CN102311986B - 产生抗体组合物的细胞 - Google Patents

产生抗体组合物的细胞 Download PDF

Info

Publication number
CN102311986B
CN102311986B CN201110136338.6A CN201110136338A CN102311986B CN 102311986 B CN102311986 B CN 102311986B CN 201110136338 A CN201110136338 A CN 201110136338A CN 102311986 B CN102311986 B CN 102311986B
Authority
CN
China
Prior art keywords
antibody
sugar chain
cell
fucose
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN201110136338.6A
Other languages
English (en)
Other versions
CN102311986A (zh
Inventor
神田丰
佐藤光男
中村和靖
内田和久
新川丰英
山根尚子
保坂绘美
山野和也
山崎基生
花井陈雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Kirin Co., Ltd.
Original Assignee
Kyowa Hakko Kirin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18788817&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102311986(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kyowa Hakko Kirin Co Ltd filed Critical Kyowa Hakko Kirin Co Ltd
Publication of CN102311986A publication Critical patent/CN102311986A/zh
Application granted granted Critical
Publication of CN102311986B publication Critical patent/CN102311986B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • C12N5/12Fused cells, e.g. hybridomas
    • C12N5/16Animal cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3076Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties
    • C07K16/3084Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties against tumour-associated gangliosides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/06Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
    • C07K16/065Purification, fragmentation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/005Glycopeptides, glycoproteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/40Immunoglobulins specific features characterized by post-translational modification
    • C07K2317/41Glycosylation, sialylation, or fucosylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto

Abstract

本发明涉及产生抗体组合物的细胞,例如,用于各种疾病的具有较高抗体依赖细胞毒活性的抗体,具有抗体Fc功能区的抗体片段或融合蛋白;通过采用这些细胞产生抗体组合物的方法;抗体组合物;及其用途。在上面描述的抗体组合物中,岩藻糖不在糖链还原端结合到N-乙酰氨基葡萄糖上的糖链,与结合到Fc功能区的总N-糖苷连接糖链复合体的比率达到20%或更高。此外,提供了新的GDP-甘露糖4,6-脱氢酶、GDP-酮-6-脱氧甘露糖3,5-差向异构酶4-还原酶、GDP-β-L-岩藻糖焦磷酸化酶、α-1,6-岩藻糖基转移酶及编码它们的DNA。

Description

产生抗体组合物的细胞
本申请是2001年10月5日提交的申请号为01819524.5,发明名称为“产生抗体组合物的细胞”申请的分案申请。
技术领域
本发明涉及一种可产生抗体分子的细胞,抗体分子如用于多种疾病的抗体、抗体的片段和具有抗体Fc区的融合蛋白或类似物,以及采用该细胞产生抗体组合物的过程,抗体组合物及其用途。
背景技术
由于抗体具有高的结合活性、结合特异性和在血中高的稳定性,因此已经尝试应用抗体以诊断、预防和治疗多种人类疾病[单克隆抗体:原理和应用(Monoclonal Antibodies:Principles and Applications),Wiley-Liss,Inc.,第2.1章(1995)]。此外,已经采用基因重组技术尝试了产生人源化抗体,如人嵌合抗体或从动物而不是从人来源的抗体进行了人互补决定区(下文被称作“CDR”)嫁接的抗体。人嵌合抗体是一种其抗体可变区(下文被称作“V区”)来源于动物而不是人,其恒定区(下文被称作“C区”)来源于人抗体的抗体。人CDR-移植抗体是一种人抗体的CDR被来自动物而不是人的抗体的CDR替代的抗体。
已经发现在来自哺乳动物的抗体中有5类,即IgM、IgD、IgG、IgA和IgE。人IgG类抗体主要用于诊断、预防和治疗多种人类疾病,因为它们具有功能性特性如在血中的长半衰期、多种效应子功能和类似特性[单克隆抗体:原理和应用,Wiley-Liss,Inc.,第1章(1995)]。人IgG类抗体进一步分为下列4个亚类:IgG1、IgG2、IgG3和IgG4。到目前为止,已经对作为IgG类抗体效应子功能的抗体依赖的细胞介导细胞毒活性(下文被称作“ADCC活性”)和补体依赖的细胞毒活性(下 文被称作“CDC活性”)进行了大量的研究,据报道在人类IgG类抗体中,IgG1亚类具有最高的ADCC活性和CDC活性[Chemical Immunology,65,88(1997)]。考虑到上述情况,大多数抗肿瘤人源化抗体,包括市售的Rituxan和Herceptin,都是人IgG1亚类抗体,为表达其效应需要高的效应子功能。
人IgG1亚类抗体表达ADCC活性和CDC活性需要将抗体的Fc区结合到存在于效应细胞表面上的抗体受体上,这些效应细胞如杀伤细胞、自然杀伤细胞、活化的巨噬细胞或类似细胞(下文被称作“FcγR”),并结合多种补体成分。就结合而言,已经表明铰合区的几个氨基酸残基和抗体C区的第二个结构区(下文被称作“Cγ2区”)是很重要的[Eur.J.Immunol.,23,1098(1993),Immunology,86,319(1995),Chemical Immunology,65,88(1997)],结合到Cγ2区的糖链[Chemical Immunology,65,88(1997)]也是很重要的。
就糖链而言,Boyd等人已经通过用多种糖水解酶处理人CDR-移植抗体CAMPATH-1H(人IgG1亚类)检测了糖链对ADCC活性和CDC活性的影响,该抗体是由中国仓鼠卵巢细胞(CHO细胞)或小鼠黑素瘤NS0细胞(NS0细胞)产生的,据报道,去除非还原端唾液酸并不影响两者的活性,但进一步去除半乳糖残基可单独影响CDC活性,活性降低大约50%,完全去除糖链可引起两者的活性都消失[Molecular Immunol.,32,1311(1995)]。Lifely等人也分析了与人CDR移植抗体CAMPATH-1H(人IgG1亚类)结合的糖链,该抗体由CHO细胞、NS0细胞或大鼠黑素瘤YO细胞产生,测定其ADCC活性,据报道来自YO细胞的CAM1ATH-1H显示最高的ADCC活性,这表明对切位置上的N-乙酰氨基葡萄糖(下文也被称作“GlcNAc”)对活性是很重要的[Glycobiology,5,813(1995);WO 99/54342]。这些报道表明糖链结构在人IgG1亚类抗体的效应子功能上具有很重要的作用,通过改变糖链结构制备具有更高效应子功能的抗体是可能的。但是,实际上,糖链的结构是多样的和复杂的,还不能说对效应子功能实际上重要的结构是 确定的。
根据与蛋白部分的结合形式,糖蛋白的糖链大体分成两种类型,即与天冬酰胺结合的糖链(N-糖苷连接的糖链)和与其它氨基酸如丝氨酸、苏氨酸结合的糖链(O-糖苷连接的糖链)。N-糖苷连接的糖链具有多种结构[生化实验方法23-研究糖蛋白糖链的方法(Biochemical Experimentation Method 23-Method for Studying Glycoprotein Sugar Chain)(Gakujutsu Shuppan中心),由Reiko Takahashi编辑(1989)],但已知的是它们有基本共同的核心结构,在下面的结构式(I)中显示:
结构式(I)
与天冬酰胺结合的糖链末端称为还原末端,另一端称为非还原端。已知N-糖苷连接的糖链包括:高甘露糖型,其中甘露糖单独与核心结构的非还原端结合;复合体型,其中核心结构的非还原末端有半乳糖-N-乙酰氨基葡萄糖(下文被称作“Gal-GlcNAc”)的至少一个平行分支,Gal-GlcNAc的非还原末端具有唾液酸、对切N-乙酰氨基葡萄糖或类似物质的结构;杂交型,其中核心结构的非还原末端具有高甘露糖型和复合体型两者的分支;和类似结构。
在IgG型抗体的Fc区存在两个N-糖苷连接的糖链结合位点。在血清IgG中,一般在糖链结合位点上,结合着具有两个以上分支的复合体型糖链,其中添加的唾液酸或对切N-乙酰氨基葡萄糖是很少的。已知对于向复合体型糖链的非还原末端添加半乳糖,和向N-乙酰氨基葡萄糖的还原末端添加岩藻糖而言,形式是多样的[Biochemistry,36,130(1997)]。
已经考虑到,这样一种糖链结构是由糖链基因决定的,即合成糖链的糖基转移酶基因和水解糖链的糖水解酶基因。
N-糖苷连接糖链的合成如下描述。
糖蛋白在内质网(下文被称作“ER”)腔中被糖链修饰。在N-糖苷连接糖链的生物合成步骤中,相对大的糖链传递至在ER腔内延长的多肽链上。在转化作用中,糖链首先在长链脂质载体的磷酸基团之后连续性添加上,该载体包含大约20个α-异戊二烯单位,称为长醇磷酸酯(下文也被称作“P-Dol”)。也就是,N-乙酰氨基葡萄糖传递至长醇磷酸酯上,从而形成GlcNAc-P-P-Dol,然后另一个GlcNAc被传递形成GlcNAc-GlcNAc-P-P-Dol。下一步,5个甘露糖(甘露糖在下文被称作“Man”)被传递,因此形成(Man)5-(GlcNAc)2-P-P-Dol,然后传递4个甘露糖和3个葡萄糖(葡萄糖在下文也被称作“Glc”)。因此,形成了称为核心寡糖的糖链前体,(Glc)3-(Man)9-(GlcNAc)2-P-P-Dol。含14个糖的糖链前体作为一个整体在ER腔中传递至具有天冬酰胺-X-丝氨酸或天冬酰胺-X-苏氨酸序列的多肽上。在反应中,结合至核心寡糖的长醇焦磷酸磷酸酯(P-P-Dol)被释放,但在焦磷酸酶的水解作用下再次成为长醇磷酸酯,并再循环。糖链的修剪在糖链结合至多肽上后立即开始。也就是说,3个葡萄糖和1或2个甘露糖在ER上被剔除,且已知α-1,2-糖苷酶I、α-1,3-糖苷酶II和α-1,2-甘露糖苷酶与剔除作用有关。
在ER上经受修剪的糖蛋白被传递至高尔基体,被进行各种各样的修饰。在高尔基体的()内侧部分,存在有与添加磷酸甘露糖相关的N-乙酰氨基葡萄糖磷酸转移酶、N-乙酰氨基葡萄糖1-磷酸二酯α-N-乙酰氨基葡萄糖酶和α-甘露糖苷酶I,并将甘露糖残基减少至5。在高尔基体的中部,存在有与添加复合体型N-糖苷连接糖链的第一个外侧GlcNAc有关的N-乙酰氨基葡萄糖转移酶I(GnTI)、与剔除2个甘露糖有关的α-甘露糖苷酶II、与从外侧添加第二个GlcNAc有关的N-乙酰 氨基葡萄糖转移酶II(GnTII)、和与向还原末端N-乙酰氨基葡萄糖添加岩藻糖有关的α-1,6-岩藻糖基转移酶。在高尔基体的()外侧部分,存在与添加半乳糖有关的半乳糖转移酶、和与添加唾液酸如N-乙酰神经氨酸有关的唾液酰基转移酶、或类似酶。已知N-糖苷连接糖链是通过这些多种酶的活动而形成的。
一般地,大多数用于药物的人源化抗体考虑采用基因重组技术制备,并采用中国仓鼠卵巢组织来源的CHO细胞作为宿主细胞产生。但如上所述,因为糖链结构在抗体效应子功能中具有非常明显的重要作用,且在宿主表达的糖蛋白糖链结构上观察到了差异,所以期望开发可用于生产具有更高效应子功能的抗体的宿主细胞。为了修饰所产生的糖蛋白的糖链结构,已经尝试了多种方法,如1)采用对抗涉及糖链修饰的酶的抑制剂,2)选择突变体,3)导入编码与糖链修饰有关的酶的基因,和类似方法。特殊的实例描述如下。
与对抗糖链修饰有关的酶的抑制剂实例包括,选择性抑制GlcNAc-P-P-Dol形成的衣霉素(tunicamycin),GlcNAc-P-P-Dol是形成N-糖苷连接糖链的前体-核心寡糖的第一步,糖苷酶I的抑制剂栗精胺和N-甲基-1-脱氧野尻毒素,糖苷酶II的抑制剂溴环己烯四醇(bromocondulitol),甘露糖苷酶I的抑制剂1-脱氧野尻毒素和1,4-二氧基-1,4-亚氨基-D-甘露醇,甘露糖苷酶II的抑制剂八氢吲嗪三醇和类似抑制剂。对糖基转移酶特异的抑制剂的实例包括,针对N-乙酰氨基葡萄糖转移酶V(GnTV)的底物的脱氧衍生物和类似物质[Glycobiology系列2-细胞中糖链的命运(Glycobiology Series 2-Destiny of Chain in Cell)(Kodan-sha Scientific),Katsutaka Nagai、Senichiro Hakomori和Akira Kobata编辑(1993)]。此外,已知1-脱氧野尻毒素抑制复合体型糖链的合成,并增加高甘露糖型和杂交型糖链的比例。实际上,已经报道当抑制剂加入培养基中时,IgG的糖链结构被改变,如抗原结合活性等的特性被改变[Molecular Immunol.,26,1113(1989)]。
与糖链修饰有关的酶活性相关的突变体被主要选择,并获得植物凝血素抗性细胞系。例如,使用以下植物凝血素已经获得了作为植物凝血素抗性细胞的具有多种糖链结构的CHO细胞突变体,如WGA(来自T.vulgaris的麦胚凝集素)、刀豆素A(来自C.ensiformis的cocanavalin A)、RIC(来自R.communis的一种毒素)、L-PHA(来自P.vulgaris的白细胞凝集素)、LCA(来自L.culinaris的扁豆凝集素)、PSA(来自P.sativum的豌豆凝集素)或类似物[Somatic Cell Mol.Genet.,12,51(1986)]。
作为通过向宿主细胞中导入与糖链修饰有关的酶的基因而获得的产物的糖链结构修饰的实例,已经报道,通过向CHO细胞中导入大鼠β-半乳糖苷-α-2,6-唾液酸转移酶,可产生在糖链非还原端加入许多唾液酸的蛋白质[J.Biol.Chem.,261,13848(1989)]。
而且,已经证实,H抗原(Fucα1-2Galβ1-)通过将人β-半乳糖苷-2-α-岩藻糖转移酶导入小鼠L细胞中而被表达,在H抗原中岩藻糖(下文也被称作“Fuc”)被添加至糖链的非还原端[Science,252,1668(1991)]。另外,根据这样的知识,N-糖苷连接糖链的对切位置的N-乙酰氨基葡萄糖添加对于抗体的ADCC活性是很重要的,Umana等人已经制备了表达β-1,4-N-乙酰氨基葡萄糖转移酶III(GnTIII)的CHO细胞,并比较了它与亲代细胞系的GnTIII表达。已证实,在CHO细胞的亲代细胞系中未观察到GnTIII的表达[J.Biol.Chem.,261,13370(1984)],采用所生产的表达GnTIII的CHO细胞所表达的抗体所具有的ADCC活性较采用亲代细胞系表达的抗体高16倍[Glycobiology,5,813(1995):WO99/54342]。这时,Umana等人也已经生产了CHO细胞,其中导入了β-1,4-N-乙酰氨基葡萄糖转移酶V(GnTV),据报道GnTIII或GnTV的过度表达显示对CHO细胞有毒性。
发明内容
于是,为了修饰要产生的糖蛋白的糖链结构,已试图在宿主细胞中控制涉及糖链修饰的酶的活性,但实际上,糖链结构是多样的和复 杂的,糖链生理学作用的解释是不充分的,因此试验和错误不断地重复出现。特别是,尽管已经逐渐地清楚抗体的效应子功能受糖链结构的影响非常大,但真正重要的糖链结构还尚未被说明。因此,鉴定对抗体的效应子功能有影响的糖链并开发可以在其中加入这种糖链结构的宿主细胞,是药物开发所期望的。
本发明的目的是,提供产生抗体组合物的宿主细胞并控制与抗体分子结合的糖链结构,提供可以产生具有高ADCC活性(抗体依赖性细胞介导的细胞毒作用)的抗体组合物的细胞,提供采用该细胞生产抗体组合物的方法及通过此生产方法产生的抗体组合物。
本发明涉及如下(1)至(61)。
(1)中国仓鼠卵巢组织来源的CHO细胞,其中导入了编码抗体分子的基因,它产生由抗体分子组成的抗体组合物,该抗体分子具有N-糖苷连接糖链与Fc区结合的复合体,其中在该组合物内与Fc区结合的N-糖苷连接糖链的总复合体中,岩藻糖没有在糖链还原末端与N-乙酰氨基葡萄糖结合的糖链比率是20%或以上。
(2)根据(1)的CHO细胞,其中所述的没有与岩藻糖结合的糖链是N-糖苷连接糖链复合体,其中岩藻糖1号位置不与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
(3)根据(1)或(2)的CHO细胞,其中所述的抗体分子属于IgG类。
(4)根据(1)至(3)任一项的CHO细胞,其中涉及细胞内糖核苷酸,GDP-岩藻糖合成的酶的活性,和/或涉及糖链修饰的酶的活性是降低或删除的,在糖链修饰中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在N-糖苷连接糖链复合体中在还原末端经α-键连接。
(5)根据(4)的CHO细胞,其中涉及细胞内糖核苷酸,GDP-岩藻糖合成的酶选自下列(a)、(b)和(c):
(a)GMD(GDP-甘露糖4,6-脱氢酶);
(b)Fx(GDP-酮-6-脱氧甘露糖3,5-差向异构酶4-还原酶);
(c)GFPP(GDP-β-L-岩藻糖焦磷酸化酶)。
(6)根据(5)的CHO细胞,其中所述的GMD是由下列(a)或(b)DNA编码的蛋白:
(a)包括由SEQ ID NO:65描绘的核苷酸序列的DNA;
(b)与包括SEQ ID NO:65描绘的核苷酸序列的DNA在严格条件下杂交,并编码具有GMD活性的蛋白的DNA。
(7)根据(5)的CHO细胞,其中GMD是选自下列(a)、(b)和(c)的蛋白:
(a)包括由SEQ ID NO:71描绘的氨基酸序列的蛋白;
(b)包括在SEQ ID NO:71描绘的氨基酸序列中至少一个氨基酸被删除、取代、插入和/或添加的氨基酸序列,并具有GMD活性的蛋白;
(c)包括与SEQ ID NO:71描绘的氨基酸序列有至少80%同源性的氨基酸序列并具有GMD活性的蛋白。
(8)根据(5)的CHO细胞,其中Fx是由下列(a)或(b)DNA编码的蛋白:
(a)包括由SEQ ID NO:48描绘的核苷酸序列的DNA;
(b)包括与SEQ ID NO:48描绘的核苷酸序列的DNA在严格条件下杂交,并编码具有Fx活性的蛋白的DNA。
(9)根据(5)的CHO细胞,其中Fx是选自下列(a)、(b)和(c)的蛋白:
(a)包括由SEQ ID NO:72描绘的氨基酸序列的蛋白;
(b)包括在SEQ ID NO:72描绘的氨基酸序列中至少一个氨基酸被删除、取代、插入和/或添加的氨基酸序列,并具有Fx活性的蛋白;
(c)包括与SEQ ID NO:72描绘的氨基酸序列至少有80%同源性的氨基酸序列并具有Fx活性的蛋白。
(10)根据(5)的CHO细胞,其中所述的GFPP是由下列(a)或(b)DNA编码的蛋白:
(a)包括由SEQ ID NO:51描绘的核苷酸序列的DNA;
(b)与包括SEQ ID NO:51描绘的核苷酸序列的DNA在严格条件下杂交,并编码具有GFPP活性的蛋白的DNA。
(11)根据(5)的CHO细胞,其中所述的GFPP是选自下列(a)、(b)和(c)的蛋白:
(a)包括由SEQ ID NO:73描绘的氨基酸序列的蛋白;
(b)包括在SEQ ID NO:73描绘的氨基酸序列中至少一个氨基酸被删除、取代、插入和/或添加的氨基酸序列,并具有GFPP活性的蛋白;
(c)包括与SEQ ID NO:73描绘的氨基酸序列至少有80%同源性的氨基酸序列并具有GFPP活性的蛋白。
(12)根据(4)的CHO细胞,其中涉及糖链修饰的酶是α-1,6-岩藻糖基转移酶,糖链中,岩藻糖的1号位置与N-乙酰氨基葡萄糖的6号位置在N-糖苷连接糖链复合体中在还原末端经α-键连接。
(13)根据(12)的CHO细胞,其中的α-1,6-岩藻糖基转移酶是由下列(a)或(b)DNA编码的蛋白:
(a)包括由SEQ ID NO:1描绘的核苷酸序列的DNA;
(b)与包括SEQ ID NO:1描绘的核苷酸序列的DNA在严格条件下杂交,并编码具有α-1,6-岩藻糖基转移酶活性的蛋白的DNA。
(14)根据(12)的CHO细胞,其中所述的α-1,6-岩藻糖基转移 酶是选自下列(a)、(b)和(c)的蛋白:
(a)包括由SEQ ID NO:23描绘的氨基酸序列的蛋白;
(b)包括在SEQ ID NO:23描绘的氨基酸序列中至少一个氨基酸被删除、取代、插入和/或添加的氨基酸序列,并具有α-1,6-岩藻糖基转移酶活性的蛋白;
(c)包括与SEQ ID NO:23描绘的氨基酸序列至少有80%同源性的氨基酸序列,并具有α-1,6-岩藻糖基乳糖转移酶活性的蛋白。
(15)根据(4)至(14)任一项的CHO细胞,其中的酶活性通过选自下列(a)、(b)、(c)、(d)和(e)的技术被降低或去除:
(a)定向编码该酶之基因的基因破坏技术;
(b)导入编码该酶之基因的显性失活突变体的技术;
(c)在酶中引入突变的技术;
(d)抑制编码该酶之基因转录或翻译的技术;
(e)选择抵抗凝血素的细胞系的技术,凝血素识别在N-糖苷连接糖链复合体中1号位置的岩藻糖与6号位置的N-乙酰氨基葡萄糖在还原末端经α-键连接的糖链。
(16)根据(4)至(15)任一项的CHO细胞,它抵抗至少一种凝血素,凝血素识别在N-糖苷连接糖链复合体中岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接的糖链。
(17)根据(4)至(16)任一项的CHO细胞,它产生的抗体组合物较获取自其亲代CHO细胞的抗体组合物具有更高的抗体依赖的细胞介导的细胞毒活性。
(18)根据(17)的细胞,它产生的抗体组合物较一种抗体组合物具有更高的抗体依赖的细胞介导的细胞毒活性,在后者结合到Fc区的N-糖苷连接糖链总复合体中,岩藻糖没有在糖链还原端与N-乙酰氨基葡萄糖结合的糖链比率不足20%。
(19)根据(18)的CHO细胞,其中其上没有连接岩藻糖的糖链是N-糖苷连接糖链复合体,其中岩藻糖1号位置不与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
(20)产生抗体组合物的方法,包括在培养基中培养根据(1)至(19)中任一项的CHO细胞以便在培养物中产生和积累抗体组合物;并从培养物中回收抗体组合物。
(21)用根据(20)的方法产生的抗体组合物。
(22)含有由CHO细胞产生的抗体分子的抗体组合物,抗体分子具有连接到Fc区的N-糖苷连接糖链复合体,其中在结合到该组合物Fc区的N-糖苷连接糖链总复合体中,岩藻糖没有在糖链还原端与N-乙酰氨基葡萄糖结合的糖链比率为20%或更高。
(23)一种细胞,其中的酶活性通过基因工程技术被降低或消除,所述的酶活性涉及细胞内糖核苷酸,GDP-岩藻糖的合成,和/或涉及糖链修饰,其中在N-糖苷连接糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
(24)根据(23)的细胞,其中涉及细胞内糖核苷酸,GDP-岩藻糖合成的酶是选自以下(a)、(b)和(c)的酶:
(a)GMD(GDP-甘露糖4,6-脱氢酶);
(b)Fx(GDP-酮-6-脱氧甘露糖3,5-差向异构酶4-还原酶);
(c)GFPP(GDP-β-L-岩藻糖焦磷酸化酶)。
(25)根据(24)的细胞,其中所述的GMD是由下列(a)或(b)DNA编码的蛋白:
(a)包括由SEQ ID NO:65描绘的核苷酸序列的DNA;
(b)与包括SEQ ID NO:65描绘的核苷酸序列的DNA在严格条件下杂交,并编码具有GMD活性的蛋白的DNA。
(26)根据(24)的细胞,其中所述的GMD是选自以下(a)、(b)和(c)的蛋白:(a)包括SEQ ID NO:71描绘的氨基酸序列的蛋白;
(b)包括在SEQ ID NO:71描绘的氨基酸序列中至少一个氨基酸被删除、取代、插入和/或添加的氨基酸序列,并具有GMD活性的蛋白;
(c)包括与SEQ ID NO:71描绘的氨基酸序列至少有80%同源性的氨基酸序列并具有GMD活性的蛋白。
(27)根据(24)的细胞,其中所述的Fx是由下列(a)或(b)DNA编码的蛋白:
(a)包括SEQ ID NO:48描绘的核苷酸序列的DNA;
(b)与包括SEQ ID NO:48描绘的核苷酸序列的DNA在严格条件下杂交,并编码具有Fx活性的蛋白的DNA。
(28)根据(24)的细胞,其中所述的Fx是选自下列(a)、(b)和(c)的蛋白:
(a)包括SEQ ID NO:72描绘的氨基酸序列的蛋白;
(b)包括在SEQ ID NO:72描绘的氨基酸序列中至少一个氨基酸被删除、取代、插入和/或添加的氨基酸序列,并具有Fx活性的蛋白;
(c)包括与SEQ ID NO:72描绘的氨基酸序列至少有80%同源性的氨基酸序列并具有Fx活性的蛋白。
(29)根据(24)的细胞,其中所述的GFPP是由下列(a)或(b)DNA编码的蛋白:
(a)包括SEQ ID NO:51描绘的核苷酸序列的DNA;
(b)与包括SEQ ID NO:51描绘的核苷酸序列的DNA在严格条件下杂交,并编码具有GFPP活性的蛋白的DNA。
(30)根据(24)的细胞,其中所述的GFPP是选自下列(a)、(b)和(c)的蛋白:
(a)包括SEQ ID NO:73描绘的氨基酸序列的蛋白;
(b)包括在SEQ ID NO:73描绘的氨基酸序列中至少一个氨基酸被删除、取代、插入和/或添加的氨基酸序列,并具有GFPP活性的蛋白;
(c)包括与SEQ ID NO:73描绘的氨基酸序列至少有80%同源性的氨基酸序列并具有GFPP活性的蛋白。
(31)根据(23)的细胞,其中涉及糖链修饰的酶是α-1,6-岩藻糖基转移酶,糖链中岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
(32)根据(31)的细胞,其中所述的α-1,6-岩藻糖基转移酶是由选自下列(a)、(b)、(c)和(d)的DNA编码的蛋白:
(a)包括SEQ ID NO:1描绘的核苷酸序列的DNA;
(b)包括SEQ ID NO:2描绘的核苷酸序列的DNA;
(c)与包括SEQ ID NO:1描绘的核苷酸序列的DNA在严格条件下杂交,并编码具有α-1,6-岩藻糖基转移酶活性的蛋白的DNA。
(d)与包括SEQ ID NO:2描绘的核苷酸序列的DNA在严格条件下杂交,并编码具有α-1,6-岩藻糖基转移酶活性的蛋白的DNA。
(33)根据(31)的细胞,其中的α-1,6-岩藻糖基转移酶是选自下列(a)、(b)、(c)、(d)、(e)和(f)的蛋白:
(a)包括SEQ ID NO:23描绘的氨基酸序列的蛋白;
(b)包括SEQ ID NO:24描绘的氨基酸序列的蛋白;
(c)包括在SEQ ID NO:23描绘的氨基酸序列中至少一个氨基酸被删除、取代、插入和/或添加的氨基酸序列,并具有α-1,6-岩藻糖基转移酶活性的蛋白;
(d)包括在SEQ ID NO:24描绘的氨基酸序列中至少一个氨基酸被删除、取代、插入和/或添加的氨基酸序列,并具有α-1,6-岩藻糖基转 移酶活性的蛋白;
(e)包括与SEQ ID NO:23描绘的氨基酸序列至少有80%同源性的氨基酸序列,并具有α-1,6-岩藻糖基转移酶活性的蛋白。
(f)包括与SEQ ID NO:24描绘的氨基酸序列至少有80%同源性的氨基酸序列,并具有α-1,6-岩藻糖基转移酶活性的蛋白。
(34)根据(23)至(33)任一项的细胞,其中的基因工程技术是选自以下(a)、(b)、(c)和(d)的技术:
(a)定向编码该酶之基因的基因破坏技术;
(b)导入编码该酶之基因的显性失活突变体的技术;
(c)在酶中引入突变的技术;
(d)抑制编码该酶之基因转录或翻译的技术。
(35)根据(23)至(34)任一项的细胞,对至少一种凝血素是抵抗的,凝血素识别N-糖苷连接糖链中岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接的糖链。
(36)根据(23)至(35)任一项的细胞,细胞是选自以下(a)至(i):
(a)来自中国仓鼠卵巢组织的CHO细胞;
(b)大鼠骨髓瘤细胞系,YB2/3HL.P2.G11.16Ag.20细胞;
(c)小鼠骨髓瘤细胞系,NS0细胞;
(d)小鼠骨髓瘤细胞系,SP2/0-Ag14细胞;
(e)来自叙利亚仓鼠肾组织的BHK细胞;
(f)产生抗体的杂交瘤细胞;
(g)人白血病细胞系,Namalwa细胞;
(h)胚胎干细胞;
(i)受精卵细胞。
(37)根据(23)至(36)任一项的细胞,其中导入了编码抗体 分子的基因。
(38)根据(37)的细胞,其中的抗体分子属于IgG类。
(39)产生抗体组合物的方法,该方法包括在培养基中培养根据(37)或(38)的细胞以在培养物中产生和积累抗体组合物;并从培养物中回收抗体组合物。
(40)根据(39)的方法,它产生的抗体组合物较获取自其亲代细胞系的抗体组合物具有更高的抗体依赖的细胞介导的细胞毒活性。
(41)用根据(39)或(40)的方法产生的抗体组合物。
(42)转基因非人动物或植物或其后代,其含有基因组,该基因组被修饰从而使酶的活性被降低,所述的酶活性涉及细胞内糖核苷酸,GDP-岩藻糖的合成,和/或涉及糖链修饰,其中在N-糖苷连接糖链中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
(43)根据(42)的转基因非人动物或植物或其后代,其中的一个基因被敲除,所述的基因编码涉及细胞内糖核苷酸,GDP-岩藻糖的合成,和/或涉及编码糖链修饰的酶,其中在N-糖苷连接的糖链中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
(44)根据(42)或(43)的转基因非人动物或植物或其后代,其中涉及细胞内糖核苷酸,GDP-岩藻糖合成的酶是选自以下(a)、(b)和(c)的酶:
(a)GMD(GDP-甘露糖4,6-脱氢酶);
(b)Fx(GDP-酮-6-脱氧甘露糖3,5-差向异构酶4-还原酶);
(c)GFPP(GDP-β-L-岩藻糖焦磷酸化酶)。
(45)根据(44)的转基因非人动物或植物或其后代,其中所述的GMD是由下列(a)或(b)DNA编码的蛋白:
(a)包括SEQ ID NO:65描绘的核苷酸序列的DNA;
(b)与包括SEQ ID NO:65描绘的核苷酸序列的DNA在严格条件下杂交,并编码具有GMD活性的蛋白的DNA。
(46)根据(44)的转基因非人动物或植物或其后代,其中所述的Fx是由下列(a)或(b)DNA编码的蛋白:
(a)包括SEQ ID NO:48描绘的核苷酸序列的DNA;
(b)与包括SEQ ID NO:48描绘的核苷酸序列的DNA在严格条件下杂交,并编码具有Fx活性的蛋白的DNA。
(47)根据(44)的转基因非人动物或植物或其后代,其中所述的GFPP是由下列(a)或(b)DNA编码的蛋白:
(a)包括SEQ ID NO:51描绘的核苷酸序列的DNA;
(b)与包括SEQ ID NO:51描绘的核苷酸序列的DNA在严格条件下杂交,并编码具有GFPP活性的蛋白的DNA。
(48)根据(42)或(43)的转基因非人动物或植物或其后代,其中涉及糖链修饰的酶是α-1,6-岩藻糖基转移酶,所述的糖链中岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在N-糖苷连接糖链中的还原末端经α-键连接。
(49)根据(48)的转基因非人动物或植物或其后代,其中α-1,6-墨角藻糖基转移酶是由选自下列(a)、(b)、(c)和(d)的DNA编码的蛋白:
(a)包括SEQ ID NO:1描绘的核苷酸序列的DNA;
(b)包括SEQ ID NO:2描绘的核苷酸序列的DNA;
(c)与包括SEQ ID NO:1描绘的核苷酸序列的DNA在严格条件下杂交,并编码具有α-1,6-岩藻糖基转移酶活性的蛋白的DNA。
(d)与包括SEQ ID NO:2描绘的核苷酸序列的DNA在严格条件下 杂交,并编码具有α-1,6-岩藻糖基转移酶活性的蛋白的DNA。
(50)根据(42)至(49)任一项的转基因非人动物或植物或其后代,其中转基因非人动物选自牛、绵羊、山羊、猪、马、小鼠、大鼠、禽类、猴和兔。
(51)产生抗体组合物的方法,该方法包括将编码抗体分子的基因导入根据(42)至(50)任一项的转基因非人动物或植物或其后代中;饲养该动物或植物;从饲养的动物或植物中分离含导入抗体的组织或体液;从分离的组织或体液中回收抗体组合物。
(52)根据(51)的方法,其中所述的抗体分子属于IgG类。
(53)根据(51)或(52)的方法,它产生的抗体组合物较从基因组未被修饰的非人动物或植物或其后代获取的抗体组合物具有更高的抗体依赖的细胞介导细胞毒活性。
(54)采用根据(51)至(53)任一项的方法产生的抗体组合物。
(55)含有根据(21)、(22)、(41)和(54)任一项的抗体组合物作为活性成分的药物。
(56)根据(55)的药物,其中所述的药物是诊断药物、预防药物或下列疾病的治疗药物:肿瘤相关疾病、变态反应相关疾病、炎症相关疾病、自身免疫性疾病、循环器官疾病、病毒感染相关疾病或细菌感染相关疾病。
(57)选自以下(a)、(b)、(c)、(d)、(e)、(f)、(g)、(h)、(i)和(j)的蛋白:
(a)含有SEQ ID NO:71描绘的氨基酸序列的蛋白;
(b)包括在SEQ ID NO:71描绘的氨基酸序列中至少一个氨基酸被删除、取代、插入和/或添加的氨基酸序列,并具有GMD活性的蛋白;
(c)含有SEQ ID NO:72描绘的氨基酸序列的蛋白;
(d)包括在SEQ ID NO:72描绘的氨基酸序列中至少一个氨基酸被删除、取代、插入和/或添加的氨基酸序列,并具有Fx活性的蛋白;
(e)含有SEQ ID NO:73描绘的氨基酸序列的蛋白;
(f)包括在SEQ ID NO:73描绘的氨基酸序列中至少一个氨基酸被删除、取代、插入和/或添加的氨基酸序列,并具有GFPP活性的蛋白;
(g)含有SEQ ID NO:23描绘的氨基酸序列的蛋白;
(h)包括在SEQ ID NO:23描绘的氨基酸序列中至少一个氨基酸被删除、取代、插入和/或添加的氨基酸序列,并具有α-1,6-岩藻糖基转移酶活性的蛋白;
(i)含有SEQ ID NO:24描绘的氨基酸序列的蛋白;
(j)包括在SEQ ID NO:24描绘的氨基酸序列中至少一个氨基酸被删除、取代、插入和/或添加的氨基酸序列,并具有α-1,6-岩藻糖基转移酶活性的蛋白;
(58)编码根据(57)的蛋白的DNA。
(59)选自以下(a)、(b)、(c)、(d)和(e)的DNA:
(a)含有SEQ ID NO:1描绘的核苷酸序列的DNA;
(b)含有SEQ ID NO:2描绘的核苷酸序列的DNA;
(c)含有SEQ ID NO:65描绘的核苷酸序列的DNA;
(d)含有SEQ ID NO:48描绘的核苷酸序列的DNA;
(e)含有SEQ ID NO:51描绘的核苷酸序列的DNA。
(60)选自以下(a)、(b)和(c)的基因组DNA:
(a)含有SEQ ID NO:3描绘的核苷酸序列的基因组DNA;
(b)含有SEQ ID NO:67描绘的核苷酸序列的基因组DNA;
(c)含有SEQ ID NO:70描绘的核苷酸序列的基因组DNA。
(61)同源重组的靶载体,其包括根据(58)至(60)任一项的全长DNA,或其一部分。
按照本发明被导入了编码抗体分子的基因的中国仓鼠卵巢组织来源的CHO细胞,可以是任何CHO细胞,只要它是中国仓鼠卵巢组织来源的CHO细胞,其中导入了编码抗体分子的基因,并产生含有结合到抗体分子Fc区的N-糖苷连接糖链复合体的抗体组合物,其中在该组合物内结合到Fc区的N-糖苷连接糖链总复合体中,岩藻糖没有在糖链还原末端与N-乙酰氨基葡萄糖结合的糖链比率是20%或更高。
在本发明中,抗体分子包括任何分子,只要它含有抗体的Fc区。实例包括抗体、抗体片断、含Fc区的融合蛋白,等等。
抗体是作为外源抗原刺激的结果,通过免疫反应在活体中产生的蛋白,并具有与抗原特异结合的活性。抗体的实例包括:杂交瘤细胞分泌的抗体,杂交瘤细胞制备自用抗原免疫的动物脾细胞;通过基因重组技术制备的抗体,即通过将插入抗体基因的抗体表达载体导入宿主细胞中获得的抗体;等等。特殊实例包括由杂交瘤产生的抗体、人源化抗体、人抗体等。
杂交瘤是通过B细胞与来自小鼠等的骨髓瘤细胞间的细胞融合而获得的细胞,能够产生具有所需抗原特异性的单克隆抗体,B细胞是通过用抗原免疫除人以外的哺乳动物获得的。
人源化抗体的实例包括人嵌合抗体、人CDR-移植的抗体等。
人嵌合抗体是包括以下部分的抗体,抗体重链可变区(下文被称作“HV”或“VH”,重链被称作“H链”)和抗体轻链可变区(此后提作“LV”或“VL”,轻链是“L链”)的抗体,两者都是除人以外动物的, 人抗体重链恒定区(下文也被称作“CH”)和人抗体轻链恒定区(下文也被称作“CL”)。作为除人以外的动物,可以使用任何动物如小鼠、大鼠、仓鼠、兔等,只要可以从中制备杂交瘤。
人嵌合抗体可以通过以下步骤产生:从产生单克隆抗体的杂交瘤中获得编码VH和VL的cDNA,将它们插入具有编码人抗体CH和人抗体CL基因的宿主细胞表达载体中,从而构建人嵌合抗体表达载体,然后将此载体导入宿主细胞中以表达抗体。
作为人嵌合抗体的CH,可以使用任何CH,只要它属于人免疫球蛋白(下文被称作“hIg”)就可被使用。但那些属于hIgG类者是优选的,可以使用属于hIgG类中的任一亚类如hIgG1、hIgG2、hIgG3和hIgG4。此外,作为人嵌合抗体的CL,可以使用任何CL,只要它属于hIg类,还可以使用那些属于κ类或λ类者。
人CDR-移植的抗体是来自除人以外动物抗体VH和VL的CDR的氨基酸序列被移植进人抗体VH和VL的合适位置的抗体。
人CDR-移植的抗体可以通过以下步骤产生:构建编码V区的cDNA,其中来自除人以外动物抗体VH和VL的CDR被移植进人抗体VH和VL的CDR,将它们插入具有编码人抗体CH和人抗体CL基因的宿主细胞表达载体中,从而构建人CDR-移植抗体的表达载体,然后将此表达载体导入宿主细胞中以表达人CDR-移植的抗体。
作为人CDR-移植抗体的CH,可以使用任何CH,只要它属于hIg,但hIgG类是优选的,可以使用属于hIgG类中的任一亚类如hIgG1、hIgG2、hIgG3和hIgG4。此外,作为人CDR-移植抗体的CL,可以使用任何CL,只要它属于hIg类,还可以使用那些属于κ类或λ类者。
人抗体是最初天然存在于人体内的抗体,但也包括获取自人抗体 噬菌体文库、产生人抗体的转基因动物和产生人抗体的转基因植物的抗体,它们是根据基因工程、细胞工程和发育工程技术的新近进展制备的。
关于人体内存在的抗体,通过分离人外周血淋巴细胞可以培养能够产生抗体的淋巴细胞,用EB病毒(埃-巴二氏病毒)等感染使之长期存在并克隆之,可以从培养物中纯化抗体。
人抗体噬菌体文库中,通过将从人B细胞制备的抗体的编码基因插入噬菌体基因中,使如Fab、单链抗体等的抗体片段在噬菌体表面表达。表达具有所需抗原结合活性的抗体片段的噬菌体,可以利用其与固定抗原的底物结合的活性作为标记物,从文库中回收。抗体片段可以通过基因工程技术被进一步转换成由两个全H链和两个全L链组成的人抗体分子。
产生人抗体的转基因非人动物是人抗体基因被导入细胞中的动物。特别是,产生人抗体的转基因动物可以通过如下制备:将人抗体基因导入小鼠ES细胞,将此ES细胞接种进其它小鼠的早期胚胎并培育之。通过将人嵌合抗体基因导入受精卵并培育之,也可以制备转基因动物。关于从产生人抗体的转基因动物中制备人抗体的方法,采用通常在除人以外哺乳动物中进行的杂交瘤制备方法获得产生人抗体的杂交瘤,然后培养它,可以在培养物中产生和积累人抗体。
转基因非人动物的实例包括牛、绵羊、山羊、猪、马、小鼠、大鼠、禽类、猴、兔等。
此外,在本发明中,优选的抗体是识别肿瘤相关抗原的抗体、识别过敏或炎症相关抗原的抗体、识别循环器官疾病相关抗原的抗体、识别自身免疫病相关抗原的抗体或识别病毒或细菌感染相关抗原的抗体,且属于IgG类的人抗体是优选的。
抗体片段是含有抗体Fc区的片段。抗体片段的实例包括H链单体、H链二聚体等。
含Fc区的融合蛋白是含抗体Fc区的抗体或抗体片段与如酶、细胞因子等蛋白融合的成分。
在本发明中,结合抗体分子Fc区的糖链的实例包括N-糖苷连接的糖链。N-糖苷连接糖链的实例包括复合型,其中核心结构的非还原末端具有一个或多个平行的半乳糖-N-乙酰氨基葡萄糖(下文被称作“Gal-GlcNAc”)分支,Gal-GlcNAc的非还原末端具有的结构如唾液酸、对切的N-乙酰氨基葡萄糖等等。
在一个抗体中,Fc区具有N-糖苷连接的糖链结合的位置,这将在以后描述。因此,每一个抗体分子连接两个糖链。由于与抗体连接的N-糖苷连接的糖链包括任何具有结构式(I)所描绘的核心结构的糖链,与抗体连接的两个N-糖苷连接的糖链可能有许多糖链组合。因此,物质的同一性可以从结合到Fc区的糖结构角度来判断。
在本发明中,包括在Fc区具有N-糖苷连接糖链复合体的抗体分子组的组合物(下文被称作“本发明的抗体组合物”),可以包括具有相同糖链结构的抗体或具有不同糖链结构的抗体,只要从该组合物中获得本发明的作用。
在本发明中,在与抗体组合物中包含的Fc区连接的N-糖苷连接的糖链总复合体中,岩藻糖不在糖链还原末端与N-乙酰氨基葡萄糖连接的糖链所占的比率,是岩藻糖不在糖链还原末端与N-乙酰氨基葡萄糖连接的糖链的数目与连接在组合物中包含的Fc区上的N-糖苷连接糖链复合体的总数目的比值。
在本发明中,岩藻糖不在N-糖苷连接糖链复合体的还原末端与N-乙酰氨基葡萄糖连接的糖链是岩藻糖不在N-糖苷连接糖链复合体的还原末端经α-键与N-乙酰氨基葡萄糖连接的糖链。实例包括N-糖苷连接糖链复合体,其中岩藻糖1号位置不与N-乙酰氨基葡萄糖6号位置经α-键连接。
当岩藻糖不在糖链还原端与N-乙酰氨基葡萄糖结合的糖链与结合到本发明抗体组合物包含的Fc功能区上的N-糖苷连接糖链总复合体的比率优选为20%或更高、更优选地25%或更高、更加优选地30%或更高、极优选地40%或更高、最优选50%或更高时,抗体组合物显示高的ADCC活性。随抗体浓度的下降,ADCC活性下降,但甚至当抗体浓度低时仍可以获得高的ADCC活性,只要岩藻糖不在糖链还原端与N-乙酰氨基葡萄糖结合的糖链比率是20%或更高。
岩藻糖不在组合物中包含的糖链还原端与N-乙酰氨基葡萄糖结合的糖链比率可以通过以下步骤测定,所说的组合物包括在Fc区具有N-糖苷连接糖链复合体的抗体分子:采用已知的方法如肼解作用、酶消化等[生物化学实验方法23-糖蛋白糖链研究方法(Japan Scientific Societies Press),Reiko Takahashi编著(1989)],从抗体分子中释放糖链,对释放的糖链进行荧光标记或放射性同位素标记,然后通过层析分离标记的糖链。此外,还可以通过HPAED-PAD方法[J.Liq.Chromatogr.,6,1557(1983)]的分析测定释放的糖链。
在本发明中,中国仓鼠卵巢组织来源的CHO细胞包括从中国仓鼠(灰仓鼠)卵巢组织建立的细胞系的任何细胞。实例包括在下述文献中描述的CHO细胞如,Journal of Experimental Medicine,108,945(1958);Proc.Natl.Acad.Sci.USA,60,1275(1968);Genetics,55,513(1968);Chromosoma,41,129(1973);Methods in Cell Science,18,115(1996);Radiation Research,148,260(1997);Proc,Natl.Acad.Sci.USA,77,4216(1980);Proc.Natl.Acad.Sci.USA,60,1275(1968);Cell,6,121 (1975);Molecular Cell Genetics,Appendix I,II(pp.883-900);等。此外,在ATCC(The American Type Culture Collection)中注册的CHO-K1(ATCC CCL-61)、DUXB11(ATCC CCL-9096)和Pro-5(ATCCCCL-1781),和可从商业获得的CHO-S(Life Technologies,Cat#11619)或通过采用各种媒介物改造细胞系获得的亚细胞系,也可以被举例。
在本发明中,涉及细胞内糖核苷酸,GDP-岩藻糖合成的酶可以是任何酶,只要它涉及细胞内糖核苷酸,GDP-岩藻糖的合成,作为糖链的岩藻糖供应源。涉及细胞内糖核苷酸,GDP-岩藻糖合成的酶是对细胞内糖核苷酸,GDP-岩藻糖的合成有影响的酶。
细胞内糖核苷酸,GDP-岩藻糖是通过从头合成途径或补救合成途径供给的。因此,所有涉及合成途径的酶类均包括在涉及细胞内糖核苷酸,GDP-岩藻糖合成的酶中。
涉及细胞内糖核苷酸,GDP-岩藻糖从头合成途径的酶实例包括,GDP-甘露糖4,6-脱氢酶(下文被称作“GMD”)、GDP-酮-6-脱氧甘露糖3,5-差向异构酶4-还原酶(下文被称作“Fx”)等等。
涉及细胞内糖核苷酸,GDP-岩藻糖补救合成途径的酶的实例包括,GDP-β-L-岩藻糖焦磷酸化酶(下文被称作“GFPP”)、岩藻糖激酶等。
作为对细胞内糖核苷酸,GDP-岩藻糖的合成有影响的酶,影响涉及细胞内糖核苷酸,GDP-岩藻糖合成的酶活性的酶和影响作为酶底物的物质结构的酶也包括在内。
在本发明内,GMD的实例包括:
由下列(a)或(b)的DNA编码的蛋白:
(a)包括SEQ ID NO:65描绘的核苷酸序列的DNA;
(b)与包括SEQ ID NO:65描绘的核苷酸序列的DNA在严格条件下杂交,并编码具有GMD活性的蛋白的DNA,
(c)包括SEQ ID NO:71描绘的氨基酸序列的蛋白,
(d)包括在SEQ ID NO:71描绘的氨基酸序列中至少一个氨基酸被删除、取代、插入和/或添加的氨基酸序列,并具有GMD活性的蛋白,
(e)包括与SEQ ID NO:71描绘的氨基酸序列至少有80%同源性的氨基酸序列并具有GMD活性的蛋白,等等。
而且,编码GMD氨基酸序列的DNA的实例包括含有SEQ IDNO:65描绘的核苷酸序列的DNA和与含有SEQ ID NO:65描绘的核苷酸序列的DNA在严格条件下杂交,并编码具有GMD活性的氨基酸序列的DNA。
在本发明中,Fx的实例包括:
由下列(a)或(b)的DNA编码的蛋白:
(a)包括SEQ ID NO:48描绘的核苷酸序列的DNA;
(b)与包括SEQ ID NO:48描绘的核苷酸序列的DNA在严格条件下杂交,并编码具有Fx活性的蛋白的DNA,
(c)包括SEQ ID NO:72描绘的氨基酸序列的蛋白,
(d)包括在SEQ ID NO:72描绘的氨基酸序列中至少一个氨基酸被删除、取代、插入和/或添加的氨基酸序列,并具有Fx活性的蛋白,
(e)包括与SEQ ID NO:72描绘的氨基酸序列至少有80%同源性的氨基酸序列并具有Fx活性的蛋白,等等。
而且,编码Fx氨基酸序列的DNA的实例包括含有SEQ ID NO:48描绘的核苷酸序列的DNA和含有SEQ ID NO:48描绘的核苷酸序列的DNA在严格条件下杂交,并编码具有Fx活性的氨基酸序列的DNA。
在本发明中,GFPP的实例包括:
由下列(a)或(b)的DNA编码的蛋白:
(a)包括SEQ ID NO:51描绘的核苷酸序列的DNA;
(b)与包括SEQ ID NO:51描绘的核苷酸序列的DNA在严格条件下杂交,并编码具有GFPP活性的蛋白的DNA,
(c)包括SEQ ID NO:73描绘的氨基酸序列的蛋白,
(d)包括在SEQ ID NO:73描绘的氨基酸序列中至少一个氨基酸被删除、取代、插入和/或添加的氨基酸序列,并具有GFPP活性的蛋白,
(e)包括与SEQ ID NO:73描绘的氨基酸序列至少有80%同源性的氨基酸序列并具有GFPP活性的蛋白,等等。
而且,编码GFPP的氨基酸序列的DNA实例包括含有SEQ ID NO:51描绘的核苷酸序列的DNA和含有SEQ ID NO:51描绘的核苷酸序列的DNA在严格条件下杂交,并编码具有Fx活性的氨基酸序列的DNA。
在本发明中,涉及N-糖苷连接糖链复合体中岩藻糖的1号位置与N-乙酰氨基葡萄糖的6号位置在还原末端经α-键连接的糖链修饰的酶包括任何酶,只要它涉及N-糖苷连接糖链复合体中岩藻糖的1号位置与N-乙酰氨基葡萄糖的6号位置在还原末端经α-键连接的反应。涉及N-糖苷连接糖链复合体中岩藻糖的1号位置与N-乙酰氨基葡萄糖的6号位置在还原末端经α-键的连接反应的酶是指,对N-糖苷连接糖链复合体中岩藻糖的1号位置与N-乙酰氨基葡萄糖的6号位置在还原末端经α-键的连接反应有影响的酶。
涉及N-糖苷连接糖链复合体中岩藻糖的1号位置与N-乙酰氨基葡萄糖的6号位置在还原末端经α-键的连接反应的酶的实例包括α-1,6-岩藻糖基转移酶、α-L-岩藻糖苷酶等。
而且,实例包括影响涉及N-糖苷连接的糖链复合体中岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键的连接反应的酶活性的酶,和影响作为酶底物的物质结构的酶。
在本发明中,α-1,6-岩藻糖基转移酶的实例包括:
由下列(a)、(b)、(c)或(d)的DNA编码的蛋白:
(a)包括SEQ ID NO:1描绘的核苷酸序列的DNA;
(b)包括SEQ ID NO:2描绘的核苷酸序列的DNA;
(c)与包括SEQ ID NO:1描绘的核苷酸序列的DNA在严格条件下杂交,并编码具有α-1,6-岩藻糖基转移酶活性的蛋白的DNA;
(d)与包括SEQ ID NO:2描绘的核苷酸序列的DNA在严格条件下杂交,并编码具有α-1,6-岩藻糖基转移酶活性的蛋白的DNA;
(e)包括SEQ ID NO:23描绘的氨基酸序列的蛋白,
(f)包括SEQ ID NO:24描绘的氨基酸序列的蛋白,
(g)包括在SEQ ID NO:23描绘的氨基酸序列中至少一个氨基酸被删除、取代、插入和/或添加的氨基酸序列,并具有α-1,6-岩藻糖基转移酶活性的蛋白,
(h)包括在SEQ ID NO:24描绘的氨基酸序列中至少一个氨基酸被删除、取代、插入和/或添加的氨基酸序列,并具有α-1,6-岩藻糖基转移酶活性的蛋白,
(i)包括与SEQ ID NO:23描绘的氨基酸序列至少有80%同源性的氨基酸序列,并具有α-1,6-岩藻糖基转移酶活性的蛋白,
(j)包括与SEQ ID NO:24描绘的氨基酸序列至少有80%同源性的氨基酸序列,并具有α-1,6-岩藻糖基转移酶活性的蛋白,等等。
而且,编码α-1,6-岩藻糖基转移酶的氨基酸序列的DNA实例包括含有SEQ ID NO:1或2描绘的核苷酸序列的DNA和与含有SEQ ID NO:1或2描绘的核苷酸序列的DNA在严格条件下杂交,并编码具有α-1,6-岩藻糖基转移酶活性的氨基酸序列的DNA。
在本发明中,在严格条件下杂交的DNA是通过如下方法获得的DNA,如集落杂交、噬菌斑杂交或DNA印迹杂交,采用以下DNA作为探针如具有SEQ ID NO:1、2、48、51或65所描绘的核苷酸序列的 DNA或其部分片段,并特别包括可以通过以下步骤被鉴定的DNA:采用固定有集落或噬菌斑来源的DNA片段的滤器,在存在0.7至1.0M氯化钠的情况下于65℃进行杂交,然后用0.1至2×SSC溶液(含150mM氯化钠和15mM柠檬酸钠的1×SSC溶液的组合物)在65℃冲洗滤器。可以按照以下文献中描述的方法进行杂交,如分子克隆,实验室指南,第二版,Cold Spring Harbor Laboratory Press(1989)(下文被称作“分子克隆,第二版”),分子生物学现代方法,John Wiley & Sons,1987-1997(下文被称作“分子生物学现代方法”);DNA克隆1:核心技术,实践方法,第二版,牛津大学(1995);等。可杂交的DNA的实例包括与SEQ ID NO:1、2、48、51或65所描绘的核苷酸序列具有同源性的DNA,同源性至少60%或更高,优选地70%或更高,更优选地80%或更高,更加优选地90%或更高,极优选地95%或更高,最优选地98%或更高。
在本发明中,包括在SEQ ID NO:23、24、71、72或73所描绘的氨基酸序列中至少一个氨基酸被删除、取代、插入和/或添加的氨基酸序列,并具有α-1,6-岩藻糖基转移酶活性、GMD活性、Fx活性或GFPP活性的蛋白可以通过如下步骤获得,例如在具有SEQ ID NO:1、2、65、48或51所描绘的氨基酸序列的蛋白的编码DNA中分别导入定点突变,采用以下文献中描述的定点诱变方法,如分子克隆,第二版;分子生物学现代方法;Nucleic Acids Research,10,6487(1982);Proc.Natl.Acad.Sci.USA,79,6409(1982);Gene,34,315(1985);Nucleic Acids Research, 13,4431(1985);Proc.Natl.Acad.Sci.USA,82,488(1985);等。要删除、取代、插入和/或添加的氨基酸数目是一个或以上,此数目不是特别限定的,但该数目是通过已知技术如定点诱变可以被删除、取代或添加的数目,例如是1至数十,优选地1至20,更优选地1至10,最优选地1至5。
此外,为保持要在本发明中使用的蛋白的α-1,6-岩藻糖基转移酶活性、GMD活性、Fx活性或GFPP活性,当采用分析软件如BLAST[J.Mol.Biol.,215,403(1990)]、FASTA[Methods in Enzymology,183,63 (1990)]等计算时,与SEQ ID NO:23、24、71、72或73所描绘的氨基酸序列至少有80%或更高的同源性,优选地85%或更高,更优选地90%或更高,更加优选地95%或更高,极优选地97%或更高,最优选地99%或更高。
本发明的CHO细胞的实例包括其中的酶活性被降低或去除的细胞。
其中的酶活性被降低或删除的细胞包括,其中涉及细胞内糖核苷酸,GDP-岩藻糖合成的酶活性,或涉及糖链修饰的酶活性被降低或删除的细胞,在糖链中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在N-糖苷连接糖链复合体的还原末端经α-键连接。作为获得这种细胞的方法,可以使用任何技术,只要它可以降低或去除目的酶的活性。降低或去除酶活性的技术实例包括:
(a)定向编码酶的基因的基因破坏技术;
(b)编码酶的基因的显性失活突变体的导入技术;
(c)在酶中引入突变的技术;
(d)抑制编码酶的基因转录或翻译的技术;
(e)选择抵抗凝集素的细胞系的技术,凝集素识别在N-糖苷连接的糖链复合体中岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接的糖链,等等。
因此,可以通过以下方法获得抗凝集素的细胞系:在含有预定浓度凝集素的培养基中培养细胞,然后选择获得这种特性的细胞系,即其存活率比亲代细胞系具有统计显著性的升高至少2倍,优选地3倍,更优选地5倍或更高。此外,还可以这样获得,在含有凝集素的培养基中培养细胞,然后选择凝集素浓度是其亲代细胞系的至少2倍、优选地5倍、更优选地10倍、最优选地20倍或以上的情况下,能够以特定的存活率,如以80%存活率培养的细胞系。
当凝集素识别在N-糖苷连接糖链中岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接的糖链结构时,可以使用任何能够识别此糖链结构的凝集素。实例包括兵豆(Lens culinaris)凝集素LCA(来自Lens culinaris的晶状体凝集素)、豌豆凝集素PSA(来自豌豆(Pisum sativum)的豌豆凝集素)、蚕豆凝集素VFA(来自蚕豆(Viciafaba)的凝集素)、Aleuria aurantia凝集素AAL(来自Aleuria aurantia的凝集素)等。
本发明的CHO细胞可以产生一种抗体组合物,同在应用降低或删除目的酶活性的技术前亲代CHO细胞所产生的抗体组合物相比,具有较高的ADCC活性。
此外,本发明的CHO细胞可以产生一种抗体组合物,同其中岩藻糖不在糖链还原端结合到N-乙酰氨基葡萄糖上的糖链占与抗体组合物中含有的Fc功能区结合的N-糖苷连接糖链总复合体的比率不足20%的抗体组合物相比,具有较高的ADCC活性。
被用于本发明的亲代细胞系的实例是其中的酶活性没有下降的细胞,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。特别地,使用没有被处理以降低或删除酶活性的细胞,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
在本发明中,ADCC活性是细胞毒活性,其中结合到活体内肿瘤细胞上细胞表面抗原上的抗体,经抗体Fc区和效应细胞表面上存在的Fc受体激活效应细胞,从而阻碍肿瘤细胞等[单克隆抗体:原理和应用,Wiley-Liss,Inc.,2.1章(1955)]。效应细胞的实例包括杀伤细胞、自然杀伤细胞、活化的巨噬细胞等。
本发明还涉及通过基因工程技术降低了其中酶活性的细胞(下文被称作“本发明的宿主细胞”),所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。本发明的宿主细胞被用作产生具有高ADCC活性的抗体组合物的宿主细胞。
本发明的宿主细胞可以是任何宿主,只要它可以表达抗体分子。实例包括酵母细胞、动物细胞、昆虫细胞、植物细胞等。细胞的实例包括将在后面第3项中的细胞。在动物细胞中,优选的实例包括来自中国仓鼠卵巢组织的CHO细胞、大鼠骨髓瘤细胞系YB2/3HL.P2.G11.16Ag.20细胞、小鼠骨髓瘤细胞系NS0细胞、小鼠骨髓瘤SP2/0-Ag14细胞、来自叙利亚仓鼠肾组织的BHK细胞、产生抗体的杂交瘤细胞、人白血病细胞系Namalwa细胞、胚胎干细胞、受精卵细胞等。
本发明在下面详细描述。
1.制备本发明的宿主细胞
本发明的宿主细胞可以通过下列技术制备。
(1)定向编码酶基因的基因破坏技术
本发明的宿主细胞可以采用基因破坏技术制备,该技术定向涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰的酶,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。涉及细胞内糖核苷酸,GDP-岩藻糖合成的酶的实例包括GMD、Fx、GFPP、岩藻糖激酶等。涉及N-糖苷连接的糖链复合体中岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接的糖链修饰的酶的实例包括α-1,6-岩藻糖基转移酶、 α-L-岩藻糖苷酶等。
这里所用的基因包括DNA和RNA。
基因破坏方法可以是任何方法,只要它可以破坏所包括的靶酶的基因。实例包括反义方法、核酶方法、同源重组方法、RNA-DNA寡核苷酸法、RNAi法、应用逆转录病毒的方法、应用转座子的方法等。这些方法在下面特别地描述。
(a)通过反义方法或核酶方法制备本发明的宿主细胞
本发明的宿主细胞可以通过下面文献中描述的核酶方法制备,Cell Technology,12,239(1993);BIO/TECHNOLOGY,17,1097(1999);Hum.Mol.Genet.,5,1083(1995);Cell Technology,13,255(1994);Proc.Natl.Acad.Sci.USA,96,1886(1999);或类似的方法,如通过下面的定向酶的方式,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
制备编码酶的cDNA或基因组DNA,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
测定制备的cDNA或基因组DNA的核苷酸序列。
根据测定的DNA序列,设计合适长度的反义基因或含编码酶的DNA部分或其一部分非翻译区或内含子的的核酶构建物,所述DNA编码的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
为在细胞内表达反义基因或核酶,通过将制备的DNA的片断或全长插入合适的表达载体的启动子下游中,制备重组载体。
通过将重组载体导入适合表达载体的宿主细胞中获得转化体。
通过根据酶活性选择转化体可以获得本发明的宿主细胞,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。还可以根据细胞膜上糖蛋白的糖链结构或产生的抗体分子的糖链结构,通过选择转化体而获得本发明的宿主细胞。
作为用于产生本发明宿主细胞的宿主细胞,可以使用任何细胞如酵母、动物细胞、昆虫细胞或植物细胞,只要它具有编码靶酶的基因,所述的靶酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。实例包括将在后面第3项中描述的宿主细胞。
作为表达载体,使用的载体可在宿主细胞中自主复制或被整合进染色体中,并在设计的反义基因或核酶可以被传递的位置含有启动子。实例包括将在后面第3项中描述的表达载体。
关于将基因引导进各种宿主细胞的方法,可以使用将在后面第3项中描述的、导入适合各种宿主细胞的重组载体的方法。
下面的方法可以作为根据酶活性选择转化体的方法而被举例,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡 萄糖6号位置在还原末端经α-键连接。
选择转化体的方法:
细胞选择方法的实例包括下列文献中描述的生物化学方法或基因工程技术:新生物化学实验系列3-糖类I,糖蛋白(New Biochemical Experimentation Series 3-Saccharides I,Glycoprotein)(Tokyo Kagaku Dojin),由日本生物化学会编著(1988);细胞工程,增补,实验方法系列,糖生物学实验方法,糖蛋白,糖脂和蛋白聚糖(Shujun-sha),Naoyuki Taniguchi,Akemi Suzuki,Kiyoshi Furukawa和Kazuyuki Sugawara编著(1996);分子克隆,第二版;分子生物学现代方法;等,所选细胞中的酶活性是下降的,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。生物化学方法的实例包括采用酶特异的底物评价酶活性的方法等。基因工程技术的实例包括Northern分析(RNA印迹分析)、逆转录酶-多聚酶链式反应(RT-PCR)等,它测量编码酶的基因的mRNA的量。
根据细胞膜上糖蛋白的糖链结构选择转化体的方法的实例包括将在后面第1(5)项中描述的方法。根据产生的抗体分子的糖链结构选择转化体的方法的实例包括将在后面第5和6项中描述的方法。
作为编码酶的cDNA的制备方法以下面的方法为例,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
DNA的制备:
从人或非人动物的组织或细胞中制备总RNA或mRNA。
从制备的总RNA或mRNA建立cDNA文库。
根据酶的氨基酸序列产生简并引物,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接,采用建立的cDNA文库作为模板通过PCR获得编码酶的基因片段,所述的基因片段编码的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
采用获得的基因片段作为探针,通过筛选cDNA文库可以获得编码酶的DNA,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
关于人或非人组织或细胞的mRNA,可以使用商业购得的产品(如由Clontech生产的),或可以从人或非人动物组织或细胞中以下面的方式制备。从人或非人动物组织或细胞中制备总RNA的方法的实例包括,硫氰酸胍-三氟醋酸铯法[Methods in Enzymology,154,3(1987)]、酸性硫氰酶胍酚氯仿(AGPC)法[Analytical Biochemistry,162,156(1987);Experimental Medicine,9,1937(1991)]等。
此外,从总RNA制备mRNA为poly(A)+RNA的方法的实例包括寡聚(dT)固定化纤维素柱法(分子克隆,第二版)等。
另外,mRNA可以采用试剂盒制备,如Fast Track mRNA分离试剂盒(Invitrogen制造)、Quick Prep mRNA纯化试剂盒(Pharmacia制造)或类似试剂盒。
cDNA文库是从制备的人或非人动物组织或细胞的mRNA中建立的。建立cDNA文库的方法的实例包括下面文献中所描述的方法:分 子克隆,第二版;分子生物学现代方法;实验室指南,第二版(1989);等,或采用商业购买试剂盒的方法如用于cDNA合成的SuperScript Plasmid System和Plasmid Cloning(Life Technologies制造)、ZAP-cDNA合成试剂盒(STRATAGENE制造)等。
作为用于建立cDNA文库的克隆载体,可以使用任何载体如噬菌体载体、质粒载体、或类似载体,只要它在大肠杆菌K12中可自主复制。实例包括ZAP Express[STRATAGENE制造,Strategies,5,58(1992)],pBluescript II SK(+)[Nucleic Acids Research,17,9494(1989)]、λZAP II(STRATAGENE制造),λgt10和λgt11[DNA Cloning,A Practical Approach,1,49(1985)],λTriplEx (Clontech制造),λExCell(Pharmacia制造),pcD2[Mol.Cell.Biol.,3,280(1983)],pUC18[Gene,33,103(1985)]等。
任何微生物可以被用作宿主微生物,但大肠杆菌是优选使用的。实例包括大肠杆菌XL1-Blue MRF’[STRATAGENE制造,Strategies,5,81(1992)],大肠杆菌C600[Genetics,39,440(1954)],大肠杆菌Y1088[Science,222,778(1983)],大肠杆菌Y1090[Science,222,778(1983)]、大肠杆菌NM522[J.Mol.Biol.,166,1(1983)],大肠杆菌K802[J.Mol.Biol.,16,118(1966)],大肠杆菌JM105[Gene,38,275(1985)]等。
cDNA文库可被用在如随后的分析中,且为了通过减少非全长cDNA的比例而尽可能有效地获得全长cDNA,由Sugano等人开发的寡聚帽方法制备的cDNA文库[Gene,138,171(1994);Gene,200,149(1997);Protein,Nucleic Acid and Protein,41,603(1996);Experimental Medicine,11,2491(1993);cDNA克隆(Yodo-sha)(1996);制备基因文库的方法(Yodo-sha)(1994)]可被用于下面的分析中。
根据酶的氨基酸序列制备对推测的编码该氨基酸序列的核苷酸序列的5’-末端和3’-末端特异的简并引物,所述的酶涉及细胞内糖核苷 酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接,采用制备的cDNA文库作为模板通过PCR[PCR方法,Academic Press(1990)]扩增DNA,以获得编码酶的基因片段,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
通过通常用于核苷酸分析的方法,如Sanger等人的双脱氧方法[Proc.Natl.Acad.Sci.USA,74,5463(1977)]、核苷酸序列分析仪如ABIPRISM 377DNA测序仪(PE Biosystems制造)或类似的方法,可以确定所获得的基因片段是编码酶的DNA,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
通过对从人或非人动物组织或细胞中含有的mRNA合成的cDNA或cDNA文库进行集落杂交或噬菌斑杂交(分子克隆,第二版),采用基因片段作为DNA探针,可以获得编码酶的DNA,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
此外,采用从人或非人动物组织或细胞中含有的mRNA合成的cDNA或cDNA文库作为模板,并采用获取编码酶的基因片段所使用的引物,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接,通过PCR进行筛选,也可以获得编码酶的DNA,其中所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中, 岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
获得的编码酶的DNA的核苷酸序列,从其末端开始分析,并通过通常用于核苷酸分析的方法,如Sanger等人的双脱氧方法[Proc.Natl.Acad.Sci.USA,74,5463(1977)]、核苷酸序列分析仪如ABIPRISM 377DNA测序仪(PE Biosystems制造)或类似的方法来确定,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
通过搜索核苷酸序列数据库如GenBank、EMBL、DDBJ等,采用同源性检索程序如以确定的cDNA核苷酸序列为基础的BLAST,也可以从数据库中的基因确定编码酶的基因,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
通过本方法获得的基因的核苷酸序列实例包括由SEQ ID NO:48、51或65所描绘的核苷酸序列,所述的基因编码涉及细胞内糖核苷酸,GDP-岩藻糖合成的酶。基因的核苷酸序列的实例包括由SEQ ID NO:1或2所描绘的核苷酸序列,所述的基因编码涉及N-糖苷连接的糖链复合体中岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接的糖链修饰的酶。
用DNA合成仪如Perkin Elmer生产的392型DNA合成仪或类似仪器,采用亚磷酰胺(phosphamidite)方法,根据确定的DNA核苷酸序列,也可以获得编码酶的cDNA,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
作为制备基因组DNA的方法的实例,下面描述的方法是举例说明的,所述的基因组DNA编码的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
基因组DNA的制备:
制备基因组DNA的方法实例包括下面文献中描述的已知方法:分子克隆,第二版;分子生物学现代方法;等。此外,基因组DNA也可以采用试剂盒分离,如Genome DNA Library Screening System(Genome Systems制造)、Universal GenomeWalkerTM试剂盒(CLONTECH制造)或类似试剂盒,所述的基因组DNA编码的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
通过本方法获得的基因组DNA核苷酸序列的实例包括由SEQ ID NO:67或70所描绘的核苷酸序列,所述的基因组DNA编码涉及细胞内糖核苷酸,GDP-岩藻糖合成的酶。基因组DNA核苷酸序列的实例包括由SEQ ID NO:3所描绘的核苷酸序列,所述的基因组DNA编码涉及N-糖苷连接的糖链复合体中岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接的糖链修饰的酶。
此外,本发明的宿主细胞也可以不采用表达载体而通过直接引导反义寡核苷酸或核糖酶进入宿主细胞来获得,反义寡核苷酸或核糖酶是根据编码酶的核苷酸序列设计的,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
反义寡核苷酸或核糖酶可以用通常的方法或采用DNA合成仪来 制备。特别是,可以根据具有cDNA和基因组DNA的核苷酸序列中连续的5至150个碱基、优选地5至60个碱基、更优选地10至40个碱基的相应序列的寡核苷酸的序列信息,通过合成对应于该寡核苷酸(反义寡核苷酸)或含该寡核苷酸序列的核糖酶的互补序列的寡核苷酸来制备,所述cDNA和基因组DNA编码的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
寡核苷酸的实例包括寡聚RNA和该寡核苷酸的衍生物(下文被称作“寡核苷酸衍生物”)。
寡核苷酸衍生物的实例包括,寡核苷酸中磷酸二酯键更换为磷硫胺键者、寡核苷酸中磷酸二酯键更换成N3’-P5’磷酸胺键者、寡核苷酸中核糖和磷酸二酯键更换为肽-核酸键者、寡核苷酸中尿嘧啶被替换成C-5丙炔尿嘧啶者、寡核苷酸中尿嘧啶被替换成C-5噻唑尿嘧啶者、寡核苷酸中胞嘧啶被替换成C-5丙炔胞嘧啶者、寡核苷酸中胞嘧啶被替换成吩嗪修饰的胞嘧啶者、寡核苷酸中核糖被替换成2’-O-丙基核糖者和寡核苷酸中核糖被替换成2’-甲氧基乙氧基核糖者[Cell Technology, 16,1463(1997)]。
(b)通过同源重组制备本发明的宿主细胞
采用编码酶的基因作为靶基因,经同源重组技术通过修饰染色体上的靶基因,可以产生本发明的宿主细胞,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
染色体上的靶基因可以通过采用以下文献中描述的方法被修饰:操作鼠胚胎(Manipulating the Mouse Embryo),实验室指南,第二版,Cold Spring Harbor Laboratory Press(1994)(下文被称作“操作鼠胚胎, 实验室指南”);基因靶向(Gene Targeting),实践方法,IRL Press at Oxford University Press(1993);生物指南系列8,基因靶向,用ES细胞制备突变鼠(Gene Targeting,Preparation of Mutant Mice using ES Cells),Yodo-sha(1995)(下文被称作“生物指南系列8,基因靶向,用ES细胞制备突变鼠”);或类似文献,例如下面所述。
制备基因组DNA,它编码的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
根据基因组DNA的核苷酸序列,制备靶载体以同源重组要被修饰的靶基因(如,酶的结构基因或启动子基因,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接)。
通过引导制备的靶载体进入宿主细胞,并选择在靶基因和靶载体之间发生同源重组的细胞,可以产生本发明的宿主细胞。
作为宿主细胞,可以使用任何细胞如酵母、动物细胞、昆虫细胞或植物细胞,只要它具有编码酶的基因,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。实例包括将在后面第3项中描述的宿主细胞。
制备基因组DNA的方法的实例包括在第1(1)(a)项中制备基因组DNA中描述的方法等,基因组DNA编码的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
基因组DNA核苷酸序列的实例包括由SEQ ID NO:67或70所描绘的核苷酸序列,基因组DNA编码涉及细胞内糖核苷酸,GDP-岩藻糖合成的酶。基因组DNA核苷酸序列的实例包括由SEQ ID NO:3所描绘的核苷酸序列,所述基因组DNA编码涉及N-糖苷连接的糖链复合体中岩藻糖的1号位置与N-乙酰氨基葡萄糖的6号位置在还原末端经α-键连接的糖链修饰的酶。
用于同源重组靶基因的靶载体可以按照下面文献中描述的方法制备:基因靶向,实践方法,IRL Press at Oxford University Press(1993);生物指南系列8,基因靶向,用ES细胞制备突变鼠,Yodo-sha(1995)(下文被称作“生物指南系列8,基因靶向,用ES细胞制备突变鼠”);或类似文献。靶载体可被用作替换型或插入型。
为引导靶载体进入各种宿主细胞,可以使用将在后面第3项中描述的、引导适合各种宿主细胞的重组载体的方法。
有效地选择同源重组体的方法实例包括下列方法如,阳性选择、启动子选择、阴性选择或在下面文献中描述的polyA选择:基因靶向,实践方法,IRL Press at Oxford University Press(1993);生物指南系列8,基因靶向,用ES细胞制备突变鼠,Yodo-sha(1995);或类似文献。从选择的细胞系中选择目的同源重组体的方法的实例包括基因组DNA的DNA印迹杂交方法(分子克隆,第二版)、PCR[PCR方法,Academic Press(1990)]等。
(c)通过RDO方法制备本发明的宿主细胞
例如,本发明的宿主细胞可以通过如下的RDO(RNA-DNA寡核苷酸)方法,通过靶向编码酶的基因而制备,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端 经α-键连接。
制备编码酶的cDNA或基因组DNA,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
检测制备的cDNA或基因组DNA的核苷酸序列。
根据检测的DNA序列,设计和合成含DNA部分或其一部分非翻译区或内含子的合适长度的RDO构建物,所述DNA部分编码的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
本发明的宿主细胞可以通过引导合成的RDO进入宿主细胞,然后选择在靶酶中发生突变的转化体,靶酶就是涉及细胞内糖核苷酸,GDP-岩藻糖合成的酶,或涉及N-糖苷连接的糖链复合体中岩藻糖的1号位置与N-乙酰氨基葡萄糖的6号位置在还原末端经α-键连接的糖链修饰的酶。
作为宿主细胞,可以使用任何细胞如酵母、动物细胞、昆虫细胞或植物细胞,只要它具有编码靶酶的基因,靶酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。实例包括将在后面第3项中描述的宿主细胞。
引导RDO进入各种宿主细胞的方法的实例包括引导适合各种宿主细胞的重组载体的方法,它将在后面第3项中描述。
制备cDNA的方法的实例包括在第1(1)(a)项中制备DNA中描述的方法等,cDNA编码的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
制备基因组DNA的方法的实例包括在第1(1)(a)项中制备基因组DNA中描述的方法等,基因组DNA编码的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖的1号位置与N-乙酰氨基葡萄糖的6号位置在还原末端经α-键连接。
DNA的核苷酸序列可以通过以下步骤检测:用合适的限制酶消化DNA,将其片段克隆进质粒如pBluescript SK(-)(Stratagene制造)或类似者中,对克隆进行通常用作核苷酸序列分析方法的反应,如Sanger等人的双脱氧法[Proc.Natl.Acad.Sci.USA,74,5463(1977)]或类似方法,然后用自动核苷酸序列分析仪如A.L.F.DNA测序仪(Pharmacia制造)或类似仪器分析该克隆。
RDO可以通过通常的方法或应用DNA合成仪制备。
通过引导ROD进入宿主细胞而在编码涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及N-糖苷连接的糖链复合体中岩藻糖的1号位置与N-乙酰氨基葡萄糖的6号位置在还原末端经α-键连接的糖链修饰酶的基因中选择发生突变的细胞的方法实例包括:在分子克隆,第二版、分子生物学现代方法等中描述的直接检测染色体基因突变的方法;
在1(1)(a)项中描述的经评价导入的酶活性而选择转化体的方法,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接;采用以后将在1(5)项中描述的细胞膜上糖蛋白的糖结构而选择转化体的方法;和根据以后将在5 或6项中描述的产生的抗体分子的糖结构而选择转化体的方法,等。
ROD构建物可以按照下面文献中描述的方法设计:Science,273,1386(1996);Nature Medicine,4,285(1998);Hepatology,25,1462(1997);Gene Therapy,5,1960(1999);J.Mol.Med.,75,829(1997);Proc.Natl.Acad.Sci.USA,96,8774(1999);Proc.Natl.Acad.Sci.USA,96,8768(1999);Nuc.Acids.Res.,27,1323(1999);Invest.Dematol.,111,1172(1998);Nature Biotech.,16,1343(1998);Nature Biotech.,18,43(2000);Nature Biotech.,18,555(2000);等。
(d)通过RNAi方法制备本发明的宿主细胞
例如,本发明的宿主细胞可以通过如下的RNAi(RNA干预)方法,通过靶向编码酶的基因而制备,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
制备编码酶的cDNA,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
检测制备的cDNA的核苷酸序列。
根据检测的DNA序列,设计含DNA编码部分或其一部分非翻译区的合适长度的RNAi基因构建物,所述DNA编码部分编码的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
为在细胞内表达RNAi基因,通过将制备的DNA的片段或全长插入到合适的表达载体的启动子下游中而制备重组载体。
通过引导重组载体进入适合表达载体的宿主细胞中获得转化体。
通过根据酶的活性、或细胞膜上糖蛋白或产生的抗体分子的糖链结构选择转化体,可以获得本发明的宿主细胞,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
作为宿主细胞,可以使用任何细胞如酵母、动物细胞、昆虫细胞或植物细胞,只要它具有编码靶酶的基因,靶酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。实例包括将在后面第3项中描述的宿主细胞。
作为表达载体,使用可在宿主细胞中自主复制的载体,或可以被整合进染色体并在设计的RNAi基因可以被传递的位置上含有启动子的载体。实例包括将在后面第3项中描述的表达载体。
作为将基因导入各种宿主细胞中的方法,可以使用将在后面第3项中描述的、引导适合各种宿主细胞的重组载体的方法。
根据酶的活性选择转化体的方法实例包括1(1)(a)项中描述的方法,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
根据细胞膜上糖蛋白的糖链结构选择转化体的方法的实例包括将在后面1(5)项中描述的方法。根据产生的抗体分子的糖链结构选择转化体的方法的实例包括将在后面5或6项中所描述的方法。
制备cDNA的方法的实例包括在第1(1)(a)项中制备DNA中描述的方法等,cDNA编码的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
此外,本发明的宿主细胞也可以不采用表达载体而通过直接导入RNAi基因来获得,RNAi基因是根据编码酶的核苷酸序列设计的,酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
RNAi基因可以通过通常的方法或应用DNA合成仪制备。
RNAi基因构建物可以按照以下文献中描述的方法来设计:Nature, 391,806(1998);Proc.Natl.Acad.Sci.USA,95,15502(1998);Nature, 395,854(1998);Proc.Natl.Acad.Sci.USA,96,5049(1999);Cell,95,1017(1998);Proc.Natl.Acad.Sci.USA,96,1451(1999);Proc.Natl.Acad.Sci.USA,95,13959(1998);Nature Cell Biol.,2,70(2000);等。
(e)采用转座子方法制备本发明的宿主细胞
本发明宿主细胞的制备可以通过,采用Nature Genet.,25,35(2000)或类似文献中描述的转座子系统诱导突变,然后根据酶的活性、或细胞膜上或产生的抗体分子的糖蛋白糖链结构选择突变体,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
转座子系统是通过在染色体中随机插入一个外源基因而诱导突变的系统,其中在转座子之间插入的外源基因通常被用作诱导突变的载 体,且随机地在染色体中插入基因的转座酶表达载体被同时导入细胞中。
可以使用任何转座酶,只要它适合于所要使用的转座子的序列。
作为外源基因,可以使用任何基因,只要它能够在宿主细胞DNA中诱导突变。
作为宿主细胞,可以使用任何细胞如酵母、动物细胞、昆虫细胞或植物细胞,只要它具有编码靶酶的基因,靶酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。实例包括将在后面第3项中描述的宿主细胞。为引导基因进入各种宿主细胞,可以使用将在后面第3项中描述的、引导适合各种宿主细胞的重组载体的方法。
根据酶的活性选择突变体的方法的实例包括1(1)(a)项中描述的方法,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
根据细胞膜上糖蛋白的糖链结构选择突变体的方法的实例包括将在后面1(5)项中描述的方法。根据产生的抗体的糖链结构选择突变体的方法的实例包括将在后面5或6项中所描述的方法。
(2)导入编码酶的基因的显性失活突变体的方法
采用导入酶的显性失活突变体的技术,通过靶向编码酶的基因可以制备本发明的宿主细胞,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。 涉及细胞内糖核苷酸,GDP-岩藻糖合成的酶的实例包括GMD、Fx、GFPP、墨角藻糖激酶等。涉及N-糖苷连接的糖链复合体中岩藻糖1号位置的与N-乙酰氨基葡萄糖的6号位置在还原末端经α-键连接的糖链修饰的酶的实例包括α-1,6-岩藻糖基转移酶、α-L-岩藻糖苷酶等。
酶催化具有底物特异性的特异性反应,酶的显性失活突变体可以通过破坏酶的活性中心而制备,要破坏的酶催化具有底物特异性的催化活性。制备显性失活突变体的方法如下特别地参考靶酶中的GMD来描述。
作为大肠杆菌来源的GMD三维结构的分析结果,已经显示,4个氨基酸(133位置的苏氨酸、135位置的谷氨酸、157位置的酪氨酸和161位置的赖氨酸)对酶的活性具有重要作用(Structure,8,2,2000)。也就是说,根据三维结构信息,当用其它不同的氨基酸取代这4个氨基酸制备突变体时,所有突变体的酶活性均显著地下降。另一方面,在突变体中,GMD与GMD辅酶NADP和其底物GDP-甘露糖的结合能力的改变几乎观察不到。因此,显性失活突变体可以通过取代控制GMD酶活性的4个氨基酸来制备。例如,CHO细胞来源的GMD(SEQ ID NO:65)中,显性失活突变体的制备可以通过,用其它氨基酸取代155位置的苏氨酸、157位置的谷氨酸、179位置的酪氨酸和183位置的赖氨酸,采用根据大肠杆菌来源的GMD结果的氨基酸序列信息比较同源性并预测三维结构。被引入氨基酸取代的这种基因可以通过下面文献中所描述的定点诱变而制备:分子克隆,第二版,分子生物学现代方法或类似文献。
本发明的宿主细胞可以按照分子克隆,第二版,分子生物学现代方法或类似文献中所描述的方法,采用制备的靶酶的显性失活突变体基因来制备,举例如下。
制备编码酶的显性失活突变体的基因(下文被称作“显性失活突变 体基因”),所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
如果必要,根据制备的显性失活突变体基因的全长DNA,制备含有编码蛋白部分的合适长度的DNA片段。
通过将DNA片段或全长DNA插入适当表达载体的启动子下游,产生了重组载体。
通过引导重组载体进入适于表达载体的宿主细胞获得了转化体。
通过根据酶的活性、或细胞膜上或产生的抗体分子的糖蛋白糖链结构选择转化体,可以制备本发明的宿主细胞,所述的酶活性涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
作为宿主细胞,可以使用任何细胞如酵母、动物细胞、昆虫细胞或植物细胞,只要它具有编码靶酶的基因,靶酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。实例包括将在后面第3项中描述的宿主细胞。
作为表达载体,使用可在宿主细胞中自主复制的载体,或可以被整合进染色体并在DNA转录可以被影响的位置上含有启动子的载体,所述DNA编码目的显性失活突变体。实例包括将在后面第3项中描述的表达载体。
为将基因导入各种宿主细胞,可以使用将在后面第3项中描述的、 引导适合各种宿主细胞的重组载体的方法。
根据酶的活性选择转化体的方法实例包括1(1)(a)项中描述的方法,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
根据细胞膜上糖蛋白的糖链结构选择转化体的方法实例包括将在后面1(5)项中描述的方法。根据产生的抗体分子的糖链结构选择转化体的方法实例包括将在后面5或6项中所描述的方法。
(3)在酶中引入突变的方法
本发明宿主细胞的制备可以通过,在编码酶的基因中引入突变,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接,然后选择该酶中发生了突变的目的细胞系。
涉及细胞内糖核苷酸,GDP-岩藻糖合成的酶的实例包括GMD、Fx、GFPP、墨角藻糖激酶等。涉及N-糖苷连接的糖链复合体中1号位置的岩藻糖与6号位置的N-乙酰氨基葡萄糖在还原末端经α-键连接的糖链修饰的酶的实例包括α-1,6-岩藻糖基转移酶、α-L-岩藻糖苷酶等。
方法的实例包括1)从用诱变剂对亲代细胞系进行突变诱导处理获得的突变体或自发产生的突变体中,根据酶的活性选择所需细胞系的方法,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接,2)从用诱变剂对亲代细胞系进行诱变处理获得的突变体或自发产生的突变体中,根据产生的抗体分子的糖链结构选择所需细胞系的方法,和3)从用诱变剂对 亲代细胞系进行诱变处理获得的突变体或自发产生的突变体中,根据细胞膜上糖蛋白的糖链结构选择所需细胞系的方法。
作为突变诱导处理,可以使用任何处理,只要它可以在亲代细胞系的细胞DNA中诱导点突变或删除或移码突变。
实例包括用乙基亚硝基脲、亚硝基胍、苯并芘或吖啶颜料处理以及用放射处理。此外,各种烷基化试剂和致癌物可以被用作诱变剂。使诱变剂作用在细胞上的方法的实例包括以下文献中描述的方法:组织培养技术,第3版(Asakura Shoten),由Japanese Tissue Culture Association编著(1996),Nature Genet,24,314(2000),等。
自发产生的突变体的实例包括在通常的细胞培养条件下,不使用特殊的突变诱导处理,通过连续传代培养而自发形成的突变体。
检测酶活性的方法的实例包括1(1)(a)项中描述的方法,所述的酶活性涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。识别制备的抗体分子的糖链结构的方法的实例包括将在后面5或6项中描述的方法。识别细胞膜上糖蛋白的糖链结构的方法的实例包括将在后面1(5)项中描述的方法。
(4)抑制编码酶的基因转录和/或翻译的方法
本发明的宿主细胞可以通过抑制靶基因的转录和/或翻译而制备,采用的方法如:反义RNA/DNA技术[Bioscience and Industry,50,322(1992);Chemistry,46,681(1991);Biotechnology,9,358(1992);Trendsin Biotechnology,10,87(1992);Trends in Biotechnology,10,152(1992);Cell Engineering,16,1463(1997)],三重螺旋技术[Trends in Biotechnology,10,132(1992)]或类似方法,采用编码酶的基因作为靶标,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链 修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
涉及细胞内糖核苷酸,GDP-岩藻糖合成的酶的实例的包括GMD、Fx、GFPP、墨角藻糖激酶等。涉及N-糖苷连接的糖链复合体中岩藻糖的1号位置与N-乙酰氨基葡萄糖的6号位置在还原末端经α-键连接的糖链修饰的酶的实例包括α-1,6-岩藻糖基转移酶、α-L-岩藻糖苷酶等。
(5)选择抗凝集素的细胞系的方法,凝集素识别在N-糖苷连接的糖链中岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接的糖链结构
本发明的宿主细胞可以通过采用选择抵抗植物凝血素的细胞系的方法而制备,植物凝血素识别在N-糖苷连接的糖链中岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接的糖链结构。
选择抗凝集素的细胞系的方法的实例包括,在Somatic Cell Mol.Genet.,12,51(1986)等中描述的,采用凝集素的方法,凝集素识别在N-糖苷连接的糖链中岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接的糖链结构。作为凝集素,可以使用任何凝集素,只要它是识别在N-糖苷连接的糖链中岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接的糖链结构的凝集素。实例包括,Lens culinaris凝集素LCA(来自Lens culinaris的扁豆凝集素)、豌豆凝集素PSA(来自Pisum sativum的豌豆植物凝集素)、蚕豆植物凝集素VFA(来自蚕豆的凝集素)、Aleuria aurantia凝集素AAL(来自Aleuria aurantia的凝集素)等。
特别地,本发明的抵抗凝集素的细胞系可以通过以下步骤选择:采用含凝集素浓度为1μg/ml至1mg/ml的培养基培养细胞1天至2周,优选地1天至1周,传代培养存活的细胞或收集一个集落并将其转移进培养皿中,随后用含凝集素的培养基继续培养,所述的凝集素识别 在N-糖苷连接的糖链中岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接的糖链结构。通过该方法获得的细胞系的实例包括在实施例14(2)中获得的CHO/CCR4-LCA Nega-13(FERMBP-7756),它将在以后描述。
2.制备本发明的转基因非人动物或植物或其后代
本发明的转基因非人动物或植物或其后代是其中基因组基因被修饰的转基因非人动物或植物或其后代,基因组基因被修饰的方式使得涉及抗体分子糖链修饰的酶的活性可以被控制,且它可以按照与1项中相似的方法,采用编码酶的基因作为靶标而被制备,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
在转基因非人动物中,可以通过对预期的非人动物,如牛、绵羊、山羊、猪、马、小鼠、大鼠、禽类、猴、兔或类似动物,的胚胎干细胞应用与1项中相似的方法,制备酶活性被控制的本发明胚胎干细胞,所述的酶活性涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
特别地,制备了突变体克隆,其中通过已知的同源重组技术[如,Nature,326,6110,295(1987);Cell,51,3,503(1987);或类似者],编码酶的基因是失活的或被任何序列取代,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。采用制备的突变体克隆,通过注射嵌合体进入动物受精卵胚泡的方法或通过积累嵌合体方法,可以制备含胚胎干细胞克隆和正常细胞的嵌合个体。此嵌合个体与正常个体交配,使得可以获得在全部体细胞中酶活性被降低或删除的转基因非人动物,所述的酶涉及细胞内糖核苷 酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
此外,通过对目的非人动物的受精卵应用与1项中相似的方法,可以制备其中酶活性被降低或删除的本发明受精卵细胞,所述非人动物如牛、绵羊、山羊、猪、马、小鼠、大鼠、禽类、猴、兔或类似动物,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
采用操作鼠胚胎,第二版或类似文献中描述的胚胎移植方法,通过将制备的受精卵细胞移植进假孕雌性的输卵管或子宫中,在动物分娩后可以制备酶活性被降低的转基因非人动物,所述的酶活性涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
在转基因植物中,通过对目的植物的胼胝或细胞应用与1项中相似的方法,可以制备酶活性被减低或删除的本发明胼胝,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
按照已知的方法[Tissue Culture,20(1994);Tissue Culture,21(1995);Trends in Biotechnology,15,45(1997)],采用含植物生长素和细胞分裂素使其再分化的培养基,通过培养制备的胼胝,可以制备酶活性被降低或删除的转基因植物,所述的酶涉及细胞内糖核苷酸,GDP-岩藻糖的合成,或涉及糖链修饰,其中在N-糖苷连接的糖链复合体中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在还原末端经α-键连接。
3.产生抗体组合物的步骤
抗体组合物可以采用如下文献中描述的方法通过在宿主细胞中表达而获得:分子克隆,第二版;分子生物学现代方法;抗体,实验室指南,Cold Spring Harbor Laboratory,1988(下文被称作“抗体”);单克隆抗体:原理和实践,第三版,Acad.Press,1993(下文被称作“单克隆抗体”);和抗体工程,实践方法,IRL Press at Oxford University Press(下文被称作“抗体工程”),举例如下。
制备编码抗体分子的全长cDNA和含抗体分子编码部分的合适长度的DNA片段。
通过将DNA片断或全长cDNA插入合适的表达载体的启动子下游,制备重组载体。
通过引导重组载体进入适合表达载体的宿主细胞中可以获得产生抗体分子的转化体。
作为宿主细胞,可以使用任何酵母、动物细胞、昆虫细胞、植物细胞或类似细胞,只要它可以表达目的基因。
通过基因工程技术导入了酶的细胞,如酵母、动物细胞、昆虫细胞、植物细胞或类似细胞,也可以被用作宿主细胞,所述的酶涉及与抗体分子Fc区连接的N-糖苷连接的糖链的修饰。
作为表达载体,使用可在宿主细胞中自主复制、或可以被整合进染色体中并在编码目的抗体分子的DNA可以被传递的位置含有启动子的载体。
按照1(1)(a)项DNA制备中描述的方法,采用如对目的抗体分 子特异的探针引物,可以从人或非人组织或细胞中制备cDNA。
当酵母被用作宿主细胞时,表达载体的实例包括YEP13(ATCC 37115)、YEp24(ATCC 37051)、YCp50(ATCC 37419)等。
可以使用任何启动子,只要它可以在酵母中起作用。实例包括糖酵解途径的基因如己糖激酶基因等的启动子、PH05启动子、PGK启动子、GAP启动子、ADH启动子、gal 1启动子、gal 10启动子、热休克蛋白启动子、MFα1启动子、CUP 1启动子等。
宿主细胞的实例包括属于酵母菌属、裂殖酵母菌属、克鲁维属、丝孢酵母属、Schwanniomyces属等的微生物,如酿酒酵母、粟酒裂殖酵母菌、乳酸克鲁维酵母、产糖毛孢子菌(Trichosporon pullulans)和Schwanniomyces alluvius、等。
作为引导重组载体的方法,可以使用任何方法,只要它可以引导DNA进入酵母。实例包括电穿孔法[Methods in Enzymology,194,182(1990)]、原生质球法[Proc.Natl.Acad.Sci.USA,84,1929(1978)]、乙酸锂法[J.Bacteriol.,153,163(1983)]、Proc.Natl.Acad.Sci.USA,75,1929(1978)中描述的方法等方法。
当动物细胞被用作宿主时,表达载体的实例包括pcDNAI、pcDM8(可从Funakoshi获得)、pAGE107[特开昭No.22979/91;Cytotechnology,3,133(1990)]、pAS3-3(特开昭No.227075/90)、pCDM8[Nature,329,840(1987)]、pcDNAI/Amp(Invitrogen制造)、pREP4(Invitrogen制造)、pAGE103[J.Biochemistry,101,1307(1987)]、pAGE210等。
任何启动子可以被使用,只要它可以在动物细胞中起作用。实例包括巨细胞病毒(CMV)的IE(立即早期)基因的启动子、SV40早期启 动子、逆转录病毒启动子、金属硫蛋白启动子、热休克启动子、SRα启动子等。此外,人CMV的IE基因的增强子可以与启动子一起使用。
宿主细胞的实例包括人细胞如Namalwa细胞、猴细胞如COS细胞、中国仓鼠细胞如CHO细胞或HBT5637(特开昭299/88)、大鼠骨髓瘤细胞、小鼠骨髓瘤细胞、来自叙利亚仓鼠肾的细胞、胚胎干细胞、受精卵细胞等。
作为引导重组载体的方法,可以使用任何方法,只要它可以引导DNA进入动物细胞。实例包括电穿孔法[Cytotechnology,3,133(1990)]、磷酸钙法(特开昭No.227075/90)、脂质转染法[Proc.Natl.Acad.Sci.USA,84,7413(1987)]、注射法[操控鼠胚胎,实验室指南]、采用粒子枪(基因枪)的方法(日本专利No.2606856,日本专利No.2517813)、二乙氨乙基葡聚糖法[生物指南系列4-基因传递及表达分析(Yodo-sha),由Takashi Yokota和Kenichi Arai编著(1994)]、病毒载体法(操控鼠胚胎,第二版)等。
当昆虫细胞被用作宿主时,蛋白可以通过以下文献中描述的方法表达:分子生物学现代方法,杆状病毒表达载体,实验室指南,W.H.Freeman and Company,New York(1992),Bio/Technology,6,47(1988)或类似文献。
即,通过将引入重组基因的载体和杆状病毒同时导入昆虫细胞以在昆虫细胞培养上清液中获得重组病毒,然后用重组病毒感染昆虫细胞,可以表达蛋白。
用于此方法的基因引入载体的实例包括pVL1392、pVL1393、pBlueBacIII(全部由Invitrogen制造)等。
杆状病毒实例包括感染夜蛾科(Barathra)昆虫的的苜蓿银纹夜 蛾核型多角体病毒。
昆虫细胞的实例包括Spodoptera frugiperda卵母细胞Sf9和Sf21[分子生物学现代方法,杆状病毒表达载体,实验室指南,W.H.Freeman and Company,New York(1992)]、粉斑夜蛾卵母细胞High5(Invitrogen制造)等。
为制备重组病毒,同时引导重组基因引入载体和杆状病毒的方法实例包括,磷酸钙法(日本公布的经实审的专利申请No.227075/90)、脂质转染法[Proc.Natl.Acad Sci.USA,84,7413(1987)]等。
当植物细胞被用作宿主时,表达载体的实例包括Ti质粒、烟草花叶病毒等。
作为启动子,可以使用任何启动子,只要它可以在植物细胞中起作用。实例包括花椰菜花叶病毒(CaMV)35S启动子、水稻肌动蛋白1启动子等。
宿主细胞的实例包括烟草、马铃薯、番茄、胡萝卜、豌豆、油菜、苜蓿、水稻、小麦、大麦等的植物细胞,等。
作为引导重组载体的方法,可以使用任何方法,只要它可以引导DNA进入植物细胞。实例包括采用土壤杆菌的方法(特开昭No.140885/84,特开昭No.70080/85,WO 94/00977)、电穿孔法(特开昭No.251887/85)、采用粒子枪(基因枪)的方法(日本专利No.2606856,日本专利No.2517813)等。
作为表达基因的方法,除直接表达以外,可以按照分子克隆,第二版,或类似文献中描述的方法,进行分泌生产,表达Fc区与其它蛋白的融合蛋白等。
当基因被导入了涉及糖链合成的基因的细菌、酵母、动物细胞、昆虫细胞或植物细胞表达时,可以获得通过导入的基因加上了糖或糖链的抗体分子。
通过在培养基中培养获得的转化体以在培养物中产生和聚积抗体分子,然后从得到的培养物中回收,可以获得抗体组合物。用培养基培养转化体的方法可以按照通常用于培养宿主细胞的方法进行。
作为培养转化体的培养基,可以是天然培养基或合成培养基,只要它含有如碳源、氮源、无机盐等可以被有机体吸收的物质并可以有效地进行转化体培养,所述的转化体是用原核细胞如大肠杆菌等、或真核细胞如酵母等作为宿主细胞而获得的。
作为碳源,可以使用那些可以被有机体吸收者。实例包括碳水化合物如葡萄糖、果糖、蔗糖、含它们的糖蜜、淀粉、淀粉水解产物、等;有机酸如乙酸、丙酸、等;醇类如乙醇、丙醇、等;和类似物。
氮源的实例包括氨;无机酸或有机酸的铵盐如氯化铵、硫酸铵、醋酸铵、磷酸铵、等;其它含氮化合物;蛋白胨;肉汁;酵母抽提物;玉米浆;干酪素水解物;大豆饼;大豆饼水解物;各种发酵的细胞及其水解物;等。
无机物质的实例包括磷酸二氢钾、磷酸氢二钾、磷酸镁、硫酸镁、氯化钠、硫酸亚铁、硫酸锰、硫酸铜、碳酸钙、等。
培养通常在有氧条件下进行如振荡培养、浸没-通气搅拌培养或类似者。培养温度优选15至40℃,培养时间通常为16小时至7天。在培养期间,pH保持在3.0至9.0。调节pH使用无机或有机酸、碱性溶液、尿素、碳酸钙、氨或类似物。
如果必要,在培养过程中可以在培养基内加入抗生素如氨苄青霉素、四环素或类似物。
当培养用重组载体转化的微生物时,如果必要,可以在培养基中加入诱导剂,所述的重组载体是用诱导型启动子作为启动子而获得的。例如,当培养用重组载体转化的微生物时,可以在培养基中加入异丙基-β-D-硫代乳吡喃糖苷,所述的重组载体是用lac启动子获得的;当培养用重组载体转化的微生物时,可以在培养基中加入吲哚丙烯酸,所述的重组载体是用trp启动子获得的。
当用动物细胞作为宿主细胞获得的转化体被培养时,培养基的实例包括通常所用的RPMI 1640培养基[The Journal of the American Medical Association,199,519(1967)]、Eagle’s MEM培养基[Science,122,501(1952)]、Dulbecco改进的MEM培养基[Virology,8,396(1959)]、199培养基[Proceeding of the Society for the Biological Medicine,73,1(1950)]和Whitten培养基[发育工程实验指南-转基因鼠的制备(Kodan-sha),由Katshuki编著(1987)],以及加入了胎牛血清等的培养基,和类似物。
培养通常在pH6至8、30至40℃、有5%CO2存在的条件下进行1至7天。如果必要,在培养过程中可以在培养基内加入抗生素如卡那霉素、青霉素、或类似物。
用于培养以昆虫细胞作为宿主细胞获得的转化体的培养基实例,包括通常所用的TNM-FH培养基(Pharmingen制造)、Sf-900II SFM培养基(Life Technologies制造)、ExCell 400和ExCell 405(均由JRHBiosciences制造)、Grace昆虫培养基[Nature,195,788(1962)]等。
培养通常在pH6至7和25至30℃的培养基中进行1至5天。
此外,作为偶然的需要,可以在培养过程中在培养基内加入抗生素如庆大霉素。
用植物细胞作为宿主获得的转化体可以作为细胞被培养,或通过分化成为植物细胞或器官。培养转化体的培养基实例包括通常所用的Murashige和Skoog(MS)培养基和White培养基,培养基中加入了植物激素如植物生长素、细胞分裂素等,以及类似培养基。
通常,培养在pH 5至9和20至40℃进行3至60天。
如果必要,培养过程中在培养基内可加入抗生素如卡那霉素、潮霉素或类似物。
因此,抗体组合物的产生可以通过,按照通常的培养方法培养来自微生物、动物细胞或植物细胞的转化体,转化体中含有的重组载体中插入了编码抗体分子的DNA,由此产生和聚积抗体组合物,然后从培养物中回收抗体组合物。
作为表达基因、分泌产物的方法,除直接表达以外,可以按照分子克隆,第二版中描述的方法,进行融合蛋白等的表达。
产生抗体组合物的步骤的实例包括,宿主细胞的细胞内表达方法、从宿主细胞向细胞外分泌的方法、和在宿主细胞膜外包被上产生的方法。可以因所用的宿主细胞改变或产生的抗体组合物结构来选择方法。
当本发明的抗体组合物在宿主细胞内或宿主细胞膜外包被上产生时,可以按照以下方法肯定地细胞外分泌,Paulson等人的方法[J.Biol.Chem.,264,17619(1989)]、Lowe等人的方法[Proc.Natl.Acad.Sci.USA,86,8227(1989),Genes Develop.,4,1288(1990)]、特开平No.336963/93 和特开平No.823021/94等中描述的方法。
也就是说,目的抗体分子可以通过以下步骤肯定地从宿主细胞中向细胞外分泌:用基因重组技术将编码抗体分子和编码适合抗体分子表达的信号肽的DNA插入表达载体中,引导表达载体进入宿主细胞,然后表达抗体分子。
此外,按照特开平No.227075/90中描述的方法,采用使用二氢叶酸还原酶基因的基因扩增系统,可以增加产量。
而且,也可以应用基因导入的动物个体(转基因非人动物)或植物个体(转基因植物)产生抗体组合物,这些个体是通过导入了基因的动物或植物细胞的再分化而构建的。
当转化体是动物个体或植物个体时,抗体组合物可以按照通常的方法生产,通过饲养或栽培而生产和聚积抗体组合物,然后从动物或植物个体中回收抗体组合物。
用动物个体产生抗体组合物的步骤的实例包括,在动物中生产目的抗体组合物的方法,所述动物是按照已知的方法[American Journal of Clinical Nutrition,63,627S(1996);Bio/Technology,9,830(1991)],通过导入基因而构建的。
在动物个体情况下,抗体组合物的产生可以通过,饲养其中导入了编码抗体分子的DNA的转基因非人动物,从而在动物内产生和聚积抗体组合物,然后从动物中回收抗体组合物。抗体组合物产生和聚积的动物部位的实例包括动物的乳汁(特开昭No.309192/88)和卵。作为在此情况中使用的启动子,可以使用任何启动子,只要它可以在动物中起作用。优选的实例包括哺乳动物腺细胞特异的启动子如α酪蛋白启动子、β酪蛋白启动子、β乳球蛋白启动子、乳清酸性蛋白启动子等。
用植物个体产生抗体组合物的步骤的实例包括,通过栽培转基因植物产生抗体组合物的方法,所述的转基因植物中通过已知的方法导入了编码抗体分子的DNA[Tissue Culture,20(1994);Tissue Culture,21(1995);Trends in Biotechnology,15,45(1997)],以便在植物中产生和聚积抗体组合物,然后从植物中回收抗体组合物。
关于由其中导入了抗体分子编码基因的转化体产生的抗体组合物的纯化,例如,当抗体组合物以溶解状态在细胞内表达时,通过离心回收培养后的细胞,在缓冲水溶液中悬浮,然后用超声振荡器、French压榨机、Manton Gaulin匀浆器、dynomill、或类似仪器破坏以获得无细胞提取物。抗体组合物的纯化产物可以从无细胞提取物离心获得的上清中获得,通过采用通常的酶分离纯化技术如溶剂提取;盐析;用硫酸铵等脱盐;用有机溶剂沉淀;采用如二乙氨乙基(DEAE)-琼脂糖凝胶、DIAION HPA-75(由Mitsubishi Chemical生产)等树脂的阴离子交换层析;采用如S-琼脂糖凝胶FF(由Pharmacia生产)等树脂的阳离子交换层析;采用如丁基-琼脂糖凝胶、苯基-琼脂糖凝胶等树脂的疏水层析;采用分子筛的凝胶过滤;亲和层析;色谱聚焦;如等电子聚焦等的电泳;和类似的可以单独或联合使用的技术。
此外,当抗体组合物通过形成不溶体在细胞内表达时,细胞以同样的方式被回收、破坏和离心,抗体组合物的不溶体作为沉淀馏分被回收。回收的抗体组合物不溶体用蛋白变性剂溶解。通过稀释或渗析溶解的溶液使抗体组合物成为正常的三维结构,然后通过相同的分离纯化方法获得抗体组合物的纯化产物。
当抗体组合物在细胞外分泌时,抗体组合物或其衍生物可以从培养上清中回收。即,通过如离心或类似技术处理培养物以获得可溶性馏分,通过相同的分离纯化方法可以从可溶性馏分中获得抗体组合物的纯化制剂。
这样获得的抗体组合物的实例包括抗体、抗体片段、含抗体Fc区的融合蛋白,等。
作为获得抗体组合物的实例,产生人源化抗体组合物的步骤在下面详细描述,但其它抗体组合物也可以采用与该方法相似的方式获得。
(1)表达人源化抗体的载体构建
表达人源化抗体的载体是动物细胞表达载体,其中插入了人抗体重链(H链)和轻链(L链)C区的编码基因,它是通过将人抗体H链和L链C区的每一个编码基因克隆进动物细胞表达载体中而构建的。
人抗体的C区可以是任何人抗体的H链和L链。实例包括属于人抗体H链IgG1亚类的C区(下文被称作“hCγ1”)、属于人抗体L链中κ类的C区(下文被称作“hCκ”)等。
作为编码人抗体H链和L链C区的基因,可以使用含外显子和内含子的染色体DNA,或也可以使用cDNA。
作为动物细胞表达载体,可以使用任何载体,只要编码人抗体C区的基因可以插入其中并在其中表达。实例包括pAGE107[Cytotechnology,3,133(1990)]、pAGE103[J.Biochem.,101,1307(1987)]、pHSG274[Gene,27,223(1984)]、pKCR[Proc.Natl.Acad.Sci.USA, 78,1527(1981)]、pSG1βd2-4[Cytotechnology,4,173(1990)]等。在动物细胞表达载体中的启动子和增强子的实例包括,SV40早期启动子和增强子[J.Biochem.,101,1307(1987)]、Moloney小鼠白血病病毒长末端重复区(LTR)启动子[Biochem.Biophys.Res.Commun.,149,960(1987)]、免疫球蛋白H链启动子[Cell,41,479(1985)]和增强子[Cell,33,717(1983)]等。
人源化抗体表达载体可以是两种形式之一:或者编码抗体H链和 L链的基因位于不同的载体上,或者两个基因位于同一个载体上(串联型)。关于构建人源化抗体表达载体的容易性,导入动物细胞的容易性,和抗体H链和L链在动物细胞中表达量的平衡,串联型人源化抗体表达载体是更优选的[J.Immunol.Methods,167,271(1994)]。
构建的人源化抗体表达载体可被用于在动物细胞中表达人嵌合抗体和人CDR-移植的抗体。
(2)编码抗体V区的cDNA的制备,该抗体来自动物而非人
编码抗体H链和L链V区的cDNA可以用下面的方式获得,该抗体来自非人的动物,如小鼠抗体。
通过从产生目的小鼠抗体的杂交瘤细胞中提取mRNA而合成cDNA。合成的cDNA被克隆进如噬菌体或质粒的载体中以获得cDNA文库。采用现有的小鼠抗体C区部分或V区部分作为探针,从此文库中分离每个重组噬菌体或重组质粒,所述的重组噬菌体或重组质粒含有编码H链V区和编码L链V区的cDNA。测定了重组噬菌体或重组质粒上目的小鼠抗体H链和L链V区的全核苷酸序列,并从核苷酸序列推导了H链和L链V区的全氨基酸序列。
作为非人的动物,可以使用任何动物如小鼠、大鼠、仓鼠、兔或类似动物,只要可以从中产生杂交瘤。
从杂交瘤细胞中制备总RNA的方法的实例包括,硫氰酸胍-三氟醋酸铯法[Methods in Enzymology,154,3(1987)]等,从总RNA中制备mRNA的方法的实例包括固定化寡脱氧胸苷酸(oligo(dT))的纤维素柱法[分子克隆,第二版]等。此外,从杂交瘤细胞中制备mRNA的试剂盒的实例包括Fast Track mRNA分离试剂盒(Invitrogen制造)、Quick Prep mRNA纯化试剂盒(Pharmacia制造)等。
合成cDNA和制备cDNA文库的方法的实例包括,通常的方法(分子克隆,第二版,分子生物学现代方法,增补1-34)、采用市售试剂盒的方法,如SuperScriptTM、cDNA合成和质粒克隆的质粒系统(GIBCOBRL制造)或ZAP-cDNA合成试剂盒(Stratagene制造)等。
在制备cDNA文库中,其中插入了cDNA的载体可以是任何载体,只要它可以被插入,所述的cDNA是采用从杂交瘤中提取的mRNA作为模板而合成的。实例包括ZAP Express[Strategies,5,58(1992)]、pBluescript II SK(+)[Nucleic Acids Research,17,9494(1989)]、λzapII(Stratagene制造)、λgt10和λgt11[DNA克隆,实践方法,I,49(1985)]、Lambda BlueMid(Clontech制造)、λExCell、pT7T3 18U(Pharmacia制造)、pcD2[Mol.Cell.Biol.,3,280(1983)]、pUC18[Gene,33,103(1985)]等。
作为其中导入了从噬菌体或质粒载体构建的cDNA文库的大肠杆菌,可以使用任何大肠杆菌,只要该cDNA文库可以被导入、表达并维持。实例包括XL1-Blue MRF’[Strategies,5,81(1992)]、C600[Genetics, 39,440(1954)]、Y1088和Y1090[Science,222,778(1983)]、NM522[J.Mol.Biol.,166,1(1983)]、K802[J.Mol.Biol.,16,188(1966)]、JM105[Gene,38,275(1985)]等。
作为从cDNA文库中选择编码抗体H链和L链V区的cDNA克隆的方法,可以使用采用同位素或荧光标记探针的集落杂交或噬菌斑杂交(分子克隆,第二版),所述的抗体是动物而非人的。编码H链和L链V区的cDNA也可以通过制备引物,并以从mRNA或cDNA文库合成的cDNA为模板进行聚合酶链反应(下文被称作“PCR”;分子克隆,第二版;分子生物学现代方法,增补1-34)而制备。
cDNA的核苷酸序列可以通过以下步骤测定:用合适的限制酶消化选择的cDNA,将其片断克隆进质粒中如pBluescript SK(-)(Stratagene制造)或类似质粒,进行通常所用的核苷酸序列分析方法的反应如 Sanger等人的双脱氧法[Proc.Natl.Acad.Sci.USA,74,5463(1977)]或类似方法,然后用自动核苷酸序列分析仪如A.L.F.DNA测序仪(Pharmacia制造)或类似仪器分析克隆。通过从测定的核苷酸序列推导H链和L链V区的全氨基酸序列,并将其与已知抗体的H链和L链V区全氨基酸序列进行比较,可以确认获得的cDNA是否编码含分泌信号序列的抗体H链和L链V区的全氨基酸序列[免疫学关注的蛋白序列(Sequences of Proteins of Immunological Interest),US Dep.Health and Human Services(1991)]。
(3)分析来自非人动物的抗体V区的氨基酸序列
关于含分泌信号序列的抗体H链和L链V区的全氨基酸序列,分泌信号序列的长度和N-末端氨基酸序列可以被推导并分组,通过将其与已知抗体的H链和L链V区的氨基酸序列进行比较可以发现它们属于哪个组[免疫学关注的蛋白序列,US Dep.Health and Human Services(1991)]。此外,每个CDR的H链和L链V区的氨基酸序列也可以通过将其与已知抗体的H链和L链V区的氨基酸序列进行比较而被发现[免疫学关注的蛋白序列,US Dep.Health and Human Services(1991)]。
(4)构建人嵌合抗体表达载体
人嵌合抗体表达载体可以在3(1)项中构建的人源化抗体表达载体中,通过将编码来自动物而非人类的抗体H链和L链V区的cDNA克隆进编码人抗体C区H链和L链的基因的上游而构建。例如,人嵌合抗体表达载体可以通过将每个cDNA连接到合成DNA上而构建,所述的前者编码来自动物而非人类的抗体H链和L链V区,后者含有来自动物而非人类的抗体H链和L链V区3’-末端的核苷酸序列和人抗体H链和L链C区5’-末端的核苷酸序列,而且在两个末端都具有合适限制酶的识别序列,以及通过将它们克隆进编码人抗体H链和L链C区的基因上游而构建,该基因包含在3(1)项中所描述构建的人源化抗体表达载体中。
(5)构建编码人CDR-移植抗体V区的cDNA
编码人CDR-移植抗体H链和L链V区的cDNA可以如下获得。首先,选择人抗体H链和L链V区框架(下文被称作“FR”)的氨基酸序列,以嫁接来自动物而非人类的抗体H链和L链V区的CDR。作为人抗体H链和L链V区的FR的氨基酸序列,可以使用任何氨基酸序列,只要它们来自人抗体。实例包括在如Protein Data Bank等数据库中登记的人抗体H链和L链V区的FR的氨基酸序列、在每个人抗体H链和L链V区的FR亚群中共同的氨基酸序列[免疫学关注的蛋白序列,US Dep.Health and Human Services(1991)]等。但为了产生具有有效活性的人CDR-移植抗体,优选地选择与来自动物而非人类的目的抗体H链和L链V区的氨基酸序列具有尽可能高同源性(至少60%或以上)的氨基酸序列。
其次,来自动物而非人类的目的抗体H链和L链V区的CDR的氨基酸序列被嫁接到所选择的人抗体H链和L链V区的FR的氨基酸序列上,以设计人CDR-移植抗体H链和L链V区的氨基酸序列。通过考虑抗体基因核苷酸序列中发现的密码子使用频率将设计的氨基酸序列转换成DNA序列[免疫学关注的蛋白序列,US Dep.Health and Human Services(1991)],并设计编码人CDR-移植抗体H链和L链V区氨基酸序列的DNA序列。根据设计的DNA序列,合成了具有大约100个碱基长度的数个合成DNA片段,并用它们进行PCR。在此情况下,考虑到PCR的反应效率和可以合成的DNA的长度,优选在每个H链和L链中设计6个合成DNA。
此外,通过引导合适限制酶的识别序列进入存在于两个末端的合成DNA的5’-末端,它们可以容易地克隆进3(1)项中构建的人源化抗体表达载体中。PCR后,扩增的产物被克隆进如pBluescript SK(-)(Stratagene制造)或类似物的质粒中,并通过3(2)项中的方法测定核苷酸序列,从而获得了质粒,质粒具有的DNA序列编码所需人CDR-移植抗体H链和L链V区的氨基酸序列。
(6)构建人CDR-移植抗体的表达载体
人CDR-移植抗体的表达载体可以在3(1)项中描述的人源化抗体表达载体中,通过将3(5)项中构建的编码人CDR-移植抗体H链和L链V区的cDNA克隆进编码人抗体H链和L链C区的基因的上游而构建。例如,通过引导合适限制酶的识别序列进入合成DNA片段两个末端的5’-末端可以构建人CDR-移植抗体表达载体,其中的合成DNA片段是进行3(5)项中的PCR以构建人CDR-移植抗体H链和L链V区时所用的,因此它们在3(1)项中描述的人源化抗体表达载体中,以这种能够以适合形式被表达的方式被克隆进编码人抗体H链和L链C区的基因的上游。
(7)人源化抗体的稳定产生
通过将3(4)和(6)项中描述的人源化抗体表达载体引导入合适的动物细胞,可以获得能够稳定产生人嵌合抗体和人CDR-移植抗体(下文都被称作“人源化抗体”)的转化体。
引导人源化抗体表达载体进入动物细胞的方法的实例包括,电穿孔[特开平No.257891/90;Cytotechnology,3,133(1990)]等。
作为其中导入人源化抗体表达载体的动物细胞,可以使用任何细胞,只要它是可以产生人源化抗体的动物细胞。
实例包括小鼠骨髓瘤细胞如NS0细胞和SP2/0细胞、中国仓鼠卵巢细胞如CHO/dhfr-细胞和CHO/DG44细胞、大鼠骨髓瘤如YB2/0细胞和IR983F细胞、来自叙利亚仓鼠肾的BHK细胞、人骨髓瘤细胞如Namalwa细胞等,且中国仓鼠卵巢细胞CHO/DG44细胞、大鼠骨髓瘤YB2/0细胞和5项中描述的本发明宿主细胞是优选的。
在导入人源化抗体表达载体后,可以用动物细胞培养的培养基选 择能够稳定产生人源化抗体的转化体,按照特开昭No.257891/90中公开的方法,培养基中含有如G418硫酸盐(下文被称作“G418”;SIGMA制造)等的试剂。动物细胞培养的培养基的实例包括RPMI 1640培养基(Nissui Pharmaceutical制造)、GIT培养基(Nihon Pharmaceutical制造)、EX-CELL 302培养基(JRH制造)、IMDM培养基(GIBCO BRL制造)、杂交瘤-SFM培养基(GIBCO BRL制造)、通过在这些培养基中添加各种添加剂如胎牛血清(下文被称作“FBS”)而获得的培养基等。通过在培养基中培养获得的转化体,可以在培养上清中产生和聚积人源化抗体。培养上清中人源化抗体的表达水平和抗原结合活性,可以通过如酶联免疫吸附试验[下文被称作“ELISA”;抗体:实验室指南,Cold Spring Harbor Laboratory,14章(1998),单克隆抗体:原理和实践,Academic PressLimited(1996)]或类似的方法测定。此外,按照特开平No.257891/90中公开的方法,采用DHFR基因扩增系统可以增加由转化体表达的人源化抗体的水平。
采用蛋白A柱可以从转化体的培养上清中纯化人源化抗体[抗体:实验室指南,Cold Spring Harbor Laboratory,8章(1988),单克隆抗体:原理和实践,Academic Press Limited(1996)]。此外,也可以应用蛋白纯化通常所用的纯化方法。例如,可以通过联合凝胶过滤、离子交换层析和超滤进行纯化。纯化的人源化抗体的H链、L链或抗体分子整体的分子量可以被测定,通过例如聚丙烯酰胺凝胶电泳[下文被称作“SDS-PAGE”;Nature,227,680(1970)]、Western印迹[抗体:实验室指南,Cold Spring Harbor Laboratory,12章(1988),单克隆抗体:原理和实践,Academic Press Limited(1996)]或类似方法。
因此,已经描述了采用动物细胞作为宿主产生抗体组合物的方法,但如上所述,抗体组合物也可以由酵母、昆虫细胞、植物细胞、动物个体或植物个体以在动物细胞上相同的方法产生。
当宿主细胞具有天生的表达抗体分子的能力时,本发明的抗体组 合物可以如下产生:采用1项中描述的方法制备表达抗体分子的细胞,培养细胞然后从得到的培养物中纯化目的抗体组合物。
4.抗体组合物的活性评价
作为纯化抗体组合物的量、与抗体的结合活性和纯化抗体组合物的效应子功能的检测方法,可以使用单克隆抗体,抗体工程中描述的已知方法和类似的方法。
作为实例,当抗体组合物是人源化抗体时,与抗原的结合活性和与抗原阳性的培养细胞系结合的活性可以通过以下方法测定,例如ELISA、免疫荧光法[Cancer Immunol.Immunother.,36,373(1993)]等。对抗抗原阳性培养细胞系的细胞毒活性可以通过检测CDC活性、ADCC活性[Cancer Immunol.Immunother.,36,373(1993)]等而评价。
此外,抗体组合物在人类的安全性和治疗效果可以采用相对接近人类的动物种属的适当模型来评价,如食蟹猴(Macaca fascicularis)或类似者。
5.与各种细胞中表达的抗体分子结合的糖链的分析
可以按照分析糖蛋白之糖链结构的一般方法分析与各种细胞中表达的抗体分子结合的糖链结构。例如,与IgG分子结合的糖链含有中性糖如半乳糖、甘露糖、岩藻糖或类似糖,氨基糖如N-乙酰氨基葡萄糖或类似糖,以及酸性糖如唾液酸或类似物,并可以通过如糖链结构分析或采用糖成分分析、二维糖链图谱等的类似方法而被分析。
(1)中性糖和氨基糖成分的分析
结合到抗体分子上的糖链成分可以通过以下方法分析,用如三氟乙酸或类似的酸进行糖链的酸解,以释放中性糖或氨基糖,并测定组分的比例。
实例包括采用糖成分分析仪(BioLC)的方法,由Dionex生产。BioLC是一个通过HPAEC-PAD(高能阴离子交换层析-脉冲电流测定)分析糖成分的装置[J.Liq.Chromatogr.,6,1577(1983)]。
还可以通过采用2-氨基吡啶的荧光标记方法分析组分比例。特别地,可以按照已知的方法计算组分比例[Agric.Biol.Chem.,55(1),283-284(1991)],通过用2-氨基吡啶作用的荧光性标记酸解的样本,然后通过HPLC分析组成。
(2)分析糖链结构
结合到抗体分子上的糖链结构可以通过二维糖链图谱法进行分析[Anal.Biochem.,171,73(1988),生物化学实验方法23-研究糖蛋白糖链的方法(Japan Scientific Societies Press),由Reiko Takahashi编著(1989)]。二维糖链图谱法是推导糖链结构的方法,通过例如,分别由反相层析测绘糖链的保留时间或洗脱位置作为X轴,由正相层析测绘糖链的保留时间或洗脱位置作为Y轴,并将其与已知糖链的结果进行比较。
特别地,抗体经过肼解作用,从抗体中释放出糖链,释放的糖链可以接受用2-氨基吡啶(下文被称作“PA”)的荧光标记[J.Biochem.,95,197(1984)],然后通过凝胶过滤从过剩的PA-处理试剂中分离糖链,进行反相层析。此后,分离糖链的每个峰进行正相层析。通过在二维糖链图谱上测绘此结果并将其与标准糖链(Takara Shuzo制造)的测绘点或文献[Anal.Biochem.,171,73(1988)]进行比较,可以推导出糖链结构。
由二维糖链图谱法推导的结构可以通过进一步进行质谱分析,如每个糖链的MALDI-TOF-MS或类似者,而被证实。
6.识别抗体分子糖链结构的免疫学测定法
抗体分子包括抗体组合物,抗体组合物中与抗体Fc区结合的糖链在结构上是不同的。其中岩藻糖不在糖链还原端结合到N-乙酰氨基葡 萄糖上的糖链占结合到抗体组合物还原端Fc功能区的N-糖苷连接糖链总复合体的比率为20%或以上的抗体组合物具有高ADCC活性。采用6项中描述的、分析抗体分子中糖链结构的方法可以鉴定抗体组合物。此外,还可以通过采用凝集素的免疫学检测方法鉴定。
按照已知的免疫学检测方法,通过采用凝集素的免疫学检测方法,可以确定抗体分子的糖链结构,如Western印迹、IRA(放射免疫测定)、VIA(病毒免疫测定)、EIA(酶免疫测定)、FIA(荧光免疫测定)、MIA(金属免疫测定)等,被描述在以下文献中:单克隆抗体:原理和应用,Wiley-Liss,Inc.(1955);免疫分析,第三版,Igakushoin(1987);酶抗体方法,修订版,Gakusai Kikaku(1985);等。
标记凝集素,它识别包含在抗体组合物中的抗体分子的糖链结构,标记的凝集素与作为样本的抗体组合物进行反应。然后,测定标记的凝集素与抗体分子的复合体的量。
用于鉴定抗体分子糖链结构的凝集素的实例包括,WGA(来自T.vulgaris的麦胚凝集素)、刀豆素A(来自C.ensiformis的cocanavalin A)、RIC(来自R..communis的毒素)、L-PHA(来自P.vulgaris的白细胞凝集素)、LCA(来自L.culinaris的扁豆凝集素)、PSA(来自P.sativum的晶状体凝集素)、AAL(Aleuria aurantia凝集素)、ACL(尾穗苋凝集素)、BPL(羊蹄甲凝集素)、DSL(曼陀罗凝集素)、DBA(二花扁豆凝集素)、EBL(接骨木干凝集素)、ECL(鸡冠刺桐凝集素)、EEL(卫茅eoropaeus凝集素)、GNL(雪花莲凝集素)、GSL(Griffonia simplicifolia凝集素)、HPA(Helix pomatia凝集素)、HHL(朱顶红杂交种凝集素)、Jacalin、LTL(翅荚百脉根凝集素)、LEL(番茄凝集素)、MAL(朝鲜槐凝集素)、MPL(桑橙黄酮(Maclura pomifera)植物凝集素)、NPL(黄水仙凝集素)、PNA(花生凝集素)、E-PHA(菜豆红细胞凝集素)、PTL(四棱豆凝集素)、RCA(蓖麻凝集素)、STL(马铃薯凝集素)、SJA(槐树凝集素)、SBA(大豆凝集素)、UEA(荆豆凝集素)、VVL(长柔毛野豌豆凝集素)和WFA(多花紫藤凝集素)。
优选的使用特异性识别N-糖苷连接的糖链复合体中,岩藻糖在糖链还原端与N-乙酰氨基葡萄糖结合的糖链结构的凝集素。实例包括兵豆凝集素LCA(来自兵豆(Lens culinaris)的结晶体凝集素)、豌豆凝集素PSA(来自Pisun sativum的豌豆凝集素)、蚕豆植物凝集素VFA(来自蚕豆(Vicia faba)的凝集素)和Aleuria aurantia凝集素AAL(来自Aleuria aurantia凝集素)。
7.本发明抗体分子的应用
本发明的抗体组合物具有高抗体依赖细胞介导的细胞毒活性。具有高抗体依赖细胞介导的细胞毒活性的抗体用于预防和治疗多种疾病包括:癌症,炎症疾病,免疫疾病如自身免疫病、过敏症和类似疾病,循环器官疾病和病毒或细菌感染。
在癌症即恶性肿瘤情况下,癌细胞生长。一般的抗肿瘤药物抑制癌细胞的生长。相反,具有高抗体依赖细胞介导的细胞毒活性的抗体以其细胞杀伤作用,可以通过损伤癌细胞而治疗癌症,因此,它作为治疗药物比一般的抗肿瘤药物更有效。目前,在癌症治疗药中,抗体药物本身的抗肿瘤作用是不充分的,所以已进行与化疗联合的治疗[Science,280,1197(1998)]。如果通过本发明本身的抗体组合物发现了更有效的抗肿瘤作用,对化疗的依赖将会下降,并且副作用将会减少。
在免疫疾病如炎症疾病、自身免疫病、过敏症和类似疾病中,疾病的体内反应是由免疫细胞释放的介导分子诱导的,所以通过用抗体消除免疫细胞可以抑制过敏反应,所述抗体具有高抗体依赖细胞介导的细胞毒活性。
循环器官疾病的实例包括动脉硬化和类似疾病。目前动脉硬化用气囊导管治疗,但在用具有高抗体依赖细胞介导的细胞毒活性的抗体治疗后,通过抑制血管网中动脉细胞的生长,可以预防和治疗动脉硬 化疾病。
用抗体通过抑制受病毒或细菌感染的细胞的增殖,可以预防和治疗多种疾病包括病毒和细菌感染,所述抗体具有高抗体依赖细胞介导的细胞毒活性。
下面描述了识别肿瘤相关抗原的抗体、识别过敏或炎症相关抗原的抗体、识别循环器官疾病相关抗原的抗体和识别病毒或细菌感染相关抗原的抗体实例。
识别肿瘤相关抗原的抗体实例包括抗GD2抗体(Ohta等人,Anticancer Res.,13,331-336,1993)、抗GD3抗体(Ohta等人,Cancer Immunol.Immunother.,36,260-266,1993)、抗GM2抗体(Nakamura等人,Cancer Res.,54,1511-1516,1994)、抗HER2抗体(Carter等人,Proc.Natl.Acad.Sci.USA,89,4285-4289,1992)、抗CD52抗体(Carter等人,Proc.Natl.Acad.Sci.USA,89,4285-4289,1992)、抗MAGE抗体(Jungbluth等人,British J.Cancer,83,493-497,2000)、抗HM 1.24抗体(Ono等人,Molecular Immunol.,36,387-395,1999)、抗甲状旁腺激素相关蛋白(PTHrP)抗体(Ogata等人,Cancer,88,2909-2911,2000)、抗碱性成纤维细胞生长因子抗体和抗FGF8抗体(Matsuzaki等人,Proc.Natl.Acad.Sci.USA,86,9911-9915,1989)、抗碱性成纤维细胞生长因子受体抗体和抗FGF8受体抗体(Kuo等人,J.Biol.Chem.,265,16455-16463,1990)、抗胰岛素样生长因子抗体(Yao等人,J.Neurosci.Res.,40,647-659,1995)、抗胰岛素样生长因子受体抗体(Yao等人,J.Neurosci.Res.,40,647-659,1995)、抗PMSA抗体(Murphy等人,J.Urology,160,2396-2401,1998)、抗血管内皮细胞生长因子抗体(Presta等人,Cancer Res.,57,4593-4599,1997)、抗血管内皮细胞生长因子受体抗体(Kanno等人,Oncogene,19,2138-2146,2000)和类似抗体。
识别过敏或炎症相关抗原的抗体实例包括抗白介素6抗体 (Abrams等人,Immunol.Rev.,127,5-24,1992)、抗白介素6受体抗体(Sato等人,Molecular Immunol.,31,371-381,1994)、抗白介素5抗体(Abrams等人,Immunol.Rev.,127,5-24,1992)、抗白介素5受体抗体和抗白介素4抗体(Biord等人,Cytokine,3,562-567,1991)、抗肿瘤坏死因子抗体(Tempest等人,Hybridoma,13,183-190,1994)、抗肿瘤坏死因子受体抗体(Amrani等人,Molecular Pharmacol.,58,237-245,2000),抗CCR4抗体(Campbell等人,Nature,400,776-780,1999)、抗趋化因子抗体(Peri等人,J.Immuno.Meth.,174,249-257,1994)、抗趋化因子受体抗体(Wu等人,J.Exp.Med.,186,1373-1381,1997)等。识别循环器官疾病相关抗原的抗体实例包括抗GpIIb/IIIa抗体(Co等人,J.Immunol.,152,2968-2976,1994)、抗血小板衍生生长因子抗体(Ferns等人,Science,253,1129-1132,1991)、抗血小板衍生生长因子受体抗体(Shulman等人,J.Biol.Chem.,272,17400-17404,1997)和抗凝血因子抗体(Peter等人,Circulation,101,1158-1164,2000)和类似抗体。
识别病毒或细菌感染相关抗原的抗体实例包括抗gp120抗体(Tugarinov等人,Structure,8,385-395,2000)、抗CD4抗体(Schulze-Koops等人,J.Rheumatology,25,2065-2076,1998)、抗CCR4抗体和抗Vero毒素抗体(Karnali等人,J.Clin.Microbiol.,37,396-399,1999)和类似抗体。
这些抗体可以从公共组织获得如ATCC(The American Type Culture Collection)、物理和化学研究院的RIKEN基因库、生物科学和人类技术国家研究院、工业科学和技术代理处(目前叫国际专利生物保藏处,高级工业科学与技术国家研究院)等,或来自私人试剂销售公司如Dainippon Pharmaceutical,R & D SYSTEMS、PharMingen、Cosmo Bio、Funakoshi等。
含有本发明抗体组合物的药物可以作为治疗剂单独使用,但通常地,优选通过制药技术领域熟知的合适方法,将其与至少一种药学可接受的载体混合,以由此产生的药物制剂提供。
选择在治疗中最有效的给药途径是需要的。实例包括口服和肠外给药如口腔、气管、直肠、皮下、肌肉内、静脉内或类似途径。在抗体制剂中,静脉内用药是优选的。
剂型包括喷雾剂、胶囊剂、片剂、颗粒剂、糖浆剂、乳剂、栓剂、注射剂、膏剂、贴片等。
适合于口服的药物制剂实例包括乳剂、糖浆剂、胶囊剂、片剂、粉剂、颗粒剂等。 
如乳剂和糖浆剂的液体制剂可以用以下物质作为添加剂生产:水;糖类如蔗糖、山梨醇、果糖等;乙二醇类如聚乙二醇、丙二醇等;油类如芝麻油、橄榄油、大豆油等;防腐剂如p-羟基苯甲酸酯等;香料类如草莓香料、薄荷油等;和类似物。
胶囊剂、片剂、粉剂、颗粒剂和类似制剂可以用以下物质作为添加剂生产:填充剂如乳糖、葡萄糖、蔗糖、甘露糖等;崩解剂如淀粉、藻酸钠等;润滑剂如硬脂酸镁、滑石粉等;粘合剂如聚乙烯醇、羟丙基纤维素、明胶等;表面活性剂如脂肪酸酯等;增塑剂如甘油等;和类似物。
适合于肠外给药的药物制剂实例包括注射剂、栓剂、喷雾剂和类似剂型。
注射剂可以用载体制备,如盐溶液、葡萄糖溶液、它们的混合溶液或类似物。此外,粉状的注射剂可以用通常的方法并在其中添加氯化钠,通过冻干抗体组合物而制备。
制备栓剂所用的载体可以是如可可油脂、氢化油脂、羧酸或类似 物。
此外,喷雾剂可以用这种抗体组合物或载体制备,所述的载体不刺激患者的口腔或气道粘膜,并通过将其分散成精细的颗粒而促进抗体组合物的吸收。 
载体的实例包括乳糖、甘油和类似物。根据抗体组合物和载体的特性,有可能生产如气溶胶、干粉等的药物制剂。此外,作为口服制剂添加剂举例的成分也可以添加到肠外制剂中。
尽管临床剂量或用药频度依疗效的目的、给药的方法、治疗周期、年龄、体重等而不同,但通常为每天每个成年人10μg/kg至20mg/kg。
此外,作为抗体组合物抗各种肿瘤细胞的抗肿瘤作用的检测方法,体外试验包括CDC活性检测法、ADCC活性检测法和类似方法,体内试验包括在如小鼠等的实验动物中,应用肿瘤系统的抗肿瘤试验,和类似试验。
CDC活性(补体依赖性细胞毒作用)和ADCC活性(抗体依赖性细胞介导的细胞毒作用)检测和抗肿瘤试验可以按照以下文献中描述的方法进行,Cancer Immunology Immunotherapy,36,373(1993);Cancer Research,54,1511(1994);等。
本发明将根据实施例在下面详细描述;但是,实施例只是简单的举例说明,本发明的范畴并不限于此。
附图简述
图1显示了5个纯化的抗GD3嵌合抗体(使用的梯度凝胶从4至15%)SDS-PAGE的电泳图谱。图1A和图1B分别显示了在非还原条件下和还原条件下的电泳结果。泳道1至7分别显示了高分子量标记物、 YB2/0-GD3嵌合抗体、CHO/DG44-GD3嵌合抗体、SP2/0-GD3嵌合抗体、NS0-GD3嵌合抗体(302)、NS0-GD3嵌合抗体(GIT)和低分子量标记物的电泳图谱。
图2显示了5个纯化的抗GD3嵌合抗体与GD3结合的活性,通过改变抗体浓度来测定。纵坐标和横坐标分别显示了与GD3的结合活性和抗体浓度。″○″,″●″,″□″,″■″和″△″分别显示了YB2/0-GD3嵌合抗体、CHO/DG44-GD3嵌合抗体、SP2/0-GD3嵌合抗体、NS0-GD3嵌合抗体(302)和NS0-GD3嵌合抗体(GIT)的活性。
图3显示了5个纯化的抗GD3嵌合抗体对人黑素瘤细胞系G-361的ADCC活性。纵坐标和横坐标分别显示了细胞毒活性和抗体浓度。″○″,″●″,″□″,″■″和″△″分别显示了YB2/0-GD3嵌合抗体、CHO/DG44-GD3嵌合抗体、SP2/0-GD3嵌合抗体、NS0-GD3嵌合抗体(302)和NS0-GD3嵌合抗体(GIT)的活性。
图4显示了3个纯化抗hIL-5RαCDR移植抗体SDS-PAGE的电泳图谱(使用的凝胶梯度从4至15%)。图4A和图4B分别显示了在非还原条件下和还原条件下进行电泳的结果。泳道1至5分别显示了高分子量标记物、YB2/0-hIL-5R CDR抗体、CHO/d-hIL-5R CDR抗体、NS0-hIL-5R CDR抗体和低分子量标记物的电泳图谱。
图5显示了3个纯化的抗hIL-5RαCDR移植抗体结合hIL-5Rα的活性,通过改变抗体浓度来测定。纵坐标和横坐标分别显示了与hIL-5Rα的结合活性和抗体浓度。″○″,″●″和″□″分别显示了YB2/0-hIL-5R CDR抗体、CHO/d-hIL-5R CDR抗体和NS0-hIL-5RCDR抗体的活性。
图6显示了3个纯化抗hIL-5RαCDR移植抗体对表达IL-5R的小鼠T细胞系CTLL-2(h5R)的ADCC活性。纵坐标和横坐标分别显示了细胞毒活性和抗体浓度。″○″,″●″和″□″分别显示了YB2/0-hIL-5R CDR抗体、CHO/d-hIL-5R CDR抗体和NS0-hIL-5R CDR抗体的活性。
图7显示了3个纯化的抗hIL-5RαCDR移植抗体在hIL-5诱导的嗜酸性粒细胞增加faseicularis猕猴模型中的抑制活性。纵坐标和横坐 标显示了外周血中嗜酸性粒细胞的数目和天数(给予抗体和hIL-5的天数定义为0天)。″101和102″、″301,302和303″、″401,402和403″和″501,502和503″分别显示了在未给予抗体组、给予YB2/0-hIL-5R CDR抗体组、给予CHO/d-hIL-5R CDR抗体组和给予NS0-hIL-5R CDR抗体组的结果。
图8显示了PA处理的糖链()反相HPLC洗脱液的洗脱图谱(左侧),和用α-L-岩藻糖苷酶作用于PA处理的糖链、然后通过反相HPLC进行分析所获得的洗脱图谱(右侧),YB2/0产生的纯化抗hIL-5RαCDR移植抗体(图8A)和NS0产生的纯化抗hIL-5RαCDR移植抗体(图8B)。纵坐标和横坐标分别显示了相对荧光强度和洗脱时间。
图9显示了通过从CHO/d细胞中产生的纯化抗hIL-5RαCDR移植抗体制备PA处理的糖链并通过反相HPLC分析所获得的洗脱图谱。纵坐标和横坐标分别显示了相对荧光强度和洗脱时间。
在图10中,图10A显示了未吸收馏分和一部分吸收馏分的GD3结合活性,通过改变抗体浓度来测定。纵坐标和横坐标分别显示了与GD3的结合活性和抗体浓度。″○″和″●″分别显示了未吸收馏分和一部分吸收馏分。图10B显示了未吸收馏分和吸收馏分对人黑素瘤细胞系G-361的ADCC活性。纵坐标和横坐标分别显示了细胞毒活性和抗体浓度。″○″和″●″分别显示了未吸收馏分和一部分吸收馏分。
图11显示了采用反相HPLC通过分析从未吸收馏分和一部分吸收馏分中制备的PA处理的糖链所获得的洗脱图谱。图11A和图11B分别显示了未吸收馏分的洗脱图谱和一部分吸收馏分的洗脱图谱。纵坐标和横坐标分别显示了相对荧光强度和洗脱时间。
图12显示了从6种抗GD3嵌合抗体中制备的PA处理糖链的洗脱图谱(图12A至图12F),通过反相HPLC分析而获得。纵坐标和横坐标分别显示了相对荧光强度和洗脱时间。
图13显示了含有不同比例无α-1,6-岩藻糖的糖链的6种抗GD3嵌合抗体的GD3结合活性,通过改变抗体浓度测定。纵坐标和横坐标分别显示了与GD3的结合活性和抗体浓度。″●″,″□″,″■″,″ △″,″▲″和″×″分别显示了抗GD3嵌合抗体(50%)、抗GD3嵌合抗体(45%)、抗GD3嵌合抗体(29%)、抗GD3嵌合抗体(24%)、抗GD3嵌合抗体(13%)和抗GD3嵌合抗体(7%)的活性。
图14显示了含有不同比例无α-1,6-岩藻糖的糖链的6种抗GD3嵌合抗体对人黑素瘤细胞系G-361的ADCC活性,使用供体A的效应细胞。纵坐标和横坐标分别显示了细胞毒活性和抗体浓度。″●″,″□″,″■″,″△″,″▲″和″×″分别显示了抗GD3嵌合抗体(50%)、抗GD3嵌合抗体(45%)、抗GD3嵌合抗体(29%)、抗GD3嵌合抗体(24%)、抗GD3嵌合抗体(13%)和抗GD3嵌合抗体(7%)的活性。
图15显示了含有不同比例无α-1,6-岩藻糖的糖链的6种抗GD3嵌合抗体对人黑素瘤细胞系G-361的ADCC活性,使用供体B的效应细胞。纵坐标和横坐标分别显示了细胞毒活性和抗体浓度。″●″,″□″,″●″,″△″,″▲″和″×″分别显示了抗GD3嵌合抗体(50%)、抗GD3嵌合抗体(45%)、抗GD3嵌合抗体(29%)、抗GD3嵌合抗体(24%)、抗GD3嵌合抗体(13%)和抗GD3嵌合抗体(7%)的活性。
图16显示了从6种抗GD3嵌合抗体中制备的PA处理糖链的洗脱图谱,通过使用反相HPLC分析获得。纵坐标和横坐标分别显示了相对的荧光强度和洗脱时间。
图17显示了具有不同比例无α-1,6-岩藻糖糖链的6种抗CCR4嵌合抗体的CCR4结合活性,通过改变抗体浓度测定。纵坐标和横坐标分别显示了与CCR4的结合活性和抗体浓度。″●″,″□″,″▲″,″△″,″●″和″○″分别显示了抗CCR4嵌合抗体(46%)、抗CCR4嵌合抗体(39%)、抗CCR4嵌合抗体(27%)、抗CCR4嵌合抗体(18%)、抗CCR4嵌合抗体(9%)和抗CCR4嵌合抗体(8%)的活性。
图18显示了具有不同比例无α-1,6-岩藻糖糖链的抗CCR4嵌合抗体对CCR4/EL-4细胞的ADCC活性,使用供体A的效应细胞。纵坐标和横坐标分别显示了细胞毒活性和抗体浓度。″●″,″□″,″▲″,″△″,″●″和″○″分别显示了抗CCR4嵌合抗体(46%)、抗CCR4嵌合抗体(39%)、抗CCR4嵌合抗体(27%)、抗CCR4嵌合抗体(18%)、抗CCR4嵌合抗体(9%)和抗CCR4嵌合抗体(8%)的活性。
图19显示了具有不同比例无α-1,6-岩藻糖糖链的抗CCR4嵌合抗体对CCR4/EL-4细胞的ADCC活性,使用供体B的效应细胞。纵坐标和横坐标分别显示了细胞毒活性和抗体浓度。″■″,″□″,″▲″,″△″,″●″和″○″分别显示了抗CCR4嵌合抗体(46%)、抗CCR4嵌合抗体(39%)、抗CCR4嵌合抗体(27%)、抗CCR4嵌合抗体(18%)、抗CCR4嵌合抗体(9%)和抗CCR4嵌合抗体(8%)的活性。
图20显示了质粒CHFT8-pCR2.1和YBFT8-pCR2.1的构建。
图21显示了质粒CHAc-pBS和YBAc-pBS的构建。
图22显示了质粒CHFT8d-pCR2.1和YBFT8d-pCR2.1的构建。
图23显示了质粒CHAcd-pBS和YBAcd-pBS的构建。
图24显示了在每个宿主细胞中采用竞争RT-PCR测定FUT8转录产物的结果。当大鼠FUT8序列用作标准和内参照时,可显示在每个宿主细胞系中的FUT8转录产物的量。″■″和″□″分别显示了当CHO细胞系和YB2/0细胞系用作宿主细胞时的结果。
图25显示了质粒mfFUT8-pCR2.1的构建。
图26显示了质粒pBSmfFUT8的构建。
图27显示了质粒pAGEmfFUT8的构建。
图28显示了采用竞争RT-PCR分析过度表达基因的细胞系中FUT8的表达水平的结果。纵坐标显示了FUT8转录量与β-肌动蛋白转录量的相对值。
图29显示了从过度表达FUT8基因的细胞中纯化的抗GD3嵌合抗体对人黑素瘤细胞系G-361的ADCC活性。纵坐标和横坐标分别显示了细胞毒活性和抗体浓度。
图30显示从导入了mfFUT8-6和pAGE249的细胞系产生的抗体中制备的PA处理糖链的洗脱图谱,通过反相HPLC分析获得。图30A和图30B分别显示从导入了mfFUT8-6的细胞系产生的抗体中制备的PA处理糖链和导入了pAGE249的细胞系产生的抗体中制备的PA处理糖链的洗脱图谱。纵坐标和横坐标分别显示了相对荧光强度和洗脱时间。
图31显示了从Herceptin中制备的PA处理糖链的洗脱图谱,通过反相HPLC分析获得。纵坐标和横坐标分别显示了相对荧光强度和洗脱时间。
图32显示了质粒CHfFUT8-pCR2.1的构建。
图33显示了质粒ploxPPuro的构建。
图34显示了质粒pKOFUT8gE2-1的构建。
图35显示了质粒pKOFUT8gE2-2的构建。
图36显示了质粒pscFUT8gE2-3的构建。
图37显示了质粒pKOFUT8gE2-3的构建。
图38显示了质粒pKOFUT8gE2-4的构建。
图39显示了质粒pKOFUT8gE2-5的构建。
图40显示了质粒pKOFUT8Puro的构建。
图41显示了1号ΔFUT82-46-1和1号ΔFUT82-46作为α-1,6-岩藻糖基转移酶基因断裂的CHO细胞系的基因组Southern分析的结果。
图42显示了从FUT8等位基因断裂细胞系中纯化的抗CCR4嵌合抗体的ADCC活性。纵坐标和横坐标显示了细胞毒活性和抗体浓度。,″▲″和″■″分别显示了从产生抗CCR4嵌合抗体的CHO细胞5-03中获得的纯化抗体和从1号ΔFUT82-46-1中获得的纯化抗体的活性。
图43显示了凝集素抗性细胞系产生的抗CCR4人嵌合抗体的ADCC活性。纵坐标和横坐标显示了细胞毒活性和抗体浓度。″□″,″■″,″◆″和″▲″分别显示了细胞株5-03、CHO/CCR4-LCA、CHO/CCR4-AAL和CHO/CCR4-PHA产生的抗体的活性。
图44显示了凝集素抗性细胞系产生的抗CCR4人嵌合抗体的ADCC活性。纵坐标和横坐标分别显示了细胞毒活性和抗体浓度。″□″,″△″和″●″分别显示了YB2/0(KM2760#58-35-16)、5-03和CHO/CCR4-LCA产生的抗体活性。
图45显示了从纯化的抗CCR4人嵌合抗体中制备的PA处理糖链的洗脱图谱,通过反相HPLC分析获得。纵坐标和横坐标分别显示了 相对荧光强度和洗脱时间。图45A、图45B、图45C和图45D分别显示了对细胞株5-03产生的抗体、CHO/CCR4-LCA产生的抗体、CHO/CCR4-AAL产生的抗体和CHO/CCR4-PHA产生的抗体的分析结果。
图46显示了构建来自CHO细胞的GMD表达载体的第一步(总共6步)。
图47显示了构建来自CHO细胞的GMD表达载体的第二步(总共6步)。
图48显示了构建来自CHO细胞的GMD表达载体的第三步(总共6步)。
图49显示了构建来自CHO细胞的GMD表达载体的第四步(总共6步)。
图50显示了构建来自CHO细胞的GMD表达载体的第五步(总共6步)。
图51显示了构建来自CHO细胞的GMD表达载体的第六步(总共6步)。
图52显示了表达GMD的CHO/CCR4-LCA对LCA凝集素的抗性。将不加入LCA凝集素的培养细胞的那一组的存活率定义为100%,测定两次。在图表中,″249″显示导入了表达载体pAGE249的CHO/CCR4-LCA对LCA凝集素的存活率。GMD显示导入了GMD表达载体pAGE249GMD的CHO/CCR4-LCA对LCA凝集素的抗性。
图53显示了表达GMD的CHO/CCR4-LCA细胞系产生的抗CCR4嵌合抗体的ADCC活性。纵坐标和横坐标分别显示了细胞毒活性和抗体浓度。
图54显示了质粒CHO-GMD的生产步骤,其中克隆34-2的5’末端引入到来自CHO细胞的GMD cDNA克隆22-8的5’末端。
图55显示了从表达GMD基因的CHO/CCR4-LCA中纯化的抗CCR4人嵌合抗体中制备的PA处理糖链的洗脱图谱,通过反相HPLC分析获得。纵坐标和横坐标分别显示了相对荧光强度和洗脱时间。
实施例1
抗神经节苷脂GD3人嵌合抗体的产生:
1.为抗神经节苷脂GD3人嵌合抗体构建串联的表达载体pChiLHGM4
采用DNA连接试剂盒(Takara Shuzo制造),通过连接含有L链cDNA的大约4.03kb片段和含G418抗性基因和剪接信号的大约3.40kb片段构建质粒pChi641LGM40,前者通过用限制性酶MluI(Takara Shuzo制造)和SalI(Takara Shuzo制造)消化L链表达载体、抗神经节苷脂GD3人嵌合抗体(下文被称作“抗GD3嵌合抗体”)的pChi641LGM4而获得[J.Immunol.Methods,167,271(1994)],后者通过使用限制性酶MluI(Takara Shuzo制造)和SalI(Takara Shuzo制造)消化动物细胞表达载体pAGE107获得[Cytotechnology,3,133(1990)],然后用连接的产物转化大肠杆菌HB101(分子克隆,第二版)。
下一步,含有L链cDNA的大约5.68kb片段与含有H链cDNA的大约8.40kb片段采用DNA连接试剂盒(Takara Shuzo制造)连接在一起,前者是通过用限制性酶ClaI(Takara Shuzo制造)消化所构建的质粒pChi641LGM40,采用DNA钝化试剂盒(Takara Shuzo制造)使其末端钝化,并进一步用MluI(Takara Shuzo制造)消化获得,后者是通过用限制性酶,XhoI(Takara Shuzo制造)消化抗GD3嵌合抗体H链表达载体,pChi641HGM4[J.Immunol.Methods,167,271(1994)],采用DNA钝化试剂盒(Takara Shuzo制造)使其钝化,并进一步用MluI(Takara Shuzo制造)消化获得,然后用连接产物转化大肠杆菌HB101(分子克隆,第二版),从而构建一个抗GD3嵌合抗体的串联表达载体pChi641LHGM4。
2.制备稳定产生抗GD3嵌合抗体的细胞
如下所述,采用实施例1第1项中构建的抗GD3嵌合抗体串联表达载体pChi641LHGM4,制备能够稳定生产抗GD3嵌合抗体的细胞。
(1)采用大鼠骨髓瘤YB2/0细胞制备产生抗体的细胞
在将5μg抗GD3嵌合抗体表达载体pChi641LHGM4通过电穿孔[Cytotechnology,3,133(1990)]引入4×106大鼠骨髓瘤YB2/0细胞中[ATCC CRL-1662,J.V.Kilmarin等人,J.Cell.Biol.,93,576-582(1982)]后,细胞悬在40ml RPMI640-FBS(10)(含有10%FBS的RPMI640培养基(GIBCO BRL制造))中,并以200μl/孔分配至96孔平板(Sumitomo Bakelite制造)中。在5%CO2培养箱中37℃培养24小时后,加入G418至浓度为0.5mg/ml,,然后培养1至2周。从培养孔中回收培养上清液,其中显示418抗性的转化体集落已形成,并观察到集落的生长,通过在实施例1中第3项中显示的ELISA法测定上清液中抗GD3嵌合抗体的抗原结合活性。
就在孔中的转化体而言,其中可在培养上清液中观察到抗GD3嵌合抗体的产生,为了采用DHFA基因扩增系统增加抗体产生的量,每个转化体都悬浮在含有0.5mg/ml G418和50nM DHFR抑制剂,氨甲喋呤(下文被称作“MTX”;SIGMA制造)的RPMI1640-FBS(10)培养基中达到1至2×105细胞/毫升的密度,悬液以2毫升的量分配至24孔板(Greiner制造)的每个孔中。显示50nM MTX抗性的转化体通过在5%CO2培养箱中37℃培养1至2周而被诱导。观察到转化体生长的孔中的培养上清液中抗GD3嵌合抗体的抗原结合活性通过在实施例1第3项中显示的ELISA法来测定。就在培养上清液中观察到产生抗GD3嵌合抗体的孔中的转化体而言,MTX浓度增加至100nM,然后增加至200nM,通过上述同样的方法可最终获得能够在含有0.5mg/ml G418和200nM MTX的RPMI1640-FBS(10)培养基中生长,并产生大量抗GD3嵌合抗体的转化体。在获得的转化体中,选择合适的细胞系,并通过有限稀释两次制成单细胞(克隆)。也可采用实施例9中显示的确定α-1,6-岩藻糖基转移酶基因转录产物的方法,选择出产生相对小量转录产物的细胞系,用作合适的细胞系。
所获得的产生抗GD3嵌合抗体的转化细胞克隆7-9-51已经在1999年4月5日以FERM BP-6691存放在国家生物科学和人类技术研 究所,工业科学和技术代理处中(Higashi 1-1-3,筑波大学,茨城,日本)(现名:国际专利生物保藏处,国家高级工业科学和技术研究所I(AIST Tsukuba Central 6,1-1,Higashi 1-Chome Tsukuba-shi,Ibaraki-ken,Japan))。
(2)采用CHO/DG44细胞制备产生抗体的细胞
在将4μg抗GD3嵌合抗体表达载体pChi641LHGM4通过电穿孔[Cytotechnology,3,133(1990)]引入1.6×106CHO/DG44细胞中[G.Urlaub和L.A.Chasin,Proc.Natl.Acad.Sci.USA,77,4216-4220(1980)]后,细胞悬在10ml IMDM-FBS(10)[含有10%FBS和1×浓度的HT添加液(GIBCO BRL制造)的IMDM培养基(GIBCO BRL制造)]中,并以200μl/孔分配至96孔平板(Iwaki Glass制造)中。在5%CO2培养箱中37℃培养24小时后,加入G418至浓度为0.5mg/ml,,然后培养1至2周。从培养孔中回收培养上清液,其中显示G418抗性的转化体集落已形成,并观察到集落的生长,通过在实施例1中第3项中显示的ELISA法测定上清液中抗GD3嵌合抗体的抗原结合活性。
就在孔中的转化体而言,其中可在培养上清液中观察到抗GD3嵌合抗体的产生,为了采用DHFA基因扩增系统增加抗体产生的量,每个都悬浮在含有0.5mg/ml G418和10nM MTX的IMDM-dFBS(10)培养基[含有10%透析的胎牛血清(下文被称作“dFBS”;GIBCO BRL制造)的IMDM培养基]中达到1至2×105细胞/毫升的密度,悬液以0.5毫升的量分配至24孔板(Iwaki Glass制造)的每个孔中。显示10nM MTX抗性的转化体通过在5%CO2培养箱37℃培养1至2周而被诱导。就观察到生长的孔中的转化体而言,MTX浓度增加至100nM,通过上述同样的方法可最终获得能够在含有0.5mg/ml G418和100nM MTX的IMDM-dFBS(10)培养基中生长,并产生大量抗GD3嵌合抗体的转化体。在获得的转化体中,选择合适的细胞系,并通过有限稀释两次制成单细胞(克隆)。也可采用实施例9中显示的确定α-1,6-岩藻糖基转移酶基因转录产物的方法,选择出产生相对小量转录产物的细胞系,用 作为合适的细胞系。
(3)采用小鼠骨髓瘤NS0细胞制备产生抗体的细胞
在将5μg抗GD3嵌合抗体表达载体pChi641LHGM4通过电穿孔[Cytotechnology,3,133(1990)]引入4×106小鼠骨髓瘤NS0细胞中后,细胞悬在40ml EX-CELL302-FBS(10)[含有10%FBS和2mM L-谷氨酰胺(下文被称作“L-Gln”;GIBCO BRL制造)的EX-CELL 302培养基]中,并以200μl/孔分配至96孔平板(Sumitomo Bakelite制造)中。在5%CO2培养箱中37℃培养24小时后,加入G418至浓度为0.5mg/ml,,然后培养1至2周。从培养孔中回收培养上清液,其中显示G418抗性的转化体集落已形成,并观察到集落的生长,通过在实施例1中第3项中显示的ELISA法测定上清液中抗GD3嵌合抗体的抗原结合活性。
就在孔中的转化体而言,其中可在培养上清液中观察到抗GD3嵌合抗体的产生,为了采用DHFA基因扩增系统增加抗体产生的量,每个都悬浮在含有0.5mg/ml G418和50nM MTX的EX-CELL302-dFBS(10)培养基(含有10%dFBS和2mM L-Gln的EX-CELL302培养基)中达到1至2×105细胞/毫升的密度,悬液以2毫升的量分配至24孔板(Greiner制造)的每个孔中。显示50nM MTX抗性的转化体通过在5%CO2培养箱37℃培养1至2周而被诱导。观察到转化体生长的孔中的培养上清液中抗GD3嵌合抗体的抗原结合活性通过在实施例1第3项中显示的ELISA法来测定。就在培养上清液中观察到抗GD3嵌合抗体产生的孔中的转化体而言,MTX浓度增加至100nM,然后增加至200nM,通过上述同样的方法可最终获得能够在含有0.5mg/ml G418和200nM MTX的EX-CELL302-d FBS(10)培养基中生长,并产生大量抗GD3嵌合抗体的转化体。在获得的转化体中,选择合适的细胞系,并通过有限稀释两次制成单细胞(克隆)。也可采用实施例9中显示的确定α-1,6-岩藻糖基转移酶基因转录产物的方法,选择出产生相对小量转录产物的细胞系,用作为合适的细胞系。
3.检测抗体与GD3的结合活性(ELISA)
抗体与GD3的结合活性如下所述测定。
在含有10μg二棕榈酰磷脂酰胆碱(SIGMA制造)和5μg胆固醇(SIGMA制造)的2ml乙醇溶液中,溶解4nmol GD3。为进行ELISA,96孔板(Greiner制造)的每孔中分配20μl溶液(终浓度40pmol/孔),然后空气干燥,加入含1%牛血清白蛋白(下文被称作“BSA”;SIGMA制造)的PBS(下文被称作“1%BSA-PBS”),100μl/孔,然后在室温下反应1小时以阻断残余的活性基团。去除1%BSA-PBS后,转化体的培养上清液或人嵌合抗体的稀释溶液以50μl/孔分配,在室温下反应1小时。反应后,每孔用含0.05%Tween 20(Wako Pure Chemical Industries制造)的PBS(下文被称作“Tween-PBS”)冲洗,以50μl/孔加入用1%BSA-PBS稀释3,000倍的过氧化物酶标记的羊抗人IgG(H & L)抗体溶液(American Qualex制造)作为二抗溶液,然后在室温下反应1小时。在反应及随后用Tween-PBS冲洗后,ABTS底物溶液[溶液的制备通过将0.55g 2,2’-吖嗪-二(3-乙苯噻唑啉-6-磺酸)铵盐溶解在1升0.1M柠檬酸盐缓冲液(pH 4.2)中,并在使用前向溶液中加入1μl/ml过氧化氢(此后使用同样的溶液)]以50μl/孔加入显色,然后测定415nm处的吸收度(此后指“OD415”)。
4.抗GD3嵌合抗体的纯化
(1)来自YB2/0细胞的生产抗体细胞的培养和抗体的纯化
在实施例1的第2(1)项中获得的生产抗GD3嵌合抗体的转化细胞克隆悬浮在含有0.2%BSA,200nM MTX和100nM三碘甲腺原氨酸(此后称为“T3”;SIGMA制造)的杂交瘤-SFM培养基中达到3×105细胞/毫升的密度,并采用2.0升容积的旋动瓶(Iwaki Glass制造)中在50rpm的速率下搅拌培养。在温控室内37℃下培养10天,收获培养上清液。采用Prosep-A(Bioprocessing制造)柱根据制造厂商的说明书从培养上清液中纯化抗GD3嵌合抗体。纯化的抗GD3嵌合抗体命名为YB2/0-GD3嵌合抗体。
(2)来自CHO/DG44细胞的生产抗体细胞的培养和抗体的纯化
在实施例1的第2(2)项中获得的生产抗GD3嵌合抗体的转化细胞克隆悬浮在含有3mM L-Gln、0.5%脂肪酸浓缩溶液(此后指“CDLC”;GIBCO BRL制造)和0.3%Pluronic F68(此后指“PF68”;GIBCO BRL制造)的EX-CELL302培养基中达到1×106细胞/毫升的密度,并在175mm2培养皿(Greiner制造)中加入50ml悬液。在37℃下5%CO2培养箱中培养4天后,收获培养上清液。采用Prosep-A(Bioprocessing制造)柱根据制造厂商的说明书从培养上清液中纯化抗GD3嵌合抗体。纯化的抗GD3嵌合抗体命名为CHO/DG44-GD3嵌合抗体。
(3)来自NS0细胞的生产抗体细胞的培养和抗体的纯化
在实施例1的第2(3)项中获得的生产抗GD3嵌合抗体的转化细胞克隆悬浮在含有2mM L-Gln,0.5%mg/ml G418,200nM MTX和1%FBS的EX-CELL302培养基中达到1×106细胞/毫升的密度,并在175mm2培养皿(Greiner制造)中加入悬液。在37℃下5%CO2培养箱中培养4天后,收获培养上清液。采用Prosep-A(Bioprocessing制造)柱根据制造厂商的说明书从培养上清液中纯化抗GD3嵌合抗体。纯化的抗GD3嵌合抗体命名为NS0-GD3嵌合抗体(302)。
转化细胞克隆也悬浮在含有0.5mg/ml G418和200nM MTX的GIT培养基中,达到3×105细胞/毫升的密度,并在175mm2培养皿(Greiner制造)中加入悬液。在37℃下5%CO2培养箱中培养10天后,收获培养上清液。采用Prosep-A(Bioprocessing制造)柱根据制造厂商的说明书从培养上清液中纯化抗GD3嵌合抗体。纯化的抗GD3嵌合抗体命名为NS0-GD3嵌合抗体(GIT)。
(4)来自SP2/0细胞的生产抗体细胞的培养和抗体的纯化
在日本已公开的未审查专利申请号304989/93(EP 533199)中所描述的产生抗GD3嵌合抗体的细胞克隆(KM-871(FERM BP-3512))悬浮在含有0.5mg/ml G418和200nM MTX的GIT培养基中,达到3×105细 胞/毫升的密度,并在175mm2培养皿(Greiner制造)中加入悬液。在37℃下5%CO2培养箱中培养8天后,收获培养上清液。采用Prosep-A(Bioprocessing制造)柱根据制造厂商的说明书从培养上清液中纯化抗GD3嵌合抗体。纯化的抗GD3嵌合抗体命名为SP2/0-GD3嵌合抗体。
5.纯化的抗GD3嵌合抗体的分析
根据一种已知的方法[Nature,227,680(1970)],4μg5种在实施例1第4项中获得的从相应的动物细胞中产生和纯化的抗GD3嵌合抗体的每一种,经过SDS-PAGE以分析分子量和纯化度。结果在图1中显示。如图1所示,在每个纯化的抗GD3嵌合抗体中,在非还原条件下发现一条分子量大约为150千道尔顿(此后称为“Kd”)的条带,在还原条件下发现两条大约50Kd和大约25Kd的条带。分子量与从抗体的H链和L链的cDNA核苷酸序列中推算出来的分子量是一致的(H链:大约49Kd,L链:大约23Kd,整个分子:大约144Kd),也与报道的一致,报道说IgG抗体的分子量在非还原条件下大约为150Kd,在还原条件下由于分子中二硫键(此后称为“S-S键”)的切断降解为分子量为大约50Kd的H链和分子量为大约25Kd的L链[抗体:实验室指南,Cold Spring Harbor Laboratory,第14章(1998);单克隆抗体:原理和实践,Academic Press Limited(1996)],因此证明可以表达每一个抗GD3嵌合抗体,并作为具有正确结构的抗体分子被纯化。
实施例2
抗GD3嵌合抗体的活性评定:
1.抗GD3嵌合抗体与GD3的结合活性(ELISA)
在实施例1的第4项中5种纯化抗GD3嵌合抗体与GD3(Snow Brand Milk Products制造)的结合活性通过实施例1中第3项中显示的ELISA法测定。图2显示了通过改变所添加抗GD3嵌合抗体的浓度所测定的结合活性的检测结果。如在图2中所显示的,5种抗GD3嵌合抗体显示了与GD3几乎相同的结合活性。该结果显示这些抗体的抗原 结合活性是不变的,不依赖于产生抗体的细胞和培养方法。从NS0-GD3嵌合抗体(302)与NS0-GD3嵌合抗体(GIT)的比较中也表明,抗原结合活性是不变的,不依赖于在培养中使用的培养基。
2.抗GD3嵌合抗体的体外细胞毒活性(ADCC活性)
为了评定在实施例1的第4项中获得的5种纯化的抗GD3嵌合抗体的体外细胞毒活性,根据下面的方法检测ADCC活性。
(1)制备靶细胞悬液
采用RPMI1640-FBS(10)培养基培养人黑素瘤培养细胞系G-361(ATCC CRL 1424),制备1×106细胞,细胞通过与3.7MBq当量的放射性物质Na2 51CrO437℃作用1小时进行放射性同位素标记。反应后,细胞在它们的RPMI1640-FBS(10)培养基悬液中冲洗3次,并离心,重新悬浮在培养基中,然后在4℃在冰中孵育30分钟,对放射性物质进行自发分解。离心后,沉淀物通过加入5毫升RPMI1640-FBS(10)培养基后调整为2×105细胞/毫升,并用作靶细胞悬液。
(2)制备效应细胞悬液
从一个健康的人中收集50毫升静脉血,轻轻的与0.5ml肝素钠(Takeda Pharmaceutical制造)混合。混合物离心采用Lymphoprep(Nycomed Pharma AS制造)根据制造厂商的说明书分离出单核细胞层。用RPMI1640-FBS(10)培养基冲洗离心三次后,得到的沉淀物用培养基重新悬起,达到2×106细胞/毫升的密度,并作为效应细胞悬液。
(3)检测ADCC活性
在96孔U形底平板(Falcon制造)的每个孔中,加入50μl上面(1)制备的靶细胞悬液(1×104细胞/孔)。下一步,加入上面(2)制备的效应细胞悬液100μl(2×105细胞/孔,效应细胞与靶细胞的比例为20∶1)。随后,加入每种抗GD3嵌合抗体,达到终浓度0.0025至2.5μg/ml,接着在37℃反应4小时。反应后,离心平板,使用γ-计数测定上清液中51Cr的 量。通过同样的操作方法仅使用培养基而不是效应细胞悬液和抗体溶液,并测定上清液中51Cr的量,计算自发释放的51Cr量。通过同样的操作方法仅使用培养基而不是抗体溶液,加入1N盐酸而不是效应细胞悬液,并测定上清液中51Cr的量,计算总共释放的51Cr量。从下面的公式(II)计算ADCC活性:
结果在图3中显示。如在图3中所显示的,在5种抗GD3嵌合抗体中,TB2/0-GD3嵌合抗体显示最大的ADCC活性,然后的顺序是SP2/0-GD3嵌合抗体,NS0-GD3嵌合抗体和CHO-GD3嵌合抗体。发现在培养中采用不同培养基制备的NS0-GD3嵌合抗体(302)和NS0-GD3嵌合抗体(GIT)在ADCC活性方面没有差异。上面的结果显示了抗体的ADCC活性根据在生产过程中使用的动物的种类变化很大。就其机制而言,因为它们的抗原结合活性是相同的,可以考虑这是由于在与抗体Fc区结合的结构上的差异所导致的。
实施例3
抗人白介素5受体α链人CDR移植抗体的制备:
1.制备稳定产生抗人白介素5受体α链人CDR移植抗体的细胞
(1)采用大鼠骨髓瘤YB2/0细胞制备产生抗体的细胞
使用在WO97/10354中所描述的抗人白介素5受体α链人CDR移植抗体(此后称为“抗hIL-5RαCDR移植抗体”)表达载体,pKANTEX1259HV3LV0,如下所述制备能够稳定产生抗hIL-5RαCDR移植抗体的细胞。
在将5μg抗hIL-5RαCDR移植抗体表达载体pKANTEX1259HV3LV0通过电穿孔[Cytotechnology,3,133(1990)]引入4×106大鼠骨髓瘤YB2/0细胞中后,细胞悬在40ml RPMI640-FBS(10) 中,并以200μl/孔分配至96孔平板(Sumitomo Bakelite制造)中。在5%CO2培养箱中37℃培养24小时后,加入G418至浓度为0.5mg/ml,,然后培养1至2周。从培养孔中收集培养上清液,其中显示G418抗性的转化体集落已形成,并观察到集落的生长,通过在实施例3中第2项中显示的ELISA法测定上清液中抗hIL-5RαCDR移植抗体的抗原结合活性。
就在孔中的转化体而言,其中可在培养上清液中观察到抗hIL-5RαCDR移植抗体的产生,为了采用DHFA基因扩增系统增加抗体产生的量,每个都悬浮在含有0.5mg/ml G418和50nM MTX的RPMI1640-FBS(10)培养基中达到1至2×105细胞/毫升的密度,悬液以2毫升的量分配至24孔板(Greiner制造)的每个孔中。显示50nM MTX抗性的转化体通过在5%CO2培养箱37℃培养1至2周而被诱导。观察到转化体生长的孔中的培养上清液中抗hIL-5RαCDR移植抗体的抗原结合活性通过在实施例3第2项中显示的ELISA法来测定。就可在培养上清液中观察到抗hIL-5RαCDR移植抗体产生的孔中的转化体而言,MTX浓度增加至100nM,然后增加至200nM,通过上述同样的方法可最终获得能够在含有0.5mg/ml G418和200nM MTX的RPMI1640-FBS(10)培养基中生长,并产生大量抗hIL-5RαCDR移植抗体的转化体。在获得的转化体中,选择合适的细胞系,并通过有限稀释两次制成单细胞(克隆)。也可采用实施例9中显示的确定α-1,6-岩藻糖基转移酶基因转录产物的方法,选择出产生相对小量转录产物的细胞系,用作为合适的细胞系。所获得的产生抗hIL-5RαCDR移植抗体的转化细胞克隆No.3已经在1999年4月5日以FERM BP-6690存放在国家生物科学和人类技术研究所,工业科学和技术代理处中(Higashi 1-1-3,筑波大学,茨城,日本)(现名:国际专利生物保藏处,国家高级工业科学和技术研究院(AIST Tsukuba Central 6,1-1,Higashi 1-Chome Tsukuba-shi,Ibaraki-ken,Japan))。
(2)使用CHO/dhfr-细胞制备产生抗体的细胞
在将4μg在WO 97/10354描述的抗hIL-5RαCDR移植抗体表达载体pKANTEX1259HV3LV0通过电穿孔[Cytotechnology,3,133(1990)]引入1.6×106CHO/dhfr-细胞中后,细胞悬在10ml IMDM-FBS(10)中,并以200μl/孔分配至96孔平板(Iwaki Glass制造)中。在5%CO2培养箱中37℃培养24小时后,加入G418至浓度为0.5mg/ml,,然后培养1至2周。从每个孔中收集培养上清液,其中显示G418抗性的转化体集落已形成,并观察到集落的生长,通过在实施例3中第2项中显示的ELISA法测定上清液中抗hIL-5RαCDR移植抗体的抗原结合活性。
就在孔中的转化体而言,其中可在培养上清液中观察到抗hIL-5RαCDR移植抗体的产生,为了采用DHFA基因扩增系统增加抗体产生的量,每个转化体都悬浮在含有0.5mg/ml G418和10nM MTX的IMDM-dFBS(10)培养基中达到1至2×105细胞/毫升的密度,悬液以0.5毫升的量分配至24孔板(Iwaki Glass制造)的每个孔中。显示10nM MTX抗性的转化体通过在5%CO2培养箱37℃培养1至2周而被诱导。就观察到生长的孔中的转化体而言,MTX浓度增加至100nM,然后增加至500nM,通过上述同样的方法可最终获得能够在含有0.5mg/mlG418和500nM MTX的IMDM-dFBS(10)培养基中生长,并产生大量抗hIL-5RαCDR移植抗体的转化体。在获得的转化体中,选择合适的细胞系,并通过有限稀释两次制成单细胞(克隆)。也可采用实施例9中显示的确定α-1,6-岩藻糖基转移酶基因转录产物的方法,选择出产生相对小量转录产物的细胞系,用作为合适的细胞系。
(3)采用小鼠骨髓瘤NS0细胞制备产生抗体的细胞
根据Yarranton等人的方法制备抗hIL-5RαCDR移植抗体表达载体[BIO/TECHNOLOGY,10,169(1992)],并使用在WO 97/10354中描述的抗hIL-5RαCDR移植抗体表达载体pKANTEX1259HV3LV0上的抗体H链cDNA和L链cDNA,NS0细胞被转化获得能够产生大量抗hIL-5RαCDR移植抗体的转化体。在获得的转化体中,选择合适的细胞系,并通过有限稀释两次制成单细胞(克隆)。也可采用实施例9中显 示的确定α-1,6-岩藻糖基转移酶基因转录产物的方法,选择出产生相对小量转录产物的细胞系,用作为合适的细胞系。
2.检测抗体与hIL-5Rα的结合活性(ELISA)
抗体与hIL-5Rα的结合活性如下所述测定。
通过用PBS稀释在WO97/10354中所述的抗hIL-5Rα小鼠抗体KM1257制备溶液,达到10μg/ml的浓度,50μl得到的溶液加入至进行ELISA的96孔板的每个孔中(Greiner制造),然后在4℃反应20小时。反应后,1%BSA-PBS以100μl/孔加入,然后在室温下反应1小时以阻断残余的活性基团。去除1%BSA-PBS后,用1%BSA-PBS稀释WO97/10354中所描述的可溶性hIL-5Rα制备浓度为0.5μg/ml的溶液,以50μl/孔加入到每孔中,然后在4℃反应20小时。反应后,每孔用含Tween-PBS冲洗,以50μl/孔加入用转化体的培养上清液或纯化的人CDR移植抗体的稀释溶液,在室温下反应2小时。反应后,每孔用Tween-PBS冲洗,以50μl/孔加入1%BSA-PBS稀释3,000倍的过氧化物酶标记的羊抗人IgG(H & L)抗体溶液(American Qualex制造)作为第二抗体溶液,然后在室温下反应1小时。反应后,随后用Tween-PBS冲洗,ABTS底物溶液以50μl/孔加入显色,然后在OD415测定吸收度。
3.抗hIL-5RαCDR移植抗体的纯化
(1)来自YB2/0细胞的生产抗体的细胞的培养和抗体的纯化
在实施例3的第1(1)项中获得的生产抗hIL-5RαCDR移植抗体的转化细胞克隆悬浮在含有0.5mg/ml和200nM MTX的GIT培养基中达到3×105细胞/毫升的密度,并以200ml加入至175mm2培养皿中(Greiner制造)。在5%CO2培养箱中37℃培养8天后,收集培养上清液。采用离子交换层析和凝胶过滤法从培养上清液纯化抗hIL-5RαCDR移植抗体。纯化的抗hIL-5RαCDR移植抗体命名为YB2/0-hIL-5R CDR抗体。
(2)来自CHO/dhfr-的生产抗体细胞的培养和抗体的纯化
在实施例3的第1(2)项中获得的生产抗hIL-5RαCDR移植抗体的 转化细胞克隆悬浮在含有3mM G-Lln,0.5CDLC和0.3%PF68的EX-CELL302培养基中,达到3×105细胞/毫升的密度,并以采用4.0升容积旋动瓶(Iwaki Glass制造)在100rpm的速率振摇培养。在37℃温控室内培养10天后,收集培养上清液。采用离子交换层析和凝胶过滤法从培养上清液纯化抗hIL-5RαCDR移植抗体。纯化的抗hIL-5RαCDR移植抗体命名为CH0/d-hIL-5R CDR抗体。
(3)来自NS0细胞的生产抗体细胞的培养和抗体的纯化
在实施例3的第1(3)项中获得的生产抗hIL-5RαCDR移植抗体的转化细胞克隆根据Yarranton等人[BIO/TECHNOLOGY,10,169(1992)]的方法进行培养,然后收集培养上清液。采用离子交换层析和凝胶过滤法从培养上清液纯化抗hIL-5RαCDR移植抗体。纯化的抗hIL-5RαCDR移植抗体命名为NS0-hIL-5R CDR抗体。
4.纯化的抗hIL-5RαCDR移植抗体的分析
根据已知的方法[Nature,227,680(1970)],4μg 5种在实施例3第3项中获得的从每种动物细胞中产生和纯化的抗hIL-5RαCDR移植抗体的每一种,经过SDS-PAGE以分析分子量和纯化度。结果在图4中显示。如图4所示,在每个纯化的抗hIL-5RαCDR移植抗体中,在非还原条件下发现一条分子量大约为150Kd的条带,在还原条件下发现两条大约50Kd和大约25Kd的条带。分子量与从抗体的H链和L链的cDNA核苷酸序列中推算出来的分子量是一致的(H链:大约49Kd,L链:大约23Kd,整个分子:大约144Kd),也与报道的一致,报道说IgG抗体的分子量在非还原条件下大约为150Kd,在还原条件下由于分子中二硫键(此后称为“S-S键”)的切断降解为分子量为大约50Kd的H链和分子量为大约25Kd的L链[抗体:实验室指南,Cold Spring Harbor Laboratory,第14章(1998);单克隆抗体:原理和实践,Academic Press Limited(1996)],因此证明可以表达每一个抗hIL-5RαCDR移植抗体,并作为具有正确结构的抗体分子被纯化。
实施例4
抗hIL-5RαCDR移植抗体的活性评定:
1.抗hIL-5RαCDR移植抗体与hIL-5Rα的结合活性(ELISA)
在实施例3的第3项中获得的3种纯化抗hIL-5RαCDR移植抗体与hIL-5Rα的结合活性通过实施例3中第2项中显示的ELISA法测定。图5显示了通过改变所添加抗hIL-5RαCDR移植抗体的浓度所测定的结合活性的检测结果。如在图5中所显示的,3种抗hIL-5RαCDR移植抗体显示了与hIL-5Rα几乎相同的结合活性。该结果显示这些抗体的抗原结合活性是不变的,不依赖于产生抗体的动物细胞和培养方法,类似于实施例2中第1项的结果。
2.抗hIL-5RαCDR移植抗体的体外细胞毒活性(ADCC活性)
为了评定在实施例3的第3项中获得的3种纯化的抗hIL-5RαCDR移植抗体的体外细胞毒活性,根据下面的方法检测ADCC活性。
(1)制备靶细胞悬液
采用RPMI1640-FBS(10)培养基培养WO 97/10354中描述的表达hIL-5Rα链和β链的小鼠T细胞系CTLL-2(h5R)至1×106细胞/0.5毫升的密度,细胞通过与3.7MBq当量的放射性物质Na2 51CrO4于37℃作用1.5小时进行放射性同位素标记。反应后,细胞在它们的RPMI1640-FBS(10)培养基悬液中冲洗3次,并离心,重新悬浮在培养基中,然后在4℃在冰中孵育30分钟,对放射性物质进行自发分解。离心后,沉淀物通过加入5毫升RPMI1640-FBS(10)培养基后调整为2×105细胞/毫升,并用作靶细胞悬液。
(2)制备效应细胞悬液
从一个健康的人中收集50毫升静脉血,轻轻的与0.5ml肝素钠(Takeda Pharmaceutical制造)混合。混合物离心采用Polymorphprep(Nycomed Pharma AS制造)根据制造厂商的说明书分离出单核细胞层。用RPMI1640-FBS(10)培养基冲洗离心三次后,得到的细胞用培养基重新悬起,达到9×106细胞/毫升的密度,并作为效应细胞悬液。
(3)检测ADCC活性
在96孔U形底平板(Falcon制造)的每个孔中,加入上面(1)()制备的靶细胞悬液(1×104细胞/孔)。下一步,加入上面(2)制备的效应细胞悬液100μl(9×105细胞/孔,效应细胞与靶细胞的比例为90∶1)。随后,加入每种抗hIL-5RαCDR移植抗体,达到终浓度0.001至0.1μg/ml,接着在37℃反应4小时。反应后,离心平板,使用γ-计数测定上清液中 51Cr的量。通过同样的操作方法仅使用培养基而不是效应细胞悬液和抗体溶液,并测定上清液中51Cr的量,计算自发释放的51Cr量。通过同样的操作方法仅使用培养基而不是抗体溶液,加入1N盐酸而不是效应细胞悬液,并测定上清液中51Cr的量,计算总共释放的51Cr量。
从上面的公式(II)计算ADCC活性。
结果在图6中显示。如在图6中所显示的,在3种抗hIL-5RαCDR移植抗体中,YB2/0-hIL-5R CDR抗体显示最大的ADCC活性,然后的顺序是CHO/d-hIL-5R CDR抗体,NS0-hIL-5R CDR抗体。类似于实施例2第2项中的结果,上述结果显示了抗体的ADCC活性根据在生产过程中使用的动物的种类变化很大。另外,因为YB2/0细胞所产生的抗体在两种类型的人源化抗体的情况下均显示了最大的ADCC活性,所以表明具有最大ADCC活性的抗体可采用YB2/0细胞来产生。
3.抗hIL-5RαCDR移植抗体体内活性的评定
为了评定对实施例3的第3项所获得的3种纯化抗hIL-5RαCDR移植抗体的体内活性,根据下面的方法检测在hIL-5-诱发的嗜酸性粒细胞增加的Macaca faseicularis模型中的抑制活性。
在背部皮肤下将hIL-5(制备方法见WO 97/10354)以1μg/kg的剂量给予Macaca faseicularis,第一天开始,每天一次,总共14次。在第0天给予hIL-5之前1小时,每个都以0.3mg/kg的剂量经静脉给予抗 hIL-5RαCDR移植抗体。未加入抗体的组作为对照组。在给予抗体的组,每组中使用3个Macaca faseicularis动物(第301,第302,第303,第401,第402,第403,第501,第502和第503),两个动物(第101和第102)作为未加抗体组。在开始给药前7天开始,直到给药后42天,从隐静脉或股静脉周期性的收集大约1毫升血,测定1μl外周血中的嗜酸性粒细胞数目。结果在图7中显示。如在图7中显示的,在给予YB2/0-hIL-5R CDR抗体的组中血中嗜酸性粒细胞增加完全被抑制。在另一方面,在给予CHO/d-hIL-5R CDR抗体的组中的一个动物中发现了完全的抑制活性,但在两个动物中的抑制活性并不完全。在给予NS0-hIL-5R CDR抗体的组中,未发现完全的抑制活性,其效应不完全。
上述的结果显示了抗体的体内活性根据用来生产它们的动物细胞变化很大。另外,由于在抗hIL-5RαCDR移植抗体的体内活性程度与在实施例4的第2项中所述的ADCC活性程度之间发现了正相关,因此表明ADCC活性程度对其活性表达是非常重要的。
基于上述的结果,可以期望的是具有较大ADCC活性的抗体也可用于人类多种疾病的临床领域。
实施例5
分析增强ADCC活性的糖链
1.制备2-氨基吡啶标记的糖链(PA处理的糖链)
本发明的人源化抗体是用盐酸进行酸水解以去除唾液酸。在完全移除盐酸后,通过肼解作用从蛋白质上切除糖链[酶学方法,83,263(1982)]。去除肼,通过添加水样醋酸铵溶液和乙酸酐进行N-乙酰化。在冻干后,用2-氨基吡啶进行荧光标记[J.Biochem.,95,197(1984)]。荧光标记的糖链(PA处理的糖链)采用Surperdex Peptide HR10/30柱(Pharmacia制造)从杂质中分离。糖链馏分采用离心浓缩机进行干燥,并作为纯化的PA处理糖链。
2.纯化抗hIL-5RαCDR移植抗体的PA处理糖链的反相HPLC分析
根据实施例5的第1项中的方法,在实施例3中产生的多种抗hIL-5RαCDR移植抗体进行PA处理糖链的处理,通过CLC-ODS柱(Shimadzu制造)进行反相HPLC分析。向PA处理糖链中加入过量的α-L-岩藻糖苷酶(来自牛肾,SIGMA制造)进行消化(37℃,15小时),然后用反相HPLC(图8)分析产物。已证实的是天冬酰胺连接的糖链采用Takara Shuzo制造的PA处理糖链标准品洗脱30分钟至80分钟。通过α-L-岩藻糖苷酶的消化,反相HPLC洗脱位置转变(糖链洗脱48分钟至78分钟)的糖链比例可以计算。结果在表1中显示。
表1
由YB2/0细胞产生的抗hIL-5R CDR移植抗体的大约47%,和NS0细胞产生的抗hIL-5R CDR移植抗体的大约73%是糖链,其中岩藻糖的1号位置通过N-糖苷连接糖链的α-键(此后称为“具有α-1,6-岩藻糖的糖链”)与还原末端的N-乙酰氨基葡萄糖的6号位置结合。因此,岩藻糖的1号位置不通过N-糖苷连接糖链的α-键(此后称为“无α-1,6-岩藻糖的糖链”)与还原末端的N-乙酰氨基葡萄糖的6号位置结合的糖链比例,在YB2/0细胞产生的抗体中较NS0细胞产生的抗体中要高。
3.纯化的抗hIL-5RαCDR移植抗体单糖组合物的分析
YB2/0细胞,NS0细胞和CHO/d细胞产生的抗hIL-5RαCDR移植抗体糖链通过用三氟醋酸的酸水解作用被水解成单糖,采用BioLC(Dionex制造)进行单糖组合物的分析。
在N-糖苷连接的糖链中,在复合体型N-糖苷连接糖链中的一个糖链中有3个甘露糖单位。通过甘露糖数目为3计算获得的每个单糖的 相对比例在表2中显示。
表2
*抗体浓度:0.01μg/ml
在本结果也显示了,由于岩藻糖的相对比例的顺序是YB2/0<CHO/d<NS0,YB2/0细胞产生的抗体中所产生的糖链表现了最低的岩藻糖含量。
4.CHO/dhfr-细胞产生的抗体的糖链分析
从CHO/dhfr-细胞产生的纯化抗hIL-5RαCDR移植抗体中制备PA处理糖链,采用CLC-ODS柱(Shimadzu制造)进行反相HPLC分析(图9)。在图9中,从35至45分钟的洗脱时间对应于没有岩藻糖的糖链,从45至60分钟的洗脱时间对应于含有岩藻糖的糖链。类似于小鼠骨髓瘤NS0细胞产生的抗体的实施例,CHO/dhfr-产生的抗hIL-5RαCDR移植抗体中无岩藻糖的糖链含量较大鼠骨髓瘤YB2/0细胞产生的抗体更少。
实施例6
高ADCC活性抗体的分离:
由大鼠骨髓瘤YB2/0细胞产生的抗hIL-5RαCDR移植抗体采用凝集素柱进行分离,该凝集素柱可与含有岩藻糖的糖链结合。采用Shimadzu制造的LC-6A在1ml/min的流速,在室温作为柱温度的情况下进行HPLC。在用50mM Tris-硫酸盐缓冲液(pH 7.3)平衡后,注射纯化的抗hIL-5RαCDR移植抗体,然后通过0.2M α-甲基甘露糖苷(Nacalai Tesque制造)的线性密度梯度(60分钟)进行洗脱。抗hIL-5RαCDR移植 抗体被分离进入未吸收的馏分和吸收的馏分。当未吸收馏分和一部分吸收馏分被取样时,测定它们与hIL-5Rα的结合活性,它们显示了相似的结合活性(图10A)。当检测ADCC活性时,未吸收馏分较部分吸收馏分显示了很高的ADCC活性(100至1000倍)(图10B)。另外,从未吸收馏分和部分吸收馏分中制备PA处理糖链,采用CLC-ODS柱(Shimadzu制造)进行反相HPLC分析(图11)。在未吸收馏分中,主要存在与无岩藻糖糖链结合的抗体,在部分吸收的馏分中,主要存在与含有岩藻糖的糖链结合的抗体。
实施例7
含有不同比例的无α-1,6-岩藻糖糖链的抗GD3嵌合抗体的活性评定
1.含有不同比例的无α-1,6-岩藻糖糖链的抗GD3嵌合抗体的制备
根据实施例1第2(1)项中描述的方法,可获得能够产生抗GD3嵌合抗体的来自YB2/0细胞中的转化克隆。从来自YB2/0细胞中的转化克隆中制备抗体,并命名为第1批,第2批,和第3批。根据实施例11(6)中的方法分析与第1批,第2批,和第3批的抗GD3嵌合抗体结合的每个糖链,发现无α-1,6-岩藻糖糖链的比例分别为50%,45%和29%。在此,这些样品是指抗GD3嵌合抗体(50%),抗GD3嵌合抗体(45%),和抗GD3嵌合抗体(29%)。
来自实施例1第2(2)中制备的CHO/DG44细胞的抗GD3嵌合抗体糖链根据实施例11(6)的方法进行分析,发现无α-1,6-岩藻糖糖链的比例为7%。在此,样品是指抗GD3嵌合抗体(7%)。
抗GD3嵌合抗体(45%)和抗GD3嵌合抗体(7%)混合,比例为抗GD3嵌合抗体(45%)∶抗GD3嵌合抗体(7%)=5∶3或1∶7。根据实施例10(6)的方法分析样品的糖链,发现制备了具有无α-1,6-岩藻糖糖链比例为24%和13%(计算值)的样品。在此,它们是指抗GD3嵌合抗体(24%)和 抗GD3嵌合抗体(13%)。
每一样品的糖链分析结果如图12所示。无α-1,6-岩藻糖的糖链的比率以两个糖链分析结果的平均值显示。
2.与GD3结合活性的评定(ELISA)
在实施例7第1项中针对GD3制备的含不同比例的无α-1,6-岩藻糖糖链的6种抗GD3(Snow Brand Milk Products制造)嵌合抗体的结合活性通过实施例1第3项中显示的ELISA法来测定。结果,所有6种抗GD3嵌合抗体如在图12所显示表现了几乎相同的GD3结合活性,并发现无α-1,6-岩藻糖糖链的比例并不影响抗体的抗原结合活性。
3.评定对人黑素瘤细胞系的ADCC活性
如下测定抗GD3嵌合抗体对人黑素瘤细胞系G-361(ATCC CRL1424)的ADCC活性。
(1)靶细胞悬液的制备
制备1×106细胞的人黑素瘤细胞系G-361,加入3.7MBq当量的放射性物质Na2 51CrO4,混合物在37℃作用1小时对细胞进行放射性同位素标记。反应后,冲洗细胞三次,步骤是悬浮在培养基中,然后进行离心,在培养基中重新悬起,然后4℃在冰中孵育30分钟,对放射性物质进行自发分解。离心后,沉淀物通过加入5毫升培养基后调整为2×105细胞/毫升,并用作靶细胞悬液。
(2)人效应细胞悬液的制备
从一个健康的人中收集50毫升静脉血,轻轻的与0.5ml肝素钠(Shimizu Pharmaceutical制造)混合。混合物离心采用Lymphoprep(AXISSHIELD制造)根据制造厂商的说明书分离出单核细胞层。用培养基冲洗离心(1,200rpm,5分钟)三次后,得到的细胞用培养基重新悬起,达到2×106细胞/毫升的密度,并作为人效应细胞悬液。
(3)检测ADCC活性
在96孔U形底平板(Falcon制造)的每个孔中,加入(1)中制备的靶细胞悬液50μl(1×104细胞/孔)。下一步,加入(2)中制备的人效应细胞悬液100μl(2×105细胞/孔,人效应细胞与靶细胞的比例为20∶1)。随后,加入每种抗GD3嵌合抗体,达到终浓度0.0005至5μg/ml,接着在37℃反应4小时。反应后,离心平板,使用γ-计数测定上清液中51Cr的量。通过同样的操作方法仅使用培养基而不是人效应细胞悬液和抗体溶液,并测定上清液中51Cr的量,计算自发释放的51Cr量。通过同样的操作方法仅使用培养基而不是抗体溶液,加入1mol/l盐酸而不是人效应细胞悬液,并测定上清液中51Cr的量,计算总共释放的51Cr量。用方程式(II)计算细胞毒活性(%)。
图14和15显示了分别使用两个健康供者(A和B)的效应细胞,六种具有不同无α-1,6-岩藻糖糖链比率的抗GD3嵌合抗体在不同浓度(0.0005-5μg/ml)下的ADCC活性的测量结果。正如图14和15所示,抗GD3嵌合抗体的ADCC活性显示出在每个抗体浓度根据无α-1,6-岩藻糖糖链的比例增加的趋势。当抗体浓度低时,ADCC活性降低。在0.05μg/ml的抗体浓度,其中无α-1,6-岩藻糖糖链的比率为24%,29%,45%或50%的抗体显示出几乎一样高的ADCC活性,但在其中无α-1,6-岩藻糖糖链的比率低于20%的抗体(13%)或(7%)中,ADCC活性很低。当改变效应细胞供者时,这些结果相同。
实施例8
含不同比例无α-1,6-岩藻糖糖链的抗CCR4嵌合抗体的活性评定:
1.稳定产生抗CCR4嵌合抗体的细胞的生产
为WO 01/64754中所描述的抗CCR4嵌合抗体,如下采用串联型表达载体pKANTEX2160制备能够稳定产生抗CCR4嵌合抗体的细胞。
(1)采用大鼠骨髓瘤YB2/0细胞制备产生抗体的细胞
在将10μg抗CCR4嵌合抗体表达载体pKANTEX2160通过电穿孔[Cytotechnology,3,133(1990)]引入4×106大鼠骨髓瘤YB2/0细胞中(ATCC CRL 1662)后,细胞悬在40ml杂交瘤-SFM-FBS(5)[含5%FBS(PAA Laboratories制造)的杂交瘤-SFM培养基(Invitrogen制造)]中,并以200μl/孔分配至96孔平板(Sumitomo Bakelite制造)中。在5%CO2培养箱中37℃培养24小时后,加入G418至浓度为1mg/ml,然后培养1至2周。从孔中收集培养上清液,其中观察到显示G418抗性的转化体生长,形成集落,通过在实施例8中第2项中显示的ELISA法测定上清液中抗CCR4嵌合抗体的抗原结合活性。
就在孔中的转化体而言,其中可在培养上清液中观察到抗CCR4嵌合抗体的产生,为了采用DHFR基因扩增系统增加抗体产生的量,每个都悬浮在含有1mg/ml G418和50nM DHFR抑制剂氨甲喋呤(SIGMA制造)的杂交瘤-SFM-FBS(5)培养基中达到1至2×105细胞/毫升的密度,悬液以1毫升的量分配至24孔板(Greiner制造)的每个孔中。显示50nM氨甲喋呤(MTX)抗性的转化体通过在5%CO2培养箱37℃培养1至2周而被诱导。观察到转化体生长的孔中的培养上清液中抗CCR4嵌合抗体的抗原结合活性通过在实施例8第2项中显示的ELISA法来测定。
就可在培养上清液中观察到抗CCR4嵌合抗体的产生的孔中的转化体而言,MTX浓度用同样的方法增加,可最终获得能够在含有200nM MTX的杂交瘤-SFM-FBS(5)培养基中生长,并产生大量抗CCR4嵌合抗体的转化体。获得的转化体通过有限稀释两次制成单细胞(克隆),获得的克隆细胞系命名为KM2760#58-35-16。在这个实施例中,可采用实施例9中显示的确定α-1,6-岩藻糖基转移酶基因转录产物的方法,选择出产生相对小量转录产物的细胞系,用作为合适的细胞系。
(2)使用CHO/DG44细胞制备生产抗体的细胞
在将4μg抗CCR4嵌合抗体表达载体pKANTEX2160通过电穿孔 [Cytotechnology,3,133(1990)]引入1,6×106CHO/DG44细胞中后,细胞悬在10ml IMDM-dFBS(10)-HT(1)[含10%dFBS(Invitrogen制造)和1×浓度HT添加液(Invitrogen制造)的IMDM培养基(Invitrogen制造)]中,并以100μl/孔分配至96孔平板(Iwaki Glass制造)中。在5%CO2培养箱中37℃培养24小时后,培养基换为IMDM-dFBS(10)(含10%透析FBS的IMDM培养基),然后培养1至2周。从孔中收集培养上清液,其中由于形成表现为不依赖HT生长的转化体,而观察到生长现象,通过在实施例8中第2项中显示的ELISA法测定上清液中抗CCR4嵌合抗体的表达水平。
就在孔中的转化体而言,其中可在培养上清液中观察到抗CCR4嵌合抗体的产生,为了采用DHFR基因扩增系统增加抗体产生的量,每个都悬浮在含有50nM MTX的IMDM-dFBS(10)培养基中达到1至2×105细胞/毫升的密度,悬液以0.5毫升的量分配至24孔板(Iwaki Glass制造)的每个孔中。显示50nM MTX抗性的转化体通过在5%CO2培养箱37℃培养1至2周而被诱导。就可观察生长的孔中的转化体而言,MTX浓度用同样的方法增加至200nM,可最终获得能够在含有200nMMTX的IMDM-dFBS(10)培养基中生长,并产生大量抗CCR4嵌合抗体的转化体。获得的转化体命名为5-03。在这个实施例中,可采用实施例9中显示的确定α-1,6-岩糖基转移酶基因转录产物的方法,选择出产生相对小量转录产物的细胞系,用作为合适的细胞系。
2.与CCR4部分肽的抗体结合活性(ELISA)
选择化合物1(SEQ ID NO:25)作为能与抗CCR4嵌合抗体反应的人CCR4胞外区肽。为了通过ELISA在活性测定中使用它,通过下面的方法制备一个与BSA(牛血清白蛋白)(Nacalai Tesque制造)的结合体,并用作抗原。即,100ml含有25mg/ml SMCC[4-(N-马来酰亚胺甲基)-环己烷-1-羧酸N-羟基琥珀酰亚胺酯](Sigma制造)的DMSO溶液逐滴加入至900毫升含10mg BSA的PBS溶液中,使用涡流进行搅拌,然后轻轻搅拌30分钟。1ml的反应溶液加至用25ml PBS平衡的凝胶 过滤柱如NAP-10柱或类似柱上,然后用1.5ml PBS洗脱,得到的洗脱液用作BSA-SMCC溶液(BSA的浓度根据A280的测定结果计算)。下一步,250ml PBS加入至0.5mg化合物1中,然后通过添加250ml DMF而完全溶解,在旋涡中加入BSA-SMCC溶液,然后轻轻搅拌3小时。反应溶液用PBS在4℃透析过夜,加入叠氮钠至终浓度0.05%,混合物经过0.22mm滤器过滤,作为BSA-化合物1溶液。
制备的结合物以0.05μg/ml和50μl/孔加入至96孔EIA板中(Greiner制造)并为其粘附于4℃孵育过夜。在用PBS冲洗每孔后,以100μl/孔加入1%BSA-PBS,并使其在室温下反应阻断残余的活性基团。在用含有0.05%Tween 20(此后称为“Tween-PBS”)的PBS冲洗每个孔后,以50μl/孔加入转化体的培养上清液,并在室温下反应1小时。反应后,每个孔用Tween-PBS冲洗,然后以50μl/孔加入1%BSA-PBS稀释6,000倍的过氧化物酶标记的羊抗人IgG(γ)抗体溶液(American Qualex制造)作为二抗溶液,然后在室温下反应1小时。反应后,随后用Tween-PBS冲洗,ABTS底物溶液以50μl/孔加入显色,20分钟后,反应通过以50μl/孔添加5%SDS而终止。然后在415nm(OD415)测定吸收度。在实施例8的第1项中获得的抗CCR4嵌合抗体显示了与CCR4的结合活性。
3.抗CCR4嵌合抗体的纯化
(1)来自YB2/0细胞的生产抗体的细胞的培养和抗体的纯化
在实施例8的第1(1)项中获得的表达抗CCR4嵌合抗体的转化细胞克隆KM2760#58-35-16悬浮在含有200nM MTX和5%Daigo’sGF21(Wako Pure Chemical Industries制造)的杂交瘤-SFM(Invitrogen制造)培养基中达到2×105细胞/毫升的密度,并使用旋动瓶(Iwaki Glass制造)在37℃的恒温室中进行补料分批振摇培养。培养8至10天后,采用Prosep-A(Millipore制造)柱和凝胶过滤从收集的培养上清液中纯化抗CCR4嵌合抗体。纯化的抗CCR4抗体命名为KM2760-1。
(2)来自CHO-DG44细胞的生产抗体细胞的培养和抗体的纯化
在实施例8的第1(2)项中获得的生产抗CCR4嵌合抗体的转化细胞系5-03采用IMDM-dFBS(10)培养基在182cm2培养皿(Greiner制造)中37℃在5%CO2培养箱中培养,当细胞密度在几天后达到汇合时,去除培养上清液,细胞用25ml PBS缓冲液冲洗,然后与35ml EXCELL301培养基(JRH制造)混合。采用Prosep-A(Millipore制造)柱根据制造厂商的说明书从培养上清液中纯化抗CCR4嵌合抗体。纯化的抗CCR4抗体命名为KM3060。
当KM2760-1和KM3060与CCR4的结合活性通过ELISA测定时,它们显示具有相同的结合活性。
4.纯化的抗CCR4嵌合抗体的分析
在本实施例的第1项中获得的,不同动物细胞中产生和纯化的两种抗CCR4嵌合抗体的每一个(4μg)根据已知的方法[Nature,227,680(1970)]进行SDS-PAGE,分析分子量和纯化度。在每一个纯化的抗CCR4嵌合抗体中,在非还原条件下发现有对应于大约150Kb分子量的单一条带,在还原条件下发现两条大约50Kb和大约25Kb的条带。分子量与从抗体的H链和L链的cDNA核苷酸序列中推算出来的分子量几乎是一致的(H链:大约49Kd,L链:大约23Kd,整个分子:大约144Kd),也与报道的一致,报道说IgG型抗体的分子量在非还原条件下大约为150Kd,在还原条件下由于分子中S-S键的切断降解为分子量为大约50Kd的H链和分子量为大约25Kd的L链[抗体:实验室指南,Cold Spring Harbor Laboratory,第14章(1998);单克隆抗体:原理和实践,Academic Press Limited(1996)],因此证明可以表达每一个抗CCR4嵌合抗体,并作为具有正确结构的抗体分子被纯化。
5.含不同比例无α-1,6-岩藻糖糖链的抗CCR4嵌合抗体的制备
与在实施例8的第3(1)项中制备的YB2/0细胞获得的抗CCR4嵌合抗体KM2760-1和在实施例8的第3(2)项中制备的CHO/DG44细胞 获得的抗CCR4嵌合抗体KM3060结合的糖链根据实施例10(6)中的方法被分析。在KM2760和KM3060中无α-1,6-岩藻糖糖链的比例分别为87%和8%。在此,样品是指抗CCR4嵌合抗体(87%)和抗CCR4嵌合抗体(8%)。
抗CCR4嵌合抗体(87%)和抗CCR4嵌合抗体(8%)混合,比例为抗CCR4嵌合抗体(87%)∶抗CCR4嵌合抗体(8%)=1∶39,16∶67,22∶57,32∶47或42∶37。这些样品的糖链根据实施例10(6)中的方法进行分析。无α-1,6-岩藻糖糖链的比例分别为9%,18%,27%,39%和46%。在此,这些样品是指抗CCR4嵌合抗体(9%),抗CCR4嵌合抗体(18%),抗CCR4嵌合抗体(27%),抗CCR4嵌合抗体(39%)和抗CCR4嵌合抗体(46%)。
每个样品糖链分析的结果在图16中显示。无α-1,6-岩藻糖糖链的比例以两个糖链分析的平均值显示。
6.评定与CCR4部分肽的结合活性(ELISA)
在实施例8第5项中制备的6种不同的含有不同比例无α-1,6-岩藻糖糖链的抗CCR4嵌合抗体与CCR4部分肽的结合活性根据在实施例8第2项中所描述的方法进行测定。
结果如图17中所显示的,6种抗CCR4嵌合抗体显示了几乎相同的CCR4结合活性,发现无α-1,6-岩藻糖糖链的比例并不影响抗体的抗原结合活性。
7.评定对人高度表达CCR4的细胞系的ADCC活性
抗CCR4嵌合抗体对人高度表达CCR4的细胞CCR4/EL-4细胞(WO 01/64754)的ADCC活性如下测定。
(1)制备靶细胞悬液
制备在WO 01/64754中所描述的人表达CCR4的细胞,CCR4/EL-4 细胞(1.5×106),加入5.55MBq当量的放射性物质Na2 51CrO4,然后在37℃反应1.5小时,用放射性同位素标记细胞。反应后,细胞通过悬浮在培养基中冲洗三次,然后离心,重新悬浮在培养基中,在冰上4℃孵育30分钟自发分解放射性物质。离心后,细胞通过添加7.5ml培养基调整至2×105细胞/毫升的密度,并用作靶细胞悬液。
(2)制备人效应细胞悬液
从健康人中收集60毫升外周血,加入0.6ml肝素钠(Shimizu Pharmaceutical生产),然后轻轻混合。混合物离心(800g,20分钟)采用Lymphoprep(AXIS SHIELD生产)根据制造商的说明书分离单核细胞层。细胞使用培养基冲洗离心(1,400rpm,5分钟)三次,然后重新悬浮在培养基中达到5×106细胞/毫升的密度,并用作人效应细胞悬液。
(3)检测ADCC活性
在(1)中制备的靶细胞悬液以50μl(1×104细胞/孔)分配至96孔U形底平板的每个孔中(Falcon制造)。下一步,加入在(2)中制备的人效应细胞悬液100μl(5×105细胞/孔,人效应细胞与靶细胞的比例为50∶1)。而且,加入每个抗CCR4嵌合抗体达到终浓度0.0001至10μg/ml,然后在37℃反应4小时。反应后,离心平板,采用γ-计数仪测定上清液中 51Cr的量。通过同样的操作方法仅使用培养基而不是人效应细胞悬液和抗体溶液,并测定上清液中51Cr的量,计算自发释放的51Cr量。通过同样的操作方法仅使用培养基而不是抗体溶液,加入1mol/L盐酸而不是抗体溶液和人效应细胞悬液,并测定上清液中51Cr的量,计算总共释放的51Cr量。ADCC活性(%)根据公式(II)计算。
图18和19分别显示了使用两个健康供者(A和B)的效应细胞,含有无α-1,6-岩藻糖糖链的抗CCR4嵌合抗体在不同浓度下(0.001-10μg/ml)的ADCC活性的测定结果。如在图18和19中显示的,抗CCR4嵌合抗体的ADCC活性显示了在每个抗体浓度下根据无α-1,6-岩藻糖糖链的比例增加的趋势。当抗体浓度低时,ADCC活性降低。 抗体浓度为0.01μg/ml时,无α-1,6-岩藻糖糖链为27%,39%或46%的抗体显示了几乎相同的最大ADCC活性,但无α-1,6-岩藻糖糖链少于20%的抗体中ADCC活性是很低的。当效应细胞供者改变时,结果是相同的。
实施例9
在宿主细胞系中测定α-1,6-岩藻糖基转移酶基因的转录产物:
(1)从多种细胞系中制备单链cDNA
根据下列的步骤,从来自中国仓鼠卵巢和大鼠骨髓瘤YB2/0细胞的删除二氢叶酸还原酶基因(dhfr)的CHO/DG44细胞中制备单链cDNA样品。
CHO/DG44细胞悬浮在添加10%胎牛血清(Life Technologies制造)和1×浓度HT添加液(Life Technologies制造)的IMDM培养基(Life Technologies制造)中,15ml悬液接种在粘附细胞培养使用的T75培养皿中(Greiner制造),密度为2×105细胞/毫升。YB2/0细胞也悬浮在添加10%胎牛血清(Life Technologies生产)和4mmol/l L-GLN(Life Technologies生产)的RPMI 1640培养基中(Life Technologies生产),15毫升悬液接种在悬浮细胞培养使用的T75培养皿中(Greiner生产),密度达到2×105细胞/毫升。这些细胞在37℃在5%CO2培养箱中进行培养,在培养的第1,第2,第3,第4和第5天分别获取1×107宿主细胞以采用RNAeasy(QIAGEN制造)根据生产厂商的说明提取总RNA。
总RNA溶解在45μl蒸馏水中,加入1μl RQ1无核糖核酸酶(RNase)的DNase(Promega制造),5μl附加的10×Dnase缓冲液和0.5μl RNasin核糖核酸酶抑制剂(Promega制造),然后在37℃反应30分钟降解样品中污染的基因组DNA。反应后,再次采用RNAeasy(QIAGEN制造)纯化总RNA,并溶解在50μl蒸馏水中。
使用低聚(dT)作为引物在20μl反应混合物中,采用用于第一链 cDNA合成(First Strand cDNA Synthesis)的SUPERSCRIPTTM预扩增系统(Life Technologies制造)通过逆转录反应,并根据生产厂商的说明,由3μg每种所获得的总RNA样品中合成单链cDNA。使用1×浓度的反应溶液进行α-1,6-岩藻糖基转移酶的克隆(此后有时称作“FUT8”),分别从几种宿主细胞中得到的β-肌动蛋白,通过竞争PCR测定每个基因转录水平的反应溶液的50倍稀释水溶液,溶液被储存在-80℃直至使用。
(2)制备中国仓鼠FUT8和大鼠FUT8的cDNA部分片段
中国仓鼠FUT8和大鼠FUT8的每个cDNA部分片段通过下面的步骤进行制备(图20)。
首先,设计了对人FUT8 cDNA[J.Biochem,121,626(1997)]和猪FUT8 cDNA[J.Biol.Chem.,271,27810(1995)]共有的核苷酸序列特异的引物(在SEQ ID NO:4和5中显示)。
下一步,用25μl反应溶液[ExTaq缓冲液(Takara Shuzo制造),0.2mmol/l脱氧核苷三磷酸(dNTP)和0.5μmol/l基因特异引物(SEQ IDNO:4和5)],该溶液含有1μl每种从CHO细胞中制备的cDNA和从YB2/0细胞中制备的cDNA,这两种细胞均在培养后2天在第(1)项中获得,采用DNA聚合酶ExTaq(Takara Shuzo制造)进行聚合酶链式反应(PCR)。PCR的过程为:在94℃加热1分钟,然后94℃加热30秒,55℃加热30秒,72℃加热2分钟作为一个循环进行30个循环,最后72℃加热10分钟。
PCR后,反应溶液进行0.8%琼脂糖凝胶电泳,采用GENECLEAN Spin Kit(BIO 101制造)纯化979bp的特异扩增片段,并用10μl无菌水洗脱(在下文该方法用来纯化琼脂糖凝胶的DNA片段)。根据TOPO TA克隆试剂盒(Invitrogen制造)的说明书,使用4μl扩增片段插入质粒pCR2.1中,大肠杆菌XL1-蓝用反应溶液通过Cohen等人的方法进行转 化[Proc.Natl.Acad.Sci.USA,69,2110(1972)](在下文该法用来进行大肠杆菌的转化)。根据已知的方法在所获得的卡那霉素抗性克隆中从插入cDNA的6个克隆中分离DNA样品[Nucleic Acids Research,7,1513(1979)](在下文该法用来分离质粒)。
采用DNA测序仪377(Parkin Elmer制造)和BigDye终止循环测序FS即用反应试剂盒(BigDye Terminator Cycle Sequencin FS Ready Reaction kit)(Parkin Elmer制造)根据生产厂商的说明测定每个插入至质粒中的cDNA的核苷酸序列。已证实所有插入的通过该法测序的cDNA编码中国仓鼠FUT8或大鼠FUT8(在SEQ ID NO:6和7中显示的)的可读框(ORF)部分序列。在它们中,可以通过PCR可选择在序列中完全没有读码错误的质粒DNA样品。在此,这些质粒是指CHFUT8-pCR2.1和YBFUT-pCR2.1。
(3)制备中国仓鼠β-肌动蛋白和大鼠β-肌动蛋白cDNA
通过以下的步骤制备中国仓鼠β-肌动蛋白和大鼠β-肌动蛋白cDNA(图21)。
首先,从中国仓鼠β-肌动蛋白基因组序列(基因库编号,U20114)和大鼠β-肌动蛋白基因组序列[Nucleic Acids Research,11,1759(1983)]中,设计针对翻译起始密码子的共有序列(在SEQ ID NO:8中显示)的特异正向引物和针对翻译终止密码子的各个序列(在SEQ ID NO:9和10中显示)的特异反向引物。
下一步,制备25μl反应溶液[KOD缓冲液#1(Toyobo制造),0.2mmol/l dNTP,1mmol/l MgCl2,0.4μmol/l基因特异引物(SEQ ID NO:8和9,或SEQ ID NO:8和10)和5%DMSO],该溶液含有1μl每种从CHO细胞中制备的cDNA和从YB2/0细胞中制备的cDNA,且两种细胞均在培养后2天在第(1)项中获得,采用DNA聚合酶KOD(Toyobo制造)进行PCR。通过在94℃加热1分钟进行PCR,然后98℃加热15秒, 65℃加热2秒,74℃加热30秒作为一个循环进行25循环。
PCR后,反应溶液进行0.8%琼脂糖凝胶电泳,纯化1128bp的特异扩增片段。采用MEGALABEL(Takara Shuzo制造)根据生产厂商的说明对DNA片段进行DNA 5’-末端磷酸化。采用乙醇沉淀法从反应溶液中回收DNA片段,并溶解在10μl无菌水中。
3μg质粒pBluescript II KS(+)(Stratagene制造)溶解在35μlNEBuffer 2(New England Biolabs制造)中,加入16单位限制性酶EcoRV(Takara Shuzo制造)在37℃消化反应3小时。向该反应溶液中加入35μl 1mol/l Tris-HCI缓冲液(pH 8.0)和3.5μl大肠杆菌C15来源的碱性磷酸酶(Takara Shuzo制造),然后通过在65℃反应30分钟对DNA末端进行脱磷酸化。反应溶液用苯酚/氯仿提取,然后用乙醇沉淀,回收的DNA片段溶解在100μl无菌水中。
4μl从中国仓鼠cDNA中制备的扩增片段或从大鼠cDNA中制备的扩增片段(1192bp)与1μl从质粒pBluescript II KS(+)中制备的EcoRV-EcoRV片段(大约3.0Kb)和5μl Ligation High(Toyobo制造)混合在16℃进行连接反应30分钟。采用反应溶液,大肠杆菌XL1-Blue被转化,根据已知的方法从所获得的氨苄青霉素抗性克隆中分别分离质粒DNA样品。
采用DNA测序仪377(Parkin Elmer制造)和BigDye终止循环测序FS预反应试剂盒(Parkin Elmer制造)根据生产厂商的说明测定每个插入至质粒中的cDNA的核苷酸序列。已证实所有插入的通过该法测序的cDNA编码中国仓鼠β-肌动蛋白和大鼠β-肌动蛋白的ORF全部序列。在它们中,可以通过PCR选择在序列中完全没有碱基读码错误的质粒DNA样品。在此,这些质粒是指CHAc-pBS和YBAc-pBS。
(4)FUT8标准品和内参照的制备
为了在每个细胞中测定FUT8基因mRNA的转录水平,如同在第(2)中从中国仓鼠FUT8或大鼠FUT8中制备的cDNA部分片段插入至pCR2.1的质粒,CHFT8-pCR2.1或YBFT8-pCR2.1分别用限制性酶EcoRI进行消化,获得的线性DNA用作制备校准曲线的标准。从CHFT8-pCR2.1和YBFT8-pCR2.1中通过在ScaI和HindIII之间删除203bp获得的CHFT8d-pCR2.1和YBFT8d-pCR2.1,中国仓鼠FUT8和大鼠FUT8的内部核苷酸序列分别用限制性酶EcoRI进行消化,获得的线性DNA用作FUT8测定的内标准。其细节如下所述。
中国仓鼠FUT8和大鼠FUT8标准如下制备。在40μl NEBuffer 2(New England Biolabs制造)中,溶解2μg质粒CHFT8-pCR2.1,加入24单位的限制性酶EcoRI(Takara Shuzo制造),随后在37℃进行消化反应3小时。分别地,在40μl NEBuffer 2(New England Biolabs制造)中溶解2μg质粒YBFT8-pCR2.1,加入24单位的限制性酶EcoRI(Takara Shuzo制造),随后在37℃进行消化反应3小时。通过将每种反应溶液的部分进行0.8%琼脂糖凝胶电泳,可证实含有中国仓鼠FUT8和大鼠FUT8的每个cDNA部分片段的EcoRI-EcoRI片段(大约1Kb)从质粒CHFT8d-pCR2.1和YBFT8d-pCR2.1通过限制性酶消化反应而分离出来。每种反应溶液用1μg/ml面包酵母t-RNA(SIGMA制造)稀释,得到的浓度为0.02fg/μl,0.2fg/μl,1fg/μl,2fg/μl,10fg/μl,20fg/μl和100fg/μl,且用作中国仓鼠FUT8和大鼠FUT8的标准。
中国仓鼠FUT8和大鼠FUT8的内标准如下制备(图22)。制备含有5ng CHFT8-pCR2.1或YBFT8-pCR2.1的反应溶液[KOD缓冲液#1(Toyobo制造),0.2mmol/l dNTP,1mmol/l MgCI2,0.4μmol/l基因特异引物(SEQ ID NO:11和12)和15%DMSO],采用DNA聚合酶KOD(Toyobo制造)进行PCR。PCR的进行是通过在94℃加热4分钟,然后98℃加热15秒,65℃加热2秒,74℃加热30秒作为一个循环进行25循环。PCR后,反应溶液进行0.8%琼脂糖凝胶电泳,并纯化一个大约4.7kb的特异扩增片段。采用MEGALABEL(Takara Shuzo制造) 根据生产厂商的说明进行DNA 5’-末端磷酸化,然后采用乙醇沉淀法从反应溶液中回收DNA片段,并溶解在50μl无菌水中。获得的DNA片段(5μl,大约4.7Kb)和5μl Ligation High(Toyobo制造)混合,然后在16℃进行自环化反应30分钟。
使用反应溶液,大肠杆菌DH5α被转化,根据已知的方法从所获得的安比西林抗性克隆中分离质粒DNA样品。采用DNA测序仪377(Parkin Elmer制造)和BigDye终止循环测序FS预反应试剂盒(Parkin Elme制造)测定每个质粒DNA的核苷酸序列,已证实在中国仓鼠FUT8或大鼠FUT8的ScaI和HindIII之间的203bp内部核苷酸序列被删除。所获得的质粒分别是指CHFT8d-pCR2.1或YBFT8d-pCR2.1。
下一步,在40μl NEBuffer 2(New England Biolabs制造)中,溶解2μg质粒CHFT8d-pCR2.1,加入24单位的限制性酶EcoRI(Takara Shuzo制造),随后在37℃进行消化反应3小时。分别地,在40μl NEBuffer 2(New England Biolabs制造)中溶解2μg质粒YBFT8d-pCR2.1,加入24单位的限制性酶EcoRI(Takara Shuzo制造),随后在37℃进行消化反应3小时。通过将每个反应溶液的部分进行0.8%琼脂糖凝胶电泳,可证实含有中国仓鼠FUT8或大鼠FUT8部分片段的203bp内部核苷酸序列被删除的片段的EcoRI-EcoRI片段(大约800bp)从质粒CHFT8d-pCR2.1或YBFT8d-pCR2.1通过限制性酶消化反应而分离出来。从反应溶液中用1μg/ml of面包酵母t-RNA(SIGMA制造)制备2fg/μl的稀释液,并用作中国仓鼠FUT8或大鼠FUT8的内参照。
(5)β-肌动蛋白标准品和内参照的制备
为了测定在多种宿主细胞中β-肌动蛋白基因mRNA的转录水平,如同在第(3)中制备的中国仓鼠β-肌动蛋白和大鼠β-肌动蛋白的每个cDNA的ORF全长插入至pBluescript II KS(+1)的质粒,CHAc-pBS和YBAc-pBS分别用限制性酶HindIII和PstI,限制性酶HindIII和KpnI进行消化,消化的线性DNA用作制备校准曲线的标准。从CHAc-pBS 和YBAc-pBS中通过在中国仓鼠β-肌动蛋白和大鼠β-肌动蛋白的内部核苷酸序列的DraIII和DraIII之间删除180bp获得的CHAcd-pBS和YBAcd-pBS,分别用限制性酶HindIII和PstI,和限制性酶HindIII和KpnI进行消化,消化的线性DNA用作β-肌动蛋白测定的内标准。其细节如下所述。
中国仓鼠β-肌动蛋白和大鼠β-肌动蛋白标准品如下制备。在40μlNEBuffer 2(New England Biolabs制造)中,溶解2μg质粒CHAc-pBS,加入25单位的限制性酶HindIII(Takara Shuzo制造)和20单位的限制性酶PstI(Takara Shuzo制造),然后在37℃进行消化反应3小时。分别地,在40μl NEBuffer 2(New England Biolabs制造)中,溶解2μg质粒YBAc-pBS,加入25单位的限制性酶HindIII(Takara Shuzo制造)和25单位的限制性酶KpnI(Takara Shuzo制造),然后在37℃进行消化反应3小时。每种反应溶液的部分进行0.8%琼脂糖凝胶电泳,可证实含有中国仓鼠β-肌动蛋白和大鼠β-肌动蛋白的每个cDNA的全长ORF的HindIII-PstI片段和HindIII-KpnI片段(大约1.2Kb)从质粒CHAc-pBS和YBAc-pBS通过限制性酶消化反应而分离出来。每种反应溶液用1μg/ml面包酵母t-RNA(SIGMA制造)稀释,得到的浓度为2pg/μl,1pg/μl,200fg/μl,100fg/μl和20fg/μl,用作中国仓鼠β-肌动蛋白和/或大鼠β-肌动蛋白的标准。
中国仓鼠β-肌动蛋白和大鼠β-肌动蛋白的内部标准品如下制备(图23)。在100μl含有100ng/μl BSA(New England Biolabs制造)的NEBuffer 3(New England Biolabs制造)中,溶解2μg质粒CHAc-pBS,加入10单位的限制性酶DraIII(New England Biolabs制造),然后在37℃进行消化反应3小时。通过乙醇沉淀从反应溶液中回收DNA片段,采用DNA钝化试剂盒(Takara Shuzo制造)根据生产厂商的说明将DNA末端改变为钝端,然后将反应溶液分为两个等份。首先,加入35μl 1mol/lTris-HCl缓冲液(pH 8.0)和3.5μl大肠杆菌C15来源的碱性磷酸酶(Takara Shuzo制造)至反应溶液的一个部分中,然后在65℃反应30分 钟对DNA末端进行脱磷酸化。通过进行脱磷酸化处理,苯酚/氯仿提取处理和乙醇沉淀处理可回收DNA片段,然后溶解在10μl无菌水中。反应溶液的剩余部分进行0.8%琼脂糖凝胶电泳,以纯化含有中国仓鼠β-肌动蛋白的ORF部分片段的大约1.1Kb的DNA片段。
脱磷酸化的DraIII-DraIII片段(4.5μl),4.5μl大约1.1Kb的DraIII-DraIII片段和5μl Ligation High(Toyobo生产)混合,然后在16℃进行连接反应30分钟。使用反应溶液,大肠杆菌DH5α被转化,根据已知的方法从所获得的氨比西林抗性克隆中分离质粒DNA。每个质粒DNA的核苷酸序列采用DNA测序仪377(Parkin Elmer制造)和BigDye终止循环测序FS预反应试剂盒(Parkin Elmer制造)进行鉴定,证实插入到质粒中的中国仓鼠β-肌动蛋白DraIII-DraIII 180bp被删除。该质粒被称作CHAcd-pBS。
其中大鼠β-肌动蛋白DraIII-DraIII 180bp被删除的质粒也可经与CHAcd-pBS同样的步骤进行制备。该质粒被称作YBAcd-pBS。
下一步,在40μl NEBuffer 2(New England Biolabs制造)中,溶解2μg质粒CHAcd-pBS,加入25单位的限制性酶HindIII(Takara Shuzo制造)和20单位的限制性酶PstI(Takara Shuzo制造),然后在37℃进行消化反应3小时。分别地,在40μl NEBuffer 2(New England Biolabs制造)中,溶解2μg质粒YBAcd-pBS,加入25单位的限制性酶HindIII(Takara Shuzo制造)和24单位的限制性酶KpnI(Takara Shuzo制造),然后在37℃进行消化反应3小时。每种反应溶液的部分进行0.8%琼脂糖凝胶电泳,可证实含有中国仓鼠β-肌动蛋白和大鼠β-肌动蛋白的每个cDNA的全长ORF的180bp内部核苷酸序列被删除的片段的HindIII-PstI片段和HindIII-KpnI片段(大约1.0Kb)从质粒CHAcd-pBS和YBAcd-pBS通过限制性酶消化反应而分离出来。反应溶液用1μg/ml面包酵母t-RNA(SIGMA制造)制备200fg/μl的稀释溶液,用作中国仓鼠β-肌动蛋白和大鼠β-肌动蛋白的内参照。
(6)通过竞争PCR确定转录水平
采用在第(4)项中制备的FUT8内参照DNA和在第(1)项中获得的宿主细胞来源的cDNA作为模板进行竞争PCR,宿主细胞系中FUT8转录产物的确定值可从来自每个模板的扩增产物量的相对值来计算。另一方面,因为考虑β-肌动蛋白基因可在每个细胞中不断转录,其转录水平在细胞间基本相同,因此确定β-肌动蛋白基因的转录水平作为每种宿主细胞系中cDNA合成反应有效性的衡量物。即,采用在第(5)项中制备的β-肌动蛋白内参照DNA和在第(1)项中获得的宿主细胞来源cDNA作为模板进行PCR,宿主细胞系中β-肌动蛋白转录产物的确定值可从来自每种模板的β-肌动蛋白转录产物确定值来计算。其细节描述如下。
FUT8转录产物通过下面的步骤确定。首先,设计了对在第(2)项中获得的中国仓鼠FUT8和大鼠FUT8的ORF部分序列的内部序列普遍的一组序列特异的引物(在SEQ ID NO:13和14中显示)。
下一步,在含有5μl第(1)项中每种宿主细胞系制备的50倍稀释的cDNA溶液和5μl(10fg)内参照质粒的总体积为20μl的反应溶液[ExTaq缓冲液(Takara Shuzo制造),0.2mmol/l dNTP,0.5μmol/l基因特异的引物(SEQ ID NO:13和14)和5%DMSO]中,使用DNA聚合酶ExTaq(Takara Shuzo制造)进行PCR。PCR的进行是在94℃加热3分钟,之后94℃加热1分钟,60℃加热1分钟,72℃加热1分钟作为1循环进行32个循环。
加入在第(4)项中获得的FUT8标准质粒5μl(0.1fg,1fg,5fg,10fg,50fg,100fg,500fg或1pg)而不是宿主细胞系来源的cDNA进行PCR的一系列反应,用来绘制FUT8转录水平的校准曲线。
通过下列步骤确定β-肌动蛋白的转录产物。首先,设计了对在第 (3)项中获得的中国仓鼠β-肌动蛋白和大鼠β-肌动蛋白的ORF全长的内部序列普遍的两组相应的基因特异的引物(前者在SEQ ID NO:15和16中显示,后者在SEQ ID NO:17和18中显示)。
下一步,在含有5μl第(1)项中每种宿主细胞系制备的50倍稀释的cDNA溶液和5μl(1pg)内参照质粒的总体积为20μl的反应溶液[ExTaq缓冲液(Takara Shuzo制造),0.2mmol/l dNTP,0.5μmol/l基因特异的引物(SEQ ID NO:15和16,或SEQ ID NO:17和18)和5%DMSO]中,使用DNA聚合酶ExTaq(Takara Shuzo制造)进行PCR。PCR的进行是在94℃加热3分钟,之后94℃加热30秒,65℃加热1分钟,72℃加热2分钟为1循环进行17个循环。
也加入在第(5)项中获得的β-肌动蛋白标准质粒5μl(10pg,5pg,1pg,500fg或100fg)而不是每个宿主细胞系来源的cDNA进行PCR的一系列反应,用来绘制β-肌动蛋白转录水平的校准曲线。
表3
*F:正向引物,R:反向引物
通过使用表3中描述的引物进行PCR,可以从每个基因转录产物和每个标准品中扩增具有在表3中靶列中显示的大小的DNA片段,可 以从每个内参照中扩增具有表3中竞争列中显示的大小的DNA片段。
PCR后每种溶液的7μl部分进行1.75%琼脂糖凝胶电泳,然后凝胶通过浸入1×浓度的SYBR Green I核酸凝胶染色(Molecular Probes制造)中30分钟对凝胶进行染色。每个扩增DNA片段的量通过采用荧光图像仪(FluorImager SI;Molecular Dynamics制造)计算每个扩增DNA的发光强度来测定。
采用标准的质粒作为模板通过PCR形成的扩增产物的量可通过该法来测定,通过绘制测定值相对标准质粒数量的图表作出校准曲线。当每个表达细胞系来源的cDNA用作模板时,每个细胞系中目的cDNA基因的数量可使用校准曲线从扩增产物的数量来计算,其数量被认为是每个细胞系中mRNA的转录水平。
当大鼠FUT8序列被用作标准品和内参照时,每个宿主细胞系中FUT8转录产物的数量在图24中显示。经过培养期,CHO细胞系显示了为YB2/0细胞系10倍或较其更高的转录水平。当中国仓鼠FUT8序列用于标准品和内参照时,也发现了这样的趋势。
在表4中也显示了FUT8的转录水平,作为β-肌动蛋白转录产物量的相对值。经过培养期,在YB2/0细胞系中的FUT8转录水平为β-肌动蛋白的大约0.1%,而在CHO细胞系为0.5%至2%。
该结果显示在YB2/0细胞系中的FUT8转录产物量明显小于CHO细胞系中的FUT8转录产物量。
表4
实施例10
在产生抗神经节苷脂GD3嵌合抗体的细胞系中确定α-1,6-岩藻糖基转移酶(FUT8)基因的转录产物:
(1)从多种产生抗体的细胞系中制备单链cDNA
如下从产生抗神经节苷脂的GD3嵌合抗体的细胞系DCHI01-20和61-33制备单链cDNA。DCHI01-20是一个从实施例1的第2(2)项中所述的CHO/DG44细胞中得到的转化体克隆。61-33也是一个通过YB2/0来源的转化体细胞7-9-51(FERM BP-6691,国际专利生物保藏处,国家高级工业科学和技术研究院(AIST Tsukuba Central 6,1-1,Higashi 1-Chome Tsukuba-shi,Ibaraki-ken,305-8566Japan))进行无血清适应所获得的克隆,然后通过两次有限稀释进行单细胞分离。
DCHI01-20的细胞悬浮在添加了3mmol/l L-GLN(Life Technologies制造),0.3%PLURONIC F-68(Life Technologies制造)和0.5%浓缩脂肪酸(Life Technologies制造)的EXCELL 302培养基(JRHBIOSCIENCES制造)中,15ml悬液接种在悬浮细胞培养使用的T75培养皿中(Greiner制造),达到2×105细胞/毫升的密度。61-33细胞也悬浮在添加了0.2%牛血清白蛋白组分V(Life Technologies制造)(此后称为“BSA”)的杂交瘤-SFM培养基(Life Technologies制造)中,15ml悬液接种在悬浮细胞培养使用的T75培养皿中(Greiner制造),达到2×105细胞/毫升的密度。这些细胞在5%CO2培养箱中37℃培养,在培养后的1,2,3,4和5天,分别收集1×107每种宿主细胞,采用RNAeasyQIAGEN制造)根据生产厂商的说明书提取总RNA。
总RNA溶解在45μl无菌水中,加入1μl RQ1无RNase的DNase(Promega制造),5μl附加的10×DNase缓冲液和0.5μl DNasin核糖核酸酶抑制剂(Promega制造),然后在37℃反应30分钟,以降解样品中污染的基因组DNA。反应后,使用RNAeasy(QIAGEN制造)再次纯化总RNA,并溶解在50μl无菌水中。
采用低聚(dT)作为引物在20μl反应混合物中,由3μg每个获得的总RNA样品中合成单链cDNA,采用SUPERSCRIPTTM前置放大系统根据生产厂商的说明通过逆转录反应进行第一链cDNA合成(Life Technologies制造)。反应溶液用水稀释50倍并储存在-80℃直至使用。
(2)通过竞争PCR确定每个基因的转录水平
在第(1)项中获得的产生抗体细胞系来源的cDNA上的每条基因的转录水平可通过竞争PCR根据实施例9(6)进行确定。
根据下面的步骤确定在每个产生抗体的细胞系中FUT8基因来源的mRNA转录水平。
如同在实施例9(2)中从中国仓鼠FUT8和大鼠FUT8中分别制备的cDNA部分片段插入至pCR2.1的质粒,CHFT8-pCR2.1或YBFT8-pCR2.1用限制性酶EcoRI进行消化,获得的线性DNA用作制备校准曲线的标准以便确定FUT8的转录水平。
分别在实施例9(4)中分别通过在中国仓鼠FUT8和大鼠FUT8的内部核苷酸序列的ScaI和HindIII之间删除203bp获得的CHFT8d-pCR2.1和YBFT8d-pCR2.1,用限制性酶EcoRI进行消化,获得的线性DNA用作FUT8测定的内标准。
在含有5μl第(1)项中每种产生抗体的细胞系制备的50倍稀释的cDNA溶液和5μl(10fg)内参照质粒的总体积为20μl的反应溶液[ExTaq缓冲液(Takara Shuzo制造),0.2mmol/l dNTP,0.5μmol/lFUT8基因特异的引物(SEQ ID NO:13和14)和5%DMSO]中,使用DNA聚合酶ExTaq(Takara Shuzo制造)进行PCR。PCR的进行是在94℃加热3分钟,之后94℃加热1分钟,60℃加热1分钟,72℃加热1分钟为1循环进行32个循环。
加入FUT8标准质粒5μl(0.1fg,1fg,5fg,10fg,50fg,100fg,500fg或1pg)而不是每个产生抗体细胞系来源的cDNA进行PCR的一系列反应,用来绘制FUT8转录水平的校准曲线。在本实施例中,1μg/ml面包酵母t-RNA(SIGMA制造)用来稀释标准质粒。
另一方面,因为考虑到β-肌动蛋白基因可在每个细胞中不断的转录,其转录水平在细胞间几乎是相同的,因此β-肌动蛋白基因的转录水平被作为每个产生抗体的细胞系中cDNA合成反应效率的指标来确定。
如同在实施例9(3)中制备的中国仓鼠β-肌动蛋白和大鼠β-肌动蛋白的每个cDNA的ORF全长插入至pBluescript II KS(+)的质粒,CHAc-pBS和YBAc-pBS分别用限制性酶HindIII和KpnI进行消化,获得的线性DNA样品用作制备校准曲线的标准以便测定β-肌动蛋白的转录水平。
在实施例9(5)中通过在中国仓鼠β-肌动蛋白和大鼠β-肌动蛋白的内部核苷酸序列的DraI和DraI之间删除180bp获得的CHAcd-pBS和YBAcd-pBS,分别用限制性酶HindIII和KpnI进行消化,获得的线性DNA用作β-肌动蛋白测定的内标准。
在含有5μl从每种产生抗体的细胞系制备的50倍稀释cDNA溶液和5μl(1pg)内参照质粒的总体积为20μl的反应溶液[ExTaq缓冲液(Takara Shuzo制造),0.2mmol/l dNTP,0.5μmol/l β-肌动蛋白基因特异的引物(SEQ ID NO:17和18)和5%DMSO]中,使用DNA聚合酶ExTaq(Takara Shuzo制造)进行PCR。PCR的进行是在94℃加热3分钟,之后94℃加热30秒,65℃加热1分钟,72℃加热2分钟为1循环进行17个循环。在加入了β-肌动蛋白标准质粒10pg,5pg,1pg,500fg或100fg而不是每个产生抗体的细胞系来源的cDNA的一系列溶液中进行PCR 反应,用来绘制β-肌动蛋白转录水平的校准曲线。在本实施例中,1μg/ml面包酵母t-RNA(SIGMA制造)用来稀释标准质粒。
使用如在表3中所述的引物组通过PCR,具有表3的靶列中所示大小的DNA片段可从每个基因转录产物和每个标准品中扩增,具有表3中竞争列中所示大小的DNA片段可从每个内参照中扩增。
PCR后每种溶液的7μl部分进行1.75%琼脂糖凝胶电泳,然后凝胶通过浸入1×浓度的SYBR Green I核酸凝胶染色(Molecular Probes制造)中30分钟对凝胶进行染色。每个扩增DNA片段的量通过采用荧光图像仪(FluorImager SI;Molecular Dynamics制造)计算每条扩增DNA的发光强度来测定。
采用标准的质粒作为模板通过PCR形成的扩增产物的量可通过该法来测定,通过绘制测定值相对标准质粒数量的图表作出校准曲线。当每个产生抗体的细胞系来源的cDNA用作模板时,每个细胞系中目的cDNA基因的数量可使用校准曲线从扩增产物的数量来计算,其值被认为是每个细胞系中mRNA的转录水平。
在表5中也显示了FUT8的转录水平,作为β-肌动蛋白转录产物量的相对值。经过培养期,在YB2/0细胞来源的抗体产生61-33细胞中的FUT8转录水平为β-肌动蛋白的大约0.3%或更少,而在CHO细胞来源的抗体产生细胞中为0.7%至1.5%。
该结果显示YB2/0细胞来源的抗体产生细胞系较来自CHO细胞的抗体产生细胞系的FUT8转录产物的量明显更少。
表5
实施例11
制备小鼠α-1,6-岩藻糖基转移酶(FUT8)基因过度表达的细胞系:
(1)构建小鼠α-1,6-岩藻糖基转移酶(FUT8)表达质粒
从采用含有10%胎牛血清(Life Technologies制造)的IMDM培养基(Life Technologies制造)传代培养的小鼠骨髓瘤NS0细胞(RCB0213,物理和化学研究学会细胞库)的1×107细胞中使用RNAeasy(QIAGEN制造)根据生产厂商的说明提取总RNA。总RNA溶解在45μl无菌水中,加入1μl RQ1无RNase的DNase(Promega制造),5μl附加的10×DNase缓冲液和0.5μl DNasin核糖核酸酶抑制剂(Promega制造),然后在37℃反应30分钟,以降解样品中污染的基因组DNA。反应后,总RNA再次使用RNAeasy(QIAGEN制造)进行纯化,并溶解在50μl无菌水中。使用低聚(dT)作为引物在20μl反应混合物中,采用用于第一链cDNA合成的SUPERSCRIPTTM预扩增系统(Life Technologies制造)根据生产厂商的说明,通过逆转录反应由3μg获得的总RNA中合成单链cDNA。
根据下面的步骤制备小鼠的FUT8cDNA(图25)。
首先,从小鼠FUT8cDNA序列(基因库编号,AB025198)中设计含有转录起始密码子的序列(见SEQ ID NO:19)特异正向引物和含有转录终止密码子的序列(见SEQ ID NO:20)特异反向引物。
下一步,制备含有1μl NS0细胞来源的cDNA的反应溶液[ExTaq缓冲液(Takara Shuzo制造),0.2mmol/l dNTP,4%DMSO和0.5μmol/l特异引物(SEQ ID NO:19和20)]中,使用DNA聚合酶ExTaq(Takara Shuzo制造)进行PCR。PCR的进行是在94℃加热1分钟,然后94℃加热30 秒,55℃加热30秒,72℃加热2分钟为1循环进行30个循环,最后在72℃加热10分钟。
PCR后反应溶液进行0.8%琼脂糖凝胶电泳,纯化1728bp的特异扩增片段。根据附在TOPO TA克隆试剂盒(Invitrogen制造)中的生产厂商说明书使用4μl DNA片段插入至质粒pCR2.1,大肠杆菌DH5α用反应溶液进行转化。质粒DNA根据已知的方法从所获得的卡那霉素抗性克隆中插入cDNA的6个克隆中分离出来。
采用DNA测序仪377(Parkin Elmer制造)和BigDye终止循环测序FS预反应试剂盒(Parkin Elmer制造)根据生产厂商的说明书测定每个插入至质粒中的cDNA的核苷酸序列。已证实所有插入的序列已确定的cDNA都编码小鼠FUT8的ORF全长序列。在它们中,可以通过PCR选择在序列中完全没有读码错误的质粒DNA(其DNA序列和氨基酸序列分别在SEQ ID NO:2和24中显示)。当与在基因库中登记的小鼠FUT8序列比较时,也发现了在序列中有3个由于氨基酸替代引起的碱基不一致。在此,这些质粒被称作mfFUT8-pCR2.1。
下一步,如下构建含有小鼠FUT8ORF全长序列的质粒pBSmfFUT8(图26)。首先,1μg质粒pBluescript II KS(+)(Stratagene制造)溶解在35μl NEBuffer 2(New England Biolabs制造)中,向其中加入20单位限制性酶EcoRI(Takara Shuzo制造),随后在37℃消化反应2小时。将35μl 1mol/l Tris-HCI缓冲液(pH 8.0)和3.5μl大肠杆菌C15来源的碱性磷酸酶(Takara Shuzo制造)加入至反应溶液中,然后在65℃反应30分钟对DNA末端进行脱磷酸化。反应溶液用苯酚/氯仿提取,然后用乙醇沉淀,回收的DNA片段溶解在10μl蒸馏水中。
另外,在35μl NEBuffer 2(New England Biolabs制造)中,溶解1μg质粒mfFUT8-pCR2.1,加入20单位的限制性酶EcoRI(Takara Shuzo制造),随后在37℃进行消化反应2小时。将反应溶液进行0.8%琼脂糖凝 胶电泳,以纯化含有小鼠FUT8 cDNA的ORF全长序列的大约1.7Kb的DNA片段。
获得的质粒pBluescript II KS(+)来源的EcoRI-EcoRI片段(1μl,2.9Kb),4μl从质粒mfFUT8-pCR2.1中制备的EcoRI-EcoRI片段(1.7Kb)和5μl Ligation High(Toyobo制造)混合,然后在16℃进行连接反应30分钟。使用反应溶液,大肠杆菌DH5α被转化,根据已知的方法从所获得的氨比西林抗性克隆中分离质粒DNA。在此,该质粒是指pBSmfFUT8。
使用pBSmfFUT8和pAGE249,通过以下的步骤构建小鼠FUT8表达载体pAGEmfFUT8(图27)。pAGE249是pAGE248[J.Biol.Chem,269,14730(1994)]的衍生物,可作为一个载体,其中含有一个二氢叶酸还原酶基因(dhfr)表达单位的SphI-SphI片段(2.7Kb)从pAGE248中被去除。
1μg pAGE249溶解在50μl广域缓冲液H(Takara Shuzo制造)中,加入20单位限制性酶SalI(New England Biolabs制造),然后在37℃消化反应2小时。通过乙醇沉淀从反应溶液中回收DNA片段,并溶解在35μl NEBuffer 2(New England Biolabs制造)中,加入20单位限制性酶BamHI(New England Biolabs制造),然后在37℃消化反应2小时。消化反应后,35μl 1mol/l Tris-HCI缓冲液(pH 8.0)和3.5μl大肠杆菌C15来源的碱性磷酸酶(Takara Shuzo制造)加入至反应溶液中,然后通过在65℃反应30分钟对DNA末端进行脱磷酸化。反应溶液用苯酚/氯仿提取,然后用乙醇沉淀,回收的DNA片段溶解在10μl无菌水中。
分别将1μg pBSmfFUT8溶解在50μl广域缓冲液H(Takara Shuzo制造)中,且加入20单位限制性酶SalI(New England Biolabs制造),然后在37℃消化反应2小时。通过乙醇沉淀从反应溶液中回收DNA片段,并溶解在35μl NEBuffer 2(New England Biolabs制造)中,加入20单位 限制性酶BamHI(New England Biolabs制造),然后在37℃消化反应2小时。消化反应后,溶液进行0.8%琼脂糖凝胶电泳,以纯化含有小鼠FUT8 cDNA的ORF全长序列的大约1.7Kb的DNA片段。
获得的质粒pAGE249来源的BamHI-SalI片段(1μl,6.5Kb),4μl从质粒pBSmfFUT8中制备的BamHI-SalI片段(1.7Kb)和5μl LigationHigh(Toyobo制造)混合,然后在16℃进行连接反应30分钟。使用反应溶液,大肠杆菌DH5α被转化,根据已知的方法从所获得的安比西林抗性克隆中分离质粒DNA。在此,质粒是指pAGEmfFUT8。
(2)制备过度表达小鼠α-1,6-岩藻糖基转移酶(FUT8)基因的细胞系
通过导入在第(1)项中构建的小鼠FUT8表达载体pAGEmfFUT8进入61-33中获得稳定表达FUT8基因的细胞系。61-33是通过一个大量产生抗神经节苷脂GD3嵌合抗体的YB2/0细胞来源的转化体细胞7-9-51(FERM BP-6691,国际专利生物保藏处,国家高级工业科学和技术研究所)进行无血清适应,然后通过两次有限稀释进行单细胞分离所获得的克隆。
根据下面电穿孔的步骤[Cytotechnology,3,133(1990)],将质粒pAGEmfFUT8传递至61-33中。首先,30μg质粒pAGEmfFUT8溶解在600μl NEBuffer 4(New England Biolabs制造)中,加入100单位限制性酶FspI(New England Biolabs制造),然后在37℃进行消化反应2小时,获得一个线性片段。反应溶液进行乙醇沉淀,回收的线性质粒制成1μg/μl水溶液。下一步,61-33悬浮在K-PBS缓冲液(137mol/l KCl,2.7mol/l NaCl,8.1mol/l Na2HPO4,1.5mol/l KH2PO4,4.0mol/l MgCl2)中,达到2×107细胞/毫升的密度,200μl细胞悬液(4×106细胞)与10μl(10μg)线性质粒混合。细胞-DNA混合物转移至基因脉冲发生仪比色杯(电极间距离,2mm)(BIO-RAD制造),然后采用细胞融合仪基因脉冲发生仪(BIO-RAD制造)在0.2KV的脉冲电压和250μF电容下进行电穿孔。细胞悬液与添加5%胎牛透析血清(Life Technologies制造)和0.2% BSA(Life Technologies制造)的10ml杂交瘤-SFM培养基(Life Technologies制造)混合,并以100μl一份分配在悬浮细胞培养用的96孔平板(Greiner制造)中。于37℃在5%CO2培养24小时后,去除50μl培养上清液,加入100μl杂交瘤-SFM培养基(Life Technologies制造),该培养基含有0.5mg/ml潮霉素B(Wako Pure Chemical Industries制造),5%胎牛透析血清(Life Technologies制造)和0.2%BSA(Life Technologies制造)。培养3周,同时每隔3至4天重复培养基换液步骤,获得14个潮霉素抗性细胞系。
另一方面,通过将质粒pAGE249作为pAGEmfFUT8的亲代载体导入至61-33中制备阴性对照细胞系。根据上述步骤,10μg用限制性酶FspI转变为线性形式的质粒pAGE249采用电穿孔法导入至4×10661-33细胞中。细胞与15ml含有5%胎牛透析血清(Life Technologies制造)和0.2%BSA(Life Technologies制造)的杂交瘤-SFM培养基(Life Technologies制造)混合,转移至悬浮细胞用的T75培养皿(Greiner制造),然后于37℃在5%CO2培养24小时。培养后,通过在800rpm离心4分钟去除一半的培养上清液(7.5ml),细胞悬浮在7.5ml含有0.5mg/ml潮霉素B(Wako Pure Chemical Industries制造),5%胎牛透析血清(Life Technologies制造)和0.2%BSA(Life Technologies制造)的杂交瘤-SFM培养基(Life Technologies制造)中,并转移至悬浮细胞用的T75培养皿(Greiner制造)中。培养3周,同时每隔3至4天重复换液步骤,获得一个潮霉素抗性的细胞系。
(3)过度表达该基因的细胞系中分析α-1,6-岩藻糖基转移酶(FUT8)基因的表达水平
使用任选自第(2)项中61-33制备的14个小鼠PUT8过度表达的细胞系的6个细胞系和阴性对照细胞系,采用竞争RT-PCR比较FUT8的表达水平。
每种这些过度表达的细胞系悬浮在含有0.5mg/ml潮霉素 B(Wako Pure Chemical Industries制造),5%胎牛透析血清(Life Technologies制造)和0.2%BSA(Life Technologies制造)的杂交瘤-SFM培养基(Life Technologies制造)中,达到3×105细胞/毫升的密度,然后转移至悬浮细胞用的T75培养皿(Greiner制造)中。在于37℃在5%CO2培养24小时后,收集1×107完整细胞使用RNAeasy(QIAGEN制造)根据生产厂商的说明书提取总RNA。总RNA溶解在45μl无菌蒸馏水中,加入0.5U/μl RQ1无RNase DNase(Promega制造),5μl附加的10×DNase缓冲液和0.5μl RNasin核糖核酸酶抑制剂(Promega制造),然后在37℃反应30分钟,以降解在样品中污染的基因组DNA。反应后,总RNA再次使用RNAeasy(QIAGEN制造)纯化,并溶解在50μl无菌水中。
使用低聚(dT)作为引物在20μl反应混合物中,由2.5μg获得的总RNA中合成单链cDNA,采用SUPERSCRIPTTM前置放大系统根据生产厂商的说明书通过逆转录反应进行第一链cDNA合成(Life Technologies制造)。反应溶液用水稀释50倍,每条基因的转录水平通过竞争PCR根据实施例9(6)来确定。
在每个表达细胞系中FUT8基因来源的mRNA转录水平通过下列步骤确定。
如同在实施例9(2)中制备的cDNA部分片段插入至pCR2.1的质粒,YBFT8-pCR2.1用限制性酶EcoRI进行消化,获得的线性DNA用作制备校准曲线的标准以便测定FUT8的转录水平。
在实施例9(4)中制备的YBFT8-pCR2.1中,通过删除大鼠FUT8的内部核苷酸序列ScaI和HindIII之间的203bp获得的YBFT8d-pCR2.1用限制性酶EcoRI消化,获得的线性DNA用作检测FUT8的内参照。
含有5μl上述每个表达细胞系中制备的50倍稀释cDNA溶液和5μl (10fg)内参照质粒的20μl总体积反应溶液[ExTaq缓冲液(Takara Shuzo制造),0.2mmol/l dNTP,0.5μmol/l FUT8基因特异引物(SEQ ID NO:13和14)和5%DMSO]中,使用DNA聚合酶ExTaq(Takara Shuzo制造)进行PCR。PCR的进行是94℃加热3分钟,然后94℃加热1分钟,60℃加热1分钟,72℃加热1分钟为1循环进行32个循环。
加入FUT8标准质粒5μl(0.1fg,1fg,5fg,10fg,50fg,100fg,500fg或1pg)而不是每个表达细胞系来源的cDNA进行PCR的一系列反应,用来绘制FUT8转录水平的校准曲线。在本实施例中,1μg/ml面包酵母t-RNA(SIGMA制造)用来稀释标准质粒。
另一方面,因为考虑到β-肌动蛋白基因可在每个细胞中不断的转录,其转录水平在细胞间几乎是相同的,因此β-肌动蛋白基因的转录水平被作为每个表达细胞系中cDNA合成反应效率的指标来测定。
如同大鼠β-肌动蛋白cDNA的ORF全长序列插入至实施例9(3)中制备的pBluescript II KS(+)中的质粒,YBAc-pBS用限制性酶HindIII和KpnI进行消化,获得的线性DNA用作制备校准曲线的标准以便测定β-肌动蛋白基因的转录水平。
通过删除大鼠β-肌动蛋白的内部核苷酸序列DraI和DraI之间的180bp获得的YBAc-pBS用限制性酶HindIII和KpnI消化,获得的线性DNA用作检测β-肌动蛋白的内标准。
含有5μl上述每个表达细胞系中制备的50倍稀释cDNA溶液和5μl(1pg)内参照质粒的20μl总体积反应溶液[ExTaq缓冲液(Takara Shuzo制造),0.2mmol/l dNTP,0.5μmol/l β-肌动蛋白基因特异引物(SEQ ID NO:17和18)和5%DMSO]中,使用DNA聚合酶ExTaq(Takara Shuzo制造)进行PCR。PCR的进行是94℃加热3分钟,然后94℃加热30秒,65℃加热1分钟,72℃加热2分钟为1循环进行17个循环。
加入10pg,5pg,1pg,500fg或100fg的β-肌动蛋白标准质粒而不是每个表达细胞系来源的cDNA进行PCR的一系列反应,用来绘制β-肌动蛋白转录水平的校准曲线。在本实施例中,1μg/ml面包酵母t-RNA(SIGMA制造)用来稀释标准质粒。
使用表3中描述的引物进行PCR,具有在表3中靶列中显示的大小的DNA片段从每个基因转录产物和每个标准品中扩增,具有表3中竞争列中显示的大小的DNA片段从每个内参照中扩增。
7μl PCR后的每种溶液进行1.75%琼脂糖凝胶电泳,然后凝胶通过浸入1×浓度的SYBR Green I核酸凝胶染色(Molecular Probes制造)中30分钟对凝胶进行染色。每个扩增DNA片段的量通过采用荧光图像仪(FluorImager SI;Molecular Dynamics制造)计算发光强度来测定。
采用标准的质粒作为模板通过PCR形成的扩增产物的量可通过该法来测定,通过绘制测定值相对标准质粒数量的图表作出校准曲线。当每个表达细胞系来源的cDNA用作模板时,每个细胞系中目的基因cDNA的数量可使用校准曲线从扩增产物的数量来计算,其数量被认为是每个细胞系中mRNA的转录水平。
图28显示了对β-肌动蛋白转录产物的FUT8转录水平的相对值。三种细胞系mfFUT8-1,mfFUT8-2和mfFUT8-4以及导入pAGE249的细胞系是具有相对小的FUT8转录水平的细胞系,相当于0.3至10%β-肌动蛋白的转录水平。另一方面,其它三种细胞系mfFUT8-3,mfFUT8-6和mfFUT8-7是具有相对高的FUT8转录水平的细胞系,相当于20至40%β-肌动蛋白的转录水平。
(4)由α-1,6-岩藻糖基转移酶(FUT8)基因过度表达细胞系产生的抗体的纯化
6个FUT8基因过度表达细胞系的每一种和一个第(2)中获得的阴性对照细胞系悬浮在含有200nmol/l MTX,0.5mg/ml潮霉素B(WakoPure Chemical Industries制造)和0.2%BSA(Life Technologies制造)的杂交瘤-SFM培养基(Life Technologies制造)中,达到2×105细胞/毫升的密度,然后全部悬液中的100ml接种在3个悬浮细胞培养用的T225培养皿(IWAKI制造)中。于37℃在5%CO2培养箱中培养7至9天后,计算完整细胞的数目,证实其活力几乎是相同的(每种30%或更少),收获每种细胞悬液。每种细胞悬液在4℃以3,000rpm离心10分钟,回收的上清液在4℃以10,000rpm离心1小时,然后用孔直径为0.22μm,容量为150ml的PES过滤装置(NALGENE制造)过滤。
Prosep-A HighCapacity(bioPROCESSING制造)装在0.8cm直径的柱上至厚度为2cm,用10ml 0.1mol/l柠檬酸盐缓冲液(pH 3.0)和10ml1mol/l甘氨酸/NaOH-0.15mol/l NaCl缓冲液(pH 8.6)冲洗以平衡载体。下一步,100ml每种培养上清液通过该柱,用50ml的1mol/l甘氨酸/NaOH-0.15mol/l NaCl缓冲液(pH 8.6)冲洗。冲洗后,吸附在Prosep-A上的抗体采用2.5ml 0.1mol/l柠檬酸盐缓冲液(pH 3.0)洗脱,洗脱液以500μl分馏,每种馏分通过与100μl 2mol/l Tris-HCl(pH 8.5)混合而被中和。含有高浓度(总共1.2ml)抗体的两个馏分通过BCA法[Anal.Biochem.,150,76(1985)]被选择出来,合并然后在10mol/l柠檬酸盐缓冲液(pH 6.0)于4℃透析一昼夜。透析后,回收抗体溶液,采用0.22μm孔大小的Millex GV(MILLIPORE制造)进行无菌过滤。
(5)由小鼠α-1,6-岩藻糖基转移酶(FUT8)基因过度表达细胞系产生的抗体的体外细胞毒活性(ADCC活性)
为了评价在第(4)项中纯化的抗GD3抗体的体外细胞毒活性,采用GD3阳性细胞,人黑素瘤培养细胞系G-361(RCB0991,物理和化学研究学会细胞库)检测ADCC活性。
在含有10%胎牛血清(Life Technologies制造)的RPMI1640培养基 (此后称为“RPBI1640-FBS(10)”)中传代培养的G-361细胞悬浮在500μl RPMI1640-FBS(10)中密度为1×106细胞,加入3.7MBq Na2 51CrO4,然后在37℃培养30分钟用放射性同位素标记细胞。在1,200rpm离心5分钟后,去掉上清液,靶细胞悬浮在5ml RPMI1640-FBS(10)中。重复冲洗步骤3次,细胞悬液在冰上孵育30分钟以自发分解放射性物质。再次重复冲洗步骤2次,然后细胞悬浮在5ml RPMI1640-FBS(10)中制备成2×105细胞/毫升的靶细胞悬液。
另一方面,从一个健康的人中收集30毫升外周血,轻轻的与0.5ml肝素钠(Shimizu Pharmaceutical制造)混合,然后与30ml生理盐水(Otsuka Pharmaceutical制造)混合。混合后,10ml混合物轻轻装载在4mlLymphoprep(NYCOMED PHARMA AS制造)上,在室温下以2,000rpm离心30分钟。分离的单核细胞馏分从离心管中收集,合并,然后悬浮在30ml RPMI1640-FBS(10)中。在室温下以1,200rpm离心5分钟后,去掉上清液,细胞悬浮在20ml RPMI1640-FBS(10)中。重复冲洗步骤2次,然后采用RPMI1640-FBS(10)制备2×106细胞/毫升的效应细胞悬液。
在96孔U形底平板(Falcon制造)的每个孔中,加入50μl(1×104细胞/孔)靶细胞悬液。随后,在每孔中加入效应细胞悬液100μl(2×105细胞/孔),从而调整效应细胞与靶细胞的比例为20∶1。下一步,使用10M柠檬酸盐缓冲液(pH 6.0),分别制备在第(4)项中获得的每种抗GD3抗体的一系列稀释溶液0.01μg/ml,0.1μg/ml,1μg/ml和10μg/ml,稀释溶液以50μl加入到每孔中使终浓度为0.0025μg/ml,0.025μg/ml,0.25μg/ml和2.5μg/ml。于37℃在5%CO2中反应4小时。反应后,平板在1,200rpm离心5分钟。每孔50μl的上清液转移至12mm直径的RIA管(IWAKI制造)中,使用MINAX-γ自动γ计数仪5550(PACKARD制造)测定分解的51Cr的量。
通过在反应溶液中进行同样的反应,其中加入150μlRPMI1640-FBS(10)而不是效应细胞悬液和抗体溶液,计算自发解离的 51Cr量。通过在反应溶液中进行同样的反应,其中加入100μl 1N盐酸和50μl RPMI1640-FBS(10)而不是效应细胞悬液和抗体溶液,计算总共释放的51Cr量。使用这些值,根据在实施例2中的第2(3)中的公式(II)计算ADCC活性。
图29显示了G-361细胞每种抗GD3抗体的ADCC活性。在图28中显示的低FUT8表达水平的3种细胞系mfFUT8-1,mfFUT8-2和mfFUT8-4显示了与阴性对照pAGE249导入细胞系相等的高ADCC活性。另一方面,在图28中显示的具有高FUT8表达水平的3种细胞系mfFUT8-3,mfFUT8-6和mfFUT8-7显示了与CHO细胞产生的抗GD3抗体相同的低ADCC活性。基于这些结果,显示所产生抗体的ADCC活性可通过调节宿主细胞中的FUT8表达水平而调控。
(6)由小鼠α-1,6-岩藻糖基转移酶(FUT8)基因过度表达细胞系产生的抗体的糖链分析
分析第(4)项中纯化的抗GD3抗体的糖链。与mfFUT8-6和pAGE249导入细胞系产生的抗体结合的糖链通过将抗体进行肼解作用[Method of Enzymology,83,263(1982)]而从蛋白中切割出来。在减压的条件下通过蒸发去除肼后,通过添加醋酸铵水溶液和醋酸酐进行N-乙酰化。在冻干后,通过2-氨基吡啶进行荧光标记[J.Biochem.,95,197(1984)]。采用Superdex Peptide HR 10/30柱(Pharmacia制造)从过量的试剂中分离荧光标记的糖链基(PA-处理的糖链基)。使用离心浓缩机将糖链馏分干燥,并用作纯化的PA处理的糖链基。下一步,纯化的PA处理的糖链基采用CLC-ODS柱(Shimadzu制造)进行反相HPLC分析(图30)。当从峰顶区域计算时,mfFUT8-6中无α-1,6-岩藻糖糖链的含量为10%,α-1,6-岩藻糖结合糖链的含量为90%。在pAGE249中无α-1,6-岩藻糖糖链的含量为20%,α-1,6-岩藻糖结合糖链的含量为80%。根据这些结果,发现产生抗体的α-1,6-岩藻糖结合糖链的含量可通过FUT8基因的过度表达而增加。
图30显示了mfFUT8-6和pAGE249导入细胞系所产生的抗体制备的每种PA处理糖链进行反相HPLC分析所得到的洗脱图谱。图30A和图30B分别显示了mfFUT8-6和pAGE249的洗脱图谱。相对荧光强度和洗脱时间分别绘成纵坐标和横坐标。使用磷酸钠缓冲液(pH3.8)作为缓冲液A,磷酸钠缓冲液(pH3.8)+0.5%1-丁醇作为缓冲液B,通过下面的梯度进行分析。
在图30和图31中显示的峰(i)至(ix)显示了以下结构。
GlcNAc,Gal,Man,Fuc和PA分别代表N-乙酰氨基葡萄糖,半乳糖,甘露糖,岩藻糖和吡啶氨基。在图30和图31中,无α-1,6-岩藻糖糖链基的比例可从(i)至(ix)中峰(i)至(iv)所占的区域来计算,α-1,6-岩藻糖结合糖链基的比例可从(i)至(ix)中峰(v)至(ix)所占的区域来计算。
实施例12
制备CHO细胞α-1,6-岩藻糖基转移酶(FUT8)基因:
(1)制备CHO细胞α-1,6-岩藻糖基转移酶(FUT8)cDNA序列
在实施例9(1)中培养第2天的CHO/DG44细胞制备的单链cDNA中,通过下面的步骤获得中国仓鼠FUT8 cDNA(图32)。
首先,从小鼠FUT8 cDNA序列(基因库编号,AB025198)中设计5’末端非翻译区(见SEQ ID NO:21)特异的正向引物和3’末端非翻译区(见SEQ ID NO:22)特异的反向引物。
下一步,制备含有1μl CHO/DG44细胞来源的cDNA的25μl反应溶液[ExTaq缓冲液(Takara Shuzo制造),0.2mmol/l dNTP,4%DMSO和0.5μmol/l特异引物(SEQ ID NO:21和22)],并使用DNA聚合酶ExTaq(Takara Shuzo制造)进行PCR。PCR的进行是94℃加热1分钟,然后94℃加热30秒,55℃加热30秒,72℃加热2分钟为1循环进行30个循环,最后在72℃加热10分钟。
PCR后,反应溶液进行0.8%琼脂糖凝胶电泳,纯化大约2kb的特异扩增片段。根据TOPO TA克隆试剂盒(Invitrogen制造)中附加的说明书将4μl DNA片段插入至质粒pCR2.1中,大肠杆菌DH5α用反应溶液转化。根据已知的方法在所获得的卡那霉素抗性克隆中插入cDNA的8个克隆中分离质粒DNA。
采用DNA测序仪377(Parkin Elmer制造)和BigDye终止循环测序FS预反应试剂盒(Parkin Elmer制造)根据生产厂商的说明书的方法测定每个插入至质粒中的cDNA的核苷酸序列。已证实所有插入的cDNA都编码含有CHO细胞FUT8全长ORF的序列。在它们中,可以通过PCR选择在序列中完全没有读码错误的质粒DNA。在此,这些质粒是指CHfFUT8-pCR2.1。所确定的CHO FUT8cDNA的核苷酸序列和氨基酸序列分别在SEQ ID NO:1和23中显示。
(2)制备CHO细胞α-1,6-岩糖基转移酶(FUT8)基因组序列
使用从第(1)项中获得的CHO细胞FUT8的ORF全长cDNA片段 作为探针,根据已知的基因组选择方法获得CHO细胞FUT8基因组克隆,该法见分子克隆,第二版,现代分子生物学方法,实验室指南,第二版(1989)。下一步,使用各种限制性酶消化获得的基因组克隆后,使用含有CHO细胞FUT8 cDNA的起始密码子的AfaI-Sau3AI片段(大约280bp)作为探针进行Southern杂交,然后从显示阳性反应的限制性酶中选择XbaI-XbaI片段(大约2.5Kb)和SacI-SacI片段(大约6.5Kb),分别插入至pBluescript II KS(+)(Stratagene制造)中。
采用DNA测序仪377(Parkin Elmer制造)和BigDye终止循环测序FS预反应试剂盒(Parkin Elme制造)根据生产厂商的说明书测定每个获得的基因组片段的核苷酸序列。因此,可证实XbaI-XbaI片段编码含有CHO细胞FUT8外显子2的大约2.5kb的上游内含子序列,SacI-SacI片段编码含有CHO细胞FUT8外显子2的大约6.5kb的下游内含子的序列。在此,含有XbaI-XbaI片段的质粒称为pFUT8fgE2-2,含有SacI-SacI片段的质粒称为pFUT8fgE2-4。所确定的含有CHO细胞FUT8外显子2的基因组区域的核苷酸序列(大约9.0kb)见SEQ ID NO:3。
实施例13
制备α-1,6-岩藻糖基转移酶基因被断裂的CHO细胞,并使用该细胞生产抗体:
制备CHO细胞α-1,6-岩藻糖基转移酶(FUT8)基因外显子2组成的基因组区域被删除的CHO细胞,评定细胞所产生抗体的ADCC活性。
1.构建中国仓鼠α-1,6-岩藻糖基转移酶(FUT8)基因外显子2靶向载体质粒pKOFUT8Puro
(1)构建质粒ploxPPuro
根据下面的步骤构建质粒ploxPPuro(图33)。
在35μl NEBuffer 4(New England Biolabs制造)中,溶解1.0μg质粒pKOSelectPuro(Lexicon制造),加入20单位的限制性酶AscI(New England Biolabs制造),然后在37℃消化反应2小时。消化反应后,溶液进行0.8%(w/v)琼脂糖凝胶电泳,以纯化含有嘌呤霉素抗性基因表达单位的大约1.5Kb的DNA片段。
另一方面,1.0μg在日本已公开审查专利申请号第314512/99中所描述的质粒ploxP溶解在35μl NEBuffer 4(New England Biolabs制造)中,加入20单位限制性酶AscI(New England Biolabs制造),然后在37℃消化反应2小时。消化反应后,溶液进行0.8%(w/v)琼脂糖凝胶电泳以纯化大约2.0kb的DNA片段。
混合所获得的从质粒pKOSelectPuro来源的AscI-AscI片段(4.5μl,大约1.5Kb),0.5μl来源于质粒ploxP的AscI-AscI片段(大约2.0Kb)和5μl Ligation High(Toyobo制造),然后在16℃进行连接反应30分钟。大肠杆菌DH5α使用反应溶液进行转化,根据已知的方法从所获得的氨苄青霉素抗性克隆中分离质粒DNA。在此该质粒称为ploxPPuro。
(2)构建质粒pKOFUT8gE2-1
使用在实施例12(2)中获得的具有包括中国仓鼠FUT8外显子2的基因组区域的质粒pFUT8fgE2-2,根据下面的步骤构建质粒pKOFUT8gE2-1(图34)。
在35μl含有100μg/ml BSA(New England Biolabs制造)的NEBuffer 1(New England Biolabs制造)中,溶解2.0μg质粒pFUT8fgE2-2,加入20单位的限制性酶SacI(New England Biolabs制造),然后在37℃消化反应2小时。通过乙醇沉淀从反应溶液中获取DNA片段,并溶解在35μl含有100μg/ml BSA(New England Biolabs制造)的NEBuffer 2(New England Biolabs制造)中,加入20单位的限制性酶EcoRV(New England Biolabs制造),然后在37℃消化反应2小时。消化反应后,溶液进行0.8%(w/v)琼脂糖凝胶电泳以纯化大约1.5Kb的DNA片段。
分别地,1.0μg质粒LITMUS28(New England Biolabs制造)溶解在35μl含有100μg/ml BSA(New England Biolabs制造)的NEBuffer 1(New England Biolabs制造)中,加入20单位限制性酶SacI(New England Biolabs制造),然后在37℃消化反应2小时。通过乙醇沉淀从反应溶液中获取DNA片段,并溶解在35μl含有100μg/ml BSA(New England Biolabs制造)的NEBuffer 2(New England Biolabs制造)中,加入20单位的限制性酶EcoRV(New England Biolabs制造),然后在37℃消化2小时。消化反应后,溶液进行0.8%(w/v)琼脂糖凝胶电泳以纯化大约2.8kb的DNA片段。
混合所获得的从质粒pFUT8fgE2-2来源的EcoRV-SacI片段(4.5μl,大约1.5Kb),0.5μl来源于质粒LITMUS28的EcoRV-SacI片段(大约2.8Kb)和5.0μl Ligation High(Toyobo制造),然后在16℃进行连接反应30分钟。大肠杆菌DH5α使用反应溶液进行转化,根据已知的方法从所获得的氨苄青霉素抗性克隆中分离质粒DNA。在此该质粒称为pKOFUT8gE2-1。
(3)构建质粒pKOFUT8gE2-2
使用在第(2)项中获得的质粒pKFUT8gE2-1,根据下面的步骤(图35)构建质粒pKOFUT8gE2-2。
在30μl含有100μg/ml BSA(New England Biolabs制造)的NEBuffer 2(New England Biolabs制造)中,溶解2.0μg质粒pKOFUT8gE2-1,加入20单位的限制性酶EcoRV(New England Biolabs制造),然后在37℃消化反应2小时。通过乙醇沉淀从反应溶液中获取DNA片段,并溶解在30μl含有100μg/ml BSA(New England Biolabs制造)的NEBuffer 1(New England Biolabs制造)中,加入20单位的限制性酶KpnI(New England Biolabs制造),然后在37℃消化反应2小时。消化反应后,溶液进行0.8%(w/v)琼脂糖凝胶电泳以纯化大约1.5Kb 的DNA片段。
分别地,1.0μg质粒ploxPPuro溶解在30μl NEBuffer 4(New England Biolabs制造)中,加入20单位限制性酶HpaI(New England Biolabs制造),然后在37℃消化反应2小时。通过乙醇沉淀从反应溶液中获取DNA片段,并溶解在30μl含有100μg/ml BSA(New England Biolabs制造)的NEBuffer 1(New England Biolabs制造)中,加入20单位的限制性酶KpnI(New England Biolabs制造),然后在37℃消化反应2小时。消化反应后,溶液进行0.8%(w/v)琼脂糖凝胶电泳以纯化大约3.5kb的DNA片段。
混合4.0μl所获得的从质粒pKOFUT8gE2-1来源的EcoRV-KpnI片段(大约1.5Kb),1.0μl来源于质粒ploxPPuro的HpaI-KpnI片段(大约3.5Kb)和5μl Ligation High(Toyobo制造),然后在16℃进行连接反应30分钟。大肠杆菌DH5α使用反应溶液进行转化,根据已知的方法从所获得的氨苄青霉素抗性克隆中分离质粒DNA。在此该质粒称为pKOFUT8gE2-2。
(4)构建质粒pscFUT8gE2-3
使用在实施例12(2)中获得的具有包括中国仓鼠FUT8外显子2的基因组区域的质粒pFUT8fgE2-4,根据下面的步骤(图36)构建质粒pscFUT8gE2-3。
在35μl NEBuffer 1(New England Biolabs制造)中,溶解2.0μg质粒pFUT8fgE2-4,加入20单位的限制性酶HpaII(New England Biolabs制造),然后在37℃消化反应2小时。通过乙醇沉淀从反应溶液中获取DNA片段,然后采用Blunting High(Toyobo制造)根据生产厂商的说明书将DNA末端改为钝端。通过苯酚/氯仿提取和乙醇沉淀获取DNA片段,并溶解在35μl NEBuffer 2(New England Biolabs制造)中,加入20单位的限制性酶HindIII(New England Biolabs制造),然后在37℃消化 反应2小时。消化反应后,溶液进行0.8%(w/v)琼脂糖凝胶电泳以纯化大约3.5Kb的DNA片段。
另一方面,1.0μg质粒LITMUS39(New England Biolabs制造)溶解在35μl NEBuffer 2(New England Biolabs制造)中,溶液与20单位限制性酶EcoRV(New England Biolabs制造)和20单位限制性酶HindIII(New England Biolabs制造)混合,然后在37℃消化反应2小时。消化反应后,溶液进行0.8%(w/v)琼脂糖凝胶电泳以纯化大约2.8kb的DNA片段。
混合所获得的从质粒pFUT8fgE2-4来源的HpaII-HindIII片段(4.0μl,大约3.5Kb),1.0μl来源于质粒LITMUS39的EcoRV-HindIII片段(大约2.8Kb)和5.0μl Ligation High(Toyobo制造),然后在16℃进行连接反应30分钟。大肠杆菌DH5α使用反应溶液进行转化,根据已知的方法从所获得的氨苄青霉素抗性克隆中分离质粒DNA。在此该质粒称为pscFUT8gE2-3。
(5)构建质粒pKOFUT8gE2-3
使用在实施例12(2)中获得的具有包括中国仓鼠FUT8外显子2的基因组区域的质粒pFUT8fgE2-4,根据下面的步骤构建质粒pKOFUT8gE2-3(图37)。
在35μl EcoRI(New England Biolabs制造)的NEBuffer中,溶解2.0μg质粒pFUT8fgE2-4,加入20单位的限制性酶EcoRI(New England Biolabs制造)和20单位的限制性酶HindIII(New England Biolabs制造),然后在37℃消化反应2小时。消化反应后,溶液进行0.8%(w/v)琼脂糖凝胶电泳纯化大约1.8Kb的DNA片段。
分别地,1.0μg质粒pBluescript II KS(+)(Stratagene制造)溶解在35μl EcoRI(New England Biolabs制造)的NEBuffer中,加入20单位限 制性酶EcoRI(New England Biolabs制造)和20单位限制性酶HindIII(New England Biolabs制造),然后在37℃消化反应2小时。消化反应后,溶液进行0.8%(w/v)琼脂糖凝胶电泳纯化大约3.0kb的DNA片段。
混合所获得的从质粒pFUT8fgE2-4来源的HindIII-EcoRI片段(4.0μl,大约1.8Kb),1.0μl来源于质粒pBluescript II KS(+)的HindIII-EcoRI片段(大约3.0Kb)和5.0μl Ligation High(Toyobo制造),然后在16℃进行连接反应30分钟。大肠杆菌DH5α使用反应溶液进行转化,根据已知的方法从所获得的氨苄青霉素抗性克隆中分离质粒DNA。在此该质粒称为pKOFUT8gE2-3。
(6)构建质粒pKOFUT8gE2-4
使用在第(4)和第(5)中获得的质粒pscFUT8fgE2-3和pKOFUT8gE2-3,根据下面的步骤构建质粒pKOFUT8gE2-4(图38)。
在35μl含有100μg/ml BSA(New England Biolabs制造)的SalI(New England Biolabs制造)NEBuffer中,溶解1.0μg质粒pscFUT8gE2-3,加入20单位的限制性酶SalI(New England Biolabs制造),然后在37℃消化反应2小时。通过乙醇沉淀从反应溶液中获取DNA片段,并溶解在30μl含有100μg/ml BSA(New England Biolabs制造)的NEBuffer 2(New England Biolabs制造)中,加入20单位的限制性酶HindIII(New England Biolabs制造),然后在37℃消化2小时。消化反应后,溶液进行0.8%(w/v)琼脂糖凝胶电泳纯化大约3.6Kb的DNA片段。
分别地,1.0μg质粒pKOFUT8gE2-3溶解在35μl SalI(New England Biolabs制造)的NEBuffer中,加入20单位限制性酶SalI(New England Biolabs制造),然后在37℃消化反应2小时。通过乙醇沉淀从反应溶液中获取DNA片段,并溶解在35μl NEBuffer 2(New England Biolabs制造)中,加入20单位限制性酶HindIII(New England Biolabs制造),然 后在37℃消化反应2小时。消化反应后,加入35μl 1mol/l Tris-HCl缓冲液(pH 8.0)和3.5μl大肠杆菌C15来源的碱性磷酸酶(Takara Shuzo制造),然后在65℃反应30分钟对DNA末端脱磷酸化。脱磷酸化后,通过苯酚/氯仿提取和乙醇沉淀获得DNA片段,并溶解10μl无菌水中。
混合所获得的从质粒pscFUT8fgE2-3来源的SalI-HindIII片段(4.0μl,大约3.1Kb),1.0μl来源于质粒pKOFUT8gE2-3的SalI-HindIII片段(大约4.8Kb)和5.0μl Ligation High(Toyobo制造),然后在16℃进行连接反应30分钟。大肠杆菌DH5α使用反应溶液进行转化,根据已知的方法从所获得的氨苄青霉素抗性克隆中分离质粒DNA。在此该质粒称为pKOFUT8gE2-4。
(7)构建质粒pKOFUT8gE2-5
使用在第(3)和第(6)中获得的质粒pKOFUT8gE2-2和pKOFUT8gE2-4,根据下面的步骤构建质粒pKOFUT8gE2-5(图38)。
在30μl NEBuffer 4(New England Biolabs制造)中,溶解1.0μg质粒pKOFUT8gE2-2,加入20单位的限制性酶SmaI(New England Biolabs制造),然后在25℃消化反应2小时。通过乙醇沉淀从反应溶液中获取DNA片段,并溶解在30μl NEBuffer 2(New England Biolabs制造)中,加入20单位的限制性酶BamHI(New England Biolabs制造),然后在37℃消化反应2小时。消化反应后,加入30μl 1mol/l Tris-HCl缓冲液(pH8.0)和3.0μl大肠杆菌C15来源的碱性磷酸酶(Takara Shuzo制造),然后在65℃反应1小时对DNA末端脱磷酸化。脱磷酸化后,通过苯酚/氯仿提取和乙醇沉淀获得DNA片段,并溶解在10μl无菌水中。
分别地,1.0μg质粒pKOFUT8gE2-4溶解在30μl NEBuffer 4(New England Biolabs制造)中,加入20单位限制性酶SmaI(New England Biolabs制造),然后在25℃消化反应2小时。通过乙醇沉淀从反应溶液中获取DNA片段,并溶解在30μl NEBuffer 2(New England Biolabs制 造)中,加入20单位的限制性酶BamHI(New England Biolabs制造),然后在37℃消化2小时。消化反应后,溶液进行0.8%(w/v)琼脂糖凝胶电泳纯化大约5.2Kb的DNA片段。
混合所获得的从质粒pKOFUT8fgE2-2来源的SmaI-BamHI片段(0.5μl,大约5.0Kb),4.5μl来源于质粒pKOFUT8gE2-4的SmaI-BamHI片段(大约5.4Kb)和5.0μl Ligation High(Toyobo制造),然后在16℃进行连接反应15小时。大肠杆菌DH5α使用反应溶液进行转化,根据已知的方法从所获得的氨苄青霉素抗性克隆中分离质粒DNA。在此该质粒称为pKOFUT8gE2-5。
(8)构建质粒pKOFUT8Puro
使用在第(7)中获得的质粒pKOFUT8fgE2-5,根据下面的步骤构建质粒pKOFUT8Puro(图40)。
在50μl NEBuffer 4(New England Biolabs制造)中,溶解1.0μg质粒pKOSelectDT(Lexicon制造),加入16单位的限制性酶RsrII(NewEngland Biolabs制造),然后在37℃消化反应2小时。消化反应后,溶液进行0.8%(w/v)琼脂糖凝胶电泳纯化大约1.2Kb的含有白喉毒素表达单位的DNA片段。
分别地,1.0μg质粒pKOFUT8gE2-5溶解在50μl NEBuffer 4(New England Biolabs制造)中,加入16单位限制性酶RsrII(New England Biolabs制造),然后在37℃消化反应2小时。消化反应后,加入30μl1mol/l Tris-HCl缓冲液(pH 8.0)和3.0μl大肠杆菌C15来源的碱性磷酸酶(Takara Shuzo制造),然后在65℃反应1小时对DNA末端脱磷酸化。脱磷酸化后,通过苯酚/氯仿提取和乙醇沉淀获得DNA片段,并溶解在10μl无菌水中。
混合所获得的从质粒pKOSelectDT来源的RsrII-RsrII片段(1.0μl, 大约1.2Kb),1.0μl来源于质粒pKOFUT8gE2-5的RsrII-RsrII片段(大约10.4Kb),3.0μl无菌水和5.0μl Ligation High(Toyobo制造),然后在16℃进行连接反应15小时。大肠杆菌DH5α使用该反应溶液进行转化,根据已知的方法从所获得的氨苄青霉素抗性克隆中分离质粒DNA。在此该质粒称为pKOFUT8Puro。
2.制备CHO细胞,其中含有α-1,6-岩藻糖基转移酶(FUT8)基因外显子2的1个基因组区域拷贝被断裂
(1)导入靶向载体
在本实施例中的第l项中构建的中国仓鼠FUT8基因组区域靶向载体pKOFUT8Puro被导入至实施例8的第1(2)中制备的5-03株中。
如下根据电穿孔法[Cytotechnology,3,133(1990)]将质粒pKOFUT8Puro的基因导入至5-03株中。首先,150μg质粒pKOFUT8Puro溶解在1.8ml SalI(New England Biolabs制造)的NEBuffer中,加入600单位的限制性酶SalI(New England Biolabs制造),然后在37℃消化反应5小时以得到线性片段。通过苯酚/氯仿提取作用提取反应溶液,然后用乙醇沉淀,获得的线性质粒制成1μg/μl水溶液。分别地,5-03悬浮在K-PBS缓冲液(137mmol/l KCl,2.7mmol/l NaCl,8.1mmol/lNa2HPO4,1.5mmol/l KH2PO4,4.0mmol/l MgCl2)中,达到8×107细胞/毫升的密度。200μl细胞悬液(1.6×106细胞)与4μl(4μg)线性质粒混合后,全部量的细胞-DNA混合物转移至基因脉冲发生仪比色杯(电极间距离,2mm)(BIO-RAD制造),然后采用细胞融合仪基因脉冲发生仪(BIO-RAD制造)在350V的脉冲电压和250μF电容下进行电穿孔。在采用同样的方式使用30个比色杯进行电穿孔后,细胞悬液悬浮在添加10%胎牛血清(Life Technologies制造)和1×浓度HT添加液(Life Technologies制造)的IMDM培养基(Life Technologies制造)中,并接种在直径为10cm的30个粘附细胞培养皿(Falcon制造)中。在37℃5%CO2培养24小时后,分别去除培养上清液,以每份10ml加入含有15μg/ml嘌呤霉素(SIGMA制造)和10%胎牛透析血清(Life Technologies 制造)的IMDM培养基(Life Technologies制造)。培养10天,同时每隔3至4天重复培养基换液步骤,获得嘌呤霉素抗性细胞系。
(2)制备导入靶向载体的细胞系
如下从在第(1)中获得的嘌呤霉素抗性细胞系中获取任意的900个克隆。
首先,从形成嘌呤霉素抗性细胞系集落的10cm培养皿中去除培养上清液,向培养皿中加入7ml磷酸缓冲液,然后置于立体显微镜下。下一步,刮取每个集落,用Pipetteman(GILSON制造)吸取,并转移至96孔圆底平板(Falcon制造)中。胰蛋白酶处理后,每个克隆接种在96孔粘附细胞用的平底平板(Iwaki Glass制造)中,用添加15μg/ml嘌呤霉素(SIGMA制造)和10%胎牛透析血清(Life Technologies制造)的IMDM培养基(Life Technologies制造)培养1周。
培养后,平板中的每个克隆进行胰蛋白酶处理,然后与两体积的冻干培养基(20%DMSO,40%胎牛血清,40%IMDM)混合。一半混合物接种在96孔扁平底粘附细胞培养用的平板(Iwaki Glass制造)中作为复制平板,同时剩余一半的混合物进行冷冻保存作为标准平板。采用添加15μg/ml嘌呤霉素(SIGMA制造)和10%胎牛透析血清(Life Technologies制造)的IMDM培养基(Life Technologies制造)将复制平板培养1周。
(3)通过基因组PCR诊断同源性重组
在第(2)中获得的900个克隆通过基因组PCR进行同源性重组的诊断。
首先,根据已知的方法[Analytical Biochemistry,201,331(1992)]从第(2)中制备的复制平板中制备每个克隆的基因组DNA,并在30μlTE-Rnase缓冲液(pH 8.0)(10mmol/l Tris-HCl,1mmol/l EDTA, 200μg/ml RNase A)中溶解过夜。也设计一条与实施例12中获得的FUT8基因组中靶向载体同源区外序列结合的引物(见SEQ ID NO:26)和与载体中的loxP序列结合的引物(见SEQ ID NO:27)。
制备含有10μl每种上述制备的基因组DNA溶液的25μl反应溶液[ExTaq缓冲液(Takara Shuzo制造),0.2mmol/l dNTP和0.5μmol/l基因特异引物(SEQ ID NO:26和27)],采用DNA聚合酶ExTaq(Takara Shuzo制造)进行聚合酶链式反应(PCR)。PCR的进行是通过在94℃加热3分钟,然后94℃加热1分钟,60℃加热1分钟,72℃加热2分钟作为一个循环进行38循环。
PCR后,反应溶液进行0.8%(w/v)琼脂糖凝胶电泳,含有CHO细胞基因组区域和靶向载体同源区之间的宽阔区域的大约1.7kb的特异扩增片段被鉴定为阳性克隆。通过本方法发现了一个阳性克隆。
(4)通过基因组Southern印迹法诊断同源性重组
在1个在第(3)中证实有阳性信号的克隆中通过基因组Southern印迹法诊断同源性重组。
在第(2)中冷冻保存的标准平板中,选择含有在第(3)中发现的阳性克隆的96孔板,并在37℃5%CO2孵育10分钟。孵育后,从对应于阳性克隆的孔中收集细胞,并接种在粘附细胞用的24孔平底平板(Greiner制造)中。在含有15μg/ml嘌呤霉素(SIGMA制造)和10%胎牛透析血清(Life Technologies制造)的IMDM培养基(Life Technologies制造)中培养1周后,细胞接种在6孔粘附细胞用的平底平板(Greiner制造)中。根据已知的方法[Nucleic Acids Research,3,2303(1976)]从平板中的克隆制备基因组DNA,并在150μl TE-RNase缓冲液(pH 8.0)(10mmol/l Tris-HCl,1mmol/l EDTA,200μg/ml RNase A)中溶解过夜。
12μg获得的基因组DNA溶解在120μl NEBuffer 3(New England Biolabs制造),加入25单位限制性酶PstI(New England Biolabs制造),然后在37℃消化反应过夜。通过乙醇沉淀从反应溶液中获取DNA片段,并溶解在20μl TE缓冲液(pH 8.0)(10mmol/l Tris-HCl,1mmol/lEDTA)中,然后进行0.8%(w/v)琼脂糖凝胶电泳。电泳后,基因组DNA根据已知的方法[Proc.Natl.Acad.Sci.USA,76,3683(1979)]转移至尼龙膜上。转移完成后,尼龙膜在80℃加热2小时。
分别地,如下制备在Southern印迹中使用的探针。首先,设计与实施例12中获得的与FUT8基因组中靶向载体同源区外序列结合的引物(见SEQ ID NO:28和29)。下一步,制备含有4.0ng实施例12(2)中获得的质粒pFUT8fgE2-2的20μl反应溶液[ExTaq缓冲液(Takara Shuzo制造),0.2mmol/l dNTP和0.5μmol/l基因特异引物(SEQ ID NO:28和29)],使用DNA聚合酶ExTaq(Takara Shuzo制造)进行聚合酶链式反应(PCR)。PCR的进行是在94℃加热1分钟,然后94℃加热30秒,55℃加热30秒,74℃加热1分钟为1循环进行25个循环。PCR后,反应溶液进行1.75%(w/v)琼脂糖凝胶电泳,纯化大约230bp的探针DNA片段。获得的探针DNA溶液(5μl)用1.75MBq[α-32P]dCTP和Megaprime DNA标记系统,dCTP(Amersham Pharmacia Biotech制造)进行放射性同位素标记。
如下进行杂交。首先,尼龙膜封在滚瓶中,加入15ml杂交溶液[5×SSPE,50×Denhaldt’s溶液,0.5%(w/v)SDS,100μg/ml鲑精DNA]在65℃预杂交3小时。下一步,32P标记的探针DNA被热变性,置入瓶中。然后,尼龙膜在65℃加热过夜。
杂交后,尼龙膜浸入50ml 2×SSC-0.1%(w/v)SDS中,并65℃加热15分钟。重复冲洗步骤两次后,将膜浸入50ml 0.2×SSC-0.1%(w/v)SDS中,65℃加热15分钟。冲洗后,尼龙膜暴露于X光片,-80℃两夜进行显影。
通过限制性酶PstI的处理,从野生型FUT8等位基因形成大约4.4Kb的DNA片段。另一方面,产生一个从与靶向载体同源性重组的一条等位基因中形成的大约6.0Kb的DNA片段。
通过该法,可从第(3)中的阳性克隆基因组DNA中发现大约4.4Kb和6.0Kb的特异片段。由于两个片段的定量比例为1∶1,因此可以证实该克隆是FUT8等位基因的1个拷贝被断裂的克隆。此后,该克隆称为1号ΔFUT82-46株。
3.从α-1,6-岩藻糖基转移酶(FUT8)基因的1个拷贝被断裂的CHO细胞中删除药物抗性基因
(1)导入Cre重组酶表达载体
一个Cre重组酶表达载体pBS185(Life Technologies制造)被导入至本实施例的第2项中制备的1号ΔFUT82-46株中。
如下根据电穿孔法[Cytotechnology,3,133(1990)将质粒pBS185的基因导入至1号ΔFUT82-46株中。首先,1号ΔFUT82-46株悬浮在K-PBS缓冲液(137mmol/l KCl,2.7mmol/l NaCl,8.1mmol/l Na2HPO4,1.5mmol/l KH2PO4,4.0mmol/l MgCl2)中,达到8×107细胞/毫升的密度。200μl细胞悬液(1.6×106细胞)与4μg质粒pBS185混合后,全部量的细胞-DNA混合物转移至基因脉冲发生仪比色杯(电极间距离,2mm)(BIO-RAD制造),然后采用细胞融合仪基因脉冲发生仪(BIO-RAD制造)在350V的脉冲电压和250μF电容下进行基因转移。基因转移后,细胞悬液悬浮在添加10%胎牛血清(Life Technologies制造)和1×浓度HT添加液(Life Technologies制造)的10ml IMDM培养基(Life Technologies制造)中,并进一步使用同样的培养基稀释20,000倍。细胞接种在直径为10cm的7个粘附细胞培养皿(Falcon制造)中,然后于37℃在5%CO2培养24小时。培养后,去除培养上清液,加入10ml含有10%胎牛透析血清(Life Technologies制造)的IMDM培养基(Life Technologies制造)。培养10天,同时每隔3至4天重复培养基换液步骤。
(2)制备导入Cre重组酶表达载体的细胞系
如下从在第(1)中获得的细胞系中获取任意的400个克隆。
首先,从10cm培养皿中去除培养上清液,向培养皿中加入7ml磷酸缓冲液,然后置于立体显微镜下。下一步,刮取每个集落,用Pipetteman(GILSON制造)吸取,并转移至96孔圆底平板(Falcon制造)中。胰蛋白酶处理后,每个克隆接种在96孔粘附细胞用的平底平板(Iwaki Glass制造)中,用添加10%胎牛透析血清(Life Technologies制造)的IMDM培养基(Life Technologies制造)培养1周。
培养后,平板中的每个克隆进行胰蛋白酶处理,然后与两体积的冻干培养基(20%DMSO,40%胎牛血清,40%IMDM)混合。一半混合物接种在96孔粘附细胞培养用的平底平板(Iwaki Glass制造)中作为复制平板,同时剩余一半的混合物进行冷冻保存作为标准平板。
下一步,复制平板使用含有15μg/ml嘌呤霉素(SIGMA制造)和10%胎牛透析血清(Life Technologies制造)的IMDM培养基(Life Technologies制造)培养6天。插入loxP序列之间的嘌呤霉素抗性基因可通过Cre重组酶的表达而被消除,得到的阳性克隆在嘌呤霉素的存在下逐渐死亡。通过此选择法,发现91个阳性克隆。
(3)通过基因组Southern印迹诊断药物抗性基因的消除
在第(2)中发现的阳性克隆中任选6个克隆,通过基因组Southern印迹诊断药物抗性基因的消除。
在第(2)中冷冻保存的标准平板中,选择含有6个阳性克隆的96孔板,并于37℃在5%CO2中孵育10分钟。孵育后,从对应于每个阳性克隆的孔中收集细胞,并接种在粘附细胞用的24孔平底平板(Greiner制造)中。在含有10%胎牛透析血清(Life Technologies制造)的IMDM培 养基(Life Technologies制造)中培养1周后,细胞接种在6孔粘附细胞用的平底平板(Greiner制造)中。根据已知的方法[Nucleic Acids Research, 3,2303(1976)]从平板中的每个克隆制备基因组DNA,并在150μlTE-RNase缓冲液(pH 8.0)(10mmol/l Tris-HCl,1mmol/l EDTA,200μg/ml RNase A)中溶解过夜。
12μg获得的基因组DNA溶解在120μl BamHI(New England Biolabs制造)的NEBuffer中,混合20单位限制性酶BamHI(New England Biolabs制造),然后在37℃消化反应过夜。通过乙醇沉淀从反应溶液中获取DNA片段,并溶解在20μl TE缓冲液(pH 8.0)(10mmol/lTris-HCl,1mmol/l EDTA)中,然后进行0.4%(w/v)琼脂糖凝胶电泳。电泳后,基因组DNA根据已知的方法[Proc.Natl.Acad.Sci.USA,76,3683(1979)]转移至尼龙膜上。转移完成后,尼龙膜在80℃加热2小时。
另一方面,如下制备在Southern印迹中使用的探针。首先,设计与实施例12中获得的与FUT8基因组区中靶向载体同源区外序列结合的引物(SEQ ID NO:30和31)。下一步,制备含有4.0ng实施例12(2)中获得的质粒pFUT8fgE2-2的20μl反应溶液[ExTaq缓冲液(Takara Shuzo制造),0.2mmol/l dNTP和0.5μmol/l基因特异引物(SEQ ID NO:30和31)],使用DNA聚合酶ExTaq(Takara Shuzo制造)进行PCR。PCR的进行是在94℃加热1分钟,然后94℃加热30秒,55℃加热30秒,74℃加热1分钟为1循环进行25个循环。PCR后,反应溶液进行1.75%(w/v)琼脂糖凝胶电泳,纯化大约230bp的探针DNA片段。5μl获得的探针DNA溶液用1.75MBq[a-32P]dCTP和Megaprime DNA标记系统,dCTP(Amersham Pharmacia Biotech制造)进行放射性同位素标记。
如下进行杂交。首先,尼龙膜封在滚瓶中,加入15ml杂交溶液[5×SSPE,50×Denhaldt’s溶液,0.5%(w/v)SDS,100μg/ml鲑精DNA]在65℃预杂交3小时。下一步,32P标记的探针DNA被热变性,置入 瓶中,尼龙膜在65℃加热过夜。
杂交后,尼龙膜浸入50ml 2×SSC-0.1%(w/v)SDS中,并65℃加热15分钟。重复冲洗步骤两次后,膜浸入50ml 0.2×SSC-0.1%(w/v)SDS中,65℃加热15分钟。冲洗后,尼龙膜暴露于X光片,-80℃两夜进行显影。
通过限制性酶BamHI的处理,从野生型FUT8等位基因形成大约19.0Kb的DNA片段。也产生一个从与靶向载体同源性重组的一条等位基因中形成的大约12.5Kb的DNA片段。另外,当从产生同源性重组的等位基因中删除嘌呤霉素抗性基因(大约1.5Kb)时,通过同样的处理可形成大约11.0Kb的DNA片段。
通过该法,可从6个克隆中5个克隆的基因组DNA中发现大约19.0Kb和11.0Kb的特异片段。由于两个片段的定量比例为1∶1,因此显示嘌呤霉素抗性基因是从FUT8基因组区的1个拷贝被断裂的细胞中删除的。此后,该克隆称为1号ΔFUT82-46-1株。1号ΔFUT82-46-1株,1号ΔFUT82-46和5-03的基因组Southern印迹结果显示在图41中。1号ΔFUT82-46-1株,也称为2-46-1,已经在2001年9月26日被保存,以FERM BP-7755存放在国际专利生物保藏中心,行政独立法人产业技术综合所(AIST Tsukuba Central 6,1-1,Higashi 1-Chome Tsukuba-shi,Ibaraki-ken 305-8566Japan))。
4.纯化由α-1,6-岩石藻糖基转移酶(FUT8)基因断裂的细胞系产生的抗体
在本实施例的第3项中通过断裂FUT8等位基因的一个拷贝获得的1号ΔFUT82-46-1悬浮在含有15μg/ml嘌呤霉素(SIGMA制造)和10%胎牛透析血清(Life Technologies制造)的IMDM培养基(Life Technologies制造)中,达到3×105细胞/毫升的密度,然后60ml全部的悬液接种在粘附细胞培养用的两个T182培养皿(Greiner制造)中。培养 3天后,去除上清液,全部换为60ml EXCELL 301培养基(JRH Biosciences制造)。
于37℃在5%CO2培养箱中培养7天后,计算完整细胞的数目,证实其活力几乎是相同的(每种30%或更少),然后收获每种细胞悬液。每种细胞悬液在3,000rpm 4℃离心10分钟,回收的上清液在10,000rpm 4℃离心1小时,然后用孔直径为0.22μm,容量为150ml的PES过滤装置(NALGENE制造)过滤。
Prosep-A HighCapacity(bioPROCESSING制造)装在0.8cm直径的柱上至厚度为2cm,用10ml 0.1mol/l柠檬酸盐缓冲液(pH 3.0)和10ml1mol/l甘氨酸/NaOH-0.15mol/l NaCl缓冲液(pH 8.6)冲洗以平衡载体。下一步,100ml每种培养上清液通过柱,用50ml的1mol/l甘氨酸/NaOH-0.15mol/l NaCl缓冲液(pH 8.6)冲洗。冲洗后,吸附在Prosep-A上的抗体采用2.5ml 0.1mol/l柠檬酸盐缓冲液(pH 3.0)洗脱,500μl洗脱液进行分馏,每种馏分通过与100μl 2mol/l Tris-HCl(pH 8.5)混合而被中和。含有高浓度(总共1.2ml)抗体的两个馏分通过BCA法[Anal.Biochem.,150,76(1985)]被选择出来,合并,然后在10mol/l柠檬酸盐-0.15mol/l NaCl缓冲液缓冲液(pH 6.0)4℃透析一昼夜。透析后,回收抗体溶液,采用0.22μm孔大小的Millex GV(MILLIPORE制造)进行无菌过滤。
5.由α-1,6-岩藻糖基转移酶(FUT8)基因断裂的细胞系产生的抗体的体外细胞毒活性(ADCC活性)
为了评价在本实施例第4项中纯化的抗GD3抗体的体外细胞毒活性,采用实施例8中所述的CCR4-阳性细胞系CCR4/EL-4检测ADCC活性。
在含有10%胎牛血清(Life Technologies制造)的RPMI1640培养基(此后称为“RPMI1640-FBS(10)”)中传代培养的CCR4/EL-4细胞悬浮 在500μl RPMI1640-FBS(10)中,达到1×106细胞的密度,加入3.7MBqNa2 51CrO4,然后在37℃培养90分钟用放射性同位素标记细胞。在1,200rpm离心5分钟后,去掉上清液,靶细胞悬浮在5ml RPMI1640-FBS(10)中。重复冲洗步骤3次,然后细胞悬液在冰上孵育30分钟以自发分解放射性物质。再次重复冲洗步骤2次,然后细胞悬浮在5mlRPMI1640-FBS(10)中,从而制备成2×105细胞/毫升的靶细胞悬液。
另一方面,从一个健康的人中收集30毫升静脉血,轻轻的与0.5ml肝素钠(Shimizu Pharmaceutical制造)混合,然后与30ml生理盐水(Otsuka Pharmaceutical制造)混合。混合后,10ml混合物轻轻装载在4mlLymphoprep(NYCOMED PHARMA AS制造)上,在室温下在2,000rpm离心30分钟。分离的单核细胞馏分从离心管中收集,合并,并悬浮在30ml RPMI1640-FBS(10)中。在室温下在1,200rpm离心15分钟后,去掉上清液,细胞悬浮在20ml RPMI1640-FBS(10)中。重复冲洗步骤2次,然后采用RPMI1640-FBS(10)制备2.5×106细胞/毫升的效应细胞悬液。
在96孔U形底平板(Falcon制造)的每个孔中,加入50μl(1×104细胞/孔)靶细胞悬液。随后,在每孔中加入效应细胞悬液100μl(2.5×105细胞/孔),从而调整效应细胞与靶细胞的比例为25∶1。下一步,使用RPMI1640-FBS(10),分别制备在实施例13第5项中获得的每种抗CCR4抗体的一系列稀释溶液0.01μg/ml,0.1μg/ml,1μg/ml和10μg/ml,稀释溶液以50μl加入到每孔中使终浓度分别为0.0025μg/ml,0.025μg/ml,0.25μg/ml和2.5μg/ml。于37℃在5%CO2中反应4小时后,平板在1,200rpm离心5分钟。每孔75μl的上清液转移至12mm直径的RIA管(IWAKI制造)中,使用MINAX-γ自动γ计数仪5550(PACKARD制造)测定分解的51Cr的量。
通过在反应混合物中进行同样的反应,该混合物中加入150μlRPMI1640-FBS(10)而不是效应细胞悬液和抗体溶液,计算自发分解的 51Cr量。通过在反应混合物中进行同样的反应,其中该混合物中加入 100μl 1N盐酸和50μl RPMI1640-FBS(10)而不是效应细胞悬液和抗体溶液,计算总共释放的51Cr量。使用这些值,根据公式(II)计算ADCC活性。
图42显示了每种抗CCR4抗体的ADCC活性。从FUT8等位基因的1个拷贝被断裂的1号ΔFUT82-46-1株获得的抗体较基因断裂前的CHO细胞系5-03株产生的抗体有明显更高的ADCC活性。这些抗体的抗原结合活性的改变也没有观察到。基于这些结果,证实所产生抗体的ADCC活性可通过断裂宿主细胞中FUT8等位基因而被改善。
实施例14
制备凝集素抗性的CHO/DG44细胞,并用该细胞产生抗体:
(1)制备凝集素抗性的CHO/DG44
CHO/DG44细胞生长直至近汇合期,在粘附培养用的75cm2培养皿(Greiner制造)中使用IMDM-FBS(10)培养基[含有10%(胎牛血清)FBS和1×浓度的HT添加液(GIBCO BRL制造)的IMDM培养基]培养。在用5ml Dulbecco PBS(Invitrogen制造)冲洗细胞后,加入用Dulbecco PBS稀释的1.5ml 0.05%胰蛋白酶(Invitrogen制造),在37℃孵育5分钟使细胞从培养皿底脱落。脱落的细胞通过细胞培养一般使用的离心操作收获,并悬浮在IMDM-FBS(10)培养基中,达到1×105细胞/毫升的密度,然后加入或不加入0.1μg/ml烷化剂N-甲基-N’-硝基-N-亚硝基胍(此后称为“MNNG”,Sigma制造)。于37℃在5%CO2培养箱(TABAI制造)中孵育3天后,去除上清液,再次冲洗通过同样的操作冲洗、脱落和收获细胞,悬浮在IMDM-FBS(10)培养基中,然后接种在粘附培养的96孔板(IWAKI Glass制造)中,达到1,000细胞/孔的密度。向每孔中,加入培养基中的终浓度为1mg/ml Lens culinaris凝集素(此后称为“LCA”,Vector制造),1mg/ml橙黄网胞盘菌凝集素(橙黄网胞菌凝集素;此后称为“AAL”,Vector制造)或1mg/ml肾蚕豆凝集素(Phaseolus vulgaris白细胞凝集素;此后称为“L-PHA”,Vector制造)。于37℃在CO2培养箱中培养2周后,出现的集落为凝集素抗性CHO/DG44。就获得的凝集素抗性CHO/DG44而言,LCA抗性细胞系命名为CHO-LCA,AAL抗性细胞系命名为CHO-AAL,L-PHA抗性细胞系命名为CHO-PHA。当检测到这些细胞系对多种凝集素有抵抗性时,发现CHO-LCA也对AAL有抵抗性,CHO-AAL也对LCA有抵抗性。另外CHO-LCA和CHO-AAL也显示了对一种凝集素的抗性,该凝集素可识别与LCA和AAL识别的糖链结构相同的糖链结构,即是一种可识别一种糖链结构的凝集素,该糖链结构中,岩藻糖1号位置可通过N-糖苷连接糖链中的α-键在还原端与N-乙酰氨基葡萄糖残基6号位置结合。特别是,发现了CHO-LCA和CHO-AAL显示了抵抗性,甚至可在含有终浓度为1mg/ml的豌豆凝集素(Pisum sativum凝集素;此后称为“PSA”,Vector制造)的培养基中存活。另外,即使当不加入烷化剂MNNG,也可通过增加要处理的细胞的数目来获得凝集素抗性的细胞系。在下文,这些细胞系用于分析。
(2)制备产生抗CCR4人嵌合抗体的细胞
将抗CCR4人嵌合抗体表达质粒pKANTEX2160导入在(1)中通过实施例8中所述的方法获得的三种凝集素抗性细胞系中,通过药物MTX进行基因扩增,制备产生抗CCR4人嵌合抗体细胞系。通过实施例8-2中所述的ELISA测定抗体表达的量,表达抗体的转化体可从CHO-LCA,CHO-AAL和CHO-PHA中的每一个中获得。就每个获得的转化体而言,来自CHO-LCA的转化体命名为CHO/CCR4-LCA,来自CHO-AAL的转化体命名为CHO/CCR4-AAL,来自CHO-PHA的转化体命名为CHO/CCR4-PHA。而且CHO/CCR4-LCA也称为Nega-13,已经在2001年9月26日被保存,以FERM BP-7756存放在国际专利生物保藏处,独立行政法人产业技术综合研究所特许生物保藏中心(AIST Tsukuba Central 6,1-1,Higashi 1-Chome Tsukuba-shi,Ibaraki-ken305-8566 Japan))。
(3)通过凝集素抗性CHO细胞产生高ADCC活性的抗体
使用(2)中获得的三种转化体,通过实施例8-3中所述的方法获得纯化的抗体。每种纯化的抗CCR4人嵌合抗体的抗原结合活性通过实施例8-2中所述的ELISA来评定。所有转化体产生的抗体显示的抗原结合活性类似于实施例8中采用普通的CHO/DG44细胞作为宿主制备的重组细胞系(5-03株)产生的抗体。采用这些纯化的抗体,每种纯化的抗CCR4人嵌合抗体根据实施例8-7中所述的方法进行ADCC活性的评定。结果见图43。与5-03株产生的抗体比较,CHO/CCR4-LCA和CHO/CCR4-AAL产生的抗体所观察到的ADCC活性大约增加100倍。另一方面,在CHO/CCR4-PHA产生的抗体中未观察到明显的ADCC活性增加。当CHO/CCR4-LCA和YB2/0产生的抗体根据实施例8-7所述的方法比较ADCC活性时,也发现CHO/CCR4-LCA产生的抗体较5-03株产生的抗体显示了更高的ADCC活性,类似于实施例8-1中制备的YB2/0细胞系产生的KM2760-1抗体(图44)。
(4)由凝集素抗性CHO细胞产生的抗体的糖链分析
分析在(3)中纯化的抗CCR4人嵌合抗体的糖链。每种纯化抗体的溶液使用Ultra Free 0.5-10K(Millipore制造)交换为10mM KH2PO4。交换的方式是交换比例为80倍或更高。溶液交换后抗体的浓度采用UV-1600(Shimadzu制造)进行测定。根据下面的公式(III)[蛋白质化学进展,12,303(1962)]从每种抗体的氨基酸序列计算摩尔吸收系数,在280nm确定吸收度,浓度测定为1.38mg/ml。
E1mol/l=A×n1+B×n2+C×n3(III)
E1mol/ml=E1mol/l/MW
E1mol/l:280nm处的吸收系数(mg-1ml cm-1)
E1mol/ml:280nm处的摩尔吸收系数(M-1 cm-1)
A:280nm处色氨酸的摩尔吸收系数=5550(M-1 Gm-1)
B:280nm处酪氨酸的摩尔吸收系数=1340(M-1 cm-1)
C:280nm处胱氨酸的摩尔吸收系数=200(M-1 cm-1)
n1:每1个抗体分子的色氨酸数目
n2:每1个抗体分子的酪氨酸数目
n3:每1个抗体分子的胱氨酸数目
MW:抗体的分子量(g/mol)
100μg每种抗体置入Hydraclub S-204检测管中,使用离心蒸发器干燥。检测管中干燥的样品采用Hohnen制造的Hydraclub进行肼解作用。样品与肼使用Hohnen hydrazinolysis[酶学方法,83,263(1982)]制造的肼解试剂在110℃反应1小时。反应后,在减压下蒸发肼,反应管放回室温停留30分钟。下一步,加入250μl Hohnen制造的乙酰化试剂和25μl乙酸酐,然后在室温下充分搅拌反应30分钟。然后,进一步加入250μl乙酰化试剂和25μl乙酸酐,紧接着在室温下充分搅拌反应1小时。样品在冰箱中-80℃冻存,冻干大约17个小时。采用Takara Shuzo Co.,Ltd.制造的Cellulose Cartridge Glycan Preparation Kit从冻干的样品中回收糖链。样品糖链溶液采用离心蒸发器干燥,然后用2-氨基吡啶进行荧光标记[J.Biochem.95,197(1984)]。2-氨基吡啶溶液的制备是每1g2-氨基吡啶(1×PA溶液)加入760μl HCl,并用反渗透纯化水稀释溶液10倍(10倍稀释的PA溶液)。氰基硼氢化钠溶液的制备是通过每10mg氰基硼氢化钠加入20μl 1×PA溶液和430μl反渗透纯化水。67μl 10倍稀释的PA溶液加入至样品中,然后在100℃反应15分钟,自然冷却,进一步加入2μl氰基硼氢化钠,然后在90℃反应12小时进行样品糖链的荧光标记。荧光标记的糖链基团(PA处理的糖链基团)采用Superdex Peptide HR 10/30柱(Pharmacia制造)从过量的试剂中分离出来。此步骤的进行是使用10mM碳酸氢铵为洗脱液,流速为0.5ml/min,柱温度为室温,使用的荧光检测仪激发波长为320nm,荧光波长为400nm。在添加样品后20至30分钟回收洗脱液,采用离心蒸发器进行干燥,用作纯化的PA处理糖链。下一步,纯化的PA处理糖链使用CLC-ODS(Shimadzu制造,Ф6.0nm×159nm)进行反相HPLC分析。此步骤使用的柱温度为55℃,流速为1ml/min,使用的荧光检测仪激发波长为320nm,荧光波长为400nm。柱用10mM磷酸钠缓冲液(pH 3.8)平衡,用0.5%1-丁醇线性密度梯度进行洗脱作用80分钟。每种PA处理糖链的鉴定是通过,使用飞行时间型质谱分析(MALDI-TOF-MS分析)的矩阵辅助激光电离时间对已分离的PA处理糖链的每个峰进行终点起始 衰减分析,用Takara Shuzo制造的PA处理糖链标准品与洗脱位置进行比较,在用多种酶消化每种PA处理糖链后进行反相HPLC分析(图45)。每种糖链含量通过反相HPLC分析从PA处理糖链的每个峰区域进行计算。还原端不是N-乙酰氨基葡萄糖的PA处理糖链从峰区域的计算中排除,因为它是不纯的,或是PA处理糖链制备过程中的副产品。
如实施例11(6)使用磷酸钠缓冲液(pH 3.8)作为缓冲液A,磷酸钠缓冲液(pH 3.8)+0.5%1-丁醇作为缓冲液B,以同样的方式进行分析。
在图45中,无α-1,6-岩藻糖糖链基的比例可从(i)至(viii)中峰(i)至(iv)所占的区域来计算,α-1,6-岩藻糖结合糖链基的比例可从(i)至(viii)中峰(v)至(viii)所占的区域来计算。
凝集素抗性细胞系产生的纯化抗CCR4人嵌合抗体糖链结构分析的结果见表6。该结果显示了凝集素抗性细胞系产生的抗CCR4人嵌合抗体的糖链分析。通过实施例d(4)中所述的方法分析,从峰区域计算的无α-1,6-岩藻糖糖链的比例(%)见表中。
表6
与5-03株产生抗体比较,当从分析的峰区域计算时,CHO/CCR4-LCA产生抗体中无α-1,6-岩藻糖糖链的比例从9%增加至48%。CHO/CCR4-AAL产生抗体中无α-1,6-岩藻糖糖链的比例从9%增加至27%。另一方面,与5-03株比较时,在PHA抗性细胞系中几乎没有发现糖链模型和无α-1,6-岩藻糖糖链比例的改变。
实施例15
凝集素抗性CHO细胞系的分析:
1.在产生抗CCR4人嵌合抗体的细胞系CHO/CCR4-LCA中GMD酶表达水平的分析
从实施例14中获得的产生抗CCR4人嵌合抗体的CHO/CCR4-LCA细胞系中,每种GMD(GDP-甘露糖4,6-脱水酶)基因,GFPP(GDP-酮-6-脱氧甘露糖3,5-差向异构酶,4-还原酶)和被认为是岩藻糖生物合成酶的FX(GDP-β-L-岩藻糖焦磷酸化酶)和被认为是岩藻糖转移酶的FUT8(α-1,6-岩藻糖基转移酶)基因表达的水平,使用RT-PCR的方法进行分析。
(1)从多种细胞系中制备RNA
CHO/DG44细胞,从实施例8-1(2)中获得的产生抗CCR4人嵌合抗体的细胞系5-03和实施例14(2)中获得的产生抗CCR4人嵌合抗体的细胞系CHO/CCR4-LCA,每种这些细胞都于37℃在5%CO2培养箱中传代,然后培养4天。培养后,采用RNeasy Protect Mini Kit(QIAGEN制造)根据生产厂商说明书从每种细胞系的1×107细胞中制备总RNA。然后,采用RT-PCR用的SUPER SCRIPT First-Strand Synthesis System(GIBCO BRL制造)根据生产厂商的说明书在20μl反应溶液中从5μg每种RNA中合成单链cDNA。
(2)采用RT-PCR分析GMD基因的表达水平
为了通过PCR扩增GMD cDNA,具有SEQ ID NO:32中显示的核苷酸序列的24基体的合成DNA引物和具有SEQ ID NO:33中显示的核苷酸序列的26基体的合成DNA引物根据实施例17-1中显示的CHO细胞来源的GMD cDNA序列进行制备。
下一步,制备含有在第(1)项中作为模板从每种细胞系中制备的0.5μl单链cDNA的20μl反应溶液[1×Ex Taq缓冲液(Takara Shuzo制造),0.2mM dNTP,0.5单位Ex Taq聚合酶(Takara Shuzo制造)和0.5μM SEQ ID NO:32和33的合成DNA引物],采用DNA热循环仪480(PerkinElmer制造)于94℃加热5分钟,然后94℃加热1分钟,68℃加热2分钟作为一个循环,进行30个循环进行PCR。在将10μl PCR反应溶液进行琼脂糖电泳后,DNA片段采用Cyber Green(BMA制造)进行染色,然后采用Fluor Imager SI(Molecular Dynamics制造)测定大约350bp的DNA片段的量。
(3)采用RT-PCR分析GFPP基因的表达水平
为了通过PCR扩增GFPP cDNA,具有SEQ ID NO:34中显示的核苷酸序列的27基体的合成DNA引物和具有SEQ ID NO:35中显示的核苷酸序列的23基体的合成DNA引物根据实施例16-2中获得的CHO细胞来源的GFPP cDNA序列进行制备。
下一步,制备含有在第(1)项中作为模板从每种细胞系中制备的0.5μl单链cDNA的20μl反应溶液[1×Ex Taq缓冲液(Takara Shuzo制造),0.2mM dNTP,0.5单位Ex Taq聚合酶(Takara Shuzo制造)和0.5μMSEQ ID NO:34和35的合成DNA引物],采用DNA热循环仪480(Perkin Elmer制造)于94℃加热5分钟,然后94℃加热1分钟,68℃加热2分钟作为一个循环进行24个循环进行PCR。在将10μl PCR反应溶液进行琼脂糖电泳后,DNA片段采用Cyber Green(BMA制造)进行染色,然后采用Fluor Imager SI(Molecular Dynamics制造)测定大约600bp的DNA片段的量。
(4)采用RT-PCR分析FX基因的表达水平
为了通过PCR扩增FX cDNA,具有SEQ ID NO:36中显示的核苷酸序列的28基体的合成DNA引物和具有SEQ ID NO:37中显示的核苷酸序列的28基体的合成DNA引物根据实施例16-1中显示的CHO细胞来源的FXP cDNA序列进行制备。
下一步,制备含有在第(1)项中作为模板从每种细胞系中制备的 0.5μl单链cDNA的20μl反应溶液[1×Ex Taq缓冲液(Takara Shuzo制造),0.2mM dNTP,0.5单位Ex Taq聚合酶(Takara Shuzo制造)和0.5μMSEQ ID NO:36和37的合成DNA引物],采用DNA热循环仪480(PerkinElmer制造)于94℃加热5分钟,然后94℃加热1分钟且68℃2分钟作为一个循环进行22个循环进行PCR。在将10μl PCR反应溶液进行琼脂糖电泳后,DNA片段采用Cyber Green(BMA制造)进行染色,然后采用Fluor Imager SI(Molecular Dynamics制造)测定大约300bp的DNA片段的量。
(5)采用RT-PCR分析FUT8基因的表达水平
为了通过PCR扩增FUT8cDNA,制备含有在第(1)项中作为模板从每种细胞系中制备的0.5μl单链cDNA的20μl反应溶液[1×Ex Taq缓冲液(Takara Shuzo制造),0.2mM dNTP,0.5单位Ex Taq聚合酶(Takara Shuzo制造)和0.5μM SEQ ID NO:13和14的合成DNA引物],采用DNA热循环仪480(Perkin Elmer制造)于94℃加热5分钟,然后94℃加热1分钟且68℃加热2分钟作为一个循环进行20个循环来进行PCR。在将10μl PCR反应溶液进行琼脂糖电泳后,DNA片段采用Cyber Green(BMA制造)进行染色,然后采用Fluor Imager SI(Molecular Dynamics制造)测定大约600bp的DNA片段的量。
(6)采用RT-PCR分析β-肌动蛋白基因的表达水平
为了通过PCR扩增β-肌动蛋白cDNA,制备含有在第(1)项中作为模板从每种细胞系中制备的0.5μl单链cDNA的20μl反应溶液[1×ExTaq缓冲液(Takara Shuzo制造),0.2mM dNTP,0.5单位Ex Taq聚合酶(Takara Shuzo制造)和0.5μM SEQ ID NO:15和16的合成DNA引物],采用DNA热循环仪480(Perkin Elmer制造)进行PCR,94℃加热5分钟,然后94℃加热1分钟,68℃加热2分钟作为一个循环,进行14个循环。在将10μl PCR反应溶液进行琼脂糖电泳后,DNA片段采用Cyber Green(BMA制造)进行染色,然后采用Fluor Imager SI(Molecular Dynamics制造)测定大约800bp的DNA片段的量。
(7)在每个细胞系中GMD、GFPP、FX和FUT8基因的表达水平
5-03株和CHO-CCR4-LCA中每条基因PCR扩增片段的量是以CHO/DG44细胞中PCR扩增片段量为1,用第(2)至(6)中测定的每个细胞系中GMD,GFPP,FX和FUT8cDNA来源的PCR扩增片段量除以每个细胞系中β-肌动蛋白cDNA来源的PCR扩增片段量来计算的。结果在表7中显示。
表7
如在表7中所示,在CHO/CCR4-LCA中GMD基因的表达水平与其它细胞系相比降至大约1/10。在此,检测单独进行两次,取平均值。
2.用GMD基因被强行表达的产生抗CCR4人嵌合抗体的CHO/CCR4-LCA进行分析
(1)构建CHO细胞来源的GMD基因表达载体pAGE249GMD
具有SEQ ID NO:38中显示的核苷酸序列的28基体的引物和具有SEQ ID NO:39中显示的核苷酸序列的29基体的引物根据实施例17-1中获得的CHO细胞来源GMD cDNA序列进行制备。下一步,制备含有在本实施例的第1(1)项中作为模板制备的0.5μl CHO细胞来源GMD的单链cDNA的20μl反应溶液[1×Ex Taq缓冲液(Takara Shuzo制造),0.2mM dNTP,0.5单位Ex Taq聚合酶(Takara Shuzo制造)和0.5μM SEQ ID NO:38和39的合成DNA引物],采用DNA热循环仪480(Perkin Elmer制造)进行PCR,94℃加热5分钟,然后94℃加热1分钟,58℃加热1分钟和72℃加热1分钟作为一个循环,进行8个循环,然后94 ℃加热1分钟,68℃作为一个循环进行22个循环。反应完毕后,PCR反应溶液通过琼脂糖电泳进行分馏,然后采用Gene Clean II Kit (BIO101制造)根据生产厂商的说明书回收大约600bp的DNA片段。回收的DNA片段采用DNA连接试剂盒(Takara Shuzo)与pT7Blue(R)载体(Novagen制造)连接,大肠杆菌DH5α(Toyobo制造)用所获得的重组质粒DNA转化获得质粒mt-C(参照图46)。
下一步,具有SEQ ID NO:40中显示的核苷酸序列的45基体引物和具有SEQ ID NO:41中显示的核苷酸序列的31基体引物根据实施例17-1中获得的CHO细胞来源GMD cDNA序列进行制备。下一步,制备含有在本实施例的第1(1)项中作为模板制备的0.5μl CHO细胞来源GMD的单链cDNA的20μl反应溶液[1×Ex Taq缓冲液(Takara Shuzo制造),0.2mM dNTP,0.5单位Ex Taq聚合酶(Takara Shuzo制造)和0.5μM SEQ ID NO:40和41的合成DNA引物],采用DNA热循环仪480(Perkin Elmer制造)进行PCR,94℃加热5分钟,然后94℃加热1分钟,57℃加热1分钟和72℃加热1分钟作为一个循环,进行8个循环,然后94℃加热1分钟,68℃加热2分钟作为一个循环进行22个循环。反应完毕后,PCR反应溶液通过琼脂糖电泳进行分馏,然后采用Gene Clean II Kit(BIO 101制造)根据生产厂商的说明回收大约150bp的DNA片段。回收的DNA片段采用DNA连接试剂盒(Takara Shuzo)与pT7Blue(R)载体(Novagen制造)连接,大肠杆菌DH5α(Toyobo制造)用所获得的重组质粒DNA转化获得质粒ATG(参照图47)。
下一步,3μg实施例17-1中制备的质粒CHO-GMD与限制性酶SacI(Takara Shuzo制造)在37℃反应16小时,通过苯酚/氯仿提取和乙醇沉淀回收DNA,与限制性酶EcoRI(Takara Shuzo制造)在37℃反应16小时,消化DNA通过琼脂糖电泳进行分馏,然后采用Gene Clean IIKit(BIO 101制造)根据生产厂商的说明书回收大约900bp的DNA片段。质粒mt-C(1.4μg)与限制性酶SacI(Takara Shuzo制造)在37℃反应16小时,通过苯酚/氯仿提取和乙醇沉淀回收DNA,与限制性酶 EcoRI(Takara Shuzo制造)在37℃反应16小时,消化产物通过琼脂糖电泳进行分馏,然后采用Gene Clean II Kit(BIO 101制造)根据生产厂商的说明书回收大约3.1Kbp的DNA片段。回收的DNA片段采用DNA连接试剂盒(Takara Shuzo)连接,大肠杆菌DH5α(Toyobo制造)用所获得的重组质粒DNA转化获得质粒WT-N(-)(参照图48)。
下一步,2μg质粒WT-N(-)与限制性酶BamHI(Takara Shuzo制造)在37℃反应16小时,通过苯酚/氯仿提取和乙醇沉淀回收DNA,与限制性酶EcoRI(Takara Shuzo制造)在37℃反应16小时,消化产物通过琼脂糖电泳进行分馏,然后采用Gene Clean II Kit(BIO 101制造)根据生产厂商的说明书回收大约1Kbp的DNA片段。质粒pBluescript SK(-)(3μg;Stratagene制造)与限制性酶BamHI(Takara Shuzo制造)在37℃反应16小时,通过苯酚/氯仿提取和乙醇沉淀回收DNA,并且与限制性酶EcoRI(Takara Shuzo制造)在37℃反应16小时,消化产物通过琼脂糖电泳进行分馏,然后采用Gene Clean II Kit(BIO 101制造)根据生产厂商的说明书回收大约3Kbp的DNA片段。回收的DNA片段采用DNA连接试剂盒(Takara Shuzo)连接,大肠杆菌DH5α(Toyobo制造)用所获得的重组质粒DNA转化获得pBS中的质粒WT-N(-)(参照图49)。
下一步,2μg pBS中的质粒WT-N(-)与限制性酶HindIII(Takara Shuzo制造)在37℃反应16小时,通过苯酚/氯仿提取和乙醇沉淀回收DNA,与限制性酶EcoRI(Takara Shuzo制造)在37℃反应16小时,消化产物通过琼脂糖电泳进行分馏,然后采用Gene Clean II Kit (BIO 101制造)根据生产厂商的说明书回收大约4Kbp的DNA片段。2μg质粒ATG与限制性酶HindIII(Takara Shuzo制造)在37℃反应16小时,通过苯酚/氯仿提取和乙醇沉淀回收DNA,与限制性酶EcoRI (Takara Shuzo制造)在37℃反应16小时,消化产物通过琼脂糖电泳进行分馏,然后采用Gene Clean II Kit(BIO 101制造)根据生产厂商的说明书回收大约150bp的DNA片段。分别回收的DNA片段采用DNA连接试剂盒(Takara Shuzo)连接,大肠杆菌DH5α(Toyobo制造)用所获得的重组质粒DNA 转化,获得pBS中的质粒WT(参照图50)。
下一步,2μg质粒pAGE249与限制性酶HindIII和BamHI(均由Takara Shuzo制造)在37℃反应16小时,消化产物通过琼脂糖电泳进行分馏,然后采用Gene Clean II Kit(BIO 101制造)根据生产厂商的说明书回收大约6.5Kbp的DNA片段。pBS中的质粒WT(2μg)与限制性酶HindIII和BamHI(均由Takara Shuzo制造)在37℃反应16小时,消化产物通过琼脂糖电泳进行分馏,然后采用Gene Clean II Kit(BIO 101制造)根据生产厂商的说明书回收大约1.2Kbp的DNA片段。分别回收的DNA片段采用DNA连接试剂盒(Takara Shuzo)连接,大肠杆菌DH5α(Toyobo制造)用所获得的重组质粒DNA转化获得质粒pAGE249GMD(参照图51)。
(2)在CHO/CCR4-LCA中GMD基因的稳定表达
用限制性酶FspI(NEW ENGLAND BIOLABS制造)消化将CHO细胞来源的GMD基因表达载体pAGE249GMD(5μg)制成线性形式,通过电穿孔法[Cytotechnology,3,133(1990)]导入至1.6×106CHO/CCR4-LCA细胞中。然后,细胞悬浮在30ml含有200nM MTX(SIGMA制造)的IMDM-dFBS(10)培养基[添加10%dFBS的IMDM培养基(GIBCO BRL制造)]中,并用182cm2培养皿(Greiner制造)于37℃在5%CO2孵箱中培养24小时。培养后,培养基换为含有0.5mg/ml潮霉素和200nM MTX(SIGMA制造)的IMDM-dFBS(10)培养基,然后培养19天获得潮霉素抗性转化体的集落。
同样方式,pAGE249载体通过同样的方法导入至CHO/CCR4-LCA中,获得潮霉素抗性转化体的集落。
(3)培养表达GMD基因的CHO/CCR4-LCA和纯化抗体
使用含有200nM MTX(SIGMA制造)和0.5mg/ml潮霉素的IMDM-dFBS(10)培养基,在第(2)项中获得的表达GMD的转化体在182 cm2培养皿(Greiner制造),于37℃在5%CO2孵箱中进行培养。几天后,当细胞密度达到汇合时,去掉培养上清液,细胞用25ml PBS(GIBCOBRL制造)缓冲液冲洗,并与35ml EXCELL301培养基(JRH制造)混合。于37℃在5%CO2孵箱中培养7天后,回收培养上清液。采用Prosep-A(Millipore制造)根据生产厂商的说明书从培养上清液中纯化抗CCR4嵌合抗体。
同样的方式,导入pAGE249载体的转化体细胞通过同样的方法进行培养,然后从培养上清液中回收并纯化抗CCR4嵌合抗体。
(4)在转化的细胞中测定凝集素抗性
在第(2)中获得的表达GMD的转化体细胞悬浮在含有200nMMTX(SIGMA制造)和0.5mg/ml潮霉素的IMDM-dFBS(10)培养基中,达到6×104细胞/毫升的密度,悬液以50μl/孔分配至96孔平板中(Glass制造)。下一步,通过在含有200nM MTX(SIGMA制造)和0.5mg/ml潮霉素的IMDM-dFBS(10)培养基中悬浮浓度为0mg/ml,0.4mg/ml,1.6mg/ml或4mg/ml的LCA(Lens culinaris凝集素:Vector Laboration制造)而制备的培养基以50μl/孔加入到平板中,然后于37℃在5%CO2平板中继续培养96小时。培养后,以10μl/孔加入WST-I(Boehringer制造),于37℃在5%CO2孵箱中孵育30分钟以显色,然后在450nm和595nm(此后分别称为“OD450”和“OD595”)采用Microplate Reader(BIO-RAD制造)进行测定。同样的方式,导入pAGE249载体的转化体细胞通过同样的方法进行测定。检测单独执行两次。
图52通过百分比显示了每孔中存活细胞的数目,此时,通过在上述从OD450中减去OD595计算的数值作为每个细胞组的存活数目,在每个无LCA的孔中存活的细胞数定为100%。如图52中显示,LCA抗性的降低可在表达GMD的CHO/CCR4-LCA中观察到,在0.2mg/mlLCA的存在下,存活的比例大约为40%,在0.8mg/ml LCA的存在下,存活的比例为大约20%。另一方面,在导入pAGE249载体的 CHO/CCR4-LCA中,在0.2mg/ml LCA的存在下,存活的比例大约为100%,即使在0.8mg/ml LCA的存在下,存活的比例为大约80%。根据这些结果,表明在CHO/CCR4-LCA中GMD基因的表达水平有所降低,这样的结果是可获得LCA的抵抗性。
(5)从表达GMD的CHO/CCR4-LCA中获得的抗CCR4嵌合抗体的体外细胞毒活性(ADCC活性)
为了评定在第3项中获得的纯化抗CCR4嵌合抗体的体外细胞毒活性,根据下面的方法检测ADCC活性。
i)制备靶细胞悬液
将3.7MBq当量的放射性物质Na2 51CrO4加入到1.6×106CCR4-EL4的细胞(参见实施例8-7)中,其培养的培养基是向RPMI1640-FBS(10)培养基中添加500μg/ml G418硫酸盐(Nacalai Tesque制造)而制备,然后在37℃反应90分钟,从而用放射性同位素标记细胞。反应后,细胞通过悬浮RPMI1640-FBS(10)培养基中冲洗3次,随后离心,重新悬浮在培养基中,然后于4℃冰中孵育30分钟,对放射性物质进行自发分解。离心后,沉淀物通过加入5毫升RPMI1640-FBS(10)培养基后调整为2.5×105细胞/毫升,并用作靶细胞悬液。
ii)制备效应细胞悬液
从一个健康的人中收集50毫升静脉血,轻轻的与0.5ml肝素钠(Takeda Pharmaceutical制造)混合。混合物离心采用Lymphoprep(Nycomed Pharma AS制造)根据制造厂商的说明书离心分离出单核细胞层。用RPMI1640-FBS(10)培养基离心冲洗三次后,用培养基重新悬起,达到2×106细胞/毫升的密度,并作为效应细胞悬液。
iii)检测ADCC活性
在96孔U形底平板(Falcon制造)的每个孔中,加入上面1)制备的靶细胞悬液50μl(1×104细胞/孔)。下一步,加入上面2)制备的效应细胞悬液100μl(2×105细胞/孔,效应细胞与靶细胞的比例为25∶1)。进一步 加入每种抗CCR4嵌合抗体(在第(3)项中纯化的抗CCR4嵌合抗体,和KM2760-1和KM3060),达到终浓度0.0025至2.5μg/ml,接着在37℃反应4小时。反应后,离心平板,使用γ-计数仪测定上清液中51Cr的量。通过同样的操作方法仅使用培养基而不是效应细胞悬液和抗体溶液,并测定上清液中51Cr的量,计算自发释放的51Cr量。通过同样的操作方法仅使用培养基而不是抗体溶液,加入1N盐酸而不是效应细胞悬液,并测定上清液中51Cr的量,计算总共释放的51Cr量。根据公式(II)计算ADCC活性。
在图53中显示了检测ADCC活性的结果。如在图53中显示,从表达GMD的CHO/CCR4-LCA中获得的纯化嵌合抗体的ADCC活性降低至与实施例8中获得的KM3060的ADCC活性相似的程度。另一方面,从导入pAGE249的CHO/CCR4-LCA中获得的纯化抗CCR4嵌合抗体的ADCC活性显示了与来自CHO/CCR4-LCA的纯化抗CCR4嵌合抗体的相似程度的ADCC活性。根据这些结果,表明在CHO/CCR4-LCA中GMD基因的表达水平是降低的,其结果是,产生了具有高ADCC活性的抗体。
(6)来自表达GMD的CHO/CCR4-LCA的抗CCR4嵌合抗体的糖链分析
与在第(3)项中获得的纯化抗CCR4嵌合抗体结合的糖链根据实施例14(4)中显示的方法进行分析,分析的结果在图55中显示。与实施例14中的CHO/CCR4-LCA制备的纯化抗CCR4嵌合抗体比较,从峰区域计算时,来自表达GMD的CHO/CCR4-LCA的纯化抗CCR4嵌合抗体中无α-1,6-岩藻糖的糖链比例下降至9%。因此,显示通过在CHO/CCR4-LCA中表达GMD基因,细胞产生的抗体中无α-1,6-岩藻糖的糖链比例下降至与5-03株产生的抗体相似的水平。
实施例16
在CHO细胞中制备编码涉及糖链合成的酶的多种基因:
1.确定CHO细胞来源的FX cDNA序列
(1)从CHO/DG44细胞中提取总RNA
CHO/DG44细胞悬浮在含有10%胎牛血清(Life Technologies制造)和1×浓度HT添加液(Life Technologies制造)的IMDM培养基中,15ml该悬液接种在粘附细胞培养用的T75培养皿(Greiner制造)中,达到2×105细胞/ml的密度。于37℃在5%CO2孵箱中培养后的第二天,收获1×107细胞,并采用RNAeasy(QIAGEN制造)根据生产厂商的说明书从中提取总RNA。
(2)从CHO/DG44细胞中制备总单链cDNA
在(1)中制备的总RNA溶解在45μl无菌水中,加入1μl RQ1无RNase DNase(Promega制造),5μl附加的10×DNase缓冲液和0.5μlRNasin核糖核酸酶抑制剂(Promega制造),然后在37℃反应30分钟降解在样品中污染的基因组DNA。反应后,总RNA再次使用RNAeasy(QIAGEN制造)纯化,并溶解在50μl无菌水中。
使用低聚(dT)作为引物在20μl反应混合物中,由3μg获得的总RNA样品中合成单链cDNA,用SUPERSCRIPTTM预扩增系统(Life Technologies制造)根据生产厂商的说明书通过逆转录反应合成第一链cDNA。50倍稀释水溶液用于GFPP和FX的克隆。该溶液储存在-80℃直至使用。
(3)制备中国仓鼠来源的FX的cDNA部分片段
通过以下的步骤制备来自中国仓鼠的FX cDNA部分片段。
首先,设计对在公共数据库中登记的普通核苷酸序列特异的引物(见SEQ ID NO:42和43),命名为人FX cDNA(基因库登记编号U58766)和小鼠cDNA(基因库登记编号M30127)。
下一步,制备含有1μl第(2)项制备的CHO/DG44来源的单链cDNA 的25μl反应溶液[ExTaq缓冲液(Takara Shuzo制造),0.2mmol/l dNTP和0.5μmol/l基因特异引物(SEQ ID NO:42和43)],采用DNA聚合酶ExTaq(Takara Shuzo制造)进行聚合酶链式反应(PCR)。PCR的进行是通过在94℃加热5分钟,然后94℃加热1分钟,58℃加热2分钟,72℃加热3分钟作为一个循环进行30循环,最后72℃加热10分钟。
反应后,反应溶液进行2%琼脂糖凝胶电泳,使用QuiaexII凝胶提取试剂盒(Quiagen制造)纯化301bp的特异扩增片段,用20μl无菌水洗脱(在下文中该法用于从琼脂糖凝胶中纯化DNA片段)。根据附在TOPOTA克隆试剂盒(Invitrogen制造)中的生产厂商说明书将4μl扩增片段插入至质粒pCR2.1中,大肠杆菌DH5α根据Cohen等人[Proc.Natl.Acad.Sci.USA,69,2110(1972)](在下文中该法用于大肠杆菌的转化)的方法用该反应溶液进行转化。质粒DNA根据已知的方法[Nucleic Acids Research,7,1513(1979)](在下文中该法用于分离质粒)从所获得的几个卡那霉素抗性集落中分离,获得分别插入了FX cDNA部分片段的2个克隆。它们是指pCRFX克隆8和pCRFX克隆12。
使用DNA测序仪377(Parkin Elmer制造)和BigDye Terminator Cycle Sequencing FS Ready Reaction Kit(Parkin Elmer制造)根据生产厂商的说明书方法来确定插入至FX克隆8和FX克隆12每个中的cDNA核苷酸序列。证实每个确定序列的插入的cDNA编码中国仓鼠FX的可读框(ORF)部分序列。
(4)为RACE合成单链cDNA
从第(1)项中提取的CHO/DG44总RNA采用SMARTTM RACEcDNA扩增试剂盒(CLONTECH制造)根据生产厂商的说明书制备5’和3’RACE的单链cDNA样品。在该实施例中,PowerScriptTM逆转录酶(CLONTECH制造)用作逆转录酶。制备后每个单链cDNA用试剂盒中附加的麦黄酮-EDTA缓冲液稀释10倍,并用作PCR模板。
(5)用RACE法测定中国仓鼠来源的FX全长cDNA
基于第(3)项中测定的中国仓鼠来源的FX部分序列,为中国仓鼠FX特异的5’RACE设计引物FXGSP1-1(SEQ ID NO:44)和FXGSP1-2(SEQ ID NO:45),为中国仓鼠FX特异的3’RACE设计引物FXGSP2-1(SEQ ID NO:46)和FXGSP2-2(SEQ ID NO:47)。
下一步,使用Advantage2PCR试剂盒(CLONTECH制造)进行聚合酶链式反应(PCR),为第(4)项中制备的RACE制备含有1μlCHO/DG44来源的单链cDNA的50μl反应溶液[Advantage2PCR缓冲液(CLONTECH制造),0.2mM dNTP,0.2μmol/l中国仓鼠FX特异的进行RACE的引物和1×浓度的普通引物(CLONTECH制造)]。
PCR的进行是通过在94℃加热5分钟,68℃加热10秒,72℃加热2分钟为一个循环,重复20个循环。
反应完成后,1μl反应溶液用麦黄酮-EDTA缓冲液稀释50倍,1μl稀释的溶液用作模板。再次制备反应溶液,在同样的条件下进行PCR。用在第一次和第二次PCR中的模板,引物的组合,以及通过PCR扩增的DNA片段的长度见表8。
表8
用在中国仓鼠FX cDNA RACE PCR中的引物组合和PCR产物大小
PCR后,反应溶液进行1%琼脂糖凝胶电泳,特异性扩增的目的片段用QiaexII凝胶提取试剂盒(Qiagen制造)纯化,并用20μl无菌水洗脱。在pCR2.1质粒中插入4μl扩增的片段,按照TOPO TA克隆试剂盒(Invitrogen制造)附带的说明书,用反应溶液转化大肠杆菌DH5α。
从出现的数个卡那霉素抗性集落中分离质粒DNA,以获得5个含中国仓鼠FX 5’区的cDNA克隆。它们被称为FX5’克隆25、FX5’克隆26、FX5’克隆27、FX5’克隆28、FX5’克隆31和FX5’克隆32。
以相同的方式获得5个含中国仓鼠FX3’区的cDNA克隆。这些FX3’克隆被称为FX3’克隆1、FX3’克隆3、FX3’克隆6、FX3’克隆8和FX3’克隆9。
按照生产商说明书描述的方法,用DNA测序仪377(Parkin Elmer制造)测定通过5’和3’RACE获得的每个克隆cDNA部分的核苷酸序列。通过比较该方法测定的cDNA核苷酸序列,排除了由于PCR造成的核苷酸碱基读码错误,并测定了中国仓鼠FX cDNA的全长核苷酸序列。测定的序列显示在SEQ ID NO:48中。
2.测定CHO细胞来源的GFPP cDNA序列
(1)制备来自中国仓鼠的GFPP cDNA部分片段
来自中国仓鼠的GFPP cDNA部分片段通过以下步骤制备。
首先,比较在公共数据库登记的人GFPP cDNA核苷酸序列(基因库登记编号AF017445)、与该序列具有高度同源性的小鼠EST序列(基因库登记编号AI467195,AA422658,BE304325和AI466474)和大鼠EST序列(基因库登记编号BF546372,AI058400和AW144783),并根据这三个种属之间的高度保守区设计对大鼠GFPP特异的引物GFPP FW9和GFPP RV9(SEQ ID NO:49和50)。
其次,通过制备含有1μl在1(2)项中制备的CHO/DG44来源的单链cDNA的25μl反应溶液[ExTaq缓冲液(Takara Shuzo制造),0.2mMdNTP和0.5μmol/l GFPP特异的引物GFPP FW9和GFPP RV9(SEQ ID NO:49和50)],用DNA聚合酶ExTaq(由Takara Shuzo生产)进行聚合酶链反应(PCR)。PCR的进行是通过94℃加热5分钟,随后94℃加热1分钟、58℃加热2分钟和72℃加热3分钟作为一个循环,循环30次,最后在72℃加热10分钟。
PCR后,反应溶液进行2%琼脂糖凝胶电泳,特异性扩增的1.4Kbp片段用QuiaexII凝胶提取试剂盒(Quiagen制造)纯化,并用20μl无菌水洗脱。按照TOPO TA克隆试剂盒(Invitrogen制造)附带的说明书,4μl扩增的片段被用来插入pCR2.1质粒中,并用反应溶液转化大肠杆菌DH5α。
从出现的数个卡那霉素抗性克隆中分离质粒DNA,以获得3个分别整合进GFPP cDNA部分片段的克隆。它们被称为GFPP克隆8、GFPP克隆11和GFPP克隆12。
按照生产商说明书描述的方法,用DNA测序仪377(Parkin Elmer制造)和BigDye Terminator Cycle Sequencing FS Ready Reaction试剂盒(Parkin Elmer制造),测定了插入每个GFPP克隆8、GFPP克隆11和GFPP克隆12中的cDNA的核苷酸序列。经证实,序列被测定的插入cDNA编码中国仓鼠的GFPP可读框(ORF)部分序列。
(2)通过RACE方法测定中国仓鼠GFPP全长cDNA
根据2(1)项中测定的中国仓鼠FX部分序列,设计了中国仓鼠FX特异5’RACE的引物GFPP GSP1-1(SEQ ID NO:52)和GFPP GSP1-2(SEQ ID NO:53),以及中国仓鼠GFPP特异3’RACE的引物GFPP GSP2-1(SEQ ID NO:54)和GFPP GSP2-2(SEQ ID NO:55)。
其次,通过制备含有1μl在第(4)项中制备的CHO/DG44来源的RACE单链cDNA的50μl反应溶液[Advantage2PCR缓冲液(CLONTECH制造),0.2mM dNTP和0.2μmol/l RACE中国仓鼠GFPP特异的引物和1×浓度的共同引物(CLONTECH制造)],用Advantage2PCR试剂盒(CLONTECH制造)进行聚合酶链式反应(PCR)。
以94℃加热5秒、68℃加热10秒和72℃加热2分钟作为一个循环,通过重复20个循环进行PCR。
反应完成后,1μl反应溶液被用麦黄酮-EDTA缓冲液稀释50倍,并用1μl稀释的溶液作为模板。再次制备反应溶液并在相同条件下进行PCR。模板、用在第一和第二次PCR中的引物组合和PCR扩增的DNA片段的大小显示于表9中。
表9
用在中国仓鼠GFPP cDNA RACE PCR中的引物组合和PCR产物大小
PCR后,反应溶液进行1%琼脂糖凝胶电泳,特异性扩增的目的片段用QiaexII凝胶提取试剂盒(Qiagen制造)纯化,并用20μl无菌水洗脱。4μl扩增的片段被用于插入pCR2.1质粒中,并按照TOPO TA克隆试剂盒(Invitrogen制造)附带的说明书,用反应溶液转化大肠杆菌DH5α。
从获得的数个卡那霉素抗性集落中分离质粒DNA,以获得4个含中国仓鼠GFPP 5’区的cDNA克隆。它们被称为GFPP5’克隆1、GFPP5’克隆2、GFPP5’克隆3和GFPP5’克隆4。
以相同的方式获得5个含中国仓鼠GFPP3’区的cDNA克隆。它们被称为GFPP3’克隆10、GFPP3’克隆16和GFPP3’克隆20。
按照生产商说明书描述的方法,用DNA测序仪377(Parkin Elmer制造)测定通过5’和3’RACE获得的每个克隆cDNA的核苷酸序列。核苷酸序列测定后,通过比较cDNA核苷酸序列,排除了由于PCR造成的碱基阅读错误,并测定了中国仓鼠GFPP cDNA的全长核苷酸序列。测定的序列显示在SEQ ID NO:51中。
实施例17
制备CHO细胞来源的GMD基因:
1.测定CHO细胞来源的GMD cDNA序列
(1)制备CHO细胞来源的GMD基因cDNA(制备除5’和3’末端序列的部分cDNA)
在公开数据库(BLAST)中用在基因库中登记的人来源的GMDcDNA序列(基因库登记编号AF042377)作为查询,搜索啮齿动物来源的GMD cDNA,并获得三种小鼠EST序列(基因库登记编号BE986856、BF158988和BE284785)。通过连接这些EST序列,确定了推导的小鼠GMD cDNA序列。
在小鼠来源的GMD cDNA序列的基础上,产生了具有SEQ ID NO:56所描绘的序列的28基体的引物、具有SEQ ID NO:57所描绘的序列的27基体的引物、具有SEQ ID NO:58所描绘的序列的25基体的引物、具有SEQ ID NO:59所描绘的序列的24基体的引物和具有SEQID NO:60所描绘的序列的25基体的引物。
接下来,为了扩增CHO细胞来源的GMD cDNA,通过以下方法进行PCR。制备含有0.5μ1实施例15-1(1)中作为模板制备的CHO细胞来源的单链cDNA的20μl份的反应溶液[1×Ex Taq缓冲液(Takara Shuzo制造),0.2mM dNTP,0.5单位Ex Taq聚合酶(Takara Shuzo制造)和0.5μM两个合成的DNA引物]。在此情况下,下列组合被用作合成的DNA引物:SEQ ID NO:56和SEQ ID NO:57,SEQ ID NO:58和SEQID NO:57,SEQ ID NO:56和SEQ ID NO:59,和SEQ ID NO:56和SEQID NO:60。用DNA热循环仪480(Perkin Elmer制造)进行反应,通过94℃加热5分钟,随后以94℃加热1分钟和68℃加热2分钟作为一个循环,循环30次。
PCR反应溶液通过琼脂糖电泳被分馏,以发现DNA片段,当使用SEQ ID NO:56和57的合成DNA引物时,约1.2kbp的DNA片段在PCR产物中被扩增;当使用SEQ ID NO:57和59的合成DNA引物时,约1.1kbp的片段在PCR产物中被扩增;当使用SEQ ID NO:56和59的合成DNA引物时,约350bp的片段在PCR产物中被扩增;当使用SEQ ID NO:56和60的合成DNA引物时,约1kbp的片段在PCR产物中被扩增。按照生产商说明书,用Gene Clean II试剂盒(BIO 101制造)回收DNA片段。回收的DNA片段用DNA连接试剂盒(Takara Shuzo制造)与pT7Blue(R)载体(Novagen制造)连接,用获得的重组质粒DNA样本转化大肠杆菌DH(Toyobo制造),从而获得下列质粒:质粒22-8(具有约1.2kbp的DNA片段,由SEQ ID NO:56和SEQ ID NO:57的合成DNA引物扩增),质粒23-3(具有约1.1kbp的DNA片段,由SEQ ID NO:58和SEQ ID NO:57的合成DNA引物扩增),质粒31-5(具有约350bp的DNA片段,由SEQ ID NO:56和SEQ ID NO:59的合成DNA引物扩增)和质粒34-2(具有约1kbp的DNA片段,由SEQ ID NO:56和SEQ ID NO:60的合成DNA引物扩增)。包括在这些质粒中的CHO细胞来源的GMD cDNA序列用DNA测序仪ABI PRISM 377(Parkin Elmer制造)以通常的方式测定(由于在5’-末端侧启始密码子甲硫氨酸下游的28个碱基序列,和3’-末端侧终止密码子上游的27个碱基序列来自合成的寡 聚DNA序列,所以它们是小鼠GMD cDNA序列)。
此外,为制备质粒进行如下步骤,质粒中联合了质粒22-8和34-2中含有的CHO细胞来源的GMD cDNA片段。使质粒22-8(1μg)与限制酶EcoRI(Takara Shuzo制造)在37℃反应16小时,消化产物进行琼脂糖电泳,然后按照生产商说明书用Gene Clean II试剂盒(BIO 101制造)回收约4kbp的DNA片段。使质粒34-2(2μg)与限制酶EcoRI在37℃反应16小时,消化产物进行琼脂糖电泳,然后按照生产商说明书用Gene Clean II试剂盒(BIO 101制造)回收约150bp的DNA片段。回收的DNA片段用牛小肠碱性磷酸酶(Takara Shuzo制造)分别进行末端去磷酸化,然后用DNA连接试剂盒(Takara Shuzo制造)连接,用获得的重组质粒DNA转化大肠杆菌DH5α(Toyobo制造)以获得质粒CHO-GMD(参见附图54)。
(2)测定CHO细胞来源的GMD cDNA 5’-末端序列
具有SEQ ID NO:61所描绘的核苷酸序列的24基体的引物,从CHO细胞来源的人和小鼠GMD cDNA 5’-末端侧的非编码区核苷酸序列制备,具有SEQ ID NO:62所描绘的核苷酸序列的32mer引物,从CHO细胞来源的GMD cDNA序列制备,并通过以下方法进行PCR以扩增cDNA。然后,制备含有0.5μl实施例15-1(1)中制备的单链cDNA的20μl的反应溶液[1×Ex Taq缓冲液(Takara Shuzo制造),0.2mMdNTP,0.5单位Ex Taq聚合酶(Takara Shuzo制造)及0.5μM SEQ IDNO:61和SEQ ID NO:62的两个合成DNA引物]作为模板,然后使用DNA热循环仪480(Parkin Elmer制造)进行反应,通过94℃加热5分钟,随后以94℃1分钟、55℃加热1分钟和72℃加热2分钟作为一个循环,循环20次,进一步以94℃加热1分钟和68℃加热2分钟作为一个循环,循环18次。在PCR反应溶液通过琼脂糖电泳分馏后,按照生产商说明书,用Gene Clean II试剂盒(BIO 101制造)回收约300bp的DNA片段。回收的DNA片段用DNA连接试剂盒(Takara Shuzo制造)与pT7Blue(R)载体(Novagen制造)连接,用获得的重组质粒DNA样本转 化大肠杆菌DH5α(Toyobo制造),从而获得质粒5’GMD。采用DNA测序仪377(Parkin Elmer制造),测定质粒中包含的CHO细胞来源的GMD cDNA的启始甲硫氨酸下游中,28个碱基的核苷酸序列。
(3)测定CHO细胞来源的GMD cDNA 3’-末端序列
为获得CHO细胞来源的GMD 3’-末端cDNA序列,通过以下方法进行RACE方法。按照生产商说明书,应用SMARTTM RACE cDNA扩增试剂盒(CLONTECH制造),从实施例15-1(1)中获得的CHO细胞来源的RNA制备3’RACE的单链cDNA。在此情况下,用PowerScriptTM逆转录酶(CLONTECH制造)作为逆转录酶。单链cDNA在制备后被用试剂盒附带的麦黄酮-EDTA缓冲液稀释10倍,并用作PCR的模板。
接下来,制备含有1μl作为模板的3’RACE cDNA的20μl的反应溶液[ExTaq缓冲液(Takara Shuzo制造),0.2mM dNTP,0.5单位Ex Taq聚合酶(Takara Shuzo制造),SEQ ID NO:63中显示的0.5μM 25mer合成DNA引物[根据(1)项中测定的CHO细胞来源的GMD cDNA序列产生]和1×浓度的通用引物混合物(SMARTTM RACE cDNA扩增试剂盒中附带;CLONTECH制造)],用DNA热循环仪480(Parkin Elmer制造)进行PCR,通过94℃加热5分钟,随后以94℃加热1分钟和68℃加热2分钟作为一个循环,循环30次。
反应完成后,1μl的PCR反应溶液被用麦黄酮-EDTA缓冲液(CLONTECH制造)稀释20倍。然后,制备20μl的反应溶液[ExTaq缓冲液(Takara Shuzo制造),0.2mM dNTP,0.5单位Ex Taq聚合酶(Takara Shuzo制造),SEQ ID NO:64中显示的25mer合成DNA引物0.5μM[根据(1)项中测定的CHO细胞来源的GMD cDNA序列产生]和0.5μM套装通用引物(SMARTTM RACE cDNA扩增试剂盒中附带;CLONTECH制造),其中含有1μl 20倍稀释的水溶液作为模板],用DNA热循环仪480(Perkin Elmer制造)进行反应,通过94℃加热5分钟,随后以94℃加热1分钟和68℃加热2分钟作为一个循环,循环30次。
反应完成后,PCR反应溶液通过琼脂糖电泳被分馏,然后用GeneClean II试剂盒(BIO 101制造)按照生产商说明书回收约700bp的DNA片段。回收的DNA片段用DNA连接试剂盒(Takara Shuzo制造)与pT7Blue(R)载体(Novagen制造)连接,用获得的重组质粒DNA转化大肠杆菌DH5α(Toyobo制造),从而获得质粒3’GMD。采用DNA测序仪377(Parkin Elmer制造),测定质粒中包含的、CHO细胞来源的GMDcDNA的终止密码子上游中,27个碱基的核苷酸序列。
CHO细胞来源的GMD基因的全长cDNA序列,通过(1)、(2)和(3)项测定,且相应的氨基酸序列分别显示于SEQ ID NO:65和71中。
2.含CHO/DG44来源的细胞GMD基因的基因组序列的测定
具有SEQ ID NO:66所描绘的核苷酸序列的25mer引物,从实施例17-1中测定的小鼠GMD cDNA序列中制备。接下来,CHO细胞来源的基因组DNA通过以下方法获得。CHO/DG44细胞来源的KC861悬浮在IMDM-dFBS(10)-HT(1)培养基[含1×浓度HT添加液(Invitrogen制造)的IMDM-dFBS(10)培养基]中,以得到3×105细胞/ml的密度,悬液以2ml/孔被分配进6孔粘附细胞使用的平底板中(Greiner制造)。在5%CO2培养箱中37℃培养,直至细胞在板上融合后,通过已知的方法[Nucleic Acids Research,3,2303(1976)]从板上的细胞中制备基因组DNA,并在150μl TE-核糖核酸酶缓冲液(pH8.0)中(10mmol/l Tirs-HCl,1mmol/l EDTA,200μg/ml核糖核酸酶A)溶解过夜。
制备含有100ng获得的CHO/DG44细胞来源的基因组DNA的反应溶液(20μl)[1×Ex Taq缓冲液(Takara Shuzo制造),0.2mM dNTP,0.5单位EX Taq聚合酶(Takara Shuzo制造)及SEQ ID NO:59和SEQ IDNO:66的合成DNA引物0.5μM],用DNA热循环仪480(Parkin Elmer制造)进行PCR,通过94℃加热5分钟,随后以94℃加热1分钟和68℃加热2分钟作为一个循环,循环30次。反应完成后,PCR反应溶液 通过琼脂糖电泳被分馏,然后用Gene Clean II试剂盒(BIO 101制造)按照生产商说明书回收约100bp的DNA片段。回收的DNA片段用DNA连接试剂盒(Takara Shuzo制造)与pT7Blue(R)载体(Novagen制造)连接,用获得的重组质粒DNA转化大肠杆菌DH5α(Toyobo制造),从而获得质粒ex3。采用DNA测序仪377(Parkin Elmer制造),测定质粒中包含的、CHO细胞来源的基因组DNA的核苷酸序列。结果显示于SEQ ID NO:67中。
接下来,根据实施例17-1中测定的、CHO细胞来源的GMD cDNA序列,产生了具有SEQ ID NO:68所描绘的核苷酸序列的25基体的引物和具有SEQ ID NO:69所描绘的核苷酸序列的25基体的引物。接着,制备含有100ng CHO/DG44来源的基因组DNA的20μl的反应溶液[1×Ex Taq缓冲液(Takara Shuzo制造),0.2mM dNTP,0.5单位EX Taq聚合酶(Takara Shuzo制造)及SEQ ID NO:68和SEQ ID NO:69的合成DNA引物0.5μM],用DNA热循环仪480(Parkin Elmer制造)进行PCR,通过94℃加热5分钟,随后以94℃加热1分钟和68℃加热2分钟作为一个循环,循环30次。
反应完成后,PCR反应溶液通过琼脂糖电泳被分馏,然后用Gene Clean II试剂盒(BIO 101制造)按照生产商说明书回收约200bp的DNA片段。回收的DNA片段用DNA连接试剂盒(Takara Shuzo制造)与pT7Blue(R)载体(Novagen制造)连接,用获得的重组质粒DNA转化大肠杆菌DH5α(Toyobo制造),从而获得质粒ex4。采用DNA测序仪377(Parkin Elmer制造),测定质粒中包含的、CHO细胞来源的基因组DNA的核苷酸序列。结果显示于SEQ ID NO:70中。
实施例18
可常规获得的抗体的糖链分析:
按照实施例10(6)的方法,分析与常规获得的抗HER2/neu抗体Herceptin(GENETECH和Roche制造)结合的糖链,Herceptin由CHO细胞 作为宿主细胞产生(图31)。当从洗脱图的每个峰面积计算时,Herceptin不含α-1,6-岩藻糖的糖链含量为16%,含α-1,6-岩藻糖的糖链含量为84%。对其它可商业获得的抗体Rituxan(GENETECH、Roche和IDEC制造)和Zenapax(Roche和PDL制造)进行同样的分析,不含α-1,6-岩藻糖的糖链含量比Herceptin低。
图31曲线显示从Herceptin制备的PA处理的糖链的洗脱图谱,是通过反相HPLC分析获得的。相对荧光强度和洗脱时间分别以纵坐标和横坐标标示。反相HPLC分析条件、糖链结构分析和不含α-1,6-岩藻糖糖链的糖链基团比率的计算,以实施例11(6)的同样方法进行。
工业实用性
本发明提供了能够产生抗体组合物的细胞,用该细胞产生抗体组合物的方法,抗体组合物及其应用。
序列列表的自由解释文本
SEQ ID NO:4-合成序列的解释:合成的DNA
SEQ ID NO:5-合成序列的解释:合成的DNA
SEQ ID NO:8-合成序列的解释:合成的DNA
SEQ ID NO:9-合成序列的解释:合成的DNA
SEQ ID NO:10-合成序列的解释:合成的DNA
SEQ ID NO:11-合成序列的解释:合成的DNA
SEQ ID NO:12-合成序列的解释:合成的DNA
SEQ ID NO:13-合成序列的解释:合成的DNA
SEQ ID NO:14-合成序列的解释:合成的DNA
SEQ ID NO:15-合成序列的解释:合成的DNA
SEQ ID NO:16-合成序列的解释:合成的DNA
SEQ ID NO:17-合成序列的解释:合成的DNA
SEQ ID NO:18-合成序列的解释:合成的DNA
SEQ ID NO:19-合成序列的解释:合成的DNA
SEQ ID NO:20-合成序列的解释:合成的DNA
SEQ ID NO:21-合成序列的解释:合成的DNA
SEQ ID NO:22-合成序列的解释:合成的DNA
SEQ ID NO:26-合成序列的解释:合成的DNA
SEQ ID NO:27-合成序列的解释:合成的DNA
SEQ ID NO:28-合成序列的解释:合成的DNA
SEQ ID NO:29-合成序列的解释:合成的DNA
SEQ ID NO:30-合成序列的解释:合成的DNA
SEQ ID NO:31-合成序列的解释:合成的DNA
SEQ ID NO:32-合成序列的解释:合成的DNA
SEQ ID NO:33-合成序列的解释:合成的DNA
SEQ ID NO:34-合成序列的解释:合成的DNA
SEQ ID NO:35-合成序列的解释:合成的DNA
SEQ ID NO:36-合成序列的解释:合成的DNA
SEQ ID NO:37-合成序列的解释:合成的DNA
SEQ ID NO:38-合成序列的解释:合成的DNA
SEQ ID NO:39-合成序列的解释:合成的DNA
SEQ ID NO:40-合成序列的解释:合成的DNA
SEQ ID NO:41-合成序列的解释:合成的DNA
SEQ ID NO:42-合成序列的解释:合成的DNA
SEQ ID NO:43-合成序列的解释:合成的DNA
SEQ ID NO:44-合成序列的解释:合成的DNA
SEQ ID NO:45-合成序列的解释:合成的DNA
SEQ ID NO:46-合成序列的解释:合成的DNA
SEQ ID NO:47-合成序列的解释:合成的DNA
SEQ ID NO:49-合成序列的解释:合成的DNA
SEQ ID NO:50-合成序列的解释:合成的DNA
SEQ ID NO:52-合成序列的解释:合成的DNA
SEQ ID NO:53-合成序列的解释:合成的DNA
SEQ ID NO:54-合成序列的解释:合成的DNA
SEQ ID NO:55-合成序列的解释:合成的DNA
SEQ ID NO:56-合成序列的解释:合成的DNA
SEQ ID NO:57-合成序列的解释:合成的DNA
SEQ ID NO:58-合成序列的解释:合成的DNA
SEQ ID NO:59-合成序列的解释:合成的DNA
SEQ ID NO:60-合成序列的解释:合成的DNA
SEQ ID NO:61-合成序列的解释:合成的DNA

Claims (2)

1.一种产生抗体组合物的方法,所述方法包括在培养基中培养CHO细胞以便在培养物中产生和积累抗体组合物;并从培养物中回收抗体组合物,
所述CHO细胞中导入了编码抗体分子的基因,它产生包括抗体分子的抗体组合物,所述的抗体分子具有结合至Fc区的N-糖苷连接的糖链复合体,其中在该组合物内结合到Fc区的N-糖苷连接的糖链总复合体中,岩藻糖没有在糖链还原末端与N-乙酰氨基葡萄糖结合的糖链比率是20%或更高,其中没有与岩藻糖结合的糖链是N-糖苷连接的糖链复合体,其中岩藻糖的1号位置不与N-乙酰氨基葡萄糖的6号位置在还原末端经α-键连接,其中涉及GDP-岩藻糖合成的酶活性是下降的或消除的,以及其中涉及GDP-岩藻糖合成的酶是GMD(GDP-甘露糖4,6-脱氢酶)。
2.一种产生抗体组合物的方法,所述方法包括在培养基中培养CHO细胞以便在培养物中产生和积累抗体组合物;并从培养物中回收抗体组合物,
所述CHO细胞中导入了编码抗体分子的基因,它产生包括抗体分子的抗体组合物,所述的抗体分子具有结合至Fc区的N-糖苷连接的糖链复合体,其中在该组合物内结合到Fc区的N-糖苷连接的糖链总复合体中,岩藻糖没有在糖链还原末端与N-乙酰氨基葡萄糖结合的糖链比率是20%或更高,其中没有与岩藻糖结合的糖链是N-糖苷连接的糖链复合体,其中岩藻糖的1号位置不与N-乙酰氨基葡萄糖的6号位置在还原末端经α-键连接,其中涉及糖链修饰的酶活性是下降的或消除的,在糖链修饰中,岩藻糖1号位置与N-乙酰氨基葡萄糖6号位置在N-糖苷连接的糖链复合体中在还原末端经α-键连接,其中涉及糖链修饰的酶是α-1,6-岩藻糖基转移酶,所述CHO细胞为α-1,6-岩藻糖基转移酶基因被断裂的CHO细胞,以及其中所述CHO细胞产生的抗体组合物较获自其亲代CHO细胞产生的抗体组合物具有更高的抗体依赖的细胞介导的细胞毒活性。
CN201110136338.6A 2000-10-06 2001-10-05 产生抗体组合物的细胞 Expired - Lifetime CN102311986B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000308526 2000-10-06
JP2000-308526 2000-10-06
CNA018195245A CN1894406A (zh) 2000-10-06 2001-10-05 产生抗体组合物的细胞

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA018195245A Division CN1894406A (zh) 2000-10-06 2001-10-05 产生抗体组合物的细胞

Publications (2)

Publication Number Publication Date
CN102311986A CN102311986A (zh) 2012-01-11
CN102311986B true CN102311986B (zh) 2015-08-19

Family

ID=18788817

Family Applications (3)

Application Number Title Priority Date Filing Date
CNA018195245A Pending CN1894406A (zh) 2000-10-06 2001-10-05 产生抗体组合物的细胞
CN201110136338.6A Expired - Lifetime CN102311986B (zh) 2000-10-06 2001-10-05 产生抗体组合物的细胞
CN201310036977.4A Expired - Lifetime CN103333860B (zh) 2000-10-06 2001-10-05 产生抗体组合物的细胞

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNA018195245A Pending CN1894406A (zh) 2000-10-06 2001-10-05 产生抗体组合物的细胞

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201310036977.4A Expired - Lifetime CN103333860B (zh) 2000-10-06 2001-10-05 产生抗体组合物的细胞

Country Status (14)

Country Link
EP (5) EP2314686B2 (zh)
JP (12) JP4290423B2 (zh)
KR (1) KR100877676B1 (zh)
CN (3) CN1894406A (zh)
AU (2) AU9419801A (zh)
BR (1) BR0114475A (zh)
CA (3) CA2953239A1 (zh)
DK (1) DK2314686T4 (zh)
EA (2) EA013224B1 (zh)
ES (3) ES2639222T5 (zh)
HU (2) HU231090B1 (zh)
MX (1) MXPA03002974A (zh)
PL (1) PL218428B1 (zh)
WO (1) WO2002031140A1 (zh)

Families Citing this family (886)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7183387B1 (en) 1999-01-15 2007-02-27 Genentech, Inc. Polypeptide variants with altered effector function
EP2270148A3 (en) 1999-04-09 2011-06-08 Kyowa Hakko Kirin Co., Ltd. Method for controlling the activity of immunologically functional molecule
FR2807767B1 (fr) 2000-04-12 2005-01-14 Lab Francais Du Fractionnement Anticorps monoclonaux anti-d
US6946292B2 (en) 2000-10-06 2005-09-20 Kyowa Hakko Kogyo Co., Ltd. Cells producing antibody compositions with increased antibody dependent cytotoxic activity
ES2639222T5 (es) * 2000-10-06 2023-11-24 Kyowa Kirin Co Ltd Células que producen unas composiciones de anticuerpo
US20040093621A1 (en) * 2001-12-25 2004-05-13 Kyowa Hakko Kogyo Co., Ltd Antibody composition which specifically binds to CD20
US7657380B2 (en) 2003-12-04 2010-02-02 Xencor, Inc. Methods of generating variant antibodies with increased host string content
US8188231B2 (en) 2002-09-27 2012-05-29 Xencor, Inc. Optimized FC variants
US7662925B2 (en) 2002-03-01 2010-02-16 Xencor, Inc. Optimized Fc variants and methods for their generation
US20040132101A1 (en) 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
WO2003084569A1 (fr) * 2002-04-09 2003-10-16 Kyowa Hakko Kogyo Co., Ltd. Medicament contenant une composition anticorps
DE60336548D1 (de) * 2002-04-09 2011-05-12 Kyowa Hakko Kirin Co Ltd Zelle mit erniedrigter oder deletierter aktivität eines am gdp-fucosetransport beteiligten proteins
JPWO2003085118A1 (ja) * 2002-04-09 2005-08-11 協和醗酵工業株式会社 抗体組成物の製造方法
PL373256A1 (en) * 2002-04-09 2005-08-22 Kyowa Hakko Kogyo Co, Ltd. Cells with modified genome
WO2004022597A1 (ja) 2002-09-04 2004-03-18 Chugai Seiyaku Kabushiki Kaisha Gpc3の血中可溶化n端ペプチドに対する抗体
WO2003084570A1 (fr) * 2002-04-09 2003-10-16 Kyowa Hakko Kogyo Co., Ltd. Medicament contenant une composition d'anticorps appropriee au patient souffrant de polymorphisme fc$g(g)riiia
CA2481658A1 (en) 2002-04-09 2003-10-16 Kyowa Hakko Kogyo Co., Ltd. Method of enhancing of binding activity of antibody composition to fcy receptor iiia
ES2562177T3 (es) 2002-09-27 2016-03-02 Xencor Inc. Variantes de Fc optimizadas y métodos para su generación
AR042145A1 (es) * 2002-11-27 2005-06-08 Dow Agrociences Llc Produccion de inmunoglobulinas en plantas con una fucocilacion reducida
US20090010920A1 (en) 2003-03-03 2009-01-08 Xencor, Inc. Fc Variants Having Decreased Affinity for FcyRIIb
US8084582B2 (en) 2003-03-03 2011-12-27 Xencor, Inc. Optimized anti-CD20 monoclonal antibodies having Fc variants
US8388955B2 (en) 2003-03-03 2013-03-05 Xencor, Inc. Fc variants
JP4739954B2 (ja) 2003-03-13 2011-08-03 中外製薬株式会社 変異受容体に対するアゴニスト活性を有するリガンド
JP2010220615A (ja) * 2003-03-18 2010-10-07 Kyowa Hakko Kirin Co Ltd ゲノムが改変されたマウス
JP2004298180A (ja) * 2003-03-18 2004-10-28 Kyowa Hakko Kogyo Co Ltd ゲノムが改変されたマウス
US9051373B2 (en) 2003-05-02 2015-06-09 Xencor, Inc. Optimized Fc variants
WO2005017155A1 (ja) * 2003-06-18 2005-02-24 Chugai Seiyaku Kabushiki Kaisha フコーストランスポーター
FR2858235B1 (fr) 2003-07-31 2006-02-17 Lab Francais Du Fractionnement Utilisation d'anticorps optimises en adcc pour traiter les patients faibles repondeurs
WO2005014651A1 (ja) 2003-08-11 2005-02-17 Chugai Seiyaku Kabushiki Kaisha 糖鎖改変抗hm1.24抗体
JP4643450B2 (ja) 2003-08-08 2011-03-02 株式会社ペルセウスプロテオミクス 癌高発現遺伝子
US8399618B2 (en) 2004-10-21 2013-03-19 Xencor, Inc. Immunoglobulin insertions, deletions, and substitutions
US9714282B2 (en) 2003-09-26 2017-07-25 Xencor, Inc. Optimized Fc variants and methods for their generation
US8883147B2 (en) 2004-10-21 2014-11-11 Xencor, Inc. Immunoglobulins insertions, deletions, and substitutions
JPWO2005035577A1 (ja) * 2003-10-08 2007-11-22 協和醗酵工業株式会社 ガングリオシドgd3に特異的に結合する抗体組成物
JPWO2005035583A1 (ja) * 2003-10-08 2007-11-22 協和醗酵工業株式会社 Il−5受容体に特異的に結合する抗体組成物
EP1688439A4 (en) * 2003-10-08 2007-12-19 Kyowa Hakko Kogyo Kk HYBRID PROTEIN COMPOSITION
JPWO2005035582A1 (ja) * 2003-10-08 2007-11-22 協和醗酵工業株式会社 Ccr4に特異的に結合する抗体組成物
AU2004279741B2 (en) * 2003-10-09 2010-03-11 Kyowa Kirin Co., Ltd. Process for producing antithrombin III composition
US20090028877A1 (en) * 2003-10-09 2009-01-29 Shigeru Iida Antibody Composition Specifically Binding to Ganglioside Gm
JPWO2005035581A1 (ja) * 2003-10-09 2007-11-22 協和醗酵工業株式会社 ヒトVEGF受容体Flt−1に特異的に結合する抗体組成物
JPWO2005035740A1 (ja) * 2003-10-09 2006-12-21 協和醗酵工業株式会社 無血清馴化したゲノム改変細胞
JPWO2005035778A1 (ja) * 2003-10-09 2006-12-21 協和醗酵工業株式会社 α1,6−フコシルトランスフェラーゼの機能を抑制するRNAを用いた抗体組成物の製造法
AU2004280066A1 (en) * 2003-10-09 2005-04-21 Kyowa Hakko Kirin Co., Ltd. Genomically modified cell
US7691810B2 (en) * 2003-10-09 2010-04-06 Kyowa Hakko Kirin Co., Ltd Method of producing recombinant antithrombin III composition
FR2861395B1 (fr) 2003-10-23 2006-02-17 Lab Francais Du Fractionnement Facteur viii viralement securise a faible teneur en multimeres superieurs
JPWO2005053742A1 (ja) * 2003-12-04 2007-06-28 協和醗酵工業株式会社 抗体組成物を含有する医薬
EP1702625B1 (en) 2003-12-04 2010-11-03 Kyowa Hakko Kirin Co., Ltd. Medicine containing genetically modified antibody against chemokine receptor ccr4
WO2005073732A2 (en) * 2004-01-23 2005-08-11 Amgen Inc. Lc/ms method of analyzing high molecular weight proteins
WO2005092925A2 (en) 2004-03-24 2005-10-06 Xencor, Inc. Immunoglobulin variants outside the fc region
PL1674111T3 (pl) 2004-07-09 2011-04-29 Chugai Pharmaceutical Co Ltd Przeciwciała anty-glipikan 3
EP2471813B1 (en) 2004-07-15 2014-12-31 Xencor, Inc. Optimized Fc variants
US20150010550A1 (en) 2004-07-15 2015-01-08 Xencor, Inc. OPTIMIZED Fc VARIANTS
US20060223147A1 (en) * 2004-08-05 2006-10-05 Kyowa Hakko Kogyo Co., Ltd., Process for producing glycoprotein composition
JP4733042B2 (ja) 2004-08-24 2011-07-27 中外製薬株式会社 抗グリピカン3抗体を用いたアジュバント療法
CN101068836B (zh) * 2004-10-26 2013-08-14 中外制药株式会社 糖链改变的抗磷脂酰肌醇聚糖3抗体
US8802820B2 (en) 2004-11-12 2014-08-12 Xencor, Inc. Fc variants with altered binding to FcRn
EP2325207B1 (en) 2004-11-12 2017-03-15 Xencor, Inc. FC variants with altered binding to FCRN
US8367805B2 (en) 2004-11-12 2013-02-05 Xencor, Inc. Fc variants with altered binding to FcRn
US8546543B2 (en) 2004-11-12 2013-10-01 Xencor, Inc. Fc variants that extend antibody half-life
JP5651285B2 (ja) 2005-02-15 2015-01-07 デューク ユニバーシティ 抗cd19抗体および腫瘍学における使用
WO2006109698A1 (ja) * 2005-04-06 2006-10-19 Kyowa Hakko Kogyo Co., Ltd. 遺伝子組換えエリスロポイエチン組成物
WO2006109696A1 (ja) * 2005-04-06 2006-10-19 Kyowa Hakko Kogyo Co., Ltd. 遺伝子組換え卵胞刺激ホルモン組成物
WO2006109695A1 (ja) * 2005-04-06 2006-10-19 Kyowa Hakko Kogyo Co., Ltd. 遺伝子組換えハプトグロビン組成物
AU2006244445B2 (en) 2005-05-05 2013-04-18 Duke University Anti-CD19 antibody therapy for autoimmune disease
DK2573114T3 (en) 2005-08-10 2016-07-04 Macrogenics Inc The identification and production of antibodies with variant Fc regions, and methods of using same
DK1931709T3 (en) 2005-10-03 2017-03-13 Xencor Inc FC VARIETIES WITH OPTIMIZED FC RECEPTOR BINDING PROPERTIES
US7973136B2 (en) 2005-10-06 2011-07-05 Xencor, Inc. Optimized anti-CD30 antibodies
US20070087005A1 (en) 2005-10-14 2007-04-19 Lazar Gregory A Anti-glypican-3 antibody
CA2637254A1 (en) 2006-01-17 2007-07-26 Biolex Therapeutics, Inc. Compositions and methods for humanization and optimization of n-glycans in plants
US8389688B2 (en) 2006-03-06 2013-03-05 Aeres Biomedical, Ltd. Humanized anti-CD22 antibodies and their use in treatment of oncology, transplantation and autoimmune disease
US20080118978A1 (en) 2006-04-28 2008-05-22 Takashi Sato Anti-tumor agent
KR101528939B1 (ko) 2006-07-18 2015-06-15 사노피 암 치료를 위한 epha2에 대한 길항제 항체
ME01786B (me) 2006-08-14 2014-09-20 Xencor Inc Optimizovana antitela usmerena na cd19
EP2548576B1 (en) 2006-08-14 2016-11-30 Chugai Seiyaku Kabushiki Kaisha Diagnosis of cancer using anti-desmoglein-3 antibodies
US8394374B2 (en) 2006-09-18 2013-03-12 Xencor, Inc. Optimized antibodies that target HM1.24
CN101594883B (zh) 2006-10-12 2018-04-10 中外制药株式会社 使用抗ereg抗体的癌症的诊断和治疗
EP1914242A1 (en) 2006-10-19 2008-04-23 Sanofi-Aventis Novel anti-CD38 antibodies for the treatment of cancer
EP2078731A4 (en) 2006-10-20 2012-08-01 Forerunner Pharma Res Co Ltd PHARMACEUTICAL COMPOSITION COMPRISING ANTI-HB-EGF ANTIBODY AS ACTIVE INGREDIENT
CL2007003411A1 (es) 2006-11-28 2008-07-04 Centelion Proteina fusion que consiste en una region fc de una inmunoglobulina con un fragmento o dominio soluble de un receptor para fgf; polinucleotido que la codifica y vector y celula que lo comprenden; composicion farmaceutica que comprende la proteina fu
JP5632582B2 (ja) 2006-12-14 2014-11-26 中外製薬株式会社 抗Claudin3モノクローナル抗体およびそれを用いる癌の治療および診断
CN101563460A (zh) * 2006-12-22 2009-10-21 弗·哈夫曼-拉罗切有限公司 选择方法
WO2008081942A1 (ja) 2007-01-05 2008-07-10 The University Of Tokyo 抗prg-3抗体を用いる癌の診断および治療
WO2008090960A1 (ja) 2007-01-24 2008-07-31 Kyowa Hakko Kirin Co., Ltd. ガングリオシドgm2に特異的に結合する遺伝子組換え抗体組成物
KR101578940B1 (ko) 2007-01-24 2015-12-18 교와 핫꼬 기린 가부시키가이샤 이펙터 활성이 증강된 유전자 재조합 항체 조성물
US7834154B2 (en) 2007-02-09 2010-11-16 Genentech, Inc. Anti-ROBO4 antibodies and uses therefor
EP2121745A2 (en) 2007-02-26 2009-11-25 Oxford Genome Sciences (UK) Limited Proteins
WO2008104803A2 (en) 2007-02-26 2008-09-04 Oxford Genome Sciences (Uk) Limited Proteins
CN101641115B (zh) 2007-03-08 2013-04-24 卡罗拜奥斯制药公司 用于实体瘤治疗的EphA3抗体
EP2138576A4 (en) 2007-03-16 2011-02-23 Kyowa Hakko Kirin Co Ltd ANTI-CLAUDIN-4 ANTIBODY
KR20100017514A (ko) 2007-05-07 2010-02-16 메디뮨 엘엘씨 항 icos 항체, 및 종양, 이식 및 자가면역성 질환 치료에서의 이의 용도
NZ599278A (en) 2007-05-14 2013-12-20 Medimmune Llc Methods of reducing eosinophil levels
EP2176298B1 (en) 2007-05-30 2017-11-15 Xencor, Inc. Methods and compositions for inhibiting cd32b expressing cells
EP3424951A1 (en) 2007-06-21 2019-01-09 MacroGenics, Inc. Covalent diabodies and uses thereof
JP5469456B2 (ja) 2007-06-25 2014-04-16 中外製薬株式会社 ADCC活性又はCDC活性を有する抗Prominin−1抗体
CA2692453C (en) * 2007-07-12 2018-01-09 Trevor Collingwood Methods and compositions for inactivating alpha 1,6 fucosyltransferase (fut8) gene expression
EP2069401A4 (en) 2007-07-31 2011-02-23 Medimmune Llc MULTISPECIENT EPITOP BINDING PROTEINS AND THEIR USE
PL2199390T3 (pl) 2007-08-30 2017-06-30 Daiichi Sankyo Company, Limited Przeciwciało anty-epha2
MX2010003450A (es) 2007-09-26 2010-04-27 Chugai Pharmaceutical Co Ltd Region constante de anticuerpo modificada.
CA2705509A1 (en) 2007-11-14 2009-05-22 Forerunner Pharma Research Co., Ltd. Diagnosis and treatment of cancer using anti-gpr49 antibody
TWI468417B (zh) 2007-11-30 2015-01-11 Genentech Inc 抗-vegf抗體
US8092804B2 (en) 2007-12-21 2012-01-10 Medimmune Limited Binding members for interleukin-4 receptor alpha (IL-4Rα)-173
EP3211010A1 (en) 2007-12-21 2017-08-30 Medimmune Limited Binding members for interleukin-4 receptor alpha (il-4r) - 173
HUE024903T2 (en) 2007-12-26 2016-02-29 Xencor Inc FC variants with modified binding to FCRN
KR20100116179A (ko) 2008-01-11 2010-10-29 고쿠리츠다이가쿠호우진 도쿄다이가쿠 항-cldn6 항체
WO2009092011A1 (en) 2008-01-18 2009-07-23 Medimmune, Llc Cysteine engineered antibodies for site-specific conjugation
US8802093B2 (en) 2008-04-02 2014-08-12 Macrogenics, Inc. HER2/neu-specific antibodies and methods of using same
EP3045475B1 (en) 2008-04-02 2017-10-04 MacroGenics, Inc. Bcr-complex-specific antibodies and methods of using same
CL2009000647A1 (es) 2008-04-04 2010-06-04 Chugai Pharmaceutical Co Ltd Composicion farmaceutica para tratar o prevenir cancer hepatico que comprende una combinacion de un agente quimioterapeutico y un anticuerpo anti-glipicano 3; agente para atenuar un efecto secundario que comprende dicho anticuerpo; metodo para tratar o prevenir un cancer hepatico de un sujeto.
KR102269708B1 (ko) 2008-04-11 2021-06-25 추가이 세이야쿠 가부시키가이샤 복수 분자의 항원에 반복 결합하는 항원 결합 분자
JP5522405B2 (ja) 2008-04-25 2014-06-18 協和発酵キリン株式会社 安定な多価抗体
JPWO2009142186A1 (ja) * 2008-05-20 2011-09-29 株式会社カネカ 細胞障害性組成物
US9226934B2 (en) 2008-06-02 2016-01-05 The University Of Tokyo Anti-cancer drug
CA2726845C (en) 2008-06-04 2017-09-26 Macrogenics, Inc. Antibodies with altered binding to fcrn and methods of using same
CN102007147B (zh) 2008-06-30 2014-11-05 协和发酵麒麟株式会社 抗cd27抗体
CN103172735B (zh) 2008-07-17 2014-12-10 协和发酵麒麟株式会社 抗-系统asc氨基酸转运蛋白2(asct2)抗体
EP2311864A4 (en) 2008-08-13 2013-07-31 Kyowa Hakko Kirin Co Ltd RECOMBINANT PROTEIN-S COMPOSITION
CN102292353B (zh) 2008-09-17 2015-04-29 Xencor公司 用于治疗ige介导的疾患的新组合物和方法
KR20110057244A (ko) 2008-09-19 2011-05-31 메디뮨 엘엘씨 Dll4에 대한 항체 및 이의 용도
CN102216452B (zh) 2008-09-26 2013-08-21 尤里卡治疗公司 具有变异糖基化方式的细胞系和蛋白质
JP5913980B2 (ja) 2008-10-14 2016-05-11 ジェネンテック, インコーポレイテッド 免疫グロブリン変異体及びその用途
US20110293605A1 (en) 2008-11-12 2011-12-01 Hasige Sathish Antibody formulation
JP5734201B2 (ja) 2008-12-19 2015-06-17 マクロジェニクス,インコーポレーテッド 共有結合型ダイアボディ及びその使用
US8846870B2 (en) 2008-12-22 2014-09-30 Chugai Seiyaku Kabushiki Kaisha Anti-HS6ST2 antibodies and uses thereof
WO2010075548A2 (en) 2008-12-23 2010-07-01 Genentech, Inc. Immunoglobulin variants with altered binding to protein a
US9139647B2 (en) 2008-12-25 2015-09-22 Forerunner Pharma Research Co., Ltd. Diagnosis and treatment of cancer using anti-TM4SF20 antibody
SG172427A1 (en) 2008-12-26 2011-07-28 Univ Tokyo Diagnosis and treatment of cancer using anti-lgr7 antibody
PL2374883T3 (pl) 2008-12-26 2017-05-31 Kyowa Hakko Kirin Co., Ltd. Przeciwciało anty-CD4
CA2750581A1 (en) 2009-01-21 2010-07-29 Oxford Biotherapeutics Ltd. Pta089 protein
CN102405237A (zh) 2009-03-06 2012-04-04 卡罗拜奥斯制药公司 利用EphA3抗体治疗白血病和慢性骨髓增生性疾病
EP2233500A1 (en) 2009-03-20 2010-09-29 LFB Biotechnologies Optimized Fc variants
TWI461211B (zh) 2009-03-20 2014-11-21 Genentech Inc 抗-her抗體
SG10201609416XA (en) 2009-03-25 2016-12-29 Genentech Inc NOVEL ANTI-α5ß1 ANTIBODIES AND USES THEREOF
MY152033A (en) 2009-04-09 2014-08-15 Daiichi Sankyo Co Ltd Anti-siglec-15 antibody
WO2010117057A1 (ja) 2009-04-10 2010-10-14 協和発酵キリン株式会社 抗tim-3抗体を用いた血液腫瘍治療法
JP5746018B2 (ja) 2009-04-16 2015-07-08 国立大学法人 東京大学 抗tmprss11e抗体を用いた癌の診断と治療
PL2423228T3 (pl) 2009-04-20 2016-06-30 Kyowa Hakko Kirin Co Ltd Przeciwciało zawierające IGG2 mającą wprowadzoną do niej mutację aminokwasową
KR101732201B1 (ko) 2009-04-27 2017-05-02 교와 핫꼬 기린 가부시키가이샤 혈액 종양 치료를 목적으로 하는 항IL-3Rα 항체
JP5669732B2 (ja) 2009-05-15 2015-02-12 中外製薬株式会社 抗axl抗体
WO2010137654A1 (ja) 2009-05-29 2010-12-02 株式会社未来創薬研究所 Egfファミリーリガンドのアンタゴニストを成分とする医薬組成物
EP3279326B1 (en) * 2009-06-02 2020-10-14 Regeneron Pharmaceuticals, Inc. Fucosylation-deficient cells
SG177247A1 (en) 2009-06-11 2012-02-28 Kek High Energy Accelerator Process for production of protein
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
US20120213705A1 (en) 2009-06-22 2012-08-23 Medimmune, Llc ENGINEERED Fc REGIONS FOR SITE-SPECIFIC CONJUGATION
TW201106972A (en) 2009-07-27 2011-03-01 Genentech Inc Combination treatments
US9345661B2 (en) 2009-07-31 2016-05-24 Genentech, Inc. Subcutaneous anti-HER2 antibody formulations and uses thereof
BR112012002819B1 (pt) 2009-08-07 2022-11-22 Kyowa Kirin Co., Ltd Anticorpo humanizado antioligômero de amiloide-b, seus usos, e formulação farmacêutica
WO2011016568A1 (ja) 2009-08-07 2011-02-10 協和発酵キリン株式会社 抗アミロイドβオリゴマーヒト化抗体
CA2771436A1 (en) 2009-08-17 2011-02-24 Forerunner Pharma Research Co., Ltd. Pharmaceutical composition comprising anti-hb-egf antibody as active ingredient
JP5887270B2 (ja) 2009-09-02 2016-03-16 ジェネンテック, インコーポレイテッド 突然変異体smoothenedおよびその使用方法
WO2011028952A1 (en) 2009-09-02 2011-03-10 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
ES2502541T3 (es) 2009-09-10 2014-10-03 Kyowa Hakko Kirin Co., Ltd. Medicamento que incluye una composición de anticuerpos unida específicamente al receptor 4 de quimiocina CC humana (CCR4)
AR078161A1 (es) 2009-09-11 2011-10-19 Hoffmann La Roche Formulaciones farmaceuticas muy concentradas de un anticuerpo anti cd20. uso de la formulacion. metodo de tratamiento.
CA2773240C (en) * 2009-09-22 2015-11-10 Volker Sandig Process for producing molecules containing specialized glycan structures
JP6077745B2 (ja) * 2009-09-30 2017-02-08 富士フイルムRiファーマ株式会社 抗ポドプラニン抗体、及び抗ポドプラニン抗体を含む医薬組成物
UY32914A (es) 2009-10-02 2011-04-29 Sanofi Aventis Anticuerpos que se usan específicamente al receptor epha2
JP5898082B2 (ja) 2009-10-07 2016-04-06 マクロジェニクス,インコーポレーテッド フコシル化程度の変更により改良されたエフェクター機能を示すFc領域含有ポリペプチドおよびその使用法
WO2011054007A1 (en) 2009-11-02 2011-05-05 Oxford Biotherapeutics Ltd. Ror1 as therapeutic and diagnostic target
HUE037159T2 (hu) 2009-11-24 2018-08-28 Medimmune Ltd Targetált kötõdõ ágensek B7-H1 ellen
EP2509626B1 (en) 2009-12-11 2016-02-10 F.Hoffmann-La Roche Ag Anti-vegf-c antibodies and methods using same
ES2585350T3 (es) 2009-12-23 2016-10-05 F. Hoffmann-La Roche Ag Anticuerpos anti Bv8 y usos de los mismos
US8362210B2 (en) 2010-01-19 2013-01-29 Xencor, Inc. Antibody variants with enhanced complement activity
US9127071B2 (en) 2010-01-29 2015-09-08 Chugai Seiyaku Kabushiki Kaisha Anti-DLL3 antibody
WO2011097527A2 (en) 2010-02-04 2011-08-11 Xencor, Inc. Immunoprotection of therapeutic moieties using enhanced fc regions
JP5841072B2 (ja) 2010-02-10 2016-01-06 イミュノジェン・インコーポレーテッド Cd20抗体およびその使用
BR112012020116B8 (pt) 2010-02-10 2023-01-10 Perseus Proteomics Inc Anticorpo anti-p-caderina marcado com metal radioativo, agente terapêutico contra o câncer e agente de diagnóstico de câncer que compreendem o dito anticorpo, hibridoma, bem como usos do mesmo para produzir um agente terapêutico contra o câncer e um agente de diagnóstico de câncer
US9556249B2 (en) 2010-02-18 2017-01-31 Genentech, Inc. Neuregulin antagonists and use thereof in treating cancer
EP2540827A4 (en) 2010-02-26 2013-09-04 Chugai Pharmaceutical Co Ltd ANTI-ICAM3 ANTIBODIES AND USE THEREOF
WO2011108502A1 (ja) 2010-03-02 2011-09-09 協和発酵キリン株式会社 改変抗体組成物
PE20130479A1 (es) 2010-03-04 2013-05-12 Macrogenics Inc Anticuerpos reactivos con b7-h3, fragmentos inmulogicamente activos de los mismos y usos de los mismos
NZ602040A (en) 2010-03-24 2014-12-24 Genentech Inc Anti-lrp6 antibodies
WO2011118739A1 (ja) 2010-03-26 2011-09-29 協和発酵キリン株式会社 新規修飾部位導入抗体および抗体フラグメント
CA2794708C (en) 2010-03-29 2021-11-16 Zymeworks Inc. Antibodies with enhanced or suppressed effector function
TWI667346B (zh) 2010-03-30 2019-08-01 中外製藥股份有限公司 促進抗原消失之具有經修飾的FcRn親和力之抗體
WO2011147834A1 (en) 2010-05-26 2011-12-01 Roche Glycart Ag Antibodies against cd19 and uses thereof
EP2808344A1 (en) 2010-06-01 2014-12-03 Monash University Antibodies directed to the receptor tyrosine kinase c-Met
AU2011262758B8 (en) 2010-06-11 2014-09-04 Kyowa Kirin Co., Ltd. Anti-tim-3 antibody
BR112012027995A2 (pt) 2010-06-18 2017-01-10 Genentech Inc anticorpo e ácido nucleíco isolado, célula hospedeira, método de produção de um anticorpo, imunoconjugado, formulação farmacêutica, uso do anticorpo, método de tratamento de um indivíduo com câncer, de um indivíduo possuíndo um distúrbio imune, de inibição da angiogênese e para inibir a ativação constitutiva de axl
EP2582722A4 (en) 2010-06-19 2013-12-18 Sloan Kettering Inst Cancer ANTIBODIES AGAINST GD2
WO2011161119A1 (en) 2010-06-22 2011-12-29 F. Hoffmann-La Roche Ag Antibodies against insulin-like growth factor i receptor and uses thereof
WO2011161189A1 (en) 2010-06-24 2011-12-29 F. Hoffmann-La Roche Ag Anti-hepsin antibodies and methods of use
CN102959097B (zh) 2010-07-08 2014-07-16 本田技研工业株式会社 高频加热用线圈
MX2013000083A (es) 2010-07-09 2013-02-26 Genentech Inc Anticuerpos de anti-neuropilina y metodos de uso.
WO2012010582A1 (en) 2010-07-21 2012-01-26 Roche Glycart Ag Anti-cxcr5 antibodies and methods of use
DK3029066T3 (da) 2010-07-29 2019-05-20 Xencor Inc Antistoffer med modificerede isoelektriske punkter
CN103154025B (zh) 2010-08-02 2015-07-01 宏观基因有限公司 共价双抗体及其用途
MX2013001302A (es) 2010-08-03 2013-03-08 Hoffmann La Roche Biomarcadores de leucemia linfocitica (cll).
WO2012019061A2 (en) 2010-08-05 2012-02-09 Stem Centrx, Inc. Novel effectors and methods of use
EP2600898A1 (en) 2010-08-05 2013-06-12 F.Hoffmann-La Roche Ag Anti-mhc antibody anti-viral cytokine fusion protein
JP5841149B2 (ja) 2010-08-13 2016-01-13 ロシュ グリクアート アーゲー 抗テネイシンca2抗体及び使用の方法
MY175341A (en) 2010-08-13 2020-06-19 Roche Glycart Ag Anti-fap antibodies and methods of use
TW201215405A (en) 2010-08-25 2012-04-16 Hoffmann La Roche Antibodies against IL-18R1 and uses thereof
PE20140190A1 (es) 2010-08-27 2014-02-10 Stem Centrx Inc Moduladores de proteinas notum y metodos de uso
DK2612151T3 (en) 2010-08-31 2017-10-02 Genentech Inc BIOMARKETS AND METHODS OF TREATMENT
US9458231B2 (en) 2010-09-03 2016-10-04 Stemcentrx, Inc. Modulators and methods of use
EP2623119B1 (en) 2010-09-30 2017-06-14 Riken Drug used in glioma treatment method, glioma examination method, method of delivering a desired material to a glioma
EP2621954A1 (en) 2010-10-01 2013-08-07 Oxford Biotherapeutics Ltd. Anti-rori antibodies
EP2625197B1 (en) 2010-10-05 2016-06-29 Genentech, Inc. Mutant smoothened and methods of using the same
RS54846B1 (sr) 2010-10-29 2016-10-31 Daiichi Sankyo Co Ltd Novo anti-dr5 antitelo
US8772457B2 (en) 2010-11-10 2014-07-08 Genentech, Inc. BACE1 antibodies
MX355060B (es) 2010-11-17 2018-04-03 Chugai Pharmaceutical Co Ltd Molecula multiespecifica de union a antigeno que tiene funcion alternativa a la funcion del factor viii de coagulacion sanguinea.
AU2011337704B2 (en) 2010-11-30 2017-06-15 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to plurality of antigen molecules repeatedly
EP2648748A1 (en) 2010-12-08 2013-10-16 Stem Centrx, Inc. Novel modulators and methods of use
ES2661981T3 (es) 2010-12-15 2018-04-04 Inter-University Research Institute Corporation Research Organization Of Information And Systems Procedimiento de producción de una proteína
JP6087149B2 (ja) 2010-12-15 2017-03-01 協和発酵キリン株式会社 タンパク質の生産方法
JP6005657B2 (ja) 2010-12-16 2016-10-12 ジェネンテック, インコーポレイテッド Th2阻害に関連する診断及び治療
MX345519B (es) 2010-12-20 2017-02-01 Genentech Inc Anticuerpos anti-mesotelina e inmunoconjugados.
CA2820953A1 (en) 2010-12-22 2012-06-28 Genentech, Inc. Anti-pcsk9 antibodies and methods of use
EP2659910B1 (en) 2010-12-27 2016-11-09 National University Corporation Nagoya University Screening method for a compound capable of suppressing receptor tyrosine kinase-mediated pro-survival signaling in a cancer cell
JOP20210044A1 (ar) 2010-12-30 2017-06-16 Takeda Pharmaceuticals Co الأجسام المضادة لـ cd38
FR2971250A1 (fr) 2011-02-07 2012-08-10 Univ Nantes Anticorps anti-gb3 utiles dans le traitement des maladies associees a l'angiogenese
SA112330278B1 (ar) 2011-02-18 2015-10-09 ستيم سينتركس، انك. مواد ضابطة جديدة وطرق للاستخدام
KR101638224B1 (ko) 2011-02-28 2016-07-08 에프. 호프만-라 로슈 아게 항원 결합 단백질
JP5768147B2 (ja) 2011-02-28 2015-08-26 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 一価抗原結合タンパク質
CN103597073B (zh) * 2011-03-06 2019-06-07 默克雪兰诺有限公司 低岩藻糖细胞系及其应用
MX336740B (es) 2011-03-29 2016-01-29 Roche Glycart Ag Variantes de fragmento cristalizable (fc) de los anticuerpos.
EP2694551A1 (en) 2011-04-07 2014-02-12 Genentech, Inc. Anti-fgfr4 antibodies and methods of use
EP2700652B1 (en) 2011-04-18 2018-12-19 The University of Tokyo Diagnosis and treatment of cancer using anti-itm2a antibody
MX336197B (es) 2011-04-19 2016-01-11 Merrimack Pharmaceuticals Inc Anicuerpos anti-igf-1r y anti-erbb3 monoespecificos y biespecificos.
WO2012147713A1 (ja) 2011-04-25 2012-11-01 第一三共株式会社 抗b7-h3抗体
WO2012146630A1 (en) 2011-04-29 2012-11-01 F. Hoffmann-La Roche Ag N-terminal acylated polypeptides, methods for their production and uses thereof
CA2833212C (en) 2011-05-12 2020-06-09 Genentech, Inc. Multiple reaction monitoring lc-ms/ms method to detect therapeutic antibodies in animal samples using framework signature peptides
RS56090B1 (sr) 2011-05-16 2017-10-31 Hoffmann La Roche Fgfr1 agonisti i načini primene
MX347818B (es) 2011-05-21 2017-05-15 Macrogenics Inc Dominios que enlazan suero desinmunizados y su uso para prolongar la vida media en suero.
EP2722343A4 (en) 2011-06-20 2014-12-17 Kyowa Hakko Kirin Co Ltd ANTI-ERBB3 ANTIBODIES
CN110229235A (zh) 2011-06-22 2019-09-13 霍夫曼-拉罗奇有限公司 利用包含mhc i类的复合物通过循环中的病毒特异性细胞毒性t细胞清除靶细胞
SI2726094T1 (sl) 2011-06-28 2017-04-26 Oxford Biotherapeutics Ltd Terapevtski in diagnostični cilj
CN107090038A (zh) 2011-06-30 2017-08-25 霍夫曼-拉罗奇有限公司 抗c‑met抗体配制剂
UA117901C2 (uk) 2011-07-06 2018-10-25 Ґенмаб Б.В. Спосіб посилення ефекторної функції вихідного поліпептиду, його варіанти та їх застосування
WO2013022855A1 (en) 2011-08-05 2013-02-14 Xencor, Inc. Antibodies with modified isoelectric points and immunofiltering
EP2744824A1 (en) 2011-08-17 2014-06-25 F.Hoffmann-La Roche Ag Neuregulin antibodies and uses thereof
US9309306B2 (en) 2011-08-23 2016-04-12 Roche Glycart Ag Anti-MCSP antibodies
MX2014002289A (es) 2011-08-26 2015-03-20 Merrimack Pharmaceuticals Inc Anticuerpos fc especificos en tandem.
WO2013040433A1 (en) 2011-09-15 2013-03-21 Genentech, Inc. Methods of promoting differentiation
CA2846630A1 (en) 2011-09-19 2013-03-28 Genentech, Inc. Combination treatments comprising c-met antagonists and b-raf antagonists
TW201817744A (zh) 2011-09-30 2018-05-16 日商中外製藥股份有限公司 具有促進抗原清除之FcRn結合域的治療性抗原結合分子
TWI681970B (zh) 2011-09-30 2020-01-11 日商中外製藥股份有限公司 包含依離子濃度之條件對抗原之結合活性會改變之抗原結合分域、及於pH中性之條件下對FcRn有結合活性之FcRn結合分域、且誘導對標的抗原的免疫反應之抗原結合分子
EP3939996A1 (en) 2011-09-30 2022-01-19 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule promoting disappearance of antigens having plurality of biological activities
MX2014004074A (es) 2011-10-05 2014-06-05 Genentech Inc Metodo de tratamiento de condiciones del higado utilizando antagonistas de notch2.
AU2012323287B2 (en) 2011-10-10 2018-02-01 Xencor, Inc. A method for purifying antibodies
US10851178B2 (en) 2011-10-10 2020-12-01 Xencor, Inc. Heterodimeric human IgG1 polypeptides with isoelectric point modifications
KR102102862B1 (ko) 2011-10-14 2020-04-22 제넨테크, 인크. 항-HtrA1 항체 및 사용 방법
US9358250B2 (en) 2011-10-15 2016-06-07 Genentech, Inc. Methods of using SCD1 antagonists
WO2013059531A1 (en) 2011-10-20 2013-04-25 Genentech, Inc. Anti-gcgr antibodies and uses thereof
EP3603671A3 (en) 2011-10-28 2020-07-29 Chugai Seiyaku Kabushiki Kaisha Cancer stem cell-specific molecule
KR20140097205A (ko) 2011-10-28 2014-08-06 제넨테크, 인크. 흑색종을 치료하는 치료 조합물 및 방법
DK2773671T3 (da) 2011-11-04 2021-11-15 Zymeworks Inc Udformning af stabilt heterodimert antistof med mutationer i fc-domænet
BR112014012005A2 (pt) 2011-11-21 2017-12-19 Genentech Inc composições, métodos, formulação farmacêutica e artigo
US20140335084A1 (en) 2011-12-06 2014-11-13 Hoffmann-La Roche Inc. Antibody formulation
WO2013087789A1 (en) 2011-12-13 2013-06-20 Glykos Finland Ltd. Antibody isoform arrays and methods thereof
JP2015503907A (ja) 2011-12-22 2015-02-05 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 真核細胞のための全長抗体提示システムおよびその使用
SI2794878T1 (sl) 2011-12-22 2020-07-31 F. Hoffmann-La Roche Ag Organizacija ekspresijskega vektorja, postopki izdelave nove proizvodne celice in njihova uporaba za rekombinantno proizvodnjo polipeptidov
SG10201900915WA (en) 2011-12-22 2019-03-28 Hoffmann La Roche Expression vector element combinations, novel production cell generation methods and their use for the recombinant production of polypeptides
WO2013096791A1 (en) 2011-12-23 2013-06-27 Genentech, Inc. Process for making high concentration protein formulations
US11147852B2 (en) 2011-12-23 2021-10-19 Pfizer Inc. Engineered antibody constant regions for site-specific conjugation and methods and uses therefor
TWI593705B (zh) 2011-12-28 2017-08-01 Chugai Pharmaceutical Co Ltd Humanized anti-epiregulin antibody and cancer therapeutic agent containing the antibody as an active ingredient
EP2804630B1 (en) 2012-01-18 2017-10-18 F. Hoffmann-La Roche AG Methods of using fgf19 modulators
IN2014DN05885A (zh) 2012-01-18 2015-06-05 Hoffmann La Roche
MX2014009043A (es) 2012-01-31 2014-10-14 Genentech Inc Anticuerpos anti-ige y sus metodos de uso.
US20150210763A1 (en) 2012-02-09 2015-07-30 Chugai Seiyaku Kabushiki Kaisha MODIFIED Fc REGION OF ANTIBODY
KR102148303B1 (ko) 2012-02-11 2020-08-26 제넨테크, 인크. R-스폰딘 전위 및 그의 사용 방법
RU2624128C2 (ru) 2012-02-15 2017-06-30 Ф. Хоффманн-Ля Рош Аг Аффинная хроматография с применением fc-рецепторов
EP3626254A1 (en) 2012-03-16 2020-03-25 University Health Network Soluble toso protein and its use in treating autoimmune disorders
EP2831115A1 (en) 2012-03-27 2015-02-04 F. Hoffmann-La Roche AG Diagnosis and treatments relating to her3 inhibitors
JP6280031B2 (ja) 2012-03-29 2018-02-14 中外製薬株式会社 抗lamp5抗体およびその利用
BR112014024269A8 (pt) 2012-03-30 2017-07-25 Daiichi Sankyo Co Ltd Anticorpo ou um fragmento de ligação a antígeno do anticorpo, fragmento de ligação a antígeno do anticorpo, composição farmacêutica, uso de um anticorpo ou um fragmento de ligação a antígeno, uso de uma composição, vetor, célula hospedeira transformada, e, método para produzir um anticorpo
KR20140138215A (ko) 2012-03-30 2014-12-03 다이이찌 산쿄 가부시키가이샤 신규 항 Siglec-15 항체
AR090549A1 (es) 2012-03-30 2014-11-19 Genentech Inc Anticuerpos anti-lgr5 e inmunoconjugados
JP6188681B2 (ja) 2012-04-09 2017-08-30 第一三共株式会社 抗fgfr2抗体
US10385395B2 (en) 2012-04-11 2019-08-20 The Regents Of The University Of California Diagnostic tools for response to 6-thiopurine therapy
ES2733434T3 (es) 2012-04-27 2019-11-29 Daiichi Sankyo Co Ltd Anticuerpos anti-ROBO4
AR090903A1 (es) 2012-05-01 2014-12-17 Genentech Inc Anticuerpos e inmunoconjugados anti-pmel17
US20130336973A1 (en) 2012-05-10 2013-12-19 Zymeworks Inc. Heteromultimer Constructs of Immunoglobulin Heavy Chains with Mutations in the Fc Domain
CN104470950B (zh) 2012-05-11 2017-04-26 公益财团法人微生物化学研究会 抗cxadr抗体
WO2013170191A1 (en) 2012-05-11 2013-11-14 Genentech, Inc. Methods of using antagonists of nad biosynthesis from nicotinamide
RU2625771C2 (ru) 2012-05-23 2017-07-18 Дженентек, Инк. Способ отбора терапевтических средств
MX2014014678A (es) 2012-05-30 2015-02-10 Chugai Pharmaceutical Co Ltd Molecula de union al antigeno especifico para el tejido objetivo.
KR101566538B1 (ko) 2012-06-08 2015-11-05 국립암센터 신규한 Th17 세포 전환용 에피토프 및 이의 용도
EP2861624A1 (en) 2012-06-15 2015-04-22 F. Hoffmann-La Roche AG Anti-pcsk9 antibodies, formulations, dosing, and methods of use
US20140004121A1 (en) 2012-06-27 2014-01-02 Amgen Inc. Anti-mesothelin binding proteins
EP2868667B1 (en) 2012-07-02 2019-01-30 Kyowa Hakko Kirin Co., Ltd. Therapeutic agent for anemia including renal anemia and cancer-induced anemia which contains anti-bmp9 antibody as active ingredient
ES2600154T3 (es) 2012-07-04 2017-02-07 F. Hoffmann-La Roche Ag Anticuerpos antiteofilina y métodos de uso
KR102090849B1 (ko) 2012-07-04 2020-03-19 에프. 호프만-라 로슈 아게 공유 결합된 항원-항체 접합체
CN104411725B (zh) 2012-07-04 2018-09-28 弗·哈夫曼-拉罗切有限公司 抗生物素抗体及使用方法
MX356162B (es) 2012-07-05 2018-05-16 Genentech Inc Sistema de expresion y secrecion.
MX365592B (es) 2012-07-06 2019-06-07 Univ School St Marianna Medicine Anticuerpo para reducir células infectadas con el virus de htlv-1.
EP2869851A1 (en) 2012-07-09 2015-05-13 Genentech, Inc. Immunoconjugates comprising anti-cd22 antibodies
SG11201500096YA (en) 2012-07-09 2015-02-27 Genentech Inc Immunoconjugates comprising anti - cd79b antibodies
TW201406785A (zh) 2012-07-09 2014-02-16 Genentech Inc 抗cd22抗體及免疫結合物
SG11201500093TA (en) 2012-07-09 2015-02-27 Genentech Inc Immunoconjugates comprising anti-cd79b antibodies
HRP20211641T1 (hr) 2012-07-13 2022-02-04 Roche Glycart Ag Bispecifična protutijela anti-vegf/anti-ang-2 i njihova primjena u liječenju vaskularnih očnih bolesti
EP4063391A1 (en) 2012-07-25 2022-09-28 Celldex Therapeutics, Inc. Anti-kit antibodies and uses thereof
GB201213652D0 (en) 2012-08-01 2012-09-12 Oxford Biotherapeutics Ltd Therapeutic and diagnostic target
EA031631B1 (ru) 2012-09-27 2019-01-31 Чугаи Сеияку Кабушики Каиша Способ лечения или предупреждения злокачественного новообразования, способ отбора пациента, способ тестирования предрасположенности к злокачественному новообразованию у субъекта, гибридный полипептид и его применения
US9714291B2 (en) 2012-10-05 2017-07-25 Kyowa Hakko Kirin Co., Ltd Heterodimer protein composition
KR20230142808A (ko) 2012-10-11 2023-10-11 다이이찌 산쿄 가부시키가이샤 글리신아미드 화합물의 제조 방법
ES2782248T3 (es) 2012-10-19 2020-09-11 Daiichi Sankyo Co Ltd Conjugado de anticuerpo y fármaco producido por la unión a través de un enlazador que tiene estructura hidrófila
CA2890207A1 (en) 2012-11-05 2014-05-08 Foundation Medicine, Inc. Novel ntrk1 fusion molecules and uses thereof
PE20150956A1 (es) 2012-11-08 2015-06-20 Hoffmann La Roche Proteinas ligantes de antigeno her3 de union a la horquilla beta de her3
WO2014078268A2 (en) 2012-11-13 2014-05-22 Genentech, Inc. Anti-hemagglutinin antibodies and methods of use
KR20150090107A (ko) 2012-12-06 2015-08-05 도쿠리츠다이가쿠호징 가나자와다이가쿠 중피종의 치료 방법
AU2013355931B2 (en) 2012-12-07 2019-03-14 Kyowa Kirin Co., Ltd. Anti-FOLR1 antibody
TWI693073B (zh) 2012-12-21 2020-05-11 日商中外製藥股份有限公司 對gpc3標的治療劑療法為有效之患者投與的gpc3標的治療劑
KR20150097688A (ko) 2012-12-21 2015-08-26 에프. 호프만-라 로슈 아게 디술피드-연결 다가 mhc 클래스 i 포함 다관능 단백질
EP3557260B1 (en) 2012-12-21 2022-05-18 Chugai Seiyaku Kabushiki Kaisha Gpc3-targeting drug which is administered to patient responsive to gpc3-targeting drug therapy
KR20200134340A (ko) 2013-01-10 2020-12-01 젠맵 비. 브이 인간 IgG1 Fc 영역 변이체 및 그의 용도
US10131710B2 (en) 2013-01-14 2018-11-20 Xencor, Inc. Optimized antibody variable regions
US9701759B2 (en) 2013-01-14 2017-07-11 Xencor, Inc. Heterodimeric proteins
US9605084B2 (en) 2013-03-15 2017-03-28 Xencor, Inc. Heterodimeric proteins
US10487155B2 (en) 2013-01-14 2019-11-26 Xencor, Inc. Heterodimeric proteins
US11053316B2 (en) 2013-01-14 2021-07-06 Xencor, Inc. Optimized antibody variable regions
US10968276B2 (en) 2013-03-12 2021-04-06 Xencor, Inc. Optimized anti-CD3 variable regions
WO2014110601A1 (en) 2013-01-14 2014-07-17 Xencor, Inc. Novel heterodimeric proteins
US9738722B2 (en) 2013-01-15 2017-08-22 Xencor, Inc. Rapid clearance of antigen complexes using novel antibodies
EP2945652B1 (en) 2013-01-18 2021-07-07 Foundation Medicine, Inc. Methods of treating cholangiocarcinoma
WO2014116749A1 (en) 2013-01-23 2014-07-31 Genentech, Inc. Anti-hcv antibodies and methods of using thereof
EP2762496A1 (en) 2013-02-05 2014-08-06 EngMab AG Method for the selection of antibodies against BCMA
ES2829499T3 (es) 2013-02-05 2021-06-01 Engmab Sarl Método para la selección de anticuerpos contra BCMA
US9932396B2 (en) 2013-02-08 2018-04-03 Medical & Biological Laboratories Co., Ltd. Antibody against human NRG1 protein
GB201302447D0 (en) 2013-02-12 2013-03-27 Oxford Biotherapeutics Ltd Therapeutic and diagnostic target
JP2016509045A (ja) 2013-02-22 2016-03-24 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト がんを治療し、薬剤耐性を防止する方法
KR20150123811A (ko) 2013-02-26 2015-11-04 로슈 글리카트 아게 항-mcsp 항체
KR20150143458A (ko) 2013-03-06 2015-12-23 메리맥 파마슈티컬즈, 인크. 항-C-MET 탠덤 Fc 이중특이적 항체
JP2016510751A (ja) 2013-03-06 2016-04-11 ジェネンテック, インコーポレイテッド 抗がん剤耐性を治療及び予防する方法
SG11201507477XA (en) 2013-03-14 2015-10-29 Genentech Inc Combinations of a mek inhibitor compound with an her3/egfr inhibitor compound and methods of use
EP2968565A2 (en) 2013-03-14 2016-01-20 Genentech, Inc. Methods of treating cancer and preventing cancer drug resistance
CN105189552B (zh) 2013-03-14 2019-08-02 基因泰克公司 抗b7-h4抗体和免疫缀合物
US9562099B2 (en) 2013-03-14 2017-02-07 Genentech, Inc. Anti-B7-H4 antibodies and immunoconjugates
US10858417B2 (en) 2013-03-15 2020-12-08 Xencor, Inc. Heterodimeric proteins
EP2970471A2 (en) 2013-03-15 2016-01-20 F. Hoffmann-La Roche AG Anti-crth2 antibodies and their use
SG10201808523RA (en) 2013-03-15 2018-11-29 Genentech Inc Il-22 polypeptides and il-22 fc fusion proteins and methods of use
MY197809A (en) 2013-03-15 2023-07-18 Genentech Inc Biomarkers and methods of treating pd-1 and pd-l1 related conditions
US10519242B2 (en) 2013-03-15 2019-12-31 Xencor, Inc. Targeting regulatory T cells with heterodimeric proteins
US9260527B2 (en) 2013-03-15 2016-02-16 Sdix, Llc Anti-human CXCR4 antibodies and methods of making same
US9598485B2 (en) 2013-03-15 2017-03-21 Ac Immune S.A. Anti-tau antibodies and methods of use
CN105143264A (zh) 2013-03-15 2015-12-09 豪夫迈·罗氏有限公司 用于肝癌诊断和治疗的组合物和方法
EP3421495A3 (en) 2013-03-15 2019-05-15 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
CA2903576C (en) 2013-03-15 2021-06-08 Nai-Kong V. Cheung High affinity anti-gd2 antibodies
US10106624B2 (en) 2013-03-15 2018-10-23 Xencor, Inc. Heterodimeric proteins
MX2015011899A (es) 2013-03-15 2016-05-05 Genentech Inc Metodos para el tratamiento de cáncer y prevención de resistencia a los fármacos para el cáncer.
EP3587448B1 (en) 2013-03-15 2021-05-19 Xencor, Inc. Heterodimeric proteins
UA118028C2 (uk) 2013-04-03 2018-11-12 Рош Глікарт Аг Біспецифічне антитіло, специфічне щодо fap і dr5, антитіло, специфічне щодо dr5, і спосіб їх застосування
WO2014174596A1 (ja) 2013-04-23 2014-10-30 株式会社医学生物学研究所 ヘパリン結合上皮増殖因子様増殖因子に対する機能性モノクローナル抗体
RU2019108429A (ru) 2013-04-29 2019-05-06 Ф. Хоффманн-Ля Рош Аг Модифицированные асимметричные антитела, связывающие fc-рецептор, и способы их применения
CN105164158A (zh) 2013-04-29 2015-12-16 豪夫迈·罗氏有限公司 消除对FcRn-结合的抗-IGF-1R抗体及其在血管性眼病治疗中的用途
ES2746136T3 (es) 2013-04-29 2020-03-04 Hoffmann La Roche Anticuerpos modificados de unión a FcRn humano y procedimientos de uso
AR096364A1 (es) 2013-05-20 2015-12-23 Genentech Inc Anticuerpos receptores de antitransferina y métodos de uso
CA2913011A1 (en) 2013-05-31 2014-12-04 Genentech, Inc. Anti-wall teichoic antibodies and conjugates
SG11201509839TA (en) 2013-05-31 2016-01-28 Genentech Inc Anti-wall teichoic antibodies and conjugates
MX2015017852A (es) 2013-06-24 2016-08-11 Chugai Pharmaceutical Co Ltd Agente terapeutico que comprende el anticuerpo anti-epirregulina humanizado con ingrediente activo contra el carcinoma de pulmon de celulas no pequeñas excluyendo el adenocarcinoma.
RS58719B1 (sr) 2013-08-01 2019-06-28 Five Prime Therapeutics Inc Nefukozilisana anti-fgfr2iiib antitela
JP2016537399A (ja) 2013-09-17 2016-12-01 ジェネンテック, インコーポレイテッド 抗lgr5抗体を使用する方法
RU2016116949A (ru) 2013-09-30 2017-11-10 Дайити Санкио Компани, Лимитед Анти-лпс о11-антитело
WO2015053407A1 (ja) 2013-10-08 2015-04-16 第一三共株式会社 抗fgfr2抗体と他剤の組合せ
EP3055331B1 (en) 2013-10-11 2021-02-17 Oxford Bio Therapeutics Limited Conjugated antibodies against ly75 for the treatment of cancer
EP3055328A1 (en) 2013-10-11 2016-08-17 F. Hoffmann-La Roche AG Nsp4 inhibitors and methods of use
MX2016003593A (es) 2013-10-11 2016-06-02 Hoffmann La Roche Anticuerpos de cadena ligera variable comun intercambiada de dominio multiespecifico.
CA2925393C (en) 2013-10-11 2023-03-07 Dimiter Dimitrov Tem8 antibodies and their use
EP3057615B1 (en) 2013-10-18 2021-02-24 F.Hoffmann-La Roche Ag Anti-rspo antibodies and methods of use
EP3060685B1 (en) 2013-10-23 2019-05-01 F. Hoffmann-La Roche AG Method of predicting the response of an asthma patient to therapy
EP3070167A4 (en) 2013-11-06 2017-06-07 Osaka University Antibody having broad neutralizing activity in group 1 influenza a virus
SG10202007189VA (en) 2013-11-21 2020-09-29 Hoffmann La Roche ANTI-alpha-SYNUCLEIN ANTIBODIES AND METHODS OF USE
KR20220142539A (ko) 2013-12-04 2022-10-21 추가이 세이야쿠 가부시키가이샤 화합물의 농도에 따라 항원 결합능이 변화되는 항원 결합 분자 및 그의 라이브러리
TW201533060A (zh) 2013-12-13 2015-09-01 Genentech Inc 抗cd33抗體及免疫結合物
US8980273B1 (en) 2014-07-15 2015-03-17 Kymab Limited Method of treating atopic dermatitis or asthma using antibody to IL4RA
RS60443B1 (sr) 2013-12-17 2020-07-31 Genentech Inc Anti-cd3 antitela i postupci upotrebe
AU2014364593A1 (en) 2013-12-17 2016-07-07 Genentech, Inc. Methods of treating cancer using PD-1 axis binding antagonists and an anti-CD20 antibody
EP3083687A2 (en) 2013-12-17 2016-10-26 F. Hoffmann-La Roche AG Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
PT3083686T (pt) 2013-12-17 2019-12-18 Hoffmann La Roche Métodos de tratamento de cancros com antagonistas da ligação ao eixo pd-1 e taxanos
US8986691B1 (en) 2014-07-15 2015-03-24 Kymab Limited Method of treating atopic dermatitis or asthma using antibody to IL4RA
TWI728373B (zh) 2013-12-23 2021-05-21 美商建南德克公司 抗體及使用方法
KR102535900B1 (ko) 2013-12-25 2023-05-26 다이이찌 산쿄 가부시키가이샤 항 trop2 항체-약물 컨쥬게이트
FI3088517T3 (fi) 2013-12-26 2023-11-30 Mitsubishi Tanabe Pharma Corp Ihmisen Anti-IL-33 neutraloiva monoklonaalinen vasta-aine
ES2756175T3 (es) 2013-12-27 2020-04-27 Chugai Pharmaceutical Co Ltd Genes mutantes guardián de fgfr y fármacos que se dirigen a los mismos
WO2015101586A1 (en) 2014-01-03 2015-07-09 F. Hoffmann-La Roche Ag Bispecific anti-hapten/anti-blood brain barrier receptor antibodies, complexes thereof and their use as blood brain barrier shuttles
WO2015101587A1 (en) 2014-01-03 2015-07-09 F. Hoffmann-La Roche Ag Covalently linked helicar-anti-helicar antibody conjugates and uses thereof
EP3089759B1 (en) 2014-01-03 2018-12-05 F. Hoffmann-La Roche AG Covalently linked polypeptide toxin-antibody conjugates
WO2015103549A1 (en) 2014-01-03 2015-07-09 The United States Of America, As Represented By The Secretary Department Of Health And Human Services Neutralizing antibodies to hiv-1 env and their use
EP3851452A1 (en) 2014-01-06 2021-07-21 F. Hoffmann-La Roche AG Monovalent blood brain barrier shuttle modules
CN110903398B (zh) 2014-01-15 2023-08-15 豪夫迈·罗氏有限公司 具有修饰的FCRN和保持的蛋白A结合性质的Fc区变体
RU2016130349A (ru) 2014-01-24 2018-03-01 Дженентек, Инк. Способы применения антител против steap1 и иммуноконъюгатов
SI3101032T1 (sl) 2014-01-31 2019-02-28 Daiichi Sankyo Company, Limited Konjugat zdravila s protitelesci ANTI-HER2
CA2937539A1 (en) 2014-02-04 2015-08-13 Genentech, Inc. Mutant smoothened and methods of using the same
KR20160111039A (ko) 2014-02-08 2016-09-23 제넨테크, 인크. 알츠하이머 질환을 치료하는 방법
BR112016018205A8 (pt) 2014-02-08 2018-04-17 Genentech Inc métodos de tratamento de mal de alzheimer, de seleção de pacientes, de identificação de pacientes, de previsão, de otimização da eficácia terapêutica, kit, uso de agente e uso in vitro de agente
TR201810635T4 (tr) 2014-02-12 2018-08-27 Hoffmann La Roche Anti-jagged1 antikorları ve kullanım yöntemleri.
EP3107574A2 (en) 2014-02-21 2016-12-28 F. Hoffmann-La Roche AG Anti-il-13/il-17 bispecific antibodies and uses thereof
JP6538707B2 (ja) 2014-03-07 2019-07-03 ユニバーシティ ヘルス ネットワーク 免疫応答を調節するための方法及び組成物
RU2748026C2 (ru) 2014-03-14 2021-05-19 Дженентек, Инк. Способы и композиции для секреции гетерологичных полипептидов
WO2015140591A1 (en) 2014-03-21 2015-09-24 Nordlandssykehuset Hf Anti-cd14 antibodies and uses thereof
BR112016021383A2 (pt) 2014-03-24 2017-10-03 Genentech Inc Método para identificar um paciente com câncer que é susceptível ou menos susceptível a responder ao tratamento com um antagonista de cmet, método para identificar um paciente apresentando câncer previamente tratado, método para determinar a expressão do biomarcador hgf, antagonista anti-c-met e seu uso, kit de diagnóstico e seu método de preparo
CR20160506A (es) 2014-03-28 2017-03-10 Xencor Inc Anticuerpos biespecíficos que se unen a cd38 y cd3
DK3126394T3 (da) 2014-03-31 2020-01-13 Hoffmann La Roche Anti-OX40-antistoffer og fremgangsmåder til anvendelse
JP6588461B2 (ja) 2014-03-31 2019-10-09 ジェネンテック, インコーポレイテッド 抗血管新生剤及びox40結合アゴニストを含む併用療法
MY195180A (en) 2014-04-10 2023-01-11 U3 Pharma Gmbh Anti-HER3 Antibody-Drug Conjugate
WO2015164615A1 (en) 2014-04-24 2015-10-29 University Of Oslo Anti-gluten antibodies and uses thereof
US11760807B2 (en) 2014-05-08 2023-09-19 Chugai Seiyaku Kabushiki Kaisha GPC3-targeting drug which is administered to patient responsive to GPC3-targeting drug therapy
CN106414499A (zh) 2014-05-22 2017-02-15 基因泰克公司 抗gpc3抗体和免疫偶联物
JP2017524371A (ja) 2014-05-23 2017-08-31 ジェネンテック, インコーポレイテッド Mitバイオマーカーとその使用方法
EP3154584B1 (en) 2014-06-03 2021-08-04 XBiotech Inc. Compositions and methods for treating and preventing staphylococcus aureus infections
MX2016016233A (es) 2014-06-11 2017-03-31 Genentech Inc Anticuerpos anti-lgr5 y sus usos.
CN107073121A (zh) 2014-06-13 2017-08-18 基因泰克公司 治疗及预防癌症药物抗性的方法
MX2016015280A (es) 2014-06-26 2017-03-03 Hoffmann La Roche Anticuerpos anti-bromodesoxiuridina(brdu) y metodos de uso.
US9914774B2 (en) 2014-07-11 2018-03-13 Genentech, Inc. Notch pathway inhibition
BR112017000497B1 (pt) 2014-07-11 2023-12-26 Ventana Medical Systems, Inc Anticorpo isolado, célula hospedeira procariótica, imunoconjugado e método de detecção da presença ou do nível de expressão de pd-l1
AU2015292326A1 (en) 2014-07-24 2017-02-23 Xencor, Inc. Rapid clearance of antigen complexes using novel antibodies
TWI805109B (zh) 2014-08-28 2023-06-11 美商奇諾治療有限公司 對cd19具專一性之抗體及嵌合抗原受體
CN107074975A (zh) 2014-08-28 2017-08-18 生物蛋白有限公司 用于修饰的t细胞的条件活性嵌合抗原受体
ES2830385T3 (es) 2014-09-12 2021-06-03 Genentech Inc Anticuerpos e inmunoconjugados anti-HER2
TW201625690A (zh) 2014-09-12 2016-07-16 建南德克公司 抗-cll-1抗體及免疫結合物
CN113698488A (zh) 2014-09-12 2021-11-26 基因泰克公司 抗-b7-h4抗体及免疫缀合物
BR112017004953A2 (pt) 2014-09-17 2017-12-05 Genentech Inc imunoconjugado, formulação farmacêutica, método de tratamento e método de inibição da proliferação de uma célula
ES2796903T3 (es) 2014-09-23 2020-11-30 Hoffmann La Roche Procedimiento de uso de inmunoconjugados anti-CD79b
MA40764A (fr) 2014-09-26 2017-08-01 Chugai Pharmaceutical Co Ltd Agent thérapeutique induisant une cytotoxicité
JP2017536102A (ja) 2014-10-16 2017-12-07 ジェネンテック, インコーポレイテッド 抗アルファ−シヌクレイン抗体及び使用方法
US10626176B2 (en) 2014-10-31 2020-04-21 Jounce Therapeutics, Inc. Methods of treating conditions with antibodies that bind B7-H4
AU2015343339A1 (en) 2014-11-03 2017-06-15 Genentech, Inc. Methods and biomarkers for predicting efficacy and evaluation of an OX40 agonist treatment
CN106796235B (zh) 2014-11-03 2021-01-29 豪夫迈·罗氏有限公司 用于检测t细胞免疫子集的测定法及其使用方法
MX2017005148A (es) 2014-11-06 2017-08-08 Hoffmann La Roche Variantes de region fc con union del receptor fc neonatal (fcrn) modificado y metodos de uso.
MX2017005150A (es) 2014-11-06 2017-08-08 Hoffmann La Roche Variantes de region fc con propiedades modificadas de union a receptor neonatal fc (fcrn) y proteina a.
JP2017534633A (ja) 2014-11-06 2017-11-24 ジェネンテック, インコーポレイテッド Ox40結合アゴニスト及びtigit阻害剤を含む組み合わせ療法
WO2016077369A1 (en) 2014-11-10 2016-05-19 Genentech, Inc. Animal model for nephropathy and agents for treating the same
CN107172879B (zh) 2014-11-10 2021-11-05 豪夫迈·罗氏有限公司 抗白细胞介素-33抗体及其用途
EP3218397B8 (en) 2014-11-14 2021-04-07 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to ebola virus glycoprotein and their use
EP3221360A1 (en) 2014-11-17 2017-09-27 F. Hoffmann-La Roche AG Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
CN107108745B (zh) 2014-11-19 2021-01-12 基因泰克公司 抗bace1的抗体和其用于神经疾病免疫疗法的用途
CN107250158B (zh) 2014-11-19 2022-03-25 基因泰克公司 抗转铁蛋白受体/抗bace1多特异性抗体和使用方法
JP6779876B2 (ja) 2014-11-19 2020-11-04 ジェネンテック, インコーポレイテッド 抗トランスフェリン受容体抗体及びその使用方法
DK3221355T3 (da) 2014-11-20 2020-12-07 Hoffmann La Roche Kombinationsbehandling med T-celleaktiverende bispecifikke antigenbindende molekyler CD3 og folatreceptor 1 (FolR1) samt PD-1-aksebindende antagonister
DK3223845T3 (da) 2014-11-26 2021-08-16 Xencor Inc Heterodimere antistoffer, der binder cd3 og cd20
US10259887B2 (en) 2014-11-26 2019-04-16 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
CA2968878A1 (en) 2014-11-26 2016-06-02 Xencor, Inc. Heterodimeric antibodies that bind cd3 and cd38
WO2016087416A1 (en) 2014-12-03 2016-06-09 F. Hoffmann-La Roche Ag Multispecific antibodies
MX2017007231A (es) 2014-12-03 2017-11-08 Genentech Inc Conjugados de rifamicina y anticuerpos contra el staphylococcuss aureus y usos de estos.
WO2016090038A1 (en) 2014-12-03 2016-06-09 Genentech, Inc. Anti-staphylococcus aureus antibody rifamycin conjugates and uses thereof
MY188799A (en) 2014-12-05 2022-01-04 Genentech Inc Anti-cd79b antibodies and methods of use
BR112017011234A2 (pt) 2014-12-10 2018-03-27 Genentech Inc anticorpos contra receptor da barreira hematoencefálica e métodos de uso
EP3233921B1 (en) 2014-12-19 2021-09-29 Chugai Seiyaku Kabushiki Kaisha Anti-c5 antibodies and methods of use
EP3237449A2 (en) 2014-12-22 2017-11-01 Xencor, Inc. Trispecific antibodies
US20160200815A1 (en) 2015-01-05 2016-07-14 Jounce Therapeutics, Inc. Antibodies that inhibit tim-3:lilrb2 interactions and uses thereof
CA2973964A1 (en) 2015-01-16 2016-07-21 Juno Therapeutics, Inc. Antibodies and chimeric antigen receptors specific for ror1
WO2016117346A1 (en) 2015-01-22 2016-07-28 Chugai Seiyaku Kabushiki Kaisha A combination of two or more anti-c5 antibodies and methods of use
CA2975875A1 (en) 2015-02-04 2016-08-11 Genentech, Inc. Mutant smoothened and methods of using the same
CN114773470A (zh) 2015-02-05 2022-07-22 中外制药株式会社 包含离子浓度依赖性的抗原结合结构域的抗体,fc区变体,il-8-结合抗体及其应用
US10988534B2 (en) 2015-02-09 2021-04-27 Memorial Sloan Kettering Cancer Center Multi-specific antibodies with affinity for human A33 antigen and DOTA metal complex and uses thereof
KR20170140180A (ko) 2015-02-24 2017-12-20 더 유나이티드 스테이츠 오브 어메리카, 애즈 리프리젠티드 바이 더 세크러테리, 디파트먼트 오브 헬쓰 앤드 휴먼 서비씨즈 중동 호흡기 증후군 코로나 바이러스 면역원, 항체 및 그 용도
US10227411B2 (en) 2015-03-05 2019-03-12 Xencor, Inc. Modulation of T cells with bispecific antibodies and FC fusions
AU2016233398A1 (en) 2015-03-16 2017-09-07 F. Hoffmann-La Roche Ag Methods of detecting and quantifying IL-13 and uses in diagnosing and treating Th2-associated diseases
WO2016146833A1 (en) 2015-03-19 2016-09-22 F. Hoffmann-La Roche Ag Biomarkers for nad(+)-diphthamide adp ribosyltransferase resistance
PL3271389T3 (pl) 2015-03-20 2020-08-10 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizujące przeciwciała wiążące się z gp120 i ich stosowanie
CN114907481A (zh) 2015-03-23 2022-08-16 震动疗法股份有限公司 Icos的抗体
EP3274368A1 (en) 2015-03-25 2018-01-31 THE UNITED STATES OF AMERICA, represented by the S Bispecific multivalent fusion proteins
RU2021124437A (ru) 2015-04-03 2021-09-29 Еурека Терапьютикс, Инк. Конструкции, направленные на комплексы пептида afp/mhc, и виды их использования
PL3286315T3 (pl) 2015-04-24 2021-11-02 F. Hoffmann-La Roche Ag Sposoby identyfikacji bakterii zawierających polipeptydy wiążące
SI3290441T1 (sl) 2015-04-28 2020-03-31 Mitsubishi Tanabe Pharma Corporation RGMA-vezavni protein in njegova uporaba
EP3778640A1 (en) 2015-05-01 2021-02-17 Genentech, Inc. Masked anti-cd3 antibodies and methods of use
WO2016179194A1 (en) 2015-05-04 2016-11-10 Jounce Therapeutics, Inc. Lilra3 and method of using the same
US10259882B2 (en) 2015-05-07 2019-04-16 Agenus Inc. Anti-OX40 antibodies
WO2016183104A1 (en) 2015-05-11 2016-11-17 Genentech, Inc. Compositions and methods of treating lupus nephritis
MX2017014381A (es) 2015-05-12 2018-03-02 Genentech Inc Metodos terapeuticos y diagnosticos para cancer.
US11267899B2 (en) * 2015-05-13 2022-03-08 Zumutor Biologics Inc. Afucosylated protein, cell expressing said protein and associated methods
EP3302563A1 (en) 2015-05-29 2018-04-11 H. Hoffnabb-La Roche Ag Humanized anti-ebola virus glycoprotein antibodies and methods of use
PL3303632T5 (pl) 2015-05-29 2023-07-03 F. Hoffmann-La Roche Ag Terapeutyczne i diagnostyczne sposoby stosowane w nowotworze
WO2016196679A1 (en) 2015-06-02 2016-12-08 Genentech, Inc. Compositions and methods for using anti-il-34 antibodies to treat neurological diseases
WO2016196975A1 (en) 2015-06-03 2016-12-08 The United States Of America, As Represented By The Secretary Department Of Health & Human Services Neutralizing antibodies to hiv-1 env and their use
CN107849124B (zh) 2015-06-05 2021-09-24 基因泰克公司 抗tau抗体及使用方法
EP3303397A1 (en) 2015-06-08 2018-04-11 H. Hoffnabb-La Roche Ag Methods of treating cancer using anti-ox40 antibodies and pd-1 axis binding antagonists
WO2016200836A1 (en) 2015-06-08 2016-12-15 Genentech, Inc. Methods of treating cancer using anti-ox40 antibodies
WO2016205176A1 (en) 2015-06-15 2016-12-22 Genentech, Inc. Antibodies and immunoconjugates
UA124615C2 (uk) 2015-06-16 2021-10-20 Дженентек, Інк. АНТИТІЛО ПРОТИ ПОДІБНОГО ДО Fc-РЕЦЕПТОРА БІЛКА 5 (FcRH5)
EP3310811B1 (en) 2015-06-16 2021-06-16 Genentech, Inc. Anti-cd3 antibodies and methods of use
US10501545B2 (en) 2015-06-16 2019-12-10 Genentech, Inc. Anti-CLL-1 antibodies and methods of use
AU2016280159A1 (en) 2015-06-17 2017-12-07 Genentech, Inc. Anti-HER2 antibodies and methods of use
CA2986263A1 (en) 2015-06-17 2016-12-22 Genentech, Inc. Methods of treating locally advanced or metastatic breast cancers using pd-1 axis binding antagonists and taxanes
RS62986B1 (sr) 2015-06-24 2022-03-31 Hoffmann La Roche Antitela na transferinski receptor sa prilagođenim afinitetom
WO2017002776A1 (ja) 2015-06-29 2017-01-05 第一三共株式会社 抗体-薬物コンジュゲートの選択的製造方法
ES2878316T3 (es) 2015-06-29 2021-11-18 Ventana Med Syst Inc Materiales y procedimientos para realizar ensayos histoquímicos de pro-epirregulina y anfirregulina humanas
JP2018520153A (ja) 2015-06-29 2018-07-26 ジェネンテック, インコーポレイテッド 臓器移植における使用のためのii型抗cd20抗体
US10683369B2 (en) 2015-08-03 2020-06-16 Engmab Sàrl Monoclonal antibodies against BCMA
CN105384825B (zh) 2015-08-11 2018-06-01 南京传奇生物科技有限公司 一种基于单域抗体的双特异性嵌合抗原受体及其应用
WO2017040342A1 (en) 2015-08-28 2017-03-09 Genentech, Inc. Anti-hypusine antibodies and uses thereof
MX2018003005A (es) 2015-09-18 2018-04-11 Chugai Pharmaceutical Co Ltd Anticuerpos que se unen a interleucina 8 (il-8) y sus usos.
JP6904947B2 (ja) 2015-09-22 2021-07-21 スプリング バイオサイエンス コーポレーション 抗ox40抗体及びその診断用途
RU2763916C2 (ru) 2015-09-23 2022-01-11 Дженентек, Инк. Оптимизированные варианты анти-vegf антител
EP3662930A1 (en) 2015-09-24 2020-06-10 AbVitro LLC Hiv antibody compositions and methods of use
AU2016325858B2 (en) 2015-09-24 2022-05-26 Daiichi Sankyo Company, Limited Anti-GARP antibody
AR106189A1 (es) 2015-10-02 2017-12-20 Hoffmann La Roche ANTICUERPOS BIESPECÍFICOS CONTRA EL A-b HUMANO Y EL RECEPTOR DE TRANSFERRINA HUMANO Y MÉTODOS DE USO
MA43345A (fr) 2015-10-02 2018-08-08 Hoffmann La Roche Conjugués anticorps-médicaments de pyrrolobenzodiazépine et méthodes d'utilisation
TWI747843B (zh) 2015-10-02 2021-12-01 瑞士商赫孚孟拉羅股份公司 雙特異性抗‐人類cd20/人類轉鐵蛋白受體抗體及使用方法
EP3150636A1 (en) 2015-10-02 2017-04-05 F. Hoffmann-La Roche AG Tetravalent multispecific antibodies
CA2997809A1 (en) 2015-10-07 2017-04-13 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Il-7r-alpha specific antibodies for treating acute lymphoblastic leukemia
CN108350505A (zh) 2015-10-22 2018-07-31 震动疗法股份有限公司 用于测定icos表达的基因标志
EP3184547A1 (en) 2015-10-29 2017-06-28 F. Hoffmann-La Roche AG Anti-tpbg antibodies and methods of use
EP3368568B1 (en) 2015-10-29 2022-04-06 F. Hoffmann-La Roche AG Anti-variant fc-region antibodies and methods of use
IL295097A (en) 2015-10-30 2022-09-01 Genentech Inc Anti-htra1 antibodies and methods of using them
CN108289951A (zh) 2015-10-30 2018-07-17 豪夫迈·罗氏有限公司 抗-因子d抗体和缀合物
WO2017079479A1 (en) 2015-11-03 2017-05-11 The United States Of America, As Represented By The Secretary, Department Of Health And Human Neutralizing antibodies to hiv-1 gp41 and their use
JP6998869B2 (ja) 2015-11-08 2022-02-04 ジェネンテック, インコーポレイテッド 多重特異性抗体のスクリーニング方法
SG11201804134YA (en) 2015-11-23 2018-06-28 Five Prime Therapeutics Inc Fgfr2 inhibitors alone or in combination with immune stimulating agents in cancer treatment
CN108699136B (zh) 2015-12-07 2022-03-18 Xencor股份有限公司 结合cd3和psma的异二聚抗体
EP3390442B1 (en) 2015-12-18 2023-11-08 Chugai Seiyaku Kabushiki Kaisha Anti-c5 antibodies and methods of use
IL259588B2 (en) 2016-01-08 2023-09-01 Hoffmann La Roche Methods for the treatment of cea-positive cancer using pd-1 spindle-binding antagonists and bispecific antibodies against anti-cea and anti-cd3
CN108602883A (zh) 2016-01-20 2018-09-28 基因泰克公司 用于阿尔茨海默氏病的高剂量治疗
JP2019509721A (ja) 2016-02-04 2019-04-11 キュリス,インコーポレイテッド 突然変異体スムースンド及びその使用方法
WO2017151502A1 (en) 2016-02-29 2017-09-08 Genentech, Inc. Therapeutic and diagnostic methods for cancer
BR112018067923A2 (pt) 2016-03-15 2019-02-05 Chugai Pharmaceutical Co Ltd métodos de tratamento de cânceres usando antagonistas de ligação de eixo pd-1 e anticorpos anti-gpc3
CN108700598A (zh) 2016-03-25 2018-10-23 豪夫迈·罗氏有限公司 多路总抗体和抗体缀合的药物量化测定法
US11046778B2 (en) 2016-03-31 2021-06-29 Tohoku University Anti-podocalyxin antibody that targets tumor microenvironment
WO2017180864A1 (en) 2016-04-14 2017-10-19 Genentech, Inc. Anti-rspo3 antibodies and methods of use
AU2017248644B2 (en) 2016-04-15 2019-10-31 Bioatla, Llc Anti-Axl antibodies, antibody fragments and their immunoconjugates and uses thereof
ES2850428T3 (es) 2016-04-15 2021-08-30 Hoffmann La Roche Procedimientos de monitorización y tratamiento del cáncer
WO2017181079A2 (en) 2016-04-15 2017-10-19 Genentech, Inc. Methods for monitoring and treating cancer
WO2017192589A1 (en) 2016-05-02 2017-11-09 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to influenza ha and their use and identification
CN109071635B (zh) 2016-05-02 2023-09-01 豪夫迈·罗氏有限公司 Contorsbody-单链靶标结合物
EP3455252B1 (en) 2016-05-11 2022-02-23 F. Hoffmann-La Roche AG Modified anti-tenascin antibodies and methods of use
IL262404B2 (en) 2016-05-13 2024-04-01 Bioatla Llc Antibodies, Antibody Fragments and Their Immunomodules Against ROR2 and Their Uses
EP3458089A1 (en) 2016-05-18 2019-03-27 Genmab B.V. Antibodies and methods of use thereof in treatment of infectious disease
PL3458101T3 (pl) 2016-05-20 2021-05-31 F. Hoffmann-La Roche Ag Koniugaty PROTAC-przeciwciało i sposoby ich stosowania
EP3465221B1 (en) 2016-05-27 2020-07-22 H. Hoffnabb-La Roche Ag Bioanalytical method for the characterization of site-specific antibody-drug conjugates
ES2963807T3 (es) 2016-06-08 2024-04-02 Xencor Inc Tratamiento de enfermedades relacionadas con la IgG4 con anticuerpos anti-CD19 de reticulación a CD32B
WO2017218707A2 (en) 2016-06-14 2017-12-21 Xencor, Inc. Bispecific checkpoint inhibitor antibodies
CN109563160B (zh) 2016-06-24 2023-02-28 豪夫迈·罗氏有限公司 抗聚泛素多特异性抗体
CN116063545A (zh) 2016-06-28 2023-05-05 Xencor股份有限公司 结合生长抑素受体2的异源二聚抗体
CN117330747A (zh) 2016-07-15 2024-01-02 武田药品工业株式会社 用于评估对于成浆细胞和浆细胞耗竭性疗法的应答的方法和材料
WO2018014260A1 (en) 2016-07-20 2018-01-25 Nanjing Legend Biotech Co., Ltd. Multispecific antigen binding proteins and methods of use thereof
MX2018015721A (es) 2016-07-29 2019-05-27 Chugai Pharmaceutical Co Ltd Anticuerpos biespecificos que exhiben actividad de funcion de cofactor fviii alternativa mejorada.
MX2019001184A (es) 2016-07-29 2019-09-26 Juno Therapeutics Inc Anticuerpos anti-idiotípicos y métodos relacionados.
NL2017270B1 (en) 2016-08-02 2018-02-09 Aduro Biotech Holdings Europe B V New anti-hCTLA-4 antibodies
CN116271014A (zh) 2016-08-05 2023-06-23 中外制药株式会社 用于预防或治疗il-8相关疾病的组合物
JP7250674B2 (ja) 2016-08-08 2023-04-03 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト がんの治療及び診断方法
US10793632B2 (en) 2016-08-30 2020-10-06 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
WO2018049083A1 (en) 2016-09-07 2018-03-15 The Regents Of The University Of California Antibodies to oxidation-specific epitopes
EP3512883A1 (en) 2016-09-13 2019-07-24 Humanigen, Inc. Epha3 antibodies for the treatment of pulmonary fibrosis
SG10201607778XA (en) 2016-09-16 2018-04-27 Chugai Pharmaceutical Co Ltd Anti-Dengue Virus Antibodies, Polypeptides Containing Variant Fc Regions, And Methods Of Use
JP6976315B2 (ja) 2016-09-19 2021-12-08 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 補体因子に基づくアフィニティークロマトグラフィー
SI3528838T1 (sl) 2016-09-23 2023-10-30 F. Hoffmann-La Roche Ag Uporabe IL-13 antagonistov za zdravljenje atopijskega dermatitisa
MX2019003768A (es) 2016-10-03 2019-06-24 Juno Therapeutics Inc Moleculas de enlace especificas de hpv.
JP7050770B2 (ja) 2016-10-05 2022-04-08 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト 抗体薬物コンジュゲートの調製方法
KR20190072528A (ko) 2016-10-06 2019-06-25 제넨테크, 인크. 암에 대한 치료 및 진단 방법
SG10201912173RA (en) 2016-10-07 2020-02-27 Daiichi Sankyo Co Ltd Therapy for drug-resistant cancer by administration of anti-her2 antibody/drug conjugate
WO2018068201A1 (en) 2016-10-11 2018-04-19 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against ctla-4
EP3526241A1 (en) 2016-10-14 2019-08-21 Xencor, Inc. Il15/il15r heterodimeric fc-fusion proteins
JP2019535250A (ja) 2016-10-29 2019-12-12 ジェネンテック, インコーポレイテッド 抗mic抗体及び使用方法
JP7277363B2 (ja) 2016-11-01 2023-05-18 ジェンマブ ビー.ブイ. ポリペプチド変異体およびその使用
US10654929B2 (en) 2016-11-02 2020-05-19 Jounce Therapeutics, Inc. Antibodies to PD-1 and uses thereof
CN110167964B (zh) 2016-11-02 2023-12-01 百时美施贵宝公司 组合用于治疗多发性骨髓瘤的针对bcma和cd3的双特异性抗体和免疫药物
WO2018093821A1 (en) 2016-11-15 2018-05-24 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies
KR102221364B1 (ko) 2016-11-21 2021-03-04 쿠레아브 게엠베하 항-gp73 항체 및 면역접합체
WO2018101448A1 (en) 2016-11-30 2018-06-07 Kyowa Hakko Kirin Co., Ltd. Method of treating cancer using anti-ccr4 antibody and anti-pd-1 antibody
CA3044679A1 (en) 2016-12-07 2018-06-14 Genentech, Inc. Anti-tau antibodies and methods of use
CN117820467A (zh) 2016-12-07 2024-04-05 基因泰克公司 抗tau抗体和使用方法
TW201827076A (zh) 2016-12-12 2018-08-01 美商建南德克公司 使用抗pd-l1抗體及抗雄激素治療癌症之方法
KR20190095280A (ko) 2016-12-12 2019-08-14 다이이찌 산쿄 가부시키가이샤 항체-약물 콘주게이트와 면역 체크 포인트 저해제의 조합
KR20190121294A (ko) 2016-12-22 2019-10-25 다이이찌 산쿄 가부시키가이샤 항-cd3 항체, 및 항-cd3 항체를 포함하는 분자
JOP20190134A1 (ar) 2016-12-23 2019-06-02 Potenza Therapeutics Inc بروتينات رابطة لمولد ضد مضادة لنيوروبيلين وطرق استخدامها
CA3048601A1 (en) 2016-12-26 2018-07-05 Kyowa Hakko Kirin Co., Ltd. Antibody which binds to myelin oligodendrocyte glycoprotein
WO2018129029A1 (en) 2017-01-04 2018-07-12 Immunogen, Inc. Met antibodies and immunoconjugates and uses thereof
SG11201903021WA (en) 2017-01-06 2019-05-30 Eutilex Co Ltd Anti-human 4-1 bb antibodies and use thereof
TW201831517A (zh) 2017-01-12 2018-09-01 美商優瑞科生物技術公司 靶向組織蛋白h3肽/mhc複合體之構築體及其用途
EP3572428A4 (en) 2017-01-17 2020-12-30 Daiichi Sankyo Company, Limited ANTI-GPR20 ANTIBODY AND ANTI-GPR20 ANTIBODY MEDICINAL CONJUGATE
US11208491B2 (en) 2017-01-24 2021-12-28 Kyowa Kirin Co., Ltd. Treatment or prevention method of radiation damage by administration of IL-5 receptor alpha chain binding antibody
KR20190133160A (ko) 2017-02-07 2019-12-02 다이이찌 산쿄 가부시키가이샤 항-gprc5d 항체 및 항-gprc5d 항체를 포함하는 분자
WO2018148660A1 (en) 2017-02-10 2018-08-16 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to plasmodium falciparum circumsporozoite protein and their use
MX2019009485A (es) 2017-02-10 2019-11-05 Genentech Inc Anticuerpos contra triptasa, composiciones de estos y usos de estos.
SG11201906961UA (en) 2017-02-10 2019-08-27 Genmab Bv Polypeptide variants and uses thereof
AU2018218324A1 (en) 2017-02-10 2019-08-22 Eutilex Co., Ltd. IFN-γ-Inducible Regulatory T Cell Convertible Anti-Cancer (IRTCA) antibody and uses thereof
SG11201907050PA (en) 2017-02-28 2019-09-27 Univ Kinki Method for treating egfr-tki-resistant non-small cell lung cancer by administration of anti-her3 antibody-drug conjugate
MX2019010295A (es) 2017-03-01 2019-11-21 Genentech Inc Métodos de diagnóstico y terapéuticos para el cáncer.
WO2018159845A1 (ja) 2017-03-02 2018-09-07 学校法人 聖マリアンナ医科大学 低用量抗ccr4抗体を用いたhtlv-1関連脊髄症の予防または治療剤
AR111249A1 (es) 2017-03-22 2019-06-19 Genentech Inc Composiciones de anticuerpo optimizadas para el tratamiento de trastornos oculares
CN117205311A (zh) 2017-03-28 2023-12-12 基因泰克公司 治疗神经退行性疾病的方法
DK3616720T3 (da) 2017-03-29 2021-03-29 Shionogi & Co Farmaceutisk sammensætning til cancerbehandling
WO2018179302A1 (ja) 2017-03-30 2018-10-04 国立大学法人東北大学 抗ポドプラニン抗体
JOP20190203A1 (ar) 2017-03-30 2019-09-03 Potenza Therapeutics Inc بروتينات رابطة لمولد ضد مضادة لـ tigit وطرق استخدامها
AU2018251993A1 (en) 2017-04-14 2019-10-24 Genentech, Inc. Diagnostic and therapeutic methods for cancer
JP7248588B2 (ja) 2017-04-21 2023-03-29 ジェネンテック, インコーポレイテッド 疾患の治療のためのklk5アンタゴニストの使用
CA3059820A1 (en) 2017-04-26 2018-11-01 Eureka Therapeutics, Inc. Constructs specifically recognizing glypican 3 and uses thereof
CN110799541A (zh) 2017-04-27 2020-02-14 特沙诺有限公司 针对淋巴细胞活化基因-3(lag-3)的抗体药剂及其用途
US11116835B2 (en) 2017-05-10 2021-09-14 Fred Hutchinson Cancer Research Center Epstein Barr virus antibodies, vaccines, and uses of the same
TWI794230B (zh) 2017-05-15 2023-03-01 日商第一三共股份有限公司 抗cdh6抗體及抗cdh6抗體-藥物結合物、以及其製造方法
KR20200006538A (ko) 2017-05-16 2020-01-20 파이브 프라임 테라퓨틱스, 인크. 암 치료에서 화학요법제와 병용되는 항-fgfr2 항체
CN111132733A (zh) 2017-06-30 2020-05-08 Xencor股份有限公司 含有IL-15/IL-15Rα和抗原结合结构域的靶向异源二聚体Fc融合蛋白
WO2019017401A1 (ja) 2017-07-18 2019-01-24 協和発酵キリン株式会社 抗ヒトccr1モノクローナル抗体
KR20200093518A (ko) 2017-07-21 2020-08-05 제넨테크, 인크. 암에 대한 치료 및 진단 방법
EP3658589B1 (en) 2017-07-26 2023-09-27 Forty Seven, Inc. Anti-sirp-alpha antibodies and related methods
MX2020000966A (es) 2017-07-27 2020-09-28 Daiichi Sankyo Co Ltd Anticuerpo anti-cd147.
CA3073383C (en) 2017-08-23 2023-10-31 Daiichi Sankyo Company, Limited Antibody-drug conjugate preparation and lyophilization for same
US11306144B2 (en) 2017-08-25 2022-04-19 Five Prime Therapeutics, Inc. B7-H4 antibodies and methods of use thereof
EP3677589A4 (en) 2017-08-31 2021-04-21 Daiichi Sankyo Company, Limited IMPROVED PROCESS FOR PREPARING ANTIBODY-ACTIVE CONJUGATE
JP7248578B2 (ja) 2017-08-31 2023-03-29 第一三共株式会社 抗体-薬物コンジュゲートの新規製造方法
US20200216542A1 (en) 2017-09-20 2020-07-09 Chugai Seiyaku Kabushiki Kaisha Dosage regimen for combination therapy using pd-1 axis binding antagonists and gpc3 targeting agent
CN111164208B (zh) 2017-09-29 2023-08-04 第一三共株式会社 抗体-吡咯并苯并二氮杂卓衍生物偶联物
AU2018345539A1 (en) 2017-10-03 2020-04-16 Editas Medicine, Inc. HPV-specific binding molecules
TW201927336A (zh) 2017-10-05 2019-07-16 日商第一三共股份有限公司 細胞毒性t細胞耗竭用組成物
AU2018347521A1 (en) 2017-10-12 2020-05-07 Immunowake Inc. VEGFR-antibody light chain fusion protein
EP3703688A2 (en) 2017-11-01 2020-09-09 Juno Therapeutics, Inc. Antibodies and chimeric antigen receptors specific for b-cell maturation antigen
JP2021502066A (ja) 2017-11-06 2021-01-28 ジェネンテック, インコーポレイテッド がんの診断及び療法
US10981992B2 (en) 2017-11-08 2021-04-20 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
WO2019093342A1 (ja) 2017-11-08 2019-05-16 協和発酵キリン株式会社 CD40とEpCAMに結合するバイスペシフィック抗体
US11312770B2 (en) 2017-11-08 2022-04-26 Xencor, Inc. Bispecific and monospecific antibodies using novel anti-PD-1 sequences
MX2020005662A (es) 2017-12-01 2020-08-20 Pfizer Anticuerpos anti-cxcr5 y composiciones y usos de los mismos.
CN111527106A (zh) 2017-12-12 2020-08-11 协和麒麟株式会社 抗bmp10抗体和以该抗体为有效成分的对高血压和高血压性疾病的治疗剂
MA51184A (fr) 2017-12-15 2020-10-21 Juno Therapeutics Inc Molécules de liaison à l'anti-cct5 et procédés d'utilisation associés
CA3086199A1 (en) 2017-12-19 2019-06-27 Xencor, Inc. Engineered il-2 fc fusion proteins
EP3728318A2 (en) 2017-12-22 2020-10-28 Jounce Therapeutics, Inc. Antibodies for lilrb2
EP3728321A1 (en) 2017-12-22 2020-10-28 F. Hoffmann-La Roche AG Use of pilra binding agents for treatment of a disease
US11905327B2 (en) 2017-12-28 2024-02-20 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against TIGIT
JP7383617B2 (ja) 2017-12-28 2023-11-20 ナンジン レジェンド バイオテック カンパニー,リミテッド Pd-l1に対する抗体及びそのバリアント
EP3724223A1 (en) 2018-01-02 2020-10-21 The United States of America, as represented by The Secretary, Department of Health and Human Services Neutralizing antibodies to ebola virus glycoprotein and their use
CA3086879A1 (en) 2018-01-05 2019-07-11 Ac Immune Sa Misfolded tdp-43 binding molecules
US11713353B2 (en) 2018-01-15 2023-08-01 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against PD-1
US20200339686A1 (en) 2018-01-16 2020-10-29 Lakepharma, Inc. Bispecific antibody that binds cd3 and another target
HUE060435T2 (hu) 2018-01-26 2023-03-28 Hoffmann La Roche IL-22 Fc készítmények és alkalmazásukra szolgáló eljárások
SG11202006259SA (en) 2018-01-26 2020-08-28 Genentech Inc Il-22 fc fusion proteins and methods of use
WO2019149269A1 (zh) 2018-02-01 2019-08-08 信达生物制药(苏州)有限公司 全人源的抗b细胞成熟抗原(bcma)单链抗体及其应用
AU2019218959A1 (en) 2018-02-08 2020-09-03 Genentech, Inc. Bispecific antigen-binding molecules and methods of use
PE20211304A1 (es) 2018-02-09 2021-07-20 Genentech Inc Metodos terapeuticos y diagnosticos para enfermedades inflamatorias mediadas por mastocitos
EP3752530A1 (en) 2018-02-14 2020-12-23 ABBA Therapeutics AG Anti-human pd-l2 antibodies
KR20200123170A (ko) 2018-02-21 2020-10-28 파이브 프라임 테라퓨틱스, 인크. B7-h4 항체 제형
SG11202007820QA (en) 2018-02-21 2020-09-29 Five Prime Therapeutics Inc B7-h4 antibody dosing regimens
JP2021514354A (ja) 2018-02-21 2021-06-10 ジェネンテック, インコーポレイテッド IL−22Fc融合タンパク質による治療のための投与
CN111971299A (zh) 2018-02-21 2020-11-20 美国政府(由卫生和人类服务部的部长所代表) HIV-1 Env的中和抗体及其用途
AU2019225249A1 (en) 2018-02-26 2020-09-17 Genentech, Inc. Dosing for treatment with anti-tigit and anti-PD-L1 antagonist antibodies
JP2021516051A (ja) 2018-03-02 2021-07-01 ファイブ プライム セラピューティクス, インコーポレイテッド B7−h4抗体及びその使用方法
SG11202008280TA (en) 2018-03-05 2020-09-29 Univ Saitama Medical Pharmaceutical composition for treating or preventing heterotopic ossification
AU2019235523A1 (en) 2018-03-14 2020-10-29 Novimmune Sa Anti-CD3 epsilon antibodies and methods of use thereof
US20200040103A1 (en) 2018-03-14 2020-02-06 Genentech, Inc. Anti-klk5 antibodies and methods of use
CN112166123B (zh) 2018-03-14 2022-09-30 北京轩义医药科技有限公司 抗紧密连接蛋白18.2抗体
MX2020009296A (es) 2018-03-15 2020-11-13 Chugai Pharmaceutical Co Ltd Anticuerpos anti-virus del dengue que tienen reactividad cruzada con el virus zika y metodos de uso.
CA3093034A1 (en) 2018-03-30 2019-10-03 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies against lag-3 and uses thereof
TW202011029A (zh) 2018-04-04 2020-03-16 美商建南德克公司 偵測及定量fgf21之方法
US10982006B2 (en) 2018-04-04 2021-04-20 Xencor, Inc. Heterodimeric antibodies that bind fibroblast activation protein
SG11202009284TA (en) 2018-04-05 2020-10-29 Juno Therapeutics Inc T cell receptors and engineered cells expressing same
CN110373374B (zh) * 2018-04-12 2023-07-07 上海颢哲信息科技有限公司 一种降低抗体核心岩藻糖基化的方法和组合物
KR20210010862A (ko) 2018-04-18 2021-01-28 젠코어 인코포레이티드 IL-15/IL-15Rα Fc-융합 단백질 및 PD-1 항원 결합 도메인을 함유하는 PD-1 표적화 이종이량체 융합 단백질 및 이의 용도
WO2019204655A1 (en) 2018-04-18 2019-10-24 Xencor, Inc. Tim-3 targeted heterodimeric fusion proteins containing il-15/il-15ra fc-fusion proteins and tim-3 antigen binding domains
EP3784274A1 (en) 2018-04-27 2021-03-03 Fondazione Ebri Rita Levi-Montalcini Antibody directed against a tau-derived neurotoxic peptide and uses thereof
KR20210008380A (ko) 2018-05-03 2021-01-21 젠맵 비. 브이 항체 변이체 조합물 및 그의 용도
SG11202011243XA (en) 2018-05-28 2020-12-30 Daiichi Sankyo Co Ltd Treatment of her2-mutated cancer by administering anti-her2 antibody-drug conjugate
BR112020021266A2 (pt) 2018-05-31 2021-01-26 Daiichi Sankyo Company, Limited anticorpo anti-tlr7 humano
US20210238308A1 (en) 2018-06-04 2021-08-05 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule showing changed half-life in cytoplasm
CN112512310B (zh) * 2018-06-07 2022-12-16 韩国生命工学研究院 用于无糖基化抗体产生的转基因小鼠和由此产生的无糖基化抗体的用途
SG11202012446UA (en) 2018-06-23 2021-01-28 Genentech Inc Methods of treating lung cancer with a pd-1 axis binding antagonist, a platinum agent, and a topoisomerase ii inhibitor
JP7397444B2 (ja) 2018-06-26 2023-12-13 協和キリン株式会社 コンドロイチン硫酸プロテオグリカン-5に結合する抗体
US11873337B2 (en) 2018-06-26 2024-01-16 Kyowa Kirin Co., Ltd. Antibody binding to cell adhesion molecule 3
TW202019473A (zh) 2018-07-02 2020-06-01 美商安進公司 抗steap1抗原結合蛋白
WO2020014306A1 (en) 2018-07-10 2020-01-16 Immunogen, Inc. Met antibodies and immunoconjugates and uses thereof
EP3820890A1 (en) 2018-07-13 2021-05-19 Genmab A/S Trogocytosis-mediated therapy using cd38 antibodies
CN112513082A (zh) 2018-07-13 2021-03-16 根马布股份公司 Cd38抗体变体及其用途
TW202011991A (zh) 2018-07-18 2020-04-01 美商建南德克公司 用pd-1軸結合拮抗劑、抗代謝劑及鉑劑治療肺癌之方法
WO2020018879A1 (en) 2018-07-20 2020-01-23 Surface Oncology, Inc. Anti-cd112r compositions and methods
BR112021001194A2 (pt) 2018-07-25 2021-04-27 Daiichi Sankyo Company, Limited métodos para produzir um conjugado anticorpo-fármaco e para produzir uma composição farmacêutica
EA202190403A1 (ru) 2018-07-31 2021-05-24 Дайити Санкио Компани, Лимитед Лечение метастатической опухоли головного мозга путем введения конъюгата антитело-лекарственное средство
CA3106829A1 (en) 2018-08-03 2020-02-06 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing two antigen-binding domains that are linked to each other
KR20210042120A (ko) 2018-08-06 2021-04-16 다이이찌 산쿄 가부시키가이샤 항체-약물 콘주게이트와 튜불린 저해제의 조합
MA50586A (fr) 2018-08-09 2020-09-16 Regeneron Pharma Procédés d'évaluation de l'affinité de liaison d'une variante d'anticorps au récepteur fc néonatal
AR114550A1 (es) 2018-08-10 2020-09-16 Chugai Pharmaceutical Co Ltd Moléculas de unión al antígeno anti-cd137 y sus usos
TW202021618A (zh) 2018-08-17 2020-06-16 美商23與我有限公司 抗il1rap抗體及其使用方法
JPWO2020040245A1 (ja) 2018-08-23 2021-09-02 第一三共株式会社 抗体薬物複合体の感受性マーカー
MY197429A (en) * 2018-08-29 2023-06-16 United Biopharma Inc Afucosylated antibodies and manufacture thereof
GB201814281D0 (en) 2018-09-03 2018-10-17 Femtogenix Ltd Cytotoxic agents
WO2020056170A1 (en) 2018-09-12 2020-03-19 Fred Hutchinson Cancer Research Center Reducing cd33 expression to selectively protect therapeutic cells
CN112955747A (zh) 2018-09-19 2021-06-11 豪夫迈·罗氏有限公司 膀胱癌的治疗和诊断方法
US20220072144A1 (en) 2018-09-20 2022-03-10 Daiichi Sankyo Company, Limited Treatment of her3-mutated cancer by administration of anti-her3 antibody-drug conjugate
US20230038521A1 (en) 2018-09-21 2023-02-09 National University Corporation Tokyo Medical An D Dental University Human Monoclonal Antibody Binding Specifically to Human Hmgb1, and Pharmaceutical Composition for Treating or Preventing Alzheimer's Disease Containing Said Human Monoclonal Antibody
ES2955032T3 (es) 2018-09-21 2023-11-28 Hoffmann La Roche Métodos de diagnóstico para el cáncer de mama triple negativo
WO2020067541A1 (ja) 2018-09-28 2020-04-02 協和キリン株式会社 抗体組成物
JP2022503959A (ja) 2018-10-03 2022-01-12 ゼンコア インコーポレイテッド Il-12ヘテロ二量体fc-融合タンパク質
CN112804989A (zh) 2018-10-05 2021-05-14 戊瑞治疗有限公司 抗fgfr2抗体制剂
MA53911A (fr) 2018-10-15 2022-01-19 Five Prime Therapeutics Inc Polythérapie contre le cancer
WO2020081493A1 (en) 2018-10-16 2020-04-23 Molecular Templates, Inc. Pd-l1 binding proteins
MX2021004348A (es) 2018-10-18 2021-05-28 Genentech Inc Procedimientos de diagnóstico y terapéuticos para el cáncer de riñón sarcomatoide.
WO2020089437A1 (en) 2018-10-31 2020-05-07 Engmab Sàrl Combination therapy
EP3882349A4 (en) 2018-11-14 2023-04-05 Daiichi Sankyo Company, Limited (ANTI-CDH6 ANTIBODY)-(PYRROLOBENZODIAZEPINE DERIVATIVE) CONJUGATE
CA3119968A1 (en) 2018-11-16 2020-05-22 Memorial Sloan Kettering Cancer Center Antibodies to mucin-16 and methods of use thereof
EP4198057A1 (en) 2018-12-05 2023-06-21 F. Hoffmann-La Roche AG Diagnostic methods and compositions for cancer immunotherapy
WO2020117257A1 (en) 2018-12-06 2020-06-11 Genentech, Inc. Combination therapy of diffuse large b-cell lymphoma comprising an anti-cd79b immunoconjugates, an alkylating agent and an anti-cd20 antibody
CN113227119A (zh) 2018-12-10 2021-08-06 基因泰克公司 用于与含Fc的蛋白质进行位点特异性缀合的光交联肽
CA3122946A1 (en) 2018-12-11 2020-06-18 Daiichi Sankyo Company, Limited Combination of antibody-drug conjugate with parp inhibitor
AR117453A1 (es) 2018-12-20 2021-08-04 Genentech Inc Fc de anticuerpos modificados y métodos para utilizarlas
EP3883609A2 (en) 2018-12-20 2021-09-29 The United States of America, as represented by the Secretary, Department of Health and Human Services Ebola virus glycoprotein-specific monoclonal antibodies and uses thereof
AR117327A1 (es) 2018-12-20 2021-07-28 23Andme Inc Anticuerpos anti-cd96 y métodos de uso de estos
AU2019405782A1 (en) 2018-12-21 2021-06-17 23Andme, Inc. Anti-IL-36 antibodies and methods of use thereof
CA3124330A1 (en) 2018-12-21 2020-06-25 Daiichi Sankyo Company, Limited Combination of antibody-drug conjugate and kinase inhibitor
TW202039575A (zh) 2018-12-27 2020-11-01 日商鹽野義製藥股份有限公司 新穎之抗ccr8抗體
BR112021012569A2 (pt) 2018-12-28 2021-09-14 Kyowa Kirin Co., Ltd. Anticorpo biespecífico de ligação ao tfr
CN113272327A (zh) 2018-12-30 2021-08-17 豪夫迈·罗氏有限公司 抗兔cd19抗体及其使用方法
JP2022518399A (ja) 2019-01-14 2022-03-15 ジェネンテック, インコーポレイテッド Pd-1軸結合アンタゴニスト及びrnaワクチンを用いてがんを処置する方法
JPWO2020153467A1 (ja) 2019-01-24 2021-12-02 中外製薬株式会社 新規がん抗原及びそれらの抗原に対する抗体
EP3917570A1 (en) 2019-01-29 2021-12-08 Juno Therapeutics, Inc. Antibodies and chimeric antigen receptors specific for receptor tyrosine kinase like orphan receptor 1 (ror1)
GB201901197D0 (en) 2019-01-29 2019-03-20 Femtogenix Ltd G-A Crosslinking cytotoxic agents
JP2022521773A (ja) 2019-02-27 2022-04-12 ジェネンテック, インコーポレイテッド 抗tigit抗体と抗cd20抗体又は抗cd38抗体とによる処置のための投薬
EP3930850A1 (en) 2019-03-01 2022-01-05 Xencor, Inc. Heterodimeric antibodies that bind enpp3 and cd3
KR20210138588A (ko) 2019-03-08 2021-11-19 제넨테크, 인크. 세포외 소포 상에서 막 관련 단백질을 검출하고 정량하기 위한 방법
JP2022524074A (ja) 2019-03-14 2022-04-27 ジェネンテック, インコーポレイテッド 抗HER2 MABと組み合わせたHER2xCD3二重特異性抗体によるがんの処置
EP3943108A4 (en) 2019-03-19 2023-01-04 Chugai Seiyaku Kabushiki Kaisha ANTIGEN-BINDING MOLECULE CONTAINING AN ANTIGEN-BINDING DOMAIN WHOSE ANTIGEN-BINDING ACTIVITY IS ALTERED DEPENDING ON THE MTA, AND BANK FOR OBTAINING SUCH ANTIGEN-BINDING DOMAIN
SG11202109860VA (en) 2019-03-25 2021-10-28 Daiichi Sankyo Co Ltd Anti-her2 antibody-pyrrolobenzodiazepine derivative conjugate
KR20210143237A (ko) 2019-03-25 2021-11-26 다이이찌 산쿄 가부시키가이샤 항체-피롤로벤조디아제핀 유도체 컨쥬게이트
EP3949988A4 (en) 2019-03-27 2022-11-16 Daiichi Sankyo Company, Limited COMBINATION OF AN ANTIBODY-DERIVATIVE CONJUGATE OF PYRROLOBENZODIAZEPINE AND A PARP INHIBITOR
JP2022524215A (ja) 2019-03-28 2022-04-28 ダニスコ・ユーエス・インク 改変抗体
KR20220002967A (ko) 2019-04-19 2022-01-07 제넨테크, 인크. 항 mertk 항체 및 이의 사용 방법
US20220227853A1 (en) 2019-05-03 2022-07-21 The United States Of America,As Represented By The Secretary,Department Of Health And Human Services Neutralizing antibodies to plasmodium falciparum circumsporozoite protein and their use
CN114269376A (zh) 2019-05-03 2022-04-01 豪夫迈·罗氏有限公司 用抗pd-l1抗体治疗癌症的方法
CN114206340A (zh) 2019-05-14 2022-03-18 豪夫迈·罗氏有限公司 使用抗cd79b免疫缀合物治疗滤泡性淋巴瘤的方法
JPWO2020230899A1 (zh) 2019-05-15 2020-11-19
EP3971293A4 (en) 2019-05-15 2023-02-08 Kyowa Kirin Co., Ltd. BISPECIFIC ANTIBODIES CAPABLE OF BINDING TO CD40 AND GPC3
US20230085439A1 (en) 2019-05-21 2023-03-16 University Of Georgia Research Foundation, Inc. Antibodies that bind human metapneumovirus fusion protein and their use
KR20220012270A (ko) 2019-05-23 2022-02-03 에이씨 이뮨 에스.에이. 항-tdp-43 결합 분자 및 이의 용도
CN113939318A (zh) 2019-05-29 2022-01-14 第一三共株式会社 抗体-药物缀合物的制剂
CN114269783B (zh) 2019-07-02 2024-03-26 美国政府(由卫生和人类服务部的部长所代表) 结合egfrviii的单克隆抗体及其应用
WO2021020282A1 (ja) 2019-07-26 2021-02-04 学校法人埼玉医科大学 Alk2/acvr1の細胞外領域を認識する抗体
WO2021024209A1 (en) 2019-08-06 2021-02-11 Aprinoia Therapeutics Inc. Antibodies that bind to pathological tau species and uses thereof
JP2022547577A (ja) 2019-09-12 2022-11-14 ジェネンテック, インコーポレイテッド ループス腎炎を治療する組成物及び方法
US20220340642A1 (en) 2019-09-13 2022-10-27 Kyowa Kirin Co., Ltd. Dcr3 variant
CR20220149A (es) 2019-09-20 2022-05-23 Genentech Inc Dosis para anticuerpos anti-triptasa
CR20220127A (es) 2019-09-27 2022-05-27 Genentech Inc Administración de dosis para tratamiento con anticuerpos antagonistas anti-tigit y anti-pd-l1
PE20221039A1 (es) 2019-10-18 2022-06-17 Genentech Inc METODOS PARA USAR INMUNOCONJUGADOS ANTI-CD79b PARA TRATAR LINFOMA DIFUSO DE LINFOCITOS B GRANDES
JPWO2021079958A1 (zh) 2019-10-25 2021-04-29
US20220389103A1 (en) 2019-11-06 2022-12-08 Genentech, Inc. Diagnostic and therapeutic methods for treatment of hematologic cancers
WO2021113780A1 (en) 2019-12-06 2021-06-10 Juno Therapeutics, Inc. Anti-idiotypic antibodies to gprc5d-targeted binding domains and related compositions and methods
JP2023504740A (ja) 2019-12-06 2023-02-06 ジュノー セラピューティクス インコーポレイテッド Bcma標的結合ドメインに対する抗イディオタイプ抗体ならびに関連する組成物および方法
CR20230210A (es) 2019-12-13 2023-06-14 Genentech Inc ANTICUERPOS ANTI-LY6G6D Y MÉTODOS DE USO (Divisional 2022-0330)
EP4076490A1 (en) 2019-12-20 2022-10-26 Bristol-Myers Squibb Company Use of fucosylation inhibitor for producing afucosylated antibody
AR120898A1 (es) 2019-12-26 2022-03-30 Univ Osaka Agente para tratar o prevenir neuromielitis óptica en fase aguda
CN113045655A (zh) 2019-12-27 2021-06-29 高诚生物医药(香港)有限公司 抗ox40抗体及其用途
AU2019479791A1 (en) 2019-12-27 2022-07-14 Chugai Seiyaku Kabushiki Kaisha Anti-CTLA-4 antibody and use thereof
CN110818795B (zh) 2020-01-10 2020-04-24 上海复宏汉霖生物技术股份有限公司 抗tigit抗体和使用方法
WO2021145432A1 (ja) 2020-01-15 2021-07-22 国立大学法人大阪大学 糖尿病性自律神経障害の予防又は治療剤
AR121065A1 (es) 2020-01-15 2022-04-13 Univ Osaka Agente para tratar o prevenir demencia
WO2021144457A1 (en) 2020-01-16 2021-07-22 Genmab A/S Formulations of cd38 antibodies and uses thereof
WO2022050954A1 (en) 2020-09-04 2022-03-10 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
WO2021194481A1 (en) 2020-03-24 2021-09-30 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
EP4097143A1 (en) 2020-01-31 2022-12-07 The Cleveland Clinic Foundation Anti-müllerian hormone receptor 2 antibodies and methods of use
JP2023512654A (ja) 2020-01-31 2023-03-28 ジェネンテック, インコーポレイテッド Pd-1軸結合アンタゴニストおよびrnaワクチンを用いてネオエピトープ特異的t細胞を誘導する方法
TW202144395A (zh) 2020-02-12 2021-12-01 日商中外製藥股份有限公司 用於癌症之治療的抗cd137抗原結合分子
TW202140561A (zh) 2020-02-14 2021-11-01 日商協和麒麟股份有限公司 與cd3結合之雙特異性抗體
MX2022009947A (es) 2020-02-14 2022-11-07 Jounce Therapeutics Inc Anticuerpos y proteinas de fusion que se unen a ccr8 y usos de estos.
EP4093762A1 (en) 2020-02-20 2022-11-30 The United States of America, as represented by the Secretary, Department of Health and Human Services Epstein-barr virus monoclonal antibodies and uses thereof
CN115066440A (zh) 2020-02-28 2022-09-16 上海复宏汉霖生物技术股份有限公司 抗cd137构建体及其用途
WO2021170071A1 (en) 2020-02-28 2021-09-02 Shanghai Henlius Biotech, Inc. Anti-cd137 constructs, multispecific antibody and uses thereof
CN115605507A (zh) 2020-03-13 2023-01-13 基因泰克公司(Us) 抗白介素-33抗体及其用途
CN117551194A (zh) 2020-03-19 2024-02-13 基因泰克公司 同种型选择性抗TGF-β抗体及使用方法
BR112022018847A2 (pt) 2020-03-24 2022-11-22 Genentech Inc Anticorpos, ácido nucleico, célula hospedeira, conjugados, composição farmacêutica, dispositivo de entrega de ação prolongada para entrega ocular, método para tratar um distúrbio e uso do anticorpo
EP4130036A1 (en) 2020-03-30 2023-02-08 National Cancer Center Antibody drug conjugate
US20230348616A1 (en) 2020-03-30 2023-11-02 Mie University Bispecific antibody
KR20220161337A (ko) 2020-04-01 2022-12-06 쿄와 기린 가부시키가이샤 항체 조성물
CN115698717A (zh) 2020-04-03 2023-02-03 基因泰克公司 癌症的治疗和诊断方法
WO2021207662A1 (en) 2020-04-10 2021-10-14 Genentech, Inc. Use of il-22fc for the treatment or prevention of pneumonia, acute respiratory distress syndrome, or cytokine release syndrome
IL297541A (en) 2020-04-24 2022-12-01 Genentech Inc Methods for using anti-cd79b immunoconjugates
WO2021222181A2 (en) 2020-04-27 2021-11-04 The Regents Of The University Of California Isoform-independent antibodies to lipoprotein(a)
JP2023523450A (ja) 2020-04-28 2023-06-05 ジェネンテック, インコーポレイテッド 非小細胞肺がん免疫療法のための方法及び組成物
IL297830A (en) 2020-05-03 2023-01-01 Levena Suzhou Biopharma Co Ltd Anti-drug compounds (adcs) comprising an anti-trop-2 antibody, compounds comprising such adcs, as well as methods for their production and use
US11919956B2 (en) 2020-05-14 2024-03-05 Xencor, Inc. Heterodimeric antibodies that bind prostate specific membrane antigen (PSMA) and CD3
AR122111A1 (es) 2020-05-17 2022-08-17 Astrazeneca Uk Ltd ANTICUERPOS CONTRA EL SARS-CoV-2 Y MÉTODOS DE SELECCIÓN Y USO DE LOS MISMOS
WO2021238886A1 (en) 2020-05-27 2021-12-02 Staidson (Beijing) Biopharmaceuticals Co., Ltd. Antibodies specifically recognizing nerve growth factor and uses thereof
US11787861B2 (en) 2020-05-29 2023-10-17 23Andme, Inc. Anti-CD200R1 antibodies and methods of use thereof
CN116529260A (zh) 2020-06-02 2023-08-01 当康生物技术有限责任公司 抗cd93构建体及其用途
TW202210515A (zh) 2020-06-02 2022-03-16 美商當康生物科技有限公司 抗cd39之構築體及其用途
WO2021252977A1 (en) 2020-06-12 2021-12-16 Genentech, Inc. Methods and compositions for cancer immunotherapy
CA3181820A1 (en) 2020-06-16 2021-12-23 Genentech, Inc. Methods and compositions for treating triple-negative breast cancer
CA3181672A1 (en) 2020-06-18 2021-12-23 Shi Li Treatment with anti-tigit antibodies and pd-1 axis binding antagonists
CN116234824A (zh) 2020-06-22 2023-06-06 阿尔米雷尔有限公司 抗il-36抗体及其使用方法
EP4169949A1 (en) 2020-06-23 2023-04-26 Jiangsu Kanion Pharmaceutical Co., Ltd. Anti-cd38 antibody and use thereof
US20230233540A1 (en) 2020-06-24 2023-07-27 Astrazeneca Uk Limited Combination of antibody-drug conjugate and cdk9 inhibitor
US20230256110A1 (en) 2020-06-24 2023-08-17 Astrazeneca Uk Limited Combination of antibody-drug conjugate and atm inhibitor
WO2021260582A1 (en) 2020-06-24 2021-12-30 Astrazeneca Uk Limited Combination of antibody-drug conjugate and aurora b inhibitor
AU2021298251A1 (en) 2020-06-24 2023-02-02 Astrazeneca Uk Limited Combination of antibody-drug conjugate and ATR inhibitor
WO2021260583A1 (en) 2020-06-24 2021-12-30 Astrazeneca Uk Limited Combination of antibody-drug conjugate and dna-pk inhibitor
EP4173636A1 (en) 2020-06-30 2023-05-03 Shionogi & Co., Ltd Combined use of anti-ccr8 antibody and chemotherapeutic agent
JPWO2022014698A1 (zh) 2020-07-17 2022-01-20
BR112023000982A2 (pt) 2020-07-20 2023-03-28 Daiichi Sankyo Co Ltd Composição farmacêutica, e, método de tratamento
GB2597532A (en) 2020-07-28 2022-02-02 Femtogenix Ltd Cytotoxic compounds
IL300121A (en) 2020-07-29 2023-03-01 Dynamicure Biotechnology Llc Anti-cd93 constructs and uses thereof
JP2023536602A (ja) 2020-08-03 2023-08-28 ジェネンテック, インコーポレイテッド リンパ腫のための診断及び治療方法
US20230324408A1 (en) 2020-08-05 2023-10-12 Juno Therapeutics, Inc. Anti-idiotypic antibodies to ror1-targeted binding domains and related compositions and methods
WO2022031876A1 (en) 2020-08-07 2022-02-10 Genentech, Inc. Flt3 ligand fusion proteins and methods of use
CN116234577A (zh) 2020-08-10 2023-06-06 阿斯利康(英国)有限公司 用于治疗和预防covid-19的sars-cov-2抗体
WO2022034228A1 (en) 2020-08-14 2022-02-17 Ac Immune Sa Humanized anti-tdp-43 binding molecules and uses thereof
AU2021329378A1 (en) 2020-08-19 2023-03-23 Xencor, Inc. Anti-CD28 compositions
EP4204448A2 (en) 2020-08-27 2023-07-05 cureab GmbH Anti-golph2 antibodies for macrophage and dendritic cell differentiation
WO2022054009A2 (en) 2020-09-12 2022-03-17 Astrazeneca Uk Limited A scoring method for an anti-her2 antibody-drug conjugate therapy
EP4211165A1 (en) 2020-09-14 2023-07-19 Ichnos Sciences SA Antibodies that bind to il1rap and uses thereof
WO2022076462A1 (en) 2020-10-05 2022-04-14 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
CN116348115A (zh) 2020-10-09 2023-06-27 阿斯利康(英国)有限公司 抗体-药物缀合物和parp1选择性抑制剂的组合
AU2021366287A1 (en) 2020-10-20 2023-04-13 Kantonsspital St. Gallen Antibodies or antigen-binding fragments specifically binding to Gremlin-1 and uses thereof
JP2023545566A (ja) 2020-10-20 2023-10-30 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Pd-1軸結合アンタゴニストとlrrk2阻害剤との併用療法
WO2022093981A1 (en) 2020-10-28 2022-05-05 Genentech, Inc. Combination therapy comprising ptpn22 inhibitors and pd-l1 binding antagonists
WO2022098648A2 (en) 2020-11-04 2022-05-12 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies and anti-cd79b antibody drug conjugates
KR20230095119A (ko) 2020-11-04 2023-06-28 제넨테크, 인크. 항-cd20/항-cd3 이중특이적 항체를 사용한 치료를 위한 투약
CA3196076A1 (en) 2020-11-04 2022-05-12 Chi-Chung Li Subcutaneous dosing of anti-cd20/anti-cd3 bispecific antibodies
CN116916919A (zh) 2020-11-11 2023-10-20 第一三共株式会社 抗体-药物缀合物与抗SIRPα抗体的组合
US20230398230A1 (en) 2020-11-12 2023-12-14 Daiichi Sankyo Company, Limited Treatment of mesothelioma by administration of anti-b7-h3 antibody-drug conjugate
KR20230114747A (ko) 2020-11-30 2023-08-01 오노 야꾸힝 고교 가부시키가이샤 Her2 표적화제
TW202237639A (zh) 2020-12-09 2022-10-01 日商武田藥品工業股份有限公司 鳥苷酸環化酶c(gcc)抗原結合劑之組成物及其使用方法
WO2022124247A1 (ja) 2020-12-09 2022-06-16 国立大学法人 東京医科歯科大学 前頭側頭葉変性症の予防又は治療剤
TW202237638A (zh) 2020-12-09 2022-10-01 日商武田藥品工業股份有限公司 烏苷酸環化酶c(gcc)抗原結合劑之組成物及其使用方法
WO2022132904A1 (en) 2020-12-17 2022-06-23 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Human monoclonal antibodies targeting sars-cov-2
WO2022140797A1 (en) 2020-12-23 2022-06-30 Immunowake Inc. Immunocytokines and uses thereof
WO2022153195A1 (en) 2021-01-13 2022-07-21 Memorial Sloan Kettering Cancer Center Anti-dll3 antibody-drug conjugate
EP4277664A1 (en) 2021-01-13 2023-11-22 Memorial Sloan Kettering Cancer Center Antibody-pyrrolobenzodiazepine derivative conjugate
CN117120084A (zh) 2021-01-28 2023-11-24 维肯芬特有限责任公司 用于调节b细胞介导的免疫应答的方法和手段
WO2022162203A1 (en) 2021-01-28 2022-08-04 Vaccinvent Gmbh Method and means for modulating b-cell mediated immune responses
JP2024504493A (ja) 2021-01-28 2024-01-31 ヴァクスィーンヴェント ゲーエムベーハー B細胞媒介性免疫応答を調節するための方法及び手段
CN117396502A (zh) 2021-02-09 2024-01-12 佐治亚大学研究基金会有限公司 针对肺炎球菌抗原的人类单克隆抗体
CN117642178A (zh) 2021-02-09 2024-03-01 美国政府(由卫生和人类服务部的部长所代表) 靶向冠状病毒刺突蛋白的抗体
CA3208365A1 (en) 2021-02-15 2022-08-18 Chantal KUHN Cell therapy compositions and methods for modulating tgf-b signaling
AR124914A1 (es) 2021-02-18 2023-05-17 Mitsubishi Tanabe Pharma Corp Nuevo anticuerpo anti-pad4
US20220378929A1 (en) 2021-02-25 2022-12-01 MediBoston Limted Anti-her2 antibody-drug conjugates and uses thereof
CA3210069A1 (en) 2021-03-03 2022-09-09 Tong Zhu Antibody-drug conjugates comprising an anti-bcma antibody
EP4301472A1 (en) 2021-03-05 2024-01-10 Dynamicure Biotechnology LLC Anti-vista constructs and uses thereof
CN117157319A (zh) 2021-03-09 2023-12-01 Xencor股份有限公司 结合cd3和cldn6的异二聚抗体
WO2022192586A1 (en) 2021-03-10 2022-09-15 Xencor, Inc. Heterodimeric antibodies that bind cd3 and gpc3
KR20230148226A (ko) 2021-03-10 2023-10-24 이뮤노웨이크 인크. 면역조절 분자 및 이의 용도
TW202300521A (zh) 2021-03-15 2023-01-01 美商建南德克公司 治療狼瘡性腎炎的組成物及方法
WO2022197877A1 (en) 2021-03-19 2022-09-22 Genentech, Inc. Methods and compositions for time delayed bio-orthogonal release of cytotoxic agents
JP2024511424A (ja) 2021-03-25 2024-03-13 ダイナミキュア バイオテクノロジー エルエルシー 抗igfbp7構築物およびその使用
IL305818A (en) 2021-03-29 2023-11-01 Daiichi Sankyo Co Ltd Multispecific stable compound and its use
AR125344A1 (es) 2021-04-15 2023-07-05 Chugai Pharmaceutical Co Ltd Anticuerpo anti-c1s
EP4330282A1 (en) 2021-04-30 2024-03-06 F. Hoffmann-La Roche AG Dosing for combination treatment with anti-cd20/anti-cd3 bispecific antibody and anti-cd79b antibody drug conjugate
EP4337266A1 (en) 2021-05-12 2024-03-20 Genentech, Inc. Methods of using anti-cd79b immunoconjugates to treat diffuse large b-cell lymphoma
TW202306993A (zh) 2021-05-14 2023-02-16 美商建南德克公司 Trem2之促效劑
EP4155321A1 (en) 2021-06-04 2023-03-29 Chugai Seiyaku Kabushiki Kaisha Anti-ddr2 antibodies and uses thereof
EP4351582A1 (en) 2021-06-09 2024-04-17 F. Hoffmann-La Roche AG Combination of a particular braf inhibitor (paradox breaker) and a pd-1 axis binding antagonist for use in the treatment of cancer
EP4355785A1 (en) 2021-06-17 2024-04-24 Amberstone Biosciences, Inc. Anti-cd3 constructs and uses thereof
CN117616123A (zh) 2021-06-25 2024-02-27 中外制药株式会社 抗ctla-4抗体
AR126236A1 (es) 2021-06-25 2023-10-04 Chugai Pharmaceutical Co Ltd Uso del anticuerpo anti-ctla-4
TW202317633A (zh) 2021-07-08 2023-05-01 美商舒泰神(加州)生物科技有限公司 特異性識別tnfr2的抗體及其用途
CN115812082A (zh) 2021-07-14 2023-03-17 舒泰神(北京)生物制药股份有限公司 特异性识别cd40的抗体及其应用
WO2023004386A1 (en) 2021-07-22 2023-01-26 Genentech, Inc. Brain targeting compositions and methods of use thereof
US20230099756A1 (en) 2021-08-07 2023-03-30 Genentech, Inc. Methods of using anti-cd79b immunoconjugates to treat diffuse large b-cell lymphoma
WO2023019239A1 (en) 2021-08-13 2023-02-16 Genentech, Inc. Dosing for anti-tryptase antibodies
CN117858905A (zh) 2021-08-19 2024-04-09 豪夫迈·罗氏有限公司 多价抗变体fc区抗体及使用方法
TW202317637A (zh) 2021-08-26 2023-05-01 日商協和麒麟股份有限公司 與cd116及cd131結合之雙特異性抗體
TW202328177A (zh) 2021-08-27 2023-07-16 美商建南德克公司 治療tau病理學之方法
TW202325727A (zh) 2021-08-30 2023-07-01 美商建南德克公司 抗聚泛素多特異性抗體
US20230109496A1 (en) 2021-09-06 2023-04-06 Genmab B.V. Antibodies capable of binding to cd27, variants thereof and uses thereof
AU2022347380A1 (en) 2021-09-15 2024-04-11 Daiichi Sankyo Company, Limited Antibody-drug conjugate for use in methods of treating chemotherapy-resistant cancer
WO2023044272A1 (en) 2021-09-17 2023-03-23 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Synthetic humanized llama nanobody library and use thereof to identify sars-cov-2 neutralizing antibodies
TW202321308A (zh) 2021-09-30 2023-06-01 美商建南德克公司 使用抗tigit抗體、抗cd38抗體及pd—1軸結合拮抗劑治療血液癌症的方法
TW202342095A (zh) 2021-11-05 2023-11-01 英商阿斯特捷利康英國股份有限公司 用於治療和預防covid—19之組成物
WO2023081818A1 (en) 2021-11-05 2023-05-11 American Diagnostics & Therapy, Llc (Adxrx) Monoclonal antibodies against carcinoembryonic antigens, and their uses
WO2023086807A1 (en) 2021-11-10 2023-05-19 Genentech, Inc. Anti-interleukin-33 antibodies and uses thereof
TW202337494A (zh) 2021-11-16 2023-10-01 美商建南德克公司 用莫蘇妥珠單抗治療全身性紅斑狼瘡(sle)之方法及組成物
TW202334202A (zh) 2021-11-16 2023-09-01 瑞士商Ac免疫有限公司 用於治療和診斷的新分子
TW202329936A (zh) 2021-11-18 2023-08-01 英商阿斯特捷利康英國股份有限公司 抗體-藥物結合物與parp1選擇性抑制劑之組合
WO2023126822A1 (en) 2021-12-28 2023-07-06 Astrazeneca Uk Limited Combination of antibody-drug conjugate and rasg12c inhibitor
TW202339805A (zh) 2021-12-28 2023-10-16 英商阿斯特捷利康英國股份有限公司 抗體-藥物結合物及atr抑制劑之組合
US20230227545A1 (en) 2022-01-07 2023-07-20 Johnson & Johnson Enterprise Innovation Inc. Materials and methods of il-1beta binding proteins
WO2023139292A1 (en) 2022-01-24 2023-07-27 Cambridge Enterprise Limited Tau therapy
WO2023154824A1 (en) 2022-02-10 2023-08-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Human monoclonal antibodies that broadly target coronaviruses
WO2023156549A1 (en) 2022-02-16 2023-08-24 Ac Immune Sa Humanized anti-tdp-43 binding molecules and uses thereof
TW202342520A (zh) 2022-02-18 2023-11-01 美商樂天醫藥生技股份有限公司 抗計畫性死亡配體1(pd—l1)抗體分子、編碼多核苷酸及使用方法
WO2023173026A1 (en) 2022-03-10 2023-09-14 Sorrento Therapeutics, Inc. Antibody-drug conjugates and uses thereof
WO2023175483A1 (en) 2022-03-16 2023-09-21 Astrazeneca Uk Limited A scoring method for an anti-trop2 antibody‑drug conjugate therapy
WO2023180353A1 (en) 2022-03-23 2023-09-28 F. Hoffmann-La Roche Ag Combination treatment of an anti-cd20/anti-cd3 bispecific antibody and chemotherapy
WO2023192827A1 (en) 2022-03-26 2023-10-05 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Bispecific antibodies to hiv-1 env and their use
WO2023192881A1 (en) 2022-03-28 2023-10-05 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to hiv-1 env and their use
WO2023191816A1 (en) 2022-04-01 2023-10-05 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023194565A1 (en) 2022-04-08 2023-10-12 Ac Immune Sa Anti-tdp-43 binding molecules
WO2023198727A1 (en) 2022-04-13 2023-10-19 F. Hoffmann-La Roche Ag Pharmaceutical compositions of anti-cd20/anti-cd3 bispecific antibodies and methods of use
WO2023201299A1 (en) 2022-04-13 2023-10-19 Genentech, Inc. Pharmaceutical compositions of therapeutic proteins and methods of use
WO2023203177A1 (en) 2022-04-20 2023-10-26 Kantonsspital St. Gallen Antibodies or antigen-binding fragments pan-specifically binding to gremlin-1 and gremlin-2 and uses thereof
TW202400140A (zh) 2022-04-27 2024-01-01 日商第一三共股份有限公司 抗體-藥物結合物與ezh1及/或ezh2抑制劑之組合
WO2023209177A1 (en) 2022-04-29 2023-11-02 Astrazeneca Uk Limited Sars-cov-2 antibodies and methods of using the same
WO2023215737A1 (en) 2022-05-03 2023-11-09 Genentech, Inc. Anti-ly6e antibodies, immunoconjugates, and uses thereof
WO2023219613A1 (en) 2022-05-11 2023-11-16 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023218378A1 (en) 2022-05-11 2023-11-16 Daiichi Sankyo Company, Limited Combination of an antibody specific for a tumor antigen and a cd47 inhibitor
WO2023228095A1 (en) 2022-05-24 2023-11-30 Daiichi Sankyo Company, Limited Dosage regimen of an anti-cdh6 antibody-drug conjugate
WO2023235699A1 (en) 2022-05-31 2023-12-07 Jounce Therapeutics, Inc. Antibodies to lilrb4 and uses thereof
WO2023240058A2 (en) 2022-06-07 2023-12-14 Genentech, Inc. Prognostic and therapeutic methods for cancer
WO2023237706A2 (en) 2022-06-08 2023-12-14 Institute For Research In Biomedicine (Irb) Cross-specific antibodies, uses and methods for discovery thereof
WO2024015897A1 (en) 2022-07-13 2024-01-18 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024020407A1 (en) 2022-07-19 2024-01-25 Staidson Biopharma Inc. Antibodies specifically recognizing b- and t-lymphocyte attenuator (btla) and uses thereof
WO2024020432A1 (en) 2022-07-19 2024-01-25 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024020564A1 (en) 2022-07-22 2024-01-25 Genentech, Inc. Anti-steap1 antigen-binding molecules and uses thereof
WO2024023750A1 (en) 2022-07-28 2024-02-01 Astrazeneca Uk Limited Combination of antibody-drug conjugate and bispecific checkpoint inhibitor
WO2024030829A1 (en) 2022-08-01 2024-02-08 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Monoclonal antibodies that bind to the underside of influenza viral neuraminidase
WO2024028732A1 (en) 2022-08-05 2024-02-08 Janssen Biotech, Inc. Cd98 binding constructs for treating brain tumors
WO2024028731A1 (en) 2022-08-05 2024-02-08 Janssen Biotech, Inc. Transferrin receptor binding proteins for treating brain tumors
WO2024037633A2 (en) 2022-08-19 2024-02-22 Evive Biotechnology (Shanghai) Ltd Formulations comprising g-csf and uses thereof
WO2024044779A2 (en) 2022-08-26 2024-02-29 Juno Therapeutics, Inc. Antibodies and chimeric antigen receptors specific for delta-like ligand 3 (dll3)
WO2024049949A1 (en) 2022-09-01 2024-03-07 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
WO2024054929A1 (en) 2022-09-07 2024-03-14 Dynamicure Biotechnology Llc Anti-vista constructs and uses thereof
WO2024054822A1 (en) 2022-09-07 2024-03-14 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Engineered sars-cov-2 antibodies with increased neutralization breadth
WO2024064826A1 (en) 2022-09-22 2024-03-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to plasmodium falciparum circumsporozoite protein and their use
CN116200329B (zh) * 2023-02-22 2023-08-29 洛阳赛奥生物工程技术有限公司 一种无血清昆虫培养基及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064618A1 (en) * 1998-06-08 1999-12-16 Dcv, Inc., Doing Business As Bio-Technical Resources Vitamin c production in microorganisms and plants

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613352A (en) 1979-07-02 1981-02-09 Tokan Kogyo Co Ltd Easily openable container
ATE255162T1 (de) 1983-01-13 2003-12-15 Max Planck Gesellschaft Transgene dicotyledone pflanzenzellen und pflanzen
NL8300698A (nl) 1983-02-24 1984-09-17 Univ Leiden Werkwijze voor het inbouwen van vreemd dna in het genoom van tweezaadlobbige planten; agrobacterium tumefaciens bacterien en werkwijze voor het produceren daarvan; planten en plantecellen met gewijzigde genetische eigenschappen; werkwijze voor het bereiden van chemische en/of farmaceutische produkten.
JPS60123857A (ja) 1983-12-09 1985-07-02 Konishiroku Photo Ind Co Ltd 画像形成方法
ATE73845T1 (de) 1984-05-11 1992-04-15 Ciba Geigy Ag Transformation von pflanzenerbgut.
ZA872705B (en) 1986-04-22 1987-10-05 Immunex Corporation Human g-csf protein expression
IL84459A (en) 1986-12-05 1993-07-08 Agracetus Apparatus and method for the injection of carrier particles carrying genetic material into living cells
EP0279582A3 (en) 1987-02-17 1989-10-18 Pharming B.V. Dna sequences to target proteins to the mammary gland for efficient secretion
JP2928287B2 (ja) 1988-09-29 1999-08-03 協和醗酵工業株式会社 新規ポリペプチド
JPH02257891A (ja) 1989-03-31 1990-10-18 Kyowa Hakko Kogyo Co Ltd 組換え動物細胞による蛋白質の製造
JPH0322979A (ja) 1989-06-19 1991-01-31 Kyowa Hakko Kogyo Co Ltd 新規プラスミノーゲン活性化因子
US5204253A (en) 1990-05-29 1993-04-20 E. I. Du Pont De Nemours And Company Method and apparatus for introducing biological substances into living cells
AU669124B2 (en) 1991-09-18 1996-05-30 Kyowa Hakko Kirin Co., Ltd. Process for producing humanized chimera antibody
JP3131322B2 (ja) 1991-12-17 2001-01-31 協和醗酵工業株式会社 新規α2→3シアリルトランスフェラーゼ
US5591616A (en) 1992-07-07 1997-01-07 Japan Tobacco, Inc. Method for transforming monocotyledons
JP3154564B2 (ja) * 1992-09-07 2001-04-09 科学技術振興事業団 モノクローナル抗体の改変方法
WO1997010354A1 (en) 1995-09-11 1997-03-20 Kyowa Hakko Kogyo Co., Ltd. ANTIBODY AGAINTS α-CHAIN OF HUMAN INTERLEUKIN 5 RECEPTOR
EP0816503B1 (en) * 1996-01-24 2006-07-05 Toyo Boseki Kabushiki Kaisha Alpha-1-6 fucosyltransferases
EP0904101B1 (en) * 1996-04-10 2006-01-18 Neose Technologies, Inc. Nucleic acids encoding gdp-fucose pyrophosphorylase
US5728568A (en) 1996-11-22 1998-03-17 Genetics Institute, Inc. Human GDP-mannose 4,6 dehydratase
JP4550947B2 (ja) * 1997-03-19 2010-09-22 協和発酵キリン株式会社 ガングリオシドgm2に対するヒト型相補性決定領域(cdr)移植抗体
EP2261229A3 (en) * 1998-04-20 2011-03-23 GlycArt Biotechnology AG Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity
JP3991294B2 (ja) 1998-05-06 2007-10-17 株式会社ヴァレオサーマルシステムズ 自動車用空気調和装置のファンユニット
EP2270148A3 (en) * 1999-04-09 2011-06-08 Kyowa Hakko Kirin Co., Ltd. Method for controlling the activity of immunologically functional molecule
JP2000308526A (ja) 1999-04-28 2000-11-07 Yoshihiro Inomura 鐙型ブラシ
CA2401491C (en) 2000-03-03 2011-07-05 Kyowa Hakko Kogyo Co., Ltd. Ccr4-binding antibody and diagnostic and therapeutic uses thereof
JP5623683B2 (ja) * 2000-03-22 2014-11-12 フィトン ホールディングス,リミティド ライアビリティ カンパニー 動物型糖鎖付加機能をもつ植物細胞
ES2639222T5 (es) * 2000-10-06 2023-11-24 Kyowa Kirin Co Ltd Células que producen unas composiciones de anticuerpo
US20090028877A1 (en) * 2003-10-09 2009-01-29 Shigeru Iida Antibody Composition Specifically Binding to Ganglioside Gm
JP6109648B2 (ja) * 2013-05-29 2017-04-05 株式会社ぐるなび 鉄道を利用した商品販売支援システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064618A1 (en) * 1998-06-08 1999-12-16 Dcv, Inc., Doing Business As Bio-Technical Resources Vitamin c production in microorganisms and plants

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Molecular Cloning and Expression of GDP-D-mannose-4,6-dehydratase, a Key Enzyme for Fucose Metabolism Defective in Lec13 Cells;Chikara Ohyama等;《J Biol Chem》;19980605;第273卷(第23期);1-5 *
Two chinese hamster ovary glycosylation mutants affected in the conversion of GDP-mannose to GDP-fucose;James Ripka等;《Archives of Biochemistry and Biophysics》;19860930;第249卷(第2期);1-5 *

Also Published As

Publication number Publication date
JP5384677B2 (ja) 2014-01-08
EP1331266B1 (en) 2017-01-04
ES2620359T3 (es) 2017-06-28
EA200300443A1 (ru) 2003-10-30
EA200600469A1 (ru) 2006-08-25
EP2314686B2 (en) 2023-06-21
CN1894406A (zh) 2007-01-10
KR20030081312A (ko) 2003-10-17
JP5384601B2 (ja) 2014-01-08
MXPA03002974A (es) 2004-05-05
EP3690043A1 (en) 2020-08-05
CA2424602A1 (en) 2003-04-02
JP5547754B2 (ja) 2014-07-16
JP2018078890A (ja) 2018-05-24
CA2953239A1 (en) 2002-04-18
CN103333860A (zh) 2013-10-02
WO2002031140A1 (fr) 2002-04-18
KR100877676B1 (ko) 2009-01-09
JP2012085655A (ja) 2012-05-10
CA2785941C (en) 2017-01-10
AU9419801A (en) 2002-04-22
AU2001294198B2 (en) 2007-11-29
EP2314685B1 (en) 2017-09-20
EP2314686A1 (en) 2011-04-27
EP2314686B1 (en) 2017-07-05
JP2012075441A (ja) 2012-04-19
JP6010147B2 (ja) 2016-10-19
JP2016185163A (ja) 2016-10-27
JP2013231032A (ja) 2013-11-14
EP1331266A4 (en) 2005-07-13
EA013563B1 (ru) 2010-06-30
JP5770783B2 (ja) 2015-08-26
JP2008113663A (ja) 2008-05-22
EA013224B1 (ru) 2010-04-30
BR0114475A (pt) 2003-12-23
JPWO2002031140A1 (ja) 2004-02-19
JP4290423B2 (ja) 2009-07-08
EP3263702A1 (en) 2018-01-03
CA2424602C (en) 2012-09-18
DK2314686T4 (da) 2023-08-21
JP2009142288A (ja) 2009-07-02
JP6523404B2 (ja) 2019-05-29
CN102311986A (zh) 2012-01-11
HU231090B1 (hu) 2020-07-28
JP5301525B2 (ja) 2013-09-25
ES2651952T3 (es) 2018-01-30
AU2001294198C1 (en) 2019-04-04
PL362520A1 (en) 2004-11-02
JP2015131807A (ja) 2015-07-23
HUS2000035I1 (hu) 2022-11-28
JP4740931B2 (ja) 2011-08-03
CA2785941A1 (en) 2002-04-18
ES2639222T3 (es) 2017-10-25
EP1331266A1 (en) 2003-07-30
JP2011092203A (ja) 2011-05-12
DK2314686T3 (en) 2017-09-11
JP6270930B2 (ja) 2018-01-31
HUP0402066A3 (en) 2012-09-28
PL218428B1 (pl) 2014-12-31
JP4741011B2 (ja) 2011-08-03
CN103333860B (zh) 2015-07-08
HUP0402066A2 (hu) 2005-01-28
EP2314685A1 (en) 2011-04-27
JP5815641B2 (ja) 2015-11-17
ES2639222T5 (es) 2023-11-24
JP2014043455A (ja) 2014-03-13
AU2001294198B9 (en) 2008-08-07
JP2012087131A (ja) 2012-05-10

Similar Documents

Publication Publication Date Title
CN102311986B (zh) 产生抗体组合物的细胞
US10233475B2 (en) Antibody composition-producing cell
AU2003236015A1 (en) Process for producing antibody composition

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Tokyo, Japan

Patentee after: Union Kirin Co., Ltd.

Address before: Tokyo, Japan

Patentee before: Kyowa Hakko Kirin Co., Ltd.

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20150819