US10383629B2 - System and method for preventing reprocessing of a powered surgical instrument - Google Patents

System and method for preventing reprocessing of a powered surgical instrument Download PDF

Info

Publication number
US10383629B2
US10383629B2 US12/796,194 US79619410A US10383629B2 US 10383629 B2 US10383629 B2 US 10383629B2 US 79619410 A US79619410 A US 79619410A US 10383629 B2 US10383629 B2 US 10383629B2
Authority
US
United States
Prior art keywords
surgical instrument
microcontroller
motor
configured
instrument according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/796,194
Other versions
US20110034910A1 (en
Inventor
Adam Ross
Michael Zemlok
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Covidien LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US23258209P priority Critical
Application filed by Covidien LP filed Critical Covidien LP
Assigned to TYCO HEALTHCARE GROUP LP reassignment TYCO HEALTHCARE GROUP LP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROSS, ADAM, ZEMLOK, MICHAEL
Priority to US12/796,194 priority patent/US10383629B2/en
Publication of US20110034910A1 publication Critical patent/US20110034910A1/en
Assigned to COVIDIEN LP reassignment COVIDIEN LP CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: TYCO HEALTHCARE GROUP LP
Publication of US10383629B2 publication Critical patent/US10383629B2/en
Application granted granted Critical
Application status is Active legal-status Critical
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B17/07207Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously the staples being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00398Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • A61B2017/00473Distal part, e.g. tip or head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0803Counting the number of times an instrument is used
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0814Preventing re-use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/90Identification means for patients or instruments, e.g. tags

Abstract

A surgical instrument is disclosed. The instrument includes a microcontroller coupled to a memory, the microcontroller is configured to control the surgical instrument and a usage counter stored in the memory that is incremented when the surgical instrument is activated, wherein the microcontroller is further configured to prevent actuation of the surgical instrument when the usage counter is above a predetermined threshold.

Description

CROSS REFERENCE TO RELATED APPLICATION

The present application claims the benefit of and priority to U.S. Provisional Application Ser. No. 61/232,582 filed on Aug. 10, 2009, the entire contents of which are incorporated herein by reference.

BACKGROUND

Technical Field

The present disclosure relates to a surgical instrument. More particularly, the present disclosure relates to a surgical instrument which includes a mechanism for preventing reprocessing of the instruments and components thereof.

Background of Related Art

Current known devices can typically require 10-60 pounds of manual hand force to clamp tissue and deploy and form surgical fasteners in tissue which, over repeated use, can cause a surgeon's hand to become fatigued. Gas powered pneumatic staplers which implant surgical fasteners into tissue are known in the art. Certain of these instruments utilize a pressurized gas supply which connects to a trigger mechanism. The trigger mechanism, when depressed, simply releases pressurized gas to implant a fastener into tissue.

Motor-powered surgical staplers are also known in the art. These include powered surgical staplers having motors which activate staple firing mechanisms. However, these motor powered devices only provide for limited user control of the stapling process. The user can only toggle a single switch and/or button to actuate the motor and applies corresponding torque to the stapler's firing mechanisms. In certain other devices, a controller is used to control the stapler.

There is a continual need for new and improved powered surgical staplers which include various sensors. The sensors provide relevant feedback to feedback controllers which automatically adjust various parameters of the powered stapler in response to sensed feedback signals representative of stapler operation, including articulation and actuation of the tool assemblies.

SUMMARY

According to one aspect of the present disclosure, a surgical instrument is disclosed, which includes a microcontroller coupled to a memory, the microcontroller is configured to control the surgical instrument and a usage counter stored in the memory that is incremented when the surgical instrument is activated, wherein the microcontroller is further configured to prevent actuation of the surgical instrument when the usage counter is above a predetermined threshold.

According to another aspect of the present disclosure, a surgical instrument is disclosed, which includes a microcontroller coupled to a memory, the microcontroller is configured to control the surgical instrument and a sterilization counter stored in the memory that is incremented when the surgical instrument is sterilized, wherein the microcontroller is further configured to prevent actuation of the surgical instrument when the sterilization counter is above a predetermined threshold.

According to a further aspect of the present disclosure, a surgical instrument is disclosed, which includes at least one component including a component microcontroller is configured to store an identifier corresponding to the at least one component and a microcontroller coupled to a memory, the microcontroller is configured to control the surgical instrument and to authenticate the at least one component based on a response to a challenge request, wherein the response includes the identifier.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the subject instrument are described herein with reference to the drawings wherein:

FIG. 1 is a perspective view of a powered surgical instrument according to an embodiment of the present disclosure;

FIG. 2 is a partial enlarged perspective view of the powered surgical instrument of FIG. 1 according to the embodiment of the present disclosure;

FIG. 3 is a partial enlarged plan view of the powered surgical instrument of FIG. 1 according to the embodiment of the present disclosure;

FIG. 4 is a partial perspective sectional view of internal components of the powered surgical instrument of FIG. 1 according to the embodiment of the present disclosure;

FIG. 5 is a schematic diagram of a controller circuit according to the embodiment of the present disclosure; and

FIG. 6 is a flow chart of a method according to the embodiment of the present disclosure.

DETAILED DESCRIPTION

Embodiments of the presently disclosed powered surgical instrument are now described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein the term “distal” refers to that portion of the powered surgical instrument, or component thereof, farther from the user while the term “proximal” refers to that portion of the powered surgical instrument or component thereof, closer to the user.

A powered surgical instrument, e.g., a surgical stapler, in accordance with the present disclosure is referred to in the figures as reference numeral 10. Referring initially to FIG. 1, powered surgical instrument 10 includes a housing 110, an endoscopic portion 140 defining a first longitudinal axis A-A extending therethrough, and an articulating tool assembly (e.g., end effector 160), defining a second longitudinal axis B-B extending therethrough. Endoscopic portion 140 extends distally from housing 110 and the end effector 160 is disposed adjacent a distal portion of endoscopic portion 140. In an embodiment, the components of the housing 110 are sealed against infiltration of particulate and/or fluid contamination and help prevent damage of the components by sterilization processes.

According to an embodiment of the present disclosure, end effector 160 includes a first jaw member having one or more surgical fasteners (e.g., cartridge assembly 164) and a second opposing jaw member including an anvil portion for deploying and forming the surgical fasteners (e.g., an anvil assembly 162). In certain embodiments, the staples are housed in cartridge assembly 164 to apply linear rows of staples to body tissue either in simultaneous or sequential manner. Either one or both of the anvil assembly 162 and the cartridge assembly 164 are movable in relation to one another between an open position, in which the anvil assembly 162 is spaced from cartridge assembly 164, and an approximated or clamped position, in which the anvil assembly 162 is in juxtaposed alignment with cartridge assembly 164.

It is further envisioned that end effector 160 is attached to a mounting portion 166, which is pivotably attached to a body portion 168. Body portion 168 may be integral with endoscopic portion 140 of powered surgical instrument 10, or may be removably attached to the instrument 10 to provide a replaceable, disposable loading unit (DLU) or single use loading unit (SULU) (e.g., loading unit 169). In certain embodiments, the reusable portion may be configured for sterilization and re-use in a subsequent surgical procedure.

The loading unit 169 may be connectable to endoscopic portion 140 through a bayonet connection. It is envisioned that the loading unit 169 has an articulation link connected to mounting portion 166 of the loading unit 169 and the articulation link is connected to a linkage rod so that the end effector 160 is articulated as the linkage rod is translated in the distal-proximal direction along first longitudinal axis A-A as discussed in more detail below. Other means of connecting end effector 160 to endoscopic portion 140 to allow articulation may be used, such as a flexible tube or a tube comprising a plurality of pivotable members.

The loading unit 169 may incorporate or be configured to incorporate various end effectors, such as vessel sealing devices, linear stapling devices, circular stapling devices, cutters, graspers, etc. Such end effectors may be coupled to endoscopic portion 140 of powered surgical instrument 10. An intermediate flexible shaft may be included between handle portion 112 and loading unit. It is envisioned that the incorporation of a flexible shaft may facilitate access to and/or within certain areas of the body.

With reference to FIGS. 1 and 2, an enlarged view of the housing 110 is illustrated according to an embodiment of the present disclosure. In the illustrated embodiment, housing 110 includes a handle portion 112 having a main drive switch 114 disposed thereon. The switch 114 may include first and second switches 114 a and 114 b formed together as a toggle switch. The handle portion 112, which defines a handle axis H-H, is configured to be grasped by fingers of a user. The handle portion 112 has an ergonomic shape providing ample palm grip leverage which helps prevent the handle portion 112 from being squeezed out of the user's hand during operation. Each switch 114 a and 114 b is shown as being disposed at a suitable location on handle portion 112 to facilitate its depression by a user's finger or fingers.

Additionally, and with reference to FIGS. 1 and 2, switches 114 a, 114 b may be used for starting and/or stopping movement of drive motor 200 (FIG. 4). In one embodiment, the switch 114 a is configured to activate the drive motor 200 in a first direction to advance firing rod (not explicitly shown) in a distal direction thereby approximating the anvil and the cartridge assemblies 162 and 164. Conversely, the switch 114 b may be configured to retract the firing rod to open the anvil and cartridge assemblies 162 and 164 by activating the drive motor 200 in a reverse direction. The retraction mode initiates a mechanical lock out, preventing further progression of stapling and cutting by the loading unit 169. The toggle has a first position for activating switch 114 a, a second position for activating switch 114 b, and a neutral position between the first and second positions.

The housing 110, in particular the handle portion 112, includes switch shields 117 a and 117 b. The switch shields 117 a and 117 b may have a rib-like shape surrounding the bottom portion of the switch 114 a and the top portion of the switch 114 b, respectively. The switch shield 117 a and 117 b prevent accidental activation of the switch 114. Further, the switches 114 a and 114 b have high tactile feedback requiring increased pressure for activation.

In one embodiment, the switches 114 a and 114 b are configured as multi-speed (e.g., two or more), incremental or variable speed switches which control the speed of the drive motor 200 and the firing rod in a non-linear manner. For example, switches 114 a, 114 b can be pressure-sensitive. This type of control interface allows for gradual increase in the rate of speed of the drive components from a slower and more precise mode to a faster operation. To prevent accidental activation of retraction, the switch 114 b may be disconnected electronically until a fail safe switch 114 c is pressed.

The switches 114 a and 114 b are coupled to a non-linear speed control circuit which can be implemented as a voltage regulation circuit, a variable resistance circuit, or a microelectronic pulse width modulation circuit. The switches 114 a and 144 b may interface with the control circuit by displacing or actuating variable control devices, such as rheostatic devices, multiple position switch circuit, linear and/or rotary variable displacement transducers, linear and/or rotary potentiometers, optical encoders, ferromagnetic sensors, and Hall Effect sensors. This allows the switches 114 a and 114 b to operate the drive motor 200 in multiple speed modes, such as gradually increasing the speed of the drive motor 200 either incrementally or gradually depending on the type of the control circuit being used, based on the depression of the switches 114 a and 114 b.

FIGS. 2-4 illustrate an articulation mechanism 170, including an articulation housing 172, a powered articulation switch 174, an articulation motor 132 and a manual articulation knob 176. Translation of the powered articulation switch 174 or pivoting of the manual articulation knob 176 activates the articulation motor 132 which then actuates an articulation gear 233 of the articulation mechanism 170 as shown in FIG. 4. Actuation of articulation mechanism 170 causes the end effector 160 to move from its first position, where longitudinal axis B-B is substantially aligned with longitudinal axis A-A, towards a position in which longitudinal axis B-B is disposed at an angle to longitudinal axis A-A. The powered articulation switch 174 may also incorporate similar non-linear speed controls as the clamping mechanism. These can be controlled by the switches 114 a and 114 b.

With reference to FIGS. 2 and 3, the housing 110 includes switch shields 169 having a wing-like shape and extending from the top surface of the housing 110 over the switch 174. The switch shields 169 prevent accidental activation of the switch 174 and require the user to reach below the shield 169 in order to activate the articulation mechanism 170.

Additionally, articulation housing 172 and powered articulation switch 174 are mounted to a rotating housing assembly 180. Rotation of a rotation knob 182 about first longitudinal axis A-A causes housing assembly 180 as well as articulation housing 172 and powered articulation switch 174 to rotate about first longitudinal axis A-A, and thus causes corresponding rotation of distal portion 224 of firing rod 220 and end effector 160 about first longitudinal axis A-A. The articulation mechanism 170 is electro-mechanically coupled to one or more conductive rings that are disposed on a housing nose assembly 155 (FIG. 4). The conductive rings may be soldered and/or crimped onto the nose assembly 155 and are in electrical contact with a power source 300 thereby providing electrical power to the articulation mechanism 170. The nose assembly 155 may be modular and may be attached to the housing 110 during assembly to allow for easier soldering and/or crimping of the rings. The articulation mechanism 170 may include one or more brush and/or spring loaded contacts in contact with the conductive rings such that as the housing assembly 180 is rotated along with the articulation housing 172 the articulation mechanism 170 is in continuous contact with the conductive rings thereby receiving electrical power from the power source 300.

Further details of articulation housing 172, powered articulation switch 174, manual articulation knob 176 and providing articulation to end effector 160 are described in detail in commonly-owned U.S. patent application Ser. No. 11/724,733 filed Mar. 15, 2007, the contents of which are hereby incorporated by reference in their entirety. It is envisioned that any combinations of limit switches, proximity sensors (e.g., optical and/or ferromagnetic), linear variable displacement transducers and shaft encoders which may be disposed within housing 110, may be utilized to control and/or record an articulation angle of end effector 160 and/or position of the firing rod 220.

As shown in FIG. 4, the instrument 10 also includes a microcontroller 400 electrically coupled to the motor 200 and various sensors disposed in the instrument 10. The sensors detect various operating parameters of the instrument 10 (e.g., linear speed, rotation speed, articulation position, temperature, battery charge, and the like), which are then reported to the microcontroller 400. The microcontroller 400 may then respond accordingly to the measured operating parameters (e.g., adjust the speed of the motor 200, control articulation angle, shut-off the power supply, report error conditions, etc.).

With reference to FIG. 5, a controller circuit 401 is shown. The controller circuit 401 includes the microcontroller 400 that is coupled to a memory 402 (e.g., non-volatile memory), which stores one or more software applications (e.g., firmware) for controlling the operation and functionality of the instrument 10. The microcontroller 400 processes input data from the user interface and adjusts the operation of the instrument 10 in response to the inputs. The adjustments to the instrument 10 may include powering the instrument 10 on or off, speed control by means of voltage regulation or voltage pulse width modulation, torque limitation by reducing duty cycle or pulsing the voltage on and off to limit average current delivery during a predetermined period of time.

In one embodiment, the microcontroller 400 and the memory 402 may be integrated into an application-specific integrated circuit (“ASIC”) customized for control of the instrument 10. In another embodiment, the microcontroller 400 may be a one-time programmable (“OTP”) microcontroller to prevent new code or firmware being written onto the microcontroller 400. The use of OTP and ASIC prevents unauthorized re-processors from rewriting the code controlling the instrument 10 and overriding the usage limitations discussed below.

It is envisioned that the instrument 10 may be used only a predetermined number of times. In other words, it is desirable to limit the number of reuses to a number mandated by the manufacturer or to ensure that a single-use instrument is only used once. With reference to FIG. 5, the microcontroller 400 is configured to maintain a usage counter 403 for counting the number of times the instrument 10 has been used. The usage counter 403 is stored in the memory 402. The microcontroller 400 may determine the number of uses based on the number of activations of the motor 200, the number of firing strokes performed by the motor 200, and length of operation for each activation. The usage counter 403 is initialized at zero prior to the instrument 10 being used for the first time and may not be reset by third parties. The usage counter 403 is incremented by the microcontroller 400 whenever the microcontroller 400 determines that the instrument 10 has been activated. In one embodiment, the usage counter 403 may be encrypted to prevent resetting of the counter 403. The usage counter 403 may also be a timer that records the time that the instrument 10 has been used. The total usage time is also recorded in the memory 402. Prior to activation of the instrument 10, the microcontroller 400 determines if the usage counter 403 is below a predetermined usage threshold. If the usage counter 403 exceeds the threshold, the microcontroller 400 prevents activation of the instrument 10.

In another embodiment, the microcontroller 400 is configured to maintain a sterilization counter 405 in the memory 402, if a certain number of re-uses of the instrument 10 are advised. The sterilization counter 405 may be implemented in conjunction with the usage counter 403. The sterilization counter 405 is also stored in the memory 402 and maintains a number of times the instrument 10 has been sterilized.

As shown in FIG. 4, the instrument 10 includes a sterilization sensor 410 (e.g., temperature sensor 406 and/or a moisture sensor 408), which detect when the instrument 10 has passed through a sterilization cycle. The temperature sensor 406 may be a thermistor, a thermopile, a thermocouple, a thermal infrared sensor, a resistance temperature detector, a linear active thermistor, a bimetallic contact switch, and the like. The moisture sensor 408 may be of capacitive, resistive and thermal conductivity types. The temperature and moisture sensors 406 and 408 are coupled to the microcontroller 400 and/or the memory 402 and are configured to increment the sterilization counter when the temperature and/or moisture are detected to be above predetermined thresholds (e.g., temperatures above 80° C. and humidity above 60%). The temperature and moisture sensors 406 and 408 may be integrated into the ASIC with the microcontroller 400 and the memory 402 to prevent tampering.

In another embodiment, the sterilization counter 405 may be encrypted to prevent resetting of the sterilization counter 405. Prior to activation of the instrument 10, the microcontroller 400 determines if the sterilization counter 405 is below a predetermined usage threshold. If the sterilization counter 405 exceeds the threshold, the microcontroller 400 prevents activation of the instrument 10.

With the modular design of the instrument 10, certain components 412 of the instrument 10 (e.g., motor 200, power source 300, loading unit 169, etc.) may be replaced during the life-time of the instrument 10. However, such modularity also provides unauthorized reuse of the instrument 10 by replacing the components 412. To prevent unauthorized replacement of the components 412, each of the components 412 may include an identifier 414 (FIG. 5) associated therewith. The identifiers 414 may be any value stored in a memory and/or component microcontroller 416 of the component that can be read by the microcontroller 400, such as a serial number. The microcontroller 416 may be coupled through wired and/or wireless communication protocols to the microcontroller 400 of the instrument 10 to authenticate the component 412. The identifier 414 may be encrypted to prevent unauthorized reading of the identifier. In another embodiment, the identifier may be a unique electrical measurable value of the component 412 (e.g., resistance, capacitance, inductance, etc.).

To ensure that only authorized components 412 are used in the instrument 10, the microcontroller 400 may execute a so-called challenge-response authentication algorithm as shown in FIG. 6. In step 500, the microcontroller 400 sends a challenge request to the component microcontroller 408. In step 502, the microcontroller 416 interprets the challenge request and generates a response as a reply to the request. The response includes the identifier 414 and may be encoded using a first pair of an encryption key that is specific to the microcontroller 416. In step 504, the microcontroller 400 receives the reply and decodes the identifier 414 using a second pair of the key. In step 506, the microcontroller 400 determines if the component 412 is authentic based on the identifier 414, by comparing the identifier 414 with a pre-approved list of authentic identifiers. If the identifier is not valid, in step 507, microcontroller 400 prevents activation of the instrument 10. If the identifier is valid, the process proceeds to step 508, the instrument 10 commences operation.

The above-discussed systems and method for controlling usage of the instrument 10 and components 412 thereof may be combined in a unitary authentication process. The usage counter 403, the sterilization counter 405 and the response to the authentication algorithm may be combined in a single value stored in the memory 402 as a so-called “device status word” (“DSW”). Upon power-up of the instrument 10, the microcontroller 400 checks the DSW to determine if the instrument 10 may be unlocked. This involves a determination whether the usage counter 403 and the sterilization counter 405 are below a predetermined usage threshold and whether all of the components 412 are authentic. In addition, an authentication flag may be set in the DSW that prevents activation of the instrument 10 if any of the components 412 are found to be inauthentic. If either the usage or the sterilization counters 403 and 405 are above the thresholds or the authentication flag is activated, the microcontroller 400 prevents activation of the instrument 10. The DSW may be continually updated prior to activation of the instrument 10. The DSW may also be encrypted to prevent unauthorized access and tampering.

It will be understood that various modifications may be made to the embodiments shown herein. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. Although specific features of the powered surgical instrument are shown in some of the drawings and not in others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the aspects of the present disclosure. Other embodiments will occur to those skilled in the art and are within the following claims.

Claims (14)

What is claimed:
1. A surgical instrument, comprising:
a housing;
an endoscopic portion extending distally from the housing;
an end effector coupled to the endoscopic portion;
at least one motor disposed within the housing and including a motor microcontroller having stored thereon a unique identifier associated with the at least one motor;
a memory device;
an instrument microcontroller coupled to the memory device and configured to control the surgical instrument, the instrument microcontroller configured to send a challenge request to the motor microcontroller of the at least one motor to authenticate the at least one motor by comparing the unique identifier associated with the motor microcontroller of the at least one motor with a pre-approved set of identifiers;
a sterilization counter stored in the memory device, and
a sterilization sensor coupled to the instrument microcontroller, the instrument microcontroller configured to increment the sterilization counter when the sterilization sensor detects at least one of temperature or moisture above a predetermined threshold,
wherein the unique identifier is a unique electrical, measurable value of the motor, the electrical, measurable value of the motor including a resistance, a capacitance, an inductance, or combinations thereof.
2. The surgical instrument according to claim 1, further comprising:
a usage counter stored in the memory device and configured to be incremented in response to activation of the surgical instrument.
3. The surgical instrument according to claim 2, wherein the memory device includes a device status word that incorporates the usage counter, the sterilization counter and an authentication flag, the authentication flag configured to be activated based on a predetermined identifier.
4. The surgical instrument according to claim 3, wherein the device status word is encrypted.
5. The surgical instrument according to claim 3, wherein the instrument microcontroller is further configured to prevent actuation of the surgical instrument in response to at least one of the usage counter being above a predetermined threshold, the sterilization counter being above a predetermined threshold, or the authentication flag being activated.
6. The surgical instrument according to claim 1, wherein the surgical instrument is a surgical stapling instrument and the end effector includes an anvil assembly and a cartridge assembly, wherein the instrument microcontroller is electrically coupled to the motor.
7. The surgical instrument according to claim 6, wherein the motor is configured to cause the cartridge assembly and the anvil assembly to clamp together.
8. The surgical instrument according to claim 7, further comprising a usage counter stored in the memory device, wherein the usage counter is configured to be incremented when the motor is activated.
9. The surgical instrument according to claim 1, further comprising a loading unit including a body portion extending distally from the endoscopic portion, wherein the end effector is pivotably attached to the body portion.
10. The surgical instrument according to claim 9, wherein the loading unit includes a loading unit microcontroller.
11. The surgical instrument according to claim 1, wherein the motor microcontroller of the at least one motor is coupled to the instrument microcontroller through a wireless communication protocol.
12. The surgical instrument according to claim 1, wherein the housing includes a handle portion having a main drive switch configured to activate the motor.
13. The surgical instrument according to claim 1, wherein the sterilization sensor partially extends through an outer wall of the housing.
14. The surgical instrument according to claim 13, wherein the sterilization sensor includes a temperature sensor and a moisture sensor.
US12/796,194 2009-08-10 2010-06-08 System and method for preventing reprocessing of a powered surgical instrument Active 2033-01-20 US10383629B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US23258209P true 2009-08-10 2009-08-10
US12/796,194 US10383629B2 (en) 2009-08-10 2010-06-08 System and method for preventing reprocessing of a powered surgical instrument

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US12/796,194 US10383629B2 (en) 2009-08-10 2010-06-08 System and method for preventing reprocessing of a powered surgical instrument
CA2709747A CA2709747C (en) 2009-08-10 2010-07-14 System and method for preventing reprocessing of a powered surgical instrument
AU2010203108A AU2010203108B2 (en) 2009-08-10 2010-07-21 System and method for preventing reprocessing of a powered surgical instrument
JP2010174054A JP5904702B2 (en) 2009-08-10 2010-08-02 System and method for preventing reprocessing of powered surgical instruments
EP10251416.3A EP2283780B1 (en) 2009-08-10 2010-08-09 System for preventing reuse of a powered surgical instrument
CN201010251032.0A CN101991447B (en) 2009-08-10 2010-08-10 Surgical instrument
JP2015012964A JP2015110005A (en) 2009-08-10 2015-01-27 System and method for preventing reprocessing of powered surgical instrument

Publications (2)

Publication Number Publication Date
US20110034910A1 US20110034910A1 (en) 2011-02-10
US10383629B2 true US10383629B2 (en) 2019-08-20

Family

ID=42953755

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/796,194 Active 2033-01-20 US10383629B2 (en) 2009-08-10 2010-06-08 System and method for preventing reprocessing of a powered surgical instrument

Country Status (6)

Country Link
US (1) US10383629B2 (en)
EP (1) EP2283780B1 (en)
JP (2) JP5904702B2 (en)
CN (1) CN101991447B (en)
AU (1) AU2010203108B2 (en)
CA (1) CA2709747C (en)

Families Citing this family (204)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US7845536B2 (en) 2004-10-18 2010-12-07 Tyco Healthcare Group Lp Annular adhesive structure
US9364229B2 (en) 2005-03-15 2016-06-14 Covidien Lp Circular anastomosis structures
JP2009506799A (en) 2005-06-03 2009-02-19 タイコ ヘルスケア グループ リミテッド パートナーシップ Power-driven surgical instrument
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7673781B2 (en) 2005-08-31 2010-03-09 Ethicon Endo-Surgery, Inc. Surgical stapling device with staple driver that supports multiple wire diameter staples
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US20110295295A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument having recording capabilities
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8236010B2 (en) 2006-03-23 2012-08-07 Ethicon Endo-Surgery, Inc. Surgical fastener and cutter with mimicking end effector
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US7665647B2 (en) 2006-09-29 2010-02-23 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8701958B2 (en) 2007-01-11 2014-04-22 Ethicon Endo-Surgery, Inc. Curved end effector for a surgical stapling device
CN101626731B (en) 2007-03-06 2013-10-16 柯惠Lp公司 Surgical stapling apparatus
US20090001121A1 (en) 2007-03-15 2009-01-01 Hess Christopher J Surgical staple having an expandable portion
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US7950560B2 (en) 2007-04-13 2011-05-31 Tyco Healthcare Group Lp Powered surgical instrument
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7665646B2 (en) 2007-06-18 2010-02-23 Tyco Healthcare Group Lp Interlocking buttress material retention system
US8408439B2 (en) 2007-06-22 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US20090206131A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US7832612B2 (en) 2008-09-19 2010-11-16 Ethicon Endo-Surgery, Inc. Lockout arrangement for a surgical stapler
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US20110006101A1 (en) 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US9486215B2 (en) 2009-03-31 2016-11-08 Covidien Lp Surgical stapling apparatus
US7967179B2 (en) 2009-03-31 2011-06-28 Tyco Healthcare Group Lp Center cinch and release of buttress material
US8652126B2 (en) * 2009-11-24 2014-02-18 General Electric Company Method and computer program for authenticating a physiological sensor, a sensor system, a patient monitor, and a physiological sensor
US8608046B2 (en) 2010-01-07 2013-12-17 Ethicon Endo-Surgery, Inc. Test device for a surgical tool
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8632525B2 (en) 2010-09-17 2014-01-21 Ethicon Endo-Surgery, Inc. Power control arrangements for surgical instruments and batteries
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
AU2011308701B2 (en) 2010-09-30 2013-11-14 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix and an alignment matrix
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US9277919B2 (en) 2010-09-30 2016-03-08 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising fibers to produce a resilient load
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
RU2644272C2 (en) 2012-03-28 2018-02-08 Этикон Эндо-Серджери, Инк. Limitation node with tissue thickness compensator
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
RU2606493C2 (en) 2011-04-29 2017-01-10 Этикон Эндо-Серджери, Инк. Staple cartridge, containing staples, located inside its compressible part
US9861361B2 (en) 2010-09-30 2018-01-09 Ethicon Llc Releasable tissue thickness compensator and fastener cartridge having the same
US8746535B2 (en) 2010-09-30 2014-06-10 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising detachable portions
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US9125654B2 (en) 2011-03-14 2015-09-08 Ethicon Endo-Surgery, Inc. Multiple part anvil assemblies for circular surgical stapling devices
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9237892B2 (en) 2011-12-14 2016-01-19 Covidien Lp Buttress attachment to the cartridge surface
US9351731B2 (en) 2011-12-14 2016-05-31 Covidien Lp Surgical stapling apparatus including releasable surgical buttress
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
MX350846B (en) 2012-03-28 2017-09-22 Ethicon Endo Surgery Inc Tissue thickness compensator comprising capsules defining a low pressure environment.
US9868198B2 (en) * 2012-06-01 2018-01-16 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US20140005678A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Rotary drive arrangements for surgical instruments
US9572576B2 (en) 2012-07-18 2017-02-21 Covidien Lp Surgical apparatus including surgical buttress
US9468447B2 (en) * 2012-08-14 2016-10-18 Insurgical, LLC Limited-use tool system and method of reprocessing
US9161753B2 (en) 2012-10-10 2015-10-20 Covidien Lp Buttress fixation for a circular stapler
US8906001B2 (en) 2012-10-10 2014-12-09 Covidien Lp Electromechanical surgical apparatus including wire routing clock spring
US9295466B2 (en) 2012-11-30 2016-03-29 Covidien Lp Surgical apparatus including surgical buttress
US9402627B2 (en) 2012-12-13 2016-08-02 Covidien Lp Folded buttress for use with a surgical apparatus
US9208429B2 (en) 2013-01-31 2015-12-08 Teleflex Medical Incorporated Multiple delivery device counter and counting method
US9414839B2 (en) 2013-02-04 2016-08-16 Covidien Lp Buttress attachment for circular stapling device
CN104968288B (en) 2013-02-13 2017-07-28 奥林巴斯株式会社 Surgery systems
US9504470B2 (en) 2013-02-25 2016-11-29 Covidien Lp Circular stapling device with buttress
BR112015021098A2 (en) 2013-03-01 2017-07-18 Ethicon Endo Surgery Inc swiveling conductive surgical instruments for signal communication
US9554794B2 (en) 2013-03-01 2017-01-31 Ethicon Endo-Surgery, Llc Multiple processor motor control for modular surgical instruments
US20140263552A1 (en) 2013-03-13 2014-09-18 Ethicon Endo-Surgery, Inc. Staple cartridge tissue thickness sensor system
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US10470762B2 (en) 2013-03-14 2019-11-12 Ethicon Llc Multi-function motor for a surgical instrument
BR112015022670A2 (en) * 2013-03-14 2017-07-18 Ethicon Endo Surgery Inc control arrangements for a driving member of a surgical instrument
US9808244B2 (en) 2013-03-14 2017-11-07 Ethicon Llc Sensor arrangements for absolute positioning system for surgical instruments
US9332987B2 (en) * 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9430881B2 (en) 2013-03-15 2016-08-30 Broadley-James Corporation Measurement probe with heat cycle event counter
WO2014151120A1 (en) * 2013-03-15 2014-09-25 Broadley-James Corporation Measurement probe with heat cycle event counter
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US10405857B2 (en) 2013-04-16 2019-09-10 Ethicon Llc Powered linear surgical stapler
US9814460B2 (en) 2013-04-16 2017-11-14 Ethicon Llc Modular motor driven surgical instruments with status indication arrangements
CN104883992B (en) * 2013-05-02 2017-02-22 奥林巴斯株式会社 ultrasonic treatment system
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9700310B2 (en) 2013-08-23 2017-07-11 Ethicon Llc Firing member retraction devices for powered surgical instruments
US9539006B2 (en) 2013-08-27 2017-01-10 Covidien Lp Hand held electromechanical surgical handle assembly for use with surgical end effectors, and methods of use
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US9549735B2 (en) 2013-12-23 2017-01-24 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a firing member including fastener transfer surfaces
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9468454B2 (en) * 2014-01-28 2016-10-18 Ethicon Endo-Surgery, Inc. Motor control and feedback in powered surgical devices
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
JP6462004B2 (en) 2014-02-24 2019-01-30 エシコン エルエルシー Fastening system with launcher lockout
US20140166726A1 (en) 2014-02-24 2014-06-19 Ethicon Endo-Surgery, Inc. Staple cartridge including a barbed staple
US10028761B2 (en) 2014-03-26 2018-07-24 Ethicon Llc Feedback algorithms for manual bailout systems for surgical instruments
US10004497B2 (en) 2014-03-26 2018-06-26 Ethicon Llc Interface systems for use with surgical instruments
US10013049B2 (en) 2014-03-26 2018-07-03 Ethicon Llc Power management through sleep options of segmented circuit and wake up control
JP6532089B2 (en) * 2014-03-26 2019-06-19 エシコン エルエルシーEthicon LLC Sterilization verification circuit
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US9877721B2 (en) 2014-04-16 2018-01-30 Ethicon Llc Fastener cartridge comprising tissue control features
US20150317899A1 (en) * 2014-05-01 2015-11-05 Covidien Lp System and method for using rfid tags to determine sterilization of devices
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US10226250B2 (en) 2015-02-27 2019-03-12 Ethicon Llc Modular stapling assembly
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US9931118B2 (en) 2015-02-27 2018-04-03 Ethicon Endo-Surgery, Llc Reinforced battery for a surgical instrument
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10441279B2 (en) * 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US9619618B2 (en) 2015-03-18 2017-04-11 Covidien Lp Systems and methods for credit-based usage of surgical instruments and components thereof
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
US10433844B2 (en) 2015-03-31 2019-10-08 Ethicon Llc Surgical instrument with selectively disengageable threaded drive systems
US10182818B2 (en) 2015-06-18 2019-01-22 Ethicon Llc Surgical end effectors with positive jaw opening arrangements
US20170056005A1 (en) 2015-08-26 2017-03-02 Ethicon Endo-Surgery, Llc Surgical staples for minimizing staple roll
US10357252B2 (en) 2015-09-02 2019-07-23 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples
USD774930S1 (en) 2015-09-11 2016-12-27 Broadley-James Corporation Cycle count instrument
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US20170086832A1 (en) 2015-09-30 2017-03-30 Ethicon Endo-Surgery, Llc Tubular absorbable constructs
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US20170224331A1 (en) 2016-02-09 2017-08-10 Ethicon Endo-Surgery, Llc Surgical instruments with an end effector that is highly articulatable relative to an elongate shaft assembly
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US20170231627A1 (en) 2016-02-12 2017-08-17 Ethicon Endo-Surgery, Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US20170281166A1 (en) 2016-04-01 2017-10-05 Ethicon Endo-Surgery, Llc Surgical cutting and stapling end effector with anvil concentric drive member
US20170281184A1 (en) 2016-04-01 2017-10-05 Ethicon Endo-Surgery, Llc Surgical stapling system comprising a jaw attachment lockout
US10376263B2 (en) 2016-04-01 2019-08-13 Ethicon Llc Anvil modification members for surgical staplers
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10368867B2 (en) 2016-04-18 2019-08-06 Ethicon Llc Surgical instrument comprising a lockout
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US20180168594A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Bilaterally asymmetric staple forming pocket pairs
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US20180168626A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems
US20180168589A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
WO2019135913A1 (en) * 2018-01-04 2019-07-11 Covidien Lp Surgical devices and methods for collecting sterilization data

Citations (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449256A2 (en) 1990-03-27 1991-10-02 Kabushiki Kaisha Toshiba Microcontroller having security means
US5077506A (en) * 1989-02-03 1991-12-31 Dyonics, Inc. Microprocessor controlled arthroscopic surgical system
EP0537570A2 (en) 1991-10-18 1993-04-21 United States Surgical Corporation Apparatus for applying surgical fasteners
US5209235A (en) * 1991-09-13 1993-05-11 Cardiovascular Imaging Systems, Inc. Ultrasonic imaging catheter assembly and method for identification of the same
WO1994014129A1 (en) 1992-12-08 1994-06-23 Hemostatix Corporation Local in-device memory feature for electrically powered medical equipment
US5391144A (en) * 1990-02-02 1995-02-21 Olympus Optical Co., Ltd. Ultrasonic treatment apparatus
EP0647431A2 (en) 1993-10-08 1995-04-12 United States Surgical Corporation Surgical suturing apparatus with loading mechanism
US5425375A (en) * 1993-09-09 1995-06-20 Cardiac Pathways Corporation Reusable medical device with usage memory, system using same
US5433721A (en) * 1992-01-17 1995-07-18 Ethicon, Inc. Endoscopic instrument having a torsionally stiff drive shaft for applying fasteners to tissue
US5526822A (en) 1994-03-24 1996-06-18 Biopsys Medical, Inc. Method and apparatus for automated biopsy and collection of soft tissue
US5529235A (en) 1994-04-28 1996-06-25 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
EP0738501A1 (en) 1994-11-02 1996-10-23 Olympus Optical Co., Ltd. Endoscope operative instrument
US5667517A (en) 1992-01-17 1997-09-16 Ethicon, Inc. Endoscopic surgical system with sensing means
US5749885A (en) * 1995-10-02 1998-05-12 Smith & Nephew, Inc. Surgical instrument with embedded coding element
US5792138A (en) * 1996-02-22 1998-08-11 Apollo Camera, Llc Cordless bipolar electrocautery unit with automatic power control
US5888241A (en) * 1992-10-30 1999-03-30 Jarvik; Robert Cannula pumps for temporary cardiac support and methods of their application and use
US6090123A (en) * 1996-08-15 2000-07-18 Stryker Corporation Powered surgical handpiece with state marker for indicating the run/load state of the handpiece coupling assembly
WO2000072765A1 (en) 1999-06-02 2000-12-07 Powermed, Inc. An electromechanical driver device for use with anastomosing, stapling, and resecting instruments
US6166538A (en) * 1998-08-26 2000-12-26 Linvatec Corporation Autoclave cycle monitor for autoclaved instruments
US6165169A (en) 1994-03-04 2000-12-26 Ep Technologies, Inc. Systems and methods for identifying the physical, mechanical, and functional attributes of multiple electrode arrays
US6237604B1 (en) 1999-09-07 2001-05-29 Scimed Life Systems, Inc. Systems and methods for preventing automatic identification of re-used single use devices
JP2001255953A (en) 2000-02-25 2001-09-21 Bayerische Motoren Werke Ag Method for applying competence by using license
US6295330B1 (en) * 1998-08-05 2001-09-25 Siemens-Elema Ab Device for repeated registration of the number of thermal cycles to which a part for medical usage has been subjected
US20020019596A1 (en) * 1999-12-27 2002-02-14 Eggers Philip E. Minimally invasive intact recovery of tissue
JP3276345B2 (en) 1999-05-21 2002-04-22 日本デコール株式会社 Surface decorative sheet and a method of manufacturing the same
EP1201196A1 (en) 2000-10-20 2002-05-02 Ethicon Endo-Surgery, Inc. Apparatus and method for altering generator functions in an ultrasonic surgical system
US6387092B1 (en) 1999-09-07 2002-05-14 Scimed Life Systems, Inc. Systems and methods to identify and disable re-used single use devices based on time elapsed from first therapeutic use
US20020198554A1 (en) 2001-03-14 2002-12-26 Whitman Michael P. Trocar device
WO2003026511A1 (en) 2001-09-25 2003-04-03 Reiner Kunz Multifunctional instrument for use in microinvasive surgery
US20030106930A1 (en) 2001-12-06 2003-06-12 Williams Jeffrey B. Counter mechanisms
US6595930B2 (en) * 2000-10-27 2003-07-22 Mipm Mannendorfer Institut Fur Physik Und Medizin Gmbh Probe for physiological pressure measurement in the human or animal body and method for monitoring the probe
US6611793B1 (en) 1999-09-07 2003-08-26 Scimed Life Systems, Inc. Systems and methods to identify and disable re-use single use devices based on detecting environmental changes
US20030181934A1 (en) * 2002-03-22 2003-09-25 Gyrus Ent L.L.C. Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus
US6675031B1 (en) * 1999-04-14 2004-01-06 Mallinckrodt Inc. Method and circuit for indicating quality and accuracy of physiological measurements
JP2004093693A (en) 2002-08-29 2004-03-25 Casio Comput Co Ltd System for preventing fraudulent use of consumable article
US20040059197A1 (en) * 2002-07-15 2004-03-25 J. Morita Manufacturing Corporation Connection assembly having communication function and medical apparatus using the connection assembly
FR2849589A1 (en) 2003-01-07 2004-07-09 2R Invest Thermo-retractable clip heating device control method for surgery, involves blocking electronic control circuit of device when predetermined criterion is recognized, and unlocking device using external information stored in IC card
US20040220577A1 (en) * 2000-02-16 2004-11-04 Cragg Andrew H. Methods and apparatus for forming shaped axial bores through spinal vertebrae
US20040267340A1 (en) * 2002-12-12 2004-12-30 Wit Ip Corporation Modular thermal treatment systems with single-use disposable catheter assemblies and related methods
US20050096684A1 (en) * 2003-10-31 2005-05-05 Medtronic, Inc. Programmable surgical instrument system
US20060074405A1 (en) * 2004-09-29 2006-04-06 Don Malackowski Integrated system for controlling plural surgical tools
US20060095096A1 (en) * 2004-09-09 2006-05-04 Debenedictis Leonard C Interchangeable tips for medical laser treatments and methods for using same
US7048687B1 (en) 1999-04-14 2006-05-23 Ob Scientific, Inc. Limited use medical probe
EP1658817A1 (en) 2004-11-23 2006-05-24 Rhytec Limited Usage limiting electronic key system for plasma device for tissue resurfacing
US20060129202A1 (en) * 2004-12-10 2006-06-15 Cyberonics, Inc. Neurostimulator with activation based on changes in body temperature
US7126303B2 (en) * 2003-07-08 2006-10-24 Board Of Regents Of The University Of Nebraska Robot for surgical applications
US20060278681A1 (en) * 2005-06-03 2006-12-14 Viola Frank J Battery powered surgical instrument
WO2007014355A2 (en) 2005-07-27 2007-02-01 Power Medical Interventions, Inc. Shaft, e.g., for an electro-mechanical surgical device
US20070032818A1 (en) 2005-08-05 2007-02-08 Western Clinical Engineering Ltd. Surgical tourniquet cuff for limiting usage to improve safety
US20070043398A1 (en) * 2005-04-28 2007-02-22 David Ternes Flexible neural stimulation engine
US20070043272A1 (en) * 2000-08-31 2007-02-22 Nellcor Puritan Bennett Inc. Method and circuit for storing and providing historical physiological data
US7193519B2 (en) 2002-03-18 2007-03-20 Optim, Inc. Reusable instruments and related systems and methods
US7199545B2 (en) * 2003-07-08 2007-04-03 Board Of Regents Of The University Of Nebraska Robot for surgical applications
EP1769754A1 (en) 2005-09-30 2007-04-04 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for linear surgical stapler
US20070129684A1 (en) * 2005-12-06 2007-06-07 Siemens Medical Solutions Usa, Inc. Remote enabling/disabling of a limited-use medical device
WO2007114868A2 (en) 2006-01-05 2007-10-11 Intuitive Surgical, Inc. Method for tracking and reporting usage events to determine when preventive maintenance is due for a medical robotic system
JP2007318669A (en) 2006-05-29 2007-12-06 Funai Electric Co Ltd Digital content playback system
US7319907B2 (en) * 2002-11-18 2008-01-15 International Remote Imaging Systems, Inc. Multi-level controller system
JP2008010952A (en) 2006-06-27 2008-01-17 Canon Inc Authentication of mounter by plurality of times of challenges and responses
US20080118890A1 (en) * 2005-04-12 2008-05-22 Spring Health Products, Inc. Electric dental handpiece and control system
US20080164296A1 (en) * 2007-01-10 2008-07-10 Shelton Frederick E Prevention of cartridge reuse in a surgical instrument
EP1943958A1 (en) 2007-01-10 2008-07-16 Ethicon Endo-Surgery, Inc. Surgical instrument with elements to communicate between control unit and end effector
US20080185419A1 (en) * 2006-05-19 2008-08-07 Smith Kevin W Electrically Self-Powered Surgical Instrument With Cryptographic Identification of Interchangeable Part
US7431188B1 (en) 2007-03-15 2008-10-07 Tyco Healthcare Group Lp Surgical stapling apparatus with powered articulation
US20080251568A1 (en) * 2007-04-13 2008-10-16 Michael Zemlok Powered surgical instrument
US20080255607A1 (en) * 2007-04-13 2008-10-16 Zemlok Michael A Powered surgical instrument
US20080262305A1 (en) * 2006-01-13 2008-10-23 Olympus Medical Systems Corp. Rotary self-advancing endoscope system, program, and method for driving rotary self-advancing endoscope system
WO2008137813A1 (en) 2007-05-04 2008-11-13 Syntheon, Llc System and method for cryptographic identification of interchangeable parts
US20090018624A1 (en) * 2007-07-13 2009-01-15 Juniper Medical, Inc. Limiting use of disposable system patient protection devices
US20090018566A1 (en) * 2006-06-30 2009-01-15 Artheromed, Inc. Atherectomy devices, systems, and methods
US20090090763A1 (en) * 2007-10-05 2009-04-09 Tyco Healthcare Group Lp Powered surgical stapling device
US20090143797A1 (en) * 2007-12-03 2009-06-04 Smith Kevin W Cordless Hand-Held Ultrasonic Cautery Cutting Device
US20090177139A1 (en) 2007-08-17 2009-07-09 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System, devices, and methods including actively-controllable electromagnetic energy-emitting delivery systems and energy-activateable disinfecting agents
US20090182207A1 (en) * 2008-01-16 2009-07-16 Tenxsys Inc. Ingestible animal health sensor
US20090206136A1 (en) * 2008-02-14 2009-08-20 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US20090234232A1 (en) * 2008-03-12 2009-09-17 Martin Gertsen Ultrasonic scanning device
US20090326569A1 (en) * 2008-06-26 2009-12-31 Olympus Medical Systems Corp. Surgical system and surgical operation method
US20100076474A1 (en) * 2008-09-23 2010-03-25 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US20100125292A1 (en) * 2008-11-20 2010-05-20 Wiener Eitan T Ultrasonic surgical system
US20110017801A1 (en) * 2007-10-05 2011-01-27 Tyco Healthcare Group Lp Internal backbone structural chassis for a surgical device
US20110148646A1 (en) * 2009-12-21 2011-06-23 Allotech Co., Ltd. Device for conforming recycle of disposable medical handpiece
US20110208170A1 (en) * 2008-05-14 2011-08-25 Aesculap Ag Surgical drive unit, surgical instrument and surgical drive system
US20110218522A1 (en) * 2004-07-30 2011-09-08 Tyco Healthcare Group Lp Flexible shaft extender and method of using same
US20110301611A1 (en) * 2010-06-03 2011-12-08 Biomet Microfixation, Llc Surgical device with smart bit recognition collet assembly to set a desired application mode
US20130203014A1 (en) * 2005-04-12 2013-08-08 Spring Health Products, Inc. Electric dental handpiece
US20150257970A1 (en) * 2011-02-17 2015-09-17 Martin Mücke Device and method for reducing pain
US9164271B2 (en) * 2009-09-29 2015-10-20 Olympus Corporation Endoscope system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6611792B2 (en) * 1999-05-21 2003-08-26 Acushnet Company Method for matching golfers with a driver and ball
JP4681769B2 (en) * 2001-07-26 2011-05-11 オリンパス株式会社 Medical equipment

Patent Citations (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077506A (en) * 1989-02-03 1991-12-31 Dyonics, Inc. Microprocessor controlled arthroscopic surgical system
US5391144A (en) * 1990-02-02 1995-02-21 Olympus Optical Co., Ltd. Ultrasonic treatment apparatus
EP0449256A2 (en) 1990-03-27 1991-10-02 Kabushiki Kaisha Toshiba Microcontroller having security means
US5209235A (en) * 1991-09-13 1993-05-11 Cardiovascular Imaging Systems, Inc. Ultrasonic imaging catheter assembly and method for identification of the same
EP0537570A2 (en) 1991-10-18 1993-04-21 United States Surgical Corporation Apparatus for applying surgical fasteners
US5667517A (en) 1992-01-17 1997-09-16 Ethicon, Inc. Endoscopic surgical system with sensing means
US5433721A (en) * 1992-01-17 1995-07-18 Ethicon, Inc. Endoscopic instrument having a torsionally stiff drive shaft for applying fasteners to tissue
US5888241A (en) * 1992-10-30 1999-03-30 Jarvik; Robert Cannula pumps for temporary cardiac support and methods of their application and use
US5400267A (en) * 1992-12-08 1995-03-21 Hemostatix Corporation Local in-device memory feature for electrically powered medical equipment
WO1994014129A1 (en) 1992-12-08 1994-06-23 Hemostatix Corporation Local in-device memory feature for electrically powered medical equipment
US5425375A (en) * 1993-09-09 1995-06-20 Cardiac Pathways Corporation Reusable medical device with usage memory, system using same
EP0647431A2 (en) 1993-10-08 1995-04-12 United States Surgical Corporation Surgical suturing apparatus with loading mechanism
US6165169A (en) 1994-03-04 2000-12-26 Ep Technologies, Inc. Systems and methods for identifying the physical, mechanical, and functional attributes of multiple electrode arrays
US5526822A (en) 1994-03-24 1996-06-18 Biopsys Medical, Inc. Method and apparatus for automated biopsy and collection of soft tissue
US5562239A (en) 1994-04-28 1996-10-08 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
US5529235A (en) 1994-04-28 1996-06-25 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
US5535937A (en) 1994-04-28 1996-07-16 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
US5535934A (en) 1994-04-28 1996-07-16 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
EP0738501A1 (en) 1994-11-02 1996-10-23 Olympus Optical Co., Ltd. Endoscope operative instrument
US5749885A (en) * 1995-10-02 1998-05-12 Smith & Nephew, Inc. Surgical instrument with embedded coding element
US5792138A (en) * 1996-02-22 1998-08-11 Apollo Camera, Llc Cordless bipolar electrocautery unit with automatic power control
US6090123A (en) * 1996-08-15 2000-07-18 Stryker Corporation Powered surgical handpiece with state marker for indicating the run/load state of the handpiece coupling assembly
US6295330B1 (en) * 1998-08-05 2001-09-25 Siemens-Elema Ab Device for repeated registration of the number of thermal cycles to which a part for medical usage has been subjected
US6166538A (en) * 1998-08-26 2000-12-26 Linvatec Corporation Autoclave cycle monitor for autoclaved instruments
US7048687B1 (en) 1999-04-14 2006-05-23 Ob Scientific, Inc. Limited use medical probe
US6675031B1 (en) * 1999-04-14 2004-01-06 Mallinckrodt Inc. Method and circuit for indicating quality and accuracy of physiological measurements
JP3276345B2 (en) 1999-05-21 2002-04-22 日本デコール株式会社 Surface decorative sheet and a method of manufacturing the same
WO2000072765A1 (en) 1999-06-02 2000-12-07 Powermed, Inc. An electromechanical driver device for use with anastomosing, stapling, and resecting instruments
US6237604B1 (en) 1999-09-07 2001-05-29 Scimed Life Systems, Inc. Systems and methods for preventing automatic identification of re-used single use devices
US6611793B1 (en) 1999-09-07 2003-08-26 Scimed Life Systems, Inc. Systems and methods to identify and disable re-use single use devices based on detecting environmental changes
US6578579B2 (en) 1999-09-07 2003-06-17 Scimed Life Systems, Inc. Systems and methods for preventing automatic identification of re-used single use devices
US6387092B1 (en) 1999-09-07 2002-05-14 Scimed Life Systems, Inc. Systems and methods to identify and disable re-used single use devices based on time elapsed from first therapeutic use
US6792390B1 (en) * 1999-09-07 2004-09-14 Scimed Life Systems, Inc. Systems and methods to identify and disable re-used devices based on detecting environmental changes
US20020019596A1 (en) * 1999-12-27 2002-02-14 Eggers Philip E. Minimally invasive intact recovery of tissue
US20040220577A1 (en) * 2000-02-16 2004-11-04 Cragg Andrew H. Methods and apparatus for forming shaped axial bores through spinal vertebrae
US20020023223A1 (en) 2000-02-25 2002-02-21 Ernst Schmidt Authorization process using a certificate
JP2001255953A (en) 2000-02-25 2001-09-21 Bayerische Motoren Werke Ag Method for applying competence by using license
US20070043272A1 (en) * 2000-08-31 2007-02-22 Nellcor Puritan Bennett Inc. Method and circuit for storing and providing historical physiological data
EP1201196A1 (en) 2000-10-20 2002-05-02 Ethicon Endo-Surgery, Inc. Apparatus and method for altering generator functions in an ultrasonic surgical system
US6595930B2 (en) * 2000-10-27 2003-07-22 Mipm Mannendorfer Institut Fur Physik Und Medizin Gmbh Probe for physiological pressure measurement in the human or animal body and method for monitoring the probe
US20020198554A1 (en) 2001-03-14 2002-12-26 Whitman Michael P. Trocar device
WO2003026511A1 (en) 2001-09-25 2003-04-03 Reiner Kunz Multifunctional instrument for use in microinvasive surgery
US20030106930A1 (en) 2001-12-06 2003-06-12 Williams Jeffrey B. Counter mechanisms
JP2003272009A (en) 2001-12-06 2003-09-26 Lumitex Inc Durability service life measuring mechanism
US7193519B2 (en) 2002-03-18 2007-03-20 Optim, Inc. Reusable instruments and related systems and methods
US20030181934A1 (en) * 2002-03-22 2003-09-25 Gyrus Ent L.L.C. Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus
US20040059197A1 (en) * 2002-07-15 2004-03-25 J. Morita Manufacturing Corporation Connection assembly having communication function and medical apparatus using the connection assembly
JP2004093693A (en) 2002-08-29 2004-03-25 Casio Comput Co Ltd System for preventing fraudulent use of consumable article
US7319907B2 (en) * 2002-11-18 2008-01-15 International Remote Imaging Systems, Inc. Multi-level controller system
US20040267340A1 (en) * 2002-12-12 2004-12-30 Wit Ip Corporation Modular thermal treatment systems with single-use disposable catheter assemblies and related methods
FR2849589A1 (en) 2003-01-07 2004-07-09 2R Invest Thermo-retractable clip heating device control method for surgery, involves blocking electronic control circuit of device when predetermined criterion is recognized, and unlocking device using external information stored in IC card
US7126303B2 (en) * 2003-07-08 2006-10-24 Board Of Regents Of The University Of Nebraska Robot for surgical applications
US7199545B2 (en) * 2003-07-08 2007-04-03 Board Of Regents Of The University Of Nebraska Robot for surgical applications
US20050096684A1 (en) * 2003-10-31 2005-05-05 Medtronic, Inc. Programmable surgical instrument system
US20110218522A1 (en) * 2004-07-30 2011-09-08 Tyco Healthcare Group Lp Flexible shaft extender and method of using same
US20060095096A1 (en) * 2004-09-09 2006-05-04 Debenedictis Leonard C Interchangeable tips for medical laser treatments and methods for using same
US20060074405A1 (en) * 2004-09-29 2006-04-06 Don Malackowski Integrated system for controlling plural surgical tools
EP1658817A1 (en) 2004-11-23 2006-05-24 Rhytec Limited Usage limiting electronic key system for plasma device for tissue resurfacing
US20060129202A1 (en) * 2004-12-10 2006-06-15 Cyberonics, Inc. Neurostimulator with activation based on changes in body temperature
US20080118890A1 (en) * 2005-04-12 2008-05-22 Spring Health Products, Inc. Electric dental handpiece and control system
US20130203014A1 (en) * 2005-04-12 2013-08-08 Spring Health Products, Inc. Electric dental handpiece
US20070043398A1 (en) * 2005-04-28 2007-02-22 David Ternes Flexible neural stimulation engine
US20060278681A1 (en) * 2005-06-03 2006-12-14 Viola Frank J Battery powered surgical instrument
WO2007014355A2 (en) 2005-07-27 2007-02-01 Power Medical Interventions, Inc. Shaft, e.g., for an electro-mechanical surgical device
US20070032818A1 (en) 2005-08-05 2007-02-08 Western Clinical Engineering Ltd. Surgical tourniquet cuff for limiting usage to improve safety
EP1769754A1 (en) 2005-09-30 2007-04-04 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for linear surgical stapler
US20070129684A1 (en) * 2005-12-06 2007-06-07 Siemens Medical Solutions Usa, Inc. Remote enabling/disabling of a limited-use medical device
WO2007114868A2 (en) 2006-01-05 2007-10-11 Intuitive Surgical, Inc. Method for tracking and reporting usage events to determine when preventive maintenance is due for a medical robotic system
US20080262305A1 (en) * 2006-01-13 2008-10-23 Olympus Medical Systems Corp. Rotary self-advancing endoscope system, program, and method for driving rotary self-advancing endoscope system
US20080185419A1 (en) * 2006-05-19 2008-08-07 Smith Kevin W Electrically Self-Powered Surgical Instrument With Cryptographic Identification of Interchangeable Part
JP2007318669A (en) 2006-05-29 2007-12-06 Funai Electric Co Ltd Digital content playback system
JP2008010952A (en) 2006-06-27 2008-01-17 Canon Inc Authentication of mounter by plurality of times of challenges and responses
US20090018566A1 (en) * 2006-06-30 2009-01-15 Artheromed, Inc. Atherectomy devices, systems, and methods
US20080164296A1 (en) * 2007-01-10 2008-07-10 Shelton Frederick E Prevention of cartridge reuse in a surgical instrument
EP1943958A1 (en) 2007-01-10 2008-07-16 Ethicon Endo-Surgery, Inc. Surgical instrument with elements to communicate between control unit and end effector
US7431188B1 (en) 2007-03-15 2008-10-07 Tyco Healthcare Group Lp Surgical stapling apparatus with powered articulation
US20080255607A1 (en) * 2007-04-13 2008-10-16 Zemlok Michael A Powered surgical instrument
US20080251568A1 (en) * 2007-04-13 2008-10-16 Michael Zemlok Powered surgical instrument
WO2008137813A1 (en) 2007-05-04 2008-11-13 Syntheon, Llc System and method for cryptographic identification of interchangeable parts
US20090018624A1 (en) * 2007-07-13 2009-01-15 Juniper Medical, Inc. Limiting use of disposable system patient protection devices
US20090177139A1 (en) 2007-08-17 2009-07-09 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System, devices, and methods including actively-controllable electromagnetic energy-emitting delivery systems and energy-activateable disinfecting agents
US20110017801A1 (en) * 2007-10-05 2011-01-27 Tyco Healthcare Group Lp Internal backbone structural chassis for a surgical device
US20090090763A1 (en) * 2007-10-05 2009-04-09 Tyco Healthcare Group Lp Powered surgical stapling device
US20090143797A1 (en) * 2007-12-03 2009-06-04 Smith Kevin W Cordless Hand-Held Ultrasonic Cautery Cutting Device
US20090182207A1 (en) * 2008-01-16 2009-07-16 Tenxsys Inc. Ingestible animal health sensor
US20090206136A1 (en) * 2008-02-14 2009-08-20 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US20090234232A1 (en) * 2008-03-12 2009-09-17 Martin Gertsen Ultrasonic scanning device
US20110208170A1 (en) * 2008-05-14 2011-08-25 Aesculap Ag Surgical drive unit, surgical instrument and surgical drive system
US20090326569A1 (en) * 2008-06-26 2009-12-31 Olympus Medical Systems Corp. Surgical system and surgical operation method
US20100076474A1 (en) * 2008-09-23 2010-03-25 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US20100125292A1 (en) * 2008-11-20 2010-05-20 Wiener Eitan T Ultrasonic surgical system
US9164271B2 (en) * 2009-09-29 2015-10-20 Olympus Corporation Endoscope system
US20110148646A1 (en) * 2009-12-21 2011-06-23 Allotech Co., Ltd. Device for conforming recycle of disposable medical handpiece
US20110301611A1 (en) * 2010-06-03 2011-12-08 Biomet Microfixation, Llc Surgical device with smart bit recognition collet assembly to set a desired application mode
US20150257970A1 (en) * 2011-02-17 2015-09-17 Martin Mücke Device and method for reducing pain

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
Aresco Inc., Have you ever wondered what the motor nameplate information means?, ARESCO Technical Bulletin vol. 1, No. 1 Jun. 1998. *
Australian Patent Examination Report No. 1 corresponding to counterpart Application No. AU 2014250697 dated Sep. 9, 2015.
Canadian Office Action corresponding to counterpart Int'l Application No. CA 2,709,747 dated Jul. 8, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,709,747 dated Jul. 10, 2017.
Canadian Office Action issued in corresponding Canadian Application No. 2,709,747 dated Nov. 18, 2016.
Dallas Semiconductor Corp., DS2434 Battery Identification Chip, 1995. *
Detemple, P., "Microtechnology in Modern Health Care", Med Device Technol. 9(9):18-25 (1998).
DS2460 SHA-1 Coprocessor with EEPROM (example tech specs from Dallas Semiconductir). *
European Office Action corresponding to counterpart Int'l Application No. EP 10 25 14 16.3 dated Jul. 6, 2016.
European Office Action corresponding to counterpart Int'l Application No. EP 10 251 416.3 dated Dec. 14, 2015.
European Search Report dated Apr. 17, 2007 for Corresponding Patent Application EP06026840.
European Search Report dated Feb. 27, 2009 for Corresponding Patent Application 08253184.9.
European Search Report dated Jul. 28, 2011 for EP 11 15 2266.
European Search Report for Corresponding EP 08251357 dated Sep. 29, 2009 (3 pages).
European Search Report for corresponding EP 08252703.7 dated Oct. 31, 2008 (3 pages).
European Search Report for EP 10251416.3-2310 date of completion is Mar. 3, 2011 (4 pages).
International Search Report for corresponding PCT Application-PCT/US06/21524-dated May 28, 2008 (4 Pages).
International Search Report for corresponding PCT Application—PCT/US06/21524—dated May 28, 2008 (4 Pages).
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2010-174054 dated Dec. 7, 2015 (with English Translation).

Also Published As

Publication number Publication date
CN101991447A (en) 2011-03-30
CA2709747C (en) 2018-08-07
CN101991447B (en) 2015-07-08
EP2283780B1 (en) 2018-04-04
EP2283780A2 (en) 2011-02-16
EP2283780A3 (en) 2011-04-13
US20110034910A1 (en) 2011-02-10
JP2015110005A (en) 2015-06-18
CA2709747A1 (en) 2011-02-10
AU2010203108A1 (en) 2011-02-24
AU2010203108B2 (en) 2014-09-18
JP5904702B2 (en) 2016-04-20
JP2011036655A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
JP5356774B2 (en) Powered surgical instruments
JP5489175B2 (en) Electric surgical instrument
US10105139B2 (en) Surgical stapler having downstream current-based motor control
AU2014223709B2 (en) Thumbwheel switch arrangements for surgical instruments
EP2923659B1 (en) Power management control systems for surgical instruments
US10226249B2 (en) Articulatable surgical instruments with conductive pathways for signal communication
JP5180974B2 (en) Electric self-driven surgical instrument using code recognition of replaceable parts
EP2364651B1 (en) Method and apparatus for determining parameters of linear motion in a surgical instrument
JP6045048B2 (en) Electric surgical instrument
US9700310B2 (en) Firing member retraction devices for powered surgical instruments
US10076326B2 (en) Surgical stapler having current mirror-based motor control
AU2008201492B2 (en) Powered surgical instrument
US7721931B2 (en) Prevention of cartridge reuse in a surgical instrument
JP5259196B2 (en) Surgical instruments with improved battery performance
EP3308722A1 (en) Surgical instrument with soft stop
US10238386B2 (en) Surgical stapler having motor control based on an electrical parameter related to a motor current
AU2011200995B2 (en) Method and apparatus for determining parameters of linear motion in a surgical instrument
US20110024480A1 (en) Surgical Instrument with Articulating Tool Assembly
EP2484291A2 (en) Powered surgical instrument
JP6339114B2 (en) Rotary powered surgical instrument with multiple degrees of freedom
CN104224255B (en) Powered surgical stapling apparatus
CN104473670B (en) End effector identification by mechanical features
JP2018507071A (en) System for detecting erroneous insertion of a staple cartridge into a surgical stapler
US7686827B2 (en) Magnetic closure mechanism for hemostat
EP2954854B1 (en) Authentication and information system for reusable surgical instruments

Legal Events

Date Code Title Description
AS Assignment

Owner name: TYCO HEALTHCARE GROUP LP, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROSS, ADAM;ZEMLOK, MICHAEL;REEL/FRAME:024502/0087

Effective date: 20100423

AS Assignment

Owner name: COVIDIEN LP, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:TYCO HEALTHCARE GROUP LP;REEL/FRAME:029065/0448

Effective date: 20120928

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE