura 20 es una vista esquemática de una fuente de rayos X de energía dual que forma parte de una realización adicional de la invención;
la figura 21 es una vista esquemática de un conjunto de detectores de un escáner que forma parte de una realización adicional de la invención;
la figura 22 es una vista esquemática de un conjunto de detectores de un escáner que forma parte de una realización adicional de la invención;
la figura 23 es un diagrama de circuito de un circuito de adquisición de datos de la realización de la figura 21; y
la figura 24 es un diagrama de circuito de un circuito de adquisición de datos adicional.
Haciendo referencia a las figuras 1 a 3, un sistema de escaneado de equipaje de vestíbulo 6 comprende una unidad de escaneado 8 que comprende una fuente de rayos X multifocal 10 y un conjunto de detectores de rayos X 12. La fuente 10 comprende un gran número de puntos de fuente 14 en ubicaciones espaciadas respectivas en la fuente, y está dispuesta en un conjunto circular completo de 360° alrededor del eje X-X del sistema. Se apreciará que también pueden utilizarse conjuntos que cubren menos del ángulo completo de 360 °.
Haciendo referencia a la figura 1a, la fuente de rayos X 10 está compuesta por un número de unidades de fuente 11 que están espaciadas alrededor de la región de escaneado 16 en una disposición sustancialmente circular, en un plano perpendicular a la dirección de movimiento de la cinta transportadora. Cada unidad de fuente 11 comprende un supresor metálico conductor 13 que tiene dos lados y un elemento emisor 15 que se extiende a lo largo entre los lados de supresor. Un número de elementos de rejilla en forma de alambres de rejilla 17 están soportados por encima del supresor 13 perpendicular al elemento emisor 15. Un número de elementos de enfoque en forma de alambres de enfoque 19 están soportados en otro plano en el lado opuesto de los alambres de rejilla al elemento emisor. Los alambres de enfoque 19 son paralelos a los alambres de rejilla 17 y están separados entre sí con el mismo espaciado que los alambres de rejilla, estando cada alambre de enfoque 19 alineado con uno respectivo de los alambres de rejilla 17.
Los alambres de enfoque 19 están soportados sobre dos carriles de soporte 21 que se extienden paralelos al elemento emisor 15, y están espaciados del supresor 13. Los carriles de soporte 21 son eléctricamente conductores de modo que todos los alambres de enfoque 19 están conectados eléctricamente entre sí. Uno de los carriles de soporte 21 está conectado a un conector 23 para proporcionar una conexión eléctrica para los alambres de enfoque 19. Cada uno de los alambres de rejilla 17 se extiende hacia abajo por un lado del supresor 12 y está conectado a un respectivo conector eléctrico 25 que proporcionan conexiones eléctricas separadas para cada uno de los alambres de rejilla 17.
Un ánodo 27 está soportado por encima de los alambres de rejilla 17 y los alambres de enfoque 19. El ánodo 27 está formado como una varilla, habitualmente de cobre con recubrimiento de plata o tungsteno, y se extiende paralelo al elemento emisor 15. Los alambres de rejilla y de enfoque 17, 19 se extienden, por lo tanto, entre el elemento emisor 15 y el ánodo 27. Un conector eléctrico 29 proporciona una conexión eléctrica al ánodo 27.
Los alambres de rejilla 17 están todos conectados a un potencial negativo, aparte de dos que están conectados a un potencial positivo. Estos alambres de rejilla positivos extraen un haz de electrones de un área del elemento emisor 15 y, enfocando mediante los alambres de enfoque 19, dirigen el haz de electrones a un punto del ánodo 27, que forma el punto de fuente de rayos X para ese par de alambres de rejilla. Por lo tanto, el potencial de los alambres de rejilla puede cambiarse para seleccionar qué par de alambres de rejilla está activo en un momento dado y, por lo tanto, para seleccionar qué punto en el ánodo 27 es el punto de fuente de rayos X activo en cualquier momento.
Por lo tanto, la fuente 10 puede controlarse para producir rayos X desde cada uno de los puntos de fuente 14 en cada una de las unidades de fuente 11 individualmente y, haciendo referencia de nuevo a la figura 1, los rayos X de cada punto de fuente 14 se dirigen hacia el interior a través de la región de escaneado 16 dentro de la fuente circular 10. La fuente 10 está controlada por una unidad de control 18 que controla los potenciales eléctricos aplicados a los alambres de rejilla 17 y por lo tanto controla la emisión de rayos X desde cada uno de los puntos de fuente 14.
Otros diseños de fuente de rayos X adecuados se describen en el documento WO 2004/097889.
La fuente de rayos X de rayos X multifocal 10 permite que el circuito de control electrónico 18 se utilice para seleccionar cuál de los muchos puntos de fuente de rayos X individuales 14 dentro de la fuente de rayos X multifocal está activo en cualquier momento en el tiempo. Por lo tanto, escaneando electrónicamente el tubo de rayos X multifocal, se crea la ilusión del movimiento de fuente de rayos X sin partes mecánicas que se muevan físicamente. En este caso, la velocidad angular de la rotación de fuente puede aumentarse a niveles que simplemente no pueden lograrse cuando se utilizan conjuntos de tubos de rayos X rotatorios convencionales. Este escaneado rotatorio rápido se traduce en un proceso de adquisición de datos acelerado de forma equivalente y, a continuación, una reconstrucción de imágenes rápida.
El conjunto de detectores 12 también es circular y está dispuesto alrededor del eje X-X en una posición que está ligeramente desplazada en la dirección axial desde la fuente 10. La fuente 10 está dispuesta para dirigir los rayos X que la misma produce a través de la región de escaneado 16 hacia el conjunto de detectores 12 en el lado opuesto de la región de escaneado. Las trayectorias 18 de los haces de rayos X pasan, por lo tanto, a través de la región de escaneado 16 en una dirección que es sustancialmente, o casi, perpendicular al eje X-X de escáner, cruzándose entre sí cerca del eje. El volumen de la región de escaneado que se escanea y se obtienen imágenes está, por lo tanto, en la forma de un corte delgado perpendicular al eje de escáner. La fuente se escanea de modo que cada punto de fuente emite rayos X durante un período respectivo, estando los periodos de emisión dispuestos en un orden predeterminado. A medida que cada punto de fuente 14 emite rayos X, las señales de los detectores 12, que son dependientes de la intensidad de los rayos X incidentes sobre el detector, se producen, y los datos de intensidad que proporcionan las señales se registran en la memoria. Cuando la fuente ha completado su escaneo, las señales de detector pueden procesarse para formar una imagen del volumen escaneado.
Una cinta transportadora 20 se mueve a través del volumen de imágenes, de izquierda a derecha, como se ve en la figura 1, paralela al eje X-X del escáner. Las pantallas de dispersión de rayos X 22 están ubicadas alrededor de la cinta transportadora 20 aguas arriba y aguas abajo del sistema de rayos X principal para evitar una dosis del operario debido a los rayos X dispersados. Las pantallas de dispersión de rayos X 22 incluyen cortinas de tiras de caucho de plomo 24 en sus extremos abiertos de manera que el artículo 26 bajo inspección es arrastrado a través de una cortina al entrar, y una al salir, de la región de inspección. En el sistema integrado mostrado, el sistema de control electrónico principal 18, un sistema de procesamiento 30, un suministro de potencia 32 y soportes de refrigeración 34 se muestran montados debajo de la cinta transportadora 20. La cinta transportadora 20 está dispuesta para hacerse funcionar normalmente con un movimiento de escaneado continuo a velocidad constante de cinta transportadora, y habitualmente tiene un conjunto de armazón de fibra de carbono dentro del volumen de imágenes.
Haciendo referencia a la figura 4, el sistema de procesamiento 30 incluye un sistema de adquisición de datos electrónico y un sistema de reconstrucción de imágenes en tiempo real. El conjunto de detectores 12de detectores de rayos X 12 comprende bancos de detectores de rayos X individuales 50 configurados en un patrón lineal simple (por ejemplo, 1 x 16). Múltiples patrones de anillo (por ejemplo, 8 x 16) también son posibles. Cada detector 50 emite una señal dependiente de la intensidad de los rayos X que detecta. Un bloque de multiplexación 52 multiplexa las señales de datos de salida de cada uno de los detectores de rayos X de entrada 50, realiza un filtrado de datos, correcciones de ganancia y desplazamiento y formatea los datos para dar un flujo en serie de alta velocidad. Un bloque de selección 53 toma la entrada de todos los bloques de multiplexación 52 y selecciona solo la parte de los datos de rayos X completos que se requieren para la reconstrucción de imagen. El bloque de selección 53 también determina la intensidad de haz de rayos X no atenuado, Io, para el punto de fuente de rayos X apropiado (que variará para cada punto de fuente de rayos X dentro del tubo de rayos X multifocal), procesa los datos de intensidad de rayos X, Ix, del bloque de multiplexación 52 formando el resultado de loge (Ix/Io) y luego se convoluciona con un filtro 1-D adecuado. Los datos de proyección resultantes se registran como una sinograma, en la que los datos se disponen en un conjunto con un número de píxeles a lo largo de un eje, en este caso horizontalmente, y un ángulo fuente a lo largo de otro eje, en este caso verticalmente.
A continuación, los datos se pasan desde el bloque de selección 53 en paralelo a un conjunto de elementos de procesador de suma de retroproyección 54. Los elementos de procesador 54 se mapean en el hardware, utilizando tablas de consulta con coeficientes calculados previamente para seleccionar los datos de rayos X convolucionados necesarios y los factores de ponderación para la retroproyección y suma rápidas. Un bloque de formateo 55 toma los datos que representan azulejos de imagen reconstruidos individuales de los múltiples elementos de procesador 54 y formatea los datos de imagen de salida final a una forma adecuada para generar una imagen tridimensional formateada adecuadamente en una pantalla de visualización. Esta salida puede generarse lo suficientemente rápido para que las imágenes se generen en tiempo real, para verlas en tiempo real o fuera de línea, por lo que el sistema se denomina sistema de tomografía en tiempo real (RTT).
En esta realización, el bloque de multiplexación 52 está codificado en el software, el bloque de selección 53 y el bloque de formateo 55 están ambos codificados en el firmware, y los elementos de procesador mapeados en el hardware. Sin embargo, cada uno de estos componentes podría ser hardware o software dependiendo de los requisitos del sistema particular.
Haciendo referencia a la figura 5, cada una de las imágenes de salida final para cada artículo de equipaje se procesa entonces por un procesador de detección de amenazas 60 dentro del sistema de procesamiento 30 que está dispuesto para determinar si el artículo de equipaje visualizado representa una amenaza. En el procesador de detección de amenazas 60, los datos de imagen tomográfica de rayos X de entrada 62 se pasan a un conjunto de extractores de parámetros de bajo nivel 63 (nivel 1). Los extractores de parámetros 63 identifican características en la imagen tales como áreas de nivel de gris constante, textura y estadísticas. Algunos de los extractores trabajan sobre los datos de imágenes o cortes bidimensionales individuales, algunos trabajan sobre las imágenes tridimensionales y algunos trabajan sobre los datos de la sonograma. Siempre que sea posible, cada extractor trabaja en paralelo sobre el mismo conjunto de datos de entrada, y cada extractor está dispuesto para realizar una operación de procesamiento diferente y para determinar un parámetro diferente. Al final del procesamiento, los parámetros determinados por los extractores de parámetros 63 pasan a un conjunto de árboles de decisión 64 (nivel 2). Los detalles de los parámetros extraídos se dan a continuación. Los árboles de decisión 64 toman cada uno un número (habitualmente todos) de los parámetros de bajo nivel y construyen información de nivel más alto respectiva, tal como información con respecto a volúmenes contiguos, con estadísticas asociadas. En el nivel superior (nivel 3), un buscador de bases de datos 65 mapea los parámetros de nivel más alto producidos en el nivel 2 en una probabilidad 'roja' Pr (amenaza) de que haya una amenaza presente y una probabilidad 'verde' Pr (segura) de que el artículo bajo inspección sea seguro. Estas probabilidades se utilizan por el sistema de procesamiento 30 para asignar el artículo escaneado a una categoría de seguridad apropiada, y para producir una salida de control de clasificación automática. Esta salida de control de clasificación automática puede ser una primera salida 'verde' que indica que el artículo está asignado a una categoría segura, una segunda salida 'roja' que indica que el artículo está asignado a una categoría 'no segura' o una tercera salida 'ámbar' que indica que la clasificación automática no puede llevarse a cabo con suficiente fiabilidad para asignar el artículo a la categoría 'segura' o 'no segura'. Específicamente si Pr (segura) está por encima de un valor predeterminado, (o Pr (amenaza) está por debajo de un valor predeterminado), entonces la salida de clasificación automática se producirá teniendo una primera forma de señal, indicando que el artículo debe asignarse al canal verde. Si Pr (amenaza) está por encima de un valor predeterminado, (o Pr (segura) está por debajo de un valor predeterminado), entonces la salida de clasificación automática se producirá teniendo una segunda forma de señal, indicando que el artículo debe asignarse al canal rojo. Si Pr (amenaza) (o Pr (segura)) está entre los dos valores predeterminados, entonces la salida de clasificación automática se produce teniendo una tercera forma de señal, indicando que el artículo no se puede asignar al canal rojo o verde. Las probabilidades también pueden emitirse como señales de salida adicionales.
Los parámetros que se determinarán por los extractores de parámetros 63 se refieren generalmente al análisis estadístico de píxeles dentro de regiones separadas de la imagen bidimensional o tridimensional. Para identificar regiones separadas en la imagen, se utiliza un método de detección de borde estadístico. Esto comienza en un píxel y luego verifica si los píxeles adyacentes son parte de la misma región, moviéndose hacia afuera a medida que la región crece. En cada etapa se determina una intensidad promedio de la región, calculando la intensidad media de los píxeles dentro de la región, y se compara la intensidad del siguiente píxel adyacente a la región con ese valor medio, para determinar si está lo suficientemente cerca como para que el píxel se añada a la región. En este caso, se determina la desviación estándar de la intensidad de píxel dentro de la región, y si la intensidad del nuevo píxel está dentro de la desviación estándar, entonces se añade a la región. Si no es así, entonces no se agrega a la región, y esto define el borde de la región como el límite entre píxeles en la región y píxeles que se han comprobado y no se han añadido a la región.
Una vez que la imagen se ha dividido en regiones, entonces pueden medirse los parámetros de la región. Un parámetro de este tipo es una medida de la varianza de la intensidad de píxel dentro de la región. Si es alta, esto podría ser indicativo de un material apelmazado, que podría encontrarse, por ejemplo, en una bomba casera, mientras que si la varianza es baja, esto sería indicativo de un material uniforme como un líquido.
Otro parámetro que se mide es el sesgo de la distribución del valor de píxel dentro de la región, que se determina midiendo el sesgo de un histograma de valores de píxel. Una distribución gaussiana, es decir no sesgada, indica que el material dentro de la región es uniforme, mientras que una distribución altamente sesgada indica no uniformidad en la región.
Como se describió anteriormente, estos parámetros de bajo nivel se pasan a los árboles de decisión 64, donde se construye información de nivel más alto y se determinan parámetros de nivel más alto. Uno de tales parámetros de nivel más alto es la relación del área de superficie con respecto al volumen de la región identificada. Otra es una medida de similitud, en este caso, correlación cruzada, entre la forma de la región y las formas de plantilla almacenadas en el sistema. Las formas de plantilla están dispuestas para corresponderse con la forma de los artículos que representan una amenaza a la seguridad, como pistolas o detonadores. Estos parámetros de alto nivel se utilizan como se describió anteriormente para determinar un nivel si represente una amenaza el objeto representado.
Haciendo referencia a la figura 6, un sistema de clasificación de equipaje de tomografía en línea en tiempo real comprende el sistema de escaneado 6 de la figura 1 con la cinta transportadora 20 que pasa a través dl mismo. Aguas abajo del sistema de escaneado 6, se dispone un dispositivo de clasificación 40 para recibir artículos de equipaje de la cinta transportadora 20 y mover los mismos sobre o bien una cinta transportadora de canal seguro o “verde” 42 o una cinta transportadora de canal 44 no seguro o “rojo”. El dispositivo de clasificación 40 se controla por las señales de salida de clasificación automática a través de una línea de control 46 desde el sistema de procesamiento 30, que son indicativas de la decisión del sistema de procesamiento 30 sobre si el artículo es seguro o no, y también mediante señales desde un estación de trabajo 48 a la que está conectado a través de la línea 45. Las imágenes del sistema de escaneado 6 y señales del sistema de procesamiento 30, indicativas de las probabilidades de rojo y verde y la decisión nominal del sistema de procesamiento 30, también se alimentan a la estación de trabajo 48. La estación de trabajo está dispuesta para mostrar las imágenes sobre una pantalla 47 de modo que pueden verse por un operario humano, y también para proporcionar una visualización indicativa de las probabilidades de rojo y verde y la decisión de clasificación automática nominal. El usuario en la estación de trabajo puede revisar las imágenes y las probabilidades, y la salida de clasificación automática, y decidir si acepta o anula la decisión del sistema de escaneado, si esto fue para asignar el artículo a la categoría roja o verde, o para introducir una decisión si la decisión de sistema de escaneado fue asignar el artículo a la categoría 'ámbar'. La estación de trabajo 48 tiene una entrada de usuario 49 que permite al usuario enviar una señal al dispositivo de clasificación 40 que puede identificarse por el dispositivo de clasificación como una anulación a la decisión del sistema de escaneado. Si la señal de anulación se recibe por el dispositivo de clasificación, entonces el dispositivo de clasificación anula la decisión del sistema de escaneado. Si no se recibe una señal de anulación, o en su lugar si se recibe una señal de confirmación desde la estación de trabajo que confirma la decisión del sistema de escaneado, entonces el dispositivo de clasificación clasifica el artículo basándose en la decisión del sistema de escaneado. Si el sistema de clasificación recibe una señal 'ámbar' del sistema de escaneado en relación con un artículo, entonces inicialmente asigna ese artículo a la categoría 'roja' para colocar el mismo en el canal rojo. Sin embargo, si recibe una señal de entrada desde la estación de trabajo antes que el mismo clasifique el artículo que indica que debe estar en la categoría 'verde', entonces clasifica el artículo en el canal verde.
En una modificación del sistema de la figura 6, la clasificación puede ser totalmente automática, dando el sistema de procesamiento una de las dos salidas de clasificación, “segura” y “no segura”, asignando el artículo al canal verde o rojo. También sería posible para el sistema de procesamiento determinar solo una probabilidad Pr (amenaza) con un valor de umbral y asignar el artículo a una de las dos categorías dependiendo de si la probabilidad está por encima o por debajo del umbral. En este caso, la asignación seguiría aun siendo provisional y el operario todavía tendría la opción de anular la clasificación automática. En una modificación adicional, la asignación automática de categorías del sistema de escaneado se utiliza como la asignación final, sin ninguna entrada de usuario. Esto proporciona un sistema de clasificación completamente automatizado.
En el sistema de la figura 6, la velocidad de escaneo se corresponde con la velocidad de la cinta transportadora, de modo que el equipaje puede moverse a una velocidad constante desde un área de carga donde se carga en la cinta transportadora 20, a través del sistema de escaneado 6, y hacia el dispositivo de clasificación 40. La cinta transportadora 20 se extiende por una distancia L, entre la salida del sistema de escaneado 6 y el dispositivo de clasificación 40. Durante el tiempo que tarda un artículo de equipaje en recorrer la distancia L sobre la cinta transportadora 20, un operario puede ver los datos de imagen del artículo bajo inspección y la asignación de categoría inicial determinada por el sistema de escaneado, y confirmar o rechazar la decisión automatizada del sistema de RTT. Habitualmente, entonces el equipaje sería o bien aceptado en el canal seguro y pasado hacia listo para el transporte o rechazado en el canal no seguro para una investigación adicional.
En este sistema de enfoque múltiple de RTT, la unidad de escaneado de RTT 8 puede hacerse funcionar a la velocidad máxima de la cinta de equipaje, y por lo tanto no se requiere ninguna cola de equipajes u otro mecanismo de desvío para el funcionamiento óptimo del sistema. En sistemas integrados como este, la capacidad de rendimiento limitada de los sistemas de fuentes rotatorias convencionales es una limitación importante. A menudo, esto significa colocar varias máquinas convencionales de TC en paralelo y utilizar sistemas sofisticados de manejo de equipaje para cambiar el artículo para su inspección a la siguiente máquina disponible. Esta complejidad puede evitarse con la disposición de la figura 6.
Haciendo referencia a la figura 7, un sistema de clasificación de equipaje comprende un sistema redundante en el que dos sistemas de escaneado de RTT 70, 72 están situados en serie sobre la misma cinta transportadora 74 de modo que si un sistema se retirase del servicio, entonces el otro podría continuar para escanear el equipaje. En cualquier caso, la cinta transportadora 74 continuaría pasando a través de ambos sistemas de escaneado 70, 72 a la velocidad de cinta de funcionamiento estándar.
Haciendo referencia a la figura 8a en una tercera realización, se proporciona un sistema redundante más complejo en el que dos sistemas de RTT 82, 84 se hacen funcionar en paralelo. Una primera cinta transportadora de entrada principal 86 lleva todos los artículos que van a clasificarse a un primer dispositivo de clasificación 88 que puede transferir artículos a cualquiera de las otras dos cintas transportadoras adicionales 90, 92. Cada una de estas dos cintas transportadoras 90, 92 pasa a través de uno respectivo de los sistemas de escaneado 82, 84, que escaneará los artículos y permitirá que se tome una decisión con respecto a si declarar seguro el artículo o no. Se proporciona un dispositivo de clasificación adicional 94, 96 en cada una de las dos cintas transportadoras 90, 92 que está dispuesta para clasificar el equipaje en una cinta transportadora de “canal verde” común 98 para el transporte posterior, o una cinta de “canal rojo” transportadora100 si no es seguro, donde puede someterse a una investigación adicional. En esta configuración, es posible hacer funcionar la cinta transportadora de entrada 86 y la cinta transportadora de “canal verde” a una velocidad más alta que la velocidad de la cinta transportadora de RTT, habitualmente hasta dos veces su velocidad. Por ejemplo, en este caso, la cinta transportadora de entrada principal 86 y la cinta transportadora de “canal verde” común se mueven a una velocidad de 1 m/s, mientras que las cintas transportadoras de escaneado 82, 84 se desplazan a la mitad de esa velocidad, es decir, 0,5 m/s. Por supuesto, el sistema puede expandirse con más sistemas de RTT paralelos, con la relación de la velocidad de la cinta transportadora entrante principal siendo iguales la de las cintas transportadoras de escáner, o sustancialmente iguales, al número de escáneres paralelos, aunque los dispositivos de clasificación pueden no ser fiables a más de una velocidad de la cinta transportadora principal de 1 m/s.
Haciendo referencia a la figura 8b, en una realización adicional un sistema de clasificación de equipaje comprende una serie de escáneres de RTT 81b, 82b, 83b, habitualmente hasta aproximadamente 60 en un sistema, cada uno asociado a un mostrador de facturación respectivo. Un dispositivo de clasificación 84b, 85b, 86b está asociado a cada escáner de RTT, y el equipaje se transporta sobre una cinta transportadora desde cada escáner de RTT a su dispositivo de clasificación asociado. Cada dispositivo de clasificación 84b, 85b, 86b clasifica el equipaje, en respuesta a las señales de su escáner, sobre o bien una cinta transportadora de canal seguro común 88b, o bien una cinta transportadora de canal de rechazo común 87b. Se proporciona un escáner de RTT de apoyo adicional 89b en la cinta transportadora de canal de rechazo 87b, con un dispositivo de clasificación asociado 90b, que puede dejar el equipaje en la cinta transportadora de canal de rechazo 87b, o transferirlo a la cinta transportadora de canal seguro 88b.
En un funcionamiento normal, cada uno de los escáneres primarios 81b, 82b, 83b clasifica el equipaje, y el escáner de apoyo o redundante 89b simplemente proporciona una comprobación adicional de los artículos clasificados en el canal de rechazo. Si ese escáner determina que un artículo de equipaje no representa amenaza, o una amenaza suficientemente baja, entonces lo transfiere al canal seguro. Si uno de los escáneres primarios no está funcionando o tiene un defecto, entonces su dispositivo de clasificación asociado se dispone para clasificar todo el equipaje de ese escáner al canal de rechazo. Luego, el escáner de apoyo 89b escanea todo ese equipaje y controla la clasificación del mismo entre los canales seguro y de rechazo. Esto permite que todos los mostradores de facturación sigan funcionando mientras se repara o reemplaza el escáner defectuoso.
Haciendo referencia a la figura 8c, en un sistema adicional, el equipaje de cada uno de los mostradores de facturación se transfiere a través de una pluralidad de cintas transportadoras separadas en un circuito o carrusel central 81c, en el que circula continuamente. Un número de dispositivos de clasificación 82c, 83c, 84c están dispuestos cada uno para transferir artículos de equipaje desde el circuito 81c a una cinta transportadora respectiva que conduce a un escáner de RTT respectivo 85c, 86c, 87 c. Los dispositivos de clasificación 82c, 83c, 84c se controlan por los escáneres para controlar la velocidad a la que los artículos de equipaje se distribuyen a cada uno de los escáneres. Desde los escáneres, las cintas transportadoras transfieren todos los artículos de equipaje a una cinta transportadora de salida común 88c que conduce a un dispositivo de clasificación adicional 89c. Esto se controla por todos los escáneres para clasificar cada uno de los artículos de equipaje entre un canal seguro 90c y un canal de rechazo 91c.
Para rastrear el movimiento de cada artículo de equipaje, se da a cada artículo una identificación de 6 dígitos y su posición en la cinta transportadora se registra cuando entra en el sistema por primera vez. Por lo tanto, los escáneres pueden identificar qué artículo de equipaje está escaneándose a la vez y asociar los resultados del escaneado con el artículo apropiado. Por lo tanto, los dispositivos de clasificación también pueden identificar los artículos de equipaje individuales y clasificarlos basándose en sus resultados de escaneado.
El número de escáneres y las velocidades de las cintas transportadoras en este sistema se disponen de tal manera que, si uno de los escáneres no está funcionando, los escáneres restantes pueden procesar todo el equipaje que se está distribuyendo al circuito 81c desde los mostradores de facturación.
En una modificación a este sistema, los dispositivos de clasificación 82c, 83c, 84c que seleccionan qué artículos se transfieren a cada escáner no están controlados por los escáneres, sino que están dispuestos para seleccionar artículos desde el circuito 81c para distribuirlos a los respectivos escáneres a una velocidad predeterminada.
Haciendo referencia a la figura 9, un sistema en red adicional comprende tres sistemas de escaneado 108 similares a los de la figura 6, y cuatro estaciones de trabajo 148 de operario. Las salidas de imágenes de vídeo de los tres sistemas de escaneado de RTT 108 están conectadas a través de respectivos enlaces de vídeo punto a punto de ancho de banda alto a conjuntos de discos en tiempo real 109 que proporcionan almacenamiento transitorio para los datos de imágenes en bruto, a un conmutador de vídeo redundante 110. Los conjuntos de discos 109 están a su vez conectados a cada una de las estaciones de trabajo 148. El conmutador 110 de vídeo es por lo tanto capaz de transmitir la salida de imagen de vídeo en bruto desde cada uno de los sistemas de escaneado 108 desde su almacenamiento temporal hasta cualquiera de las estaciones de trabajo 148, donde puede utilizarse para crear imágenes de vídeo tridimensionales que pueden verse sin estar conectado. Las salidas del sistema de escaneado para las señales de probabilidad roja/verde y las señales de asignación de clasificación automática están conectadas a un conmutador Ethernet convencional redundante 112, que también está conectado a cada una de las estaciones de trabajo. El conmutador Ethernet está dispuesto para conmutar cada una de las señales de probabilidad y las señales de asignación de clasificación a la misma estación de trabajo 148 que la señal de vídeo asociada. Esto permite que los datos de imagen de las máquinas múltiples junto con la asignación automática y las probabilidades asignadas a la asignación, se conmuten al banco de estaciones de trabajo 148 del operario donde un operario puede monitorizar el rendimiento del sistema de inspección de equipaje y determinar el destino del equipaje asignado a un nivel de amenaza ámbar.
Alternativamente, un sistema en red comprende un único sistema de escaneado 108 conectado a un servidor y una estación de trabajo 148. La salida de imagen de vídeo del sistema de escaneado 108 está conectada a un conjunto de discos en tiempo real 109, que proporciona almacenamiento transitorio para los datos de imágenes en bruto. El conjunto de discos 109 está a su vez conectado a la estación de trabajo 148. La señal de probabilidad y las salidas de señal de asignación se envían a la estación de trabajo 148 junto con la salida de imagen de vídeo asociada para monitorizarse por un operario. El sistema de escaneado único en red puede ser parte de un sistema en red con múltiples sistemas de escaneado.
Haciendo referencia a las figuras 10 y 11, un escáner en línea adicional tiene una cinta transportadora 160 tan larga como las pantallas de dispersión principal 162. En tales configuraciones de sistema independientes, el artículo para inspección se coloca sobre la cinta transportadora 160 y el artículo se carga en el sistema. El artículo se escanea entonces a través de la máquina de escáner 164 y se generan imágenes. A menudo, en sistemas convencionales, el artículo se somete a un examen previo con un sistema de rayos X de transmisión simple para identificar áreas de amenaza probables antes del examen por tomografía computarizada de planos seleccionados en el objeto. Tales aplicaciones son simples para que se enfrente a las mismas un sistema de enfoque múltiple en tiempo real. Aquí, no se utilizaría ningún examen previo y se obtendría una verdadera imagen tridimensional del artículo completo.
En algunos sistemas, el lugar geométrico de los puntos de fuente en la fuente de rayos X multifocal se extenderá en un arco sobre un intervalo angular de solo 180 grados más el ángulo del haz en abanico (habitualmente en el intervalo de 40 a 90 grados). El número de puntos de fuente discretos se selecciona ventajosamente para satisfacer el teorema de muestreo de Nyquist. En algunas realizaciones, como en la de la figura 1, se utiliza un anillo de 360 grados completo de puntos de fuente. En este caso, el tiempo de permanencia por punto de fuente se aumenta en una configuración de haz en abanico de más de 180 para una velocidad de escaneo dada y esto es ventajoso para mejorar la relación señal con respecto a ruido de la imagen reconstruida.
El sistema de escáner de la figura 1 es un sistema de escáner integrado, en el que las unidades de control, procesamiento, suministro de potencia y enfriamiento 18, 30, 32, 34 están alojadas en una unidad con el sistema de escaneado 8 y el elemento de examen 22. Haciendo referencia a la figura 12, en una realización adicional se proporciona un sistema modular en el que algunos, o todos, de los soportes de control, procesamiento, suministro de energía y enfriamiento 218, 230, 232, 234 están ubicados remotamente desde la unidad de escaneado 208 que comprende fuente de rayos X multifocal y conjunto de sensores. Es ventajoso utilizar un diseño modular para facilitar una instalación fácil, particularmente en entornos de salas de manipulación de equipaje, donde los sistemas pueden estar suspendidos del techo o en regiones con acceso restringido. Alternativamente, puede configurarse un sistema completo como una unidad integrada con las unidades del subconjunto ubicadas de manera conjunta dentro de un único alojamiento.
En algunas realizaciones, incluyendo la de la figura 1, se utiliza un único anillo detector de rayos X. Esto no es costoso de construir y proporciona un rendimiento adecuado de señal con respecto a ruido incluso a altas velocidades de escaneado de imágenes con un algoritmo de reconstrucción de imagen de haz en abanico simple. En otras realizaciones (particularmente para diámetro de círculo de reconstrucción de imagen grande) es preferible utilizar un conjunto de sensores de múltiples anillos con una pluralidad de grupos de sensores circulares o parcialmente circulares dispuestos adyacentes entre sí, espaciados a lo largo del eje del sistema desplazado con respecto a la fuente. Esto permite utilizar un algoritmo de reconstrucción de imágenes de haz cónico más complejo en el sistema de procesamiento. El uso de un sensor de múltiples anillos aumenta el tiempo de permanencia por punto de fuente, lo que da como resultado un tamaño de señal integrado mayor y la consiguiente mejora en la relación señal con respecto a ruido en la imagen reconstruida.
Es central para el diseño de las realizaciones descritas anteriormente, que utilizan un sistema de tomografía computarizada basado en fuente de rayos X multifocal, la relación entre la velocidad de rotación angular de la fuente y la velocidad del sistema de cinta transportadora que pasa a través del escáner. En el límite de que la cinta transportadora sea estacionaria, el grosor del corte de imagen reconstruida está determinado por completo por el tamaño del foco de rayos X y el área de elementos individuales del conjunto de detectores de rayos X. A medida que la velocidad de la cinta transportadora aumenta desde cero, el objeto bajo inspección pasará a través del corte de imágenes durante la rotación del haz de rayos X y se introducirá un desenfoque adicional en la imagen reconstruida en la dirección del grosor del corte. Idealmente, la rotación de la fuente de rayos X será rápida en comparación con la velocidad de cinta transportadora, de modo que se minimizará el desenfoque en la dirección del grosor del corte.
Un sistema de tomografía computarizada basado en fuente de rayos X multifocal para inspección de equipaje proporciona una buena relación de velocidad de rotación de fuente angular con respecto a velocidad lineal de cinta transportadora para la detección de alta probabilidad de materiales y objetos peligrosos en el artículo bajo inspección.
Como ejemplo, en la realización de la figura 1, la velocidad de cinta transportadora es de 0,5 m/s, como es común en los sistemas aeroportuarios. La fuente puede lograr 240 rotaciones de fuente sobre la cinta transportadora por segundo, por lo que el objeto bajo inspección se moverá una distancia de 2,08 mm a través del corte de imágenes durante el escaneo. En un sistema convencional con rotación de fuente de 4 revoluciones por segundo, el objeto inspeccionado se moverá una distancia de 62,5 mm a través del corte de imágenes durante el escaneo a la misma velocidad de cinta.
El objetivo principal de un sistema de inspección para detección de materiales peligrosos es detectar con precisión la presencia de materiales peligrosos y pasar como no sospechosos todos los demás materiales. Cuanto mayor es el desenfoque en la dirección de corte causado por el movimiento de cinta transportadora durante un escaneo, mayor es el artefacto de volumen parcial en el píxel de la imagen reconstruida y menos precisa es la densidad de imagen reconstruida. Cuanto menor es la precisión en la densidad de imagen reconstruida, más susceptible es el sistema de proporcionar una alarma en materiales no peligrosos y de no generar una alarma real en materiales peligrosos. Por lo tanto, un sistema de tomografía en tiempo real (RTT) basado en tecnología de fuente de rayos X multifocal puede proporcionar una capacidad de detección de amenazas considerablemente mejorada a velocidades de transporte rápidas con respecto a los sistemas convencionales de rayos X rotados mecánicamente.
Debido al uso de un ánodo arqueado extendido en una fuente de rayos X multifocal, es posible conmutar la fuente de electrones de manera que salte alrededor de la longitud completa del ánodo en lugar de escanear secuencialmente para emular la rotación mecánica observada en los sistemas de tomografía computarizada convencionales. Ventajosamente, el foco de rayos X se conmutará para maximizar la distancia de la posición de irradiación de ánodo actual desde todas las posiciones de irradiación previas con el fin de minimizar la carga térmica instantánea en el ánodo. Tal dispersión instantánea del punto de emisión de rayos X es ventajosa para minimizar el efecto de volumen parcial debido al movimiento de la cinta transportadora, mejorando aún más la precisión de los píxeles reconstruidos.
La alta resolución temporal de los sistemas de RTT permite que se alcance un alto nivel de precisión en la detección automatizada de amenazas. Con este alto nivel de precisión, los sistemas de RTT pueden hacerse funcionar en modo sin supervisión, produciendo una indicación de salida de dos estados simple, con un estado correspondiente a una asignación verde o segura y el otro a una asignación roja o no segura. Las bolsas verdes se limpian para el transporte posterior. Las bolsas rojas representan un alto nivel de amenaza y deberían conciliarse con el pasajero y al pasajero prohibírsele viajar.
Se describirán ahora realizaciones de la invención en las que datos relacionados con la dispersión de rayos X así como los relacionados con los rayos X transmitidos se registran y se utilizan para analizar los artículos de equipaje escaneados.
Haciendo referencia a la figura 13, cuando un haz 300 de rayos X pasa a través de un objeto 302, algunos de los rayos X se transmiten directamente a través de este, y salen del objeto desplazándose en la misma dirección en la que entraron. Algunos de los rayos X se dispersan a través de un ángulo de dispersión 0, que es la diferencia entre la dirección en la que entran al objeto y la dirección en la que lo dejan. Como es bien sabido, existen dos tipos de dispersión que se producen: dispersión coherente o de Bragg, que se concentra alrededor de ángulos de dispersión de 5°, habitualmente en el intervalo de 4° a 6°, y dispersión incoherente o de Compton en la que los rayos X se dispersan a través de ángulos más grandes. La dispersión de Bragg aumenta linealmente con el número atómico del objeto y obedece a la fórmula:
nX = 2d sen 0
donde:
n es un número entero,
X es la longitud de onda de los rayos X,
d es la distancia interatómica en el objeto.
Por lo tanto, la cantidad de dispersión de Bragg proporciona información sobre la estructura atómica del objeto. Sin embargo, no varía de manera uniforme con el número atómico.
La cantidad de dispersión de Compton es dependiente de, y varía de manera uniforme con, la densidad de electrones del objeto y, por lo tanto, la cantidad de dispersión en ángulos de dispersión mayores proporciona información sobre la densidad de electrones del objeto y, por lo tanto, sobre su número atómico.
Haciendo referencia a la figura 14, un sistema de escaneado de seguridad de acuerdo con una realización adicional de la invención comprende una fuente de rayos X multifocal 410 que es la misma que la de la figura 1, y un conjunto de detectores circulares 412 y una cinta transportadora 420 que también son los mismos que los de la figura 1. Sin embargo, en esta realización, el sistema comprende un conjunto cilindrico adicional de detectores 422 que también se extiende alrededor de la cinta transportadora en el mismo radio que el conjunto de detectores circulares 412 pero en el otro lado axialmente de la fuente 410. Mientras que el conjunto de detectores circulares está dispuesto para detectar rayos X transmitidos a través del objeto 426, el conjunto de detectores cilíndricos 422 está dispuesto para detectar rayos X dispersados en el objeto. El conjunto de detectores de dispersión 422 está compuesto por un número de conjuntos circulares o anillos 422a, 422b de detectores, y los detectores en cada anillo están igualmente espaciados alrededor de la cinta transportadora de modo que están dispuestos en un número de filas rectas que se extienden en la dirección axial del escáner.
Los detectores en el conjunto de detectores de dispersión 422 son detectores de resolución de energía de manera que las interacciones de rayos X individuales con cada detector producen una salida de detector que es indicativa de la energía de los rayos X. Tales detectores pueden fabricarse a partir de materiales semiconductores III-V o II-IV de banda prohibida ancha tales como GaAs, HgI, CdZnTe o CdTe, un semiconductor de banda prohibida estrecha como Ge, o un detector de centelleo compuesto tal como NaI (Ti) con lectura de tubo fotomultiplicador.
Haciendo referencia a la figura 15, se proporciona un colimador 428 delante de los detectores de dispersión 422. El colimador 428 proporciona una barrera que evita que los rayos X lleguen a cada detector a menos que provenga de una dirección de recepción particular. Para cada detector en el conjunto 422, la dirección de recepción pasa a través del eje longitudinal central X-X del escáner, como puede verse en la figura 16. Sin embargo, la dirección de recepción no es perpendicular al eje X-X, sino que está inclinada a aproximadamente 5° con respecto al plano de los anillos de detector 422a, 422b en la dirección hacia la fuente 410, como puede verse en la figura 15.
Haciendo referencia a la figura 15, se apreciará que los rayos X incidentes en cualquiera de los detectores del conjunto 422 deben haberse dispersado desde un pequeño volumen secundario respectivo dentro del volumen de imágenes delgado que se encuentra en la trayectoria del haz de rayos X y en la línea de la dirección de recepción desde el detector 422. Para cualquiera de los rayos X dispersados de forma coherente, la posición axial del detector que la detecta estará determinada por la distancia desde el punto de fuente de rayos X activo en el que se produjo la dispersión. Los detectores más cercanos a la fuente 410 en la dirección axial detectarán los rayos X dispersados más alejados del punto de fuente de rayos X activo. Por ejemplo, los rayos X dispersados desde el punto x, que está más cerca del punto de fuente de rayos X activo 410a, se detectarán por un detector más lejos de la fuente 410 que los rayos X dispersados desde el punto z que está más lejos del punto de fuente de rayos X activo. Por lo tanto, en cualquier momento, cuando puede identificarse el punto de fuente de rayos X activo, la posición axial del detector que detecta los rayos X dispersados puede utilizarse para determinar la posición de la dispersión a lo largo de la dirección de haz de rayos X.
También se apreciará a partir de la figura 15 que, para que este sistema funcione, es importante que el haz de rayos X debe enfocarse de forma estrecha en la dirección axial del escáner. La extensión del haz en la dirección transversal, por ejemplo, el uso de un haz en abanico extendido en la dirección transversal permitirá aún este posicionamiento de eventos de dispersión coherente.
Haciendo referencia a la figura 16, debido a que el colimador 428 se dirige hacia el eje del escáner, los rayos X de un punto de fuente activo 410a que experimentan dispersión coherente solo se detectarán por la fila de detectores 422a que está en el lado opuesto del eje de escáner con respecto al punto de fuente activo, y posiblemente una o más de las filas cercanas al mismo en cada lado dependiendo de cómo de estrechamente enfocado esté el colimador. Si los rayos X están confinados a un haz de “lápiz” estrecho recto, entonces no se detectarán en absoluto rayos X que estén dispersados incoherentemente a través de ángulos más grandes, ya que se cortarán por el colimador 428. Un ejemplo de tales rayos X se muestra con la flecha 'a' en la figura 16. Sin embargo, si se produce un haz en abanico de rayos X desde el punto de fuente activo 410a, que se extiende a través del corte de volumen de imágenes en la dirección perpendicular al eje de escáner, entonces los rayos X dirigidos más lejos del eje de escáner pueden experimentar dispersión incoherente y alcanzar detectores a cada lado de la fila 422a opuesta al punto de fuente activo. Ejemplos de tales rayos X se muestran mediante las flechas b y c. Se observará que, para alcanzar cualquier detector 422b, el evento de dispersión debe tener lugar en el plano que pasa a través del eje de escáner y ese detector 422b. Esto significa que, para un punto de fuente activo dado y un detector particular, la posición del evento de dispersión de un rayo X detectado puede identificarse como que está en el plano que pasa por el eje del escáner y ese detector. Si se determina la posición exacta del evento de dispersión, entonces se necesita otra información. Por ejemplo, si está disponible la información con respecto a la posición de los objetos dentro del volumen de imágenes, por ejemplo a partir de datos de imágenes tomográficas, entonces la dispersión puede asociarse con el objeto más probable, como se describirá con más detalle a continuación.
A partir de los datos de dispersión de Bragg, para cada evento de dispersión detectado, la combinación de la energía de rayos X y el ángulo de dispersión puede utilizarse para determinar la distancia interatómica d del material en el que tuvo lugar el evento de dispersión. En la práctica, puede suponerse que el ángulo de dispersión es constante y la energía utilizada para distinguir entre diferentes materiales. Para la dispersión de Compton, el nivel de dispersión de cada volumen del volumen de escaneado proporciona una indicación de la densidad del material en ese volumen. La relación de Compton con respecto a la dispersión coherente también puede determinarse y utilizarse como un parámetro adicional para caracterizar el material del objeto representado.
Debido al corto tiempo de permanencia para cada punto de fuente de rayos X, el número de rayos X dispersados detectados para cada punto de fuente siempre será muy bajo, habitualmente menor que cinco. Para formar una señal de dispersión razonable coherente, es necesario recoger datos de dispersión para todos los puntos de fuente dentro de un escaneo tomográfico y luego acumular los resultados para cada volumen secundario del volumen de imágenes. Para un escáner con 500 puntos de fuente y un promedio de un resultado de dispersión de difracción coherente por volumen secundario por escaneo, entonces a continuación de la acumulación del conjunto de datos, cada volumen secundario tendrá 500 resultados asociados al mismo, correspondientes a 500 eventos de dispersión dentro de ese volumen secundario. Un volumen secundario habitual ocupa un área dentro del plano de imágenes de unos pocos centímetros cuadrados, con un grosor de volumen de unos pocos milímetros.
Haciendo referencia a la figura 17, el sistema de adquisición de datos dispuesto para acumular datos desde el conjunto de detectores de dispersión 422 del escáner de las figuras 14 a 16 comprende un analizador multicanal 500 asociado con cada uno de los detectores 422. Cada MCA 500 está dispuesto para recibir las señales de salida del detector, y asignar cada uno de los rayos X detectados a uno de un número de intervalos o canales de energía de rayos X, y enviar una señal indicativa del intervalo de energía en el que están los rayos X detectados. Un multiplexor 502 está dispuesto para recibir las salidas de cada uno de los MCA 500. También se proporciona una tabla de consulta 504 que tiene entradas en la misma que, para un punto de fuente y detector dados, identifican el volumen secundario dentro del volumen de imágenes en el que se dispersaron los rayos X. El sistema comprende además una memoria de imágenes 506 que incluye un número de áreas de memoria 508, cada una de las cuales está asociada a un volumen secundario respectivo dentro del plano de imágenes de escáner.
Los datos se cargan en cada área de memoria 508 automáticamente por el multiplexor 502 bajo la dirección de la tabla de consulta 504. La tabla de consulta se carga con coeficientes antes del escaneado que mapean cada combinación de detector 422 y MCA 500 a una ubicación de imagen respectiva 508, una entrada de tabla de consulta por posición de fuente de rayos X. Esos píxeles, es decir, detectores 422, que están en la dirección hacia adelante, es decir, sustancialmente en la dirección en la que el fotón se desplaza desde la fuente antes de cualquier interacción, se supone que registran fotones de dispersión coherentes en ángulos de haz pequeños de aproximadamente 4-6 grados. Se supone que los píxeles 422 que no están en la dirección hacia adelante registran fotones dispersados incoherentes debido al efecto de dispersión de Compton. Por lo tanto, la memoria de imágenes 506 es realmente “tridimensional”, dos dimensiones representan la ubicación en la imagen, mientras que la tercera dimensión contiene espectros de energía dispersada tanto para dispersión coherente (lo 8 bits) como incoherente (hi 8 bits). La tabla de consulta 504 también instruirá al multiplexor 502 en cuanto al tipo de datos que se recogen para cada MCA 500 en cada proyección, de modo que se llene el espacio de memoria apropiado.
Una vez que los datos de dispersión se han recogido para un escaneo dado, los datos se transfieren y se sincronizan mediante un secuenciador de proyección 510, con el sistema principal de adquisición de datos de RTT 512, que se describe anteriormente con referencia a la figura 4. Por lo tanto, los datos de imagen reconstruidos y los datos de dispersión se pasan simultáneamente al sistema de detección de amenazas, que puede utilizarlo para determinar los parámetros adecuados para el análisis.
Para cada escaneo, los datos de imagen tomográfica de los detectores de transmisión 412 producen datos relacionados con la atenuación de rayos X para cada píxel de la imagen, que a su vez corresponde a un volumen secundario respectivo del volumen de imágenes tomográficas. Esto se obtiene como se describió anteriormente con referencia a la figura 4. Los datos de los detectores de dispersión 422 proporcionan, como se describió anteriormente, datos relacionados con la cantidad de dispersión coherente dentro de cada volumen secundario, y datos relacionados con la cantidad de dispersión incoherente dentro de cada volumen secundario. Por lo tanto, estos datos pueden analizarse en un procesador de detección de amenazas similar al de la figura 5. En este caso, los parámetros de los datos que se extraen pueden relacionarse con los datos de imagen o los datos de dispersión o combinaciones de dos o más tipos de datos. Ejemplos de parámetros que se extraen de los datos son la relación de dispersión coherente a incoherente, tipos de material como los determinados a partir de datos de dispersión coherentes, densidad de material como la determinada a partir de datos de dispersión incoherentes, correlación de valores de píxeles de imagen de TC con datos de dispersión. También pueden determinarse parámetros para los datos de dispersión correspondientes a los descritos anteriormente para los datos de transmisión.
Haciendo referencia a la figura 18, en una realización adicional de la invención, los detectores de transmisión 512 que se utilizan para generar los datos de imágenes tomográficas están dispuestos para medir la transmisión de rayos X a través de diferentes intervalos de energía. Esto se logra teniendo dos conjuntos de detectores 512a, 512b, formando cada uno un anillo alrededor de la cinta transportadora. Los dos juegos están en ubicaciones axiales diferentes a lo largo de la dirección de desplazamiento de la cinta transportadora, en este caso adyacentes entre sí en la dirección axial. El primer conjunto 512a no tiene filtro en su parte delantera, pero el segundo conjunto 512b tiene un filtro metálico 513 colocado entre el mismo y la fuente de rayos X 510. El primer conjunto de detectores 512a por lo tanto detecta rayos X transmitidos en un amplio intervalo de energía, y el segundo conjunto 512b detecta rayos X solo en una parte más estrecha de ese intervalo en el extremo de alta energía.
A medida que el artículo que va a escanearse se mueve a lo largo de la cinta transportadora, cada volumen delgado o corte del mismo puede escanearse una vez utilizando el primer conjunto de detectores 512a y luego escanearse de nuevo utilizando el segundo conjunto 512b. En la realización mostrada, la misma fuente 510 se utiliza para escanear dos volúmenes adyacentes simultáneamente, con datos para que cada uno de ellos se recoja mediante uno de los conjuntos de detectores 512a, 512b respectivos. Después de que un volumen del artículo haya pasado por ambos conjuntos de detectores y se haya escaneado dos veces, pueden formarse dos conjuntos de datos de imagen utilizando los dos intervalos de energía de rayos X diferentes, incluyendo cada imagen datos de transmisión (y por lo tanto atenuación) para cada píxel de la imagen. Los dos conjuntos de datos de imagen pueden combinarse sustrayendo el del segundo conjunto de detectores 512a del primero 512b, dando como resultado datos de imagen correspondientes para el componente de rayos X de baja energía.
Los datos de transmisión de rayos X para cada intervalo de energía individual, y la diferencia entre los datos para dos intervalos diferentes, como la alta energía y la baja energía, pueden registrarse para cada píxel de la imagen. Los datos pueden utilizarse para mejorar la precisión de las imágenes de TC. También puede utilizarse como un parámetro adicional en el algoritmo de detección de amenazas.
Se apreciará que pueden utilizarse otros métodos para obtener datos de transmisión para diferentes intervalos de energías de rayos X. En una modificación del sistema de las figuras 18 y 19, pueden utilizarse filtros equilibrados en los dos conjuntos de detectores. Los filtros se seleccionan de manera que haya una ventana estrecha de energías que se pasa por ambos de los mismos. Los datos de imagen para los dos conjuntos de detectores pueden combinarse para obtener datos de transmisión para la ventana de energía estrecha. Esto permite que se obtengan imágenes químicas específicas. Por ejemplo, es posible crear imágenes específicas de huesos utilizando filtros equilibrados alrededor de la energía de calcio de borde de K. Claramente, estos datos químicos específicos pueden utilizarse de manera efectiva en un algoritmo de detección de amenazas.
En una realización adicional, en lugar de utilizar filtros separados, se utilizan dos conjuntos de detectores que son sensibles a rayos X de energía diferente. En este caso, se utilizan detectores apilados, que comprenden un detector frontal delgado que es sensible a rayos X de baja energía pero que permite que pasen rayos X de mayor energía a través del mismo y un detector de apoyo grueso sensible a los rayos X de alta energía que pasan a través del detector frontal. De nuevo, los datos de atenuación para los diferentes intervalos de energía pueden utilizarse para proporcionar datos de imagen específicos de energía.
En una realización adicional, se toman dos escaneos de cada corte del objeto con dos energías de haz de rayos X diferentes, logradas utilizando diferentes tensiones de tubo en la fuente de rayos X, por ejemplo 160 kV y 100 kV. Las diferentes energías dan como resultado espectros de energía de rayos X que están desplazados entre sí. Como los espectros son relativamente planos en una parte del intervalo de energía, los espectros serán similares en gran parte del intervalo. Sin embargo, parte del espectro cambiará significativamente. Por lo tanto, la comparación de imágenes para los dos voltajes de tubo puede utilizarse para identificar partes del objeto donde la atenuación cambia significativamente entre las dos imágenes. Por lo tanto, esto identifica las áreas de la imagen que tienen una alta atenuación en la parte estrecha del espectro que cambia entre las imágenes. Esta es, por lo tanto, una forma alternativa de obtener datos de atenuación específicos de energía para cada uno de los volúmenes secundarios dentro del volumen escaneado.
Haciendo referencia a la figura 20 en una realización adicional de la invención, se producen dos espectros de energía de rayos X diferentes proporcionando un ánodo 600 en el tubo de rayos X que tiene áreas objetivo 602, 604 de dos materiales diferentes. En este caso, por ejemplo, el ánodo comprende una base de cobre 606 con un área objetivo 602 de tungsteno y una 604 de uranio. La fuente de electrones 610 tiene un número de puntos de fuente 612 que pueden activarse individualmente. Se proporciona un par de electrodos 612, 614 en lados opuestos de la trayectoria del haz de electrones 616 que puede controlarse para encender y apagar un campo eléctrico para controlar la trayectoria del haz de electrones de modo que golpee una u otro de las áreas objetivo 602, 604. El espectro de energía de los rayos X producidos en el ánodo variará dependiendo de cuál de las áreas de destino es golpeada por el haz de electrones 616.
Esta realización utiliza una fuente de rayos X similar a la de la figura 1a, con las diferentes áreas objetivo formadas como bandas paralelas que se extienden a lo largo del ánodo 27. Para cada punto de fuente de electrones activo, pueden producirse dos espectros de rayos X diferentes dependiendo de qué material objetivo se utilice. La fuente puede disponerse para conmutar entre las dos áreas objetivo para cada punto de fuente de electrones mientras está activo. Alternativamente, el escaneo a lo largo del ánodo 27 puede realizarse dos veces, una para un material objetivo y una para el otro. En cualquier caso, pueden necesitarse más alambres de enfoque de haz de electrones para garantizar que solo uno u otro de los materiales de destino sea irradiado por el haz de electrones de una vez.
Dependiendo del ángulo en el que se extrae el haz de rayos X del ánodo, los haces de las dos áreas objetivo 602, 604 pueden estar dispuestos en algunos casos para pasar a través del mismo volumen de imágenes y detectarse por un conjunto de detectores común. Alternativamente, pueden disponerse para pasar a través de cortes adyacentes del volumen de imágenes y detectarse mediante conjuntos de detectores separados. En este caso, las partes del artículo representado pueden escanearse dos veces a medida que el artículo pasa a lo largo de la cinta transportadora de una manera similar a la disposición de la figura 18.
Haciendo referencia a la figura 21, en una realización adicional, se proporcionan dos conjuntos de detectores en un único escáner, adyacentes entre sí en la dirección axial, uno 710 correspondiente a la de la figura 1 y que está dispuesto para formar una imagen de RTT, y el otro, 712, que tiene una resolución más alta y está dispuesto para producir una imagen de proyección de alta resolución del objeto escaneado. En esta realización, el conjunto de detectores 712 de alta resolución comprende dos conjuntos lineales paralelos 714, 716, cada uno dispuesto para detectar rayos X a una energía diferente, de modo que puede producirse una imagen de proyección de energía dual. En la realización de la figura 22, el conjunto de alta resolución 812 comprende dos conjuntos apilados, un conjunto delgado en la parte superior dispuesto para detectar rayos X de energía más baja pero transparente a rayos X de energía más alta y un conjunto más grueso dispuesto debajo para detectar rayos X de energía más alta. En ambos casos, los dos conjuntos de detectores están dispuestos lo suficientemente cerca uno de otro en la dirección axial para poder detectar rayos X a partir de un único conjunto lineal de puntos de fuente.
Para proporcionar una imagen de proyección, los datos deben capturarse de todos los detectores en el conjunto de alta resolución 712, 812 cuando solo está activo un punto de fuente. Haciendo referencia a la figura 23, para hacer esto, cada detector 718, 818 en el conjunto de alta resolución está conectado a un integrador 750. El integrador comprende un amplificador 752 en paralelo con un condensador 754. Se proporciona un conmutador de entrada 756 entre el detector 718 y el amplificador 752, se proporciona un conmutador de reinicio 758 a través de los terminales de entrada del amplificador, y un conmutador de reinicio adicional 759 conectado a través del condensador 754, y se proporciona un conmutador de multiplexación 760 entre el integrador y un convertidor de analógico a digital ADC.
En funcionamiento, aunque no se requiere que el detector 718 esté activo, todos los conmutadores excepto el conmutador de multiplexación 760 están cerrados. Esto garantiza que el condensador 754 no está cargado y permanece de ese modo. Entonces, al comienzo del período cuando se requiere que el detector reúna datos, los dos conmutadores de reinicio 758, 759 se cierran de modo que cualquiera de los rayos X detectados por el detector 718 provocará un aumento en la carga en el condensador 754, que da como resultado la integración de la señal del detector 718. Cuando ha finalizado el período de recogida de datos, se abre el conmutador de entrada 756, de modo que el condensador permanecerá cargado. Entonces, para que la señal integrada se lea desde el integrador, el conmutador de salida 760 se cierra para conectar el integrador al ADC. Esto proporciona una señal analógica al ADC determinada por el nivel de carga en el condensador 754, y por lo tanto indicativo del número de rayos X que ha detectado el detector 718 durante el período durante el que se conectó al integrador. El ADC entonces convierte esta señal analógica en una señal digital para introducir al sistema de adquisición de datos. Para producir una sola imagen de proyección, todos los detectores de alta resolución se utilizan para recoger datos al mismo tiempo, cuando uno de los puntos de fuente de rayos X está activo.
Haciendo referencia a la figura 24, en una realización adicional, cada detector 718 está conectado a dos integradores 750a, 750b en paralelo, cada uno de los cuales es idéntico al de la figura 23. Las salidas de los dos integradores están conectadas a través de sus conmutadores de salida 760a, 760b a un ADC. Esto permite que cada integrador esté dispuesto para integrar la señal del detector 718 en un punto diferente en el escaneo de la fuente de rayos X, y por lo tanto para recoger datos para una imagen separada, estando las dos imágenes desde diferentes ángulos con diferentes puntos de fuente de rayos X. Por ejemplo, esto puede utilizarse para producir imágenes de proyección a partir de direcciones ortogonales que pueden utilizarse para construir una imagen tridimensional de alta resolución, a partir de la cual puede determinarse la posición de las características en el paquete visualizado en tres dimensiones.
La imagen de alta resolución puede ser útil cuando se combina con la imagen de RTT, ya que puede ayudar a identificar artículos para los que se necesita una resolución más alta, como alambres finos.

Claims (1)

  1. REIVINDICACIONES
    Sistema de escaneado de rayos X que comprende una fuente de rayos X dispuesta para generar rayos X desde una pluralidad de posiciones de fuente alrededor de una región de escaneado, un conjunto de detectores cilíndricos (422) compuesto por una pluralidad de conjuntos circulares (422a, 422b) de detectores de dispersión dispuestos para detectar rayos X dispersados dentro de la región de escaneado, y un sistema de recogida de datos que comprende una memoria (506) que tiene una pluralidad de áreas (508) estando cada una asociada con un volumen secundario de un volumen de imágenes, medios de entrada de datos dispuestos para recibir datos de entrada desde los detectores de retrodispersión en una secuencia predeterminada, en el que el sistema comprende además una tabla de consulta que tiene entradas almacenadas en la misma que, para cada una de las posiciones de fuente, asocian cada uno de los detectores de retrodispersión con un volumen secundario del volumen de imágenes, y medios de procesamiento dispuestos para generar a partir de los datos de dispersión de rayos X de datos de entrada asociados con cada uno de los volúmenes secundarios del volumen de imágenes, y para almacenar los datos de dispersión de rayos X en las áreas de memoria apropiadas (508) usando la tabla de consulta,
    en el que los medios de procesamiento están dispuestos para almacenar los datos de dispersión de rayos X en la memoria (506) para cada uno de una pluralidad de escaneos tomográficos de un objeto a medida que el objeto se mueve a través de una región de imágenes, y para extraer los datos de dispersión de rayos X desde la memoria después de cada uno de los escaneos de modo que los datos de dispersión de rayos X durante un escaneo posterior pueden almacenarse en la memoria.
    Sistema de imágenes de rayos X según la reivindicación 1 en el que los medios de procesamiento están dispuestos para combinar los datos de dispersión de rayos X a partir de los escaneos tomográficos para producir una imagen tridimensional del objeto.
ES08016552T 2005-12-16 2006-12-15 Sistemas de inspección de tomografía de rayos X Active ES2769530T3 (es)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GBGB0525593.0A GB0525593D0 (en) 2005-12-16 2005-12-16 X-ray tomography inspection systems

Publications (1)

Publication Number Publication Date
ES2769530T3 true ES2769530T3 (es) 2020-06-26

Family

ID=35736226

Family Applications (2)

Application Number Title Priority Date Filing Date
ES09177217.8T Active ES2645587T3 (es) 2005-12-16 2006-12-15 Sistemas de inspección de tomografía de rayos X
ES08016552T Active ES2769530T3 (es) 2005-12-16 2006-12-15 Sistemas de inspección de tomografía de rayos X

Family Applications Before (1)

Application Number Title Priority Date Filing Date
ES09177217.8T Active ES2645587T3 (es) 2005-12-16 2006-12-15 Sistemas de inspección de tomografía de rayos X

Country Status (8)

Country Link
US (7) US7876879B2 (es)
EP (3) EP2151681B1 (es)
JP (3) JP5537031B2 (es)
CN (2) CN102289000B (es)
ES (2) ES2645587T3 (es)
GB (4) GB0525593D0 (es)
PL (2) PL2151681T3 (es)
WO (1) WO2007068933A1 (es)

Families Citing this family (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9958569B2 (en) 2002-07-23 2018-05-01 Rapiscan Systems, Inc. Mobile imaging system and method for detection of contraband
US7963695B2 (en) 2002-07-23 2011-06-21 Rapiscan Systems, Inc. Rotatable boom cargo scanning system
US8275091B2 (en) 2002-07-23 2012-09-25 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US10483077B2 (en) 2003-04-25 2019-11-19 Rapiscan Systems, Inc. X-ray sources having reduced electron scattering
US7949101B2 (en) 2005-12-16 2011-05-24 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US8223919B2 (en) 2003-04-25 2012-07-17 Rapiscan Systems, Inc. X-ray tomographic inspection systems for the identification of specific target items
US9208988B2 (en) 2005-10-25 2015-12-08 Rapiscan Systems, Inc. Graphite backscattered electron shield for use in an X-ray tube
US8804899B2 (en) 2003-04-25 2014-08-12 Rapiscan Systems, Inc. Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners
GB0812864D0 (en) 2008-07-15 2008-08-20 Cxr Ltd Coolign anode
GB0903198D0 (en) * 2009-02-25 2009-04-08 Cxr Ltd X-Ray scanners
US8837669B2 (en) 2003-04-25 2014-09-16 Rapiscan Systems, Inc. X-ray scanning system
US9113839B2 (en) 2003-04-25 2015-08-25 Rapiscon Systems, Inc. X-ray inspection system and method
US8451974B2 (en) * 2003-04-25 2013-05-28 Rapiscan Systems, Inc. X-ray tomographic inspection system for the identification of specific target items
US8243876B2 (en) 2003-04-25 2012-08-14 Rapiscan Systems, Inc. X-ray scanners
GB0525593D0 (en) 2005-12-16 2006-01-25 Cxr Ltd X-ray tomography inspection systems
US6928141B2 (en) 2003-06-20 2005-08-09 Rapiscan, Inc. Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers
US7471764B2 (en) 2005-04-15 2008-12-30 Rapiscan Security Products, Inc. X-ray imaging system having improved weather resistance
US9046465B2 (en) 2011-02-24 2015-06-02 Rapiscan Systems, Inc. Optimization of the source firing pattern for X-ray scanning systems
US7526064B2 (en) 2006-05-05 2009-04-28 Rapiscan Security Products, Inc. Multiple pass cargo inspection system
US8116428B2 (en) * 2006-09-18 2012-02-14 Optosecurity Inc. Method and apparatus for assessing characteristics of liquids
CA2651728C (en) * 2006-10-02 2012-04-17 Optosecurity Inc. Tray for use in assessing the threat status of an article at a security check point
NL1033178C2 (nl) * 2007-01-05 2008-07-11 Scarabee Id B V Bagage-afgiftesysteem.
US7693261B2 (en) * 2007-05-17 2010-04-06 Durham Scientific Crystals Limited Method and apparatus for inspection of materials
JP2009008441A (ja) * 2007-06-26 2009-01-15 Ihi Corp 半固定式物質同定装置および方法
US8014493B2 (en) * 2007-10-01 2011-09-06 Optosecurity Inc. Method and devices for assessing the threat status of an article at a security check point
CN101403711B (zh) 2007-10-05 2013-06-19 清华大学 液态物品检查方法和设备
CN101403710B (zh) * 2007-10-05 2013-06-19 清华大学 液态物品检查方法和设备
CN101424648B (zh) * 2007-10-30 2012-10-03 清华大学 检查系统和检查方法
CN101470082B (zh) * 2007-12-27 2011-03-30 同方威视技术股份有限公司 物品检测装置及其检测方法
US8219241B2 (en) * 2008-01-22 2012-07-10 Walgreen Co. Targeted product distribution system and method
GB0803641D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Scanning systems
GB0803640D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Scanning systems
WO2009127353A1 (de) * 2008-04-18 2009-10-22 Smiths Heimann Verfahren und vorrichtung zur detektion eines bestimmten materials in einem objekt mittels elektromagnetischer strahlen
GB0809109D0 (en) 2008-05-20 2008-06-25 Rapiscan Security Products Inc Scanner systems
GB0809110D0 (en) 2008-05-20 2008-06-25 Rapiscan Security Products Inc Gantry scanner systems
GB0809107D0 (en) 2008-05-20 2008-06-25 Rapiscan Security Products Inc Scannign systems
GB0810638D0 (en) 2008-06-11 2008-07-16 Rapiscan Security Products Inc Photomultiplier and detection systems
US8963094B2 (en) 2008-06-11 2015-02-24 Rapiscan Systems, Inc. Composite gamma-neutron detection system
US8867816B2 (en) * 2008-09-05 2014-10-21 Optosecurity Inc. Method and system for performing X-ray inspection of a liquid product at a security checkpoint
US7835495B2 (en) * 2008-10-31 2010-11-16 Morpho Detection, Inc. System and method for X-ray diffraction imaging
GB0901338D0 (en) 2009-01-28 2009-03-11 Cxr Ltd X-Ray tube electron sources
US9202961B2 (en) * 2009-02-02 2015-12-01 Redlen Technologies Imaging devices with solid-state radiation detector with improved sensitivity
US8831331B2 (en) * 2009-02-10 2014-09-09 Optosecurity Inc. Method and system for performing X-ray inspection of a product at a security checkpoint using simulation
US7756249B1 (en) 2009-02-19 2010-07-13 Morpho Detection, Inc. Compact multi-focus x-ray source, x-ray diffraction imaging system, and method for fabricating compact multi-focus x-ray source
US8180138B2 (en) * 2009-03-23 2012-05-15 Morpho Detection, Inc. Method and system for inspection of containers
US9310323B2 (en) 2009-05-16 2016-04-12 Rapiscan Systems, Inc. Systems and methods for high-Z threat alarm resolution
GB2486057B (en) * 2009-05-26 2013-12-25 Rapiscan Systems Inc X-ray tomographic inspection system for the idendification of specific target items
GB2501022B (en) * 2009-05-26 2014-02-12 Rapiscan Systems Inc X-ray tomographic inspection systems for the identification of specific target items
ES2643626T3 (es) * 2009-05-26 2017-11-23 Rapiscan Systems, Inc. Sistemas y métodos para formación de imágenes, adquisición de datos, transmisión de datos y distribución de datos para escáneres tomográficos de rayos X, de alta tasa de datos
EP2443441B8 (en) 2009-06-15 2017-11-22 Optosecurity Inc. Method and apparatus for assessing the threat status of luggage
EP2443478B1 (en) * 2009-06-18 2015-08-26 Koninklijke Philips N.V. Optimal energy windowing of scattered events in radionuclide imaging
EP2459990A4 (en) * 2009-07-31 2017-08-09 Optosecurity Inc. Method and system for identifying a liquid product in luggage or other receptacle
GB2488740B (en) * 2010-01-19 2015-02-11 Rapiscan Systems Inc Multi-view cargo scanner
US9442213B2 (en) 2010-01-19 2016-09-13 Rapiscan Systems, Inc. Method of electron beam transport in an X-ray scanner
US20110188632A1 (en) * 2010-02-03 2011-08-04 Geoffrey Harding Multiple plane multi-inverse fan-beam detection systems and method for using the same
CN102870124B (zh) * 2010-02-23 2016-06-08 拉皮斯坎系统股份有限公司 同时的图像发布和归档
US8713131B2 (en) 2010-02-23 2014-04-29 RHPiscan Systems, Inc. Simultaneous image distribution and archiving
GB201010233D0 (en) * 2010-06-18 2010-07-21 Univ Nottingham Trent Improvements in or relating to sample analysis
JP5765913B2 (ja) * 2010-10-14 2015-08-19 株式会社東芝 医用画像診断装置及び医用画像処理方法
US8660226B2 (en) 2011-01-19 2014-02-25 General Electric Company Systems and methods for multichannel noise reduction
PL2673660T3 (pl) 2011-02-08 2018-01-31 Rapiscan Systems Inc Tajny nadzór z użyciem wykrywania multimodalnego
US9218933B2 (en) 2011-06-09 2015-12-22 Rapidscan Systems, Inc. Low-dose radiographic imaging system
KR102067367B1 (ko) 2011-09-07 2020-02-11 라피스캔 시스템스, 인코포레이티드 적하목록 데이터를 이미징/검출 프로세싱에 통합시킨 x-선 검사 방법
CN110632673A (zh) * 2011-11-22 2019-12-31 新锐系统有限责任公司 高速、覆盖区小的x射线断层摄影检查系统、设备和方法
US10670740B2 (en) 2012-02-14 2020-06-02 American Science And Engineering, Inc. Spectral discrimination using wavelength-shifting fiber-coupled scintillation detectors
DE102012005767A1 (de) * 2012-03-25 2013-09-26 DüRR DENTAL AG Phasenkontrast-Röntgen-Tomographiegerät
CN104486997B (zh) * 2012-06-05 2017-07-25 拉皮斯坎系统股份有限公司 X射线扫描系统的射线源激发模式的最佳化
CN103674979B (zh) * 2012-09-19 2016-12-21 同方威视技术股份有限公司 一种行李物品ct安检系统及其探测器装置
US20140175289A1 (en) * 2012-12-21 2014-06-26 R. John Voorhees Conveyer Belt with Optically Visible and Machine-Detectable Indicators
CN103901488A (zh) * 2012-12-27 2014-07-02 同方威视技术股份有限公司 固定式ct装置
CN103901493B (zh) * 2012-12-27 2016-12-28 同方威视技术股份有限公司 一种无机架ct装置
US9183261B2 (en) 2012-12-28 2015-11-10 Shutterstock, Inc. Lexicon based systems and methods for intelligent media search
US9183215B2 (en) 2012-12-29 2015-11-10 Shutterstock, Inc. Mosaic display systems and methods for intelligent media search
CN103076350A (zh) * 2013-01-04 2013-05-01 公安部第一研究所 一种移动背散射x射线安全检查方法及装置
PL2952068T3 (pl) 2013-01-31 2021-07-26 Rapiscan Systems, Inc. Przenośny system kontroli bezpieczeństwa
WO2015013359A1 (en) 2013-07-23 2015-01-29 Rapiscan Systems, Inc. Methods for improving processing speed for object inspection
CN105612416B (zh) * 2013-07-25 2019-01-01 模拟技术公司 对象内物品的衍射特征的生成
TWI664268B (zh) 2013-08-09 2019-07-01 Kyushu University, National University Corporation 有機金屬錯合物、發光材料、延遲螢光體及有機發光元件
CN103499593A (zh) * 2013-09-23 2014-01-08 深圳先进技术研究院 一种计算机断层扫描系统
CN103611687A (zh) * 2013-11-27 2014-03-05 南通芯迎设计服务有限公司 一种具有安全检查功能的包裹自动分类通知装置
US9557427B2 (en) 2014-01-08 2017-01-31 Rapiscan Systems, Inc. Thin gap chamber neutron detectors
CN103808741A (zh) * 2014-03-07 2014-05-21 黄善花 一种行李安全检查机及其检查方法
CN105785462B (zh) * 2014-06-25 2019-02-22 同方威视技术股份有限公司 一种定位三维ct图像中的目标的方法和安检ct系统
US10228487B2 (en) 2014-06-30 2019-03-12 American Science And Engineering, Inc. Rapidly relocatable modular cargo container scanner
FR3023001A1 (fr) * 2014-06-30 2016-01-01 Commissariat Energie Atomique Procede d'analyse d'un objet en deux temps utilisant un rayonnement en transmission puis un spectre en diffusion.
CN107407622A (zh) * 2015-01-16 2017-11-28 拉皮斯坎系统股份有限公司 用于检测感兴趣材料的非侵入检查系统和方法
GB2549891B (en) 2015-01-20 2021-09-08 American Science & Eng Inc Dynamically adjustable focal spot
JP6746603B2 (ja) 2015-03-20 2020-08-26 ラピスカン システムズ、インコーポレイテッド 手持ち式携帯型後方散乱検査システム
WO2017011057A2 (en) * 2015-04-27 2017-01-19 GREEN, Christopher, K. Four plane x-ray inspection system
US10345479B2 (en) 2015-09-16 2019-07-09 Rapiscan Systems, Inc. Portable X-ray scanner
JP6654397B2 (ja) * 2015-10-09 2020-02-26 株式会社イシダ X線検査装置
WO2017114267A1 (zh) * 2015-12-29 2017-07-06 上海联影医疗科技有限公司 一种医疗设备的数据采集系统及其配置方法
EP3764281A1 (en) 2016-02-22 2021-01-13 Rapiscan Systems, Inc. Methods of identifying firearms in radiographic images
WO2018020261A1 (en) 2016-07-28 2018-02-01 Smiths Heimann Sas Scatter imaging
GB2555564B (en) * 2016-07-28 2020-09-09 Smiths Heimann Sas Scatter imaging
US20180038807A1 (en) * 2016-08-08 2018-02-08 Adaptix Ltd. Method and system for reconstructing 3-dimensional images from spatially and temporally overlapping x-rays
US10600609B2 (en) 2017-01-31 2020-03-24 Rapiscan Systems, Inc. High-power X-ray sources and methods of operation
MX2019012365A (es) 2017-04-17 2020-02-07 Rapiscan Systems Inc Metodos y sistemas de inspeccion de tomografia por rayos x.
US10987071B2 (en) * 2017-06-29 2021-04-27 University Of Delaware Pixelated K-edge coded aperture system for compressive spectral X-ray imaging
CN109420623A (zh) * 2017-08-31 2019-03-05 无锡日联科技股份有限公司 一种应用于贝壳的全自动x射线检测、分拣系统
US10585206B2 (en) 2017-09-06 2020-03-10 Rapiscan Systems, Inc. Method and system for a multi-view scanner
GB2568735A (en) * 2017-11-25 2019-05-29 Adaptix Ltd An x-ray imaging system
EP3530360A1 (de) * 2018-02-21 2019-08-28 Siemens Aktiengesellschaft Erkennung von nicht förderfähigen sendungen
US20190346379A1 (en) * 2018-05-10 2019-11-14 Voti Inc. X-ray screening system and method
DE112019002822T5 (de) 2018-06-04 2021-02-18 Sigray, Inc. Wellenlängendispersives röntgenspektrometer
GB2590561B (en) 2018-06-20 2021-12-08 American Science & Eng Inc Wavelength-shifting sheet-coupled scintillation detectors
EP3816616A4 (en) * 2018-06-27 2022-03-23 Toray Industries, Inc. RADIATION TRANSMISSION INSPECTION METHOD AND DEVICE AND MICROPOROUS FILM MANUFACTURING METHOD
CN108614303A (zh) * 2018-07-12 2018-10-02 同方威视技术股份有限公司 安全检查设备的屏蔽结构及安全检查通道
JP7117452B2 (ja) 2018-07-26 2022-08-12 シグレイ、インコーポレイテッド 高輝度反射型x線源
JP6632674B1 (ja) * 2018-09-06 2020-01-22 株式会社東芝 検査装置及び検査プログラム
CN112823280A (zh) 2018-09-07 2021-05-18 斯格瑞公司 用于深度可选x射线分析的系统和方法
CN110907481A (zh) * 2018-09-18 2020-03-24 同方威视技术股份有限公司 一种x射线的检测系统和检测方法
WO2020073132A1 (en) * 2018-10-11 2020-04-16 Shawcor Ltd. Skewed x-ray detection apparatus and method for pipeline use
US11977037B2 (en) 2018-10-22 2024-05-07 Rapiscan Holdings, Inc. Insert for screening tray
DE102019111463A1 (de) * 2019-05-03 2020-11-05 Wipotec Gmbh Röntgenstrahlungsdetektorvorrichtung und Vorrichtung zur Röntgeninspektion von Produkten, insbesondere von Lebensmitteln
CN110155688B (zh) * 2019-06-02 2020-12-25 浙江鼎兴企业管理有限公司 一种分流式车站行李安检机
CN110361400A (zh) * 2019-07-01 2019-10-22 创新奇智(合肥)科技有限公司 一种铸铁工件的气泡检测方法及电子设备
CN110327070A (zh) * 2019-07-12 2019-10-15 山东大骋医疗科技有限公司 具有储能系统的ct设备
CA3149539A1 (en) * 2019-09-16 2021-03-25 Voti Inc. Probabilistic image analysis
US11058369B2 (en) 2019-11-15 2021-07-13 GE Precision Healthcare LLC Systems and methods for coherent scatter imaging using a segmented photon-counting detector for computed tomography
US11594001B2 (en) 2020-01-20 2023-02-28 Rapiscan Systems, Inc. Methods and systems for generating three-dimensional images that enable improved visualization and interaction with objects in the three-dimensional images
WO2021150964A1 (en) 2020-01-23 2021-07-29 Rapiscan Systems, Inc. Systems and methods for compton scatter and/or pulse pileup detection
US11212902B2 (en) 2020-02-25 2021-12-28 Rapiscan Systems, Inc. Multiplexed drive systems and methods for a multi-emitter X-ray source
US11193898B1 (en) 2020-06-01 2021-12-07 American Science And Engineering, Inc. Systems and methods for controlling image contrast in an X-ray system
US11175245B1 (en) 2020-06-15 2021-11-16 American Science And Engineering, Inc. Scatter X-ray imaging with adaptive scanning beam intensity
WO2021257049A1 (en) * 2020-06-15 2021-12-23 American Science And Engineering, Inc. Scatter x-ray imaging with adaptive scanning beam intensity
EP3933881A1 (en) 2020-06-30 2022-01-05 VEC Imaging GmbH & Co. KG X-ray source with multiple grids
KR102246196B1 (ko) * 2020-07-06 2021-04-29 주식회사 딥노이드 X-ray 보안 장치에 대한 데이터 분석 장치 및 방법
US11340361B1 (en) 2020-11-23 2022-05-24 American Science And Engineering, Inc. Wireless transmission detector panel for an X-ray scanner
CN117063064A (zh) 2021-02-23 2023-11-14 拉皮斯坎系统股份有限公司 用于移除具有多个x-射线源的一个或多个扫描系统中的串扰信号的系统和方法
JP2022144586A (ja) * 2021-03-19 2022-10-03 株式会社イシダ X線検査装置
US11885752B2 (en) 2021-06-30 2024-01-30 Rapiscan Holdings, Inc. Calibration method and device therefor
CN113960086B (zh) * 2021-09-18 2024-01-02 中国航天科工集团第二研究院 一种补偿式背散射探测器栅格准直成像系统及方法
GB2612326A (en) * 2021-10-27 2023-05-03 Smiths Detection France S A S Static or quasi-static multi-view or 3D inspection of cargo

Family Cites Families (963)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US768538A (en) 1903-01-03 1904-08-23 Cons Car Heating Co Air-brake.
US2010020A (en) 1929-11-04 1935-08-06 Holzwarth Gas Turbine Co Explosion turbine
US2006291A (en) 1932-01-28 1935-06-25 Donald S Barrows Registration control for pipe organs
US2005180A (en) 1933-02-20 1935-06-18 Standard Oil Co California Tank cleaning device
US2009060A (en) 1933-03-18 1935-07-23 Noble And Cooley Company Sound propagating diaphragm and hoop
US2010278A (en) 1933-12-18 1935-08-06 William A Snyder Folding table
US2007003A (en) 1934-05-24 1935-07-02 Milprint Products Corp Commodity wrapper
US2101143A (en) 1935-12-31 1937-12-07 Westinghouse Electric & Mfg Co Shockproof X-ray unit
US2333525A (en) 1941-09-04 1943-11-02 Westinghouse Electric & Mfg Co Vapor electric device
US2299251A (en) 1941-10-15 1942-10-20 Albert C Perbal Adjustable bracket
GB730803A (en) 1951-11-08 1955-06-01 Licentia Gmbh Improvements in and relating to x-ray tubes
US2831123A (en) 1956-07-11 1958-04-15 Webster J Daly X-ray fluoroscopic device
US2952790A (en) 1957-07-15 1960-09-13 Raytheon Co X-ray tubes
US2999935A (en) 1957-10-30 1961-09-12 Industrial Nucleonics Corp Convertible radiation source
US3143651A (en) 1961-02-23 1964-08-04 American Science & Eng Inc X-ray reflection collimator adapted to focus x-radiation directly on a detector
US3239706A (en) 1961-04-17 1966-03-08 High Voltage Engineering Corp X-ray target
US3138729A (en) 1961-09-18 1964-06-23 Philips Electronic Pharma Ultra-soft X-ray source
FR1469185A (fr) 1965-12-30 1967-02-10 Csf Intégration d'éléments magnétiques câblés
GB1272498A (en) 1969-12-03 1972-04-26 Philips Electronic Associated X-ray tube having a metal envelope
US3610994A (en) 1970-08-31 1971-10-05 Sheldon Edward E Cathode-ray tubes of television type for x-rays protection
US3713156A (en) 1970-10-12 1973-01-23 R Pothier Surface and subsurface detection device
US3768645A (en) 1971-02-22 1973-10-30 Sunkist Growers Inc Method and means for automatically detecting and sorting produce according to internal damage
JPS5325851B1 (es) 1971-03-29 1978-07-29
US3707672A (en) 1971-06-02 1972-12-26 Westinghouse Electric Corp Weapon detector utilizing the pulsed field technique to detect weapons on the basis of weapons thickness
US3780291A (en) 1971-07-07 1973-12-18 American Science & Eng Inc Radiant energy imaging with scanning pencil beam
USRE28544E (en) 1971-07-07 1975-09-02 Radiant energy imaging with scanning pencil beam
US3790785A (en) 1971-11-18 1974-02-05 American Science & Eng Inc Radiographic imaging
US3784837A (en) 1972-05-08 1974-01-08 Siemens Ag X-ray device with a stand
US3790799A (en) 1972-06-21 1974-02-05 American Science & Eng Inc Radiant energy imaging with rocking scanning
US3766387A (en) 1972-07-11 1973-10-16 Us Navy Nondestructive test device using radiation to detect flaws in materials
JPS5224397B2 (es) 1973-06-05 1977-06-30
US3848130A (en) 1973-06-25 1974-11-12 A Macovski Selective material x-ray imaging system
JPS5413286B2 (es) 1973-08-30 1979-05-30
US3867637A (en) 1973-09-04 1975-02-18 Raytheon Co Extended monochromatic x-ray source
JPS5081080A (es) 1973-11-14 1975-07-01
US3854049A (en) 1973-12-10 1974-12-10 Wisconsin Alumni Res Found Compensation for patient thickness variations in differential x-ray transmission imaging
GB1497396A (en) 1974-03-23 1978-01-12 Emi Ltd Radiography
US3980889A (en) 1974-04-08 1976-09-14 North American Philips Corporation Article transfer and inspection apparatus
DE2442809A1 (de) 1974-09-06 1976-03-18 Philips Patentverwaltung Anordnung zur ermittlung der absorption in einem koerper
USRE32961E (en) 1974-09-06 1989-06-20 U.S. Philips Corporation Device for measuring local radiation absorption in a body
US3965358A (en) 1974-12-06 1976-06-22 Albert Macovski Cross-sectional imaging system using a polychromatic x-ray source
JPS5178696A (en) 1974-12-28 1976-07-08 Tokyo Shibaura Electric Co x senkan
US4031401A (en) 1975-03-14 1977-06-21 American Science & Engineering, Inc. Radiant energy imaging scanning
DE2532218C2 (de) 1975-07-18 1982-09-02 Heimann Gmbh, 6200 Wiesbaden Vorrichtung zum Prüfen von Gepäckstücken mittels Röntgenstrahlung
DE2532300C3 (de) 1975-07-18 1979-05-17 Heimann Gmbh, 6200 Wiesbaden Anlage zum Prüfen von Gepäckstücken mittels Röntgenstrahlung
GB1526041A (en) 1975-08-29 1978-09-27 Emi Ltd Sources of x-radiation
US4031545A (en) 1975-09-08 1977-06-21 American Science & Engineering, Inc. Radiant energy alarm system
US4045672A (en) 1975-09-11 1977-08-30 Nihon Denshi Kabushiki Kaisha Apparatus for tomography comprising a pin hole for forming a microbeam of x-rays
NL7611391A (nl) 1975-10-18 1977-04-20 Emi Ltd Roentgentoestel.
US4210811A (en) 1975-11-03 1980-07-01 Heimann Gmbh Drive for moveable shield in luggage screening apparatus
JPS5275996A (en) 1975-12-20 1977-06-25 Toshiba Corp X-ray tube for analysis
IT1083997B (it) 1976-01-30 1985-05-25 Pretini Gisberto Porta a tamburo definita da scomparti ruotanti combinabile con un rivelatore di armi per impianti di protezione antirapina ed antiostaggio
JPS52124890A (en) 1976-04-13 1977-10-20 Toshiba Corp X-ray tube
DE2647167A1 (de) 1976-10-19 1978-04-20 Siemens Ag Verfahren zur herstellung von schichtaufnahmen mit roentgen- oder aehnlich durchdringenden strahlen
US4171254A (en) 1976-12-30 1979-10-16 Exxon Research & Engineering Co. Shielded anodes
FR2379158A1 (fr) 1977-01-28 1978-08-25 Radiologie Cie Gle Tube radiogene pour fournir un faisceau de rayons x plat en eventail de grande ouverture et appareil de radiologie comportant un tel tube
DE2705640A1 (de) 1977-02-10 1978-08-17 Siemens Ag Rechnersystem fuer den bildaufbau eines koerperschnittbildes und verfahren zum betrieb des rechnersystems
US4105922A (en) 1977-04-11 1978-08-08 General Electric Company CT number identifier in a computed tomography system
DE2729353A1 (de) 1977-06-29 1979-01-11 Siemens Ag Roentgenroehre mit wanderndem brennfleck
JPS5427793A (en) * 1977-08-04 1979-03-02 Toshiba Corp X-ray tomographic diagnosis apparatus
DE2735400C2 (de) 1977-08-05 1979-09-20 Heimann Gmbh, 6200 Wiesbaden Vorrichtung zum Prüfen von Gepäckstücken mitteis Röntgenstrahlung
US4200800A (en) 1977-11-03 1980-04-29 American Science & Engineering, Inc. Reduced dose CT scanning
JPS5480097A (en) 1977-12-09 1979-06-26 Nippon Telegr & Teleph Corp <Ntt> Soft x-ray tube anti-cathode and its manufacture
DE2756659A1 (de) 1977-12-19 1979-06-21 Philips Patentverwaltung Anordnung zur bestimmung der absorptionsverteilung
US4297580A (en) 1977-12-27 1981-10-27 North American Philips Corporation X-ray optical system for article inspection, with components disposed on parallel axes
US4471343A (en) 1977-12-27 1984-09-11 Lemelson Jerome H Electronic detection systems and methods
US4158770A (en) 1978-01-03 1979-06-19 Raytheon Company Radiographic imaging system
DE2807735B2 (de) 1978-02-23 1979-12-20 Philips Patentverwaltung Gmbh, 2000 Hamburg Röntgenröhre mit einem aus Metall bestehenden Röhrenkolben
US4242583A (en) 1978-04-26 1980-12-30 American Science And Engineering, Inc. X-ray imaging variable resolution
US4228353A (en) 1978-05-02 1980-10-14 Johnson Steven A Multiple-phase flowmeter and materials analysis apparatus and method
US4185205A (en) 1978-05-09 1980-01-22 American Science & Engineering, Inc. Remote load controller
US4165472A (en) 1978-05-12 1979-08-21 Rockwell International Corporation Rotating anode x-ray source and cooling technique therefor
US4260898A (en) 1978-09-28 1981-04-07 American Science And Engineering, Inc. X-ray imaging variable resolution
JPS5546408A (en) 1978-09-29 1980-04-01 Toshiba Corp X-ray device
JPS5568056A (en) 1978-11-17 1980-05-22 Hitachi Ltd X-ray tube
US4228357A (en) 1978-12-04 1980-10-14 American Science And Engineering, Inc. Detector on wheel system (flying spot)
US4245158A (en) 1979-03-26 1981-01-13 American Science And Engineering, Inc. Soft x-ray spectrometric imaging system
DE2926456A1 (de) * 1979-06-30 1981-01-15 Philips Patentverwaltung Verfahren zur ermittlung des randes eines koerpers mittels am koerper gestreuter strahlung
US4303860A (en) 1979-07-30 1981-12-01 American Science And Engineering, Inc. High resolution radiation detector
DE2944147A1 (de) * 1979-11-02 1981-05-14 Philips Patentverwaltung Gmbh, 2000 Hamburg Anordnung zur ermittlung der streudichteverteilung in einem ebenen untersuchungsbereich
US4266425A (en) 1979-11-09 1981-05-12 Zikonix Corporation Method for continuously determining the composition and mass flow of butter and similar substances from a manufacturing process
US4309637A (en) 1979-11-13 1982-01-05 Emi Limited Rotating anode X-ray tube
JPS5686448A (en) 1979-12-17 1981-07-14 Hitachi Ltd X-ray tube and its manufacturing method
US4352021A (en) 1980-01-07 1982-09-28 The Regents Of The University Of California X-Ray transmission scanning system and method and electron beam X-ray scan tube for use therewith
US4420382A (en) 1980-01-18 1983-12-13 Alcan International Limited Method for controlling end effect on anodes used for cathodic protection and other applications
SU1022236A1 (ru) 1980-03-12 1983-06-07 Институт сильноточной электроники СО АН СССР Источник м гкого рентгеновского излучени
US4472822A (en) 1980-05-19 1984-09-18 American Science And Engineering, Inc. X-Ray computed tomography using flying spot mechanical scanning mechanism
JPS56167464A (en) 1980-05-30 1981-12-23 Nippon Telegr & Teleph Corp <Ntt> Ink recording head
JPS5717524A (en) 1980-07-04 1982-01-29 Meidensha Electric Mfg Co Ltd Electrode structure for vacuum breaker
US4366382B2 (en) 1980-09-09 1997-10-14 Scanray Corp X-ray line scan system for use in baggage inspection
JPS5756740A (en) 1980-09-22 1982-04-05 Mitsubishi Electric Corp Object inspecting device
US4342914A (en) 1980-09-29 1982-08-03 American Science And Engineering, Inc. Flying spot scanner having arbitrarily shaped field size
US4414682A (en) 1980-11-17 1983-11-08 American Science And Engineering, Inc. Penetrating radiant energy imaging system with multiple resolution
US4366576A (en) 1980-11-17 1982-12-28 American Science And Engineering, Inc. Penetrating radiant energy imaging system with multiple resolution
GB2089109B (en) 1980-12-03 1985-05-15 Machlett Lab Inc X-rays targets and tubes
JPS57110854A (en) 1980-12-27 1982-07-09 Seiko Epson Corp Shuttle turning device
DE3107949A1 (de) 1981-03-02 1982-09-16 Siemens AG, 1000 Berlin und 8000 München Roentgenroehre
US4622687A (en) 1981-04-02 1986-11-11 Arthur H. Iversen Liquid cooled anode x-ray tubes
US4405876A (en) 1981-04-02 1983-09-20 Iversen Arthur H Liquid cooled anode x-ray tubes
NL8101697A (nl) 1981-04-07 1982-11-01 Philips Nv Werkwijze voor het vervaardigen van een anode en zo verkregen anode.
JPS57175247A (en) 1981-04-23 1982-10-28 Toshiba Corp Radiation void factor meter
US4399403A (en) 1981-09-22 1983-08-16 Strandberg Engineering Laboratories, Inc. Microwave moisture measuring, indicating and control apparatus
DE3145227A1 (de) 1981-11-13 1983-05-19 Heimann Gmbh, 6200 Wiesbaden Verfahren und vorrichtung zur untersuchung des inhaltes von containern
US4389729A (en) 1981-12-15 1983-06-21 American Science And Engineering, Inc. High resolution digital radiography system
JPS58212045A (ja) 1982-06-02 1983-12-09 Natl Inst For Res In Inorg Mater X線発生装置用筒状対陰極
US4422177A (en) 1982-06-16 1983-12-20 American Science And Engineering, Inc. CT Slice proximity rotary table and elevator for examining large objects
JPS591625A (ja) 1982-06-26 1984-01-07 High Frequency Heattreat Co Ltd 膨大部のある軸体の表面加熱方法
FR2534066B1 (fr) 1982-10-05 1989-09-08 Thomson Csf Tube a rayons x produisant un faisceau a haut rendement, notamment en forme de pinceau
JPS5975549A (ja) 1982-10-22 1984-04-28 Canon Inc X線管球
JPS5975549U (ja) 1982-11-12 1984-05-22 株式会社クボタ 側弁式エンジンの混合気加熱式気化促進装置
GB2133208B (en) 1982-11-18 1986-02-19 Kratos Ltd X-ray sources
US4626688A (en) 1982-11-26 1986-12-02 Barnes Gary T Split energy level radiation detection
US4511799A (en) 1982-12-10 1985-04-16 American Science And Engineering, Inc. Dual energy imaging
US4599740A (en) 1983-01-06 1986-07-08 Cable Arthur P Radiographic examination system
US4691332A (en) 1983-03-14 1987-09-01 American Science And Engineering, Inc. High energy computed tomography
US4531226A (en) 1983-03-17 1985-07-23 Imatron Associates Multiple electron beam target for use in X-ray scanner
JPS59174744A (ja) 1983-03-25 1984-10-03 Toshiba Corp 二相流体の密度分布測定装置
NL8301839A (nl) 1983-05-25 1984-12-17 Philips Nv Roentgenbuis met twee opvolgende lagen anodemateriaal.
JPS5916254A (ja) 1983-06-03 1984-01-27 Toshiba Corp 携帯用x線装置
JPS601554A (ja) 1983-06-20 1985-01-07 Mitsubishi Electric Corp 超音波検査装置
JPS6015546A (ja) 1983-07-07 1985-01-26 Toshiba Corp 局所ボイド率分布の測定方法
JPS6021440A (ja) 1983-07-15 1985-02-02 Toshiba Corp 局所ボイド率分布の測定方法
JPS6038957A (ja) 1983-08-11 1985-02-28 Nec Corp 4相psk波の位相不確定除去回路
US4625324A (en) 1983-09-19 1986-11-25 Technicare Corporation High vacuum rotating anode x-ray tube
JPS6073442A (ja) 1983-09-30 1985-04-25 Toshiba Corp 放射線断層測定装置
US4593355A (en) 1983-11-21 1986-06-03 American Science And Engineering, Inc. Method of quick back projection for computed tomography and improved CT machine employing the method
DE3343886A1 (de) 1983-12-05 1985-06-13 Philips Patentverwaltung Gmbh, 2000 Hamburg Drehanoden-roentgenroehre mit einem gleitlager
US4571491A (en) 1983-12-29 1986-02-18 Shell Oil Company Method of imaging the atomic number of a sample
JPS60181851A (ja) 1984-02-29 1985-09-17 Toshiba Corp 部分書込み制御方式
US4672649A (en) 1984-05-29 1987-06-09 Imatron, Inc. Three dimensional scanned projection radiography using high speed computed tomographic scanning system
JPH0744056B2 (ja) 1984-06-15 1995-05-15 日本電装株式会社 セラミツクヒ−タ
FR2566960B1 (fr) 1984-06-29 1986-11-14 Thomson Cgr Tube a rayons x a anode tournante et procede de fixation d'une anode tournante sur un axe support
JPS6128039A (ja) 1984-07-16 1986-02-07 ユニチカ株式会社 荒巻整経法
US4763345A (en) 1984-07-31 1988-08-09 The Regents Of The University Of California Slit scanning and deteching system
DE3431082A1 (de) 1984-08-23 1986-02-27 Heimann Gmbh, 6200 Wiesbaden Schaltungsanordnung zur hochspannungsversorung einer roentgenroehre
JPS61107642A (ja) 1984-10-30 1986-05-26 Mitsubishi Electric Corp X線発生用タ−ゲツトの冷却方法
JPS61134021A (ja) 1984-12-05 1986-06-21 Canon Inc 投影露光装置
US4768214A (en) 1985-01-16 1988-08-30 American Science And Engineering, Inc. Imaging
CN1003542B (zh) 1985-03-04 1989-03-08 海曼股份公司 X-射线扫描仪
CN85107860A (zh) 1985-04-03 1986-10-01 海曼股份公司 X-射线扫描仪
US4845731A (en) 1985-06-05 1989-07-04 Picker International Radiation data acquistion
DE3526015A1 (de) 1985-07-20 1987-01-22 Philips Patentverwaltung Verfahren zum bestimmen der raeumlichen verteilung der streuquerschnitte fuer elastisch gestreute roentgenstrahlung und anordnung zur durchfuehrung des verfahrens
US4719645A (en) 1985-08-12 1988-01-12 Fujitsu Limited Rotary anode assembly for an X-ray source
JPS6244940A (ja) 1985-08-22 1987-02-26 Shimadzu Corp X線源
GB8521287D0 (en) 1985-08-27 1985-10-02 Frith B Flow measurement & imaging
JPS6264977A (ja) 1985-09-18 1987-03-24 Hitachi Medical Corp 産業用x線異物検査方法及びその実施装置
US4789930A (en) 1985-11-15 1988-12-06 Picker International, Inc. Energy dependent gain correction for radiation detection
US5414622A (en) 1985-11-15 1995-05-09 Walters; Ronald G. Method and apparatus for back projecting image data into an image matrix location
JPS62121773A (ja) 1985-11-20 1987-06-03 Kansai Paint Co Ltd 防汚塗料
US4736400A (en) 1986-01-09 1988-04-05 The Machlett Laboratories, Inc. Diffusion bonded x-ray target
US4845769A (en) 1986-01-17 1989-07-04 American Science And Engineering, Inc. Annular x-ray inspection system
DE3764315D1 (de) 1986-05-28 1990-09-20 Heimann Gmbh Roentgenscanner.
US4799247A (en) 1986-06-20 1989-01-17 American Science And Engineering, Inc. X-ray imaging particularly adapted for low Z materials
JPS6316535A (ja) 1986-07-09 1988-01-23 Rigaku Keisoku Kk 細径x線ビ−ム発生装置
JPS6321040A (ja) 1986-07-16 1988-01-28 工業技術院長 超高速x線ctスキヤナ
US4809312A (en) 1986-07-22 1989-02-28 American Science And Engineering, Inc. Method and apparatus for producing tomographic images
US4958363A (en) 1986-08-15 1990-09-18 Nelson Robert S Apparatus for narrow bandwidth and multiple energy x-ray imaging
JPS63109653A (ja) 1986-10-27 1988-05-14 Sharp Corp 情報登録検索装置
DE3638378A1 (de) 1986-11-11 1988-05-19 Siemens Ag Roentgenroehre
US4963746A (en) 1986-11-25 1990-10-16 Picker International, Inc. Split energy level radiation detection
JPS63150840A (ja) 1986-12-16 1988-06-23 Fuji Electric Co Ltd X線発生用対陰極
US4893015A (en) 1987-04-01 1990-01-09 American Science And Engineering, Inc. Dual mode radiographic measurement method and device
JPS63255683A (ja) 1987-04-13 1988-10-21 Hitachi Ltd 異物の映像化装置
US5018181A (en) 1987-06-02 1991-05-21 Coriolis Corporation Liquid cooled rotating anodes
IL83233A (en) 1987-07-17 1991-01-31 Elscint Ltd Reconstruction in ct scanners using divergent beams
JPS6434333A (en) 1987-07-31 1989-02-03 Toshiba Corp Image processing apparatus
JPS6486938A (en) 1987-09-30 1989-03-31 Toshiba Corp Ct scanner
EP0311177B1 (de) 1987-10-05 1993-12-15 Philips Patentverwaltung GmbH Anordnung zur Untersuchung eines Körpers mit einer Strahlenquelle
US4899283A (en) 1987-11-23 1990-02-06 American Science And Engineering, Inc. Tomographic apparatus including means to illuminate the bounded field of view from a plurality of directions
GB2212903B (en) 1987-11-24 1991-11-06 Rolls Royce Plc Measuring two phase flow in pipes.
JPH0186156U (es) 1987-11-30 1989-06-07
US4788706A (en) 1987-12-17 1988-11-29 General Electric Company Method of measurement of x-ray energy
US4825454A (en) 1987-12-28 1989-04-25 American Science And Engineering, Inc. Tomographic imaging with concentric conical collimator
FR2625605A1 (fr) 1987-12-30 1989-07-07 Thomson Cgr Anode tournante pour tube a rayons x
US4928296A (en) 1988-04-04 1990-05-22 General Electric Company Apparatus for cooling an X-ray device
US5227800A (en) 1988-04-19 1993-07-13 Millitech Corporation Contraband detection system
US4852131A (en) 1988-05-13 1989-07-25 Advanced Research & Applications Corporation Computed tomography inspection of electronic devices
US4887604A (en) 1988-05-16 1989-12-19 Science Research Laboratory, Inc. Apparatus for performing dual energy medical imaging
JPH01296544A (ja) 1988-05-24 1989-11-29 Seiko Epson Corp 高輝度x線銃
FR2632436B1 (fr) 1988-06-01 1991-02-15 Commissariat Energie Atomique Procede d'adressage d'un ecran matriciel fluorescent a micropointes
US5007072A (en) 1988-08-03 1991-04-09 Ion Track Instruments X-ray diffraction inspection system
DE3909147A1 (de) 1988-09-22 1990-09-27 Philips Patentverwaltung Anordnung zur messung des impulsuebertrages
JPH02147942A (ja) * 1988-11-30 1990-06-06 Fuji Electric Co Ltd 内容物検査方法
US5127030A (en) 1989-02-28 1992-06-30 American Science And Engineering, Inc. Tomographic imaging with improved collimator
DE58903297D1 (de) 1989-04-06 1993-02-25 Heimann Systems Gmbh & Co Materialpruefanlage.
US4945562A (en) 1989-04-24 1990-07-31 General Electric Company X-ray target cooling
JP2840611B2 (ja) 1989-05-24 1998-12-24 明治乳業株式会社 包装体内容物の非破壊検査方法及び検査装置
EP0412189B1 (de) 1989-08-09 1992-10-28 Heimann Systems GmbH &amp; Co. KG Vorrichtung zum Durchstrahlen von Gegenständen mit fächerförmiger Strahlung
EP0412190B1 (de) 1989-08-09 1993-10-27 Heimann Systems GmbH &amp; Co. KG Vorrichtung zum Durchstrahlen von Gegenständen mittels fächerförmiger Strahlung
US4979202A (en) 1989-08-25 1990-12-18 Siczek Aldona A Support structure for X-ray imaging apparatus
US5022062A (en) 1989-09-13 1991-06-04 American Science And Engineering, Inc. Automatic threat detection based on illumination by penetrating radiant energy using histogram processing
US5179581A (en) 1989-09-13 1993-01-12 American Science And Engineering, Inc. Automatic threat detection based on illumination by penetrating radiant energy
AT392160B (de) 1989-09-14 1991-02-11 Otto Dipl Ing Dr Kratky Blendenanordnung zur streuungsarmen, einseitigen, linearen begrenzung eines roentgenstrahlbuendels
JP2742454B2 (ja) 1989-10-16 1998-04-22 株式会社テクノシステムズ ハンダ付け装置
US4975968A (en) 1989-10-27 1990-12-04 Spatial Dynamics, Ltd. Timed dielectrometry surveillance method and apparatus
JP2845995B2 (ja) 1989-10-27 1999-01-13 株式会社日立製作所 領域抽出手法
DE8914064U1 (es) 1989-11-29 1990-02-01 Philips Patentverwaltung Gmbh, 2000 Hamburg, De
US5864146A (en) 1996-11-13 1999-01-26 University Of Massachusetts Medical Center System for quantitative radiographic imaging
EP0432568A3 (en) 1989-12-11 1991-08-28 General Electric Company X ray tube anode and tube having same
US5098640A (en) 1990-01-10 1992-03-24 Science Applications International Corporation Apparatus and method for detecting contraband using fast neutron activation
DE4000573A1 (de) 1990-01-10 1991-07-11 Balzers Hochvakuum Elektronenstrahlerzeuger und emissionskathode
US5056127A (en) 1990-03-02 1991-10-08 Iversen Arthur H Enhanced heat transfer rotating anode x-ray tubes
US4991189A (en) 1990-04-16 1991-02-05 General Electric Company Collimation apparatus for x-ray beam correction
EP0455177A3 (en) 1990-04-30 1992-05-20 Shimadzu Corporation High-speed scan type x-ray generator
DE4015180A1 (de) 1990-05-11 1991-11-28 Bruker Analytische Messtechnik Roentgen-computer-tomographie-system mit geteiltem detektorring
DE4015105C3 (de) 1990-05-11 1997-06-19 Bruker Analytische Messtechnik Röntgen-Computer-Tomographie-System
US5155365A (en) 1990-07-09 1992-10-13 Cann Christopher E Emission-transmission imaging system using single energy and dual energy transmission and radionuclide emission data
JPH0479128A (ja) 1990-07-23 1992-03-12 Nec Corp マイクロ波管用多段電位低下コレクタ
US5181234B1 (en) 1990-08-06 2000-01-04 Rapiscan Security Products Inc X-ray backscatter detection system
US5319547A (en) 1990-08-10 1994-06-07 Vivid Technologies, Inc. Device and method for inspection of baggage and other objects
WO1992003722A1 (en) 1990-08-15 1992-03-05 Massachusetts Institute Of Technology Detection of explosives and other materials using resonance fluorescence, resonance absorption, and other electromagnetic processes with bremsstrahlung radiation
US5073910A (en) 1990-08-27 1991-12-17 General Electric Company Square wave cone beam scanning trajectory for data completeness in three-dimensional computerized tomography
US5068882A (en) 1990-08-27 1991-11-26 General Electric Company Dual parallel cone beam circular scanning trajectories for reduced data incompleteness in three-dimensional computerized tomography
CN1020048C (zh) 1990-11-08 1993-03-10 大港石油管理局第一采油厂 低能源原油含水分析仪
US5247561A (en) * 1991-01-02 1993-09-21 Kotowski Andreas F Luggage inspection device
DE4100297A1 (de) 1991-01-08 1992-07-09 Philips Patentverwaltung Roentgenroehre
DE4101544A1 (de) 1991-01-19 1992-07-23 Philips Patentverwaltung Roentgengeraet
DE4103588C1 (es) 1991-02-06 1992-05-27 Siemens Ag, 8000 Muenchen, De
US5841832A (en) 1991-02-13 1998-11-24 Lunar Corporation Dual-energy x-ray detector providing spatial and temporal interpolation
JP2962015B2 (ja) 1991-02-20 1999-10-12 松下電器産業株式会社 k吸収端フィルタおよびX線装置
US5105452A (en) 1991-03-26 1992-04-14 Mcinerney Joseph J Device for determining the characteristics of blood flow through coronary bypass grafts
US5272627A (en) 1991-03-27 1993-12-21 Gulton Industries, Inc. Data converter for CT data acquisition system
DE4110468A1 (de) * 1991-03-30 1992-10-01 Forschungszentrum Juelich Gmbh Einrichtung zur roentgenbestrahlung von objekten
FR2675629B1 (fr) 1991-04-17 1997-05-16 Gen Electric Cgr Cathode pour tube a rayons x et tube ainsi obtenu.
US5144191A (en) 1991-06-12 1992-09-01 Mcnc Horizontal microelectronic field emission devices
JP2928677B2 (ja) * 1991-06-21 1999-08-03 株式会社東芝 X線検出器およびx線検査装置
US5338984A (en) 1991-08-29 1994-08-16 National Semiconductor Corp. Local and express diagonal busses in a configurable logic array
US5557283A (en) 1991-08-30 1996-09-17 Sheen; David M. Real-time wideband holographic surveillance system
JPH0560381A (ja) 1991-09-02 1993-03-09 Harman Co Ltd 元止め式の給湯器
EP0603279B1 (en) 1991-09-10 1999-05-12 Integrated Silicon Design Pty. Ltd Identification and telemetry system
JP3325301B2 (ja) 1991-09-12 2002-09-17 株式会社東芝 X線ct装置
US5224144A (en) 1991-09-12 1993-06-29 American Science And Engineering, Inc. Reduced mass flying spot scanner having arcuate scanning lines
DE69223884T2 (de) 1991-09-12 1998-08-27 Toshiba Kawasaki Kk Verfahren und Vorrichtung zur Erzeugung von Röntgencomputertomogrammen und zum Erzeugen von Schattenbildern mittels spiralförmiger Abtastung
US5182764A (en) 1991-10-03 1993-01-26 Invision Technologies, Inc. Automatic concealed object detection system having a pre-scan stage
US5367552A (en) 1991-10-03 1994-11-22 In Vision Technologies, Inc. Automatic concealed object detection system having a pre-scan stage
JPH05135721A (ja) 1991-11-08 1993-06-01 Toshiba Corp X線管
US5253283A (en) 1991-12-23 1993-10-12 American Science And Engineering, Inc. Inspection method and apparatus with single color pixel imaging
JPH05182617A (ja) 1991-12-27 1993-07-23 Shimadzu Corp 超高速x線ct用x線管の陽極ターゲット構体
US5305363A (en) 1992-01-06 1994-04-19 Picker International, Inc. Computerized tomographic scanner having a toroidal x-ray tube with a stationary annular anode and a rotating cathode assembly
US5268955A (en) 1992-01-06 1993-12-07 Picker International, Inc. Ring tube x-ray source
US5263075A (en) 1992-01-13 1993-11-16 Ion Track Instruments, Inc. High angular resolution x-ray collimator
GB9200828D0 (en) 1992-01-15 1992-03-11 Image Research Ltd Improvements in and relating to material identification using x-rays
US5375156A (en) 1992-03-31 1994-12-20 Siemens Medical Systems, Inc. Method and apparatus for 3-D computer tomography
JPH05290768A (ja) 1992-04-16 1993-11-05 Toshiba Corp X線管
US5237598A (en) 1992-04-24 1993-08-17 Albert Richard D Multiple image scanning X-ray method and apparatus
JPH05325851A (ja) 1992-05-18 1993-12-10 Rigaku Corp X線管用対陰極
JP3441455B2 (ja) 1992-05-27 2003-09-02 株式会社東芝 X線ct装置
JP3405760B2 (ja) 1992-05-27 2003-05-12 株式会社東芝 Ct装置
JP2005013768A (ja) 1992-05-27 2005-01-20 Toshiba Corp X線ct装置
JP3631235B2 (ja) 1992-05-27 2005-03-23 株式会社東芝 X線ct装置
US5966422A (en) 1992-07-20 1999-10-12 Picker Medical Systems, Ltd. Multiple source CT scanner
EP0579848B1 (de) 1992-07-20 1995-10-04 Heimann Systems GmbH Prüfanlage für Gegenstände
DE4228559A1 (de) 1992-08-27 1994-03-03 Dagang Tan Röntgenröhre mit einer Transmissionsanode
US5410156A (en) 1992-10-21 1995-04-25 Miller; Thomas G. High energy x-y neutron detector and radiographic/tomographic device
JPH06133960A (ja) 1992-10-23 1994-05-17 Hitachi Medical Corp X線ct装置
JPH06162974A (ja) 1992-11-18 1994-06-10 Toshiba Corp X線管
JPH06169911A (ja) 1992-12-04 1994-06-21 Toshiba Corp X線コンピュータトモグラフィ装置
US5692029A (en) * 1993-01-15 1997-11-25 Technology International Incorporated Detection of concealed explosives and contraband
US5651047A (en) 1993-01-25 1997-07-22 Cardiac Mariners, Incorporated Maneuverable and locateable catheters
DE4304332A1 (de) 1993-02-13 1994-08-18 Philips Patentverwaltung Verfahren zur Erzeugung von Schichtbildern und Anordnung zur Durchführung des Verfahrens
JP3280743B2 (ja) 1993-03-12 2002-05-13 株式会社島津製作所 X線断層撮影方法
JPH06277207A (ja) 1993-03-25 1994-10-04 Toshiba Corp 非破壊検査装置、x線ct用データ検出装置及びx線ct用画像処理装置
DE4311174C2 (de) 1993-04-05 1996-02-15 Heimann Systems Gmbh & Co Röntgenprüfanlage für Container und Lastkraftwagen
US5339080A (en) 1993-04-08 1994-08-16 Coleman Research Corporation Earth-penetrating synthetic image radar
JP3449561B2 (ja) 1993-04-19 2003-09-22 東芝医用システムエンジニアリング株式会社 X線ct装置
FR2705786B1 (fr) 1993-05-28 1995-08-25 Schlumberger Ind Sa Procédé et dispositif pour la reconnaissance de matériaux déterminés dans la composition d'un objet.
FR2705785B1 (fr) 1993-05-28 1995-08-25 Schlumberger Ind Sa Procédé pour déterminer la fonction d'atténuation d'un objet par rapport à la transmission d'une épaisseur de référence d'un matériau de référence et dispositif pour la mise en Óoeuvre du procédé.
JP3218810B2 (ja) 1993-06-25 2001-10-15 石川島播磨重工業株式会社 X線検査車両
DE69430088T2 (de) 1993-07-05 2002-11-07 Koninkl Philips Electronics Nv Röntgenstrahlen-Beugungsgerät mit Kühlmittel-Verbindung zur Röntgenröhre
US5511105A (en) 1993-07-12 1996-04-23 Siemens Aktiengesellschaft X-ray tube with multiple differently sized focal spots and method for operating same
FR2708751B1 (fr) 1993-07-30 1995-10-06 Schlumberger Ind Sa Procédé et dispositif pour détecter la présence d'un objet, comportant un matériau donné, non accessible à la vue.
US5345240A (en) 1993-08-04 1994-09-06 Hughes Missile Systems Company Handheld obstacle penetrating motion detecting radar
JPH0757113A (ja) 1993-08-18 1995-03-03 Ge Yokogawa Medical Syst Ltd 3次元画像表示方法および装置
DE4331317A1 (de) 1993-09-15 1995-03-16 Philips Patentverwaltung Untersuchungsverfahren zur Auswertung ortsabhängiger Spektren
US5557108A (en) 1993-10-25 1996-09-17 T+E,Uml U+Ee Mer; T+E,Uml U+Ee May O. Integrated substance detection and identification system
US5493596A (en) 1993-11-03 1996-02-20 Annis; Martin High-energy X-ray inspection system
CA2139537C (en) 1994-01-07 2007-04-24 Ulf Anders Staffan Tapper Method and apparatus for the classification of matter
US5541975A (en) 1994-01-07 1996-07-30 Anderson; Weston A. X-ray tube having rotary anode cooled with high thermal conductivity fluid
US5666393A (en) 1994-02-17 1997-09-09 Annis; Martin Method and apparatus for reducing afterglow noise in an X-ray inspection system
US5511104A (en) 1994-03-11 1996-04-23 Siemens Aktiengesellschaft X-ray tube
US5490196A (en) 1994-03-18 1996-02-06 Metorex International Oy Multi energy system for x-ray imaging applications
US5428657A (en) * 1994-03-22 1995-06-27 Georgia Tech Research Corporation X-ray monitoring system
US5467377A (en) 1994-04-15 1995-11-14 Dawson; Ralph L. Computed tomographic scanner
SE9401300L (sv) 1994-04-18 1995-10-19 Bgc Dev Ab Roterande cylinderkollimator för kollimering av joniserande, elektromagnetisk strålning
DE4413689C1 (de) 1994-04-20 1995-06-08 Siemens Ag Röntgencomputertomograph
US5606167A (en) 1994-07-11 1997-02-25 Miller; Thomas G. Contraband detection apparatus and method
DE4425691C2 (de) 1994-07-20 1996-07-11 Siemens Ag Röntgenstrahler
US5616926A (en) 1994-08-03 1997-04-01 Hitachi, Ltd. Schottky emission cathode and a method of stabilizing the same
US5712889A (en) 1994-08-24 1998-01-27 Lanzara; Giovanni Scanned volume CT scanner
DE4432205C1 (de) 1994-09-09 1996-01-25 Siemens Ag Hochspannungsstecker für eine Röntgenröhre
GB9419510D0 (en) 1994-09-28 1994-11-16 Ic Consultants Limited Apparatus for analysing fluid flow
DE4436688A1 (de) 1994-10-13 1996-04-25 Siemens Ag Computertomograph
US5712926A (en) 1994-10-20 1998-01-27 Eberhard; Jeffrey Wayne X-ray computed tomography (CT) system for detecting thin objects
US5959580A (en) 1994-11-03 1999-09-28 Ksi Inc. Communications localization system
US6438201B1 (en) 1994-11-23 2002-08-20 Lunar Corporation Scanning densitometry system with adjustable X-ray tube current
US5481584A (en) 1994-11-23 1996-01-02 Tang; Jihong Device for material separation using nondestructive inspection imaging
US5568829A (en) 1994-12-16 1996-10-29 Lake Shove, Inc. Boom construction for sliding boom delimeers
JP3011360B2 (ja) 1994-12-27 2000-02-21 株式会社スタビック X線非破壊検査装置
DE19502752C2 (de) 1995-01-23 1999-11-11 Siemens Ag Verfahren und Vorrichtung zur Erzeugung eines umlaufenden Röntgenstrahls zur schnellen Computertomographie
JP3259561B2 (ja) 1995-01-26 2002-02-25 松下電器産業株式会社 リチウム二次電池の負極材料及びその製造方法
DE19510168C2 (de) 1995-03-21 2001-09-13 Heimann Systems Gmbh & Co Verfahren und Vorrichtung zur Bestimmung von kristallinen und polykristallinen Materialien in einem Untersuchungsbereich
AUPN226295A0 (en) 1995-04-07 1995-05-04 Technological Resources Pty Limited A method and an apparatus for analysing a material
DE19513291C2 (de) 1995-04-07 1998-11-12 Siemens Ag Röntgenröhre
DE19514332C1 (de) 1995-04-18 1996-07-25 Siemens Ag Röntgencomputertomograph
US5552705A (en) 1995-06-01 1996-09-03 Keller; George V. Non-obtrusive weapon detection system and method for discriminating between a concealed weapon and other metal objects
US6216540B1 (en) 1995-06-06 2001-04-17 Robert S. Nelson High resolution device and method for imaging concealed objects within an obscuring medium
DE19532965C2 (de) 1995-09-07 1998-07-16 Heimann Systems Gmbh & Co Röntgenprüfanlage für großvolumige Güter
US5600700A (en) * 1995-09-25 1997-02-04 Vivid Technologies, Inc. Detecting explosives or other contraband by employing transmitted and scattered X-rays
US5642393A (en) 1995-09-26 1997-06-24 Vivid Technologies, Inc. Detecting contraband by employing interactive multiprobe tomography
WO1997013142A1 (en) 1995-10-03 1997-04-10 Philips Electronics N.V. Apparatus for simultaneous x-ray diffraction and x-ray fluorescence measurements
US7045787B1 (en) 1995-10-23 2006-05-16 Science Applications International Corporation Density detection using real time discrete photon counting for fast moving targets
US6255654B1 (en) 1995-10-23 2001-07-03 Science Applications International Corporation Density detection using discrete photon counting
US6507025B1 (en) 1995-10-23 2003-01-14 Science Applications International Corporation Density detection using real time discrete photon counting for fast moving targets
AU7730696A (en) * 1995-11-13 1997-06-05 United States Of America, As Represented By The Secretary Of The Army, The Apparatus and method for automatic recognition of concealed objects using multiple energy computed tomography
US6018562A (en) * 1995-11-13 2000-01-25 The United States Of America As Represented By The Secretary Of The Army Apparatus and method for automatic recognition of concealed objects using multiple energy computed tomography
DE19542438C1 (de) 1995-11-14 1996-11-28 Siemens Ag Röntgenröhre
DE19544203A1 (de) 1995-11-28 1997-06-05 Philips Patentverwaltung Röntgenröhre, insbesondere Mikrofokusröntgenröhre
US5648997A (en) 1995-12-29 1997-07-15 Advanced Optical Technologies, Inc. Apparatus and method for removing scatter from an x-ray image
US6304629B1 (en) 1996-01-11 2001-10-16 Granville Todd Conway Compact scanner apparatus and method
US5764683B1 (en) 1996-02-12 2000-11-21 American Science & Eng Inc Mobile x-ray inspection system for large objects
USRE39396E1 (en) 1996-02-12 2006-11-14 American Science And Engineering, Inc. Mobile x-ray inspection system for large objects
US5696806A (en) 1996-03-11 1997-12-09 Grodzins; Lee Tomographic method of x-ray imaging
DE19610093A1 (de) 1996-03-15 1997-09-18 Bsbg Bremer Sonderabfall Berat Verfahren zum Sortieren von Altbatterien und/oder Altakkumulatoren sowie Vorrichtung zur Durchführung des Verfahrens
US5633907A (en) 1996-03-21 1997-05-27 General Electric Company X-ray tube electron beam formation and focusing
US5642394A (en) 1996-04-03 1997-06-24 American Science And Engineering, Inc. Sidescatter X-ray detection system
DE19618749A1 (de) 1996-05-09 1997-11-13 Siemens Ag Röntgen-Computertomograph
EP0844639A1 (en) 1996-05-21 1998-05-27 Kabushiki Kaisha Toshiba Cathode body structure, electron gun body structure, grid unit for electron gun, electronic tube, heater, and method for manufacturing cathode body structure
JPH101209A (ja) 1996-06-17 1998-01-06 Ishikawajima Harima Heavy Ind Co Ltd 移動式コンベヤへの給電方法
JPH105206A (ja) 1996-06-25 1998-01-13 Shimadzu Corp ディジタルx線撮影装置
US5661774A (en) 1996-06-27 1997-08-26 Analogic Corporation Dual energy power supply
DE69716169T2 (de) 1996-06-27 2003-06-12 Analogic Corp Vorrichtung zum Erfassen für axiale Transversal- und Quadratur-Tomographie
US5838759A (en) 1996-07-03 1998-11-17 Advanced Research And Applications Corporation Single beam photoneutron probe and X-ray imaging system for contraband detection and identification
US5638420A (en) 1996-07-03 1997-06-10 Advanced Research And Applications Corporation Straddle inspection system
US5930326A (en) 1996-07-12 1999-07-27 American Science And Engineering, Inc. Side scatter tomography system
GB2315546A (en) 1996-07-18 1998-02-04 Imperial College Luggage scanner
AU3888497A (en) 1996-07-22 1998-02-10 American Science And Engineering Inc. System for rapid x-ray inspection of enclosures
US5943388A (en) 1996-07-30 1999-08-24 Nova R & D, Inc. Radiation detector and non-destructive inspection
EP0825457A3 (en) 1996-08-19 2002-02-13 Analogic Corporation Multiple angle pre-screening tomographic systems and methods
JPH1075944A (ja) * 1996-09-02 1998-03-24 Mitsubishi Heavy Ind Ltd 高速x線ctスキャナ装置
US6359582B1 (en) 1996-09-18 2002-03-19 The Macaleese Companies, Inc. Concealed weapons detection system
US5974111A (en) * 1996-09-24 1999-10-26 Vivid Technologies, Inc. Identifying explosives or other contraband by employing transmitted or scattered X-rays
US5940468A (en) * 1996-11-08 1999-08-17 American Science And Engineering, Inc. Coded aperture X-ray imaging system
US5798972A (en) 1996-12-19 1998-08-25 Mitsubishi Semiconductor America, Inc. High-speed main amplifier with reduced access and output disable time periods
US6184841B1 (en) 1996-12-31 2001-02-06 Lucent Technologies Inc. Antenna array in an RFID system
WO1998030980A1 (en) 1997-01-14 1998-07-16 Edholm, Paul Technique and arrangement for tomographic imaging
JPH10211196A (ja) 1997-01-31 1998-08-11 Olympus Optical Co Ltd X線ctスキャナ装置
US6037597A (en) 1997-02-18 2000-03-14 Neutech Systems, Inc. Non-destructive detection systems and methods
US6118850A (en) 1997-02-28 2000-09-12 Rutgers, The State University Analysis methods for energy dispersive X-ray diffraction patterns
US5859891A (en) 1997-03-07 1999-01-12 Hibbard; Lyn Autosegmentation/autocontouring system and method for use with three-dimensional radiation therapy treatment planning
JPH10272128A (ja) 1997-03-31 1998-10-13 Futec Inc 直接断層撮影方法及び装置
US6026135A (en) 1997-04-04 2000-02-15 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Multisensor vehicle-mounted mine detector
US5802134A (en) 1997-04-09 1998-09-01 Analogic Corporation Nutating slice CT image reconstruction apparatus and method
US6054712A (en) 1998-01-23 2000-04-25 Quanta Vision, Inc. Inspection equipment using small-angle topography in determining an object's internal structure and composition
US5889833A (en) 1997-06-17 1999-03-30 Kabushiki Kaisha Toshiba High speed computed tomography device and method
US6075836A (en) 1997-07-03 2000-06-13 University Of Rochester Method of and system for intravenous volume tomographic digital angiography imaging
US6058158A (en) 1997-07-04 2000-05-02 Eiler; Peter X-ray device for checking the contents of closed cargo carriers
US6252932B1 (en) 1997-07-22 2001-06-26 Fuji Photo Film Co., Ltd. Method and apparatus for acquiring image information for energy subtraction processing
US6115454A (en) 1997-08-06 2000-09-05 Varian Medical Systems, Inc. High-performance X-ray generating apparatus with improved cooling system
WO1999009398A1 (en) 1997-08-21 1999-02-25 American Science And Engineering, Inc. X-ray determination of the mass distribution in containers
AU1060899A (en) * 1997-09-09 1999-03-29 American Science And Engineering Inc. A tomographic inspection system
JP4346128B2 (ja) 1997-09-09 2009-10-21 株式会社東芝 X線ct装置
US7028899B2 (en) 1999-06-07 2006-04-18 Metrologic Instruments, Inc. Method of speckle-noise pattern reduction and apparatus therefore based on reducing the temporal-coherence of the planar laser illumination beam before it illuminates the target object by applying temporal phase modulation techniques during the transmission of the plib towards the target
GB9720658D0 (en) 1997-09-29 1997-11-26 Univ Nottingham Trent Detecting, improving and charecterising material in 3-D space
US6091795A (en) 1997-10-10 2000-07-18 Analogic Corporation Area detector array for computer tomography scanning system
US5982843A (en) 1997-10-10 1999-11-09 Analogic Corporation Closed loop air conditioning system for a computed tomography scanner
US6188743B1 (en) 1997-10-10 2001-02-13 Analogic Corporation Computed tomography scanner drive system and bearing
US5901198A (en) 1997-10-10 1999-05-04 Analogic Corporation Computed tomography scanning target detection using target surface normals
US6256404B1 (en) 1997-10-10 2001-07-03 Analogic Corporation Computed tomography scanning apparatus and method using adaptive reconstruction window
DE19745998A1 (de) 1997-10-20 1999-03-04 Siemens Ag Verwendung einer Röntgenröhre und für diese Verwendung vorgesehene Röntgenröhre
US6014419A (en) 1997-11-07 2000-01-11 Hu; Hui CT cone beam scanner with fast and complete data acquistion and accurate and efficient regional reconstruction
US5907593A (en) 1997-11-26 1999-05-25 General Electric Company Image reconstruction in a CT fluoroscopy system
US6149592A (en) 1997-11-26 2000-11-21 Picker International, Inc. Integrated fluoroscopic projection image data, volumetric image data, and surgical device position data
US6067344A (en) 1997-12-19 2000-05-23 American Science And Engineering, Inc. X-ray ambient level safety system
US6005918A (en) 1997-12-19 1999-12-21 Picker International, Inc. X-ray tube window heat shield
US5987097A (en) 1997-12-23 1999-11-16 General Electric Company X-ray tube having reduced window heating
DE19802668B4 (de) 1998-01-24 2013-10-17 Smiths Heimann Gmbh Röntgenstrahlungserzeuger
WO1999039189A2 (en) 1998-01-28 1999-08-05 American Science And Engineering, Inc. Gated transmission and scatter detection for x-ray imaging
US6067366A (en) 1998-02-11 2000-05-23 Analogic Corporation Apparatus and method for detecting objects in computed tomography data using erosion and dilation of objects
US6035014A (en) 1998-02-11 2000-03-07 Analogic Corporation Multiple-stage apparatus and method for detecting objects in computed tomography data
US6272230B1 (en) 1998-02-11 2001-08-07 Analogic Corporation Apparatus and method for optimizing detection of objects in computed tomography data
US6128365A (en) 1998-02-11 2000-10-03 Analogic Corporation Apparatus and method for combining related objects in computed tomography data
US6078642A (en) 1998-02-11 2000-06-20 Analogice Corporation Apparatus and method for density discrimination of objects in computed tomography data using multiple density ranges
US6026171A (en) 1998-02-11 2000-02-15 Analogic Corporation Apparatus and method for detection of liquids in computed tomography data
WO1999041676A1 (en) 1998-02-11 1999-08-19 Analogic Corporation Computed tomography apparatus and method for classifying objects
US6076400A (en) 1998-02-11 2000-06-20 Analogic Corporation Apparatus and method for classifying objects in computed tomography data using density dependent mass thresholds
US6111974A (en) 1998-02-11 2000-08-29 Analogic Corporation Apparatus and method for detecting sheet objects in computed tomography data
US6075871A (en) 1998-02-11 2000-06-13 Analogic Corporation Apparatus and method for eroding objects in computed tomography data
US6026143A (en) 1998-02-11 2000-02-15 Analogic Corporation Apparatus and method for detecting sheet objects in computed tomography data
US6108396A (en) 1998-02-11 2000-08-22 Analogic Corporation Apparatus and method for correcting object density in computed tomography data
US6317509B1 (en) 1998-02-11 2001-11-13 Analogic Corporation Computed tomography apparatus and method for classifying objects
JPH11230918A (ja) 1998-02-12 1999-08-27 Hitachi Medical Corp X線検査装置
US6108575A (en) 1998-02-20 2000-08-22 General Electric Company Helical weighting algorithms for fast reconstruction
DE19812055C2 (de) 1998-03-19 2002-08-08 Heimann Systems Gmbh & Co Bildverarbeitung zur Materialerkennung mittels Röntgenstrahlungen
WO1999050882A1 (en) 1998-03-27 1999-10-07 Thermal Corp. Multiple wavelength x-ray tube
US6218943B1 (en) 1998-03-27 2001-04-17 Vivid Technologies, Inc. Contraband detection and article reclaim system
US6094472A (en) 1998-04-14 2000-07-25 Rapiscan Security Products, Inc. X-ray backscatter imaging system including moving body tracking assembly
JP3572191B2 (ja) * 1998-04-14 2004-09-29 株式会社日立製作所 X線ctスキャナ装置
US6236709B1 (en) 1998-05-04 2001-05-22 Ensco, Inc. Continuous high speed tomographic imaging system and method
GB2337032B (en) 1998-05-05 2002-11-06 Rapiscan Security Products Ltd Sorting apparatus
US6097786A (en) 1998-05-18 2000-08-01 Schlumberger Technology Corporation Method and apparatus for measuring multiphase flows
US6347132B1 (en) * 1998-05-26 2002-02-12 Annistech, Inc. High energy X-ray inspection system for detecting nuclear weapons materials
US6088426A (en) 1998-05-27 2000-07-11 Varian Medical Systems, Inc. Graphite x-ray target assembly
US6088423A (en) * 1998-06-05 2000-07-11 Vivid Technologies, Inc. Multiview x-ray based system for detecting contraband such as in baggage
DE19826062B4 (de) 1998-06-12 2006-12-14 Smiths Heimann Gmbh Verfahren und Anordnung zur Detektion von Röntgenstrahlen
US6621888B2 (en) 1998-06-18 2003-09-16 American Science And Engineering, Inc. X-ray inspection by coherent-scattering from variably disposed scatterers identified as suspect objects
US6442233B1 (en) 1998-06-18 2002-08-27 American Science And Engineering, Inc. Coherent x-ray scatter inspection system with sidescatter and energy-resolved detection
US6118852A (en) 1998-07-02 2000-09-12 General Electric Company Aluminum x-ray transmissive window for an x-ray tube vacuum vessel
US6417797B1 (en) 1998-07-14 2002-07-09 Cirrus Logic, Inc. System for A multi-purpose portable imaging device and methods for using same
US6278115B1 (en) * 1998-08-28 2001-08-21 Annistech, Inc. X-ray inspection system detector with plastic scintillating material
US6266390B1 (en) 1998-09-21 2001-07-24 Spectramet, Llc High speed materials sorting using x-ray fluorescence
US6188745B1 (en) 1998-09-23 2001-02-13 Analogic Corporation CT scanner comprising a spatially encoded detector array arrangement and method
US6642513B1 (en) 1998-10-06 2003-11-04 General Electric Company Materials and apparatus for the detection of contraband
US6183139B1 (en) 1998-10-06 2001-02-06 Cardiac Mariners, Inc. X-ray scanning method and apparatus
JP2000107173A (ja) 1998-10-08 2000-04-18 Fuji Photo Film Co Ltd 3次元用放射線画像形成装置
US6021174A (en) 1998-10-26 2000-02-01 Picker International, Inc. Use of shaped charge explosives in the manufacture of x-ray tube targets
US6301326B2 (en) 1998-11-02 2001-10-09 Perkinelmer Detection Systems, Inc. Sheet detection system
JP2000139891A (ja) 1998-11-17 2000-05-23 Toshiba Corp 放射線診断装置
US6229870B1 (en) 1998-11-25 2001-05-08 Picker International, Inc. Multiple fan beam computed tomography system
US6125167A (en) 1998-11-25 2000-09-26 Picker International, Inc. Rotating anode x-ray tube with multiple simultaneously emitting focal spots
EP1141683B1 (en) 1998-11-30 2007-09-05 Invision Technologies, Inc. A nonintrusive inspection system
DE69924001T2 (de) 1998-11-30 2006-02-09 American Science & Engineering, Inc., Billerica Röntgenstrahluntersuchungssystem mit kegel- und bleistiftstrahlen aus einer gemeinsamen quelle
US7050536B1 (en) 1998-11-30 2006-05-23 Invision Technologies, Inc. Nonintrusive inspection system
US6320933B1 (en) 1998-11-30 2001-11-20 American Science And Engineering, Inc. Multiple scatter system for threat identification
US6453007B2 (en) 1998-11-30 2002-09-17 American Science And Engineering, Inc. X-ray inspection using co-planar pencil and fan beams
DE19855213C2 (de) 1998-11-30 2001-03-15 Siemens Ag Röntgenaufnahmeeinrichtung
US6249567B1 (en) 1998-12-01 2001-06-19 American Science & Engineering, Inc. X-ray back scatter imaging system for undercarriage inspection
US6421420B1 (en) * 1998-12-01 2002-07-16 American Science & Engineering, Inc. Method and apparatus for generating sequential beams of penetrating radiation
US6181765B1 (en) 1998-12-10 2001-01-30 General Electric Company X-ray tube assembly
US6282260B1 (en) 1998-12-14 2001-08-28 American Science & Engineering, Inc. Unilateral hand-held x-ray inspection apparatus
WO2000037928A2 (en) 1998-12-22 2000-06-29 American Science And Engineering, Inc. Unilateral hand-held x-ray inspection apparatus
US6345113B1 (en) 1999-01-12 2002-02-05 Analogic Corporation Apparatus and method for processing object data in computed tomography data using object projections
US6195444B1 (en) 1999-01-12 2001-02-27 Analogic Corporation Apparatus and method for detecting concealed objects in computed tomography data
US6687333B2 (en) 1999-01-25 2004-02-03 Vanderbilt University System and method for producing pulsed monochromatic X-rays
US6429578B1 (en) 1999-01-26 2002-08-06 Mats Danielsson Diagnostic and therapeutic detector system for imaging with low and high energy X-ray and electrons
US6459764B1 (en) 1999-01-27 2002-10-01 American Science And Engineering, Inc. Drive-through vehicle inspection system
JP2000235007A (ja) * 1999-02-15 2000-08-29 Hitachi Engineering & Services Co Ltd X線ctスキャナ装置およびx線貨物検査方法
US6185272B1 (en) 1999-03-15 2001-02-06 Analogic Corporation Architecture for CT scanning system
US6256369B1 (en) 1999-03-31 2001-07-03 Analogic Corporation Computerized tomography scanner with longitudinal flying focal spot
DE19916664A1 (de) 1999-04-14 2000-10-19 Heimann Systems Gmbh & Co Verfahren zur Bearbeitung eines Röntgenbildes
US6856271B1 (en) 1999-05-25 2005-02-15 Safe Zone Systems, Inc. Signal processing for object detection system
US6342696B1 (en) 1999-05-25 2002-01-29 The Macaleese Companies, Inc. Object detection method and apparatus employing polarized radiation
GB9914705D0 (en) 1999-06-23 1999-08-25 Stereo Scan Systems Limited Castellated linear array scintillator system
JP4154805B2 (ja) 1999-06-28 2008-09-24 株式会社島津製作所 X線断層撮像装置
JP4261691B2 (ja) 1999-07-13 2009-04-30 浜松ホトニクス株式会社 X線管
US6456684B1 (en) 1999-07-23 2002-09-24 Inki Mun Surgical scanning system and process for use thereof
US6356620B1 (en) 1999-07-30 2002-03-12 American Science & Engineering, Inc. Method for raster scanning an X-ray tube focal spot
US6546072B1 (en) * 1999-07-30 2003-04-08 American Science And Engineering, Inc. Transmission enhanced scatter imaging
US6269142B1 (en) * 1999-08-11 2001-07-31 Steven W. Smith Interrupted-fan-beam imaging
JP3208426B2 (ja) 1999-09-14 2001-09-10 経済産業省産業技術総合研究所長 高速x線ctによる被写移動体速度及び高解像度情報の計測方法及びその装置
SE517315C2 (sv) 1999-09-17 2002-05-21 Sik Inst Foer Livsmedel Och Bi Apparat och metod för detektering av främmande kroppar i produkter
US6542578B2 (en) 1999-11-13 2003-04-01 Heimann Systems Gmbh Apparatus for determining the crystalline and polycrystalline materials of an item
DE19954663B4 (de) 1999-11-13 2006-06-08 Smiths Heimann Gmbh Verfahren und Vorrichtung zur Bestimmung eines Materials eines detektierten Gegenstandes
JP4460695B2 (ja) 1999-11-24 2010-05-12 株式会社東芝 X線コンピュータ断層撮影装置
US6528787B2 (en) 1999-11-30 2003-03-04 Jeol Ltd. Scanning electron microscope
US6763635B1 (en) 1999-11-30 2004-07-20 Shook Mobile Technology, Lp Boom with mast assembly
JP2001176408A (ja) 1999-12-15 2001-06-29 New Japan Radio Co Ltd 電子管
US6324247B1 (en) 1999-12-30 2001-11-27 Ge Medical Systems Global Technology Company, Llc Partial scan weighting for multislice CT imaging with arbitrary pitch
US6891381B2 (en) 1999-12-30 2005-05-10 Secure Logistix Human body: scanning, typing and profiling system
US6469624B1 (en) 2000-01-03 2002-10-22 3-J Tech., Ltd. Non-obtrusive weapon detection system
US6418189B1 (en) 2000-01-24 2002-07-09 Analogic Corporation Explosive material detection apparatus and method using dual energy information of a scan
US7079624B1 (en) 2000-01-26 2006-07-18 Varian Medical Systems, Inc. X-Ray tube and method of manufacture
US7010094B2 (en) 2000-02-10 2006-03-07 American Science And Engineering, Inc. X-ray inspection using spatially and spectrally tailored beams
US20050105665A1 (en) 2000-03-28 2005-05-19 Lee Grodzins Detection of neutrons and sources of radioactive material
US6459761B1 (en) 2000-02-10 2002-10-01 American Science And Engineering, Inc. Spectrally shaped x-ray inspection system
US20050117683A1 (en) 2000-02-10 2005-06-02 Andrey Mishin Multiple energy x-ray source for security applications
JP2001233440A (ja) 2000-02-21 2001-08-28 New Tokyo International Airport Authority 手荷物自動選別システム
US6324243B1 (en) 2000-02-23 2001-11-27 General Electric Company Method and apparatus for reconstructing images from projection data acquired by a computed tomography system
GB2363693B (en) 2000-03-01 2004-07-14 Univ Tsinghua A container inspection device
GB2360405A (en) 2000-03-14 2001-09-19 Sharp Kk A common-gate level-shifter exhibiting a high input impedance when disabled
JP4161513B2 (ja) 2000-04-21 2008-10-08 株式会社島津製作所 二次ターゲット装置及び蛍光x線分析装置
CA2348150C (en) * 2000-05-25 2007-03-13 Esam M.A. Hussein Non-rotating x-ray system for three-dimensional, three-parameter imaging
JP2001351551A (ja) 2000-06-06 2001-12-21 Kazuo Taniguchi X線管
EP1287388A2 (en) 2000-06-07 2003-03-05 American Science &amp; Engineering, Inc. X-ray scatter and transmission system with coded beams
JP3481186B2 (ja) 2000-06-08 2003-12-22 メディエックステック株式会社 X線発生器、x線検査装置およびx線発生方法
US7132123B2 (en) 2000-06-09 2006-11-07 Cymer, Inc. High rep-rate laser with improved electrodes
US6480571B1 (en) 2000-06-20 2002-11-12 Varian Medical Systems, Inc. Drive assembly for an x-ray tube having a rotating anode
US6341154B1 (en) 2000-06-22 2002-01-22 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for fast CT imaging helical weighting
AUPQ831200A0 (en) * 2000-06-22 2000-07-13 X-Ray Technologies Pty Ltd X-ray micro-target source
US6628745B1 (en) 2000-07-01 2003-09-30 Martin Annis Imaging with digital tomography and a rapidly moving x-ray source
GB2364390B (en) 2000-07-03 2004-11-17 Yousri Mohammad Tah Haj-Yousef A method and device for detecting and monitoring concealed bodies and objects
FR2811799B1 (fr) 2000-07-13 2003-06-13 Commissariat Energie Atomique Procede et dispositif de commande d'une source d'electrons a structure matricielle, avec regulation par la charge emise
JP2002039966A (ja) 2000-07-19 2002-02-06 Mitsubishi Heavy Ind Ltd 検査車両
US6434219B1 (en) 2000-07-24 2002-08-13 American Science And Engineering, Inc. Chopper wheel with two axes of rotation
US6839403B1 (en) 2000-07-24 2005-01-04 Rapiscan Security Products (Usa), Inc. Generation and distribution of annotation overlays of digital X-ray images for security systems
US6812426B1 (en) 2000-07-24 2004-11-02 Rapiscan Security Products Automatic reject unit spacer and diverter
DE10036210A1 (de) 2000-07-25 2001-11-15 Siemens Ag Drehkolbenröhre
CA2355560C (en) 2000-08-28 2003-11-18 Balza Achmad X-ray compton scatter density measurement at a point within an object
US6837422B1 (en) 2000-09-01 2005-01-04 Heimann Systems Gmbh Service unit for an X-ray examining device
DE10044357A1 (de) 2000-09-07 2002-03-21 Heimann Systems Gmbh & Co Detektoranordnung zur Detektion von Röntgenstrahlen
US6907281B2 (en) 2000-09-07 2005-06-14 Ge Medical Systems Fast mapping of volumetric density data onto a two-dimensional screen
US6580780B1 (en) 2000-09-07 2003-06-17 Varian Medical Systems, Inc. Cooling system for stationary anode x-ray tubes
ATE414310T1 (de) * 2000-09-14 2008-11-15 Univ Leland Stanford Junior Verfahren zur manipulation medizinischer bilder
AU2002235122A1 (en) 2000-09-27 2002-05-21 The Johns Hopkins University System and method of radar detection of non linear interfaces
WO2002056055A2 (en) 2000-09-29 2002-07-18 Massachusetts Inst Technology Systems and methods for coded aperture imaging of radiation- emitting sources
DE10048775B4 (de) * 2000-09-29 2006-02-02 Siemens Ag Röntgen-Computertomographieeinrichtung
US6553096B1 (en) 2000-10-06 2003-04-22 The University Of North Carolina Chapel Hill X-ray generating mechanism using electron field emission cathode
US6876724B2 (en) 2000-10-06 2005-04-05 The University Of North Carolina - Chapel Hill Large-area individually addressable multi-beam x-ray system and method of forming same
US7082182B2 (en) 2000-10-06 2006-07-25 The University Of North Carolina At Chapel Hill Computed tomography system for imaging of human and small animal
US7826595B2 (en) 2000-10-06 2010-11-02 The University Of North Carolina Micro-focus field emission x-ray sources and related methods
US6980627B2 (en) 2000-10-06 2005-12-27 Xintek, Inc. Devices and methods for producing multiple x-ray beams from multiple locations
US20040213378A1 (en) 2003-04-24 2004-10-28 The University Of North Carolina At Chapel Hill Computed tomography system for imaging of human and small animal
DE60135568D1 (de) 2000-10-11 2008-10-09 Symetrica Ltd Gammastrahlenspektrometrie
US6748043B1 (en) 2000-10-19 2004-06-08 Analogic Corporation Method and apparatus for stabilizing the measurement of CT numbers
JP4476471B2 (ja) 2000-11-27 2010-06-09 株式会社東芝 X線コンピュータ断層撮影装置
US6735271B1 (en) 2000-11-28 2004-05-11 Ge Medical Systems Global Technology Company Llc Electron beam computed tomographic scanner system with helical or tilted target, collimator, and detector components to eliminate cone beam error and to scan continuously moving objects
JP2002168805A (ja) 2000-11-28 2002-06-14 Anritsu Corp X線異物検出装置
DE10062214B4 (de) 2000-12-13 2013-01-24 Smiths Heimann Gmbh Vorrichtungen zur Durchleuchtung von Objekten
US6708572B2 (en) 2000-12-22 2004-03-23 General Electric Company Portal trace detection systems for detection of imbedded particles
JP2002195961A (ja) * 2000-12-25 2002-07-10 Shimadzu Corp X線撮像装置
US6473487B1 (en) 2000-12-27 2002-10-29 Rapiscan Security Products, Inc. Method and apparatus for physical characteristics discrimination of objects using a limited view three dimensional reconstruction
US6385292B1 (en) 2000-12-29 2002-05-07 Ge Medical Systems Global Technology Company, Llc Solid-state CT system and method
US20020085674A1 (en) 2000-12-29 2002-07-04 Price John Scott Radiography device with flat panel X-ray source
US6430260B1 (en) 2000-12-29 2002-08-06 General Electric Company X-ray tube anode cooling device and systems incorporating same
US6449331B1 (en) 2001-01-09 2002-09-10 Cti, Inc. Combined PET and CT detector and method for using same
DE10100664A1 (de) 2001-01-09 2002-07-11 Hauni Maschinenbau Ag Verfahren zum Prüfen eines Produktionsmaterials
JP2002216106A (ja) 2001-01-16 2002-08-02 Fuji Photo Film Co Ltd エネルギーサブトラクション画像生成方法および装置
US6487274B2 (en) 2001-01-29 2002-11-26 Siemens Medical Solutions Usa, Inc. X-ray target assembly and radiation therapy systems and methods
JP2002320610A (ja) 2001-02-23 2002-11-05 Mitsubishi Heavy Ind Ltd X線ct装置とx線ct装置撮影方法
JPWO2002067779A1 (ja) 2001-02-28 2004-06-24 三菱重工業株式会社 多線源型x線ct装置
JP2002257751A (ja) 2001-03-01 2002-09-11 Kawasaki Heavy Ind Ltd 手荷物検査方法および手荷物検査システム
US6480572B2 (en) 2001-03-09 2002-11-12 Koninklijke Philips Electronics N.V. Dual filament, electrostatically controlled focal spot for x-ray tubes
US6480141B1 (en) 2001-03-13 2002-11-12 Sandia Corporation Detection of contraband using microwave radiation
US6876322B2 (en) 2003-06-26 2005-04-05 Battelle Memorial Institute Concealed object detection
US6324249B1 (en) 2001-03-21 2001-11-27 Agilent Technologies, Inc. Electronic planar laminography system and method
US6965199B2 (en) 2001-03-27 2005-11-15 The University Of North Carolina At Chapel Hill Coated electrode with enhanced electron emission and ignition characteristics
US6501414B2 (en) 2001-04-02 2002-12-31 The United States Of America As Represented By The United States National Aeronautics And Space Administration Method for locating a concealed object
EP1390780B1 (en) 2001-04-03 2006-11-08 L-3 Communications Security &amp; Detection Systems X-ray inspection system
US6707879B2 (en) * 2001-04-03 2004-03-16 L-3 Communications Security And Detection Systems Remote baggage screening system, software and method
US6477417B1 (en) 2001-04-12 2002-11-05 Pacesetter, Inc. System and method for automatically selecting electrode polarity during sensing and stimulation
US6813374B1 (en) 2001-04-25 2004-11-02 Analogic Corporation Method and apparatus for automatic image quality assessment
EP1428048A2 (en) 2001-05-03 2004-06-16 American Science &amp; Engineering, Inc. Nautical x-ray inspection system
US6624425B2 (en) 2001-05-03 2003-09-23 Bio-Imaging Research, Inc. Waste inspection tomography and non-destructive assay
DE10123365A1 (de) 2001-05-14 2002-11-28 Infineon Technologies Ag Verfahren und Vorrichtung zum Ermitteln von Bewegung in mindestens zwei zeitlich aufeinander folgenden digitalen Bildern, Computerlesbares Speichermedium und Computerprogramm-Element
US6597760B2 (en) 2001-05-23 2003-07-22 Heimann Systems Gmbh Inspection device
US6580778B2 (en) 2001-05-23 2003-06-17 Heimann Systems Gmbh Inspection device
JP4777539B2 (ja) 2001-05-29 2011-09-21 エスアイアイ・ナノテクノロジー株式会社 複合x線分析装置
US6721387B1 (en) 2001-06-13 2004-04-13 Analogic Corporation Method of and system for reducing metal artifacts in images generated by x-ray scanning devices
JP2002370814A (ja) 2001-06-13 2002-12-24 Ito Denki Kk 搬送装置
DE10129463A1 (de) 2001-06-19 2003-01-02 Philips Corp Intellectual Pty Röntgenstrahler mit einem Flüssigmetall-Target
GB0115615D0 (en) 2001-06-27 2001-08-15 Univ Coventry Image segmentation
DE10131407A1 (de) 2001-06-28 2003-01-09 Heimann Systems Gmbh & Co Inspektionsanlage
US6735477B2 (en) 2001-07-09 2004-05-11 Robert A. Levine Internal monitoring system with detection of food intake
US6650276B2 (en) 2001-07-13 2003-11-18 James C. Lawless Radar apparatus and method for detecting small slow moving targets
US6470065B1 (en) 2001-07-13 2002-10-22 Siemens Aktiengesellschaft Apparatus for computer tomography scanning with compression of measurement data
US20030023592A1 (en) 2001-07-27 2003-01-30 Rapiscan Security Products (Usa), Inc. Method and system for certifying operators of x-ray inspection systems
US6661876B2 (en) 2001-07-30 2003-12-09 Moxtek, Inc. Mobile miniature X-ray source
US6665433B2 (en) 2001-07-31 2003-12-16 Agilent Technologies, Inc. Automatic X-ray determination of solder joint and view Delta Z values from a laser mapped reference surface for circuit board inspection using X-ray laminography
US6914959B2 (en) 2001-08-09 2005-07-05 Analogic Corporation Combined radiation therapy and imaging system and method
US6636623B2 (en) * 2001-08-10 2003-10-21 Visiongate, Inc. Optical projection imaging system and method for automatically detecting cells with molecular marker compartmentalization associated with malignancy and disease
DE10139672A1 (de) 2001-08-11 2003-03-06 Heimann Systems Gmbh & Co Verfahren und Anlage zur Inspektion eines Objektes, insbesondere eines Gepäckstückes
CN1185482C (zh) 2001-08-14 2005-01-19 清华大学 航空集装箱/托盘货物检查系统
US7072436B2 (en) 2001-08-24 2006-07-04 The Board Of Trustees Of The Leland Stanford Junior University Volumetric computed tomography (VCT)
US6636581B2 (en) 2001-08-31 2003-10-21 Michael R. Sorenson Inspection system and method
DE10143131B4 (de) 2001-09-03 2006-03-09 Siemens Ag Verfahren zur Ermittlung von Dichte- und Ordnungszahlverteilungen bei radiographischen Untersuchungsverfahren
US6831590B1 (en) 2001-09-12 2004-12-14 Cyterra Corporation Concealed object detection
JP3699666B2 (ja) 2001-09-19 2005-09-28 株式会社リガク X線管の熱陰極
JP2005514008A (ja) 2001-09-24 2005-05-19 オレゴン ヘルス アンド サイエンス ユニバーシティー 摂食行動を改変する薬剤をスクリーニングするための、弓状核におけるニューロンの評価方法
GB0123492D0 (en) 2001-09-29 2001-11-21 Logan Fabricom Ltd Baggage screening system
US20030085163A1 (en) * 2001-10-01 2003-05-08 Chan Chin F. Remote data access
EP1440333A2 (en) 2001-10-01 2004-07-28 L-3 Communications Security &amp; Detection Systems Remote data access
DE10149254B4 (de) 2001-10-05 2006-04-20 Smiths Heimann Gmbh Verfahren und Vorrichtung zur Detektion eines bestimmten Materials in einem Objekt mittels elektromagnetischer Strahlen
US6751293B1 (en) 2001-10-05 2004-06-15 Varian Medical Systems, Inc. Rotary component support system
US7072440B2 (en) 2001-10-19 2006-07-04 Control Screening, Llc Tomographic scanning X-ray inspection system using transmitted and Compton scattered radiation
JP3847134B2 (ja) 2001-10-19 2006-11-15 三井造船株式会社 放射線検出装置
US6661867B2 (en) * 2001-10-19 2003-12-09 Control Screening, Llc Tomographic scanning X-ray inspection system using transmitted and compton scattered radiation
US6904122B2 (en) 2001-10-31 2005-06-07 Inventqjaya Sdn. Bhd. 3D stereoscopic X-ray system
JP2003135442A (ja) 2001-11-06 2003-05-13 Ge Medical Systems Global Technology Co Llc X線ctシステムおよびその制御方法
US6674838B1 (en) 2001-11-08 2004-01-06 Varian Medical Systems, Inc. X-ray tube having a unitary vacuum enclosure and housing
US6707882B2 (en) 2001-11-14 2004-03-16 Koninklijke Philips Electronics, N.V. X-ray tube heat barrier
WO2003042674A1 (en) 2001-11-14 2003-05-22 Texas Tech University Method for identification of cotton contaminants with x-ray microtomographic image analysis
GB0128659D0 (en) 2001-11-30 2002-01-23 Qinetiq Ltd Imaging system and method
US6819742B1 (en) 2001-12-07 2004-11-16 Varian Medical Systems, Inc. Integrated component mounting system for use in an X-ray tube
WO2003051201A2 (en) 2001-12-14 2003-06-26 Wisconsin Alumni Research Foundation Virtual spherical anode computed tomography
CA2365045A1 (en) 2001-12-14 2003-06-14 Cedara Software Corp. Method for the detection of guns and ammunition in x-ray scans of containers for security assurance
WO2003052397A1 (en) 2001-12-19 2003-06-26 Agresearch Limited A phantom
US7012256B1 (en) 2001-12-21 2006-03-14 National Recovery Technologies, Inc. Computer assisted bag screening system
JP3888156B2 (ja) 2001-12-26 2007-02-28 株式会社日立製作所 放射線検査装置
US6542580B1 (en) 2002-01-15 2003-04-01 Rapiscan Security Products (Usa), Inc. Relocatable X-ray imaging system and method for inspecting vehicles and containers
US6922455B2 (en) 2002-01-28 2005-07-26 Starfire Industries Management, Inc. Gas-target neutron generation and applications
US7186022B2 (en) 2002-01-31 2007-03-06 The Johns Hopkins University X-ray source and method for more efficiently producing selectable x-ray frequencies
US6816571B2 (en) 2002-02-06 2004-11-09 L-3 Communications Security And Detection Systems Corporation Delaware Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner
US6754298B2 (en) 2002-02-20 2004-06-22 The Regents Of The University Of Michigan Method for statistically reconstructing images from a plurality of transmission measurements having energy diversity and image reconstructor apparatus utilizing the method
US6618466B1 (en) 2002-02-21 2003-09-09 University Of Rochester Apparatus and method for x-ray scatter reduction and correction for fan beam CT and cone beam volume CT
US6654443B1 (en) 2002-02-25 2003-11-25 Ge Medical Systems Global Technology Co., Llc Thermal sensing detector cell for a computed tomography system and method of manufacturing same
US6459755B1 (en) 2002-02-26 2002-10-01 Ge Medical Systems Global Technology Co. Llc Method and apparatus for administering low dose CT scans
US6775348B2 (en) 2002-02-27 2004-08-10 General Electric Company Fiber optic scintillator with optical gain for a computed tomography system and method of manufacturing same
US7110493B1 (en) 2002-02-28 2006-09-19 Rapiscan Security Products (Usa), Inc. X-ray detector system having low Z material panel
JP3910468B2 (ja) 2002-02-28 2007-04-25 株式会社東芝 回転陽極型x線管
US7868665B2 (en) 2002-03-05 2011-01-11 Nova R&D, Inc. Integrated circuit and sensor for imaging
US6665373B1 (en) 2002-03-12 2003-12-16 Rapiscan Security Products (Usa), Inc. X-ray imaging system with active detector
ATE386311T1 (de) 2002-03-23 2008-03-15 Koninkl Philips Electronics Nv Verfahren zur interaktiven segmentierung einer in einem objekt enthaltenen struktur
US6647095B2 (en) 2002-04-02 2003-11-11 Ge Medical Systems Global Technology Co., Llc Method and apparatus for optimizing dosage to scan subject
US20040077943A1 (en) 2002-04-05 2004-04-22 Meaney Paul M. Systems and methods for 3-D data acquisition for microwave imaging
AU2003262118A1 (en) 2002-04-08 2003-10-27 Nanodynamics, Inc. High quantum energy efficiency x-ray tube and targets
US6760407B2 (en) 2002-04-17 2004-07-06 Ge Medical Global Technology Company, Llc X-ray source and method having cathode with curved emission surface
US7087902B2 (en) 2002-04-19 2006-08-08 Rensselaer Polytechnic Institute Fresnel lens tomographic imaging
US7295691B2 (en) * 2002-05-15 2007-11-13 Ge Medical Systems Global Technology Company, Llc Computer aided diagnosis of an image set
US6796944B2 (en) 2002-05-17 2004-09-28 Ge Medical Systems Global Technology, Llc Display for subtraction imaging techniques
WO2003105159A1 (en) 2002-06-10 2003-12-18 American Science And Engineering, Inc. Scanner for x-ray inspection comprising a chopper wheel with differently sized apertures
US7106830B2 (en) 2002-06-12 2006-09-12 Agilent Technologies, Inc. 3D x-ray system adapted for high speed scanning of large articles
US6754300B2 (en) 2002-06-20 2004-06-22 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for operating a radiation source
JP2004028675A (ja) 2002-06-24 2004-01-29 Hitachi Ltd 危険物検知システム
US6654440B1 (en) 2002-06-29 2003-11-25 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for computed tomography scanning using a two-dimensional radiation source
NL1021026C2 (nl) 2002-07-08 2004-01-09 Havatec B V Werkwijze en inrichting voor het sorteren van bloembollen op afwijkingen en ziektes.
US6770884B2 (en) 2002-07-11 2004-08-03 Triumf High resolution 3-D position sensitive detector for gamma rays
US7162005B2 (en) 2002-07-19 2007-01-09 Varian Medical Systems Technologies, Inc. Radiation sources and compact radiation scanning systems
GB0216891D0 (en) 2002-07-20 2002-08-28 Univ Surrey Radiation collimation
GB0216889D0 (en) 2002-07-20 2002-08-28 Univ Surrey Image control
GB0216893D0 (en) 2002-07-20 2002-08-28 Univ Surrey Image colouring
US7050529B2 (en) 2002-07-23 2006-05-23 Ge Medical Systems Global Technolgy Company, Llc Methods and apparatus for performing a computed tomography scan
US6843599B2 (en) 2002-07-23 2005-01-18 Rapiscan, Inc. Self-contained, portable inspection system and method
US7486768B2 (en) 2002-07-23 2009-02-03 Rapiscan Security Products, Inc. Self-contained mobile inspection system and method
US7322745B2 (en) 2002-07-23 2008-01-29 Rapiscan Security Products, Inc. Single boom cargo scanning system
US20040016271A1 (en) 2002-07-23 2004-01-29 Kirti Shah Portable inspection containers
US7369643B2 (en) 2002-07-23 2008-05-06 Rapiscan Security Products, Inc. Single boom cargo scanning system
US7356115B2 (en) 2002-12-04 2008-04-08 Varian Medical Systems Technology, Inc. Radiation scanning units including a movable platform
US7103137B2 (en) 2002-07-24 2006-09-05 Varian Medical Systems Technology, Inc. Radiation scanning of objects for contraband
US6785359B2 (en) 2002-07-30 2004-08-31 Ge Medical Systems Global Technology Company, Llc Cathode for high emission x-ray tube
JP2004079128A (ja) 2002-08-22 2004-03-11 Matsushita Electric Ind Co Ltd 光ディスク記録装置
US6661866B1 (en) 2002-08-28 2003-12-09 Ge Medical Systems Global Technology Company, Llc Integrated CT-PET system
AU2003268462A1 (en) 2002-09-03 2004-03-29 Parker Medical, Inc. Multiple grooved x-ray generator
US7155812B1 (en) 2002-09-05 2007-01-02 Sandia Corporation Method for producing a tube
US7006591B2 (en) 2002-09-09 2006-02-28 Kabushiki Kaisha Toshiba Computed tomography apparatus and program
US7062009B2 (en) 2002-09-12 2006-06-13 Analogic Corporation Helical interpolation for an asymmetric multi-slice scanner
AU2003282723B2 (en) * 2002-10-02 2009-04-23 Reveal Imaging Technologies, Inc. Folded array CT baggage scanner
US7224765B2 (en) 2002-10-02 2007-05-29 Reveal Imaging Technologies, Inc. Computed tomography system
US7078699B2 (en) 2002-10-04 2006-07-18 Varian Medical Systems Technologies, Inc. Imaging apparatus and method with event sensitive photon detection
US7203629B2 (en) 2002-10-09 2007-04-10 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Modeling substrate noise coupling using scalable parameters
CN1181336C (zh) 2002-10-16 2004-12-22 清华大学 一种车载移动式集装箱检查系统
US7042975B2 (en) 2002-10-25 2006-05-09 Koninklijke Philips Electronics N.V. Four-dimensional helical tomographic scanner
US7099434B2 (en) 2002-11-06 2006-08-29 American Science And Engineering, Inc. X-ray backscatter mobile inspection van
US7505556B2 (en) 2002-11-06 2009-03-17 American Science And Engineering, Inc. X-ray backscatter detection imaging modules
FR2847074B1 (fr) 2002-11-08 2005-02-25 Thales Sa Generateur de rayons x a dissipation thermique amelioree et procede de realisation du generateur
DE10252662A1 (de) 2002-11-11 2004-05-27 Philips Intellectual Property & Standards Gmbh Computertomographie-Verfahren mit kohärenten Streustrahlen und Computertomograph
US7023956B2 (en) 2002-11-11 2006-04-04 Lockheed Martin Corporaiton Detection methods and system using sequenced technologies
JP2004182977A (ja) 2002-11-18 2004-07-02 Fuji Photo Film Co Ltd インクジェット用カラーインク
US6859518B2 (en) 2002-11-19 2005-02-22 Invision Technologies, Inc. X-ray technique-based nonintrusive inspection apparatus
JP2004177138A (ja) 2002-11-25 2004-06-24 Hitachi Ltd 危険物探知装置および危険物探知方法
US7272429B2 (en) 2002-11-27 2007-09-18 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for facilitating a reduction in artifacts
US7672426B2 (en) 2002-12-04 2010-03-02 Varian Medical Systems, Inc. Radiation scanning units with reduced detector requirements
US7062011B1 (en) 2002-12-10 2006-06-13 Analogic Corporation Cargo container tomography scanning system
US20050025280A1 (en) 2002-12-10 2005-02-03 Robert Schulte Volumetric 3D x-ray imaging system for baggage inspection including the detection of explosives
US7177387B2 (en) 2003-11-29 2007-02-13 General Electric Company Self-aligning scintillator-collimator assembly
US6993115B2 (en) 2002-12-31 2006-01-31 Mcguire Edward L Forward X-ray generation
US7166458B2 (en) 2003-01-07 2007-01-23 Bio Tex, Inc. Assay and method for analyte sensing by detecting efficiency of radiation conversion
US7072434B1 (en) 2003-01-16 2006-07-04 Analogic Corporation Carry-on baggage tomography scanning system
US6785357B2 (en) 2003-01-16 2004-08-31 Bio-Imaging Research, Inc. High energy X-ray mobile cargo inspection system with penumbra collimator
JP2004226253A (ja) 2003-01-23 2004-08-12 Shimadzu Corp X線異物検査装置
JP4601607B2 (ja) 2003-01-23 2010-12-22 リビール イメージング テクノロジーズ, インコーポレイテッド 手荷物のctスキャンシステム及びctスキャン方法
US7340525B1 (en) 2003-01-24 2008-03-04 Oracle International Corporation Method and apparatus for single sign-on in a wireless environment
US7184520B1 (en) 2003-01-29 2007-02-27 Varian Medical Systems Technologies, Inc. Component mounting system with stress compensation
JP3779957B2 (ja) 2003-01-30 2006-05-31 アンリツ産機システム株式会社 X線異物検出装置
US7317782B2 (en) 2003-01-31 2008-01-08 Varian Medical Systems Technologies, Inc. Radiation scanning of cargo conveyances at seaports and the like
EP1597611A1 (en) 2003-02-13 2005-11-23 Philips Intellectual Property & Standards GmbH Method and device for examining an object
US7149339B2 (en) 2003-02-25 2006-12-12 Schlumberger Technology Corporation Non-destructive inspection of downhole equipment
US7065175B2 (en) 2003-03-03 2006-06-20 Varian Medical Systems Technologies, Inc. X-ray diffraction-based scanning system
US6947517B2 (en) 2003-03-03 2005-09-20 Ge Medical Systems Global Technology Company, Llc Scintillator array having a reflector with integrated air gaps
US6907101B2 (en) 2003-03-03 2005-06-14 General Electric Company CT detector with integrated air gap
US6933504B2 (en) 2003-03-12 2005-08-23 General Electric Company CT detector having a segmented optical coupler and method of manufacturing same
US6859514B2 (en) 2003-03-14 2005-02-22 Ge Medical Systems Global Technology Company Llc CT detector array with uniform cross-talk
US7164750B2 (en) 2003-03-26 2007-01-16 Smiths Detection, Inc. Non-destructive inspection of material in container
JP2006522343A (ja) 2003-04-02 2006-09-28 リビール・イメージング・テクノロジーズ・インコーポレイテッド 手荷物及び他の小荷物の自動爆発物検知における脅威解明システム及び方法
US20050190882A1 (en) * 2003-04-04 2005-09-01 Mcguire Edward L. Multi-spectral x-ray image processing
JP3795028B2 (ja) 2003-04-08 2006-07-12 株式会社エーイーティー X線発生装置および前記装置を用いたx線治療装置
US7466799B2 (en) 2003-04-09 2008-12-16 Varian Medical Systems, Inc. X-ray tube having an internal radiation shield
DE10318194A1 (de) 2003-04-22 2004-11-25 Siemens Ag Röntgenröhre mit Flüssigmetall-Gleitlager
GB0525593D0 (en) 2005-12-16 2006-01-25 Cxr Ltd X-ray tomography inspection systems
GB0309387D0 (en) 2003-04-25 2003-06-04 Cxr Ltd X-Ray scanning
US7949101B2 (en) 2005-12-16 2011-05-24 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US8094784B2 (en) 2003-04-25 2012-01-10 Rapiscan Systems, Inc. X-ray sources
US9208988B2 (en) 2005-10-25 2015-12-08 Rapiscan Systems, Inc. Graphite backscattered electron shield for use in an X-ray tube
GB0903198D0 (en) 2009-02-25 2009-04-08 Cxr Ltd X-Ray scanners
GB0309383D0 (en) 2003-04-25 2003-06-04 Cxr Ltd X-ray tube electron sources
GB0309385D0 (en) 2003-04-25 2003-06-04 Cxr Ltd X-ray monitoring
GB0309374D0 (en) 2003-04-25 2003-06-04 Cxr Ltd X-ray sources
US9113839B2 (en) 2003-04-25 2015-08-25 Rapiscon Systems, Inc. X-ray inspection system and method
US8804899B2 (en) 2003-04-25 2014-08-12 Rapiscan Systems, Inc. Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners
GB0812864D0 (en) 2008-07-15 2008-08-20 Cxr Ltd Coolign anode
US8204173B2 (en) 2003-04-25 2012-06-19 Rapiscan Systems, Inc. System and method for image reconstruction by using multi-sheet surface rebinning
US8243876B2 (en) 2003-04-25 2012-08-14 Rapiscan Systems, Inc. X-ray scanners
US20050058242A1 (en) 2003-09-15 2005-03-17 Peschmann Kristian R. Methods and systems for the rapid detection of concealed objects
GB0309371D0 (en) 2003-04-25 2003-06-04 Cxr Ltd X-Ray tubes
US8223919B2 (en) 2003-04-25 2012-07-17 Rapiscan Systems, Inc. X-ray tomographic inspection systems for the identification of specific target items
GB0309379D0 (en) 2003-04-25 2003-06-04 Cxr Ltd X-ray scanning
US10483077B2 (en) 2003-04-25 2019-11-19 Rapiscan Systems, Inc. X-ray sources having reduced electron scattering
US8331535B2 (en) 2003-04-25 2012-12-11 Rapiscan Systems, Inc. Graphite backscattered electron shield for use in an X-ray tube
US8837669B2 (en) 2003-04-25 2014-09-16 Rapiscan Systems, Inc. X-ray scanning system
US8451974B2 (en) * 2003-04-25 2013-05-28 Rapiscan Systems, Inc. X-ray tomographic inspection system for the identification of specific target items
DE10319549B3 (de) 2003-04-30 2004-12-23 Siemens Ag Drehanoden-Röntgenröhre
US7054408B2 (en) 2003-04-30 2006-05-30 General Electric Company CT detector array having non pixelated scintillator array
DE10319547B4 (de) 2003-04-30 2012-02-16 Siemens Ag Drehanoden-Röntgenröhre
US7112797B2 (en) 2003-04-30 2006-09-26 General Electric Company Scintillator having integrated collimator and method of manufacturing same
US6934354B2 (en) 2003-05-02 2005-08-23 General Electric Company Collimator assembly having multi-piece components
US7068749B2 (en) * 2003-05-19 2006-06-27 General Electric Company Stationary computed tomography system with compact x ray source assembly
US6972693B2 (en) 2003-05-19 2005-12-06 Brown Betty J Vehicle security inspection system
US6968030B2 (en) 2003-05-20 2005-11-22 General Electric Company Method and apparatus for presenting multiple pre-subject filtering profiles during CT data acquisition
US7046756B2 (en) 2003-05-20 2006-05-16 General Electric Company Rotatable filter for a pre-subject CT collimator having multiple filtering profiles
JP4206819B2 (ja) * 2003-05-20 2009-01-14 株式会社日立製作所 X線撮影装置
US7092485B2 (en) 2003-05-27 2006-08-15 Control Screening, Llc X-ray inspection system for detecting explosives and other contraband
EP1633251A1 (en) * 2003-05-28 2006-03-15 Philips Intellectual Property & Standards GmbH Fan-beam coherent-scatter computer tomography
JP2004357724A (ja) 2003-05-30 2004-12-24 Toshiba Corp X線ct装置、x線発生装置及びx線ct装置のデータ収集方法
US7120222B2 (en) 2003-06-05 2006-10-10 General Electric Company CT imaging system with multiple peak x-ray source
US6937692B2 (en) 2003-06-06 2005-08-30 Varian Medical Systems Technologies, Inc. Vehicle mounted inspection systems and methods
US6952163B2 (en) 2003-06-11 2005-10-04 Quantum Magnetics, Inc. Combined systems user interface for centralized monitoring of a screening checkpoint for passengers and baggage
US6922460B2 (en) 2003-06-11 2005-07-26 Quantum Magnetics, Inc. Explosives detection system using computed tomography (CT) and quadrupole resonance (QR) sensors
US7317390B2 (en) 2003-06-11 2008-01-08 Quantum Magnetics, Inc. Screening checkpoint for passengers and baggage
US7119553B2 (en) 2003-06-11 2006-10-10 Konsulteurope Limited Limited Joint Stock Company Security scanners with capacitance and magnetic sensor arrays
US7366280B2 (en) 2003-06-19 2008-04-29 General Electric Company Integrated arc anode x-ray source for a computed tomography system
US6928141B2 (en) 2003-06-20 2005-08-09 Rapiscan, Inc. Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers
FR2856513A1 (fr) 2003-06-20 2004-12-24 Thales Sa Tube generateur de rayons x a ensemble porte-cible orientable
US6950492B2 (en) 2003-06-25 2005-09-27 Besson Guy M Dynamic multi-spectral X-ray projection imaging
US6975698B2 (en) 2003-06-30 2005-12-13 General Electric Company X-ray generator and slip ring for a CT system
US7197172B1 (en) 2003-07-01 2007-03-27 Analogic Corporation Decomposition of multi-energy scan projections using multi-step fitting
WO2005008293A1 (en) 2003-07-08 2005-01-27 General Electric Company Security checkpoint
US6975703B2 (en) 2003-08-01 2005-12-13 General Electric Company Notched transmission target for a multiple focal spot X-ray source
US7031434B1 (en) 2003-08-06 2006-04-18 General Electric Company Method of manufacturing, and a collimator mandrel having variable attenuation characteristics for a CT system
US7492855B2 (en) 2003-08-07 2009-02-17 General Electric Company System and method for detecting an object
US7010092B2 (en) 2003-08-08 2006-03-07 Imaging Dynamics Company Ltd. Dual energy imaging using optically coupled digital radiography system
US7856081B2 (en) 2003-09-15 2010-12-21 Rapiscan Systems, Inc. Methods and systems for rapid detection of concealed objects using fluorescence
US20050117700A1 (en) 2003-08-08 2005-06-02 Peschmann Kristian R. Methods and systems for the rapid detection of concealed objects
US7366282B2 (en) 2003-09-15 2008-04-29 Rapiscan Security Products, Inc. Methods and systems for rapid detection of concealed objects using fluorescence
US6901135B2 (en) 2003-08-28 2005-05-31 Bio-Imaging Research, Inc. System for extending the dynamic gain of an X-ray detector
US7279120B2 (en) 2003-09-04 2007-10-09 Intematix Corporation Doped cadmium tungstate scintillator with improved radiation hardness
JP3909048B2 (ja) 2003-09-05 2007-04-25 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ct装置およびx線管
US7039154B1 (en) 2003-10-02 2006-05-02 Reveal Imaging Technologies, Inc. Folded array CT baggage scanner
JP2005110722A (ja) * 2003-10-02 2005-04-28 Shimadzu Corp X線管およびx線撮影装置
US7038552B2 (en) 2003-10-07 2006-05-02 Analog Devices, Inc. Voltage controlled oscillator having improved phase noise
US6991371B2 (en) 2003-10-14 2006-01-31 The Boeing Company Computed tomography image quality phantom
EP1675510A1 (en) * 2003-10-14 2006-07-05 Philips Intellectual Property & Standards GmbH Asymmetric csct
US7649981B2 (en) 2003-10-15 2010-01-19 Varian Medical Systems, Inc. Multi-energy x-ray source
US20050082491A1 (en) 2003-10-15 2005-04-21 Seppi Edward J. Multi-energy radiation detector
US6987833B2 (en) 2003-10-16 2006-01-17 General Electric Company Methods and apparatus for identification and imaging of specific materials
CN100437096C (zh) 2003-10-16 2008-11-26 清华大学 一种用于集装箱检查系统的双辐射源框架结构
CN100437097C (zh) 2003-10-16 2008-11-26 清华大学 一种可调整辐射射线角度的集装货物/车辆检查系统
US7068751B2 (en) 2003-10-27 2006-06-27 General Electric Company System and method of determining a center of mass of an imaging subject for x-ray flux management control
US6996209B2 (en) 2003-10-27 2006-02-07 Ge Medical Systems Global Technology Company, Llc Scintillator coatings having barrier protection, light transmission, and light reflection properties
US7068750B2 (en) 2003-10-27 2006-06-27 General Electric Company System and method of x-ray flux management control
US6990171B2 (en) 2003-10-27 2006-01-24 General Electric Company System and method of determining a user-defined region-of-interest of an imaging subject for x-ray flux management control
US7076029B2 (en) 2003-10-27 2006-07-11 General Electric Company Method and apparatus of radiographic imaging with an energy beam tailored for a subject to be scanned
US7065179B2 (en) 2003-11-07 2006-06-20 General Electric Company Multiple target anode assembly and system of operation
US20050100126A1 (en) 2003-11-07 2005-05-12 Mistretta Charles A. Computed tomography with z-axis scanning
US7081628B2 (en) 2003-11-10 2006-07-25 Ge Medical Systems Global Technology Company, Llc Spatially patterned light-blocking layers for radiation imaging detectors
US7366281B2 (en) 2003-11-12 2008-04-29 Ge Invision Inc. System and method for detecting contraband
US7099435B2 (en) 2003-11-15 2006-08-29 Agilent Technologies, Inc Highly constrained tomography for automated inspection of area arrays
EP1689640A2 (en) 2003-11-19 2006-08-16 L-3 Communications Security and Detection Systems Corporation Security system with distributed computing
US7206379B2 (en) 2003-11-25 2007-04-17 General Electric Company RF accelerator for imaging applications
US20050226364A1 (en) 2003-11-26 2005-10-13 General Electric Company Rotational computed tomography system and method
US7280631B2 (en) 2003-11-26 2007-10-09 General Electric Company Stationary computed tomography system and method
US7233640B2 (en) 2003-11-26 2007-06-19 General Electric Company CT detector having an optical mask layer
KR100659710B1 (ko) 2003-11-29 2006-12-21 삼성에스디아이 주식회사 발광 표시 장치 및 그 표시 패널
CN1627061A (zh) 2003-12-10 2005-06-15 清华同方威视技术股份有限公司 一种组合移动式低靶点集装箱检查系统
US7308074B2 (en) 2003-12-11 2007-12-11 General Electric Company Multi-layer reflector for CT detector
US7027553B2 (en) 2003-12-29 2006-04-11 Ge Medical Systems Global Technology Company, Llc Systems and methods for generating images by using monochromatic x-rays
IL159828A0 (en) 2004-01-12 2005-11-20 Elbit Systems Ltd System and method for identifying a threat associated person among a crowd
US7133491B2 (en) 2004-01-15 2006-11-07 Bio-Imaging Research, Inc. Traveling X-ray inspection system with collimators
US7039159B2 (en) 2004-01-30 2006-05-02 Science Applications International Corporation Method and system for automatically scanning and imaging the contents of a moving target
US7192031B2 (en) 2004-02-05 2007-03-20 General Electric Company Emitter array configurations for a stationary CT system
US7203282B2 (en) 2004-02-11 2007-04-10 Proto Manufacturing Ltd. Removable filter holder and method
US7023950B1 (en) 2004-02-11 2006-04-04 Martin Annis Method and apparatus for determining the position of an x-ray cone beam produced by a scanning electron beam
US7702068B2 (en) 2004-02-11 2010-04-20 Reveal Imaging Technologies, Inc. Contraband detection systems and methods
US7609807B2 (en) 2004-02-17 2009-10-27 General Electric Company CT-Guided system and method for analyzing regions of interest for contraband detection
US6990172B2 (en) 2004-02-19 2006-01-24 General Electric Company Method and apparatus to determine tube current modulation profile for radiographic imaging
US7224769B2 (en) 2004-02-20 2007-05-29 Aribex, Inc. Digital x-ray camera
US7333587B2 (en) 2004-02-27 2008-02-19 General Electric Company Method and system for imaging using multiple offset X-ray emission points
US7885375B2 (en) 2004-02-27 2011-02-08 General Electric Company Method and system for X-ray imaging
US8263938B2 (en) * 2004-03-01 2012-09-11 Varian Medical Systems, Inc. Dual energy radiation scanning of objects
US7596275B1 (en) * 2004-03-01 2009-09-29 Science Applications International Corporation Methods and systems for imaging and classifying targets as empty or non-empty
US7027554B2 (en) 2004-03-01 2006-04-11 Invision Technologies, Inc. Reduced-size apparatus for non-intrusively inspecting an object
US7183906B2 (en) * 2004-03-19 2007-02-27 Lockheed Martin Corporation Threat scanning machine management system
WO2005092187A1 (en) 2004-03-29 2005-10-06 Cmt Medical Technologies Ltd. Apparatus and method of improved angiographic imaging
SE528234C2 (sv) 2004-03-30 2006-09-26 Xcounter Ab Anordning och metod för att erhålla tomosyntesdata
US7142629B2 (en) 2004-03-31 2006-11-28 General Electric Company Stationary computed tomography system and method
US7031430B2 (en) 2004-04-06 2006-04-18 General Electric Company System and method for detecting objects with differential operators
US7317195B2 (en) 2004-04-08 2008-01-08 Eikman Edward A Quantitative transmission/emission detector system and methods of detecting concealed radiation sources
DK1733213T3 (da) * 2004-04-09 2010-05-03 American Science & Eng Inc Eliminering af cross-talk i en tilbagespredningsinspektionsportal der omfatter flere kilder, ved at sikre at kun en kilde afgiver stråling ad gangen
EP1740097A1 (en) * 2004-04-21 2007-01-10 Philips Intellectual Property & Standards GmbH Fan-beam coherent-scatter computer tomograph
US7277577B2 (en) 2004-04-26 2007-10-02 Analogic Corporation Method and system for detecting threat objects using computed tomography images
US7356174B2 (en) 2004-05-07 2008-04-08 General Electric Company Contraband detection system and method using variance data
US6953935B1 (en) 2004-05-11 2005-10-11 General Electric Company CT detector fabrication process
GB2414072B (en) 2004-05-12 2006-07-26 Schlumberger Holdings Classification method for sedimentary rocks
US7092481B2 (en) 2004-05-19 2006-08-15 General Electric Company Direct conversion energy discriminating CT detector
US7190757B2 (en) 2004-05-21 2007-03-13 Analogic Corporation Method of and system for computing effective atomic number images in multi-energy computed tomography
US7136450B2 (en) 2004-05-26 2006-11-14 Analogic Corporation Method of and system for adaptive scatter correction in multi-energy computed tomography
US7251310B2 (en) 2004-05-27 2007-07-31 L-3 Communications Security And Detection System Method and apparatus for detecting contraband using radiated compound signatures
US7274772B2 (en) 2004-05-27 2007-09-25 Cabot Microelectronics Corporation X-ray source with nonparallel geometry
US7324625B2 (en) 2004-05-27 2008-01-29 L-3 Communications Security And Detection Systems, Inc. Contraband detection systems using a large-angle cone beam CT system
US7218700B2 (en) 2004-05-28 2007-05-15 General Electric Company System for forming x-rays and method for using same
WO2005121756A2 (en) * 2004-06-03 2005-12-22 Brondo Joseph H Jr Mult-mode gamma beam detection and imaging system
WO2005120354A1 (en) * 2004-06-07 2005-12-22 Philips Intellectual Property & Standards Gmbh Coherent-scatter computer tomograph
US7327853B2 (en) 2004-06-09 2008-02-05 Analogic Corporation Method of and system for extracting 3D bag images from continuously reconstructed 2D image slices in computed tomography
US20050276377A1 (en) 2004-06-10 2005-12-15 Carol Mark P Kilovoltage delivery system for radiation therapy
US7203271B2 (en) 2004-06-28 2007-04-10 Pediatric Imaging Technology, Llc Ionizing radiation imaging system and method with decreased radiation dose
US7302083B2 (en) 2004-07-01 2007-11-27 Analogic Corporation Method of and system for sharp object detection using computed tomography images
US7412026B2 (en) 2004-07-02 2008-08-12 The Board Of Regents Of The University Of Oklahoma Phase-contrast x-ray imaging systems and methods
US7372937B2 (en) 2004-07-16 2008-05-13 University Of Iowa Research Foundation Systems and methods of non-standard spiral cone-beam computed tomograpy (CT)
US7282727B2 (en) 2004-07-26 2007-10-16 Retsky Michael W Electron beam directed energy device and methods of using same
US7224763B2 (en) 2004-07-27 2007-05-29 Analogic Corporation Method of and system for X-ray spectral correction in multi-energy computed tomography
GB2416944A (en) 2004-07-30 2006-02-08 Voxar Ltd Classifying voxels in a medical image
GB2416655A (en) 2004-08-06 2006-02-08 Jason Rudd Farmery Float retrieval tool
JP4109232B2 (ja) 2004-09-03 2008-07-02 株式会社イシダ X線検査装置
DE102004043158A1 (de) 2004-09-03 2006-03-23 Smiths Heimann Gmbh Transportable Kontrollstation zur Überprüfung von Personen und Gepäck
US7289603B2 (en) 2004-09-03 2007-10-30 Varian Medical Systems Technologies, Inc. Shield structure and focal spot control assembly for x-ray device
US7149278B2 (en) 2004-09-10 2006-12-12 General Electric Company Method and system of dynamically controlling shaping time of a photon counting energy-sensitive radiation detector to accommodate variations in incident radiation flux levels
US7260174B2 (en) 2004-09-13 2007-08-21 General Electric Company Direct conversion energy discriminating CT detector with over-ranging correction
US7139367B1 (en) 2004-09-29 2006-11-21 Khai Minh Le Time share digital integration method and apparatus for processing X-ray images
US20060067471A1 (en) 2004-09-30 2006-03-30 General Electric Company Linear array detector system and inspection method
US7136451B2 (en) 2004-10-05 2006-11-14 Analogic Corporation Method of and system for stabilizing high voltage power supply voltages in multi-energy computed tomography
JP2008516692A (ja) 2004-10-14 2008-05-22 エクリン メディカル システムズ, インコーポレイテッド 単一露光のエネルギーセンサー性x線画像に関するパターニングされたマスクを有する多色デジタルラジオグラフィー検出器
WO2006047718A2 (en) * 2004-10-22 2006-05-04 Scantech Holdings, Llc Angled-beam detection system for container inspection
US7260171B1 (en) 2004-10-25 2007-08-21 General Electric Company Apparatus for acquisition of CT data with penumbra attenuation calibration
US7558374B2 (en) 2004-10-29 2009-07-07 General Electric Co. System and method for generating X-rays
WO2006137919A2 (en) 2004-10-29 2006-12-28 Ainsworth, Teresa Contaminant detector for food inspection
US7197116B2 (en) 2004-11-16 2007-03-27 General Electric Company Wide scanning x-ray source
US7382853B2 (en) 2004-11-24 2008-06-03 General Electric Company Method and system of CT data correction
US7583779B2 (en) 2004-11-24 2009-09-01 General Electric Company System and method for acquisition and reconstruction of contrast-enhanced, artifact-reduced CT images
JP2006141906A (ja) 2004-11-25 2006-06-08 Ge Medical Systems Global Technology Co Llc 放射線撮影装置
CN100427368C (zh) 2004-11-26 2008-10-22 同方威视技术股份有限公司 一种用于集装箱检查系统的拖动装置
US7233644B1 (en) 2004-11-30 2007-06-19 Ge Homeland Protection, Inc. Computed tomographic scanner using rastered x-ray tubes
DE102004060580A1 (de) 2004-12-16 2006-06-29 Siemens Ag Verfahren zur Erzeugung einer computertomographischen Darstellung von Gewebestrukturen mit Hilfe einer Kontrastmittelapplikation
EP1677253A1 (en) 2004-12-30 2006-07-05 GSF-Forschungszentrum für Umwelt und Gesundheit GmbH Method and device of reconstructing an (n+1)-dimensional image function from radon data
US20080267350A1 (en) 2005-01-10 2008-10-30 Gray Stephen J Integrated carry-on baggage cart and passenger screening station
CN100441144C (zh) 2005-02-18 2008-12-10 傅耀宗 X射线检测装置和图像获取及处理方法
GB2423687B (en) 2005-02-25 2010-04-28 Rapiscan Security Products Ltd X-ray security inspection machine
DE102005011054A1 (de) 2005-03-10 2006-09-14 Smiths Heimann Gmbh Verfahren und Vorrichtung zur Kontrolle von Handgepäck und anderen mitgeführten Gegenständen
US7177391B2 (en) 2005-03-29 2007-02-13 Surescan Corporation Imaging inspection apparatus
US7440547B2 (en) 2005-04-15 2008-10-21 Kabushiki Kaisha Toshiba CT scanner
US7471764B2 (en) 2005-04-15 2008-12-30 Rapiscan Security Products, Inc. X-ray imaging system having improved weather resistance
US7227923B2 (en) 2005-04-18 2007-06-05 General Electric Company Method and system for CT imaging using a distributed X-ray source and interpolation based reconstruction
WO2006116316A2 (en) 2005-04-22 2006-11-02 University Of Chicago Open source trajectory method and apparatus for interior imaging
US7130374B1 (en) 2005-05-11 2006-10-31 University Of Florida Research Foundation, Inc. Snapshot backscatter radiography (SBR) systems including system having dynamic collimation
JP5042465B2 (ja) * 2005-05-18 2012-10-03 株式会社日立メディコ 放射線撮影装置、画像処理方法
JP4135727B2 (ja) 2005-05-23 2008-08-20 トヨタ自動車株式会社 動力出力装置、これを搭載する自動車及び動力出力装置の制御方法
WO2006130630A2 (en) 2005-05-31 2006-12-07 The University Of North Carolina At Chapel Hill X-ray pixel beam array systems and methods for electronically shaping radiation fields and modulating radiation field intensity patterns for radiotherapy
US7261466B2 (en) 2005-06-01 2007-08-28 Endicott Interconnect Technologies, Inc. Imaging inspection apparatus with directional cooling
CN100573116C (zh) 2005-06-01 2009-12-23 同方威视技术股份有限公司 一种用于辐射成像的双阵列探测器模块结构
US7354197B2 (en) 2005-06-01 2008-04-08 Endicott Interconnect Technologies, Inc. Imaging inspection apparatus with improved cooling
US7519152B2 (en) 2005-06-14 2009-04-14 L-3 Communications Security And Detection Systems, Inc. Inspection system with material identification
JP4269074B2 (ja) 2005-06-14 2009-05-27 株式会社エーイーティー X線発生装置
US7295651B2 (en) 2005-06-30 2007-11-13 General Electric Company Stationary computed tomography system and method
JP4074874B2 (ja) 2005-06-30 2008-04-16 株式会社リガク X線回折装置
US7801348B2 (en) * 2005-07-18 2010-09-21 Analogic Corporation Method of and system for classifying objects using local distributions of multi-energy computed tomography images
US7539337B2 (en) * 2005-07-18 2009-05-26 Analogic Corporation Method of and system for splitting compound objects in multi-energy computed tomography images
US7231017B2 (en) 2005-07-27 2007-06-12 Physical Optics Corporation Lobster eye X-ray imaging system and method of fabrication thereof
US7474786B2 (en) * 2005-08-04 2009-01-06 Analogic Corporation Method of and system for classifying objects using histogram segment features of multi-energy computed tomography images
US20070189597A1 (en) 2005-08-23 2007-08-16 Limer Daniel J Machine vision counting system apparatus and method
DE102005048389A1 (de) 2005-10-10 2007-04-19 Siemens Ag Tomografiegerät und Verfahren zur röntgentomografischen Untersuchung eines Patienten
US7308073B2 (en) 2005-10-20 2007-12-11 General Electric Company X-ray filter having dynamically displaceable x-ray attenuating fluid
US9046465B2 (en) 2011-02-24 2015-06-02 Rapiscan Systems, Inc. Optimization of the source firing pattern for X-ray scanning systems
CN101013094B (zh) 2005-11-03 2010-12-29 清华大学 一种用于辐射成像的双阵列固体探测器模块结构
CN100582758C (zh) 2005-11-03 2010-01-20 清华大学 用快中子和连续能谱x射线进行材料识别的方法及其装置
US7330535B2 (en) 2005-11-10 2008-02-12 General Electric Company X-ray flux management device
US7283609B2 (en) 2005-11-10 2007-10-16 General Electric Company CT detector photodiode having multiple charge storage devices
JP3887395B2 (ja) 2005-11-25 2007-02-28 株式会社東芝 X線発生装置
US7215731B1 (en) 2005-11-30 2007-05-08 General Electric Company Fast backprojection/reprojection with hexagonal segmentation of image
US7197113B1 (en) 2005-12-01 2007-03-27 General Electric Company Contactless power transfer system
GB0904236D0 (en) 2009-03-12 2009-04-22 Cxr Ltd X-ray scanners and x-ray sources thereof
US7372934B2 (en) 2005-12-22 2008-05-13 General Electric Company Method for performing image reconstruction using hybrid computed tomography detectors
CN1995993B (zh) 2005-12-31 2010-07-14 清华大学 一种利用多种能量辐射扫描物质的方法及其装置
CN101000312B (zh) 2006-01-11 2010-05-12 清华大学 一种大型航空集装货物检查系统
US20070205367A1 (en) 2006-03-01 2007-09-06 General Electric Company Apparatus and method for hybrid computed tomography imaging
JP4878311B2 (ja) 2006-03-03 2012-02-15 キヤノン株式会社 マルチx線発生装置
US7298812B2 (en) 2006-03-31 2007-11-20 General Electric Company Image-based material decomposition
US7319737B2 (en) 2006-04-07 2008-01-15 Satpal Singh Laminographic system for 3D imaging and inspection
WO2007130857A2 (en) 2006-05-05 2007-11-15 American Science And Engineering, Inc. Combined x-ray ct/neutron material identification system
US7728397B2 (en) 2006-05-05 2010-06-01 Virgin Islands Microsystems, Inc. Coupled nano-resonating energy emitting structures
US8189893B2 (en) 2006-05-19 2012-05-29 The University Of North Carolina At Chapel Hill Methods, systems, and computer program products for binary multiplexing x-ray radiography
US7440549B2 (en) 2006-06-21 2008-10-21 Bruker Axs Inc. Heat pipe anode for x-ray generator
EP2052282A2 (en) 2006-08-11 2009-04-29 Philips Intellectual Property & Standards GmbH System and method for acquiring image data
US8842808B2 (en) 2006-08-11 2014-09-23 American Science And Engineering, Inc. Scatter attenuation tomography using a monochromatic radiation source
RU2499251C2 (ru) 2006-08-11 2013-11-20 Эмерикэн Сайэнс Энд Энджиниэринг, Инк. Рентгеновский осмотр с помощью одновременного формирования изображений на основе пропускания и обратного рассеивания света
US7486760B2 (en) * 2006-08-15 2009-02-03 Ge Security, Inc. Compact systems and methods for generating a diffraction profile
US7376218B2 (en) 2006-08-16 2008-05-20 Endicott Interconnect Technologies, Inc. X-ray source assembly
US7924979B2 (en) 2006-08-23 2011-04-12 American Science And Engineering, Inc. Scatter attenuation tomography
US7551718B2 (en) 2006-08-23 2009-06-23 American Science And Engineering, Inc. Scatter attenuation tomography
US20080056432A1 (en) 2006-08-30 2008-03-06 General Electric Company Reconstruction of CT projection data
US7616731B2 (en) 2006-08-30 2009-11-10 General Electric Company Acquisition and reconstruction of projection data using a stationary CT geometry
CN101512379B (zh) 2006-08-30 2013-06-05 通用电气公司 使用静止计算机x射线断层造影几何结构的投影数据的采集和再现
US7706499B2 (en) 2006-08-30 2010-04-27 General Electric Company Acquisition and reconstruction of projection data using a stationary CT geometry
US7835486B2 (en) 2006-08-30 2010-11-16 General Electric Company Acquisition and reconstruction of projection data using a stationary CT geometry
US7548606B2 (en) 2006-08-31 2009-06-16 Ge Homeland Protection, Inc. System and method for integrating explosive detection systems
US8116428B2 (en) 2006-09-18 2012-02-14 Optosecurity Inc. Method and apparatus for assessing characteristics of liquids
DE102006046741A1 (de) 2006-09-29 2008-04-10 Siemens Ag Röntgensystem und Verfahren zur Tomosyntheseabtastung
CN101162205B (zh) 2006-10-13 2010-09-01 同方威视技术股份有限公司 对移动目标进行检查的设备及避让方法
EP2407997B1 (en) 2006-10-17 2014-03-05 Koninklijke Philips N.V. Emitter for X-ray tubes and heating method therefore
RU2446743C2 (ru) 2006-10-31 2012-04-10 Конинклейке Филипс Электроникс Н.В. Анодный сканер с модуляцией для компьютерной томографии
JP2008113960A (ja) 2006-11-07 2008-05-22 Ge Medical Systems Global Technology Co Llc 放射線撮影装置
US20080112540A1 (en) 2006-11-09 2008-05-15 General Electric Company Shield assembly apparatus for an x-ray device
KR101110712B1 (ko) 2006-11-09 2012-02-24 캐논 가부시끼가이샤 멀티 방사선 발생 장치를 이용한 방사선 촬영 제어 장치
US7428292B2 (en) 2006-11-24 2008-09-23 General Electric Company Method and system for CT imaging using multi-spot emission sources
WO2008068691A2 (en) 2006-12-04 2008-06-12 Philips Intellectual Property & Standards Gmbh X-ray tube with multiple electron sources and common electron deflection unit
CN101553896B (zh) 2006-12-04 2012-06-06 株式会社东芝 旋转阳极型x射线管
US7508916B2 (en) 2006-12-08 2009-03-24 General Electric Company Convectively cooled x-ray tube target and method of making same
JP4899858B2 (ja) 2006-12-27 2012-03-21 株式会社島津製作所 外囲器回転型x線管装置
CN201034948Y (zh) 2006-12-28 2008-03-12 华南理工大学 基于图像理解的轮毂铸造缺陷自动检测装置
PL2108132T3 (pl) 2007-01-15 2018-08-31 Rapiscan Systems, Inc. Systemy wykrywające
US7539283B2 (en) 2007-01-17 2009-05-26 Ge Homeland Protection, Inc. Combined computed tomography and nuclear resonance fluorescence cargo inspection system and method
US7720194B2 (en) 2007-02-16 2010-05-18 L-3 Communications Security and Detection Systems Inc. High throughput baggage inspection system
US20100277312A1 (en) 2007-02-22 2010-11-04 Peter Michael Edic In-line high-throughput contraband detection system
JP2008212840A (ja) 2007-03-05 2008-09-18 Hitachi Constr Mach Co Ltd 自走式処理機械
US7769132B1 (en) 2007-03-13 2010-08-03 L-3 Communications Security And Detection Systems, Inc. Material analysis based on imaging effective atomic numbers
GB0706088D0 (en) 2007-03-29 2007-05-09 Durham Scient Crystals Ltd X-ray imaging of materials
JP2008268035A (ja) 2007-04-20 2008-11-06 Ishida Co Ltd 異物検査装置
GB0716045D0 (en) 2007-08-17 2007-09-26 Durham Scient Crystals Ltd Method and apparatus for inspection of materials
EP2163142A1 (de) 2007-06-06 2010-03-17 Comet Holding AG Röntgenröhre mit anodenisolationselement zur flüssigkeitskühlung und aufnahme eines hochspannungssteckers
CA2692139A1 (en) 2007-06-21 2009-01-08 Rapiscan Security Products, Inc. Systems and methods for improving directed people screening
US7869566B2 (en) 2007-06-29 2011-01-11 Morpho Detection, Inc. Integrated multi-sensor systems for and methods of explosives detection
DE112008001902T5 (de) 2007-07-19 2010-10-14 North Carolina State University Stationäre digitale Röntgen-Brust-Tomosynthese-Systeme und entsprechende Verfahren
WO2009018526A1 (en) 2007-08-02 2009-02-05 L-3 Communications Security And Detection Systems, Inc. Reducing latency in a detection system
US9256713B2 (en) 2007-08-30 2016-02-09 Exelis Inc. Library generation for detection and identification of shielded radioisotopes
US7593509B2 (en) 2007-09-27 2009-09-22 Varian Medical Systems, Inc. Analytical x-ray tube for close coupled sample analysis
DE102007046278A1 (de) 2007-09-27 2009-04-09 Siemens Ag Röntgenröhre mit Transmissionsanode
JP4853444B2 (ja) 2007-09-28 2012-01-11 株式会社デンソー 移動物体検出装置
JP5306628B2 (ja) 2007-10-16 2013-10-02 富士フイルム株式会社 撮影方法及び装置
US8031829B2 (en) 2007-10-26 2011-10-04 General Electric Company Method for analytic reconstruction of cone-beam projection data for multi-source inverse geometry CT systems
US7636638B2 (en) 2007-11-27 2009-12-22 Canberra Industries, Inc. Hybrid radiation detection system
US7885372B2 (en) 2007-12-07 2011-02-08 Morpho Detection, Inc. System and method for energy sensitive computed tomography
US9005420B2 (en) 2007-12-20 2015-04-14 Integran Technologies Inc. Variable property electrodepositing of metallic structures
EP2239560B1 (en) 2007-12-27 2020-04-22 Omron Corporation X-ray examining apparatus and x-ray examining method
US20090168958A1 (en) 2008-01-02 2009-07-02 Cristina Francesca Cozzini Apparatus and method for identifying components in a container
US7809114B2 (en) 2008-01-21 2010-10-05 General Electric Company Field emitter based electron source for multiple spot X-ray
US7885373B2 (en) 2008-02-15 2011-02-08 Mayo Foundation For Medical Education And Research System and method for quantitative imaging of chemical composition to decompose multiple materials
US7924978B2 (en) 2008-02-22 2011-04-12 Morpho Detection Inc. System and method for XRD-based threat detection
CN101303317B (zh) 2008-03-05 2010-11-17 中国科学院合肥物质科学研究院 爆炸物检测系统装置及其检测方法
JP4268996B2 (ja) 2008-03-31 2009-05-27 株式会社モリタ製作所 局所x線ct撮影装置及びその画像表示方法
GB0807473D0 (en) 2008-04-24 2008-12-03 Durham Scient Crystals Ltd Method and Apparatus for Inspection of Materials
DE102008038569A1 (de) 2008-08-20 2010-02-25 Siemens Aktiengesellschaft Röntgenröhre
WO2010028027A1 (en) 2008-09-03 2010-03-11 Mayo Foundation For Medical Education And Research Method for reconstruction in dual energy, dual source helical computed tomography
GB0816823D0 (en) 2008-09-13 2008-10-22 Cxr Ltd X-ray tubes
JP3147024U (ja) 2008-09-30 2008-12-11 株式会社島津製作所 X線ct装置
US7844032B2 (en) 2008-10-16 2010-11-30 General Electric Company Apparatus for providing collimation in a multispot X-ray source and method of making same
US7835495B2 (en) 2008-10-31 2010-11-16 Morpho Detection, Inc. System and method for X-ray diffraction imaging
CN102224557B (zh) 2008-11-25 2014-03-05 皇家飞利浦电子股份有限公司 具有靶标温度传感器的x射线管
US7970096B2 (en) 2009-01-07 2011-06-28 Analogic Corporation Method of and system for low cost implementation of dual energy CT imaging
GB0901338D0 (en) 2009-01-28 2009-03-11 Cxr Ltd X-Ray tube electron sources
US8111803B2 (en) 2009-04-29 2012-02-07 General Electric Company Method for energy sensitive computed tomography using checkerboard filtering
US8270565B2 (en) 2009-05-08 2012-09-18 L-3 Communications Security and Detection Systems Inc. Dual energy imaging system
US20170161922A1 (en) 2009-05-26 2017-06-08 Rapiscan Systems, Inc. Imaging, Data Acquisition, Data Transmission, and Data Distribution Methods and Systems for High Data Rate Tomographic X-Ray Scanners
GB2501022B (en) 2009-05-26 2014-02-12 Rapiscan Systems Inc X-ray tomographic inspection systems for the identification of specific target items
GB2486057B (en) 2009-05-26 2013-12-25 Rapiscan Systems Inc X-ray tomographic inspection system for the idendification of specific target items
EP2438212B1 (en) 2009-06-03 2017-02-22 Rapiscan Systems, Inc. X-ray tube with a backscattered electron shielded anode
EP2443441B8 (en) 2009-06-15 2017-11-22 Optosecurity Inc. Method and apparatus for assessing the threat status of luggage
JP5325851B2 (ja) 2009-08-28 2013-10-23 株式会社丸彰 単一ゼンマイ機構による複数アクション連係作動玩具
US9442213B2 (en) 2010-01-19 2016-09-13 Rapiscan Systems, Inc. Method of electron beam transport in an X-ray scanner
GB2488740B (en) 2010-01-19 2015-02-11 Rapiscan Systems Inc Multi-view cargo scanner
US8311313B1 (en) 2010-02-08 2012-11-13 Surescan Corporation Imaging inspection apparatus incorporating a device for solving cubic polynomials
US8594272B2 (en) 2010-03-19 2013-11-26 Triple Ring Technologies, Inc. Inverse geometry volume computed tomography systems
US8160200B2 (en) 2010-03-30 2012-04-17 General Electric Company Method and system for image data acquisition
EP2377467A1 (en) 2010-04-08 2011-10-19 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement System and method for determining the composition of an object
US8039812B1 (en) 2010-04-13 2011-10-18 Surescan Corporation Test equipment for verification of crystal linearity at high-flux levels
US8908831B2 (en) 2011-02-08 2014-12-09 Rapiscan Systems, Inc. Covert surveillance using multi-modality sensing
WO2012115629A1 (en) 2011-02-22 2012-08-30 Rapiscan Systems, Inc. X-ray inspection system and method
CN110632673A (zh) 2011-11-22 2019-12-31 新锐系统有限责任公司 高速、覆盖区小的x射线断层摄影检查系统、设备和方法
US9530528B2 (en) 2011-12-16 2016-12-27 Varian Medical Systems, Inc. X-ray tube aperture having expansion joints
US9514911B2 (en) 2012-02-01 2016-12-06 Varian Medical Systems, Inc. X-ray tube aperture body with shielded vacuum wall
US8829446B2 (en) 2012-04-05 2014-09-09 Analogic Corporation Tile for detector array of imaging modality having selectively removable/replaceable tile sub-assemblies
CN104486997B (zh) 2012-06-05 2017-07-25 拉皮斯坎系统股份有限公司 X射线扫描系统的射线源激发模式的最佳化
JP6238584B2 (ja) 2012-07-17 2017-11-29 東芝メディカルシステムズ株式会社 X線ct装置およびx線ct装置の制御方法
CN103901057B (zh) 2012-12-31 2019-04-30 同方威视技术股份有限公司 使用了分布式x射线源的物品检查装置
PL2952068T3 (pl) 2013-01-31 2021-07-26 Rapiscan Systems, Inc. Przenośny system kontroli bezpieczeństwa
US9778391B2 (en) 2013-03-15 2017-10-03 Varex Imaging Corporation Systems and methods for multi-view imaging and tomography
US9093187B1 (en) 2013-11-19 2015-07-28 Surescan Corporation Fixed gantry CT system having a non-uniform slit
JP6296607B2 (ja) 2014-06-12 2018-03-20 矢崎総業株式会社 車両用表示装置
GB2582466A (en) 2017-12-11 2020-09-23 Rapiscan Systems Inc X-Ray Tomography inspection systems and methods

Also Published As

Publication number Publication date
GB2471421A (en) 2010-12-29
JP5537031B2 (ja) 2014-07-02
EP2017605A1 (en) 2009-01-21
GB201017187D0 (en) 2010-11-24
JP2010060572A (ja) 2010-03-18
EP1969356A1 (en) 2008-09-17
EP2151681B1 (en) 2017-08-30
CN101400992B (zh) 2011-09-28
JP2010048829A (ja) 2010-03-04
GB2448260B (en) 2011-02-09
US20120230463A1 (en) 2012-09-13
CN101400992A (zh) 2009-04-01
WO2007068933A1 (en) 2007-06-21
GB2471421B (en) 2011-03-09
US10976271B2 (en) 2021-04-13
CN102289000A (zh) 2011-12-21
US7876879B2 (en) 2011-01-25
GB2448260A (en) 2008-10-08
US20200378906A1 (en) 2020-12-03
US20080304622A1 (en) 2008-12-11
JP2009519457A (ja) 2009-05-14
GB0525593D0 (en) 2006-01-25
GB201017188D0 (en) 2010-11-24
CN102289000B (zh) 2014-07-09
GB2471422A (en) 2010-12-29
US20090060135A1 (en) 2009-03-05
CN102269826A (zh) 2011-12-07
US20200103357A1 (en) 2020-04-02
JP5357724B2 (ja) 2013-12-04
GB0812867D0 (en) 2008-08-20
PL2151681T3 (pl) 2018-02-28
EP2017605B1 (en) 2019-12-04
US20200378907A1 (en) 2020-12-03
US8958526B2 (en) 2015-02-17
US10295483B2 (en) 2019-05-21
PL2017605T3 (pl) 2020-05-18
GB2471422B (en) 2011-03-09
ES2645587T3 (es) 2017-12-05
US8135110B2 (en) 2012-03-13
EP2151681A1 (en) 2010-02-10
US20150355117A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
ES2769530T3 (es) Sistemas de inspección de tomografía de rayos X
US9606259B2 (en) X-ray tomographic inspection system for the identification of specific target items
US20200200690A1 (en) X-Ray Tomographic Inspection Systems for the Identification of Specific Target Items
JP5885661B2 (ja) 特定の対象物品の識別のためのx線断層撮影検査システム
GB2501023A (en) Detecting nuclear materials or shielded radioactive sources in tomographic X-ray images
CN102269826B (zh) X射线断层摄影检查系统