DE10129463A1 - Röntgenstrahler mit einem Flüssigmetall-Target - Google Patents

Röntgenstrahler mit einem Flüssigmetall-Target

Info

Publication number
DE10129463A1
DE10129463A1 DE10129463A DE10129463A DE10129463A1 DE 10129463 A1 DE10129463 A1 DE 10129463A1 DE 10129463 A DE10129463 A DE 10129463A DE 10129463 A DE10129463 A DE 10129463A DE 10129463 A1 DE10129463 A1 DE 10129463A1
Authority
DE
Germany
Prior art keywords
pressure
liquid metal
arrangement according
area
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10129463A
Other languages
English (en)
Inventor
Geoffrey Harding
Jens-Peter Schlomka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Original Assignee
Philips Corporate Intellectual Property GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Corporate Intellectual Property GmbH filed Critical Philips Corporate Intellectual Property GmbH
Priority to DE10129463A priority Critical patent/DE10129463A1/de
Priority to DE50208680T priority patent/DE50208680D1/de
Priority to EP02100714A priority patent/EP1271602B8/de
Priority to JP2002177021A priority patent/JP4338943B2/ja
Priority to US10/174,665 priority patent/US6647094B2/en
Publication of DE10129463A1 publication Critical patent/DE10129463A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/12Cooling non-rotary anodes
    • H01J35/13Active cooling, e.g. fluid flow, heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/081Target material
    • H01J2235/082Fluids, e.g. liquids, gases

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • X-Ray Techniques (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Die Erfindung betrifft eine Anordnung zur Erzeugung von Röntgenstrahlung beim Auftreffen von Elektronen (4) mit einem Flüssigmetallbereich (7), in dem ein flüssiges Metall (9) als Röntgentarget derart angeordnet ist, daß es an einer Elektronenauftreffzone (8) vorbei fließen kann. Um bei einer solchen Anordnung zu erreichen, dass zur Bewegung des flüssigen Metalls eine Pumpe mit reduzierter Leistung eingesetzt werden kann, wird erfindungsgemäß vorgeschlagen, dass ein von dem Flüssigmetallbereich (7) getrennter Druckbereich (10) mit einem Druckmittel (11) vorgesehen ist, derart, dass mittels des Druckmittels (11) ein Druck auf das in dem Flüssigmetallbereich (7) befindliche flüssige Metall (9) zum Antreiben und Vorbeiführen des flüssigen Metalls (9) an der Elektronenauftreffzone (8) ausübbar ist, wobei der Druckbereich (10) einen wiederaufladbaren Druckspeicher (R3) zum Aufbringen des Drucks aufweist.

Description

  • Die Erfindung betrifft eine Anordnung zur Erzeugung von Röntgenstrahlung beim Auftreffen von Elektronen mit einem Flüssigmetallbereich, in dem ein flüssiges Metall als Röntgentarget derart angeordnet ist, dass es an einer Elektronenauftreffzone vorbei fließen kann. Außerdem betrifft die Erfindung einen Röntgenstrahler mit einer Elektronenquelle zur Emission von Elektronen und mit einer solchen Anordnung zur Erzeugung von Röntgenstrahlung.
  • Eine solche Anordnung und ein solcher Röntgenstrahler sind aus der US 6,185,277 B 1 bekannt. Dort treten die von einer Elektronenquelle emittierten Elektronen durch ein dünnes Fenster in das flüssige Metall ein und erzeugen dort Röntgenstrahlung. Das flüssige Metall, das eine hohe Ordnungszahl aufweist, zirkuliert dort unter der Wirkung einer Pumpe, so dass die durch die Wechselwirkung mit den Elektronen im Fenster und im flüssigen Metall erzeugte Wärme abgeführt werden kann. Die in diesem Bereich erzeugte Wärme wird durch eine turbulente Strömung abgeführt, was eine effektive Kühlung gewährleistet.
  • Es sind mehrere verschiedene Anwendungen denkbar, für die eine solche Anordnung zur Erzeugung von Röntgenstrahlung eingesetzt werden kann. Bei Einsatz in einem Computertomographen wird ein Röntgenstrahler benötigt, der eine hohe impulsförmige Leistung von beispielsweise etwa 80 kW für nur kurze Zeit von beispielsweise etwa 20 s liefern kann. Für eine andere Art von Anwendung in einer Röntgenanlage zur Gepäckuntersuchung, insbesondere auf Sprengstoff oder Drogen, wird dagegen nur eine niedrigere Leistung von beispielsweise etwa 30 kW benötigt, die jedoch kontinuierlich, das heißt für mehrere Stunden, geliefert werden muss.
  • Bei dem bekannten Röntgenstrahler mit einem Flüssigmetall-Target, bei dem das flüssige Metall mittels einer Pumpe zirkuliert wird, wurde bislang stets davon ausgegangen, dass mittels einer einzigen Pumpe die beschriebenen Erfordernisse erfüllt werden können. Es wurde jedoch festgestellt, dass bei der ersten Art von Anwendung, in der Computertomographie, zwar die erforderliche impulsförmige Leistung sehr hoch ist, die durchschnittliche Leistung jedoch viel niedriger liegt. Wenn davon ausgegangen wird, dass typischerweise jeder Einsatzzeit von etwa 20 s eine Verweilzeit von etwa 80 s folgt, dann liegt die durchschnittliche elektrische Leistung bei (80 kW.20 s)/(80 s+20 s) = 16 kW. Demnach müsste es auch möglich sein, die Leistung der Pumpe entsprechend zu verringern, die Pumpe also nicht für die maximale impulsförmige Leistung von 80 kW, sondern nur für die durchschnittlich benötigte Leistung von etwa 16 kW auszulegen, was eine starke Platz- und Kostenersparnis zur Folge hätte.
  • Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde, eine Anordnung zur Erzeugung von Röntgenstrahlung mit einem Flüssigmetall-Target zu schaffen, die für verschiedene Anwendungen einsetzbar ist und mit einer verhältnismäßig geringen Pumpleistung für das Flüssigmetall auskommt. Diese Aufgabe wird ausgehend von der eingangs genannten Anordnung dadurch gelöst, dass ein von dem Flüssigmetallbereich getrennter Druckbereich mit einem Druckmittel vorgesehen ist derart, dass mittels des Druckmittels ein Druck auf das in dem Flüssigmetallbereich befindliche flüssige Metall zum Antreiben und Vorbeiführen des flüssigen Metalls an der Elektronenauftreffzone ausübbar ist, wobei der Druckbereich einen wiederaufladbaren Druckspeicher zum Aufbringen des Drucks aufweist.
  • Erfindungsgemäß wurde erkannt, dass die erforderliche Pumpleistung zum Vorbeiführen des flüssigen Metalls an der Elektronenauftreffzone nicht entsprechend der höchsten elektrischen (pulsförmigen) Leistung ausgelegt werden muss, sondern dass die erforderliche Pumpleistung auf die durchschnittliche geforderte elektrische Leistung abgestellt werden kann, wenn ergänzende Mittel zur Speicherung von Pumpleistung vorgesehen werden. Unter der Annahme, dass die Energie, die benötigt wird, um ein Flüssigkeitsvolumen V durch eine Druckdifferenz von ΔP zu bewegen, gleich V.ΔP ist, dann erfordert die Pumpe eine Leistung von 1/ε.(V.ΔP)/T. Durch ε wird dabei berücksichtigt, dass die Umwandlung von mechanischer Energie in hydrodynamische Energie einen Wirkungsgrad von weniger als 100% aufweist; T ist die Zeitdauer, über die die Energieübertragung auf das flüssige Metall verteilt werden kann. Die Pumpleistung kann also signifikant reduziert werden, indem die Energiezufuhr in Form von Pumpenergie über 100 s (im oben beschriebenen Beispiel der Computertomographie) verteilt wird, anstatt auf nur 20 s konzentriert zu werden.
  • Erfindungsgemäß müssen also die folgenden Bedingungen erfüllt werden:
    • a) Die Energie, die das flüssige Metall antreiben wird, kann effektiv gespeichert werden, ist nachlieferbar und kann bei Bedarf in kurzer Zeit abgerufen werden;
    • b) die Art der Energiespeicherung ist kompatibel mit dem Erfordernis, dass das flüssige Metall nach Art einer Pumpe angetrieben werden muss.
  • Erfindungsgemäß wird dies dadurch erreicht, dass das flüssige Metall nicht wie bei dem bekannten Röntgenstrahler mittels einer Pumpe zirkuliert wird, sondern sich nur in einem Flüssigmetallbereich befindet, in dem es hin- und herbewegt werden kann, jedoch nicht zirkuliert. Weiter ist ein davon getrennter Druckbereich vorgesehen, der auch einen Druckspeicher aufweist, in dem Energie gespeichert werden kann, die zum Bewegen des flüssigen Metalls in dem Flüssigmetallbereich, das heißt zum Vorbeiführen des flüssigen Metalls an der Elektronenauftreffzone, mit der gewünschten Leistung abrufbar ist. Um den Druckspeicher wieder aufzuladen, also wieder Energie nachzuführen, kann hier eine Nachladevorrichtung, beispielsweise eine Pumpe, vorgesehen sein, die eine wesentlich geringere Leistung aufweist, als die Pumpe bei dem bekannten Röntgenstrahler, da hier die Energie in den Druckspeicher jederzeit, also auch in den Betriebspausen des Röntgenstrahlers, nachgeliefert werden kann, während bei dem bekannten Röntgenstrahler die Pumpleistung in voller Höhe beim Betrieb zur Verfügung gestellt werden muss. Eine solche Nachladevorrichtung kann also wesentlich platzsparender und kostengünstiger ausgestaltet werden und erlaubt einen universellen Einsatz eines solchen Röntgenstrahlers.
  • Vorzugsweise grenzen der Flüssigmetallbereich und der Druckbereich an zwei Stellen, zwei sogenannten Trennbereichen, aneinander, in denen jeweils mittels des Druckmittels ein Druck auf das flüssige Metall ausgeübt werden kann. Diese Trennbereiche können beispielsweise als Trennkammern mit jeweils einer Flüssigmetallkammer und einer Druckmittelkammer ausgestaltet sein, wobei das flüssige Metall und das Druckmittel durch eine flexible Membran getrennt sind, über die der Druck von dem Druckmittel auf das flüssige Metall übertragen werden kann. Je nach eingestelltem Druckverhältnis kann sich somit sowohl das flüssige Metall als auch das Druckmittel in die jeweilige Trennkammer hinein ausdehnen.
  • Es sind noch weitere alternative Lösungen für die Ausgestaltung des Flüssigmetallbereichs und des Druckbereichs denkbar. Diese haben jedoch alle gemeinsam, dass über das Druckmittel indirekt ein Druck auf das flüssige Metall in dem Flüssigmetallbereich ausgeübt wird, so dass das flüssige Metall also nicht direkt angetrieben wird. Die Trennbereiche könnten somit auch als Zylinder mit jeweils einem verfahrbaren Kolben ausgestaltet sein, wobei der Kolben sowohl als Trennmittel zwischen flüssigem Metall und Druckmittel dient und grundsätzlich auf beliebige Weise antreibbar ausgestaltet sein kann.
  • Verschiedene Ausgestaltungen für das Druckmittel sind in den Ansprüchen 5 bis 7 angegeben, wobei vorzugsweise als Druckmittel ein Gas, insbesondere Luft, verwendet wird. Auch die Umsetzung des Druckspeichers, das heißt die Speicherung von Energie zur Ausübung eines Drucks in abrufbarer Form, kann auf verschiedene Weise gelöst werden. Unter Verwendung eines Gases als Druckmittel bietet sich insbesondere eine Gasdruckkammer an, die durch steuerbare Ventile abgeschlossen ist und deren Druck mittels einer konventionellen Pumpe kontinuierlich auf einem bestimmten Level gehalten werden kann.
  • Zur Steuerung der Druckbeaufschlagung des flüssigen Metalls und damit also zur Bestimmung der Fließgeschwindigkeit des flüssigen Metalls in der Elektronenauftreffzone sind entsprechende Steuermittel vorgesehen, wie sie in Anspruch 8 angegeben sind. Diese Steuermittel können insbesondere die bereits angesprochenen steuerbaren Ventile aufweisen, über die die Druckzufuhr von dem Druckspeicher zu dem Flüssigmetallbereich, insbesondere zu den Trennbereichen, gesteuert werden kann.
  • Um eine möglichst hohe Fließgeschwindigkeit in der Elektronenauftreffzone zu erreichen, kann der Flüssigmetallbereich dort eine Verengung aufweisen. Diese Verengung kann zu beiden Seiten der Elektronenauftreffzone asymmetrisch ausgestaltet sein, beispielsweise der äußeren Form eines Wassertropfens angenähert sein, damit das durch die Verengung hindurchfließende flüssige Metall einen möglichst geringen Druckverlust erfährt. Zu berücksichtigen ist dann jedoch, dass im Betrieb das flüssige Metall immer nur in einer Richtung durch die Verengung hindurchfließen sollte, um die größtmögliche gewünschte Wirkung zu erzielen.
  • Im Betrieb wird das flüssige Metall um bis zu einige 100°C erhitzt. Zur Kühlung des aufgeheizten flüssigen Metalls sind deshalb an mindestens einem der beiden Trennbereiche, in dem sich bevorzugt nach einer Einsatzphase das flüssige Metall befindet, Kühlmittel, beispielsweise in Form von um den Trennbereich herumlaufenden Kühlkanälen, angeordnet.
  • Die Anordnung zur Erzeugung von Röntgenstrahlung gemäß Anspruch 1 ist bevorzugt Teil eines Röntgenstrahlers mit einer Elektronenquelle zur Emission von Elektronen, wie in Anspruch 12 angegeben ist.
  • Die Erfindung wird nachfolgend anhand der Zeichnungen näher erläutert. Es zeigen:
  • Fig. 1 eine schematische Darstellung eines erfindungsgemäßen Röntgenstrahlers,
  • Fig. 2a bis 2c schematische Darstellungen einer erfindungsgemäßen Anordnung zur Erzeugung von Röntgenstrahlung in verschiedenen Betriebszuständen und
  • Fig. 3 ein Ablaufdiagramm zur Erläuterung der verschiedenen Betriebszustände einer erfindungsgemäßen Anordnung zur Erzeugung von Röntgenstrahlung.
  • Bei dem in Fig. 1 schematisch gezeigten erfindungsgemäßen Röntgenstrahler bezeichnet 1 einen elektrisch, vorzugsweise geerdeten, Röhrenkolben, der durch ein Fenster 5 vakuumdicht abgeschlossen ist. In dem Vakuumraum des Röhrenkolbens befindet sich eine Elektronenquelle in Form einer Kathode 3, die im Betriebszustand einen Elektronenstrahl 4 emittiert, der durch das Fenster 5 hindurch auf ein flüssiges Metall 9 trifft, das sich in einer erfindungsgemäßen Anordnung 2 zur Erzeugung von Röntgenstrahlung befindet. Diese Anordnung 2 umfasst im Wesentlichen einen Flüssigmetallbereich 7, in dem sich ein flüssiges Metall 9 befindet, auf das in eine Elektronenauftreffzone 8 der Elektronenstrahl 4 auftrifft. Weiter befindet sich in der Anordnung 2 ein Druckbereich 10, über den ein Druck auf das flüssige Metall 9 in dem Flüssigmetallbereich 7 ausgeübt werden kann, damit das flüssige Metall 9 an der Elektronenauftreffzone 8 während des Betriebes mit einer gewünschten Geschwindigkeit vorbeiströmt.
  • Durch die Wechselwirkung der durch das Fenster 5 hindurchtretenden Elektronen 4 mit dem flüssigen Metall 9 entsteht Röntgenstrahlung, die durch das Fenster 5 und ein Röntgenstrahlen-Austrittsfenster 6 im Röhrenkolben 1 hindurch austritt. Das flüssige Metall 9 dient somit als Röntgentarget. Hinsichtlich der weiteren Ausgestaltung des gezeigten Röntgenstrahlers, insbesondere des Elektronenstrahls 4, des Fensters 5 und des flüssigen Metalls 9, sei auf die bereits genannte Druckschrift US 6,185,277 B 1 verwiesen, deren diesbezügliche Ausführungen für den vorliegenden Röntgenstrahler gleichermaßen Gültigkeit haben und hiermit als in die vorliegende Anmeldung mit aufgenommen gelten.
  • In den Fig. 2a bis 2c ist die Anordnung 2 schematisch und in verschiedenen Betriebszuständen näher dargestellt. Fig. 2a zeigt zunächst den Ausgangszustand der Anordnung 2 unmittelbar vor Betriebsbeginn, Fig. 26 zeigt den Betriebszustand während des Betriebes und Fig. 2c zeigt den Endzustand nach einem Einsatz.
  • Wie aus den Figuren zu erkennen ist, ist der Flüssigmetallbereich 7, in dem sich das flüssige Metall 9 befindet, als längliche Röhre ausgestaltet. Diese Röhre weist in der Elektronenauftreffzone 8, also in dem Bereich hinter dem Fenster 5, eine Verengung auf. Außerdem weiten sich die beiden Enden des röhrenförmigen Flüssigmetallbereichs 7 zu Trennkammern R1 und R2 auf. Diese Trennkammern beinhalten jeweils eine flexible Membran M1, M2, die die Trennkammern R1, R2 in jeweils eine Flüssigmetallkammer L1, L2 und eine Druckkammer G1, G2 (siehe Fig. 2b) unterteilen. Die Druckkammern G1, G2 sind dabei bereits Teil des Druckbereichs 10, in dem sich ein Druckmittel 11 befindet, bei der vorliegenden Ausgestaltung beispielsweise ein Gas wie insbesondere Luft. Dieser Druckbereich 10 ist ebenfalls im Wesentlichen röhrenförmig ausgebildet, wobei sich die beiden Enden zu den genannten Druckkammern G1, G2 aufweiten. Zusätzlich ist innerhalb des röhrenförmigen Druckbereichs 10 ein Druckspeicher R3, vorliegend in Form einer Druckkammer, vorgesehen, in dem ein hoher Druck vorrätig gehalten werden kann. Dazu wird mittels einer Pumpe 13 ein Gas 12, beispielsweise Luft, in die Druckkammer R3 gepumpt, bis dort ein gewünschter hoher Druck vorhanden ist.
  • Zwischen der Druckkammer R3 und den beiden Trennkammern R1 und R2 ist weiter jeweils ein von einer Steuereinrichtung 15 gesteuertes Ventil V1, V2 angeordnet, über die zu gewünschten Zeitpunkten ein Druck gewünschter Höhe auf die Membranen M1 und M2 ausgeübt werden kann. Insbesondere können die Ventile V1 und V2 als computergesteuerte Ventile ausgestaltet sein, die im Wesentlichen drei verschiedene Funktionen bzw. Stellungen aufweisen müssen:
    • a) sie sind geschlossen, um einen Gasfluss zu verhindern;
    • b) sie sind geöffnet, um einen Gasfluss zu ermöglichen;
    • c) sie müssen einen Gasfluss in verschiedenen Richtungen ermöglichen, insbesondere von dem Druckspeicher R3 zu den Trennkammern R1 und R2 (mit gewünschter Druckhöhe) und von den Trennkammern R1 und R2 in die Umgebung, um den Druck in den Trennkammern R1 und R2 zu erniedrigen.
  • Eine beispielhafte Dimensionierung kann einen Druck in Höhe von 200 bar in dem Druckspeicher R3 vorsehen. Die Pumpe 13 kann dann als Gaskompressor ausgestaltet sein, der mit einem 50 Hz-Motor arbeitet, einen Kolben von 25 mm Radius und eine Hubhöhe von 60 mm aufweist. Das Pumpvolumen ist demnach 118 cm3 und das Volumen an komprimiertem Gas (bei 200 bar), das pro Sekunde geliefert wird, ist etwa 30 cm3. Die Trennkammern R1 und R2 können mit einem Volumen von jeweils 4 l ausgestaltet sein und einen Druck von maximal 100 bar aushalten. Diese Parameter erfordern einen Radius der Trennkammern R1 und R2 von etwa 10 cm und ein Gewicht von etwa 3 kg.
  • Als flüssiges Metall wird vorzugsweise eine Legierung bestehend aus 35,6% Bi (eutektisch), 22,9% Pb, 19,6% In und 21,9% Sn verwendet (Angaben in Gewichtsprozent). Der Schmelzpunkt dieser Legierung liegt dann bei 56,5°C. Bei dem in Fig. 2a gezeigten Ausgangszustand, wenn der Röntgenstrahler also inaktiv ist, ist die Trennkammer R1 praktisch leer und die Trennkammer R2 praktisch voll. Das flüssige Metall kann dann in der Trennkammer R2 mittels nicht gezeigter Heizelemente auf einer Temperatur von etwa 65°C, also in flüssigem Zustand, gehalten werden.
  • Nachfolgend sollen nun die verschiedenen Betriebszustände, wie sie in den Fig. 2a bis 2c gezeigt sind und wie sie auch in dem Ablaufdiagramm in Fig. 3 aufgeführt sind, näher erläutert werden, wobei angenommen wird, dass der erfindungsgemäße Röntgenstrahler in einem Computertomographen zur Datenerfassung eingesetzt wird. Zunächst wird in einem ersten Schritt (S 1 in Fig. 3) sichergestellt, dass der in Fig. 2a gezeigte Ausgangszustand erreicht wird, bevor die Datenerfassung beginnt. Dazu wird der Druck P2 in der Druckkammer G2 der Trennkammer R2 um einige bar, beispielsweise auf 3 bar, erhöht, so dass das flüssige Metall aus der Trennkammer R2 vollständig herausfließt und sich in der Trennkammer R1 vollständig sammelt. Dazu wird das Ventil V2 leicht geöffnet, um einen geringen Druck aus dem Druckspeicher R3 in die Trennkammer R2 einzubringen. Das Ventil V1 wird dagegen zur Umgebung geöffnet, so dass in der Gasdruckkammer G1 Atmosphärendruck herrscht.
  • Wenn der in Fig. 2a gezeigte Ausgangszustand erreicht ist, wird wenige Sekunden vor Beginn der Datenerfassung das Ventil V1 zum Druckspeicher R3 hin geöffnet, so dass der Druck P1 in der Gasdruckkammer G 1 sehr schnell den Arbeitsdruck erreicht. Dadurch wird das flüssige Metall 9, das sich vollständig in der Flüssigmetallkammer L1 der Trennkammer R1 befindet, durch den Einfluss des Druckes, der auf die Membran M 1 einwirkt, aus der Trennkammer R1 herausgepresst und fließt mit hoher Geschwindigkeit durch die Verengung 8 in der Elektronenauftreffzone. Um dabei möglicherweise aufgrund des Bernoulli-Effekts auftretende Kavitationen in der Verengung 8 zu verhindern, wird bevorzugt gleichzeitig ein Gegendruck P2 in der Gasdruckkammer G2 der Trennkammer R2 erzeugt. Dazu wird gleichzeitig mit Öffnen des Ventils V1 auch das Ventil V2 zum Druckspeicher R3 hin geöffnet (Schritt S2 in Fig. 3). Somit kann beispielsweise für den Druck P1 in der Trennkammer R1 von 40 bis 70 bar, vorzugsweise 50 bar, und ein Druck P2 in der Trennkammer R2 von beispielsweise 20 bar (oder auch geringer bis zu 1 bar) eingestellt werden, so dass sich eine Druckdifferenz P1-P2 von vorzugsweise 20 bis 50 bar einstellt.
  • In diesem Betriebszustand (Schritt S3 in Fig. 3) wird der erfindungsgemäße Röntgenstrahler betrieben, der Elektronenstrahl ist somit eingeschaltet und es wird Röntgenstrahlung erzeugt. Das flüssige Metall 9 fließt dabei mit der gewünschten Geschwindigkeit von beispielsweise 100 cm3/s für die Dauer der Datenerfassung, beispielsweise 20 s bei CT, von der Trennkammer R1 in die Trennkammer R2. Die Ventile V1 und V2 sind dabei kontinuierlich geöffnet (oder voll oder teilweise geschlossen) um den erforderlichen Arbeitsdruck aufzubringen. Der Druckspeicher R3 muss dabei natürlich ausreichend Kapazität aufweisen, um den hohen Druck P1 von beispielsweise 40 bis 70 bar für einen ausreichenden Zeitraum aufrechterhalten zu können, damit das flüssige Metall 9 ausreichend lange und ausreichend schnell aus der Trennkammer R1 in die Trennkammer R2 fließt. In einer Ausgestaltung kann beispielsweise vorgesehen sein, dass der Druckspeicher R3 ein Volumen von etwa 3 l bei einem maximalen Druck von 200 bar aufweist.
  • Wenn die Datenerfassung beendet ist, wird der Elektronenstrahl 4 abgeschaltet und die Ventile V1 und V2 werden gegenüber der Atmosphäre geöffnet, so dass der Druck P1 und P2 wieder auf Atmosphärendruck abfällt (Schritt S4). Das flüssige Metall 9 befindet sich nun größtenteils oder vollständig in der Trennkammer R2, wie in Fig. 2c gezeigt ist. Da sich das flüssige Metall 9 aufgrund der auftreffenden Elektronen 4 in der Elektronenauftreffzone 8 erhitzt hat, sind Kühlkanäle 14 vorgesehen, mit denen das flüssige Metall 9 in der Trennkammer R2 gekühlt werden kann, vorzugsweise auf eine Temperatur von 60 bis 65°C, so dass das flüssige Metall 9 in flüssigem Zustand bleibt.
  • In einem letzten Schritt (S5) wird schließlich auch mittels der Pumpe 13 dafür gesorgt, dass der Druck in dem Druckspeicher R3 wieder "nachgeladen" wird, so dass wieder ausreichend Druck für den nächsten Durchlauf zur Verfügung steht. Die Leistung der Pumpe 13 braucht also nicht auf die höchste erforderliche Leistung, die beim Betrieb des Röntgenstrahlers zur Verfügung gestellt werden muss, abgestellt werden, sondern muss nur so ausgelegt werden, dass der Druck in dem Druckspeicher R3 während der Betriebspause wieder auf einen ausreichend hohen Druck eingestellt werden kann. Im Gegensatz dazu muss die Pumpe bei dem bekannten Röntgenstrahler für die volle Betriebsleistung ausgelegt sein.
  • Wie in den Fig. 2a bis 2c leicht zu erkennen ist, ist die Verengung 8 hinter dem Fenster 5 zu den Trennkammern R1 und R2 hin verlaufend asymmetrisch ausgestaltet. Dadurch soll erreicht werden, dass der Druckverlust, den das von der Trennkammer R1 zur Trennkammer R2 fließende flüssige Metall 9 im Betrieb einen möglichst geringen Druckverlust erfährt und somit eine möglichst hohe Flussgeschwindigkeit in der Elektronenauftreffzone erreicht. Die gezeigte Anordnung ist somit nur so zu betreiben, dass das flüssige Metall 9 im Betrieb immer von der Trennkammer R1 in die Trennkammer R2 gepresst wird. Alternativ kann die Verengung 8 jedoch auch symmetrisch ausgelegt sein, und es können auch Kühlkanäle 14 um die Trennkammer R1 vorgesehen werden, so dass das flüssige Metall 9 in beide Richtungen im Betrieb gepresst werden kann.
  • Alternativ zu der gezeigten Ausgestaltung sind auch weitere Möglichkeiten zur Ausübung des Drucks auf das flüssige Metall denkbar. So ist es beispielsweise möglich, anstatt des Gases 11 eine Flüssigkeit zu verwenden, die einen sehr niedrigen Siedepunkt aufweist und die mit einer Heizeinrichtung zum Sieden gebracht wird (also verdampft wird) um einen hohen Druck zu erzielen. Die verdampfte Flüssigkeit kann dann in einem Dampfspeicher vorgehalten werden, um im Betrieb dann den geforderten Druck auf das flüssige Metall ausüben zu können. Bei dieser Ausgestaltung würde eine Pumpe völlig überflüssig. Stattdessen wären nur Heizeinrichtungen erforderlich. Eine mechanische Bewegung, wie sie beispielsweise in einer Pumpe erfolgt, könnte somit vollständig entfallen, was insbesondere bei Einsatz eines solchen Röntgenstrahlers in einer CT-Gantry vorteilhaft ist.

Claims (12)

1. Anordnung zur Erzeugung von Röntgenstrahlung beim Auftreffen von Elektronen (4) mit einem Flüssigmetallbereich (7), in dem ein flüssiges Metall (9) als Röntgentarget derart angeordnet ist, daß es an einer Elektronenauftreffzone (8) vorbei fließen kann, dadurch gekennzeichnet, daß ein von dem Flüssigmetallbereich (7) getrennter Druckbereich (10) mit einem Druckmittel (11) vorgesehen ist derart, dass mittels des Druckmittels (11) ein Druck auf das in dem Flüssigmetallbereich (7) befindliche flüssige Metall (9) zum Antreiben und Vorbeiführen des flüssigen Metalls (9) an der Elektronenauftreffzone (8) ausübbar ist, wobei der Druckbereich (10) einen wiederaufladbaren Druckspeicher (R3) zum Aufbringen des Drucks aufweist.
2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß der Flüssigmetallbereich (7) und der Druckbereich (10) durch jeweils ein Trennmittel (M1, M2) voneinander getrennt in zwei Trennbereichen (R1, R2) aneinander grenzen, wobei die Trennmittel (M1, M2) beweglich ausgestaltet sind derart, dass über die Trennmittel (M 1, M2) in beiden Trennbereichen (R1, R2) Druck auf das flüssige Metall (9) ausübbar ist.
3. Anordnung nach Anspruch 2, dadurch gekennzeichnet, dass die Trennbereiche als zweigeteilte Trennkammern (R1, R2) mit jeweils einer Flüssigmetallkammer (L1, L2) und einer Druckmittelkammer (G1, G2) ausgestaltet sind, die durch eine flexible Membran (M1, M2) getrennt sind.
4. Anordnung nach Anspruch 2, dadurch gekennzeichnet, dass die Trennbereiche (R1, R2) als Zylinder mit einem verfahrbaren Kolben ausgestaltet sind.
5. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass als Druckmittel (11) ein Gas, insbesondere Luft, verwendet wird und daß als Druckspeicher (R3) eine Gasdruckkammer vorgesehen ist, wobei zum Aufladen des Druckspeichers (R3) eine Pumpe (13) vorgesehen ist.
6. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass als Druckmittel (11) eine Hydraulikflüssigkeit, insbesondere ein Hydrauliköl, verwendet wird und dass als Druckspeicher (R3) eine Hydraulikdruckkammer vorgesehen ist.
7. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass als Druckmittel (11) eine Flüssigkeit, insbesondere Wasser, verwendet wird und dass als Druckspeicher (R3) eine Dampfkammer vorgesehen ist, wobei zum Aufladen des Druckspeichers die Flüssigkeit in dem Druckspeicher verdampft wird.
8. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass Steuermittel (15; V1, V2) vorgesehen zur Steuerung der Druckbeaufschlagung des flüssigen Metalls (9) mit einem gewünschten Druck derart, daß das flüssige Metall (9) mit einer gewünschten Fließgeschwindigkeit an der Elektronenauftreffzone (8) vorbeifließt.
9. Anordnung nach Anspruch 8, dadurch gekennzeichnet, dass die Steuermittel steuerbare Ventile (V1, V2) in dem Druckbereich (10) aufweisen zur Steuerung des Drucks, der ausgehend von dem Druckspeicher (R3) auf das flüssige Metall (9) in dem Flüssigmetallbereich (7) ausgeübt wird.
10. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass der Flüssigmetallbereich (7) in der Elektronenauftreffzone eine Verengung (8) aufweist und dass die Verengung (8) auf beiden Seiten der Elektronenauftreffzone asymmetrisch ausgestaltet ist.
11. Anordnung nach Anspruch 2, dadurch gekennzeichnet, dass mindestens einer der beiden Trennbereiche (R1, R2) Kühlmittel (14) zur Kühlung des im Betrieb aufgeheizten flüssigen Metalls (9) aufweist.
12. Röntgenstrahler mit einer Elektronenquelle (3) zur Emission von Elektronen und mit einer Anordnung (2) zur Erzeugung von Röntgenstrahlung nach Anspruch 1.
DE10129463A 2001-06-19 2001-06-19 Röntgenstrahler mit einem Flüssigmetall-Target Withdrawn DE10129463A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE10129463A DE10129463A1 (de) 2001-06-19 2001-06-19 Röntgenstrahler mit einem Flüssigmetall-Target
DE50208680T DE50208680D1 (de) 2001-06-19 2002-06-17 Röntgenstrahler mit einem Flüssigmetall-Target
EP02100714A EP1271602B8 (de) 2001-06-19 2002-06-17 Röntgenstrahler mit einem Flüssigmetall-Target
JP2002177021A JP4338943B2 (ja) 2001-06-19 2002-06-18 液体金属ターゲットを備えたx線源
US10/174,665 US6647094B2 (en) 2001-06-19 2002-06-19 X-ray source provided with a liquid metal target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10129463A DE10129463A1 (de) 2001-06-19 2001-06-19 Röntgenstrahler mit einem Flüssigmetall-Target

Publications (1)

Publication Number Publication Date
DE10129463A1 true DE10129463A1 (de) 2003-01-02

Family

ID=7688644

Family Applications (2)

Application Number Title Priority Date Filing Date
DE10129463A Withdrawn DE10129463A1 (de) 2001-06-19 2001-06-19 Röntgenstrahler mit einem Flüssigmetall-Target
DE50208680T Expired - Lifetime DE50208680D1 (de) 2001-06-19 2002-06-17 Röntgenstrahler mit einem Flüssigmetall-Target

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE50208680T Expired - Lifetime DE50208680D1 (de) 2001-06-19 2002-06-17 Röntgenstrahler mit einem Flüssigmetall-Target

Country Status (4)

Country Link
US (1) US6647094B2 (de)
EP (1) EP1271602B8 (de)
JP (1) JP4338943B2 (de)
DE (2) DE10129463A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008026938A1 (de) * 2008-06-05 2009-12-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Strahlungsquelle und Verfahren zum Erzeugen von Röntgenstrahlung

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10130070A1 (de) * 2001-06-21 2003-01-02 Philips Corp Intellectual Pty Röntgenstrahler mit Flüssigmetall-Target
DE10147473C2 (de) * 2001-09-25 2003-09-25 Siemens Ag Drehanodenröntgenröhre
AU2003252819A1 (en) * 2002-03-08 2003-09-22 Koninklijke Philips Electronics N.V. A device for generating x-rays having a liquid metal anode
US7963695B2 (en) 2002-07-23 2011-06-21 Rapiscan Systems, Inc. Rotatable boom cargo scanning system
US8275091B2 (en) 2002-07-23 2012-09-25 Rapiscan Systems, Inc. Compact mobile cargo scanning system
GB0525593D0 (en) 2005-12-16 2006-01-25 Cxr Ltd X-ray tomography inspection systems
GB0309379D0 (en) 2003-04-25 2003-06-04 Cxr Ltd X-ray scanning
US6954515B2 (en) * 2003-04-25 2005-10-11 Varian Medical Systems, Inc., Radiation sources and radiation scanning systems with improved uniformity of radiation intensity
GB0309385D0 (en) 2003-04-25 2003-06-04 Cxr Ltd X-ray monitoring
US7949101B2 (en) 2005-12-16 2011-05-24 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US8223919B2 (en) 2003-04-25 2012-07-17 Rapiscan Systems, Inc. X-ray tomographic inspection systems for the identification of specific target items
US8804899B2 (en) 2003-04-25 2014-08-12 Rapiscan Systems, Inc. Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners
US8837669B2 (en) 2003-04-25 2014-09-16 Rapiscan Systems, Inc. X-ray scanning system
US9113839B2 (en) 2003-04-25 2015-08-25 Rapiscon Systems, Inc. X-ray inspection system and method
US8243876B2 (en) 2003-04-25 2012-08-14 Rapiscan Systems, Inc. X-ray scanners
US8451974B2 (en) 2003-04-25 2013-05-28 Rapiscan Systems, Inc. X-ray tomographic inspection system for the identification of specific target items
US6928141B2 (en) 2003-06-20 2005-08-09 Rapiscan, Inc. Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers
DE102004013618B4 (de) * 2004-03-19 2007-07-26 Yxlon International Security Gmbh Verfahren zum Betrieb einer magnetohydrodynamischen Pumpe, Flüssigmetallanode für eine Röntgenquelle sowie Röntgenstrahler
DE102004013620B4 (de) * 2004-03-19 2008-12-04 GE Homeland Protection, Inc., Newark Elektronenfenster für eine Flüssigmetallanode, Flüssigmetallanode, Röntgenstrahler und Verfahren zum Betrieb eines solchen Röntgenstrahlers
DE102004015590B4 (de) * 2004-03-30 2008-10-09 GE Homeland Protection, Inc., Newark Anodenmodul für eine Flüssigmetallanoden-Röntgenquelle sowie Röntgenstrahler mit einem Anodenmodul
WO2005101450A1 (en) * 2004-04-13 2005-10-27 Koninklijke Philips Electronics N.V. A device for generating x-rays having a liquid metal anode
DE102004031973B4 (de) * 2004-07-01 2006-06-01 Yxlon International Security Gmbh Abschirmung einer Röntgenquelle
US7319733B2 (en) * 2004-09-27 2008-01-15 General Electric Company System and method for imaging using monoenergetic X-ray sources
US7471764B2 (en) 2005-04-15 2008-12-30 Rapiscan Security Products, Inc. X-ray imaging system having improved weather resistance
GB0803641D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Scanning systems
GB0803644D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Scanning systems
GB0809110D0 (en) 2008-05-20 2008-06-25 Rapiscan Security Products Inc Gantry scanner systems
RU2454840C2 (ru) * 2008-08-12 2012-06-27 Альбина Александровна Корнилова Способ получения рентгеновского излучения и устройство для его осуществления
US9218933B2 (en) 2011-06-09 2015-12-22 Rapidscan Systems, Inc. Low-dose radiographic imaging system
KR102167245B1 (ko) 2013-01-31 2020-10-19 라피스캔 시스템스, 인코포레이티드 이동식 보안검사시스템
EP3214635A1 (de) * 2016-03-01 2017-09-06 Excillum AB Flüssig-target-röntgenquelle mit strahlmischwerkzeug
US11170965B2 (en) 2020-01-14 2021-11-09 King Fahd University Of Petroleum And Minerals System for generating X-ray beams from a liquid target

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3246146A (en) * 1963-07-11 1966-04-12 Ass Elect Ind Apparatus for the X-ray analysis of a liquid suspension of specimen material
JPS494577U (de) * 1972-04-15 1974-01-15
JPS5512720B2 (de) * 1973-04-23 1980-04-03
JPS5326594A (en) * 1976-08-24 1978-03-11 Mitsubishi Electric Corp Radiation generator
EP0186491B1 (de) * 1984-12-26 1992-06-17 Kabushiki Kaisha Toshiba Vorrichtung zur Erzeugung von Weich-Röntgenstrahlen durch ein Hochenergiebündel
JPS61153935A (ja) * 1984-12-26 1986-07-12 Toshiba Corp プラズマx線発生装置
JPH0640160B2 (ja) * 1985-04-25 1994-05-25 住友重機械工業株式会社 放射性同位元素18f製造用ターゲット装置
JPS63164199A (ja) * 1986-12-25 1988-07-07 Shimadzu Corp X線発生装置用タ−ゲツト装置
US4953191A (en) * 1989-07-24 1990-08-28 The United States Of America As Represented By The United States Department Of Energy High intensity x-ray source using liquid gallium target
US5052034A (en) * 1989-10-30 1991-09-24 Siemens Aktiengesellschaft X-ray generator
JP2948163B2 (ja) * 1996-02-29 1999-09-13 株式会社東芝 X線装置
DE19821939A1 (de) * 1998-05-15 1999-11-18 Philips Patentverwaltung Röntgenstrahler mit einem Flüssigmetall-Target
DE19905802A1 (de) * 1999-02-12 2000-08-17 Philips Corp Intellectual Pty Röntgenröhre
DE19955392A1 (de) * 1999-11-18 2001-05-23 Philips Corp Intellectual Pty Monochromatische Röntgenstrahlenquelle
JP2001338798A (ja) * 2000-05-26 2001-12-07 Mitsubishi Heavy Ind Ltd 中性子散乱装置におけるターゲット容器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008026938A1 (de) * 2008-06-05 2009-12-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Strahlungsquelle und Verfahren zum Erzeugen von Röntgenstrahlung
US8565381B2 (en) 2008-06-05 2013-10-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Radiation source and method for the generation of X-radiation

Also Published As

Publication number Publication date
US20030016789A1 (en) 2003-01-23
EP1271602B8 (de) 2007-05-30
JP4338943B2 (ja) 2009-10-07
EP1271602B1 (de) 2006-11-15
EP1271602A1 (de) 2003-01-02
US6647094B2 (en) 2003-11-11
JP2003066200A (ja) 2003-03-05
DE50208680D1 (de) 2006-12-28

Similar Documents

Publication Publication Date Title
EP1271602B1 (de) Röntgenstrahler mit einem Flüssigmetall-Target
DE112009001604B4 (de) Thermionenemitter zur Steuerung des Elektronenstrahlprofils in zwei Dimensionen
DE102005049270B4 (de) Drehkolbenröhre mit einer von Kühlflüssigkeit durchströmten Kühleinrichtung sowie Verwendung der Kühlflüssigkeit
DE102005037807A1 (de) Ausleger- und Spreiz-Röntgenröhrenkonfigurationen für eine rotierende Anode mit Vakuumübergangskammern
DE2508417A1 (de) Kaelteerzeugungssystem
DE102007046278A1 (de) Röntgenröhre mit Transmissionsanode
DE10334606A1 (de) Kathode für Hochemissions-Röntgenröhre
DE102006062667A1 (de) Vorrichtung für die Ausgabe von Hoch- und/oder Niederenergieröntgenstrahlen
DE2228444A1 (de) .06.71 niederlande 7108700 bez: heizvorrichtung mit einem waermespeicher
DE602004010934T2 (de) Röntgenquelle
DE102018120001A1 (de) Digitales Pumpenachsensteuerungssystem
EP3793330A1 (de) Röntgenstrahler
EP3629361B1 (de) Röntgenstrahler, verwendung eines röntgenstrahlers und verfahren zur herstellung eines röntgenstrahlers
DE10130070A1 (de) Röntgenstrahler mit Flüssigmetall-Target
EP1215707B1 (de) Röntgenstrahler mit Flüssigmetall-Target
DE60131117T2 (de) Röntgenröhre
EP3880975B1 (de) Elektrohydrostatisches aktuatorsystem
WO2015052039A1 (de) Röntgenquelle und verfahren zur erzeugung von röntgenstrahlung
DE102005060436B4 (de) Aktuator
DE112016007160T5 (de) Elektronenmikroskop
DE4305043A1 (en) Stirling engine of double-head piston and swash plate type - has cylinder block with front and rear working gas chambers, surrounded by heat exchangers
DE3740888A1 (de) Synchrotron
DE102020214000B4 (de) Zentrifuge mit elastokalorischer kühlung und verfahren zur kühlung einer zentrifuge
WO2001050074A1 (de) Kühlvorrichtung
DE102010012394A1 (de) Röntgenröhre

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH, 20

8139 Disposal/non-payment of the annual fee