BR112018070729B1 - Instrumento cirúrgico com múltiplas respostas de programa durante um movimento de disparo - Google Patents
Instrumento cirúrgico com múltiplas respostas de programa durante um movimento de disparo Download PDFInfo
- Publication number
- BR112018070729B1 BR112018070729B1 BR112018070729-5A BR112018070729A BR112018070729B1 BR 112018070729 B1 BR112018070729 B1 BR 112018070729B1 BR 112018070729 A BR112018070729 A BR 112018070729A BR 112018070729 B1 BR112018070729 B1 BR 112018070729B1
- Authority
- BR
- Brazil
- Prior art keywords
- sensor
- surgical instrument
- tissue
- anvil
- end actuator
- Prior art date
Links
- 230000033001 locomotion Effects 0.000 title claims abstract description 285
- PWPJGUXAGUPAHP-UHFFFAOYSA-N lufenuron Chemical compound C1=C(Cl)C(OC(F)(F)C(C(F)(F)F)F)=CC(Cl)=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F PWPJGUXAGUPAHP-UHFFFAOYSA-N 0.000 title description 2
- 230000008859 change Effects 0.000 claims abstract description 111
- 230000000670 limiting effect Effects 0.000 claims description 13
- 238000011068 loading method Methods 0.000 claims description 2
- 238000010304 firing Methods 0.000 abstract description 261
- 210000001519 tissue Anatomy 0.000 description 475
- 238000005520 cutting process Methods 0.000 description 303
- 238000004422 calculation algorithm Methods 0.000 description 152
- 238000000034 method Methods 0.000 description 147
- 230000003287 optical effect Effects 0.000 description 97
- 230000008569 process Effects 0.000 description 85
- 239000004744 fabric Substances 0.000 description 68
- 238000005259 measurement Methods 0.000 description 66
- 238000012360 testing method Methods 0.000 description 66
- 230000015654 memory Effects 0.000 description 59
- 230000005355 Hall effect Effects 0.000 description 58
- 230000006835 compression Effects 0.000 description 56
- 238000007906 compression Methods 0.000 description 56
- 230000006870 function Effects 0.000 description 52
- 238000004891 communication Methods 0.000 description 49
- 238000010586 diagram Methods 0.000 description 48
- 230000007423 decrease Effects 0.000 description 45
- 230000004044 response Effects 0.000 description 42
- 238000001514 detection method Methods 0.000 description 32
- 230000007246 mechanism Effects 0.000 description 31
- 238000012545 processing Methods 0.000 description 25
- 230000036961 partial effect Effects 0.000 description 24
- 230000000712 assembly Effects 0.000 description 22
- 238000000429 assembly Methods 0.000 description 22
- 230000001133 acceleration Effects 0.000 description 20
- 238000012544 monitoring process Methods 0.000 description 19
- 230000001960 triggered effect Effects 0.000 description 19
- 230000007547 defect Effects 0.000 description 18
- 210000000078 claw Anatomy 0.000 description 17
- 230000007704 transition Effects 0.000 description 17
- 230000009471 action Effects 0.000 description 14
- 230000001965 increasing effect Effects 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 12
- 230000001939 inductive effect Effects 0.000 description 12
- 230000009467 reduction Effects 0.000 description 12
- 230000002829 reductive effect Effects 0.000 description 12
- 238000001356 surgical procedure Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 238000003491 array Methods 0.000 description 9
- 238000010168 coupling process Methods 0.000 description 9
- 230000005669 field effect Effects 0.000 description 9
- 230000002441 reversible effect Effects 0.000 description 9
- 238000013519 translation Methods 0.000 description 9
- 239000004020 conductor Substances 0.000 description 8
- 230000008878 coupling Effects 0.000 description 8
- 238000005859 coupling reaction Methods 0.000 description 8
- 230000003247 decreasing effect Effects 0.000 description 8
- 238000006073 displacement reaction Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 230000000087 stabilizing effect Effects 0.000 description 8
- 230000004913 activation Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- 230000013011 mating Effects 0.000 description 7
- 230000006641 stabilisation Effects 0.000 description 7
- 238000011105 stabilization Methods 0.000 description 7
- 230000003044 adaptive effect Effects 0.000 description 6
- 238000013459 approach Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 230000003252 repetitive effect Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 230000001954 sterilising effect Effects 0.000 description 5
- 238000004659 sterilization and disinfection Methods 0.000 description 5
- 230000001360 synchronised effect Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 238000004590 computer program Methods 0.000 description 4
- 238000013479 data entry Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000000977 initiatory effect Effects 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000012935 Averaging Methods 0.000 description 3
- 241000238366 Cephalopoda Species 0.000 description 3
- 230000006399 behavior Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 230000036244 malformation Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 238000011374 additional therapy Methods 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012806 monitoring device Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- CNILNQMBAHKMFS-UHFFFAOYSA-M Pyrithiobac-sodium Chemical compound [Na+].COC1=CC(OC)=NC(SC=2C(=C(Cl)C=CC=2)C([O-])=O)=N1 CNILNQMBAHKMFS-UHFFFAOYSA-M 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000007681 bariatric surgery Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 238000012830 laparoscopic surgical procedure Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012978 minimally invasive surgical procedure Methods 0.000 description 1
- 238000002355 open surgical procedure Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/068—Surgical staplers, e.g. containing multiple staples or clamps
- A61B17/072—Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/068—Surgical staplers, e.g. containing multiple staples or clamps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/068—Surgical staplers, e.g. containing multiple staples or clamps
- A61B17/072—Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
- A61B17/07207—Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously the staples being applied sequentially
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00004—(bio)absorbable, (bio)resorbable or resorptive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00137—Details of operation mode
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00367—Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
- A61B2017/00398—Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/0046—Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00477—Coupling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00681—Aspects not otherwise provided for
- A61B2017/00734—Aspects not otherwise provided for battery operated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/068—Surgical staplers, e.g. containing multiple staples or clamps
- A61B17/072—Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
- A61B2017/07214—Stapler heads
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/068—Surgical staplers, e.g. containing multiple staples or clamps
- A61B17/072—Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
- A61B2017/07214—Stapler heads
- A61B2017/07257—Stapler heads characterised by its anvil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/068—Surgical staplers, e.g. containing multiple staples or clamps
- A61B17/072—Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
- A61B2017/07214—Stapler heads
- A61B2017/07271—Stapler heads characterised by its cartridge
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/068—Surgical staplers, e.g. containing multiple staples or clamps
- A61B17/072—Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
- A61B2017/07214—Stapler heads
- A61B2017/07278—Stapler heads characterised by its sled or its staple holder
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/064—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
- A61B2090/065—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring contact or contact pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/08—Accessories or related features not otherwise provided for
- A61B2090/0807—Indication means
- A61B2090/0811—Indication means for the position of a particular part of an instrument with respect to the rest of the instrument, e.g. position of the anvil of a stapling instrument
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
A presente invenção se refere a um instrumento cirúrgico. O instrumento cirúrgico inclui uma canaleta alongada configurada para sustentar o cartucho de grampos, uma bigorna conectada de modo pivotante à canaleta alongada, uma faca acoplada mecanicamente ao cartucho de grampos, um motor elétrico e um circuito de controle eletricamente conectado ao motor elétrico. O circuito de controle é configurado para alterar o movimento de disparo do instrumento cirúrgico com base em uma combinação de eventos.
Description
[0001] A presente invenção se refere a instrumentos cirúrgicos e, em várias circunstâncias, a instrumentos cirúrgicos de grampeamento e corte, e a cartuchos de grampos para os mesmos, que são projetados para grampear e cortar tecidos.
[0002] Em um instrumento de corte e grampeamento cirúrgico motorizado seria útil ser possível a alteração dos parâmetros de disparo (velocidade de disparo, temporização de uma pausa no disparo, duração de uma pausa de disparo, pressão de aperto, etc.) para afetar a formação de grampos com base na determinação em tempo real (ou contínua) da densidade de defeitos. Embora vários dispositivos tenham sido produzidos e usados, acredita-se que ninguém antes dos inventores fez ou usou o dispositivo descrito nas concretizações em anexo.
[0003] Em alguns aspectos, é fornecido um instrumento cirúrgico. O instrumento cirúrgico compreende uma canaleta alongada, configurada para sustentar um cartucho de grampos; uma bigorna conectada de modo pivotante à canaleta alongada; um tubo de fechamento acoplado mecanicamente à bigorna; um motor elétrico; e um circuito de controle conectado eletricamente ao motor elétrico, em que o circuito de controle é configurado para alterar um movimento de fechamento do instrumento cirúrgico com base em uma combinação de eventos.
[0004] O sumário supracitado é somente ilustrativo e não se desti na a ser limitador de qualquer maneira. Em adição aos aspectos e ca-racterísticas ilustrativas descritas acima, aspectos e características adicionais se tornarão evidentes através de referência aos desenhos e à descrição detalhada a seguir.
[0005] As características dos aspectos aqui descritos, são apre sentadas com particularidade nas concretizações em anexo. Entretanto, os aspectos, tanto em relação à organização quanto aos métodos de operação, podem ser melhor compreendidos por referência à descrição a seguir, tomada em conjunto com os desenhos da seguinte forma.
[0006] A Figura 1 é uma vista em perspectiva de um instrumento cirúrgico que tem um conjunto de eixo de acionamento intercambiável operacionalmente acoplado ao mesmo, de acordo com um ou mais aspectos da presente invenção.
[0007] A Figura 2 é uma vista de conjunto explodida do conjunto de eixo de acionamento intercambiável e do instrumento cirúrgico da Figura 1, de acordo com um ou mais aspectos da presente invenção.
[0008] A Figura 3 é uma outra vista de conjunto explodida mos trando porções do conjunto de eixo de acionamento intercambiável e do instrumento cirúrgico das Figuras 1 e 2, de acordo com um ou mais aspectos da presente invenção.
[0009] A Figura 4 é uma vista de conjunto explodida de uma por ção do instrumento cirúrgico das Figuras 1 a 3, de acordo com um ou mais aspectos da presente invenção.
[0010] A Figura 5 é uma vista lateral em seção transversal de uma porção do instrumento cirúrgico da Figura 4 com o gatilho de disparo em uma posição totalmente atuada, de acordo com um ou mais aspectos da presente invenção.
[0011] A Figura 6 é uma outra vista em seção transversal de uma porção do instrumento cirúrgico da Figura 5 com o gatilho de disparo em uma posição não atuada, de acordo com um ou mais aspectos da presente invenção.
[0012] A Figura 7 é uma outra vista de conjunto explodida de por ções do conjunto de eixo de acionamento intercambiável da Figura 7, de acordo com um ou mais aspectos da presente invenção.
[0013] A Figura 8 é uma vista em seção transversal de uma por ção do conjunto de eixo de acionamento intercambiável das Figuras 7 a 9, de acordo com um ou mais aspectos da presente invenção.
[0014] A Figura 9 é uma outra vista em perspectiva da porção de um conjunto de eixo de acionamento intercambiável com o cilindro de comutação montado no mesmo, de acordo com um ou mais aspectos da presente invenção.
[0015] A Figura 10 é uma vista em perspectiva de uma porção do conjunto de eixo de acionamento intercambiável da Figura 11, opera-cionalmente acoplado a uma porção do instrumento cirúrgico da Figura 1, ilustrado com o gatilho de fechamento do mesmo em uma posição não atuada, de acordo com um ou mais aspectos da presente invenção.
[0016] A Figura 11 é uma vista em elevação lateral direita do con junto de eixo de acionamento intercambiável e do instrumento cirúrgico da Figura 10, de acordo com um ou mais aspectos da presente invenção.
[0017] A Figura 12 é uma vista em perspectiva de uma porção do conjunto de eixo de acionamento intercambiável da Figura 11, opera-cionalmente acoplado a uma porção do instrumento cirúrgico da Figura 1, ilustrado com o gatilho de fechamento do mesmo em uma posição atuada e um gatilho de disparo do mesmo em uma posição não atuada, de acordo com um ou mais aspectos da presente invenção.
[0018] A Figura 13 é uma vista elevada lateral direita do conjunto de eixo de acionamento intercambiável acoplado à uma porção do instrumento cirúrgico da Figura 1, ilustrado com o gatilho de fechamento do mesmo em uma posição atuada e o gatilho de disparo do mesmo em uma posição atuada, de acordo com um ou mais aspectos da presente invenção.
[0019] A Figura 14 é uma vista explodida de um aspecto de um atuador de extremidade do instrumento cirúrgico da Figura 1, de acordo com um ou mais aspectos da presente invenção.
[0020] A Figura 15 é um esquema de um sistema para alimentar um conector elétrico de um cabo de instrumento cirúrgico quando um conjunto de eixo de acionamento não está acoplado ao mesmo, de acordo com um ou mais aspectos da presente invenção.
[0021] A Figuras 16A e 16B são um diagrama de circuito do ins trumento cirúrgico da Figura 1 abrangendo duas folhas dos desenhos, de acordo com um ou mais aspectos da presente invenção.
[0022] A Figuras 17A e 17B são um diagrama de circuito do ins trumento cirúrgico da Figura 1, de acordo com um ou mais aspectos da presente invenção.
[0023] A Figura 18 é um diagrama de blocos do instrumento cirúr gico da Figura 1 ilustrando interfaces entre o conjunto de cabo e o conjunto de alimentação e entre o conjunto de cabo e o conjunto de eixo de acionamento intercambiável, de acordo com um ou mais aspectos da presente invenção.
[0024] A Figura 19 ilustra um diagrama lógico de um sistema para a avaliação do afiamento de um gume cortante de um instrumento cirúrgico, de acordo com um ou mais aspectos da presente invenção.
[0025] A Figura 20 ilustra um diagrama lógico de um sistema para determinar as forças aplicadas contra um gume cortante de um instrumento cirúrgico por um elemento de teste de afiamento em vários níveis de afiamento, de acordo com um ou mais aspectos da presente invenção.
[0026] A Figura 21 ilustra um aspecto de um processo para adap- tar as operações de um instrumento cirúrgico, de acordo com um ou mais aspectos da presente invenção.
[0027] A Figura 22A representa um exemplo de atuador de extre midade de um dispositivo médico circundando o tecido, de acordo com um ou mais aspectos da presente invenção.
[0028] A Figura 22B representa um exemplo de atuador de extre midade de um dispositivo médico comprimindo o tecido, de acordo com um ou mais aspectos da presente invenção.
[0029] A Figura 23A representa forças exemplificadoras exercidas por um atuador de extremidade de um dispositivo médico compressor de tecido, de acordo com um ou mais aspectos da presente invenção.
[0030] A Figura 23B representa, também, forças exemplificadoras exercidas por um atuador de extremidade de um dispositivo médico compressor de tecido, de acordo com um ou mais aspectos da presente invenção.
[0031] A Figura 24 representa um exemplo de sistema sensor de compressão de tecido, de acordo com um ou mais aspectos da presente invenção.
[0032] A Figura 25 representa, também, um exemplo de sistema sensor de compressão de tecido, de acordo com um ou mais aspectos da presente invenção.
[0033] A Figura 26 representa, também, um exemplo de sistema sensor de compressão de tecido, de acordo com um ou mais aspectos da presente invenção.
[0034] A Figura 27 representa um exemplo de estrutura de canale- ta do atuador de extremidade, de acordo com um ou mais aspectos da presente invenção.
[0035] A Figura 28 representa um exemplo de atuador de extremi dade, de acordo com um ou mais aspectos da presente invenção.
[0036] A Figura 29 representa, também, um exemplo de estrutura da canaleta do atuador de extremidade, de acordo com um ou mais aspectos da presente invenção.
[0037] A Figura 30 representa, também, um exemplo de estrutura da canaleta do atuador de extremidade, de acordo com um ou mais aspectos da presente invenção.
[0038] A Figura 31 representa, também, um exemplo de estrutura da canaleta do atuador de extremidade, de acordo com um ou mais aspectos da presente invenção.
[0039] A Figura 32 representa um exemplo de eletrodo, de acordo com um ou mais aspectos da presente invenção.
[0040] A Figura 33 representa um exemplo de sistema de fiação de eletrodo, de acordo com um ou mais aspectos da presente invenção.
[0041] A Figura 34 representa, também, um exemplo de estrutura da canaleta do atuador de extremidade, de acordo com um ou mais aspectos da presente invenção.
[0042] A Figura 35 é um exemplo de diagrama de circuito, de acordo com um ou mais aspectos da presente invenção.
[0043] A Figura 36 é, também, um exemplo de diagrama de circui to, de acordo com um ou mais aspectos da presente invenção.
[0044] A Figura 37 é, também, um exemplo de diagrama de circui to, de acordo com um ou mais aspectos da presente invenção.
[0045] A Figura 38 é uma vista em perspectiva de um instrumento cirúrgico com uma haste articulável e intercambiável, de acordo com um ou mais aspectos da presente invenção.
[0046] A Figura 39 é uma vista lateral da ponta do instrumento ci rúrgico mostrado na Figura 38, de acordo com um ou mais aspectos da presente invenção.
[0047] A Figura 40 ilustra uma vista em seção transversal de um atuador de extremidade de um instrumento cirúrgico, de acordo com um ou mais aspectos da presente invenção.
[0048] A Figura 41 ilustra um diagrama lógico de um sistema de retroinformação, de acordo com um ou mais aspectos da presente invenção.
[0049] A Figura 42 ilustra um diagrama lógico de um sistema de retroinformação, de acordo com um ou mais aspectos da presente invenção.
[0050] A Figura 43 é um diagrama de um componente sensor inte ligente, de acordo com um aspecto da presente invenção.
[0051] A Figura 44 ilustra um aspecto de um circuito configurado para converter sinais provenientes de um primeiro sensor e de uma pluralidade de sensores secundários em sinais digitais que podem ser recebidos por um processador, de acordo com um ou mais aspectos da presente invenção.
[0052] A Figura 45 ilustra um aspecto de uma vista explodida de um cartucho de grampos que compreende um cabo flexível conectado a um sensor de campo magnético e ao processador, de acordo com um ou mais aspectos da presente invenção.
[0053] A Figura 46 ilustra o atuador de extremidade mostrado na Figura 46 com um cabo flexível e sem o conjunto de eixo de acionamento, de acordo com um ou mais aspectos da presente invenção.
[0054] As Figuras 47 e 48 ilustram uma porção da canaleta alon gada de um atuador de extremidade sem a bigorna ou o cartucho de grampos, para ilustrar como o cabo flexível mostrado na Figura 46 pode ser assentado no interior da canaleta alongada, de acordo com um ou mais aspectos da presente invenção.
[0055] A Figura 49 ilustra um cabo flexível, mostrado nas Figuras 46 a 48, sozinho, de acordo com um ou mais aspectos da presente invenção.
[0056] A Figura 50 ilustra uma vista de perto da canaleta alongada mostrada nas Figuras 114 e 115, com um cartucho de grampos acoplado à mesma, de acordo com um ou mais aspectos da presente invenção.
[0057] As Figuras 51 e 52 ilustram um aspecto de um plugue sen sor distal, onde a Figura 51 ilustra uma vista em recorte do plugue sensor distal e a Figura 52 ilustra adicionalmente o sensor de campo magnético e o processador operacionalmente acoplados à placa flexível, de modo que sejam capazes de se comunicar, de acordo com um ou mais aspectos da presente invenção.
[0058] A Figura 53 ilustra um aspecto de um atuador de extremi dade com um cabo flexível operável para fornecer energia a sensores e circuitos eletrônicos na ponta distal da porção de bigorna, de acordo com um ou mais aspectos da presente invenção.
[0059] A Figura 54 é uma vista em perspectiva de um atuador de extremidade de um instrumento de grampeamento cirúrgico que inclui uma canaleta de cartucho, um cartucho de grampos posicionado na canaleta de cartucho e uma bigorna, de acordo com um ou mais aspectos da presente invenção.
[0060] A Figura 55 é uma vista em elevação em seção transversal do instrumento de grampeamento cirúrgico da Figura 134 que ilustra um deslizador e um membro de disparo em uma posição não disparada, de acordo com um ou mais aspectos da presente invenção.
[0061] A Figura 56 é uma vista em detalhe que representa o desli- zador da Figura 55 em uma posição parcialmente avançada e o membro de disparo na posição não disparada, de acordo com um ou mais aspectos da presente invenção.
[0062] A Figura 57 ilustra um aspecto de um atuador de extremi dade que compreende um primeiro sensor e um segundo sensor, de acordo com um ou mais aspectos da presente invenção.
[0063] A Figura 58 é um diagrama lógico ilustrando um aspecto de um processo para determinar a espessura de uma seção de tecido pinçada entre uma bigorna e um cartucho de grampos de um atuador de extremidade, de acordo com um ou mais aspectos da presente invenção.
[0064] A Figura 59 é um diagrama lógico ilustrando um aspecto de um processo para determinar a espessura de uma seção de tecido pinçada entre a bigorna e o cartucho de grampos do atuador de extremidade, de acordo com um ou mais aspectos da presente invenção.
[0065] A Figura 60 ilustra um aspecto de um atuador de extremi dade que compreende um primeiro sensor e um segundo sensor, de acordo com um ou mais aspectos da presente invenção.
[0066] A Figura 61 ilustra um aspecto de um atuador de extremi dade que compreende um primeiro sensor e uma pluralidade de segundos sensores, de acordo com um ou mais aspectos da presente invenção.
[0067] A Figura 62 ilustra um aspecto de um atuador de extremi dade que compreende uma pluralidade de sensores, de acordo com um ou mais aspectos da presente invenção.
[0068] A Figura 63 é um diagrama lógico ilustrando um aspecto de um processo para determinar uma ou mais propriedades de tecido com base em uma pluralidade de sensores, de acordo com um ou mais aspectos da presente invenção.
[0069] A Figura 64 ilustra um aspecto de um atuador de extremi dade que compreende uma pluralidade de sensores acoplados ao membro de garra, de acordo com um ou mais aspectos da presente invenção.
[0070] A Figura 65 ilustra um aspecto de um cartucho de gram pos que compreende uma pluralidade de sensores formados integralmente no mesmo, de acordo com um ou mais aspectos da presente invenção.
[0071] A Figura 66 é um diagrama lógico ilustrando um aspecto de um processo para determinar um ou mais parâmetros de uma seção de tecido pinçada no interior de um atuador de extremidade, de acordo com um ou mais aspectos da presente invenção.
[0072] A Figura 67 ilustra um aspecto de um atuador de extremi dade que compreende um sensor compreendendo uma taxa de amostragem específica para limitar ou eliminar sinais falsos, de acordo com um ou mais aspectos da presente invenção.
[0073] A Figura 68 é um diagrama lógico ilustrando um aspecto de um processo para gerar uma medição de espessura para uma seção de tecido situada entre uma bigorna e um cartucho de grampos de um atuador de extremidade, de acordo com um ou mais aspectos da presente invenção.
[0074] As Figuras 69A e 69B ilustram um aspecto de um atuador de extremidade que compreende um sensor de pressão, de acordo com um ou mais aspectos da presente invenção.
[0075] A Figura 70 ilustra um aspecto de um atuador de extremi dade que compreende um segundo sensor situado entre um cartucho de grampos e um elemento de garra, de acordo com um ou mais aspectos da presente invenção.
[0076] A Figura 71 é um diagrama lógico ilustrando um aspecto de um processo para determinar a espessura de uma seção de tecido pinçada em um atuador de extremidade, de acordo com as Figuras 69A e 69B ou a Figura 70 de acordo, com um ou mais aspectos da presente invenção.
[0077] A Figura 72 ilustra um aspecto de um atuador de extremi dade que compreende uma pluralidade de segundos sensores situados entre um cartucho de grampos e uma canaleta alongada, de acordo com um ou mais aspectos da presente invenção.
[0078] As Figuras 73A e 73B ilustram adicionalmente o efeito de uma mordedura total versus parcial de tecido, de acordo com um ou mais aspectos da presente invenção.
[0079] A Figura 74 ilustra um aspecto de um atuador de extremi dade que é configurado para determinar a localização de um elemento de corte ou faca, de acordo com um ou mais aspectos da presente invenção.
[0080] A Figura 75 ilustra um exemplo da tira de código em opera ção com LEDs vermelhos e um LED infravermelho, de acordo com um ou mais aspectos da presente invenção.
[0081] A Figura 76 ilustra uma vista em perspectiva parcial de um atuador de extremidade de um instrumento cirúrgico que compreende um cartucho de grampos de acordo com um ou mais aspectos da presente invenção.
[0082] A Figura 77 ilustra uma vista em elevação de uma porção do atuador de extremidade da Figura 76, de acordo com um ou mais aspectos da presente invenção.
[0083] A Figura 78 ilustra um diagrama lógico de um módulo do instrumento cirúrgico da Figura 76, de acordo com um ou mais aspectos da presente invenção.
[0084] A Figura 79 ilustra uma vista parcial de um gume cortante, um sensor ótico e uma fonte de luz do instrumento cirúrgico da Figura 76, de acordo com um ou mais aspectos da presente invenção.
[0085] A Figura 80 ilustra uma vista parcial de um gume cortante, um sensor óptico e uma fonte de luz do instrumento cirúrgico da Figura 76, de acordo com um ou mais aspectos da presente invenção.
[0086] A Figura 81 ilustra uma vista parcial de um gume cortante, um sensor óptico e uma fonte de luz do instrumento cirúrgico da Figura 76, de acordo com um ou mais aspectos da presente invenção.
[0087] A Figura 82 ilustra uma vista parcial de um gume cortante, de sensores óticos e de fontes de luz do instrumento cirúrgico da Figu- ra 76, de acordo com um ou mais aspectos da presente invenção.
[0088] A Figura 83 ilustra uma vista parcial de um gume cortante, um sensor ótico e uma fonte de luz do instrumento cirúrgico da Figura 76, de acordo com um ou mais aspectos da presente invenção.
[0089] A Figura 84 ilustra uma vista em perspectiva de um cartu cho de grampos incluindo um elemento de teste de afiamento, de acordo com um ou mais aspectos da presente invenção.
[0090] A Figura 85 ilustra um diagrama lógico de um módulo de um instrumento cirúrgico, de acordo com um ou mais aspectos da presente invenção.
[0091] A Figura 86 ilustra um diagrama lógico de um módulo de um instrumento cirúrgico, de acordo com um ou mais aspectos da presente invenção.
[0092] A Figura 87 ilustra um diagrama lógico delineando um mé todo para avaliar o afiamento de um gume cortante de um instrumento cirúrgico, de acordo com um ou mais aspectos da presente invenção.
[0093] A Figura 88 ilustra um fluxograma delineando um método para determinar se um gume cortante de um instrumento cirúrgico está suficientemente afiado para fazer a transeção de tecidos capturados pelo instrumento cirúrgico, de acordo com um ou mais aspectos da presente invenção.
[0094] A Figura 89 ilustra uma tabela mostrando espessuras de tecido predefinidas e forças-limite predefinidas correspondentes, de acordo com um ou mais aspectos da presente invenção.
[0095] A Figura 90 ilustra um diagrama lógico de um controlador comum para uso com uma pluralidade de motores de um instrumento cirúrgico, de acordo com um ou mais aspectos da presente invenção.
[0096] A Figura 91 ilustra uma vista em elevação parcial do cabo do instrumento cirúrgico com um compartimento externo removido, de acordo com um ou mais aspectos da presente invenção.
[0097] A Figura 92 ilustra uma vista em elevação parcial do ins trumento cirúrgico com um compartimento externo removido, de acordo com um ou mais aspectos da presente invenção.
[0098] A Figura 93A ilustra uma vista em ângulo lateral de um atu- ador de extremidade de ângulo com a bigorna em uma posição fechada, ilustrando uma situada em cada lado do suporte do cartucho, de acordo com um ou mais aspectos da presente invenção.
[0099] A Figura 93B ilustra uma vista em ângulo a três quartos do atuador de extremidade com a bigorna em uma posição aberta e um LED situado em cada lado do suporte do cartucho, de acordo com um ou mais aspectos da presente invenção.
[0100] A Figura 94A ilustra uma vista em ângulo lateral do atuador de extremidade com a bigorna em uma posição fechada e uma pluralidade de LEDs situada em cada lado do suporte do cartucho, de acordo com um ou mais aspectos da presente invenção.
[0101] A Figura 94B ilustra uma vista em ângulo a três quartos do atuador de extremidade com a bigorna em uma posição aberta e uma pluralidade de LEDs situados em cada lado do suporte do cartucho, de acordo com um ou mais aspectos da presente invenção.
[0102] A Figura 95A ilustra uma vista em ângulo lateral de um atu- ador de extremidade com a bigorna em uma posição fechada e uma pluralidade de LEDs da extremidade proximal para a distal, em cada lado do suporte do cartucho, de acordo com um ou mais aspectos da presente invenção.
[0103] A Figura 95B ilustra uma vista em ângulo a três quartos do atuador de extremidade com a bigorna em uma posição aberta e um LED situado em cada lado do suporte do cartucho, de acordo com um ou mais aspectos da presente invenção.
[0104] A Figura 96 é um diagrama de circuito de um exemplo de conjunto de alimentação de um instrumento cirúrgico, de acordo com um ou mais aspectos da presente invenção.
[0105] A Figura 97 é um diagrama de circuito de um exemplo de conjunto de alimentação de um instrumento cirúrgico, de acordo com um ou mais aspectos da presente invenção.
[0106] A Figura 98 é um diagrama de blocos esquemático de um sistema de controle de um instrumento cirúrgico, de acordo com um ou mais aspectos da presente invenção.
[0107] A Figura 99 é um diagrama de blocos esquemático de um sistema de controle de um instrumento cirúrgico, de acordo com um ou mais aspectos da presente invenção.
[0108] A Figura 100 é um diagrama esquemático de um sistema de posicionamento absoluto que compreende uma disposição de circuitos de acionamento controlado por motor, compreendendo uma disposição de sensor, de acordo com um ou mais aspectos da presente invenção.
[0109] A Figura 101 é uma vista em perspectiva detalhada de uma disposição de sensor para um sistema de posicionamento absoluto, de acordo com um ou mais aspectos da presente invenção.
[0110] A Figura 102 é uma vista em perspectiva explodida da dis posição de sensor para um sistema de posicionamento absoluto, mostrando um conjunto de placa de circuito de controle e o alinhamento relativo dos elementos da disposição de sensor, de acordo com um ou mais aspectos da presente invenção.
[0111] A Figura 103 é um diagrama esquemático de um aspecto de um sensor de posição para um sistema de posicionamento absoluto que compreende um sistema de posicionamento absoluto magnético giratório, de acordo com um ou mais aspectos da presente invenção.
[0112] A Figura 104 é um esquema ilustrando um sistema para controlar a velocidade de um motor e/ou a velocidade de um elemento acionável de um instrumento cirúrgico, de acordo com um ou mais as- pectos da presente invenção.
[0113] A Figura 105 é um esquema ilustrando um outro sistema para controlar a velocidade de um motor e/ou a velocidade de um elemento acionável de um instrumento cirúrgico, de acordo com um ou mais aspectos da presente invenção.
[0114] A Figura 106 ilustra uma vista em perspectiva de um ins trumento cirúrgico, de acordo com vários aspectos, de acordo com um ou mais aspectos da presente invenção.
[0115] A Figura 107 ilustra um método para controlar um movi mento de fechamento do instrumento cirúrgico da Figura 106 de acordo com vários aspectos, de acordo com um ou mais aspectos da presente invenção.
[0116] A Figura 108 ilustra um exemplo de gráfico mostrando uma curva representativa de um sinal de força de fechamento ao longo do tempo para vários aspectos do instrumento cirúrgico da Figura 106, de acordo com um ou mais aspectos da presente invenção.
[0117] A Figura 109 ilustra um exemplo de gráfico mostrando uma curva representativa de um sinal de força de disparo ao longo do tempo e uma curva representativa de uma velocidade de faca ao longo do tempo para vários aspectos do instrumento cirúrgico da Figura 106, de acordo com um ou mais aspectos da presente invenção.
[0118] A Figura 110 ilustra um exemplo de gráfico mostrando uma curva representativa de um sinal de força de disparo e uma posição de faca ao longo do tempo para vários aspectos do instrumento cirúrgico da Figura 106, de acordo com um ou mais aspectos da presente invenção.
[0119] A Figura 111 ilustra um exemplo de gráfico mostrando uma curva representativa de um sinal de força de disparo e uma curva re-presentativa de uma velocidade de faca ao longo do tempo para vários aspectos do instrumento cirúrgico da Figura 106, de acordo com um ou mais aspectos da presente invenção.
[0120] A Figura 112 ilustra um exemplo de gráfico mostrando uma curva representativa de uma força de fechamento FC ao longo do tempo t para vários aspectos do instrumento cirúrgico da Figura 106 e uma curva representativa de uma força de disparo FF ao longo do tempo t do instrumento cirúrgico da Figura 106, de acordo com um ou mais aspectos da presente invenção.
[0121] A Figura 113 ilustra vários aspectos de um sensor de dire ção do instrumento cirúrgico da Figura 106, de acordo com um ou mais aspectos da presente invenção.
[0122] A Figura 114 ilustra vários aspectos de um sensor de dire ção do instrumento cirúrgico da Figura 106, de acordo com um ou mais aspectos da presente invenção.
[0123] A Figura 115 ilustra uma vista em perspectiva de um outro instrumento cirúrgico, de acordo com um ou mais aspectos da presente invenção.
[0124] A Figura 116 ilustra um método para controlar um movi mento de disparo do instrumento cirúrgico da Figura 115, de acordo com um ou mais aspectos da presente invenção.
[0125] A Figura 117 ilustra um exemplo de gráfico mostrando uma curva representativa de um sinal de força de disparo ao longo do tempo para o instrumento cirúrgico da Figura 115, de acordo com um ou mais aspectos da presente invenção.
[0126] A Figura 118 ilustra um outro exemplo de gráfico mostrando uma curva representativa de um sinal de força de disparo ao longo do tempo para o instrumento cirúrgico da Figura 115, de acordo com um ou mais aspectos da presente invenção.
[0127] A Figura 119 ilustra um exemplo de gráfico mostrando uma curva representativa de uma força de fechamento FC ao longo do tempo t para vários aspectos do instrumento cirúrgico e uma curva re- presentativa de uma força de disparo F ao longo do tempo t para o instrumento cirúrgico da Figura 115, de acordo com um ou mais aspectos da presente invenção.
[0128] A Figura 120 ilustra um exemplo de gráfico mostrando uma curva representativa de um sinal de força de disparo e uma posição de faca ao longo do tempo e uma curva representativa de uma velocidade de faca ao longo do tempo para o instrumento cirúrgico da Figura 115, de acordo com um ou mais aspectos da presente invenção.
[0129] A Figura 121 ilustra uma vista em perspectiva de um outro instrumento cirúrgico, de acordo com um ou mais aspectos da presente invenção.
[0130] A Figura 122 ilustra um método para controlar um movi mento de disparo do instrumento cirúrgico da Figura 121, de acordo com um ou mais aspectos da presente invenção.
[0131] A Figura 123 ilustra um exemplo de gráfico mostrando uma curva representativa de um sinal de força de disparo ao longo do tempo e uma posição de faca ao longo do tempo e uma curva representativa de uma velocidade de faca ao longo do tempo para o instrumento cirúrgico da Figura 121, de acordo com um ou mais aspectos da presente invenção.
[0132] A Figura 124 ilustra um exemplo de gráfico mostrando a velocidade de fechamento das garras para o instrumento cirúrgico da Figura 121, de acordo com um ou mais aspectos da presente invenção.
[0133] A Figura 125 ilustra uma vista em perspectiva de um outro instrumento cirúrgico, de acordo com um ou mais aspectos da presente invenção.
[0134] As Figuras 126A e 126B ilustram um método para controlar um movimento de disparo do instrumento cirúrgico da Figura 125, de acordo com um ou mais aspectos da presente invenção.
[0135] A Figura 127 ilustra um exemplo de gráfico mostrando uma curva representativa de um sinal de força de disparo ao longo do tempo e uma posição de faca ao longo do tempo e uma curva representativa da velocidade da faca ao longo do tempo para vários aspectos do instrumento cirúrgico da Figura 125, de acordo com um ou mais aspectos da presente invenção. DESCRIÇÃO DETALHADA
[0136] O requerente do presente pedido detém os seguintes pedi dos de patente que foram depositados na mesma data do presente pedido e que estão, cada um, aqui incorporados por referência em suas respectivas totalidades: Pedido de Patente US N° de série , intitulado "STA PLE FORMATION DETECTION MECHANISMS", N° do documento do procurador END7774USNP/150513; Pedido de Patente US N° de série , intitulado "SURGICAL INSTRUMENT WITH DETECTION SENSORS", N° do documento do procurador END7775USNP/150514; Pedido de Patente US N° de série , intitulado "SURGI CAL INSTRUMENT WITH IMPROVED STOP/START CONTROL DURING A FIRING MOTION", N° do documento do procurador END7776USNP/150515; Pedido de Patente US N° de série , intitulado "SURGI CAL INSTRUMENT WITH ADJUSTABLE STOP/START CONTROL DURING A FIRING MOTION", N° do documento do procurador END7777USNP/150516; Pedido de Patente US N° de série , intitulado "SURGI CAL INSTRUMENT WITH MULTIPLE PROGRAM RESPONSES DURING A FIRING MOTION", N° do documento do procurador END7782USNP/150517; Pedido de Patente US N° de série , intitulado "MODULAR SURGICAL INSTRUMENT WITH CONFIGURABLE OPERATING MODE", N° do documento do procurador END7784USNP/150519; Pedido de Patente US N° de série , intitulado "SYS TEMS AND METHODS FOR CONTROLLING A SURGICAL STAPLING AND CUTTING INSTRUMENT", N° do documento do procurador END7785USNP/150520; e Pedido de Patente US N° de série , intitulado "SYS TEMS AND METHODS FOR CONTROLLING A SURGICAL STAPLING AND CUTTING INSTRUMENT", N° do documento do procurador END7786USNP/150521.
[0137] A presente invenção fornece um entendimento geral dos princípios de estrutura, função, fabricação e uso dos dispositivos e métodos apresentados na presente invenção. Um ou mais exemplos desses aspectos estão ilustrados nos desenhos em anexo. Os versados na técnica entenderão que os dispositivos e os métodos especificamente aqui descritos e ilustrados nos desenhos em anexo são exemplos não limitadores. As características ilustradas ou descritas em relação a um exemplo podem ser combinadas com as características de outros exemplos. Tais modificações e variações devem estar incluídas no escopo da presente invenção.
[0138] São fornecidos vários dispositivos e métodos exemplifica- dores para realização de procedimentos cirúrgicos laparoscópicos e minimamente invasivos. Entretanto, o versado na técnica entenderá prontamente que os vários métodos e dispositivos aqui revelados podem ser usados em inúmeros procedimentos e aplicações cirúrgicos inclusive, por exemplo, aqueles em conjunto com procedimentos cirúrgicos abertos. Com o avanço da presente Descrição Detalhada, aqueles de habilidade comum na técnica entenderão adicionalmente que os vários instrumentos aqui revelados podem ser inseridos em um corpo de qualquer maneira, como através de um orifício natural, através de uma incisão ou perfuração formada em tecido, etc. As porções funcionais ou porções do atuador de extremidade dos instrumentos podem ser inseridas diretamente no corpo de um paciente ou podem ser inseridas por meio de um dispositivo de acesso que tenha uma canaleta de trabalho através da qual o atuador de extremidade e o eixo de acionamento alongado de um instrumento cirúrgico podem ser avançados.
[0139] Em um aspecto, a presente invenção fornece um instru mento de grampeamento e corte cirúrgico motorizado configurado para detectar a má formação de grampo como um gatilho para fazer ajustes de velocidade de disparo. Em um aspecto, a presente invenção fornece um instrumento de corte e grampeamento cirúrgico motorizado configurado para alterar a parâmetros de disparo (velocidade de disparo, temporização de uma pausa no disparo, duração de uma pausa no disparo, pressão de aperto, etc.) de modo a afetar a forma do grampo com base na determinação em tempo real (ou contínua) da densidade de defeitos. Em um aspecto, a presente invenção fornece um instrumento de grampeamento e corte cirúrgico motorizado configurado para obter informações de matrizes de sensor e analisar as informações mediante a computação da densidade de "defeito" em qualquer local ao longo da linha de grampos. A "densidade de defeitos" pode ser analisada como um número em execução ao longo da totalidade da linha de grampos. Alternativamente, a integridade da linha de grampos (SLI) pode ser determinada em cada oportunidade ao longo do comprimento da linha de grampos. A densidade de defeitos pode ser utilizada para informar ao cirurgião acerca de possíveis problemas antes de soltar o dispositivo. Se certos limiares de densidade de defeitos forem encontrados, o dispositivo pode responder de diferentes modos. Se o dispositivo detectar densidade ou taxa de defeitos acima de um primeiro ponto de decisão, pode desacelerar para possibilitar mais tempo para fluxo de tecido e presumivelmente melhor forma de gram- po. A detecção de grampos malformados (falta de detecção de boa forma) pode ser também utilizada para alterar os parâmetros de disparo em tempo real de modo a resultar em melhor formação do grampo com o restante da linha de grampos. Se o dispositivo detectar densidade de defeitos ou taxa de defeitos acima de um segundo ponto de decisão, pode exibir um aviso para o cirurgião antes de se soltar de onde os defeitos estão, de modo que o cirurgião possa estar preparado com terapias adicionais para tratar o potencial sangramento ou estabilizar o tecido conforme for adequado.
[0140] Antes de descrever os vários aspectos de um instrumento de grampeamento e corte motorizado (instrumento cirúrgico), conforme descrito em conexão com as Figuras 106 a 127, a presente invenção primeiro voltas às Figuras 1 a 105 para uma descrição geral da plataforma mecânica e elétrica sobre a qual o presente instrumento cirúrgico motorizado pode ser implementado e fornece o plano de fundo necessário para entender a operação e a funcionalidade subjacentes do instrumento cirúrgico motorizado. Consequentemente, as Figuras 1 a 14 fornecem um exemplo de uma descrição geral da plataforma mecânica subjacente sobre a qual o presente instrumento de corte e grampeamento motorizado pode ser implementado. As Figuras 15 a 21 descrevem exemplos do microcontrolador subjacente geral, do acionamento do motor e da plataforma de interconexão elétrica em que o presente instrumento cirúrgico motorizado pode ser implementado. As Figuras 22 a 34 descrevem exemplo de estruturas de canaleta do atu- ador de extremidade e de forças de medição aplicadas ao tecido situado entre a bigorna e o cartucho de grampos do atuador de extremidade. As Figuras 35 a 37 descrevem exemplo de circuitos para controlar a funcionalidade do presente instrumento cirúrgico motorizado. As Figuras 38 a 95 descrevem exemplo de sensores e sistemas de re- troinformação para utilizar as saídas dos sensores a fim de implemen- tar o presente instrumento cirúrgico motorizado. As Figuras 96 e 97 descrevem exemplo de conjuntos de alimentação para alimentar o presente instrumento cirúrgico motorizado. As Figuras 98 a 105 descrevem exemplo de sistemas para controlar a velocidade do motor e os elementos acionáveis do presente instrumento cirúrgico incluem sensores e elementos de retroinformação para os mesmos. Após a familiarização com a plataforma mecânica e elétrica subjacente sobre a qual o presente instrumento cirúrgico motorizado pode ser implementado, o leitor é direcionado à descrição em conexão com as Figuras 106 a 127 para uma descrição de um instrumento de grampea- mento e corte cirúrgico motorizado configurado para detectar a má formação do grampo como um gatilho para fazer ajustes de velocidade de disparo.
[0141] Consequentemente, voltando agora às Figuras, as Figuras 1 a 6 representam um instrumento cirúrgico acionado por motor 10 para corte e fixação que pode ser reutilizado ou não. Nos exemplos ilustrados, o instrumento cirúrgico 10 inclui um compartimento 12 que compreende um conjunto de cabo 14 que é configurado para ser pego, manipulado e atuado pelo médico. O compartimento 12 é configurado para fixação operacional a um conjunto de eixo de acionamento inter- cambiável 200 que tem um atuador de extremidade 300 operacionalmente acoplado ao mesmo, que é configurado para executar uma ou mais tarefas ou procedimentos cirúrgicos. Conforme a presente descrição detalhada prossegue, será compreendido que várias disposições únicas e das várias formas de conjuntos de eixo de acionamento intercambiáveis aqui apresentados podem também ser eficazmente empregadas em relação a sistemas cirúrgicos controlados robotica- mente. Dessa forma, o termo "compartimento" também pode abranger um compartimento ou porção similar de um sistema robótico que aloja ou sustenta operacionalmente, de outro modo, ao menos um sistema de acionamento configurado para gerar e aplicar ao menos um movimento de controle que possa ser usado para acionar os conjuntos de eixo de acionamentos intercambiáveis descritos na presente invenção e seus respectivos equivalentes. O termo "estrutura" pode referir-se a uma porção de um instrumento cirúrgico de mão. O termo "estrutura" também pode representar uma porção de um instrumento cirúrgico controlado roboticamente e/ou uma porção do sistema robótico que pode ser usado para controlar operacionalmente o instrumento cirúrgico. Por exemplo, os conjuntos de eixo de acionamento aqui revelados podem ser utilizados com vários sistemas robóticos, instrumentos, componentes e métodos revelados na Patente US N° 9.072.535, intitulado "SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS", a qual está aqui incorporada a título de referência, em sua totalidade.
[0142] O compartimento 12 representado nas Figuras 1 e 2 é mos trado em conexão com um conjunto de eixo de acionamento intercam- biável 200 que inclui um atuador de extremidade 300 que compreende um dispositivo cirúrgico para corte e fixação que é configurado para suportar operacionalmente um cartucho de grampos cirúrgicos 304 em seu interior. O compartimento 12 pode ser configurado para uso em conexão com os conjuntos de eixo de acionamento intercambiáveis que incluem os atuadores de extremidade que são adaptados para suportar diferentes tamanhos e tipos de cartuchos de grampos, têm diferentes comprimentos, tamanhos, e tipos de eixo de acionamento, etc. Além disso, o compartimento 12 pode, também, ser empregado eficazmente com uma variedade de outros conjuntos de eixo de acionamento intercambiáveis inclusive aqueles conjuntos que são configura-dos para aplicar outros movimentos e formas de energia como, por exemplo, energia de radiofrequência (RF), energia ultrassônica e/ou movimento a disposições de atuadores de extremidade adaptados pa ra uso em várias aplicações e procedimentos cirúrgicos. Além disso, os atuadores de extremidade, os conjuntos de eixo de acionamento, os cabos, os instrumentos cirúrgicos e/ou os sistemas de instrumentos cirúrgicos podem usar quaisquer um ou mais prendedores adequados para fixar os tecidos. Por exemplo, um cartucho de prendedores que compreende uma pluralidade de prendedores nele armazenados de modo removível pode ser inserido de maneira removível dentro e/ou fixado ao atuador de extremidade de um conjunto de eixo de acionamento.
[0143] A Figura 1 ilustra o instrumento cirúrgico 10 com um con junto de eixo de acionamento intercambiável 200 acoplado de modo operável ao mesmo. A Figura 2 ilustra a fixação do conjunto de eixo de acionamento intercambiável 200 ao compartimento 12 ou ao conjunto de cabo 14. Conforme mostrado na Figura 4, o conjunto de cabo 14 pode compreender um par de segmentos interconectáveis do compartimento do cabo 16 e 18 que podem ser interconectados por parafusos, elementos de encaixe por pressão, adesivo, etc. Na disposição ilustrada, os segmentos do compartimento do cabo 16, 18 cooperam para formar uma porção da empunhadura da pistola 19 que pode ser empunhada e manipulada pelo clínico. Como será discutido em mais detalhes abaixo, o conjunto de cabo 14 suporta operacionalmente, em seu interior, uma pluralidade de sistemas de acionamento, que são configurados para gerar e aplicar vários movimentos de controle às porções correspondentes do conjunto de eixo de acionamento inter- cambiável que está operacionalmente fixado ao mesmo.
[0144] Agora com referência à Figura 4, o conjunto de cabo 14 po de incluir, também, uma estrutura 20 que sustenta operacionalmente uma pluralidade de sistemas de acionamento. Por exemplo, a estrutura 20 pode suportar operacionalmente um "primeiro" sistema de acionamento ou sistema de acionamento de fechamento, designado, de modo geral, como 30, que pode ser empregado para aplicar movimentos de fechamento e abertura ao conjunto de eixo de acionamento in- tercambiável 200 que está fixado ou acoplado operacionalmente à mesma. Em ao menos uma forma, o sistema de acionamento de fechamento 30 pode incluir um atuador sob a forma de um gatilho de fechamento 32, sustentado de forma articulada pela estrutura 20. Mais especificamente, conforme ilustrado na Figura 4, o gatilho de fechamento 32 é acoplado de modo pivotante ao conjunto de cabo 14 por um pino pivô 33. Essa disposição possibilita que o gatilho de fechamento 32 seja manipulado por um médico, de modo que, quando o médico empunha a porção da empunhadura da pistola 19 do conjunto de cabo 14, o gatilho de fechamento 32 possa ser facilmente girado de uma posição inicial ou "não atuada" para uma posição "atuada" e, mais particularmente, para uma posição completamente comprimida ou completamente atuada. O gatilho de fechamento 32 pode ser propendido para a posição não atuada por meio de uma mola ou de outra disposição de propensão (não mostrada). Em várias formas, o sistema de acionamento de fechamento 30 inclui adicionalmente um conjunto de elos de fechamento 34, que é acoplado de modo pivotante ao gatilho de fechamento 32. Conforme mostrado na Figura 4, o sistema articulado de fechamento 34 pode incluir um primeiro elo de fechamento 36 e um segundo elo de fechamento 38 que são acoplados de modo pivotante ao gatilho de fechamento 32 por um pino 35. O segundo elo de fechamento 38 pode, também, ser chamado de "elemento de fixação" e incluir um pino de fixação transversal 37.
[0145] Ainda com referência à Figura 4, pode-se observar que o primeiro elo de fechamento 36 pode ter uma extremidade ou parede de travamento 39, sobre o mesmo, que é configurada para cooperar com um conjunto de liberação de fechamento 60 que é acoplado de modo pivotante à estrutura 20. Em ao menos uma forma, o conjunto de liberação de fechamento 60 pode compreender um conjunto de botão de liberação de fechamento 62 que tem uma lingueta de travamen- to que se projeta distalmente 64 formada sobre a mesma. O conjunto do botão de liberação de fechamento 62 pode ser pivotado em sentido anti-horário por uma mola de liberação (não mostrada). Quando o médico pressiona o gatilho de fechamento 32 de sua posição não atuada em direção à porção da empunhadura da pistola 19 do conjunto de cabo 14, o primeiro elo de fechamento 36 gira para cima, para um ponto em que a lingueta de travamento 64 cai em um engate de retenção com a parede de travamento 39 no primeiro elo de fechamento 36 impedindo, assim, que o gatilho de fechamento 32 retorne para a posição não atuada. Desse modo, o conjunto de liberação de fechamento 60 serve para travar o gatilho de fechamento 32 na posição completamente atuada. Quando o médico deseja destravar o gatilho de fecha-mento 32 para permitir que o mesmo seja propendido para a posição não atuada, o médico simplesmente gira o conjunto do botão de liberação de fechamento 62, de modo que a lingueta de travamento 64 seja movida para fora do engate com a parede de travamento 39 no primeiro elo de fechamento 36. Quando a lingueta de travamento 64 tiver sido movida para fora de engate com o primeiro elo de fechamento 36, o gatilho de fechamento 32 pode girar de volta para a posição não atuada. Outras disposições para travamento e liberação do gatilho de fechamento também podem ser empregadas.
[0146] Além do descrito acima, as Figuras 10 a 11 ilustram o gati lho de fechamento 32 em sua posição não atuada que está associada a uma configuração aberta ou não grampeada do conjunto de eixo de acionamento intercambiável 200 na qual o tecido pode ser posicionado entre as garras do conjunto de eixo de acionamento intercambiável 200. A Figura 12 ilustra o gatilho de fechamento 32 em sua posição atuada que está associada com uma configuração aberta ou grampe- ada do conjunto de eixo de acionamento intercambiável 200, na qual o tecido é grampeado entre as garras do conjunto de eixo de acionamento intercambiável 200. Quando as Figuras 11 e 13 são comparadas, o leitor entenderá que, quando o gatilho de fechamento 32 é deslocado de sua posição não atuada (Figura 11) para sua posição atuada (Figura 13), o conjunto do botão de liberação de fechamento 62 é pivotado entre uma primeira posição (Figura 11) e uma segunda posição (Figura 13). A rotação do conjunto do botão de liberação de fechamento 62 pode ser chamada de uma rotação ascendente; entretanto, ao menos uma porção do conjunto do botão de liberação de fe-chamento 62 está sendo girada em direção à placa de circuito 100. Com referência à Figura 4, o conjunto do botão de liberação de fechamento 62 pode incluir um braço 61 estendendo-se a partir do mesmo e um elemento magnético 63, como um magneto permanente, por exemplo, montado no braço 61. Quando o conjunto do botão de liberação de fechamento 62 é girado de sua primeira posição para sua segunda posição, o elemento magnético 63 pode se mover em direção à placa de circuito 100. A placa de circuito 100 pode incluir ao menos um sensor configurado para detectar o movimento do elemento magnético 63. Em ao menos um aspecto, um sensor de campo magnético 65, por exemplo, pode ser montado na superfície inferior da placa de circuito 100. O sensor de campo magnético 65 pode ser configurado para detectar alterações em um campo magnético que circunda o sensor de campo magnético 65 causadas pelo movimento do elemento magnético 63. O sensor de campo magnético 65 pode estar em comunicação de sinal com um controlador 1500, por exemplo, que pode determinar se o conjunto do botão de liberação de fechamento 62 está em sua primeira posição, a qual está associada à posição não atuada do gatilho de fechamento 32 e à configuração aberta do atuador de extremidade, sua segunda posição, a qual está associada à posição atuada do gatilho de fechamento 32 e à configuração fechada do atu- ador de extremidade e/ou qualquer posição entre a primeira e a segunda posição.
[0147] Como usado na presente invenção, o sensor de campo magnético pode ser um sensor de efeito Hall, bobina exploratória, fluxômetro, bombeamento óptico, precessão nuclear, SQUID, efeito Hall, magnetorresistência anisotrópica, magnetorresistência gigante, junções túnel magnéticas, magnetoimpedância gigante, compostos magnetostritivos/piezoelétricos, magnetodiodo, transistor magnético, fibra óptica, magneto-óptica e sensores magnéticos baseados em sistemas microeletromecânicos, dentre outros.
[0148] Em ao menos uma forma, o conjunto de cabo 14 e estrutura 20 podem operacionalmente suportar um outro sistema de acionamento, chamado, na presente invenção, de um sistema de acionamento de disparo 80, que é configurado para aplicar movimentos de disparo às porções correspondentes do conjunto de eixo de acionamento inter- cambiável fixado ao mesmo. O sistema de acionamento de disparo 80 também pode ser chamado, na presente invenção, de "segundo sistema de acionamento". O sistema de acionamento de disparo 80 pode empregar um motor elétrico 82 situado na porção da empunhadura da pistola 19 do conjunto de cabo 14. Em várias formas, o motor elétrico 82 pode ser um motor de acionamento com escovas de corrente contínua, com uma rotação máxima de, aproximadamente, 25.000 RPM, por exemplo. Em outras disposições, o motor pode incluir um motor sem escovas, um motor sem fio, um motor síncrono, um motor de passo ou qualquer outro motor elétrico adequado. O motor elétrico 82 pode ser alimentado por uma fonte de alimentação 90 que, em uma forma, pode compreender uma fonte de energia removível 92. Conforme mostrado na Figura 4, por exemplo, a fonte de energia removível 92 pode compreender uma porção do compartimento proximal 94 que é configurada para fixação a uma porção do compartimento distal 96. A porção do compartimento proximal 94 e a porção do compartimento distal 96 são configuradas para suportar operacionalmente uma pluralidade de baterias 98. Cada uma das baterias 98 pode compreender, por exemplo, uma bateria de íons de lítio ("LI") ou outra bateria adequada. A porção de compartimento distal 96 está configurada para fixação operacional removível a uma placa de circuito de controle 100 que também está operacionalmente acoplada ao motor elétrico 82. Várias baterias 98, que podem ser conectadas em série, podem ser usadas como a fonte de alimentação para o instrumento cirúrgico 10. Além disso, a fonte de energia 90 pode ser substituível e/ou recarre- gável.
[0149] Conforme descrito acima em relação a outras várias for mas, o motor elétrico 82 pode incluir um eixo de acionamento giratório (não mostrado), que, de modo operacional, faz interface com um conjunto redutor de engrenagem 84, que está montado em engate de acoplamento com um conjunto ou cremalheira, de dentes de acionamento 122 em um elemento de acionamento longitudinalmente móvel 120. Em uso, uma polaridade de tensão fornecida pela fonte de alimentação 90 pode operar o motor elétrico 82 no sentido horário, em que a polaridade de tensão aplicada ao motor elétrico pela bateria pode ser revertida de modo a operar o motor elétrico 82 no sentido anti- horário. Quando o motor elétrico 82 é girado em uma direção, o elemento de acionamento longitudinalmente móvel 120 será axialmente ativado na direção distal "DD". Quando o motor elétrico 82 é acionado na direção giratória oposta, o elemento de acionamento longitudinalmente móvel 120 será axialmente conduzido na direção proximal "PD". O conjunto de cabo 14 pode incluir uma chave que pode ser configurada para reverter a polaridade aplicada ao motor elétrico 82 pela fonte de alimentação 90. Assim como com as outras formas aqui descritas, o conjunto de cabo 14 pode, também, incluir um sensor que é configurado para detectar a posição do elemento de acionamento longitudinalmente móvel 120 e/ou a direção em que o elemento de acionamento longitudinalmente móvel 120 está sendo movido.
[0150] O acionamento do motor elétrico 82 pode ser controlado por um gatilho de disparo 130 que é suportado de modo pivotante sobre o conjunto de cabo 14. O gatilho de disparo 130 pode ser girado entre uma posição não atuada e uma posição atuada. O gatilho de disparo 130 pode ser propendido para a posição não atuada por meio de uma mola 132 ou outra disposição de propensão de modo que, quando o médico libera o gatilho de disparo 130, o mesmo possa ser girado ou, de outro modo, retornado à posição não atuada por meio da mola 132 ou da disposição de propensão. Em ao menos uma forma, o gatilho de disparo 130 pode ser posicionado "distante" do gatilho de fechamento 32, como discutido acima. Em ao menos uma forma, um botão de segurança do gatilho de disparo 134 pode ser montado de maneira articulada ao gatilho de fechamento 32 pelo pino 35. O botão de segurança do gatilho de disparo 134 pode ser posicionado entre o gatilho de disparo 130 e o gatilho de fechamento 32 e ter um braço de pivô 136 que se projeta a partir do mesmo. Consulte a Figura 4. Quando o gatilho de fechamento 32 está na posição não atuada, o botão de segurança do gatilho de disparo 134 está contido no conjunto de cabo 14, onde o médico não pode acessá-lo prontamente e movê-lo entre uma posição de segurança, que impede a atuação do gatilho de disparo 130, e uma posição de disparo na qual o gatilho de disparo 130 pode ser disparado. Quando o médico pressiona o gatilho de fechamento 32, o botão de segurança do gatilho de disparo 134 e o gatilho de disparo 130 pivotam para baixo, para uma posição em que eles possam, então, ser manipulados pelo médico.
[0151] Conforme discutido acima, o conjunto de cabo 14 pode in- cluir um gatilho de fechamento 32 e um gatilho de disparo 130. Com referência às Figuras 11 a 13, o gatilho de disparo 130 pode ser montado de forma pivotante no gatilho de fechamento 32. O gatilho de fechamento 32 pode incluir um braço 31 que se estende a partir do mesmo e o gatilho de disparo 130 pode ser montado de forma pivotan- te ao braço 31 em torno de um pino pivotante 33. Quando o gatilho de fechamento 32 é movido de sua posição não atuada (Figura 11) para sua posição atuada (Figura 13), o gatilho de disparo 130 pode se mover para baixo, conforme descrito acima. Após o botão de segurança do gatilho de disparo 134 ter sido movido para sua posição de disparo, com referência principalmente à Figura 18A, o gatilho de disparo 130 pode ser pressionado para operar o motor do sistema de disparo do instrumento cirúrgico. Em várias circunstâncias, o conjunto de cabo 14 pode incluir um sistema de rastreamento, como o sistema 800, por exemplo, configurado para determinar a posição do gatilho de fechamento 32 e/ou a posição do gatilho de disparo 130. Com referência principalmente às Figuras 11 e 13, o sistema de rastreamento 800 pode incluir um elemento magnético, como um magneto 802, por exemplo, que é montado em um braço 801 estendendo-se a partir do gatilho de disparo 130. O sistema de rastreamento 800 pode compreender um ou mais sensores, como um primeiro sensor de campo magnético 803 e um segundo sensor de campo magnético 804, por exemplo, que podem ser configurados para rastrear a posição do magneto 802.
[0152] Quando as Figuras 11 e 13 são comparadas, o leitor enten de que, quando o gatilho de fechamento 32 é deslocado de sua posição não atuada para sua posição atuada, o imã 802 pode se mover entre uma primeira posição adjacente ao primeiro sensor de campo magnético 803 e uma segunda posição adjacente ao segundo sensor de campo magnético 804.
[0153] Quando as Figuras 11 e 13 são comparadas, o leitor enten- de que, quando o gatilho de disparo 130 é movido de uma posição não disparada (Figura 11) para uma posição disparada (Figura 13), o magneto 802 pode se mover em relação ao segundo sensor de campo magnético 804. O primeiro e o segundo sensor magnético 803, 804 podem rastrear o movimento do magneto 802 e podem estar em comunicação de sinal com um controlador sobre a placa de circuito 100. Com os dados do primeiro sensor de campo magnético 803 e/ou do segundo sensor de campo magnético 804, o controlador pode determinar a posição do magneto 802 ao longo de uma trajetória predefini- da e, com base naquela posição, o controlador pode determinar se o gatilho de fechamento 32 está em sua posição não atuada, em sua posição atuada, ou em uma posição entre as mesmas. De modo similar, com os dados do primeiro sensor de campo magnético 803 e/ou do segundo sensor de campo magnético 804, o controlador pode determinar a posição do magneto 802 ao longo de uma trajetória predefini- da e, com base naquela posição, o controlador pode determinar se o gatilho de disparo 130 está em sua posição não disparada, em sua posição totalmente disparada, ou em uma posição entre as mesmas.
[0154] Como indicado acima, em ao menos uma forma, o membro de acionamento longitudinalmente móvel 120 tem uma cremalheira de dentes de acionamento 122 formada no mesmo para engate engrenado com uma engrenagem de acionamento correspondente 86 do conjunto redutor de engrenagem 84. Ao menos uma forma inclui também um conjunto de resgate 140 manualmente atuável, que é configurado para possibilitar que o médico retraia manualmente o membro de acionamento longitudinalmente móvel 120, caso o motor elétrico 82 deixe de funcionar. O conjunto de resgate 140 pode incluir uma alavanca ou um conjunto de cabo de resgate 14 que é configurado para ser girado manualmente para engate de catraca com os dentes 124 também fornecidos no elemento de acionamento longitudinalmente móvel 120. Dessa forma, o médico pode retrair manualmente o elemento de acionamento longitudinalmente móvel 120 usando o conjunto de cabo 14 para engrenar o elemento de acionamento (120) na direção proximal "PD". A Patente US N° 8.608.045, intitulada "POWERED SURGICAL CUTTING E STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM", revela disposições de resgate e outros componentes, disposições e sistemas que podem, também, ser empregados com os vários instrumentos aqui revelados. A Patente US N° 8.608.045, aqui incorporada a título referência em sua totalidade.
[0155] Agora com relação à Figura 1, o conjunto de eixo de acio namento intercambiável 200 inclui um atuador de extremidade 300 que compreende uma canaleta alongada 302 que é configurada para suportar operacionalmente em seu interior um cartucho de grampos cirúrgicos 304. O atuador de extremidade 300 pode incluir adicionalmente uma bigorna 306 que é sustentada de modo pivotante em relação à canaleta alongada 302. O conjunto de eixo de acionamento intercam- biável 200 pode adicionalmente incluir uma junta articulada 270 e uma trava de articulação 350 (Figura 7) que pode ser configurada para prender de modo liberável o atuador de extremidade 300 em uma posição desejada em relação a um eixo geométrico SA-SA do eixo de acionamento. Os detalhes relativos à construção e operação do atua- dor de extremidade 300, da junta articulada 270 e da trava de articulação 350 são apresentados na Publicação de Pedido de Patente US N° 2014/0263541, intitulado "ARTICULATABLE SURGICAL INSTRUMENT COMPRISING AN ARTICULATION LOCK", o qual está aqui incorporado a título de referência em sua totalidade. Conforme mostrado na Figuras 7, o conjunto de eixo de acionamento intercambiável 200 pode incluir adicionalmente um compartimento ou bocal proximal 201 compreendido das porções de bocal 202 e 203. O conjunto de eixo de acionamento intercambiável 200 pode incluir adicionalmente um tubo de fechamento 260 que pode ser usado para fechar e/ou abrir a bigorna 306 do atuador de extremidade 300. Agora com referência principalmente à Figura 7, o conjunto de eixo de acionamento inter- cambiável 200 pode incluir uma coluna 210, que pode ser configurada para sustentar fixamente a estrutura de eixo de acionamento 212, da trava de articulação 350. Consulte a Figura 7. A coluna central 210 pode ser configurada para, em primeiro lugar, suportar de maneira deslizante um membro de disparo 220 em seu interior e, em segundo lugar, suportar de maneira deslizante o tubo de fechamento 260 que se estende ao redor da coluna central 210. O dorso 210 pode, também, ser configurado para sustentar de modo deslizante um acionador de arti-culação 230. O acionador de articulação 230 tem uma extremidade distal 231 que é configurada para engatar, de modo operável, a trava de articulação 350. A trava de articulação 350 realiza interface com uma estrutura de articulação 352 adaptada para engatar, de modo operável, um pino de acionamento (não mostrado) na estrutura de atuador de extremidade (não mostrada). Conforme indicado acima, detalhes adicionais relacionados com a operação da trava de articulação 350 e a estrutura de articulação podem ser encontrados no na Pu-blicação de Pedido de Patente US N° 2014/0263541. Em várias cir-cunstâncias, a coluna central 210 pode compreender uma extremidade proximal 211 que é sustentada de maneira giratória em um chassi 240. Em uma disposição, por exemplo, a extremidade proximal 211 da coluna central 210 tem uma rosca 214 formada na mesma para fixação rosqueada a um rolamento da coluna central 216 configurado para ser sustentado dentro do chassi 240. Essa disposição facilita a fixação giratória da coluna 210 ao chassi 240, de modo que a coluna 210 possa ser girada seletivamente ao redor de um eixo geométrico do eixo de acionamento SA-SA em relação ao chassi 240.
[0156] O conjunto de eixo de acionamento intercambiável 200 in- clui uma lançadeira de fechamento 250 que é sustentada de maneira deslizante no interior do chassi 240, de modo que possa ser movido axialmente em relação ao mesmo. Conforme mostrado na Figura 3, a lançadeira de fechamento 250 inclui um par de ganchos em projeção proximal 252 que é configurado para ser fixado ao pino de fixação transversal 37, que é fixado ao segundo elo de fechamento 38, conforme será discutido em mais detalhes abaixo. Uma extremidade proximal 261 do tubo de fechamento 260 é acoplada ao elemento de transporte de fechamento 250 para rotação relativa em relação ao mesmo. Por exemplo, um conector em forma de U 263 é inserido em uma fenda anular 262 na extremidade proximal 261 do tubo de fechamento 260 e é retido dentro das fendas verticais 253 no elemento de transporte de fechamento 250. Essa disposição serve para fixar o tubo de fechamento 260 ao elemento de transporte de fechamento 250 para deslocamento axial com o mesmo, ao mesmo tempo em que se possibilita que o tubo de fechamento 260 gire em relação ao elemento de transporte de fechamento 250 ao redor do eixo geométrico do eixo de acionamento SA-SA. Uma mola de fechamento 268 é assentada sobre o tubo de fechamento 260 e serve para inclinar o tubo de fe-chamento 260 na direção proximal "DP", o que pode servir para girar o gatilho de fechamento para a posição não atuada quando o conjunto de eixo de acionamento é operacionalmente acoplado ao conjunto de cabo 14.
[0157] Em ao menos uma forma, o conjunto de eixo de aciona mento intercambiável 200 pode incluir, também, uma junta articulada 270. Outros conjuntos de eixo de acionamento intercambiáveis, contudo, podem não ser capazes de articulação. De acordo com várias formas, o conjunto de luva de fechamento com dupla articulação 271 inclui um conjunto de luva de fechamento do atuador de extremidade 272 que tem os terminais de conexão que se projetam distalmente su perior e inferior 273, 274. Um conjunto de luva de fechamento de atu- ador de extremidade 272 inclui uma abertura em formato de ferradura 275 e uma orelha 276 para engatar uma orelha de abertura sobre a bigorna 306 das várias formas descritas na Publicação de Pedido de Patente US N° 2014/0263541. Conforme descrito em mais detalhes aqui, a abertura de ferradura 275 e a aba 276 engatam uma aba na bigorna quando a bigorna 306 é aberta. Um elo de articulação dupla superior 277 inclui os pinos de articulação distal e proximal que se projetam para cima que engatam, respectivamente, um orifício distal superior no terminal de conexão superior que se projeta de maneira proximal 273 e um orifício proximal superior em um terminal de conexão superior que se projeta de maneira distal 264 no tubo de fechamento 260. Um elo de articulação dupla inferior 278 inclui pinos de articulação distal e proximal que se projetam para cima que engatam, respec-tivamente, um orifício distal inferior no terminal de conexão inferior que se projeta de maneira proximal 274 e um orifício proximal inferior no terminal de conexão inferior que se projeta de maneira distal 265. Consulte também a Figura 7.
[0158] Em uso, o tubo de fechamento 260 é transladado distal- mente (direção "DD") para fechar a bigorna 306, por exemplo, em resposta à atuação do gatilho de fechamento 32. A bigorna 306 é fechada mediante a translação distal do tubo de fechamento 260 e, dessa forma, o conjunto de luva de fechamento do atuador de extremidade 272, fazendo com que atinja uma superfície proximal sobre a bigorna 306, da forma descrita na referência anteriormente mencionada da Publicação de Pedido de Patente US N° 2014/0263541. Conforme também foi descrito em detalhes nesta referência, a bigorna 306 é aberta mediante a translação proximal do tubo de fechamento 260 e o conjunto de luva de fechamento do atuador de extremidade 272, fazendo com que a aba 276 e a abertura de ferradura 275 entrem em contato e empur- rem contra a aba da bigorna para levantar a bigorna 306. Na posição aberta da bigorna, o tubo de fechamento 260 do eixo de acionamento é movido para sua posição proximal.
[0159] Conforme indicado acima, o instrumento cirúrgico 10 pode adicionalmente incluir uma trava de articulação 350 dos tipos e construção descritos mais detalhadamente na Publicação de Pedido de Patente US N° 2014/0263541, que pode ser configurada e operada para travar, de modo seletivo, um atuador de extremidade 300 na posição. Essa disposição permite que o atuador de extremidade 300 seja girado ou articulado, em relação ao tubo de fechamento 260 quando a trava de articulação 350 estiver em seu estado destravado. Em tal estado destravado, o atuador de extremidade 300 pode ser posicionado e forçado contra o tecido mole e/ou osso, por exemplo, que circunda o sítio cirúrgico no paciente, de forma a fazer com que o atuador de extremidade 300 se articule em relação ao tubo de fechamento 260. O atua- dor de extremidade 300 pode também ser articulado em relação ao tubo de fechamento 260 através de um acionador de articulação 230.
[0160] Conforme também foi indicado acima, o conjunto de eixo de acionamento intercambiável 200 inclui adicionalmente um elemento de disparo 220 que é sustentado para realizar um deslocamento axial no interior do dorso 210. O elemento de disparo 220 inclui um de eixo de acionamento de disparo intermediário 222, que é configurado para se conectar a uma porção de corte distal ou barra de corte 280. O membro de disparo 220 pode também ser chamado na presente invenção de um "segundo eixo de acionamento" e/ou um "segundo conjunto de eixo de acionamento". Conforme mostrado na Figuras 7, o eixo de acionamento de disparo intermediário 222 pode incluir uma fenda longitudinal 223 em sua extremidade distal, a qual pode ser configurada para receber uma aba 284 na extremidade proximal 282 da barra de corte 280. A fenda longitudinal 223 e a extremidade proximal 282 podem ser dimensionadas e configuradas para permitir o movimento relativo entre as mesmas e podem compreender uma junta deslizante 286. A junta deslizante 286 pode permitir que o eixo de acionamento de disparo intermediário 222 do elemento de disparo 220 seja movida para articular o atuador de extremidade 300 sem mover, ou ao menos sem mover substancialmente, a barra de corte 280. Uma vez que o atuador de extremidade 300 tenha sido adequadamente orientado, o eixo de acionamento de disparo intermediário 222 pode ser avançado distalmente até uma parede lateral proximal da fenda longitudinal 223 entrar em contato com a aba 284 a fim de avançar a barra de corte 280 e disparar um cartucho de grampos posicionado no interior da canaleta 302. Conforme pode ser adicionalmente visto na Figura 7, o dorso 210 tem uma abertura ou janela alongada 213 em seu interior para facilitar a montagem e a inserção do eixo de acionamento de disparo intermediário 222 no interior do dorso 210. Quando o eixo de acionamento de disparo intermediário 222 tiver sido inserido no mesmo, um segmento superior da estrutura 215 pode ser engatado na estrutura do eixo de acionamento 212 para encerrar em si o eixo de acionamento de disparo intermediário 222 e a barra de corte 280. Uma discussão adicional sobre a operação do elemento de disparo 220 pode ser vista na Publicação de Pedido de Patente US N° US 2014/0263541.
[0161] Além do acima exposto, o conjunto de eixo de acionamento intercambiável 200 pode incluir um conjunto de embreagem 400, que pode ser configurado para acoplar de modo seletivo e liberável o acio- nador de articulação proximal 230 ao elemento de disparo 220. Em uma forma, o conjunto de embreagem 400 compreende um anel ou luva de travamento 402 posicionado em torno do elemento de disparo 220, em que a luva de travamento 402 pode ser girada entre uma posição engatada, em que a luva de travamento 402 acopla o acionador de articulação 360 ao elemento de disparo 220, e uma posição desen- gatada, em que o acionador de articulação 360 não está acoplado de modo operável ao elemento de disparo 220. Quando a luva de trava- mento 402 está em sua posição engatada, o movimento distal do membro de disparo 220 pode mover o acionador de articulação 360 em sentido distal e, correspondentemente, o movimento proximal do membro de disparo 220 pode mover o acionador de articulação 230 de maneira proximal. Quando a luva de travamento 402 está em sua posição desengatada, o movimento do membro de disparo 220 não é transmitido para o acionador de articulação 230 e, como resultado, o membro de disparo 220 pode mover-se independentemente do acio- nador de articulação 230. Em várias circunstâncias, o acionador de articulação proximal 230 pode ser mantido em posição pela trava de articulação 350 quando o acionador de articulação 230 não estiver sendo movido nas direções proximal ou distal pelo membro de disparo 220.
[0162] Conforme mostrado nas Figuras 7 a 9, o conjunto de eixo de acionamento intercambiável 200 inclui adicionalmente um cilindro de comutação 500 que é recebido de modo giratório no tubo de fechamento 260. O cilindro de comutação 500 compreende um segmento de eixo de acionamento oco 502 que tem uma saliência de eixo de acionamento 504 formada no mesmo, destinada a receber em seu interior um pino de atuação 410 que se projeta para fora. Em várias circunstâncias, o pino de atuação 410 estende-se através de uma fenda 267 para dentro de uma fenda longitudinal 408 fornecida na luva de travamento 402 para facilitar o movimento axial da luva de travamento 402 quando ela está engatada com o acionador de articulação 230. Uma mola de torção giratória 420 está configurada para engatar a saliência do eixo de acionamento 504 no cilindro de comutação 500 e uma porção do bocal 203, conforme mostrado na Figura 8, para aplicar uma força de deslocamento ao cilindro de comutação 500. O cilindro de comutação 500 pode compreender adicionalmente aberturas ao menos parcialmente circunferenciais 506 definidas em seu interior, as quais, com referência às Figuras 5 e 6, podem ser configuradas para receber engastes circunferenciais 204, 205 estendendo-se a partir das porções do bocal 202, 203, e permitem uma rotação relativa, mas não a translação, entre o cilindro de comutação 500 e o bocal 201. Conforme mostrado naquelas Figuras, os engastes 204 e 205 também se estendem através das aberturas 266 no tubo de fechamento 260 para serem assentados nas reentrâncias situadas no dorso 210. Entretanto, a rotação do bocal 201 até um ponto no qual os engastes circunferen- ciais 204, 205 alcançam a extremidade de suas respectivas aberturas parcialmente circunferenciais 506 no cilindro de comutação 500 resultará na rotação do cilindro de comutação 500 ao redor do eixo geométrico do eixo de acionamento SA-SA. A rotação do cilindro de comutação 500 resultará, por fim, na rotação do pino de atuação 410 e da luva de travamento 402 entre suas posições engatada e desengatada. Dessa forma, em essência, o bocal 201 pode ser empregado para engatar e desengatar operacionalmente o sistema de acionamento de articulação com o sistema de acionamento de disparo nas várias formas descritas mais detalhadamente na Publicação de Pedido de Patente US N° 2014/0263541.
[0163] Também conforme ilustrado nas Figuras 7 a 9, o conjunto de eixo de acionamento intercambiável 200 pode compreender um conjunto de anel deslizante 600 que pode ser configurado para conduzir energia elétrica ao atuador de extremidade 300 e/ou a partir dele e/ou comunicar sinais ao atuador de extremidade 300 e/ou a partir dele, por exemplo. O conjunto de anel deslizante 600 pode compreender um flange de conector proximal 604 montado em um flange de montagem de chassi 242 estendendo-se a partir do chassi 240 e um flange de conector distal 601 posicionado no interior de uma fenda definida nas porções de bocal 202 e 203. O flange de conector proximal 604 pode compreender uma primeira face e o flange de conector distal 601 pode compreender uma segunda face que está posicionada adjacente a e que é móvel em relação à primeira face. O flange de conector distal 601 pode girar em relação ao flange de conector proximal 604 ao redor do eixo geométrico do eixo de acionamento SA-SA. O flange de conector proximal 604 pode compreender uma pluralidade de condutores concêntricos ou ao menos substancialmente concêntricos 602, definidos na sua primeira face. Um conector 607 pode ser montado sobre o lado proximal do flange de conector distal 601 e pode ter uma pluralidade de contatos (não mostrados), em que cada contato corresponde e está em contato elétrico com um dos condutores 602. Essa disposição permite a rotação relativa entre o flange de conector proximal 604 e o flange de conector distal 601, enquanto o contato elétrico é mantido entre os mesmos. O flange de conector proximal 604 pode incluir um conector elétrico 606 que pode colocar os condutores 602 em comunicação de sinal com uma placa de circuito de eixo de acionamento 610 montada no chassi 240, por exemplo. Em ao menos um caso, um chicote elétrico que compreende uma pluralidade de condutores pode se estender entre o conector elétrico 606 e a placa de circuito do eixo de acionamento 610. O conector elétrico 606 pode se estender de maneira proximal através de uma abertura do conector 243 definida no flange de montagem do chassi 242. A Publicação de Pedido de Patente US N° 2014/0263551, intitulada "STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM", está aqui incorporada a título de referência em sua totalidade. A Publicação de Pedido de Patente US N° 2014/0263552, intitulada "STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM", está aqui incorporada a título de referência em sua totalidade. Detalhes adicionais com relação ao conjunto do anel de deslizamento 600 podem ser encontrados na Publicação de Pedido de Patente US N° 2014/0263541.
[0164] Conforme discutido acima, o conjunto de eixo de aciona mento intercambiável 200 pode incluir uma porção proximal que é montada de forma fixável no conjunto de cabo 14, e uma porção distal que é giratória em torno de um eixo geométrico longitudinal. A porção giratória distal do eixo de acionamento pode ser girada em relação à porção proximal ao redor do conjunto do anel de deslizamento 600, conforme discutido acima. O flange de conector distal 601 do conjunto de anel deslizante 600 pode ser posicionado na porção de eixo de acionamento giratório distal. Além disso, além do exposto acima, o cilindro de comutação 500 também pode ser posicionado dentro da porção giratória distal do eixo de acionamento. Quando a porção de eixo de acionamento giratório distal é girada, o flange de conector distal 601 e o cilindro de comutação 500 podem ser girados sincronicamente um ao outro. Além disso, o cilindro de comutação 500 pode ser girado entre uma primeira posição e uma segunda posição em relação ao flange do conector distal 601. Quando o cilindro de comutação 500 está na sua primeira posição, o sistema de acionamento de articulação pode ser desengatado operacionalmente do sistema de acionamento de disparo e, dessa forma, o funcionamento do sistema de acionamento de disparo pode não articular o atuador de extremidade 300 do conjunto de eixo de acionamento intercambiável 200. Quando o cilindro de comutação 500 está na sua segunda posição, o sistema de acionamento de articulação pode ser engatado operacionalmente com o sistema de acionamento de disparo e, dessa forma, o funcionamento do sistema de acionamento de disparo pode articular o atuador de extremidade 300 do conjunto de eixo de acionamento intercambiável 200. Quando o cilindro de comutação 500 é movido entre sua primeira posição e sua segunda posição, o cilindro de comutação 500 é movido em relação ao flange do conector distal 601. Em vários casos, o con- junto de eixo de acionamento intercambiável 200 pode compreender ao menos um sensor configurado para detectar a posição do cilindro de comutação 500. Voltando agora à Figura 9, o flange de conector distal 601 pode compreender um sensor de campo magnético 605, por exemplo, e o cilindro de comutação 500 pode compreender um elemento magnético, como um magneto permanente 505, por exemplo. O sensor de campo magnético 605 pode ser configurado para detectar a posição do magneto permanente 505. Quando o cilindro de comutação 500 é girado entre sua primeira posição e sua segunda posição, o magneto permanente 505 pode mover-se em relação ao sensor de campo magnético 605. Em várias circunstâncias, o sensor de campo magnético 605 pode detectar alterações em um campo magnético criado quando o magneto permanente 505 é movido. O sensor de campo magnético 605 pode estar em comunicação de sinais com a placa de circuito 610 e/ou com a placa de circuito 100 situada no cabo, por exemplo. Com base no sinal do sensor de campo magnético 605, um controlador na placa de circuito do eixo de acionamento 610 e/ou a placa de circuito 100 situada no cabo podem determinar se o sistema de acionamento de articulação está engatado ou desengatado do sistema de acionamento de disparo.
[0165] Novamente com referência à Figura 3, o chassi 240 inclui ao menos uma, e de preferência, duas, porções de fixação afuniladas 244 formadas no mesmo, as quais são adaptadas para serem recebidas no interior das fendas de encaixe correspondentes 702 formadas no interior de uma porção de flange de fixação distal 700 da estrutura 20. Cada fenda de encaixe 702 pode ser afunilada ou, em outras palavras, ter um formato aproximado de V para receber de forma assentada as porções de fixação 244 na mesma. Conforme pode, também, ser visto na Figura 3, um pino de fixação de eixo de acionamento 226 é formado na extremidade proximal do eixo de acionamento de disparo intermediário 222. Conforme será discutido em mais detalhes abaixo, quando o conjunto de eixo intercambiável 200 é acoplado ao conjunto do cabo 14, o pino de fixação de eixo de acionamento 226 é recebido em um berço de fixação de eixo de acionamento de disparo 126, formado na extremidade distal 125 do elemento de acionamento móvel longitudinalmente 120, conforme mostrado nas Figuras 3 e 6, por exemplo.
[0166] Vários conjuntos de eixo de acionamento empregam um sistema de travas 710 para acoplar de modo removível o conjunto de eixo de acionamento intercambiável 200 ao compartimento 12 e mais especificamente à estrutura 20. As pernas da trava que se projetam proximalmente 714 têm, cada uma, pinos de trava de pivô 716 formados nas mesmas, que são adaptados para serem recebidos em orifícios correspondentes 245 formados no chassi 240. Tal disposição facilita a fixação pivotante da forquilha de travamento 712 ao chassi 240. A forquilha de travamento 712 pode incluir dois pinos de travamento que se projetam proximalmente 714 que são configurados para se engatarem de forma liberável aos detentores ou sulcos de travamento correspondentes 704 no flange de fixação distal 700 da estrutura 20. Vide Figura 3. Em várias formas, a forquilha de travamento 712 é forçada na direção proximal pela mola ou elemento de deslocamento (não mostrado). A atuação da forquilha de travamento 712 pode ser feita por um botão de travamento 722 que é montado de maneira deslizante em um conjunto do atuador da trava 720 que é montado no chassi 240. O botão de travamento 722 pode ser forçado em uma direção proximal em relação à forquilha de travamento 712. Conforme será discutido em mais detalhes abaixo, a forquilha de travamento 712 pode ser movida para uma posição destravada por forçar o botão de travamento na direção distal, o que também faz com que a forquilha de travamento 712 gire para fora de engate de retenção com o flange de fixação distal 700 da estrutura 20. Quando a forquilha de travamento 712 está em "engate de retenção" com o flange de fixação distal 700 da estrutura 20, os pinos de travamento de pivô 716 são assentados com retenção no interior dos detentores ou sulcos de travamento correspondentes 704 no flange de fixação distal 700.
[0167] Quando se emprega um conjunto de eixo de acionamento intercambiável que inclui um atuador de extremidade do tipo descrito aqui que é adaptado para cortar e prender o tecido, bem como outros tipos de atuadores de extremidade, pode ser desejável impedir o descolamento inadvertido do conjunto de eixo de acionamento intercambi- ável do compartimento durante a atuação do atuador de extremidade. Por exemplo, em uso, o médico pode atuar o gatilho de fechamento 32 para empunhar e manipular o tecido alvo para uma posição desejada. Quando o tecido alvo está posicionado dentro do atuador de extremidade 300 em uma orientação desejada, o médico pode, então, atuar completamente o gatilho de fechamento 32 para fechar a bigorna 306 e prender o tecido alvo na posição para corte e grampeamento. Neste caso, o primeiro sistema de acionamento 30 foi completamente atuado. Após o tecido alvo ter sido preso no atuador de extremidade 300, pode ser desejável evitar o desprendimento inadvertido do conjunto de eixo de acionamento intercambiável 200 do compartimento 12. Uma forma do sistema de travamento 710 é configurada para impedir este descolamento inadvertido.
[0168] A forquilha de travamento 712 inclui ao menos um e, de preferência, dois ganchos de travamento 718 que são adaptados para entrar em contato com os pinos de travamento 256 que são formadas na lançadeira de fechamento 250. Com referência às Figuras 10 e 11, quando a lançadeira de fechamento 250 está em uma posição não atuada (isto é, o primeiro sistema de acionamento de fechamento 30 está não atuado e a bigorna 306 está aberta), o gancho de travamento 712 pode ser girado em uma direção distal para destravar o conjunto de eixo de acionamento intercambiável 200 do compartimento 12. Quando está nesta posição, os ganchos de travamento 718 não entram em contato com os pinos de travamento 256 na lançadeira de fechamento 250. Entretanto, quando a lançadeira de fechamento 250 é movida para uma posição atuada (isto é, o primeiro sistema de acionamento de fechamento 30 é atuado e a bigorna 306 está na posição fechada), a forquilha de travamento 712 é impedida de ser girada para uma posição destravada. Consulte as Figuras 12 e 13. Em outras palavras, se o médico tentasse girar a forquilha de travamento 712 para uma posição destravada ou, por exemplo, se a forquilha de travamento 712 estivesse inadvertidamente ressaltada ou colocada em contato de uma forma que pudesse fazer de outro modo com que a mesma girasse distalmente, os ganchos de travamento 718 na forquilha de trava- mento 712 irão entrar em contato com os pinos de travamento 256 no elemento de transporte de fechamento 250 e impedir o movimento da forquilha de travamento 712 para uma posição destravada.
[0169] A fixação do conjunto de eixo de acionamento intercambiá- vel 200 ao cabo 14 será agora descrita com referência à Figura 3. Para iniciar o processo de acoplamento, o médico pode posicionar o chassi 240 do conjunto de eixo de acionamento intercambiável 200 acima ou adjacente à porção de flange de fixação distal 700 da estrutura 20 de modo que as porções de fixação afuniladas 244 formadas no chassi 240 estejam alinhadas com as fendas de encaixe 702 na estrutura 20. O médico pode, então, mover o conjunto de eixo de acionamento intercambiável 200 ao longo de um eixo geométrico de instalação IA que é perpendicular ao eixo geométrico do eixo de acionamento SA-SA para assentar as porções de fixação afuniladas 244 em "engate operacional" com as correspondentes fendas receptoras em formato de cauda de andorinha 702. Ao fazer isto, o pino de fixação do eixo de acionamento 226 no eixo de acionamento de disparo intermediário 222 também será assentado no berço de fixação do eixo de acionamento de disparo 126 no membro de acionamento longitudinalmente móvel 120 e as porções do pino de fixação transversal 37 no segundo elo de fechamento 38 serão assentadas nos ganchos que se projetam proximalmente 252 correspondentes na lançadeira de fechamento 250. Como usado na presente invenção, o termo "engate operável" em referência a dois componentes significa que os dois componentes estão engatados entre si de tal modo que, mediante aplicação de um movimento de atuação aos mesmos, os componentes possam realizar a ação, função e/ou procedimento pretendidos.
[0170] Como discutido acima, ao menos cinco sistemas do conjun to de eixo de acionamento intercambiável 200 podem ser operacionalmente acoplados a pelo menos cinco sistemas correspondentes do conjunto do cabo 14. Um primeiro sistema pode compreender um sistema de estrutura que acopla e/ou alinha a estrutura ou a coluna central do conjunto de eixo de acionamento intercambiável 200 com a estrutura 20 do conjunto de cabo 14. Um outro sistema pode compreender um sistema de acionamento de fechamento 30 que pode conectar operacionalmente o gatilho de fechamento 32 do conjunto de cabo 14 e o tubo de fechamento 260 e a bigorna 306 do conjunto de eixo de acionamento intercambiável 200. Conforme delineado acima, a lançadeira de fechamento 250 do conjunto de eixo de acionamento inter- cambiável 200 pode ser engatada com o pino de fixação transversal 37 no segundo elo de fechamento 38. Um outro sistema pode compreender o sistema de acionamento de disparo 80 que pode conectar operacionalmente o gatilho de disparo 130 do conjunto de cabo 14 com o eixo de acionamento de disparo intermediário 222 do conjunto de eixo de acionamento intercambiável 200.
[0171] Conforme delineado acima, o pino de fixação de eixo de acionamento 226 pode ser operacionalmente conectado ao berço 126 do elemento de acionamento móvel longitudinalmente 120. Um outro sistema pode compreender um sistema elétrico que pode sinalizar para um controlador no conjunto de cabo 14, como o controlador, por exemplo, que um conjunto de eixo de acionamento, como o conjunto de eixo de acionamento intercambiável 200, por exemplo, foi operaci-onalmente engatado ao conjunto de cabo 14 e/ou, dois conduzem sinais de comunicação e/ou de alimentação entre o conjunto de eixo de acionamento intercambiável 200 e o conjunto de cabo 14. Por exemplo, o conjunto de eixo de acionamento intercambiável 200 pode incluir um conector elétrico 1410 que é montado operacionalmente à placa de circuito do eixo de acionamento 610. O conector elétrico 1410 situado sobre o eixo de acionamento é configurado para engate correspondente com um conector elétrico 1400 sobre a placa de circuito 100 situada no cabo. Detalhes adicionais que sobre os sistemas de circuito e de controle podem ser encontrados na Publicação de Pedido de Patente US N° 2014/0263541. O quinto sistema pode consistir no sistema de travamento para travar de modo liberável o conjunto de eixo de acionamento intercambiável 200 ao conjunto de cabo 14.
[0172] Com referência à Figura 14, é ilustrada uma forma não limi tadora do atuador de extremidade 300. Conforme descrito acima, o atuador de extremidade 300 pode incluir a bigorna 306 e o cartucho de grampos cirúrgicos 304. Neste exemplo não limitador, a bigorna 306 é acoplada a um canaleta alongada 198. Por exemplo, as aberturas 199 podem ser definidas na canaleta alongada 198, a qual pode receber pinos 152 que se estendem a partir da bigorna 306 e possibilitar que a bigorna 306 pivote de uma posição aberta para uma posição fechada em relação à canaleta alongada 198 e cartucho de grampos cirúrgicos 304. Além disso, a Figura 14 mostra uma barra de disparo 172, configurada para se transladar longitudinalmente para o interior do atuador de extremidade 300. A barra de disparo 172 pode ser construída em uma seção sólida ou, em vários exemplos, pode incluir um material laminado compreendendo, por exemplo, uma pilha de placas de aço. Uma extremidade da barra de disparo 172 distalmente projetada pode ser fixada a um feixe com perfil em E 178 que pode, dentre outras coisas, auxiliar no espaçamento da bigorna 306 a partir de um cartucho de grampos cirúrgicos 304 posicionado na canaleta alongada 198, quando a bigorna 306 estiver em uma posição fechada. A viga com perfil em E 178 também pode incluir um gume cortante afiado 182, que pode ser usado para separar tecido, conforme a viga com perfil em E 178 é avançada distalmente pela barra de disparo 172. Em funcionamento, o feixe com perfil em "E" 178 pode também acionar, ou dispa-rar, o cartucho de grampos cirúrgicos 304. O cartucho de grampos cirúrgicos 304 pode incluir um corpo de cartucho moldado 194 que mantém uma pluralidade de grampos 191 que repousam sobre os aciona- dores de grampo 192 no interior das respectivas cavidades de grampos abertas para cima 195. Um deslizador em cunha 190 pode ser acionado distalmente pelo feixe com perfil em "E" 178, deslizando sobre uma bandeja de cartucho 196 que mantém unidos os vários componentes do cartucho de grampos cirúrgicos 304. O deslizador em cunha 190 desloca para cima, por came, os acionadores de grampo 192, para expelir os grampos 191 em contato de deformação com a bigorna 306, enquanto um gume cortante 182 do feixe com perfil em "E" 178 separa o tecido pinçado.
[0173] Além do exposto acima, o a viga com perfil em "E" 178 po de incluir pinos superiores 180 que engatam a bigorna 306 durante o disparo. O feixe com perfil em "E" 178 pode incluir adicionalmente pinos médios 184 e uma base 186 que pode engatar várias porções do corpo de cartucho 194, da bandeja do cartucho 196 e do canal alongado 198. Quando um cartucho de grampos cirúrgicos 304 é posicio- nado no interior do canal alongado 198, uma fenda 193 definida no corpo de cartucho 194 pode ser alinhada com uma fenda longitudinal 197 definida na bandeja do cartucho 196 e uma fenda 189 definida no canal alongado 198. Em uso, o feixe com perfil em "E" 178 pode deslizar através das fendas alinhadas longitudinais 193, 197 e 189, em que, conforme indicado na Figura 14, a base 186 do feixe com perfil em "E" 178 pode se engatar a um sulco posicionado ao longo da superfície inferior da canaleta alongada 198 ao longo do comprimento da fenda 189, os pinos médios 184 podem engatar-se às superfícies su-periores da bandeja de cartucho 196 ao longo do comprimento da fenda longitudinal 197, e os pinos superiores 180 podem se engatar à bigorna 306. Nessas circunstâncias, o feixe com perfil em "E" 178 pode espaçar ou limitar o movimento relativo entre a bigorna 306 e o cartucho de grampos cirúrgicos 304, enquanto a barra de disparo 172 é movida distalmente de forma a disparar os grampos do cartucho de grampos cirúrgicos 304 e/ou fazer uma incisão no tecido capturado entre a bigorna 306 e o cartucho de grampos cirúrgicos 304. Depois disso, a barra de disparo 172 e a viga com perfil em "E" 178 podem ser retraídas proximalmente permitindo que a bigorna 306 seja aberta para liberar as duas porções de tecido grampeadas e separadas (não mostradas).
[0174] Tendo descrito um instrumento cirúrgico 10 (Figuras 1 a 14) em termos gerais, a descrição agora se volta para uma descrição detalhada de vários componentes elétricos/eletrônicos do instrumento cirúrgico 10. Novamente com referência às Figuras 2 e 3, o conjunto de cabo 14 pode incluir um conector elétrico 1400 compreendendo uma pluralidade de contatos elétricos. Voltando agora à Figura 15, o conector elétrico 1400 pode compreender um primeiro contato elétrico 1401a, um segundo contato elétrico 1401b, um terceiro contato elétrico 1401c, um quarto contato elétrico 1401d, um quinto contato elétrico 1401e e um sexto contato elétrico 1401f, por exemplo. Embora o exemplo ilustrado use seis contatos, são concebidos outros exemplos que podem usar mais de seis contatos ou menos de seis contatos.
[0175] Conforme ilustrado na Figura 15, o primeiro contato elétrico 1401a pode estar em comunicação elétrica com um transístor 1408, os contatos elétricos 1401b a 1401e podem estar em comunicação elétrica com um controlador 1500, e o sexto contato elétrico 1401f pode estar em comunicação elétrica com um terra. Em certos casos, um ou mais dentre os contatos elétricos 1401b a 1401e podem estar em comunicação elétrica com um ou mais canais de saída do controlador 1500 e podem ser energizados ou ter uma diferença de potencial aplicada a eles quando o cabo 1042 está em estado energizado. Em algumas circunstâncias, um ou mais dentre os contatos elétricos 1401b a 1401e pode estar em comunicação elétrica com um ou mais canais de entrada do controlador 1500 e, quando o conjunto de cabo 14 está em estado energizado, o controlador 1500 pode ser configurado para detectar quando é aplicada uma diferença de potencial a esses contatos elétricos. Quando um conjunto de eixo de acionamento, como o conjunto de eixo de acionamento intercambiável 200, por exemplo, é disposto em conjunto no conjunto de cabo 14, os contatos elétricos 1401a a 1401f não podem se comunicar. Quando um conjunto de eixo de acionamento não está montado no conjunto de cabo 14, contudo, os contatos elétricos 1401a a 1401f do conector elétrico 1400 podem estar expostos e, em algumas circunstâncias, um ou mais dentre os contatos elétricos 1401a a 1401f podem ser acidentalmente colocados em comunicação elétrica. Essas circunstâncias podem surgir quando um ou mais dentre os contatos elétricos 1401a a 1401f entrarem em contato com um material condutor de eletricidade, por exemplo. Quando isso ocorre, o controlador 1500 pode receber uma entrada errada e/ou o conjunto de eixo de acionamento intercambiável 200 pode re- ceber uma saída errada, por exemplo. Para lidar com esse problema, em várias circunstâncias, o conjunto de cabo 14 pode ser desenergi- zado quando um conjunto de eixo de acionamento, como o conjunto de eixo de acionamento intercambiável 200, por exemplo, não está fixado no conjunto de cabo 14.
[0176] Em outras circunstâncias, o cabo 1042 pode ser energizado quando um conjunto de eixo de acionamento, como o conjunto de eixo de acionamento intercambiável 200, por exemplo, não está fixado ao mesmo. Nessas circunstâncias, o controlador 1500 pode ser configurado para ignorar entradas ou diferenças de potenciais aplicadas aos contatos em comunicação elétrica com o controlador 1500, isto é, os contatos elétricos 1401b a 1401e, por exemplo, até que um conjunto de eixo de acionamento seja fixado ao conjunto de cabo 14. Embora o controlador 1500 possa ser alimentado com energia para operar outras funcionalidades do conjunto de cabo 14 nessas circunstâncias, o conjunto de cabo 14 pode estar em um estado desenergizado. De certo modo, o conector elétrico 1400 pode estar em um estado desenergi- zado, pois as diferenças de tensão aplicadas aos contatos elétricos 1401b a 1401e não afetam a operação do conjunto de cabo 14. O lei-tor entenderá que, embora os contatos elétricos 1401b a 1401e possam estar em um estado desenergizado, os contatos elétricos 1401a e 1401f, que não estão em comunicação elétrica com o controlador 1500, podem ou não estar em um estado desenergizado. Por exemplo, o sexto contato elétrico 1401f pode permanecer em comunicação elétrica com um terra, independentemente do conjunto de cabo 14 estar em estado energizado ou desenergizado.
[0177] Além disso, o transistor 1408 e/ou qualquer outra disposi ção adequada de transistores, como o transistor 1412, por exemplo, e/ou chaves, podem ser configurados para controlar o fornecimento de energia proveniente de uma fonte de energia 1404, como uma bateria, no interior do conjunto de cabo 14, por exemplo, para o primeiro contato elétrico 1401a, independentemente de o conjunto de cabo 14 estar em um estado energizado ou desenergizado, conforme descrito acima. Em várias circunstâncias, o conjunto de eixo de acionamento inter- cambiável 200, por exemplo, pode ser configurado para alterar o estado do transistor 1408 quando o conjunto de eixo de acionamento inter- cambiável 200 está engatado ao conjunto de cabo 14. Em certas circunstâncias, além do que é mencionado abaixo, um sensor de campo magnético 1402 pode ser configurado para comutar o estado do transistor 1412, o que, como resultado, pode comutar o estado do transistor 1408 e, por fim, fornecer a energia proveniente da fonte de alimentação 1404 ao primeiro contato elétrico 1401a. Dessa forma, tanto os circuitos de energia como os circuitos de sinais para o conector elétrico 1400 podem ser desenergizados quando um conjunto de eixo de acionamento não está instalado no conjunto de cabo 14 e energizados quando um conjunto de eixo está instalado no conjunto de cabo 14.
[0178] Em várias circunstâncias, novamente com referência à Fi gura 15, o conjunto de cabo 14 pode incluir o sensor de campo magnético 1402, por exemplo, que pode ser configurado para detectar um elemento detectável, como um elemento magnético 1407 (Figura 3), por exemplo, em um conjunto de eixo de acionamento, como o conjunto de eixo de acionamento intercambiável 200, por exemplo, quando o conjunto de eixo de acionamento estiver acoplado ao conjunto de cabo 14. O sensor de sensor de campo magnético 1402 pode ser energiza- do por uma fonte de alimentação 1406, como uma bateria, por exemplo, que pode, na verdade, amplificar o sinal de detecção do sensor de sensor de campo magnético 1402 e se comunicar com um canal de entrada do controlador 1500 por meio do circuito ilustrado na Figura 15. Quando o controlador 1500 tiver recebido uma entrada indicando que um conjunto de eixo de acionamento foi pelo menos parcialmente acoplado ao conjunto de cabo 14 e que, como resultado, os contatos elétricos 1401a a 1401f não estão mais expostos, o controlador 1500 pode entrar em seu estado normal, ou energizado. Em tal estado operacional, o controlador 1500 avaliará os sinais transmitidos a um ou mais dentre os contatos elétricos 1401b a 1401e a partir do conjunto de eixo de acionamento e/ou transmitirá sinais para o conjunto de eixo de acionamento por meio de um ou mais dentre os contatos elétricos 1401b a 1401e em seu uso normal. Em várias circunstâncias, o conjunto de eixo de acionamento intercambiável 200 pode precisar ser assentado completamente antes que o sensor de campo magnético 1402 possa detectar o elemento magnético 1407. Embora um sensor de campo magnético 1402 possa ser usado para detectar a presença do conjunto de eixo de acionamento intercambiável 200, qualquer sistema adequado de sensores e/ou chaves pode ser usado para detectar se um conjunto de eixo de acionamento foi montado no conjunto de cabo 14, por exemplo. Dessa forma, adicionalmente ao exposto acima, tanto os circuitos de energia como os circuitos de sinais para o conector elétrico 1400 podem ser desenergizados quando um conjunto de eixo de acionamento não está instalado no conjunto de cabo 14 e energizados quando um conjunto de eixo está instalado no conjunto de cabo 14.
[0179] Em vários exemplos, conforme pode ser usado em toda a presente descrição, qualquer sensor de campo magnético adequado pode ser empregado para detectar se um conjunto de eixo de acionamento foi montado no conjunto de cabo 14, por exemplo. Por exemplo, as tecnologias utilizadas para a detecção de campo magnético incluem um sensor de efeito Hall, bobina exploratória, fluxômetro, bombeamen- to óptico, precessão nuclear, SQUID, (dispositivo de interferência quântica supercondutor - um magnetômetro muito sensível utilizado para medir campos magnéticos extremamente sutis, com base em cir- cuitos supercondutores contendo junções de Josephson); efeito Hall, magnetorresistência anisotrópica, magnetorresistência gigante, junções túnel magnéticas, magnetoimpedância gigante, compostos mag- netoestritivos/piezoelétricos, magnetodiodo, transistor magnético, fibra ótica, magneto-óptica e sensores magnéticos com base em sistemas microeletromecânicos, dentre outros.
[0180] Com referência à Figura 15, o controlador 1500 pode, de modo geral, compreender um processador ("microprocessador") e uma ou mais unidades de memória acopladas, de modo operacional, ao processador. Ao executar o código de instrução armazenado na memória, o processador pode controlar vários componentes do instrumento cirúrgico, como o motor, vários sistemas de acionamento, e/ou uma tela de usuário, por exemplo. O controlador 1500 pode ser implementado usando elementos de hardware integrados e/ou isolados, elementos de software e/ou uma combinação de ambos. Exemplos de elementos de hardware integrados podem incluir processadores, microprocessadores, controladores, circuitos integrados, circuitos integrados de aplicação específica (ASIC, ou "application specific integrated circuits"), dispositivos lógicos programáveis (PLD, ou "programma-ble logic devices"), processadores de sinal digital (DSP, ou "digital signal processors"), arranjos de portas programáveis em campo (FPGA, ou "field programmable gate arrays"), portas lógicas, registros, dispositivos semicondutores, chips, microcircuitos, chipsets, controladores, sistemas em um chip (SoC, ou "system-on-chip") e/ou sistemas em pacote (SiP, ou "system-in-package"). Exemplos de elementos de hardware distintos podem incluir circuitos e/ou elementos de circuito, como portas lógicas, transistores de efeito de campo, transistores bi- polares, resistores, capacitores, indutores e/ou relés. Em certas modalidades, o controlador 1500 pode incluir um circuito híbrido que compreende elementos ou componentes de circuitos integrados e isolados em um ou mais substratos, por exemplo.
[0181] Com referência à Figura 15, o controlador 1500 pode ser um LM LM4F230H5QR, disponível junto à Texas Instruments, por exemplo. Em certos casos, o LM4F230H5QR da Texas Instruments é um núcleo processador ARM Cortex-M4F que compreende uma memória integrada de memória flash de ciclo único de 256 KB, ou outra memória não-volátil, até 40 MHz, um buffer de transferência para otimizar o desempenho acima de 40 MHz, uma memória de acesso aleatório seriada de ciclo único de 32 KB (SRAM), memória só de leitura interna (ROM) carregada com o programa StellarisWare®, memória só de leitura programável eletricamente apagável (EEPROM) de 2 KB, um ou mais módulos de modulação da largura de pulso (PWM), um ou mais análogos de entrada do codificador de quadratura (QEI), um ou mais conversores analógico em digital (ADC) de 12-bit com 12 canais de entrada analógicos, dentre outros recursos que são prontamente disponíveis junto à ficha de dados do produto. Outros controladores podem ser prontamente substituídos para uso com a presente invenção. Consequentemente, a presente invenção não deve ser limitada nesse contexto.
[0182] Conforme discutido acima, o conjunto de cabo 14 e/ou o conjunto de eixo de acionamento intercambiável 200 pode incluir sistemas e configurações configurados para impedir, ou ao menos reduzir, a possibilidade de os contatos do conector elétrico 1400 situado no cabo e/ou os contatos do conector elétrico 1410 situado no eixo de acionamento entrarem em curto-circuito quando o conjunto de eixo de acionamento intercambiável 200 não estiver montado, ou completamente montado, no conjunto de cabo 14. Com referência à Figura 3, o conector elétrico 1400 situado no cabo pode ser ao menos parcialmente rebaixado no interior de uma cavidade 1409 definida na estrutura 20. Os seis contatos elétricos 1401a a 1401f do conector elétrico 1400 podem ser completamente rebaixados no interior da cavidade 1409. Essas disposições podem reduzir a possibilidade de um objeto entrar em contato acidental com um ou mais dentre os contatos elétricos 1401a a 1401f. De modo similar, o conector elétrico 1410 situado no eixo de acionamento pode ser posicionado no interior de uma reentrância, definida no chassi 240, o que pode reduzir a possibilidade de um objeto entrar em contato acidental com um ou mais contatos dentre os contatos elétricos 1411a a 1411f do conector elétrico 1410 situado no eixo de acionamento. Em relação ao exemplo específico mostrado na Figura 3, os contatos elétricos 1411a a 1411f situados no eixo de acionamento podem compreender contatos macho. Em ao menos um exemplo, cada contato elétrico 1411a a 1411f situado no eixo de acio-namento pode compreender uma projeção flexível estendendo-se a partir dele e que pode ser configurada para engatar um contato elétrico 1401a a 1401f situado no cabo, por exemplo. Os contatos elétricos 1401a a 1401f situados no cabo podem compreender contatos fêmea. Em ao menos um exemplo, cada contato elétrico 1401a a 1401f situado no cabo pode compreender uma superfície plana, por exemplo, contra a qual os contatos elétricos macho 1401a a 1401f situados no eixo de acionamento podem tocar ou deslizar e manter uma interface eletricamente condutiva entre os mesmos. Em vários casos, a direção em que o conjunto de eixo de acionamento intercambiável 200 é montado no conjunto de cabo 14 pode ser paralela a, ou pelo menos substancialmente paralela aos contatos elétricos 1401a a 1401f situados no cabo de modo que os contatos elétricos 1411a a 1411f situados no eixo de acionamento deslizem contra os contatos elétricos 1401a a 1401f situados no cabo quando o conjunto de eixo intercambiável 200 é montado no conjunto de cabo 14. Em vários exemplos alternativos, os contatos elétricos 1401a a 1401f situados no cabo podem compreender contatos macho, e os contatos elétricos 1411a a 1411f situados no eixo de acionamento podem compreender contatos fêmea. Em de-terminados exemplos alternativos, os contatos elétricos 1401a a 1401f situados no cabo e os contatos elétricos 1411a a 1411f situados no eixo de acionamento podem compreender qualquer disposição adequada de contatos.
[0183] Em várias circunstâncias, o conjunto de cabo 14 pode com preender um anteparo de conector configurado para cobrir ao menos parcialmente o conector elétrico 1400 situado no cabo e/ou um anteparo de conector configurado para cobrir ao menos parcialmente o conector elétrico 1410 situado no eixo de acionamento. Um anteparo de conector pode evitar, ou ao menos reduzir, a possibilidade de um objeto acidentalmente tocar os contatos de um conector elétrico quando o conjunto de eixo de acionamento não estiver montado, ou estiver apenas parcialmente montado, no cabo. Um anteparo de conector pode ser móvel. Por exemplo, o anteparo de conector pode ser movido entre uma posição de proteção, na qual ele, ao menos parcialmente, protege um conector, e uma posição desprotegida, na qual ele não protege, ou ao menos protege menos, o conector. Em ao menos um exemplo, um anteparo de conector pode ser deslocado conforme o conjunto de eixo de acionamento estiver sendo montado no cabo. Por exemplo, se o cabo compreender um anteparo de conector do cabo, o conjunto de eixo de acionamento pode entrar em contato com o anteparo de conector do cabo e deslocá-lo conforme o conjunto de eixo de acionamento está sendo montado no cabo. De forma similar, se o conjunto de eixo de acionamento compreender um anteparo de conector do eixo de acionamento, o cabo pode entrar em contato com o anteparo de conector do eixo de acionamento e deslocá-lo conforme o conjunto de eixo de acionamento está sendo montado no cabo. Em vários casos, um anteparo de conector pode compreender uma porta, por exemplo. Em ao menos um caso, a porta pode compreender uma superfície chanfrada que, quando colocada em contato com o cabo ou o eixo de acionamento, pode facilitar o deslocamento da porta em uma determinada direção. Em vários casos, o anteparo de conector pode ser transladado e/ou girado, por exemplo. Em certos casos, um anteparo de conector pode compreender ao menos um filme que reveste os contatos de um conector elétrico. Quando o conjunto de eixo de acionamento é montado no cabo, o filme pode se romper. Em ao menos um caso, os contatos macho de um conector podem penetrar no filme antes do engate dos contatos correspondentes posicionados debaixo do filme.
[0184] Conforme descrito acima, o instrumento cirúrgico pode in cluir um sistema que pode seletivamente energizar ou ativar os contatos de um conector elétrico, como o conector elétrico 1400, por exemplo. Em vários casos, os contatos podem fazer a transição entre uma condição não ativada e uma condição ativada. Em certos casos, os contatos podem fazer a transição entre uma condição monitorada, uma condição não ativada e uma condição ativada. Por exemplo, o controlador 1500 pode, por exemplo, monitorar os contatos elétricos 1401a a 1401f quando um conjunto de eixo de acionamento não tiver sido montado no conjunto de cabo 14, para determinar se um ou mais dos contatos elétricos 1401a a 1401f podem ter entrado em curto- circuito. O controlador 1500 pode ser configurado para aplicar um potencial de baixa tensão a cada um dos contatos elétricos 1401a a 1401f e avaliar se apenas uma resistência mínima está presente em cada um dos contatos. Esse estado operacional pode compreender uma condição monitorada. Caso a resistência detectada em um contato seja alta ou esteja acima de uma resistência-limite, o controlador 1500 pode desativar aquele contato, pode desativar mais de um contato ou, alternativamente, pode desativar todos os contatos. Esse estado operacional pode compreender uma condição desativada. Se um conjunto de eixo de acionamento estiver montado no conjunto de cabo 14 e for detectado pelo controlador 1500, conforme discutido acima, o controlador 1500 pode aumentar o potencial de tensão para os contatos elétricos 1401a a 1401f. Esse estado operacional pode compreender uma condição ativada.
[0185] Os vários conjuntos de eixo de acionamento descritos na presente invenção podem empregar sensores e vários outros componentes que requeiram comunicação elétrica com o controlador no compartimento. Esses conjuntos de eixo de acionamento são genericamente configurados para que possam girar em relação ao compartimento necessitando de uma conexão que facilite tal comunicação elétrica entre dois ou mais componentes que podem girar entre si. Quando são empregados os atuadores de extremidade dos tipos descritos na presente invenção, as disposições do conector precisam ter natureza relativamente robusta, ao mesmo tempo em que precisam ser um tanto compactas para se ajustarem à porção de conector de conjunto de eixo de acionamento.
[0186] Agora se faz referência às Figuras 16A e 16B, onde é ilus trado um exemplo de um circuito segmentado 2000 que compreende uma pluralidade de segmentos de circuito 2002a a 2002g. O circuito segmentado 2000 compreendendo a pluralidade de segmentos de circuito 2002a-2002g é configurado para controlar um instrumento cirúrgico energizado, como, por exemplo, o instrumento cirúrgico 10 ilustrado nas Figuras 1 a 13, sem limitação. A pluralidade de segmentos de circuito 2002a a 2002g é configurada para controlar uma ou mais operações do instrumento cirúrgico energizado 10. Um segmento do processador de segurança 2002a (segmento 1) compreende um processador de segurança 2004. Um segmento de processador primário 2002b (segmento 2) compreende um processador primário 2006. O processador de segurança 2004 e/ou o processador primário 2006 são configurados para interagir com um ou mais segmentos de circuito adicionais 2002c a 2002g para controlar a operação do instrumento cirúrgico energizado 10. O processador primário 2006 compreende uma pluralidade de entradas acopladas, por exemplo, a um ou mais segmentos de circuito 2002c a 2002g, uma bateria 2008, e/ou uma pluralidade de chaves 2058a a 2070. O circuito segmentado 2000 pode ser implementado por qualquer circuito adequado, como, por exemplo, um conjunto de placa de circuito impresso (PCBA) dentro do instrumento cirúrgico energizado 10. Deve-se compreender que o termo processador, conforme usado aqui, inclui qualquer microprocessador, processador, controlador, controladores ou outro dispositivo de computação básico que incorpora as funções de uma unidade de processamento central do computador (CPU) em um circuito integrado ou no máximo alguns circuitos integrados. O processador é um dispositivo programável multiuso que aceita dados digitais como entrada, as processa de acordo com instruções armazenadas na sua memória, e fornece resultados como saída. Este é um exemplo de lógica digital sequencial, já que ele tem memória interna. Os processadores operam em números e símbolos representados no sistema binário de numerais.
[0187] Em um aspecto, o processador primário 2006 pode ser qualquer processador de núcleo único ou de múltiplos núcleos, como aqueles conhecidos sob o nome comercial de ARM Cortex pela Texas Instruments. Em um exemplo, o processador de segurança 2004 pode ser uma plataforma de controlador de segurança que compreende duas famílias à base de controladores, como TMS570 e RM4x conhecidas sob o nome comercial de Hercules ARM Cortex R4, também pela Texas Instruments. Entretanto, outros substitutos adequados para controladores e processadores de segurança podem ser empregados, sem limitação. Em um exemplo, o processador de segurança 2004 pode ser configurado especificamente para as aplicações críticas de se- gurança IEC 61508 e ISO 26262, dentre outras, para fornecer recursos avançados de segurança integrada enquanto proporciona desempenho, conectividade e opções de memória escalonáveis. Em certos casos, o processador primário 2006 pode ser um controlador de núcleo único ou controlador de múltiplos núcleos LM4F230H5QR conforme descrito em conexão com as Figuras 14 a 17B.
[0188] Em um aspecto, o circuito segmentado 2000 compreende um segmento de aceleração 2002c (segmento 3). O segmento de aceleração 2002c compreende um acelerômetro 2022. O acelerômetro 2022 é configurado para detectar o movimento ou a aceleração do instrumento cirúrgico energizado 10. Em alguns exemplos, a entrada do acelerômetro 2022 é utilizada, por exemplo, para fazer transição para e de um modo de suspensão, identificar a orientação do instrumento cirúrgico energizado, e/ou identificar quando o instrumento cirúrgico foi deixado cair. Em alguns exemplos, o segmento de aceleração 2002c é acoplado ao processador de segurança 2004 e/ou ao processador primário 2006.
[0189] Em um aspecto, o circuito segmentado 2000 compreende um segmento de exibição 2002d (segmento 4). O segmento de exibição 2002d compreende um conector da tela 2024 acoplado ao processador primário 2006. O conector da tela 2024 acopla o processador primário 2006 a uma tela 2028 através de um ou mais acionadores dos circuitos integrados da tela 2026. Os acionadores dos circuitos integrados da tela 2026 podem estar integrados com a tela 2028 e/ou podem estar situados separadamente da tela 2028. A tela 2028 pode compreender qualquer tela adequada, como, por exemplo, uma tela de diodos emissores de luz orgânicos (OLED), uma tela de cristal líquido (LCD), e/ou qualquer outra tela adequada. Em alguns exemplos, o segmento de exibição 2002d é acoplado ao processador de segurança 2004.
[0190] Em alguns aspectos, o circuito segmentado 2000 compre ende um segmento de eixo de acionamento 2002e (segmento 5). O segmento de eixo de acionamento 2002e compreende um ou mais controles para um conjunto de eixo de acionamento intercambiável 200 (Figura 1) acoplado ao instrumento cirúrgico 10 e/ou um ou mais controles para um atuador de extremidade 300 acoplado ao eixo de acionamento intercambiável 200 (Figura 1). O segmento de eixo de acionamento 2002e compreende um conector do eixo de acionamento 2030 configurado para acoplar o processador primário 2006 a um PCBA do eixo de acionamento 2031. O PCBA do eixo de acionamento 2031 compreende uma primeira chave de articulação 2036, uma segunda chave de articulação 2032, e uma EEPROM de PCBA do eixo de acionamento 2034. Em alguns exemplos, o EEPROM PCBA 2034 do eixo de acionamento compreende um ou mais parâmetros, rotinas, e/ou programas específicos para o eixo de acionamento intercambiá- vel 200 e/ou para o PCBA do eixo de acionamento 2031. O PCBA do eixo de acionamento 2031 pode ser acoplado ao conjunto do eixo de acionamento intercambiável 200 e/ou integral com o instrumento cirúrgico 10. Em alguns exemplos, o segmento de eixo de acionamento 2002e compreende um segundo EEPROM do eixo de acionamento 2038. O segundo EEPROM 2038 do eixo de acionamento compreende uma pluralidade de algoritmos, rotinas, parâmetros, e/ou outros dados que correspondem a um ou mais conjuntos de eixos de acionamento 200 e/ou atuadores de extremidade 300 que podem fazer interface com o instrumento cirúrgico energizado 10.
[0191] Em alguns aspectos, o circuito segmentado 2000 compre ende um segmento codificador de posição 2002f (segmento 6). O segmento codificador de posição 2002f compreende um ou mais codificadores de posição de ângulos magnéticos giratórios 2040a a 2040b. Um ou mais codificadores de posição de ângulos magnéticos giratórios 2040a a 2040b são configurados para identificar a posição rotacional de um motor 2048, um conjunto de eixo de acionamento intercambiá- vel 200 (Figura 1) e/ou um atuador de extremidade 300 do instrumento cirúrgico 10. Em alguns exemplos, os codificadores de posição de ângulos magnéticos giratórios 2040a a 2040b podem ser acoplados ao processador de segurança 2004 e/ou ao processador primário 2006.
[0192] Em alguns aspectos, o circuito segmentado 2000 compre ende um segmento do circuito do motor 2002g (Segmento 7). O segmento do circuito do motor 2002g compreende um motor 2048 configurado para controlar um ou mais movimentos do instrumento cirúrgico energizado 10. O motor 2048 é acoplado ao processador primário 2006 por um acionador de ponte H 2042 e um ou mais transístores de efeito de campo de ponte H 2044 (FETs). Os FETs de ponte H 2044 são acoplados ao processador de segurança 2004. Um sensor de corrente do motor 2046 é acoplado em série com o motor 2048 para medir a drenagem de corrente do motor 2048. O sensor de corrente do motor 2046 está em comunicação de sinal com o processador primário 2006 e/ou com o processador de segurança 2004. Em alguns exemplos, o motor 2048 é acoplado a um filtro de interferência eletromagnética (IEM) 2050 do motor.
[0193] Em alguns aspectos, o circuito segmentado 2000 compre ende um segmento de alimentação 2002h (segmento 8). Uma bateria 2008 é acoplada ao processador de segurança 2004, ao processador primário 2006, e a um ou mais dos segmentos de circuito adicionais 2002c a 2002g. A bateria 2008 é acoplada ao circuito segmentado 2000 por um conector da bateria 2010 e um sensor de corrente 2012. O sensor de corrente 2012 é configurado para medir a drenagem de corrente total do circuito segmentado 2000. Em alguns exemplos, um ou mais conversores de tensão 2014a, 2014b, 2016 são configurados para fornecer valores de tensão predeterminados a um ou mais seg- mentos de circuito 2002a a 2002g. Por exemplo, em alguns exemplos, o circuito segmentado 2000 pode compreender conversores de tensão de 3,3 V 2014a a 2014b e/ou conversores de tensão de 5 V 2016. Um conversor de amplificação de tensão 2018 é configurado para fornecer uma elevação da tensão até uma quantidade predeterminada, como, por exemplo, até 13 V. O conversor de amplificação de tensão 2018 é configurado para fornecer tensão e/ou corrente adicional durante operações que exigem muita energia e evita apagão ou condições de baixo fornecimento de energia.
[0194] Em alguns aspectos, o segmento de processador de segu rança 2002a compreende uma chave de alimentação do motor 2020. A chave de alimentação do motor 2020 é acoplado entre o segmento de alimentação 2002h e o segmento do circuito do motor 2002g. O segmento do processador de segurança 2002a é configurado para interromper a alimentação para o segmento do circuito do motor 2002g quando uma condição de erro ou falha é detectada pelo processador de segurança 2004 e/ou pelo processador primário 2006, conforme discutido em mais detalhes na presente invenção. Embora os segmentos de circuito 2002a a 2002g sejam ilustrados com todos os componentes dos segmentos de circuito 2002a a 2002h localizados em pro-ximidade física, o versado na técnica compreenderá que um segmento de circuito 2002a a 2002h pode compreender componentes fisicamente e/ou eletricamente separados dos outros componentes do mesmo segmento de circuito 2002a a 2002g. Em alguns exemplos, um ou mais componentes podem ser compartilhados entre dois ou mais segmentos de circuito 2002a a 2002g.
[0195] Em alguns aspectos, uma pluralidade de chaves 2056 a 2070 é acoplada ao processador de segurança 2004 e/ou ao processador primário 2006. A pluralidade de chaves 2056 a 2070 pode ser configurada para controlar uma ou mais operações do instrumento ci- rúrgico 10, controlar uma ou mais operações do circuito segmentado 2000, e/ou indicar um estado do instrumento cirúrgico 10. Por exemplo, uma chave da porta de ejeção 2056 é configurada para indicar o estado da porta de ejeção. Uma pluralidade de chaves de articulação, como, por exemplo, uma chave do lado esquerdo de articulação para o lado esquerdo 2058a, uma chave do lado direito de articulação para o lado esquerdo 2060a, uma chave central de articulação para o lado esquerdo 2062a, uma chave do lado esquerdo de articulação para o lado direito 2058b, uma chave do lado direito de articulação para o lado direito 2060b, e uma chave central de articulação para o lado direito 2062b são configuradas para controlar a articulação de um conjunto de eixo de acionamento 200 e/ou um atuador de extremidade 300. Uma chave reversa do lado esquerdo 2064a e uma chave reversa do lado direito 2064b são acopladas ao processador primário 2006. Em alguns exemplos, as chaves do lado esquerdo que compreendem a chave do lado esquerdo de articulação para o lado esquerdo 2058a, a chave do lado direito de articulação para o lado esquerdo 2060a, a chave central de articulação para o lado esquerdo 2062a e a chave reversa do lado esquerdo 2064a são acopladas ao processador primário 2006 por um conector de flexão à esquerda 2072a. As chaves do lado direito que compreendem a chave do lado esquerdo de articulação para o lado direito 2058b, a chave do lado direito de articulação para o lado direito 2060b, a chave central de articulação para o lado direito 2062b, e a chave reversa do lado direito 2064b são acopladas ao processador primário 2006 por um conector de flexão à direita 2072b. Em alguns exemplos, uma chave de disparo 2066, uma chave de liberação de grampo 2068, e uma chave engatado ao eixo de acionamento 2070 são acopladas ao processador primário 2006.
[0196] Em alguns aspectos, a pluralidade de chaves 2056 a 2070 pode compreender, por exemplo, uma pluralidade de controles de ca bo montados em um cabo do instrumento cirúrgico 10, uma pluralidade de chaves indicadoras, e/ou qualquer combinação dos mesmos. Em vários exemplos, a pluralidade de chaves 2056 a 2070 permite a um cirurgião manipular o instrumento cirúrgico, fornecer retroinformação ao circuito segmentado 2000 com relação à posição e/ou operação do instrumento cirúrgico, e/ou indicar operação insegura do instrumento cirúrgico 10. Em alguns exemplos, chaves adicionais ou menos chaves podem ser acopladas ao circuito segmentado 2000, uma ou mais das chaves 2056 a 2070 podem ser combinadas em uma única chave, e/ou expandidas para múltiplas chaves. Por exemplo, em um exemplo, uma ou mais das chaves de articulação para lado esquerdo e/ou para o lado direito 2058a a 2064b podem ser combinadas em uma única chave multiposição.
[0197] Em um aspecto, o processador de segurança 2004 é confi gurado para implementar uma função de vigilância, entre outras operações de segurança. O processador de segurança 2004 e o processador primário 2006 do circuito segmentado 2000 estão em comunicação de sinal. Um sinal de funcionamento do processador é fornecido na saída 2097. O segmento de aceleração 2002c compreende um acelerômetro 2022 configurado para monitorar o movimento do instrumento cirúrgico 10. Em vários exemplos, o acelerômetro 2022 pode ser um acelerômetro de eixo geométrico único, duplo ou triplo. O ace- lerômetro 2022 pode ser empregado para medir a aceleração adequada que não é necessariamente a aceleração coordenada (taxa de alte-ração de velocidade). Em vez disso, o acelerômetro vê a aceleração associada ao fenômeno de peso experimentado por uma massa de teste em repouso na estrutura de referência do acelerômetro 2022. Por exemplo, o acelerômetro 2022 em repouso sobre a superfície da Terra irá medir uma aceleração g=9,8 m/s2 (gravidade) reta para cima, devido ao seu peso. Outro tipo de aceleração que o acelerômetro 2022 pode medir é a aceleração da força G. Em vários outros exemplos, o acelerômetro 2022 pode compreender um acelerômetro de eixo geométrico único, duplo ou triplo. Adicionalmente, o segmento de aceleração 2002c pode compreender um ou mais sensores de inércia para detectar e medir a aceleração, inclinação, impacto, vibração, rotação, e múltiplos graus-de-liberdade (DoF). Um sensor de inércia adequado pode compreender um acelerômetro (eixo geométrico único, duplo ou triplo), um magnetômetro para medir um campo magnético no espaço como o campo magnético da Terra, e/ou um giroscópio para medir a velocidade angular.
[0198] Em um aspecto, o processador de segurança 2004 é con figurado para implementar uma função de vigilância com relação a um ou mais segmentos de circuito 2002c a 2002h, como, por exemplo, o segmento do circuito do motor 2002g. Neste sentido, o processador de segurança 2004 emprega a função de vigilância para detectar e se recuperar de falhas do processador primário 2006. Durante o funcionamento normal, o processador de segurança 2004 monitora as falhas do hardware ou erros de programa do processador primário 2006 e inicia a ação ou ações corretivas. As ações corretivas podem incluir a colocação do processador primário 2006 em um estado seguro e a restauração do funcionamento normal do sistema. Em um exemplo, o processador de segurança 2004 é acoplado a ao menos um primeiro sensor. O primeiro sensor mede uma primeira propriedade do instrumento cirúrgico 10 (Figuras 1 a 4). Em alguns exemplos, o processador de segurança 2004 é configurado para comparar a propriedade medida do instrumento cirúrgico 10 a um valor predeterminado. Por exemplo, em um exemplo, um codificador de posição giratória de ângulo magnético 2040a é acoplado ao processador de segurança 2004. O codificador de posição giratória de ângulo magnético 2040a fornece informações sobre a velocidade e a posição do motor ao processador de segurança 2004. O processador de segurança 2004 monitora o codificador de posição giratória de ângulo magnético 2040a e compara o valor a um valor de velocidade e/ou posição máximo e evita a operação do motor 2048 acima dos valores predeterminados. Em alguns exemplos, os valores predeterminados são calculados com base na velocidade e/ou posição em tempo real do motor 2048, calculados a partir de valores fornecidos por um segundo codificador de posição giratória de ângulo magnético 2040b em comunicação com o processador primário 2006, e/ou fornecidos ao processador de segurança 2004 a partir, por exemplo, de um módulo de memória acoplado ao processador de segurança 2004.
[0199] Em alguns aspectos, um segundo sensor é acoplado ao processador primário 2006. O segundo sensor é configurado para medir a primeira propriedade física. O processador de segurança 2004 e o processador primário 2006 são configurados para fornecer um sinal indicativo do valor do primeiro sensor e do segundo sensor, respectivamente. Quando o processador de segurança 2004 ou o processador primário 2006 indica um valor fora de um intervalo aceitável, o circuito segmentado 2000 impede o funcionamento de ao menos um dos segmentos de circuito 2002c a 2002h, como, por exemplo, o segmento do circuito do motor 2002g. Por exemplo, no exemplo ilustrado nas Figuras 16A e 16B, o processador de segurança 2004 é acoplado a um primeiro codificador de posição de ângulo magnético giratório 2040a e o processador primário 2006 é acoplado a um segundo codificador de posição de ângulo magnético giratório 2040b. Os codificadores de posição de ângulo magnético giratório 2040a e 2040b podem compreender qualquer sensor de posição do motor adequado, como, por exemplo, uma entrada giratória de ângulo magnético que compreende uma saída de seno e cosseno. Os codificadores de posição de ângulo magnético giratório 2040a e 2040b fornecem os respectivos sinais ao processador de segurança 2004 e ao processador primário 2006 indicativas da posição do motor 2048.
[0200] O processador de segurança 2004 e o processador primá rio 2006 geram um sinal de ativação quando os valores do primeiro codificador de posição de ângulo magnético giratório 2040a e do segundo codificador de posição de ângulo magnético giratório 2040b estão dentro de um intervalo predeterminado. Quando o processador primário 2006 ou o processador de segurança 2004 detectam um valor fora do intervalo predeterminado, o sinal de ativação é interrompido e o funcionamento de ao menos um dos segmentos do circuito 2002c a 2002h, como, por exemplo, o segmento do circuito do motor 2002g, é interrompido e/ou impedido. Por exemplo, em alguns exemplos, o sinal de ativação do processador primário 2006 e o sinal de ativação do processador de segurança 2004 são acoplados a uma porta AND. A porta AND é acoplada a uma chave de alimentação do motor 2020. A porta AND mantém a chave de alimentação do motor 2020 em uma posição fechada ou na posição quando o sinal de ativação do processador de segurança 2004 e do processador primário 2006 são altos, indicando um valor dos codificadores de posição de ângulo magnético giratório 2040a, 2040b dentro do intervalo predeterminado. Quando qualquer um dos codificadores de posição de ângulo magnético giratório 2040a e 2040b detecta um valor fora do intervalo predeterminado, o sinal de ativação daquele codificador de posição de ângulo magnético giratório 2040a e 2040b é baixo e a saída da porta AND é baixa, abrindo a chave de alimentação do motor 2020. Em alguns exemplos, o valor do primeiro codificador de posição de ângulo magnético giratório 2040a e do segundo codificador de posição de ângulo magnético giratório 2040b é comparado, por exemplo, pelo processador de segurança 2004 e/ou pelo processador primário 2006. Quando os valores do primeiro sensor e do segundo sensor são diferentes, o processador de segurança 2004 e/ou o processador primário 2006 podem impedir o funcionamento do segmento do circuito do motor 2002g.
[0201] Em alguns aspectos, o processador de segurança 2004 re cebe um sinal indicativo do valor do segundo codificador de posição de ângulo magnético giratório 2040b e compara o valor do segundo sensor ao valor do primeiro sensor. Por exemplo, em um aspecto, o processador de segurança 2004 é acoplado diretamente a um primeiro codificador de posição de ângulo magnético giratório 2040a. Um segundo codificador de posição de ângulo magnético giratório 2040b é acoplado a um processador primário 2006, que fornece o valor do segundo codificador de posição de ângulo magnético giratório 2040b ao processador de segurança 2004 e/ou acoplado diretamente ao processador de segurança 2004. O processador de segurança 2004 com-para o valor do primeiro codificador de posição giratória de ângulo magnético 2040 ao valor do segundo codificador de posição giratória do ângulo magnético 2040b. Quando o processador de segurança 2004 detecta uma disparidade entre o primeiro codificador de posição de ângulo magnético giratório 2040a e o segundo codificador de posição de ângulo magnético giratório 2040b, o processador de segurança 2004 pode interromper o funcionamento do segmento do circuito do motor 2002g, por exemplo, cortando a energia enviada ao segmento do circuito do motor 2002g.
[0202] Em alguns aspectos, o processador de segurança 2004 e/ou o processador primário 2006 é acoplado a um primeiro codificador de posição de ângulo magnético giratório 2040a configurado para medir uma primeira propriedade de um instrumento cirúrgico e um segundo codificador de posição de ângulo magnético giratório 2040b configurado para medir uma segunda propriedade do instrumento cirúrgico. A primeira propriedade e a segunda propriedade compreendem uma relação predeterminada quando o instrumento cirúrgico está operando normalmente. O processador de segurança 2004 monitora a primeira propriedade e a segunda propriedade. Quando um valor da primeira propriedade e/ou da segunda propriedade inconsistente com a relação predeterminada é detectado, ocorre uma falha. Quando ocorre uma falha, o processador de segurança 2004 efetua ao menos uma ação, como, por exemplo, impedir a operação de ao menos um dos segmentos de circuito, executando uma operação predeterminada e/ou reajustando o processador primário 2006. Por exemplo, o processador de segurança 2004 pode abrir a chave de alimentação do motor 2020 para cortar a alimentação para o segmento do circuito do motor 2002g quando uma falha é detectada.
[0203] Em um aspecto, o processador de segurança 2004 é confi gurado para executar um algoritmo de controle independente. Em fun-cionamento, o processador de segurança 2004 monitora o circuito segmentado 2000 e é configurado para controlar e/ou sobrepor os sinais de outros componentes do circuito, como, por exemplo, o processador primário 2006, independentemente. O processador de segurança 2004 pode executar um algoritmo pré-programado e/ou pode ser atualizado ou programado instantaneamente durante o funcionamento com base em uma ou mais ações e/ou posições do instrumento cirúrgico 10. Por exemplo, em um exemplo, o processador de segurança 2004 é reprogramado com novos parâmetros e/ou algoritmos de segurança cada vez que um novo eixo de acionamento e/ou atuador de extremidade é acoplado ao instrumento cirúrgico 10. Em alguns exemplos, um ou mais valores de segurança armazenados pelo processador de segurança 2004 são duplicados pelo processador primário 2006. A detecção de erro bidirecional é feita para assegurar que os valores e/ou parâmetros armazenados pelo processador de segurança 2004 ou pelo processador primário 2006 são corretos.
[0204] Em alguns aspectos, o processador de segurança 2004 e o processador primário 2006 implementam uma verificação de segurança redundante. O processador de segurança 2004 e o processador primário 2006 fornecem sinais periódicos que indicam funcionamento normal. Por exemplo, durante o funcionamento, o processador de segurança 2004 pode indicar ao processador primário 2006 que o processador de segurança 2004 está executando o código e está funcionando normalmente. O processador primário 2006 pode, de modo se-melhante, indicar ao processador de segurança 2004 que o processador primário 2006 está executando o código e funcionando normalmente. Em alguns exemplos, a comunicação entre o processador de segurança 2004 e o processador primário 2006 ocorre em um intervalo predeterminado. O intervalo predeterminado pode ser constante ou pode ser variável com base no estado do circuito e/ou no funciona-mento do instrumento cirúrgico 10.
[0205] As Figuras 17A e 17B e ilustram outro aspecto de um circui to de controle segmentado 3000 configurado para controlar o instrumento cirúrgico energizado 10, ilustrado nas Figuras 1 a 14. Conforme mostrado nas Figuras 14 e 17B, o conjunto de cabo 14 pode incluir um motor elétrico 3014, que pode ser controlado por um acionador do motor 3015 e pode ser empregado pelo sistema de disparo do instrumento cirúrgico 10. Em várias formas, o motor elétrico 3014 pode ser um motor de acionamento de corrente contínua com escovas, com uma rotação máxima de, aproximadamente, 25.000 RPM, por exemplo. Em outras disposições, o motor elétrico 3014 pode incluir um motor sem escovas, um motor sem fio, um motor síncrono, um motor de passo ou qualquer outro tipo de motor elétrico adequado. Em certos casos, o acionador do motor 3015 pode compreender um transístor de efeito de campo (FET) de ponte-H 3019, conforme ilustrado nas Figuras 17A e 17B, por exemplo. O motor elétrico 3014 pode ser alimentado por um conjunto de alimentação 3006, que pode ser montado de modo liberá- vel ao conjunto de cabo 14. O conjunto de alimentação 3006 é configurado para suprir controle da energia ao instrumento cirúrgico 10. O conjunto de alimentação 3006 pode compreender uma bateria que pode incluir várias células de bateria conectadas em série, as quais podem ser usadas como a fonte de energia para energizar o instrumento cirúrgico 10. Nessa configuração, o conjunto de alimentação 3006 pode ser chamado de bateria. Em determinadas circunstâncias, as células de bateria do conjunto de alimentação 3006 pode ser substituível e/ou recarregável. Em ao menos um exemplo, as células de bateria podem ser baterias de íon de lítio que podem ser separavelmente acopláveis ao conjunto de alimentação 3006.
[0206] Exemplos de sistemas de acionamento e de sistemas de fechamento adequados para uso com o instrumento cirúrgico 10 são revelados na Publicação de Pedido de Patente US N° 2014/0263539, intitulado "CONTROL SYSTEMS FOR SURGICAL INSTRUMENTS", a qual está aqui incorporada a título de referência em sua totalidade. Por exemplo, o motor elétrico 3014 pode incluir um eixo de acionamento giratório (não mostrado), que, de modo operacional, faz interface com um conjunto redutor de engrenagem que pode ser montado em engate de acoplamento com um conjunto, ou cremalheira, de dentes de acionamento em um elemento de acionamento longitudinalmente móvel. Em uso, uma polaridade de tensão fornecida pela bateria pode operar o motor elétrico 3014 para acionar o elemento de acionamento longitudinalmente móvel para acionar o atuador de extremidade 300. Por exemplo, o motor elétrico 3014 pode ser configurado para acionar o elemento de acionamento longitudinalmente móvel para avançar um mecanismo de disparo para disparar grampos no tecido capturado pelo atuador de extremidade 300 a partir de um cartucho de grampos montado com o atuador de extremidade 300 e/ou para avançar um elemento de corte para cortar o tecido capturado pelo atuador de ex- tremidade 300, por exemplo.
[0207] Conforme ilustrado nas Figuras 17A e 17B, e conforme descrito em mais detalhes abaixo, o conjunto de alimentação 3006 pode incluir um controlador de gerenciamento de energia que pode ser configurado para modular a energia de saída do conjunto de alimentação 3006 para liberar uma primeira energia de saída para energizar o motor elétrico 3014 para avançar o elemento de corte, enquanto o conjunto de eixo de acionamento intercambiável 200 é acoplado ao conjunto de cabo 14 (Figura 1) e para liberar uma segunda energia de saída para energizar o motor elétrico 3014 para avançar o elemento de corte, enquanto o conjunto de eixo de acionamento intercambiável 200’ é acoplado ao conjunto de cabo 14, por exemplo. Essa modulação pode ter o benefício de evitar a transmissão de energia excessiva ao motor elétrico 3014 além dos requisitos de um conjunto de eixo de acionamento intercambiável que é acoplado ao conjunto de cabo 14.
[0208] Em determinadas circunstâncias, a interface 3024 pode fa cilitar a transmissão do um ou mais sinais de comunicação entre o controlador de gerenciamento de energia 3016 e o controlador do conjunto de eixo de acionamento 3022 por rotear estes sinais de comunicação através de um controlador principal 3017 residente no conjunto de cabo 14 (Figura 1), por exemplo. Em outros casos, a interface 3024 pode facilitar uma linha de comunicação direta entre o controlador de gerenciamento de energia 3016 e o controlador do conjunto de eixo de acionamento 3022 através do conjunto de cabo 14, enquanto o conjunto de eixo de acionamento intercambiável 200 (Figura 1) e o conjunto de alimentação 3006 estão acoplados ao conjunto de cabo 14.
[0209] Em um caso, o controlador principal 3017 pode ser qual quer processador de núcleo único ou de múltiplos núcleos, como aqueles conhecidos sob o nome comercial de ARM Cortex pela Texas Instruments. Em um caso, o instrumento cirúrgico 10 (Figuras 1 a 4) pode compreender um controlador de gerenciamento de energia 3016 como, por exemplo, uma plataforma de controlador de segurança que compreende duas famílias à base de controladores, como TMS570 e RM4x conhecidas sob o nome comercial de Hercules ARM Cortex R4, também disponível junto à Texas Instruments. Entretanto, outros substitutos adequados para controladores e processadores de segurança podem ser empregados, sem limitação. Em um caso, o processador de segurança 2004 (Figura 16a) pode ser configurado especificamente para as aplicações críticas de segurança IEC 61508 e ISO 26262, dentre outras, para fornecer recursos avançados de segurança integrada enquanto proporciona desempenho, conectividade e opções de memória escalonáveis.
[0210] Em certos casos, o controlador principal 3017 pode ser um controlador de núcleo único ou de múltiplos núcleos LM4F230H5QR conforme descrito em conexão com as Figuras. 15 a 17B.
[0211] A Figura 18 é um diagrama de blocos do instrumento cirúr gico da Figura 1 ilustrando interfaces entre o conjunto de cabo 14 (Figura 1) e o conjunto de alimentação e entre o conjunto de cabo 14 e o conjunto de eixo de acionamento intercambiável. Conforme mostrado na Figura 18, o conjunto de alimentação 3006 pode incluir um circuito de gerenciamento de energia 3034 que pode compreender o controlador de gerenciamento de energia 3016, um modulador de energia 3038 e um circuito sensor de corrente 3036. O circuito de gerenciamento de energia 3034 pode ser configurado para modular a energia de saída da bateria 3007 com base nas necessidades de energia do conjunto de eixo de acionamento intercambiável 200 (Figura 1) enquanto o conjunto de eixo de acionamento intercambiável 200 e o conjunto de alimentação 3006 são acoplados ao conjunto de cabo 14. Por exemplo, o controlador de gerenciamento de energia 3016 pode ser programado para controlar o modulador de energia 3038 da saída de energia do conjunto de alimentação 3006 e o circuito sensor de corrente 3036 pode ser empregado para monitorar a saída de energia do conjunto de alimentação 3006 para fornecer retroinformação ao controlador de gerenciamento de energia 3016 sobre a saída de energia da bateria 3007 para que o controlador de gerenciamento de energia 3016 possa ajustar a saída de energia do conjunto de alimentação 3006 para manter uma saída desejada.
[0212] É digno de nota que o controlador de gerenciamento de energia 3016 e/ou o controlador do conjunto de eixo de acionamento 3022 podem compreender, cada um, um ou mais processadores e/ou unidades de memória que podem armazenar vários módulos de software. Embora certos módulos e/ou blocos do instrumento cirúrgico 10 (Figura 1) possam ser descritos a título de exemplo, pode ser entendido que um número maior ou menor de módulos e/ou blocos pode ser utilizado. Adicionalmente, embora vários casos possam ser descritos em termos de módulos e/ou blocos para facilitar a descrição, estes módulos e/ou blocos podem ser implementados por um ou mais componentes de hardware, por exemplo, processadores, processadores de sinal digital (DSPs), dispositivos de lógica programável (PLDs), circuitos integrados específicos da aplicação (ASICs), circuitos, registros e/ou componentes de software, por exemplo, programas, sub-rotinas, lógicas e/ou combinações de componentes de hardware e software.
[0213] Em determinados casos, o instrumento cirúrgico 10 (Figu ras 1 a 4) pode compreender um dispositivo de saída 3042 que pode incluir um ou mais dispositivos para fornecer uma retroinformação sensorial a um usuário. Esses dispositivos podem compreender, por exemplo, dispositivos de retroinformação visual (por exemplo, um monitor com tela de LCD, indicadores em LED), dispositivos de retroin- formação auditiva (por exemplo, um alto-falante, uma campainha) ou dispositivos de retroinformação tátil (por exemplo, atuadores hápticos). Em determinadas circunstâncias, o dispositivo de saída 3042 pode compreender uma tela 3043 que pode estar incluída no conjunto de cabo 14 (Figura 1). O controlador do conjunto de eixo de acionamento 3022 e/ou o controlador de gerenciamento de energia 3016 podem fornecer retroinformação a um usuário do instrumento cirúrgico 10 através do dispositivo de saída 3042. A interface 3024 pode ser configurada para conectar o controlador do conjunto de eixo de acionamento 3022 e/ou o controlador de gerenciamento de energia 3016 ao dispositivo de saída 3042. O leitor apreciará que o dispositivo de saída 3042 pode, em vez disso, ser integrado com o conjunto de alimentação 3006. Nestas circunstâncias, a comunicação entre o dispositivo de saída 3042 e o controlador do conjunto de eixo de acionamento 3022 pode ser feita através da interface 3024 enquanto o conjunto de eixo de acionamento intercambiável 200 é acoplado ao conjunto de cabo 14.
[0214] Tendo descrito um instrumento cirúrgico 10 (Figuras 1 a 4) e um ou mais circuitos segmentados 2000, 3000 para controlar o seu funcionamento, a descrição agora se refere a várias configurações es-pecíficas do instrumento cirúrgico 10 e de um circuito segmentado 2000 (ou 3000).
[0215] Em vários aspectos, a presente invenção fornece técnicas para armazenamento e uso de dados. Em um aspecto, o armazenamento e o uso de dados são baseados em múltiplos níveis de limiares de ação. Esses limiares incluem limites de limiares fundamentais superiores e inferiores, o limiar fundamental que desliga o motor ou ativa o retorno é a corrente, a pressão, a carga de disparo, o torque é excedido e, alternativamente, enquanto executa dentro dos limites, o dispositivo compensa automaticamente o carregamento do motor.
[0216] Em um aspecto, o instrumento cirúrgico 10 (descrito em co nexão com as Figuras 1 a 18) pode ser configurado para monitorar os limites de limiar fundamental superiores e inferiores para manter as cargas do grampo de fechamento máximas e mínimas dentro de limites aceitáveis. Se um mínimo não for alcançado, o instrumento cirúrgico 10 não pode iniciar ou se cair abaixo do mínimo é necessária uma ação do usuário. Se a carga do grampo estiver em um nível adequado, mas cair ao mínimo durante o disparo, o instrumento cirúrgico 10 pode ajustar a velocidade do motor ou avisar ao usuário. Se o limite mínimo for violado durante a operação, a unidade pode avisar que o disparo pode não ser completamente como antecipado. O instrumento cirúrgico 10 pode, também, ser configurado para monitorar, quando a tensão da bateria cai abaixo do limite fundamental inferior, se a energia da bateria restante é apenas capaz de retornar o dispositivo ao estado estacionado no feixe com perfil em I. A força de abertura na bigorna pode ser empregada para detectar congestionamentos no atuador de extremidade. Alternativamente, o instrumento cirúrgico 10 pode ser configurado para monitorar quando a corrente do motor sobe ou a velocidade relacionada diminui, então o controle do motor aumenta a largura de pulso ou a modulação de frequência para manter a velocidade constante.
[0217] Em um outro aspecto, o instrumento cirúrgico 10 pode (Fi gura 1) ser configurado para detectar um limiar fundamental de drenagem de corrente, pressão, carga de disparo e torque de modo que, quando um desses limiares são excedidos, o instrumento cirúrgico 10 desliga o motor ou faz com que o motor retorne a faca para uma posição pré-disparada. Um limiar secundário, que é inferior ao limiar fundamental, pode ser empregado para alterar o programa de controle do motor para acomodar mudanças nas condições, alterando os parâmetros de controle do motor. Um limiar marginal pode ser configurado como uma função degrau ou uma função de rampa com base em uma resposta fornecida a outro contador ou entrada. Por exem- plo, no caso de esterilização, não há mudanças entre 0 e 200 ciclos de esterilização, reduzir o motor a 1% por uso de 201 a 400 ciclos de esterilização e evitar o uso acima de 400 ciclos de esterilização. A velocidade do motor também pode ser variada com base no vão de tecido e no consumo de corrente.
[0218] Existem muitos parâmetros que podem influenciar a função ideal de um dispositivo de grampeador reutilizável equipado com motor. A maioria desses parâmetros tem um limiar fundamental máximo e/ou mínimo além do qual o dispositivo não deve ser operado. No entanto, existem também limites marginais que podem influenciar a operação funcional do dispositivo. Esses múltiplos limites, de múltiplos parâmetros, podem fornecer um efeito sobreposto e cumulativo no programa de operações do dispositivo.
[0219] Consequentemente, a presente invenção se refere a ins trumentos cirúrgicos e, em várias circunstâncias, a instrumentos cirúrgicos de grampeamento e corte, e a cartuchos de grampos para os mesmos, que são projetados para grampear e cortar tecidos.
[0220] O desempenho eficiente de um dispositivo eletromecânico depende de vários fatores. Um deles é o envelope operacional, isto é, a faixa de parâmetros, condições e eventos em que o dispositivo realiza as funções pretendidas. Por exemplo, para um dispositivo alimentado por um motor acionado por corrente elétrica, pode haver uma região operacional acima de um certo limiar de corrente elétrica onde o dispositivo funciona de forma mais ineficiente do que o desejado. Por outro lado, pode haver um "limite de velocidade" superior, acima do qual há diminuição da eficiência. Esse limiar superior pode ter valor na prevenção de ineficiências substanciais ou mesmo na degradação do dispositivo.
[0221] Pode haver limiares dentro de um envelope operacional, no entanto, que podem formar regiões exploráveis para melhorar a efici- ência dentro dos estados operacionais. Em outras palavras, pode haver regiões onde o dispositivo pode se ajustar e desempenhar melhor dentro de um envelope operacional definido (ou sub-envelope). Essa região pode ser uma entre um limiar marginal e um limiar fundamental. Além disso, essas regiões podem incluir "pontos ideais" ou uma faixa ou ponto opcional predeterminado. Essas regiões também podem compreender uma grande faixa dentro da qual o desempenho é julgado adequado.
[0222] Um limiar fundamental pode ser definido, acima do qual ou abaixo do qual uma ação ou ações poderiam ser tomadas (ou refreadas de serem tomadas), como parar o dispositivo. Além disso, um limiar marginal ou limiares marginais podem ser definidos, acima do qual ou abaixo dos quais uma ação ou ações poderiam ser tomadas (ou refreadas de serem tomadas). A título de exemplo não limitador, um limiar marginal pode ser estabelecido para definir onde o consumo de corrente do motor excede 75% do limiar fundamental. A superação do limiar marginal pode resultar, por exemplo, no início do dispositivo para diminuir a velocidade do motor a uma taxa crescente à medida que continua a subir em direção ao limiar fundamental.
[0223] Vários mecanismos podem ser utilizados para realizar o(s) ajuste(s) tomado(s) como resultado de superação de um limiar. Por exemplo, o ajuste pode refletir uma função degrau. Também pode refletir uma função em rampa. Outras funções podem ser utilizadas.
[0224] Em vários aspectos, para melhorar o desempenho por me canismos adicionais, um limiar de sobreposição pode ser definido. Um limiar de sobreposição pode compreender um ou mais limiares definidos por múltiplos parâmetros. Um limiar de sobreposição pode resultar em uma ou mais de uma entrada para a geração de um outro limite ou limites. Um limiar de sobreposição pode ser predeterminado ou gerado dinamicamente, como no tempo de execução. O limiar de sobreposi- ção pode ter efeito quando o limiar é definido por várias entradas. Por exemplo, conforme o número de ciclos de esterilização excede 300 (o limiar marginal), mas não 500 (o limiar fundamental), o dispositivo opera o motor mais lento. Então, à medida que o consumo de corrente ultrapassa seu limite marginal de 75%, isso multiplica a diminuição operando até mais lentamente.
[0225] A Figura 19 ilustra um diagrama lógico de um sistema 4311 para a avaliação do afiamento de um gume cortante 182 (Figura 14) de um instrumento cirúrgico 10 (Figuras 1 a 4), de acordo com vários exemplos. Em certos casos, o sistema 4311 pode avaliar o afiamento do gume cortante 182 testando a capacidade do gume cortante 182 de ser avançado através do membro de teste de afiamento 4302. Por exemplo, o sistema 4311 pode ser configurado para observar o período de tempo que o gume cortante 182 leva para transeccionar totalmente e/ou passar completamente através de ao menos uma porção predeterminada de um membro de teste de afiamento 4302. Se o período de tempo observado ultrapassar um limiar predeterminado, o circuito 4310 pode concluir que o afiamento do gume cortante 182 caiu abaixo de um nível aceitável, por exemplo.
[0226] Em um aspecto, o elemento de teste de afiamento 4302 pode ser empregado para testar o afiamento do gume cortante 182 (Figura 14). Em certos casos, o elemento de teste de afiamento 4302 pode ser fixado e/ou integrado ao corpo do cartucho 194 (Figura 14) do cartucho de grampos cirúrgicos 304 (Figuras 1, 2 e 15), por exemplo. Em certos casos, o elemento de teste de afiamento 4302 pode estar disposto na porção proximal do cartucho de grampos cirúrgicos 304, por exemplo. Em certos casos, o elemento de teste de afiamento 4302 pode estar disposto sobre uma plataforma do cartucho ou um corpo do cartucho 194 do cartucho de grampos cirúrgicos 304, por exemplo.
[0227] Em certos casos, uma célula de carga 4335 pode ser confi gurada para monitorar a força (Fx) aplicada ao gume cortante 182 (Figura 14) enquanto o gume cortante 182 está engatado ao e/ou em contato com o elemento de teste de afiamento 4302, por exemplo. O leitor entenderá que a força (Fx) aplicada pelo membro de teste de afi- amento 4302 ao gume cortante 182 enquanto o gume cortante 182 está engatado ao e/ou em contato com o membro de teste de afiamen- to 4302 pode depender, ao menos em parte, do afiamento do gume cortante 182. Em certos casos, uma diminuição no afiamento do gume cortante 182 pode resultar em um aumento na força (Fx) necessária para que o gume cortante 182 corte ou passe através do membro de teste de afiamento 4302. A célula de carga 4335 do membro de teste de afiamento 4302 pode ser empregada para medir a força (FX) aplicada à borda de corte 182, enquanto que a borda de corte 182 se deslocando por uma distância pré-definida (D) através do membro de teste de afiamento 4302 pode ser empregada para determinar o afiamen- to do gume cortante 182.
[0228] Em certos casos, o sistema 4311 pode incluir um microcon- trolador 4313 ("controlador") que pode incluir um microprocessador 4315 ("processador") e uma ou mais mídias legíveis por computador ou unidades de memória 4317 ("memória"). Em certos casos, a memória 4317 pode armazenar várias instruções de programa que, quando executadas, podem fazer com que o processador 4315 execute uma pluralidade de funções e/ou cálculos aqui descritos. Em certos casos, a memória 4317 pode ser acoplada ao processador 4315, por exemplo. Uma fonte de alimentação 4319 pode ser configurada para fornecer energia ao controlador 4313, por exemplo. Em certos casos, a fonte de energia 4319 pode compreender uma bateria (ou "conjunto de baterias" ou "fonte de energia"), como uma bateria de íons de Li, por exemplo. Em certos casos, o conjunto de baterias pode ser configura- do para ser montado de modo liberável ao conjunto de cabo 14. Várias células de bateria conectadas em série podem ser usadas como a fonte de alimentação 4319. Em certos casos, a fonte de energia 4319 pode ser substituível e/ou recarregável, por exemplo.
[0229] Em certos casos, o controlador 4313 pode ser operacio nalmente acoplado ao sistema de retroinformação e/ou ao mecanismo de travamento 4123, por exemplo.
[0230] O sistema 4311 pode compreender um ou mais sensores de posição. Exemplos de sensores de posição e sistema de posicionamento adequados ao uso com a presente invenção são descritos na publicação do Pedido de Patente US N° de série 2014/0263538, intitulado "SENSOR ARRANGEMENTS FOR ABSOLUTE POSITIONING SYSTEM FOR SURGICAL INSTRUMENTS", que é aqui incorporada, a título de referência, em sua totalidade. Em certos casos, o sistema 4311 pode incluir um primeiro sensor de posição 4321 e um segundo sensor de posição 4323. Em certos casos, o primeiro sensor de posição 4321 pode ser usado para detectar uma primeira posição do gume cortante 182 (Figura 14) em uma extremidade proximal de um elemento de teste de afiamento 4302, por exemplo; e o segundo sensor de posição 4323 pode ser usado para detectar uma segunda posição do gume cortante 182 em uma extremidade distal de um membro de teste de afiamento 4302, por exemplo.
[0231] Em certos casos, o primeiro e o segundo sensores de posi ção 4321 e 4323 podem ser empregados para fornecer o primeiro e o segundo sinal de posição, respectivamente, ao controlador 4313. Será entendido que os sinais de posição podem ser sinais analógicos ou valores digitais com base na interface entre o controlador 4313 e o primeiro e o segundo sensor de posição 4321 e 4323. Em um exemplo, a interface entre o controlador 4313 e o primeiro e o segundo sensor de posição 4321 e 4323 pode ser uma interface de periféricos seri al padrão (SPI, ou "serial peripheral interface"), e os sinais de posição podem ser valores digitais representando a primeira e a segunda posição do gume cortante 182, conforme descrito acima.
[0232] Adicionalmente ao exposto acima, o processador 4315 po de determinar o período de tempo entre a recepção do primeiro sinal de posição e a recepção do segundo sinal de posição. O período de tempo determinado pode corresponder ao tempo necessário para que o gume cortante 182 (Figura 14) avance através de um elemento de teste de afiamento 4302, da primeira posição em uma extremidade proximal do elemento de teste de afiamento 4302, por exemplo, até uma segunda posição em uma extremidade distal do elemento de teste de afiamento 4302, por exemplo. Em ao menos um exemplo, o controlador 4313 pode incluir um elemento de tempo que pode ser ativado pelo processador 4315 ao receber o primeiro sinal de posição, e desativado ao receber o segundo sinal de posição. O período de tempo entre a ativação e a desativação do elemento de tempo pode correspon-der ao tempo necessário para que o gume cortante 182 avance da primeira posição à segunda posição, por exemplo. O elemento de tempo pode compreender um relógio em tempo real, um processador configurado para implementar uma função de tempo ou qualquer outro circuito de temporização adequado.
[0233] Em vários casos, o controlador 4313 pode comparar com um valor limiar predefinido o período de tempo necessário para que o gume cortante 182 (Figura 14) avance da primeira para a segunda posição, a fim de avaliar se o afiamento do gume cortante 182 caiu abaixo de um nível aceitável, por exemplo. Em certos casos, o controlador 4313 pode concluir que o afiamento do gume cortante 182 caiu abaixo de um nível aceitável, se um período de tempo medido exceder o valor de limiar predefinido em 1%, 5%, 10%, 25%, 50%, 100% e/ou mais de 100%, por exemplo.
[0234] A Figura 20 ilustra um diagrama lógico de um sistema 4340 para determinar as forças aplicadas contra um gume cortante de um instrumento cirúrgico 10 (Figuras 1 a 4) por meio de um elemento de teste de afiamento 4302 em diversos níveis de afiamento, de acordo com vários aspectos. Com referência à Figura 20, em vários casos, um motor elétrico 4331 pode acionar a barra de disparo 172 (Figura 20) para avançar o gume cortante 182 durante um curso de disparo e/ou retrair o gume cortante 182 (Figura 14) durante um curso de retorno, por exemplo. Um acionador de motor 4333 pode controlar o motor elétrico 4331; e um controlador como, por exemplo, o controlador 4313 pode estar em comunicação de sinais com o acionador do motor 4333. Conforme o motor elétrico 4331 avança o gume cortante 182, o controlador 4313 pode determinar a corrente drenada pelo motor elétrico 4331, por exemplo. Em tais casos, a força necessária para avançar o gume cortante 182 pode corresponder à corrente drenada pelo motor elétrico 4331, por exemplo. Ainda com referência à Figura 20, o con-trolador 4313 do instrumento cirúrgico 10 pode determinar se a corrente drenada pelo motor elétrico 4331 aumenta durante o avanço do gume cortante 182 e, se assim for, pode calcular a porcentagem de aumento da corrente.
[0235] Em certos casos, a corrente drenada pelo motor elétrico 4331 pode aumentar significativamente enquanto o gume cortante 182 (Figura 14) está em contato com o elemento de teste de afiamento 4302, devido à resistência do elemento de teste de afiamento 4302 ao gume cortante 182. Por exemplo, a corrente drenada pelo motor elétrico 4331 pode aumentar significativamente conforme o gume cortante 182 engata, passa e/ou corta através do elemento de teste de afia- mento 4302. O leitor entenderá que a resistência do membro de teste de afiamento 4302 ao gume cortante 182 depende, em parte, do afia- mento do gume cortante 182; e conforme o afiamento do gume cortan- te 182 diminui devido ao uso repetitivo, a resistência do membro de teste de afiamento 4302 ao gume cortante 182 aumentará. Consequentemente, o valor da porcentagem de aumento da corrente drenada pelo motor elétrico 4331 enquanto o gume cortante está em contato com o membro de teste de afiamento 4302 pode aumentar, conforme o afiamento do gume cortante 182 diminui devido ao uso repetitivo, por exemplo.
[0236] Em certos casos, o valor determinado da porcentagem de aumento da corrente drenada pelo motor elétrico 4331 pode ser a porcentagem máxima de aumento detectado na corrente drenada pelo motor 4331. Em vários casos, o controlador 4313 pode comparar o valor determinado da porcentagem de aumento da corrente drenada pelo motor elétrico 4331 com um valor-limite predefinido da porcentagem de aumento da corrente drenada pelo motor elétrico 4331. Se o valor determinado ultrapassar o valor de limiar predefinido, o controlador 4313 pode concluir que o afiamento do gume cortante 182 caiu abaixo de um nível aceitável, por exemplo.
[0237] Em certos casos, conforme ilustrado na Figura 20, o pro cessador 4315 pode estar em comunicação com o sistema de retroin- formação e/ou o mecanismo de travamento, por exemplo. Em certos casos, o processador 4315 pode usar o sistema de retroinformação para alertar um usuário se o valor determinado do aumento percentual da corrente drenada pelo motor elétrico 4331 ultrapassar o valor de limiar predefinido, por exemplo. Em certos casos, o processador 4315 pode usar o mecanismo de travamento para impedir o avanço do gume cortante 182 (Figura 14) se o valor determinado da porcentagem de aumento da corrente drenada pelo motor elétrico 4331 ultrapassar o valor de limiar predefinido, por exemplo. Em certos casos, o sistema 4311 pode incluir o primeiro e o segundo sensor de posição 4321 e 4323. O instrumento cirúrgico 10 (Figuras 1 a 4) pode incluir uma célu- la de carga 4335.
[0238] Em vários casos, o controlador 4313 pode usar um algorit mo para determinar a alteração na corrente drenada pelo motor elétrico 4331. Por exemplo, um sensor de corrente pode detectar a corrente drenada pelo motor elétrico 4331 durante o curso de disparo. O sensor de corrente pode detectar continuamente a corrente drenada pelo motor elétrico e/ou pode detectar de modo intermitente a corrente drenada pelo motor elétrico. Em vários casos, o algoritmo pode comparar a leitura de corrente mais recente com a leitura de corrente imediatamente procedente, por exemplo. Adicional ou alternativamente, o algoritmo pode comparar uma leitura de amostra dentro de um período de tempo X com uma leitura de corrente anterior. Por exemplo, o algoritmo pode comparar a leitura de amostra com uma leitura de amostra anterior dentro de um período anterior de tempo X, como o período de tempo imediatamente procedente X, por exemplo. Em outros casos, o algoritmo pode calcular a tendência média de corrente drenada pelo motor. O algoritmo pode calcular a drenagem média de corrente durante um período de tempo X que inclui a leitura de corrente mais recente, por exemplo, e pode comparar aquela drenagem média de corrente com a drenagem média de corrente durante um período de tempo X imediatamente procedente, por exemplo.
[0239] Em certos casos, a célula de carga 4335 (Figuras 19 e 20) pode ser configurada para monitorar a força (Fx) aplicada ao gume cortante 182 (Figura 14) enquanto o gume cortante 182 está engatado ao e/ou em contato com o elemento de teste de afiamento 4302 (Figuras 19 e 20), por exemplo. O leitor entenderá que a força (Fx) aplicada pelo membro de teste de afiamento 4302 ao gume cortante 182 enquanto o gume cortante 182 está engatado ao e/ou em contato com o membro de teste de afiamento 4302 pode depender, ao menos em parte, do afiamento do gume cortante 182. Em certos casos, uma di- minuição no afiamento do gume cortante 182 pode resultar em um aumento na força (Fx) necessária para que o gume cortante 182 corte ou passe através do membro de teste de afiamento 4302. Em certos casos, o controlador 4313 (Figuras 19 e 20) pode comparar um valor máximo da força (Fx) monitorada aplicada ao gume cortante 182 (Figura 14) para um ou mais valores de limiar predefinidos.
[0240] Em certos casos, o gume cortante 182 (Figura 14) pode ser suficientemente afiado para fazer a transeção um tecido capturado compreendendo uma primeira espessura, mas pode não ser suficientemente afiada para fazer a transeção um tecido capturado compreendendo uma segunda espessura maior que a primeira espessura, por exemplo. Em certos casos, um nível de afiamento do gume cortante 182, conforme definido pela força necessária para que o gume cortante 182 transeccione um tecido capturado, pode ser adequado para transeccionar o tecido capturado se o tecido capturado compreender uma espessura de tecido que está em um intervalo específico de espessuras de tecido, por exemplo. Em certos casos, a memória 4317 (Figuras 19 e 20) pode armazenar um ou mais intervalos predefinidos de espessuras de tecido do tecido capturado pelo atuador de extremidade 300; e forças de limiar predefinido associadas aos intervalos predefinidos de espessura de tecidos. Em certos casos, cada força de limiar predefinido pode representar um nível mínimo de afiamento do gume cortante 182 que é adequado para tran- seccionar um tecido capturado compreendendo uma espessura de tecido (Tx) abrangida pelo intervalo de espessuras de tecidos que está associado à força de limiar predefinido. Em certos casos, quando a força (Fx) necessária para que o gume cortante 182 transeccio- ne o tecido capturado, compreendendo a espessura de tecido (Tx), exceder a força de limiar predefinido associada ao intervalo predefi- nido de espessuras de tecidos que abrange a espessura de tecido (Tx), o gume cortante 182 pode não estar suficientemente afiado para fazer a transeção do tecido capturado, por exemplo.
[0241] Em vários aspectos, a presente invenção fornece técnicas para determinar a compressão do tecido e técnicas adicionais para controlar o funcionamento do instrumento cirúrgico 10 (descrito em relação às Figuras 1 a 18) em resposta à compressão do tecido. Em um exemplo, os cartuchos podem ser configurados para definir o algoritmo de compressão variável que aciona o instrumento cirúrgico 10 para fechar de forma diferente com base no tipo de tecido e espessura pretendida. Em outro exemplo, o instrumento cirúrgico 10 aprende com o uso do cirurgião e com o perfil de compressão do tecido original para adaptar o fechamento com base na carga experimentada durante o disparo. Quando o instrumento cirúrgico 10 é submetido a cargas de compressão de tecido que são significativamente diferentes daquelas para este tipo de cartucho, o instrumento destaca isto ao usuário.
[0242] O ajuste ativo de um algoritmo de controle do motor ao lon go do tempo, conforme o instrumento se torna aclimatado ao uso hospitalar pode otimizar a expectativa de vida de uma bateria recarregá- vel, bem como se ajustar aos requisitos do tecido/procedimento de minimizar o fluxo tecidual, melhorando assim a formação de grampos na vedação do tecido.
[0243] Consequentemente, a presente invenção se refere a ins trumentos cirúrgicos e, em várias circunstâncias, a instrumentos cirúrgicos de grampeamento e corte, e a cartuchos de grampos para os mesmos, que são projetados para grampear e cortar tecidos. Por exemplo, em vários aspectos, a presente descrição apresenta um instrumento endocirúrgico configurado para detectar o tipo de cartucho ou o vão do tecido para permitir ao cabo ajustar os algoritmos e fechamento e disparo para ajuste para as propriedades desejadas do tecido. Este ajuste do algoritmo adaptativo pode "aprender" com as operações do usuário permitindo ao dispositivo reagir e beneficiar dois sistemas diferentes. O primeiro benefício fornecido pelo algoritmo adaptativo apresentado inclui o fluxo de tecido e a formação de grampos. Conforme o dispositivo aprende os hábitos básicos dos usuários e as temporizações das etapas, o dispositivo pode ajustar a velocidade de fechamento e a velocidade de descarga para fornecer uma saída mais consistente e confiável. O segundo benefício fornecido pelo algoritmo adaptativo apresentado está relacionado com o conjunto de bateria. Conforme o dispositivo aprende quantos disparos e em quais condições o instrumento foi usado, o dispositivo pode ajustar as necessidades de corrente do motor/velocidade de uma maneira predefinida para prolongar a vida útil da bateria. Há uma probabilidade substancialmente pequena de que um dispositivo usado em um hospital que realiza procedimentos predominantemente bariátricos seria operado de maneira similar a um dispositivo usado em um hospital que realiza principalmente procedimentos colorretais ou torácicos. Dessa forma, quando o dispositivo é utilizado para realizar um procedimento substancialmente similar, ao longo do tempo, o dispositivo é configurado para aprender e ajustar seu algoritmo de funcionamento para se manter dentro dos envelopes de descarga e fluxo tecidual ideais.
[0244] Uma cirurgia segura e eficaz exige o devido conhecimento do e respeito pelo tecido envolvido. Os médicos estão conscientes de que os ajustes feitos durante a cirurgia podem ser benéficos. Esses ajustes incluem mecanismos para detectar e promover a formação desejável do grampo.
[0245] Os instrumentos endocirúrgicos podem gerar, monitorar e processar uma quantidade substancial de dados durante o seu uso em relação a um procedimento cirúrgico. Tais dados podem ser obtidos a partir do instrumento cirúrgico em si, incluindo o uso da bateria. Adicionalmente, os dados podem ser obtidos a partir das propriedades do tecido com as quais o instrumento cirúrgico interage, incluindo propriedades como compressão do tecido. Adicionalmente, os dados podem ser obtidos a partir da interação do médico com o instrumento cirúrgico em si. O repositório de dados assim obtidos pode ser processado e, se desejado, o instrumento cirúrgico pode ser projetado para se adaptar às circunstâncias de modo a promover um resultado seguro e eficaz ao procedimento cirúrgico atual, bem como determinar o fundamento para o uso produtivo mais generalizado por vários médicos. Tais ajustes adaptativos -- tanto durante um procedimento cirúrgico, e em que instrumento "aprende" com base em padrões de utilização de múltiplos procedimentos cirúrgicos -- pode fornecer vários mecanismos para melhorar o ambiente global de tratamento do paciente.
[0246] A Figura 21 ilustra um aspecto de um processo de adapta ção das operações de um instrumento cirúrgico. Conforme representado na Figura 21, um módulo pode ser fixado 5160 ou de outro modo carregado no instrumento cirúrgico 10 (Figuras 1 a 4). O módulo pode conter um programa que é selecionado ou carregado 5162. Os controles podem ser ativados 5164 de modo que possam estar prontos para operar o instrumento cirúrgico 10. Durante ou após o uso do instrumento cirúrgico 10, as medidas de controle podem ser incluídas para adaptar 5166 um programa. Por exemplo, isso pode incluir o ajuste da taxa de dados no interior do instrumento cirúrgico 10, ou em relação à operação remota do instrumento cirúrgico 10. Isso pode incluir o ajuste de velocidade, como a velocidade na qual a bigorna 306 (Figura 1) e o cartucho de grampos cirúrgicos 304 (Figura 1) se engatam em um movimento de fechamento. Isso pode também incluir um pulso de um emissor e um sensor ou aplicar um pulso de corrente elétrica ao tecido, e a temporização de tais pulsos. Isso pode incluir ajustar um programa para se adaptar à aceleração, como aceleração do instrumento cirúrgico 10, caso ela caia, ou a transição de um modo suspenso. Um programa pode ser adaptado para lidar com uma carga real e/ou esperada com base na força de pinçamento.
[0247] O instrumento cirúrgico 10 (Figuras 1 a 4) pode ser empre gado para completar uma ação 5168, por exemplo, para realizar um procedimento de grampeamento. Os dados podem ser gravados 5170 em locais de memória apropriados do instrumento cirúrgico 10. O comportamento do sensor 5172 pode ser avaliado, como até que ponto um sensor mediu e/ou mede precisamente um parâmetro. Os dados antecipados podem ser avaliados 5174, incluindo, mas não se limitando às propriedades do tecido, período de espera e velocidade de disparo. Os mecanismos anteriormente mencionados aqui revelados podem fornecer uma entrada para adaptar 5166 um programa adicional. Além disso, a identificação de um tecido 5178 pode ser executada com base em propriedades nas propriedades teciduais históricas, reais ou esperadas, e isto pode fornecer uma entrada para adaptar 5166 ainda mais um programa. Além disso, a identificação das propriedades do tecido 5178 pode ser atualizada. Além disso, a entrada medida pelo sensor 5176 durante um procedimento pode ser utilizada como uma entrada adicional para adaptar 5166 ainda mais um programa; tais medições do sensor podem incluir as medições do vão entre a bigorna 306 e o cartucho de grampos cirúrgicos 304 obtendo-se uma medição de um derivado que inclui um derivado de uma função, corrente ou torque.
[0248] O atuador de extremidade 6006 pode ser usado para com primir, cortar, ou grampear o tecido. Com referência agora à Figura 23A, o atuador de extremidade 6030 pode ser posicionado por um médico para circundar o tecido 6032 antes da compressão, corte ou grampeamento. Conforme mostrado na Figura 23A, pode não ser aplicada compressão ao tecido durante a preparação do atuador de extremidade para o uso. Com referência agora à Figura 23B, por meio do engate do cabo (por exemplo, cabo 6002) do endocortador, o médico pode usar o atuador de extremidade 6030 para comprimir o tecido 6032. Em um aspecto, o tecido 6032 pode ser comprimido até seu limiar máximo, conforme mostrado na Figura 23B.
[0249] Com referência à Figura 23A, várias forças podem ser apli cadas ao tecido 6032 pelo atuador de extremidade 6030. Por exemplo, forças verticais F1 e F2 podem ser aplicadas pela bigorna 6034 e pela estrutura de canaleta 6036 do atuador de extremidade 6030 na medida em que o 6032 é comprimido entre os dois. Com referência agora à Figura 23B, forças diagonais e/ou forças laterais também podem ser aplicadas ao tecido 6032 quando comprimido pelo atuador de extremidade 6030. Por exemplo, a força F3 pode ser aplicada. Para finalidade de operação de um dispositivo médico, como um endocortador 6000, pode ser desejável detectar ou calcular as várias formas de compressão sendo aplicadas aos tecidos pelo atuador de extremidade. Por exemplo, o conhecimento de compressão lateral ou vertical pode permitir que o atuador de extremidade aplique uma operação de grampe- amento de forma mais precisa e exata, ou pode informar o operador do endocortador de modo que o endocortador possa ser usado de forma mais segura e conveniente.
[0250] A compressão através do tecido 6032 pode ser determina da a partir de uma impedância do tecido 6032. Em vários níveis de compressão, a impedância Z de tecido 6032 pode aumentar ou diminuir. Pela aplicação de uma tensão V e uma corrente I ao tecido 6032, a impedância Z do tecido 6032 pode ser determinada em vários níveis de compressão. Por exemplo, a impedância Z pode ser calculada dividindo-se a tensão V aplicada pela corrente I.
[0251] Com referência agora à Figura 24, em um aspecto, um ele trodo de RF 6038 pode ser posicionado no atuador de extremidade 6030 (por exemplo, um cartucho de grampos, faca, ou estrutura de ca- naleta do atuador de extremidade 6030). Adicionalmente, um contato elétrico 6040 pode ser posicionado sobre a bigorna 6034 do atuador de extremidade 6030. Em um aspecto, o contato elétrico pode ser posicionado sobre a estrutura de canaleta do atuador de extremidade. Na medida em que o tecido 6032 é comprimido entre a bigorna 6034 e, por exemplo, a estrutura da canaleta 6036 do atuador de extremidade 6030, uma impedância Z do tecido 6032 se altera. A compressão vertical do tecido 6042 causada pelo atuador de extremidade 6030 pode ser medida como uma função da impedância Z do tecido 6032.
[0252] Com referência agora à Figura 25, em um aspecto, um con tato elétrico 6044 pode ser posicionado em uma extremidade oposta da bigorna 6034 do atuador de extremidade 6030 conforme o eletrodo de RF 6038 é posicionado. Na medida em que o tecido 6032 é comprimido entre a bigorna 6034 e, por exemplo, a estrutura da canaleta 6036 do atuador de extremidade 6030, uma impedância Z do tecido 6032 se altera. A compressão de tecido lateral 6046 causada pelo atu- ador de extremidade 6030 pode ser medida como uma função da im- pedância Z do tecido 6032.
[0253] Agora com referência à Figura 26, em um aspecto, o conta to elétrico 6050 pode ser posicionado sobre a bigorna 6034, e o contato elétrico 6052 pode ser posicionado em uma extremidade oposta do atuador de extremidade 6030 na estrutura de canaleta 6036. O eletrodo de RF 6048 pode ser posicionado lateralmente ao centro ao atua- dor de extremidade 6030. Na medida em que o tecido 6032 é comprimido entre a bigorna 6034 e, por exemplo, a estrutura da canaleta 6036 do atuador de extremidade 6030, uma impedância Z do tecido 6032 se altera. A compressão lateral ou compressões angulares 6054 e 6056 em cada lado do eletrodo de RF 6048 pode ser causada pelo atuador de extremidade 6030 e pode ser medida como uma função de diferentes impedâncias Z do tecido 6032, com base no posicionamento relativo do eletrodo de RF 6048 e dos contatos elétricos 6050 e 6052.
[0254] De acordo com uma ou mais das técnicas e características descritas na presente invenção, e como discutido acima, um eletrodo de RF pode ser usado como um sensor de RF. Com referência agora à Figura 27, em um aspecto, um sensor de RF 6062 pode ser posicionado sobre um cartucho de grampos 6060 inserido em uma estrutura de canaleta 6066 de um atuador de extremidade. O eletrodo de RF pode funcionar a partir de uma linha de transmissão de energia elétrica que pode ser alimentada por uma fonte de alimentação 6064 em um cabo (por exemplo, cabo 6002) de um endocortador.
[0255] Com referência agora à Figura 28, em um aspecto, os ele trodos de RF 6074 e 6076 podem ser posicionados em um cartucho de grampos 6072 inserido em uma estrutura de canaleta 6078 de um atua- dor de extremidade 6070. Como mostrado, o eletrodo de RF 6074 pode ser colocado em uma posição proximal do atuador de extremidade em relação a um cabo de endocortador. Adicionalmente, o eletrodo de RF 6076 pode ser colocado em uma posição distal do atuador de extremidade em relação ao cabo de endocortador. Os eletrodos de RF 6074 e 6076 podem ser usados para medir a compressão vertical, lateral, proximal ou distal em diferentes pontos em um tecido com base na posição de um ou mais contatos elétricos no atuador de extremidade.
[0256] Com referência agora à Figura 29, em um aspecto, os ele trodos de RF 6084 a 6116 podem ser posicionados sobre o cartucho de grampos 6082 inserido na estrutura de canaleta 6080 (ou outro componente de um atuador de extremidade) com base em vários pontos, para os quais a informação de compressão é desejada. Com referência agora à Figura 30, em um aspecto, os eletrodos de RF 6122 a 6140 podem ser posicionados sobre um cartucho de grampos 6120 em pontos distintos, para os quais a informação de compressão é desejada. Com referência agora à Figura 31, os eletrodos de RF 6152 a 6172 podem ser posicionados em diferentes pontos em múltiplas zonas de um cartucho de grampos com base em quão precisas ou exatas as medições de compressão precisam ser. Por exemplo, os eletrodos de RF 6152 a 6156 podem ser posicionados na zona 6158 do cartucho de grampos 6150, dependendo de quão precisas ou exatas as medições de compressão precisam ser na zona 6158. Ainda, os eletrodos de RF 6160 a 6164 podem ser posicionados na zona 6166 do cartucho de grampos 6150, dependendo de quão precisas ou exatas as medições de compressão precisam ser na zona 6166. Adicionalmente, os eletrodos de RF 6168 a 6172 podem ser posicionados na zona 6174 do cartucho de grampos 6150, dependendo de quão precisas ou exatas as medições de compressão precisam ser na zona 6174.
[0257] Os eletrodos de RF discutidos na presente invenção podem ser cabeados através de um cartucho de grampos inserido na estrutura de canaleta. Com referência agora à Figura 32, em um aspecto, um eletrodo de RF pode ter uma "cabeça de cogumelo" 6180 gravada de cerca de 1,0 mm de diâmetro. Embora o eletrodo de RF possa ter a "cabeça de cogumelo" gravada de cerca de 1,0 mm de diâmetro, este destina-se a ser um exemplo não-limitador, e o eletrodo de RF pode ser conformado e dimensionado de modo diferente, dependendo cada aplicação ou design específicos. O eletrodo de RF pode ser conectado, preso a, ou pode formar, um fio condutor 6182. O fio condutor 6182 pode ter cerca de 0,5 mm de diâmetro, ou pode ter um diâmetro maior ou menor com base em uma aplicação ou design específicos. Adicionalmente, o fio condutor pode ter um revestimento isolante 6184. Em um exemplo, o eletrodo de RF pode se projetar através de um cartucho de grampos, estrutura de canaleta, faca, ou outro componente de um atuador de extremidade.
[0258] Com referência agora à Figura 33, os eletrodos de RF po- dem ser cabeados através de uma única parede ou através de múltiplas paredes de um cartucho de grampos ou estrutura de canaleta de um atuador de extremidade. Por exemplo, os eletrodos de RF 6190 a 6194 podem ser cabeados através da parede 6196 do cartucho de grampos, ou estrutura de canaleta de um atuador de extremidade. Um ou mais dos fios 6198 podem ser conectados a, preso a, ou ser parte de, eletrodos de RF 6190 a 6194 e podem passar através da parede 6196 a partir de uma fonte de energia em, por exemplo, um cabo de um endocortador.
[0259] Com referência agora à Figura 34, a fonte de energia pode estar em comunicação com os eletrodos de RF ou pode fornecer energia para os eletrodos de RF através de um fio ou cabo. O fio ou cabo pode unir cada fio individual e levar à fonte de energia. Por exemplo, os eletrodos de RF 6204 a 6212 podem receber energia de uma fonte de energia através de fio ou cabo 6202, que pode passar através do cartucho de grampos 6200 ou de uma estrutura de canaleta de um atuador de extremidade. Em um exemplo, cada um dos eletrodos de RF 6204 a 6212 pode ter seu próprio fio que segue para ou passa através de fio ou cabo 6202. O cartucho de grampos 6200 ou a estrutura de canaleta pode, também, incluir um controlador 6214, como o processador primário 2006 mostrado em conexão com as Figuras 16A e 16B, ou o controlador principal 3017 mostrado em conexão com as Figuras 17A, 17B e 18, por exemplo. Será apreciado que o controlador 6214 deve ser adequadamente dimensionado para se encaixar no cartucho de grampos 6200 ou no fator de forma da estrutura de canaleta. Também, o controlador
[0260] Em vários aspectos, o sistema sensor de compressão de tecido descrito na presente invenção para uso sensor de compressão uso com dispositivos médicos pode incluir um gerador de frequência. O gerador de frequência pode ser localizado em uma placa de circuito do dispositivo médico, tal como um endocortador. Por exemplo, o gerador de frequência pode ser localizado em uma placa de circuito em um eixo de acionamento ou cabo do endocortador. Com referência agora à Figura 35, um exemplo de diagrama de circuito 6220, de acordo com um exemplo da presente invenção é mostrado. Conforme mostrado, o gerador de frequência 6222 pode receber energia ou corrente de uma fonte de alimentação 6221, e pode fornecer um ou mais sinais de RF para um ou mais eletrodos de RF 6224. Conforme discutido anteriormente, o um ou mais eletrodos de RF, podem ser posicionados em vários locais ou componentes no atuador de extremidade e en- docortador, como um cartucho de grampos ou estrutura de canaleta. Um ou mais contatos elétricos, como contatos elétricos 6226 ou 6228 podem ser posicionados em uma estrutura de canaleta ou em uma bi-gorna de um atuador de extremidade. Adicionalmente, um ou mais filtros, como os filtros 6230 ou 6232, podem ser acoplados de modo comunicativo aos contatos elétricos 6226 ou 6228, conforme mostrado na Figura 35. Os filtros 6230 e 6232 podem filtrar um ou mais sinais de RF fornecidos pelo gerador de frequência 6222, antes de se juntar a uma única trajetória de retorno 6234. Uma tensão V e uma corrente I associadas a um ou mais sinais de RF podem ser usadas para calcular uma impedância Z associada a um tecido que pode ser comprimido e/ou comunicativamente acoplado entre o um ou mais eletrodos de RF 6224 e os contatos elétricos 6226 ou 6228.
[0261] Com referência agora à Figura 36, vários componentes do sistema sensor de compressão de tecido aqui descritos podem estar situados em um cabo 6236 de um endocortador. Por exemplo, conforme mostrado no diagrama de circuito 6220a, o gerador de frequência 6222 pode estar localizado no cabo 6236, e receber energia da fonte de alimentação 6221. Também, a corrente I1 e a corrente I2 podem ser medidas em uma trajetória de retorno correspondente a contatos elétricos 6228 e 6226. Com o uso de uma tensão V aplicada entre o suprimento e as trajetórias de retorno, impedâncias Z1 e Z2 podem ser calculadas. Z1 pode corresponder a uma impedância de um tecido comprimido e/ou estar acoplado de modo comunicativo entre um ou mais eletrodos de RF 6224 e contato elétrico 6228. Ainda, Z2 pode corresponder a uma impedância do tecido um comprimido e/ou estar acoplado de modo comunicativo entre um ou mais eletrodos de RF 6224 e contato elétrico 6226. Aplicando as fórmulas e Z1=V/I1 e Z2=V/I2, as impedâncias Z1 e Z2 correspondentes aos diferentes níveis de compressão de um tecido comprimido por um atuador de ex-tremidade podem ser calculadas.
[0262] Com referência agora à Figura 37, um ou mais aspectos da presente invenção estão descritos no diagrama de circuito 6250. Em uma implementação, uma fonte de energia em um cabo 6252 de um endocortador pode fornecer energia a um gerador de frequência 6254. O gerador de frequência 6254 pode gerar um ou mais sinais de RF. O um ou mais sinais de RF podem ser multiplexados ou sobrepostos em um multiplexador 6256, que pode estar em um eixo de acionamento 6258 do endocortador. Dessa maneira, dois ou mais sinais de RF podem ser sobrepostos (ou, por exemplo, agrupados ou modulados juntos) e transmitidos para o atuador de extremidade. O um ou mais sinais de RF podem energizar um ou mais eletrodos de RF 6260 em um atuador de extremidade 6262 (por exemplo, posicionado em um cartucho de grampos) do endocortador. Um tecido (não mostrado) pode ser comprimido e/ou acoplado de forma comunicativa entre o um ou mais eletrodos de RF, e um ou mais contatos elétricos 6260. Por exemplo, o tecido pode ser comprimido e/ou acoplado de forma comunicativa entre o um ou mais eletrodos de RF 6260 e o contato elétrico 6264 posi-cionado em uma estrutura de canaleta do atuador de extremidade 6262 ou do contato elétrico 6266 posicionado em uma bigorna do atu- ador de extremidade 6262. Um filtro 6268 pode ser acoplado de modo comunicativo ao contato elétrico 6264, e a um filtro 6270 pode ser acoplado de modo comunicativo ao contato elétrico 6266.
[0263] Uma tensão V e corrente I é associadas a um ou mais si nais de RF podem ser usadas para calcular uma impedância Z associada a um tecido que pode ser comprimido entre o cartucho de grampos (e comunicativamente acoplado a um ou mais eletrodos de RF 6260) e a estrutura de canaleta ou bigorna (e comunicativamente acoplado a um ou mais contatos elétricos 6264 ou 6266).
[0264] Em um aspecto, vários componentes do sistema sensor de compressão de tecido descritos na presente invenção podem estar localizados em um eixo de acionamento 6258 do endocortador. Por exemplo, conforme mostrado no diagrama de circuito 6250 (e em adição ao gerador de frequência 6254), um calculador de impedância 6272, um controlador 6274, uma memória não-volátil 6276, e um canal de comunicação 6278 pode estar localizado no eixo de acionamento 6258. Em um exemplo, o gerador de frequência 6254, o calculador de impedância 6272, controlador 6274, memória não volátil 6276, e a ca- naleta de comunicação 6278 podem ser posicionados em uma placa de circuito no eixo de acionamento 6258.
[0265] Os dois ou mais sinais de RF pode ser retornado sobre uma trajetória comum através dos contatos elétricos. Adicionalmente, os dois ou mais sinais de RF podem ser filtrados antes da união dos sinais de RF na trajetória comum para diferenciar impedâncias de tecido separadas representadas pelo dois ou mais sinais de RF. A corrente I1 e a corrente I2 podem ser medidas em uma trajetória de retorno correspondente a contatos elétricos 6264 e 6266. Com o uso de uma tensão V aplicada entre o suprimento e as trajetórias de retorno, im- pedâncias Z1 e Z2 podem ser calculadas. Z1 pode corresponder a uma impedância do tecido um comprimido e/ou estar acoplado de modo comunicativo entre um ou mais eletrodos de RF 6260 e contato elétrico 6264. Ainda, Z2 pode corresponder a uma impedância do tecido comprimido e/ou estar acoplado de modo comunicativo entre um ou mais eletrodos de RF 6260 e contato elétrico 6266. Aplicando as fórmulas Z1=V/I1 e Z2=V/I2, as impedâncias Z1 e Z2 correspondentes a diferentes compressões de um tecido comprimido por um atuador de extremidade 6262 podem ser calculadas. No exemplo, as impedâncias Z1 e Z2 podem ser calculadas por meio do calculador de impedância 6272. As impedâncias Z1 e Z2 podem ser usadas para calcular vários níveis de compressão do tecido.
[0266] Em um aspecto, os filtros 6268 e 6270 podem ser filtros High Q, de modo que a faixa do filtro seja estreita (por exemplo, Q=10). Q pode ser definido por meio da frequência central (Wo)/Largura da banda (BW), onde Q=Wo/BW. Em um exemplo, a Frequência 1 pode ser 150 kHz e Frequência 2 pode ser 300 kHz. Uma faixa de medição de impedância viável pode ser 100 kHz - 20 MHz. Em vários exemplos, outras técnicas sofisticadas, como correlação, detecção de quadratura, etc, podem ser usadas para separar os sinais de RF.
[0267] Com o uso de uma ou mais das técnicas e características descritas na presente invenção, um único eletrodo energizado em um cartucho de grampos ou em uma faca isolada de um atuador de extremidade podem ser usados para fazer múltiplas medições de compressão de tecido simultaneamente. Se dois ou mais sinais de RF forem sobrepostos ou multiplexados (ou agrupados ou modulados) eles podem ser transmitidos para um único lado energizado do atuador de extremidade, e podem retornar na estrutura de canaleta ou na bigorna do atuador de extremidade. Se um filtro for construído nos contatos da canaleta e da bigorna antes que eles unam à trajetória de retorno comum, a impedância do tecido representada por ambas as trajetórias poderia ser diferenciada. Isso pode fornecer uma medida de compressão de tecido vertical x tecido lateral. Além disso, essa abordagem pode proporcionar compressão de tecidos proximal e distal dependendo da colocação filtros e da localização das trajetórias de retorno metálicas. Um gerador de frequência, e o processador de sinal podem estar localizados em um ou mais chips sobre uma placa de circuito ou uma sub-placa (que pode já existir em um endocortador).
[0268] Em vários aspectos, a presente invenção fornece técnicas de monitoramento da velocidade e do incremento da precisão do motor de acionamento no instrumento cirúrgico 10 (descritas em conexão com as Figuras 1 a 18). Em um exemplo, um imã pode ser colocado sobre uma estrutura planetária de um dos estágios de redução da engrenagem com um sensor de indutância no compartimento de engrenagem. Em um outro exemplo, a colocação do imã e o do sensor de campo magnético no último estágio forneceria o monitoramento mais preciso do incremento do movimento.
[0269] Os sistemas convencionais de controle de motor empregam codificadores para detectar a localização e a velocidade do motor em instrumentos endocirúrgicos alimentados por bateria portátil, como os dispositivos grampeadores/endocortadores energizados. A operação de precisão dos dispositivos endocortadores/grampeadores se baseia, em parte, na capacidade de verificar a operação do motor sob carga. Implementações com sensores simples podem ser empregadas para se conseguir uma verificação da operação do motor sob carga.
[0270] Consequentemente, a presente invenção inclui um corpo magnético em um dos transportadores planetários de um sistema de redução de engrenagem ou emprega tecnologia de motor sem escovas. Ambas as abordagens envolvem a colocação de um sensor de indutância no compartimento de fora do motor ou do sistema de engrenagens planetárias. No caso de um motor sem escovas há bobinas de campo eletromagnético (enrolamentos, indutores, etc) dispostas radialmente em torno do eixo de acionamento central magnético do motor. As bobinas são sequencialmente ativadas e desativadas para acionar o eixo de acionamento central do motor. Um ou mais sensores de indutância podem ser colocados fora do motor e adjacentes a ao menos parte das bobinas para detectar os ciclos de ativa- ção/desativação dos enrolamentos do motor para determinar o número de vezes que o eixo de acionamento é girado. Alternativamente, um magneto permanente pode ser colocado em um dos transportadores planetários e o sensor de indutância pode ser disposto adjacente à trajetória radial do transportador planetário para medir o número de vezes que o estágio do trem de engrenagens é girado. Esta implementação pode ser aplicada a quaisquer componentes giratórios no sistema com cada vez mais resolução possível em regiões com um número de rotações relativamente grandes durante o funcionamento, ou conforme os componentes giratórios ficam mais próximos (em termos do número de conexões) ao atuador de extremidade, dependendo do design. O método de detecção do trem de engrenagem pode ser preferencial, uma vez que ele realmente mede a rotação de uma das fases, enquanto o método de detecção do motor detecta o número de vezes que o motor recebeu um comando para energizar, em vez da rotação real do eixo de acionamento. Por exemplo, se ocorrer estol do motor sob carga elevada, o método de detecção do motor não seria capaz de detectar a ausência de rotação, pois ele apenas detecta os ciclos de energiza- ção, não a rotação do eixo de acionamento. Entretanto, ambas as técnicas podem ser empregadas de uma maneira rentável para detectar a rotação do motor.
[0271] Durante o grampeamento, por exemplo, o tecido, é firme mente preso entre as garras opostas antes de um grampo ser inserido no tecido preso. A compressão do tecido durante o aperto pode fazer com que fluido seja removido do tecido comprimido, e a taxa ou quantidade de deslocamento varia dependendo do tipo de tecido, da espessura do tecido, da operação cirúrgica (por exemplo, pressão de aperto e tempo de aperto). Em vários casos, o deslocamento de fluido entre as garras opostas de um atuador de extremidade pode contribuir para a malformação (por exemplo, dobra) dos grampos formados entre as garras opostas. Consequentemente, em vários casos, pode ser desejável controlar o curso de disparo, por exemplo, para controlar a velocidade de disparo, em relação ao fluxo de fluido detectado, ou a falta deste, entre as garras opostas de um atuador de extremidade cirúrgico.
[0272] Consequentemente, são também fornecidos aqui métodos, dispositivos, e sistemas de monitoramento da velocidade e do movimento incremental de um trem de acionamento de instrumento cirúrgico, que por sua vez fornece informações sobre a velocidade operacional do dispositivo (por exemplo, fechamento das garras, grampeamen- to). De acordo com os presentes exemplos, o instrumento cirúrgico 10 (Figuras 1 a 4) não inclui um codificador de motor. Ao invés disso, o instrumento cirúrgico 10 pode ser equipado com um motor que compreende um conjunto de sensor de velocidade para um trem de potência do motor, de acordo com um exemplo ilustrativo. O conjunto de sensor de velocidade pode incluir um motor que tem um eixo de saída que é acoplado direta ou indiretamente a um eixo de acionamento. Em alguns exemplos, o eixo de saída é conectado a um conjunto de redução de engrenagem, como um trem de engrenagens planetárias que compreende um sensor que detecta a velocidade de rotação de qualquer componente adequado do sistema. Por exemplo, o sensor pode ser um sensor de proximidade, como um sensor de indução, que detecta o movimento de um ou mais elementos detectáveis fixados em qualquer parte giratória do conjunto de redução de engrenagem. O elemento detectável está fixado à engrenagem anular de último está- gio e o sensor está posicionado adjacente à trajetória radial do elemento detectável de modo a detectar o movimento do elemento detec- tável. Os componentes giratórios podem variar dependendo do design — e o(s) sensor(es) podem ser fixado(s) em qualquer componente giratório do conjunto de redução de engrenagem. Por exemplo, em um outro exemplo, um elemento detectável é associado com a engrenagem do transportador do estágio final ou mesmo a engrenagem de acionamento. Em alguns exemplos, um elemento detectável está localizado fora do conjunto de redução de engrenagem, como no eixo de acionamento entre o conjunto de redução de engrenagem e o atuador de extremidade. Em alguns exemplos, um elemento detectável é loca-lizado no componente giratório na redução de engrenagem final no atuador de extremidade.
[0273] Várias funções podem ser implementadas mediante a utili zação do circuito anteriormente descrito. Por exemplo, o motor pode ser controlado com um controlador de motor de modo similar àquele descrito em conexão com Figuras 16A, 16B, 17A, 17B e 18, em que o codificador é substituído pelo monitoramento de controle de velocidade e do incremento de precisão de sistemas de motor para os instrumentos cirúrgicos equipados com motor aqui descritos.
[0274] Em um aspecto, a presente invenção fornece um instru mento cirúrgico 10 (descrito em conexão com as Figuras 1 a 18) configurado com vários sistemas de detecção. Consequentemente, por uma questão de concisão e clareza, os detalhes de operação e construção não serão repetidos aqui. Em um aspecto, o sistema de detecção inclui um sistema sensor de viscoelasticidade/ taxa de alteração para monitorar a aceleração de faca, taxa de alteração da impedância, e taxa de alteração de contato com o tecido. Em um exemplo, a taxa de alteração de aceleração da faca pode ser usada como uma medida do tipo de tecido. Em um outro exemplo, a taxa de alteração da impe- dância pode ser medida com um sensor de pulso e pode ser empregada como uma medida para a compressibilidade. Finalmente, a taxa de alteração de contato com o tecido pode ser medida com um sensor baseado na taxa de disparo da faca para medir o fluxo de tecido.
[0275] A taxa de alteração de um parâmetro detectado ou estabe lecido de outro modo, a quantidade de tempo necessária para que um parâmetro de tecido alcance um valor de estado estável assimptótico, é uma medição separada em si mesma, e pode ser mais valiosa do que o parâmetro detectado do qual ela derivada. Para melhorar a medição de parâmetros de tecido, como aguardar uma quantidade predeterminada de tempo antes de fazer uma medição, a presente invenção fornece uma nova técnica para empregar o derivado da medida como a taxa de alteração do parâmetro do tecido.
[0276] A técnica derivada ou taxa de alteração de medida torna- se mais útil com o entendimento de que não há uma única medição que possa ser empregada sozinha para melhorar dramaticamente a formação do grampo. Isto é a combinação de múltiplas medidas que tornam as medidas válidas. No caso do vão do tecido, é útil conhecer o quanto da garra é coberta com tecido para tornar a medida do vão relevante. A taxa de medidas de alteração de impedância pode ser combinada com as medidas de deformação na bigorna para relacionar a força e a compressão aplicadas ao tecido preso entre os membros de garra do atuador de extremidade como a bigorna e o cartucho de grampos. A taxa de alteração medida pode ser empregada pelo dispositivo endo-cirúrgico para determinar o tipo de tecido e não apenas a compressão do tecido. Embora tecido de estômago e pulmão tenham às vezes espessuras similares, e mesmo com propriedades de compressão semelhantes, quando o tecido de pulmão está calcificado, um instrumento pode ser capaz de distinguir esses tipos de tecido empregando-se uma combinação de medidas como vão, compressão, força aplicada, a área de contato do tecido, e a taxa de alteração de compressão ou taxa de alteração de vão. Se quaisquer dessas medidas fosse usada sozinha pelo endo-cirúrgico, pode ser difícil para o dispositivo endo-cirúrgico distinguir um tipo de tecido do outro. A taxa de alteração de compressão também pode ser útil para permitir que o dispositivo determine se o tecido é "normal" ou se existe alguma anormalidade. A medição não somente de quanto tempo passou, mas da variação dos sinais do sensor e a determinação da derivada do sinal proporcionaria uma outra medida para permitir que o dispositivo endo-cirúrgico meça o sinal. A informação sobre a taxa de alteração também pode ser empregada na determinação de quando um estado estável foi alcançado para sinalizar a próxima etapa em um processo. Por exemplo, após clampear os tecidos entre os membros de garra do atuador de extremidade de modo que a bigorna e o cartucho de grampos, quando a compressão do tecido atinge um estado estável (por exemplo, cerca de 15 segundos), um indicador de disparo ou gatilho para iniciar o dispositivo pode ser habilitado.
[0277] Também são fornecidos aqui métodos, dispositivos, e sis temas para a avaliação dependente de tempo de dados do sensor para determinar a estabilidade, fluência, e características viscoelásticas do tecido durante a operação do instrumento cirúrgico. Um instrumento cirúrgico 10, como o grampeador ilustrado na Figura 1, pode incluir uma variedade de sensores para medir parâmetros operacionais, como o tamanho ou distância do vão da garra, corrente de disparo, a compressão do tecido, a quantidade da garra que é coberta pelo tecido, deformação da bigorna e força do gatilho, para citar alguns. Estas medições detectadas são importantes para o controle automático do instrumento cirúrgico e para fornecer retroinformação ao clínico.
[0278] Os exemplos mostrados com conexão com as Figuras 22A a 37 podem ser empregados para medir os vários parâmetros deriva- dos, como distância do vão em função do tempo, compressão do tecido em função do tempo, e a deformação da bigorna em função do tempo. A corrente do motor pode ser monitorada empregando o sensor de corrente 2312 em série com a bateria 2308, conforme aqui descrito, o sensor de corrente 2412 em série com a bateria 2408 ou o sensor de corrente 3027 na Figura 18.
[0279] A Figura 38 ilustra um instrumento cirúrgico acionado por motor 8010 para corte e fixação que pode ou não ser reutilizado. O instrumento cirúrgico 8010 é construído de modo similar e equipado com o instrumento cirúrgico 10 para corte e fixação descrito em conexão com as Figuras 1 a 18. No exemplo ilustrado na Figura 38, o instrumento cirúrgico 8010 inclui um compartimento 8012 que compreende um conjunto de cabo 8014 que é configurado para ser pego, manipulado e atuado pelo médico. O compartimento 8012 é configurado para fixação operacional a um conjunto de eixo de acionamento inter- cambiável 8200 que tem um atuador de extremidade 8300 operacionalmente acoplado ao mesmo que é configurado para executar uma ou mais tarefas ou procedimentos cirúrgicos. Uma vez que o instrumento cirúrgico 8010 é construído de modo similar e equipado como um instrumento cirúrgico 10 para corte e fixação descrito em conexão com as Figuras 1 a 18, para fins de clareza e concisão, os detalhes da operação e da construção não serão repetidos no presente documento.
[0280] O compartimento 8012 mostrado na Figura 38 é mostrado em relação a um conjunto de eixo de acionamento intercambiável 8200 que inclui um atuador de extremidade 8300 que compreende um dispositivo cirúrgico de corte e fixação que é configurado para sustentar operacionalmente um cartucho de grampos cirúrgicos 8304 nele. O compartimento 8012 pode ser configurado para uso em conexão com os conjuntos de eixo de acionamento intercambiáveis que incluem os atuadores de extremidade que são adaptados para suportar diferentes tamanhos e tipos de cartuchos de grampos, têm diferentes comprimentos, tamanhos, e tipos de eixo de acionamento, etc. Além disso, o compartimento 8012 pode, também, ser empregado eficazmente com uma variedade de outros conjuntos de eixo de acionamento intercam- biáveis inclusive aqueles conjuntos que são configurados para aplicar outros movimentos e formas de energia como, por exemplo, energia de radiofrequência (RF), energia ultrassônica e/ou movimento a disposições de atuadores de extremidade adaptados para uso em várias aplicações e procedimentos cirúrgicos. Além disso, os atuadores de extremidade, os conjuntos de eixo de acionamento, os cabos, os instrumentos cirúrgicos e/ou os sistemas de instrumentos cirúrgicos podem usar quaisquer um ou mais prendedores adequados para fixar os tecidos. Por exemplo, um cartucho de prendedores que compreende uma pluralidade de prendedores nele armazenados de modo removível pode ser inserido de maneira removível dentro e/ou fixado ao atua- dor de extremidade de um conjunto de eixo de acionamento.
[0281] Voltando-se agora para a Figura 38, o instrumento cirúrgico 8010 é representado, o qual pode ou não ser reutilizado. O instrumento cirúrgico 8010 é construído de modo similar e equipado como o instrumento cirúrgico 10 para corte e fixação aqui descrito. No exemplo ilustrado na Figura 38, o instrumento cirúrgico 8010 inclui um compartimento 8012 que compreende um conjunto de cabo 8014 que é configurado para ser pego, manipulado e atuado pelo médico. O compartimento 8012 é configurado para fixação operacional a um conjunto de eixo de acionamento intercambiável 8200 que tem um atuador de extremidade 8300 operacionalmente acoplado ao mesmo que é configurado para executar uma ou mais tarefas ou procedimentos cirúrgicos. Uma vez que o instrumento cirúrgico 8010 é construído de modo similar e equipado como um instrumento cirúrgico 10 para corte e fixação aqui descrito com relação às Figuras 1 a 18, para fins de clareza e concisão, os detalhes da operação e da construção não serão repetidos no presente documento.
[0282] O compartimento 8012 mostrado na Figura 38 é mostrado em relação a um conjunto de eixo de acionamento intercambiável 8200 que inclui um atuador de extremidade 8300 que compreende um dispositivo cirúrgico de corte e fixação que é configurado para sustentar operacionalmente um cartucho de grampos cirúrgicos 8304 nele. O compartimento 8012 pode ser configurado para uso em conexão com os conjuntos de eixo de acionamento intercambiáveis que incluem os atuadores de extremidade que são adaptados para suportar diferentes tamanhos e tipos de cartuchos de grampos, têm diferentes comprimentos, tamanhos, e tipos de eixo de acionamento, etc. Além disso, o compartimento 8012 pode, também, ser empregado eficazmente com uma variedade de outros conjuntos de eixo de acionamento intercam- biáveis inclusive aqueles conjuntos que são configurados para aplicar outros movimentos e formas de energia como, por exemplo, energia de radiofrequência (RF), energia ultrassônica e/ou movimento a disposições de atuadores de extremidade adaptados para uso em várias aplicações e procedimentos cirúrgicos. Além disso, os atuadores de extremidade, os conjuntos de eixo de acionamento, os cabos, os instrumentos cirúrgicos e/ou os sistemas de instrumentos cirúrgicos podem usar quaisquer um ou mais prendedores adequados para fixar os tecidos. Por exemplo, um cartucho de prendedores que compreende uma pluralidade de prendedores nele armazenados de modo removível pode ser inserido de maneira removível dentro e/ou fixado ao atua- dor de extremidade de um conjunto de eixo de acionamento.
[0283] A Figura 38 ilustra o instrumento cirúrgico 8010 com um conjunto de eixo de acionamento intercambiável 8200 acoplado de modo operável ao mesmo. Na disposição ilustrada, o compartimento do cabo forma uma porção da empunhadura de pistola 8019 que pode ser empunhada e manipulada pelo médico. O conjunto de cabo 8014 suporta operacionalmente, em seu interior, uma pluralidade de sistemas de acionamento, que são configurados para gerar e aplicar vários movimentos de controle às porções correspondentes do conjunto de eixo de acionamento intercambiável que está operacionalmente fixado ao mesmo. O gatilho 8032 está operacionalmente associado ao cabo da pistola para controlar vários desses movimentos de controle.
[0284] Continuando com a referência à Figura 38, o conjunto de eixo de acionamento intercambiável 8200 inclui um atuador de extremidade 8300 que compreende uma canaleta alongada 8302 que é configurada para suportar operacionalmente em seu interior um cartucho de grampos cirúrgicos 8304. O atuador de extremidade 8300 pode incluir adicionalmente uma bigorna 8306 que é sustentada de modo pivotante em relação à canaleta alongada 8302.
[0285] Os inventores verificaram que os parâmetros derivados po dem ser ainda mais úteis para o controle de um instrumento cirúrgico, como o instrumento ilustrado na Figura 38, do que o(s) parâmetro(s) detectado(s) dos quais o parâmetro derivado é baseado. Alguns exemplos não-limitadores de parâmetros derivados incluem a taxa de alteração de um parâmetro detectado (por exemplo, distância do vão da garra) e quanto tempo se passa antes que um parâmetro de tecido atinja um valor de estado estável valor assimptótico (por exemplo, 15 segundos). Os parâmetros derivados, como taxa de alteração, são particularmente úteis porque eles melhoram drasticamente a precisão da medição e, também, fornecem informações que não são evidentes, de outra forma, diretamente a partir dos parâmetros detectados. Por exemplo, a taxa de alteração da impedância (isto é, a compressão do tecido) pode ser combinada com a deformação na bigorna para se relacionar à compressão e força, a qual permite que o controlador de termine o tipo de tecido e não apenas a quantidade de compressão do tecido. Este exemplo é ilustrativo apenas, e quaisquer parâmetros derivados podem ser combinados com um ou mais parâmetros detectados para fornecer informação mais precisa sobre os tipos de tecido (por exemplo, pulmão versus estômago), saúde do tecido (normal versus calcificado), e estado operacional do dispositivo cirúrgico (por exemplo, clampeamento completo). Os diferentes tecidos têm propriedades viscoelásticas e taxas de alteração únicas, tornando estes e outros parâmetros aqui discutidos indícios uteis para monitorar e ajustar automaticamente um procedimento cirúrgico.
[0286] Especificamente, com referência às Figuras 38 e 39, o vão 8040 é a distância entre a bigorna 8306 e a canaleta alongada 8302 do atuador de extremidade 8300. Na posição aberta da garra, no tempo zero, o vão 8040 entre a bigorna 8306 e o membro alongado encontra-se em sua distância máxima. A largura do vão 8040 diminui na medida em que a bigorna 8306 fecha, como durante o clampeamento do tecido. A taxa de alteração da distância do vão pode variar, pois o tecido tem resiliência não uniforme. Por exemplo, certos tipos de tecido podem mostrar, inicialmente, uma rápida compressão, resultando em uma taxa de alteração mais rápida. Entretanto, à medida que o tecido é comprimido continuamente, as propriedades viscoelásticas do tecido podem fazer com que a taxa de alteração diminua até que o tecido não possa ser mais comprimido, ponto no qual a distância do vão permanece substancialmente constante. O vão diminui ao longo do tempo, na medida em que o tecido é apertado entre a bigorna 8306 e o cartucho de grampos cirúrgicos 8304 do atuador de extremidade 8300. O um ou mais sensores descritos em relação às Figuras 22A a 37 e a Figura 40 podem ser adaptados e configurados para medir a distância do vão "d" entre a bigorna 8306 e o cartucho de grampos cirúrgicos 8304 ao longo do tempo t e a taxa de alteração da distância do vão "d" ao longo do tempo t é o coeficiente angular da curva, onde coeficiente angular = Δd/Δt. Além disso, a taxa de alteração da corrente de disparo pode ser usada como um indicador de que o tecido está passando de um estado para outro. Consequentemente, a corrente de disparo, e, em particular, a taxa de alteração da corrente de disparo pode ser usada para monitorar a operação do dispositivo. A corrente de disparo diminui com o tempo à medida que a faca corta o tecido. A taxa de alteração da corrente de disparo pode variar se o tecido sendo cortado fornecer mais ou menos resistência devido às propriedades do tecido ou ao afiamento da faca 8305 (Figura 39). Por exemplo, a corrente do motor pode ser monitorada empregando-se o sensor de corrente 2312 em série com a bateria 2308, conforme mostrado na presente invenção, o sensor de corrente 2412 em série com a bateria 2408, conforme mostrado aqui, ou o sensor de corrente 3027 mostrado na Figura 18. Os sensores de corrente 2312, 2314, 3027 podem ser adaptados e configurados para medir a corrente de disparo do motor "i" ao longo do tempo t e a taxa de alteração da corrente de disparo "i" ao longo do tempo t é o coeficiente angular da curva, onde o coeficiente angular = Δi/Δt. Os sensores descritos em relação às Figuras 22A a 37 e 40 podem ser adaptados e configurados para medir a compres- são/impedância do tecido. Os sensores podem ser adaptados e configurados para medir a impedância do tecido "Z" ao longo do tempo t e a taxa de alteração da impedância do tecido "Z" ao longo do tempo t é o coeficiente angular, onde coeficiente angular = ΔZ/Δt. A taxa de alteração da tensão da bigorna 8306 pode ser medida por um sensor de pressão ou extensômetro posicionado tanto na bigorna 8306 quanto no cartucho de grampos cirúrgicos 8304 (Figuras 38, 39) ou em ambos para medir a pressão ou tensão aplicada ao tecido preso entre a bigorna 8306 e o cartucho de grampos cirúrgicos 8304. Dessa forma, no instante zero, a pressão do gatilho 8020 (Figura 38) pode estar em sua pressão mais baixa e a pressão do gatilho pode aumentar até a conclusão de uma operação (por exemplo, pinçamento, corte ou grampe- amento). A taxa de alteração da força de gatilho pode ser medida por um sensor de pressão ou extensômetro posicionado no gatilho 8032 da porção de preensão de pistola 8019 do cabo do instrumento cirúrgico 8010 (Figura 38) para medir a força necessária para acionar a faca 8305 (Figura 39) através do tecido preso entre a bigorna 8306 e o cartucho de grampos cirúrgicos 8304.
[0287] Com referência brevemente à Figura 40, o atuador de ex tremidade 9012 é um aspecto do atuador de extremidade 8300 (Figura 38) que pode ser adaptado para operar com o instrumento cirúrgico 8010 (Figura 38) para medir os vários parâmetros derivados, como distância do vão em função do tempo, compressão do tecido em função do tempo e deformação da bigorna em função do tempo. Consequentemente, o atuador de extremidade 9012 mostrado na Figura 40 pode incluir um ou mais sensores configurados para medir um ou mais parâmetros ou características associados ao atuador de extremidade 9012 e/ou a uma seção de tecido capturada pelo atuador de extremidade 9012. No exemplo ilustrado na Figura 40, o atuador de extremi-dade 9012 compreende um primeiro sensor 9020 e um segundo sensor 9026. Em vários exemplos, o primeiro sensor 9020 e/ou o segundo sensor 9026 podem compreender, por exemplo, um sensor magnético como, por exemplo, um sensor de campo magnético, um medidor de esforço, um sensor de pressão, um sensor de força, um sensor indutivo como, por exemplo, um sensor de correntes parasitas, um sensor resistivo, um sensor capacitivo, um sensor óptico, e/ou quaisquer outros sensores adequados para medição de um ou mais parâmetros do atuador de extremidade 9012.
[0288] Em certos casos, o primeiro sensor 9020 e/ou segundo sen sor 9026 podem compreender, por exemplo, um sensor de campo magnético embutido na bigorna 9014, e é configurado para detectar um campo magnético gerado por um imã 9024 embutido em um membro de garra 9016 e/ou cartucho de grampos 9018. A bigorna 9014 é girável de modo pivotante entre as posições aberta e fechada. A força do campo magnético detectado pode corresponder, por exemplo, à espessura e/ou à completude de uma mordedura de tecido situada entre a bigorna 9014 e o membro de garra 9016. Em determinados casos, o primeiro sensor 9020 e/ou o segundo sensor 9026 podem compreender um medidor de esforço como, por exemplo, um medidor de microesforço, configurado para medir a magnitude do esforço na bigorna 9014 durante uma condição pinçada. O medidor de esforço fornece um sinal elétrico cuja amplitude varia com a magnitude do esforço.
[0289] Em alguns aspectos, um ou mais sensores do atuador de extremidade 9012 como, por exemplo, o primeiro sensor 9020 e/ou segundo sensor 9026 podem compreender um sensor de pressão configurado para detectar uma pressão gerada pela presença de tecido comprimido entre a bigorna 9014 e o membro de garra 9016. Em alguns exemplos, um ou mais sensores do atuador de extremidade 9012 como, por exemplo, o primeiro sensor 9020 e/ou segundo sensor 9026 são configurados para detectar a impedância de uma seção de tecido localizada entre a bigorna 9014 e o membro de garra 9016. A impe- dância detectada pode ser indicativa da espessura e/ou da completude do tecido situado entre a bigorna 9014 e o membro de garra 9016.
[0290] Em um aspecto, um ou mais sensores do atuador de ex tremidade 9012 como, por exemplo, o primeiro sensor 9020 está configurado para medir o vão 9022 entre a bigorna 9014 e o membro de garra 9016. Em certos casos, o vão 9022 pode ser representativo da espessura e/ou da compressibilidade de uma seção de tecido pinçada entre a bigorna 9014 e o membro de garra 9016. Em ao menos um exemplo, o vão 9022 pode ser igual, ou substancialmente igual à es- pessura da seção de tecido pinçada entre a bigorna 9014 e o membro de garra 9016. Em um exemplo, um ou mais sensores do atuador de extremidade 9012, como, por exemplo, o primeiro sensor 9020 é configurado para medir uma ou mais forças exercidas sobre a bigorna 9014 pelo membro de garra 9016 e/ou os tecidos pinçados entre a bigorna 9014 e o membro de garra 9016. As forças exercidas sobre a bigorna 9014 podem ser representativas da compressão do tecido experimentada pela seção de tecido capturado entre a bigorna 9014 e o membro de garra 9016. Em um aspecto, o vão 9022 entre a bigorna 9014 e o membro de garra 9016 pode ser medido posicionando-se um sensor de campo magnético sobre a bigorna 9014 e posicionando-se o imã sobre o membro de garra 9016, de modo que o vão 9022 seja proporcional ao sinal detectado pelo sensor de campo magnético, e o sinal seja proporcional à distância entre o imã e o sensor de campo magnético. Será apreciado que a localização do sensor de campo magnético e do imã pode ser trocada de modo que o sensor de campo magnético seja posicionado sobre o membro de garra 9016 e o imã seja colocado sobre a bigorna 9014.
[0291] Um ou mais dos sensores, como, por exemplo, o primeiro sensor 9020 e/ou segundo sensor 9026 podem ser medidos em tempo real durante uma operação de clampeamento. A medição em tempo real permite que a informação a ser analisada, por exemplo, por um processador, e usada para selecionar um ou mais algoritmos, e/ou tabelas de referência com o propósito de avaliar, em tempo real, uma entrada manual de um operador do instrumento cirúrgico 9010. Além disso, a retroinformação em tempo real pode ser fornecida ao operador, para auxiliar o operador na calibração da entrada manual para produzir uma saída desejada.
[0292] A Figura 41 é um diagrama lógico ilustrando um aspecto de um sistema de retroinformação em tempo real 9060 para avaliação em tempo real de uma entrada manual de dados 9064 por um operador do instrumento cirúrgico 9010 e para fornecer ao operador retroinforma- ção em tempo real quanto à adequação da entrada manual de dados 9064. Com referência às Figuras 40 e 41, no exemplo ilustrado na Figura 41, o sistema de retroinformação em tempo real 9060 é compreendido de um circuito. O circuito inclui um controlador 9061 que com-preende um processador 9062. Um sensor, como, por exemplo, o primeiro sensor 9020 é usado pelo processador 9062 para medir um parâmetro do atuador de extremidade 9012. Além disso, o processador 9062 pode ser configurado para determinar ou receber um valor representativo de uma entrada manual de dados 9064 de um operador do instrumento cirúrgico 9010. A entrada manual de dados 9064 pode ser continuamente avaliada pelo processador 9062 enquanto a entrada manual de dados 9064 está sendo fornecida pelo operador. O processador 9062 pode ser configurado para monitorar um valor representativo da entrada manual de dados 9064. Além disso, o processador 9062 é configurado para atribuir, selecionar ou determinar uma posição, classificação, e/ou situação para um determinado valor em relação a uma zona ou faixa. A medição do parâmetro do atuador de ex-tremidade 9012, e o valor determinado pode ser empregado pelo processador 9062 para selecionar ou determinar a posição, classificação, e/ou situação associadas ao valor predeterminado, como descrito com mais detalhes abaixo. Uma alteração na entrada manual 9064 produz uma alteração no valor determinado que, por sua vez, produz uma alteração na posição, classificação e/ou situação atribuídas ao valor determinado em relação à zona ou faixa desejada.
[0293] Como ilustrado na Figura 41, o sistema de retroinformação em tempo real 9060 pode adicionalmente incluir um indicador de re- troinformação 9066 que pode ser ajustado entre uma pluralidade de posições, classificações e/ou estados dentro e fora de uma zona ou faixa desejada. Em um exemplo, o processador 9062 pode selecionar uma primeira posição (P1), classificação e/ou situação que caracterizam a entrada manual 9064 com base em uma medição (M1) de um parâmetro do atuador de extremidade 9012 e um primeiro valor determinado (V1) representando uma primeira entrada manual (I1). Em certos casos, a primeira posição (P1), classificação, e/ou situação podem estar fora da zona ou faixa desejada. Em tais casos, o operador pode mudar a entrada manual da primeira entrada manual 9064 (I1) a uma segunda entrada (I2) manual mediante o aumento ou a diminuição da entrada manual 9064, por exemplo. Em resposta, o processador 9062 pode ajustar o indicador de retroinformação 9066 da primeira posição (P1), classificação e/ou situação para uma segunda posição (P2), classificação e/ou situação que caracterizam a mudança para a entrada manual 9064. O processador 9062 pode selecionar a segunda posição (P2), classificação e/ou situação com base na medição (M1) do parâmetro do atuador de extremidade 9012 e um segundo valor determinado (V2) que representa uma segunda entrada manual (I2). Em certos casos, a segunda posição (P2), classificação, e/ou situação podem estar dentro da zona ou faixa desejada. Em tais casos, o operador pode manter a segunda entrada manual (I2) para um restante de um ciclo de tratamento ou processo, por exemplo.
[0294] No aspecto ilustrado na Figura 41, o controlador 9061 inclui um meio de armazenamento como, por exemplo, uma memória 9068. A memória 9068 pode ser configurada para armazenar correlações entre medições de um ou mais parâmetros do atuador de extremidade 9012, valores que representam entradas manuais e posições, classificações e/ou situação correspondentes que caracterizam a entrada manual 9064 em relação a uma zona ou faixa desejada. Em um exemplo, a memória 9068 pode armazenar a correlação entre a medida (M1), o primeiro valor determinado (V1) e a primeira entrada manu al (I1) e a correlação entre a medição (M1), o segundo valor determinado (V2) e a segunda entrada manual (I2). Em um exemplo, a memória 9068 pode armazenar um algoritmo, uma equação ou uma tabela de consulta para determinar correlações entre medições de um ou mais parâmetros do atuador de extremidade 9012, valores que representam entradas manuais e posições, classificações ou situação correspondentes em relação a uma zona ou faixa desejada. O processador 9062 pode empregar essa algoritmo, equação e/ou tabela de consulta para caracterizar uma entrada manual 9064 fornecida por um operador do instrumento cirúrgico 9010 e fornecer retroinformação ao operador quanto à adequação da entrada manual 9064.
[0295] A Figura 42 é um diagrama lógico ilustrando um aspecto de um sistema de retroinformação em tempo real 9070. O sistema de re- troinformação em tempo real 9070 é similar em muitos aspectos ao sistema de retroinformação em tempo real 9060. Por exemplo, como o sistema de retroinformação em tempo real 9060, o sistema de retroin- formação em tempo real 9070 é configurado para avaliar em tempo real uma entrada manual de um operador do instrumento cirúrgico 9010 e fornecer ao usuário retroinformação em tempo real quanto à adequação da entrada manual. Além disso, como o sistema de retroin- formação em tempo real 9060, o sistema de retroinformação em tempo real 9070 é compreendido de um circuito que pode incluir o controlador 9061.
[0296] No aspecto ilustrado na Figura 42, um sensor 9072, como, por exemplo, um extensômetro ou um medidor de microesforço, está configurado para medir um ou mais parâmetros do atuador de extremidade 9012, como, por exemplo, a amplitude do esforço exercido sobre a bigorna 9014 durante uma operação de aperto, que pode ser indicativa da compressão do tecido. A medida de esforço é convertida em um sinal digital e fornecido ao processador 9062. Um sensor 9074, como, por exemplo, um sensor de carga, pode medir a força para avançar o membro de corte 9040 para cortar o tecido capturado entre a bigorna 9014 e o cartucho de grampos 9018. Alternativamente, um sensor de corrente (não mostrado) pode ser usado para medir a corrente drenada pelo motor 9082. A força necessária para avançar a barra de disparo 9036 pode corresponder à corrente drenada pelo motor 9082, por exemplo. A força medida é convertida em um sinal digital e fornecida ao processador 9062. Um sensor 9076, como, por exemplo, um sensor de campo magnético, pode ser empregado para medir a espessura do tecido capturado, conforme descrito acima. A medição do sensor de campo magnético 9076 é também convertida em um sinal digital e fornecida ao processador 9062.
[0297] No aspecto ilustrado na Figura 42, o sistema de retroinfor- mação em tempo real 9070 inclui adicionalmente o sistema de rastre- amento 9080 que pode ser configurado para determinar a posição do gatilho de disparo. Conforme descrito acima, o gatilho de disparo 9094 pode ser comprimido ou ativado pelo movimento do gatilho de disparo 9094, entre uma pluralidade de posições, cada uma correspondendo a um dentre uma pluralidade de valores de uma característica de movimento da barra de disparo 9036 e/ou membro de corte 9040 durante um curso de disparo. Conforme descrito acima, uma característica de movimento pode ser uma velocidade de avanço da barra de disparo 9036 e/ou membro de corte 9040 durante o curso de disparo. Em certos casos, um acionador de motor 9092 pode estar em comunicação com o controlador 9061, e pode ser configurado para acionar o motor 9082 de acordo com uma entrada manual de dados de um operador, conforme detectado pelo sistema de rastreamento 9080.
[0298] Adicionalmente ao exposto acima, o sistema de retroinfor- mação em tempo real 9070 pode incluir um indicador de retroinforma- ção 9066. Em um aspecto, o indicador de retroinformação 9066 pode estar disposto no cabo 9030. Alternativamente, o indicador de retroin- formação pode estar disposto no conjunto de eixo de acionamento 9032, por exemplo. Em qualquer evento, o controlador 9061 pode empregar o indicador de retroinformação 9066 para fornecer retroinfor- mação a um operador do instrumento cirúrgico 9010 em relação à adequação de uma entrada manual como, por exemplo, uma posição selecionada do gatilho de disparo 9094. Para fazer isso, o controlador 9061 pode avaliar a posição selecionada do gatilho de disparo 9094 e/ou o valor correspondente da velocidade da barra de disparo 9036 e/ou do membro de corte 9040. As medidas da compressão do tecido, a espessura do tecido e/ou a força necessária para avançar a barra de disparo 9036, conforme medidas pelos sensores 9072, 9074 e 9076, podem ser usadas pelo controlador 9061 para caracterizar a posição selecionada do gatilho de disparo 9094 e/ou o valor correspondente da velocidade da barra de disparo 9036 e/ou do elemento de corte 9040. Em uma instância, a memória 9068 pode armazenar um algoritmo, uma equação e/ou uma tabela de consulta que pode ser empregada pelo controlador 9061 na avaliação. Em um exemplo, as medições dos sensores 9072, 9074 e/ou 9076 podem ser usadas para selecionar ou determinar uma posição, classificação e/ou uma situação que caracterizam a posição selecionada do gatilho de disparo 9094 e/ou o valor correspondente da velocidade da barra de disparo 9036 e/ou do elemento de corte 9040. A posição, classificação, e/ou situação determinadas podem ser comunicadas ao operador, por meio do indicador de retroinformação 9066.
[0299] O leitor observará que uma velocidade ideal da barra de disparo 9036 e/ou o elemento de corte 9040 durante um curso de disparo pode depender de vários parâmetros do atuador de extremidade 9012, como, por exemplo, a espessura do tecido capturado pelo atua- dor de extremidade 9012, a compressão de tecido e/ou a força neces- sária para avançar a barra de disparo 9036 e, por sua vez, o membro de corte 9040. Assim, as medições destes parâmetros podem ser alavancadas pelo controlador 9061 para avaliar se uma velocidade atual de avanço do membro de corte 9040 através do tecido capturado está dentro de uma zona ou faixa ideal.
[0300] Em um aspecto, uma pluralidade de sensores inteligentes pode ser posicionada em uma linha de alimentação de um atuador de extremidade e ser acoplada de modo comunicativo a um cabo de um endocortador. Os sensores inteligentes podem ser posicionados em série ou em paralelo com a linha de alimentação. Com referência agora à Figura 43, sensores inteligentes 12060 e 12062 podem estar em comunicação com um componente de processamento de sinal ou com um processador 12064 que pode ser local aos sensores inteligentes. Ambos os sensores inteligentes 12060 e 12062 e o processador 12064 podem estar situados no atuador de extremidade (representado pela caixa tracejada 12066). Por exemplo, o sensor inteligente 12060 pode fornecer sinais ou dados para um amplificador operacional 12068 e um conversor A-D 12070, que pode condicionar os sinais ou dados para serem inseridos no processador 12064. De modo similar, o sensor inteligente 12062 pode fornecer sinais ou dados para um amplificador operacional 12072 e um conversor A-D 12074, que pode condicionar os sinais ou dados para serem inseridos no processador 12064.
[0301] Os sensores inteligentes 12060 e/ou 12062 podem ser sen sores de tipos diferentes ou do mesmo tipo, que podem ser, por exemplo, sensores de campo magnético, sensores magnéticos, sensores indutivos, sensores capacitivos, ou outros tipos de sensores usados em dispositivos médicos ou endocortadores. O componente 12064, anteriormente chamado de um processador, também pode ser um núcleo computacional, FPGA (arranjo de portas programável em campo), unidade lógica (por exemplo, processador lógico ou controla- dor lógico), unidade de processamento de sinal, ou outro tipo de processador. O processador 12064 pode estar em comunicação com uma memória, como uma memória não volátil 12076, que pode armazenar dados de cálculo, informações de equipamento, como um tipo de cartucho inserido no atuador de extremidade 12066, dados tabulares, ou outros dados de referência que permitam que o processador 12064 processe os sinais ou dados recebidos de um ou mais dos sensores inteligentes 12060 ou 12062 para uso na operação do atuador de extremidade 12066 ou de um endocortador.
[0302] Além disso, um eixo de acionamento 12078 pode incluir uma trajetória de retorno, através da qual ao menos um da pluralidade de sensores inteligentes (por exemplo, os sensores inteligentes 12060 ou 12062) e o cabo 12080 são acoplados de modo comunicativo. O eixo de acionamento pode incluir um ou mais fios que podem transferir informações do processador 12064 para o cabo 12080 para operação do atuador de extremidade 12066 ou do endocortador. Em um exemplo, as informações do processador 12064 podem ser transmitidas ao cabo 12080 (por meio do eixo de acionamento 12078 ou diretamente sem utilização do eixo de acionamento 12078) sobre uma ou mais dentre: uma linha com fio, uma linha de fio único, uma linha de fios múltiplos, um protocolo de comunicação sem fio, como Bluetooth, uma linha óptica, ou uma linha acústica.
[0303] Em um aspecto, ao menos um de uma pluralidade de sen sores inteligentes posicionados em um atuador de extremidade pode incluir um componente de processamento de sinal. Por exemplo, o componente de processamento de sinal pode ser construído no sensor inteligente ou pode ser acoplado localmente ao sensor inteligente, como um único módulo. O componente de processamento de sinal pode ser configurado para processar dados recebidos de um sensor de componente (por exemplo, componente de sensor 12020) de pelo me- nos um da pluralidade de sensores inteligentes. Um controlador 12024 (por exemplo, um controlador) no cabo pode ser acoplado de modo comunicativo ao menos a um dentre uma pluralidade de sensores inteligentes.
[0304] Em um aspecto, um sensor inteligente pode ser configurado para processamento de sinal local em um dispositivo médico. O sensor inteligente pode incluir ao menos um componente sensor (por exemplo, o componente sensor 12020) e ao menos um componente de processamento (por exemplo, componente de processamento 12022). O componente de processamento pode ser configurado para receber dados do ao menos um componente de sensor e para processar os dados em informações para uso pelo dispositivo médico. O dispositivo médico pode ser, por exemplo, um endocortador; entretanto, isto não pretende ser uma limitação da presente invenção. Deve ser entendido que as técnicas e características aqui discutidas para sensores inteligentes com processamento de sinal local podem ser usadas em qualquer dispositivo médico em que o processamento de sinal ou dados de sensor são usados para a operação do dispositivo médico.
[0305] Adicionalmente, um controlador (por exemplo, o controlador 12024, controlador) no dispositivo médico pode ser configurado para receber as informações (isto é, os sinais ou dados processados) a partir de ao menos um componente de processamento (por exemplo, componente de processamento 12022). Conforme discutido acima, o dispositivo médico pode ser um instrumento cirúrgico, como um en- docortador e o sensor inteligente pode ser configurado para processamento de sinal local do instrumento cirúrgico. Processamento de sinal local pode se referir, por exemplo, ao processamento de sinal ou dados de um componente sensor em um componente de processamento acoplado ao sensor, em que as informações processadas resultantes podem ser usadas por um componente separado. Por exemplo, o controlador 12024 pode ser posicionado no cabo 12012 do instrumento cirúrgico (isto é, do endocortador 12010) e o sensor inteligente pode ser configurado para ser posicionado em um componente separado (isto é, no atuador de extremidade 12016) do instrumento cirúrgico (isto é, do endocortador 12010), separado do cabo 12012. Dessa forma, o controlador 12024 pode ser posicionado no cabo 12012 do instrumento cirúrgico e o componente de processamento de sinal 12022 e o sensor 12020 podem estar situados em um componente separado do cabo 12012 (por exemplo, no atuador de extremidade 12016).
[0306] Dessa maneira, o cabo ou controlador 12024 não necessita de informações sobre o sensor inteligente, conhecimento de qual sensor inteligente está operando, ou da capacidade de interpretar retroin- formação de dados do sensor inteligente. Isso porque o componente de processamento 12022 pode transformar ou condicionar os dados do sensor inteligente e gerar informações dos dados diretamente utilizáveis pelo cabo ou pelo controlador 12024. As informações geradas pelo componente de processamento podem ser usadas diretamente, sem que os dados provenientes do sensor inteligente precisem ser processados em uma outra parte do dispositivo médico (por exemplo, próximo ao cabo 12012 ou ao controlador 12024). Dessa forma, o instrumento cirúrgico pode ser controlado com base nas informações (processadas) provenientes do componente de processamento local ao sensor.
[0307] Em um aspecto, uma drenagem de corrente em uma linha de alimentação acoplada de modo comunicativo ao componente de processamento de sinal 12022 (isto é, local ao sensor 12020) pode ser monitorada. A drenagem de corrente pode ser monitorada por um pro-cessador, controlador ou outro dispositivo de monitoramento no eixo de acionamento 12014 ou no cabo 12012, ou em um outro processa- dor, controlador ou outro dispositivo de monitoramento separado do componente de processamento de sinal 12022. Por exemplo, o monitoramento pode ser um monitoramento do tipo Código Morse padrão da drenagem de corrente na linha de alimentação. Um problema com o instrumento cirúrgico com base na drenagem de corrente e um sensor específico pode ser determinado pelo processador separado, por exemplo, no cabo 12012. Dessa maneira, o monitoramento pode permitir que o cabo (ou um processador ou controlador em seu interior) seja informado sobre os diversos problemas relacionados a sinais ou dados recebidos pelo um ou mais sensores e sobre qual sensor específico identificou o problema, sem necessidade de comunicação suplementar (por exemplo, pareamento, ou outra comunicação pareada).
[0308] A Figura 44 ilustra um aspecto de um circuito 13190 confi gurado para converter sinais provenientes do primeiro sensor 13158 e a pluralidade de sensores secundários 13160a, 13160b em sinais digitais que podem ser recebidos por um processador como, por exemplo, o processador primário 2006 (Figuras 16A-16B). O circuito 13190 compreende um conversor analógico-digital 13194. Em alguns exemplos, o conversor analógico-digital 13194 compreende um conversor analógico-digital de 18 bits e 4 canais. Os versados na técnica reconhecerão que o conversor analógico-digital 13194 pode compreender qualquer número adequado de canais e/ou de bits para converter uma ou mais entradas de analógicas para digitais. O circuito 13190 compreende um ou mais resistores de deslocamento de nível 13196 confi-gurados para receber uma entrada proveniente do primeiro sensor 13158 como, por exemplo, um sensor de campo magnético. Os resis- tores de deslocamento de nível 13196 ajustam a entrada do primeiro sensor, deslocando o valor para uma tensão mais alta ou mais baixa, dependendo da entrada. Os resistores de deslocamento de nível 13196 fornecem a entrada com deslocamento de nível do primeiro sensor 13158 para o conversor analógico-digital.
[0309] Em alguns aspectos, uma pluralidade de sensores secundários 13160a, 13160b é acoplada a uma pluralidade de pontes 13192a, 13192b dentro do circuito 13190. A pluralidade de pontes 13192a, 13192b pode proporcionar a filtragem da entrada proveniente da pluralidade de sensores secundários 13160a, 13160b. Após filtrar os sinais de entrada, a pluralidade de pontes 13192a, 13192b fornece as entradas da pluralidade de sensores secundários 13160a, 13160b ao conversor analógico-digital 13194. Em alguns exemplos, uma chave 13198 acoplada a um ou mais resistores de deslocamento de nível pode ser acoplada ao conversor analógico-digital 13194. A chave 13198 é configurada para calibrar um ou mais dos sinais de entrada como, por exemplo, uma entrada proveniente de um sensor de campo magnético. A chave 13198 pode ser engatada para fornecer um ou mais sinais de deslocamento de nível para ajustar a entrada de um ou mais dentre os sensores como, por exemplo, para calibrar a entrada de um sensor de campo magnético. Em alguns exemplos, o ajuste não é necessário, e a chave 13198 é deixada na posição aberta para de- sacoplar os resistores de deslocamento de nível. A chave 13198 é acoplada ao conversor analógico-digital 13194. O conversor analógico- digital 13194 fornece uma saída para um ou mais processadores como, por exemplo, o processador primário 2006 (Figuras 16A-16B). O processador primário 2006 calcula um ou mais parâmetros do atuador de extremidade 13150 com base na entrada proveniente do conversor analógico-digital 13194. Por exemplo, em um exemplo, o processador primário 2006 calcula a espessura do tecido situado entre a bigorna 13152 e o cartucho de grampos 13156, com base nas entradas do primeiro sensor 13158 e na pluralidade de sensores secundários 13160a, 13160b.
[0310] A Figura 45 ilustra um aspecto de um cartucho de grampos 13606 que compreende um cabo flexível 13630 conectado a um sensor de campo magnético 13610 e um processador 13612. O cartucho de grampos 13606 é similar ao cartucho de grampos 13606 e é similar ao cartucho de grampos cirúrgicos 304 (Figura 1) descrito acima em conexão com o instrumento cirúrgico 10 (Figuras 1 a 6). A Figura 112 é uma vista explodida do cartucho de grampos 13606. O cartucho de grampos compreende 13606 um corpo do cartucho 13620, um desli- zador de corpo triangular 13618, uma bandeja do cartucho 13622, e um cabo flexível 13630. O cabo flexível 13630 compreende adicionalmente contatos elétricos 13632 na extremidade proximal do cartucho de grampos 13606, dispostos de modo a formar uma conexão elétrica quando o cartucho de grampos 13606 é operacionalmente acoplado a um atuador de extremidade, como o atuador de extremidade 13800 descrito abaixo. Os contatos elétricos 13632 são integrados com a trilhas de cabo 13634, que se estendem ao longo de parte do comprimento do cartucho de grampos 13606. As trilhas de cabo 13634 conectam-se 13636 próximas à extremidade distal do cartucho de grampos 13606, e essa conexão 13636 une-se a um acoplamento conduti- vo 13614. Um sensor de campo magnético 13610 e um processador 13612 são operacionalmente acoplados ao acoplamento condutivo 13614, de modo que o sensor de campo magnético 13610 e o processador 13612 sejam capazes de se comunicar.
[0311] A Figura 46 ilustra um aspecto de um atuador de extremi dade 13800 com um cabo flexível 13830 que tem por finalidade fornecer energia a um cartucho de grampos 13806 que compreende um plugue sensor distal 13816. O atuador de extremidade 13800 é similar ao atuador de extremidade 300 (Figura 1) descrito acima em conexão com o instrumento cirúrgico 10 (Figuras 1 a 6). O atuador de extremidade 13800 compreende uma bigorna 13802, um membro de garra ou canaleta alongada 13804, e um cartucho de grampos 13806 operacio- nalmente acoplado à canaleta alongada 13804. O atuador de extremidade 13800 é operacionalmente acoplado a um conjunto de eixo de acionamento. O conjunto de eixo de acionamento é similar ao conjunto de eixo de acionamento intercambiável 200 (Figura 1) descrito acima em conexão com o instrumento cirúrgico 10 (Figuras 1 a 6). O conjunto de eixo de acionamento compreende adicionalmente um tubo de fechamento que envolve o exterior do conjunto de eixo de acionamento. Em alguns exemplos, o conjunto de eixo de acionamento compreende adicionalmente uma junta articulada 13904, que inclui um conjunto de luva de fechamento de dupla articulação. O conjunto de luva de fe-chamento de dupla articulação inclui um conjunto de luva de fechamento de atuador de extremidade que é operável para acoplar-se ao atuador de extremidade 13800.
[0312] As Figuras 47 e 48 ilustram a porção de canaleta alongada 13804 do atuador de extremidade 13800, sem a bigorna 13802 ou o cartucho de grampos, para ilustrar como o cabo flexível 13830 pode ser assentado no interior da canaleta alongada 13804. Em alguns exemplos, a canaleta alongada 13804 compreende adicionalmente uma terceira abertura 13824 para receber o cabo flexível 13830. Dentro do corpo da canaleta alongada 13804, o cabo flexível se divide 13834 para formar extensões 13836 em cada lado da canaleta alongada 13804. A Figura 48 ilustra adicionalmente que os conectores 13838 podem ser operacionalmente acoplados às extensões 13836 do cabo flexível.
[0313] A Figura 49 ilustra o cabo flexível 13830 sozinho. Conforme ilustrado, o cabo flexível 13830 compreende uma única bobina 13832 que tem por finalidade envolver a junta articulada 13904 (Figura 46), e uma divisão 13834 que se fixa às extensões 13836. As extensões podem ser acopladas a conectores 13838 que têm, sobre suas superfícies voltadas para a parte distal, linguetas 13840 para acoplamento ao cartucho de grampos 13806, conforme descrito abaixo.
[0314] A Figura 50 ilustra uma vista próxima da canaleta alongada 13804 mostrada na Figura 47 e 48 com um cartucho de grampos 13804 acoplado à mesma. O cartucho de grampos 13804 compreende um corpo de cartucho 13822 e uma bandeja de cartucho 13820. Em algumas modalidades, o cartucho de grampos 13806 compreende adicionalmente trilhas elétricas 13828 que são acopladas a contatos pro- ximais 13856 na extremidade proximal do cartucho de grampos 13806. Os contatos proximais 13856 podem ser posicionados de modo a formar uma conexão condutiva com as linguetas 13840 dos conectores 13838 que são acopladas às extensões de cabo flexível 13836. Dessa forma, quando o cartucho de grampos 13806 é acoplado de modo operacional com a canaleta alongada 13804, o cabo flexível 13830, através dos conectores 13838 e das linguetas conectoras 13840, pode fornecer energia ao cartucho de grampos 13806.
[0315] As Figuras 51 e 52 ilustram um aspecto de um plugue sen sor distal 13816. A Figura 51 ilustra uma vista em recorte do plugue sensor distal 13816. Conforme ilustrado, o plugue sensor distal 13816 compreende um sensor de campo magnético 13810 e um processador 13812. O plugue sensor distal 13816 compreende adicionalmente uma placa flexível 13814. Conforme adicionalmente ilustrado na Figura 52, o sensor de campo magnético 13810 e o processador 13812 são acoplados de modo operacional à placa flexível 13814, de modo que sejam capazes de se comunicar.
[0316] A Figura 53 ilustra um aspecto de um atuador de extremi dade 13950 com um cabo flexível 13980 que tem por finalidade fornecer energia a sensores e circuitos eletrônicos na ponta distal 13952 da porção de bigorna 13961. O atuador de extremidade 13950 compreende uma bigorna 13961, um membro de garra ou canaleta alongada 13954, e um cartucho de grampos 13956 operacionalmente acoplado à canaleta alongada. O atuador de extremidade 13950 é operacionalmente acoplado a um conjunto de eixo de acionamento 13960. O conjunto de eixo de acionamento 13960 compreende adicionalmente um tubo de fechamento 13962 que envolve o conjunto de eixo de acionamento 13960. Em alguns exemplos, o conjunto de eixo de acionamento 13960 compreende adicionalmente uma junta articulada 13964, que inclui um conjunto de luva de fechamento de dupla articulação 13966.
[0317] Em vários aspectos, o atuador de extremidade 13950 com preende adicionalmente um cabo flexível 13980 que é configurado para não interferir com a função da junta articulada 13964. Em alguns exemplos, o tubo de fechamento 13962 compreende uma primeira abertura 13968 através da qual o cabo flexível 13980 pode se estender. Em alguns exemplos, o cabo flexível 13980 compreende adicionalmente um circuito ou bobina 13982 que passa ao redor junta articulada 13964 de modo que o cabo flexível 13980 não interfere com o funcionamento da junta articulada 13964, conforme adicionalmente descrito abaixo. Em alguns exemplos, o cabo flexível 13980 se estende ao longo do comprimento da bigorna 13961 até uma segunda abertura 13970 na ponta distal da bigorna 13961.
[0318] Uma porção de um instrumento de grampeamento cirúrgico 16000 é ilustrada nas Figuras 54 a 56. O instrumento de grampeamen- to 16000 pode ser usado com um sistema operado manualmente e/ou um sistema de controlado por robô, por exemplo. O sistema de gram- peamento cirúrgico 16000 compreende um eixo de acionamento 16010 e um atuador de extremidade 16020 que se estende a partir do eixo de acionamento 16010. O atuador de extremidade 16020 compreende uma canaleta de cartucho 16030 e um cartucho de grampos 16050 posicionado na canaleta de cartucho 16030. O cartucho de grampos 16050 compreende um corpo de cartucho 16051 e um retentor 16057 fixado ao corpo de cartucho 16051. O corpo de cartucho 16051 é compreendido de um material plástico, por exemplo, e o retentor 16057 é compreendido de metal, por exemplo; entretanto, o corpo de cartucho 16051 e o retentor 16057 podem ser feitos de qualquer material adequado. O corpo de cartucho 16051 compreende uma plataforma 16052 configurada para sustentar o tecido, uma fenda longitudinal 16056 e uma pluralidade de cavidades de grampo 16053 definidas na plataforma 16052.
[0319] Com referência principalmente às Figuras 55 e 56, os grampos 16055 são posicionados de modo removível nas cavidades de grampo 16053 e são sustentados pelos acionadores de grampos 16054, os quais também são posicionados de modo móvel nas cavidades de grampo 16053. O retentor 16057 se estende ao redor do fundo do corpo de cartucho 16051, para evitar que os acionadores de grampo 16054 e/ou os grampos 16055 caiam para fora do fundo das cavidades de grampo 16053. Os acionadores de grampos 16054 e os grampos 16055 são móveis entre uma posição não disparada (Figura 55) uma posição disparada através de um deslizador 16060. O desli- zador 16060 é móvel entre uma posição não disparada proximal (Figura 55) em direção a uma posição disparada distal para ejetar os grampos 16055 do cartucho de grampos 16050, conforme ilustrado na Figura 56. O deslizador 16060 compreende uma ou mais superfícies inclinadas 16064 que são configuradas para deslizar sob os acionadores de grampo 16054. O atuador de extremidade 16020 compreende adicionalmente uma bigorna 16040 configurada para deformar os grampos 16055 quando os grampos 16055 são ejetados do cartucho de grampos 16050. Em vários casos, a bigorna 16040 pode compreender a formação de bolsos 16045 definida no interior da mesma que são configurados para deformar os grampos 16055.
[0320] O eixo de acionamento 16010 inclui uma estrutura 16012 e uma luva externa 16014 que é móvel em relação à estrutura 16012. A canaleta de cartucho 16030 é montada em e se estende a partir da armação do eixo de acionamento 16012. A luva externa 16014 é operacionalmente engatada à bigorna 16040 e é configurada para mover a bigorna 16040 entre uma posição aberta (Figura 54) e uma posição fechada (Figura 55). Em uso, a bigorna 16040 é móvel em direção a um cartucho de grampos 16050 posicionado na canaleta de cartucho 16030 para prender o tecido na plataforma 16052 do cartucho de grampos 16050. Em vários aspectos alternativos, a canaleta de cartucho 16030 e o cartucho de grampos 16050 são móveis em relação à bigorna 16040 para prender o tecido entre os mesmos. Em qualquer caso, o eixo de acionamento 16010 compreende adicionalmente um membro de disparo 16070 configurado para empurrar distalmente o deslizador 16060. O membro de disparo 16070 compreende um gume de faca 16076 que é móvel dentro da fenda longitudinal 16056 e é configurado para cortar o tecido posicionado entre a bigorna 16040 e o cartucho de grampos 16050 à medida que o membro de disparo 16070 é avançado em posição distal para ejetar os grampos 16055 do cartucho de grampos 16050. O membro de disparo 16070 compreende adicionalmente um primeiro came 16071 configurado para engatar a ca- naleta de cartucho 16030, e um segundo came 16079 configurado para engatar a bigorna 16040 e manter a bigorna 16040 no lugar em relação ao cartucho de grampos 16050. O primeiro came 16071 é configurado para deslizar sob a canaleta de cartucho 16030, e o segundo came 16079 é configurado para deslizar dentro de uma fenda alongada 16049 definida na bigorna 16040.
[0321] A Figura 57 ilustra um aspecto de um atuador de extremi dade 3011 compreendendo um primeiro sensor 3008a e um segundo sensor 3008b. O atuador de extremidade 3011 é similar ao atuador de extremidade 300 descrito acima. O atuador de extremidade 3011 compreende uma bigorna 3013 acoplada a um membro de garra 3004. O membro de garra 3004 é configurado para receber em seu interior um cartucho de grampos 3021. O cartucho de grampos 3021 compreende uma pluralidade de grampos (não mostrada). A pluralidade de grampos é implantável a partir do cartucho de grampos 3021 durante uma operação cirúrgica. O atuador de extremidade 3011 compreende um primeiro sensor 3008a configurado para medir um ou mais parâmetros do atuador de extremidade 3011. Por exemplo, em um aspecto, o primeiro sensor 3008a é configurado para medir o vão 3023 entre a bigorna 3013 e o membro de garra 3004. O primeiro sensor 3008a pode compreender, por exemplo, um sensor de efeito Hall configurado para detectar um campo magnético gerado por um imã 3012 incorporado ao segundo membro de garra 3004 e/ou ao cartucho de grampos 3021. Como um outro exemplo, em um aspecto, o primeiro sensor 3008a é configurado para medir uma ou mais forças exercidas sobre a bigorna 3013 pelo segundo membro de garra 3004 e/ou os tecidos pinçados entre a bigorna 3013 e o segundo membro de garra 3004.
[0322] O atuador de extremidade 3011 compreende um segundo sensor 3008b. O segundo sensor 3008b é configurado para medir um ou mais parâmetros do atuador de extremidade 3011. Por exemplo, em vários aspectos, o segundo sensor 3008b pode compreender um extensômetro configurado para medir a magnitude do esforço na bigorna 3013 durante uma condição pinçada. O medidor de esforço fornece um sinal elétrico cuja amplitude varia com a magnitude do esforço. Em vários aspectos, o primeiro sensor 3008a e/ou o segundo sensor 3008b podem compreender, por exemplo, um sensor magnético como, por exemplo, um sensor de efeito Hall, um ex- tensômetro, um sensor de pressão, um sensor de força, um sensor indutivo como, por exemplo, um sensor de correntes parasitas, um sensor resistivo, um sensor capacitivo, um sensor óptico, e/ou quaisquer outros sensores adequados para medição de um ou mais parâmetros do atuador de extremidade 3011. O primeiro sensor 3008a e o segundo sensor 3008b podem ser dispostos em uma configuração em série e/ou uma configuração paralela. Em uma configuração em série, o segundo sensor 3008b pode ser configurado para afetar diretamente a saída do primeiro sensor 3008a. Em uma configuração paralela, o segundo sensor 3008b pode ser configurado para afetar indiretamente a saída do primeiro sensor 3008a.
[0323] Em um aspecto, um ou mais parâmetros medidos pelo pri meiro sensor 3008a são relacionados a um ou mais parâmetros medidos pelo segundo sensor 3008b. Por exemplo, em um aspecto, o primeiro sensor 3008a é configurado para medir o vão 3023 entre a bigorna 3013 e o membro de garra 3004. O vão 3023 é representativo da espessura e/ou da compressibilidade de uma seção de tecido pin- çado entre a bigorna 3013 e o cartucho de grampos 3021 localizado no membro de garra 3004. O primeiro sensor 3008a pode compreender, por exemplo, um sensor de efeito Hall configurado para detectar um campo magnético gerado por um imã 3012 acoplado ao segundo membro de garra 3004 e/ou ao cartucho de grampos 3021. A medição em um único local descreve com exatidão a espessura dos tecidos comprimidos para uma mordedura de tecidos total calibrada, mas pode fornecer resultados imprecisos quando uma mordedura de tecidos parcial é colocada entre a bigorna 3013 e o segundo membro de garra 3004. Uma mordedura de tecidos parcial, seja uma mordedura parcial proximal ou uma mordedura parcial distal, altera a geometria de pin- çamento da bigorna 3013.
[0324] Em alguns aspectos, o segundo sensor 3008b é configura do para detectar um ou mais parâmetros indicativos de um tipo de mordedura de tecidos, por exemplo, uma mordedura total, uma mordedura parcial proximal e/ou uma mordedura parcial distal. A medição do segundo sensor 3008b pode ser usada para ajustar a medição do primeiro sensor 3008a para representar com exatidão a verdadeira espessura de tecido comprimido de uma mordedura parcial em posicionamento proximal ou distal. Em um aspecto, por exemplo, o segundo sensor 3008b compreende um extensômetro como, por exemplo, um medidor de microesforço, configurado para monitorar a amplitude do esforço na bigorna durante uma condição pinçada. A amplitude do esforço da bigorna 3013 é usada para modificar a saída do primeiro sensor 3008a, por exemplo, um sensor de efeito Hall, para representar com exatidão a verdadeira espessura dos tecidos comprimidos de uma mordedura parcial em posicionamento proximal ou distal. O primeiro sensor 3008a e o segundo sensor 3008b podem ser medidos em tempo real durante uma operação de pinçamento. A medição em tempo real permite que as informações baseadas em tempo sejam analisadas, por exemplo, pelo processador primário 2006, e usadas para selecionar um ou mais algoritmos e/ou tabelas de consulta para reconhecer as características do tecido e o posicionamento do pinçamento para ajustar dinamicamente as medições de espessura dos tecidos.
[0325] Em alguns aspectos, a medição de espessura do primeiro sensor 3008a pode ser fornecida a um dispositivo de saída de um instrumento cirúrgico 10 acoplado ao atuador de extremidade 3011. Em um aspecto, por exemplo, o atuador de extremidade 3011 é acoplado ao instrumento cirúrgico 10 que compreende uma tela 2028. A medição do primeiro sensor 3008a é fornecida a um processador, por exemplo, o processador primário 2006. O processador primário 2006 ajusta a medição do primeiro sensor 3008a com base na medição do segundo sensor 3008b para refletir a verdadeira espessura dos tecidos de uma seção de tecido pinçada entre a bigorna 3013 e o cartucho de grampos 3021. O processador primário 2006 emite para a tela 2028 a medição de espessura dos tecidos ajustada e uma indicação de mordedura total ou parcial. Um operador pode determinar a im- plantação ou não dos grampos no cartucho de grampos 3021, com base nos valores exibidos.
[0326] Em alguns aspectos, o primeiro sensor 3008a e o segundo sensor 3008b podem estar situados em ambientes diferentes como, por exemplo, o primeiro sensor 3008a estando situado dentro de um paciente, em um sítio de tratamento, e o segundo sensor 3008b estando situado externamente ao paciente. O segundo sensor 3008b pode ser configurado para calibrar e/ou modificar a saída do primeiro sensor 3008a. O primeiro sensor 3008a e/ou o segundo sensor 3008b podem compreender, por exemplo, um sensor ambiental. Os sensores ambientais podem compreender, por exemplo, sensores de temperatura, sensores de umidade, sensores de pressão e/ou qualquer outro sensor ambiental adequado.
[0327] A Figura 58 é um diagrama lógico ilustrando um aspecto de um processo 3050 para determinar e exibir a espessura de uma seção de tecido pinçada entre a bigorna 3013 e o cartucho de grampos 3021 do atuador de extremidade 3011. O processo 3050 compreende obter uma tensão de efeito Hall 3052, por exemplo, por meio de um sensor de efeito Hall situado na ponta distal da bigorna 3013. A tensão de efeito Hall 3052 é fornecida a um conversor analógico-digital 3054 e convertida em um sinal digital. O sinal digital é fornecido a um processador como, por exemplo, o processador primário 2006. O processador primário 2006 calibra 3056 a entrada de curva do sinal de tensão de efeito Hall 3052. Um extensômetro 3058 como, por exemplo, um medidor de microesforço, é configurado para medir um ou mais parâmetros do atuador de extremidade 3011 como, por exemplo, a amplitude do esforço exercido sobre a bigorna 3013 durante uma operação de pinçamento. O esforço medido é convertido 3060 em um sinal digital e fornecido ao processador como, por exemplo, o processador primário 2006. O processador primário 2006 usa um ou mais algoritmos e/ou tabelas de consulta para ajustar a tensão de efeito Hall 3052 em resposta ao esforço medido pelo extensômetro 3058 para refletir a verdadeira espessura e a completude da mordedura dos tecidos pin- çados pela bigorna 3013 e pelo cartucho de grampos 3021. A espessura ajustada é exibida 3026 a um operador por meio de, por exemplo, uma tela 2026 incorporada ao instrumento cirúrgico 10.
[0328] Em alguns aspectos, o instrumento cirúrgico pode compre ender adicionalmente um sensor de carga 3082 ou uma célula de carga. O sensor de carga 3082 pode estar situado, por exemplo, no conjunto de eixo de acionamento intercambiável 200, descrito acima, ou no compartimento 12, também descrito acima.
[0329] A Figura 59 é um diagrama lógico ilustrando uma modali dade de um processo 3070 para determinar e exibir a espessura de uma seção de tecido pinçada entre a bigorna 3013 e o cartucho de grampos 3021 do atuador de extremidade 3011. O processo compreende obter uma tensão de efeito Hall 3072, por exemplo, por meio de um sensor de efeito Hall situado na ponta distal da bigorna 3013. A tensão de efeito Hall 3072 é fornecida a um conversor analógico-digital 3074 e convertida em um sinal digital. O sinal digital é fornecido a um processador como, por exemplo, o processador primário 2006. O processador primário 2006 calibra 3076 a entrada de curva do sinal da tensão de efeito Hall 3072. Um extensômetro 3078 como, por exemplo, um medidor de microesforço, é configurado para medir um ou mais parâmetros do atuador de extremidade 3011 como, por exemplo, a amplitude do esforço exercido sobre a bigorna 3013 durante uma operação de pinçamento. O esforço medido é convertido 3080 em um sinal digital e fornecido ao processador como, por exemplo, o processador primário 2006. O sensor de carga 3082 mede a força de pinça- mento da bigorna 3013 contra o cartucho de grampos 3021. A força de pinçamento medida é convertida 3084 em um sinal digital e fornecida ao processador como, por exemplo, o processador primário 2006. O processador primário 2006 usa um ou mais algoritmos e/ou tabelas de consulta para ajustar a tensão de efeito Hall 3072 em resposta ao esforço medido pelo extensômetro 3078 e a força de pinçamento medida pelo sensor de carga 3082 para refletir a verdadeira espessura e a completude da mordedura dos tecidos pinçados pela bigorna 3013 e pelo cartucho de grampos 3021. A espessura ajustada é exibida 3026 a um operador por meio de, por exemplo, uma tela 2026 incorporada ao instrumento cirúrgico 10.
[0330] A Figura 60 ilustra um aspecto de um atuador de extremi dade 3100 compreendendo um primeiro sensor 3108a e um segundo sensor 3108b. O atuador de extremidade 3100 é similar ao atuador de extremidade 3011. O atuador de extremidade 3100 compreende uma bigorna, ou bigorna 3102 acoplada de modo pivotante a um membro de garra 3104. O membro de garra 3104 é configurado para receber em seu interior um cartucho de grampos 3106. O atuador de extremidade 3100 compreende um primeiro sensor 3108a acoplado à bigorna 3102. O primeiro sensor 3108a é configurado para medir um ou mais parâmetros do atuador de extremidade 3100 como, por exemplo, o vão 3110 entre a bigorna 3102 e o cartucho de grampos 3106. O vão 3110 pode corresponder, por exemplo, a uma espessura de tecido pinçado entre a bigorna 3102 e o cartucho de grampos 3106. O primeiro sensor 3108a pode compreender qualquer sensor adequado para medir um ou mais parâmetros do atuador de extremidade. Em vários aspectos, por exemplo, o primeiro sensor 3108a pode compreender um sensor magnético, como um sensor de efeito Hall, um extensômetro, um sensor de pressão, um sensor indutivo, como um sensor de corrente parasita, um sensor resistivo, um sensor capacitivo, um sensor óptico e/ou qualquer outro sensor adequado.
[0331] Em alguns aspectos, o atuador de extremidade 3100 com- preende um segundo sensor 3108b. O segundo sensor 3108b é acoplado ao membro de garra 3104 e/ou ao cartucho de grampos 3106. O segundo sensor 3108b é configurado para detectar um ou mais parâmetros do atuador de extremidade 3100. Em alguns aspectos, por exemplo, o segundo sensor 3108b é configurado para detectar uma ou mais condições do instrumento como, por exemplo, uma cor do cartucho de grampos 3106 acoplado ao membro de garra 3104, um comprimento do cartucho de grampos 3106, uma condição de pinçamento do atuador de extremidade 3100, o número de usos/número de usos restantes do atuador de extremidade 3100 e/ou do cartucho de grampos 3106, e/ou qualquer outra condição do instrumento adequada. O segundo sensor 3108b pode compreender qualquer sensor adequado para detectar uma ou mais condições do instrumento como, por exemplo, um sensor magnético, como um sensor de efeito Hall, um medidor de esforço, um sensor de pressão, um sensor indutivo como um sensor de correntes parasitas, um sensor resistivo, um sensor capacitivo, um sensor óptico e/ou qualquer outro sensor adequado.
[0332] Em um aspecto, por exemplo, a entrada proveniente do se gundo sensor 3108b pode ser usada para calibrar a entrada do primeiro sensor 3108a. O segundo sensor 3108b pode ser configurado para detectar um ou mais parâmetros do cartucho de grampos 3106 como, por exemplo, a cor e/ou o comprimento do cartucho de grampos 3106. Os parâmetros detectados, como a cor e/ou o comprimento do cartucho de grampos 3106, pode corresponder a uma ou mais propriedades do cartucho como, por exemplo, a altura do suporte do cartucho, a espessura de tecidos útil/ótima para o cartucho de grampos e/ou o padrão dos grampos no cartucho de grampos 3106. Os parâmetros conhecidos do cartucho de grampos 3106 podem ser usados para ajustar a medição de espessura fornecida pelo primeiro sensor 3108a. Por exemplo, se o cartucho de grampos 3106 tem uma altura de suporte mais alta, a medição de espessura fornecida pelo primeiro sensor 3108a pode ser reduzida para compensar a altura adicional do suporte. A espessura ajustada pode ser exibida a um operador, por exemplo, por meio de uma tela 2026 acoplada ao instrumento cirúrgico 10.
[0333] A Figura 61 ilustra um aspecto de um atuador de extremi dade 3150 compreendendo um primeiro sensor 3158 e uma pluralidade de sensores secundários 3160a, 3160b. O atuador de extremidade 3150 compreende uma bigorna, ou uma bigorna 3152 e um membro de garra 3154. O membro de garra 3154 é configurado para receber um cartucho de grampos 3156. A bigorna 3152 é articuladamente móvel em relação ao membro de garra 3154, para pinçar o tecido entre a bigorna 3152 e o cartucho de grampos 3156. A bigorna compreende um primeiro sensor 3158. O primeiro sensor 3158 é configurado para detectar um ou mais parâmetros do atuador de extremidade 3150 como, por exemplo, o vão 3110 entre a bigorna 3152 e o cartucho de grampos 3156. O vão 3110 pode corresponder, por exemplo, a uma espessura de tecido pinçado entre a bigorna 3152 e o cartucho de grampos 3156. O primeiro sensor 3158 pode compreender qualquer sensor adequado para medir um ou mais parâmetros do atuador de extremidade. Por exemplo, em vários aspectos, por exemplo, o primeiro sensor 3158 pode compreender um sensor magnético, como um sensor de efeito Hall, um extensômetro, um sensor de pressão, um sensor indutivo, como um sensor de corrente parasita, um sensor re- sistivo, um sensor capacitivo, um sensor óptico e/ou qualquer outro sensor adequado.
[0334] Em alguns aspectos, o atuador de extremidade 3150 com preende uma pluralidade de sensores secundários 3160a, 3160b. Os sensores secundários 3160a, 3160b são configurados para detectar um ou mais parâmetros do atuador de extremidade 3150. Em alguns aspectos, por exemplo, os sensores secundários 3160a, 3160b são configurados para medir uma amplitude do esforço exercido sobre a bigorna 3152 durante um procedimento de pinçamento. Em alguns aspectos, os sensores secundários 3160a, 3160b podem compreender um sensor magnético, como um sensor de efeito Hall, um extensôme- tro, um sensor de pressão, um sensor indutivo, como um sensor de corrente parasita, um sensor resistivo, um sensor capacitivo, um sensor óptico e/ou qualquer outro sensor adequado. Os sensores secundários 3160a, 3160b podem ser configurados para medir um ou mais parâmetros idênticos em diferentes locais na bigorna 3152, diferentes parâmetros em locais idênticos na bigorna 3152, e/ou diferentes parâmetros em diferentes locais na bigorna 3152.
[0335] A Figura 62 ilustra um aspecto de um atuador de extremi dade 3200 que compreende uma pluralidade de sensores 3208a a 3208d. O atuador de extremidade 3200 compreende uma bigorna 3202 acoplada de modo pivotante a um membro de garra 3204. O membro de garra 3204 é configurado para receber em seu interior um cartucho de grampos 3206. A bigorna 3202 compreende uma pluralidade de sensores 3208a a 3208d sobre a mesma. A pluralidade de sensores 3208a a 3208d é configurada para detectar um ou mais parâmetros do atuador de extremidade 3200 como, por exemplo, a bigorna 3202. A pluralidade de sensores 3208a a 3208d pode compreender um ou mais sensores idênticos e/ou sensores diferentes. A pluralidade de sensores 3208a a 3208d pode compreender, por exemplo, sensores magnéticos, como um sensor de efeito Hall, medidores de esforço, sensores de pressão, sensores indutivos, como um sensor de correntes parasitas, sensores resistivos, sensores capacitivos, sensores ópticos e/ou quaisquer outros sensores adequados ou combinações dos mesmos. Em um aspecto, por exemplo, a pluralidade de sensores 3208a a 3208d pode compreender uma pluralidade de ex- tensômetros.
[0336] Em um aspecto, a pluralidade de sensores 3208a a 3208d permite que seja implementado um processo robusto de detecção da espessura dos tecidos. Mediante a detecção de vários parâmetros ao longo do comprimento da bigorna 3202, a pluralidade de sensores 3208a a 3208d permite que um instrumento cirúrgico como, por exemplo, o instrumento cirúrgico 10, calcule a espessura dos tecidos nas garras, independentemente da mordedura, por exemplo, uma mordedura parcial ou total. Em alguns aspectos, a pluralidade de sensores 3208a a 3208d compreende uma pluralidade de extensômetros. A pluralidade de medidores de esforço é configurada para medir o esforço em vários pontos sobre a bigorna 3202. A amplitude e/ou o coeficiente angular do esforço em cada um dos vários pontos sobre a bigorna 3202 podem ser usados para determinar a espessura dos tecidos dispostos entre a bigorna 3202 e o cartucho de grampos 3206. A pluralidade de medidores de esforço pode ser configurada para otimizar a amplitude máxima e/ou as diferenças de coeficiente angular com base na dinâmica de pinçamento para determinar espessura, posicionamento dos tecidos e/ou propriedades materiais dos tecidos. O monitoramento baseado em tempo da pluralidade de sensores 3208a a 3208d durante o pinçamento permite que um processador como, por exemplo, o processador primário 2006, use algoritmos e tabelas de consulta para reconhecer características do tecido e posições de pinçamento, e ajuste dinamicamente o atuador de extremidade 3200 e/ou os tecidos pinçados entre a bigorna 3202 e o cartucho de grampos 3206.
[0337] A Figura 63 é um diagrama lógico ilustrando um aspecto de um processo 3220 para determinar uma ou mais propriedades de tecidos com base em uma pluralidade de sensores 3208a a 3208d. Em um aspecto, uma pluralidade de sensores 3208a a 3208d geram 3222a a 3222d uma pluralidade de sinais indicativos de um ou mais parâmetros do atuador de extremidade 3200. A pluralidade de sinais gerados é convertida, de 3224a a 3224d, em sinais digitais e fornecida a um processador. Em um aspecto, por exemplo, compreendendo a pluralidade de medidores de esforço, a pluralidade de circuitos eletrônicos de conversão de μStrain (microesforço) converte 3224a a 3224d os sinais do extensômetro em sinais digitais. Os sinais digitais são fornecidos a um processador como, por exemplo, o processador primário 2006. O processador primário 2006 determina 3226 uma ou mais características do tecido com base na pluralidade de sinais. O processador primário 2006 pode determinar uma ou mais características do tecido mediante aplicação de um algoritmo e/ou uma tabela de consulta. Uma ou mais características do tecido são exibidas 3026 a um operador, por exemplo, por uma tela 2026 incorporada ao instrumento cirúrgico 10.
[0338] A Figura 64 ilustra um aspecto de um atuador de extremi dade 3250 compreendendo uma pluralidade de sensores secundários 3260a a 3260d acoplados a um membro de garra 3254. O atuador de extremidade 3250 compreende uma bigorna 3252 acoplada de modo pivotante a um membro de garra 3254. A bigorna 3252 é móvel em relação ao membro de garra 3254 para pinçar entre si um ou mais materiais como, por exemplo, uma seção de tecido 3264. O membro de garra 3254 é configurado para receber um cartucho de grampos 3256. Um primeiro sensor 3258 é acoplado à bigorna 3252. O primeiro sensor é configurado para detectar um ou mais parâmetros do atuador de extremidade 3150 como, por exemplo, o vão 3110 entre a bigorna 3252 e o cartucho de grampos 3256. O vão 3110 pode corresponder, por exemplo, a uma espessura de tecido pinçado entre a bigorna 3252 e o cartucho de grampos 3256. O primeiro sensor 3258 pode compreender qualquer sensor adequado para medir um ou mais parâmetros do atuador de extremidade. Por exemplo, em vários aspectos, por exemplo, o primeiro sensor 3258 pode compreender um sensor mag- nético, como um sensor de efeito Hall, um extensômetro, um sensor de pressão, um sensor indutivo, como um sensor de corrente parasita, um sensor resistivo, um sensor capacitivo, um sensor óptico e/ou qualquer outro sensor adequado.
[0339] Uma pluralidade de sensores secundários 3260a a 3260d é acoplada ao membro de garra 3254. A pluralidade de sensores secundários 3260a a 3260d pode ser formada integralmente com o membro de garra 3254 e/ou o cartucho de grampos 3256. Em um aspecto, por exemplo, a pluralidade de sensores secundários 3260a a 3260d é disposta sobre uma fileira externa do cartucho de grampos 3256 (consulte a Figura 63). A pluralidade de sensores secundários 3260a a 3260d está configurada para detectar um ou mais parâmetros do atuador de extremidade 3250 e/ou uma seção de tecido 3264 pinçada entre a bigorna 3252 e o cartucho de grampos 3256. A pluralidade de sensores secundários 3260a a 3260d pode compreender quaisquer sensores adequados para detectar um ou mais parâmetros do atuador de extremidade 3250 e/ou da seção de tecido 3264 como, por exemplo, sensores magnéticos, como um sensor de efeito Hall, medidores de esforço, sensores de pressão, sensores indutivos, como um sensor de correntes parasitas, sensores resistivos, sensores capacitivos, sensores ópticos e/ou quaisquer outros sensores adequados ou combinações dos mesmos. A pluralidade de sensores secundários 3260a a 3260d pode compreender sensores idênticos e/ou sensores diferentes.
[0340] Em alguns aspectos, a pluralidade de sensores secundários 3260a a 3260d compreende sensores com duplo propósito e elementos estabilizadores do tecido. A pluralidade de sensores secundários 3260a a 3260d compreende eletrodos e/ou geometrias de detecção configuradas para criar uma condição de tecido estabilizado quando a pluralidade de sensores secundários de 3260a a 3260d interage com uma seção de tecido 3264 como, por exemplo, durante uma operação de pinçamento. Em alguns aspectos, um ou mais dentre a pluralidade de sensores secundários 3260a a 3260d podem ser substituídos por elementos estabilizadores de tecido não detectores. Os sensores secundários 3260a a 3260d criam uma condição de tecido estabilizado mediante o controle do fluxo do tecido, a formação de grampos e/ou outras condições dos tecidos durante um pinçamento, um grampea- mento e/ou outro processo de tratamento.
[0341] A Figura 65 ilustra um aspecto de um cartucho de grampos 3270 compreendendo uma pluralidade de sensores 3272a a 3272h formados integralmente no mesmo. O cartucho de grampos 3270 compreende uma pluralidade de fileiras contendo uma pluralidade de orifícios para armazenamento de grampos em seu interior. Um ou mais dentre os orifícios na fileira externa 3278 são substituídos por um sensor dentre a pluralidade de sensores 3272a a 3272h. Uma seção em recorte 3274 é mostrada para ilustrar um sensor 3272f acoplado a um fio metálico de sensor 3276b. Os fios metálicos de sensor 3276a, 3276b podem compreender uma pluralidade de fios metálicos para acoplar a pluralidade de sensores 3272a a 3272h a um ou mais circuitos de um instrumento cirúrgico como, por exemplo, o instrumento cirúrgico 10. Em alguns aspectos, um ou mais dentre a pluralidade de sensores 3272a a 3272h compreendem sensores de duplo propósito e elementos estabilizadores de tecidos, tendo eletrodos e/ou geometrias de detecção configurados para proporcionar a estabilização de tecidos. Em alguns aspectos, a pluralidade de sensores 3272a a 3272h pode ser substituída por e/ou co-populada com uma pluralidade de elementos estabilizadores de tecidos. A estabilização de tecidos pode ser obtida, por exemplo, mediante o controle do fluxo dos tecidos e/ou a formação de grampos durante um processo de pinçamento e/ou grampeamento. A pluralidade de sensores 3272a a 3272h fornece sinais a um ou mais circuitos do instrumento cirúrgico 10 para aprimorar a retroinformação sobre desempenho de grampeamento e/ou detecção de espessura dos tecidos.
[0342] A Figura 66 é um diagrama lógico ilustrando um aspecto de um processo 3280 para determinar um ou mais parâmetros de uma seção de tecido 3264 pinçada dentro de um atuador de extremidade como, por exemplo, o atuador de extremidade 3250 ilustrado na Figura 64. Em um aspecto, um primeiro sensor 3258 é configurado para detectar um ou mais parâmetros do atuador de extremidade 3250 e/ou da seção de tecido 3264 situada entre a bigorna 3252 e o cartucho de grampos 3256. Um primeiro sinal é gerado 3282 pelos primeiros sensores 3258. O primeiro sinal é indicativo dos um ou mais parâmetros detectados pelo primeiro sensor 3258. Um ou mais sensores secundários 3260 são configurados para detectar um ou mais parâmetros do atuador de extremidade 3250 e/ou da seção de tecido 3264. Os sensores secundários 3260 podem ser configurados para detectar os mesmos parâmetros, parâmetros adicionais ou parâmetros diferentes daqueles detectados pelo primeiro sensor 3258. Sinais secundários 3284 são gerados pelos sensores secundários 3260. Os sinais secundários 3284 são indicativos dos um ou mais parâmetros detectados pelos sensores secundários 3260. O primeiro sinal e os sinais secundários são fornecidos a um processador como, por exemplo, um processador primário 2006. O processador primário 2006 ajusta 3286 o primeiro sinal gerado pelo primeiro sensor 3258 com base na entrada gerada pelos sensores secundários 3260. O sinal ajustado pode ser indicativo, por exemplo, da verdadeira espessura de uma seção de tecido 3264 e da completude da mordedura. O sinal ajustado é exibido 3026 a um operador por meio de, por exemplo, uma tela 2026 incorporada ao instrumento cirúrgico 10.
[0343] A Figura 67 ilustra um aspecto de um atuador de extremi dade 3350 que compreende um sensor magnético 3358 que compre- ende uma taxa de amostragem específica para limitar ou eliminar sinais falsos. O atuador de extremidade 3350 compreende uma bigorna, ou bigorna 3352 acoplada de modo pivotante a um membro de garra 3354. O membro de garra 3354 é configurado para receber em seu interior um cartucho de grampos 3356. O cartucho de grampos 3356 contém uma pluralidade de grampos que pode ser aplicada a uma seção de tecido situada entre a bigorna 3352 e o cartucho de grampos 3356. Um sensor magnético 3358 é acoplado à bigorna 3352. O sensor magnético 3358 é configurado para detectar um ou mais parâmetros do atuador de extremidade 3350 como, por exemplo, o vão 3364 entre a bigorna 3352 e o cartucho de grampos 3356. O vão 3364 pode corresponder à espessura de um material como, por exemplo, uma seção de tecido e/ou a completude de uma mordedura de material situada entre a bigorna 3352 e o cartucho de grampos 3356. O sensor magnético 3358 pode compreender qualquer sensor adequado para detectar um ou mais parâmetros do atuador de extremidade 3350 como, por exemplo, um sensor magnético, como um sensor de efeito Hall, um extensômetro, um sensor de pressão, um sensor indutivo como um sensor de correntes parasitas, um sensor resistivo, um sensor capacitivo, um sensor óptico e/ou qualquer outro sensor adequado.
[0344] Em um aspecto, o sensor magnético 3358 compreende um sensor magnético configurado para detectar um campo magnético gerado por uma fonte eletromagnética 3360 acoplada ao membro de garra 3354 e/ou ao cartucho de grampos 3356. A fonte eletromagnética 3360 gera um campo magnético detectado pelo sensor magnético 3358. A força do campo magnético detectado pode corresponder, por exemplo, à espessura e/ou à completude de uma mordedura de tecidos situada entre a bigorna 3352 e o cartucho de grampos 3356. Em alguns aspectos, a fonte eletromagnética 3360 gera um sinal em uma frequência conhecida como, por exemplo, 1 MHz. Em outros aspectos, o sinal gerado pela fonte eletromagnética 3360 pode ser ajustável com base, por exemplo, no tipo de cartucho de grampos 3356 instalado no membro de garra 3354, em um ou mais sensores adicionais, um algoritmo e/ou um ou mais parâmetros.
[0345] Em um aspecto, um processador de sinais 3362 é acoplado ao atuador de extremidade 3350 como, por exemplo, a bigorna 3352. O processador de sinais 3362 é configurado para processar o sinal gerado pelo sensor magnético 3358 para eliminar falsos sinais e para reforçar a entrada proveniente do sensor magnético 3358. Em alguns aspectos, o processador de sinais 3362 pode estar situado separadamente do atuador de extremidade 3350 como, por exemplo, no conjunto de cabo 14 de um instrumento cirúrgico 10. Em alguns aspectos, o processador de sinais 3362 é formado integralmente com e/ou compreende um algoritmo executado por um processador geral como, por exemplo, o processador primário 2006. O processador de sinais 3362 é configurado para processar o sinal proveniente do sensor magnético 3358 a uma frequência substancialmente igual à frequência do sinal gerado pela fonte eletromagnética 3360. Em um aspecto, por exemplo, a fonte eletromagnética 3360 gera um sinal a uma frequência de 1 MHz. O sinal é detectado pelo sensor magnético 3358. O sensor magnético 3358 gera um sinal indicativo do campo magnético detectado, que é fornecido ao processador de sinais 3362. O sinal é processado pelo processador de sinais 3362 a uma frequência de 1 MHz para eliminar falsos sinais. O sinal processado é fornecido a um processador como, por exemplo, o processador primário 2006. O processador primário 2006 correlaciona o sinal recebido a um ou mais parâmetros do atuador de extremidade 3350 como, por exemplo, o vão 3364 entre a bigorna 3352 e o cartucho de grampos 3356.
[0346] A Figura 68 é um diagrama lógico ilustrando um aspecto de um processo 3370 para gerar uma medição de espessura para uma seção de tecido situada entre uma bigorna e um cartucho de grampos de um atuador de extremidade como, por exemplo, o atuador de extremidade 3350 ilustrado na Figura 45. Em um aspecto do processo 3370, um sinal é gerado 3372 por uma fonte eletromagnética modulada 3360. O sinal gerado pode compreender, por exemplo, um sinal de 1 MHz. Um sensor magnético 3358 é configurado para detectar 3374 o sinal gerado pela fonte eletromagnética 3360. O sensor magnético 3358 gera um sinal indicativo do campo magnético detectado e fornece o sinal a um processador de sinais 3362. O processador de sinais 3362 processa 3376 o sinal para remover ruídos, falsos sinais e/ou para reforçar o sinal. O sinal processado é fornecido a um conversor analógico-digital para conversão 3378 em um sinal digital. A calibração 3380 do sinal digital pode ser executada, por exemplo, mediante a aplicação de um algoritmo de entrada da curva de calibração e/ou uma tabela de consulta. Os processos 3376, a conversão 3378 e a calibra- ção 3380 podem ser executados por um ou mais circuitos. O sinal calibrado é exibido 3026 a um usuário por meio de, por exemplo, uma tela 2026 formada integralmente com o instrumento cirúrgico 10.
[0347] As Figuras 69A e 69B ilustram um aspecto de um atuador de extremidade 3800 compreendendo um sensor de pressão. O atua- dor de extremidade 3800 compreende uma bigorna, ou bigorna 3802 acoplada de modo pivotante a um membro de garra 3804. O membro de garra 3804 é configurado para receber em seu interior um cartucho de grampos 3806. O cartucho de grampos 3806 compreende uma pluralidade de grampos. Um primeiro sensor 3808 é acoplado à bigorna 3802 em uma ponta distal. O primeiro sensor 3808 é configurado para detectar um ou mais parâmetros do atuador de extremidade como, por exemplo, a distância, ou vão 3814, entre a bigorna 3802 e o cartucho de grampos 3806. O primeiro sensor 3808 pode compreender qualquer sensor adequado como, por exemplo, um sensor magnético. Um imã 3810 pode ser acoplado ao membro de garra 3804 e/ou ao cartucho de grampos 3806, para fornecer um sinal magnético ao sensor magnético.
[0348] Em alguns aspectos, o atuador de extremidade 3800 com preende um segundo sensor 3812. O segundo sensor 3812 é configurado para detectar um ou mais parâmetros do atuador de extremidade 3800 e/ou uma seção de tecido situada entre os mesmos. O segundo sensor 3812 pode compreender qualquer sensor adequado como, por exemplo, um ou mais sensores de pressão. O segundo sensor 3812 pode ser acoplado à bigorna 3802, ao membro de garra 3804 e/ou ao cartucho de grampos 3806. Um sinal proveniente do segundo sensor 3812 pode ser usado para ajustar a medição do primeiro sensor 3808, para ajustar a leitura do primeiro sensor, para representar com exatidão a verdadeira espessura do tecido comprimido em mordeduras parciais em posicionamento proximal ou distal. Em alguns aspectos, o segundo sensor 3812 pode ser substituto em relação ao primeiro sensor 3808.
[0349] Em alguns aspectos, o segundo sensor 3812 pode compre ender, por exemplo, um único filme contínuo detector de pressão e/ou um conjunto de filmes detectores de pressão. O segundo sensor 3812 é acoplado ao suporte do cartucho de grampos 3806 ao longo da cobertura do eixo central, por exemplo, uma fenda 3816 configurada para receber um membro de corte e/ou de implantação de grampo. O segundo sensor 3812 fornece sinais indicativos da amplitude da pressão aplicada pelo tecido durante um procedimento de pinçamento. Durante o disparo do membro de corte e/ou de implantação, o sinal proveniente do segundo sensor 3812 pode ser interrompido, por exemplo, mediante o corte das conexões elétricas entre o segundo sensor 3812 e um ou mais circuitos. Em alguns aspectos, um circuito interrompido do segundo sensor 3812 pode ser indicativo de um cartucho de grampos 3806 gasto. Em alguns aspectos, o segundo sensor 3812 pode estar posicionado de modo que o posicionamento de um membro de corte e/ou de implantação não interrompa a conexão ao segundo sensor 3812.
[0350] A Figura 70 ilustra um aspecto de um atuador de extremi dade 3850 compreendendo um segundo sensor 3862 situado entre um cartucho de grampos 3806 e um membro de garra 3804. O atuador de extremidade 3850 compreende uma bigorna, ou bigorna 3852 acoplada de modo pivotante a um membro de garra 3854. O membro de garra 3854 é configurado para receber em seu interior um cartucho de grampos 3856. Um primeiro sensor 3858 é acoplado à bigorna 3852 em uma ponta distal. O primeiro sensor 3858 é configurado para detectar um ou mais parâmetros do atuador de extremidade 3850 como, por exemplo, a distância, ou vão 3864, entre a bigorna 3852 e o cartucho de grampos 3856. O primeiro sensor 3858 pode compreender qualquer sensor adequado como, por exemplo, um sensor magnético. Um imã 3860 pode ser acoplado ao membro de garra 3854 e/ou ao cartucho de grampos 3856, para fornecer um sinal magnético ao sensor magnético. Em alguns aspectos, o atuador de extremidade 3850 compreende um segundo sensor 3862 similar em todos os aspectos ao segundo sensor 3812 das Figuras 69A-69B, exceto pelo fato de que está situado entre o cartucho de grampos 3856 e o membro de garra 3854.
[0351] A Figura 71 é um diagrama lógico ilustrando um aspecto de um processo 3870 para determinar e exibir a espessura de uma seção de tecido pinçada em um atuador de extremidade 3800 ou 3850, de acordo com as Figuras 69A-69B ou com a Figura 70. O processo compreende obter uma tensão de efeito Hall 3872, por exemplo, por meio de um sensor de efeito Hall situado na ponta distal da bigorna 3802. A tensão de efeito Hall 3872 é fornecida a um conversor analó- gico-digital 3876 e convertida em um sinal digital. O sinal digital é fornecido a um processador como, por exemplo, o processador primário 2006. O processador primário 2006 calibra 3874 a entrada de curva do sinal de tensão de efeito Hall 3872. Sensores de pressão como, por exemplo, o segundo sensor 3812, são configurados para medir 3880 um ou mais parâmetros, por exemplo, do atuador de extremidade 3800 como, por exemplo, a quantidade de pressão sendo exercida pela bigorna 3802 sobre o tecido pinçado no atuador de extremidade 3800. Em alguns aspectos, os sensores de pressão podem compreender um único filme contínuo detector de pressão e/ou conjunto de filmes detectores de pressão. Os sensores de pressão podem, dessa forma, ser operacionais para determinar variações na pressão medida em diferentes locais entre as extremidades proximal e distal do atuador de extremidade 3800. A pressão medida é fornecida ao processador como, por exemplo, o processador primário 2006. O processador primário 2006 usa um ou mais algoritmos e/ou tabelas de consulta para ajustar 3882 a tensão de efeito Hall 3872 em resposta à pressão medida 3880 pelos sensores de pressão para refletir com maior precisão a espessura do tecido pinçado entre, por exemplo, a bigorna 3802 e o cartucho de grampos 3806. A espessura ajustada é exibida 3878 a um operador por meio de, por exemplo, uma tela 2026 incorporada ao instrumento cirúrgico 10.
[0352] A Figura 72 ilustra um aspecto de um atuador de extremi dade 3900 compreendendo uma pluralidade de segundos sensores 3192a a 3192b situados entre um cartucho de grampos 3906 e uma canaleta alongada 3904. O atuador de extremidade 3900 compreende uma bigorna 3902, acoplada de modo pivotante a um membro de garra ou canaleta alongada 3904. A canaleta alongada 3904 é configurada para receber em seu interior um cartucho de grampos 3906. A bigorna 3902 compreende adicionalmente um primeiro sensor 3908 si- tuado na ponta distal. O primeiro sensor 3908 é configurado para detectar um ou mais parâmetros do atuador de extremidade 3900 como, por exemplo, a distância, ou vão, entre a bigorna 3902 e o cartucho de grampos 3906. O primeiro sensor 3908 pode compreender qualquer sensor adequado como, por exemplo, um sensor magnético. Um magneto 3910 pode ser acoplado à canaleta alongada 3904 e/ou ao cartucho de grampos 3906 para fornecer um sinal magnético ao primeiro sensor 3908. Em alguns aspectos, o atuador de extremidade 3900 compreende uma pluralidade de segundos sensores 3912a a 3912c situados entre o cartucho de grampos 3906 e a canaleta alongada 3904. Os segundos sensores 3912a a 3912c podem compreender quaisquer sensores adequados como, por exemplo, tiras de filme de pressão piezo-resistivo. Em alguns aspectos, os segundos sensores 3912a a 3912c podem ser uniformemente distribuídos entre as extremidades distal e proximal do atuador de extremidade 3900.
[0353] Em alguns aspectos, os sinais provenientes dos segundos sensores 3912a a 3912c podem ser usados para ajustar a medição do primeiro sensor 3908. Por exemplo, os sinais provenientes dos segundos sensores 3912a a 3912c podem ser usados para ajustar a leitura do primeiro sensor 3908 para representar com exatidão o vão entre a bigorna 3902 e o cartucho de grampos 3906, o qual pode variar entre as extremidades distal e proximal do atuador de extremidade 3900, dependendo do local e/ou da densidade do tecido 3920 entre a bigorna 3902 e o cartucho de grampos 3906. A Figura 11 ilustra um exemplo de uma mordedura parcial de tecido 3920. Conforme ilustrado para os propósitos deste exemplo, o tecido está situado somente na área proximal do atuador de extremidade 3900, criando uma área de alta pressão 3918 perto da área proximal do atuador de extremidade 3900, e uma área de baixa pressão 3916 correspondente perto da extremidade distal do atuador de extremidade.
[0354] As Figuras 73A e 73B ilustram com mais detalhes o efeito de uma mordedura total em comparação a uma mordedura parcial de tecido 3920. A Figura 73A ilustra o atuador de extremidade 3900 com uma mordedura total de tecido 3920, onde o tecido 3920 tem densidade uniforme. Com uma mordedura total de tecido 3920 com densidade uniforme, o primeiro vão 3914a medido na ponta distal do atuador de extremidade 3900 pode ser aproximadamente igual ao segundo vão 3922a medido no meio ou na extremidade proximal do atuador de extremidade 3900. Por exemplo, o primeiro vão 3914a pode medir 2,4 mm, e o segundo vão pode medir 2,3 mm. A Figura 73B ilustra um atuador de extremidade 3900 com uma mordedura de tecidos parcial 3920, ou alternativamente uma mordedura de tecidos total 3920 de densidade não uniforme. Nesse caso, o primeiro vão 3914b medirá menos que o segundo vão 3922b mediu na porção mais espessa ou mais densa do tecido 3920. Por exemplo, o primeiro vão pode medir 1,0 mm, enquanto o segundo vão pode medir 1,9 mm. Nas condições ilustradas nas FIGS. 73A-73B, os sinais provenientes dos segundos sensores 3912a a 3912c como, por exemplo, a pressão medida em diferentes pontos ao longo do comprimento do atuador de extremidade 3900, podem ser usados pelo instrumento para determinar o posicionamento do tecido 3920 e/ou as propriedades materiais do tecido 3920. O instrumento pode ser adicionalmente operável para usar a pressão medida ao longo do tempo para reconhecer as características do tecido e a posição do tecido, e para ajustar dinamicamente as medições de espessura do tecido.
[0355] A Figura 74 ilustra um aspecto de um atuador de extremi dade 4050 que é configurado para determinar a localização de um membro de corte ou faca 4062. O atuador de extremidade 4050 compreende uma bigorna 4052, acoplada de modo pivotante a um segundo membro de garra ou canaleta alongada 4054. A canaleta alongada 4054 é configurada para receber em seu interior um cartucho de grampos 4056. O cartucho de grampos 4056 compreende adicionalmente uma fenda (não mostrada) e um membro de corte ou faca 4062 situado em seu interior. A faca 4062 é acoplada de maneira operável a uma barra de corte 4064. A barra de corte 4064 é operável para mover a faca 4062 da extremidade proximal da fenda à extremidade distal. O atuador de extremidade 4050 pode compreender adicionalmente um sensor óptico 4060 situado perto da extremidade proximal da fenda. O sensor óptico pode ser acoplado a um processador como, por exemplo, o processador primário 2006. O sensor óptico 4060 pode ser ope- rável para emitir um sinal óptico em direção à barra de corte 4064. A barra de corte 4064 pode compreender adicionalmente uma tira de código 4066 ao longo de seu comprimento. A tira de código 4066 pode compreender recortes, entalhes, peças reflexivas ou qualquer outra configuração que seja oticamente legível. A tira de código 4066 é disposta de modo que o sinal óptico proveniente do sensor óptico 4060 seja refletido pela, ou através da, tira de código 4066. Conforme a faca 4062 se move e a barra de corte 4064 se move 4068 ao longo da fenda 4058, o sensor óptico 4060 detecta o reflexo do sinal óptico emitido, acoplado à tira de código 4066. O sensor óptico 4060 pode ser operá- vel para transmitir o sinal detectado ao processador primário 2006. O processador primário 2006 pode ser configurado para usar o sinal detectado para determinar a posição da faca 4062. A posição da faca 4062 pode ser detectada com maior precisão mediante o projeto da tira de código 4066 de modo que o sinal óptico detectado tenha uma elevação e queda gradual.
[0356] A Figura 75 ilustra um exemplo da tira de código 4066 em operação com LEDs vermelhos 4070 e LEDs infravermelhos 4072. Apenas para os propósitos deste exemplo, a tira de código 4066 compreende recortes. Conforme a tira de código 4066 se move 4068, a luz emitida pelos LEDs vermelhos 4070 será interrompida conforme os recortes passam diante da mesma. Os LEDs infravermelhos 4072 detectarão, portanto, o movimento da tira de código 4066 e, portanto, por extensão, o movimento da faca 4062.
[0357] A Figura 76 representa uma vista parcial do atuador de ex tremidade 300 do instrumento cirúrgico 10. Na forma de exemplo representada na Figura 76, o atuador de extremidade 300 compreende um cartucho de grampos 1100 que é similar em muitos aspectos ao cartucho de grampos cirúrgico 304 (Figura 15). Várias partes do atuador de extremidade 300 são omitidas para permitir um entendimento mais claro da presente invenção. Em certos casos, o atuador de extremidade 300 pode incluir uma primeira garra como, por exemplo, a bigorna 306 (Figura 20) e uma segunda garra como, por exemplo, a canaleta alongada 198 (Figura 14). Em certos casos, conforme descrito acima, a canaleta alongada 198 pode acomodar um cartucho de grampos como, por exemplo, o cartucho de grampos cirúrgico 304 ou o cartucho de grampos 1100, por exemplo. Ao menos um dentre a canaleta alongada 198 e a bigorna 306 pode ser móvel em relação ao outro dentre a canaleta alongada 198 e a bigorna 306, para capturar tecidos entre o cartucho de grampos 1100 e a bigorna 306. Vários conjuntos de acionamento são aqui descritos para facilitar o movimento da canaleta alongada 198 e/ou da bigorna 306 entre uma configuração aberta (Figura 1) e uma configuração fechada (Figura 77), por exemplo.
[0358] Em certos casos, conforme descrito acima, a viga com perfil em E 178 pode ser distalmente avançada para implantar os grampos 191 no tecido capturado e/ou avançar o gume cortante 182 entre uma pluralidade de posições para engatar e cortar o tecido capturado. Conforme ilustrado na Figura 76, o gume cortante 182 pode ser distalmen- te avançado ao longo de uma trajetória definida pela fenda 193, por exemplo. Em certos casos, o gume cortante 182 pode ser avançado de uma porção proximal 1103 do cartucho de grampos 1100 para uma porção distal 1105 do cartucho de grampos 1100, para cortar o tecido capturado. Em certos casos, o gume cortante 182 pode ser retraído proximalmente da porção distal 1105 para a porção proximal 1103 mediante retração proximal da viga com perfil em E 178, por exemplo.
[0359] Em certos casos, o gume cortante 182 pode ser usado para cortar tecidos capturados pelo atuador de extremidade 300 em múltiplos procedimentos. O leitor entenderá que o uso repetitivo do gume cortante 182 pode afetar o afiamento do gume cortante 182. O leitor entenderá também que, conforme diminui o afiamento do gume cortante 182, pode aumentar a força necessária para cortar o tecido capturado com o gume cortante 182. Com referência às Figuras 78-83, em certos casos, o instrumento cirúrgico 10 pode compreender um circuito 1106 (Figura 78) para monitorar o afiamento do gume cortante 182 durante, antes e/ou depois do funcionamento do instrumento cirúrgico 10 em um procedimento cirúrgico, por exemplo. Em certos casos, o circuito 1106 pode ser usado para testar o afiamento do gume cortante 182 antes de usar o gume cortante 182 para cortar o tecido capturado. Em certos casos, o circuito 1106 pode ser usado para testar o afiamento do gume cortante 182 depois de o gume cortante 182 ter sido usado para cortar o tecido capturado. Em certos casos, o circuito 1106 pode ser usado para testar o afiamento do gume cortante 182 antes e depois de o gume cortante 182 ser usado para cortar o tecido capturado. Em certos casos, o circuito 1106 pode ser usado para testar o afia- mento do gume cortante 182 na porção proximal 1103 e/ou na porção distal 1105.
[0360] Com referência às Figuras 78 a 83, o circuito 1106 pode incluir um ou mais sensores como, por exemplo, um sensor óptico 1108; o sensor óptico 1108 do circuito 1106 pode ser usado para testar a capacidade reflexiva do gume cortante 182, por exemplo. Em cer- tos casos, a capacidade do gume cortante 182 para refletir luz pode correlacionar-se com o afiamento do gume cortante 182. Em outras palavras, uma diminuição no afiamento do gume cortante 182 pode resultar em uma diminuição na capacidade do gume cortante 182 de refletir a luz. Consequentemente, em certos casos, a ausência de fio do gume cortante 182 pode ser avaliada mediante o monitoramento da intensidade da luz refletida pelo gume cortante 182, por exemplo. Em certos casos, o sensor óptico 1108 pode definir uma região detectora de luz. O sensor óptico 1108 pode ser orientado de modo que a região detectora de luz esteja disposta na trajetória do gume cortante 182, por exemplo. O sensor óptico 1108 pode ser empregado para detectar a luz refletida pelo gume cortante 182, enquanto o gume cortante 182 estiver na região de detecção óptica, por exemplo. Uma diminuição na intensidade da luz refletida para além de um limiar pode indicar que o afiamento do gume cortante 182 diminuiu para além de um nível acei-tável.
[0361] Com referência às Figuras 78 a 83, o circuito 1106 pode incluir uma ou mais fontes de luz como, por exemplo, uma fonte de luz 1110. Em certos casos, o circuito 1106 pode incluir um controlador 1112 ("microcontrolador") que pode ser operacionalmente acoplado ao sensor óptico 1108, conforme ilustrado nas Figuras 78 a 83. Em certos casos, o controlador 1112 pode incluir um processador 1114 ("microprocessador") e um ou mais meios legíveis por computador ou memória 1116 ("unidades de memória"). Em certos casos, a memória 1116 pode armazenar várias instruções de programa que, quando executadas, podem fazer com que o processador 1114 execute uma pluralidade de funções e/ou cálculos aqui descritos. Em certos casos, a memória 1116 pode ser acoplada ao processador 1114, por exemplo. Uma fonte de energia 1118 pode ser configurada para fornecer energia ao controlador 1112, aos sensores ópticos 1108 e/ou às fontes de luz 1110, por exemplo. Em certos casos, a fonte de energia 1118 pode compreender uma bateria (ou "conjunto de baterias" ou "fonte de energia"), como uma bateria de íons de Li, por exemplo. Em certos casos, o conjunto de baterias pode ser configurado para ser montado de modo liberável em relação ao conjunto de cabo 14, para fornecer energia ao instrumento cirúrgico 10. Várias células de bateria conectadas em série podem ser usadas como a fonte de alimentação 4428. Em certos casos, a fonte de energia 1118 pode ser substituível e/ou recarregável, por exemplo.
[0362] O controlador 1112 e/ou os outros controladores da presen te invenção podem ser implementados usando elementos de hardware integrados e/ou distintos, elementos de software e/ou uma combinação de ambos. Exemplos de elementos de hardware integrados podem incluir processadores, microprocessadores, controladores, circuitos integrados, ASICs, PLDs, DSPs, FPGAs, portas lógicas, registros, dispositivos de semicondutor, circuitos integrados, microcircuitos, chipsets, controladores, SoC e/ou SIP. Exemplos de elementos de hardware distintos podem incluir circuitos e/ou elementos de circuito, como portas lógicas, transistores de efeito de campo, transistores bi- polares, resistores, capacitores, indutores e/ou relés. Em certos casos, o controlador 1112 pode incluir um circuito híbrido que compreende elementos ou componentes de circuitos integrados e isolados em um ou mais substratos, por exemplo. Em certos casos, o controlador 1112 e/ou outros controladores da presente invenção pode ser um controlador de núcleo único ou um controlador de múltiplos núcleos LM4F230H5QR, conforme descrito em conexão com as Figuras 14 a 17B.
[0363] Em certos casos, a fonte de luz 1110 pode ser usada para emitir luz que possa ser direcionada ao gume cortante 182 na região de detecção óptica, por exemplo. O sensor óptico 1108 pode ser usa- do para medir a intensidade da luz refletida pelo gume cortante 182 enquanto está na região de detecção óptica, em resposta à exposição à luz emitida pela fonte de luz 1110. Em certos casos, o processador 1114 pode receber um ou mais valores da intensidade medida da luz refletida, e pode armazenar um ou mais valores da intensidade medida da luz refletida na memória 1116, por exemplo. Os valores armazenados podem ser detectados e/ou registrados antes, depois e/ou durante uma pluralidade de procedimentos cirúrgicos realizados pelo instrumento cirúrgico 10, por exemplo.
[0364] Em certos casos, o processador 1114 pode comparar a in tensidade medida da luz refletida aos valores de um limiar predefinido que podem ser armazenados na memória 1116, por exemplo. Em certos casos, o controlador 1112 pode concluir que o afiamento do gume cortante 182 caiu abaixo de um nível aceitável, se uma intensidade de luz medida exceder o valor de limiar predefinido em 1%, 5%, 10%, 25%, 50%, 100% e/ou mais de 100%, por exemplo. Em certos casos, o processador 1114 pode ser empregado para detectar uma tendência de diminuição nos valores armazenados da intensidade medida da luz refletida pelo gume cortante 182, enquanto na região de detecção óptica.
[0365] Em certos casos, o instrumento cirúrgico 10 pode incluir um ou mais sistemas de retroinformação como, por exemplo, o sistema de retroinformação 1120. Em certos casos, o processador 1114 pode usar o sistema de retroinformação 1120 para alertar um usuário se a intensidade medida da luz refletida pelo gume cortante 182 enquanto na região de detecção óptica estiver além do valor limite armazenado, por exemplo. Em certos casos, o sistema de retroinformação 1120 pode compreender um ou mais sistemas de retroinformação visuais, como telas de exibição, luzes de fundo e/ou LEDs, por exemplo. Em certos casos, o sistema de retroinformação 1120 pode compreender um ou mais sistemas de retroinformação de áudio, como alto-falantes e/ou campainhas, por exemplo. Em certos casos, o sistema de retroinfor- mação 1120 pode compreender um ou mais sistemas de retroinforma- ção tátil, por exemplo. Em certos casos, o sistema de retroinformação 1120 pode compreender combinações de sistemas de retroinformação visual, de áudio e/ou tátil, por exemplo.
[0366] Em certos casos, o instrumento cirúrgico 10 pode compre ender um mecanismo de travamento de disparo 1122 que pode ser usado para impedir o avanço do gume cortante 182. Vários mecanismos de travamento de disparo adequados são descritos com mais detalhes na publicação do Pedido de Patente US N° 2014/0001231, intitulada FIRING SYSTEM LOCKOUT ARRANGEMENTS FOR SURGICAL INSTRUMENTS, que está aqui incorporada, a título de referência, em sua totalidade. Em certos casos, conforme ilustrado na Figura 78, o processador 1114 pode ser operacionalmente acoplado ao mecanismo de travamento de disparo 1122. O processador 1114 pode usar o mecanismo de travamento de disparo 1122 para impedir o avanço do gume cortante 182, se for determinado que a intensidade medida da luz refletida pelo gume cortante 182 está além do limiar armazenado, por exemplo. Em outras palavras, o processador 1114 pode ativar o mecanismo de travamento de disparo 1122 se o gume cortante não estiver suficientemente afiado para cortar os tecidos capturados pelo atuador de extremidade 300.
[0367] Em certos casos, o sensor óptico 1108 e fonte de luz 1110 podem ser abrigados na porção distal do conjunto do eixo de acionamento intercambiável 200. Em certos casos, o afiamento do gume cortante 182 pode ser avaliado pelo sensor óptico 1108, conforme descrito acima, antes da transição do gume cortante 182 para dentro do atuador de extremidade 300. A barra de disparo 172 (Figura 14) pode avançar o gume cortante 182 através da região de detecção óptica de- finida pelo sensor óptico 1108 enquanto o gume cortante 182 está no conjunto de eixo de acionamento intercambiável 200, e antes de entrar no atuador de extremidade 300, por exemplo. Em certos casos, o afi- amento do gume cortante 182 pode ser avaliado pelo sensor óptico 1108 após retrair o gume cortante 182 proximalmente do atuador de extremidade 300. A barra de disparo 172 (Figura 14) pode retrair o gume cortante 182 através da região de detecção óptica definida pelo sensor óptico 1108 após a retração do gume cortante 182 do atuador de extremidade 300, dentro do conjunto do eixo de acionamento inter- cambiável 200, por exemplo.
[0368] Em certos casos, o sensor óptico 1108 e a fonte de luz 1110 podem ser abrigados em uma porção proximal do atuador de ex-tremidade 300, que pode ser proximal ao cartucho de grampos 1100, por exemplo. O afiamento do gume cortante 182 pode ser avaliado pelo sensor óptico 1108 após a transição do gume cortante 182 para dentro do atuador de extremidade 300 mas antes de engatar o cartucho de grampos 1100, por exemplo. Em certos casos, a barra de disparo 172 (Figura 14) pode avançar o gume cortante 182 através da região de detecção óptica definida pelo sensor óptico 1108 enquanto o gume cortante 182 está no atuador de extremidade 300, mas antes de se engatar ao cartucho de grampos 1100, por exemplo.
[0369] Em vários casos, o afiamento do gume cortante 182 pode ser avaliado pelo sensor óptico 1108 conforme o gume cortante 182 é avançado pela barra de disparo 172 através da fenda 193. Conforme ilustrado nas Figuras 78 a 83, o sensor óptico 1108 e a fonte de luz 1110 podem ser abrigados na porção proximal 1103 do cartucho de grampos 1100, por exemplo; e o afiamento do gume cortante 182 pode ser avaliado pelo sensor óptico 1108 na porção proximal 1103, por exemplo. A barra de disparo 172 (Figura 14) pode avançar o gume cortante 182 através da região de detecção óptica definida pelo sensor óptico 1108 na porção proximal 1103, antes de o gume cortante 182 engatar ao tecido capturado entre o cartucho de grampos 1100 e a bigorna 306, por exemplo. Em certos casos, conforme ilustrado nas Figuras 78 a 83, o sensor óptico 1108 e a fonte de luz 1110 podem ser abrigados na porção distal 1105 do cartucho de grampos 1100, por exemplo. O afiamento do gume cortante 182 pode ser avaliado pelo sensor óptico 1108 na porção distal 1105. Em certos casos, a barra de disparo 172 (Figura 14) pode avançar o gume cortante 182 através da região de detecção óptica definida pelo sensor óptico 1108 na porção distal 1105, após o gume cortante 182 ter passado através do tecido capturado entre o cartucho de grampos 1100 e a bigorna 306, por exemplo.
[0370] Novamente com referência à Figura 76, o cartucho de grampos 1100 pode compreender uma pluralidade de sensores ópticos 1108 e uma pluralidade de fontes de luz 1110 correspondentes, por exemplo. Em certos casos, um par do sensor óptico 1108 e da fonte de luz 1110 pode ser abrigado na porção proximal 1103 do cartucho de grampos 1100, por exemplo; e um par de sensor óptico 1108 e fonte de luz 1110 pode ser abrigado na porção distal 1105 do cartucho de grampos 1100, por exemplo. Nesses casos, o afiamento do gume cortante 182 pode ser avaliado uma primeira vez na porção proximal 1103, antes de se engatar ao tecido, por exemplo, e uma segunda vez na porção distal 1105, após passar através do tecido capturado, por exemplo.
[0371] O leitor entenderá que um sensor óptico 1108 pode avaliar o afiamento do gume cortante 182 uma pluralidade de vezes durante um procedimento cirúrgico. Por exemplo, o afiamento do gume cortante pode ser avaliado uma primeira vez durante o avanço do gume cortante 182 através da fenda 193 em um curso de disparo, e uma segunda vez durante a retração do gume cortante 182 através da fenda 193 em um curso de retorno, por exemplo. Em outras palavras, a luz refletida pelo gume cortante 182 pode ser medida pelo sensor óptico 1108, uma vez conforme o gume cortante é avançado através da região de detecção óptica, e uma vez conforme o gume cortante 182 é retraído através da região de detecção óptica, por exemplo.
[0372] O leitor entenderá que o processador 1114 pode receber uma pluralidade de leituras da intensidade da luz refletida pelo gume cortante 182, provenientes de um ou mais dentre os sensores ópticos 1108. Em certos casos, o processador 1114 pode ser configurado para descartar resultados fora dos limites e calcular uma leitura média a partir da pluralidade de leituras, por exemplo. Em certos casos, a leitura média pode ser comparada a um limiar armazenado na memória 1116, por exemplo. Em certos casos, o processador 1114 pode ser configurado para alertar um usuário através do sistema de retroinfor- mação 1120 e/ou ativar o mecanismo de travamento de disparo 1122 se for determinado que a leitura média calculada está além do limiar armazenado na memória 1116, por exemplo.
[0373] Em certos casos, conforme ilustrado nas Figuras 77, 79 e 80, um par do sensor óptico 1108 e da fonte de luz 1110 pode ser posicionado em lados opostos do cartucho de grampos 1100. Em outras palavras, o sensor óptico 1108 pode ser posicionado sobre um primeiro lado 1124 da fenda 193, por exemplo, e a fonte de luz 1110 pode ser posicionada sobre um segundo lado 1126, oposto ao primeiro lado 1124, da fenda 193, por exemplo. Em certos casos, o par de sensor óptico 1108 e fonte de luz 1110 pode ser substancialmente disposto em um plano que transecciona o cartucho de grampos 1100, conforme ilustrado na Figura 77. O par de sensor óptico 1108 e fonte de luz 1110 pode ser orientado para definir uma região de detecção óptica que é posicionada, ou ao menos substancialmente posicionada, sobre o plano que transecciona o cartucho de grampos 1100, por exemplo. Alternativamente, o par de sensor óptico 1108 e fonte de luz 1110 pode ser orientado para definir uma região de detecção óptica que está posicionada proximalmente ao plano que transecciona o cartucho de grampos 1100, por exemplo, conforme ilustrado na Figura 80.
[0374] Em certos casos, um par de sensor óptico 1108 e fonte de luz 1110 pode ser posicionado em um mesmo lado do cartucho de grampos 1100. Em outras palavras, conforme ilustrado na Figura 81, o par de sensor óptico 1108 e fonte de luz 1110 pode ser posicionado sobre um primeiro lado do gume cortante 182, por exemplo o lado 1128, conforme o gume cortante 182 é avançado através da fenda 193. Nesses casos, a fonte de luz 1110 pode ser orientada para direcionar a luz para o lado 1128 do gume cortante 182; e a intensidade da luz refletida pelo lado 1128, conforme medida pelo sensor óptico 1108, pode representar o afiamento do lado 1128.
[0375] Em certos casos, conforme ilustrado na Figura 82, um se gundo par de sensor óptico 1108 e fonte de luz 1110 pode ser posicionado sobre um segundo lado do gume cortante 182, como o lado 1130, por exemplo. O segundo par pode ser usado para avaliar o afi- amento do lado 1130. Por exemplo, a fonte de luz 1110 do segundo par pode ser orientada para direcionar a luz para o lado 1130 do gume cortante 182; e a intensidade da luz refletida pelo lado 1130, conforme medida pelo sensor óptico 1108 do segundo par, pode representar o afiamento do lado 1130. Em certos casos, o processador pode ser configurado para avaliar o afiamento do gume cortante 182 com base nas intensidades medidas da luz refletida pelos lados 1128 e 1130 do gume cortante 182, por exemplo.
[0376] Em certos casos, conforme ilustrado na Figura 77, um par de sensor óptico 1108 e fonte de luz 1110 pode ser abrigado na porção distal 1105 do cartucho de grampos 1100. Conforme ilustrado na Figura 81, o sensor óptico 1108 pode ser posicionado, ou ao menos substancialmente posicionado, sobre um eixo geométrico LL que se estende longitudinalmente ao longo da trajetória do gume cortante 182 através da fenda 193, por exemplo. Além disso, a fonte de luz 1110 pode ser posicionada distalmente ao gume cortante 182 e orientada para dirigir luz ao gume cortante 182, conforme o gume cortante é avançado em direção à fonte de luz 1110, por exemplo. Além disso, o sensor óptico 1108 pode ser posicionado, ou ao menos substancialmente posicionado, ao longo de um eixo geométrico AA que intersec- ciona o eixo geométrico LL, conforme ilustrado na Figura 81. Em cer-tos casos, o eixo geométrico AA pode ser perpendicular ao eixo geométrico LL, por exemplo. Em qualquer caso, o sensor óptico 1108 pode ser orientado a definir uma região de detecção óptica na intersec- ção do eixo geométrico LL com o eixo geométrico AA, por exemplo.
[0377] O leitor entenderá que a posição, a orientação e/ou o nú mero de sensores ópticos e fontes de luz correspondentes aqui descritos em conexão com o instrumento cirúrgico 10 são exemplos de aspectos destinados para fins de ilustração. Várias outras disposições de sensores ópticos e fontes de luz podem ser usadas pela presente invenção para avaliar o afiamento do gume cortante 182.
[0378] O leitor entenderá que o avanço do gume cortante 182 através do tecido capturado pelo atuador de extremidade 300 pode fazer com que o gume cortante acumule detritos de tecidos e/ou fluidos corporais durante cada disparo do instrumento cirúrgico 10. Esses detritos podem interferir na capacidade do circuito 1106 de avaliar com exatidão o afiamento do gume cortante 182. Em certos casos, o instrumento cirúrgico 10 pode ser equipado com um ou mais mecanismos de limpeza que podem ser usados para limpar o gume cortante 182 antes de avaliar o afiamento do gume cortante 182, por exemplo.
[0379] Com referência à Figura 76, em certos casos, o cartucho de grampos 1100 pode incluir um primeiro par de sensor óptico 1108 e fonte de luz 1110, o qual pode ser abrigado na porção proximal 1103 do cartucho de grampos 1100, por exemplo. Além disso, conforme ilustrado na Figura 76, o cartucho de grampos 1100 pode incluir um primeiro par de membros de limpeza 1132, o qual pode ser abrigado na porção proximal 1103, em lados opostos da fenda 193. O primeiro par de membros de limpeza 1132 pode ser posicionado distalmente ao primeiro par de sensor óptico 1108 e fonte de luz 1110, por exemplo. Conforme ilustrado na Figura 76, o cartucho de grampos 1100 pode incluir um segundo par de sensor óptico 1108 e fonte de luz 1110, o qual pode ser abrigado na porção distal 1105 do cartucho de grampos 1100, por exemplo. Conforme ilustrado na Figura 76, o cartucho de grampos 1100 pode incluir um segundo par de membros de limpeza 1132, o qual pode ser abrigado na porção distal 1105, em lados opostos da fenda 193. O segundo par dos membros de limpeza 1132 pode ser posicionado proximalmente ao segundo par de sensor óptico 1108 e fonte de luz 1110.
[0380] Adicionalmente ao exposto acima, conforme ilustrado na Figura 76, o gume cortante 182 pode ser avançado distalmente em um curso de disparo para cortar os tecidos capturados pelo atuador de extremidade 300. Conforme o gume cortante é avançado, uma primeira avaliação do afiamento do gume cortante 182 pode ser realizada pelo primeiro par de sensor óptico 1108 e fonte de luz 1110, antes do engate do tecido pelo gume cortante 182, por exemplo. Uma segunda avaliação do afiamento do gume cortante 182 pode ser executada pelo segundo par de sensor óptico 1108 e fonte de luz 1110, após o gume cortante 182 ter transeccionado o tecido capturado, por exemplo. O gume cortante 182 pode ser avançado através do segundo par de membros de limpeza 1132, antes da segunda avaliação do afiamento do gume cortante 182, para remover quaisquer detritos coletados pelo gume cortante 182 durante a transecção do tecido capturado.
[0381] Adicionalmente ao exposto acima, conforme ilustrado na Figura 76, o gume cortante 182 pode ser proximalmente retraído em um curso de retorno. Conforme o gume cortante é retraído, uma terceira avaliação do afiamento do gume cortante 182 pode ser executada pelo primeiro par de sensor óptico 1108 e fonte de luz 1110, durante o curso de retorno. O gume cortante 182 pode ser retraído através do primeiro par de membros de limpeza 1132, antes da terceira avaliação do afiamento do gume cortante 182, para remover quaisquer detritos coletados pelo gume cortante 182 durante a transecção do tecido capturado, por exemplo.
[0382] Em certos casos, uma ou mais das fontes de luz 1110 po dem compreender um ou mais cabos de fibra óptica. Em certos casos, um ou mais circuitos flexíveis 1134 podem ser usados para transmitir energia da fonte de energia 1118 aos sensores ópticos 1108 e/ou às fontes de luz 1110. Em certos casos, os circuitos flexíveis 1134 podem ser configurados para transmitir uma ou mais das leituras dos sensores ópticos 1108 ao controlador 1112, por exemplo.
[0383] Agora com referência à Figura 84, é representado um car tucho de grampos 4300; o cartucho de grampos 4300 é similar, em muitos aspectos, ao cartucho de grampos cirúrgico 304 (Figura 14). por exemplo, o cartucho de grampos 4300 pode ser usado com o atu- ador de extremidade 300. Em certos casos, conforme ilustrado na Figura 84, o cartucho de grampos 4300 pode compreender um membro de teste de afiamento 4302, o qual pode ser usado para testar o afia- mento do gume cortante 182. Em certos casos, o membro de teste de afiamento 4302 pode ser fixado a e/ou integrado com o corpo do cartucho 194 do cartucho de grampos 4300, por exemplo. Em certos casos, o membro de teste de afiamento 4302 pode estar disposto na porção proximal 1103 do cartucho de grampos 4300, por exemplo. Em certos casos, conforme ilustrado na Figura 84, o membro de teste de afiamento 4302 pode estar disposto sobre um suporte de cartucho 4304 do cartucho de grampos 4300, por exemplo.
[0384] Em certos casos, conforme ilustrado na Figura 84, o mem bro de teste de afiamento 4302 pode se estender através da fenda 193 do cartucho de grampos 4300 até formar uma ponte, ou formar ao menos parcialmente uma ponte, no vão definido pela fenda 193, por exemplo. Em certos casos, o membro de teste de afiamento 4302 pode interromper, ou ao menos parcialmente interromper, a trajetória do gume cortante 182. O gume cortante 182 pode engatar, cortar e/ou passar através do membro de teste de afiamento 4302, conforme o gume cortante 182 é avançado durante um curso de disparo, por exemplo. Em certos casos, o gume cortante 182 pode ser configurado para engatar, cortar e/ou passar através do membro de teste de afia- mento 4302, antes de se engatar ao tecido capturado pelo atuador de extremidade 300 em um curso de disparo, por exemplo. Em certos casos, o gume cortante 182 pode ser configurado para engatar o membro de teste de afiamento 4302 em uma extremidade proximal 4306 do membro de teste de afiamento 4302, e sair e/ou desengatar o membro de teste de afiamento 4302 em uma extremidade distal 4308 do membro de teste de afiamento 4302, por exemplo. Em certos casos, o gume cortante 182 pode deslocar-se e/ou cortar através do membro de teste de afiamento 4302 por uma distância (D) entre a extremidade proximal 4306 e a extremidade distal 4308, por exemplo, conforme o gume cortante 182 é avançado durante um curso de disparo.
[0385] Referindo-se principalmente às Figuras 84 e 85, o instru mento cirúrgico 10 pode compreender um circuito 4310 para testar o afiamento do gume cortante 182, por exemplo. Em certos casos, o circuito 4310 pode avaliar o afiamento do gume cortante 182 testando-se a capacidade de o gume cortante 182 ser avançado através do membro de teste de afiamento 4302. Por exemplo, o circuito 4310 pode ser configurado para observar o período de tempo que o gume cortante 182 leva para transeccionar totalmente e/ou passar completamente através de ao menos uma porção predeterminada do membro de teste de afiamento 4302. Se o período de tempo observado ultrapassar um limiar predeterminado, o circuito 4310 pode concluir que o afiamento do gume cortante 182 caiu abaixo de um nível aceitável, por exemplo.
[0386] Em certos casos, o circuito 4310 pode incluir um controla dor 4312 ("microcontrolador") que pode incluir um processador 4314 ("microprocessador") e uma ou mais mídias legíveis por computador ou unidades de memória 4316 ("memória"). Em certos casos, a memória 4316 pode armazenar várias instruções de programa que, quando executadas, podem fazer com que o processador 4314 execute uma pluralidade de funções e/ou cálculos aqui descritos. Em certos casos, a memória 4316 pode ser acoplada ao processador 4314, por exemplo. Uma fonte de alimentação 4318 pode ser configurada para fornecer energia ao controlador 4312, por exemplo. Em certos casos, a fonte de energia 4138 pode compreender uma bateria (ou "conjunto de baterias" ou "fonte de energia"), como uma bateria de íons de Li, por exemplo. Em certos casos, o conjunto de baterias pode ser configurado para ser montado de modo liberável ao conjunto de cabo 14. Várias células de bateria conectadas em série podem ser usadas como a fonte de alimentação 4318. Em certos casos, a fonte de energia 4318 pode ser substituível e/ou recarregável, por exemplo.
[0387] Em certos casos, o controlador 4313 pode ser operacio nalmente acoplado ao sistema de retroinformação 1120 e/ou ao mecanismo de travamento de disparo 1122, por exemplo.
[0388] Com referência às Figuras 84 e 85, o circuito 4310 pode compreender um ou mais sensores de posição. Exemplos de sensores de posição e sistema de posicionamento adequados ao uso com a presente invenção são descritos na publicação do Pedido de Patente US N° de série 2014/0263538, intitulado "SENSOR ARRANGEMENTS FOR ABSOLUTE POSITIONING SYSTEM FOR SURGICAL INSTRUMENTS", que é aqui incorporada, a título de referência, em sua totalidade. Em certos casos, o circuito 4310 pode incluir um primeiro sensor de posição 4320 e um segundo sensor de posição 4322. Em certos casos, o primeiro sensor de posição 4320 pode ser usado para detectar uma primeira posição do gume cortante 182 na extremidade proximal 4306 do membro de teste de afiamento 4302, por exemplo; e o segundo sensor de posição 4322 pode ser usado para detectar uma segunda posição do gume cortante 182 na extremidade distal 4308 do membro de teste de afiamento 4302, por exemplo.
[0389] Em certos casos, o primeiro e o segundo sensores de posi ção 4320, 4322 podem ser usados para fornecer o primeiro e o segundo sinais de posição, respectivamente, ao controlador 4312. Será entendido que os sinais de posição podem ser sinais analógicos ou valores digitais com base na interface entre o controlador 4312 e o primeiro e o segundo sensores de posição 4320, 4322. Em um aspecto, a interface entre o controlador 4312 e o primeiro e o segundo sensores de posição 4320, 4322 pode ser uma interface de periféricos serial padrão (SPI, ou "serial peripheral interface"), e os sinais de posição podem ser valores digitais representando a primeira e a segunda posições do gume cortante 182, conforme descrito acima.
[0390] Adicionalmente ao exposto acima, o processador 4314 po de determinar o período de tempo entre a recepção do primeiro sinal de posição e a recepção do segundo sinal de posição. O período de tempo determinado pode corresponder ao tempo necessário para que o gume cortante 182 avance através do membro de teste de afiamento 4302, da primeira posição na extremidade proximal 4306 do membro de teste de afiamento 4302, por exemplo, à segunda posição na extremidade distal 4308 do membro de teste de afiamento 4302, por exemplo. Em ao menos um exemplo, o controlador 4312 pode incluir um elemento de tempo que pode ser ativado pelo processador 4314 ao receber o primeiro sinal de posição, e desativado ao receber o segundo sinal de posição. O período de tempo entre a ativação e a desativação do elemento de tempo pode corresponder ao tempo necessário para que o gume cortante 182 avance da primeira posição à segunda posição, por exemplo. O elemento de tempo pode compreender um relógio em tempo real, um processador configurado para implementar uma função de tempo ou qualquer outro circuito de temporização adequado.
[0391] Em vários casos, o controlador 4312 pode comparar com um valor de limiar predefinido o período de tempo necessário para que o gume cortante 182 avance da primeira posição à segunda posição, para avaliar se o afiamento do gume cortante 182 caiu abaixo de um nível aceitável, por exemplo. Em certos casos, o controlador 4312 pode concluir que o afiamento do gume cortante 182 caiu abaixo de um nível aceitável, se um período de tempo medido ultrapassar o valor de limiar predefinido em 1%, 5%, 10%, 25%, 50%, 100% e/ou mais de 100%, por exemplo.
[0392] Com referência à Figura 86, em vários casos, um motor elé trico 4330 pode acionar a barra de disparo 172 (Figura 14) para avançar o gume cortante 182 durante um curso de disparo, e/ou para retrair o gume cortante 182 durante um curso de retorno, por exemplo. Um acionador de motor 4332 pode controlar o motor elétrico 4330; e um controlador como, por exemplo, o controlador 4312 pode estar em comunicação de sinais com o acionador do motor 4332. Conforme o motor elétrico 4330 avança o gume cortante 182, o controlador 4312 pode determinar a corrente drenada pelo motor elétrico 4330, por exemplo. Nestes casos, a força necessária para avançar o gume cortante 182 pode corresponder à corrente drenada pelo motor elétrico 4330, por exemplo. Ainda com referência à Figura 86, o controlador 4312 do instrumento cirúrgico 10 pode determinar se a corrente drenada pelo motor elétrico 4330 aumenta durante o avanço do gume cortante 182 e, se assim for, pode calcular o aumento percentual da corrente.
[0393] Em certos casos, a corrente drenada pelo motor elétrico 4330 pode aumentar significativamente enquanto o gume cortante 182 está em contato com o membro de teste de afiamento 4302, devido à resistência do membro de teste de afiamento 4302 ao gume cortante 182. Por exemplo, a corrente drenada pelo motor elétrico 4330 pode aumentar significativamente conforme o gume cortante 182 engata, passa e/ou corta através do membro de teste de afiamento 4302. O leitor entenderá que a resistência do membro de teste de afiamento 4302 ao gume cortante 182 depende, em parte, do afiamento do gume cortante 182; e conforme o afiamento do gume cortante 182 diminui devido ao uso repetitivo, a resistência do membro de teste de afiamen- to 4302 ao gume cortante 182 aumentará. Consequentemente, o valor do aumento percentual da corrente drenada pelo motor elétrico 4330 enquanto o gume cortante está em contato com o membro de teste de afiamento 4302 pode aumentar, conforme o afiamento do gume cortante 182 diminui devido ao uso repetitivo, por exemplo.
[0394] Em certos casos, o valor determinado do aumento percen tual da corrente drenada pelo motor elétrico 4330 pode ser o aumento percentual máximo detectado na corrente drenada pelo motor 4330. Em vários casos, o controlador 4312 pode comparar o valor determinado do aumento percentual da corrente drenada pelo motor elétrico 4330 com um valor-limite predefinido do aumento percentual da corrente drenada pelo motor elétrico 4330. Se o valor determinado ultrapassar o valor de limiar predefinido, o controlador 4312 pode concluir que o afiamento do gume cortante 182 caiu abaixo de um nível aceitável, por exemplo.
[0395] Em certos casos, conforme ilustrado na Figura 86, o pro cessador 4314 pode estar em comunicação com o sistema de retroin- formação 1120 e/ou o mecanismo de travamento de disparo 1122, por exemplo. Em certos casos, o processador 4314 pode usar o sistema de retroinformação 1120 para alertar um usuário se o valor determinado do aumento percentual da corrente drenada pelo motor elétrico 4330 ultrapassar o valor de limiar predefinido, por exemplo. Em certos casos, o processador 4314 pode usar o mecanismo de travamento de disparo 1122 para impedir o avanço do gume cortante 182 se o valor determinado do aumento percentual da corrente drenada pelo motor elétrico 4330 ultrapassar o valor de limiar predefinido, por exemplo.
[0396] Em vários casos, o controlador 4312 pode usar um algorit mo para determinar a alteração na corrente drenada pelo motor elétrico 4330. Por exemplo, um sensor de corrente pode detectar a corrente drenada pelo motor elétrico 4330 durante o curso de disparo. O sensor de corrente pode detectar continuamente a corrente drenada pelo motor elétrico e/ou pode detectar de modo intermitente a corrente drenada pelo motor elétrico. Em vários casos, o algoritmo pode comparar a leitura de corrente mais recente com a leitura de corrente imediatamente procedente, por exemplo. Adicional ou alternativamente, o algoritmo pode comparar uma leitura de amostra dentro de um período de tempo X com uma leitura de corrente anterior. Por exemplo, o algoritmo pode comparar a leitura de amostra com uma leitura de amostra anterior dentro de um período anterior de tempo X, como o período de tempo imediatamente procedente X, por exemplo. Em outros casos, o algoritmo pode calcular a tendência média de corrente drenada pelo motor. O algoritmo pode calcular a drenagem média de corrente durante um período de tempo X que inclui a leitura de corrente mais recente, por exemplo, e pode comparar aquela drenagem média de corrente com a drenagem média de corrente durante um período de tem- po X imediatamente procedente, por exemplo.
[0397] Com referência à Figura 87, é representado um método 4500 para avaliação do afiamento do gume cortante 182 do instrumento cirúrgico 10; e várias respostas são delineadas no caso do afiamen- to do gume cortante 182 cair a e/ou abaixo de um limiar de alerta, e/ou um limiar de alta gravidade, por exemplo. Em vários casos, um controlador como, por exemplo, o controlador 4312 pode ser configurado para implementar o método representado na Figura 85. Em certos casos, o instrumento cirúrgico 10 pode incluir uma célula de carga 4334 (Figura 86); conforme ilustrado na Figura 84, o controlador 4312 pode estar em comunicação com a célula de carga 4334. Em certos casos, a célula de carga 4334 pode incluir um sensor de força como, por exemplo, um extensômetro, o qual pode ser operacionalmente acoplado à barra de disparo 172, por exemplo. Em certos casos, o controlador 4312 pode usar a célula de carga 4334 para monitorar a força (Fx) aplicada ao gume cortante 182, conforme o gume cortante 182 é avançado durante um curso de disparo.
[0398] Consequentemente, quando o disparo da faca é iniciado 4502, o sistema verifica 4504 a opacidade do gume cortante 182 da faca, mediante a detecção de uma força Fx. A força detectada Fx é comparada a uma força-limite F1 e determina 4506 se a força detectada Fx é maior que a força-limite F1. Quando a força detectada Fx é menor ou igual à força-limite F1, o processo prossegue ao longo da ramificação NÃO e não exibe nada 4508 e continua o processo de disparo de faca 4510. Quando a força detectada Fx é maior do que a força limite F1, o processo prossegue ao longo da ramificação SIM e determina 4512 se a força Fx detectada ultrapassa uma força limite de alta severidade F2. Quando a força detectada Fx for menor ou igual ao limite F2, o processo prossegue ao longo da ramificação NÃO e notifi-ca 4514 o processador de que o gume cortante 182 da faca está dani- ficado e o processo de disparo de faca continua 4510. Quando a força detectada Fx é maior que o limite F2, o processo prossegue ao longo da ramificação SIM e notifica 4516 o processador de que o gume cortante 182 da faca está danificado e o travamento de disparo de faca é engatado. Subsequentemente, opcionalmente, o processador pode anular 4518 o travamento do disparo de faca e o processo de disparo de faca continua 4510 se o travamento for anulado.
[0399] Com referência à Figura 88, é representado um método 4600 para determinar se um gume cortante como, por exemplo, o gume cortante 182, é suficientemente afiado para ser usado na transecção de um tecido com uma espessura de tecido específica que é capturado pelo atuador de extremidade 300, por exemplo. Conforme descrito acima, o uso repetitivo do gume cortante 182 pode embotar ou reduzir o afiamento do gume cortante 182, o que pode aumentar a força necessária para que o gume cortante 182 transeccione o tecido capturado. Em outras palavras, o nível de afiamento do gume cortante 182 pode ser definido pela força necessária para que o gume cortante 182 transecci- one o tecido capturado, por exemplo. O leitor entenderá que a força necessária para que o gume cortante 182 transeccione um tecido capturado também pode depender da espessura do tecido capturado. Em certos casos, quanto maior a espessura do tecido capturado, maior será a força necessária para que o gume cortante 182 transeccione o tecido capturado no mesmo nível de afiamento, por exemplo.
[0400] Consequentemente, inicialmente, o grampeador pinça 4602 o tecido entre a bigorna e o membro de garra. O sistema detecta 4604 a espessura do tecido Tx e inicia 4606 o processo de disparo de faca. Ao iniciar o processo de disparo da faca, o sistema detecta 4608 a resistência de carga do tecido pinçado e compara a força detectada Fx e a detecta a espessura Tx em relação a vários limites e determina 4610 vários resultados com base na avaliação. Em um aspecto, quando o processo determina 4610 se a espessura detectada Tx do tecido está dentro de uma primeira faixa de espessuras de tecido definida entre um primeiro limiar de espessura de tecido T1 e um segundo limiar de espessura do tecido T2 E a força detectada Fx for maior que um primeiro limiar de força F1 E o processo determina 4610 se a espessura do tecido detectada Tx está dentro de uma segunda faixa de espessuras de tecido definida entre o segundo limiar de espessura de tecido T2 e um terceiro limiar de espessura do tecido T3 E a força detectada Fx é maior que um segundo limiar de força F2, o processo prossegue ao longo da ramificação SIM e notifica 4612 ou alerta o processador que a faca está ficando danificada e então continua o processo de disparo de faca 4614. De outro modo, o processo prossegue ao longo da ramificação NÃO e não notifica 4616 o processador e continua o processo de disparo da faca. Em geral, o processo determina se a espessura do tecido detectada Tx está dentro de uma faixa de espessura de tecido definida entre os limiares da espessura do tecido Tn e Tn+1 E a força detectada Fx é maior que um limiar de força Tn, onde n indica uma faixa de espessuras de tecido. Quando o processo determina 4610 que a espessura do tecido detectada Tx está dentro de uma primeira faixa de espessuras de tecido definida entre um primeiro limiar de espessura de tecido T1 e um segundo limiar de espessura do tecido T2 E a força detectada Fx é maior que um primeiro limiar de força F1 E o processo determina 4610 que a espessura do tecido detectada Tx está dentro de uma segunda faixa de espessura de tecido definida entre o segundo limiar de espessura de tecido T2 e um terceiro limiar de espessura do tecido T3 E a força detectada Fx é maior que um segundo limiar de força F2, o processo continua.
[0401] Em certos casos, o gume cortante 182 pode ser suficiente mente afiado para transeccionar um tecido capturado compreendendo uma primeira espessura, mas pode não ser suficientemente afiado pa ra transeccionar um tecido capturado compreendendo uma segunda espessura maior que a primeira espessura, por exemplo. Em certos casos, um nível de afiamento do gume cortante 182, conforme definido pela força necessária para que o gume cortante 182 transeccione um tecido capturado, pode ser adequado para transeccionar o tecido capturado se o tecido capturado compreender uma espessura de tecido que está em um intervalo específico de espessuras de tecido, por exemplo.
[0402] Em certos casos, conforme ilustrado na Figura 89, a memó ria 4316 pode armazenar um ou mais intervalos predefinidos de espessuras de tecido do tecido capturado pelo atuador de extremidade 300; e forças de limiar predefinido associadas aos intervalos predefini- dos de espessura de tecidos. Em certos casos, cada força de limiar predefinido pode representar um nível mínimo de afiamento do gume cortante 182 que é adequado para transeccionar um tecido capturado compreendendo uma espessura de tecido (Tx) abrangida pelo intervalo de espessuras de tecidos que está associado à força de limiar pre- definido. Em certos casos, se a força (Fx) necessária para que o gume cortante 182 transeccione o tecido capturado, compreendendo a espessura de tecido (Tx), exceder a força de limiar predefinido associada ao intervalo predefinido de espessuras de tecidos que abrange a espessura de tecido (Tx), o gume cortante 182 pode não estar suficientemente afiado para transeccionar o tecido capturado, por exemplo.
[0403] Em certos casos, as forças de limiar predefinido e seus intervalos predefinidos correspondentes de espessuras de tecido podem ser armazenados em uma base de dados e/ou uma tabela na memória 4316 como, por exemplo, uma tabela 4342, conforme ilustrado na Figura 89. Em certos casos, o processador 4314 pode ser configurado para receber um valor medido da força (Fx) necessária para que o gume cortante 182 transeccione um tecido capturado, e um valor medido da espessura de tecido (Tx) do tecido capturado. O processador 4314 pode acessar a tabela 4342 para determinar o intervalo predefinido de espessuras de tecido que abrange a espessura de tecido (Tx) medida. Além disso, o processador 4314 pode comparar a força medida (Fx) à força de limiar predefinido associada ao intervalo predefinido de espessuras de tecido que abrange a espessura de tecido (Tx). Em certos casos, se a força medida (Fx) exceder a força de limiar predefinido, o processador 4314 pode concluir que o gume cortante 182 pode não estar suficientemente afiado para tran- seccionar o tecido capturado, por exemplo.
[0404] Adicionalmente ao exposto acima, o processador 4314 (Fi guras 85, 86) pode usar um ou mais módulos detectores de espessura do tecido como, por exemplo, um módulo detector de espessura do tecido 4336 para determinar a espessura do tecido capturado. Vários módulos detectores de espessura do tecido adequados são descritos na presente invenção. Além disso, vários dispositivos e métodos de detecção de espessura de tecido, que são adequados para uso com a presente descrição, são revelados na Publicação de Pedido de Patente US N° 2011/0155781, intitulada SURGICAL CUTTING INSTRUMENT THAT ANALYZES TISSUE THICKNESS, que está aqui incorporada por referência em sua totalidade.
[0405] Em certos casos, o processador 4314 pode usar a célula de carga 4334 para medir força (Fx) necessária para que o gume cortante 182 transeccione um tecido capturado compreendendo uma espessura do tecido (Tx). O leitor entenderá que a força aplicada ao gume cortante 182 pelo tecido capturado, enquanto o gume cortante 182 está engatado e/ou em contato com o tecido capturado, pode aumentar conforme o gume cortante 182 é avançado contra o tecido capturado, até a força (Fx) na qual o gume cortante 182 pode transeccionar o tecido capturado. Em certos casos, o processador 4314 pode usar a célula de carga 4334 para monitorar continuamente a força aplicada pelo tecido capturado contra o gume cortante 182, conforme o gume cortante 182 é avançado contra o tecido capturado. O processador 4314 pode comparar continuamente a força monitorada à força de limiar predefi- nido associada ao intervalo de espessura de tecido predefinido abrangendo a espessura de tecido (Tx) do tecido capturado. Em certos casos, se a força monitorada exceder a força de limiar predefinido, o processador 4314 pode concluir que o gume cortante não está suficientemente afiado para transeccionar com segurança o tecido capturado, por exemplo.
[0406] O método 4600 descrito na Figura 88 delineia vários exem plos de ações que podem ser executadas pelo controlador 4313 no caso de se determinar que o gume cortante 182 não está suficientemente afiado para transeccionar com segurança o tecido capturado, por exemplo. Em certos casos, o controlador 4312 pode alertar o usuário de que o gume cortante 182 está demasiadamente danificado para o uso seguro, por exemplo, através do sistema de retroinformação 1120, por exemplo. Em certos casos, o controlador 4312 pode usar o mecanismo de travamento de disparo 1122 para impedir o avanço do gume cortante 182, ao concluir que o gume cortante 182 não está suficientemente afiado para transeccionar com segurança o tecido capturado, por exemplo. Em certos casos, o controlador 4312 pode usar o sistema de retroinformação 1120 para fornecer ao usuário instruções para desativar o mecanismo de travamento de disparo 1122, por exemplo.
[0407] As Figuras 90, 91 ilustram vários aspectos de um aparelho, sistema e método para usar um controlador comum com uma pluralidade de motores em conexão com um instrumento cirúrgico como, por exemplo, um instrumento cirúrgico motorizado 4400. O instrumento cirúrgico 4400 é similar, em muitos aspectos, a outros instrumentos cirúrgicos descritos pela presente invenção como, por exemplo, o instrumento cirúrgico 10 da Figura 1, que é descrito com mais detalhes, acima. O instrumento cirúrgico 4400 inclui o compartimento 12, o conjunto de cabo 14, o gatilho de fechamento 32, o conjunto de eixo de acionamento intercambiável 200 e o atuador de extremidade 300. Consequentemente, por uma questão de concisão e clareza da descrição, uma descrição detalhada de certos recursos do instrumento cirúrgico 4400, que são comuns ao instrumento cirúrgico 10, não será repetida aqui.
[0408] Referindo-se ainda às Figuras 90, 91, o instrumento cirúrgi co 4400 pode incluir uma pluralidade de motores que podem ser ativados para executar várias funções em relação ao funcionamento do instrumento cirúrgico 4400. Em certos casos, um primeiro motor pode ser ativado para executar uma primeira função; um segundo motor pode ser ativado para executar uma segunda função; e um terceiro motor pode ser ativado para executar uma terceira função. Em certos casos, a pluralidade de motores do instrumento cirúrgico 4400 pode ser individualmente ativada para causar movimentos de articulação, fechamento e/ou disparo no atuador de extremidade 300 (Figuras 1, 15). Os movimentos de articulação, fechamento e/ou disparo podem ser transmitidos ao atuador de extremidade 300 através do conjunto de eixo de acionamento intercambiável 200 (Figura 1), por exemplo.
[0409] Em certos casos, conforme ilustrado na Figura 91, o ins trumento cirúrgico 4400 pode incluir um motor de disparo 4402. O motor de disparo 4402 pode ser operacionalmente acoplado a um conjunto de acionamento de disparo 4404, o qual pode ser configurado para transmitir, ao atuador de extremidade 300, movimentos de disparo gerados pelo motor 4402 (Figuras 1, 14). Em certos casos, os movimentos de disparo gerados pelo motor de disparo 4402 podem fazer com que os grampos 191 sejam posicionados a partir do cartucho de gram- pos cirúrgicos 304 no tecido capturado pelo atuador de extremidade 300 e/ou pelo gume cortante 182 para ser avançado para cortar o tecido capturado, por exemplo.
[0410] Em certos casos, conforme ilustrado na Figura 91, o ins trumento cirúrgico 4400 pode incluir um motor de articulação 4406, por exemplo. O motor de articulação 4406 pode ser operacionalmente acoplado a um conjunto de acionamento de articulação 4408, o qual pode ser configurado para transmitir, ao atuador de extremidade 300, movimentos de articulação gerados pelo motor de articulação 4406 (Figuras 1, 14). Em certos casos, os movimentos de articulação podem fazer com que o atuador de extremidade 300 seja articulado em relação ao conjunto de eixo de acionamento intercambiável 200 (Figura 1), por exemplo. Em certos casos, o instrumento cirúrgico 4400 pode incluir um motor de fechamento, por exemplo. O motor de fechamento pode ser operacionalmente acoplado a um conjunto de acionamento de fechamento, o qual pode ser configurado para transmitir, ao atuador de extremidade 300, movimentos de fechamento. Em certos casos, os movimentos de fechamento podem fazer com que o atuador de extremidade 300 transicione de uma configuração aberta para uma configuração aproximada para capturar tecidos, por exemplo. O leitor entenderá que os motores aqui descritos e seus conjuntos de acionamento correspondentes se destinam ao uso como exemplos dos tipos de motores e/ou conjuntos de acionamento que podem ser usados em conexão com a presente invenção. O instrumento cirúrgico 4400 pode incluir vários outros motores que podem ser usados para executar várias funções em conexão com o funcionamento do instrumento cirúrgico 4400.
[0411] Conforme descrito acima, o instrumento cirúrgico 4400 po de incluir uma pluralidade de motores que podem ser configurados para executar várias funções independentes. Em certos casos, a plurali- dade de motores do instrumento cirúrgico 4400 pode ser ativada indi-vidualmente ou separadamente para executar uma ou mais funções, enquanto outros motores permanecem inativos. Por exemplo, o motor de articulação 4406 pode ser ativado para fazer com que o atuador de extremidade 300 (Figuras 1, 14) seja articulado, enquanto o motor de disparo 4402 permanece inativo. Alternativamente, o motor de disparo 4402 pode ser ativado para disparar a pluralidade de grampos 191 (Figura 14) e/ou avançar o gume cortante 182, enquanto o motor de articulação 4406 permanece inativo.
[0412] Com referência às Figuras 90, 91, em certos casos, o ins trumento cirúrgico 4400 pode incluir um controlador comum 4410 que pode ser usado com uma pluralidade de motores 4402, 4406 do instrumento cirúrgico 4400. Em certos casos, o controlador comum 4410 pode acomodar um dentre a pluralidade de motores de cada vez. Por exemplo, o controlador comum 4410 pode ser acoplável de modo separável à pluralidade de motores do instrumento cirúrgico 4400, individualmente. Em certos casos, uma pluralidade de motores do instrumento cirúrgico 4400 pode compartilhar um ou mais controladores comuns, como o controlador comum 4410. Em certos casos, a pluralidade de motores do instrumento cirúrgico 4400 pode ser individualmente e seletivamente engatada pelo controlador comum 4410. Em certos casos, o controlador comum 4410 pode ser seletivamente chaveado entre fazer interface com um dentre uma pluralidade de motores do instrumento cirúrgico 4400, e fazer interface com outro dentre a pluralidade de motores do instrumento cirúrgico 4400.
[0413] Em ao menos um exemplo, o controlador comum 4410 po de ser seletivamente chaveado entre o engate operacional com o motor de articulação 4406 e o engate operacional com o motor de disparo 4402. Em ao menos um exemplo, conforme ilustrado na Figura 90, uma chave 4414 pode ser movida ou transicionada entre uma plurali- dade de posições e/ou estados, como uma primeira posição 4416 e uma segunda posição 4418, por exemplo. Na primeira posição 4416, a chave 4414 pode acoplar eletricamente o controlador comum 4410 ao motor de articulação 4406; e na segunda posição 4418, a chave 4414 pode acoplar eletricamente o controlador comum 4410 ao motor de disparo 4402, por exemplo. Em certos casos, o controlador comum 4410 pode ser acoplado eletricamente ao motor de articulação 4406, enquanto a chave 4414 está na primeira posição 4416, para controlar o funcionamento do motor de articulação 4406 de modo a articular o atuador de extremidade 300 (Figuras 1, 15) a uma posição desejada. Em certos casos, o controlador comum 4410 pode ser acoplado eletricamente ao motor de disparo 4402, enquanto a chave 4414 está na segunda posição 4418, para controlar o funcionamento do motor 4402 de modo a disparar a pluralidade de grampos 191 (Figura 14) e/ou avançar o gume cortante 182 (Figura 14), por exemplo. Em certos casos, a chave 4414 pode ser uma chave mecânica, uma chave eletro- mecânica, uma chave em estado sólido ou qualquer mecanismo de chaveamento adequado.
[0414] Agora com referência à Figura 91, um compartimento ex terno do conjunto de cabo 14 do instrumento cirúrgico 4400 é removido, e vários recursos e elementos do instrumento cirúrgico 4400 também são removidos por uma questão de clareza na descrição. Em certos casos, conforme ilustrado na Figura 91, o instrumento cirúrgico 4400 pode incluir uma interface 4412 que pode ser seletivamente tran- sicionada entre uma pluralidade de posições e/ou estados. Em uma primeira posição e/ou estado, a interface 4412 pode acoplar o controlador comum 4410 (Figura 90) a um primeiro motor como, por exemplo, o motor de articulação 4406; e, em uma segunda posição e/ou estado, a interface 4412 pode acoplar o controlador comum 4410 a um segundo motor como, por exemplo, o motor de disparo 4402. Posições e/ou estados adicionais da interface 4412 são contemplados pela presente invenção.
[0415] Em certos casos, a interface 4412 é móvel entre uma pri meira posição e uma segunda posição, em que o controlador comum 4410 (Figura 90) é acoplado a um primeiro motor na primeira posição e a um segundo motor na segunda posição. Em certos casos, o controlador comum 4410 é desacoplado do primeiro motor conforme a interface 4412 é movida da primeira posição; e o controlador comum 4410 é desacoplado do segundo motor conforme a interface 4412 é movida da segunda posição. Em certos casos, uma chave ou um gatilho pode ser configurado para transicionar a interface 4412 entre a pluralidade posições e/ou estados. Em certos casos, um gatilho pode ser móvel para simultaneamente acionar o atuador de extremidade e tran- sicionar o controlador comum 4410 do engate operacional com um dos motores do instrumento cirúrgico 4400 para o engate operacional com outro dentre os motores do instrumento cirúrgico 4400.
[0416] Em ao menos um exemplo, conforme ilustrado na Figura 91, o gatilho de fechamento 32 pode ser operacionalmente acoplado à interface 4412, e pode ser configurado para transicionar a interface 4412 entre uma pluralidade de posições e/ou estados. Conforme ilustrado na Figura 91, o gatilho de fechamento 32 pode ser móvel, por exemplo, durante um curso de fechamento, para transicionar a interface 4412 de uma primeira posição e/ou estado para uma segunda posição e/ou estado, enquanto se transiciona o atuador de extremidade 300 para uma configuração aproximada de modo a capturar tecidos pelo atuador de extremidade, por exemplo.
[0417] Em certos casos, na primeira posição e/ou estado, o con trolador comum 4410 pode ser acoplado eletricamente a um primeiro motor como, por exemplo, o motor de articulação 4406, e na segunda posição e/ou estado, o controlador comum 4410 pode ser acoplado eletricamente a um segundo motor como, por exemplo, o motor de disparo 4402. Na primeira posição e/ou estado, o controlador comum 4410 pode ser engatado ao motor de articulação 4406 para permitir que o usuário articule o atuador de extremidade 300 (Figuras 1, 15) até uma posição desejada; e o controlador comum 4410 pode permanecer engatado ao motor de articulação 4406 até que o gatilho de fechamento 32 seja acionado. Conforme o usuário aciona o gatilho de fechamento 32 para capturar tecidos pelo atuador de extremidade 300 na posição desejada, a interface 4412 pode ser transicionada ou deslocada para transicionar o controlador comum 4410 de um engate operacional com o motor de articulação 4406, por exemplo, para um engate operacional com o motor de disparo 4402, por exemplo. Uma vez estabelecido o engate operacional com o motor de disparo 4402, o controlador comum 4410 pode assumir o controle do motor de disparo 4402; e o controlador comum 4410 pode ativar o motor de disparo 4402, em resposta à entrada de dados pelo usuário, para disparar a pluralidade de grampos 191 (Figura 14) e/ou avançar o gume cortante 182 (Figura 14), por exemplo.
[0418] Em certos casos, conforme ilustrado na Figura 91, o contro lador comum 4410 pode incluir uma pluralidade de contatos elétricos e/ou mecânicos 4411 adaptados para engate por acoplamento com a interface 4412. Cada um dentre a pluralidade de motores do instrumento cirúrgico 4400, que compartilham o controlador comum 4410, pode compreender um ou mais contatos elétricos e/ou mecânicos 4413 correspondentes, adaptados para engate por acoplamento com a interface 4412, por exemplo.
[0419] Em vários casos, os motores do instrumento cirúrgico 4400 podem ser motores elétricos. Em certos casos, um ou mais dos motores do instrumento cirúrgico 4400 pode ser um motor de acionamento com escovas de corrente contínua que tem uma rotação máxima de, aproximadamente, 25.000 RPM, por exemplo. Em outras disposições, os motores do instrumento cirúrgico 4400 podem incluir um ou mais motores selecionados de um grupo de motores que compreende um motor sem escovas, um motor sem fio, um motor síncrono, um motor de passo ou qualquer outro motor elétrico adequado.
[0420] Em vários casos, conforme ilustrado na Figura 90, o contro lador comum 4410 pode compreender um acionador do motor 4426 que pode compreender um ou mais transistores de efeito de campo (FETs, ou "field-effect transistors") H-Bridge. O acionador do motor 4426 pode modular a energia transmitida a partir de uma fonte de alimentação 4428 a um motor acoplado ao controlador comum 4410, com base na entrada proveniente de um controlador 4420 ("microcon- trolador"), por exemplo. Em certos casos, o controlador 4420 pode ser usado para determinar a corrente drenada pelo motor, por exemplo, enquanto o motor está acoplado ao controlador comum 4410, conforme descrito acima.
[0421] Em certos casos, o controlador 4420 pode incluir um pro cessador 4422 ("microprocessador") e um ou mais meios legíveis por computador ou unidades de memória 4424 ("memória"). Em certos casos, a memória 4424 pode armazenar várias instruções de programa que, quando executadas, podem fazer com que o processador 4422 execute uma pluralidade de funções e/ou cálculos aqui descritos. Em certos casos, uma ou mais dentre as memórias 4424 podem ser acopladas ao processador 4422, por exemplo.
[0422] Em certos casos, a fonte de alimentação 4428 pode ser usada para fornecer energia ao controlador 4420, por exemplo. Em certos casos, a fonte de energia 4428 pode compreender uma bateria (ou "conjunto de baterias" ou "fonte de energia"), como uma bateria de íons de Li, por exemplo. Em certos casos, o conjunto de baterias pode ser configurado para ser montado de modo liberável ao conjunto de cabo 14, para fornecer energia ao instrumento cirúrgico 4400. Várias células de bateria conectadas em série podem ser usadas como a fonte de alimentação 4428. Em certos casos, a fonte de energia 4428 pode ser substituível e/ou recarregável, por exemplo.
[0423] Em vários casos, o processador 4422 pode controlar o aci- onador do motor 4426 para controlar a posição, a direção de rotação e/ou a velocidade de um motor que está acoplado ao controlador comum 4410. Em certos casos, o processador 4422 pode sinalizar ao acionador do motor 4426 para parar e/ou desativar um motor que esteja acoplado ao controlador comum 4410. Deve-se compreender que o termo processador, conforme usado aqui, inclui qualquer processador, controlador, ou outro dispositivo de computação básico adequado que incorpora as funções de uma unidade de processamento central de computador (CPU) em um circuito integrado ou no máximo alguns circuitos integrados. O processador é um dispositivo programável multiu- so que aceita dados digitais como entrada, as processa de acordo com instruções armazenadas na sua memória, e fornece resultados como saída. Este é um exemplo de lógica digital sequencial, já que ele tem memória interna. Os processadores operam em números e símbolos representados no sistema binário de numerais. Em um caso, o processador 4422 pode ser um controlador de núcleo único ou controlador de múltiplos núcleos LM4F230H5QR conforme descrito em conexão com as Figuras 15 a 17B.
[0424] Em certos casos, a memória 4424 pode incluir instruções de programa para controlar cada um dos motores do instrumento cirúrgico 4400 que são acopláveis ao controlador comum 4410. Por exemplo, a memória 4424 pode incluir instruções de programa para controlar o motor de articulação 4406. Essas instruções de programa podem fazer com que o processador 4422 controle o motor de articulação 4406 para articular o atuador de extremidade 300 de acordo com a entrada de dados pelo usuário, enquanto o motor de articulação 4406 está acoplado ao controlador comum 4410. Em um outro exemplo, a memória 4424 pode incluir instruções de programa para controlar o motor de disparo 4402. Essas instruções do programa podem fazer com que o processador 4422 controle o motor de disparo 4402 para disparar a pluralidade de grampos 191 e/ou avançar o gume cortante 182 de acordo com a entrada de dados pelo usuário, enquanto o motor de disparo 4402 está acoplado ao controlador comum 4410.
[0425] Em certos casos, um ou mais mecanismos e/ou sensores como, por exemplo, sensores 4430 podem ser usados para alertar o processador 4422 quanto às instruções de programa que precisam ser usadas em uma configuração específica. Por exemplo, os sensores 4430 podem alertar o processador 4422 para usar as instruções de programa associadas à articulação do atuador de extremidade 300 (Figuras 1, 14), enquanto o controlador comum 4410 está acoplado ao motor de articulação 4406; e os sensores 4430 podem alertar o processador 4422 para usar as instruções de programa associadas ao disparo do instrumento cirúrgico 4400, enquanto o controlador comum 4410 está acoplado ao motor de articulação 4402. Em certos casos, os sensores 4430 podem compreender sensores de posição que podem ser usados para detectar a posição da chave 4414, por exemplo. Con-sequentemente, o processador 4422 pode usar as instruções de programa associadas à articulação do atuador de extremidade 300 ao detectar através dos sensores 4430, por exemplo, que a chave 4414 está na primeira posição 4416; e o processador 4422 pode usar as instruções de programa associadas ao disparo do instrumento cirúrgico 4400 ao detectar através dos sensores 4430, por exemplo, que a chave 4414 está na segunda posição 4418.
[0426] Agora com referência à Figura 92, um compartimento ex terno do instrumento cirúrgico 4400 é removido, e vários recursos e elementos do instrumento cirúrgico 4400 também são removidos por uma questão de clareza na descrição. Conforme ilustrado na Figura 92, o instrumento cirúrgico 4400 pode incluir uma pluralidade de sensores que podem ser usados para executar várias funções em conexão com o funcionamento do instrumento cirúrgico 4400. Por exemplo, conforme ilustrado na Figura 92, o instrumento cirúrgico 4400 pode incluir os sensores A, B e/ou C. Em certos casos, o sensor A pode ser usado para executar uma primeira função, por exemplo; o sensor B pode ser usado para executar uma segunda função, por exemplo; e o sensor C pode ser usado para executar uma terceira função, por exemplo. Em certos casos, o sensor A pode ser usado para detectar uma espessura do tecido capturado pelo atuador de extremidade 300 (Figuras 1, 14) durante um primeiro segmento de um curso de fechamento; o sensor B pode ser usado para detectar a espessura do tecido durante um segundo segmento do curso de fechamento, em seguida ao primeiro segmento; e o sensor C pode ser usado para detectar a espessura do tecido durante um terceiro segmento do curso de fechamento, em seguida ao segundo segmento, por exemplo. Em certos casos, os sensores A, B e C podem ser dispostos ao longo do atuador de extremidade 300, por exemplo.
[0427] Em certos casos, os sensores A, B e C podem ser dispos tos, conforme ilustrado na Figura 94, de modo que o sensor A esteja disposto proximal ao sensor B, e o sensor C esteja disposto proximal ao sensor B, por exemplo. Em certos casos, conforme ilustrado na Figura 92, o sensor A pode detectar a espessura de tecido do tecido capturado pelo atuador de extremidade 300 em uma primeira posição; o sensor B pode detectar a espessura de tecido do tecido capturado pelo atuador de extremidade 300 em uma segunda posição distal à primeira posição; e o sensor C pode detectar a espessura de tecido do tecido capturado pelo atuador de extremidade 300 em uma terceira posição distal à segunda posição, por exemplo. O leitor entenderá que os sensores aqui descritos se destinam ao uso como exemplos dos tipos de sensores que podem ser usados em conexão com a presente invenção. Outros sensores e disposições de detecção podem ser usados pela presente invenção.
[0428] Em certos casos, o instrumento cirúrgico 4400 pode incluir um controlador 4450 que pode ser similar em muitos aspectos ao controlador comum 4410. Por exemplo, o controlador 4450, como o controlador comum 4410, pode compreender o controlador 4420, o processador 4422 e/ou a memória 4424. Em certos casos, a fonte de alimentação 4428 pode fornecer energia ao controlador 4450, por exemplo. Em certos casos, o instrumento cirúrgico 4400 pode incluir uma pluralidade de sensores, como os sensores A, B e C, por exemplo, os quais podem ser ativados para executar várias funções em conexão com o funcionamento do instrumento cirúrgico 4400. Em certos casos, um dos sensores A, B e C, por exemplo, pode ser individualmente ou separadamente ativado para executar uma ou mais funções, enquanto os outros sensores permanecem inativos. Em certos casos, uma pluralidade de sensores do instrumento cirúrgico 4400 como, por exemplo, os sensores A, B e C podem compartilhar o controlador 4450. Em certos casos, somente um dos sensores A, B e C pode ser acoplado ao controlador 4450, a cada vez. Em certos casos, a pluralidade de sensores do instrumento cirúrgico 4400 pode ser individualmente e separadamente acoplável ao controlador 4450, por exemplo. Em ao menos um exemplo, o controlador 4450 pode ser seletivamente chaveado entre o engate operacional ao Sensor A, ao Sensor B e/ou ao Sensor C.
[0429] Em certos casos, conforme ilustrado na Figura 92, o contro lador 4450 pode estar disposto no conjunto de cabo 14, por exemplo, e os sensores que compartilham o controlador 4450 podem estar dispostos no atuador de extremidade 300 (Figuras 1, 14) por exemplo. O lei- tor entenderá que o controlador 4450 e/ou os sensores que compartilham o controlador 4450 não se limitam às posições identificadas acima. Em certos casos, o controlador 4450 e os sensores que compartilham o controlador 4450 podem estar dispostos no atuador de extremidade 300, por exemplo. Outras disposições para as posições do controlador 4450 e/ou dos sensores que compartilham o controlador 4450 são contempladas pela presente invenção.
[0430] Em certos casos, conforme ilustrado na Figura 92, uma in terface 4452 pode ser usada para gerenciar o acoplamento e/ou desa- coplamento dos sensores do instrumento cirúrgico 4400 em relação ao controlador 4450. Em certos casos, a interface 4452 pode ser seletivamente transicionada entre uma pluralidade de posições e/ou estados. Em uma primeira posição e/ou estado, a interface 4452 pode acoplar o controlador 4450 ao sensor A, por exemplo; em uma segunda posição e/ou estado, a interface 4452 pode acoplar o controlador 4450 ao sensor B, por exemplo; e, em uma terceira posição e/ou estado, a interface 4452 pode acoplar o controlador 4450 ao sensor C, por exemplo. Posições e/ou estados adicionais da interface 4452 são contemplados pela presente invenção.
[0431] Em certos casos, a interface 4452 pode se mover entre uma primeira posição, uma segunda posição e/ou uma terceira posição, por exemplo, em que o controlador 4450 é acoplado a um primeiro sensor na primeira posição, um segundo sensor na segunda posição, e um terceiro sensor na terceira posição. Em certos casos, o controlador 4450 é desacoplado do primeiro sensor conforme a interface 4452 é movida da primeira posição; o controlador 4450 é desacoplado do segundo sensor conforme a interface 4452 é movida da segunda posição; e o controlador 4450 é desacoplado do terceiro sensor conforme a interface 4452 é movida da terceira posição. Em certos casos, uma chave ou um gatilho pode ser configurado para transicionar a in terface 4452 entre a pluralidade posições e/ou estados. Em certos casos, um gatilho pode ser móvel para simultaneamente acionar |o atua- dor de extremidade e transicionar o controlador 4450 do engate operacional com um dos sensores que compartilham o controlador 4450 para o engate operacional com outro dentre os sensores que compartilham o módulo 4450, por exemplo.
[0432] Em ao menos um exemplo, conforme ilustrado na Figura 92, o gatilho de fechamento 32 pode ser operacionalmente acoplado à interface 4452, e pode ser configurado para mudar a interface 4452 entre uma pluralidade de posições e/ou estados. Conforme ilustrado na Figura 92, o gatilho de fechamento 32 pode ser móvel entre uma pluralidade de posições, por exemplo durante um curso de fechamento, para fazer a transição da interface 4452 entre uma primeira posição e/ou estado em que o controlador 4450 está eletricamente acoplado ao sensor A, por exemplo, uma segunda posição e/ou estado em que o controlador 4450 está eletricamente acoplado ao sensor B, por exemplo, e/ou uma terceira posição e/ou estado em que o controlador 4450 está eletricamente acoplado ao sensor C, por exemplo.
[0433] Em certos casos, um usuário pode acionar o gatilho de fe chamento 32 para captura de tecidos pelo atuador de extremidade 300. O acionamento do gatilho de fechamento pode fazer com que a interface 4452 seja transicionada ou deslocada para transicionar o controlador 4450 de um engate operacional com o sensor A, por exemplo, para um engate operacional com o sensor B, por exemplo, e/ou de um engate operacional com o sensor B, por exemplo, para um engate operacional com o sensor C, por exemplo.
[0434] Em certos casos, o controlador 4450 pode estar acoplado ao sensor A enquanto o gatilho 32 está em uma primeira posição acionada. Conforme o gatilho de fechamento 32 é atuado além da primeira posição atuada e em direção a uma segunda posição atuada, o contro- lador 4450 pode ser desacoplado do sensor A. Alternativamente, o controlador 4450 pode ser acoplado ao sensor A enquanto o gatilho de fechamento 32 está em uma posição não atuada. Conforme o gatilho de fechamento 32 é atuado além da posição não atuada e em direção a uma segunda posição atuada, o controlador 4450 pode ser desaco- plado do sensor A. Em certos casos, o controlador 4450 pode ser acoplado ao sensor B enquanto o gatilho de fechamento 32 está na segunda posição atuada. Conforme o gatilho de fechamento 32 é atuado além da segunda posição atuada e em direção a uma terceira posição atuada, o controlador 4450 pode ser desacoplado do sensor B. Em certos casos, o controlador 4450 pode ser acoplado ao sensor C en-quanto o gatilho de fechamento 32 está na terceira posição atuada.
[0435] Em certos casos, conforme ilustrado na Figura 92, o contro lador 4450 pode incluir uma pluralidade de contatos elétricos e/ou mecânicos 4451 adaptados para engate por acoplamento com a interface 4452. Cada um dentre a pluralidade de sensores do instrumento cirúrgico 4400, que compartilham o controlador 4450, pode compreender um ou mais contatos elétricos e/ou mecânicos 4453 correspondentes, adaptados para engate por acoplamento com a interface 4452, por exemplo.
[0436] Em certos casos, o processador 4422 pode receber entra das provenientes da pluralidade de sensores que compartilham o controlador 4450, enquanto os sensores estão acoplados à interface 4452. Por exemplo, o processador 4422 pode receber entradas provenientes do sensor A enquanto o sensor A está acoplado ao controlador 4450; o processador 4422 pode receber entradas provenientes do sensor B enquanto o sensor B está acoplado ao controlador 4450; e o processador 4422 pode receber entradas provenientes do sensor C enquanto o sensor C está acoplado ao controlador 4450. Em certos casos, a entrada pode ser um valor de medição como, por exemplo, um valor de medição de uma espessura de tecido do tecido capturado pelo atuador de extremidade 300 (Figuras 1, 15). Em certos casos, o processador 4422 pode armazenar na memória 4424 as entradas de um ou mais dentre os sensores A, B e C. Em certos casos, o processador 4422 pode executar vários cálculos com base na entrada fornecida pelos sensores A, B e C, por exemplo.
[0437] As Figuras 93A e 93B ilustram um aspecto de um atuador de extremidade 5300 compreendendo um cartucho de grampos 5306 que compreende adicionalmente dois diodos emissores de luz (LEDs) 5310. A Figura 93A ilustra um atuador de extremidade 5300 que compreende um LED 5310 localizado em cada lado do suporte de cartucho 5308. A Figura 91B ilustra uma vista em ângulo a três quartos do atu- ador de extremidade 5300 com a bigorna 5302 em uma posição aberta, e um LED 5310 situado em cada lado do suporte do cartucho 5308. O atuador de extremidade 5300 é similar ao atuador de extremidade 300 (Figuras 1, 15) descrito acima. O atuador de extremidade compreende uma bigorna 5302, acoplada de modo pivotante a um segundo membro de garra ou canaleta alongada 5304. A canaleta alongada 5304 é configurada para receber em seu interior o cartucho de grampos 5306. O cartucho de grampos 5306 compreende uma pluralidade de grampos (não mostrados). A pluralidade de grampos é implantável a partir do cartucho de grampos 5306 durante uma operação cirúrgica. O cartucho de grampos 5306 compreende adicionalmente dois LEDs 5310 montados sobre a superfície superior ou suporte do cartucho 5308 do cartucho de grampos 5306. Os LEDs 5310 são montados de modo que serão visíveis quando a bigorna 5302 estiver em uma posição fechada. Além disso, os LEDs 5310 podem ser suficientemente brilhantes para serem visíveis através de qualquer tecido que possa estar impedindo uma visualização direta dos LEDs 5310. Adicional-mente, um LED 5310 pode ser montado em cada lado do cartucho de grampos 5306, de modo que ao menos um LED 5310 seja visível em cada lado do atuador de extremidade 5300. O LED 5310 pode ser montado perto da extremidade proximal do cartucho de grampos 530, conforme ilustrado, ou pode ser montado na extremidade distal do cartucho de grampos 5306.
[0438] Os LEDs 5310 podem estar em comunicação com um pro cessador ou controlador como, por exemplo, o controlador 1500 (Figura 19). O controlador 1500 pode ser configurado para detectar uma propriedade dos tecidos comprimidos pela bigorna 5302 contra o suporte do cartucho 5308. O tecido que está capturado pelo atuador de extremidade 5300 pode mudar de altura conforme o fluido no interior do tecido é exsudado das camadas do tecido. Grampear o tecido antes que esteja suficientemente estabilizado pode afetar a eficácia dos grampos. A estabilização do tecido é tipicamente comunicada sob a forma de uma taxa de alteração, onde a taxa de alteração indica o quão rapidamente o tecido capturado pelo atuador de extremidade es-tá mudando de altura.
[0439] Os LEDs 5310 montados no cartucho de grampos 5306, às vistas do operador do instrumento, podem ser usados para indicar a velocidade na qual o tecido capturado está se estabilizando, e/ou se o tecido atingiu um estado estável. Os LEDs 5310 podem, por exemplo, ser configurados para piscar a uma velocidade que se correlaciona diretamente com a taxa de estabilização do tecido, ou seja, pode piscar rapidamente no início, piscar mais devagar conforme o tecido se estabiliza, e permanecer fixa quando o tecido estiver estável. Alternativamente, os LEDs 5310 podem piscar lentamente no início, piscar mais rapidamente conforme o tecido se estabiliza, e apagar quando o tecido está estável.
[0440] Os LEDs 5310 montados no cartucho de grampos 5306 po dem ser usados, adicional ou opcionalmente, para indicar outras in- formações. Exemplos de outras informações incluem, mas não estão limitados a: se o atuador de extremidade 5300 está capturando uma quantidade suficiente de tecido, se o cartucho de grampos 5306 é adequado para o tecido capturado, se há mais tecido capturado do que seria adequado para o cartucho de grampos 5306, se o cartucho de grampos 5306 não é compatível com o instrumento cirúrgico, ou qualquer outro indicador que seria útil ao operador do instrumento. Os LEDs 5310 podem indicar informações seja piscando a uma velocidade específica, acendendo ou apagando em uma instância específica, ou iluminando-se em diferentes cores para diferentes informações. Os LEDs 5310 podem, alternativa ou adicionalmente, ser usados para iluminar a área de operação. Em alguns aspectos, os LEDs 5310 podem ser selecionados para emitir luz ultravioleta ou infravermelha, para iluminar informações não visíveis sob luz normal, onde essas informações são impressas sobre o cartucho de grampos localizado no atuador de extremidade 5300 ou sobre um compensador de tecidos (não ilustrado). Alternativa ou adicionalmente, os grampos podem ser revestidos com um corante fluorescente, e o comprimento de onda dos LEDs 5310 pode ser escolhido de modo que os LEDs 5310 façam com que o corante fluorescente se ilumine. A iluminação dos grampos com os LEDs 5310 permite que o operador do instrumento veja os grampos após estes terem sido instalados.
[0441] As Figuras 94A e 94B ilustram um aspecto do atuador de extremidade 5300 compreendendo um cartucho de grampos 5356 que compreende adicionalmente uma pluralidade de LEDs 5360. A Figura 92A ilustra um ângulo lateral do atuador de extremidade 5300 com a bigorna 5302 em uma posição fechada. O aspecto ilustrado compreende, a título de exemplo, uma pluralidade de LEDs 5360 situada em cada lado do suporte do cartucho 5358. A Figura 92B ilustra uma vista em ângulo a três quartos do atuador de extremidade 5300 com a bi- gorna 5302 em uma posição aberta, e uma pluralidade de LEDs 5360 situada em cada lado do suporte do cartucho 5358. O cartucho de grampos 5356 compreende uma pluralidade de LEDs 5360 montados sobre o suporte de cartucho 5358 do cartucho de grampos 5356. Os LEDs 5360 são montados de modo que serão visíveis quando a bigorna 5302 estiver em uma posição fechada. Além disso, os LEDs 530 podem ser suficientemente brilhantes para serem visíveis através de qualquer tecido que possa estar impedindo uma visualização direta dos LEDs 5360. Adicionalmente, o mesmo número de LEDs 5360 pode ser montado em cada lado do cartucho de grampos 5356, de modo que o mesmo número de LEDs 5360 é visível em cada lado do atuador de extremidade 5300. Os LEDs 5360 podem ser montados perto da extremidade proximal do cartucho de grampos 5356, conforme ilustrado, ou podem ser montados na extremidade distal do cartucho de grampos 5356.
[0442] Os LEDs 5360 podem estar em comunicação com um pro cessador ou controlador como, por exemplo, o controlador 1500 da Figura 15. O controlador 1500 pode ser configurado para detectar uma propriedade dos tecidos comprimidos pela bigorna 5302 contra o suporte do cartucho 5358, como a taxa de estabilização dos tecidos, conforme descrito acima. Os LEDs 5360 podem ser usados para indicar a velocidade na qual o tecido capturado está se estabilizando, e/ou se o tecido atingiu um estado estável. Os LEDs 5360 podem ser configurados, por exemplo, para acender em sequência, iniciando na extremidade proximal do cartucho de grampos 5356 com cada LED 5360 subsequente se acendendo na velocidade em que o tecido capturado está se estabilizando; quando o tecido estiver estável, todos os LEDs 5360 podem ser acesos. Alternativamente, os LEDs 5360 podem se acender em sequência iniciando na extremidade distal do cartucho de grampos 5356. Ainda outra alternativa é que os LEDs 5360 se acendam em uma sequência de repetição, com a sequência se iniciando na extremidade proximal ou distal dos LEDs 5360. A taxa em que os LEDs 5360 se acendem e/ou a velocidade da repetição podem indicar a taxa na qual o tecido capturado está se estabilizando. Entende-se que estes são apenas exemplos de como os LEDs 5360 podem indicar informações sobre o tecido, e que são possíveis outras combinações da sequência em que os LEDs 5360 se acendem, a taxa na qual se acendem e/ou seu estado ligado ou desligado. Entende-se também que os LEDs 5360 podem ser usados para comunicar algumas outras informações ao operador do instrumento cirúrgico, ou para iluminar a área de trabalho, conforme descrito acima.
[0443] As Figuras 95A e 95B ilustram um aspecto do atuador de extremidade 5300 compreendendo um cartucho de grampos 5406 que compreende adicionalmente uma pluralidade de LEDs 5410. A Figura 93A ilustra um ângulo lateral do atuador de extremidade 5300 com a bigorna 5302 em uma posição fechada. O aspecto ilustrado compreende, a título de exemplo, uma pluralidade de LEDs 5410 da extremidade proximal à distal do cartucho de grampos 5406, em cada lado do suporte do cartucho 5408. A Figura 93B ilustra uma vista em ângulo a três quartos do atuador de extremidade 5300 com a bigorna 5302 em uma posição aberta, ilustrando uma pluralidade de LEDs 5410 da extremidade proximal à distal do cartucho de grampos 5406, e em cada lado do suporte do cartucho 5408. O cartucho de grampos 5406 compreende uma pluralidade de LEDs 5410 montados sobre o suporte de cartucho 5408 do cartucho de grampos 5406, com os LEDs 5410 dispostos continuamente da extremidade proximal à distal do cartucho de grampos 5406. Os LEDs 5410 são montados de modo que serão visíveis quando a bigorna 5302 estiver em uma posição fechada. O mesmo número de LEDs 5410 pode ser montado em cada lado do cartucho de grampos 5406, de modo que o mesmo número de LEDs 5410 seja visível em cada lado do atuador de extremidade 5300.
[0444] Os LEDs 5410 podem estar em comunicação com um pro cessador ou controlador como, por exemplo, o controlador 1500 da Figura 15. O controlador 1500 pode ser configurado para detectar uma propriedade dos tecidos comprimidos pela bigorna 5302 contra o suporte do cartucho 5408, como a taxa de estabilização dos tecidos, conforme descrito acima. Os LEDs 5410 podem ser configurados para serem ligados ou desligados em sequências ou grupos, conforme desejado, para indicar a taxa de estabilização do tecido e/ou que o tecido está estável. Os LEDs 5410 podem adicionalmente ser configurados para comunicar algumas outras informações ao operador do instrumento cirúrgico, ou para iluminar a área de trabalho, conforme descrito acima. Adicional ou alternativamente, os LEDs 5410 podem ser configurados para indicar quais áreas do atuador de extremidade 5300 contêm tecidos estáveis, e/ou quais áreas do atuador de extremidade 5300 estão capturando tecido, e/ou se aquelas áreas estão capturando tecido suficiente. Os LEDs 5410 podem ser adicionalmente configurados para indicar se qualquer porção do tecido capturado é inadequada para o cartucho de grampos 5406.
[0445] Referindo-se agora principalmente às Figuras 96 e 97, o conjunto de alimentação 2096 pode incluir um controle de modulador de energia 2106 que pode compreender, por exemplo, um ou mais transistores de efeito de campo (FETs), matrizes de Darlington, um amplificador ajustável, e/ou qualquer outro modulador de energia. O controlador de conjunto de alimentação 2100 pode acionar o controle de modulador de energia 2106 para ajustar a energia de saída da bateria 2098 à necessidade de energia do conjunto de trabalho intercam- biável 2094, em resposta ao sinal gerado pelo controlador de conjunto de trabalho 2102, enquanto o conjunto de trabalho intercambiável 2094 está acoplado ao conjunto de alimentação 2096.
[0446] Ainda com referência às Figuras 96 e 97, o controlador de conjunto de alimentação 2100 pode ser configurado para monitorar a transmissão de energia do conjunto de alimentação 2096 para o conjunto de trabalho intercambiável 2094 para um ou mais sinais gerados pelo controlador de conjunto de trabalho 2102 do conjunto de trabalho intercambiável 2094, enquanto o conjunto de trabalho intercambiável 2094 está acoplado ao conjunto de alimentação 2096. Conforme ilustrado na Figura 96, o controlador de conjunto de alimentação 2100 pode usar um mecanismo de monitoramento de tensão para monitorar a tensão na bateria 2098 para detectar um ou mais sinais gerados pelo controlador de conjunto de trabalho 2102, por exemplo. Em certas circunstâncias, um condicionador de tensão pode ser usado para escalonar a tensão da bateria 2098 para que possa ser lida pelo Conversor analógico/digital (ADC) do controlador de conjunto de alimentação 2100. Como ilustrado na Figura 96, o condicionador de tensão pode compreender um divisor de tensão 2108 que pode criar uma tensão de referência ou um sinal de baixa tensão proporcional à tensão da bateria 2098, que podem ser medidos e relatados ao controlador de conjunto de alimentação 2100 através do ADC, por exemplo.
[0447] Em outras circunstâncias, conforme ilustrado na Figura 97, o conjunto de alimentação 2096 pode compreender um mecanismo de monitoramento de corrente para monitorar a corrente transmitida ao conjunto de trabalho intercambiável 2094 para detectar um ou mais sinais gerados pelo controlador de conjunto de trabalho 2102, por exemplo. Em certos casos, o conjunto de alimentação 2096 pode compreender um sensor de corrente 2110 que pode ser usado para monitorar a corrente transmitida ao conjunto de trabalho intercambiá- vel 2094. A corrente monitorada pode ser relatada ao controlador de conjunto de alimentação 2100 através de um ADC, por exemplo. Em outras circunstâncias, o controlador de conjunto de alimentação 2100 pode ser configurado para monitorar simultaneamente tanto a corrente transmitida ao conjunto de trabalho intercambiável 2094 quanto a tensão correspondente da bateria 2098 para detectar os um ou mais sinais gerados pelo controlador de conjunto de trabalho 2102. O leitor entenderá que vários outros mecanismos para monitorar a corrente e/ou tensão podem ser usados pelo controlador de conjunto de alimentação 2100 para detectar os um ou mais sinais gerados pelo controlador de conjunto de trabalho 2102; todos esses mecanismos são contemplados pela presente invenção.
[0448] Com referência à Figura 98, o controlador 13002 pode compreender geralmente um processador 13008 ("microprocessador") e uma ou mais unidades de memória 13010 acopladas, de modo operacional, ao processador 13008. Ao executar o código de instrução armazenado na memória 13010, o processador 13008 pode controlar vários componentes do instrumento cirúrgico 12200, como o motor 12216, vários sistemas de acionamento, e/ou uma tela de usuário, por exemplo. O controlador 13002 pode ser implementado usando elementos de hardware integrados e/ou discretos, elementos de software e/ou uma combinação de ambas. Exemplos de elementos de hardware integrados podem incluir processadores, microprocessadores, controladores, circuitos integrados, circuitos integrados de aplicação específica (ASIC, ou "application specific integrated circuits"), dispositivos lógicos programáveis (PLD, ou "programmable logic devices"), processadores de sinal digital (DSP, ou "digital signal processors"), arranjos de portas programáveis em campo (FPGA, ou "field programmable gate arrays"), portas lógicas, registros, dispositivos semicondutores, chips, microcircuitos, chipsets, controladores, sistemas em um chip (SoC, ou "system-on-chip") e/ou sistemas em pacote (SiP, ou "systemin-package"). Exemplos de elementos de hardware distintos podem incluir circuitos e/ou elementos de circuito, como portas lógicas, tran- sistores de efeito de campo, transistores bipolares, resistores, capaci- tores, indutores e/ou relés. Em certas modalidades, o controlador 13002 pode incluir um circuito híbrido que compreende elementos ou componentes de circuitos integrados e isolados em um ou mais substratos, por exemplo. Em certos casos, o controlador 13002 pode ser um controlador de núcleo único ou controlador de múltiplos núcleos LM4F230H5QR conforme descrito em conexão com as Figuras 1517B.
[0449] Em várias formas, o motor 12216 pode ser um motor de acionamento de corrente contínua com escovas, com uma rotação máxima de, aproximadamente, 25.000 RPM, por exemplo. Em outras disposições, o motor 12216 pode incluir um motor sem escovas, um motor sem fio, um motor síncrono, um motor de passo ou qualquer outro tipo de motor elétrico adequado. Uma bateria 12218 (ou "fonte de alimentação" ou "conjunto de baterias"), como uma bateria de íons de Li, por exemplo, pode ser acoplada ao compartimento 12212 para fornecer energia ao motor 12216, por exemplo.
[0450] Novamente com referência à Figura 98, o instrumento ci rúrgico 12200 pode incluir um controlador de motor 13005 em comunicação operável com o controlador 13002. O controlador de motor 13005 pode ser configurado para controlar uma direção de rotação do motor 12216. Em certas modalidades, o controlador de motor 13005 pode ser configurado para determinar a polaridade da tensão aplicada ao motor 12216 pela bateria 12218 e, por sua vez, a direção de rotação do motor 12216, com base na entrada do controlador 13002. Por exemplo, o motor 12216 pode inverter a direção de sua rotação de uma direção em sentido horário para uma direção em sentido anti- horário quando a polaridade da tensão aplicada ao motor 12216 pela bateria 12218 é invertida pelo controlador de motor 13005 com base na entrada do controlador 13002. Além disso, o motor 12216 pode ser operacionalmente acoplado a um acionador de articulação que pode ser acionado pelo motor 12216 em posição distal ou proximal, dependendo da direção na qual o motor 12216 gira, por exemplo. Além disso, o acionador de articulação pode ser operacionalmente acoplado ao atuador de extremidade 12208, de modo que, por exemplo, a translação axial do acionador de articulação em posição proximal possa fazer com que o atuador de extremidade 12208 seja articulado na direção em sentido anti-horário, por exemplo, e/ou a translação axial do acio- nador de articulação em posição distal possa fazer com que o atuador de extremidade 12208 seja articulado na direção em sentido horário, por exemplo.
[0451] No aspecto ilustrado na Figura 99, uma interface 3001 compreende múltiplas chaves 3004A-C, 3084B, em que cada uma das chaves 3004A-C é acoplada ao controlador 3002 por meio de um dos três circuitos elétricos 3006A-C, respectivamente, e a chave 3084B é acoplada ao controlador 3002 através do circuito 3084A. O leitor entenderá que outras combinações de chaves e circuitos podem ser utilizadas com a interface 3001.
[0452] Além do exposto acima, o controlador 3002 pode compre ender um processador 3008 e/ou uma ou mais unidades de memória 3010. Ao executar o código de instrução armazenado na memória 3010, o processador 3008 pode controlar vários componentes do instrumento cirúrgico, como o motor elétrico 1102 e/ou uma tela de usuário. O controlador 3002 pode ser implementado usando elementos de hardware integrados e/ou discretos, elementos de software e/ou uma combinação de ambas. Exemplos de elementos de hardware integrados podem incluir processadores, microprocessadores, controladores, circuitos integrados, circuitos integrados de aplicação específica (ASIC, ou "application specific integrated circuits"), dispositivos lógicos programáveis (PLD, ou "programmable logic devices"), processadores de sinal digital (DSP, ou "digital signal processors"), arranjos de portas programáveis em campo (FPGA, ou "field programmable gate arrays"), portas lógicas, registros, dispositivos semicondutores, chips, microcir- cuitos, chipsets, controlador, sistemas em um chip (SoC, ou "systemon-chip") e/ou sistemas em pacote (SiP, ou "system-in-package"). Exemplos de elementos de hardware discretos podem incluir circuitos e/ou elementos de circuito (por exemplo, portas lógicas, transistores de efeito de campo, transistores bipolares, resistores, capacitores, indutores, relé e demais). Em outros aspectos, o controlador 3002 pode incluir um circuito híbrido que compreende elementos ou componentes de circuitos integrados e discretos em um ou mais substratos, por exemplo.
[0453] Novamente com referência à Figura 99, o instrumento ci rúrgico 1010 pode incluir um controlador de motor 3005 em comunicação operável com o controlador 3002. O controlador do motor 3005 pode ser configurado para controlar uma direção de rotação do motor elétrico 1102. Por exemplo, o motor elétrico 1102 pode ser alimentado por uma bateria, como, por exemplo, a bateria 1104 e o controlador 3002 pode ser configurado para determinar a polaridade da tensão aplicada ao motor elétrico 1102 pela bateria 1104 e, por sua vez, a direção de rotação do motor elétrico 1102, com base na entrada do controlador 3002. Por exemplo, o motor elétrico 1102 pode inverter a direção de sua rotação de uma direção em sentido horário para uma direção em sentido anti-horário quando a polaridade da tensão aplicada ao motor elétrico 1102 pela bateria 1104 é invertida pelo controlador de motor 3005 com base na entrada do controlador 3002. Exemplos de controladores de motor adequados são descritos em outras seções deste documento e incluem, mas não se limitam ao acionador 7010 (Figura 100).
[0454] Além disso, conforme descrito em outro local neste docu- mento com mais detalhes, o motor elétrico 1102 pode ser operacionalmente acoplado a um acionamento de articulação. Em uso, o motor elétrico 1102 pode acionar o acionador de articulação proximal de maneira distal ou proximal, dependendo da direção em que o motor elétrico 1102 gira. Além disso, o acionador de articulação proximal pode ser acoplado de modo operável ao atuador de extremidade 1300, de modo que, por exemplo, a translação axial do acionador de articulação proximal 10030 em sentido proximal pode fazer com que o atuador de extremidade 1300 seja articulado no sentido anti-horário, por exemplo, e/ou a translação axial do acionador de articulação proximal 10030 em sentido distal pode fazer com que o atuador de extremidade 1300 seja articulado no sentido horário, por exemplo.
[0455] Além do acima, referindo-se novamente à Figura 99, a in terface 3001 pode ser configurada de tal modo que a chave 3004A possa ser dedicada à articulação no sentido horário do atuador de extremidade 1300 e a chave 3004B possa ser dedicada à articulação no sentido anti-horário do atuador de extremidade 1300. Por exemplo, o operador pode articular o atuador de extremidade 1300 no sentido horário fechando a chave 3004A que pode sinalizar ao controlador 3002 para fazer com que o motor elétrico 1102 gire no sentido horário, como resultado, fazendo com que o acionador de articulação proximal 10030 seja avançado distalmente e fazendo com que o atuador de extremidade 1300 seja articulado no sentido horário. Em outro exemplo, o operador pode articular o atuador de extremidade 1300 no sentido anti-horário fechando a chave 3004B que pode sinalizar o controlador 3002 para fazer com que o motor elétrico 1102 gire no sentido anti- horário, por exemplo, e retraindo proximalmente o acionador de articulação proximal 10030 para articular o atuador de extremidade 1300 no sentido anti-horário.
[0456] Conforme mostrado na Figura 100, uma disposição de sen sor 7002 fornece um sinal de posição único correspondente à localização do membro de acionamento longitudinalmente móvel 1111. O motor elétrico 1102 pode incluir um eixo de acionamento giratório 7016, que faz interface de modo operacional com um conjunto de engrenagem 7014, que está montado em engate de acoplamento com um conjunto ou cremalheira, de dentes de acionamento no membro de acionamento longitudinalmente móvel 1111. Com referência também à Figura 101, o elemento sensor 7026 pode ser acoplado de modo operacional ao conjunto de engrenagens 7106, de modo que uma única revolução do elemento sensor 7026 corresponda a alguma translação longitudinal linear do membro de acionamento longitudinalmente móvel 1111, conforme descrito em mais detalhes logo abaixo. Em um aspecto, uma disposição de engrenagens e sensores pode ser conectada ao atuador linear por meio de uma disposição de cremalheira e pinhão, ou de um atuador giratório, com uma roda dentada ou outra conexão. Para os aspectos que compreendem uma configuração com fuso giratório em que um número maior de voltas seja necessário, pode ser empregada uma disposição de engrenagens com redução alta entre o elemento de acionamento e o sensor, como um parafuso sem fim e uma roda.
[0457] De acordo com um aspecto da presente invenção, a dispo sição de sensor 7002 para o sistema de posicionamento absoluto 7000 fornece um sensor de posição 7012 que é mais robusto para uso com dispositivos cirúrgicos. Ao fornecer um valor ou sinal de posição único para cada posição possível do atuador, tal disposição elimina a necessidade de uma etapa para zerar ou calibrar e reduz a possibilidade de impactos negativos do desenho nos casos em que condições com ruídos ou interrupção da alimentação criam erros no sensor, como ocorre nas configurações de codificadores giratórios convencionais.
[0458] Em um aspecto, a disposição de sensor 7002 para o siste- ma de posicionamento absoluto 7000 substitui os codificadores giratórios convencionais tipicamente fixados ao rotor do motor e os substitui por um sensor de posição 7012, que gera um sinal de posição único para cada posição rotacional em uma mesma revolução de um elemento sensor associado ao sensor de posição 7012. Dessa forma, cada revolução do elemento sensor associada ao sensor de posição 7012 é equivalente á um deslocamento linear longitudinal d1 do membro de acionamento longitudinalmente móvel 1111. Em outras palavras, d1 é a distância linear longitudinal pela qual o membro de acionamento longitudinalmente móvel 1111 se move do ponto "a" ao ponto "b" depois de uma única revolução de um elemento sensor acoplado ao membro de acionamento longitudinalmente móvel 1111. A disposição do sensor 7002 pode ser conectada por meio de uma redução de engrenagem que resulta no sensor de posição 7012 completando apenas um único deslocamento para o curso completo do membro de acionamento longitudinalmente móvel 1111. Com uma relação de engrenagens adequada, o curso completo do membro de acionamento longitudinalmente móvel 1111 pode ser representado em uma revolução do sensor de posição 7012.
[0459] Uma série de chaves 7022a a 7022n, onde n é um número inteiro maior que um, pode ser empregada sozinha ou em combinação com redução de engrenagem para fornecer um sinal de posição único por mais de uma revolução do sensor de posição 7012. O estado das chaves 7022a - 7022n é alimentado de volta para um controlador 7004 que aplica lógica para determinar um sinal de posição exclusivo que corresponde ao deslocamento linear longitudinal dl + d2 + ... dn do membro de acionamento longitudinalmente móvel 1111.
[0460] Dessa forma, o sistema de posicionamento absoluto 7000 fornece a posicionamento absoluto do membro de acionamento longi-tudinalmente móvel 1111 com a energização do instrumento sem que seja preciso recolher ou avançar o membro de acionamento longitudinalmente móvel 1111 para a posição de reinício (zero ou inicial), como pode ser o caso de codificadores convencionais giratórios, que meramente contam o número de passos progressivos e regressivos que o motor percorreu para inferir a posição de um atuador de dispositivo, barra de acionamento, bisturi, e congêneres.
[0461] Em várias modalidades, o sensor de posição 7012 da dis posição de sensor 7002 pode compreender um ou mais sensores magnéticos, sensores giratórios analógicos, como um potenciômetro, arranjo de elementos de efeito Hall analógicos, que emitem uma combinação única de sinais ou valores, dentre outros, por exemplo.
[0462] Em vários aspectos, o controlador 7004 pode ser progra mado para realizar várias funções, como o controle preciso da velocidade e da posição dos sistemas de articulação e bisturi. Com o uso das propriedades físicas conhecidas, o controlador 7004 pode ser projetado para simular a resposta do sistema real no software do controlador 7004. A resposta simulada é comparada à resposta medida (com ruído e discreta) do sistema real para se obter uma resposta "observada", que é usada para as decisões efetivas baseadas na realimenta- ção. A resposta observada é um valor favorável e ajustado, que equilibra a natureza uniforme e contínua da resposta simulada com a resposta medida, o que pode detectar influências externas no sistema.
[0463] Em vários aspectos, o sistema de posicionamento absoluto 7000 pode compreender, adicionalmente, e/ou ser programado para implementar, as seguintes funcionalidades. Um controlador de reali- mentação, que pode ser qualquer controlador de realimentação, incluindo, mas não se limitando a: PID, realimentação de estado e adaptativo. Uma fonte de alimentação converte o sinal do controlador de realimen- tação em uma entrada física para o sistema, nesse caso a tensão. Outros exemplos incluem, mas não se limitam a, tensão modulada por lar- gura de pulso (PWMed), corrente e força. O motor elétrico 1102 pode ser um motor de corrente contínua escovado com uma caixa de câmbio e conexões mecânicas com um sistema de articulação ou bisturi. Além da posição medida pelo sensor de posição 7012, podem ser fornecidos outro(s) sensor(es) 7018 para medir os parâmetros físicos do sistema físico. Como se trata de um sinal digital (ou conectado a um sistema de aquisição de dados digitais), sua saída terá resolução e frequência de amostragem finitas. Um circuito de comparação e de combinação pode ser fornecido para combinar a resposta simulada com a resposta medida com o uso de algoritmos como, sem limitação, um laço de controle médio ponderado e teórico que aciona a resposta simulada em direção à resposta medida. A simulação do sistema físico leva em conta as propriedades como massa, inércia, atrito viscoso, resistência à indutância, etc., para prever quais serão os estados e saídas do sistema físico pelo conhecimento da entrada. Em um aspecto, o controlador 7004 pode ser um controlador de núcleo único ou controlador de múltiplos núcleos LM4F230H5QR conforme descrito em conexão com as Figuras 15-17B.
[0464] Em um aspecto, o acionador 7010 pode ser um A3941, dis ponível junto à Allegro Microsystems, Inc. O acionador 7010 A3941 é um controlador de ponte inteira para uso com transistores de efeito de campo de óxido de metal semicondutor (MOSFET) de potência externa, de canal N, especificamente projetados para cargas indutivas, como motores de corrente contínua escovados. O acionador 7010 compreende um regulador de bomba de carga único, fornece acionamento de porta completo (>10 V) para baterias com tensão até 7 V e permite que o A3941 opere com um acionamento de porta reduzido, até 5,5 V. Um capacitor de comando de entrada pode ser empregado para fornecer a tensão ultrapassante à fornecida pela bateria necessária para os MOSFETs de canal N. Uma bomba de carga interna para o aciona- mento do lado de cima permite a operação em corrente contínua (100% ciclo de trabalho). A ponte inteira pode ser acionada nos modos de queda rápida ou lenta usando diodos ou retificação sincronizada. No modo de queda lenta, a recirculação da corrente pode se dar por meio de FET do lado de cima ou do lado de baixo. Os FET de potência são protegidos do efeito shoot-through por meio de resistores com tempo morto programável. O diagnóstico integrado fornece indicação de subtensão, sobretemperatura e falhas na ponte de energia, podendo ser configurado para proteger os MOSFETs de potência na maioria das condições de curto-circuito. Outros controladores de motor podem ser imediatamente substituídos para uso no sistema de posicionamento absoluto 7000. Consequentemente, a presente invenção não deve ser limitada nesse contexto.
[0465] Tendo descrito uma arquitetura geral para implementar vá rios aspectos de um sistema de posicionamento absoluto 7000 para uma disposição de sensor 7002, a descrição agora se volta para as Figuras 101 a 103 para uma descrição de um aspecto de uma disposição de sensor para o sistema de posicionamento absoluto 7000. No aspecto ilustrado na Figura 101, a disposição de sensor 7002 compreende um sensor de posição 7100, um elemento sensor de imã 7102, um suporte de imã 7104, que dá uma volta a cada curso completo do elemento de acionamento móvel longitudinalmente 1111 (Figura 100) e um conjunto de engrenagens 7106 para fornecer uma redução de engrenagens. Um elemento estrutural, como um bráquete 7116, é fornecido para sustentar o conjunto de engrenagens 7106, o suporte de magneto 7104 e o magneto 7102. O sensor de posição 7100 compreende um ou mais elementos magnéticos de detecção, como elementos de Hall, e está posicionado próximo ao imã 7102. Consequentemente, conforme o imã 7102 gira, os elementos magnéticos de detecção do sensor de posição 7100 determinam a posição angular absoluta do imã 7102 durante uma revolução.
[0466] Em vários aspectos, qualquer número de elementos mag néticos de detecção pode ser empregado no sistema de posicionamento absoluto 7000, como, por exemplo, sensores magnéticos classificados de acordo com sua capacidade de medir o campo magnético total ou os componentes vetoriais do campo magnético. As técnicas usadas para produzir ambos os tipos de sensores magnéticos abrangem muitos aspectos da física e da eletrônica. As tecnologias usadas para a detecção de campo magnético incluem fluxômetro, fluxo saturado, bombeamento óptico, precessão nuclear, SQUID, efeito Hall, magnetorresistência anisotrópica, magnetorresistência gigante, junções túnel magnéticas, magnetoimpedância gigante, compostos mag- netostritivos/piesoelétricos, magnetodiodo, transistor magnético, fibra óptica, magneto-óptica e sensores magnéticos baseados em sistemas microeletromecânicos, dentre outros.
[0467] No aspecto ilustrado, o conjunto de engrenagens 7106 compreende uma primeira engrenagem 7108 e uma segunda engrenagem 7110 em endentação, para proporcionar uma conexão com relação de engrenagens de 3:1. Uma terceira engrenagem 7112 gira em torno do eixo geométrico 7114. A terceira engrenagem está engrenada em endentação no membro de acionamento longitudinalmente móvel 1111 e gira em uma primeira direção, à medida que o elemento de acionamento longitudinalmente móvel 1111 avança em uma direção distal D e gira em uma segunda direção à medida que o membro de acionamento longitudinalmente móvel 1111 se retrai em uma direção proximal P. A segunda engrenagem 7110 também gira em torno do eixo de acionamento 7114 e, portanto, a rotação da segunda engrena-gem 7110 em torno do eixo de acionamento 7114 corresponde à translação longitudinal do membro de acionamento longitudinalmente móvel 1111. Dessa forma, um curso completo do membro de acionamento longitudinalmente móvel 1111, seja na direção distal, seja na proximal, D, P, corresponde a três rotações da segunda engrenagem 7110 e a uma única rotação da primeira engrenagem 7108. Como o suporte de imã 7104 está acoplado à primeira engrenagem 7108, o suporte de imã 7104 completa uma rotação com cada curso completo do elemento de acionamento móvel longitudinalmente 1111.
[0468] A Figura 102 é uma vista em perspectiva explodida da dis posição de sensor 7002 para o sistema de posicionamento absoluto 7000, mostrando um circuito 1106 e o alinhamento relativo dos elementos da disposição de sensor 7002, de acordo com um aspecto. O sensor de posição 7100 (não mostrado nessa vista) é sustentado por um suporte de sensor de posição 7118, definindo uma abertura 7120 adequada para conter o sensor de posição 7100 em alinhamento preciso com um imã 7102 girando abaixo dele. O acessório é acoplado ao bráquete 7116 e ao circuito 1106 e permanece estacionário enquanto o imã 7102 gira com o suporte de imã 7104. É fornecido um ponto central 7122 que se acopla à primeira engrenagem 7108 e ao suporte magnético 7104.
[0469] A Figura 103 é um diagrama esquemático de um aspecto de um sensor de posição 7100 para um sistema de posicionamento absoluto 7000, que compreende um sistema de posicionamento absoluto magnético giratório, de acordo com um aspecto. Em um aspecto, o sensor de posição 7100 pode ser implementado como um sensor de posição giratório, magnético, de chip único, AS5055EQFT, disponível junto à Austria Microsystems, AG. O sensor de posição 7100 está em interface com o controlador 7004 para fornecer um sistema de posicionamento absoluto 7000. O sensor de posição 7100 é um componente de baixa tensão e baixa potência e inclui quatro elementos de efeito Hall 7128A, 7128B, 7128C, 7128D em uma área 7130 do sensor de posição 7100 localizada acima do imã 7102 (Figuras 99, 100). Um ADC de alta resolução 7132 e um controlador inteligente de gerenciamento de potência 7138 são apresentados, também, no circuito integrado. Um processador CORDIC 7136 (de COordinate Rotation DIgital Computer), também conhecido como método dígito por dígito e algoritmo de Volder, é fornecido para implementar um algoritmo simples e eficiente para calcular funções hiperbólicas e trigonométricas que exigem apenas operações de adição, subtração, deslocamento de bits e tabela de pesquisa. A posição angular, bits de alarme e informações de campo magnético são transmitidos através de uma interface de comunicação serial padrão, como uma interface SPI 7134 para o controlador 7004. O sensor de posição 7100 fornece 12 ou 14 bits de resolução. O sensor de posição 7100 pode ser um circuito integrado AS5055 fornecido em uma pequena embalagem QFN de 16 pinos 4x4x0,85 mm.
[0470] Os elementos de efeito Hall 7128A, 7128B, 7128C, 7128D estão localizados diretamente acima do magneto giratório. O efeito Hall é um efeito bem conhecido e não será descrito em detalhes neste documento por uma questão de concisão e clareza da descrição. De modo geral, o efeito Hall é a produção de diferença de potencial (tensão Hall) através de um condutor elétrico, transversal a uma corrente elétrica no condutor, e um campo magnético perpendicular à corrente. Foi descoberto por Edwin Hall em 1879. O coeficiente de Hall é definido como a razão entre o campo elétrico induzido e o produto da densidade de corrente pelo campo magnético aplicado. É uma característica do material a partir do qual o condutor é feito, pois seu valor depende do tipo, do número e das propriedades dos portadores de carga que constituem a corrente. No sensor de posição AS5055 7100, os elementos de efeito Hall 7128A, 7128B, 7128C, 7128D são capazes de produzir um sinal de tensão indicativo do posicionamento absoluto do imã 7102 (Figuras 186, 187) em termos do ângulo em relação a uma única revolução do imã 7102. Esse valor do ângulo, que é um sinal de posição único, é calculado pelo processador CORDIC 7136 e armazenado integrado no sensor de posição AS5055 7100 em um registro ou memória. O valor do ângulo que é indicativo da posição do imã 7102 durante uma revolução é fornecido ao controlador 7004 em uma variedade de técnicas, por exemplo, ao energizar ou mediante demanda do controlador 7004.
[0471] O sensor de posição AS5055 7100 exige apenas alguns componentes externos para operar quando conectado ao controlador 7004. Seis fios são necessários para uma aplicação simples usando uma única fonte de alimentação: dois fios para alimentação e quatro fios 7140 para a interface SPI 7134 com o controlador 7004. Uma sétima conexão pode ser adicionada de forma a enviar um sinal de interrupção ao controlador 7004 informando que um novo ângulo válido pode ser lido.
[0472] Com a energização, o sensor de posição AS5055 7100 rea lizar uma sequência completa de energização, incluindo uma medição de ângulo. A conclusão desse ciclo é indicada como uma saída INT 7142, e o valor do ângulo é armazenado em um registro interno. Uma vez configurada essa saída, o sensor de posição AS5055 7100 suspende entre no modo suspenso. O controlador 7004 pode responder à solicitação INT na saída INT 7142 pela leitura do valor do ângulo a partir do sensor de posição AS5055 7100 por intermédio da interface SPI 7134. Uma vez lido o valor do ângulo pelo controlador 7004, a saída INT 7142 é liberada novamente. Enviar um comando "ler ângulo" pela interface SPI 7134 por meio do controlador 7004 ao sensor de posição 7100 também energiza automaticamente o circuito integrado e inicia outra medição de ângulo. Assim que o controlador 7004 tiver concluído a leitura do valor do ângulo, a saída INT 7142 é liberada e um novo resultado é armazenado no registro de ângulos. A conclusão dessa medição de ângulo é indicada novamente pela determinação da saída INT 7142 e pela identificação correspondente no registro de estados.
[0473] Devido ao princípio de medição do sensor de posição AS5055 7100, apenas uma única medição de ângulo é realizada em tempo muito curto (~600 μs) depois de cada sequência de energiza- ção. Assim que a medição de um ângulo é concluída, o sensor de posição AS5055 7100 entra no estado desenergizado. Não há filtro do valor do ângulo por média digital implementado, pois isso exigiria mais de uma medição de ângulo e, consequentemente, um tempo de ener- gização mais longo, o que não é desejado em aplicações de baixa potência. A variação de ângulo pode ser reduzida fazendo-se a média de várias amostras de ângulo no controlador 7004. Por exemplo, uma média de quatro amostras reduz a variação em 6 dB (50%).
[0474] Como discutido acima, o motor elétrico 1102 posicionado no interior do punho 1042 do sistema de instrumento cirúrgico 1000 pode ser usado para avançar e/ou recolher o sistema de disparo do conjunto de eixo de acionamento 1200, incluindo os elementos de disparo 1272 e 1280, por exemplo, em relação ao atuador de extremidade 1300 do conjunto de eixo de acionamento 1200 de forma a grampear e/ou incindir o tecido capturado no interior do atuador de extremidade 1300. Em várias circunstâncias pode ser desejável avançar os elementos de disparo 1272 e 1280 com uma velocidade desejada ou dentro de uma faixa de velocidades desejadas. Da mesma forma, pode ser desejável recolher os elementos de disparo 1272 e 1280 com uma velocidade desejada ou dentro de uma faixa de velocidades desejadas. Em várias circunstâncias, o controlador 7004 do punho 1042, por exemplo, e/ou qualquer outro controlador adequado, pode ser configurado para controlar a velocidade dos elementos de disparo 1272 e 1280. Em algumas circunstâncias, o controlador pode ser configurado para prever a velocidade dos elementos de disparo 1272 e 1280 com base em vários parâmetros da energia fornecida ao motor elétrico 1102, como tensão e/ou corrente, por exemplo, e/ou outros parâmetros operacionais do motor elétrico 1102. O controlador também pode ser configurado para prever a velocidade atual dos elementos de disparo 1272 e 1280 com base nos valores anteriores da corrente e/ou da tensão fornecidas ao motor elétrico 1102, e/ou os estados anteriores do sistema, como velocidade, aceleração e/ou posição. Ademais, o controlador também pode ser configurado para detectar a velocidade dos elementos de disparo 1272 e 1280 usando o sistema de sensores de posicionamento descrito acima, por exemplo. Em várias circunstâncias, o controlador pode ser configurado para comparar a velocidade prevista dos elementos de disparo 1272 e 1280 e a velocidade detectada dos elementos de disparo 1272 e 1280 para determinar se a energia do motor elétrico 1102 deve ser aumentada de forma a aumentar a velocidade dos elementos de disparo 1272 e 1280 e/ou diminuída de forma a diminuir a velocidade dos elementos de disparo 1272 e 1280. A Patente US N° 8.210.411, intitulada MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT, está aqui incorporada, a título de referência em sua totalidade. A Patente US N° 7.845.537, intitulada SURGICAL INSTRUMENT HAVING RECORDING CAPABILITIES, está aqui incorporada, a título de referência em sua totalidade.
[0475] Usando as propriedades físicas dos instrumentos aqui reve lados, agora com referência às Figuras 104 e 105, um controlador, como o controlador 7004, por exemplo, pode ser projetado para simular a resposta do sistema real do instrumento no software do controlador. A resposta simulada é comparada à resposta medida (com ruído e discreta) do sistema real para se obter uma resposta "observada", que é usada para as decisões efetivas baseadas na realimentação. A resposta observada é um valor favorável e ajustado, que equilibra a natu- reza uniforme e contínua da resposta simulada com a resposta medida, o que pode detectar influências externas no sistema. Com respeito às Figuras 104 e 105, um elemento de disparo, ou elemento de corte, no atuador de extremidade 1300 do conjunto de eixo de acionamento 1200 pode ser movido com uma velocidade desejada, ou próximo a esta. Os sistemas revelados nas Figuras 102 e 103 podem ser utilizados para mover o elemento de corte em uma velocidade alvo. Os sistemas podem incluir um controlador de realimentação 4200, que pode ser qualquer controlador de realimentação, incluindo, mas não se limitando a PID, Realimentação de Estado, LQR e/ou um controlador adaptativo, por exemplo. Os sistemas podem incluir ainda uma fonte de alimentação. A fonte de alimentação pode converter o sinal do con-trolador de realimentação 4200 em uma entrada física para o sistema, nesse caso a tensão, por exemplo. Outros exemplos incluem, mas não se limitam a, tensão modulada por largura de pulso (PWM), tensão modulada por frequência, corrente, torque e/ou força, por exemplo.
[0476] Continuando a referência às Figuras 104 e 105, o sistema físico apresentado nelas é o sistema de acionamento real do instrumento configurado para acionar o elemento de disparo ou o elemento de corte. Um exemplo é um motor de corrente contínua escovado, com caixa de câmbio e conexões mecânicas a um sistema de articulação e/ou bisturi. Outro exemplo é o motor elétrico 1102 revelado na presente invenção que opera o elemento de disparo 10060 e o acionador de articulação 10030, por exemplo, de um conjunto de eixo de acionamento intercambiável. A influência externa 4201 mostrada nas Figuras 104 e 105 é a influência não medida e imprevisível de coisas como o tecido, os corpos circundantes e o atrito, por exemplo, no sistema físico. Essa influência externa pode ser chamada de arrasto e pode ser representada por um motor 4202, que age em oposição ao motor elétrico 1102, por exemplo. Em várias circunstâncias, a influência externa, como o arrasto, é a principal causa para a diferença entre a simulação do sistema físico e o sistema físico real. Os sistemas representados nas Figuras 104 e 105 e discutidos adicionalmente abaixo podem abordar as diferenças entre o comportamento previsto para o elemento de disparo ou elemento de corte e o comportamento real do elemento de disparo ou do elemento de corte.
[0477] Continuando a referência às Figuras 104 e 105, o sensor discreto nelas citado mede os parâmetros físicos do sistema físico real. Uma modalidade de tal sensor discreto pode incluir o sensor de posicionamento absoluto e o sistema aqui descrito, como o imã 7102. Como a saída de tal sensor discreto pode ser um sinal digital (ou estar conectado a um sistema de aquisição de dados digitais), a saída dele pode ter resolução e frequência de amostragem finitas. A saída do sensor discreto pode ser fornecida a um controlador, como o controlador 7004, por exemplo. Em várias circunstâncias, o controlador pode combinar a resposta simulada, ou estimada, com a resposta medida. Em determinadas circunstâncias, pode ser útil usar resposta medida o suficiente para garantir que a influência externa seja levada em conta sem tornar a resposta observada tão ruidosa que não seja possível usá-la. Exemplos de algoritmos que o fazem incluem uma média ponderada e/ou um laço de controle teórico que aciona a resposta simulada no sentido da resposta medida, por exemplo. Por fim, além do exposto acima, a estimulação do sistema físico leva em conta as propriedades como a massa, a inércia, o atrito viscoso e/ou a resistência à indutância, por exemplo, para prever quais serão os estados e as saídas do sistema físico conhecendo a entrada. A Figura 103 mostra uma adição da avaliação e da medição da corrente fornecida para operar o sistema real, o que é ainda outro parâmetro que pode ser avaliado para controlar a velocidade do elemento de corte ou do elemento de disparo do conjunto de eixo de acionamento 1200, por exemplo. Mediante a medição da corrente em adição a ou em lugar da medição da tensão, em determinadas circunstâncias, o sistema físico pode tornar-se mais preciso. Entretanto, as ideias reveladas neste pedido podem ser estendidas à medição de outros parâmetros de estado de outros sistemas físicos.
[0478] A Figura 106 ilustra uma vista em perspectiva de um ins trumento cirúrgico 5500 de acordo com vários aspectos aqui descritos. O instrumento cirúrgico 5500 é similar àqueles descritos anteriormente neste documento pelo fato de que o instrumento cirúrgico 5500 inclui uma canaleta alongada configurada para sustentar um cartucho de grampos, uma bigorna ligada de forma articulada à canaleta alongada, um elemento de fechamento acoplado mecanicamente ao cartucho de grampos, um motor elétrico acoplado mecanicamente ao elemento de fechamento e/ou à faca, um controlador de motor acoplado eletricamente ao motor, e um circuito de controle acoplado eletricamente ao controlador de motor. O instrumento cirúrgico 5500 também é similar àqueles descritos anteriormente neste documento pelo fato de que o instrumento cirúrgico 5500 inclui também sensores que são coletivamente configurados para detectar ou medir uma força de fechamento, uma força de disparo, uma corrente drenada pelo motor elétrico, uma impedância do tecido posicionado entre a canaleta alongada e a bigorna, uma posição da bigorna em relação à canaleta alongada, uma posição da faca, ou qualquer combinação das mesmas. O instrumento cirúrgico 5500 também é similar àqueles descritos anteriormente neste documento pelo fato de que o instrumento cirúrgico 5500 inclui também algoritmos como algoritmos de fechamento, algoritmos de disparo, algoritmos de controle de motor, ou qualquer combinação dos mesmos, que operam para ajustar dinamicamente a operação do instrumento cirúrgico 5500. Entretanto, o instrumento cirúrgico 5500 é diferente daqueles descritos anteriormente neste documento pelo fato de que o instrumento cirúrgico 5500 inclui adicionalmente um ou mais algoritmos adicionais (além daqueles descritos anteriormente neste documento) que fornecem funcionalidade de controle adicional para o instrumento cirúrgico 5500, conforme descrito mais adiante neste documento.
[0479] Em geral, o instrumento cirúrgico 5500 pode utilizar um ou mais algoritmos de fechamento para controlar um movimento de fechamento que prende as garras ao tecido posicionado entre as mesmas e/ou um ou mais algoritmos de disparo para controlar um movimento de disparo que grampeia e corta o tecido preso entre as garras. Em funcionamento, um dado sensor detecta ou mede um dado parâmetro (por exemplo, uma força de fechamento, uma força de disparo, e/ou qualquer combinação das mesmas) e emite um sinal indicativo do parâmetro detectado/medido. O sinal de saída pode ser um sinal analógico ou um sinal digital. Nos casos em que a saída de sinal pelo sensor é um sinal analógico, o sinal analógico é transmitido para um conversor analógico/digital (A/D) que emite um sinal digital indicativo do sinal analógico. O sinal digital é então transmitido para um controlador residente no instrumento cirúrgico 5500. Nos casos em que a saída de sinal pelo sensor é um sinal digital, não há necessidade de uma conversão A/D e a saída de sinal digital pelo sensor pode ser inserida no controlador. Mediante a ocorrência de um gatilho, um limite e/ou um evento, o controlador pode modificar ou ajustar um algoritmo de fechamento, ou iniciar um algoritmo de fechamento diferente, alterando assim automaticamente a operação do instrumento cirúrgico 5500 durante um movimento de fechamento. De modo similar, mediante a ocorrência de um gatilho, um limiar e/ou um evento, o controlador pode modificar ou ajustar um algoritmo de disparo, ou iniciar um algoritmo de disparo diferente, alterando assim automaticamente a operação do instrumento cirúrgico 5500 durante um movimento de disparo.
[0480] De acordo com vários aspectos, o gatilho, limiar ou evento é definido pela força de fechamento detectada/medida. De acordo com outros aspectos, o gatilho, limiar ou evento é definido por um parâmetro relacionado à força de fechamento detectada/medida. De modo similar, de acordo com vários aspectos, o gatilho, limiar ou evento é definido pela força de disparo detectada/medida. De acordo com outros aspectos, o gatilho, limiar ou evento é definido por um parâmetro relacionado à força de disparo detectada/medida.
[0481] A Figura 107 ilustra um método 1010 de controle de um movimento de fechamento do instrumento cirúrgico 5500 de acordo com vários aspectos. O processo começa quando um movimento de fechamento é iniciado 5512. O movimento de fechamento pode ser iniciado, por exemplo, puxando-se um gatilho de fechamento em direção a um cabo. Um sensor reside no instrumento cirúrgico 5500 detec- ta/mede 5514 uma força de fechamento. A força de fechamento pode ser, por exemplo, uma força experimentada pelo tecido pinçado entre as garras do instrumento cirúrgico 5500, uma força experimentada pelas garras do instrumento cirúrgico 5500 (por exemplo, pela bigorna e/ou o canal alongado), uma força experimentada pelo tubo de fechamento do instrumento cirúrgico 5500, e/ou quaisquer combinações das mesmas.
[0482] Em resposta à força de fechamento, o sensor 5516 emite um sinal de força de fechamento, que é indicativo da força de fechamento detectada/medida 5514 pelo sensor. Dependendo da configuração do sensor, o sinal de força de fechamento pode ser um sinal analógico ou um sinal digital. Ao determinar 5518 se o sinal de força de fechamento é um sinal analógico ou um sinal digital, o processo prossegue ao longo da ramificação correspondente. Quando a determinação 5518 é que o sinal de força de fechamento é um sinal analógico, o processo prossegue ao longo da ramificação analógica, em que o sinal analógico é recebido por um conversor A/D, convertido 5520 para um para um sinal digital representativo pelo conversor A/D e o sinal analógico é emitido pelo conversor A/D. Quando a determinação 5518 é que o sinal de força de fechamento é um sinal digital, o processo prossegue ao longo da ramificação digital porque não há necessidade de uma conversão A/D 5520 quando o sinal de força de fechamento é um sinal digital.
[0483] O sinal de força de fechamento que é um sinal digital repre sentativo da força de fechamento detectada/medida 5514 pelo sensor é recebido por um controlador. O controlador utiliza o sinal digital e determina 5522 se a força de fechamento detectada/medida 5514 pelo sensor atinge ou ultrapassa um limite predeterminado. O controlador pode fazer essa determinação 5522 com base em uma comparação entre uma magnitude da força de fechamento detectada/medida 5514 pelo sensor e o limite predeterminado, com base em uma comparação de uma amplitude da saída de sinal de força de fechamento 5516 pelo sensor e um limite predeterminado, ou qualquer combinação dos mesmos.
[0484] Quando o controlador determina 5522 que a força de fe chamento detectada/medida 5514 pelo sensor não atingiu ou ultrapassou o limite predeterminado, o movimento de fechamento originalmente iniciado 5512 é continuado 5524 junto com os processos intermediários 5514 a 5522. Quando o controlador determina 5522 que a força de fechamento detectada/medida 5514 pelo sensor atingiu ou ultrapassou o limite predeterminado, o controlador altera 5526 o movimento de fechamento. De acordo com alguns aspectos, o controlador pode alterar o movimento de fechamento por meio da modificação ou ajuste de um algoritmo de fechamento sendo executado pelo controlador para fazer com que o movimento de fechamento seja desacelerado, pausado ou parado para evitar que o instrumento cirúrgico 5500 sofra forças ex- cessivas. De acordo com outros aspectos, o controlador pode alterar o movimento de fechamento executando um algoritmo de fechamento diferente que faz com que o movimento de fechamento seja desacele- rado, pausado ou parado para evitar que o instrumento cirúrgico 5500 sofra forças excessivas. Em ambos os casos, o movimento de fechamento pode ser desacelerado, parado ou pausado em razão do controlador ter comunicado um sinal de desaceleração, um sinal de parada ou um sinal de pausa ao controlador do motor para diminuir, parar ou pausar a rotação do(s) motor(es) que acionam o fechamento das garras do instrumento cirúrgico 5500.
[0485] Mediante a alteração do movimento de fechamento 5526, quando a alteração do movimento de fechamento 5526 é uma desaceleração do movimento de fechamento (uma desaceleração da rotação do(s) motor(es), o processo continua 5528 o movimento de fechamento originalmente iniciado 5512, mas a uma velocidade reduzida e o processo provisório 5514-5522 é continuado, mas o fechamento das garras ocorre a uma velocidade reduzida. Quando a alteração do movimento de fechamento 5526 é uma parada ou pausa do movimento de fechamento (uma parada ou pausa da rotação do(s) motor(es) que acionam o fechamento das garras), o processo suspende ou termina 5530 o movimento de fechamento.
[0486] A Figura 108 ilustra um gráfico exemplificador 5540 mos trando uma curva 5542 representativa de uma força de fechamento F ao longo do tempo t para vários aspectos do instrumento cirúrgico 5500. A força de fechamento F é mostrada ao longo do eixo vertical e o tempo t é mostrado ao longo do eixo horizontal. Dito de outra forma, a curva 5542 é uma representação gráfica do sinal de força de fechamento em vários tempos durante um movimento de fechamento. A curva 5542 pode ser gerada matematicamente pelo controlador com base no sinal de força de fechamento recebido pelo controlador. A for- ça de fechamento F representada no eixo vertical pode ser uma força experimentada pelo tecido pinçado entre as garras do instrumento cirúrgico 5500, uma força experimentada pelas garras do instrumento cirúrgico 5500 (por exemplo, pela bigorna e/ou o canal alongado), uma força experimentada pelo tubo de fechamento do instrumento cirúrgico 5500, e/ou quaisquer combinações dos mesmos. A força de fechamento F pode ser medida em qualquer maneira adequada, seja diretamente ou indiretamente. Por exemplo, de acordo com vários aspectos, a força de fechamento F pode ser medida diretamente por um sensor (por exemplo, um extensômetro) posicionado sobre a bigorna, na canaleta alongada, no tubo de fechamento, ou indiretamente por uma impedância do tecido, uma drenagem de corrente do motor, e/ou quaisquer combinações dos mesmos.
[0487] De acordo com vários aspectos, a operação do instrumento cirúrgico 5500 pode ser controlada pelo monitoramento da amplitude do sinal de força de fechamento e pela alteração do movimento de fechamento quando a amplitude do sinal de força de fechamento atinge ou ultrapassa um limite predeterminado. Com referência à Figura 107, por exemplo, a amplitude da força de fechamento Fcrit pode ser determinada para ser uma quantidade excessiva da força de fechamento F experimentada pelo instrumento cirúrgico 5500. Após a ocorrência da amplitude do sinal de força de fechamento atingir ou ultrapassar o limite de amplitude de força de fechamento, um algoritmo, como o método 1010 de controle de um movimento de fechamento do instrumento cirúrgico 5500 de acordo com vários aspectos ilustrados na figura 106, pode operar para alterar o movimento de fechamento pela desaceleração, pausa ou parada do(s) motor(es) do instrumento cirúrgico 5500 para evitar que o instrumento cirúrgico 5500 sofra forças excessivas.
[0488] A curva 5542 fornece uma representação útil de como a força de fechamento F varia ao longo do tempo t. A alteração na força de fechamento F ao longo do tempo t (isto é, a taxa de alteração da força de fechamento F) pode fornecer retroinformação útil ao circuito de controle para controlar o mecanismo de fechamento da garra do instrumento cirúrgico 5500. A alteração na força de fechamento F ao longo do tempo t pode ser representada como uma derivada da curva 5542 e pode ser aproximada ao longo de curtos períodos de tempo pela equação de coeficiente angular S = ΔF/Δt, onde ΔF é a alteração da força de fechamento F e Δt é a alteração do tempo t. A curva 5542 é representativa de um sinal analógico ao longo do tempo, que é amostrado e convertido em um valor digital por um conversor A/D conforme as mandíbulas são fechadas/abertas. Uma vez que o sinal analógico é digitalizado, o circuito de controle pode, consequentemente, determinar o coeficiente angular do sinal de força de fechamento representado pela curva 5542 em qualquer ponto durante o movimento de fechamento.
[0489] De acordo com vários aspectos, a operação do instrumento cirúrgico 5500 pode ser controlada por meio do monitoramento do coeficiente angular da curva 5542 (o coeficiente angular do sinal de força de fechamento) e alterar o movimento de fechamento com base no valor do coeficiente angular. Em geral, com referência à Figura 108, o coeficiente angular da curva 5542 pode ser aproximado pela equação S = ΔF/Δt, onde ΔF é a alteração da força de fechamento F e Δt é a alteração do tempo t. Os versados na técnica compreenderão que o coeficiente angular instantâneo pode ser calculado tomando-se a derivada da curva 5542. Ao longo do tempo t, o coeficiente angular S pode ser monitorado pelo circuito de controle e utilizado pelo circuito de controle para controlar a operação do instrumento cirúrgico 5500. Por exemplo, um algoritmo do instrumento cirúrgico 5500 pode ser configurado para monitorar a alteração da força de fechamento F ao longo do tempo t, parar ou interromper o movimento de fechamento quando o coeficiente angular da curva 5542 alcançar ou ultrapassar um primeiro limite predeterminado, então reiniciar o movimento de fechamento quando o coeficiente angular da curva 5542 atinge ou cai abaixo de um segundo limite predeterminado. O valor do coeficiente angular C = ΔF1/Δt1 (um valor positivo) mostrado na Figura 108 pode ser determinado pelo controlador e pode representar o primeiro limite predeterminado. De modo similar, o valor do coeficiente angular D = ΔF2/Δt2 (um valor negativo) mostrado na Figura 108 pode ser determinado pelo controlador e pode representar o segundo limite predeterminado. Dessa forma, de acordo com vários aspectos, o algoritmo pode controlar a operação do circuito de controle com base no coeficiente angular determinado, seja instantâneo ou aproximado.
[0490] Para o exemplo gráfico 5540 mostrado na Figura 108, no tempo t=0 as garras estão na posição aberta e não há força F experimentada pelo fechamento das garras. Uma vez que o tecido está posicionado entre as garras, conforme as garras são movidas em direção a uma posição fechada, as garras entram em contato com o tecido e começam a comprimir o tecido. Dessa forma, à medida que o tempo se move do tempo t=0, a força de fechamento F experimentada pelas garras começa a aumentar. Um algoritmo do instrumento cirúrgico 5500 pode parar ou pausar automaticamente um fechamento adicional das garras com base em um gatilho, um limiar e/ou um evento. Por exemplo, quando a alteração da força de fechamento F ao longo do tempo t atinge ou ultrapassa um limite predeterminado (por exemplo, o coeficiente angular C é maior que o limite predeterminado), o algoritmo pode parar ou pausar automaticamente o fechamento das garras. Alternativamente, quando a força de fechamento F atinge ou ultrapassa outro limite predeterminado (por exemplo, a força de fechamento F é maior que Fcrit), o algoritmo pode parar ou pausar automaticamente o fechamento adicional das garras.
[0491] Após o fechamento das garras ser parado ou pausado, o fluido pode continuar a ser deslocado a partir do tecido ao longo do tempo por esse meio fazendo com que a pressão experimentada pelas garras diminua. O algoritmo de controle pode reativar automaticamente um fechamento adicional das garras com base em um gatilho, um limiar e/ou um evento. Por exemplo, quando a alteração da força de fechamento F ao longo do tempo t atinge ou cai abaixo de um limite predeterminado (por exemplo, o coeficiente angular D é mais negativo que o limite predeterminado), o algoritmo pode reiniciar automaticamente um fechamento adicional das garras. Uma porção da curva 5542 que tem o coeficiente angular D pode ser indicativa de uma condição de tecido estabilizada. Alternativamente, quando um período de tempo predeterminado passou desde que o fechamento das garras foi parado ou pausado (por exemplo, o período de tempo t1 na Figura 108), o algoritmo pode reiniciar automaticamente um fechamento adicional das garras. O período de tempo predeterminado pode ser considerado uma quantidade adequada de tempo para que uma quantidade adequada de deformação do tecido ocorra e/ou para o tecido atingir uma condição estabilizada.
[0492] A parada ou pausa automática acima descrita e a reiniciali- zação automática podem ser repetidas inúmeras vezes. Conforme mais pressão é aplicada ao tecido (isto é, as garras experimentam mais força), a quantidade de tempo que ocorre entre uma parada automática ou pausa e uma reinicialização automática tende a aumentar (por exemplo, o período de tempo t3 é maior que o período de tempo t2, que é maior que o período de tempo t1). Uma vez que o tecido é considerado suficientemente comprimido, as garras do instrumento cirúrgico 5500 podem ser travadas em uma posição fechada ou fixada, a força de fechamento F permanece essencialmente constante e o movimento de disparo pode ser iniciado.
[0493] Embora o gráfico exemplificador 5540 da Figura 108 seja descrito no contexto de vários aspectos do instrumento cirúrgico 5500, será entendido que as respectivas ilustrações e descrições da força de fechamento F podem variar para outros aspectos. Por exemplo, em vários aspectos do instrumento cirúrgico 5500, menos ou mais de três paradas ou pausas automáticas podem ser necessárias antes que o tecido seja considerado suficientemente comprimido. De modo similar, menos ou mais de três reinicializações automáticas podem ocorrer antes que o tecido seja considerado suficientemente comprimido. Também, embora a Figura 108 seja descrita no contexto da força de fechamento F ao longo do tempo t, será entendido que em vários aspectos, uma força de disparo (não mostrada) pode também ser medi- da/amostrada ao longo do tempo. Conforme descrito com mais detalhes mais adiante neste documento, as medições da força de disparo e parâmetros relacionados à mesma podem ser utilizados pelo circuito de controle para alterar automaticamente um movimento de disparo com base em um gatilho, um limiar e/ou um evento.
[0494] A Figura 109 ilustra um gráfico exemplificador 5550 mos trando uma curva 5552 representativa de uma força de disparo F ao longo do tempo t para vários aspectos do instrumento cirúrgico 5500 e uma curva 5554 representativa de uma velocidade de faca V ao longo do tempo t para vários aspectos do instrumento cirúrgico 5500. A força de disparo F é mostrada ao longo de uma porção superior do eixo vertical, a velocidade de faca V é mostrada ao longo de uma porção inferior do eixo vertical e o tempo t é mostrado ao longo do eixo horizontal superior, bem como ao longo do eixo horizontal inferior. Dito de outra forma, a curva 5552 é uma representação do sinal de força de disparo em vários momentos durante um movimento de disparo e a curva 5554 é uma representação do sinal de velocidade de faca em vários momentos durante um movimento de disparo. Conforme mostrado na Figura 109, as transições da faca sobre três zonas distintas Z1, Z2, Z3. Na zona Z1, a velocidade de faca V e a força F estão elevando-se a partir de um valor inicial zero. Na zona Z2, a faca está se movendo a uma velocidade V relativamente constante e picos na força medida F se devem à força motriz do grampo. Na zona Z3, a velocidade de faca V e a força F estão reduzindo-se para zero.
[0495] As curvas 5552, 5554 podem ser geradas matematicamen te pelo controlador com base no sinal de força de disparo e no sinal(is) de velocidade de faca recebidos pelo controlador. A força de disparo F e a velocidade de faca V mostradas no gráfico exemplificador 5550 da Figura 109 podem ser representativas de uma condição em que a espessura e a composição do tecido ao longo da linha de corte são uniformes. A força de disparo F representada na porção superior do eixo vertical pode ser uma força experimentada pelo sistema de acionamento do instrumento cirúrgico (por exemplo, pelo deslizador, a faca e/ou a barra de disparo), e/ou qualquer combinação dos mesmos. A força de disparo F pode ser medida de qualquer maneira adequada, direta ou indiretamente. Por exemplo, de acordo com vários aspectos, a força de disparo F pode ser medida diretamente por um sensor (por exemplo, um extensômetro) posicionado no deslizador, na faca, ou indiretamente por uma drenagem de corrente do motor, e/ou qualquer combinação dos mesmos. A velocidade de faca V representada na porção inferior do eixo vertical pode ser uma velocidade de faca, uma velocidade de deslizador, uma velocidade de outro componente do sistema de acionamento (por exemplo, a barra de disparo), e/ou qualquer combinação dos mesmos. A velocidade de faca V pode ser medida em qualquer maneira adequada, seja diretamente ou indiretamente. Por exemplo, de acordo com vários aspectos, a velocidade da faca V pode ser medida diretamente por uma combinação de um imã posicionado na barra de disparo e um sensor de efeito Hall ou indiretamente por uma drenagem de corrente do motor, um codificador acoplado ao eixo de acionamento do motor, e/ou qualquer combinação dos mesmos.
[0496] Conforme explicado em mais detalhes mais adiante neste documento (ver, por exemplo, a Figura 110), em vários aspectos, o instrumento cirúrgico 5500 pode medir e/ou determinar o seguinte: uma força de disparo F instantânea, um ou mais valores de pico da força de disparo F, um ou mais valores de vale da força de disparo F, uma média da força de disparo F, uma alteração da força de disparo F em função do tempo t (isto é, uma taxa de alteração da força de disparo F), um coeficiente angular de uma linha que conecta valores de pico sucessivos da força de disparo F, um coeficiente angular de uma linha que conecta os valores de vale sucessivos da força de disparo F, um tempo entre valores de pico sucessivos da força de disparo F, um tempo entre valores de vale sucessivos da força de disparo F, uma diminuição da força de disparo F a partir de um valor de pico da força de disparo F para um valor de vale seguinte da força de disparo F, um aumento da força de disparo F a partir de um valor de vale para a força de disparo F seguinte a um valor de pico de força de disparo F, uma velocidade instantânea de faca V, um ou mais valores de pico de velocidade de faca V, um ou mais valores de vale de velocidade de faca V, uma média da velocidade de faca V, uma alteração da velocidade de faca V em função do tempo t (isto é, uma taxa de alteração da velocidade de faca V), e/ou quaisquer combinações dos mesmos.
[0497] Para o exemplo gráfico 5550 mostrado na Figura 109, no tempo t=0 a força de disparo F é essencialmente igual a zero, a faca está na posição totalmente retraída e a faca é estacionária (a velocidade de faca V é zero). Uma vez que o movimento de disparo é acionado, a faca começa a avançar e inicialmente avança a uma velocidade crescente. Conforme a faca avança, o deslizador avança e os grampos são acionados do cartucho de grampos, através do tecido e contra a bigorna. Conforme a faca e o deslizador avançam e a velocidade de faca V aumenta, a força de disparo F aumenta e atinge um primeiro valor de pico quando uma primeira fileira de grampos é acionada do cartucho de grampos. Neste momento, a faca ainda não está em contato com o tecido. Para o exemplo gráfico 5550 mostrado na Figura 109, o primeiro pico 5556 da força de disparo F é indicativo da primeira fileira de grampos sendo acionada do cartucho de grampos. De acordo com vários aspectos, a primeira fileira de grampos não é acionada através do tecido e, dessa forma, não é acionada contra a bigorna. De acordo com outros aspectos, a primeira fileira de grampos é acionada através de uma porção do tecido que é mais delgada que a porção mais espessa do tecido e contra a bigorna. De acordo com ainda outros aspectos, a primeira fileira de grampos é acionada através de uma porção do tecido que foi anteriormente grampeada (com grampos de outro cartucho de grampos), resultando assim na porção do tecido sendo duplamente grampeada.
[0498] Após a primeira fileira de grampos ser acionada conforme descrito anteriormente neste documento, a força de disparo F diminui até que uma segunda fileira de grampos seja acionada, o que faz com que a força de disparo F atinja um segundo pico 5558. Neste momento, a faca ainda não está em contato com o tecido. Para o exemplo gráfico 5550 mostrado na Figura 109, o segundo pico 5558 é indicativo da segunda fileira de grampos sendo acionada do cartucho de grampos. De acordo com vários aspectos, a segunda fileira de grampos não é acionada através do tecido e, dessa forma, não é acionada contra a bigorna. De acordo com outros aspectos, a segunda fileira de grampos é acionada através de uma porção do tecido que é mais espessa que a porção do tecido através da qual os primeiros grampos de fileira foram acionados (mas mais delgada que a porção mais espessa do teci- do) e contra a bigorna. De acordo com ainda outros aspectos, a segunda fileira de grampos é acionada através de uma porção do tecido que já foi grampeada (com grampos de outro cartucho de grampos), resultando, assim, naquela porção do tecido sendo duplamente grampeada.
[0499] Após a segunda fileira de grampos ser acionada conforme descrito anteriormente neste documento, a força de disparo F diminui até que uma terceira fileira de grampos seja acionada, o que faz com que a força de disparo F atinja um terceiro pico 5560. Neste momento, a faca ainda não está em contato com o tecido. Para o exemplo gráfico 5550 mostrado na Figura 109, o terceiro pico 5560 é indicativo da terceira fileira de grampos sendo acionada do cartucho de grampos. De acordo com vários aspectos, a terceira fileira de grampos não é acionada através do tecido e, dessa forma, não é acionada contra a bigorna. De acordo com outros aspectos, a terceira fileira de grampos é acionada através de uma porção do tecido que é mais espessa que a porção do tecido através da qual os grampos da segunda fileira foram acionados (mas mais delgada que a porção mais espessa do tecido) e contra a bigorna. De acordo com ainda outros aspectos, a terceira fileira de grampos é acionada através de uma porção do tecido que já foi grampeada (com grampos de outro cartucho de grampos), resultando, assim, naquela porção do tecido sendo grampeada duplamente.
[0500] Após a terceira fileira de grampos ser acionada conforme descrito anteriormente neste documento, a força de disparo F diminui até que uma quarta fileira de grampos seja acionada, o que faz com que a força de disparo F atinja um quarto pico 5562. Em algum momento após a terceira fileira de grampos ser acionada, a faca entra em contato com o tecido, e começa a cortar o tecido e avança a uma velocidade substancialmente constante. Para o exemplo gráfico 5550 mostrado na Figura 109, o quarto pico 5562 é indicativo da faca cortando o tecido e a quarta fileira de grampos sendo acionada do cartucho de grampos através do tecido e contra a bigorna.
[0501] Após a quarta fileira de grampos ser acionada conforme descrito anteriormente neste documento, a força de disparo F continua o ciclo de diminuição e aumento conforme a faca avança através do tecido a uma velocidade substancialmente constante e fileiras adicionais de grampos são acionadas através do tecido e contra a bigorna. Para os aspectos mostrados na Figura 109, a velocidade de faca V é substancialmente constante a partir do momento em que a faca entra em contato com o tecido (logo antes do quarto valor de pico da força de disparo ser atingido) para um tempo logo após a lâmina ter cortado o tecido (o último valor de pico antes das últimas três fileiras de grampos serem acionadas). Pouco tempo depois que a faca corta o tecido, a velocidade da faca V começa a diminuir a partir da velocidade substancialmente constante para zero. A diminuição na velocidade de faca V e as forças menores necessárias para acionar as últimas três fileiras de grampos produz valores de pico mais baixos do da força de disparo F. Há várias razões pelas quais as forças menores são necessárias para acionar as últimas três linhas de grampos. Por exemplo, de acordo com vários aspectos, as últimas três fileiras de grampos podem se estender além do tecido (e dessa forma não são acionadas através do tecido e contra a bigorna), as últimas três fileiras de grampos podem ser acionadas através de uma porção do tecido menos comprimida (devido à geometria da bigorna e a canaleta alongada), as últimas três fileiras de grampos podem ser acionadas através de uma porção mais delgada do tecido, e/ou qualquer combinação dos mesmos. Uma vez que todos os grampos foram acionados e a velocidade de faca V atingiu zero (a faca parou de avançar), a força de disparo F é zero.
[0502] Embora o gráfico exemplificador 5550 da Figura 109 seja descrito no contexto de vários aspectos do instrumento cirúrgico 5500, será entendido que as respectivas ilustrações e descrições da força de disparo F e da velocidade de faca V podem variar para outros aspectos. Por exemplo, em vários aspectos do instrumento cirúrgico 5500, a faca pode entrar em contato com o tecido após menos ou mais de três fileiras de grampos terem sido conduzidas a partir do cartucho de grampos. De modo similar, menos ou mais de três fileiras de grampos podem ser acionadas depois que a faca corta o tecido.
[0503] A Figura 110 ilustra um gráfico exemplificador 5570 mos trando uma curva 5572 representativa de uma força de disparo F e uma posição de faca X ao longo do tempo t para vários aspectos do instrumento cirúrgico 5500. A força de disparo F é mostrada ao longo do eixo vertical e a posição da faca X e o tempo t são mostrados ao longo do eixo horizontal. Conforme mostrado ao longo do eixo horizontal, a posição da faca X percorre cinco Zonas 1 a 5 ao longo da cana- leta da faca no cartucho 304 localizado na garra inferior 302 do atua- dor de extremidade 300 do instrumento cirúrgico 5500, conforme descrito com mais detalhes mais adiante neste documento. Em resumo, a Zona 1 é uma zona isenta de tecido onde a faca se move sem entrar em contato com o tecido até que inicialmente entre em contato com o tecido na Zona 2. A faca então corta o tecido à medida que ele se desloca ao longo da Zona 3. A faca faz a transição para fora do tecido na Zona 4 e nas paradas da Zona 5, onde a faca atinge o final de sua extensão de percurso em uma região isenta de tecido. Os picos 5574 nas várias seções 1 a 5 são causados pela força adicional necessária para acionar os grampos através do tecido localizado nas garras 306, 302 da porção do atuador de extremidade 300 do instrumento cirúrgico 5500.
[0504] Consequentemente, a curva 5572 é uma representação do sinal de força de disparo em vários tempos durante um movimento de disparo em combinação com a força de acionamento de grampo, cole- tivamente chamadas na presente invenção de força motriz F. A curva 5572 pode ser gerada matematicamente pelo controlador com base no(s) sinal(is) de força de disparo recebido pelo controlador. A força de disparo F e a força da posição de faca X mostradas no exemplo gráfico 5570 podem ser representativas de uma condição onde a espessura e a composição do tecido ao longo da linha de corte são uniformes. A força de disparo F representada no eixo vertical pode ser uma força experimentada pelo sistema de acionamento do instrumento cirúrgico 5500 (por exemplo, pelo deslizador, a faca e/ou a barra de disparo) e/ou qualquer combinação dos mesmos. A força de disparo F pode ser medida de qualquer maneira adequada, direta ou indiretamente. Por exemplo, de acordo com vários aspectos, a força de disparo F pode ser medida diretamente por um sensor (por exemplo, um extensôme- tro) posicionado no deslizador, na faca, ou indiretamente por uma drenagem de corrente do motor, e/ou qualquer combinação dos mesmos.
[0505] De acordo com vários aspectos, a operação do instrumento cirúrgico 5500 pode ser controlada pelo monitoramento da amplitude do sinal de força de disparo e da posição de faca X, e alteração do movimento de disparo quando a amplitude do sinal de força de disparo atinge ou ultrapassa um limite predeterminado. Conforme anteriormente descrito, esse processo pode ser controlado com um algoritmo como o método 1010 de controle de um movimento de fechamento do instrumento cirúrgico 5500 de acordo com vários aspectos ilustrados na Figura 107. De acordo com alguns aspectos, a alteração do movimento de disparo apenas prossegue quando a posição da faca está dentro de uma faixa predeterminada de posições. Com referência à Figura 110, por exemplo, a Fcrit de amplitude de força de disparo pode ser determinada como sendo uma quantidade excessiva da força de disparo F experimentada pelo instrumento cirúrgico 5500. Após a ocorrência da amplitude do sinal de força de disparo alcançar ou ultrapas- sar a Fcrit da amplitude da força de disparo, um algoritmo pode operar para alterar o movimento de disparo acelerando, pausando ou parando a rotação do(s) motor(es) que aciona(m) a faca do instrumento cirúrgico 5500 para evitar que o instrumento cirúrgico 5500 sofra forças excessivas.
[0506] A curva 5572 fornece uma representação útil como a força de disparo F e a posição de faca X variam em função do tempo t. A alteração na força de disparo F ao longo do tempo t (isto é, a taxa de alteração da força de fechamento F) pode fornecer retroinformação útil ao circuito de controle para controlar o mecanismo de disparo do instrumento cirúrgico 5500. A alteração na força de disparo F ao longo do tempo t pode ser representada como uma derivada da curva 5572 e pode ser aproximada ao longo de curtos períodos de tempo pela equação de coeficiente angular S = ΔF/Δt, onde ΔF é a alteração da força de disparo F e Δt é a alteração do tempo t. O coeficiente angular pode ter um valor positivo ou um valor negativo. O coeficiente angular representado por ΔF1/Δt1 da curva 5572 tem um valor positivo e o coeficiente angular representado por ΔF2/Δt2 da curva 5572 tem um valor negativo. A curva 5572 é representativa de um sinal analógico ao longo do tempo, que é amostrado e convertido em um valor digital por um conversor A/D de modo que o mecanismo de disparo seja avança- do/retraído. Uma vez que o sinal analógico é digitalizado, o circuito de controle pode, consequentemente, determinar o coeficiente angular do sinal de força de disparo representado pela curva 5542 em qualquer ponto durante o movimento de disparo.
[0507] De acordo com vários aspectos, a operação do instrumento cirúrgico 5500 pode ser controlada pelo monitoramento do coeficiente angular da curva 5572 (o coeficiente angular do sinal de força de disparo) e a posição de faca X, e alteração do movimento de disparo com base no valor do coeficiente angular. De acordo com alguns aspectos, a alteração do movimento de disparo apenas prossegue quando a posição da faca está dentro de uma faixa predeterminada de posições. Em geral, com referência à Figura 110, o coeficiente angular da curva 5572 pode ser aproximado pela equação S = ΔF/Δt, onde ΔF é a alteração da força de disparo F e Δt é a alteração do tempo t. Os versados na técnica compreenderão que o coeficiente angular instantâneo pode ser calculado tomando-se a derivada da curva 5572. Ao longo do tempo t, o coeficiente angular S pode ser monitorado pelo circuito de controle e utilizado pelo circuito de controle para controlar a operação do instrumento cirúrgico 5500. Por exemplo, um algoritmo do instrumento cirúrgico 5500 pode ser configurado para monitorar a alteração da força de disparo F ao longo do tempo t, parar ou pausar o movimento de disparo quando o coeficiente angular da curva 5572 alcançar ou ultrapassar um primeiro limite predeterminado, então reiniciar o movimento de disparo quando o coeficiente angular da curva 5572 atinge ou cai abaixo de um segundo limite predeterminado. O valor do coeficiente angular representado por ΔF1/Δt1 (um valor positivo) mostrado na Figura 110 pode ser determinado pelo controlador e pode representar o primeiro limite predeterminado. De modo similar, o valor do coeficiente angular representado por ΔF2/Δt2 (um valor negativo) mostrado na Figura 110 pode ser determinado pelo controlador e pode representar o segundo limite predeterminado. Dessa forma, de acordo com vários aspectos, o algoritmo pode controlar a operação do circuito de controle com base no coeficiente angular determinado, seja instantâneo ou aproximado.
[0508] De acordo com vários aspectos, a operação do instrumento cirúrgico 5500 pode ser controlada pelo monitoramento de um parâmetro relacionado ao sinal de força de disparo e à posição de faca X, e alteração do movimento de disparo com base no valor do parâmetro. De acordo com alguns aspectos, a alteração do movimento de disparo apenas prossegue quando a posição da faca está dentro de uma faixa predeterminada de posições. Com referência à Figura 110, por exemplo, um algoritmo do instrumento cirúrgico 5500 pode ser configurado para monitorar os primeiro e segundo parâmetros (por exemplo, o coeficiente angular de uma linha conectando valores de pico sucessivos do sinal de força de disparo representado por ΔF3/Δt3 e o coeficiente angular de uma linha conectando valores de vale sucessivos do sinal de força de disparo representado por ΔF4/Δt4 na Figura 110), parar ou pausar o movimento de disparo quando o valor do primeiro parâmetro atingir ou ultrapassar um primeiro limiar predeterminado, então reiniciar o movimento de disparo quando o valor do segundo parâmetro atingir ou cair abaixo de um segundo limiar predeterminado. O valor do coeficiente angular representado por ΔF3/Δt3 (um valor positivo) mostrado na Figura 110 pode ser determinado pelo controlador e pode representar o primeiro limiar predeterminado. De modo similar, o valor do coeficiente angular representado por ΔF4/Δt4 (um valor negativo) mostrado na Figura 110 pode ser determinado pelo controlador e pode representar o segundo limiar predeterminado. Dessa forma, de acordo com vários aspectos, o algoritmo, como o método 1010 de controle de um movimento de fechamento do instrumento cirúrgico 5500 de acordo com vários aspectos mostrados na Figura 107, pode controlar a operação do circuito de controle com base nos coeficientes angulares determinados, sejam instantâneos ou aproximados.
[0509] Alternativamente, o controlador pode determinar valores para outros parâmetros relacionados ao sinal de força de disparo e utilizar os valores dos parâmetros para alterar o movimento de disparo. De acordo com alguns aspectos, a alteração do movimento de disparo apenas prossegue quando a posição da faca está dentro de uma faixa predeterminada de posições. Com relação à Figura 110, os outros parâmetros podem incluir, por exemplo, uma duração entre valores de pico sucessivos do sinal de força de disparo representada pelo período de tempo A mostrado na Figura 110, uma duração entre valores de vale sucessivos do sinal de força de disparo representada pelo período de tempo B mostrado na Figura 110, uma diminuição na amplitude do sinal de força de disparo de um valor de pico para um valor de vale seguinte, conforme representada pela magnitude C mostrada na Figura 110 e um aumento no sinal de força de disparo de um valor de vale para um valor de pico seguinte representada pela magnitude D mostrada na Figura 110. Os parâmetros/valores descritos acima determinados pelo circuito de controle podem ser usados com ou sem a posição de faca X para controlar automaticamente o movimento de disparo do instrumento cirúrgico 5500. Adicionalmente, os valores/parâmetros acima descritos determinados pelo circuito de controle podem ser usados em uma janela de tempo/taxa limitada em combinação com o controle de atuação e retroinformação da taxa variável do cirurgião.
[0510] Para o exemplo gráfico 5570 mostrado na Figura 110, no tempo t=0 a faca está em uma posição completamente retraída perto da extremidade proximal do atuador de extremidade e ao longo do tempo avança para uma posição totalmente avançada perto da extremidade distal do atuador de extremidade. A distância total que a faca se move da posição completamente retraída para a posição completamente avançada durante um movimento de disparo pode ser dividida em zonas predefinidas, com cada zona predefinida representativa de uma condição operacional diferente do instrumento cirúrgico 5500. Por exemplo, de acordo com vários aspectos, a distância total que a faca se move da posição completamente retraída para a posição completamente avançada durante um movimento de disparo pode ser dividida em cinco zonas predefinidas e as cinco zonas podem ser representati-vas do seguinte: a Zona 1 é representativa da faca avançando de uma posição completamente retraída em um aumento da velocidade mas ainda não estando em contato com o tecido posicionado entre as garras do instrumento cirúrgico; a Zona 2 é representativa da faca avançando a uma velocidade mais rápida crescente e os grampos sendo empurrados para o tecido (mas não na porção mais espessa do tecido); a Zona 3 é representativa da faca atingindo uma velocidade máxima ou de pico, então continuando a avançar a uma velocidade substancialmente constante e os grampos sendo direcionados para a porção mais espessa do tecido; a Zona 4 é representativa da faca continuando a avançar a uma velocidade substancialmente constante, então diminuindo na velocidade após o tecido ter sido cortado e os grampos ainda sendo acionados na porção mais espessa do tecido; e a Zona 5 é representativa da faca que atingiu sua posição completamente avançada (a faca parou) e todos os grampos foram disparados.
[0511] Embora cinco zonas sejam mostradas na Figura 110, será entendido que a distância total que a faca se move da posição completamente retraída para a posição completamente avançada durante um movimento de disparo pode ser dividida em mais ou menos que cinco zonas, e as respectivas zonas podem ser representativas de condições de operação diferentes daquelas descritas anteriormente neste documento.
[0512] Na prática, a espessura e a composição do tecido podem variar ao longo da linha de corte. Dessa forma, será entendido que há muitas condições que podem fazer com que a força de disparo F, a velocidade de faca V e/ou a posição de faca X se desviem da força de disparo F, da velocidade de faca V e/ou da posição de faca X mostrada nas Figuras 103 e 104.
[0513] A Figura 111 ilustra um gráfico exemplificador 5580 mos trando uma curva 5582 representativa de uma força de disparo F ao longo do tempo t para vários aspectos do instrumento cirúrgico 5500 e uma curva 5584 representativa de uma velocidade de faca V ao longo do tempo t para vários aspectos do instrumento cirúrgico 5500. Dito de outra forma, a curva 5582 é uma representação do sinal de força de disparo em vários momentos durante um movimento de disparo e a curva 5584 é uma representação do sinal de velocidade de faca em vários momentos durante um movimento de disparo. As curvas 5582, 5584 podem ser geradas matematicamente pelo controlador com base no sinal de força de disparo e no(s) sinal(is) de velocidade de faca recebidos pelo controlador. A força de disparo F é mostrada ao longo de uma porção superior do eixo vertical, a velocidade de faca V é mostrada ao longo de uma porção inferior do eixo vertical e o tempo t é mostrado ao longo do eixo horizontal superior, bem como ao longo do eixo horizontal inferior. A força de disparo F representada na porção superior do eixo vertical pode ser uma força experimentada pelo sistema de acionamento do instrumento cirúrgico 5500 (por exemplo, pelo desli- zador, a faca e/ou a barra de disparo), e/ou qualquer combinação dos mesmos. A força de disparo F pode ser medida de qualquer maneira adequada, direta ou indiretamente. Por exemplo, de acordo com vários aspectos, a força de disparo F pode ser medida diretamente por um sensor (por exemplo, um extensômetro) posicionado no deslizador, na faca, ou indiretamente por uma drenagem de corrente do motor, e/ou qualquer combinação dos mesmos.
[0514] A velocidade de faca V representada na porção inferior do eixo vertical pode ser uma velocidade de faca, uma velocidade de des- lizador, uma velocidade de outro componente do sistema de acionamento (por exemplo, a barra de disparo), e/ou qualquer combinação dos mesmos. A velocidade de faca V pode ser medida em qualquer maneira adequada, seja diretamente ou indiretamente. Por exemplo, de acordo com vários aspectos, a velocidade da faca V pode ser medida diretamente por uma combinação de um imã posicionado na barra de disparo e um sensor de efeito Hall ou indiretamente por uma drenagem de corrente do motor, um codificador acoplado ao eixo de acionamento do motor, e/ou qualquer combinação dos mesmos.
[0515] Em adição à medição da força de disparo F e da velocidade de faca V, as medições de força de disparo (incluindo os parâme- tros/valores derivados dos mesmos) e as medições de velocidade da faca podem ser armazenadas por uma memória do instrumento cirúrgico 5500. Um algoritmo do circuito de controle do instrumento cirúrgico 5500 pode utilizar as medições armazenadas para fornecer controle automatizado do instrumento cirúrgico 5500. Por exemplo, de acordo com vários aspectos, o algoritmo pode parar ou pausar automaticamente um avanço adicional da faca com base em um gatilho, um limiar e/ou um evento. Por exemplo, quando um coeficiente angular de uma linha conectando valores de pico sucessivos do sinal de força de disparo (por exemplo, o coeficiente angular da linha A mostrada na Figura 111) atinge ou ultrapassa um limiar predeterminado (por exemplo, o coeficiente angular da linha A é maior que o limiar predeterminado), o algoritmo pode parar ou pausar automaticamente um avanço adicional da faca.
[0516] De acordo com outros aspectos, o algoritmo pode parar ou pausar automaticamente um avanço adicional da faca quando um coeficiente angular de uma linha que conecta valores de pico sucessivos do sinal de força de disparo e a amplitude do sinal da força de disparo atinge ou ultrapassa um segundo limiar predeterminado (por exemplo, a amplitude é maior que a amplitude da força de disparo F1). De acordo ainda com outros aspectos, o algoritmo pode parar ou pausar automaticamente um avanço adicional da faca quando o coeficiente angular de uma linha que conecta sucessivos valores de pico do sinal de força de disparo atinge ou ultrapassa um segundo limiar predeterminado e a posição da faca está dentro de uma zona de operação prede- finida (por exemplo, uma posição onde a faca está avançando a uma velocidade substancialmente constante). Para esses aspectos, quando as combinações são satisfeitas, o controlador sinaliza para o controlador do motor alterar o movimento de disparo pela desaceleração, pausa ou parada da rotação do(s) motor(es) que aciona(m) a faca do instrumento cirúrgico 5500 para evitar que o instrumento cirúrgico 5500 sofra forças excessivas. Para o exemplo gráfico 5580 mostrado na Figura 111, quando as combinações são satisfeitas, o controlador transmite um sinal de pausa ou um sinal de parada ao controlador do motor para alterar o movimento de disparo por pausa ou parada da rotação do(s) motor(es) que aciona(m) a velocidade de faca e a velocidade de faca é substancialmente reduzida em relação à velocidade constante para zero.
[0517] Após o avanço da faca ter sido parado ou pausado, o algo ritmo pode reiniciar automaticamente o avanço da faca com base em um gatilho, um limiar e/ou um evento. Por exemplo, de acordo com vários aspectos, o algoritmo pode reiniciar automaticamente o avanço da faca quando um coeficiente angular da curva 5582 (por exemplo, o coeficiente angular ΔF/Δt mostrado na Figura 111) atinge ou cai abaixo de um limiar predeterminado. O limite predeterminado pode ser indicativo de uma condição de tecido estabilizada. De acordo com outros aspectos, quando um período de tempo predeterminado passou desde que o avanço da faca foi parado ou pausado (por exemplo, o período de tempo entre t1 e t2 na Figura 111), o algoritmo pode reiniciar automaticamente um avanço adicional da faca. O período de tempo predeterminado pode ser considerado uma quantidade adequada de tempo para que uma quantidade adequada de deformação do tecido ocorra e/ou para o tecido atingir uma condição estabilizada.
[0518] De acordo ainda com outros aspectos, quando a amplitude do sinal de força de disparo cai em uma quantidade predeterminada a partir do qual a amplitude do sinal de força de disparo estava no mo- mento do início da parada ou pausa, o algoritmo pode reiniciar auto-maticamente um avanço adicional da faca. A quantidade predeterminada da queda na amplitude do sinal de força de disparo pode ser um montante quantitativo (por exemplo, a diferença entre a amplitude da força de disparo F1 e a amplitude da força de disparo F2 na Figura 111) ou uma porcentagem (por exemplo, uma queda de 10%). A quantidade predeterminada da queda no sinal de força de disparo pode ser considerada suficiente para que uma quantidade adequada de deformação do tecido tenha ocorrido e/ou que o tecido tenha atingido uma condição estabilizada.
[0519] De acordo ainda com outros aspectos, quando a amplitude do sinal de força de disparo cai para um valor predeterminado (por exemplo, a amplitude de força de disparo F2 mostrada na Figura 111), o algoritmo pode reiniciar automaticamente um avanço adicional da faca. O valor predeterminado da força de disparo F pode ser considerado baixo o suficiente para que uma quantidade adequada de deformação do tecido tenha ocorrido e/ou que o tecido tenha atingido uma condição estabilizada. Independentemente do que a reinicialização da faca tem por base, quando o gatilho, limiar e/ou evento ocorre, o controlador transmite um sinal de partida ao controlador do motor para reiniciar o movimento de disparo por reinicialização da rotação do(s) mo- tor(es) que acionam a faca do instrumento cirúrgico 5500, e a reinicia- lização da rotação do(s) motor(es) faz com que a velocidade de faca V aumente de zero a uma velocidade substancialmente constante.
[0520] Depois que a faca corta o tecido, a velocidade da faca V começa a diminuir a partir da velocidade substancialmente constante para zero. A diminuição na velocidade de faca V e a força de disparo F mais baixa necessária para acionar as últimas fileiras de grampos produz valores de pico mais baixos do sinal de força de disparo. Uma vez que todos os grampos foram acionados e a velocidade de faca V atin- giu zero (a faca parou de avançar), a força de disparo F é zero.
[0521] Embora a posição de faca X não seja mostrada na Figura 111, será entendido que a alteração de acordo com alguns aspectos do movimento de disparo prossegue apenas quando a posição da faca está dentro de uma faixa predeterminada de posições.
[0522] A Figura 112 ilustra um gráfico exemplificador 5690 que mostra uma curva 5692 representativa de uma força de fechamento FC ao longo do tempo t para vários aspectos do instrumento cirúrgico 5500 e uma curva 5694 representativa de uma força de disparo F ao longo do tempo t para vários aspectos do instrumento cirúrgico 5500. A força de fechamento FC é mostrada ao longo do eixo vertical "esquerdo", a força de disparo FF é mostrada ao longo do eixo vertical "direito" e o tempo t é mostrado ao longo do eixo horizontal. Quando vistas em conjunto, as curvas 5692, 5694 refletem a temporização do movimento de fechamento e o movimento de disparo uma em relação à outra, onde o movimento de fechamento é iniciado antes do início do movimento de disparo. Embora o gráfico exemplificador 5690 mostre uma força-limite Fcrit como tendo a mesma amplitude para a força de fechamento FC e a força de disparo FF, será apreciado que a amplitude da força-limite Fcrit para a força de fechamento FC pode ser diferente da amplitude da força-limite Fcrit para a força de disparo FF. Dito de outra forma, a escala do eixo vertical "esquerdo" pode ser diferente da escala do eixo vertical "direito".
[0523] A curva 5692 é uma representação gráfica do sinal de força de fechamento em vários tempos durante um movimento de fechamento e pode ser similar ou idêntica à curva 5542 da Figura 108. Dessa forma, conforme apresentado anteriormente neste documento, a curva 5692 pode ser gerada matematicamente pelo controlador com base no sinal de força de fechamento recebido pelo controlador. A força de fechamento FC representada no eixo vertical "esquerdo" pode ser uma força experimentada pelo tecido pinçado entre as garras do instrumento cirúrgico 5500, uma força experimentada pelas garras do instrumento cirúrgico 5500 (por exemplo, pela bigorna e/ou a canaleta alongada), uma força experimentada pelo tubo de fechamento do instrumento cirúrgico 5500, e/ou quaisquer combinações dos mesmos. A força de fechamento FC pode ser medida em qualquer maneira adequada, seja diretamente ou indiretamente. Por exemplo, de acordo com vários aspectos, a força de fechamento FC pode ser medida diretamente por um sensor (por exemplo, um extensômetro) posicionado sobre a bigorna, na canaleta alongada, no tubo de fechamento, ou indiretamente por uma impedância do tecido, uma drenagem de corrente do motor, e/ou quaisquer combinações dos mesmos.
[0524] A curva 5694 é uma representação gráfica do sinal de força de disparo em vários tempos durante um movimento de disparo. A curva 5694 pode ser gerada matematicamente pelo controlador com base no sinal de força de disparo recebido pelo controlador. A força de disparo FF representada no eixo vertical "direito" pode ser uma força experimentada pelo sistema de acionamento do instrumento cirúrgico 5500 (por exemplo, pelo deslizador, a faca e/ou a barra de disparo) e/ou qualquer combinação dos mesmos. A força de disparo FF pode ser medida de qualquer maneira adequada, direta ou indiretamente. Por exemplo, de acordo com vários aspectos, a força de disparo FF pode ser medida diretamente por um sensor (por exemplo, um extensômetro) posicionado no deslizador, na faca, ou indiretamente por uma drenagem de corrente do motor, e/ou qualquer combinação dos mesmos. Embora não mostrado para fins de simplicidade, as respectivas zonas do ciclo de disparo (por exemplo, zonas 1 a 5 conforme descrito anteriormente neste documento) também poderiam ser mostradas ao longo do eixo horizontal.
[0525] Para o gráfico exemplificador 5690 na Figura 112, em al- gum momento após o movimento de fechamento ter iniciado, a faca ainda está na posição completamente retraída e a força de disparo FF é aproximadamente zero. Conforme a faca e o deslizador avancem e a velocidade da faca aumenta, a força de disparo FF aumenta e atinge um primeiro valor de pico 5696 quando uma primeira fileira de grampos é acionada do cartucho de grampos. Após a primeira fileira de grampos ser acionada conforme descrito anteriormente neste documento, a força de disparo FF diminui até que uma segunda fileira de grampos seja acionada, o que faz com que a força de disparo FF atinja um segundo valor de pico 5698.
[0526] Em um ponto posterior do movimento de disparo, o coefici ente angular do sinal de força de disparo atinge ou ultrapassa um limiar predeterminado (esta condição é mostrada como o coeficiente angular A do sinal da força de disparo na Figura 112) e a amplitude da força de disparo FF atinge ou ultrapassa um limiar de amplitude predeterminado (por exemplo, a amplitude Fcrit mostrada na Figura 112). Em resposta, o algoritmo de controle atua para desacelerar, parar ou pausar o avanço adicional da faca e a força de disparo FF começa a diminuir.
[0527] Para o gráfico exemplificador 5690, a desaceleração, para da ou pausa da faca continua até que a força de disparo FF atinja um valor que é 10% menor que o limiar de amplitude predeterminado (por exemplo, Fcrit), em cujo momento o avanço adicional da faca é iniciado. Obviamente, de acordo com vários aspectos, o avanço adicional da faca pode ser iniciado quando a força de disparo FF atinge um valor que é menor ou maior que o exemplo de 10% mostrado na Figura 112. A parada ou pausa automática acima descrita e a reinicialização automática podem ser repetidas inúmeras vezes. Para o gráfico exemplificador 5690, uma vez que o avanço adicional da faca é iniciado, a faca avança em direção a sua posição completamente avançada e a força de disparo FF eventualmente diminui para zero conforme indicado no lado direito.
[0528] As Figuras 113, 114 ilustram vários aspectos de um sensor de direção 5590 do instrumento cirúrgico 5500. De acordo com vários aspectos, o circuito de controle do instrumento cirúrgico 5500 pode ser configurado para parar um avanço da faca quando um cartucho de grampos não está posicionado ou adequadamente posicionado na ca- naleta alongada. Para tais aspectos, o circuito de controle pode incluir o sensor de direção 5590, um processador principal e um processador de segurança, cada um posicionado no conjunto de eixo de acionamento, conforme descrito acima em conexão com as Figuras 16A-17B. O sensor de direção 5590 está conectado eletricamente ao processador principal e/ou ao processador de segurança do conjunto de eixo de acionamento. O processador principal e/ou o processador de segurança do conjunto de eixo de acionamento podem estar conectados eletricamente ao processador principal e/ou ao processador de segurança do conjunto de cabo. O sensor de direção 5590 é posicionado em um local em relação a um ponto de partida da transecção de tecido, e é configurado para detectar movimento da barra de disparo e emitir um sinal (por exemplo, uma tensão) relacionado à posição detectada da barra de disparo ao processador principal e/ou ao processador de segurança do conjunto de eixo de acionamento. Com base no movimento detectado da barra de disparo de grampos, o processador principal e/ou o processador de segurança do conjunto de eixo de acionamento podem determinar e rastrear um estado do movimento e a direção do movimento da barra de disparo conforme a barra de disparo se move distalmente e proximalmente do ponto de partida da transecção de tecido. O processador principal e/ou o processador de segurança do conjunto de eixo de acionamento podem sinalizar ao controlador do motor para energizar, continuar em ciclos e/ou reinicializar o motor elé- trico para controlar o movimento e a direção do movimento da barra de disparo, ao mesmo tempo em que continua a determinar a posição relevante da barra de disparo com base no sinal de saída do sensor de direção 5590.
[0529] Conforme mostrado nas Figuras 113, 114, o sensor de di reção 5590 inclui o primeiro e o segundo sensores 5592, 5594, o primeiro e o segundo transistores 5596, 5598, um amplificador operacional 5600 e um elemento resistivo 5602. o primeiro e o segundo sensores 5592, 5594 podem ser sensores de efeito Hall, com cada um dentre o primeiro e o segundo sensor de efeito Hall posicionado a uma distância definida a partir da transecção ou linha de corte de tecido. Coletivamente, o primeiro e o segundo transistor 5596, 5598, o amplificador operacional 5600 e o elemento resistivo 5602 compreendem um circuito de travamento, onde o circuito de travamento gera apenas a tensão relacionada ao último sensor de efeito Hall que foi ativado.
[0530] A Figura 113 indica um curso de disparo no qual o imã 5604 se move de uma posição proximal inicial para uma posição distal. Na Figura 113, o imã 5604 é mostrado na posição distal final e a saída do amplificador operacional 5600 indica a posição distal do imã 5604. Em funcionamento, conforme a barra de disparo se move distalmente a partir de um ponto de partida proximal da transecção de tecido, conforme mostrado na Figura 113, um imã 5604 posicionado na barra de disparo se move além do primeiro sensor de efeito Hall 5594 depois do segundo sensor de efeito Hall 5592. Conforme o imã 5604 se move além do primeiro sensor de efeito Hall 5594, o primeiro sensor de efeito Hall 5594 emite um sinal que é indicativo do movimento da barra de disparo para uma porta do primeiro transistor 5598 para acionar o circuito de travamento para um primeiro estado estável Vcc. Conforme o imã 5604 se move além do segundo sensor de efeito Hall 5592, o segundo sensor de efeito Hall 5592 emite um sinal que é indicativo do movimento da barra de disparo para uma porta do segundo transistor 5596 para acionar o circuito de travamento para um segundo estado estável 0,0 V. O circuito de travamento produz um sinal (por exemplo, uma tensão de 0,0 V) indicativo do segundo estado estável ao processador principal e/ou ao processador de segurança do conjunto de eixo de acionamento, indicando que a barra de disparo está na posição distal disparada.
[0531] A Figura 114 indica um curso de retração no qual o imã 5604 se move de uma posição distal inicial para uma posição proximal final. Na Figura 114, o imã 5604 é mostrado na posição proximal final e a saída do amplificador operacional 5600 indica a posição proximal do imã 5604. Em funcionamento, conforme a barra de disparo se move proximalmente em direção ao ponto de partida da transecção de tecido, conforme mostrado na Figura 114, o imã 5604 posicionado na barra de disparo se move além do segundo sensor de efeito Hall 5592 depois do primeiro sensor de efeito Hall 5594. Conforme o imã 5604 se move além do segundo sensor de efeito Hall 5592, o segundo sensor de efeito Hall 5592 emite um sinal que é indicativo do movimento da barra de disparo para a porta do segundo transistor 5596 para acionar o circuito de travamento para o segundo estado estável de 0,0 V. Conforme o imã 5604 se move para além do primeiro sensor de efeito Hall 5594, o primeiro sensor de efeito Hall 5594 emite um sinal que é indicativo do movimento da barra de disparo para a porta do primeiro transistor para acionar o circuito de travamento 5598 ao primeiro estado estável Vcc. O circuito de travamento produz um sinal (por exemplo, uma tensão de Vcc) indicativo do primeiro estado estável ao processador principal e/ou ao processador de segurança do conjunto de eixo de acionamento, indicando que a barra de disparo está na posição retraída proximal.
[0532] A Figura 115 ilustra uma vista em perspectiva de um ins- trumento cirúrgico 5700 de acordo com um ou mais aspectos descritos neste pedido. O instrumento cirúrgico 5700 é similar ao instrumento cirúrgico 5500 e inclui uma canaleta alongada configurada para sustentar um cartucho de grampos, uma bigorna ligada de forma articulada à canaleta alongada, um elemento de fechamento acoplado mecanicamente ao cartucho de grampos, um motor elétrico acoplado mecanicamente ao elemento de fechamento e/ou à faca, um controlador de motor acoplado eletricamente ao motor, e um circuito de controle acoplado eletricamente ao controlador de motor. O instrumento cirúrgico 5700 também é similar ao instrumento cirúrgico 5500 pelo fato de que o instrumento cirúrgico 5700 inclui também sensores que são coletivamente configurados para detectar ou medir uma força de fechamento, uma força de disparo, uma corrente drenada pelo motor elétrico, uma impedância do tecido posicionado entre a canaleta alongada e a bigorna, uma posição da bigorna em relação à canaleta alongada, uma posição da faca, ou qualquer combinação das mesmas. O instrumento cirúrgico 5700 também é similar ao instrumento cirúrgico 5500 pelo fato de que o instrumento cirúrgico 5700 inclui também algoritmos como algoritmos de fechamento, algoritmos de disparo, algoritmos de controle de motor, ou qualquer combinação dos mesmos, que operam para ajustar dinamicamente a operação do instrumento cirúrgico 5700. Entretanto, o instrumento cirúrgico 5700 é diferente do instrumento cirúrgico 5500 pelo fato de que o instrumento cirúrgico 5700 inclui adicionalmente um ou mais algoritmos adicionais (em adição aos descritos anteriormente neste documento) que fornecem funcionalidade de controle adicional para o instrumento cirúrgico 5700, conforme descrito mais adiante neste documento.
[0533] Em certas situações, pode ser desejável que o instrumento cirúrgico 5700 ignore a ocorrência de um ou mais dos acionadores, limiares e/ou eventos descritos acima associados à força de disparo. De acordo com um ou mais aspectos, o instrumento cirúrgico 5700 inclui um ou mais algoritmos de controle que são configurados para ignorar certos acionadores, limiares e/ou eventos se os acionadores, limiares e/ou eventos ocorrerem antes de uma amplitude da força de disparo ter atingido ou excedido um limite predeterminado, se os acio- nadores, limiares e/ou eventos ocorrerem dentro de certas zonas do movimento de disparo, e combinações dos mesmos. Conforme descrito anteriormente neste documento, as zonas do movimento de disparo estão relacionadas à posição da faca. Em outras palavras, os algoritmos de controle podem variar os gatilhos de força de disparo, limiares e/ou eventos (por exemplo, valores dos limiares) com base na posição da faca no movimento de disparo.
[0534] A Figura 116 ilustra um método 5710 de controle de um movimento de disparo do instrumento cirúrgico 5700 de acordo com um ou mais aspectos. O processo começa quando um movimento de disparo é iniciado 5712. O movimento de fechamento pode ser iniciado, por exemplo, puxando-se um gatilho de disparo em direção a um cabo. Um sensor reside no instrumento cirúrgico 5700 detecta/mede 5714 uma força de disparo. A força de disparo pode ser, por exemplo, uma força experimentada pelo sistema de acionamento do instrumento cirúrgico (por exemplo, pelo deslizador, a faca e/ou a barra de disparo), e/ou qualquer combinação dos mesmos. A força de disparo F pode ser medida de qualquer maneira adequada, direta ou indiretamente. Por exemplo, de acordo com um ou mais aspectos, a força de disparo F pode ser medida diretamente por um sensor (por exemplo, um ex- tensômetro) posicionado no deslizador, na faca, ou indiretamente por drenagem de corrente do motor.
[0535] Em resposta à força de disparo, o sensor 5716 emite um sinal de força de disparo, que é indicativo da força de disparo detecta- da/medida 5714 pelo sensor. Dependendo da configuração do sensor, o sinal de força de disparo pode ser um sinal analógico ou um sinal digital. Ao determinar 5718 se o sinal de força de disparo é um sinal analógico ou um sinal digital, o processo prossegue ao longo da ramificação correspondente. Quando a determinação 5718 é que o sinal de força de disparo é um sinal analógico, o processo prossegue ao longo da ramificação analógica, em que o sinal analógico é recebido por um conversor A/D, convertido 5720 para um sinal digital representativo pelo conversor A/D e o sinal analógico é emitido pelo conversor A/D. Quando a determinação 5718 é que o sinal de força de disparo é um sinal digital, o processo prossegue ao longo da ramificação digital porque não há necessidade de uma conversão A/D 5720 quando o sinal de força de disparo é um sinal digital.
[0536] O sinal de força de disparo que é um sinal digital represen tativo da força de disparo detectada/medida 5714 pelo sensor é recebido por um controlador. O controlador utiliza o sinal digital e determina 5722 se a força de disparo detectada/medida 5714 pelo sensor atinge ou ultrapassa um limiar predeterminado. O controlador pode fazer essa determinação 5722 com base em uma comparação entre uma magnitude da força de disparo detectada/medida 5714 pelo sensor e o limiar predeterminado, com base em uma comparação de uma amplitude da saída de sinal de força de disparo 5716 pelo sensor e um limiar predeterminado, ou qualquer combinação dos mesmos.
[0537] Quando o controlador determina 5722 que a força de dispa ro detectada/medida 5714 pelo sensor não atingiu ou ultrapassou o limiar predeterminado, o movimento de disparo originalmente iniciado 5712 é continuado 5724 junto com os processos intermediários 5714 a 5722. Quando o controlador determina 5722 que a força de disparo detectada/medida 5714 pelo sensor atingiu ou ultrapassou o limite predeterminado, o controlador então determina 5726 se ignora ou não o fato de que a força de disparo atingiu ou ultrapassou o limiar prede- terminado. Essa determinação 5726 pode ser baseada, por exemplo, se a amplitude do sinal de força de disparo atingiu ou ultrapassou um limiar predeterminado, com base na posição do deslizador, da faca e/ou da barra de disparo, ou quaisquer combinações dos mesmos. Por exemplo, conforme descrito em mais detalhes mais adiante neste documento, em determinados aspectos, o controlador pode determinar 5726 ignorar o fato de que o coeficiente angular do sinal de força de disparo atingiu ou ultrapassou um limiar de coeficiente angular predeterminado se a amplitude do sinal de força de disparo ainda não atingiu ou ultrapassou um limiar de amplitude predeterminado. Em outros aspectos, o controlador pode determinar 5726 ignorar o fato de que o coeficiente angular do sinal de força de disparo atingiu ou ultrapassou um limiar de coeficiente angular predeterminado com base na posição do deslizador, da faca, da barra de disparo, ou qualquer combinação dos mesmos quando a lâmina está em uma certa zona (por exemplo, Zona 1 ou Zona 5) do movimento de disparo. Nos casos em que o controlador determina 5726 ignorar o fato de que um parâmetro do sinal de força de disparo atingiu ou ultrapassou um limiar predeterminado, o movimento de disparo originalmente iniciado 5712 é continuado 5724 junto com os processos interativos 5714-5722.
[0538] Em outros aspectos, o controlador pode determinar 5726 não ignorar o fato de que um parâmetro do sinal de força de disparo atingiu ou ultrapassou um limiar predeterminado. A determinação 5726 de não ignorar o fato de que um parâmetro do sinal de força de disparo atingiu ou ultrapassou o limiar predeterminado pode ser baseado, por exemplo, se a amplitude do sinal de força de disparo atingiu ou ultrapassou um limiar predeterminado, com base na posição do desli- zador, da faca e/ou da barra de disparo, ou quaisquer combinações dos mesmos. Nos casos em que o controlador determina 5726 não ignorar o fato de que um parâmetro do sinal de força de disparo atingiu ou ultrapassou o limiar predeterminado, o controlador altera 5730 o movimento de disparo. De acordo com alguns aspectos, o controlador pode alterar o movimento de disparo por meio da modificação ou ajuste de um algoritmo de disparo sendo executado pelo controlador para fazer com que o movimento de disparo seja desacelerado, pausado ou parado para evitar que o instrumento cirúrgico 5700 sofra forças excessivas. De acordo com outros aspectos, o controlador pode alterar o movimento de disparo executando um algoritmo de disparo diferente que faz com que o movimento de disparo seja desacelerado, pausado ou parado para evitar que o instrumento cirúrgico 5700 sofra forças excessivas. Em ambos os casos, o movimento de disparo pode ser desacelerado, parado ou pausado em razão do controlador ter transmitido um sinal de desaceleração, um sinal de parada ou um sinal de pausa ao controlador do motor para diminuir, parar ou pausar a rotação do(s) motor(es) que aciona(m) o deslizador, a faca, a barra de disparo ou qualquer combinação dos mesmos do instrumento cirúrgico 5700.
[0539] Mediante a alteração do movimento de disparo 5728, quan do a alteração do movimento de disparo 5728 é uma redução da velocidade do movimento de disparo (uma desaceleração da rotação do(s) motor(es) que aciona(m) o deslizador, faca e/ou barra de disparo), o processo continua o movimento de fechamento 5730 originalmente iniciado 5712 mas a uma velocidade reduzida e o processo provisório 5714-5726 é continuado mas o disparo do deslizador, da faca e/ou da barra de disparo ocorre em uma velocidade reduzida. Quando a alteração do movimento de disparo 5728 é uma parada ou pausa do movimento de disparo (uma parada ou pausa da rotação do(s) motor(es) que aciona(m) o deslizador, a faca e/ou a barra de disparo), o processo suspende ou termina 5732 o movimento de disparo.
[0540] De acordo com um ou mais aspectos, a operação do ins- trumento cirúrgico 5700 pode ser controlada pelos parâmetros de monitoramento do sinal de força de disparo (por exemplo, a amplitude, o coeficiente angular etc.) e nos casos em que um limiar predeterminado é atingido ou excedido, decidir se altera o movimento de disparo com base nos parâmetros monitorados ou para ignorar a amplitude ou ultrapassar o limite predeterminado. Por exemplo, de acordo com um ou mais aspectos, se a alteração da força de disparo F ao longo do tempo t (por exemplo, o coeficiente angular do sinal de força de disparo) atingir ou ultrapassar um primeiro limiar de força de disparo, o algoritmo de controle pode ignorar o fato de que o coeficiente angular do sinal de força de disparo atingiu ou ultrapassou o limiar predeterminado e permite que a operação do instrumento cirúrgico 5700 prossiga como se nunca tivesse atingido ou excedido o limiar predeterminado.
[0541] A Figura 117 ilustra um gráfico exemplificador 5740 mos trando uma curva 5742 representativa de uma força de disparo F ao longo do tempo t para vários aspectos do instrumento cirúrgico 5700. A força de disparo F é mostrada ao longo do eixo vertical e o tempo t é mostrado ao longo do eixo horizontal. Dito de outra forma, a curva 5742 é uma representação gráfica do sinal de força de disparo em vários tempos durante um movimento de disparo. A curva 5742 pode ser gerada matematicamente pelo controlador com base no sinal de força de disparo recebido pelo controlador. A força de disparo F mostrada no gráfico exemplificador 5740 pode ser representativa de uma condição onde a espessura e a composição do tecido ao longo da linha de corte são uniformes. A força de disparo F representada no eixo vertical pode ser uma força experimentada pelo sistema de acionamento do instrumento cirúrgico 1000 (por exemplo, pelo deslizador, a faca e/ou a barra de disparo) e/ou qualquer combinação dos mesmos. A força de disparo F pode ser medida de qualquer maneira adequada, direta ou indiretamente. Por exemplo, de acordo com um ou mais aspectos, a força de disparo F pode ser medida diretamente por um sensor (por exemplo, um extensômetro) posicionado no desli- zador, na faca, ou indiretamente por drenagem de corrente do motor e/ou qualquer combinação dos mesmos.
[0542] Para o exemplo gráfico 5740 mostrado na Figura 117, no tempo t=0 a faca está em uma posição completamente retraída perto da extremidade proximal do atuador de extremidade e ao longo do tempo avança para uma posição totalmente avançada perto da extremidade distal do atuador de extremidade. Conforme descrito anteriormente neste documento, a distância total que a faca se move da posição completamente retraída para a posição completamente avançada durante um movimento de disparo pode ser dividida em zonas predefi- nidas, com cada zona sendo representativa de uma condição operacional diferente do instrumento cirúrgico 5700. Embora não mostrado na Figura 117 para fins de simplicidade, as respectivas zonas do movimento de disparo (por exemplo, zonas 1 a 5 conforme descrito anteri-ormente neste documento) também poderiam ser mostradas ao longo do eixo horizontal da Figura 117.
[0543] Pouco depois que a faca se move de sua posição completa mente retraída para sua posição completamente avançada, a alteração da força de disparo F ao longo do tempo t atinge ou ultrapassa um limiar de coeficiente angular predeterminado (essa condição é mostrada como o coeficiente angular A do sinal de força de disparo na Figura 117). Conforme o coeficiente angular A ocorre nesse exemplo antes da força de disparo F atingir ou ultrapassar um primeiro limiar de força de disparo (mostrado como o F1 na Figura 117), o algoritmo de controle pode ignorar o fato de que o coeficiente angular A atingiu ou ultrapassou o limiar predeterminado e permite que a operação do instrumento cirúrgico 5700 prossiga como se o coeficiente angular A nunca tivesse atingido ou excedido o limiar predeterminado. De modo similar, o algoritmo de controle também poderia ignorar o coeficiente angular de um gatilho, limiar ou evento com base na posição da faca (por exemplo, se a faca estiver na zona 2 do movimento de disparo quando o limiar de coeficiente angular predeterminado for atingido ou excedido).
[0544] Devido ao coeficiente angular A de um gatilho, limiar e/ou evento efetivamente sendo ignorado, a faca continua avançando em direção à posição completamente avançada e a força de disparo F continua a aumentar ao longo do tempo t. Conforme mostrado na Figura 117, o coeficiente angular do sinal de força de disparo novamente atinge ou ultrapassa o limiar de coeficiente angular predeterminado (este exemplo é mostrado como o coeficiente angular A1 do sinal de força de disparo na Figura 117). De acordo com um ou mais aspectos, a obtenção ou a superação do limiar de coeficiente angular predeterminado por si só é suficiente para que o algoritmo de controle altere o movimento de disparo para desacelerar, parar ou pausar o avanço adicional da faca. De acordo com outros aspectos, a obtenção ou superação do limiar de amplitude predeterminado (por exemplo, a amplitude Fcrit mostrada na Figura 117) por si só é suficiente para que o algoritmo de controle altere o movimento de disparo para desacelerar, parar ou pausar o avanço adicional da faca. De acordo ainda com outros aspectos, a combinação de alcançar ou ultrapassar o limiar de coeficiente angular predeterminado e alcançar ou ultrapassar o limiar de amplitude predeterminado faz com que o algoritmo de controle altere o movimento de disparo para desacelerar, parar ou pausar o avanço adicional da faca. Conforme mostrado na Figura 117, quando o coeficiente angular A1 do sinal da força de disparo atinge ou ultrapassa o limiar de coeficiente angular predeterminado e a amplitude do sinal de força de disparo atinge ou ultrapassa o limiar de amplitude predeterminado (por exemplo, Fcrit), o algoritmo de controle altera o movimento de disparo para diminuir, parar ou pausar o avanço adicional da faca e a força de disparo F começa a diminuir.
[0545] A desaceleração, parada ou pausa da faca continua até que a força de disparo F atinja um valor que é 10% menor que o limiar de amplitude predeterminado (por exemplo, Fcrit), em cujo momento o avanço adicional da faca é iniciado. É claro que, de acordo com um ou mais aspectos, o avanço adicional da faca pode ser iniciado quando a força de disparo atinge um valor que é menor ou maior que 10% do que o exemplo mostrado na Figura 117. Para o gráfico exemplificador 5742, uma vez que o avanço adicional da faca é iniciado, a faca avança para sua posição completamente avançada e a força de disparo diminui para zero conforme indicado no lado direito da Figura 117.
[0546] De acordo com outros aspectos, a decisão de alterar o mo vimento de disparo ou ignorar o alcance ou superação do limiar prede-terminado pode ser baseada adicionalmente na posição do deslizador, faca, barra de disparo ou combinações dos mesmos. Por exemplo, de acordo com um ou mais aspectos, se a alteração da força de disparo ao longo do tempo t atingir ou ultrapassar um limiar predeterminado enquanto a faca estiver dentro de uma determinada zona do movimento de disparo (por exemplo, zona 2 ou zona 4), o algoritmo de controle pode ignorar o fato de a inclinação do sinal da força de disparo atingir ou ultrapassar o limiar predeterminado e permitir que a operação do instrumento cirúrgico 5700 prossiga como se o coeficiente angular do sinal da força de disparo nunca tivesse atingido ou excedido o limiar predeterminado.
[0547] A Figura 118 ilustra um gráfico exemplificador 5750 mos trando uma curva 5752 representativa de uma força de disparo F ao longo do tempo t para vários aspectos do instrumento cirúrgico 5700. A curva 5752 pode ser gerada matematicamente pelo controlador com base no sinal de força de disparo recebido pelo controlador. A força de disparo F mostrada no gráfico exemplificador 5750 pode ser represen- tativa de uma condição onde a espessura e a composição do tecido ao longo da linha de corte são uniformes. A força de disparo F representada no eixo vertical pode ser uma força experimentada pelo sistema de acionamento do instrumento cirúrgico 5700 (por exemplo, pelo des- lizador, a faca e/ou a barra de disparo) e/ou qualquer combinação dos mesmos. Embora não mostrado para fins de simplicidade, as respectivas zonas do ciclo de disparo (por exemplo, zonas 1 a 5 conforme descrito anteriormente neste documento) também poderiam ser mostradas ao longo do eixo horizontal.
[0548] A força de disparo F pode ser medida de qualquer maneira adequada, direta ou indiretamente. Por exemplo, de acordo com um ou mais aspectos, a força de disparo F pode ser medida diretamente por um sensor (por exemplo, um extensômetro) posicionado no desli- zador, na faca, ou indiretamente por drenagem de corrente do motor e/ou qualquer combinação dos mesmos.
[0549] Para o gráfico exemplificador 5750 na Figura 118, no tempo t=0, a faca está na posição completamente retraída e a força de disparo F é zero. Conforme a faca e o deslizador avançam e a velocidade da faca aumenta, a força de disparo F aumenta e atinge um primeiro valor de pico 5754 quando uma primeira fileira de grampos é acionada do cartucho de grampos. Após a primeira fileira de grampos ser acionada conforme descrito anteriormente neste documento, a força de disparo F diminui até que uma segunda fileira de grampos seja acionada, o que faz com que a força de disparo F atinja um segundo valor de pico 5756.
[0550] Em um ponto posterior do movimento de disparo, o coefici ente angular do sinal de força de disparo atinge ou ultrapassa um limiar predeterminado (esta condição é mostrada como o coeficiente angular A1 do sinal da força de disparo na Figura 118) e a amplitude da força de disparo F atinge ou ultrapassa um limiar de amplitude prede- terminado (por exemplo, a amplitude Fcrit mostrada na Figura 118). Em resposta, o algoritmo de controle atua para desacelerar, parar ou pausar o avanço adicional da faca e a força de disparo F começa a diminuir.
[0551] Para o gráfico exemplificador 5752, a desaceleração, para da ou pausa da faca continua até que a força de disparo F atinja um valor que é 10% menor que o limiar de amplitude predeterminado (por exemplo, Fcrit), em cujo momento o avanço adicional da faca é iniciado. É claro que, de acordo com um ou mais aspectos, o avanço adicional da faca pode ser iniciado quando a força de disparo atinge um valor que é menor ou maior que o exemplo de 10% mostrado na Figura 118. A parada ou pausa automática acima descrita e a reinicializa- ção automática podem ser repetidas inúmeras vezes.
[0552] Para o gráfico exemplificador 5752, uma vez que o avanço adicional da faca é iniciado, conforme a faca avança em direção à sua posição completamente avançada, o coeficiente angular do sinal de força de disparo mais uma vez atinge ou ultrapassa o limiar de coeficiente angular predeterminado (essa condição é mostrada como o coeficiente angular A2 do sinal de força de disparo na Figura 118). Entretanto, como o limiar de coeficiente angular predeterminado foi atingido ou excedido enquanto a faca estava na zona 4 do movimento de disparo, o algoritmo de controle ignora esse gatilho "coeficiente angular" e continua avançando a faca para sua posição completamente avançada, resultando na diminuição da força de disparo para zero conforme indicado no lado direito da Figura 118.
[0553] Além de ignorar acionadores, limiares e/ou eventos com base em onde os gatilhos, limiares e/ou eventos ocorrem dentro do movimento de disparo, os algoritmos de controle também podem variar ou modificar os gatilhos, limiares e/ou eventos com base em onde os gatilhos, limiares e/ou eventos ocorrem dentro do movimento de dispa- ro. Por exemplo, de acordo com um ou mais aspectos, os algoritmos de controle podem definir o valor para um limiar de coeficiente angular predeterminado em um primeiro valor para a zona 1 do movimento de disparo, em um segundo valor para a zona 2 do movimento de disparo, em um terceiro valor para a zona 3 do movimento de disparo, etc.
[0554] A Figura 119 ilustra um gráfico exemplificador 5770 mos trando uma curva representativa de uma força de fechamento FC ao longo do tempo t para vários aspectos do instrumento cirúrgico e uma curva representativa de uma força de disparo FF ao longo do tempo t para o instrumento cirúrgico 5700 da Figura 115. A Figura 119 ilustra um gráfico exemplificador 5770 que mostra uma curva 5772 representativa de uma força de fechamento FC ao longo do tempo t para vários aspectos do instrumento cirúrgico 5700 e uma curva 5774 representativa de uma força de disparo F ao longo do tempo t para vários aspectos do instrumento cirúrgico 5700. A força de fechamento FC é mostrada ao longo do eixo vertical "esquerdo", a força de disparo FF é mostrada ao longo do eixo vertical "direito" e o tempo t é mostrado ao longo do eixo horizontal. Quando vistas em conjunto, as curvas 5772, 5774 refletem a temporização do movimento de fechamento e do mo-vimento de disparo uma em relação à outra, onde o movimento de fechamento é iniciado antes do início do movimento de disparo. Embora o gráfico exemplificador 5770 mostre uma força-limite Fcrit como tendo a mesma amplitude para a força de fechamento FC e a força de disparo FF, será apreciado que a amplitude da força-limite Fcrit para a força de fechamento FC pode ser diferente da amplitude da força-limite Fcrit para a força de disparo FF. Dito de outra forma, a escala do eixo vertical "esquerdo" pode ser diferente da escala do eixo vertical "direito".
[0555] A curva 5772 é uma representação gráfica do sinal de força de fechamento em vários tempos durante um movimento de fechamento. Dessa forma, conforme apresentado anteriormente neste do- cumento, a curva 5772 pode ser gerada matematicamente pelo controlador com base no sinal de força de fechamento recebido pelo controlador. A força de fechamento FC representada no eixo vertical "esquerdo" pode ser uma força experimentada pelo tecido pinçado entre as garras do instrumento cirúrgico 5700, uma força experimentada pelas garras do instrumento cirúrgico 5700 (por exemplo, pela bigorna e/ou a canaleta alongada), uma força experimentada pelo tubo de fechamento do instrumento cirúrgico 5700, e/ou quaisquer combinações dos mesmos. A força de fechamento FC pode ser medida em qualquer maneira adequada, seja diretamente ou indiretamente. Por exemplo, de acordo com vários aspectos, a força de fechamento FC pode ser medida diretamente por um sensor (por exemplo, um extensômetro) posicionado sobre a bigorna, na canaleta alongada, no tubo de fechamento, ou indiretamente por uma impedância do tecido, uma drenagem de corrente do motor, e/ou quaisquer combinações dos mesmos.
[0556] A curva 5774 é uma representação gráfica do sinal de força de disparo em vários tempos durante um movimento de disparo e pode ser similar ou idêntica à curva 5752 da Figura 109. Dessa forma, conforme apresentado anteriormente neste documento, a curva 5774 pode ser gerada matematicamente pelo controlador com base no(s) sinal(is) de força de disparo recebido(s) pelo controlador. A força de disparo FF representada no eixo vertical "direito" pode ser uma força experimentada pelo sistema de acionamento do instrumento cirúrgico 5700 (por exemplo, pelo deslizador, a faca e/ou a barra de disparo) e/ou qualquer combinação dos mesmos. A força de disparo FF pode ser medida de qualquer maneira adequada, direta ou indiretamente. Por exemplo, de acordo com vários aspectos, a força de disparo FF pode ser medida diretamente por um sensor (por exemplo, um exten- sômetro) posicionado no deslizador, na faca, ou indiretamente por uma drenagem de corrente do motor, e/ou qualquer combinação dos mes- mos. Embora não mostrado para fins de simplicidade, as respectivas zonas do ciclo de disparo (por exemplo, zonas 1 a 5 conforme descrito anteriormente neste documento) também poderiam ser mostradas ao longo do eixo horizontal.
[0557] Para o gráfico exemplificador 5770 na Figura 110, em al gum momento após o movimento de fechamento ter iniciado, a faca ainda está na posição completamente retraída e a força de disparo FF é aproximadamente zero. Conforme a faca e o deslizador avançam e a velocidade da faca aumenta, a força de disparo FF aumenta e atinge um primeiro valor de pico 5776 quando uma primeira fileira de grampos é acionada do cartucho de grampos. Após a primeira fileira de grampos ser acionada conforme descrito anteriormente neste documento, a força de disparo FF diminui até que uma segunda fileira de grampos seja acionada, o que faz com que a força de disparo FF atinja um segundo valor de pico 5778.
[0558] Em um ponto posterior do movimento de disparo, o coefici ente angular do sinal de força de disparo atinge ou excede um limiar predeterminado (esta condição é mostrada como o coeficiente angular A do sinal da força de disparo na Figura 117) e a amplitude da força de disparo FF atinge ou excede um limiar de amplitude predeterminado (por exemplo, a amplitude Fcrit mostrada na Figura 117). Em resposta, o algoritmo de controle atua para desacelerar, parar ou pausar o avanço adicional da faca e a força de disparo FF começa a diminuir.
[0559] Para o gráfico exemplificador 5770, a desaceleração, para da ou pausa da faca continua até que a força de disparo FF atinja um valor que é 10% menor que o limiar de amplitude predeterminado (por exemplo, Fcrit), em cujo momento o avanço adicional da faca é iniciado. Obviamente, de acordo com vários aspectos, o avanço adicional da faca pode ser iniciado quando a força de disparo FF atinge um valor que é menor ou maior que o exemplo de 10% mostrado na Figura 117. A parada ou pausa automática acima descrita e a reinicialização automática podem ser repetidas inúmeras vezes.
[0560] Para o gráfico exemplificador 5770, uma vez que o avanço adicional da faca é iniciado, conforme a faca avança em direção à sua posição completamente avançada, o coeficiente angular do sinal de força de disparo mais uma vez atinge ou excede o limiar de coeficiente angular predeterminado (essa condição é mostrada como o coeficiente angular B do sinal de força de disparo na Figura 117). Entretanto, como o limiar do coeficiente angular predeterminado foi atingido ou excedido enquanto a faca estava na zona 4 (não mostrada) do movimento de disparo, o algoritmo de controle ignora esse gatilho de "coeficiente angular" e continua avançando a faca para sua posição completamente avançada, resultando na diminuição da força de disparo para zero conforme indicado no lado direito da Figura 117.
[0561] A Figura 120 ilustra um gráfico exemplificador 5760 que mostra uma primeira curva 5762 representativa de uma força de disparo F ao longo do tempo t para vários aspectos do instrumento cirúrgico 5700, uma posição de faca X ao longo do tempo t para vários aspectos do instrumento cirúrgico 5700 e uma segunda curva 5764 representativa da velocidade de faca V ao longo do tempo t para vários aspectos do instrumento cirúrgico 5700. A força de disparo F é mostrada ao longo do eixo vertical superior, a velocidade de faca V é mostrada ao longo do eixo vertical inferior, a posição de faca X é mostrada ao longo do eixo horizontal superior e o tempo t é mostrado ao longo tanto do topo quanto do fundo dos eixos horizontais. Conforme mostrado ao longo do eixo horizontal superior, a posição da faca X percorre cinco Zonas 1 a 5 ao longo da canaleta da faca no cartucho 304 localizado na garra inferior 302 do atuador de extremidade 300 do instrumento cirúrgico 5700. A velocidade de faca V e a força de disparo F mostrada na Figura 120 podem ser baseadas na suposição de que a espessura e a composição do tecido ao longo da linha de corte são uniformes.
[0562] Consequentemente, a curva 5762 é uma representação do sinal de força de disparo em vários momentos durante um movimento de disparo e a curva 5764 é uma representação do sinal de velocidade de faca em vários momentos durante um movimento de disparo. As curvas 5762, 5764 podem ser geradas matematicamente pelo controlador com base no sinal de força de disparo e no(s) sinal(is) de velocidade de faca recebidos pelo controlador. A força de disparo F representada no eixo vertical superior pode ser uma força experimentada pelo sistema de acionamento do instrumento cirúrgico 5500 (por exemplo, pelo deslizador, a faca e/ou a barra de disparo) e/ou qualquer combinação dos mesmos. A força de disparo F pode ser medida de qualquer maneira adequada, direta ou indiretamente. Por exemplo, de acordo com um ou mais aspectos, a força de disparo F pode ser medida diretamente por um sensor (por exemplo, um extensômetro) posicionado no deslizador, na faca, ou indiretamente por drenagem de corrente do motor e/ou qualquer combinação dos mesmos.
[0563] A velocidade de faca V representada no eixo vertical inferior pode ser uma velocidade de faca, uma velocidade de deslizador, uma velocidade de outro componente do sistema de acionamento (por exemplo, a barra de disparo), e/ou qualquer combinação dos mesmos. A velocidade de faca V pode ser medida em qualquer maneira adequada, seja diretamente ou indiretamente. Por exemplo, de acordo com um ou mais aspectos, a velocidade de faca V pode ser medida diretamente por uma combinação de um imã posicionado na barra de disparo e um sensor de efeito Hall ou indiretamente por uma drenagem de corrente do motor, um codificador acoplado ao eixo de acionamento do motor, e/ou qualquer combinação dos mesmos.
[0564] Para o gráfico exemplificador 5764, a velocidade de faca V é mostrada como aumentando de zero até uma velocidade substanci- almente máxima enquanto a faca avança de sua posição completamente retraída através da zona 1 e para dentro da zona 2 do movimento de disparo. Mesmo se a alteração da força F de disparo ao longo do tempo (por exemplo, o coeficiente angular ΔF/Δt mostrado ocorrendo na zona 1 e/ou na zona 2) atinge ou excede um limiar predeterminado, o algoritmo de controle pode ignorar esse gatilho, limiar e/ou evento e permitir que a faca continue a avançar conforme mostrado pela velocidade de faca V na Figura 120. Uma vez que a velocidade substancialmente máxima é alcançada na zona 2, a faca continua avançando na zona 2 e na zona 3 até que outro gatilho, limiar e/ou evento instrua o algoritmo de controle para parar automaticamente o avanço da faca. Para o gráfico exemplificador 5762, isto ocorre na zona 3 quando a força de disparo F excede o limiar predeterminado Fcrit. De acordo com outros aspectos, o gatilho, limiar e/ou evento poderia ser uma mudança na força de disparo F ao longo do tempo t atingindo ou excedendo um certo valor, uma combinação da mudança da força de disparo F ao longo do tempo t atingindo ou excedendo um certo valor e a força de disparo F atingindo ou excedendo certo valor, uma mudança de uma força de disparo pico a pico ao longo do tempo t atingindo ou excedendo um certo valor, uma combinação de uma mudança de uma força de disparo pico a pico ao longo do tempo t atingindo ou excedendo um determinado valor e a força de disparo F atingindo ou excedendo um determinado valor, etc.
[0565] Uma vez que a força de disparo F atinge ou excede o limite predeterminado Fcrit e a faca está em uma posição associada à zona 3 do movimento de disparo, o algoritmo de controle para ou pausa automaticamente o avanço adicional da faca e a velocidade de faca V cai de uma velocidade substancialmente constante para zero no tempo t1. Em outras palavras, ao invés de ignorar o gatilho, o algoritmo de controle age sobre o gatilho e altera o movimento de disparo. Após um período de tempo predefinido (por exemplo, o período de tempo t2 - t1) conforme mostrado na Figura 120 ou uma queda predefinida na amplitude da força de disparo F, o algoritmo de controle reinicia automaticamente o avanço da faca e a velocidade de faca V aumenta de zero no tempo t2 até uma velocidade substancialmente máxima, então continua na zona 3 e na zona 4 a uma velocidade substancialmente constante. Em algum ponto na zona 4, a velocidade de faca cai de uma velocidade substancialmente constante para zero e a força de disparo também cai para zero.
[0566] Embora a Figura 120 represente o algoritmo de controle co mo não atuando em um gatilho de força de disparo, limiar e/ou evento que ocorre na zona 2 do movimento de disparo e atuando em um gatilho de força de disparo, limiar e/ou evento que ocorre na zona 3 do movimento de gatilho, será apreciado que o algoritmo de controle possa ser configurado para atuar ou não atuar em gatilhos de forças de disparo, limiares e/ou eventos que ocorram em outras zonas do movimento de disparo. Por exemplo, conforme descrito anteriormente neste documento em relação à Figura 118, o algoritmo de controle pode ser configurado para não agir (ignorar) um gatilho de força de disparo, limite e/ou evento que ocorre na zona 4 do movimento de disparo.
[0567] Além disso, embora a funcionalidade dos algoritmos de controle descritos em relação às as Figuras 115 a 120 tenha sido descrita no contexto de ignorar ou variar os gatilhos, limiares e/ou eventos durante o movimento de disparo, será entendido que os algoritmos de controle do instrumento cirúrgico 5700 podem também ser configurados para ignorar ou variar os gatilhos, limiares e/ou eventos durante o ciclo de fechamento (isto é, o fechamento das garras).
[0568] A Figura 121 ilustra uma vista em perspectiva de uma fonte de energia de um instrumento cirúrgico 5800 de acordo com um ou mais aspectos aqui descritos. O instrumento cirúrgico 5800 é similar ao instrumento cirúrgico 5500 e inclui uma canaleta alongada configurada para sustentar um cartucho de grampos, uma bigorna ligada de forma articulada à canaleta alongada, um elemento de fechamento acoplado mecanicamente ao cartucho de grampos, um motor elétrico acoplado mecanicamente ao elemento de fechamento e/ou à faca, um controlador de motor acoplado eletricamente ao motor e um circuito de controle acoplado eletricamente ao controlador de motor. O instrumento cirúrgico 5800 também é similar ao instrumento cirúrgico 5500 pelo fato de que o instrumento cirúrgico 5800 inclui também sensores que são coletivamente configurados para detectar ou medir uma força de fechamento, uma força de disparo, uma corrente drenada pelo motor elétrico, uma impedância do tecido posicionado entre a canaleta alongada e a bigorna, uma posição da bigorna em relação à canaleta alongada, uma posição da faca, ou qualquer combinação das mesmas. O instrumento cirúrgico 5700 também é similar ao instrumento cirúrgico 5800 pelo fato de que o instrumento cirúrgico 5700 inclui também algoritmos como algoritmos de fechamento, algoritmos de disparo, algoritmos de controle de motor, ou qualquer combinação dos mesmos, que operam para ajustar dinamicamente a operação do instrumento cirúrgico 5700. Entretanto, o instrumento cirúrgico 5800 é diferente do instrumento cirúrgico 5500 pelo fato de que o instrumento cirúrgico 5800 inclui adicionalmente um ou mais algoritmos adicionais (em adição aos descritos anteriormente neste documento) que fornecem funcionalidade de controle adicional para o instrumento cirúrgico 5800, conforme aqui descrito abaixo.
[0569] Em determinados aspectos, para diferentes circunstâncias, os algoritmos de controle são configurados para invocar automaticamente diferentes ajustes ao movimento de fechamento e/ou ao movimento de disparo. Por exemplo, em determinados aspectos, um algoritmo de controle é configurado para ajustar o movimento de disparo com base em quão rápido a carga está aumentando ou diminuindo à medida que se aproxima de um limiar de estágios predefinido. Para tais aspectos, um primeiro ajuste ao movimento de disparo pode ser invocado quando a carga está aumentando a uma primeira taxa à medida que se aproxima de um limite predefinido, e um segundo ajuste para o movimento de disparo pode ser invocado quando a carga está aumentando a uma segunda taxa à medida que se aproxima de um limite predefinido. Em outros aspectos, os algoritmos de controle são configurados para ajustar o algoritmo de fechamento e/ou o algoritmo de disparo com base em quão rapidamente os aspectos da força de fechamento, a velocidade do tubo de fechamento, a força de disparo, a velocidade da faca, a corrente do motor e combinações dos mesmos estão aumentando ou diminuindo à medida que se aproximam dos respectivos limiares de estágio predefinidos.
[0570] A Figura 122 ilustra um método 5810 de controle de um movimento de disparo do instrumento cirúrgico 5800 de acordo com vários aspectos. O processo começa quando um movimento de disparo é iniciado 5812. O movimento de disparo pode ser iniciado, por exemplo, puxando-se um gatilho de disparo em direção a um cabo. Um sensor residente no instrumento cirúrgico 5800 detecta/mede 5814 uma força de disparo. A força de disparo pode ser, por exemplo, uma força experimentada pelo sistema de acionamento do instrumento cirúrgico (por exemplo, pelo deslizador, a faca e/ou a barra de disparo), e/ou qualquer combinação dos mesmos. A força de disparo F pode ser medida de qualquer maneira adequada, direta ou indiretamente. Por exemplo, de acordo com vários aspectos, a força de disparo F pode ser medida diretamente por um sensor (por exemplo, um extensôme- tro) posicionado no deslizador, na faca, ou indiretamente por uma drenagem de corrente do motor.
[0571] Em resposta à força de disparo, o sensor 5816 emite um sinal de força de disparo, que é indicativo da força de disparo detecta- da/medida 5814 pelo sensor. Dependendo da configuração do sensor, o sinal de força de disparo pode ser um sinal analógico ou um sinal digital. Ao determinar 5818 se o sinal de força de disparo é um sinal analógico ou um sinal digital, o processo prossegue ao longo da ramificação correspondente. Quando a determinação 5818 é que o sinal de força de disparo é um sinal analógico, o processo prossegue ao longo da ramificação analógica, em que o sinal analógico é recebido por um conversor A/D, convertido 5820 para um sinal digital representativo pelo conversor A/D e o sinal analógico é emitido pelo conversor A/D. Quando a determinação 5818 é que o sinal de força de disparo é um sinal digital, o processo prossegue ao longo da ramificação digital porque não há necessidade de uma conversão A/D 5820 quando o sinal de força de disparo é um sinal digital.
[0572] O sinal de força de disparo que é um sinal digital represen tativo da força de disparo detectada/medida 5814 pelo sensor é recebido por um controlador. O controlador utiliza o sinal digital e determina 5822 uma força de disparo de pico projetada. De acordo com vários aspectos, a força de disparo de pico projetada é determinada pela construção de uma linha reta que passa através dos dois valores de pico mais recentes do sinal de força de disparo, projetando quando a próxima força de disparo de pico ocorrerá e determinando o valor da força de disparo na linha reta naquele momento. A linha reta é representativa de uma alteração de valores de força de disparo de pico ao longo do tempo e pode, dessa forma, ser considerada um coeficiente angular dos valores de força de disparo de pico. O controlador pode se projetar quando a próxima força de disparo de pico ocorrerá de qualquer modo adequado. Por exemplo, de acordo com vários aspectos, o controlador pode usar o lapso de tempo entre as duas últimas forças de disparo de pico, a média dos lapsos de tempo entre cada uma das forças de disparo de pico que ocorreram em um dado movimento de disparo, o padrão ou a tendência dos lapsos de tempo entre cada uma das forças de disparo de pico que ocorreram em um dado movimento de disparo e combinações dos mesmos.
[0573] Após o controlador determinar 5822 a força de disparo de pico projetada, o controlador então determina 5824 se o movimento de disparo deve ou não ser alterado. A determinação 5824 pode ser com base, por exemplo, em quão rápido ou lento a força de disparo de pico projetada está se aproximando de um limite predeterminado, na amplitude da força de disparo e quão rápido ou lento a força de disparo de pico projetada está se aproximando de um limite predeterminado e combinações dos mesmos. Em outras palavras, a determinação 5824 pode ser com base na amplitude da força de disparo e no valor do coeficiente angular dos valores de pico de força de disparo à medida que a inclinação está se aproximando de um limite predeterminado. O limite predeterminado pode ser qualquer limiar adequado como, por exemplo, um limiar de força de disparo predeterminado. Quando o controlador determina 5824 que o movimento de disparo não deve ser alterado, o movimento de disparo originalmente iniciado 5812 é continuado 5826 juntamente com os processos interativos 5814 a 5824. Quando o controlador determina 5824 que o movimento deve ser alterado, o movimento de disparo pode ser alterado em uma infinidade de modos diferentes, com o modo específico determinado com base em quão rápido ou lento a força de pico projetada está se aproximando de um limite predeterminado.
[0574] De acordo com vários aspectos, quando a força de disparo de pico projetada está se aproximando de um limite predeterminado em uma primeira taxa, o controlador pode parar ou pausar 5828 o movimento de disparo mediante a comunicação de um sinal de parada ou sinal de pausa ao controlador de motor para parar ou pausar a rotação do motor (ou motores) que aciona(m) o deslizador, a faca, a barra de disparo ou qualquer combinação dos mesmos do instrumento cirúrgico 5800. Após o movimento de disparo ser parado ou pausado, o movimento de disparo pode ser subsequentemente terminado 5830 ou o controlador pode reiniciar 5832 o movimento de disparo mediante a comunicação de um sinal de reinicialização para o controlador de motor para reiniciar a rotação do motor (ou motores) que aciona(m) o des- lizador, a faca, a barra de disparo ou qualquer combinação dos mesmos, do instrumento cirúrgico 5800. O movimento de disparo pode ser reiniciado 5832 com base, por exemplo, em um período de tempo, em uma queda predeterminada na força de disparo e combinações dos mesmos. Após o movimento de disparo ser reiniciado 5832, os processos intercalares 5814 a 5824 do movimento de disparo originalmente iniciado 5812 são continuados.
[0575] De acordo com vários aspectos, quando a força de disparo de pico projetada está se aproximando de um limite predeterminado em uma segunda taxa, o controlador pode alterar o movimento de disparo para diminuir a velocidade da faca 5834 mediante a comunicação de um sinal de descida para baixo da rotação do motor (ou motores) que aciona(m) o deslizador, a faca, a barra de disparo ou qualquer combinação dos mesmos, do instrumento cirúrgico 5800. De modo similar, de acordo com vários aspectos, quando a força de disparo de pico projetada está se aproximando de um limite predeterminado em uma terceira taxa, o controlador pode alterar o movimento de disparo para aumentar a velocidade da faca 5836 mediante a comunicação de um sinal de aceleração ao controlador do motor para acelerar a rotação do motor (ou motores) que aciona o deslizador, a faca, a barra de disparo ou qualquer combinação dos mesmos, do instrumento cirúrgico 5800.
[0576] De acordo com vários aspectos, quando a força de disparo de pico projetada está se aproximando de um limite predeterminado em uma quarta taxa, o controlador pode alterar o movimento de disparo para oscilar a faca 5838 mediante a comunicação de um sinal de oscilação para o controlador do motor de forma a alterar a rotação do motor (ou motores) que acionam o deslizador, a faca, a barra de disparo ou qualquer combinação dos mesmos, do instrumento cirúrgico 5800 em um sentido horário e em um sentido anti-horário, produzindo, assim, um movimento para frente e para trás do deslizador, da faca, da barra de disparo ou qualquer combinação dos mesmos.
[0577] A Figura 123 ilustra um exemplo de gráfico 5850 que mos tra uma primeira curva 5852 representativa de uma força de disparo F ao longo do instante t para vários aspectos do instrumento cirúrgico 5800, uma posição de faca X ao longo do instante t para vários aspectos do instrumento cirúrgico 5800 e uma segunda curva 5854 representativa da velocidade de faca V ao longo do instante t para vários aspectos do instrumento cirúrgico 5800. A força de disparo F é mostrada ao longo do eixo geométrico vertical superior, a velocidade da faca V é mostrada ao longo do eixo geométrico vertical inferior, a posição de faca X é mostrada tanto ao longo do eixo geométrico horizontal superior quanto inferior e o instante t é mostrado tanto ao longo dos eixos geométricos horizontais superiores quanto inferiores. Conforme mostrado ao longo do eixo geométrico horizontal inferior, a posição da faca X percorre cinco (zonas 1 a 5) ao longo da canaleta da faca no cartucho 304 situado na garra inferior 302 do atuador de extremidade 300 do instrumento cirúrgico 5800. A velocidade da faca V e a força de disparo F mostradas na Figura 123 podem ter base na suposição de que a espessura e a composição do tecido 5856 ao longo da linha de corte são não uniformes, conforme mostrado no lado direito da Figura 123.
[0578] Consequentemente, a curva 5852 é uma representação do sinal de força de disparo em vários momentos durante um movimento de disparo e a curva 5854 é uma representação do sinal de velocidade da faca em vários momentos durante um movimento de disparo. As curvas 5852 e 5854 podem ser geradas matematicamente pelo controlador com base no sinal (ou sinais) de força de disparo e no sinal (ou sinais) de velocidade da faca recebidos pelo controlador. A força de disparo F representada no eixo geométrico vertical superior pode ser uma força experimentada pelo sistema de acionamento do instrumento cirúrgico 5800 (por exemplo, pelo deslizador, pela faca e/ou a barra de disparo) e/ou qualquer combinação dos mesmos. A força de disparo F pode ser medida de qualquer maneira adequada, direta ou indiretamente. Por exemplo, de acordo com vários aspectos, a força de disparo F pode ser medida diretamente por um sensor (por exemplo, um extensômetro) posicionado no deslizador, na faca, ou indiretamente por uma drenagem de corrente do motor, e/ou qualquer combinação dos mesmos.
[0579] A velocidade de faca V representada no eixo vertical inferior pode ser uma velocidade de faca, uma velocidade de deslizador, uma velocidade de outro componente do sistema de acionamento (por exemplo, a barra de disparo), e/ou qualquer combinação dos mesmos. A velocidade de faca V pode ser medida em qualquer maneira adequada, seja diretamente ou indiretamente. Por exemplo, de acordo com vários aspectos, a velocidade da faca V pode ser medida diretamente por uma combinação de um imã posicionado na barra de disparo e um sensor de efeito Hall ou indiretamente por uma drenagem de corrente do motor, um codificador acoplado ao eixo de acionamento do motor, e/ou qualquer combinação dos mesmos.
[0580] Para o exemplo de gráfico 5840, a curva 5854 mostra a ve locidade da faca V aumentando de zero no momento t=0 até uma velocidade substancialmente máxima V1, enquanto a faca avança de sua posição completamente retraída através da zona 1 e para dentro da zona 2 do movimento de disparo. Uma vez que a velocidade substancialmente máxima V1 é alcançada na zona 2, a faca continua avançando na zona 2 e na zona 3 até que um gatilho, limite e/ou evento instrua o algoritmo de controle a alterar automaticamente o movimento de disparo, nesse caso diminuindo a velocidade da faca V. Tal gatilho, limiar ou evento é mostrado na curva 5852, onde a força de disparo de pico projetada sobre o coeficiente angular (ΔF1/Δt1) atinge ou excede um limite predeterminado (por exemplo, o valor de força de disparo Fcrít) no instante t1. Conforme mostrado na Figura. 123, o instante t1 pode corresponder ao corte da faca através de uma porção do tecido 5856 que é menor que a espessura total do tecido 5856.
[0581] Uma vez que o pico de força de disparo projetada sobre o coeficiente angular (ΔF1/Δt1) atinge ou excede o limite predeterminado Fcrít e a faca está em uma posição associada à zona 3 do movimento de disparo no instante t1, o algoritmo de controle altera o movimento de disparo para diminuir a velocidade da faca da velocidade substancialmente máxima V1 para a velocidade V2 reduzida. Embora a velocidade V2 seja mostrada como sendo aproximadamente 2/3 da velocidade V1, será reconhecido que a diminuição na velocidade de faca V pode ser maior ou menor que 1/3 da velocidade máxima V1. De acordo com vários aspectos, a quantidade da diminuição é baseada no valor do coeficiente angular (ΔF1/Δt1), essencialmente quão rapidamente as forças de disparo de pico estão se aproximando do limite predeterminado. A faca então avança na velocidade reduzida V2 na zona 3 até que um outro gatilho, limite e/ou evento instrua o algoritmo de controle a alterar automaticamente o movimento de disparo, nesse caso, diminuindo adicionalmente a velocidade da faca V. Tal gatilho, limiar ou evento é mostrado na curva 5852, onde a força de disparo de pico projetada sobre o coeficiente angular (ΔF2/Δt2) atinge ou excede um limi- te predeterminado (por exemplo, o valor de força de disparo Fcrít) no instante t2. Conforme mostrado na Figura. 123, o instante t2 pode corresponder ao corte da faca através de uma porção do tecido 5856 que é a espessura total do tecido 5856.
[0582] Uma vez que o pico de força de disparo projetada sobre o coeficiente angular (ΔF2/Δt2) atingir ou exceder o limite predeterminado Fcrít e a faca estiver em uma posição associada à zona 3 do movimento de disparo no instante t2, o algoritmo de controle novamente altera o movimento de disparo para diminuir adicionalmente a velocidade da faca V2 reduzida para a velocidade V3 adicionalmente reduzida. Embora a velocidade V3 seja mostrada como sendo aproximadamente 1/3 da velocidade V1 e 1/2 da velocidade V2, será reconhecido que a diminuição adicional na velocidade da faca V pode ser maior ou menor que 1/3 da velocidade máxima V1 ou maior ou menor que 1/2 da velocidade anterior V2. De acordo com vários aspectos, a quantidade da diminuição é baseada no valor do coeficiente angular (ΔF2/Δt2), essencialmente quão rapidamente as forças de disparo de pico estão se aproximando do limite predeterminado.
[0583] Após o instante t2, a faca continua avançando através das zonas 3 e 4 do movimento de disparo na velocidade V2, então, começa a cair na zona 4 e atinge zero na zona 5 do movimento de disparo. Conforme mostrado na curva 5852, a força de disparo F também cai para zero na zona 5. Devido às diferenças na velocidade da faca V advindas do controlador, será reconhecido que o período de tempo Δt1, o tempo entre os valores de força de disparo de vale sucessivos quando a faca está na zona 2 do movimento de disparo e avançando na velocidade V1, é menor que o período de tempo Δt2, o tempo entre os valores de força de disparo de vale sucessivos quando a faca está na zona 3 do movimento de disparo e avançando na velocidade V2, que é menor que o período de tempo Δt3, o tempo entre os valores de força de disparo de vale sucessivos quando a faca está na zona 3 do movimento de disparo e avançando na velocidade V3.
[0584] Embora a Figura 123 mostre o algoritmo de controle como agindo para reduzir a velocidade da faca V com base em gatilhos, limiares e/ou eventos que ocorrem nas zonas 2 e/ou 3 do movimento de disparo, será reconhecido que o algoritmo de controle pode ser configurado para agir a fim de aumentar a velocidade da faca, oscilar a faca e combinações dos mesmos nas zonas 2 e 3 do movimento de disparo e/ou em outras zonas do movimento de disparo. Por exemplo, quando as forças de disparo de pico estão se aproximando rapidamente de um limite predeterminado (isto é, o coeficiente angular é íngreme), o algoritmo de disparo pode interpretar isso como uma obstrução à faca e alterar o movimento de disparo para parar o avanço da faca e, então, criar um movimento oscilatório. O padrão de bloqueio, backup, novo avanço, bloqueio, backup e novo avanço ajuda a faca a mover-se através da obstrução.
[0585] Além disso, embora a funcionalidade dos algoritmos de controle descritos em conexão com a Figura 123 tenha sido descrita no contexto de ajustar a velocidade da faca V, será reconhecido que os algoritmos de controle do instrumento cirúrgico 5800 podem, também, ser configurados para ajustar a velocidade do tubo de fechamento durante o movimento de fechamento (isto é, o fechamento das garras). De modo similar, os algoritmos de controle podem operar para alterar o movimento de fechamento de modo que a bigorna vibra/oscila em direção a uma posição completamente fechada a fim de otimizar a compressão do tecido 5856.
[0586] A Figura 124 ilustra a taxa de fechamento das garras (velo cidade de fechamento de garras) para o instrumento cirúrgico da Figura 121, de acordo com um ou mais aspectos da presente invenção. Em outras palavras, a taxa de fechamento da bigorna 306 fechando sobre o cartucho de grampos 304 com tecido situado entre os mesmos. O gráfico superior 5860 representa o fechamento das garras a uma velocidade constante onde a força de fechamento da garra (F) é representada ao longo do eixo geométrico vertical à medida que a faca avança sobre uma distância longitudinal (X) no cartucho 304, conforme representado ao longo do eixo geométrico horizontal, até que o gatilho de bloqueio seja atuado pelo programa de controle em X1. O gatilho de bloqueio impede o fechamento das garras durante um período de tempo antes de iniciar o curso de disparo. Conforme anteriormente aqui descrito, isso possibilita que as garras espremam o excesso de umidade do tecido antes de iniciar o curso de disparo após um breve período de atraso de 5 a 20 segundos e, de preferência, cerca de 15 segundos. Em X1, a força de fechamento das garras atinge uma amplitude de pico e o vão entre as garras é ajustado para uma distância predeterminada. Ainda com referência ao gráfico superior 5860, a primeira curva 5862 representa a força sobre a distância quando as garras fecham a uma primeira velocidade constante até que gatilho de bloqueio impeça as garras de fechar em X1. Nesse ponto, a força F atinge um pico de força F1 e o vão entre as garras é ajustado para uma primeira distância. A segunda curva 5864 representa a força em relação à distância, conforme as garras fecham em uma segunda velocidade, que é menor que a primeira velocidade, até que o gatilho de bloqueio impeça as garras de se fecharem na em X1. A primeira velocidade de fechamento da garra é ajustada para a segunda velocidade de fechamento pelo circuito de controle quando o circuito de controle prevê que a força de fechamento será muito alta. Em X1, a força F atinge um pico de força de F2, que é menor que F1, e o vão entre as garras é ajustado para uma segunda distância que é menor que a primeira distância.
[0587] Ainda com referência à Figura 124, o gráfico inferior 5866 representa a força de fechamento das garras (F) ao longo do eixo geométrico vertical e do instante (t) ao longo do eixo geométrico horizontal. A primeira curva 5867 representa a força de fechamento das garras ao longo do tempo, conforme as garras se fecham em uma velocidade constante. Conforme mostrado pela primeira curva 5867, quando a velocidade de fechamento das garras é constante, as garras podem experimentar uma força que atinge um valor máximo F1 que é muito alto e atinge esse pico de força F1 antes que o gatilho de bloqueio seja ativado. Consequentemente, quando o circuito de controle prevê que a força de fechamento das garras será alta, o circuito de controle desacelera a velocidade de fechamento das garras após um período de t1. Na velocidade de fechamento da garra inferior, a segunda curva 5869 pode levar a uma força mais baixa (e um vão menor) e, por fim, a uma força de pico F2 mais baixa (e vão) após um período t2 antes de iniciar um curso de disparo. Conforme mostrado, o gatilho de bloqueio de fato altera a velocidade para manter a força de fechamento das garras F abaixo do limiar do coeficiente angular 5868.
[0588] Em vários aspectos, os algoritmos de controle operam para efetivamente assumir o controle do instrumento cirúrgico durante os movimentos de fechamento e/ou de disparo. Em determinados aspectos, um algoritmo de controle opera automaticamente o instrumento cirúrgico em um modo de corte que otimiza a forma do grampo. Por exemplo, um algoritmo de controle exemplificador avança a faca em três estágios incrementais para otimizar a forma do grampo. No primeiro estágio, a faca é avançada distalmente um pequeno incremento (por exemplo, 3 mm) e é, então, bloqueada. A pressão aplicada ao tecido próximo à faca opera para forçar o fluido para fora do tecido. A faca permanece parada até que um tempo predeterminado passe, um sensor (pressão, distância etc.) no eixo de acionamento distal indique uma assíntota e combinações dos mesmos. No segundo estágio, a faca é retraída proximalmente uma distância menor (por exemplo, 1 mm) a partir do primeiro estágio de bloqueio e é, então, bloqueada. A distância entre o ponto de bloqueio do primeiro estágio e o ponto de bloqueio do segundo estágio possibilita a aceleração da faca que ocorre no terceiro estágio. No terceiro estágio, a faca é acionada distal- mente a uma velocidade rápida até que o avanço da faca suficiente seja feito para acionar/formar um grampo (ou uma fileira de grampos). A alta velocidade move as formas de grampo rapidamente, reduzindo as chances de empenamento do grampo e melhorando a qualidade da forma. A formação em velocidade alta é uma técnica utilizada em pistolas de pregos, particularmente em pregos de acabamento, que são extremamente propensos ao empenamento. Os três estágios são repetidos para cada fileira de grampos no comprimento do corte, efetivamente se fixando através do tecido.
[0589] De acordo com determinados aspectos, o instrumento ci rúrgico inclui um botão que pode ser utilizado por um operador para ativar ou desativar seletivamente o modo de corte descrito acima. O botão pode ser posicionado no eixo de acionamento. Embora o modo de corte tenha sido descrito como um modo de corte que otimiza a forma do grampo, deve-se considerar que, de acordo com outros aspectos, o algoritmo de controle pode operar o instrumento cirúrgico em um modo de corte que é diferente daquele descrito anteriormente neste documento.
[0590] Em certos casos, em lugar do movimento de fechamento ou do movimento de disparo ser alterado ou modificado com base na ocorrência de um gatilho, limiar e/ou evento único, o movimento de fechamento ou o movimento de disparo pode ser alterado ou modificado com base em uma combinação de gatilhos, limiares, eventos e/ou combinações dos mesmos.
[0591] A Figura 125 ilustra uma vista em perspectiva de uma fonte de energia de um instrumento cirúrgico 5900 de acordo com um ou mais aspectos aqui descritos. O instrumento cirúrgico 5900 é similar ao instrumento cirúrgico 5500 e inclui uma canaleta alongada configurada para sustentar um cartucho de grampos, uma bigorna ligada de forma articulada à canaleta alongada, um elemento de fechamento acoplado mecanicamente ao cartucho de grampos, um motor elétrico acoplado mecanicamente ao elemento de fechamento e/ou à faca, um controlador de motor acoplado eletricamente ao motor e um circuito de controle acoplado eletricamente ao controlador de motor. O instrumento cirúrgico 5900 também é similar ao instrumento cirúrgico 5500 pelo fato de que o instrumento cirúrgico 5900 inclui também sensores que são coletivamente configurados para detectar ou medir uma força de fechamento, uma força de disparo, uma corrente drenada pelo motor elétrico, uma impedância do tecido posicionado entre a canaleta alongada e a bigorna, uma posição da bigorna em relação à canaleta alongada, uma posição da faca, ou qualquer combinação das mesmas. O instrumento cirúrgico 5900 também é similar ao instrumento cirúrgico 5500 pelo fato de que o instrumento cirúrgico 5900 inclui também algoritmos como algoritmos de fechamento, algoritmos de disparo, algoritmos de controle de motor, ou qualquer combinação dos mesmos, que operam para ajustar dinamicamente a operação do instrumento cirúrgico 5900. Entretanto, o instrumento cirúrgico 5900 é diferente do instrumento cirúrgico 5500 pelo fato de que o instrumento cirúrgico 5900 inclui adicionalmente um ou mais algoritmos adicionais (em adição aos descritos anteriormente neste documento) que fornecem funcionalidade de controle adicional para o instrumento cirúrgico 5900, conforme descrito mais adiante neste documento.
[0592] Em determinados aspectos, os algoritmos de controle são configurados para automaticamente invocar diferentes ajustes ao movimento de fechamento e/ou ao movimento de disparo com base em uma combinação de gatilhos diferentes. Por exemplo, em determinados aspectos, um algoritmo de controle é configurado para ajustar o movimento de disparo a fim de limitar a velocidade máxima da faca, reduzir a velocidade da faca em 50%, aplicar um perfil pré-programado de velocidade da faca, apenas interromper o movimento de disparo e retrair a faca, apenas completar o movimento de disparo de corrente, etc. com base em uma combinação de gatilhos diferentes. Tais gatilhos podem incluir, por exemplo, um valor de coeficiente angular do sinal de força de disparo no momento em que um limiar é atingido ou excedido, um valor de coeficiente angular dos valores de força de disparo de pico, vários limiares atingidos ou excedidos dentro de um dado intervalo de tempo, e os limiares atingidos ou excedidos para múltiplos parâmetros (por exemplo, corrente, força, velocidade, aceleração).
[0593] As Figuras 126A e 126B ilustram um método 5910 para controlar um movimento de disparo do instrumento cirúrgico 5900 de acordo com vários aspectos. O processo começa quando um movimento de disparo é iniciado 5912. O movimento de disparo pode ser iniciado, por exemplo, puxando-se um gatilho de disparo em direção a um cabo. Um contador de início/bloqueio do instrumento cirúrgico 5900 é inicialmente ajustado para zero antes ou no momento em que o movimento de disparo é originalmente iniciado 5912. Um sensor residente no instrumento cirúrgico 5900 detecta/mede 5914a uma força de disparo. A força de disparo pode ser, por exemplo, uma força experimentada pelo sistema de acionamento do instrumento cirúrgico (por exemplo, pelo deslizador, a faca e/ou a barra de disparo), e/ou qualquer combinação dos mesmos. A força de disparo pode ser medida de qualquer modo adequado, direta ou indiretamente. Por exemplo, de acordo com vários aspectos, a força de disparo pode ser medida diretamente por um sensor (por exemplo, um extensômetro) posicionado no deslizador, na faca, ou indiretamente por uma drenagem de corren- te do motor.
[0594] Em resposta à força de disparo, o sensor 5916 emite um sinal de força de disparo, que é indicativo da força de disparo detecta- da/medida 5914 pelo sensor. Dependendo da configuração do sensor, o sinal de força de disparo pode ser um sinal analógico ou um sinal digital. Ao determinar 5918 se o sinal de força de disparo é um sinal analógico ou um sinal digital, o processo prossegue ao longo da ramificação correspondente. Quando a determinação 5918 é que o sinal de força de disparo é um sinal analógico, o processo prossegue ao longo da ramificação analógica, em que o sinal analógico é recebido por um conversor A/D, convertido 5920 para um sinal digital representativo pelo conversor A/D e o sinal analógico é emitido pelo conversor A/D. Quando a determinação 5918 é que o sinal de força de disparo é um sinal digital, o processo prossegue ao longo da ramificação digital porque não há necessidade de uma conversão A/D 5920 quando o sinal de força de disparo é um sinal digital.
[0595] O sinal de força de disparo que é um sinal digital representati vo da força de disparo detectada/medida 5914 pelo sensor é recebido por um controlador. O controlador utiliza o sinal digital e determina 5922 se a força de disparo detectada/medida 5914 pelo sensor atinge ou ultrapassa um limite predeterminado. Obviamente, de acordo com vários aspectos, o limite predeterminado pode ser diferente de um limiar de força de disparo. Por exemplo, de acordo com vários aspectos, o limite predeterminado pode ser uma dada amplitude do sinal de força de disparo, um valor de coeficiente angular dos valores de força de disparo de pico, quão rápido ou lento um coeficiente angular das forças de disparo de pico está se aproximando de um limite predeterminado, uma corrente drenada pelo motor e combinações dos mesmos.
[0596] Quando o controlador determina 5922 que um limite prede terminado não foi atingido ou excedido, o movimento de disparo origi- nalmente iniciado 5912 é continuado 5924 juntamente com os processos intercalares 5914 a 5922. Quando o controlador determina 5922 que um limite predeterminado foi atingido ou excedido, o controlador, então, determina 5926 se o avanço da faca deve ser bloquea- do/pausado. Em certos casos, dependendo da posição da faca (em que zona do movimento de disparo a faca está), o avanço da faca pode ser continuado mesmo que um limite predeterminado tenha sido atingido ou excedido. Quando o controlador determina 5926 que o avanço da faca não deve ser pausado/bloqueado, o movimento de disparo originalmente iniciado 5912 é continuado 5924 juntamente com os processos intercalares 5914 a 5922.
[0597] Quando o controlador determina 5926 que o avanço da fa ca deve ser pausado/bloqueado (isto é, o gatilho não é ignorado), o controlador comunica um sinal de bloqueio ou um sinal de pausa ao controlador do motor para bloquear ou interromper a rotação do motor (ou motores) que aciona(m) a faca do instrumento cirúrgico 5900 e os incrementos do controlador 5928 no contador de início/bloqueio de zero para um. O controlador lê o contador de início/bloqueio e determina 5930 se a contagem do contador de início/bloqueio atingiu ou excedeu um limite predeterminado. O limite predeterminado pode ser qualquer número inteiro adequado. Por exemplo, de acordo com vários aspectos, o limite predeterminado para o valor de início/bloqueio do contador é três.
[0598] Quando o controlador determina 5930 que a contagem do contador de início/bloqueio não atingiu ou excedeu o limite predeterminado, o avanço da faca pode ser reiniciado após um período de tempo predeterminado, uma vez que a força de disparo tenha caído uma quantidade predeterminada, e combinações dos mesmos, e os processos intercalares 5914 a 5930 são continuados. Quando o controlador determina 5930 que a contagem do contador de iní- cio/bloqueio atingiu ou excedeu o limite predeterminado, o controlador finaliza 5932 o movimento de disparo ao comunicar sinais para o controlador do motor reverter a rotação do motor (ou motores) que acio- na(m) a faca do instrumento cirúrgico 5900, retraindo, assim, a faca para sua posição totalmente proximal, e então (2) interrompe a "inversão" da rotação do motor (ou motores), finalizando, assim, o movimento de disparo 5932 originalmente iniciado 5912. Quando o movimento de disparo é finalizado 5932, o controlador pode reinicializar 5934 o contador de início/bloqueio para zero e as garras do instrumento cirúrgico 5900 podem, então, ser abertas e removidas do sítio do tecido.
[0599] A Figura 127 ilustra um exemplo de gráfico 5950 que mos tra uma primeira curva 5952 representativa de uma força de disparo F ao longo do instante t para vários aspectos do instrumento cirúrgico 5900, uma posição de faca X ao longo do instante t para vários aspectos do instrumento cirúrgico 5900 e uma segunda curva 5954 representativa da velocidade de faca V ao longo do instante t para vários aspectos do instrumento cirúrgico 5900. A força de disparo F é mostrada ao longo do eixo geométrico vertical superior, a velocidade da faca V é mostrada ao longo do eixo geométrico vertical inferior, a posição de faca X é mostrada tanto ao longo do eixo geométrico horizontal superior quanto inferior e o instante t é mostrado tanto ao longo dos eixos geométricos horizontais superiores quanto inferiores. Conforme mostrado ao longo do eixo geométrico horizontal inferior e superior, a posição da faca X percorre cinco (zonas 1 a 5) ao longo da canaleta da faca no cartucho 304 situado na garra inferior 302 do atuador de extremidade 300 do instrumento cirúrgico 5900. A velocidade de faca V e a força de disparo F mostradas na Figura 127 podem ter base na suposição de que a espessura e a composição do tecido ao longo da linha de corte são não uniformes.
[0600] Consequentemente, a curva 5952 é uma representação do sinal de força de disparo em vários momentos durante um movimento de disparo e a curva 5954 é uma representação do sinal de velocidade de faca em vários momentos durante um movimento de disparo. As curvas 5952 e 5954 podem ser geradas matematicamente pelo controlador com base no sinal (ou sinais) de força de disparo e no sinal (ou sinais) de velocidade da faca recebidos pelo controlador. A força de disparo F representada no eixo geométrico vertical superior pode ser uma força experimentada pelo sistema de acionamento do instrumento cirúrgico 5900 (por exemplo, pelo deslizador, pela faca e/ou a barra de disparo) e/ou qualquer combinação dos mesmos. A força de disparo F pode ser medida de qualquer maneira adequada, direta ou indiretamente. Por exemplo, de acordo com vários aspectos, a força de disparo F pode ser medida diretamente por um sensor (por exemplo, um extensômetro) posicionado no deslizador, na faca, ou indiretamente por uma drenagem de corrente do motor, e/ou qualquer combinação dos mesmos.
[0601] A velocidade de faca V representada no eixo vertical inferior pode ser uma velocidade de faca, uma velocidade de deslizador, uma velocidade de outro componente do sistema de acionamento (por exemplo, a barra de disparo), e/ou qualquer combinação dos mesmos. A velocidade de faca V pode ser medida em qualquer maneira adequada, seja diretamente ou indiretamente. Por exemplo, de acordo com vários aspectos, a velocidade da faca V pode ser medida diretamente por uma combinação de um imã posicionado na barra de disparo e um sensor de efeito Hall ou indiretamente por uma drenagem de corrente do motor, um codificador acoplado ao eixo de acionamento do motor, e/ou qualquer combinação dos mesmos.
[0602] Para o exemplo de gráfico 5950, a curva 5954 mostra a ve locidade da faca V aumentando de zero no momento t=0 até uma velocidade substancialmente máxima V1, enquanto a faca avança de sua posição completamente retraída através da zona 1 e para dentro da zona 2 do movimento de disparo. Uma vez que a velocidade substancialmente máxima V1 é alcançada na zona 2, a faca continua avançando na zona 2 e na zona 3 até que um gatilho, limiar e/ou evento instrua o algoritmo de controle para alterar automaticamente o movimento de disparo. Nesse caso, conforme mostrado na curva 5952, a força de disparo F atinge ou excede um limite predeterminado (o valor de força de disparo Fcrít) no instante t1, fazendo, assim, com que o controlador sinalize o motor (ou motores) que aciona(m) a faca do instrumento cirúrgico 5900, fazendo assim com que a velocidade da faca varie da velocidade de faca V1 para zero, conforme mostrado na curva 5954. Quando os sinais do controlador para o avanço da faca cessarem, o controlador pode incrementar um contador de início/bloqueio que foi inicialmente ajustado para zero. Em outras palavras, o contador de início/bloqueio é incrementado para um de modo a refletir que um ciclo de início/bloqueio ocorreu nesse movimento de disparo específico.
[0603] Após o avanço da faca ser bloqueado no momento t1 ou pouco depois disso, após a ocorrência de um outro gatilho como, por exemplo, um período de tempo predeterminado (t2 - t1), uma queda da força de disparo F para uma quantidade predeterminada, um coeficiente angular do sinal de força de disparo atingindo ou excedendo um limite predeterminado, e combinações dos mesmos, o controlador pode sinalizar o controlador do motor para reiniciar a rotação do motor (ou motores), o que aciona a faca do instrumento cirúrgico 5900. Conforme mostrado na curva 5954, o avanço da faca pode ser iniciado novamente no instante t2 ou pouco depois disso.
[0604] Conforme mostrado na curva 5954, no instante t2 ou pouco depois disso, a velocidade da faca começa em zero e aumenta à medida que a faca continua avançando na zona 3 do movimento de disparo até que um outro gatilho, limiar e/ou evento instrua o algoritmo de controle a alterar automaticamente o movimento de disparo. Nesse caso, conforme mostrado na curva 5952, a força de disparo F atinge ou excede um limite predeterminado (o valor de força de disparo Fcrít) no instante t3, fazendo assim com que o controlador sinalize o motor (ou motores) que aciona(m) a faca do instrumento cirúrgico 5900, fazendo assim com que a velocidade da faca varie da velocidade de de faca V2 para zero, a qual é mais baixa que a velocidade de faca V1, para zero. Quando os sinais do controlador para o avanço da faca cessarem, o controlador pode incrementar o contador de iní- cio/bloqueio de 1 a 2 a fim de refletir que dois ciclos de início/bloqueio ocorreram nesse movimento de disparo específico.
[0605] Após o avanço da faca ser bloqueado no momento t3 ou pouco depois disso, após a ocorrência de um outro gatilho como, por exemplo, um período de tempo predeterminado (t4 - t3), uma queda da força de disparo F para uma quantidade predeterminada, um coeficiente angular do sinal de força de disparo atingindo ou excedendo um limite predeterminado, e combinações dos mesmos, o controlador pode sinalizar o controlador do motor para reiniciar a rotação do motor (ou motores), o que aciona a faca do instrumento cirúrgico 5900. Conforme mostrado na curva 5954, o avanço da faca pode ser iniciado novamente no instante t4 ou pouco depois disso.
[0606] Conforme mostrado na curva 5954, no instante t4 ou pouco depois disso, a velocidade da faca começa em zero e aumenta à medida que a faca continua avançando na zona 3 do movimento de disparo até que um outro gatilho, limiar e/ou evento instrua o algoritmo de controle a alterar automaticamente o movimento de disparo. Nesse caso, conforme mostrado na curva 5952, a força de disparo F atinge ou excede um limite predeterminado (o valor de força de disparo Fcrít) no instante t5, fazendo, assim, com que o controlador sinalize o motor (ou motores) que aciona(m) a faca do instrumento cirúrgico 5900, fa- zendo assim com que a velocidade da faca varie da velocidade de faca V2 para zero. Quando os sinais do controlador para o avanço da faca cessarem, o controlador pode incrementar o contador de iní- cio/bloqueio de 2 a 3 a fim de refletir que três ciclos de início/bloqueio ocorreram nesse movimento de disparo específico.
[0607] De acordo com vários aspectos, após o terceiro ciclo de início/bloqueio ter ocorrido, o controlador sinaliza o controlador do motor para reverter a rotação do motor (ou motores) que aciona(m) a faca do instrumento cirúrgico 5900, efetivamente cessando o avanço adicional da faca e retornando a faca para a sua posição completamente retraída. Isso é mostrado conceitualmente na curva 5954 conforme a velocidade de faca V é bloqueada em zero no instante t5, enquanto a faca está na zona 3 do movimento de disparo e na curva 5952 quando a força de disparo F é bloqueada em zero logo após o instante t5, enquanto a faca está na zona 3 do movimento de disparo. No exemplo de gráfico 5950, os três ciclos de início/bloqueio são considerados como indicativos de uma situação em que o instrumento cirúrgico 5900 determinou que há uma possibilidade insuficiente de completar o movimento de disparo (por exemplo, devido a uma obstrução) de modo que a faca é retornada ao estado completamente retraído, permitindo, assim, que as garras do instrumento cirúrgico 5900 sejam abertas e removidas do sítio do tecido. De acordo com outros aspectos, o número de ciclos de início/bloqueio considerados como indicativos de uma situação em que o instrumento cirúrgico 5900 determinou que há uma possibilidade insuficiente de completar o movimento de disparo pode ser maior ou menor que três.
[0608] Embora o gráfico de exemplo 5950 reflita o algoritmo de controle considerando que há uma possibilidade insuficiente de um movimento de disparo bem sucedido após o limiar de força de disparo ser atingido ou excedido três vezes consecutivas enquanto a faca está na zona 3 do movimento de disparo, será reconhecido que qualquer número de critérios diferentes pode ser utilizado para considerar que há uma possibilidade insuficiente de um movimento de disparo bem- sucedido. Por exemplo, de acordo com alguns aspectos, as violações podem ter como base uma taxa de alteração de uma velocidade da faca, em uma taxa de alteração da carga, em uma taxa de alteração da força de disparo, etc., e o julgamento pode ter como base mais que três ou menos que três violações consecutivas, na faca que está na zona 3 ou uma outra zona quando as violações ocorrerem, etc.
[0609] Além disso, embora a funcionalidade dos algoritmos de controle descritos em conexão com as Figuras 117, 118A e 118B tenham sido descritos no contexto do movimento de disparo, será reconhecido que os algoritmos de controle do instrumento cirúrgico 5900 podem também ser configurados para alterar, ajustar ou modificar o movimento de fechamento de modo similar. Por exemplo, se a força de fechamento atinge ou excede um limite predeterminado três vezes consecutivas enquanto o tecido está sendo comprimido entre as garras do instrumento cirúrgico 5900, os algoritmos de controle podem considerar que existe uma possibilidade de uma insuficiente de um movimento de fechamento bem sucedido e ajustar automaticamente o movimento de fechamento e para bloquear o movimento de fechamento e abrir as garras do instrumento cirúrgico 5900.
[0610] Em determinados aspectos, com base na determinação em tempo real ou contínua da densidade do defeito do formato do grampo, os algoritmos de controle podem automaticamente fazer alterações em vários parâmetros de fechamento e/ou de disparo (por exemplo, pressão de aperto, velocidade de disparo, temporização de uma pausa no disparo, duração de uma pausa de disparo, etc.) para afetar a forma de grampo.
[0611] As informações obtidas a partir da matriz de sensor podem ser analisadas mediante a determinação da densidade de defeitos em qualquer local ao longo da linha de grampos. A densidade de defeitos pode ser analisada como um número em execução ao longo da totalidade da linha de grampos. Alternativamente, a integridade da linha de grampos poderia ser determinada em cada oportunidade ao longo do comprimento da linha de grampos.
[0612] A densidade de defeitos pode ser utilizada para informar ao cirurgião acerca de possíveis problemas antes de soltar o instrumento cirúrgico 5900. Se certos limiares de densidade de defeitos forem en-contrados, o instrumento cirúrgico 5900 pode responder de diferentes modos.
[0613] Por exemplo, se a densidade ou a taxa de defeitos detecta da estiver acima de um primeiro ponto de decisão, o instrumento cirúrgico 5900 pode desacelerar a velocidade do tubo de fechamento para possibilitar mais tempo para o fluxo de tecido e presumivelmente melhorar a forma do grampo. A detecção de formas indesejadas (falta de detecção de boa forma) pode ser também utilizada para alterar os parâmetros de fechamento e/ou de disparo em tempo real de modo a resultar em melhor formação do grampo com o restante da linha de grampos. Se a densidade de defeitos ou a taxa de defeitos detectadas estiver acima de um segundo ponto de decisão, o instrumento cirúrgico 5900 pode exibir um aviso para o cirurgião antes de soltar as garras do instrumento cirúrgico 5900, de modo que o cirurgião possa estar preparado com terapias adicionais para tratar o potencial sangramento ou estabilizar o tecido conforme for adequado.
[0614] Embora vários detalhes tenham sido apresentados na des crição acima, será entendido que os vários aspectos dos instrumentos cirúrgicos motorizados podem ser praticados sem esses detalhes específicos. Por exemplo, por concisão e clareza, aspectos selecionados foram mostrados em diagramas de blocos em vez de em detalhes. Al- gumas porções das descrições detalhadas fornecidas na presente invenção podem ser apresentadas em termos de instruções que operam com base em dados armazenados em uma memória de computador. Essas descrições e representações são usadas pelos versados na técnica para descrever e transmitir a substância de seu trabalho a outros versados na técnica. Em geral, um algoritmo refere-se à sequência autoconsistente de etapas que levam ao resultado desejado, em que uma "etapa" refere-se à manipulação de quantidades físicas que podem, embora não necessariamente precisem, assumir a forma de sinais elétricos ou magnéticos que possam ser armazenados, transferidos, combinados, comparados e manipulados de qualquer outra forma. É uso comum chamar esses sinais de bits, valores, elementos, símbolos, caracteres, termos, números ou congêneres. Esses termos e termos semelhantes podem ser associados às grandezas físicas apropriadas e são identificações meramente convenientes aplicadas a essas grandezas.
[0615] Embora vários aspectos tenham sido aqui descritos, muitas modificações, variações, substituições, alterações e equivalentes àqueles aspectos podem ser implementadas e ocorrerão aos versados na técnica. Além disso, onde forem revelados materiais para certos componentes, outros materiais podem ser usados. Deve-se compreender, portanto, que a descrição precedente e as concretizações anexas pretendem cobrir todas essas modificações e variações abrangidas pelo escopo das modalidades apresentadas. As concretizações a seguir se destinam a cobrir todas essas modificações e variações.
[0616] Em um sentido geral, os versados na técnica reconhecerão que os vários aspectos aqui descritos, os quais podem ser implementados, individual e/ou coletivamente, por meio de uma ampla gama de hardware, software, firmware, ou qualquer combinação destes, podem ser vistos como sendo compostos por vários tipos de "circuitos elétri- cos". Consequentemente, como usado na presente invenção, "circuito elétrico" inclui, mas não se limita aos, circuitos elétricos que tenham ao menos um circuito elétrico discreto, circuitos elétricos que tenham ao menos um circuito integrado, circuitos elétricos que tenham ao menos um circuito integrado para aplicação específica, circuitos elétricos que formem um dispositivo de computação para finalidades gerais configurado por um programa de computador (por exemplo, um computador para finalidades gerais configurado por um programa de computador que ao menos parcialmente execute processos e/ou dispositivos aqui descritos, ou um processador configurado por um programa de computador que ao menos parcialmente execute os processos e/ou dispositivos aqui descritos), circuitos elétricos que formem um dispositivo de memória (por exemplo, formas de memória de acesso aleatório), e/ou circuitos elétricos que formem um dispositivo de comunicações (por exemplo, um modem, roteadores ou equipamento óptico-elétrico). Os versados na técnica reconhecerão que o assunto aqui descrito pode ser implementado de modo analógico ou digital, ou em alguma combi-nação destes.
[0617] A descrição detalhada supracitada apresentou vários as pectos dos dispositivos e/ou processos por meio do uso de diagramas de blocos, fluxogramas e/ou exemplos. Embora esses diagramas de bloco, fluxogramas e/ou exemplos contenham uma ou mais funções e/ou operações, será compreendido pelos versados na técnica que cada função e/ou operação dentro desses diagramas de bloco, fluxo- gramas ou exemplos pode ser implementada, individual e/ou coletivamente, por meio de uma ampla gama de hardware, software, firmware ou praticamente qualquer combinação destes. Em um aspecto, várias porções do assunto descrito na presente invenção podem ser implementadas por meio de circuitos integrados de aplicação específica (ASICs, de "Application Specific Integrated Circuits"), arranjos de por tas programáveis em campo (FPGAs, de "Field Programmable Gate Arrays"), processadores de sinal digital (DSPs, de "Digital Signal Processors") ou outros formatos integrados. Os versados na técnica reconhecerão, contudo, que alguns aspectos dos aspectos aqui revelados, no todo ou em parte, podem ser implementados de modo equivalente em circuitos integrados, como um ou mais programas de computador executados em um ou mais computadores (por exemplo, como um ou mais programas executados em um ou mais sistemas de computador), como um ou mais programas executados em um ou mais processadores (por exemplo, como um ou mais programas executados em um ou mais microprocessadores), como firmware, ou virtualmente como qualquer combinação dos mesmos, e que projetar o conjunto de circuitos e/ou escrever o código para o software e firmware estaria dentro do âmbito de prática do versado na técnica, à luz desta descrição.
[0618] Além disso, os versados na técnica entenderão que os me canismos do assunto aqui descrito podem ser distribuídos como um produto de programa em uma variedade de formas, e que um aspecto ilustrativo do assunto aqui descrito é aplicável independentemente do tipo específico de meio de transmissão de sinais usado para efetivamente executar a distribuição. Exemplos de um meio de transmissão de sinais incluem, mas não se limitam aos seguintes: um meio do tipo gravável como um disquete, uma unidade de disco rígido, um disco compacto (CD), um disco de vídeo digital (DVD), uma fita digital, uma memória de computador, etc.; e uma mídia do tipo de transmissão, como uma mídia de comunicação digital e/ou analógica (por exemplo, um cabo de fibra óptica, um guia de onda, um enlace de comunicação com fio, um enlace de comunicação sem fio (por exemplo, transmissor, receptor, lógica de transmissão, lógica de recepção, etc.).
[0619] Em suma, foram descritos numerosos benefícios que resul tam do emprego dos conceitos descritos no presente documento. A descrição anteriormente mencionada de um ou mais aspectos foi apresentada para propósitos de ilustração e descrição. Essa descrição não pretende ser exaustiva nem limitar a invenção à forma precisa revelada. Modificações ou variações são possíveis à luz dos ensinamentos acima. O um ou mais aspectos foram escolhidos e descritos com a finalidade de ilustrar os princípios e a aplicação prática para, assim, permitir que o versado na técnica use os vários aspectos e com várias modificações, conforme sejam convenientes ao uso específico contemplado. Pretende-se que as concretizações apresentadas em anexo definam o escopo global.
Claims (7)
1. Instrumento cirúrgico compreendendo: uma canaleta alongada (302) configurada para suportar o cartucho de grampos (304); uma bigorna (306) conectada de modo pivotante à canaleta alongada (302); um tubo de fechamento (260) acoplado mecanicamente à bigorna (306); um motor elétrico; e um circuito de controle conectado eletricamente ao motor elétrico, em que o circuito de controle é configurado para alterar um movimento de fechamento do instrumento cirúrgico com base em uma combinação de eventos, e caracterizado pelo fato de que a combinação de eventos compreende um dentre: uma força de fechamento excedendo um limite predeterminado em momentos diferentes durante um movimento de fechamento; uma força de fechamento excedendo um limite predeterminado um número predeterminado de vezes durante um movimento de fechamento; um coeficiente angular de um sinal de força de fechamento exceder um limite predeterminado um número predeterminado de vezes durante um movimento de fechamento.
2. Instrumento cirúrgico, de acordo com a reivindicação 1, caracterizado pelo fato de que a combinação de eventos compreende danos ao instrumento cirúrgico, cartucho de grampos (304), carregamento entre a bigorna (306) e o cartucho de grampos (304), ou condições de uso.
3. Instrumento cirúrgico, de acordo com a reivindicação 1 ou 2, caracterizado pelo fato de que o circuito de controle é configurado para determinar um nível de sobrecarga ou uso indicado em excesso e um dentre retardar a velocidade angular de disparo, apenas permitir conclusão de um ciclo de corrente, desligar completamente o instrumento cirúrgico, apenas completar um número predeterminado de disparos adicionais.
4. Instrumento cirúrgico, de acordo com qualquer uma das reivindicações 1 a 3, caracterizado pelo fato de que o instrumento cirúrgico é reutilizável.
5. Instrumento cirúrgico, de acordo com qualquer uma das reivindicações 1 a 4, caracterizado pelo fato de que o circuito de controle compreende: ao menos um sensor configurado para detectar uma força de fechamento; e um controlador acoplado eletricamente ao pelo menos um sensor e ao motor elétrico.
6. Instrumento cirúrgico, de acordo com qualquer uma das reivindicações 1 a 5, caracterizado pelo fato de que o circuito de controle é configurado para alterar o movimento de fechamento ao realizar um dos seguintes, com base na combinação de eventos: terminar o movimento de fechamento; limitar uma velocidade angular máxima do tubo de fechamento (260); reduzir uma velocidade angular do tubo de fechamento (260); e reverter uma direção de movimento do tubo de fechamento (260).
7. Instrumento cirúrgico, de acordo com a reivindicação 6, caracterizado pelo fato de que o circuito de controle é configurado para terminar o movimento de fechamento ao retornara a bigorna (306) para uma posição completamente aberta com base na combinação de eventos.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/130,571 | 2016-04-15 | ||
US15/130,571 US10357247B2 (en) | 2016-04-15 | 2016-04-15 | Surgical instrument with multiple program responses during a firing motion |
PCT/US2017/026324 WO2017180432A2 (en) | 2016-04-15 | 2017-04-06 | Surgical instrument with multiple program responses during a firing motion |
Publications (2)
Publication Number | Publication Date |
---|---|
BR112018070729A2 BR112018070729A2 (pt) | 2019-02-12 |
BR112018070729B1 true BR112018070729B1 (pt) | 2023-01-10 |
Family
ID=58547428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BR112018070729-5A BR112018070729B1 (pt) | 2016-04-15 | 2017-04-06 | Instrumento cirúrgico com múltiplas respostas de programa durante um movimento de disparo |
Country Status (6)
Country | Link |
---|---|
US (5) | US10357247B2 (pt) |
EP (1) | EP3231373B1 (pt) |
JP (1) | JP6946337B2 (pt) |
CN (1) | CN109310422B (pt) |
BR (1) | BR112018070729B1 (pt) |
WO (1) | WO2017180432A2 (pt) |
Families Citing this family (603)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
US11896225B2 (en) | 2004-07-28 | 2024-02-13 | Cilag Gmbh International | Staple cartridge comprising a pan |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US20110024477A1 (en) | 2009-02-06 | 2011-02-03 | Hall Steven G | Driven Surgical Stapler Improvements |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
US7665647B2 (en) | 2006-09-29 | 2010-02-23 | Ethicon Endo-Surgery, Inc. | Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US8840603B2 (en) | 2007-01-10 | 2014-09-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US8652120B2 (en) | 2007-01-10 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
US20080169333A1 (en) | 2007-01-11 | 2008-07-17 | Shelton Frederick E | Surgical stapler end effector with tapered distal end |
US7669747B2 (en) | 2007-03-15 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Washer for use with a surgical stapling instrument |
US8893946B2 (en) | 2007-03-28 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Laparoscopic tissue thickness and clamp load measuring devices |
US11564682B2 (en) | 2007-06-04 | 2023-01-31 | Cilag Gmbh International | Surgical stapler device |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
US8758391B2 (en) | 2008-02-14 | 2014-06-24 | Ethicon Endo-Surgery, Inc. | Interchangeable tools for surgical instruments |
RU2493788C2 (ru) | 2008-02-14 | 2013-09-27 | Этикон Эндо-Серджери, Инк. | Хирургический режущий и крепежный инструмент, имеющий радиочастотные электроды |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
US8636736B2 (en) * | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US10390823B2 (en) | 2008-02-15 | 2019-08-27 | Ethicon Llc | End effector comprising an adjunct |
US11272927B2 (en) | 2008-02-15 | 2022-03-15 | Cilag Gmbh International | Layer arrangements for surgical staple cartridges |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
BRPI1008667A2 (pt) | 2009-02-06 | 2016-03-08 | Ethicom Endo Surgery Inc | aperfeiçoamento do grampeador cirúrgico acionado |
US8444036B2 (en) | 2009-02-06 | 2013-05-21 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector |
US8663220B2 (en) | 2009-07-15 | 2014-03-04 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
US8851354B2 (en) * | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US11849952B2 (en) | 2010-09-30 | 2023-12-26 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US9351730B2 (en) | 2011-04-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising channels |
US9364233B2 (en) | 2010-09-30 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Tissue thickness compensators for circular surgical staplers |
US9301755B2 (en) | 2010-09-30 | 2016-04-05 | Ethicon Endo-Surgery, Llc | Compressible staple cartridge assembly |
US9592050B2 (en) | 2010-09-30 | 2017-03-14 | Ethicon Endo-Surgery, Llc | End effector comprising a distal tissue abutment member |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US9386988B2 (en) | 2010-09-30 | 2016-07-12 | Ethicon End-Surgery, LLC | Retainer assembly including a tissue thickness compensator |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US9517063B2 (en) | 2012-03-28 | 2016-12-13 | Ethicon Endo-Surgery, Llc | Movable member for use with a tissue thickness compensator |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
BR112013027794B1 (pt) | 2011-04-29 | 2020-12-15 | Ethicon Endo-Surgery, Inc | Conjunto de cartucho de grampos |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
US9044230B2 (en) | 2012-02-13 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
RU2014143258A (ru) | 2012-03-28 | 2016-05-20 | Этикон Эндо-Серджери, Инк. | Компенсатор толщины ткани, содержащий множество слоев |
CN104334098B (zh) | 2012-03-28 | 2017-03-22 | 伊西康内外科公司 | 包括限定低压强环境的胶囊剂的组织厚度补偿件 |
BR112014024194B1 (pt) | 2012-03-28 | 2022-03-03 | Ethicon Endo-Surgery, Inc | Conjunto de cartucho de grampos para um grampeador cirúrgico |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
BR112014032776B1 (pt) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | Sistema de instrumento cirúrgico e kit cirúrgico para uso com um sistema de instrumento cirúrgico |
RU2636861C2 (ru) | 2012-06-28 | 2017-11-28 | Этикон Эндо-Серджери, Инк. | Блокировка пустой кассеты с клипсами |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
US11197671B2 (en) | 2012-06-28 | 2021-12-14 | Cilag Gmbh International | Stapling assembly comprising a lockout |
US9226751B2 (en) | 2012-06-28 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Surgical instrument system including replaceable end effectors |
US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
US20140005705A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical instruments with articulating shafts |
US9204879B2 (en) | 2012-06-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Flexible drive member |
US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
RU2669463C2 (ru) | 2013-03-01 | 2018-10-11 | Этикон Эндо-Серджери, Инк. | Хирургический инструмент с мягким упором |
RU2672520C2 (ru) | 2013-03-01 | 2018-11-15 | Этикон Эндо-Серджери, Инк. | Шарнирно поворачиваемые хирургические инструменты с проводящими путями для передачи сигналов |
US9883860B2 (en) | 2013-03-14 | 2018-02-06 | Ethicon Llc | Interchangeable shaft assemblies for use with a surgical instrument |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
US9801626B2 (en) | 2013-04-16 | 2017-10-31 | Ethicon Llc | Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts |
BR112015026109B1 (pt) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | Instrumento cirúrgico |
US20150053746A1 (en) | 2013-08-23 | 2015-02-26 | Ethicon Endo-Surgery, Inc. | Torque optimization for surgical instruments |
JP6416260B2 (ja) | 2013-08-23 | 2018-10-31 | エシコン エルエルシー | 動力付き外科用器具のための発射部材後退装置 |
US9962161B2 (en) | 2014-02-12 | 2018-05-08 | Ethicon Llc | Deliverable surgical instrument |
KR102327850B1 (ko) | 2014-02-20 | 2021-11-17 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 로봇 아암의 수동 움직임에 의해 제어된 수술용 장착 플랫폼의 제한된 이동 |
JP6462004B2 (ja) | 2014-02-24 | 2019-01-30 | エシコン エルエルシー | 発射部材ロックアウトを備える締結システム |
US9826977B2 (en) | 2014-03-26 | 2017-11-28 | Ethicon Llc | Sterilization verification circuit |
US9820738B2 (en) | 2014-03-26 | 2017-11-21 | Ethicon Llc | Surgical instrument comprising interactive systems |
US20150272580A1 (en) | 2014-03-26 | 2015-10-01 | Ethicon Endo-Surgery, Inc. | Verification of number of battery exchanges/procedure count |
BR112016021943B1 (pt) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | Instrumento cirúrgico para uso por um operador em um procedimento cirúrgico |
US9737355B2 (en) | 2014-03-31 | 2017-08-22 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
CN106456176B (zh) | 2014-04-16 | 2019-06-28 | 伊西康内外科有限责任公司 | 包括具有不同构型的延伸部的紧固件仓 |
US9801628B2 (en) | 2014-09-26 | 2017-10-31 | Ethicon Llc | Surgical staple and driver arrangements for staple cartridges |
US20150297225A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
JP6532889B2 (ja) | 2014-04-16 | 2019-06-19 | エシコン エルエルシーEthicon LLC | 締結具カートリッジ組立体及びステープル保持具カバー配置構成 |
US9844369B2 (en) | 2014-04-16 | 2017-12-19 | Ethicon Llc | Surgical end effectors with firing element monitoring arrangements |
JP6612256B2 (ja) | 2014-04-16 | 2019-11-27 | エシコン エルエルシー | 不均一な締結具を備える締結具カートリッジ |
US9730694B2 (en) * | 2014-07-01 | 2017-08-15 | Covidien Lp | Loading unit including shipping assembly |
US10016199B2 (en) | 2014-09-05 | 2018-07-10 | Ethicon Llc | Polarity of hall magnet to identify cartridge type |
BR112017004361B1 (pt) | 2014-09-05 | 2023-04-11 | Ethicon Llc | Sistema eletrônico para um instrumento cirúrgico |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
MX2017003960A (es) | 2014-09-26 | 2017-12-04 | Ethicon Llc | Refuerzos de grapas quirúrgicas y materiales auxiliares. |
US10076325B2 (en) | 2014-10-13 | 2018-09-18 | Ethicon Llc | Surgical stapling apparatus comprising a tissue stop |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US9943309B2 (en) | 2014-12-18 | 2018-04-17 | Ethicon Llc | Surgical instruments with articulatable end effectors and movable firing beam support arrangements |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
MX2017008108A (es) | 2014-12-18 | 2018-03-06 | Ethicon Llc | Instrumento quirurgico con un yunque que puede moverse de manera selectiva sobre un eje discreto no movil con relacion a un cartucho de grapas. |
US10188385B2 (en) | 2014-12-18 | 2019-01-29 | Ethicon Llc | Surgical instrument system comprising lockable systems |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US10045779B2 (en) | 2015-02-27 | 2018-08-14 | Ethicon Llc | Surgical instrument system comprising an inspection station |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US10180463B2 (en) | 2015-02-27 | 2019-01-15 | Ethicon Llc | Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
US9924961B2 (en) | 2015-03-06 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Interactive feedback system for powered surgical instruments |
JP2020121162A (ja) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | 測定の安定性要素、クリープ要素、及び粘弾性要素を決定するためのセンサデータの時間依存性評価 |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
US10213201B2 (en) | 2015-03-31 | 2019-02-26 | Ethicon Llc | Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw |
US10835249B2 (en) | 2015-08-17 | 2020-11-17 | Ethicon Llc | Implantable layers for a surgical instrument |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10363036B2 (en) | 2015-09-23 | 2019-07-30 | Ethicon Llc | Surgical stapler having force-based motor control |
US10327769B2 (en) | 2015-09-23 | 2019-06-25 | Ethicon Llc | Surgical stapler having motor control based on a drive system component |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
US10736685B2 (en) | 2015-09-30 | 2020-08-11 | Ethicon Llc | Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments |
US10478188B2 (en) | 2015-09-30 | 2019-11-19 | Ethicon Llc | Implantable layer comprising a constricted configuration |
US20170086829A1 (en) | 2015-09-30 | 2017-03-30 | Ethicon Endo-Surgery, Llc | Compressible adjunct with intermediate supporting structures |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US11229450B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with motor drive |
US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
WO2017132611A1 (en) | 2016-01-29 | 2017-08-03 | Intuitive Surgical Operations, Inc. | System and method for variable velocity surgical instrument |
US10433837B2 (en) | 2016-02-09 | 2019-10-08 | Ethicon Llc | Surgical instruments with multiple link articulation arrangements |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
BR112018016098B1 (pt) | 2016-02-09 | 2023-02-23 | Ethicon Llc | Instrumento cirúrgico |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10258331B2 (en) | 2016-02-12 | 2019-04-16 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10617413B2 (en) | 2016-04-01 | 2020-04-14 | Ethicon Llc | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
US10285705B2 (en) | 2016-04-01 | 2019-05-14 | Ethicon Llc | Surgical stapling system comprising a grooved forming pocket |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US10405859B2 (en) | 2016-04-15 | 2019-09-10 | Ethicon Llc | Surgical instrument with adjustable stop/start control during a firing motion |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10357247B2 (en) * | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US10363037B2 (en) | 2016-04-18 | 2019-07-30 | Ethicon Llc | Surgical instrument system comprising a magnetic lockout |
US20170296173A1 (en) * | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
US11191539B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system |
US10568625B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Staple cartridges and arrangements of staples and staple cavities therein |
US10856868B2 (en) | 2016-12-21 | 2020-12-08 | Ethicon Llc | Firing member pin configurations |
CN110114014B (zh) | 2016-12-21 | 2022-08-09 | 爱惜康有限责任公司 | 包括端部执行器闭锁件和击发组件闭锁件的外科器械系统 |
US20180168619A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling systems |
US20180168625A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with smart staple cartridges |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
JP6983893B2 (ja) | 2016-12-21 | 2021-12-17 | エシコン エルエルシーEthicon LLC | 外科用エンドエフェクタ及び交換式ツールアセンブリのためのロックアウト構成 |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
MX2019007311A (es) | 2016-12-21 | 2019-11-18 | Ethicon Llc | Sistemas de engrapado quirurgico. |
US10667810B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems |
US10675026B2 (en) | 2016-12-21 | 2020-06-09 | Ethicon Llc | Methods of stapling tissue |
US10835247B2 (en) | 2016-12-21 | 2020-11-17 | Ethicon Llc | Lockout arrangements for surgical end effectors |
US10695055B2 (en) | 2016-12-21 | 2020-06-30 | Ethicon Llc | Firing assembly comprising a lockout |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
US10624635B2 (en) | 2016-12-21 | 2020-04-21 | Ethicon Llc | Firing members with non-parallel jaw engagement features for surgical end effectors |
JP7010956B2 (ja) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | 組織をステープル留めする方法 |
US10888322B2 (en) | 2016-12-21 | 2021-01-12 | Ethicon Llc | Surgical instrument comprising a cutting member |
US10499914B2 (en) | 2016-12-21 | 2019-12-10 | Ethicon Llc | Staple forming pocket arrangements |
US10426471B2 (en) | 2016-12-21 | 2019-10-01 | Ethicon Llc | Surgical instrument with multiple failure response modes |
USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
US10390841B2 (en) | 2017-06-20 | 2019-08-27 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US10813639B2 (en) | 2017-06-20 | 2020-10-27 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
US10646220B2 (en) | 2017-06-20 | 2020-05-12 | Ethicon Llc | Systems and methods for controlling displacement member velocity for a surgical instrument |
US10368864B2 (en) | 2017-06-20 | 2019-08-06 | Ethicon Llc | Systems and methods for controlling displaying motor velocity for a surgical instrument |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
US10327767B2 (en) | 2017-06-20 | 2019-06-25 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
US10624633B2 (en) | 2017-06-20 | 2020-04-21 | Ethicon Llc | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
USD879808S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with graphical user interface |
US11517325B2 (en) * | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US10881396B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Surgical instrument with variable duration trigger arrangement |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US10631859B2 (en) | 2017-06-27 | 2020-04-28 | Ethicon Llc | Articulation systems for surgical instruments |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
US10211586B2 (en) | 2017-06-28 | 2019-02-19 | Ethicon Llc | Surgical shaft assemblies with watertight housings |
US11298128B2 (en) | 2017-06-28 | 2022-04-12 | Cilag Gmbh International | Surgical system couplable with staple cartridge and radio frequency cartridge, and method of using same |
US10716614B2 (en) | 2017-06-28 | 2020-07-21 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
EP3420947B1 (en) | 2017-06-28 | 2022-05-25 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
USD851762S1 (en) | 2017-06-28 | 2019-06-18 | Ethicon Llc | Anvil |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
USD869655S1 (en) | 2017-06-28 | 2019-12-10 | Ethicon Llc | Surgical fastener cartridge |
US11058424B2 (en) | 2017-06-28 | 2021-07-13 | Cilag Gmbh International | Surgical instrument comprising an offset articulation joint |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
USD854151S1 (en) | 2017-06-28 | 2019-07-16 | Ethicon Llc | Surgical instrument shaft |
US10639037B2 (en) | 2017-06-28 | 2020-05-05 | Ethicon Llc | Surgical instrument with axially movable closure member |
US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
US10398434B2 (en) | 2017-06-29 | 2019-09-03 | Ethicon Llc | Closed loop velocity control of closure member for robotic surgical instrument |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
US10258418B2 (en) | 2017-06-29 | 2019-04-16 | Ethicon Llc | System for controlling articulation forces |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US10905421B2 (en) * | 2017-08-29 | 2021-02-02 | Ethicon Llc | Electrically-powered surgical box staplers |
USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
US10765429B2 (en) | 2017-09-29 | 2020-09-08 | Ethicon Llc | Systems and methods for providing alerts according to the operational state of a surgical instrument |
USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
US10796471B2 (en) | 2017-09-29 | 2020-10-06 | Ethicon Llc | Systems and methods of displaying a knife position for a surgical instrument |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10729501B2 (en) | 2017-09-29 | 2020-08-04 | Ethicon Llc | Systems and methods for language selection of a surgical instrument |
US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US10959744B2 (en) | 2017-10-30 | 2021-03-30 | Ethicon Llc | Surgical dissectors and manufacturing techniques |
US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11026687B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Clip applier comprising clip advancing systems |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
JP7289834B2 (ja) * | 2017-10-30 | 2023-06-12 | エシコン エルエルシー | モジュール式外科用器具の制御システム構成 |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
CN108194580B (zh) * | 2017-12-08 | 2024-09-17 | 南京驭岳网络科技有限公司 | 三行星架十齿第一行星架三级行星轮系式rcm机构 |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US11006955B2 (en) | 2017-12-15 | 2021-05-18 | Ethicon Llc | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US10687813B2 (en) | 2017-12-15 | 2020-06-23 | Ethicon Llc | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
US11045270B2 (en) | 2017-12-19 | 2021-06-29 | Cilag Gmbh International | Robotic attachment comprising exterior drive actuator |
USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
US10743868B2 (en) | 2017-12-21 | 2020-08-18 | Ethicon Llc | Surgical instrument comprising a pivotable distal head |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11304745B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
US10892899B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Self describing data packets generated at an issuing instrument |
US11100631B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US10966791B2 (en) | 2017-12-28 | 2021-04-06 | Ethicon Llc | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11253315B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Increasing radio frequency to create pad-less monopolar loop |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
US11058498B2 (en) | 2017-12-28 | 2021-07-13 | Cilag Gmbh International | Cooperative surgical actions for robot-assisted surgical platforms |
US10932872B2 (en) | 2017-12-28 | 2021-03-02 | Ethicon Llc | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US11069012B2 (en) | 2017-12-28 | 2021-07-20 | Cilag Gmbh International | Interactive surgical systems with condition handling of devices and data capabilities |
US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US11633237B2 (en) | 2017-12-28 | 2023-04-25 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
US11304763B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US20190206569A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method of cloud based data analytics for use with the hub |
US11234756B2 (en) | 2017-12-28 | 2022-02-01 | Cilag Gmbh International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
US10987178B2 (en) | 2017-12-28 | 2021-04-27 | Ethicon Llc | Surgical hub control arrangements |
US20190201139A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Communication arrangements for robot-assisted surgical platforms |
US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US20190201034A1 (en) * | 2017-12-28 | 2019-07-04 | Ethicon Llc | Powered stapling device configured to adjust force, advancement speed, and overall stroke of cutting member based on sensed parameter of firing or clamping |
US11147607B2 (en) | 2017-12-28 | 2021-10-19 | Cilag Gmbh International | Bipolar combination device that automatically adjusts pressure based on energy modality |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
US10898622B2 (en) | 2017-12-28 | 2021-01-26 | Ethicon Llc | Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device |
US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
US20190201039A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Situational awareness of electrosurgical systems |
US20190201146A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Safety systems for smart powered surgical stapling |
US11844579B2 (en) | 2017-12-28 | 2023-12-19 | Cilag Gmbh International | Adjustments based on airborne particle properties |
US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US11612408B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Determining tissue composition via an ultrasonic system |
US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US10943454B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
US10849697B2 (en) | 2017-12-28 | 2020-12-01 | Ethicon Llc | Cloud interface for coupled surgical devices |
US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
US11304720B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Activation of energy devices |
US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US10944728B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Interactive surgical systems with encrypted communication capabilities |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US11096693B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
US10755813B2 (en) | 2017-12-28 | 2020-08-25 | Ethicon Llc | Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US10695081B2 (en) | 2017-12-28 | 2020-06-30 | Ethicon Llc | Controlling a surgical instrument according to sensed closure parameters |
US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
US11160605B2 (en) | 2017-12-28 | 2021-11-02 | Cilag Gmbh International | Surgical evacuation sensing and motor control |
US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
US11672605B2 (en) | 2017-12-28 | 2023-06-13 | Cilag Gmbh International | Sterile field interactive control displays |
WO2019130089A1 (en) * | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical instrument cartridge sensor assemblies |
US11051876B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Surgical evacuation flow paths |
US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
US11056244B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
US11337746B2 (en) | 2018-03-08 | 2022-05-24 | Cilag Gmbh International | Smart blade and power pulsing |
US11399858B2 (en) | 2018-03-08 | 2022-08-02 | Cilag Gmbh International | Application of smart blade technology |
US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
US11197668B2 (en) | 2018-03-28 | 2021-12-14 | Cilag Gmbh International | Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout |
US11090047B2 (en) * | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
US20190388091A1 (en) * | 2018-06-21 | 2019-12-26 | Covidien Lp | Powered surgical devices including strain gauges incorporated into flex circuits |
US11497490B2 (en) | 2018-07-09 | 2022-11-15 | Covidien Lp | Powered surgical devices including predictive motor control |
EP3821198A4 (en) * | 2018-07-12 | 2022-07-20 | Crosman Corporation | ELECTROMAGNETIC RADIATION-BASED ACTIVATION OF DETERRENT DEVICE ACCESSORY |
US20210298839A1 (en) * | 2018-08-02 | 2021-09-30 | The Johns Hopkins University | Safety feature for use with robotically manipulated endoscopes and other tools in otolaryngology and neurosurgery |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
US11751872B2 (en) | 2019-02-19 | 2023-09-12 | Cilag Gmbh International | Insertable deactivator element for surgical stapler lockouts |
US11298129B2 (en) | 2019-02-19 | 2022-04-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
US20200345356A1 (en) * | 2019-04-30 | 2020-11-05 | Ethicon Llc | Intelligent firing associated with a surgical instrument |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
US20200345357A1 (en) * | 2019-04-30 | 2020-11-05 | Ethicon Llc | Intelligent firing associated with a surgical instrument |
USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11229437B2 (en) | 2019-06-28 | 2022-01-25 | Cilag Gmbh International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
CN111641291A (zh) * | 2019-07-23 | 2020-09-08 | 成都博恩思医学机器人有限公司 | 手术器械传动装置的控制方法及计算机可读存储介质 |
EP3771915A1 (en) * | 2019-07-31 | 2021-02-03 | LEM International SA | Method of reducing noise in a fluxgate current transducer |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
US11974801B2 (en) | 2019-12-30 | 2024-05-07 | Cilag Gmbh International | Electrosurgical instrument with flexible wiring assemblies |
US11786294B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Control program for modular combination energy device |
US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
US11589916B2 (en) | 2019-12-30 | 2023-02-28 | Cilag Gmbh International | Electrosurgical instruments with electrodes having variable energy densities |
US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
US11707318B2 (en) | 2019-12-30 | 2023-07-25 | Cilag Gmbh International | Surgical instrument with jaw alignment features |
US20210196363A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Electrosurgical instrument with electrodes operable in bipolar and monopolar modes |
US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
US11911038B2 (en) * | 2020-01-13 | 2024-02-27 | Covidien Lp | Cut optimization for excessive tissue conditions |
CN111267128B (zh) * | 2020-04-03 | 2020-11-06 | 浙江浙安消防设备有限公司 | 一种远程消防机器人控制器 |
US11690694B2 (en) * | 2020-05-19 | 2023-07-04 | Covidien Lp | Powered surgical instruments and methods of identifying tissue types therewith |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
CN111759385B (zh) * | 2020-07-17 | 2021-11-30 | 天津瑞奇外科器械股份有限公司 | 一种电动吻合器及其装载单元 |
US20220022878A1 (en) * | 2020-07-27 | 2022-01-27 | Covidien Lp | Systems and methods for controlling a surgical stapling instrument |
US20220031350A1 (en) | 2020-07-28 | 2022-02-03 | Cilag Gmbh International | Surgical instruments with double pivot articulation joint arrangements |
CN114176689B (zh) * | 2020-09-14 | 2024-04-19 | 苏州英途康医疗科技有限公司 | 电动吻合器及其驱动机构的定位方法、装置及存储介质 |
US11723744B2 (en) | 2020-09-30 | 2023-08-15 | Verb Surgical Inc. | Systems and methods for controlling grip force of jaws when transitioning between position control mode and force mode |
US11969297B2 (en) | 2020-09-30 | 2024-04-30 | Verb Surgical Inc. | Systems and methods for limiting grip force of closing jaws in position control mode |
US20220096184A1 (en) * | 2020-09-30 | 2022-03-31 | Verb Surgical Inc. | Systems and methods for maintaining minimum opening force of jaws in position control mode |
US20220104820A1 (en) * | 2020-10-02 | 2022-04-07 | Ethicon Llc | Surgical instrument with adaptive motor control |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11857184B2 (en) | 2021-04-30 | 2024-01-02 | Cilag Gmbh International | Surgical instrument comprising a rotation-driven and translation-driven tissue cutting knife |
US11931035B2 (en) | 2021-04-30 | 2024-03-19 | Cilag Gmbh International | Articulation system for surgical instrument |
US11944295B2 (en) | 2021-04-30 | 2024-04-02 | Cilag Gmbh International | Surgical instrument comprising end effector with longitudinal sealing step |
US11918275B2 (en) | 2021-04-30 | 2024-03-05 | Cilag Gmbh International | Electrosurgical adaptation techniques of energy modality for combination electrosurgical instruments based on shorting or tissue impedance irregularity |
US11826043B2 (en) * | 2021-04-30 | 2023-11-28 | Cilag Gmbh International | Staple cartridge comprising formation support features |
US11826047B2 (en) | 2021-05-28 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising jaw mounts |
EP4352664A1 (en) | 2021-06-11 | 2024-04-17 | Seeqc Inc. | System and method of flux bias for superconducting quantum circuits |
US20230070137A1 (en) * | 2021-09-07 | 2023-03-09 | Covidien Lp | Slow speed staple and staple relaxation for stapling optimization |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
EP4398809A2 (en) * | 2022-05-18 | 2024-07-17 | Cilag GmbH International | Autonomous intra-instrument surgical system actuation |
US20240108337A1 (en) * | 2022-09-29 | 2024-04-04 | Cilag Gmbh International | Monitoring one drive system to adapt the motor driven aspect of a second drive system |
CN117481726B (zh) * | 2023-12-29 | 2024-05-17 | 武汉联影智融医疗科技有限公司 | 电动吻合器 |
Family Cites Families (6611)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE273689C (pt) | 1913-08-07 | 1914-05-08 | ||
US1306107A (en) | 1919-06-10 | Assigotob to amebxcak | ||
US1314601A (en) | 1919-09-02 | Flexible shaft | ||
US66052A (en) | 1867-06-25 | smith | ||
US2120951A (en) | 1938-06-14 | Steering repeater compass | ||
US662587A (en) | 1900-05-18 | 1900-11-27 | Charles Chandler Blake | Insulated support for electric conductors. |
US670748A (en) | 1900-10-25 | 1901-03-26 | Paul Weddeler | Flexible shafting. |
US719487A (en) | 1901-09-16 | 1903-02-03 | William E Minor | Dilator. |
US804229A (en) | 1904-07-27 | 1905-11-14 | Thomas C Hutchinson | Forceps and the like. |
US903739A (en) | 1908-07-30 | 1908-11-10 | William Lesemann | Gearing. |
US951393A (en) | 1909-04-06 | 1910-03-08 | John N Hahn | Staple. |
FR459743A (fr) | 1912-09-14 | 1913-11-12 | Bariquant Et Marre Des Atel | Transmission flexible |
US1082105A (en) | 1912-10-17 | 1913-12-23 | George A Anderson | Releasable driving mechanism. |
US1075556A (en) | 1913-05-12 | 1913-10-14 | American Carbon & Battery Company | Battery. |
US1188721A (en) | 1915-05-05 | 1916-06-27 | Frank Bittner | Pipe-wrench. |
US1466128A (en) | 1921-11-28 | 1923-08-28 | Baker Bros | Drill-press control |
US1677337A (en) | 1924-09-27 | 1928-07-17 | Thomas E Grove | Antrum drill |
US1849427A (en) | 1927-10-17 | 1932-03-15 | Westminster Tool And Electric | Handle of tools driven by flexible shafts |
US1794907A (en) | 1929-07-19 | 1931-03-03 | Joseph N Kelly | Worm and gear |
US1944116A (en) | 1930-05-26 | 1934-01-16 | Edward A Stratman | Lever locking device |
US1954048A (en) | 1931-01-06 | 1934-04-10 | Jeffrey Mfg Co | Tool holder |
US1912783A (en) | 1931-04-20 | 1933-06-06 | Meyer Josephine | Sanitary pad holder |
US2028635A (en) | 1933-09-11 | 1936-01-21 | Wappler Frederick Charles | Forcipated surgical instrument |
US2037727A (en) | 1934-12-27 | 1936-04-21 | United Shoe Machinery Corp | Fastening |
US2132295A (en) | 1937-05-05 | 1938-10-04 | Hawkins Earl | Stapling device |
US2211117A (en) | 1937-09-06 | 1940-08-13 | Rieter Joh Jacob & Cie Ag | Device for drawing rovings in speeders and spinning machines |
US2256295A (en) | 1937-11-26 | 1941-09-16 | H A Douglas Mfg Co | Electric switch |
US2161632A (en) | 1937-12-20 | 1939-06-06 | Martin L Nattenheimer | Fastening device |
US2214870A (en) | 1938-08-10 | 1940-09-17 | William J West | Siding cutter |
US2224108A (en) | 1939-04-15 | 1940-12-03 | Ingersoll Milling Machine Co | Machine tool |
US2224882A (en) | 1939-08-01 | 1940-12-17 | Herbert G Peck | Umbrella |
US2329440A (en) | 1941-04-02 | 1943-09-14 | Bocjl Corp | Fastener |
US2318379A (en) | 1941-04-17 | 1943-05-04 | Walter S Davis | Suture package |
US2406389A (en) | 1942-11-30 | 1946-08-27 | Lee Engineering Res Corp | Electric motor |
US2420552A (en) | 1942-12-05 | 1947-05-13 | Gen Electric | Driving mechanism |
US2377581A (en) | 1944-03-09 | 1945-06-05 | Matthew J Shaffrey | Divided nut construction |
US2441096A (en) | 1944-09-04 | 1948-05-04 | Singer Mfg Co | Control means for portable electric tools |
US2448741A (en) | 1945-04-25 | 1948-09-07 | American Cystoscope Makers Inc | Endoscopic surgical instrument |
US2578686A (en) | 1945-04-27 | 1951-12-18 | Tubing Appliance Co Inc | Open-sided-socket ratchet wrench |
US2450527A (en) | 1945-10-27 | 1948-10-05 | P & V Quicklocking Co | Semiautomatic coupling |
US2507872A (en) | 1946-01-18 | 1950-05-16 | Unsinger Ap Corp | Implement or toolholder |
US2491872A (en) | 1946-06-15 | 1949-12-20 | Int Resistance Co | Liquid cooled resistor |
US2526902A (en) | 1947-07-31 | 1950-10-24 | Norman C Rublee | Insulating staple |
US2527256A (en) | 1947-11-07 | 1950-10-24 | Earle R Jackson | Connector for brushes, brooms, and the like |
FR999646A (fr) | 1949-11-16 | 1952-02-04 | Dispositif serre-câble | |
US2742955A (en) | 1951-01-13 | 1956-04-24 | Richard A Dominguez | Collapsible seat structure |
US2638901A (en) | 1951-07-30 | 1953-05-19 | Everett D Sugarbaker | Surgical clamp |
US2701489A (en) | 1951-09-12 | 1955-02-08 | Leonard C Osborn | Cam-actuated slidable jaw wrench |
US2674149A (en) | 1952-03-01 | 1954-04-06 | Jerry S Benson | Multiple pronged fastener device with spreading means |
US2711461A (en) | 1953-12-24 | 1955-06-21 | Singer Mfg Co | Portable electric tool handle assemblies |
US2724289A (en) | 1954-04-27 | 1955-11-22 | Janette Electric Mfg Co | Coupling apparatus |
US2804848A (en) | 1954-09-30 | 1957-09-03 | Chicago Pneumatic Tool Co | Drilling apparatus |
FR1112936A (fr) | 1954-10-20 | 1956-03-20 | Moteur électrique et commande à trois vitesses enfermés dans une gaine | |
US2887004A (en) | 1954-11-04 | 1959-05-19 | William H Stewart | Staple having flat depressed head with reinforcing ridge |
US2825178A (en) | 1955-10-07 | 1958-03-04 | Havilah S Hawkins | Articulated toy set of building blocks |
US2808482A (en) | 1956-04-12 | 1957-10-01 | Miniature Switch Corp | Toggle switch construction |
US2853074A (en) | 1956-06-15 | 1958-09-23 | Edward A Olson | Stapling instrument for surgical purposes |
US2856192A (en) | 1956-10-29 | 1958-10-14 | Hi Shear Rivet Tool Company | Collet with spring jaws |
US3060972A (en) | 1957-08-22 | 1962-10-30 | Bausch & Lomb | Flexible tube structures |
US3972734A (en) | 1957-12-27 | 1976-08-03 | Catalyst Research Corporation | Thermal deferred action battery |
US2959974A (en) | 1958-05-28 | 1960-11-15 | Melvin H Emrick | Forward and reverse friction drive tapping attachment |
DE1775926U (de) | 1958-06-11 | 1958-10-16 | Rudolf W Dipl Ing Ihmig | Kugelschreibermine. |
US2957353A (en) | 1958-08-26 | 1960-10-25 | Teleflex Inc | Connector |
US3032769A (en) | 1959-08-18 | 1962-05-08 | John R Palmer | Method of making a bracket |
US3078465A (en) | 1959-09-09 | 1963-02-26 | Bobrov Boris Sergueevitch | Instrument for stitching gastric stump |
US3080564A (en) | 1959-09-10 | 1963-03-12 | Strekopitov Alexey Alexeevich | Instrument for stitching hollow organs |
GB939929A (en) | 1959-10-30 | 1963-10-16 | Vasilii Fedotovich Goodov | Instrument for stitching blood vessels, intestines, bronchi and other soft tissues |
US3079606A (en) | 1960-01-04 | 1963-03-05 | Bobrov Boris Sergeevich | Instrument for placing lateral gastrointestinal anastomoses |
US3075062A (en) | 1960-02-02 | 1963-01-22 | J B T Instr Inc | Toggle switch |
US3035256A (en) | 1960-02-02 | 1962-05-15 | Thompson Ramo Wooldridge Inc | Remote frequency indicator |
US4034143A (en) | 1960-02-24 | 1977-07-05 | Catalyst Research Corporation | Thermal deferred action battery with interconnecting, foldable electrodes |
SU143738A1 (ru) | 1960-06-15 | 1960-11-30 | А.А. Стрекопытов | Способ ушивани ткани легкого двухр дными погружными швами |
US3026744A (en) | 1960-07-14 | 1962-03-27 | Cutler Hammer Inc | Motor operated and overriding manual drive for rotatable shaft operated devices |
US3204731A (en) | 1961-05-26 | 1965-09-07 | Gardner Denver Co | Positive engaging jaw clutch or brake |
US3196869A (en) | 1962-06-13 | 1965-07-27 | William M Scholl | Buttress pad and method of making the same |
US3166072A (en) | 1962-10-22 | 1965-01-19 | Jr John T Sullivan | Barbed clips |
US3180236A (en) | 1962-12-20 | 1965-04-27 | Beckett Harcum Co | Fluid motor construction |
US3252643A (en) | 1962-12-24 | 1966-05-24 | Strekopytov Alexey Alexcevich | Instrument for suturing living tissue |
US3266494A (en) | 1963-08-26 | 1966-08-16 | Possis Machine Corp | Powered forceps |
US3317105A (en) | 1964-03-25 | 1967-05-02 | Niiex Khirurgicheskoi Apparatu | Instrument for placing lateral intestinal anastomoses |
US3269630A (en) | 1964-04-30 | 1966-08-30 | Fleischer Harry | Stapling instrument |
US3269631A (en) | 1964-06-19 | 1966-08-30 | Takaro Timothy | Surgical stapler |
US3359978A (en) | 1964-10-26 | 1967-12-26 | Jr Raymond M Smith | Guide needle for flexible catheters |
US3317103A (en) | 1965-05-03 | 1967-05-02 | Cullen | Apparatus for handling hose or similar elongate members |
US3275211A (en) | 1965-05-10 | 1966-09-27 | United States Surgical Corp | Surgical stapler with replaceable cartridge |
US3357296A (en) | 1965-05-14 | 1967-12-12 | Keuneth W Lefever | Staple fastener |
US3315863A (en) | 1965-07-06 | 1967-04-25 | United States Surgical Corp | Medical instrument |
US3726755A (en) | 1966-09-29 | 1973-04-10 | Owens Corning Fiberglass Corp | High-strength foam material |
US3509629A (en) | 1966-10-01 | 1970-05-05 | Mitsubishi Electric Corp | Portable and adjustable contra-angle dental instrument |
US3494533A (en) | 1966-10-10 | 1970-02-10 | United States Surgical Corp | Surgical stapler for stitching body organs |
GB1210522A (en) | 1966-10-10 | 1970-10-28 | United States Surgical Corp | Instrument for placing lateral gastro-intestinal anastomoses |
US3490675A (en) | 1966-10-10 | 1970-01-20 | United States Surgical Corp | Instrument for placing lateral gastrointestinal anastomoses |
US3377893A (en) | 1967-03-06 | 1968-04-16 | John A. Shorb | Wrench having pivoted jaws adjustable by a lockable exterior camming sleeve |
US3499591A (en) | 1967-06-23 | 1970-03-10 | United States Surgical Corp | Instrument for placing lateral gastro-intestinal anastomoses |
NL6710441A (pt) | 1967-07-28 | 1969-01-30 | ||
US3480193A (en) | 1967-09-15 | 1969-11-25 | Robert E Ralston | Power-operable fastener applying device |
DE1791114B1 (de) | 1967-09-19 | 1971-12-02 | Vnii Chirurgitscheskoj Apparat | Chirurgisches Geraet zum Klammernaehen von Geweben |
US3503396A (en) | 1967-09-21 | 1970-03-31 | American Hospital Supply Corp | Atraumatic surgical clamp |
GB1217159A (en) | 1967-12-05 | 1970-12-31 | Coventry Gauge & Tool Co Ltd | Torque limiting device |
US3583393A (en) | 1967-12-26 | 1971-06-08 | Olympus Optical Co | Bendable tube assembly |
JPS4711908Y1 (pt) | 1968-01-18 | 1972-05-02 | ||
DE1775926A1 (de) | 1968-08-28 | 1972-01-27 | Ver Deutsche Metallwerke Ag | Versfaerkungen fuer Kunststoff-Bowdenzugfuehrungsschlaeuche ohne Drahtverstaerkung |
US3568675A (en) | 1968-08-30 | 1971-03-09 | Clyde B Harvey | Fistula and penetrating wound dressing |
US3551987A (en) | 1968-09-12 | 1971-01-05 | Jack E Wilkinson | Stapling clamp for gastrointestinal surgery |
US4369013A (en) | 1969-02-13 | 1983-01-18 | Velo-Bind, Inc. | Bookbinding strips |
US3640317A (en) | 1969-03-21 | 1972-02-08 | Jack Panfili | Clip for closing fragile stuffed casings |
US3661339A (en) | 1969-03-27 | 1972-05-09 | Nippon Kogaku Kk | Film rewinding mechanism for cameras |
US3797494A (en) | 1969-04-01 | 1974-03-19 | Alza Corp | Bandage for the administration of drug by controlled metering through microporous materials |
US3572159A (en) | 1969-06-12 | 1971-03-23 | Teleflex Inc | Motion transmitting remote control assembly |
US3635394A (en) | 1969-07-30 | 1972-01-18 | Rohe Scientific Corp | Automated clinical laboratory |
US3604561A (en) | 1969-08-07 | 1971-09-14 | Codman & Shurtleff | Multiple stapler cartridge |
US3643851A (en) | 1969-08-25 | 1972-02-22 | United States Surgical Corp | Skin stapler |
US3688966A (en) | 1969-11-10 | 1972-09-05 | Spotnails | Magazine and feed assembly for a fastener-driving tool |
US3709221A (en) | 1969-11-21 | 1973-01-09 | Pall Corp | Microporous nonadherent surgical dressing |
US3598943A (en) | 1969-12-01 | 1971-08-10 | Illinois Tool Works | Actuator assembly for toggle switch |
US3744495A (en) | 1970-01-02 | 1973-07-10 | M Johnson | Method of securing prolapsed vagina in cattle |
US3608549A (en) | 1970-01-15 | 1971-09-28 | Merrill Edward Wilson | Method of administering drugs and capsule therefor |
US3662939A (en) | 1970-02-26 | 1972-05-16 | United States Surgical Corp | Surgical stapler for skin and fascia |
FR2084475A5 (pt) | 1970-03-16 | 1971-12-17 | Brumlik George | |
US3618842A (en) | 1970-03-20 | 1971-11-09 | United States Surgical Corp | Surgical stapling cartridge with cylindrical driving cams |
US3902247A (en) | 1970-05-15 | 1975-09-02 | Siemens Ag | Device for operating dental hand pieces |
US3638652A (en) | 1970-06-01 | 1972-02-01 | James L Kelley | Surgical instrument for intraluminal anastomosis |
US3695646A (en) | 1970-06-18 | 1972-10-03 | Metal Matic Inc | Ball and socket pipe joint with clip spring |
US3685250A (en) | 1970-07-09 | 1972-08-22 | Woodman Co | Cam interrupted sealing jaws for product stripping |
US3661666A (en) | 1970-08-06 | 1972-05-09 | Philip Morris Inc | Method for making swab applicators |
US3650453A (en) | 1970-08-13 | 1972-03-21 | United States Surgical Corp | Staple cartridge with drive belt |
US3740994A (en) | 1970-10-13 | 1973-06-26 | Surgical Corp | Three stage medical instrument |
BE758685A (fr) | 1970-10-14 | 1971-05-10 | Vnii Khirurgicheskoi Apparatur | Appareil chirurgical pour la suture de tissus par des agrafes |
US3837555A (en) | 1970-12-14 | 1974-09-24 | Surgical Corp | Powering instrument for stapling skin and fascia |
US3717294A (en) | 1970-12-14 | 1973-02-20 | Surgical Corp | Cartridge and powering instrument for stapling skin and fascia |
US3799151A (en) | 1970-12-21 | 1974-03-26 | Olympus Optical Co | Controllably bendable tube of an endoscope |
US3727904A (en) | 1971-03-12 | 1973-04-17 | E Gabbey | Concentricity coil for screw threads |
US3746002A (en) | 1971-04-29 | 1973-07-17 | J Haller | Atraumatic surgical clamp |
US3724237A (en) | 1971-06-07 | 1973-04-03 | Black & Decker Mfg Co | Attachment coupling for power tool |
US3836171A (en) | 1971-07-07 | 1974-09-17 | Tokai Rika Co Ltd | Safety belt locking device |
CA960189A (en) | 1971-07-12 | 1974-12-31 | Hilti Aktiengesellschaft | Nail holder assembly |
US3752161A (en) | 1971-08-02 | 1973-08-14 | Minnesota Mining & Mfg | Fluid operated surgical tool |
US3747692A (en) | 1971-08-30 | 1973-07-24 | Parrott Bell Seltzer Park & Gi | Stonesetter{40 s hand tool |
US3851196A (en) | 1971-09-08 | 1974-11-26 | Xynetics Inc | Plural axis linear motor structure |
US3747603A (en) | 1971-11-03 | 1973-07-24 | B Adler | Cervical dilators |
US3883624A (en) | 1971-11-18 | 1975-05-13 | Grandview Ind Limited | Recovery and utilization of scrap in production of foamed thermoplastic polymeric products |
US3734207A (en) | 1971-12-27 | 1973-05-22 | M Fishbein | Battery powered orthopedic cutting tool |
US3825007A (en) | 1972-01-07 | 1974-07-23 | R Rand | Pledgets |
US3751902A (en) | 1972-02-22 | 1973-08-14 | Emhart Corp | Apparatus for installing insulation on a staple |
US3940844A (en) | 1972-02-22 | 1976-03-02 | Pci Group, Inc. | Method of installing an insulating sleeve on a staple |
US4198734A (en) | 1972-04-04 | 1980-04-22 | Brumlik George C | Self-gripping devices with flexible self-gripping means and method |
GB1339394A (en) | 1972-04-06 | 1973-12-05 | Vnii Khirurgicheskoi Apparatur | Dies for surgical stapling instruments |
US3819100A (en) | 1972-09-29 | 1974-06-25 | United States Surgical Corp | Surgical stapling instrument |
USRE28932E (en) | 1972-09-29 | 1976-08-17 | United States Surgical Corporation | Surgical stapling instrument |
US3892228A (en) | 1972-10-06 | 1975-07-01 | Olympus Optical Co | Apparatus for adjusting the flexing of the bending section of an endoscope |
US3821919A (en) | 1972-11-10 | 1974-07-02 | Illinois Tool Works | Staple |
US3887393A (en) | 1972-12-15 | 1975-06-03 | Bell & Howell Co | Battery holder assembly |
US3822818A (en) | 1973-02-20 | 1974-07-09 | A Strekopytov | Surgical instrument for joining osseous tissues by staples |
US3959879A (en) | 1973-02-26 | 1976-06-01 | Rockwell International Corporation | Electrically powered grass trimmer |
US3944163A (en) | 1973-03-24 | 1976-03-16 | Kabushiki Kaisha Tokai Rika Denki Seisakusho | Seat belt retractor |
US3826978A (en) | 1973-04-03 | 1974-07-30 | Dynalysis Of Princeton | Waveguide refractometer |
US3863940A (en) | 1973-04-04 | 1975-02-04 | Philip T Cummings | Wide opening collet |
US3808452A (en) | 1973-06-04 | 1974-04-30 | Gte Automatic Electric Lab Inc | Power supply system having redundant d. c. power supplies |
SU511939A1 (ru) | 1973-07-13 | 1976-04-30 | Центральная Научно-Исследовательская Лаборатория При 4-М Главном Управлении | Аппарат дл наложени дугообразного шва на большую кривизну желудка |
JPS5033988U (pt) | 1973-07-21 | 1975-04-11 | ||
US3885491A (en) | 1973-12-21 | 1975-05-27 | Illinois Tool Works | Locking staple |
US3899829A (en) | 1974-02-07 | 1975-08-19 | Fred Storm Ind Designs Inc | Holder and actuator means for surgical instruments |
JPS552966Y2 (pt) | 1974-02-08 | 1980-01-24 | ||
JPS543B2 (pt) | 1974-02-28 | 1979-01-05 | ||
US3952747A (en) | 1974-03-28 | 1976-04-27 | Kimmell Jr Garman O | Filter and filter insertion instrument |
US3863639A (en) | 1974-04-04 | 1975-02-04 | Richard N Kleaveland | Disposable visceral retainer |
CA1015829A (en) | 1974-05-23 | 1977-08-16 | Kurt Pokrandt | Current sensing circuitry |
US4169990A (en) | 1974-06-24 | 1979-10-02 | General Electric Company | Electronically commutated motor |
US4459519A (en) | 1974-06-24 | 1984-07-10 | General Electric Company | Electronically commutated motor systems and control therefor |
US3894174A (en) | 1974-07-03 | 1975-07-08 | Emhart Corp | Insulated staple and method of making the same |
US3973179A (en) | 1974-08-23 | 1976-08-03 | The Black And Decker Manufacturing Company | Modular cordless tools |
US3993072A (en) | 1974-08-28 | 1976-11-23 | Alza Corporation | Microporous drug delivery device |
DE2442260A1 (de) | 1974-09-04 | 1976-03-18 | Bosch Gmbh Robert | Handwerkzeugmaschine |
US3955581A (en) | 1974-10-18 | 1976-05-11 | United States Surgical Corporation | Three-stage surgical instrument |
DE2530261C2 (de) | 1974-10-22 | 1986-10-23 | Asea S.p.A., Mailand/Milano | Programmiereinrichtung für einen Manipulator |
US4129059A (en) | 1974-11-07 | 1978-12-12 | Eck William F Van | Staple-type fastener |
US3950686A (en) | 1974-12-11 | 1976-04-13 | Trw Inc. | Series redundant drive system |
US3999110A (en) | 1975-02-06 | 1976-12-21 | The Black And Decker Manufacturing Company | Battery pack and latch |
GB1491083A (en) | 1975-03-19 | 1977-11-09 | Newage Kitchens Ltd | Joint assemblies |
US4108211A (en) | 1975-04-28 | 1978-08-22 | Fuji Photo Optical Co., Ltd. | Articulated, four-way bendable tube structure |
SU566574A1 (ru) | 1975-05-04 | 1977-07-30 | Всесоюзный научно-исследовательский и испытательный институт медицинской техники | Аппарат дл наложени линейного скобочного шва на органы и ткани |
US4185701A (en) | 1975-05-19 | 1980-01-29 | Sps Technologies, Inc. | Tightening apparatus |
US4060089A (en) | 1975-09-03 | 1977-11-29 | United States Surgical Corporation | Surgical fastening method and device therefor |
US4027746A (en) | 1975-09-05 | 1977-06-07 | Shimano Industrial Company, Limited | Center-pull type caliper brake for a bicycle |
US4085337A (en) | 1975-10-07 | 1978-04-18 | Moeller Wolfgang W | Electric drill multi-functional apparatus |
US4047654A (en) | 1976-06-23 | 1977-09-13 | Alfredo Alvarado | Surgical stapler |
DE2628508A1 (de) | 1976-06-25 | 1977-12-29 | Hilti Ag | Schwenkmutter mit zwei u-foermigen scheiben |
US4054108A (en) | 1976-08-02 | 1977-10-18 | General Motors Corporation | Internal combustion engine |
US4100820A (en) | 1976-09-13 | 1978-07-18 | Joel Evett | Shift lever and integral handbrake apparatus |
AU518664B2 (en) | 1976-10-08 | 1981-10-15 | K. Jarvik Robert | Surgical' clip applicator |
US4226242A (en) | 1977-09-13 | 1980-10-07 | United States Surgical Corporation | Repeating hemostatic clip applying instruments and multi-clip cartridges therefor |
US4127227A (en) | 1976-10-08 | 1978-11-28 | United States Surgical Corporation | Wide fascia staple cartridge |
DE2649052C2 (de) | 1976-10-28 | 1979-01-25 | Roland Offsetmaschinenfabrik Faber & Schleicher Ag, 6050 Offenbach | Vorrichtung zum Ausschalten des Lagerspiels an Druckzylindern von Druckmaschinen, insbesondere Rotationsoffsetdruckmaschinen |
SU674747A1 (ru) | 1976-11-24 | 1979-07-25 | Всесоюзный научно-исследовательский и испытательный институт медицинской техники | Аппарат дл механического сшивани тканей |
FR2446509A1 (fr) | 1977-04-29 | 1980-08-08 | Garret Roger | Programmateur |
SU728848A1 (ru) | 1977-05-24 | 1980-04-25 | Всесоюзный научно-исследовательский и испытательный институт медицинской техники | Хирургический сшивающий аппарат |
US4304236A (en) | 1977-05-26 | 1981-12-08 | United States Surgical Corporation | Stapling instrument having an anvil-carrying part of particular geometric shape |
US4573468A (en) | 1977-05-26 | 1986-03-04 | United States Surgical Corporation | Hollow body organ stapling instrument and disposable cartridge employing relief vents |
US4135517A (en) | 1977-07-21 | 1979-01-23 | Minnesota Mining And Manufacturing Company | Femoral prosthesis trial fitting device |
US4452376A (en) | 1977-08-05 | 1984-06-05 | Charles H. Klieman | Hemostatic clip applicator |
CA1124605A (en) | 1977-08-05 | 1982-06-01 | Charles H. Klieman | Surgical stapler |
US4169476A (en) | 1977-08-12 | 1979-10-02 | Wolf Medical Instruments Corporation | Applicator for surgical clip |
USD261356S (en) | 1977-09-07 | 1981-10-20 | Ofrex Group Limited | Strip of insulated cable clips |
US5133727A (en) | 1990-05-10 | 1992-07-28 | Symbiosis Corporation | Radial jaw biopsy forceps |
US6264617B1 (en) | 1977-09-12 | 2001-07-24 | Symbiosis Corporation | Radial jaw biopsy forceps |
US4154122A (en) | 1977-09-16 | 1979-05-15 | Severin Hubert J | Hand-powered tool |
US4106620A (en) | 1977-10-03 | 1978-08-15 | Brimmer Frances M | Surgical blade dispenser |
JPS6060024B2 (ja) | 1977-10-19 | 1985-12-27 | 株式会社日立製作所 | エンジン制御方法 |
US4203444A (en) | 1977-11-07 | 1980-05-20 | Dyonics, Inc. | Surgical instrument suitable for closed surgery such as of the knee |
US4241861A (en) | 1977-12-20 | 1980-12-30 | Fleischer Harry N | Scissor-type surgical stapler |
US4160857A (en) | 1978-02-16 | 1979-07-10 | Codman & Shurtleff, Inc. | Canister and removable battery pack unit therefor |
US4900303A (en) | 1978-03-10 | 1990-02-13 | Lemelson Jerome H | Dispensing catheter and method |
US4190042A (en) | 1978-03-16 | 1980-02-26 | Manfred Sinnreich | Surgical retractor for endoscopes |
US4321002A (en) | 1978-03-27 | 1982-03-23 | Minnesota Mining And Manufacturing Company | Medical stapling device |
US4207898A (en) | 1978-03-27 | 1980-06-17 | Senco Products, Inc. | Intralumenal anastomosis surgical stapling instrument |
US4274304A (en) | 1978-03-29 | 1981-06-23 | Cooper Industries, Inc. | In-line reversing mechanism |
SU1036324A1 (ru) | 1978-03-31 | 1983-08-23 | Всесоюзный научно-исследовательский и испытательный институт медицинской техники | Хирургический сшивающий аппарат |
US4198982A (en) | 1978-03-31 | 1980-04-22 | Memorial Hospital For Cancer And Allied Diseases | Surgical stapling instrument and method |
US4191377A (en) | 1978-04-03 | 1980-03-04 | Bally Manufacturing Corporation | Indexing means for rotating drums of amusement apparatus |
GB2024012B (en) | 1978-04-10 | 1982-07-28 | Johnson & Johnson | Oxygen-generating surgical dressing |
DE2815486C2 (de) | 1978-04-10 | 1986-10-30 | Thermo Murg KG Apparatebau, 7886 Murg | Brennerofen |
US4180285A (en) | 1978-05-11 | 1979-12-25 | Reneau Bobby J | Articulated ball connector for use with pipeline |
DE2839990C2 (de) | 1978-09-14 | 1980-05-14 | Audi Nsu Auto Union Ag, 7107 Neckarsulm | Verfahren zum Umschmelzhärten der Oberfläche eines um seine Drehachse rotierenden Werkstücks, welche Oberfläche unterschiedlichen Abstand von der Drehachse hat |
US4321746A (en) | 1978-11-01 | 1982-03-30 | White Consolidated Industries, Inc. | Tool changer for vertical boring machine |
SU886897A1 (ru) | 1978-12-25 | 1981-12-07 | Всесоюзный Научно-Исследовательский Институт Медицинской Техники | Хирургический аппарат дл наложени боковых желудочнокишечных анастомозов |
SE419421B (sv) | 1979-03-16 | 1981-08-03 | Ove Larson | Bojlig arm i synnerhet robotarm |
US4340331A (en) | 1979-03-26 | 1982-07-20 | Savino Dominick J | Staple and anviless stapling apparatus therefor |
SU886900A1 (ru) | 1979-03-26 | 1981-12-07 | Всесоюзный научно-исследовательский и испытательный институт медицинской техники | Хирургический сшивающий аппарат дл наложени линейных швов |
JPS55138634A (en) | 1979-04-16 | 1980-10-29 | Kansai Electric Power Co Inc:The | Fault diagnosis apparatus of apparatus |
US4512038A (en) | 1979-04-27 | 1985-04-23 | University Of Medicine And Dentistry Of New Jersey | Bio-absorbable composite tissue scaffold |
US4261244A (en) | 1979-05-14 | 1981-04-14 | Senco Products, Inc. | Surgical staple |
US4274398A (en) | 1979-05-14 | 1981-06-23 | Scott Jr Frank B | Surgical retractor utilizing elastic tubes frictionally held in spaced notches |
US4289131A (en) | 1979-05-17 | 1981-09-15 | Ergo Instruments, Inc. | Surgical power tool |
US4272662A (en) | 1979-05-21 | 1981-06-09 | C & K Components, Inc. | Toggle switch with shaped wire spring contact |
US4275813A (en) | 1979-06-04 | 1981-06-30 | United States Surgical Corporation | Coherent surgical staple array |
US4272002A (en) | 1979-07-23 | 1981-06-09 | Lawrence M. Smith | Internal surgical stapler |
US4296654A (en) | 1979-08-20 | 1981-10-27 | Mercer Albert E | Adjustable angled socket wrench extension |
US4250436A (en) | 1979-09-24 | 1981-02-10 | The Singer Company | Motor braking arrangement and method |
SU942719A1 (ru) | 1979-11-23 | 1982-07-15 | Всесоюзный научно-исследовательский и испытательный институт медицинской техники | Хирургический сшивающий аппарат дл наложени линейных швов |
US4357940A (en) | 1979-12-13 | 1982-11-09 | Detroit Neurosurgical Foundation | Tissue pneumatic separator structure |
SU1022703A1 (ru) | 1979-12-20 | 1983-06-15 | Всесоюзный научно-исследовательский и испытательный институт медицинской техники | Хирургический аппарат дл наложени компрессионных швов |
CA1205525A (en) | 1980-02-01 | 1986-06-03 | Russell H. Taggart | Current detector |
US4278091A (en) | 1980-02-01 | 1981-07-14 | Howmedica, Inc. | Soft tissue retainer for use with bone implants, especially bone staples |
US4429695A (en) | 1980-02-05 | 1984-02-07 | United States Surgical Corporation | Surgical instruments |
AU534210B2 (en) | 1980-02-05 | 1984-01-12 | United States Surgical Corporation | Surgical staples |
US4376380A (en) | 1980-02-05 | 1983-03-15 | John D. Brush & Co., Inc. | Combination lock |
JPS56112235A (en) | 1980-02-07 | 1981-09-04 | Vnii Ispytatel Med Tech | Surgical suturing implement for suturing staple |
SU1042742A1 (ru) | 1980-02-08 | 1983-09-23 | Всесоюзный Научно-Исследовательский Институт Клинической И Экспериментальной Хирургии | Хирургический сшивающий аппарат дл наложени линейных швов |
US4368731A (en) | 1980-02-12 | 1983-01-18 | Schramm Heinrich W | Pistol-type syringe |
US4396139A (en) | 1980-02-15 | 1983-08-02 | Technalytics, Inc. | Surgical stapling system, apparatus and staple |
US4317451A (en) | 1980-02-19 | 1982-03-02 | Ethicon, Inc. | Plastic surgical staple |
US4319576A (en) | 1980-02-26 | 1982-03-16 | Senco Products, Inc. | Intralumenal anastomosis surgical stapling instrument |
US4312363A (en) | 1980-02-26 | 1982-01-26 | Senco Products, Inc. | Surgical tissue thickness measuring instrument |
US4361057A (en) | 1980-02-28 | 1982-11-30 | John Sigan | Handlebar adjusting device |
US4289133A (en) | 1980-02-28 | 1981-09-15 | Senco Products, Inc. | Cut-through backup washer for the scalpel of an intraluminal surgical stapling instrument |
US4296881A (en) | 1980-04-03 | 1981-10-27 | Sukoo Lee | Surgical stapler using cartridge |
US4428376A (en) | 1980-05-02 | 1984-01-31 | Ethicon Inc. | Plastic surgical staple |
US4331277A (en) | 1980-05-23 | 1982-05-25 | United States Surgical Corporation | Self-contained gas powered surgical stapler |
US5445604A (en) | 1980-05-22 | 1995-08-29 | Smith & Nephew Associated Companies, Ltd. | Wound dressing with conformable elastomeric wound contact layer |
US4293604A (en) | 1980-07-11 | 1981-10-06 | Minnesota Mining And Manufacturing Company | Flocked three-dimensional network mat |
US4380312A (en) | 1980-07-17 | 1983-04-19 | Minnesota Mining And Manufacturing Company | Stapling tool |
US4606343A (en) | 1980-08-18 | 1986-08-19 | United States Surgical Corporation | Self-powered surgical fastening instrument |
US4328839A (en) | 1980-09-19 | 1982-05-11 | Drilling Development, Inc. | Flexible drill pipe |
US4353371A (en) | 1980-09-24 | 1982-10-12 | Cosman Eric R | Longitudinally, side-biting, bipolar coagulating, surgical instrument |
DE3036217C2 (de) | 1980-09-25 | 1986-12-18 | Siemens AG, 1000 Berlin und 8000 München | Fernbedienbares medizinisches Gerät |
US4349028A (en) | 1980-10-03 | 1982-09-14 | United States Surgical Corporation | Surgical stapling apparatus having self-contained pneumatic system for completing manually initiated motion sequence |
AU542936B2 (en) | 1980-10-17 | 1985-03-28 | United States Surgical Corporation | Self centering staple |
JPS5778844A (en) | 1980-11-04 | 1982-05-17 | Kogyo Gijutsuin | Lasre knife |
US4500024A (en) | 1980-11-19 | 1985-02-19 | Ethicon, Inc. | Multiple clip applier |
US4430997A (en) | 1980-11-19 | 1984-02-14 | Ethicon, Inc. | Multiple clip applier |
US4347450A (en) | 1980-12-10 | 1982-08-31 | Colligan Wallace M | Portable power tool |
US4451743A (en) | 1980-12-29 | 1984-05-29 | Citizen Watch Company Limited | DC-to-DC Voltage converter |
SU1235495A1 (ru) | 1980-12-29 | 1986-06-07 | Всесоюзный научно-исследовательский и испытательный институт медицинской техники | Устройство дл наложени компрессионных анастомозов |
US4409057A (en) | 1981-01-19 | 1983-10-11 | Minnesota Mining & Manufacturing Company | Staple supporting and removing strip |
US4394613A (en) | 1981-01-19 | 1983-07-19 | California Institute Of Technology | Full-charge indicator for battery chargers |
US4382326A (en) | 1981-01-19 | 1983-05-10 | Minnesota Mining & Manufacturing Company | Staple supporting and staple removing strip |
US4348603A (en) | 1981-01-29 | 1982-09-07 | Black & Decker Inc. | Printed-circuit board and trigger-switch arrangement for a portable electric tool |
FR2499395A1 (fr) | 1981-02-10 | 1982-08-13 | Amphoux Andre | Conduit deformable tel que bras d'aspiration de fluide gazeux |
FR2499782A1 (fr) | 1981-02-11 | 1982-08-13 | Faiveley Sa | Procede pour regler l'alimentation d'un moteur a courant continu et dispositif pour sa mise en oeuvre |
US4379457A (en) | 1981-02-17 | 1983-04-12 | United States Surgical Corporation | Indicator for surgical stapler |
US4350151A (en) | 1981-03-12 | 1982-09-21 | Lone Star Medical Products, Inc. | Expanding dilator |
SU1009439A1 (ru) | 1981-03-24 | 1983-04-07 | Предприятие П/Я Р-6094 | Хирургический сшивающий аппарат дл наложени анастомозов на пищеварительном тракте |
US4389963A (en) | 1981-03-26 | 1983-06-28 | Pearson Richard W | Apparatus and method for monitoring periodic dispensation of pills |
US4526174A (en) | 1981-03-27 | 1985-07-02 | Minnesota Mining And Manufacturing Company | Staple and cartridge for use in a tissue stapling device and a tissue closing method |
SU982676A1 (ru) | 1981-04-07 | 1982-12-23 | Всесоюзный научно-исследовательский и испытательный институт медицинской техники | Хирургическа скобка |
DE3115192C2 (de) | 1981-04-15 | 1983-05-19 | Christian Prof. Dr.med. 2400 Lübeck Krüger | Medizinisches Instrument |
US4406621A (en) | 1981-05-04 | 1983-09-27 | Young Dental Manufacturing Company, Inc. | Coupling ensemble for dental handpiece |
US4383634A (en) | 1981-05-26 | 1983-05-17 | United States Surgical Corporation | Surgical stapler apparatus with pivotally mounted actuator assemblies |
JPS57211361A (en) | 1981-06-23 | 1982-12-25 | Terumo Corp | Liquid injecting apparatus |
US4485816A (en) | 1981-06-25 | 1984-12-04 | Alchemia | Shape-memory surgical staple apparatus and method for use in surgical suturing |
US4421264A (en) | 1981-06-26 | 1983-12-20 | International Business Machines Corporation | Variable thickness set compensation for stapler |
FR2509490B1 (fr) | 1981-07-09 | 1985-02-22 | Tractel Sa | Mecanisme de debrayage pour appareil de traction agissant sur un cable qui le traverse |
US4486928A (en) | 1981-07-09 | 1984-12-11 | Magnavox Government And Industrial Electronics Company | Apparatus for tool storage and selection |
US4373147A (en) | 1981-07-23 | 1983-02-08 | General Signal Corporation | Torque compensated electric motor |
US4475679A (en) | 1981-08-07 | 1984-10-09 | Fleury Jr George J | Multi-staple cartridge for surgical staplers |
US4417890A (en) | 1981-08-17 | 1983-11-29 | Baxter Travenol Laboratories, Inc. | Antibacterial closure |
US4632290A (en) | 1981-08-17 | 1986-12-30 | United States Surgical Corporation | Surgical stapler apparatus |
US4576167A (en) | 1981-09-03 | 1986-03-18 | United States Surgical Corporation | Surgical stapler apparatus with curved shaft |
US4461305A (en) | 1981-09-04 | 1984-07-24 | Cibley Leonard J | Automated biopsy device |
JPS5844033A (ja) | 1981-09-11 | 1983-03-14 | 富士写真光機株式会社 | 内視鏡用アダプタ−型処置具導入装置 |
US4402445A (en) | 1981-10-09 | 1983-09-06 | United States Surgical Corporation | Surgical fastener and means for applying same |
JPS5861747A (ja) | 1981-10-08 | 1983-04-12 | 馬渕 健一 | 美容具 |
DE3277287D1 (en) | 1981-10-15 | 1987-10-22 | Olympus Optical Co | Endoscope system with an electric bending mechanism |
US4483562A (en) | 1981-10-16 | 1984-11-20 | Arnold Schoolman | Locking flexible shaft device with live distal end attachment |
US4809695A (en) | 1981-10-21 | 1989-03-07 | Owen M. Gwathmey | Suturing assembly and method |
US4416276A (en) | 1981-10-26 | 1983-11-22 | Valleylab, Inc. | Adaptive, return electrode monitoring system |
US4415112A (en) | 1981-10-27 | 1983-11-15 | United States Surgical Corporation | Surgical stapling assembly having resiliently mounted anvil |
JPS5878639A (ja) | 1981-11-04 | 1983-05-12 | オリンパス光学工業株式会社 | 内視鏡 |
US4423456A (en) | 1981-11-13 | 1983-12-27 | Medtronic, Inc. | Battery reversal protection |
JPS5887494U (ja) | 1981-12-05 | 1983-06-14 | 株式会社モリタ製作所 | 医療用小型モ−タの速度制御装置 |
US4442964A (en) | 1981-12-07 | 1984-04-17 | Senco Products, Inc. | Pressure sensitive and working-gap controlled surgical stapling instrument |
US4448194A (en) | 1982-02-03 | 1984-05-15 | Ethicon, Inc. | Full stroke compelling mechanism for surgical instrument with drum drive |
US4724840A (en) | 1982-02-03 | 1988-02-16 | Ethicon, Inc. | Surgical fastener applier with rotatable front housing and laterally extending curved needle for guiding a flexible pusher |
US4471781A (en) | 1982-02-03 | 1984-09-18 | Ethicon, Inc. | Surgical instrument with rotatable front housing and latch mechanism |
US4586502A (en) | 1982-02-03 | 1986-05-06 | Ethicon, Inc. | Surgical instrument actuator with non-collinear hydraulic pistons |
US4478220A (en) | 1982-02-05 | 1984-10-23 | Ethicon, Inc. | Ligating clip cartridge |
US4480641A (en) | 1982-02-05 | 1984-11-06 | Ethicon, Inc. | Tip configuration for a ligating clip applier |
US4471780A (en) | 1982-02-05 | 1984-09-18 | Ethicon, Inc. | Multiple ligating clip applier instrument |
DE3204532C2 (de) | 1982-02-10 | 1983-12-08 | B. Braun Melsungen Ag, 3508 Melsungen | Chirurgische Hautklammer |
SU1114405A1 (ru) | 1982-02-23 | 1984-09-23 | Всесоюзный научно-исследовательский и испытательный институт медицинской техники | Хирургический сшивающий аппарат дл наложени компрессионных анастомозов на органы пищеварительного тракта |
US4425915A (en) | 1982-02-26 | 1984-01-17 | Ethicon, Inc. | Surgical clip applier with in-line cartridge and interruptable biased feeder |
DE3210466A1 (de) | 1982-03-22 | 1983-09-29 | Peter Dipl.-Kfm. Dr. 6230 Frankfurt Gschaider | Verfahren und vorrichtung zur durchfuehrung von handhabungsprozessen |
USD278081S (en) | 1982-04-02 | 1985-03-19 | United States Surgical Corporation | Linear anastomosis surgical staple cartridge |
US4408692A (en) | 1982-04-12 | 1983-10-11 | The Kendall Company | Sterile cover for instrument |
US4523707A (en) | 1982-05-04 | 1985-06-18 | Blake Joseph W Iii | Surgical stapler |
US4664305A (en) | 1982-05-04 | 1987-05-12 | Blake Joseph W Iii | Surgical stapler |
US4485817A (en) | 1982-05-28 | 1984-12-04 | United States Surgical Corporation | Surgical stapler apparatus with flexible shaft |
US4473077A (en) | 1982-05-28 | 1984-09-25 | United States Surgical Corporation | Surgical stapler apparatus with flexible shaft |
US4467805A (en) | 1982-08-25 | 1984-08-28 | Mamoru Fukuda | Skin closure stapling device for surgical procedures |
US4488523A (en) | 1982-09-24 | 1984-12-18 | United States Surgical Corporation | Flexible, hydraulically actuated device for applying surgical fasteners |
JPS5949356U (ja) | 1982-09-25 | 1984-04-02 | 新正工業株式会社 | カセツト式乾電池ケ−ス |
US4476864A (en) | 1982-09-29 | 1984-10-16 | Jirayr Tezel | Combined multiple punch and single punch hair transplant cutting device |
FR2534801A1 (fr) | 1982-10-21 | 1984-04-27 | Claracq Michel | Dispositif d'occlusion partielle d'un vaisseau, en particulier de la veine cave caudale, et partie constitutive de ce dispositif |
US4604786A (en) | 1982-11-05 | 1986-08-12 | The Grigoleit Company | Method of making a composite article including a body having a decorative metal plate attached thereto |
US4790225A (en) | 1982-11-24 | 1988-12-13 | Panduit Corp. | Dispenser of discrete cable ties provided on a continuous ribbon of cable ties |
US4676245A (en) | 1983-02-09 | 1987-06-30 | Mamoru Fukuda | Interlocking surgical staple assembly |
JPS59163608A (ja) | 1983-03-08 | 1984-09-14 | Hitachi Koki Co Ltd | ジグソ− |
JPS59168848A (ja) | 1983-03-11 | 1984-09-22 | エチコン・インコ−ポレ−テツド | 非金属製の生物に適合性の無菌の外科装置 |
US4652820A (en) | 1983-03-23 | 1987-03-24 | North American Philips Corporation | Combined position sensor and magnetic motor or bearing |
US4569346A (en) | 1983-03-30 | 1986-02-11 | United States Surgical Corporation | Safety apparatus for surgical occluding and cutting device |
US4556058A (en) | 1983-08-17 | 1985-12-03 | United States Surgical Corporation | Apparatus for ligation and division with fixed jaws |
US4506671A (en) | 1983-03-30 | 1985-03-26 | United States Surgical Corporation | Apparatus for applying two-part surgical fasteners |
US4481458A (en) | 1983-04-11 | 1984-11-06 | Levitt-Safety Limited | Miners lamp power pack |
US4530357A (en) | 1983-04-18 | 1985-07-23 | Pawloski James A | Fluid actuated orthopedic tool |
GB2138298B (en) | 1983-04-21 | 1986-11-05 | Hundon Forge Ltd | Pellet implanter |
US4522327A (en) | 1983-05-18 | 1985-06-11 | United States Surgical Corporation | Surgical fastener applying apparatus |
US4527724A (en) | 1983-06-10 | 1985-07-09 | Senmed, Inc. | Disposable linear surgical stapling instrument |
US4532927A (en) | 1983-06-20 | 1985-08-06 | Ethicon, Inc. | Two-piece tissue fastener with non-reentry bent leg staple and retaining receiver |
US4548202A (en) | 1983-06-20 | 1985-10-22 | Ethicon, Inc. | Mesh tissue fasteners |
GR81919B (pt) | 1983-06-20 | 1984-12-12 | Ethicon Inc | |
US4573469A (en) | 1983-06-20 | 1986-03-04 | Ethicon, Inc. | Two-piece tissue fastener with coinable leg staple and retaining receiver and method and instrument for applying same |
US4531522A (en) | 1983-06-20 | 1985-07-30 | Ethicon, Inc. | Two-piece tissue fastener with locking top and method for applying same |
US4693248A (en) | 1983-06-20 | 1987-09-15 | Ethicon, Inc. | Two-piece tissue fastener with deformable retaining receiver |
DE3325282C2 (de) | 1983-07-13 | 1986-09-25 | Howmedica International, Inc., 2301 Schönkirchen | Verfahren zur Ladung eines Akkumulators |
SU1175891A1 (ru) | 1983-08-16 | 1985-08-30 | Предприятие П/Я А-7840 | Устройство дл формовани изделий |
US4944443A (en) | 1988-04-22 | 1990-07-31 | Innovative Surgical Devices, Inc. | Surgical suturing instrument and method |
US4669647A (en) | 1983-08-26 | 1987-06-02 | Technalytics, Inc. | Surgical stapler |
US4530453A (en) | 1983-10-04 | 1985-07-23 | United States Surgical Corporation | Surgical fastener applying apparatus |
US4667674A (en) | 1983-10-04 | 1987-05-26 | United States Surgical Corporation | Surgical fastener exhibiting improved hemostasis |
US4589416A (en) | 1983-10-04 | 1986-05-20 | United States Surgical Corporation | Surgical fastener retainer member assembly |
US4505414A (en) | 1983-10-12 | 1985-03-19 | Filipi Charles J | Expandable anvil surgical stapler |
US4610383A (en) | 1983-10-14 | 1986-09-09 | Senmed, Inc. | Disposable linear surgical stapler |
US4571213A (en) | 1983-11-17 | 1986-02-18 | Nikko Co., Ltd. | Direction-converting device for a toy car |
JPS60113007A (ja) | 1983-11-24 | 1985-06-19 | Nissan Motor Co Ltd | 内燃機関の吸・排気弁制御装置 |
US4565109A (en) | 1983-12-27 | 1986-01-21 | Tsay Chi Chour | Instantaneous direction changing rotation mechanism |
US4576165A (en) | 1984-01-23 | 1986-03-18 | United States Surgical Corporation | Surgical ligation and cutting device with safety means |
US4635638A (en) | 1984-02-07 | 1987-01-13 | Galil Advanced Technologies Ltd. | Power-driven gripping tool particularly useful as a suturing device |
US4589870A (en) | 1984-02-21 | 1986-05-20 | Indicon, Inc. | Incremental actuator for syringe |
USD287278S (en) | 1984-02-21 | 1986-12-16 | Senmed, Inc. | Flexible surgical stapler |
JPS60137406U (ja) | 1984-02-24 | 1985-09-11 | シ−アイ化成株式会社 | マグネツトシ−ト |
US4600037A (en) | 1984-03-19 | 1986-07-15 | Texas Eastern Drilling Systems, Inc. | Flexible drill pipe |
US4612933A (en) | 1984-03-30 | 1986-09-23 | Senmed, Inc. | Multiple-load cartridge assembly for a linear surgical stapling instrument |
US4608980A (en) | 1984-04-13 | 1986-09-02 | Osada Electric Co., Ltd. | Laser hand piece |
US4619391A (en) | 1984-04-18 | 1986-10-28 | Acme United Corporation | Surgical stapling instrument |
US4607638A (en) | 1984-04-20 | 1986-08-26 | Design Standards Corporation | Surgical staples |
JPS60232124A (ja) | 1984-05-04 | 1985-11-18 | 旭光学工業株式会社 | 内視鏡の湾曲操作装置 |
US5002553A (en) | 1984-05-14 | 1991-03-26 | Surgical Systems & Instruments, Inc. | Atherectomy system with a clutch |
US4894051A (en) | 1984-05-14 | 1990-01-16 | Surgical Systems & Instruments, Inc. | Atherectomy system with a biasing sleeve and method of using the same |
US4628636A (en) | 1984-05-18 | 1986-12-16 | Holmes-Hally Industries, Inc. | Garage door operator mechanism |
DE3419477C1 (de) | 1984-05-24 | 1985-11-28 | Hörmann KG Antriebs- und Steuerungstechnik, 4834 Harsewinkel | Getriebe zur UEberfuehrung einer rotatorischen in eine translatorische Bewegung |
US5464013A (en) | 1984-05-25 | 1995-11-07 | Lemelson; Jerome H. | Medical scanning and treatment system and method |
US4781186A (en) | 1984-05-30 | 1988-11-01 | Devices For Vascular Intervention, Inc. | Atherectomy device having a flexible housing |
GB8417562D0 (en) | 1984-07-10 | 1984-08-15 | Surgical Design Services | Fasteners |
US4605004A (en) | 1984-07-16 | 1986-08-12 | Ethicon, Inc. | Surgical instrument for applying fasteners said instrument including force supporting means (case IV) |
DE3426173A1 (de) | 1984-07-16 | 1986-01-23 | Hilti Ag, Schaan | Eintreibgeraet fuer befestigungselemente, wie naegel, klammern und dergleichen |
US4607636A (en) | 1984-07-16 | 1986-08-26 | Ethicon, Inc. | Surgical instrument for applying fasteners having tissue locking means for maintaining the tissue in the instrument while applying the fasteners (case I) |
IN165375B (pt) | 1984-07-16 | 1989-10-07 | Ethicon Inc | |
US4591085A (en) | 1984-07-16 | 1986-05-27 | Ethicon, Inc. | Surgical instrument for applying fasteners, said instrument having an improved trigger interlocking mechanism (Case VI) |
US4741336A (en) | 1984-07-16 | 1988-05-03 | Ethicon, Inc. | Shaped staples and slotted receivers (case VII) |
US4585153A (en) | 1984-07-16 | 1986-04-29 | Ethicon, Inc. | Surgical instrument for applying two-piece fasteners comprising frictionally held U-shaped staples and receivers (Case III) |
DE3427329A1 (de) | 1984-07-25 | 1986-01-30 | Mannesmann Kienzle GmbH, 7730 Villingen-Schwenningen | Verfahren zum positionieren eines einem geschwindigkeitsbegrenzer zugeordneten schalters |
US4655222A (en) | 1984-07-30 | 1987-04-07 | Ethicon, Inc. | Coated surgical staple |
US4754909A (en) | 1984-08-09 | 1988-07-05 | Barker John M | Flexible stapler |
US4671445A (en) | 1984-08-09 | 1987-06-09 | Baxter Travenol Laboratories, Inc. | Flexible surgical stapler assembly |
US4560915A (en) | 1984-08-23 | 1985-12-24 | Wen Products, Inc. | Electronic charging circuit for battery operated appliances |
US4589582A (en) | 1984-08-23 | 1986-05-20 | Senmed, Inc. | Cartridge and driver assembly for a surgical stapling instrument |
IL73079A (en) | 1984-09-26 | 1989-01-31 | Porat Michael | Gripper means for medical instruments |
USD286180S (en) | 1984-10-16 | 1986-10-14 | United States Surgical Corporation | Surgical fastener |
US4633861A (en) | 1984-10-19 | 1987-01-06 | Senmed, Inc. | Surgical stapling instrument with jaw clamping mechanism |
US4566620A (en) | 1984-10-19 | 1986-01-28 | United States Surgical Corporation | Articulated surgical fastener applying apparatus |
US4608981A (en) | 1984-10-19 | 1986-09-02 | Senmed, Inc. | Surgical stapling instrument with staple height adjusting mechanism |
US4767044A (en) | 1984-10-19 | 1988-08-30 | United States Surgical Corporation | Surgical fastener applying apparatus |
US4633874A (en) | 1984-10-19 | 1987-01-06 | Senmed, Inc. | Surgical stapling instrument with jaw latching mechanism and disposable staple cartridge |
US4605001A (en) | 1984-10-19 | 1986-08-12 | Senmed, Inc. | Surgical stapling instrument with dual staple height mechanism |
US4580712A (en) | 1984-10-19 | 1986-04-08 | United States Surgical Corporation | Surgical fastener applying apparatus with progressive application of fastener |
US4573622A (en) | 1984-10-19 | 1986-03-04 | United States Surgical Corporation | Surgical fastener applying apparatus with variable fastener arrays |
IT1180106B (it) | 1984-11-05 | 1987-09-23 | Olivetti & Co Spa | Circuito per il pilotaggio dei motori elettrici di selezione tabulazione ed interlinea di una macchina per scrivere elettronica |
US4949707A (en) | 1984-11-08 | 1990-08-21 | Minnesota Scientific, Inc. | Retractor apparatus |
US4787387A (en) | 1984-11-08 | 1988-11-29 | American Cyanamid Company | Surgical closure element |
DE3543096A1 (de) | 1984-12-05 | 1986-06-05 | Olympus Optical Co., Ltd., Tokio/Tokyo | Vorrichtung zur zertruemmerung von steinen, wie nieren- und gallensteinen oder dergleichen |
US4646722A (en) | 1984-12-10 | 1987-03-03 | Opielab, Inc. | Protective endoscope sheath and method of installing same |
SU1271497A1 (ru) | 1985-01-07 | 1986-11-23 | Научно-производственное объединение "Мединструмент" | Устройство дл сведени краев раны |
US4828542A (en) | 1986-08-29 | 1989-05-09 | Twin Rivers Engineering | Foam substrate and micropackaged active ingredient particle composite dispensing materials |
US4671278A (en) | 1985-01-14 | 1987-06-09 | Thomas J. Fogarty | Scalp hemostatic clip and dispenser therefor |
US4641076A (en) | 1985-01-23 | 1987-02-03 | Hall Surgical-Division Of Zimmer, Inc. | Method and apparatus for sterilizing and charging batteries |
US4705038A (en) | 1985-01-23 | 1987-11-10 | Dyonics, Inc. | Surgical system for powered instruments |
US4643173A (en) | 1985-01-29 | 1987-02-17 | Bell John H | Heated traction belt |
JPS61129692U (pt) | 1985-02-02 | 1986-08-14 | ||
US4651734A (en) | 1985-02-08 | 1987-03-24 | The United States Of America As Represented By The United States Department Of Energy | Electrosurgical device for both mechanical cutting and coagulation of bleeding |
JPH0663165B2 (ja) | 1985-11-20 | 1994-08-17 | ユニ・チヤ−ム株式会社 | 不織布の製造方法および装置 |
US4569469A (en) | 1985-02-15 | 1986-02-11 | Minnesota Mining And Manufacturing Company | Bone stapler cartridge |
IL74405A0 (en) | 1985-02-21 | 1985-05-31 | Moshe Meller | Illuminated dental drill |
US4617935A (en) | 1985-03-12 | 1986-10-21 | Ndm Corporation | Medical electrode |
JPS61209647A (ja) | 1985-03-14 | 1986-09-17 | 須广 久善 | 血管吻合用の切開口拡開器 |
JPS635697Y2 (pt) | 1985-04-04 | 1988-02-17 | ||
JPS61235446A (ja) | 1985-04-11 | 1986-10-20 | Karupu Kogyo Kk | 産業ロボツト用外被管 |
SU1377052A1 (ru) | 1985-04-17 | 1988-02-28 | Всесоюзный онкологический научный центр | Устройство дл соединени полых органов |
US4833937A (en) | 1985-04-22 | 1989-05-30 | Shimano Industrial Company Limited | Adjusting device for a control cable for a bicycle |
US4807628A (en) | 1985-04-26 | 1989-02-28 | Edward Weck & Company, Inc. | Method and apparatus for storing, dispensing, and applying surgical staples |
DE3515659C1 (de) | 1985-05-02 | 1986-08-28 | Goetze Ag, 5093 Burscheid | Kolbenring |
US4671280A (en) | 1985-05-13 | 1987-06-09 | Ethicon, Inc. | Surgical fastening device and method for manufacture |
US4642618A (en) | 1985-07-23 | 1987-02-10 | Ibm Corporation | Tool failure detector |
US5012411A (en) | 1985-07-23 | 1991-04-30 | Charles J. Policastro | Apparatus for monitoring, storing and transmitting detected physiological information |
US4665916A (en) | 1985-08-09 | 1987-05-19 | United States Surgical Corporation | Surgical stapler apparatus |
US4643731A (en) | 1985-08-16 | 1987-02-17 | Alza Corporation | Means for providing instant agent from agent dispensing system |
US4750488A (en) | 1986-05-19 | 1988-06-14 | Sonomed Technology, Inc. | Vibration apparatus preferably for endoscopic ultrasonic aspirator |
US4750902A (en) | 1985-08-28 | 1988-06-14 | Sonomed Technology, Inc. | Endoscopic ultrasonic aspirators |
US4728020A (en) | 1985-08-30 | 1988-03-01 | United States Surgical Corporation | Articulated surgical fastener applying apparatus |
SE457228B (sv) | 1985-09-10 | 1988-12-12 | Vnii Ispytatel Med Tech | Kirurgiskt instrument foer anbringande av linjaera bygelsuturer |
SU1377053A1 (ru) | 1985-10-02 | 1988-02-28 | В. Г. Сахаутдинов, Р. А. Талипов, Р. М. Халиков и 3. X. Гарифуллин | Хирургический сшивающий аппарат |
US4610250A (en) | 1985-10-08 | 1986-09-09 | United States Surgical Corporation | Two-part surgical fastener for fascia wound approximation |
US4715520A (en) | 1985-10-10 | 1987-12-29 | United States Surgical Corporation | Surgical fastener applying apparatus with tissue edge control |
US4721099A (en) | 1985-10-30 | 1988-01-26 | Kabushiki Kaisha Machida Seisakusho | Operating mechanism for bendable section of endoscope |
EP0226426B1 (en) | 1985-12-06 | 1990-05-16 | Desoutter, Limited | Two speed gearbox |
SU1333319A2 (ru) | 1985-12-10 | 1987-08-30 | Петрозаводский государственный университет им.О.В.Куусинена | Ушиватель полых органов |
US4634419A (en) | 1985-12-13 | 1987-01-06 | Cooper Lasersonics, Inc. | Angulated ultrasonic surgical handpieces and method for their production |
USD297764S (en) | 1985-12-18 | 1988-09-20 | Ethicon, Inc. | Surgical staple cartridge |
US4679719A (en) | 1985-12-27 | 1987-07-14 | Senco Products, Inc. | Electronic control for a pneumatic fastener driving tool |
USD286442S (en) | 1985-12-31 | 1986-10-28 | United States Surgical Corporation | Surgical fastener |
US4763669A (en) | 1986-01-09 | 1988-08-16 | Jaeger John C | Surgical instrument with adjustable angle of operation |
DE3603121A1 (de) | 1986-02-01 | 1987-10-29 | Hoermann Kg Antrieb Steuertec | Geraet zur ueberfuehrung einer rotatorischen in eine translatorische bewegung mittels zweier in speichertrommeln ueberfuehrbaren straenge |
US4728876A (en) | 1986-02-19 | 1988-03-01 | Minnesota Mining And Manufacturing Company | Orthopedic drive assembly |
US4672964A (en) | 1986-02-21 | 1987-06-16 | Dee Robert N | Scalpel with universally adjustable blade |
US4662555A (en) | 1986-03-11 | 1987-05-05 | Edward Weck & Company, Inc. | Surgical stapler |
US4675944A (en) | 1986-03-17 | 1987-06-30 | Wells Daryl F | Pneumatic meat saw |
JPS62221897A (ja) | 1986-03-24 | 1987-09-29 | Mitsubishi Electric Corp | 電動機の制御装置 |
US4903697A (en) | 1986-03-27 | 1990-02-27 | Semion Resnick | Cartridge assembly for a surgical stapling instrument |
US4700703A (en) | 1986-03-27 | 1987-10-20 | Semion Resnick | Cartridge assembly for a surgical stapling instrument |
US4909789A (en) | 1986-03-28 | 1990-03-20 | Olympus Optical Co., Ltd. | Observation assisting forceps |
US4827911A (en) | 1986-04-02 | 1989-05-09 | Cooper Lasersonics, Inc. | Method and apparatus for ultrasonic surgical fragmentation and removal of tissue |
US4988334A (en) | 1986-04-09 | 1991-01-29 | Valleylab, Inc. | Ultrasonic surgical system with aspiration tubulation connector |
US4747820A (en) | 1986-04-09 | 1988-05-31 | Cooper Lasersonics, Inc. | Irrigation/aspiration manifold and fittings for ultrasonic surgical aspiration system |
JPS62170011U (pt) | 1986-04-16 | 1987-10-28 | ||
JPH01500966A (ja) | 1986-04-21 | 1989-04-06 | グローベ コントロール フイナンツ アクチエンゲゼルシヤフト | 吻合部を作成する装置と方法 |
SU1561964A1 (ru) | 1986-04-24 | 1990-05-07 | Благовещенский государственный медицинский институт | Хирургический сшивающий аппарат |
US4688555A (en) | 1986-04-25 | 1987-08-25 | Circon Corporation | Endoscope with cable compensating mechanism |
US4691703A (en) | 1986-04-25 | 1987-09-08 | Board Of Regents, University Of Washington | Thermal cautery system |
EP0251444A1 (en) | 1986-04-30 | 1988-01-07 | Minnesota Mining And Manufacturing Company | Anvil assembly |
FR2598905B1 (fr) | 1986-05-22 | 1993-08-13 | Chevalier Jean Michel | Dispositif d'interruption de la circulation d'un fluide dans un conduit a paroi souple, notamment un viscere creux et ensemble de pince comportant ce dispositif |
US4709120A (en) | 1986-06-06 | 1987-11-24 | Pearson Dean C | Underground utility equipment vault |
USD298967S (en) | 1986-06-09 | 1988-12-13 | Ethicon, Inc. | Surgical staple cartridge |
US5190544A (en) | 1986-06-23 | 1993-03-02 | Pfizer Hospital Products Group, Inc. | Modular femoral fixation system |
US4744363A (en) | 1986-07-07 | 1988-05-17 | Hasson Harrith M | Intra-abdominal organ stabilizer, retractor and tissue manipulator |
DE8620714U1 (de) | 1986-08-01 | 1986-11-20 | C. & E. Fein GmbH & Co KG, 70176 Stuttgart | Sterilisierbare Batterie |
US4727308A (en) | 1986-08-28 | 1988-02-23 | International Business Machines Corporation | FET power converter with reduced switching loss |
US4743214A (en) | 1986-09-03 | 1988-05-10 | Tai Cheng Yang | Steering control for toy electric vehicles |
US4875486A (en) | 1986-09-04 | 1989-10-24 | Advanced Techtronics, Inc. | Instrument and method for non-invasive in vivo testing for body fluid constituents |
US4890613A (en) | 1986-09-19 | 1990-01-02 | Ethicon, Inc. | Two piece internal organ fastener |
US4752024A (en) | 1986-10-17 | 1988-06-21 | Green David T | Surgical fastener and surgical stapling apparatus |
US4893622A (en) | 1986-10-17 | 1990-01-16 | United States Surgical Corporation | Method of stapling tubular body organs |
CH674058A5 (pt) | 1986-10-22 | 1990-04-30 | Festo Kg | |
US4933843A (en) | 1986-11-06 | 1990-06-12 | Storz Instrument Company | Control system for ophthalmic surgical instruments |
US4970656A (en) | 1986-11-07 | 1990-11-13 | Alcon Laboratories, Inc. | Analog drive for ultrasonic probe with tunable phase angle |
US4954960A (en) | 1986-11-07 | 1990-09-04 | Alcon Laboratories | Linear power control for ultrasonic probe with tuned reactance |
JPH0418209Y2 (pt) | 1986-11-14 | 1992-04-23 | ||
JPH0755222B2 (ja) | 1986-12-12 | 1995-06-14 | オリンパス光学工業株式会社 | 処置具 |
SE457680B (sv) | 1987-01-15 | 1989-01-16 | Toecksfors Verkstads Ab | Elektronisk brytare innefattande en i ett hoelje roerlig manoeverdel |
US4832158A (en) | 1987-01-20 | 1989-05-23 | Delaware Capital Formation, Inc. | Elevator system having microprocessor-based door operator |
US4865030A (en) | 1987-01-21 | 1989-09-12 | American Medical Systems, Inc. | Apparatus for removal of objects from body passages |
EP0302093A4 (en) | 1987-02-10 | 1989-08-30 | Vaso Products Australia Pty Lt | DEVICE FOR APPLYING VENIC CUFFS, MAGAZINE AND CUFFS THEREFOR. |
US4873977A (en) | 1987-02-11 | 1989-10-17 | Odis L. Avant | Stapling method and apparatus for vesicle-urethral re-anastomosis following retropubic prostatectomy and other tubular anastomosis |
US4719917A (en) | 1987-02-17 | 1988-01-19 | Minnesota Mining And Manufacturing Company | Surgical staple |
US5217478A (en) | 1987-02-18 | 1993-06-08 | Linvatec Corporation | Arthroscopic surgical instrument drive system |
GB8704265D0 (en) | 1987-02-24 | 1987-04-01 | Yang T H | Manual electric tools(1) |
US4950268A (en) | 1987-02-27 | 1990-08-21 | Xintec Corporation | Laser driver and control circuit |
DE3807004A1 (de) | 1987-03-02 | 1988-09-15 | Olympus Optical Co | Ultraschall-behandlungsgeraet |
DE3709067A1 (de) | 1987-03-19 | 1988-09-29 | Ewald Hensler | Medizinisches, insbesondere chirurgisches instrument |
US5001649A (en) | 1987-04-06 | 1991-03-19 | Alcon Laboratories, Inc. | Linear power control for ultrasonic probe with tuned reactance |
US4730726A (en) | 1987-04-21 | 1988-03-15 | United States Surgical Corporation | Sealed sterile package |
US4777780A (en) | 1987-04-21 | 1988-10-18 | United States Surgical Corporation | Method for forming a sealed sterile package |
SU1443874A1 (ru) | 1987-04-23 | 1988-12-15 | Всесоюзный научно-исследовательский и испытательный институт медицинской техники | Хирургический аппарат дл наложени компрессионных анастомозов |
JPS63270040A (ja) | 1987-04-28 | 1988-11-08 | Haruo Takase | 外科手術における縫合方法および縫合器 |
US4941623A (en) | 1987-05-12 | 1990-07-17 | United States Surgical Corporation | Stapling process and device for use on the mesentery of the abdomen |
US5542949A (en) | 1987-05-14 | 1996-08-06 | Yoon; Inbae | Multifunctional clip applier instrument |
US4928699A (en) | 1987-05-18 | 1990-05-29 | Olympus Optical Co., Ltd. | Ultrasonic diagnosis device |
US4838859A (en) | 1987-05-19 | 1989-06-13 | Steve Strassmann | Steerable catheter |
US5285944A (en) | 1987-05-26 | 1994-02-15 | United States Surgical Corporation | Surgical stapler apparatus |
US5158222A (en) | 1987-05-26 | 1992-10-27 | United States Surgical Corp. | Surgical stapler apparatus |
USD309350S (en) | 1987-06-01 | 1990-07-17 | Pfizer Hospital Products Group, Inc. | Surgical sternotomy band tightening instrument |
US4844068A (en) | 1987-06-05 | 1989-07-04 | Ethicon, Inc. | Bariatric surgical instrument |
US4761326A (en) | 1987-06-09 | 1988-08-02 | Precision Fabrics Group, Inc. | Foam coated CSR/surgical instrument wrap fabric |
SU1475611A1 (ru) | 1987-06-10 | 1989-04-30 | Предприятие П/Я А-3697 | Устройство дл соединени трубчатых органов |
US5027834A (en) | 1987-06-11 | 1991-07-02 | United States Surgical Corporation | Stapling process for use on the mesenteries of the abdomen |
US4930503A (en) | 1987-06-11 | 1990-06-05 | Pruitt J Crayton | Stapling process and device for use on the mesenteries of the abdomen |
US4848637A (en) | 1987-06-11 | 1989-07-18 | Pruitt J Crayton | Staple device for use on the mesenteries of the abdomen |
JPS63318824A (ja) | 1987-06-22 | 1988-12-27 | Oki Electric Ind Co Ltd | 容量結合形ロ−タリカプラ |
US4773420A (en) | 1987-06-22 | 1988-09-27 | U.S. Surgical Corporation | Purse string applicator |
DE3723310A1 (de) | 1987-07-15 | 1989-01-26 | John Urquhart | Pharmazeutisches praeparat und verfahren zu seiner herstellung |
US4817643A (en) | 1987-07-30 | 1989-04-04 | Olson Mary Lou C | Chinese finger cuff dental floss |
US4821939A (en) | 1987-09-02 | 1989-04-18 | United States Surgical Corporation | Staple cartridge and an anvilless surgical stapler |
US5158567A (en) | 1987-09-02 | 1992-10-27 | United States Surgical Corporation | One-piece surgical staple |
SU1509051A1 (ru) | 1987-09-14 | 1989-09-23 | Институт прикладной физики АН СССР | Ушиватель органов |
GB2209673B (en) | 1987-09-15 | 1991-06-12 | Wallace Ltd H G | Catheter and cannula assembly |
US5025559A (en) | 1987-09-29 | 1991-06-25 | Food Industry Equipment International, Inc. | Pneumatic control system for meat trimming knife |
US4931047A (en) | 1987-09-30 | 1990-06-05 | Cavitron, Inc. | Method and apparatus for providing enhanced tissue fragmentation and/or hemostasis |
US5015227A (en) | 1987-09-30 | 1991-05-14 | Valleylab Inc. | Apparatus for providing enhanced tissue fragmentation and/or hemostasis |
US4921479A (en) | 1987-10-02 | 1990-05-01 | Joseph Grayzel | Catheter sheath with longitudinal seam |
US4834096A (en) | 1987-10-26 | 1989-05-30 | Edward Weck Incorporated | Plastic ligating clips |
US4805617A (en) | 1987-11-05 | 1989-02-21 | Ethicon, Inc. | Surgical fastening systems made from polymeric materials |
US4830855A (en) | 1987-11-13 | 1989-05-16 | Landec Labs, Inc. | Temperature-controlled active agent dispenser |
GB2212433B (en) | 1987-11-16 | 1992-07-29 | Canon Kk | A sheet stapler |
FR2622429A1 (fr) | 1987-11-16 | 1989-05-05 | Blagoveschensky G | Appareil de suture chirurgicale |
US5106627A (en) | 1987-11-17 | 1992-04-21 | Brown University Research Foundation | Neurological therapy devices |
US5018515A (en) | 1987-12-14 | 1991-05-28 | The Kendall Company | See through absorbent dressing |
US5062491A (en) | 1987-12-23 | 1991-11-05 | Honda Giken Kogyo Kabushiki Kaisha | Apparatus for controlling nut runner |
US4834720A (en) | 1987-12-24 | 1989-05-30 | Becton, Dickinson And Company | Implantable port septum |
US4951860A (en) | 1987-12-28 | 1990-08-28 | Edward Weck & Co. | Method and apparatus for storing, dispensing and applying surgical staples |
US4819853A (en) | 1987-12-31 | 1989-04-11 | United States Surgical Corporation | Surgical fastener cartridge |
USD316875S (en) | 1988-01-11 | 1991-05-14 | Eastman Kodak Company | Electro-optical display for cameras or the like |
US5197970A (en) | 1988-01-15 | 1993-03-30 | United States Surgical Corporation | Surgical clip applicator |
US5383881A (en) | 1989-07-18 | 1995-01-24 | United States Surgical Corporation | Safety device for use with endoscopic instrumentation |
US5084057A (en) | 1989-07-18 | 1992-01-28 | United States Surgical Corporation | Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures |
US5100420A (en) | 1989-07-18 | 1992-03-31 | United States Surgical Corporation | Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures |
GB8800909D0 (en) | 1988-01-15 | 1988-02-17 | Ethicon Inc | Gas powered surgical stapler |
US5030226A (en) | 1988-01-15 | 1991-07-09 | United States Surgical Corporation | Surgical clip applicator |
JPH01182196A (ja) | 1988-01-18 | 1989-07-20 | Sanshin Ind Co Ltd | シフト補助装置 |
US4870966A (en) | 1988-02-01 | 1989-10-03 | American Cyanamid Company | Bioabsorbable surgical device for treating nerve defects |
DE3805179A1 (de) | 1988-02-19 | 1989-08-31 | Wolf Gmbh Richard | Geraet mit einem rotierend angetriebenen chirurgischen instrument |
US5060658A (en) | 1988-02-23 | 1991-10-29 | Vance Products Incorporated | Fine-needle aspiration cell sampling apparatus |
US4860644A (en) | 1988-02-29 | 1989-08-29 | Donaldson Company, Inc. | Articulatable fume exhauster trunk |
US4862891A (en) | 1988-03-14 | 1989-09-05 | Canyon Medical Products | Device for sequential percutaneous dilation |
US4827552A (en) | 1988-03-14 | 1989-05-09 | Better Health Concepts, Inc. | Rotary electric toothbrush |
FR2628488B1 (fr) | 1988-03-14 | 1990-12-28 | Ecia Equip Composants Ind Auto | Attache rapide du type a baionnette perfectionnee |
US4790314A (en) | 1988-03-16 | 1988-12-13 | Kenneth Weaver | Orifice dilator |
US4805823A (en) | 1988-03-18 | 1989-02-21 | Ethicon, Inc. | Pocket configuration for internal organ staplers |
US4856078A (en) | 1988-03-23 | 1989-08-08 | Zenith Electronics Corporation | DC fan speed control |
FR2631396B1 (fr) | 1988-05-11 | 1991-01-04 | Marot Jacques | Dispositif d'assemblage pour elements demontables ou modulaires |
US4933800A (en) | 1988-06-03 | 1990-06-12 | Yang Tai Her | Motor overload detection with predetermined rotation reversal |
US4880015A (en) | 1988-06-03 | 1989-11-14 | Nierman David M | Biopsy forceps |
GB2220919B (en) | 1988-06-10 | 1992-04-08 | Seikosha Kk | Automatic feeder |
JPH01313783A (ja) | 1988-06-14 | 1989-12-19 | Philips Kk | 電池の容量計測回路 |
US5193731A (en) | 1988-07-01 | 1993-03-16 | United States Surgical Corporation | Anastomosis surgical stapling instrument |
KR920001244Y1 (ko) | 1988-07-06 | 1992-02-20 | 이재희 | 호치키스 |
US4919039A (en) | 1988-07-25 | 1990-04-24 | General Electric Company | Hydraulic turning gear |
US5185717A (en) | 1988-08-05 | 1993-02-09 | Ryoichi Mori | Tamper resistant module having logical elements arranged in multiple layers on the outer surface of a substrate to protect stored information |
US5444113A (en) | 1988-08-08 | 1995-08-22 | Ecopol, Llc | End use applications of biodegradable polymers |
ES2011110A6 (es) | 1988-09-02 | 1989-12-16 | Lopez Hervas Pedro | Aparato hidraulico de cuerpo flexible para anastomosis quirurgicas. |
CA1327424C (en) | 1988-09-16 | 1994-03-08 | James C. Armour | Compact tampon applicator |
DE3831607A1 (de) | 1988-09-17 | 1990-03-22 | Haubold Kihlberg Gmbh | Durch druckluft betriebenes schlaggeraet mit entlueftungsventil fuer das hauptventil |
US5024671A (en) | 1988-09-19 | 1991-06-18 | Baxter International Inc. | Microporous vascular graft |
US5071052A (en) | 1988-09-22 | 1991-12-10 | United States Surgical Corporation | Surgical fastening apparatus with activation lockout |
US5024652A (en) | 1988-09-23 | 1991-06-18 | Dumenek Vladimir A | Ophthalmological device |
DE3832528C1 (pt) | 1988-09-24 | 1989-11-16 | Fresenius Ag, 6380 Bad Homburg, De | |
US4869415A (en) | 1988-09-26 | 1989-09-26 | Ethicon, Inc. | Energy storage means for a surgical stapler |
US4948327A (en) | 1988-09-28 | 1990-08-14 | Crupi Jr Theodore P | Towing apparatus for coupling to towed vehicle undercarriage |
CA1308782C (en) | 1988-10-13 | 1992-10-13 | Gyrus Medical Limited | Screening and monitoring instrument |
JP2625176B2 (ja) | 1988-10-14 | 1997-07-02 | 株式会社テック | 充電式電気かみそり |
US4892244A (en) | 1988-11-07 | 1990-01-09 | Ethicon, Inc. | Surgical stapler cartridge lockout device |
US4962681A (en) | 1988-11-09 | 1990-10-16 | Yang Tai Her | Modular manual electric appliance |
EP0369324B1 (fr) | 1988-11-11 | 1995-11-02 | United States Surgical Corporation | Instrument de chirurgie |
US5197648A (en) | 1988-11-29 | 1993-03-30 | Gingold Bruce S | Surgical stapling apparatus |
US4915100A (en) | 1988-12-19 | 1990-04-10 | United States Surgical Corporation | Surgical stapler apparatus with tissue shield |
US4978333A (en) | 1988-12-20 | 1990-12-18 | Valleylab, Inc. | Resonator for surgical handpiece |
US4986808A (en) | 1988-12-20 | 1991-01-22 | Valleylab, Inc. | Magnetostrictive transducer |
US5098360A (en) | 1988-12-26 | 1992-03-24 | Tochigifujisangyo Kabushiki Kaisha | Differential gear with limited slip and locking mechanism |
US5108368A (en) | 1990-01-04 | 1992-04-28 | Pilot Cardiovascular System, Inc. | Steerable medical device |
US5111987A (en) | 1989-01-23 | 1992-05-12 | Moeinzadeh Manssour H | Semi-disposable surgical stapler |
US5089606A (en) | 1989-01-24 | 1992-02-18 | Minnesota Mining And Manufacturing Company | Water-insoluble polysaccharide hydrogel foam for medical applications |
US4919679A (en) | 1989-01-31 | 1990-04-24 | Osteonics Corp. | Femoral stem surgical instrument system |
US5077506A (en) | 1989-02-03 | 1991-12-31 | Dyonics, Inc. | Microprocessor controlled arthroscopic surgical system |
US5061269A (en) | 1989-02-07 | 1991-10-29 | Joseph J. Berke | Surgical rongeur power grip structure and method |
EP0548998A1 (en) | 1989-02-22 | 1993-06-30 | United States Surgical Corporation | Skin fastener |
US4930674A (en) | 1989-02-24 | 1990-06-05 | Abiomed, Inc. | Surgical stapler |
US5186711A (en) | 1989-03-07 | 1993-02-16 | Albert Einstein College Of Medicine Of Yeshiva University | Hemostasis apparatus and method |
IT1234756B (it) | 1989-03-17 | 1992-05-26 | Orthofix Srl | Fissatore esterno particolarmente adatto per essere applicato sui bacini. |
US5522817A (en) | 1989-03-31 | 1996-06-04 | United States Surgical Corporation | Absorbable surgical fastener with bone penetrating elements |
US5062563A (en) | 1989-04-10 | 1991-11-05 | United States Surgical Corporation | Fascia stapler |
US5104397A (en) | 1989-04-14 | 1992-04-14 | Codman & Shurtleff, Inc. | Multi-position latching mechanism for forceps |
US5038247A (en) | 1989-04-17 | 1991-08-06 | Delco Electronics Corporation | Method and apparatus for inductive load control with current simulation |
US5119009A (en) | 1989-04-20 | 1992-06-02 | Motorola, Inc. | Lithium battery deactivator |
US5164652A (en) | 1989-04-21 | 1992-11-17 | Motorola, Inc. | Method and apparatus for determining battery type and modifying operating characteristics |
US6200320B1 (en) | 1989-04-24 | 2001-03-13 | Gary Karlin Michelson | Surgical rongeur |
US5009661A (en) | 1989-04-24 | 1991-04-23 | Michelson Gary K | Protective mechanism for surgical rongeurs |
JP2722132B2 (ja) | 1989-05-03 | 1998-03-04 | 日機装株式会社 | 狭窄症を管腔内から緩和させる器具及び方法 |
SU1708312A1 (ru) | 1989-05-16 | 1992-01-30 | Всесоюзный научно-исследовательский и испытательный институт медицинской техники | Хирургический аппарат дл сшивани костной ткани |
US5222976A (en) | 1989-05-16 | 1993-06-29 | Inbae Yoon | Suture devices particularly useful in endoscopic surgery |
US5100422A (en) | 1989-05-26 | 1992-03-31 | Impra, Inc. | Blood vessel patch |
US5505363A (en) | 1989-05-26 | 1996-04-09 | United States Surgical Corporation | Surgical staples with plated anvils |
US5031814A (en) | 1989-05-26 | 1991-07-16 | United States Surgical Corporation | Locking mechanism for surgical fastening apparatus |
US5318221A (en) | 1989-05-26 | 1994-06-07 | United States Surgical Corporation | Apparatus and method for placing staples in laparoscopic or endoscopic procedures |
US5040715B1 (en) | 1989-05-26 | 1994-04-05 | United States Surgical Corp | Apparatus and method for placing staples in laparoscopic or endoscopic procedures |
US4978049A (en) | 1989-05-26 | 1990-12-18 | United States Surgical Corporation | Three staple drive member |
US5104400A (en) | 1989-05-26 | 1992-04-14 | Impra, Inc. | Blood vessel patch |
US4955959A (en) | 1989-05-26 | 1990-09-11 | United States Surgical Corporation | Locking mechanism for a surgical fastening apparatus |
US5413268A (en) | 1989-05-26 | 1995-05-09 | United States Surgical Corporation | Apparatus and method for placing stables in laparoscopic or endoscopic procedures |
US5106008A (en) | 1989-05-26 | 1992-04-21 | United States Surgical Corporation | Locking mechanism for a surgical fastening apparatus |
US5035040A (en) | 1989-05-30 | 1991-07-30 | Duo-Fast Corporation | Hog ring fastener, tool and methods |
FR2647683B1 (fr) | 1989-05-31 | 1993-02-12 | Kyocera Corp | Dispositif d'etanchement/coagulation de sang hors de vaisseaux sanguins |
JPH034831A (ja) | 1989-06-01 | 1991-01-10 | Toshiba Corp | 内視鏡装置 |
US4946067A (en) | 1989-06-07 | 1990-08-07 | Wickes Manufacturing Company | Inflation valve with actuating lever interlock |
US4987049A (en) | 1989-07-21 | 1991-01-22 | Konica Corporation | Image-receiving element for heat transfer type dye image |
AU614401B2 (en) | 1989-07-24 | 1991-08-29 | Ming-Long Her | Diving case massager |
USD327323S (en) | 1989-08-02 | 1992-06-23 | Ethicon,Inc. | Combination skin stapler and rotating head |
US6004330A (en) | 1989-08-16 | 1999-12-21 | Medtronic, Inc. | Device or apparatus for manipulating matter |
US4932960A (en) | 1989-09-01 | 1990-06-12 | United States Surgical Corporation | Absorbable surgical fastener |
DE3929575A1 (de) | 1989-09-06 | 1991-03-07 | Vascomed Kathetertech | Dilatationskatheter zum erweitern von blutgefaessen mit motorantrieb |
US5155941A (en) | 1989-09-18 | 1992-10-20 | Olympus Optical Co., Ltd. | Industrial endoscope system having a rotary treatment member |
US4965709A (en) | 1989-09-25 | 1990-10-23 | General Electric Company | Switching converter with pseudo-resonant DC link |
US4984564A (en) | 1989-09-27 | 1991-01-15 | Frank Yuen | Surgical retractor device |
US4949927A (en) | 1989-10-17 | 1990-08-21 | John Madocks | Articulable column |
CH677728A5 (pt) | 1989-10-17 | 1991-06-28 | Bieffe Medital Sa | |
US5264218A (en) | 1989-10-25 | 1993-11-23 | C. R. Bard, Inc. | Modifiable, semi-permeable, wound dressing |
GB8924806D0 (en) | 1989-11-03 | 1989-12-20 | Neoligaments Ltd | Prosthectic ligament system |
US5239981A (en) | 1989-11-16 | 1993-08-31 | Effner Biomet Gmbh | Film covering to protect a surgical instrument and an endoscope to be used with the film covering |
US5188126A (en) | 1989-11-16 | 1993-02-23 | Fabian Carl E | Surgical implement detector utilizing capacitive coupling |
US5176677A (en) | 1989-11-17 | 1993-01-05 | Sonokinetics Group | Endoscopic ultrasonic rotary electro-cauterizing aspirator |
JPH0737603Y2 (ja) | 1989-11-30 | 1995-08-30 | 晴夫 高瀬 | 外科手術用縫合器 |
US5922001A (en) | 1989-12-05 | 1999-07-13 | Yoon; Inbae | Surgical instrument with jaws and a movable internal blade member and method for use thereof |
US5893863A (en) | 1989-12-05 | 1999-04-13 | Yoon; Inbae | Surgical instrument with jaws and movable internal hook member for use thereof |
US5098004A (en) | 1989-12-19 | 1992-03-24 | Duo-Fast Corporation | Fastener driving tool |
JPH0527929Y2 (pt) | 1989-12-19 | 1993-07-16 | ||
US5156609A (en) | 1989-12-26 | 1992-10-20 | Nakao Naomi L | Endoscopic stapling device and method |
US5109722A (en) | 1990-01-12 | 1992-05-05 | The Toro Company | Self-detenting transmission shift key |
US5195968A (en) | 1990-02-02 | 1993-03-23 | Ingemar Lundquist | Catheter steering mechanism |
JP3021571B2 (ja) | 1990-07-31 | 2000-03-15 | オリンパス光学工業株式会社 | 超音波手術用ハンドピース |
US6033378A (en) | 1990-02-02 | 2000-03-07 | Ep Technologies, Inc. | Catheter steering mechanism |
AU7082091A (en) | 1990-02-13 | 1991-08-15 | Ethicon Inc. | Rotating head skin stapler |
US5100042A (en) | 1990-03-05 | 1992-03-31 | United States Surgical Corporation | Surgical fastener apparatus |
US5217457A (en) | 1990-03-15 | 1993-06-08 | Valleylab Inc. | Enhanced electrosurgical apparatus |
US5244462A (en) | 1990-03-15 | 1993-09-14 | Valleylab Inc. | Electrosurgical apparatus |
US5088997A (en) | 1990-03-15 | 1992-02-18 | Valleylab, Inc. | Gas coagulation device |
US5014899A (en) | 1990-03-30 | 1991-05-14 | United States Surgical Corporation | Surgical stapling apparatus |
SU1722476A1 (ru) | 1990-04-02 | 1992-03-30 | Свердловский Филиал Научно-Производственного Объединения "Фтизиопульмонология" | Устройство дл временной окклюзии трубчатых органов |
US5005754A (en) | 1990-04-04 | 1991-04-09 | Ethicon, Inc. | Bladder and mandrel for use with surgical stapler |
US5002543A (en) | 1990-04-09 | 1991-03-26 | Bradshaw Anthony J | Steerable intramedullary fracture reduction device |
US5343391A (en) | 1990-04-10 | 1994-08-30 | Mushabac David R | Device for obtaining three dimensional contour data and for operating on a patient and related method |
US5124990A (en) | 1990-05-08 | 1992-06-23 | Caterpillar Inc. | Diagnostic hardware for serial datalink |
US5431645A (en) | 1990-05-10 | 1995-07-11 | Symbiosis Corporation | Remotely activated endoscopic tools such as endoscopic biopsy forceps |
US5331971A (en) | 1990-05-10 | 1994-07-26 | Symbiosis Corporation | Endoscopic surgical instruments |
US5454378A (en) | 1993-02-11 | 1995-10-03 | Symbiosis Corporation | Biopsy forceps having a detachable proximal handle and distal jaws |
US5613499A (en) | 1990-05-10 | 1997-03-25 | Symbiosis Corporation | Endoscopic biopsy forceps jaws and instruments incorporating same |
CA2042006C (en) | 1990-05-11 | 1995-08-29 | Morito Idemoto | Surgical ultrasonic horn |
US5086401A (en) | 1990-05-11 | 1992-02-04 | International Business Machines Corporation | Image-directed robotic system for precise robotic surgery including redundant consistency checking |
US5290271A (en) | 1990-05-14 | 1994-03-01 | Jernberg Gary R | Surgical implant and method for controlled release of chemotherapeutic agents |
US5116349A (en) | 1990-05-23 | 1992-05-26 | United States Surgical Corporation | Surgical fastener apparatus |
US5396635A (en) | 1990-06-01 | 1995-03-07 | Vadem Corporation | Power conservation apparatus having multiple power reduction levels dependent upon the activity of the computer system |
US5074454A (en) | 1990-06-04 | 1991-12-24 | Peters Ronald L | Surgical stapler |
US5342395A (en) | 1990-07-06 | 1994-08-30 | American Cyanamid Co. | Absorbable surgical repair devices |
NL9001564A (nl) | 1990-07-09 | 1992-02-03 | Optische Ind De Oude Delft Nv | In het lichaam brengbare buis voorzien van een manipulator. |
SU1752361A1 (ru) | 1990-07-10 | 1992-08-07 | Производственное Объединение "Челябинский Тракторный Завод Им.В.И.Ленина" | Хирургический сшивающий аппарат |
US5483630A (en) | 1990-07-12 | 1996-01-09 | Hitachi, Ltd. | Method and apparatus for representing motion of multiple-jointed object, computer graphic apparatus, and robot controller |
RU2008830C1 (ru) | 1990-07-13 | 1994-03-15 | Константин Алексеевич Додонов | Электрохирургический аппарат |
US5163598A (en) | 1990-07-23 | 1992-11-17 | Rudolph Peters | Sternum stapling apparatus |
US5033552A (en) | 1990-07-24 | 1991-07-23 | Hu Cheng Te | Multi-function electric tool |
US5234447A (en) | 1990-08-28 | 1993-08-10 | Robert L. Kaster | Side-to-end vascular anastomotic staple apparatus |
US5094247A (en) | 1990-08-31 | 1992-03-10 | Cordis Corporation | Biopsy forceps with handle having a flexible coupling |
US5389102A (en) | 1990-09-13 | 1995-02-14 | United States Surgical Corporation | Apparatus and method for subcuticular stapling of body tissue |
US5156614A (en) | 1990-09-17 | 1992-10-20 | United States Surgical Corporation | Apparatus for applying two-part surgical fasteners |
US5253793A (en) | 1990-09-17 | 1993-10-19 | United States Surgical Corporation | Apparatus for applying two-part surgical fasteners |
US5156315A (en) | 1990-09-17 | 1992-10-20 | United States Surgical Corporation | Arcuate apparatus for applying two-part surgical fasteners |
US5653373A (en) | 1990-09-17 | 1997-08-05 | United States Surgical Corporation | Arcuate apparatus for applying two-part surgical fasteners |
US5080556A (en) | 1990-09-28 | 1992-01-14 | General Electric Company | Thermal seal for a gas turbine spacer disc |
US5104025A (en) | 1990-09-28 | 1992-04-14 | Ethicon, Inc. | Intraluminal anastomotic surgical stapler with detached anvil |
DE484677T1 (de) | 1990-10-05 | 1993-11-25 | United States Surgical Corp | Verfahren und Vorrichtung zum Anbringen von Klammern bei laparoskopischen oder endoskopischen Eingriffen. |
US5088979A (en) | 1990-10-11 | 1992-02-18 | Wilson-Cook Medical Inc. | Method for esophageal invagination and devices useful therein |
US5042707A (en) | 1990-10-16 | 1991-08-27 | Taheri Syde A | Intravascular stapler, and method of operating same |
USD330699S (en) | 1990-10-19 | 1992-11-03 | W. W. Cross, Inc. | Insulated staple |
FR2668361A1 (fr) | 1990-10-30 | 1992-04-30 | Mai Christian | Agrafe et plaque d'osteosynthese a compression dynamique auto-retentive. |
US5344454A (en) | 1991-07-24 | 1994-09-06 | Baxter International Inc. | Closed porous chambers for implanting tissue in a host |
US5658307A (en) | 1990-11-07 | 1997-08-19 | Exconde; Primo D. | Method of using a surgical dissector instrument |
GB9025131D0 (en) | 1990-11-19 | 1991-01-02 | Ofrex Group Holdings Plc | Improvements in or relating to a stapling machine |
US5129570A (en) | 1990-11-30 | 1992-07-14 | Ethicon, Inc. | Surgical stapler |
CA2055943C (en) | 1990-12-06 | 2003-09-23 | Daniel P. Rodak | Surgical fastening apparatus with locking mechanism |
EP0560934B2 (en) | 1990-12-06 | 1999-11-10 | W.L. Gore & Associates, Inc. | Implantable bioabsorbable article |
US5470009A (en) | 1990-12-06 | 1995-11-28 | United States Surgical Corporation | Surgical fastening apparatus with locking mechanism |
USRE36720E (en) | 1990-12-13 | 2000-05-30 | United States Surgical Corporation | Apparatus and method for applying latchless surgical clips |
US5209747A (en) | 1990-12-13 | 1993-05-11 | Knoepfler Dennis J | Adjustable angle medical forceps |
US5122156A (en) | 1990-12-14 | 1992-06-16 | United States Surgical Corporation | Apparatus for securement and attachment of body organs |
US7384417B2 (en) | 1990-12-14 | 2008-06-10 | Cucin Robert L | Air-powered tissue-aspiration instrument system employing curved bipolar-type electro-cauterizing dual cannula assembly |
US5083695A (en) | 1990-12-18 | 1992-01-28 | Minnesota Mining And Manufacturing Company | Stapler and firing device |
US5141144A (en) | 1990-12-18 | 1992-08-25 | Minnesota Mining And Manufacturing Company | Stapler and firing device |
EP0563101B1 (en) | 1990-12-18 | 1996-05-15 | United States Surgical Corporation | Safety device for a surgical stapler |
CA2055985A1 (en) | 1990-12-20 | 1992-06-21 | Daniel Shichman | Fascia clip |
US5195505A (en) | 1990-12-27 | 1993-03-23 | United States Surgical Corporation | Surgical retractor |
US5354303A (en) | 1991-01-09 | 1994-10-11 | Endomedix Corporation | Devices for enclosing, manipulating, debulking and removing tissue through minimal incisions |
EP0566694A1 (en) | 1991-01-09 | 1993-10-27 | EndoMedix Corporation | Method and device for intracorporeal liquidization of tissue and/or intracorporeal fragmentation of calculi during endoscopic surgical procedures |
US5222963A (en) | 1991-01-17 | 1993-06-29 | Ethicon, Inc. | Pull-through circular anastomosic intraluminal stapler with absorbable fastener means |
US5188111A (en) | 1991-01-18 | 1993-02-23 | Catheter Research, Inc. | Device for seeking an area of interest within a body |
US5425355A (en) | 1991-01-28 | 1995-06-20 | Laserscope | Energy discharging surgical probe and surgical process having distal energy application without concomitant proximal movement |
US5342385A (en) | 1991-02-05 | 1994-08-30 | Norelli Robert A | Fluid-expandable surgical retractor |
CA2060635A1 (en) | 1991-02-12 | 1992-08-13 | Keith D'alessio | Bioabsorbable medical implants |
US5690675A (en) | 1991-02-13 | 1997-11-25 | Fusion Medical Technologies, Inc. | Methods for sealing of staples and other fasteners in tissue |
US5329923A (en) | 1991-02-15 | 1994-07-19 | Lundquist Ingemar H | Torquable catheter |
DE4104755A1 (de) | 1991-02-15 | 1992-08-20 | Heidmueller Harald | Chirurgisches instrument |
US5168605A (en) | 1991-02-15 | 1992-12-08 | Russell Bartlett | Method and apparatus for securing a tarp |
US5156151A (en) | 1991-02-15 | 1992-10-20 | Cardiac Pathways Corporation | Endocardial mapping and ablation system and catheter probe |
CA2061319A1 (en) | 1991-02-19 | 1992-08-20 | Hector Chow | Surgical staple for insertion into tissue |
US5571285A (en) | 1991-02-19 | 1996-11-05 | Ethicon, Inc. | Surgical staple for insertion into tissue |
US5324489A (en) | 1991-03-04 | 1994-06-28 | Johnson & Johnson Medical, Inc. | Medical instrument sterilization container with a contaminant plug |
US5219111A (en) | 1991-03-11 | 1993-06-15 | Ethicon, Inc. | Pneumatically actuated linear stapling device |
JPH0747031B2 (ja) | 1991-03-12 | 1995-05-24 | 株式会社江川 | 歯冠修復用補填物の作製装置 |
US5445155A (en) | 1991-03-13 | 1995-08-29 | Scimed Life Systems Incorporated | Intravascular imaging apparatus and methods for use and manufacture |
US5353798A (en) | 1991-03-13 | 1994-10-11 | Scimed Life Systems, Incorporated | Intravascular imaging apparatus and methods for use and manufacture |
US5438997A (en) | 1991-03-13 | 1995-08-08 | Sieben; Wayne | Intravascular imaging apparatus and methods for use and manufacture |
US5336232A (en) | 1991-03-14 | 1994-08-09 | United States Surgical Corporation | Approximating apparatus for surgical jaw structure and method of using the same |
CA2061885A1 (en) | 1991-03-14 | 1992-09-15 | David T. Green | Approximating apparatus for surgical jaw structure |
JP2760666B2 (ja) | 1991-03-15 | 1998-06-04 | 株式会社東芝 | Pwmコンバ―タの制御方法及び装置 |
US5170925A (en) | 1991-03-18 | 1992-12-15 | Ethicon, Inc. | Laparoscopic stapler with knife means |
US5217453A (en) | 1991-03-18 | 1993-06-08 | Wilk Peter J | Automated surgical system and apparatus |
SU1814161A1 (en) | 1991-03-19 | 1993-05-07 | Penzen Nii Elektronno Mekh Pri | Electric motor |
USD338729S (en) | 1991-03-22 | 1993-08-24 | Ethicon, Inc. | Linear surgical stapler |
US5171253A (en) | 1991-03-22 | 1992-12-15 | Klieman Charles H | Velcro-like closure system with absorbable suture materials for absorbable hemostatic clips and surgical strips |
US5300087A (en) | 1991-03-22 | 1994-04-05 | Knoepfler Dennis J | Multiple purpose forceps |
US5065929A (en) | 1991-04-01 | 1991-11-19 | Ethicon, Inc. | Surgical stapler with locking means |
US5171247A (en) | 1991-04-04 | 1992-12-15 | Ethicon, Inc. | Endoscopic multiple ligating clip applier with rotating shaft |
US5359993A (en) | 1992-12-31 | 1994-11-01 | Symbiosis Corporation | Apparatus for counting the number of times a medical instrument has been used |
US5470010A (en) | 1991-04-04 | 1995-11-28 | Ethicon, Inc. | Multiple fire endoscopic stapling mechanism |
US5246156A (en) | 1991-09-12 | 1993-09-21 | Ethicon, Inc. | Multiple fire endoscopic stapling mechanism |
US5171249A (en) | 1991-04-04 | 1992-12-15 | Ethicon, Inc. | Endoscopic multiple ligating clip applier |
JPH05226945A (ja) | 1991-04-09 | 1993-09-03 | Olympus Optical Co Ltd | 電圧電流変換回路及び該回路を有する差動増幅回路 |
JPH05208014A (ja) | 1991-04-10 | 1993-08-20 | Olympus Optical Co Ltd | 処置具 |
US5297714A (en) | 1991-04-17 | 1994-03-29 | Ethicon, Inc. | Surgical staple with modified "B" shaped configuration |
US5339799A (en) | 1991-04-23 | 1994-08-23 | Olympus Optical Co., Ltd. | Medical system for reproducing a state of contact of the treatment section in the operation unit |
USD337962S (en) | 1991-04-25 | 1993-08-03 | Raymond Corporation | Material handling vehicle operator display |
US5180375A (en) | 1991-05-02 | 1993-01-19 | Feibus Miriam H | Woven surgical drain and woven surgical sponge |
US5338317A (en) | 1991-05-03 | 1994-08-16 | Vance Products Incorporated | Rotational surgical instrument handle |
US5257713A (en) | 1991-05-07 | 1993-11-02 | United States Surgical Corporation | Surgical fastening device |
US5413267A (en) | 1991-05-14 | 1995-05-09 | United States Surgical Corporation | Surgical stapler with spent cartridge sensing and lockout means |
AU671685B2 (en) | 1991-05-14 | 1996-09-05 | United States Surgical Corporation | Surgical stapler with spent cartridge sensing and lockout means |
US5137198A (en) | 1991-05-16 | 1992-08-11 | Ethicon, Inc. | Fast closure device for linear surgical stapling instrument |
DE4116343A1 (de) | 1991-05-18 | 1992-11-19 | Bosch Gmbh Robert | Handgefuehrtes elektrowerkzeug, insbesondere bohrmaschine |
US5181514A (en) | 1991-05-21 | 1993-01-26 | Hewlett-Packard Company | Transducer positioning system |
JP2581082Y2 (ja) | 1991-05-24 | 1998-09-17 | 三洋電機株式会社 | 電池装置 |
FI93607C (fi) | 1991-05-24 | 1995-05-10 | John Koivukangas | Leikkaustoimenpidelaite |
FR2677167B1 (fr) | 1991-05-29 | 1994-07-08 | Dav | Commutateur electrique, notamment pour la commande d'equipements et accessoires automobiles. |
US5527264A (en) | 1991-05-29 | 1996-06-18 | Origin Medsystem, Inc. | Methods of using endoscopic inflatable retraction devices |
US5370134A (en) | 1991-05-29 | 1994-12-06 | Orgin Medsystems, Inc. | Method and apparatus for body structure manipulation and dissection |
US5361752A (en) | 1991-05-29 | 1994-11-08 | Origin Medsystems, Inc. | Retraction apparatus and methods for endoscopic surgery |
US5258010A (en) | 1991-05-30 | 1993-11-02 | United States Surgical Corporation | Anvilless surgical apparatus for applying surgical fasteners |
US5190517A (en) | 1991-06-06 | 1993-03-02 | Valleylab Inc. | Electrosurgical and ultrasonic surgical system |
US5221036A (en) | 1991-06-11 | 1993-06-22 | Haruo Takase | Surgical stapler |
US5190560A (en) | 1991-06-20 | 1993-03-02 | Woods John B | Instrument for ligation and castration |
US5262678A (en) | 1991-06-21 | 1993-11-16 | Lutron Electronics Co., Inc. | Wallbox-mountable switch and dimmer |
US5207697A (en) | 1991-06-27 | 1993-05-04 | Stryker Corporation | Battery powered surgical handpiece |
US5268622A (en) | 1991-06-27 | 1993-12-07 | Stryker Corporation | DC powered surgical handpiece having a motor control circuit |
US5735290A (en) | 1993-02-22 | 1998-04-07 | Heartport, Inc. | Methods and systems for performing thoracoscopic coronary bypass and other procedures |
US5176688A (en) | 1991-07-17 | 1993-01-05 | Perinchery Narayan | Stone extractor and method |
US5261877A (en) | 1991-07-22 | 1993-11-16 | Dow Corning Wright | Method of performing a thrombectomy procedure |
US5135483A (en) | 1991-07-22 | 1992-08-04 | Dow Corning Wright Corporation | Atherectomy device with a removable drive system |
US5190657A (en) | 1991-07-22 | 1993-03-02 | Lydall, Inc. | Blood filter and method of filtration |
US5173133A (en) | 1991-07-23 | 1992-12-22 | United States Surgical Corporation | Method for annealing stapler anvils |
US6773458B1 (en) | 1991-07-24 | 2004-08-10 | Baxter International Inc. | Angiogenic tissue implant systems and methods |
US5187422A (en) | 1991-07-31 | 1993-02-16 | Stryker Corporation | Charger for batteries of different type |
US5383888A (en) | 1992-02-12 | 1995-01-24 | United States Surgical Corporation | Articulating endoscopic surgical apparatus |
US5490819A (en) | 1991-08-05 | 1996-02-13 | United States Surgical Corporation | Articulating endoscopic surgical apparatus |
US5391180A (en) | 1991-08-05 | 1995-02-21 | United States Surgical Corporation | Articulating endoscopic surgical apparatus |
US5251801A (en) | 1991-08-05 | 1993-10-12 | Edward Weck Incorporated | Surgical stapler |
AU2063592A (en) | 1991-08-09 | 1993-02-11 | Emerson Electric Co. | Cordless power tool |
US5282829A (en) | 1991-08-15 | 1994-02-01 | United States Surgical Corporation | Hollow body implants |
US5302148A (en) | 1991-08-16 | 1994-04-12 | Ted Heinz | Rotatable demountable blocks of several shapes on a central elastic anchor |
US5350104A (en) | 1991-08-23 | 1994-09-27 | Ethicon, Inc. | Sealing means for endoscopic surgical anastomosis stapling instrument |
GR920100358A (el) | 1991-08-23 | 1993-06-07 | Ethicon Inc | Οργανο συρραφής χειρουργικής αναστομώσεως. |
US5333773A (en) | 1991-08-23 | 1994-08-02 | Ethicon, Inc. | Sealing means for endoscopic surgical anastomosis stapling instrument |
US5259835A (en) | 1991-08-29 | 1993-11-09 | Tri-Point Medical L.P. | Wound closure means and method using flowable adhesive |
US5263973A (en) | 1991-08-30 | 1993-11-23 | Cook Melvin S | Surgical stapling method |
US5142932A (en) | 1991-09-04 | 1992-09-01 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Flexible robotic arm |
US5200280A (en) | 1991-09-05 | 1993-04-06 | Black & Decker Inc. | Terminal cover for a battery pack |
IT1251206B (it) | 1991-09-18 | 1995-05-04 | Magneti Marelli Spa | Impianto elettrico di un autoveicolo, comprendente almeno un supercondensatore. |
CA2075319C (en) | 1991-09-26 | 1998-06-30 | Ernie Aranyi | Handle for surgical instruments |
US5476479A (en) | 1991-09-26 | 1995-12-19 | United States Surgical Corporation | Handle for endoscopic surgical instruments and jaw structure |
US5431654A (en) | 1991-09-30 | 1995-07-11 | Stryker Corporation | Bone cement injector |
US5220269A (en) | 1991-10-04 | 1993-06-15 | Innova Electronics Corporation | Power supply unit |
US5369565A (en) | 1991-10-04 | 1994-11-29 | Innova Electronics Corp. | Modular power supply system |
JP2817749B2 (ja) | 1991-10-07 | 1998-10-30 | 三菱電機株式会社 | レーザ加工装置 |
US5697909A (en) | 1992-01-07 | 1997-12-16 | Arthrocare Corporation | Methods and apparatus for surgical cutting |
USD347474S (en) | 1991-10-11 | 1994-05-31 | Ethicon, Inc. | Endoscopic stapler |
USD348930S (en) | 1991-10-11 | 1994-07-19 | Ethicon, Inc. | Endoscopic stapler |
US5275608A (en) | 1991-10-16 | 1994-01-04 | Implemed, Inc. | Generic endoscopic instrument |
CA2075141C (en) | 1991-10-17 | 1998-06-30 | Donald A. Morin | Anvil for surgical staplers |
AU660712B2 (en) | 1991-10-18 | 1995-07-06 | United States Surgical Corporation | Apparatus for applying surgical fasteners |
US5579978A (en) | 1991-10-18 | 1996-12-03 | United States Surgical Corporation | Apparatus for applying surgical fasteners |
CA2075227C (en) | 1991-10-18 | 2004-02-10 | Robert J. Geiste | Surgical fastening apparatus with shipping interlock |
US6250532B1 (en) | 1991-10-18 | 2001-06-26 | United States Surgical Corporation | Surgical stapling apparatus |
US5711472A (en) | 1991-10-18 | 1998-01-27 | United States Surgical Corporation | Self contained gas powered surgical apparatus |
US5307976A (en) | 1991-10-18 | 1994-05-03 | Ethicon, Inc. | Linear stapling mechanism with cutting means |
US5497933A (en) | 1991-10-18 | 1996-03-12 | United States Surgical Corporation | Apparatus and method for applying surgical staples to attach an object to body tissue |
US5474223A (en) | 1991-10-18 | 1995-12-12 | United States Surgical Corporation | Surgical fastener applying apparatus |
US5308576A (en) | 1991-10-18 | 1994-05-03 | United States Surgical Corporation | Injection molded anvils |
DE69217808T2 (de) | 1991-10-18 | 1997-07-24 | United States Surgical Corp | Gerät zum Anbringen von chirurgischen Befestigungen |
CA2078794C (en) | 1991-10-18 | 1998-10-06 | Frank J. Viola | Locking device for an apparatus for applying surgical fasteners |
US5289963A (en) | 1991-10-18 | 1994-03-01 | United States Surgical Corporation | Apparatus and method for applying surgical staples to attach an object to body tissue |
US5326013A (en) | 1991-10-18 | 1994-07-05 | United States Surgical Corporation | Self contained gas powered surgical apparatus |
AU657364B2 (en) | 1991-10-18 | 1995-03-09 | United States Surgical Corporation | Self contained gas powered surgical apparatus |
US5431322A (en) | 1991-10-18 | 1995-07-11 | United States Surgical Corporation | Self contained gas powered surgical apparatus |
US5397046A (en) | 1991-10-18 | 1995-03-14 | United States Surgical Corporation | Lockout mechanism for surgical apparatus |
US5312023A (en) | 1991-10-18 | 1994-05-17 | United States Surgical Corporation | Self contained gas powered surgical apparatus |
US5332142A (en) | 1991-10-18 | 1994-07-26 | Ethicon, Inc. | Linear stapling mechanism with cutting means |
US5478003A (en) | 1991-10-18 | 1995-12-26 | United States Surgical Corporation | Surgical apparatus |
US5356064A (en) | 1991-10-18 | 1994-10-18 | United States Surgical Corporation | Apparatus and method for applying surgical staples to attach an object to body tissue |
US5395312A (en) | 1991-10-18 | 1995-03-07 | Desai; Ashvin | Surgical tool |
US5366134A (en) | 1991-10-18 | 1994-11-22 | United States Surgical Corporation | Surgical fastening apparatus |
US5443198A (en) | 1991-10-18 | 1995-08-22 | United States Surgical Corporation | Surgical fastener applying apparatus |
US5364001A (en) | 1991-10-18 | 1994-11-15 | United States Surgical Corporation | Self contained gas powered surgical apparatus |
EP0540461A1 (de) | 1991-10-29 | 1993-05-05 | SULZER Medizinaltechnik AG | Steriles Punktiergerät für Blutgefässe mit nichtsteriler Ultraschallsonde und Vorrichtung zum Vorbereiten des Geräts |
US5197649A (en) | 1991-10-29 | 1993-03-30 | The Trustees Of Columbia University In The City Of New York | Gastrointestinal endoscoptic stapler |
US5240163A (en) | 1991-10-30 | 1993-08-31 | American Cyanamid Company | Linear surgical stapling instrument |
US5290310A (en) | 1991-10-30 | 1994-03-01 | Howmedica, Inc. | Hemostatic implant introducer |
US5350400A (en) | 1991-10-30 | 1994-09-27 | American Cyanamid Company | Malleable, bioabsorbable, plastic staple; and method and apparatus for deforming such staple |
EP0541950B1 (en) | 1991-10-30 | 2004-03-10 | Sherwood Services AG | Stapling device comprising malleable, bioabsorbable, plastic staples |
US5713896A (en) | 1991-11-01 | 1998-02-03 | Medical Scientific, Inc. | Impedance feedback electrosurgical system |
JPH05123325A (ja) | 1991-11-01 | 1993-05-21 | Olympus Optical Co Ltd | 処置具 |
JPH07502428A (ja) | 1991-11-01 | 1995-03-16 | メディカル サイエンティフィク インコーポレイテッド | 電気外科切断具 |
US5531744A (en) | 1991-11-01 | 1996-07-02 | Medical Scientific, Inc. | Alternative current pathways for bipolar surgical cutting tool |
US5665085A (en) | 1991-11-01 | 1997-09-09 | Medical Scientific, Inc. | Electrosurgical cutting tool |
US5741271A (en) | 1991-11-05 | 1998-04-21 | Nakao; Naomi L. | Surgical retrieval assembly and associated method |
US5395034A (en) | 1991-11-07 | 1995-03-07 | American Cyanamid Co. | Linear surgical stapling instrument |
AU3067292A (en) | 1991-11-08 | 1993-06-07 | Ep Technologies Inc | Ablation electrode with insulated temperature sensing elements |
US5383874A (en) | 1991-11-08 | 1995-01-24 | Ep Technologies, Inc. | Systems for identifying catheters and monitoring their use |
US5476481A (en) | 1991-11-15 | 1995-12-19 | Robert Ley | Electrotherapy apparatus with superimposed AC fields |
RU2069981C1 (ru) | 1991-11-15 | 1996-12-10 | Ялмар Яковлевич Татти | Хирургический сшивающий аппарат |
US5236629A (en) | 1991-11-15 | 1993-08-17 | Xerox Corporation | Conductive composite particles and processes for the preparation thereof |
US5242456A (en) | 1991-11-21 | 1993-09-07 | Kensey Nash Corporation | Apparatus and methods for clamping tissue and reflecting the same |
US5173053A (en) | 1991-11-26 | 1992-12-22 | Caterpillar Inc. | Electrical connector for an electromechanical device |
US5439467A (en) | 1991-12-03 | 1995-08-08 | Vesica Medical, Inc. | Suture passer |
US5458579A (en) | 1991-12-31 | 1995-10-17 | Technalytics, Inc. | Mechanical trocar insertion apparatus |
WO1993013704A1 (en) | 1992-01-09 | 1993-07-22 | Endomedix Corporation | Bi-directional miniscope |
US5433721A (en) | 1992-01-17 | 1995-07-18 | Ethicon, Inc. | Endoscopic instrument having a torsionally stiff drive shaft for applying fasteners to tissue |
US5383880A (en) | 1992-01-17 | 1995-01-24 | Ethicon, Inc. | Endoscopic surgical system with sensing means |
US5631973A (en) | 1994-05-05 | 1997-05-20 | Sri International | Method for telemanipulation with telepresence |
EP0776738B1 (en) | 1992-01-21 | 2002-04-03 | Sri International | An endoscopic surgical instrument |
EP0623008A1 (en) | 1992-01-21 | 1994-11-09 | Valleylab, Inc. | Electrosurgical control for a trocar |
US6963792B1 (en) | 1992-01-21 | 2005-11-08 | Sri International | Surgical method |
US5284128A (en) | 1992-01-24 | 1994-02-08 | Applied Medical Resources Corporation | Surgical manipulator |
AU3610693A (en) | 1992-02-07 | 1993-09-03 | Nakao, Naomi | Endoscope with disposable insertion member |
AU663543B2 (en) | 1992-02-07 | 1995-10-12 | Sherwood Services Ag | Ultrasonic surgical apparatus |
US5271543A (en) | 1992-02-07 | 1993-12-21 | Ethicon, Inc. | Surgical anastomosis stapling instrument with flexible support shaft and anvil adjusting mechanism |
US5348259A (en) | 1992-02-10 | 1994-09-20 | Massachusetts Institute Of Technology | Flexible, articulable column |
US5514157A (en) | 1992-02-12 | 1996-05-07 | United States Surgical Corporation | Articulating endoscopic surgical apparatus |
US5350355A (en) | 1992-02-14 | 1994-09-27 | Automated Medical Instruments, Inc. | Automated surgical instrument |
US5626595A (en) | 1992-02-14 | 1997-05-06 | Automated Medical Instruments, Inc. | Automated surgical instrument |
AU667877B2 (en) | 1992-02-14 | 1996-04-18 | Board Of Regents, The University Of Texas System | Multi-phase bioerodible implant/carrier and method of manufacturing and using same |
US5261922A (en) | 1992-02-20 | 1993-11-16 | Hood Larry L | Improved ultrasonic knife |
US5282806A (en) | 1992-08-21 | 1994-02-01 | Habley Medical Technology Corporation | Endoscopic surgical instrument having a removable, rotatable, end effector assembly |
CA2089999A1 (en) | 1992-02-24 | 1993-08-25 | H. Jonathan Tovey | Resilient arm mesh deployer |
DE4305667B4 (de) | 1992-02-24 | 2007-11-29 | Syron Engineering & Manufacturing, LLC, Saline | Gelenkelement für ein Kugelgelenk |
US5658238A (en) | 1992-02-25 | 1997-08-19 | Olympus Optical Co., Ltd. | Endoscope apparatus capable of being switched to a mode in which a curvature operating lever is returned and to a mode in which the curvature operating lever is not returned |
US5282826A (en) | 1992-03-05 | 1994-02-01 | Quadtello Corporation | Dissector for endoscopic and laparoscopic use |
US5352235A (en) | 1992-03-16 | 1994-10-04 | Tibor Koros | Laparoscopic grasper and cutter |
GR1002537B (el) | 1992-03-30 | 1997-01-27 | Ethicon Inc. | Χειρουργικος συνδετηρας για εισαγωγη εντος ιστου. |
US5281216A (en) | 1992-03-31 | 1994-01-25 | Valleylab, Inc. | Electrosurgical bipolar treating apparatus |
US5484095A (en) | 1992-03-31 | 1996-01-16 | United States Surgical Corporation | Apparatus for endoscopically applying staples individually to body tissue |
US5223675A (en) | 1992-04-02 | 1993-06-29 | Taft Anthony W | Cable fastener |
US5478308A (en) | 1992-04-02 | 1995-12-26 | New Dimensions In Medicine, Inc. | Wound packing and package therefor |
DE4211230C2 (de) | 1992-04-03 | 1997-06-26 | Ivoclar Ag | Wiederaufladbares Lichthärtgerät |
US5314424A (en) | 1992-04-06 | 1994-05-24 | United States Surgical Corporation | Surgical instrument locking mechanism |
US5411481A (en) | 1992-04-08 | 1995-05-02 | American Cyanamid Co. | Surgical purse string suturing instrument and method |
WO1993020886A1 (en) | 1992-04-13 | 1993-10-28 | Ep Technologies, Inc. | Articulated systems for cardiac ablation |
US5602449A (en) | 1992-04-13 | 1997-02-11 | Smith & Nephew Endoscopy, Inc. | Motor controlled surgical system and method having positional control |
US5563481A (en) | 1992-04-13 | 1996-10-08 | Smith & Nephew Endoscopy, Inc. | Brushless motor |
US5314466A (en) | 1992-04-13 | 1994-05-24 | Ep Technologies, Inc. | Articulated unidirectional microwave antenna systems for cardiac ablation |
US5672945A (en) | 1992-04-13 | 1997-09-30 | Smith & Nephew Endoscopy, Inc. | Motor controlled surgical system and method having self clearing motor control |
FR2689749B1 (fr) | 1992-04-13 | 1994-07-22 | Toledano Haviv | Instrument d'agrafage chirurgical flexible pour anastomoses circulaires. |
US5236440A (en) | 1992-04-14 | 1993-08-17 | American Cyanamid Company | Surgical fastener |
US5318589A (en) | 1992-04-15 | 1994-06-07 | Microsurge, Inc. | Surgical instrument for endoscopic surgery |
US5620459A (en) | 1992-04-15 | 1997-04-15 | Microsurge, Inc. | Surgical instrument |
DK50592A (da) | 1992-04-15 | 1993-10-16 | Jane Noeglebaek Christensen | Baekkenbundstraeningsapparat |
US5355897A (en) | 1992-04-16 | 1994-10-18 | Ethicon, Inc. | Method of performing a pyloroplasty/pylorectomy using a stapler having a shield |
US5603318A (en) | 1992-04-21 | 1997-02-18 | University Of Utah Research Foundation | Apparatus and method for photogrammetric surgical localization |
US5417203A (en) | 1992-04-23 | 1995-05-23 | United States Surgical Corporation | Articulating endoscopic surgical apparatus |
US5261135A (en) | 1992-05-01 | 1993-11-16 | Mitchell Brent R | Screw gun router for drywall installation |
US5443463A (en) | 1992-05-01 | 1995-08-22 | Vesta Medical, Inc. | Coagulating forceps |
AU662407B2 (en) | 1992-05-06 | 1995-08-31 | Ethicon Inc. | Endoscopic ligation and division instrument |
US5242457A (en) | 1992-05-08 | 1993-09-07 | Ethicon, Inc. | Surgical instrument and staples for applying purse string sutures |
US5484451A (en) | 1992-05-08 | 1996-01-16 | Ethicon, Inc. | Endoscopic surgical instrument and staples for applying purse string sutures |
US5211655A (en) | 1992-05-08 | 1993-05-18 | Hasson Harrith M | Multiple use forceps for endoscopy |
US5258007A (en) | 1992-05-14 | 1993-11-02 | Robert F. Spetzler | Powered surgical instrument |
JPH0630945A (ja) | 1992-05-19 | 1994-02-08 | Olympus Optical Co Ltd | 縫合器 |
US5389098A (en) | 1992-05-19 | 1995-02-14 | Olympus Optical Co., Ltd. | Surgical device for stapling and/or fastening body tissues |
US5344059A (en) | 1992-05-19 | 1994-09-06 | United States Surgical Corporation | Surgical apparatus and anvil delivery system therefor |
US5405378A (en) | 1992-05-20 | 1995-04-11 | Strecker; Ernst P. | Device with a prosthesis implantable in the body of a patient |
US5197966A (en) | 1992-05-22 | 1993-03-30 | Sommerkamp T Greg | Radiodorsal buttress blade plate implant for repairing distal radius fractures |
US5192288A (en) | 1992-05-26 | 1993-03-09 | Origin Medsystems, Inc. | Surgical clip applier |
JPH0647050A (ja) | 1992-06-04 | 1994-02-22 | Olympus Optical Co Ltd | 組織縫合結紮器 |
US5658300A (en) | 1992-06-04 | 1997-08-19 | Olympus Optical Co., Ltd. | Tissue fixing surgical instrument, tissue-fixing device, and method of fixing tissues |
US5906625A (en) | 1992-06-04 | 1999-05-25 | Olympus Optical Co., Ltd. | Tissue-fixing surgical instrument, tissue-fixing device, and method of fixing tissue |
US5389072A (en) | 1992-06-05 | 1995-02-14 | Mircor Biomedical, Inc. | Mechanism for manipulating a tool and flexible elongate device using the same |
US5279416A (en) | 1992-06-05 | 1994-01-18 | Edward Weck Incorporated | Ligating device cartridge with separable retainer |
US5361902A (en) | 1992-06-05 | 1994-11-08 | Leonard Bloom | Surgical blade dispenser and disposal system for use during an operating procedure and method thereof |
JP3442423B2 (ja) | 1992-06-05 | 2003-09-02 | 積水化学工業株式会社 | 簡易コルセット及び簡易コルセット貼付体 |
US5236424A (en) | 1992-06-05 | 1993-08-17 | Cardiac Pathways Corporation | Catheter with retractable cannula for delivering a plurality of chemicals |
US7928281B2 (en) | 1992-06-19 | 2011-04-19 | Arizant Technologies Llc | Wound covering |
US5263629A (en) | 1992-06-29 | 1993-11-23 | Ethicon, Inc. | Method and apparatus for achieving hemostasis along a staple line |
US5258012A (en) | 1992-06-30 | 1993-11-02 | Ethicon, Inc. | Surgical fasteners |
US5258009A (en) | 1992-06-30 | 1993-11-02 | American Cyanamid Company | Malleable, bioabsorbable,plastic staple having a knotted configuration; and method and apparatus for deforming such staple |
US5341807A (en) | 1992-06-30 | 1994-08-30 | American Cardiac Ablation Co., Inc. | Ablation catheter positioning system |
US5221281A (en) | 1992-06-30 | 1993-06-22 | Valleylab Inc. | Electrosurgical tubular trocar |
US5368606A (en) | 1992-07-02 | 1994-11-29 | Marlow Surgical Technologies, Inc. | Endoscopic instrument system |
US5222975A (en) | 1992-07-13 | 1993-06-29 | Lawrence Crainich | Surgical staples |
JPH0636757A (ja) | 1992-07-21 | 1994-02-10 | Ricoh Co Ltd | バッテリパック装置 |
US5360428A (en) | 1992-07-22 | 1994-11-01 | Hutchinson Jr William B | Laparoscopic instrument with electrical cutting wires |
US5313967A (en) | 1992-07-24 | 1994-05-24 | Medtronic, Inc. | Helical guidewire |
US5330486A (en) | 1992-07-29 | 1994-07-19 | Wilk Peter J | Laparoscopic or endoscopic anastomosis technique and associated instruments |
US5258008A (en) | 1992-07-29 | 1993-11-02 | Wilk Peter J | Surgical stapling device and associated method |
US5511564A (en) | 1992-07-29 | 1996-04-30 | Valleylab Inc. | Laparoscopic stretching instrument and associated method |
US5657429A (en) | 1992-08-10 | 1997-08-12 | Computer Motion, Inc. | Automated endoscope system optimal positioning |
US5762458A (en) | 1996-02-20 | 1998-06-09 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
US5524180A (en) | 1992-08-10 | 1996-06-04 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
JP3432825B2 (ja) | 1992-08-14 | 2003-08-04 | ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー | 位置決定システム |
US5375588A (en) | 1992-08-17 | 1994-12-27 | Yoon; Inbae | Method and apparatus for use in endoscopic procedures |
US5291133A (en) | 1992-08-24 | 1994-03-01 | General Motors Corporation | Multi-bit encoder signal conditioning circuit having common mode disturbance compensation |
US5308358A (en) | 1992-08-25 | 1994-05-03 | Bond Albert L | Rigid-shaft surgical instruments that can be disassembled for improved cleaning |
DE4228909C2 (de) | 1992-08-28 | 1994-06-09 | Ethicon Gmbh | Endoskopisches Instrument zur Applizierung von Ligaturbindern und Ligaturbinder |
US5308353A (en) | 1992-08-31 | 1994-05-03 | Merrimac Industries, Inc. | Surgical suturing device |
US5630782A (en) | 1992-09-01 | 1997-05-20 | Adair; Edwin L. | Sterilizable endoscope with separable auxiliary assembly |
EP0658090B1 (en) | 1992-09-01 | 1998-11-04 | Edwin L. Adair | Sterilizable endoscope with separable disposable tube assembly |
CA2104345A1 (en) | 1992-09-02 | 1994-03-03 | David T. Green | Surgical clamp apparatus |
US5368215A (en) | 1992-09-08 | 1994-11-29 | United States Surgical Corporation | Surgical apparatus and detachable anvil rod therefor |
US5285381A (en) | 1992-09-09 | 1994-02-08 | Vanderbilt University | Multiple control-point control system and method of use |
US5772597A (en) | 1992-09-14 | 1998-06-30 | Sextant Medical Corporation | Surgical tool end effector |
CA2437777C (en) | 1992-09-21 | 2006-11-28 | United States Surgical Corporation | Device for applying a meniscal staple |
US5485952A (en) | 1992-09-23 | 1996-01-23 | United States Surgical Corporation | Apparatus for applying surgical fasteners |
US5465819A (en) | 1992-09-29 | 1995-11-14 | Borg-Warner Automotive, Inc. | Power transmitting assembly |
US5281400A (en) | 1992-09-30 | 1994-01-25 | Carr Metal Products | Plastic autoclave tray and lid combination |
US5423471A (en) | 1992-10-02 | 1995-06-13 | United States Surgical Corporation | Apparatus for applying two-part surgical fasteners in laparoscopic or endoscopic procedures |
US5573169A (en) | 1992-10-02 | 1996-11-12 | United States Surgical Corporation | Apparatus for applying two-part surgical fasteners in laparoscopic or endoscopic procedures |
US5383460A (en) | 1992-10-05 | 1995-01-24 | Cardiovascular Imaging Systems, Inc. | Method and apparatus for ultrasound imaging and atherectomy |
US5368599A (en) | 1992-10-08 | 1994-11-29 | United States Surgical Corporation | Surgical fastening apparatus with suture array |
US5569161A (en) | 1992-10-08 | 1996-10-29 | Wendell V. Ebling | Endoscope with sterile sleeve |
US5431323A (en) | 1992-10-09 | 1995-07-11 | Ethicon, Inc. | Endoscopic surgical instrument with pivotable and rotatable staple cartridge |
US5374277A (en) | 1992-10-09 | 1994-12-20 | Ethicon, Inc. | Surgical instrument |
US5626587A (en) | 1992-10-09 | 1997-05-06 | Ethicon Endo-Surgery, Inc. | Method for operating a surgical instrument |
US5330502A (en) | 1992-10-09 | 1994-07-19 | Ethicon, Inc. | Rotational endoscopic mechanism with jointed drive mechanism |
US5601224A (en) | 1992-10-09 | 1997-02-11 | Ethicon, Inc. | Surgical instrument |
US5286253A (en) | 1992-10-09 | 1994-02-15 | Linvatec Corporation | Angled rotating surgical instrument |
US5381943A (en) | 1992-10-09 | 1995-01-17 | Ethicon, Inc. | Endoscopic surgical stapling instrument with pivotable and rotatable staple cartridge |
US5662662A (en) | 1992-10-09 | 1997-09-02 | Ethicon Endo-Surgery, Inc. | Surgical instrument and method |
US5454824A (en) | 1992-10-09 | 1995-10-03 | United States Surgical Corporation | Fragmentable ring applier |
US5222945A (en) | 1992-10-13 | 1993-06-29 | Basnight Robert W | Hypodermic syringe with protective shield |
US5350391A (en) | 1992-10-19 | 1994-09-27 | Benedetto Iacovelli | Laparoscopic instruments |
US5718548A (en) | 1992-10-20 | 1998-02-17 | Clipmaster Corporation Pty Ltd | Staple assembly |
CA2108605A1 (en) | 1992-10-21 | 1994-04-22 | Nagabhushanam Totakura | Bioabsorbable foam pledget |
US5309927A (en) | 1992-10-22 | 1994-05-10 | Ethicon, Inc. | Circular stapler tissue retention spring method |
US5578052A (en) | 1992-10-27 | 1996-11-26 | Koros; Tibor | Insulated laparoscopic grasper with removable shaft |
US5259366A (en) | 1992-11-03 | 1993-11-09 | Boris Reydel | Method of using a catheter-sleeve assembly for an endoscope |
US5409498A (en) | 1992-11-05 | 1995-04-25 | Ethicon, Inc. | Rotatable articulating endoscopic fastening instrument |
GB2272159A (en) | 1992-11-10 | 1994-05-11 | Andreas G Constantinides | Surgical/diagnostic aid |
IL103737A (en) | 1992-11-13 | 1997-02-18 | Technion Res & Dev Foundation | Stapler device particularly useful in medical suturing |
US5441483A (en) | 1992-11-16 | 1995-08-15 | Avitall; Boaz | Catheter deflection control |
US5389104A (en) | 1992-11-18 | 1995-02-14 | Symbiosis Corporation | Arthroscopic surgical instruments |
US5346504A (en) | 1992-11-19 | 1994-09-13 | Ethicon, Inc. | Intraluminal manipulator with a head having articulating links |
US5372602A (en) | 1992-11-30 | 1994-12-13 | Device For Vascular Intervention, Inc. | Method of removing plaque using catheter cutter with torque control |
EP0768840B1 (en) | 1992-11-30 | 2001-12-12 | Sherwood Services AG | Circuitry for an ultrasonic surgical instrument with an energy initiator to maintain the vibration and linear dynamics |
US5333422A (en) | 1992-12-02 | 1994-08-02 | The United States Of America As Represented By The United States Department Of Energy | Lightweight extendable and retractable pole |
US5769640A (en) | 1992-12-02 | 1998-06-23 | Cybernet Systems Corporation | Method and system for simulating medical procedures including virtual reality and control method and system for use therein |
US5400267A (en) | 1992-12-08 | 1995-03-21 | Hemostatix Corporation | Local in-device memory feature for electrically powered medical equipment |
US5356006A (en) | 1992-12-16 | 1994-10-18 | Ethicon, Inc. | Sterile package for surgical devices |
US5330487A (en) | 1992-12-17 | 1994-07-19 | Tfi Acquistion Corp. | Drive mechanism for surgical instruments |
JP3042816B2 (ja) | 1992-12-18 | 2000-05-22 | 矢崎総業株式会社 | 給電コネクタ |
US5807393A (en) | 1992-12-22 | 1998-09-15 | Ethicon Endo-Surgery, Inc. | Surgical tissue treating device with locking mechanism |
US5558671A (en) | 1993-07-22 | 1996-09-24 | Yates; David C. | Impedance feedback monitor for electrosurgical instrument |
US5403312A (en) | 1993-07-22 | 1995-04-04 | Ethicon, Inc. | Electrosurgical hemostatic device |
FR2699806B1 (fr) | 1992-12-30 | 1995-03-24 | Duthoit Francois | Instrument, destiné notamment à permettre l'extraction de tronçons veineux pathologiques tels que des varices. |
EP0604789A1 (de) | 1992-12-31 | 1994-07-06 | K. Widmann Ag | Für chirurgische Zwecke bestimmtes Klemmelement zur Herstellung einer Tabaksbeutelnaht |
US5313935A (en) | 1992-12-31 | 1994-05-24 | Symbiosis Corporation | Apparatus for counting the number of times a surgical instrument has been used |
US5236269A (en) | 1993-01-14 | 1993-08-17 | Mattel, Inc. | Battery-powered dispenser for hot melt adhesive |
US5468253A (en) | 1993-01-21 | 1995-11-21 | Ethicon, Inc. | Elastomeric medical device |
US5358510A (en) | 1993-01-26 | 1994-10-25 | Ethicon, Inc. | Two part surgical fastener |
JP2857555B2 (ja) | 1993-01-27 | 1999-02-17 | 三菱電機株式会社 | 電動式パワーステアリング装置 |
CA2114282A1 (en) | 1993-01-28 | 1994-07-29 | Lothar Schilder | Multi-layered implant |
DE69409565T2 (de) | 1993-01-29 | 1998-10-01 | Smith & Nephew Inc | Schwenkbares gekrümmtes Instrument |
US5304204A (en) | 1993-02-09 | 1994-04-19 | Ethicon, Inc. | Receiverless surgical fasteners |
US5336229A (en) | 1993-02-09 | 1994-08-09 | Laparomed Corporation | Dual ligating and dividing apparatus |
US5383895A (en) | 1993-02-10 | 1995-01-24 | Unisurge, Inc. | Endoscopic surgical grasper and method |
US5342381A (en) | 1993-02-11 | 1994-08-30 | Everest Medical Corporation | Combination bipolar scissors and forceps instrument |
US5553624A (en) | 1993-02-11 | 1996-09-10 | Symbiosis Corporation | Endoscopic biopsy forceps jaws and instruments incorporating same |
US5263937A (en) | 1993-02-11 | 1993-11-23 | Shipp John I | Trocar with profile to reduce insertion force |
JPH06237937A (ja) | 1993-02-12 | 1994-08-30 | Olympus Optical Co Ltd | 外科用縫合器 |
US5403276A (en) | 1993-02-16 | 1995-04-04 | Danek Medical, Inc. | Apparatus for minimally invasive tissue removal |
DE4304571A1 (de) | 1993-02-16 | 1994-08-18 | Mdc Med Diagnostic Computing | Verfahren zur Planung und Kontrolle eines chirurgischen Eingriffs |
US5613937A (en) | 1993-02-22 | 1997-03-25 | Heartport, Inc. | Method of retracting heart tissue in closed-chest heart surgery using endo-scopic retraction |
WO1994018893A1 (en) | 1993-02-22 | 1994-09-01 | Valleylab, Inc. | A laparoscopic dissection tension retractor device and method |
US5749968A (en) | 1993-03-01 | 1998-05-12 | Focal, Inc. | Device for priming for improved adherence of gels to substrates |
US5643294A (en) | 1993-03-01 | 1997-07-01 | United States Surgical Corporation | Surgical apparatus having an increased range of operability |
US5342396A (en) | 1993-03-02 | 1994-08-30 | Cook Melvin S | Staples |
BR9405840A (pt) | 1993-03-02 | 2000-04-18 | Holobeam | Dispositivo de grampeamento, grampo cirúrgico, processo para inserção e grampeamento de grmapo cirúrgico no tecido e para efetuar hemostase no tecido. |
US5336130A (en) | 1993-03-04 | 1994-08-09 | Metal-Fab, Inc. | Adjustable exhauster arm assembly |
DE4306786C1 (de) | 1993-03-04 | 1994-02-10 | Wolfgang Daum | Chirurgischer Manipulator |
US5431676A (en) | 1993-03-05 | 1995-07-11 | Innerdyne Medical, Inc. | Trocar system having expandable port |
US5397324A (en) | 1993-03-10 | 1995-03-14 | Carroll; Brendan J. | Surgical stapler instrument and method for vascular hemostasis |
DE4308454A1 (de) | 1993-03-17 | 1994-09-22 | Ferdinand Dr Koeckerling | Chirurgische Nahtklemme, insbesondere Tabaksbeutel-Nahtklemme |
US5360305A (en) | 1993-03-19 | 1994-11-01 | Duo-Fast Corporation | Clinch staples and method of manufacturing and applying clinch staples |
US5343382A (en) | 1993-04-05 | 1994-08-30 | Delco Electronics Corp. | Adaptive current control |
US5312329A (en) | 1993-04-07 | 1994-05-17 | Valleylab Inc. | Piezo ultrasonic and electrosurgical handpiece |
US5456917A (en) | 1993-04-12 | 1995-10-10 | Cambridge Scientific, Inc. | Method for making a bioerodible material for the sustained release of a medicament and the material made from the method |
US5303606A (en) | 1993-04-15 | 1994-04-19 | Kokinda Mark A | Anti-backlash nut having a free floating insert for applying an axial force to a lead screw |
US5370645A (en) | 1993-04-19 | 1994-12-06 | Valleylab Inc. | Electrosurgical processor and method of use |
USD352780S (en) | 1993-04-19 | 1994-11-22 | Valleylab Inc. | Combined suction, irrigation and electrosurgical handle |
US5540375A (en) | 1993-04-20 | 1996-07-30 | United States Surgical Corporation | Endoscopic stapler |
ES2109539T3 (es) | 1993-04-20 | 1998-01-16 | United States Surgical Corp | Grapadora quirurgica. |
CA2121861A1 (en) | 1993-04-23 | 1994-10-24 | William D. Fox | Mechanical morcellator |
JPH06304176A (ja) | 1993-04-27 | 1994-11-01 | Olympus Optical Co Ltd | 縫合結紮装置 |
ATE153231T1 (de) | 1993-04-27 | 1997-06-15 | American Cyanamid Co | Automatischer, laparoskopischer applikator für abbindeklammern |
US5467911A (en) | 1993-04-27 | 1995-11-21 | Olympus Optical Co., Ltd. | Surgical device for stapling and fastening body tissues |
US5464300A (en) | 1993-04-29 | 1995-11-07 | Crainich; Lawrence | Medical instrument and coupling apparatus for same |
US5407293A (en) | 1993-04-29 | 1995-04-18 | Crainich; Lawrence | Coupling apparatus for medical instrument |
US5431668A (en) | 1993-04-29 | 1995-07-11 | Ethicon, Inc. | Ligating clip applier |
US5447265A (en) | 1993-04-30 | 1995-09-05 | Minnesota Mining And Manufacturing Company | Laparoscopic surgical instrument with a mechanism for preventing its entry into the abdominal cavity once it is depleted and removed from the abdominal cavity |
US6716232B1 (en) | 1993-04-30 | 2004-04-06 | United States Surgical Corporation | Surgical instrument having an articulated jaw structure and a detachable knife |
DE69414244T2 (de) | 1993-04-30 | 1999-04-22 | United States Surgical Corp., Norwalk, Conn. | Chirurgisches instrument mit einer schwenkbaren backenstruktur |
GB9309142D0 (en) | 1993-05-04 | 1993-06-16 | Gyrus Medical Ltd | Laparoscopic instrument |
GB9309151D0 (en) | 1993-05-04 | 1993-06-16 | Zeneca Ltd | Syringes and syringe pumps |
US5415334A (en) | 1993-05-05 | 1995-05-16 | Ethicon Endo-Surgery | Surgical stapler and staple cartridge |
US5364003A (en) | 1993-05-05 | 1994-11-15 | Ethicon Endo-Surgery | Staple cartridge for a surgical stapler |
US5509918A (en) | 1993-05-11 | 1996-04-23 | David Romano | Method and apparatus for drilling a curved bore in an object |
US5449370A (en) | 1993-05-12 | 1995-09-12 | Ethicon, Inc. | Blunt tipped ultrasonic trocar |
US5352229A (en) | 1993-05-12 | 1994-10-04 | Marlowe Goble E | Arbor press staple and washer and method for its use |
US5388748A (en) | 1993-05-13 | 1995-02-14 | Avery Dennison Corp. | Electric powered apparatus for dispensing individual plastic fasteners from fastener stock |
US6406472B1 (en) | 1993-05-14 | 2002-06-18 | Sri International, Inc. | Remote center positioner |
WO1994026167A1 (en) | 1993-05-14 | 1994-11-24 | Sri International | Remote center positioner |
US5549621A (en) | 1993-05-14 | 1996-08-27 | Byron C. Sutherland | Apparatus and method for performing vertical banded gastroplasty |
US5791231A (en) | 1993-05-17 | 1998-08-11 | Endorobotics Corporation | Surgical robotic system and hydraulic actuator therefor |
JPH06327684A (ja) | 1993-05-19 | 1994-11-29 | Olympus Optical Co Ltd | 外科用縫合具 |
CA2124109A1 (en) | 1993-05-24 | 1994-11-25 | Mark T. Byrne | Endoscopic surgical instrument with electromagnetic sensor |
JP3172977B2 (ja) | 1993-05-26 | 2001-06-04 | 富士重工業株式会社 | 車載バッテリの残存容量計 |
US5601604A (en) | 1993-05-27 | 1997-02-11 | Inamed Development Co. | Universal gastric band |
US5489290A (en) | 1993-05-28 | 1996-02-06 | Snowden-Pencer, Inc. | Flush port for endoscopic surgical instruments |
US5404870A (en) | 1993-05-28 | 1995-04-11 | Ethicon, Inc. | Method of using a transanal inserter |
US5381649A (en) | 1993-06-04 | 1995-01-17 | Webb; Stephen A. | Medical staple forming die and punch |
US5443197A (en) | 1993-06-16 | 1995-08-22 | United States Surgical Corporation | Locking mechanism for a skin stapler cartridge |
RU2066128C1 (ru) | 1993-06-21 | 1996-09-10 | Иван Александрович Корольков | Хирургический сшивающий аппарат и скобка |
US5409703A (en) | 1993-06-24 | 1995-04-25 | Carrington Laboratories, Inc. | Dried hydrogel from hydrophilic-hygroscopic polymer |
US5354215A (en) | 1993-06-24 | 1994-10-11 | Viracola Joseph R | Circuit interconnect for a power tool |
US5341724A (en) | 1993-06-28 | 1994-08-30 | Bronislav Vatel | Pneumatic telescoping cylinder and method |
US5651762A (en) | 1993-07-09 | 1997-07-29 | Bridges; Doye R. | Apparatus for holding intestines out of an operative field |
US6063025A (en) | 1993-07-09 | 2000-05-16 | Bioenterics Corporation | Apparatus for holding intestines out of an operative field |
GB9314391D0 (en) | 1993-07-12 | 1993-08-25 | Gyrus Medical Ltd | A radio frequency oscillator and an electrosurgical generator incorporating such an oscillator |
DE4323585A1 (de) | 1993-07-14 | 1995-01-19 | Delma Elektro Med App | Bipolares Hochfrequenz-Chirurgieinstrument |
US5478354A (en) | 1993-07-14 | 1995-12-26 | United States Surgical Corporation | Wound closing apparatus and method |
US5501654A (en) | 1993-07-15 | 1996-03-26 | Ethicon, Inc. | Endoscopic instrument having articulating element |
DE4323815C2 (de) | 1993-07-15 | 1997-09-25 | Siemens Ag | Verfahren und Vorrichtung zur hygienischen Aufbereitung von medizinischen, insbesondere zahnmedizinischen Instrumenten |
DE9310601U1 (de) | 1993-07-15 | 1993-09-02 | Siemens AG, 80333 München | Kassette zur Aufnahme ärztlicher, insbesondere zahnärztlicher Instrumente |
US5805140A (en) | 1993-07-16 | 1998-09-08 | Immersion Corporation | High bandwidth force feedback interface using voice coils and flexures |
CA2124505C (en) | 1993-07-21 | 2000-01-04 | William A. S. Buxton | User interface having simultaneously movable tools and cursor |
US5582617A (en) | 1993-07-21 | 1996-12-10 | Charles H. Klieman | Surgical instrument for endoscopic and general surgery |
US5827323A (en) | 1993-07-21 | 1998-10-27 | Charles H. Klieman | Surgical instrument for endoscopic and general surgery |
US5792165A (en) | 1993-07-21 | 1998-08-11 | Charles H. Klieman | Endoscopic instrument with detachable end effector |
JPH09501333A (ja) | 1993-07-21 | 1997-02-10 | エイチ. クリーマン,チャールズ | 内視鏡検査及び外科手術用の外科的器具 |
US5688270A (en) | 1993-07-22 | 1997-11-18 | Ethicon Endo-Surgery,Inc. | Electrosurgical hemostatic device with recessed and/or offset electrodes |
US5693051A (en) | 1993-07-22 | 1997-12-02 | Ethicon Endo-Surgery, Inc. | Electrosurgical hemostatic device with adaptive electrodes |
GR940100335A (el) | 1993-07-22 | 1996-05-22 | Ethicon Inc. | Ηλεκτροχειρουργικη συσκευη τοποθετησης συρραπτικων αγκυλων. |
US5709680A (en) | 1993-07-22 | 1998-01-20 | Ethicon Endo-Surgery, Inc. | Electrosurgical hemostatic device |
US5817093A (en) | 1993-07-22 | 1998-10-06 | Ethicon Endo-Surgery, Inc. | Impedance feedback monitor with query electrode for electrosurgical instrument |
US5810811A (en) | 1993-07-22 | 1998-09-22 | Ethicon Endo-Surgery, Inc. | Electrosurgical hemostatic device |
US5372596A (en) | 1993-07-27 | 1994-12-13 | Valleylab Inc. | Apparatus for leakage control and method for its use |
JPH079622U (ja) | 1993-07-27 | 1995-02-10 | 和光化成工業株式会社 | 車両用サンバイザのホルダー構造 |
US5441494A (en) | 1993-07-29 | 1995-08-15 | Ethicon, Inc. | Manipulable hand for laparoscopy |
US5503320A (en) | 1993-08-19 | 1996-04-02 | United States Surgical Corporation | Surgical apparatus with indicator |
US5447417A (en) | 1993-08-31 | 1995-09-05 | Valleylab Inc. | Self-adjusting pump head and safety manifold cartridge for a peristaltic pump |
USD357981S (en) | 1993-09-01 | 1995-05-02 | United States Surgical Corporation | Surgical stapler |
DE4432596A1 (de) | 1993-09-16 | 1995-03-23 | Whitaker Corp | Modulartige elektrische Kontaktanordnung |
US5441193A (en) | 1993-09-23 | 1995-08-15 | United States Surgical Corporation | Surgical fastener applying apparatus with resilient film |
EP0677297B1 (en) | 1993-09-24 | 2000-12-13 | Takiron Co. Ltd. | Implantation material |
US5419766A (en) | 1993-09-28 | 1995-05-30 | Critikon, Inc. | Catheter with stick protection |
US5405344A (en) | 1993-09-30 | 1995-04-11 | Ethicon, Inc. | Articulable socket joint assembly for an endoscopic instrument for surgical fastner track therefor |
CA2133159A1 (en) | 1993-09-30 | 1995-03-31 | Eric J. Butterfield | Surgical instrument having improved manipulating means |
DE4333983A1 (de) | 1993-10-05 | 1995-04-06 | Delma Elektro Med App | Elektrochirurgisches Hochfrequenz-Instrument |
US5542594A (en) | 1993-10-06 | 1996-08-06 | United States Surgical Corporation | Surgical stapling apparatus with biocompatible surgical fabric |
US5439155A (en) | 1993-10-07 | 1995-08-08 | United States Surgical Corporation | Cartridge for surgical fastener applying apparatus |
CA2132917C (en) | 1993-10-07 | 2004-12-14 | John Charles Robertson | Circular anastomosis device |
US5496312A (en) | 1993-10-07 | 1996-03-05 | Valleylab Inc. | Impedance and temperature generator control |
US6210403B1 (en) | 1993-10-07 | 2001-04-03 | Sherwood Services Ag | Automatic control for energy from an electrosurgical generator |
US5560532A (en) | 1993-10-08 | 1996-10-01 | United States Surgical Corporation | Apparatus and method for applying surgical staples to body tissue |
US5607436A (en) | 1993-10-08 | 1997-03-04 | United States Surgical Corporation | Apparatus for applying surgical clips |
US5562682A (en) | 1993-10-08 | 1996-10-08 | Richard-Allan Medical Industries, Inc. | Surgical Instrument with adjustable arms |
US5487499A (en) | 1993-10-08 | 1996-01-30 | United States Surgical Corporation | Surgical apparatus for applying surgical fasteners including a counter |
US5725554A (en) | 1993-10-08 | 1998-03-10 | Richard-Allan Medical Industries, Inc. | Surgical staple and stapler |
RU2098025C1 (ru) | 1993-10-11 | 1997-12-10 | Аркадий Вениаминович Дубровский | Поворотное устройство |
US5556416A (en) | 1993-10-12 | 1996-09-17 | Valleylab, Inc. | Endoscopic instrument |
US5724025A (en) | 1993-10-21 | 1998-03-03 | Tavori; Itzchak | Portable vital signs monitor |
US5427298A (en) | 1993-10-28 | 1995-06-27 | Tegtmeier; C. Allen | Method and apparatus for indicating quantity of fasteners in a fastening device |
GB9322464D0 (en) | 1993-11-01 | 1993-12-22 | Gyrus Medical Ltd | Electrosurgical apparatus |
US5571100B1 (en) | 1993-11-01 | 1998-01-06 | Gyrus Medical Ltd | Electrosurgical apparatus |
JP3414455B2 (ja) | 1993-11-02 | 2003-06-09 | オリンパス光学工業株式会社 | 縫合装置 |
US5376095A (en) | 1993-11-04 | 1994-12-27 | Ethicon Endo-Surgery | Endoscopic multi-fire flat stapler with low profile |
US5531305A (en) | 1993-11-05 | 1996-07-02 | Borg-Warner Automotive, Inc. | Synchronizer clutch assembly for multiple ratio gearing |
US5487377A (en) | 1993-11-05 | 1996-01-30 | Clinical Innovation Associates, Inc. | Uterine manipulator and manipulator tip assembly |
US5658298A (en) | 1993-11-09 | 1997-08-19 | Inamed Development Company | Laparoscopic tool |
US5562690A (en) | 1993-11-12 | 1996-10-08 | United States Surgical Corporation | Apparatus and method for performing compressional anastomoses |
US5503635A (en) | 1993-11-12 | 1996-04-02 | United States Surgical Corporation | Apparatus and method for performing compressional anastomoses |
US5449355A (en) | 1993-11-24 | 1995-09-12 | Valleylab Inc. | Retrograde tissue splitter and method |
US5633374A (en) | 1993-11-26 | 1997-05-27 | The Upjohn Company | Pyrimidine, cyanoguanidines as K-channel blockers |
DE4340707C2 (de) | 1993-11-30 | 1997-03-27 | Wolf Gmbh Richard | Manipulator |
US5514129A (en) | 1993-12-03 | 1996-05-07 | Valleylab Inc. | Automatic bipolar control for an electrosurgical generator |
US5405073A (en) | 1993-12-06 | 1995-04-11 | Ethicon, Inc. | Flexible support shaft assembly |
US5465894A (en) | 1993-12-06 | 1995-11-14 | Ethicon, Inc. | Surgical stapling instrument with articulated stapling head assembly on rotatable and flexible support shaft |
US5543695A (en) | 1993-12-15 | 1996-08-06 | Stryker Corporation | Medical instrument with programmable torque control |
US5743456A (en) | 1993-12-16 | 1998-04-28 | Stryker Corporation | Hand actuable surgical handpiece |
US5470008A (en) | 1993-12-20 | 1995-11-28 | United States Surgical Corporation | Apparatus for applying surgical fasteners |
US5422567A (en) | 1993-12-27 | 1995-06-06 | Valleylab Inc. | High frequency power measurement |
US5564658A (en) | 1993-12-29 | 1996-10-15 | B-Line Systems, Inc. | Support system for data transmission lines |
US5643293A (en) | 1993-12-29 | 1997-07-01 | Olympus Optical Co., Ltd. | Suturing instrument |
US5441191A (en) | 1993-12-30 | 1995-08-15 | Linden; Gerald E. | Indicating "staples low" in a paper stapler |
WO1995017855A1 (en) | 1993-12-30 | 1995-07-06 | Valleylab, Inc. | Bipolar ultrasonic surgery |
WO1995018572A1 (en) | 1994-01-04 | 1995-07-13 | Alpha Surgical Technologies, Inc. | Stapling device |
US5437681A (en) | 1994-01-13 | 1995-08-01 | Suturtek Inc. | Suturing instrument with thread management |
US5382247A (en) | 1994-01-21 | 1995-01-17 | Valleylab Inc. | Technique for electrosurgical tips and method of manufacture and use |
US5452837A (en) | 1994-01-21 | 1995-09-26 | Ethicon Endo-Surgery, Inc. | Surgical stapler with tissue gripping ridge |
DE9490471U1 (de) | 1994-01-31 | 1996-09-26 | Valleylab, Inc., Boulder, Col. | Teleskopierbare bipolare Elektrode für nicht-invasive medizinische Verfahren |
US5597107A (en) | 1994-02-03 | 1997-01-28 | Ethicon Endo-Surgery, Inc. | Surgical stapler instrument |
US5487500A (en) | 1994-02-03 | 1996-01-30 | Ethicon Endo-Surgery, Inc. | Surgical stapler instrument |
US5465895A (en) | 1994-02-03 | 1995-11-14 | Ethicon Endo-Surgery, Inc. | Surgical stapler instrument |
US5452836A (en) | 1994-02-07 | 1995-09-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with improved jaw closure and staple firing actuator mechanism |
US5503638A (en) | 1994-02-10 | 1996-04-02 | Bio-Vascular, Inc. | Soft tissue stapling buttress |
US5527320A (en) | 1994-02-10 | 1996-06-18 | Pilling Weck Inc. | Surgical clip applying instrument |
US5413107A (en) | 1994-02-16 | 1995-05-09 | Tetrad Corporation | Ultrasonic probe having articulated structure and rotatable transducer head |
US5508080A (en) | 1994-02-17 | 1996-04-16 | Takashimaya Nippatsu Kogyo Co. Ltd. | Flexible laminated surface material and method of producing the same |
US5507773A (en) | 1994-02-18 | 1996-04-16 | Ethicon Endo-Surgery | Cable-actuated jaw assembly for surgical instruments |
US5431666A (en) | 1994-02-24 | 1995-07-11 | Lasersurge, Inc. | Surgical suture instrument |
JPH0833642A (ja) | 1994-02-25 | 1996-02-06 | Ethicon Endo Surgery Inc | 外科用ステープラのための改良アンビル承口 |
WO1995023557A1 (en) | 1994-03-01 | 1995-09-08 | United States Surgical Corporation | Surgical stapler with anvil sensor and lockout |
CA2143560C (en) | 1994-03-02 | 2007-01-16 | Mark Fogelberg | Sterile occlusion fasteners and instrument and method for their placement |
US5445142A (en) | 1994-03-15 | 1995-08-29 | Ethicon Endo-Surgery, Inc. | Surgical trocars having optical tips defining one or more viewing ports |
DE9404459U1 (de) | 1994-03-16 | 1994-07-14 | Chr. Renz GmbH & Co, 73540 Heubach | Vorrichtung zum Verpacken von Bindeelementen |
CA2144211C (en) | 1994-03-16 | 2005-05-24 | David T. Green | Surgical instruments useful for endoscopic spinal procedures |
JP3421117B2 (ja) | 1994-03-17 | 2003-06-30 | テルモ株式会社 | 外科用器具 |
US5484398A (en) | 1994-03-17 | 1996-01-16 | Valleylab Inc. | Methods of making and using ultrasonic handpiece |
RU2052979C1 (ru) | 1994-03-22 | 1996-01-27 | Товарищество с ограниченной ответственностью "Дипы" ЛТД | Аппарат для наложения зажимающих скрепок и магазин для прошивающих скобок или зажимающих скрепок |
US5561881A (en) | 1994-03-22 | 1996-10-08 | U.S. Philips Corporation | Electric toothbrush |
US5472442A (en) | 1994-03-23 | 1995-12-05 | Valleylab Inc. | Moveable switchable electrosurgical handpiece |
US5860581A (en) | 1994-03-24 | 1999-01-19 | United States Surgical Corporation | Anvil for circular stapler |
US5541376A (en) | 1994-03-28 | 1996-07-30 | Valleylab Inc | Switch and connector |
CA2145723A1 (en) | 1994-03-30 | 1995-10-01 | Steven W. Hamblin | Surgical stapling instrument with remotely articulated stapling head assembly on rotatable support shaft |
US5715987A (en) | 1994-04-05 | 1998-02-10 | Tracor Incorporated | Constant width, adjustable grip, staple apparatus and method |
US5695524A (en) | 1994-04-05 | 1997-12-09 | Tracor Aerospace, Inc. | Constant width, adjustable grip, staple apparatus and method |
US5415335A (en) | 1994-04-07 | 1995-05-16 | Ethicon Endo-Surgery | Surgical stapler cartridge containing lockout mechanism |
CA2144818C (en) | 1994-04-07 | 2006-07-11 | Henry Bolanos | Graduated anvil for surgical stapling instruments |
US5626979A (en) | 1994-04-08 | 1997-05-06 | Sony Corporation | Battery device and electronic equipment employing the battery device as power source |
US5653677A (en) | 1994-04-12 | 1997-08-05 | Fuji Photo Optical Co. Ltd | Electronic endoscope apparatus with imaging unit separable therefrom |
JPH07285089A (ja) | 1994-04-14 | 1995-10-31 | Mitsubishi Heavy Ind Ltd | 5指手腕機構 |
US5529235A (en) | 1994-04-28 | 1996-06-25 | Ethicon Endo-Surgery, Inc. | Identification device for surgical instrument |
US5470007A (en) | 1994-05-02 | 1995-11-28 | Minnesota Mining And Manufacturing Company | Laparoscopic stapler with overload sensor and interlock |
US5489058A (en) | 1994-05-02 | 1996-02-06 | Minnesota Mining And Manufacturing Company | Surgical stapler with mechanisms for reducing the firing force |
US5474566A (en) | 1994-05-05 | 1995-12-12 | United States Surgical Corporation | Self-contained powered surgical apparatus |
CA2148667A1 (en) | 1994-05-05 | 1995-11-06 | Carlo A. Mililli | Self-contained powered surgical apparatus |
US5628446A (en) | 1994-05-05 | 1997-05-13 | United States Surgical Corporation | Self-contained powered surgical apparatus |
US5498164A (en) | 1994-05-09 | 1996-03-12 | Ward; Mark C. | Automotive steering column electrical connector |
US5843021A (en) | 1994-05-09 | 1998-12-01 | Somnus Medical Technologies, Inc. | Cell necrosis apparatus |
US5480409A (en) | 1994-05-10 | 1996-01-02 | Riza; Erol D. | Laparoscopic surgical instrument |
US5782749A (en) | 1994-05-10 | 1998-07-21 | Riza; Erol D. | Laparoscopic surgical instrument with adjustable grip |
US6704210B1 (en) | 1994-05-20 | 2004-03-09 | Medtronic, Inc. | Bioprothesis film strip for surgical stapler and method of attaching the same |
US5454827A (en) | 1994-05-24 | 1995-10-03 | Aust; Gilbert M. | Surgical instrument |
US5510138A (en) | 1994-05-24 | 1996-04-23 | Delco Electronics Corporation | Hot melt conformal coating materials |
USRE38335E1 (en) | 1994-05-24 | 2003-11-25 | Endius Incorporated | Surgical instrument |
ES2135012T3 (es) | 1994-05-30 | 1999-10-16 | Canon Kk | Baterias recargables. |
US5814057A (en) | 1994-06-03 | 1998-09-29 | Gunze Limited | Supporting element for staple region |
GB9411429D0 (en) | 1994-06-08 | 1994-07-27 | Seton Healthcare Group Plc | Wound dressings |
US5553675A (en) | 1994-06-10 | 1996-09-10 | Minnesota Mining And Manufacturing Company | Orthopedic surgical device |
US5522831A (en) | 1994-06-13 | 1996-06-04 | Dennis R. Sleister | Incising trocar and cannula assembly |
US5473204A (en) | 1994-06-16 | 1995-12-05 | Temple; Thomas D. | Time delay switch |
EP0765137B1 (en) | 1994-06-17 | 2003-07-30 | Heartport, Inc. | Surgical stapling instrument |
US5881943A (en) | 1994-06-17 | 1999-03-16 | Heartport, Inc. | Surgical anastomosis apparatus and method thereof |
US5732872A (en) | 1994-06-17 | 1998-03-31 | Heartport, Inc. | Surgical stapling instrument |
US5807376A (en) | 1994-06-24 | 1998-09-15 | United States Surgical Corporation | Apparatus and method for performing surgical tasks during laparoscopic procedures |
US5746224A (en) | 1994-06-24 | 1998-05-05 | Somnus Medical Technologies, Inc. | Method for ablating turbinates |
US5558665A (en) | 1994-06-24 | 1996-09-24 | Archimedes Surgical, Inc. | Surgical instrument and method for intraluminal retraction of an anatomic structure |
DE19523332C2 (de) | 1994-06-27 | 1998-05-28 | Ricoh Kk | Batterie-Entsorgungs- und Sammelvorrichtung |
DE4422621C1 (de) | 1994-06-28 | 1995-08-31 | Aesculap Ag | Chirurgisches Instrument |
GB9413070D0 (en) | 1994-06-29 | 1994-08-17 | Gyrus Medical Ltd | Electrosurgical apparatus |
US5551622A (en) | 1994-07-13 | 1996-09-03 | Yoon; Inbae | Surgical stapler |
US5833695A (en) | 1994-07-13 | 1998-11-10 | Yoon; Inbae | Surgical stapling system and method of applying staples from multiple staple cartridges |
US5623582A (en) | 1994-07-14 | 1997-04-22 | Immersion Human Interface Corporation | Computer interface or control input device for laparoscopic surgical instrument and other elongated mechanical objects |
US5533521A (en) | 1994-07-15 | 1996-07-09 | United States Surgical Corporation | Interchangeable tissue measuring device |
US5629577A (en) | 1994-07-15 | 1997-05-13 | Micro Medical Devices | Miniature linear motion actuator |
US5712460A (en) | 1994-07-19 | 1998-01-27 | Linvatec Corporation | Multi-function surgical device control system |
US5544802A (en) | 1994-07-27 | 1996-08-13 | Crainich; Lawrence | Surgical staple and stapler device therefor |
US5583114A (en) | 1994-07-27 | 1996-12-10 | Minnesota Mining And Manufacturing Company | Adhesive sealant composition |
DE9412228U1 (de) | 1994-07-28 | 1994-09-22 | Loctite Europa E.E.I.G. (E.W.I.V.), 85748 Garching | Schlauchpumpe zur genauen Dosierung kleiner Flüssigkeitsmengen |
US5582907A (en) | 1994-07-28 | 1996-12-10 | Pall Corporation | Melt-blown fibrous web |
AU694225B2 (en) | 1994-08-02 | 1998-07-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic hemostatic and cutting instrument |
US5607303A (en) | 1994-08-03 | 1997-03-04 | Nakamura; Shoukou | Accessory apparatus of dentistry drills for putting oral cavity organs out of way |
RU2104671C1 (ru) | 1994-08-03 | 1998-02-20 | Виктор Алексеевич Липатов | Хирургический сшиватель |
US5507426A (en) | 1994-08-05 | 1996-04-16 | United States Surgical Corporation | Apparatus for applying surgical fasteners |
EP0699418A1 (en) | 1994-08-05 | 1996-03-06 | United States Surgical Corporation | Self-contained powered surgical apparatus |
US5779130A (en) | 1994-08-05 | 1998-07-14 | United States Surgical Corporation | Self-contained powered surgical apparatus |
US5509916A (en) | 1994-08-12 | 1996-04-23 | Valleylab Inc. | Laser-assisted electrosurgery system |
US5480089A (en) | 1994-08-19 | 1996-01-02 | United States Surgical Corporation | Surgical stapler apparatus with improved staple pockets |
CA2146508C (en) | 1994-08-25 | 2006-11-14 | Robert H. Schnut | Anvil for circular stapler |
US6120433A (en) | 1994-09-01 | 2000-09-19 | Olympus Optical Co., Ltd. | Surgical manipulator system |
JPH08136626A (ja) | 1994-09-16 | 1996-05-31 | Seiko Epson Corp | バッテリー残存容量計及びバッテリー残存容量の演算方法 |
US5569284A (en) | 1994-09-23 | 1996-10-29 | United States Surgical Corporation | Morcellator |
US5609601A (en) | 1994-09-23 | 1997-03-11 | United States Surgical Corporation | Endoscopic surgical apparatus with rotation lock |
US5916225A (en) | 1994-09-29 | 1999-06-29 | Surgical Sense, Inc. | Hernia mesh patch |
DE4434864C2 (de) | 1994-09-29 | 1997-06-19 | United States Surgical Corp | Chirurgischer Klammerapplikator mit auswechselbarem Klammermagazin |
US5571116A (en) | 1994-10-02 | 1996-11-05 | United States Surgical Corporation | Non-invasive treatment of gastroesophageal reflux disease |
US5685474A (en) | 1994-10-04 | 1997-11-11 | United States Surgical Corporation | Tactile indicator for surgical instrument |
US5797538A (en) | 1994-10-05 | 1998-08-25 | United States Surgical Corporation | Articulating apparatus for applying surgical fasteners to body tissue |
US5901895A (en) | 1994-10-05 | 1999-05-11 | United States Surgical Corporation | Articulating apparatus for applying surgical fasteners to body tissue |
US5540374A (en) | 1994-10-06 | 1996-07-30 | Minnesota Mining And Manufacturing Company | Bone stapler cartridge |
US5575805A (en) | 1994-10-07 | 1996-11-19 | Li Medical Technologies, Inc. | Variable tip-pressure surgical grasper |
US5571090A (en) | 1994-10-07 | 1996-11-05 | United States Surgical Corporation | Vascular suturing apparatus |
CA2157744C (en) | 1994-10-07 | 2005-08-23 | Charles R. Sherts | Endoscopic vascular suturing apparatus |
EP0705571A1 (en) | 1994-10-07 | 1996-04-10 | United States Surgical Corporation | Self-contained powered surgical apparatus |
CN1163558A (zh) | 1994-10-11 | 1997-10-29 | 查尔斯·H·克利曼 | 具有可拆卸的端部操作装置的内窥镜仪器 |
US5562694A (en) | 1994-10-11 | 1996-10-08 | Lasersurge, Inc. | Morcellator |
US5718714A (en) | 1994-10-11 | 1998-02-17 | Circon Corporation | Surgical instrument with removable shaft assembly |
US5591170A (en) | 1994-10-14 | 1997-01-07 | Genesis Orthopedics | Intramedullary bone cutting saw |
US5599852A (en) | 1994-10-18 | 1997-02-04 | Ethicon, Inc. | Injectable microdispersions for soft tissue repair and augmentation |
US5752973A (en) | 1994-10-18 | 1998-05-19 | Archimedes Surgical, Inc. | Endoscopic surgical gripping instrument with universal joint jaw coupler |
AU706434B2 (en) | 1994-10-18 | 1999-06-17 | Ethicon Inc. | Injectable liquid copolymers for soft tissue repair and augmentation |
US5549627A (en) | 1994-10-21 | 1996-08-27 | Kieturakis; Maciej J. | Surgical instruments and method for applying progressive intracorporeal traction |
JP3115197B2 (ja) | 1994-10-21 | 2000-12-04 | 本田技研工業株式会社 | 自動車用表示装置 |
US5620454A (en) | 1994-10-25 | 1997-04-15 | Becton, Dickinson And Company | Guarded surgical scalpel |
USD381077S (en) | 1994-10-25 | 1997-07-15 | Ethicon Endo-Surgery | Multifunctional surgical stapling instrument |
US5575789A (en) | 1994-10-27 | 1996-11-19 | Valleylab Inc. | Energizable surgical tool safety device and method |
US5549637A (en) | 1994-11-10 | 1996-08-27 | Crainich; Lawrence | Articulated medical instrument |
JPH08136628A (ja) | 1994-11-11 | 1996-05-31 | Fujitsu Ltd | 電池容量監視装置 |
US5989244A (en) | 1994-11-15 | 1999-11-23 | Gregory; Kenton W. | Method of use of a sheet of elastin or elastin-based material |
US5891558A (en) | 1994-11-22 | 1999-04-06 | Tissue Engineering, Inc. | Biopolymer foams for use in tissue repair and reconstruction |
US5709934A (en) | 1994-11-22 | 1998-01-20 | Tissue Engineering, Inc. | Bipolymer foams having extracellular matrix particulates |
US6206897B1 (en) | 1994-12-02 | 2001-03-27 | Ethicon, Inc. | Enhanced visualization of the latching mechanism of latching surgical devices |
US7235089B1 (en) | 1994-12-07 | 2007-06-26 | Boston Scientific Corporation | Surgical apparatus and method |
US5868760A (en) | 1994-12-07 | 1999-02-09 | Mcguckin, Jr.; James F. | Method and apparatus for endolumenally resectioning tissue |
JPH08164141A (ja) | 1994-12-13 | 1996-06-25 | Olympus Optical Co Ltd | 処置具 |
US5636779A (en) | 1994-12-13 | 1997-06-10 | United States Surgical Corporation | Apparatus for applying surgical fasteners |
US5988479A (en) | 1994-12-13 | 1999-11-23 | United States Surgical Corporation | Apparatus for applying surgical fasteners |
US5569270A (en) | 1994-12-13 | 1996-10-29 | Weng; Edward E. | Laparoscopic surgical instrument |
US5541489A (en) | 1994-12-15 | 1996-07-30 | Intel Corporation | Smart battery power availability feature based on battery-specific characteristics |
US5713505A (en) | 1996-05-13 | 1998-02-03 | Ethicon Endo-Surgery, Inc. | Articulation transmission mechanism for surgical instruments |
US5632432A (en) | 1994-12-19 | 1997-05-27 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
US5704534A (en) | 1994-12-19 | 1998-01-06 | Ethicon Endo-Surgery, Inc. | Articulation assembly for surgical instruments |
US5492671A (en) | 1994-12-20 | 1996-02-20 | Zimmer, Inc. | Sterilization case and method of sterilization |
GB9425781D0 (en) | 1994-12-21 | 1995-02-22 | Gyrus Medical Ltd | Electrosurgical instrument |
US5628743A (en) | 1994-12-21 | 1997-05-13 | Valleylab Inc. | Dual mode ultrasonic surgical apparatus |
US5613966A (en) | 1994-12-21 | 1997-03-25 | Valleylab Inc | System and method for accessory rate control |
AU701320B2 (en) | 1994-12-22 | 1999-01-28 | Ethicon Endo-Surgery, Inc. | Impedance feedback monitor with query electrode for electrosurgical instrument |
US5695494A (en) | 1994-12-22 | 1997-12-09 | Valleylab Inc | Rem output stage topology |
US5620452A (en) | 1994-12-22 | 1997-04-15 | Yoon; Inbae | Surgical clip with ductile tissue penetrating members |
US5713895A (en) | 1994-12-30 | 1998-02-03 | Valleylab Inc | Partially coated electrodes |
US5466020A (en) | 1994-12-30 | 1995-11-14 | Valleylab Inc. | Bayonet connector for surgical handpiece |
US6430298B1 (en) | 1995-01-13 | 2002-08-06 | Lonnie Joe Kettl | Microphone mounting structure for a sound amplifying respirator and/or bubble suit |
US5637110A (en) | 1995-01-31 | 1997-06-10 | Stryker Corporation | Electrocautery surgical tool with relatively pivoted tissue engaging jaws |
CA2168404C (en) | 1995-02-01 | 2007-07-10 | Dale Schulze | Surgical instrument with expandable cutting element |
JPH10503408A (ja) | 1995-02-03 | 1998-03-31 | ヴァリーラブ・インコーポレーテッド | ペンシルと組み合わせた電気外科用吸引器 |
AU4763296A (en) | 1995-02-03 | 1996-08-21 | Inbae Yoon | Cannula with distal end valve |
USD372086S (en) | 1995-02-03 | 1996-07-23 | Valleylab Inc. | Aspirator attachment for a surgical device |
DE69610723T2 (de) | 1995-02-10 | 2001-10-18 | The Raymond Corp., Greene | Flurförderfahrzeug mit interner Temperaturüberwachung |
US5669907A (en) | 1995-02-10 | 1997-09-23 | Valleylab Inc. | Plasma enhanced bipolar electrosurgical system |
US6409722B1 (en) | 1998-07-07 | 2002-06-25 | Medtronic, Inc. | Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue |
US5695504A (en) | 1995-02-24 | 1997-12-09 | Heartport, Inc. | Devices and methods for performing a vascular anastomosis |
US6110187A (en) | 1995-02-24 | 2000-08-29 | Heartport, Inc. | Device and method for minimizing heart displacements during a beating heart surgical procedure |
US5669904A (en) | 1995-03-07 | 1997-09-23 | Valleylab Inc. | Surgical gas plasma ignition apparatus and method |
US6213999B1 (en) | 1995-03-07 | 2001-04-10 | Sherwood Services Ag | Surgical gas plasma ignition apparatus and method |
US5735445A (en) | 1995-03-07 | 1998-04-07 | United States Surgical Corporation | Surgical stapler |
US5681341A (en) | 1995-03-14 | 1997-10-28 | Origin Medsystems, Inc. | Flexible lifting apparatus |
DE19509116C2 (de) | 1995-03-16 | 2000-01-05 | Deutsch Zentr Luft & Raumfahrt | Flexible Struktur |
DE19509115C2 (de) | 1995-03-16 | 1997-11-27 | Deutsche Forsch Luft Raumfahrt | Chirurgisches Gerät zum Vorbereiten einer Anastomose in minimal invasiver Operationstechnik |
US5575799A (en) | 1995-03-30 | 1996-11-19 | United States Surgical Corporation | Articulating surgical apparatus |
AU5528296A (en) | 1995-03-31 | 1996-10-16 | Rockwell International Corporation | Yoke connections for universal joints |
US5599350A (en) | 1995-04-03 | 1997-02-04 | Ethicon Endo-Surgery, Inc. | Electrosurgical clamping device with coagulation feedback |
US5618307A (en) | 1995-04-03 | 1997-04-08 | Heartport, Inc. | Clamp assembly and method of use |
US5619992A (en) | 1995-04-06 | 1997-04-15 | Guthrie; Robert B. | Methods and apparatus for inhibiting contamination of reusable pulse oximetry sensors |
US6056735A (en) | 1996-04-04 | 2000-05-02 | Olympus Optical Co., Ltd. | Ultrasound treatment system |
US6669690B1 (en) | 1995-04-06 | 2003-12-30 | Olympus Optical Co., Ltd. | Ultrasound treatment system |
US5624452A (en) | 1995-04-07 | 1997-04-29 | Ethicon Endo-Surgery, Inc. | Hemostatic surgical cutting or stapling instrument |
JPH10513390A (ja) | 1995-04-21 | 1998-12-22 | ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド | 外科用プレジット分配供給システム |
JPH08289895A (ja) | 1995-04-21 | 1996-11-05 | Olympus Optical Co Ltd | 縫合器 |
US5553765A (en) | 1995-04-28 | 1996-09-10 | Ethicon Endo-Surgery, Inc. | Surgical stapler with improved operating lever mounting arrangement |
US5773991A (en) | 1995-05-02 | 1998-06-30 | Texas Instruments Incorporated | Motor current sense circuit using H bridge circuits |
US5657417A (en) | 1995-05-02 | 1997-08-12 | Burndy Corporation | Control for battery powered tool |
US6575969B1 (en) | 1995-05-04 | 2003-06-10 | Sherwood Services Ag | Cool-tip radiofrequency thermosurgery electrode system for tumor ablation |
JP3526487B2 (ja) | 1995-05-08 | 2004-05-17 | 株式会社伊垣医療設計 | 医療用縫合材 |
JP3795100B2 (ja) | 1995-05-08 | 2006-07-12 | 株式会社伊垣医療設計 | 医療用縫合材 |
AU5741296A (en) | 1995-05-12 | 1996-11-29 | Rodney C. Perkins | Translumenal circumferential injector |
US5540705A (en) | 1995-05-19 | 1996-07-30 | Suturtek, Inc. | Suturing instrument with thread management |
CA2176047C (en) | 1995-05-22 | 2000-04-11 | Mohi Sobhani | Spring loaded rotary connector |
US6123241A (en) | 1995-05-23 | 2000-09-26 | Applied Tool Development Corporation | Internal combustion powered tool |
US5630540A (en) | 1995-05-24 | 1997-05-20 | United States Surgical Corporation | Surgical staple and staple drive member |
US5678748A (en) | 1995-05-24 | 1997-10-21 | Vir Engineering | Surgical stapler with improved safety mechanism |
US5720744A (en) | 1995-06-06 | 1998-02-24 | Valleylab Inc | Control system for neurosurgery |
WO1996039086A1 (en) | 1995-06-06 | 1996-12-12 | Valleylab Inc. | Power control for an electrosurgical generator |
CA2220909C (en) | 1995-06-06 | 2001-02-27 | Valleylab, Inc. | Digital waveform generation for electrosurgical generators |
US5599344A (en) | 1995-06-06 | 1997-02-04 | Valleylab Inc. | Control apparatus for electrosurgical generator power output |
US5628745A (en) | 1995-06-06 | 1997-05-13 | Bek; Robin B. | Exit spark control for an electrosurgical generator |
US5814038A (en) | 1995-06-07 | 1998-09-29 | Sri International | Surgical manipulator for a telerobotic system |
US5667864A (en) | 1995-06-07 | 1997-09-16 | Landoll; Leo M. | Absorbant laminates and method of making same |
US5614887A (en) | 1995-06-07 | 1997-03-25 | Buchbinder; Dale | Patient monitoring system and method thereof |
US5649956A (en) | 1995-06-07 | 1997-07-22 | Sri International | System and method for releasably holding a surgical instrument |
US5620326A (en) | 1995-06-09 | 1997-04-15 | Simulab Corporation | Anatomical simulator for videoendoscopic surgical training |
DE19521257C2 (de) | 1995-06-10 | 1999-01-28 | Winter & Ibe Olympus | Chirurgische Zange |
FR2735350B1 (fr) | 1995-06-15 | 1997-12-26 | Maurice Lanzoni | Dispositif developpeur d'efforts d'une pince coupante |
US5849011A (en) | 1995-06-19 | 1998-12-15 | Vidamed, Inc. | Medical device with trigger actuation assembly |
GB9604770D0 (en) | 1995-06-23 | 1996-05-08 | Gyrus Medical Ltd | An electrosurgical generator and system |
JPH11507856A (ja) | 1995-06-23 | 1999-07-13 | ガイラス・メディカル・リミテッド | 電気外科器具 |
GB9526627D0 (en) | 1995-12-29 | 1996-02-28 | Gyrus Medical Ltd | An electrosurgical instrument and an electrosurgical electrode assembly |
US6015406A (en) | 1996-01-09 | 2000-01-18 | Gyrus Medical Limited | Electrosurgical instrument |
US6780180B1 (en) | 1995-06-23 | 2004-08-24 | Gyrus Medical Limited | Electrosurgical instrument |
ES2150676T5 (es) | 1995-06-23 | 2006-04-16 | Gyrus Medical Limited | Instrumento electroquirurgico. |
US6293942B1 (en) | 1995-06-23 | 2001-09-25 | Gyrus Medical Limited | Electrosurgical generator method |
GB9600377D0 (en) | 1996-01-09 | 1996-03-13 | Gyrus Medical Ltd | Electrosurgical instrument |
US6185356B1 (en) | 1995-06-27 | 2001-02-06 | Lumitex, Inc. | Protective cover for a lighting device |
US6077280A (en) | 1995-06-29 | 2000-06-20 | Thomas Jefferson University | Surgical clamp |
WO1997001989A1 (en) | 1995-07-03 | 1997-01-23 | Frater Dirk A | System for mounting bolster material on tissue staplers |
US5878607A (en) | 1995-07-06 | 1999-03-09 | Johnson & Johnson Professional, Inc. | Surgical cast cutter |
USRE38708E1 (en) | 1995-07-11 | 2005-03-01 | United States Surgical Corporation | Disposable loading unit for surgical stapler |
US5752644A (en) | 1995-07-11 | 1998-05-19 | United States Surgical Corporation | Disposable loading unit for surgical stapler |
US5591187A (en) | 1995-07-14 | 1997-01-07 | Dekel; Moshe | Laparoscopic tissue retrieval device and method |
US5706998A (en) | 1995-07-17 | 1998-01-13 | United States Surgical Corporation | Surgical stapler with alignment pin locking mechanism |
AU6499596A (en) | 1995-07-18 | 1997-02-18 | Edwards, Garland U. | Flexible shaft |
US5749896A (en) | 1995-07-18 | 1998-05-12 | Cook; Melvin S. | Staple overlap |
US6447518B1 (en) | 1995-07-18 | 2002-09-10 | William R. Krause | Flexible shaft components |
US5702409A (en) | 1995-07-21 | 1997-12-30 | W. L. Gore & Associates, Inc. | Device and method for reinforcing surgical staples |
US5556020A (en) | 1995-07-21 | 1996-09-17 | Hou; Chang F. | Power staple gun |
US5810855A (en) | 1995-07-21 | 1998-09-22 | Gore Enterprise Holdings, Inc. | Endoscopic device and method for reinforcing surgical staples |
US6023638A (en) | 1995-07-28 | 2000-02-08 | Scimed Life Systems, Inc. | System and method for conducting electrophysiological testing using high-voltage energy pulses to stun tissue |
JP3264607B2 (ja) | 1995-07-28 | 2002-03-11 | 株式会社モリタ製作所 | 歯科用ハンドピースのモータ制御装置 |
RU2110965C1 (ru) | 1995-08-03 | 1998-05-20 | Ярослав Петрович Кулик | Устройство для осуществления лапароскопических вмешательств |
US5810846A (en) | 1995-08-03 | 1998-09-22 | United States Surgical Corporation | Vascular hole closure |
US5549583A (en) | 1995-08-04 | 1996-08-27 | Adam Spence Corporation | Surgical connector |
JP3359472B2 (ja) | 1995-08-07 | 2002-12-24 | 京セラ株式会社 | 電池パック |
US5611709A (en) | 1995-08-10 | 1997-03-18 | Valleylab Inc | Method and assembly of member and terminal |
US5718359A (en) | 1995-08-14 | 1998-02-17 | United States Of America Surgical Corporation | Surgical stapler with lockout mechanism |
US5715988A (en) | 1995-08-14 | 1998-02-10 | United States Surgical Corporation | Surgical stapler with lockout mechanism |
US5839639A (en) | 1995-08-17 | 1998-11-24 | Lasersurge, Inc. | Collapsible anvil assembly and applicator instrument |
US5931853A (en) | 1995-08-25 | 1999-08-03 | Mcewen; James A. | Physiologic tourniquet with safety circuit |
US5782396A (en) | 1995-08-28 | 1998-07-21 | United States Surgical Corporation | Surgical stapler |
US6032849A (en) | 1995-08-28 | 2000-03-07 | United States Surgical | Surgical stapler |
US5762256A (en) | 1995-08-28 | 1998-06-09 | United States Surgical Corporation | Surgical stapler |
US5574431A (en) | 1995-08-29 | 1996-11-12 | Checkpoint Systems, Inc. | Deactivateable security tag |
US5664404A (en) | 1995-08-31 | 1997-09-09 | Ethicon, Inc. | Automatic zipper package winding and packaging machine |
US5667526A (en) | 1995-09-07 | 1997-09-16 | Levin; John M. | Tissue retaining clamp |
US5891094A (en) | 1995-09-07 | 1999-04-06 | Innerdyne, Inc. | System for direct heating of fluid solution in a hollow body organ and methods |
US6075441A (en) | 1996-09-05 | 2000-06-13 | Key-Trak, Inc. | Inventoriable-object control and tracking system |
DE19534112A1 (de) | 1995-09-14 | 1997-03-20 | Wolf Gmbh Richard | Endoskopisches Instrument |
DE19534043A1 (de) | 1995-09-14 | 1997-03-20 | Carisius Christensen Gmbh Dr | Chirurgische Arbeitsmaschine |
US5827271A (en) | 1995-09-19 | 1998-10-27 | Valleylab | Energy delivery system for vessel sealing |
US5776130A (en) | 1995-09-19 | 1998-07-07 | Valleylab, Inc. | Vascular tissue sealing pressure control |
US5662667A (en) | 1995-09-19 | 1997-09-02 | Ethicon Endo-Surgery, Inc. | Surgical clamping mechanism |
US5814055A (en) | 1995-09-19 | 1998-09-29 | Ethicon Endo-Surgery, Inc. | Surgical clamping mechanism |
US5704087A (en) | 1995-09-19 | 1998-01-06 | Strub; Richard | Dental care apparatus and technique |
US5797959A (en) | 1995-09-21 | 1998-08-25 | United States Surgical Corporation | Surgical apparatus with articulating jaw structure |
US5797927A (en) | 1995-09-22 | 1998-08-25 | Yoon; Inbae | Combined tissue clamping and suturing instrument |
DE19535179A1 (de) | 1995-09-22 | 1997-03-27 | Wolf Gmbh Richard | Abwinkelbares Rohr und Verfahren zu seiner Herstellung |
US5772659A (en) | 1995-09-26 | 1998-06-30 | Valleylab Inc. | Electrosurgical generator power control circuit and method |
US5702387A (en) | 1995-09-27 | 1997-12-30 | Valleylab Inc | Coated electrosurgical electrode |
US5732821A (en) | 1995-09-28 | 1998-03-31 | Biomet, Inc. | System for sterilizing medical devices |
US5707392A (en) | 1995-09-29 | 1998-01-13 | Symbiosis Corporation | Hermaphroditic stamped forceps jaw for disposable endoscopic biopsy forceps and method of making the same |
US5796188A (en) | 1995-10-05 | 1998-08-18 | Xomed Surgical Products, Inc. | Battery-powered medical instrument with power booster |
US5804726A (en) | 1995-10-16 | 1998-09-08 | Mtd Products Inc. | Acoustic signature analysis for a noisy enviroment |
US5809441A (en) | 1995-10-19 | 1998-09-15 | Case Corporation | Apparatus and method of neutral start control of a power transmission |
US5653721A (en) | 1995-10-19 | 1997-08-05 | Ethicon Endo-Surgery, Inc. | Override mechanism for an actuator on a surgical instrument |
US5697542A (en) | 1995-10-19 | 1997-12-16 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical stapler with compact profile |
US5839369A (en) | 1995-10-20 | 1998-11-24 | Eastman Kodak Company | Method of controlled laser imaging of zirconia alloy ceramic lithographic member to provide localized melting in exposed areas |
US5700270A (en) | 1995-10-20 | 1997-12-23 | United States Surgical Corporation | Surgical clip applier |
US5997552A (en) | 1995-10-20 | 1999-12-07 | United States Surgical Corporation | Meniscal fastener applying device |
GB9521772D0 (en) | 1995-10-24 | 1996-01-03 | Gyrus Medical Ltd | An electrosurgical instrument |
US5941442A (en) | 1995-10-27 | 1999-08-24 | United States Surgical | Surgical stapler |
CA2188738A1 (en) | 1995-10-27 | 1997-04-28 | Lisa W. Heaton | Surgical stapler having interchangeable loading units |
US5651491A (en) | 1995-10-27 | 1997-07-29 | United States Surgical Corporation | Surgical stapler having interchangeable loading units |
US5804936A (en) | 1995-10-31 | 1998-09-08 | Smith & Nephew, Inc. | Motor controlled surgical system |
US5827298A (en) | 1995-11-17 | 1998-10-27 | Innovasive Devices, Inc. | Surgical fastening system and method for using the same |
US5860953A (en) | 1995-11-21 | 1999-01-19 | Catheter Imaging Systems, Inc. | Steerable catheter having disposable module and sterilizable handle and method of connecting same |
US5746770A (en) | 1995-11-22 | 1998-05-05 | Zeitels; Jerrold Roy | Endoscopic retriever |
JPH09149941A (ja) | 1995-12-01 | 1997-06-10 | Tokai Rika Co Ltd | 体内挿入用医療器具のセンサ |
US5658281A (en) | 1995-12-04 | 1997-08-19 | Valleylab Inc | Bipolar electrosurgical scissors and method of manufacture |
US5656917A (en) | 1995-12-14 | 1997-08-12 | Motorola, Inc. | Battery identification apparatus and associated method |
US5638582A (en) | 1995-12-20 | 1997-06-17 | Flexible Steel Lacing Company | Belt fastener with pre-set staples |
US5865638A (en) | 1995-12-21 | 1999-02-02 | Alcoa Fujikura Ltd. | Electrical connector |
US5971916A (en) | 1995-12-27 | 1999-10-26 | Koren; Arie | Video camera cover |
BR9612395A (pt) | 1995-12-29 | 1999-07-13 | Gyrus Medical Ltd | Instrumento eletrocirúrgico e um conjunto de eltrodo eletrocirúrgico |
US6013076A (en) | 1996-01-09 | 2000-01-11 | Gyrus Medical Limited | Electrosurgical instrument |
US6090106A (en) | 1996-01-09 | 2000-07-18 | Gyrus Medical Limited | Electrosurgical instrument |
GB9600354D0 (en) | 1996-01-09 | 1996-03-13 | Gyrus Medical Ltd | Electrosurgical instrument |
US5683432A (en) | 1996-01-11 | 1997-11-04 | Medtronic, Inc. | Adaptive, performance-optimizing communication system for communicating with an implanted medical device |
US5755717A (en) | 1996-01-16 | 1998-05-26 | Ethicon Endo-Surgery, Inc. | Electrosurgical clamping device with improved coagulation feedback |
US5738648A (en) | 1996-01-23 | 1998-04-14 | Valleylab Inc | Method and apparatus for a valve and irrigator |
USD395645S (en) | 1996-01-24 | 1998-06-30 | Pacesetter, Inc. | Display screen with an icon |
US6015417A (en) | 1996-01-25 | 2000-01-18 | Reynolds, Jr.; Walker | Surgical fastener |
DE19603889C2 (de) | 1996-02-03 | 1999-05-06 | Aesculap Ag & Co Kg | Chirurgisches Anlegegerät |
US7166117B2 (en) | 1996-02-07 | 2007-01-23 | Hellenkamp Johann F | Automatic surgical device and control assembly for cutting a cornea |
US20070244496A1 (en) | 1996-02-07 | 2007-10-18 | Hellenkamp Johann F | Automatic surgical device and control assembly for cutting a cornea |
US5624398A (en) | 1996-02-08 | 1997-04-29 | Symbiosis Corporation | Endoscopic robotic surgical tools and methods |
GB9602580D0 (en) | 1996-02-08 | 1996-04-10 | Dual Voltage Ltd | Plastics flexible core |
US5620289A (en) | 1996-02-09 | 1997-04-15 | Curry; Rinda M. | Colored staples |
AU722777B2 (en) | 1996-02-13 | 2000-08-10 | Conmed Corporation | Surgical access device and method of constructing same |
US5749889A (en) | 1996-02-13 | 1998-05-12 | Imagyn Medical, Inc. | Method and apparatus for performing biopsy |
US5713128A (en) | 1996-02-16 | 1998-02-03 | Valleylab Inc | Electrosurgical pad apparatus and method of manufacture |
US5725536A (en) | 1996-02-20 | 1998-03-10 | Richard-Allen Medical Industries, Inc. | Articulated surgical instrument with improved articulation control mechanism |
US5855583A (en) | 1996-02-20 | 1999-01-05 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
US5820009A (en) | 1996-02-20 | 1998-10-13 | Richard-Allan Medical Industries, Inc. | Articulated surgical instrument with improved jaw closure mechanism |
CA2197614C (en) | 1996-02-20 | 2002-07-02 | Charles S. Taylor | Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery |
US6436107B1 (en) | 1996-02-20 | 2002-08-20 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US6010054A (en) | 1996-02-20 | 2000-01-04 | Imagyn Medical Technologies | Linear stapling instrument with improved staple cartridge |
US5762255A (en) | 1996-02-20 | 1998-06-09 | Richard-Allan Medical Industries, Inc. | Surgical instrument with improvement safety lockout mechanisms |
US5797537A (en) | 1996-02-20 | 1998-08-25 | Richard-Allan Medical Industries, Inc. | Articulated surgical instrument with improved firing mechanism |
US6063095A (en) | 1996-02-20 | 2000-05-16 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US5894843A (en) | 1996-02-20 | 1999-04-20 | Cardiothoracic Systems, Inc. | Surgical method for stabilizing the beating heart during coronary artery bypass graft surgery |
US6699177B1 (en) | 1996-02-20 | 2004-03-02 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US5891160A (en) | 1996-02-23 | 1999-04-06 | Cardiovascular Technologies, Llc | Fastener delivery and deployment mechanism and method for placing the fastener in minimally invasive surgery |
US5800379A (en) | 1996-02-23 | 1998-09-01 | Sommus Medical Technologies, Inc. | Method for ablating interior sections of the tongue |
US5716370A (en) | 1996-02-23 | 1998-02-10 | Williamson, Iv; Warren | Means for replacing a heart valve in a minimally invasive manner |
US6402780B2 (en) | 1996-02-23 | 2002-06-11 | Cardiovascular Technologies, L.L.C. | Means and method of replacing a heart valve in a minimally invasive manner |
US5868664A (en) | 1996-02-23 | 1999-02-09 | Envision Medical Corporation | Electrically isolated sterilizable endoscopic video camera head |
DE19607123C2 (de) | 1996-02-26 | 1998-07-16 | Aesculap Ag & Co Kg | Bohrmaschine für chirurgische Zwecke |
US6099537A (en) | 1996-02-26 | 2000-08-08 | Olympus Optical Co., Ltd. | Medical treatment instrument |
US5951575A (en) | 1996-03-01 | 1999-09-14 | Heartport, Inc. | Apparatus and methods for rotationally deploying needles |
US5810721A (en) | 1996-03-04 | 1998-09-22 | Heartport, Inc. | Soft tissue retractor and method for providing surgical access |
US5673842A (en) | 1996-03-05 | 1997-10-07 | Ethicon Endo-Surgery | Surgical stapler with locking mechanism |
US5697543A (en) | 1996-03-12 | 1997-12-16 | Ethicon Endo-Surgery, Inc. | Linear stapler with improved firing stroke |
US5605272A (en) | 1996-03-12 | 1997-02-25 | Ethicon Endo-Surgery, Inc. | Trigger mechanism for surgical instruments |
US5810240A (en) | 1996-03-15 | 1998-09-22 | United States Surgical Corporation | Surgical fastener applying device |
IL117607A0 (en) | 1996-03-21 | 1996-07-23 | Dev Of Advanced Medical Produc | Surgical stapler and method of surgical fastening |
WO1997035533A1 (en) | 1996-03-25 | 1997-10-02 | Enrico Nicolo | Surgical mesh prosthetic material and methods of use |
US5747953A (en) | 1996-03-29 | 1998-05-05 | Stryker Corporation | Cordless, battery operated surical tool |
US5772099A (en) | 1996-04-01 | 1998-06-30 | United States Surgical Corporation | Surgical fastening apparatus with alignment pin |
USD416089S (en) | 1996-04-08 | 1999-11-02 | Richard-Allan Medical Industries, Inc. | Endoscopic linear stapling and dividing surgical instrument |
US5785232A (en) | 1996-04-17 | 1998-07-28 | Vir Engineering | Surgical stapler |
US5728121A (en) | 1996-04-17 | 1998-03-17 | Teleflex Medical, Inc. | Surgical grasper devices |
US5836503A (en) | 1996-04-22 | 1998-11-17 | United States Surgical Corporation | Insertion device for surgical apparatus |
US6149660A (en) | 1996-04-22 | 2000-11-21 | Vnus Medical Technologies, Inc. | Method and apparatus for delivery of an appliance in a vessel |
JP3791856B2 (ja) | 1996-04-26 | 2006-06-28 | オリンパス株式会社 | 医療用縫合器 |
US6050472A (en) | 1996-04-26 | 2000-04-18 | Olympus Optical Co., Ltd. | Surgical anastomosis stapler |
US5880733A (en) | 1996-04-30 | 1999-03-09 | Microsoft Corporation | Display system and method for displaying windows of an operating system to provide a three-dimensional workspace for a computer system |
US5928137A (en) | 1996-05-03 | 1999-07-27 | Green; Philip S. | System and method for endoscopic imaging and endosurgery |
US6221007B1 (en) | 1996-05-03 | 2001-04-24 | Philip S. Green | System and method for endoscopic imaging and endosurgery |
US5741305A (en) | 1996-05-06 | 1998-04-21 | Physio-Control Corporation | Keyed self-latching battery pack for a portable defibrillator |
DE19618291A1 (de) | 1996-05-07 | 1998-01-29 | Storz Karl Gmbh & Co | Instrument mit einem abwinkelbaren Handgriff |
US5823066A (en) | 1996-05-13 | 1998-10-20 | Ethicon Endo-Surgery, Inc. | Articulation transmission mechanism for surgical instruments |
US5797900A (en) | 1996-05-20 | 1998-08-25 | Intuitive Surgical, Inc. | Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US5792135A (en) | 1996-05-20 | 1998-08-11 | Intuitive Surgical, Inc. | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US5772379A (en) | 1996-05-24 | 1998-06-30 | Evensen; Kenneth | Self-filling staple fastener |
JPH09323068A (ja) | 1996-06-07 | 1997-12-16 | Chowa Kogyo Kk | 起振用偏心重錘の位相差制御方法、および同位相差制御機構 |
JPH09329068A (ja) | 1996-06-12 | 1997-12-22 | Nissan Motor Co Ltd | 内燃機関の燃料噴射弁 |
US6119913A (en) | 1996-06-14 | 2000-09-19 | Boston Scientific Corporation | Endoscopic stapler |
GB2314274A (en) | 1996-06-20 | 1997-12-24 | Gyrus Medical Ltd | Electrode construction for an electrosurgical instrument |
US5735874A (en) | 1996-06-21 | 1998-04-07 | Ethicon Endo-Surgery, Inc. | Variable position handle locking mechanism |
US6911916B1 (en) | 1996-06-24 | 2005-06-28 | The Cleveland Clinic Foundation | Method and apparatus for accessing medical data over a network |
US5736271A (en) | 1996-06-28 | 1998-04-07 | Telxon Corporation | Battery pack for portable electronic device |
US5853366A (en) | 1996-07-08 | 1998-12-29 | Kelsey, Inc. | Marker element for interstitial treatment and localizing device and method using same |
US5782748A (en) | 1996-07-10 | 1998-07-21 | Symbiosis Corporation | Endoscopic surgical instruments having detachable proximal and distal portions |
US5812188A (en) | 1996-07-12 | 1998-09-22 | Adair; Edwin L. | Sterile encapsulated endoscopic video monitor |
US5765565A (en) | 1996-07-12 | 1998-06-16 | Adair; Edwin L. | Sterile encapsulated operating room video monitor and video monitor support device |
US5732712A (en) | 1996-07-12 | 1998-03-31 | Adair; Edwin L. | Sterile encapsulated operating room video monitor and video monitor support device |
US5957831A (en) | 1996-07-12 | 1999-09-28 | Adair; Edwin L. | Sterile encapsulated endoscopic video monitor |
US5702408A (en) | 1996-07-17 | 1997-12-30 | Ethicon Endo-Surgery, Inc. | Articulating surgical instrument |
US6440146B2 (en) | 1996-07-23 | 2002-08-27 | United States Surgical Corporation | Anastomosis instrument and method |
US6024748A (en) | 1996-07-23 | 2000-02-15 | United States Surgical Corporation | Singleshot anastomosis instrument with detachable loading unit and method |
US6083234A (en) | 1996-07-23 | 2000-07-04 | Surgical Dynamics, Inc. | Anastomosis instrument and method |
US5785647A (en) | 1996-07-31 | 1998-07-28 | United States Surgical Corporation | Surgical instruments useful for spinal surgery |
US6054142A (en) | 1996-08-01 | 2000-04-25 | Cyto Therapeutics, Inc. | Biocompatible devices with foam scaffolds |
JP3752737B2 (ja) | 1996-08-12 | 2006-03-08 | トヨタ自動車株式会社 | 角速度検出装置 |
US6017354A (en) | 1996-08-15 | 2000-01-25 | Stryker Corporation | Integrated system for powered surgical tools |
US5830598A (en) | 1996-08-15 | 1998-11-03 | Ericsson Inc. | Battery pack incorporating battery pack contact assembly and method |
USD393067S (en) | 1996-08-27 | 1998-03-31 | Valleylab Inc. | Electrosurgical pencil |
US5873885A (en) | 1996-08-29 | 1999-02-23 | Storz Instrument Company | Surgical handpiece |
US5997528A (en) | 1996-08-29 | 1999-12-07 | Bausch & Lomb Surgical, Inc. | Surgical system providing automatic reconfiguration |
US6065679A (en) | 1996-09-06 | 2000-05-23 | Ivi Checkmate Inc. | Modular transaction terminal |
US6364888B1 (en) | 1996-09-09 | 2002-04-02 | Intuitive Surgical, Inc. | Alignment of master and slave in a minimally invasive surgical apparatus |
US5730758A (en) | 1996-09-12 | 1998-03-24 | Allgeyer; Dean O. | Staple and staple applicator for use in skin fixation of catheters |
US20050143769A1 (en) | 2002-08-19 | 2005-06-30 | White Jeffrey S. | Ultrasonic dissector |
US5833696A (en) | 1996-10-03 | 1998-11-10 | United States Surgical Corporation | Apparatus for applying surgical clips |
US6109500A (en) | 1996-10-04 | 2000-08-29 | United States Surgical Corporation | Lockout mechanism for a surgical stapler |
US6036667A (en) | 1996-10-04 | 2000-03-14 | United States Surgical Corporation | Ultrasonic dissection and coagulation system |
US5843132A (en) | 1996-10-07 | 1998-12-01 | Ilvento; Joseph P. | Self-contained, self-powered temporary intravenous pacing catheter assembly |
US5904647A (en) | 1996-10-08 | 1999-05-18 | Asahi Kogyo Kabushiki Kaisha | Treatment accessories for an endoscope |
US5851179A (en) | 1996-10-10 | 1998-12-22 | Nellcor Puritan Bennett Incorporated | Pulse oximeter sensor with articulating head |
JP3091420B2 (ja) | 1996-10-18 | 2000-09-25 | 株式会社貝印刃物開発センター | 内視鏡用処置具 |
US5752965A (en) | 1996-10-21 | 1998-05-19 | Bio-Vascular, Inc. | Apparatus and method for producing a reinforced surgical fastener suture line |
US5769892A (en) | 1996-10-22 | 1998-06-23 | Mitroflow International Inc. | Surgical stapler sleeve for reinforcing staple lines |
US6043626A (en) | 1996-10-29 | 2000-03-28 | Ericsson Inc. | Auxiliary battery holder with multicharger functionality |
US6162537A (en) | 1996-11-12 | 2000-12-19 | Solutia Inc. | Implantable fibers and medical articles |
ATE303720T1 (de) | 1996-11-15 | 2005-09-15 | Michael Stuart Gardner | Werkzeug zum anbringen von ohrmarken |
US6033105A (en) | 1996-11-15 | 2000-03-07 | Barker; Donald | Integrated bone cement mixing and dispensing system |
DE69735501T2 (de) | 1996-11-18 | 2006-12-14 | The University Of Massachusetts, Boston | Systeme und instrumente zur minimal invasiven chirurgie |
US6165184A (en) | 1996-11-18 | 2000-12-26 | Smith & Nephew, Inc. | Systems methods and instruments for minimally invasive surgery |
US6159224A (en) | 1996-11-27 | 2000-12-12 | Yoon; Inbae | Multiple needle suturing instrument and method |
US5993466A (en) | 1997-06-17 | 1999-11-30 | Yoon; Inbae | Suturing instrument with multiple rotatably mounted spreadable needle holders |
FR2756574B1 (fr) | 1996-11-29 | 1999-01-08 | Staubli Lyon | Dispositif de selection, mecanique d'armure a trois positions et metier a tisser equipe d'une telle mecanique d'armure |
US6165188A (en) | 1996-12-02 | 2000-12-26 | Angiotrax, Inc. | Apparatus for percutaneously performing myocardial revascularization having controlled cutting depth and methods of use |
US6102926A (en) | 1996-12-02 | 2000-08-15 | Angiotrax, Inc. | Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and methods of use |
US5899915A (en) | 1996-12-02 | 1999-05-04 | Angiotrax, Inc. | Apparatus and method for intraoperatively performing surgery |
US5766186A (en) | 1996-12-03 | 1998-06-16 | Simon Fraser University | Suturing device |
US6162211A (en) | 1996-12-05 | 2000-12-19 | Thermolase Corporation | Skin enhancement using laser light |
CA2224366C (en) | 1996-12-11 | 2006-10-31 | Ethicon, Inc. | Meniscal repair device |
US8206406B2 (en) | 1996-12-12 | 2012-06-26 | Intuitive Surgical Operations, Inc. | Disposable sterile surgical adaptor |
US6331181B1 (en) | 1998-12-08 | 2001-12-18 | Intuitive Surgical, Inc. | Surgical robotic tools, data architecture, and use |
US6132368A (en) | 1996-12-12 | 2000-10-17 | Intuitive Surgical, Inc. | Multi-component telepresence system and method |
US6019780A (en) | 1996-12-17 | 2000-02-01 | Tnco, Inc. | Dual pin and groove pivot for micro-instrument |
GB9626512D0 (en) | 1996-12-20 | 1997-02-05 | Gyrus Medical Ltd | An improved electrosurgical generator and system |
IL119883A0 (en) | 1996-12-23 | 1997-03-18 | Dev Of Advanced Medical Produc | Connector of rod posts in surgical stapler apparatus |
US6063098A (en) | 1996-12-23 | 2000-05-16 | Houser; Kevin | Articulable ultrasonic surgical apparatus |
US5966126A (en) | 1996-12-23 | 1999-10-12 | Szabo; Andrew J. | Graphic user interface for database system |
US5849023A (en) | 1996-12-27 | 1998-12-15 | Mericle; Robert William | Disposable remote flexible drive cutting apparatus |
US6007521A (en) | 1997-01-07 | 1999-12-28 | Bidwell; Robert E. | Drainage catheter system |
DE19700402C2 (de) | 1997-01-08 | 1999-12-30 | Ferdinand Peer | Instrument zur Kompensation des Handzitterns bei der Manipulation feiner Strukturen |
US6074401A (en) | 1997-01-09 | 2000-06-13 | Coalescent Surgical, Inc. | Pinned retainer surgical fasteners, instruments and methods for minimally invasive vascular and endoscopic surgery |
US5931847A (en) | 1997-01-09 | 1999-08-03 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument with improved cutting edge |
US5769748A (en) | 1997-01-16 | 1998-06-23 | Hughes Electronics Corporation | Gimbal employing differential combination of offset drives |
JPH10200699A (ja) | 1997-01-16 | 1998-07-31 | Ricoh Co Ltd | 画像形成装置のスキャナにおけるサーボ制御装置 |
GB2323744B (en) | 1997-01-17 | 1999-03-24 | Connell Anne O | Method of supporting unknown addresses in an interface for data transmission in an asynchronous transfer mode |
US6485667B1 (en) | 1997-01-17 | 2002-11-26 | Rayonier Products And Financial Services Company | Process for making a soft, strong, absorbent material for use in absorbent articles |
US5784934A (en) | 1997-01-30 | 1998-07-28 | Shinano Pneumatic Industries, Inc. | Ratchet wrench with pivotable head |
US5908402A (en) | 1997-02-03 | 1999-06-01 | Valleylab | Method and apparatus for detecting tube occlusion in argon electrosurgery system |
US6376971B1 (en) | 1997-02-07 | 2002-04-23 | Sri International | Electroactive polymer electrodes |
US6545384B1 (en) | 1997-02-07 | 2003-04-08 | Sri International | Electroactive polymer devices |
US5899824A (en) | 1997-02-12 | 1999-05-04 | Accudart Corporation | Snap-fit dart and adapter |
DE19705737C2 (de) | 1997-02-14 | 2000-04-27 | Spinnerei C B Goeldner Gmbh & | Medizinischer Saugkörper und Verfahren zu seiner Herstellung |
US5797637A (en) | 1997-02-21 | 1998-08-25 | Ervin; Scott P. | Roll mover and method of using |
DE19707373C1 (de) | 1997-02-25 | 1998-02-05 | Storz Karl Gmbh & Co | Bajonettkupplung zum lösbaren Verbinden zweier Rohrschaftinstrumente oder -instrumententeile |
US5907211A (en) | 1997-02-28 | 1999-05-25 | Massachusetts Institute Of Technology | High-efficiency, large stroke electromechanical actuator |
IT1291164B1 (it) | 1997-03-04 | 1998-12-29 | Coral Spa | Condotto universale di convogliamento di fumi o gas nocivi da un posto di lavorazione. |
US7083613B2 (en) | 1997-03-05 | 2006-08-01 | The Trustees Of Columbia University In The City Of New York | Ringed forceps |
US6626901B1 (en) | 1997-03-05 | 2003-09-30 | The Trustees Of Columbia University In The City Of New York | Electrothermal instrument for sealing and joining or cutting tissue |
EP1011494B1 (en) | 1997-03-05 | 2007-01-03 | The Trustees Of Columbia University In The City Of New York | Electrothermal device for sealing and joining or cutting tissue |
US5908149A (en) | 1997-03-12 | 1999-06-01 | Ethicon Endo-Surgery, Inc. | Skin stapler with multi-directional release mechanism |
US5810821A (en) | 1997-03-28 | 1998-09-22 | Biomet Inc. | Bone fixation screw system |
AU746934B2 (en) | 1997-03-31 | 2002-05-09 | Kabushikikaisha Igaki Iryo Sekkei | Suture retaining member for use in medical treatment |
US6050172A (en) | 1997-04-04 | 2000-04-18 | Emhart Glass S.A. | Pneumatically operated mechanism |
US5843169A (en) | 1997-04-08 | 1998-12-01 | Taheri; Syde A. | Apparatus and method for stapling graft material to a blood vessel wall while preserving the patency of orifices |
US5846254A (en) | 1997-04-08 | 1998-12-08 | Ethicon Endo-Surgery, Inc. | Surgical instrument for forming a knot |
US6033399A (en) | 1997-04-09 | 2000-03-07 | Valleylab, Inc. | Electrosurgical generator with adaptive power control |
US6270916B1 (en) | 1997-04-10 | 2001-08-07 | Alcatel | Complete discharge device for lithium battery |
RU2144791C1 (ru) | 1997-04-14 | 2000-01-27 | Дубровский Аркадий Вениаминович | Пологое поворотное устройство |
USD462437S1 (en) | 1997-04-14 | 2002-09-03 | Baxter International Inc. | Manually operable irrigation surgical instrument |
TW473600B (en) | 1997-04-15 | 2002-01-21 | Swagelok Co | Tube fitting, rear ferrule for a two ferrule tube fitting and ferrule for a tube fitting and a non-flared tube fitting |
US5919198A (en) | 1997-04-17 | 1999-07-06 | Ethicon Endo-Surgery, Inc. | Disposable cartridge with drivers |
US5893855A (en) | 1997-04-18 | 1999-04-13 | Jacobs; Robert A. | Surgical stapler |
DE29720616U1 (de) | 1997-04-18 | 1998-08-20 | Kaltenbach & Voigt Gmbh & Co, 88400 Biberach | Handstück für medizinische Zwecke, insbesondere für eine ärztliche oder zahnärztliche Behandlungseinrichtung, vorzugsweise für eine spanabhebende Bearbeitung eines Zahn-Wurzelkanals |
GB9708268D0 (en) | 1997-04-24 | 1997-06-18 | Gyrus Medical Ltd | An electrosurgical instrument |
US5893878A (en) | 1997-04-24 | 1999-04-13 | Pierce; Javin | Micro traumatic tissue manipulator apparatus |
JPH10296660A (ja) | 1997-04-25 | 1998-11-10 | Hitachi Koki Co Ltd | 電池式携帯用工具 |
US5906577A (en) | 1997-04-30 | 1999-05-25 | University Of Massachusetts | Device, surgical access port, and method of retracting an incision into an opening and providing a channel through the incision |
US6157169A (en) | 1997-04-30 | 2000-12-05 | Samsung Electronics Co., Ltd. | Monitoring technique for accurately determining residual capacity of a battery |
US6037724A (en) | 1997-05-01 | 2000-03-14 | Osteomed Corporation | Electronic controlled surgical power tool |
US6017358A (en) | 1997-05-01 | 2000-01-25 | Inbae Yoon | Surgical instrument with multiple rotatably mounted offset end effectors |
WO1998049953A1 (en) | 1997-05-09 | 1998-11-12 | Xomed Surgical Products, Inc. | Angled rotary tissue cutting instrument |
US6867248B1 (en) | 1997-05-12 | 2005-03-15 | Metabolix, Inc. | Polyhydroxyalkanoate compositions having controlled degradation rates |
USH1904H (en) | 1997-05-14 | 2000-10-03 | Ethicon Endo-Surgery, Inc. | Electrosurgical hemostatic method and device |
USH2037H1 (en) | 1997-05-14 | 2002-07-02 | David C. Yates | Electrosurgical hemostatic device including an anvil |
US7048716B1 (en) | 1997-05-15 | 2006-05-23 | Stanford University | MR-compatible devices |
US5817091A (en) | 1997-05-20 | 1998-10-06 | Medical Scientific, Inc. | Electrosurgical device having a visible indicator |
DE19721076A1 (de) | 1997-05-20 | 1998-11-26 | Trw Repa Gmbh | Verfahren zum Herstellen eines Seilabschnittes mit einem Befestigungselement für ein Fahrzeuginsassen-Rückhaltesystem sowie mit diesem Verfahren hergestellter Seilabschnitt |
US5997952A (en) | 1997-05-23 | 1999-12-07 | The Dow Chemical Company | Fast-setting latex coating and formulations |
US5851212A (en) | 1997-06-11 | 1998-12-22 | Endius Incorporated | Surgical instrument |
US5899914A (en) | 1997-06-11 | 1999-05-04 | Endius Incorporated | Surgical instrument |
US6231565B1 (en) | 1997-06-18 | 2001-05-15 | United States Surgical Corporation | Robotic arm DLUs for performing surgical tasks |
US5947996A (en) | 1997-06-23 | 1999-09-07 | Medicor Corporation | Yoke for surgical instrument |
US5849020A (en) | 1997-06-30 | 1998-12-15 | Ethicon Endo-Surgery, Inc. | Inductively coupled electrosurgical instrument |
US5951552A (en) | 1997-06-30 | 1999-09-14 | Ethicon Endo-Surgery, Inc. | Capacitively coupled cordless electrosurgical instrument |
US7021878B1 (en) | 1997-07-03 | 2006-04-04 | Trackers Company | Categorizing fasteners and construction connectors using visual identifiers |
US6049145A (en) | 1997-07-07 | 2000-04-11 | Motorola, Inc. | Tamper proof safety circuit |
FR2765794B1 (fr) | 1997-07-11 | 1999-09-03 | Joel Bardeau | Dispositif d'eveinage notamment pour endoeveinage |
US6338737B1 (en) | 1997-07-17 | 2002-01-15 | Haviv Toledano | Flexible annular stapler for closed surgery of hollow organs |
GB9900964D0 (en) | 1999-01-15 | 1999-03-10 | Gyrus Medical Ltd | An electrosurgical system |
DE19731021A1 (de) | 1997-07-18 | 1999-01-21 | Meyer Joerg | In vivo abbaubares metallisches Implantat |
AU731398B2 (en) | 1997-07-18 | 2001-03-29 | Gyrus Medical Limited | An electrosurgical instrument |
US6923803B2 (en) | 1999-01-15 | 2005-08-02 | Gyrus Medical Limited | Electrosurgical system and method |
GB2327352A (en) | 1997-07-18 | 1999-01-27 | Gyrus Medical Ltd | Electrosurgical instrument |
JP2001510067A (ja) | 1997-07-18 | 2001-07-31 | ガイラス・メディカル・リミテッド | 電気外科用器具 |
US5937951A (en) | 1997-07-18 | 1999-08-17 | Ethicon Endo-Surgery, Inc. | Skin stapler with rack and pinion staple feed mechanism |
AU731815B2 (en) | 1997-07-18 | 2001-04-05 | Gyrus Medical Limited | An electrosurgical instrument |
US7278994B2 (en) | 1997-07-18 | 2007-10-09 | Gyrus Medical Limited | Electrosurgical instrument |
WO1999004844A1 (en) | 1997-07-24 | 1999-02-04 | Mcguckin James F Jr | Stationary central tunnel dialysis catheter with optional separable sheath |
US6371114B1 (en) | 1998-07-24 | 2002-04-16 | Minnesota Innovative Technologies & Instruments Corporation | Control device for supplying supplemental respiratory oxygen |
US6532958B1 (en) | 1997-07-25 | 2003-03-18 | Minnesota Innovative Technologies & Instruments Corporation | Automated control and conservation of supplemental respiratory oxygen |
AU8586298A (en) | 1997-07-25 | 1999-02-16 | University Of Massachusetts | Designed protein pores as components for biosensors |
US5948030A (en) | 1997-07-25 | 1999-09-07 | General Motors Corporation | Steering angle determaination method and apparatus |
AU8592898A (en) | 1997-07-25 | 1999-02-16 | Minnesota Innovative Technologies & Instruments Corporation (Miti) | Control device for supplying supplemental respiratory oxygen |
ES2223134T3 (es) | 1997-07-29 | 2005-02-16 | Thomas & Betts International, Inc. | Aparato distribuidor mejorado para suministrar tirantes de cable. |
JP3811291B2 (ja) | 1998-07-02 | 2006-08-16 | オリンパス株式会社 | 内視鏡システム |
US5878938A (en) | 1997-08-11 | 1999-03-09 | Ethicon Endo-Surgery, Inc. | Surgical stapler with improved locking mechanism |
US5904702A (en) | 1997-08-14 | 1999-05-18 | University Of Massachusetts | Instrument for thoracic surgical procedures |
US6024750A (en) | 1997-08-14 | 2000-02-15 | United States Surgical | Ultrasonic curved blade |
US6024764A (en) | 1997-08-19 | 2000-02-15 | Intermedics, Inc. | Apparatus for imparting physician-determined shapes to implantable tubular devices |
US6211626B1 (en) | 1997-08-26 | 2001-04-03 | Color Kinetics, Incorporated | Illumination components |
US6083223A (en) | 1997-08-28 | 2000-07-04 | Baker; James A. | Methods and apparatus for welding blood vessels |
AUPO889497A0 (en) | 1997-09-01 | 1997-09-25 | N.J. Phillips Pty. Limited | An applicator |
US6731976B2 (en) | 1997-09-03 | 2004-05-04 | Medtronic, Inc. | Device and method to measure and communicate body parameters |
US6267761B1 (en) | 1997-09-09 | 2001-07-31 | Sherwood Services Ag | Apparatus and method for sealing and cutting tissue |
DE69841285D1 (de) | 1997-09-10 | 2009-12-24 | Covidien Ag | Bipolares Elektrodeninstrument |
AU9478498A (en) | 1997-09-11 | 1999-03-29 | Genzyme Corporation | Articulating endoscopic implant rotator surgical apparatus and method for using same |
US6214001B1 (en) | 1997-09-19 | 2001-04-10 | Oratec Interventions, Inc. | Electrocauterizing tool for orthopedic shave devices |
US6017356A (en) | 1997-09-19 | 2000-01-25 | Ethicon Endo-Surgery Inc. | Method for using a trocar for penetration and skin incision |
EP1015944B1 (en) | 1997-09-19 | 2013-02-27 | Massachusetts Institute Of Technology | Surgical robotic apparatus |
US5980569A (en) | 1997-09-19 | 1999-11-09 | United States Surgical Corp. | Prosthetic valve holder and method of use |
US20040236352A1 (en) | 1997-09-22 | 2004-11-25 | Yulun Wang | Method and apparatus for performing minimally invasive cardiac procedures |
US5865361A (en) | 1997-09-23 | 1999-02-02 | United States Surgical Corporation | Surgical stapling apparatus |
US5921956A (en) | 1997-09-24 | 1999-07-13 | Smith & Nephew, Inc. | Surgical instrument |
DE69832408T2 (de) | 1997-09-29 | 2006-09-28 | Boston Scientific Ltd., St. Michael | Führungskatheter zur intravaskulären bilderzeugung |
US6173074B1 (en) | 1997-09-30 | 2001-01-09 | Lucent Technologies, Inc. | Acoustic signature recognition and identification |
US6174318B1 (en) | 1998-04-23 | 2001-01-16 | Scimed Life Systems, Inc. | Basket with one or more moveable legs |
WO1999017663A1 (en) | 1997-10-02 | 1999-04-15 | Boston Scientific Corporation | Device and method for delivering fiber into a body |
GB2329840C (en) | 1997-10-03 | 2007-10-05 | Johnson & Johnson Medical | Biopolymer sponge tubes |
US5984949A (en) | 1997-10-06 | 1999-11-16 | Levin; John M. | Tissue hooks and tools for applying same |
US5944172A (en) | 1997-10-06 | 1999-08-31 | Allen-Bradley Company, Llc | Biasing assembly for a switching device |
US7030904B2 (en) | 1997-10-06 | 2006-04-18 | Micro-Medical Devices, Inc. | Reduced area imaging device incorporated within wireless endoscopic devices |
US6231569B1 (en) | 1997-10-06 | 2001-05-15 | Somnus Medical Technologies, Inc. | Dual processor architecture for electro generator |
US6066144A (en) | 1997-10-07 | 2000-05-23 | Ethicon Endo-Surgery, Inc. | Surgical anastomosis method |
US5993464A (en) | 1998-01-23 | 1999-11-30 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument |
EP1027000A4 (en) | 1997-10-09 | 2001-09-12 | Camran Nezhat | ORGAN RESECTION METHODS AND SYSTEMS |
US6206894B1 (en) | 1997-10-09 | 2001-03-27 | Ethicon Endo-Surgery, Inc. | Electrically powered needle holder to assist in suturing |
US5893835A (en) | 1997-10-10 | 1999-04-13 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator apparatus having dual rotational positioning |
US5947984A (en) | 1997-10-10 | 1999-09-07 | Ethicon Endo-Surger, Inc. | Ultrasonic clamp coagulator apparatus having force limiting clamping mechanism |
US6171316B1 (en) | 1997-10-10 | 2001-01-09 | Origin Medsystems, Inc. | Endoscopic surgical instrument for rotational manipulation |
US6241723B1 (en) | 1997-10-15 | 2001-06-05 | Team Medical Llc | Electrosurgical system |
US6224617B1 (en) | 1997-10-17 | 2001-05-01 | Angiotrax, Inc. | Methods and apparatus for defibrillating a heart refractory to electrical stimuli |
US6511468B1 (en) | 1997-10-17 | 2003-01-28 | Micro Therapeutics, Inc. | Device and method for controlling injection of liquid embolic composition |
US6117148A (en) | 1997-10-17 | 2000-09-12 | Ravo; Biagio | Intraluminal anastomotic device |
US6142149A (en) | 1997-10-23 | 2000-11-07 | Steen; Scot Kenneth | Oximetry device, open oxygen delivery system oximetry device and method of controlling oxygen saturation |
US5903117A (en) | 1997-10-28 | 1999-05-11 | Xomed Surgical Products, Inc. | Method and adaptor for connecting a powered surgical instrument to a medical console |
USD422545S (en) | 1997-10-30 | 2000-04-11 | Lear Automotive Dearborn, Inc. | Icon for vehicle speedometer display |
JP4121615B2 (ja) | 1997-10-31 | 2008-07-23 | オリンパス株式会社 | 内視鏡 |
US6086600A (en) | 1997-11-03 | 2000-07-11 | Symbiosis Corporation | Flexible endoscopic surgical instrument for invagination and fundoplication |
US7435249B2 (en) | 1997-11-12 | 2008-10-14 | Covidien Ag | Electrosurgical instruments which reduces collateral damage to adjacent tissue |
US6187003B1 (en) | 1997-11-12 | 2001-02-13 | Sherwood Services Ag | Bipolar electrosurgical instrument for sealing vessels |
US6050996A (en) | 1997-11-12 | 2000-04-18 | Sherwood Services Ag | Bipolar electrosurgical instrument with replaceable electrodes |
US5946978A (en) | 1997-11-13 | 1999-09-07 | Shimano Inc. | Cable adjustment device |
US6228083B1 (en) | 1997-11-14 | 2001-05-08 | Sherwood Services Ag | Laparoscopic bipolar electrosurgical instrument |
FR2771145B1 (fr) | 1997-11-19 | 2000-02-25 | Car X | Gaine souple a soufflet pour joint articule et outillages de mise en place de cette gaine |
US6010513A (en) | 1997-11-26 | 2000-01-04 | Bionx Implants Oy | Device for installing a tissue fastener |
US6273876B1 (en) | 1997-12-05 | 2001-08-14 | Intratherapeutics, Inc. | Catheter segments having circumferential supports with axial projection |
US6254642B1 (en) | 1997-12-09 | 2001-07-03 | Thomas V. Taylor | Perorally insertable gastroesophageal anti-reflux valve prosthesis and tool for implantation thereof |
US6068627A (en) | 1997-12-10 | 2000-05-30 | Valleylab, Inc. | Smart recognition apparatus and method |
US6171330B1 (en) | 1997-12-15 | 2001-01-09 | Sofradim Production | Pneumatic surgical instrument for the distribution and placement of connecting or fastening means |
US6472784B2 (en) | 1997-12-16 | 2002-10-29 | Fred N. Miekka | Methods and apparatus for increasing power of permanent magnet motors |
DE69826110T2 (de) | 1997-12-16 | 2005-01-20 | B. Braun Celsa | Medizinische vorrichtung zur behandlung einer beschädigung einer anatomischen leitung |
US6228089B1 (en) | 1997-12-19 | 2001-05-08 | Depuy International Limited | Device for positioning and guiding a surgical instrument during orthopaedic interventions |
EP0923907A1 (en) | 1997-12-19 | 1999-06-23 | Gyrus Medical Limited | An electrosurgical instrument |
US6055062A (en) | 1997-12-19 | 2000-04-25 | Hewlett-Packard Company | Electronic printer having wireless power and communications connections to accessory units |
JPH11178833A (ja) | 1997-12-24 | 1999-07-06 | Olympus Optical Co Ltd | 超音波処置具 |
US6033427A (en) | 1998-01-07 | 2000-03-07 | Lee; Benjamin I. | Method and device for percutaneous sealing of internal puncture sites |
US6156056A (en) | 1998-01-09 | 2000-12-05 | Ethicon, Inc. | Suture buttress |
US6620166B1 (en) | 1998-01-09 | 2003-09-16 | Ethicon, Inc. | Suture buttress system |
US6245081B1 (en) | 1998-01-09 | 2001-06-12 | Steven M. Bowman | Suture buttress |
GB2336214A (en) | 1998-01-16 | 1999-10-13 | David William Taylor | Preventionof multiple use of limited use devices |
US6148979A (en) | 1998-01-20 | 2000-11-21 | Brigham Young University | Compliant overrunning clutch with centrifugal throw-out |
US6200311B1 (en) | 1998-01-20 | 2001-03-13 | Eclipse Surgical Technologies, Inc. | Minimally invasive TMR device |
US6072299A (en) | 1998-01-26 | 2000-06-06 | Medtronic Physio-Control Manufacturing Corp. | Smart battery with maintenance and testing functions |
US6096074A (en) | 1998-01-27 | 2000-08-01 | United States Surgical | Stapling apparatus and method for heart valve replacement |
US6228454B1 (en) | 1998-02-02 | 2001-05-08 | Fort James Corporation | Sheet material having weakness zones and a system for dispensing the material |
US6165175A (en) | 1999-02-02 | 2000-12-26 | Ethicon Endo-Surgery, Inc. | RF bipolar mesentery takedown device including improved bipolar end effector |
US6296640B1 (en) | 1998-02-06 | 2001-10-02 | Ethicon Endo-Surgery, Inc. | RF bipolar end effector for use in electrosurgical instruments |
US6457625B1 (en) | 1998-02-17 | 2002-10-01 | Bionx Implants, Oy | Device for installing a tissue fastener |
US7052499B2 (en) | 1998-02-18 | 2006-05-30 | Walter Lorenz Surgical, Inc. | Method and apparatus for bone fracture fixation |
US6645201B1 (en) | 1998-02-19 | 2003-11-11 | Curon Medical, Inc. | Systems and methods for treating dysfunctions in the intestines and rectum |
US20020138082A1 (en) | 1998-02-24 | 2002-09-26 | Brock David L. | Surgical instrument |
US7713190B2 (en) | 1998-02-24 | 2010-05-11 | Hansen Medical, Inc. | Flexible instrument |
US20020087048A1 (en) | 1998-02-24 | 2002-07-04 | Brock David L. | Flexible instrument |
US6949106B2 (en) | 1998-02-24 | 2005-09-27 | Endovia Medical, Inc. | Surgical instrument |
US6554844B2 (en) | 1998-02-24 | 2003-04-29 | Endovia Medical, Inc. | Surgical instrument |
US7214230B2 (en) | 1998-02-24 | 2007-05-08 | Hansen Medical, Inc. | Flexible instrument |
US7775972B2 (en) | 1998-02-24 | 2010-08-17 | Hansen Medical, Inc. | Flexible instrument |
US7090683B2 (en) | 1998-02-24 | 2006-08-15 | Hansen Medical, Inc. | Flexible instrument |
US7789875B2 (en) | 1998-02-24 | 2010-09-07 | Hansen Medical, Inc. | Surgical instruments |
US8414598B2 (en) | 1998-02-24 | 2013-04-09 | Hansen Medical, Inc. | Flexible instrument |
US6183442B1 (en) | 1998-03-02 | 2001-02-06 | Board Of Regents Of The University Of Texas System | Tissue penetrating device and methods for using same |
US5909062A (en) | 1998-03-10 | 1999-06-01 | Krietzman; Mark Howard | Secondary power supply for use with handheld illumination devices |
RU2141279C1 (ru) | 1998-03-11 | 1999-11-20 | Кондратюк Георгий Константинович | Универсальная насадка |
US6099551A (en) | 1998-03-12 | 2000-08-08 | Shelhigh, Inc. | Pericardial strip and stapler assembly for dividing and sealing visceral tissues and method of use thereof |
US7491232B2 (en) | 1998-09-18 | 2009-02-17 | Aptus Endosystems, Inc. | Catheter-based fastener implantation apparatus and methods with implantation force resolution |
US6042601A (en) | 1998-03-18 | 2000-03-28 | United States Surgical Corporation | Apparatus for vascular hole closure |
US6592538B1 (en) | 1998-03-20 | 2003-07-15 | New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery | Dynamic orthopedic braces |
US20020025921A1 (en) | 1999-07-26 | 2002-02-28 | Petito George D. | Composition and method for growing, protecting, and healing tissues and cells |
WO1999048430A1 (en) | 1998-03-26 | 1999-09-30 | Gyrus Medical Limited | An electrosurgical instrument |
GB9807303D0 (en) | 1998-04-03 | 1998-06-03 | Gyrus Medical Ltd | An electrode assembly for an electrosurgical instrument |
US6656215B1 (en) | 2000-11-16 | 2003-12-02 | Cordis Corporation | Stent graft having an improved means for attaching a stent to a graft |
GB2335858A (en) | 1998-04-03 | 1999-10-06 | Gyrus Medical Ltd | Resectoscope having pivoting electrode assembly |
US6347241B2 (en) | 1999-02-02 | 2002-02-12 | Senorx, Inc. | Ultrasonic and x-ray detectable biopsy site marker and apparatus for applying it |
US6482217B1 (en) | 1998-04-10 | 2002-11-19 | Endicor Medical, Inc. | Neuro thrombectomy catheter |
US6001112A (en) | 1998-04-10 | 1999-12-14 | Endicor Medical, Inc. | Rotational atherectomy device |
US6249076B1 (en) | 1998-04-14 | 2001-06-19 | Massachusetts Institute Of Technology | Conducting polymer actuator |
US6047861A (en) | 1998-04-15 | 2000-04-11 | Vir Engineering, Inc. | Two component fluid dispenser |
FR2777443B1 (fr) | 1998-04-21 | 2000-06-30 | Tornier Sa | Ancillaire pour la mise en place et le retrait d'un implant et plus particulierement d'une ancre de suture |
US6450989B2 (en) | 1998-04-27 | 2002-09-17 | Artemis Medical, Inc. | Dilating and support apparatus with disease inhibitors and methods for use |
US6023641A (en) | 1998-04-29 | 2000-02-08 | Medtronic, Inc. | Power consumption reduction in medical devices employing multiple digital signal processors |
US6003517A (en) | 1998-04-30 | 1999-12-21 | Ethicon Endo-Surgery, Inc. | Method for using an electrosurgical device on lung tissue |
US6010520A (en) | 1998-05-01 | 2000-01-04 | Pattison; C. Phillip | Double tapered esophageal dilator |
US6030384A (en) | 1998-05-01 | 2000-02-29 | Nezhat; Camran | Bipolar surgical instruments having focused electrical fields |
US6514252B2 (en) | 1998-05-01 | 2003-02-04 | Perfect Surgical Techniques, Inc. | Bipolar surgical instruments having focused electrical fields |
US6558378B2 (en) | 1998-05-05 | 2003-05-06 | Cardiac Pacemakers, Inc. | RF ablation system and method having automatic temperature control |
US6171305B1 (en) | 1998-05-05 | 2001-01-09 | Cardiac Pacemakers, Inc. | RF ablation apparatus and method having high output impedance drivers |
US6517566B1 (en) | 1998-05-11 | 2003-02-11 | Surgical Connections, Inc. | Devices and methods for treating e.g. urinary stress incontinence |
US6062360A (en) | 1998-05-13 | 2000-05-16 | Brunswick Corporation | Synchronizer for a gear shift mechanism for a marine propulsion system |
US6039126A (en) | 1998-05-15 | 2000-03-21 | Hsieh; An-Fu | Multi-usage electric tool with angle-changeable grip |
US6165929A (en) | 1998-05-18 | 2000-12-26 | Phillips Petroleum Company | Compositions that can produce polymers |
US6261679B1 (en) | 1998-05-22 | 2001-07-17 | Kimberly-Clark Worldwide, Inc. | Fibrous absorbent material and methods of making the same |
CA2550059C (en) | 1998-05-28 | 2008-08-19 | Orthosoft Inc. | Interactive computer-assisted surgical system and method thereof |
CA2333010A1 (en) | 1998-05-29 | 1999-12-09 | By-Pass, Inc. | Methods and devices for vascular surgery |
US20050283188A1 (en) | 1998-05-29 | 2005-12-22 | By-Pass, Inc. | Vascular closure device |
US6309403B1 (en) | 1998-06-01 | 2001-10-30 | Board Of Trustees Operating Michigan State University | Dexterous articulated linkage for surgical applications |
JP2002518082A (ja) | 1998-06-10 | 2002-06-25 | コンバージ メディカル, インコーポレイテッド | 縫合なし吻合システム |
JP2000002228A (ja) | 1998-06-12 | 2000-01-07 | Chuo Spring Co Ltd | プルケーブルの端末構造 |
JP3331172B2 (ja) | 1998-06-12 | 2002-10-07 | 旭光学工業株式会社 | 内視鏡用異物回収具 |
US6478210B2 (en) | 2000-10-25 | 2002-11-12 | Scimed Life Systems, Inc. | Method and device for full thickness resectioning of an organ |
US6629630B2 (en) | 1998-06-19 | 2003-10-07 | Scimed Life Systems, Inc. | Non-circular resection device and endoscope |
US6601749B2 (en) | 1998-06-19 | 2003-08-05 | Scimed Life Systems, Inc. | Multi fire full thickness resectioning device |
US6126058A (en) | 1998-06-19 | 2000-10-03 | Scimed Life Systems, Inc. | Method and device for full thickness resectioning of an organ |
US6585144B2 (en) | 1998-06-19 | 2003-07-01 | Acimed Life Systems, Inc. | Integrated surgical staple retainer for a full thickness resectioning device |
US6018227A (en) | 1998-06-22 | 2000-01-25 | Stryker Corporation | Battery charger especially useful with sterilizable, rechargeable battery packs |
US5941890A (en) | 1998-06-26 | 1999-08-24 | Ethicon Endo-Surgery, Inc. | Implantable surgical marker |
US6309400B2 (en) | 1998-06-29 | 2001-10-30 | Ethicon Endo-Surgery, Inc. | Curved ultrasonic blade having a trapezoidal cross section |
CA2276316C (en) | 1998-06-29 | 2008-02-12 | Ethicon Endo-Surgery, Inc. | Method of balancing asymmetric ultrasonic surgical blades |
CA2276313C (en) | 1998-06-29 | 2008-01-29 | Ethicon Endo-Surgery, Inc. | Balanced ultrasonic blade including a plurality of balance asymmetries |
US6066132A (en) | 1998-06-30 | 2000-05-23 | Ethicon, Inc. | Articulating endometrial ablation device |
US6228098B1 (en) | 1998-07-10 | 2001-05-08 | General Surgical Innovations, Inc. | Apparatus and method for surgical fastening |
US6352503B1 (en) | 1998-07-17 | 2002-03-05 | Olympus Optical Co., Ltd. | Endoscopic surgery apparatus |
JP3806518B2 (ja) | 1998-07-17 | 2006-08-09 | オリンパス株式会社 | 内視鏡治療装置 |
US5977746A (en) | 1998-07-21 | 1999-11-02 | Stryker Corporation | Rechargeable battery pack and method for manufacturing same |
US6157303A (en) | 1998-07-24 | 2000-12-05 | Terrapin Communications Inc. | Water safety portable transmitter and receiver |
JP2000055752A (ja) | 1998-08-03 | 2000-02-25 | Kayaba Ind Co Ltd | トルク検出装置 |
AU5391999A (en) | 1998-08-04 | 2000-02-28 | Intuitive Surgical, Inc. | Manipulator positioning linkage for robotic surgery |
CN1323228A (zh) | 1998-08-14 | 2001-11-21 | 维里根国际移植服务(Vtsi)股份公司 | 用于软骨细胞移植的方法、器械和材料 |
US6818018B1 (en) | 1998-08-14 | 2004-11-16 | Incept Llc | In situ polymerizable hydrogels |
DE19836950B4 (de) | 1998-08-17 | 2004-09-02 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Chirurgisches Instrument in Form eines Nahtklammergerätes |
DE19837258A1 (de) | 1998-08-17 | 2000-03-02 | Deutsch Zentr Luft & Raumfahrt | Vorrichtung zum Betätigen eines chirurgischen Instrumentariums zur Anastomose von Hohlorganen |
US6554798B1 (en) | 1998-08-18 | 2003-04-29 | Medtronic Minimed, Inc. | External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities |
US6050989A (en) | 1998-08-24 | 2000-04-18 | Linvatec Corporation | Angularly adjustable powered surgical handpiece |
US6458147B1 (en) | 1998-11-06 | 2002-10-01 | Neomend, Inc. | Compositions, systems, and methods for arresting or controlling bleeding or fluid leakage in body tissue |
USH2086H1 (en) | 1998-08-31 | 2003-10-07 | Kimberly-Clark Worldwide | Fine particle liquid filtration media |
US6726651B1 (en) | 1999-08-04 | 2004-04-27 | Cardeon Corporation | Method and apparatus for differentially perfusing a patient during cardiopulmonary bypass |
US6131790A (en) | 1998-09-02 | 2000-10-17 | Piraka; Hadi A. | Surgical stapler and cartridge |
DE19840163A1 (de) | 1998-09-03 | 2000-03-16 | Webasto Karosseriesysteme | Antriebsvorrichtung und Verfahren zum Verstellen eines Fahrzeugteils |
US6924781B1 (en) | 1998-09-11 | 2005-08-02 | Visible Tech-Knowledgy, Inc. | Smart electronic label employing electronic ink |
JP4153167B2 (ja) | 1998-09-15 | 2008-09-17 | メドトロニック・インコーポレーテッド | 組織の局部的領域を一時的に固定するための方法及び装置 |
FR2783429B1 (fr) | 1998-09-18 | 2002-04-12 | Imedex Biomateriaux | Materiau collagenique bicomposite,son procede d'obtention et ses applications therapeutiques |
US6402748B1 (en) | 1998-09-23 | 2002-06-11 | Sherwood Services Ag | Electrosurgical device having a dielectrical seal |
US6445530B1 (en) | 1998-09-25 | 2002-09-03 | Seagate Technology Llc | Class AB H-bridge using current sensing MOSFETs |
JP3766552B2 (ja) | 1998-10-01 | 2006-04-12 | 富士写真フイルム株式会社 | データ写し込み装置付きレンズ付きフイルムユニット |
US6262216B1 (en) | 1998-10-13 | 2001-07-17 | Affymetrix, Inc. | Functionalized silicon compounds and methods for their synthesis and use |
US6245084B1 (en) | 1998-10-20 | 2001-06-12 | Promex, Inc. | System for controlling a motor driven surgical cutting instrument |
CA2347286A1 (en) | 1998-10-23 | 2000-05-04 | Applied Medical Resources Corporation | Surgical grasper with inserts and method of using same |
US5951574A (en) | 1998-10-23 | 1999-09-14 | Ethicon Endo-Surgery, Inc. | Multiple clip applier having a split feeding mechanism |
CA2347633C (en) | 1998-10-23 | 2011-01-04 | Sherwood Services Ag | Endoscopic bipolar electrosurgical forceps |
JP4245278B2 (ja) | 1998-10-23 | 2009-03-25 | コビディエン アクチェンゲゼルシャフト | ディスポーザブル電極を備えた外切開式血管シール用鉗子 |
US6398779B1 (en) | 1998-10-23 | 2002-06-04 | Sherwood Services Ag | Vessel sealing system |
US7137980B2 (en) | 1998-10-23 | 2006-11-21 | Sherwood Services Ag | Method and system for controlling output of RF medical generator |
US7267677B2 (en) | 1998-10-23 | 2007-09-11 | Sherwood Services Ag | Vessel sealing instrument |
JP4463424B2 (ja) | 1998-10-23 | 2010-05-19 | ボストン サイエンティフィック リミテッド | 管腔内画像化処理のための改良型システムおよび方法 |
US6270508B1 (en) | 1998-10-26 | 2001-08-07 | Charles H. Klieman | End effector and instrument for endoscopic and general surgery needle control |
JP2000210299A (ja) | 1999-01-20 | 2000-08-02 | Olympus Optical Co Ltd | 手術装置 |
DE19851291A1 (de) | 1998-11-06 | 2000-01-05 | Siemens Ag | Operationsarbeitsplatztaugliches Dateneingabegerät |
JP3034508B1 (ja) | 1998-11-12 | 2000-04-17 | 本田技研工業株式会社 | 電動機駆動装置 |
US6887710B2 (en) | 1998-11-13 | 2005-05-03 | Mesosystems Technology, Inc. | Robust system for screening mail for biological agents |
US6249105B1 (en) | 1998-11-13 | 2001-06-19 | Neal Andrews | System and method for detecting performance components of a battery pack |
US6398726B1 (en) | 1998-11-20 | 2002-06-04 | Intuitive Surgical, Inc. | Stabilizer for robotic beating-heart surgery |
US6459926B1 (en) | 1998-11-20 | 2002-10-01 | Intuitive Surgical, Inc. | Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery |
US6659939B2 (en) | 1998-11-20 | 2003-12-09 | Intuitive Surgical, Inc. | Cooperative minimally invasive telesurgical system |
US6102271A (en) | 1998-11-23 | 2000-08-15 | Ethicon Endo-Surgery, Inc. | Circular stapler for hemorrhoidal surgery |
DE69929481T2 (de) | 1998-11-23 | 2006-09-28 | Microdexterity Systems Inc., Memphis | Chirurgischer Manipulator |
US6142933A (en) | 1998-11-23 | 2000-11-07 | Ethicon Endo-Surgery, Inc. | Anoscope for hemorrhoidal surgery |
US6200330B1 (en) | 1998-11-23 | 2001-03-13 | Theodore V. Benderev | Systems for securing sutures, grafts and soft tissue to bone and periosteum |
US6167185A (en) | 1998-11-24 | 2000-12-26 | Jds Fitel Inc. | Adjustable optical attenuator |
US7537564B2 (en) | 1998-12-01 | 2009-05-26 | Atropos Limited | Wound retractor device |
US7125403B2 (en) | 1998-12-08 | 2006-10-24 | Intuitive Surgical | In vivo accessories for minimally invasive robotic surgery |
US6620173B2 (en) | 1998-12-08 | 2003-09-16 | Intuitive Surgical, Inc. | Method for introducing an end effector to a surgical site in minimally invasive surgery |
JP2000171730A (ja) | 1998-12-08 | 2000-06-23 | Olympus Optical Co Ltd | バッテリ式携帯内視鏡装置 |
US6309397B1 (en) | 1999-12-02 | 2001-10-30 | Sri International | Accessories for minimally invasive robotic surgery and methods |
US6522906B1 (en) | 1998-12-08 | 2003-02-18 | Intuitive Surgical, Inc. | Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure |
JP4233656B2 (ja) | 1998-12-11 | 2009-03-04 | ジョンソン・エンド・ジョンソン株式会社 | 自動吻合器及び該吻合器に装着可能な案内バルーン |
US6828902B2 (en) | 1998-12-14 | 2004-12-07 | Soundcraft, Inc. | Wireless data input to RFID reader |
AU2035900A (en) | 1998-12-15 | 2000-07-03 | Electric Fuel Limited | Battery pack design for metal-air battery cells |
US6126670A (en) | 1998-12-16 | 2000-10-03 | Medtronic, Inc. | Cordless surgical handpiece with disposable battery; and method |
US6887244B1 (en) | 1998-12-16 | 2005-05-03 | Medtronic, Inc. | Cordless surgical handpiece with disposable battery; and method |
DE19858512C1 (de) | 1998-12-18 | 2000-05-25 | Storz Karl Gmbh & Co Kg | Bipolares medizinisches Instrument |
DE19860444C2 (de) | 1998-12-28 | 2001-03-29 | Storz Karl Gmbh & Co Kg | Handgriff für ein medizinisches Rohrschaftinstrument |
DE19860611C1 (de) | 1998-12-29 | 2000-03-23 | Fraunhofer Ges Forschung | Verfahren zur Herstellung von Formkörpern aus Polymer-Schaumpartikeln |
US6806867B1 (en) | 1998-12-31 | 2004-10-19 | A.T.X. International, Inc. | Palm pad system |
US6147135A (en) | 1998-12-31 | 2000-11-14 | Ethicon, Inc. | Fabrication of biocompatible polymeric composites |
US6113618A (en) | 1999-01-13 | 2000-09-05 | Stryker Corporation | Surgical saw with spring-loaded, low-noise cutting blade |
US20040030333A1 (en) | 1999-01-15 | 2004-02-12 | Gyrus Medical Ltd. | Electrosurgical system and method |
US7001380B2 (en) | 1999-01-15 | 2006-02-21 | Gyrus Medical Limited | Electrosurgical system and method |
US6554861B2 (en) | 1999-01-19 | 2003-04-29 | Gyrus Ent L.L.C. | Otologic prosthesis |
US6273252B1 (en) | 1999-01-20 | 2001-08-14 | Burke H. Mitchell | Protective covering for a hand-held device |
ES2153313B1 (es) | 1999-01-21 | 2001-11-16 | Biomed S A | Aparato para la aplicacion guiada de una grapa retractil para el cierre precutaneo de orificios, incisiones o laceraciones en vasos, conductos o estructuras anatomicas humanas, grapa retractil y procedimiento para su aplicacion. |
US6394998B1 (en) | 1999-01-22 | 2002-05-28 | Intuitive Surgical, Inc. | Surgical tools for use in minimally invasive telesurgical applications |
US8529588B2 (en) | 1999-01-25 | 2013-09-10 | Applied Medical Resources Corporation | Multiple clip applier apparatus and method |
DE19905085A1 (de) | 1999-01-29 | 2000-08-03 | Black & Decker Inc N D Ges D S | Batteriegetriebenes, handgeführtes Elektrowerkzeug |
US6387113B1 (en) | 1999-02-02 | 2002-05-14 | Biomet, Inc. | Method and apparatus for repairing a torn meniscus |
US6174309B1 (en) | 1999-02-11 | 2001-01-16 | Medical Scientific, Inc. | Seal & cut electrosurgical instrument |
DE19906191A1 (de) | 1999-02-15 | 2000-08-17 | Ingo F Herrmann | Endoskop |
US6295888B1 (en) | 1999-02-16 | 2001-10-02 | Shimano Inc. | Gear indicator for a bicycle |
US6083242A (en) | 1999-02-17 | 2000-07-04 | Holobeam, Inc. | Surgical staples with deformation zones of non-uniform cross section |
US6065919A (en) | 1999-02-18 | 2000-05-23 | Peck; Philip D. | Self-tapping screw with an improved thread design |
USD429252S (en) | 1999-02-22 | 2000-08-08 | 3Com Corporation | Computer icon for a display screen |
US6806808B1 (en) | 1999-02-26 | 2004-10-19 | Sri International | Wireless event-recording device with identification codes |
GB9905211D0 (en) | 1999-03-05 | 1999-04-28 | Gyrus Medical Ltd | Electrosurgery system and instrument |
US20020022836A1 (en) | 1999-03-05 | 2002-02-21 | Gyrus Medical Limited | Electrosurgery system |
GB9905210D0 (en) | 1999-03-05 | 1999-04-28 | Gyrus Medical Ltd | Electrosurgical system |
US6398781B1 (en) | 1999-03-05 | 2002-06-04 | Gyrus Medical Limited | Electrosurgery system |
GB9905209D0 (en) | 1999-03-05 | 1999-04-28 | Gyrus Medical Ltd | Electrosurgery system |
US6666875B1 (en) | 1999-03-05 | 2003-12-23 | Olympus Optical Co., Ltd. | Surgical apparatus permitting recharge of battery-driven surgical instrument in noncontact state |
US6582427B1 (en) | 1999-03-05 | 2003-06-24 | Gyrus Medical Limited | Electrosurgery system |
US6190386B1 (en) | 1999-03-09 | 2001-02-20 | Everest Medical Corporation | Electrosurgical forceps with needle electrodes |
US6179776B1 (en) | 1999-03-12 | 2001-01-30 | Scimed Life Systems, Inc. | Controllable endoscopic sheath apparatus and related method of use |
US6159146A (en) | 1999-03-12 | 2000-12-12 | El Gazayerli; Mohamed Mounir | Method and apparatus for minimally-invasive fundoplication |
US6512360B1 (en) | 1999-03-15 | 2003-01-28 | Amiteq Co., Ltd | Self-induction-type stroke sensor |
DE19912038C1 (de) | 1999-03-17 | 2001-01-25 | Storz Karl Gmbh & Co Kg | Handgriff für ein medizinisches Instrument |
US6470207B1 (en) | 1999-03-23 | 2002-10-22 | Surgical Navigation Technologies, Inc. | Navigational guidance via computer-assisted fluoroscopic imaging |
JP2000271141A (ja) | 1999-03-23 | 2000-10-03 | Olympus Optical Co Ltd | 手術装置 |
EP1867348B1 (en) | 1999-03-25 | 2012-05-16 | Metabolix, Inc. | Medical devices and applications of polyhydroxyalkanoate polymers |
US6186957B1 (en) | 1999-03-30 | 2001-02-13 | Michael W. Milam | Stethoscope cover |
US6416486B1 (en) | 1999-03-31 | 2002-07-09 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical device having an embedding surface and a coagulating surface |
US6086544A (en) | 1999-03-31 | 2000-07-11 | Ethicon Endo-Surgery, Inc. | Control apparatus for an automated surgical biopsy device |
WO2000057796A1 (en) | 1999-03-31 | 2000-10-05 | Rosenblatt Peter L | Systems and methods for soft tissue reconstruction |
US6120462A (en) | 1999-03-31 | 2000-09-19 | Ethicon Endo-Surgery, Inc. | Control method for an automated surgical biopsy device |
JP2000287987A (ja) | 1999-04-01 | 2000-10-17 | Olympus Optical Co Ltd | 充電式医療装置 |
DE19915291A1 (de) | 1999-04-03 | 2000-10-05 | Gardena Kress & Kastner Gmbh | Fluid-Kupplungsanordnung |
US6228084B1 (en) | 1999-04-06 | 2001-05-08 | Kirwan Surgical Products, Inc. | Electro-surgical forceps having recessed irrigation channel |
US6565554B1 (en) | 1999-04-07 | 2003-05-20 | Intuitive Surgical, Inc. | Friction compensation in a minimally invasive surgical apparatus |
US6594552B1 (en) | 1999-04-07 | 2003-07-15 | Intuitive Surgical, Inc. | Grip strength with tactile feedback for robotic surgery |
US6424885B1 (en) | 1999-04-07 | 2002-07-23 | Intuitive Surgical, Inc. | Camera referenced control in a minimally invasive surgical apparatus |
US7226467B2 (en) | 1999-04-09 | 2007-06-05 | Evalve, Inc. | Fixation device delivery catheter, systems and methods of use |
US10327743B2 (en) | 1999-04-09 | 2019-06-25 | Evalve, Inc. | Device and methods for endoscopic annuloplasty |
DE60045096D1 (de) | 1999-04-09 | 2010-11-25 | Evalve Inc | Verfahren und vorrichtung zur herzklappenreperation |
US6182673B1 (en) | 1999-04-12 | 2001-02-06 | Mike Kindermann Marketing/Vertriebs Gmbh | Dump facility for cassette sewage tanks |
US6308089B1 (en) | 1999-04-14 | 2001-10-23 | O.B. Scientific, Inc. | Limited use medical probe |
US6248117B1 (en) | 1999-04-16 | 2001-06-19 | Vital Access Corp | Anastomosis apparatus for use in intraluminally directed vascular anastomosis |
US7160311B2 (en) | 1999-04-16 | 2007-01-09 | Integrated Vascular Interventional Technologies, L.C. (Ivit Lc) | Locking compression plate anastomosis apparatus |
US6569173B1 (en) | 1999-12-14 | 2003-05-27 | Integrated Vascular Interventional Technologies, L.C. | Compression plate anastomosis apparatus |
US6689153B1 (en) | 1999-04-16 | 2004-02-10 | Orthopaedic Biosystems Ltd, Inc. | Methods and apparatus for a coated anchoring device and/or suture |
JP2000304153A (ja) | 1999-04-19 | 2000-11-02 | Honda Motor Co Ltd | 電磁石アクチュエータ駆動装置 |
US6319510B1 (en) | 1999-04-20 | 2001-11-20 | Alayne Yates | Gum pad for delivery of medication to mucosal tissues |
US6325805B1 (en) | 1999-04-23 | 2001-12-04 | Sdgi Holdings, Inc. | Shape memory alloy staple |
US20050222665A1 (en) | 1999-04-23 | 2005-10-06 | Ernest Aranyi | Endovascular fastener applicator |
US6181105B1 (en) | 1999-04-26 | 2001-01-30 | Exonix Corporation | Self contained transportable power source maintenance and charge |
TNSN00086A1 (fr) | 1999-04-26 | 2002-05-30 | Int Paper Co | Machoire de scellage par induction |
DE59900101D1 (de) | 1999-04-29 | 2001-06-28 | Storz Karl Gmbh & Co Kg | Medizinisches Instrument zum Präparieren von Gewebe |
US6383201B1 (en) | 1999-05-14 | 2002-05-07 | Tennison S. Dong | Surgical prosthesis for repairing a hernia |
JP4503725B2 (ja) | 1999-05-17 | 2010-07-14 | オリンパス株式会社 | 内視鏡治療装置 |
US6921412B1 (en) | 1999-05-18 | 2005-07-26 | Cryolife, Inc. | Self-supporting, shaped, three-dimensional biopolymeric materials and methods |
AU5150600A (en) | 1999-05-18 | 2000-12-05 | Vascular Innovations, Inc. | Tissue punch |
GB9911954D0 (en) | 1999-05-21 | 1999-07-21 | Gyrus Medical Ltd | Electrosurgery system and instrument |
US6063020A (en) | 1999-05-21 | 2000-05-16 | Datex-Ohmeda, Inc. | Heater door safety interlock for infant warming apparatus |
GB9911956D0 (en) | 1999-05-21 | 1999-07-21 | Gyrus Medical Ltd | Electrosurgery system and method |
US6762339B1 (en) | 1999-05-21 | 2004-07-13 | 3M Innovative Properties Company | Hydrophilic polypropylene fibers having antimicrobial activity |
US6547786B1 (en) | 1999-05-21 | 2003-04-15 | Gyrus Medical | Electrosurgery system and instrument |
US6454781B1 (en) | 1999-05-26 | 2002-09-24 | Ethicon Endo-Surgery, Inc. | Feedback control in an ultrasonic surgical instrument for improved tissue effects |
DE19924311A1 (de) | 1999-05-27 | 2000-11-30 | Walter A Rau | Klammerschneidegerät und Zusatzvorrichtung für ein solches |
GB9912627D0 (en) | 1999-05-28 | 1999-07-28 | Gyrus Medical Ltd | An electrosurgical instrument |
US6409724B1 (en) | 1999-05-28 | 2002-06-25 | Gyrus Medical Limited | Electrosurgical instrument |
GB9912625D0 (en) | 1999-05-28 | 1999-07-28 | Gyrus Medical Ltd | An electrosurgical generator and system |
US7032798B2 (en) | 1999-06-02 | 2006-04-25 | Power Medical Interventions, Inc. | Electro-mechanical surgical device |
US6264087B1 (en) | 1999-07-12 | 2001-07-24 | Powermed, Inc. | Expanding parallel jaw device for use with an electromechanical driver device |
US6793652B1 (en) | 1999-06-02 | 2004-09-21 | Power Medical Interventions, Inc. | Electro-mechanical surgical device |
US6981941B2 (en) | 1999-06-02 | 2006-01-03 | Power Medical Interventions | Electro-mechanical surgical device |
US8241322B2 (en) | 2005-07-27 | 2012-08-14 | Tyco Healthcare Group Lp | Surgical device |
US6517565B1 (en) | 1999-06-02 | 2003-02-11 | Power Medical Interventions, Inc. | Carriage assembly for controlling a steering wire steering mechanism within a flexible shaft |
US6716233B1 (en) | 1999-06-02 | 2004-04-06 | Power Medical Interventions, Inc. | Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities |
US6315184B1 (en) | 1999-06-02 | 2001-11-13 | Powermed, Inc. | Stapling device for use with an electromechanical driver device for use with anastomosing, stapling, and resecting instruments |
US8229549B2 (en) | 2004-07-09 | 2012-07-24 | Tyco Healthcare Group Lp | Surgical imaging device |
US8025199B2 (en) | 2004-02-23 | 2011-09-27 | Tyco Healthcare Group Lp | Surgical cutting and stapling device |
US7695485B2 (en) | 2001-11-30 | 2010-04-13 | Power Medical Interventions, Llc | Surgical device |
US6491201B1 (en) | 2000-02-22 | 2002-12-10 | Power Medical Interventions, Inc. | Fluid delivery mechanism for use with anastomosing, stapling, and resecting instruments |
US7951071B2 (en) | 1999-06-02 | 2011-05-31 | Tyco Healthcare Group Lp | Moisture-detecting shaft for use with an electro-mechanical surgical device |
US6443973B1 (en) | 1999-06-02 | 2002-09-03 | Power Medical Interventions, Inc. | Electromechanical driver device for use with anastomosing, stapling, and resecting instruments |
US6223833B1 (en) | 1999-06-03 | 2001-05-01 | One World Technologies, Inc. | Spindle lock and chipping mechanism for hammer drill |
EP1058177A1 (en) | 1999-06-04 | 2000-12-06 | Alps Electric Co., Ltd. | Input device for game machine |
GB9913652D0 (en) | 1999-06-11 | 1999-08-11 | Gyrus Medical Ltd | An electrosurgical generator |
US6273902B1 (en) | 1999-06-18 | 2001-08-14 | Novare Surgical Systems, Inc. | Surgical clamp having replaceable pad |
SE519023C2 (sv) | 1999-06-21 | 2002-12-23 | Micromuscle Ab | Kateterburna mikrokirurgiska verktygsset |
US6494888B1 (en) | 1999-06-22 | 2002-12-17 | Ndo Surgical, Inc. | Tissue reconfiguration |
US7637905B2 (en) | 2003-01-15 | 2009-12-29 | Usgi Medical, Inc. | Endoluminal tool deployment system |
FR2795301B1 (fr) | 1999-06-25 | 2001-08-31 | Prec | Instrument de chirurgie endoscopique |
US6257351B1 (en) | 1999-06-29 | 2001-07-10 | Microaire Surgical Instruments, Inc. | Powered surgical instrument having locking systems and a clutch mechanism |
US6333029B1 (en) | 1999-06-30 | 2001-12-25 | Ethicon, Inc. | Porous tissue scaffoldings for the repair of regeneration of tissue |
US6325810B1 (en) | 1999-06-30 | 2001-12-04 | Ethicon, Inc. | Foam buttress for stapling apparatus |
US6355699B1 (en) | 1999-06-30 | 2002-03-12 | Ethicon, Inc. | Process for manufacturing biomedical foams |
US6488196B1 (en) | 1999-06-30 | 2002-12-03 | Axya Medical, Inc. | Surgical stapler and method of applying plastic staples to body tissue |
US6175290B1 (en) | 1999-06-30 | 2001-01-16 | Gt Development Corporation | Contactless stalk mounted control switch |
US6306424B1 (en) | 1999-06-30 | 2001-10-23 | Ethicon, Inc. | Foam composite for the repair or regeneration of tissue |
US6104304A (en) | 1999-07-06 | 2000-08-15 | Conexant Systems, Inc. | Self-test and status reporting system for microcontroller-controlled devices |
JP3293802B2 (ja) | 1999-07-07 | 2002-06-17 | エスエムシー株式会社 | 位置検出機能付きチャック |
US6117158A (en) | 1999-07-07 | 2000-09-12 | Ethicon Endo-Surgery, Inc. | Ratchet release mechanism for hand held instruments |
US6168605B1 (en) | 1999-07-08 | 2001-01-02 | Ethicon Endo-Surgery, Inc. | Curved laparoscopic scissor having arcs of curvature |
JP2001035827A (ja) | 1999-07-16 | 2001-02-09 | Memc Kk | 高濃度オゾン水、同オゾン水の調製方法、および同オゾン水を使用した洗浄方法 |
RU2161450C1 (ru) | 1999-07-22 | 2001-01-10 | Каншин Николай Николаевич | Хирургический сшиватель |
US6402766B2 (en) | 1999-07-23 | 2002-06-11 | Ethicon, Inc. | Graft fixation device combination |
US6436110B2 (en) | 1999-07-23 | 2002-08-20 | Ethicon, Inc. | Method of securing a graft using a graft fixation device |
US7285131B1 (en) | 1999-07-28 | 2007-10-23 | Cardica, Inc. | System for performing anastomosis |
US6391038B2 (en) | 1999-07-28 | 2002-05-21 | Cardica, Inc. | Anastomosis system and method for controlling a tissue site |
US7766924B1 (en) | 1999-07-28 | 2010-08-03 | Cardica, Inc. | System for performing anastomosis |
US7063712B2 (en) | 2001-04-27 | 2006-06-20 | Cardica, Inc. | Anastomosis method |
US7682368B1 (en) | 1999-07-28 | 2010-03-23 | Cardica, Inc. | Anastomosis tool actuated with stored energy |
US20050154406A1 (en) | 1999-07-28 | 2005-07-14 | Cardica, Inc. | Method for anastomosing vessels |
DE19935725C2 (de) | 1999-07-29 | 2003-11-13 | Wolf Gmbh Richard | Medizinisches Instrument, insbesondere Rektoskop |
US6927315B1 (en) | 1999-07-30 | 2005-08-09 | 3M Innovative Properties Company | Adhesive composite having distinct phases |
DE19935904C1 (de) | 1999-07-30 | 2001-07-12 | Karlsruhe Forschzent | Applikatorspitze eines chirurgischen Applikators zum Setzen von Clips/Klammern für die Verbindung von Gewebe |
US20020116063A1 (en) | 1999-08-02 | 2002-08-22 | Bruno Giannetti | Kit for chondrocyte cell transplantation |
WO2001008717A1 (en) | 1999-08-03 | 2001-02-08 | Smith & Nephew, Inc. | Controlled release implantable devices |
US6527785B2 (en) | 1999-08-03 | 2003-03-04 | Onux Medical, Inc. | Surgical suturing instrument and method of use |
US6767352B2 (en) | 1999-08-03 | 2004-07-27 | Onux Medical, Inc. | Surgical suturing instrument and method of use |
US6788018B1 (en) | 1999-08-03 | 2004-09-07 | Intuitive Surgical, Inc. | Ceiling and floor mounted surgical robot set-up arms |
WO2001010482A1 (en) | 1999-08-05 | 2001-02-15 | Biocardia, Inc. | A system and method for delivering thermally sensitive and reverse-thermal gelation matrials |
IT1307263B1 (it) | 1999-08-05 | 2001-10-30 | Sorin Biomedica Cardio Spa | Stent per angioplastica con azione antagonista della restenosi,relativo corredo e componenti. |
JP4859317B2 (ja) | 1999-08-06 | 2012-01-25 | ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム | 薬剤放出生分解性繊維インプラント |
US6358197B1 (en) | 1999-08-13 | 2002-03-19 | Enteric Medical Technologies, Inc. | Apparatus for forming implants in gastrointestinal tract and kit for use therewith |
US6666860B1 (en) | 1999-08-24 | 2003-12-23 | Olympus Optical Co., Ltd. | Electric treatment system |
JP2001069758A (ja) | 1999-08-26 | 2001-03-16 | Asahi Optical Co Ltd | 内視鏡用電源装置 |
US6338738B1 (en) | 1999-08-31 | 2002-01-15 | Edwards Lifesciences Corp. | Device and method for stabilizing cardiac tissue |
DE19941859C2 (de) | 1999-09-02 | 2002-06-13 | Siemens Audiologische Technik | Digitales Hörhilfegerät |
US6611793B1 (en) | 1999-09-07 | 2003-08-26 | Scimed Life Systems, Inc. | Systems and methods to identify and disable re-use single use devices based on detecting environmental changes |
US6237604B1 (en) | 1999-09-07 | 2001-05-29 | Scimed Life Systems, Inc. | Systems and methods for preventing automatic identification of re-used single use devices |
US6387092B1 (en) | 1999-09-07 | 2002-05-14 | Scimed Life Systems, Inc. | Systems and methods to identify and disable re-used single use devices based on time elapsed from first therapeutic use |
EP1235522B1 (de) | 1999-09-09 | 2007-05-30 | Tuebingen Scientific Medical GmbH | Chirurgisches instrument für minimal invasive eingriffe |
US6077290A (en) | 1999-09-10 | 2000-06-20 | Tnco, Incorporated | Endoscopic instrument with removable front end |
US6104162A (en) | 1999-09-11 | 2000-08-15 | Sainsbury; Simon R. | Method and apparatus for multi-power source for power tools |
US7267679B2 (en) | 1999-09-13 | 2007-09-11 | Rex Medical, L.P | Vascular hole closure device |
US7662161B2 (en) | 1999-09-13 | 2010-02-16 | Rex Medical, L.P | Vascular hole closure device |
US6317616B1 (en) | 1999-09-15 | 2001-11-13 | Neil David Glossop | Method and system to facilitate image guided surgery |
US6636412B2 (en) | 1999-09-17 | 2003-10-21 | Taser International, Inc. | Hand-held stun gun for incapacitating a human target |
US7075770B1 (en) | 1999-09-17 | 2006-07-11 | Taser International, Inc. | Less lethal weapons and methods for halting locomotion |
US6358224B1 (en) | 1999-09-24 | 2002-03-19 | Tyco Healthcare Group Lp | Irrigation system for endoscopic surgery |
JP2001087272A (ja) | 1999-09-24 | 2001-04-03 | Motoko Iwabuchi | 生体組織切除用自動縫合器 |
US6356072B1 (en) | 1999-09-24 | 2002-03-12 | Jacob Chass | Hall effect sensor of displacement of magnetic core |
US6458142B1 (en) | 1999-10-05 | 2002-10-01 | Ethicon Endo-Surgery, Inc. | Force limiting mechanism for an ultrasonic surgical instrument |
JP4233742B2 (ja) | 1999-10-05 | 2009-03-04 | エシコン・エンド−サージェリィ・インコーポレイテッド | 超音波外科用器具と共に使用される湾曲クランプアームと組織パッドの連結 |
CA2322061A1 (en) | 1999-10-05 | 2001-04-05 | Anil K. Nalagatla | Stapling instrument having two staple forming surfaces |
US6325811B1 (en) | 1999-10-05 | 2001-12-04 | Ethicon Endo-Surgery, Inc. | Blades with functional balance asymmetries for use with ultrasonic surgical instruments |
US6206903B1 (en) | 1999-10-08 | 2001-03-27 | Intuitive Surgical, Inc. | Surgical tool with mechanical advantage |
US6312435B1 (en) | 1999-10-08 | 2001-11-06 | Intuitive Surgical, Inc. | Surgical instrument with extended reach for use in minimally invasive surgery |
ATE415867T1 (de) | 1999-10-14 | 2008-12-15 | Atropos Ltd | Chirurgischer wundretraktor |
EP1092487A3 (de) | 1999-10-15 | 2004-08-25 | Gustav Klauke GmbH | Verpressgerät mit Pressbacken |
US7887535B2 (en) | 1999-10-18 | 2011-02-15 | Covidien Ag | Vessel sealing wave jaw |
US6320123B1 (en) | 1999-10-20 | 2001-11-20 | Steven S. Reimers | System and method for shielding electrical components from electromagnetic waves |
US6780151B2 (en) | 1999-10-26 | 2004-08-24 | Acmi Corporation | Flexible ureteropyeloscope |
US6749560B1 (en) | 1999-10-26 | 2004-06-15 | Circon Corporation | Endoscope shaft with slotted tube |
US6471659B2 (en) | 1999-12-27 | 2002-10-29 | Neothermia Corporation | Minimally invasive intact recovery of tissue |
EP1095627A1 (en) | 1999-10-27 | 2001-05-02 | Everest Medical Corporation | Electrosurgical probe for surface treatment |
DE19951940C2 (de) | 1999-10-28 | 2001-11-29 | Karlsruhe Forschzent | Endoskopisch einsetzbares Klammernahtgerät |
US6716215B1 (en) | 1999-10-29 | 2004-04-06 | Image-Guided Neurologics | Cranial drill with sterile barrier |
SE515391C2 (sv) | 1999-11-08 | 2001-07-23 | Tagmaster Ab | Identifieringsbricka och läsare med interferensskydd |
DE19954497C1 (de) | 1999-11-11 | 2001-04-19 | Norbert Lemke | Vorrichtung zum Ansteuern eines elektrischen Gerätes für den Einsatz im Sterilbereich bei medizinischen Operationen |
US6666846B1 (en) | 1999-11-12 | 2003-12-23 | Edwards Lifesciences Corporation | Medical device introducer and obturator and methods of use |
US6482063B1 (en) | 1999-11-18 | 2002-11-19 | Charles Raymond Frigard | Articulating blocks toy |
GB9927338D0 (en) | 1999-11-18 | 2000-01-12 | Gyrus Medical Ltd | Electrosurgical system |
DE19955412A1 (de) | 1999-11-18 | 2001-05-23 | Hilti Ag | Bohr- und Meisselgerät |
US6592572B1 (en) | 1999-11-22 | 2003-07-15 | Olympus Optical Co., Ltd. | Surgical operation apparatus |
US6324339B1 (en) | 1999-11-29 | 2001-11-27 | Eveready Battery Company, Inc. | Battery pack including input and output waveform modification capability |
US6494896B1 (en) | 1999-11-30 | 2002-12-17 | Closure Medical Corporation | Applicator for laparoscopic or endoscopic surgery |
US20020022810A1 (en) | 1999-12-07 | 2002-02-21 | Alex Urich | Non-linear flow restrictor for a medical aspiration system |
US6184655B1 (en) | 1999-12-10 | 2001-02-06 | Stryker Corporation | Battery charging system with internal power manager |
US6352532B1 (en) | 1999-12-14 | 2002-03-05 | Ethicon Endo-Surgery, Inc. | Active load control of ultrasonic surgical instruments |
US6736825B2 (en) | 1999-12-14 | 2004-05-18 | Integrated Vascular Interventional Technologies, L C (Ivit Lc) | Paired expandable anastomosis devices and related methods |
TW429637B (en) | 1999-12-17 | 2001-04-11 | Synergy Scientech Corp | Electrical energy storage device |
US6428487B1 (en) | 1999-12-17 | 2002-08-06 | Ethicon Endo-Surgery, Inc. | Surgical biopsy system with remote control for selecting an operational mode |
US6432065B1 (en) | 1999-12-17 | 2002-08-13 | Ethicon Endo-Surgery, Inc. | Method for using a surgical biopsy system with remote control for selecting and operational mode |
USD535657S1 (en) | 1999-12-20 | 2007-01-23 | Apple Computer, Inc. | User interface for computer display |
US6254619B1 (en) | 1999-12-28 | 2001-07-03 | Antoine Garabet | Microkeratome |
US6197042B1 (en) | 2000-01-05 | 2001-03-06 | Medical Technology Group, Inc. | Vascular sheath with puncture site closure apparatus and methods of use |
US6942674B2 (en) | 2000-01-05 | 2005-09-13 | Integrated Vascular Systems, Inc. | Apparatus and methods for delivering a closure device |
US6364828B1 (en) | 2000-01-06 | 2002-04-02 | Hubert K. Yeung | Elongated flexible inspection neck |
RU2181566C2 (ru) | 2000-01-10 | 2002-04-27 | Дубровский Аркадий Вениаминович | Управляемый поворотный механизм |
US6361546B1 (en) | 2000-01-13 | 2002-03-26 | Endotex Interventional Systems, Inc. | Deployable recoverable vascular filter and methods for use |
US6770078B2 (en) | 2000-01-14 | 2004-08-03 | Peter M. Bonutti | Movable knee implant and methods therefor |
US6699214B2 (en) | 2000-01-19 | 2004-03-02 | Scimed Life Systems, Inc. | Shear-sensitive injectable delivery system |
US8221402B2 (en) | 2000-01-19 | 2012-07-17 | Medtronic, Inc. | Method for guiding a medical device |
WO2001053154A1 (en) | 2000-01-20 | 2001-07-26 | Bioaccess, Inc. | A method and apparatus for introducing a non-sterile component into a sterile device |
HU225908B1 (en) | 2000-01-24 | 2007-12-28 | Ethicon Endo Surgery Europe | Surgical circular stapling head |
US6193129B1 (en) | 2000-01-24 | 2001-02-27 | Ethicon Endo-Surgery, Inc. | Cutting blade for a surgical anastomosis stapling instrument |
DE10003020C2 (de) | 2000-01-25 | 2001-12-06 | Aesculap Ag & Co Kg | Bipolares Faßinstrument |
US6377011B1 (en) | 2000-01-26 | 2002-04-23 | Massachusetts Institute Of Technology | Force feedback user interface for minimally invasive surgical simulator and teleoperator and other similar apparatus |
US20010034530A1 (en) | 2000-01-27 | 2001-10-25 | Malackowski Donald W. | Surgery system |
US6429611B1 (en) | 2000-01-28 | 2002-08-06 | Hui Li | Rotary and linear motor |
JP2001208655A (ja) | 2000-01-28 | 2001-08-03 | Rion Co Ltd | 故障診断方法及びその装置 |
DE10004264C2 (de) | 2000-02-01 | 2002-06-13 | Storz Karl Gmbh & Co Kg | Vorrichtung zur intrakorporalen, minimal-invasiven Behandlung eines Patienten |
JP2004500190A (ja) | 2000-02-04 | 2004-01-08 | コンメド コーポレイション | 外科用クリップの適用装置 |
US6758846B2 (en) | 2000-02-08 | 2004-07-06 | Gyrus Medical Limited | Electrosurgical instrument and an electrosurgery system including such an instrument |
US20040181219A1 (en) | 2000-02-08 | 2004-09-16 | Gyrus Medical Limited | Electrosurgical instrument and an electrosugery system including such an instrument |
GB0223348D0 (en) | 2002-10-08 | 2002-11-13 | Gyrus Medical Ltd | A surgical instrument |
GB0002849D0 (en) | 2000-02-08 | 2000-03-29 | Gyrus Medical Ltd | An electrosurgical instrument and an electosurgery system including such an instrument |
US20040068307A1 (en) | 2000-02-08 | 2004-04-08 | Gyrus Medical Limited | Surgical instrument |
US6756705B2 (en) | 2000-02-10 | 2004-06-29 | Tri-Tech., Inc | Linear stepper motor |
US7963964B2 (en) | 2000-02-10 | 2011-06-21 | Santilli Albert N | Surgical clamp assembly with electrodes |
US6911033B2 (en) | 2001-08-21 | 2005-06-28 | Microline Pentax Inc. | Medical clip applying device |
US6569171B2 (en) | 2001-02-28 | 2003-05-27 | Microline, Inc. | Safety locking mechanism for a medical clip device |
US6306149B1 (en) | 2000-02-15 | 2001-10-23 | Microline, Inc. | Medical clip device with cyclical pusher mechanism |
US6589164B1 (en) | 2000-02-15 | 2003-07-08 | Transvascular, Inc. | Sterility barriers for insertion of non-sterile apparatus into catheters or other medical devices |
DE10007919C2 (de) | 2000-02-21 | 2003-07-17 | Wolf Gmbh Richard | Zange zum Freipräparieren von Gewebe in einer Körperhöhle |
ES2371744T3 (es) | 2000-02-22 | 2012-01-09 | Tyco Healthcare Group Lp | Un accionador electromecánico y accesorio de instrumento quirúrgico remoto que tiene capacidades de control asistidas por ordenador. |
GB0004179D0 (en) | 2000-02-22 | 2000-04-12 | Gyrus Medical Ltd | Tissue resurfacing |
US6723091B2 (en) | 2000-02-22 | 2004-04-20 | Gyrus Medical Limited | Tissue resurfacing |
US6533157B1 (en) | 2000-02-22 | 2003-03-18 | Power Medical Interventions, Inc. | Tissue stapling attachment for use with an electromechanical driver device |
US6488197B1 (en) | 2000-02-22 | 2002-12-03 | Power Medical Interventions, Inc. | Fluid delivery device for use with anastomosing resecting and stapling instruments |
US8016855B2 (en) | 2002-01-08 | 2011-09-13 | Tyco Healthcare Group Lp | Surgical device |
US6348061B1 (en) | 2000-02-22 | 2002-02-19 | Powermed, Inc. | Vessel and lumen expander attachment for use with an electromechanical driver device |
US7770773B2 (en) | 2005-07-27 | 2010-08-10 | Power Medical Interventions, Llc | Surgical device |
US7335199B2 (en) | 2000-02-22 | 2008-02-26 | Rhytec Limited | Tissue resurfacing |
US6629974B2 (en) | 2000-02-22 | 2003-10-07 | Gyrus Medical Limited | Tissue treatment method |
US6603050B2 (en) | 2000-02-23 | 2003-08-05 | Uxb International, Inc. | Destruction of energetic materials |
US6582441B1 (en) | 2000-02-24 | 2003-06-24 | Advanced Bionics Corporation | Surgical insertion tool |
WO2001062173A2 (en) | 2000-02-25 | 2001-08-30 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and apparatuses for maintaining a trajectory in sterotaxi for tracking a target inside a body |
US6463824B1 (en) | 2000-02-29 | 2002-10-15 | S-B Power Tool Company | Right angle attachment for power hand tool |
US6273897B1 (en) | 2000-02-29 | 2001-08-14 | Ethicon, Inc. | Surgical bettress and surgical stapling apparatus |
US20030070683A1 (en) | 2000-03-04 | 2003-04-17 | Deem Mark E. | Methods and devices for use in performing pulmonary procedures |
US6953461B2 (en) | 2002-05-16 | 2005-10-11 | Tissuelink Medical, Inc. | Fluid-assisted medical devices, systems and methods |
AU4729201A (en) | 2000-03-06 | 2001-09-17 | Us Surgical | Apparatus and method for performing a bypass procedure in a digestive system |
US6763307B2 (en) | 2000-03-06 | 2004-07-13 | Bioseek, Inc. | Patient classification |
US6423079B1 (en) | 2000-03-07 | 2002-07-23 | Blake, Iii Joseph W | Repeating multi-clip applier |
USD455758S1 (en) | 2000-03-08 | 2002-04-16 | Ethicon Endo-Surgery, Inc. | Operational mode icon for a display screen of a control unit for a surgical device |
GB0005897D0 (en) | 2000-03-10 | 2000-05-03 | Black & Decker Inc | Power tool |
US6663623B1 (en) | 2000-03-13 | 2003-12-16 | Olympus Optical Co., Ltd. | Electric surgical operation apparatus |
US6525499B2 (en) | 2000-03-15 | 2003-02-25 | Keihin Corporation | System for controlling vehicle power sliding door |
US6510854B2 (en) | 2000-03-16 | 2003-01-28 | Gyrus Medical Limited | Method of treatment of prostatic adenoma |
US7819799B2 (en) | 2000-03-16 | 2010-10-26 | Immersion Medical, Inc. | System and method for controlling force applied to and manipulation of medical instruments |
IL138632A (en) | 2000-09-21 | 2008-06-05 | Minelu Zonnenschein | A multi-eyed endoscope |
IL139788A (en) | 2000-11-20 | 2006-10-05 | Minelu Zonnenschein | Stapler for endoscopes |
EP1452125A3 (en) | 2000-03-16 | 2004-10-13 | Medigus Ltd | Fundoplication apparatus and method |
US6770070B1 (en) | 2000-03-17 | 2004-08-03 | Rita Medical Systems, Inc. | Lung treatment apparatus and method |
US9314339B2 (en) | 2000-03-27 | 2016-04-19 | Formae, Inc. | Implants for replacing cartilage, with negatively-charged hydrogel surfaces and flexible matrix reinforcement |
DE10015398A1 (de) | 2000-03-28 | 2001-10-11 | Bosch Gmbh Robert | Elektrogerät |
JP2001276091A (ja) | 2000-03-29 | 2001-10-09 | Toshiba Corp | 医療用マニピュレータ |
US6778846B1 (en) | 2000-03-30 | 2004-08-17 | Medtronic, Inc. | Method of guiding a medical device and system regarding same |
US6802822B1 (en) | 2000-03-31 | 2004-10-12 | 3M Innovative Properties Company | Dispenser for an adhesive tissue sealant having a flexible link |
JP2001275941A (ja) | 2000-03-31 | 2001-10-09 | Olympus Optical Co Ltd | 電動湾曲内視鏡装置 |
US6869430B2 (en) | 2000-03-31 | 2005-03-22 | Rita Medical Systems, Inc. | Tissue biopsy and treatment apparatus and method |
US6837846B2 (en) | 2000-04-03 | 2005-01-04 | Neo Guide Systems, Inc. | Endoscope having a guide tube |
US8888688B2 (en) | 2000-04-03 | 2014-11-18 | Intuitive Surgical Operations, Inc. | Connector device for a controllable instrument |
US6984203B2 (en) | 2000-04-03 | 2006-01-10 | Neoguide Systems, Inc. | Endoscope with adjacently positioned guiding apparatus |
US20050085693A1 (en) | 2000-04-03 | 2005-04-21 | Amir Belson | Activated polymer articulated instruments and methods of insertion |
US6858005B2 (en) | 2000-04-03 | 2005-02-22 | Neo Guide Systems, Inc. | Tendon-driven endoscope and methods of insertion |
IL135571A0 (en) | 2000-04-10 | 2001-05-20 | Doron Adler | Minimal invasive surgery imaging system |
US6517528B1 (en) | 2000-04-13 | 2003-02-11 | Scimed Life Systems, Inc. | Magnetic catheter drive shaft clutch |
JP4716594B2 (ja) | 2000-04-17 | 2011-07-06 | オリンパス株式会社 | 内視鏡 |
USD445745S1 (en) | 2000-04-18 | 2001-07-31 | Honda Giken Kogyo Kabushiki Kaisha | Indicator icon for a vehicle display screen |
US6415542B1 (en) | 2000-04-19 | 2002-07-09 | International Business Machines Corporation | Location-based firearm discharge prevention |
US6905498B2 (en) | 2000-04-27 | 2005-06-14 | Atricure Inc. | Transmural ablation device with EKG sensor and pacing electrode |
WO2001082812A1 (en) | 2000-04-27 | 2001-11-08 | Medtronic, Inc. | Vibration sensitive ablation apparatus and method |
RU2187249C2 (ru) | 2000-04-27 | 2002-08-20 | Общество с ограниченной ответственностью "ЭНДОМЕДИУМ+" | Хирургический инструмент |
US6387114B2 (en) | 2000-04-28 | 2002-05-14 | Scimed Life Systems, Inc. | Gastrointestinal compression clips |
US6412639B1 (en) | 2000-04-28 | 2002-07-02 | Closure Medical Corporation | Medical procedure kit having medical adhesive |
WO2001086798A1 (en) | 2000-05-05 | 2001-11-15 | Advanced Materials Corporation | Motor controller system for battery-powered motors |
DE10058796A1 (de) | 2000-05-09 | 2001-11-15 | Heidelberger Druckmasch Ag | Sammelhefter mit getrennten Antrieben |
FR2808674B1 (fr) | 2000-05-12 | 2002-08-02 | Cie Euro Etude Rech Paroscopie | Anneau de gastroplastie a pattes de prehension |
US6305891B1 (en) | 2000-05-15 | 2001-10-23 | Mark S. Burlingame | Fastening device and a spacer, and a method of using the same |
US6819269B2 (en) | 2000-05-17 | 2004-11-16 | Omega Patents, L.L.C. | Vehicle tracker including battery monitoring feature and related methods |
US6361542B1 (en) | 2000-05-17 | 2002-03-26 | Prism Enterprises, Inc. | Obstetrical vacuum extractor cup with force measuring capabilities |
US7172615B2 (en) | 2000-05-19 | 2007-02-06 | Coapt Systems, Inc. | Remotely anchored tissue fixation device |
US7510566B2 (en) | 2000-05-19 | 2009-03-31 | Coapt Systems, Inc. | Multi-point tissue tension distribution device and method, a chin lift variation |
US6485503B2 (en) | 2000-05-19 | 2002-11-26 | Coapt Systems, Inc. | Multi-point tissue tension distribution device, a brow and face lift variation, and a method of tissue approximation using the device |
US6419695B1 (en) | 2000-05-22 | 2002-07-16 | Shlomo Gabbay | Cardiac prosthesis for helping improve operation of a heart valve |
US6805273B2 (en) | 2002-11-04 | 2004-10-19 | Federico Bilotti | Surgical stapling instrument |
DE10026683C2 (de) | 2000-05-30 | 2003-07-10 | Ethicon Endo Surgery Europe | Chirurgisches Klammersetzgerät |
WO2001093025A2 (en) | 2000-06-01 | 2001-12-06 | Allegrix, Inc. | Systems and methods for application service provision |
US6602262B2 (en) | 2000-06-02 | 2003-08-05 | Scimed Life Systems, Inc. | Medical device having linear to rotation control |
US6306423B1 (en) | 2000-06-02 | 2001-10-23 | Allergan Sales, Inc. | Neurotoxin implant |
US6883199B1 (en) | 2000-06-06 | 2005-04-26 | Koninklijke Philips Electronics, N.V. | Short-life power toothbrush for trial use |
US6527782B2 (en) | 2000-06-07 | 2003-03-04 | Sterotaxis, Inc. | Guide for medical devices |
GB0014059D0 (en) | 2000-06-09 | 2000-08-02 | Chumas Paul D | Method and apparatus |
GB0014120D0 (en) | 2000-06-10 | 2000-08-02 | Sinton Richard T | Hand instrument |
US6492785B1 (en) | 2000-06-27 | 2002-12-10 | Deere & Company | Variable current limit control for vehicle electric drive system |
DE10031436A1 (de) | 2000-06-28 | 2002-01-10 | Alexander Von Fuchs | Gleitschutz für einen Gehäusekopf medizinischer Instrumente |
US6863694B1 (en) | 2000-07-03 | 2005-03-08 | Osteotech, Inc. | Osteogenic implants derived from bone |
JP3789733B2 (ja) | 2000-07-06 | 2006-06-28 | アルプス電気株式会社 | 複合操作スイッチ |
DE10033344B4 (de) | 2000-07-08 | 2011-04-07 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Auswertung eines Sensorsignals |
US6660008B1 (en) | 2001-06-07 | 2003-12-09 | Opus Medical, Inc. | Method and apparatus for attaching connective tissues to bone using a suture anchoring device |
JP3897962B2 (ja) | 2000-07-19 | 2007-03-28 | 株式会社モリタ製作所 | 識別型のインスツルメント体、識別型のアダプタ、識別型のチューブ、これらを用いた診療装置 |
KR100834843B1 (ko) | 2000-07-20 | 2008-06-04 | 키네틱 서지컬 엘엘씨 | 수동 다관절 수술기구 |
US20100241137A1 (en) | 2000-07-20 | 2010-09-23 | Mark Doyle | Hand-actuated articulating surgical tool |
WO2002007618A1 (en) | 2000-07-21 | 2002-01-31 | Atropos Limited | A cannula |
US6447799B1 (en) | 2000-07-24 | 2002-09-10 | Joseph M. Ullman | Thromboplastic system |
US7419487B2 (en) | 2000-07-25 | 2008-09-02 | Angiodynamics, Inc. | Apparatus for detecting and treating tumors using localized impedance measurement |
US6494882B1 (en) | 2000-07-25 | 2002-12-17 | Verimetra, Inc. | Cutting instrument having integrated sensors |
US6392854B1 (en) | 2000-07-27 | 2002-05-21 | Motorola, Inc. | Method and system for testing continuity of a motor and associated drive circuitry |
US6746443B1 (en) | 2000-07-27 | 2004-06-08 | Intuitive Surgical Inc. | Roll-pitch-roll surgical tool |
US6902560B1 (en) | 2000-07-27 | 2005-06-07 | Intuitive Surgical, Inc. | Roll-pitch-roll surgical tool |
US6585664B2 (en) | 2000-08-02 | 2003-07-01 | Ethicon Endo-Surgery, Inc. | Calibration method for an automated surgical biopsy device |
US8366787B2 (en) | 2000-08-04 | 2013-02-05 | Depuy Products, Inc. | Hybrid biologic-synthetic bioabsorbable scaffolds |
JP5162782B2 (ja) | 2000-08-07 | 2013-03-13 | 株式会社小松製作所 | 作業機械の表示装置 |
JP2002054903A (ja) | 2000-08-10 | 2002-02-20 | Nippon Densan Corp | 変位検出装置 |
JP2002051974A (ja) | 2000-08-14 | 2002-02-19 | Fuji Photo Optical Co Ltd | 内視鏡処置具 |
US6572629B2 (en) | 2000-08-17 | 2003-06-03 | Johns Hopkins University | Gastric reduction endoscopy |
GB0020461D0 (en) | 2000-08-18 | 2000-10-11 | Oliver Crispin Consulting Ltd | Improvements in and relating to the robotic positioning of a work tool to a sensor |
US6533723B1 (en) | 2000-08-25 | 2003-03-18 | Ge Marquette Medical Systems, Inc. | Multiple-link cable management apparatus |
US6876850B2 (en) | 2000-08-30 | 2005-04-05 | Sony Corporation | Communication apparatus and communication method |
AU2001288462A1 (en) | 2000-08-30 | 2002-03-13 | Cerebral Vascular Applications Inc. | Medical instrument |
JP2002074322A (ja) | 2000-08-31 | 2002-03-15 | Sony Corp | 情報処理装置及び情報処理方法並びにデータ記録媒体 |
US6767356B2 (en) | 2000-09-01 | 2004-07-27 | Angiolink Corporation | Advanced wound site management systems and methods |
US20040093024A1 (en) | 2000-09-01 | 2004-05-13 | James Lousararian | Advanced wound site management systems and methods |
GB0021799D0 (en) | 2000-09-05 | 2000-10-18 | Gyrus Medical Ltd | Electrosurgery system |
WO2002019918A2 (en) | 2000-09-07 | 2002-03-14 | Eva Arkin | Fluorescent surgical device |
JP2002078674A (ja) | 2000-09-08 | 2002-03-19 | Fuji Photo Optical Co Ltd | 内視鏡の湾曲部構造 |
AU8800901A (en) | 2000-09-08 | 2002-03-22 | James E Coleman | Surgical stapler |
US6712773B1 (en) | 2000-09-11 | 2004-03-30 | Tyco Healthcare Group Lp | Biopsy system |
JP4297603B2 (ja) | 2000-09-19 | 2009-07-15 | 株式会社トップ | 外科用ステープラ |
DE60129997T2 (de) | 2000-09-24 | 2008-05-08 | Medtronic, Inc., Minneapolis | Motorsteuerungssystem für ein chirurgisches handstück |
WO2002026143A1 (en) | 2000-09-27 | 2002-04-04 | Applied Medical Resources | Surgical apparatus with detachable handle assembly |
JP4014792B2 (ja) | 2000-09-29 | 2007-11-28 | 株式会社東芝 | マニピュレータ |
US6296607B1 (en) | 2000-10-20 | 2001-10-02 | Praxis, Llc. | In situ bulking device |
US6755843B2 (en) | 2000-09-29 | 2004-06-29 | Olympus Optical Co., Ltd. | Endoscopic suturing device |
AU2000274011A1 (en) | 2000-10-04 | 2002-04-15 | Synthes Ag, Chur | Device for supplying an electro-pen with electrical energy |
US7007176B2 (en) | 2000-10-10 | 2006-02-28 | Primarion, Inc. | System and method for highly phased power regulation using adaptive compensation control |
US6817508B1 (en) | 2000-10-13 | 2004-11-16 | Tyco Healthcare Group, Lp | Surgical stapling device |
WO2003079909A2 (en) | 2002-03-19 | 2003-10-02 | Tyco Healthcare Group, Lp | Surgical fastener applying apparatus |
US7407076B2 (en) | 2000-10-13 | 2008-08-05 | Tyco Healthcare Group Lp | Surgical stapling device |
CA2664942C (en) | 2000-10-13 | 2011-12-13 | Tyco Healthcare Group Lp | Surgical fastener applying apparatus |
US7334717B2 (en) | 2001-10-05 | 2008-02-26 | Tyco Healthcare Group Lp | Surgical fastener applying apparatus |
US6773438B1 (en) | 2000-10-19 | 2004-08-10 | Ethicon Endo-Surgery | Surgical instrument having a rotary lockout mechanism |
EP1326524B1 (en) | 2000-10-19 | 2010-09-01 | Applied Medical Resources Corporation | Surgical access apparatus and method |
US6551333B2 (en) | 2000-10-19 | 2003-04-22 | Ethicon Endo-Surgery, Inc. | Method for attaching hernia mesh |
US7485124B2 (en) | 2000-10-19 | 2009-02-03 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a fastener delivery mechanism |
US6945981B2 (en) | 2000-10-20 | 2005-09-20 | Ethicon-Endo Surgery, Inc. | Finger operated switch for controlling a surgical handpiece |
US7273483B2 (en) | 2000-10-20 | 2007-09-25 | Ethicon Endo-Surgery, Inc. | Apparatus and method for alerting generator functions in an ultrasonic surgical system |
US6908472B2 (en) | 2000-10-20 | 2005-06-21 | Ethicon Endo-Surgery, Inc. | Apparatus and method for altering generator functions in an ultrasonic surgical system |
US20040267310A1 (en) | 2000-10-20 | 2004-12-30 | Racenet David C | Directionally biased staple and anvil assembly for forming the staple |
US7665995B2 (en) | 2000-10-23 | 2010-02-23 | Toly Christopher C | Medical training simulator including contact-less sensors |
US6656177B2 (en) | 2000-10-23 | 2003-12-02 | Csaba Truckai | Electrosurgical systems and techniques for sealing tissue |
US6500176B1 (en) | 2000-10-23 | 2002-12-31 | Csaba Truckai | Electrosurgical systems and techniques for sealing tissue |
US6913608B2 (en) | 2000-10-23 | 2005-07-05 | Viacor, Inc. | Automated annular plication for mitral valve repair |
US20020188287A1 (en) | 2001-05-21 | 2002-12-12 | Roni Zvuloni | Apparatus and method for cryosurgery within a body cavity |
US6605090B1 (en) | 2000-10-25 | 2003-08-12 | Sdgi Holdings, Inc. | Non-metallic implant devices and intra-operative methods for assembly and fixation |
US6793661B2 (en) | 2000-10-30 | 2004-09-21 | Vision Sciences, Inc. | Endoscopic sheath assemblies having longitudinal expansion inhibiting mechanisms |
FR2815842B1 (fr) | 2000-10-31 | 2003-05-09 | Assist Publ Hopitaux De Paris | Pince-agrafeuse mecanique pour chirurgie du rectum |
GB0026586D0 (en) | 2000-10-31 | 2000-12-13 | Gyrus Medical Ltd | An electrosurgical system |
US6893435B2 (en) | 2000-10-31 | 2005-05-17 | Gyrus Medical Limited | Electrosurgical system |
US20030139741A1 (en) | 2000-10-31 | 2003-07-24 | Gyrus Medical Limited | Surgical instrument |
US6843789B2 (en) | 2000-10-31 | 2005-01-18 | Gyrus Medical Limited | Electrosurgical system |
JP2002149860A (ja) | 2000-11-07 | 2002-05-24 | Japan Institute Of Plant Maintenance | 製造業務における設備の保全管理方法および保全管理支援システム |
JP2002143078A (ja) | 2000-11-08 | 2002-05-21 | Olympus Optical Co Ltd | 内視鏡用外付チューブ |
US6749600B1 (en) | 2000-11-15 | 2004-06-15 | Impulse Dynamics N.V. | Braided splittable catheter sheath |
US6506197B1 (en) | 2000-11-15 | 2003-01-14 | Ethicon, Inc. | Surgical method for affixing a valve to a heart using a looped suture combination |
JP3822433B2 (ja) | 2000-11-16 | 2006-09-20 | オリンパス株式会社 | 処置具、処置具用制御装置および医療用処置システム |
US6498480B1 (en) | 2000-11-22 | 2002-12-24 | Wabash Technologies, Inc. | Magnetic non-contacting rotary transducer |
US6520971B1 (en) | 2000-11-27 | 2003-02-18 | Scimed Life Systems, Inc. | Full thickness resection device control handle |
US6821282B2 (en) | 2000-11-27 | 2004-11-23 | Scimed Life Systems, Inc. | Full thickness resection device control handle |
US8286845B2 (en) | 2000-11-27 | 2012-10-16 | Boston Scientific Scimed, Inc. | Full thickness resection device control handle |
WO2002043569A2 (en) | 2000-11-28 | 2002-06-06 | Intuitive Surgical, Inc. | Endoscopic beating-heart stabilizer and vessel occlusion fastener |
JP2002159500A (ja) | 2000-11-28 | 2002-06-04 | Koseki Ika Kk | 靭帯固定システム |
US6899915B2 (en) | 2000-11-29 | 2005-05-31 | President And Fellows Of Harvard College | Methods and compositions for culturing a biological tooth |
US7081114B2 (en) | 2000-11-29 | 2006-07-25 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Electrophysiology/ablation catheter having lariat configuration of variable radius |
US6398795B1 (en) | 2000-11-30 | 2002-06-04 | Scimed Life Systems, Inc. | Stapling and cutting in resectioning for full thickness resection devices |
JP2002170622A (ja) | 2000-11-30 | 2002-06-14 | Sumitomo Wiring Syst Ltd | コネクタ |
US6439446B1 (en) | 2000-12-01 | 2002-08-27 | Stephen J. Perry | Safety lockout for actuator shaft |
US6569085B2 (en) | 2001-08-16 | 2003-05-27 | Syntheon, Llc | Methods and apparatus for delivering a medical instrument over an endoscope while the endoscope is in a body lumen |
US20020138086A1 (en) | 2000-12-06 | 2002-09-26 | Robert Sixto | Surgical clips particularly useful in the endoluminal treatment of gastroesophageal reflux disease (GERD) |
US6588931B2 (en) | 2000-12-07 | 2003-07-08 | Delphi Technologies, Inc. | Temperature sensor with flexible circuit substrate |
WO2002056800A2 (en) | 2000-12-08 | 2002-07-25 | Osteotech, Inc. | Implant for orthopedic applications |
US20020127265A1 (en) | 2000-12-21 | 2002-09-12 | Bowman Steven M. | Use of reinforced foam implants with enhanced integrity for soft tissue repair and regeneration |
US6599323B2 (en) | 2000-12-21 | 2003-07-29 | Ethicon, Inc. | Reinforced tissue implants and methods of manufacture and use |
US6852330B2 (en) | 2000-12-21 | 2005-02-08 | Depuy Mitek, Inc. | Reinforced foam implants with enhanced integrity for soft tissue repair and regeneration |
CA2365376C (en) | 2000-12-21 | 2006-03-28 | Ethicon, Inc. | Use of reinforced foam implants with enhanced integrity for soft tissue repair and regeneration |
US6406440B1 (en) | 2000-12-21 | 2002-06-18 | Ethicon Endo-Surgery, Inc. | Specimen retrieval bag |
US20020185514A1 (en) | 2000-12-22 | 2002-12-12 | Shane Adams | Control module for flywheel operated hand tool |
US6503259B2 (en) | 2000-12-27 | 2003-01-07 | Ethicon, Inc. | Expandable anastomotic device |
KR100498302B1 (ko) | 2000-12-27 | 2005-07-01 | 엘지전자 주식회사 | 리니어 컴프레샤의 용량가변형 모터 |
US6840938B1 (en) | 2000-12-29 | 2005-01-11 | Intuitive Surgical, Inc. | Bipolar cauterizing instrument |
US7041868B2 (en) | 2000-12-29 | 2006-05-09 | Kimberly-Clark Worldwide, Inc. | Bioabsorbable wound dressing |
EP1348045B1 (en) | 2001-01-03 | 2007-03-14 | Santa Fe Science & Technology, Inc. | Stable conjugated polymer electrochromic devices incorporating ionic liquids |
US6482200B2 (en) | 2001-01-03 | 2002-11-19 | Ronald D. Shippert | Cautery apparatus and method |
AU2002251732A1 (en) | 2001-01-04 | 2002-08-28 | Becomm Corporation | Universal media bar for controlling different types of media |
EP1349492A2 (en) | 2001-01-04 | 2003-10-08 | Medtronic, Inc. | Implantable medical device with sensor |
US20020133131A1 (en) | 2001-01-09 | 2002-09-19 | Krishnakumar Rangachari | Absorbent material incorporating synthetic fibers and process for making the material |
US7037314B2 (en) | 2001-01-09 | 2006-05-02 | Armstrong David N | Multiple band ligator and anoscope system and method for using same |
EP1399201B1 (en) | 2001-01-11 | 2012-04-11 | Given Imaging Ltd. | Device for in-vivo procedures |
US6439439B1 (en) | 2001-01-12 | 2002-08-27 | Telios Orthopedic Systems, Inc. | Bone cement delivery apparatus and hand-held fluent material dispensing apparatus |
US6494885B1 (en) | 2001-01-17 | 2002-12-17 | Avtar S. Dhindsa | Endoscopic stone extraction device with rotatable basket |
JP4121730B2 (ja) | 2001-01-19 | 2008-07-23 | 富士通コンポーネント株式会社 | ポインティングデバイス及び携帯型情報機器 |
US6695774B2 (en) | 2001-01-19 | 2004-02-24 | Endactive, Inc. | Apparatus and method for controlling endoscopic instruments |
DE60227235D1 (de) | 2001-01-24 | 2008-08-07 | Tyco Healthcare | Instrument und verfahren zur durchführung einer anastomose |
US6554829B2 (en) | 2001-01-24 | 2003-04-29 | Ethicon, Inc. | Electrosurgical instrument with minimally invasive jaws |
US6620161B2 (en) | 2001-01-24 | 2003-09-16 | Ethicon, Inc. | Electrosurgical instrument with an operational sequencing element |
US6626834B2 (en) | 2001-01-25 | 2003-09-30 | Shane Dunne | Spiral scanner with electronic control |
US20020111624A1 (en) | 2001-01-26 | 2002-08-15 | Witt David A. | Coagulating electrosurgical instrument with tissue dam |
EP1355765B1 (en) | 2001-01-29 | 2008-05-07 | The Acrobot Company Limited | Active-constraint robots |
US20020134811A1 (en) | 2001-01-29 | 2002-09-26 | Senco Products, Inc. | Multi-mode power tool utilizing attachment |
EP1359851B1 (en) | 2001-01-31 | 2010-09-22 | Rex Medical, Inc. | Apparatus for stapling and resectioning gastro-edophageal tissue |
US20020103494A1 (en) | 2001-01-31 | 2002-08-01 | Pacey John Allen | Percutaneous cannula delvery system for hernia patch |
US8313496B2 (en) | 2001-02-02 | 2012-11-20 | Lsi Solutions, Inc. | System for endoscopic suturing |
US6997931B2 (en) | 2001-02-02 | 2006-02-14 | Lsi Solutions, Inc. | System for endoscopic suturing |
US9050192B2 (en) | 2001-02-05 | 2015-06-09 | Formae, Inc. | Cartilage repair implant with soft bearing surface and flexible anchoring device |
JP3939158B2 (ja) | 2001-02-06 | 2007-07-04 | オリンパス株式会社 | 内視鏡装置 |
US6723109B2 (en) | 2001-02-07 | 2004-04-20 | Karl Storz Endoscopy-America, Inc. | Deployable surgical clamp with delivery/retrieval device and actuator |
US20080214967A1 (en) | 2004-02-17 | 2008-09-04 | Ernest Aranyi | Ultrasonic surgical instrument |
US6302743B1 (en) | 2001-02-09 | 2001-10-16 | Pen-Li Chiu | Electric outlet assembly with rotary receptacles |
US20030135204A1 (en) | 2001-02-15 | 2003-07-17 | Endo Via Medical, Inc. | Robotically controlled medical instrument with a flexible section |
US7766894B2 (en) | 2001-02-15 | 2010-08-03 | Hansen Medical, Inc. | Coaxial catheter system |
AU2002251958A1 (en) | 2001-02-15 | 2002-09-04 | Brock Rogers Surgical, Inc. | Surgical master/slave system |
AU2002244016A1 (en) | 2001-02-15 | 2002-10-03 | Cunningham, Robert | Flexible surgical instrument |
US7699835B2 (en) | 2001-02-15 | 2010-04-20 | Hansen Medical, Inc. | Robotically controlled surgical instruments |
US7008433B2 (en) | 2001-02-15 | 2006-03-07 | Depuy Acromed, Inc. | Vertebroplasty injection device |
DE10108732A1 (de) | 2001-02-23 | 2002-09-05 | Philips Corp Intellectual Pty | Vorrichtung mit einem magnetischen Positionssensor |
US6533784B2 (en) | 2001-02-24 | 2003-03-18 | Csaba Truckai | Electrosurgical working end for transecting and sealing tissue |
DE60115192T2 (de) | 2001-02-26 | 2006-08-10 | Ethicon, Inc. | Bioverträglicher Verbundschaum |
WO2002067798A1 (en) | 2001-02-26 | 2002-09-06 | Ntero Surgical, Inc. | System and method for reducing post-surgical complications |
AU2002238143B2 (en) | 2001-02-27 | 2006-06-01 | Covidien Lp | External mixer assembly |
USD454951S1 (en) | 2001-02-27 | 2002-03-26 | Visionary Biomedical, Inc. | Steerable catheter |
US7139016B2 (en) | 2001-02-28 | 2006-11-21 | Eastman Kodak Company | Intra-oral camera system with chair-mounted display |
US6682527B2 (en) | 2001-03-13 | 2004-01-27 | Perfect Surgical Techniques, Inc. | Method and system for heating tissue with a bipolar instrument |
US6551356B2 (en) | 2001-03-19 | 2003-04-22 | Ethicon, Inc. | Pocketed hernia repair |
US6582387B2 (en) | 2001-03-20 | 2003-06-24 | Therox, Inc. | System for enriching a bodily fluid with a gas |
US20020135474A1 (en) | 2001-03-21 | 2002-09-26 | Sylliassen Douglas G. | Method and device for sensor-based power management of a consumer electronic device |
US6802844B2 (en) | 2001-03-26 | 2004-10-12 | Nuvasive, Inc | Spinal alignment apparatus and methods |
US7605826B2 (en) | 2001-03-27 | 2009-10-20 | Siemens Corporate Research, Inc. | Augmented reality guided instrument positioning with depth determining graphics |
JP2002282269A (ja) | 2001-03-28 | 2002-10-02 | Gc Corp | 歯科用組織再生膜固定用ピン |
US7097644B2 (en) | 2001-03-30 | 2006-08-29 | Ethicon Endo-Surgery, Inc. | Medical device with improved wall construction |
US20030181900A1 (en) | 2002-03-25 | 2003-09-25 | Long Gary L. | Endoscopic ablation system with a plurality of electrodes |
US6861954B2 (en) | 2001-03-30 | 2005-03-01 | Bruce H. Levin | Tracking medical products with integrated circuits |
US6769590B2 (en) | 2001-04-02 | 2004-08-03 | Susan E. Vresh | Luminal anastomotic device and method |
EP2397080B1 (en) | 2001-04-03 | 2018-08-01 | Covidien LP | Surgical stapling device |
US6605669B2 (en) | 2001-04-03 | 2003-08-12 | E. I. Du Pont De Nemours And Company | Radiation-curable coating compounds |
US20060177796A9 (en) | 2001-04-05 | 2006-08-10 | Heasley John M | Rubber Dams With Operative Inserts Which Isolate Anatomical Structures by Effectively Resisting External Vector Forces of Displacement |
US7101371B2 (en) | 2001-04-06 | 2006-09-05 | Dycus Sean T | Vessel sealer and divider |
CA2442598C (en) | 2001-04-06 | 2011-10-04 | Sean T. Dycus | Vessel sealer and divider with non-conductive stop members |
US7101372B2 (en) | 2001-04-06 | 2006-09-05 | Sherwood Sevices Ag | Vessel sealer and divider |
US7090673B2 (en) | 2001-04-06 | 2006-08-15 | Sherwood Services Ag | Vessel sealer and divider |
DE10117597C1 (de) | 2001-04-07 | 2002-11-28 | Itt Mfg Enterprises Inc | Wippschalter |
US6638285B2 (en) | 2001-04-16 | 2003-10-28 | Shlomo Gabbay | Biological tissue strip and system and method to seal tissue |
JP2002314298A (ja) | 2001-04-18 | 2002-10-25 | Matsushita Electric Ind Co Ltd | 電子部品実装装置 |
DE60218240T2 (de) | 2001-04-18 | 2007-11-22 | Olympus Corporation | Chirurgisches Instrument |
US7824401B2 (en) | 2004-10-08 | 2010-11-02 | Intuitive Surgical Operations, Inc. | Robotic tool with wristed monopolar electrosurgical end effectors |
US6994708B2 (en) | 2001-04-19 | 2006-02-07 | Intuitive Surgical | Robotic tool with monopolar electro-surgical scissors |
US6783524B2 (en) | 2001-04-19 | 2004-08-31 | Intuitive Surgical, Inc. | Robotic surgical tool with ultrasound cauterizing and cutting instrument |
US7367973B2 (en) | 2003-06-30 | 2008-05-06 | Intuitive Surgical, Inc. | Electro-surgical instrument with replaceable end-effectors and inhibited surface conduction |
US7351258B2 (en) | 2001-04-20 | 2008-04-01 | The Research Foundation Of State University Of New York At Stony Brook | Apparatus and method for fixation of vascular grafts |
US6620111B2 (en) | 2001-04-20 | 2003-09-16 | Ethicon Endo-Surgery, Inc. | Surgical biopsy device having automatic rotation of the probe for taking multiple samples |
ATE551955T1 (de) | 2001-04-20 | 2012-04-15 | Tyco Healthcare | Chirurgische vorrichtung mit bipolaren oder ultraschalleigenschaften |
US20040110439A1 (en) | 2001-04-20 | 2004-06-10 | Chaikof Elliot L | Native protein mimetic fibers, fiber networks and fabrics for medical use |
JP4617059B2 (ja) | 2001-04-20 | 2011-01-19 | パワー メディカル インターベンションズ, エルエルシー | イメージング装置 |
US20030039689A1 (en) | 2001-04-26 | 2003-02-27 | Jianbing Chen | Polymer-based, sustained release drug delivery system |
US20020188170A1 (en) | 2001-04-27 | 2002-12-12 | Santamore William P. | Prevention of myocardial infarction induced ventricular expansion and remodeling |
US20020158593A1 (en) | 2001-04-27 | 2002-10-31 | Henderson Jeffery L. | Circuit for controlling dynamic braking of a motor shaft in a power tool |
US7225959B2 (en) | 2001-04-30 | 2007-06-05 | Black & Decker, Inc. | Portable, battery-powered air compressor for a pneumatic tool system |
NZ511444A (en) | 2001-05-01 | 2004-01-30 | Deep Video Imaging Ltd | Information display |
US6586898B2 (en) | 2001-05-01 | 2003-07-01 | Magnon Engineering, Inc. | Systems and methods of electric motor control |
US6535764B2 (en) | 2001-05-01 | 2003-03-18 | Intrapace, Inc. | Gastric treatment and diagnosis device and method |
US6913579B2 (en) | 2001-05-01 | 2005-07-05 | Surgrx, Inc. | Electrosurgical working end and method for obtaining tissue samples for biopsy |
DE10121305A1 (de) | 2001-05-02 | 2002-12-12 | Ethicon Endo Surgery Europe | Chirurgisches Instrument |
US6349868B1 (en) | 2001-05-03 | 2002-02-26 | Chris A. Mattingly | Multipurpose stapler |
US7276044B2 (en) | 2001-05-06 | 2007-10-02 | Stereotaxis, Inc. | System and methods for advancing a catheter |
US6503257B2 (en) | 2001-05-07 | 2003-01-07 | Ethicon Endo-Surgery, Inc. | Method for releasing buttress material attached to a surgical fastening device |
US6656193B2 (en) | 2001-05-07 | 2003-12-02 | Ethicon Endo-Surgery, Inc. | Device for attachment of buttress material to a surgical fastening device |
EP1385439A1 (en) | 2001-05-10 | 2004-02-04 | Rita Medical Systems, Inc. | Rf tissue ablation apparatus and method |
US6827725B2 (en) | 2001-05-10 | 2004-12-07 | Gyrus Medical Limited | Surgical instrument |
US6588277B2 (en) | 2001-05-21 | 2003-07-08 | Ethicon Endo-Surgery | Method for detecting transverse mode vibrations in an ultrasonic hand piece/blade |
US6630047B2 (en) | 2001-05-21 | 2003-10-07 | 3M Innovative Properties Company | Fluoropolymer bonding composition and method |
US20020177848A1 (en) | 2001-05-24 | 2002-11-28 | Csaba Truckai | Electrosurgical working end for sealing tissue |
US20050020960A1 (en) | 2001-05-24 | 2005-01-27 | Brugger James M. | Blood treatment cartridge and blood processing machine with slot |
US6766957B2 (en) | 2001-05-25 | 2004-07-27 | Sony Corporation | Optical device for bar-code reading, method for manufacturing an optical device, and light projection/receiving package |
US6558400B2 (en) | 2001-05-30 | 2003-05-06 | Satiety, Inc. | Obesity treatment tools and methods |
US8740987B2 (en) | 2001-06-04 | 2014-06-03 | Warsaw Orthopedic, Inc. | Tissue-derived mesh for orthopedic regeneration |
IES20010547A2 (en) | 2001-06-07 | 2002-12-11 | Christy Cummins | Surgical Staple |
EP2067451B1 (de) | 2001-06-07 | 2013-11-20 | Kaltenbach & Voigt GmbH | Medizinisches oder dentalmedizinisches Instrument und/oder Versorgungsgerät und/oder Pflegegerät und/oder System für das medizinische oder dentalmedizinische Instrument |
US7041068B2 (en) | 2001-06-12 | 2006-05-09 | Pelikan Technologies, Inc. | Sampling module device and method |
US7371403B2 (en) | 2002-06-14 | 2008-05-13 | Providence Health System-Oregon | Wound dressing and method for controlling severe, life-threatening bleeding |
CN101513356B (zh) | 2001-06-14 | 2013-04-24 | 苏太克股份有限公司 | 外科线缝合的设备和方法 |
DE20121753U1 (de) | 2001-06-15 | 2003-04-17 | BEMA GmbH + Co. KG Endochirurgische Instrumente, 78576 Emmingen-Liptingen | Griff für ein chirurgisches Instrument |
US20030040670A1 (en) | 2001-06-15 | 2003-02-27 | Assaf Govari | Method for measuring temperature and of adjusting for temperature sensitivity with a medical device having a position sensor |
USD465226S1 (en) | 2001-06-18 | 2002-11-05 | Bellsouth Intellecutal Property Corporation | Display screen with a user interface icon |
US20030009154A1 (en) | 2001-06-20 | 2003-01-09 | Whitman Michael P. | Method and system for integrated medical tracking |
US7000911B2 (en) | 2001-06-22 | 2006-02-21 | Delaware Capital Formation, Inc. | Motor pack for automated machinery |
CA2451558C (en) | 2001-06-22 | 2013-08-06 | Power Medical Interventions, Inc. | Electro-mechanical surgical device with data memory unit |
US6726706B2 (en) | 2001-06-26 | 2004-04-27 | Steven Dominguez | Suture tape and method for use |
US20060199999A1 (en) | 2001-06-29 | 2006-09-07 | Intuitive Surgical Inc. | Cardiac tissue ablation instrument with flexible wrist |
US6817974B2 (en) | 2001-06-29 | 2004-11-16 | Intuitive Surgical, Inc. | Surgical tool having positively positionable tendon-actuated multi-disk wrist joint |
US20050182298A1 (en) | 2002-12-06 | 2005-08-18 | Intuitive Surgical Inc. | Cardiac tissue ablation instrument with flexible wrist |
US20060178556A1 (en) | 2001-06-29 | 2006-08-10 | Intuitive Surgical, Inc. | Articulate and swapable endoscope for a surgical robot |
AU2002322374B2 (en) | 2001-06-29 | 2006-10-26 | Intuitive Surgical, Inc. | Platform link wrist mechanism |
US7607189B2 (en) | 2004-07-14 | 2009-10-27 | Colgate-Palmolive | Oral care implement |
US20040243147A1 (en) | 2001-07-03 | 2004-12-02 | Lipow Kenneth I. | Surgical robot and robotic controller |
JP3646162B2 (ja) | 2001-07-04 | 2005-05-11 | 独立行政法人産業技術総合研究所 | 軟骨組織の再生用移植体 |
CN2488482Y (zh) | 2001-07-05 | 2002-05-01 | 天津市华志计算机应用有限公司 | 机械臂的关节锁紧机构 |
US6696814B2 (en) | 2001-07-09 | 2004-02-24 | Tyco Electronics Corporation | Microprocessor for controlling the speed and frequency of a motor shaft in a power tool |
CA2451102C (en) | 2001-07-09 | 2009-09-15 | Tyco Healthcare Group Lp | Right angle clip applier apparatus and method |
US7137949B2 (en) | 2001-07-13 | 2006-11-21 | United States Surgical Corporation | Surgical instrument |
ATE499908T1 (de) | 2001-07-16 | 2011-03-15 | Depuy Products Inc | Gerät zur reparatur von knorpelmaterial |
US7056123B2 (en) | 2001-07-16 | 2006-06-06 | Immersion Corporation | Interface apparatus with cable-driven force feedback and grounded actuators |
JP4302515B2 (ja) | 2001-07-16 | 2009-07-29 | デピュイ・プロダクツ・インコーポレイテッド | 単体型外科装置および方法 |
US8025896B2 (en) | 2001-07-16 | 2011-09-27 | Depuy Products, Inc. | Porous extracellular matrix scaffold and method |
IL144446A0 (en) | 2001-07-19 | 2002-05-23 | Prochon Biotech Ltd | Plasma protein matrices and methods for their preparation |
DE50109817D1 (de) | 2001-07-19 | 2006-06-22 | Hilti Ag | Bolzensetzgerät mit Setztiefenregelung |
US7510534B2 (en) | 2001-07-20 | 2009-03-31 | Ethicon Endo-Surgery, Inc. | Method for operating biopsy device |
US7011668B2 (en) | 2001-07-23 | 2006-03-14 | Dvl Acquistion Sub, Inc. | Surgical suturing instrument and method of use |
JP3646163B2 (ja) | 2001-07-31 | 2005-05-11 | 国立大学法人 東京大学 | 能動鉗子 |
US6755854B2 (en) | 2001-07-31 | 2004-06-29 | Advanced Cardiovascular Systems, Inc. | Control device and mechanism for deploying a self-expanding medical device |
DE20112837U1 (de) | 2001-08-02 | 2001-10-04 | Aesculap AG & Co. KG, 78532 Tuttlingen | Zangen- oder pinzettenförmiges chirurgisches Instrument |
US7208005B2 (en) | 2001-08-06 | 2007-04-24 | The Penn State Research Foundation | Multifunctional tool and method for minimally invasive surgery |
WO2003016829A1 (fr) | 2001-08-07 | 2003-02-27 | Namiki Seimitsu Houseki Kabushiki Kaisha | Micro-codeur et micro-moteur magnetiques |
EP1285633B1 (en) | 2001-08-07 | 2006-12-13 | Universitair Medisch Centrum Utrecht | Device for connecting a surgical instrument to a stable basis |
EP2308395A1 (en) | 2001-08-08 | 2011-04-13 | Stryker Corporation | Surgical tool system including a navigation unit that receives information about the implant the system is to implant and that responds to the received information |
US6592608B2 (en) | 2001-12-07 | 2003-07-15 | Biopsy Sciences, Llc | Bioabsorbable sealant |
IES20010748A2 (en) | 2001-08-09 | 2003-02-19 | Christy Cummins | Surgical Stapling Device and Method |
DE10139153A1 (de) | 2001-08-09 | 2003-02-27 | Ingo F Herrmann | Einweg-Endoskopmantel |
JP3926119B2 (ja) | 2001-08-10 | 2007-06-06 | 株式会社東芝 | 医療用マニピュレータ |
ATE333094T1 (de) | 2001-08-10 | 2006-08-15 | Hoffmann La Roche | Verfahren zur herstellung von protein-beladenen mikropartikeln |
US6705503B1 (en) | 2001-08-20 | 2004-03-16 | Tricord Solutions, Inc. | Electrical motor driven nail gun |
US6692507B2 (en) | 2001-08-23 | 2004-02-17 | Scimed Life Systems, Inc. | Impermanent biocompatible fastener |
US7563862B2 (en) | 2001-08-24 | 2009-07-21 | Neuren Pharmaceuticals Limited | Neural regeneration peptides and methods for their use in treatment of brain damage |
US7282048B2 (en) | 2001-08-27 | 2007-10-16 | Gyrus Medical Limited | Electrosurgical generator and system |
EP1287788B1 (en) | 2001-08-27 | 2011-04-20 | Gyrus Medical Limited | Electrosurgical system |
US6808525B2 (en) | 2001-08-27 | 2004-10-26 | Gyrus Medical, Inc. | Bipolar electrosurgical hook probe for cutting and coagulating tissue |
US6966907B2 (en) | 2001-08-27 | 2005-11-22 | Gyrus Medical Limited | Electrosurgical generator and system |
US6929641B2 (en) | 2001-08-27 | 2005-08-16 | Gyrus Medical Limited | Electrosurgical system |
GB0425051D0 (en) | 2004-11-12 | 2004-12-15 | Gyrus Medical Ltd | Electrosurgical generator and system |
US7344532B2 (en) | 2001-08-27 | 2008-03-18 | Gyrus Medical Limited | Electrosurgical generator and system |
WO2004078051A2 (en) | 2001-08-27 | 2004-09-16 | Gyrus Medial Limited | Electrosurgical system |
US6629988B2 (en) | 2001-08-28 | 2003-10-07 | Ethicon, Inc. | Composite staple for completing an anastomosis |
US6755338B2 (en) | 2001-08-29 | 2004-06-29 | Cerebral Vascular Applications, Inc. | Medical instrument |
US20030045835A1 (en) | 2001-08-30 | 2003-03-06 | Vascular Solutions, Inc. | Method and apparatus for coagulation and closure of pseudoaneurysms |
NL1018874C2 (nl) | 2001-09-03 | 2003-03-05 | Michel Petronella Hub Vleugels | Chirurgisch instrument. |
US6747121B2 (en) | 2001-09-05 | 2004-06-08 | Synthes (Usa) | Poly(L-lactide-co-glycolide) copolymers, methods for making and using same, and devices containing same |
JP2003070804A (ja) | 2001-09-05 | 2003-03-11 | Olympus Optical Co Ltd | 遠隔医療支援システム |
JP4857504B2 (ja) | 2001-09-10 | 2012-01-18 | マックス株式会社 | 電動ステープラのステープル検出機構 |
KR100431690B1 (ko) | 2001-09-12 | 2004-05-17 | 김중한 | 와이어 결속장치 |
US6799669B2 (en) | 2001-09-13 | 2004-10-05 | Siemens Vdo Automotive Corporation | Dynamic clutch control |
US6802843B2 (en) | 2001-09-13 | 2004-10-12 | Csaba Truckai | Electrosurgical working end with resistive gradient electrodes |
US6773409B2 (en) | 2001-09-19 | 2004-08-10 | Surgrx Llc | Surgical system for applying ultrasonic energy to tissue |
US6955864B1 (en) | 2001-09-21 | 2005-10-18 | Defibtech, Llc | Medical device battery pack with active status indication |
GB2379878B (en) | 2001-09-21 | 2004-11-10 | Gyrus Medical Ltd | Electrosurgical system and method |
US6587750B2 (en) | 2001-09-25 | 2003-07-01 | Intuitive Surgical, Inc. | Removable infinite roll master grip handle and touch sensor for robotic surgery |
DE10147145C2 (de) | 2001-09-25 | 2003-12-18 | Kunz Reiner | Multifunktionsinstrument für die mikroinvasive Chirurgie |
JP3557186B2 (ja) | 2001-09-26 | 2004-08-25 | 三洋電機株式会社 | Dc−dcコンバータ |
US6578751B2 (en) | 2001-09-26 | 2003-06-17 | Scimed Life Systems, Inc. | Method of sequentially firing staples using springs and a rotary or linear shutter |
US7108701B2 (en) | 2001-09-28 | 2006-09-19 | Ethicon, Inc. | Drug releasing anastomosis devices and methods for treating anastomotic sites |
AU2002327779B2 (en) | 2001-09-28 | 2008-06-26 | Angiodynamics, Inc. | Impedance controlled tissue ablation apparatus and method |
SE523684C2 (sv) | 2001-10-04 | 2004-05-11 | Isaberg Rapid Ab | Styranordning för en drivmotor i en häftapparat |
ES2514666T3 (es) | 2001-10-05 | 2014-10-28 | Covidien Lp | Dispositivo de grapado quirúrgico |
US6770027B2 (en) | 2001-10-05 | 2004-08-03 | Scimed Life Systems, Inc. | Robotic endoscope with wireless interface |
EP2452636B1 (en) | 2001-10-05 | 2016-03-23 | Covidien LP | Surgical stapling apparatus |
WO2003030745A1 (en) | 2001-10-05 | 2003-04-17 | Tyco Healthcare Group Lp | Tilt top anvil for a surgical fastener device |
EP1434571B1 (en) | 2001-10-05 | 2005-05-11 | SurModics, Inc. | Particle immobilized coatings and uses thereof |
US6835173B2 (en) | 2001-10-05 | 2004-12-28 | Scimed Life Systems, Inc. | Robotic endoscope |
AUPR831101A0 (en) | 2001-10-16 | 2001-11-08 | University Of Wollongong, The | Separation and recovery of precious metals using polymer materials |
US20050267464A1 (en) | 2001-10-18 | 2005-12-01 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US6929644B2 (en) | 2001-10-22 | 2005-08-16 | Surgrx Inc. | Electrosurgical jaw structure for controlled energy delivery |
US7070597B2 (en) | 2001-10-18 | 2006-07-04 | Surgrx, Inc. | Electrosurgical working end for controlled energy delivery |
US7052454B2 (en) | 2001-10-20 | 2006-05-30 | Applied Medical Resources Corporation | Sealed surgical access device |
US10285694B2 (en) | 2001-10-20 | 2019-05-14 | Covidien Lp | Surgical stapler with timer and feedback display |
US7464847B2 (en) | 2005-06-03 | 2008-12-16 | Tyco Healthcare Group Lp | Surgical stapler with timer and feedback display |
US7125409B2 (en) | 2001-10-22 | 2006-10-24 | Surgrx, Inc. | Electrosurgical working end for controlled energy delivery |
US7041102B2 (en) | 2001-10-22 | 2006-05-09 | Surgrx, Inc. | Electrosurgical working end with replaceable cartridges |
US20030216732A1 (en) | 2002-05-20 | 2003-11-20 | Csaba Truckai | Medical instrument with thermochromic or piezochromic surface indicators |
US7311709B2 (en) | 2001-10-22 | 2007-12-25 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US7011657B2 (en) | 2001-10-22 | 2006-03-14 | Surgrx, Inc. | Jaw structure for electrosurgical instrument and method of use |
US7354440B2 (en) | 2001-10-22 | 2008-04-08 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US6770072B1 (en) | 2001-10-22 | 2004-08-03 | Surgrx, Inc. | Electrosurgical jaw structure for controlled energy delivery |
US6905497B2 (en) | 2001-10-22 | 2005-06-14 | Surgrx, Inc. | Jaw structure for electrosurgical instrument |
US6926716B2 (en) | 2001-11-09 | 2005-08-09 | Surgrx Inc. | Electrosurgical instrument |
US7083619B2 (en) | 2001-10-22 | 2006-08-01 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US20060020336A1 (en) | 2001-10-23 | 2006-01-26 | Liddicoat John R | Automated annular plication for mitral valve repair |
US6677687B2 (en) | 2001-10-23 | 2004-01-13 | Sun Microsystems, Inc. | System for distributing power in CPCI computer architecture |
EP1440429B1 (en) | 2001-10-23 | 2012-12-12 | Immersion Corporation | Method of using tactile feedback to deliver silent status information to a user of a handheld weapon |
FR2831417B1 (fr) | 2001-10-30 | 2004-08-06 | Eurosurgical | Instrument chirurgical |
JP2003135473A (ja) | 2001-11-01 | 2003-05-13 | Mizuho Co Ltd | 内視鏡手術用能動鉗子 |
AUPR865901A0 (en) | 2001-11-02 | 2002-01-24 | Poly Systems Pty Ltd | Projectile firing device |
US8089509B2 (en) | 2001-11-09 | 2012-01-03 | Karl Storz Imaging, Inc. | Programmable camera control unit with updatable program |
US6716223B2 (en) | 2001-11-09 | 2004-04-06 | Micrus Corporation | Reloadable sheath for catheter system for deploying vasoocclusive devices |
FR2832262A1 (fr) | 2001-11-09 | 2003-05-16 | France Telecom | Procede et dispositif d'alimentation en energie electrique d'un appareil |
US7061292B2 (en) | 2001-11-09 | 2006-06-13 | The Regents Of The University Of Colorado | Adaptive voltage regulator for powered digital devices |
US6471106B1 (en) | 2001-11-15 | 2002-10-29 | Intellectual Property Llc | Apparatus and method for restricting the discharge of fasteners from a tool |
US6997935B2 (en) | 2001-11-20 | 2006-02-14 | Advanced Medical Optics, Inc. | Resonant converter tuning for maintaining substantially constant phaco handpiece power under increased load |
US6993200B2 (en) | 2001-11-20 | 2006-01-31 | Sony Corporation | System and method for effectively rendering high dynamic range images |
GB2382226A (en) | 2001-11-20 | 2003-05-21 | Black & Decker Inc | Switch mechanism for a power tool |
JP2003164066A (ja) | 2001-11-21 | 2003-06-06 | Hitachi Koki Co Ltd | 電池パック |
US6605078B2 (en) | 2001-11-26 | 2003-08-12 | Scimed Life Systems, Inc. | Full thickness resection device |
DE10158246C1 (de) | 2001-11-28 | 2003-08-21 | Ethicon Endo Surgery Europe | Chirurgisches Klammersetzinstrument |
US6671185B2 (en) | 2001-11-28 | 2003-12-30 | Landon Duval | Intelligent fasteners |
US9320503B2 (en) | 2001-11-28 | 2016-04-26 | Medtronic Vascular, Inc. | Devices, system, and methods for guiding an operative tool into an interior body region |
US20070073389A1 (en) | 2001-11-28 | 2007-03-29 | Aptus Endosystems, Inc. | Endovascular aneurysm devices, systems, and methods |
EP2116345B1 (en) | 2001-11-29 | 2010-09-01 | Max Co., Ltd. | Electric stapler |
JP2003170381A (ja) | 2001-11-30 | 2003-06-17 | Seiko Epson Corp | 操作装置 |
US10098640B2 (en) | 2001-12-04 | 2018-10-16 | Atricure, Inc. | Left atrial appendage devices and methods |
US7542807B2 (en) | 2001-12-04 | 2009-06-02 | Endoscopic Technologies, Inc. | Conduction block verification probe and method of use |
EP1453432B1 (en) | 2001-12-04 | 2012-08-01 | Tyco Healthcare Group LP | System and method for calibrating a surgical instrument |
US7591818B2 (en) | 2001-12-04 | 2009-09-22 | Endoscopic Technologies, Inc. | Cardiac ablation devices and methods |
US20050277956A1 (en) | 2004-06-14 | 2005-12-15 | Francese Jose L | Clip storage for endoscopic clip applier |
US7918867B2 (en) | 2001-12-07 | 2011-04-05 | Abbott Laboratories | Suture trimmer |
US20030121586A1 (en) | 2001-12-11 | 2003-07-03 | 3M Innovative Properties Company | Tack-on-pressure films for temporary surface protection and surface modification |
US7131978B2 (en) | 2001-12-11 | 2006-11-07 | Dvl Acquisition Sub, Inc. | Surgical suturing instrument and method of use |
US20030114851A1 (en) | 2001-12-13 | 2003-06-19 | Csaba Truckai | Electrosurgical jaws for controlled application of clamping pressure |
GB2383006A (en) | 2001-12-13 | 2003-06-18 | Black & Decker Inc | Mechanism for use in a power tool and a power tool including such a mechanism |
US6723087B2 (en) | 2001-12-14 | 2004-04-20 | Medtronic, Inc. | Apparatus and method for performing surgery on a patient |
US6974462B2 (en) | 2001-12-19 | 2005-12-13 | Boston Scientific Scimed, Inc. | Surgical anchor implantation device |
US7122028B2 (en) | 2001-12-19 | 2006-10-17 | Allegiance Corporation | Reconfiguration surgical apparatus |
US6939358B2 (en) | 2001-12-20 | 2005-09-06 | Gore Enterprise Holdings, Inc. | Apparatus and method for applying reinforcement material to a surgical stapler |
US7729742B2 (en) | 2001-12-21 | 2010-06-01 | Biosense, Inc. | Wireless position sensor |
JP4230915B2 (ja) | 2001-12-21 | 2009-02-25 | シムチャ ミロ | 輪状形成リング用移植システム |
DE10163106A1 (de) | 2001-12-24 | 2003-07-10 | Univ Hannover | Medizinische Implantate, Prothesen, Protheseteile, medizinische Instrumente, Geräte und Hilfsmittel aus einem halogenid-modifizierten Magnesiumwerkstoff |
RU2225170C2 (ru) | 2001-12-25 | 2004-03-10 | Дубровский Аркадий Вениаминович | Инструмент с поворотным устройством |
CN100362969C (zh) | 2001-12-27 | 2008-01-23 | 盖勒斯集团股份有限公司 | 电外科器械 |
GB0425842D0 (en) | 2004-11-24 | 2004-12-29 | Gyrus Group Plc | An electrosurgical instrument |
GB0130975D0 (en) | 2001-12-27 | 2002-02-13 | Gyrus Group Plc | A surgical instrument |
US6942662B2 (en) | 2001-12-27 | 2005-09-13 | Gyrus Group Plc | Surgical Instrument |
US20060264929A1 (en) | 2001-12-27 | 2006-11-23 | Gyrus Group Plc | Surgical system |
US6729119B2 (en) | 2001-12-28 | 2004-05-04 | The Schnipke Family Limited Liability Company | Robotic loader for surgical stapling cartridge |
US6913594B2 (en) | 2001-12-31 | 2005-07-05 | Biosense Webster, Inc. | Dual-function catheter handle |
US6602252B2 (en) | 2002-01-03 | 2003-08-05 | Starion Instruments Corporation | Combined dissecting, cauterizing, and stapling device |
US6740030B2 (en) | 2002-01-04 | 2004-05-25 | Vision Sciences, Inc. | Endoscope assemblies having working channels with reduced bending and stretching resistance |
US7338505B2 (en) | 2002-01-09 | 2008-03-04 | Neoguide Systems, Inc. | Apparatus and method for endoscopic colectomy |
US6985870B2 (en) | 2002-01-11 | 2006-01-10 | Baxter International Inc. | Medication delivery system |
WO2003061104A1 (fr) | 2002-01-16 | 2003-07-24 | Toyota Jidosha Kabushiki Kaisha | Dispositif de regulation d'un convertisseur de tension, procede de conversion de tension, support de stockage, programme, systeme d'entrainement et vehicule equipe du systeme d'entrainement |
EP1471844A2 (en) | 2002-01-16 | 2004-11-03 | Eva Corporation | Catheter hand-piece apparatus and method of using the same |
US6869435B2 (en) | 2002-01-17 | 2005-03-22 | Blake, Iii John W | Repeating multi-clip applier |
US6999821B2 (en) | 2002-01-18 | 2006-02-14 | Pacesetter, Inc. | Body implantable lead including one or more conductive polymer electrodes and methods for fabricating same |
ATE540606T1 (de) | 2002-01-22 | 2012-01-15 | Surgrx Inc | Elektrochirurgisches instrument und anwendungsverfahren |
US7091412B2 (en) | 2002-03-04 | 2006-08-15 | Nanoset, Llc | Magnetically shielded assembly |
US6676660B2 (en) | 2002-01-23 | 2004-01-13 | Ethicon Endo-Surgery, Inc. | Feedback light apparatus and method for use with an electrosurgical instrument |
DE10203282A1 (de) | 2002-01-29 | 2003-08-21 | Behrens Ag Friedrich Joh | Befestigungsmittel und Verfahren zu seiner Herstellung |
US7530985B2 (en) | 2002-01-30 | 2009-05-12 | Olympus Corporation | Endoscopic suturing system |
ES2361151T3 (es) | 2002-01-30 | 2011-06-14 | Tyco Healthcare Group Lp | Dispositivo quirúrgico de formación de imagen. |
US7501198B2 (en) | 2002-02-07 | 2009-03-10 | Linvatec Corporation | Sterile transfer battery container |
US20030149406A1 (en) | 2002-02-07 | 2003-08-07 | Lucie Martineau | Multi-layer dressing as medical drug delivery system |
US7625370B2 (en) | 2002-02-13 | 2009-12-01 | Applied Medical Resources Corporation | Tissue fusion/welder apparatus and method |
EP1336392A1 (de) | 2002-02-14 | 2003-08-20 | John S. Geis | Gefässstütze und Kathetersystem |
US7494499B2 (en) | 2002-02-15 | 2009-02-24 | Olympus Corporation | Surgical therapeutic instrument |
US6524180B1 (en) | 2002-02-19 | 2003-02-25 | Maury Simms | Adjustable duct assembly for fume and dust removal |
JP4474165B2 (ja) | 2002-02-20 | 2010-06-02 | 株式会社ネクスト21 | 噴射用薬剤の調製方法 |
US6646307B1 (en) | 2002-02-21 | 2003-11-11 | Advanced Micro Devices, Inc. | MOSFET having a double gate |
US7400752B2 (en) | 2002-02-21 | 2008-07-15 | Alcon Manufacturing, Ltd. | Video overlay system for surgical apparatus |
US7197965B1 (en) | 2002-02-25 | 2007-04-03 | Anderson Steven P | Hinged socket wrench speed handle |
US6847190B2 (en) | 2002-02-26 | 2005-01-25 | Linvatec Corporation | Method and apparatus for charging sterilizable rechargeable batteries |
US6747300B2 (en) | 2002-03-04 | 2004-06-08 | Ternational Rectifier Corporation | H-bridge drive utilizing a pair of high and low side MOSFETs in a common insulation housing |
AU2003218010A1 (en) | 2002-03-06 | 2003-09-22 | Z-Kat, Inc. | System and method for using a haptic device in combination with a computer-assisted surgery system |
US7831292B2 (en) | 2002-03-06 | 2010-11-09 | Mako Surgical Corp. | Guidance system and method for surgical procedures with improved feedback |
US8010180B2 (en) | 2002-03-06 | 2011-08-30 | Mako Surgical Corp. | Haptic guidance system and method |
EP1497080A4 (en) | 2002-03-07 | 2007-09-26 | Tricord Solutions Inc | IMPROVED NAIL POLISHED BY AN ELECTRIC MOTOR |
USD473239S1 (en) | 2002-03-08 | 2003-04-15 | Dca Design International Limited | Portion of a display panel with a computer icon image |
US7289139B2 (en) | 2002-03-12 | 2007-10-30 | Karl Storz Imaging, Inc. | Endoscope reader |
GB0206208D0 (en) | 2002-03-15 | 2002-05-01 | Gyrus Medical Ltd | A surgical instrument |
US7660988B2 (en) | 2002-03-18 | 2010-02-09 | Cognomina, Inc. | Electronic notary |
EP2319387A1 (en) | 2002-03-18 | 2011-05-11 | Optim, Inc. | Sterilization apparatus |
US9155544B2 (en) | 2002-03-20 | 2015-10-13 | P Tech, Llc | Robotic systems and methods |
USD484243S1 (en) | 2002-03-22 | 2003-12-23 | Gyrus Ent L.L.C. | Surgical tool blade holder |
USD478986S1 (en) | 2002-03-22 | 2003-08-26 | Gyrus Ent L.L.C. | Surgical tool |
USD484977S1 (en) | 2002-03-22 | 2004-01-06 | Gyrus Ent L.L.C. | Surgical tool blade holder |
US7247161B2 (en) | 2002-03-22 | 2007-07-24 | Gyrus Ent L.L.C. | Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus |
USD478665S1 (en) | 2002-03-22 | 2003-08-19 | Gyrus Ent L.L.C. | Disposable trigger |
USD484595S1 (en) | 2002-03-22 | 2003-12-30 | Gyrus Ent L.L.C. | Surgical tool blade holder |
USD484596S1 (en) | 2002-03-22 | 2003-12-30 | Gyrus Ent L.L.C. | Surgical tool blade holder |
JP4071642B2 (ja) | 2002-03-25 | 2008-04-02 | 株式会社リコー | 用紙処理装置及び画像形成システム |
US6991146B2 (en) | 2002-03-25 | 2006-01-31 | Design Circle, Inc. | Stapler having detached base |
US7137981B2 (en) | 2002-03-25 | 2006-11-21 | Ethicon Endo-Surgery, Inc. | Endoscopic ablation system with a distally mounted image sensor |
US7128748B2 (en) | 2002-03-26 | 2006-10-31 | Synovis Life Technologies, Inc. | Circular stapler buttress combination |
AU2003228445A1 (en) | 2002-04-04 | 2003-10-27 | W.R. Grace And Company | Tissue composites and uses thereof |
JP4347705B2 (ja) | 2002-04-09 | 2009-10-21 | ファン キム,ジェ | 腸管手術患者の便迂回のための医療用腸管管理器 |
JP2003300416A (ja) | 2002-04-10 | 2003-10-21 | Kyowa Sangyo Kk | 車両用サンバイザ |
AU2003226050A1 (en) | 2002-04-11 | 2003-10-27 | Tyco Healthcare Group, Lp | Surgical stapling apparatus including an anvil and cartridge each having cooperating mating surfaces |
EP1494601B1 (en) | 2002-04-15 | 2012-01-11 | Tyco Healthcare Group LP | Instrument introducer |
AU2003230933B2 (en) | 2002-04-15 | 2008-01-10 | Cook Biotech Incorporated | Apparatus and method for producing a reinforced surgical staple line |
CA2703164C (en) | 2002-04-16 | 2013-10-08 | Tyco Healthcare Group Lp | Surgical stapler and method |
US7547287B2 (en) | 2002-04-19 | 2009-06-16 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
IL164685A0 (en) | 2002-04-22 | 2005-12-18 | Marcio Marc Aurelio Martins Ab | Apparatus and method for measuring biologic parameters |
US6846811B2 (en) | 2002-04-22 | 2005-01-25 | Wisconsin Alumni Research Foundation | (20S) 1α-hydroxy-2α-methyl and 2β-methyl-19-nor-vitamin D3 and their uses |
US8241308B2 (en) | 2002-04-24 | 2012-08-14 | Boston Scientific Scimed, Inc. | Tissue fastening devices and processes that promote tissue adhesion |
AU2003234239A1 (en) | 2002-04-24 | 2003-11-10 | Surgical Connections, Inc. | Resection and anastomosis devices and methods |
US7161580B2 (en) | 2002-04-25 | 2007-01-09 | Immersion Corporation | Haptic feedback using rotary harmonic moving mass |
WO2003090628A1 (en) | 2002-04-25 | 2003-11-06 | Terumo Kabushiki Kaisha | Organism tissue suturing apparatus |
EP1496805B1 (en) | 2002-04-25 | 2012-01-11 | Tyco Healthcare Group LP | Surgical instruments including micro-electromechanical systems (mems) |
US6692692B2 (en) | 2002-04-29 | 2004-02-17 | Eric J. Stetzel | Dental drill sterilization through application of high amperage current |
US6969385B2 (en) | 2002-05-01 | 2005-11-29 | Manuel Ricardo Moreyra | Wrist with decoupled motion transmission |
US7674270B2 (en) | 2002-05-02 | 2010-03-09 | Laparocision, Inc | Apparatus for positioning a medical instrument |
WO2003092791A2 (en) | 2002-05-02 | 2003-11-13 | Scimed Life Systems, Inc. | Energetically-controlled delivery of biologically active material from an implanted medical device |
CN2710244Y (zh) | 2002-05-08 | 2005-07-13 | 精工爱普生株式会社 | 具有过压输出保护电路的稳压开关电源及电子设备 |
EP1501421B1 (en) | 2002-05-08 | 2006-09-20 | Radi Medical Systems Ab | Dissolvable medical sealing device |
JPWO2003095152A1 (ja) | 2002-05-09 | 2005-09-08 | 俊之 亀山 | ホッチキス用のカートリッジ、及びホッチキス |
US6736854B2 (en) | 2002-05-10 | 2004-05-18 | C. R. Bard, Inc. | Prosthetic repair fabric with erosion resistant edge |
EP1503671B1 (en) | 2002-05-10 | 2006-10-11 | Tyco Healthcare Group Lp | Wound closure material applicator and stapler |
AU2003228979A1 (en) | 2002-05-10 | 2003-11-11 | Tyco Healthcare Group, Lp | Surgical stapling apparatus having a wound closure material applicator assembly |
AU2003230359B2 (en) | 2002-05-10 | 2008-11-13 | Covidien Lp | Electrosurgical stapling apparatus |
WO2003094747A1 (en) | 2002-05-13 | 2003-11-20 | Tyco Healthcare Group, Lp | Surgical stapler and disposable loading unit having different size staples |
TWI237916B (en) | 2002-05-13 | 2005-08-11 | Sun Bridge Corp | Cordless device system |
US20040158261A1 (en) | 2002-05-15 | 2004-08-12 | Vu Dinh Q. | Endoscopic device for spill-proof laparoscopic ovarian cystectomy |
US20040254455A1 (en) | 2002-05-15 | 2004-12-16 | Iddan Gavriel J. | Magneic switch for use in a system that includes an in-vivo device, and method of use thereof |
US20040034287A1 (en) | 2002-05-16 | 2004-02-19 | Scott Laboratories, Inc. | System and method for permitting sterile operation of a sedation and analgesia system |
US7968569B2 (en) | 2002-05-17 | 2011-06-28 | Celgene Corporation | Methods for treatment of multiple myeloma using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione |
US7967839B2 (en) | 2002-05-20 | 2011-06-28 | Rocky Mountain Biosystems, Inc. | Electromagnetic treatment of tissues and cells |
US8147421B2 (en) | 2003-01-15 | 2012-04-03 | Nuvasive, Inc. | System and methods for determining nerve direction to a surgical instrument |
US7075412B1 (en) | 2002-05-30 | 2006-07-11 | Thingmagic L.L.C. | Methods and apparatus for operating a radio device |
US6638297B1 (en) | 2002-05-30 | 2003-10-28 | Ethicon Endo-Surgery, Inc. | Surgical staple |
US6769594B2 (en) | 2002-05-31 | 2004-08-03 | Tyco Healthcare Group, Lp | End-to-end anastomosis instrument and method for performing same |
US7056330B2 (en) | 2002-05-31 | 2006-06-06 | Ethicon Endo-Surgery, Inc. | Method for applying tissue fastener |
US7004174B2 (en) | 2002-05-31 | 2006-02-28 | Neothermia Corporation | Electrosurgery with infiltration anesthesia |
US20030225439A1 (en) | 2002-05-31 | 2003-12-04 | Cook Alonzo D. | Implantable product with improved aqueous interface characteristics and method for making and using same |
US8656929B2 (en) | 2002-05-31 | 2014-02-25 | Vidacare Corporation | Medical procedures trays and related methods |
US6543456B1 (en) | 2002-05-31 | 2003-04-08 | Ethicon Endo-Surgery, Inc. | Method for minimally invasive surgery in the digestive system |
US6989034B2 (en) | 2002-05-31 | 2006-01-24 | Ethicon, Inc. | Attachment of absorbable tissue scaffolds to fixation devices |
US6861142B1 (en) | 2002-06-06 | 2005-03-01 | Hills, Inc. | Controlling the dissolution of dissolvable polymer components in plural component fibers |
EP1369208B1 (en) | 2002-06-07 | 2008-04-23 | Black & Decker Inc. | A power tool provided with a locking mechanism |
JP3738843B2 (ja) | 2002-06-11 | 2006-01-25 | ソニー株式会社 | 画像検出装置、画像検出方法および画像検出プログラム |
US20050137455A1 (en) | 2002-06-13 | 2005-06-23 | Usgi Medical Corp. | Shape lockable apparatus and method for advancing an instrument through unsupported anatomy |
US6783491B2 (en) | 2002-06-13 | 2004-08-31 | Vahid Saadat | Shape lockable apparatus and method for advancing an instrument through unsupported anatomy |
US7166133B2 (en) | 2002-06-13 | 2007-01-23 | Kensey Nash Corporation | Devices and methods for treating defects in the tissue of a living being |
US7717873B2 (en) | 2002-06-14 | 2010-05-18 | Mcneil-Ppc, Inc. | Applicator device for suppositories and the like |
CN101803938B (zh) | 2002-06-14 | 2012-06-20 | Tyco医疗健康集团 | 用于夹紧、切割及缝合组织的器械 |
ES2383252T3 (es) | 2002-06-17 | 2012-06-19 | Tyco Healthcare Group Lp | Estructuras anulares de soporte |
EP1719461B1 (en) | 2002-06-17 | 2009-06-03 | Tyco Healthcare Group Lp | Annular support structures |
US7063671B2 (en) | 2002-06-21 | 2006-06-20 | Boston Scientific Scimed, Inc. | Electronically activated capture device |
US20030234194A1 (en) | 2002-06-21 | 2003-12-25 | Clark Dan Warren | Protective shield for a patient control unit |
US6635838B1 (en) | 2002-06-24 | 2003-10-21 | Brent A. Kornelson | Switch actuating device and method of mounting same |
RU2284160C2 (ru) | 2002-06-24 | 2006-09-27 | Аркадий Вениаминович Дубровский | Устройство для поворота инструмента с дистанционным управлением |
US6726705B2 (en) | 2002-06-25 | 2004-04-27 | Incisive Surgical, Inc. | Mechanical method and apparatus for bilateral tissue fastening |
US7112214B2 (en) | 2002-06-25 | 2006-09-26 | Incisive Surgical, Inc. | Dynamic bioabsorbable fastener for use in wound closure |
US7220260B2 (en) | 2002-06-27 | 2007-05-22 | Gyrus Medical Limited | Electrosurgical system |
US9126317B2 (en) | 2002-06-27 | 2015-09-08 | Snap-On Incorporated | Tool apparatus system and method of use |
US7699856B2 (en) | 2002-06-27 | 2010-04-20 | Van Wyk Robert A | Method, apparatus, and kit for thermal suture cutting |
GB2390024B (en) | 2002-06-27 | 2005-09-21 | Gyrus Medical Ltd | Electrosurgical system |
AUPS322702A0 (en) | 2002-06-28 | 2002-07-18 | Cochlear Limited | Cochlear implant electrode array |
US8287561B2 (en) | 2002-06-28 | 2012-10-16 | Boston Scientific Scimed, Inc. | Balloon-type actuator for surgical applications |
US7033356B2 (en) | 2002-07-02 | 2006-04-25 | Gyrus Medical, Inc. | Bipolar electrosurgical instrument for cutting desiccating and sealing tissue |
US20040006340A1 (en) | 2002-07-02 | 2004-01-08 | Gyrus Medical, Inc. | Bipolar electrosurgical instrument for cutting, desiccating and sealing tissue |
EP1646320B1 (en) | 2002-07-03 | 2009-02-25 | Abbott Vascular Inc | Surgical stapling device |
US6932218B2 (en) | 2002-07-03 | 2005-08-23 | Monica Rich Kosann Photography Llc | Folding photo case |
US20040006335A1 (en) | 2002-07-08 | 2004-01-08 | Garrison Lawrence L. | Cauterizing surgical saw |
US7029439B2 (en) | 2002-07-09 | 2006-04-18 | Welch Allyn, Inc. | Medical diagnostic instrument |
WO2004006980A2 (en) | 2002-07-11 | 2004-01-22 | Sightline Technologies Ltd. | Piston-actuated endoscopic steering system |
US7035762B2 (en) | 2002-07-11 | 2006-04-25 | Alcatel Canada Inc. | System and method for tracking utilization data for an electronic device |
US20040166169A1 (en) | 2002-07-15 | 2004-08-26 | Prasanna Malaviya | Porous extracellular matrix scaffold and method |
US20040006860A1 (en) | 2002-07-15 | 2004-01-15 | Haytayan Harry M. | Method and apparatus for attaching structural components with fasteners |
US7769427B2 (en) | 2002-07-16 | 2010-08-03 | Magnetics, Inc. | Apparatus and method for catheter guidance control and imaging |
US7054696B2 (en) | 2002-07-18 | 2006-05-30 | Black & Decker Inc. | System and method for data retrieval in AC power tools via an AC line cord |
EP1523512B1 (en) | 2002-07-22 | 2019-12-25 | Aspen Aerogels Inc. | Polyimide aerogels, carbon aerogels, and metal carbide aerogels and methods of making same |
IL150853A0 (en) | 2002-07-22 | 2003-02-12 | Niti Medical Technologies Ltd | Imppoved intussusception and anastomosis apparatus |
JP4046569B2 (ja) | 2002-07-30 | 2008-02-13 | オリンパス株式会社 | 外科用処置具 |
AU2003269931A1 (en) | 2002-07-31 | 2004-02-16 | Tyco Heathcare Group, Lp | Tool member cover and cover deployment device |
JP4063166B2 (ja) | 2002-07-31 | 2008-03-19 | 日産自動車株式会社 | 電動機の制御装置 |
US8016881B2 (en) | 2002-07-31 | 2011-09-13 | Icon Interventional Systems, Inc. | Sutures and surgical staples for anastamoses, wound closures, and surgical closures |
US6960894B2 (en) | 2002-08-01 | 2005-11-01 | Stryker Corporation | Cordless, powered surgical tool |
US7179223B2 (en) | 2002-08-06 | 2007-02-20 | Olympus Optical Co., Ltd. | Endoscope apparatus having an internal channel |
JP4142369B2 (ja) | 2002-08-07 | 2008-09-03 | オリンパス株式会社 | 内視鏡処置システム |
US6969395B2 (en) | 2002-08-07 | 2005-11-29 | Boston Scientific Scimed, Inc. | Electroactive polymer actuated medical devices |
US9271753B2 (en) | 2002-08-08 | 2016-03-01 | Atropos Limited | Surgical device |
US6720734B2 (en) | 2002-08-08 | 2004-04-13 | Datex-Ohmeda, Inc. | Oximeter with nulled op-amp current feedback |
EP1531749A2 (en) | 2002-08-13 | 2005-05-25 | Microbotics Corporation | Microsurgical robot system |
US6863668B2 (en) | 2002-08-16 | 2005-03-08 | Edwards Lifesciences Corporation | Articulation mechanism for medical devices |
US20040044295A1 (en) | 2002-08-19 | 2004-03-04 | Orthosoft Inc. | Graphical user interface for computer-assisted surgery |
US7494460B2 (en) | 2002-08-21 | 2009-02-24 | Medtronic, Inc. | Methods and apparatus providing suction-assisted tissue engagement through a minimally invasive incision |
EP1558161A1 (en) | 2002-08-21 | 2005-08-03 | Neothermia Corporation | Device and method for minimally invasive and intact recovery of tissue |
WO2004019803A1 (de) | 2002-08-28 | 2004-03-11 | Heribert Schmid | Zahnmedizinisches behandlungssystem |
US6784775B2 (en) | 2002-08-29 | 2004-08-31 | Ljm Associates, Inc. | Proximity safety switch suitable for use in a hair dryer for disabling operation |
US20040044364A1 (en) | 2002-08-29 | 2004-03-04 | Devries Robert | Tissue fasteners and related deployment systems and methods |
US6981978B2 (en) | 2002-08-30 | 2006-01-03 | Satiety, Inc. | Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach |
US7174636B2 (en) | 2002-09-04 | 2007-02-13 | Scimed Life Systems, Inc. | Method of making an embolic filter |
DE10240719B4 (de) | 2002-09-04 | 2006-01-19 | Hilti Ag | Elektrohandwerkzeugmaschine mit Sanftanlauf |
WO2004021868A2 (en) | 2002-09-06 | 2004-03-18 | C.R. Bard, Inc. | External endoscopic accessory control system |
US20040049121A1 (en) | 2002-09-06 | 2004-03-11 | Uri Yaron | Positioning system for neurological procedures in the brain |
US7666195B2 (en) | 2002-09-09 | 2010-02-23 | Brian Kelleher | Device and method for endoluminal therapy |
US6925849B2 (en) | 2002-09-10 | 2005-08-09 | Acco Brands, Inc. | Stapler anvil |
US6895176B2 (en) | 2002-09-12 | 2005-05-17 | General Electric Company | Method and apparatus for controlling electronically commutated motor operating characteristics |
US8298161B2 (en) | 2002-09-12 | 2012-10-30 | Intuitive Surgical Operations, Inc. | Shape-transferring cannula system and method of use |
US7096972B2 (en) | 2002-09-17 | 2006-08-29 | Orozco Jr Efrem | Hammer drill attachment |
KR100450086B1 (ko) | 2002-09-18 | 2004-09-30 | 삼성테크윈 주식회사 | 전지수납수단 |
GB0221707D0 (en) | 2002-09-18 | 2002-10-30 | Gyrus Medical Ltd | Electrical system |
JP3680050B2 (ja) | 2002-09-18 | 2005-08-10 | 株式会社東芝 | 医療用マニピュレータ及びその制御方法 |
US7033378B2 (en) | 2002-09-20 | 2006-04-25 | Id, Llc | Surgical fastener, particularly for the endoluminal treatment of gastroesophageal reflux disease (GERD) |
US20040059362A1 (en) | 2002-09-20 | 2004-03-25 | Knodel Bryan D. | Method of performing surgery using surgical device with expandable member |
US8454628B2 (en) | 2002-09-20 | 2013-06-04 | Syntheon, Llc | Surgical fastener aligning instrument particularly for transoral treatment of gastroesophageal reflux disease |
US6814154B2 (en) | 2002-09-23 | 2004-11-09 | Wen San Chou | Power tool having automatically selective driving direction |
US7256695B2 (en) | 2002-09-23 | 2007-08-14 | Microstrain, Inc. | Remotely powered and remotely interrogated wireless digital sensor telemetry system |
AU2003272658A1 (en) | 2002-09-26 | 2004-04-19 | Bioaccess, Inc. | Orthopedic medical device with unitary components |
US8100823B2 (en) | 2002-09-27 | 2012-01-24 | Surgitech, Llc | Surgical file system with a visualization instrument |
WO2004032783A1 (de) | 2002-09-27 | 2004-04-22 | Aesculap Ag & Co. Kg | Instrumentenset für eine chirurgische operation |
CN100384364C (zh) | 2002-09-30 | 2008-04-30 | 赛特莱恩技术有限公司 | 活塞致动的内窥工具 |
US7326203B2 (en) | 2002-09-30 | 2008-02-05 | Depuy Acromed, Inc. | Device for advancing a functional element through tissue |
US7087054B2 (en) | 2002-10-01 | 2006-08-08 | Surgrx, Inc. | Electrosurgical instrument and method of use |
JP4049217B2 (ja) | 2002-10-02 | 2008-02-20 | イーメックス株式会社 | 導電性高分子成形品及び積層体を用いた装置 |
US20040068224A1 (en) | 2002-10-02 | 2004-04-08 | Couvillon Lucien Alfred | Electroactive polymer actuated medication infusion pumps |
JP3912251B2 (ja) | 2002-10-02 | 2007-05-09 | 株式会社日立製作所 | マニピュレータ |
US20040068161A1 (en) | 2002-10-02 | 2004-04-08 | Couvillon Lucien Alfred | Thrombolysis catheter |
US6836611B2 (en) | 2002-10-03 | 2004-12-28 | J. W. Speaker Corporation | Light guide and lateral illuminator |
CA2712039C (en) | 2002-10-04 | 2013-03-12 | Tyco Healthcare Group Lp | Tool assembly for surgical stapling device |
ES2385522T3 (es) | 2002-10-04 | 2012-07-26 | Tyco Healthcare Group Lp | Dispositivo de grapado quirúrgico |
US7083626B2 (en) | 2002-10-04 | 2006-08-01 | Applied Medical Resources Corporation | Surgical access device with pendent valve |
ES2377813T5 (es) | 2002-10-04 | 2020-12-18 | Covidien Lp | Conjunto de herramienta para un dispositivo de grapado quirúrgico |
ES2274284T3 (es) | 2002-10-04 | 2007-05-16 | Tyco Healthcare Group Lp | Grapadora quirugica con articulacion universal y dispositivo de sujeccion previa del tejido. |
AU2003279151A1 (en) | 2002-10-04 | 2004-05-04 | Tyco Healthcare Group, Lp | Pneumatic powered surgical stapling device |
US7135027B2 (en) | 2002-10-04 | 2006-11-14 | Baxter International, Inc. | Devices and methods for mixing and extruding medically useful compositions |
AU2012268848B2 (en) | 2002-10-04 | 2016-01-28 | Covidien Lp | Surgical stapler with universal articulation and tissue pre-clamp |
US7276068B2 (en) | 2002-10-04 | 2007-10-02 | Sherwood Services Ag | Vessel sealing instrument with electrical cutting mechanism |
US20040070369A1 (en) | 2002-10-11 | 2004-04-15 | Makita Corporation | Adapters for battery chargers |
US7041088B2 (en) | 2002-10-11 | 2006-05-09 | Ethicon, Inc. | Medical devices having durable and lubricious polymeric coating |
US6958035B2 (en) | 2002-10-15 | 2005-10-25 | Dusa Pharmaceuticals, Inc | Medical device sheath apparatus and method of making and using same |
US7023159B2 (en) | 2002-10-18 | 2006-04-04 | Black & Decker Inc. | Method and device for braking a motor |
US8100872B2 (en) | 2002-10-23 | 2012-01-24 | Tyco Healthcare Group Lp | Medical dressing containing antimicrobial agent |
US20040092992A1 (en) | 2002-10-23 | 2004-05-13 | Kenneth Adams | Disposable battery powered rotary tissue cutting instruments and methods therefor |
JP4086621B2 (ja) | 2002-10-28 | 2008-05-14 | 株式会社トップ | 外科用器具のハンドル構造 |
WO2004039323A2 (en) | 2002-10-28 | 2004-05-13 | Tyco Healthcare Group Lp | Fast curing compositions |
US6923093B2 (en) | 2002-10-29 | 2005-08-02 | Rizwan Ullah | Tool drive system |
US20040085180A1 (en) | 2002-10-30 | 2004-05-06 | Cyntec Co., Ltd. | Current sensor, its production substrate, and its production process |
US7083620B2 (en) | 2002-10-30 | 2006-08-01 | Medtronic, Inc. | Electrosurgical hemostat |
US7037344B2 (en) | 2002-11-01 | 2006-05-02 | Valentx, Inc. | Apparatus and methods for treatment of morbid obesity |
US8070743B2 (en) | 2002-11-01 | 2011-12-06 | Valentx, Inc. | Devices and methods for attaching an endolumenal gastrointestinal implant |
US20090149871A9 (en) | 2002-11-01 | 2009-06-11 | Jonathan Kagan | Devices and methods for treating morbid obesity |
US8142515B2 (en) | 2002-11-04 | 2012-03-27 | Sofradim Production | Prosthesis for reinforcement of tissue structures |
US20040218451A1 (en) | 2002-11-05 | 2004-11-04 | Said Joe P. | Accessible user interface and navigation system and method |
US6884392B2 (en) | 2002-11-12 | 2005-04-26 | Minntech Corporation | Apparatus and method for steam reprocessing flexible endoscopes |
US6951562B2 (en) | 2002-11-13 | 2005-10-04 | Ralph Fritz Zwirnmann | Adjustable length tap and method for drilling and tapping a bore in bone |
JP2006509537A (ja) | 2002-11-14 | 2006-03-23 | エシコン・エンド−サージェリィ・インコーポレイテッド | 組織細胞を検出するための方法および機器 |
US20050256452A1 (en) | 2002-11-15 | 2005-11-17 | Demarchi Thomas | Steerable vascular sheath |
DE10253572A1 (de) | 2002-11-15 | 2004-07-29 | Vega Grieshaber Kg | Drahtlose Kommunikation |
US7211092B2 (en) | 2002-11-19 | 2007-05-01 | Pilling Weck Incorporated | Automated-feed surgical clip applier and related methods |
CN1486667A (zh) | 2002-11-22 | 2004-04-07 | 带有一次性鞘套的内窥镜系统 | |
WO2004047654A2 (en) | 2002-11-22 | 2004-06-10 | Tyco Healthcare Group, Lp | Sheath introduction apparatus and method |
US20040101822A1 (en) | 2002-11-26 | 2004-05-27 | Ulrich Wiesner | Fluorescent silica-based nanoparticles |
DE10257760A1 (de) | 2002-11-26 | 2004-06-17 | Stefan Koscher | Chirurgisches Instrument |
US20040102783A1 (en) | 2002-11-27 | 2004-05-27 | Sutterlin Chester E. | Powered Kerrison-like Rongeur system |
US6801009B2 (en) | 2002-11-27 | 2004-10-05 | Siemens Vdo Automotive Inc. | Current limitation process of brush and brushless DC motors during severe voltage changes |
AU2003293191B2 (en) | 2002-11-29 | 2008-08-07 | William E. Cohn | Apparatus and method for manipulating tissue |
AU2003286425A1 (en) | 2002-12-05 | 2004-06-23 | Cardio Incorporated | Layered bioresorbable implant |
US7386365B2 (en) | 2004-05-04 | 2008-06-10 | Intuitive Surgical, Inc. | Tool grip calibration for robotic surgery |
KR100486596B1 (ko) | 2002-12-06 | 2005-05-03 | 엘지전자 주식회사 | 왕복동식 압축기의 운전장치 및 제어방법 |
JP3686947B2 (ja) | 2002-12-09 | 2005-08-24 | 国立大学法人 東京大学 | 能動鉗子用高剛性鉗子先端部構体およびそれを具える能動鉗子 |
EP1581102A4 (en) | 2002-12-11 | 2006-12-20 | Proteus Biomedical Inc | METHOD AND SYSTEM FOR CONTROLLING AND PROCESSING HEMODYNAMIC PARAMETERS |
KR100803798B1 (ko) | 2002-12-16 | 2008-02-14 | 군제 가부시키가이샤 | 의료용 필름 |
WO2004058079A2 (en) | 2002-12-17 | 2004-07-15 | Applied Medical Resources Corporation | Surgical staple-clip and applier |
EP1576339A1 (en) | 2002-12-18 | 2005-09-21 | Philips Intellectual Property & Standards GmbH | Magnetic position sensor |
US20040122419A1 (en) | 2002-12-18 | 2004-06-24 | Ceramoptec Industries, Inc. | Medical device recognition system with write-back feature |
US7682686B2 (en) | 2002-12-20 | 2010-03-23 | The Procter & Gamble Company | Tufted fibrous web |
US7348763B1 (en) | 2002-12-20 | 2008-03-25 | Linvatec Corporation | Method for utilizing temperature to determine a battery state |
US7507459B2 (en) | 2002-12-20 | 2009-03-24 | The Procter & Gamble Company | Compression resistant nonwovens |
US20040147909A1 (en) | 2002-12-20 | 2004-07-29 | Gyrus Ent L.L.C. | Surgical instrument |
US7343920B2 (en) | 2002-12-20 | 2008-03-18 | Toby E Bruce | Connective tissue repair system |
US7249267B2 (en) | 2002-12-21 | 2007-07-24 | Power-One, Inc. | Method and system for communicating filter compensation coefficients for a digital power control system |
US6863924B2 (en) | 2002-12-23 | 2005-03-08 | Kimberly-Clark Worldwide, Inc. | Method of making an absorbent composite |
US7131445B2 (en) | 2002-12-23 | 2006-11-07 | Gyrus Medical Limited | Electrosurgical method and apparatus |
US6931830B2 (en) | 2002-12-23 | 2005-08-23 | Chase Liao | Method of forming a wire package |
GB0230055D0 (en) | 2002-12-23 | 2003-01-29 | Gyrus Medical Ltd | Electrosurgical method and apparatus |
US20040119185A1 (en) | 2002-12-23 | 2004-06-24 | Chen Ching Hsi | Method for manufacturing opened-cell plastic foams |
US20040186349A1 (en) | 2002-12-24 | 2004-09-23 | Usgi Medical Corp. | Apparatus and methods for achieving endoluminal access |
JP4160381B2 (ja) | 2002-12-27 | 2008-10-01 | ローム株式会社 | 音声出力装置を有する電子装置 |
JP2004208922A (ja) | 2002-12-27 | 2004-07-29 | Olympus Corp | 医療装置及び医療用マニピュレータ並びに医療装置の制御方法 |
US7455687B2 (en) | 2002-12-30 | 2008-11-25 | Advanced Cardiovascular Systems, Inc. | Polymer link hybrid stent |
US7914561B2 (en) | 2002-12-31 | 2011-03-29 | Depuy Spine, Inc. | Resilient bone plate and screw system allowing bi-directional assembly |
JP2004209042A (ja) | 2003-01-06 | 2004-07-29 | Olympus Corp | 超音波処置装置 |
GB0426648D0 (en) | 2004-12-03 | 2005-01-05 | Gyrus Medical Ltd | An electrosurgical generator |
WO2004062516A1 (en) | 2003-01-09 | 2004-07-29 | Gyrus Medical Limited | An electrosurgical generator |
US7195627B2 (en) | 2003-01-09 | 2007-03-27 | Gyrus Medical Limited | Electrosurgical generator |
US7287682B1 (en) | 2003-01-20 | 2007-10-30 | Hazem Ezzat | Surgical device and method |
US20040143297A1 (en) | 2003-01-21 | 2004-07-22 | Maynard Ramsey | Advanced automatic external defibrillator powered by alternative and optionally multiple electrical power sources and a new business method for single use AED distribution and refurbishment |
TWI225129B (en) | 2003-01-21 | 2004-12-11 | Honda Motor Co Ltd | Transmission |
US6960220B2 (en) | 2003-01-22 | 2005-11-01 | Cardia, Inc. | Hoop design for occlusion device |
US6821284B2 (en) | 2003-01-22 | 2004-11-23 | Novare Surgical Systems, Inc. | Surgical clamp inserts with micro-tractive surfaces |
US6852122B2 (en) | 2003-01-23 | 2005-02-08 | Cordis Corporation | Coated endovascular AAA device |
US20040225186A1 (en) | 2003-01-29 | 2004-11-11 | Horne Guy E. | Composite flexible endoscope insertion shaft with tubular substructure |
US7341591B2 (en) | 2003-01-30 | 2008-03-11 | Depuy Spine, Inc. | Anterior buttress staple |
EP1442720A1 (en) | 2003-01-31 | 2004-08-04 | Tre Esse Progettazione Biomedica S.r.l | Apparatus for the maneuvering of flexible catheters in the human cardiovascular system |
JP2004229976A (ja) | 2003-01-31 | 2004-08-19 | Nippon Zeon Co Ltd | 鉗子型電気処置器具 |
EP2263833B1 (en) | 2003-02-05 | 2012-01-18 | Makita Corporation | Power tool with a torque limiter using only rotational angle detecting means |
US20090318557A1 (en) | 2003-12-22 | 2009-12-24 | Stockel Richard F | Dermatological compositions |
US20040157524A1 (en) | 2003-02-06 | 2004-08-12 | The Procter & Gamble Company | Fibrous structure comprising cellulosic and synthetic fibers |
US7067038B2 (en) | 2003-02-06 | 2006-06-27 | The Procter & Gamble Company | Process for making unitary fibrous structure comprising randomly distributed cellulosic fibers and non-randomly distributed synthetic fibers |
ATE534492T1 (de) | 2003-02-07 | 2011-12-15 | Max Co Ltd | Klammernachfüllvorrichtung, heftvorrichtung |
WO2004071284A1 (ja) | 2003-02-11 | 2004-08-26 | Olympus Corporation | オーバーチューブ、オーバーチューブの製造方法、オーバーチューブの配置方法、および腹腔内の処置方法 |
US7169146B2 (en) | 2003-02-14 | 2007-01-30 | Surgrx, Inc. | Electrosurgical probe and method of use |
US7133601B2 (en) | 2003-02-18 | 2006-11-07 | Black & Decker Inc. | Amperage control for protection of battery over current in power tools |
EP1596743B1 (en) | 2003-02-20 | 2008-04-09 | Covidien AG | Motion detector for controlling electrosurgical output |
US20040167572A1 (en) | 2003-02-20 | 2004-08-26 | Roth Noah M. | Coated medical devices |
US7083615B2 (en) | 2003-02-24 | 2006-08-01 | Intuitive Surgical Inc | Surgical tool having electrocautery energy supply conductor with inhibited current leakage |
JP4231707B2 (ja) | 2003-02-25 | 2009-03-04 | オリンパス株式会社 | カプセル型医療装置 |
CA2877504C (en) | 2003-02-25 | 2017-07-25 | Bennie Thompson | Biopsy device with variable speed cutter advance |
ES2570987T3 (es) | 2003-02-25 | 2016-05-23 | Tria Beauty Inc | Aparato de tratamiento dermatológico, basado en láser de diodo y autónomo |
JP4754474B2 (ja) | 2003-02-25 | 2011-08-24 | エシコン・エンド−サージェリィ・インコーポレイテッド | 可変速度カッターを備えた生検装置 |
EP2604216B1 (en) | 2003-02-25 | 2018-08-22 | Tria Beauty, Inc. | Self-contained, diode-laser-based dermatologic treatment apparatus |
US7476237B2 (en) | 2003-02-27 | 2009-01-13 | Olympus Corporation | Surgical instrument |
KR101124007B1 (ko) | 2003-03-04 | 2012-03-23 | 노턴 헬스케어 리미티드 | 약제흡입기조립체 |
CA2515239A1 (en) | 2003-03-04 | 2004-10-21 | Steven P. Anderson | Hinged socket wrench speed handle |
EP1632191A3 (en) | 2003-03-05 | 2008-09-10 | Gyrus Medical Limited | Electrosurgical generator and system |
US8197837B2 (en) | 2003-03-07 | 2012-06-12 | Depuy Mitek, Inc. | Method of preparation of bioabsorbable porous reinforced tissue implants and implants thereof |
US7368124B2 (en) | 2003-03-07 | 2008-05-06 | Depuy Mitek, Inc. | Method of preparation of bioabsorbable porous reinforced tissue implants and implants thereof |
IL154814A0 (en) | 2003-03-09 | 2003-10-31 | Edward G Shifrin | Sternal closure system, method and apparatus therefor |
US7126879B2 (en) | 2003-03-10 | 2006-10-24 | Healthtrac Systems, Inc. | Medication package and method |
FR2852226B1 (fr) | 2003-03-10 | 2005-07-15 | Univ Grenoble 1 | Instrument medical localise a ecran orientable |
US20060064086A1 (en) | 2003-03-13 | 2006-03-23 | Darren Odom | Bipolar forceps with multiple electrode array end effector assembly |
ES2628742T3 (es) | 2003-03-17 | 2017-08-03 | Covidien Lp | Aparato endoscópico de retirada de tejido |
CA2433205A1 (en) | 2003-03-18 | 2004-09-18 | James Alexander Keenan | Drug delivery, bodily fluid drainage, and biopsy device with enhanced ultrasonic visibility |
US6928902B1 (en) | 2003-03-20 | 2005-08-16 | Luis P. Eyssallenne | Air powered wrench device with pivotable head and method of using |
US20060041188A1 (en) | 2003-03-25 | 2006-02-23 | Dirusso Carlo A | Flexible endoscope |
US20040193189A1 (en) | 2003-03-25 | 2004-09-30 | Kortenbach Juergen A. | Passive surgical clip |
ES2354613T3 (es) | 2003-03-26 | 2011-03-16 | Tyco Healthcare Group Lp | Energía almacenada en un resorte con liberación controlada. |
US7572298B2 (en) | 2003-03-28 | 2009-08-11 | Ethicon, Inc. | Implantable medical devices and methods for making same |
US7014640B2 (en) | 2003-03-28 | 2006-03-21 | Depuy Products, Inc. | Bone graft delivery device and method of use |
DE10314072B4 (de) | 2003-03-28 | 2009-01-15 | Aesculap Ag | Chirurgisches Instrument |
ES2465579T3 (es) | 2003-03-28 | 2014-06-06 | Milliken & Company | Núcleos y paneles compuestos reforzados con fibras |
JP3752494B2 (ja) | 2003-03-31 | 2006-03-08 | 株式会社東芝 | マスタスレーブマニピュレータ、その制御装置及び制御方法 |
US7527632B2 (en) | 2003-03-31 | 2009-05-05 | Cordis Corporation | Modified delivery device for coated medical devices |
US7295893B2 (en) | 2003-03-31 | 2007-11-13 | Kabushiki Kaisha Toshiba | Manipulator and its control apparatus and method |
JP3944108B2 (ja) | 2003-03-31 | 2007-07-11 | 株式会社東芝 | 医療用マニピュレータの動力伝達機構およびマニピュレータ |
US7591783B2 (en) | 2003-04-01 | 2009-09-22 | Boston Scientific Scimed, Inc. | Articulation joint for video endoscope |
DE10330604A1 (de) | 2003-04-01 | 2004-10-28 | Tuebingen Scientific Surgical Products Gmbh | Chirurgisches Instrument |
DE10314827B3 (de) | 2003-04-01 | 2004-04-22 | Tuebingen Scientific Surgical Products Gmbh | Chirurgisches Instrument |
DE10324844A1 (de) | 2003-04-01 | 2004-12-23 | Tuebingen Scientific Surgical Products Gmbh | Chirurgisches Instrument mit Instrumentengriff und Nullpunkteinstellung |
US20040199181A1 (en) | 2003-04-02 | 2004-10-07 | Knodel Bryan D. | Surgical device for anastomosis |
US20040243163A1 (en) | 2003-04-02 | 2004-12-02 | Gyrus Ent L.L.C | Surgical instrument |
US20040197375A1 (en) | 2003-04-02 | 2004-10-07 | Alireza Rezania | Composite scaffolds seeded with mammalian cells |
US20070010702A1 (en) | 2003-04-08 | 2007-01-11 | Xingwu Wang | Medical device with low magnetic susceptibility |
US20040204735A1 (en) | 2003-04-11 | 2004-10-14 | Shiroff Jason Alan | Subcutaneous dissection tool incorporating pharmacological agent delivery |
US20040230230A1 (en) | 2003-04-11 | 2004-11-18 | Lindstrom Curtis Charles | Methods and systems involving subcutaneous electrode positioning relative to a heart |
US6754959B1 (en) | 2003-04-15 | 2004-06-29 | Guiette, Iii William E. | Hand-held, cartridge-actuated cutter |
US20050116673A1 (en) | 2003-04-18 | 2005-06-02 | Rensselaer Polytechnic Institute | Methods and systems for controlling the operation of a tool |
CN100515381C (zh) | 2003-04-23 | 2009-07-22 | 株式会社大塚制药工厂 | 填充了药液的塑料安瓿及其制造方法 |
ES2397136T3 (es) | 2003-04-23 | 2013-03-05 | Otsuka Pharmaceutical Factory, Inc. | Ampolla de plástico rellena con una disolución de un fármaco y procedimiento para la producción de la misma |
CA2523270A1 (en) | 2003-04-25 | 2004-11-11 | Applied Medical Resources Corporation | Steerable kink-resistant sheath |
US8714429B2 (en) | 2003-04-29 | 2014-05-06 | Covidien Lp | Dissecting tip for surgical stapler |
TWI231076B (en) | 2003-04-29 | 2005-04-11 | Univ Nat Chiao Tung | Evanescent-field optical amplifiers and lasers |
US9597078B2 (en) | 2003-04-29 | 2017-03-21 | Covidien Lp | Surgical stapling device with dissecting tip |
US20040243151A1 (en) | 2003-04-29 | 2004-12-02 | Demmy Todd L. | Surgical stapling device with dissecting tip |
RU32984U1 (ru) | 2003-04-30 | 2003-10-10 | Институт экспериментальной ветеринарии Сибири и Дальнего Востока СО РАСХН | Кутиметр |
US7147638B2 (en) | 2003-05-01 | 2006-12-12 | Sherwood Services Ag | Electrosurgical instrument which reduces thermal damage to adjacent tissue |
US7160299B2 (en) | 2003-05-01 | 2007-01-09 | Sherwood Services Ag | Method of fusing biomaterials with radiofrequency energy |
US8128624B2 (en) | 2003-05-01 | 2012-03-06 | Covidien Ag | Electrosurgical instrument that directs energy delivery and protects adjacent tissue |
DE602004005845T2 (de) | 2003-05-06 | 2007-12-20 | Enpath Medical, Inc., Minneapolis | Drehbarer leitungseinführer |
JP4391762B2 (ja) | 2003-05-08 | 2009-12-24 | オリンパス株式会社 | 外科用処置具 |
US6722550B1 (en) | 2003-05-09 | 2004-04-20 | Illinois Tool Works Inc. | Fuel level indicator for combustion tools |
ES2279231T3 (es) | 2003-05-09 | 2007-08-16 | Tyco Healthcare Group Lp | Grapa anastomotica con tubo capilar que dispensa fluidos. |
US7404449B2 (en) | 2003-05-12 | 2008-07-29 | Bermingham Construction Limited | Pile driving control apparatus and pile driving system |
US7025775B2 (en) | 2003-05-15 | 2006-04-11 | Applied Medical Resources Corporation | Surgical instrument with removable shaft apparatus and method |
US7815565B2 (en) | 2003-05-16 | 2010-10-19 | Ethicon Endo-Surgery, Inc. | Endcap for use with an endoscope |
US7431694B2 (en) | 2003-05-16 | 2008-10-07 | Ethicon Endo-Surgery, Inc. | Method of guiding medical devices |
US7615003B2 (en) | 2005-05-13 | 2009-11-10 | Ethicon Endo-Surgery, Inc. | Track for medical devices |
JP4444961B2 (ja) | 2003-05-19 | 2010-03-31 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | 伝送チャネルのチャネル評価の決定 |
US7140528B2 (en) | 2003-05-20 | 2006-11-28 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing |
US7286850B2 (en) | 2003-05-20 | 2007-10-23 | Agere Systems Inc. | Wireless communication module system and method for performing a wireless communication |
US7380696B2 (en) | 2003-05-20 | 2008-06-03 | Ethicon Endo-Surgery, Inc. | Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US20070010838A1 (en) | 2003-05-20 | 2007-01-11 | Shelton Frederick E Iv | Surgical stapling instrument having a firing lockout for an unclosed anvil |
US7000818B2 (en) | 2003-05-20 | 2006-02-21 | Ethicon, Endo-Surger, Inc. | Surgical stapling instrument having separate distinct closing and firing systems |
US7143923B2 (en) | 2003-05-20 | 2006-12-05 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a firing lockout for an unclosed anvil |
US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
US6988649B2 (en) | 2003-05-20 | 2006-01-24 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a spent cartridge lockout |
US7380695B2 (en) | 2003-05-20 | 2008-06-03 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a single lockout mechanism for prevention of firing |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US7044352B2 (en) | 2003-05-20 | 2006-05-16 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a single lockout mechanism for prevention of firing |
USD502994S1 (en) | 2003-05-21 | 2005-03-15 | Blake, Iii Joseph W | Repeating multi-clip applier |
US8100824B2 (en) | 2003-05-23 | 2012-01-24 | Intuitive Surgical Operations, Inc. | Tool with articulation lock |
US7090637B2 (en) | 2003-05-23 | 2006-08-15 | Novare Surgical Systems, Inc. | Articulating mechanism for remote manipulation of a surgical or diagnostic tool |
US7410483B2 (en) | 2003-05-23 | 2008-08-12 | Novare Surgical Systems, Inc. | Hand-actuated device for remote manipulation of a grasping tool |
NL1023532C2 (nl) | 2003-05-26 | 2004-11-29 | Innosource B V | Toerentalregeling voor een borstelloze gelijkstroommotor. |
US6965183B2 (en) | 2003-05-27 | 2005-11-15 | Pratt & Whitney Canada Corp. | Architecture for electric machine |
US6921397B2 (en) | 2003-05-27 | 2005-07-26 | Cardia, Inc. | Flexible delivery device |
US7413563B2 (en) | 2003-05-27 | 2008-08-19 | Cardia, Inc. | Flexible medical device |
US7583063B2 (en) | 2003-05-27 | 2009-09-01 | Pratt & Whitney Canada Corp. | Architecture for electric machine |
DE602004006866T2 (de) | 2003-05-28 | 2008-02-07 | Koninklijke Philips Electronics N.V. | Vorrichtung mit einer bewegbaren liege zur untersuchung von personen |
DE10325393B3 (de) | 2003-05-28 | 2005-01-05 | Karl Storz Gmbh & Co. Kg | Retraktor |
JP3521910B1 (ja) | 2003-05-29 | 2004-04-26 | 清輝 司馬 | 内視鏡の外部鉗子チャンネル装置 |
US7346344B2 (en) | 2003-05-30 | 2008-03-18 | Aol Llc, A Delaware Limited Liability Company | Identity-based wireless device configuration |
US6796921B1 (en) | 2003-05-30 | 2004-09-28 | One World Technologies Limited | Three speed rotary power tool |
US20040247415A1 (en) | 2003-06-04 | 2004-12-09 | Mangone Peter G. | Slotted fastener and fastening method |
US8007511B2 (en) | 2003-06-06 | 2011-08-30 | Hansen Medical, Inc. | Surgical instrument design |
WO2004107964A2 (en) | 2003-06-06 | 2004-12-16 | Pelikan Technologies, Inc. | Blood harvesting device with electronic control |
WO2004109223A1 (ja) | 2003-06-09 | 2004-12-16 | Mitutoyo Corporation | 測定器 |
WO2004110553A1 (en) | 2003-06-09 | 2004-12-23 | The University Of Cincinnati | Actuation mechanisms for a heart actuation device |
US20060241666A1 (en) | 2003-06-11 | 2006-10-26 | Briggs Barry D | Method and apparatus for body fluid sampling and analyte sensing |
US7597693B2 (en) | 2003-06-13 | 2009-10-06 | Covidien Ag | Vessel sealer and divider for use with small trocars and cannulas |
US7156846B2 (en) | 2003-06-13 | 2007-01-02 | Sherwood Services Ag | Vessel sealer and divider for use with small trocars and cannulas |
DE10326677A1 (de) | 2003-06-13 | 2005-01-20 | Zf Friedrichshafen Ag | Planetengetriebe |
US20040254590A1 (en) | 2003-06-16 | 2004-12-16 | Hoffman Gary H. | Method and instrument for the performance of stapled anastamoses |
US20060052824A1 (en) | 2003-06-16 | 2006-03-09 | Ransick Mark H | Surgical implant |
US7862546B2 (en) | 2003-06-16 | 2011-01-04 | Ethicon Endo-Surgery, Inc. | Subcutaneous self attaching injection port with integral moveable retention members |
US20060052825A1 (en) | 2003-06-16 | 2006-03-09 | Ransick Mark H | Surgical implant alloy |
US7905902B2 (en) | 2003-06-16 | 2011-03-15 | Ethicon Endo-Surgery, Inc. | Surgical implant with preferential corrosion zone |
AU2012200594B2 (en) | 2003-06-17 | 2014-03-27 | Covidien Lp | Surgical stapling device |
US20040260315A1 (en) | 2003-06-17 | 2004-12-23 | Dell Jeffrey R. | Expandable tissue support member and method of forming the support member |
US7038421B2 (en) | 2003-06-17 | 2006-05-02 | International Business Machines Corporation | Method and system for multiple servo motor control |
US7494039B2 (en) | 2003-06-17 | 2009-02-24 | Tyco Healthcare Group Lp | Surgical stapling device |
JP4664909B2 (ja) | 2003-06-17 | 2011-04-06 | タイコ ヘルスケア グループ リミテッド パートナーシップ | 外科用ステープリング装置 |
ES2550808T3 (es) | 2003-06-20 | 2015-11-12 | Covidien Lp | Instrumento de grapado quirúrgico |
WO2004112652A2 (en) | 2003-06-20 | 2004-12-29 | Medtronic Vascular, Inc. | Device, system, and method for contracting tissue in a mammalian body |
JP4665432B2 (ja) | 2003-06-20 | 2011-04-06 | 日立工機株式会社 | 燃焼式動力工具 |
US20060154546A1 (en) | 2003-06-25 | 2006-07-13 | Andover Coated Products, Inc. | Air permeable pressure-sensitive adhesive tapes |
SE526852C2 (sv) | 2003-06-26 | 2005-11-08 | Kongsberg Automotive Ab | Metod och arrangemang för styrning av likströmsmotor |
GB0314863D0 (en) | 2003-06-26 | 2003-07-30 | Univ Dundee | Medical apparatus and method |
JP2005013573A (ja) | 2003-06-27 | 2005-01-20 | Olympus Corp | 電子内視鏡システム |
DE10328934B4 (de) | 2003-06-27 | 2005-06-02 | Christoph Zepf | Motorischer Antrieb für chirurgische Instrumente |
US9002518B2 (en) | 2003-06-30 | 2015-04-07 | Intuitive Surgical Operations, Inc. | Maximum torque driving of robotic surgical tools in robotic surgical systems |
DE102004063606B4 (de) | 2004-02-20 | 2015-10-22 | Carl Zeiss Meditec Ag | Haltevorrichtung, insbesondere für ein medizinisch-optisches Instrument, mit einer Einrichtung zur aktiven Schwingungsdämpfung |
US6998816B2 (en) | 2003-06-30 | 2006-02-14 | Sony Electronics Inc. | System and method for reducing external battery capacity requirement for a wireless card |
US8226715B2 (en) | 2003-06-30 | 2012-07-24 | Depuy Mitek, Inc. | Scaffold for connective tissue repair |
US20050010213A1 (en) | 2003-07-08 | 2005-01-13 | Depuy Spine, Inc. | Attachment mechanism for surgical instrument |
US7042184B2 (en) | 2003-07-08 | 2006-05-09 | Board Of Regents Of The University Of Nebraska | Microrobot for surgical applications |
US7147648B2 (en) | 2003-07-08 | 2006-12-12 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Device for cutting and holding a cornea during a transplant procedure |
US7126303B2 (en) | 2003-07-08 | 2006-10-24 | Board Of Regents Of The University Of Nebraska | Robot for surgical applications |
US6981628B2 (en) | 2003-07-09 | 2006-01-03 | Ethicon Endo-Surgery, Inc. | Surgical instrument with a lateral-moving articulation control |
US6964363B2 (en) | 2003-07-09 | 2005-11-15 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having articulation joint support plates for supporting a firing bar |
US7111769B2 (en) | 2003-07-09 | 2006-09-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument incorporating an articulation mechanism having rotation about the longitudinal axis |
US6786382B1 (en) | 2003-07-09 | 2004-09-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating an articulation joint for a firing bar track |
US7213736B2 (en) | 2003-07-09 | 2007-05-08 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating an electroactive polymer actuated firing bar track through an articulation joint |
US7055731B2 (en) | 2003-07-09 | 2006-06-06 | Ethicon Endo-Surgery Inc. | Surgical stapling instrument incorporating a tapered firing bar for increased flexibility around the articulation joint |
DE50301234D1 (de) | 2003-07-15 | 2005-10-27 | Univ Dundee | Medizinisches Greif- und/oder Schneidinstrument |
US7931695B2 (en) | 2003-07-15 | 2011-04-26 | Kensey Nash Corporation | Compliant osteosynthesis fixation plate |
US7066879B2 (en) | 2003-07-15 | 2006-06-27 | The Trustees Of Columbia University In The City Of New York | Insertable device and system for minimal access procedure |
US6959851B2 (en) | 2003-07-16 | 2005-11-01 | Tyco Healthcare Group Lp | Surgical stapling device with tissue tensioner |
US7837425B2 (en) | 2003-07-16 | 2010-11-23 | Tokyo Electron Limited | Transportation apparatus and drive mechanism |
KR101136114B1 (ko) | 2003-07-17 | 2012-04-17 | 군제 가부시키가이샤 | 자동봉합장치용 봉합보강재 |
DE102004034462A1 (de) | 2003-07-17 | 2005-02-03 | Asmo Co., Ltd. | Einrichtung und Verfahren zur Motorsteuerung |
US7354398B2 (en) | 2003-07-18 | 2008-04-08 | Pentax Corporation | Capsule-type device and capsule-type device controlling system |
JP4124041B2 (ja) | 2003-07-18 | 2008-07-23 | 日立工機株式会社 | 充電機能付き直流電源装置 |
US7712182B2 (en) | 2003-07-25 | 2010-05-11 | Milwaukee Electric Tool Corporation | Air flow-producing device, such as a vacuum cleaner or a blower |
US6949196B2 (en) | 2003-07-28 | 2005-09-27 | Fkos, Llc | Methods and systems for improved dosing of a chemical treatment, such as chlorine dioxide, into a fluid stream, such as a wastewater stream |
US20050033136A1 (en) | 2003-08-01 | 2005-02-10 | Assaf Govari | Catheter with electrode strip |
US7121773B2 (en) | 2003-08-01 | 2006-10-17 | Nitto Kohki Co., Ltd. | Electric drill apparatus |
JP4472395B2 (ja) | 2003-08-07 | 2010-06-02 | オリンパス株式会社 | 超音波手術システム |
US20050032511A1 (en) | 2003-08-07 | 2005-02-10 | Cardiac Pacemakers, Inc. | Wireless firmware download to an external device |
FI120333B (fi) | 2003-08-20 | 2009-09-30 | Bioretec Oy | Huokoinen lääketieteellinen väline ja menetelmä sen valmistamiseksi |
US7313430B2 (en) | 2003-08-28 | 2007-12-25 | Medtronic Navigation, Inc. | Method and apparatus for performing stereotactic surgery |
JP3853807B2 (ja) | 2003-08-28 | 2006-12-06 | 本田技研工業株式会社 | 音振解析装置及び音振解析方法並びに音振解析用のプログラムを記録したコンピュータ読み取り可能な記録媒体及び音振解析用のプログラム |
US7686201B2 (en) | 2003-09-01 | 2010-03-30 | Tyco Healthcare Group Lp | Circular stapler for hemorrhoid operations |
CA2439536A1 (en) | 2003-09-04 | 2005-03-04 | Jacek Krzyzanowski | Variations of biopsy jaw and clevis and method of manufacture |
JP4190983B2 (ja) | 2003-09-04 | 2008-12-03 | ジョンソン・エンド・ジョンソン株式会社 | ステープル装置 |
US7205959B2 (en) | 2003-09-09 | 2007-04-17 | Sony Ericsson Mobile Communications Ab | Multi-layered displays providing different focal lengths with optically shiftable viewing formats and terminals incorporating the same |
JP4722849B2 (ja) | 2003-09-12 | 2011-07-13 | マイルストーン サイアンティフィック インク | 圧力検知を使用した組織を同定した薬剤注入装置 |
US20050058890A1 (en) | 2003-09-15 | 2005-03-17 | Kenneth Brazell | Removable battery pack for a portable electric power tool |
US7762998B2 (en) | 2003-09-15 | 2010-07-27 | Allergan, Inc. | Implantable device fastening system and methods of use |
US7547312B2 (en) | 2003-09-17 | 2009-06-16 | Gore Enterprise Holdings, Inc. | Circular stapler buttress |
US20050059997A1 (en) | 2003-09-17 | 2005-03-17 | Bauman Ann M. | Circular stapler buttress |
US20090325859A1 (en) | 2003-09-19 | 2009-12-31 | Northwestern University | Citric acid polymers |
JP4533695B2 (ja) | 2003-09-23 | 2010-09-01 | オリンパス株式会社 | 処置用内視鏡 |
US6959852B2 (en) | 2003-09-29 | 2005-11-01 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with multistroke firing incorporating an anti-backup mechanism |
US6905057B2 (en) | 2003-09-29 | 2005-06-14 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating a firing mechanism having a linked rack transmission |
US7094202B2 (en) | 2003-09-29 | 2006-08-22 | Ethicon Endo-Surgery, Inc. | Method of operating an endoscopic device with one hand |
DE20321117U1 (de) | 2003-09-29 | 2005-12-22 | Robert Bosch Gmbh | Akkuschrauber |
US7364061B2 (en) | 2003-09-29 | 2008-04-29 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating a multistroke firing position indicator and retraction mechanism |
US7303108B2 (en) | 2003-09-29 | 2007-12-04 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating a multi-stroke firing mechanism with a flexible rack |
US7000819B2 (en) | 2003-09-29 | 2006-02-21 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having multistroke firing incorporating a traction-biased ratcheting mechanism |
US7434715B2 (en) | 2003-09-29 | 2008-10-14 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having multistroke firing with opening lockout |
US7083075B2 (en) | 2003-09-29 | 2006-08-01 | Ethicon Endo-Surgery, Inc. | Multi-stroke mechanism with automatic end of stroke retraction |
US20050070929A1 (en) | 2003-09-30 | 2005-03-31 | Dalessandro David A. | Apparatus and method for attaching a surgical buttress to a stapling apparatus |
JP4296894B2 (ja) | 2003-09-30 | 2009-07-15 | 東海ゴム工業株式会社 | 流体移送用チューブのブラケット |
US20050075561A1 (en) | 2003-10-01 | 2005-04-07 | Lucent Medical Systems, Inc. | Method and apparatus for indicating an encountered obstacle during insertion of a medical device |
US7202576B1 (en) | 2003-10-03 | 2007-04-10 | American Power Conversion Corporation | Uninterruptible power supply systems and enclosures |
US7556647B2 (en) | 2003-10-08 | 2009-07-07 | Arbor Surgical Technologies, Inc. | Attachment device and methods of using the same |
US7533906B2 (en) | 2003-10-14 | 2009-05-19 | Water Pik, Inc. | Rotatable and pivotable connector |
US7914543B2 (en) | 2003-10-14 | 2011-03-29 | Satiety, Inc. | Single fold device for tissue fixation |
US7097650B2 (en) | 2003-10-14 | 2006-08-29 | Satiety, Inc. | System for tissue approximation and fixation |
US20060161050A1 (en) | 2003-10-15 | 2006-07-20 | John Butler | A surgical sealing device |
US7029435B2 (en) | 2003-10-16 | 2006-04-18 | Granit Medical Innovation, Llc | Endoscope having multiple working segments |
USD509589S1 (en) | 2003-10-17 | 2005-09-13 | Tyco Healthcare Group, Lp | Handle for surgical instrument |
US9055943B2 (en) | 2007-09-21 | 2015-06-16 | Covidien Lp | Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use |
US10041822B2 (en) | 2007-10-05 | 2018-08-07 | Covidien Lp | Methods to shorten calibration times for powered devices |
US7840253B2 (en) | 2003-10-17 | 2010-11-23 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
USD509297S1 (en) | 2003-10-17 | 2005-09-06 | Tyco Healthcare Group, Lp | Surgical instrument |
WO2005037084A2 (en) | 2003-10-17 | 2005-04-28 | Tyco Healthcare Group, Lp | Surgical stapling device |
US10022123B2 (en) | 2012-07-09 | 2018-07-17 | Covidien Lp | Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors |
US7296722B2 (en) | 2003-10-17 | 2007-11-20 | Tyco Healthcare Group Lp | Surgical fastener applying apparatus with controlled beam deflection |
US8806973B2 (en) | 2009-12-02 | 2014-08-19 | Covidien Lp | Adapters for use between surgical handle assembly and surgical end effector |
US10588629B2 (en) | 2009-11-20 | 2020-03-17 | Covidien Lp | Surgical console and hand-held surgical device |
US8968276B2 (en) | 2007-09-21 | 2015-03-03 | Covidien Lp | Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use |
US10105140B2 (en) | 2009-11-20 | 2018-10-23 | Covidien Lp | Surgical console and hand-held surgical device |
US20090090763A1 (en) * | 2007-10-05 | 2009-04-09 | Tyco Healthcare Group Lp | Powered surgical stapling device |
JP4642770B2 (ja) | 2003-10-17 | 2011-03-02 | タイコ ヘルスケア グループ リミテッド パートナーシップ | 独立先端部回転を備えた外科用ステープル留めデバイス |
US9113880B2 (en) | 2007-10-05 | 2015-08-25 | Covidien Lp | Internal backbone structural chassis for a surgical device |
US20050090817A1 (en) | 2003-10-22 | 2005-04-28 | Scimed Life Systems, Inc. | Bendable endoscopic bipolar device |
AU2003284929B2 (en) | 2003-10-23 | 2010-07-22 | Covidien Ag | Redundant temperature monitoring in electrosurgical systems for safety mitigation |
US7556814B2 (en) | 2003-10-23 | 2009-07-07 | Karp Nelson M | Immunogenic compositions comprising UV-irradiated, psoralen-inactivated, desialated human immunodeficiency virus (HIV) devoid of CD55 and CD59 in the viral membrane |
WO2005039835A1 (en) | 2003-10-24 | 2005-05-06 | The University Of Western Ontario | Force reflective robotic control system and minimally invasive surgical device |
US7190147B2 (en) | 2003-10-24 | 2007-03-13 | Eagle-Picher Technologies, Llc | Battery with complete discharge device |
NZ547208A (en) | 2003-10-28 | 2009-10-30 | Ibex Ind Ltd | Powered hand tool |
US7686826B2 (en) | 2003-10-30 | 2010-03-30 | Cambridge Endoscopic Devices, Inc. | Surgical instrument |
US7842028B2 (en) | 2005-04-14 | 2010-11-30 | Cambridge Endoscopic Devices, Inc. | Surgical instrument guide device |
DE602004015134D1 (de) | 2003-10-30 | 2008-08-28 | Mcneil Ppc Inc | Saugfähige artikel mit metallbeladenen nanoteilchen |
US7338513B2 (en) | 2003-10-30 | 2008-03-04 | Cambridge Endoscopic Devices, Inc. | Surgical instrument |
US7147650B2 (en) | 2003-10-30 | 2006-12-12 | Woojin Lee | Surgical instrument |
JP2005131173A (ja) | 2003-10-31 | 2005-05-26 | Olympus Corp | 内視鏡用外付けチャンネル |
JP2005131211A (ja) | 2003-10-31 | 2005-05-26 | Olympus Corp | 内視鏡用の外付けチャンネル |
JP2005131163A (ja) | 2003-10-31 | 2005-05-26 | Olympus Corp | 内視鏡用の外付けチャンネル |
JP2005131212A (ja) | 2003-10-31 | 2005-05-26 | Olympus Corp | 内視鏡用の外付けチャンネル及び内視鏡装置 |
JP2005131164A (ja) | 2003-10-31 | 2005-05-26 | Olympus Corp | 内視鏡用の外付けチャンネル |
US20050096683A1 (en) | 2003-11-01 | 2005-05-05 | Medtronic, Inc. | Using thinner laminations to reduce operating temperature in a high speed hand-held surgical power tool |
JP2005137423A (ja) | 2003-11-04 | 2005-06-02 | Olympus Corp | 内視鏡用の外付けチャンネルおよび外付けチャンネル用分岐部材 |
US7397364B2 (en) | 2003-11-11 | 2008-07-08 | Biosense Webster, Inc. | Digital wireless position sensor |
CA2544749A1 (en) | 2003-11-12 | 2005-05-26 | Applied Medical Resources Corporation | Overmolded grasper jaw |
US20050108643A1 (en) | 2003-11-17 | 2005-05-19 | Nokia Corporation | Topographic presentation of media files in a media diary application |
US6899593B1 (en) | 2003-11-18 | 2005-05-31 | Dieter Moeller | Grinding apparatus for blending defects on turbine blades and associated method of use |
DE10353846A1 (de) | 2003-11-18 | 2005-06-16 | Maquet Gmbh & Co. Kg | Verfahren zur Vorbereitung von für die Durchführung von medizinischen oder chirurgischen Eingriffen bestimmten Geräten |
US8122128B2 (en) | 2003-11-18 | 2012-02-21 | Burke Ii Robert M | System for regulating access to and distributing content in a network |
JP4594612B2 (ja) | 2003-11-27 | 2010-12-08 | オリンパス株式会社 | 挿入補助具 |
GB0327904D0 (en) | 2003-12-02 | 2004-01-07 | Qinetiq Ltd | Gear change mechanism |
US8133500B2 (en) | 2003-12-04 | 2012-03-13 | Kensey Nash Bvf Technology, Llc | Compressed high density fibrous polymers suitable for implant |
US8257393B2 (en) | 2003-12-04 | 2012-09-04 | Ethicon, Inc. | Active suture for the delivery of therapeutic fluids |
US8389588B2 (en) | 2003-12-04 | 2013-03-05 | Kensey Nash Corporation | Bi-phasic compressed porous reinforcement materials suitable for implant |
GB2408936B (en) | 2003-12-09 | 2007-07-18 | Gyrus Group Plc | A surgical instrument |
US7439354B2 (en) | 2003-12-11 | 2008-10-21 | E.I. Du Pont De Nemours And Company | Process for preparing amide acetals |
US7317955B2 (en) | 2003-12-12 | 2008-01-08 | Conmed Corporation | Virtual operating room integration |
US7375493B2 (en) | 2003-12-12 | 2008-05-20 | Microsoft Corporation | Inductive battery charger |
US7246719B2 (en) | 2003-12-12 | 2007-07-24 | Automated Merchandising Systems Inc. | Adjustable storage rack for a vending machine |
US7378817B2 (en) | 2003-12-12 | 2008-05-27 | Microsoft Corporation | Inductive power adapter |
US20050131457A1 (en) | 2003-12-15 | 2005-06-16 | Ethicon, Inc. | Variable stiffness shaft |
US7604118B2 (en) | 2003-12-15 | 2009-10-20 | Panasonic Corporation | Puncture needle cartridge and lancet for blood collection |
JP4460890B2 (ja) | 2003-12-15 | 2010-05-12 | 衛 光石 | 多自由度マニピュレータ |
US7091191B2 (en) | 2003-12-19 | 2006-08-15 | Ethicon, Inc. | Modified hyaluronic acid for use in musculoskeletal tissue repair |
US8221424B2 (en) | 2004-12-20 | 2012-07-17 | Spinascope, Inc. | Surgical instrument for orthopedic surgery |
US7742036B2 (en) | 2003-12-22 | 2010-06-22 | Immersion Corporation | System and method for controlling haptic devices having multiple operational modes |
JP4552435B2 (ja) | 2003-12-22 | 2010-09-29 | 住友化学株式会社 | オキシムの製造方法 |
US8590764B2 (en) | 2003-12-24 | 2013-11-26 | Boston Scientific Scimed, Inc. | Circumferential full thickness resectioning device |
DE10361942A1 (de) | 2003-12-24 | 2005-07-21 | Restate Patent Ag | Radioopaker Marker für medizinische Implantate |
JP4398716B2 (ja) | 2003-12-24 | 2010-01-13 | 呉羽テック株式会社 | 鮮明なエンボス模様が施された高伸縮性不織布、及びその製造方法 |
CN1634601A (zh) | 2003-12-26 | 2005-07-06 | 吉林省中立实业有限公司 | 一种用于医疗器械灭菌的方法 |
US7618427B2 (en) | 2003-12-29 | 2009-11-17 | Ethicon Endo-Surgery, Inc. | Device and method for intralumenal anastomosis |
US20050139636A1 (en) | 2003-12-30 | 2005-06-30 | Schwemberger Richard F. | Replaceable cartridge module for a surgical stapling and cutting instrument |
US7134587B2 (en) | 2003-12-30 | 2006-11-14 | Ethicon Endo-Surgery, Inc. | Knife retraction arm for a curved cutter stapler |
US7207472B2 (en) | 2003-12-30 | 2007-04-24 | Ethicon Endo-Surgery, Inc. | Cartridge with locking knife for a curved cutter stapler |
US20050145672A1 (en) | 2003-12-30 | 2005-07-07 | Schwemberger Richard F. | Curved cutter stapler with aligned tissue retention feature |
US20050143759A1 (en) | 2003-12-30 | 2005-06-30 | Kelly William D. | Curved cutter stapler shaped for male pelvis |
US7204404B2 (en) | 2003-12-30 | 2007-04-17 | Ethicon Endo-Surgery, Inc. | Slotted pins guiding knife in a curved cutter stapler |
US7549563B2 (en) | 2003-12-30 | 2009-06-23 | Ethicon Endo-Surgery, Inc. | Rotating curved cutter stapler |
US7147139B2 (en) | 2003-12-30 | 2006-12-12 | Ethicon Endo-Surgery, Inc | Closure plate lockout for a curved cutter stapler |
US7147140B2 (en) | 2003-12-30 | 2006-12-12 | Ethicon Endo - Surgery, Inc. | Cartridge retainer for a curved cutter stapler |
US6988650B2 (en) | 2003-12-30 | 2006-01-24 | Ethicon Endo-Surgery, Inc. | Retaining pin lever advancement mechanism for a curved cutter stapler |
US7766207B2 (en) | 2003-12-30 | 2010-08-03 | Ethicon Endo-Surgery, Inc. | Articulating curved cutter stapler |
US20050191936A1 (en) | 2004-01-07 | 2005-09-01 | Marine Jon C. | Doll |
US6995729B2 (en) | 2004-01-09 | 2006-02-07 | Biosense Webster, Inc. | Transponder with overlapping coil antennas on a common core |
TWI228850B (en) | 2004-01-14 | 2005-03-01 | Asia Optical Co Inc | Laser driver circuit for burst mode and making method thereof |
US7146191B2 (en) | 2004-01-16 | 2006-12-05 | United States Thermoelectric Consortium | Wireless communications apparatus and method |
GB2410161B (en) | 2004-01-16 | 2008-09-03 | Btg Int Ltd | Method and system for calculating and verifying the integrity of data in data transmission system |
US20050197859A1 (en) | 2004-01-16 | 2005-09-08 | Wilson James C. | Portable electronic data storage and retreival system for group data |
US7219980B2 (en) | 2004-01-21 | 2007-05-22 | Silverbrook Research Pty Ltd | Printhead assembly with removable cover |
EP1670362B2 (en) | 2004-01-23 | 2014-10-22 | Apollo Endosurgery, Inc. | Implantable device fastening system and methods of use |
JP2005211455A (ja) | 2004-01-30 | 2005-08-11 | Olympus Corp | 外科用切除装置 |
US20050171522A1 (en) | 2004-01-30 | 2005-08-04 | Christopherson Mark A. | Transurethral needle ablation system with needle position indicator |
US7204835B2 (en) | 2004-02-02 | 2007-04-17 | Gyrus Medical, Inc. | Surgical instrument |
US20050177176A1 (en) | 2004-02-05 | 2005-08-11 | Craig Gerbi | Single-fold system for tissue approximation and fixation |
DE102004005709A1 (de) | 2004-02-05 | 2005-08-25 | Polydiagnost Gmbh | Endoskop mit einer flexiblen Sonde |
JP4845382B2 (ja) | 2004-02-06 | 2011-12-28 | キヤノン株式会社 | 画像処理装置及びその制御方法、並びに、コンピュータプログラム及びコンピュータ可読記憶媒体 |
DE102004029611A1 (de) | 2004-02-06 | 2005-08-25 | Restate Patent Ag | Implantat zur Freisetzung eines Wirkstoffs in ein von einem Körpermedium durchströmtes Gefäß |
KR100855957B1 (ko) | 2004-02-09 | 2008-09-02 | 삼성전자주식회사 | 화면 주변부의 밝기를 보상하는 고체 촬상 소자 및 그구동 방법 |
US11395865B2 (en) | 2004-02-09 | 2022-07-26 | DePuy Synthes Products, Inc. | Scaffolds with viable tissue |
WO2005077450A2 (en) | 2004-02-10 | 2005-08-25 | Synecor, Llc | Intravascular delivery system for therapeutic agents |
US7979137B2 (en) | 2004-02-11 | 2011-07-12 | Ethicon, Inc. | System and method for nerve stimulation |
GB0403020D0 (en) | 2004-02-11 | 2004-03-17 | Pa Consulting Services | Portable charging device |
WO2005079295A2 (en) | 2004-02-12 | 2005-09-01 | Ndi Medical, Llc | Portable assemblies, systems and methods for providing functional or therapeutic neuromuscular stimulation |
ES2285586T3 (es) | 2004-02-17 | 2007-11-16 | Tyco Healthcare Group Lp | Aparato quirurgico de grapado con mecanismo de bloqueo. |
DE602005000938T2 (de) | 2004-02-17 | 2008-01-17 | Tyco Healthcare Group Lp, Norwalk | Chirurgisches Klammernahtgerät mit Verriegelungsmechanismus |
DE602005000891T2 (de) | 2004-02-17 | 2008-01-17 | Tyco Healthcare Group Lp, Norwalk | Chirurgisches Klammernahtgerät mit Verriegelungsmechanismus |
US7886952B2 (en) | 2004-02-17 | 2011-02-15 | Tyco Healthcare Group Lp | Surgical stapling apparatus with locking mechanism |
US8920443B2 (en) | 2004-02-17 | 2014-12-30 | Cook Biotech Incorporated | Medical devices and methods useful for applying bolster material |
US7172104B2 (en) | 2004-02-17 | 2007-02-06 | Tyco Healthcare Group Lp | Surgical stapling apparatus |
US20100191292A1 (en) | 2004-02-17 | 2010-07-29 | Demeo Joseph | Oriented polymer implantable device and process for making same |
US6953138B1 (en) | 2004-02-18 | 2005-10-11 | Frank W. Dworak | Surgical stapler anvil with nested staple forming pockets |
US20050182443A1 (en) | 2004-02-18 | 2005-08-18 | Closure Medical Corporation | Adhesive-containing wound closure device and method |
US7086267B2 (en) | 2004-02-18 | 2006-08-08 | Frank W. Dworak | Metal-forming die and method for manufacturing same |
US20050187545A1 (en) | 2004-02-20 | 2005-08-25 | Hooven Michael D. | Magnetic catheter ablation device and method |
US8046049B2 (en) | 2004-02-23 | 2011-10-25 | Biosense Webster, Inc. | Robotically guided catheter |
US20050186240A1 (en) | 2004-02-23 | 2005-08-25 | Ringeisen Timothy A. | Gel suitable for implantation and delivery system |
GB2411527B (en) | 2004-02-26 | 2006-06-28 | Itt Mfg Enterprises Inc | Electrical connector |
JP2005279253A (ja) | 2004-03-02 | 2005-10-13 | Olympus Corp | 内視鏡 |
US7780662B2 (en) | 2004-03-02 | 2010-08-24 | Covidien Ag | Vessel sealing system using capacitive RF dielectric heating |
US20050209614A1 (en) | 2004-03-04 | 2005-09-22 | Fenter Felix W | Anastomosis apparatus and methods with computer-aided, automated features |
US7850642B2 (en) | 2004-03-05 | 2010-12-14 | Hansen Medical, Inc. | Methods using a robotic catheter system |
WO2005087128A1 (en) | 2004-03-05 | 2005-09-22 | Hansen Medical, Inc. | Robotic catheter system |
US8052636B2 (en) | 2004-03-05 | 2011-11-08 | Hansen Medical, Inc. | Robotic catheter system and methods |
US9028511B2 (en) | 2004-03-09 | 2015-05-12 | Ethicon Endo-Surgery, Inc. | Devices and methods for placement of partitions within a hollow body organ |
US8252009B2 (en) | 2004-03-09 | 2012-08-28 | Ethicon Endo-Surgery, Inc. | Devices and methods for placement of partitions within a hollow body organ |
US8449560B2 (en) | 2004-03-09 | 2013-05-28 | Satiety, Inc. | Devices and methods for placement of partitions within a hollow body organ |
JP4610934B2 (ja) | 2004-06-03 | 2011-01-12 | オリンパス株式会社 | 外科用処置具 |
WO2005087125A2 (en) | 2004-03-10 | 2005-09-22 | Depuy International Ltd | Orthopaedic operating systems, methods, implants and instruments |
EP1723913A1 (en) | 2004-03-10 | 2006-11-22 | Olympus Corporation | Treatment tool for surgery |
US7066944B2 (en) | 2004-03-11 | 2006-06-27 | Laufer Michael D | Surgical fastening system |
GB2412232A (en) | 2004-03-15 | 2005-09-21 | Ims Nanofabrication Gmbh | Particle-optical projection system |
US7118528B1 (en) | 2004-03-16 | 2006-10-10 | Gregory Piskun | Hemorrhoids treatment method and associated instrument assembly including anoscope and cofunctioning tissue occlusion device |
CA2560877C (en) | 2004-03-18 | 2014-07-29 | Contipi Ltd. | Apparatus for the prevention of urinary incontinence in females |
FI20040415A (fi) | 2004-03-18 | 2005-09-19 | Stora Enso Oyj | Einespakkaus ja sen valmistusmenetelmä |
WO2005091986A2 (en) | 2004-03-19 | 2005-10-06 | Tyco Healthcare Group, Lp | Anvil assembly with improved cut ring |
US8181840B2 (en) | 2004-03-19 | 2012-05-22 | Tyco Healthcare Group Lp | Tissue tensioner assembly and approximation mechanism for surgical stapling device |
US7093492B2 (en) | 2004-03-19 | 2006-08-22 | Mechworks Systems Inc. | Configurable vibration sensor |
WO2005092177A1 (en) | 2004-03-22 | 2005-10-06 | Bodymedia, Inc. | Non-invasive temperature monitoring device |
US7625388B2 (en) | 2004-03-22 | 2009-12-01 | Alcon, Inc. | Method of controlling a surgical system based on a load on the cutting tip of a handpiece |
JP4727158B2 (ja) | 2004-03-23 | 2011-07-20 | オリンパス株式会社 | 内視鏡システム |
DE102004014011A1 (de) | 2004-03-23 | 2005-10-20 | Airtec Pneumatic Gmbh | Stoßwellen-Therapiegerät |
TWI234339B (en) | 2004-03-25 | 2005-06-11 | Richtek Techohnology Corp | High-efficiency voltage transformer |
EP1584300A3 (en) | 2004-03-30 | 2006-07-05 | Kabushiki Kaisha Toshiba | Manipulator apparatus |
DE102004015667B3 (de) | 2004-03-31 | 2006-01-19 | Sutter Medizintechnik Gmbh | Bipolares Doppelgelenkinstrument |
US7331403B2 (en) | 2004-04-02 | 2008-02-19 | Black & Decker Inc. | Lock-out for activation arm mechanism in a power tool |
ATE394200T1 (de) | 2004-04-02 | 2008-05-15 | Black & Decker Inc | Befestigungswerkzeug mit moduswahlschalter |
US7036680B1 (en) | 2004-04-07 | 2006-05-02 | Avery Dennison Corporation | Device for dispensing plastic fasteners |
JP2005296412A (ja) | 2004-04-13 | 2005-10-27 | Olympus Corp | 内視鏡治療装置 |
EP1740084A2 (en) | 2004-04-15 | 2007-01-10 | Wilson-Cook Medical Inc. | Endoscopic surgical access devices and methods of articulating an external accessory channel |
US6960107B1 (en) | 2004-04-16 | 2005-11-01 | Brunswick Corporation | Marine transmission with a cone clutch used for direct transfer of torque |
WO2005102193A2 (en) | 2004-04-19 | 2005-11-03 | Acumed, Llc | Placement of fasteners into bone |
US7361168B2 (en) | 2004-04-21 | 2008-04-22 | Acclarent, Inc. | Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders |
US7758612B2 (en) | 2004-04-27 | 2010-07-20 | Tyco Healthcare Group Lp | Surgery delivery device and mesh anchor |
US7377918B2 (en) | 2004-04-28 | 2008-05-27 | Gyrus Medical Limited | Electrosurgical method and apparatus |
US7336183B2 (en) | 2004-04-30 | 2008-02-26 | Kimberly-Clark Worldwide, Inc. | Decommissioning an electronic data tag |
US7948381B2 (en) | 2004-04-30 | 2011-05-24 | Binforma Group Limited Liability Company | Reversibly deactivating a radio frequency identification data tag |
US7098794B2 (en) | 2004-04-30 | 2006-08-29 | Kimberly-Clark Worldwide, Inc. | Deactivating a data tag for user privacy or tamper-evident packaging |
US7151455B2 (en) | 2004-04-30 | 2006-12-19 | Kimberly-Clark Worldwide, Inc. | Activating a data tag by load or orientation or user control |
BRPI0510550A (pt) | 2004-05-03 | 2007-11-20 | Ams Res Corp | implante cirúrgico, kit cirúrgico, método para formar ou montar um implante cirúrgico, molde de inserção, aparelho, e, método para produzir um implante cirúrgico |
US7348875B2 (en) | 2004-05-04 | 2008-03-25 | Battelle Memorial Institute | Semi-passive radio frequency identification (RFID) tag with active beacon |
CA2563426C (en) | 2004-05-05 | 2013-12-24 | Direct Flow Medical, Inc. | Unstented heart valve with formed in place support structure |
US7736374B2 (en) | 2004-05-07 | 2010-06-15 | Usgi Medical, Inc. | Tissue manipulation and securement system |
US20050251063A1 (en) | 2004-05-07 | 2005-11-10 | Raghuveer Basude | Safety device for sampling tissue |
US8333764B2 (en) | 2004-05-12 | 2012-12-18 | Medtronic, Inc. | Device and method for determining tissue thickness and creating cardiac ablation lesions |
US20050267529A1 (en) | 2004-05-13 | 2005-12-01 | Heber Crockett | Devices, systems and methods for tissue repair |
US8251891B2 (en) | 2004-05-14 | 2012-08-28 | Nathan Moskowitz | Totally wireless electronically embedded action-ended endoscope utilizing differential directional illumination with digitally controlled mirrors and/or prisms |
JP2005328882A (ja) | 2004-05-18 | 2005-12-02 | Olympus Corp | 内視鏡用処置具及び内視鏡システム |
US7158032B2 (en) | 2004-05-20 | 2007-01-02 | Xerox Corporation | Diagnosis of programmable modules |
US7260431B2 (en) | 2004-05-20 | 2007-08-21 | Cardiac Pacemakers, Inc. | Combined remodeling control therapy and anti-remodeling therapy by implantable cardiac device |
GB2414185A (en) | 2004-05-20 | 2005-11-23 | Gyrus Medical Ltd | Morcellating device using cutting electrodes on end-face of tube |
JP2005335432A (ja) | 2004-05-24 | 2005-12-08 | Nissan Motor Co Ltd | 後輪転舵制御装置 |
IES20040368A2 (en) | 2004-05-25 | 2005-11-30 | James E Coleman | Surgical stapler |
IL162187A (en) | 2004-05-27 | 2010-05-31 | Elazar Sonnenschein | Stapling device |
US7450991B2 (en) | 2004-05-28 | 2008-11-11 | Advanced Neuromodulation Systems, Inc. | Systems and methods used to reserve a constant battery capacity |
US7828808B2 (en) | 2004-06-07 | 2010-11-09 | Novare Surgical Systems, Inc. | Link systems and articulation mechanisms for remote manipulation of surgical or diagnostic tools |
DE102004027850A1 (de) | 2004-06-08 | 2006-01-05 | Henke-Sass Wolf Gmbh | Biegbarer Abschnitt eines Einführtubus eines Endoskopes und Verfahren zu dessen Herstellung |
US7695493B2 (en) | 2004-06-09 | 2010-04-13 | Usgi Medical, Inc. | System for optimizing anchoring force |
US7446131B1 (en) | 2004-06-10 | 2008-11-04 | The United States Of America As Represented By The Secretary Of Agriculture | Porous polymeric matrices made of natural polymers and synthetic polymers and optionally at least one cation and methods of making |
US8012501B2 (en) | 2004-06-10 | 2011-09-06 | Synthes Usa, Llc | Flexible bone composite |
US20050283226A1 (en) | 2004-06-18 | 2005-12-22 | Scimed Life Systems, Inc. | Medical devices |
GB2415140A (en) | 2004-06-18 | 2005-12-21 | Gyrus Medical Ltd | A surgical instrument |
US8663245B2 (en) | 2004-06-18 | 2014-03-04 | Medtronic, Inc. | Device for occlusion of a left atrial appendage |
US7331406B2 (en) | 2004-06-21 | 2008-02-19 | Duraspin Products Llc | Apparatus for controlling a fastener driving tool, with user-adjustable torque limiting control |
USD530339S1 (en) | 2004-06-23 | 2006-10-17 | Cellco Partnership | Animated icon for a cellularly communicative electronic device |
USD511525S1 (en) | 2004-06-24 | 2005-11-15 | Verizon Wireless | Icon for the display screen of a cellulary communicative electronic device |
RU2007102585A (ru) | 2004-06-24 | 2008-07-27 | Филлип Л. ДЖИЛДЕНБЕРГ (US) | Полуроботизированный сшивающий аппарат |
US7367485B2 (en) | 2004-06-30 | 2008-05-06 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating a multistroke firing mechanism having a rotary transmission |
US20060020167A1 (en) | 2004-06-30 | 2006-01-26 | James Sitzmann | Medical devices for minimally invasive surgeries and other internal procedures |
US7229408B2 (en) | 2004-06-30 | 2007-06-12 | Ethicon, Inc. | Low profile surgical retractor |
US7059508B2 (en) | 2004-06-30 | 2006-06-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating an uneven multistroke firing mechanism having a rotary transmission |
CA2511276A1 (en) | 2004-07-02 | 2006-01-02 | Discus Dental Impressions, Inc. | Support system for dentistry |
US7443547B2 (en) | 2004-07-03 | 2008-10-28 | Science Forge, Inc. | Portable electronic faxing, scanning, copying, and printing device |
US7966236B2 (en) | 2004-07-07 | 2011-06-21 | Ubs Financial Services Inc. | Method and system for real time margin calculation |
US7472624B2 (en) | 2004-07-07 | 2009-01-06 | Ventra Group Inc. | Push to release brake actuating assembly for a vehicle |
US7485133B2 (en) | 2004-07-14 | 2009-02-03 | Warsaw Orthopedic, Inc. | Force diffusion spinal hook |
JP4257270B2 (ja) | 2004-07-14 | 2009-04-22 | オリンパス株式会社 | 生体組織縫合方法及び生体組織縫合器 |
US20060020258A1 (en) | 2004-07-20 | 2006-01-26 | Medtronic, Inc. | Surgical apparatus with a manually actuatable assembly and a method of operating same |
US8888695B2 (en) | 2007-03-30 | 2014-11-18 | Covidien Lp | Laparoscopic port assembly |
JP4596844B2 (ja) | 2004-07-23 | 2010-12-15 | テルモ株式会社 | 医療用物品及び医療用物品の受発注システム |
WO2006014881A2 (en) | 2004-07-26 | 2006-02-09 | Van Lue Stephen J | Surgical stapler with magnetically secured components |
RU42750U1 (ru) | 2004-07-26 | 2004-12-20 | Альбертин Сергей Викторович | Устройство для дозированной подачи веществ |
US8075476B2 (en) | 2004-07-27 | 2011-12-13 | Intuitive Surgical Operations, Inc. | Cannula system and method of use |
US8057508B2 (en) | 2004-07-28 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument incorporating an electrically actuated articulation locking mechanism |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US7506790B2 (en) | 2004-07-28 | 2009-03-24 | Ethicon Endo-Surgery, Inc. | Surgical instrument incorporating an electrically actuated articulation mechanism |
US7143926B2 (en) | 2005-02-07 | 2006-12-05 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating a multi-stroke firing mechanism with return spring rotary manual retraction system |
US7143925B2 (en) | 2004-07-28 | 2006-12-05 | Ethicon Endo-Surgery, Inc. | Surgical instrument incorporating EAP blocking lockout mechanism |
US11896225B2 (en) | 2004-07-28 | 2024-02-13 | Cilag Gmbh International | Staple cartridge comprising a pan |
US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
US7513408B2 (en) | 2004-07-28 | 2009-04-07 | Ethicon Endo-Surgery, Inc. | Multiple firing stroke surgical instrument incorporating electroactive polymer anti-backup mechanism |
US8317074B2 (en) | 2004-07-28 | 2012-11-27 | Ethicon Endo-Surgery, Inc. | Electroactive polymer-based articulation mechanism for circular stapler |
US20060025812A1 (en) | 2004-07-28 | 2006-02-02 | Ethicon Endo-Surgery, Inc. | Surgical instrument incorporating an electrically actuated pivoting articulation mechanism |
US7487899B2 (en) | 2004-07-28 | 2009-02-10 | Ethicon Endo-Surgery, Inc. | Surgical instrument incorporating EAP complete firing system lockout mechanism |
AU2005203215B2 (en) | 2004-07-28 | 2011-06-09 | Ethicon Endo-Surgery, Inc. | Surgical instrument incorporating an electrically actuated pivoting articulation mechanism |
AU2005203213C1 (en) | 2004-07-28 | 2012-07-05 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser |
US8905977B2 (en) | 2004-07-28 | 2014-12-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser |
US7147138B2 (en) | 2004-07-28 | 2006-12-12 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having an electroactive polymer actuated buttress deployment mechanism |
US7407077B2 (en) | 2004-07-28 | 2008-08-05 | Ethicon Endo-Surgery, Inc. | Electroactive polymer-based actuation mechanism for linear surgical stapler |
US7407074B2 (en) | 2004-07-28 | 2008-08-05 | Ethicon Endo-Surgery, Inc. | Electroactive polymer-based actuation mechanism for multi-fire surgical fastening instrument |
US7857183B2 (en) | 2004-07-28 | 2010-12-28 | Ethicon Endo-Surgery, Inc. | Surgical instrument incorporating an electrically actuated articulation mechanism |
US7354447B2 (en) | 2005-11-10 | 2008-04-08 | Ethicon Endo-Surgery, Inc. | Disposable loading unit and surgical instruments including same |
US7862579B2 (en) | 2004-07-28 | 2011-01-04 | Ethicon Endo-Surgery, Inc. | Electroactive polymer-based articulation mechanism for grasper |
US7210609B2 (en) | 2004-07-30 | 2007-05-01 | Tools For Surgery, Llc | Stapling apparatus having a curved anvil and driver |
WO2006015319A2 (en) | 2004-07-30 | 2006-02-09 | Power Medical Interventions, Inc. | Flexible shaft extender and method of using same |
DE102004038414A1 (de) | 2004-07-30 | 2006-03-23 | Aesculap Ag & Co. Kg | Chirurgische Maschine und Verfahren zum Betreiben einer chirurgischen Maschine |
DE202004012389U1 (de) | 2004-07-30 | 2004-09-30 | Aesculap Ag & Co. Kg | Chirurgische Maschine |
DE102004038415A1 (de) | 2004-07-30 | 2006-03-23 | Aesculap Ag & Co. Kg | Chirurgische Maschine und Verfahren zum Steuern und/oder Regeln einer chirurgischen Maschine |
CN101061238B (zh) | 2004-08-06 | 2013-11-20 | 健泰科生物技术公司 | 使用生物标志的测定法和方法 |
CN2716900Y (zh) | 2004-08-09 | 2005-08-10 | 陈永 | 新感觉鼠标 |
US7779737B2 (en) | 2004-08-12 | 2010-08-24 | The Chisel Works, LLC. | Multi-axis panel saw |
JP2008510515A (ja) | 2004-08-17 | 2008-04-10 | タイコ ヘルスケア グループ エルピー | ステープル留め支持構造物 |
US7395116B2 (en) | 2004-08-19 | 2008-07-01 | Medtronic, Inc. | Lead body-to-connector transition zone |
EP1778752B1 (en) | 2004-08-19 | 2012-02-15 | Tyco Healthcare Group LP | Water-swellable copolymers and articles and coating made therefrom |
US7644016B2 (en) | 2004-08-25 | 2010-01-05 | Warsaw Orthopedic, Inc. | Automated pass-through surgical instrument tray reader |
DE102004041871B4 (de) | 2004-08-27 | 2014-01-30 | W.O.M. World Of Medicine Ag | Verfahren zur Herstellung einer autoklavierbaren Fernbedienung und autoklavierbare Fernbedienung |
US7182239B1 (en) | 2004-08-27 | 2007-02-27 | Myers Stephan R | Segmented introducer device for a circular surgical stapler |
US8157839B2 (en) | 2004-08-31 | 2012-04-17 | Wadsworth Medical Technologies, Inc. | Systems and methods for closing a tissue opening |
US8657808B2 (en) | 2004-08-31 | 2014-02-25 | Medtronic, Inc. | Surgical apparatus including a hand-activated, cable assembly and method of using same |
US7553275B2 (en) | 2004-08-31 | 2009-06-30 | Surgical Solutions Llc | Medical device with articulating shaft |
DE102004042886A1 (de) | 2004-09-04 | 2006-03-30 | Roche Diagnostics Gmbh | Lanzettenvorrichtung zum Erzeugen einer Einstichwunde |
US8066158B2 (en) | 2004-09-05 | 2011-11-29 | Gateway Plastics, Inc. | Closure for a container |
US7128254B2 (en) | 2004-09-07 | 2006-10-31 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating a multistroke firing mechanism having a rotary slip-clutch transmission |
BRPI0419039B8 (pt) | 2004-09-10 | 2021-06-22 | Ethicon Endo Surgery Inc | instrumento de grampeamento cirúrgico |
KR100646762B1 (ko) | 2004-09-10 | 2006-11-23 | 인하대학교 산학협력단 | 수술용 스테이플 및 이를 구비한 수술용 자동 문합기 |
US7162758B2 (en) | 2004-09-14 | 2007-01-16 | Skinner Lyle J | Multipurpose gripping tool |
JP2006081687A (ja) | 2004-09-15 | 2006-03-30 | Max Co Ltd | 医療用ステープラ |
US7391164B2 (en) | 2004-09-15 | 2008-06-24 | Research In Motion Limited | Visual notification methods for candy-bar type cellphones |
CA2581009C (en) | 2004-09-15 | 2011-10-04 | Synthes (U.S.A.) | Calibrating device |
US8123764B2 (en) | 2004-09-20 | 2012-02-28 | Endoevolution, Llc | Apparatus and method for minimally invasive suturing |
GB0519252D0 (en) | 2005-09-21 | 2005-10-26 | Dezac Ltd | Laser hair removal device |
US7540872B2 (en) | 2004-09-21 | 2009-06-02 | Covidien Ag | Articulating bipolar electrosurgical instrument |
US20070055305A1 (en) | 2004-09-23 | 2007-03-08 | Guido Schnyder | Biodegradable and/or bioabsorbable member for vascular sealing |
US7336184B2 (en) | 2004-09-24 | 2008-02-26 | Intel Corporation | Inertially controlled switch and RFID tag |
US20070016272A1 (en) | 2004-09-27 | 2007-01-18 | Thompson Russell B | Systems and methods for treating a hollow anatomical structure |
US7422582B2 (en) | 2004-09-29 | 2008-09-09 | Stryker Corporation | Control console to which powered surgical handpieces are connected, the console configured to simultaneously energize more than one and less than all of the handpieces |
US9261172B2 (en) | 2004-09-30 | 2016-02-16 | Intuitive Surgical Operations, Inc. | Multi-ply strap drive trains for surgical robotic arms |
US10646292B2 (en) | 2004-09-30 | 2020-05-12 | Intuitive Surgical Operations, Inc. | Electro-mechanical strap stack in robotic arms |
UA88321C2 (ru) | 2004-09-30 | 2009-10-12 | Ковалон Текнолоджиз Инк. | Неадгезивные эластичные желатиновые матрицы |
CN100522076C (zh) | 2004-09-30 | 2009-08-05 | 伊西康内外科公司 | 外科缝合器械 |
US20070187857A1 (en) | 2004-09-30 | 2007-08-16 | Riley Susan L | Methods for making and using composites, polymer scaffolds, and composite scaffolds |
FR2876020B1 (fr) | 2004-10-06 | 2007-03-09 | Sofradim Production Sa | Appareil de stockage, distribution et pose d'attaches chirurgicales |
US20120046547A1 (en) | 2004-10-06 | 2012-02-23 | Guided Therapy Systems, Llc | System and method for cosmetic treatment |
USD541418S1 (en) | 2004-10-06 | 2007-04-24 | Sherwood Services Ag | Lung sealing device |
US8409222B2 (en) | 2004-10-08 | 2013-04-02 | Covidien Lp | Endoscopic surgical clip applier |
US7819886B2 (en) | 2004-10-08 | 2010-10-26 | Tyco Healthcare Group Lp | Endoscopic surgical clip applier |
US9763668B2 (en) | 2004-10-08 | 2017-09-19 | Covidien Lp | Endoscopic surgical clip applier |
WO2006042076A2 (en) | 2004-10-08 | 2006-04-20 | Tyco Healthcare Group Lp | An endoscopic surgical clip applier |
ES2598134T3 (es) | 2004-10-08 | 2017-01-25 | Ethicon Endo-Surgery, Llc | Instrumento ultrasónico quirúrgico |
ES2616731T3 (es) | 2004-10-08 | 2017-06-14 | Covidien Lp | Aparato para aplicar sujetadores quirúrgicos |
WO2006044581A2 (en) | 2004-10-13 | 2006-04-27 | Medtronic, Inc. | Single-use transurethral needle ablation device |
US8372094B2 (en) | 2004-10-15 | 2013-02-12 | Covidien Lp | Seal element for anastomosis |
US8257356B2 (en) | 2004-10-15 | 2012-09-04 | Baxano, Inc. | Guidewire exchange systems to treat spinal stenosis |
US20100331883A1 (en) | 2004-10-15 | 2010-12-30 | Schmitz Gregory P | Access and tissue modification systems and methods |
US7857813B2 (en) | 2006-08-29 | 2010-12-28 | Baxano, Inc. | Tissue access guidewire system and method |
US7938307B2 (en) | 2004-10-18 | 2011-05-10 | Tyco Healthcare Group Lp | Support structures and methods of using the same |
EP1804681B1 (en) | 2004-10-18 | 2012-08-15 | Tyco Healthcare Group LP | Annular adhesive structure |
US7717313B2 (en) | 2004-10-18 | 2010-05-18 | Tyco Healthcare Group Lp | Surgical apparatus and structure for applying sprayable wound treatment material |
US7455682B2 (en) | 2004-10-18 | 2008-11-25 | Tyco Healthcare Group Lp | Structure containing wound treatment material |
US7845536B2 (en) | 2004-10-18 | 2010-12-07 | Tyco Healthcare Group Lp | Annular adhesive structure |
WO2006044810A2 (en) | 2004-10-18 | 2006-04-27 | Tyco Healthcare Group, Lp | Surgical fasteners coated with wound treatment materials |
WO2006044693A2 (en) | 2004-10-18 | 2006-04-27 | Black & Decker Inc. | Cordless power system |
AU2005295476B2 (en) | 2004-10-18 | 2011-03-24 | Covidien Lp | Extraluminal sealant applicator and method |
ES2654250T3 (es) | 2004-10-18 | 2018-02-12 | Covidien Lp | Estructura para aplicar material rociable de tratamiento de heridas |
WO2006049852A2 (en) | 2004-10-18 | 2006-05-11 | Tyco Healthcare Group, Lp | Apparatus for applying wound treatment material using tissue-penetrating needles |
US9070068B2 (en) | 2004-10-19 | 2015-06-30 | Michael E. Coveley | Passive tamper-resistant seal and applications therefor |
DE102004052204A1 (de) | 2004-10-19 | 2006-05-04 | Karl Storz Gmbh & Co. Kg | Auslenkbares endoskopisches Instrument |
US8128662B2 (en) | 2004-10-20 | 2012-03-06 | Vertiflex, Inc. | Minimally invasive tooling for delivery of interspinous spacer |
US7582086B2 (en) | 2004-10-20 | 2009-09-01 | Atricure, Inc. | Surgical clamp |
PL2345430T3 (pl) | 2004-10-20 | 2016-05-31 | Ethicon Inc | Wzmocniony, absorbowalny, wielowarstwowy materiał do zastosowania w wyrobach medycznych oraz sposób jego wytwarzania |
US20060087746A1 (en) | 2004-10-22 | 2006-04-27 | Kenneth Lipow | Remote augmented motor-sensory interface for surgery |
US9463012B2 (en) | 2004-10-26 | 2016-10-11 | P Tech, Llc | Apparatus for guiding and positioning an implant |
US20060086032A1 (en) | 2004-10-27 | 2006-04-27 | Joseph Valencic | Weapon and input device to record information |
US10201305B2 (en) | 2004-11-02 | 2019-02-12 | Medtronic, Inc. | Apparatus for data retention in an implantable medical device |
US20060097699A1 (en) | 2004-11-05 | 2006-05-11 | Mathews Associates, Inc. | State of charge indicator for battery |
KR20060046933A (ko) | 2004-11-12 | 2006-05-18 | 노틸러스효성 주식회사 | 핀패드 모듈의 보호장치 |
US20060106369A1 (en) | 2004-11-12 | 2006-05-18 | Desai Jaydev P | Haptic interface for force reflection in manipulation tasks |
US20060226957A1 (en) | 2004-11-15 | 2006-10-12 | Miller Ronald H | Health care operating system with radio frequency information transfer |
CN2738962Y (zh) | 2004-11-15 | 2005-11-09 | 胡建坤 | 电动剃须刀及带有充电器的电动剃须刀 |
US7492261B2 (en) | 2004-11-22 | 2009-02-17 | Warsaw Orthopedic, Inc. | Control system for an RFID-based system for assembling and verifying outbound surgical equipment corresponding to a particular surgery |
US7641671B2 (en) | 2004-11-22 | 2010-01-05 | Design Standards Corporation | Closing assemblies for clamping device |
EP1838223A2 (en) | 2004-11-23 | 2007-10-03 | Novare Surgical Systems, Inc. | Articulating mechanisms and link systems with torque transmission in remote manipulation of instruments and tools |
US9700334B2 (en) | 2004-11-23 | 2017-07-11 | Intuitive Surgical Operations, Inc. | Articulating mechanisms and link systems with torque transmission in remote manipulation of instruments and tools |
US7182763B2 (en) | 2004-11-23 | 2007-02-27 | Instrasurgical, Llc | Wound closure device |
GB0425843D0 (en) | 2004-11-24 | 2004-12-29 | Gyrus Group Plc | An electrosurgical instrument |
US7255012B2 (en) | 2004-12-01 | 2007-08-14 | Rosemount Inc. | Process fluid flow device with variable orifice |
CA2526541C (en) | 2004-12-01 | 2013-09-03 | Tyco Healthcare Group Lp | Novel biomaterial drug delivery and surface modification compositions |
EP1827615A1 (en) | 2004-12-02 | 2007-09-05 | Baylor University | Exercise circuit system and method |
JP2006158525A (ja) | 2004-12-03 | 2006-06-22 | Olympus Medical Systems Corp | 超音波手術装置及び超音波処置具の駆動方法 |
WO2006063156A1 (en) | 2004-12-09 | 2006-06-15 | Stryker Corporation | Wireless system for providing instrument and implant data to a surgical navigation unit |
US7328829B2 (en) | 2004-12-13 | 2008-02-12 | Niti Medical Technologies Ltd. | Palm size surgical stapler for single hand operation |
US7121446B2 (en) | 2004-12-13 | 2006-10-17 | Niti Medical Technologies Ltd. | Palm-size surgical stapler for single hand operation |
US7568619B2 (en) | 2004-12-15 | 2009-08-04 | Alcon, Inc. | System and method for identifying and controlling ophthalmic surgical devices and components |
US7384403B2 (en) | 2004-12-17 | 2008-06-10 | Depuy Products, Inc. | Wireless communication system for transmitting information from a medical device |
US7678121B1 (en) | 2004-12-23 | 2010-03-16 | Cardica, Inc. | Surgical stapling tool |
US7896869B2 (en) | 2004-12-29 | 2011-03-01 | Depuy Products, Inc. | System and method for ensuring proper medical instrument use in an operating room |
US20060142772A1 (en) | 2004-12-29 | 2006-06-29 | Ralph James D | Surgical fasteners and related implant devices having bioabsorbable components |
US7611474B2 (en) | 2004-12-29 | 2009-11-03 | Ethicon Endo-Surgery, Inc. | Core sampling biopsy device with short coupled MRI-compatible driver |
US7419321B2 (en) | 2005-01-05 | 2008-09-02 | Misha Tereschouk | Hand applicator of encapsulated liquids |
US7118020B2 (en) | 2005-01-05 | 2006-10-10 | Chung-Heng Lee | Stapler |
US8182422B2 (en) | 2005-12-13 | 2012-05-22 | Avantis Medical Systems, Inc. | Endoscope having detachable imaging device and method of using |
US7713542B2 (en) | 2005-01-14 | 2010-05-11 | Ada Foundation | Three dimensional cell protector/pore architecture formation for bone and tissue constructs |
US7686804B2 (en) | 2005-01-14 | 2010-03-30 | Covidien Ag | Vessel sealer and divider with rotating sealer and cutter |
JP4681961B2 (ja) | 2005-01-14 | 2011-05-11 | オリンパスメディカルシステムズ株式会社 | 外科用処置具 |
US20060161185A1 (en) | 2005-01-14 | 2006-07-20 | Usgi Medical Inc. | Methods and apparatus for transmitting force to an end effector over an elongate member |
WO2006079260A1 (fr) | 2005-01-26 | 2006-08-03 | Suzhou Touchstone International Medical Science Co., Ltd | Tete de coupe rotative d’agrafeuse chirurgicale automatique |
US20060167471A1 (en) | 2005-01-27 | 2006-07-27 | Vector Surgical | Surgical marker |
US20060173470A1 (en) | 2005-01-31 | 2006-08-03 | Oray B N | Surgical fastener buttress material |
US20060176031A1 (en) | 2005-02-04 | 2006-08-10 | Ess Technology, Inc. | Dual output switching regulator and method of operation |
US20060176242A1 (en) | 2005-02-08 | 2006-08-10 | Blue Belt Technologies, Inc. | Augmented reality device and method |
US8007440B2 (en) | 2005-02-08 | 2011-08-30 | Volcano Corporation | Apparatus and methods for low-cost intravascular ultrasound imaging and for crossing severe vascular occlusions |
WO2006085389A1 (en) | 2005-02-09 | 2006-08-17 | Johnson & Johnson Kabushiki Kaisha | Stapling instrument |
EP1690638A1 (en) | 2005-02-09 | 2006-08-16 | BLACK & DECKER INC. | Power tool gear-train and torque overload clutch therefor |
JP2006218129A (ja) | 2005-02-10 | 2006-08-24 | Olympus Corp | 手術支援システム |
US7706853B2 (en) | 2005-02-10 | 2010-04-27 | Terumo Cardiovascular Systems Corporation | Near infrared spectroscopy device with reusable portion |
GB2423199B (en) | 2005-02-11 | 2009-05-13 | Pa Consulting Services | Power supply systems for electrical devices |
EP1854170B8 (en) | 2005-02-11 | 2018-10-17 | Meggitt SA | Microstrip patch antenna for high temperature environments |
JP2006218228A (ja) | 2005-02-14 | 2006-08-24 | Olympus Corp | バッテリユニット、そのバッテリユニットを有するバッテリ装置、医療機器および内視鏡 |
US20060180633A1 (en) | 2005-02-17 | 2006-08-17 | Tyco Healthcare Group, Lp | Surgical staple |
US20060289602A1 (en) | 2005-06-23 | 2006-12-28 | Ethicon Endo-Surgery, Inc. | Surgical instrument with articulating shaft with double pivot closure and single pivot frame ground |
US7559452B2 (en) | 2005-02-18 | 2009-07-14 | Ethicon Endo-Surgery, Inc. | Surgical instrument having fluid actuated opposing jaws |
US7654431B2 (en) | 2005-02-18 | 2010-02-02 | Ethicon Endo-Surgery, Inc. | Surgical instrument with guided laterally moving articulation member |
US7780054B2 (en) | 2005-02-18 | 2010-08-24 | Ethicon Endo-Surgery, Inc. | Surgical instrument with laterally moved shaft actuator coupled to pivoting articulation joint |
US7572285B2 (en) | 2005-02-18 | 2009-08-11 | Smiths Medical Asd, Inc. | System for providing actuated optimal inflation to multiple temperature regulated blankets and method therefor |
US7559450B2 (en) | 2005-02-18 | 2009-07-14 | Ethicon Endo-Surgery, Inc. | Surgical instrument incorporating a fluid transfer controlled articulation mechanism |
US7784662B2 (en) | 2005-02-18 | 2010-08-31 | Ethicon Endo-Surgery, Inc. | Surgical instrument with articulating shaft with single pivot closure and double pivot frame ground |
US7878981B2 (en) | 2005-03-01 | 2011-02-01 | Checkpoint Surgical, Llc | Systems and methods for intra-operative stimulation |
GB2423931B (en) | 2005-03-03 | 2009-08-26 | Michael John Radley Young | Ultrasonic cutting tool |
US7699846B2 (en) | 2005-03-04 | 2010-04-20 | Gyrus Ent L.L.C. | Surgical instrument and method |
WO2006096686A1 (en) | 2005-03-04 | 2006-09-14 | C.R. Bard, Inc. | Access port identification systems and methods |
US7674263B2 (en) | 2005-03-04 | 2010-03-09 | Gyrus Ent, L.L.C. | Surgical instrument and method |
US20060217729A1 (en) | 2005-03-09 | 2006-09-28 | Brasseler Usa Medical Llc | Surgical apparatus and tools for same |
US20060206100A1 (en) | 2005-03-09 | 2006-09-14 | Brasseler Usa Medical Llc | Surgical apparatus and power module for same, and a method of preparing a surgical apparatus |
US20060201989A1 (en) | 2005-03-11 | 2006-09-14 | Ojeda Herminio F | Surgical anvil and system for deploying the same |
US7064509B1 (en) | 2005-03-14 | 2006-06-20 | Visteon Global Technologies, Inc. | Apparatus for DC motor position detection with capacitive ripple current extraction |
US20070203510A1 (en) | 2006-02-28 | 2007-08-30 | Bettuchi Michael J | Annular disk for reduction of anastomotic tension and methods of using the same |
AU2012200178B2 (en) | 2005-03-15 | 2013-07-11 | Covidien Lp | Anastomosis composite gasket |
US9364229B2 (en) | 2005-03-15 | 2016-06-14 | Covidien Lp | Circular anastomosis structures |
US7942890B2 (en) | 2005-03-15 | 2011-05-17 | Tyco Healthcare Group Lp | Anastomosis composite gasket |
US7431230B2 (en) | 2005-03-16 | 2008-10-07 | Medtronic Ps Medical, Inc. | Apparatus and method for bone morselization for surgical grafting |
CN2785249Y (zh) | 2005-03-16 | 2006-05-31 | 刘文辉 | 一种h桥串联电压型逆变器中h桥功率模块的旁路电路 |
US7784663B2 (en) | 2005-03-17 | 2010-08-31 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having load sensing control circuitry |
EP1885258A2 (en) | 2005-03-17 | 2008-02-13 | Stryker Corporation | Surgical tool arrangement |
JP4887838B2 (ja) | 2005-03-18 | 2012-02-29 | 株式会社ジェイ・エム・エス | 多孔質体の製造方法およびそれを用いた多孔質体 |
US7116100B1 (en) | 2005-03-21 | 2006-10-03 | Hr Textron, Inc. | Position sensing for moveable mechanical systems and associated methods and apparatus |
CN2796654Y (zh) | 2005-03-21 | 2006-07-19 | 强生(上海)医疗器材有限公司 | 直线型切割缝合器 |
EP1861022A2 (en) | 2005-03-22 | 2007-12-05 | Atropos Limited | A surgical instrument |
US20060252993A1 (en) | 2005-03-23 | 2006-11-09 | Freed David I | Medical devices and systems |
US7918848B2 (en) | 2005-03-25 | 2011-04-05 | Maquet Cardiovascular, Llc | Tissue welding and cutting apparatus and method |
US7670337B2 (en) | 2005-03-25 | 2010-03-02 | Boston Scientific Scimed, Inc. | Ablation probe having a plurality of arrays of electrodes |
EP1707153B1 (en) | 2005-03-29 | 2012-02-01 | Kabushiki Kaisha Toshiba | Manipulator |
JP2006271697A (ja) | 2005-03-29 | 2006-10-12 | Fujinon Corp | 電子内視鏡 |
US8945095B2 (en) | 2005-03-30 | 2015-02-03 | Intuitive Surgical Operations, Inc. | Force and torque sensing for surgical instruments |
US9138226B2 (en) | 2005-03-30 | 2015-09-22 | Covidien Lp | Cartridge assembly for a surgical stapling device |
JP4857585B2 (ja) | 2005-04-04 | 2012-01-18 | 日立工機株式会社 | コードレス電動工具 |
US7780055B2 (en) | 2005-04-06 | 2010-08-24 | Tyco Healthcare Group Lp | Loading unit having drive assembly locking mechanism |
US7408310B2 (en) | 2005-04-08 | 2008-08-05 | Lg Electronics Inc. | Apparatus for controlling driving of reciprocating compressor and method thereof |
US20060241691A1 (en) | 2005-04-12 | 2006-10-26 | Wilk Patent, Llc | Medical treatment method and device utilizing magnetic elements |
US7211979B2 (en) | 2005-04-13 | 2007-05-01 | The Broad Of Trustees Of The Leland Stanford Junior University | Torque-position transformer for task control of position controlled robots |
US7297149B2 (en) | 2005-04-14 | 2007-11-20 | Ethicon Endo-Surgery, Inc. | Surgical clip applier methods |
US8038686B2 (en) | 2005-04-14 | 2011-10-18 | Ethicon Endo-Surgery, Inc. | Clip applier configured to prevent clip fallout |
US7731724B2 (en) | 2005-04-14 | 2010-06-08 | Ethicon Endo-Surgery, Inc. | Surgical clip advancement and alignment mechanism |
US8523882B2 (en) | 2005-04-14 | 2013-09-03 | Ethicon Endo-Surgery, Inc. | Clip advancer mechanism with alignment features |
US7699860B2 (en) | 2005-04-14 | 2010-04-20 | Ethicon Endo-Surgery, Inc. | Surgical clip |
EP1868485B1 (en) | 2005-04-15 | 2016-06-08 | Surgisense Corporation | Surgical instruments with sensors for detecting tissue properties, and systems using such instruments |
WO2006111173A1 (de) | 2005-04-16 | 2006-10-26 | Aesculap Ag & Co. Kg | Chirurgische maschine und verfahren zum steuern und/oder regeln einer chirurgischen maschine |
AU2006239877B2 (en) | 2005-04-21 | 2012-11-01 | Boston Scientific Scimed, Inc. | Control methods and devices for energy delivery |
CA2603773A1 (en) | 2005-04-26 | 2006-11-02 | Rimon Therapeutics Ltd. | Pro-angiogenic polymer scaffolds |
WO2006116392A2 (en) | 2005-04-27 | 2006-11-02 | The Regents Of The University Of Michigan | Particle-containing complex porous materials |
US7837694B2 (en) | 2005-04-28 | 2010-11-23 | Warsaw Orthopedic, Inc. | Method and apparatus for surgical instrument identification |
US20060244460A1 (en) | 2005-04-29 | 2006-11-02 | Weaver Jeffrey S | System and method for battery management |
US8084001B2 (en) | 2005-05-02 | 2011-12-27 | Cornell Research Foundation, Inc. | Photoluminescent silica-based sensors and methods of use |
DE102005020377B4 (de) | 2005-05-02 | 2021-08-12 | Robert Bosch Gmbh | Verfahren zum Betreiben einer Elektrowerkzeugmaschine |
US20100012703A1 (en) | 2005-05-05 | 2010-01-21 | Allison Calabrese | Surgical Gasket |
US20100016888A1 (en) | 2005-05-05 | 2010-01-21 | Allison Calabrese | Surgical Gasket |
US20100100124A1 (en) | 2005-05-05 | 2010-04-22 | Tyco Healthcare Group Lp | Bioabsorbable surgical composition |
US20090177226A1 (en) | 2005-05-05 | 2009-07-09 | Jon Reinprecht | Bioabsorbable Surgical Compositions |
US7418078B2 (en) | 2005-05-06 | 2008-08-26 | Siemens Medical Solutions Usa, Inc. | Spot-size effect reduction |
US20060252990A1 (en) | 2005-05-06 | 2006-11-09 | Melissa Kubach | Systems and methods for endoscope integrity testing |
US7806871B2 (en) | 2005-05-09 | 2010-10-05 | Boston Scientific Scimed, Inc. | Method and device for tissue removal and for delivery of a therapeutic agent or bulking agent |
US7976508B2 (en) | 2005-05-10 | 2011-07-12 | Carefusion 303, Inc. | Medication safety system featuring a multiplexed RFID interrogator panel |
EP1885259B1 (en) | 2005-05-11 | 2016-08-17 | Mayo Foundation For Medical Education And Research | Apparatus for internal surgical procedures |
JP4339275B2 (ja) | 2005-05-12 | 2009-10-07 | 株式会社エスティック | インパクト式のネジ締め装置の制御方法および装置 |
US20060258904A1 (en) | 2005-05-13 | 2006-11-16 | David Stefanchik | Feeding tube and track |
US7648457B2 (en) | 2005-05-13 | 2010-01-19 | Ethicon Endo-Surgery, Inc. | Method of positioning a device on an endoscope |
US8108072B2 (en) | 2007-09-30 | 2012-01-31 | Intuitive Surgical Operations, Inc. | Methods and systems for robotic instrument tool tracking with adaptive fusion of kinematics information and image information |
JP2006320720A (ja) | 2005-05-17 | 2006-11-30 | Ethicon Endo Surgery Inc | プラスチック製の閉鎖プレートを有する手術用ステープラー |
DE102006023187B4 (de) | 2005-05-17 | 2020-02-27 | Milwaukee Electric Tool Corp. | Verfahren zum Betreiben eines Batterieladegeräts sowie eine Kombination, welche eine Batterie und ein Batterieladegerät aufweist |
US7415827B2 (en) | 2005-05-18 | 2008-08-26 | United Technologies Corporation | Arrangement for controlling fluid jets injected into a fluid stream |
DE102005000062A1 (de) | 2005-05-18 | 2006-11-23 | Hilti Ag | Elektrisch betriebenes Eintreibgerät |
US20060263444A1 (en) | 2005-05-19 | 2006-11-23 | Xintian Ming | Antimicrobial composition |
US7682561B2 (en) | 2005-05-19 | 2010-03-23 | Sage Products, Inc. | Needleless hub disinfection device and method |
US8840876B2 (en) | 2005-05-19 | 2014-09-23 | Ethicon, Inc. | Antimicrobial polymer compositions and the use thereof |
US7758594B2 (en) | 2005-05-20 | 2010-07-20 | Neotract, Inc. | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
US20060270916A1 (en) | 2005-05-20 | 2006-11-30 | Medtronic, Inc. | Portable therapy delivery device with a removable connector board |
US8157815B2 (en) | 2005-05-20 | 2012-04-17 | Neotract, Inc. | Integrated handle assembly for anchor delivery system |
US20060261763A1 (en) | 2005-05-23 | 2006-11-23 | Masco Corporation | Brushed motor position control based upon back current detection |
CA2508161C (en) | 2005-05-24 | 2010-03-30 | Lawrence Wayne Vereschagin | Automatic banding device and method |
WO2006125940A1 (en) | 2005-05-25 | 2006-11-30 | Gyrus Medical, Inc. | A surgical instrument |
US20060271042A1 (en) | 2005-05-26 | 2006-11-30 | Gyrus Medical, Inc. | Cutting and coagulating electrosurgical forceps having cam controlled jaw closure |
JP2006334029A (ja) | 2005-05-31 | 2006-12-14 | Olympus Medical Systems Corp | 外科用手術装置 |
DE202005009061U1 (de) | 2005-05-31 | 2006-10-12 | Karl Storz Gmbh & Co. Kg | Clip und Clipsetzer zum Verschließen von Blutgefäßen |
CA2838528C (en) | 2005-06-02 | 2016-01-05 | Tyco Healthcare Group Lp | Multiple coil staple and staple applier |
CA2549224A1 (en) | 2005-06-02 | 2006-12-02 | Tyco Healthcare Group Lp | Expandable backspan staple |
AU2012203035B2 (en) | 2005-06-03 | 2014-10-23 | Covidien Lp | Surgical stapler with timer and feedback display |
EP3738521B1 (en) * | 2005-06-03 | 2023-10-18 | Covidien LP | Surgical stapler with timer and feedback display |
US20060276726A1 (en) | 2005-06-03 | 2006-12-07 | Holsten Henry E | Tissue tension detection system |
US11291443B2 (en) | 2005-06-03 | 2022-04-05 | Covidien Lp | Surgical stapler with timer and feedback display |
AU2006344427B2 (en) | 2005-06-03 | 2012-03-01 | Covidien Lp | Surgical stapler with timer and feedback display |
US7717312B2 (en) | 2005-06-03 | 2010-05-18 | Tyco Healthcare Group Lp | Surgical instruments employing sensors |
US7909191B2 (en) | 2005-06-03 | 2011-03-22 | Greatbatch Ltd. | Connectable instrument trays for creating a modular case |
MX2007015387A (es) | 2005-06-06 | 2008-02-19 | Lutron Electronics Co | Metodo y aparato para control de velocidad de motor variable silencioso. |
US7824579B2 (en) | 2005-06-07 | 2010-11-02 | E. I. Du Pont De Nemours And Company | Aluminum thick film composition(s), electrode(s), semiconductor device(s) and methods of making thereof |
TW200642841A (en) | 2005-06-08 | 2006-12-16 | Nanoforce Technologies Corp | After glow lighting film having UV filtering and explosion-proof |
US7265374B2 (en) | 2005-06-10 | 2007-09-04 | Arima Computer Corporation | Light emitting semiconductor device |
US7295907B2 (en) | 2005-06-14 | 2007-11-13 | Trw Automotive U.S. Llc | Recovery of calibrated center steering position after loss of battery power |
EP1736112B1 (en) | 2005-06-20 | 2011-08-17 | Heribert Schmid | Medical device |
US7655003B2 (en) | 2005-06-22 | 2010-02-02 | Smith & Nephew, Inc. | Electrosurgical power control |
US7638958B2 (en) | 2005-06-28 | 2009-12-29 | Stryker Corporation | Powered surgical tool with control module that contains a sensor for remotely monitoring the tool power generating unit |
KR100846472B1 (ko) | 2005-06-29 | 2008-07-17 | 엘지전자 주식회사 | 리니어 모터 |
US7898198B2 (en) | 2005-06-29 | 2011-03-01 | Drs Test & Energy Management, Llc | Torque controller in an electric motor |
EP3395508A1 (en) | 2005-06-30 | 2018-10-31 | Intuitive Surgical Operations Inc. | Indicator for tool state communication in multi-arm robotic telesurgery |
US9597063B2 (en) | 2006-06-28 | 2017-03-21 | Abbott Laboratories | Expandable introducer sheath to preserve guidewire access |
US20070005002A1 (en) | 2005-06-30 | 2007-01-04 | Intuitive Surgical Inc. | Robotic surgical instruments for irrigation, aspiration, and blowing |
US8273076B2 (en) | 2005-06-30 | 2012-09-25 | Intuitive Surgical Operations, Inc. | Indicator for tool state and communication in multi-arm robotic telesurgery |
US20080312686A1 (en) | 2005-07-01 | 2008-12-18 | Abbott Laboratories | Antimicrobial closure element and closure element applier |
USD605201S1 (en) | 2005-07-01 | 2009-12-01 | Roche Diagnostics Operations, Inc. | Image for a risk evaluation system for a portion of a computer screen |
US7709136B2 (en) | 2005-07-01 | 2010-05-04 | Perimeter Technologies Incorporated | Battery pack assembly |
KR100751733B1 (ko) | 2005-07-07 | 2007-08-24 | 한국과학기술연구원 | 겔 방사 성형법을 이용한 조직공학용 다공성 고분자지지체의 제조 방법 |
JP4879645B2 (ja) | 2005-07-12 | 2012-02-22 | ローム株式会社 | モータ駆動装置及びこれを用いた電気機器 |
US7837685B2 (en) | 2005-07-13 | 2010-11-23 | Covidien Ag | Switch mechanisms for safe activation of energy on an electrosurgical instrument |
US8409175B2 (en) | 2005-07-20 | 2013-04-02 | Woojin Lee | Surgical instrument guide device |
WO2007014215A2 (en) | 2005-07-22 | 2007-02-01 | Berg Howard K | Ultrasonic scalpel device |
JP4756943B2 (ja) | 2005-07-22 | 2011-08-24 | オリンパス株式会社 | 内視鏡用縫合装置 |
US7871416B2 (en) | 2005-07-22 | 2011-01-18 | Phillips Edward H | Clamp device to plicate the stomach |
US7554343B2 (en) | 2005-07-25 | 2009-06-30 | Piezoinnovations | Ultrasonic transducer control method and system |
US7597699B2 (en) | 2005-07-25 | 2009-10-06 | Rogers William G | Motorized surgical handpiece |
US7479608B2 (en) | 2006-05-19 | 2009-01-20 | Ethicon Endo-Surgery, Inc. | Force switch |
US8627993B2 (en) * | 2007-02-12 | 2014-01-14 | Ethicon Endo-Surgery, Inc. | Active braking electrical surgical instrument and method for braking such an instrument |
US7959050B2 (en) | 2005-07-26 | 2011-06-14 | Ethicon Endo-Surgery, Inc | Electrically self-powered surgical instrument with manual release |
US8573462B2 (en) | 2006-05-19 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Electrical surgical instrument with optimized power supply and drive |
US10314583B2 (en) | 2005-07-26 | 2019-06-11 | Ethicon Llc | Electrically self-powered surgical instrument with manual release |
US8627995B2 (en) | 2006-05-19 | 2014-01-14 | Ethicon Endo-Sugery, Inc. | Electrically self-powered surgical instrument with cryptographic identification of interchangeable part |
US9662116B2 (en) | 2006-05-19 | 2017-05-30 | Ethicon, Llc | Electrically self-powered surgical instrument with cryptographic identification of interchangeable part |
JP4336386B2 (ja) | 2005-07-26 | 2009-09-30 | エシコン エンド−サージェリー,インク. | 外科用ステープリング及び切断デバイスおよびこのデバイスの使用方法 |
US8123523B2 (en) | 2005-07-26 | 2012-02-28 | Angstrom Manufacturing, Inc. | Prophy angle and adapter |
US9554803B2 (en) | 2005-07-26 | 2017-01-31 | Ethicon Endo-Surgery, Llc | Electrically self-powered surgical instrument with manual release |
US8679154B2 (en) | 2007-01-12 | 2014-03-25 | Ethicon Endo-Surgery, Inc. | Adjustable compression staple and method for stapling with adjustable compression |
US8579176B2 (en) | 2005-07-26 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Surgical stapling and cutting device and method for using the device |
EP2799014B1 (en) | 2005-07-27 | 2018-09-05 | Covidien LP | Surgical stapler with a drive shaft with optical rotation encoding |
US7815092B2 (en) | 2005-07-27 | 2010-10-19 | Power Medical Interventions, Llc | Staple pocket arrangement for surgical stapler |
EP1912571B1 (en) | 2005-07-27 | 2016-12-21 | Covidien LP | System and method for forming staple pockets of a surgical stapler |
US20070026040A1 (en) | 2005-07-29 | 2007-02-01 | Crawley Jerald M | Composite self-cohered web materials |
US8048503B2 (en) | 2005-07-29 | 2011-11-01 | Gore Enterprise Holdings, Inc. | Highly porous self-cohered web materials |
US20070027551A1 (en) | 2005-07-29 | 2007-02-01 | Farnsworth Ted R | Composite self-cohered web materials |
US7604668B2 (en) | 2005-07-29 | 2009-10-20 | Gore Enterprise Holdings, Inc. | Composite self-cohered web materials |
AU2006276044B2 (en) | 2005-07-29 | 2010-02-11 | W. L. Gore & Associates, Inc. | Highly porous self-cohered web materials having haemostatic properties |
US7655584B2 (en) | 2005-07-29 | 2010-02-02 | Gore Enterprise Holdings, Inc. | Highly porous self-cohered web materials |
US20070155010A1 (en) | 2005-07-29 | 2007-07-05 | Farnsworth Ted R | Highly porous self-cohered fibrous tissue engineering scaffold |
US7655288B2 (en) | 2005-07-29 | 2010-02-02 | Gore Enterprise Holdings, Inc. | Composite self-cohered web materials |
US20070026039A1 (en) | 2005-07-29 | 2007-02-01 | Drumheller Paul D | Composite self-cohered web materials |
RU2008107767A (ru) | 2005-07-29 | 2009-09-10 | Алькон, Инк. (Ch) | Способ и система для конфигурирования и наполнения данными хирургического устройства |
US20070027468A1 (en) | 2005-08-01 | 2007-02-01 | Wales Kenneth S | Surgical instrument with an articulating shaft locking mechanism |
WO2007014580A1 (en) | 2005-08-01 | 2007-02-08 | Laboratorios Miret, S.A. | Preservative systems comprising cationic surfactants |
JP4675709B2 (ja) | 2005-08-03 | 2011-04-27 | 株式会社リコー | 光走査装置及び画像形成装置 |
US7641092B2 (en) | 2005-08-05 | 2010-01-05 | Ethicon Endo - Surgery, Inc. | Swing gate for device lockout in a curved cutter stapler |
US7559937B2 (en) | 2005-08-09 | 2009-07-14 | Towertech Research Group | Surgical fastener apparatus and reinforcing material |
US7101187B1 (en) | 2005-08-11 | 2006-09-05 | Protex International Corp. | Rotatable electrical connector |
US8579178B2 (en) | 2005-08-15 | 2013-11-12 | Covidien Lp | Surgical stapling instruments including a cartridge having multiple staples sizes |
US7398908B2 (en) | 2005-08-15 | 2008-07-15 | Tyco Healthcare Group Lp | Surgical stapling instruments including a cartridge having multiple staple sizes |
US7407075B2 (en) | 2005-08-15 | 2008-08-05 | Tyco Healthcare Group Lp | Staple cartridge having multiple staple sizes for a surgical stapling instrument |
US7401721B2 (en) | 2005-08-15 | 2008-07-22 | Tyco Healthcare Group Lp | Surgical stapling instruments including a cartridge having multiple staple sizes |
US7388484B2 (en) | 2005-08-16 | 2008-06-17 | Honeywell International Inc. | Conductive tamper switch for security devices |
DE102005038919A1 (de) | 2005-08-17 | 2007-03-15 | BSH Bosch und Siemens Hausgeräte GmbH | Elektromotorisches Küchengerät mit elektrischer oder elektronischer Verriegelung |
US7771440B2 (en) | 2005-08-18 | 2010-08-10 | Ethicon Endo-Surgery, Inc. | Method and apparatus for endoscopically performing gastric reduction surgery in a single pass |
JP4402629B2 (ja) | 2005-08-19 | 2010-01-20 | オリンパスメディカルシステムズ株式会社 | 超音波凝固切開装置 |
US8657814B2 (en) | 2005-08-22 | 2014-02-25 | Medtronic Ablation Frontiers Llc | User interface for tissue ablation system |
EP1924197B1 (en) | 2005-08-24 | 2017-10-11 | Philips Electronics LTD | System for navigated flexible endoscopy |
US7419495B2 (en) | 2005-08-25 | 2008-09-02 | Microline Pentax Inc. | Trigger lockout device for clip applying instrument |
US7828794B2 (en) | 2005-08-25 | 2010-11-09 | Covidien Ag | Handheld electrosurgical apparatus for controlling operating room equipment |
US20080177392A1 (en) | 2005-08-30 | 2008-07-24 | Williams Michael S | Closed system artificial intervertebral disc |
US7500979B2 (en) | 2005-08-31 | 2009-03-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling device with multiple stacked actuator wedge cams for driving staple drivers |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US8800838B2 (en) | 2005-08-31 | 2014-08-12 | Ethicon Endo-Surgery, Inc. | Robotically-controlled cable-based surgical end effectors |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US7673781B2 (en) | 2005-08-31 | 2010-03-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling device with staple driver that supports multiple wire diameter staples |
US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
CN2815700Y (zh) | 2005-09-01 | 2006-09-13 | 煜日升电子(深圳)有限公司 | 电动订书机 |
US20070051375A1 (en) | 2005-09-06 | 2007-03-08 | Milliman Keith L | Instrument introducer |
US7778004B2 (en) | 2005-09-13 | 2010-08-17 | Taser International, Inc. | Systems and methods for modular electronic weaponry |
JP2009507617A (ja) | 2005-09-14 | 2009-02-26 | ネオガイド システムズ, インコーポレイテッド | 経腔的及び他の操作を行うための方法及び装置 |
CA2520413C (en) | 2005-09-21 | 2016-10-11 | Sherwood Services Ag | Bipolar forceps with multiple electrode array end effector assembly |
US7472815B2 (en) | 2005-09-21 | 2009-01-06 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with collapsible features for controlling staple height |
WO2007033414A1 (en) | 2005-09-21 | 2007-03-29 | Bhc Pharmaceuticals Pty Ltd | Cutting instrument |
US7407078B2 (en) | 2005-09-21 | 2008-08-05 | Ehthicon Endo-Surgery, Inc. | Surgical stapling instrument having force controlled spacing end effector |
EP1767163A1 (en) | 2005-09-22 | 2007-03-28 | Sherwood Services AG | Bipolar forceps with multiple electrode array end effector assembly |
US7772725B2 (en) | 2005-09-22 | 2010-08-10 | Eastman Kodak Company | Apparatus and method for current control in H-Bridge load drivers |
US7691106B2 (en) | 2005-09-23 | 2010-04-06 | Synvasive Technology, Inc. | Transverse acting surgical saw blade |
JP4190530B2 (ja) | 2005-09-26 | 2008-12-03 | オリンパスメディカルシステムズ株式会社 | 超音波診断装置 |
US7451904B2 (en) | 2005-09-26 | 2008-11-18 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having end effector gripping surfaces |
JP2007097252A (ja) | 2005-09-27 | 2007-04-12 | Nayuta:Kk | 電源装置およびその双方向昇降圧コンバータ |
JP4927371B2 (ja) | 2005-09-28 | 2012-05-09 | 興和株式会社 | 眼内レンズ |
KR100699467B1 (ko) | 2005-09-28 | 2007-03-26 | 삼성전자주식회사 | Rf-id 태그, rf-id 사생활보호 시스템 및 그 방법 |
US8079950B2 (en) | 2005-09-29 | 2011-12-20 | Intuitive Surgical Operations, Inc. | Autofocus and/or autoscaling in telesurgery |
US7357287B2 (en) | 2005-09-29 | 2008-04-15 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having preloaded firing assistance mechanism |
US7846161B2 (en) | 2005-09-30 | 2010-12-07 | Covidien Ag | Insulating boot for electrosurgical forceps |
US7722607B2 (en) | 2005-09-30 | 2010-05-25 | Covidien Ag | In-line vessel sealer and divider |
AU2006222756B2 (en) | 2005-09-30 | 2012-09-27 | Ethicon Endo-Surgery, Inc. | Electroactive polymer-based articulation mechanism for linear surgical stapler |
DE102005047320A1 (de) | 2005-09-30 | 2007-04-05 | Biotronik Crm Patent Ag | Detektor für atriales Flimmern und Flattern |
US20080190989A1 (en) | 2005-10-03 | 2008-08-14 | Crews Samuel T | Endoscopic plication device and method |
US9055942B2 (en) | 2005-10-03 | 2015-06-16 | Boston Scienctific Scimed, Inc. | Endoscopic plication devices and methods |
US20070078484A1 (en) | 2005-10-03 | 2007-04-05 | Joseph Talarico | Gentle touch surgical instrument and method of using same |
US7641091B2 (en) | 2005-10-04 | 2010-01-05 | Tyco Healthcare Group Lp | Staple drive assembly |
US7635074B2 (en) | 2005-10-04 | 2009-12-22 | Tyco Healthcare Group Lp | Staple drive assembly |
WO2009050717A2 (en) | 2007-10-17 | 2009-04-23 | Surgical Structure Ltd. | Fixating means between a mesh and mesh deployment means especially useful for hernia repair surgeries and methods thereof |
US8096459B2 (en) | 2005-10-11 | 2012-01-17 | Ethicon Endo-Surgery, Inc. | Surgical stapler with an end effector support |
EP1948112A4 (en) | 2005-10-11 | 2011-04-13 | Podaima Blake | SMART MEDICAL COMPLIANCE PROCESS AND SYSTEM |
CA2563147C (en) | 2005-10-14 | 2014-09-23 | Tyco Healthcare Group Lp | Surgical stapling device |
WO2007044911A1 (en) | 2005-10-14 | 2007-04-19 | Applied Medical Resources Corporation | Method of making a hand access laparoscopic device |
AU2006228045B2 (en) | 2005-10-14 | 2011-11-24 | Covidien Lp | Apparatus for laparoscopic or endoscopic procedures |
US8266232B2 (en) | 2005-10-15 | 2012-09-11 | International Business Machines Corporation | Hardware processing of commands within virtual client computing environment |
US20070173870A2 (en) | 2005-10-18 | 2007-07-26 | Jaime Zacharias | Precision Surgical System |
US7966269B2 (en) | 2005-10-20 | 2011-06-21 | Bauer James D | Intelligent human-machine interface |
US20070244471A1 (en) | 2005-10-21 | 2007-10-18 | Don Malackowski | System and method for managing the operation of a battery powered surgical tool and the battery used to power the tool |
AU2006306465B8 (en) | 2005-10-21 | 2012-03-08 | Stryker Corporation | Rechargeable battery and method of sterilizing such a battery |
US8080004B2 (en) | 2005-10-26 | 2011-12-20 | Earl Downey | Laparoscopic surgical instrument |
US20070103437A1 (en) | 2005-10-26 | 2007-05-10 | Outland Research, Llc | Haptic metering for minimally invasive medical procedures |
US7850623B2 (en) | 2005-10-27 | 2010-12-14 | Boston Scientific Scimed, Inc. | Elongate medical device with continuous reinforcement member |
EP1780867B1 (en) | 2005-10-28 | 2016-11-30 | Black & Decker Inc. | Battery pack for cordless power tools |
US7656131B2 (en) | 2005-10-31 | 2010-02-02 | Black & Decker Inc. | Methods of charging battery packs for cordless power tool systems |
EP2919295B1 (en) | 2005-10-31 | 2018-08-29 | Black & Decker, Inc. | Method of arranging the components of a battery pack |
EP1780937A1 (en) | 2005-11-01 | 2007-05-02 | Black & Decker, Inc. | Method and system for authenticating a smart battery system |
US20070102472A1 (en) | 2005-11-04 | 2007-05-10 | Ethicon Endo-Surgery, Inc. | Electrosurgical stapling instrument with disposable severing / stapling unit |
US7673783B2 (en) | 2005-11-04 | 2010-03-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments structured for delivery of medical agents |
US7607557B2 (en) | 2005-11-04 | 2009-10-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments structured for pump-assisted delivery of medical agents |
US8182444B2 (en) | 2005-11-04 | 2012-05-22 | Medrad, Inc. | Delivery of agents such as cells to tissue |
US7328828B2 (en) | 2005-11-04 | 2008-02-12 | Ethicon Endo-Surgery, Inc, | Lockout mechanisms and surgical instruments including same |
US20070106113A1 (en) | 2005-11-07 | 2007-05-10 | Biagio Ravo | Combination endoscopic operative delivery system |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US7673780B2 (en) | 2005-11-09 | 2010-03-09 | Ethicon Endo-Surgery, Inc. | Articulation joint with improved moment arm extension for articulating an end effector of a surgical instrument |
US7799039B2 (en) | 2005-11-09 | 2010-09-21 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a hydraulically actuated end effector |
CN2868212Y (zh) | 2005-11-11 | 2007-02-14 | 钟李宽 | 随换式腹腔镜手术钳 |
JP5276987B2 (ja) | 2005-11-15 | 2013-08-28 | ザ・ジョンズ・ホプキンス・ユニバーシティー | バイオセンシング及び外科的処置のための能動的カニューレ |
ATE538366T1 (de) | 2005-11-15 | 2012-01-15 | Mettler Toledo Ag | Verfahren zur überwachung und/oder zur bestimmung des zustandes einer kraftmessvorrichtung und kraftmessvorrichtung |
US7272002B2 (en) | 2005-11-16 | 2007-09-18 | Adc Dsl Systems, Inc. | Auxiliary cooling methods and systems for electrical device housings |
WO2007061890A2 (en) | 2005-11-17 | 2007-05-31 | Calypso Medical Technologies, Inc. | Apparatus and methods for using an electromagnetic transponder in orthopedic procedures |
US20070118115A1 (en) | 2005-11-22 | 2007-05-24 | Sherwood Services Ag | Bipolar electrosurgical sealing instrument having an improved tissue gripping device |
US7896895B2 (en) | 2005-11-23 | 2011-03-01 | Ethicon Endo-Surgery, Inc. | Surgical clip and applier device and method of use |
US7651017B2 (en) | 2005-11-23 | 2010-01-26 | Ethicon Endo-Surgery, Inc. | Surgical stapler with a bendable end effector |
DE102005058107A1 (de) | 2005-12-05 | 2007-07-26 | Müller, Erich Johann, Dr. med. | Chirurgisches Bearbeitungswerkzeug |
US7246734B2 (en) | 2005-12-05 | 2007-07-24 | Ethicon Endo-Surgery, Inc. | Rotary hydraulic pump actuated multi-stroke surgical instrument |
EP1957695B1 (en) | 2005-12-07 | 2011-02-09 | Ramot at Tel-Aviv University Ltd. | Drug-delivering composite structures |
US8498691B2 (en) | 2005-12-09 | 2013-07-30 | Hansen Medical, Inc. | Robotic catheter system and methods |
US8190238B2 (en) | 2005-12-09 | 2012-05-29 | Hansen Medical, Inc. | Robotic catheter system and methods |
US20070135686A1 (en) | 2005-12-14 | 2007-06-14 | Pruitt John C Jr | Tools and methods for epicardial access |
CN2868208Y (zh) | 2005-12-14 | 2007-02-14 | 苏州天臣国际医疗科技有限公司 | 设有自动保险机构的圆管型装订仪 |
CN101340852B (zh) | 2005-12-20 | 2011-12-28 | 直观外科手术操作公司 | 机器人外科系统的器械对接装置 |
WO2007075844A1 (en) | 2005-12-20 | 2007-07-05 | Intuitive Surgical, Inc. | Telescoping insertion axis of a robotic surgical system |
US9241767B2 (en) | 2005-12-20 | 2016-01-26 | Intuitive Surgical Operations, Inc. | Method for handling an operator command exceeding a medical device state limitation in a medical robotic system |
US8672922B2 (en) | 2005-12-20 | 2014-03-18 | Intuitive Surgical Operations, Inc. | Wireless communication in a robotic surgical system |
US7464845B2 (en) | 2005-12-22 | 2008-12-16 | Welcome Co., Ltd. | Hand-held staple gun having a safety device |
RU61114U1 (ru) | 2005-12-23 | 2007-02-27 | Мирзакарим Санакулович Норбеков | Аппарат для развития мозговой деятельности |
EP1967305B1 (en) | 2005-12-26 | 2014-11-26 | Nitto Kohki Co., Ltd. | Portable drilling machine |
US20100145146A1 (en) | 2005-12-28 | 2010-06-10 | Envisionier Medical Technologies, Inc. | Endoscopic digital recording system with removable screen and storage device |
WO2007074430A1 (en) | 2005-12-28 | 2007-07-05 | Given Imaging Ltd. | Device, system and method for activation of an in vivo device |
US7930065B2 (en) | 2005-12-30 | 2011-04-19 | Intuitive Surgical Operations, Inc. | Robotic surgery system including position sensors using fiber bragg gratings |
US8628518B2 (en) | 2005-12-30 | 2014-01-14 | Intuitive Surgical Operations, Inc. | Wireless force sensor on a distal portion of a surgical instrument and method |
US7481824B2 (en) | 2005-12-30 | 2009-01-27 | Ethicon Endo-Surgery, Inc. | Surgical instrument with bending articulation controlled articulation pivot joint |
US7553173B2 (en) | 2005-12-30 | 2009-06-30 | Click, Inc. | Vehicle connector lockout apparatus and method of using same |
TWI288526B (en) | 2005-12-30 | 2007-10-11 | Yen Sun Technology Corp | Speed transmission control circuit of a brushless DC motor |
USD552623S1 (en) | 2006-01-04 | 2007-10-09 | Microsoft Corporation | User interface for a portion of a display screen |
US7955257B2 (en) | 2006-01-05 | 2011-06-07 | Depuy Spine, Inc. | Non-rigid surgical retractor |
JP4597871B2 (ja) | 2006-01-05 | 2010-12-15 | 富士フイルム株式会社 | デジタルカメラ |
US7835823B2 (en) | 2006-01-05 | 2010-11-16 | Intuitive Surgical Operations, Inc. | Method for tracking and reporting usage events to determine when preventive maintenance is due for a medical robotic system |
US8202535B2 (en) | 2006-01-06 | 2012-06-19 | Acelrx Pharmaceuticals, Inc. | Small-volume oral transmucosal dosage forms |
KR100752548B1 (ko) | 2006-01-10 | 2007-08-29 | (주)이앤아이 | 하이브리드 전동기의 제어 장치 및 그 제어 방법 |
US7670334B2 (en) | 2006-01-10 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Surgical instrument having an articulating end effector |
DE102006001677B3 (de) | 2006-01-12 | 2007-05-03 | Gebr. Brasseler Gmbh & Co. Kg | Chirurgische Kupplungsvorrichtung |
WO2007080783A1 (ja) | 2006-01-13 | 2007-07-19 | Olympus Medical Systems Corp. | 回転自走式内視鏡システム、プログラム、回転自走式内視鏡システムの駆動方法 |
US20120064483A1 (en) | 2010-09-13 | 2012-03-15 | Kevin Lint | Hard-wired and wireless system with footswitch for operating a dental or medical treatment apparatus |
US20070173872A1 (en) | 2006-01-23 | 2007-07-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument for cutting and coagulating patient tissue |
US20070173813A1 (en) | 2006-01-24 | 2007-07-26 | Sherwood Services Ag | System and method for tissue sealing |
CA2574934C (en) | 2006-01-24 | 2015-12-29 | Sherwood Services Ag | System and method for closed loop monitoring of monopolar electrosurgical apparatus |
US8147485B2 (en) | 2006-01-24 | 2012-04-03 | Covidien Ag | System and method for tissue sealing |
US8248232B2 (en) | 2006-01-25 | 2012-08-21 | Greatbatch Ltd. | Hermetically sealed RFID microelectronic chip connected to a biocompatible RFID antenna |
US20070198039A1 (en) | 2006-01-27 | 2007-08-23 | Wilson-Cook Medical, Inc. | Intragastric device for treating obesity |
US7705559B2 (en) | 2006-01-27 | 2010-04-27 | Stryker Corporation | Aseptic battery with a removal cell cluster, the cell cluster configured for charging in a socket that receives a sterilizable battery |
CA2854625C (en) | 2006-01-27 | 2017-01-24 | Suturtek Incorporated | Apparatus and method for tissue closure |
US8763879B2 (en) | 2006-01-31 | 2014-07-01 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of surgical instrument |
US8161977B2 (en) | 2006-01-31 | 2012-04-24 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US7770775B2 (en) | 2006-01-31 | 2010-08-10 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with adaptive user feedback |
US7422139B2 (en) | 2006-01-31 | 2008-09-09 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting fastening instrument with tactile position feedback |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
GB2435214B (en) | 2006-01-31 | 2010-01-20 | Michael John Radley Young | Ultrasonic Cutting Tool |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US7644848B2 (en) | 2006-01-31 | 2010-01-12 | Ethicon Endo-Surgery, Inc. | Electronic lockouts and surgical instrument including same |
US7464849B2 (en) | 2006-01-31 | 2008-12-16 | Ethicon Endo-Surgery, Inc. | Electro-mechanical surgical instrument with closure system and anvil alignment components |
US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
US7568603B2 (en) | 2006-01-31 | 2009-08-04 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with articulatable end effector |
US20070175950A1 (en) | 2006-01-31 | 2007-08-02 | Shelton Frederick E Iv | Disposable staple cartridge having an anvil with tissue locator for use with a surgical cutting and fastening instrument and modular end effector system therefor |
US7416101B2 (en) | 2006-01-31 | 2008-08-26 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with loading force feedback |
US20070175955A1 (en) | 2006-01-31 | 2007-08-02 | Shelton Frederick E Iv | Surgical cutting and fastening instrument with closure trigger locking mechanism |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US9861359B2 (en) | 2006-01-31 | 2018-01-09 | Ethicon Llc | Powered surgical instruments with firing system lockout arrangements |
US7891531B1 (en) | 2006-01-31 | 2011-02-22 | Ward Gary L | Sub-miniature surgical staple cartridge |
US20070175951A1 (en) | 2006-01-31 | 2007-08-02 | Shelton Frederick E Iv | Gearing selector for a powered surgical cutting and fastening instrument |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US7766210B2 (en) | 2006-01-31 | 2010-08-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with user feedback system |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US7575144B2 (en) | 2006-01-31 | 2009-08-18 | Ethicon Endo-Surgery, Inc. | Surgical fastener and cutter with single cable actuator |
US7464846B2 (en) | 2006-01-31 | 2008-12-16 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a removable battery |
US20110024477A1 (en) | 2009-02-06 | 2011-02-03 | Hall Steven G | Driven Surgical Stapler Improvements |
US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
US7639598B2 (en) | 2006-01-31 | 2009-12-29 | Szabolcs Sovenyi | Simultaneous full-duplex communication over a single electrical conductor |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US7422138B2 (en) | 2006-02-01 | 2008-09-09 | Ethicon Endo-Surgery, Inc. | Elliptical intraluminal surgical stapler for anastomosis |
US7595642B2 (en) | 2006-02-01 | 2009-09-29 | Qualcomm Incorporated | Battery management system for determining battery charge sufficiency for a task |
US9629626B2 (en) | 2006-02-02 | 2017-04-25 | Covidien Lp | Mechanically tuned buttress material to assist with proper formation of surgical element in diseased tissue |
US8062236B2 (en) | 2006-02-02 | 2011-11-22 | Tyco Healthcare Group, Lp | Method and system to determine an optimal tissue compression time to implant a surgical element |
GB0602192D0 (en) | 2006-02-03 | 2006-03-15 | Tissuemed Ltd | Tissue-adhesive materials |
EP1837041A1 (en) | 2006-03-20 | 2007-09-26 | Tissuemed Limited | Tissue-adhesive materials |
EP1815950A1 (en) | 2006-02-03 | 2007-08-08 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Robotic surgical system for performing minimally invasive medical procedures |
WO2007092852A2 (en) | 2006-02-06 | 2007-08-16 | Mynosys Cellular Devices, Inc. | Microsurgical cutting instruments |
US20070185545A1 (en) | 2006-02-06 | 2007-08-09 | Medtronic Emergency Response Systems, Inc. | Post-download patient data protection in a medical device |
DE102006005998B4 (de) | 2006-02-08 | 2008-05-08 | Schnier, Dietmar, Dr. | Schraubenmutter mit mindestens zwei Teilen |
WO2007095005A1 (en) | 2006-02-10 | 2007-08-23 | Z-Medica Corporation | Agents and devices for providing blood clotting functions to wounds |
US7854735B2 (en) | 2006-02-16 | 2010-12-21 | Ethicon Endo-Surgery, Inc. | Energy-based medical treatment system and method |
US7893586B2 (en) | 2006-02-20 | 2011-02-22 | Black & Decker Inc. | DC motor with dual commutator bar set and selectable series and parallel connected coils |
US20070208375A1 (en) | 2006-02-23 | 2007-09-06 | Kouji Nishizawa | Surgical device |
JP4910423B2 (ja) | 2006-02-27 | 2012-04-04 | ソニー株式会社 | バッテリパック、電子機器、およびバッテリ残量検出方法 |
US8500628B2 (en) | 2006-02-28 | 2013-08-06 | Olympus Endo Technology America, Inc. | Rotate-to-advance catheterization system |
US20070208359A1 (en) | 2006-03-01 | 2007-09-06 | Hoffman Douglas B | Method for stapling tissue |
US20070207010A1 (en) | 2006-03-03 | 2007-09-06 | Roni Caspi | Split nut with magnetic coupling |
US8585753B2 (en) | 2006-03-04 | 2013-11-19 | John James Scanlon | Fibrillated biodegradable prosthesis |
US8706316B1 (en) | 2006-03-14 | 2014-04-22 | Snap-On Incorporated | Method and system for enhanced scanner user interface |
US7955380B2 (en) | 2006-03-17 | 2011-06-07 | Medtronic Vascular, Inc. | Prosthesis fixation apparatus and methods |
US7771396B2 (en) | 2006-03-22 | 2010-08-10 | Ethicon Endo-Surgery, Inc. | Intubation device for enteral feeding |
US8721630B2 (en) | 2006-03-23 | 2014-05-13 | Ethicon Endo-Surgery, Inc. | Methods and devices for controlling articulation |
US8348959B2 (en) | 2006-03-23 | 2013-01-08 | Symmetry Medical Manufacturing, Inc. | Angled surgical driver |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US20070225562A1 (en) | 2006-03-23 | 2007-09-27 | Ethicon Endo-Surgery, Inc. | Articulating endoscopic accessory channel |
US20110163146A1 (en) | 2006-03-23 | 2011-07-07 | Ortiz Mark S | Surgical Stapling And Cuttting Device |
JP4689511B2 (ja) | 2006-03-24 | 2011-05-25 | 株式会社エヌ・ティ・ティ・ドコモ | 可搬型基地局装置 |
US20070270660A1 (en) | 2006-03-29 | 2007-11-22 | Caylor Edward J Iii | System and method for determining a location of an orthopaedic medical device |
US9675375B2 (en) | 2006-03-29 | 2017-06-13 | Ethicon Llc | Ultrasonic surgical system and method |
US20090020958A1 (en) | 2006-03-31 | 2009-01-22 | Soul David F | Methods and apparatus for operating an internal combustion engine |
EP2007466A4 (en) | 2006-03-31 | 2012-01-18 | Automated Medical Instr Inc | SYSTEM AND METHOD FOR ADVANCING, ORIENTATION, AND IMMOBILIZATION ON AN INTERNAL BODY TISSUE OF A CATHETER OR ANY OTHER THERAPEUTIC DEVICE |
US7836400B2 (en) | 2006-03-31 | 2010-11-16 | Research In Motion Limited | Snooze support for event reminders |
JP4102409B2 (ja) | 2006-04-03 | 2008-06-18 | オリンパス株式会社 | 縫合・結紮具アプライヤー |
US7635922B2 (en) | 2006-04-03 | 2009-12-22 | C.E. Niehoff & Co. | Power control system and method |
US20100081883A1 (en) | 2008-09-30 | 2010-04-01 | Ethicon Endo-Surgery, Inc. | Methods and devices for performing gastroplasties using a multiple port access device |
US8485970B2 (en) | 2008-09-30 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Surgical access device |
US8915842B2 (en) | 2008-07-14 | 2014-12-23 | Ethicon Endo-Surgery, Inc. | Methods and devices for maintaining visibility and providing irrigation and/or suction during surgical procedures |
US9005116B2 (en) | 2006-04-05 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Access device |
US8926506B2 (en) | 2009-03-06 | 2015-01-06 | Ethicon Endo-Surgery, Inc. | Methods and devices for providing access into a body cavity |
WO2007115402A1 (en) | 2006-04-07 | 2007-10-18 | Société De Commercialisation Des Produits De La Recherche Appliquée Socpra Sciences Et Génie S.E.C. | Integrated cement delivery system for bone augmentation procedures and methods |
US7799965B2 (en) | 2006-04-11 | 2010-09-21 | Tyco Healthcare Group Lp | Wound dressings with anti-microbial and zinc-containing agents |
KR101019341B1 (ko) | 2006-04-11 | 2011-03-07 | 닛본 세이고 가부시끼가이샤 | 전동 파워 스티어링장치 및 그 조립방법 |
KR100739165B1 (ko) | 2006-04-13 | 2007-07-13 | 엘지전자 주식회사 | 리니어 압축기의 운전제어장치 및 방법 |
US7741273B2 (en) | 2006-04-13 | 2010-06-22 | Warsaw Orthopedic, Inc. | Drug depot implant designs |
US20070243227A1 (en) | 2006-04-14 | 2007-10-18 | Michael Gertner | Coatings for surgical staplers |
US7450010B1 (en) | 2006-04-17 | 2008-11-11 | Tc License Ltd. | RFID mutual authentication verification session |
US8267849B2 (en) | 2006-04-18 | 2012-09-18 | Wazer David E | Radioactive therapeutic fastening instrument |
US8398668B2 (en) | 2006-04-19 | 2013-03-19 | Vibrynt, Inc. | Devices and methods for treatment of obesity |
WO2007133329A2 (en) | 2006-04-20 | 2007-11-22 | Illinois Tool Works Inc. | Fastener-driving tool having trigger control mechanism for alternatively permitting bump firing and sequential firing modes of operation |
US20070246505A1 (en) | 2006-04-24 | 2007-10-25 | Medical Ventures Inc. | Surgical buttress assemblies and methods of uses thereof |
US8518024B2 (en) | 2006-04-24 | 2013-08-27 | Transenterix, Inc. | System and method for multi-instrument surgical access using a single access port |
US7650185B2 (en) | 2006-04-25 | 2010-01-19 | Cardiac Pacemakers, Inc. | System and method for walking an implantable medical device from a sleep state |
US7278563B1 (en) | 2006-04-25 | 2007-10-09 | Green David T | Surgical instrument for progressively stapling and incising tissue |
JP4566943B2 (ja) | 2006-04-26 | 2010-10-20 | 株式会社マキタ | 充電装置 |
JP2009535504A (ja) | 2006-04-28 | 2009-10-01 | バイオマグネシウム システムズ リミテッド | 生分解性マグネシウム合金およびその使用 |
WO2007130382A2 (en) | 2006-04-29 | 2007-11-15 | Board Of Regents, The University Of Texas System | Devices for use in transluminal and endoluminal surgery |
US7992757B2 (en) | 2006-05-03 | 2011-08-09 | Raptor Ridge Llc | Systems and methods of tissue closure |
US20070260132A1 (en) | 2006-05-04 | 2007-11-08 | Sterling Bernhard B | Method and apparatus for processing signals reflecting physiological characteristics from multiple sensors |
WO2007129121A1 (en) | 2006-05-08 | 2007-11-15 | Tayside Health Board | Device and method for improved surgical suturing |
US20070262592A1 (en) | 2006-05-08 | 2007-11-15 | Shih-Ming Hwang | Mounting plate for lock and lock therewith |
JP2007306710A (ja) | 2006-05-11 | 2007-11-22 | Mitsubishi Electric Corp | 電動パワーステアリング装置 |
JP4829005B2 (ja) | 2006-05-12 | 2011-11-30 | テルモ株式会社 | マニピュレータ |
JP4584186B2 (ja) | 2006-05-15 | 2010-11-17 | トヨタ自動車株式会社 | 故障診断方法及び故障診断装置 |
JP2007312515A (ja) | 2006-05-18 | 2007-11-29 | Sony Corp | スイッチング電源装置、電子機器及びスイッチング電源回路の制御方法 |
BRPI0722407B8 (pt) | 2006-05-19 | 2021-06-22 | Ethicon Endo Surgery Inc | instrumento cirúrgico com potência e período de operação otimizados |
CA2651784C (en) | 2006-05-19 | 2015-01-27 | Mako Surgical Corp. | Method and apparatus for controlling a haptic device |
EP2842500B1 (en) | 2006-05-19 | 2020-09-09 | Ethicon Endo-Surgery, Inc. | Surgical device |
US7552854B2 (en) | 2006-05-19 | 2009-06-30 | Applied Medical Resources Corporation | Surgical stapler with firing lock mechanism |
EP2529671B1 (en) | 2006-05-19 | 2016-08-31 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
US8105350B2 (en) | 2006-05-23 | 2012-01-31 | Cambridge Endoscopic Devices, Inc. | Surgical instrument |
US7586289B2 (en) | 2006-05-23 | 2009-09-08 | Ultralife Corporation | Complete discharge device |
US20070275035A1 (en) | 2006-05-24 | 2007-11-29 | Microchips, Inc. | Minimally Invasive Medical Implant Devices for Controlled Drug Delivery |
US20070276409A1 (en) | 2006-05-25 | 2007-11-29 | Ethicon Endo-Surgery, Inc. | Endoscopic gastric restriction methods and devices |
US20080039746A1 (en) | 2006-05-25 | 2008-02-14 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US20090188964A1 (en) | 2006-06-01 | 2009-07-30 | Boris Orlov | Membrane augmentation, such as of for treatment of cardiac valves, and fastening devices for membrane augmentation |
US7530984B2 (en) | 2006-06-05 | 2009-05-12 | Medigus Ltd. | Transgastric method for carrying out a partial fundoplication |
IL176133A0 (en) | 2006-06-05 | 2006-10-05 | Medigus Ltd | Stapler |
US7615067B2 (en) | 2006-06-05 | 2009-11-10 | Cambridge Endoscopic Devices, Inc. | Surgical instrument |
US8062211B2 (en) | 2006-06-13 | 2011-11-22 | Intuitive Surgical Operations, Inc. | Retrograde instrument |
DE202007003114U1 (de) | 2006-06-13 | 2007-06-21 | Olympus Winter & Ibe Gmbh | Medizinische Zange mit Bajonettverbindung |
US7862554B2 (en) | 2007-04-16 | 2011-01-04 | Intuitive Surgical Operations, Inc. | Articulating tool with improved tension member system |
US8551076B2 (en) | 2006-06-13 | 2013-10-08 | Intuitive Surgical Operations, Inc. | Retrograde instrument |
EP2038712B2 (en) | 2006-06-13 | 2019-08-28 | Intuitive Surgical Operations, Inc. | Control system configured to compensate for non-ideal actuator-to-joint linkage characteristics in a medical robotic system |
US20070286892A1 (en) | 2006-06-13 | 2007-12-13 | Uri Herzberg | Compositions and methods for preventing or reducing postoperative ileus and gastric stasis in mammals |
US9561045B2 (en) | 2006-06-13 | 2017-02-07 | Intuitive Surgical Operations, Inc. | Tool with rotation lock |
EP2029213A2 (en) | 2006-06-14 | 2009-03-04 | Cornova, Inc. | Method and apparatus for identifying and treating myocardial infarction |
JP2009539509A (ja) | 2006-06-14 | 2009-11-19 | マクドナルド デットワイラー アンド アソシエイツ インコーポレーテッド | 直角プーリ駆動機構付きの手術マニピュレータ |
US8734431B2 (en) | 2006-06-15 | 2014-05-27 | Yanchers Inc. | Remote control system |
US8560047B2 (en) | 2006-06-16 | 2013-10-15 | Board Of Regents Of The University Of Nebraska | Method and apparatus for computer aided surgery |
US8376865B2 (en) | 2006-06-20 | 2013-02-19 | Cardiacmd, Inc. | Torque shaft and torque shaft drive |
CA2655770C (en) | 2006-06-21 | 2013-07-30 | Rudolf Steffen | Device for insertion and positioning of surgical instruments and corresponding method |
US9579088B2 (en) | 2007-02-20 | 2017-02-28 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices for surgical visualization and device manipulation |
US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
US8974542B2 (en) | 2006-06-27 | 2015-03-10 | University of Pittsburgh—of the Commonwealth System of Higher Education | Biodegradable elastomeric patch for treating cardiac or cardiovascular conditions |
US9718190B2 (en) | 2006-06-29 | 2017-08-01 | Intuitive Surgical Operations, Inc. | Tool position and identification indicator displayed in a boundary area of a computer display screen |
EP1872729B1 (en) | 2006-06-29 | 2009-10-21 | The University of Dundee | Medical instrument for grasping on object, in particular needle holder |
US9492192B2 (en) | 2006-06-30 | 2016-11-15 | Atheromed, Inc. | Atherectomy devices, systems, and methods |
US20080200835A1 (en) | 2006-06-30 | 2008-08-21 | Monson Gavin M | Energy Biopsy Device for Tissue Penetration and Hemostasis |
US20080003196A1 (en) | 2006-06-30 | 2008-01-03 | Jonn Jerry Y | Absorbable cyanoacrylate compositions |
US7391173B2 (en) | 2006-06-30 | 2008-06-24 | Intuitive Surgical, Inc | Mechanically decoupled capstan drive |
CN101500630B (zh) | 2006-07-03 | 2012-05-30 | 诺沃-诺迪斯克有限公司 | 用于注射装置的联结器 |
JP4157574B2 (ja) | 2006-07-04 | 2008-10-01 | オリンパスメディカルシステムズ株式会社 | 外科用処置具 |
EP2428554A1 (en) | 2006-07-06 | 2012-03-14 | Nippon Oil Corporation | Heat treating oil composition |
US7776037B2 (en) | 2006-07-07 | 2010-08-17 | Covidien Ag | System and method for controlling electrode gap during tissue sealing |
ATE486527T1 (de) | 2006-07-07 | 2010-11-15 | Ethicon Endo Surgery Inc | Chirurgischer klammerapplikator und klammermagazin und klammer für ein solches gerät |
EP1875870B1 (en) | 2006-07-07 | 2009-12-02 | Ethicon Endo-Surgery, Inc. | A surgical stapling instrument. |
DE102006031971A1 (de) | 2006-07-11 | 2008-01-17 | Karl Storz Gmbh & Co. Kg | Medizinisches Instrument |
US7993360B2 (en) | 2006-07-11 | 2011-08-09 | Arthrex, Inc. | Rotary shaver with improved connection between flexible and rigid rotatable tubes |
CA2592221C (en) | 2006-07-11 | 2014-10-07 | Tyco Healthcare Group Lp | Skin staples with thermal properties |
FR2903696B1 (fr) | 2006-07-12 | 2011-02-11 | Provence Technologies | Procede de purification de composes diaminophenothiazium |
RU61122U1 (ru) | 2006-07-14 | 2007-02-27 | Нина Васильевна Гайгерова | Хирургический сшиватель |
IL176889A0 (en) | 2006-07-16 | 2006-10-31 | Medigus Ltd | Devices and methods for treating morbid obesity |
DE102007020583B4 (de) | 2006-07-19 | 2012-10-11 | Erbe Elektromedizin Gmbh | Elektrodeneinrichtung mit einerImnpedanz-Messeinrichtung und Verfahren zum Herstellen einer derartigen Elektrodeneinrichtung |
US20080021486A1 (en) | 2006-07-19 | 2008-01-24 | Boston Scientific Scimed, Inc. | Method and apparatus for tissue resection |
US7748632B2 (en) | 2006-07-25 | 2010-07-06 | Hand Held Products, Inc. | Portable data terminal and battery therefor |
US20100015104A1 (en) | 2006-07-26 | 2010-01-21 | Cytori Therapeutics, Inc | Generation of adipose tissue and adipocytes |
US7740159B2 (en) | 2006-08-02 | 2010-06-22 | Ethicon Endo-Surgery, Inc. | Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist |
US20080029574A1 (en) | 2006-08-02 | 2008-02-07 | Shelton Frederick E | Pneumatically powered surgical cutting and fastening instrument with actuator at distal end |
US20080029573A1 (en) | 2006-08-02 | 2008-02-07 | Shelton Frederick E | Pneumatically powered surgical cutting and fastening instrument with replaceable power sources |
US20080030170A1 (en) | 2006-08-03 | 2008-02-07 | Bruno Dacquay | Safety charging system for surgical hand piece |
JP4755047B2 (ja) | 2006-08-08 | 2011-08-24 | テルモ株式会社 | 作業機構及びマニピュレータ |
CA2659365A1 (en) | 2006-08-09 | 2008-02-21 | Coherex Medical, Inc. | Methods, systems and devices for reducing the size of an internal tissue opening |
US7708758B2 (en) | 2006-08-16 | 2010-05-04 | Cambridge Endoscopic Devices, Inc. | Surgical instrument |
US20080042861A1 (en) | 2006-08-16 | 2008-02-21 | Bruno Dacquay | Safety battery meter system for surgical hand piece |
CN200942099Y (zh) | 2006-08-17 | 2007-09-05 | 苏州天臣国际医疗科技有限公司 | 装订仪保险机构 |
DE102006038515A1 (de) | 2006-08-17 | 2008-02-21 | Karl Storz Gmbh & Co. Kg | Medizinisches Rohrschaftinstrument |
US7674253B2 (en) | 2006-08-18 | 2010-03-09 | Kensey Nash Corporation | Catheter for conducting a procedure within a lumen, duct or organ of a living being |
US20080051833A1 (en) | 2006-08-25 | 2008-02-28 | Vincent Gramuglia | Suture passer and method of passing suture material |
US20080196253A1 (en) | 2006-08-28 | 2008-08-21 | Richard Simon Ezra | Precision knife and blade dispenser for the same |
US20080125749A1 (en) | 2006-08-29 | 2008-05-29 | Boston Scientific Scimed, Inc. | Self-powered medical devices |
DE102006041951B4 (de) | 2006-08-30 | 2022-05-05 | Deltatech Controls Usa, Llc | Wippschalter |
WO2008026319A1 (fr) | 2006-08-30 | 2008-03-06 | Rohm Co., Ltd. | Circuit de commande de moteur, procédé de commande, unité de moteur et dispositif électronique utilisant l'unité de moteur |
US8323789B2 (en) | 2006-08-31 | 2012-12-04 | Cambridge Enterprise Limited | Nanomaterial polymer compositions and uses thereof |
US20080071328A1 (en) | 2006-09-06 | 2008-03-20 | Medtronic, Inc. | Initiating medical system communications |
US8982195B2 (en) | 2006-09-07 | 2015-03-17 | Abbott Medical Optics Inc. | Digital video capture system and method with customizable graphical overlay |
US8230235B2 (en) | 2006-09-07 | 2012-07-24 | International Business Machines Corporation | Selective encryption of data stored on removable media in an automated data storage library |
US8403196B2 (en) | 2006-09-08 | 2013-03-26 | Covidien Lp | Dissection tip and introducer for surgical instrument |
US20080064920A1 (en) | 2006-09-08 | 2008-03-13 | Ethicon Endo-Surgery, Inc. | Medical drive system for providing motion to at least a portion of a medical apparatus |
US8136711B2 (en) | 2006-09-08 | 2012-03-20 | Tyco Healthcare Group Lp | Dissection tip and introducer for surgical instrument |
US20080065153A1 (en) | 2006-09-08 | 2008-03-13 | Warsaw Orthopedic, Inc. | Surgical staple |
ATE440549T1 (de) | 2006-09-08 | 2009-09-15 | Ethicon Endo Surgery Inc | Chirurgisches instrument und betätigungsvorrichtung zur bewegungsübertragung dafür |
US8794496B2 (en) | 2006-09-11 | 2014-08-05 | Covidien Lp | Rotating knob locking mechanism for surgical stapling device |
CN100464715C (zh) | 2006-09-11 | 2009-03-04 | 苏州天臣国际医疗科技有限公司 | 外科装订仪装订机构 |
JP5148092B2 (ja) | 2006-09-11 | 2013-02-20 | オリンパスメディカルシステムズ株式会社 | エネルギ手術装置 |
US8944069B2 (en) | 2006-09-12 | 2015-02-03 | Vidacare Corporation | Assemblies for coupling intraosseous (IO) devices to powered drivers |
US7648519B2 (en) | 2006-09-13 | 2010-01-19 | Cambridge Endoscopic Devices, Inc. | Surgical instrument |
DE502006007177D1 (de) | 2006-09-15 | 2010-07-22 | Brainlab Ag | Vorrichtung und Verfahren zum Messen geometrischer Eigenschaften medizintechnischer Behandlungsvorrichtungen, insbesondere zur automatischen Verifikation, Kalibrierung und Vermessung von Instrumenten für computerassistierte Chirurgie |
US7887755B2 (en) | 2006-09-20 | 2011-02-15 | Binforma Group Limited Liability Company | Packaging closures integrated with disposable RFID devices |
US7780663B2 (en) | 2006-09-22 | 2010-08-24 | Ethicon Endo-Surgery, Inc. | End effector coatings for electrosurgical instruments |
US8015506B2 (en) | 2006-09-22 | 2011-09-06 | Microsoft Corporation | Customizing a menu in a discovery interface |
US20200038018A1 (en) | 2006-09-29 | 2020-02-06 | Ethicon Llc | End effector for use with a surgical fastening instrument |
US20100133317A1 (en) | 2006-09-29 | 2010-06-03 | Shelton Iv Frederick E | Motor-Driven Surgical Cutting And Fastening Instrument with Tactile Position Feedback |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
US20110087276A1 (en) | 2009-10-09 | 2011-04-14 | Ethicon Endo-Surgery, Inc. | Method for forming a staple |
US20190269402A1 (en) | 2006-09-29 | 2019-09-05 | Ethicon Llc | Surgical staple having a deformable member with a non-circular cross-sectional geometry |
US7665647B2 (en) | 2006-09-29 | 2010-02-23 | Ethicon Endo-Surgery, Inc. | Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force |
US10130359B2 (en) | 2006-09-29 | 2018-11-20 | Ethicon Llc | Method for forming a staple |
US20080082114A1 (en) | 2006-09-29 | 2008-04-03 | Mckenna Robert H | Adhesive Mechanical Fastener for Lumen Creation Utilizing Tissue Necrosing Means |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
US20080081948A1 (en) | 2006-10-03 | 2008-04-03 | Ethicon Endo-Surgery, Inc. | Apparatus for cleaning a distal scope end of a medical viewing scope |
US7952464B2 (en) | 2006-10-05 | 2011-05-31 | Intermec Ip Corp. | Configurable RFID tag with protocol and band selection |
DE102006047204B4 (de) | 2006-10-05 | 2015-04-23 | Erbe Elektromedizin Gmbh | Rohrschaftinstrument |
EP2083702B1 (en) | 2006-10-05 | 2019-02-13 | Covidien LP | Axial stitching device |
US8708210B2 (en) | 2006-10-05 | 2014-04-29 | Covidien Lp | Method and force-limiting handle mechanism for a surgical instrument |
JP5481194B2 (ja) | 2006-10-05 | 2014-04-23 | コヴィディエン リミテッド パートナーシップ | 可撓性の内視鏡的縫合装置 |
US8733614B2 (en) | 2006-10-06 | 2014-05-27 | Covidien Lp | End effector identification by mechanical features |
US7637410B2 (en) | 2006-10-06 | 2009-12-29 | Tyco Healthcare Group Lp | Surgical instrument including a locking assembly |
US8475453B2 (en) | 2006-10-06 | 2013-07-02 | Covidien Lp | Endoscopic vessel sealer and divider having a flexible articulating shaft |
EP1908422B1 (en) | 2006-10-06 | 2009-07-08 | Ethicon Endo-Surgery, Inc. | Improvements relating to an anastomotic ring applier |
CA2664167A1 (en) | 2006-10-06 | 2008-04-17 | Tyco Healthcare Group Lp | Endoscopic vessel sealer and divider having a flexible articulating shaft |
US7967178B2 (en) | 2006-10-06 | 2011-06-28 | Tyco Healthcare Group Lp | Grasping jaw mechanism |
US20080085296A1 (en) | 2006-10-06 | 2008-04-10 | Powell Darrel M | Methods for reduction of post operative ileus. |
US20080086078A1 (en) | 2006-10-06 | 2008-04-10 | Powell Darrel M | Devices for reduction of post operative ileus |
US7481348B2 (en) | 2006-10-06 | 2009-01-27 | Tyco Healthcare Group Lp | Surgical instrument with articulating tool assembly |
US8807414B2 (en) | 2006-10-06 | 2014-08-19 | Covidien Lp | System and method for non-contact electronic articulation sensing |
US7866525B2 (en) | 2006-10-06 | 2011-01-11 | Tyco Healthcare Group Lp | Surgical instrument having a plastic surface |
CN101273908A (zh) | 2006-10-06 | 2008-10-01 | 伊西康内外科公司 | 减轻手术后肠梗阻的装置 |
DE102006047882B3 (de) | 2006-10-10 | 2007-08-02 | Rasmussen Gmbh | Steckverbindungsanordnung für einen Schlauch und ein Rohr |
US20080094228A1 (en) | 2006-10-12 | 2008-04-24 | Welch James P | Patient monitor using radio frequency identification tags |
US7736254B2 (en) | 2006-10-12 | 2010-06-15 | Intuitive Surgical Operations, Inc. | Compact cable tension tender device |
DE602007007031D1 (de) | 2006-10-13 | 2010-07-22 | Toshiba Kk | Manipulator |
EP2314232B1 (en) | 2006-10-17 | 2015-03-25 | Covidien LP | Apparatus for applying surgical clips |
US7862502B2 (en) | 2006-10-20 | 2011-01-04 | Ellipse Technologies, Inc. | Method and apparatus for adjusting a gastrointestinal restriction device |
US8226635B2 (en) | 2006-10-23 | 2012-07-24 | Boston Scientific Scimed, Inc. | Device for circulating heated fluid |
EP1915963A1 (en) | 2006-10-25 | 2008-04-30 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Force estimation for a minimally invasive robotic surgery system |
US8157793B2 (en) | 2006-10-25 | 2012-04-17 | Terumo Kabushiki Kaisha | Manipulator for medical use |
JP5198014B2 (ja) | 2006-10-25 | 2013-05-15 | テルモ株式会社 | 医療用マニピュレータ |
JP5085996B2 (ja) | 2006-10-25 | 2012-11-28 | テルモ株式会社 | マニピュレータシステム |
US7845533B2 (en) | 2007-06-22 | 2010-12-07 | Tyco Healthcare Group Lp | Detachable buttress material retention systems for use with a surgical stapling device |
WO2008057281A2 (en) | 2006-10-26 | 2008-05-15 | Tyco Healthcare Group Lp | Methods of using shape memory alloys for buttress attachment |
US7828854B2 (en) | 2006-10-31 | 2010-11-09 | Ethicon, Inc. | Implantable repair device |
US8822934B2 (en) | 2006-11-03 | 2014-09-02 | Accuray Incorporated | Collimator changer |
TR201807193T4 (tr) | 2006-11-03 | 2018-06-21 | Koninklijke Philips Nv | Pille çalışan diş fırçalarının performansını korumak için sistem. |
US20080129253A1 (en) | 2006-11-03 | 2008-06-05 | Advanced Desalination Inc. | Battery energy reclamation apparatus and method thereby |
JP2008114339A (ja) | 2006-11-06 | 2008-05-22 | Terumo Corp | マニピュレータ |
SE0602364L (sv) | 2006-11-08 | 2008-04-15 | Atlas Copco Tools Ab | Kraftverktyg med utbytbar växelenhet |
US7708180B2 (en) | 2006-11-09 | 2010-05-04 | Ethicon Endo-Surgery, Inc. | Surgical fastening device with initiator impregnation of a matrix or buttress to improve adhesive application |
US7946453B2 (en) | 2006-11-09 | 2011-05-24 | Ethicon Endo-Surgery, Inc. | Surgical band fluid media dispenser |
US7780685B2 (en) | 2006-11-09 | 2010-08-24 | Ethicon Endo-Surgery, Inc. | Adhesive and mechanical fastener |
US8834498B2 (en) | 2006-11-10 | 2014-09-16 | Ethicon Endo-Surgery, Inc. | Method and device for effecting anastomosis of hollow organ structures using adhesive and fasteners |
US7721930B2 (en) | 2006-11-10 | 2010-05-25 | Thicon Endo-Surgery, Inc. | Disposable cartridge with adhesive for use with a stapling device |
US20080114250A1 (en) | 2006-11-10 | 2008-05-15 | Penrith Corporation | Transducer array imaging system |
US7935130B2 (en) | 2006-11-16 | 2011-05-03 | Intuitive Surgical Operations, Inc. | Two-piece end-effectors for robotic surgical tools |
US9011439B2 (en) | 2006-11-20 | 2015-04-21 | Poly-Med, Inc. | Selectively absorbable/biodegradable, fibrous composite constructs and applications thereof |
WO2008061566A1 (en) | 2006-11-23 | 2008-05-29 | Tte Germany Gmbh | Power failure detection circuit |
CN200984209Y (zh) | 2006-11-24 | 2007-12-05 | 苏州天臣国际医疗科技有限公司 | 外科装订仪钉砧成型槽 |
US20080140159A1 (en) | 2006-12-06 | 2008-06-12 | Transoma Medical, Inc. | Implantable device for monitoring biological signals |
US8114100B2 (en) | 2006-12-06 | 2012-02-14 | Ethicon Endo-Surgery, Inc. | Safety fastener for tissue apposition |
US20080154299A1 (en) | 2006-12-08 | 2008-06-26 | Steve Livneh | Forceps for performing endoscopic surgery |
US7871440B2 (en) | 2006-12-11 | 2011-01-18 | Depuy Products, Inc. | Unitary surgical device and method |
US20080308504A1 (en) | 2006-12-12 | 2008-12-18 | Hallan Matthew J | Element loading mechanism and method |
US8062306B2 (en) | 2006-12-14 | 2011-11-22 | Ethicon Endo-Surgery, Inc. | Manually articulating devices |
CN200991269Y (zh) | 2006-12-20 | 2007-12-19 | 张红 | 消化道缝合器的钉仓结构 |
WO2008080148A2 (en) | 2006-12-21 | 2008-07-03 | Doheny Eye Institute | Disposable vitrectomy handpiece |
US7434716B2 (en) | 2006-12-21 | 2008-10-14 | Tyco Healthcare Group Lp | Staple driver for articulating surgical stapler |
US8292801B2 (en) | 2006-12-22 | 2012-10-23 | Olympus Medical Systems Corp. | Surgical treatment apparatus |
WO2008078879A1 (en) | 2006-12-22 | 2008-07-03 | Hyun Duk Uhm | Structure of staple magazine having permanent magnet |
CN201001747Y (zh) | 2006-12-25 | 2008-01-09 | 苏州天臣国际医疗科技有限公司 | 可照明圆管型外科手术装订仪 |
JP2008154804A (ja) | 2006-12-25 | 2008-07-10 | Cyber Firm Inc | 生体状態鑑別用装置及びレーザ血流計 |
ES1070456Y (es) | 2007-01-02 | 2009-11-25 | La Torre Martinez Ruben De | Pinza de clampado con sistema de seguridad e identificacion |
CN201029899Y (zh) | 2007-01-05 | 2008-03-05 | 苏州天臣国际医疗科技有限公司 | 微创外科侧侧装订器械 |
US8652120B2 (en) | 2007-01-10 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US7721931B2 (en) | 2007-01-10 | 2010-05-25 | Ethicon Endo-Surgery, Inc. | Prevention of cartridge reuse in a surgical instrument |
US8840603B2 (en) * | 2007-01-10 | 2014-09-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US7721936B2 (en) | 2007-01-10 | 2010-05-25 | Ethicon Endo-Surgery, Inc. | Interlock and surgical instrument including same |
US7954682B2 (en) | 2007-01-10 | 2011-06-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument with elements to communicate between control unit and end effector |
US7900805B2 (en) | 2007-01-10 | 2011-03-08 | Ethicon Endo-Surgery, Inc. | Surgical instrument with enhanced battery performance |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US8459520B2 (en) | 2007-01-10 | 2013-06-11 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and remote sensor |
US20110174861A1 (en) * | 2007-01-10 | 2011-07-21 | Shelton Iv Frederick E | Surgical Instrument With Wireless Communication Between Control Unit and Remote Sensor |
US7738971B2 (en) | 2007-01-10 | 2010-06-15 | Ethicon Endo-Surgery, Inc. | Post-sterilization programming of surgical instruments |
US20220061862A1 (en) | 2007-01-11 | 2022-03-03 | Cilag Gmbh International | Surgical stapling device with a curved end effector |
US20080169328A1 (en) | 2007-01-11 | 2008-07-17 | Shelton Frederick E | Buttress material for use with a surgical stapler |
US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
US20080169333A1 (en) | 2007-01-11 | 2008-07-17 | Shelton Frederick E | Surgical stapler end effector with tapered distal end |
AU2011218702B2 (en) | 2007-01-12 | 2013-06-06 | Ethicon Endo-Surgery, Inc | Adjustable compression staple and method for stapling with adjustable compression |
WO2008089404A2 (en) | 2007-01-19 | 2008-07-24 | Synovis Life Technologies, Inc. | Circular stapler anvil introducer |
WO2008092056A1 (en) | 2007-01-25 | 2008-07-31 | Eveready Battery Company, Inc. | Portable power supply |
US7950562B2 (en) | 2007-01-31 | 2011-05-31 | Tyco Healthcare Group Lp | Surgical instrument with replaceable loading unit |
US7753246B2 (en) | 2007-01-31 | 2010-07-13 | Tyco Healthcare Group Lp | Surgical instrument with replaceable loading unit |
WO2008098085A2 (en) | 2007-02-06 | 2008-08-14 | The Uab Research Foundation | Universal surgical function control system |
US7789883B2 (en) | 2007-02-14 | 2010-09-07 | Olympus Medical Systems Corp. | Curative treatment system, curative treatment device, and treatment method for living tissue using energy |
US20080200911A1 (en) | 2007-02-15 | 2008-08-21 | Long Gary L | Electrical ablation apparatus, system, and method |
US7655004B2 (en) | 2007-02-15 | 2010-02-02 | Ethicon Endo-Surgery, Inc. | Electroporation ablation apparatus, system, and method |
US20080200934A1 (en) | 2007-02-15 | 2008-08-21 | Fox William D | Surgical devices and methods using magnetic force to form an anastomosis |
US20080200755A1 (en) | 2007-02-15 | 2008-08-21 | Bakos Gregory J | Method and device for retrieving suture tags |
EP2124800B1 (en) | 2007-02-15 | 2010-11-17 | Hansen Medical, Inc. | Robotic medical instrument system |
US20080200933A1 (en) | 2007-02-15 | 2008-08-21 | Bakos Gregory J | Surgical devices and methods for forming an anastomosis between organs by gaining access thereto through a natural orifice in the body |
US20080200762A1 (en) | 2007-02-16 | 2008-08-21 | Stokes Michael J | Flexible endoscope shapelock |
US7430675B2 (en) | 2007-02-16 | 2008-09-30 | Apple Inc. | Anticipatory power management for battery-powered electronic device |
CA2621045A1 (en) | 2007-02-16 | 2008-08-16 | Serge Dube | Build-up monitoring system for refrigerated enclosures |
EP1961433A1 (en) | 2007-02-20 | 2008-08-27 | National University of Ireland Galway | Porous substrates for implantation |
US7681725B2 (en) | 2007-02-23 | 2010-03-23 | The Procter And Gamble Company | Container with ability to transfer a material to container content |
US9265559B2 (en) | 2007-02-25 | 2016-02-23 | Avent, Inc. | Electrosurgical method |
US7682367B2 (en) | 2007-02-28 | 2010-03-23 | Tyco Healthcare Group Lp | Surgical stapling apparatus |
JP5096020B2 (ja) | 2007-03-02 | 2012-12-12 | オリエンタルモーター株式会社 | インダクタンス負荷制御装置 |
EP1983312B1 (en) | 2007-03-05 | 2018-02-28 | LG Electronics Inc. | Automatic Liquid Dispenser And Refrigerator With The Same |
US20100076489A1 (en) | 2007-03-06 | 2010-03-25 | Joshua Stopek | Wound closure material |
US8011555B2 (en) | 2007-03-06 | 2011-09-06 | Tyco Healthcare Group Lp | Surgical stapling apparatus |
AU2008223387B2 (en) | 2007-03-06 | 2014-03-06 | Covidien Lp | Wound closure material |
US9888924B2 (en) | 2007-03-06 | 2018-02-13 | Covidien Lp | Wound closure material |
US8011550B2 (en) | 2009-03-31 | 2011-09-06 | Tyco Healthcare Group Lp | Surgical stapling apparatus |
AU2008223389B2 (en) | 2007-03-06 | 2013-07-11 | Covidien Lp | Surgical stapling apparatus |
US7815662B2 (en) | 2007-03-08 | 2010-10-19 | Ethicon Endo-Surgery, Inc. | Surgical suture anchors and deployment device |
US7533790B1 (en) | 2007-03-08 | 2009-05-19 | Cardica, Inc. | Surgical stapler |
US7473258B2 (en) | 2007-03-08 | 2009-01-06 | Cardica, Inc. | Surgical stapler |
US20080216704A1 (en) | 2007-03-09 | 2008-09-11 | Fisher Controls International Llc | Conformal Coating |
US8500777B2 (en) | 2007-03-13 | 2013-08-06 | Longevity Surgical, Inc. | Methods for approximation and fastening of soft tissue |
US20150127021A1 (en) | 2007-03-13 | 2015-05-07 | Longevity Surgical, Inc. | Devices for reconfiguring a portion of the gastrointestinal tract |
EP2131879B1 (en) | 2007-03-13 | 2019-10-09 | Smith & Nephew, Inc. | Internal fixation devices |
US20110016960A1 (en) | 2007-03-13 | 2011-01-27 | Franck Debrailly | Device For Detecting Angular Position, Electric Motor, Steering Column And Reduction Gear |
EP2338325B1 (en) | 2007-03-14 | 2018-05-16 | Robert Bosch GmbH | Cutting tools |
US7669747B2 (en) | 2007-03-15 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Washer for use with a surgical stapling instrument |
US7431188B1 (en) | 2007-03-15 | 2008-10-07 | Tyco Healthcare Group Lp | Surgical stapling apparatus with powered articulation |
US7422136B1 (en) | 2007-03-15 | 2008-09-09 | Tyco Healthcare Group Lp | Powered surgical stapling device |
US20110052660A1 (en) | 2007-03-16 | 2011-03-03 | Board Of Regents Of The University Of Texas System | Ceramic scaffolds for bone repair |
US7776065B2 (en) | 2007-03-20 | 2010-08-17 | Symmetry Medical New Bedford Inc | End effector mechanism for a surgical instrument |
US8308725B2 (en) | 2007-03-20 | 2012-11-13 | Minos Medical | Reverse sealing and dissection instrument |
JP4916011B2 (ja) | 2007-03-20 | 2012-04-11 | 株式会社日立製作所 | マスタ・スレーブ式マニピュレータシステム |
US20080234709A1 (en) | 2007-03-22 | 2008-09-25 | Houser Kevin L | Ultrasonic surgical instrument and cartilage and bone shaping blades therefor |
CA2681186C (en) | 2007-03-22 | 2015-07-21 | Tyco Healthcare Group Lp | Apparatus for forming variable height surgical fasteners |
US8226675B2 (en) | 2007-03-22 | 2012-07-24 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8142461B2 (en) | 2007-03-22 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8911460B2 (en) | 2007-03-22 | 2014-12-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
ES2369417T3 (es) | 2007-03-23 | 2011-11-30 | Stryker Trauma Gmbh | Dispositivo de implantación, procedimeinto para la producción y para la aplicación del mismo. |
CA2868909A1 (en) | 2007-03-26 | 2008-10-02 | Tyco Healthcare Group Lp | Endoscopic surgical clip applier |
US8608745B2 (en) | 2007-03-26 | 2013-12-17 | DePuy Synthes Products, LLC | System, apparatus, and method for cutting bone during an orthopaedic surgical procedure |
US8142200B2 (en) | 2007-03-26 | 2012-03-27 | Liposonix, Inc. | Slip ring spacer and method for its use |
US7490749B2 (en) | 2007-03-28 | 2009-02-17 | Ethicon Endo-Surgery, Inc. | Surgical stapling and cutting instrument with manually retractable firing member |
US20080243088A1 (en) | 2007-03-28 | 2008-10-02 | Docusys, Inc. | Radio frequency identification drug delivery device and monitoring system |
US8056787B2 (en) | 2007-03-28 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Surgical stapling and cutting instrument with travel-indicating retraction member |
US8893946B2 (en) | 2007-03-28 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Laparoscopic tissue thickness and clamp load measuring devices |
US8496153B2 (en) | 2007-03-29 | 2013-07-30 | Covidien Lp | Anvil-mounted dissecting tip for surgical stapling device |
US7630841B2 (en) | 2007-03-30 | 2009-12-08 | Texas Instruments Incorporated | Supervising and sequencing commonly driven power supplies with digital information |
US8377044B2 (en) | 2007-03-30 | 2013-02-19 | Ethicon Endo-Surgery, Inc. | Detachable end effectors |
US7923144B2 (en) | 2007-03-31 | 2011-04-12 | Tesla Motors, Inc. | Tunable frangible battery pack system |
USD570868S1 (en) | 2007-04-02 | 2008-06-10 | Tokyo Electron Limited | Computer generated image for a display panel or screen |
US20080242939A1 (en) | 2007-04-02 | 2008-10-02 | William Johnston | Retractor system for internal in-situ assembly during laparoscopic surgery |
JP5006093B2 (ja) | 2007-04-03 | 2012-08-22 | テルモ株式会社 | マニピュレータシステム及び制御装置 |
JP5090045B2 (ja) | 2007-04-03 | 2012-12-05 | テルモ株式会社 | マニピュレータ及びその制御方法 |
JP4728996B2 (ja) | 2007-04-04 | 2011-07-20 | 三菱電機株式会社 | 粒子線治療装置及び粒子線照射線量算出方法 |
US20080249608A1 (en) | 2007-04-04 | 2008-10-09 | Vipul Dave | Bioabsorbable Polymer, Bioabsorbable Composite Stents |
FR2914554B1 (fr) | 2007-04-05 | 2009-07-17 | Germitec Soc Par Actions Simpl | Procede de suivi de l'uitilisation d'un appareil medical. |
US20090270812A1 (en) | 2007-04-06 | 2009-10-29 | Interlace Medical , Inc. | Access device with enhanced working channel |
US9427223B2 (en) | 2007-04-09 | 2016-08-30 | Creative Surgical, Llc | Frame device |
US8006885B2 (en) | 2007-04-09 | 2011-08-30 | Tyco Healthcare Group Lp | Surgical stapling apparatus with powered retraction |
US20080255420A1 (en) | 2007-04-10 | 2008-10-16 | Cambridge Endoscopic Devices, Inc. | Surgical instrument |
CN102327136B (zh) | 2007-04-11 | 2014-04-23 | 柯惠Lp公司 | 手术施夹器 |
US20080255413A1 (en) | 2007-04-13 | 2008-10-16 | Michael Zemlok | Powered surgical instrument |
US8800837B2 (en) | 2007-04-13 | 2014-08-12 | Covidien Lp | Powered surgical instrument |
USD582934S1 (en) | 2007-04-13 | 2008-12-16 | Samsung Electronics Co., Ltd. | Transitional video image display for portable phone |
US7950560B2 (en) | 2007-04-13 | 2011-05-31 | Tyco Healthcare Group Lp | Powered surgical instrument |
US20080255663A1 (en) | 2007-04-13 | 2008-10-16 | Akpek Esen K | Artificial Cornea and Method of Making Same |
AU2008242981B2 (en) | 2007-04-16 | 2014-06-12 | Smith & Nephew, Inc. | Powered surgical system |
US7708182B2 (en) | 2007-04-17 | 2010-05-04 | Tyco Healthcare Group Lp | Flexible endoluminal surgical instrument |
US7839109B2 (en) | 2007-04-17 | 2010-11-23 | Lutron Electronics Co., Inc. | Method of controlling a motorized window treatment |
US8323271B2 (en) | 2007-04-20 | 2012-12-04 | Doheny Eye Institute | Sterile surgical tray |
EP3150180B1 (en) | 2007-04-20 | 2019-06-12 | Doheny Eye Institute | Independent surgical center |
DE102007019409B3 (de) | 2007-04-23 | 2008-11-13 | Lösomat Schraubtechnik Neef Gmbh | Kraftschrauber |
JP4668946B2 (ja) | 2007-04-25 | 2011-04-13 | 株式会社デンソー | 車載エアコン用操作ユニット及びそれを用いた車載エアコン制御装置 |
EP1986123A1 (en) | 2007-04-27 | 2008-10-29 | Italdata Ingegneria Dell'Idea S.p.A. | Data survey device, integrated with an anti-tamper system |
US8028882B2 (en) | 2007-05-01 | 2011-10-04 | Tyco Healthcare Group | Anvil position detector for a surgical stapler |
US7823760B2 (en) | 2007-05-01 | 2010-11-02 | Tyco Healthcare Group Lp | Powered surgical stapling device platform |
US8486047B2 (en) | 2007-05-03 | 2013-07-16 | Covidien Lp | Packaged medical device |
JP2007289715A (ja) | 2007-05-07 | 2007-11-08 | Olympus Corp | 超音波診断治療システム |
CA2685717C (en) | 2007-05-07 | 2015-08-11 | Tyco Healthcare Group Lp | Variable size-uniform compression staple assembly |
US20080281332A1 (en) | 2007-05-07 | 2008-11-13 | Warsaw Orthopedic, Inc. | Surgical screwdriver |
US20080281171A1 (en) | 2007-05-08 | 2008-11-13 | Abbott Diabetes Care, Inc. | Analyte monitoring system and methods |
US7931660B2 (en) | 2007-05-10 | 2011-04-26 | Tyco Healthcare Group Lp | Powered tacker instrument |
JP4348714B2 (ja) | 2007-05-10 | 2009-10-21 | シャープ株式会社 | データ送信システム及びデータ送信方法 |
US20080294179A1 (en) | 2007-05-12 | 2008-11-27 | Balbierz Daniel J | Devices and methods for stomach partitioning |
US7810691B2 (en) | 2007-05-16 | 2010-10-12 | The Invention Science Fund I, Llc | Gentle touch surgical stapler |
DE102007023585B4 (de) | 2007-05-16 | 2009-08-20 | Esab Cutting Systems Gmbh | Einrichtung und Verfahren zum Einmessen von Schwenkaggregaten, insbesondere an Schneidmaschinen |
US7832611B2 (en) | 2007-05-16 | 2010-11-16 | The Invention Science Fund I, Llc | Steerable surgical stapler |
US7823761B2 (en) | 2007-05-16 | 2010-11-02 | The Invention Science Fund I, Llc | Maneuverable surgical stapler |
US8910846B2 (en) | 2007-05-17 | 2014-12-16 | Covidien Lp | Gear driven knife drive mechanism |
US9545258B2 (en) | 2007-05-17 | 2017-01-17 | Boston Scientific Scimed, Inc. | Tissue aperture securing and sealing apparatuses and related methods of use |
US7981102B2 (en) | 2007-05-21 | 2011-07-19 | Asante Solutions, Inc. | Removable controller for an infusion pump |
US20080293910A1 (en) | 2007-05-24 | 2008-11-27 | Tyco Healthcare Group Lp | Adhesive formulatiions |
US8038045B2 (en) | 2007-05-25 | 2011-10-18 | Tyco Healthcare Group Lp | Staple buttress retention system |
US8409234B2 (en) | 2007-05-25 | 2013-04-02 | Hansen Medical, Inc. | Rotational apparatus system and method for a robotic instrument system |
US7549564B2 (en) | 2007-06-22 | 2009-06-23 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with an articulating end effector |
US7810693B2 (en) | 2007-05-30 | 2010-10-12 | Ethicon Endo-Surgery, Inc. | Surgical stapling and cutting instrument with articulatable end effector |
US7971414B1 (en) | 2007-05-30 | 2011-07-05 | Walgreen Co. | Multi-dose filling machine |
US7798386B2 (en) | 2007-05-30 | 2010-09-21 | Ethicon Endo-Surgery, Inc. | Surgical instrument articulation joint cover |
US20080297287A1 (en) | 2007-05-30 | 2008-12-04 | Magnetecs, Inc. | Magnetic linear actuator for deployable catheter tools |
US8157145B2 (en) | 2007-05-31 | 2012-04-17 | Ethicon Endo-Surgery, Inc. | Pneumatically powered surgical cutting and fastening instrument with electrical feedback |
US20080296346A1 (en) * | 2007-05-31 | 2008-12-04 | Shelton Iv Frederick E | Pneumatically powered surgical cutting and fastening instrument with electrical control and recording mechanisms |
US7939152B2 (en) | 2007-06-01 | 2011-05-10 | M-Tech Corporation | Heat-shrinkable anti-fomitic device |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US7832408B2 (en) | 2007-06-04 | 2010-11-16 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a directional switching mechanism |
US8534528B2 (en) | 2007-06-04 | 2013-09-17 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a multiple rate directional switching mechanism |
US11564682B2 (en) | 2007-06-04 | 2023-01-31 | Cilag Gmbh International | Surgical stapler device |
KR101349639B1 (ko) | 2007-06-04 | 2014-01-09 | 타이코 일렉트로닉스 저팬 지.케이. | 일체형 감지스위치를 갖는 메모리카드 및 sim카드장착소켓 |
US7905380B2 (en) | 2007-06-04 | 2011-03-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a multiple rate directional switching mechanism |
US20080298784A1 (en) | 2007-06-04 | 2008-12-04 | Mark Allen Kastner | Method of Sensing Speed of Electric Motors and Generators |
US7819299B2 (en) | 2007-06-04 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a common trigger for actuating an end effector closing system and a staple firing system |
US7780309B2 (en) | 2007-06-05 | 2010-08-24 | Eveready Battery Company, Inc. | Preparedness flashlight |
US8016841B2 (en) | 2007-06-11 | 2011-09-13 | Novus Scientific Pte. Ltd. | Mesh implant with an interlocking knitted structure |
US8899460B2 (en) | 2007-06-12 | 2014-12-02 | Black & Decker Inc. | Magazine assembly for nailer |
CA2633869A1 (en) | 2007-06-12 | 2008-12-12 | Tyco Healthcare Group Lp | Surgical fastener |
US9096033B2 (en) | 2007-06-13 | 2015-08-04 | Intuitive Surgical Operations, Inc. | Surgical system instrument sterile adapter |
US8620473B2 (en) | 2007-06-13 | 2013-12-31 | Intuitive Surgical Operations, Inc. | Medical robotic system with coupled control modes |
JP5331389B2 (ja) | 2007-06-15 | 2013-10-30 | 株式会社半導体エネルギー研究所 | 表示装置の作製方法 |
US7588176B2 (en) | 2007-06-18 | 2009-09-15 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument with improved closure system |
US7950561B2 (en) | 2007-06-18 | 2011-05-31 | Tyco Healthcare Group Lp | Structure for attachment of buttress material to anvils and cartridges of surgical staplers |
US7665646B2 (en) | 2007-06-18 | 2010-02-23 | Tyco Healthcare Group Lp | Interlocking buttress material retention system |
USD578644S1 (en) | 2007-06-20 | 2008-10-14 | Abbott Laboratories | Medical device delivery handle |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
US8308040B2 (en) | 2007-06-22 | 2012-11-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with an articulatable end effector |
US7597229B2 (en) | 2007-06-22 | 2009-10-06 | Ethicon Endo-Surgery, Inc. | End effector closure system for a surgical stapling instrument |
AU2008268632B2 (en) | 2007-06-22 | 2013-10-17 | Medical Components, Inc. | Tearaway sheath assembly with hemostasis valve |
US7658311B2 (en) | 2007-06-22 | 2010-02-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with a geared return mechanism |
US7604150B2 (en) | 2007-06-22 | 2009-10-20 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with an anti-back up mechanism |
US7441685B1 (en) | 2007-06-22 | 2008-10-28 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with a return mechanism |
US20090007014A1 (en) | 2007-06-27 | 2009-01-01 | Microsoft Corporation | Center locked lists |
US20090004455A1 (en) | 2007-06-27 | 2009-01-01 | Philippe Gravagna | Reinforced composite implant |
US8062330B2 (en) | 2007-06-27 | 2011-11-22 | Tyco Healthcare Group Lp | Buttress and surgical stapling apparatus |
CN101873834B (zh) | 2007-06-29 | 2012-12-05 | 伊西康内外科公司 | 与外科手术缝合器械一起使用的垫圈 |
CA2698728C (en) | 2007-06-29 | 2016-08-02 | Ethicon Endo-Surgery, Inc. | Washer for use with a surgical stapling instrument |
US8093572B2 (en) | 2007-06-29 | 2012-01-10 | Accuray Incorporated | Integrated variable-aperture collimator and fixed-aperture collimator |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
US10219832B2 (en) | 2007-06-29 | 2019-03-05 | Actuated Medical, Inc. | Device and method for less forceful tissue puncture |
DE102007031008A1 (de) | 2007-07-04 | 2009-01-08 | Braun Gmbh | Vorrichtung mit elektrischem Gerät und Ladestation |
US7600663B2 (en) | 2007-07-05 | 2009-10-13 | Green David T | Apparatus for stapling and incising tissue |
US8758366B2 (en) | 2007-07-09 | 2014-06-24 | Neotract, Inc. | Multi-actuating trigger anchor delivery system |
WO2009009684A1 (en) | 2007-07-10 | 2009-01-15 | Osteotech, Inc. | Delivery system |
US8348972B2 (en) | 2007-07-11 | 2013-01-08 | Covidien Lp | Surgical staple with augmented compression area |
US7823076B2 (en) | 2007-07-13 | 2010-10-26 | Adobe Systems Incorporated | Simplified user interface navigation |
US7967791B2 (en) | 2007-07-23 | 2011-06-28 | Ethicon Endo-Surgery, Inc. | Surgical access device |
JP2009028157A (ja) | 2007-07-25 | 2009-02-12 | Terumo Corp | 医療用マニピュレータシステム |
US9539061B2 (en) | 2007-07-25 | 2017-01-10 | Karl Storz Gmbh & Co. Kg | Medical manipulator and welding method |
CN101801343A (zh) | 2007-07-26 | 2010-08-11 | 圣诺菲·帕斯图尔有限公司 | 抗原佐剂组合物及其方法 |
US8808319B2 (en) | 2007-07-27 | 2014-08-19 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
JP5042738B2 (ja) | 2007-07-30 | 2012-10-03 | テルモ株式会社 | 医療用マニピュレータの作業機構及び洗浄方法 |
US9044261B2 (en) | 2007-07-31 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Temperature controlled ultrasonic surgical instruments |
US8430898B2 (en) | 2007-07-31 | 2013-04-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US7829416B2 (en) | 2007-08-07 | 2010-11-09 | Panasonic Corporation | Silicon carbide semiconductor device and method for producing the same |
US7747146B2 (en) | 2007-08-08 | 2010-06-29 | Allegro Microsystems, Inc. | Motor controller having a multifunction port |
US7787256B2 (en) | 2007-08-10 | 2010-08-31 | Gore Enterprise Holdings, Inc. | Tamper respondent system |
EP2626027B1 (en) | 2007-08-14 | 2020-04-29 | Koninklijke Philips N.V. | Robotic instrument systems utilizing optical fiber sensors |
US8202549B2 (en) | 2007-08-14 | 2012-06-19 | The Regents Of The University Of California | Mesocellular oxide foams as hemostatic compositions and methods of use |
US20090048589A1 (en) | 2007-08-14 | 2009-02-19 | Tomoyuki Takashino | Treatment device and treatment method for living tissue |
US7556185B2 (en) | 2007-08-15 | 2009-07-07 | Tyco Healthcare Group Lp | Surgical instrument with flexible drive mechanism |
CA2695619C (en) | 2007-08-15 | 2015-11-24 | Board Of Regents Of The University Of Nebraska | Modular and cooperative medical devices and related systems and methods |
US7714334B2 (en) | 2007-08-16 | 2010-05-11 | Lin Peter P W | Polarless surface mounting light emitting diode |
US8165663B2 (en) | 2007-10-03 | 2012-04-24 | The Invention Science Fund I, Llc | Vasculature and lymphatic system imaging and ablation |
US20090053288A1 (en) | 2007-08-20 | 2009-02-26 | Eskridge Jr E Stan | Hemostatic woven fabric |
JP2009050288A (ja) | 2007-08-23 | 2009-03-12 | Terumo Corp | 医療用マニピュレータの作業機構 |
US9005238B2 (en) | 2007-08-23 | 2015-04-14 | Covidien Lp | Endoscopic surgical devices |
US8465515B2 (en) | 2007-08-29 | 2013-06-18 | Ethicon Endo-Surgery, Inc. | Tissue retractors |
US7967181B2 (en) | 2007-08-29 | 2011-06-28 | Tyco Healthcare Group Lp | Rotary knife cutting systems |
USD580942S1 (en) | 2007-08-30 | 2008-11-18 | Microsoft Corporation | Graphical user interface for a portion of a display screen |
KR101387404B1 (ko) | 2007-08-30 | 2014-04-21 | 삼성전자주식회사 | 디지털 영상 처리장치의 제어장치 및 그 방법 |
US7624902B2 (en) | 2007-08-31 | 2009-12-01 | Tyco Healthcare Group Lp | Surgical stapling apparatus |
US8061576B2 (en) | 2007-08-31 | 2011-11-22 | Tyco Healthcare Group Lp | Surgical instrument |
US8262655B2 (en) | 2007-11-21 | 2012-09-11 | Ethicon Endo-Surgery, Inc. | Bipolar forceps |
JP2009056164A (ja) | 2007-08-31 | 2009-03-19 | Terumo Corp | 医療用マニピュレータシステム |
US8579897B2 (en) | 2007-11-21 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Bipolar forceps |
FR2920683B1 (fr) | 2007-09-06 | 2010-02-12 | Pellenc Sa | Appareils electroportatifs polyvalents. |
US9168039B1 (en) | 2007-09-06 | 2015-10-27 | Cardica, Inc. | Surgical stapler with staples of different sizes |
US7988026B2 (en) | 2007-09-06 | 2011-08-02 | Cardica, Inc. | Endocutter with staple feed |
GB2452720A (en) | 2007-09-11 | 2009-03-18 | Ethicon Inc | Wound dressing with an antimicrobial absorbent layer and an apertured cover sheet |
US8257386B2 (en) | 2007-09-11 | 2012-09-04 | Cambridge Endoscopic Devices, Inc. | Surgical instrument |
US8556151B2 (en) | 2007-09-11 | 2013-10-15 | Covidien Lp | Articulating joint for surgical instruments |
US8317790B2 (en) | 2007-09-14 | 2012-11-27 | W. L. Gore & Associates, Inc. | Surgical staple line reinforcements |
US20090076506A1 (en) | 2007-09-18 | 2009-03-19 | Surgrx, Inc. | Electrosurgical instrument and method |
EP2039302A3 (en) | 2007-09-18 | 2009-06-10 | Ethicon Endo-Surgery, Inc. | Devices for reduction of post operative ileus |
US7513407B1 (en) | 2007-09-20 | 2009-04-07 | Acuman Power Tools Corp. | Counterforce-counteracting device for a nailer |
US9023014B2 (en) | 2007-09-21 | 2015-05-05 | Covidien Lp | Quick connect assembly for use between surgical handle assembly and surgical accessories |
EP2233081B2 (en) | 2007-09-21 | 2018-03-28 | Covidien LP | Surgical device |
CN101801283B (zh) | 2007-09-21 | 2012-07-18 | Tyco医疗健康集团 | 手术器械 |
US8678263B2 (en) | 2007-09-24 | 2014-03-25 | Covidien Lp | Materials delivery system for stapling device |
US9597080B2 (en) | 2007-09-24 | 2017-03-21 | Covidien Lp | Insertion shroud for surgical instrument |
US8721666B2 (en) | 2007-09-26 | 2014-05-13 | Ethicon, Inc. | Method of facial reconstructive surgery using a self-anchoring tissue lifting device |
US20090088659A1 (en) | 2007-09-27 | 2009-04-02 | Immersion Corporation | Biological Sensing With Haptic Feedback |
US7703653B2 (en) | 2007-09-28 | 2010-04-27 | Tyco Healthcare Group Lp | Articulation mechanism for surgical instrument |
US20090132400A1 (en) | 2007-09-28 | 2009-05-21 | Verizon Services Organization Inc. | Data metering |
US8224484B2 (en) | 2007-09-30 | 2012-07-17 | Intuitive Surgical Operations, Inc. | Methods of user interface with alternate tool mode for robotic surgical tools |
US8084969B2 (en) | 2007-10-01 | 2011-12-27 | Allegro Microsystems, Inc. | Hall-effect based linear motor controller |
US9707003B2 (en) | 2007-10-02 | 2017-07-18 | Covidien Lp | Articulating surgical instrument |
US8285367B2 (en) | 2007-10-05 | 2012-10-09 | The Invention Science Fund I, Llc | Vasculature and lymphatic system imaging and ablation associated with a reservoir |
US7945798B2 (en) | 2007-10-03 | 2011-05-17 | Lenovo (Singapore) Pte. Ltd. | Battery pack for portable computer |
US20130214025A1 (en) | 2007-10-05 | 2013-08-22 | Covidien Lp | Powered surgical stapling device |
EP2044888B1 (en) | 2007-10-05 | 2016-12-07 | Covidien LP | Articulation mechanism for a surgical instrument |
US8967443B2 (en) | 2007-10-05 | 2015-03-03 | Covidien Lp | Method and apparatus for determining parameters of linear motion in a surgical instrument |
US8763874B2 (en) | 2007-10-05 | 2014-07-01 | Senco Brands, Inc. | Gas spring fastener driving tool with improved lifter and latch mechanisms |
US10779818B2 (en) | 2007-10-05 | 2020-09-22 | Covidien Lp | Powered surgical stapling device |
US8960520B2 (en) * | 2007-10-05 | 2015-02-24 | Covidien Lp | Method and apparatus for determining parameters of linear motion in a surgical instrument |
US10500309B2 (en) | 2007-10-05 | 2019-12-10 | Cook Biotech Incorporated | Absorbable adhesives and their formulation for use in medical applications |
US8012170B2 (en) | 2009-04-27 | 2011-09-06 | Tyco Healthcare Group Lp | Device and method for controlling compression of tissue |
US10271844B2 (en) | 2009-04-27 | 2019-04-30 | Covidien Lp | Surgical stapling apparatus employing a predictive stapling algorithm |
US10498269B2 (en) | 2007-10-05 | 2019-12-03 | Covidien Lp | Powered surgical stapling device |
US20110022032A1 (en) | 2007-10-05 | 2011-01-27 | Tyco Healthcare Group Lp | Battery ejection design for a surgical device |
US8517241B2 (en) | 2010-04-16 | 2013-08-27 | Covidien Lp | Hand-held surgical devices |
US20120289979A1 (en) | 2007-10-08 | 2012-11-15 | Sherif Eskaros | Apparatus for Supplying Surgical Staple Line Reinforcement |
WO2009048589A1 (en) | 2007-10-08 | 2009-04-16 | Gore Enterprise Holdings, Inc. | Apparatus for supplying surgical staple line reinforcement |
WO2009047664A1 (en) | 2007-10-09 | 2009-04-16 | St Wireless Sa | Non-recursive adaptive filter for predicting the mean processing performance of a complex system´s processing core |
US8044536B2 (en) | 2007-10-10 | 2011-10-25 | Ams Research Corporation | Powering devices having low and high voltage circuits |
US8992409B2 (en) | 2007-10-11 | 2015-03-31 | Peter Forsell | Method for controlling flow in a bodily organ |
US20090099579A1 (en) | 2007-10-16 | 2009-04-16 | Tyco Healthcare Group Lp | Self-adherent implants and methods of preparation |
CN101188900B (zh) | 2007-10-17 | 2011-07-20 | 廖云峰 | 双床双管医用诊断x射线高频高压发生器 |
US7945792B2 (en) | 2007-10-17 | 2011-05-17 | Spansion Llc | Tamper reactive memory device to secure data from tamper attacks |
EP2052678A1 (de) | 2007-10-24 | 2009-04-29 | F. Hoffmann-Roche AG | Medizinisches System mit Verbrauchsmittel-Überwachung |
US8142425B2 (en) | 2007-10-30 | 2012-03-27 | Hemostatix Medical Techs, LLC | Hemostatic surgical blade, system and method of blade manufacture |
CN101203085B (zh) | 2007-10-30 | 2011-08-10 | 杨扬 | 医用诊断x射线高频高压发生器 |
JP5011067B2 (ja) | 2007-10-31 | 2012-08-29 | 株式会社東芝 | マニピュレータシステム |
US20090112234A1 (en) | 2007-10-31 | 2009-04-30 | Lawrence Crainich | Reloadable laparoscopic fastener deploying device for use in a gastric volume reduction procedure |
US20090118762A1 (en) | 2007-10-31 | 2009-05-07 | Lawrence Crainch | Disposable cartridge for use in a gastric volume reduction procedure |
AU2008318678B2 (en) | 2007-10-31 | 2014-02-13 | Cardinal Health 529, Llc | Vascular closure device |
US7922063B2 (en) | 2007-10-31 | 2011-04-12 | Tyco Healthcare Group, Lp | Powered surgical instrument |
JP5364255B2 (ja) | 2007-10-31 | 2013-12-11 | テルモ株式会社 | 医療用マニピュレータ |
KR100877721B1 (ko) | 2007-11-05 | 2009-01-07 | (주)건양트루넷 | 리벳팅장치 |
US7954685B2 (en) | 2007-11-06 | 2011-06-07 | Tyco Healthcare Group Lp | Articulation and firing force mechanisms |
US7954687B2 (en) | 2007-11-06 | 2011-06-07 | Tyco Healthcare Group Lp | Coated surgical staples and an illuminated staple cartridge for a surgical stapling instrument |
JP2009115640A (ja) | 2007-11-07 | 2009-05-28 | Honda Motor Co Ltd | ナビゲーション装置 |
AU2008324692A1 (en) | 2007-11-08 | 2009-05-14 | Ceapro Inc. | Avenanthramide-containing compositions |
US8425600B2 (en) | 2007-11-14 | 2013-04-23 | G. Patrick Maxwell | Interfaced medical implant assembly |
US8125168B2 (en) | 2007-11-19 | 2012-02-28 | Honeywell International Inc. | Motor having controllable torque |
US20090131819A1 (en) | 2007-11-20 | 2009-05-21 | Ritchie Paul G | User Interface On Biopsy Device |
WO2009067649A2 (en) | 2007-11-21 | 2009-05-28 | Ethicon Endo-Surgery, Inc. | Bipolar forceps having a cutting element |
WO2009066105A1 (en) | 2007-11-21 | 2009-05-28 | Smith & Nephew Plc | Wound dressing |
CA2705898C (en) | 2007-11-21 | 2020-08-25 | Smith & Nephew Plc | Wound dressing |
GB0722820D0 (en) | 2007-11-21 | 2008-01-02 | Smith & Nephew | Vacuum assisted wound dressing |
US8457757B2 (en) | 2007-11-26 | 2013-06-04 | Micro Transponder, Inc. | Implantable transponder systems and methods |
US7791009B2 (en) | 2007-11-27 | 2010-09-07 | University Of Washington | Eliminating illumination crosstalk while using multiple imaging devices with plural scanning devices, each coupled to an optical fiber |
DE102007057033A1 (de) | 2007-11-27 | 2009-05-28 | Robert Bosch Gmbh | Elektrisch antreibbare Handwerkzeugmaschine |
US8377059B2 (en) | 2007-11-28 | 2013-02-19 | Covidien Ag | Cordless medical cauterization and cutting device |
US9050098B2 (en) | 2007-11-28 | 2015-06-09 | Covidien Ag | Cordless medical cauterization and cutting device |
WO2009073577A2 (en) | 2007-11-29 | 2009-06-11 | Surgiquest, Inc. | Surgical instruments with improved dexterity for use in minimally invasive surgical procedures |
US20090143855A1 (en) | 2007-11-29 | 2009-06-04 | Boston Scientific Scimed, Inc. | Medical Device Including Drug-Loaded Fibers |
JP5283209B2 (ja) | 2007-11-29 | 2013-09-04 | マニー株式会社 | 医療用ステイプル |
JP5377944B2 (ja) | 2007-11-30 | 2013-12-25 | 住友ベークライト株式会社 | 胃瘻用シース、シース付きダイレータ、挿入補助具付き胃瘻用シース、胃瘻カテーテルキット |
US9017355B2 (en) | 2007-12-03 | 2015-04-28 | Covidien Ag | Battery-powered hand-held ultrasonic surgical cautery cutting device |
US8061014B2 (en) | 2007-12-03 | 2011-11-22 | Covidien Ag | Method of assembling a cordless hand-held ultrasonic cautery cutting device |
US9107690B2 (en) | 2007-12-03 | 2015-08-18 | Covidien Ag | Battery-powered hand-held ultrasonic surgical cautery cutting device |
US8435257B2 (en) | 2007-12-03 | 2013-05-07 | Covidien Ag | Cordless hand-held ultrasonic cautery cutting device and method |
US8334468B2 (en) | 2008-11-06 | 2012-12-18 | Covidien Ag | Method of switching a cordless hand-held ultrasonic cautery cutting device |
US9314261B2 (en) | 2007-12-03 | 2016-04-19 | Covidien Ag | Battery-powered hand-held ultrasonic surgical cautery cutting device |
US8403948B2 (en) | 2007-12-03 | 2013-03-26 | Covidien Ag | Cordless hand-held ultrasonic cautery cutting device |
US7772720B2 (en) | 2007-12-03 | 2010-08-10 | Spx Corporation | Supercapacitor and charger for secondary power |
US8663262B2 (en) | 2007-12-03 | 2014-03-04 | Covidien Ag | Battery assembly for battery-powered surgical instruments |
USD601578S1 (en) | 2007-12-04 | 2009-10-06 | Somfy Sas | Icon for a portion of a display screen |
US8511308B2 (en) | 2007-12-06 | 2013-08-20 | Cpair, Inc. | CPR system with feed back instruction |
JP5235394B2 (ja) | 2007-12-06 | 2013-07-10 | 株式会社ハーモニック・エイディ | 切替式回転駆動装置 |
US8319002B2 (en) | 2007-12-06 | 2012-11-27 | Nanosys, Inc. | Nanostructure-enhanced platelet binding and hemostatic structures |
US8180458B2 (en) | 2007-12-17 | 2012-05-15 | Thermage, Inc. | Method and apparatus for digital signal processing for radio frequency surgery measurements |
US8561473B2 (en) | 2007-12-18 | 2013-10-22 | Intuitive Surgical Operations, Inc. | Force sensor temperature compensation |
US8840604B2 (en) | 2007-12-21 | 2014-09-23 | Smith & Nephew, Inc. | Surgical aimer |
US8352004B2 (en) | 2007-12-21 | 2013-01-08 | Covidien Lp | Medical sensor and technique for using the same |
JP5071103B2 (ja) | 2007-12-29 | 2012-11-14 | ブラザー工業株式会社 | 表示体及び表示体構造 |
US20090171147A1 (en) | 2007-12-31 | 2009-07-02 | Woojin Lee | Surgical instrument |
TWI348086B (en) | 2008-01-02 | 2011-09-01 | Mstar Semiconductor Inc | Dc power converter and mode-switching method |
US8727199B2 (en) | 2008-01-03 | 2014-05-20 | Covidien Lp | Surgical stapler |
US9192376B2 (en) | 2008-01-04 | 2015-11-24 | Luis Jose Almodovar | Rotational driver |
JP5116490B2 (ja) | 2008-01-08 | 2013-01-09 | 株式会社マキタ | モータ制御装置とそれを用いた電動工具 |
EP2240083B8 (en) | 2008-01-10 | 2015-08-19 | Covidien LP | Imaging system for a surgical device |
US8647258B2 (en) | 2008-01-10 | 2014-02-11 | Covidien Lp | Apparatus for endoscopic procedures |
US20090181290A1 (en) | 2008-01-14 | 2009-07-16 | Travis Baldwin | System and Method for an Automated Battery Arrangement |
US8031069B2 (en) | 2008-01-14 | 2011-10-04 | Oded Yair Cohn | Electronic security seal and system |
US8490851B2 (en) | 2008-01-15 | 2013-07-23 | Covidien Lp | Surgical stapling apparatus |
JP5146734B2 (ja) | 2008-01-15 | 2013-02-20 | 日立工機株式会社 | 留め具打込機 |
WO2009091497A2 (en) | 2008-01-16 | 2009-07-23 | John Hyoung Kim | Minimally invasive surgical instrument |
WO2009093023A2 (en) | 2008-01-25 | 2009-07-30 | Smith & Nephew Plc | Multilayer scaffold |
US8192350B2 (en) | 2008-01-28 | 2012-06-05 | Ethicon Endo-Surgery, Inc. | Methods and devices for measuring impedance in a gastric restriction system |
CA2749778C (en) | 2008-01-29 | 2021-06-15 | Milux Holding S.A. | A device, system and method for treating obesity |
EP2257250A2 (en) | 2008-01-29 | 2010-12-08 | Gilbert H. Kliman | Drug delivery devices, kits and methods therefor |
US20090192534A1 (en) | 2008-01-29 | 2009-07-30 | Ethicon Endo-Surgery, Inc. | Sensor trigger |
US8814836B2 (en) | 2008-01-29 | 2014-08-26 | Edge Systems Llc | Devices, systems and methods for treating the skin using time-release substances |
US8006365B2 (en) | 2008-01-30 | 2011-08-30 | Easylap Ltd. | Device and method for applying rotary tacks |
CN101219648B (zh) | 2008-01-31 | 2010-12-08 | 北京经纬恒润科技有限公司 | 车灯转向驱动装置 |
JP4672031B2 (ja) | 2008-01-31 | 2011-04-20 | オリンパスメディカルシステムズ株式会社 | 医療器具 |
US20100249947A1 (en) | 2009-03-27 | 2010-09-30 | Evera Medical, Inc. | Porous implant with effective extensibility and methods of forming an implant |
US8870867B2 (en) | 2008-02-06 | 2014-10-28 | Aesculap Ag | Articulable electrosurgical instrument with a stabilizable articulation actuator |
US20090198272A1 (en) | 2008-02-06 | 2009-08-06 | Lawrence Kerver | Method and apparatus for articulating the wrist of a laparoscopic grasping instrument |
US8114345B2 (en) | 2008-02-08 | 2012-02-14 | Ethicon Endo-Surgery, Inc. | System and method of sterilizing an implantable medical device |
US20090204925A1 (en) | 2008-02-08 | 2009-08-13 | Sony Ericsson Mobile Communications Ab | Active Desktop with Changeable Desktop Panels |
US7766209B2 (en) | 2008-02-13 | 2010-08-03 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with improved firing trigger arrangement |
US8540133B2 (en) | 2008-09-19 | 2013-09-24 | Ethicon Endo-Surgery, Inc. | Staple cartridge |
US8561870B2 (en) | 2008-02-13 | 2013-10-22 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument |
US8453908B2 (en) | 2008-02-13 | 2013-06-04 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with improved firing trigger arrangement |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US8758391B2 (en) | 2008-02-14 | 2014-06-24 | Ethicon Endo-Surgery, Inc. | Interchangeable tools for surgical instruments |
US8622274B2 (en) | 2008-02-14 | 2014-01-07 | Ethicon Endo-Surgery, Inc. | Motorized cutting and fastening instrument having control circuit for optimizing battery usage |
RU2493788C2 (ru) | 2008-02-14 | 2013-09-27 | Этикон Эндо-Серджери, Инк. | Хирургический режущий и крепежный инструмент, имеющий радиочастотные электроды |
US7913891B2 (en) | 2008-02-14 | 2011-03-29 | Ethicon Endo-Surgery, Inc. | Disposable loading unit with user feedback features and surgical instrument for use therewith |
US8459525B2 (en) | 2008-02-14 | 2013-06-11 | Ethicon Endo-Sugery, Inc. | Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device |
US7857185B2 (en) | 2008-02-14 | 2010-12-28 | Ethicon Endo-Surgery, Inc. | Disposable loading unit for surgical stapling apparatus |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US7819296B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with retractable firing systems |
US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
US7861906B2 (en) | 2008-02-14 | 2011-01-04 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with articulatable components |
RU2496433C2 (ru) | 2008-02-14 | 2013-10-27 | Этикон Эндо-Серджери, Инк. | Моторизованный режущий и крепежный инструмент, имеющий схему управления для оптимизации использования батареи |
US8584919B2 (en) | 2008-02-14 | 2013-11-19 | Ethicon Endo-Sugery, Inc. | Surgical stapling apparatus with load-sensitive firing mechanism |
US7793812B2 (en) | 2008-02-14 | 2010-09-14 | Ethicon Endo-Surgery, Inc. | Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus |
US8657174B2 (en) * | 2008-02-14 | 2014-02-25 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument having handle based power source |
US8752749B2 (en) | 2008-02-14 | 2014-06-17 | Ethicon Endo-Surgery, Inc. | Robotically-controlled disposable motor-driven loading unit |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
US9179912B2 (en) * | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US7810692B2 (en) | 2008-02-14 | 2010-10-12 | Ethicon Endo-Surgery, Inc. | Disposable loading unit with firing indicator |
US20090206133A1 (en) | 2008-02-14 | 2009-08-20 | Ethicon Endo-Surgery, Inc. | Articulatable loading units for surgical stapling and cutting instruments |
US7819297B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with reprocessible handle assembly |
US11272927B2 (en) | 2008-02-15 | 2022-03-15 | Cilag Gmbh International | Layer arrangements for surgical staple cartridges |
US8371491B2 (en) | 2008-02-15 | 2013-02-12 | Ethicon Endo-Surgery, Inc. | Surgical end effector having buttress retention features |
US10390823B2 (en) | 2008-02-15 | 2019-08-27 | Ethicon Llc | End effector comprising an adjunct |
US8398673B2 (en) | 2008-02-15 | 2013-03-19 | Surgical Innovations V.O.F. | Surgical instrument for grasping and cutting tissue |
US8047100B2 (en) | 2008-02-15 | 2011-11-01 | Black & Decker Inc. | Tool assembly having telescoping fastener support |
US20090206137A1 (en) | 2008-02-15 | 2009-08-20 | Ethicon Endo-Surgery, Inc. | Disposable loading units for a surgical cutting and stapling instrument |
RU2488359C2 (ru) | 2008-02-15 | 2013-07-27 | Этикон Эндо-Серджери, Инк. | Опорный материал с активируемым вяжущим веществом |
US7959051B2 (en) | 2008-02-15 | 2011-06-14 | Ethicon Endo-Surgery, Inc. | Closure systems for a surgical cutting and stapling instrument |
US20220175372A1 (en) | 2008-02-15 | 2022-06-09 | Cilag Gmbh International | Releasable layer of material and surgical end effector having the same |
US7980443B2 (en) | 2008-02-15 | 2011-07-19 | Ethicon Endo-Surgery, Inc. | End effectors for a surgical cutting and stapling instrument |
US20090206131A1 (en) | 2008-02-15 | 2009-08-20 | Ethicon Endo-Surgery, Inc. | End effector coupling arrangements for a surgical cutting and stapling instrument |
US8608044B2 (en) * | 2008-02-15 | 2013-12-17 | Ethicon Endo-Surgery, Inc. | Feedback and lockout mechanism for surgical instrument |
EP2252222B1 (en) | 2008-02-18 | 2014-03-26 | Texas Scottish Rite Hospital For Children | Tool for external fixation strut adjustment |
JP5377991B2 (ja) | 2008-02-26 | 2013-12-25 | テルモ株式会社 | マニピュレータ |
JP2009207260A (ja) | 2008-02-27 | 2009-09-10 | Denso Corp | モータ制御装置 |
US8733611B2 (en) | 2008-03-12 | 2014-05-27 | Covidien Lp | Ratcheting mechanism for surgical stapling device |
US8870049B2 (en) | 2008-03-14 | 2014-10-28 | Transenterix, Inc. | Hernia stapler |
US8118206B2 (en) | 2008-03-15 | 2012-02-21 | Surgisense Corporation | Sensing adjunct for surgical staplers |
US20090234273A1 (en) | 2008-03-17 | 2009-09-17 | Alfred Intoccia | Surgical trocar with feedback |
US8020741B2 (en) | 2008-03-18 | 2011-09-20 | Barosense, Inc. | Endoscopic stapling devices and methods |
US8328802B2 (en) | 2008-03-19 | 2012-12-11 | Covidien Ag | Cordless medical cauterization and cutting device |
US8491581B2 (en) | 2008-03-19 | 2013-07-23 | Covidien Ag | Method for powering a surgical instrument |
US8197501B2 (en) | 2008-03-20 | 2012-06-12 | Medtronic Xomed, Inc. | Control for a powered surgical instrument |
JP2009226028A (ja) | 2008-03-24 | 2009-10-08 | Terumo Corp | マニピュレータ |
US20090247901A1 (en) | 2008-03-25 | 2009-10-01 | Brian Zimmer | Latching side removal spacer |
US8136713B2 (en) | 2008-03-25 | 2012-03-20 | Tyco Healthcare Group Lp | Surgical stapling instrument having transducer effecting vibrations |
US8639936B2 (en) | 2008-03-25 | 2014-01-28 | Alcatel Lucent | Methods and entities using IPSec ESP to support security functionality for UDP-based traffic |
US20090242610A1 (en) | 2008-03-26 | 2009-10-01 | Shelton Iv Frederick E | Disposable loading unit and surgical instruments including same |
US8684962B2 (en) | 2008-03-27 | 2014-04-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter device cartridge |
US8317744B2 (en) | 2008-03-27 | 2012-11-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter manipulator assembly |
US8808164B2 (en) | 2008-03-28 | 2014-08-19 | Intuitive Surgical Operations, Inc. | Controlling a robotic surgical tool with a display monitor |
US20090248100A1 (en) | 2008-03-28 | 2009-10-01 | Defibtech, Llc | System and Method for Conditioning a Lithium Battery in an Automatic External Defibrillator |
CA3022982C (en) | 2008-03-31 | 2022-07-26 | Applied Medical Resources Corporation | Electrosurgical system |
US10368838B2 (en) | 2008-03-31 | 2019-08-06 | Intuitive Surgical Operations, Inc. | Surgical tools for laser marking and laser cutting |
US7886743B2 (en) | 2008-03-31 | 2011-02-15 | Intuitive Surgical Operations, Inc. | Sterile drape interface for robotic surgical instrument |
US20090247368A1 (en) | 2008-03-31 | 2009-10-01 | Boson Technology Co., Ltd. | Sports health care apparatus with physiological monitoring function |
JP2009240605A (ja) | 2008-03-31 | 2009-10-22 | Gc Corp | 細胞工学用支持体及びその製造方法 |
US9895813B2 (en) | 2008-03-31 | 2018-02-20 | Intuitive Surgical Operations, Inc. | Force and torque sensing in a surgical robot setup arm |
US7843158B2 (en) | 2008-03-31 | 2010-11-30 | Intuitive Surgical Operations, Inc. | Medical robotic system adapted to inhibit motions resulting in excessive end effector forces |
EP2265164A4 (en) | 2008-04-01 | 2013-10-02 | Cardiomems Inc | STRETCH MONITORING SYSTEM AND DEVICE |
FR2929544B1 (fr) | 2008-04-02 | 2010-09-03 | Facom | Appareil electrique portatif autonome a verrouillage du bloc d'alimentation electrique. |
US8534527B2 (en) | 2008-04-03 | 2013-09-17 | Black & Decker Inc. | Cordless framing nailer |
JP5301867B2 (ja) | 2008-04-07 | 2013-09-25 | オリンパスメディカルシステムズ株式会社 | 医療用マニピュレータシステム |
JP5145103B2 (ja) | 2008-04-08 | 2013-02-13 | ローム株式会社 | インバータおよびその制御回路、制御方法、ならびにそれらを用いた液晶ディスプレイ装置 |
DE102008018158A1 (de) | 2008-04-10 | 2009-10-15 | Aesculap Ag | Ligaturklammermagazin und Lagerkörper zur Verwendung in diesem |
US8100310B2 (en) | 2008-04-14 | 2012-01-24 | Tyco Healthcare Group Lp | Variable compression surgical fastener apparatus |
US8231040B2 (en) | 2008-04-14 | 2012-07-31 | Tyco Healthcare Group Lp | Variable compression surgical fastener cartridge |
US20090255974A1 (en) | 2008-04-14 | 2009-10-15 | Tyco Healthcare Group Lp | Single loop surgical fastener apparatus for applying variable compression |
US7926691B2 (en) | 2008-04-14 | 2011-04-19 | Tyco Healthcare Group, L.P. | Variable compression surgical fastener cartridge |
US8170241B2 (en) | 2008-04-17 | 2012-05-01 | Intouch Technologies, Inc. | Mobile tele-presence system with a microphone system |
US9078671B2 (en) | 2008-04-17 | 2015-07-14 | Warsaw Orthopedic, Inc. | Surgical tool |
US20090261141A1 (en) | 2008-04-18 | 2009-10-22 | Stratton Lawrence D | Ergonomic stapler and method for setting staples |
US20090262078A1 (en) | 2008-04-21 | 2009-10-22 | David Pizzi | Cellular phone with special sensor functions |
US8021375B2 (en) | 2008-04-21 | 2011-09-20 | Conmed Corporation | Surgical clip applicator |
US8028884B2 (en) | 2008-04-22 | 2011-10-04 | Tyco Healthcare Group Lp | Cartridge for applying varying amounts of tissue compression |
US8357158B2 (en) | 2008-04-22 | 2013-01-22 | Covidien Lp | Jaw closure detection system |
WO2009133875A1 (ja) | 2008-04-30 | 2009-11-05 | 学校法人自治医科大学 | 自然開口部越管腔内視鏡手術(notes)用外科手術システム及び外科手術方法 |
CA2665017A1 (en) | 2008-05-05 | 2009-11-05 | Tyco Healthcare Group Lp | Surgical instrument with sequential clamping and cutting |
US7997468B2 (en) | 2008-05-05 | 2011-08-16 | Tyco Healthcare Group Lp | Surgical instrument with clamp |
AU2009244445B8 (en) | 2008-05-05 | 2014-12-18 | Stryker Corporation | A powered surgical tool system and control console |
WO2009137410A1 (en) | 2008-05-06 | 2009-11-12 | Corindus Ltd. | Catheter system |
DE102008001664B4 (de) | 2008-05-08 | 2015-07-30 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Medizinischer Roboter und Verfahren zur Erfüllung der Performanceanforderung eines medizinischen Roboters |
US8967446B2 (en) | 2008-05-09 | 2015-03-03 | Covidien Lp | Variable compression surgical fastener cartridge |
US8186556B2 (en) | 2008-05-09 | 2012-05-29 | Tyco Healthcare Group Lp | Variable compression surgical fastener apparatus |
US8091756B2 (en) | 2008-05-09 | 2012-01-10 | Tyco Healthcare Group Lp | Varying tissue compression using take-up component |
JP5145113B2 (ja) | 2008-05-09 | 2013-02-13 | Hoya株式会社 | 内視鏡用処置具の操作部 |
US8464922B2 (en) | 2008-05-09 | 2013-06-18 | Covidien Lp | Variable compression surgical fastener cartridge |
US8006577B2 (en) | 2008-05-09 | 2011-08-30 | The Schnipke Family, LLC | Method and apparatus for testing for the presence of excess drivers in a surgical cartridge |
US9016541B2 (en) | 2008-05-09 | 2015-04-28 | Covidien Lp | Varying tissue compression with an anvil configuration |
US8308659B2 (en) | 2008-05-09 | 2012-11-13 | Greatbatch Ltd. | Bi-directional sheath deflection mechanism |
WO2009137761A2 (en) | 2008-05-09 | 2009-11-12 | Elmer Valin | Laparoscopic gastric and intestinal trocar |
DE102008024438A1 (de) | 2008-05-14 | 2009-11-19 | Aesculap Ag | Chirurgische Antriebseinheit, chirurgisches Instrument und chirurgisches Antriebssystem |
US8409079B2 (en) | 2008-05-14 | 2013-04-02 | Olympus Medical Systems Corp. | Electric bending operation device and medical treatment system including electric bending operation device |
US7430849B1 (en) | 2008-05-16 | 2008-10-07 | Practical Inventions, Llc | Conveyor chain pin remover |
US8273404B2 (en) | 2008-05-19 | 2012-09-25 | Cordis Corporation | Extraction of solvents from drug containing polymer reservoirs |
US20090290016A1 (en) | 2008-05-20 | 2009-11-26 | Hoya Corporation | Endoscope system |
DE112009001239T5 (de) | 2008-05-21 | 2011-04-07 | Cook Biotech, Inc., West Lafayette | Vorrichtungen und Verfahren zum Anbringen von Verstärkungsmaterialien an chirurgischen Befestigungsvorrichtungen |
US7922061B2 (en) | 2008-05-21 | 2011-04-12 | Ethicon Endo-Surgery, Inc. | Surgical instrument with automatically reconfigurable articulating end effector |
US8179705B2 (en) | 2008-05-27 | 2012-05-15 | Power-One, Inc. | Apparatus and method of optimizing power system efficiency using a power loss model |
EP3175806B1 (en) | 2008-05-27 | 2018-10-17 | Maquet Cardiovascular LLC | Surgical instrument |
US8771260B2 (en) | 2008-05-30 | 2014-07-08 | Ethicon Endo-Surgery, Inc. | Actuating and articulating surgical device |
EP3085773B1 (en) | 2008-05-30 | 2020-03-18 | XBiotech, Inc | Uses of il-1 alpha antibodies |
US8016176B2 (en) | 2008-06-04 | 2011-09-13 | Tyco Healthcare Group, Lp | Surgical stapling instrument with independent sequential firing |
US8403926B2 (en) | 2008-06-05 | 2013-03-26 | Ethicon Endo-Surgery, Inc. | Manually articulating devices |
US20090306639A1 (en) | 2008-06-06 | 2009-12-10 | Galil Medical Ltd. | Cryoprobe incorporating electronic module, and system utilizing same |
US7789283B2 (en) | 2008-06-06 | 2010-09-07 | Tyco Healthcare Group Lp | Knife/firing rod connection for surgical instrument |
US7942303B2 (en) | 2008-06-06 | 2011-05-17 | Tyco Healthcare Group Lp | Knife lockout mechanisms for surgical instrument |
US8701959B2 (en) | 2008-06-06 | 2014-04-22 | Covidien Lp | Mechanically pivoting cartridge channel for surgical instrument |
US8739417B2 (en) | 2008-06-10 | 2014-06-03 | Makita Corporation | Circular saw |
WO2009150650A2 (en) | 2008-06-12 | 2009-12-17 | Ramot At Tel Aviv University Ltd. | Drug-eluting medical devices |
US8007513B2 (en) | 2008-06-12 | 2011-08-30 | Ethicon Endo-Surgery, Inc. | Partially reusable surgical stapler |
RU2500360C2 (ru) | 2008-06-12 | 2013-12-10 | Этикон Эндо-Серджери, Инк. | Хирургический аппарат для наложения скобок с компонентами многоразового использования |
US8267951B2 (en) | 2008-06-12 | 2012-09-18 | Ncontact Surgical, Inc. | Dissecting cannula and methods of use thereof |
US8628545B2 (en) | 2008-06-13 | 2014-01-14 | Covidien Lp | Endoscopic stitching devices |
US9396669B2 (en) | 2008-06-16 | 2016-07-19 | Microsoft Technology Licensing, Llc | Surgical procedure capture, modelling, and editing interactive playback |
US9486126B2 (en) | 2008-06-17 | 2016-11-08 | Apollo Endosurgery, Inc. | Endoscopic helix tissue grasping device |
US20140100558A1 (en) | 2012-10-05 | 2014-04-10 | Gregory P. Schmitz | Micro-articulated surgical instruments using micro gear actuation |
US7543730B1 (en) | 2008-06-24 | 2009-06-09 | Tyco Healthcare Group Lp | Segmented drive member for surgical instruments |
DE102008002641A1 (de) | 2008-06-25 | 2009-12-31 | Biotronik Vi Patent Ag | Faserstrang und implantierbarer Stützkörper mit einem Faserstrang |
US8414469B2 (en) | 2008-06-27 | 2013-04-09 | Intuitive Surgical Operations, Inc. | Medical robotic system having entry guide controller with instrument tip velocity limiting |
US9179832B2 (en) | 2008-06-27 | 2015-11-10 | Intuitive Surgical Operations, Inc. | Medical robotic system with image referenced camera control using partitionable orientational and translational modes |
US8704849B2 (en) | 2008-07-01 | 2014-04-22 | Canon Kabushiki Kaisha | Display control apparatus and display control method |
US8011551B2 (en) | 2008-07-01 | 2011-09-06 | Tyco Healthcare Group Lp | Retraction mechanism with clutch-less drive for use with a surgical apparatus |
US20100005035A1 (en) | 2008-07-02 | 2010-01-07 | Cake Financial Corporation | Systems and Methods for a Cross-Linked Investment Trading Platform |
DE102008040061A1 (de) | 2008-07-02 | 2010-01-07 | Robert Bosch Gmbh | Elektrowerkzeugmaschine |
US8206482B2 (en) | 2008-07-04 | 2012-06-26 | Emerson Electric Co. | Vacuum appliance filter assemblies and associated vacuum systems |
CA2730240A1 (en) | 2008-07-08 | 2010-01-14 | Tyco Healthcare Group Lp | Surgical attachment for use with a robotic surgical system |
EP2294673A1 (en) | 2008-07-09 | 2011-03-16 | Access Business Group International LLC | Wireless charging system |
DE102008040341A1 (de) | 2008-07-11 | 2010-01-14 | Robert Bosch Gmbh | Akkumulator mit mehreren Akkumulatorzellen |
US8888792B2 (en) | 2008-07-14 | 2014-11-18 | Ethicon Endo-Surgery, Inc. | Tissue apposition clip application devices and methods |
US8487487B2 (en) | 2008-07-15 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Magnetostrictive actuator of a medical ultrasound transducer assembly, and a medical ultrasound handpiece and a medical ultrasound system having such actuator |
US8834465B2 (en) | 2008-07-15 | 2014-09-16 | Immersion Corporation | Modular tool with signal feedback |
US9204923B2 (en) | 2008-07-16 | 2015-12-08 | Intuitive Surgical Operations, Inc. | Medical instrument electronically energized using drive cables |
US8771270B2 (en) | 2008-07-16 | 2014-07-08 | Intuitive Surgical Operations, Inc. | Bipolar cautery instrument |
US9186221B2 (en) | 2008-07-16 | 2015-11-17 | Intuitive Surgical Operations Inc. | Backend mechanism for four-cable wrist |
US8074858B2 (en) | 2008-07-17 | 2011-12-13 | Tyco Healthcare Group Lp | Surgical retraction mechanism |
WO2010011661A1 (en) | 2008-07-21 | 2010-01-28 | Atricure, Inc. | Apparatus and methods for occluding an anatomical structure |
WO2010009536A1 (en) | 2008-07-21 | 2010-01-28 | Kirk Schroeder | Portable power supply device |
US20100022824A1 (en) | 2008-07-22 | 2010-01-28 | Cybulski James S | Tissue modification devices and methods of using the same |
US9061392B2 (en) | 2008-07-25 | 2015-06-23 | Sylvain Forgues | Controlled electro-pneumatic power tools and interactive consumable |
US20100023024A1 (en) | 2008-07-25 | 2010-01-28 | Zeiner Mark S | Reloadable laparoscopic fastener deploying device with disposable cartridge for use in a gastric volume reduction procedure |
US20110088921A1 (en) | 2008-07-25 | 2011-04-21 | Sylvain Forgues | Pneumatic hand tool rotational speed control method and portable apparatus |
US8317437B2 (en) | 2008-08-01 | 2012-11-27 | The Boeing Company | Adaptive positive feed drilling system |
US8968355B2 (en) | 2008-08-04 | 2015-03-03 | Covidien Lp | Articulating surgical device |
US8801752B2 (en) | 2008-08-04 | 2014-08-12 | Covidien Lp | Articulating surgical device |
US9089360B2 (en) | 2008-08-06 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US8058771B2 (en) | 2008-08-06 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for cutting and coagulating with stepped output |
US20100036370A1 (en) | 2008-08-07 | 2010-02-11 | Al Mirel | Electrosurgical instrument jaw structure with cutting tip |
US8109426B2 (en) | 2008-08-12 | 2012-02-07 | Tyco Healthcare Group Lp | Surgical tilt anvil assembly |
DE102008038911A1 (de) | 2008-08-13 | 2010-02-18 | Technische Universität Darmstadt | Manipulationsvorrichtung für ein chirurgisches Instrument |
US8413661B2 (en) | 2008-08-14 | 2013-04-09 | Ethicon, Inc. | Methods and devices for treatment of obstructive sleep apnea |
US8211125B2 (en) | 2008-08-15 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Sterile appliance delivery device for endoscopic procedures |
US8465475B2 (en) | 2008-08-18 | 2013-06-18 | Intuitive Surgical Operations, Inc. | Instrument with multiple articulation locks |
US7954688B2 (en) | 2008-08-22 | 2011-06-07 | Medtronic, Inc. | Endovascular stapling apparatus and methods of use |
US8454551B2 (en) | 2008-08-22 | 2013-06-04 | Zevex, Inc. | Removable adapter for phacoemulsification handpiece having irrigation and aspiration fluid paths |
US8532747B2 (en) | 2008-08-22 | 2013-09-10 | Devicor Medical Products, Inc. | Biopsy marker delivery device |
US8465502B2 (en) | 2008-08-25 | 2013-06-18 | Covidien Lp | Surgical clip applier and method of assembly |
JP2010054718A (ja) | 2008-08-27 | 2010-03-11 | Sony Corp | 表示装置 |
US8409223B2 (en) | 2008-08-29 | 2013-04-02 | Covidien Lp | Endoscopic surgical clip applier with clip retention |
US9358015B2 (en) | 2008-08-29 | 2016-06-07 | Covidien Lp | Endoscopic surgical clip applier with wedge plate |
US8834353B2 (en) | 2008-09-02 | 2014-09-16 | Olympus Medical Systems Corp. | Medical manipulator, treatment system, and treatment method |
US20100051668A1 (en) | 2008-09-03 | 2010-03-04 | Milliman Keith L | Surgical instrument with indicator |
US8113405B2 (en) | 2008-09-03 | 2012-02-14 | Tyco Healthcare Group, Lp | Surgical instrument with indicator |
US20100057118A1 (en) | 2008-09-03 | 2010-03-04 | Dietz Timothy G | Ultrasonic surgical blade |
US20120125792A1 (en) | 2008-09-08 | 2012-05-24 | Mayo Foundation For Medical Education And Research | Devices, kits and methods for surgical fastening |
EP2339952A1 (de) | 2008-09-09 | 2011-07-06 | Olympus Winter & Ibe Gmbh | Laparoskop mit verstellbarem schaft |
US8808294B2 (en) | 2008-09-09 | 2014-08-19 | William Casey Fox | Method and apparatus for a multiple transition temperature implant |
JP5089537B2 (ja) | 2008-09-10 | 2012-12-05 | 三菱電機株式会社 | 電動送風機の故障診断装置及びそれを搭載した電気機器 |
CN101669833A (zh) | 2008-09-11 | 2010-03-17 | 苏州天臣国际医疗科技有限公司 | 自动荷包缝合器 |
US9107688B2 (en) | 2008-09-12 | 2015-08-18 | Ethicon Endo-Surgery, Inc. | Activation feature for surgical instrument with pencil grip |
AU2009291688A1 (en) | 2008-09-12 | 2010-03-18 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for fingertip control |
US8047236B2 (en) | 2008-09-12 | 2011-11-01 | Boston Scientific Scimed, Inc. | Flexible conduit with locking element |
EP2163209A1 (en) | 2008-09-15 | 2010-03-17 | Zhiqiang Weng | Lockout mechanism for a surgical stapler |
US8290883B2 (en) | 2008-09-18 | 2012-10-16 | Honda Motor Co., Ltd. | Learning system and learning method comprising an event list database |
US7837080B2 (en) | 2008-09-18 | 2010-11-23 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with device for indicating when the instrument has cut through tissue |
US8083120B2 (en) | 2008-09-18 | 2011-12-27 | Ethicon Endo-Surgery, Inc. | End effector for use with a surgical cutting and stapling instrument |
US20100069942A1 (en) * | 2008-09-18 | 2010-03-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with apparatus for measuring elapsed time between actions |
BRPI0904975B1 (pt) | 2008-09-19 | 2019-09-10 | Ethicon Endo Surgery Inc | grampeador cirúrgico |
US7832612B2 (en) | 2008-09-19 | 2010-11-16 | Ethicon Endo-Surgery, Inc. | Lockout arrangement for a surgical stapler |
BRPI0903919B8 (pt) | 2008-09-19 | 2021-06-22 | Ethicon Endo Surgery Inc | cartucho de grampos e grampeador cirúrgico |
US7896214B2 (en) | 2008-09-23 | 2011-03-01 | Tyco Healthcare Group Lp | Tissue stop for surgical instrument |
US8628544B2 (en) | 2008-09-23 | 2014-01-14 | Covidien Lp | Knife bar for surgical instrument |
US7988028B2 (en) | 2008-09-23 | 2011-08-02 | Tyco Healthcare Group Lp | Surgical instrument having an asymmetric dynamic clamping member |
US8215532B2 (en) | 2008-09-23 | 2012-07-10 | Tyco Healthcare Group Lp | Tissue stop for surgical instrument |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US9327061B2 (en) | 2008-09-23 | 2016-05-03 | Senorx, Inc. | Porous bioabsorbable implant |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US8852473B1 (en) | 2008-09-23 | 2014-10-07 | Wright Materials Research Co. | Reinforced polymer composite foams and method of manufacture |
US9050083B2 (en) | 2008-09-23 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US8360298B2 (en) | 2008-09-23 | 2013-01-29 | Covidien Lp | Surgical instrument and loading unit for use therewith |
JP2010075242A (ja) | 2008-09-24 | 2010-04-08 | Terumo Corp | 医療用マニピュレータ |
US8937408B2 (en) | 2008-09-27 | 2015-01-20 | Witricity Corporation | Wireless energy transfer for medical applications |
US20120256494A1 (en) | 2008-09-27 | 2012-10-11 | Kesler Morris P | Tunable wireless energy transfer for medical applications |
US9259274B2 (en) | 2008-09-30 | 2016-02-16 | Intuitive Surgical Operations, Inc. | Passive preload and capstan drive for surgical instruments |
US9339342B2 (en) | 2008-09-30 | 2016-05-17 | Intuitive Surgical Operations, Inc. | Instrument interface |
JP5475262B2 (ja) | 2008-10-01 | 2014-04-16 | テルモ株式会社 | 医療用マニピュレータ |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US8808308B2 (en) | 2008-10-13 | 2014-08-19 | Alcon Research, Ltd. | Automated intraocular lens injector device |
US8020743B2 (en) | 2008-10-15 | 2011-09-20 | Ethicon Endo-Surgery, Inc. | Powered articulatable surgical cutting and fastening instrument with flexible drive member |
US20100094340A1 (en) | 2008-10-15 | 2010-04-15 | Tyco Healthcare Group Lp | Coating compositions |
US8287487B2 (en) | 2008-10-15 | 2012-10-16 | Asante Solutions, Inc. | Infusion pump system and methods |
US7918377B2 (en) | 2008-10-16 | 2011-04-05 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with apparatus for providing anvil position feedback |
JP2010098844A (ja) | 2008-10-16 | 2010-04-30 | Toyota Motor Corp | 車両の電源システム |
US9889230B2 (en) | 2008-10-17 | 2018-02-13 | Covidien Lp | Hemostatic implant |
US20100100123A1 (en) | 2008-10-17 | 2010-04-22 | Confluent Surgical, Inc. | Hemostatic implant |
US8063619B2 (en) | 2008-10-20 | 2011-11-22 | Dell Products L.P. | System and method for powering an information handling system in multiple power states |
US8996165B2 (en) | 2008-10-21 | 2015-03-31 | Intouch Technologies, Inc. | Telepresence robot with a camera boom |
US9370341B2 (en) | 2008-10-23 | 2016-06-21 | Covidien Lp | Surgical retrieval apparatus |
US9211125B2 (en) | 2008-10-23 | 2015-12-15 | Microline Surgical, Inc. | Flexible clip applier |
CN101721236A (zh) | 2008-10-29 | 2010-06-09 | 苏州天臣国际医疗科技有限公司 | 外科切割装订器械 |
US8561617B2 (en) | 2008-10-30 | 2013-10-22 | Ethicon, Inc. | Implant systems and methods for treating obstructive sleep apnea |
KR101075363B1 (ko) | 2008-10-31 | 2011-10-19 | 정창욱 | 최소 침습 수술 도구를 포함하는 수술용 로봇 시스템 |
EP2339923A1 (en) | 2008-10-31 | 2011-07-06 | DSM IP Assets B.V. | Improved composition for making a dairy product |
US8231042B2 (en) | 2008-11-06 | 2012-07-31 | Tyco Healthcare Group Lp | Surgical stapler |
US9119898B2 (en) | 2008-11-07 | 2015-09-01 | Sofradim Production | Medical implant including a 3D mesh of oxidized cellulose and a collagen sponge |
US7934631B2 (en) | 2008-11-10 | 2011-05-03 | Barosense, Inc. | Multi-fire stapling systems and methods for delivering arrays of staples |
US20110009694A1 (en) | 2009-07-10 | 2011-01-13 | Schultz Eric E | Hand-held minimally dimensioned diagnostic device having integrated distal end visualization |
US9782217B2 (en) | 2008-11-13 | 2017-10-10 | Covidien Ag | Radio frequency generator and method for a cordless medical cauterization and cutting device |
US9421030B2 (en) | 2008-11-14 | 2016-08-23 | Cole Isolation Technique, Llc | Follicular dissection device and method |
US8657821B2 (en) | 2008-11-14 | 2014-02-25 | Revascular Therapeutics Inc. | Method and system for reversibly controlled drilling of luminal occlusions |
CA2742787C (en) | 2008-11-17 | 2018-05-15 | Vytronus, Inc. | Systems and methods for ablating body tissue |
JP4752900B2 (ja) | 2008-11-19 | 2011-08-17 | ソニー株式会社 | 画像処理装置、画像表示方法および画像表示プログラム |
TWI414713B (zh) | 2008-11-24 | 2013-11-11 | Everlight Electronics Co Ltd | 發光二極體燈具製造方法 |
US7886951B2 (en) | 2008-11-24 | 2011-02-15 | Tyco Healthcare Group Lp | Pouch used to deliver medication when ruptured |
US8157834B2 (en) | 2008-11-25 | 2012-04-17 | Ethicon Endo-Surgery, Inc. | Rotational coupling device for surgical instrument with flexible actuators |
CN101756727A (zh) | 2008-11-27 | 2010-06-30 | 苏州天臣国际医疗科技有限公司 | 直线型切割闭合器的钉仓 |
US8539866B2 (en) | 2008-12-01 | 2013-09-24 | Castrax, L.L.C. | Method and apparatus to remove cast from an individual |
USD600712S1 (en) | 2008-12-02 | 2009-09-22 | Microsoft Corporation | Icon for a display screen |
USD600703S1 (en) | 2008-12-02 | 2009-09-22 | Microsoft Corporation | Icon for a display screen |
GB0822110D0 (en) | 2008-12-03 | 2009-01-07 | Angiomed Ag | Catheter sheath for implant delivery |
GB2466180B (en) | 2008-12-05 | 2013-07-10 | Surgical Innovations Ltd | Surgical instrument, handle for a surgical instrument and surgical instrument system |
US8348837B2 (en) | 2008-12-09 | 2013-01-08 | Covidien Lp | Anoscope |
US8034363B2 (en) | 2008-12-11 | 2011-10-11 | Advanced Technologies And Regenerative Medicine, Llc. | Sustained release systems of ascorbic acid phosphate |
US20100331856A1 (en) | 2008-12-12 | 2010-12-30 | Hansen Medical Inc. | Multiple flexible and steerable elongate instruments for minimally invasive operations |
USD607010S1 (en) | 2008-12-12 | 2009-12-29 | Microsoft Corporation | Icon for a portion of a display screen |
US8060250B2 (en) | 2008-12-15 | 2011-11-15 | GM Global Technology Operations LLC | Joint-space impedance control for tendon-driven manipulators |
US20100147921A1 (en) | 2008-12-16 | 2010-06-17 | Lee Olson | Surgical Apparatus Including Surgical Buttress |
US8770460B2 (en) | 2008-12-23 | 2014-07-08 | George E. Belzer | Shield for surgical stapler and method of use |
US8245594B2 (en) | 2008-12-23 | 2012-08-21 | Intuitive Surgical Operations, Inc. | Roll joint and method for a surgical apparatus |
US20100168741A1 (en) | 2008-12-29 | 2010-07-01 | Hideo Sanai | Surgical operation apparatus |
US8374723B2 (en) | 2008-12-31 | 2013-02-12 | Intuitive Surgical Operations, Inc. | Obtaining force information in a minimally invasive surgical procedure |
US9477649B1 (en) | 2009-01-05 | 2016-10-25 | Perceptive Pixel, Inc. | Multi-layer telestration on a multi-touch display device |
US8281974B2 (en) | 2009-01-14 | 2012-10-09 | Tyco Healthcare, Group LP | Surgical stapler with suture locator |
US8632539B2 (en) | 2009-01-14 | 2014-01-21 | Covidien Lp | Vessel sealer and divider |
WO2010083110A1 (en) | 2009-01-16 | 2010-07-22 | Rhaphis Medical, Inc. | Surgical suturing latch |
US20130268062A1 (en) | 2012-04-05 | 2013-10-10 | Zeus Industrial Products, Inc. | Composite prosthetic devices |
US20100180711A1 (en) | 2009-01-19 | 2010-07-22 | Comau, Inc. | Robotic end effector system and method |
US9713468B2 (en) | 2009-01-26 | 2017-07-25 | Ethicon Endo-Surgery, Inc. | Surgical stapler for applying a large staple through a small delivery port and a method of using the stapler to secure a tissue fold |
US20100187285A1 (en) | 2009-01-26 | 2010-07-29 | Harris Jason L | Surgical stapler for applying a large staple though a small delivery port and a method of using the stapler to secure a tissue fold |
US20100191255A1 (en) | 2009-01-26 | 2010-07-29 | Lawrence Crainich | Method for Applying A Surgical Staple |
US20100191262A1 (en) | 2009-01-26 | 2010-07-29 | Harris Jason L | Surgical stapler for applying a large staple through small delivery port and a method of using the stapler to secure a tissue fold |
US8833219B2 (en) | 2009-01-26 | 2014-09-16 | Illinois Tool Works Inc. | Wire saw |
US20120330329A1 (en) | 2011-06-21 | 2012-12-27 | Harris Jason L | Methods of forming a laparoscopic greater curvature plication using a surgical stapler |
ES2972892T3 (es) | 2009-01-29 | 2024-06-17 | Implantica Patent Ltd | Tratamiento de la obesidad |
US20110278343A1 (en) | 2009-01-29 | 2011-11-17 | Cardica, Inc. | Clamping of Hybrid Surgical Instrument |
US8228048B2 (en) | 2009-01-30 | 2012-07-24 | Hewlett-Packard Development Company, L.P. | Method and system of regulating voltages |
US8037591B2 (en) | 2009-02-02 | 2011-10-18 | Ethicon Endo-Surgery, Inc. | Surgical scissors |
WO2010090292A2 (en) | 2009-02-03 | 2010-08-12 | Terumo Kabushiki Kaisha | Medical manipulator |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
US8397971B2 (en) | 2009-02-05 | 2013-03-19 | Ethicon Endo-Surgery, Inc. | Sterilizable surgical instrument |
US20100193566A1 (en) | 2009-02-05 | 2010-08-05 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument |
US8414577B2 (en) | 2009-02-05 | 2013-04-09 | Ethicon Endo-Surgery, Inc. | Surgical instruments and components for use in sterile environments |
US8485413B2 (en) | 2009-02-05 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising an articulation joint |
US8444036B2 (en) | 2009-02-06 | 2013-05-21 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector |
BRPI1008667A2 (pt) | 2009-02-06 | 2016-03-08 | Ethicom Endo Surgery Inc | aperfeiçoamento do grampeador cirúrgico acionado |
US8245899B2 (en) | 2009-02-06 | 2012-08-21 | Ethicon Endo-Surgery, Inc. | Driven surgical stapler improvements |
US8453907B2 (en) | 2009-02-06 | 2013-06-04 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with cutting member reversing mechanism |
US20110024478A1 (en) | 2009-02-06 | 2011-02-03 | Shelton Iv Frederick E | Driven Surgical Stapler Improvements |
US20120007442A1 (en) | 2009-02-06 | 2012-01-12 | Mark Rhodes | Rotary data and power transfer system |
CN102316823B (zh) | 2009-02-11 | 2016-06-08 | 新加坡南洋理工大学 | 多层外科用假体 |
USD622286S1 (en) | 2009-02-11 | 2010-08-24 | Ricoh Company, Ltd. | Portion of liquid crystal panel with icon image |
US9101475B2 (en) | 2009-02-12 | 2015-08-11 | Warsaw Orthopedic, Inc. | Segmented delivery system |
US20100204717A1 (en) | 2009-02-12 | 2010-08-12 | Cardica, Inc. | Surgical Device for Multiple Clip Application |
US8708211B2 (en) | 2009-02-12 | 2014-04-29 | Covidien Lp | Powered surgical instrument with secondary circuit board |
US8690776B2 (en) | 2009-02-17 | 2014-04-08 | Inneroptic Technology, Inc. | Systems, methods, apparatuses, and computer-readable media for image guided surgery |
US20100298636A1 (en) | 2009-02-19 | 2010-11-25 | Salvatore Castro | Flexible rigidizing instruments |
US8349987B2 (en) | 2009-02-19 | 2013-01-08 | Covidien Lp | Adhesive formulations |
JP2010193994A (ja) | 2009-02-24 | 2010-09-09 | Fujifilm Corp | クリップパッケージ及び連発式クリップシステム、並びに連発式クリップシステムの誤装填防止機構 |
WO2010098871A2 (en) | 2009-02-26 | 2010-09-02 | Amir Belson | Improved apparatus and methods for hybrid endoscopic and laparoscopic surgery |
US8393516B2 (en) | 2009-02-26 | 2013-03-12 | Covidien Lp | Surgical stapling apparatus with curved cartridge and anvil assemblies |
DE102009012175A1 (de) | 2009-02-27 | 2010-09-02 | Andreas Stihl Ag & Co. Kg | Elektroarbeitsgerät mit einem Akkupack |
US9030169B2 (en) | 2009-03-03 | 2015-05-12 | Robert Bosch Gmbh | Battery system and method for system state of charge determination |
JP5431749B2 (ja) | 2009-03-04 | 2014-03-05 | テルモ株式会社 | 医療用マニピュレータ |
US8858547B2 (en) | 2009-03-05 | 2014-10-14 | Intuitive Surgical Operations, Inc. | Cut and seal instrument |
US20100228250A1 (en) | 2009-03-05 | 2010-09-09 | Intuitive Surgical Operations, Inc. | Cut and seal instrument |
US8418073B2 (en) | 2009-03-09 | 2013-04-09 | Intuitive Surgical Operations, Inc. | User interfaces for electrosurgical tools in robotic surgical systems |
US8423182B2 (en) | 2009-03-09 | 2013-04-16 | Intuitive Surgical Operations, Inc. | Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems |
US8317071B1 (en) | 2009-03-09 | 2012-11-27 | Cardica, Inc. | Endocutter with auto-feed buttress |
US8120301B2 (en) | 2009-03-09 | 2012-02-21 | Intuitive Surgical Operations, Inc. | Ergonomic surgeon control console in robotic surgical systems |
US7918376B1 (en) | 2009-03-09 | 2011-04-05 | Cardica, Inc. | Articulated surgical instrument |
US8356740B1 (en) | 2009-03-09 | 2013-01-22 | Cardica, Inc. | Controlling compression applied to tissue by surgical tool |
US8397973B1 (en) | 2009-03-09 | 2013-03-19 | Cardica, Inc. | Wide handle for true multi-fire surgical stapler |
US8007370B2 (en) | 2009-03-10 | 2011-08-30 | Cobra Golf, Inc. | Metal injection molded putter |
JP5177683B2 (ja) | 2009-03-12 | 2013-04-03 | 株式会社リコー | 画像読取装置および複写機 |
JP4875117B2 (ja) | 2009-03-13 | 2012-02-15 | 株式会社東芝 | 画像処理装置 |
DE102009013034B4 (de) | 2009-03-16 | 2015-11-19 | Olympus Winter & Ibe Gmbh | Autoklavierbare Aufladevorrichtung für einen Energiespeicher eines chirurgischen Instruments sowie Verfahren zum Aufladen eines wiederaufladbaren Energiespeichers in einem autoklavierten chirurgischen Instrument oder für ein autoklaviertes chirurgisches Instrument |
US8597287B2 (en) | 2009-03-17 | 2013-12-03 | Stryker Corporation | Method and system for varying output intensity of energy applied to an electrosurgical probe |
US8366719B2 (en) | 2009-03-18 | 2013-02-05 | Integrated Spinal Concepts, Inc. | Image-guided minimal-step placement of screw into bone |
US8066167B2 (en) | 2009-03-23 | 2011-11-29 | Ethicon Endo-Surgery, Inc. | Circular surgical stapling instrument with anvil locking system |
BRPI1009863B8 (pt) | 2009-03-27 | 2021-06-22 | Endosphere Surgical Inc | conjunto de cânula |
JP5292155B2 (ja) | 2009-03-27 | 2013-09-18 | Tdkラムダ株式会社 | 電源供給制御装置、電源装置および電源供給制御方法 |
US8092443B2 (en) | 2009-03-30 | 2012-01-10 | Medtronic, Inc. | Element for implantation with medical device |
US20100249497A1 (en) | 2009-03-30 | 2010-09-30 | Peine William J | Surgical instrument |
US8110208B1 (en) | 2009-03-30 | 2012-02-07 | Biolife, L.L.C. | Hemostatic compositions for arresting blood flow from an open wound or surgical site |
JP2010239817A (ja) | 2009-03-31 | 2010-10-21 | Brother Ind Ltd | 情報表示装置 |
US7967179B2 (en) | 2009-03-31 | 2011-06-28 | Tyco Healthcare Group Lp | Center cinch and release of buttress material |
US9486215B2 (en) | 2009-03-31 | 2016-11-08 | Covidien Lp | Surgical stapling apparatus |
US8348126B2 (en) | 2009-03-31 | 2013-01-08 | Covidien Lp | Crimp and release of suture holding buttress material |
US7988027B2 (en) | 2009-03-31 | 2011-08-02 | Tyco Healthcare Group Lp | Crimp and release of suture holding buttress material |
US8365972B2 (en) | 2009-03-31 | 2013-02-05 | Covidien Lp | Surgical stapling apparatus |
US8016178B2 (en) | 2009-03-31 | 2011-09-13 | Tyco Healthcare Group Lp | Surgical stapling apparatus |
US8945163B2 (en) | 2009-04-01 | 2015-02-03 | Ethicon Endo-Surgery, Inc. | Methods and devices for cutting and fastening tissue |
US9277969B2 (en) | 2009-04-01 | 2016-03-08 | Covidien Lp | Microwave ablation system with user-controlled ablation size and method of use |
KR101132659B1 (ko) | 2009-04-02 | 2012-04-02 | 한국과학기술원 | 4 자유도를 가진 복강경 수술장치 |
US20100256675A1 (en) | 2009-04-03 | 2010-10-07 | Romans Matthew L | Absorbable surgical staple |
WO2010114634A1 (en) | 2009-04-03 | 2010-10-07 | The Board Of Trustees Of The Leland Stanford Junior University | Surgical device and method |
FR2943906B1 (fr) | 2009-04-03 | 2013-03-22 | Univ Pierre Et Marie Curie Paris 6 | Instrument chirurgical. |
WO2010114633A1 (en) | 2009-04-03 | 2010-10-07 | Biomerix Corporation | At least partially resorbable reticulated elastomeric matrix elements and methods of making same |
US8257251B2 (en) | 2009-04-08 | 2012-09-04 | Ethicon Endo-Surgery, Inc. | Methods and devices for providing access into a body cavity |
US8419635B2 (en) | 2009-04-08 | 2013-04-16 | Ethicon Endo-Surgery, Inc. | Surgical access device having removable and replaceable components |
US20100267525A1 (en) | 2009-04-16 | 2010-10-21 | Mark Tanner | Athletic Training Aid and Method |
US8444549B2 (en) | 2009-04-16 | 2013-05-21 | Covidien Lp | Self-steering endoscopic device |
US8506561B2 (en) | 2009-04-17 | 2013-08-13 | Domain Surgical, Inc. | Catheter with inductively heated regions |
US9131977B2 (en) | 2009-04-17 | 2015-09-15 | Domain Surgical, Inc. | Layered ferromagnetic coated conductor thermal surgical tool |
US20100274160A1 (en) | 2009-04-22 | 2010-10-28 | Chie Yachi | Switching structure and surgical equipment |
WO2010121356A1 (en) | 2009-04-24 | 2010-10-28 | Storefront.Com Online Inc. | Automated battery and data delivery system |
CA2777467A1 (en) | 2009-04-27 | 2010-11-04 | Intersect Ent, Inc. | Devices and methods for treating pain associated with tonsillectomies |
EP2424458B1 (de) | 2009-04-29 | 2019-06-05 | Erbe Elektromedizin GmbH | Hf-chirurgiegenerator und verfahren zum betreiben eines hf-chirurgiegenerators |
JP5886043B2 (ja) | 2009-04-30 | 2016-03-16 | カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | 医療用マニピュレータ |
US9192430B2 (en) | 2009-05-01 | 2015-11-24 | Covidien Lp | Electrosurgical instrument with time limit circuit |
US8631992B1 (en) | 2009-05-03 | 2014-01-21 | Cardica, Inc. | Feeder belt with padded staples for true multi-fire surgical stapler |
US8365975B1 (en) | 2009-05-05 | 2013-02-05 | Cardica, Inc. | Cam-controlled knife for surgical instrument |
US9038881B1 (en) | 2009-05-05 | 2015-05-26 | Cardica, Inc. | Feeder belt actuation mechanism for true multi-fire surgical stapler |
US8167898B1 (en) | 2009-05-05 | 2012-05-01 | Cardica, Inc. | Flexible cutter for surgical stapler |
US8328064B2 (en) | 2009-05-06 | 2012-12-11 | Covidien Lp | Pin locking mechanism for a surgical instrument |
US8523881B2 (en) | 2010-07-26 | 2013-09-03 | Valtech Cardio, Ltd. | Multiple anchor delivery tool |
JP2010260139A (ja) | 2009-05-08 | 2010-11-18 | Ntn Corp | 遠隔操作型加工ロボット |
US8127976B2 (en) | 2009-05-08 | 2012-03-06 | Tyco Healthcare Group Lp | Stapler cartridge and channel interlock |
US8324585B2 (en) | 2009-05-11 | 2012-12-04 | General Electric Company | Digital image detector |
US20100292540A1 (en) | 2009-05-12 | 2010-11-18 | Hess Christopher J | Surgical retractor and method |
US8728099B2 (en) | 2009-05-12 | 2014-05-20 | Ethicon, Inc. | Surgical fasteners, applicator instruments, and methods for deploying surgical fasteners |
JP5428515B2 (ja) | 2009-05-15 | 2014-02-26 | マックス株式会社 | 電動ステープラおよび電動ステープラのモータ駆動方法 |
US9023069B2 (en) | 2009-05-18 | 2015-05-05 | Covidien Lp | Attachable clamp for use with surgical instruments |
US20100298642A1 (en) | 2009-05-19 | 2010-11-25 | Ethicon Endo-Surgery, Inc. | Manipulatable guide system and methods for natural orifice translumenal endoscopic surgery |
US8308043B2 (en) | 2009-05-19 | 2012-11-13 | Covidien Lp | Recognition of interchangeable component of a device |
WO2010134913A1 (en) | 2009-05-20 | 2010-11-25 | California Institute Of Technology | Endoscope and system and method of operation thereof |
CN102448389B (zh) | 2009-05-26 | 2014-10-15 | 捷迈公司 | 用于将骨钉驱动到断骨中的手持式工具 |
US9004339B1 (en) | 2009-05-26 | 2015-04-14 | Cardica, Inc. | Cartridgizable feeder belt for surgical stapler |
JP5827219B2 (ja) | 2009-05-29 | 2015-12-02 | ナンヤン テクノロジカル ユニヴァーシティNanyang Technological University | 柔軟な内視鏡検査のためのロボットシステム |
DE102009042491A1 (de) | 2009-05-29 | 2010-12-02 | Aesculap Ag | Chirurgisches Instrument |
US8070034B1 (en) | 2009-05-29 | 2011-12-06 | Cardica, Inc. | Surgical stapler with angled staple bays |
US8418909B2 (en) | 2009-06-02 | 2013-04-16 | Covidien Lp | Surgical instrument and method for performing a resection |
US8056789B1 (en) | 2009-06-03 | 2011-11-15 | Cardica, Inc. | Staple and feeder belt configurations for surgical stapler |
US9383881B2 (en) | 2009-06-03 | 2016-07-05 | Synaptics Incorporated | Input device and method with pressure-sensitive layer |
US8132706B2 (en) | 2009-06-05 | 2012-03-13 | Tyco Healthcare Group Lp | Surgical stapling apparatus having articulation mechanism |
US20100310623A1 (en) | 2009-06-05 | 2010-12-09 | Laurencin Cato T | Synergetic functionalized spiral-in-tubular bone scaffolds |
US9086875B2 (en) | 2009-06-05 | 2015-07-21 | Qualcomm Incorporated | Controlling power consumption of a mobile device based on gesture recognition |
US8821514B2 (en) | 2009-06-08 | 2014-09-02 | Covidien Lp | Powered tack applier |
CH701320B1 (it) | 2009-06-16 | 2013-10-15 | Frii S A | Dispositivo per trattamenti di resezione/rimozione endoscopica dei tessuti. |
AU2010262875B2 (en) | 2009-06-19 | 2014-01-30 | Google Llc | User interface visualizations |
US8827134B2 (en) | 2009-06-19 | 2014-09-09 | Covidien Lp | Flexible surgical stapler with motor in the head |
US8087562B1 (en) | 2009-06-22 | 2012-01-03 | Cardica, Inc. | Anvil for surgical instrument |
US8701960B1 (en) | 2009-06-22 | 2014-04-22 | Cardica, Inc. | Surgical stapler with reduced clamp gap for insertion |
USD604325S1 (en) | 2009-06-26 | 2009-11-17 | Microsoft Corporation | Animated image for a portion of a display screen |
US9463260B2 (en) | 2009-06-29 | 2016-10-11 | Covidien Lp | Self-sealing compositions |
US8784404B2 (en) | 2009-06-29 | 2014-07-22 | Carefusion 2200, Inc. | Flexible wrist-type element and methods of manufacture and use thereof |
CN101940844A (zh) | 2009-07-03 | 2011-01-12 | 林翠琼 | 模拟狗尾摆动装置 |
CN101944753A (zh) | 2009-07-03 | 2011-01-12 | 株式会社尼康 | 电子设备、供给电力控制方法及电流供给方法 |
KR101180665B1 (ko) | 2009-07-03 | 2012-09-07 | 주식회사 이턴 | 하이브리드 수술용 로봇 시스템 및 수술용 로봇 제어방법 |
WO2011005335A1 (en) | 2009-07-10 | 2011-01-13 | Tyco Healthcare Group Lp | Shaft constructions for medical devices with an articulating tip |
US8146790B2 (en) | 2009-07-11 | 2012-04-03 | Tyco Healthcare Group Lp | Surgical instrument with safety mechanism |
US8276802B2 (en) | 2009-07-11 | 2012-10-02 | Tyco Healthcare Group Lp | Surgical instrument with double cartridge and anvil assemblies |
EP3524189B1 (en) | 2009-07-15 | 2020-12-09 | Ethicon LLC | Ultrasonic surgical instrument having clamp with electrodes |
US8343150B2 (en) | 2009-07-15 | 2013-01-01 | Covidien Lp | Mechanical cycling of seal pressure coupled with energy for tissue fusion |
US20110011916A1 (en) | 2009-07-16 | 2011-01-20 | New York University | Anastomosis device |
US8328062B2 (en) | 2009-07-21 | 2012-12-11 | Covidien Lp | Surgical instrument with curvilinear tissue-contacting surfaces |
USD606992S1 (en) | 2009-07-21 | 2009-12-29 | Micro-Star Int'l Co., Ltd. | Laptop computer |
US8143520B2 (en) | 2009-07-22 | 2012-03-27 | Paul Cutler | Universal wall plate thermometer |
US8205779B2 (en) | 2009-07-23 | 2012-06-26 | Tyco Healthcare Group Lp | Surgical stapler with tactile feedback system |
US20110021871A1 (en) | 2009-07-27 | 2011-01-27 | Gerry Berkelaar | Laparoscopic surgical instrument |
US20110025311A1 (en) | 2009-07-29 | 2011-02-03 | Logitech Europe S.A. | Magnetic rotary system for input devices |
JP5440766B2 (ja) | 2009-07-29 | 2014-03-12 | 日立工機株式会社 | インパクト工具 |
US9592108B2 (en) | 2009-07-29 | 2017-03-14 | Covidien Lp | System and method of laparoscopic use of hemostatic patch |
MX2012001210A (es) | 2009-07-29 | 2012-03-26 | Hitachi Koki Kk | Herramienta de impacto. |
FR2948594B1 (fr) | 2009-07-31 | 2012-07-20 | Dexterite Surgical | Manipulateur ergonomique et semi-automatique et applications aux instruments pour chirurgie mini-invasive |
EP2281506B1 (en) | 2009-08-03 | 2013-01-16 | Fico Mirrors, S.A. | Method and system for determining an individual's state of attention |
US8172004B2 (en) | 2009-08-05 | 2012-05-08 | Techtronic Power Tools Technology Limited | Automatic transmission for a power tool |
US8968358B2 (en) | 2009-08-05 | 2015-03-03 | Covidien Lp | Blunt tissue dissection surgical instrument jaw designs |
US10383629B2 (en) | 2009-08-10 | 2019-08-20 | Covidien Lp | System and method for preventing reprocessing of a powered surgical instrument |
DE202009011312U1 (de) | 2009-08-11 | 2010-12-23 | C. & E. Fein Gmbh | Handwerkzeug mit einem Oszillationsantrieb |
US8276801B2 (en) | 2011-02-01 | 2012-10-02 | Tyco Healthcare Group Lp | Surgical stapling apparatus |
US8360299B2 (en) | 2009-08-11 | 2013-01-29 | Covidien Lp | Surgical stapling apparatus |
US8955732B2 (en) | 2009-08-11 | 2015-02-17 | Covidien Lp | Surgical stapling apparatus |
US20110036891A1 (en) | 2009-08-11 | 2011-02-17 | Tyco Healthcare Group Lp | Surgical stapler with visual positional indicator |
EP2464417B1 (en) | 2009-08-14 | 2014-04-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical apparatus |
US8459524B2 (en) | 2009-08-14 | 2013-06-11 | Covidien Lp | Tissue fastening system for a medical device |
JP5722893B2 (ja) | 2009-08-17 | 2015-05-27 | カリガン、パトリック、ジョン | 複数の針を収容する装置およびその使用方法 |
US8733612B2 (en) | 2009-08-17 | 2014-05-27 | Covidien Lp | Safety method for powered surgical instruments |
US8342378B2 (en) | 2009-08-17 | 2013-01-01 | Covidien Lp | One handed stapler |
US9271718B2 (en) | 2009-08-18 | 2016-03-01 | Karl Storz Gmbh & Co. Kg | Suturing and ligating method |
US9265500B2 (en) | 2009-08-19 | 2016-02-23 | Covidien Lp | Surgical staple |
US8387848B2 (en) | 2009-08-20 | 2013-03-05 | Covidien Lp | Surgical staple |
USD623194S1 (en) | 2009-09-08 | 2010-09-07 | Rain Bird Corporation | Graphical user interface for a wireless rain sensor |
US8162965B2 (en) | 2009-09-09 | 2012-04-24 | Tyco Healthcare Group Lp | Low profile cutting assembly with a return spring |
US8258745B2 (en) | 2009-09-10 | 2012-09-04 | Syntheon, Llc | Surgical sterilizer with integrated battery charging device |
JP2011079510A (ja) | 2009-09-10 | 2011-04-21 | Makita Corp | 電動車 |
TWI394362B (zh) | 2009-09-11 | 2013-04-21 | Anpec Electronics Corp | 驅動直流馬達的方法及其相關電路 |
US8974932B2 (en) | 2009-09-14 | 2015-03-10 | Warsaw Orthopedic, Inc. | Battery powered surgical tool with guide wire |
EP2296350B1 (en) | 2009-09-14 | 2018-11-07 | Alcatel Lucent | Management of application server-related user data |
US20110066156A1 (en) | 2009-09-14 | 2011-03-17 | Warsaw Orthopedic, Inc. | Surgical Tool |
US9168144B2 (en) | 2009-09-14 | 2015-10-27 | Evgeny Rivin | Prosthesis for replacement of cartilage |
DE102009041329A1 (de) | 2009-09-15 | 2011-03-24 | Celon Ag Medical Instruments | Kombiniertes Ultraschall- und HF Chirurgisches System |
US9579039B2 (en) | 2011-01-10 | 2017-02-28 | Masimo Corporation | Non-invasive intravascular volume index monitor |
DE102009042411A1 (de) | 2009-09-21 | 2011-03-31 | Richard Wolf Gmbh | Medizinisches Instrument |
US8623028B2 (en) | 2009-09-23 | 2014-01-07 | Intuitive Surgical Operations, Inc. | Surgical port feature |
EP2485079B1 (en) | 2009-09-29 | 2016-12-21 | Olympus Corporation | Endoscope system |
JP2011072574A (ja) | 2009-09-30 | 2011-04-14 | Terumo Corp | 医療用マニピュレータ |
US9198683B2 (en) | 2009-09-30 | 2015-12-01 | Aegis Medical Innovations, Inc. | Tissue capture and occlusion systems and methods |
US8470355B2 (en) | 2009-10-01 | 2013-06-25 | Covidien Lp | Mesh implant |
WO2011041571A2 (en) | 2009-10-01 | 2011-04-07 | Kardium Inc. | Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve |
US8970507B2 (en) | 2009-10-02 | 2015-03-03 | Blackberry Limited | Method of waking up and a portable electronic device configured to perform the same |
US8236011B2 (en) | 2009-10-06 | 2012-08-07 | Ethicon Endo-Surgery, Inc. | Method for deploying fasteners for use in a gastric volume reduction procedure |
US8430892B2 (en) | 2009-10-06 | 2013-04-30 | Covidien Lp | Surgical clip applier having a wireless clip counter |
US8257634B2 (en) | 2009-10-06 | 2012-09-04 | Tyco Healthcare Group Lp | Actuation sled having a curved guide member and method |
US8496154B2 (en) | 2009-10-08 | 2013-07-30 | Covidien Lp | Pair of double staple pusher in triple row stapler |
US10194904B2 (en) | 2009-10-08 | 2019-02-05 | Covidien Lp | Surgical staple and method of use |
US9474540B2 (en) | 2009-10-08 | 2016-10-25 | Ethicon-Endo-Surgery, Inc. | Laparoscopic device with compound angulation |
CN102647949B (zh) | 2009-10-09 | 2015-01-21 | 伊西康内外科公司 | 外科器械 |
US9050093B2 (en) | 2009-10-09 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10172669B2 (en) | 2009-10-09 | 2019-01-08 | Ethicon Llc | Surgical instrument comprising an energy trigger lockout |
US9168054B2 (en) | 2009-10-09 | 2015-10-27 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US8152041B2 (en) | 2009-10-14 | 2012-04-10 | Tyco Healthcare Group Lp | Varying tissue compression aided by elastic members |
US8157151B2 (en) | 2009-10-15 | 2012-04-17 | Tyco Healthcare Group Lp | Staple line reinforcement for anvil and cartridge |
US10293553B2 (en) | 2009-10-15 | 2019-05-21 | Covidien Lp | Buttress brachytherapy and integrated staple line markers for margin identification |
US20150231409A1 (en) | 2009-10-15 | 2015-08-20 | Covidien Lp | Buttress brachytherapy and integrated staple line markers for margin identification |
US9610080B2 (en) | 2009-10-15 | 2017-04-04 | Covidien Lp | Staple line reinforcement for anvil and cartridge |
US9693772B2 (en) | 2009-10-15 | 2017-07-04 | Covidien Lp | Staple line reinforcement for anvil and cartridge |
US8038693B2 (en) | 2009-10-21 | 2011-10-18 | Tyco Healthcare Group Ip | Methods for ultrasonic tissue sensing and feedback |
US8523042B2 (en) | 2009-10-21 | 2013-09-03 | The General Hospital Corporation | Apparatus and method for preserving a tissue margin |
US20110095064A1 (en) | 2009-10-22 | 2011-04-28 | Taylor Walter J | Fuel level monitoring system for combustion-powered tools |
ES2388867B1 (es) | 2009-10-27 | 2013-09-18 | Universitat Politècnica De Catalunya | Pinzas para cirugia laparoscópica mínimamente invasiva. |
WO2011052391A1 (ja) | 2009-10-28 | 2011-05-05 | オリンパスメディカルシステムズ株式会社 | 医療用装置 |
WO2011052349A1 (ja) | 2009-10-28 | 2011-05-05 | オリンパスメディカルシステムズ株式会社 | 高周波手術装置及び手術制御方法 |
US8413872B2 (en) | 2009-10-28 | 2013-04-09 | Covidien Lp | Surgical fastening apparatus |
US8430292B2 (en) | 2009-10-28 | 2013-04-30 | Covidien Lp | Surgical fastening apparatus |
US8322590B2 (en) | 2009-10-28 | 2012-12-04 | Covidien Lp | Surgical stapling instrument |
MX2012004919A (es) | 2009-10-29 | 2012-08-15 | Prosidyan Inc | Material de injerto oseo. |
US8657175B2 (en) | 2009-10-29 | 2014-02-25 | Medigus Ltd. | Medical device comprising alignment systems for bringing two portions into alignment |
US8398633B2 (en) | 2009-10-30 | 2013-03-19 | Covidien Lp | Jaw roll joint |
US8357161B2 (en) | 2009-10-30 | 2013-01-22 | Covidien Lp | Coaxial drive |
US8225979B2 (en) | 2009-10-30 | 2012-07-24 | Tyco Healthcare Group Lp | Locking shipping wedge |
WO2011055244A1 (en) | 2009-11-04 | 2011-05-12 | Koninklijke Philips Electronics N.V. | Disposable tip with sheath |
US8418907B2 (en) | 2009-11-05 | 2013-04-16 | Covidien Lp | Surgical stapler having cartridge with adjustable cam mechanism |
US20110112530A1 (en) | 2009-11-06 | 2011-05-12 | Keller Craig A | Battery Powered Electrosurgery |
US20110112517A1 (en) | 2009-11-06 | 2011-05-12 | Peine Willliam J | Surgical instrument |
US8162138B2 (en) | 2009-11-09 | 2012-04-24 | Containmed, Inc. | Universal surgical fastener sterilization caddy |
US8186558B2 (en) | 2009-11-10 | 2012-05-29 | Tyco Healthcare Group Lp | Locking mechanism for use with loading units |
BR112012011435B1 (pt) | 2009-11-13 | 2020-06-23 | Intuitive Surgical Operations, Inc. | Mecanismo de instrumento cirúrgico, conjunto robótico de instrumento cirúrgico e sistema robótico de instrumento cirúrgico |
CN104958106B (zh) | 2009-11-13 | 2018-06-01 | 直观外科手术操作公司 | 具有紧凑腕部的手术工具 |
US9259275B2 (en) | 2009-11-13 | 2016-02-16 | Intuitive Surgical Operations, Inc. | Wrist articulation by linked tension members |
KR102077004B1 (ko) | 2009-11-13 | 2020-02-13 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 여분의 닫힘 메커니즘을 구비한 단부 작동기 |
US20110114697A1 (en) | 2009-11-19 | 2011-05-19 | Ethicon Endo-Surgery, Inc. | Circular stapler introducer with multi-lumen sheath |
US8235272B2 (en) | 2009-11-20 | 2012-08-07 | Tyco Healthcare Group Lp | Surgical stapling device with captive anvil |
US9226686B2 (en) | 2009-11-23 | 2016-01-05 | Rf Surgical Systems, Inc. | Method and apparatus to account for transponder tagged objects used during medical procedures |
JP5211022B2 (ja) | 2009-11-30 | 2013-06-12 | 株式会社日立製作所 | リチウムイオン二次電池 |
JP5073733B2 (ja) | 2009-11-30 | 2012-11-14 | シャープ株式会社 | 蓄電池の強制放電機構及び安全スイッチ装置 |
US8167622B2 (en) | 2009-12-02 | 2012-05-01 | Mig Technology Inc. | Power plug with a freely rotatable delivery point |
DE102009060987A1 (de) | 2009-12-07 | 2011-06-09 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Chirurgisches Manipulationsinstrument |
US8136712B2 (en) | 2009-12-10 | 2012-03-20 | Ethicon Endo-Surgery, Inc. | Surgical stapler with discrete staple height adjustment and tactile feedback |
FR2953752B1 (fr) | 2009-12-11 | 2012-01-20 | Prospection & Inventions | Outil de fixation a moteur a combustion interne a butee de chambre unique d'ouverture et de fermeture |
CN101716090A (zh) | 2009-12-15 | 2010-06-02 | 李东瑞 | 管型吻合器的盖帽 |
DE102009059196A1 (de) | 2009-12-17 | 2011-06-22 | Aesculap AG, 78532 | Chirurgisches System zum Verbinden von Körpergewebe |
GB2476461A (en) | 2009-12-22 | 2011-06-29 | Neosurgical Ltd | Laparoscopic surgical device with jaws biased closed |
DE102009060495A1 (de) | 2009-12-23 | 2011-06-30 | Karl Storz GmbH & Co. KG, 78532 | Haltevorrichtung für medizinische Instrumente |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
US8267300B2 (en) | 2009-12-30 | 2012-09-18 | Ethicon Endo-Surgery, Inc. | Dampening device for endoscopic surgical stapler |
US8561871B2 (en) | 2009-12-31 | 2013-10-22 | Covidien Lp | Indicators for surgical staplers |
US8714430B2 (en) | 2009-12-31 | 2014-05-06 | Covidien Lp | Indicator for surgical stapler |
US8261958B1 (en) | 2010-01-06 | 2012-09-11 | Cardica, Inc. | Stapler cartridge with staples frangibly affixed thereto |
GB2490447A (en) | 2010-01-07 | 2012-10-31 | Black & Decker Inc | Power screwdriver having rotary input control |
US9475180B2 (en) | 2010-01-07 | 2016-10-25 | Black & Decker Inc. | Power tool having rotary input control |
US8608046B2 (en) | 2010-01-07 | 2013-12-17 | Ethicon Endo-Surgery, Inc. | Test device for a surgical tool |
US8313509B2 (en) | 2010-01-19 | 2012-11-20 | Covidien Lp | Suture and retainer assembly and SULU |
WO2012082164A1 (en) | 2010-01-21 | 2012-06-21 | Orthallgn, Inc. | Systems and methods for joint replacement |
US8469254B2 (en) | 2010-01-22 | 2013-06-25 | Covidien Lp | Surgical instrument having a drive assembly |
US10911515B2 (en) | 2012-05-24 | 2021-02-02 | Deka Products Limited Partnership | System, method, and apparatus for electronic patient care |
JP5231658B2 (ja) | 2010-01-22 | 2013-07-10 | オリンパスメディカルシステムズ株式会社 | 治療用処置装置および治療用処置装置の制御方法 |
EP2528518B1 (en) | 2010-01-26 | 2017-12-13 | Artack Medical (2013) Ltd. | Articulating medical instrument |
US8322901B2 (en) | 2010-01-28 | 2012-12-04 | Michelotti William M | Illuminated vehicle wheel with bearing seal slip ring assembly |
US9510925B2 (en) | 2010-02-02 | 2016-12-06 | Covidien Lp | Surgical meshes |
US8328061B2 (en) | 2010-02-02 | 2012-12-11 | Covidien Lp | Surgical instrument for joining tissue |
DE102010006845B4 (de) | 2010-02-03 | 2019-05-16 | Leica Microsystems (Schweiz) Ag | Medizintechnische Vorrichtung mit kabellosem Fussschaltgerät |
US8381834B2 (en) | 2010-02-04 | 2013-02-26 | Robert Bosch Gmbh | Drive system for interconnecting attachment devices and handheld rotary power tools |
AU2011213616B2 (en) | 2010-02-08 | 2013-08-15 | Microchips, Inc. | Low-permeability, laser-activated drug delivery device |
JP5432761B2 (ja) | 2010-02-12 | 2014-03-05 | 株式会社マキタ | 複数のバッテリパックを電源とする電動工具 |
JP5461221B2 (ja) | 2010-02-12 | 2014-04-02 | 株式会社マキタ | 複数のバッテリパックを電源とする電動工具 |
US20110199225A1 (en) | 2010-02-15 | 2011-08-18 | Honeywell International Inc. | Use of token switch to indicate unauthorized manipulation of a protected device |
CN101779977B (zh) | 2010-02-25 | 2011-12-14 | 上海创亿医疗器械技术有限公司 | 外科线形切割缝合器的钉仓 |
US8403945B2 (en) | 2010-02-25 | 2013-03-26 | Covidien Lp | Articulating endoscopic surgical clip applier |
US8672209B2 (en) | 2010-02-25 | 2014-03-18 | Design Standards Corporation | Laproscopic stapler |
US8403832B2 (en) | 2010-02-26 | 2013-03-26 | Covidien Lp | Drive mechanism for articulation of a surgical instrument |
CA2791624A1 (en) | 2010-02-26 | 2011-09-01 | Myskin, Inc. | Analytic methods of tissue evaluation |
US9610412B2 (en) | 2010-03-02 | 2017-04-04 | Covidien Lp | Internally pressurized medical devices |
EP2542181A1 (en) | 2010-03-03 | 2013-01-09 | Allurion Technologies, Inc. | Gastric volume filling construct |
US20110218400A1 (en) | 2010-03-05 | 2011-09-08 | Tyco Healthcare Group Lp | Surgical instrument with integrated wireless camera |
US20110218550A1 (en) | 2010-03-08 | 2011-09-08 | Tyco Healthcare Group Lp | System and method for determining and adjusting positioning and orientation of a surgical device |
DE102010002702A1 (de) | 2010-03-09 | 2011-09-15 | Robert Bosch Gmbh | Elektrogerät, insbesondere Elektrohandwerkzeug |
US8864761B2 (en) | 2010-03-10 | 2014-10-21 | Covidien Lp | System and method for determining proximity relative to a critical structure |
US8623004B2 (en) | 2010-03-10 | 2014-01-07 | Covidien Lp | Method for determining proximity relative to a critical structure |
AU2011200961B2 (en) | 2010-03-12 | 2014-05-29 | Covidien Lp | Method and apparatus for determining parameters of linear motion in a surgical instrument |
EP2548529B1 (en) | 2010-03-15 | 2018-10-24 | Karl Storz SE & Co. KG | Medical manipulator |
US8575880B2 (en) | 2010-03-17 | 2013-11-05 | Alan Lyndon Grantz | Direct current motor with independently driven and switchable stators |
US8288984B2 (en) | 2010-03-17 | 2012-10-16 | Tai-Her Yang | DC brushless motor drive circuit with speed variable-voltage |
US20110172495A1 (en) | 2010-03-26 | 2011-07-14 | Armstrong David N | Surgical retractor |
DE102010003339B4 (de) | 2010-03-26 | 2012-02-02 | Leica Microsystems (Schweiz) Ag | Sterile Bedieneinheit mit Sensorbildschirm |
US8696665B2 (en) | 2010-03-26 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical cutting and sealing instrument with reduced firing force |
DE102010013150A1 (de) | 2010-03-27 | 2011-09-29 | Volkswagen Ag | Vorrichtung zur thermischen Isolierung mindestens einer Fahrzeugbatterie |
JP5758882B2 (ja) | 2010-03-30 | 2015-08-05 | カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | 医療用マニピュレータシステム |
US20110241597A1 (en) | 2010-03-30 | 2011-10-06 | Lin Engineering | H-bridge drive circuit for step motor control |
US8894654B2 (en) | 2010-03-31 | 2014-11-25 | Smart Medical Devices, Inc. | Depth controllable and measurable medical driver devices and methods of use |
US8074859B2 (en) | 2010-03-31 | 2011-12-13 | Tyco Healthcare Group Lp | Surgical instrument |
CN201719298U (zh) | 2010-04-01 | 2011-01-26 | 江苏瑞安贝医疗器械有限公司 | 直线切割吻合器活动手柄防脱机构 |
USD667018S1 (en) | 2010-04-02 | 2012-09-11 | Kewaunee Scientific Corporation | Display screen of a biological safety cabinet with graphical user interface |
US20120265220A1 (en) | 2010-04-06 | 2012-10-18 | Pavel Menn | Articulating Steerable Clip Applier for Laparoscopic Procedures |
US9722334B2 (en) | 2010-04-07 | 2017-08-01 | Black & Decker Inc. | Power tool with light unit |
US8348127B2 (en) | 2010-04-07 | 2013-01-08 | Covidien Lp | Surgical fastener applying apparatus |
US8662370B2 (en) | 2010-04-08 | 2014-03-04 | Hidehisa Thomas Takei | Introducer system and assembly for surgical staplers |
US8961504B2 (en) | 2010-04-09 | 2015-02-24 | Covidien Lp | Optical hydrology arrays and system and method for monitoring water displacement during treatment of patient tissue |
US8597295B2 (en) | 2010-04-12 | 2013-12-03 | Covidien Lp | Surgical instrument with non-contact electrical coupling |
US8834518B2 (en) | 2010-04-12 | 2014-09-16 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instruments with cam-actuated jaws |
EP2377477B1 (en) | 2010-04-14 | 2012-05-30 | Tuebingen Scientific Medical GmbH | Surgical instrument with elastically moveable instrument head |
US8734831B2 (en) | 2010-04-16 | 2014-05-27 | Snu R&Db Foundation | Method for manufacturing a porous ceramic scaffold having an organic/inorganic hybrid coating layer containing a bioactive factor |
IT1399603B1 (it) | 2010-04-26 | 2013-04-26 | Scuola Superiore Di Studi Universitari E Di Perfez | Apparato robotico per interventi di chirurgia minimamente invasiva |
US9451938B2 (en) | 2010-04-27 | 2016-09-27 | DePuy Synthes Products, Inc. | Insertion instrument for anchor assembly |
RU2564358C2 (ru) | 2010-04-29 | 2015-09-27 | ЭТИКОН, ЭлЭлСи | Самоудерживающиеся шовные материалы с высокой плотностью фиксаторов, и устройства и способы их производства |
US20110271186A1 (en) | 2010-04-30 | 2011-11-03 | John Colin Owens | Visual audio mixing system and method thereof |
US20110275901A1 (en) | 2010-05-07 | 2011-11-10 | Ethicon Endo-Surgery, Inc. | Laparoscopic devices with articulating end effectors |
US20110276083A1 (en) | 2010-05-07 | 2011-11-10 | Ethicon Endo-Surgery, Inc. | Bendable shaft for handle positioning |
US9226760B2 (en) | 2010-05-07 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Laparoscopic devices with flexible actuation mechanisms |
US8562592B2 (en) | 2010-05-07 | 2013-10-22 | Ethicon Endo-Surgery, Inc. | Compound angle laparoscopic methods and devices |
US8464925B2 (en) | 2010-05-11 | 2013-06-18 | Ethicon Endo-Surgery, Inc. | Methods and apparatus for delivering tissue treatment compositions to stapled tissue |
US8646674B2 (en) | 2010-05-11 | 2014-02-11 | Ethicon Endo-Surgery, Inc. | Methods and apparatus for delivering tissue treatment compositions to stapled tissue |
US8689901B2 (en) | 2010-05-12 | 2014-04-08 | X'pole Precision Tools Inc. | Electric power tool |
CN101828940A (zh) | 2010-05-12 | 2010-09-15 | 苏州天臣国际医疗科技有限公司 | 弯曲型线性闭合切割器 |
US8603077B2 (en) | 2010-05-14 | 2013-12-10 | Intuitive Surgical Operations, Inc. | Force transmission for robotic surgical instrument |
US8685020B2 (en) | 2010-05-17 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instruments and end effectors therefor |
US8958860B2 (en) | 2010-05-17 | 2015-02-17 | Covidien Lp | Optical sensors for intraoperative procedures |
JP5085684B2 (ja) | 2010-05-19 | 2012-11-28 | オリンパスメディカルシステムズ株式会社 | 処置具システム及びマニピュレータシステム |
DE102010029100A1 (de) | 2010-05-19 | 2011-11-24 | Osram Gesellschaft mit beschränkter Haftung | Schaltungsanordnung zum Betreiben mindestens einer Entladungslampe und mindestens einer LED |
JP5534327B2 (ja) | 2010-05-19 | 2014-06-25 | 日立工機株式会社 | 電動工具 |
US20110285507A1 (en) | 2010-05-21 | 2011-11-24 | Nelson Erik T | Tamper Detection RFID Tape |
US20110293690A1 (en) | 2010-05-27 | 2011-12-01 | Tyco Healthcare Group Lp | Biodegradable Polymer Encapsulated Microsphere Particulate Film and Method of Making Thereof |
US9091588B2 (en) | 2010-05-28 | 2015-07-28 | Prognost Systems Gmbh | System and method of mechanical fault detection based on signature detection |
US20110292258A1 (en) | 2010-05-28 | 2011-12-01 | C2Cure, Inc. | Two sensor imaging systems |
US8491624B2 (en) | 2010-06-02 | 2013-07-23 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
USD666209S1 (en) | 2010-06-05 | 2012-08-28 | Apple Inc. | Display screen or portion thereof with graphical user interface |
US9144455B2 (en) | 2010-06-07 | 2015-09-29 | Just Right Surgical, Llc | Low power tissue sealing device and method |
CN101856250B (zh) | 2010-06-07 | 2011-08-31 | 常州威克医疗器械有限公司 | 一次性自动保险圆形吻合器 |
KR101095099B1 (ko) | 2010-06-07 | 2011-12-16 | 삼성전기주식회사 | 편평형 진동모터 |
US8795276B2 (en) | 2010-06-09 | 2014-08-05 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument employing a plurality of electrodes |
FR2961087B1 (fr) | 2010-06-09 | 2013-06-28 | Allflex Europ | Outil de prelevement d'un echantillon de tissu animal. |
WO2011156776A2 (en) | 2010-06-10 | 2011-12-15 | The Regents Of The University Of California | Smart electric vehicle (ev) charging and grid integration apparatus and methods |
US8825164B2 (en) | 2010-06-11 | 2014-09-02 | Enteromedics Inc. | Neural modulation devices and methods |
US20120130217A1 (en) | 2010-11-23 | 2012-05-24 | Kauphusman James V | Medical devices having electrodes mounted thereon and methods of manufacturing therefor |
US20110313894A1 (en) | 2010-06-18 | 2011-12-22 | Dye Alan W | System and Method for Surgical Pack Manufacture, Monitoring, and Tracking |
US8596515B2 (en) | 2010-06-18 | 2013-12-03 | Covidien Lp | Staple position sensor system |
EP2397309A1 (en) | 2010-06-21 | 2011-12-21 | Envision Energy (Denmark) ApS | A Wind Turbine and a Shaft for a Wind Turbine |
US8302323B2 (en) | 2010-06-21 | 2012-11-06 | Confluent Surgical, Inc. | Hemostatic patch |
WO2011162753A1 (en) | 2010-06-23 | 2011-12-29 | Mako Sugical Corp. | Inertially tracked objects |
US9028495B2 (en) | 2010-06-23 | 2015-05-12 | Covidien Lp | Surgical instrument with a separable coaxial joint |
US8366559B2 (en) | 2010-06-23 | 2013-02-05 | Lenkbar, Llc | Cannulated flexible drive shaft |
US20110315413A1 (en) | 2010-06-25 | 2011-12-29 | Mako Surgical Corp. | Kit-Of Parts for Multi-Functional Tool, Drive Unit, and Operating Members |
USD650789S1 (en) | 2010-06-25 | 2011-12-20 | Microsoft Corporation | Display screen with in-process indicator |
KR101143469B1 (ko) | 2010-07-02 | 2012-05-08 | 에스케이하이닉스 주식회사 | 반도체 메모리의 출력 인에이블 신호 생성 회로 |
US20120004636A1 (en) | 2010-07-02 | 2012-01-05 | Denny Lo | Hemostatic fibrous material |
US20120008880A1 (en) | 2010-07-06 | 2012-01-12 | Landy Toth | Isolation system for a mobile computing device |
EP2405439B1 (en) | 2010-07-07 | 2013-01-23 | Crocus Technology S.A. | Magnetic device with optimized heat confinement |
US10737398B2 (en) | 2010-07-08 | 2020-08-11 | Vanderbilt University | Continuum devices and control methods thereof |
US8834466B2 (en) | 2010-07-08 | 2014-09-16 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an articulatable end effector |
US9149324B2 (en) | 2010-07-08 | 2015-10-06 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an articulatable end effector |
WO2012006306A2 (en) | 2010-07-08 | 2012-01-12 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an articulatable end effector |
US9089600B2 (en) | 2010-07-12 | 2015-07-28 | University Of Southern California | Systems and methods for in vitro and in vivo imaging of cells on a substrate |
US8453906B2 (en) | 2010-07-14 | 2013-06-04 | Ethicon Endo-Surgery, Inc. | Surgical instruments with electrodes |
US20120016413A1 (en) | 2010-07-14 | 2012-01-19 | Ethicon Endo-Surgery, Inc. | Surgical fastening devices comprising rivets |
JP2012023847A (ja) | 2010-07-14 | 2012-02-02 | Panasonic Electric Works Co Ltd | 充電式電気機器 |
US8439246B1 (en) | 2010-07-20 | 2013-05-14 | Cardica, Inc. | Surgical stapler with cartridge-adjustable clamp gap |
US8979843B2 (en) | 2010-07-23 | 2015-03-17 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US9011437B2 (en) | 2010-07-23 | 2015-04-21 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US8840609B2 (en) | 2010-07-23 | 2014-09-23 | Conmed Corporation | Tissue fusion system and method of performing a functional verification test |
US8663270B2 (en) | 2010-07-23 | 2014-03-04 | Conmed Corporation | Jaw movement mechanism and method for a surgical tool |
WO2012013577A1 (en) | 2010-07-26 | 2012-02-02 | Laboratorios Miret, S.A. | Composition for coating medical devices containing lae and a polycationic amphoteric polymer |
US8403946B2 (en) | 2010-07-28 | 2013-03-26 | Covidien Lp | Articulating clip applier cartridge |
US8968337B2 (en) | 2010-07-28 | 2015-03-03 | Covidien Lp | Articulating clip applier |
US8789740B2 (en) | 2010-07-30 | 2014-07-29 | Ethicon Endo-Surgery, Inc. | Linear cutting and stapling device with selectively disengageable cutting member |
JP5686236B2 (ja) | 2010-07-30 | 2015-03-18 | 日立工機株式会社 | 電動工具及びネジ締め用電動工具 |
US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
US8801735B2 (en) | 2010-07-30 | 2014-08-12 | Ethicon Endo-Surgery, Inc. | Surgical circular stapler with tissue retention arrangements |
US8900267B2 (en) | 2010-08-05 | 2014-12-02 | Microline Surgical, Inc. | Articulable surgical instrument |
US8852199B2 (en) | 2010-08-06 | 2014-10-07 | Abyrx, Inc. | Method and device for handling bone adhesives |
CA2807224A1 (en) | 2010-08-06 | 2012-02-09 | Dainippon Sumitomo Pharma Co., Ltd. | Preparation for treatment of spinal cord injury |
CN102378503A (zh) | 2010-08-06 | 2012-03-14 | 鸿富锦精密工业(深圳)有限公司 | 电子装置组合 |
USD652048S1 (en) | 2010-08-09 | 2012-01-10 | Management Insight, LLC | Display screen of a communications terminal with graphical user interface |
US8675820B2 (en) | 2010-08-10 | 2014-03-18 | Varian Medical Systems, Inc. | Electronic conical collimator verification |
EP2417925B1 (en) | 2010-08-12 | 2016-12-07 | Immersion Corporation | Electrosurgical tool having tactile feedback |
CN101912284B (zh) | 2010-08-13 | 2012-07-18 | 李东瑞 | 弧形切割吻合器 |
US8298233B2 (en) | 2010-08-20 | 2012-10-30 | Tyco Healthcare Group Lp | Surgical instrument configured for use with interchangeable hand grips |
CA2750482C (en) | 2010-08-25 | 2016-11-01 | Syntheon, Llc | Battery-powered hand-held ultrasonic surgical cautery cutting device |
CN103200893A (zh) | 2010-09-07 | 2013-07-10 | 波士顿科学西美德公司 | 用于肾去神经的自供电消融导管 |
US8360296B2 (en) | 2010-09-09 | 2013-01-29 | Ethicon Endo-Surgery, Inc. | Surgical stapling head assembly with firing lockout for a surgical stapler |
ES2887194T3 (es) | 2010-09-09 | 2021-12-22 | Queen Mary & Westfield College Univ Of London | Aparato para formación de trépanos y anastomosis de estomas |
US20130183769A1 (en) | 2010-09-17 | 2013-07-18 | Universal Bio Research Co., Ltd. | Cartridge and automatic analysis device |
US9289212B2 (en) | 2010-09-17 | 2016-03-22 | Ethicon Endo-Surgery, Inc. | Surgical instruments and batteries for surgical instruments |
US8632525B2 (en) | 2010-09-17 | 2014-01-21 | Ethicon Endo-Surgery, Inc. | Power control arrangements for surgical instruments and batteries |
US9402682B2 (en) | 2010-09-24 | 2016-08-02 | Ethicon Endo-Surgery, Llc | Articulation joint features for articulating surgical device |
US9545253B2 (en) | 2010-09-24 | 2017-01-17 | Ethicon Endo-Surgery, Llc | Surgical instrument with contained dual helix actuator assembly |
US20120078244A1 (en) | 2010-09-24 | 2012-03-29 | Worrell Barry C | Control features for articulating surgical device |
US20130131651A1 (en) | 2010-09-24 | 2013-05-23 | Ethicon Endo-Surgery, Inc. | Features providing linear actuation through articulation joint in surgical instrument |
US8733613B2 (en) | 2010-09-29 | 2014-05-27 | Ethicon Endo-Surgery, Inc. | Staple cartridge |
US10231653B2 (en) | 2010-09-29 | 2019-03-19 | Dexcom, Inc. | Advanced continuous analyte monitoring system |
EP3120781B1 (en) | 2010-09-30 | 2018-03-21 | Ethicon LLC | Surgical stapling instrument with interchangeable staple cartridge arrangements |
US9204880B2 (en) | 2012-03-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising capsules defining a low pressure environment |
US9364233B2 (en) | 2010-09-30 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Tissue thickness compensators for circular surgical staplers |
US9301755B2 (en) | 2010-09-30 | 2016-04-05 | Ethicon Endo-Surgery, Llc | Compressible staple cartridge assembly |
US9307989B2 (en) | 2012-03-28 | 2016-04-12 | Ethicon Endo-Surgery, Llc | Tissue stapler having a thickness compensator incorportating a hydrophobic agent |
US20120248169A1 (en) | 2010-09-30 | 2012-10-04 | Ethicon Endo-Surgery, Inc. | Methods for forming tissue thickness compensator arrangements for surgical staplers |
US9386988B2 (en) | 2010-09-30 | 2016-07-12 | Ethicon End-Surgery, LLC | Retainer assembly including a tissue thickness compensator |
US9220501B2 (en) | 2010-09-30 | 2015-12-29 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensators |
US9314246B2 (en) | 2010-09-30 | 2016-04-19 | Ethicon Endo-Surgery, Llc | Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent |
US9332974B2 (en) | 2010-09-30 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Layered tissue thickness compensator |
RU2599335C2 (ru) | 2010-09-30 | 2016-10-10 | Этикон Эндо-Серджери, Инк. | Хирургический сшивающий инструмент с компактными средствами управления шарнирным соединением |
US20120080498A1 (en) | 2010-09-30 | 2012-04-05 | Ethicon Endo-Surgery, Inc. | Curved end effector for a stapling instrument |
RU2586246C2 (ru) | 2010-09-30 | 2016-06-10 | Этикон Эндо-Серджери, Инк. | Сжимаемый сшивающий картридж |
CN103356253B (zh) | 2010-09-30 | 2015-09-16 | 伊西康内外科公司 | 具有不均匀排列的可植入的紧固件仓 |
US11849952B2 (en) | 2010-09-30 | 2023-12-26 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US9301752B2 (en) | 2010-09-30 | 2016-04-05 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising a plurality of capsules |
US20220175370A1 (en) | 2010-09-30 | 2022-06-09 | Cilag Gmbh International | Tissue thickness compensator comprising at least one medicament |
US8893949B2 (en) | 2010-09-30 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Surgical stapler with floating anvil |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US9517063B2 (en) | 2012-03-28 | 2016-12-13 | Ethicon Endo-Surgery, Llc | Movable member for use with a tissue thickness compensator |
US9592050B2 (en) | 2010-09-30 | 2017-03-14 | Ethicon Endo-Surgery, Llc | End effector comprising a distal tissue abutment member |
CN102440813B (zh) | 2010-09-30 | 2013-05-08 | 上海创亿医疗器械技术有限公司 | 带有链条关节的腔镜外科切割吻合器 |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
BR112013007717B1 (pt) | 2010-09-30 | 2020-09-24 | Ethicon Endo-Surgery, Inc. | Sistema de grampeamento cirúrgico |
US8752699B2 (en) | 2010-09-30 | 2014-06-17 | Ethicon Endo-Surgery, Inc. | Implantable fastener cartridge comprising bioabsorbable layers |
US20220338870A1 (en) | 2010-09-30 | 2022-10-27 | Cilag Gmbh International | Tissue thickness compensator comprising a reservoir |
US9351730B2 (en) | 2011-04-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising channels |
RU2599210C2 (ru) | 2010-09-30 | 2016-10-10 | Этикон Эндо-Серджери, Инк. | Хирургические рассекающие и сшивающие инструменты с отдельными и раздельными системами наложения крепежных элементов и рассечения ткани |
US9480476B2 (en) | 2010-09-30 | 2016-11-01 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising resilient members |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
US8888809B2 (en) | 2010-10-01 | 2014-11-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with jaw member |
US8899461B2 (en) | 2010-10-01 | 2014-12-02 | Covidien Lp | Tissue stop for surgical instrument |
USD690614S1 (en) | 2010-10-01 | 2013-10-01 | Honda Motor Company, Ltd. | Display screen |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
US8998061B2 (en) | 2010-10-01 | 2015-04-07 | Covidien Lp | Surgical fastener applying apparatus |
JP5905472B2 (ja) | 2010-10-01 | 2016-04-20 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | 顎部材を有する外科用器具 |
US9750502B2 (en) | 2010-10-01 | 2017-09-05 | Covidien Lp | Surgical stapling device for performing circular anastomosis and surgical staples for use therewith |
US8979890B2 (en) | 2010-10-01 | 2015-03-17 | Ethicon Endo-Surgery, Inc. | Surgical instrument with jaw member |
USD650074S1 (en) | 2010-10-01 | 2011-12-06 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
JP5636247B2 (ja) | 2010-10-06 | 2014-12-03 | Hoya株式会社 | 電子内視鏡用プロセッサ及び電子内視鏡装置 |
US10092359B2 (en) | 2010-10-11 | 2018-10-09 | Ecole Polytechnique Federale De Lausanne | Mechanical manipulator for surgical instruments |
CN103154851B (zh) | 2010-10-12 | 2016-08-03 | 惠普发展公司,有限责任合伙企业 | 使用多个电源向电子设备供电 |
US8828046B2 (en) | 2010-10-14 | 2014-09-09 | Ethicon Endo-Surgery, Inc. | Laparoscopic device with distal handle |
US20110225105A1 (en) | 2010-10-21 | 2011-09-15 | Ford Global Technologies, Llc | Method and system for monitoring an energy storage system for a vehicle for trip planning |
US9039694B2 (en) | 2010-10-22 | 2015-05-26 | Just Right Surgical, Llc | RF generator system for surgical vessel sealing |
US8628529B2 (en) | 2010-10-26 | 2014-01-14 | Ethicon Endo-Surgery, Inc. | Surgical instrument with magnetic clamping force |
CN102452074A (zh) | 2010-10-27 | 2012-05-16 | 鸿富锦精密工业(深圳)有限公司 | 并联机器人 |
US20120109186A1 (en) | 2010-10-29 | 2012-05-03 | Parrott David A | Articulating laparoscopic surgical instruments |
US8568425B2 (en) | 2010-11-01 | 2013-10-29 | Covidien Lp | Wire spool for passing of wire through a rotational coupling |
US8292150B2 (en) | 2010-11-02 | 2012-10-23 | Tyco Healthcare Group Lp | Adapter for powered surgical devices |
US9782214B2 (en) | 2010-11-05 | 2017-10-10 | Ethicon Llc | Surgical instrument with sensor and powered control |
US20120116261A1 (en) | 2010-11-05 | 2012-05-10 | Mumaw Daniel J | Surgical instrument with slip ring assembly to power ultrasonic transducer |
US9039720B2 (en) | 2010-11-05 | 2015-05-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with ratcheting rotatable shaft |
US9510895B2 (en) | 2010-11-05 | 2016-12-06 | Ethicon Endo-Surgery, Llc | Surgical instrument with modular shaft and end effector |
US9421062B2 (en) | 2010-11-05 | 2016-08-23 | Ethicon Endo-Surgery, Llc | Surgical instrument shaft with resiliently biased coupling to handpiece |
US9089338B2 (en) | 2010-11-05 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Medical device packaging with window for insertion of reusable component |
US9000720B2 (en) | 2010-11-05 | 2015-04-07 | Ethicon Endo-Surgery, Inc. | Medical device packaging with charging interface |
US9597143B2 (en) | 2010-11-05 | 2017-03-21 | Ethicon Endo-Surgery, Llc | Sterile medical instrument charging device |
US20120116265A1 (en) | 2010-11-05 | 2012-05-10 | Houser Kevin L | Surgical instrument with charging devices |
US9375255B2 (en) | 2010-11-05 | 2016-06-28 | Ethicon Endo-Surgery, Llc | Surgical instrument handpiece with resiliently biased coupling to modular shaft and end effector |
US20120116381A1 (en) | 2010-11-05 | 2012-05-10 | Houser Kevin L | Surgical instrument with charging station and wireless communication |
US9072523B2 (en) | 2010-11-05 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Medical device with feature for sterile acceptance of non-sterile reusable component |
US9017849B2 (en) | 2010-11-05 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Power source management for medical device |
US9011471B2 (en) | 2010-11-05 | 2015-04-21 | Ethicon Endo-Surgery, Inc. | Surgical instrument with pivoting coupling to modular shaft and end effector |
US9161803B2 (en) | 2010-11-05 | 2015-10-20 | Ethicon Endo-Surgery, Inc. | Motor driven electrosurgical device with mechanical and electrical feedback |
US9381058B2 (en) | 2010-11-05 | 2016-07-05 | Ethicon Endo-Surgery, Llc | Recharge system for medical devices |
US9017851B2 (en) | 2010-11-05 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Sterile housing for non-sterile medical device component |
US9526921B2 (en) | 2010-11-05 | 2016-12-27 | Ethicon Endo-Surgery, Llc | User feedback through end effector of surgical instrument |
US8308041B2 (en) | 2010-11-10 | 2012-11-13 | Tyco Healthcare Group Lp | Staple formed over the wire wound closure procedure |
US20120123463A1 (en) | 2010-11-11 | 2012-05-17 | Moises Jacobs | Mechanically-guided transoral bougie |
KR101993815B1 (ko) | 2010-11-15 | 2019-06-27 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 수술 기구에서 기구 샤프트 감김과 단부 작동기 작동의 해제 |
US8480703B2 (en) | 2010-11-19 | 2013-07-09 | Covidien Lp | Surgical device |
US20120175398A1 (en) | 2010-11-22 | 2012-07-12 | Mayo Foundation For Medical Education And Research | Stapling apparatus and methods of assembling or operating the same |
US8679093B2 (en) | 2010-11-23 | 2014-03-25 | Microchips, Inc. | Multi-dose drug delivery device and method |
KR20120059105A (ko) | 2010-11-30 | 2012-06-08 | 현대자동차주식회사 | 고전압 배터리팩의 수분 배출장치 |
US20120132663A1 (en) | 2010-11-30 | 2012-05-31 | Tyco Healthcare Group Lp | Jaw Restraint |
WO2012072133A1 (en) | 2010-12-01 | 2012-06-07 | Ethicon Endo-Surgery, Inc. | A surgical stapling device and a method for anchoring a liner to a hollow organ |
CN103237632A (zh) | 2010-12-02 | 2013-08-07 | 株式会社牧田 | 电动工具 |
JP5530911B2 (ja) | 2010-12-02 | 2014-06-25 | Hoya株式会社 | ズーム式電子内視鏡 |
EP2645943A1 (en) | 2010-12-02 | 2013-10-09 | Agile Endosurgery, Inc. | Surgical tool |
CN102038532A (zh) | 2010-12-07 | 2011-05-04 | 苏州天臣国际医疗科技有限公司 | 钉仓组件 |
US8801710B2 (en) | 2010-12-07 | 2014-08-12 | Immersion Corporation | Electrosurgical sealing tool having haptic feedback |
US8523043B2 (en) * | 2010-12-07 | 2013-09-03 | Immersion Corporation | Surgical stapler having haptic feedback |
DE102010053811A1 (de) | 2010-12-08 | 2012-06-14 | Moog Gmbh | Störungssicheres Betätigungssystem |
US20130331826A1 (en) | 2010-12-09 | 2013-12-12 | Agile Endosurgery, Inc. | Surgical instrument |
CN201949071U (zh) | 2010-12-10 | 2011-08-31 | 苏州天臣国际医疗科技有限公司 | 直线型切割缝合器 |
US8348130B2 (en) | 2010-12-10 | 2013-01-08 | Covidien Lp | Surgical apparatus including surgical buttress |
US20120239068A1 (en) | 2010-12-10 | 2012-09-20 | Morris James R | Surgical instrument |
CN101991453B (zh) | 2010-12-10 | 2012-07-18 | 苏州天臣国际医疗科技有限公司 | 直线型切割缝合器 |
US8714352B2 (en) | 2010-12-10 | 2014-05-06 | Covidien Lp | Cartridge shipping aid |
CN101991452B (zh) | 2010-12-10 | 2012-07-04 | 苏州天臣国际医疗科技有限公司 | 一种直线型外科装订仪 |
FR2968564B1 (fr) | 2010-12-13 | 2013-06-21 | Perouse Medical | Dispositif medical destine a entrer en contact avec un tissu d'un patient et procede de fabrication associe. |
CN102068290B (zh) | 2010-12-16 | 2013-06-05 | 苏州天臣国际医疗科技有限公司 | 直线型切割缝合器 |
US8540735B2 (en) | 2010-12-16 | 2013-09-24 | Apollo Endosurgery, Inc. | Endoscopic suture cinch system |
US8736212B2 (en) | 2010-12-16 | 2014-05-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method of automatic detection and prevention of motor runaway |
WO2012088141A2 (en) | 2010-12-21 | 2012-06-28 | Stryker Corporation | Powered surgical tool with a control module in a sealed housing the housing having active seals for protecting internal components from the effects of sterilization |
CN201879759U (zh) | 2010-12-21 | 2011-06-29 | 南京迈迪欣医疗器械有限公司 | 可控制组织厚度的一次性使用旋转切割吻合器的钉仓装置 |
CA2818573C (en) | 2010-12-24 | 2018-01-02 | Ao Technology Ag | Surgical instrument capable of measuring local mechanical resistance of a porous body |
CN102228387B (zh) | 2010-12-29 | 2012-11-07 | 北京中法派尔特医疗设备有限公司 | 数控外科装订器械 |
US9124097B2 (en) | 2010-12-29 | 2015-09-01 | International Safety And Development, Inc. | Polarity correcting device |
US8936614B2 (en) | 2010-12-30 | 2015-01-20 | Covidien Lp | Combined unilateral/bilateral jaws on a surgical instrument |
DE102011002404A1 (de) | 2011-01-03 | 2012-07-05 | Robert Bosch Gmbh | Handwerkzeugmaschinen-Energieversorgungseinheit |
DE102012100086A1 (de) | 2011-01-07 | 2012-08-02 | Z-Medical Gmbh & Co. Kg | Chirurgisches Instrument |
JP2012143283A (ja) | 2011-01-07 | 2012-08-02 | Tomato Inc:Kk | 光学式美容機器及びこれに用いられるハンドピース |
WO2012097381A1 (en) | 2011-01-14 | 2012-07-19 | Biomerix Corporation | At least partially resorbable reticulated elastomeric matrix elements and methods of making same |
MX338966B (es) | 2011-01-14 | 2016-05-06 | New Hope Ventures | Dispositivo engrapador quirúrgico y método. |
US8603089B2 (en) | 2011-01-19 | 2013-12-10 | Covidien Lp | Surgical instrument including inductively coupled accessory |
US20130136969A1 (en) | 2011-01-25 | 2013-05-30 | Panasonic Corporation | Battery module and battery assembly used in battery module |
US9084602B2 (en) | 2011-01-26 | 2015-07-21 | Covidien Lp | Buttress film with hemostatic action for surgical stapling apparatus |
WO2012106187A1 (en) | 2011-01-31 | 2012-08-09 | Boston Scientific Scimed, Inc. | Medical devices having releasable coupling |
US20120197239A1 (en) | 2011-01-31 | 2012-08-02 | Paul Smith | Endoscopic medical device with articulating joints |
US9730717B2 (en) | 2011-02-03 | 2017-08-15 | Karl Storz Gmbh & Co. Kg | Medical manipulator system |
US8336754B2 (en) | 2011-02-04 | 2012-12-25 | Covidien Lp | Locking articulation mechanism for surgical stapler |
US8348124B2 (en) | 2011-02-08 | 2013-01-08 | Covidien Lp | Knife bar with geared overdrive |
US8698885B2 (en) | 2011-02-14 | 2014-04-15 | Intuitive Surgical Operations, Inc. | Methods and apparatus for demosaicing images with highly correlated color channels |
US9393017B2 (en) | 2011-02-15 | 2016-07-19 | Intuitive Surgical Operations, Inc. | Methods and systems for detecting staple cartridge misfire or failure |
JP6113666B2 (ja) | 2011-02-15 | 2017-04-12 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | ステープル又は血管シール器具におけるナイフ位置のインジケータ |
EP3308723B1 (en) | 2011-02-15 | 2021-03-10 | Intuitive Surgical Operations Inc. | Systems for indicating a clamping prediction |
JP6293486B2 (ja) | 2011-02-15 | 2018-03-14 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | クランプ又は発射の不成功を検出するシステム |
WO2012110119A1 (en) | 2011-02-15 | 2012-08-23 | Zimmer Surgical Sa | Battery housing for powered surgical tool |
KR101964642B1 (ko) | 2011-02-15 | 2019-04-02 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 구동 샤프트에 의해 가동되는 관절식 말단 작동기를 구비한 수술 기구를 위한 시일 및 실링 방법 |
DE102011011497A1 (de) | 2011-02-17 | 2012-08-23 | Kuka Roboter Gmbh | Chirurgisches Instrument |
US9055961B2 (en) | 2011-02-18 | 2015-06-16 | Intuitive Surgical Operations, Inc. | Fusing and cutting surgical instrument and related methods |
JP6138699B2 (ja) | 2011-02-18 | 2017-05-31 | デピュイ・シンセス・プロダクツ・インコーポレイテッド | 一体化されたナビゲーション及び誘導システムを備えるツール、並びに関連する装置及び方法 |
US8968340B2 (en) | 2011-02-23 | 2015-03-03 | Covidien Lp | Single actuating jaw flexible endolumenal stitching device |
US20120211542A1 (en) | 2011-02-23 | 2012-08-23 | Tyco Healthcare Group I.P | Controlled tissue compression systems and methods |
US9585672B2 (en) | 2011-02-25 | 2017-03-07 | Thd S.P.A. | Device for implanting a prosthesis in a tissue |
US8479968B2 (en) | 2011-03-10 | 2013-07-09 | Covidien Lp | Surgical instrument buttress attachment |
CA2829797C (en) | 2011-03-11 | 2018-09-11 | Stanley D. Winnard | Handheld drive device |
USD679726S1 (en) | 2011-03-12 | 2013-04-09 | Omron Corporation | Display screen portion with icon |
US9113883B2 (en) | 2011-03-14 | 2015-08-25 | Ethicon Endo-Surgery, Inc. | Collapsible anvil plate assemblies for circular surgical stapling devices |
US8857693B2 (en) | 2011-03-15 | 2014-10-14 | Ethicon Endo-Surgery, Inc. | Surgical instruments with lockable articulating end effector |
US8800841B2 (en) | 2011-03-15 | 2014-08-12 | Ethicon Endo-Surgery, Inc. | Surgical staple cartridges |
US20120234895A1 (en) | 2011-03-15 | 2012-09-20 | Ethicon Endo-Surgery, Inc. | Surgical staple cartridges and end effectors with vessel measurement arrangements |
US8540131B2 (en) | 2011-03-15 | 2013-09-24 | Ethicon Endo-Surgery, Inc. | Surgical staple cartridges with tissue tethers for manipulating divided tissue and methods of using same |
US8926598B2 (en) | 2011-03-15 | 2015-01-06 | Ethicon Endo-Surgery, Inc. | Surgical instruments with articulatable and rotatable end effector |
US9044229B2 (en) | 2011-03-15 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical fastener instruments |
US8556935B1 (en) | 2011-03-15 | 2013-10-15 | Cardica, Inc. | Method of manufacturing surgical staples |
US8397972B2 (en) | 2011-03-18 | 2013-03-19 | Covidien Lp | Shipping wedge with lockout |
WO2012127462A1 (en) | 2011-03-22 | 2012-09-27 | Human Extensions Ltd. | Motorized surgical instruments |
US9949754B2 (en) | 2011-03-28 | 2018-04-24 | Avinger, Inc. | Occlusion-crossing devices |
US8575895B2 (en) | 2011-03-29 | 2013-11-05 | Rally Manufacturing, Inc. | Method and device for voltage detection and charging of electric battery |
US10729458B2 (en) | 2011-03-30 | 2020-08-04 | Covidien Lp | Ultrasonic surgical instruments |
WO2012135721A1 (en) | 2011-03-30 | 2012-10-04 | Tyco Healthcare Group Lp | Ultrasonic surgical instruments |
US20120253328A1 (en) | 2011-03-30 | 2012-10-04 | Tyco Healthcare Group Lp | Combined presentation unit for reposable battery operated surgical system |
US20140330579A1 (en) | 2011-03-31 | 2014-11-06 | Healthspot, Inc. | Medical Kiosk and Method of Use |
US20120251861A1 (en) | 2011-03-31 | 2012-10-04 | De Poan Pneumatic Corp. | Shock proof structure of battery pack for receiving battery cell |
US8573463B2 (en) | 2011-03-31 | 2013-11-05 | Covidien Lp | Locking articulation mechanism |
US9370362B2 (en) | 2011-04-07 | 2016-06-21 | Wake Forest University Health Sciences | Surgical staplers with tissue protection and related methods |
US10146423B1 (en) | 2011-04-07 | 2018-12-04 | Wells Fargo Bank, N.A. | System and method for generating a position based user interface |
JP5326049B2 (ja) | 2011-04-08 | 2013-10-30 | オリンパスメディカルシステムズ株式会社 | 内視鏡、装着ユニット及び挿入本体 |
DE102011007121A1 (de) | 2011-04-11 | 2012-10-11 | Karl Storz Gmbh & Co. Kg | Handhabungseinrichtung für ein mikroinvasiv-chirurgisches Instrument |
WO2012141679A1 (en) | 2011-04-11 | 2012-10-18 | Hassan Chandra | Surgical technique(s) and/or device(s) |
CA2774751C (en) | 2011-04-15 | 2018-11-06 | Covidien Ag | Battery powered hand-held ultrasonic surgical cautery cutting device |
US9131950B2 (en) | 2011-04-15 | 2015-09-15 | Endoplus, Inc. | Laparoscopic instrument |
US8540646B2 (en) | 2011-04-18 | 2013-09-24 | Jose Arturo Mendez-Coll | Biopsy and sutureless device |
JP5703497B2 (ja) | 2011-04-18 | 2015-04-22 | ▲華▼▲為▼▲終▼端有限公司 | 電池、電池アセンブリ、およびユーザ装置 |
US9021684B2 (en) | 2011-04-19 | 2015-05-05 | Tyco Electronics Corporation | Method of fabricating a slip ring component |
US9655615B2 (en) | 2011-04-19 | 2017-05-23 | Dextera Surgical Inc. | Active wedge and I-beam for surgical stapler |
CN102743201B (zh) | 2011-04-20 | 2014-03-12 | 苏州天臣国际医疗科技有限公司 | 直线型切割缝合器 |
WO2012143913A2 (en) | 2011-04-21 | 2012-10-26 | Novogate Medical Ltd | Tissue closure device and method of delivery and uses thereof |
JP5839828B2 (ja) | 2011-04-25 | 2016-01-06 | キヤノン株式会社 | 画像形成装置、画像形成装置の制御方法、及びプログラム |
US8631990B1 (en) | 2011-04-25 | 2014-01-21 | Cardica, Inc. | Staple trap for surgical stapler |
US10603044B2 (en) | 2011-04-27 | 2020-03-31 | Covidien Lp | Surgical instruments for use with diagnostic scanning devices |
US8789737B2 (en) | 2011-04-27 | 2014-07-29 | Covidien Lp | Circular stapler and staple line reinforcement material |
CN103797681B (zh) | 2011-04-28 | 2018-05-11 | 佐尔循环公司 | 跟踪并存档电池性能数据的系统和方法 |
CN103814499B (zh) | 2011-04-28 | 2018-07-10 | 佐尔循环公司 | 用于向设备供电的电池组以及智能电池组 |
CN103797682B (zh) | 2011-04-28 | 2017-08-25 | 佐尔循环公司 | 电池管理参数的病毒式分布 |
AU2012250138B2 (en) | 2011-04-29 | 2016-10-20 | Ethicon Endo-Surgery, Inc. | Staple cartridge loading assembly |
CA2834503C (en) | 2011-04-29 | 2019-06-11 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator for a surgical stapler |
AU2012201645B2 (en) | 2011-04-29 | 2015-04-16 | Covidien Lp | Surgical stapling apparatus |
CN102247182A (zh) | 2011-04-29 | 2011-11-23 | 常州市康迪医用吻合器有限公司 | 外科用电动吻合器 |
BR112013027794B1 (pt) | 2011-04-29 | 2020-12-15 | Ethicon Endo-Surgery, Inc | Conjunto de cartucho de grampos |
US9901412B2 (en) | 2011-04-29 | 2018-02-27 | Vanderbilt University | Dexterous surgical manipulator and method of use |
BR112013027776B1 (pt) | 2011-04-29 | 2021-03-09 | Ethicon Endo-Surgery, Inc. | cartucho de grampos |
CN102125450B (zh) | 2011-04-29 | 2012-07-25 | 常州市康迪医用吻合器有限公司 | 外科用切割吻合器 |
WO2012149393A2 (en) | 2011-04-29 | 2012-11-01 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for antigen-specific deletion of t effector cells |
CA2835081A1 (en) | 2011-05-03 | 2012-11-08 | Endosee Corporation | Method and apparatus for hysteroscopy and endometrial biopsy |
US9820741B2 (en) | 2011-05-12 | 2017-11-21 | Covidien Lp | Replaceable staple cartridge |
JP5816457B2 (ja) | 2011-05-12 | 2015-11-18 | オリンパス株式会社 | 術具装置 |
US20120289811A1 (en) | 2011-05-13 | 2012-11-15 | Tyco Healthcare Group Lp | Mask on monitor hernia locator |
FR2975534B1 (fr) | 2011-05-19 | 2013-06-28 | Electricite De France | Accumulateur metal-air avec dispositif de protection de l'electrode a air |
US8852185B2 (en) | 2011-05-19 | 2014-10-07 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8833629B2 (en) | 2011-05-19 | 2014-09-16 | Ethicon Endo-Surgery, Inc. | Reusable circular stapler handle with open assembly architecture |
JP5159918B2 (ja) | 2011-05-20 | 2013-03-13 | 浩平 窪田 | 医療用打ち込み式ステープル |
US20120296342A1 (en) | 2011-05-22 | 2012-11-22 | Kathleen Haglund Wendelschafer | Electric hand-held grooming tool |
US9161807B2 (en) | 2011-05-23 | 2015-10-20 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
EP2714152B1 (en) | 2011-05-25 | 2017-12-20 | Sanofi-Aventis Deutschland GmbH | Medicament delivery device with cap |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
US10542978B2 (en) | 2011-05-27 | 2020-01-28 | Covidien Lp | Method of internally potting or sealing a handheld medical device |
JP6309447B2 (ja) | 2011-05-31 | 2018-04-11 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | ロボットによる手術用器具のエンドエフェクタの積極的な制御 |
US8870912B2 (en) | 2011-05-31 | 2014-10-28 | Intuitive Surgical Operations, Inc. | Surgical instrument with single drive input for two end effector mechanisms |
US9358065B2 (en) | 2011-06-23 | 2016-06-07 | Covidien Lp | Shaped electrode bipolar resection apparatus, system and methods of use |
WO2012166815A1 (en) | 2011-05-31 | 2012-12-06 | Intuitive Surgical Operations, Inc | Surgical instrument with control for detected fault condition |
EP2713910B1 (en) | 2011-05-31 | 2022-06-22 | Intuitive Surgical Operations, Inc. | Grip force control in a robotic surgical instrument |
US9050089B2 (en) | 2011-05-31 | 2015-06-09 | Covidien Lp | Electrosurgical apparatus with tissue site sensing and feedback control |
US8523787B2 (en) | 2011-06-03 | 2013-09-03 | Biosense Webster (Israel), Ltd. | Detection of tenting |
CN102217963A (zh) | 2011-06-08 | 2011-10-19 | 刘忠臣 | 三明治钉书机式消化道吻合切割闭合器 |
US9289209B2 (en) | 2011-06-09 | 2016-03-22 | Covidien Lp | Surgical fastener applying apparatus |
WO2012171423A1 (zh) | 2011-06-14 | 2012-12-20 | 常州市康迪医用吻合器有限公司 | 肾状成形的外科吻合钉及其成形槽 |
US8715302B2 (en) | 2011-06-17 | 2014-05-06 | Estech, Inc. (Endoscopic Technologies, Inc.) | Left atrial appendage treatment systems and methods |
CN102835977A (zh) | 2011-06-21 | 2012-12-26 | 达华国际股份有限公司 | 微创医疗装置 |
US8963714B2 (en) | 2011-06-24 | 2015-02-24 | Abbvie Inc. | Tamper-evident packaging |
US9498231B2 (en) | 2011-06-27 | 2016-11-22 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
CN102243850B (zh) | 2011-06-27 | 2013-03-06 | 青岛海信电器股份有限公司 | 背光源驱动电路及其驱动方法、液晶电视机 |
US9381010B2 (en) | 2011-06-27 | 2016-07-05 | Covidien Lp | Surgical instrument with adapter for facilitating multi-direction end effector articulation |
US10219811B2 (en) | 2011-06-27 | 2019-03-05 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US8763876B2 (en) | 2011-06-30 | 2014-07-01 | Covidien Lp | Surgical instrument and cartridge for use therewith |
WO2013002063A1 (ja) | 2011-06-30 | 2013-01-03 | テルモ株式会社 | 医療用マニピュレータ |
US20130012983A1 (en) | 2011-07-08 | 2013-01-10 | Tyco Healthcare Group Lp | Surgical Instrument with Flexible Shaft |
WO2013009699A2 (en) | 2011-07-11 | 2013-01-17 | Agile Endosurgery, Inc. | Surgical tool |
US20140358163A1 (en) | 2011-07-11 | 2014-12-04 | EON Surgical Ltd. | Laparoscopic graspers |
EP2731517A2 (en) | 2011-07-11 | 2014-05-21 | Medical Vision Research & Development AB | Status control for electrically powered surgical tool systems |
WO2013009795A1 (en) | 2011-07-13 | 2013-01-17 | Cook Medical Technologies Llc | Foldable surgical retractor |
WO2013010107A2 (en) | 2011-07-13 | 2013-01-17 | Cook Medical Technologies Llc | Surgical retractor device |
US8960521B2 (en) | 2011-07-15 | 2015-02-24 | Covidien Lp | Loose staples removal system |
US9421682B2 (en) | 2011-07-18 | 2016-08-23 | Black & Decker Inc. | Multi-head power tool with reverse lock-out capability |
US8574263B2 (en) | 2011-07-20 | 2013-11-05 | Covidien Lp | Coaxial coil lock |
US8603135B2 (en) | 2011-07-20 | 2013-12-10 | Covidien Lp | Articulating surgical apparatus |
WO2013013006A1 (en) | 2011-07-20 | 2013-01-24 | International Paper Company | Substrate for wallboard joint tape and process for making same |
US20130023910A1 (en) | 2011-07-21 | 2013-01-24 | Solomon Clifford T | Tissue-identifying surgical instrument |
US9259265B2 (en) | 2011-07-22 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Surgical instruments for tensioning tissue |
US8560147B2 (en) | 2011-07-26 | 2013-10-15 | Gogoro, Inc. | Apparatus, method and article for physical security of power storage devices in vehicles |
US9182244B2 (en) | 2011-07-26 | 2015-11-10 | Gogoro Inc. | Apparatus, method and article for authentication, security and control of power storage devices, such as batteries |
US9339268B2 (en) | 2011-07-27 | 2016-05-17 | William Casey Fox | Bone staple, instrument and method of use and manufacturing |
US8998059B2 (en) | 2011-08-01 | 2015-04-07 | Ethicon Endo-Surgery, Inc. | Adjunct therapy device having driver with cavity for hemostatic agent |
WO2013018908A1 (ja) | 2011-08-04 | 2013-02-07 | オリンパス株式会社 | 医療用マニピュレータおよび手術支援装置 |
JP5841451B2 (ja) | 2011-08-04 | 2016-01-13 | オリンパス株式会社 | 手術器具およびその制御方法 |
US8931692B2 (en) | 2011-08-05 | 2015-01-13 | Murat Sancak | Multi-communication featured, touch-operated or keyboard cash register with contact and non-contact credit card reader |
US9724095B2 (en) | 2011-08-08 | 2017-08-08 | Covidien Lp | Surgical fastener applying apparatus |
US20130041292A1 (en) | 2011-08-09 | 2013-02-14 | Tyco Healthcare Group Lp | Customizable Haptic Assisted Robot Procedure System with Catalog of Specialized Diagnostic Tips |
US9492170B2 (en) | 2011-08-10 | 2016-11-15 | Ethicon Endo-Surgery, Inc. | Device for applying adjunct in endoscopic procedure |
KR20130017624A (ko) | 2011-08-11 | 2013-02-20 | 주식회사 모바수 | 관절 구조를 고정시키기 위한 장치 |
WO2013027202A2 (en) | 2011-08-21 | 2013-02-28 | M.S.T. Medical Surgery Technologies Ltd. | Device and method for asissting laparoscopic surgery - rule based approach |
JP5859650B2 (ja) | 2011-08-25 | 2016-02-10 | アンドコントロルEndocontrol | 係合解除可能なハンドル付きの手術器具 |
USD661314S1 (en) | 2011-08-31 | 2012-06-05 | Nike, Inc. | Display screen with color icon |
US9004799B1 (en) | 2011-08-31 | 2015-04-14 | Skylar Tibbits | Transformable linked self-assembly system |
US8956342B1 (en) | 2011-09-01 | 2015-02-17 | Microaire Surgical Instruments Llc | Method and device for ergonomically and ambidextrously operable surgical device |
EP2750620B1 (en) | 2011-09-02 | 2017-04-26 | Stryker Corporation | Surgical instrument including a cutting accessory extending from a housing and actuators that establish the position of the cutting accessory relative to the housing |
USD661315S1 (en) | 2011-09-02 | 2012-06-05 | Nike, Inc. | Display screen with color icon |
US9198661B2 (en) | 2011-09-06 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Stapling instrument comprising a plurality of staple cartridges stored therein |
CN103458807B (zh) | 2011-09-08 | 2016-05-18 | 奥林巴斯株式会社 | 多自由度钳子 |
US9099863B2 (en) | 2011-09-09 | 2015-08-04 | Covidien Lp | Surgical generator and related method for mitigating overcurrent conditions |
USD677273S1 (en) | 2011-09-12 | 2013-03-05 | Microsoft Corporation | Display screen with icon |
USD667450S1 (en) | 2011-09-12 | 2012-09-18 | Microsoft Corporation | Display screen with icon |
US8679098B2 (en) | 2011-09-13 | 2014-03-25 | Covidien Lp | Rotation knobs for surgical instruments |
CN104010773B (zh) | 2011-09-13 | 2017-01-18 | 美的洛博迪克斯公司 | 具有抗扭曲链节配置的高度铰接的探针,形成该探针的方法和进行执行医学手术的方法 |
US8998060B2 (en) | 2011-09-13 | 2015-04-07 | Ethicon Endo-Surgery, Inc. | Resistive heated surgical staple cartridge with phase change sealant |
US9101359B2 (en) | 2011-09-13 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Surgical staple cartridge with self-dispensing staple buttress |
US11363951B2 (en) | 2011-09-13 | 2022-06-21 | Glaukos Corporation | Intraocular physiological sensor |
US9999408B2 (en) | 2011-09-14 | 2018-06-19 | Ethicon Endo-Surgery, Inc. | Surgical instrument with fluid fillable buttress |
DE102011113127B4 (de) | 2011-09-14 | 2015-05-13 | Olaf Storz | Medizinisches Handgerät und Leistungseinheit |
DE102011113126B4 (de) | 2011-09-14 | 2015-05-13 | Olaf Storz | Leistungseinheit und medizinisches Handgerät |
US8814025B2 (en) | 2011-09-15 | 2014-08-26 | Ethicon Endo-Surgery, Inc. | Fibrin pad matrix with suspended heat activated beads of adhesive |
US20130068816A1 (en) | 2011-09-15 | 2013-03-21 | Venkataramanan Mandakolathur Vasudevan | Surgical instrument and buttress material |
US20130069088A1 (en) | 2011-09-20 | 2013-03-21 | The Regents Of The University Of California | Light emitting diode with conformal surface electrical contacts with glass encapsulation |
WO2013042118A1 (en) | 2011-09-20 | 2013-03-28 | A.A. Cash Technology Ltd | Methods and devices for occluding blood flow to an organ |
US20130075447A1 (en) | 2011-09-22 | 2013-03-28 | II William B. Weisenburgh | Adjunct therapy device for applying hemostatic agent |
US9198644B2 (en) | 2011-09-22 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Anvil cartridge for surgical fastening device |
US9393018B2 (en) | 2011-09-22 | 2016-07-19 | Ethicon Endo-Surgery, Inc. | Surgical staple assembly with hemostatic feature |
US8911448B2 (en) | 2011-09-23 | 2014-12-16 | Orthosensor, Inc | Device and method for enabling an orthopedic tool for parameter measurement |
US8985429B2 (en) | 2011-09-23 | 2015-03-24 | Ethicon Endo-Surgery, Inc. | Surgical stapling device with adjunct material application feature |
USD680646S1 (en) | 2011-09-23 | 2013-04-23 | Ethicon Endo-Surgery, Inc. | Circular stapler |
US9050084B2 (en) | 2011-09-23 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Staple cartridge including collapsible deck arrangement |
WO2013049709A1 (en) | 2011-09-30 | 2013-04-04 | Life Technologies Corporation | Optical systems and methods for biological analysis |
CN103874465A (zh) | 2011-09-30 | 2014-06-18 | 柯惠Lp公司 | 具有可溶胀抓紧部件的可植入装置 |
CN104025126B (zh) | 2011-09-30 | 2017-08-18 | 日立化成株式会社 | Rfid标签 |
US8899464B2 (en) | 2011-10-03 | 2014-12-02 | Ethicon Endo-Surgery, Inc. | Attachment of surgical staple buttress to cartridge |
US9089326B2 (en) | 2011-10-07 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Dual staple cartridge for surgical stapler |
US9629652B2 (en) | 2011-10-10 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Surgical instrument with clutching slip ring assembly to power ultrasonic transducer |
USD733727S1 (en) | 2011-10-11 | 2015-07-07 | Proteus Digital Health, Inc. | Display screen portion having a graphical user interface for patient monitoring |
US8585721B2 (en) | 2011-10-12 | 2013-11-19 | Covidien Lp | Mesh fixation system |
US9153994B2 (en) | 2011-10-14 | 2015-10-06 | Welch Allyn, Inc. | Motion sensitive and capacitor powered handheld device |
DE102011084499A1 (de) | 2011-10-14 | 2013-04-18 | Robert Bosch Gmbh | Werkzeugvorsatz |
US8931679B2 (en) | 2011-10-17 | 2015-01-13 | Covidien Lp | Surgical stapling apparatus |
US8708212B2 (en) | 2011-10-18 | 2014-04-29 | Covidien Lp | Tilt top anvil with torsion spring |
US20130096568A1 (en) | 2011-10-18 | 2013-04-18 | Warsaw Orthopedic, Inc. | Modular tool apparatus and method |
US9060794B2 (en) | 2011-10-18 | 2015-06-23 | Mako Surgical Corp. | System and method for robotic surgery |
EP2768418B1 (en) | 2011-10-19 | 2017-07-19 | Ethicon Endo-Surgery, Inc. | Clip applier adapted for use with a surgical robot |
US8968308B2 (en) | 2011-10-20 | 2015-03-03 | Covidien Lp | Multi-circuit seal plates |
US9333025B2 (en) | 2011-10-24 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Battery initialization clip |
US9161855B2 (en) | 2011-10-24 | 2015-10-20 | Ethicon, Inc. | Tissue supporting device and method |
US9480492B2 (en) | 2011-10-25 | 2016-11-01 | Covidien Lp | Apparatus for endoscopic procedures |
US9016539B2 (en) | 2011-10-25 | 2015-04-28 | Covidien Lp | Multi-use loading unit |
US11207089B2 (en) | 2011-10-25 | 2021-12-28 | Covidien Lp | Apparatus for endoscopic procedures |
US8657177B2 (en) | 2011-10-25 | 2014-02-25 | Covidien Lp | Surgical apparatus and method for endoscopic surgery |
US9492146B2 (en) | 2011-10-25 | 2016-11-15 | Covidien Lp | Apparatus for endoscopic procedures |
US8899462B2 (en) | 2011-10-25 | 2014-12-02 | Covidien Lp | Apparatus for endoscopic procedures |
US8672206B2 (en) | 2011-10-25 | 2014-03-18 | Covidien Lp | Apparatus for endoscopic procedures |
US20130098970A1 (en) | 2011-10-25 | 2013-04-25 | David Racenet | Surgical Apparatus and Method for Endoluminal Surgery |
US9675351B2 (en) | 2011-10-26 | 2017-06-13 | Covidien Lp | Buttress release from surgical stapler by knife pushing |
EP3513746B1 (en) | 2011-10-26 | 2023-01-11 | Intuitive Surgical Operations, Inc. | Surgical instrument with integral knife blade |
WO2013063522A2 (en) | 2011-10-26 | 2013-05-02 | Reid Robert Cyrus | Surgical instrument motor pack latch |
US8418908B1 (en) | 2011-10-26 | 2013-04-16 | Covidien Lp | Staple feeding and forming apparatus |
EP3488793B1 (en) | 2011-10-26 | 2023-08-23 | Intuitive Surgical Operations, Inc. | Cartridge status and presence detection |
US9364231B2 (en) | 2011-10-27 | 2016-06-14 | Covidien Lp | System and method of using simulation reload to optimize staple formation |
JP2013099120A (ja) | 2011-10-31 | 2013-05-20 | Sanyo Electric Co Ltd | 充電器、電池パック装着ユニット、及び電池パックユニット |
JP5855423B2 (ja) | 2011-11-01 | 2016-02-09 | オリンパス株式会社 | 手術支援装置 |
US9393354B2 (en) | 2011-11-01 | 2016-07-19 | J&M Shuler Medical, Inc. | Mechanical wound therapy for sub-atmospheric wound care system |
US8584920B2 (en) | 2011-11-04 | 2013-11-19 | Covidien Lp | Surgical stapling apparatus including releasable buttress |
WO2013063674A1 (en) | 2011-11-04 | 2013-05-10 | Titan Medical Inc. | Apparatus and method for controlling an end-effector assembly |
CN202313537U (zh) | 2011-11-07 | 2012-07-11 | 苏州天臣国际医疗科技有限公司 | 直线型缝切器的钉仓组件 |
CN103083053A (zh) | 2011-11-07 | 2013-05-08 | 苏州天臣国际医疗科技有限公司 | 缝合器、缝切器的钉头组件 |
US20130123816A1 (en) | 2011-11-10 | 2013-05-16 | Gerald Hodgkinson | Hydrophilic medical devices |
US9486213B2 (en) | 2011-11-14 | 2016-11-08 | Thd Lap Ltd. | Drive mechanism for articulating tacker |
US8992042B2 (en) | 2011-11-14 | 2015-03-31 | Halma Holdings, Inc. | Illumination devices using natural light LEDs |
CN103945783B (zh) | 2011-11-15 | 2016-10-26 | 直观外科手术操作公司 | 具有收起的刀片的手术器械 |
WO2013074694A1 (en) | 2011-11-15 | 2013-05-23 | Oneeros, Inc. | Pulse oximetry system |
US8968312B2 (en) | 2011-11-16 | 2015-03-03 | Covidien Lp | Surgical device with powered articulation wrist rotation |
EP2781195B1 (en) | 2011-11-16 | 2016-10-26 | Olympus Corporation | Medical instrument |
DE102011086826A1 (de) | 2011-11-22 | 2013-05-23 | Robert Bosch Gmbh | System mit einem Handwerkzeugakku und zumindest einer Handwerkzeugakkuladevorrichtung |
US9283334B2 (en) | 2011-11-23 | 2016-03-15 | Northgate Technologies Inc. | System for identifying the presence and correctness of a medical device accessory |
JP5591213B2 (ja) | 2011-11-25 | 2014-09-17 | 三菱電機株式会社 | インバータ装置、およびそれを備えた空気調和機 |
US9504528B2 (en) | 2012-03-13 | 2016-11-29 | Eca Medical Instruments | Bidirectional ramped disposable torque limiting device |
EP2785497B1 (en) | 2011-12-02 | 2022-10-26 | Boston Scientific Scimed, Inc. | Positioning device and articulation assembly for remote positioning of a tool |
US9486186B2 (en) | 2011-12-05 | 2016-11-08 | Devicor Medical Products, Inc. | Biopsy device with slide-in probe |
US9259268B2 (en) | 2011-12-06 | 2016-02-16 | Covidien Lp | Vessel sealing using microwave energy |
US9125651B2 (en) | 2011-12-07 | 2015-09-08 | Ethicon Endo-Surgery, Inc. | Reusable linear stapler cartridge device for tissue thickness measurement |
WO2013087092A1 (en) | 2011-12-13 | 2013-06-20 | Ethicon Endo-Surgery, Inc. | An applier and a method for anchoring a lining to a hollow organ |
US8967448B2 (en) | 2011-12-14 | 2015-03-03 | Covidien Lp | Surgical stapling apparatus including buttress attachment via tabs |
US9113885B2 (en) | 2011-12-14 | 2015-08-25 | Covidien Lp | Buttress assembly for use with surgical stapling device |
US9351731B2 (en) | 2011-12-14 | 2016-05-31 | Covidien Lp | Surgical stapling apparatus including releasable surgical buttress |
US9237892B2 (en) | 2011-12-14 | 2016-01-19 | Covidien Lp | Buttress attachment to the cartridge surface |
US9351732B2 (en) | 2011-12-14 | 2016-05-31 | Covidien Lp | Buttress attachment to degradable polymer zones |
US9010608B2 (en) | 2011-12-14 | 2015-04-21 | Covidien Lp | Releasable buttress retention on a surgical stapler |
US9113879B2 (en) | 2011-12-15 | 2015-08-25 | Ethicon Endo-Surgery, Inc. | Devices and methods for endoluminal plication |
US9113867B2 (en) | 2011-12-15 | 2015-08-25 | Ethicon Endo-Surgery, Inc. | Devices and methods for endoluminal plication |
USD681674S1 (en) | 2011-12-16 | 2013-05-07 | Microsoft Corporation | Display screen with icon |
US9603599B2 (en) | 2011-12-16 | 2017-03-28 | Ethicon Endo-Surgery, Llc | Feature to reengage safety switch of tissue stapler |
US9364239B2 (en) | 2011-12-19 | 2016-06-14 | Covidien Lp | Jaw closure mechanism for a surgical clip applier |
CN103169493A (zh) | 2011-12-20 | 2013-06-26 | 通用电气公司 | 超声探针引导装置、方法及超声系统 |
CN202568350U (zh) | 2011-12-21 | 2012-12-05 | 常州市康迪医用吻合器有限公司 | 外科线形切割吻合器的夹紧厚度调节机构 |
CN202426586U (zh) | 2011-12-22 | 2012-09-12 | 苏州天臣国际医疗科技有限公司 | 外科缝切器的钉仓 |
US8920368B2 (en) | 2011-12-22 | 2014-12-30 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multi-user touch-based control of a remote catheter guidance system (RCGS) |
USD701238S1 (en) | 2011-12-23 | 2014-03-18 | Citrix Systems, Inc. | Display screen with animated graphical user interface |
CA2796525A1 (en) | 2011-12-23 | 2013-06-23 | Covidien Lp | Apparatus for endoscopic procedures |
JP5361983B2 (ja) | 2011-12-27 | 2013-12-04 | 株式会社東芝 | 情報処理装置及び制御方法 |
US9220502B2 (en) | 2011-12-28 | 2015-12-29 | Covidien Lp | Staple formation recognition for a surgical device |
US9402555B2 (en) | 2011-12-29 | 2016-08-02 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Drive assembly for use in a robotic control and guidance system |
CN202397539U (zh) | 2011-12-29 | 2012-08-29 | 瑞奇外科器械(中国)有限公司 | 手术缝合器械及其缝钉驱动器 |
WO2013101485A1 (en) | 2011-12-29 | 2013-07-04 | Boston Scientific Scimed, Inc. | Device and methods for renal nerve modulation monitoring |
CN202489990U (zh) | 2011-12-30 | 2012-10-17 | 苏州天臣国际医疗科技有限公司 | 一种外科用直线缝切器 |
US9186148B2 (en) | 2012-01-05 | 2015-11-17 | Ethicon Endo-Surgery, Inc. | Tissue stapler anvil feature to prevent premature jaw opening |
US20130175315A1 (en) | 2012-01-11 | 2013-07-11 | Covidien Lp | Method and device for performing a surgical anastomosis |
US9168042B2 (en) | 2012-01-12 | 2015-10-27 | Covidien Lp | Circular stapling instruments |
US9636091B2 (en) | 2012-01-13 | 2017-05-02 | Covidien Lp | Hand-held electromechanical surgical system |
USD736792S1 (en) | 2012-01-13 | 2015-08-18 | Htc Corporation | Display screen with graphical user interface |
US8894647B2 (en) | 2012-01-13 | 2014-11-25 | Covidien Lp | System and method for performing surgical procedures with a reusable instrument module |
AU2013210064A1 (en) | 2012-01-18 | 2014-07-03 | Covidien Lp | Surgical fastener applying apparatus |
US8864010B2 (en) | 2012-01-20 | 2014-10-21 | Covidien Lp | Curved guide member for articulating instruments |
US20130211244A1 (en) | 2012-01-25 | 2013-08-15 | Surgix Ltd. | Methods, Devices, Systems, Circuits and Associated Computer Executable Code for Detecting and Predicting the Position, Orientation and Trajectory of Surgical Tools |
US9326812B2 (en) | 2012-01-25 | 2016-05-03 | Covidien Lp | Portable surgical instrument |
US9098153B2 (en) | 2012-02-01 | 2015-08-04 | Qualcomm Technologies, Inc. | Touch panel excitation using a drive signal having time-varying characteristics |
WO2013116869A1 (en) | 2012-02-02 | 2013-08-08 | Transenterix, Inc. | Mechanized multi-instrument surgical system |
US9265510B2 (en) | 2012-02-06 | 2016-02-23 | Zimmer, Inc. | Cone lock quick connect mechanism |
JP6165780B2 (ja) | 2012-02-10 | 2017-07-19 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | ロボット制御式の手術器具 |
US9931116B2 (en) | 2012-02-10 | 2018-04-03 | Covidien Lp | Buttress composition |
US9044230B2 (en) | 2012-02-13 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
JP5620932B2 (ja) | 2012-02-14 | 2014-11-05 | 富士フイルム株式会社 | 内視鏡システム、内視鏡システムのプロセッサ装置、及び内視鏡システムの作動方法 |
USD686244S1 (en) | 2012-02-23 | 2013-07-16 | JVC Kenwood Corporation | Display screen with an animated dial for a wireless communication device |
US8820606B2 (en) | 2012-02-24 | 2014-09-02 | Covidien Lp | Buttress retention system for linear endostaplers |
USD725674S1 (en) | 2012-02-24 | 2015-03-31 | Samsung Electronics Co., Ltd. | Display screen or portion thereof with transitional graphical user interface |
US20130231661A1 (en) | 2012-03-01 | 2013-09-05 | Hasan M. Sh. Sh. Alshemari | Electrosurgical midline clamping scissors |
KR101965892B1 (ko) | 2012-03-05 | 2019-04-08 | 삼성디스플레이 주식회사 | 전원 생성부 및 이를 이용한 유기전계발광 표시장치 |
ES2422332B1 (es) | 2012-03-05 | 2014-07-01 | Iv�n Jes�s ARTEAGA GONZ�LEZ | Dispositivo quirúrgico |
US8752264B2 (en) | 2012-03-06 | 2014-06-17 | Covidien Lp | Surgical tissue sealer |
US20150066000A1 (en) | 2012-03-06 | 2015-03-05 | Briteseed Llc | Surgical Tool With Integrated Sensor |
CA2867140C (en) | 2012-03-13 | 2021-02-09 | Medtronic Xomed, Inc. | Surgical system including powered rotary-type handpiece |
JP2013188812A (ja) | 2012-03-13 | 2013-09-26 | Hitachi Koki Co Ltd | インパクト工具 |
US9113881B2 (en) | 2012-03-16 | 2015-08-25 | Covidien Lp | Travel clip for surgical staple cartridge |
DK2827914T3 (da) | 2012-03-22 | 2019-07-15 | Trb Chemedica Int S A | Fremgangsmåde til heling af ledbånd eller sene |
US9364249B2 (en) | 2012-03-22 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Method and apparatus for programming modular surgical instrument |
US20130253480A1 (en) | 2012-03-22 | 2013-09-26 | Cory G. Kimball | Surgical instrument usage data management |
US8855822B2 (en) | 2012-03-23 | 2014-10-07 | Innovative Surgical Solutions, Llc | Robotic surgical system with mechanomyography feedback |
US9078653B2 (en) | 2012-03-26 | 2015-07-14 | Ethicon Endo-Surgery, Inc. | Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge |
KR101400981B1 (ko) | 2012-03-27 | 2014-05-30 | 주식회사 루트로닉 | 고주파 수술용 전극, 고주파 수술장치 및 이의 제어방법 |
BR112014024152B1 (pt) | 2012-03-28 | 2021-09-21 | Ethicon Endo-Surgery, Inc | Conjunto de cartucho de prendedores e conjunto de atuador de extremidade para um instrumento cirúrgico |
US20130256373A1 (en) | 2012-03-28 | 2013-10-03 | Ethicon Endo-Surgery, Inc. | Devices and methods for attaching tissue thickness compensating materials to surgical stapling instruments |
JP6193350B2 (ja) | 2012-03-28 | 2017-09-06 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | 拡張可能な組織厚コンペンセーター |
RU2014143258A (ru) | 2012-03-28 | 2016-05-20 | Этикон Эндо-Серджери, Инк. | Компенсатор толщины ткани, содержащий множество слоев |
BR112014024194B1 (pt) | 2012-03-28 | 2022-03-03 | Ethicon Endo-Surgery, Inc | Conjunto de cartucho de grampos para um grampeador cirúrgico |
US9198662B2 (en) | 2012-03-28 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator having improved visibility |
CN104321023B (zh) | 2012-03-28 | 2017-03-01 | 伊西康内外科公司 | 包括至少一种药物的组织厚度补偿件 |
CN104334098B (zh) | 2012-03-28 | 2017-03-22 | 伊西康内外科公司 | 包括限定低压强环境的胶囊剂的组织厚度补偿件 |
MX2014011670A (es) | 2012-03-28 | 2015-02-13 | Ethicon Endo Surgery Inc | Compensador de grosor de tejido que comprende una expansión y liberación controladas. |
RU2638273C2 (ru) | 2012-03-28 | 2017-12-12 | Этикон Эндо-Серджери, Инк. | Компенсатор толщины ткани, состоящий из множества материалов |
BR112014024258B1 (pt) | 2012-03-28 | 2021-10-26 | Ethicon Endo-Surgery, Inc | Compensador de espessura de tecido |
AU344228S (en) | 2012-03-29 | 2012-09-05 | Samsung Electronics Co Ltd | Display screen with icon for an electronic device |
JP2015513978A (ja) | 2012-04-04 | 2015-05-18 | カーディカ インコーポレイテッド | 屈曲自在な先端部を有する外科用ステープルカートリッジ |
US9526563B2 (en) | 2012-04-06 | 2016-12-27 | Covidien Lp | Spindle assembly with mechanical fuse for surgical instruments |
US9237921B2 (en) | 2012-04-09 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US9724118B2 (en) | 2012-04-09 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Techniques for cutting and coagulating tissue for ultrasonic surgical instruments |
US9241731B2 (en) | 2012-04-09 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Rotatable electrical connection for ultrasonic surgical instruments |
US9144456B2 (en) | 2012-04-09 | 2015-09-29 | Intuitive Surgical Operations, Inc. | Surgical instrument control |
CA2809613C (en) | 2012-04-09 | 2019-11-12 | Covidien Lp | Surgical fastener applying apparatus |
EP2837172A4 (en) | 2012-04-09 | 2015-12-30 | Intel Corp | PARALLEL PROCESSING OF IMAGE DATA HAVING DEPENDENT PIXELS OF THE UPPER LEFT CORNER |
WO2013155052A1 (en) | 2012-04-09 | 2013-10-17 | Facet Technologies, Llc | Push-to-charge lancing device |
US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
US9044238B2 (en) | 2012-04-10 | 2015-06-02 | Covidien Lp | Electrosurgical monopolar apparatus with arc energy vascular coagulation control |
US9113887B2 (en) | 2012-04-10 | 2015-08-25 | Covidien Lp | Electrosurgical generator |
AU2013201994B2 (en) | 2012-04-11 | 2017-09-07 | Covidien Lp | Apparatus for endoscopic procedures |
JP5883343B2 (ja) | 2012-04-12 | 2016-03-15 | 株式会社スズキプレシオン | 医療用マニピュレータ |
US9788851B2 (en) | 2012-04-18 | 2017-10-17 | Ethicon Llc | Surgical instrument with tissue density sensing |
EP2838439A4 (en) | 2012-04-18 | 2015-11-25 | Cardica Inc | SAFETY LOCK FOR A SURGICAL CLIP DEVICE |
AU2012377127B2 (en) | 2012-04-19 | 2015-08-20 | Waldemar Link Gmbh & Co. Kg | Disassemblable surgical forceps |
US9539726B2 (en) | 2012-04-20 | 2017-01-10 | Vanderbilt University | Systems and methods for safe compliant insertion and hybrid force/motion telemanipulation of continuum robots |
US9507399B2 (en) | 2012-04-24 | 2016-11-29 | Analog Devices, Inc. | Accelerometer-controlled master power switch for electronic devices |
US8818523B2 (en) | 2012-04-25 | 2014-08-26 | Medtronic, Inc. | Recharge of an implantable device in the presence of other conductive objects |
US20130284792A1 (en) | 2012-04-26 | 2013-10-31 | Covidien Lp | Surgical Stapling Device Including A Camera |
US9331721B2 (en) | 2012-04-30 | 2016-05-03 | The Trustees Of Columbia University In The City Of New York | Systems, devices, and methods for continuous time signal processing |
KR101800189B1 (ko) | 2012-04-30 | 2017-11-23 | 삼성전자주식회사 | 수술 로봇의 힘 제어 장치 및 방법 |
US9668807B2 (en) | 2012-05-01 | 2017-06-06 | Covidien Lp | Simplified spring load mechanism for delivering shaft force of a surgical instrument |
US9204920B2 (en) | 2012-05-02 | 2015-12-08 | Covidien Lp | External reader for device management |
EP2846710B1 (en) | 2012-05-09 | 2016-07-13 | Boston Scientific Scimed, Inc. | Bushing arm deformation mechanism |
DE102012207707A1 (de) | 2012-05-09 | 2013-11-28 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Minimalinvasives Instrument für die robotische Chirurgie |
WO2013169374A1 (en) | 2012-05-10 | 2013-11-14 | The Trustees Of The Stevens Institute Of Technology | Biphasic osteochondral scaffold for reconstruction of articular cartilage |
US9364228B2 (en) | 2012-05-11 | 2016-06-14 | Ethicon, Llc | Applicator instruments having distal end caps for facilitating the accurate placement of surgical fasteners during open repair procedures |
US10575716B2 (en) | 2012-05-11 | 2020-03-03 | Ethicon Llc | Applicator instruments with imaging systems for dispensing surgical fasteners during open repair procedures |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
WO2013177228A1 (en) | 2012-05-22 | 2013-11-28 | Loma Linda University | Generation of integration/transgene-free stem cells |
JP6224089B2 (ja) | 2012-05-23 | 2017-11-01 | ストライカー・コーポレイション | 器具ユニットと、該器具ユニットへの通電及び制御を行う別個のバッテリ及び制御モジュールとを有する外科用電動器具アセンブリ |
US8973805B2 (en) | 2012-05-25 | 2015-03-10 | Covidien Lp | Surgical fastener applying apparatus including a knife guard |
US9681884B2 (en) | 2012-05-31 | 2017-06-20 | Ethicon Endo-Surgery, Llc | Surgical instrument with stress sensor |
US9572592B2 (en) | 2012-05-31 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Surgical instrument with orientation sensing |
AU2013203675B2 (en) | 2012-05-31 | 2014-11-27 | Covidien Lp | Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use |
US9597104B2 (en) | 2012-06-01 | 2017-03-21 | Covidien Lp | Handheld surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use |
US9868198B2 (en) | 2012-06-01 | 2018-01-16 | Covidien Lp | Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use |
CA2789488C (en) | 2012-06-07 | 2014-01-28 | Jae E. Dauvin | Flexible transmission device for tool extensions and the like |
US20130327552A1 (en) | 2012-06-08 | 2013-12-12 | Black & Decker Inc. | Power tool having multiple operating modes |
US10039440B2 (en) | 2012-06-11 | 2018-08-07 | Intuitive Surgical Operations, Inc. | Systems and methods for cleaning a minimally invasive instrument |
US20130334280A1 (en) | 2012-06-14 | 2013-12-19 | Covidien Lp | Sliding Anvil/Retracting Cartridge Reload |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
US9364220B2 (en) | 2012-06-19 | 2016-06-14 | Covidien Lp | Apparatus for endoscopic procedures |
US11589771B2 (en) | 2012-06-21 | 2023-02-28 | Globus Medical Inc. | Method for recording probe movement and determining an extent of matter removed |
USD692916S1 (en) | 2012-06-22 | 2013-11-05 | Mako Surgical Corp. | Display device or portion thereof with graphical user interface |
US20140107697A1 (en) | 2012-06-25 | 2014-04-17 | Castle Surgical, Inc. | Clamping Forceps and Associated Methods |
US9641122B2 (en) | 2012-06-26 | 2017-05-02 | Johnson Controls Technology Company | HVAC actuator with automatic end stop recalibration |
US9119657B2 (en) | 2012-06-28 | 2015-09-01 | Ethicon Endo-Surgery, Inc. | Rotary actuatable closure arrangement for surgical end effector |
US8747238B2 (en) | 2012-06-28 | 2014-06-10 | Ethicon Endo-Surgery, Inc. | Rotary drive shaft assemblies for surgical instruments with articulatable end effectors |
US9226751B2 (en) | 2012-06-28 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Surgical instrument system including replaceable end effectors |
US9125662B2 (en) | 2012-06-28 | 2015-09-08 | Ethicon Endo-Surgery, Inc. | Multi-axis articulating and rotating surgical tools |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
BR112014032776B1 (pt) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | Sistema de instrumento cirúrgico e kit cirúrgico para uso com um sistema de instrumento cirúrgico |
US11197671B2 (en) | 2012-06-28 | 2021-12-14 | Cilag Gmbh International | Stapling assembly comprising a lockout |
US20140005640A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical end effector jaw and electrode configurations |
US9561038B2 (en) | 2012-06-28 | 2017-02-07 | Ethicon Endo-Surgery, Llc | Interchangeable clip applier |
US9204879B2 (en) | 2012-06-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Flexible drive member |
CN104427927B (zh) | 2012-06-28 | 2018-04-13 | 皇家飞利浦有限公司 | 用于血管可视化和监测的由光纤传感器引导的导航 |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
RU2636861C2 (ru) | 2012-06-28 | 2017-11-28 | Этикон Эндо-Серджери, Инк. | Блокировка пустой кассеты с клипсами |
US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
US9101385B2 (en) | 2012-06-28 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Electrode connections for rotary driven surgical tools |
US9028494B2 (en) | 2012-06-28 | 2015-05-12 | Ethicon Endo-Surgery, Inc. | Interchangeable end effector coupling arrangement |
US9072536B2 (en) | 2012-06-28 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Differential locking arrangements for rotary powered surgical instruments |
US9820768B2 (en) | 2012-06-29 | 2017-11-21 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
US9326788B2 (en) | 2012-06-29 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Lockout mechanism for use with robotic electrosurgical device |
US20140005702A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with distally positioned transducers |
US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
ES2915681T3 (es) | 2012-06-29 | 2022-06-24 | Gyrus Acmi Inc | Mecanismo de retención de cuchilla para instrumento quirúrgico |
US9039691B2 (en) | 2012-06-29 | 2015-05-26 | Covidien Lp | Surgical forceps |
CN103505240B (zh) | 2012-06-29 | 2018-05-22 | 通用电气公司 | 超声成像设备和用于自动调整用户界面布局的装置及方法 |
US9220570B2 (en) | 2012-06-29 | 2015-12-29 | Children's National Medical Center | Automated surgical and interventional procedures |
US9283045B2 (en) | 2012-06-29 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Surgical instruments with fluid management system |
US10881339B2 (en) | 2012-06-29 | 2021-01-05 | Dexcom, Inc. | Use of sensor redundancy to detect sensor failures |
JP2014011047A (ja) | 2012-06-29 | 2014-01-20 | Canon Components Inc | シールドケーブル、その製造方法および無線通信モジュール |
EP2819593B1 (en) | 2012-07-02 | 2017-12-13 | Boston Scientific Scimed, Inc. | Stapler for forming multiple tissue plications |
EP2869779B1 (de) | 2012-07-03 | 2019-02-27 | KUKA Deutschland GmbH | Chirurgische instrumentenanordnung |
US9973021B2 (en) | 2012-07-06 | 2018-05-15 | Energous Corporation | Receivers for wireless power transmission |
DE102012211886A1 (de) | 2012-07-06 | 2014-01-09 | Technische Universität Berlin | Medizinisches Instrument und Verfahren zum Verschwenken eines solchen medizinischen Instruments |
US9839480B2 (en) | 2012-07-09 | 2017-12-12 | Covidien Lp | Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors |
US9955965B2 (en) | 2012-07-09 | 2018-05-01 | Covidien Lp | Switch block control assembly of a medical device |
US10492814B2 (en) | 2012-07-09 | 2019-12-03 | Covidien Lp | Apparatus for endoscopic procedures |
US10624630B2 (en) | 2012-07-10 | 2020-04-21 | Edwards Lifesciences Ag | Multiple-firing securing device and methods for using and manufacturing same |
US9408605B1 (en) | 2012-07-12 | 2016-08-09 | Cardica, Inc. | Single-trigger clamping and firing of surgical stapler |
EP2872981A4 (en) | 2012-07-13 | 2016-10-19 | Samsung Electronics Co Ltd | METHOD FOR SENDING AND RECEIVING DATA BETWEEN A MEMO LAYER AND APPLICATION AND ELECTRONIC DEVICE THEREFOR |
US9675819B2 (en) | 2012-07-16 | 2017-06-13 | Mirabilis Medica, Inc. | Human interface and device for ultrasound guided treatment |
US8939975B2 (en) | 2012-07-17 | 2015-01-27 | Covidien Lp | Gap control via overmold teeth and hard stops |
AU2013206807A1 (en) | 2012-07-18 | 2014-02-06 | Covidien Lp | Apparatus for endoscopic procedures |
US10194907B2 (en) | 2012-07-18 | 2019-02-05 | Covidien Lp | Multi-fire stapler with electronic counter, lockout, and visual indicator |
US9554796B2 (en) | 2012-07-18 | 2017-01-31 | Covidien Lp | Multi-fire surgical stapling apparatus including safety lockout and visual indicator |
US9572576B2 (en) | 2012-07-18 | 2017-02-21 | Covidien Lp | Surgical apparatus including surgical buttress |
US20140022283A1 (en) | 2012-07-20 | 2014-01-23 | University Health Network | Augmented reality apparatus |
US9402604B2 (en) | 2012-07-20 | 2016-08-02 | Covidien Lp | Apparatus for endoscopic procedures |
WO2014016337A1 (de) | 2012-07-24 | 2014-01-30 | Richard Wolf Gmbh | Schaft für medizinisches instrument mit beweglichen abschnitte |
US10058317B2 (en) | 2012-07-26 | 2018-08-28 | Smith & Nephew, Inc. | Knotless anchor for instability repair |
US9161769B2 (en) | 2012-07-30 | 2015-10-20 | Covidien Lp | Endoscopic instrument |
US9629632B2 (en) | 2012-07-30 | 2017-04-25 | Conextions, Inc. | Soft tissue repair devices, systems, and methods |
DE102012213322A1 (de) | 2012-07-30 | 2014-01-30 | Siemens Aktiengesellschaft | Medizingerät und Sterilabdeckung für ein entsprechendes Medizingerät |
US9572552B1 (en) | 2012-08-09 | 2017-02-21 | Integrated Medical Systems International, Inc. | Battery pack for power surgical hand piece with heat dissipating means |
US9468447B2 (en) | 2012-08-14 | 2016-10-18 | Insurgical, LLC | Limited-use tool system and method of reprocessing |
KR101359053B1 (ko) | 2012-08-14 | 2014-02-06 | 정창욱 | 관절 구조를 고정시키기 위한 장치 |
US9277957B2 (en) | 2012-08-15 | 2016-03-08 | Ethicon Endo-Surgery, Inc. | Electrosurgical devices and methods |
US9452020B2 (en) | 2012-08-15 | 2016-09-27 | Intuitive Surgical Operations, Inc. | User initiated break-away clutching of a surgical mounting platform |
AU2013206804B2 (en) | 2012-08-15 | 2017-12-07 | Covidien Lp | Buttress attachment to degradable polymer zones |
US8690893B2 (en) | 2012-08-16 | 2014-04-08 | Coloplast A/S | Vaginal manipulator head with tissue index and head extender |
CN102783741B (zh) | 2012-08-16 | 2014-10-15 | 东华大学 | 多级展开散热的防火绝热复合织物、制备方法及用途 |
US9154189B2 (en) | 2012-08-17 | 2015-10-06 | Qualcomm Incorporated | Wireless power system with capacitive proximity sensing |
US20140048580A1 (en) | 2012-08-20 | 2014-02-20 | Covidien Lp | Buttress attachment features for surgical stapling apparatus |
US9610068B2 (en) | 2012-08-29 | 2017-04-04 | Boston Scientific Scimed, Inc. | Articulation joint with bending member |
US9131957B2 (en) | 2012-09-12 | 2015-09-15 | Gyrus Acmi, Inc. | Automatic tool marking |
US9353917B2 (en) | 2012-09-14 | 2016-05-31 | Cree, Inc. | High efficiency lighting device including one or more solid state light emitters, and method of lighting |
JP6385935B2 (ja) | 2012-09-17 | 2018-09-05 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 入力装置を遠隔操作手術器具機能に割り当てるための方法及びシステム |
US9713474B2 (en) | 2012-09-17 | 2017-07-25 | The Cleveland Clinic Foundation | Endoscopic stapler |
CN102885641B (zh) | 2012-09-18 | 2015-04-01 | 上海逸思医疗科技有限公司 | 一种改进的外科器械的执行器 |
JP2015535702A (ja) | 2012-09-19 | 2015-12-17 | ナンヤン テクノロジカル ユニヴァーシティNanyang Technological University | フレキシブルマスター‐スレーブロボット内視鏡システム |
JP6082553B2 (ja) | 2012-09-26 | 2017-02-15 | カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | ブレーキ解除機構及びこれを備えた医療用マニピュレータ |
JP2014069252A (ja) | 2012-09-28 | 2014-04-21 | Hitachi Koki Co Ltd | 電動工具 |
US20140094681A1 (en) | 2012-10-02 | 2014-04-03 | Covidien Lp | System for navigating surgical instruments adjacent tissue of interest |
US9526564B2 (en) | 2012-10-08 | 2016-12-27 | Covidien Lp | Electric stapler device |
US10842357B2 (en) | 2012-10-10 | 2020-11-24 | Moskowitz Family Llc | Endoscopic surgical system |
US8906001B2 (en) | 2012-10-10 | 2014-12-09 | Covidien Lp | Electromechanical surgical apparatus including wire routing clock spring |
US9161753B2 (en) | 2012-10-10 | 2015-10-20 | Covidien Lp | Buttress fixation for a circular stapler |
US9386985B2 (en) | 2012-10-15 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Surgical cutting instrument |
US9364217B2 (en) | 2012-10-16 | 2016-06-14 | Covidien Lp | In-situ loaded stapler |
US10478182B2 (en) | 2012-10-18 | 2019-11-19 | Covidien Lp | Surgical device identification |
US9044281B2 (en) | 2012-10-18 | 2015-06-02 | Ellipse Technologies, Inc. | Intramedullary implants for replacing lost bone |
US9421014B2 (en) | 2012-10-18 | 2016-08-23 | Covidien Lp | Loading unit velocity and position feedback |
US20140115229A1 (en) | 2012-10-19 | 2014-04-24 | Lsi Corporation | Method and system to reduce system boot loader download time for spi based flash memories |
US9095367B2 (en) | 2012-10-22 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Flexible harmonic waveguides/blades for surgical instruments |
US10201365B2 (en) | 2012-10-22 | 2019-02-12 | Ethicon Llc | Surgeon feedback sensing and display methods |
US9265585B2 (en) | 2012-10-23 | 2016-02-23 | Covidien Lp | Surgical instrument with rapid post event detection |
USD686240S1 (en) | 2012-10-25 | 2013-07-16 | Advanced Mediwatch Co., Ltd. | Display screen with graphical user interface for a sports device |
US10471576B2 (en) | 2012-10-26 | 2019-11-12 | Katsuyuki Totsu | Automatic screw tightening control method and device |
WO2014070831A1 (en) | 2012-10-30 | 2014-05-08 | Board Of Trustees Of The University Of Alabama | Distributed battery power electronics architecture and control |
JP5154710B1 (ja) | 2012-11-01 | 2013-02-27 | 株式会社テクノプロジェクト | 医用画像交換システム、画像中継サーバ、医用画像送信システム及び医用画像受信システム |
US9931106B2 (en) | 2012-11-02 | 2018-04-03 | Intuitive Surgical Operations, Inc. | Self-antagonistic drive for medical instruments |
US20140131418A1 (en) | 2012-11-09 | 2014-05-15 | Covidien Lp | Surgical Stapling Apparatus Including Buttress Attachment |
US9192384B2 (en) | 2012-11-09 | 2015-11-24 | Covidien Lp | Recessed groove for better suture retention |
WO2014081411A1 (en) | 2012-11-20 | 2014-05-30 | West Pharmaceuticals Services, Inc. | System and method to distribute power to both an inertial device and a voltage sensitive device from a single current limited power source |
JP5608837B1 (ja) | 2012-11-20 | 2014-10-15 | オリンパスメディカルシステムズ株式会社 | 組織切除装置 |
USD748668S1 (en) | 2012-11-23 | 2016-02-02 | Samsung Electronics Co., Ltd. | Display screen or portion thereof with transitional graphical user interface |
CN103829981A (zh) | 2012-11-26 | 2014-06-04 | 天津瑞贝精密机械技术研发有限公司 | 电动腔镜吻合器 |
CN103841802B (zh) | 2012-11-27 | 2017-04-05 | 华硕电脑股份有限公司 | 电子装置 |
US20140148803A1 (en) | 2012-11-28 | 2014-05-29 | Covidien Lp | External actuator for an electrosurgical instrument |
US9289207B2 (en) | 2012-11-29 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical staple with integral pledget for tip deflection |
USD729274S1 (en) | 2012-11-30 | 2015-05-12 | Google Inc. | Portion of a display screen with icon |
US9295466B2 (en) | 2012-11-30 | 2016-03-29 | Covidien Lp | Surgical apparatus including surgical buttress |
US9681936B2 (en) | 2012-11-30 | 2017-06-20 | Covidien Lp | Multi-layer porous film material |
US9566062B2 (en) | 2012-12-03 | 2017-02-14 | Ethicon Endo-Surgery, Llc | Surgical instrument with secondary jaw closure feature |
AU2013355725A1 (en) | 2012-12-05 | 2015-07-23 | Kenji Yoshida | Facility-management-system control interface |
US20140158747A1 (en) | 2012-12-06 | 2014-06-12 | Ethicon Endo-Surgery, Inc. | Surgical stapler with varying staple widths along different circumferences |
US9050100B2 (en) | 2012-12-10 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Surgical instrument with feedback at end effector |
US9445808B2 (en) | 2012-12-11 | 2016-09-20 | Ethicon Endo-Surgery, Llc | Electrosurgical end effector with tissue tacking features |
US8815594B2 (en) | 2012-12-12 | 2014-08-26 | Southwest Research Institute | Hybrid tissue scaffold for tissue engineering |
US9402627B2 (en) | 2012-12-13 | 2016-08-02 | Covidien Lp | Folded buttress for use with a surgical apparatus |
US9486209B2 (en) | 2012-12-13 | 2016-11-08 | Ethicon Endo-Surgery, Llc | Transmission for driving circular needle |
CN102973300B (zh) | 2012-12-13 | 2014-10-15 | 常州市新能源吻合器总厂有限公司 | 直线形切割吻合器的组织夹持件及其钉仓座 |
KR101484208B1 (ko) | 2012-12-14 | 2015-01-21 | 현대자동차 주식회사 | 연료전지자동차의 모터속도 보정장치 및 보정방법. |
DE202013012884U1 (de) | 2012-12-17 | 2021-02-09 | Koninklijke Philips N.V. | Vorrichtung zur Herstellung von extrudierbaren Nahrungsmittelprodukten |
US9445816B2 (en) | 2012-12-17 | 2016-09-20 | Ethicon Endo-Surgery, Llc | Circular stapler with selectable motorized and manual control |
US9463022B2 (en) | 2012-12-17 | 2016-10-11 | Ethicon Endo-Surgery, Llc | Motor driven rotary input circular stapler with lockable flexible shaft |
EP2931365B1 (en) | 2012-12-17 | 2017-05-03 | Koninklijke Philips N.V. | Adaptive self-testing and stress analysis of medical devices |
CN103860225B (zh) | 2012-12-18 | 2016-03-09 | 苏州天臣国际医疗科技有限公司 | 直线型缝切器 |
CN103860221B (zh) | 2012-12-18 | 2016-08-17 | 苏州天臣国际医疗科技有限公司 | 直线缝切器钉头组件 |
USD741895S1 (en) | 2012-12-18 | 2015-10-27 | 2236008 Ontario Inc. | Display screen or portion thereof with graphical user interface |
AU2013266989A1 (en) | 2012-12-19 | 2014-07-03 | Covidien Lp | Buttress attachment to the cartridge surface |
US9470297B2 (en) | 2012-12-19 | 2016-10-18 | Covidien Lp | Lower anterior resection 90 degree instrument |
US9566065B2 (en) | 2012-12-21 | 2017-02-14 | Cardica, Inc. | Apparatus and methods for surgical stapler clamping and deployment |
US9099922B2 (en) | 2012-12-21 | 2015-08-04 | Silicon Laboratories Inc. | System and method for adaptive current limit of a switching regulator |
JP6024446B2 (ja) | 2012-12-22 | 2016-11-16 | 日立工機株式会社 | インパクト工具 |
DE102012025393A1 (de) | 2012-12-24 | 2014-06-26 | Festool Group Gmbh & Co. Kg | Elektrogerät in Gestalt einer Hand-Werkzeugmaschine oder eines Sauggeräts |
US20140181710A1 (en) | 2012-12-26 | 2014-06-26 | Harman International Industries, Incorporated | Proximity location system |
US9614258B2 (en) | 2012-12-28 | 2017-04-04 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device and power storage system |
CN103908313A (zh) | 2012-12-29 | 2014-07-09 | 苏州天臣国际医疗科技有限公司 | 外科手术器械 |
JP6297060B2 (ja) | 2012-12-31 | 2018-03-20 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 強化されたナイフクリアランスを備える外科用ステープルカートリッジ |
GB2509523A (en) | 2013-01-07 | 2014-07-09 | Anish Kumar Mampetta | Surgical instrument with flexible members and a motor |
USD750129S1 (en) | 2013-01-09 | 2016-02-23 | Samsung Electronics Co., Ltd. | Display screen or portion thereof with graphical user interface |
US20140194874A1 (en) | 2013-01-10 | 2014-07-10 | Ethicon Endo-Surgery, Inc. | Electrosurgical end effector with independent closure feature and blade |
US9204881B2 (en) | 2013-01-11 | 2015-12-08 | Covidien Lp | Buttress retainer for EEA anvil |
US9675354B2 (en) | 2013-01-14 | 2017-06-13 | Intuitive Surgical Operations, Inc. | Torque compensation |
US9522003B2 (en) | 2013-01-14 | 2016-12-20 | Intuitive Surgical Operations, Inc. | Clamping instrument |
US10265090B2 (en) | 2013-01-16 | 2019-04-23 | Covidien Lp | Hand held electromechanical surgical system including battery compartment diagnostic display |
MX364730B (es) | 2013-01-18 | 2019-05-06 | Ethicon Endo Surgery Inc | Instrumento quirurgico motorizado. |
US9345480B2 (en) | 2013-01-18 | 2016-05-24 | Covidien Lp | Surgical instrument and cartridge members for use therewith |
US9782187B2 (en) | 2013-01-18 | 2017-10-10 | Covidien Lp | Adapter load button lockout |
US9433420B2 (en) | 2013-01-23 | 2016-09-06 | Covidien Lp | Surgical apparatus including surgical buttress |
US20140207124A1 (en) | 2013-01-23 | 2014-07-24 | Ethicon Endo-Surgery, Inc. | Surgical instrument with selectable integral or external power source |
US10918364B2 (en) | 2013-01-24 | 2021-02-16 | Covidien Lp | Intelligent adapter assembly for use with an electromechanical surgical system |
US20150352699A1 (en) | 2013-01-24 | 2015-12-10 | Hitachi Koki Co., Ltd. | Power Tool |
US9241758B2 (en) | 2013-01-25 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with blade compliant along vertical cutting edge plane |
US20140209658A1 (en) | 2013-01-25 | 2014-07-31 | Covidien Lp | Foam application to stapling device |
US9149325B2 (en) | 2013-01-25 | 2015-10-06 | Ethicon Endo-Surgery, Inc. | End effector with compliant clamping jaw |
US10175739B2 (en) | 2013-01-29 | 2019-01-08 | Avago Technologies International Sales Pte. Limited | Wearable device-aware supervised power management for mobile platforms |
US9610114B2 (en) | 2013-01-29 | 2017-04-04 | Ethicon Endo-Surgery, Llc | Bipolar electrosurgical hand shears |
JP6033698B2 (ja) | 2013-02-01 | 2016-11-30 | 株式会社マキタ | 電動工具 |
US9028510B2 (en) | 2013-02-01 | 2015-05-12 | Olympus Medical Systems Corp. | Tissue excision method |
DE102013101158A1 (de) | 2013-02-06 | 2014-08-07 | Karl Storz Gmbh & Co. Kg | Medizinische Vorrichtung und Verfahren zum Konfigurieren eines medizinischen Systems |
RU2661143C2 (ru) | 2013-02-08 | 2018-07-11 | Этикон Эндо-Серджери, Инк. | Съемный слой материала и хирургический концевой зажим со съемным слоем материала |
US20140224857A1 (en) | 2013-02-08 | 2014-08-14 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising a compressible portion |
MX360430B (es) | 2013-02-08 | 2018-10-31 | Ethicon Endo Surgery Inc | Cartucho de grapas que comprende un revestimiento extraíble. |
RU2658454C2 (ru) | 2013-02-08 | 2018-06-21 | Этикон Эндо-Серджери, Инк. | Имплантируемые слои различной толщины для хирургических сшивающих устройств |
US9386984B2 (en) | 2013-02-08 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Staple cartridge comprising a releasable cover |
JP5733332B2 (ja) | 2013-02-13 | 2015-06-10 | 株式会社豊田自動織機 | 電池モジュール |
USD759063S1 (en) | 2013-02-14 | 2016-06-14 | Healthmate International, LLC | Display screen with graphical user interface for an electrotherapy device |
US10231728B2 (en) | 2013-02-15 | 2019-03-19 | Surgimatix, Inc. | Medical fastening device |
US9421003B2 (en) | 2013-02-18 | 2016-08-23 | Covidien Lp | Apparatus for endoscopic procedures |
US9216013B2 (en) | 2013-02-18 | 2015-12-22 | Covidien Lp | Apparatus for endoscopic procedures |
US20140239047A1 (en) | 2013-02-28 | 2014-08-28 | Covidien Lp | Adherence concepts for non-woven absorbable felt buttresses |
US9186142B2 (en) | 2013-02-28 | 2015-11-17 | Ethicon Endo-Surgery, Inc. | Surgical instrument end effector articulation drive with pinion and opposing racks |
US9622746B2 (en) | 2013-02-28 | 2017-04-18 | Ethicon Endo-Surgery, Llc | Distal tip features for end effector of surgical instrument |
US9839421B2 (en) | 2013-02-28 | 2017-12-12 | Ethicon Llc | Jaw closure feature for end effector of surgical instrument |
US9867615B2 (en) | 2013-02-28 | 2018-01-16 | Ethicon Llc | Surgical instrument with articulation lock having a detenting binary spring |
US9517065B2 (en) | 2013-02-28 | 2016-12-13 | Ethicon Endo-Surgery, Llc | Integrated tissue positioning and jaw alignment features for surgical stapler |
US9717497B2 (en) | 2013-02-28 | 2017-08-01 | Ethicon Llc | Lockout feature for movable cutting member of surgical instrument |
US10092292B2 (en) | 2013-02-28 | 2018-10-09 | Ethicon Llc | Staple forming features for surgical stapling instrument |
US9795379B2 (en) | 2013-02-28 | 2017-10-24 | Ethicon Llc | Surgical instrument with multi-diameter shaft |
US9808248B2 (en) | 2013-02-28 | 2017-11-07 | Ethicon Llc | Installation features for surgical instrument end effector cartridge |
JP6339114B2 (ja) | 2013-03-01 | 2018-06-06 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | 複数の自由度を備えた回転動力式の外科用器具 |
JP2014194211A (ja) | 2013-03-01 | 2014-10-09 | Aisan Ind Co Ltd | 電動バキュームポンプ |
RU2672520C2 (ru) | 2013-03-01 | 2018-11-15 | Этикон Эндо-Серджери, Инк. | Шарнирно поворачиваемые хирургические инструменты с проводящими путями для передачи сигналов |
US9398911B2 (en) | 2013-03-01 | 2016-07-26 | Ethicon Endo-Surgery, Llc | Rotary powered surgical instruments with multiple degrees of freedom |
RU2669463C2 (ru) | 2013-03-01 | 2018-10-11 | Этикон Эндо-Серджери, Инк. | Хирургический инструмент с мягким упором |
US9483095B2 (en) | 2013-03-04 | 2016-11-01 | Abbott Medical Optics Inc. | Apparatus and method for providing a modular power supply with multiple adjustable output voltages |
US10561432B2 (en) | 2013-03-05 | 2020-02-18 | Covidien Lp | Pivoting screw for use with a pair of jaw members of a surgical instrument |
US9839481B2 (en) | 2013-03-07 | 2017-12-12 | Intuitive Surgical Operations, Inc. | Hybrid manual and robotic interventional instruments and methods of use |
AU2014200501B2 (en) | 2013-03-07 | 2017-08-24 | Covidien Lp | Powered surgical stapling device |
US10080576B2 (en) | 2013-03-08 | 2018-09-25 | Auris Health, Inc. | Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment |
US9706993B2 (en) | 2013-03-08 | 2017-07-18 | Covidien Lp | Staple cartridge with shipping wedge |
US20140263535A1 (en) | 2013-03-12 | 2014-09-18 | Techtronic Power Tools Technology Limited | Direct current fastening device and related control methods |
US9936951B2 (en) | 2013-03-12 | 2018-04-10 | Covidien Lp | Interchangeable tip reload |
USD711905S1 (en) | 2013-03-12 | 2014-08-26 | Arthrocare Corporation | Display screen for electrosurgical controller with graphical user interface |
JP2014171904A (ja) | 2013-03-12 | 2014-09-22 | Ethicon Endo Surgery Inc | 発射システムロックアウト装置を備える電動外科用器具 |
US9629628B2 (en) | 2013-03-13 | 2017-04-25 | Covidien Lp | Surgical stapling apparatus |
US9402687B2 (en) | 2013-03-13 | 2016-08-02 | Ethicon Endo-Surgery, Llc | Robotic electrosurgical device with disposable shaft |
US9345481B2 (en) | 2013-03-13 | 2016-05-24 | Ethicon Endo-Surgery, Llc | Staple cartridge tissue thickness sensor system |
US9254170B2 (en) | 2013-03-13 | 2016-02-09 | Ethicon Endo-Surgery, Inc. | Electrosurgical device with disposable shaft having modular subassembly |
US9492189B2 (en) | 2013-03-13 | 2016-11-15 | Covidien Lp | Apparatus for endoscopic procedures |
EP3135225B1 (en) | 2013-03-13 | 2019-08-14 | Covidien LP | Surgical stapling apparatus |
US9814463B2 (en) | 2013-03-13 | 2017-11-14 | Covidien Lp | Surgical stapling apparatus |
US9717498B2 (en) | 2013-03-13 | 2017-08-01 | Covidien Lp | Surgical stapling apparatus |
US9107685B2 (en) | 2013-03-13 | 2015-08-18 | Ethicon Endo-Surgery, Inc. | Electrosurgical device with disposable shaft having clamshell coupling |
US9668729B2 (en) | 2013-03-13 | 2017-06-06 | Covidien Lp | Surgical stapling apparatus |
AU2014236486B2 (en) | 2013-03-14 | 2019-02-07 | Applied Medical Resources Corporation | Surgical stapler with partial pockets |
US9352071B2 (en) | 2013-03-14 | 2016-05-31 | Ethicon, Inc. | Method of forming an implantable device |
US10314559B2 (en) | 2013-03-14 | 2019-06-11 | Inneroptic Technology, Inc. | Medical device guidance |
US9867620B2 (en) | 2013-03-14 | 2018-01-16 | Covidien Lp | Articulation joint for apparatus for endoscopic procedures |
US9592056B2 (en) | 2013-03-14 | 2017-03-14 | Covidien Lp | Powered stapling apparatus |
JP6114583B2 (ja) | 2013-03-14 | 2017-04-12 | カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | 医療用マニピュレータ |
US9883860B2 (en) | 2013-03-14 | 2018-02-06 | Ethicon Llc | Interchangeable shaft assemblies for use with a surgical instrument |
US20140276730A1 (en) | 2013-03-14 | 2014-09-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with reinforced articulation section |
US9655613B2 (en) | 2013-03-14 | 2017-05-23 | Dextera Surgical Inc. | Beltless staple chain for cartridge and cartridgeless surgical staplers |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
EP2967521B1 (en) | 2013-03-15 | 2019-12-25 | SRI International | Electromechanical surgical system |
US9283028B2 (en) | 2013-03-15 | 2016-03-15 | Covidien Lp | Crest-factor control of phase-shifted inverter |
SG10201707223RA (en) | 2013-03-15 | 2017-10-30 | Somark Innovations Inc | Microelectronic animal identification |
WO2014144780A1 (en) | 2013-03-15 | 2014-09-18 | Trak Surgical, Inc. | On-board tool tracking system and methods of computer assisted surgery |
US10105149B2 (en) | 2013-03-15 | 2018-10-23 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US10303851B2 (en) | 2013-03-15 | 2019-05-28 | Md24 Patent Technology, Llc | Physician-centric health care delivery platform |
US8961191B2 (en) | 2013-03-15 | 2015-02-24 | Garmin Switzerland Gmbh | Electrical connector for pedal spindle |
US9615816B2 (en) | 2013-03-15 | 2017-04-11 | Vidacare LLC | Drivers and drive systems |
AU2014227602B9 (en) | 2013-03-15 | 2019-10-24 | Applied Medical Resources Corporation | Surgical stapler having actuation mechanism with rotatable shaft |
US9722236B2 (en) | 2013-03-15 | 2017-08-01 | General Atomics | Apparatus and method for use in storing energy |
US20140263558A1 (en) | 2013-03-15 | 2014-09-18 | Cardica, Inc. | Extended curved tip for surgical apparatus |
US9373878B2 (en) | 2013-03-19 | 2016-06-21 | Texas Instruments Incorporated | Dielectric waveguide with RJ45 connector |
JP6554089B2 (ja) | 2013-03-19 | 2019-07-31 | サージセンス コーポレイション | 組織酸素化の測定用の器具、システムおよびメソッド |
FR3003660B1 (fr) | 2013-03-22 | 2016-06-24 | Schneider Electric Ind Sas | Systeme de dialogue homme-machine |
US9510827B2 (en) | 2013-03-25 | 2016-12-06 | Covidien Lp | Micro surgical instrument and loading unit for use therewith |
US9572577B2 (en) | 2013-03-27 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Fastener cartridge comprising a tissue thickness compensator including openings therein |
US20140291379A1 (en) | 2013-03-27 | 2014-10-02 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising a cutting member path |
US9795384B2 (en) | 2013-03-27 | 2017-10-24 | Ethicon Llc | Fastener cartridge comprising a tissue thickness compensator and a gap setting element |
US9332984B2 (en) | 2013-03-27 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Fastener cartridge assemblies |
US20140303660A1 (en) | 2013-04-04 | 2014-10-09 | Elwha Llc | Active tremor control in surgical instruments |
US9700318B2 (en) | 2013-04-09 | 2017-07-11 | Covidien Lp | Apparatus for endoscopic procedures |
US9775610B2 (en) | 2013-04-09 | 2017-10-03 | Covidien Lp | Apparatus for endoscopic procedures |
US9801626B2 (en) | 2013-04-16 | 2017-10-31 | Ethicon Llc | Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts |
CN105307577B (zh) | 2013-04-16 | 2018-04-06 | 伊西康内外科公司 | 包括由相同可旋转输出装置操作的闭合驱动装置和击发驱动装置的外科器械 |
BR112015026109B1 (pt) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | Instrumento cirúrgico |
CA2909710C (en) | 2013-04-17 | 2021-02-09 | Sp Surgical Inc. | Method and apparatus for passing suture |
ITMI20130666A1 (it) | 2013-04-23 | 2014-10-24 | Valuebiotech S R L | Struttura di robot, particolarmente per chirurgia mini-invasiva attraverso singola incisione parietale o orifizio naturale. |
WO2014175894A1 (en) | 2013-04-25 | 2014-10-30 | Cardica, Inc. | Active wedge and i-beam for surgical stapler |
WO2014176403A1 (en) | 2013-04-25 | 2014-10-30 | Intuitive Surgical Operations, Inc. | Surgical equipment control input visualization field |
KR20140129702A (ko) | 2013-04-30 | 2014-11-07 | 삼성전자주식회사 | 수술 로봇 시스템 및 그 제어방법 |
USD741882S1 (en) | 2013-05-01 | 2015-10-27 | Viber Media S.A.R.L. | Display screen or a portion thereof with graphical user interface |
US20140330298A1 (en) | 2013-05-03 | 2014-11-06 | Ethicon Endo-Surgery, Inc. | Clamp arm features for ultrasonic surgical instrument |
US9956677B2 (en) | 2013-05-08 | 2018-05-01 | Black & Decker Inc. | Power tool with interchangeable power heads |
US9687233B2 (en) | 2013-05-09 | 2017-06-27 | Dextera Surgical Inc. | Surgical stapling and cutting apparatus—deployment mechanisms, systems and methods |
US9237900B2 (en) | 2013-05-10 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Surgical instrument with split jaw |
EP2993996B1 (en) | 2013-05-10 | 2018-06-06 | Juicero, Inc. | Juicer cartridge |
EP2996579B1 (en) | 2013-05-15 | 2020-04-22 | Aesculap AG | Surgical stapling and cutting apparatus |
USD730393S1 (en) | 2013-05-28 | 2015-05-26 | Deere & Company | Display screen or portion thereof with icon |
US11020016B2 (en) | 2013-05-30 | 2021-06-01 | Auris Health, Inc. | System and method for displaying anatomy and devices on a movable display |
US9240740B2 (en) | 2013-05-30 | 2016-01-19 | The Boeing Company | Active voltage controller for an electric motor |
US9574644B2 (en) | 2013-05-30 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Power module for use with a surgical instrument |
US10722292B2 (en) | 2013-05-31 | 2020-07-28 | Covidien Lp | Surgical device with an end-effector assembly and system for monitoring of tissue during a surgical procedure |
US9504520B2 (en) | 2013-06-06 | 2016-11-29 | Ethicon Endo-Surgery, Llc | Surgical instrument with modular motor |
USD742893S1 (en) | 2013-06-09 | 2015-11-10 | Apple Inc. | Display screen or portion thereof with graphical user interface |
USD742894S1 (en) | 2013-06-10 | 2015-11-10 | Apple Inc. | Display screen or portion thereof with graphical user interface |
USD740851S1 (en) | 2013-06-10 | 2015-10-13 | Apple Inc. | Display screen or portion thereof with icon |
US20140373003A1 (en) | 2013-06-13 | 2014-12-18 | L'oreal | Appliance-based firmware upgrade system |
DE102013106277A1 (de) | 2013-06-17 | 2014-12-18 | Aesculap Ag | Chirurgischer Clip-Applikator |
US20140367445A1 (en) | 2013-06-18 | 2014-12-18 | Covidien Lp | Emergency retraction for electro-mechanical surgical devices and systems |
US10117654B2 (en) | 2013-06-18 | 2018-11-06 | Covidien Lp | Method of emergency retraction for electro-mechanical surgical devices and systems |
TWM473838U (zh) | 2013-06-19 | 2014-03-11 | Mouldex Co Ltd | 可旋轉式醫療用連接器 |
US9797486B2 (en) | 2013-06-20 | 2017-10-24 | Covidien Lp | Adapter direct drive with manual retraction, lockout and connection mechanisms |
CN203328751U (zh) | 2013-06-20 | 2013-12-11 | 瑞奇外科器械(中国)有限公司 | 外科手术器械及其驱动装置 |
CN104224254B (zh) | 2013-06-20 | 2016-03-30 | 瑞奇外科器械(中国)有限公司 | 外科手术器械及其驱动装置 |
US9668730B2 (en) | 2013-06-28 | 2017-06-06 | Covidien Lp | Articulating apparatus for endoscopic procedures with timing system |
US10085746B2 (en) | 2013-06-28 | 2018-10-02 | Covidien Lp | Surgical instrument including rotating end effector and rotation-limiting structure |
US9351728B2 (en) | 2013-06-28 | 2016-05-31 | Covidien Lp | Articulating apparatus for endoscopic procedures |
US9358004B2 (en) | 2013-06-28 | 2016-06-07 | Covidien Lp | Articulating apparatus for endoscopic procedures |
DK3014394T3 (da) | 2013-07-05 | 2022-07-11 | Jacob A Rubin | Helkrops-menneske-computer-grænseflade |
US9757129B2 (en) | 2013-07-08 | 2017-09-12 | Covidien Lp | Coupling member configured for use with surgical devices |
KR101550600B1 (ko) | 2013-07-10 | 2015-09-07 | 현대자동차 주식회사 | 자동변속기의 유압회로 |
US9750503B2 (en) | 2013-07-11 | 2017-09-05 | Covidien Lp | Methods and devices for performing a surgical anastomosis |
KR102113853B1 (ko) | 2013-07-17 | 2020-06-03 | 삼성전자주식회사 | 커플링 영역 검출 방법 및 장치 |
JP6157258B2 (ja) | 2013-07-26 | 2017-07-05 | オリンパス株式会社 | マニピュレータ及びマニピュレータシステム |
US10285750B2 (en) | 2013-07-29 | 2019-05-14 | Covidien Lp | Systems and methods for operating an electrosurgical generator |
USD757028S1 (en) | 2013-08-01 | 2016-05-24 | Palantir Technologies Inc. | Display screen or portion thereof with graphical user interface |
US10828089B2 (en) | 2013-08-02 | 2020-11-10 | Biosense Webster (Israel) Ltd. | Catheter with improved irrigated tip electrode having two-piece construction, and method of manufacturing therefor |
USD749623S1 (en) | 2013-08-07 | 2016-02-16 | Robert Bosch Gmbh | Display screen with an animated graphical user interface |
CN104337556B (zh) | 2013-08-09 | 2016-07-13 | 瑞奇外科器械(中国)有限公司 | 弯转控制装置及外科手术器械 |
CN103391037B (zh) | 2013-08-13 | 2016-01-20 | 山东大学 | 基于arm单片机混沌映射控制的混沌搅拌控制系统 |
US9561029B2 (en) | 2013-08-15 | 2017-02-07 | Ethicon Endo-Surgery, Llc | Surgical stapler with rolling anvil |
US9597074B2 (en) | 2013-08-15 | 2017-03-21 | Ethicon Endo-Surgery, Llc | Endoluminal stapler with rotating wheel cam for multi-staple firing |
US9636112B2 (en) | 2013-08-16 | 2017-05-02 | Covidien Lp | Chip assembly for reusable surgical instruments |
JP6090576B2 (ja) | 2013-08-19 | 2017-03-08 | 日立工機株式会社 | 電動工具 |
BR112016003674B1 (pt) | 2013-08-23 | 2022-02-08 | Ethicon Endo-Surgery, Llc | Instrumento cirúrgico |
JP6416260B2 (ja) | 2013-08-23 | 2018-10-31 | エシコン エルエルシー | 動力付き外科用器具のための発射部材後退装置 |
WO2015025493A1 (ja) | 2013-08-23 | 2015-02-26 | 日本電産コパル電子株式会社 | 減速機構 |
CN105658154B (zh) | 2013-08-23 | 2019-04-26 | 伊西康内外科有限责任公司 | 用于动力外科器械的辅助电池构造 |
US20150053746A1 (en) | 2013-08-23 | 2015-02-26 | Ethicon Endo-Surgery, Inc. | Torque optimization for surgical instruments |
US9539006B2 (en) | 2013-08-27 | 2017-01-10 | Covidien Lp | Hand held electromechanical surgical handle assembly for use with surgical end effectors, and methods of use |
USD740414S1 (en) | 2013-08-30 | 2015-10-06 | Karl Storz Gmbh & Co. Kg | Operation handle for medical manipulator system |
US9295514B2 (en) | 2013-08-30 | 2016-03-29 | Ethicon Endo-Surgery, Llc | Surgical devices with close quarter articulation features |
US9662108B2 (en) | 2013-08-30 | 2017-05-30 | Covidien Lp | Surgical stapling apparatus |
WO2015032797A1 (en) | 2013-09-03 | 2015-03-12 | Frank Wenger | Intraluminal stapler |
US20150067582A1 (en) | 2013-09-05 | 2015-03-05 | Storehouse Media, Inc. | Content navigation structure and transition mechanism |
US11246666B2 (en) | 2013-09-06 | 2022-02-15 | The Brigham And Women's Hospital, Inc. | System and method for a tissue resection margin measurement device |
US9220508B2 (en) | 2013-09-06 | 2015-12-29 | Ethicon Endo-Surgery, Inc. | Surgical clip applier with articulation section |
CN104422849A (zh) | 2013-09-09 | 2015-03-18 | 南京南瑞继保电气有限公司 | 一种短路模拟试验电路及其试验方法 |
EP3043733A1 (en) | 2013-09-13 | 2016-07-20 | Boston Scientific Scimed, Inc. | Ablation balloon with vapor deposited cover layer |
USD751082S1 (en) | 2013-09-13 | 2016-03-08 | Airwatch Llc | Display screen with a graphical user interface for an email application |
US20140018832A1 (en) | 2013-09-13 | 2014-01-16 | Ethicon Endo-Surgery, Inc. | Method For Applying A Surgical Clip Having A Compliant Portion |
US20140014704A1 (en) | 2013-09-16 | 2014-01-16 | Ethicon Endo-Surgery, Inc. | Medical Device Having An Improved Coating |
US20140014707A1 (en) | 2013-09-16 | 2014-01-16 | Ethicon Endo-Surgery, Inc. | Surgical Stapling Instrument Having An Improved Coating |
US20150076211A1 (en) | 2013-09-17 | 2015-03-19 | Covidien Lp | Surgical instrument controls with illuminated feedback |
US9955966B2 (en) | 2013-09-17 | 2018-05-01 | Covidien Lp | Adapter direct drive with manual retraction, lockout, and connection mechanisms for improper use prevention |
US10172636B2 (en) | 2013-09-17 | 2019-01-08 | Ethicon Llc | Articulation features for ultrasonic surgical instrument |
CN103505264B (zh) | 2013-09-18 | 2015-06-24 | 大连理工大学 | 经椎弓根通道治疗胸腰椎爆裂骨折的微创手术器械 |
US10271840B2 (en) | 2013-09-18 | 2019-04-30 | Covidien Lp | Apparatus and method for differentiating between tissue and mechanical obstruction in a surgical instrument |
USD768152S1 (en) | 2013-09-20 | 2016-10-04 | ACCO Brands Corporation | Display screen including a graphical user interface |
US9642642B2 (en) | 2013-09-20 | 2017-05-09 | Kok Hoo LIM | Guide tip introducer and method to create thereof |
US20150088547A1 (en) | 2013-09-22 | 2015-03-26 | Ricoh Company, Ltd. | Mobile Information Gateway for Home Healthcare |
US10478189B2 (en) | 2015-06-26 | 2019-11-19 | Ethicon Llc | Method of applying an annular array of staples to tissue |
US9907552B2 (en) | 2013-09-23 | 2018-03-06 | Ethicon Llc | Control features for motorized surgical stapling instrument |
CN203564287U (zh) | 2013-09-23 | 2014-04-30 | 瑞奇外科器械(中国)有限公司 | 末端执行器、外科手术器械和荷包钳 |
US10709452B2 (en) | 2013-09-23 | 2020-07-14 | Ethicon Llc | Methods and systems for performing circular stapling |
US20180132849A1 (en) | 2016-11-14 | 2018-05-17 | Ethicon Endo-Surgery, Llc | Staple forming pocket configurations for circular surgical stapler anvil |
CN203564285U (zh) | 2013-09-23 | 2014-04-30 | 瑞奇外科器械(中国)有限公司 | 末端执行器、外科手术器械和荷包钳 |
US9936949B2 (en) | 2013-09-23 | 2018-04-10 | Ethicon Llc | Surgical stapling instrument with drive assembly having toggle features |
US10695119B2 (en) | 2013-09-24 | 2020-06-30 | Covidien Lp | Power and bi directional data interface assembly and surgical system including the same |
US9392885B2 (en) | 2013-09-24 | 2016-07-19 | Marketing Impact Limited | Modular manual lift dispenser security systems and methods for assembling, manufacturing and/or utilizing said security systems |
US20150087952A1 (en) | 2013-09-24 | 2015-03-26 | Alivecor, Inc. | Smartphone and ecg device microbial shield |
US20150088127A1 (en) | 2013-09-24 | 2015-03-26 | Covidien Lp | Aseptic bag to encapsulate an energy source of a surgical instrument |
US20150082624A1 (en) | 2013-09-24 | 2015-03-26 | Covidien Lp | Aseptic bag to encapsulate an energy source of a surgical instrument |
EP3049000A4 (en) | 2013-09-25 | 2017-06-21 | Covidien LP | Surgical instrument with magnetic sensor |
CN105592812B (zh) | 2013-09-27 | 2018-04-24 | 奥林巴斯株式会社 | 处理器具及处理系统 |
US20140175150A1 (en) | 2013-10-01 | 2014-06-26 | Ethicon Endo-Surgery, Inc. | Providing Near Real Time Feedback To A User of A Surgical Instrument |
USD749128S1 (en) | 2013-10-04 | 2016-02-09 | Microsoft Corporation | Display screen with icon |
CN104580654B (zh) | 2013-10-09 | 2019-05-10 | 中兴通讯股份有限公司 | 一种终端及电子防水的方法 |
WO2015053905A1 (en) | 2013-10-10 | 2015-04-16 | GYRUS ACMI, INC. (d/b/a OLYMPUS SURGICAL TECHNOLOGIES AMERICA) | Laparoscopic forceps assembly |
US9295565B2 (en) | 2013-10-18 | 2016-03-29 | Spine Wave, Inc. | Method of expanding an intradiscal space and providing an osteoconductive path during expansion |
CN203597997U (zh) | 2013-10-31 | 2014-05-21 | 山东威瑞外科医用制品有限公司 | 一种吻合器的钉仓及吻合器 |
US11504346B2 (en) | 2013-11-03 | 2022-11-22 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Redox-activated pro-chelators |
DE102013018499B3 (de) | 2013-11-04 | 2014-12-24 | Wagner GmbH Fabrik für medizinische Geräte | Belüftungsventil-Anordnung für einen unter Unterdruck stehenden Sterilisierbehälter |
US20150134077A1 (en) | 2013-11-08 | 2015-05-14 | Ethicon Endo-Surgery, Inc. | Sealing materials for use in surgical stapling |
US9936950B2 (en) | 2013-11-08 | 2018-04-10 | Ethicon Llc | Hybrid adjunct materials for use in surgical stapling |
US9295522B2 (en) | 2013-11-08 | 2016-03-29 | Covidien Lp | Medical device adapter with wrist mechanism |
USD746459S1 (en) | 2013-11-14 | 2015-12-29 | Karl Storz Gmbh & Co. Kg | Laparoscopic vacuum grasper |
US9901358B2 (en) | 2013-11-15 | 2018-02-27 | Ethicon Llc | Ultrasonic surgical instrument with integral blade cleaning feature |
US9907600B2 (en) | 2013-11-15 | 2018-03-06 | Ethicon Llc | Ultrasonic anastomosis instrument with piezoelectric sealing head |
WO2015076780A1 (en) | 2013-11-19 | 2015-05-28 | Perfecseal, Inc | A vented rigid gas sterilization packaging tray |
US10368892B2 (en) | 2013-11-22 | 2019-08-06 | Ethicon Llc | Features for coupling surgical instrument shaft assembly with instrument body |
CN104682792B (zh) | 2013-11-27 | 2020-01-31 | 德昌电机(深圳)有限公司 | 直流电机控制电路 |
EP2878274A1 (en) | 2013-12-02 | 2015-06-03 | Ethicon Endo-Surgery, Inc. | Electrically self-powered surgical instrument with cryptographic identification of interchangeable part |
USD746854S1 (en) | 2013-12-04 | 2016-01-05 | Medtronic, Inc. | Display screen or portion thereof with graphical user interface |
WO2015085011A1 (en) | 2013-12-04 | 2015-06-11 | Obalon Therapeutics , Inc. | Systems and methods for locating and/or characterizing intragastric devices |
USD750122S1 (en) | 2013-12-04 | 2016-02-23 | Medtronic, Inc. | Display screen or portion thereof with graphical user interface |
ES2755485T3 (es) | 2013-12-09 | 2020-04-22 | Covidien Lp | Conjunto de adaptador para la interconexión de dispositivos quirúrgicos electromecánicos y unidades de carga quirúrgica, y sistemas quirúrgicos de los mismos |
EP3079608B8 (en) | 2013-12-11 | 2020-04-01 | Covidien LP | Wrist and jaw assemblies for robotic surgical systems |
US9782193B2 (en) | 2013-12-11 | 2017-10-10 | Medos International Sàrl | Tissue shaving device having a fluid removal path |
WO2015088655A1 (en) | 2013-12-12 | 2015-06-18 | Covidien Lp | Gear train assemblies for robotic surgical systems |
EP3082620B1 (en) | 2013-12-17 | 2024-03-06 | Standard Bariatrics Inc. | Resection line guide for a medical procedure |
USD769930S1 (en) | 2013-12-18 | 2016-10-25 | Aliphcom | Display screen or portion thereof with animated graphical user interface |
USD744528S1 (en) | 2013-12-18 | 2015-12-01 | Aliphcom | Display screen or portion thereof with animated graphical user interface |
US9867613B2 (en) | 2013-12-19 | 2018-01-16 | Covidien Lp | Surgical staples and end effectors for deploying the same |
US9642620B2 (en) | 2013-12-23 | 2017-05-09 | Ethicon Endo-Surgery, Llc | Surgical cutting and stapling instruments with articulatable end effectors |
USD775336S1 (en) | 2013-12-23 | 2016-12-27 | Ethicon Endo-Surgery, Llc | Surgical fastener |
US9687232B2 (en) | 2013-12-23 | 2017-06-27 | Ethicon Llc | Surgical staples |
US20150173756A1 (en) | 2013-12-23 | 2015-06-25 | Ethicon Endo-Surgery, Inc. | Surgical cutting and stapling methods |
US9839428B2 (en) | 2013-12-23 | 2017-12-12 | Ethicon Llc | Surgical cutting and stapling instruments with independent jaw control features |
US9724092B2 (en) | 2013-12-23 | 2017-08-08 | Ethicon Llc | Modular surgical instruments |
US20150173789A1 (en) | 2013-12-23 | 2015-06-25 | Ethicon Endo-Surgery, Inc. | Surgical instruments with articulatable shaft arrangements |
US9681870B2 (en) | 2013-12-23 | 2017-06-20 | Ethicon Llc | Articulatable surgical instruments with separate and distinct closing and firing systems |
WO2015096530A1 (zh) | 2013-12-27 | 2015-07-02 | 瑞奇外科器械(中国)有限公司 | 柔性驱动元件、末端执行器和外科手术器械 |
JP5851660B2 (ja) | 2013-12-27 | 2016-02-03 | オリンパス株式会社 | 処置具用ハンドル及び処置具 |
TWI548388B (zh) | 2013-12-30 | 2016-09-11 | 國立臺灣大學 | 骨科手術之手持式機器人以及其控制方法 |
CN203736251U (zh) | 2013-12-30 | 2014-07-30 | 瑞奇外科器械(中国)有限公司 | 柔性驱动元件的支撑件、末端执行器和外科手术器械 |
CN103750872B (zh) | 2013-12-31 | 2016-05-11 | 苏州天臣国际医疗科技有限公司 | 直线缝合切割装置 |
CN103690212B (zh) | 2013-12-31 | 2015-08-12 | 上海创亿医疗器械技术有限公司 | 具有自换切割刀功能的外科线形吻合器 |
US20150201918A1 (en) | 2014-01-02 | 2015-07-23 | Osseodyne Surgical Solutions, Llc | Surgical Handpiece |
CN203693685U (zh) | 2014-01-09 | 2014-07-09 | 杨宗德 | 一种高速自停脊椎椎板钻 |
US9655616B2 (en) | 2014-01-22 | 2017-05-23 | Covidien Lp | Apparatus for endoscopic procedures |
US9629627B2 (en) | 2014-01-28 | 2017-04-25 | Coviden Lp | Surgical apparatus |
US9700312B2 (en) | 2014-01-28 | 2017-07-11 | Covidien Lp | Surgical apparatus |
US9801679B2 (en) | 2014-01-28 | 2017-10-31 | Ethicon Llc | Methods and devices for controlling motorized surgical devices |
US9802033B2 (en) | 2014-01-28 | 2017-10-31 | Ethicon Llc | Surgical devices having controlled tissue cutting and sealing |
CN203815517U (zh) | 2014-01-29 | 2014-09-10 | 上海创亿医疗器械技术有限公司 | 带有弯钉沟的外科吻合钉成形槽 |
US9936952B2 (en) | 2014-02-03 | 2018-04-10 | Covidien Lp | Introducer assembly for a surgical fastener applying apparatus |
US9706674B2 (en) | 2014-02-04 | 2017-07-11 | Covidien Lp | Authentication system for reusable surgical instruments |
US9795449B2 (en) | 2014-02-06 | 2017-10-24 | Faculty Physicians And Surgeons Of Loma Linda University School Of Medicine | Methods and devices for performing abdominal surgery |
US10213266B2 (en) | 2014-02-07 | 2019-02-26 | Covidien Lp | Robotic surgical assemblies and adapter assemblies thereof |
USD787548S1 (en) | 2014-02-10 | 2017-05-23 | What Watch Ag | Display screen or portion thereof with animated graphical user interface |
US11090109B2 (en) | 2014-02-11 | 2021-08-17 | Covidien Lp | Temperature-sensing electrically-conductive tissue-contacting plate configured for use in an electrosurgical jaw member, electrosurgical system including same, and methods of controlling vessel sealing using same |
USD758433S1 (en) | 2014-02-11 | 2016-06-07 | Samsung Electronics Co., Ltd. | Display screen or portion thereof with graphical user interface |
US9962161B2 (en) | 2014-02-12 | 2018-05-08 | Ethicon Llc | Deliverable surgical instrument |
US10420607B2 (en) | 2014-02-14 | 2019-09-24 | Arthrocare Corporation | Methods and systems related to an electrosurgical controller |
US9974541B2 (en) | 2014-02-14 | 2018-05-22 | Covidien Lp | End stop detection |
US9707005B2 (en) | 2014-02-14 | 2017-07-18 | Ethicon Llc | Lockout mechanisms for surgical devices |
WO2015123699A1 (en) | 2014-02-17 | 2015-08-20 | Children's National Medical Center | Method and system for providing recommendation for optimal execution of surgical procedures |
JP6218634B2 (ja) | 2014-02-20 | 2017-10-25 | オリンパス株式会社 | 内視鏡システム及び内視鏡の作動方法 |
US9301691B2 (en) | 2014-02-21 | 2016-04-05 | Covidien Lp | Instrument for optically detecting tissue attributes |
KR102367993B1 (ko) | 2014-02-21 | 2022-02-25 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 구속 운동을 갖는 관절운동가능 부재 및 그 관련 장치와 방법 |
USD756373S1 (en) | 2014-02-21 | 2016-05-17 | Aliphcom | Display screen or portion thereof with graphical user interface |
US10524870B2 (en) | 2014-02-21 | 2020-01-07 | Intuitive Surgical Operations, Inc. | Mechanical joints, and related systems and methods |
US11033182B2 (en) | 2014-02-21 | 2021-06-15 | 3Dintegrated Aps | Set comprising a surgical instrument |
USD755196S1 (en) | 2014-02-24 | 2016-05-03 | Kennedy-Wilson, Inc. | Display screen or portion thereof with graphical user interface |
JP6462004B2 (ja) | 2014-02-24 | 2019-01-30 | エシコン エルエルシー | 発射部材ロックアウトを備える締結システム |
US9693777B2 (en) | 2014-02-24 | 2017-07-04 | Ethicon Llc | Implantable layers comprising a pressed region |
JP6542267B2 (ja) | 2014-02-24 | 2019-07-10 | エシコン エルエルシーEthicon LLC | 押圧された領域を含む埋め込み型層 |
US20150238118A1 (en) | 2014-02-27 | 2015-08-27 | Biorasis, Inc. | Detection of the spatial location of an implantable biosensing platform and method thereof |
CN103829983A (zh) | 2014-03-07 | 2014-06-04 | 常州威克医疗器械有限公司 | 具有多种钉高的防滑钉仓 |
US20150256355A1 (en) | 2014-03-07 | 2015-09-10 | Robert J. Pera | Wall-mounted interactive sensing and audio-visual node devices for networked living and work spaces |
WO2015138708A1 (en) | 2014-03-12 | 2015-09-17 | Proximed, Llc | Surgical guidance systems, devices, and methods |
WO2015137040A1 (ja) | 2014-03-14 | 2015-09-17 | ソニー株式会社 | ロボットアーム装置、ロボットアーム制御方法及びプログラム |
US9861261B2 (en) | 2014-03-14 | 2018-01-09 | Hrayr Karnig Shahinian | Endoscope system and method of operation thereof |
KR102456408B1 (ko) | 2014-03-17 | 2022-10-20 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 수술용 캐뉼라 마운트 및 관련된 시스템과 방법 |
KR102324953B1 (ko) | 2014-03-17 | 2021-11-12 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 디스크 결합을 확인하는 시스템 및 방법 |
JP6725424B2 (ja) | 2014-03-17 | 2020-07-15 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 遠隔操作医療システムのための誘導セットアップ |
US9554854B2 (en) | 2014-03-18 | 2017-01-31 | Ethicon Endo-Surgery, Llc | Detecting short circuits in electrosurgical medical devices |
EP3119288A1 (en) | 2014-03-20 | 2017-01-25 | Stepwise Ltd. | Convertible surgical tissue staplers and applications using thereof |
JP6204858B2 (ja) | 2014-03-25 | 2017-09-27 | 富士フイルム株式会社 | タッチパネルモジュールおよび電子機器 |
US9913642B2 (en) | 2014-03-26 | 2018-03-13 | Ethicon Llc | Surgical instrument comprising a sensor system |
BR112016021943B1 (pt) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | Instrumento cirúrgico para uso por um operador em um procedimento cirúrgico |
US9820738B2 (en) | 2014-03-26 | 2017-11-21 | Ethicon Llc | Surgical instrument comprising interactive systems |
BR112016021815B1 (pt) | 2014-03-26 | 2022-07-19 | Ethicon Endo-Surgery, Llc. | Método para controlar um instrumento cirúrgico |
US20150272580A1 (en) | 2014-03-26 | 2015-10-01 | Ethicon Endo-Surgery, Inc. | Verification of number of battery exchanges/procedure count |
BR112016021974B1 (pt) | 2014-03-26 | 2022-07-12 | Ethicon Endo-Surgery, Llc | Instrumento cirúrgico |
JP6517228B2 (ja) | 2014-03-26 | 2019-05-22 | エシコン エルエルシー | 外科用ステープル留め器具システム |
US9826977B2 (en) | 2014-03-26 | 2017-11-28 | Ethicon Llc | Sterilization verification circuit |
US20180132850A1 (en) | 2014-03-26 | 2018-05-17 | Ethicon Llc | Surgical instrument comprising a sensor system |
US20220218344A1 (en) | 2014-03-26 | 2022-07-14 | Cilag Gmbh International | Surgical instrument comprising a sensor system |
US20230309992A1 (en) | 2014-03-26 | 2023-10-05 | Cilag Gmbh International | Systems and methods for controlling a segmented circuit |
US10130382B2 (en) | 2014-03-27 | 2018-11-20 | Medtronic Xomed, Inc. | Powered surgical handpiece having a surgical tool with an RFID tag |
CN111184577A (zh) | 2014-03-28 | 2020-05-22 | 直观外科手术操作公司 | 器械在视野中的定量三维可视化 |
US9526518B2 (en) | 2014-03-28 | 2016-12-27 | Ethicon Endo-Surgery, Llc | Surgical cutting devices and methods that include a self-adjusting cutting blade |
WO2015153324A1 (en) | 2014-03-29 | 2015-10-08 | Standard Bariatrics, Inc. | End effectors, surgical stapling devices, and methods of using same |
AU2015241193B2 (en) | 2014-03-29 | 2020-01-02 | Standard Bariatrics, Inc. | End effectors surgical stapling devices, and methods of using same |
US10420577B2 (en) | 2014-03-31 | 2019-09-24 | Covidien Lp | Apparatus and method for tissue thickness sensing |
CN106163445B (zh) | 2014-03-31 | 2019-11-29 | 直观外科手术操作公司 | 带有可切换传动装置的外科手术器械 |
US9757126B2 (en) | 2014-03-31 | 2017-09-12 | Covidien Lp | Surgical stapling apparatus with firing lockout mechanism |
US9549750B2 (en) | 2014-03-31 | 2017-01-24 | Ethicon Endo-Surgery, Llc | Surgical devices with articulating end effectors and methods of using surgical devices with articulating end effectors |
US11116383B2 (en) | 2014-04-02 | 2021-09-14 | Asensus Surgical Europe S.à.R.L. | Articulated structured light based-laparoscope |
US10285763B2 (en) | 2014-04-02 | 2019-05-14 | Intuitive Surgical Operations, Inc. | Actuation element guide with twisting channels |
US9918730B2 (en) | 2014-04-08 | 2018-03-20 | Ethicon Llc | Methods and devices for controlling motorized surgical devices |
CN106535819A (zh) | 2014-04-08 | 2017-03-22 | 灵敏生物公司 | 安置并固定覆盖手术边缘的手术网片或手术支撑件的递送系统 |
US9675405B2 (en) | 2014-04-08 | 2017-06-13 | Ethicon Llc | Methods and devices for controlling motorized surgical devices |
US9980769B2 (en) | 2014-04-08 | 2018-05-29 | Ethicon Llc | Methods and devices for controlling motorized surgical devices |
US10105126B2 (en) | 2014-04-09 | 2018-10-23 | Lsi Solutions, Inc. | Self-articulating joint for a minimally invasive surgical apparatus |
WO2015154188A1 (en) | 2014-04-09 | 2015-10-15 | The University Of British Columbia | Drill cover and chuck mechanism |
US20150297225A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
JP6532889B2 (ja) | 2014-04-16 | 2019-06-19 | エシコン エルエルシーEthicon LLC | 締結具カートリッジ組立体及びステープル保持具カバー配置構成 |
US11055980B2 (en) | 2014-04-16 | 2021-07-06 | Murata Vios, Inc. | Patient care and health information management systems and methods |
US9801628B2 (en) | 2014-09-26 | 2017-10-31 | Ethicon Llc | Surgical staple and driver arrangements for staple cartridges |
US9844369B2 (en) | 2014-04-16 | 2017-12-19 | Ethicon Llc | Surgical end effectors with firing element monitoring arrangements |
CN106456176B (zh) | 2014-04-16 | 2019-06-28 | 伊西康内外科有限责任公司 | 包括具有不同构型的延伸部的紧固件仓 |
JP6612256B2 (ja) | 2014-04-16 | 2019-11-27 | エシコン エルエルシー | 不均一な締結具を備える締結具カートリッジ |
USD756377S1 (en) | 2014-04-17 | 2016-05-17 | Google Inc. | Portion of a display panel with an animated computer icon |
US10164466B2 (en) | 2014-04-17 | 2018-12-25 | Covidien Lp | Non-contact surgical adapter electrical interface |
DE102015201574A1 (de) | 2014-04-17 | 2015-10-22 | Robert Bosch Gmbh | Akkuvorrichtung |
US20150297200A1 (en) | 2014-04-17 | 2015-10-22 | Covidien Lp | End of life transmission system for surgical instruments |
US10080552B2 (en) | 2014-04-21 | 2018-09-25 | Covidien Lp | Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof |
US9668733B2 (en) | 2014-04-21 | 2017-06-06 | Covidien Lp | Stapling device with features to prevent inadvertent firing of staples |
US10258363B2 (en) | 2014-04-22 | 2019-04-16 | Ethicon Llc | Method of operating an articulating ultrasonic surgical instrument |
WO2015161677A1 (en) | 2014-04-22 | 2015-10-29 | Bio-Medical Engineering (HK) Limited | Single access surgical robotic devices and systems, and methods of configuring single access surgical robotic devices and systems |
US9855108B2 (en) | 2014-04-22 | 2018-01-02 | Bio-Medical Engineering (HK) Limited | Robotic devices and systems for performing single incision procedures and natural orifice translumenal endoscopic surgical procedures, and methods of configuring robotic devices and systems |
US10133248B2 (en) | 2014-04-28 | 2018-11-20 | Covidien Lp | Systems and methods for determining an end of life state for surgical devices |
US9844378B2 (en) | 2014-04-29 | 2017-12-19 | Covidien Lp | Surgical stapling apparatus and methods of adhering a surgical buttress thereto |
CA2947530A1 (en) | 2014-04-30 | 2015-11-05 | Vanderbilt Universtiy | Surgical grasper |
USD786280S1 (en) | 2014-05-01 | 2017-05-09 | Beijing Qihoo Technology Company Limited | Display screen with a graphical user interface |
USD716820S1 (en) | 2014-05-02 | 2014-11-04 | Nike, Inc. | Display screen with graphical user interface |
US9872722B2 (en) | 2014-05-05 | 2018-01-23 | Covidien Lp | Wake-up system and method for powered surgical instruments |
US10175127B2 (en) | 2014-05-05 | 2019-01-08 | Covidien Lp | End-effector force measurement drive circuit |
US9861366B2 (en) | 2014-05-06 | 2018-01-09 | Covidien Lp | Ejecting assembly for a surgical stapler |
US9675368B2 (en) | 2014-05-07 | 2017-06-13 | Stmicroelectronics Asia Pacific Pte Ltd. | Touch panel scanning method, circuit and system |
US20150324317A1 (en) | 2014-05-07 | 2015-11-12 | Covidien Lp | Authentication and information system for reusable surgical instruments |
USD754679S1 (en) | 2014-05-08 | 2016-04-26 | Express Scripts, Inc. | Display screen with a graphical user interface |
CN103981635B (zh) | 2014-05-09 | 2017-01-11 | 浙江省纺织测试研究院 | 一种多孔纤维无纺布制备方法 |
CN106456165A (zh) | 2014-05-15 | 2017-02-22 | 柯惠Lp公司 | 手术紧固件施加装置 |
US10512461B2 (en) | 2014-05-15 | 2019-12-24 | Covidien Lp | Surgical fastener applying apparatus |
US9713466B2 (en) | 2014-05-16 | 2017-07-25 | Covidien Lp | Adaptor for surgical instrument for converting rotary input to linear output |
JP2015217112A (ja) | 2014-05-16 | 2015-12-07 | キヤノン株式会社 | 移動型放射線撮影装置及び移動型放射線発生用装置 |
US9901341B2 (en) | 2014-05-16 | 2018-02-27 | Covidien Lp | Surgical instrument |
US9668734B2 (en) | 2014-05-16 | 2017-06-06 | Covidien Lp | In-situ loaded stapler |
US9751176B2 (en) | 2014-05-30 | 2017-09-05 | Black & Decker Inc. | Power tool accessory attachment system |
JP1517663S (pt) | 2014-05-30 | 2015-02-16 | ||
USD771112S1 (en) | 2014-06-01 | 2016-11-08 | Apple Inc. | Display screen or portion thereof with graphical user interface |
USD823858S1 (en) | 2014-06-02 | 2018-07-24 | Mitsubishi Electric Corporation | Information display for a vehicle with a graphical user interface |
WO2015187107A1 (en) | 2014-06-05 | 2015-12-10 | Eae Elektri̇k Asansör Endüstri̇si̇ İnşaat Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ | Rotary connection mechanism carrying cable in the wind turbines |
CN104027145B (zh) | 2014-06-06 | 2016-07-06 | 山东威瑞外科医用制品有限公司 | 防误操作型切割吻合器 |
US10251725B2 (en) | 2014-06-09 | 2019-04-09 | Covidien Lp | Authentication and information system for reusable surgical instruments |
US9936954B2 (en) | 2014-06-10 | 2018-04-10 | Ethicon Llc | Devices and methods for sealing staples in tissue |
US10172611B2 (en) | 2014-06-10 | 2019-01-08 | Ethicon Llc | Adjunct materials and methods of using same in surgical methods for tissue sealing |
US9848871B2 (en) | 2014-06-10 | 2017-12-26 | Ethicon Llc | Woven and fibrous materials for reinforcing a staple line |
EP3785644B1 (en) | 2014-06-11 | 2023-11-01 | Applied Medical Resources Corporation | Surgical stapler with circumferential firing |
US9918714B2 (en) | 2014-06-13 | 2018-03-20 | Cook Medical Technologies Llc | Stapling device and method |
US10045781B2 (en) | 2014-06-13 | 2018-08-14 | Ethicon Llc | Closure lockout systems for surgical instruments |
US9987099B2 (en) | 2014-06-18 | 2018-06-05 | Covidien Lp | Disposable housings for encasing handle assemblies |
US20150366585A1 (en) | 2014-06-18 | 2015-12-24 | Matthieu Olivier Lemay | Tension-limiting temporary epicardial pacing wire extraction device |
WO2015199912A1 (en) | 2014-06-23 | 2015-12-30 | Exxonmobil Upstream Research Company | Image quality enhancement of a differential image for a multiple detector system |
US9693774B2 (en) | 2014-06-25 | 2017-07-04 | Ethicon Llc | Pivotable articulation joint unlocking feature for surgical stapler |
US10292701B2 (en) | 2014-06-25 | 2019-05-21 | Ethicon Llc | Articulation drive features for surgical stapler |
US10064620B2 (en) | 2014-06-25 | 2018-09-04 | Ethicon Llc | Method of unlocking articulation joint in surgical stapler |
US10456132B2 (en) | 2014-06-25 | 2019-10-29 | Ethicon Llc | Jaw opening feature for surgical stapler |
US9999423B2 (en) | 2014-06-25 | 2018-06-19 | Ethicon Llc | Translatable articulation joint unlocking feature for surgical stapler |
JP2016007800A (ja) | 2014-06-25 | 2016-01-18 | 株式会社リコー | 異常検知システム、電子機器、異常検知方法およびプログラム |
US10335147B2 (en) | 2014-06-25 | 2019-07-02 | Ethicon Llc | Method of using lockout features for surgical stapler cartridge |
US10561418B2 (en) | 2014-06-26 | 2020-02-18 | Covidien Lp | Adapter assemblies for interconnecting surgical loading units and handle assemblies |
US9987095B2 (en) | 2014-06-26 | 2018-06-05 | Covidien Lp | Adapter assemblies for interconnecting electromechanical handle assemblies and surgical loading units |
US20150374372A1 (en) | 2014-06-26 | 2015-12-31 | Covidien Lp | Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use |
US10163589B2 (en) | 2014-06-26 | 2018-12-25 | Covidien Lp | Adapter assemblies for interconnecting surgical loading units and handle assemblies |
USD753167S1 (en) | 2014-06-27 | 2016-04-05 | Opower, Inc. | Display screen of a communications terminal with graphical user interface |
US9629631B2 (en) | 2014-07-01 | 2017-04-25 | Covidien Lp | Composite drive beam for surgical stapling |
DE102014009893B4 (de) | 2014-07-04 | 2016-04-28 | gomtec GmbH | Endeffektor für ein Instrument |
US10064649B2 (en) | 2014-07-07 | 2018-09-04 | Covidien Lp | Pleated seal for surgical hand or instrument access |
CN106663318B (zh) | 2014-07-25 | 2021-03-16 | 柯惠Lp公司 | 增强手术现实环境 |
JP6265859B2 (ja) | 2014-07-28 | 2018-01-24 | オリンパス株式会社 | 処置具駆動装置 |
US10717179B2 (en) | 2014-07-28 | 2020-07-21 | Black & Decker Inc. | Sound damping for power tools |
US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
US10542976B2 (en) | 2014-07-31 | 2020-01-28 | Covidien Lp | Powered surgical instrument with pressure sensitive motor speed control |
US10058395B2 (en) | 2014-08-01 | 2018-08-28 | Intuitive Surgical Operations, Inc. | Active and semi-active damping in a telesurgical system |
EP3195096B1 (en) | 2014-08-02 | 2020-08-12 | Apple Inc. | Context-specific user interfaces |
JP6006460B2 (ja) | 2014-08-04 | 2016-10-12 | オリンパス株式会社 | 手術用器具及び組織切離ユニット |
US9759265B2 (en) | 2014-08-14 | 2017-09-12 | Steering Solutions Ip Holding Corporation | Centering mechanism for double cardan joints |
US9913733B2 (en) | 2014-08-20 | 2018-03-13 | Synaptive Medical (Barbados) Inc. | Intra-operative determination of dimensions for fabrication of artificial bone flap |
US20160051316A1 (en) | 2014-08-25 | 2016-02-25 | Ethicon Endo-Surgery, Inc. | Electrosurgical electrode mechanism |
US10194976B2 (en) | 2014-08-25 | 2019-02-05 | Ethicon Llc | Lockout disabling mechanism |
US9877776B2 (en) | 2014-08-25 | 2018-01-30 | Ethicon Llc | Simultaneous I-beam and spring driven cam jaw closure mechanism |
EP3733228B1 (en) | 2014-08-28 | 2024-03-06 | UNL Holdings LLC | Sensor systems for drug delivery devices |
US9700320B2 (en) | 2014-09-02 | 2017-07-11 | Ethicon Llc | Devices and methods for removably coupling a cartridge to an end effector of a surgical device |
US9943312B2 (en) | 2014-09-02 | 2018-04-17 | Ethicon Llc | Methods and devices for locking a surgical device based on loading of a fastener cartridge in the surgical device |
US9795380B2 (en) | 2014-09-02 | 2017-10-24 | Ethicon Llc | Devices and methods for facilitating closing and clamping of an end effector of a surgical device |
US9848877B2 (en) | 2014-09-02 | 2017-12-26 | Ethicon Llc | Methods and devices for adjusting a tissue gap of an end effector of a surgical device |
USD762659S1 (en) | 2014-09-02 | 2016-08-02 | Apple Inc. | Display screen or portion thereof with graphical user interface |
US10004500B2 (en) | 2014-09-02 | 2018-06-26 | Ethicon Llc | Devices and methods for manually retracting a drive shaft, drive beam, and associated components of a surgical fastening device |
US9877722B2 (en) | 2014-09-02 | 2018-01-30 | Ethicon Llc | Devices and methods for guiding surgical fasteners |
US9788835B2 (en) | 2014-09-02 | 2017-10-17 | Ethicon Llc | Devices and methods for facilitating ejection of surgical fasteners from cartridges |
US9413128B2 (en) | 2014-09-04 | 2016-08-09 | Htc Corporation | Connector module having a rotating element disposed within and rotatable relative to a case |
BR112017004361B1 (pt) | 2014-09-05 | 2023-04-11 | Ethicon Llc | Sistema eletrônico para um instrumento cirúrgico |
CN204092074U (zh) | 2014-09-05 | 2015-01-14 | 瑞奇外科器械(中国)有限公司 | 外科手术器械的驱动装置及外科手术器械 |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
US10016199B2 (en) | 2014-09-05 | 2018-07-10 | Ethicon Llc | Polarity of hall magnet to identify cartridge type |
US20160069449A1 (en) | 2014-09-08 | 2016-03-10 | Nidec Copal Electronics Corporation | Thin-type gear motor and muscle force assisting device using thin-type gear motor |
WO2016037529A1 (zh) | 2014-09-12 | 2016-03-17 | 瑞奇外科器械(中国)有限公司 | 末端执行器及其钉匣组件、外科手术器械 |
US10820939B2 (en) | 2014-09-15 | 2020-11-03 | Covidien Lp | Vessel-sealing device including force-balance interface and electrosurgical system including same |
ES2902606T3 (es) | 2014-09-15 | 2022-03-29 | Applied Med Resources | Grapadora quirúrgica con altura de grapas autoajustable |
US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
US20160081678A1 (en) | 2014-09-22 | 2016-03-24 | Boston Scientific Scimed, Inc. | Hinged needle |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
CN204158440U (zh) | 2014-09-26 | 2015-02-18 | 重庆康美唯外科器械有限公司 | 直线吻合器缝合钉仓结构 |
MX2017003960A (es) | 2014-09-26 | 2017-12-04 | Ethicon Llc | Refuerzos de grapas quirúrgicas y materiales auxiliares. |
CN204158441U (zh) | 2014-09-26 | 2015-02-18 | 重庆康美唯外科器械有限公司 | 直线吻合器钉仓结构 |
US20170224428A1 (en) | 2014-09-29 | 2017-08-10 | Covidien Lp | Dynamic input scaling for controls of robotic surgical system |
US10039564B2 (en) | 2014-09-30 | 2018-08-07 | Ethicon Llc | Surgical devices having power-assisted jaw closure and methods for compressing and sensing tissue |
US9953193B2 (en) | 2014-09-30 | 2018-04-24 | Tego, Inc. | Operating systems for an RFID tag |
US9924943B2 (en) | 2014-10-01 | 2018-03-27 | Covidien Lp | Method of manufacturing jaw members for surgical stapling instrument |
US9901406B2 (en) | 2014-10-02 | 2018-02-27 | Inneroptic Technology, Inc. | Affected region display associated with a medical device |
WO2016057225A1 (en) | 2014-10-07 | 2016-04-14 | Covidien Lp | Handheld electromechanical surgical system |
USD766261S1 (en) | 2014-10-10 | 2016-09-13 | Salesforce.Com, Inc. | Display screen or portion thereof with animated graphical user interface |
US10076325B2 (en) | 2014-10-13 | 2018-09-18 | Ethicon Llc | Surgical stapling apparatus comprising a tissue stop |
GB2531994B (en) | 2014-10-15 | 2020-06-24 | Cmr Surgical Ltd | Surgical articulation |
US9833239B2 (en) | 2014-10-15 | 2017-12-05 | Ethicon Llc | Surgical instrument battery pack with power profile emulation |
USD780803S1 (en) | 2014-10-16 | 2017-03-07 | Orange Research, Inc. | Display panel portion with icon |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
USD761309S1 (en) | 2014-10-17 | 2016-07-12 | Samsung Electronics Co., Ltd. | Display screen or portion thereof with animated graphical user interface |
EP3103381A4 (en) | 2014-10-20 | 2017-11-15 | Olympus Corporation | Solid-state imaging device and electronic endoscope provided with solid-state imaging device |
US10729443B2 (en) | 2014-10-21 | 2020-08-04 | Covidien Lp | Adapter, extension, and connector assemblies for surgical devices |
US9991069B2 (en) | 2014-10-22 | 2018-06-05 | Covidien Lp | Surgical instruments and switch assemblies thereof |
US10085750B2 (en) | 2014-10-22 | 2018-10-02 | Covidien Lp | Adapter with fire rod J-hook lockout |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
EA036313B1 (ru) | 2014-10-30 | 2020-10-26 | Страйкер Фар Ист, Инк. | Хирургический инструмент с асептическим силовым модулем, который включается в определенном рабочем режиме в зависимости от типа ручного устройства, к которому он подсоединен |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
US20160135895A1 (en) | 2014-11-07 | 2016-05-19 | Corium International, Inc. | Medical device packaging |
CN106470631A (zh) | 2014-11-11 | 2017-03-01 | 奥林巴斯株式会社 | 处置器具和处置系统 |
USD772905S1 (en) | 2014-11-14 | 2016-11-29 | Volvo Car Corporation | Display screen with graphical user interface |
EP3220797A1 (en) | 2014-11-17 | 2017-09-27 | Lina Medical ApS | A device for use in hysteroscopy |
EP3032443A1 (en) | 2014-12-08 | 2016-06-15 | Roche Diagnostics GmbH | Pairing of a medical apparatus with a control unit |
US9651032B2 (en) | 2014-12-09 | 2017-05-16 | General Electric Company | Submersible power generators and method of operating thereof |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
USD777773S1 (en) | 2014-12-11 | 2017-01-31 | Lenovo (Beijing) Co., Ltd. | Display screen or portion thereof with graphical user interface |
WO2016100682A1 (en) | 2014-12-17 | 2016-06-23 | Maquet Cardiovascular Llc | Surgical device |
US10542985B2 (en) | 2014-12-17 | 2020-01-28 | Covidien Lp | Surgical stapling device with firing indicator |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US10117649B2 (en) | 2014-12-18 | 2018-11-06 | Ethicon Llc | Surgical instrument assembly comprising a lockable articulation system |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US9943309B2 (en) | 2014-12-18 | 2018-04-17 | Ethicon Llc | Surgical instruments with articulatable end effectors and movable firing beam support arrangements |
MX2017008108A (es) | 2014-12-18 | 2018-03-06 | Ethicon Llc | Instrumento quirurgico con un yunque que puede moverse de manera selectiva sobre un eje discreto no movil con relacion a un cartucho de grapas. |
US10188385B2 (en) | 2014-12-18 | 2019-01-29 | Ethicon Llc | Surgical instrument system comprising lockable systems |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US9993284B2 (en) | 2014-12-19 | 2018-06-12 | Ethicon Llc | Electrosurgical instrument with jaw cleaning mode |
USD785794S1 (en) | 2014-12-23 | 2017-05-02 | Gyrus Acmi, Inc. | Adapter for a surgical device |
BR112017014210B1 (pt) | 2014-12-30 | 2022-02-22 | Touchstone International Medical Science Co., Ltd | Conjunto de cabeça de grampeamento e aparelho de sutura e corte para cirurgia endoscópica |
US20170354413A1 (en) | 2014-12-30 | 2017-12-14 | Suzhou Touchstone International Medical Science Co., Ltd. | Stapling head assembly and suturing and cutting apparatus for endoscopic surgery |
CN104490440B (zh) | 2014-12-30 | 2016-09-14 | 苏州天臣国际医疗科技有限公司 | 外科手术器械 |
CN104434250B (zh) | 2014-12-30 | 2017-01-18 | 苏州天臣国际医疗科技有限公司 | 钉仓组件及使用该钉仓组件的医用吻合器 |
JP6404478B2 (ja) | 2014-12-31 | 2018-10-10 | タッチストーン インターナショナル メディカル サイエンス カンパニーリミテッドTouchstone International Medical Science Co., Ltd. | ステープルカートリッジユニットと当該ステープルカートリッジユニットを使用する医療用ステープラー |
US9775611B2 (en) | 2015-01-06 | 2017-10-03 | Covidien Lp | Clam shell surgical stapling loading unit |
AU2016200084B2 (en) | 2015-01-16 | 2020-01-16 | Covidien Lp | Powered surgical stapling device |
US20170106302A1 (en) | 2015-01-16 | 2017-04-20 | Kma Concepts Limited | Toy Figure with Articulating Limbs and Body |
CN104586463A (zh) | 2015-01-19 | 2015-05-06 | 鲁仁义 | 医用一次性电动锯钻 |
EP3247291B1 (en) | 2015-01-20 | 2021-04-14 | Talon Medical, LLC | Tissue engagement devices and systems |
US11026750B2 (en) | 2015-01-23 | 2021-06-08 | Queen's University At Kingston | Real-time surgical navigation |
USD798319S1 (en) | 2015-02-02 | 2017-09-26 | Scanmaskin Sverige Ab | Portion of an electronic display panel with changeable computer-generated screens and icons |
US9396369B1 (en) | 2015-02-03 | 2016-07-19 | Apple Inc. | Electronic tag transmissions corresponding to physical disturbance of tag |
US10470767B2 (en) | 2015-02-10 | 2019-11-12 | Covidien Lp | Surgical stapling instrument having ultrasonic energy delivery |
US10111658B2 (en) | 2015-02-12 | 2018-10-30 | Covidien Lp | Display screens for medical devices |
CN204520822U (zh) | 2015-02-15 | 2015-08-05 | 王超航 | 一种用于外科缝合器的可换钉仓装置 |
US10111665B2 (en) | 2015-02-19 | 2018-10-30 | Covidien Lp | Electromechanical surgical systems |
US10034668B2 (en) | 2015-02-19 | 2018-07-31 | Covidien Lp | Circular knife blade for linear staplers |
USD791784S1 (en) | 2015-02-20 | 2017-07-11 | Google Inc. | Portion of a display panel with a graphical user interface with icons |
US10039545B2 (en) | 2015-02-23 | 2018-08-07 | Covidien Lp | Double fire stapling |
EP3261702A2 (en) | 2015-02-26 | 2018-01-03 | Stryker Corporation | Surgical instrument with articulation region |
US10085749B2 (en) | 2015-02-26 | 2018-10-02 | Covidien Lp | Surgical apparatus with conductor strain relief |
USD767624S1 (en) | 2015-02-26 | 2016-09-27 | Samsung Electronics Co., Ltd. | Display screen or portion thereof with animated graphical user interface |
US10130367B2 (en) | 2015-02-26 | 2018-11-20 | Covidien Lp | Surgical apparatus |
CN107635483B (zh) | 2015-02-27 | 2020-09-11 | 伊西康有限责任公司 | 包括检查操作台的外科器械系统 |
USD770515S1 (en) | 2015-02-27 | 2016-11-01 | Samsung Electronics Co., Ltd. | Display screen or portion thereof with graphical user interface |
US10045779B2 (en) | 2015-02-27 | 2018-08-14 | Ethicon Llc | Surgical instrument system comprising an inspection station |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US9993258B2 (en) | 2015-02-27 | 2018-06-12 | Ethicon Llc | Adaptable surgical instrument handle |
US10180463B2 (en) | 2015-02-27 | 2019-01-15 | Ethicon Llc | Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band |
US9855040B2 (en) | 2015-03-04 | 2018-01-02 | Covidien Lp | Surgical stapling loading unit having articulating jaws |
US10064642B2 (en) | 2015-03-04 | 2018-09-04 | Covidien Lp | Surgical instrument for dissecting tissue |
US20160256221A1 (en) | 2015-03-05 | 2016-09-08 | Donald L. Smith | Anesthesia cover system |
US20160256159A1 (en) | 2015-03-05 | 2016-09-08 | Covidien Lp | Jaw members and methods of manufacture |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
US9924961B2 (en) | 2015-03-06 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Interactive feedback system for powered surgical instruments |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
US10045776B2 (en) | 2015-03-06 | 2018-08-14 | Ethicon Llc | Control techniques and sub-processor contained within modular shaft with select control processing from handle |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
JP2020121162A (ja) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | 測定の安定性要素、クリープ要素、及び粘弾性要素を決定するためのセンサデータの時間依存性評価 |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
US9895148B2 (en) | 2015-03-06 | 2018-02-20 | Ethicon Endo-Surgery, Llc | Monitoring speed control and precision incrementing of motor for powered surgical instruments |
US10190888B2 (en) | 2015-03-11 | 2019-01-29 | Covidien Lp | Surgical stapling instruments with linear position assembly |
CN204636451U (zh) | 2015-03-12 | 2015-09-16 | 葛益飞 | 动静脉切开及吻合装置 |
US10159506B2 (en) | 2015-03-16 | 2018-12-25 | Ethicon Llc | Methods and devices for actuating surgical instruments |
US10092290B2 (en) | 2015-03-17 | 2018-10-09 | Covidien Lp | Surgical instrument, loading unit for use therewith and related methods |
US9918717B2 (en) | 2015-03-18 | 2018-03-20 | Covidien Lp | Pivot mechanism for surgical device |
US10004552B1 (en) | 2015-03-19 | 2018-06-26 | Expandoheat, L.L.C. | End effector structure for stapling apparatus |
US9883843B2 (en) | 2015-03-19 | 2018-02-06 | Medtronic Navigation, Inc. | Apparatus and method of counterbalancing axes and maintaining a user selected position of a X-Ray scanner gantry |
US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
US10172618B2 (en) | 2015-03-25 | 2019-01-08 | Ethicon Llc | Low glass transition temperature bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler |
US10568621B2 (en) | 2015-03-25 | 2020-02-25 | Ethicon Llc | Surgical staple buttress with integral adhesive for releasably attaching to a surgical stapler |
US10172617B2 (en) | 2015-03-25 | 2019-01-08 | Ethicon Llc | Malleable bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler |
US10349939B2 (en) | 2015-03-25 | 2019-07-16 | Ethicon Llc | Method of applying a buttress to a surgical stapler |
US10136891B2 (en) | 2015-03-25 | 2018-11-27 | Ethicon Llc | Naturally derived bioabsorbable polymer gel adhesive for releasably attaching a staple buttress to a surgical stapler |
US10863984B2 (en) | 2015-03-25 | 2020-12-15 | Ethicon Llc | Low inherent viscosity bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler |
US10548593B2 (en) | 2015-03-25 | 2020-02-04 | Ethicon Llc | Flowable bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler |
US10478187B2 (en) | 2015-03-25 | 2019-11-19 | Ethicon Llc | Biologically derived extracellular matrix with infused viscous absorbable copolymer for releasably attaching a staple buttress to a surgical stapler |
USD832301S1 (en) | 2015-03-30 | 2018-10-30 | Creed Smith | Display screen or portion thereof with animated graphical user interface |
US10213201B2 (en) | 2015-03-31 | 2019-02-26 | Ethicon Llc | Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw |
WO2016157171A1 (en) | 2015-04-01 | 2016-10-06 | Artack Medical (2013) Ltd. | Articulating medical device |
US20160287279A1 (en) | 2015-04-01 | 2016-10-06 | Auris Surgical Robotics, Inc. | Microsurgical tool for robotic applications |
CA3073172A1 (en) | 2015-04-03 | 2016-10-06 | Conmed Corporation | Autoclave tolerant battery powered motorized surgical hand piece tool and motor control method |
US10016656B2 (en) | 2015-04-07 | 2018-07-10 | Ohio State Innovation Foundation | Automatically adjustable treadmill control system |
USD768167S1 (en) | 2015-04-08 | 2016-10-04 | Anthony M Jones | Display screen with icon |
US10226239B2 (en) | 2015-04-10 | 2019-03-12 | Covidien Lp | Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof |
US10226274B2 (en) | 2015-04-16 | 2019-03-12 | Ethicon Llc | Ultrasonic surgical instrument with articulation joint having plurality of locking positions |
US10029125B2 (en) | 2015-04-16 | 2018-07-24 | Ethicon Llc | Ultrasonic surgical instrument with articulation joint having integral stiffening members |
US10342567B2 (en) | 2015-04-16 | 2019-07-09 | Ethicon Llc | Ultrasonic surgical instrument with opposing thread drive for end effector articulation |
US10111698B2 (en) | 2015-04-16 | 2018-10-30 | Ethicon Llc | Surgical instrument with rotatable shaft having plurality of locking positions |
WO2016171395A1 (ko) | 2015-04-20 | 2016-10-27 | 주식회사 메디튤립 | 외과용 선형 스테이플 장치 |
WO2016171025A1 (ja) | 2015-04-21 | 2016-10-27 | オリンパス株式会社 | エネルギー処置具 |
ES2950459T3 (es) | 2015-04-22 | 2023-10-10 | Covidien Lp | Sistema quirúrgico electromecánico portátil |
US11278286B2 (en) | 2015-04-22 | 2022-03-22 | Covidien Lp | Handheld electromechanical surgical system |
US20160314717A1 (en) | 2015-04-27 | 2016-10-27 | KindHeart, Inc. | Telerobotic surgery system for remote surgeon training using robotic surgery station coupled to remote surgeon trainee and instructor stations and associated methods |
US20160314711A1 (en) | 2015-04-27 | 2016-10-27 | KindHeart, Inc. | Telerobotic surgery system for remote surgeon training using robotic surgery station and remote surgeon station with display of actual animal tissue images and associated methods |
US10117650B2 (en) | 2015-05-05 | 2018-11-06 | Covidien Lp | Adapter assembly and loading units for surgical stapling devices |
US10299789B2 (en) | 2015-05-05 | 2019-05-28 | Covidie LP | Adapter assembly for surgical stapling devices |
US10039532B2 (en) | 2015-05-06 | 2018-08-07 | Covidien Lp | Surgical instrument with articulation assembly |
JP6420501B6 (ja) | 2015-05-08 | 2018-12-19 | ジャストライト サージカル,リミティド ライアビリティ カンパニー | 手術用ステープラ |
WO2016187008A1 (en) | 2015-05-15 | 2016-11-24 | Intuitive Surgical Operations, Inc. | System and method for force or torque limit compensation |
CA2930309C (en) | 2015-05-22 | 2019-02-26 | Covidien Lp | Surgical instruments and methods for performing tonsillectomy, adenoidectomy, and other surgical procedures |
US20180289371A1 (en) | 2015-05-25 | 2018-10-11 | Covidien Lp | Small diameter surgical stapling device |
US10022120B2 (en) | 2015-05-26 | 2018-07-17 | Ethicon Llc | Surgical needle with recessed features |
US10349941B2 (en) | 2015-05-27 | 2019-07-16 | Covidien Lp | Multi-fire lead screw stapling device |
US10172615B2 (en) | 2015-05-27 | 2019-01-08 | Covidien Lp | Multi-fire push rod stapling device |
US10722293B2 (en) | 2015-05-29 | 2020-07-28 | Covidien Lp | Surgical device with an end effector assembly and system for monitoring of tissue before and after a surgical procedure |
US10426555B2 (en) | 2015-06-03 | 2019-10-01 | Covidien Lp | Medical instrument with sensor for use in a system and method for electromagnetic navigation |
USD772269S1 (en) | 2015-06-05 | 2016-11-22 | Apple Inc. | Display screen or portion thereof with graphical user interface |
USD764498S1 (en) | 2015-06-07 | 2016-08-23 | Apple Inc. | Display screen or portion thereof with graphical user interface |
EP4331522A3 (en) | 2015-06-10 | 2024-05-22 | Intuitive Surgical Operations, Inc. | System and method for patient-side instrument control |
US10201381B2 (en) | 2015-06-11 | 2019-02-12 | Conmed Corporation | Hand instruments with shaped shafts for use in laparoscopic surgery |
US9888914B2 (en) | 2015-06-16 | 2018-02-13 | Ethicon Endo-Surgery, Llc | Suturing instrument with motorized needle drive |
KR101719208B1 (ko) | 2015-06-17 | 2017-03-23 | 주식회사 하이딥 | 디스플레이 모듈을 포함하는 압력 검출 가능한 터치 입력 장치 |
US10335149B2 (en) | 2015-06-18 | 2019-07-02 | Ethicon Llc | Articulatable surgical instruments with composite firing beam structures with center firing support member for articulation support |
US10271841B2 (en) | 2015-06-26 | 2019-04-30 | Ethicon Llc | Bailout assembly for surgical stapler |
US10194911B2 (en) | 2015-06-26 | 2019-02-05 | Ethicon Llc | Surgical stapler with ready state indicator |
US10905415B2 (en) | 2015-06-26 | 2021-02-02 | Ethicon Llc | Surgical stapler with electromechanical lockout |
US10226276B2 (en) | 2015-06-26 | 2019-03-12 | Covidien Lp | Tissue-removing catheter including operational control mechanism |
US9839470B2 (en) | 2015-06-30 | 2017-12-12 | Covidien Lp | Electrosurgical generator for minimizing neuromuscular stimulation |
US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
CN104921730B (zh) | 2015-06-30 | 2017-09-12 | 上海理工大学 | 测量组织厚度的智能器械 |
US10709894B2 (en) | 2015-07-01 | 2020-07-14 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
USD769315S1 (en) | 2015-07-09 | 2016-10-18 | Monthly Gift Inc. | Display screen or portion thereof with graphical user interface |
CN108024806B (zh) | 2015-07-21 | 2022-07-01 | 3D集成公司 | 套管组装套件、套管针组装套件、套筒组件、微创手术系统及其方法 |
GB201512964D0 (en) | 2015-07-22 | 2015-09-02 | Cambridge Medical Robotics Ltd | Communication paths for robot arms |
GB2540757B (en) | 2015-07-22 | 2021-03-31 | Cmr Surgical Ltd | Torque sensors |
US10194912B2 (en) | 2015-07-28 | 2019-02-05 | Ethicon Llc | Surgical staple cartridge with outer edge compression features |
US10201348B2 (en) | 2015-07-28 | 2019-02-12 | Ethicon Llc | Surgical stapler cartridge with compression features at staple driver edges |
US10314580B2 (en) | 2015-07-28 | 2019-06-11 | Ethicon Llc | Surgical staple cartridge with compression feature at knife slot |
US10194981B2 (en) | 2015-07-29 | 2019-02-05 | Medlumics S.L. | Radiofrequency ablation catheter with optical tissue evaluation |
US10064622B2 (en) | 2015-07-29 | 2018-09-04 | Covidien Lp | Surgical stapling loading unit with stroke counter and lockout |
US11154300B2 (en) | 2015-07-30 | 2021-10-26 | Cilag Gmbh International | Surgical instrument comprising separate tissue securing and tissue cutting systems |
US10420558B2 (en) | 2015-07-30 | 2019-09-24 | Ethicon Llc | Surgical instrument comprising a system for bypassing an operational step of the surgical instrument |
US10045782B2 (en) | 2015-07-30 | 2018-08-14 | Covidien Lp | Surgical stapling loading unit with stroke counter and lockout |
USD768709S1 (en) | 2015-07-31 | 2016-10-11 | Gen-Probe Incorporated | Display screen or portion thereof with animated graphical user interface |
USD763277S1 (en) | 2015-08-06 | 2016-08-09 | Fore Support Services, Llc | Display screen with an insurance authorization/preauthorization dashboard graphical user interface |
CA2994554A1 (en) | 2015-08-06 | 2017-02-09 | Applied Medical Resources Corporation | Surgical stapler having locking articulation joint |
WO2017026141A1 (ja) | 2015-08-07 | 2017-02-16 | オリンパス株式会社 | 処置装置 |
US10835249B2 (en) | 2015-08-17 | 2020-11-17 | Ethicon Llc | Implantable layers for a surgical instrument |
US10136949B2 (en) | 2015-08-17 | 2018-11-27 | Ethicon Llc | Gathering and analyzing data for robotic surgical systems |
US10349940B2 (en) | 2015-08-24 | 2019-07-16 | Ethicon Llc | Surgical stapler buttress applicator with state indicator |
US10166023B2 (en) | 2015-08-24 | 2019-01-01 | Ethicon Llc | Method of applying a buttress to a surgical stapler end effector |
US10342542B2 (en) | 2015-08-24 | 2019-07-09 | Ethicon Llc | Surgical stapler buttress applicator with end effector actuated release mechanism |
US11039832B2 (en) | 2015-08-24 | 2021-06-22 | Cilag Gmbh International | Surgical stapler buttress applicator with spent staple cartridge lockout |
USD803234S1 (en) | 2015-08-26 | 2017-11-21 | General Electric Company | Display screen or portion thereof with graphical user interface |
US11103248B2 (en) | 2015-08-26 | 2021-08-31 | Cilag Gmbh International | Surgical staples for minimizing staple roll |
CN108348233B (zh) | 2015-08-26 | 2021-05-07 | 伊西康有限责任公司 | 用于允许改变钉特性并实现轻松仓加载的外科钉条 |
USD770476S1 (en) | 2015-08-27 | 2016-11-01 | Google Inc. | Display screen with animated graphical user interface |
US10569071B2 (en) | 2015-08-31 | 2020-02-25 | Ethicon Llc | Medicant eluting adjuncts and methods of using medicant eluting adjuncts |
US10188389B2 (en) | 2015-08-31 | 2019-01-29 | Ethicon Llc | Adjunct material for delivery to colon tissue |
US10245034B2 (en) | 2015-08-31 | 2019-04-02 | Ethicon Llc | Inducing tissue adhesions using surgical adjuncts and medicants |
US9829698B2 (en) | 2015-08-31 | 2017-11-28 | Panasonic Corporation | Endoscope |
US10130738B2 (en) | 2015-08-31 | 2018-11-20 | Ethicon Llc | Adjunct material to promote tissue growth |
MX2022006189A (es) | 2015-09-02 | 2022-06-16 | Ethicon Llc | Configuraciones de grapas quirurgicas con superficies de leva situadas entre porciones que soportan grapas quirurgicas. |
US10357252B2 (en) | 2015-09-02 | 2019-07-23 | Ethicon Llc | Surgical staple configurations with camming surfaces located between portions supporting surgical staples |
CN113081155B (zh) | 2015-09-03 | 2024-07-16 | 史赛克公司 | 带有包括可滑动的探针的一体化深度计的动力手术钻机 |
US20170066054A1 (en) | 2015-09-08 | 2017-03-09 | Caterpillar Inc. | Powdered metal compacting |
US11267860B2 (en) | 2015-09-15 | 2022-03-08 | ILC Therapeutics, LTD | Compositions and methods relating to the treatment of diseases |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10085751B2 (en) | 2015-09-23 | 2018-10-02 | Ethicon Llc | Surgical stapler having temperature-based motor control |
US10327769B2 (en) | 2015-09-23 | 2019-06-25 | Ethicon Llc | Surgical stapler having motor control based on a drive system component |
US20170079642A1 (en) | 2015-09-23 | 2017-03-23 | Ethicon Endo-Surgery, Llc | Surgical stapler having magnetic field-based motor control |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10076326B2 (en) | 2015-09-23 | 2018-09-18 | Ethicon Llc | Surgical stapler having current mirror-based motor control |
US10363036B2 (en) | 2015-09-23 | 2019-07-30 | Ethicon Llc | Surgical stapler having force-based motor control |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
US10258419B2 (en) | 2015-09-25 | 2019-04-16 | Ethicon Llc | Methods for hybrid robotic laparoscopic surgery |
US10182813B2 (en) | 2015-09-29 | 2019-01-22 | Ethicon Llc | Surgical stapling instrument with shaft release, powered firing, and powered articulation |
US10642633B1 (en) | 2015-09-29 | 2020-05-05 | EMC IP Holding Company LLC | Intelligent backups with dynamic proxy in virtualized environment |
US10314578B2 (en) | 2015-09-29 | 2019-06-11 | Ethicon Llc | Battery drain circuit for surgical instrument |
US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
US20170086829A1 (en) | 2015-09-30 | 2017-03-30 | Ethicon Endo-Surgery, Llc | Compressible adjunct with intermediate supporting structures |
US10478188B2 (en) | 2015-09-30 | 2019-11-19 | Ethicon Llc | Implantable layer comprising a constricted configuration |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US10213204B2 (en) | 2015-10-02 | 2019-02-26 | Covidien Lp | Micro surgical instrument and loading unit for use therewith |
US10052164B2 (en) | 2015-10-02 | 2018-08-21 | Ethicon Llc | System and method of converting user input into motion of a surgical instrument via a robotic surgical system |
US9987097B2 (en) | 2015-10-02 | 2018-06-05 | Elucent Medical, Inc. | Signal tag detection components, devices, and systems |
JP2018531694A (ja) | 2015-10-05 | 2018-11-01 | フレックスデックス, インク.Flexdex, Inc. | 円滑に関節屈曲するマルチクラスタジョイントを有する医療デバイス |
US10404136B2 (en) | 2015-10-14 | 2019-09-03 | Black & Decker Inc. | Power tool with separate motor case compartment |
US10499917B2 (en) | 2015-10-15 | 2019-12-10 | Ethicon Llc | Surgical stapler end effector with knife position indicators |
US10226251B2 (en) | 2015-10-15 | 2019-03-12 | Ethicon Llc | Surgical staple actuating sled with actuation stroke having minimized distance relative to distal staple |
US11141159B2 (en) | 2015-10-15 | 2021-10-12 | Cilag Gmbh International | Surgical stapler end effector with multi-staple driver crossing center line |
US10342535B2 (en) | 2015-10-15 | 2019-07-09 | Ethicon Llc | Method of applying staples to liver and other organs |
US20170105727A1 (en) | 2015-10-15 | 2017-04-20 | Ethicon Endo-Surgery, Llc | Surgical stapler with progressively driven asymmetric alternating staple drivers |
US10265073B2 (en) | 2015-10-15 | 2019-04-23 | Ethicon Llc | Surgical stapler with terminal staple orientation crossing center line |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
USD788140S1 (en) | 2015-10-16 | 2017-05-30 | Nasdaq, Inc. | Display screen or portion thereof with animated graphical user interface |
JP6938488B2 (ja) | 2015-10-20 | 2021-09-22 | ルメンディ リミテッド | 低侵襲性処置を行うための医療用器具 |
USD788123S1 (en) | 2015-10-20 | 2017-05-30 | 23Andme, Inc. | Display screen or portion thereof with a graphical user interface for conveying genetic information |
US10561412B2 (en) | 2015-10-21 | 2020-02-18 | Ethicon Llc | Suturing instrument with integrated cover needle release |
US10772632B2 (en) | 2015-10-28 | 2020-09-15 | Covidien Lp | Surgical stapling device with triple leg staples |
USD788792S1 (en) | 2015-10-28 | 2017-06-06 | Technogym S.P.A. | Portion of a display screen with a graphical user interface |
US10357248B2 (en) | 2015-10-29 | 2019-07-23 | Ethicon Llc | Extensible buttress assembly for surgical stapler |
US10251649B2 (en) | 2015-10-29 | 2019-04-09 | Ethicon Llc | Surgical stapler buttress applicator with data communication |
US10314588B2 (en) | 2015-10-29 | 2019-06-11 | Ethicon Llc | Fluid penetrable buttress assembly for a surgical stapler |
AU2016343813A1 (en) | 2015-10-29 | 2018-05-10 | Sharp Fluidics Llc | Systems and methods for data capture in an operating room |
US10517592B2 (en) | 2015-10-29 | 2019-12-31 | Ethicon Llc | Surgical stapler buttress assembly with adhesion to wet end effector |
US10499918B2 (en) | 2015-10-29 | 2019-12-10 | Ethicon Llc | Surgical stapler buttress assembly with features to interact with movable end effector components |
US10433839B2 (en) | 2015-10-29 | 2019-10-08 | Ethicon Llc | Surgical stapler buttress assembly with gel adhesive retainer |
US10441286B2 (en) | 2015-10-29 | 2019-10-15 | Ethicon Llc | Multi-layer surgical stapler buttress assembly |
US10729435B2 (en) | 2015-11-06 | 2020-08-04 | Covidien Lp | Adapter assemblies for interconnecting surgical loading units and handle assemblies |
WO2017079044A1 (en) | 2015-11-06 | 2017-05-11 | Intuitive Surgical Operations, Inc. | Knife with mechanical fuse |
DE102015221998B4 (de) | 2015-11-09 | 2019-01-17 | Siemens Healthcare Gmbh | Verfahren zur Unterstützung eines Befunders bei der Ortsbeschreibung einer Zielstruktur in einer Brust, Vorrichtung und Computerprogramm |
KR102597849B1 (ko) | 2015-11-11 | 2023-11-03 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 재구성 가능한 엔드 이펙터 구조 |
US10772630B2 (en) | 2015-11-13 | 2020-09-15 | Intuitive Surgical Operations, Inc. | Staple pusher with lost motion between ramps |
US10143514B2 (en) | 2015-11-13 | 2018-12-04 | Ethicon Llc | Electronic bailout for motorized RF device |
WO2017083129A1 (en) | 2015-11-13 | 2017-05-18 | Intuitive Surgical Operations, Inc. | Stapler anvil with compliant tip |
US10307204B2 (en) | 2015-11-13 | 2019-06-04 | Ethicon Llc | Integrated bailout for motorized RF device |
US10709495B2 (en) | 2015-11-13 | 2020-07-14 | Ethicon Llc | Dual step bailout for motorized RF device |
US10898189B2 (en) | 2015-11-13 | 2021-01-26 | Intuitive Surgical Operations, Inc. | Push-pull stapler with two degree of freedom wrist |
US10973517B2 (en) | 2015-11-13 | 2021-04-13 | Intuitive Surgical Operations, Inc. | Stapler with composite cardan and screw drive |
WO2017083989A1 (en) | 2015-11-16 | 2017-05-26 | Ao Technology Ag | Surgical power drill including a measuring unit suitable for bone screw length determination |
WO2017091335A1 (en) | 2015-11-25 | 2017-06-01 | Smith And Nephew, Inc. | System and methods of controlling temperature related to electrosurgical procedures |
US10617411B2 (en) | 2015-12-01 | 2020-04-14 | Covidien Lp | Adapter assembly for surgical device |
AU2016364950B2 (en) | 2015-12-03 | 2019-05-16 | Boston Scientific Scimed, Inc. | Electrocautery hemostasis clip |
US10111660B2 (en) | 2015-12-03 | 2018-10-30 | Covidien Lp | Surgical stapler flexible distal tip |
USD803235S1 (en) | 2015-12-04 | 2017-11-21 | Capital One Services, Llc | Display screen with a graphical user interface |
JP6318312B2 (ja) | 2015-12-07 | 2018-04-25 | オリンパス株式会社 | 処置具 |
USD789384S1 (en) | 2015-12-09 | 2017-06-13 | Facebook, Inc. | Display screen with animated graphical user interface |
GB201521809D0 (en) | 2015-12-10 | 2016-01-27 | Cambridge Medical Robotics Ltd | Symmetrically arranged surgical instrument articulation |
US10952726B2 (en) | 2015-12-10 | 2021-03-23 | Covidien Lp | Handheld electromechanical surgical instruments |
USD800766S1 (en) | 2015-12-11 | 2017-10-24 | Samsung Electronics Co., Ltd. | Display screen or portion thereof with graphical user interface |
US10338259B2 (en) | 2015-12-14 | 2019-07-02 | Covidien Lp | Surgical adapter assemblies and wireless detection of surgical loading units |
AU2016262637B2 (en) | 2015-12-17 | 2020-12-10 | Covidien Lp | Multi-fire stapler with electronic counter, lockout, and visual indicator |
USD795919S1 (en) | 2015-12-17 | 2017-08-29 | The Procter & Gamble Company | Display screen with icon |
US10624616B2 (en) | 2015-12-18 | 2020-04-21 | Covidien Lp | Surgical instruments including sensors |
USD864388S1 (en) | 2015-12-21 | 2019-10-22 | avateramedical GmBH | Instrument unit |
US10420554B2 (en) | 2015-12-22 | 2019-09-24 | Covidien Lp | Personalization of powered surgical devices |
CN105411642B (zh) | 2015-12-22 | 2018-09-11 | 苏州英途康医疗科技有限公司 | 电动吻合器及其闭合、击发控制方法 |
DE102015122802A1 (de) | 2015-12-23 | 2017-06-29 | Karl Storz Gmbh & Co. Kg | Gelenkanordnung, Führungsvorrichtung, Herstellung sowie Verwendung einer Gelenkanordnung |
WO2017115425A1 (ja) | 2015-12-28 | 2017-07-06 | オリンパス株式会社 | 医療用マニピュレータシステム |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
US10561474B2 (en) | 2015-12-31 | 2020-02-18 | Ethicon Llc | Surgical stapler with end of stroke indicator |
US10314579B2 (en) | 2016-01-07 | 2019-06-11 | Covidien Lp | Adapter assemblies for interconnecting surgical loading units and handle assemblies |
US10966717B2 (en) | 2016-01-07 | 2021-04-06 | Covidien Lp | Surgical fastener apparatus |
US10786248B2 (en) | 2016-01-11 | 2020-09-29 | Ethicon. Inc. | Intra dermal tissue fixation device |
CN113274123B (zh) | 2016-01-11 | 2024-06-14 | 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) | 具有组织止动件的夹钳 |
GB201600546D0 (en) | 2016-01-12 | 2016-02-24 | Gyrus Medical Ltd | Electrosurgical device |
US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
US11229450B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with motor drive |
EP3192491B1 (de) | 2016-01-15 | 2020-01-08 | Evonik Operations GmbH | Zusammensetzung enthaltend polyglycerinester und hydroxy-alkylmodifiziertes guar |
US10508720B2 (en) | 2016-01-21 | 2019-12-17 | Covidien Lp | Adapter assembly with planetary gear drive for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof |
WO2017132611A1 (en) | 2016-01-29 | 2017-08-03 | Intuitive Surgical Operations, Inc. | System and method for variable velocity surgical instrument |
US10695123B2 (en) | 2016-01-29 | 2020-06-30 | Covidien Lp | Surgical instrument with sensor |
USD782530S1 (en) | 2016-02-01 | 2017-03-28 | Microsoft Corporation | Display screen with animated graphical user interface |
EP3410957B1 (en) | 2016-02-04 | 2020-06-03 | Covidien LP | Circular stapler with visual indicator mechanism |
WO2017138905A1 (en) | 2016-02-09 | 2017-08-17 | Gnatenko Vitaliy I | Scissors |
US10433837B2 (en) | 2016-02-09 | 2019-10-08 | Ethicon Llc | Surgical instruments with multiple link articulation arrangements |
BR112018016098B1 (pt) | 2016-02-09 | 2023-02-23 | Ethicon Llc | Instrumento cirúrgico |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US10349937B2 (en) | 2016-02-10 | 2019-07-16 | Covidien Lp | Surgical stapler with articulation locking mechanism |
US10420559B2 (en) | 2016-02-11 | 2019-09-24 | Covidien Lp | Surgical stapler with small diameter endoscopic portion |
US10258331B2 (en) | 2016-02-12 | 2019-04-16 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US20170231628A1 (en) | 2016-02-12 | 2017-08-17 | Ethicon Endo-Surgery, Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
US20170242455A1 (en) | 2016-02-24 | 2017-08-24 | Shavena Dickens | Sterile Screen Protector |
US9824251B2 (en) | 2016-03-04 | 2017-11-21 | Motorola Mobility Llc | Automating device testing using RFID |
US11045626B2 (en) | 2016-03-06 | 2021-06-29 | Andrew N. Ellingson | Guide wire device and method |
US10315566B2 (en) | 2016-03-07 | 2019-06-11 | Lg Electronics Inc. | Vehicle control device mounted on vehicle and method for controlling the vehicle |
US10625062B2 (en) | 2016-03-08 | 2020-04-21 | Acclarent, Inc. | Dilation catheter assembly with rapid change components |
USD800904S1 (en) | 2016-03-09 | 2017-10-24 | Ethicon Endo-Surgery, Llc | Surgical stapling instrument |
US20170262110A1 (en) | 2016-03-10 | 2017-09-14 | Synaptics Incorporated | Hybrid force sensor |
CN109310476B (zh) | 2016-03-12 | 2020-04-03 | P·K·朗 | 用于手术的装置与方法 |
US10631858B2 (en) | 2016-03-17 | 2020-04-28 | Intuitive Surgical Operations, Inc. | Stapler with cable-driven advanceable clamping element and distal pulley |
US10350016B2 (en) | 2016-03-17 | 2019-07-16 | Intuitive Surgical Operations, Inc. | Stapler with cable-driven advanceable clamping element and dual distal pulleys |
US10278703B2 (en) | 2016-03-21 | 2019-05-07 | Ethicon, Inc. | Temporary fixation tools for use with circular anastomotic staplers |
USD800742S1 (en) | 2016-03-25 | 2017-10-24 | Illumina, Inc. | Display screen or portion thereof with graphical user interface |
WO2017168267A1 (en) | 2016-03-31 | 2017-10-05 | Snpshot Trustee Limited | Biological sampler, collector and storage container |
US10285705B2 (en) | 2016-04-01 | 2019-05-14 | Ethicon Llc | Surgical stapling system comprising a grooved forming pocket |
US11284890B2 (en) | 2016-04-01 | 2022-03-29 | Cilag Gmbh International | Circular stapling system comprising an incisable tissue support |
US10617413B2 (en) | 2016-04-01 | 2020-04-14 | Ethicon Llc | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
CN109219405B (zh) | 2016-04-01 | 2022-05-24 | 伊西康有限责任公司 | 外科缝合系统 |
US10456140B2 (en) | 2016-04-01 | 2019-10-29 | Ethicon Llc | Surgical stapling system comprising an unclamping lockout |
JP7010838B2 (ja) | 2016-04-01 | 2022-01-26 | エシコン エルエルシー | 外科用ステープル留め器具 |
US10307159B2 (en) | 2016-04-01 | 2019-06-04 | Ethicon Llc | Surgical instrument handle assembly with reconfigurable grip portion |
US10743850B2 (en) | 2016-04-04 | 2020-08-18 | Ethicon Llc | Surgical instrument with locking articulation drive wheel |
US10507034B2 (en) | 2016-04-04 | 2019-12-17 | Ethicon Llc | Surgical instrument with motorized articulation drive in shaft rotation knob |
US10722233B2 (en) | 2016-04-07 | 2020-07-28 | Intuitive Surgical Operations, Inc. | Stapling cartridge |
ES2938241T3 (es) | 2016-04-12 | 2023-04-05 | Applied Med Resources | Grapadora quirúrgica con un mango motorizado |
KR102713366B1 (ko) | 2016-04-12 | 2024-10-04 | 어플라이드 메디컬 리소시스 코포레이션 | 수술용 스테이플러에 대한 재장전 샤프트 어셈블리 |
CN109195776A (zh) | 2016-04-14 | 2019-01-11 | 德仕托金属有限公司 | 具有支撑结构的增材制造 |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10405859B2 (en) | 2016-04-15 | 2019-09-10 | Ethicon Llc | Surgical instrument with adjustable stop/start control during a firing motion |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10363037B2 (en) | 2016-04-18 | 2019-07-30 | Ethicon Llc | Surgical instrument system comprising a magnetic lockout |
EP3235445B1 (en) | 2016-04-18 | 2022-04-20 | Ethicon LLC | Surgical instrument comprising a lockout |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
US10285700B2 (en) | 2016-04-20 | 2019-05-14 | Ethicon Llc | Surgical staple cartridge with hydraulic staple deployment |
USD786896S1 (en) | 2016-04-29 | 2017-05-16 | Salesforce.Com, Inc. | Display screen or portion thereof with animated graphical user interface |
US10561419B2 (en) | 2016-05-04 | 2020-02-18 | Covidien Lp | Powered end effector assembly with pivotable channel |
CA3024721A1 (en) | 2016-05-19 | 2017-11-23 | Mannkind Corporation | Apparatus, system and method for detecting and monitoring inhalations |
US20170348042A1 (en) | 2016-06-01 | 2017-12-07 | Covidien Lp | Cutting mechanisms for surgical end effector assemblies, instruments, and systems |
US11076908B2 (en) | 2016-06-02 | 2021-08-03 | Gyrus Acmi, Inc. | Two-stage electrosurgical device for vessel sealing |
US20170348010A1 (en) | 2016-06-03 | 2017-12-07 | Orion Biotech Inc. | Surgical drill and method of controlling the automatic stop thereof |
USD790575S1 (en) | 2016-06-12 | 2017-06-27 | Apple Inc. | Display screen or portion thereof with graphical user interface |
US10251645B2 (en) | 2016-06-14 | 2019-04-09 | Covidien Lp | Surgical fastening with W-shaped surgical fasteners |
US10349963B2 (en) | 2016-06-14 | 2019-07-16 | Gyrus Acmi, Inc. | Surgical apparatus with jaw force limiter |
US10959731B2 (en) | 2016-06-14 | 2021-03-30 | Covidien Lp | Buttress attachment for surgical stapling instrument |
US20170360441A1 (en) | 2016-06-15 | 2017-12-21 | Covidien Lp | Tool assembly for leak resistant tissue dissection |
EP3293617B1 (en) | 2016-06-16 | 2020-01-29 | Shenzhen Goodix Technology Co., Ltd. | Touch sensor, touch detection apparatus and detection method, and touch control device |
US11000278B2 (en) | 2016-06-24 | 2021-05-11 | Ethicon Llc | Staple cartridge comprising wire staples and stamped staples |
USD847989S1 (en) | 2016-06-24 | 2019-05-07 | Ethicon Llc | Surgical fastener cartridge |
USD850617S1 (en) | 2016-06-24 | 2019-06-04 | Ethicon Llc | Surgical fastener cartridge |
USD826405S1 (en) | 2016-06-24 | 2018-08-21 | Ethicon Llc | Surgical fastener |
USD822206S1 (en) | 2016-06-24 | 2018-07-03 | Ethicon Llc | Surgical fastener |
USD819682S1 (en) | 2016-06-29 | 2018-06-05 | Rockwell Collins, Inc. | Ground system display screen portion with transitional graphical user interface |
CN105997173A (zh) | 2016-06-30 | 2016-10-12 | 江苏风和医疗器材有限公司 | 用于外科器械的钉仓及外科器械 |
CN105919642A (zh) | 2016-06-30 | 2016-09-07 | 江苏风和医疗器材有限公司 | 用于外科器械的钉仓及外科器械 |
CN109475266B (zh) | 2016-07-11 | 2021-08-10 | 奥林巴斯株式会社 | 内窥镜装置 |
US10512464B2 (en) | 2016-07-11 | 2019-12-24 | Chul Hi Park | Surgical brace device for stapled tissue |
WO2018011664A1 (en) | 2016-07-12 | 2018-01-18 | Stepwise Ltd | Asymmetric stapler heads and applications thereof |
USD813899S1 (en) | 2016-07-20 | 2018-03-27 | Facebook, Inc. | Display screen with animated graphical user interface |
US10856933B2 (en) | 2016-08-02 | 2020-12-08 | Covidien Lp | Surgical instrument housing incorporating a channel and methods of manufacturing the same |
USD844666S1 (en) | 2016-08-02 | 2019-04-02 | Smule, Inc. | Display screen or portion thereof with graphical user interface |
USD845342S1 (en) | 2016-08-02 | 2019-04-09 | Smule, Inc. | Display screen or portion thereof with graphical user interface |
US10682154B2 (en) | 2016-08-02 | 2020-06-16 | Covidien Lp | Cutting mechanisms for surgical end effector assemblies, instruments, and systems |
USD844667S1 (en) | 2016-08-02 | 2019-04-02 | Smule, Inc. | Display screen or portion thereof with graphical user interface |
US10383631B2 (en) | 2016-08-04 | 2019-08-20 | Covidien Lp | Variable speed control of powered surgical device |
CA2972840A1 (en) | 2016-08-11 | 2018-02-11 | Ronald Aho | Hammer drill adaptors and methods of use |
US10765428B2 (en) | 2016-08-15 | 2020-09-08 | Covidien Lp | Hermetic force sensors for surgical devices |
US10595951B2 (en) | 2016-08-15 | 2020-03-24 | Covidien Lp | Force sensor for surgical devices |
US10736702B2 (en) | 2016-08-16 | 2020-08-11 | Ethicon Llc | Activating and rotating surgical end effectors |
US9943377B2 (en) | 2016-08-16 | 2018-04-17 | Ethicon Endo-Surgery, Llc | Methods, systems, and devices for causing end effector motion with a robotic surgical system |
US10548673B2 (en) | 2016-08-16 | 2020-02-04 | Ethicon Llc | Surgical tool with a display |
US10849698B2 (en) | 2016-08-16 | 2020-12-01 | Ethicon Llc | Robotics tool bailouts |
US10687904B2 (en) | 2016-08-16 | 2020-06-23 | Ethicon Llc | Robotics tool exchange |
US10993760B2 (en) | 2016-08-16 | 2021-05-04 | Ethicon, Llc | Modular surgical robotic tool |
US10413373B2 (en) | 2016-08-16 | 2019-09-17 | Ethicon, Llc | Robotic visualization and collision avoidance |
US10952759B2 (en) | 2016-08-25 | 2021-03-23 | Ethicon Llc | Tissue loading of a surgical instrument |
US10682137B2 (en) | 2016-08-29 | 2020-06-16 | Ethicon Llc | Surgical stapler |
CN109891047B (zh) | 2016-09-02 | 2022-04-08 | 沙特阿拉伯石油公司 | 控制碳氢化合物产出 |
US10345165B2 (en) | 2016-09-08 | 2019-07-09 | Covidien Lp | Force sensor for surgical devices |
KR102456430B1 (ko) | 2016-09-09 | 2022-10-19 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 스테이플러 재장전 탐지 및 식별 |
EP4122408A1 (en) | 2016-09-09 | 2023-01-25 | Intuitive Surgical Operations, Inc. | Wrist architecture |
JP7130627B2 (ja) | 2016-09-09 | 2022-09-05 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | ステープラビーム構造 |
EP3512435B1 (en) | 2016-09-14 | 2023-11-01 | Intuitive Surgical Operations, Inc. | Joint assemblies with cross-axis flexural pivots |
CN106344091B (zh) | 2016-09-23 | 2018-09-14 | 普瑞斯星(常州)医疗器械有限公司 | 一次性腔内切割切缘吻合器的钉仓组件 |
US10814102B2 (en) | 2016-09-28 | 2020-10-27 | Project Moray, Inc. | Base station, charging station, and/or server for robotic catheter systems and other uses, and improved articulated devices and systems |
US20180092710A1 (en) | 2016-09-30 | 2018-04-05 | Kerr Corporation | Electronic tool recognition system for dental devices |
US10482292B2 (en) | 2016-10-03 | 2019-11-19 | Gary L. Sharpe | RFID scanning device |
USD806108S1 (en) | 2016-10-07 | 2017-12-26 | General Electric Company | Display screen portion with graphical user interface for a healthcare command center computing system |
KR102549818B1 (ko) | 2016-10-11 | 2023-06-30 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 일체형 나이프를 갖는 스테이플러 카트리지 |
CN107967874B (zh) | 2016-10-19 | 2020-04-28 | 元太科技工业股份有限公司 | 像素结构 |
EP3533062A4 (en) | 2016-10-26 | 2020-05-13 | Virginia Flavin Pribanic | SYSTEM AND METHOD FOR SYNTHETIC INTERACTION WITH A USER AND DEVICES |
US10610236B2 (en) | 2016-11-01 | 2020-04-07 | Covidien Lp | Endoscopic reposable surgical clip applier |
USD819684S1 (en) | 2016-11-04 | 2018-06-05 | Microsoft Corporation | Display screen with graphical user interface |
US11642126B2 (en) | 2016-11-04 | 2023-05-09 | Covidien Lp | Surgical stapling apparatus with tissue pockets |
US10631857B2 (en) | 2016-11-04 | 2020-04-28 | Covidien Lp | Loading unit for surgical instruments with low profile pushers |
US11116594B2 (en) | 2016-11-08 | 2021-09-14 | Covidien Lp | Surgical systems including adapter assemblies for interconnecting electromechanical surgical devices and end effectors |
EP3530197B1 (en) | 2016-11-10 | 2024-04-03 | Reach Surgical, Inc. | Surgical instrument with interlocking function |
KR20180053811A (ko) | 2016-11-14 | 2018-05-24 | 재단법인 오송첨단의료산업진흥재단 | 종양의 실시간 위치 파악이 가능한 거리 검출 시스템 및 이를 이용한 거리 검출 방법 |
US10603041B2 (en) | 2016-11-14 | 2020-03-31 | Ethicon Llc | Circular surgical stapler with angularly asymmetric deck features |
USD830550S1 (en) | 2016-11-14 | 2018-10-09 | Ethicon Llc | Surgical stapler |
USD833608S1 (en) | 2016-11-14 | 2018-11-13 | Ethicon Llc | Stapling head feature for surgical stapler |
US11039848B2 (en) | 2016-11-16 | 2021-06-22 | Cilag Gmbh International | Surgical instrument with spot coagulation control and algorithm |
USD820307S1 (en) | 2016-11-16 | 2018-06-12 | Airbnb, Inc. | Display screen with graphical user interface for a video pagination indicator |
US11382649B2 (en) | 2016-11-17 | 2022-07-12 | Covidien Lp | Rotation control systems for surgical instruments |
USD810099S1 (en) | 2016-11-17 | 2018-02-13 | Nasdaq, Inc. | Display screen or portion thereof with graphical user interface |
US10337148B2 (en) | 2016-11-23 | 2019-07-02 | Kimberly-Clark Worldwide, Inc. | Hesperaloe tissue having improved cross-machine direction properties |
US10463371B2 (en) | 2016-11-29 | 2019-11-05 | Covidien Lp | Reload assembly with spent reload indicator |
US10881446B2 (en) | 2016-12-19 | 2021-01-05 | Ethicon Llc | Visual displays of electrical pathways |
US10251716B2 (en) | 2016-12-19 | 2019-04-09 | Ethicon Llc | Robotic surgical system with selective motion control decoupling |
USD841667S1 (en) | 2016-12-19 | 2019-02-26 | Coren Intellect LLC | Display screen with employee survey graphical user interface |
US10987177B2 (en) | 2016-12-20 | 2021-04-27 | Ethicon Llc | Robotic endocutter drivetrain with bailout and manual opening |
US10398460B2 (en) | 2016-12-20 | 2019-09-03 | Ethicon Llc | Robotic endocutter drivetrain with bailout and manual opening |
USD808989S1 (en) | 2016-12-20 | 2018-01-30 | Abbott Laboratories | Display screen with graphical user interface |
USD831676S1 (en) | 2016-12-20 | 2018-10-23 | Hancom, Inc. | Display screen or portion thereof with icon |
US20180168625A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with smart staple cartridges |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
US10675026B2 (en) | 2016-12-21 | 2020-06-09 | Ethicon Llc | Methods of stapling tissue |
US10993715B2 (en) | 2016-12-21 | 2021-05-04 | Ethicon Llc | Staple cartridge comprising staples with different clamping breadths |
MX2019007311A (es) | 2016-12-21 | 2019-11-18 | Ethicon Llc | Sistemas de engrapado quirurgico. |
US11191539B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system |
JP7010957B2 (ja) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | ロックアウトを備えるシャフトアセンブリ |
US10888322B2 (en) | 2016-12-21 | 2021-01-12 | Ethicon Llc | Surgical instrument comprising a cutting member |
US10624635B2 (en) | 2016-12-21 | 2020-04-21 | Ethicon Llc | Firing members with non-parallel jaw engagement features for surgical end effectors |
US10945727B2 (en) | 2016-12-21 | 2021-03-16 | Ethicon Llc | Staple cartridge with deformable driver retention features |
US10695055B2 (en) | 2016-12-21 | 2020-06-30 | Ethicon Llc | Firing assembly comprising a lockout |
US20180168650A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Connection portions for disposable loading units for surgical stapling instruments |
MX2019007299A (es) | 2016-12-21 | 2019-10-15 | Ethicon Llc | Método para acoplar una unidad de vástago a un instrumento quirúrgico y, alternativamente, a un robot quirúrgico. |
US10471282B2 (en) | 2016-12-21 | 2019-11-12 | Ethicon Llc | Ultrasonic robotic tool actuation |
US20180168619A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling systems |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
BR112019012254A2 (pt) | 2016-12-21 | 2019-12-03 | Ethicon Llc | sistemas para grampeamento cirúrgico |
US10568625B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Staple cartridges and arrangements of staples and staple cavities therein |
US10426471B2 (en) | 2016-12-21 | 2019-10-01 | Ethicon Llc | Surgical instrument with multiple failure response modes |
US10667810B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems |
US10856868B2 (en) | 2016-12-21 | 2020-12-08 | Ethicon Llc | Firing member pin configurations |
US10687810B2 (en) | 2016-12-21 | 2020-06-23 | Ethicon Llc | Stepped staple cartridge with tissue retention and gap setting features |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
JP7010956B2 (ja) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | 組織をステープル留めする方法 |
US10499914B2 (en) | 2016-12-21 | 2019-12-10 | Ethicon Llc | Staple forming pocket arrangements |
US10835247B2 (en) | 2016-12-21 | 2020-11-17 | Ethicon Llc | Lockout arrangements for surgical end effectors |
CN110114014B (zh) | 2016-12-21 | 2022-08-09 | 爱惜康有限责任公司 | 包括端部执行器闭锁件和击发组件闭锁件的外科器械系统 |
JP6983893B2 (ja) | 2016-12-21 | 2021-12-17 | エシコン エルエルシーEthicon LLC | 外科用エンドエフェクタ及び交換式ツールアセンブリのためのロックアウト構成 |
CN110099637B (zh) | 2016-12-21 | 2022-07-29 | 爱惜康有限责任公司 | 具有智能钉仓的外科缝合器械 |
JP2018107934A (ja) | 2016-12-27 | 2018-07-05 | 日本電産株式会社 | モータ寿命推定方法、モータ制御システム、送風機システム、およびマルチコプターシステム |
JP1593572S (pt) | 2016-12-28 | 2021-01-18 | ||
USD820867S1 (en) | 2016-12-30 | 2018-06-19 | Facebook, Inc. | Display screen with animated graphical user interface |
US10758298B2 (en) | 2017-01-20 | 2020-09-01 | Ethicon Llc | Articulating electrosurgical tools |
US10952767B2 (en) | 2017-02-06 | 2021-03-23 | Covidien Lp | Connector clip for securing an introducer to a surgical fastener applying apparatus |
DE102017102441A1 (de) | 2017-02-08 | 2018-08-09 | Smiths Heimann Gmbh | Projektion von Gegenständen in CT-Röntgenbilder |
US10575787B2 (en) | 2017-02-13 | 2020-03-03 | Wright State University | Hydration sensor |
US20180231111A1 (en) | 2017-02-14 | 2018-08-16 | Disney Enterprises, Inc. | Drive system using balls within a conduit for transmission of motive power |
US10806451B2 (en) | 2017-02-17 | 2020-10-20 | Ethicon Llc | Surgical stapler with cooperating distal tip features on anvil and staple cartridge |
US10716564B2 (en) | 2017-02-17 | 2020-07-21 | Ethicon Llc | Stapling adjunct attachment |
US10758231B2 (en) | 2017-02-17 | 2020-09-01 | Ethicon Llc | Surgical stapler with bent anvil tip, angled staple cartridge tip, and tissue gripping features |
US11564687B2 (en) | 2017-02-17 | 2023-01-31 | Cilag Gmbh International | Method of surgical stapling with end effector component having a curved tip |
US10828031B2 (en) | 2017-02-17 | 2020-11-10 | Ethicon Llc | Surgical stapler with elastically deformable tip |
US10869663B2 (en) | 2017-02-17 | 2020-12-22 | Ethicon Llc | End effector configured to mate with adjunct materials |
US11564684B2 (en) | 2017-02-17 | 2023-01-31 | Cilag Gmbh International | Surgical stapling end effector component with tip having varying bend angle |
US10729434B2 (en) | 2017-02-17 | 2020-08-04 | Ethicon Llc | Surgical stapler with insertable distal anvil tip |
US11141150B2 (en) | 2017-02-17 | 2021-10-12 | Cilag Gmbh International | Buttress loader for surgical staplers |
US20180235618A1 (en) | 2017-02-22 | 2018-08-23 | Covidien Lp | Loading unit for surgical instruments with low profile pushers |
US10849621B2 (en) | 2017-02-23 | 2020-12-01 | Covidien Lp | Surgical stapler with small diameter endoscopic portion |
US20180247711A1 (en) | 2017-02-27 | 2018-08-30 | Applied Logic, Inc. | System and method for managing the use of surgical instruments |
US20180242970A1 (en) | 2017-02-28 | 2018-08-30 | Covidien Lp | Reusable powered surgical devices having improved durability |
US20200060523A1 (en) | 2017-02-28 | 2020-02-27 | Sony Corporation | Medical support arm system and control device |
US10813710B2 (en) | 2017-03-02 | 2020-10-27 | KindHeart, Inc. | Telerobotic surgery system using minimally invasive surgical tool with variable force scaling and feedback and relayed communications between remote surgeon and surgery station |
US10299790B2 (en) | 2017-03-03 | 2019-05-28 | Covidien Lp | Adapter with centering mechanism for articulation joint |
US20180250002A1 (en) | 2017-03-03 | 2018-09-06 | Covidien Lp | Powered surgical devices having tissue sensing function |
USD854032S1 (en) | 2017-03-03 | 2019-07-16 | Deere & Company | Display screen with a graphical user interface |
US20180271526A1 (en) | 2017-03-22 | 2018-09-27 | Covidien Lp | Endoscopic surgical clip applier |
US10743899B2 (en) | 2017-03-24 | 2020-08-18 | Ethicon Llc | Surgical instrument with articulating and rotating end effector and flexible coaxial drive |
US11078945B2 (en) | 2017-03-26 | 2021-08-03 | Verb Surgical Inc. | Coupler to attach robotic arm to surgical table |
USD837244S1 (en) | 2017-03-27 | 2019-01-01 | Vudu, Inc. | Display screen or portion thereof with interactive graphical user interface |
USD837245S1 (en) | 2017-03-27 | 2019-01-01 | Vudu, Inc. | Display screen or portion thereof with graphical user interface |
USD819072S1 (en) | 2017-03-30 | 2018-05-29 | Facebook, Inc. | Display panel of a programmed computer system with a graphical user interface |
US10537306B2 (en) | 2017-03-30 | 2020-01-21 | Shifamed Holdings, Llc | Medical tool positioning devices, systems, and methods of use and manufacture |
JP6557274B2 (ja) | 2017-03-31 | 2019-08-07 | ファナック株式会社 | 部品実装位置ガイダンス装置、部品実装位置ガイダンスシステム、及び部品実装位置ガイダンス方法 |
US10433842B2 (en) | 2017-04-07 | 2019-10-08 | Lexington Medical, Inc. | Surgical handle assembly |
US10765442B2 (en) | 2017-04-14 | 2020-09-08 | Ethicon Llc | Surgical devices and methods for biasing an end effector to a closed configuration |
US11497560B2 (en) | 2017-04-28 | 2022-11-15 | Biosense Webster (Israel) Ltd. | Wireless tool with accelerometer for selective power saving |
US10524784B2 (en) | 2017-05-05 | 2020-01-07 | Covidien Lp | Surgical staples with expandable backspan |
US11311295B2 (en) | 2017-05-15 | 2022-04-26 | Covidien Lp | Adaptive powered stapling algorithm with calibration factor |
US10667408B2 (en) | 2017-05-18 | 2020-05-26 | Covidien Lp | Fully encapsulated electronics and printed circuit boards |
US10588231B2 (en) | 2017-05-18 | 2020-03-10 | Covidien Lp | Hermetically sealed printed circuit boards |
US10420551B2 (en) | 2017-05-30 | 2019-09-24 | Covidien Lp | Authentication and information system for reusable surgical instruments |
JP1603246S (pt) | 2017-05-31 | 2018-05-07 | ||
AU2018202705B2 (en) | 2017-06-02 | 2023-11-16 | Covidien Lp | Handheld electromechanical surgical system |
US10478185B2 (en) | 2017-06-02 | 2019-11-19 | Covidien Lp | Tool assembly with minimal dead space |
JP1601498S (pt) | 2017-06-05 | 2018-04-09 | ||
US11045199B2 (en) | 2017-06-09 | 2021-06-29 | Covidien Lp | Handheld electromechanical surgical system |
US11596400B2 (en) | 2017-06-09 | 2023-03-07 | Covidien Lp | Handheld electromechanical surgical system |
EP4268734A3 (en) | 2017-06-09 | 2024-01-24 | Stryker Corporation | Surgical systems with twist-lock battery connection |
US10932784B2 (en) | 2017-06-09 | 2021-03-02 | Covidien Lp | Handheld electromechanical surgical system |
WO2018229889A1 (ja) | 2017-06-14 | 2018-12-20 | オリンパス株式会社 | マニピュレータ |
US10425894B2 (en) | 2017-06-16 | 2019-09-24 | Stryker Corporation | System and method for providing power from a battery to a medical device |
USD836124S1 (en) | 2017-06-19 | 2018-12-18 | Abishkking Ltd. | Display screen or portion thereof with a graphical user interface |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
US10624633B2 (en) | 2017-06-20 | 2020-04-21 | Ethicon Llc | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
US20180360456A1 (en) | 2017-06-20 | 2018-12-20 | Ethicon Llc | Surgical instrument having controllable articulation velocity |
US10390841B2 (en) | 2017-06-20 | 2019-08-27 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US10646220B2 (en) | 2017-06-20 | 2020-05-12 | Ethicon Llc | Systems and methods for controlling displacement member velocity for a surgical instrument |
US10881396B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Surgical instrument with variable duration trigger arrangement |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
US10327767B2 (en) | 2017-06-20 | 2019-06-25 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
USD879808S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with graphical user interface |
USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
US10368864B2 (en) | 2017-06-20 | 2019-08-06 | Ethicon Llc | Systems and methods for controlling displaying motor velocity for a surgical instrument |
US10813639B2 (en) | 2017-06-20 | 2020-10-27 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
US10677853B2 (en) | 2017-06-22 | 2020-06-09 | Stryker Corporation | System and method for determining an amount of degradation of a medical device battery |
EP3644875B1 (en) | 2017-06-26 | 2023-06-07 | Bolder Surgical, LLC | Anti-buckling actuator |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US10639018B2 (en) | 2017-06-27 | 2020-05-05 | Ethicon Llc | Battery pack with integrated circuit providing sleep mode to battery pack and associated surgical instrument |
US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
USD835785S1 (en) | 2017-06-27 | 2018-12-11 | Ethicon Llc | Handle for surgical stapler |
USD865174S1 (en) | 2017-06-27 | 2019-10-29 | Ethicon Llc | Shaft assembly for surgical stapler |
US10828029B2 (en) | 2017-06-27 | 2020-11-10 | Ethicon Llc | Surgical stapler with independently actuated drivers to provide varying staple heights |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US10631859B2 (en) | 2017-06-27 | 2020-04-28 | Ethicon Llc | Articulation systems for surgical instruments |
US10511065B2 (en) | 2017-06-27 | 2019-12-17 | Ethicon Llc | Battery powered surgical instrument with dual power utilization circuits for dual modes |
US11129666B2 (en) | 2017-06-28 | 2021-09-28 | Cilag Gmbh International | Shaft module circuitry arrangements |
USD893717S1 (en) | 2017-06-28 | 2020-08-18 | Ethicon Llc | Staple cartridge for surgical instrument |
US11278346B2 (en) | 2017-06-28 | 2022-03-22 | Cilag Gmbh International | Systems and methods of displaying surgical instrument status |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
US11103301B2 (en) | 2017-06-28 | 2021-08-31 | Cilag Gmbh International | Surgical system coupleable with staple cartridge and radio frequency cartridge, and having a plurality of radio-frequency energy return paths |
USD869655S1 (en) | 2017-06-28 | 2019-12-10 | Ethicon Llc | Surgical fastener cartridge |
US10813640B2 (en) | 2017-06-28 | 2020-10-27 | Ethicon Llc | Method of coating slip rings |
USD854151S1 (en) | 2017-06-28 | 2019-07-16 | Ethicon Llc | Surgical instrument shaft |
US11058424B2 (en) | 2017-06-28 | 2021-07-13 | Cilag Gmbh International | Surgical instrument comprising an offset articulation joint |
USD865175S1 (en) | 2017-06-28 | 2019-10-29 | Ethicon Llc | Staple cartridge for surgical instrument |
USD851762S1 (en) | 2017-06-28 | 2019-06-18 | Ethicon Llc | Anvil |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
US10265120B2 (en) | 2017-06-28 | 2019-04-23 | Ethicon Llc | Systems and methods for controlling control circuits for an independent energy delivery over segmented sections |
US11013552B2 (en) | 2017-06-28 | 2021-05-25 | Cilag Gmbh International | Electrosurgical cartridge for use in thin profile surgical cutting and stapling instrument |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
USD908216S1 (en) | 2017-06-28 | 2021-01-19 | Ethicon Llc | Surgical instrument |
BR112019027065B1 (pt) | 2017-06-28 | 2023-12-26 | Ethicon Llc | Instrumento cirúrgico e sistema cirúrgico |
US10603117B2 (en) | 2017-06-28 | 2020-03-31 | Ethicon Llc | Articulation state detection mechanisms |
US10888369B2 (en) | 2017-06-28 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling control circuits for independent energy delivery over segmented sections |
US11298128B2 (en) | 2017-06-28 | 2022-04-12 | Cilag Gmbh International | Surgical system couplable with staple cartridge and radio frequency cartridge, and method of using same |
US11065048B2 (en) | 2017-06-28 | 2021-07-20 | Cilag Gmbh International | Flexible circuit arrangement for surgical fastening instruments |
US10716614B2 (en) | 2017-06-28 | 2020-07-21 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
US10211586B2 (en) | 2017-06-28 | 2019-02-19 | Ethicon Llc | Surgical shaft assemblies with watertight housings |
US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
US10888325B2 (en) | 2017-06-28 | 2021-01-12 | Ethicon Llc | Cartridge arrangements for surgical cutting and fastening instruments with lockout disablement features |
US10639037B2 (en) | 2017-06-28 | 2020-05-05 | Ethicon Llc | Surgical instrument with axially movable closure member |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
EP3420947B1 (en) | 2017-06-28 | 2022-05-25 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
US10258418B2 (en) | 2017-06-29 | 2019-04-16 | Ethicon Llc | System for controlling articulation forces |
US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
US10398434B2 (en) | 2017-06-29 | 2019-09-03 | Ethicon Llc | Closed loop velocity control of closure member for robotic surgical instrument |
DE102018211829A1 (de) | 2017-07-17 | 2019-01-17 | Magna Closures Inc. | System zum Aufwecken einer elektronischen Steuereinheit bei Bewegung eines gesteuerten Elements und Schutz gegen eine gegenelektromotorische Kraft |
USD865796S1 (en) | 2017-07-19 | 2019-11-05 | Lenovo (Beijing) Co., Ltd. | Smart glasses with graphical user interface |
US11172580B2 (en) | 2017-07-24 | 2021-11-09 | Rosemount Aerospace Inc. | BGA component masking dam and a method of manufacturing with the BGA component masking dam |
US11751937B2 (en) | 2017-07-25 | 2023-09-12 | Affera, Inc. | Ablation catheters and related systems and methods |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
US10849625B2 (en) | 2017-08-07 | 2020-12-01 | Covidien Lp | Surgical buttress retention systems for surgical stapling apparatus |
USD858767S1 (en) | 2017-08-10 | 2019-09-03 | Ethicon Llc | Surgical clip applier device |
US10912562B2 (en) | 2017-08-14 | 2021-02-09 | Standard Bariatrics, Inc. | End effectors, surgical stapling devices, and methods of using same |
US10163065B1 (en) | 2017-08-16 | 2018-12-25 | Nmetric, Llc | Systems and methods of ensuring and maintaining equipment viability for a task |
USD855634S1 (en) | 2017-08-17 | 2019-08-06 | Samsung Electronics Co., Ltd. | Display screen or portion thereof with transitional graphical user interface |
US10932846B2 (en) | 2017-08-25 | 2021-03-02 | Ethicon Llc | Articulation section for shaft assembly of surgical instrument |
US10881403B2 (en) | 2017-08-29 | 2021-01-05 | Ethicon Llc | Endocutter control system |
US11172928B2 (en) | 2017-08-29 | 2021-11-16 | Cilag Gmbh International | Endocutter control system |
USD890805S1 (en) | 2017-08-29 | 2020-07-21 | 3M Innovative Properties Company | Display screen with graphical user interface |
US20190059986A1 (en) | 2017-08-29 | 2019-02-28 | Ethicon Llc | Methods, systems, and devices for controlling electrosurgical tools |
US10966720B2 (en) | 2017-09-01 | 2021-04-06 | RevMedica, Inc. | Surgical stapler with removable power pack |
US10695060B2 (en) | 2017-09-01 | 2020-06-30 | RevMedica, Inc. | Loadable power pack for surgical instruments |
USD831209S1 (en) | 2017-09-14 | 2018-10-16 | Ethicon Llc | Surgical stapler cartridge |
EA039587B1 (ru) | 2017-09-26 | 2022-02-14 | Страйкер Корпорейшн | Система и способ беспроводной зарядки батареи медицинского устройства |
USD863343S1 (en) | 2017-09-27 | 2019-10-15 | Bigfoot Biomedical, Inc. | Display screen or portion thereof with graphical user interface associated with insulin delivery |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
US10796471B2 (en) | 2017-09-29 | 2020-10-06 | Ethicon Llc | Systems and methods of displaying a knife position for a surgical instrument |
US10765429B2 (en) | 2017-09-29 | 2020-09-08 | Ethicon Llc | Systems and methods for providing alerts according to the operational state of a surgical instrument |
USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10729501B2 (en) | 2017-09-29 | 2020-08-04 | Ethicon Llc | Systems and methods for language selection of a surgical instrument |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
NL2019672B1 (en) | 2017-10-05 | 2019-04-15 | N V Nederlandsche Apparatenfabriek Nedap | System of RFID reader units transmitting synchronized modulation using asynchronous carrier waves |
USD847199S1 (en) | 2017-10-16 | 2019-04-30 | Caterpillar Inc. | Display screen with animated graphical user interface |
US10993759B2 (en) | 2017-10-20 | 2021-05-04 | Ethicon, Inc. | Hypothermic linear surgical staplers and methods of use |
US10888320B2 (en) | 2017-10-20 | 2021-01-12 | Ethicon, Inc. | Hypothermic circular surgical staplers and methods of use |
US10624709B2 (en) | 2017-10-26 | 2020-04-21 | Ethicon Llc | Robotic surgical tool with manual release lever |
EP3476318B1 (en) | 2017-10-30 | 2024-01-10 | Ethicon LLC | Surgical clip applier comprising an automatic clip feeding system |
US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US10736616B2 (en) | 2017-10-30 | 2020-08-11 | Ethicon Llc | Surgical instrument with remote release |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
US11026687B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Clip applier comprising clip advancing systems |
EP3476301A1 (en) | 2017-10-30 | 2019-05-01 | Ethicon LLC | Surgical suturing instrument |
US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US10959744B2 (en) | 2017-10-30 | 2021-03-30 | Ethicon Llc | Surgical dissectors and manufacturing techniques |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11129634B2 (en) | 2017-10-30 | 2021-09-28 | Cilag Gmbh International | Surgical instrument with rotary drive selectively actuating multiple end effector functions |
US10932804B2 (en) | 2017-10-30 | 2021-03-02 | Ethicon Llc | Surgical instrument with sensor and/or control systems |
US10987104B2 (en) | 2017-10-30 | 2021-04-27 | Covidien Lp | Apparatus for endoscopic procedures |
US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
USD848473S1 (en) | 2017-11-01 | 2019-05-14 | General Electric Company | Display screen with transitional graphical user interface |
CN111200986B (zh) | 2017-11-02 | 2024-03-12 | 直观外科手术操作公司 | 用于末端执行器位置设定点校正的系统和方法 |
US11207068B2 (en) | 2017-11-03 | 2021-12-28 | Ethicon, Inc. | Anvil assembly for use with surgical stapling instruments |
USD839900S1 (en) | 2017-11-06 | 2019-02-05 | Shenzhen Valuelink E-Commerce Co., Ltd. | Display screen with graphical user interface |
JP1630005S (pt) | 2017-11-21 | 2019-04-22 | ||
AU201812807S (en) | 2017-11-24 | 2018-06-14 | Dyson Technology Ltd | Display screen with graphical user interface |
US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
US20190183502A1 (en) | 2017-12-15 | 2019-06-20 | Ethicon Llc | Systems and methods of controlling a clamping member |
US10687813B2 (en) | 2017-12-15 | 2020-06-23 | Ethicon Llc | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US11006955B2 (en) | 2017-12-15 | 2021-05-18 | Ethicon Llc | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
US11045270B2 (en) | 2017-12-19 | 2021-06-29 | Cilag Gmbh International | Robotic attachment comprising exterior drive actuator |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
WO2019126028A1 (en) | 2017-12-19 | 2019-06-27 | Intuitive Surgical Operations, Inc. | Systems and methods for communicating over a reduced number of conductors in a teleoperational system |
USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US10743868B2 (en) | 2017-12-21 | 2020-08-18 | Ethicon Llc | Surgical instrument comprising a pivotable distal head |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
US20190206564A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method for facility data collection and interpretation |
US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
US20190201112A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Computer implemented interactive surgical systems |
US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
US10966791B2 (en) | 2017-12-28 | 2021-04-06 | Ethicon Llc | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
US20190201115A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Aggregation and reporting of surgical hub data |
US20190206561A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Data handling and prioritization in a cloud analytics network |
US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US10987178B2 (en) | 2017-12-28 | 2021-04-27 | Ethicon Llc | Surgical hub control arrangements |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
US10849697B2 (en) | 2017-12-28 | 2020-12-01 | Ethicon Llc | Cloud interface for coupled surgical devices |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
WO2019130089A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical instrument cartridge sensor assemblies |
US11069012B2 (en) | 2017-12-28 | 2021-07-20 | Cilag Gmbh International | Interactive surgical systems with condition handling of devices and data capabilities |
US20190200987A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Variable output cartridge sensor assembly |
US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
US11058498B2 (en) | 2017-12-28 | 2021-07-13 | Cilag Gmbh International | Cooperative surgical actions for robot-assisted surgical platforms |
US20190205567A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Data pairing to interconnect a device measured parameter with an outcome |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US10695081B2 (en) | 2017-12-28 | 2020-06-30 | Ethicon Llc | Controlling a surgical instrument according to sensed closure parameters |
US20190200997A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Stapling device with both compulsory and discretionary lockouts based on sensed parameters |
US10892899B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Self describing data packets generated at an issuing instrument |
US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US20190201027A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical instrument with acoustic-based motor control |
US10932872B2 (en) | 2017-12-28 | 2021-03-02 | Ethicon Llc | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
US20190206555A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Cloud-based medical analytics for customization and recommendations to a user |
US20190206569A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method of cloud based data analytics for use with the hub |
US20190201146A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Safety systems for smart powered surgical stapling |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US20190201034A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Powered stapling device configured to adjust force, advancement speed, and overall stroke of cutting member based on sensed parameter of firing or clamping |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
CN208625784U (zh) | 2017-12-28 | 2019-03-22 | 重庆西山科技股份有限公司 | 吻合器动力手柄的密封结构 |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
US11100631B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
EP3505095B1 (en) | 2017-12-28 | 2022-07-06 | Ethicon LLC | Mechanisms for controlling different electromechanical systems of an electrosurgical instrument |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
US20190201140A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical hub situational awareness |
US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US11672605B2 (en) | 2017-12-28 | 2023-06-13 | Cilag Gmbh International | Sterile field interactive control displays |
JP7225249B2 (ja) | 2017-12-28 | 2023-02-20 | エシコン エルエルシー | エンドエフェクタの組織分布の不規則性を検出するための外科システム |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US20190201139A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Communication arrangements for robot-assisted surgical platforms |
US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US10944728B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Interactive surgical systems with encrypted communication capabilities |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US20190200906A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Dual cmos array imaging |
EP3735196A4 (en) | 2018-01-04 | 2022-01-12 | Covidien LP | ROBOT SURGICAL INSTRUMENT WITH HIGHLY ARTICULABLE WRIST UNIT WITH TORQUE TRANSMISSION AND MECHANICAL MANIPULATION |
US10614184B2 (en) | 2018-01-08 | 2020-04-07 | Atlazo, Inc. | Semiconductor process and performance sensor |
USD870742S1 (en) | 2018-01-26 | 2019-12-24 | Facebook, Inc. | Display screen or portion thereof with animated user interface |
US10667818B2 (en) | 2018-02-06 | 2020-06-02 | Ethicon Llc | Lockout assembly for linear surgical stapler |
US10687819B2 (en) | 2018-02-06 | 2020-06-23 | Ethicon Llc | Clamping mechanism for linear surgical stapler |
US10210244B1 (en) | 2018-02-12 | 2019-02-19 | Asapp, Inc. | Updating natural language interfaces by processing usage data |
US10820910B2 (en) | 2018-02-15 | 2020-11-03 | Ethicon Llc | Surgical clip applier with articulating joint path for surgical clips |
US11065000B2 (en) | 2018-02-22 | 2021-07-20 | Covidien Lp | Surgical buttresses for surgical stapling apparatus |
US20190262153A1 (en) | 2018-02-23 | 2019-08-29 | Boston Scientific Scimed, Inc. | Medical implant attachment mechanism |
WO2019165403A1 (en) | 2018-02-26 | 2019-08-29 | Intuitive Surgical, Inc. | Surgical instrument with lockout mechanism |
US20190261982A1 (en) | 2018-02-27 | 2019-08-29 | Covidien Lp | Powered stapler having varying staple heights and sizes |
WO2019168808A1 (en) | 2018-02-27 | 2019-09-06 | Justright Surgical, Llc | Staple cartridge and methods for surgical staplers |
KR20240108551A (ko) | 2018-02-27 | 2024-07-09 | 어플라이드 메디컬 리소시스 코포레이션 | 전동 핸들을 갖는 수술용 스테이플러 |
USD861035S1 (en) | 2018-03-01 | 2019-09-24 | Google Llc | Display screen with animated icon |
US11160601B2 (en) | 2018-03-13 | 2021-11-02 | Cilag Gmbh International | Supplying electrical energy to electrosurgical instruments |
US10639038B2 (en) | 2018-03-23 | 2020-05-05 | Ethicon Llc | Staple cartridge with short circuit prevention features |
US10631860B2 (en) | 2018-03-23 | 2020-04-28 | Ethicon Llc | Surgical instrument with electrical contact under membrane |
US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
CN112074240A (zh) | 2018-03-28 | 2020-12-11 | 数据显示器公司 | 心耳排除装置 |
US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US11197668B2 (en) | 2018-03-28 | 2021-12-14 | Cilag Gmbh International | Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout |
US20190298353A1 (en) | 2018-03-28 | 2019-10-03 | Ethicon Llc | Surgical stapling devices with asymmetric closure features |
US10912578B2 (en) | 2018-04-24 | 2021-02-09 | Covidien Lp | Clamping device with parallel jaw closure |
WO2019208902A1 (ko) | 2018-04-27 | 2019-10-31 | 삼성전자 주식회사 | 무선 전력 송신 장치 및 전력을 무선으로 수신하는 전자 장치와 그 동작 방법 |
US11896230B2 (en) | 2018-05-07 | 2024-02-13 | Covidien Lp | Handheld electromechanical surgical device including load sensor having spherical ball pivots |
USD856359S1 (en) | 2018-05-30 | 2019-08-13 | Mindtronic Ai Co., Ltd. | Vehicle display screen or portion thereof with an animated graphical user interface |
USD871434S1 (en) | 2018-05-31 | 2019-12-31 | Inspire Medical Systems, Inc. | Display screen or portion thereof with a graphical user interface |
EP3826552A2 (en) | 2018-06-01 | 2021-06-02 | Steerable Instruments NV | Controllable steerable fusing device |
US20190388091A1 (en) | 2018-06-21 | 2019-12-26 | Covidien Lp | Powered surgical devices including strain gauges incorporated into flex circuits |
US11272948B2 (en) | 2018-07-10 | 2022-03-15 | Covidien Lp | Hand-held surgical instruments |
US10973515B2 (en) | 2018-07-16 | 2021-04-13 | Ethicon Llc | Permanent attachment means for curved tip of component of surgical stapling instrument |
US10912561B2 (en) | 2018-07-16 | 2021-02-09 | Ethicon Llc | Buttress applier cartridge for surgical stapler having end effector with deflectable curved tip |
US11419604B2 (en) | 2018-07-16 | 2022-08-23 | Cilag Gmbh International | Robotic systems with separate photoacoustic receivers |
US11324544B2 (en) | 2018-07-25 | 2022-05-10 | Gyrus Acmi, Inc. | Medical instrument |
WO2020028148A1 (en) | 2018-08-03 | 2020-02-06 | Dexcom, Inc. | Systems and methods for communication with analyte sensor electronics |
USD904613S1 (en) | 2018-08-13 | 2020-12-08 | Ethicon Llc | Cartridge for linear surgical stapler |
USD904612S1 (en) | 2018-08-13 | 2020-12-08 | Ethicon Llc | Cartridge for linear surgical stapler |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
JP7394117B2 (ja) | 2018-08-20 | 2023-12-07 | ブライトシード・エルエルシー | 組織又はアーチファクトを検出し又は識別するために使用される刺激を与えるシステム |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US20200054321A1 (en) | 2018-08-20 | 2020-02-20 | Ethicon Llc | Surgical instruments with progressive jaw closure arrangements |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US11304704B2 (en) | 2018-08-22 | 2022-04-19 | Covidien Lp | Surgical clip applier and ligation clips |
US11806062B2 (en) | 2018-09-07 | 2023-11-07 | Cilag Gmbh International | Surgical modular energy system with a segmented backplane |
CA3110703A1 (en) | 2018-09-17 | 2020-03-26 | Covidien Lp | Highly articulated laparoscopic joint including electrical signal transmission therethrough |
CN111134754A (zh) | 2018-11-02 | 2020-05-12 | 逸思(苏州)医疗科技有限公司 | 一种推杆自适应结构 |
US20200138507A1 (en) | 2018-11-02 | 2020-05-07 | Ethicon Llc | Distal closure mechanism for surgical instruments |
CN111134849B (zh) | 2018-11-02 | 2024-05-31 | 威博外科公司 | 手术机器人系统 |
US11406442B2 (en) | 2018-11-05 | 2022-08-09 | Cilag Gmbh International | Articulate wrist with flexible central member |
US20200146166A1 (en) | 2018-11-07 | 2020-05-07 | Covidien Lp | Hermetically sealed printed circuit boards |
US12089844B2 (en) | 2018-12-21 | 2024-09-17 | Intuitive Surgical Operations, Inc. | Actuation mechanisms for surgical instruments |
US11701109B2 (en) | 2018-12-28 | 2023-07-18 | Cilag Gmbh International | Surgical stapler with sloped staple deck for varying tissue compression |
US11202628B2 (en) | 2018-12-28 | 2021-12-21 | Cilag Gmbh International | Surgical stapler with tissue engagement features around tissue containment pin |
US11116505B2 (en) | 2018-12-28 | 2021-09-14 | Cilag Gmbh International | Applicator for surgical stapler buttress |
US11369373B2 (en) | 2019-01-23 | 2022-06-28 | Lexington Medical, Inc. | Surgical stapler |
US11304697B2 (en) | 2019-01-30 | 2022-04-19 | Cilag Gmbh International | Surgical stapler with deflectable distal tip |
US11439391B2 (en) | 2019-01-30 | 2022-09-13 | Cilag Gmbh International | Surgical stapler with toggling distal tip |
US11317912B2 (en) | 2019-01-30 | 2022-05-03 | Cilag Gmbh International | Surgical stapler with rotatable distal tip |
USD934891S1 (en) | 2019-02-13 | 2021-11-02 | FullStory, Inc. | Display panel portion with an animated computer icon |
WO2020171446A1 (ko) | 2019-02-19 | 2020-08-27 | 전남대학교산학협력단 | 마이크로 로봇 제어장치 |
US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
US11298129B2 (en) | 2019-02-19 | 2022-04-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
US11751872B2 (en) | 2019-02-19 | 2023-09-12 | Cilag Gmbh International | Insertable deactivator element for surgical stapler lockouts |
CN109730735B (zh) | 2019-02-21 | 2024-04-12 | 上海逸思医疗科技股份有限公司 | 复位机构、吻合器及医疗器械 |
CA3131187A1 (en) | 2019-02-27 | 2020-09-03 | Applied Medical Resources Corporation | Surgical stapling instrument having a two-position lockout mechanism |
US11376000B2 (en) | 2019-03-13 | 2022-07-05 | Covidien Lp | Surgical stapler anvil with directionally biased staple pockets |
CN113573650B (zh) | 2019-03-15 | 2024-05-28 | 后续医疗股份有限公司 | 用于治疗血管缺陷的具有柔性连接部的丝装置 |
US11317978B2 (en) | 2019-03-22 | 2022-05-03 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11717293B2 (en) | 2019-03-29 | 2023-08-08 | Applied Medical Resources Corporation | Reload cover for surgical stapling system |
US11534164B2 (en) | 2019-04-05 | 2022-12-27 | Covidien Lp | Strain gauge stabilization in a surgical device |
WO2020214397A1 (en) | 2019-04-17 | 2020-10-22 | Intuitive Surgical Operations, Inc. | Surgical stapling instrument |
US11076933B2 (en) | 2019-04-19 | 2021-08-03 | Elt Sight, Inc. | Authentication systems and methods for an excimer laser system |
US11737813B2 (en) | 2019-04-25 | 2023-08-29 | M. I. Advanced Thermosurgery, Inc. | Anastomosis device and method |
USD925563S1 (en) | 2019-04-29 | 2021-07-20 | Arrow Acquisition, Llc | Display screen or portion thereof with an animated graphical user interface |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US20200345356A1 (en) | 2019-04-30 | 2020-11-05 | Ethicon Llc | Intelligent firing associated with a surgical instrument |
US20200345357A1 (en) | 2019-04-30 | 2020-11-05 | Ethicon Llc | Intelligent firing associated with a surgical instrument |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US20200345359A1 (en) | 2019-04-30 | 2020-11-05 | Ethicon Llc | Tissue stop for a surgical instrument |
USD898767S1 (en) | 2019-05-01 | 2020-10-13 | Aerco International, Inc. | Display screen or portion thereof with graphical user interface for a boiler or water heater |
CN110336545B (zh) | 2019-06-14 | 2020-08-04 | 东南大学 | 一种支持宽频率范围的双向自适应时钟电路 |
US11690624B2 (en) | 2019-06-21 | 2023-07-04 | Covidien Lp | Reload assembly injection molded strain gauge |
USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
US11376082B2 (en) | 2019-06-27 | 2022-07-05 | Cilag Gmbh International | Robotic surgical system with local sensing of functional parameters based on measurements of multiple physical inputs |
US11369443B2 (en) | 2019-06-27 | 2022-06-28 | Cilag Gmbh International | Method of using a surgical modular robotic assembly |
US11607278B2 (en) | 2019-06-27 | 2023-03-21 | Cilag Gmbh International | Cooperative robotic surgical systems |
US11547468B2 (en) | 2019-06-27 | 2023-01-10 | Cilag Gmbh International | Robotic surgical system with safety and cooperative sensing control |
US11207146B2 (en) | 2019-06-27 | 2021-12-28 | Cilag Gmbh International | Surgical instrument drive systems with cable-tightening system |
US11413102B2 (en) | 2019-06-27 | 2022-08-16 | Cilag Gmbh International | Multi-access port for surgical robotic systems |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11361176B2 (en) | 2019-06-28 | 2022-06-14 | Cilag Gmbh International | Surgical RFID assemblies for compatibility detection |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11229437B2 (en) | 2019-06-28 | 2022-01-25 | Cilag Gmbh International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
US20200405292A1 (en) | 2019-06-28 | 2020-12-31 | Ethicon Llc | Surgical instrument including a battery unit |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US20200405306A1 (en) | 2019-06-28 | 2020-12-31 | Ethicon Llc | Surgical instrument including a firing system bailout |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US20200405307A1 (en) | 2019-06-28 | 2020-12-31 | Ethicon Llc | Control circuit comprising a coating |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US20200405308A1 (en) | 2019-06-28 | 2020-12-31 | Ethicon Llc | Surgical instrument including a firing lockout |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11853835B2 (en) | 2019-06-28 | 2023-12-26 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
USD916917S1 (en) | 2019-06-28 | 2021-04-20 | Square, Inc. | Display screen or portion thereof having a graphical user interface |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
AU2019459615A1 (en) | 2019-07-31 | 2022-03-10 | Covidien Lp | Hand-held electromechanical surgical instruments |
US11559149B2 (en) | 2020-08-14 | 2023-01-24 | Nabors Drilling Technologies Usa, Inc. | Method and apparatus for transitioning between rotary drilling and slide drilling while maintaining a bit of a bottom hole assembly on a wellbore bottom |
US11382704B2 (en) | 2019-08-28 | 2022-07-12 | Cilag Gmbh International | Closure mechanism for surgical tool |
EP3791810B1 (en) | 2019-09-16 | 2023-12-20 | Ethicon LLC | Compressible non-fibrous adjuncts |
US11446032B2 (en) | 2019-09-16 | 2022-09-20 | Cilag Gmbh International | Compressible non-fibrous adjuncts |
US11382155B2 (en) | 2019-09-18 | 2022-07-05 | Canon U.S.A., Inc. | System and method for out-of-band pairing of sterile device with non-sterile device |
USD936684S1 (en) | 2019-11-22 | 2021-11-23 | Honor Device Co., Ltd. | Electronic display for a wearable device presenting a graphical user interface |
US11395653B2 (en) | 2019-11-26 | 2022-07-26 | Covidien Lp | Surgical stapling device with impedance sensor |
US11523824B2 (en) | 2019-12-12 | 2022-12-13 | Covidien Lp | Anvil buttress loading for a surgical stapling apparatus |
US20210177401A1 (en) | 2019-12-13 | 2021-06-17 | Covidien Lp | Surgical Stapler with Universal Tip Reload |
US11642185B2 (en) | 2019-12-16 | 2023-05-09 | Purdue Research Foundation | Systems and methods for performing a surgical procedure |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US20210212776A1 (en) | 2019-12-20 | 2021-07-15 | Auris Health, Inc. | Functional indicators for robotic medical systems |
US11284963B2 (en) | 2019-12-30 | 2022-03-29 | Cilag Gmbh International | Method of using imaging devices in surgery |
US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
US20210196270A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Surgical instrument comprising a flex circuit |
US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
EP4085076A4 (en) | 2020-01-03 | 2024-01-24 | Biosion, Inc. | ANTIBODIES BINDING TO BCMA AND THEIR USES |
US20210204951A1 (en) | 2020-01-08 | 2021-07-08 | Covidien Lp | Surgical apparatus |
US20210212671A1 (en) | 2020-01-14 | 2021-07-15 | Covidien Lp | Handheld electromechanical surgical instruments |
CN113138706A (zh) | 2020-01-17 | 2021-07-20 | 株式会社森田制作所 | 医疗系统、存储介质、警告的通知方法及受理方法 |
US11357597B2 (en) | 2020-02-17 | 2022-06-14 | Verb Surgical Inc. | Method and system for data exchange with robotic surgical tools using near field communication (NFC) |
US11730551B2 (en) | 2020-02-24 | 2023-08-22 | Canon U.S.A., Inc. | Steerable medical device with strain relief elements |
US11707278B2 (en) | 2020-03-06 | 2023-07-25 | Covidien Lp | Surgical stapler tool assembly to minimize bleeding |
JP7490802B2 (ja) | 2020-03-24 | 2024-05-27 | コヴィディエン リミテッド パートナーシップ | 交換可能なステープルカートリッジを備える外科用ステープル留め装置 |
US20210307744A1 (en) | 2020-04-07 | 2021-10-07 | Covidien Lp | Surgical stapling device with adjustable dissecting tip |
US20210346082A1 (en) | 2020-05-08 | 2021-11-11 | Covidien Lp | Robotic surgical instruments and methods |
US11219454B2 (en) | 2020-05-29 | 2022-01-11 | Cilag Gmbh International | Pin trap mechanism for surgical linear cutter |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
JP1694959S (pt) | 2020-06-09 | 2021-09-13 | ||
US20210401513A1 (en) | 2020-06-29 | 2021-12-30 | Covidien Lp | Seal configurations for surgical instruments such as for use in robotic surgical systems |
US12059195B2 (en) | 2020-06-29 | 2024-08-13 | Covidien Lp | Seal configurations for surgical instruments such as for use in robotic surgical systems |
US20220015760A1 (en) | 2020-07-20 | 2022-01-20 | Covidien Lp | Surgical stapling device with tissue gap control and controlled staple formation |
US20220031350A1 (en) | 2020-07-28 | 2022-02-03 | Cilag Gmbh International | Surgical instruments with double pivot articulation joint arrangements |
US11564683B2 (en) | 2020-09-16 | 2023-01-31 | Cilag Gmbh International | Apparatus and method to apply buttress to end effector of surgical stapler via driven member |
USD946617S1 (en) | 2020-09-30 | 2022-03-22 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
US20220104695A1 (en) | 2020-10-02 | 2022-04-07 | Verb Surgical Inc. | Endoscope for sensing trocars, compatible cannulas, instruments and accessories |
US20220104820A1 (en) | 2020-10-02 | 2022-04-07 | Ethicon Llc | Surgical instrument with adaptive motor control |
US11672534B2 (en) | 2020-10-02 | 2023-06-13 | Cilag Gmbh International | Communication capability of a smart stapler |
US11576674B2 (en) | 2020-10-06 | 2023-02-14 | Covidien Lp | Surgical stapling device with articulation lock assembly |
US20220110673A1 (en) | 2020-10-13 | 2022-04-14 | Cilag Gmbh International | Structured tissue contact surface for energy-based surgical instrument |
USD946025S1 (en) | 2020-10-19 | 2022-03-15 | Splunk Inc. | Display screen or portion thereof having a graphical user interface for monitoring information |
USD946046S1 (en) | 2020-10-19 | 2022-03-15 | Splunk Inc. | Display screen or portion thereof having an animated graphical user interface for dynamically formatting a presentation of information |
US11998228B2 (en) | 2020-10-22 | 2024-06-04 | Cilag Gmbh International | Ultrasonic surgical instrument with a carrier kart and reusable stage |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
KR20230096060A (ko) | 2020-10-29 | 2023-06-29 | 어플라이드 메디컬 리소시스 코포레이션 | 전동 핸들을 갖는 수술용 스테이플러 |
US20220133303A1 (en) | 2020-10-29 | 2022-05-05 | Ethicon Llc | Surgical instrument comprising sealable interface |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US20220168038A1 (en) | 2020-12-02 | 2022-06-02 | Cilag Gmbh International | Method for tissue treatment by surgical instrument |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US20220167982A1 (en) | 2020-12-02 | 2022-06-02 | Ethicon Llc | Surgical instruments with electrical connectors for power transmission across sterile barrier |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US20220167973A1 (en) | 2020-12-02 | 2022-06-02 | Ethicon Llc | Surgical systems with detachable shaft reload detection |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US20220202487A1 (en) | 2020-12-29 | 2022-06-30 | Ethicon Llc | Electrosurgical instrument with shaft voltage monitor |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US20220273307A1 (en) | 2021-02-26 | 2022-09-01 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US20220296230A1 (en) | 2021-03-22 | 2022-09-22 | Ethicon Llc | Method of shifting a surgical stapling instrument |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US20220304682A1 (en) | 2021-03-24 | 2022-09-29 | Ethicon Llc | Fastener cartridge with non-repeating fastener rows |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
USD978194S1 (en) | 2021-04-26 | 2023-02-14 | Bottomline Technologies, Inc. | Display screen with animated graphical user interface |
US20220346781A1 (en) | 2021-04-30 | 2022-11-03 | Cilag Gmbh International | Staple cartridge comprising staple drivers and stability supports |
US11857184B2 (en) | 2021-04-30 | 2024-01-02 | Cilag Gmbh International | Surgical instrument comprising a rotation-driven and translation-driven tissue cutting knife |
US11944295B2 (en) | 2021-04-30 | 2024-04-02 | Cilag Gmbh International | Surgical instrument comprising end effector with longitudinal sealing step |
US20220346785A1 (en) | 2021-04-30 | 2022-11-03 | Cilag Gmbh International | Surgical instrument comprising end effector with energy sensitive resistance elements |
US11576670B2 (en) | 2021-05-06 | 2023-02-14 | Covidien Lp | Surgical stapling device with optimized drive assembly |
US11510673B1 (en) | 2021-05-25 | 2022-11-29 | Covidien Lp | Powered stapling device with manual retraction |
US11826047B2 (en) | 2021-05-28 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising jaw mounts |
MX2023014137A (es) | 2021-05-28 | 2023-12-13 | Cilag Gmbh Int | Instrumento para engrapado que comprende un sensor de orientacion del vastago montado. |
WO2022249094A1 (en) | 2021-05-28 | 2022-12-01 | Cilag Gmbh International | Stapling instrument comprising a control system that controls a firiing stroke length |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
US20230138743A1 (en) | 2021-10-28 | 2023-05-04 | Cilag Gmbh International | Method and device for transmitting uart communications over a security short range wireless communication |
US20230134883A1 (en) | 2021-10-28 | 2023-05-04 | Cilag Gmbh International | Alternate means to establish resistive load force |
US20230138314A1 (en) | 2021-10-28 | 2023-05-04 | Cilag Gmbh International | Surgical device with internal communication that combines multiple signals per wire |
US20230135811A1 (en) | 2021-10-28 | 2023-05-04 | Cilag Gmbh International | Surgical instrument cartridge with unique resistor for surgical instrument identification |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
-
2016
- 2016-04-15 US US15/130,571 patent/US10357247B2/en active Active
-
2017
- 2017-04-06 JP JP2018553979A patent/JP6946337B2/ja active Active
- 2017-04-06 CN CN201780034725.4A patent/CN109310422B/zh active Active
- 2017-04-06 WO PCT/US2017/026324 patent/WO2017180432A2/en active Application Filing
- 2017-04-06 BR BR112018070729-5A patent/BR112018070729B1/pt active IP Right Grant
- 2017-04-13 EP EP17166546.6A patent/EP3231373B1/en active Active
-
2019
- 2019-05-31 US US16/427,983 patent/US11026684B2/en active Active
- 2019-07-09 US US16/506,399 patent/US11284891B2/en active Active
-
2022
- 2022-02-03 US US17/592,197 patent/US11931028B2/en active Active
-
2024
- 2024-02-26 US US18/587,265 patent/US20240252168A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20200000468A1 (en) | 2020-01-02 |
US10357247B2 (en) | 2019-07-23 |
WO2017180432A2 (en) | 2017-10-19 |
EP3231373A2 (en) | 2017-10-18 |
US20240252168A1 (en) | 2024-08-01 |
WO2017180432A3 (en) | 2017-12-14 |
CN109310422A (zh) | 2019-02-05 |
CN109310422B (zh) | 2021-10-12 |
US11026684B2 (en) | 2021-06-08 |
JP2019518485A (ja) | 2019-07-04 |
US11931028B2 (en) | 2024-03-19 |
US20200008800A1 (en) | 2020-01-09 |
EP3231373A3 (en) | 2017-11-29 |
JP6946337B2 (ja) | 2021-10-06 |
EP3231373B1 (en) | 2022-07-06 |
BR112018070729A2 (pt) | 2019-02-12 |
US20220330940A1 (en) | 2022-10-20 |
US11284891B2 (en) | 2022-03-29 |
US20170296183A1 (en) | 2017-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BR112018070729B1 (pt) | Instrumento cirúrgico com múltiplas respostas de programa durante um movimento de disparo | |
BR112018070789B1 (pt) | Instrumento cirúrgico com múltiplas respostas de programa durante um movimento de disparo | |
CN109310423B (zh) | 用于控制外科缝合和切割器械的系统和方法 | |
CN109310426B (zh) | 用于控制外科缝合和切割器械的系统和方法 | |
BR112018070792B1 (pt) | Instrumento cirúrgico modular com modo de operação configurável | |
CN109414265B (zh) | 在击发运动期间具有可调节停止/起动控件的外科器械 | |
CN109310421B (zh) | 在击发运动期间具有改善的停止/起动控件的外科器械 | |
BR112018071043B1 (pt) | Nstrumento cirúrgico com sensores de detecção e sistema cirúrgico compreendendo o mesmo | |
BR112018070714B1 (pt) | Instrumento cirúrgico com controle ajustável de parada/partida durante um movimento de disparo | |
BR112018070699B1 (pt) | Instrumento cirúrgico | |
BR112018070802B1 (pt) | Instrumento cirúrgico | |
BR112018070787B1 (pt) | Instrumento cirúrgico com controle otimizado de parada/partida durante um movimento de disparo | |
BR112018070724B1 (pt) | Instrumento médico com mecanismo de detecção de formação de grampo |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
B350 | Update of information on the portal [chapter 15.35 patent gazette] | ||
B06W | Patent application suspended after preliminary examination (for patents with searches from other patent authorities) chapter 6.23 patent gazette] | ||
B09A | Decision: intention to grant [chapter 9.1 patent gazette] | ||
B16A | Patent or certificate of addition of invention granted [chapter 16.1 patent gazette] |
Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 06/04/2017, OBSERVADAS AS CONDICOES LEGAIS |