US3608549A - Method of administering drugs and capsule therefor - Google Patents

Method of administering drugs and capsule therefor Download PDF

Info

Publication number
US3608549A
US3608549A US3608549DA US3608549A US 3608549 A US3608549 A US 3608549A US 3608549D A US3608549D A US 3608549DA US 3608549 A US3608549 A US 3608549A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
capsule
matrix
material
medicament
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Edward W Merrill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Children s Medical Center Corp
Original Assignee
Merrill Edward Wilson
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M31/00Devices for introducing or retaining media, e.g. remedies, in cavities of the body
    • A61M31/002Devices for releasing a drug at a continuous and controlled rate for a prolonged period of time

Abstract

An implantable capsule for delivering a medicament to live animals having a permeable elastomeric wall and containing a mixture of medicament and matrix material which melts between 40* C. and 47* C. The capsule also contains a metal coil capable of being inductively heated by a coil external to the body. When delivery of medicament is desired, the coil is inductively heated to melt the mixture and effect diffusion of medicament through the permeable wall.

Description

United States Patent Edward W. Merrill Cambridge, Mass.

Jan. 15, 1970 Sept. 28, 1971 Hans H. Estln, Leonard W. Cronlthlte, Jr. and William W. Wolbeeh, trustees of the Charles River Foundation Inventor Appl. No. Filed Patented Assignee METHOD OFADMlNlSTERING DRUGS AND CAPSULE THEREFOR 8 Claims, 8 Drawing Figs.

u.s. CI. 128/260, 119/51,424/14 Int. Cl ..A6ln1 31/00 References Cited UNITED STATES PATENTS 2,671,451 3/1954 Bolger 128/260 3,093,831 6/1963 Jordan 3/1 3,118,439 1/1964 Perrenoud.... 128/2 3,428,729 2/1969 Anderson 424/19 3,485,235 12/1969 Felso 128/2 Primary Examiner-Richard A. Gaudet Assistant Examiner-G. F. Dunne Attorney- Kenway, Jenney & Hildreth ABSTRACT: An implantable capsule for delivering a medicament to live animals having a permeable elastomeric wall and containing a mixture of medicament and matrix material which melts between 40 C. and 47 C. The capsule also contains a metal coil capable of being inductively heated by a coil external to the body. When delivery of medicament is desired, the coil is inductively heated to melt the mixture and effect diffusion of medicament through the permeable wall.

PATENTED SEP28l97l 3,608,549

I 5 INVENTOR EDWARD w. MERRILL METHOD OF ADMINISTIERING DRUGS AND CAPSULE THEREFOR This invention relates to a method for administering a medicament and to a capsule adapted to release a medicament upon being heated inductively.

Capsules implanted into the human body to administer long-acting drugs such as regulatory hormones over long periods have in general been simple passive systems. The drug diffuses from the capsule interior through the capsule walls into the body at a rate governed exclusively by the wall thickness and the concentration of the drug. No independent control is imposed either by the exterior chemical milieu of the patient or by any action on the part of the patient, to regulate the rate of drug diffusion or when administration is initiated and ceased. Since the patient usually does not have a continuous need for the drug but usually has a need governed by a convenient schedule or when physiological sensation informs him of the need for the drug, it would be highly desirable to provide a drug-filled capsule implanted into the patient for the purpose of administering the drug on a noncontinuous basis and/or on any convenient schedule desired by the patient through the use of a means solely within his control.

The present invention provides a capsule suitable for implantation into the body and a method for administering a drug from the interior of the implanted capsule to the body by subjecting the capsule to an electrical field located outside of the body to effect inductive heating in the capsule. When the capsule is heated, the rate of release of the drug from the capsule interior is substantially increased. When influence of the electrical field on the capsule is ceased, the capsule is cooled and the rate of release of the drug from the capsule is substantially zero.

A secondary but inescapable effect amplifies the delivery of drugs to the circulatory blood. When the capsule is heated in that the surrounding tissue, sensing the temperature rise responds by vasodilation, whereby blood flow to the heated area is significantly increased. This effect speeds delivery of the medicament that diffuses from the capsule into the surrounding tissue.

The walls of the capsule are constructed with a material at least a portion of which is permeable to the drug contained in the capsule. The drug in the capsule is dispersed or dissolved in a matrix material meltable from a crystalline state at a temperature in excess of ambient body temperature, or is surrounded immediately by a polymeric substance meltable from a crystalline state at a temperature in excess of ambient body temperature. A closed loop metal conductor immersed in the matrix material is capable of inductive response to an induction heater located outside the body. The drug is administered to the body by subjecting the conduction to an inductive field so that it is heated sufficiently want: to melt the matrix material or meltable polymeric material thereby creating a fluid through which the rate of diffusion of the medicament is greatly enhanced. Heating is continued for a period to permit diffusion of the desired dosage of drug into the body. The administration of the drug is terminated by the patient by removing the induction field to crystallized the matrix material or surrounding polymeric material by cooling and thereby substantially reduce or terminate diffusion of the drug through the matrix.

The process of this invention for administering drugs and the capsule therefor provide substantial advantages over presently available means for administering drugs from an implanted capsule in that administration is exclusively within the control of the patient. Furthermore, the present invention permits the administration of drugs from implanted capsules which drugs were previously administered by other means due to the need for noncontinuous and large dosage administration.

FIG. I shows a capsule of prolate ellipsoidal shape symmetrical about an axis of revolution, containing an iron ring coated with ceramic material.

FIG. 2 is a cross-sectional view of the capsule of FIG. I taken along section 2-2.

FIG. 3 is a cross-sectional view of a capsule having a meltable polymer matrix.

FIG. 4 is a cross-sectional view of the capsule of FIG. 3 along section 44.

FIG. 5 is a cross-sectional view of the capsule of FIG. 3 along section 5-5.

FIG. 6 is a perspective view of a capsule containing two iron toroids.

FIG. 7 is a cross-sectional view of the capsule of FIG. 6 along section y-y.

FIG. 8 is a capsule containing iron spheres.

Referring to FIGS. 1 and 2, the toroidal iron ring 1 is contained in the medicament-matrix mixture 2 and the encapsulating silicone sheath 3. When the ring 1 is energized by an exterior induction field, the matrix material 2 becomes liquid allowing the diffusion coefficient of the steroid hormone greatly to increase so that the steroid hormone is released through the exterior shell around the chamber 4. Removal of the exterior induction source allows the iron toroid l to return to body temperature thereby permitting crystallization of the matrix phase 2. The capsule of FIG. 1 is implanted with the major axis of the ellipsoid revolution approximately parallel with a lower or upper limb such as the forearm.

FIGS. 3, 4 and 5 show a capsule having a prolate ellipsoid shape and having symmetry about its major axis of revolution, but distinguished by having a meltable polymeric material that controls the diffusion rate. In the capsule of FIG. 3, a toroidal iron ring 5 is coated with a ceramic enamel to prevent ionic reactions. A cylindrical layer of meltable polymeric matrix material 6 such as poly stearyl acrylate surrounds a volume 8 containing the medicament which may be, variously, pure medicament, medicament in a meltable matrix, or medicament dissolved in an appropriate inert liquid such as silicone oil. The iron toroid 5 surrounding meltable polymeric material 6 and medicament containing volume 8 are contained in fixed relationship to each other by the encapsulating substance 7, which is preferably cross-linked silicone rubber. Upon exposure to an exterior induction field the meltable polymeric material 6 changes from its crystalline state (a state of high resistivity to diffusion) to a visco elastic state characterized by a high coefficient of diffusion for the medicament. If at the same time, the medicament is dispersed in a suitable matrix material within the volume 8, and if the matrix material be appropriately chosen, it will also melt so that the diffusion of the medicament is accelerated through the intervening substance between volume 8 and polymer 6 and from the exterior surface of polymer 6 through the wall material 7 to the surrounding tissue of the animal or human in which this capsule is implanted. Alternatively, if the medicament exists in a pure liquid state in volume 8, or is in a true solution in an inert solvent, the only change in diffusion rate coincident with the application of the exterior induction field arises from the melting of the polymeric material in the circumferential volume 6. Generally, the material at the extremities of the circumferential volume 6 remain unmelted thereby forcing the major diffusion of the medicament out through the peripheral zone. The capsule of FIG. 3 is implanted with the major axis approximately aligned with a limb such as a forearm or lower extremity.

Referring to FIGS. 6 and 7 a perspective view is shown with respect to coordinate axis x, y and z and the corresponding cross-sectional diagram through the origin on the x-y plane is indicated. Two iron toroids 9 and 10, 9 having a smaller diameter than 10 so as to fit within it, both being ceramic coated for protection against electrolytic degradation, are fixed within a spherical elastomeric shell 12 and lie inside of a substance in the volume 11 which is a mixture of medicament and a meltable matrix material. By external coils, eddy currents are induced in the toroid 9 or the toroid 10 or both, depending upon the orientation of the spherical capsule within the animal or human patient after implantation. In general, when one toroid is aligned with the external coil in approximately the same plane, it will be the most energized, whereas the other one will be the least energized. However, the power dissipation is not significantly position dependent, because between the two toroid elements 9 and 10, with a given number of turns in the exterior coil, sufficient power can be dissipated to melt the matrix material in volume 11. This therefore, greatly facilitates the diffusion of the medicament through the wall 12, which may consist of any inert crosslinked elastomeric material permeable to the medicament and physiologically inert. Absolute retention of the matrix material, with exclusive diffusion of the medicament, is assured when the matrix material is a polymeric crystalline material such as polystearyl acrylate, of moderate molecular weight (25,000 to 100,000).

Referring to FIG. 8, which represents a spherically symmetrical capsule, minute ceramic coated iron spheres 13 are packed nearly in juxtaposition (with a volume percentage over proximately 60 percent) inside of a spherical elastomeric shell 15, which preferably consists of silicone rubber suitably crosslinked. Medicament is mixed with a meltable matrix phase so as diffuses surround the indivdual toroidal particles 14 as shown. When this kind of capsule is implanted in a limb of an animal or patient and the limb is surrounded by an exterior coil carrying alternating current, each one of the ceramic coated iron spheres acts as a short circuited conductor and heat is generated relatively uniformly throughout the enclosed volume of the shell 15. When a suitable temperature is reached, the matrix material melts into a fluid state, the diffustion coefficient of the medicament is vastly increased, and it then diffuses through the wall material at a greatly enhanced rate.

The capsule wall can be constructed of any nontoxic, which does not become heated in an induction field is not permeable to the matrix and has at least a portion thereof permeable to the drug in its fluid state. Furthermore, any material used in the formation of the capsule wall must have the fundamental properties of high mechanical strength against fracture by accidental blows.

The permeable wall is made of a cross-linked elastomer or a network polymer in a swollen solvated state which is permeable to the drug. Generally speaking, polymers in their glassy state are not desirable for this purpose, because of their inordinately low permeability. The elastomeric material employed to form the wall must be nontoxic, cross-linkable to the desired elastic modulus, inert to the drug and have a finite permeability to the contained drug to give accurate slow release of the drug into the body upon implantation. Nontoxic, nonelutable additives, may be employed in the elastomeric materials including fillers such as silica or the like, provided only that the capsule retains its final shape after its processing and the drug can be diffused through the elastomer. Generally speaking, hydrocarbon rubbers and silicone elastomers are satisfactory for steroids. It is preferred to employ silicone rubbers i.e., organopolysiloxanes wherein the organic group attached is the silicon atom, is preferably methyl, phenyl, and/or vinyl. This preference is because silicone rubbers have very high permeability to carbon dioxide, susceptibility to swelling by the commonly employed drug solvents such as by alcohols, are easily cross-linked by ionizing radiation and thus can be obtained free from toxic products of chemical vulcanization, and are inert as an implanted material. The thickness of the permeable wall is such that it is self sustaining, mechanically and structurally strong to resist impact forces and permits diffusion of the drug at a controlled rate. The permeable wall thickness depends upon the particular elastomer employed but ordinarily should be between about 0.5 mm. to 1 mm.

Alternatively, a portion of the capsule wall may be made of a nonpermeable material including nonmetals such as polycarbonate and the ceramic pyroceram(TM). When the capsule wall is made of two differing materials, the permeable portion can be formed by compression molding and vulcanization while being contained between mating interior and exterior molds to produce a product having a smooth continuous surface coextensive with the interior surface of the remainder of the capsule. Alternatively, the permeable membrane can be attached to the nonpermeable portion of the capsule wall by heat sealing or by employing an adhesive. Cross linking can be effective by any manner known in the art, including free radical generation, by ionizing radiation or by thermal decomposition of chemical initiators. After cross-linking, the permeable wall can be treated to remove byproducts of the cross-linking step, if any, which may be toxic or which may degrade the drug. Thus, for example, phenyl benzoate produced by decomposition of benzoyl peroxide initiator can be removed by extraction.

Prior to sealing the capsule, it is filled with the drug and matrix material as well as the induction loop. The matrix material should be biologically inert and have the characteristic property of undergoing a first order phase transition from a crystalline, microcrystalline, or micellar state to a liquid state in a limited temperature range above a normal body temperature but below that which would cause damage to the surrounding body tissue. It is preferred that this phase transition occur at a temperature range between and including 40 C. and 47 C. Matrix materials particularly useful, include lauric acid having a melting point of 44 C., glycerol trilaurate having a melting point of 464 C., poly [heptadecyl acrylate], i.e., polyacrylic acid fully esterified with heptadecanol, melting point 40 C., and poly [stearyl acrylate], having a melting point of about 43 C. Alternatively, the matrix can take the form of a concentrated aqueous dispersion of lecithin which produces micelles when cool thereby substantially reducing drug diffusion to the interior surface of the capsule.

In use, the capsule containing these elements is implanted surgically in the limb of the human patient or an animal in such a position that the contained metal loop or loops may experience induction of a current by an external induction coil thereby sufficiently raising its temperature to melt the surrounding matrix without endangering the surrounding tissue by overheating. The underlying principle of this invention takes advantage of the extremely low diffusivities of molecular compounds through crystalline and microcrystalline substances relative to diffusivities through the same substances when liquified which can change by a factor of the order of ten or even more. Thus, prior to melting the matrix, it serves as an effective difiusion barrier. Upon melting the matrix, the enhanced diffusivity is in the order of at least ten fold or greater. The medication will then diffuse through the capsule wall at a rate governed primarily by the properties of the wall. When it is desired to reduce the rate of diffusion, the external induction coil is removed and the matrix returns to ambient temperature of the body (about 37 C. in humans and mammals) and the capsule reverts to its original form wherein the matrix is not liquified.

The medication must be to a certain extent soluble in the matrix material to enhance the diffusion thereof through the matrix. In general, no restriction is placed on the nature of the medicament contained in this matrix except that it shall be significantly soluble though not limitlessly soluble in the matrix material when molten and further its total mass concentration must be sufficiently low so as not seriously to alter the melting point or melting range of the matrix material. Thus, for example, when the initial mixture of drug and medicament produces a solution having a melting point of 36 C. which upon gradual release of the medication is elevated to 50 C., the mixture would have a limited utility in the context of this invention. Usually, however, the medication is released in the implanted capsule; it has a relatively high molecular weight and is supplied in very small absolute quantities, so that the mass molar concentration in the matrix usually will be very small.

Representative drugs and medlcaments which can be employed in this invention are listed by Long and Folkman, U.S. Pat. No. 3,279,996.

The amount of power needed to completely melt the matrix phase is in the order of about 20 calories or about wattseconds. Thus, provision of 1 watt power to the coil by induction over a period of 100 seconds would furnish the energy necessary to melt the matrix. Once the matrix phase has been melted to a temperature of approximately 44 C., the power of about one-fourth watt will be required to maintain the matrix phase in a liquid condition. Thus the usual operation would be to actuate the induction coil surrounding the limb in which the capsule is implanted at a rate so as to give a net input of about 1 watt for about 100 seconds and then reduce the power to about one-fourth of a watt for a few minutes to an hour to enhance delivery of the drug by diffusion. When delivery of the drug is to be terminated, the exterior induction coil is simply removed and the capsule returns to its normal temperature to solidify the matrix.

After the capsule is filled, it or the permeable wall portion can be coated with a nonporous, nontoxic material such as copolymers of vinylidene chloride and acrylonitride (Saran) to prevent diffusion of the drug prior to implantation. The coating is removed prior to implantation. Y

The following examples illustrate the present invention and are not intended to limit the same.

EXAMPLE l A capsule having the form of a prolate ellipsoid with a major axis of ml. and a minor axis of 5 ml., contains a spherical hollow section concentric with its center of mass having a diameter of 4 ml. A low-carbon steel ring having a median diameter of 3.5 ml. and a gauge thickness of 1/32,000 inch is coated with a 10 mil. (1/ 10,000 inch) layer of low melting ceramic material, such as ceramic paint. It is placed in the capsule so that the plane of the ring is at right angles to the major axis and equidistant from the ends of the capsule. It is convenient to form the capsule in two halves by compression molding and partial cross linking, then joining the two halves after insertion of the iron toroid. The rest of the volume is then filled with a mixture containing glycerol trilaurate in which is dispersed 100 milligram percent of the steroid hormone testerone. This capsule is useful when implanted in the neck of cattle with the major axis approximately aligned in the direction of the cervical vertebrae. The capsule is activated by a collar around the neck of the cattle, consisting of several turns of an insulated conductor. This may be activated by con necting the coil to a 60-cycle alternating-current source. The number of turns and the voltage on the coil on the neck of the cattle is so chosen as to produce a power dissipation of approximately one-fourth watt in the implanted capsule containing the ceramically coated iron ring. It is convenient to ac tivate the external induction ring for a period of several hours when the cattle is confined in a stall.

EXAMPLE [I A capsule designed for contraceptive use in human beings consists of a prolate ellipsoidal body of the form shown in FIG. 3 approximately l0 mm. long and 3 mm. in diameter at the mid plane. The exterior capsule shell is formed from pure poly Y dimethyl siloxane ultimately vulcanized by ionizing radiation.

A soft iron ring or toroid of approximately 25 mils. (l/25,000 inch) gauge, having been coated with a phenolic lacquer and then baked, to assure complete protection against electrolytic degradation, is inserted at the midplane of a circumferential chamber 6 of FIG. 3 that is to contain poly (stearyl acrylate) in the interior volume of this capsule. ln the hollow space 8 shown in FIG. 3, is placed a saturated solution of the hormone progestin in a carrier consisting of glycerol trimyristate, which is already molten at body temperature of 37 C. This capsule is implanted in the forearm at a depth less than 1 cm., with a major axis aligned approximately with the forearm axis. When enhancement of protection against conception is desired, a ring consisting of several loops of a conductor suitably insulated is placed over the forearm and activated by 60-cycle house current, thereby inducing eddy currents in the toroid contained within the implanted capsule. The external induction loop is chosen in respect to its number of loops so as to produce a dissipation of ap roxjmately 0.2 of a watt in the implanted coil. At this rate 0 dissipation, the capsule comes to a steady state interior temperature of approximately 45 C. at its midplane, thereby maintaining the surrounding sheaths of poly stearyl acrylate in a molten condition. This produces enhanced delivery of the progestin.

Iclaim:

1. A capsule suitable for implantation in the human body which comprises:

a wall to define a closed hollow chamber,

at least a portion of said wall being formed of a permeable cross-linked elastomeric composition,

and said chamber containing a composition comprising a matrix material and a medicament soluble in said matrix when molten, said matrix material and medicament having a melting point between 40 C. and 47 (3., and a metal piece in contact with said matrixmaterial, said metal piece being capable of being inductively heated by a coil external to the body.

2. The capsule of claim 1 wherein the entire wall is made from a permeable cross-linked elastomeric composition.

3. The process for administering a medicament which comprises implanting in a live animal the capsule of claim 1 and thereafter subjecting the capsule to an induction field to melt the matrix.

4. The process for administering a drug which comprises implanting in a live animal the capsule of claim 2, and thereafter subjecting the capsule to an induction field to melt the matrix.

5. The capsule of claim 1 wherein the permeable wall is formed of a cross-linked silicone rubber.

6. The capsule of claim 2 wherein the permeable wall is formed of a cross-linked silicone rubber.

7. The process of claim 3 wherein the permeable wall is formed of a cross-linked silicone rubber.

8. The process of claim 5 wherein the permeable wall is formed of a cross-linked silicone rubber.

Claims (7)

  1. 2. The capsule of claim 1 wherein the entire wall is made from a permeable cross-linked elastomeric composition.
  2. 3. The process for administering a medicament which comprises implanting in a live animal the capsule of claim 1 and thereafter subjecting the capsule to an induction field to melt the matrix.
  3. 4. The process for administering a drug which comprises implanting in a live animal the capsule of claim 2, and thereafter subjecting the capsule to an induction field to melt the matrix.
  4. 5. The capsule of claim 1 wherein the permeable wall is formed of a cross-linked silicone rubber.
  5. 6. The capsule of claim 2 wherein the permeable wall is formed of a cross-linked silicone rubber.
  6. 7. The process of claim 3 wherein the permeable wall is formed of a cross-linked silicone rubber.
  7. 8. The process of claim 5 wherein the permeable wall is formed of a cross-linked silicone rubber.
US3608549A 1970-01-15 1970-01-15 Method of administering drugs and capsule therefor Expired - Lifetime US3608549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US307370 true 1970-01-15 1970-01-15

Publications (1)

Publication Number Publication Date
US3608549A true US3608549A (en) 1971-09-28

Family

ID=21703983

Family Applications (1)

Application Number Title Priority Date Filing Date
US3608549A Expired - Lifetime US3608549A (en) 1970-01-15 1970-01-15 Method of administering drugs and capsule therefor

Country Status (1)

Country Link
US (1) US3608549A (en)

Cited By (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3832458A (en) * 1971-12-06 1974-08-27 River C Foundation Hydrophilic silicone composition and method
US3896806A (en) * 1971-01-08 1975-07-29 Ceskoslovenska Akademie Ved Implant for directed infusion of biologically active substances
US3991750A (en) * 1975-04-28 1976-11-16 Syntex Corporation Dromostanolone propionate implant pellet useful for producing weight gains in animals and suppressing estrus in female animals
US3995632A (en) * 1973-05-04 1976-12-07 Alza Corporation Osmotic dispenser
US4030499A (en) * 1974-12-30 1977-06-21 Louis Bucalo Method and apparatus for providing living beings with absorbable implants
WO1986002846A1 (en) * 1984-11-08 1986-05-22 Richard Hugh Cameron Bentall Apparatus for controlling permeation of a compound through a membrane
US4643731A (en) * 1985-08-16 1987-02-17 Alza Corporation Means for providing instant agent from agent dispensing system
US4830855A (en) * 1987-11-13 1989-05-16 Landec Labs, Inc. Temperature-controlled active agent dispenser
US4840891A (en) * 1986-09-03 1989-06-20 Genetic Engineering, Inc. Encapsulation of sperm for artificial insemination
US5019372A (en) * 1986-06-27 1991-05-28 The Children's Medical Center Corporation Magnetically modulated polymeric drug release system
US5079006A (en) * 1987-07-15 1992-01-07 Aprex Corporation Pharmaceutical compositions containing a magnetically detectable material
US5120349A (en) * 1990-12-07 1992-06-09 Landec Labs, Inc. Microcapsule having temperature-dependent permeability profile
USRE34326E (en) * 1986-09-03 1993-07-27 British Technology Group, USA, Inc. Encapsulation of sperm for artificial insemination
US20030023286A1 (en) * 1994-11-21 2003-01-30 Augustine Scott D. Treatment device
EP1518583A1 (en) * 2003-09-23 2005-03-30 C.R.F. Società Consortile per Azioni Injectable active micro-tanks for medical substances
US20070060887A1 (en) * 2005-08-22 2007-03-15 Marsh David A Ophthalmic injector
US20070148098A1 (en) * 2005-12-22 2007-06-28 Oakwood Laboratories, Llc Sublimable sustained release deiverly system and method of making same
US20070268340A1 (en) * 2006-05-17 2007-11-22 Bruno Dacquay Ophthalmic Injection System and Method Using Piezoelectric Array
US20070270768A1 (en) * 2006-05-17 2007-11-22 Bruno Dacquay Mechanical Linkage Mechanism For Ophthalmic Injection Device
US20070270744A1 (en) * 2006-05-17 2007-11-22 Bruno Dacquay Limited Reuse Assembly For Ophthalmic Injection Device
US20070270748A1 (en) * 2006-05-17 2007-11-22 Bruno Dacquay Ophthalmic Injection Device Using Piezoelectric Array
US20070270777A1 (en) * 2006-05-17 2007-11-22 Bruno Dacquay Ophthalmic Injection Device Using Shape Memory Alloy
US20070270750A1 (en) * 2006-05-17 2007-11-22 Alcon, Inc. Drug delivery device
WO2007141694A1 (en) * 2006-06-02 2007-12-13 Koninklijke Philips Electronics N.V. Device for the controlled release of a substance
US20080097390A1 (en) * 2006-09-27 2008-04-24 Alcon Manufacturing, Ltd. Spring actuated delivery system
US20080097379A1 (en) * 2006-09-26 2008-04-24 Alcon Manufacturing, Ltd. Ophthalmic injection method
US20080125712A1 (en) * 2006-09-26 2008-05-29 Alcon Manufacturing, Ltd. Ophthalmic injection system
US20080269105A1 (en) * 2006-12-05 2008-10-30 David Taft Delivery of drugs
US20080281292A1 (en) * 2006-10-16 2008-11-13 Hickingbotham Dyson W Retractable Injection Port
US20090018512A1 (en) * 2007-07-13 2009-01-15 Charles Steven T Pneumatically-Powered Ophthalmic Injector
US20090018548A1 (en) * 2007-07-13 2009-01-15 Charles Steven T Pneumatically-Powered Intraocular Lens Injection Device with Removable Cartridge
US20090036842A1 (en) * 2007-08-03 2009-02-05 Raffi Pinedjian Consumable Activation Lever For Injection Device
US20090036868A1 (en) * 2007-08-01 2009-02-05 Raffi Pinedjian Spring Driven Ophthalmic Injection Device with Safety Actuator Lockout Feature
US20090033279A1 (en) * 2007-08-03 2009-02-05 Raffi Pinedjian Easy Cleaning C-Shaped Charging Base
US20090036846A1 (en) * 2006-05-17 2009-02-05 Bruno Dacquay Ophthalmic Injection System
US20090093789A1 (en) * 2007-10-09 2009-04-09 Alcon Research, Ltd. Method of Delivering A Rate And Temperature - Dependent Substance Into The Eye
US20090093788A1 (en) * 2007-10-09 2009-04-09 Alcon Research, Ltd. Thermal Coefficient Driven Drug Pellet Size For Ophthalmic Injection
US20090209558A1 (en) * 2007-12-04 2009-08-20 Landec Corporation Polymer formulations for delivery of bioactive materials
US20090246155A1 (en) * 2006-12-05 2009-10-01 Landec Corporation Compositions and methods for personal care
US20090252777A1 (en) * 2006-12-05 2009-10-08 Landec Corporation Method for formulating a controlled-release pharmaceutical formulation
US20090263346A1 (en) * 2006-12-05 2009-10-22 David Taft Systems and methods for delivery of drugs
US20090287150A1 (en) * 2006-10-16 2009-11-19 Bruno Dacquay Universal Rechargeable Limited Reuse Assembly For Ophthalmic Hand Piece
US20100030136A1 (en) * 2006-10-16 2010-02-04 Bruno Dacquay Ophthalmic Injection Device Including Dosage Control Device
US20100106083A1 (en) * 2006-10-16 2010-04-29 Alcon Research, Ltd. Method of Operating Ophthalmic Hand Piece with Disposable End
US20100211044A1 (en) * 2006-05-17 2010-08-19 Alcon Manufacturing, Lted. Battery operated surgical hand piece with disposable end
US7928281B2 (en) 1992-06-19 2011-04-19 Arizant Technologies Llc Wound covering
US8177747B2 (en) 2009-12-22 2012-05-15 Alcon Research, Ltd. Method and apparatus for drug delivery
US20120241497A1 (en) * 2010-09-30 2012-09-27 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US20120241496A1 (en) * 2010-09-30 2012-09-27 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of capsules
US8372036B2 (en) 2009-05-06 2013-02-12 Alcon Research, Ltd. Multi-layer heat assembly for a drug delivery device
US20130256373A1 (en) * 2012-03-28 2013-10-03 Ethicon Endo-Surgery, Inc. Devices and methods for attaching tissue thickness compensating materials to surgical stapling instruments
WO2014053352A1 (en) * 2012-10-03 2014-04-10 Danmarks Tekniske Universitet Ingestible capsule for remote controlled release of a substance
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9271799B2 (en) 2011-05-27 2016-03-01 Ethicon Endo-Surgery, Llc Robotic surgical system with removable motor housing
US9277919B2 (en) 2010-09-30 2016-03-08 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising fibers to produce a resilient load
US9283054B2 (en) 2013-08-23 2016-03-15 Ethicon Endo-Surgery, Llc Interactive displays
US9282962B2 (en) 2010-09-30 2016-03-15 Ethicon Endo-Surgery, Llc Adhesive film laminate
US9289206B2 (en) 2007-06-29 2016-03-22 Ethicon Endo-Surgery, Llc Lateral securement members for surgical staple cartridges
US9301759B2 (en) 2006-03-23 2016-04-05 Ethicon Endo-Surgery, Llc Robotically-controlled surgical instrument with selectively articulatable end effector
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US9307988B2 (en) 2005-08-31 2016-04-12 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9320520B2 (en) 2006-01-31 2016-04-26 Ethicon Endo-Surgery, Inc. Surgical instrument system
US9326768B2 (en) 2005-08-31 2016-05-03 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US9326769B2 (en) 2006-01-31 2016-05-03 Ethicon Endo-Surgery, Llc Surgical instrument
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9351727B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Drive train control arrangements for modular surgical instruments
US9358005B2 (en) 2010-09-30 2016-06-07 Ethicon Endo-Surgery, Llc End effector layer including holding features
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9364230B2 (en) 2012-06-28 2016-06-14 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotary joint assemblies
US9370364B2 (en) 2008-10-10 2016-06-21 Ethicon Endo-Surgery, Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US9370358B2 (en) 2006-01-31 2016-06-21 Ethicon Endo-Surgery, Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9393015B2 (en) 2009-02-06 2016-07-19 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with cutting member reversing mechanism
US9402626B2 (en) 2006-03-23 2016-08-02 Ethicon Endo-Surgery, Llc Rotary actuatable surgical fastener and cutter
US9408604B2 (en) 2006-09-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instrument comprising a firing system including a compliant portion
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US9486214B2 (en) 2009-02-06 2016-11-08 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US9498219B2 (en) 2008-02-14 2016-11-22 Ethicon Endo-Surgery, Llc Detachable motor powered surgical instrument
US9510830B2 (en) 2004-07-28 2016-12-06 Ethicon Endo-Surgery, Llc Staple cartridge
US9522029B2 (en) 2008-02-14 2016-12-20 Ethicon Endo-Surgery, Llc Motorized surgical cutting and fastening instrument having handle based power source
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9585658B2 (en) 2007-06-04 2017-03-07 Ethicon Endo-Surgery, Llc Stapling systems
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US9592053B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc Staple cartridge comprising multiple regions
US9592054B2 (en) 2011-09-23 2017-03-14 Ethicon Endo-Surgery, Llc Surgical stapler with stationary staple drivers
US9592052B2 (en) 2005-08-31 2017-03-14 Ethicon Endo-Surgery, Llc Stapling assembly for forming different formed staple heights
US9603598B2 (en) 2007-01-11 2017-03-28 Ethicon Endo-Surgery, Llc Surgical stapling device with a curved end effector
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9649111B2 (en) 2012-06-28 2017-05-16 Ethicon Endo-Surgery, Llc Replaceable clip cartridge for a clip applier
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US9655614B2 (en) 2008-09-23 2017-05-23 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument with an end effector
US9662110B2 (en) 2007-06-22 2017-05-30 Ethicon Endo-Surgery, Llc Surgical stapling instrument with an articulatable end effector
US9690362B2 (en) 2014-03-26 2017-06-27 Ethicon Llc Surgical instrument control circuit having a safety processor
US9687237B2 (en) 2011-09-23 2017-06-27 Ethicon Endo-Surgery, Llc Staple cartridge including collapsible deck arrangement
US9693777B2 (en) 2014-02-24 2017-07-04 Ethicon Llc Implantable layers comprising a pressed region
US9724098B2 (en) 2012-03-28 2017-08-08 Ethicon Endo-Surgery, Llc Staple cartridge comprising an implantable layer
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
US9730697B2 (en) 2012-02-13 2017-08-15 Ethicon Endo-Surgery, Llc Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9730695B2 (en) 2014-03-26 2017-08-15 Ethicon Endo-Surgery, Llc Power management through segmented circuit
US9743929B2 (en) 2014-03-26 2017-08-29 Ethicon Llc Modular powered surgical instrument with detachable shaft assemblies
US9757123B2 (en) 2007-01-10 2017-09-12 Ethicon Llc Powered surgical instrument having a transmission system
US9795382B2 (en) 2005-08-31 2017-10-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9801626B2 (en) 2013-04-16 2017-10-31 Ethicon Llc Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9814462B2 (en) 2010-09-30 2017-11-14 Ethicon Llc Assembly for fastening tissue comprising a compressible layer
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9826978B2 (en) 2010-09-30 2017-11-28 Ethicon Llc End effectors with same side closure and firing motions
US9833236B2 (en) 2010-09-30 2017-12-05 Ethicon Llc Tissue thickness compensator for surgical staplers
US9833241B2 (en) 2014-04-16 2017-12-05 Ethicon Llc Surgical fastener cartridges with driver stabilizing arrangements
US9839427B2 (en) 2005-08-31 2017-12-12 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and a staple driver arrangement
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US9867618B2 (en) 2008-02-14 2018-01-16 Ethicon Llc Surgical stapling apparatus including firing force regulation
US9895147B2 (en) 2005-11-09 2018-02-20 Ethicon Llc End effectors for surgical staplers
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
WO2018037214A1 (en) * 2016-08-23 2018-03-01 Reproductive Medicine And Gynaecology Associates Limited Implantable medicament delivery system
US9907620B2 (en) 2012-06-28 2018-03-06 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US9931118B2 (en) 2015-02-27 2018-04-03 Ethicon Endo-Surgery, Llc Reinforced battery for a surgical instrument
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9962158B2 (en) 2008-02-14 2018-05-08 Ethicon Llc Surgical stapling apparatuses with lockable end effector positioning systems
US9987006B2 (en) 2013-08-23 2018-06-05 Ethicon Llc Shroud retention arrangement for sterilizable surgical instruments

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2671451A (en) * 1952-06-16 1954-03-09 Stephen J Bolger Remedial pill
US3093831A (en) * 1959-10-22 1963-06-18 Jordan Gerhard Paul Wilhelm Artificial gland
US3118439A (en) * 1957-04-09 1964-01-21 Perrenoud Jean-Pierre Diagnostic and medicating capsule and the method of use
US3428729A (en) * 1966-12-20 1969-02-18 William R Anderson Controlled release formulation
US3485235A (en) * 1967-12-04 1969-12-23 Ronald Felson Capsule for the study and treatment of the digestive tract

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2671451A (en) * 1952-06-16 1954-03-09 Stephen J Bolger Remedial pill
US3118439A (en) * 1957-04-09 1964-01-21 Perrenoud Jean-Pierre Diagnostic and medicating capsule and the method of use
US3093831A (en) * 1959-10-22 1963-06-18 Jordan Gerhard Paul Wilhelm Artificial gland
US3428729A (en) * 1966-12-20 1969-02-18 William R Anderson Controlled release formulation
US3485235A (en) * 1967-12-04 1969-12-23 Ronald Felson Capsule for the study and treatment of the digestive tract

Cited By (285)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3896806A (en) * 1971-01-08 1975-07-29 Ceskoslovenska Akademie Ved Implant for directed infusion of biologically active substances
US3832458A (en) * 1971-12-06 1974-08-27 River C Foundation Hydrophilic silicone composition and method
US3995632A (en) * 1973-05-04 1976-12-07 Alza Corporation Osmotic dispenser
US4030499A (en) * 1974-12-30 1977-06-21 Louis Bucalo Method and apparatus for providing living beings with absorbable implants
US3991750A (en) * 1975-04-28 1976-11-16 Syntex Corporation Dromostanolone propionate implant pellet useful for producing weight gains in animals and suppressing estrus in female animals
WO1986002846A1 (en) * 1984-11-08 1986-05-22 Richard Hugh Cameron Bentall Apparatus for controlling permeation of a compound through a membrane
US4643731A (en) * 1985-08-16 1987-02-17 Alza Corporation Means for providing instant agent from agent dispensing system
US5019372A (en) * 1986-06-27 1991-05-28 The Children's Medical Center Corporation Magnetically modulated polymeric drug release system
US4840891A (en) * 1986-09-03 1989-06-20 Genetic Engineering, Inc. Encapsulation of sperm for artificial insemination
USRE34326E (en) * 1986-09-03 1993-07-27 British Technology Group, USA, Inc. Encapsulation of sperm for artificial insemination
US5079006A (en) * 1987-07-15 1992-01-07 Aprex Corporation Pharmaceutical compositions containing a magnetically detectable material
WO1989004648A1 (en) * 1987-11-13 1989-06-01 Landec Labs, Inc. Temperature-controlled active agent dispenser
EP0317180A1 (en) * 1987-11-13 1989-05-24 Landec Labs. Inc. Temperature-controlled active agent dispenser
US4830855A (en) * 1987-11-13 1989-05-16 Landec Labs, Inc. Temperature-controlled active agent dispenser
US5120349A (en) * 1990-12-07 1992-06-09 Landec Labs, Inc. Microcapsule having temperature-dependent permeability profile
US7928281B2 (en) 1992-06-19 2011-04-19 Arizant Technologies Llc Wound covering
US20030023286A1 (en) * 1994-11-21 2003-01-30 Augustine Scott D. Treatment device
US7122046B2 (en) * 1994-11-21 2006-10-17 Arizant Technologies Llc Treatment device
EP1518583A1 (en) * 2003-09-23 2005-03-30 C.R.F. Società Consortile per Azioni Injectable active micro-tanks for medical substances
US9585663B2 (en) 2004-07-28 2017-03-07 Ethicon Endo-Surgery, Llc Surgical stapling instrument configured to apply a compressive pressure to tissue
US9737302B2 (en) 2004-07-28 2017-08-22 Ethicon Llc Surgical stapling instrument having a restraining member
US9737303B2 (en) 2004-07-28 2017-08-22 Ethicon Llc Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US9844379B2 (en) 2004-07-28 2017-12-19 Ethicon Llc Surgical stapling instrument having a clearanced opening
US9510830B2 (en) 2004-07-28 2016-12-06 Ethicon Endo-Surgery, Llc Staple cartridge
US20070060887A1 (en) * 2005-08-22 2007-03-15 Marsh David A Ophthalmic injector
US9848873B2 (en) 2005-08-31 2017-12-26 Ethicon Llc Fastener cartridge assembly comprising a driver and staple cavity arrangement
US9561032B2 (en) 2005-08-31 2017-02-07 Ethicon Endo-Surgery, Llc Staple cartridge comprising a staple driver arrangement
US9592052B2 (en) 2005-08-31 2017-03-14 Ethicon Endo-Surgery, Llc Stapling assembly for forming different formed staple heights
US9844373B2 (en) 2005-08-31 2017-12-19 Ethicon Llc Fastener cartridge assembly comprising a driver row arrangement
US9307988B2 (en) 2005-08-31 2016-04-12 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US9839427B2 (en) 2005-08-31 2017-12-12 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and a staple driver arrangement
US9326768B2 (en) 2005-08-31 2016-05-03 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US9795382B2 (en) 2005-08-31 2017-10-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US9895147B2 (en) 2005-11-09 2018-02-20 Ethicon Llc End effectors for surgical staplers
US9968356B2 (en) 2005-11-09 2018-05-15 Ethicon Llc Surgical instrument drive systems
US20090220602A1 (en) * 2005-12-22 2009-09-03 Oakwood Laboratories, Llc Sublimable sustained release delivery system and method of making same
US8987340B2 (en) 2005-12-22 2015-03-24 Oakwood Laboratories, Llc Sublimable sustained release delivery system and method of making same
US9301919B2 (en) 2005-12-22 2016-04-05 Oakwood Laboratories, Llc Sublimable sustained release delivery system and method of making same
US20070148098A1 (en) * 2005-12-22 2007-06-28 Oakwood Laboratories, Llc Sublimable sustained release deiverly system and method of making same
WO2007076462A3 (en) * 2005-12-22 2007-11-08 Oakwood Lab Llc Sublimable sustained release delivery system and method of making same
CN101511170B (en) 2005-12-22 2014-03-26 奥克伍德药业有限公司 Sublimable sustained release delivery system and method of making same
US9451958B2 (en) 2006-01-31 2016-09-27 Ethicon Endo-Surgery, Llc Surgical instrument with firing actuator lockout
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US9320520B2 (en) 2006-01-31 2016-04-26 Ethicon Endo-Surgery, Inc. Surgical instrument system
US9326770B2 (en) 2006-01-31 2016-05-03 Ethicon Endo-Surgery, Llc Surgical instrument
US9326769B2 (en) 2006-01-31 2016-05-03 Ethicon Endo-Surgery, Llc Surgical instrument
US9370358B2 (en) 2006-01-31 2016-06-21 Ethicon Endo-Surgery, Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US9439649B2 (en) 2006-01-31 2016-09-13 Ethicon Endo-Surgery, Llc Surgical instrument having force feedback capabilities
US9517068B2 (en) 2006-01-31 2016-12-13 Ethicon Endo-Surgery, Llc Surgical instrument with automatically-returned firing member
US9402626B2 (en) 2006-03-23 2016-08-02 Ethicon Endo-Surgery, Llc Rotary actuatable surgical fastener and cutter
US9301759B2 (en) 2006-03-23 2016-04-05 Ethicon Endo-Surgery, Llc Robotically-controlled surgical instrument with selectively articulatable end effector
US9492167B2 (en) 2006-03-23 2016-11-15 Ethicon Endo-Surgery, Llc Articulatable surgical device with rotary driven cutting member
US7871399B2 (en) 2006-05-17 2011-01-18 Alcon Research, Ltd. Disposable ophthalmic injection device
US20070268340A1 (en) * 2006-05-17 2007-11-22 Bruno Dacquay Ophthalmic Injection System and Method Using Piezoelectric Array
US20080021438A1 (en) * 2006-05-17 2008-01-24 Bruno Dacquay Ophthalmic Injection Method
US20070270750A1 (en) * 2006-05-17 2007-11-22 Alcon, Inc. Drug delivery device
US8821440B2 (en) 2006-05-17 2014-09-02 Alcon Research, Ltd. Dual thermal coefficient dispensing chamber
US20070270777A1 (en) * 2006-05-17 2007-11-22 Bruno Dacquay Ophthalmic Injection Device Using Shape Memory Alloy
US7674243B2 (en) 2006-05-17 2010-03-09 Alcon Inc. Ophthalmic injection device using piezoelectric array
US7815603B2 (en) 2006-05-17 2010-10-19 Alcon Research, Ltd. Ophthalmic injection method
US20080021413A1 (en) * 2006-05-17 2008-01-24 Cesario Dos Santos Drug Casting
US20080021419A1 (en) * 2006-05-17 2008-01-24 Bruno Dacquay Plunger Linkage Method For Ophthalmic Medical Device
US7762981B2 (en) 2006-05-17 2010-07-27 Alcon Research, Ltd. Temperature release mechanism for injection device
US20100211044A1 (en) * 2006-05-17 2010-08-19 Alcon Manufacturing, Lted. Battery operated surgical hand piece with disposable end
US7887521B2 (en) 2006-05-17 2011-02-15 Alcon Research, Ltd. Ophthalmic injection system
US7862540B2 (en) 2006-05-17 2011-01-04 Alcon Research, Ltd. Ophthalmic injection device using shape memory alloy
US20080097311A1 (en) * 2006-05-17 2008-04-24 Bruno Dacquay Temperature Release Mechanism For Injection Device
US20080021412A1 (en) * 2006-05-17 2008-01-24 Cesario Dos Santos Plunger Linkage and Seal For Ophthalmic Medical Device
US7887517B2 (en) 2006-05-17 2011-02-15 Alcon Research, Ltd. Drug casting
US20070270748A1 (en) * 2006-05-17 2007-11-22 Bruno Dacquay Ophthalmic Injection Device Using Piezoelectric Array
US20080015545A1 (en) * 2006-05-17 2008-01-17 Robert Sanchez Dual Thermal Coefficient Dispensing Chamber
US20090036846A1 (en) * 2006-05-17 2009-02-05 Bruno Dacquay Ophthalmic Injection System
US8118790B2 (en) 2006-05-17 2012-02-21 Alcon Research, Ltd. Battery operated surgical hand piece with disposable end
US20070293820A1 (en) * 2006-05-17 2007-12-20 Bruno Dacquay Disposable Ophthalmic Injection Device
US20070270768A1 (en) * 2006-05-17 2007-11-22 Bruno Dacquay Mechanical Linkage Mechanism For Ophthalmic Injection Device
US20070270744A1 (en) * 2006-05-17 2007-11-22 Bruno Dacquay Limited Reuse Assembly For Ophthalmic Injection Device
WO2007141694A1 (en) * 2006-06-02 2007-12-13 Koninklijke Philips Electronics N.V. Device for the controlled release of a substance
US20080125712A1 (en) * 2006-09-26 2008-05-29 Alcon Manufacturing, Ltd. Ophthalmic injection system
US20080097379A1 (en) * 2006-09-26 2008-04-24 Alcon Manufacturing, Ltd. Ophthalmic injection method
US20080097390A1 (en) * 2006-09-27 2008-04-24 Alcon Manufacturing, Ltd. Spring actuated delivery system
US9603595B2 (en) 2006-09-29 2017-03-28 Ethicon Endo-Surgery, Llc Surgical instrument comprising an adjustable system configured to accommodate different jaw heights
US9408604B2 (en) 2006-09-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instrument comprising a firing system including a compliant portion
US9706991B2 (en) 2006-09-29 2017-07-18 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples including a lateral base
US9022970B2 (en) 2006-10-16 2015-05-05 Alcon Research, Ltd. Ophthalmic injection device including dosage control device
US9782541B2 (en) 2006-10-16 2017-10-10 Alcon Research, Ltd. Temperature control device and thermal sensor assembly for medical device
US20100106083A1 (en) * 2006-10-16 2010-04-29 Alcon Research, Ltd. Method of Operating Ophthalmic Hand Piece with Disposable End
US20100106089A1 (en) * 2006-10-16 2010-04-29 Cesario Dos Santos Temperature control device and thermal sensor assembly for medical device
US20100030136A1 (en) * 2006-10-16 2010-02-04 Bruno Dacquay Ophthalmic Injection Device Including Dosage Control Device
US20090287150A1 (en) * 2006-10-16 2009-11-19 Bruno Dacquay Universal Rechargeable Limited Reuse Assembly For Ophthalmic Hand Piece
US20080281292A1 (en) * 2006-10-16 2008-11-13 Hickingbotham Dyson W Retractable Injection Port
EP2101745A4 (en) * 2006-12-05 2009-12-30 Landec Corp Delivery of drugs
US20080269105A1 (en) * 2006-12-05 2008-10-30 David Taft Delivery of drugs
US8956602B2 (en) 2006-12-05 2015-02-17 Landec, Inc. Delivery of drugs
EP2101745A1 (en) * 2006-12-05 2009-09-23 Landec Corporation Delivery of drugs
US8524259B2 (en) 2006-12-05 2013-09-03 Landec Corporation Systems and methods for delivery of materials
US8399007B2 (en) 2006-12-05 2013-03-19 Landec Corporation Method for formulating a controlled-release pharmaceutical formulation
US20090252777A1 (en) * 2006-12-05 2009-10-08 Landec Corporation Method for formulating a controlled-release pharmaceutical formulation
EP2500015A1 (en) * 2006-12-05 2012-09-19 Landec Corporation Delivery of drugs
US20090263346A1 (en) * 2006-12-05 2009-10-22 David Taft Systems and methods for delivery of drugs
US20090246155A1 (en) * 2006-12-05 2009-10-01 Landec Corporation Compositions and methods for personal care
US20110009571A1 (en) * 2006-12-05 2011-01-13 David Taft Systems and methods for delivery of materials
US9757123B2 (en) 2007-01-10 2017-09-12 Ethicon Llc Powered surgical instrument having a transmission system
US9775613B2 (en) 2007-01-11 2017-10-03 Ethicon Llc Surgical stapling device with a curved end effector
US9750501B2 (en) 2007-01-11 2017-09-05 Ethicon Endo-Surgery, Llc Surgical stapling devices having laterally movable anvils
US9730692B2 (en) 2007-01-11 2017-08-15 Ethicon Llc Surgical stapling device with a curved staple cartridge
US9724091B2 (en) 2007-01-11 2017-08-08 Ethicon Llc Surgical stapling device
US9675355B2 (en) 2007-01-11 2017-06-13 Ethicon Llc Surgical stapling device with a curved end effector
US9603598B2 (en) 2007-01-11 2017-03-28 Ethicon Endo-Surgery, Llc Surgical stapling device with a curved end effector
US9655624B2 (en) 2007-01-11 2017-05-23 Ethicon Llc Surgical stapling device with a curved end effector
US9700321B2 (en) 2007-01-11 2017-07-11 Ethicon Llc Surgical stapling device having supports for a flexible drive mechanism
US9757130B2 (en) 2007-02-28 2017-09-12 Ethicon Llc Stapling assembly for forming different formed staple heights
US9750498B2 (en) 2007-06-04 2017-09-05 Ethicon Endo Surgery, Llc Drive systems for surgical instruments
US9585658B2 (en) 2007-06-04 2017-03-07 Ethicon Endo-Surgery, Llc Stapling systems
US9795381B2 (en) 2007-06-04 2017-10-24 Ethicon Endo-Surgery, Llc Robotically-controlled shaft based rotary drive systems for surgical instruments
US9662110B2 (en) 2007-06-22 2017-05-30 Ethicon Endo-Surgery, Llc Surgical stapling instrument with an articulatable end effector
US9289206B2 (en) 2007-06-29 2016-03-22 Ethicon Endo-Surgery, Llc Lateral securement members for surgical staple cartridges
US9872682B2 (en) 2007-06-29 2018-01-23 Ethicon Llc Surgical stapling instrument having a releasable buttress material
US20090018512A1 (en) * 2007-07-13 2009-01-15 Charles Steven T Pneumatically-Powered Ophthalmic Injector
US20090018548A1 (en) * 2007-07-13 2009-01-15 Charles Steven T Pneumatically-Powered Intraocular Lens Injection Device with Removable Cartridge
US7740619B2 (en) 2007-08-01 2010-06-22 Alcon Research, Ltd. Spring driven ophthalmic injection device with safety actuator lockout feature
US20090036868A1 (en) * 2007-08-01 2009-02-05 Raffi Pinedjian Spring Driven Ophthalmic Injection Device with Safety Actuator Lockout Feature
US20090033279A1 (en) * 2007-08-03 2009-02-05 Raffi Pinedjian Easy Cleaning C-Shaped Charging Base
US7629768B2 (en) 2007-08-03 2009-12-08 Alcon Research, Ltd. Easy cleaning C-shaped charging base
US20090036842A1 (en) * 2007-08-03 2009-02-05 Raffi Pinedjian Consumable Activation Lever For Injection Device
US20090093789A1 (en) * 2007-10-09 2009-04-09 Alcon Research, Ltd. Method of Delivering A Rate And Temperature - Dependent Substance Into The Eye
US20090093788A1 (en) * 2007-10-09 2009-04-09 Alcon Research, Ltd. Thermal Coefficient Driven Drug Pellet Size For Ophthalmic Injection
US8114883B2 (en) 2007-12-04 2012-02-14 Landec Corporation Polymer formulations for delivery of bioactive materials
US20090209558A1 (en) * 2007-12-04 2009-08-20 Landec Corporation Polymer formulations for delivery of bioactive materials
US9901345B2 (en) 2008-02-14 2018-02-27 Ethicon Llc Stapling assembly
US9962158B2 (en) 2008-02-14 2018-05-08 Ethicon Llc Surgical stapling apparatuses with lockable end effector positioning systems
US9901344B2 (en) 2008-02-14 2018-02-27 Ethicon Llc Stapling assembly
US9980729B2 (en) 2008-02-14 2018-05-29 Ethicon Endo-Surgery, Llc Detachable motor powered surgical instrument
US9872684B2 (en) 2008-02-14 2018-01-23 Ethicon Llc Surgical stapling apparatus including firing force regulation
US9867618B2 (en) 2008-02-14 2018-01-16 Ethicon Llc Surgical stapling apparatus including firing force regulation
US9498219B2 (en) 2008-02-14 2016-11-22 Ethicon Endo-Surgery, Llc Detachable motor powered surgical instrument
US9901346B2 (en) 2008-02-14 2018-02-27 Ethicon Llc Stapling assembly
US9877723B2 (en) 2008-02-14 2018-01-30 Ethicon Llc Surgical stapling assembly comprising a selector arrangement
US9522029B2 (en) 2008-02-14 2016-12-20 Ethicon Endo-Surgery, Llc Motorized surgical cutting and fastening instrument having handle based power source
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US9655614B2 (en) 2008-09-23 2017-05-23 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument with an end effector
US9370364B2 (en) 2008-10-10 2016-06-21 Ethicon Endo-Surgery, Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US9393015B2 (en) 2009-02-06 2016-07-19 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with cutting member reversing mechanism
US9486214B2 (en) 2009-02-06 2016-11-08 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US8632511B2 (en) 2009-05-06 2014-01-21 Alcon Research, Ltd. Multiple thermal sensors in a multiple processor environment for temperature control in a drug delivery device
US8372036B2 (en) 2009-05-06 2013-02-12 Alcon Research, Ltd. Multi-layer heat assembly for a drug delivery device
US8177747B2 (en) 2009-12-22 2012-05-15 Alcon Research, Ltd. Method and apparatus for drug delivery
US9924947B2 (en) 2010-09-30 2018-03-27 Ethicon Llc Staple cartridge comprising a compressible portion
US9277919B2 (en) 2010-09-30 2016-03-08 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising fibers to produce a resilient load
US9566061B2 (en) 2010-09-30 2017-02-14 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasably attached tissue thickness compensator
US9572574B2 (en) 2010-09-30 2017-02-21 Ethicon Endo-Surgery, Llc Tissue thickness compensators comprising therapeutic agents
US9282962B2 (en) 2010-09-30 2016-03-15 Ethicon Endo-Surgery, Llc Adhesive film laminate
US9301752B2 (en) * 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising a plurality of capsules
US9480476B2 (en) 2010-09-30 2016-11-01 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising resilient members
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US9861361B2 (en) 2010-09-30 2018-01-09 Ethicon Llc Releasable tissue thickness compensator and fastener cartridge having the same
US9592053B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc Staple cartridge comprising multiple regions
US9433419B2 (en) 2010-09-30 2016-09-06 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of layers
US20120241496A1 (en) * 2010-09-30 2012-09-27 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of capsules
US9592050B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc End effector comprising a distal tissue abutment member
US9232941B2 (en) * 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9848875B2 (en) 2010-09-30 2017-12-26 Ethicon Llc Anvil layer attached to a proximal end of an end effector
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US9307965B2 (en) 2010-09-30 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-microbial agent
US9795383B2 (en) 2010-09-30 2017-10-24 Ethicon Llc Tissue thickness compensator comprising resilient members
US9320518B2 (en) 2010-09-30 2016-04-26 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an oxygen generating agent
US9801634B2 (en) 2010-09-30 2017-10-31 Ethicon Llc Tissue thickness compensator for a surgical stapler
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9826978B2 (en) 2010-09-30 2017-11-28 Ethicon Llc End effectors with same side closure and firing motions
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9839420B2 (en) 2010-09-30 2017-12-12 Ethicon Llc Tissue thickness compensator comprising at least one medicament
US9358005B2 (en) 2010-09-30 2016-06-07 Ethicon Endo-Surgery, Llc End effector layer including holding features
US9844372B2 (en) 2010-09-30 2017-12-19 Ethicon Llc Retainer assembly including a tissue thickness compensator
US20120241497A1 (en) * 2010-09-30 2012-09-27 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9345477B2 (en) 2010-09-30 2016-05-24 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator comprising incorporating a hemostatic agent
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US9833238B2 (en) 2010-09-30 2017-12-05 Ethicon Endo-Surgery, Llc Retainer assembly including a tissue thickness compensator
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9814462B2 (en) 2010-09-30 2017-11-14 Ethicon Llc Assembly for fastening tissue comprising a compressible layer
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9833236B2 (en) 2010-09-30 2017-12-05 Ethicon Llc Tissue thickness compensator for surgical staplers
US9833242B2 (en) 2010-09-30 2017-12-05 Ethicon Endo-Surgery, Llc Tissue thickness compensators
US9883861B2 (en) 2010-09-30 2018-02-06 Ethicon Llc Retainer assembly including a tissue thickness compensator
US9808247B2 (en) 2010-09-30 2017-11-07 Ethicon Llc Stapling system comprising implantable layers
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US9271799B2 (en) 2011-05-27 2016-03-01 Ethicon Endo-Surgery, Llc Robotic surgical system with removable motor housing
US9775614B2 (en) 2011-05-27 2017-10-03 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotatable staple deployment arrangements
US9913648B2 (en) 2011-05-27 2018-03-13 Ethicon Endo-Surgery, Llc Surgical system
US9592054B2 (en) 2011-09-23 2017-03-14 Ethicon Endo-Surgery, Llc Surgical stapler with stationary staple drivers
US9687237B2 (en) 2011-09-23 2017-06-27 Ethicon Endo-Surgery, Llc Staple cartridge including collapsible deck arrangement
US9730697B2 (en) 2012-02-13 2017-08-15 Ethicon Endo-Surgery, Llc Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9314247B2 (en) 2012-03-28 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating a hydrophilic agent
US20130256373A1 (en) * 2012-03-28 2013-10-03 Ethicon Endo-Surgery, Inc. Devices and methods for attaching tissue thickness compensating materials to surgical stapling instruments
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9724098B2 (en) 2012-03-28 2017-08-08 Ethicon Endo-Surgery, Llc Staple cartridge comprising an implantable layer
US9974538B2 (en) 2012-03-28 2018-05-22 Ethicon Llc Staple cartridge comprising a compressible layer
US9918716B2 (en) 2012-03-28 2018-03-20 Ethicon Llc Staple cartridge comprising implantable layers
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US9907620B2 (en) 2012-06-28 2018-03-06 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9649111B2 (en) 2012-06-28 2017-05-16 Ethicon Endo-Surgery, Llc Replaceable clip cartridge for a clip applier
US9364230B2 (en) 2012-06-28 2016-06-14 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotary joint assemblies
WO2014053352A1 (en) * 2012-10-03 2014-04-10 Danmarks Tekniske Universitet Ingestible capsule for remote controlled release of a substance
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US9358003B2 (en) 2013-03-01 2016-06-07 Ethicon Endo-Surgery, Llc Electromechanical surgical device with signal relay arrangement
US9326767B2 (en) 2013-03-01 2016-05-03 Ethicon Endo-Surgery, Llc Joystick switch assemblies for surgical instruments
US9782169B2 (en) 2013-03-01 2017-10-10 Ethicon Llc Rotary powered articulation joints for surgical instruments
US9468438B2 (en) 2013-03-01 2016-10-18 Eticon Endo-Surgery, LLC Sensor straightened end effector during removal through trocar
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US9700309B2 (en) 2013-03-01 2017-07-11 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US9398911B2 (en) 2013-03-01 2016-07-26 Ethicon Endo-Surgery, Llc Rotary powered surgical instruments with multiple degrees of freedom
US9554794B2 (en) 2013-03-01 2017-01-31 Ethicon Endo-Surgery, Llc Multiple processor motor control for modular surgical instruments
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US9351726B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Articulation control system for articulatable surgical instruments
US9351727B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Drive train control arrangements for modular surgical instruments
US9687230B2 (en) 2013-03-14 2017-06-27 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9629623B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgery, Llc Drive system lockout arrangements for modular surgical instruments
US9888919B2 (en) 2013-03-14 2018-02-13 Ethicon Llc Method and system for operating a surgical instrument
US9808244B2 (en) 2013-03-14 2017-11-07 Ethicon Llc Sensor arrangements for absolute positioning system for surgical instruments
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9867612B2 (en) 2013-04-16 2018-01-16 Ethicon Llc Powered surgical stapler
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US9801626B2 (en) 2013-04-16 2017-10-31 Ethicon Llc Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US9826976B2 (en) 2013-04-16 2017-11-28 Ethicon Llc Motor driven surgical instruments with lockable dual drive shafts
US9814460B2 (en) 2013-04-16 2017-11-14 Ethicon Llc Modular motor driven surgical instruments with status indication arrangements
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9700310B2 (en) 2013-08-23 2017-07-11 Ethicon Llc Firing member retraction devices for powered surgical instruments
US9510828B2 (en) 2013-08-23 2016-12-06 Ethicon Endo-Surgery, Llc Conductor arrangements for electrically powered surgical instruments with rotatable end effectors
US9283054B2 (en) 2013-08-23 2016-03-15 Ethicon Endo-Surgery, Llc Interactive displays
US9808249B2 (en) 2013-08-23 2017-11-07 Ethicon Llc Attachment portions for surgical instrument assemblies
US9924942B2 (en) 2013-08-23 2018-03-27 Ethicon Llc Motor-powered articulatable surgical instruments
US9987006B2 (en) 2013-08-23 2018-06-05 Ethicon Llc Shroud retention arrangement for sterilizable surgical instruments
US9445813B2 (en) 2013-08-23 2016-09-20 Ethicon Endo-Surgery, Llc Closure indicator systems for surgical instruments
US9775609B2 (en) 2013-08-23 2017-10-03 Ethicon Llc Tamper proof circuit for surgical instrument battery pack
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9884456B2 (en) 2014-02-24 2018-02-06 Ethicon Llc Implantable layers and methods for altering one or more properties of implantable layers for use with fastening instruments
US9839422B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for altering implantable layers for use with surgical fastening instruments
US9839423B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for modifying the shape of the implantable layers for use with a surgical fastening instrument
US9693777B2 (en) 2014-02-24 2017-07-04 Ethicon Llc Implantable layers comprising a pressed region
US9775608B2 (en) 2014-02-24 2017-10-03 Ethicon Llc Fastening system comprising a firing member lockout
US9757124B2 (en) 2014-02-24 2017-09-12 Ethicon Llc Implantable layer assemblies
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
US9690362B2 (en) 2014-03-26 2017-06-27 Ethicon Llc Surgical instrument control circuit having a safety processor
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US9804618B2 (en) 2014-03-26 2017-10-31 Ethicon Llc Systems and methods for controlling a segmented circuit
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9743929B2 (en) 2014-03-26 2017-08-29 Ethicon Llc Modular powered surgical instrument with detachable shaft assemblies
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
US9730695B2 (en) 2014-03-26 2017-08-15 Ethicon Endo-Surgery, Llc Power management through segmented circuit
US9750499B2 (en) 2014-03-26 2017-09-05 Ethicon Llc Surgical stapling instrument system
US9833241B2 (en) 2014-04-16 2017-12-05 Ethicon Llc Surgical fastener cartridges with driver stabilizing arrangements
US9844369B2 (en) 2014-04-16 2017-12-19 Ethicon Llc Surgical end effectors with firing element monitoring arrangements
US9877721B2 (en) 2014-04-16 2018-01-30 Ethicon Llc Fastener cartridge comprising tissue control features
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
US9737301B2 (en) 2014-09-05 2017-08-22 Ethicon Llc Monitoring device degradation based on component evaluation
US9757128B2 (en) 2014-09-05 2017-09-12 Ethicon Llc Multiple sensors with one sensor affecting a second sensor's output or interpretation
US9788836B2 (en) 2014-09-05 2017-10-17 Ethicon Llc Multiple motor control for powered medical device
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9968355B2 (en) 2014-12-18 2018-05-15 Ethicon Llc Surgical instruments with articulatable end effectors and improved firing beam support arrangements
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US9931118B2 (en) 2015-02-27 2018-04-03 Ethicon Endo-Surgery, Llc Reinforced battery for a surgical instrument
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
WO2018037214A1 (en) * 2016-08-23 2018-03-01 Reproductive Medicine And Gynaecology Associates Limited Implantable medicament delivery system
US9987003B2 (en) 2017-07-19 2018-06-05 Ethicon Llc Robotic actuator assembly

Similar Documents

Publication Publication Date Title
US3533406A (en) Intrauterine contraceptive device
Dziuk et al. Passage of steroids through silicone rubber.
Michaelson et al. Biologic effects of microwave exposure
US3659596A (en) Intrauterine element
Folkman Tumor angiogenesis: a possible control point in tumor growth
US5603722A (en) Intravascular stent
Jancsó-Gábor et al. Stimulation and desensitization of the hypothalamic heat‐sensitive structures by capsaicin in rats
US3962414A (en) Structured bioerodible drug delivery device
Voorhees et al. Hydralazine-enhanced selective heating of transmissible venereal tumor implants in dogs
US3867519A (en) Bioerodible drug delivery device
US5674285A (en) Mammary implant having shell with unitary rough-textured outer layer
US4889744A (en) Method for making open-cell, silicone-elastomer medical implant
US5007929A (en) Open-cell, silicone-elastomer medical implant
US6432438B1 (en) Biodegradable vehicle and filler
US6613350B1 (en) Electrical apparatus for heating to a desired temperature for improved administration of pharmaceutically active compounds
US3920805A (en) Pharmaceutical devices and method
US4706652A (en) Temporary radiation therapy
US5292515A (en) Manufacture of water-swellable hydrophilic articles and drug delivery devices
Beck et al. New long-acting injectable microcapsule contraceptive system
US4142526A (en) Osmotic releasing system with means for changing release therefrom
US4292965A (en) Intravaginal ring
US4888074A (en) Therapeutic rings
Hutchinson et al. Biodegradable polymer systems for the sustained release of polypeptides
US5921244A (en) Internal magnetic device to enhance drug therapy
US6214032B1 (en) System for implanting a microstimulator

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHILDREN S MEDICAL CENTER CORPORATION THE, 300 LON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CHARLES RIVER FOUNDATION THE, A MA. EQUITABLE TRUST;REEL/FRAME:004548/0122

Effective date: 19860424

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHARLES RIVER FOUNDATION THE, A MA. EQUITABLE TRUST;REEL/FRAME:004548/0122

Owner name: CHILDREN S MEDICAL CENTER CORPORATION THE, MASSACH