WO2006109698A1 - 遺伝子組換えエリスロポイエチン組成物 - Google Patents

遺伝子組換えエリスロポイエチン組成物 Download PDF

Info

Publication number
WO2006109698A1
WO2006109698A1 PCT/JP2006/307377 JP2006307377W WO2006109698A1 WO 2006109698 A1 WO2006109698 A1 WO 2006109698A1 JP 2006307377 W JP2006307377 W JP 2006307377W WO 2006109698 A1 WO2006109698 A1 WO 2006109698A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
protein
dna
amino acid
erythropoietin
Prior art date
Application number
PCT/JP2006/307377
Other languages
English (en)
French (fr)
Inventor
Yutaka Kanda
Mitsuo Satoh
Tsuyoshi Yamada
Kazuya Yamano
Original Assignee
Kyowa Hakko Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co., Ltd. filed Critical Kyowa Hakko Kogyo Co., Ltd.
Publication of WO2006109698A1 publication Critical patent/WO2006109698A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/505Erythropoietin [EPO]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention is a composition comprising a recombinant erythropoietin molecule having an N-glycoside-linked complex type sugar chain, wherein the N-glycoside-linked complex type sugar chain is at the reducing end of the sugar chain.
  • the present invention relates to a composition of erythropoietin which is a sugar chain in which fucose is bound to N-acetylcylcosamine!
  • Blood cells are differentiated and matured into mature cells by the action of common blood cell stem cell forces and various blood cell factors.
  • erythroid late progenitor cells The maturation stage of colonyforming unit-erythroid (CFU-E) is the rate-limiting stage.
  • Erythropoietin is a hematopoietic hormone that promotes differentiation into red blood cells by acting on cells at this stage.
  • erythropoietin is produced mainly in the kidney, but is produced in very small amounts according to the partial pressure of oxygen in the blood and secreted into the blood.
  • the erythropoietin secreted into the blood passes through various trap mechanisms in the blood and reaches the target tissue, the bone marrow.
  • Erythropoietin stimulates erythroid progenitor cells in the bone marrow and promotes their maturation, increasing the number of red blood cells in peripheral blood.
  • erythropoietin-deficient anemia occurs when erythropoietin production is reduced due to kidney disease or when blood is drained out of the body by artificial dialysis. Eris Mouth Boyetin is used as a treatment for such renal anemia.
  • the molecular weight of erythropoietin is about 30,000, about 18,000 for the protein portion and about 12,000 for the sugar chain portion.
  • Mature erythropoietin has 165 amino acids, and there are two S-S bonds in the molecule that are essential for maintaining the active structure.
  • three N-glycoside-linked sugar chains and one 0-glycoside-linked sugar chain are bonded to the erythroboyetin molecule.
  • the basic structure of the N-glycoside-linked sugar chain that binds to the erythropoietin molecule is shown below.
  • a tetraantennary complex glycan is About 95% of the N-glycoside-linked sugar chains, which are the main sugar chains, and the neutral sugar chains, the fucose is linked to N-acetylyldarcosamine at the terminal by ⁇ 1,6 bonds.
  • Non-patent document 5 ⁇ -glycoside sugar chain structure and in vitro activity of erythropoietin have been analyzed in detail, and it has been clarified that the N-glycoside-linked core sugar chain part strongly supports the binding to the receptor.
  • Non-Patent Documents 7 to 9 it is known that 0-glycoside-linked sugar chains are not involved in the biological activity of erythropoietin.
  • commercially available genetically modified erythropoietin drugs use animal cells that can add an appropriate sugar chain to erythropoietin so that it has the same activity as human erythropoietin. Manufactured.
  • Non-patent Document 12 erythropoietin occurs because it is captured and degraded by galactose-binding protein in the liver.
  • Erythropoietin-deficient anemia occurs when erythropoietin production decreases due to kidney disease, or when blood is drained out of the body by dialysis.
  • anemia and uremia appear due to decreased renal function, and at the time of starting dialysis treatment, the hematocrit level is 20%, which is less than half that of healthy individuals, and presents as strong and anemia.
  • Periodic blood transfusions have been used to treat these patients with renal failure, but the advent of genetically modified erythrocyte boyetin has changed the way of treatment. Erythropoietin's therapeutic effect on renal anemia is outstanding and greatly contributes to improving patients' QOL.
  • the most important side effect is increased blood pressure associated with hematopoiesis, which is observed in about 5% of patients in Japan and more frequently in the West. This is thought to be because blood viscosity increases with increasing hematocrit and resistance to peripheral blood vessels increases. Normally, increased peripheral vascular resistance does not increase blood pressure because it decreases cardiac output via the nerve, but it does not increase blood pressure, but the balance of accommodation in patients with a high hematocrit rate or predisposition to hypertension It is thought that blood pressure collapses and blood pressure rises. Therefore, in the treatment of anemia with erythropoietin, the hematocrit level is around 1% per week. Slow treatment that remains elevated is considered desirable.
  • Non-patent Document 13 In order to prolong the blood half-life of erythropoietin preparations, changes to intravenous injections and subcutaneous injections have been attempted. It is estimated that it may have resulted in an increase in current patients.
  • erythropoietin preparations have contributed greatly to the treatment of patients with renal dialysis as a breakthrough treatment for renal insufficiency anemia.
  • % In order to give a precise treatment to raise the dose, it is necessary to administer 3 times a week. This is a great burden not only for patients but also in the medical field, and there is a need for a therapeutic drug for renal insufficiency anemia that can reduce the number of administrations.
  • the number of patients on renal dialysis tends to increase year by year, and if the patient can live a more normal social life, the effect on the social economy will be great.
  • Non-Patent Document 14 amino acid variants in which the number of N-daricoside-linked complex sugar chains to be added to erythropoietin is increased, polyethylene, The power of attempts to develop glycol-modified compounds (Non-patent Documents 15 and 16). When such modifications are applied, the ability to bind to the erythropoietin receptor is greatly reduced in any case. Also, antigenic problems due to amino acid modification are assumed. Patients who have once developed anti-erythroboietin antibodies can become serious problems because they have to rely on classic blood transfusion treatments and sometimes fall into the situation.
  • Non-Patent Document 2 Journal of Biological Chemistry 263, 3657 (1988)
  • Non-Patent Literature 3 Journal of Biological Chemistry 262, 12059 (1987)
  • Non-Patent Document 4 Biochemistry 27, 5646 (1988)
  • Non-Patent Document 5 Proceedings of the National Academy of Sciences USA 86, 7819 (1989)
  • Non-Patent Document 6 Glycobiology 1, 337 (1991)
  • Non-Patent Document 7 Biochemistry 31, 9871 (1992)
  • Non-Patent Literature 8 Journal of Biological Chemistry 267, 7703 (1992)
  • Non-Patent Document 9 Blood 77, 2624 (1991)
  • Non-Patent Document 10 European Journal of Biochemistry 194, 457 (1990)
  • Non-Patent Document 11 Journal of Biological Chemistry 265, 12127 (1990)
  • Non-Patent Document 12 Blood 73, 84 (1989)
  • Non-Patent Document 13 Nephrology Dialysis Transplantation 18 [Suppl 8], viii37 (2003)
  • Non-Patent Document 14 British Journal of Cancer 84, 3 (2001)
  • Non-Patent Document 15 Nephrology and Dialysis and Transplantation Suppl4, 166 (2003) Non-Patent Document 16 Journal of Pharmaceutical Science 93, 3027 (2004)
  • the present invention relates to the following (1) to (23).
  • a composition comprising a recombinant erythropoietin molecule having an N-glycoside-linked complex type sugar chain, wherein the N-glycoside-linked complex type sugar chain is an N-acetyl dalcosamine at the reducing end of the sugar chain
  • An erythropoietin composition that is a sugar chain with fucose bound thereto.
  • the N-glycoside-linked complex type sugar chain is a sugar chain in which N-acetylyldarcosamine at the reducing end of the sugar chain is a sugar chain in which position 1 of fucose is not ⁇ -bonded.
  • Erythropoietin composition is a sugar chain in which N-acetylyldarcosamine at the reducing end of the sugar chain is a sugar chain in which position 1 of fucose is not ⁇ -bonded.
  • a protein comprising an amino acid sequence having 80% or more homology with the amino acid sequence represented by SEQ ID NO: 6, and having erythropoiesis activity.
  • the host cell is an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose, or N-glycyl-linked complex N-acetylyldarcosamine at the 6-position of the reducing end of fucosase 1
  • the transformant according to the above (5) which is a cell whose genome has been altered so that the activity of an enzyme involved in sugar chain modification in which the position is ⁇ -linked is lost.
  • the host cell is an enzyme involved in the synthesis of intracellular sugar nucleotides GDP-fucose, or ⁇ -acetylcylcosamine at the 6-position of ⁇ ⁇ -acetylcyldarcosamine at the reducing end of ⁇ -glycoside-linked complex
  • amino acid sequence represented by SEQ ID NO: 8 one or more amino acids are deleted, substituted, inserted, and have Z or added amino acid sequence ability, and have GDP-mannose 4,6-dehydratase activity protein;
  • amino acid sequence represented by SEQ ID NO: 10 one or more amino acids are deleted, substituted, inserted and Z or added, and the amino acid sequence power is GDP-4-keto-6-deoxy-D- A protein having mannose-3,5-epimerase activity;
  • (c) It consists of an amino acid sequence having 80% or more homology with the amino acid sequence represented by SEQ ID NO: 10, and has GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase activity protein.
  • Fucosyl is an enzyme involved in sugar chain modification in which the 1-position of fucose is a-linked to the 6-position of N-acetylyldarcosamine at the reducing end of the N-glycoside-linked complex type sugar chain
  • a 1,6-fucosyltransferase is a protein for which a group force consisting of the following (a), (b), (c), (d), (e) and (1) is also selected (13 ).
  • amino acid sequence represented by SEQ ID NO: 14 one or more amino acids are deleted, substituted, inserted, and have Z or added amino acid sequence ability, and have an ⁇ 1,6-fucosyltransferase activity.
  • a protein comprising an amino acid sequence having 80% or more homology with the amino acid sequence represented by SEQ ID NO: 14, and having a 1,6-fucosyltransferase activity.
  • Herochawantake lectin AAL Lectin from Aleuria aurantia
  • the host cell has the following (a), (b), (c), (d), (, (£), (g), (h), (i) and (j) forces
  • the transformant according to any one of (5) to (19) above is cultured in a medium, and an erythropoietin composition is produced and accumulated in the culture.
  • the manufacturing method of an erythropoietin composition including the process of extract
  • a medicament comprising the erythropoietin composition according to (1) to (4) and (21) as an active ingredient.
  • An erythropoiesis agent comprising the erythropoietin composition according to any one of (1) to (4) and (21) as an active ingredient.
  • a recombinant erythroboyer having an N-glycoside-linked complex type sugar chain The N-glycoside-bonded complex sugar chain is a sugar chain in which fucose is bound to N-acetylcylcosamine at the reducing end of the sugar chain!
  • a medicament comprising an erythropoietin composition is provided.
  • FIG. 1 shows the production flow of plasmid pBS-EPO.
  • FIG. 2 shows the production flow of plasmid pKAN-EPO.
  • FIG. 3 shows the KU812 cell line growth promoting activity of the EPO composition.
  • FIG. 4 shows the change in blood concentration of EPO composition in CD-I mice.
  • FIG. 5 shows the blood kinetic parameters of the EPO composition.
  • FIG. 6 shows the production flow of plasmid pBS-NESP.
  • FIG. 7 shows the production flow of plasmid pKAN-NESP.
  • a composition comprising a recombinant erythropoietin molecule having an N-glycoside-linked complex type sugar chain according to the present invention, wherein the N-glycoside-linked complex type sugar chain is a reducing end of the sugar chain.
  • the erythropoietin composition (hereinafter also referred to as “the composition of the present invention”), which is a sugar chain, is a sugar chain in which fucose is bound to N-acetylyldarcosamine!
  • Any thread and composition can be included as long as it is an erythropoietin thread composed of a recombinant erythropoietin molecule in which fucose is bound to N-acetylyldarcosamine at the chain reducing end.
  • erythropoietin is an erythropoietin having an affinity for the erythropoietin receptor, and stimulating erythroid late progenitor cells to promote their maturation, thereby causing red blood cells in peripheral blood.
  • erythropoietin include a protein encoded by the following DNA (a), (b), (c), (d), (e) or (1), or the following (g), ( h), (0, (j), (k), (1), (m), (n) or (o) protein.
  • DNA consisting of the base sequence represented by SEQ ID NO: 3;
  • amino acid sequence represented by SEQ ID NO: 6 a protein having one or more amino acid deletions, substitutions, insertions, and Z or added amino acid sequence ability and having erythropoiesis activity;
  • a protein comprising an amino acid sequence having 80% or more homology with the amino acid sequence represented by SEQ ID NO: 6 and having erythropoiesis activity.
  • the DNA that hybridizes under stringent conditions is, for example, DNA such as DNA having the base sequence represented by SEQ ID NO: 1, 2, or 3, or a fragment thereof, as a probe.
  • DNA such as DNA having the base sequence represented by SEQ ID NO: 1, 2, or 3, or a fragment thereof, as a probe.
  • plaque' hybridization method or Southern blot hybridization method, etc. This refers to the DNA obtained, specifically, after hybridization at 65 ° C in the presence of 0.7 to 1.
  • the DNA capable of hybridizing is DNA having at least 60% or more homology with the base sequence represented by SEQ ID NO: 1, 2, or 3, preferably 70% or more, more preferably 80% or more, and still more preferably May be DNA having homology of 90% or more, particularly preferably 95% or more, and most preferably 98% or more.
  • a protein having an amino acid sequence ability in which one or more amino acids are deleted, substituted, inserted and Z or added in the amino acid sequence represented by SEQ ID NO: 4, 5, or 6 and having an erythrocytosis activity Molecular 'Crowing 2nd Edition, Current' Protocols. In. Molecular Biology, Nucleic Acids Research, 10, 6487 (198 2), Proc. Natl. Acad. Sci., USA, 79, 6409 (1982) Gene, 34,315 (1985), Nucleic Acids Research, 13, 4431 (1985), Proc. Natl. Acad. Sci. USA, 82, 488 (1985), etc.
  • it means a protein that can be obtained by introducing a site-specific mutation into DNA encoding a protein having the amino acid sequence represented by SEQ ID NO: 4, 5, or 6.
  • the number of amino acids to be deleted, substituted, inserted and Z or added is 1 or more, and the number is not particularly limited, but deletion, substitution or substitution can be performed by well-known techniques such as the above-mentioned site-specific mutation introduction method.
  • the number can be added, for example, 1 to several tens, preferably 1 to 20, more preferably 1 to: L0, and further preferably 1 to 5.
  • the protein having 80% or more homology with the amino acid sequence represented by SEQ ID NO: 4, 5, or 6 and having erythropoiesis activity is BLASTCj.Mol. Biol, 215. 403 (1990)] and FASTA [Methods in Enzymology, 183, 63 (1990)], etc., the amino acid sequence described in SEQ ID NO: 4, 5 or 6 was calculated.
  • the erythropoietin activity includes the activity of erythropoietin that stimulates erythroid progenitor cells to promote their maturation and increase the number of erythrocytes in peripheral blood.
  • N-glycoside-linked sugar chains bound to glycoproteins are known to have a common core structure represented by the following structural formula (I) in any of the various structures.
  • Structural Formula (I) In Structural Formula (I), the end of the sugar chain that binds to asparagine is called the reducing end, and the opposite side is called the non-reducing end.
  • the N-glycoside-linked sugar chain has a high mannose type in which only mannose binds to the non-reducing end of the core structure, and galactose —N-acetyldarcosamine (hereinafter referred to as Ga ⁇ GlcNAc) on the non-reducing end of the core structure. 1) or more, specifically four branches containing the ratatosamine structure formed in step 2), and further, sialic acid and bismuth on the non-reducing terminal side of Ga ⁇ GlcNAc.
  • the erythropoietin molecule constituting the composition of the present invention has at least three additional N-glycoside-linked sugar chain sequences, and three or more N-glycoside bonds at these sites.
  • Sugar chains bind.
  • Specific examples of the N-glycoside-bonded sugar chain that binds to erythropoietin include the above-mentioned N-glycoside-bonded complex sugar chains.
  • the N-glycoside-bonded complex sugar chain that binds to the erythroboyetin molecule includes such a sugar chain that includes the core structure represented by the structural formula (I), so there are many combinations of sugar chains. Will do.
  • the composition of the present invention may be composed of erythropoietin molecules having a single sugar chain structure as long as the effects of the present invention can be obtained.
  • the composition of the present invention is V, N-glycoside-linked complex-type sugar chain reducing terminal, even if the sugar chain structure is shifted.
  • N-acetyl darcosamine has fucose bonded! /, N! /, And has a sugar chain.
  • N-glycoside-bonded complex sugar chain N-acetylyldarcosamine is bound to N-acetylyldarcosamine at the reducing end. Any sugar chain may be included as long as the sugar chain is not bound to a non-reducing terminal sugar chain.
  • the 1st position of fucose is the 6th position of the N-glycidyl darcosamine of the N-glycoside-bonded complex sugar chain (X-linked!
  • a sugar chain in which fucose is not bound to ⁇ -acetyldylcosamine at the sugar chain reducing end means that fucose is not substantially bound to the sugar chain.
  • the fucose content is 0%. The fact that fucose is not substantially bonded is Physically
  • fucose binds to N-glycidyl darcosamine at the reducing end of an N-glycoside-linked complex-type sugar chain such as human urine-derived or recombinant erythroboyetin, which is also known in the past.
  • an N-glycoside-linked complex-type sugar chain such as human urine-derived or recombinant erythroboyetin, which is also known in the past.
  • the transformant of the present invention includes any transformant as long as it is capable of producing the composition of the present invention. Specifically, a transformant obtained by introducing DNA encoding an erythropoietin molecule into a host cell such as the following (a) or (b) is mentioned.
  • Enzymes involved in the synthesis of intracellular sugar nucleotide GDP-fucose include GDP-mannose 4,6-dehydratase (GMD), GDP-4-keto-6-deoxy-D-mannose-3,5 -Epimerase (FX).
  • the GDP-mannose 4,6-dehydratase includes a protein encoded by the following DNA (a) or (b), or a protein (c), (d) or (e) below. .
  • a protein having an amino acid sequence ability represented by SEQ ID NO: 8 (c) a protein having an amino acid sequence ability represented by SEQ ID NO: 8; (d) In the amino acid sequence represented by SEQ ID NO: 8, one or more amino acids are deleted, substituted, inserted, and have Z or added amino acid sequence ability, and have GDP-mannose 4,6-dehydratase activity protein;
  • a protein comprising an amino acid sequence having 80% or more homology with the amino acid sequence represented by SEQ ID NO: 8, and having GDP-mannose 4,6-dehydratase activity.
  • GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase includes a protein encoded by the following DNA (a) or (b), or the following (c), (D) or (e) protein.
  • amino acid sequence represented by SEQ ID NO: 10 one or more amino acids are deleted, substituted, inserted and Z or added, and the amino acid sequence is GDP-4-keto-6-deoxy-D-mannose.
  • (c) It consists of an amino acid sequence having 80% or more homology with the amino acid sequence represented by SEQ ID NO: 10, and has GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase activity Protein.
  • N-glycoside-linked complex-type sugar chain reducing terminal N-acetylcylcosamine has an enzyme involved in sugar chain modification in which the 1-position of fucose is a-linked to the 6-position of a 1,6-fucosyltransferase For example.
  • ⁇ 1,6-fucosyltransferase is a protein encoded by the following DNA (a), (b), (c) or (d), or (, (£), (g), (H), (0 or (j) protein, etc.).
  • a protein comprising an amino acid sequence having 80% or more homology with the amino acid sequence represented by SEQ ID NO: 14, and having a 1,6-fucosyltransferase activity.
  • DNA that hybridizes under stringent conditions is, for example, DNA such as DNA having a nucleotide sequence represented by SEQ ID NO: 7, 9, 11, or 12, or a fragment thereof.
  • DNA obtained by using the Koguchi-ichi 'hybridization method, plaque' hybridization method, Southern hybridization method, etc. as a probe, specifically derived from colonies or plaques.
  • OM sodium chloride 0.1 to 2 times the concentration of SSC solution (The composition of the SSC solution with a 1-fold concentration consists of 150 mM sodium chloride and 15 mM sodium quenate), and DNA can be identified by washing the filter under 65 ° C conditions.
  • DNA Cloning 1 Core Techniques, A Practical Approach, Second Edition, Oxford University (This can be carried out according to the method described in ti, etc. 199.
  • Specific examples of DNA that can be hybridized under stringent conditions include the base represented by SEQ ID NO: 7, 9, 11 or 12.
  • the amino acid sequence represented by SEQ ID NO: 8 consists of an amino acid sequence in which one or more amino acids are deleted, substituted, inserted and Z or added, and the GDP-mannose 4,6-dehydratase activity
  • GDP-4-keto-6-deoxy-D -A protein having mannose-3,5-epimerase activity or an amino acid sequence having one or more amino acids deleted, substituted, inserted and Z or added in the amino acid sequence represented by SEQ ID NO: 13 or 14.
  • the number of amino acids to be deleted, substituted, inserted and Z or added is 1 or more, and the number is not particularly limited, but the above site-specific mutagenesis is possible. It is a number that can be deleted, substituted or added by a known technique such as a method, for example, 1 to several tens, preferably 1 to 20, more preferably 1 to 10, and still more preferably. 1 to 5 pieces.
  • the present invention comprises an amino acid sequence having 80% or more homology with the amino acid sequence represented by SEQ ID NO: 8, 10, 13 or 14, and has GDP-mannose 4,6-dehydratase activity. , GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase activity or ⁇ 1,
  • the amino acid sequence represented by SEQ ID NO: 8, 10, 13 or 14 and BLAST [J. Mol.
  • a host cell lacking the enzyme activity described above, that is, an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose, or N-glycidyl-linked complex N-acetylyldarcosamine at the reducing end of the sugar chain.
  • the enzyme involved in the synthesis of the intracellular sugar nucleotide GDP-fucose, or N-acetylcolcamine at the reducing end of N-daricoside-linked complex sugar chain, position 6 of fucose is ⁇ -linked
  • a mutation is introduced into the expression regulatory region of the gene so as to eliminate the expression of the enzyme, or the function of the enzyme It means that a mutation is introduced into the amino acid sequence of the gene so as to disappear.
  • Introducing mutation means that the base sequence on the genome is deleted, substituted, inserted, and deleted or added, and the base sequence is modified, completely suppressing the expression or function of the modified genomic gene.
  • Knock out to do it is one in which all or part of the target gene has been deleted from the genome. It can be knocked out by removing the genomic region of the etason containing the start codon of the target gene.
  • any method can be used as long as the target genome can be modified.
  • any lectin that can recognize the sugar chain structure can be used. Specific examples of this are: Lentil lectin LCA (Lentil Agglutinin from Lens Culinaris), Endumame lectin PS A (Peum sativum-derived PeaLectin), Broad bean lectin VFA (Agglutini n from Vicia faba), Hirochawantake lectin AAL ( Lectin from Aleuria aurantia).
  • a cell resistant to lectin refers to a cell whose growth is not inhibited even when an effective concentration of lectin is given.
  • the effective concentration is not less than the concentration at which cells before the genomic gene is modified (hereinafter also referred to as “parent cell”) cannot grow normally, preferably the concentration at which cells before the modified genomic gene cannot grow , More preferably 2 to 5 times, still more preferably 10 times, and most preferably 20 times or more.
  • the effective concentration of lectin whose growth is not inhibited may be appropriately determined depending on the cell line, but is usually 10 / zg / ml to 10 mg / ml, preferably 0.5 mg / ml to 2.0 mg. / ml.
  • the transformant of the present invention may be any cell that can express the composition of the present invention! / Yeast, but yeast, animal cells, insect cells, plant cells, etc. may be mentioned. Specific examples include those described in 2. below. Specific examples of animal cells include CHO cells derived from Chinese omster ovary tissue, rat myeloma cell line YB2 / 3HL.P2.G11.16Ag.20 cell, mouse myeloma cell line NS0 cell, mouse myeloma cell line SP2 / 0- Examples include Agl4 cells, Syrian hamster kidney tissue-derived BHK cells, human leukemia cell lines Namalba cells, embryonic stem cells, and fertilized egg cells.
  • a host cell for producing a recombinant glycoprotein pharmaceutical a recombinant glycoprotein pharmaceutical Embryonic stem cells or fertilized egg cells used to produce non-human transgenic animals that produce products, and plant cells used to produce transgenic plants that produce genetically modified glycoprotein drugs .
  • an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose, or N-glycidyl-linked glycan reducing end N-acetylcylcosamine at position 6 of fucose It includes cells prior to the application of a technique for altering the genomic gene of an enzyme involved in sugar chain modification in which position 1 is OC-linked. For example, the following cells are preferable.
  • NS0 cell parent cell lines are described in the literature such as Bio / Technology (BIO / TECHNOLOGY), 10, 169 (1992), Biotechnology No. 1 Bioengineering (Biotechnol. Bioeng.), 73, 261, (2 001), etc. NS0 cells are listed.
  • NS0 cell line (RCB0213) registered with the RIKEN Cell Development Bank, or sub-strains obtained by acclimatizing these strains to various serum-free media are also included.
  • SP2 / 0-Agl4 cells are listed.
  • SP2 / 0-Agl4 cells (ATCC CRL-1581) registered in ATCC or these strains conditioned in various serum-free media.
  • the strain (ATCC CRL-1581.1) is also included.
  • CHO-K1 strain ATCC CCL-61
  • DUXB11 strain ATCC CRL-9096
  • Pro-5 strain ATCC CRL-1781 registered in ATCC
  • commercially available CHO-S strain (Life Technolo) Cat # l 1619) manufactured by gies, or substrains obtained by acclimating these strains to various serum-free media.
  • the parent cell of rat myeloma cell line YB2 / 3HL.P2.G11.16Ag.20 cell includes a cell line established from Y3 / Ag 1.2.3 cell (ATCC CRL-1631).
  • YB2 / 3HL.P2.G11.16Ag.20 cells described in literatures such as J. Cell. Biol, 93, 576 (1982) and Methods Enzymol. 73B, 1 (1981).
  • YB2 / 3HL.P2.G11.16Ag.20 cells ATCC CRL-1662 registered in ATCC or substrains in which these strains are conditioned to various serum-free media are also included.
  • a gene encoding erythropoietin is introduced into a CHO cell into which a gene encoding ⁇ 1,6-fucosyltransferase has been knocked out.
  • ⁇ - ⁇ 04 0AFMS705 strain a gene that encodes GDP-mannose 4,6-dehydratase, knocked out in a CHO cell into which a gene encoding erythropoietin has been introduced
  • Examples include the PKAN-EP04GMDKO strain, which is a strain obtained by acclimating a transformed strain to a serum-free medium.
  • erythropoietin mutant a mutant of erythropoietin having erythropoiesis activity
  • PKAN-NESP MS705 strain is a transformant in which a gene encoding the erythropoietin mutant described in SEQ ID NO: 2 is introduced into a CHO cell in which a gene encoding ⁇ 1,6-fucosyltransferase is knocked out.
  • PKAN-NESP C HO SM strain which is a transformant obtained by introducing a gene encoding the erythroboietin mutant described in SEQ ID NO: 2 into CHO cells in which the gene encoding GDP-mannose 4,6-dehydratase has been knocked out, can give.
  • the transformant of the present invention has an affinity for an erythropoietin receptor equivalent to that of the erythropoietin composition obtained from the parent cell line, and has an increased half-life in blood clots.
  • An erythropoietin composition can be produced.
  • the binding activity of erythropoietin composition to the erythropoietin receptor, the half-life in blood, and the hematocrit increase activity are measured by the known in vitro test or in vitro test of mice, rats, etc. It can be measured using an in vivo test using a model animal or a clinical test using a human (Basic and Clinical, 22 (15), 5531 (1988), J. Pharm. Pharmacol, 42, 758 ( 1990), J. Urology, 146, 1645 (1991), basic and clinical, 22 (15), 5547 (1988), basic and clinical, 22 (16), 5811 (1988)).
  • the host cell used for producing erythropoietin composition of the present invention can be produced by the method described below.
  • the host cell used for producing the erythropoietin composition of the present invention is an enzyme involved in the synthesis of intracellular sugar nucleotides GDP-fucose or N-glycidyl-linked complex N-acetylyldarcosamine It is created by using a gene disruption method targeting the gene of the enzyme involved in sugar chain modification (hereinafter referred to as “enzyme related to fucose modification”) in which position 1 of fucose binds to position 6 of can do.
  • GDP-fucose examples include GDP-mannose 4,6-dehydratase (hereinafter referred to as “GMD”), GDP-4-keto-6-deoxy -D-mannose-3,5-epimerase (hereinafter referred to as “Fx”).
  • GMD GDP-mannose 4,6-dehydratase
  • Fx GDP-4-keto-6-deoxy -D-mannose-3,5-epimerase
  • enzymes involved in glycosylation in which the 1-position of fucose is a-linked to the 6-position of N-glycidyl darcosamine at the N-glycoside-bonded glycan reducing end examples include ⁇ 1,6-fucosyl Examples include transferase and a-L-fucosidase.
  • the gene herein includes DNA or RNA.
  • any method can be used as the gene disruption method as long as it can destroy the gene of the target enzyme.
  • Examples include the antisense method, ribozyme method, homologous recombination method, RNA-DNA oligonucleotide method (hereinafter referred to as “RDO method”), RNA interference method (hereinafter referred to as “RNAi method”). ), A method using a retrovirus, a method using a transposon, and the like. These will be specifically described below.
  • the host cell used for the preparation of the erythropoietin composition of the present invention targets an enzyme gene related to fucose modification, Cell Engineering, 12, 239 (1993), Bio-Z Technology (BIO / TECHNOLOGY), ⁇ 7, 1097. (1999), Human 'Molecular ⁇ ⁇ ⁇ Genet., 5, 1083 (1995), Cell engineering, 13, 255 (1994), Proceedings' Ob The National Academia
  • using the antisense method or ribozyme method described in pp . Natl. Acad. Sci. USA, 96, 1 886 (1999), etc. Can do.
  • cDNA or genomic DNA encoding an enzyme related to fucose modification is prepared.
  • an antisense gene or ribozyme construct of appropriate length including the DNA part encoding the enzyme related to fucose modification, the part of the untranslated region or the intron part.
  • a recombinant vector is prepared by inserting the full-length fragment or the full length into the downstream of the promoter of an appropriate expression vector.
  • a transformant is obtained by introducing the recombinant vector into a host cell suitable for the expression vector.
  • a host cell used for preparing the erythropoietin composition of the present invention By selecting a transformant using the activity of an enzyme related to fucose modification as an indicator, a host cell used for preparing the erythropoietin composition of the present invention can be obtained.
  • a host cell used for producing the erythropoietin composition of the present invention is obtained by selecting a transformant using the sugar chain structure of the glycoprotein on the cell membrane or the sugar chain structure of the produced glycoprotein molecule as an index. You can also.
  • the host cell used for producing the erythropoietin composition of the present invention has an enzyme gene related to target fucose modification such as yeast, animal cell, insect cell, plant cell, etc. Any of these can be used. Specifically, the host cell described in 3 below can be mentioned.
  • the expression vector is capable of autonomous replication in the above host cell, or can be integrated into the chromosome and contains a designed antisense gene or a promoter at a position where a ribozyme can be transcribed. .
  • the expression vector described in 3 below can be mentioned.
  • Examples of the method for selecting a transformant using the activity of an enzyme related to fucose modification as an index include the following methods.
  • Examples of a method for selecting a transformant using the sugar chain structure of a glycoprotein on a cell membrane as an index include the method described in (5) of 1 below.
  • Glycostructure of produced glycoprotein molecules Examples of the method for selecting a transformant using as an index include the methods described in 5 and 6 below.
  • Examples of a method for preparing cDNA encoding an enzyme related to fucose modification include the methods described below.
  • Total RNA or mRNA is prepared from the tissues or cell strength of various host cells.
  • a cDNA library is prepared from the prepared total RNA or mRNA.
  • a degenerative primer is prepared, and a gene fragment encoding the enzyme related to fucose modification is obtained by PCR using the prepared cDNA library as a saddle type To do.
  • a cDNA library can be screened to obtain DNA encoding an enzyme related to fucose modification.
  • Human or non-human animal thread and tissue or cell mRNA may be commercially available (for example, Clontech) V, and human or non-human animal tissue or cell force may also be prepared as follows. It's good.
  • Examples of a method for preparing mRNA as total RNA poly (A) + RNA include an oligo (dT) -fixed cellulose column method (Molecular 'Crowning 2nd edition).
  • mRNA can be prepared by using a commercially available kit such as Fast Track mRNA Isolation Kit (Invitrogen) or Quick Prep mRNA Purification Kit (Pharmacia).
  • kit such as Fast Track mRNA Isolation Kit (Invitrogen) or Quick Prep mRNA Purification Kit (Pharmacia).
  • a cDNA library is prepared from the prepared human or non-human animal tissue or cell mRNA.
  • a method for preparing a cDNA library Molecular 'Crowing 2nd Edition, Current Protocols in Molecular Biology, A Laboratory Manual, 2nd Ed. 1989) or a commercially available kit such as Superscript Plasmid System for cDNA Synthesis and Plasmid Cloning (Life Technologies Neeri, ZAP-cDNA bynt hesis Kit (STRATAGENE)).
  • any phage vector or plasmid vector can be used as long as it can autonomously replicate in Escherichia coli K12.
  • ZAP Express [STRATAGENE, Strategies, 5, 58
  • Escherichia coli is preferably used as a host microorganism for preparing a cDNA library. Specifically, Escherichia coli XLl-Blue MRF '[STRATAGENE, Strategies, 5, 81 (1992)], Es cherichia coli C600 “Genetics. 39, 440 (1954) 1. Escherichia coli Y108 8 [ Science, 222, 778 (1983) 1. Escherichia coli Yl 090 "Science, 222, 778 (1983) 1, Escherichia coli NM522" Journal of Molecura ⁇ Bio Mouth 0. Mol.
  • Gene fragments encoding enzymes related to fucose modification can be obtained by amplifying DNA using PCR Protocols, Academic Press (1990).
  • the obtained gene fragment is a DNA encoding an enzyme related to fucose modification, which means that a base sequence analysis method commonly used, for example, a dideoxy method of Sanger et al. [Proceedings. National Academic ⁇ ⁇ ⁇ Ob 'Science (Proc. Natl. A cad. Sci. USA), 74, 5463 (1977)] or ABI PRISM377 DNA Sequencer (Applied Biosystems) etc. This can be confirmed by analyzing them.
  • a colony hybridization or a plaque hybridization (molecular clone) from a cDNA or cDNA library synthesized from mRNA contained in tissues or cells of human or non-human animals. -Nu 2nd edition) etc. can be used to obtain DNA for enzymes related to fucose modification.
  • a cDNA or cDNA library synthesized from mRNA contained in human or non-human animal tissues or cells using the primers used to obtain a gene fragment encoding an enzyme related to fucose modification as a saddle type. Amplify using the PCR method to repair fucose
  • the obtained DNA base sequence encoding the enzyme related to fucose modification is usually used.
  • Nucleotide sequence analysis methods such as the Sidi et al. Dideoxy method [Procedinas • The National 'A Force. Acid. Sci. USA]. 74 , 5463 (1977)] or by using a base sequence analyzer such as ABI PRISM377 DNA Sequencer (Applied Biosystems) or the like, the base sequence of the DNA can be determined.
  • a homology search program such as BLAST is used to search a base sequence database such as Genbank, EMBL, and DDBJ. It can also be confirmed that the gene encodes an enzyme related to fucose modification.
  • Examples of the base sequence of the gene encoding the enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose obtained by the above method include the base sequence set forth in SEQ ID NO: 7 or 9.
  • a gene encoding an enzyme involved in sugar chain modification in which the 1-position of fucose is oc-bonded to the 6-position of N-glycidyl dalcosamine at the N-glycoside-linked complex sugar reducing end obtained by the above method examples include the base sequence described in SEQ ID NO: 11 or 12.
  • Examples of a method for preparing genomic DNA of an enzyme related to fucose modification include the methods described below.
  • genomic DNA of an enzyme related to fucose modification can be obtained by using a genomic DNA library screening system (GenomeSystems) or Unigen GenomeWalker TM Kits (CLONTECH).
  • the obtained DNA base sequence encoding the enzyme related to fucose modification is usually used.
  • the base sequence of the DNA can be determined.
  • a homology search program such as BLAST is used to search a base sequence database such as Genbank, EMBL and DDBJ. It is also possible to confirm that the gene encodes an enzyme related to fucose modification.
  • nucleotide sequence of the genomic DNA of the enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose obtained by the above method include the nucleotide sequences set forth in SEQ ID NOs: 15, 16, 17, and 18.
  • Examples thereof include the base sequence set forth in SEQ ID NO: 19.
  • the erythropoietin composition of the present invention can be obtained by directly introducing an antisense oligonucleotide or ribozyme designed based on the base sequence of an enzyme related to fucose modification without using an expression vector into a host cell. Obtaining the host cells used to produce
  • Antisense oligonucleotides or ribozymes can be prepared by conventional methods or DNA synthesizers. Specifically, it corresponds to a continuous 5 to 150 bases, preferably 5 to 60 bases, more preferably 10 to 40 bases of cDNA and genomic DNA base sequences encoding enzymes related to fucose modification. Based on the sequence information of the oligonucleotide having the sequence, an oligonucleotide (antisense oligonucleotide) corresponding to the sequence complementary to the oligonucleotide or a ribozyme containing the sequence of the oligonucleotide is synthesized. Can be prepared.
  • oligonucleotide examples include oligo RNA and derivatives of the oligonucleotide (hereinafter referred to as oligonucleotide derivatives).
  • Oligonucleotide derivatives include oligonucleotide derivatives in which phosphodiester bonds in oligonucleotides are converted to phosphorothioate bonds, and phosphodiester bonds in oligonucleotides are converted to ⁇ 3'- ⁇ 5 'phosphoramidate bonds.
  • Oligonucleotide derivatives Oligonucleotide derivatives, oligonucleotide derivatives in which the ribose and phosphodiester bonds in the oligonucleotide are converted to peptide nucleic acid bonds, oligonucleotide derivatives in which the uracil in the oligonucleotide is replaced with C-5 propylene uracil, in the oligonucleotide
  • the host cell used to produce the erythropoietin composition of the present invention is produced by targeting the gene of an enzyme related to fucose modification and modifying the target gene on the chromosome using a homologous recombination method. Can do.
  • a target vector for homologous recombination of the target gene to be modified (for example, a structural gene of an enzyme related to fucose modification or a promoter gene) is prepared.
  • a host cell used for preparing the erythroboyetin composition of the present invention by introducing the prepared target vector into a host cell and selecting a cell that has undergone homologous recombination between the target gene on the chromosome and the target vector. Can be produced.
  • a yeast cell As a host cell, a yeast cell, an animal cell, an insect cell, a plant cell, etc. can be used as long as it has a gene for an enzyme related to the target fucose modification.
  • Examples of the method for preparing genomic DNA of an enzyme related to fucose modification include the method for preparing genomic DNA described in (1) (a) of 1 above.
  • the target vector can be either a replacement type or an insertion type.
  • Methods for efficiently selecting homologous recombinants include, for example, Gene Targeting, A Practic al Approach, IRL Press at Oxford University Press (1993), 8 Gene targeting, production of mutant mice using ES cells (Yodosha) (1995)
  • Methods such as positive selection, promoter selection, negative selection, and poly A selection described in the above can be used.
  • Methods for selecting the desired homologous recombinants from the selected cell lines include the Southern Hybridization Method (Molequila's Cloning 2nd Edition) for genomic DNA and the PCR method [PCR Protocols. (PCR Protocols), Academic Press (1990)].
  • the host cell used for preparing the erythropoietin composition of the present invention can be prepared as follows, for example, by targeting the gene of an enzyme related to fucose modification and using the RDO method.
  • cDNA or genomic DNA of the enzyme related to fucose modification is prepared using the method described in (1) (a) of 1 above.
  • the synthesized RDO is introduced into the host cell and related to the targeted enzyme, ie, fucose modification.
  • a host cell for preparing the composition of the present invention can be prepared.
  • a yeast cell As a host cell, a yeast cell, an animal cell, an insect cell, a plant cell, etc. can be used as long as it has a gene for an enzyme related to the target fucose modification.
  • Examples include the method for preparing cDNA described in 1) (a).
  • Examples thereof include a method for preparing genomic DNA as described in (1) (a).
  • the DNA base sequence is cleaved with an appropriate restriction enzyme, and then subcloned into a plasmid such as pBluescript SK (-) (Stratagene), and a commonly used base sequence analysis method such as Sanger ( Sanger) et al. [Procedures of the National Academia Sci., USA), 74, 5463 (1977)] This can be confirmed by analysis using a base sequence analyzer such as ABI PRISM377 DNA Sequencer (Applied Biosystems).
  • a base sequence analyzer such as ABI PRISM377 DNA Sequencer (Applied Biosystems).
  • RDO can be prepared by a conventional method or using a DNA synthesizer.
  • Examples of the method for selecting a cell in which a difference has occurred include a method for directly detecting a mutation of a gene on a chromosome described in Molecular 'Crowing 2nd Edition, Current' Protocols in Molecular Biology.
  • a method for selecting a transformant using as an index the activity of an enzyme related to the introduced fucose modification described in (1) (a) of 1 above, and the cell membrane described in (1) (5) below A method for selecting a transformant using the sugar chain structure of the above glycoprotein as an index, or a method for selecting a transformant using the sugar chain structure of the produced glycoprotein molecule described in 5 or 6 below as an index. Can also be used.
  • RDO constructs are described in Science, 273, 1386 (1996); Nichiya's Medicine (Nature Medicine), 4, 285 (1998); Hepatology, 25, 1462 (1997); Gene 'Therapies (Gene Therapy), 5, 1960 (1999); Gene' Therapies (Gene Therapy), 5, 1960 (1999); Journal 'Ob' Molequila 'Medellin 0. Mol. 7); Procedures 'Ob The National' Academy ⁇ ⁇ Ob Science (Proc. Natl Acad. Sci. USA), 96, 8774 (1999); Procidein's The National Science (1999); Nucleic 'Acids' Research (Nuc. Acids. Res.), 27, 1323 (1999); Investigation 'Ob' Der Matology (Invest. (Nature e Biotech.), 16,1343 (1998); Nature e Biotech., 18, 4 3 (2000); Nature Biotech.), 18, 555 (2000) and the like.
  • the host cell used for preparing the erythropoietin composition of the present invention can be prepared as follows by targeting the gene of an enzyme related to fucose modification and using the RNAi method.
  • RNAi gene construct of an appropriate length that includes the enzyme coding for fucose modification or the untranslated region is designed.
  • a thread recombination vector is prepared by inserting the prepared cDNA fragment or full length downstream of the promoter of an appropriate expression vector.
  • a transformant is obtained by introducing the recombinant vector into a host cell suitable for the expression vector.
  • the erythropoietin composition of the present invention is prepared by selecting a transformant using as an index the activity of the enzyme related to the introduced fucose modification, the glycoprotein molecule produced or the sugar chain structure of the glycoprotein on the cell surface. Host cells used for the purpose can be obtained.
  • any yeast cell, animal cell, insect cell, plant cell, etc. can be used as long as it has a gene for an enzyme related to the target fucose modification. .
  • the host cells described in 3 below can be mentioned.
  • RNAi gene a vector that can replicate autonomously in the host cell or can be integrated into a chromosome and contains a promoter at a position where the designed RNAi gene can be transcribed is used.
  • the expression vector described in 3 below can be mentioned.
  • Examples of the method for selecting a transformant using the activity of an enzyme related to fucose modification as an index include the method described in (a) of (1) in this section 1.
  • Examples of a method for selecting a transformant using the sugar chain structure of a glycoprotein on a cell membrane as an index include the method described in (5) of this section 1. Examples of the method for selecting a transformant using the sugar chain structure of the produced glycoprotein molecule as an index include the methods described in 5 and 6 below.
  • Examples of a method for preparing cDNA of an enzyme related to fucose modification include the method for preparing cDNA described in (1) (a) of this section 1.
  • RNAi gene designed based on the base sequence of an enzyme related to fucose modification is directly introduced into the host cell without using an expression vector, so that the host cell used for producing the erythroboytin composition of the present invention is used. You can also get
  • RNAi gene can be prepared by a conventional method or using a DNA synthesizer.
  • the construct of the i gene is [Nature, 391, 806 (1998); Proc. , 95, 15502 (1998); Nature, 395, 854 (1998); Proceedings • The 'The' National 'A Force Demi''Ob' Science (Proc. Natl. Acad. Sci. USA) , 96, 5049 (1999); Cell, 95, 1017 (1998); Proceedings' Ob 'The' National 'Academia'O'Science (Proc. Natl. Acad. Sci. USA), 96 , 1451 (1999); Proceedings of 'The National Academy ⁇ ⁇ ⁇ Ob ⁇ Science (Pro Natl. Acad. Sci.
  • the host cell used to produce the erythropoietin composition of the present invention is an enzyme related to fucose modification using the transposon system described in Nature Genet., 25, 35 (2000), etc.
  • the transposon system is a system that induces mutations by randomly inserting foreign genes onto the chromosome, and is usually used as a vector to induce mutations in foreign genes inserted into transposons.
  • a transposase expression vector for randomly inserting the gene into the chromosome is introduced into the cell at the same time.
  • a transposase can be used if it is suitable for the transposon sequence used!
  • any gene can be used as long as it induces a mutation in the DNA of the host cell.
  • any yeast cell, animal cell, insect cell, plant cell or the like having an enzyme gene related to the target fucose modification can be used.
  • the host cells described in 3 below can be mentioned.
  • the recombinant vector introduction method suitable for various host cells described in 3 below can be used.
  • Examples of a method for selecting a mutant using as an index the activity of an enzyme related to fucose modification include the method described in (1) (a) of this section 1.
  • Examples of a method for selecting a mutant using the sugar chain structure of a glycoprotein on a cell membrane as an index include the method described in (5) of this section 1. Examples of the method for selecting a mutant using the sugar chain structure of the produced glycoprotein molecule as an index include the methods described in 5 and 6 below.
  • the host cell used for preparing the erythropoietin composition of the present invention can be prepared by using a technique for targeting a gene of an enzyme related to fucose modification and introducing a dominant negative form of the enzyme.
  • Specific examples of enzymes involved in the synthesis of intracellular sugar nucleotide GDP-fucose include GMD and Fx. N-glycoside bond complex type
  • enzymes involved in the sugar chain modification in which the 1-position of fucose is ⁇ -linked to the 6-position of N-acetyl darcosamine at the reducing end of the sugar chain include ⁇ ⁇ , 6-fucosyltransferase, a-L- F
  • Examples include cosidase.
  • GMD is taken as an example, and its production in the dominant negative form is specifically described below.
  • coli homology comparison and three-dimensional structure prediction based on amino acid sequence information, for example, CHO cell-derived GMD (SEQ ID NO: 8)
  • a dominant negative form can be prepared by substituting the threonine, 157th glutamic acid, 179th tyrosine, and 183rd lysine with other amino acids. Introduced such amino acid substitution Genes can be prepared using site-directed mutagenesis described in Molecular One Cloning, 2nd Edition, Current Protocols, In, Molecular, Biology, etc.
  • the host cell used for producing the erythropoietin composition of the present invention uses a gene encoding a dominant negative form of the target enzyme produced as described above (hereinafter abbreviated as a dominant negative form gene). According to the method of gene transfer described in Molecular 'Crowing 2nd Edition, Current' Protocorenoles' In 'Molecular' Biology, Manipulating 'Mouse' Enbrio 2nd Edition, etc. Can be produced.
  • a dominant negative gene of an enzyme related to fucose modification is prepared.
  • a recombinant vector is prepared by inserting the DNA fragment or full-length DNA downstream of the promoter of an appropriate expression vector.
  • a transformant is obtained by introducing the recombinant vector into a host cell suitable for the expression vector.
  • a host used for producing the erythroboyetin composition of the present invention by selecting a transformant using as an index the activity of an enzyme related to fucose modification, or the sugar chain structure of a glycoprotein molecule or glycoprotein on a cell membrane. Cells can be made.
  • any yeast cell, animal cell, insect cell, plant cell, etc. having an enzyme gene related to the target fucose modification can be used.
  • the host cells described in 3 below can be mentioned.
  • the expression vector is capable of autonomous replication in the above host cell or can be inserted into the chromosome, and can be transcribed at a position where the DNA encoding the desired dominant negative body can be transcribed.
  • Those containing a promoter are used. Specifically, the expression vector described in 3 below can be mentioned. [0127] For introduction of a gene into various host cells, the method for introducing a recombinant vector suitable for various host cells described in 3 below can be used.
  • Examples of the method for selecting a transformant using the activity of an enzyme related to fucose modification as an index include the method described in (a) of (1) below.
  • An example of a method for selecting a transformant using the sugar chain structure of a glycoprotein on a cell membrane as an index is as follows:
  • the host cell used for producing the erythropoietin composition of the present invention is a method of introducing a mutation into a gene of an enzyme related to fucose modification and selecting a desired cell line in which the enzyme is mutated Can be produced.
  • GMD As an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose, specifically, GMD
  • a method for introducing a mutation into an enzyme related to fucose modification 1) It is related to fucose modification from a mutant in which a parent strain is treated by a mutagenesis treatment or a spontaneously generated mutant. 2) A method for selecting a desired cell line based on the activity of the enzyme to be produced, 2) a sugar chain of a production glycoprotein molecule from a mutant obtained by treating the parent strain by mutagenesis treatment or a spontaneously generated mutant. A method of selecting a desired cell line using the structure as an index; 3) a glycoprotein sugar on the cell membrane of a cell derived from a mutant obtained by treating a parent line by mutagenesis treatment or a naturally occurring mutant. Examples thereof include a method of selecting a desired cell line using the chain structure as an index.
  • mutagenesis treatment there is a point mutation or deletion in the DNA of the parent cell line. Any treatment that induces a mutation can be used.
  • Examples of the method for identifying the sugar chain structure of the produced glycoprotein molecule include the methods described in 5 and 6 below.
  • Examples of the method for identifying the sugar chain structure of a glycoprotein on the cell membrane include the method described in 1 (5) of this section.
  • the host cell used to produce the erythropoietin composition of the present invention targets the gene of an enzyme related to fucose modification, and antisense RNAZDNA technology [Bioscience and Industry, ⁇ , 322 (1992), Chemical , 681 (1991), Biotechnology, 9, 358 (1992)
  • N-glycidyl-linked N-acetylyldarco at the reducing end
  • Specific examples of the enzyme involved in the sugar chain modification in which the 1-position of fucose is a-linked to the 6-position of samine include al, 6-fucosyltransferase and a-L-fucosidase.
  • the host cell used to produce the erythropoietin composition of the present invention has a sugar chain structure in which the 6-position of N-glycyldarcosamine at the N-glycoside-linked sugar chain reducing end and the 1-position of fucose are linked.
  • any lectin can be used as long as it recognizes a sugar chain structure in which the N-glycidylcolcamine 6-position of the N-glycoside-linked sugar chain reducing end and the 1-position of fucose are a- linked.
  • Specific examples include lentil lectin LCA (LentilAgglutinin from Lg Culinaris) endumamelectin PSA (Peum sativum-derived Pea Lectin), broad bean lectin VFA (Agglutinin from Yki ⁇ ha), Hiratiyawan Takelectin AAL (Lectin derived from Aleuria aurantia) and the like.
  • N-glycosides are preferably cultured by culturing for 1 day to 1 week, subculture the surviving cells or picking up colonies and transferring them to another culture vessel, followed by further culturing in a medium containing lectin.
  • a strain that is resistant to a lectin that recognizes a sugar chain structure in which the 6-position of N-acetylyldarcosamine at the reducing end of the linked sugar chain and the 1-position of fucose are OC-linked can be selected.
  • Transgenic non-human animals or plants or their progeny whose genomic genes have been modified so that the activity of the enzyme involved in modification of the sugar chain of the erythropoietin molecule is controlled Involved in glycosylation of intracellular sugar nucleotide GDP-fucose, or N-glycosidic complex N-acetylyldarcosamine at the 6-position of N-acetylyldarcosamine From the embryonic stem cells, fertilized egg cells, and plant callus cells of the present invention prepared using the above 1, targeting the gene of the enzyme to be produced, for example, it can be prepared as follows.
  • the target non-human animal for example, an embryonic stem cell such as a rabbit, a hidge, a goat, a pig, a horse, a mouse, a rat, a chicken, a monkey, or a rabbit
  • an embryonic stem cell such as a rabbit, a hidge, a goat, a pig, a horse, a mouse, a rat, a chicken, a monkey, or a rabbit
  • a chimeric individual having embryonic stem cell clones and normal cell power can be prepared by a technique such as a combined chimera method.
  • a technique such as a combined chimera method.
  • the activity of the enzyme involved in the synthesis of intracellular sugar nucleotides GDP-fucose in the whole body cell or the N-glycidyl-linked glycan reducing end N-acetylyldarcosamine It is possible to obtain a transgenic non-human animal in which the activity of the enzyme involved in glycosylation in which the 1-position of fucose is ⁇ -bonded at position 6 is reduced.
  • fertilized egg cells such as ushi, hidge, goat, pig, horse, mouse, rat, chicken, monkey, and rabbit, the method described in 1.
  • the activity of the enzyme involved in the synthesis of intracellular sugar nucleotides GDP-fucose or the fucosyl group at position 6 of the reducing end of ⁇ ⁇ -glycidyl-linked complex ⁇ -acetyldarcosamine A fertilized egg cell of the present invention in which the activity of an enzyme involved in sugar chain modification in which position 1 is oc-linked is reduced can be produced.
  • the fertilized egg cells thus produced are transplanted into the oviduct or uterus of a pseudopregnant female using the embryo transfer method described in Mapureating 'Mouse' Embryo 2nd edition, etc. Nucleotide GDP-enzyme activity involved in the synthesis of fucose or N-glycoside-linked complex sugar chain-reducing terminal N-acetylyldarcosamine Transgenic non-human animals with reduced activity can be produced.
  • the enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose can be obtained by applying the same method as described in 1. above to the target plant strength or cells.
  • Callus with reduced activity or the activity of an enzyme involved in sugar chain modification in which the 1-position of fucose is a- linked to the 6-position of N-acetyldarcosamine at the N-glycoside-linked complex sugar chain reducing end can be prepared.
  • the prepared callus was prepared by a known method [tissue culture, 20 (1994); tissue culture, 21 (1995);
  • the cells are cultured again in a medium containing auxin and cytokinin to synthesize intracellular sugar nucleotides GDP-fucose.
  • the erythropoietin composition of the present invention is composed of molecular 'Cloung 2nd edition, current' protocorores 'in' molecular, Neurology, Antibodies, A Laboratory manual, Cold Spring Harbor Laboratory, 1988 (hereinafter abbreviated as anti-bodies). ), Monoclonal Antioodies: principles and practice, Third Edition, Acaa. Press, 1993 (below, Monochrome ⁇ Nanole Antibodies), Antibody Engineering, A Practical Approach, IRL Press at Oxford University Press, 1996 For example, the expression is obtained in the host cell as follows, for example, Can do.
  • a full-length cDNA of an erythropoietin molecule is prepared, and a DNA fragment of an appropriate length containing a portion encoding the erythropoietin molecule is prepared.
  • a transformant producing an erythroboyetin molecule By introducing the recombinant vector into a host cell suitable for the expression vector, a transformant producing an erythroboyetin molecule can be obtained.
  • any strain can be used as long as it can express the target gene, such as yeast, animal cell, insect cell, plant cell and the like.
  • Cells obtained by an artificial method can also be used as host cells.
  • the expression vector is capable of autonomous replication in the above host cell or can be integrated into the chromosome, and can be used as a proprotein at a position where the DNA encoding the desired erythropoietin molecule can be transcribed.
  • a thing containing a motor is used.
  • a probe specific for a target erythropoietin molecule is obtained from a thread or tissue of a human or non-human animal or a cell. It can be prepared using a primer or the like.
  • yeast When yeast is used as a host cell, examples of the expression vector include YEP13 (ATC C37115), YEp24 (ATCC37051), YCp50 (ATCC37419) and the like. Any promoter can be used as long as it can be expressed in yeast strains. For example, promoters of glycolytic genes such as hexose kinase, PH05 promoter, PGK promoter, GAP promoter, ADH promoter Gall promoter, gal 10 promoter, heat shock protein promoter, MF al promoter, CUP 1 promoter and the like.
  • promoters of glycolytic genes such as hexose kinase, PH05 promoter, PGK promoter, GAP promoter, ADH promoter Gall promoter, gal 10 promoter, heat shock protein promoter, MF al promoter, CUP 1 promoter and the like.
  • Examples of host cells include microorganisms belonging to the genus Saccharomyces, Schizosaccharomyces, Kluybe mouth genus, Trichosporon, Schu-omyces, Pichia, etc., for example, Saccharom vces cerevisiae. Achizosaccharomvces pombe, Kluweromvces lactis. Tnchosporon pullulans, Schwanniomvces alluvius, Pichia pastoris, etc.
  • the method is to introduce DNA into yeast, the deviation is used.
  • the electo mouth position method [Met hods. Enzymol., 194, 182 (1990)]
  • the spheroplast method [Procedinas' of the National. Sci. USA, 84, 1929 (1978)]
  • Lithium acetate method [Journal of Bacteriology, ⁇ 53, 163 (1983)]
  • Proceedings 'Ob The National' Academia Sob. (Proc. Natl. Acad. Sci. USA), 75, 1929 (1978)].
  • expression vectors include pcDNAU pcD M8
  • Any promoter can be used as long as it can be expressed in animal cells.
  • a promoter of cytomegalovirus (CMV) IE (immediateearly) gene an early promoter of SV40, a retroinores promoter , Meta-mouthone promoter, heat shock promoter, SRa promoter, and the like.
  • CMV cytomegalovirus
  • As host cells, Namalwa cells, human cells, COS cells, monkey cells, CHO cells, Chinese'no, Muster cells, HBT5637 (Japanese Patent Laid-Open No. 63-299) , Rat myeloma cells, mouse myeloma cells, Syrian Nomster kidney-derived cells, Examples include embryonic stem cells and fertilized egg cells.
  • Any recombinant vector can be introduced by introducing DNA into animal cells.
  • the electopore position method [Cytotechnology, 3, 133 (1990)]
  • the calcium phosphate method Japanese Patent Laid-Open No. 2-227075
  • the lipofuxion method [Proceedings 'Ob The' National 'Academia ⁇ Science' (Proc. Natl. Acad. Sci. USA), 84, 7413 (1987)]
  • injection method [Mapleating the 'Mouse' Embryo Laboratory Laboratory Manual]
  • Particle Method of using a cancer (gene gun) Patent No. 2606856, Patent No.
  • composition of the present invention can be expressed by the method described in, for example, No. Z Technology (Bio / Technology), 6, 47 (1988). That is, a recombinant gene transfer vector and a baculovirus are co-introduced into insect cells to obtain a recombinant virus in the insect cell culture supernatant, and then the recombinant virus is further infected into the insect cells. Can be expressed.
  • Examples of the gene transfer vector used in the method include pVL1392, pVLl393, pBlueBacIII (both from Invitorogen) and the like.
  • Autographa californica nu clear polyhedrosis virus can be used for the outgrafa 'Cali forum-force' Nuclea 1 'polyhedrosis' virus, which is a virus that infects the night stealing insects.
  • Insect cells include ovarian cells of Spodoptera frugiperda, S19, S1 1 [Current 'Pokoto Norenozu' In 'Molechu Fu'Noroshii Baculovirus Expression Vectors, A La boratory Manual, WH Freeman and Company, New York (1992)], Trichoplusiani ovary cells such as High 5 (Invitrogen), etc. can be used.
  • the above recombinant gene transfer vector into insect cells for preparing a recombinant virus examples include, for example, the calcium phosphate method (Japanese Patent Laid-Open No. 2-227075), the lipofusion method [Proceedings' Ob The'National'Academia 1'Ob Science (Pro Natl. Acad. Sci USA), 84, 7413 (1987)].
  • expression vectors include Ti plasmids and tobacco mosaic virus vectors.
  • Any promoter can be used as long as it can be expressed in plant cells.
  • 35S promoter of cauliflower mosaic virus (CaMV) is a promoter of cauliflower mosaic virus (CaMV).
  • host cells include tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheat, barley, and other plant cells.
  • Any recombinant vector can be introduced by introducing DNA into plant cells.
  • Agrobacterium Japanese Patent Laid-Open No. 59-140885, Japanese Patent Laid-Open No. 60-70080, WO94 / 00977
  • Electroporation Position Method Japanese Patent Laid-Open No. 60-251887
  • Noticle Gun Japanese Patent No. 2606856, Japanese Patent No. 2517813
  • the transformant obtained as described above is cultured in a medium, the erythroboyetin composition of the present invention is produced and accumulated in the culture, and the composition is collected from the strength of the culture.
  • the erythropoietin composition of the invention can be produced.
  • the method for cultivating the transformant in a medium can be performed according to the usual method used for culturing host cells.
  • a medium for culturing a transformant obtained by using a eukaryote such as yeast as a host it contains a carbon source, a nitrogen source, inorganic salts, etc. that can be assimilated by the organism, so that the transformant can be cultured efficiently. If the medium can be used, the difference between natural and synthetic media can be used.
  • the carbon source as long as the organism can assimilate, glucose, fructose, sucrose, molasses containing these, carbohydrates such as starch or starch hydrolyzate, acetic acid, propionic acid, etc. Alcohols such as organic acids, ethanol, and propanol can be used.
  • Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium salts of organic acids such as ammonium salts, and other nitrogen-containing elements.
  • Compounds, peptone, meat extract, yeast extract, corn steep liquor, casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented cells and digested products thereof, and the like can be used.
  • inorganic salt monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride salt, ferrous sulfate, mangan sulfate, copper sulfate, calcium carbonate, etc. are used. be able to.
  • the culture is usually carried out under aerobic conditions such as shaking culture or deep aeration stirring culture.
  • the culture temperature is 15-40 ° C, and the culture time is usually 16 hours to 7 days.
  • the pH during the culture is maintained at 3.0 to 9.0.
  • the pH is adjusted using inorganic or organic acids, alkaline solutions, urea, calcium carbonate, ammonia, etc.
  • antibiotics such as ampicillin or tetracycline to the medium during culture.
  • an inducer may be added to the medium as necessary.
  • an inducer may be added to the medium as necessary.
  • indoleacrylic acid or the like When cultivating microorganisms transformed with propinole- ⁇ -D-thiogalatatopyranoside or the like using a trp promoter and a thread-and-replacement vector, indoleacrylic acid or the like may be added to the medium.
  • RPMI 1640 medium commonly used as a medium for cultivating transformants obtained using animal cells as a host [The Journal of the American American Medical Association (The Journal of the American Medical Association), Plastic, 519 (1967)], Eagle's MEM medium [Science, 12 ⁇ , 501 (1952)], Dulbecco's modified MEM medium [Virology, 8, 396 ( 1959), 199 medium [Proceeding of the Society for the Biologic Medicine, 73, 1 (1950)], Whitten medium [Development Engineering Experiment Manual-Transgenic 'How to Make Mice (Kodansha) Motoya Katsaki Ed. (1987) Hota can use media such as fetal bovine serum added to these media.
  • Cultivation is usually performed for 1 to 7 days under conditions of pH 6-8, 30-40 ° C, 5% CO, etc.
  • antibiotics such as kanamycin and penicillin may be added to the medium as needed during culture.
  • It is generally used as a medium for culturing transformants obtained using insect cells as hosts.
  • TNM-FH medium (Pharmingen), Sf-900 II SFM medium (Life Technologies), ExCell400, ExCell405 (all JRHBiosciences), Grace's Insect Medium [Nature, 195, 788 (1962)] Can be used.
  • Cultivation is usually carried out under conditions of pH 6-7, 25-30 ° C, etc. for 1-5 days.
  • antibiotics such as gentamicin may be added to the medium as needed during the culture.
  • Transformants obtained using plant cells as hosts are cultured as cells or differentiated into plant cells and organs. can do.
  • a medium for culturing the transformant commonly used Murashige 'and' Sturg (MS) medium, White medium, or these mediums are used.
  • a medium supplemented with plant hormones such as auxin and cytokinin can be used.
  • the culture is usually carried out under conditions of pH 5-9, 20-40 ° C for 3-60 days.
  • antibiotics such as kanamycin and hygromycin may be added to the medium as needed during the culture.
  • a recombinant vector incorporating DNA encoding an erythropoietin molecule As described above, a recombinant vector incorporating DNA encoding an erythropoietin molecule.
  • Transformants derived from microorganisms, animal cells, or plant cells possessing the same are cultured according to a normal culture method to produce and accumulate the erythropoietin composition of the present invention, and the erythropoietin composition is obtained from the culture. By collecting, the erythroboyin composition of the present invention can be produced.
  • a method for producing an erythropoietin composition there are a method of producing it in a host cell, a method of secreting it outside a host cell, or a method of producing it on the host cell outer membrane.
  • the method can be selected by changing the structure of the erythropoietin molecule to be produced.
  • the erythropoietin molecule is inserted.
  • the target erythropoietin molecule can be actively extracted and produced outside the host cell.
  • the production amount can also be increased using a gene amplification system using a dihydrofolate reductase gene or the like according to the method described in JP-A-2-27075. Furthermore, by redifferentiating the cells of the animal or plant into which the gene has been introduced, an animal individual (transgenic non-human animal) or plant individual (transgenic plant) into which the gene has been introduced is created.
  • the erythropoietin composition can also be produced using
  • the erythropoietin composition is reared or cultivated according to a usual method to produce and accumulate an erythropoietin composition, and the erythropoietin composition is produced from the animal individual or plant individual
  • the erythropoietin composition can be produced by collecting the product.
  • an animal individual for example, a transgenic non-human animal introduced with DNA encoding an erythropoietin molecule is bred, and an erythropoietin composition is produced and accumulated in the animal.
  • the erythropoietin composition can be produced by collecting the erythropoietin composition. Examples of the production / accumulation location in the animal include milk of the animal (JP-A 63-309192), eggs and the like. Promo used at this time
  • any protein that can be expressed in animals can be used.
  • ⁇ -casein promoter j8 casein promoter, 13 lactoglobulin promoter, whey acidic protein promoter, etc. Is preferably used.
  • An erythropoietin composition produced by a transformant introduced with a gene encoding an erythropoietin molecule for example, when erythropoietin composition is expressed in a dissolved state in cells, The cells are collected by centrifugation, suspended in an aqueous buffer solution, and then disrupted with an ultrasonic crusher, French press, Manton Gaurin homogenizer, dynomill, etc. to obtain a cell-free extract.
  • an ordinary enzyme isolation and purification method that is, a solvent extraction method, a salting-out method using ammonium sulfate, a desalting method, a precipitation method using an organic solvent, Anion-exchange chromatography using resin such as tilaminoethyl (DEAE) -Sepharose and DIAIONHPA-75 (Mitsubishi Chemical Corporation), and cation using resin such as S-Sepharose FF (Pharmacia) Exchange chromatography, hydrophobic chromatography using resins such as butyl sepharose and ferrule sepharose, gel filtration using molecular sieve, affinity chromatography, chromatofocusing, isoelectric focusing, etc.
  • a purified preparation of the erythropoietin composition can be obtained by using a single method or a combination of methods such as electrophoresis.
  • the erythropoietin composition When expressed by forming an insoluble substance in the cells, the cells are similarly collected and then crushed and centrifuged to obtain the erythropoietin composition as a precipitate fraction. The insoluble material is recovered. The recovered insoluble body of the erythropoietin composition is solubilized with a protein denaturant. By diluting or dialyzing the solubilized solution, the erythropoietin composition is returned to a normal three-dimensional structure, and then a purified preparation of the erythropoietin composition can be obtained by the same isolation and purification method as described above. it can.
  • the erythropoietin composition or a derivative thereof can be recovered in the culture supernatant. That is, the culture is the same as above.
  • the culture supernatant can be obtained by treating with a method such as centrifugation, and a purified preparation of the erythropoietin composition can be obtained from the culture supernatant by using the same isolation and purification method as described above. it can.
  • the cell is prepared after preparing a cell having the ability to express an erythropoietin molecule using the method described in 1 above.
  • the erythropoietin composition of the present invention can be produced by culturing and purifying the target erythropoietin composition from the culture.
  • the biological activity such as erythropoiesis activity of the purified erythropoietin composition can be measured using various known methods. Specifically, in vitro tests such as a method for measuring erythro-mouth vegetin receptor binding activity, a method for measuring erythroid colony formation activity, a method for measuring proliferation-promoting activity using erythroid cell lines, or It can be measured by in vivo tests using normal animals and anemia model animals (Basic and Clinical 22, 5547 (1988), Basic
  • erythropoietin composition as a test substance, commercially available erythropoietin with known concentration and specific activity as a standard, dulbecco containing ushi serum albumin at a volume ratio of 1%
  • PBS phosphate buffer PH7.0
  • a commercially available recombinant soluble erythroboietin receptor Fc chimeric protein manufactured by R & D systems was dissolved in PBS at a concentration of 100 ng / mL, and then dispensed to a 96-well flat-bottom ELISA plate at 100 L / well.
  • a plate on which the soluble erythropoietin receptor is immobilized is prepared by allowing to stand at room temperature for a period of time. This plate Ushi blood at 1% volume ratio
  • test substance After blocking with PBS containing clean albumin, the test substance and standard diluted in the above steps
  • TMB 3,3,5,0-tetramethylbenzidine
  • This value is plotted on a semilogarithmic graph with the vertical axis representing the amount of erythropoietin bound to the erythropoietin receptor and the horizontal axis representing the dilution rate of the test substance or standard.
  • the erythropoietin composition of the purified erythropoietin composition promotes the formation of erythroid colonies from bone marrow cells according to the method of Iscove et al. (J. Cell Physiol. 83, 309-320 (1974)). It can be determined by measuring the activity. Specifically, a purified erythropoietin composition as a test substance, a commercially available erythropoietin with a known concentration and specific activity as a standard product, and PBS containing ushi serum albumin at a volume ratio of 1% are used. Dilute serially for each.
  • human bone marrow-derived mononuclear cells are separated by centrifugation using Ficoll density gradient, washed with Iscove medium, and adherent cells are removed by plating. Get it.
  • the obtained bone marrow-derived mononuclear cells are seeded in a medium supplemented with test substances or standard products serially diluted in Iscove medium containing 0.9% methylcellulose, and cultured at 37 ° C. Thereafter, the erythroid colony forming activity can be measured by measuring the number of erythroid colonies formed in the incubator approximately 10 days later.
  • the proliferation-promoting activity using the erythroid cell line can be measured according to the method of Hammerling et al. (Journal of Pharmaceutical and Biomedical Analysis 14, 1455 (1996)). Serially dilute the purified erythropoietin composition as the test substance, and the commercially available erythropoietin with known concentration and specific activity as a standard product using PBS containing ushi serum albumin at a volume ratio of 1%. . Prepare a medium containing these serially diluted solutions and culture cell lines derived from human bone marrow such as TF-1 cells (ATCCCRL-2003) and KU812 cells (ATCC CRL-2099) at 37 ° C. Thereafter, by examining the number of viable cells proliferating in the incubator approximately 10 days later, the proliferation / differentiation promoting activity against erythroid cells can be examined.
  • the erythropoietin composition of the purified erythropoietin composition can be measured by examining the activity of increasing the hematocrit value in an in vivo test using an anemia pathological model.
  • model animals include partially nephrectomized rats, gentamicin-induced nephropathy rats, and genetic cystic kidney mice (Journal of Pharmaceutical Pharmacology 42, 758 (1990), Journal of Urology 146, 1645 (1991)). ).
  • the test can be performed according to the following procedure. A test substance prepared in 0.25% mouse serum albumin or a test substance-free brushbo (PBS containing 0.25% mouse serum albumin) is administered to mice by intraperitoneal injection 3 times a week for 6 weeks .
  • Each dose of erythropoietin composition at that time is, for example, 0.01 ⁇ g / head to 0.1
  • Retro-orbital force Measure hematocrit of each mouse twice a week by collecting blood. Collect all mouse serum after the test. Then, the presence or absence of the appearance of anti-erythropoietin antibody by administration of the test substance can be assayed.
  • Measurement of blood half-life using a purified erythropoietin composition can be performed using a model animal such as a rat.
  • Test substance prepared in 0.25% rat serum albumin or ⁇ placebo without test substance (PBS containing 0.25% rat serum albumin)
  • each dose of the erythropoietin composition can be set, for example, between 0.1 ⁇ g / kg and 1 ⁇ g / kg.
  • Samples in rat blood can be collected by ELISA method (such as human EPO ELISA kit manufactured by StemCell Technologies), which can collect 300 L of blood at any time after administration and specifically detect and quantify human erythropoietin. Measure the concentration. The data obtained is
  • the clearance test for erythropoietin composition can also be evaluated using animal models such as rodents other than rats, such as mice, and primates that are more closely related to humans than rats, such as force-quizal. it can.
  • the measurement of the protective activity on nerve cells using the purified erythropoietin composition etc. was carried out according to the method of Siren et al. (Proceedings of the National Academy of Science of USA 98, 4044 (20 01)). It can be measured, for example, by detecting the apoptosis-inhibiting activity of the strain (ATCC CRL-1925).
  • the measurement of the protective activity on myocytes using purified erythropoietin composition etc. was carried out in accordance with the method of Parsa et al. (The Journal of Clinical Investigation 112, 999 (2003)) and the rat H9c2 cell line ( It can be measured by detecting the anti-apoptotic activity of ATCC CRL-1446).
  • the sugar chain structure of the erythropoietin molecule expressed in various cells is a normal glycoprotein. It can be performed according to the analysis of the sugar chain structure.
  • sugar chains bound to erythropoietin molecules are composed of neutral sugars such as galactose and mannose, amino sugars such as N-acetylyldarcosamine, and acidic sugars such as sialic acid. It can be performed using a method such as a sugar chain structure analysis using a two-dimensional sugar chain map method.
  • composition analysis of the sugar chain of the erythropoietin molecule neutral sugar or amino sugar can be liberated by performing acid-hydrolysis of the sugar chain with trifluoroacetic acid or the like, and the composition ratio can be analyzed.
  • composition ratio can also be analyzed by a fluorescent labeling method using 2-aminoviridine. Specifically, a sample hydrolyzed according to a known method [Agricultural 'and' Biological Chemistry (Agric. Biol. Chem.), 55il), 283-284 (1991)] was converted to 2-aminobilidyl. Fluorescent labeling can be performed using HPLC analysis and the composition ratio can be calculated.
  • Structural analysis of glycans in erythropoietin molecules is based on the two-dimensional glycan mapping method [Analytical Biochem., 171, 73 (1988), Biochemical Experimental Methods 23-Glycoprotein glycans Research method (Academic Publishing Center) Etsuko Takahashi (1989)].
  • the 2D glycan mapping method for example, the retention time or elution position of glycans by reverse phase chromatography is plotted on the X axis, and the retention time or elution position of glycans by normal phase chromatography is plotted on the vertical axis. It is a method to estimate the sugar chain structure by plotting and comparing with the results of known sugar chains.
  • the erythropoietin thread and product are hydrazine-degraded to release sugar chains from the erythropoietin molecules, and the sugar chains by 2-aminoviridine (hereinafter abbreviated as “ ⁇ ”).
  • 2-aminoviridine
  • Fluorescent labeling of [Journal 'Ob' Biochemistry., 197 (1984)] followed by gel filtration to separate sugar chains from excess PA reagent and reverse phase chromatography.
  • Graphy Do Next, normal phase chromatography is performed on each peak of the separated sugar chain. Based on these results, plot on a 2D glycan map, glycan standard (TaKaRa), sentence
  • the sugar chain structure can be deduced from a comparison of spots with [Analytical Biochem., 171, 73 (1988)].
  • mass analysis such as MALDI-TOF-MS of each glycan was performed and estimated by the two-dimensional glycan map method.
  • the erythropoietin composition is composed of erythropoietin molecular force with different sugar chain structures.
  • fucose is not bound to ⁇ -acetylyldarcosamine at the ⁇ -glycoside-bonded complex type sugar chain reducing terminal, and exhibits a long blood half-life.
  • Such erythropoietin composition can be identified by using the method for analyzing the sugar chain structure of the erythropoietin molecule described in 5. above. It can also be identified by using an immunological quantification method using a lectin.
  • immunoassay methods such as (Radioimmunoassay), VIA (Viroimmunoassay), EIA (Enzymoimmunoassay, FIA (Fluoroimmunoassay), MIA (Metalloimmunoassay), etc., for example, the following can be carried out.
  • a lectin that recognizes the sugar chain structure of the erythropoietin molecule constituting the erythropoietin composition is labeled, and the labeled lectin is reacted with the sample erythropoietin composition. Next, the amount of the complex of labeled lectin and erythropoietin molecule is measured.
  • a lectin used for identifying the sugar chain structure of erythropoietin molecule for example,
  • AAL Aleuria aurantia Lectin
  • ACL Amaranthus caudatus Lectin
  • BPL Bauhinia purpur ea Lectin
  • DSL Natural stramonium Lectin
  • DBA Dolichos biflorus Agglutinin
  • E BL Elderberry Balk Lectin
  • ECL Erythrina cristagalli Lectin
  • EEL Euonymus eur opaeus Lectin) ⁇ GNL (Galanthus nivalis Lectin) ⁇ GSL (Griffonia simplicifolia Lectin)
  • HPA Helix pomatia Agglutinin
  • HHL Hippeastrum Hybrid Lectin
  • Jacalin LTL
  • LEL Lotus tetragonolobus Lectin
  • a lectin that specifically recognizes a sugar chain structure in which fucose is bound to N-acetylcolcamine at the N-darcoside-linked complex type sugar chain reducing terminal Specific examples that are preferred to use include Lentil lectin LCA (Lentil Agglutinin from Lens Culinaris) Endumame lectin PSA (Peum sativum-derived Pea Lectin), Broad bean lectin VFA (Agglutinin from Viciafaba), Yellow One bamboo lectin AAL (Lectin derived from Aleuria aurantia) can be mentioned.
  • the erythropoietin composition of the present invention has fucose in N-glycidyl-linked N-acetylylcosamine at the N-glycoside-linked complex type sugar chain reducing terminal, such as human urine derived or recombinant erythropoietin, which is also known in the past. Compared to erythropoietin, it has the same affinity for erythropoietin receptor and has a long half-life in blood when administered in vivo. Treatment of various diseases using the erythropoietin composition of the present invention can reduce the number of administrations without increasing the dose. Therefore, the physical and economic burden on patients and medical sites can be reduced and frequent Side effects such as accidents in current treatments due to frequent administration to patients, increased blood pressure in administered patients, and the appearance of anti-erythropoietin antibodies can be reduced.
  • erythropoietin composition as a therapeutic agent
  • diseases that show a decrease in the number of red blood cells and hemoglobin in the blood include diseases that show a decrease in the number of red blood cells and hemoglobin in the blood, neurodegenerative diseases, and myogenic degenerative diseases.
  • Examples of diseases that cause a decrease in the number of red blood cells and hemoglobin in the blood include anemia, and specifically include renal anemia, secondary anemia, anemia associated with cancer chemotherapy and radiation therapy.
  • Renal anemia develops when erythropoietin production decreases due to renal disease, or when erythropoietin is excreted from the body by dialysis.
  • Secondary anemia refers to anemia that develops with various underlying diseases, which are chronic diseases such as subacute bacterial endocarditis, tuberculosis and acquired immune deficiency syndrome (AIDS). Infectious diseases, collagen diseases represented by rheumatoid arthritis and systemic lupus erythematosus, malignant tumors represented by solid cancer and malignant lymphoma, liver diseases represented by cirrhosis and chronic hepatitis, myxedema and testicular hypofunction Endocrine diseases that are caused.
  • diseases such as subacute bacterial endocarditis, tuberculosis and acquired immune deficiency syndrome (AIDS).
  • Infectious diseases collagen diseases represented by rheumatoid arthritis and systemic lupus erythematosus
  • malignant tumors represented by solid cancer and malignant lymphoma
  • liver diseases represented by cirrhosis and chronic hepatitis
  • myxedema myxedema and testicular hypo
  • Anemia associated with cancer chemotherapy and radiation therapy is a disease caused by damage to the bone marrow of a patient by solid cancer or blood cancer chemotherapy or radiation therapy.
  • Neurodegenerative diseases are diseases of unknown cause that cause widespread degeneration of nerve cells, and include chronic and acute diseases. In general, it includes diseases that cause neuronal loss due to degeneration of euron and its conduction pathway, resulting in gliosis (Dariosis). Specific neurodegenerative diseases include Alheimer's disease, Parkinson's disease, polyglutamine disease, and amyotrophic lateral sclerosis.
  • Alzheimer's disease is a progressive neurodegenerative disease accompanied by dementia, and has pathological features such as senile plaque deposition, neurofibrillary tangles and neuronal loss.
  • Senile plaques are composed mainly of highly-aggregated amyloid ⁇ protein, which is cytotoxic to nerve cells.
  • Parkinson's disease is an unexplained progressive disease with psychosis such as ataxia, rigidity, tremor, postural reflex disorder, and psychiatric symptoms, most often after middle age.
  • Pathology In particular, degeneration of the dopamine-containing cells in the substantia nigra and the noradrenaline-containing cells in the locus coeruleus are observed.
  • Polyglutamine disease is an inherited neurodegenerative disease caused by a unique genetic abnormality of abnormal extension of cytidine-adenine-guanine repeat base sequence in a genomic gene. So far, bulbar spinal muscular atrophy, Huntington's disease, dentate nucleus red nucleus pallidal atrophy and spinocerebellar ataxia are known. Although the etiology is unknown, it has been suggested that an extended polyglutamine chain in a protein produced in vivo itself may have cytotoxicity to neurons.
  • Amyotrophic lateral sclerosis is a neurodegenerative disease that occurs mainly after middle age and causes selective and systemic damage to upper and lower motor neurons. It often begins with muscle atrophy of one upper limb, progresses to the opposite upper limb, and both lower limbs, during which language impairment and respiratory muscle paralysis are added. It is an intractable disease that leads to death due to respiratory failure in 2 to 5 years after the onset of the disease.
  • Examples of the muscle degenerative disease include myocardial infarction.
  • Myocardial infarction is a disease in which myocardial ischemia occurs as a result of obstruction of the coronary artery that sends blood to the heart due to obstruction or circulatory disturbance caused by stenosis.
  • a medicament containing the erythropoietin composition of the present invention can be administered alone as a prophylactic or therapeutic agent S, usually one or more pharmacologically acceptable. It is desirable to provide it as a pharmaceutical formulation produced by any method well known in the pharmaceutical arts, mixed with a carrier.
  • the route of administration includes oral administration where it is desirable to use the most effective treatment, or parenteral administration such as buccal, respiratory tract, rectal, subcutaneous, intramuscular and intravenous. In the case of an erythropoietin preparation, intravenous administration is preferable.
  • Examples of the dosage form include sprays, capsules, tablets, granules, syrups, emulsions, suppositories, injections, ointments, tapes and the like.
  • Suitable formulations for oral administration include emulsions, syrups, capsules, tablets, powders, granules and the like.
  • Liquid preparations such as emulsions and syrups include sugars such as water, sucrose, sorbitol, and fructose, Daricols such as polyethylene glycol and propylene glycol, oils such as sesame oil, olive oil and soybean oil, P- Preservatives such as hydroxybenzoates
  • Flavors such as laver and peppermint can be used as additives.
  • Capsules, tablets, powders, granules, etc. are excipients such as lactose, glucose, sucrose, mannitol, disintegrants such as starch and sodium alginate, lubricants such as magnesium stearate and talc. It can be produced using a binder such as an agent, polybulal alcohol, hydroxypropylcellulose, gelatin, a surfactant such as a fatty acid ester, a plasticizer such as glycerin, and the like as additives.
  • a binder such as an agent, polybulal alcohol, hydroxypropylcellulose, gelatin, a surfactant such as a fatty acid ester, a plasticizer such as glycerin, and the like as additives.
  • preparations suitable for parenteral administration include injections, suppositories, sprays and the like.
  • the injection is prepared using a carrier such as a salt solution, a glucose solution, or a mixture of both.
  • a powder injection can be prepared by lyophilizing an erythropoietin composition according to a conventional method and adding sodium chloride thereto.
  • Suppositories are prepared using a carrier such as cacao butter, hydrogenated fat or carboxylic acid.
  • the propellant uses an erythropoietin composition itself or a carrier that does not irritate the recipient's oral cavity and airway mucosa, and disperses the erythropoietin composition as fine particles to facilitate absorption. Prepared.
  • the carrier include lactose and glycerin.
  • preparations such as aerosols and dry powders are possible.
  • the ingredients exemplified as additives in oral preparations can be added to these parenteral preparations.
  • erythropoietin composition can be examined for biological activity such as erythropoiesis activity by in vitro experiments. , Promotion of proliferation and differentiation using erythroblast cell line In vitro tests such as activity measurement methods or in vivo tests using anemia model animals
  • a FUT8 gene double knockout cell line producing human erythropoietin (hereinafter abbreviated as EPO) was prepared by the method shown below.
  • EPO gene-specific primers SEQ ID NO: 20 and SEQ ID NO: 21
  • restriction enzyme sites EcoRI, BamHI
  • Kozak sequences were prepared from the EPO gene sequence (UniGene: Hs. 2303, SEQ ID NO: 1). The following PCR was performed.
  • reaction solution containing human kidney-derived cDNA as a template (HotstarTaq® DNA polymerase (QIAGEN), 10 X PCR buffer, 0.2 mmol / L dNTP mixture, 0.5 ⁇ mol / L SEQ ID NO: 20 and SEQ ID NO: 21)] and heated at 95 ° C for 15 minutes, followed by 1 cycle at 94 ° C for 1 minute, 60 ° C for 1 minute, and 72 ° C for 1 minute 35 PCR was performed with cycle reactions.
  • HotstarTaq® DNA polymerase QIAGEN
  • 10 X PCR buffer 0.2 mmol / L dNTP mixture, 0.5 ⁇ mol / L SEQ ID NO: 20 and SEQ ID NO: 21
  • the obtained purified EPO DNA fragment was dissolved in 17 L of water, and 10 units of restriction enzyme EcoRI (Takara Bio) and 10 units of BamHI (Takara Bio), 2 ⁇ L of 10 XH were added to the solution.
  • a 20 L reaction solution was prepared by removing the buffer and digested at 37 ° C for 16 hours.
  • EPO DNA fragment (EcoRI-BamHI) and pBluescriptll KS (+) fragment (EcoRI-BamHI) obtained above were subjected to 1.5% (W / V) agarose gel electrophoresis, and DN A of about 590 bp and 3 kbp, respectively.
  • the fragment was purified using QIAquickGel Extraction Kit (QIAGEN).
  • QIAGEN QIAquickGel Extraction Kit
  • E. coli DH5 a strain (manufactured by Toyobo) was transformed by heatshock method.
  • QIAprep® Spin Miniprep Kit manufactured by QIAGEN
  • QIAGEN QIAGEN
  • DNA sequencer ABI PRISM377
  • the nucleotide sequence was analyzed using (Applied Biosystems). As a result, plasmid pBS-EPO containing the EPO gene sequence was obtained (FIG. 1).
  • a reaction solution was prepared and digested at 37 ° C for 16 hours. Subsequently, 3 ⁇ g of plasmid pKANTEX93 (W 097/10354) was dissolved in 17.5 ⁇ L of water, and 10 units of EcoRI (manufactured by Takara Bio Inc.) and 2 L of lO X Hbuffer were added to the solution. The solution was prepared and digested at 37 ° C for 16 hours. After the reaction, phenol / chloroform extraction treatment and ethanol precipitation were performed, and the recovered plasmid was dissolved in 17.5 ⁇ L of water. Further, 10 units of BamHI and 2 ⁇ L of 10 ⁇ K buffer were added to the solution to prepare a 20 L reaction solution, followed by digestion reaction at 37 ° C. for 16 hours.
  • EPO DNA fragment (EcoRI-BamHI) and pKANTEX93 fragment (EcoRI-BamHI) obtained above were subjected to 1.5% (W / V) agarose gel electrophoresis, and the DNA fragments of about 590 bp and 9 kbp were obtained.
  • the piece was purified using QIAquick Gel Extraction Kit (QIAGEN).
  • QIAGEN QIAquick Gel Extraction Kit
  • a reaction solution 20 / z L containing 50 ng of EPO DNA fragment (EcoRI-BamHI), 30 ng of pKANTEX93 fragment (EcoRI-BamHI) and LigationHigh (Toyobo), and perform the ligation reaction at 16 ° C for 16 hours. I did it.
  • E. coli DH5 strain (manufactured by Toyobo Co., Ltd.) was transformed by the heat shock method. From the transformation, plasmid DNA was prepared using QIAprep® Spin Miniprep Kit (manufactured by QIAGEN) to obtain pKAN-EPO (FIG. 2).
  • the plasmid pKAN-EPO prepared in Example 2 was introduced into double knockout cells. This
  • FUT8 gene double knockout cells described in the literature (Biotechnology and Bioengineering 87, 614 (2004)) were mixed with K-PBS buffer (137mmol / L KC1, 2.7mmol / L NaCl, 8.lmmol / L 8 x 10 7 cells suspended in Na HPO, 1.5mmol / L KH PO, 4.0mmol / L MgCl)
  • IMDM medium (Life Technologies) supplemented with 10% Ushi fetal serum (Life Technologies) and 50 ⁇ g / mL gentamicin (Nacalai Testa)
  • the suspension was suspended in 30 mL, and seeded on 3 adherent cell culture 96 6well plates (manufactured by Grainer) at 100 ⁇ L / well. Culture is 5% CO, 3
  • IMDM medium was added at 100 L / well. The culture was performed for 9 days while repeating this medium exchange operation every 3 to 4 days. Next, the medium exchange operation using IMDM medium supplemented with 10% urine fetal dialysis serum, 50 ⁇ g / mL gentamicin and 200 nM MTX was similarly repeated every 3 to 4 days, and cultured for 18 days.
  • IMDM medium supplemented with 10% urine fetal dialysis serum, 50 ⁇ g / mL gentamicin and 200 nM MTX was similarly repeated every 3 to 4 days, and cultured for 18 days.
  • the colonies that were formed were replanted into 24 well plates (Sigma). Furthermore, the medium exchange operation using IMDM medium supplemented with 10% urine fetal dialyzed serum, 50 g / mL gentamicin and 500 nM MTX was repeated every 3 to 4 days, and cultured for 19 days while expanding as appropriate. A 500 nM MTX resistant strain was obtained.
  • EPO high-production FUT8 gene double knockout cells prepared in the previous section were acclimated to serum-free medium.
  • EX-CELL302 medium manufactured by JRH
  • 4 mM L-Glutamine manufactured by Invitrogen
  • 50 ⁇ g / ml gentamicin 50 ⁇ g / ml gentamicin and 500 nM MTX (hereinafter referred to as JRH)
  • JRH Suspended in 15 ml at 5 ⁇ 10 5 cells / ml and inoculated into 125 ml triangular flask (manufactured by Corning) and suspended in swirling culture.
  • Cultivation is performed at 35 ° C and swirl speed of 90 to 100 rpm.
  • 4% or more of 5% CO in the culture vessel is passed over the top of the medium.
  • the obtained strain was suspended in 15 mL of serum-free medium at a concentration of 3.0 X 10 5 cells / mL and transferred to a 125 mL flask.
  • the pKAN-EPO40AFMS705 strain is the pKAN-EPO40 AFMS705 strain name.
  • the pKAN-EPO40 AFMS705 strain established in the previous section is added to a commercially available serum-free medium EX-CELL302 (manufactured by JRH Bioscience) for CHO cells and L-glutamine (manufactured by Invitrogen) and 0.1 mM
  • EX-CELL302 manufactured by JRH Bioscience
  • L-glutamine manufactured by Invitrogen
  • 0.1 mM The cells were seeded on a medium supplemented with Neu5Ac2en (manufactured by Sigma).
  • the cells were cultured at 37 ° C with a live cell density of 30,0000 cells ZmL and a culture volume of 30 mL per tissue culture flask (Greiner).
  • the purified EPO composition was prepared using 50 mM sodium phosphate (pH 6.3), 0.06 mg / mL Polysorbate 80, 9 mg / mL alginate hydrochloride, 150 mM sodium chloride using AmiconUltra (Millipore, MWCO 10 kD). After substituting with a buffer containing thorium, the EPO concentration was adjusted to 250 mg / L. In order to measure the EPO concentration, Human Erythropoietin ELISA Kit (manufactured by StemCell Technologies) was used. As a standard product for concentration measurement, EPO Pharmaceutical Espo (manufactured by Soba) was used.
  • the EPO composition produced by the PKAN-EPO40AFMS705 strain was named MEY-1.
  • CHO / DG44 cells Urlaub G, Chasin LA. Proc Natl Acad Sci USA 77: 4216-4220. (1980)
  • An EPO composition expressed by using an EPO composition and Lecl cells Pro-5WgaRI3C cells; American Type Culture Collection registration number CRL-1735 as host cells was also prepared.
  • Lecl cells are a CHO cell line that can mainly express glycoproteins having high mannose-type sugar chains.
  • the EPO composition produced by CHO / DG44 cells was named KEY-1.
  • the EPO composition produced by Lecl cells was named RE-1.
  • 1 ⁇ g each of MEY-1, KE Yl, and RE-1 was collected, subjected to SDS-polyacrylamide electrophoresis, and then the band was detected by silver staining.
  • SPG520 manufactured by ATTO
  • the silver staining kit Daiichi manufactured by Daiichi Kagaku
  • the neutral sugar 'amino sugar composition of the EPO composition prepared in Section 7 of Example 1 was analyzed. Each EPO composition was hydrolyzed in the presence of 4.0 mol / l trifluoroacetic acid at 100 ° C. for 2 hours to liberate the neutral sugar 'amino sugar from the protein.
  • For the released sugar refer to the method described in Michael Weitzhandler et al. [Analytical Biochemistry 241, 128-134 (1996)] and DIONEX Application Not e 92 (TheDetermination or Sugars in Molasses by High-Performance Anion Exchange with Pulsed Amperometric Detection). Then, analysis was performed using a DX-500 sugar analyzer (Dionex).
  • composition ratio of each monosaccharide component was calculated with a composition ratio of mannose of 9. .
  • the neutral 'amino sugar composition of MEY-1 is mannose 9, galactose 14.0, N-acetyl darcosamine 18.6, N-acetyl galactosamine 0.2, and the KEY-1 neutral' amino sugar composition is mannose 9, galactose 12.2.
  • the sialic acid of each EPO composition was converted to DM B (l, 2-diamino) using a sialic acid fluorescent labeling reagent kit (manufactured by Takara Bio Inc.). -4,5-methylenedioxybenzene) and then analyzed by high performance liquid chromatography equipped with a reverse phase column PA LPAKType R (manufactured by Takara Bio Inc.).
  • DM B sialic acid fluorescent labeling reagent kit
  • PA LPAKType R manufactured by Takara Bio Inc.
  • the KU812 cell line was seeded in RPMI 1640 medium (Invitrogen) supplemented with 10% inactivated guinea pig fetal serum (Invitrogen).
  • the seeding conditions were a live cell density of 10 5 cells ZmL, a medium volume per flask for tissue culture (Asahi Techno Glass), and a culture temperature of 37 ° C.
  • each EPO composition having a final concentration of lOOng / mL was added to each flask, followed by culturing in a carbon dioxide incubator (manufactured by TABAI).
  • MEY-1, KEY-1, RE-1, and negative control were added to the flask.
  • 2, 4, 6 and 8 days after the start of culture 0.5 mL of the culture solution was collected from each flask, and an automatic cell counter Vi-CELL XR (manufactured by Beckman Coulter, Inc.) using the trypan blue dye exclusion method was used. ) To measure the viable cell density and viability in the culture solution. All In all flasks, cell viability remained above 90% until day 8 of culture.
  • FIG. 3 shows the changes in the density of living cells in each flask. All of MEY-1, KEY-1 and RE-1 were shown to have activity in promoting the growth of KU812 cells compared to the negative control. It was also shown that the growth promoting activity of MEY-1, KEY-1, and Espoo, which are the strongest in RE-1, is equivalent. From the above, MEY-1, which is an EPO composition that binds complex-type sugar chains without fucose on the reducing end side of the N-linked sugar chain, is an EPO composition that binds complex-type sugar chains with fucose. It was shown to have an equivalent cell growth promoting activity.
  • EPO composition prepared in Section 7 of Example 1 according to the literature method (Pharmacology 52, 329-338 (1996), Protein Engineering 18, 111 (2005)) did.
  • Each EPO composition was administered to a 12-week-old female CD-1 mouse (purchased from Nihon Charles River) by 3 g (fluid volume: 150 L) into the tail vein. 5, 30, 60, 120, 240, 480, 720, 1440, 2160 minutes after administration, heparinized hematocrit tube (Asahi Techno Glass Co., Ltd.) was used, and the vein strength of the tail was 40 L. Blood was collected.
  • Hematocrit tubes were placed one by one in a centrifuge tube (Betaton Dickinson) and centrifuged for 10 minutes using a low-speed centrifuge (HITA CHI). Centrifugation was performed at a rotation speed of 3000 rpm and a temperature of 4 ° C. After centrifugation, plasma was collected from the hematocrit tube, and the human EPO concentration in each plasma was measured using Human Erythropoie tin ELISA Kit (manufactured by StemCell Technologies). EPO composition in plasma after 5, 30, 60, 120, 240, 480, 720, 1440, 2160 minutes when the EPO concentration in plasma 5 minutes after administration is 100% in each animal Figure 4 shows the change in the relative concentration of the product.
  • a genetically modified EPO molecular force having an N-glycoside-bonded complex sugar chain wherein the N-glycoside-bonded complex sugar chain is N-acetylyldarcosamine at the reducing end of the sugar chain.
  • the EPO composition which is a sugar chain with fucose bound thereto, has the same in vitro biological activity as the EPO composition with fucose produced in the normal CHO / DG44 strain, and is significantly prolonged. It has been shown to have significantly improved blood retention and blood retention.
  • NESP human erythropoietin mutant danbepoetin a
  • a site-specific mutation was introduced into the EPO cDMA sequence of pBS-EPO obtained in Example 1, section 1.
  • QuickChange Multi Site-Directed Mutagenesis Kit (STRATAGENE) was used.
  • Primers A and B were synthesized as primers for introducing mutations at two positions in the EPO cDNA sequence (Fasmac) (SEQ ID NO: 22 and SEQ ID NO: 23).
  • reaction solution 20 ⁇ L was prepared and digested at 37 ° C for 16 hours. After the reaction, phenol / chloroform extraction treatment and ethanol precipitation were performed, and the recovered plasmid was dissolved in 17.5 L of water. Further, 10 units of BamHI and 2 ⁇ L of 10 X Kbuffer were added to the solution to prepare a 20 ⁇ L reaction solution, followed by digestion reaction at 37 ° C. for 16 hours.
  • NESP DNA fragment (EcoRI-BamHI) and pKANTEX93 fragment (EcoRI-BamHI) obtained above were subjected to 1.5% (W / V) agarose gel electrophoresis, and DNA fragments of about 590 bp and 9 kbp, respectively, were QIAquick. Purification was performed using Gel Extraction Kit (QIAGEN). Next, prepare a 20 / zL reaction solution containing NESP DN A fragment (EcoRI-BamHI) 50ng, pKANTEX93 fragment (EcoRI-BamHI) 30ng, Ligation High (Toyobo), and ligation reaction at 16 ° C for 16 hours. Was done.
  • E. coli DH5 strain (manufactured by Toyobo Co., Ltd.) was transformed by the heat shock method. From the transformation, plasmid DNA was prepared using QIAprep Spin Miniprep Kit (manufactured by QIAGEN) to obtain pKAN-NESP (FIG. 7).
  • the plasmid pKAN-NESP prepared in Example 2 was introduced into FUT8 gene double knockout cells described in the literature (Biotechnology and Bioengineering 87,614 (2004)). These gene introductions were carried out by the following procedure using a known electoral position method [Cytotec hnology, 3, 133 (1990)].
  • IMDM medium supplemented with 10% (v / v) dialyzed fetal bovine serum (Life Technologies) and 50 g / mL gentamicin (Nacala Tester) Suspended in 10 mL (Life Technologies) and inoculated into a tissue culture flask (Grainer). The culture was performed under conditions of 5% CO and 37 ° C.
  • the cell line obtained by culturing the pKAN-NESP-introduced cells obtained in the previous section in a nucleic acid-free medium for 14 days was named pKAN-NESPMS705.
  • the pKAN-NESP MS705 strain is the name of the pKAN-NESP MS 705 strain, and is patented by the National Institute of Advanced Industrial Science and Technology (AIST) on February 17, 2005. It is deposited as FERM BP-10248 in the center 6). This strain that reached confluence in the T75 flask was changed to a medium, and the concentration of NESP secreted in the culture supernatant for 4 days was measured with a human EPO-specific ELISA kit.
  • the kit used was Human Erythropoietin ELISA Kit (manufactured by StemCell Technologies), and a calibration curve was prepared using serially diluted commercial drug Aranesp (AMGEN). The measuring method followed the manual attached to the kit. As a result of the measurement, it was confirmed that NESP was expressed in the culture supernatant at a concentration of 10.6 g / ml. In addition, it was confirmed that the obtained NESP had improved blood stability and a significant difference in pharmacological activity compared to NESP produced by the normal CHO / DG44 strain.
  • the amino acid variant EPO obtained from the pKAN-NESPMS705 strain prepared in this way greatly changes the affinity for the EPO receptor compared to the amino acid variant EPO produced by the normal CHO / D G44 strain. The blood half-life was prolonged.
  • Example 3 Acquiring cell lines that express genes for enzymes that catalyze dehydration to convert GDP-mannose to GDP-4-keto, 6-deoxy- GDP-mannose
  • CHO / DG44 cells Proc. Natl. Acad. Sci. USA, 77, 4216 (1980)
  • IMDM—FBS 10 -HT (1) medium [Ushi Fetal Serum (FBS) (Invitrogen) In IMDM medium (Invitrogen)] containing 10% HT supplement (Invitrogen) at a 1-fold concentration in an incubation culture flask 75cm 2 (Grainer) and proliferate until just before confluence I let you. After washing the cells with 5 mL Dulbecco's PBS (hereinafter referred to as PBS) (Invitrogen), add 1.5 mL of 0.05% trypsin (Invitrogen) diluted with PBS at 37 ° C.
  • PBS Dulbecco's PBS
  • the cells were allowed to stand for minutes, and the cells were detached from the bottom of the incubator.
  • the detached cells are collected by centrifugation performed in normal cell culture, and supplemented with IMDM-FBS (10) -HT (1) medium to a density of 1 X 10 5 cells / mL.
  • MNNG manufactured by Sigma
  • MNNG manufactured by Sigma
  • a 96-well plate (Asahi Techno Glass Co., Ltd.) was seeded at a density of 1000 cells / well. Each well was supplemented with Img / mL lentil lectin (Lens culinaris agglutinin; hereinafter "", L and A, from Vector, Inc.) at 37 ° C in a CO incubator. Colonies that appeared after weekly culture
  • GDP-mannose 4, 6- an enzyme that catalyzes the dehydration reaction of converting GDP-mannose into GDP-4-keto, 6-deoxy- GDP-mannose in each lectin-resistant CHO / DG44 cell line obtained in the previous section
  • the expression level of dehydratase was calculated using the RT-PCR method as follows.
  • the parental CHO / DG44 cells and the lectin resistant CH 0 / DG44 cells obtained in section 1 of this example.
  • Each cell line is attached from 1 X 10 7 cells using the RNeasy Protect Mini kit (Qiagen).
  • RNA was prepared according to the instructions for use. Subsequently, using a SUPER SCRIPT First-Strand synthesis system for RT-PCR (manufactured by Invitrogen), single-stranded cDNA was synthesized from 5 g of each RNA in a 20 L reaction solution according to the attached instruction manual.
  • the 26-mer having the base sequence shown in SEQ ID NO: 24 is derived from the cDNA sequence of GDP-mannose 4,6-dehydratase derived from CHO cells shown in SEQ ID NO: 7.
  • a synthetic oligo DNA primer and a 28-mer synthetic oligo DNA primer having the base sequence shown in SEQ ID NO: 25 were prepared. Subsequently, the device is fabricated in this section (1).
  • reaction solution containing 5 ⁇ L of single-stranded cDNAO.5 from each cell line as a cage [1 X EX Ta q Buffer (Takara Shuzo), 0.2 mM dNTP mixture, 0.5 units of Ex Taq polymerase (Manufactured by Takara Shuzo Co., Ltd.), 0.5 ⁇ of synthetic DNA primers of SEQ ID NOS: 24 and 25], and prepared using a DNA thermal cycler 480 (manufactured by Perkin Elma Co., Ltd.) at 94 ° C for 5 minutes Then, 30 cycles of 94 ° C for 1 minute and 68 ° C for 2 minutes were performed.
  • DNA thermal cycler 480 manufactured by Perkin Elma Co., Ltd.
  • a strain in which expression was not observed was named a CHO SM strain.
  • the CHO SM strain recognized the same sugar chain structure as that recognized by LCA.
  • lectins that recognize sugar chain structures in which the 6-position of the N-acetylyldarcosamine residue at the reducing end of the N-glycoside-linked sugar chain and the 1-position of fucose are added by an a bond. Showed tolerance. Specifically, a medium supplemented with endumame lectin (Pisum sativum Agglutinin; hereinafter referred to as PSA, manufactured by Vector) with a final concentration of Img / mL, or a Hiratiyawantake lectin with a final concentration of Img / mL ( Aleuria aurantia Lectin; hereinafter referred to as AAL (manufactured by Vector) was also resistant.
  • PSA endumame lectin
  • AAL Aleuria aurantia Lectin
  • genomic DNA was prepared according to the method described in the literature [Nuccleic Acid Research, 3, 2303, (1976)], and the obtained genomic DNA was added to TE-RNase buffer (p. H8.0) [lOmmol / lTris—HC1, lmmol / 1 EDTA, 200 ⁇ g / ml RNase A] was dissolved in 300 ⁇ l.
  • the genomic DNA 12 / zg prepared above was digested with 3 different restriction enzymes, EcoRI (Takara Shuzo), Hindlll (Takara Shuzo), and Bglll (Takara Shuzo), respectively, and ethanol precipitation was used.
  • a Southern probe using the a 1,6-fucosyltransferase (FU T8) gene which is considered to exist evenly in the genome, regardless of cell line. Hybridization was performed.
  • a probe for detecting the FUT8 gene was prepared as follows. First, 10 ⁇ g of plasmid m! FUT8-pCR2.1 containing mouse FUT8 cDNA described in Example 11 of WO02 / 31140 was dissolved in 50 L of M buffer (Takara Shuzo), and restriction enzyme Hindlll (Takara Shuzo) was dissolved.
  • reaction solution was replaced with H buffer (Takara Shuzo), and digestion was further performed overnight with restriction enzyme EcoRI (Takara Shuzo).
  • restriction enzyme EcoRI EcoRI
  • the reaction solution was subjected to 2% agarose electrophoresis, and a 156 bp EcoRI-Hindlll fragment containing FUT8 gene exon 2 was purified. 25 ng of the obtained DNA fragment was radiolabeled using [a- 32 P] dCTP 1.75 MBq and Megaprime DNA labeling system, dCTP (manufactured by Amersham Bioscience). Next, hybridization was performed as follows.
  • the above nylon membrane is sealed in a roller bottle, and a hybridization solution [4 X SSPE, 5 X Denhaldt, s solution, 0.5% (w / v) SDS, 0.1 mg / mL salmon sperm DNA] is collected in 15 mL. Pre-hybridization was performed at 65 ° C for 3 hours. Next, the 32 P-labeled probe DNA was heat denatured, put into a bottle, and heated at 65 ° C. After hybridization, the nylon membrane was immersed in 50 mL of 2 ⁇ SSC-0.1% (w / v) SDS and heated at 65 ° C. for 15 minutes.
  • the membrane was immersed in 50 mL of 0.2 ⁇ SSC-0.1% (w / v) SDS and heated at 65 ° C. for 15 minutes. After washing, the nylon membrane was exposed to X-ray film at -80 ° C and developed. After development, the nylon membrane is boiled in stripping solution [1% SDS, 0.1 X SSC] to peel off the probe and again subjected to hybridization with a different probe. It was decided to.
  • a fragment specific to FUT8 gene exon 2 was detected in the genomic DNA of both CHO / DG44 strain and CHO SM strain. From the above results, it was shown that the genomic DNA derived from the CHO SM strain and the CHO / DG44 strain transcribed on the nylon membrane had the same quality.
  • a probe specific for GMD gene exon 5 was prepared as follows. First, based on the known human GMD genomic DNA sequence (NCBI accession number NT_034880),
  • Oligo DNA primers (SEQ ID NO: 26 and SEQ ID NO: 27) were designed to specifically bind to.
  • This region corresponds to nucleotide numbers 346 to 538 of the CHO GMD cDNA sequence shown in SEQ ID NO: 7.
  • the probe was subjected to hybridization on the nylon membrane shown above.
  • a specific fragment of GMD gene exon 5 was found in genomic DNA derived from CHO / DG44 cells, whereas a specific fragment of GMD gene exon 5 was completely detected in genomic DNA derived from CHO SM strain. The power was not. From the above results, it was shown that the C HO SM strain is a GMD knockout cell lacking at least the region containing exon 5 among the genomic region encoding GMD.
  • GMD knockout cell line producing human erythropoietin was prepared by the following method l. Introduction of EPO expression plasmid into CHO SM strain
  • the plasmid pKAN-EPO prepared in Example 1 was introduced into the CHO SM strain prepared in Example 3. These gene introductions were carried out by the following procedure according to a known electoral position method [Cytotechnology, 3, 133 (1990)]. First, prepare 30 ⁇ g of plasmid pKAN-EPO (20 ⁇ L of NEBuffer 4 (New England Biolabs)) and 200 ⁇ L of a reaction solution containing 200 units of restriction enzyme Aat II (New England Biolabs). Linear digestion was performed by digestion reaction at ° C for 16 hours. After the reaction, the reaction mixture was purified by phenol / chloroform extraction treatment and ethanol precipitation to recover the linear plasmid.
  • Example 3 the CHO SM strain obtained in Example 3 was added to K-PBS buffer (137 mmol / L KC1, 2.7 mmol / L NaCl, 8. lmmol / L Na HPO, 1.5 mmol / L KH PO, 4.0 mmol / L). 8 x 10 7 cells suspended in MgCl)
  • IMDM medium (Life Technologies) 30mL supplemented with 10% Ushi Fetal Serum (Life Technologies) and 50 g / mL gentamicin (Nacalai Testa) And then seeded on 3 adherent cell culture 96-well plates (manufactured by Grainer) at 100 ⁇ L / well. Culture is 5% CO, 37
  • the test was performed at a temperature of ° C.
  • IMDM medium supplemented with serum, 50 ⁇ g / mL gentamicin and 50 nM methotrexate (MTX) (manufactured by Sigma) was added at 100 ⁇ L / well. The culture was performed for 9 days while repeating this medium exchange operation every 3 to 4 days. Next, the medium replacement operation using IMDM medium supplemented with 10% urine fetal dialyzed serum, 50 g / mL genta macn and 200 nM MTX was performed in the same manner. The cells were cultured for 18 days while repeating every 4 days, and the finally formed colonies were replanted into 24 uel plates (manufactured by Sigma).
  • MTX methotrexate
  • each 1.0 X 10 6 cells were treated with 5 mL of 10%
  • the pKAN-EP04GMDKO strain is the stock name of pKAN-EP04 GMDKO, and the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center on August 10, 2004 (1st, 1st, Tsukuba, Higashi, Ibaraki) No. 6) is deposited as FERM BP-10080.
  • the EPO obtained from the PKAN-EP04 GMDKO strain prepared in this way is half the blood without greatly changing the affinity for the EPO receptor compared to the EPO produced by the normal CHO / DG44 strain. An extension of the period was observed.
  • NESP human erythropoietin mutant danbepoetin a
  • the plasmid pKAN-NESP prepared in Example 2 was introduced into the CHO SM strain prepared in Example 3.
  • plasmid pKAN-NESP30 Prepare 200 L reaction solution containing 20 ⁇ L of NEBuffer 4 (New England Biolabs) and 200 units of restriction enzyme MluI (New England Biolabs), and digest at 37 ° C for 16 hours. By doing so, it became linear. After the reaction, the reaction mixture was purified by phenol / chloroform extraction treatment and ethanol precipitation to recover the linear plasmid. Next, CHO SM strain was added to K-PBS buffer (137 mmol / L KC1, 2.7 mmol / L NaCl, 8.1 mmol / L Na HPO, 1.5 mm
  • the suspension was suspended in 24 ol / L KHPO, 4.0 mmol / L MgCl 2) to give 8 ⁇ 10 7 cells / mL.
  • Cell suspension 200
  • IMD M supplemented with 10% (v / v) dialyzed fetal bovine serum (Life Technologies) and 50 ⁇ g / mL gentamicin (Nacalai Testa)
  • the suspension was suspended in 10 mL of a medium (Life Technologies) and seeded in an adherent cell culture T75 flask (Grainer). The culture was performed under conditions of 5% CO and 37 ° C.
  • pKAN-NESP CHO SM strain The cell strain obtained by culturing the pKAN-NESP-introduced cells obtained in the previous section for 14 days in a nucleic acid-free medium was named pKAN-NESP CHO SM strain.
  • pKAN-NESP CHO SM strain is the name of pKAN-N ESP CHO SM strain, and the National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center (February 17, 2005) Deposited as FERM BP -10247 at No. 1 center 6)! After this strain reached confluence in the T75 flask, the medium was changed, and the concentration of NESP secreted in the culture supernatant for 4 days was measured with an ELISA kit specific for human EPO.
  • the kit used was Human Erythropoietin ELISA Kit (manufactured by StemCell Technologies), and a calibration curve was prepared by serially diluting the commercially available drug Aranesp (AMGEN). The measuring method followed the manual attached to the kit. As a result of the measurement, it was confirmed that NESP was expressed at a concentration of 3.1 ⁇ g / ml in the culture supernatant.
  • the amino acid variant EPO obtained from the pKAN-NESP CHO SM strain prepared in this way has a greater affinity for the EPO receptor than the amino acid variant EPO produced by the normal CHO / DG44 strain. Prolonged blood half-life was observed without change.
  • yeasts Many types of yeast are known, but typical yeasts often used as hosts for expressing recombinant proteins include yeasts of the genera Pichia and Saccaromyces. . Normally, the main structure of N-linked sugar chains added to recombinant proteins expressed by these yeasts has a 2-residue N-acetyl darcosamine in the core part on the reducing end, and the non-reducing end side. It is known that this is a mannose-type sugar chain having 9 to several tens of mannose residues and several to several tens of mannose 6-phosphate residues at the branch of 1191 (2002)). Further, a high mannose type sugar chain having such a structure is often called a no-permannose type sugar chain.
  • the structure of the N-linked sugar chain to be added is mainly a hybrid sugar chain that is an intermediate structure between a high mannose sugar chain and a complex sugar chain.
  • the method for producing Pichia yeast strains and Saccharomyces yeast strains expressing erythropoietin that has been carotenized is described.
  • Pichia yeast strains that have disrupted the PN01 enzyme gene present on the genome Pichia yeast strains such as Pichia pastoris GTS115 (manufactured by Invitrogen Corp.) are used as genomic DNA, and PCR is used to perform PNOKphosphomannosylationof Pichia yeast.
  • N-linked oligosaccharides 1 Amplify the entire translation region of the gene (GenBank accession number: AB099514).
  • the amplified PN01 gene sequence with a length of about 3200 bases was replaced with the yeast orotidine-5'-phosphate decarboxylase (UR A3) gene (GenBank accession number: AF321098).
  • a plasmid for PN01 gene disruption is prepared by inserting into a vector such as pCR2.1-TO PO vector (Invitrogen).
  • a vector such as pCR2.1-TO PO vector (Invitrogen).
  • 100 g of this plasmid is linearized with a restriction enzyme, and then introduced into a Pichia yeast such as the GTS115 strain stably by the electoral position method described in PichiaExpression Kit (manufactured by Invitrogen).
  • the transfected yeast is cultured at room temperature using YPD medium (Invitrogen) deficient in uracil, and genomic DNA is extracted from each of the grown colonies.
  • a yeast clone in which the PN01 locus has been disrupted by homologous recombination is selected by amplifying the sequence of the yeast PN01 locus by PCR using this genomic DNA as a saddle type.
  • the structure of the main N-linked sugar chain expressed in Pichia yeast has 9 residues on the non-reducing end side, with 2 residues of N-acetylyldarcosamine in the core part on the reducing end side.
  • Pichia yeast strains such as Pichia pastoris X-33 (manufactured by Invitrogen), are used in a vertical form, and by PCR, Pichia yeast ⁇ -1,6-mannose transferase (OCH1) gene (GenBank accession) Number: AF540063) is amplified. Amplified about 2 800 salt
  • the OCH1 gene sequence of the base length was replaced with a yeast-derived orotidine-5'-phosphate decarboxylase (URA3) gene (GenBank accession number: AF3210 98) after pCR2.1 -A vector for disrupting the OCH1 gene is prepared by inserting into a vector such as TOPO vector (Invitrogen). Next, 100 g of this vector was linearly digested with restriction enzyme Sfil (manufactured by New England Biolabs), and then subjected to the electoral position method described in Pichia Expression Kit (manufactured by Invitrogen). Stable gene transfer into the PN01 gene-disrupted strain described in (1) or the Pichia pastoris JC308 strain.
  • UAA3 yeast-derived orotidine-5'-phosphate decarboxylase
  • the introduced yeast is cultured at room temperature in YPD medium (Invitrogen) deficient in uracil, and genomic DNA is extracted from each of the grown colonies.
  • YPD medium Invitrogen
  • a yeast clonal strain in which the OCH 1 locus has been destroyed by homologous recombination is selected by amplifying the sequence of the yeast OCH1 locus by PCR using this genomic DNA as a saddle type.
  • the structure of the main N-linked sugar chain expressed in Pichia yeast has 2 residues of N-acetyl dalcosamine in the core part on the reducing end side and 8 on the non-reducing end side. It can be modified to a Man8 type high mannose type sugar chain having a structure in which the mannose residues of these are bound.
  • the amplified cDNA should be placed on the 5 'end side.
  • MNS1 Yeast ⁇ -mannosidase gene (GenBank accession number: M63598)
  • the expression vector pPICZ for yeast After ligation of the cDNA sequence encoding the leader peptide, the expression vector pPICZ for yeast
  • this vector is stably introduced into the Pichia yeast strain in which both the PN01 gene and the OCH1 gene described in the previous section are disrupted by homologous recombination by the electopore method.
  • the yeast after gene introduction is YPD medium (Invitrogen) containing zeosin (Invitrogen) and lacking uracil at room temperature.
  • a yeast clonal strain in which expression of the recombinant chimeric ⁇ -1,2-mannosidase is confirmed is selected by PCR using the first-strand cDNA prepared from this total RNA as a saddle type.
  • the structure of the main ⁇ -linked glycan expressed by Pichia fermenta has 2 residues ⁇ -acetyl darcosamine in the core portion on the reducing end and 5 in the non-reducing end side. It can be modified into a Man5 type high mannose type sugar chain having a structure in which one mannose residue is bonded.
  • RNA is extracted from yeast (Kluyveromyces lactis) using the RNeasy Mini Kit (Qiagen), and then this RNA is used as a cocoon for Superscript TM first-strand cDNA synthesis kit CDNA is prepared using Nvitrogens). Next, this cDNA is used as a saddle type, and PCR is performed using specific primers and KOD polymerase (Toyobo) to encode the entire translation region of the yeast UDP-N-acetylyldarcosamine transporter.
  • cDNA GenBank Accessory
  • the amplified cDNA having a length of about 3700 bases is combined with a restriction enzyme EcoRI cleavage site located downstream of a single alcohol oxygenase promoter sequence such as the yeast expression vector pPIC3.5K (manufactured by Invitrogen). Inserted between Not I cleavage sites and UDP-N-acetylcylcosamine transport into yeast Golgi
  • a vector for expressing the expression vector is stably introduced into the Pichia yeast strain into which the ⁇ -1,2 mannosidase gene has been introduced, as described in the previous section, by the electopore method.
  • the yeast is cultured at room temperature in a YPD medium containing the drug G418 (manufactured by Nacalai Testa Co., Ltd.), and the total colony force that has grown also extracts total RNA.
  • a yeast clonal strain in which expression of the recombinant UDP-N-acetyldarcosamine transporter is observed is selected by a PCR method using the cDNA in which the total RNA is also prepared as a saddle type.
  • N-Acetyldarcosaminyltransferase-1 (GenBank accession number) was obtained by performing PCR using human liver cDNA (Clontech) in a cage and using specific primers and KOD polymerase (Toyobo). : Amplify specifically the cDNA encoding the active domain of M55621). The amplified cDNA is linked to the 5 'end of the cDNA sequence encoding the leader peptide of the yeast mannose transferase (MNN9) gene (GenBank accession number: L23752), and then expressed for yeast.
  • MNN9 yeast mannose transferase
  • vector pAUR123 manufactured by Tacarano
  • N-acetylyldarcosamine transferase- is inserted into the yeast Golgi.
  • a vector for expressing 1 is prepared. Next, this vector was introduced with the UDP-N-acetylcylcosamine transporter gene described in the previous section.
  • the Pichia yeast strain is introduced by the lithium acetate method described in the manual attached to the expression vector pAUR123.
  • the yeast after gene transfer is cultured at room temperature in a YPD medium containing the drug mouthful brassin A (manufactured by Takara noisyo), and total RNA is extracted from each of the grown colonies.
  • a yeast clonal strain in which expression of recombinant N-acetylyldarcosamine transferase-1 is observed is selected by PCR using the cDNA prepared from this total RNA as a saddle type.
  • the structure of the main N-linked sugar chain expressed in Pichia yeast has 2 residues of N-acetyldarcosamine in the core at the reducing end and 5 at the non-reducing end. It can be modified to a noblebrid sugar chain with a structure in which one N-acetylyldarcosamine residue is added to the non-reducing end of the Man5 type high mannose sugar chain to which the mannose residue is attached. .
  • Pichia yeast strain that mainly expresses a hybrid sugar chain, which is an intermediate structure between a high mannose sugar chain and a complex sugar chain, as an N-linked sugar chain has been described.
  • yeasts of the genus Saccharomyces can be mentioned as yeasts that are often used as hosts for expressing recombinant proteins.
  • a method for producing a Saccharomyces yeast strain that mainly expresses N-linked sugar chains and hybrid sugar chains as follows is described.
  • a yeast clone in which the OCH1 locus is destroyed by homologous recombination is selected.
  • the obtained Saccharomyces yeast strain in which the OCH1 gene was disrupted was derived from haploid cells according to the method of Sherman et al. (Methods'In'Enzymology 1 194, 21 (1991)), and then ⁇ -1,3-mannose.
  • a diploid zygote is formed by mixing with haploid cells of the mutant yeast strain LB1-10B (University of California Yeast Genetic Stock Center) in which the transferase (MNN1) gene is disrupted and culturing under nitrogen-deficient conditions .
  • the obtained zygote is cultured at room temperature in YPD medium lacking uracil and leucine, and genomic DNA is extracted from each colony force that has grown.
  • the yeast OCH1 locus sequence (GenBank accession number: AF540063) and the MNN1 locus sequence (GenBank accession) were obtained by PCR using this genomic DNA as a saddle type.
  • Yon number: AF540063L23753 is amplified to select yeast clones in which both OCH1 locus and MNN1 locus are destroyed.
  • RNA extract total RNA from mold (Aspergillus saitoi) using RNeasy Mini Kit (Qiagen), and then prepare cDNA using Superscript TM first-strand cDNA synthesis kit (Invitrogen) using this RNA as a cage. To do. Next, this cDNA is used as a saddle and PCR is carried out using a specific primer and KOD polymerase (Toyobo Co., Ltd.).
  • a cDNA (GenBank accession number: D 49827) encoding the entire translation region of nonnosidase is specifically amplified.
  • the amplified cDNA about 1500 bases long, has a yeast endoplasmic reticulum localization signal peptide (embombonal 7, 913 (1988)), that is, histidine-aspartate, at the 3 'end from which the translation termination codon was deleted.
  • yeast endoplasmic reticulum localization signal peptide embombonal 7, 913 (1988)
  • histidine-aspartate at the 3 'end from which the translation termination codon was deleted.
  • a vector for expressing a sidase is prepared.
  • this vector was stably introduced into the Saccharomyces yeast strain in which the a-1,6-mannose transferase gene and the a-1,3-mannose transferase gene were disrupted, as described in the previous section, by the electopore method.
  • the yeast after gene transfer is cultured at room temperature in a YPD medium (Invitrogen) containing zeocin (Invitrogen) and lacking uracil, and total RNA is extracted from each of the grown colonies.
  • a recombinant chimeric type (yeast clone strain in which the expression of X-1,2-mannosidase was observed was selected by PCR using this cDNA with the total RNA strength prepared as a saddle type.
  • the main N-linked sugar chain structure expressed by Saccharomyces yeast has 2 residues of N-acetyldarcosamine in the core of the reducing end, and the non-reducing end It can be modified into a Man5 type high mannose type sugar chain having a structure in which 5 mannose residues are bonded to the side.
  • RNA Extract total RNA from yeast (Kluyveromyces lactis) using the RNeasy Mini Kit (Qiagen), and then prepare cDNA using the Superscript TM first-strand cDNA synthesis kit (Invitrogen) using this RNA as a cage. To do. Next, this cDNA is used as a saddle type, and PCR is performed using specific primers and KOD polymerase (Toyobo) to encode the entire translation region of the yeast UDP-N-acetylyldarcosamine transporter.
  • cDNA GenBank Accessory
  • the amplified cDNA of about 3700 bases was digested with the restriction enzyme EcoRI cleavage site located downstream of the vector alcohol oxygenase promoter sequence such as the yeast expression vector pPIC3.5K (manufactured by Invitrogen). Inserted between Not I cleavage sites and UDP-N-acetylcylcosamine transport into yeast Golgi
  • a vector for expressing the expression vector is stably introduced into the Saccharomyces yeast strain introduced with the ⁇ -1,2 mannosidase gene described in the previous section by the electopore method.
  • the yeast is cultured at room temperature in a YPD medium containing the drug G418 (manufactured by Leitesta Co., Ltd.), and total RNA is extracted from each of the grown colonies.
  • a yeast clonal strain in which expression of the recombinant UDP-N-acetylyldarcosamine transporter is observed is selected by PCR using the cDNA prepared from the total RNA as a template.
  • N-acetylylcosamine transferase-1 (GenBank accession number) is obtained by performing PCR using human liver cDNA (Clontech) in a cage and using specific primers and KOD polymerase (Toyobo). : Specific to the cDNA encoding the active domain of M55621) Amplify automatically. The amplified cDNA is linked to the 5 'end of the cDNA sequence encoding the leader peptide of the yeast mannose transferase (MNN9) gene (GenBank accession number: L23752), and then expressed for yeast.
  • MNN9 yeast mannose transferase
  • vector pAUR123 manufactured by Tacarano
  • N-acetylyldarcosamine transferase- is inserted into the yeast Golgi.
  • a vector for expressing 1 is prepared. Next, this vector was introduced into the Saccharomyces yeast strain introduced with the UDP-N-acetylyldarcosamine transporter gene described in the previous section by the lithium acetate method described in the manual attached to the expression vector pAUR123. To do.
  • the yeast after the gene introduction is cultured at room temperature in a YPD medium containing a drug mouthful brassin A (manufactured by Takara Bio Inc.), and total RNA is extracted from each grown mouthpiece.
  • a yeast clone strain in which the expression of recombinant N-acetyl dalcosamine transferase-1 has been observed is selected by PCR using this cDNA, which has also been prepared for total RNA, in a vertical form.
  • the structure of the main N-linked sugar chain expressed in Saccharomyces yeast has a 2-residue N-acetylyldarcosamine in the core portion on the reducing end side and 5 in the non-reducing end side. It can be modified to a nodule type sugar chain in which one N-acetylyldarcosamine residue is added to the non-reducing terminal side of the Man5 type high mannose type sugar chain having a structure in which one mannose residue is bonded.
  • the obtained cDNA is used as an expression vector for yeast. Inserts between the restriction enzyme Clal cleavage site and the Xbal cleavage site located downstream of the alcoholoxygenase promoter sequence of vectors such as pPIC6a (Invitrogen) to secrete and express mature human erythropoietin Make vector pPIC6 / hEPO.
  • pPIC6a Invitrogen
  • the HIS4 gene is cleaved with the restriction enzyme Sail (manufactured by New England Biolabs), and a linearized vector is prepared by phenol chloroform extraction and ethanol precipitation.
  • this linearly-expressed erythropoietin expression vector was transformed into the N-linked saccharide described in Section 5 of this Example.
  • the yeast after the gene introduction is cultured at room temperature in a YPD medium (Invitrogen) containing the drug blasticidin (Invitrogen) to obtain blasticidin-resistant colonies.
  • blastcidin-resistant colonies are transplanted into liquid YPD medium (Invitrogen), and batch culture is performed at 30 ° C for 24 hours or more.
  • the culture supernatant obtained after culturing is analyzed using a human erythropoietin gelizer kit (StemCe 11 Technologies) using erythropoietin pharmaceutical Espoo (manufactured by Soba) as a standard product.
  • a Pichia that mainly expresses an N-acetylglycosyl chain in which one N-acetyl darcosamine residue is added to the non-reducing end of the Man5 type high mannose type glycan.
  • yeast strain or a similarly modified Saccharomyces yeast strain as a host, It was described that recombinant human erythropoietin can be prepared which mainly has hybrid sugar chains that do not contain fucose as a synthetic sugar chain.
  • human manosidase II By performing PCR using human tissue-derived cDNA, such as liver-derived cDNA (Clontech), in a vertical form, and using a specific primer and KOD polymerase (Toyobo Co., Ltd.) V, human manosidase II (GenBank It specifically amplifies the cDNA encoding the active domain of the session number: U31520).
  • the amplified cDNA is linked to the 5 'end of the cDNA sequence encoding the leader peptide of the yeast mannose transferase (MNN9) gene (GenBank accession number: L23752), followed by expression for yeast.
  • the vector is inserted downstream of the promoter sequence of the vector to produce a vector that expresses ⁇ -mannosidase II in the yeast Golgi apparatus.
  • this vector was stable against yeast strains expressing recombinant human erythropoietin mainly having an glycan-linked sugar chain and an hybrid sugar chain as described in paragraph 11 of this Example. Introduced. For the yeast after gene introduction, clones are selected using auxotrophy and drug resistance as indicators, and then the expression of chimeric mannoseidase I I is confirmed by RT-PCR.
  • N-acetyldarcosaminyltransferase--using human tissue for example, liver-derived cDNA (Clontech) in a saddle shape and PCR using a specific primer and KOD polymerase (Toyobo) V CDNA Amplify the cDNA encoding the active domain of GenBank accession number: U15128.
  • the amplified cDNA is ligated to the 5 ′ end of the cDNA sequence encoding the leader peptide of the yeast mannose transferase (MNN9) gene (GenBank accession number: L2375 2), and then expressed for yeast.
  • MNN9 yeast mannose transferase
  • Kuta A vector for inserting N-acetylyldarcosamine transferase-II into the yeast Golgi apparatus is prepared by inserting it downstream of one promoter sequence. Next, this vector was stably introduced into the yeast strain expressing the recombinant human erythroboyetin mainly having a hybrid sugar chain as an N-linked sugar chain as described in the previous section (X mannosidase II). The yeast after the gene transfer is selected using auxotrophy and drug resistance as indicators and then transferred to the chimeric N-acetylyldarcosamine by RT-PCR.
  • the major N-containing gene recombinant erythroboyetin expressed by the yeast strain stably incorporating chimera-type N-acetyl darcosamine transferase II is expressed.
  • the structure of the conjugated sugar chain is linked with a structure that has two residues of N-acetylyldarcosamine in the core portion on the reducing end side and bifurcated three mannose residues on the non-reducing end side, Two non-reducing It can be modified into a complex double-stranded sugar chain that does not contain fucose, with one N-acetylyldarcosamine residue added to each end.
  • amplified cDNA is inserted downstream of the promoter sequence of an expression vector for yeast and is used to express UDP-galactose-4-epimerase in the cytosol of yeast.
  • this vector is stably introduced into the yeast strain described above, which expresses recombinant human erythropoietin mainly having an immature complex double-stranded sugar chain as an N-linked sugar chain. .
  • yeast after gene transfer clones are selected using auxotrophy and drug resistance as indicators, and then the expression of UDP-galactose-4-epimelase is confirmed by RT-PCR.
  • the amplified cDNA is located at the 5 'end of yeast mannose.
  • the cDNA sequence encoding the host After ligation of the cDNA sequence encoding the host, it is inserted downstream of the promoter sequence of the expression vector for yeast to create a vector that expresses j8 1,4 galactosyltransferase in the yeast Golgi apparatus.
  • this vector was introduced into the yeast strain described in the preceding paragraph, which expresses recombinant human erythropoietin mainly having an immature complex double-stranded sugar chain as an N-linked sugar chain.
  • 4 galactose transferase is stably introduced into yeast strains stably introduced.
  • clones are selected using auxotrophy and drug resistance as indicators, and then the expression of the chimeric j8 1,4 galactose transferase is confirmed by RT-PCR.
  • the structure of the major N-linked sugar chain of the recombinant erythropoietin expressed by the yeast strain stably incorporating the chimeric j8 1,4 galactosyltransferase is reduced. It has 2 residues of N-acetyl darcosamine in the core part on the side, and 3 mannose residues are linked in a bifurcated structure on the non-reducing end side of each, and each of the 2 non-reducing ends is It can be modified to a complex double-stranded sugar chain in which one N-acetylyldarcosamine residue and one galactose residue are added.
  • N-acetyldarcosaminyltransferase IV is obtained by performing PCR using human tissue-derived cDNA (Clontech) as a saddle, and using a specific primer and KOD polymerase (Toyobo) V. (UniGene.HS363315) and N-acetylcylcosamine transferase V
  • a cDNA encoding the active domain of (UniGene.HS208267) is specifically amplified.
  • the amplified cDNA is located at the 5 'end of the yeast mannose transferase (MNN9) gene (GenB ank accession number: L23752), ligated with the cDNA sequence encoding the leader peptide, inserted downstream of the promoter sequence of the yeast expression vector, and inserted into the yeast Golgi N-acetylyldarcosaminyltransferase. Make a vector to express IV and N-acetyl darcosamine transferase V.
  • these vectors are stably introduced into the yeast strain described above, which expresses recombinant human erythroboyetin mainly having a complex double-stranded sugar chain as an N-linked sugar chain.
  • yeast after gene transfer clones were selected using nutrient requirement and drug resistance as indicators, and then RT-PCR was used to transfer chimeric N-acetylyldarcosamine transferase IV and chimeric N-acetylethyldarcosamine. Confirm the expression of enzyme V.
  • the structure of the main N-linked sugar chain of the recombinant erythropoietin expressed by the yeast strain can be changed to Tetraantennary! /, A complex sugar chain of Triante nnary type. .
  • the yeast strain produced in the previous section which expresses a recombinant erythropoietin mainly having a complex double-stranded sugar chain having no fucose residue at the reducing end and sialic acid added at the non-reducing end,
  • liquid YPD medium manufactured by Invitrogen
  • the culture supernatant obtained after the culture is analyzed using a human erythropoietinizer kit (manufactured by Stem Cell Technologies) using erythropoietin preparation Espoo (manufactured by Soba) as a standard product.
  • erythropoietin preparation Espoo manufactured by Soba
  • a recombinant erythropoietin having a complex double-stranded sugar chain that does not contain fucose as an N-linked sugar chain, secreted into the yeast culture supernatant is obtained by the method of Krystal et al.
  • the purified erythropoietin protein can be analyzed for the sugar chain structure in accordance with the method of Skibeli et al. (Blood 98, 3626 (2001)).
  • the purified erythropoietin obtained in the previous section was attached to galactose hesialic acid on the non-reducing end side of the sugar chain in vitro according to the method of Raju et al. (Biochemistry 40, 8868 (2001)). Can be added.
  • erythropoietin sialylated by this reaction can be purified according to the method of Krystal et al. (Blood gl, 71 (1986)).
  • the purified erythropoietin protein can be analyzed for the sugar chain structure in accordance with the method of Skibeli et al. (Blood 98, 3626 (2001)).
  • a yeast strain that expresses a recombinant erythropoietin mainly having a Tetraantennary or Triantennary complex sugar chain that does not contain fucose as an N-glycoside-linked sugar chain is prepared, and the yeast is cultured.
  • a recombinant erythropoietin that mainly contains complex-type sugar chains that do not contain fucose as an N-glycoside-linked sugar chain, and then shearing this in vitro, the non-reducing terminal side of the sugar chain is obtained.
  • Erythropoietin with sialic acid added to can be prepared.
  • composition comprising a genetically modified erythroid mouth vegetin molecule having an N-glycoside-bonded complex sugar chain, wherein the N-glycoside-bonded complex sugar chain is the sugar chain. It is possible to provide a medicament containing an erythropoietin composition, which is a sugar chain in which fucose is bound to N-acetylcylcosamine at the reducing end.
  • SEQ ID NO: 25 Description of artificial sequence: synthetic DNA SEQ ID NO: 26-description of artificial sequence: synthetic DNA SEQ ID NO: 27-description of artificial sequence: synthetic DNA SEQ ID NO: 28-description of artificial sequence: synthetic DNA SEQ ID NO: 29-description of artificial sequence: synthetic DNA

Abstract

 本発明は、N-グリコシド結合複合型糖鎖を有する遺伝子組換えエリスロポイエチン分子からなる組成物であって、N-グリコシド結合複合型糖鎖が該糖鎖の還元末端のN-アセチルグルコサミンにフコースが結合していない糖鎖であるエリスロポイエチン組成物及びその用途を提供する。

Description

明 細 書
遺伝子組換えエリスロポイエチン組成物
技術分野
[0001] 本発明は、 N-グリコシド結合複合型糖鎖を有する遺伝子組換えエリスロポイエチン 分子カゝらなる組成物であって、 N-グリコシド結合複合型糖鎖が該糖鎖の還元末端の N-ァセチルダルコサミンにフコースが結合して!/ヽな 、糖鎖であるエリスロポイエチン 組成物及びその用途に関する。
背景技術
[0002] 血球細胞は、共通の血球系幹細胞力 様々な血球分ィ匕因子の作用によってそれ ぞれの成熟細胞へ分化成熟していくが、赤血球の分化過程においては、赤血球系 後期前駆細胞(colonyforming unit-erythroid; CFU- E)の成熟の段階が律速段階に なっている。エリスロポイエチンは、この段階にある細胞に作用することで赤血球への 分化を促進する造血ホルモンである。ヒト成人において、エリスロポイエチンは主に腎 臓で生産されるが、血液中の酸素分圧に応じて極微量生産され血液中に分泌される 。血液中に分泌されたエリスロポイエチンは、血液中の様々なトラップ機構をすり抜け 、標的組織である骨髄に達する。エリスロポエチンは骨髄中の赤血球系後期前駆細 胞を刺激し、その成熟を促して、末梢血中の赤血球数を増やす。ヒトにおいては、腎 臓疾患によりエリスロポイエチンの生産が低下したり、人工透析を行うことにより血液 が体外に排出されたりすると、エリスロポイエチン欠乏性の貧血が発生する。エリス口 ボイエチンはこのような腎性貧血の治療薬として使用されている。
[0003] エリスロポイエチンの分子量は、蛋白質部分が約 18,000、糖鎖部分が約 12,000の 計約 30,000である。成熟型エリスロポイエチンの構成アミノ酸数は 165個であり、分子 内に活性構造の保持に必須な二つの S-S結合が存在している。また、エリスロボイエ チン分子には、 N-グリコシド結合糖鎖が三つ、 0-グリコシド結合糖鎖が一つ結合して いる。以下にエリスロポイエチン分子に結合する N-グリコシド結合糖鎖の基本的な構 造を示す。
[0004] [化 1] NeuS Actf2-3GaI^l-4 GIcNAc
ariffl 士 Fucel
Neu 5Aca2-3Galj?l-4 GIcNAc »V 、6 6 ,
Man91-4 GIcNAc ト 4 GIcNAc- Asn
Neu5 AcoZ-3Galj?l- GIcNAc /3
Mantrl
Λ
Gat^l GIcNA Γ
[0005] 従来から知られて!/、るヒト尿由来または遺伝子組換え体エリスロポイエチンの N-ダリ コシド結合糖鎖の構造上の特徴としては、テトラアンテナリー (Tetraantennary)複合 型糖鎖が主な糖鎖であり、中性糖鎖はなぐ約 95%の N-グリコシド結合糖鎖の還元 末端 N-ァセチルダルコサミンに α 1,6結合でフコースが結合していることなどが挙げら れる (非特許
文献 1〜4)。Ν-グリコシド結合複合型糖鎖のコア構造より非還元末端側に分岐した アンテナ構造は、エリスロポイエチンが標的組織である骨髄に輸送されるために必須 の構造であることが報告されている(非特許文献 5)。また、エリスロポイエチンの Ν-グ リコシド糖鎖構造と in vitro活性については詳細な解析がなされており、 N-グリコシド 結合コア糖鎖部分は受容体との結合を強くサポートすることが明らかにされている( 非特許文献 6)。一方、 0-グリコシド結合糖鎖については、エリスロポイエチンの生物 活性には関与しないことが知られている(非特許文献 7〜9)。このように、市販されて いる遺伝子組換えエリスロポイエチン医薬品は、ヒトのエリスロポイエチンと同等の活 性を有するように、適切な糖鎖をエリスロポエチンに付加させることが可能な動物細 胞を用いて製造されている。
[0006] 遺伝子組換えエリスロポイエチン医薬品の血中半減期をヒトのエリスロポイエチンと 同等に保っためには、上記の動物細胞を用いた製造法において、エリスロボイエチ ンが有する糖鎖の非還元末端側に結合するシアル酸の含量を維持することが重要と いわれている。その理由としては、エリスロポイエチンをシァリダーゼ処理し、シアル 酸含量の異なる種々のァシァ口体にするとシアル酸結合数の低下に伴い in vivo活性 が指数的に低下し、完全なァシァ口体では 1000分の 1以下の活性しか示さないことが 知られている(非特許文献 10、 11)。なお、このようなァシァ口化に伴う in vivo活性の 低下は、シアル酸除去によって糖鎖非還元末端側のガラクトースがむき出しとなり、 エリスロポイエチンが肝臓のガラクトース結合蛋白質に補足され分解されるために起 こることが明らかとされている(非特許文献 12)。
[0007] このように、糖鎖の非還元末端側に結合するシアル酸については、その数がエリス ロボイエチンの血中半減期に大きく影響することが分力つていたが、糖鎖の還元末端 側に結合するフコースについては、その血中半減期に及ぼす影響については知られ ていない。以上のように、エリスロポイエチンに結合する糖鎖とエリスロポイエチン活 性に関するさまざまな知見が知られているものの、糖鎖へのフコース修飾の有無とェ リスロポイエチンの生理活性との関係につ 、ては知られて 、な 、。
[0008] 腎臓疾患によってエリスロポイエチンの生産が低下したり、透析によって血液が体 外に排出されたりするとエリスロポイエチン欠乏性の貧血が発生する。腎不全患者に おいては、腎機能の低下に伴い貧血と尿毒症が現れ、透析治療を開始する時点で はへマトクリット値が健常人の半分以下の 20%と 、う強 、貧血症状を呈する。このよう な腎不全患者の治療には定期的輸血が行われてきたが、遺伝子組換えエリス口ボイ ェチンの登場が治療方法を一変させた。エリスロポイエチンの腎性貧血の治療効果 は抜群であり、患者の QOLの向上に大きく貢献している。現行のエリスロポイエチン 製剤の腎不全性貧血に対する治療効果には明確な用量依存性が観察されている。 すなわち、 1週間でへマトクリット値を 1%上昇させるには、約 50U/kg (l μ gが 180 U)の 投与を週 3回行う必要がある。強度の鉄欠乏あるいは鉄利用障害を伴う患者では有 効性が認められない場合もあるが、腎不全性貧血患者における有効率は 95%以上と 高い。エリスロポイエチンの急性の副作用としては、頭痛、倦怠感、皮膚のかゆみ、は きけなどが報告されているが、いずれも軽度あるいは希であり大きな問題とはなって いない。最も注意を要する副作用は造血に伴う血圧上昇であり、 日本では約 5%の患 者に、欧米ではさらに高い頻度で認められる。この原因は、へマトクリット値の上昇に 伴って血液粘度が増加し末梢血管の抵抗性が増大するためであると考えられている 。通常、末梢血管抵抗性の増大は神経を介して心拍出量を低下させるので血圧上 昇をもたらすことはないが、へマトクリットの上昇スピードが速いときや高血圧の素因を 有する患者では調節のバランスが崩れ、血圧上昇が起こるものと考えられている。し たがって、エリスロポイエチンによる貧血の治療では、へマトクリット値で週 1%前後の 上昇に留めた緩慢な治療が望ましいとされている。また、そのような注意を払っても血 圧上昇が観察された際には、投薬量を減らし、カルシウム拮抗剤などの降圧剤処理 が行われている。一般に蛋白製剤では、反復投与に伴って、患者体内に蛋白に対 する抗体産生が起こることが懸念されて 、るが、エリスロポイエチン製剤投与にお ヽ ても、少な 、ながらも抗エリスロポイエチン抗体を発現する患者の症例が報告されて おりその数は近年増加傾向にある(非特許文献 13)。エリスロポイエチン製剤の血中 半減期を延長させる目的で、静脈注射カゝら皮下注射への変更が試みられているが、 この投与方法の変更及びそれにともなう製剤の変更が抗エリスロポイエチン抗体出 現患者の増加をもたらした可能性が推定されている。
[0009] このように、エリスロポイエチン製剤は腎不全性貧血の画期的な治療薬として腎透 析患者の治療に大きく貢献しているが、現行製剤を用い 1週間でへマトクリット値を 1% 上昇させるという精緻な治療を行うためには週 3回の投与が必要となっている。このこ とは患者のみならず医療現場にとっても大きな負担となっており、より投与回数の減 少が可能な腎不全性貧血の治療薬が求められている。腎透析患者は年々増加する 傾向にあり、患者がより通常の社会的生活を営むことができるようになればその社会 経済に及ぼす効果は大き 、。
[0010] これまでに、血中半減期の延長を目的として、エリスロポイエチンに付加する N-ダリ コシド結合複合型糖鎖の本数を増やしたアミノ酸改変体 (非特許文献 14)や、ポリエ チレングリコール修飾体 (非特許文献 15、 16)などの開発が試みられている力 この ような修飾を施すと、いずれの場合もエリスロポイエチン受容体との結合能力が大幅 に低下してしまう。また、アミノ酸改変による抗原性の問題も想定される。一度抗エリス ロボイエチン抗体を生じてしまった患者では、古典的な輸血による治療に頼らざるを 得な 、状況に陥る場合もあるため、深刻な問題となる。
[0011] また、エリスロポイエチン製剤の投与経路を変更させることにより血中半減期を向上 させ、患者への投与回数の軽減を図ろうとする試みもなされているが、抗原性の問題 もあり十分な効果が得られて 、な 、。ヒト天然型エリスロポイエチンに構造及び活性 が類似し、かつ現行製剤より投与回数を減らすことができる、腎不全性貧血などをは じめとする疾患に有効なエリスロポイエチン製剤が求められて 、る。 非特許文献 1 : Glycobiology 4, 227 (1994)
非特許文献 2 Journal of Biological Chemistry 263, 3657 (1988)
非特許文献 3 Journal of Biological Chemistry 262, 12059 (1987)
非特許文献 4 : Biochemistry 27, 5646 (1988)
非特許文献 5 : Proceedings of the National Academy of Sciences USA 86, 7819(1989 )
非特許文献 6 : Glycobiology 1, 337 (1991)
非特許文献 7 : Biochemistry 31, 9871 (1992)
非特許文献 8 Journal of Biological Chemistry 267, 7703 (1992)
非特許文献 9 : Blood 77, 2624 (1991)
非特許文献 10 : European Journal of Biochemistry 194, 457 (1990)
非特許文献 11 Journal of Biological Chemistry 265, 12127 (1990)
非特許文献 12 : Blood 73, 84 (1989)
非特許文献 13 : Nephrology Dialysis Transplantation 18[Suppl 8], viii37 (2003) 非特許文献 14 : British Journal of Cancer 84, 3 (2001)
非特許文献 15 : Nephrology and Dialysis and Transplantation Suppl4, 166 (2003) 非特許文献 16 Journal of Pharmaceutical Science 93, 3027 (2004)
発明の開示
発明が解決しょうとする課題
[0012] 医療現場での効率的な治療、医療事故や副作用の軽減、患者の負担軽減及び医 療経済の観点から、現行の製剤と比較して、ヒト天然型エリスロポイエチンに構造及 び活性が類似し、かつ市販製剤より投与回数を減らすことができる血中半減期が延 長されたエリスロポイエチン製剤を提供することにある。
課題を解決するための手段
[0013] 本発明は、以下の(1)〜(23)に関する。
(1) N-グリコシド結合複合型糖鎖を有する遺伝子組換えエリスロポイエチン分子か らなる組成物であって、 N-グリコシド結合複合型糖鎖が該糖鎖の還元末端の N-ァセ チルダルコサミンにフコースが結合して ヽな 、糖鎖であるエリスロポイエチン組成物。 (2) N-グリコシド結合複合型糖鎖が、該糖鎖還元末端の N-ァセチルダルコサミン の 6位にフコースの 1位が α結合していない糖鎖である、上記(1)に記載のエリスロポ イエチン組成物。
[0014] (3)エリスロポイエチン力 以下の (a)、(b)、(c)、(d)、( 、(£)、(g)、(h)及び (i)力もなる 群力も選ばれる蛋白質である、上記(1)または(2)に記載のエリスロポイエチン組成 物。
(a) 配列番号 4で表されるァミノ配列からなる蛋白質;
(b) 配列番号 5で表されるァミノ配列力 なる蛋白質;
(c) 配列番号 6で表されるァミノ配列力 なる蛋白質;
(d) 配列番号 4で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、置換、挿 入および Zまたは付加されたアミノ酸配列力もなり、かつ赤血球増多活性を有する蛋 白質; (e) 配列番号 5で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、置 換、挿入および Zまたは付加されたアミノ酸配列力もなり、かつ赤血球増多活性を有 する蛋白質;
(D 配列番号 6で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、置換、挿 入および Zまたは付加されたアミノ酸配列力もなり、かつ赤血球増多活性を有する蛋 白質;
(g) 配列番号 4で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列か らなり、かつ赤血球増多活性を有する蛋白質;
(h) 配列番号 5で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列か らなり、かつ赤血球増多活性を有する蛋白質;
(0 配列番号 6で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列か らなり、かつ赤血球増多活性を有する蛋白質。
[0015] (4) エリスロポイエチン力 以下の (a)、(b)、(c)、(d)、(e)及び (1)力 なる群力 選ばれ る DNAがコードする蛋白質である、上記(1)または(2)に記載のエリスロポイエチン組 成物。
(a) 配列番号 1で表される塩基配列からなる DNA;
(b) 配列番号 2で表される塩基配列力 なる DNA; (c) 配列番号 3で表される塩基配列力 なる DNA;
(d) 配列番号 1で表される塩基配列力もなる DNAとストリンジェントな条件でハイプリ ダイズし、かつ赤血球増多活性を有する蛋白質をコードする DNA;
(e) 配列番号 2で表される塩基配列からなる DNAとストリンジェントな条件でノ、イブリ ダイズし、かつ赤血球増多活性を有する蛋白質をコードする DNA;
(D 配列番号 3で表される塩基配列からなる DNAとストリンジェントな条件でノ、イブリダ ィズし、かつ赤血球増多活性を有する蛋白質をコードする DNA。
[0016] (5)エリスロポイエチン分子をコードする DNAを宿主細胞に導入して得られる、上 記(1)〜 (4)の 、ずれか 1項に記載のエリスロポイエチン組成物を生産する形質転換 体。
(6)宿主細胞が、細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素、ま たは N-グリコシド結合複合型糖鎖還元末端の N-ァセチルダルコサミンの 6位にフコ ースの 1位が α結合する糖鎖修飾に関与する酵素の活性が欠失するようにゲノムが 改変された細胞である、上記(5)に記載の形質転換体。
[0017] (7)宿主細胞が、細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素、ま たは Ν-グリコシド結合複合型糖鎖還元末端の Ν-ァセチルダルコサミンの 6位にフコ ースの 1位が OC結合する糖鎖修飾に関与する酵素のゲノム上の対立遺伝子のすべ てがノックアウトされた細胞である、上記(6)に記載の形質転換体。
(8)細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素力 GDP-マンノー ス 4,6-デヒドラターゼ及び GDP- 4-ケト- 6-デォキシ- D-マンノース- 3,5-ェピメラーゼ 力もなる群力 選ばれる酵素である、上記(6)または(7)に記載の形質転換体。
[0018] (9) GDP-マンノース 4,6-デヒドラターゼカ 以下の (a)、(b)及び (c)力 なる群から 選ばれる蛋白質である、上記(8)に記載の形質転換体。
(a)配列番号 8で表されるアミノ酸配列からなる蛋白質;
(b)配列番号 8で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、置換、挿 入および Zまたは付加されたアミノ酸配列力もなり、かつ GDP-マンノース 4,6-デヒド ラターゼ活性を有する蛋白質;
(c)配列番号 8で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列から なり、かつ GDP-マンノース 4,6-デヒドラターゼ活性を有する蛋白質;
(10) GDP-マンノース 4,6-デヒドラターゼカ 以下の (a)及び (b)からなる群から選ば れる DNAがコードする蛋白質である、上記(8)に記載の形質転換体。
(a)配列番号 7で表される塩基配列からなる DNA;
(b)配列番号 7で表される塩基配列力もなる DNAとストリンジェントな条件でハイブリダ ィズし、かつ GDP-マンノース 4,6-デヒドラターゼ活性を有する蛋白質をコードする DN A。
[0019] (11) GDP- 4-ケト- 6-デォキシ- D-マンノース- 3,5-ェピメラーゼカ 以下の(a)、 (b) および(c)力もなる群力も選ばれる蛋白質である、上記(8)に記載の形質転換体。
(a)配列番号 10で表されるアミノ酸配列からなる蛋白質;
(b)配列番号 10で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、置換、挿 入および Zまたは付加されたアミノ酸配列力もなり、かつ GDP-4-ケト -6-デォキシ -D -マンノース- 3,5-ェピメラーゼ活性を有する蛋白質;
(c)配列番号 10で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列か らなり、かつ GDP-4-ケト -6-デォキシ- D-マンノース- 3,5-ェピメラーゼ活性を有する 蛋白質。
[0020] (12) GDP- 4-ケト- 6-デォキシ- D-マンノース- 3,5-ェピメラーゼカ 以下の(a)及 び (b)力もなる群力も選ばれる DNAがコードする蛋白質である、上記(8)に記載の細 胞。(a)配列番号 9で表される塩基配列力 なる DNA;
(b)配列番号 9で表される塩基配列力もなる DNAとストリンジェントな条件でハイブリダ ィズし、かつ GDP-4-ケト -6-デォキシ- D-マンノース- 3, 5-ェピメラーゼ活性を有する 蛋白質をコードする DNA。
[0021] (13) N-グリコシド結合複合型糖鎖還元末端の N-ァセチルダルコサミンの 6位にフ コースの 1位が a結合する糖鎖修飾に関与する酵素が a 1,6-フコシルトランスフェラ ーゼである上記(6)または(7)に記載の形質転換体。
(14) a 1,6-フコシルトランスフェラーゼカ 以下の(a)、 (b)、(c)、(d)、(e)および (1)か らなる群力も選ばれる蛋白質である、上記(13)に記載の形質転換体。
(a)配列番号 13で表されるアミノ酸配列からなる蛋白質; (b)配列番号 14で表されるアミノ酸配列力もなる蛋白質;
(c)配列番号 13で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、置換、挿 入および Zまたは付加されたアミノ酸配列力もなり、かつ α 1 ,6-フコシルトランスフェラ ーゼ活性を有する蛋白質;
(d)配列番号 14で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、置換、挿 入および Zまたは付加されたアミノ酸配列力もなり、かつ α 1 ,6-フコシルトランスフェラ ーゼ活性を有する蛋白質;
(e)配列番号 13で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列か らなり、かつ a 1 ,6-フコシルトランスフェラーゼ活性を有する蛋白質;
(1)配列番号 14で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列か らなり、かつ a 1 ,6-フコシルトランスフェラーゼ活性を有する蛋白質。
[0022] ( 15) a 1 ,6-フコシルトランスフ ラーゼカ 以下の(a)、(b)、(c)及び (d)力もなる群か ら選ばれる DNAがコードする蛋白質である、上記(13)に記載の形質転換体。
(a)配列番号 11で表される塩基配列力 なる DNA ;
(b)配列番号 12で表される塩基配列力もなる DNA;
(c)配列番号 11で表される塩基配列力 なる DNAとストリンジェントな条件でノ、イブリ ダイズし、かつ α 1 ,6-フコシルトランスフェラーゼ活性を有する蛋白質をコードする DN Α ;
(d)配列番号 12で表される塩基配列力もなる DNAとストリンジェントな条件でハイプリ ダイズし、かつ α 1 ,6-フコシルトランスフェラーゼ活性を有する蛋白質をコードする DN Α。
[0023] ( 16) Ν-グリコシド結合複合型糖鎖還元末端の Ν-ァセチルダルコサミンの 6位とフ コースの 1位が oc結合した糖鎖構造を認識するレクチンに耐性である、上記(5)〜(1 5)の 、ずれか 1項に記載の形質転換体。
( 17)レクチン耐性力 Ν-グリコシド結合複合型糖鎖還元末端の Ν-ァセチルダルコ サミンの 6位とフコースの 1位が a結合した糖鎖構造を認識するレクチンを含む培地 で培養した場合に、ゲノムが改変される以前の細胞よりも高 、生存率を示すことであ る、上記(16)に記載の形質転換体。 [0024] ( 18)少なくとも、以下の (a)、(b)、(c)及び (d)力もなる群力 選ばれるレクチンの一つ に耐性である、上記(16)または(17)に記載の形質転換体。
\a) レンズマメレクチン LCA (Lens Culinaris由來の Lentil Agglutinin);
(b) エンドゥマメレクチン PS A (Pisum sativum由来の Pea Lectin);
(c) ソラマメレクチン VFA (Vicia faba由来の Agglutinin):
(d) ヒィロチャワンタケレクチン AAL (Aleuria aurantia由来の Lectin) .
[0025] ( 19)宿主細胞が、下記の (a)、(b)、(c)、(d)、( 、(£)、(g)、(h)、(i)及び (j)力 なる群か ら選ばれる細胞である上記(5)〜(18)の 、ずれか 1項に記載の形質転換体。
(a)チャイニーズノヽムスター卵巣組織由来 CHO細胞;
(b)ラットミエローマ細胞株 YB2/3HL.P2.G11.16Ag.20細胞;
(c)マウスミエローマ細胞株 NS0細胞;
(d)マウスミエローマ細胞株 SP2/0- Agl4細胞;
(e)シリアンノヽムスター腎臓組織由来 BHK細胞;
(1)ヒト白血病細胞株ナマルバ細胞;
(g)胚性幹細胞;
(h)受精卵細胞;
(0植物細胞;
(j)酵母。
[0026] (20)上記(5)〜(19)のいずれか 1項に記載の形質転換体を培地に培養し、培養 物中にエリスロポイエチン組成物を生成蓄積させ、該培養物力 エリスロポイエチン 組成物を採取する工程を含む、エリスロポイエチン組成物の製造方法。
(21)上記(20)記載の製造方法で得られるエリスロポイエチン組成物。
(22)上記(1)〜 (4)および(21)記載のエリスロポイエチン組成物を有効成分とし て含有する医薬。
[0027] (23)上記(1)〜 (4)および(21)記載のエリスロポイエチン組成物を有効成分とし て含有する赤血球増多剤。
発明の効果
[0028] 本発明により、 N-グリコシド結合複合型糖鎖を有する遺伝子組換えエリスロボイエ チン分子カゝらなる組成物であって、 N-グリコシド結合複合型糖鎖が該糖鎖の還元末 端の N-ァセチルダルコサミンにフコースが結合して!/ヽな 、糖鎖であるエリスロポイエ チン組成物を含有する医薬が提供される。
図面の簡単な説明
[0029] [図 1]は、プラスミド pBS- EPOの作製フローを示す。
[図 2]は、プラスミド pKAN- EPOの作製フローを示す。
[図 3]は、 EPO組成物の KU812細胞株増殖促進活性を示す。
[図 4]は、 EPO組成物の CD-Iマウスにおける血中濃度変化を示す。
[図 5]は、 EPO組成物の血中動態パラメーターを示す。
[図 6]は、プラスミド pBS- NESPの作製フローを示す。
[図 7]は、プラスミド pKAN- NESPの作製フローを示す。
発明を実施するための最良の形態
[0030] 本発明の、 N-グリコシド結合複合型糖鎖を有する遺伝子組換えエリスロポイエチン 分子カゝらなる組成物であって、 N-グリコシド結合複合型糖鎖が該糖鎖の還元末端の N-ァセチルダルコサミンにフコースが結合して!/ヽな 、糖鎖であるエリスロポイエチン 組成物(以下、「本発明の組成物」とも表記する)とは、 N-グリコシド結合複合型糖鎖 還元末端の N-ァセチルダルコサミンにフコースが結合して ヽな 、遺伝子組換えエリ スロポイエチン分子からなるエリスロポイエチン糸且成物であればいかなる糸且成物も包 含される。
[0031] 本発明にお 、て、エリスロポイエチンとは、エリスロポイエチン受容体に親和性を有 し、かつ赤血球系後期前駆細胞を刺激しその成熟を促すことにより、末梢血中の赤 血球数を増加させる活性を有する糖蛋白質であれば ヽカゝなるものも包含される。 その具体的なエリスロポイエチンの例としては、下記 (a)、(b)、(c)、(d)、(e)あるいは (1) の DNAがコードする蛋白質、または下記 (g)、(h)、(0、(j)、(k)、(1)、(m)、(n)あるいは (o) の蛋白質などがあげられる。
(a) 配列番号 1で表される塩基配列力 なる DNA;
(b) 配列番号 2で表される塩基配列力 なる DNA;
(c) 配列番号 3で表される塩基配列からなる DNA; (d) 配列番号 1で表される塩基配列力 なる DNAとストリンジェントな条件でノ、イブリ ダイズし、かつ赤血球増多活性を有する蛋白質をコードする DNA;
(e) 配列番号 2で表される塩基配列力 なる DNAとストリンジェントな条件でノ、イブリ ダイズし、かつ赤血球増多活性を有する蛋白質をコードする DNA;
(D 配列番号 3で表される塩基配列力 なる DNAとストリンジェントな条件でノ、イブリ ダイズし、かつ赤血球増多活性を有する蛋白質をコードする DNA。
(g) 配列番号 4で表されるァミノ配列力 なる蛋白質;
(h) 配列番号 5で表されるァミノ配列力 なる蛋白質;
(0 配列番号 6で表されるァミノ配列力 なる蛋白質;
(j) 配列番号 4で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、置換、挿 入および Zまたは付加されたアミノ酸配列力もなり、かつ赤血球増多活性を有する蛋 白質;
(k) 配列番号 5で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、置換、挿 入および Zまたは付加されたアミノ酸配列力もなり、かつ赤血球増多活性を有する蛋 白質;
(1) 配列番号 6で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、置換、挿 入および Zまたは付加されたアミノ酸配列力もなり、かつ赤血球増多活性を有する蛋 白質;
(m) 配列番号 4で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列 からなり、かつ赤血球増多活性を有する蛋白質;
(n) 配列番号 5で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列か らなり、かつ赤血球増多活性を有する蛋白質;
(0) 配列番号 6で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列か らなり、かつ赤血球増多活性を有する蛋白質。
本発明にお!/、て、ストリンジヱントな条件下でハイブリダィズする DNAとは、例えば 配列番号 1、 2または 3で表される塩基配列を有する DNAなどの DNAまたはその一 部の断片をプローブとして、コ口-一'ハイブリダィゼーシヨン法、プラーク 'ハイブリダ ィゼーシヨン法ある 、はサザンブロットハイブリダィゼーシヨン法等を用いることにより 得られる DNAを意味し、具体的には、コロニーあるいはプラーク由来の DNAを固定 化したフィルターを用いて、 0. 7〜1. OMの塩化ナトリウム存在下、 65°Cでハイブリ ダイゼーシヨンを行った後、 0. 1〜2倍濃度の SSC溶液(1倍濃度の SSC溶液の組 成は、 150mM塩化ナトリウム、 15mMクェン酸ナトリウムよりなる)を用い、 65°C条件 下でフィルターを洗浄することにより同定できる DNAをあげることができる。ハイブリ ダィセ ~~ンヨン ί 、 Molecularし loning, A Laboratory Manual, Second Edition, Cold b pring Harbor Laboratory Press, (1989) (以下、モレキュラ^ ~·クロー-ング第 2版と略 す)、 Current Protocols in Molecular Biology, John Wiley & Sons,(1987- 1997) (以下 、カレント 'プロトコ一ルズ'イン'モレキュラ^ ~ ·バイオロジーと略す)、 DNA Cloning 1: し ore Techniques, A Practical Approacn, Second Edition, Oxford University (1995) 等に記載されて 、る方法に準じて行うことができる。ハイブリダィズ可能な DNAとして 具体的には、配列番号 1、 2または 3で表される塩基配列と少なくとも 60%以上の相 同性を有する DNA、好ましくは 70%以上、より好ましくは 80%以上、さらに好ましく は 90%以上、特に好ましくは 95%以上、最も好ましくは 98%以上の相同性を有する DNAをあげることができる。
本発明において、配列番号 4、 5または 6で表されるアミノ酸配列において 1以上の アミノ酸が欠失、置換、挿入および Zまたは付加されたアミノ酸配列力もなり、かつ赤 血球増多活性を有する蛋白質とは、モレキュラー 'クローユング第 2版、カレント 'プロ トコールズ.イン.モレキュラー.バイオロジー、 Nucleic Acids Research, 10, 6487 (198 2)、 Proc. Natl. Acad. Sci., USA, 79, 6409 (1982)、 Gene, 34,315 (1985)、 Nucleic Aci ds Research, 13, 4431 (1985)、 Proc. Natl. Acad. Sci. USA, 82, 488 (1985)等に記載 の部位特異的変異導入法を用いて、例えば、配列番号 4、 5または 6で表されるァミノ 酸配列を有する蛋白質をコードする DNAに部位特異的変異を導入することにより取 得することができる蛋白質を意味する。欠失、置換、挿入および Zまたは付加される アミノ酸の数は 1個以上でありその数は特に限定されないが、上記の部位特異的変 異導入法等の周知の技術により、欠失、置換もしくは付加できる程度の数であり、例 えば、 1〜数十個、好ましくは 1〜20個、より好ましくは 1〜: L0個、さらに好ましくは 1 〜5個である。 [0034] また、本発明にお 、て、配列番号 4、 5または 6で表されるアミノ酸配列と 80%以上 の相同性を有し、かつ赤血球増多活性を有する蛋白質とは、 BLASTCj.Mol. Biol, 215. 403 (1990)〕や FASTA [Methods in Enzymology, 183, 63 (1990)〕等の解析ソフ トを用いて計算したときに、配列番号 4、 5または 6に記載のアミノ酸配列を有する蛋 白質と少なくとも 80%以上、好ましくは 85%以上、より好ましくは 90%以上、さらに好 ましくは 95%以上、特に好ましくは 97%以上、最も好ましくは 99%以上である蛋白 質であることをいう。
[0035] 赤血球増多活性としては、エリスロポイエチンが有する、赤血球系後期前駆細胞を 刺激しその成熟を促し末梢血中の赤血球数を増やす活性があげられる。
糖蛋白質に結合している N-グリコシド結合糖鎖は、様々な構造を有している力 い ずれの場合にも以下の構造式 (I)に示す共通のコア構造を有することが知られて ヽる
[0036] [化 2]
4GlcNAc
[0037] 構造式 (I) 構造式 (I)において、ァスパラギンと結合する糖鎖の末端が還元末端、反対側が非 還元末端と呼ばれている。 N-グリコシド結合糖鎖には、コア構造の非還元末端にマ ンノースのみが結合するハイマンノース型、コア構造の非還元末端側にガラクトース —N-ァセチルダルコサミン(以下、 Ga卜 GlcNAcと表記する)で形成されるラタトサミン 構造を含む枝を並行して 1以上、具体的には 4本有し、更に Ga卜 GlcNAcの非還元末 端側にシアル酸、バイ
セクティングの N-ァセチルダルコサミンなどの構造を有する複合型、コア構造の非還 元末端側にハイマンノース型と複合型の両方の枝を持つハイブリッド型などがあるこ とが知られている。 [0038] 本発明の組成物を構成するエリスロポイエチン分子には少なくとも 3力所の N-グリコ シド結合糖鎖の付加配列が存在し、これら部位に 3本あるいはそれ以上の N-グリコシ ド結合糖鎖が結合する。エリスロポイエチンに結合する N-グリコシド結合糖鎖としては 、具体的には、上述の N-グリコシド結合複合型糖鎖を挙げることができる。エリスロボ イエチン分子に結合する N-グリコシド結合複合型糖鎖としては、前記構造式 (I)で示 されるコア構造を含む 、かなる糖鎖も包含されるので、多数の糖鎖の組み合わせが 存在することになる。
[0039] したがって、本発明の組成物は、本発明の効果が得られる範囲であれば、単一の 糖鎖構造を有するエリスロポイエチン分子から構成されて 、てもよ 、し、複数の異な る糖鎖構造を有するエリスロポイエチン分子力 構成されて 、てもよ 、が、本発明の 組成物は、 V、ずれの糖鎖構造にお ヽても N-グリコシド結合複合型糖鎖還元末端の N -ァセチルダルコサミンにフコースが結合して!/、な!/、糖鎖を有して 、る。
[0040] N-グリコシド結合複合型糖鎖還元末端の N-ァセチルダルコサミンにフコースが結 合して 、な 、糖鎖とは、フコースが N-グリコシド結合複合型糖鎖の N-ァセチルダルコ サミンに結合していない糖鎖であれば、いかなるものも包含され、非還元末端の糖鎖 の構造に多様性があっても構わない。例えばフコースの 1位が N-グリコシド結合複合 型糖鎖の N-ァセチルダルコサミンの 6位に (X結合して!/ヽな ヽ糖鎖等があげられる。
[0041] N-グリコシド結合複合型糖鎖を有するエリスロポイエチン分子カゝらなる組成物中の 糖鎖構造の解析は、エリスロポイエチン分子力 ヒドラジン分解や酵素消化などの公 知の方法 [生物化学実験法 23—糖タンパク質糖鎖研究法 (学会出版センター)高橋 禮子編(1989)]を用い、糖鎖を遊離させ、遊離させた糖鎖を蛍光標識又は同位元素 標識し、標識した糖鎖をクロマトグラフィー法にて分離することによって決定すること ができる。また、遊離させた糖鎖を HPAED- PAD法 [ジャーナル'ォブ'リキッド'クロマ トグラフィー Liq. Chromatogr.) , 6, 1577 (1983)]によって分析することで決定するこ とちでさる。
[0042] 本発明にお 、て、糖鎖還元末端の Ν-ァセチルダルコサミンにフコースが結合して いない糖鎖とは、糖鎖に、実質的にフコースが結合していないことをいい、好ましくは フコース含有率が 0%であることをいう。実質的にフコースが結合していないとは、具 体的には、
後述の 4に記載の糖鎖分析において、フコースが実質的に検出できない程度である ことをいう。実質的に検出できないとは、測定の検出限界以下であることを意味する。
[0043] 本発明の組成物は、従来力も知られているヒト尿由来または遺伝子組換え体エリス ロボイエチンなどの N-グリコシド結合複合型糖鎖還元末端の N-ァセチルダルコサミン にフコースが結合して 、るエリスロポイエチンに比べて、エリスロポイエチン受容体に 対する同等の親和性を有し、かつ生体内に投与した場合に血中半減期が長い。 本発明の形質転換体としては、本発明の組成物を生産することができる形質転換 体であれば、いかなる形質転換体も包含される。具体的には、エリスロポイエチン分 子をコードする DNAを、以下の (a)または (b)などの宿主細胞に導入して得られる形質 転換体あげられ
る。
[0044] (a)細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素の活性が欠失する ようにゲノムが改変された細胞;
(b) N-グリコシド結合複合型糖鎖還元末端の N-ァセチルダルコサミンの 6位にフコ ースの 1位が α結合する糖鎖修飾に関与する酵素の活性が欠失するようにゲノムが 改変された細胞。
[0045] 細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素としては、 GDP-マンノ ース 4,6-デヒドラターゼ(GMD)、 GDP- 4-ケト- 6-デォキシ- D-マンノース- 3,5-ェピメ ラーゼ (FX)などがあげられる。
本発明において、 GDP-マンノース 4,6-デヒドラターゼとしては、下記 (a)あるいは (b) の DNAがコードする蛋白質、または下記 (c)、(d)あるいは (e)の蛋白質などがあげられ る。
[0046] (a)配列番号 7で表される塩基配列力 なる DNA;
(b)配列番号 7で表される塩基配列力 なる DNAとストリンジェントな条件でノ、イブリ ダイズし、かつ GDP-マンノース 4,6-デヒドラターゼ活性を有する蛋白質をコードする DNA;
(c)配列番号 8で表されるアミノ酸配列力 なる蛋白質; (d)配列番号 8で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、置換、挿 入および Zまたは付加されたアミノ酸配列力もなり、かつ GDP-マンノース 4,6-デヒド ラターゼ活性を有する蛋白質;
(e)配列番号 8で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列か らなり、かつ GDP-マンノース 4,6-デヒドラターゼ活性を有する蛋白質。
[0047] 本発明において、 GDP- 4-ケト- 6-デォキシ- D-マンノース- 3,5-ェピメラーゼとして は、下記 (a)あるいは (b)の DNAがコードする蛋白質、または下記 (c)、(d)あるいは (e)の 蛋白質などがあげられる。
(a)配列番号 9で表される塩基配列力 なる DNA;
(b)配列番号 9で表される塩基配列力 なる DNAとストリンジェントな条件でノ、イブリ ダイズし、かつ GDP-4-ケト -6-デォキシ- D-マンノース- 3,5-ェピメラーゼ活性を有す る蛋白質をコードする DNA;
(a)配列番号 10で表されるアミノ酸配列力もなる蛋白質;
(b)配列番号 10で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、置換、 挿入および Zまたは付加されたアミノ酸配列力もなり、かつ GDP-4-ケト -6-デォキシ- D-マンノース- 3,5-ェピメラーゼ活性を有する蛋白質;
(c)配列番号 10で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列 からなり、かつ GDP-4-ケト -6-デォキシ- D-マンノース- 3,5-ェピメラーゼ活性を有す る蛋白質。
[0048] N-グリコシド結合複合型糖鎖還元末端の N-ァセチルダルコサミンの 6位にフコース の 1位が a結合する糖鎖修飾に関与する酵素としては、 a 1,6-フコシルトランスフェラ ーゼなどがあげられる。
本発明において、 α 1,6-フコシルトランスフェラーゼとしては、下記 (a)、(b)、(c)ある いは (d)の DNAがコードする蛋白質、または ( 、(£)、(g)、(h)、(0あるいは (j)の蛋白質な どがあげられる。
[0049] (a)配列番号 11で表される塩基配列力 なる DNA;
(b)配列番号 12で表される塩基配列力もなる DNA;
(c)配列番号 11で表される塩基配列からなる DNAとストリンジェントな条件でノ、イブ リダィズし、かつ (X 1,6-フコシルトランスフェラーゼ活性を有する蛋白質をコードする D NA;
(d)配列番号 12で表される塩基配列力もなる DNAとストリンジェントな条件でノ、イブ リダィズし、かつ a 1,6-フコシルトランスフェラーゼ活性を有する蛋白質をコードする D NA;
(e)配列番号 13で表されるアミノ酸配列力もなる蛋白質;
(£)配列番号 14で表されるアミノ酸配列力もなる蛋白質;
(g)配列番号 13で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、置換、 挿入および Zまたは付加されたアミノ酸配列力もなり、かつ α 1,6-フコシルトランスフ エラーゼ活性を有する蛋白質;
(h)配列番号 14で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、置換、 挿入および Zまたは付加されたアミノ酸配列力もなり、かつ α 1,6-フコシルトランスフ エラーゼ活性を有する蛋白質;
(0配列番号 13で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列 からなり、かつ a 1,6-フコシルトランスフェラーゼ活性を有する蛋白質;
0)配列番号 14で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列 からなり、かつ a 1,6-フコシルトランスフェラーゼ活性を有する蛋白質。
本発明にお!/、て、ストリンジヱントな条件下でハイブリダィズする DNAとは、例えば配 列番号 7、 9、 11または 12で表される塩基配列力もなる DNAなどの DNAまたはその一 部の断片をプローブとして、コ口-一'ハイブリダィゼーシヨン法、プラーク 'ハイブリダ ィゼーシヨン法あるいはサザンノヽイブリダィゼーシヨン法等を用いることにより得られる DNAを意味し、具体的には、コロニーあるいはプラーク由来の DNAを固定化したフィ ルターを用いて、 0. 7〜1. OMの塩化ナトリウム存在下、 65°Cでハイブリダィゼーシ ヨンを行った後、 0. 1〜2倍濃度の SSC溶液(1倍濃度の SSC溶液の組成は、 150m M塩化ナトリウム、 15mMクェン酸ナトリウムよりなる)を用い、 65°C条件下でフィルタ 一を洗浄することにより同定できる DNAをあげることができる。ハイブリダィゼーシヨン 【ま、 Molecular Cloning, A Laboratory Manual, Second Edition,し old Spring Harbor L aboratory Press, 1989 (以下、モレキュラ^ ~ ·クロー-ング第 2版と略す)、 Current Pro tocols in Molecular Biology, John Wiley & Sons, 1987— 1997 (以下、カレント 'プロトコ 一ルズ'イン'モレキュラ^ ~ ·バイオロジーと略す)、 DNA Cloning 1: Core Techniques, A Practical Approach, second Edition, Oxford University (199oノ等に ti載 れてい る方法に準じて行うことができる。ストリンジェントな条件下でハイブリダィズ可能な DN Aとして具体的には、配列番号 7、 9、 11または 12で表される塩基配列と少なくとも 60 %以上の相同性を有する DNA、好ましくは 70%以上、より好ましくは 80%以上、さら に好ましくは 90%以上、特に好ましくは 95%以上、最も好ましくは 98%以上の相同 性を有する DNAをあげることができる。
[0051] 本発明において、配列番号 8で表されるアミノ酸配列において 1以上のアミノ酸が欠 失、置換、挿入および Zまたは付加されたアミノ酸配列からなり、かつ GDP-マンノー ス 4,6-デヒドラターゼ活性を有する蛋白質、配列番号 10で表されるアミノ酸配列にお いて 1以上のアミノ酸が欠失、置換、挿入および Zまたは付加されたアミノ酸配列から なり、かつ GDP-4-ケト -6-デォキシ- D-マンノース- 3,5-ェピメラーゼ活性を有する蛋 白質、または配列番号 13または 14で表されるアミノ酸配列にお 、て 1以上のアミノ酸 が欠失、置換、挿入および Zまたは付加されたアミノ酸配列力もなり、かつ a 1,6-フコ シルトランスフェラーゼ活性を有する蛋白質は、モレキュラー 'クローユング第 2版、力 レント.プロトコーノレズ 'イン'モレキュラー.バイオロジー、 Nucleic Acids Research, 10, 6487 (1982)、 Proc. Natl. Acad. Sci" USA, 79, 6409 (1982)、 Gene, 34,315 (1985)、 Nucleic Acids Research, 13, 4431 (1985)、 Proc. Natl. Acad. Sci USA.82, 488 (1985) 等に記載の部位特異的変異導入法を用いて、例えば、配列番号 8、 10、 13または 1 4で表される塩基配列を有する DNAに部位特異的変異を導入することにより取得す ることができる。欠失、置換、挿入および Zまたは付加されるアミノ酸の数は 1個以上 でありその数は特に限定されないが、上記の部位特異的変異導入法等の周知の技 術により、欠失、置換もしくは付加できる程度の数であり、例えば、 1〜数十個、好まし くは 1〜20個、より好ましくは 1〜10個、さらに好ましくは 1〜5個である。
[0052] また、本発明において、配列番号 8、 10、 13または 14で表されるアミノ酸配列と 80 %以上の相同性を有するアミノ酸配列からなり、かつ GDP-マンノース 4,6-デヒドラタ ーゼ活性、 GDP- 4-ケト- 6-デォキシ- D-マンノース- 3,5-ェピメラーゼ活性または α 1, 6-フコシルトランスフェラーゼ活性を有するためには、それぞれ配列番号 8、 10、 13 または 14で表されるアミノ酸配列と BLAST〔J. Mol. Biol, 215,403 (1990)〕や FAST A [Methods in Enzymology, 183, 63 (1990)〕等の解析ソフトを用いて計算した ときに、少なくとも 80%以上、好ましくは 85%以上、より好ましくは 90%以上、さらに 好ましくは 95%以上、特に好ましくは 97%以上、最も好ましくは 99%以上の相同性 を有する蛋白質であることを意味する。
[0053] また、上述の酵素活性が欠失した宿主細胞、すなわち細胞内糖ヌクレオチド GDP- フコースの合成に関与する酵素、または N-グリコシド結合複合型糖鎖還元末端の N- ァセチルダルコサミンの 6位にフコースの 1位が a結合する糖鎖修飾に関与する酵素 の活性が欠失するようにゲノムが改変された宿主細胞に、エリスロポイエチン分子を コードする DNAを導入することによって、本発明の組成物を生産する形質転換体を 得ることができる。
[0054] ここで、細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素、または N-ダリ コシド結合複合型糖鎖還元末端の N-ァセチルダルコサミンの 6位にフコースの 1位が α結合する糖鎖修飾に関与する酵素の活性が欠失するようにゲノムが改変されたと は、該酵素の発現を消失させるように該遺伝子の発現調節領域に変異を導入したり 、あるいは該酵素の機能を消失させるように該遺伝子のアミノ酸配列に変異を導入す ることを意味する。変異を導入するとは、ゲノム上の塩基配列に欠失、置換、挿入お よび Ζまたは付加と 、つた塩基配列の改変を行うことを意味し、改変したゲノム遺伝 子の発現または機能を完全に抑制することをノックアウトすると 、う。ゲノム遺伝子をノ ックアウトする具体的な例としては、標的となる遺伝子のすべてまたは一部がゲノムか ら削除された例が挙げられる。標的となる遺伝子の開始コドンを含むエタソンのゲノム 領域を染色体上力 除くことでノックアウトすることができる。
[0055] このような細胞を取得する方法としては、目的とするゲノムの改変を行うことができれ ば、いずれの手法でも用いることができる。上述の酵素活性を欠失させる手法として
(a)酵素の遺伝子を標的した遺伝子破壊の手法;
(b)酵素の遺伝子のドミナントネガティブ体を導入する手法; (c)酵素につ 、ての突然変異を導入する手法;
(d)酵素の遺伝子の転写又は翻訳を抑制する手法;
(e) N-グリコシド結合糖鎖還元末端の N-ァセチルダルコサミンの 6位とフコースの 1 位が oc結合した糖鎖構造を認識するレクチンに耐性である株を選択する手法などが あげられる。
[0056] N-グリコシド結合糖鎖還元末端の N-ァセチルダルコサミンの 6位とフコースの 1位が
a結合した糖鎖構造を認識するレクチンとしては、該糖鎖構造を認識できるレクチン であれば、いずれのレクチンでも用いることができる。その具体的な例としては、レン ズマメレクチン LCA (Lens Culinaris由来の Lentil Agglutinin)、エンドゥマメレクチン PS A (Pisum sativum由来の PeaLectin)、ソラマメレクチン VFA (Vicia faba由来の Agglutini n)、ヒィロチャワンタケレクチン AAL (Aleuria aurantia由来の Lectin)等を挙げることが できる。
[0057] レクチンに耐性な細胞とは、レクチンを有効濃度与えたときにも、生育が阻害されな い細胞をいう。有効濃度とは、ゲノム遺伝子が改変される以前の細胞(以下、「親株 細胞」とも称す)が正常に生育できない濃度以上であり、好ましくは、ゲノム遺伝子が 改変される以前の細胞が生育できない濃度と同濃度、より好ましくは 2〜5倍、さらに 好ましくは 10倍、最も好ましくは 20倍以上である。
[0058] 本発明において、生育が阻害されないレクチンの有効濃度は、細胞株に応じて適 宜定めればよいが、通常 10 /z g/ml〜10mg/ml、好ましくは 0.5mg/ml〜2.0mg/mlであ る。
本発明の形質転換体としては、本発明の組成物を発現できる細胞であれば!/ヽかな る細胞でもよいが、酵母、動物細胞、昆虫細胞、植物細胞などがあげられ、これらの 細胞の具体的な例としては、後述の 2. に記載のものがあげられる。動物細胞の具体 例としては、チャイニーズノヽムスター卵巣組織由来の CHO細胞、ラットミエローマ細胞 株 YB2/3HL.P2.G11.16Ag.20細胞、マウスミエローマ細胞株 NS0細胞、マウスミエロー マ細胞株 SP2/0-Agl4細胞、シリアンハムスター腎臓組織由来 BHK細胞、ヒト白血病 細胞株ナマルバ細胞、胚性幹細胞、受精卵細胞などがあげられる。好ましくは、遺伝 子組換え糖蛋白質医薬品を製造するための宿主細胞、遺伝子組換え糖蛋白質医薬 品を生産するヒト以外のトランスジエニック動物を製造するために用いる胚性幹細胞 または受精卵細胞、ならびに遺伝子組換え糖蛋白質医薬品を生産するトランスジェ ニック植物を製造するために用いる植物細胞などがあげられる。
[0059] 親株細胞としては、細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素、ま たは N-グリコシド結合複合型糖鎖還元末端の N-ァセチルダルコサミンの 6位にフコ ースの 1位が OC結合する糖鎖修飾に関与する酵素のゲノム遺伝子を改変させるため の手法を施す前の細胞を包含する。例えば、以下の細胞が好適にあげられる。
NS0細胞の親株細胞としては、バイオ/テクノロジー (BIO/TECHNOLOGY), 10, 169 (1992)、バイオテクノロジ一'バイオエンジニアリング (Biotechnol.Bioeng.), 73, 261, (2 001)等の文献に記載されている NS0細胞があげられる。また、理化学研究所細胞開 発銀行に登録されている NS0細胞株(RCB0213)、あるいはこれら株を様々な無血清 培地に馴化させた亜株などもあげられる。
[0060] SP2/0-Agl4細胞の親株細胞としては、ジャーナル'ォブ 'ィムノロジー (J. Immunol.)
126. 317, (1981)、ネイチヤー (Nature), 276, 269, (1978)、ヒューマン 'アンチイボディ ズ'アンド'ノ、イブリドーマズ (HumanAnt¾odies and Hybridomas), 3, 129, (1992)等の 文献に記載されている SP2/0-Agl4細胞があげられる。また、 ATCCに登録されてい る SP2/0-Agl4細胞(ATCC CRL-1581)あるいはこれら株を様々な無血清培地に馴 化させた亜
株(ATCC CRL-1581.1)などもあげられる。
[0061] チャイニーズノヽムスター卵巣組織由来 CHO細胞の親株細胞としては、 Journal of E xperimental Medicine, 108, 945 (1958)、 Proc. Natl. Acad. Sci. USA, 60,1275 (1968) 、 Genetics, 55, 513 (1968)、 Chromosoma, 41, 129 (1973)、 Methodsin Cell Science, 18, 115 (1996)、 Radiation Research, 148, 260(1997)、 Proc. Natl. Acad. Sci. USA, 77 , 4216 (1980)、 Proc. Natl. Acad.Sci. 60, 1275 (1968)、 Cell, 6, 121 (1975)、 Molecular Cell Genetics, Appendix 1,11 (p883- 900)等の文献に記載されている CHO細胞があげ られる。また、 ATCCに登録されている CHO- K1株(ATCC CCL-61)、 DUXB11株(A TCC CRL- 9096)、 Pro- 5株(ATCC CRL- 1781)や、市販の CHO- S株(Life Technolo gies社製 Cat#l 1619)、あるいはこれら株を様々な無血清培地に馴化させた亜株など ちあげられる。
[0062] ラットミエローマ細胞株 YB2/3HL.P2.G11.16Ag.20細胞の親株細胞としては、 Y3/Ag 1.2.3細胞 (ATCC CRL-1631)から樹立された株化細胞が包含される。その具体的な 例としては
、 J. Cell. Biol, 93, 576 (1982)、 Methods Enzymol. 73B, 1 (1981)等の文献に記載さ れている YB2/3HL.P2.G11.16Ag.20細胞があげられる。また、 ATCCに登録されてい る YB2/3HL.P2.G11.16Ag.20細胞(ATCC CRL-1662)あるいはこれら株を様々な無 血清培地に馴化させた亜株などもあげられる。
[0063] 本発明の組成物を生産する細胞としては、具体的には、 α 1,6-フコシルトランスフエ ラーゼをコードする遺伝子がノックアウトされた CHO細胞にエリスロポイエチンをコー ドする遺伝子を導入した形質転 ·を無血清培地に馴化した株である ΡΚΑΝ-ΕΡ04 0AFMS705株、 GDP-マンノース 4,6-デヒドラターゼをコードする遺伝子がノックアウト された CHO細胞にエリスロポイエチンをコードする遺伝子を導入した形質転換株を無 血清培地に馴化した株である PKAN-EP04GMDKO株等があげられる。
[0064] pKAN- EPO40AFMS705株および ρΚΑΝ- ΕΡ04 GMDKO株は平成 16年 8月 10日付 けで、独立行政法人産業技術総合研究所特許生物寄託センター(日本国茨城県つ くば巿東 1丁目 1番地 1中央第 6)〖こ FERM BP-10085および FERM BP-10080としてそ れぞれ寄託されている。
また、本発明の、赤血球増多活性を有するエリスロポイエチンの変異体 (以下、エリ スロポイエチン変異体と称す)である配列番号 5で示される変異体を生産する細胞と しては、具体的には、 α 1,6-フコシルトランスフェラーゼをコードする遺伝子がノックァ ゥトされた CHO細胞に配列番号 2記載のエリスロポイエチン変異体をコードする遺伝 子を導入した形質転^ である pKAN- NESP MS705株、 GDP-マンノース 4,6-デヒド ラターゼをコードする遺伝子がノックアウトされた CHO細胞に配列番号 2記載のエリス ロボイエチン変異体をコードする遺伝子を導入した形質転換株である pKAN-NESP C HO SM株があげられる。
[0065] pKAN-NESP MS705株および pKAN- NESP CHO SM株は平成 17年 2月 17日付けで 、独立行政法人産業技術総合研究所特許生物寄託センター(日本国茨城県つくば 巿東 1丁目 1番地 1中央第 6)〖こ FERM BP-10248および FERM BP-10247としてそれ ぞれ寄託されている。
本発明の形質転換体は、親株細胞カゝら得られるエリスロポイエチン組成物に比べ て、同等のエリスロポイエチン受容体への親和性を有しており、かっ血中半減期が延 長されたエリスロポイエチン組成物を製造することができる。
[0066] エリスロポイエチン組成物のエリスロポイエチン受容体に対する結合活性、血中半 減期、へマトクリット上昇活性は、既に公知のエリスロポイエチン受容体結合活性測 定 in vitro試験あるいはマウスやラットなどのモデル動物を用いた in vivo試験あるいは ヒトを用いた臨床試験などを用いて測定することができる(基礎と臨床, 22(15), 5531 ( 1988)、 J. Pharm.PharmacoL, 42, 758(1990), J. Urology, 146,1645(1991)、基礎と臨床, 22(15), 5547 (1988)、基礎と臨床, 22(16), 5811(1988))。
[0067] 以下、本発明を詳細に説明する。
1.本発明のエリスロポイエチン組成物を生産するために用いる宿主細胞の作製 本発明のエリスロポイエチン組成物を生産するために用いる宿主細胞は、以下に 述べる手法により作製することができる。
(1)酵素の遺伝子を標的とした遺伝子破壊の手法
本発明のエリスロポイエチン組成物作製のために用いる宿主細胞は、細胞内糖ヌク レオチド GDP-フコースの合成に関与する酵素または N-グリコシド結合複合型糖鎖還 元末端の N-ァセチルダルコサミンの 6位にフコースの 1位がひ結合する糖鎖修飾に 関与する酵素(以下、「フコース修飾に関連する酵素」と表記する)の遺伝子を標的と し、遺伝子破壊の方法を用いることにより作製することができる。細胞内糖ヌクレオチ ド GDP-フコースの合成に関与する酵素としては、具体的には、 GDP-マンノース 4,6- デヒドラターゼ(以下、「GMD」と表記する)、 GDP-4-ケト -6-デォキシ- D-マンノース- 3,5-ェピメラーゼ (以下、「Fx」と表記する)などがあげられる。 N-グリコシド結合複合 型糖鎖還元末端の N-ァセチルダルコサミンの 6位にフコースの 1位が a結合する糖 鎖修飾に関与する酵素としては、具体的には、 α 1,6-フコシルトランスフェラーゼ、 a -L-フコシダーゼなどがあげられる。 [0068] ここでいう遺伝子とは、 DNAまたは RNAを含む。
遺伝子破壊の方法としては、標的とする酵素の遺伝子を破壊することができる方法 であればいかなる方法も包含される。その例としては、アンチセンス法、リボザィム法 、相同組換え法、 RNA-DNAオリゴヌクレオチド法(以下、「RDO法」と表記する)、 RNA インターフェアレンス法(以下、「RNAi法」と表記する)、レトロウイルスを用いた方法、 トランスポゾンを用いた方法等があげられる。以下これらを具体的に説明する。
[0069] (a)アンチセンス法又はリボザィム法による本発明のエリスロポイエチン組成物を作 製するための宿主細胞の作製
本発明のエリスロポイエチン組成物作製のために用いる宿主細胞は、フコース修飾 に関連する酵素遺伝子を標的とし、細胞工学, 12, 239(1993)、バイオ Zテクノロジー( BIO/TECHNOLOGY), Γ7, 1097 (1999)、ヒューマン 'モレキュラ^ ~ ·ジエネテイクス (Hu m.Mol. Genet.), 5, 1083 (1995)、細胞工学, 13, 255 (1994)、プロシーディングス 'ォ ブ ·ザ.ナショナル.ァカデミ一.ォブ.サイエンス (proc. Natl. Acad. Sci. U.S.A.), 96, 1 886 (1999)等に記載されたアンチセンス法またはリボザィム法を用いて、例えば、以 下のように作製することができる。
[0070] フコース修飾に関連する酵素をコードする cDNAあるいはゲノム DNAを調製する。
調製した cDNAあるいはゲノム DNAの塩基配列を決定する。
決定した DNAの配列に基づき、フコース修飾に関連する酵素をコードする DNA部 分、非翻訳領域の部分あるいはイントロン部分を含む適当な長さのアンチセンス遺伝 子またはリボザィムのコンストラクトを設計する。
[0071] 該アンチセンス遺伝子、またはリボザィムを細胞内で発現させるために、調製した D NA
の断片、または全長を適当な発現ベクターのプロモーターの下流に挿入することによ り、組換えベクターを作製する。
該組換えベクターを、該発現べクタ一に適合した宿主細胞に導入することにより形 質転換体を得る。
[0072] フコース修飾に関連する酵素の活性を指標として形質転換体を選択することにより 、本発明のエリスロポイエチン組成物作製のために用いる宿主細胞を得ることができ る。また、細胞膜上の糖蛋白質の糖鎖構造または産生糖蛋白質分子の糖鎖構造を 指標として形質転換体を選択することにより、本発明のエリスロポイエチン組成物作 製のために用いる宿主細胞を得ることもできる。
[0073] 本発明のエリスロポイエチン組成物を作製するために用いられる宿主細胞としては 、酵母、動物細胞、昆虫細胞、植物細胞など、標的とするフコース修飾に関連する酵 素の遺伝子を有しているものであればいずれも用いることができる。具体的には、後 述の 3に記載の宿主細胞があげられる。
発現ベクターとしては、上記宿主細胞において自立複製が可能である力、ないしは 染色体中への組み込みが可能で、設計したアンチセンス遺伝子、またはリボザィムを 転写できる位置にプロモーターを含有しているものが用いられる。具体的には、後述 3に記載の発現ベクターがあげられる。
[0074] 各種宿主細胞への遺伝子の導入方法としては、後述 3に記載の各種宿主細胞に 適した組換えベクターの導入方法を用いることができる。
フコース修飾に関連する酵素の活性を指標として形質転換体を選択する方法とし ては、例えば、以下の方法があげられる。
形皙転橼体 撰枳する方法
フコース修飾に関連する酵素の活性が欠失した細胞を選択する方法としては、文 献 if生化学実験講座 3—糖質 I,糖タンパク質 (東京化学同人)日本生化学会編 (198 8)]、文献 [細胞工学,別冊,実験プロトコールシリーズ,グライコバイオロジー実験プロト コール,糖タンパク質 ·糖脂質 ·プロテオダリカン (秀潤社製)谷口直之 ·鈴木明美 ·古川 清.菅原一幸監修(1996)]、モレキュラー 'クローユング第 2版、カレント.プロトコール ズ'イン'モレキュラー 'バイオロジー等に記載された生化学的な方法あるいは遺伝子 工学的な方法などを用いて、フコース修飾に関連する酵素の活性を測定する方法が あげられる。生化学的な方法としては、例えば、酵素特異的な基質を用いて酵素活 性を評価する方法があげられる。遺伝子工学的な方法としては、例えば、酵素遺伝 子の mRNA量を測定するノーザン解析や RT-PCR法等があげられる。
[0075] 細胞膜上の糖蛋白質の糖鎖構造を指標として形質転換体を選択する方法としては 、例えば、後述 1の(5)に記載の方法があげられる。産生糖蛋白質分子の糖鎖構造 を指標として形質転換体を選択する方法としては、例えば、後述 5または後述 6に記 載の方法があげられる。
フコース修飾に関連する酵素をコードする cDNAを調製する方法としては、例えば、 下記に記載の方法があげられる。
[0076] cDNAの調製方法
各種宿主細胞の組織又は細胞力ゝら全 RNA又は mRNAを調製する。
調製した全 RNA又は mRNAから cDNAライブラリーを作製する。
フコース修飾に関連する酵素のアミノ酸配列に基づ 、て、デジエネレイティブプライ マーを作製し、作製した cDNAライブラリーを铸型として PCR法でフコース修飾に関連 する酵素をコードする遺伝子断片を取得する。
[0077] 取得した遺伝子断片をプローブとして用い、 cDNAライブラリーをスクリーニングし、 フコース修飾に関連する酵素をコードする DNAを取得することができる。
ヒト又は非ヒト動物の糸且織又は細胞の mRNAは市販のもの (例えば Clontech社)を用 V、てもよ 、し、以下のようにしてヒト又は非ヒト動物の組織又は細胞力も調製してもよ い。
ヒト又は非ヒト動物の組織又は細胞力も全 RNAを調製する方法としては、チォシアン 酸グァ-ジン-トリフルォロ酢酸セシウム法 [メソッズ ·イン ·ェンザィモロジ一 (Methods i n Enzymology), 154, 3(1987)]、酸性チォシアン酸グァ-ジン'フエノール'クロ口 ホルム(AGPC)法 [アナリティカル 'バイオケミストリー (Analytical Biochemistry), 162, 156 (1987);実験医学、 9,1937 (1991)]などがあげられる。
[0078] また、全 RNA力 poly(A)+ RNAとして mRNAを調製する方法としては、オリゴ(dT)固 定ィ匕セルロースカラム法 (モレキュラー 'クローユング第 2版)等があげられる。
さらに、 Fast Track mRNA Isolation Kit (Invitrogen社)、 Quick Prep mRNA Purificat ion Kit (Pharmacia社)などの市販のキットを用いることにより mRNAを調製することがで きる。
[0079] 次に、調製したヒト又は非ヒト動物の組織又は細胞 mRNAから cDNAライブラリーを作 製する。 cDNAライブラリー作製法としては、モレキュラー 'クローユング第 2版、カレン ト.プロトコールズ.イン.モレキュラー.バイオロジー、 A Laboratory Manual, 2 nd Ed.( 1989)等に記載された方法、あるいは市販のキット、例えば Superscript Plasmid Syste m for cDNA Synthesis and Plasmid Cloning (Life Technologiesネエリ、 ZAP— cDNA bynt hesis Kit (STRATAGENE社)を用いる方法などがあげられる。
[0080] cDNAライブラリーを作製するためのクローユングベクターとしては、大腸菌 K12株中 で自立複製できるものであれば、ファージベクター、プラスミドベクター等いずれでも 使用できる。具体的には、 ZAP Express [STRATAGENE社、ストラテジーズ (Strategies ),5, 58
(1992)]、 pBluescript II SK(+) [ヌクレイック'アシッド'リサーチ (Nucleic Acids Research ), 17,9494 (1989)] , λ ZAP II (STRATAGENE社)、 gtl0、 え gtl l [ディーェヌェ一' クロー-ング.ァ 'プラクティカル.アプローチ (DNA cloning, A Practical Approach),丄, 49 (1985)]、 TriplEx (Clontech社)、 λ ExCell (Pharmacia社)、 pT7T318U (Pharmaci a社)、 pcD2 [モレキユラ一'セルラ一'バイオロジー (Mol.Cell. Biol), 3, 280 (1983)]お よび pUC18 [ジーン (Gene), 33, 103 (1985)]等をあげることができる。
[0081] cDNAライブラリーを作製するための宿主微生物としては、微生物であればいずれ でも用いることができるが、好ましくは大腸菌が用いられる。具体的には、 Escherichia coliXLl- Blue MRF' [STRATAGENE社、ストラテジーズ (Strategies), 5, 81 (1992)] , Es cherichia coliC600「ジエネテイクス (Genetics). 39, 440 (1954)1. Escherichia coliY108 8 [サイエンス (Science) ,222, 778 (1983)1. Escherichia coliYl 090「サイエンス (Science) , 222,778 (1983)1、 Escherichia coliNM522「ジャーナル ·ォブ ·モレキユラ ~ ·バイオ口 ジー 0. Mol.BioL), 166, 1 (1983)1 , Escherichiacoli K802 [ジャーナル'ォブ 'モレキュ ラ ~ ·バイオロジー (J.Mol. Biol.), 16, 118 (1966)Ίおよび Escherichia coli TM105「ジー ン (Gene), 38,275 (1985)]等が用いられる。
[0082] この cDNAライブラリ一は、そのまま以降の解析に用いてもょ 、が、不完全長 cDNA の割合を下げ、なるべく完全長 cDNAを効率よく取得するために、菅野らが開発した オリゴキャップ法 [ジーン (Gene),!^, 171 (1994);ジーン (Gene), 200, 149 (1997);蛋 白質核酸酵素, 41,603 (1996);実験医学, U, 2491 (1993); cDNAクローユング (羊土 社) (1996);
遺伝子ライブラリーの作製法 (羊土社)(1994)]を用いて調製して以下の解析に用い ても
よい。
[0083] フコース修飾に関連する酵素のアミノ酸配列に基づいて、該アミノ酸配列をコード することが予測される塩基配列の 5'末端および 3'末端の塩基配列に特異的なデジ ネレイティブプライマーを作製し、作製した cDNAライブラリーを铸型として PCR法 [ピ ' ~~、ン' ~~ / ' ~~ノレ
.プロトコールズ (PCR Protocols), Academic Press (1990)]を用いて DNAの増幅を行う ことにより、フコース修飾に関連する酵素をコードする遺伝子断片を取得することがで きる。
[0084] 取得した遺伝子断片がフコース修飾に関連する酵素をコードする DNAであることは 、通常用いられる塩基配列解析方法、例えばサンガー(Sanger)らのジデォキシ法 [ プロシーデイングス.ォブ ·ザ.ナショナル ·アカデミ^ ~ ·ォブ'サイエンス (Proc. Natl. A cad. Sci. U.S.A.), 74, 5463 (1977)]あるいは ABI PRISM377DNAシークェンサ一(App lied Biosystems社製)等の塩基配列分析装置を用いて分析することにより、確認する ことができる。
[0085] 該遺伝子断片をプローブとして、ヒト又は非ヒト動物の組織又は細胞に含まれる mR NAから合成した cDNAあるいは cDNAライブラリーからコロニーハイブリダィゼーシヨン やプラークハイブリダィゼーシヨン (モレキュラー ·クロー-ング第 2版)等を用いて、フ コース修飾に関連する酵素の DNAを取得することができる。
また、フコース修飾に関連する酵素をコードする遺伝子断片を取得するために用い たプライマーを用い、ヒト又は非ヒト動物の組織又は細胞に含まれる mRNAから合成し た cDNAあるいは cDNAライブラリーを铸型として、 PCR法を用いて増幅することにより 、フコース修
飾に関連する酵素の cDNAを取得することもできる。
[0086] 取得したフコース修飾に関連する酵素をコードする DNAの塩基配列は、通常用い られる
塩基配列解析方法、例えばサンガー (Sanger)らのジデォキシ法 [プロシーディンダス •ォブ 'ザ'ナショナル 'ァ力デミ一'ォブ ·サイエンス (Proc.Natl. Acad. Sci. U.S.A.). 74 , 5463 (1977)]あるいは ABI PRISM377DNAシークェンサ(Applied Biosystems社製) 等の塩基配列分析装置を用いて分析することにより、該 DNAの塩基配列を決定する ことができる。
[0087] 決定した cDNAの塩基配列をもとに、 BLAST等の相同性検索プログラムを用いて、 Genbank、 EMBLおよび DDBJなどの塩基配列データベースを検索することにより、取 得した DNAがデータベース中の遺伝子の中でフコース修飾に関連する酵素をコード して 、る遺伝子であることを確認することもできる。
上記の方法で得られる細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素 をコードする遺伝子の塩基配列としては、例えば、配列番号 7または 9に記載の塩基 配列があげられる。
[0088] 上記の方法で得られる N-グリコシド結合複合型糖鎖還元末端の N-ァセチルダルコ サミンの 6位にフコースの 1位が oc結合する糖鎖修飾に関与する酵素をコードする遺 伝子の塩基配列としては、例えば、配列番号 11または 12に記載の塩基配列があげ られる。
決定された DNAの塩基配列に基づ 、て、フォスフォアミダイト法を利用した DNA合 成機 model 392 (Perkin Elmer社製)等の DNA合成機で化学合成することにより、フコ ース修飾に関連する酵素の cDNAを取得することもできる。
[0089] フコース修飾に関連する酵素のゲノム DNAを調製する方法としては、例えば、以下 に記載の方法があげられる。
ゲノム DNAの調製方法
ゲノム DNAを調製する方法としては、モレキュラー ·クローユング第 2版やカレント · プロトコールズ ·イン.モレキュラー.バイオロジー等に記載された公知の方法があげら れる。また、ゲノム DNAライブラリースクリーニングシステム(GenomeSystems社)や Uni versal GenomeWalker™ Kits (CLONTECH社)などを用いることにより、フコース修飾 に関連する酵素のゲノム DNAを取得することもできる。
[0090] 取得したフコース修飾に関連する酵素をコードする DNAの塩基配列は、通常用い られる
塩基配列解析方法、例えばサンガー (Sanger)らのジデォキシ法 [プロシーディンダス •ォブ 'ザ'ナショナル 'ァ力デミ一'ォブ 'サイエンス (Proc.Natl. Acad. Sci. U.S.A.), 74
, 5463 (1977)]あるいは ABI PRISM377DNAシークェンサ(Applied Biosystems社製) 等の塩基配列分析装置を用いて分析することにより、該 DNAの塩基配列を決定する ことができる。
[0091] 決定したゲノム DNAの塩基配列をもとに、 BLAST等の相同性検索プログラムを用い て、 Genbank、 EMBLおよび DDBJなどの塩基配列データベースを検索することにより 、取得した DNAがデータベース中の遺伝子の中でフコース修飾に関連する酵素をコ ードしている遺伝子であることを確認することもできる。
決定された DNAの塩基配列に基づ 、て、フォスフォアミダイト法を利用した DNA合 成機 model 392 (Perkin Elmer社製)等の DNA合成機で化学合成することにより、フコ ース修飾に関連する酵素のゲノム DNAを取得することもできる。
[0092] 上記の方法で得られる細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素 のゲノム DNAの塩基配列としては、例えば配列番号 15、 16、 17および 18に記載の 塩基配列があげられる。
上記の方法で得られる N-グリコシド結合複合型糖鎖還元末端の N-ァセチルダルコ サミンの 6位にフコースの 1位が α結合する糖鎖修飾に関与する酵素のゲノム DNAの 塩基配列と
しては、例えば配列番号 19に記載の塩基配列があげられる。
[0093] また、発現ベクターを用いず、フコース修飾に関連する酵素の塩基配列に基づい て設計したアンチセンスオリゴヌクレオチドまたはリボザィムを、直接宿主細胞に導入 することで、本発明のエリスロポイエチン組成物を作製するために用いる宿主細胞を 得ることちでさる。
アンチセンスオリゴヌクレオチドまたはリボザィムは、常法または DNA合成機により調 製することができる。具体的には、フコース修飾に関連する酵素をコードする cDNAお よびゲノム DNAの塩基配列のうち、連続した 5〜150塩基、好ましくは 5〜60塩基、よ り好ましくは 10〜40塩基に相当する配列を有するオリゴヌクレオチドの配列情報に 基づき、該オリゴヌクレオチドと相補的な配列に相当するオリゴヌクレオチド (アンチセ ンスオリゴヌクレオチド)または該オリゴヌクレオチドの配列を含むリボザィムを合成し て調製することができる。
[0094] オリゴヌクレオチドとしては、オリゴ RNAおよび該オリゴヌクレオチドの誘導体 (以下 、オリゴヌクレオチド誘導体と ヽぅ)等があげられる。
オリゴヌクレオチド誘導体としては、オリゴヌクレオチド中のリン酸ジエステル結合が ホスフォロチォエート結合に変換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド 中のリン酸ジエステル結合が Ν3'-Ρ5'ホスフォアミデート結合に変換されたオリゴヌク レオチド誘導体、オリゴヌクレオチド中のリボースとリン酸ジエステル結合がペプチド 核酸結合に変換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のゥラシルが C-5プロピ-ルゥラシルで置換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中 のゥラシルが C-5チアゾールゥラシルで置換された誘導体オリゴヌクレオチド、オリゴ ヌクレオチド中のシトシンが C-5プロピ-ルシトシンで置換されたオリゴヌクレオチド誘 導体、オリゴヌクレオチド中のシトシンがフエノキサジン修飾シトシン(phenoxazine-mo dified cytosine)で置換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のリボ ースが 2'-0-プロピルリボースで置換されたオリゴヌクレオチド誘導体、あるいはオリ ゴヌクレオチド中のリボースが 2しメトキシエトキシリボースで置換されたオリゴヌクレオ チド誘導体等があげられる [細胞工学, 16, 1463(1997)]。
[0095] (b)相同組換え法による本発明のエリスロポイエチン組成物を作製するために用い る宿主細胞の作製
本発明のエリスロポイエチン組成物を作製するために用いる宿主細胞は、フコース 修飾に関連する酵素の遺伝子を標的とし、染色体上の標的遺伝子を相同組換え法 を用いて改変することによって作製することができる。
[0096] 染色体上の標的遺伝子の改変は、 Manipulating the Mouse Embryo A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1994) (以下、 「マ- ピュレイティング ·ザ'マウス'ェンブリオ 'ァ'ラボラトリ一'マ-ユアル」と略す)、 Gene T argeting, A Practical Approach, IRL Press at Oxford University Press (1993)、ノィォ マニュアルシリーズ 8ジーンターゲッティング, ES細胞を用いた変異マウスの作製,羊 土社(1995) (以下、「ES細胞を用いた変異マウスの作製」と略す)等に記載の方法を 用い、例えば以下のように行うことができる。 [0097] フコース修飾に関連する酵素のゲノム DNAを調製する。
ゲノム DNAの塩基配列にも基づき、改変する標的遺伝子 (例えば、フコース修飾に 関連する酵素の構造遺伝子、あるいはプロモーター遺伝子)を相同組換えするため のターゲットベクターを作製する。
作製したターゲットベクターを宿主細胞に導入し、染色体上の標的遺伝子とターゲ ットベクターの間で相同組換えを起こした細胞を選択することにより、本発明のエリス ロボイエチン組成物を作製するために用いる宿主細胞を作製することができる。
[0098] 宿主細胞としては、酵母、動物細胞、昆虫細胞、植物細胞等、標的とするフコース 修飾に関連する酵素の遺伝子を有して 、るものであれば 、ずれも用いることができる
。具体的には、後述 3に記載の宿主細胞があげられる。
フコース修飾に関連する酵素のゲノム DNAを調製する方法としては、上記 1の(1) の(a)に記載のゲノム DNAの調製方法などがあげられる。
[0099] 上記の方法で得られる細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素 のゲノム DNAの塩基配列として、例えば配列番号 15、 16、 17および 18に記載の塩 基配列
があげられる。
上記の方法で得られる N-グリコシド結合複合型糖鎖還元末端の N-ァセチルダルコ サミンの 6位にフコースの 1位が α結合する糖鎖修飾に関与する酵素のゲノム DNAの 塩基配列として、例えば配列番号 19に記載の塩基配列があげられる。
[0100] 染色体上の標的遺伝子を相同糸且換えするためのターゲットベクターは、 Gene Targ eting, A Practical Approach, IRLPress at Oxford University Press (1993)、ノヽィォマ -ュアルシリーズ 8ジーンターゲッティング, ES細胞を用いた変異マウスの作製 (羊 土社) (1995)等に記載の方法にしたがって作製することができる。ターゲットベクター は、リプレースメント型、インサーシヨン型いずれでも用いることができる。
[0101] 各種宿主細胞へのターゲットベクターの導入には、後述の 3に記載の各種宿主細 胞に適した組換えベクターの導入方法を用いることができる。
相同組換え体を効率的に選別する方法として、例えば、 Gene Targeting, A Practic al Approach, IRL Press at Oxford University Press (1993)、バイオマ-ユアノレシリー ズ 8ジーンターゲッティング, ES細胞を用いた変異マウスの作製 (羊土社) (1995)等 に記
載のポジティブ選択、プロモーター選択、ネガティブ選択、ポリ A選択などの方法を用 いることができる。選別した細胞株の中から目的とする相同組換え体を選択する方法 としては、ゲノム DNAに対するサザンハイブリダィゼーシヨン法(モレキユラ一'クロー ユング第 2版)や PCR法 [ピーシーアール 'プロトコールズ (PCR Protocols), Academic Press (1990)]等があげられる。
[0102] (c) RDO方法による本発明のエリスロポイエチン組成物を作製するために用いる宿 主細胞の作製
本発明のエリスロポイエチン組成物を作製するために用いる宿主細胞は、フコース 修飾に関連する酵素の遺伝子を標的とし、 RDO法を用い、例えば、以下のように作 製することができる。
[0103] フコース修飾に関連する酵素の cDNAあるいはゲノム DNAを上記 1の(1)の(a)に記 載の方法を用い、調製する。
調製した cDNAあるいはゲノム DNAの塩基配列を決定する。
決定した DNAの配列に基づき、フコース修飾に関連する酵素をコードする部分、非 翻訳領域の部分あるいはイントロン部分を含む適当な長さの RDOのコンストラクトを設 計し合成する。
[0104] 合成した RDOを宿主細胞に導入し、標的とした酵素、すなわちフコース修飾に関連 する
酵素に変異が生じた形質転換体を選択することにより、本発明の組成物作製のため の宿主細胞を作製することができる。
宿主細胞としては、酵母、動物細胞、昆虫細胞、植物細胞等、標的とするフコース 修飾に関連する酵素の遺伝子を有して 、るものであれば 、ずれも用いることができる
。具体的には、後述 3に記載の宿主細胞があげられる。
[0105] 各種宿主細胞への RDOの導入には、後述 3に記載の各種宿主細胞に適した組換 えベクターの導入方法を用いることができる。
フコース修飾に関連する酵素の cDNAを調製する方法としては、例えば、上記 1の( 1)の(a)に記載の cDNAの調製方法などがあげられる。
フコース修飾に関連する酵素のゲノム DNAを調製する方法としては、例えば、上記 1の
(1)の(a)に記載のゲノム DNAの調製方法などがあげられる。
[0106] DNAの塩基配列は、適当な制限酵素などで切断後、 pBluescript SK (-) (Stratagene 社製)等のプラスミドにサブクローユングし、通常用いられる塩基配列解析方法、例え ば、サンガー(Sanger)らのジデォキシ法 [プロシーディングス ·ォブ ·ザ ·ナショナル · ァカデミ一'ォブ 'サイエンス (Proc.Natl. Acad. Sci.,U.S.A.), 74, 5463 (1977)]等の反 応を行い、塩基配列自動分析装置、例えば、 ABI PRISM377DNAシークェンサ一(Ap plied Biosystems社製)等の塩基配列分析装置を用いて分析することにより、確認す ることがで
きる。
[0107] RDOは、常法または DNA合成機を用いることにより調製することができる。
RDOを宿主細胞に導入し、標的とした酵素、フコース修飾に関連する酵素の遺伝 子に変
異が生じた細胞を選択する方法としては、モレキュラー 'クローユング第 2版、カレント 'プロトコールズ ·イン.モレキュラー.バイオロジー等に記載された染色体上の遺伝子 の変異を直接検出する方法があげられる。
[0108] また、前記 1の(1)の(a)に記載の、導入したフコース修飾に関連する酵素の活性 を指標として形質転換体を選択する方法、後述 1の(5)に記載の細胞膜上の糖蛋白 質の糖鎖構造を指標として形質転換体を選択する方法、あるいは、後述 5または後 述 6に記載の産生糖蛋白質分子の糖鎖構造を指標として形質転換体を選択する方 法も用 、ることができる。
[0109] RDOのコンストラクトは、サイエンス (Science), 273, 1386 (1996);ネィチヤ一'メディ シン (Nature Medicine), 4, 285 (1998);へパトロジー (Hepatology), 25, 1462 (1997); ジーン'セラピー (Gene Therapy), 5, 1960 (1999);ジーン'セラピー (Gene Therapy), 5 , 1960 (1999);ジャーナル'ォブ 'モレキユラ一'メデイシン 0. Mol. Med.), 75,829 (199 7);プロシーデイングス'ォブ ·ザ'ナショナル ·アカデミ^ ~ ·ォブ ·サイエンス (Proc. Natl . Acad. Sci. USA), 96, 8774 (1999);プロシーデインス ·ォブ ·ザ'ナショナル 'ァ力デミ ~·ォブ'サイエンス (Proc. Natl. Acad. Sci. USA), 96, 8768(1999);ヌクレイック 'ァシ ッド 'リサーチ (Nuc. Acids. Res.), 27, 1323 (1999);インべスティゲーシヨン'ォブ 'ダー マトロジー (Invest.Dematol.), I l l, 1172 (1998);ネイチヤ^ ~·バイオテクノロジー (Natur e Biotech.), 16,1343 (1998);ネイチヤ^ ~·バイオテクノロジー (Nature Biotech.), 18, 4 3 (2000);ネィチヤ一'バイオテクノロジー (Nature Biotech.), 18, 555 (2000)等の記載 に従って設計することができる。
[0110] (d) RNAi法による本発明のエリスロポイエチン組成物を作製するために用いる宿主 細胞の作製
本発明のエリスロポイエチン組成物を作製するために用いる宿主細胞は、フコース 修飾に関連する酵素の遺伝子を標的とし、 RNAi法を用い、例えば、以下のように作 製することができる。
[0111] フコース修飾に関連する酵素の上記 1の(1)の(a)に記載の方法を用い、 cDNAを 調製する。
調製した cDNAの塩基配列を決定する。
決定した cDNAの配列に基づき、フコース修飾に関連する酵素をコードする部分あ るいは非翻訳領域の部分を含む適当な長さの RNAi遺伝子のコンストラクトを設計す る。
[0112] 該 RNAi遺伝子を細胞内で発現させるために、調製した cDNAの断片、または全長 を適当な発現ベクターのプロモーターの下流に挿入することにより、糸且換えベクター を作製する。
該組換えベクターを、該発現べクタ一に適合した宿主細胞に導入することにより形 質転換体を得る。
導入したフコース修飾に関連する酵素の活性、あるいは産生糖蛋白質分子または 細胞表面上の糖蛋白質の糖鎖構造を指標に形質転換体を選択することで、本発明 のエリスロポイエチン組成物を作製するために用いる宿主細胞を得ることができる。
[0113] 宿主細胞としては、酵母、動物細胞、昆虫細胞、植物細胞等、標的とするフコース 修飾に関連する酵素の遺伝子を有して 、るものであれば 、ずれも用いることができる 。具体的には、後述 3に記載の宿主細胞があげられる。
発現ベクターとしては、上記宿主細胞において自立複製可能ないしは染色体への 組み込みが可能で、設計した RNAi遺伝子を転写できる位置にプロモーターを含有し ているものが用いられる。具体的には、後述 3に記載の発現ベクターがあげられる。
[0114] 各種宿主細胞への遺伝子の導入には、後述 3に記載の各種宿主細胞に適した組 換えベクターの導入方法を用いることができる。
フコース修飾に関連する酵素の活性を指標として形質転換体を選択する方法とし ては、例えば、本項 1の(1)の(a)に記載の方法があげられる。
細胞膜上の糖蛋白質の糖鎖構造を指標として形質転換体を選択する方法としては 、例えば、本項 1の(5)に記載の方法があげられる。産生糖蛋白質分子の糖鎖構造 を指標として形質転換体を選択する方法としては、例えば、後述 5または後述 6に記 載の方法があげられる。
[0115] フコース修飾に関連する酵素の cDNAを調製する方法としては、例えば、本項 1の( 1)の(a)に記載された cDNAの調製方法などがあげられる。
また、発現ベクターを用いず、フコース修飾に関連する酵素の塩基配列に基づい て設計した RNAi遺伝子を、直接宿主細胞に導入することで、本発明のエリスロボイエ チン組成物を作製するために用いる宿主細胞を得ることもできる。
[0116] RNAi遺伝子は、常法または DNA合成機を用いることにより調製することができる。 R NA
i遺伝子のコンストラクトは、 [ネイチヤー (Nature), 391, 806 (1998);プロシーディン グス ·ォブ ·ザ'ナショナル 'ァ力デミ一 ·ォブ 'サイエンス (Proc. Natl. Acad. Sci. USA), 95, 15502(1998);ネイチヤー (Nature), 395, 854 (1998);プロシーディングス •ォブ 'ザ'ナショナル 'ァ力デミ一'ォブ 'サイエンス (Proc. Natl. Acad. Sci. USA), 96, 5049 (1999);セル (Cell), 95, 1017 (1998);プロシーディングス 'ォブ 'ザ'ナショナル' ァカデミ一'ォブ 'サイエンス (Proc.Natl. Acad. Sci. USA), 96, 1451 (1999);プロシー ディングス ·ォブ 'ザ ·ナショナル ·アカデミ^ ~ ·ォブ ·サイエンス (Pro Natl. Acad. Sci. USA), 95, 13959 (1998);ネイチヤ^ ~ ·セル'バイオロジー (Nature Cell Biol), ^ 70 (2 000)]等の記載に従って設計することができる。 [0117] (e)トランスポゾンを用いた方法による、本発明のエリスロポイエチン組成物を作製 するために用いる宿主細胞の作製
本発明のエリスロポイエチン組成物を作製するために用いる宿主細胞は、ネィチヤ ~ ·ジエネテイク (Nature Genet.), 25, 35(2000)等に記載のトランスポゾンのシステムを 用い、フコース修飾に関連する酵素の活性、あるいは産生糖蛋白質分子または細胞 膜上の糖蛋白質の糖鎖構造を指標に突然変異体を選択することで、本発明のエリス ロボイエチン組成物を作製するために用いる宿主細胞を作製することができる。
[0118] トランスポゾンのシステムとは、外来遺伝子をランダムに染色体上に挿入させること で突然変異を誘発させるシステムであり、通常、トランスポゾンに挿まれた外来遺伝子 に突然変異を誘発させるベクターとして用い、この遺伝子を染色体上にランダムに挿 入させるためのトランスポゼースの発現ベクターを同時に細胞の中に導入する。 トランスポゼースは、用いるトランスポゾンの配列に適したものであれば!/、かなるもの ち用いることがでさる。
[0119] 外来遺伝子としては、宿主細胞の DNAに変異を誘起するものであればいかなる遺 伝子も
用!/、ることができる。
宿主細胞としては、酵母、動物細胞、昆虫細胞、植物細胞等、標的とするフコース 修飾に関連する酵素の遺伝子を有して 、るものであれば 、ずれも用いることができる 。具体的には、後述 3に記載の宿主細胞があげられる。各種宿主細胞への遺伝子の 導入には、後述 3に記載の各種宿主細胞に適した組み換えベクターの導入方法を 用!/、ることができる。
[0120] フコース修飾に関連する酵素の活性を指標として突然変異体を選択する方法とし ては、例えば、本項 1の(1)の(a)に記載の方法があげられる。
細胞膜上の糖蛋白質の糖鎖構造を指標として突然変異体を選択する方法としては 、例えば、本項 1の(5)に記載の方法があげられる。産生糖蛋白質分子の糖鎖構造 を指標として突然変異体を選択する方法としては、例えば、後述 5または後述 6に記 載の方法があげられる。
[0121] (2)酵素の遺伝子のドミナントネガティブ体を導入する手法 本発明のエリスロポイエチン組成物を作製するために用いる宿主細胞は、フコース 修飾に関連する酵素の遺伝子を標的とし、該酵素のドミナントネガティブ体を導入す る手法を用いることにより作製することができる。細胞内糖ヌクレオチド GDP-フコース の合成に関与する酵素としては、具体的には、 GMD、 Fxなどがあげられる。 N-グリコ シド結合複合型
糖鎖還元末端の N-ァセチルダルコサミンの 6位にフコースの 1位が α結合する糖鎖 修飾に関与する酵素としては、具体的には、 α ΐ, 6—フコシルトランスフェラーゼ、 a - L-フ
コシダーゼなどがあげられる。
これらの酵素は、基質特異性を有したある特定の反応を触媒する酵素であり、この ような基質特異性を有した触媒作用を有する酵素の活性中心を破壊することで、これ らの酵素
のドミナントネガティブ体を作製することができる。標的とする酵素のうち、 GMDを例と して、そのドミナントネガティブ体に作製について具体的に以下に述べる。
大腸菌由来の GMDの立体構造を解析した結果、 4つのアミノ酸(133番目のトレオ- ン、 135番目のグルタミン酸、 157番目のチロシン、 161番目のリジン)が酵素活性に重 要な機
能を担っていることが明らかにされている(Structure, 8, 2, 2000)。そこで、立体構 造の情報にもとづきこれら 4つのアミノ酸を異なる他のアミノ酸に置換した変異体を作 製した結果、 V、ずれの変異体にお 、ても有意に酵素活性が低下して 、たことが示さ れている。一方、 GMDの補酵素 NADPや基質である GDP-マンノースとの結合能に関 しては、いずれの変異体においてもほとんど変化が観察されていない。従って、 GMD の酵素活性を担うこれら 4つのアミノ酸を置換することによりドミナントネガティブ体を 作製することができる。大腸菌由来の GMDのドミナントネガティブ体の作製の結果に 基づき、アミノ酸配列情報をもとにした相同性比較や立体構造予測を行うことにより、 例えば、 CHO細胞由来の GMD (配列番号 8)では、 155番目のトレオニン、 157番目の グルタミン酸、 179番目のチロシン、 183番目のリジンを他のアミノ酸に置換することに よりドミナントネガティブ体を作製することができる。このようなアミノ酸置換を導入した 遺伝子の作製は、モレキユラ一'クロー-ング第 2版、カレント'プロトコールズ'イン' モレキュラー 'バイオロジー等に記載された部位特異的変異導入法を用いて行うこと ができる。
[0123] 本発明のエリスロポイエチン組成物を作製するために用いる宿主細胞は、上述のよ うに作製した標的酵素のドミナントネガティブ体をコードする遺伝子 (以下、ドミナント ネガティブ体遺伝子と略記する)を用い、モレキュラー 'クローユング第 2版、カレント' プロトコーノレズ 'イン'モレキュラー'バイオロジー、マニピユレ一ティング 'マウス'ェン ブリオ第 2版等に記載された遺伝子導入の方法に従って、例えば、以下のように作製 することができる。
[0124] フコース修飾に関連する酵素のドミナントネガティブ体遺伝子を調製する。
調製したドミナントネガティブ体遺伝子の全長 DNAをもとにして、必要に応じて、該 蛋
白質をコードする部分を含む適当な長さの DNA断片を調製する。
該 DNA断片、または全長 DNAを適当な発現ベクターのプロモーターの下流に挿入 することにより、組換えベクターを作製する。
[0125] 該組換えベクターを、該発現べクタ一に適合した宿主細胞に導入することにより、 形質転換体を得る。
フコース修飾に関連する酵素の活性、あるいは産生糖蛋白質分子または細胞膜上 の糖蛋白質の糖鎖構造を指標に形質転換体を選択することで、本発明のエリスロボ イエチン組成物を作製するために用いる宿主細胞を作製することができる。
[0126] 宿主細胞としては、酵母、動物細胞、昆虫細胞、植物細胞等、標的とするフコース 修飾に関連する酵素の遺伝子を有して 、るものであれば 、ずれも用いることができる 。具体的には、後述 3に記載の宿主細胞があげられる。
発現ベクターとしては、上記宿主細胞において自立複製可能ないしは染色体中へ の^ aみ込みが可能で、目的とするドミナントネガティブ体をコードする DNAを転写でき る位置に
プロモーターを含有しているものが用いられる。具体的には、後述 3に記載の発現べ クタ一があげられる。 [0127] 各種宿主細胞への遺伝子の導入には、後述 3に記載の各種宿主細胞に適した組 換えベクターの導入方法を用いることができる。
フコース修飾に関連する酵素の活性を指標として形質転換体を選択する方法とし ては、例えば、後述 1の(1)の(a)に記載の方法があげられる。
細胞膜上の糖蛋白質の糖鎖構造を指標として形質転換体を選択する方法としては 、例え
ば、後述 1の(5)に記載の方法があげられる。産生糖蛋白質分子の糖鎖構造を指標 として形質転換体を選択する方法としては、例えば、後述 5または後述 6に記載の方 法があげられる。
[0128] (3)酵素に突然変異を導入する手法
本発明のエリスロポイエチン組成物を作製するために用いる宿主細胞は、フコース 修飾に関連する酵素の遺伝子に突然変異を導入し、該酵素に突然変異を生じた所 望の細胞株を選択する手法を用いることにより作製できる。
細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素としては、具体的には、 GMD
、 Fxなどがあげられる。 N-グリコシド結合複合型糖鎖還元末端の N-ァセチルダルコ サミンの 6位にフコースの 1位が α結合する糖鎖修飾に関与する酵素としては、具体 的には、 α ΐ, 6—フコシルトランスフェラーゼ、 α -L-フコシダーゼなどがあげられる。
[0129] フコース修飾に関連する酵素に突然変異を導入する方法としては、 1)突然変異誘 発処理で親株を処理した突然変異体あるいは自然発生的に生じた突然変異体から 、フコース修飾に関連する酵素の活性を指標として所望の細胞株を選択する方法、 2 )突然変異誘発処理で親株を処理した突然変異体あるいは自然発生的に生じた突 然変異体から、生産糖蛋白質分子の糖鎖構造を指標として所望の細胞株を選択す る方法、 3)突然変異誘発処理で親株を処理した突然変異体あるいは自然発生的に 生じた突然変異体から、該細胞の細胞膜上の糖蛋白質の糖鎖構造を指標として所 望の細胞株を選択する方法などがあげられる。
[0130] 突然変異誘発処理としては、親株の細胞の DNAに点突然変異、欠失ある、、はフレ 一ムシ フト突然変異を誘起するものであればいかなる処理も用いることができる。
具体的には、ェチルニトロソゥレア、ニトロソグァ-ジン、ベンゾピレン、アタリジン色 素による処理、放射線の照射などがあげられる。また、種々のアルキル化剤や発癌 物質も突然変異誘発物質として用いることができる。突然変異誘発物質を細胞に作 用させる方法としては、例えば、組織培養の技術第三版 (朝倉書店)日本組織培養 学会編 (1996)、
ネィチヤ一.ジエネテイクス (Nature Genet.), 24, 314, (2000)等に記載の方法を挙げる ことができる。
[0131] 自然発生的に生じた突然変異体としては、特別な突然変異誘発処理を施さないで
、通常の細胞培養の条件で継代培養を続けることによって自然発生的に生じる突然 変異体を挙げることができる。
フコース修飾に関連する酵素の活性を測定する方法としては、例えば、本項 1の(1
)の(a)に記載の方法があげられる。産生糖蛋白質分子の糖鎖構造を識別する方法 としては、例えば、後述 5または後述 6に記載の方法があげられる。細胞膜上の糖蛋 白質の糖鎖構造を識別する方法としては、例えば、本項の 1の(5)に記載の方法が あげられる。
(4)酵素の遺伝子の転写又は翻訳を抑制する手法
本発明のエリスロポイエチン組成物を作製するために用いる宿主細胞は、フコース 修飾に関連する酵素の遺伝子を標的とし、アンチセンス RNAZDNA技術 [バイオサイ エンスとインダストリ一,^, 322 (1992)、化学, 681 (1991)、 Biotechnology,9, 358 ( 1992)
、 Trends in Biotechnology,!^, 87 (1992)、 Trends in Biotechnology, 10, 152 (1992) 、細胞工学, 16, 1463 (1997)]、トリプル 'ヘリックス技術 [Trends in Biotechnology ,10, 132 (1992)]等を用い、標的とする遺伝子の転写または翻訳を抑制することで作製す ることがでさる。
[0132] 細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素としては、具体的には、 GMD
、 Fxなどがあげられる。 N-グリコシド結合複合型糖鎖還元末端の N-ァセチルダルコ サミンの 6位にフコースの 1位が a結合する糖鎖修飾に関与する酵素としては、具体 的には、 a l , 6—フコシルトランスフェラーゼ、 a - L-フコシダーゼなどがあげられる。 (5) N-グリコシド結合糖鎖還元末端の N-ァセチルダルコサミンの 6位とフコースの 1位 が OC結合した糖鎖構造を認識するレクチンに耐性である株を選択する手法
本発明のエリスロポイエチン組成物を作製するために用いる宿主細胞は、 N-グリコ シド結合糖鎖還元末端の N-ァセチルダルコサミンの 6位とフコースの 1位がひ結合し た糖鎖構造を認識するレクチンに耐性である株を選択する手法を用いることにより作 製することができる。
[0133] N-グリコシド結合糖鎖還元末端の N-ァセチルダルコサミンの 6位とフコースの 1位が a結合した糖鎖構造を認識するレクチンに耐性である株を選択する手法としては、例 えば、ソマテイク'セル 'アンド'モレキュラ^ ~ ·ジエネテイクス(Somatic Cell Mol. Genet. ) , 12, 51 (1986)等に記載のレクチンを用いた方法があげられる。
レクチンとしては、 N-グリコシド結合糖鎖還元末端の N-ァセチルダルコサミンの 6位 とフコースの 1位が a結合した糖鎖構造を認識するレクチンであればいずれのレクチ ンでも用いることができる力 その具体的な例としては、レンズマメレクチン LCA (Lg Culinaris由来の LentilAgglutinin)エンドゥマメレクチン PSA (Pisum sativum由来の Pea Lectin)、ソラマメレクチン VFA(Yki^ha由来の Agglutinin)、ヒイロチヤワンタケレクチ ン AAL (Aleuria aurantia由来の Lectin)等を挙げることができる。
[0134] 具体的には、 1 μ g/mL〜lmg/mLの濃度の上述のレクチンを含む培地で 1日〜2 週間、
好ましくは 1日〜 1週間培養し、生存している細胞を継代培養あるいはコロニーをピッ クアップし別の培養容器に移し、さら〖こ引き続きレクチンを含む培地で培養を続ける ことによって、 N-グリコシド結合糖鎖還元末端の N-ァセチルダルコサミンの 6位とフコ ースの 1位が OC結合した糖鎖構造を認識するレクチンに耐性である株を選択すること ができる。
[0135] 2.トランスジエニック非ヒト動物あるいは植物またはそれら子孫の作製
エリスロポイエチン分子の糖鎖の修飾に係わる酵素の活性が制御されるようにゲノ ム遺伝子が改変されたトランスジエニック非ヒト動物あるいは植物またはそれら子孫は 、細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素または N-グリコシド結 合複合型糖鎖還元末端の N-ァセチルダルコサミンの 6位にフコースの 1位が a結合 する糖鎖修飾に関与する酵素の遺伝子を標的として、前記 1を用いて作製した本発 明の胚性幹細胞、受精卵細胞、植物カルス細胞より、例えば以下のように作製するこ とがでさる。
[0136] トランスジヱニック非ヒト動物の場合、 目的とする非ヒト動物、例えばゥシ、ヒッジ、ャ ギ、ブタ、ゥマ、マウス、ラット、 -ヮトリ、サル、ゥサギ等の胚性幹細胞に、前記 1. に記 載の手法を用いることにより、細胞内糖ヌクレオチド GDP-フコースの合成に関与する 酵素の活性または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルダルコサミン の 6位にフコースの 1位が a結合する糖鎖修飾に関与する酵素の活性が制御された 本発明の胚性幹細胞を作製することができる。
[0137] 具体的は、染色体上の細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素 の活性または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルダルコサミンの 6 位にフコースの 1位が a結合する糖鎖修飾に関与する酵素をコードする遺伝子を公 知の相同組換えの手法 [例えば、 Nature,22£, 6110, 295 (1987)、 Cell, 51, 3, 503 (19 87)等]により不活ィ匕または任意の配列と置換した変異クローンを作製する。作製した 胚性幹細胞 (例えば、該変異クローン)を用い、動物の受精卵の胚盤胞 (blastcyst)へ の注入キメラ法または集
合キメラ法等の手法により、胚性幹細胞クローンと正常細胞力 なるキメラ個体を調 製することができる。このキメラ個体と正常個体の掛け合わせにより、全身の細胞で細 胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素の活性または N-グリコシド 結合複合型糖鎖還元末端の N-ァセチルダルコサミンの 6位にフコースの 1位が α結 合する糖鎖修飾に関与する酵素の活性が低下したトランスジエニック非ヒト動物を得 ることがでさる。
[0138] また、 目的とする非ヒト動物、例えばゥシ、ヒッジ、ャギ、ブタ、ゥマ、マウス、ラット、二 ヮトリ、サル、ゥサギ等の受精卵細胞に、前記 1.に記載の手法と同様の手法を用いる ことにより、細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素の活性または Ν-グリコシド結合複合型糖鎖還元末端の Ν-ァセチルダルコサミンの 6位にフコースの 1位が oc結合する糖鎖修飾に関与する酵素の活性が低下した本発明の受精卵細胞 を作製することができる。
[0139] 作製した受精卵細胞を、マ-ピューレーティング'マウス'ェンブリオ第 2版等に記載 の胚移植の方法を用いて偽妊娠雌の卵管あるいは子宮に移植し出産させることで、 細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素の活性または N-グリコシ ド結合複合型糖鎖還元末端の N-ァセチルダルコサミンの 6位にフコースの 1位がひ 結合する糖鎖修飾に関与する酵素の活性が低下したトランスジエニック非ヒト動物を 作製することができる。
[0140] トランスジエニック植物の場合、 目的とする植物体力ルスまたは細胞に、前記 1.に 記載の手法と同様の手法を用いることにより、細胞内糖ヌクレオチド GDP-フコースの 合成に関与する酵素の活性または N-グリコシド結合複合型糖鎖還元末端の N-ァセ チルダルコサミンの 6位にフコースの 1位が a結合する糖鎖修飾に関与する酵素の 活性が低下したカルスを作製することができる。
[0141] 作製したカルスを、公知の方法 [組織培養, 20 (1994);組織培養, 21 (1995);
トレンズ'イン'バイオテクノロジー (Trends in Biotechnology), 15, 45 (1997)]に準じて オーキシン及びサイトカイニンを含む培地で培養することで再分ィ匕させ、細胞内糖ヌ クレオチド GDP-フコースの合成に関与する酵素の活性または N-グリコシド結合複合 型糖鎖還元末端の N-ァセチルダルコサミンの 6位にフコースの 1位が a結合する糖 鎖修飾に関与する酵素の活性が低下したトランスジエニック植物を作製することがで きる。
[0142] 3.本発明のエリスロポイエチン組成物の製造方法
本発明のエリスロポイエチン組成物は、モレキュラー 'クローユング第 2版、カレント' プロトコーノレズ 'イン'モレキュラー.ノィォロジ一、 Antibodies, A Laboratory manual, Cold Spring Harbor Laboratory, 1988 (以下、アンチボディズと略す)、 Monoclonal An tioodies: principles and practice, Third Edition, Acaa. Press, 1993 ( 下、モノクロ ~~ ナノレアンチボディズと略す)、 Antibody Engineering, A Practical Approach, IRL Press at Oxford University Press, 1996 (以下、アンチボディエンジニアリングと略す)等に 記載された方法を用い、例えば、以下のように宿主細胞中で発現させて取得すること ができる。
[0143] エリスロポイエチン分子の全長 cDNAを調製し、該エリスロポイエチン分子をコード する部分を含む適当な長さの DNA断片を調製する。
該 DNA断片、または全長 cDNAを適当な発現ベクターのプロモーターの下流に揷 入するこ
とにより、組換えベクターを作製する。
該組換えベクターを、該発現べクタ一に適合した宿主細胞に導入することにより、ェ リスロボイエチン分子を生産する形質転換体を得ることができる。
[0144] 宿主細胞としては、酵母、動物細胞、昆虫細胞、植物細胞等、目的とする遺伝子を 発現できるものであれば 、ずれも用いることができる。
エリスロポイエチン分子に結合する N-グリコシド結合糖鎖の修飾に係わる酵素、す なわちフコース修飾に関連する酵素の活性が欠失した細胞を選択するか、または前 述 1に示された種々の人為的手法により得られた細胞を宿主細胞として用いることも できる。
[0145] 発現ベクターとしては、上記宿主細胞において自立複製可能ないしは染色体中へ の組込が可能で、目的とするエリスロポイエチン分子をコードする DNAを転写できる 位置にプロ
モーターを含有して 、るものが用いられる。
cDNAは、前記 1.の(1)の(a)に記載の cDNAの調製方法に従い、ヒト又は非ヒト動 物の糸且織又は細胞より、目的とするエリスロポイエチン分子に特異的なプローブゃプ ライマー等を用いて調製することができる。
[0146] 酵母を宿主細胞として用いる場合には、発現ベクターとして、例えば、 YEP13 (ATC C37115)、 YEp24 (ATCC37051)、 YCp50 (ATCC37419)等をあげることができる。 プロモーターとしては、酵母菌株中で発現できるものであればいずれのものを用い てもよく、例えば、へキソースキナーゼ等の解糖系の遺伝子のプロモーター、 PH05 プロモーター、 PGKプロモーター、 GAPプロモーター、 ADHプロモーター、 gallプロモ 一ター、 gal 10プロモーター、ヒートショックタンパク質プロモーター、 MF a lプロモー ター、 CUP 1プロモーター等をあげることができる。 [0147] 宿主細胞としては、サッカロミセス属、シゾサッカロミセス属、クリュイべ口ミセス属、ト リコスポロン属、シュヮ-ォミセス属、ピキア属等に属する微生物、例えば、 Saccharom vces cerevisiae. achizosaccharomvces pombe、 Kluweromvces lactis. Tnchosporon pullulans、 Schwanniomvces alluvius, Pichia pastoris等 あけ こと力できる。
組換えベクターの導入方法としては、酵母に DNAを導入する方法であれば 、ずれ も用い
ることができ、例えば、エレクト口ポレーシヨン法 [メソッズ'イン'ェンザィモロジ一 (Met hods. Enzymol.),194, 182(1990)]、スフエロプラスト法 [プロシーディンダス' ォブ ·ザ.ナショナル .ァ力デミ一 ·ォブ ·サイエンス (Proc. Natl. Acad. Sci. U.S.A), 84, 1929 (1978)]、酢酸リチウム法 [ジャーナル ·ォブ 'バタテリォロジ一 (J.Bacteriology),丄 53, 163 (1983)]、プロシーディングス 'ォブ ·ザ'ナショナル'ァカデミ一'ォブ 'サイェ ンス (Proc.Natl. Acad. Sci. U.S.A), 75, 1929 (1978)]に記載の方法等をあげることが できる。
[0148] 動物細胞を宿主として用いる場合には、発現ベクターとして、例えば、 pcDNAU pcD M8
(フナコシ社より巿販)、 PAGE107 [特開平 3- 22979 ;サイトテクノロジー (Cytotechnolog y), 3, 133, (1990)]、 pAS3- 3 [特開平 2- 227075]、 pCDM8 [ネイチヤー (Nature), , 8 40, (1987)]、 pcDNAI/Amp (Invitrogen社)、 pREP4 (Invitrogen社)、 pAGE103 [ジャー ナル ·ォブ 'バイオケミストリー 0. Biochemistry),皿, 1307 (1987)]、 pAGE210等をあ げることができる。
[0149] プロモーターとしては、動物細胞中で発現できるものであればいずれも用いることが でき、例えば、サイトメガロウィルス(CMV)の IE (immediateearly)遺伝子のプロモータ 一、 SV40の初期プロモーター、レトロゥイノレスのプロモーター、メタ口チォネインプロモ 一ター、ヒートショックプロモーター、 SR aプロモーター等をあげることができる。また、 ヒト CMVの IE遺伝子のェンハンサーをプロモーターと共に用いてもよ!、。
[0150] 宿主細胞としては、ヒトの細胞であるナマルバ(Namalwa)細胞、サルの細胞である C OS細胞、チャイニーズ'ノ、ムスターの細胞である CHO細胞、 HBT5637 (特開昭 63- 29 9)、ラットミエローマ細胞、マウスミエローマ細胞、シリアンノヽムスター腎臓由来細胞、 胚性幹細胞、受精卵細胞等をあげることができる。
組換えベクターの導入方法としては、動物細胞に DNAを導入する方法であれば ヽ ずれも
用いることができ、例えば、エレクト口ポレーシヨン法 [サイトテクノロジー (Cytotechnolo gy), 3, 133 (1990)]、リン酸カルシウム法 [特開平 2-227075]、リポフエクシヨン法 [プロ シーディングス 'ォブ ·ザ'ナショナル 'アカデミ^ ォブ 'サイエンス (Proc. Natl. Acad. Sci. U.S.A.), 84, 7413 (1987)]、インジェクション法 [マ-ピュレイティング ·ザ'マウス' ェンブリオ ·ァ ·ラボラトリ一 ·マニュアル]、パーティクルガン (遺伝子銃)を用 、る方法 [特許第 2606856、特許第 2517813]、 DEAE-デキストラン法 [バイオマ-ユアルシリ ーズ 4一遺伝子導入と発現 ·解析法 (羊土社)横田崇 ·新井賢一編 (1994)]、ウィルス ベクター法 [マ-ピュレーティング ·マウス ·ェンブリオ第 2版]等をあげることができる。
[0151] 昆虫細胞を宿主として用いる場合には、例えばカレント 'プロトコールズ'イン'モレ =Τュフ ~~ 'ノヽィォロン ~~ Baculovirus Expression Vectors, A Laboratory Manual, W. H. Freeman and Company, New York (1992)、 ノィォ Zテクノロジー (Bio/Technology), 6 ,47 (1988)等に記載された方法によって、本発明の組成物を発現することができる。 即ち、組換え遺伝子導入ベクターおよびバキュロウィルスを昆虫細胞に共導入して 昆虫細胞培養上清中に組換えウィルスを得た後、さらに組換えウィルスを昆虫細胞 に感染させ、本発明の組成物を発現させることができる。
[0152] 該方法において用いられる遺伝子導入べクタ一としては、例えば、 pVL1392、 pVLl 393、 pBlueBacIII (ともに Invitorogen社)等をあげることができる。
バキュロウィルスとしては、例えば、夜盗蛾科昆虫に感染するウィルスであるアウトグ ラファ 'カリフオル-力'ヌクレア一'ポリへドロシス'ウィルス (Autographa californica nu clear polyhedrosis virusノ等 用 ヽ oこと力できる。
[0153] 昆虫細胞としては、 Spodoptera frugiperdaの卵巣細胞である S19、 S1 1 [カレント'プ 口トコ一ノレズ 'イン'モレキュフー'ノ ィォロシ一 Baculovirus Expression Vectors, A La boratory Manual, W.H. Freeman and Company, New York (1992)]、 Trichoplusiani の卵巣細胞である High 5 (Invitrogen社)等を用いることができる。
組換えウィルスを調製するための、昆虫細胞への上記組換え遺伝子導入ベクター と上記バキュロウィルスの共導入方法としては、例えば、リン酸カルシウム法 (特開平 2 -227075)、リポフエクシヨン法 [プロシーディングス 'ォブ ·ザ'ナショナル'ァカデミ一' ォブ ·サイエンス (Pro Natl. Acad. Sci. U.S.A.), 84, 7413 (1987)]等をあげることがで きる。
[0154] 植物細胞を宿主細胞として用いる場合には、発現ベクターとして、例えば、 Tiプラス ミド、タバコモザイクウィルスベクター等をあげることができる。
プロモーターとしては、植物細胞中で発現できるものであればいずれのものを用い てもよく、例えば、カリフラワーモザイクウィルス(CaMV)の 35Sプロモーター、イネァク チ
ン 1プロモーター等をあげることができる。
[0155] 宿主細胞としては、タバコ、ジャガイモ、トマト、ニンジン、ダイズ、アブラナ、アルファ ルファ、イネ、コムギ、ォォムギ等の植物細胞等をあげることができる。
組換えベクターの導入方法としては、植物細胞に DNAを導入する方法であれば ヽ ずれも
用いることができ、例えば、ァグロバタテリゥム(Agrobacterium) [特開昭 59- 140885、 特開昭 60-70080、 WO94/00977] ,エレクト口ポレーシヨン法 [特開昭 60-251887]、ノ ティクルガン (遺伝子銃)を用いる方法 [日本特許第 2606856、 日本特許第 2517813] 等をあげることができる。
[0156] 遺伝子の発現方法としては、直接発現以外に、モレキュラー ·クロー-ング第 2版に 記載されている方法等に準じて、分泌生産等を行うことができる。
糖鎖の合成に関与する遺伝子を導入した、酵母、動物細胞、昆虫細胞または植物 細胞により発現させた場合には、導入した遺伝子によって糖あるいは糖鎖が付加さ れたエリスロポイエチン分子を得ることができる。
[0157] 以上のようにして得られる形質転換体を培地に培養し、培養物中に本発明のエリス ロボイエチン組成物を生成蓄積させ、該培養物力ゝら該組成物を採取することにより、 本発明のエリスロポイエチン組成物を製造することができる。形質転換体を培地に培 養する方法は、宿主細胞の培養に用いられる通常の方法に従って行うことができる。 酵母等の真核生物を宿主として得られた形質転換体を培養する培地としては、該 生物が資化し得る炭素源、窒素源、無機塩類等を含有し、形質転換体の培養を効率 的に行える培地であれば天然培地、合成培地の ヽずれを用いてもょ ヽ。
[0158] 炭素源としては、該生物が資化し得るものであればよぐグルコース、フラクトース、 スクロース、これらを含有する糖蜜、デンプンあるいはデンプン加水分解物等の炭水 化物、酢酸、プロピオン酸等の有機酸、エタノール、プロパノールなどのアルコール 類等を用いることができる。
窒素源としては、アンモニア、塩化アンモ-ゥム、硫酸アンモ-ゥム、酢酸アンモ- ゥム、リン酸アンモ-ゥム等の無機酸もしくは有機酸のアンモ-ゥム塩、その他の含窒 素化合物、ならびに、ペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼィ ン加水分解物、大豆粕および大豆粕加水分解物、各種発酵菌体およびその消化物 等を用いることができる。
[0159] 無機塩類としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫 酸マグネシウム、塩ィ匕ナトリウム、硫酸第一鉄、硫酸マン癌、硫酸銅、炭酸カルシウム 等を用いることができる。
培養は、通常振盪培養または深部通気攪拌培養などの好気的条件下で行う。培養 温度は 15〜40°Cがよぐ培養時間は、通常 16時間〜 7日間である。培養中の pHは 3. 0〜9. 0に保持する。 pHの調製は、無機または有機の酸、アルカリ溶液、尿素、 炭酸カルシウム、アンモニアなどを用いて行う。
[0160] また、培養中必要に応じて、アンピシリンやテトラサイクリン等の抗生物質を培地に 添カロしてちょい。
プロモーターとして誘導性のプロモーターを用いた糸且換えベクターで形質転換した 微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。 例えば、 lacプロモーターを用いた組換えベクターで形質転換した微生物を培養する ときにはイソ
プロピノレ- β -D-チォガラタトピラノシド等を、 trpプロモーターを用いた糸且換えべクタ 一で形質転換した微生物を培養するときにはインドールアクリル酸等を培地に添加し てもよい。 [0161] 動物細胞を宿主として得られた形質転換体を培養する培地としては、一般に使用さ れて 、る RPMI 1640培地 [ザ ·ジャーナル ·ォブ ·ザ ·アメリカン'メディカル ·ァソシエイ シヨン (The Journal of the American Medical Association),塑, 519 (1967)]、 Eagleの MEM培地 [サイエンス (Science), 12^,501 (1952)]、ダルベッコ改変 MEM培地 [ヴユウ口 ロジー (Virology), 8, 396 (1959)]、 199培地 [プロシーデイング'ォブ ·ザ'ソサ イエティ ·フォア.ザ.バイオロジカル ·メディスン (Proceeding of the Society for the Biol ogical Medicine), 73, 1 (1950)]、 Whitten培地 [発生工学実験マニュアル-トランスジェ ニック'マウスの作り方 (講談社)勝木元也編(1987)ほたはこれら培地に牛胎児血清 等を添加した培地等を用いることができる。
[0162] 培養は、通常 pH6〜8、 30〜40°C、 5%CO存在下等の条件下で 1〜7日間行う
2 また、培養中必要に応じて、カナマイシン、ペニシリン等の抗生物質を培地に添カロ してちよい。
昆虫細胞を宿主として得られた形質転換体を培養する培地としては、一般に使用さ れて
いる TNM- FH培地(Pharmingen社)、 Sf- 900 II SFM培地(Life Technologies社)、 ExC ell400、 ExCell405 (いずれも JRHBiosciences社)、 Grace's Insect Medium [ネイチヤー (Nature), 195, 788 (1962)]等を用いることができる。
[0163] 培養は、通常 pH6〜7、 25〜30°C等の条件下で、 1〜5日間行う。
また、培養中必要に応じて、ゲンタマイシン等の抗生物質を培地に添加してもよい 植物細胞を宿主として得られた形質転換体は、細胞として、または植物の細胞や器 官に分化させて培養することができる。該形質転換体を培養する培地としては、一般 に使用されているムラシゲ'アンド'スターグ (MS)培地、ホワイト (White)培地、またはこ れら培
地にオーキシン、サイトカイニン等、植物ホルモンを添カ卩した培地等を用いることがで きる。
[0164] 培養は、通常 pH5〜9、 20〜40°Cの条件下で 3〜60日間行う。 また、培養中必要に応じて、カナマイシン、ハイグロマイシン等の抗生物質を培地 に添カ卩してもよい。
上記のとおり、エリスロポイエチン分子をコードする DNAを組み込んだ組換え体べク タ
一を保有する微生物、動物細胞、あるいは植物細胞由来の形質転換体を、通常の 培養方法に従って培養し、本発明のエリスロポイエチン組成物を生成蓄積させ、該 培養物よりエリスロポイエチン組成物を採取することにより、本発明のエリスロボイエチ ン組成物を製造することができる。
[0165] エリスロポイエチン組成物の生産方法としては、宿主細胞内に生産させる方法、宿 主細胞外に分泌させる方法、あるいは宿主細胞外膜上に生産させる方法があり、使 用する宿主細胞や、生産させるエリスロポイエチン分子の構造を変えることにより、該 方法を選択することができる。
エリスロポイエチン糸且成物が宿主細胞内あるいは宿主細胞外膜上に生産される場 合、ポールソンらの方法 [ジャーナル'ォブ 'バイオロジカル 'ケミストリー O.Biol. Chem .), 264, 17619 (1989)]、ロウらの方法 [プロシーディングス 'ォブ ·ザ'ナショナル'ァカ デミ一'ォブ 'サイエンス (Proc. Natl. Acad. Sci. U.S.A.), 86, 8227 (1989);ジーン'デ ベロップメント (Genes Develop.), 4, 1288 (1990) ]、または特開平 05-336963、特開平 06-823021等に記載の方法を準用することにより、該エリスロポイエチン組成物を宿 主細胞外に積極的に分泌させることができる。
[0166] すなわち、遺伝子組換えの手法を用いて、発現ベクターに、エリスロポイエチン分 子をコードする DNA、およびエリスロポイエチン分子の発現に適切なシグナルぺプチ ドをコ一
ドする DNAを挿入し、該発現ベクターを宿主細胞へ導入の後にエリスロポイエチン分 子を
発現させることにより、目的とするエリスロポイエチン分子を宿主細胞外に積極的に分 泌、させることができる。
[0167] また、特開平 2-227075に記載されている方法に準じて、ジヒドロ葉酸還元酵素遺伝 子等を用いた遺伝子増幅系を利用して生産量を上昇させることもできる。 さらに、遺伝子導入した動物または植物の細胞を再分化させることにより、遺伝子 が導入された動物個体 (トランスジエニック非ヒト動物)または植物個体 (トランスジェ- ック植物)を造成し、これらの個体を用いてエリスロポイエチン組成物を製造することも できる。
[0168] 形質転換体が動物個体または植物個体の場合は、通常の方法に従って、飼育また は栽培し、エリスロポイエチン組成物を生成蓄積させ、該動物個体または植物個体よ り該エリスロポイエチン組成物を採取することにより、該エリスロポイエチン組成物を製 造することができる。
動物個体を用いてエリスロポイエチン組成物を製造する方法としては、例えば公知 の方法 [アメリカン'ジャーナル ·ォブ ·タリ-カル ·二ユートリシヨン (Americanjournal of Clinical Nutrition), 63, 639S (1996);アメリカン ·ジャーナル ·ォブ 'タリ-力
ル'-ユートリシヨン (American Journal of Clinical Nutrition), 63, 627S (1996);
バイオ Zテクノロジー (Bio/Technology), 9, 830 (1991)]に準じて遺伝子を導入して造 成した動物中に目的とするエリスロポイエチン組成物を生産させる方法があげられる
[0169] 動物個体の場合は、例えば、エリスロポイエチン分子をコードする DNAを導入したト ンスジエニック非ヒト動物を飼育し、エリスロポイエチン組成物を該動物中に生成 ·蓄 積させ、該動物中よりエリスロポイエチン組成物を採取することにより、エリスロボイエ チン組成物を製造することができる。該動物中の生成'蓄積場所としては、例えば、 該動物のミルク(特開昭 63-309192)、卵等をあげることができる。この際に用いられる プロモ
一ターとしては、動物で発現できるものであればいずれも用いることができる力 例え ば、乳腺細胞特異的なプロモーターである αカゼインプロモーター、 j8カゼインプロ モーター、 13ラクトグロブリンプロモーター、ホエー酸性プロテインプロモーター等が 好適に用いられる。
[0170] 植物個体を用いてエリスロポイエチン組成物を製造する方法としては、例えばエリス ロポイエチン分子をコードする DNAを導入したトランスジエニック植物を公知の方法 [ 組織
培養, 20 (1994);組織培養, 21(1995);トレンド'イン'バイオテクノロジー (Trends in Bi otechnology), 15, 45 (1997)]に準じて栽培し、エリスロポイエチン組成物を該植 物中に生成'蓄積させ、該植物中より該エリスロポイエチン組成物を採取することによ り、エリスロポイエチン糸且成物を生産する方法があげられる。
[0171] エリスロポイエチン分子をコードする遺伝子を導入した形質転換体により製造され たエリスロポイエチン組成物は、例えばエリスロポイエチン組成物力 細胞内に溶解 状態で発現した場合には、培養終了後、細胞を遠心分離により回収し、水系緩衝液 にけん濁後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー、ダイノ ミル等により細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離する ことにより得られる上清から、通常の酵素の単離精製法、即ち、溶媒抽出法、硫安等 による塩析法、脱塩法、有機溶媒による沈殿法、ジェチルアミノエチル (DEAE) -セフ ァロース、 DIAIONHPA-75 (三菱化学 (株)製)等レジンを用いた陰イオン交換クロマト グラフィ一法、 S- Sepharose FF (Pharmacia社)等のレジンを用いた陽イオン交換クロ マトグラフィ一法、ブチルセファロース、フエ-ルセファロース等のレジンを用いた疎水 性クロマトグラフィー法、分子篩を用いたゲルろ過法、ァフィユティークロマトグラフィ 一法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の手法を単独 あるいは組み合わせて用い、エリスロポイエチン組成物の精製標品を得ることができ る。
[0172] また、エリスロポイエチン組成物が細胞内に不溶体を形成して発現した場合は、同 様に細胞を回収後破砕し、遠心分離を行うことにより、沈殿画分としてエリスロボイエ チン組成物の不溶体を回収する。回収したエリスロポイエチン組成物の不溶体をタン パク質変性剤で可溶化する。該可溶化液を希釈または透析することにより、該エリス ロボイエチン組成物を正常な立体構造に戻した後、上記と同様の単離精製法により 該エリスロポイエチン組成物の精製標品を得ることができる。
[0173] エリスロポイエチン組成物が細胞外に分泌された場合には、培養上清に該エリス口 ボイエチン組成物あるいはその誘導体を回収することができる。即ち、該培養物を上 記と同様 の遠心分離等の手法により処理することにより培養上清を取得し、該培養上清から、 上記と同様の単離精製法を用いることにより、エリスロポイエチン組成物の精製標品 を得ることができる。
[0174] すでに宿主細胞がエリスロポイエチン分子を発現する能力を有する場合には、上 記 1に記載した方法を用いてエリスロポイエチン分子を発現する能力を有する細胞を 調製した後に、該細胞を培養し、該培養物から目的とするエリスロポイエチン組成物 を精製することにより、本発明のエリスロポイエチン組成物を製造することができる。
4.エリスロポイエチン組成物の活性評価
精製されたエリスロポイエチン組成物の、赤血球増多活性をはじめとする生物活性 は、既に公知の各種方法を用いて測定することができる。具体的には、エリス口ボイ ェチン受容体結合活性測定法、赤血球系コロニー形成活性測定法、赤芽球系細胞 株を用いた増殖分ィ匕促進活性の測定法などの in vitro試験、あるいは、正常動物や 貧血病態モデル動物などを用いた in vivo試験などで測定することができる (基礎と臨 床 22, 5547(1988)、基礎
と臨床 22, 5811 (1988)、基礎と臨床 22, 5531 (1988)、 Journal of Pharmaceutical Pha rmacology 42, 758 (1990)、 Journal of Urology 146, 1645 (1991))。また、既に公知の 方法により精製エリスロポイエチン組成物を用いて in vivo試験を行うことで、エリス口 ボイエチン組成物の血中半減期を測定することができる(臨床評価 547 (1988)、 British Journal of Cancer 84(SUDD1 1). 3 (2001))。以下に、その具体的な例を示す。
[0175] ( 1)エリスロポイエチン受容体結合活性測定法 (結合 ELISA法)
被検物質として精製したエリスロポイエチン組成物を、標準品として濃度及び比活 性既知の巿販エリスロポイエチンを、体積比 1 %でゥシ血清アルブミンを含有するダ ルべッコ
リン酸緩衝液 PH7.0 (Journal of Experimental Medicine 98, 167 (1954)、以下、 PBSと 称す)を用いてそれぞれ段階希釈する。また、市販の遺伝子組換え可溶型エリスロボ イエチン受容体 Fcキメラ蛋白質 (R&D systems社製)を濃度 100ng/mLで PBSに溶解 後、 96穴平底 ELISA用プレートに 100 L/ゥエルで分注し 4時間室温することにより、 可溶型エリスロポイエチン受容体が固相化されたプレートを作製する。このプレートを 体積比 1%でゥシ血
清アルブミンを含有する PBSを用いてブロッキング後、上記段階希釈した被検物質及 び標
準品を 100 L/ゥエルで分注し、室温にて 1時間インキュベートする。体積比 0.01%で Tween20を含有する PBSで各ゥエルを数回洗浄しプレートに結合しなかったエリスロポ イエチンを除去後、体積比 1 %でゥシ血清アルブミンを含有する PBSに溶解した巿販 HRP標識ィ匕抗エリスロポイエチン抗体 (DAKO社製)を、 100 L/ゥエルで分注する。 室温にて 1時間インキュベート後、体積比 0.01%で Tween20を含有する PBSで各ゥヱ ルを数回洗浄しプレートに結合しな力つた抗エリスロポイエチン抗体を除去し、各ゥェ ノレに 100 L /ウエノレの 3, 3 ,5,0 -tetramethylbenzidine(TMB) liquid substrate (Sigma 社製)を添加し室温にて数分間発色させる。適当な発色が得られた時点で 0.5規定の 硫酸を加えて反応を停止させる。その後、反応液中の吸光度を波長 450nmで測定し 、被検物質であるエリスロポイエチンをカ卩えて 、な 、対照反応溶液の吸光度から各 希釈段階の被検物質あるいは標準品を加えた反応溶液の吸光度を差し引いた値を 得る。この値をエリスロポイエチン受容体に結合したエリスロポイエチン量として縦軸 に、被検物質あるいは標準品の希釈率を横軸にして片対数グラフにプロットする。プ ロットした測定値よりエリスロポイエチン受容体に結合したエリスロポイエチン量と希釈 率の関係を直線近似し、被検物質と標準品の測定の結果得られた近似式を比較す ることで、被検物質の標準品に対する倍率を求めることができ、その力価を決定する ことができる。
(2)赤血球系コロニー形成活性測定法
精製したエリスロポイエチン組成物の赤血球系コロニー形成活性は、 Iscoveらの方 法 (J. Cell Physiol. 83, 309-320 (1974))に順じ、骨髄細胞から赤血球系コロニーの 形成を促進する活性を測定することで、求めることができる。具体的には、被検物質 として精製したエリスロポイエチン組成物を、標準品として濃度及び比活性既知の巿 販エリスロポイエチンを、体積比 1%でゥシ血清アルブミンを含有する PBSを用いてそ れぞれ段階希釈する。次に、ヒトの骨髄由来の単核細胞を、フイコール密度勾配遠心 分離によって分離し、 Iscove培地で洗浄後、平板培養によって付着細胞を除去する ことで得る。取得した骨髄由来の単核細胞を 0.9%のメチルセルロースを含む Iscove 培地に段階希釈した被検物質あるいは標準品を添加した培地に播種して 37°Cにて 培養する。その後、およそ 10日後に培養器中に形成される赤血球系コロニーの数を 測定することで、赤血球系コロニー形成活性を測定することができる。
[0177] (3)赤芽球系細胞株用いた増殖分化促進活性の測定法
赤芽球系細胞株用いた増殖分ィ匕促進活性は、 Hammerlingらの方法 (Journal of Ph armaceutical and Biomedical Analysis 14, 1455 (1996))に順じて測定することができ る。被検物質として精製したエリスロポイエチン組成物を、標準品として濃度及び比 活性既知の巿販エリスロポイエチンを、体積比 1%でゥシ血清アルブミンを含有する P BSを用いてそれぞれ段階希釈する。これら段階希釈した溶液を含む培地を調製し、 TF-1細胞(ATCCCRL-2003)や KU812細胞(ATCC CRL-2099)などのヒト骨髄由来 細胞株を 37°Cで培養する。その後、およそ 10日後に培養器中に増殖する生細胞数 を調べることで、赤芽球系細胞に対する増殖分化促進活性を調べることができる。
[0178] (4)貧血病態モデルを用いた in vivo試験
精製したエリスロポイエチン組成物の赤血球増多活性は、貧血病態モデルを用い た in vivo試験にぉ 、てへマトクリット値の上昇活性を調べることで測定することがきる 。貧血
モデル動物としては、部分腎摘出ラット、ゲンタマイシン誘導腎障害ラット、および遺 伝性嚢胞腎マウスなどを用いることができる(Journal of Pharmaceutical Pharmacology 42, 758 (1990)、 Journal of Urology 146,1645 (1991))。たとえばモデル動物にマウス を用いる場合には、以下の手順で試験を行うことができる。 0.25%マウス血清アルブミ ン中で調製された被検物質または被検物質を含まないブラシーボ (0.25%マウス血 清アルブミンを含む PBS)を毎週 3回ずつ 6週間にわたり、マウスへ腹腔内注射により 投与する。
その際のエリスロポイエチン組成物の毎回の投与量は、たとえば 0.01 μ g/1頭〜 0.1 も I
1頭の間で設定することができる。眼窩後方力 採血することによって毎週 2回、各マ ウスのへマトクリット値を測定する。また、試験終了後、全部のマウス力 血清を採取 し、被検物質の投与による抗エリスロポイエチン抗体の出現の有無を検定することが できる。
[0179] (5)モデル動物を用いたエリスロポイエチン血中半減期の測定
精製したエリスロポイエチン組成物などを用いた血中半減期の測定は、ラットなどの モデル動物を用いて調べることができる。 0.25%ラット血清アルブミン中で調製された 被検物質または被検物質を含まな ヽプラシーボ (0.25%ラット血清アルブミンを含む P BS)を
、頸動脈力-ユーレなどを用いた静脈注射あるいは皮下注射により、ラットに単回投 与する。その際のエリスロポイエチン組成物の毎回の投与量は、たとえば 0.1 μ g/kg 〜1 μ g/kgの間で設定することができる。投与後の任意の時点で 300 Lの血液を採 取し、ヒトエリスロポイエチンを特異的に検出、定量できる ELISA法(StemCell Technol ogies社製 human EPO ELISAキットなど)によりラット血液中の被検物質濃度を測定す る。得られたデータは
、たとえば PCNONLIN非線形回帰分析(Statistical Consultants, 1992)を用いて各ラ
V
トの薬物動態パラメーターを測定する。なお、エリスロポイエチン組成物のクリアランス 試験は、ラット以外のげつ歯類、たとえばマウスや、ラットよりヒトにより近縁の霊長類、 たとえば力-クイザル等の動物種モデルを用いて評価することもできる。
[0180] (6)神経及び筋細胞に対する活性測定
精製したエリスロポイエチン組成物などを用いた神経細胞への保護活性の測定は、 Sirenらの方法(Proceedings of the National Academy of Science of USA 98, 4044 (20 01))に順じ、マウス P19細胞株 (ATCC CRL-1925)のアポトーシス抑制活性を検出す ることなどで測定することができる。また、精製したエリスロポイエチン組成物などを用 いた筋細胞への保護活性の測定は、 Parsaらの方法(The Journal of Clinical Investig ation 112, 999 (2003))に順じ、ラット H9c2細胞株(ATCC CRL- 1446)のアポトーシス 抑制活性を検出することなどで測定することができる。
[0181] 5.エリスロポイエチン組成物の糖鎖の分析
各種細胞で発現させたエリスロポイエチン分子の糖鎖構造は、通常の糖タンパク質 の糖鎖構造の解析に準じて行うことができる。例えば、エリスロポイエチン分子に結合 している糖鎖はガラクトース、マンノースなどの中性糖、 N-ァセチルダルコサミンなど のァミノ糖、シアル酸などの酸性糖から構成されており、糖組成分析および二次元糖 鎖マップ法などを用いた糖鎖構造解析等の手法を用いて行うことができる。
[0182] ( 1)中性糖'アミノ糖組成分析
エリスロポイエチン分子の糖鎖の組成分析は、トリフルォロ酢酸等で、糖鎖の酸カロ 水分解を行うことにより、中性糖またはアミノ糖を遊離し、その組成比を分析すること ができる。
具体的な方法として、 Dionex社製糖組成分析装置を用いる方法があげられる。 Bio LCま HPAEC— PAD (hign performance anion— exchange chromatography— pulsed ampe rometric detection)法 [ジャーナノレ ·ォブ ·リキッド ·クロマトグラフィー (J丄 iq.Chromato gr.) ,6, 1577 (1983)]によって糖組成を分析する装置である。
[0183] また、 2-アミノビリジンによる蛍光標識ィ匕法でも組成比を分析することができる。具体 的には、公知の方法 [ァグリカルチュラル 'アンド'バイオロジカル ·ケミストリー (Agric.B iol.Chem.),55il), 283-284 (1991)]に従って酸加水分解した試料を 2-アミノビリジル 化で蛍光ラベルイ匕し、 HPLC分析して組成比を算出することができる。
(2)糖鎖構造解析
エリスロポイエチン分子の糖鎖の構造解析は、 2次元糖鎖マップ法 [アナリティカル · バイオケミストリー(Anal. Biochem.) , 171 , 73 (1988)、生物化学実験法 23-糖タンパ ク質糖鎖研究法 (学会出版センター)高橋禮子編(1989年) ]により行うことができる。 2 次元糖鎖マップ法は、例えば、 X軸には逆相クロマトグラフィーによる糖鎖の保持時 間または溶出位置を、 Υ軸には順相クロマトグラフィーによる糖鎖の保持時間または 溶出位置を、それぞれプロットし、既知糖鎖のそれらの結果と比較することにより、糖 鎖構造を推定する方法である。
[0184] 具体的には、エリスロポイエチン糸且成物をヒドラジン分解して、エリスロポイエチン分 子から糖鎖を遊離し、 2-アミノビリジン (以下、「ΡΑ」と略記する)による糖鎖の蛍光標 識 [ジャーナル'ォブ 'バイオケミストリー(J.Biochem.) , 197 (1984)]を行つ た後、ゲルろ過により糖鎖を過剰の PAィ匕試薬などと分離し、逆相クロマトグラフィーを 行う。次いで、分取した糖鎖の各ピークについて順相クロマトグラフィーを行う。これら の結果をもとに、 2次元糖鎖マップ上にプロットし、糖鎖スタンダード (TaKaRa社製)、 文
献 [アナリティカル 'バイオケミストリー(Anal. Biochem.) , 171, 73 (1988)]とのスポット の比較より糖鎖構造を推定することができる。
[0185] さらに各糖鎖の MALDI-TOF-MSなどの質量分析を行い、 2次元糖鎖マップ法によ り推定さ
れる構造を確認することができる。
6.エリスロポイエチン分子の糖鎖構造を識別する免疫学的定量方法
エリスロポイエチン組成物は、糖鎖構造が異なったエリスロポイエチン分子力 構成 されている。本発明のエリスロポイエチン組成物は、 Ν-グリコシド結合複合型糖鎖還 元末端の Ν-ァセチルダルコサミンにフコースが結合しておらず、長い血中半減期を 示す。このよ
うなエリスロポイエチン組成物は、上記 5. に記載のエリスロポイエチン分子の糖鎖構 造の分析法を用いることにより識別できる。また、レクチンを用いた免疫学的定量方 法を用いることによっても識別できる。
[0186] レクチンを用いた免疫学的定量方法を用いたエリスロポイエチン分子の糖鎖構造 の識別は、文献 [モノクローナル .アンティボディズ:プリンシプルズ 'アンド'アプリケー ンヨンズ (Monoclonal Antibodies: Principles and Applications), Wiley-Liss, Inc., (199 5);酵素免疫測定法,第 3版,医学書院 (1987) ;改訂版,酵素抗体法,学際企画 (198 5) ]等に記載のウェスタン染色、 RIA (Radioimmunoassay)、 VIA (Viroimmunoassay)、 EIA (Enzymoimmunoassay、 FIA (Fluoroimmunoassay)、 MIA (Metalloimmunoassay) などの免疫学的定量方法に準じて、例えば、以下のように行うことができる。
[0187] エリスロポイエチン組成物を構成するエリスロポイエチン分子の糖鎖構造を認識す るレクチンを標識し、標識したレクチンと試料であるエリスロポイエチン組成物を反応 させる。次に、標識したレクチンとエリスロポイエチン分子の複合体の量を測定する。 エリスロポイエチン分子の糖鎖構造を識別に用いられるレクチンとしては、例えば、
WGA u'. vulgaris由来の wheat— germ agglutinin) ^ ConA (C. ensiformis由来の concan avalin A)、 RIC (R. communis由来の毒素)、 L— PHA(P.vulgaris由来の leukoagglutinin) 、 LCA (L. culinaris由来の lentil agglutinin), PSA (P.sativum由来の Pea lectin), AAL ( Aleuria aurantia Lectin) ^ ACL (Amaranthus caudatus Lectin) ^ BPL (Bauhinia purpur ea Lectin) ^ DSL (Datura stramonium Lectin) ^ DBA (Dolichos biflorus Agglutinin) ^ E BL(Elderberry Balk Lectin) ^ ECL (Erythrina cristagalli Lectin) ^ EEL (Euonymus eur opaeus Lectin) ^ GNL (Galanthus nivalis Lectin) ^ GSL (Griffonia simplicifoliaLectin)、 HPA (Helix pomatia Agglutinin) ^ HHL (Hippeastrum Hybrid Lectin) ^ Jacalin、 LTL (L otus tetragonolobus Lectin入 LEL (Lycopersicon esculentum Lectin) ^ MAL(Maackia amurensis Lectin) ^ MPL (Maclura pomifera Lectin) ^ NPL (Narcissus pseudonarcissus Lectin) ^ PNA (Peanut Agglutinin) ^ E- PHA (Phaseolus vulgaris Erythroagglutinin)、 P TL (Psophocarpus tetragonolobus Lectin) ^ RCA (Ricinus communis Agglutinin) ^ STL (Solanum tuberosum Lectin)、 SJA (Sophora japonica Agglutinin)、 SB A (Soybean Aggl utinin)ゝ UEA (Ulex europaeus Agglutinin)ゝ WL (Viciavillosa Lectin) ^ WFA (Wisteria floribunda Agglutinin)力 Sあげられる Q
[0188] 本発明においては、上記レクチンのなかでも N-ダルコシド結合複合型糖鎖還元末 端の N-ァセチルダルコサミンにフコースが結合している糖鎖構造を特異的に認識す るレクチンを用いることが好ましぐその具体的な例としては、レンズマメレクチン LCA ( Lens Culinaris由来の Lentil Agglutinin)エンドゥマメレクチン PSA (Pisum sativum由来 の Pea Lectin)、ソラマメレクチン VFA(Viciafaba由来の Agglutinin)、ヒイロチヤワンタケ レクチン AAL (Aleuria aurantia由来の Lectin)を挙げることができる。
[0189] 7.本発明のエリスロポイエチン組成物の使用
本発明のエリスロポイエチン組成物は、従来力も知られているヒト尿由来または遺伝 子組換え体エリスロポイエチンなどの N-グリコシド結合複合型糖鎖還元末端の N-ァ セチルダルコサミンにフコースが結合して!/、るエリスロポイエチンに比べて、エリスロポ イエチン受容体に対する同等の親和性を有し、かつ生体内に投与した場合に血中 半減期が長 ヽと ヽぅ特徴を有するため、本発明のエリスロポイエチン組成物を用いる 各種疾患の治療は、投与量を上げることなぐ投与回数をより少なくすることができる 。従って、患者や医療現場での身体的および経済的な負担を軽減するとともに、頻 繁に患者へ投与することによる現行の治療における事故、投与した患者の血圧上昇 、抗エリスロポイエチン抗体の出現といった副作用を軽減することができる。
[0190] エリスロポイエチン組成物を治療剤として用いる各種疾患としては、血中の赤血球 数およびヘモグロビン量の減少を呈する疾患、神経変性疾患、筋変性疾患などがあ げられる。
血中の赤血球数およびヘモグロビン量の減少を呈する疾患としては、貧血があげら れ、具体的には腎性貧血、二次性貧血、癌化学療法および放射線療法に伴う貧血 などがあげられる。
[0191] 腎性貧血は、腎疾患によってエリスロポイエチンの生産が低下したり、透析によって エリスロポイエチンが体外に排出された場合に発症する。
二次性貧血は、さまざまな基礎疾患に伴って発症する貧血をいい、基礎疾患として は、亜急性細菌性心内膜炎や結核および後天性免疫不全症候群 (AIDS)などに代 表される慢性感染症、慢性関節リウマチや全身性エリテマトーデスに代表される膠原 病、固形癌や悪性リンパ腫に代表される悪性腫瘍、肝硬変や慢性肝炎に代表される 肝疾患、粘液水腫や睾丸機能低下症などに代表される内分泌疾患があげられる。
[0192] 癌化学療法および放射線療法に伴う貧血は、固形癌や血液癌の化学療法や放射 線療法によって患者の骨髄が障害されることが原因で発症する疾患である。
神経変性疾患は、神経細胞の広範な変性を来たす原因不明の疾患であり、慢性と 急性がある。一般には-ユーロンとその伝導路の変性により神経細胞が消失し、神経 膠症 (ダリオ一シス)を生じる疾患が含まれる。具体的な神経変性疾患としては、アル ッハイマー病、パーキンソン病、ポリグルタミン病および筋萎縮性側索硬化症などが あげられる。
[0193] アルツハイマー病は、痴呆を伴う進行性の神経変性疾患であり、老人斑の沈着、神 経原線維変化や神経細胞の脱落を病理的特徴として有する。老人斑は高度に凝集 化したアミロイド β蛋白質を主要な構成成分とするが、このアミロイド β蛋白質は神経 細胞に対し細胞毒性を有して 、る。
パーキンソン病は、多くは中年以降に発症する、無動、固縮、振戦、姿勢反射障害 の運動兆候とうつ状態などの精神症候を伴う原因不明の進行性疾患である。病理学 的には黒質緻密層のドパミン含有細胞や青斑核のノルアドレナリン含有細胞などの 変性脱落が見られる。
[0194] ポリグルタミン病は、ゲノム遺伝子においてシチジン-アデニン-グァニン繰り返し塩 基配列の異常延長という独特な遺伝子異常を原因とする遺伝性の神経変性疾患で ある。これまでに、球脊髄性筋萎縮症、ハンチントン病、歯状核赤核淡蒼球ルイ体萎 縮症および脊髄小脳失調症などが知られている。病因は不明であるが、生体内で生 成された蛋白質における延長ポリグルタミン鎖自体力 神経細胞に対して細胞毒性 を有する可能性が示唆されて 、る。
[0195] 筋萎縮性側索硬化症は、主に中年期以降に発症し、上位および下位運動ニューロ ンに選択的かつ系統的な障害を来たす神経変性疾患である。片側上肢の筋萎縮に 始まり、反対側上肢、両下肢へ筋萎縮が進行し、その間に言語障害や呼吸筋麻痺が 加わる経過をとることが多 、。人工呼吸器による呼吸管理を行わな 、と発症後 2な ヽ し 5年で呼吸不全で死亡に至る難病である。
[0196] 筋変性疾患としては、心筋梗塞などがあげられる。
心筋梗塞は、心臓に血液を送る冠動脈の閉塞あるいは狭窄による血行障害によ心 筋虚血が起こり、その結果として心筋が壊死する疾患である。
本発明のエリスロポイエチン組成物を含有する医薬は、予防薬あるいは治療薬とし て単独で投与することも可能ではある力 S、通常は薬理学的に許容される一つあるい はそれ以上の担体と一緒に混合し、製剤学の技術分野においてよく知られる任意の 方法により製造した医薬製剤として提供するのが望ましい。
[0197] 投与経路は、治療に際して最も効果的なものを使用するのが望ましぐ経口投与、 または口腔内、気道内、直腸内、皮下、筋肉内および静脈内等の非経口投与をあげ ることができ、エリスロポイエチン製剤の場合、望ましくは静脈内投与をあげることがで きる。
投与形態としては、噴霧剤、カプセル剤、錠剤、顆粒剤、シロップ剤、乳剤、座剤、 注射剤、軟膏、テープ剤等があげられる。
[0198] 経口投与に適当な製剤としては、乳剤、シロップ剤、カプセル剤、錠剤、散剤、顆粒 剤等があげられる。 乳剤およびシロップ剤のような液体調製物は、水、ショ糖、ソルビトール、果糖等の 糖類、ポリエチレングリコール、プロピレングリコール等のダリコール類、ごま油、オリ ーブ油、大豆油等の油類、 P-ヒドロキシ安息香酸エステル類等の防腐剤、スト口ベリ ーフ
レーバー、ペパーミント等のフレーバー類等を添加剤として用いて製造できる。
[0199] カプセル剤、錠剤、散剤、顆粒剤等は、乳糖、ブドウ糖、ショ糖、マン-トール等の 賦形剤、デンプン、アルギン酸ナトリウム等の崩壊剤、ステアリン酸マグネシウム、タル ク等の滑沢剤、ポリビュルアルコール、ヒドロキシプロピルセルロース、ゼラチン等の 結合剤、脂肪酸エステル等の界面活性剤、グリセリン等の可塑剤等を添加剤として 用いて製造できる。
[0200] 非経口投与に適当な製剤としては、注射剤、座剤、噴霧剤等があげられる。
注射剤は、塩溶液、ブドウ糖溶液、あるいは両者の混合物カゝらなる担体等を用いて 調製される。または、エリスロポイエチン組成物を常法に従って凍結乾燥し、これに塩 化ナトリウムを加えることによって粉末注射剤を調製することもできる。
座剤はカカオ脂、水素化脂肪またはカルボン酸等の担体を用いて調製される。
[0201] また、噴霧剤はエリスロポイエチン組成物そのもの、ないしは受容者の口腔および 気道粘膜を刺激せず、かつエリスロポイエチン組成物を微細な粒子として分散させ 吸収を容易にさせる担体等を用いて調製される。
担体として具体的には乳糖、グリセリン等が例示される。エリスロポイエチン組成物 および用いる担体の性質により、エアロゾル、ドライパウダー等の製剤が可能である。 また、これらの非経口剤にぉ 、ても経口剤で添加剤として例示した成分を添加するこ とちでさる。
[0202] 投与量または投与回数は、 目的とする治療効果、投与方法、治療期間、年齢、体 重等により異なる力 有効成分の量として、通常成人 1日当たり 1 §/1¾〜200 g/kg である。
また、エリスロポイエチン組成物の赤血球増多活性をはじめとする生物活性を検討 する方法は、インビトロ (in vitro)実験としては、エリスロポイエチン受容体結合活性測 定法、赤血球系コロニー形成活性測定法、赤芽球系細胞株を用いた増殖分化促進 活性の測定法などの in vitro試験、あるいは貧血病態モデル動物を用いた in vivo試 験等があげられる
[0203] エリスロポイエチン受容体結合活性測定法、赤血球系コロニー形成活性測定法、 赤芽球系細胞株を用いた増殖分化促進活性の測定法、貧血病態モデル動物を用 ヽ 7こ mvivogi験
は、文献 [基礎と臨床, 22(15), 5531 (1988)、 J. Pharm. Pharmacol.,42, 758(1990)、 J. Urology, 146,1645(1991)、基礎と臨床, 22(15), 5547 (1988)、基礎と臨床, 22(16), 58 11(1988)]等記載の公知の方法に従って行うことができる。
[0204] 以下の実施例により、本発明をより具体的に説明する力 実施例は本発明の単なる 例示を示すものにすぎず、本発明の範囲を限定するものではない。
実施例 1
[0205] FUT8遺伝子ダブルノックアウト細胞によるエリスロポイエチンの発現
ヒトエリスロポイエチン (以下、 EPOと略記する)を生産する FUT8遺伝子ダブルノック アウト細胞株を以下に示す方法で作製した。
1.プラスミド pBS- EPOの作製
EPO遺伝子配列 (UniGene: Hs.2303、配列番号 1)より制限酵素サイト (EcoRI、 BamHI )及びコザック配列を付加した二種類の EPO遺伝子特異的プライマー (配列番号 20お よび配列番号 21)を作製し、以下の PCRを行なった。即ち、ヒト腎臓由来 cDNAをテン プレートとして含む 20 μ Lの反応液 [HotstarTaq(R) DNA polymerase(QIAGEN社製)、 10 X PCR buffer, 0.2mmol/L dNTP mixture, 0.5 μ mol/L上記プライマー (配列番号 2 0および配列番号 21)]を調製し、 95°Cで 15分間加熱した後、 94°Cで 1分間、 60°Cで 1 分間、 72°Cで 1分間を 1サイクルとした 35サイクルの反応で PCRを行なった。得られた 精製 EPO DNA断片を 17 Lの水に溶解した後、該液に 10単位の制限酵素 EcoRI (タ カラバイオ社製)及び 10単位の BamHI (タカラバイオ社製)、 2 μ Lの 10 X H bufferをカロえ て 20 Lの反応液を調製し、 37°Cで 16時間消化反応を行なった。続いてプラスミド pBl uescriptll KS(+)(Stratagene社製) 3 μ gを 17.5 μ Lの水に溶解し、該液に 10単位の Eco RI、 2 Lの 10 X H bufferを加えて 20 Lの反応液を調製後、 37°Cで 16時間消化反応 を行なった。反応後、フエノール/クロ口ホルム抽出処理及びエタノール沈殿を行い、 回収したプラスミドを 17.5 Lの水に溶解した。さらに該液に 10単位の BamHI、 2 しの 10 X K bufferをカ卩えて 20 Lの反応液を調製後、 37°Cで 16時間消化反応を行なった
[0206] 上記で得られた EPO DNA断片 (EcoRI- BamHI)及び pBluescriptll KS(+)断片 (EcoRI- BamHI)を 1.5%(W/V)ァガロースゲル電気泳動に供し、それぞれ約 590bp、 3kbpの DN A断片を QIAquickGel Extraction Kit(QIAGEN社製)を用いて精製した。次いで EPO DNA断片 (EcoRI- BamHI)20ngゝ pBluescriptIIKS(+)断片 (EcoRI- BamHI)80ngゝ Ligation High (東洋紡社製)を含む反応液 20 Lを調製し、 16°Cで 16時間連結反応を行なつ た。得られたプラスミド DNAを用い、 heatshock法により大腸菌 DH5 a株 (東洋紡社製) を形質転換した。形質転換株より QIAprep(R) Spin Miniprep Kit(QIAGEN社製)を用 ヽてゾフス^ド DNA 調:^し、 BigDye Terminatorし ycle Sequencing Ready Reaction Kit v2.0(QIAGEN社製)と DNAシーケンサ ABI PRISM377(Applied Biosystems社製)を 用いて塩基配列を解析した。その結果、 EPO遺伝子配列を含むプラスミド pBS-EPO を得た (図 1)。
[0207] 2.発現ベクター pKAN- EPOの作製
前記 1で得られた pBS-EPOを 17 Lの水に溶解した後、該液に 10単位の EcoRI (タカ ラバイ
ォ社製)及び 10単位の BamHI (タカラバイオ社製)、 2 μ Lの 10 X H bufferをカ卩えて 20 μ Lの反
応液を調製し、 37°Cで 16時間消化反応を行なった。続いてプラスミド pKANTEX93(W 097/10354)3 μ gを 17.5 μ Lの水に溶解し、該液に 10単位の EcoRI (タカラバイオ社製) 、 2 Lの lO X Hbufferをカ卩えて Lの反応液を調製し、 37°Cで 16時間消化反応を 行なった。反応後、フエノール/クロ口ホルム抽出処理及びエタノール沈殿を行い、回 収したプラスミドを 17.5 μ Lの水に溶解した。さらに該液に 10単位の BamHI、 2 μ Lの 10 X K bufferをカ卩えて 20 Lの反応液を調製後、 37°Cで 16時間消化反応を行なった。
[0208] 上記で得られた EPO DNA断片 (EcoRI- BamHI)及び pKANTEX93断片 (EcoRI- Bam HI)を 1.5%(W/V)ァガロースゲル電気泳動に供し、それぞれ約 590bp、 9kbpの DNA断 片を QIAquick Gel Extraction Kit(QIAGEN社製)を用いて精製した。次いで EPO DN A断片 (EcoRI- BamHI)50ng、 pKANTEX93断片 (EcoRI- BamHI)30ng、 LigationHigh (東 洋紡社製)を含む反応液 20 /z Lを調製し、 16°Cで 16時間連結反応を行なった。得られ たプラスミド DNAを用い、 heat shock法により大腸菌 DH5ひ株 (東洋紡社製)を形質転 換した。形質転 ·より QIAprep(R) Spin Miniprep Kit(QIAGEN社製)を用いてプラス ミド DNAを調製し、 pKAN- EPOを得た(図 2)。
[0209] 3.無蛋白培地馴化株への EPO発現プラスミドの導入
文献(Biotechnology and Bioengineering 87, 614 (2004))に記載された FUT8遺伝 子
ダブルノックアウト細胞に、本実施例 2で作製したプラスミド pKAN-EPOを導入した。こ れ
らの遺伝子導入は公知のエレクト口ポレーシヨン法 [サイトテクノロジー(Cytotechnolo gy), 3, 133 (1990)]により以下の手順で行った。まず、プラスミド pKAN- EPO30 gを N EBuffer 4 (New England Biolabs社製) 20 μ Lと 200単位の制限酵素 AatII(New England Biolabs社製)を含む 200 Lの反応液を調製し、 37°Cで 16時間消化反応を行うことに より線状ィ匕した。反応後、該反応液に対しフエノール/クロ口ホルム抽出処理およびェ タノール沈殿により精製を行 、、線状ィ匕プラスミドを回収した。
[0210] 次に、文献(Biotechnology and Bioengineering 87, 614 (2004))に記載された FUT8 遺伝子ダブルノックアウト細胞を K- PBS緩衝液 (137mmol/L KC1、 2.7mmol/L NaCl、 8 .lmmol/L Na HPO、 1.5mmol/L KH PO、 4.0mmol/L MgCl )に懸濁して 8 X 107細胞
2 4 2 4 2
/mLとした。細胞懸濁液 L(1.6 X 106個)と上記の線状ィ匕プラスミド 9 gを混和し た後、細胞- DNA混和液の全量を Gene Pulser Cuvette (電極間距離 2mm) (BIO-RA D社製)へ移し、 Gene Pulser (BIO- RAD社製)を用いてパルス電圧 350V、電気容量 2 50 Fの条件で遺伝子導入を行った。遺伝子導入を行ったのち、細胞懸濁液を 10% ゥシ胎児血清(Life Technologies社製)および 50 μ g/mL gentamicin (ナカライテスタ 社製)を添カ卩した IMDM培地 (Life Technologies社製) 30mLに懸濁し、接着細胞培養 9 6ゥエルプレート (グライナ一社製) 3枚へ 100 μ L/ゥエルで播種した。培養は 5%CO、 3
2
7°Cの条件下で行った。 [0211] 4. 500nM MTX而性株の取得
前項で得られた ρΚΑΝ-ΕΡΟ導入細胞を 6日間培養した後、培養上清を除去し、 10 %ゥシ胎児透析血清、 50 g/mL gentamicinおよび 50nM methotrexate(MTX)(シグマ 社製)を添加した IMDM培地を 100 L/ゥエルずつ添加した。この培地交換作業を 3〜 4日毎に繰り返しながら 9日間の培養を行った。次いで、 10%ゥシ胎児透析血清、 50 μ g/mL gentamicinおよび 200nMの MTXを添カ卩した IMDM培地を用いた培地交換作 業を同様に 3〜4日毎に繰り返しながら 18日間培養し、最終的に形成されたコロニー を 24ゥエルプレート (シグマ社製)に植え替えた。さらに、 10%ゥシ胎児透析血清、 50 g/mL gentamicinおよび 500nMの MTXを添カ卩した IMDM培地を用いた培地交換作業 を 3〜4日毎に繰り返し、適宜拡大しながら 19日間培養を行い、 500nM MTX耐性株を 取得した。
[0212] 5. EPO高生産株の選別
前項で取得された複数の 500nM MTX耐性株より、各 1.0 X 106細胞を 5mLの 10% 透析ゥシ胎児血清、 50 μ g/mL gentamicinおよび 500nMの MTXを添カ卩した IMDM培 地に懸濁し、 T25フラスコへ播種して培養を行った。培養 3日後に培養上清を回収し、 上清中に含まれる EPO量を Human Erythropoietin ELISA Kit(StemCell Technologies 社製)を用いて測定し、 EPOを高生産する株 (以下、 EPO高生産と略記する)を選別し た。測定方法はキット添付マニュアルに従った。
[0213] 6.無血清培地への馴化
前項で作製された EPO高生産 FUT8遺伝子ダブルノックアウト細胞の無血清培地へ の馴化を行なった。前項で得られた EPO高生産株を 4mMの L-Glutamine (インビトロジ ェン社製)、 50 μ g/ml gentamicinおよび 500nMの MTXを添カ卩した EX- CELL302培地 (J RH社製) (以下無血清培地と称す) 15mlに 5 X 105cells/mlで懸濁して 125ml三角フラス コ (コ一-ング社製)へ播種し、浮遊旋回培養を行なった。培養は、 35°C、旋回速度は 90〜100rpmで行い、継代の際には培養容器の 4倍量以上の 5%COを培地上面に通
2
気し、三角フラスコ中の空気を置換した。 3日後に培地交換を行い、 6日目に 5 X 105c ells/mlで継代を行なった。以降、 3〜5 X 105cells/mlで 3〜4日毎に継代を 2週間行な つた。この培養により無血清培地中で増殖し、かつ凝集の起こらない細胞株 pKAN-E PO40AFMS705を得た。
[0214] 得られた株を 3.0 X 105cells/mLの濃度で 15mLの無血清培地に懸濁し、 125mLフラ スコへ
播種して培養を行った。培養 3日後に培養上清を回収し、上清中に含まれる EPO量 を Human Erythropoietin ELISA Kit(StemCell Technologies社製)を用いて測定したと ころ、 pKAN- EPO40 AFMS705培養上清中に 2334IU/mLの濃度で発現していることを 確認した。なお、 pKAN- EPO40AFMS705株は pKAN- EPO40 AFMS705の株名で、平 成 16年 8月 10日付けで独立行政法人産業技術総合研究所特許生物寄託センター( 茨城県つくば巿東 1丁目 1番地 1号中央第 6)に FERM BP-10085として寄託されている
[0215] 7. EPO組成物の調製
前項で榭立された pKAN- EPO40 AFMS705株を、 CHO細胞用の巿販無血清培地 E X-CELL302 (JRH Bioscience社製)に終濃度 6 mMの L—グルタミン(Invitrogen社製)と 0.1 mMの Neu5Ac2en (Sigma社製)とが添カ卩された培地に播種した。播種条件として は、 30,0000細胞 ZmLの生細胞密度で、組織培養用フラスコ(Greiner社製)あたり培 地量を 30mLとし、 37°Cにて培養を行った。フラスコに pKAN-EPO40AFMS705株を播 種し、炭酸ガスインキュベーター (TABAI社製)にて 5日間培養後、培養液を遠心管( ベタトンディッキンソン社製)に回収し、低速遠心機 (HITACHI社製)を用いて、回転 数 1000rpm、温度 4°Cの条件で 10分間遠心分離を行った。遠心分離後の培養上清液 を新しい遠心管に回収した。次に、取得した培養上清液の一部を用いて、低分子量 の夾雑物と高分子量の夾雑物を除去する目的で、 G2000カラム (アマシャム社製)を 用いたゲルろ過クロマトグラフィーを行い、 EPO組成物を精製した。精製された EPO 組成物は、 AmiconUltra (ミリポア社、 MWCO 10kD)を用いて、 50 mMリン酸ナトリウム (pH 6.3)、 0.06 mg/mL Polysorbate 80、 9mg/mLアルギ-ン塩酸塩、 150 mM塩化ナ トリウムを含むバッファーに置換後、 EPO濃度を 250mg/Lに調製し、最後に無菌ろ過 を行い冷蔵保存した。 EPO濃度を測定するには、 Human Erythropoietin ELISA Kit ( StemCell Technologies社製)を用いた。濃度測定の標準品としては、 EPO医薬品エス ポー (麒麟麦酒社製)を用いた。上記の G2000カラムクロマトグラフィーで調製された、 PKAN-EPO40AFMS705株により生産された EPO組成物を MEY-1と名付けた。また、 MEY-1を調製する方法と同様の手順で、 CHO/DG44細胞(Urlaub G, ChasinLA. Pr oc Natl Acad Sci USA 77:4216-4220.(1980))を宿主細胞に用いて発現させた EPO組 成物および Lecl細胞(Pro- 5WgaRI3C細胞; American Type Culture Collection登録 番号 CRL-1735)を宿主細胞として用いることにより発現させた EPO組成物も調製した 。なお、 Lecl細胞は、主にハイマンノース型糖鎖を有する糖蛋白質を発現させること ができる CHO細胞株である。 CHO/DG44細胞により生産された EPO組成物を KEY-1 と名付けた。 Lecl細胞により生産された EPO組成物は RE-1と名付けた。 MEY-1、 KE Y-l、 RE-1を各々 1 μ gずつ分取し、それらを SDS-ポリアクリルアミド電気泳動した後、 銀染色でバンドを検出した。 SDS-ポリアクリルアミド電気泳動のゲルには SPG520 (AT TO社製)を、ゲルの染色には、銀染色キット第一 (第一化学製)をそれぞれ使用した 。その結果、 MEY-1と KEY-1は、医薬品エスポーの分子量分布と同等の分子量分布 を示すこと、 RE-1の分子量は医薬品エスポーに比べて小さいことが示された。
8. EPO組成物の糖鎖分析
実施例 1の第 7項で調製された EPO組成物の中性糖'アミノ糖組成を分析した。各 々の EPO組成物を 4.0mol/lトリフルォロ酢酸存在下で 100°C、 2時間加水分解し、蛋 白質から中性糖 'ァミノ糖を遊離させた。遊離した糖は、 Michael Weitzhandler等の 文献 [AnalyticalBiochemistry 241, 128-134 (1996)]、および DIONEX Application Not e 92 (TheDetermination or Sugars in Molasses by High- Performance Anion Exchange withPulsed Amperometric Detection)に記載の方法を参考にして、 DX-500糖分析 装置 (Dionex社製)を用いて分析した。中性糖'アミノ糖組成分析結果の解析では、マ ンノースの組成比を 9として、各単糖成分 (フコース、ガラクトース、 N-ァセチルダルコ サミン、 N-ァセチルガラタトサミン)の組成比を算出した。 MEY- 1の中性'アミノ糖組成 はマンノース 9、ガラクトース 14.0、 N-ァセチルダルコサミン 18.6、 N-ァセチルガラクト サミン 0.2であり、 KEY-1の中性'アミノ糖組成はマンノース 9、ガラクトース 12.2、 N-ァ セチルダルコサミン 16.6、 N-ァセチルガラタトサミン 0.1であった。これらの結果より、 M EY-1と KEY-1の N-結合型糖鎖の主要な構造は、文献 (J.Biol. Chem. 263, 3657-366 3 (1988)、 J. Biol. Chem. 262, 12059-12076 (1987))に報告されている CHO細胞で生 産させた EPOが有する糖鎖構造と同等の、 4本分岐型の複合型糖鎖であると示唆さ れた。し力し、フコースの組成だけは、サンプル間で大きく異なった。マンノースの組 成比を 9としたときのフコースの糸且成は、 KEY-1が 2.3であったのに対して、 pKAN-EP O40AFMS705株により生産された EPO組成物 MEY-1においては、フコースが全く検 出されなかった。次に、各 EPO組成物のシアル酸含量を分析するために、シアル酸 蛍光標識用試薬キット(タカラバイオ社製)を用いて、各 EPO組成物のシアル酸を DM B (l,2-diamino-4,5-methylenedioxybenzene)で蛍光標識したのちに、逆相カラム PA LPAKType R (タカラバイオ社製)を装着した高速液体クロマトグラフィー法で分析した 。その結果、 EP01分子あたりのシアル酸数は、 MEY-1では 5.7残基、 KEY-1では 5.5 残基であった。従って、 MEY-1と KEY-1の糖鎖へのシアル酸修飾率は同等であるこ とが示された。以上より、 pKAN-EPO40AFMS705株により生産された EPO組成物であ る MEY-1が有する N-結合型糖鎖の構造力 CHO/DG44細胞により生産された KEY- 1が有する N-結合型糖鎖の構造と異なる点は、糖鎖還元末端側のフコースの付加の 有無のみであることが示された。なお、 Lecl株により生産された EPO組成物 RE-1の中 性'アミノ糖分析の結果、 RE-1の N-結合型糖鎖の主要な構造は、 5残基のマンノー スを有するハイマンノース型糖鎖であった。
9. EPO組成物の in vitro生物活性の解析
ヒト chronicmyelogenous leukemia糸田胞株である KU812株 (American Type Culture し ollection登録番号 CRL-2099)を用いて、実施例 1の第 7項で調製された EPO組成物 の細胞増殖促進活性を解析した。 KU812細胞株を、体積比で 10%の非働化済みゥ シ胎児血清(Invitrogen社製)を添カ卩した RPMI 1640培地(Invitrogen社製)に播種した 。播種条件は、生細胞密度 105細胞 ZmL、組織培養用フラスコ(旭テクノグラス社製) あたりの培地量は 10mLとし、培養温度は 37°Cとした。次に、それぞれのフラスコに、 終濃度 lOOng/mLの各種 EPO組成物を添加後、炭酸ガスインキュベーター(TABAI社 製)にて培養した。 MEY-1、 KEY-1、 RE-1,陰性対照であるノ ッファーをそれぞれフ ラスコへ添カ卩した。培養開始後、 2、 4、 6、 8日後にそれぞれのフラスコから 0.5mLの培 養液を分取して、トリパンブルー色素排除法を用いた自動細胞計数装置 Vi-CELL X R (ベックマンコールター社製)にて、培養液中の生細胞密度と生存率を測定した。全 てのフラスコで、細胞の生存率は培養 8日目まで 90%以上に維持されていた。各フラ スコの生細胞密度の変化を図 3に示した。 MEY-1、 KEY-1および RE-1のいずれも、 陰性対照と比較して、 KU812細胞の増殖を促進する活性を有することが示された。ま た、その増殖促進活性は、 RE-1が最も強ぐ MEY-1、 KEY-1、エスポーは同等の活 性を有することも示された。以上より、 N-結合型糖鎖の還元末端側にフコースを持た な 、複合型糖鎖を結合する EPO組成物である MEY-1が、フコースを持つ複合型糖 鎖を結合する EPO組成物と同等の細胞増殖促進活性を有することが示された。
10. EPO組成物の血中動態の解析
文献(Pharmacology 52, 329—338 (1996)、 Protein Engineering 18, 111 (2005))の方 法に準じて、実施例 1の第 7項で調製した EPO組成物の哺乳動物における血中動態 を解析した。各 EPO組成物は、 12週齢の雌の CD- 1マウス(日本チャールズリバ一より 購入) 1匹に対して 3 g (液量は 150 L)を、尻尾の静脈に投与した。投与後、 5、 30、 60、 120、 240、 480、 720、 1440、 2160分後に、へパリン処理されたへマトクリット管(旭 テクノグラス社製)を用いて、尻尾の静脈力も 40 Lの静脈血を採取した。へマトクリツ ト管を 1本ずつ遠心管 (ベタトンディッキンソン社製)に入れ、低速遠心分離機 (HITA CHI社製)を用いて 10分間、遠心分離を行った。遠心条件は、回転数 3000rpm、温度 4°Cで行った。遠心分離後に、へマトクリット管から血漿を回収し、 Human Erythropoie tin ELISA Kit (StemCell Technologies社製)を用いて各血漿中のヒト EPO濃度を測定 した。各動物個体において、 EPO組成物投与 5分後の血漿中 EPO濃度を 100%とした ときの、 5、 30、 60、 120、 240、 480、 720、 1440、 2160分後の血漿中の EPO組成物の相 対濃度の変化を図 4に示した。 MEY-1投与群および KEY-1投与群のいずれもマウス 3個体ずつを用い、平均値をグラフに表した。この結果、比較した 4種類の EPO組成 物には血中滞留性の差異が認められた。各 EPO組成物の血中滞留性を比較するた めに、各 EPO組成物の分布相( a相)半減期、消失相 ( β相)半減期、 KEY-1の相対 濃度一時間曲線下面積 (AUC)を 100%としたときの相対 AUCを図 5に示した。 ΜΕΥ- 1投与群と KEY-1投与群の比較より、フコースを持たない Ν-結合複合型糖鎖が結合 する ΕΡΟ組成物はフコースを持つ Ν結合複合型糖鎖が結合する ΕΡΟ組成物より良好 な血中滞留性を有することが示された。 [0219] 以上より、 N-グリコシド結合複合型糖鎖を有する遺伝子組換え EPO分子力もなる組 成物であって、 N-グリコシド結合複合型糖鎖が該糖鎖の還元末端の N-ァセチルダル コサミンにフコースが結合して ヽな 、糖鎖である EPO組成物は、通常の CHO/DG44 株で生産したフコースを有する EPO組成物と同等の in vitro生物活性を有し、かつ、 有意に延長された血中半減期と有意に改善された血中滞留性を有することが示され た。
実施例 2
[0220] FUT8遺伝子ダブルノックアウト細胞によるアミノ酸改変体 EPOの発現
ヒトエリスロポエチン変異体ダンべポェチン a (以下 NESPと称す)を産生する FUT8遺 伝子ダブルノックアウト細胞株を以下に示す方法で作製した。
1.プラスミド pBS- NESPの作製
実施例 1の第 1項で得られた pBS-EPOの EPO cDMA配列に部位特異的変異の導 入を行った。 QuickChange Multi Site-Directed Mutagenesis Kit(STRATAGENE社)を 用いた。 EPO cDNA配列の 2箇所に変異を導入するためのプライマーとして、プライ マー Aとプライマー Bを合成した (ファスマック社) (配列番号 22および配列番号 23)。キ ット添付バッファーを 2.5 μ 1、滅菌水を 14.5 μ 1、铸型の pBS- EPO (濃度 25ng/ μ 1)を 4 μ 1、プライマー Α (濃度 50ng/ μ 1)を 2 μ 1、プライマー Β (濃度 50ng/ μ 1)を 2 μ 1、キット添 付の QuickChange Multi enzyme blendを 1 μ 1、 dNTP mixを 1 μ 1添加し、 GeneAmp970 0サーマルサイクラ一(ABI社)を用いて 18サイクルの DNA増幅反応を行った。サイク ル条件は、 95°Cで 60秒間、 55°Cで 60秒間、 65°Cで 6分間にて行った。増幅反応後の 溶液 25 μ 1に対し、制限酵素 DpnKSTRATAGENE社)を 1 μ 1添加後、 37°Cにて 1時間ィ ンキュベーシヨンした。次に反応液から 1 μ 1を分取し、 50 μ 1の大腸菌 DH5 aコンビテ ントセル (東洋紡社)に混ぜ、 42°Cで 45秒間のヒートショックによる形質転換を行った。 50 μ g/mlアンピシリン(和光純薬)含有 LB寒天培地プレート上のコロニー力 得られ たプラスミド DNAの塩基配列を DNAシーケンサー(ABI社)で解読し、 EPO cDNAの目 的の位置に部位特異的変異が導入され、 NESP cDNA (配列番号 2)に変換されたクロ ーンを得た。得られたプラスミドクローンを pBS-NESPと名付けた(図 6)。この部位特 異的変異の導入により、成熟型ヒト EPOアミノ酸配列において、 N末端から 30番目の ァラニンをァスパラギンに、 32番目のヒスチジンをスレオニンに、 87番目のプロリンを ノ リンに、 88番目のトリプトファンをァスパラギンに、 90番目のプロリンをスレオニンに、 それぞれ変換した。
[0221] 2.発現ベクター pKAN- NESPの作製
本実施例の 1項で得られた pBS-NESPを 17 /z Lの水に溶解した後、該液に 10単位の EcoRI (タカラバイオ社製)及び 10単位の BamHI (タカラバイオ社製)、 2 μ Lの lO X Hbuff erをカ卩えて 20 Lの反応液を調製し、 37°Cで 16時間消化反応を行なった。続いてプ ラスミド pKANTEX93(特許 W097/10354に記載) 3 μ gを 17.5 μ Lの水に溶解し、該液に 10単位の EcoRI (タカラバイオ社製)、 2 μ Lの 10 X Hbufferをカ卩えて 20 μ Lの反応液を調 製し、 37°Cで 16時間消化反応を行なった。反応後、フエノール/クロ口ホルム抽出処 理及びエタノール沈殿を行い、回収したプラスミドを 17.5 Lの水に溶解した。さらに 該液に 10単位の BamHI、 2 μ Lの 10 X Kbufferを加えて 20 μ Lの反応液を調製後、 37 °Cで 16時間消化反応を行なった。
[0222] 上記で得られた NESP DNA断片 (EcoRI- BamHI)及び pKANTEX93断片 (EcoRI- Bam HI)を 1.5%(W/V)ァガロースゲル電気泳動に供し、それぞれ約 590bp、 9kbpの DNA断 片を QIAquick Gel Extraction Kit(QIAGEN社製)を用いて精製した。次いで NESP DN A断片 (EcoRI- BamHI)50ng、 pKANTEX93断片 (EcoRI- BamHI)30ng、 Ligation High (東 洋紡社製)を含む反応液 20 /z Lを調製し、 16°Cで 16時間連結反応を行なった。得られ たプラスミド DNAを用い、 heat shock法により大腸菌 DH5ひ株 (東洋紡社製)を形質転 換した。形質転 ·より QIAprep Spin Miniprep Kit(QIAGEN社製)を用いてプラスミド DNAを調製し、 pKAN- NESPを得た(図 7)。
[0223] 3. FUT8遺伝子ダブルノックアウト細胞株への NESP発現プラスミドの導入
文献(Biotechnology and Bioengineering 87,614 (2004))に記載された FUT8遺伝子 ダブルノックアウト細胞に、本実施例 2項で作製したプラスミド pKAN-NESPを導入した 。これらの遺伝子導入は公知のエレクト口ポレーシヨン法 [サイトテクノロジー(Cytotec hnology), 3, 133 (1990)]により以下の手順で行った。まず、プラスミド pKAN- NESP 30 μ gを NEBuffer4 (New England Biolabs社製) 20 μ Lと 200単位の制限酵素 MluI(New E ngland Biolabs社製)を含む 200 Lの反応液を調製し、 37°Cで 16時間消化反応を行 うことにより線状ィ匕した。反応後、該反応液に対しフ ノール/クロ口ホルム抽出処理 およびエタノール沈殿により精製を行い、線状ィ匕プラスミドを回収した。次に、 FUT8 遺伝子ダブルノックアウト細胞を K- PBS緩衝液 (137mmol/L KC1、 2.7mmol/L NaCl、 8 .lmmol/L Na HPO、 1.5mmol/L KH PO、 4.0mmol/L MgCl )に懸濁して 8 X 106細胞
2 4 2 4 2
/mLとした。細胞懸濁液 200 L (1.6 X 106個)と上記の線状ィ匕プラスミド 9 gを混和し た後、細胞- DNA混和液の全量を Gene Pulser Cuvette (電極間距離 2mm) (BIO-RA D社製)へ移し、 GenePulser (BIO- RAD社製)を用いてパルス電圧 350V、電気容量 25 0 Fの条件で遺伝子導入を行った。遺伝子導入を行ったのち、細胞懸濁液を 10%( v/v)透析ゥシ胎児血清 (Life Technologies社製)および 50 g/mL gentamicin (ナカラ ィテスタ社製)を添カ卩した IMDM培地 (Life Technologies社製) 10mLに懸濁し、組織培 養用フラスコ (グライナ一社製)へ播種した。培養は 5%CO、 37°Cの条件下で行った。
2
4. NESP発現株の取得
前項で得た pKAN-NESP導入細胞を核酸不含培地で 14日間培養して得られた細 胞株は、 pKAN- NESPMS705と名付けた。 pKAN- NESP MS705株は、 pKAN- NESP MS 705株の名称で、平成 17年 2月 17日付けで独立行政法人産業技術総合研究所特許 生物寄託センター (茨城県つくば巿東 1丁目 1番地 1号中央第 6)に FERM BP-10248と して寄託されている。 T75フラスコ内でコンフルェントに達したこの株について培地交 換を行い、 4日間の培養上清中に分泌された NESP濃度をヒト EPO特異的な ELISAキ ットにて測定した。使用したキットは Human Erythropoietin ELISA Kit(StemCell Techn ologies社製)で、検量線の作製には、市販の医薬品 Aranesp (AMGEN社)を段階希釈 したものを用いた。測定方法はキット添付マニュアルに従った。測定した結果、培養 上清中に 10.6 g/mlの濃度で NESPが発現していることが確認された。また、得られ た NESPは、通常の CHO/DG44株で生産した NESPと比較して、血中安定性が向上し ており、薬理活性においても有意な活性差が認められることを確認した。このようにし て作製した pKAN- NESPMS705株より得られたアミノ酸改変体 EPOは、通常の CHO/D G44株で生産したアミノ酸改変体 EPOに比較して、 EPO受容体に対する親和性を大 きく変化させること無ぐ血中半減期が延長された。
実施例 3 [0225] GDP-マンノースを GDP- 4-ケト, 6-デォキシ- GDP-マンノースに変換する脱水反応を 触媒する酵素の遺伝子が発現して ゝな 、細胞株の取得
1.レクチン耐性 CHO/DG44株の取得
CHO/DG44細胞(Proc. Natl. Acad. Sci. USA, 77, 4216 (1980))を、 IMDM— FBS(10 )- HT(1)培地 [ゥシ胎児血清 (FBS) (インビトロジ ン社製)を 10%、 HT supplement (ィ ンビトロジェン社製)を 1倍濃度で含む IMDM培地 (インビトロジェン社製) ]にて接着培 養用フラスコ 75cm 2 (グライナ一社製)中で培養し、コンフルェント直前まで増殖させた 。 5mLのダルベッコ PBS (以下、 PBSと表記する)(インビトロジェン社製)にて細胞を洗 浄後、 PBSで希釈した 0.05%トリプシン (インビトロジェン社製)を 1.5mL添カロして 37°C にて 5分間放置し、細胞を培養器底面から剥離させた。剥離させた細胞を通常の細 胞培養で行われる遠心分離操作により回収し、 1 X 105細胞/ mLの密度になるように I MDM-FBS(10)-HT(1)培地を添カ卩して懸濁後、未添カ卩又は 0.1 μ g/mLのアルキル化 剤である MNNG (シグマ社製)を添カ卩した。 COインキュベーター (TABAI製)内で 37°C
2
にて 3日間放置後、培養上清を除き、再び上述した操作と同様の操作で細胞を洗浄 、剥離、回収し、 IMDM-FBS(IO)- HT(1)培地に懸濁後、接着培養用 96穴プレート (旭 テクノグラス社製)に 1000細胞/ゥエルの密度で播種した。各ゥエルには培地中終濃度 で Img/mLのレンズマメレクチン (Lens culinaris agglutinin;以「""、 Lし Aと表 己、 Vector 社製)を添加した。 COインキュベータ内で 37°Cにて 2週間培養後、出現したコロニー
2
をレクチン耐性 CHO/DG44細胞株として取得した。
[0226] 2.取得したレクチン而ォ性 CHO/DG44細胞株の GDP-マンノース 4, 6-デヒドラターゼ mRNAの定量
前項で取得した各レクチン耐性 CHO/DG44細胞株における、 GDP-マンノースを G DP-4-ケト, 6-デォキシ- GDP-マンノースに変換する脱水反応を触媒する酵素である GDP-マンノース 4, 6-デヒドラターゼの発現量を、 RT-PCR法を用いて以下の様に解 祈した。
[0227] (1)レクチン耐性 CHO/DG44細胞株からの RNA調製と一本鎖 cDNAの調製
親株である CHO/DG44細胞、および本実施例の 1項で取得した各レクチン耐性 CH 0/DG44細 胞株それぞれ 1 X 107細胞より、 RNeasy Protect Mini kit (キアゲン社製)を用いて、添 付
の使用説明書に従って RNAを調製した。続いて、 SUPER SCRIPT First-Strand synth esis system for RT-PCR (インビトロジェン社製)を用い、添付の使用説明書に従って 各 RNA5 gより 20 Lの反応液中にて一本鎖 cDNAを合成した。
[0228] (2) RT- PCR法を用いた β -ァクチン遺伝子の発現量解析
本項の (1)で作製した各細胞株由来の一本鎖 cDNAの品質を確かめる目的で、 /3 - ァクチン cDNA力 PCR法によって増幅されるか否かを、以下の様に検討した。
本項の (1)で作製した各細胞株由来の一本鎖 cDNA 0.5 Lを铸型として含む 20 L の反応
液 [ 1 X EX Taq Buffer (宝酒造社製)、 0.2mMの dNTP's、 0.5単位の EX Taq polymeras e (
宝酒造社製)、 0.5 μ Μの配列番号 28と 29の合成オリゴ DNAプライマー]を調製し、 DN Aサーマルサイクラ一 480 (パーキンエルマ一社製)を用いて、 94°Cにて 5分間加熱し た後、 94°Cにて 1分間、 68°Cにて 2分間のサイクルを 14サイクル行なった。上記の該 P CR反応液 10 Lをァガロース電気泳動した後、サイバーグリーン (BMA社製)を用い て DNA断片を染色し、予想される約 800bpの DNA断片量を Fluorlmager SI (モレキユラ 一ダイナミクス社製)を用
いて測定した。その結果、調製したいずれの細胞株由来の一本鎖 cDNAを用いても、 同程度の β -ァクチンの発現を検出することができた。
[0229] (3) RT-PCR法を用いた GDP-マンノース 4,6-デヒドラターゼ遺伝子の発現量解析 次に、本項 (1)で取得したそれぞれのレクチン耐性 CHO/DG44細胞株の GDP-マン ノース 4,6-デヒドラターゼ遺伝子の発現量解析を行った。 00?-マンノース4,6-デヒド ラターゼ遺
伝子の cDNAを PCR法によって増幅するために、配列番号 7で示される CHO細胞由 来の GDP-マンノース 4,6-デヒドラターゼの cDNA配列より、配列番号 24で示される塩 基配列を有する 26merの合成オリゴ DNAプライマーと、配列番号 25で示される塩基配 列を有する 28merの合成オリゴ DNAプライマーを作製した。続いて、本項 (1)で作製し た各細胞株由来の一本鎖 cDNAO.5 μ Lを铸型として含む 20 μ Lの反応液 [1 X EX Ta q Buffer (宝酒造社製)、 0.2mMの dNTP mixture, 0.5単位の Ex Taq polymerase (宝酒 造社製)、 0.5 μ Μの配列番号 24と 25の合成 DNAプライマー]を調製し、 DNAサーマ ルサイクラ一 480 (パーキンエルマ一社製)を用いて、 94°Cにて 5分間加熱した後、 94 °Cにて 1分間、 68°Cにて 2分間のサイクルを 30サイクル行なった。上記の該 PCR反応 液 10 μ Lをァガロース電気泳動した後、サイバーグリーン(ΒΜΑ社製)を用いて DNA 断片を染色し、予想される約 430bpの DNA断片量を Fluorlmager SI
(モレキュラーダイナミクス社製)を用いて測定した。その結果、取得したレクチン耐性 CHO/DG44細胞株の中に、 GDP-マンノース 4,6-デヒドラターゼ遺伝子の発現が観 察されな
い細胞株が存在することを確認した。この GDP-マンノース 4,6-デヒドラターゼ遺伝子 の
発現が観察されない株を CHO SM株と名付けた。なお、取得した CHO SM株の各種 レクチンに対する耐性を調べたところ、 CHO SM株は、 LCAが認識する糖鎖構造と同 じ糖鎖構造を認識
するレクチン、すなわち、 N-グリコシド結合糖鎖還元末端の N-ァセチルダルコサミン 残基の 6位とフコースの 1位が a結合で付加された糖鎖構造を認識する他のレクチン に対しても耐性を示した。具体的には、終濃度 Img/mLのエンドゥマメレクチン (Pisum sativum Agglutinin ;以下、 PSAと表記、 Vector社製)が添カ卩された培地、あるいは終 濃度 Img/mLのヒイロチヤワンタケレクチン(Aleuria aurantia Lectin ;以下、 AALと表記 、 Vector社製)が添加された培地でも耐性を有していた。
3. GDP-マンノースを GDP- 4-ケト, 6-デォキシ- GDP-マンノースに変換する脱水反 応を触媒する酵素の遺伝子が発現して!/ヽな ヽ細胞株のゲノム解析
CHO/DG44細胞、および前項で取得した CHO SM株を IMDM- FBS(10)- HT(1)培地 を用いて接着細胞培養用 T75フラスコ(グライナ一社製)でコンフルェントに到達する 直前まで培養し
た後、文献 [ヌクレイック'アシッド'リサーチ (Nuccleic Acid Research), 3, 2303, (1976)] に記載の方法従ってゲノム DNAを調製し、取得したゲノム DNAを TE-RNase緩衝液 (p H8.0) [lOmmol/lTris— HC1、 lmmol/1 EDTA、 200 μ g/ml RNase A] 300 μ 1にー晚溶解 させた。上記で調製したゲノム DNA 12 /z gを、 3種の異なる制限酵素、 EcoRI (宝酒造 社製)、 Hindlll (宝酒造社製)、 Bglll (宝酒造社製)でそれぞれ消化し、エタノール沈 殿法を用いて DNA断片を回収した後、 TE緩衝液 (pH8.0) [10mmol/l Tris-HCl、 lmm ol/l EDTA ] 20 1に溶解し、 0.8%(w/v)ァガロースゲル電気泳動に供した。泳動後、 文献 [プロシーディングス ·ォブ ·ザ ·ナショナル ·ァカデミ一 ·ォブ ·サイエンス (Proc. N atl. Acad. Sci. USA), 76, 3683,(1979)]に記載の方法に従い、ナイロン膜へゲノム DN Aを転写した。転写終了後、ナイロン膜に対して 80°Cで 2時間の熱処理を行った。次 に、ナイロンメンブレンに転写されたゲノム DNAの品質を確認する目的で、細胞株を 問わずゲノム中に均等に存在すると考えられる a 1 ,6-フコシルトランスフェラーゼ (FU T8)遺伝子をプローブとしたサザンハイブリダィゼーシヨンを行った。 FUT8遺伝子を 検出するためのプローブは以下のように調製した。まず、 WO02/31140の実施例 11に 記載のマウス FUT8 cDNAを含むプラスミド m!FUT8- pCR2.1 10 μ gを 50 Lの M buffe r (宝酒造社製)に溶解し、制限酵素 Hindlll (宝酒造社製)で一晩消化した後、反応液 を H buffer (宝酒造社製)に置換し、制限酵素 EcoRI (宝酒造社製)でさらに一晩消化 反応を行った。反応終了後、該反応液を 2%ァガロース電気泳動に供し、 FUT8遺伝 子ェクソン 2を含む 156bpの EcoRI-Hindlll断片を精製した。得られた DNA断片 25ngに 対し、 [ a - 32P]dCTP 1.75MBqおよび Megaprime DNA labeling system, dCTP (アマシ ャムバイオサイエンス社製)を用いて放射標識した。次に、ハイブリダィゼーシヨンを 以下のように行った。まず、上記ナイロン膜をローラーボトルへ封入し、ハイブリダィゼ ーシヨン液 [4 X SSPE、 5 X Denhaldt,s液、 0.5%(w/v)SDS、 0.1mg/mLサケ精子 DNA] 1 5mLをカ卩えて 65°Cで 3時間のプレハイブリダィゼーシヨンを行った。次に32 P標識したプ ローブ DNAを熱変性してボトルへ投入し、 65°Cでー晚加温した。ハイブリダィゼーショ ン後、ナイロン膜を 2 X SSC- 0.1%(w/v) SDS 50mLに浸漬し、 65°Cで 15分間加温した。 上記の洗浄操作を 2回繰り返した後、膜を 0.2 X SSC-0.1 %(w/v) SDS 50mLに浸漬し 、 65°Cで 15分間加温した。洗浄後、ナイロン膜を X線フィルムへ- 80°Cでニ晚暴露し 現像した。現像後、ナイロン膜をストリツビング液 [1 %SDS、 0.1 X SSC]中で煮沸するこ とにより、プローブを剥離させ、再度異なるプローブでのハイブリダィゼーシヨンに供 することとした。上記の方法により、 CHO/DG44株および CHO SM株いずれのゲノム DNAにおいても、 FUT8遺伝子ェクソン 2に特異的な断片が検出された。以上の結果 よりナイロン膜上に転写された CHO SM株および CHO/DG44株由来のゲノム DNAは 等しい品質を有して 、ることが示された。
[0231] 一方、 GMD遺伝子ェクソン 5に特異的なプローブを以下のように調製した。まず、公 知であるヒト GMDゲノム DNA配列(NCBIァクセッション番号 NT_034880)を基に、エタ ソン 5
に特異的に結合するオリゴ DNAプライマー(配列番号 26および配列番号 27)を設計し た。
該領域は配列番号 7に記載の CHO GMD cDNA配列の塩基番号 346から塩基番号 5 38に相当する
。次に、 WO02/31140の実施例 15に記載のプラスミド pAGE249GMDを 10ng含む 100 μ Lの反応液
[ExTaq buffer (宝酒造社製)、 0.2mmol/L dNTPs、 2.5 μ mol/L上記遺伝子特異的プ ライマー (配列番号 26および配列番号 27) ]を調製し、ポリメラーゼ連鎖反応 (PCR)を 行った。 PCRは、 94°Cで 5分間の加熱の後、 94°Cで 1分間、 58°Cで 2分間、 72°Cで 3分 間からなる反応を 1サイクルとした 30サイクルの条件で行った。 PCR後、反応液を 2% ァガロース電気泳動に供し、約 200bpの DNA断片を精製した。得られた DNA断片 25η gに対し、 [ a -32P]dCTP 1.75MBqおよび Megaprime DNA labeling system, dCTP (ァ マシャムバイオサイエンス社製
)を用いて放射標識した。該プローブを上記で示したナイロン膜に対してノ、イブリダイ ゼーシヨンを行った。その結果、 CHO/DG44細胞由来のゲノム DNAでは GMD遺伝子 ェクソン 5の特異的断片が見出されたのに対し、 CHO SM株由来のゲノム DNAにおい ては GMD遺伝子ェクソン 5の特異的断片が全く検出されな力つた。以上の結果から C HO SM株は GMDをコードするゲノム領域のうち、少なくともェクソン 5を含む領域を欠 損した GMDノックアウト細胞であることが示された。
実施例 4
[0232] GMDノックアウト細胞によるエリスロポイエチンの発現 ヒトエリスロポエチンを産生する GMDノックアウト細胞株を以下に示す方法で作製し た l.CHO SM株への EPO発現プラスミドの導入
実施例 3にて作製した CHO SM株に、実施例 1で作製したプラスミド pKAN-EPOを 導入した。これらの遺伝子導入は公知のエレクト口ポレーシヨン法 [サイトテクノロジー (Cytotechnology), 3, 133 (1990)]により以下の手順で行った。まず、プラスミド pKAN- EPO 30 μ gを NEBuffer 4 (New England Biolabs社製) 20 μ Lと 200単位の制限酵素 Aat II(New England Biolabs社製)を含む 200 μ Lの反応液を調製し、 37°Cで 16時間消化反 応を行うことにより線状ィ匕した。反応後、該反応液に対しフ ノール/クロ口ホルム抽出 処理およびエタノール沈殿により精製を行い、線状ィ匕プラスミドを回収した。次に、実 施例 3で取得した CHO SM株を K- PBS緩衝液 (137mmol/L KC1、 2.7mmol/L NaCl、 8. lmmol/L Na HPO、 1.5mmol/L KH PO、 4.0mmol/L MgCl )に懸濁して 8 X 107細胞
2 4 2 4 2
/mLとした。細胞懸濁液 200 L (1.6 X 106個)と上記の線状ィ匕プラスミド 9 gを混和し た後、細胞- DNA混和液の全量を Gene Pulser Cuvette (電極間距離 2mm) (BIO-RA D社製)へ移し、 GenePulser (BIO- RAD社製)を用いてパルス電圧 350V、電気容量 25 0 Fの条件で遺伝子導入を行った。遺伝子導入を行ったのち、細胞懸濁液を 10% ゥシ胎児血清 (Life Technologies社製)および 50 g/mL gentamicin (ナカライテスタ社 製)を添カ卩した IMDM培地 (Life Technologies社製) 30mLに懸濁し、接着細胞培養 96 ゥエルプレート (グライナ一社製) 3枚へ 100 μ L/ゥエルで播種した。培養は 5%CO、 37
2
°Cの条件下で行った。
2. 500nM MTXffif性株の取得
前項で得た pKAN-EPO導入細胞を 6日間培養した後、培養上清を除去し、 10%ゥ シ胎児透
析血清、 50 μ g/mL gentamicinおよび 50nM methotrexate(MTX)(シグマ社製)を添カロ した IMDM培地を 100 μ L/ゥエルずつ添カ卩した。この培地交換作業を 3〜4日毎に繰り 返しながら 9日間の培養を行った。次いで、 10%ゥシ胎児透析血清、 50 g/mL genta micinおよび 200nMの MTXを添カ卩した IMDM培地を用いた培地交換作業を同様に 3 〜4日毎に繰り返しながら 18日間培養し、最終的に形成されたコロニーを 24ゥエルプ レート (シグマ社製)に植え替えた。さら〖こ、 10%ゥシ胎児透析血清、 50 g/mL genta micinおよび 500nMの MTXを添カ卩した IMDM培地を用いた培地交換作業を 3〜4日毎 に繰り返し、適宜拡大しながら 19日間培養を行い、 500nM MTX耐性株を取得した。
[0234] 3. EPO高生産株の選別
前項で取得した複数の 500nM MTX耐性株より、各 1.0 X 106細胞を 5mLの 10%透 析ゥシ胎
児血清、 g/mL gentamicinおよび 500nMの MTXを添カ卩した IMDM培地に懸濁し、 T25フラスコへ播種して培養を行った。培養 3日後に培養上清を回収し、上清中に含 まれる EPO量を Human Erythropoietin ELISA Kit(StemCell Technologies社製)を用い て測定した。方法はキット添付マニュアルに従った。その結果、得られた EPO産生株( PKAN-EP04 GMDKO株)の培養上清中に 4107IU/mLの濃度で発現して!/、ることを確 認した。なお、 pKAN- EP04GMDKO株は pKAN- EP04 GMDKOの株名で、平成 16年 8月 10日付けで独立行政法人産業技術総合研究所 特許生物寄託センター (茨城県 つくば巿東 1丁目 1番地 1号中央第 6)に FERM BP-10080として寄託されている。このよ うにして作製した PKAN-EP04 GMDKO株より得られた EPOは、通常の CHO/DG44株 で生産した EPOに比較して、 EPO受容体に対する親和性を大きく変化させること無く 、血中半減期の延長が認められた。
実施例 5
[0235] GMDノックアウト細胞によるアミノ酸改変体エリスロポイエチンの発現
ヒトエリスロポエチン変異体ダンべポェチン a (以下 NESPと称す)を産生する GMDノ ック
アウト細胞を以下に示す方法で作製した。
1. CHO/SM株への NESP発現プラスミドの導入
実施例 3で作製した CHO SM株に、実施例 2で作製したプラスミド pKAN- NESPを導 入した
。これらの遺伝子導入は公知のエレクト口ポレーシヨン法 [サイトテクノロジー(Cytotec hnology), 3, 133 (1990)]により以下の手順で行った。まず、プラスミド pKAN-NESP30 μ gを NEBuffer 4 (New England Biolabs社製) 20 μ Lと 200単位の制限酵素 MluI(New E ngland Biolabs社製)を含む 200 Lの反応液を調製し、 37°Cで 16時間消化反応を行う ことにより線状ィ匕した。反応後、該反応液に対しフエノール/クロ口ホルム抽出処理お よびエタノール沈殿により精製を行い、線状ィ匕プラスミドを回収した。次に、 CHO SM 株を K— PBS緩衝液 (137mmol/L KC1、 2.7mmol/L NaCl、 8.1mmol/L Na HPO、 1.5mm
2 4 ol/L KH PO、 4.0mmol/L MgCl )に懸濁して 8 X 107細胞/ mLとした。細胞懸濁液 200
2 4 2
μ L (1.6 X 106個)と上記の線状化プラスミド 9 /z gを混和した後、細胞- DNA混和液の 全量を Gene Pulser Cuvette (電極間距離 2mm) (BIO- RAD社製)へ移し、 GenePulser (BIO- RAD社製)を用いてパルス電圧 350V、電気容量 250 Fの条件で遺伝子導入 を行った。遺伝子導入を行ったのち、細胞懸濁液を 10%(v/v)透析ゥシ胎児血清 (Life Technologies社製)および 50 μ g/mL gentamicin (ナカライテスタ社製)を添カ卩した IMD M培地 (Life Technologies社製) 10mLに懸濁し、接着細胞培養 T75フラスコ (グライナ一 社製)へ播種した。培養は 5%CO、 37°Cの条件下で行った。
2
2. NESP発現株の取得
前項で得た pKAN-NESP導入細胞を核酸不含培地で 14日間培養して得られた細 胞株は、 pKAN-NESP CHO SM株と名付けた。 pKAN- NESP CHO SM株は、 pKAN- N ESP CHO SM株の名称で、平成 17年 2月 17日付けで独立行政法人産業技術総合研 究所特許生物寄託センター (茨城県つくば巿東 1丁目 1番地 1号中央第 6)に FERM BP -10247として寄託されて!、る。 T75フラスコ内でコンフルェントに達したこの株につ!ヽ て培地交換を行い、 4日間の培養上清中に分泌された NESP濃度をヒト EPO特異的な ELISAキットにて測定した。使用したキットは Human Erythropoietin ELISA Kit(StemC ell Technologies社製)で、検量線の作製には、市販の医薬品 Aranesp (AMGEN社)を 段階希釈したものを用いた。測定方法はキット添付マニュアルに従った。測定した結 果、培養上清中に 3.1 μ g/mlの濃度で NESPが発現していることが確認された。このよ うにして作製した pKAN- NESP CHO SM株より得られたアミノ酸改変体 EPOは、通常 の CHO/DG44株で生産したアミノ酸改変体 EPOに比較して、 EPO受容体に対する親 和性を大きく変化させること無ぐ血中半減期の延長が認められた。
実施例 6 [0237] 酵母による遺伝子組換えエリスロポイエチンの発現
酵母には多くの種類が知られているが、組換え蛋白質を発現させる宿主としてしば しば用いられる代表的な酵母として、ピキア(Pichia)属とサッカロマイセス (Saccaromy ces)属の酵母が挙げられる。通常、これらの酵母が発現する組換え蛋白質に付加さ れる N-結合型糖鎖の主要な構造は、還元末端側のコア部分に 2残基の N-ァセチル ダルコサミンを有し、非還元末端側の分岐部分に 9個から数十個のマンノース残基と 、数個から十数個のマンノース 6-リン酸残基を有する、ノ、ィマンノース型糖鎖であるこ とが知られている(Yeasty, 1191 (2002))。また、このような構造を有するハイマンノー ス型糖鎖は、しばしばノヽィパーマンノース型糖鎖とも呼ばれる。
[0238] 以下に記載する実施例ではまず、主に付加される N-結合型糖鎖の構造として、ハ ィマンノース型糖鎖と複合型糖鎖の中間の構造である、ハイブリッド型糖鎖が主に付 カロされたエリスロポイエチンを発現するピキア酵母株とサッカロマイセス酵母株の作 製方法について記載する。
1.ゲノム上に存在する PN01酵素遺伝子を破壊したピキア酵母株の作製 ピキア酵母株、たとえば Pichia pastoris GTS115株(インビトロジェン社製)などのゲノ ム DNAを铸型とし、 PCR法によって、ピキア酵母の PNOKphosphomannosylationof N- linked oligosaccharides 1)遺伝子(GenBankァクセッションナンバー: AB099514)の翻 訳領域全長の配列を増幅させる。増幅させた約 3200塩基長の PN01遺伝子配列は、 その 5,末端側半分の配列を、酵母由来の orotidine- 5'- phosphate decarboxylase (UR A3)遺伝子(GenBankァクセッションナンバー: AF321098)に置換した後、 pCR2.1- TO POベクター(インビトロジェン社製)などのベクターに挿入することにより、 PN01遺伝 子破壊用のプラスミドを作製する。次に、このプラスミド 100 gを制限酵素で線状ィ匕し た後、 PichiaExpression Kit (インビトロジェン社製)記載のエレクト口ポレーシヨン法に よって、たとえば GTS115株などのピキア酵母に安定的に遺伝子導入を行う。次に、 遺伝子導入した酵母を、ゥラシルを欠損させた YPD培地 (インビトロジェン社製)を用 いて室温にて培養し、増殖してきた各コロニーからゲノム DNAを抽出する。次に、この ゲノム DNAを铸型とした PCR法によって、酵母 PN01遺伝子座の配列を増幅させるこ とにより、相同組換えによって PN01遺伝子座が破壊された酵母クローンを選択する。 上記の方法により、ピキア酵母が発現する主要な N-結合型糖鎖の構造を、還元末端 側のコア部分に 2残基の N-ァセチルダルコサミンを有し、非還元末端側に 9個から数 十個のマンノース残基が結合した構造を有したハイマンノース型糖鎖に改変すること ができる。
[0239] 2.ゲノム上に存在する a _1,6_マンノース転移酵素遺伝子を破壊したピキア酵母株 の
作製
ピキア酵母株、たとえば Pichia pastoris X- 33株(インビトロジェン社製)などのゲノム DNAを铸型とし、 PCR法によって、ピキア酵母の α - 1,6-マンノース転移酵素(OCH1 )遺伝子(GenBankァクセッションナンバー: AF540063)を増幅させる。増幅させた約 2 800塩
基長の OCH1遺伝子配列は、その 5 '末端側半分の配列を、酵母由来の orotidine-5' -phosphate decarboxylase (URA3)遺伝子(GenBankァクセッションナンバー: AF3210 98)に置換した後、 pCR2.1-TOPOベクター(インビトロジェン社製)などのベクターに 挿入することにより、 OCH1遺伝子破壊用ベクターが作製される。次に、このベクター 100 gを制限酵素 Sfil (ニューイングランドバイオラブズ社製)で線状ィ匕した後、 Pichia Expression Kit (インビトロジェン社製)記載のエレクト口ポレーシヨン法によって、ピキ ァ酵母株、例えば前項に記載した PN01遺伝子破壊株や、 Pichia pastoris JC308株 などに対し、安定的な遺伝子導入を行う。次に、遺伝子導入した酵母を、ゥラシルを 欠損させた YPD培地 (インビトロジェン社製)を用いて室温にて培養し、増殖してきた 各コロニー力もゲノム DNAを抽出する。次に、このゲノム DNAを铸型とした PCR法によ つて、酵母 OCH1遺伝子座の配列を増幅させることにより、相同組換えによって OCH 1遺伝子座が破壊された酵母クローン株を選択する。上記の方法により、ピキア酵母 が発現する主要な N-結合型糖鎖の構造を、還元末端側のコア部分に 2残基の N-ァ セチルダルコサミンを有し、非還元末端側に 8個のマンノース残基が結合した構造を 有した Man8型ハイマンノース型糖鎖に改変することができる。
[0240] 3.組換えキメラ型 a -1,2-マンノシダーゼ遺伝子を導入したピキア酵母株の作製 線虫(Caenorhabditis elegans)から RNeasy Mini Kit (キアゲン社製)を用いて全 RNA を抽出し、次にこの RNAを铸型として Superscript first- strandcDNA synthesis kit ( インビトロジェン社製)を用いて first- strand cDNAを調製する。次に、この cDNAを铸 型
とし、特異的プライマーと KODポリメラーゼ (東洋紡績社製)を用いた PCRを行うことに より、線虫 α - 1,2-マンノシダーゼ(GenBankァクセッションナンバー: NM_073594)の 活性
ドメインをコードする cDNAを特異的に増幅させる。増幅させた cDNAは、その 5'末端 側に
、酵母の αマンノシダーゼ(MNS1)遺伝子(GenBankァクセッションナンバー: M63598 )
のリーダーペプチドをコードする cDNA配列を連結した後に、酵母用の発現ベクター p PICZ
(インビトロジェン社製)などのベクターに挿入し、酵母の小胞体内に α -1,2-マンノシ ダーゼを発現させるベクターを作製する。次にこのベクターを、前項に記載した PN01 遺伝子と OCH1遺伝子の両方の遺伝子を相同組換えで破壊したピキア酵母株に対 し、エレクト口ポレーシヨン法により安定的に導入する。遺伝子導入後の酵母は、ゥラ シルを欠損しゼォシン (インビトロジェン社製)を含有する YPD培地 (インビトロジェン 社製)で室温にて
培養し、増殖してきた各コロニー力ゝら全 RNAを抽出する。次に、この全 RNAから調製 した first-strand cDNAを铸型とした PCR法によって、組換えキメラ型 α - 1,2-マンノシ ダーゼの発現が認められた酵母クローン株を選択する。上記の方法により、ピキア酵 母が発現する主要な Ν-結合型糖鎖の構造を、還元末端側のコア部分に 2残基の Ν- ァセチルダルコサミンを有し、非還元末端側に 5個のマンノース残基が結合した構造 を有した Man5型ハイマンノース型糖鎖に改変できる。
4.組換え UDP-N-ァセチルダルコサミントランスポーター遺伝子を導入したピキア 酵母株の作製
酵母(Kluyveromyces lactis)から RNeasy Mini Kit (キアゲン社製)を用いて全 RNAを 抽出し、次にこの RNAを铸型として Superscript™first- strandcDNA synthesis kit (ィ ンビトロジェン社製)を用いて cDNAを調製する。次に、この cDNAを铸型とし、特異的 プライマーと KODポリメラーゼ (東洋紡績社製)を用いた PCRを行うことにより、酵母 U DP-N-ァセチルダルコサミントランスポーターの翻訳領域全長をコードする cDNA(Ge nBankァクセ
ッシヨンナンバー: AF106080)を特異的に増幅させる。次に、増幅させた約 3700塩基 長の cDNAを、酵母用の発現ベクター pPIC3.5K (インビトロジェン社製)などのベクタ 一のアルコールォキシゲナーゼプロモーター配列の下流に位置する制限酵素 EcoRI 切断部位と Not I切断部位の間に挿入し、酵母のゴルジ体内に UDP-N-ァセチルダ ルコサミントランスポー
ターを発現させるベクターを作製する。次にこのベクターを、前項に記載した、 α -1,2 マンノシダーゼ遺伝子を導入したピキア酵母株に対し、エレクト口ポレーシヨン法によ り安定的に導入する。遺伝子導入後の酵母は、薬剤 G418 (ナカライテスタ社製)を含 有する YPD培地で室温にて培養し、増殖してきた各コロニー力も全 RNAを抽出する。 次に、この全 RNA力も調製した cDNAを铸型とした PCR法によって、組換え UDP-N-ァ セチルダルコサミントランスポーターの発現が認められた酵母クローン株を選択する。
5.組換えキメラ型 N-ァセチルダルコサミン転移酵素- 1遺伝子を導入したピキア酵 母株の作製
ヒト肝臓 cDNA (クロンテック社製)を铸型とし、特異的プライマーと KODポリメラーゼ (東洋紡績社製)を用いた PCRを行うことにより、 N-ァセチルダルコサミン転移酵素- 1 ( GenBankァクセッションナンバー: M55621)の活性ドメインをコードする cDNAを特異 的に増幅させる。増幅させた cDNAは、その 5'末端側に、酵母のマンノース転移酵素 (MNN9)遺伝子(GenBankァクセッションナンバー: L23752)のリーダーペプチドをコ ードする cDNA配列を連結した後に、酵母用の発現ベクター pAUR123 (タカラノィォ 社製)などのベクターのアルコールデヒドロゲナーゼプロモーター配列の下流に位置 する制限酵素 Kpnl切断部位と Xba I切断部位の間に挿入し、酵母のゴルジ体内に N- ァセチルダルコサミン転移酵素- 1を発現させるベクターを作製する。次にこのべクタ 一を、前項に記載した、 UDP-N-ァセチルダルコサミントランスポーター遺伝子を導入 したピキア酵母株に対し、発現ベクター pAUR123に添付のマニュアルに掲載された 酢酸リチウム法により導入する。遺伝子導入後の酵母は、薬剤ォ一口ブラシジン A (タ カラノィォ社製)を含有する YPD培地で室温にて培養し、増殖してきた各コロニーか ら全 RNAを抽出する。次に、この全 RNAから調製した cDNAを铸型とした PCR法によつ て、組換え N-ァセチルダルコサミン転移酵素- 1の発現が認められた酵母クローン株 を選択する。上記の方法により、ピキア酵母が発現する主要な N-結合型糖鎖の構造 を、還元末端側のコア部分に 2残基の N-ァセチルダルコサミンを有し、非還元末端側 に 5個のマンノース残基が結合した Man5型ハイマンノース型糖鎖の非還元末端側に 、 N-ァセチルダルコサミン残基が 1個付加された構造を有する、ノヽイブリツド型糖鎖に 改変することができる。
[0243] 以上、 N-結合型糖鎖として、ハイマンノース型糖鎖と複合型糖鎖の中間の構造で ある、ハイブリッド型糖鎖を主要に発現するピキア酵母株の作製方法について記載し た。上述のピキア酵母以外に、組換え蛋白質を発現させる宿主としてしばしば用いら れる酵母として、サッカロマイセス(Saccharomyces)属の酵母が挙げられる。以下、 N- 結合型糖鎖としてノ、イブリツド型糖鎖を主要に発現するサッカロマイセス酵母株の作 製方法について述べる。
[0244] 6.ゲノム上に存在する α - 1,6-マンノース転移酵素遺伝子と α - 1,3-マンノース転 移酵素遺伝子を破壊したサッカロマイセス酵母株の作製
Nakayamaらの方法(EMBO Journal, 11, 2511 (1992))に従い、相同組換えによって OCH1遺伝子座が破壊された酵母クローンを選択する。得られた OCH1遺伝子が破 壊されたサッカロマイセス酵母株は、 Shermanらの方法 (メソッズ'イン'ェンザィモロジ 一 194, 21 (1991))に従い、半数体細胞を誘導した後、 α - 1,3-マンノース転移酵素( MNN1)遺伝子が破壊された変異酵母株 LB1-10B (カリフォルニア大学 Yeast Genetic Stock Center)の半数体細胞と混合し、窒素欠乏条件で培養することにより、二倍体 の接合子を形成させる。次に、得られた接合子を、ゥラシルとロイシンを欠損させた Y PD培地で室温にて培養し、増殖してきた各コロニー力もゲノム DNAを抽出する。次に 、このゲノム DNAを铸型とした PCR法によって、酵母 OCH1遺伝子座の配列(GenBan kァクセッションナンバー: AF540063)と、 MNN1遺伝子座の配列(GenBankァクセッシ ヨンナンバー: AF540063L23753)をそれぞれ増幅させることにより、 OCH1遺伝子座と MNN1遺伝子座の両方が破壊された酵母クローン株を選択する。上記の方法により、 サッカロマイセス酵母が発現する主要な N-結合型糖鎖の構造を、還元末端側のコア 部分に 2残基の N-ァセチルダルコサミンを有し、非還元末端側に 8個のマンノース残 基が結合した構造を有する、 Man8型ハイマンノース型糖鎖に改変できる。
7.組換えキメラ型 a -1,2-マンノシダーゼ遺伝子を導入したサッカロマイセス酵母 株
の作製
カビ(Aspergillus saitoi)から RNeasy Mini Kit (キアゲン社製)を用いて全 RNAを抽出 し、次にこの RNAを铸型として Superscript™first- strandcDNA synthesis kit (イン ビトロジェン社製)を用いて cDNAを調製する。次に、この cDNAを铸型とし、特異的プ ライマーと KODポリメラーゼ (東洋紡績社製)を用いた PCRを行うことにより、カビ a -1, 2-マ
ンノシダーゼの翻訳領域全長をコードする cDNA (GenBankァクセッションナンバー: D 49827)を特異的に増幅させる。増幅させた約 1500塩基長の cDNAは、その翻訳終止 コドンを削除した 3 '末端側に、酵母の小胞体局在シグナルペプチド (ェンボジャーナ ル 7, 913 (1988))、すなわちヒスチジンーァスパラギン酸一グルタミン酸一口イシンを コードする cDNA配列と翻訳終止コドンを連結した後に、酵母用の発現ベクター pPIC Z (インビトロジェン社製)などのベクターに挿入し、酵母の小胞体内に α -1,2-マンノ シダーゼを発現させるベクターを作製する。次にこのベクターを、前項に記載した、 a -1,6-マンノース転移酵素遺伝子と a -1,3-マンノース転移酵素遺伝子を破壊した サッカロマイセス酵母株に対し、エレクト口ポレーシヨン法により安定的に導入する。 遺伝子導入後の酵母は、ゥラシルを欠損しゼォシン (インビトロジェン社製)を含有す る YPD培地 (インビトロジェン社製)で室温にて培養し、増殖してきた各コロニー力ゝら全 RNAを抽出する。次に、この全 RNA力も調製した cDNAを铸型とした PCR法によって、 組換えキメラ型 (X -1,2-マンノシダーゼの発現が認められた酵母クローン株を選択す る。上記の方法により、サッカロマイセス酵母が発現する主要な N-結合型糖鎖の構 造を、還元末端側のコア部分に 2残基の N-ァセチルダルコサミンを有し、非還元末端 側に 5個のマンノース残基が結合した構造を有する、 Man5型ハイマンノース型糖鎖に 改変することができる。
[0246] 8.組換え UDP-N-ァセチルダルコサミントランスポーター遺伝子を導入したサッカロ マイセス酵母株の作製
酵母(Kluyveromyces lactis)から RNeasy Mini Kit (キアゲン社製)を用いて全 RNAを 抽出し、次にこの RNAを铸型として Superscript™first- strandcDNA synthesis kit (ィ ンビトロジェン社製)を用いて cDNAを調製する。次に、この cDNAを铸型とし、特異的 プライマーと KODポリメラーゼ (東洋紡績社製)を用いた PCRを行うことにより、酵母 U DP-N-ァセチルダルコサミントランスポーターの翻訳領域全長をコードする cDNA(Ge nBankァクセ
ッシヨンナンバー: AF106080)を特異的に増幅させる。次に、増幅させた約 3700塩基 長の cDNAを、酵母用の発現ベクター pPIC3.5K (インビトロジェン社製)などのベクタ 一のアルコールォキシゲナーゼプロモーター配列の下流に位置する制限酵素 EcoRI 切断部位と Not I切断部位の間に挿入し、酵母のゴルジ体内に UDP-N-ァセチルダ ルコサミントランスポー
ターを発現させるベクターを作製する。次にこのベクターを、前項に記載した、 α -1,2 マンノシダーゼ遺伝子を導入したサッカロマイセス酵母株に対し、エレクト口ポレーシ ヨン法により安定的に導入する。遺伝子導入後の酵母は、薬剤 G418け力ライテスタ 社製)を含有する YPD培地で室温にて培養し、増殖してきた各コロニー力ゝら全 RNAを 抽出する。次に、この全 RNAカゝら調製した cDNAを铸型とした PCR法によって、組換え UDP-N-ァセチルダルコサミントランスポーターの発現が認められた酵母クローン株を 選択する。
[0247] 9.組換えキメラ型 N-ァセチルダルコサミン転移酵素- 1遺伝子を導入したサッカロマ イセス酵母株の作製
ヒト肝臓 cDNA (クロンテック社製)を铸型とし、特異的プライマーと KODポリメラーゼ (東洋紡績社製)を用いた PCRを行うことにより、 N-ァセチルダルコサミン転移酵素- 1 ( GenBankァクセッションナンバー: M55621)の活性ドメインをコードする cDNAを特異 的に増幅させる。増幅させた cDNAは、その 5'末端側に、酵母のマンノース転移酵素 (MNN9)遺伝子(GenBankァクセッションナンバー: L23752)のリーダーペプチドをコ ードする cDNA配列を連結した後に、酵母用の発現ベクター pAUR123 (タカラノィォ 社製)などのベクターのアルコールデヒドロゲナーゼプロモーター配列の下流に位置 する制限酵素 Kpnl切断部位と Xba I切断部位の間に挿入し、酵母のゴルジ体内に N- ァセチルダルコサミン転移酵素- 1を発現させるベクターを作製する。次にこのべクタ 一を、前項に記載した、 UDP-N-ァセチルダルコサミントランスポーター遺伝子を導入 したサッカロマイセス酵母株に対し、発現ベクター pAUR123に添付のマニュアルに掲 載された酢酸リチウム法により導入する。遺伝子導入後の酵母は、薬剤ォ一口ブラシ ジン A (タカラバイオ社製)を含有する YPD培地で室温にて培養し、増殖してきた各コ 口-一から全 RNAを抽出する。次に、この全 RNA力も調製した cDNAを铸型とした PCR 法によって、組換え N-ァセチルダルコサミン転移酵素- 1の発現が認められた酵母クロ 一ン株を選択する。上記の方法により、サッカロマイセス酵母が発現する主要な N-結 合型糖鎖の構造を、還元末端側のコア部分に 2残基の N-ァセチルダルコサミンを有 し、非還元末端側に 5個のマンノース残基が結合した構造を有する Man5型ハイマンノ 一ス型糖鎖の非還元末端側に、 N-ァセチルダルコサミン残基が 1個付加された、ノヽ イブリツド型糖鎖に改変できる。
[0248] 以上の通り、 N-結合型糖鎖として Man5型ハイマンノース型糖鎖の非還元末端側に N-ァセチルダルコサミン残基が 1個付加された、ハイブリッド型糖鎖を主要に発現す るピキア酵母株、あるいはサッカロマイセス酵母株の作製方法について述べた。次に 、これらの酵母株を宿主として用い、 N-結合型糖鎖としてハイブリッド型糖鎖を主要 に有する組換えヒトエリスロポイエチンの調製方法について述べる。
[0249] 10.組換えヒトエリスロポイエチン発現ベクターの作製
Yamauchiらの方法 (Bioscience, Biotechnology and Biochemistry 5り, 600 (1992)) に従い、ヒト腎臓 cDNA (クロンテック社製)を铸型とし、増幅用酵素として KODポリメラ ーゼ (東洋紡績社製)を用いた PCR反応により、成熟型ヒトエリスロポイエチンの全長 を
コードする cDNAを特異的に増幅させる。次に、得られた cDNAを、酵母用の発現べク ター pPIC6 a (インビトロジェン社製)などのベクターのアルコールォキシゲナーゼプロ モーター配列の下流に位置する制限酵素 Clal切断部位と Xbal切断部位の間に挿入 し、成熟型ヒトエリスロポイエチンを分泌発現させるベクター pPIC6ひ /hEPOを作製す る。
11.組換えヒトエリスロポイエチン遺伝子を導入した酵母株の作製
上述の成熟型ヒトエリスロポイエチンを分泌発現させるベクター PPIC6 a /hEPO 100 g
を、制限酵素 Sail (ニューイングランドバイオラブズ社製)で HIS4遺伝子内を切断し、 フエノールクロ口ホルム抽出とエタノール沈殿によって、線状化ベクターを調製する。 次に Mochizukiらの方法(ProteinExpression and Purification 23, 55 (2001))に従い、 この線状ィ匕したエリスロポイエチン発現ベクターを、上述の本実施例第 5項に記載し た、 N-結合型糖鎖として主にハイブリッド型糖鎖を発現するピキア酵母株、もしくは本 実施例第 9項に記載した、 N-結合型糖鎖として主にハイブリッド型糖鎖を発現するサ ッカロマイセス酵母株に対し、酢酸リチウム法により導入する。遺伝子導入後の酵母 は、薬剤ブラストシジン (インビトロジェン社製)を含有する YPD培地 (インビトロジェン 社製)で室温にて培養し、ブラストシジン耐性コロニーを取得する。次に、ブラストシジ ン耐性コロニーを液体 YPD培地 (インビトロジェン社製)に移植し、 30°Cにて 24時間以 上の回分培養を行う。培養後に得られる培養上清は、エリスロポイエチン医薬品エス ポー (麒麟麦酒社製)などを標準品とし、ヒトエリスロポイエチンェライザキット (StemCe 11 Technologies社製)を用いて分析する。この分析により、培養上清中に含まれる組 換えヒトエリスロポイエチンを検出し、その濃度を測定することが可能である。この酵 母培養上清中に分泌された、 N-結合型糖鎖としてフコースを含まないハイブリッド型 糖鎖を有する遺伝子組換えエリスロポイエチンは、 Krystalらの方法 (Bloodgl, 71 (19 86))に順じて精製が可能である。また、精製されたエリスロポイエチン蛋白質は、 Skib eliらの方法 (Blood 98,3626 (2001))に順じて糖鎖構造の解析が可能である。以上の 通り、 N-結合型糖鎖として、 Man5型ハイマンノース型糖鎖の非還元末端側に N-ァセ チルダルコサミン残基が 1個付加されたノ、イブリツド型糖鎖を主要に発現するピキア 酵母株、あるいは同様に改変されたサッカロマイセス酵母株を宿主として用い、 N-結 合型糖鎖としてフコースを含まないハイブリッド型糖鎖を主要に有する遺伝子組換え ヒトエリスロポイエチンを調製できることを述べた。次に、この N-結合型糖鎖としてハイ ブリツド型糖鎖を主要に有する遺伝子組換えヒトエリスロポイエチンを発現する酵母 株を用いて、 N-結合型糖鎖としてフコースを含まない複合二本鎖型糖鎖を主要に有 する遺伝子組換えヒトエリスロポイエチンを発現する酵母株を作製する方法について 以下に記載する。
[0250] 12.組換えキメラ型 aマンノシダーゼ II遺伝子を導入した酵母株の作製
ヒト組織由来、たとえば肝臓由来の cDNA (クロンテック社製)を铸型とし、特異的プ ライマーと KODポリメラーゼ (東洋紡績社製)を用 V、た PCRを行うことにより、 ひマンノ シダーゼ II (GenBankァクセッションナンバー: U31520)の活性ドメインをコードする cD NAを特異的に増幅させる。増幅させた cDNAは、その 5 '末端側に、酵母のマンノース 転移酵素(MNN9)遺伝子(GenBankァクセッションナンバー: L23752)のリーダーぺプ チドをコードする cDNA配列を連結した後に、酵母用の発現ベクターのプロモーター 配列の下流に挿入し、酵母のゴルジ体内に αマンノシダーゼ IIを発現させるベクター を作製する。次にこのベクターを、本実施例第 11項に記載した、 Ν-結合型糖鎖とし てノ、イブリツド型糖鎖を主要に有する遺伝子組換えヒトエリスロポイエチンを発現する 酵母株に対し、安定的に導入する。遺伝子導入後の酵母は、栄養要求性と薬剤耐 性を指標にしてクローンを選抜した後、 RT- PCRによって、キメラ型ひマンノシダーゼ I Iの発現を確認する。
[0251] 13.組換えキメラ型 Ν-ァセチルダルコサミン転移酵素- II遺伝子を導入した酵母株 の
作製
ヒト組織由来、たとえば肝臓由来の cDNA (クロンテック社製)を铸型とし、特異的プ ライマーと KODポリメラーゼ (東洋紡績社製)を用 V、た PCRを行うことにより、 N-ァセチ ルダルコサミン転移酵素- Π (GenBankァクセッションナンバー: U15128)の活性ドメィ ンをコードする cDNAを特異的に増幅させる。増幅させた cDNAは、その 5 '末端側に、 酵母のマンノース転移酵素(MNN9)遺伝子(GenBankァクセッションナンバー: L2375 2)のリーダーペプチドをコードする cDNA配列を連結した後に、酵母用の発現べクタ 一のプロモーター配列の下流に挿入し、酵母のゴルジ体内に N-ァセチルダルコサミ ン転移酵素- IIを発現させるベクターを作製する。次にこのベクターを、前項に記載し た、 N-結合型糖鎖としてハイブリッド型糖鎖を主要に有する組換えヒトエリスロボイエ チンを発現する酵母株にキメラ型 (Xマンノシダーゼ IIを安定的に導入した酵母株に 対し、安定的に導入する。遺伝子導入後の酵母は、栄養要求性と薬剤耐性を指標に してクローンを選抜した後、 RT- PCRによって、キメラ型 N-ァセチルダルコサミン転移 酵素- IIの発現を確認する。上記の方法により、キメラ型 N-ァセチルダルコサミン転移 酵素- IIが安定的に組み込まれた酵母株が発現する遺伝子遺伝子組換えエリスロボ イエチンが有する主要な N-結合型糖鎖の構造を、還元末端側のコア部分に 2残基の N-ァセチルダルコサミンを有し、その非還元末端側に 3個のマンノース残基が二分岐 する構造で結合し、二つの非還元末端のそれぞれに N-ァセチルダルコサミン残基が 1個ずつ付加された、フコースを含まない複合二本鎖型糖鎖に改変できる。
[0252] 14.組換え UDP-ガラクトース- 4-ェピメラーゼ遺伝子を導入した酵母株の作製 ヒト組織由来、たとえば肝臓由来の cDNA (クロンテック社製)を铸型とし、特異的プ ライマーと KODポリメラーゼ (東洋紡績社製)を用いた PCRを行うことにより、 UDP-ガラ クトース- 4-ェピメラーゼ(UniGeneナンバー Hs.76057)の翻訳領域全長をコードする c DNAを
特異的に増幅させる。増幅させた cDNAは、酵母用の発現ベクターのプロモーター配 列の下流に挿入し、酵母のサイトゾル内に UDP-ガラクトース -4-ェピメラーゼを発現 させるベタ
ターを作製する。次にこのベクターを、前項に記載した、 N-結合型糖鎖として未熟な 複合二本鎖型糖鎖を主要に有する組換えヒトエリスロポイエチンを発現する酵母株に 対し、安定的に導入する。遺伝子導入後の酵母は、栄養要求性と薬剤耐性を指標に してクローンを選抜した後、 RT-PCRによって、 UDP-ガラクトース- 4-ェピメラーゼの発 現を確認する。
[0253] 15.組換えキメラ型 β 1,4ガラクトース転移酵素遺伝子を導入した酵母株の作製 ヒト組織由来、たとえば肝臓由来の cDNA (クロンテック社製)を铸型とし、特異的プ ライマーと KODポリメラーゼ (東洋紡績社製)を用いた PCRを行うことにより、 β 1,4ガラ ク
トース転移酵素(GenBankァクセッションナンバー: M22921)の活性ドメインをコードす る cDNAを特異的に増幅させる。増幅させた cDNAは、その 5'末端側に、酵母のマン ノース
転移酵素(MNN9)遺伝子(GenBankァクセッションナンバー: L23752)のリーダーぺプ チ
ドをコードする cDNA配列を連結した後に、酵母用の発現ベクターのプロモーター配 列の下流に挿入し、酵母のゴルジ体内に j8 1,4ガラクトース転移酵素を発現させるベ クタ一を作
製する。次にこのベクターを、上述の前項に記載した、 N-結合型糖鎖として未熟な複 合二本鎖型糖鎖を主要に有する組換えヒトエリスロポイエチンを発現する酵母株にキ メラ型 1,4ガラクトース転移酵素を安定的に導入した酵母株に対し、安定的に導入 する。遺伝子導入後の酵母は、栄養要求性と薬剤耐性を指標にしてクローンを選抜 した後、 RT-PCRによって、キメラ型 j8 1,4ガラクトース転移酵素の発現を確認する。以 上の方法により、キメラ型 j8 1,4ガラクトース転移酵素が安定的に組み込まれた酵母 株が発現する遺伝子組換えエリスロポイエチンが有する主要な N-結合型糖鎖の構 造を、還元末端側のコア部分に 2残基の N-ァセチルダルコサミンを有し、その非還元 末端側に 3個のマンノース残基が二分岐する構造で結合し、二つの非還元末端のそ れぞれに N-ァセチルダルコサミン残基とガラクトース残基が 1個ずつ付加された、複 合二本鎖型糖鎖に改変することができる。
16.組換えキメラ型 N-ァセチルダルコサミン転移酵素 IV、および組換えキメラ型 N- ァセチルダルコサミン転移酵素 V遺伝子を導入した酵母株の作製
ヒト組織由来、たとえば肝臓由来の cDNA (クロンテック社製)を铸型とし、特異的プ ライマーと KODポリメラーゼ (東洋紡績社製)を用 V、た PCRを行うことにより、 N-ァセチ ルダルコサミン転移酵素 IV(UniGene.HS363315)、および N-ァセチルダルコサミン転 移酵素 V
(UniGene.HS208267)の活性ドメインをコードする cDNAを特異的に増幅させる。増幅 させた cDNAは、その 5'末端側に、酵母のマンノース転移酵素 (MNN9)遺伝子 (GenB ankァクセッションナンバー: L23752)のリーダーペプチドをコードする cDNA配列を連 結した後に、酵母用の発現ベクターのプロモーター配列の下流に挿入し、酵母のゴ ルジ体内に N-ァセチルダルコサミン転移酵素 IVおよび N-ァセチルダルコサミン転移 酵素 Vを発現させるベクターを作製する。次にこれらのベクターを、上述の前項に記 載した、 N-結合型糖鎖として複合二本鎖型糖鎖を主要に有する組換えヒトエリスロボ イエチンを発現する酵母株に対し、安定的に導入する。遺伝子導入後の酵母は、栄 養要求性と薬剤耐性を指標にしてクローンを選抜した後、 RT-PCRによって、キメラ型 N-ァセチルダルコサミン転移酵素 IVおよびキメラ型 N-ァセチルダルコサミン転移酵 素 Vの発現を確認する。以上の方法により、酵母株が発現する遺伝子組換えエリス口 ポイエチンが有する主要な N-結合型糖鎖の構造を、 Tetraantennaryある!/、は Triante nnary型の複合型糖鎖に改変することができる。
[0255] 17.酵母を用いた遺伝子組換えエリスロポイエチン蛋白質の調製
前項で作製した、還元末端側にフコース残基を持たず非還元末端側にシアル酸が 付加された複合二本鎖型糖鎖を主に有する遺伝子組換えエリスロポイエチンを発現 する酵母株は、液体 YPD培地 (インビトロジェン社製)に播種し、 30°Cにて 24時間以 上の回分培養を行うことにより、培養上清中に遺伝子組換えエリスロポイエチンを分 泌させることが可能である。培養後に得られる培養上清は、エリスロポイエチン製剤ェ スポー (麒麟麦酒社製)などを標準品とし、ヒトエリスロポイエチンェライザキット (Stem Cell Technologies社製)を用いて分析する。この分析により、培養上清中に含まれる 組換えヒトエリスロポイエチンを検出し、その濃度を測定することが可能である。また、 この酵母培養上清中に分泌された、 N-結合型糖鎖としてフコースを含まない複合二 本鎖型糖鎖を有する遺伝子組換えエリスロポイエチンは、 Krystalらの方法 (Bloodgl, 71 (1986))に順じて精製が可能である。また、精製されたエリスロポイエチン蛋白質は 、 Skibeliらの方法(Blood 98,3626 (2001))に順じて糖鎖構造の解析することができる。
[0256] 18.酵母産生エリスロポイエチンの糖鎖非還元末端側がラタトースへのシアル酸の 付加
前項で取得された精製エリスロポイエチンに対し、 Rajuらの方法(Biochemistry 40, 8868 (2001))に順じて、 in vitroで糖鎖非還元末端側のガラクトースヘシアル酸の付 加することができる。濃度 10mg/mlで 100 mM sodium cacodylate buffer(pH 6.4)に溶 力した精製エリスロポイエチンに対し、 50ミリ単位の組換えラット肝臓由来 a 2,3シアル 酸転移酵素(CALBIOCHEM社製)、 5 μ molの CMPシアル酸(CALBIOCHEM社製)、 5 μ molの塩化マンガンを添カ卩し、 37°Cにて 24時間インキュベートする。この反応でシ アル化されたエリスロポイエチンは、 Krystalらの方法(Blood gl, 71(1986))に順じて 精製が可能である。また、精製されたエリスロポイエチン蛋白質は、 Skibeliらの方法( Blood 98, 3626(2001))に順じて糖鎖構造の解析することができる。
[0257] 以上の通り、 N-グリコシド結合糖鎖としてフコースを含まない Tetraantennaryもしくは Triantennary型複合型糖鎖を主要に有する遺伝子組換えエリスロポイエチンを発現 する酵母株を作製し、その酵母の培養によって、 N-グリコシド結合糖鎖としてフコース を含まな ヽ複合型糖鎖を主要に有する遺伝子組換えエリスロポイエチンを取得し、こ れを in vitroでシァルイ匕することによって、糖鎖の非還元末端側にシアル酸が付加さ れたエリスロポイエチンを調製することができる。 産業上の利用可能性
[0258] 本発明によれば、 N-グリコシド結合複合型糖鎖を有する遺伝子組換えエリス口ボイ ェチン分子カゝらなる組成物であって、 N-グリコシド結合複合型糖鎖が該糖鎖の還元 末端の N-ァセチルダルコサミンにフコースが結合して!/ヽな 、糖鎖であるエリスロポィ ェチン組成物を含有する医薬を提供することができる。
配列表フリーテキスト
[0259] 配列番号 3-人工配列の説明:合成 DNA
配列番号 5-人工配列の説明:アミノ酸配列
配列番号 6-人工配列の説明:アミノ酸配列
配列番号 20-人工配列の説明:合成 DNA
配列番号 21-人工配列の説明:合成 DNA
配列番号 22-人工配列の説明:合成 DNA
配列番号 23-人工配列の説明:合成 DNA
配列番号 24-人工配列の説明:合成 DNA
配列番号 25-人工配列の説明:合成 DNA 配列番号 26-人工配列の説明:合成 DNA 配列番号 27-人工配列の説明:合成 DNA 配列番号 28-人工配列の説明:合成 DNA 配列番号 29-人工配列の説明:合成 DNA

Claims

請求の範囲
[1] N-グリコシド結合複合型糖鎖を有する遺伝子組換えエリスロポイエチン分子カゝらなる 組成物であって、 N-グリコシド結合複合型糖鎖が該糖鎖の還元末端の N-ァセチルダ ルコサミンにフコースが結合して ヽな 、糖鎖であるエリスロポイエチン組成物。
[2] N-グリコシド結合複合型糖鎖力 該糖鎖還元末端の N-ァセチルダルコサミンの 6位 にフコースの 1位が α結合していない糖鎖である、請求項 1に記載のエリスロポイエ チン組成物。
[3] エリスロポイエチンが、以下の (a)、(b)、(c)、(d)、(e)、(D、(g)、(h)及び (i)力もな
る群力も選ばれる蛋白質である、請求項 1または 2に記載のエリスロポイエチン組成 物。(a) 配列番号 4で表されるァミノ配列力 なる蛋白質;
(b) 配列番号 5で表されるァミノ配列力 なる蛋白質;
(c) 配列番号 6で表されるァミノ配列力 なる蛋白質;
(d) 配列番号 4で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、置換、挿 入および Zまたは付加されたアミノ酸配列力もなり、かつ赤血球増多活性を有する蛋 白質; (e) 配列番号 5で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、置 換、挿
入および Zまたは付加されたアミノ酸配列力もなり、かつ赤血球増多活性を有する蛋 白質;
(D 配列番号 6で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、置換、挿 入および Zまたは付加されたアミノ酸配列力もなり、かつ赤血球増多活性を有する蛋 白質;
(g) 配列番号 4で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列か らなり、かつ赤血球増多活性有する蛋白質;
(h) 配列番号 5で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列か らなり、かつ赤血球増多活性を有する蛋白質;
(0 配列番号 6で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列か らなり、かつ赤血球増多活性を有する蛋白質。
[4] エリスロポイエチン力 以下の (a)、(b)、(c)、(d)、(e)及び (1)力 なる群力 選ばれる DN Aがコードする蛋白質である、請求項 1または 2に記載のエリスロポイエチン組成物。
(a) 配列番号 1で表される塩基配列からなる DNA;
(b) 配列番号 2で表される塩基配列力 なる DNA;
(c) 配列番号 3で表される塩基配列力 なる DNA;
(d) 配列番号 1で表される塩基配列力もなる DNAとストリンジェントな条件でハイプリ ダイズし、かつ赤血球増多活性を有する蛋白質をコードする DNA;
(e) 配列番号 2で表される塩基配列からなる DNAとストリンジェントな条件でノ、イブリ ダイズし、かつ赤血球増多活性を有する蛋白質をコードする DNA;
(D 配列番号 3で表される塩基配列からなる DNAとストリンジェントな条件でノ、イブリダ ィズし、かつ赤血球増多活性を有する蛋白質をコードする DNA。
[5] エリスロポイエチン分子をコードする DNAを宿主細胞に導入して得られる、請求項 1 〜4
のいずれか 1項に記載のエリスロポイエチン組成物を生産する形質転換体。
[6] 宿主細胞が、細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素、または N- グリコシド結合複合型糖鎖還元末端の N-ァセチルダルコサミンの 6位にフコースの 1 位が oc結合する糖鎖修飾に関与する酵素の活性が欠失するようにゲノムが改変され た細胞である、請求項 5に記載の形質転換体。
[7] 宿主細胞が、細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素、または N- グリコシド結合複合型糖鎖還元末端の N-ァセチルダルコサミンの 6位にフコースの 1 位が a結合する糖鎖修飾に関与する酵素のゲノム上の対立遺伝子のすべてがノック アウトされた細胞である、請求項 6に記載の形質転換体。
[8] 細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素力 GDP-マンノース 4,6
-デヒ
ドラターゼ及び GDP-4-ケト -6-デォキシ- D-マンノース- 3, 5-ェピメラーゼからなる群 から
選ばれる酵素である、請求項 6または 7に記載の形質転換体。
[9] GDP-マンノース 4,6-デヒドラターゼカ 以下の(a)、(b)及び (c)力 なる群から選ばれ る蛋白質である、請求項 8に記載の形質転換体。 (a)配列番号 8で表されるアミノ酸配列からなる蛋白質;
(b)配列番号 8で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、置換、挿 入
および Zまたは付加されたアミノ酸配列力もなり、かつ GDP-マンノース 4,6-デヒドラ タ
ーゼ活性を有する蛋白質;
(c)配列番号 8で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列から なり、かつ GDP-マンノース 4,6-デヒドラターゼ活性を有する蛋白質;
[10] GDP-マンノース 4,6-デヒドラターゼカ 以下の (a)及び (b)力 なる群力 選ばれる DN Aがコードする蛋白質である、請求項 8に記載の形質転換体。
(a)配列番号 7で表される塩基配列からなる DNA;
(b)配列番号 7で表される塩基配列力もなる DNAとストリンジェントな条件でハイブリダ ィズし、かつ GDP-マンノース 4,6-デヒドラターゼ活性を有する蛋白質をコードする DN A。
[11] GDP- 4-ケト- 6-デォキシ- D-マンノース- 3,5-ェピメラーゼカ 以下の(a)、 (b)および
(c)力もなる群力 選ばれる蛋白質である、請求項 8に記載の形質転換体。
(a)配列番号 10で表されるアミノ酸配列からなる蛋白質;
(b)配列番号 10で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、置換、挿 入および Zまたは付加されたアミノ酸配列力もなり、かつ GDP-4-ケト -6-デォキシ -D -マンノース- 3,5-ェピメラーゼ活性を有する蛋白質;
(c)配列番号 10で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列か らなり、かつ GDP-4-ケト -6-デォキシ- D-マンノース- 3,5-ェピメラーゼ活性を有する 蛋白質
[12] GDP-4-ケト -6-デォキシ- D-マンノース- 3,5-ェピメラーゼが、以下の(a)及び (b)から な
る群力 選ばれる DNAがコードする蛋白質である、請求項 8に記載の細胞。
(a)配列番号 9で表される塩基配列からなる DNA; (b)配列番号 9で表される塩基配列力もなる DNAとストリンジェントな条件でハイブリダ ィズし、かつ GDP-4-ケト -6-デォキシ- D-マンノース- 3, 5-ェピメラーゼ活性を有する 蛋白
質をコードする DNA。
[13] N-グリコシド結合複合型糖鎖還元末端の N-ァセチルダルコサミンの 6位にフコースの 1位が a結合する糖鎖修飾に関与する酵素が a 1,6-フコシルトランスフェラーゼであ る請求項 6または 7に記載の形質転換体。
[14] a 1,6—フコシルトランスフェラーゼカ 以下の(a)、 (b)、(c)、(d)、(e)および (1)力らなる 群から選ばれる蛋白質である、請求項 13に記載の形質転換体。
(a)配列番号 13で表されるアミノ酸配列からなる蛋白質;
(b)配列番号 14で表されるアミノ酸配列力もなる蛋白質;
(c)配列番号 13で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、置換、挿 入および Zまたは付加されたアミノ酸配列力もなり、かつ α 1,6-フコシルトランスフェラ ーゼ活性を有する蛋白質;
(d)配列番号 14で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、置換、挿 入および Zまたは付加されたアミノ酸配列力もなり、かつ α 1,6-フコシルトランスフェラ ーゼ活性を有する蛋白質;
(e)配列番号 13で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列か らなり、かつ a 1,6-フコシルトランスフェラーゼ活性を有する蛋白質;
(1)配列番号 14で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列か らなり、かつ a 1,6-フコシルトランスフェラーゼ活性を有する蛋白質。
[15] a 1,6-フコシルトランスフェラーゼカ 以下の(a)、(b)、(c)及び (d)力 なる群力 選 ばれる DNAがコードする蛋白質である、請求項 13に記載の形質転換体。
(a)配列番号 11で表される塩基配列力 なる DNA;
(b)配列番号 12で表される塩基配列力もなる DNA;
(c)配列番号 11で表される塩基配列力 なる DNAとストリンジェントな条件でノ、イブリ ダイズし、かつ α 1,6-フコシルトランスフェラーゼ活性を有する蛋白質をコードする DN A (d)配列番号 12で表される塩基配列力もなる DNAとストリンジェントな条件でハイプリ ダイズし、かつ α 1 ,6-フコシルトランスフェラーゼ活性を有する蛋白質をコードする DN A
[16] N-グリコシド結合複合型糖鎖還元末端の N-ァセチルダルコサミンの 6位とフコースの 1位が α結合した糖鎖構造を認識するレクチンに耐性である、請求項 5〜15のいず れか 1項
に記載の形質転換体。
[17] レクチン耐性力 Ν-グリコシド結合複合型糖鎖還元末端の Ν-ァセチルダルコサミン の 6位とフコースの 1位が a結合した糖鎖構造を認識するレクチンを含む培地で培養 した場合に、ゲノムが改変される以前の細胞よりも高い生存率を示すことである、請求 項 16に記載の形質転換体。
[18] 少なくとも、以下の (a)、(b)、(c)及び (d)力 なる群力 選ばれるレクチンの一つに耐性 である、請求項 16または 17に記載の形質転換体。
\a) レンズマメレクチン LCA (Lens Culinaris由 の Lentil Agglutinin);
(b) エンドゥマメレクチン PS A (Pisum sativum由来の Pea Lectin);
(c) ソラマメレクチン VFA (Vicia faba由来の Agglutinin):
(d) ヒィロチャワンタケレクチン AAL (Aleuria aurantia由来の Lectin)
[19] 宿主細胞が、下記の (a)、(b)、(c)、(d)、( 、(1)、(g)、(h)、(i)及び (j)力 なる群力 選ば れる細胞である請求項 5〜18のいずれ力 1項に記載の形質転換体。
(a)チャイニーズノヽムスター卵巣組織由来 CHO細胞;
(b)ラットミエローマ細胞株 YB2/3HL.P2.G11.16Ag.20細胞;
(c)マウスミエローマ細胞株 NS0細胞;
(d)マウスミエローマ細胞株 SP2/0- Agl4細胞;
(e)シリアンノヽムスター腎臓組織由来 BHK細胞;
(1)ヒト白血病細胞株ナマルバ細胞;
(g)胚性幹細胞; (h)受精卵細胞;
(0植物細胞;
(j)酵母。
[20] 請求項 5〜19のいずれか 1項に記載の形質転換体を培地に培養し、培養物中にエリ スロポイエチン組成物を生成蓄積させ、該培養物カゝらエリスロポイエチン組成物を採 取する工程を含む、エリスロポイエチン組成物の製造方法。
[21] 請求項 20記載の製造方法で得られるエリスロポイエチン組成物。
[22] 請求項 1〜4および 21記載のエリスロポイエチン組成物を有効成分として含有する医 薬。
[23] 請求項 1〜4および 21記載のエリスロポイエチン組成物を有効成分として含有する赤 血球増多剤。
PCT/JP2006/307377 2005-04-06 2006-04-06 遺伝子組換えエリスロポイエチン組成物 WO2006109698A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-109873 2005-04-06
JP2005109873 2005-04-06

Publications (1)

Publication Number Publication Date
WO2006109698A1 true WO2006109698A1 (ja) 2006-10-19

Family

ID=37086973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307377 WO2006109698A1 (ja) 2005-04-06 2006-04-06 遺伝子組換えエリスロポイエチン組成物

Country Status (1)

Country Link
WO (1) WO2006109698A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010023910A1 (ja) * 2008-08-30 2010-03-04 独立行政法人産業技術総合研究所 植物における糖鎖構造の改変方法及びその植物体
JP2010534194A (ja) * 2007-06-15 2010-11-04 チューリッヒ大学 神経系障害の新規な処置法
JP2013143969A (ja) * 2013-04-30 2013-07-25 National Institute Of Advanced Industrial Science & Technology 植物における糖鎖構造の改変方法及びその植物体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031140A1 (fr) * 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Cellules produisant des compositions d'anticorps
WO2003085107A1 (fr) * 2002-04-09 2003-10-16 Kyowa Hakko Kogyo Co., Ltd. Cellules à génome modifié
JP2005058111A (ja) * 2003-08-14 2005-03-10 Univ Osaka 糖鎖修飾制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031140A1 (fr) * 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Cellules produisant des compositions d'anticorps
WO2003085107A1 (fr) * 2002-04-09 2003-10-16 Kyowa Hakko Kogyo Co., Ltd. Cellules à génome modifié
JP2005058111A (ja) * 2003-08-14 2005-03-10 Univ Osaka 糖鎖修飾制御方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JACOBS K. ET AL.: "Isolation and characterization of genomic and cDNA clones of human erythropoietin", NATURE, vol. 313, no. 28, February 1985 (1985-02-01), pages 806 - 810, XP000999272 *
YAMANE-OHNUKI N. ET AL.: "Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity", BIOTECH. BIOENG., vol. 87, no. 5, 5 September 2004 (2004-09-05), pages 614 - 622, XP002984450 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534194A (ja) * 2007-06-15 2010-11-04 チューリッヒ大学 神経系障害の新規な処置法
WO2010023910A1 (ja) * 2008-08-30 2010-03-04 独立行政法人産業技術総合研究所 植物における糖鎖構造の改変方法及びその植物体
JP2013143969A (ja) * 2013-04-30 2013-07-25 National Institute Of Advanced Industrial Science & Technology 植物における糖鎖構造の改変方法及びその植物体

Similar Documents

Publication Publication Date Title
JP6523404B2 (ja) 抗体組成物を生産する細胞
JP4628679B2 (ja) Gdp−フコースの輸送に関与する蛋白質の活性が低下または欠失した細胞
CN1930288B (zh) 基因组被修饰的细胞
KR20070048185A (ko) 당단백질 조성물의 제조법
WO2003085119A1 (fr) Procede d'amelioration de l'activite d'une composition d'anticorps de liaison avec le recepteur fc$g(g) iiia
JP5662149B2 (ja) 遺伝子組換えプロテインs組成物
JP4263191B2 (ja) アンチトロンビンiii組成物の製造方法
EP1676910A1 (en) Genomically modified cell
JPWO2005035740A1 (ja) 無血清馴化したゲノム改変細胞
US7691810B2 (en) Method of producing recombinant antithrombin III composition
WO2006109698A1 (ja) 遺伝子組換えエリスロポイエチン組成物
WO2006109695A1 (ja) 遺伝子組換えハプトグロビン組成物
WO2006109696A1 (ja) 遺伝子組換え卵胞刺激ホルモン組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06731325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP