US7039159B2 - Method and system for automatically scanning and imaging the contents of a moving target - Google Patents

Method and system for automatically scanning and imaging the contents of a moving target Download PDF

Info

Publication number
US7039159B2
US7039159B2 US10/767,723 US76772304A US7039159B2 US 7039159 B2 US7039159 B2 US 7039159B2 US 76772304 A US76772304 A US 76772304A US 7039159 B2 US7039159 B2 US 7039159B2
Authority
US
United States
Prior art keywords
scanning zone
moving target
radiation
shutter
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US10/767,723
Other versions
US20050169421A1 (en
Inventor
Ernest E. Muenchau
Rex D. Richardson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leidos Inc
Original Assignee
Science Applications International Corp SAIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Assigned to SCIENCE APPLICATIONS INTERNATIONAL CORP. reassignment SCIENCE APPLICATIONS INTERNATIONAL CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RICHARDSON, REX D., MUENCHAU, ERNEST E.
Priority to US10/767,723 priority Critical patent/US7039159B2/en
Application filed by Science Applications International Corp SAIC filed Critical Science Applications International Corp SAIC
Priority to MXPA06008579A priority patent/MXPA06008579A/en
Priority to EP04821675A priority patent/EP1709433A4/en
Priority to CNA2004800407281A priority patent/CN1906479A/en
Priority to PCT/US2004/031725 priority patent/WO2005098401A2/en
Publication of US20050169421A1 publication Critical patent/US20050169421A1/en
Priority to US11/370,883 priority patent/US7215738B2/en
Application granted granted Critical
Publication of US7039159B2 publication Critical patent/US7039159B2/en
Priority to US11/730,503 priority patent/US7352844B1/en
Assigned to LEIDOS, INC. reassignment LEIDOS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SCIENCE APPLICATIONS INTERNATIONAL CORPORATION
Assigned to CITIBANK, N.A. reassignment CITIBANK, N.A. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEIDOS, INC.
Assigned to CITIBANK, N.A. reassignment CITIBANK, N.A. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEIDOS, INC.
Assigned to LEIDOS, INC. reassignment LEIDOS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITIBANK, N.A., AS COLLATERAL AGENT
Assigned to LEIDOS, INC. reassignment LEIDOS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITIBANK, N.A., AS COLLATERAL AGENT
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • G01V5/22
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material

Definitions

  • the invention relates generally to the field of imaging a target and more particularly to the field of imaging the contents of a moving target.
  • the driver approaches the first of 3 traffic signals.
  • the first signal “enter” is green when there is no vehicle sensed between opposing source and detector towers defining the scan area, and red when there is a vehicle in the scan area.
  • the “enter” signal turns green the driver approaches a driver arm and the second traffic signal, which is red at this point.
  • the “enter” of the first traffic signal also turns red, prohibiting any other vehicles from entering the scan area.
  • Sensors detect the presence of the vehicle and a flashing yellow light on the driver arm engages. This prompts the driver to press the driver pushbutton located on a panel outside of the vehicle before the driver arm.
  • This pushbutton sends a signal to an operator console notifying the operator that the driver is ready for his vehicle to be scanned.
  • the operator presses the blinking “scan” button on the operator console and the shutters to the scanning source are opened.
  • the second “scan” traffic light turns green and the driver proceeds through the scan area.
  • sensors detect the lack of a vehicle and automatically close the shutters to the scanning source.
  • the first “enter” traffic signal turns green for another vehicle to proceed to the driver arm.
  • the “Exit” button on the operator panel lights up and the operator can depress the button to change the third traffic signal from red to green, thus allowing the vehicle to completely exit the area. This whole process takes approximately 20 seconds for a nominal scan.
  • the present invention describes a system and method for automatically scanning a target vehicle according to at least the following embodiments.
  • an automated target inspection system for inspecting a moving target.
  • the system includes a scanning zone that comprises a radiation source and a radiation source detector.
  • the system further includes a first sensor component for automatically sensing when a first portion of the moving target has passed through the scanning zone and a second portion of the moving target is about to enter the scanning zone, wherein the first sensor component sends a signal to the automated target inspection system to initiate a scan of the second portion upon sensing that the second portion of the target is about to enter the scanning zone.
  • a shutter triggered by a signal from the first sensor component, allows radiation from the radiation source to pass through the scanning zone in the direction of the radiation detector when the second portion of the moving target is passing through the scanning zone and closes off the radiation when the second portion of the moving target is no longer within the scanning zone.
  • a method for automatically inspecting a moving target with an automated target inspection system includes (1) sensing when a first portion of the moving target has passed through a scanning zone and a second portion of the moving target is about to enter the scanning zone; (2) sending a signal to the automated target inspection system to initiate a scan of the second portion upon sensing that the second portion of the target is about to enter the scanning zone; (3) opening a shutter to allowing radiation from a radiation source to pass through the scanning zone in the direction of a radiation detector when the second portion of the moving target is passing through the scanning zone; and (4) closing the shutter to shut off the radiation when the second portion of the moving target is no longer within the scanning zone.
  • a system for automatically inspecting a moving target includes means for sensing when a first portion of the moving target has passed through a scanning zone and a second portion of the moving target is about to enter the scanning zone; means for sending a signal to the automated target inspection system to initiate a scan of the second portion upon sensing that the second portion of the target is about to enter the scanning zone; means for opening a shutter to allowing radiation from a radiation source to pass through the scanning zone in the direction of a radiation detector when the second portion of the moving target is passing through the scanning zone; and means for closing the shutter to shut off the radiation when the second portion of the moving target is no longer within the scanning zone.
  • FIG. 1 a is a first view of a non-stop automatic scan system according to an embodiment of the present invention
  • FIG. 1 b is a second view of a non-stop automatic scan system according to an embodiment of the present invention.
  • FIG. 2 shows a detector configuration according to an embodiment of the present invention
  • FIG. 3 a shows a non-stop automatic scan system with a first start/stop sensor configuration according to an embodiment of the present invention
  • FIG. 3 b shows a non-stop automatic scan system with a second start/stop sensor configuration according to an embodiment of the present invention
  • FIG. 4 a is a first view of a shutter mechanism according to an embodiment of the present invention.
  • FIG. 4 b is a second view of a shutter mechanism according to an embodiment of the present invention.
  • FIG. 4 c is a third view of a shutter mechanism according to an embodiment of the present invention.
  • a preferred embodiment of the present invention provides a non-stop drive-through scanning system 10 for imaging the contents of moving target vehicles, e.g., 15 a , 15 b , 15 c , etc. (referred to herein individually as 15 ).
  • the preferred embodiments of the present invention facilitate back-to-back scanning of moving vehicles 15 a , 15 b , 15 c , etc., without the need to stop the vehicle and initiate scanning manually, thus facilitating increased rate of the flow of commerce.
  • the system of FIGS. 1 a and 1 b allows the driver of a vehicle, e.g., van, truck, train, etc. to enter the scanning zone 20 without the need to stop or exit from the target vehicle 15 .
  • the scanning zone 20 is defined by the space between opposing source and detector towers 25 , 30 . Details regarding various embodiments of the source and detector towers are described in the patents and applications listed above which are incorporated herein by reference.
  • the source tower 25 may include a radiation source such as a 3.7 ⁇ 10 10 Bq shuttered source of Cs-137 gamma-rays, i.e., 662 keV gamma-ray energy.
  • a Co-60 source may be used.
  • a suitable source is readily available as Model Nos. SH-F-2 and SH-F-3 from Ohmart Corporation of Ohio.
  • the radiation source may include a collimator that provides desired vertical and lateral opening specifications.
  • the radiation source provides gamma-rays that are only moderately attenuated by steel walls typically found in tanker trucks or railroad cars. Yet such rays are sufficiently attenuated by contraband packages to make them easily detectable by measuring the penetration of the gamma-rays emitted from the source and deriving relative material densities therefrom. In addition, there is negligible scattering of the gamma-ray energy from the tanker walls or cargo, much less than would occur if a high-powered x-ray source was utilized.
  • An exemplary detector tower 30 includes a detector array that employs a plurality of high efficiency gamma-ray detectors, e.g., between twenty and sixty, e.g., forty-eight, detectors arranged in a vertical column.
  • the detectors make it possible to scan the target vehicle with a very low intensity gamma-ray field.
  • high efficiency detectors are used, such as are available as Part No. 1.5M1.5M1.5, NaI (Tl) (sodium iodide crystal, thallium activated) (with R2060 photomultiplier tube) from BICRON of Ohio.
  • Such gamma-ray detectors are scintillation counter-type detectors and are 3.8 cm in diameter, 3.8 cm high and mounted on a 3.8 cm photo-multiplier tube (PMT).
  • the detector array includes a plurality of staggered NaI/PMT square photon detector elements 100 .
  • Each individual detector is 1.125′′ (2.858 cm) square and has a pitch P smaller than the diameter (d) of the staggered detector elements 100 .
  • Two (2) vertical rows R of staggered detector elements 100 are employed, instead of a single row of detectors. The two (2) vertical rows R are vertically staggered from each other.
  • the staggered detectors are staggered from each other in a vertical direction, yet their surfaces of each vertical row all lie in a same plane, thereby avoiding shadowing from any other staggered detector while enabling a smaller pitch P.
  • At least one start/stop sensor 35 is located prior to the scanning zone and is used to determine when the cab or driver/passenger area 40 (hereafter “cab”) has cleared the scanning zone and the payload 45 of the target vehicle 15 is entering the scanning zone. Once the start/stop sensor 35 senses the payload 45 has entered, or is about to enter, the scanning zone, the non-stop system initiates an automatic scan.
  • the start/stop sensor 35 may include at least one of optical, electrical, pressure, video technology or the like for determining the start/stop points and automatic scan initiations as described above. More particularly, and by way of example, sensor technologies may be employed to count axles and/or measure the space between the cab 40 and the payload 45 .
  • the at least one start/stop sensor 35 is located prior to the scanning zone and is above the level of the driving surface.
  • the start/stop sensor 35 is located within or very near to the driving surface.
  • the sensor may be outside of the driving lane or actually in the driving lane such that the target vehicle is driven directly over the start/stop sensor 35 .
  • One skilled in the art can appreciate the various sensor configurations that would be considered to be within the scope of the present invention.
  • the automatic initiation of a scan includes, among other features, controlling a shutter assembly, including a fast shutter mechanism 200 located in the source tower that allows at least a first fast shutter to open and allow radiation from the radiation source to exit through beam aperture 210 in a sufficient time, e.g., on the order of a few tens of milliseconds, between detection of the cab and the payload by the start/stop sensor, so as to allow for a complete payload scan, i.e., including the beginning edge of the payload, while the target vehicle is moving, i.e., at speeds of up to 10 miles per hour, with normal operating range of between 5–10 mph.
  • a shutter assembly including a fast shutter mechanism 200 located in the source tower that allows at least a first fast shutter to open and allow radiation from the radiation source to exit through beam aperture 210 in a sufficient time, e.g., on the order of a few tens of milliseconds, between detection of the cab and the payload by the start/stop sensor, so as
  • the system and method of the present invention facilitates a fast shutter opening time on the order of 50 milliseconds or less, preferably 40 milliseconds, to allow the shutter to fully open after the cab passes the start/stop sensor when a target vehicle driving at 7 MPH proceeds through the non-stop system.
  • the fast shutter mechanism is controlled so as to close the at least one shutter at the end of the payload, before a second target vehicle enters the scanning zone.
  • the time for the fast shutter to close is, for example, on the order of no less than 100 milliseconds, preferably on the order of 350 milliseconds.
  • the latter closing time reflects a desired traffic pattern of vehicles allowing for at least 15 feet of separation between the payload trailing edge and the leading edge of the next target vehicle.
  • the fast shutter mechanism utilizes at least one linear sliding shielding block 220 driven by an electromagnetic pulse actuated by a solenoid assembly 230 .
  • the shutter shielding block 220 operates to attenuate the radiation source. i.e., gamma source, to within acceptable exposure levels.
  • the configuration of the shutter shielding block 220 provides shielding of off-axis radiation exiting from the source assembly.
  • the shutter shielding block comprises tungsten, with a thickness of approximately 2.4 inches (6.1 cm).
  • An exemplary solenoid assembly 230 includes two electromechanical solenoids 235 a and 235 b operating together and control by solenoid drive electronics 237 to pull the shutter to the open position.
  • the solenoids 235 a and 235 b are sized to open the shutter and allow radiation from the radiation source to exit through beam aperture 210 independently in the case of the failure of the other. This design, though resulting in a slightly slower shutter opening time, avoids system shut down altogether. And as described further below, shutter diagnostics will report the solenoid failure, i.e., the slower than normal opening time to the shutter mechanism control system and alert operators to the need for repair.
  • a return spring 240 is used to close the fast shutter 210 in response to the start/stop sensor sensing the end of the payload.
  • the return spring 240 is sized to provide enough energy to close the shutter in less than approximately 350 milliseconds, yet not provide excess force required to open the shutter 210 .
  • the non-stop system may include at least one radiation sensor 50 , such as at least one rate meter, for sensing the levels of radiation, i.e., gamma or x-ray, outside of the confines of the scanning zone 20 as a protective measure.
  • An alarm or other indication mechanism is triggered by at least one radiation sensor 50 to alert drivers, passengers, and other 3 rd parties to the potential for radiation exposure in the area around each scanning zone 20 .
  • the shutter assembly described herein with respect to the preferred embodiments of the present invention also includes a failsafe operating design, wherein the at least one shutter fails in a closed condition, thus ensuring safety from possible radiation exposure in the event of, for example, a system power failure, a system error, or shutter failure.
  • the control system for the shutter assembly includes safety interlocks. For example, a key switch is used to control access to the shutter controls. The primary shutter must be opened by an operator through a pushbutton and the secondary, i.e., fast, shutter, must be enabled through a pushbutton. The portal system must be functional and enabled for operation. Emergency stops de-energize both the primary and secondary shutters directly in the event of an operator initiated emergency stop condition.
  • the control system indicates shutter status to an operator through open/close status sensors.
  • shutter diagnostics are incorporated into the control system and shutter assembly to report shutter failure status by providing error signals for the following failure conditions: shutter opening time exceeds preset value; shutter closing time exceeds preset value; shutter in transit, i.e., not in closed or open position; shutter current exceeds preset value; and shutter temperature exceeds preset temperature. The latter is measured as the output of a solenoid field effect transistor switch temperature sensor.
  • At least part of the source radiation from the radiation tower is detected by the detector array within the detector tower for imaging the contents of the target vehicle through a process of discrete photon counting.
  • This process is described in detail in each of the patents and applications that have been incorporated herein by reference.
  • showing the detectors from the detector array are coupled through, for example, 16-channel processing units, RS-485 line drivers, and an RS-485 interface card to a computer, wherein the computer processes discrete photon count information received from the detectors and causes a display device to display an image of the contents of a target vehicle, in response thereto.
  • the detectors are coupled in groups of 16 to 16-channel data processing circuits. Preferably, twenty (20) groups of detectors are used.
  • the number of detectors used is variable depending on the height of the vehicles to be inspected and the resolution, i.e., number of pixels, in the image desired. In a preferred embodiment, 320 detectors are used.
  • the data processing circuits of which there are preferably twenty (2), are each coupled to an RS-485 line driver, which is coupled to an RS-485 interface.
  • the RS-485 interface is embodied on a circuit card located within a computer system.
  • a suitable RS-485 interface is available as Model No. 516-485, Part No. 3054 from Seal Level Systems, Inc., and from numerous other vendors under respective model/part number designations.
  • Each of the radiation detectors is coupled to a preamplifier within the 16-channel data processing circuits.
  • Each preamplifier is coupled to an amplifier, which is in turn coupled to a discriminator.
  • Each discriminator is coupled to a pulse generator, which generates an electrical pulse for each photon received into the radiation detector coupled thereto.
  • the pulse generators within each of the 16-channel data processing circuits is coupled to a line driver.
  • Each of the 16-channel data processing circuits includes its own line driver.
  • the line drivers operate under the programmatic control of a firmware operating system.
  • the preamplifiers, and amplifiers function in a conventional manner to amplify signals generated by the detectors. Outputs of the amplifiers are passed along to the discriminators, which impose a noise threshold on the amplified signal.
  • Waveforms within the amplified signal that exceed the noise threshold are passed along to the pulse generator, which generates a pulse for each waveform within the amplified signal corresponding to a received gamma-ray or x-ray photon.
  • the line driver passes the pulses generated by each of the pulse generators within a particular 16-channel data processing circuit along to the computer system via the RS-485 interface.
  • the computer system operates programmatically under the control of a software system.
  • the computer system receives detector pulses from each of the 16-channel data processors, in response to the detection of individual photons by the detectors.
  • the software system processes the incoming detector pulses, evaluating their relative amplitudes, i.e., energies, and generates a radio graphic image-like display output signal in response thereto.
  • the radio graphic, image-like display output signal is coupled to the graphical display device and is used by the graphical display device to generate a graphical representation of the densities within the vehicle under inspection.
  • the system described herein is utilized to generate a graphical representation, i.e., a “picture”, of the densities of the contents of the target vehicle.
  • a graphical representation i.e., a “picture”
  • this allows for easy visual interpretation of the results of the scanning of the target vehicle under inspection, as opposed to interpreting more subtle indications of the densities within the vehicle under inspection as may be required in prior art systems.
  • the preferred imaging software system causes the display of a reference image simultaneous with the image generated in response to the target vehicle under inspection, so that an operator of the present embodiment can easily make a visual comparison between what a vehicle of the same type or having the same type of cargo being inspected should “look like”, and what the vehicle and cargo under inspection actually “looks like”.
  • Such side-by-side inspection further simplifies the detection of contraband using the present embodiment.

Abstract

The system and method described herein facilitate back-to-back automatic scanning of moving vehicles without have the vehicles stop in the scanning zone. The system includes a scanning zone that comprises a radiation source and a radiation source detector. The system further includes a first sensor component for automatically sensing when a first portion of the moving target has passed through the scanning zone and a second portion of the moving target is about to enter the scanning zone, wherein the first sensor component sends a signal to the automated target inspection system to initiate a scan of the second portion upon sensing that the second portion of the target is about to enter the scanning zone. Additionally, a shutter, triggered by a signal from the first sensor component, allows radiation from the radiation source to pass through the scanning zone in the direction of the radiation detector when the second portion of the moving target is passing through the scanning zone and closes off the radiation when the second portion of the moving target is no longer within the scanning zone.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates generally to the field of imaging a target and more particularly to the field of imaging the contents of a moving target.
2. Description of the Related Art
In this time of increased security concerns, authorities are continually looking for ways to improve national security through imaging technology. Additionally, law enforcement continues to battle drug, stolen goods and people trafficking both at the borders and within the borders of the United States through nonintrusive x-ray and gamma-ray imaging. There is a balance that must be struck between the desire to check the contents of vehicles for illegal and/or potentially hazardous materials and the desire to protect the drivers of the vehicles and to minimize the impact of the investigation on the flow of commerce.
Currently available vehicle and cargo imaging systems, particularly those directed towards the imaging of moving targets, i.e., trucks, etc., utilize stop-and-go procedures that require manual control of the scan process. For example, current systems require the driver of the moving target to (1) stop the vehicle in a scanning zone, (2) certain systems require the driver to exit the vehicle and go a safe distance from the scanning zone to avoid potential exposure to the imaging radiation and, (3) certain systems require the driver, or some third party, to manually initiate the scanning of the vehicle. Further, many of the systems that are currently available for such imaging, utilize a high power x-ray source for the imaging radiation.
By way of specific example, a particular known vehicle and cargo imaging system and process is described as follows. The driver approaches the first of 3 traffic signals. The first signal “enter” is green when there is no vehicle sensed between opposing source and detector towers defining the scan area, and red when there is a vehicle in the scan area. When the “enter” signal turns green the driver approaches a driver arm and the second traffic signal, which is red at this point. The “enter” of the first traffic signal also turns red, prohibiting any other vehicles from entering the scan area. Sensors detect the presence of the vehicle and a flashing yellow light on the driver arm engages. This prompts the driver to press the driver pushbutton located on a panel outside of the vehicle before the driver arm. This pushbutton sends a signal to an operator console notifying the operator that the driver is ready for his vehicle to be scanned. The operator presses the blinking “scan” button on the operator console and the shutters to the scanning source are opened. At this time, the second “scan” traffic light turns green and the driver proceeds through the scan area. As the vehicle exits the scan area, sensors detect the lack of a vehicle and automatically close the shutters to the scanning source. At this point, the first “enter” traffic signal turns green for another vehicle to proceed to the driver arm. Lastly, the “Exit” button on the operator panel lights up and the operator can depress the button to change the third traffic signal from red to green, thus allowing the vehicle to completely exit the area. This whole process takes approximately 20 seconds for a nominal scan.
SUMMARY OF THE INVENTION Summaty of the Problem
Referring to the “Description of the Related Art,” there is a need for a system and method to automatically scan and image moving vehicles in an optimally efficient and unobtrusive manner so as to minimize the effect on the flow of commerce and protect the drivers and third parties from exposure to the scanning radiation.
Summary of the Solution
The present invention describes a system and method for automatically scanning a target vehicle according to at least the following embodiments.
According to a first embodiment of the present invention, described herein is an automated target inspection system for inspecting a moving target. The system includes a scanning zone that comprises a radiation source and a radiation source detector. The system further includes a first sensor component for automatically sensing when a first portion of the moving target has passed through the scanning zone and a second portion of the moving target is about to enter the scanning zone, wherein the first sensor component sends a signal to the automated target inspection system to initiate a scan of the second portion upon sensing that the second portion of the target is about to enter the scanning zone. Additionally, a shutter, triggered by a signal from the first sensor component, allows radiation from the radiation source to pass through the scanning zone in the direction of the radiation detector when the second portion of the moving target is passing through the scanning zone and closes off the radiation when the second portion of the moving target is no longer within the scanning zone.
According to a second embodiment of the present invention, described herein is a method for automatically inspecting a moving target with an automated target inspection system. The method includes (1) sensing when a first portion of the moving target has passed through a scanning zone and a second portion of the moving target is about to enter the scanning zone; (2) sending a signal to the automated target inspection system to initiate a scan of the second portion upon sensing that the second portion of the target is about to enter the scanning zone; (3) opening a shutter to allowing radiation from a radiation source to pass through the scanning zone in the direction of a radiation detector when the second portion of the moving target is passing through the scanning zone; and (4) closing the shutter to shut off the radiation when the second portion of the moving target is no longer within the scanning zone.
According to a third embodiment of the present invention, described herein is a system for automatically inspecting a moving target. The system includes means for sensing when a first portion of the moving target has passed through a scanning zone and a second portion of the moving target is about to enter the scanning zone; means for sending a signal to the automated target inspection system to initiate a scan of the second portion upon sensing that the second portion of the target is about to enter the scanning zone; means for opening a shutter to allowing radiation from a radiation source to pass through the scanning zone in the direction of a radiation detector when the second portion of the moving target is passing through the scanning zone; and means for closing the shutter to shut off the radiation when the second portion of the moving target is no longer within the scanning zone.
BRIEF DESCRIPTION OF THE FIGURES
In the Figures:
FIG. 1 a is a first view of a non-stop automatic scan system according to an embodiment of the present invention;
FIG. 1 b is a second view of a non-stop automatic scan system according to an embodiment of the present invention;
FIG. 2 shows a detector configuration according to an embodiment of the present invention;
FIG. 3 a shows a non-stop automatic scan system with a first start/stop sensor configuration according to an embodiment of the present invention;
FIG. 3 b shows a non-stop automatic scan system with a second start/stop sensor configuration according to an embodiment of the present invention;
FIG. 4 a is a first view of a shutter mechanism according to an embodiment of the present invention;
FIG. 4 b is a second view of a shutter mechanism according to an embodiment of the present invention; and
FIG. 4 c is a third view of a shutter mechanism according to an embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
In addition to the description set forth explicitly below, numerous details and descriptions for various aspects of the preferred embodiments are set forth in the following United States patents and patent applications which are incorporated herein by reference in their entireties: U.S. Pat. No. 6,255,654 for DENSITY DETECTION USING DISCRETE PHOTON COUNTING; U.S. Pat. No. 6,507,025 for DENSITY DETECTION USING REAL TIME DISCRETE PHOTON COUNTING FOR FAST MOVING TARGETS; U.S. Pat. No. 6,552,346 for DENSITY DETECTION USING DISCRETE PHOTON COUNTING; U.S. patent application Ser. No. 09/925,009, for DENSITY DETECTION USING REAL TIME DISCRETE PHOTON COUNTING FOR FAST MOVING TARGETS, filed Aug. 9, 2001; and U.S. patent application Ser. No. 10/717,632 for DENSITY DETECTION USING REAL TIME DISCRETE PHOTON COUNTING FOR FAST MOVING TARGETS, filed Nov. 21 2003.
Referring to FIGS. 1 a and 1 b, a preferred embodiment of the present invention provides a non-stop drive-through scanning system 10 for imaging the contents of moving target vehicles, e.g., 15 a, 15 b, 15 c, etc. (referred to herein individually as 15). The preferred embodiments of the present invention facilitate back-to-back scanning of moving vehicles 15 a, 15 b, 15 c, etc., without the need to stop the vehicle and initiate scanning manually, thus facilitating increased rate of the flow of commerce. The system of FIGS. 1 a and 1 b allows the driver of a vehicle, e.g., van, truck, train, etc. to enter the scanning zone 20 without the need to stop or exit from the target vehicle 15. The scanning zone 20 is defined by the space between opposing source and detector towers 25, 30. Details regarding various embodiments of the source and detector towers are described in the patents and applications listed above which are incorporated herein by reference. By way of example, the source tower 25 may include a radiation source such as a 3.7×1010 Bq shuttered source of Cs-137 gamma-rays, i.e., 662 keV gamma-ray energy. In an alternative embodiment, a Co-60 source may be used. A suitable source is readily available as Model Nos. SH-F-2 and SH-F-3 from Ohmart Corporation of Ohio. The radiation source may include a collimator that provides desired vertical and lateral opening specifications.
The radiation source provides gamma-rays that are only moderately attenuated by steel walls typically found in tanker trucks or railroad cars. Yet such rays are sufficiently attenuated by contraband packages to make them easily detectable by measuring the penetration of the gamma-rays emitted from the source and deriving relative material densities therefrom. In addition, there is negligible scattering of the gamma-ray energy from the tanker walls or cargo, much less than would occur if a high-powered x-ray source was utilized.
An exemplary detector tower 30 includes a detector array that employs a plurality of high efficiency gamma-ray detectors, e.g., between twenty and sixty, e.g., forty-eight, detectors arranged in a vertical column. The detectors make it possible to scan the target vehicle with a very low intensity gamma-ray field. In order to facilitate the use of very low intensity gamma-radiation, high efficiency detectors are used, such as are available as Part No. 1.5M1.5M1.5, NaI (Tl) (sodium iodide crystal, thallium activated) (with R2060 photomultiplier tube) from BICRON of Ohio. Such gamma-ray detectors are scintillation counter-type detectors and are 3.8 cm in diameter, 3.8 cm high and mounted on a 3.8 cm photo-multiplier tube (PMT).
Alternatively, 1.125″ (2.858 cm) square detectors may be used with the number of detectors used in the detector configuration ranging between 40 and 180, depending on desired resolution requirements. Referring to FIG. 2, in a specific embodiment, the detector array includes a plurality of staggered NaI/PMT square photon detector elements 100. Each individual detector is 1.125″ (2.858 cm) square and has a pitch P smaller than the diameter (d) of the staggered detector elements 100. Two (2) vertical rows R of staggered detector elements 100 are employed, instead of a single row of detectors. The two (2) vertical rows R are vertically staggered from each other. The pitch P between two (2) closest adjacent such staggered detector elements 100 may preferably be about 0.7″, when employing staggered detector elements 100 having a 1.125″ (2.858 cm) diameter, thereby yielding a count rate of about 95,000 counts/second for each staggered detector element for D=16 feet and for a 1.0 Curie Cs-137 source. By way of example, this pitch P results in a vertical resolution, Rvert or vertical grid unit of about 0.23″ when the radiation source is a distance D of 16 feet from the staggered detector element and the radiation source is a distance z of 8 feet (2.4 meters) from a center of the moving target vehicle wherein Rvert=PZ/D.
The staggered detectors are staggered from each other in a vertical direction, yet their surfaces of each vertical row all lie in a same plane, thereby avoiding shadowing from any other staggered detector while enabling a smaller pitch P.
Referring to FIGS. 3 a and 3 b, at least one start/stop sensor 35 is located prior to the scanning zone and is used to determine when the cab or driver/passenger area 40 (hereafter “cab”) has cleared the scanning zone and the payload 45 of the target vehicle 15 is entering the scanning zone. Once the start/stop sensor 35 senses the payload 45 has entered, or is about to enter, the scanning zone, the non-stop system initiates an automatic scan. The start/stop sensor 35 may include at least one of optical, electrical, pressure, video technology or the like for determining the start/stop points and automatic scan initiations as described above. More particularly, and by way of example, sensor technologies may be employed to count axles and/or measure the space between the cab 40 and the payload 45. In FIG. 3 a, the at least one start/stop sensor 35 is located prior to the scanning zone and is above the level of the driving surface. In an alternative embodiment shown in FIG. 3 b, the start/stop sensor 35 is located within or very near to the driving surface. In this embodiment, the sensor may be outside of the driving lane or actually in the driving lane such that the target vehicle is driven directly over the start/stop sensor 35. One skilled in the art can appreciate the various sensor configurations that would be considered to be within the scope of the present invention.
Referring to FIGS. 4 a4 c, in an embodiment of the present invention the automatic initiation of a scan includes, among other features, controlling a shutter assembly, including a fast shutter mechanism 200 located in the source tower that allows at least a first fast shutter to open and allow radiation from the radiation source to exit through beam aperture 210 in a sufficient time, e.g., on the order of a few tens of milliseconds, between detection of the cab and the payload by the start/stop sensor, so as to allow for a complete payload scan, i.e., including the beginning edge of the payload, while the target vehicle is moving, i.e., at speeds of up to 10 miles per hour, with normal operating range of between 5–10 mph. By way of particular example, the system and method of the present invention facilitates a fast shutter opening time on the order of 50 milliseconds or less, preferably 40 milliseconds, to allow the shutter to fully open after the cab passes the start/stop sensor when a target vehicle driving at 7 MPH proceeds through the non-stop system. Further, based on the data from start/stop sensor, the fast shutter mechanism is controlled so as to close the at least one shutter at the end of the payload, before a second target vehicle enters the scanning zone. The time for the fast shutter to close is, for example, on the order of no less than 100 milliseconds, preferably on the order of 350 milliseconds. The latter closing time reflects a desired traffic pattern of vehicles allowing for at least 15 feet of separation between the payload trailing edge and the leading edge of the next target vehicle.
The fast shutter mechanism utilizes at least one linear sliding shielding block 220 driven by an electromagnetic pulse actuated by a solenoid assembly 230. When this shutter is closed, the shutter shielding block 220 operates to attenuate the radiation source. i.e., gamma source, to within acceptable exposure levels. In both the open and closed position, the configuration of the shutter shielding block 220 provides shielding of off-axis radiation exiting from the source assembly. In a preferred embodiment, the shutter shielding block comprises tungsten, with a thickness of approximately 2.4 inches (6.1 cm). An exemplary solenoid assembly 230 includes two electromechanical solenoids 235 a and 235 b operating together and control by solenoid drive electronics 237 to pull the shutter to the open position. The solenoids 235 a and 235 b are sized to open the shutter and allow radiation from the radiation source to exit through beam aperture 210 independently in the case of the failure of the other. This design, though resulting in a slightly slower shutter opening time, avoids system shut down altogether. And as described further below, shutter diagnostics will report the solenoid failure, i.e., the slower than normal opening time to the shutter mechanism control system and alert operators to the need for repair. Referring to FIG. 4 c, a return spring 240 is used to close the fast shutter 210 in response to the start/stop sensor sensing the end of the payload. The return spring 240 is sized to provide enough energy to close the shutter in less than approximately 350 milliseconds, yet not provide excess force required to open the shutter 210.
Additionally, as shown in FIGS. 3 a and 3 b, the non-stop system may include at least one radiation sensor 50, such as at least one rate meter, for sensing the levels of radiation, i.e., gamma or x-ray, outside of the confines of the scanning zone 20 as a protective measure. An alarm or other indication mechanism is triggered by at least one radiation sensor 50 to alert drivers, passengers, and other 3rd parties to the potential for radiation exposure in the area around each scanning zone 20.
The shutter assembly described herein with respect to the preferred embodiments of the present invention also includes a failsafe operating design, wherein the at least one shutter fails in a closed condition, thus ensuring safety from possible radiation exposure in the event of, for example, a system power failure, a system error, or shutter failure. Further, the control system for the shutter assembly includes safety interlocks. For example, a key switch is used to control access to the shutter controls. The primary shutter must be opened by an operator through a pushbutton and the secondary, i.e., fast, shutter, must be enabled through a pushbutton. The portal system must be functional and enabled for operation. Emergency stops de-energize both the primary and secondary shutters directly in the event of an operator initiated emergency stop condition. The control system indicates shutter status to an operator through open/close status sensors. In order to maintain desired operation conditions, shutter diagnostics are incorporated into the control system and shutter assembly to report shutter failure status by providing error signals for the following failure conditions: shutter opening time exceeds preset value; shutter closing time exceeds preset value; shutter in transit, i.e., not in closed or open position; shutter current exceeds preset value; and shutter temperature exceeds preset temperature. The latter is measured as the output of a solenoid field effect transistor switch temperature sensor.
At least part of the source radiation from the radiation tower is detected by the detector array within the detector tower for imaging the contents of the target vehicle through a process of discrete photon counting. This process is described in detail in each of the patents and applications that have been incorporated herein by reference. By way of example, showing the detectors from the detector array are coupled through, for example, 16-channel processing units, RS-485 line drivers, and an RS-485 interface card to a computer, wherein the computer processes discrete photon count information received from the detectors and causes a display device to display an image of the contents of a target vehicle, in response thereto. In this particular example, the detectors are coupled in groups of 16 to 16-channel data processing circuits. Preferably, twenty (20) groups of detectors are used. In practice, the number of detectors used is variable depending on the height of the vehicles to be inspected and the resolution, i.e., number of pixels, in the image desired. In a preferred embodiment, 320 detectors are used. The data processing circuits, of which there are preferably twenty (2), are each coupled to an RS-485 line driver, which is coupled to an RS-485 interface. The RS-485 interface is embodied on a circuit card located within a computer system. A suitable RS-485 interface is available as Model No. 516-485, Part No. 3054 from Seal Level Systems, Inc., and from numerous other vendors under respective model/part number designations.
Each of the radiation detectors is coupled to a preamplifier within the 16-channel data processing circuits. Each preamplifier is coupled to an amplifier, which is in turn coupled to a discriminator. Each discriminator is coupled to a pulse generator, which generates an electrical pulse for each photon received into the radiation detector coupled thereto. The pulse generators within each of the 16-channel data processing circuits is coupled to a line driver. Each of the 16-channel data processing circuits includes its own line driver. The line drivers operate under the programmatic control of a firmware operating system. In operation, the preamplifiers, and amplifiers function in a conventional manner to amplify signals generated by the detectors. Outputs of the amplifiers are passed along to the discriminators, which impose a noise threshold on the amplified signal. Waveforms within the amplified signal that exceed the noise threshold are passed along to the pulse generator, which generates a pulse for each waveform within the amplified signal corresponding to a received gamma-ray or x-ray photon. The line driver passes the pulses generated by each of the pulse generators within a particular 16-channel data processing circuit along to the computer system via the RS-485 interface.
The computer system operates programmatically under the control of a software system. The computer system receives detector pulses from each of the 16-channel data processors, in response to the detection of individual photons by the detectors. The software system processes the incoming detector pulses, evaluating their relative amplitudes, i.e., energies, and generates a radio graphic image-like display output signal in response thereto. The radio graphic, image-like display output signal is coupled to the graphical display device and is used by the graphical display device to generate a graphical representation of the densities within the vehicle under inspection.
In summary, the system described herein is utilized to generate a graphical representation, i.e., a “picture”, of the densities of the contents of the target vehicle. Advantageously, this allows for easy visual interpretation of the results of the scanning of the target vehicle under inspection, as opposed to interpreting more subtle indications of the densities within the vehicle under inspection as may be required in prior art systems. The preferred imaging software system causes the display of a reference image simultaneous with the image generated in response to the target vehicle under inspection, so that an operator of the present embodiment can easily make a visual comparison between what a vehicle of the same type or having the same type of cargo being inspected should “look like”, and what the vehicle and cargo under inspection actually “looks like”. Such side-by-side inspection further simplifies the detection of contraband using the present embodiment.
The embodiments and descriptions set forth herein are intended to be exemplary and not inclusive. One skilled in the art recognizes the numerous variations and equivalent components that may be used in accordance with the described invention and this fall within the scope thereof.

Claims (21)

1. An automated target inspection system for inspecting a moving target comprising:
a scanning zone comprising a radiation source and a radiation source detector;
a first sensor component positioned at a location adjacent the scanning zone for automatically sensing when a first portion of the moving target has passed through the scanning zone and a second portion of the moving target is about to enter the scanning zone, wherein after the first portion of the moving target has passed the first sensor component, the first sensor component sends a signal to the automated target inspection system to initiate a scan of the second portion upon sensing that the second portion of the target is about to enter the scanning zone; and
a shutter control system comprising a shutter, said shutter, triggered by a signal from the first sensor component, for allowing radiation from the radiation source to pass through the scanning zone in the direction of the radiation detector when the second portion of the moving target is passing through the scanning zone and for closing off the radiation when the second portion of the moving target is no longer within the scanning zone.
2. The system of claim 1, wherein the first portion is a passenger portion.
3. The system of claim 1, wherein the second portion is a payload portion.
4. The system of claim 1, wherein the first sensor component senses a gap between the first portion of the moving target and the second portion of the moving target.
5. The system of claim 1, wherein the shutter comprises at least one shielding block driven to open by a solenoid configuration.
6. The system of claim 5, wherein the at least one shielding block is comprised of tungsten.
7. The system of claim 1, further comprising a spring for closing the shutter once the first sensor component senses that the second portion of the moving target is no longer within the scanning zone.
8. The system of claim 1, further comprising a second sensor component for sensing radiation from the radiation source that is outside of the scanning zone.
9. The system of claim 8, wherein the second sensor component is coupled to the shutter and further wherein the shutter is automatically closed in response to a radiation signal from the second sensor component.
10. The system of claim 1, further comprising a photon counter for counting photons comprising the radiation from the radiation source after the photons have passed through the target vehicle.
11. A method for automatically inspecting a moving target with an automated target inspection system comprising:
positioning a sensor adjacent a scanning zone for sensing when a first portion of a moving target has passed the sensor and has moved beyond the scanning zone;
sensing when the first portion of the moving target has passed through the scanning zone and a second portion of the moving target is about to enter the scanning zone;
sending a signal to the automated target inspection system to initiate a scan of the second portion upon sensing that the second portion of the target is about to enter the scanning zone, wherein the signal is sent after the first portion of the moving target passes the sensor;
opening a shutter to allowing radiation from a radiation source to pass through the scanning zone in the direction of a radiation detector when the second portion of the moving target is passing through the scanning zone; and
closing the shutter to shut off the radiation when the second portion of the moving target is no longer within the scanning zone.
12. The method of claim 11, wherein the shutter opening time is on the order of approximately 40 milliseconds.
13. The method of claim 11, wherein the shutter closing time is on the order of approximately 100–350 milliseconds.
14. The method of claim 11, further comprising sensing radiation that is outside of the scanning zone.
15. The method of claim 11, wherein opening the shutter includes moving at least one shielding block to expose the radiation source.
16. The method of claim 15, wherein moving at least one shielding block to expose the radiation source includes addressing a solenoid configuration.
17. The method of claim 11, wherein closing the shutter includes activating a spring.
18. The method of claim 11, further comprising counting photons comprising the radiation from the radiation source after the photons have passed through the target vehicle.
19. The method of claim 18, further comprising imaging the second portion of the target vehicle based on density data determined from the photon counting.
20. The method of claim 11, wherein the moving target is moving at an approximately constant speed within the range of greater than 0 mph up to approximately 10 mph.
21. A system for automatically inspecting a moving target comprising:
means for sensing when a first portion of the moving target has passed through a scanning zone and a second portion of the moving target is about to enter the scanning zone, said means for sensing positioned adjacent the scanning zone;
means for sending a signal to the automated target inspection system to initiate a scan of the second portion upon sensing that the second portion of the target is about to enter the scanning zone and upon sensing that the first portion of the moving target passes the means for sensing;
means for opening a shutter to allowing radiation from a radiation source to pass through the scanning zone in the direction of a radiation detector when the second portion of the moving target is passing through the scanning zone; and
means for closing the shutter to shut off the radiation when the second portion of the moving target is no longer within the scanning zone.
US10/767,723 2004-01-30 2004-01-30 Method and system for automatically scanning and imaging the contents of a moving target Active 2024-06-25 US7039159B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/767,723 US7039159B2 (en) 2004-01-30 2004-01-30 Method and system for automatically scanning and imaging the contents of a moving target
MXPA06008579A MXPA06008579A (en) 2004-01-30 2004-09-27 Method ans system for automatically scanning and imaging the contents of a moving target.
EP04821675A EP1709433A4 (en) 2004-01-30 2004-09-27 Method ans system for automatically scanning and imaging the contents of a moving target
CNA2004800407281A CN1906479A (en) 2004-01-30 2004-09-27 Method and system for automatically scanning and imaging the contents of a moving target
PCT/US2004/031725 WO2005098401A2 (en) 2004-01-30 2004-09-27 Method ans system for automatically scanning and imaging the contents of a moving target
US11/370,883 US7215738B2 (en) 2004-01-30 2006-03-09 Method and system for automatically scanning and imaging the contents of a moving target
US11/730,503 US7352844B1 (en) 2004-01-30 2007-04-02 Method and system for automatically scanning and imaging the contents of a moving target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/767,723 US7039159B2 (en) 2004-01-30 2004-01-30 Method and system for automatically scanning and imaging the contents of a moving target

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/370,883 Continuation US7215738B2 (en) 2004-01-30 2006-03-09 Method and system for automatically scanning and imaging the contents of a moving target

Publications (2)

Publication Number Publication Date
US20050169421A1 US20050169421A1 (en) 2005-08-04
US7039159B2 true US7039159B2 (en) 2006-05-02

Family

ID=34807726

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/767,723 Active 2024-06-25 US7039159B2 (en) 2004-01-30 2004-01-30 Method and system for automatically scanning and imaging the contents of a moving target
US11/370,883 Expired - Fee Related US7215738B2 (en) 2004-01-30 2006-03-09 Method and system for automatically scanning and imaging the contents of a moving target

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/370,883 Expired - Fee Related US7215738B2 (en) 2004-01-30 2006-03-09 Method and system for automatically scanning and imaging the contents of a moving target

Country Status (5)

Country Link
US (2) US7039159B2 (en)
EP (1) EP1709433A4 (en)
CN (1) CN1906479A (en)
MX (1) MXPA06008579A (en)
WO (1) WO2005098401A2 (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040134986A1 (en) * 2001-05-08 2004-07-15 Wolfgang Studer X-ray system comprising an x-ray source, a detector assembly, and an aperture
US20060140341A1 (en) * 2003-06-20 2006-06-29 James Carver Relocatable x-ray imaging system and method for inspecting commercial vehicles and cargo containers
US20070071165A1 (en) * 2004-01-30 2007-03-29 Science Applications International Corporation Method and system for automatically scanning and imaging the contents of a moving target
US7352844B1 (en) 2004-01-30 2008-04-01 Science Applications International Corporation Method and system for automatically scanning and imaging the contents of a moving target
US20080089476A1 (en) * 2006-10-13 2008-04-17 Zhiqiang Chen Apparatus and method for quick imaging and inspecting moving target
WO2008046260A1 (en) 2006-10-13 2008-04-24 Nuctech Company Limited A system and dodging method for imaging and detecting a moving object
US20080253514A1 (en) * 2005-02-25 2008-10-16 Rapiscan Systems Limited X-Ray Security Inspection Machine
JP2009503558A (en) * 2006-10-13 2009-01-29 ヌクテック カンパニー リミテッド Control unit used for radiation source and control method thereof, and radiation inspection system and method thereof
US20090274270A1 (en) * 2002-07-23 2009-11-05 Andreas Kotowski Single Boom Cargo Scanning System
JP2010511153A (en) * 2006-11-28 2010-04-08 イノベイティブ アメリカン テクノロジー, インコーポレイテッド Multi-stage system for verifying container contents
US20100085066A1 (en) * 2003-09-15 2010-04-08 Peschmann Kristian R Methods and systems for the rapid detection of concealed objects
US20100189226A1 (en) * 2002-07-23 2010-07-29 Andreas Kotowski Rotatable boom cargo scanning system
CN101162209B (en) * 2006-10-13 2010-08-25 清华大学 Equipment and method for quick-speed image-forming checking mobile target
US20110004002A1 (en) * 2008-02-29 2011-01-06 Basf Se Process for preparing alkyl 2-alkoxymethylene-4,4-difluoro-3-oxobutyrates
US20110038453A1 (en) * 2002-07-23 2011-02-17 Edward James Morton Compact Mobile Cargo Scanning System
US20110064192A1 (en) * 2002-07-23 2011-03-17 Edward James Morton Four Sided Imaging System and Method for Detection of Contraband
US20110098870A1 (en) * 2008-02-28 2011-04-28 Edward James Morton Mobile Scanning Systems
US20110116597A1 (en) * 2002-07-23 2011-05-19 Neeraj Agrawal Cargo Scanning System
US20110116599A1 (en) * 2008-02-28 2011-05-19 Rapiscan Security Products, Inc. Scanning Systems
US20110116600A1 (en) * 2008-02-28 2011-05-19 Edward James Morton Scanning Systems
US20110135056A1 (en) * 2008-05-20 2011-06-09 Edward James Morton Scanner Systems
US20110142203A1 (en) * 2008-05-20 2011-06-16 Edward James Morton Gantry Scanner Systems
US20110204243A1 (en) * 2008-06-11 2011-08-25 Joseph Bendahan Composite Gamma-Neutron Detection System
US8213570B2 (en) 2006-02-27 2012-07-03 Rapiscan Systems, Inc. X-ray security inspection machine
US8314394B1 (en) 2009-11-04 2012-11-20 Science Applications International Corporation System and method for three-dimensional imaging using scattering from annihilation coincidence photons
US8831176B2 (en) 2008-05-20 2014-09-09 Rapiscan Systems, Inc. High energy X-ray inspection system using a fan-shaped beam and collimated backscatter detectors
US8837670B2 (en) 2006-05-05 2014-09-16 Rapiscan Systems, Inc. Cargo inspection system
US8837669B2 (en) 2003-04-25 2014-09-16 Rapiscan Systems, Inc. X-ray scanning system
US8859981B1 (en) 2012-11-08 2014-10-14 Leidos, Inc. Method for autonomous self-blanking by radiation portal monitors to minimize the interference from pulsed X-rays radiation
US20140314201A1 (en) * 2011-12-30 2014-10-23 Tsinghua University Methods and apparatuses for measuring effective atomic number of an object
US8885794B2 (en) 2003-04-25 2014-11-11 Rapiscan Systems, Inc. X-ray tomographic inspection system for the identification of specific target items
US8963094B2 (en) 2008-06-11 2015-02-24 Rapiscan Systems, Inc. Composite gamma-neutron detection system
US8971485B2 (en) 2008-02-28 2015-03-03 Rapiscan Systems, Inc. Drive-through scanning systems
US9020095B2 (en) 2003-04-25 2015-04-28 Rapiscan Systems, Inc. X-ray scanners
US9036779B2 (en) 2008-02-28 2015-05-19 Rapiscan Systems, Inc. Dual mode X-ray vehicle scanning system
US9048061B2 (en) 2005-12-16 2015-06-02 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US9057679B2 (en) 2012-02-03 2015-06-16 Rapiscan Systems, Inc. Combined scatter and transmission multi-view imaging system
US20150219786A1 (en) * 2012-08-24 2015-08-06 Terex Mhps Gmbh System for the contactless inspection of containers, particularly iso containers, within a loading and unloading plant
US9113839B2 (en) 2003-04-25 2015-08-25 Rapiscon Systems, Inc. X-ray inspection system and method
US9218933B2 (en) 2011-06-09 2015-12-22 Rapidscan Systems, Inc. Low-dose radiographic imaging system
US9223050B2 (en) 2005-04-15 2015-12-29 Rapiscan Systems, Inc. X-ray imaging system having improved mobility
US9310323B2 (en) 2009-05-16 2016-04-12 Rapiscan Systems, Inc. Systems and methods for high-Z threat alarm resolution
US20170010383A1 (en) * 2014-01-23 2017-01-12 Sc Mb Telecom Ltd. Srl System and method for nonintrusive complete aircraft inspection
US9557427B2 (en) 2014-01-08 2017-01-31 Rapiscan Systems, Inc. Thin gap chamber neutron detectors
US9632205B2 (en) 2011-02-08 2017-04-25 Rapiscan Systems, Inc. Covert surveillance using multi-modality sensing
US9787151B2 (en) 2012-03-08 2017-10-10 Leidos, Inc. Radial flux alternator
US9791590B2 (en) 2013-01-31 2017-10-17 Rapiscan Systems, Inc. Portable security inspection system
US9823383B2 (en) 2013-01-07 2017-11-21 Rapiscan Systems, Inc. X-ray scanner with partial energy discriminating detector array
US9958569B2 (en) 2002-07-23 2018-05-01 Rapiscan Systems, Inc. Mobile imaging system and method for detection of contraband
US10295483B2 (en) 2005-12-16 2019-05-21 Rapiscan Systems, Inc. Data collection, processing and storage systems for X-ray tomographic images
US10345479B2 (en) 2015-09-16 2019-07-09 Rapiscan Systems, Inc. Portable X-ray scanner
RU2716039C1 (en) * 2018-12-27 2020-03-05 Общество с ограниченной ответственностью "ИСБ.А" (ООО "ИСБ.А") System for inspecting self-propelled vehicles, including cargoes, passengers and driver in vehicles, method for automatic radioscopic monitoring of moving objects and radiation scanning zone and method of forming shadow image of inspected object
US10591424B2 (en) 2003-04-25 2020-03-17 Rapiscan Systems, Inc. X-ray tomographic inspection systems for the identification of specific target items
US10754056B2 (en) * 2014-12-17 2020-08-25 Tsinghua University Quick vehicle check system and method adopting multi-dose regional scanning
US11175245B1 (en) 2020-06-15 2021-11-16 American Science And Engineering, Inc. Scatter X-ray imaging with adaptive scanning beam intensity
US20220099601A1 (en) * 2019-01-04 2022-03-31 Nuctech (Beijing) Company Limited Radiation inspection apparatus and radiation inspection method
US11300703B2 (en) 2015-03-20 2022-04-12 Rapiscan Systems, Inc. Hand-held portable backscatter inspection system
US11340361B1 (en) 2020-11-23 2022-05-24 American Science And Engineering, Inc. Wireless transmission detector panel for an X-ray scanner
US11525930B2 (en) 2018-06-20 2022-12-13 American Science And Engineering, Inc. Wavelength-shifting sheet-coupled scintillation detectors
US11579327B2 (en) 2012-02-14 2023-02-14 American Science And Engineering, Inc. Handheld backscatter imaging systems with primary and secondary detector arrays
US11796489B2 (en) 2021-02-23 2023-10-24 Rapiscan Systems, Inc. Systems and methods for eliminating cross-talk signals in one or more scanning systems having multiple X-ray sources

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7142109B1 (en) * 2001-10-26 2006-11-28 Innovative American Technology, Inc. Container verification system for non-invasive detection of contents
GB0309379D0 (en) 2003-04-25 2003-06-04 Cxr Ltd X-ray scanning
GB0309385D0 (en) * 2003-04-25 2003-06-04 Cxr Ltd X-ray monitoring
US8804899B2 (en) 2003-04-25 2014-08-12 Rapiscan Systems, Inc. Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners
TW200729923A (en) * 2006-01-26 2007-08-01 Avision Inc Method for identifying leading edge or image range of scanned image
JP4918511B2 (en) * 2008-02-25 2012-04-18 三菱重工業株式会社 Vehicle inspection device
GB0803644D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Scanning systems
US8586955B2 (en) * 2010-09-22 2013-11-19 Ko Khee Tay Apparatus and method for attenuating high energy radiation based on detected vehicle type
WO2012049571A2 (en) * 2010-10-14 2012-04-19 Smiths Heimann Gmbh Systems and methods for scanning an object while avoiding radiation exposure
GB2502732B (en) * 2011-01-31 2017-02-22 Rapiscan Systems Inc Dual mode X-ray vehicle scanning system
KR102067367B1 (en) 2011-09-07 2020-02-11 라피스캔 시스템스, 인코포레이티드 X-ray inspection method that integrates manifest data with imaging/detection processing
JP5047389B2 (en) * 2011-10-28 2012-10-10 三菱重工業株式会社 Vehicle inspection device
US9274065B2 (en) * 2012-02-08 2016-03-01 Rapiscan Systems, Inc. High-speed security inspection system
RO127852B1 (en) * 2012-05-21 2019-03-29 Mb Telecom Ltd Srl Method and system for non-intrusive inspection of cargo type objects: motor vehicles, containers, train cars
CN103529061B (en) 2012-07-04 2016-03-09 同方威视技术股份有限公司 Vehicle mounted type radiation checking system
EP3025147A4 (en) 2013-07-23 2017-03-22 Rapiscan Systems, Inc. Methods for improving processing speed for object inspection
CN104950338B (en) * 2014-03-24 2020-11-24 北京君和信达科技有限公司 System and method for radiation inspection of moving objects
CN105022095B (en) * 2014-04-24 2021-10-29 北京君和信达科技有限公司 Quick-pass type mobile target radiation inspection method and system
WO2016003547A1 (en) 2014-06-30 2016-01-07 American Science And Engineering, Inc. Rapidly relocatable modular cargo container scanner
CN105438756B (en) * 2014-08-22 2019-03-29 清华大学 A kind of small vehicle inspection system
CN104374785B (en) * 2014-11-14 2017-12-05 北京君和信达科技有限公司 A kind of continuous radiation scanning system and method
CN105333826B (en) * 2015-12-04 2019-02-22 同方威视技术股份有限公司 The quick inspection method of vehicle and system
EP3420563A4 (en) 2016-02-22 2020-03-11 Rapiscan Systems, Inc. Systems and methods for detecting threats and contraband in cargo
CN108897055B (en) * 2016-02-24 2020-02-21 北京君和信达科技有限公司 Radiation source control method and quick-pass type security inspection system
CN110199373B (en) 2017-01-31 2021-09-28 拉皮斯坎系统股份有限公司 High power X-ray source and method of operation
CN107228868A (en) * 2017-06-29 2017-10-03 北京君和信达科技有限公司 Radiation checking system and radiation testing method
US11212902B2 (en) 2020-02-25 2021-12-28 Rapiscan Systems, Inc. Multiplexed drive systems and methods for a multi-emitter X-ray source
US11193898B1 (en) 2020-06-01 2021-12-07 American Science And Engineering, Inc. Systems and methods for controlling image contrast in an X-ray system
GB2616274A (en) * 2022-03-01 2023-09-06 Illinois Tool Works X-ray inspection apparatus and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031890A (en) * 1993-04-05 2000-02-29 Heimann Systems Gmbh & Co. Kg Monitoring installation for containers and trucks
US6255654B1 (en) * 1995-10-23 2001-07-03 Science Applications International Corporation Density detection using discrete photon counting
US6400795B2 (en) * 2000-07-27 2002-06-04 Seiko Instruments Inc. X-ray fluorescence analyzer
US6507025B1 (en) 1995-10-23 2003-01-14 Science Applications International Corporation Density detection using real time discrete photon counting for fast moving targets
US6649906B2 (en) * 2000-09-29 2003-11-18 Schlumberger Technology Corporation Method and apparatus for safely operating radiation generators in while-drilling and while-tripping applications

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3390269A (en) * 1964-06-18 1968-06-25 Packard Instrument Co Inc Apparatus for automatic standardization with external standards in liquid scintillation spectrometry
DE1764217C3 (en) * 1967-04-27 1974-01-17 Industrial Nucleonics Corp., Columbus, Ohio (V.St.A.) Safety lock for the housing of a radioactive radiation source
US3829695A (en) * 1971-08-26 1974-08-13 Molins Ltd Rod guide assembly for continuous rod making machines
US4817123A (en) * 1984-09-21 1989-03-28 Picker International Digital radiography detector resolution improvement
US4963746A (en) * 1986-11-25 1990-10-16 Picker International, Inc. Split energy level radiation detection
US4924098A (en) * 1987-11-30 1990-05-08 Radiation Detectors, Inc. Nuclear radiation level detector
US4946256A (en) * 1989-01-11 1990-08-07 Nm Laser Products, Inc. Right angle shutter for laser beam
US5834780A (en) * 1996-05-29 1998-11-10 Picker International, Inc. Scanning line source for gamma camera
US5986275A (en) * 1996-06-07 1999-11-16 The University Of Virginia Patent Foundation Reusable shielded marker for nuclear medicine imaging
US7045788B2 (en) * 2003-08-04 2006-05-16 Thermo Electron Corporation Multi-way radiation monitoring
US7046768B1 (en) * 2003-11-10 2006-05-16 Inspx Llc Shutter-shield for x-ray protection
US7039159B2 (en) * 2004-01-30 2006-05-02 Science Applications International Corporation Method and system for automatically scanning and imaging the contents of a moving target

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031890A (en) * 1993-04-05 2000-02-29 Heimann Systems Gmbh & Co. Kg Monitoring installation for containers and trucks
US6255654B1 (en) * 1995-10-23 2001-07-03 Science Applications International Corporation Density detection using discrete photon counting
US6507025B1 (en) 1995-10-23 2003-01-14 Science Applications International Corporation Density detection using real time discrete photon counting for fast moving targets
US6552346B2 (en) 1995-10-23 2003-04-22 Science Applications International Corporation Density detection using discrete photon counting
US6400795B2 (en) * 2000-07-27 2002-06-04 Seiko Instruments Inc. X-ray fluorescence analyzer
US6649906B2 (en) * 2000-09-29 2003-11-18 Schlumberger Technology Corporation Method and apparatus for safely operating radiation generators in while-drilling and while-tripping applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
International Search Report and Written Opinion for Application No. PCT/US04/31725, dated Sep. 30, 2005 (mailing date).

Cited By (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7308076B2 (en) 2001-05-08 2007-12-11 Smiths Heimann Gmbh X-ray system comprising an X-ray source, a detector assembly, and a shutter
US20040134986A1 (en) * 2001-05-08 2004-07-15 Wolfgang Studer X-ray system comprising an x-ray source, a detector assembly, and an aperture
US8356937B2 (en) 2002-07-23 2013-01-22 Rapiscan Systems, Inc. Rotatable boom cargo scanning system
US9025731B2 (en) 2002-07-23 2015-05-05 Rapiscan Systems, Inc. Cargo scanning system
US9052403B2 (en) 2002-07-23 2015-06-09 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US9223049B2 (en) 2002-07-23 2015-12-29 Rapiscan Systems, Inc. Cargo scanning system with boom structure
US20110116597A1 (en) * 2002-07-23 2011-05-19 Neeraj Agrawal Cargo Scanning System
US11143783B2 (en) 2002-07-23 2021-10-12 Rapiscan Systems, Inc. Four-sided imaging system and method for detection of contraband
US8275091B2 (en) 2002-07-23 2012-09-25 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US8687765B2 (en) 2002-07-23 2014-04-01 Rapiscan Systems, Inc. Cargo scanning system with boom structure
US8491189B2 (en) 2002-07-23 2013-07-23 Rapiscan Systems, Inc. Radiation source apparatus
US10976465B2 (en) 2002-07-23 2021-04-13 Rapiscan Systems, Inc. Two-sided, multi-energy imaging system and method for the inspection of cargo
US8059781B2 (en) 2002-07-23 2011-11-15 Rapiscan Systems, Inc. Cargo scanning system
US10670769B2 (en) 2002-07-23 2020-06-02 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US7963695B2 (en) 2002-07-23 2011-06-21 Rapiscan Systems, Inc. Rotatable boom cargo scanning system
US8503605B2 (en) 2002-07-23 2013-08-06 Rapiscan Systems, Inc. Four sided imaging system and method for detection of contraband
US20090274270A1 (en) * 2002-07-23 2009-11-05 Andreas Kotowski Single Boom Cargo Scanning System
US8929509B2 (en) 2002-07-23 2015-01-06 Rapiscan Systems, Inc. Four-sided imaging system and method for detection of contraband
US20110064192A1 (en) * 2002-07-23 2011-03-17 Edward James Morton Four Sided Imaging System and Method for Detection of Contraband
US20110038453A1 (en) * 2002-07-23 2011-02-17 Edward James Morton Compact Mobile Cargo Scanning System
US8668386B2 (en) 2002-07-23 2014-03-11 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US10007019B2 (en) 2002-07-23 2018-06-26 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US20100189226A1 (en) * 2002-07-23 2010-07-29 Andreas Kotowski Rotatable boom cargo scanning system
US7876880B2 (en) 2002-07-23 2011-01-25 Rapiscan Systems, Inc. Single boom cargo scanning system
US9958569B2 (en) 2002-07-23 2018-05-01 Rapiscan Systems, Inc. Mobile imaging system and method for detection of contraband
US10901112B2 (en) 2003-04-25 2021-01-26 Rapiscan Systems, Inc. X-ray scanning system with stationary x-ray sources
US10175381B2 (en) 2003-04-25 2019-01-08 Rapiscan Systems, Inc. X-ray scanners having source points with less than a predefined variation in brightness
US10591424B2 (en) 2003-04-25 2020-03-17 Rapiscan Systems, Inc. X-ray tomographic inspection systems for the identification of specific target items
US9618648B2 (en) 2003-04-25 2017-04-11 Rapiscan Systems, Inc. X-ray scanners
US8837669B2 (en) 2003-04-25 2014-09-16 Rapiscan Systems, Inc. X-ray scanning system
US8885794B2 (en) 2003-04-25 2014-11-11 Rapiscan Systems, Inc. X-ray tomographic inspection system for the identification of specific target items
US11796711B2 (en) 2003-04-25 2023-10-24 Rapiscan Systems, Inc. Modular CT scanning system
US9020095B2 (en) 2003-04-25 2015-04-28 Rapiscan Systems, Inc. X-ray scanners
US9113839B2 (en) 2003-04-25 2015-08-25 Rapiscon Systems, Inc. X-ray inspection system and method
US9675306B2 (en) 2003-04-25 2017-06-13 Rapiscan Systems, Inc. X-ray scanning system
US9442082B2 (en) 2003-04-25 2016-09-13 Rapiscan Systems, Inc. X-ray inspection system and method
US7769133B2 (en) 2003-06-20 2010-08-03 Rapiscan Systems, Inc. Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers
US7991113B2 (en) 2003-06-20 2011-08-02 Rapiscan Security Products, Inc. Relocatable x-ray imaging system and method for inspecting commercial vehicles and cargo containers
US9285498B2 (en) 2003-06-20 2016-03-15 Rapiscan Systems, Inc. Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers
US7483510B2 (en) * 2003-06-20 2009-01-27 Rapiscan Security Products, Inc. Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers
US20090161825A1 (en) * 2003-06-20 2009-06-25 James Carver Relocatable X-Ray Imaging System and Method for Inspecting Commercial Vehicles and Cargo Containers
US20060140341A1 (en) * 2003-06-20 2006-06-29 James Carver Relocatable x-ray imaging system and method for inspecting commercial vehicles and cargo containers
US20100085066A1 (en) * 2003-09-15 2010-04-08 Peschmann Kristian R Methods and systems for the rapid detection of concealed objects
US9268058B2 (en) 2003-09-15 2016-02-23 Rapiscan Systems, Inc. Methods and systems for the rapid detection of concealed objects
US8138770B2 (en) 2003-09-15 2012-03-20 Rapiscan Systems, Inc. Methods and systems for the rapid detection of concealed objects
US8674706B2 (en) 2003-09-15 2014-03-18 Rapiscan Systems, Inc. Methods and systems for the rapid detection of concealed objects
US20070071165A1 (en) * 2004-01-30 2007-03-29 Science Applications International Corporation Method and system for automatically scanning and imaging the contents of a moving target
US7215738B2 (en) * 2004-01-30 2007-05-08 Science Applications International Corporation Method and system for automatically scanning and imaging the contents of a moving target
US7352844B1 (en) 2004-01-30 2008-04-01 Science Applications International Corporation Method and system for automatically scanning and imaging the contents of a moving target
US20080253514A1 (en) * 2005-02-25 2008-10-16 Rapiscan Systems Limited X-Ray Security Inspection Machine
US7702069B2 (en) 2005-02-25 2010-04-20 Rapiscan Security Products, Inc. X-ray security inspection machine
US9223050B2 (en) 2005-04-15 2015-12-29 Rapiscan Systems, Inc. X-ray imaging system having improved mobility
US10295483B2 (en) 2005-12-16 2019-05-21 Rapiscan Systems, Inc. Data collection, processing and storage systems for X-ray tomographic images
US9638646B2 (en) 2005-12-16 2017-05-02 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US9048061B2 (en) 2005-12-16 2015-06-02 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US10976271B2 (en) 2005-12-16 2021-04-13 Rapiscan Systems, Inc. Stationary tomographic X-ray imaging systems for automatically sorting objects based on generated tomographic images
US9310322B2 (en) 2006-02-27 2016-04-12 Rapiscan Systems, Inc. X-ray security inspection machine
US8213570B2 (en) 2006-02-27 2012-07-03 Rapiscan Systems, Inc. X-ray security inspection machine
US9279901B2 (en) 2006-05-05 2016-03-08 Rapiscan Systems, Inc. Cargo inspection system
US8837670B2 (en) 2006-05-05 2014-09-16 Rapiscan Systems, Inc. Cargo inspection system
US7989770B2 (en) 2006-10-13 2011-08-02 Nuctech Company Limited Control unit and control method for radiation source and radiation inspection system and method thereof
US20090065698A1 (en) * 2006-10-13 2009-03-12 Zhiqiang Chen Control unit and control method for radiation source and radiation inspection system and method thereof
EP1970700A4 (en) * 2006-10-13 2010-09-01 Nuctech Co Ltd A system and dodging method for imaging and detecting a moving object
CN101162209B (en) * 2006-10-13 2010-08-25 清华大学 Equipment and method for quick-speed image-forming checking mobile target
US20080089476A1 (en) * 2006-10-13 2008-04-17 Zhiqiang Chen Apparatus and method for quick imaging and inspecting moving target
AU2006346222B2 (en) * 2006-10-13 2010-07-15 Nuctech Company Limited System for image inspection of movable object and dodging method
WO2008046260A1 (en) 2006-10-13 2008-04-24 Nuctech Company Limited A system and dodging method for imaging and detecting a moving object
AU2006346222A1 (en) * 2006-10-13 2008-04-24 Nuctech Company Limited System for image inspection of movable object and dodging method
JP2009503558A (en) * 2006-10-13 2009-01-29 ヌクテック カンパニー リミテッド Control unit used for radiation source and control method thereof, and radiation inspection system and method thereof
US7492861B2 (en) * 2006-10-13 2009-02-17 Tsinghua University Apparatus and method for quick imaging and inspecting moving target
US7688945B2 (en) 2006-10-13 2010-03-30 Nuctech Company Limited System for image inspection of movable object and dodging method
US20090225939A1 (en) * 2006-10-13 2009-09-10 Zhiqiang Chen System for image inspection of movable object and dodging method
JP2010511153A (en) * 2006-11-28 2010-04-08 イノベイティブ アメリカン テクノロジー, インコーポレイテッド Multi-stage system for verifying container contents
US9121958B2 (en) 2008-02-28 2015-09-01 Rapiscan Systems, Inc. Scanning systems
US9429530B2 (en) 2008-02-28 2016-08-30 Rapiscan Systems, Inc. Scanning systems
US10816691B2 (en) 2008-02-28 2020-10-27 Rapiscan Systems, Inc. Multi-element detector systems
US10754058B2 (en) 2008-02-28 2020-08-25 Rapiscan Systems, Inc. Drive-through scanning systems
US9036779B2 (en) 2008-02-28 2015-05-19 Rapiscan Systems, Inc. Dual mode X-ray vehicle scanning system
US20110098870A1 (en) * 2008-02-28 2011-04-28 Edward James Morton Mobile Scanning Systems
US8774357B2 (en) 2008-02-28 2014-07-08 Rapiscan Systems, Inc. Scanning systems
US9158027B2 (en) 2008-02-28 2015-10-13 Rapiscan Systems, Inc. Mobile scanning systems
US8644453B2 (en) 2008-02-28 2014-02-04 Rapiscan Systems, Inc. Scanning systems
US8971485B2 (en) 2008-02-28 2015-03-03 Rapiscan Systems, Inc. Drive-through scanning systems
US9817151B2 (en) 2008-02-28 2017-11-14 Rapiscan Systems, Inc. Drive-through scanning systems
US11579328B2 (en) 2008-02-28 2023-02-14 Rapiscan Systems, Inc. Drive-through scanning systems
US9835756B2 (en) 2008-02-28 2017-12-05 Rapiscan Systems, Inc. Dual mode X-ray vehicle scanning system
US20110116599A1 (en) * 2008-02-28 2011-05-19 Rapiscan Security Products, Inc. Scanning Systems
US8433036B2 (en) 2008-02-28 2013-04-30 Rapiscan Systems, Inc. Scanning systems
US10007021B2 (en) 2008-02-28 2018-06-26 Rapiscan Systems, Inc. Scanning systems
US20110116600A1 (en) * 2008-02-28 2011-05-19 Edward James Morton Scanning Systems
US20110004002A1 (en) * 2008-02-29 2011-01-06 Basf Se Process for preparing alkyl 2-alkoxymethylene-4,4-difluoro-3-oxobutyrates
US9332624B2 (en) 2008-05-20 2016-05-03 Rapiscan Systems, Inc. Gantry scanner systems
US8840303B2 (en) 2008-05-20 2014-09-23 Rapiscan Systems, Inc. Scanner systems
US20110135056A1 (en) * 2008-05-20 2011-06-09 Edward James Morton Scanner Systems
US20110142203A1 (en) * 2008-05-20 2011-06-16 Edward James Morton Gantry Scanner Systems
US8831176B2 (en) 2008-05-20 2014-09-09 Rapiscan Systems, Inc. High energy X-ray inspection system using a fan-shaped beam and collimated backscatter detectors
US10098214B2 (en) 2008-05-20 2018-10-09 Rapiscan Systems, Inc. Detector support structures for gantry scanner systems
US9688517B2 (en) 2008-05-20 2017-06-27 Rapiscan Systems, Inc. Scanner systems
US8579506B2 (en) 2008-05-20 2013-11-12 Rapiscan Systems, Inc. Gantry scanner systems
US20110204243A1 (en) * 2008-06-11 2011-08-25 Joseph Bendahan Composite Gamma-Neutron Detection System
US8963094B2 (en) 2008-06-11 2015-02-24 Rapiscan Systems, Inc. Composite gamma-neutron detection system
US8389941B2 (en) 2008-06-11 2013-03-05 Rapiscan Systems, Inc. Composite gamma-neutron detection system
US8993970B2 (en) 2008-06-11 2015-03-31 Rapiscan Systems, Inc. Photomultiplier and detection systems
US8389942B2 (en) 2008-06-11 2013-03-05 Rapiscan Systems, Inc. Photomultiplier and detection systems
US8735833B2 (en) 2008-06-11 2014-05-27 Rapiscan Systems, Inc Photomultiplier and detection systems
US9329285B2 (en) 2008-06-11 2016-05-03 Rapiscan Systems, Inc. Composite gamma-neutron detection system
US9625606B2 (en) 2009-05-16 2017-04-18 Rapiscan Systems, Inc. Systems and methods for high-Z threat alarm resolution
US9310323B2 (en) 2009-05-16 2016-04-12 Rapiscan Systems, Inc. Systems and methods for high-Z threat alarm resolution
US8664609B2 (en) 2009-11-04 2014-03-04 Leidos, Inc. System and method for three-dimensional imaging using scattering from annihilation coincidence photons
US8314394B1 (en) 2009-11-04 2012-11-20 Science Applications International Corporation System and method for three-dimensional imaging using scattering from annihilation coincidence photons
US8426822B1 (en) 2009-11-04 2013-04-23 Science Application International Corporation System and method for three-dimensional imaging using scattering from annihilation coincidence photons
US10408967B2 (en) 2011-02-08 2019-09-10 Rapiscan Systems, Inc. Covert surveillance using multi-modality sensing
US10942291B2 (en) 2011-02-08 2021-03-09 Rapiscan Systems, Inc. Covert surveillance using multi-modality sensing
US9632205B2 (en) 2011-02-08 2017-04-25 Rapiscan Systems, Inc. Covert surveillance using multi-modality sensing
US11822041B2 (en) 2011-02-08 2023-11-21 Rapiscan Systems, Inc. Systems and methods for improved atomic-number based material discrimination
US11307325B2 (en) 2011-02-08 2022-04-19 Rapiscan Systems, Inc. Covert surveillance using multi-modality sensing
US9218933B2 (en) 2011-06-09 2015-12-22 Rapidscan Systems, Inc. Low-dose radiographic imaging system
US20140314201A1 (en) * 2011-12-30 2014-10-23 Tsinghua University Methods and apparatuses for measuring effective atomic number of an object
US9464997B2 (en) * 2011-12-30 2016-10-11 Nuctech Company Limited Methods and apparatuses for measuring effective atomic number of an object
US10746674B2 (en) 2012-02-03 2020-08-18 Rapiscan Systems, Inc. Combined scatter and transmission multi-view imaging system
US9057679B2 (en) 2012-02-03 2015-06-16 Rapiscan Systems, Inc. Combined scatter and transmission multi-view imaging system
US9823201B2 (en) 2012-02-03 2017-11-21 Rapiscan Systems, Inc. Combined scatter and transmission multi-view imaging system
US11371948B2 (en) 2012-02-03 2022-06-28 Rapiscan Systems, Inc. Multi-view imaging system
US11579327B2 (en) 2012-02-14 2023-02-14 American Science And Engineering, Inc. Handheld backscatter imaging systems with primary and secondary detector arrays
US9787151B2 (en) 2012-03-08 2017-10-10 Leidos, Inc. Radial flux alternator
US20150219786A1 (en) * 2012-08-24 2015-08-06 Terex Mhps Gmbh System for the contactless inspection of containers, particularly iso containers, within a loading and unloading plant
US9880315B2 (en) 2012-11-08 2018-01-30 Leidos, Inc. Method for autonomous self-blanking by radiation portal monitors to minimize the interference from pulsed X-rays radiation
US9568637B2 (en) 2012-11-08 2017-02-14 Leidos, Inc. Method for autonomous self-blanking by radiation portal monitors to minimize the interference from pulsed X-rays radiation
US8859981B1 (en) 2012-11-08 2014-10-14 Leidos, Inc. Method for autonomous self-blanking by radiation portal monitors to minimize the interference from pulsed X-rays radiation
US9182515B2 (en) 2012-11-08 2015-11-10 Leidos, Inc. Method for autonomous self-blanking by radiation portal monitors to minimize the interference from pulsed X-rays radiation
US10197700B2 (en) 2012-11-08 2019-02-05 Leidos, Inc. Method for autonomous self-blanking by radiation portal monitors to minimize the interference from pulsed X-rays radiation
US10353109B2 (en) 2013-01-07 2019-07-16 Rapiscan Systems, Inc. X-ray scanner with partial energy discriminating detector array
US10782440B2 (en) 2013-01-07 2020-09-22 Rapiscan Systems, Inc. X-ray scanner with partial energy discriminating detector array
US9823383B2 (en) 2013-01-07 2017-11-21 Rapiscan Systems, Inc. X-ray scanner with partial energy discriminating detector array
US10317566B2 (en) 2013-01-31 2019-06-11 Rapiscan Systems, Inc. Portable security inspection system
US9791590B2 (en) 2013-01-31 2017-10-17 Rapiscan Systems, Inc. Portable security inspection system
US11550077B2 (en) 2013-01-31 2023-01-10 Rapiscan Systems, Inc. Portable vehicle inspection portal with accompanying workstation
US9557427B2 (en) 2014-01-08 2017-01-31 Rapiscan Systems, Inc. Thin gap chamber neutron detectors
US11119244B2 (en) * 2014-01-23 2021-09-14 Sc Mb Telecom Ltd Srl System and method for nonintrusive complete aircraft inspection
US20170010383A1 (en) * 2014-01-23 2017-01-12 Sc Mb Telecom Ltd. Srl System and method for nonintrusive complete aircraft inspection
US10754056B2 (en) * 2014-12-17 2020-08-25 Tsinghua University Quick vehicle check system and method adopting multi-dose regional scanning
US11300703B2 (en) 2015-03-20 2022-04-12 Rapiscan Systems, Inc. Hand-held portable backscatter inspection system
US11561320B2 (en) 2015-03-20 2023-01-24 Rapiscan Systems, Inc. Hand-held portable backscatter inspection system
US10345479B2 (en) 2015-09-16 2019-07-09 Rapiscan Systems, Inc. Portable X-ray scanner
US11525930B2 (en) 2018-06-20 2022-12-13 American Science And Engineering, Inc. Wavelength-shifting sheet-coupled scintillation detectors
WO2020139162A1 (en) * 2018-12-27 2020-07-02 Obshhestvo S Ogranichennoj Otvetstvennost`Yu "Isb.A" (Ooo "Isb.A") System for screening vehicles and method of radioscopic control of moving objects
RU2716039C1 (en) * 2018-12-27 2020-03-05 Общество с ограниченной ответственностью "ИСБ.А" (ООО "ИСБ.А") System for inspecting self-propelled vehicles, including cargoes, passengers and driver in vehicles, method for automatic radioscopic monitoring of moving objects and radiation scanning zone and method of forming shadow image of inspected object
US20220099601A1 (en) * 2019-01-04 2022-03-31 Nuctech (Beijing) Company Limited Radiation inspection apparatus and radiation inspection method
US11822043B2 (en) * 2019-01-04 2023-11-21 Nuctech (Beijing) Company Limited Radiation inspection apparatus comprising a radiation inspection device and wheels and radiation inspection method
US11175245B1 (en) 2020-06-15 2021-11-16 American Science And Engineering, Inc. Scatter X-ray imaging with adaptive scanning beam intensity
US11340361B1 (en) 2020-11-23 2022-05-24 American Science And Engineering, Inc. Wireless transmission detector panel for an X-ray scanner
US11726218B2 (en) 2020-11-23 2023-08-15 American Science arid Engineering, Inc. Methods and systems for synchronizing backscatter signals and wireless transmission signals in x-ray scanning
US11796489B2 (en) 2021-02-23 2023-10-24 Rapiscan Systems, Inc. Systems and methods for eliminating cross-talk signals in one or more scanning systems having multiple X-ray sources

Also Published As

Publication number Publication date
US20050169421A1 (en) 2005-08-04
WO2005098401A3 (en) 2005-11-10
EP1709433A4 (en) 2007-05-09
WO2005098401A2 (en) 2005-10-20
CN1906479A (en) 2007-01-31
US20070071165A1 (en) 2007-03-29
US7215738B2 (en) 2007-05-08
MXPA06008579A (en) 2006-08-28
EP1709433A2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
US7039159B2 (en) Method and system for automatically scanning and imaging the contents of a moving target
US7352844B1 (en) Method and system for automatically scanning and imaging the contents of a moving target
US7335887B1 (en) System and method for target inspection using discrete photon counting and neutron detection
US6507025B1 (en) Density detection using real time discrete photon counting for fast moving targets
US11561321B2 (en) High-speed security inspection system
US7166844B1 (en) Target density imaging using discrete photon counting to produce high-resolution radiographic images
US9835756B2 (en) Dual mode X-ray vehicle scanning system
US6255654B1 (en) Density detection using discrete photon counting
US7492861B2 (en) Apparatus and method for quick imaging and inspecting moving target
US7596275B1 (en) Methods and systems for imaging and classifying targets as empty or non-empty
US7388205B1 (en) System and method for target inspection using discrete photon counting and neutron detection
EP3715914A1 (en) Nuclear radiation monitoring apparatus and method
CN207689689U (en) Radiation checking system
CN207263667U (en) Radiation checking system
WO2018036265A1 (en) Imaging device for use in vehicle security check and method therefor
CN107228869A (en) Radiation checking system and radiation testing method
EP2673622B1 (en) Dual mode x-ray scanning system
ROBERTO et al. SYSTEM AND METHOD FOR THE

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCIENCE APPLICATIONS INTERNATIONAL CORP., CALIFORN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUENCHAU, ERNEST E.;RICHARDSON, REX D.;REEL/FRAME:014950/0620;SIGNING DATES FROM 20040128 TO 20040129

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment

Year of fee payment: 7

AS Assignment

Owner name: LEIDOS, INC., VIRGINIA

Free format text: CHANGE OF NAME;ASSIGNOR:SCIENCE APPLICATIONS INTERNATIONAL CORPORATION;REEL/FRAME:032632/0486

Effective date: 20130927

AS Assignment

Owner name: CITIBANK, N.A., DELAWARE

Free format text: SECURITY INTEREST;ASSIGNOR:LEIDOS, INC.;REEL/FRAME:039809/0801

Effective date: 20160816

Owner name: CITIBANK, N.A., DELAWARE

Free format text: SECURITY INTEREST;ASSIGNOR:LEIDOS, INC.;REEL/FRAME:039818/0272

Effective date: 20160816

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553)

Year of fee payment: 12

AS Assignment

Owner name: LEIDOS, INC., VIRGINIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051632/0742

Effective date: 20200117

Owner name: LEIDOS, INC., VIRGINIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051632/0819

Effective date: 20200117