WO2020171446A1 - 마이크로 로봇 제어장치 - Google Patents

마이크로 로봇 제어장치 Download PDF

Info

Publication number
WO2020171446A1
WO2020171446A1 PCT/KR2020/001806 KR2020001806W WO2020171446A1 WO 2020171446 A1 WO2020171446 A1 WO 2020171446A1 KR 2020001806 W KR2020001806 W KR 2020001806W WO 2020171446 A1 WO2020171446 A1 WO 2020171446A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
robot
microrobot
electromagnet
control device
Prior art date
Application number
PCT/KR2020/001806
Other languages
English (en)
French (fr)
Inventor
박종오
김창세
최은표
김자영
강병전
홍만쿠엉
홍아영
Original Assignee
전남대학교산학협력단
재단법인 한국마이크로의료로봇연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190019443A external-priority patent/KR102226282B1/ko
Priority claimed from KR1020190166881A external-priority patent/KR102293087B1/ko
Application filed by 전남대학교산학협력단, 재단법인 한국마이크로의료로봇연구원 filed Critical 전남대학교산학협력단
Priority to US17/298,983 priority Critical patent/US20220061642A1/en
Publication of WO2020171446A1 publication Critical patent/WO2020171446A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00025Operational features of endoscopes characterised by power management
    • A61B1/00036Means for power saving, e.g. sleeping mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00158Holding or positioning arrangements using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/72Micromanipulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00221Electrical control of surgical instruments with wireless transmission of data, e.g. by infrared radiation or radiowaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/303Surgical robots specifically adapted for manipulations within body lumens, e.g. within lumen of gut, spine, or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • A61B2034/731Arrangement of the coils or magnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • A61B2090/3762Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]

Definitions

  • the present invention was made by the project number HI19C0642 under the support of the Ministry of Health and Welfare, the research management institution of the project is the Korea Health Industry Development Institute, the name of the research project is “Development of technology for practical use of micro medical robots”, and the name of the research project is "Common commercialization of micro medical robots.
  • Base Technology Development Center the host institution is Korea Micro Medical Robot Research Institute, and the research period is from June 12 to 2022. December 31.
  • the present invention relates to a microrobot control device.
  • Electromagnetic field devices for driving micro-robots in the human body outside the human body are being developed.
  • Wired or wireless micro-robots are used depending on the purpose of treatment in the human body, and technologies for driving micro-robots by controlling the direction and size of a magnetic field through an electromagnetic field device have been known or are being developed.
  • an electromagnetic field device having a fixed or movable system structure has been developed in which a plurality of electromagnets/permanent magnets are disposed in consideration of the disease site in the human body and the motion characteristics of the microrobot.
  • the previously developed electromagnetic field driving device has a large number of electromagnets to be used, and the device size increases, making it difficult to install and operate the device in the treatment space. Due to the increase in the number of power supplies for power supply due to the increase in the number of electromagnets, the amount of power used increases. Etc. It is inefficient in terms of various operations.
  • the number of magnets used is small, but there is a limit to controlling the microrobot.
  • the permanent magnet has a constant magnetization value and the robot drives the robot through the change of the distance between the robot and the magnet and the direction of the magnet, the control performance is limited, and the control space of the permanent magnet is secured by using a motor. There is a difficulty in controlling the magnetic field in real time due to the time difference.
  • the dual source X-ray imaging apparatus includes two X-ray sources vertically disposed to control X-rays from the top and side surfaces of an object to be photographed, and two X-ray detectors positioned opposite to the two X-ray sources. And by obtaining a 2D image in the lateral direction and matching it to obtain 3D image information, it is possible to recognize the position of the capsule endoscope in the human body.
  • location recognition using X-ray information there is a disadvantage in that the configuration of the system is increased and the cost is large accordingly.
  • the present inventors have completed the micro-robot control electromagnet module of the present invention, a system for position recognition of the micro-robot, and a micro-robot control device using the same in order to solve the problems of the prior art.
  • the present invention was devised to solve the above-described problems in the prior art, and an object of the present invention is to focus a magnetic field in a desired region of interest by using only a pair of (two) electromagnet modules, thereby enabling a microrobot in the body. It is to provide an electromagnet module for focusing a magnetic field that can be controlled.
  • Another object of the present invention is to provide a microrobot control device including the dual electromagnet module described above.
  • Another object of the present invention is to focus a magnetic field in a desired region of interest by using only a pair of (two) electromagnet modules, and through this, a dual electromagnet module for focusing a magnetic field capable of controlling a microrobot in the body and a microrobot It is to provide a microrobot control device including a magnetic induction transmission coil that generates a magnetic induction frequency signal for position recognition.
  • Another object of the present invention is to focus a magnetic field in a desired region of interest using only a pair of (two) electromagnet modules, and through this, a dual electromagnet module for focusing a magnetic field capable of controlling a microrobot in the body, a microrobot
  • a magnetic induction transmission coil for generating a magnetic induction frequency signal for position recognition, a moving part for controlling the rotational movement and three-dimensional linear movement of the symmetric axis of the two electronic modules, and a magnetic induction frequency signal receiving coil for position recognition are provided. It is to provide a micro-robot control apparatus, comprising a micro-robot, wherein a core protrusion is formed at one end of the two electromagnet modules close to the region of interest.
  • An electromagnet module for focusing a magnetic field includes two electromagnet modules including a magnetic core made of a paramagnetic material and a solenoid coil wound outside the magnetic core;
  • the two electromagnet modules are arranged symmetrically on a two-dimensional plane including the axis of symmetry based on a virtual axis of symmetry passing through the center of the region of interest for which magnetic field is desired to be focused.
  • a core protrusion may be formed at one end of the two electromagnet modules close to the region of interest.
  • it may further include a rotatable spherical paramagnetic body disposed in a space between the core protrusion of the two electromagnet modules and the region of interest.
  • the core protrusions of the two electromagnet modules may be disposed adjacent to each other.
  • the core protrusion may have a cylindrical shape having the same diameter as the inner diameter of the solenoid coil.
  • the core protrusion has a diameter of a portion at which protrusion starts is the same as the inner diameter of the solenoid coil, and the diameter of the end of the core protrusion may be relatively smaller than the inner diameter of the solenoid coil. More specifically, for example, the core protrusion may have a truncated cone shape or a shape in which a cylinder and a truncated cone are combined.
  • the core protrusion may have a cylindrical shape having the same diameter as the outer diameter of the solenoid coil.
  • a microrobot control apparatus for achieving the object of the present invention includes the electromagnet module described above; A power supply for supplying power to the solenoid coil of the electromagnet module described above; And a moving unit that controls the rotational movement around the symmetry axis and the three-dimensional linear movement of the electromagnet module.
  • a microrobot control device is mutually symmetric on a two-dimensional plane including the axis of symmetry based on a virtual axis of symmetry passing through the center of a region of interest desired to focus a magnetic field.
  • Two electromagnet modules including a magnetic core made of a paramagnetic material disposed in an alternative manner and a solenoid coil wound outside the magnetic core; A magnetic induction transmission coil for generating a magnetic induction frequency signal for position recognition of the micro-robot; And a power supply unit for supplying power to the solenoid coil and the magnetic induction transmission coil of the electromagnet module.
  • the two electromagnet modules may include all of the above-described electromagnet modules in one embodiment.
  • it may include a moving unit that controls the rotational movement of the two electromagnet modules around the axis of symmetry and the three-dimensional linear movement.
  • a microrobot equipped with a magnetic induction frequency signal receiving coil for position recognition may be included.
  • the magnetic induction transmission coil applies a magnetic induction frequency signal to the micro-robot
  • the micro-robot control device receives the amount of electromotive force induced by the micro-robot to determine the position of 6 degrees of freedom of the micro-robot. I can recognize it.
  • the position of 6 degrees of freedom of the micro-robot may be recognized by converting the amount of electromotive force induced by the micro-robot into a distance-based manner.
  • the position of the six degrees of freedom of the micro-robot recognized by the micro-robot control apparatus may include 3D coordinate information and rotation angle information at each coordinate.
  • the micro-robot includes a body in the form of a capsule; A magnetic induction frequency signal receiving coil for generating induced power from the magnetic induction frequency signal applied for position recognition; A charging module for charging the induced power; Magnetic material that interacts with an external magnetic field; And an RF (Radio Frequency) coil for transmitting the frequency signal of the induced power generated from the magnetic induction frequency signal receiving coil to the microrobot control device.
  • a magnetic induction frequency signal receiving coil for generating induced power from the magnetic induction frequency signal applied for position recognition
  • a charging module for charging the induced power
  • Magnetic material that interacts with an external magnetic field
  • an RF (Radio Frequency) coil for transmitting the frequency signal of the induced power generated from the magnetic induction frequency signal receiving coil to the microrobot control device.
  • a microrobot control device is mutually symmetric on a two-dimensional plane including the axis of symmetry based on a virtual axis of symmetry passing through the center of a region of interest desired to focus a magnetic field.
  • Two electromagnet modules including a magnetic core made of a paramagnetic material disposed in an alternative manner and a solenoid coil wound outside the magnetic core; A magnetic induction transmission coil for generating a magnetic induction frequency signal for position recognition of the micro-robot; A power supply unit for supplying power to the solenoid coil and the magnetic induction transmission coil of the electromagnet module; A moving unit for controlling rotational movement of the two electromagnet modules around an axis of symmetry and a three-dimensional linear movement; And a microrobot equipped with a magnetic induction frequency signal receiving coil for position recognition, and a core protrusion formed at one end of the two electromagnet modules close to the region of interest.
  • the configuration related to the position recognition of the two electromagnet modules and the microrobot may include all the above-described embodiments.
  • the electromagnet module for focusing a magnetic field according to the present invention and a microrobot control device including the same are dual electromagnets having a simple structure including two electromagnet modules including a magnetic core made of a paramagnetic material and a solenoid coil wound outside the magnetic core.
  • a module it is possible to control a microrobot by focusing a magnetic field in a region of interest in which a magnetic field is desired to be focused, and by simplifying the device, it is possible to increase efficiency in installation and operation of the device in the treatment space.
  • the number of power supplies for power supply can be reduced, and the power consumption can be reduced, thereby enabling efficient device operation.
  • the micro-robot control device is positioned according to the wireless power generation and the produced power efficiency of the micro-robot by using the micro-robot control device equipped with an external magnetic induction transmission coil and the magnetic induction frequency signal receiving coil of the micro-robot. It has the effect of realizing the recognition at the same time, and since it is possible to recognize the position of the microrobot in three directions and six degrees of freedom, which is an angle in three directions, it is possible to solve the position error caused by the characteristics of the human body and the sensor device. There is an advantage.
  • FIG. 1 is a configuration diagram illustrating an electromagnet module according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram illustrating an angle-fixed electromagnet module and an angle-adjustable electromagnet module according to an embodiment of the present invention.
  • 3A is a view showing a basic form of various application examples of an electromagnet module according to an embodiment of the present invention.
  • 3B is a view showing a shape of a rotating core including a rotatable spherical paramagnetic body among various application examples of the electromagnet module according to an embodiment of the present invention.
  • FIG. 3C is a diagram illustrating a coupling frame coupled to a rotating core shape including a rotatable spherical paramagnetic body among various application examples of the electromagnet module according to an embodiment of the present invention.
  • FIG. 3D is a diagram showing a simulation of a magnetic field formed by current control in the same direction in the form of a rotating core including a rotatable spherical paramagnetic body among various application examples of the electromagnet module according to an embodiment of the present invention.
  • 3E is a diagram showing a simulation of a magnetic field formed by reverse current control in the form of a rotating core including a rotatable spherical paramagnetic material among various application examples of the electromagnet module according to an embodiment of the present invention.
  • FIG. 3F is a view showing a shape of a contact type core in which core protrusions are disposed adjacent to each other among various application embodiments of the electromagnet module according to an embodiment of the present invention.
  • 3G is a view showing a magnetic field simulation formed by current control in the same direction in the form of a contact-type core in which core protrusions are disposed adjacent to each other among various application embodiments of the electromagnet module according to an embodiment of the present invention.
  • 3H is a view showing a magnetic field simulation formed by reverse current control in the form of a contact type core in which core protrusions are disposed adjacent to each other among various application embodiments of the electromagnet module according to an embodiment of the present invention.
  • FIG. 4A shows an example of an electromagnet module having a core protrusion having a basic cylindrical shape among embodiments including a core protrusion having various shapes according to an embodiment of the present invention.
  • FIG. 4B shows an example of a magnetic field focusing electromagnet module having a core protrusion having a shape whose end is gradually narrowed among embodiments including core protrusions of various shapes according to an exemplary embodiment of the present invention.
  • FIG. 4C shows an example of a uniform magnetic field extension type electromagnet module having a core protrusion having a diameter equal to an outer diameter of a solenoid coil among embodiments including core protrusions having various shapes according to an exemplary embodiment of the present invention.
  • 5A is a simulation diagram showing a magnetic field region generated when a current flows through a solenoid coil of each electromagnet module in the same rotation direction according to an embodiment of the present invention.
  • 5B is a simulation diagram illustrating a magnetic field region generated when a current flows in a rotational direction opposite to each solenoid coil of each electromagnet module according to an embodiment of the present invention.
  • FIG. 6 shows embodiments of a microrobot control apparatus having an electromagnet module according to an embodiment of the present invention.
  • FIG. 7A is a conceptual diagram illustrating a method of controlling the driving of a micro-endoscope robot including an image capture unit inside a digestive tract by an operation of an electromagnet module according to an embodiment of the present invention.
  • FIG. 7B is a conceptual diagram illustrating a method of controlling the operation of a microrobot in a blood vessel, which is a circulation organ, by an operation of an electromagnet module according to an embodiment of the present invention.
  • FIG. 8A is a schematic diagram of a microrobot control apparatus including two electromagnet modules of the present invention and a magnetic induction transmission coil for generating a magnetic induction frequency signal for position recognition of the microrobot.
  • FIG. 8B shows a microrobot control apparatus including two electromagnet modules of the present invention and a magnetic induction transmission coil for generating a magnetic induction frequency signal for position recognition of the microrobot.
  • FIG. 9 is a block diagram schematically showing the configuration of a position recognition system for a capsule endoscope, which is a specific example of a micro robot in the microrobot control apparatus according to the present invention.
  • FIG. 10 is a diagram schematically showing a capsule endoscope that is a specific example of a micro robot in the micro robot control apparatus according to the present invention.
  • FIG. 11 is an explanatory diagram showing a relationship between a distance difference between a magnetic induction transmission coil and a capsule endoscope and power reception efficiency in the microrobot control apparatus according to the present invention.
  • FIG. 12 is a view showing the 6 degree of freedom position recognition of the capsule endoscope through the micro-robot control device according to the present invention.
  • FIG. 13 is a block diagram schematically showing the configuration of a position recognition system of a capsule endoscope according to another embodiment in the microrobot control apparatus according to the present invention.
  • FIG. 14 shows an example in which a micro-robot position recognition system is applied to a micro-robot driving system other than the micro-robot control apparatus of the present invention.
  • two electromagnet modules including a magnetic core made of a paramagnetic material and a solenoid coil wound outside the magnetic core;
  • the two electromagnet modules are mutually symmetrically arranged on a two-dimensional plane including the axis of symmetry based on an imaginary axis of symmetry passing through a center of a region of interest in which a magnetic field is desired to be focused.
  • FIG. 1 is a block diagram illustrating an electromagnet module 100 according to an embodiment of the present invention.
  • FIG. 1 shows a magnetic core 120 made of a paramagnetic material constituting each of two electromagnet modules included in an electromagnet module according to an embodiment of the present invention, and a solenoid coil 110 wound outside the magnetic core. .
  • FIG. 2 shows a "fixed dual electromagnet module” in which the angles at which the two electromagnet modules included in the electromagnet module according to an embodiment of the present invention are disposed are fixed, and the “fixed dual electromagnet module” in which the angles at which the two electromagnet modules are disposed can be adjusted.
  • This is a configuration diagram for explaining the “adjustable dual electromagnet module”.
  • FIG. 2 shows an ROI, which is an area in which a magnetic field is to be focused by an electromagnet module.
  • the two electromagnet modules are symmetrically arranged on a two-dimensional plane including the axis of symmetry based on an imaginary axis of symmetry passing through the center of a region of interest in which magnetic field is desired to be focused. This means that it is not a twisted arrangement structure that deviates from the two-dimensional plane.
  • the magnetic field may be focused in a region where the magnetic field formed by each of the single electromagnet modules overlaps.
  • the position of the electromagnet module can be controlled so that the magnetic field can be focused within the region of interest.
  • the position of the magnetic field focusing area can be controlled by moving the electromagnet module in three-dimensional space and adjusting the direction of the electromagnet module.
  • the 3rd electromagnet module It is possible to control the position of the magnetic field focusing area by moving the dimensional space and adjusting the direction of the electromagnet module as well as adjusting the arrangement angle of the two electromagnets.
  • the core may include a core protrusion 121 in which the core is not wound.
  • 3B shows an example of a dual electromagnet module including a rotatable spherical paramagnetic body.
  • 3C is a view showing a coupling frame coupled to a rotating core shape including a rotatable spherical paramagnetic among various application embodiments of the dual electromagnet module, and
  • FIG. 3D is a magnetic field simulation formed by current control in the same direction thereof.
  • 3E is a diagram showing a simulation of a magnetic field formed by reverse current control.
  • 3F shows an electromagnet module in which core protrusions are disposed adjacent to each other.
  • 3G is a diagram showing a magnetic field simulation formed by the same direction current control in the form of a contact-type core in which the core protrusions are disposed adjacent to each other, and
  • FIG. 3H is a diagram showing a magnetic field simulation formed by the reverse current control.
  • 4A to 4C show the configuration of an embodiment including core protrusions of various shapes.
  • 4A is an example of a dual electromagnet module having a core protrusion 121 having a basic cylindrical shape, and the core protrusion has a cylindrical shape having the same diameter as the inner diameter of the solenoid coil.
  • 4B shows an example of a magnetic field focusing type electromagnet module having a core protrusion 121 having a shape whose end is gradually narrowed.
  • a diameter of a portion of the core protrusion at which protrusion starts may be the same as an inner diameter of the solenoid coil, and a diameter of an end of the core protrusion may be relatively smaller than an inner diameter of the solenoid coil.
  • the core protrusion may have a truncated cone shape or a shape in which a cylinder and a truncated cone are combined.
  • a magnetic field focused in a narrow area with a higher density can be realized.
  • FIG. 4C shows an example of a uniform magnetic field expansion type dual electromagnet module having a core protrusion 121 having the same diameter as the outer diameter of the solenoid coil.
  • a magnetic field focusing dual electromagnet module having a core protrusion having the same diameter as the outer diameter of the solenoid coil as in the present embodiment, it is possible to implement a wider magnetic field region with a uniform intensity.
  • FIG. 5A and 5B show simulations of a magnetic field region formed according to the direction of current flowing through a pair of solenoid coils.
  • the magnetic field may be focused in a circular shape at the upper center.
  • the magnetic field may be focused in an elliptical shape at the upper center.
  • a microrobot control apparatus includes the electromagnet module described above; A power supply for supplying power to the solenoid coil of the electromagnet module; And a moving unit that controls a rotational movement around a symmetrical axis and a three-dimensional linear movement of the electromagnet module.
  • the micro-robot control apparatus includes a link, which is a moving part that controls the movement of the dual electromagnet module in a three-dimensional space by combining an electromagnet module, and the shape or driving method of the link is any known method. Applicable and not particularly limited.
  • the shape of the link according to an embodiment of the present invention may be a circumferential shape positioned on a plane orthogonal to the long axis of the bed (left view of FIG. 6), and the link moves linearly along the long axis of the bed, It can be operated in a way that rotates around the long axis of the bed.
  • the shape of the link according to another embodiment of the present invention may be the shape of a robot arm equipped with one or two or more joints (middle of FIG. 6), and the link is a three-dimensional space of the electromagnet module by rotational motion of the joint. It can work in a way that controls the phase movement.
  • the shape of the link according to another embodiment of the present invention is a linear y-axis guide rod placed in a direction orthogonal to the plane of the bed on which a patient can lie down, and an x-axis guide placed in a direction orthogonal to the y-axis guide rod.
  • the rods are interconnected, the length extension and/or the positional movement of the contact is possible, and the dual electromagnet module according to an embodiment of the present invention is coupled to one end of the x-axis guide rod, and the y-axis guide rod and The dual electromagnet module can be moved by changing the length and/or position of the x-axis guide rod. Additionally, the dual electromagnet module may be directly connected to the x-axis guide rod, or connected to one end of the x-axis guide rod and connected to one end of the rotating guide rod serving as a linker capable of rotational movement.
  • the power supply unit for supplying power to the solenoid coil of the electromagnet module includes two power supply units connected to each of the two electromagnet modules of the dual electromagnet module, or a power supply unit having one or two output channels.
  • a power supply unit having two power supply units or two output channels may be used.
  • 7 shows a conceptual diagram of a method of controlling the operation of the microrobot in the body by the operation of the electromagnet module.
  • 7A shows an embodiment of driving a microrobot in the digestive tract, specifically, a capsule endoscope robot including an image capture unit.
  • the electromagnet module according to an embodiment of the present invention, it is possible to focus a magnetic field on a certain position inside the fire extinguishing system, and by controlling the direction of the current applied to the electromagnet module or by controlling the rotational motion of the electromagnet module, It is possible to freely control the rotational motion of the microrobot located inside the digestive tract, specifically, for example, the capsule endoscope robot, and control the motion of various microrobots for various purposes as well as the capsule endoscope robot.
  • FIG. 7B shows an embodiment of the operation of a microrobot in a circulatory organ, specifically, a blood vessel.
  • movement of the micro-robot within a blood vessel can be freely controlled, and in particular, a path of the micro-robot can be freely controlled at a contact point where several blood vessels extend.
  • FIGS. 8A and 8B illustrate a microrobot control device 1 equipped with a magnetic induction transmission coil for generating a magnetic induction frequency signal for position recognition of the two electromagnet modules of the present invention and the microrobot in the present invention. Is shown.
  • the magnetic induction transmission coil 130 for generating a magnetic induction frequency signal for position recognition of the microrobot may be provided at a position where the core protrusion 121 of the electromagnet module is formed.
  • the ability to freely control the operation of the micro-robot by the electronic module 100 provided in the micro-robot control device 1 is as described above, and details related to position recognition of the micro-robot will be described below.
  • the magnetic induction transmission coil 130 may be designed to generate a multi-mT alternating magnetic field in a several kHz band, and to include a region of the human digestive system in which the capsule endoscope operates.
  • the magnetic induction transmission coil 130 can be combined with one or more in an electromagnetic driving device that generates an electromagnetic field among the microrobot control devices (for example, referring to the electromagnet module of the present invention), and the motion range of the microrobot in the human body According to this, the number of magnetic induction transmission coils 130 may be determined.
  • the inside of the human body can be observed through a micro-robot driven by a DC magnetic field generated by an electromagnetic driving device, and the position of the micro-robot can be recognized using a magnetic induction frequency signal generated from the magnetic induction transmission coil 130. have.
  • the microrobot inserted into the human body is composed of micro or nano units, and one or more microrobots may be inserted into the human body as necessary.
  • the micro-robot control device can recognize the position of the micro-robot by receiving and analyzing the amount of electromotive force induced by the micro-robot by the magnetic induction frequency signal.
  • 6 degrees of freedom DOF, Degree of freedom
  • FIG. 9 schematically shows the configuration of a position recognition system for a capsule endoscope, which is a specific example of a microrobot in the microrobot control apparatus of the present invention
  • FIG. 10 shows a specific configuration of the capsule endoscope.
  • the capsule endoscope 300 includes a body 310, a magnetic induction receiving coil 320, a magnetic body 330, a charging module 340, and a radio frequency (RF) coil 350.
  • a body 310 a magnetic induction receiving coil 320, a magnetic body 330, a charging module 340, and a radio frequency (RF) coil 350.
  • RF radio frequency
  • the body 310 constituting the capsule endoscope 300 has a size of a micro or nano unit, and is formed in a capsule shape.
  • the magnetic induction receiving coil 320 disposed inside the body 310 generates an electromotive force induced from the magnetic induction frequency signal applied from the magnetic induction transmission coil 130 of the microrobot control device 1.
  • the magnetic body 330 is magnetized in an arbitrary direction inside the body 310 for electromagnetic driving, and interacts with the DC magnetic field generated by the microrobot control device 1 to drive the capsule endoscope 300.
  • the charging module 340 may charge the electromotive force induced by the magnetic induction receiving coil 320 in a wireless manner.
  • the RF (Radio Frequency) coil 350 transmits a frequency signal of the induced power generated from the magnetic induction receiving coil 320, that is, the electromotive force for charging the charging module 340 to the microrobot controller 1.
  • the external microrobot control device 1 can determine the position of the capsule endoscope 300 from the amount of electromotive force induced by the capsule endoscope 300.
  • FIG. 11 is an explanatory diagram showing the relationship between the distance difference between the magnetic induction transmission coil and the capsule endoscope and power reception efficiency, and the difference between the magnetic induction transmission coil 130 of the microrobot control device 1 and the capsule endoscope 300
  • the location can be recognized through the power reception efficiency generated accordingly. That is, the efficiency of receiving power from the magnetic induction transmission coil 130 of the capsule endoscope 300 located at a distance of D1 closer than the distance of D2 is high, and in the microrobot control device 1, the capsule endoscope ( 300) can be recognized.
  • the microrobot control device 1 recognizes the position of the capsule endoscope 300 from the received magnetic induction receiving frequency signal. That is, by converting the amount of electromotive force induced by the capsule endoscope 300 based on distance, the position of the six degrees of freedom of the capsule endoscope 300 may be recognized.
  • the position of the six degrees of freedom of the capsule endoscope 300 recognized by the micro-robot control device 1 is three-dimensional coordinate information (3 position information on the x-axis, y-axis, and z-axis) and rotation angle information ( 3 angle information for ⁇ , ⁇ and ⁇ ).
  • the three-axis electromotive force (V) of the capsule endoscope 300 induced by the magnetic induction transmission coil 130 can be converted into a magnetic flux (Wb), and the magnetic flux (Wb) is generated in the magnetic induction transmission coil 130 It can be converted into a magnetic field (B).
  • the magnetic induction transmission coil 130 forms a magnetic field (B) according to the distance values of x, y, and z from the inner center point, and the magnetic flux (Wb) of the three axes converted from the induced electromotive force (V) and the magnetic induction transmission coil ( 3D coordinate information of the capsule endoscope 300 from the inner center of the magnetic induction transmission coil 130 by matching the 3-axis magnetic field (B) of 130) (3 position information on the x-axis, y-axis and z-axis) And rotation angle information (3 angle information for ⁇ , ⁇ and ⁇ ) can be recognized at each coordinate.
  • the position recognition system of the capsule endoscope there is a characteristic that wireless power generation and position recognition of the capsule endoscope 300 can be simultaneously implemented, and the position recognition for the six degrees of freedom (position 3, angle 3) of the capsule endoscope 300 is Because it is possible, it is possible to implement a technical feature that can solve the position error caused by the characteristics of the human body and the sensor device.
  • the micro-robotic control device 1 includes an electromagnet module 100 that drives the capsule endoscope 300 and a magnetic induction transmission coil that generates a magnetic induction frequency signal to recognize the position of the capsule endoscope 300 ( 130) may be included.
  • the magnetic induction transmission coil 130 may be installed on a bed (not shown) as a single device, or may be configured in a form combined with the electromagnet module 100.
  • the magnetic induction receiving frequency signal induced by the capsule endoscope 300 through the magnetic induction transmission coil 130 is transmitted to the main computer 400 through the RF receiver 410.
  • the main computer 400 by formulating the amount of the electromotive force based on the distance, the distance and direction of the capsule endoscope 200 from the magnetic induction transmission coil 320 can be checked to recognize the exact position of the capsule endoscope 300.
  • the micro-robot position recognition system of the present invention can be applied to any device for controlling a micro-robot using an electromagnetic field other than the micro-robot control device 1 of the present invention, and for generating an electromagnetic field as shown in FIG. Even when two or more electromagnetic driving devices are disposed, the position of the capsule endoscope can be accurately recognized by installing a magnetic induction transmitting coil on some coils and installing a magnetic induction receiving coil on the capsule endoscope.
  • the specific method for location recognition has already been described above.
  • the present invention relates to a microrobot control device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Robotics (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Mechanical Engineering (AREA)
  • Endoscopes (AREA)
  • Manipulator (AREA)

Abstract

본 발명은 마이크로 로봇 제어장치에 관한 것이다. 본 발명에 따른 자기장 집속용 전자석 모듈 및 이를 포함하는 마이크로 로봇 제어장치는, 자기장 집속을 원하는 관심영역에 자기장을 집속시켜 마이크로 로봇을 제어할 수 있고, 장치를 간소화함으로써 시술 공간상 장치 설치 및 운용에 효율성을 기할 수 있다. 또한, 전자석 개수를 줄여 전원공급용 파워 개수를 감소시키고, 전력 사용량을 줄임으로써 효율적인 장치 운용을 기할 수 있다. 또한, 본 발명에 따른 마이크로 로봇 제어장치는 외부의 자기유도 송신코일이 구비되는 마이크로 로봇 제어장치와 마이크로 로봇의 자기유도 주파수 신호 수신코일을 이용하여 마이크로 로봇의 무선 전력생산과 생산된 전력 효율에 따라 위치인식을 동시에 구현하는 것이 가능한 효과가 있다.

Description

마이크로 로봇 제어장치
본 발명은 보건복지부의 지원 하에서 과제번호 HI19C0642에 의해 이루어진 것으로서, 상기 과제의 연구관리전문기관은 한국보건산업진흥원, 연구사업명은 "마이크로의료로봇실용화기술개발", 연구과제명은 "마이크로의료로봇 실용화 공통기반 기술개발 센터", 주관기관은 한국마이크로의료로봇연구원, 연구기간은 2019.06.12 ~ 2022.12.31이다.
본 특허출원은 2019년 02월 19일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2019-0019443호에 대하여 우선권을 주장하며, 상기 특허출원의 개시 사항은 본 명세서에 참조로서 삽입된다.
본 특허출원은 2019년 12월 13일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2019-0166881호에 대하여 우선권을 주장하며, 상기 특허출원의 개시 사항은 본 명세서에 참조로서 삽입된다.
본 발명은 마이크로 로봇 제어장치에 관한 것이다.
인체 내 마이크로 로봇을 인체 외부에서 구동하기 위한 전자기장 장치들이 개발되고 있다. 인체 내 시술 목적에 따라 유선 또는 무선의 마이크로 로봇이 활용되고 있으며, 전자기장 장치를 통해 자기장의 방향과 크기를 제어하여 마이크로 로봇을 구동하는 기술들이 알려진바 있거나 개발 중에 있다. 구체적으로 예를 들면, 인체 내 질환 부위 및 마이크로 로봇의 운동 특성을 고려하여 다수 개의 전자석/영구자석을 배치하고 고정형 또는 이동형의 시스템 구조를 갖는 전자기장 장치가 개발되고 있다.
기 개발된 전자기장 구동장치는 사용하는 전자석의 개수가 많아, 장치 크기가 커져서 시술 공간상 장치설치 및 운용이 효율적이지 못하고, 전자석 개수 증가에 따른 전원공급용 파워 개수 증가로 인해, 전력사용량이 증가하는 등 다양한 운용 관점에서 비효율적이다.
또한, 영구자석을 활용한 자기장 구동장치의 경우, 사용되는 자석의 개수는 적으나 마이크로 로봇을 제어하는데 한계가 있다. 더불어 영구자석은 자화 값이 일정하여 로봇과 자석간의 거리변화, 자석의 방향전환을 통해 로봇을 구동하므로 제어 성능에 한계가 있으며, 모터를 이용하여 영구자석의 제어공간을 확보하고 있으나, 모터 이동의 시간차로 인해 실시간 자기장 제어에 어려움이 있다.
종래 공간상 경사자장과 균일자장을 변화시켜 로봇을 제어하는 방법의 경우, 위치정보 없이는 원하는 위치로의 로봇 집속이 어려운 한계가 있다.
또한 인체 내에 삽입된 마이크로 로봇 (캡슐형 내시경 등) 용도에 따라 마이크로 단위로 구성되고 있어 인체 내에 삽입되면, 캡슐형 내시경의 이동시 정확한 위치를 파악하기 어렵다는 단점이 있다.
특히, 인체 내의 캡슐형 내시경의 위치를 인식하기 위하여, RF (Radio Frequency)신호를 활용하여 캡슐형 내시경의 위치를 인식하는 기술을 개발하고 있으나, RF 신호의 인체 투과 특성이 다르기 때문에 위치오차를 발생한다는 문제점이 있고, 자기장 성분을 측정하는 홀센서 (hall sensor)의 배열을 통한 위치인식 기술이 개발되고 있으나, 홀센서와 캡슐 사이의 거리에 따라 자기장 측정 효율이 떨어져 위치오차가 발생하고 있다.
한편, 두개의 엑스선 소스를 이용한 듀얼 소스 엑스선 촬영장치를 활용하여, 촬영된 영상으로부터 캡슐의 위치를 확인할 수 있는 기술이 개시되고 있다. 듀얼 소스 엑스선 영상장치는 촬영 대상체의 상단면과 측면에서 엑스선을 조하기 위하여 서로 수직하게 배치된 두 개의 엑스선 소스와, 두 엑스선 소스에 각각 대향 위치하는 두 개의 엑스선 검출부로 이루어지며, 촬영 대상물의 평면 및 측면 방향의 2차원 영상을 얻어서 이를 매칭 (matching)하여 3차원 이미지 정보를 얻음으로써 인체 내의 캡슐형 내시경의 위치를 인식할 수 있다. 그러나 엑스선 정보를 활용하여 위치인식을 하는 경우, 시스템의 구성이 커지고, 그에 따른 비용이 많이 발생한다는 단점이 있다.
본 발명자들은 상술한 종래 기술의 문제점들을 해결하고자 본 발명의 마이크로 로봇 제어용 전자석 모듈, 마이크로 로봇의 위치 인식을 위한 시스템 및 이를 이용한 마이크로 로봇 제어장치 완성하였다.
본 발명은 상술한 종래 기술상의 문제점을 해결하기 위해 고안된 것으로, 본 발명의 목적은 한 쌍 (2개)의 전자석 모듈만을 이용하여, 원하는 관심 영역에 자기장을 집속시키고, 이를 통해 체내의 마이크로 로봇을 제어할 수 있는 자기장 집속용 전자석 모듈을 제공하는 것이다.
본 발명의 다른 목적은 상술한 듀얼 전자석 모듈을 포함하는 마이크로 로봇 제어장치를 제공하는 것이다.
본 발명의 또 다른 목적은 한 쌍 (2개)의 전자석 모듈만을 이용하여, 원하는 관심 영역에 자기장을 집속시키고, 이를 통해 체내의 마이크로 로봇을 제어할 수 있는 자기장 집속용 듀얼 전자석 모듈 및 마이크로 로봇의 위치 인식을 위한 자기유도 주파수 신호를 발생시키는 자기유도 송신코일을 포함하는 마이크로 로봇 제어장치를 제공하는 것이다.
본 발명의 또 다른 목적은 한 쌍 (2개)의 전자석 모듈만을 이용하여, 원하는 관심 영역에 자기장을 집속시키고, 이를 통해 체내의 마이크로 로봇을 제어할 수 있는 자기장 집속용 듀얼 전자석 모듈, 마이크로 로봇의 위치 인식을 위한 자기유도 주파수 신호를 발생시키는 자기유도 송신코일, 상기 2개의 전자적 모듈의 대칭축 주심 회전 운동 및 3차원 선형 이동을 제어하는 이동부 및 위치인식을 위한 자기유도 주파수 신호 수신코일이 구비된 마이크로 로봇을 포함하고, 상기 2개의 전자석 모듈의 양 말단 중 상기 관심영역에 가까운 일 말단에 코어 돌출부가 형성된 것을 특징으로 하는 마이크로 로봇 제어장치를 제공하는 것이다.
상기 목적을 달성하기 위한 본 발명의 관점에 따른 자기장 집속용 전자석 모듈은 상자성체로 이루어진 자기 코어 및 상기 자기 코어 외부에 권선되어 이루어진 솔레노이드 코일을 포함하는 2개의 전자석 모듈을 포함하고;
상기 2개의 전자석 모듈은 자기장 집속을 원하는 관심 영역의 중심을 지나는 가상의 대칭축을 기준으로 상기 대칭축을 포함하는 2차원 평면상에 상호 대칭적으로 배치된 것인 것을 특징으로 한다.
본 발명의 일 실시예에 있어서, 상기 2개의 전자석 모듈의 양 말단 중 상기 관심 영역에 가까운 일 말단에 코어 돌출부가 형성될 수 있다.
본 발명의 일 실시예에 있어서, 상기 2개의 전자석 모듈의 상기 코어 돌출부 및 관심 영역 사이의 공간상에 배치된 회전 가능한 구형 상자성체를 추가적으로 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 2개의 전자석 모듈의 상기 코어 돌출부는 상호 인접한 상태로 배치될 수 있다.
본 발명의 일 실시예에 있어서, 상기 코어 돌출부는 상기 솔레노이드 코일의 내경과 동일한 직경을 갖는 원통 형상일 수 있다.
본 발명의 일 실시예에 있어서, 상기 코어 돌출부는 돌출이 시작되는 부분의 직경이 상기 솔레노이드 코일의 내경과 동일하며, 상기 코어 돌출부 말단의 직경은 솔레노이드 코일의 내경에 비해 상대적으로 작을 수 있다. 보다 구체적으로 예를 들면, 상기 코어 돌출부는 원뿔대 형상 또는 원통과 원뿔대가 결합된 형상일 수 있다.
본 발명의 일 실시예에 있어서, 상기 코어 돌출부는 상기 솔레노이드 코일의 외경과 동일한 직경을 갖는 원통 형상일 수 있다.
본 발명의 목적을 달성하기 위한 본 발명의 다른 일 관점에 따른 마이크로 로봇 제어장치는 상술한 전자석 모듈; 상술한 전자석 모듈의 솔레노이드 코일에 전원을 공급하는 전원부; 및 상술한 전자석 모듈의 대칭축 중심 회전 운동 및 3차원 선형 이동을 제어하는 이동부;를 포함할 수 있다.
본 발명의 목적을 달성하기 위한 본 발명의 또 다른 일 관점에 따른 마이크로 로봇 제어장치는 자기장 집속을 원하는 관심 영역의 중심을 지나는 가상의 대칭축을 기준으로 상기 대칭축을 포함하는 2차원 평면상에 상호 대칭적으로 배치되는 상자성체로 이루어진 자기 코어 및 상기 자기 코어 외부에 권선되어 이루어진 솔레노이드 코일을 포함하는 2개의 전자석 모듈; 마이크로 로봇의 위치인식을 위한 자기유도 주파수 신호를 발생시키는 자기유도 송신코일; 및 전자석 모듈의 솔레노이드 코일과 자기유도 송신코일에 전원을 공급하는 전원부;를 포함할 수 있다. 이 때, 2개의 전자석 모듈은 상술한 전자석 모듈의 일 실시예를 모두 포함할 수 있다.
본 발명의 일 실시예에 있어서, 2개의 전자석 모듈의 대칭축 중심 회전 운동 및 3차원 선형 이동을 제어하는 이동부를 포함할 수 있다.
본 발명의 일 실시예에 있어서, 위치인식을 위한 자기유도 주파수 신호 수신코일이 구비된 마이크로 로봇을 포함할 수 있다.
본 발명의 일 실시예에 있어서, 자기유도 송신코일은 상기 마이크로 로봇에 자기유도 주파수 신호를 인가하고, 상기 마이크로 로봇 제어장치는 마이크로 로봇에서 유도되는 기전력 양을 수신하여 마이크로 로봇의 6자유도 위치를 인식할 수 있다.
본 발명의 일 실시예에 있어서, 마이크로 로봇에서 유도되는 기전력 양을 거리기반으로 변환하여 마이크로 로봇의 6자유도 위치를 인식할 수 있다.
본 발명의 일 실시예에 있어서, 마이크로 로봇 제어장치가 인식하는 상기 마이크로 로봇의 6자유도 위치는 3차원 좌표 정보와 각 좌표에서 회전각도 정보를 포함할 수 있다.
본 발명의 일 실시예에 있어서, 마이크로 로봇은 캡슐 (Capsule) 형태의 몸체; 위치인식을 위해 인가되는 상기 자기유도 주파수 신호로부터 유도전력을 발생하는 자기유도 주파수 신호 수신코일; 상기 유도전력을 충전하는 충전모듈; 외부 자기장과 상호작용하는 자성체; 및 상기 자기유도 주파수 신호 수신코일로부터 발생된 유도전력의 주파수 신호를 상기 마이크로 로봇 제어장치에 송신하는 RF (Radio Frequency)코일;을 포함하는 캡슐내시경일 수 있다.
본 발명의 목적을 달성하기 위한 본 발명의 또 다른 일 관점에 따른 마이크로 로봇 제어장치는 자기장 집속을 원하는 관심 영역의 중심을 지나는 가상의 대칭축을 기준으로 상기 대칭축을 포함하는 2차원 평면상에 상호 대칭적으로 배치되는 상자성체로 이루어진 자기 코어 및 상기 자기 코어 외부에 권선되어 이루어진 솔레노이드 코일을 포함하는 2개의 전자석 모듈; 마이크로 로봇의 위치인식을 위한 자기유도 주파수 신호를 발생시키는 자기유도 송신코일; 전자석 모듈의 솔레노이드 코일과 자기유도 송신코일에 전원을 공급하는 전원부; 2개의 전자석 모듈의 대칭축 중심 회전 운동 및 3차원 선형 이동을 제어하는 이동부; 및 위치인식을 위한 자기유도 주파수 신호 수신코일이 구비된 마이크로 로봇을 포함하고, 상기 2개의 전자석 모듈의 양 말단 중 상기 관심 영역에 가까운 일 말단에 코어 돌출부가 형성된 것을 특징으로 한다. 이 때, 2개의 전자석 모듈 및 마이크로 로봇의 위치인식과 관련된 구성은 상술한 모든 일 실시예를 포함할 수 있다.
본 발명에 따른 자기장 집속용 전자석 모듈 및 이를 포함하는 마이크로 로봇 제어장치는, 상자성체로 이루어진 자기 코어 및 상기 자기 코어 외부에 권선되어 이루어진 솔레노이드 코일을 포함하는 2개의 전자석 모듈을 포함하는 간단한 구조의 듀얼 전자석 모듈을 이용함으로써, 자기장 집속을 원하는 관심영역에 자기장을 집속시켜 마이크로 로봇을 제어할 수 있고, 장치를 간소화함으로써 시술 공간상 장치 설치 및 운용에 효율성을 기할 수 있다. 또한, 전자석 개수를 줄여 전원공급용 파워 개수를 감소시키고, 전력 사용량을 줄임으로써 효율적인 장치 운용을 기할 수 있다.
또한 본 발명에 따른 마이크로 로봇 제어장치는 외부의 자기유도 송신코일이 구비되는 마이크로 로봇 제어장치와 마이크로 로봇의 자기유도 주파수 신호 수신코일을 이용하여 마이크로 로봇의 무선 전력생산과 생산된 전력 효율에 따라 위치인식을 동시에 구현하는 것이 가능한 효과가 있고, 마이크로 로봇의 3방향의 위치와 3방향의 각도인 6자유도 위치인식이 가능하기 때문에, 인체 특성 및 센서장치 특성에 의해 발생되는 위치오차를 해결할 수 있는 이점이 있다.
도 1은 본 발명의 일 실시예에 따른 전자석 모듈을 설명하기 위한 구성도이다.
도 2는 본 발명의 일 실시예에 따른 각도 고정형 전자석 모듈 및 각도 조절형 전자석 모듈을 설명하기 위한 구성도이다.
도 3a는 본 발명의 일 실시예에 따른 전자석 모듈의 다양한 응용 실시예들 중 기본 형태를 나타내는 도면이다.
도 3b는 본 발명의 일 실시예에 따른 전자석 모듈의 다양한 응용 실시예들 중 회전 가능한 구형 상자성체를 포함하는 회전형 코어 형태를 나타내는 도면이다.
도 3c는 본 발명의 일 실시예에 따른 전자석 모듈의 다양한 응용 실시예들 중 회전 가능한 구형 상자성체를 포함하는 회전형 코어 형태에 결합 프레임이 결합된 모습을 나타내는 도면이다.
도 3d는 본 발명의 일 실시예에 따른 전자석 모듈의 다양한 응용 실시예들 중 회전 가능한 구형 상자성체를 포함하는 회전형 코어 형태에서 동일방향 전류제어에 의해 형성되는 자기장 시뮬레이션을 보여주는 도면이다.
도 3e는 본 발명의 일 실시예에 따른 전자석 모듈의 다양한 응용 실시예들 중 회전 가능한 구형 상자성체를 포함하는 회전형 코어 형태에서 역방향 전류제어에 의해 형성되는 자기장 시뮬레이션을 보여주는 도면이다.
도 3f는 본 발명의 일 실시예에 따른 전자석 모듈의 다양한 응용 실시예들 중 코어 돌출부가 상호 인접한 상태로 배치된 접촉형 코어 형태를 나타내는 도면이다.
도 3g는 본 발명의 일 실시예에 따른 전자석 모듈의 다양한 응용 실시예들 중 코어 돌출부가 상호 인접한 상태로 배치된 접촉형 코어 형태에서 동일방향 전류제어에 의해 형성되는 자기장 시뮬레이션을 보여주는 도면이다.
도 3h는 본 발명의 일 실시예에 따른 전자석 모듈의 다양한 응용 실시예들 중 코어 돌출부가 상호 인접한 상태로 배치된 접촉형 코어 형태에서 역방향 전류제어에 의해 형성되는 자기장 시뮬레이션을 보여주는 도면이다.
도 4a는 본 발명의 일 실시예에 따른 다양한 형상의 코어 돌출부를 포함하는 실시예 중 기본적인 원통 형상의 코어 돌출부를 갖는 전자석 모듈의 일례를 나타낸다.
도 4b는 본 발명의 일 실시예에 따른 다양한 형상의 코어 돌출부를 포함하는 실시예 중 말단이 점차 좁아지는 형상의 코어 돌출부를 갖는 자기장 집속형 전자석 모듈의 일례를 나타낸다.
도 4c는 본 발명의 일 실시예에 따른 다양한 형상의 코어 돌출부를 포함하는 실시예 중 솔레노이드 코일 외경과 동일한 직경을 갖는 코어 돌출부를 갖는 균일 자계 확장형 전자석 모듈의 일례를 나타낸다.
도 5a는 본 발명의 일 실시예에 따라 전자석 모듈 각각의 솔레노이드 코일에 동일 회전 방향으로 전류가 흐르는 경우 발생하는 자기장 영역을 나타내는 시뮬레이션 도면이다.
도 5b는 본 발명의 일 실시예에 따라 전자석 모듈 각각의 솔레노이드 코일에 반대 회전 방향으로 전류가 흐르는 경우 발생하는 자기장 영역을 나타내는 시뮬레이션 도면이다.
도 6은 본 발명에 일 실시예에 따른 전자석 모듈을 구비한 마이크로 로봇 제어장치의 실시예들을 나타낸다.
도 7a는 본 발명의 일 실시예에 따라 전자석 모듈의 작동에 의해 소화기관 내부에서의 영상 촬영부를 포함하는 마이크로 내시경 로봇의 구동을 제어하는 방식에 대한 개념도이다.
도 7b는 본 발명의 일 실시예에 따라 전자석 모듈의 작동에 의해 순환 기관인 혈관 내에서의 마이크로 로봇의 구동을 제어하는 방식에 대한 개념도이다.
도 8a은 본 발명의 2개의 전자석 모듈과 마이크로 로봇의 위치인식을 위한 자기유도 주파수 신호를 발생시키는 자기유도 송신코일 구비된 마이크로 로봇 제어장치를 개략적으로 나타낸 것이다.
도 8b는 본 발명의 개의 전자석 모듈과 마이크로 로봇의 위치인식을 위한 자기유도 주파수 신호를 발생시키는 자기유도 송신코일 구비된 마이크로 로봇 제어장치를 나타낸 것이다.
도 9는 본 발명에 따른 마이크로 로봇 제어장치에 있어서, 마이크로 로봇의 구체적인 예인 캡슐내시경의 위치인식 시스템의 구성을 개략적으로 나타내는 블럭도이다.
도 10은 본 발명에 따른 마이크로 로봇 제어장치에 있어서, 마이크로 로봇의 구체적인 예인 캡슐내시경을 개략적으로 나타내는 도면이다.
도 11은 본 발명에 따른 마이크로 로봇 제어장치에 있어서, 자기유도 송신코일과 캡슐 내시경의 거리 차이와 전력수신 효율의 관계를 나타내는 설명도이다.
도 12는 본 발명에 따른 마이크로 로봇 제어장치를 통한 캡슐내시경의 6자유도 위치인식을 나타내는 도면이다.
도 13은 본 발명에 따른 마이크로 로봇 제어장치에 있어서, 다른 실시예에 따른 캡슐내시경의 위치인식 시스템의 구성을 개략적으로 나타내는 블럭도이다.
도 14는 본 발명의 마이크로 로봇 제어장치 이외의 마이크로 로봇 구동시스템에 마이크로 로봇 위치 인식 시스템이 적용된 예를 나타낸 것이다.
상자성체로 이루어진 자기 코어 및 상기 자기 코어 외부에 권선되어 이루어진 솔레노이드 코일을 포함하는 2개의 전자석 모듈을 포함하고; 상기 2개의 전자석 모듈은 자기장 집속을 원하는 관심 영역의 중심을 지나는 가상의 대칭축을 기준으로 상기 대칭축을 포함하는 2차원 평면상에 상호 대칭적으로 배치된 자기장 집속용 전자석 모듈.
이하, 본 발명의 바람직한 실시 예의 상세한 설명은 첨부된 도면들을 참조하여 설명할 것이다. 하기에서 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.
본 발명의 개념에 따른 실시 예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시 예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.
반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 따른 전자석 모듈(100)을 설명하기 위한 구성도이다.
도 1에는 본 발명의 일 실시예에 따른 전자석 모듈에 포함되는 두 개의 전자석 모듈 각각을 구성하는 상자성체로 이루어진 자기 코어(120) 및 상기 자기 코어 외부에 권선되어 이루어진 솔레노이드 코일(110)이 도시되어 있다.
도 2에는 본 발명의 일 실시예에 따른 전자석 모듈에 포함되는 두 개의 전자석 모듈이 배치되는 각도가 고정된 상태의 “고정형 듀얼 전자석 모듈”과 두 개의 전자석 모듈이 배치되는 각도가 조절될 수 있는 “조절형 듀얼 전자석 모듈”을 설명하기 위한 구성도이다.
도 2의 좌측 도는 전자석 모듈에 의해 자기장을 집속시키고자 하는 영역인 관심 영역을 도시하고 있다. 두 개의 전자석 모듈은 도시된 바와 같이 자기장 집속을 원하는 관심 영역의 중심을 지나는 가상의 대칭축을 기준으로 상기 대칭축을 포함하는 2차원 평면상에 상호 대칭적으로 배치된다. 이는 곧, 2차원 평면에서 벗어난 비틀린 배치 구조가 아님을 의미한다.
단일의 전자석 모듈 각각에 의해 형성되는 자기장이 중첩되는 영역에서 자기장이 집속될 수 있다. 관심 영역 내에서 자기장이 집속될 수 있도록, 전자석 모듈의 위치를 제어할 수 있다. 구체적으로, “고정형 전자석 모듈”의 경우, 전자석 모듈의 3차원 공간 이동 및 전자석 모듈의 방향 조절에 의해 자기장 집속 영역의 위치를 제어할 수 있고, “조절형 전자석 모듈”의 경우, 전자석 모듈의 3차원 공간 이동 및 전자석 모듈의 방향 조절뿐 아니라 두 전자석의 배치 각도 조절에 의해 자기장 집속 영역의 위치를 제어할 수 있다.
도 3a는 전자석 모듈의 다양한 응용 실시예들 중 기본 형태를 나타내며, 코어는 코어가 권취되지 않은 코어 돌출부(121)를 포함할 수 있다.
도 3b는 회전 가능한 구형 상자성체를 포함하는 듀얼 전자석 모듈의 일례를 나타낸다. 도 3c는 듀얼 전자석 모듈의 다양한 응용 실시예들 중 회전 가능한 구형 상자성체를 포함하는 회전형 코어 형태에 결합 프레임이 결합된 모습을 나타내는 도면이고, 도 3d는 이의 동일방향 전류제어에 의해 형성되는 자기장 시뮬레이션을 보여주는 도면이며, 도 3e는 역방향 전류제어에 의해 형성되는 자기장 시뮬레이션을 보여주는 도면이다.
도 3f는 코어 돌출부가 상호 인접한 상태로 배치된 형태의 전자석 모듈을 나타낸다. 도 3g는 코어 돌출부가 상호 인접한 상태로 배치된 접촉형 코어 형태에서 동일방향 전류제어에 의해 형성되는 자기장 시뮬레이션을 보여주는 도면이며, 도 3h는 역방향 전류제어에 의해 형성되는 자기장 시뮬레이션을 보여주는 도면이다.
도 4a 내지 4c는 다양한 형상의 코어 돌출부를 포함하는 실시예의 구성도를 나타낸다. 도 4a는 기본적인 원통 형상의 코어 돌출부(121)를 갖는 듀얼 전자석 모듈의 일례로서, 상기 코어 돌출부는 솔레노이드 코일의 내경과 동일한 직경을 갖는 원통 형상이다. 도 4b는 말단이 점차 좁아지는 형상의 코어 돌출부(121)를 갖는 자기장 집속형 전자석 모듈의 일례를 나타낸다. 구체적으로 예를 들면, 코어 돌출부는 돌출이 시작되는 부분의 직경이 상기 솔레노이드 코일의 내경과 동일하고, 상기 코어 돌출부 말단의 직경은 솔레노이드 코일의 내경에 비해 상대적으로 작을 수 있다. 보다 더 구체적으로 예를 들면, 상기 코어 돌출부는 원뿔대 형상 또는 원통과 원뿔대가 결합된 형상일 수 있다. 이와 같이 말단이 점차 좁아지는 형상의 코어 돌출부를 갖는 자기장 집속형 전자석 모듈을 사용하는 경우, 더욱 높은 밀도로 좁은 영역에 집속된 자기장을 구현할 수 있다.
도 4c는 솔레노이드 코일 외경과 동일한 직경을 갖는 코어 돌출부(121)를 갖는 균일 자계 확장형 듀얼 전자석 모듈의 일례를 나타낸다. 본 실시예와 같이 솔레노이드 코일 외경과 동일한 직경을 갖는 코어 돌출부를 갖는 자기장 집속형 듀얼 전자석 모듈을 사용하는 경우, 균일한 세기로 더욱 넓게 형성된 자기장 영역을 구현할 수 있다.
도 5a 및 5b는 한 쌍의 솔레노이드 코일에 흐르는 전류 방향에 따라 형성되는 자기장 영역에 대한 시뮬레이션을 나타낸다. 두 전자석 모듈 각각의 솔레노이드 코일에 동일 회전 방향으로 전류가 흐르는 경우 도 5a의 탑뷰에서 보는 바와 같이, 상부 중앙에 원형상으로 자기장이 집속될 수 있다. 두 전자석 모듈 각각의 솔레노이드 코일에 반대 회전 방향으로 전류가 흐르는 경우 도 5b의 탑뷰에서 보는 바와 같이, 상부 중앙에 타원형상으로 자기장이 집속될 수 있다.
본 발명의 다른 일 양태에 따른 마이크로 로봇 제어장치는, 상술한 전자석 모듈; 상기 전자석 모듈의 솔레노이드 코일에 전원을 공급하는 전원부; 및 상기 전자석 모듈의 대칭축 중심 회전 운동 및 3차원 선형 이동을 제어하는 이동부;를 포함하는 것을 특징으로 한다.
도 6은 전자석 모듈을 구비한 마이크로 로봇 제어장치의 실시예들을 나타낸다. 본 발명의 실시예들에 따른 마이크로 로봇 제어장치는 전자석 모듈이 결합되어 듀얼 전자석 모듈의 3차원 공간상 이동을 제어하는 이동부인 링크를 구비하고, 상기 링크의 형상이나 구동 방식은 종래 알려진 어떠한 방식이라도 적용 가능하며 특별히 제한되지 않는다. 본 발명의 일 실시예에 따른 링크의 형상은 베드의 장축을 기준으로 직교하는 평면상에 위치하는 원둘레 형상 (도 6의 좌측 도)일 수 있고, 상기 링크는 베드의 장축을 따라 선형 이동하고, 베드 장축을 중심으로 회전 운동하는 방식으로 작동할 수 있다. 또한 본 발명의 다른 일 실시예에 따른 링크의 형상은 하나 또는 둘 이상의 조인트가 구비된 로봇 팔 형상 (도 6의 가운데 도)일 수 있고 상기 링크는 조인트의 회전 운동에 의해 전자석 모듈의 3차원 공간상 이동을 제어하는 방식으로 작동할 수 있다. 또한 본 발명의 다른 일 실시예에 따른 링크의 형상은 환자가 누울 수 있는 베드의 평면과 직교하는 방향으로 놓인 선 형상의 y축 가이드 막대 및 상기 y축 가이드 막대에 직교하는 방향에 놓인 x축 가이드 막대가 상호 연결되어, 길이 신장 및/또는 접점의 위치 이동이 가능한 방식으로 결합되고, 상기 x축 가이드 막대의 일 말단에 본 발명의 일 실시예에 따른 듀얼 전자석 모듈이 결합되어 y축 가이드 막대 및 x축 가이드 막대의 길이 및/또는 위치 변형에 의해 듀얼 전자석 모듈을 이동시킬 수 있다. 추가적으로 듀얼 전자석 모듈은 x축 가이드 막대에 직접 연결되거나, x축 가이드 막대의 일 말단에 연결되어 회전운동할 수 있는 링커 역할을 하는 회전 가이드 막대의 일 말단에 연결될 수 있다.
본 발명의 일 실시예에 따른 전자석 모듈의 솔레노이드 코일에 전원을 공급하는 전원부는 듀얼 전자석 모듈의 두 개의 전자석 모듈 각각에 연결된 두 개의 전원 공급부를 포함하거나, 하나 또는 두 개의 아웃풋 채널을 갖는 전원 공급부를 포함할 수 있다. 바람직하게는 전자석 모듈에 포함되는 두 전자석 모듈 각각에 동일 방향 또는 반대 방향의 전류를 인가하기 위해, 두 개의 전원 공급부를 포함하거나, 또는 두 개의 아웃풋 채널을 갖는 전원 공급부를 이용할 수 있다.
도 7은 전자석 모듈의 작동에 의해 체내에서 마이크로 로봇의 구동을 제어하는 방식에 대한 개념도를 나타낸다. 도 7a는 소화기관 내부에서의 마이크로 로봇, 구체적으로 예를 들면, 영상 촬영부를 포함하는 캡슐내시경 로봇을 구동하는 일 실시예를 나타낸다. 본 발명의 일 실시예에 따른 전자석 모듈을 이용하면, 소화기관 내부의 일정 위치상에 자기장을 집속시킬 수 있고, 전자석 모듈에 인가되는 전류의 방향을 제어하거나, 전자석 모듈의 회전운동을 제어함으로써, 소화기관 내부에 위치한 마이크로 로봇, 구체적으로 예를 들면 캡슐내시경 로봇의 회전 운동을 자유롭게 제어할 수 있고, 캡슐내시경 로봇 뿐만 아니라, 다양한 목적을 위해 다양한 마이크로 로봇의 운동을 제어할 수 있다. 도 7b는 순환기관, 구체적으로 예를 들면 혈관 내에서의 마이크로 로봇의 구동에 대한 일 실시예를 나타낸다. 본 발명의 일 실시예에 따른 전자석 모듈을 이용하는 경우, 혈관 내에서의 마이크로 로봇의 이동을 자유롭게 제어할 수 있고, 특히 여러 혈관이 뻗어나가는 접점 위치에서 마이크로 로봇의 경로를 자유롭게 제어할 수 있다.
도 8의 (a) 및 (b)는 본 발명에 본 발명의 2개의 전자석 모듈과 마이크로 로봇의 위치인식을 위한 자기유도 주파수 신호를 발생시키는 자기유도 송신코일 구비된 마이크로 로봇 제어장치(1)를 나타낸 것이다.
도 8에 나타낸 바와 같이, 마이크로 로봇의 위치인식을 위한 자기유도 주파수 신호를 발생시키는 자기유도 송신코일(130)은 전자석 모듈의 코어 돌출부(121)가 형성되는 위치에 구비될 수 있다.
마이크로 로봇 제어장치(1)에 구비된 전자적 모듈(100)에 의해서 마이크로 로봇의 구동을 자유롭게 제어할 수 있는 것에 대해서는 상술한 바와 같고, 이하에서 마이크로 로봇의 위치인식과 관련된 사항을 상세하게 설명하겠다.
자기유도 송신코일(130)은 수 kHz 대역의 수 mT 교류 자장을 발생하고, 캡슐 내시경이 동작하는 인체 소화기관의 영역을 포함하도록 설계될 수 있다.
자기유도 송신코일(130)은 마이크로 로봇 제어장치 중 전자기장을 발생시키는 전자기 구동장치(예를 들어, 본 발명의 전자석 모듈 등을 말한다)에서 하나 또는 다수개의 결합이 가능하고 인체 내 마이크로 로봇의 동작범위에 따라 자기유도 송신코일(130)의 개수가 결정 될 수 있다.
전자기 구동장치에 의해 발생되는 직류 자기장에 의해 구동되는 마이크로 로봇을 통해 인체 내부를 관찰할 수 있으며, 자기유도 송신코일(130)에서 발생되는 자기유도 주파수 신호를 이용하여 마이크로 로봇의 위치를 인식할 수 있다.
인체 내에 삽입되는 마이크로 로봇은 마이크로 또는 나노 단위로 구성되어, 필요에 따라 하나 또는 다수개가 인체에 삽입될 수 있다.
이때, 마이크로 로봇 제어장치에서는 자기유도 주파수 신호에 의해 마이크로 로봇에서 유도되는 기전력 양을 수신하여 분석함으로써 마이크로 로봇의 위치를 인식할 수 있으며, 특히 인체 내 정확한 위치를 파악하기 위해 6자유도 (DOF, Degree of freedom)의 위치를 인식할 수 있다.
도 9는 본 발명의 마이크로 로봇 제어장치에 있어서, 마이크로 로봇의 구체적인 예인 캐슐내시경의 위치인식 시스템의 구성을 개략적으로 나타낸 것이고, 도 10은 캡슐내시경의 구체적인 구성을 나타낸 것이다.
도 10에 나타낸 바와 같이, 캡슐내시경(300)은 몸체(310), 자기유도 수신코일(320), 자성체(330), 충전모듈(340) 및 RF (Radio Frequency) 코일(350)을 포함하여 구성될 수 있다.
캡슐 내시경(300)을 이루는 몸체(310)는 마이크로 또는 나노 단위의 크기로, 캡슐 (Capsule) 형태로 이루어지고 있다.
몸체(310)의 내부에 배치되는 자기유도 수신코일(320)은 마이크로 로봇 제어장치(1)의 자기유도 송신코일(130)에서 인가되는 자기유도 주파수 신호로부터 유도되는 기전력을 발생한다.
자성체(330)는 전자기 구동을 위해 몸체(310) 내부 임의의 방향으로 자화되어 있으며, 마이크로 로봇 제어장치(1)에서 발생되는 직류 자기장과 상호작용하여 캡슐 내시경(300)이 구동될 수 있도록 한다.
충전모듈(340)은 무선방식으로 자기유도 수신코일(320)에서 유도되는 기전력을 충전할 수 있다.
그리고 RF (Radio Frequency) 코일(350)은 자기유도 수신코일(320)로부터 발생된 유도전력, 즉 충전모듈(340)을 충전하는 기전력의 주파수 신호를 마이크로 로봇 제어장치(1)에 송신한다.
따라서 외부의 마이크로 로봇 제어장치(1)에서는 캡슐내시경(300)에서 유도되는 기전력 양으로부터 캡슐내시경(300)의 위치를 파악할 수 있다.
도 11은 자기유도 송신코일과 캡슐내시경의 거리 차이와 전력수신 효율의 관계를 나타내는 설명도로, 마이크로 로봇 제어장치(1)의 자기유도 송신코일(130)과 캡슐내시경(300)과의 거리 차이에 따라 발생되는 전력수신 효율을 통해 위치를 인식할 수 있다. 즉, D2의 거리보다 가까운 D1의 거리에 위치하는 캡슐내시경(300)의 자기유도 송신코일(130)로부터의 전력수신 효율이 높게 나타나고, 마이크로 로봇 제어장치(1)에서는 이러한 방식을 통해 캡슐내시경(300)의 위치를 인식할 수 있다.
도 12에 나타낸 바와 같이, 자기유도 송신코일(130)을 통해 캡슐내시경(300)의 자기유도 수신코일(320)로 자기유도 주파수 신호가 인가되면, 거리 차이에 의한 충전모듈(340)의 전력수신 효율로부터 자기유도 수신 주파수 신호가 RF 코일(350)을 통해 마이크로 로봇 제어장치(1)에 전달된다.
마이크로 로봇 제어장치(1)에서는 수신된 자기유도 수신 주파수 신호로부터 캡슐내시경(300)의 위치를 인식한다. 즉, 캡슐내시경(300)에서 유도되는 기전력 양을 거리기반으로 변환하여 캡슐내시경(300)의 6자유도의 위치를 인식할 수 있다.
이때, 마이크로 로봇 제어장치(1)에서 인식하는 캡슐내시경(300)의 6자유도의 위치는 3차원 좌표 정보(x축, y축 및 z축에 대한 3 위치 정보)와 각 좌표에서 회전각도 정보(α, θ 및 φ에 대한 3 각도 정보)를 포함하고 있다.
자기유도 송신코일(130)에 의해 유도되는 캡슐내시경(300)의 3축 기전력(V)은 자기선속(Wb)으로 변환이 가능하며, 자기선속(Wb)은 자기유도 송신코일(130)에서 발생하는 자기장(B)으로 변환이 가능하다.
자기유도 송신코일(130)은 내부 중심점으로부터 x,y,z의 거리값에 따른 자기장(B)을 형성하며, 유도 기전력(V)으로부터 변환된 3축의 자기선속(Wb)과 자기유도 송신코일(130)의 3축 자기장(B)을 매칭하여 자기유도 송신코일(130)의 내부 중심으로 부터의 캡슐내시경(300)의 3차원 좌표 정보(x축, y축 및 z축에 대한 3 위치 정보)와 각 좌표에서 회전각도 정보(α, θ 및 φ에 대한 3 각도 정보)을 인식 할 수 있다.
따라서 캡슐내시경의 위치인식 시스템에서는 캡슐내시경(300)의 무선 전력생산과 위치인식을 동시에 구현할 수 있는 특징이 있고, 캡슐내시경(300)의 6자유도(위치3, 각도3)에 대한 위치인식이 가능하기 때문에 인체 특성 및 센서장치 특성에 의해 발생되는 위치오차를 해결할 수 있는 기술적 특징을 구현할 수 있다.
도 13은 본 발명에 본 발명의 2개의 전자석 모듈과 마이크로 로봇의 위치인식을 위한 자기유도 주파수 신호를 발생시키는 자기유도 송신코일 구비된 마이크로 로봇 제어장치(1)에 있어서, 다른 실시예에 따른 캡슐내시경의 위치인식 시스템의 구성을 개략적으로 나타내는 것이다. 도면을 참조하면, 마이크로 로봇 제어장치(1)는 캡슐내시경(300)을 구동하는 전자석 모듈(100)과 캡슐내시경(300)의 위치를 인식하기 위해 자기유도 주파수 신호를 발생하는 자기유도 송신코일(130)를 포함할 수 있다. 자기유도 송신코일(130)은 베드(도시하지 않음)에 하나의 장치로 설치될 수도 있고, 또는 전자석 모듈(100)과 결합된 형태로 구성될 수도 있다.
자기유도 송신코일(130)을 통해 캡슐내시경(300)에서 유도된 자기유도 수신 주파수 신호가 RF 수신기(410)를 통해 메인 컴퓨터(400)에 전달된다.
메인 컴퓨터(400)에서는 기전력의 양을 거리기반으로 수식화함으로써, 자기유도 송신코일(320)로부터 캡슐 내시경(200)의 거리와 방향을 확인하여 캡슐내시경(300)의 정확한 위치를 인식할 수 있다.
한편, 본 발명의 마이크로 로봇 위치인식 시스템은 본 발명의 마이크로 로봇 제어장치(1) 이외에 전자기장을 이용하여 마이크로 로봇을 제어하기 위한 어떠한 장치에도 적용될 수 있고, 도 14에 나타낸 바와 같이 전자기장을 발생시키기 위한 전자기 구동장치가 2개 이상이 배치된 경우에도 일부 코일에 자기유도 송신코일을 설치하고, 캡슐내시경에 자기유도 수신코일을 설치함으로써 캡슐내시경의 위치를 정확하게 인식할 수 있다. 위치인식에 대한 구체적인 방법에 관하여는 이미 상술한 바와 같다.
상기 본 발명의 내용은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위의 기술적 사상에 의해 정해져야 할 것이다.
[부호의 설명]
1: 마이크로 로봇 제어장치
100: 전자석 모듈
110: 솔레노이드 코일
120: 자기 코어
121: 코어 돌출부
130: 위치인식 송신코일
200: 구형 상자성체
300: 캐슐내시경
310: 몸체
320: 자기유도 수신코일
330: 자성체
340: 충전모듈
350: RF코일
400: 메인 컴퓨터
410: RF 수신기
본 발명은 마이크로 로봇 제어장치에 관한 것이다.

Claims (34)

  1. 상자성체로 이루어진 자기 코어 및 상기 자기 코어 외부에 권선되어 이루어진 솔레노이드 코일을 포함하는 2개의 전자석 모듈을 포함하고;
    상기 2개의 전자석 모듈은 자기장 집속을 원하는 관심 영역의 중심을 지나는 가상의 대칭축을 기준으로 상기 대칭축을 포함하는 2차원 평면상에 상호 대칭적으로 배치된 자기장 집속용 전자석 모듈.
  2. 제1항에 있어서,
    상기 2개의 전자석 모듈의 양 말단 중 상기 관심 영역에 가까운 일 말단에 코어 돌출부가 형성된 것을 특징으로 하는 자기장 집속용 전자석 모듈.
  3. 제2항에 있어서,
    상기 2개의 전자석 모듈의 상기 코어 돌출부 및 관심 영역 사이의 공간 상에 배치된 회전 가능한 구형 상자성체를 추가적으로 포함하는 것을 특징으로 하는 자기장 집속용 전자석 모듈.
  4. 제2항에 있어서,
    상기 2개의 전자석 모듈의 상기 코어 돌출부는 상호 인접한 상태로 배치된 것을 특징으로 하는 자기장 집속용 전자석 모듈.
  5. 제2항에 있어서,
    상기 코어 돌출부는 상기 솔레노이드 코일의 내경과 동일한 직경을 갖는 원통 형상인 것을 특징으로 하는 자기장 집속용 전자석 모듈.
  6. 제2항에 있어서,
    상기 코어 돌출부는 돌출이 시작되는 부분의 직경이 상기 솔레노이드 코일의 내경과 동일하며, 상기 코어 돌출부 말단의 직경은 솔레노이드 코일의 내경에 비해 상대적으로 작은 것을 특징으로 하는 자기장 집속용 전자석 모듈.
  7. 제2항에 있어서,
    상기 코어 돌출부는 원뿔대 형상 또는 원통과 원뿔대가 결합된 형상인 것을 특징으로 하는 자기장 집속용 전자석 모듈.
  8. 제2항에 있어서,
    상기 코어 돌출부는 상기 솔레노이드 코일의 외경과 동일한 직경을 갖는 원통 형상인 것을 특징으로 하는 자기장 집속용 전자석 모듈.
  9. 제1항 내지 제9항 중 어느 한 항에 따른 전자석 모듈;
    전자석 모듈의 솔레노이드 코일에 전원을 공급하는 전원부; 및
    전자석 모듈의 대칭축 중심 회전 운동 및 3차원 선형 이동을 제어하는 이동부;를 포함하는 마이크로 로봇 제어장치.
  10. 자기장 집속을 원하는 관심 영역의 중심을 지나는 가상의 대칭축을 기준으로 상기 대칭축을 포함하는 2차원 평면상에 상호 대칭적으로 배치되는 상자성체로 이루어진 자기 코어 및 상기 자기 코어 외부에 권선되어 이루어진 솔레노이드 코일을 포함하는 2개의 전자석 모듈;
    마이크로 로봇의 위치인식을 위한 자기유도 주파수 신호를 발생시키는 자기유도 송신코일; 및
    전자석 모듈의 솔레노이드 코일과 자기유도 송신코일에 전원을 공급하는 전원부;를 포함하는 마이크로 로봇 제어장치.
  11. 제10항에 있어서,
    2개의 전자석 모듈의 대칭축 중심 회전 운동 및 3차원 선형 이동을 제어하는 이동부를 포함하는 마이크로 로봇 제어장치.
  12. 제10항에 있어서,
    위치인식을 위한 자기유도 주파수 신호 수신코일이 구비된 마이크로 로봇을 포함하는 마이크로 로봇 제어장치.
  13. 제10항 내지 제12항 중 어느 한 항에 있어서,
    상기 2개의 전자석 모듈의 양 말단 중 상기 관심 영역에 가까운 일 말단에 코어 돌출부가 형성된 것을 특징으로 하는 마이크로 로봇 제어장치.
  14. 제13항에 있어서,
    상기 2개의 전자석 모듈의 상기 코어 돌출부 및 관심 영역 사이의 공간상에 배치된 회전 가능한 구형 상자성체를 추가적으로 포함하는 것을 특징으로 하는 마이크로 로봇 제어장치.
  15. 제13항에 있어서,
    상기 2개의 전자석 모듈의 상기 코어 돌출부는 상호 인접한 상태로 배치된 것을 특징으로 하는 마이크로 로봇 제어장치.
  16. 제13항에 있어서,
    상기 코어 돌출부는 상기 솔레노이드 코일의 내경과 동일한 직경을 갖는 원통 형상인 것을 특징으로 하는 마이크로 로봇 제어장치.
  17. 제13항에 있어서,
    상기 코어 돌출부는 돌출이 시작되는 부분의 직경이 상기 솔레노이드 코일의 내경과 동일하며, 상기 코어 돌출부 말단의 직경은 솔레노이드 코일의 내경에 비해 상대적으로 작은 것을 특징으로 하는 마이크로 로봇 제어장치.
  18. 제13항에 있어서,
    상기 코어 돌출부는 원뿔대 형상 또는 원통과 원뿔대가 결합된 형상인 것을 특징으로 하는 마이크로 로봇 제어장치.
  19. 제13항에 있어서,
    상기 코어 돌출부는 상기 솔레노이드 코일의 외경과 동일한 직경을 갖는 원통 형상인 것을 특징으로 하는 마이크로 로봇 제어장치.
  20. 제10항 내지 제12항 중 어느 한 항에 있어서,
    상기 자기유도 송신코일은 상기 마이크로 로봇에 자기유도 주파수 신호를 인가하고, 상기 마이크로 로봇 제어장치는 마이크로 로봇에서 유도되는 기전력 양을 수신하여 마이크로 로봇의 6자유도 위치를 인식하는 것으로 특징으로 하는 마이크로 로봇 제어장치.
  21. 제20항에 있어서,
    상기 마이크로 로봇에서 유도되는 기전력 양을 거리기반으로 변환하여 마이크로 로봇의 6자유도 위치를 인식하는 것을 특징으로 하는 마이크로 로봇 제어장치.
  22. 제21항에 있어서,
    상기 마이크로 로봇 제어장치가 인식하는 상기 마이크로 로봇의 6자유도 위치는 3차원 좌표 정보와 각 좌표에서 회전각도 정보를 포함하는 것을 특징으로 하는 마이크로 로봇 제어장치.
  23. 제20항에 있어서, 마이크로 로봇은
    캡슐 (Capsule) 형태의 몸체;
    위치인식을 위해 인가되는 상기 자기유도 주파수 신호로부터 유도전력을 발생하는 자기유도 주파수 신호 수신코일;
    상기 유도전력을 충전하는 충전모듈;
    외부 자기장과 상호작용하는 자성체; 및
    상기 자기유도 주파수 신호 수신코일로부터 발생된 유도전력의 주파수 신호를 상기 마이크로 로봇 제어장치에 송신하는 RF (Radio Frequency)코일;을 포함하는 캡슐내시경인 것을 특징으로 하는 마이크로 로봇 제어장치.
  24. 자기장 집속을 원하는 관심 영역의 중심을 지나는 가상의 대칭축을 기준으로 상기 대칭축을 포함하는 2차원 평면상에 상호 대칭적으로 배치되는 상자성체로 이루어진 자기 코어 및 상기 자기 코어 외부에 권선되어 이루어진 솔레노이드 코일을 포함하는 2개의 전자석 모듈;
    마이크로 로봇의 위치인식을 위한 자기유도 주파수 신호를 발생시키는 자기유도 송신코일;
    전자석 모듈의 솔레노이드 코일과 자기유도 송신코일에 전원을 공급하는 전원부;
    2개의 전자석 모듈의 대칭축 중심 회전 운동 및 3차원 선형 이동을 제어하는 이동부; 및
    위치인식을 위한 자기유도 주파수 신호 수신코일이 구비된 마이크로 로봇을 포함하고, 상기 2개의 전자석 모듈의 양 말단 중 상기 관심 영역에 가까운 일 말단에 코어 돌출부가 형성된 것을 특징으로 하는 마이크로 로봇 제어장치.
  25. 제24항에 있어서,
    상기 2개의 전자석 모듈의 상기 코어 돌출부 및 관심 영역 사이의 공간상에 배치된 회전 가능한 구형 상자성체를 추가적으로 포함하는 것을 특징으로 하는 마이크로 로봇 제어장치.
  26. 제24항에 있어서,
    상기 2개의 전자석 모듈의 상기 코어 돌출부는 상호 인접한 상태로 배치된 것을 특징으로 하는 마이크로 로봇 제어장치.
  27. 제24항에 있어서,
    상기 코어 돌출부는 상기 솔레노이드 코일의 내경과 동일한 직경을 갖는 원통 형상인 것을 특징으로 하는 마이크로 로봇 제어장치.
  28. 제24항에 있어서,
    상기 코어 돌출부는 돌출이 시작되는 부분의 직경이 상기 솔레노이드 코일의 내경과 동일하며, 상기 코어 돌출부 말단의 직경은 솔레노이드 코일의 내경에 비해 상대적으로 작은 것을 특징으로 하는 마이크로 로봇 제어장치.
  29. 제24항에 있어서,
    상기 코어 돌출부는 원뿔대 형상 또는 원통과 원뿔대가 결합된 형상인 것을 특징으로 하는 마이크로 로봇 제어장치.
  30. 제24항에 있어서,
    상기 코어 돌출부는 상기 솔레노이드 코일의 외경과 동일한 직경을 갖는 원통 형상인 것을 특징으로 하는 마이크로 로봇 제어장치.
  31. 제24항에 있어서,
    상기 자기유도 송신코일은 상기 마이크로 로봇에 자기유도 주파수 신호를 인가하고, 상기 마이크로 로봇 제어장치는 마이크로 로봇에서 유도되는 기전력 양을 수진하여 마이크로 로봇의 6자유도 위치를 인식하는 것으로 특징으로 하는 마이크로 로봇 제어장치.
  32. 제24항에 있어서,
    상기 마이크로 로봇에서 유도되는 기전력 양을 거리기반으로 변환하여 마이크로 로봇의 6자유도 위치를 인식하는 것을 특징으로 하는 마이크로 로봇 제어장치.
  33. 제24항에 있어서,
    상기 마이크로 로봇 제어장치가 인식하는 상기 마이크로 로봇의 6자유도 위치는 3차원 좌표 정보와 각 좌표에서 회전각도 정보를 포함하는 것을 특징으로 하는 마이크로 로봇 제어장치.
  34. 제24항에 있어서,
    마이크로 로봇은
    캡슐 (Capsule) 형태의 몸체;
    위치인식을 위해 인가되는 상기 자기유도 주파수 신호로부터 유도전력을 발생하는 자기유도 주파수 신호 수신코일;
    상기 유도전력을 충전하는 충전모듈;
    외부 자기장과 상호작용하는 자성체; 및
    상기 자기유도 주파수 신호 수신코일로부터 발생된 유도전력의 주파수 신호를 상기 마이크로 로봇 제어장치에 송신하는 RF (Radio Frequency)코일;을 포함하는 캡슐내시경인 것을 특징으로 하는 마이크로 로봇 제어장치.
PCT/KR2020/001806 2019-02-19 2020-02-10 마이크로 로봇 제어장치 WO2020171446A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/298,983 US20220061642A1 (en) 2019-02-19 2020-02-10 Micro-robot control apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020190019443A KR102226282B1 (ko) 2019-02-19 2019-02-19 자기유도 무선충전의 전력효율을 활용한 캡슐 내시경의 위치인식 시스템
KR10-2019-0019443 2019-02-19
KR1020190166881A KR102293087B1 (ko) 2019-12-13 2019-12-13 마이크로 로봇 제어용 듀얼 전자석 모듈
KR10-2019-0166881 2019-12-13

Publications (1)

Publication Number Publication Date
WO2020171446A1 true WO2020171446A1 (ko) 2020-08-27

Family

ID=72144370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001806 WO2020171446A1 (ko) 2019-02-19 2020-02-10 마이크로 로봇 제어장치

Country Status (2)

Country Link
US (1) US20220061642A1 (ko)
WO (1) WO2020171446A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220246339A1 (en) * 2021-01-29 2022-08-04 Korea Institute Of Medical Microrobotics Dual hybrid electromagnet module for controlling microrobot
WO2023277600A1 (ko) * 2021-07-02 2023-01-05 한양대학교 산학협력단 자기장 발생 모듈 및 이를 포함하는 자기장 발생 장치

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11998198B2 (en) 2004-07-28 2024-06-04 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US11980366B2 (en) 2006-10-03 2024-05-14 Cilag Gmbh International Surgical instrument
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8840603B2 (en) 2007-01-10 2014-09-23 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8827133B2 (en) 2007-01-11 2014-09-09 Ethicon Endo-Surgery, Inc. Surgical stapling device having supports for a flexible drive mechanism
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US11986183B2 (en) 2008-02-14 2024-05-21 Cilag Gmbh International Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
BRPI0901282A2 (pt) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc instrumento cirúrgico de corte e fixação dotado de eletrodos de rf
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
CN104053407B (zh) 2011-04-29 2016-10-26 伊西康内外科公司 包括定位在其可压缩部分内的钉的钉仓
CN104321024B (zh) 2012-03-28 2017-05-24 伊西康内外科公司 包括多个层的组织厚度补偿件
CN104334098B (zh) 2012-03-28 2017-03-22 伊西康内外科公司 包括限定低压强环境的胶囊剂的组织厚度补偿件
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
JP6382235B2 (ja) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. 信号通信用の導電路を備えた関節運動可能な外科用器具
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9924942B2 (en) 2013-08-23 2018-03-27 Ethicon Llc Motor-powered articulatable surgical instruments
US10013049B2 (en) 2014-03-26 2018-07-03 Ethicon Llc Power management through sleep options of segmented circuit and wake up control
JP6532889B2 (ja) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC 締結具カートリッジ組立体及びステープル保持具カバー配置構成
BR112016023825B1 (pt) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc Cartucho de grampos para uso com um grampeador cirúrgico e cartucho de grampos para uso com um instrumento cirúrgico
JP6636452B2 (ja) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC 異なる構成を有する延在部を含む締結具カートリッジ
US20150297225A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
US9943310B2 (en) 2014-09-26 2018-04-17 Ethicon Llc Surgical stapling buttresses and adjunct materials
BR112017004361B1 (pt) 2014-09-05 2023-04-11 Ethicon Llc Sistema eletrônico para um instrumento cirúrgico
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
JP7010956B2 (ja) 2016-12-21 2022-01-26 エシコン エルエルシー 組織をステープル留めする方法
US11160551B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Articulatable surgical stapling instruments
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11974742B2 (en) 2017-08-03 2024-05-07 Cilag Gmbh International Surgical system comprising an articulation bailout
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US20190192151A1 (en) 2017-12-21 2019-06-27 Ethicon Llc Surgical instrument having a display comprising image layers
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US12035913B2 (en) 2019-12-19 2024-07-16 Cilag Gmbh International Staple cartridge comprising a deployable knife
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11925349B2 (en) * 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US12108951B2 (en) 2021-02-26 2024-10-08 Cilag Gmbh International Staple cartridge comprising a sensing array and a temperature control system
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US20220378425A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a control system that controls a firing stroke length
US11980363B2 (en) 2021-10-18 2024-05-14 Cilag Gmbh International Row-to-row staple array variations
US12089841B2 (en) 2021-10-28 2024-09-17 Cilag CmbH International Staple cartridge identification systems
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
EP4278946A1 (en) * 2022-05-20 2023-11-22 Universiteit Twente Spherical electromagnetic actuator and method for controlling a magentic field thereof
KR20240103117A (ko) * 2022-12-26 2024-07-04 재단법인대구경북과학기술원 곡선형 자기코어를 갖는 자기 구동 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029864A (ja) * 2007-09-26 2008-02-14 Olympus Corp カプセル型医療装置方向位置検出システム
KR100972253B1 (ko) * 2004-12-17 2010-07-23 올림푸스 가부시키가이샤 자기 유도를 이용한 의료용 위치 검출 시스템
KR101647020B1 (ko) * 2015-03-12 2016-08-11 전남대학교산학협력단 코일의 위치를 가변 할 수 있는 전자기 구동 장치
KR20160101441A (ko) * 2015-02-17 2016-08-25 재단법인대구경북과학기술원 이송용 로봇을 이용한 마이크로 로봇 제어 시스템
KR20170099232A (ko) * 2016-02-23 2017-08-31 재단법인대구경북과학기술원 마이크로 로봇을 구동하기 위한 자기장 제어 장치 및 동작 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3337776A (en) * 1964-06-10 1967-08-22 Guidoni Biomedical apparatus for generating controllable magnetic fields
US4495953A (en) * 1981-12-15 1985-01-29 Bennewitz Paul F Apparatus and method for producing and using directional, electrical and magnetic fields
US5353807A (en) * 1992-12-07 1994-10-11 Demarco Thomas J Magnetically guidable intubation device
US20140081169A1 (en) * 2012-09-17 2014-03-20 Vanderbilt University System and method of tetherless insufflation in colon capsule endoscopy
CN103222842B (zh) * 2013-04-18 2015-09-09 安翰光电技术(武汉)有限公司 一种控制胶囊内窥镜在人体消化道运动的装置及方法
US11022421B2 (en) * 2016-01-20 2021-06-01 Lucent Medical Systems, Inc. Low-frequency electromagnetic tracking

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100972253B1 (ko) * 2004-12-17 2010-07-23 올림푸스 가부시키가이샤 자기 유도를 이용한 의료용 위치 검출 시스템
JP2008029864A (ja) * 2007-09-26 2008-02-14 Olympus Corp カプセル型医療装置方向位置検出システム
KR20160101441A (ko) * 2015-02-17 2016-08-25 재단법인대구경북과학기술원 이송용 로봇을 이용한 마이크로 로봇 제어 시스템
KR101647020B1 (ko) * 2015-03-12 2016-08-11 전남대학교산학협력단 코일의 위치를 가변 할 수 있는 전자기 구동 장치
KR20170099232A (ko) * 2016-02-23 2017-08-31 재단법인대구경북과학기술원 마이크로 로봇을 구동하기 위한 자기장 제어 장치 및 동작 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220246339A1 (en) * 2021-01-29 2022-08-04 Korea Institute Of Medical Microrobotics Dual hybrid electromagnet module for controlling microrobot
US12027310B2 (en) * 2021-01-29 2024-07-02 Korea Institute Of Medical Microrobotics Dual hybrid electromagnet module for controlling microrobot
WO2023277600A1 (ko) * 2021-07-02 2023-01-05 한양대학교 산학협력단 자기장 발생 모듈 및 이를 포함하는 자기장 발생 장치

Also Published As

Publication number Publication date
US20220061642A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
WO2020171446A1 (ko) 마이크로 로봇 제어장치
CN111839431B (zh) 一种无线胶囊机器人系统及控制方法
TWI463965B (zh) 膠囊內視鏡磁控系統
JP2021522960A (ja) マイクロナノスケールロボット、医療器具および埋め込み可能デバイスの遠隔制御のためのハイブリッド電磁デバイス
EP2347699B1 (en) Capsule type endoscope including magnetic drive
JP2005087737A (ja) 磁気的にナビゲーション可能な装置
KR100972253B1 (ko) 자기 유도를 이용한 의료용 위치 검출 시스템
WO2014081150A1 (ko) 캡슐형 내시경 구동 제어시스템 및 이를 포함하는 캡슐형 내시경 시스템
WO2016011895A1 (zh) 一种胶囊内窥镜控制设备及系统
US20090299142A1 (en) Operating device, monitor device, and capsule guiding system
WO2022010044A1 (ko) 마이크로 로봇 이동제어를 위한 베드 통합형 전자기장 장치 및 이를 이용한 마이크로 로봇 구동 방법
US8335556B2 (en) Magnetically driven capsule medical device and capsule medical device system with position detection
CN1332629C (zh) 主动式肠道内窥镜机器人系统
WO2020171443A1 (ko) 마이크로 로봇 구동장치
JP2005507687A (ja) 生体内の装置を制御するためのシステムおよび方法
Shi et al. An optically aided magnetic tracking approach for magnetically actuated capsule robot
EP1428178A2 (en) System and method for three dimensional display of body lumens
CN101732026B (zh) 用于胶囊内窥镜检测的磁导航式运动控制系统
CN107773205A (zh) 一种胶囊式内窥镜磁控系统
WO2021201362A1 (ko) 이동형 마이크로로봇 제어장치
CN108836241B (zh) 一种具有对称侧力感应功能的胶囊机器人
Song et al. Motion control of capsule robot based on adaptive magnetic levitation using electromagnetic coil
JPH048341A (ja) 内視鏡用被検体内挿入装置
JPH048342A (ja) 被検体内挿入装置
WO2022103013A1 (ko) 가중치 전류제어 기능을 포함하는 마이크로로봇 구동 시스템 및 이를 통한 마이크로로봇의 구동 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20759340

Country of ref document: EP

Kind code of ref document: A1