WO2010047553A2 - 반도체 발광 소자 - Google Patents

반도체 발광 소자 Download PDF

Info

Publication number
WO2010047553A2
WO2010047553A2 PCT/KR2009/006144 KR2009006144W WO2010047553A2 WO 2010047553 A2 WO2010047553 A2 WO 2010047553A2 KR 2009006144 W KR2009006144 W KR 2009006144W WO 2010047553 A2 WO2010047553 A2 WO 2010047553A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
semiconductor layer
electrode
conductive
Prior art date
Application number
PCT/KR2009/006144
Other languages
English (en)
French (fr)
Other versions
WO2010047553A3 (ko
Inventor
최번재
김유승
이진복
Original Assignee
삼성엘이디 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성엘이디 주식회사 filed Critical 삼성엘이디 주식회사
Priority to CN200980142209.9A priority Critical patent/CN102217105B/zh
Priority to EP09822229.2A priority patent/EP2357680B1/en
Priority to US13/125,256 priority patent/US8686454B2/en
Publication of WO2010047553A2 publication Critical patent/WO2010047553A2/ko
Publication of WO2010047553A3 publication Critical patent/WO2010047553A3/ko
Priority to US14/080,455 priority patent/US8975653B2/en
Priority to US14/612,244 priority patent/US9680050B2/en
Priority to US15/604,469 priority patent/US9997663B2/en
Priority to US15/992,822 priority patent/US10333023B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape

Definitions

  • the present invention relates to a semiconductor light emitting device, and more particularly, to a semiconductor light emitting device capable of high current operation and high luminous efficiency by changing an arrangement of electrodes.
  • a semiconductor light emitting device is a device that emits light from a material contained in the device, for example, a device that converts energy due to electron / hole recombination into light by bonding a semiconductor using a diode such as an LED to emit light. to be.
  • Such semiconductor light emitting devices are widely used as lighting, display devices, and light sources, and their development is being accelerated.
  • Such a semiconductor junction light emitting device structure is generally a junction structure of a p-type semiconductor and an n-type semiconductor.
  • the semiconductor junction structure there may be light emission due to electron / hole recombination in the junction region of both semiconductors, but an active layer may be provided between the two semiconductors to activate the light emission more.
  • the semiconductor junction light emitting device has a vertical structure and a horizontal structure according to the position of the electrode for the semiconductor layer, and there are growth-type (epi-up) and flip-chip (flip-chip) in the horizontal structure.
  • FIG. 1 is a conventional horizontal semiconductor light emitting device
  • Figure 2 is a cross-sectional view of a conventional vertical semiconductor light emitting device.
  • the semiconductor layer in contact with the substrate in FIGS. 1 and 2 is an n-type semiconductor layer
  • the semiconductor layer formed on the active layer is a p-type semiconductor layer.
  • the semiconductor light emitting device 1 of the horizontal semiconductor light emitting device includes a nonconductive substrate 13, an n-type semiconductor layer 12, an active layer 11, and a p-type semiconductor layer 10.
  • the n-type electrode 15 is formed on the n-type semiconductor layer 12, and the p-type electrode 14 is formed on the p-type semiconductor layer 10, so that the n-type semiconductor layer 12 is electrically connected to an external power source (not shown) for application of a voltage. It is.
  • the semiconductor light emitting element 1 When a voltage is applied to the semiconductor light emitting element 1 through the respective electrodes 14 and 15, electrons move from the n-type semiconductor layer 12, and holes move from the p-type semiconductor layer 10, resulting in electrons and holes. Luminescence occurs through recombination of.
  • the semiconductor light emitting element 1 includes an active layer 11, and light emission is generated in the active layer 11. In the active layer 11, light emission of the semiconductor light emitting element 1 is activated, and light is emitted.
  • the n-type electrode is positioned in the n-type semiconductor layer 12 and the p-type electrode is positioned in the p-type semiconductor layer 10 with a minimum contact resistance value.
  • the position of the electrode may vary according to the type of substrate.
  • the electrode of the n-type semiconductor layer 12 is a non-conductive substrate. It cannot be formed on (13), and must be formed on the n-type semiconductor layer 12.
  • the n-type electrode 15 is formed on the n-type semiconductor layer 12, it can be seen that the upper p-type semiconductor layer 10 and the active layer 12 are consumed due to the formation of the ohmic contact portion. . Due to the electrode formation, the light emitting area of the semiconductor light emitting device 1 is reduced, and accordingly, the light emitting efficiency is also reduced.
  • the light emitting device 2 shown in FIG. 2 is a vertical semiconductor light emitting device, and the n-type electrode 25 may be formed on the substrate using the conductive substrate 23.
  • the n-type electrode 25 may be formed on the substrate using the conductive substrate 23.
  • an n-type electrode was formed on the conductive substrate 23, but after the growth of the semiconductor layer using the non-conductive substrate, the substrate was removed and the n-type electrode was directly formed on the n-type semiconductor layer.
  • a light emitting element can also be manufactured.
  • the voltage can be applied to the n-type semiconductor layer 22 through the conductive substrate 23, so that an electrode can be formed on the substrate itself.
  • the n-type electrode 25 is formed on the conductive substrate 23, and the p-type electrode 24 is formed on the p-type semiconductor layer 20, thereby manufacturing a semiconductor light emitting device having a vertical structure. Can be.
  • the light emitting area of the semiconductor light emitting device is reduced, and thus the light emitting efficiency is also reduced. There is a problem that the light loss and the luminous efficiency is reduced.
  • An object of the present invention is to provide a semiconductor light emitting device having a new structure.
  • Another object of the present invention is to provide a semiconductor light emitting device with high luminous efficiency.
  • Another object of the present invention is to provide a high current semiconductor light emitting device.
  • an aspect of the present invention provides a semiconductor light emitting device.
  • the semiconductor light emitting device includes a semiconductor light emitting device in which a conductive substrate, a first electrode layer, an insulating layer, a second electrode layer, a second semiconductor layer, an active layer, and a first semiconductor layer are sequentially stacked, and the second electrode layer is the second electrode layer. At least one region of the surface forming an interface with the semiconductor layer is exposed, the first electrode layer penetrates the second electrode layer, the second semiconductor layer and the active layer, and penetrates to a predetermined region of the first semiconductor layer.
  • the first electrode layer and the second electrode layer, the second semiconductor layer, and the active layer are insulated from each other, and an area where the first electrode layer and the first semiconductor layer contact each other is determined by the area of the semiconductor light emitting device. 0.615 to 15.68%.
  • the contact holes may be uniformly arranged.
  • the contact holes may be 1 to 48000.
  • the area that the area 1000000 ⁇ m the first electrode layer and the semiconductor layer 2 of each of the semiconductor light-emitting element 6150 can contact to 156800 ⁇ m 2-ynyl.
  • the distance between the center points of the contact holes adjacent to each other among the contact holes may be 5 ⁇ m to 500 ⁇ m.
  • the display device may further include an electrode pad part formed on the exposed area of the second electrode layer.
  • an exposed region of the second electrode layer may be formed at an edge of the semiconductor light emitting device.
  • the second electrode layer may reflect light generated from the active layer.
  • the second electrode layer may include any one material selected from the group consisting of Ag, Al, Pt, Ni, Pt, Pd, Au, Ir, and a transparent conductive oxide.
  • the conductive substrate may include any one material selected from the group consisting of Au, Ni, Al, Cu, W, Si, Se, and GaAs.
  • an area where the first electrode layer and the first semiconductor layer contact each other may be 3 to 13% of the area of the light emitting structure.
  • a light emitting structure including a conductive substrate, a second semiconductor layer, an active layer, and a first semiconductor layer sequentially formed on the conductive substrate, the second semiconductor layer and the active layer penetrating through the first semiconductor layer and connected therein
  • An insulating layer for electrically separating the first electrode layer and the first electrode layer from the conductive substrate, the second semiconductor layer, and the active layer, the first electrode layer having a closed contact hole and an electrical connection part extending from the contact hole and exposed to the outside of the light emitting structure.
  • a contact area between the contact hole and the first semiconductor layer is 0.615 to 15.68% of the area of the light emitting structure.
  • a part of the first electrode is formed on the light emitting surface, and the remaining part is disposed under the active layer, thereby ensuring the maximum light emitting area.
  • the current can be stably dispersed even when a high operating current is applied.
  • 1 is a conventional horizontal semiconductor light emitting device.
  • FIG. 2 is a cross-sectional view of a conventional vertical semiconductor light emitting device.
  • FIG. 3 is a plan view illustrating a semiconductor light emitting device according to an exemplary embodiment of the present invention.
  • FIG. 4 is a cross-sectional view illustrating a semiconductor light emitting device according to an embodiment of the present invention.
  • FIG. 5 is a graph illustrating n-type ohmic contact resistance and p-type ohmic contact resistance of a semiconductor light emitting device having an area of 1000 ⁇ 1000 ⁇ m 2.
  • FIG. 6 is a graph showing the total resistance of the first contact resistance and the second contact resistance according to the contact area between the first semiconductor layer and the first electrode layer.
  • FIG. 7 is a graph showing luminous efficiency according to the contact area of the first semiconductor layer and the first electrode layer.
  • FIG. 8 illustrates a semiconductor light emitting device according to an embodiment modified from the embodiment of FIG. 4.
  • FIG. 9 is a cross-sectional view illustrating a semiconductor light emitting device according to another exemplary embodiment of the present invention.
  • 17 to 20 are diagrams illustrating a semiconductor light emitting device according to still another embodiment of the present invention.
  • 21 to 25 illustrate a semiconductor light emitting device according to still another embodiment of the present invention.
  • 26 to 36 illustrate a semiconductor light emitting device according to still another embodiment of the present invention.
  • 37 to 57 are views illustrating a semiconductor light emitting device according to another embodiment of the present invention.
  • 58 to 77 illustrate a semiconductor light emitting device according to still another embodiment of the present invention.
  • 92 to 102 are diagrams illustrating a semiconductor light emitting device according to still another embodiment of the present invention.
  • 103 to 105 are schematic views illustrating various examples of the white light emitting device package according to the exemplary embodiment of the present invention.
  • 106 illustrates an emission spectrum of the white light emitting device package according to the embodiment of the present invention.
  • 107A to 107D are wavelength spectrums showing light emission characteristics of green phosphors employable in the present invention.
  • 108A and 108B are wavelength spectrums showing luminescence properties of red phosphors employable in the present invention.
  • 109A and 109B are wavelength spectrums showing light emission characteristics of yellow phosphors employable in the present invention.
  • 110 and 111 are side cross-sectional views schematically illustrating various examples of a white light source module according to an embodiment of the present invention.
  • 112 and 113 are schematic views illustrating various examples of a light emitting device package according to another embodiment of the present invention.
  • FIG. 114 is a schematic diagram illustrating in detail a process of forming an external lead frame in the light emitting device package of FIG. 112.
  • 115 to 117 are graphs showing light emission spectra and excitation spectra as a result of X-ray diffraction analysis of the ⁇ -sialon phosphor prepared according to Example 1.
  • FIG. 115 to 117 are graphs showing light emission spectra and excitation spectra as a result of X-ray diffraction analysis of the ⁇ -sialon phosphor prepared according to Example 1.
  • 118 and 119 are schematic perspective views illustrating a planar light guide device and a planar light guide plate having a planar light guide plate according to an embodiment of the present invention.
  • 120 to 125 are views illustrating a backlight device having a flat light guide plate according to another embodiment of the present invention.
  • first semiconductor layer 180 contact hole
  • a semiconductor light emitting device according to the present invention will be described in detail through various embodiments, and a light emitting device package and a backlight device using the semiconductor light emitting device will be described.
  • 3 and 4 are a plan view and a cross-sectional view showing a semiconductor light emitting device according to an embodiment of the present invention.
  • 4 is a cross-sectional view taken along the line II ′ of FIG. 3.
  • the semiconductor light emitting device 100 may include a conductive substrate 110, a first electrode layer 120, an insulating layer 130, and a second electrode layer 140. ), A second semiconductor layer 150, an active layer 160, and a first semiconductor layer 170, and each of the layers is sequentially stacked.
  • the conductive substrate 110 may be formed of a material through which electricity may flow.
  • the conductive substrate 110 may be formed of a material including any one of Au, Ni, Al, Cu, W, Si, Se, and GaAs, for example, an alloy form of Si and Al.
  • the first electrode layer 120 is stacked on the conductive substrate 110, and the first electrode layer 120 is electrically connected to the conductive substrate 110 and the active layer 160.
  • the active layer 160 are preferably made of a material which minimizes contact resistance.
  • the first electrode layer 120 is not only stacked on the conductive substrate 110, but as shown in FIG. 4, a portion of the first electrode layer 120 is formed in the insulating layer 130 and the second electrode layer 140. Contacting the first semiconductor layer 170 by extending through the contact hole 180 penetrating through the second semiconductor layer 150 and the active layer 160 and penetrating a predetermined region of the first semiconductor layer 170. Thus, the conductive substrate 110 and the first semiconductor layer 170 are provided to be electrically connected.
  • the first electrode layer 120 is electrically connected to the conductive substrate 110 and the first semiconductor layer 170, but by electrically connecting through the contact hole 180, the contact hole 180 In size, more precisely, the first electrode layer 120 and the first semiconductor layer 170 are electrically connected to the contact hole 180 through the contact area 190.
  • an insulating layer 120 is provided on the first electrode layer 120 to electrically insulate the first electrode layer 120 from other layers except for the conductive substrate 110 and the first semiconductor layer 170. do. That is, the insulating layer 120 is not only between the first electrode layer 120 and the second electrode layer 140, but also the second electrode layer 140 and the second semiconductor layer (exposed by the contact hole 180). 150 and between side surfaces of the active layer 160 and the first electrode layer 120. In addition, the insulating layer 120 may also be insulated from a side surface of the first semiconductor layer 180 through which the contact hole 180 penetrates.
  • the second electrode layer 140 is provided on the insulating layer 120. Of course, as described above, the second electrode layer 140 does not exist in predetermined regions through which the contact hole 180 penetrates.
  • the second electrode layer 140 includes at least one or more exposed regions, ie, exposed regions 145, at which a part of an interface contacting the second semiconductor layer 150 is exposed.
  • An electrode pad part 147 may be provided on the exposed area 145 to connect an external power source to the second electrode layer 140.
  • the second semiconductor layer 150, the active layer 160, and the first semiconductor layer 170, which will be described later, are not provided on the exposed region 145.
  • the exposed region 145 may be formed at an edge of the semiconductor light emitting device 100 in order to maximize the light emitting area of the semiconductor light emitting device 100.
  • the second electrode layer 140 is preferably made of a material containing Ag, Al, Pt, Ni, Pt, Pd, Au, Ir, transparent conductive oxide, the second electrode layer 140 is the second Since the electrical contact with the second semiconductor layer 150 has the property of minimizing the contact resistance of the second semiconductor layer 150 and at the same time reflects the light generated in the active layer 160 to the outside to increase the luminous efficiency It is because it is preferable to be provided by the layer which has a function which can be provided.
  • the second semiconductor layer 150 is provided on the second electrode layer 140, the active layer 160 is provided on the second semiconductor layer 150, and the first semiconductor layer 170 is formed on the second semiconductor layer 150. It is provided on the active layer 160.
  • the first semiconductor layer 170 is an n-type nitride semiconductor
  • the second semiconductor layer 150 is a p-type nitride semiconductor.
  • the active layer 160 may be formed by selecting different materials according to materials forming the first semiconductor layer 170 and the second semiconductor layer 150. That is, since the active layer 160 is a layer in which electrons / electrons change and emit energy due to recombination into light, an energy band gap less than the energy band gaps of the first semiconductor layer 170 and the second semiconductor layer 150. It is preferable to form with a material having
  • a passivation layer 191 is disposed on a side surface of a light emitting structure, that is, a structure including a second semiconductor layer 150, an active layer 160, and a first semiconductor layer 170. Is formed, and in that the irregularities are formed on the upper surface of the first semiconductor layer 170, there is a difference from the previous embodiment, the remaining structure is the same.
  • the passivation layer 191 is to protect the light emitting structure, in particular, the active layer 160 from the outside, it may be made of silicon oxide, silicon nitride, such as SiO 2 , SiO x N y , Si x N y , the thickness is 0.1 About 2 micrometers are preferable.
  • the active layer 160 exposed to the outside may act as a current leakage path during the operation of the semiconductor light emitting device 100 ′, and this problem may be prevented by forming the passivation layer 191 on the side of the light emitting structure. In this case, as shown in FIG. 8, when irregularities are formed in the passivation layer 191, an improvement in light extraction efficiency may be expected.
  • an uneven structure may be formed on the upper surface of the first semiconductor layer 170, whereby the probability that light incident in the direction of the active layer 160 is emitted to the outside may be increased.
  • An etch stop layer may be further formed on the second electrode layer 140. The modification of FIG. 8 described above may also be applied to the embodiment of FIG. 9.
  • the semiconductor light emitting device proposed by the present invention may be modified in the above structure so that the first electrode layer connected to the contact hole may be exposed to the outside.
  • 9 is a cross-sectional view illustrating a semiconductor light emitting device according to another exemplary embodiment of the present invention.
  • the semiconductor light emitting device 200 according to the present embodiment the second semiconductor layer 250, the active layer 260, and the first semiconductor layer 260 are formed on the conductive substrate 210.
  • the second electrode layer 240 may be disposed between the second semiconductor layer 250 and the conductive substrate 210. Unlike the previous embodiment, the second electrode layer 240 is not necessarily required.
  • the contact hole 280 having the contact region 290 in contact with the first semiconductor layer 270 is connected to the first electrode layer 220, and the first electrode layer 220 is exposed to the outside. It has an electrical connection 245.
  • the electrode pad part 247 may be formed in the electrical connection part 245.
  • the first electrode layer 220 may be electrically separated from the active layer 260, the second semiconductor layer 250, the second electrode layer 240, and the conductive substrate 210 by the insulating layer 230.
  • the contact hole 280 is electrically separated from the conductive substrate 210 and the first electrode layer 220 connected to the contact hole 280. ) Is exposed to the outside. Accordingly, the conductive substrate 210 is electrically connected to the second semiconductor layer 240 to have a different polarity than in the previous embodiment.
  • the semiconductor light emitting device proposed by the present invention simulates the change in electrical characteristics according to the contact area of the first electrode layer and the first semiconductor layer to find the optimal state in the size and shape of the contact hole.
  • the following simulation results can be applied to both the structures of FIGS. 3 and 8.
  • the first and second semiconductor layers were composed of n-type and p-type semiconductor layers, respectively.
  • FIG. 5 is a graph illustrating n-type ohmic contact resistance and p-type ohmic contact resistance of a semiconductor light emitting device having an area of 1000 ⁇ 1000 ⁇ m 2 .
  • the n-type specific contact resistance that is, the specific contact resistance of the first electrode layer and the contact hole is 10 ⁇ 4 ohm / cm 2
  • the p-type specific contact resistance that is, the second semiconductor layer
  • the intrinsic contact resistance in the second electrode layer is 10 ⁇ 2 ohm / cm 2.
  • the semiconductor light emitting device 100 is a rectangular chip having a size of 1000000 ⁇ m 2 , that is, a size of 1000 ⁇ m in width and 1000 ⁇ m in length.
  • the resistance of the light emitting device 100 is the first electrode layer 120, the second electrode layer 140, the first semiconductor layer 170, the second semiconductor layer 150, the second semiconductor layer 150 and the second
  • There may be a contact resistance of the electrode layer 140 hereinafter referred to as a second contact resistance
  • a contact resistance of the first semiconductor layer 170 and the first electrode layer 120 hereinafter referred to as a first contact resistance.
  • the first contact resistor R1 and the second contact resistor R2 are the resistors showing the most change according to the contact area.
  • the first contact resistor R1 shows the most change as the contact area increases, rather than the second contact resistor R2.
  • the X axis of FIG. 5 denotes the size of the contact area where the first semiconductor layer 170 and the first electrode layer 120 contact
  • the Y axis denotes the size of the contact resistance, so that the number of the X axis is the first.
  • the contact area between the semiconductor layer 170 and the first electrode layer 120 is in contact with each other, and the contact area between the second semiconductor layer 150 and the second electrode layer 140 is in contact with the semiconductor light emitting device 100.
  • the value obtained by subtracting the value of the X axis from the total area (1000000 ⁇ m 2 ) becomes the contact area between the second semiconductor layer 150 and the second electrode layer 140 corresponding to the second contact resistance R2.
  • the contact area between the first semiconductor layer 170 and the first electrode layer 120 contacts the first electrode layer 120 through the contact hole 180 as described with reference to FIGS. 3 and 4.
  • the total area of the contact region 190 that is, the area where the first semiconductor layer 170 is in contact with each other, that is, the plurality of contact holes 180 means the sum of the areas of each of the contact regions 190.
  • FIG. 6 is a graph showing the total resistance of the first contact resistance and the second contact resistance according to the contact area between the first semiconductor layer and the first electrode layer.
  • the first contact resistor R1 and the second contact resistor R2 of the semiconductor light emitting device 100 are connected in series with each other, so that the first contact resistor
  • the total resistance R3 obtained by adding the R1 and the second contact resistance R2 becomes the resistance having the most influence according to the contact area among the resistors of the semiconductor light emitting device 100.
  • the n-type and p-type contact resistance is preferably about 1.6 ohm or less when the size of the semiconductor light emitting device 100 is 1000000 ⁇ m 2, so that the contact between the first semiconductor layer 170 and the first electrode layer 120.
  • the area is preferably about 30000 to 250000 ⁇ m 2 .
  • the semiconductor light emitting device 100 of the present invention described with reference to FIGS. 3 and 4 is an area where the first electrode layer 120 and the first semiconductor layer 170 contact each other through the contact hole 180. It is most preferable in terms of contact resistance that the total contact area of the contact regions 190 is about 30000 to 250000 ⁇ m 2 .
  • FIG. 7 is a graph showing luminous efficiency according to the contact area of the first semiconductor layer and the first electrode layer.
  • the contact area between the first semiconductor layer 170 and the first electrode layer 120 is 30000 to 250000 ⁇ m 2 , so that the total resistance is low, so that the light emitting efficiency of the semiconductor light emitting device 100 is high. This may not be considered that the actual light emitting area of the semiconductor light emitting device 100 decreases as the contact area of the first semiconductor layer 170 and the first electrode layer 120 increases.
  • the luminous efficiency of the semiconductor light emitting device 100 is lowered by the total resistance until the contact area between the first semiconductor layer 170 and the first electrode layer 120 becomes 70000 ⁇ m 2.
  • the luminous efficiency is increased, the luminous efficiency is lowered when the contact area of the first semiconductor layer 170 and the first electrode layer 120 continues to increase to 70000 ⁇ m 2 or more, which is the first semiconductor layer 170.
  • An increase in the contact area between the first electrode layer 120 and the first electrode layer 120 means a decrease in the contact area between the second semiconductor layer 150 and the second electrode layer 140, thereby lowering the amount of light emitted from the semiconductor light emitting device 100.
  • the contact area of the first semiconductor layer 170 and the first electrode layer 120 is appropriately determined.
  • the contact area of the first semiconductor layer 170 and the first electrode layer 120 is shown in FIG. 7.
  • the luminous efficiency is preferably 130000 ⁇ m 2 or less to be 90% or more.
  • a contact area between the first semiconductor layer 170 and the first electrode layer 120 is 30000 to 130000 ⁇ m 2 through the contact hole 180.
  • the area where the first electrode layer 170 and the semiconductor layer 120 contact each other is the area of the semiconductor light emitting device 100. 3 to 13% of the case indicates the most appropriate contact area.
  • the first semiconductor layer 170 and the first electrode layer (1) per one contact region 190 of the first semiconductor layer 170 and the first electrode layer 120 (although the contact area of 120 increases, the area of the first semiconductor layer 170 to supply current increases, thereby increasing the amount of current to be supplied from the contact area 190, thereby increasing the amount of current.
  • the number of contact holes 180 may be appropriately selected according to the size of the semiconductor light emitting device 100, that is, the chip size.
  • the number of the contact holes 180 is preferably 5 to 50.
  • a plurality of contact holes 180 of the semiconductor light emitting device 100 are provided, and the contact holes 180 may be uniformly disposed. This is because the first semiconductor layer 170 and the first electrode layer 120 come into contact with each other through the contact holes 180 so that the contact holes 180 are uniformly disposed, that is, the first electrode layer 120 is uniformly distributed. It is preferable that the contact regions 190 of the first semiconductor layer 170 and the first electrode layer 120 are uniformly disposed.
  • the separation distance between neighboring contact holes may be 100 ⁇ m to 400 ⁇ m. In this case, the separation distance is a value measured by connecting center points of neighboring contact holes.
  • the semiconductor light emitting device 100 can achieve a uniform current distribution by the plurality of contact holes 180 are uniformly arranged as described above, so that in the case of a semiconductor light emitting device having a size of 1000000 ⁇ m 2 , conventionally Although operating at 350mA, the semiconductor light emitting device 100 according to an embodiment of the present invention operates very stable even when a high current of about 2A is applied and current crowding is alleviated to improve reliability. An element is provided.
  • the n-type specific contact resistance is 10 ⁇ 6 ohm / cm 2 and the p-type specific contact resistance is 10 ⁇ 2 ohm / cm 2.
  • the n-type intrinsic contact resistance is affected by the doping level of the n-type semiconductor layer, the n-type electrode material, their heat treatment method, and the like. Therefore, the n-type intrinsic contact resistance is 10 -6 ohm / cm 2 by increasing the doping concentration of the n-type semiconductor layer or employing a material having a low metal energy barrier such as Al, Ti, Cr, etc. as the n-type electrode material. Can be lowered. That is, the n-type intrinsic contact resistance that is commonly used may be 10 ⁇ 4 to 10 ⁇ 6 ohm / cm 2.
  • the sum of the n-type and p-type intrinsic contact resistances that is, the total contact resistance R4 can be maintained at a very low level even at a small contact area when compared with the result of FIG. 6.
  • the light efficiency according to the contact area may be compared with the result of FIG. 7, whereby a high level may be maintained even at a small contact area. In this case, the light efficiency is greater than 100% in FIG. 7. Relative values for the results are shown. Referring to the simulation results of FIGS.
  • the total contact resistance is 1.6 ohm or less, and the condition that the light efficiency is 90% or more is such that the first electrode layer and the semiconductor layer are in contact with each 1000000 ⁇ m 2 of the semiconductor light emitting device. It can be seen that the area is 6150 to 156800 ⁇ m 2 .
  • the contents described in the previous simulation results can be applied. Specifically, in the case of a circular contact hole having a radius of about 1 to 50 ⁇ m, about 1 to 48,000 pieces are required to satisfy the area condition as described above. Furthermore, assuming that the contact holes are uniformly arranged, the distance between two adjacent contact holes needs to satisfy about 5 to 500 ⁇ m.
  • FIGS. 12 to 16 First, a semiconductor light emitting device according to another exemplary embodiment of the present invention will be described with reference to FIGS. 12 to 16.
  • the conductive substrate 340, the first conductive semiconductor layer 330, the active layer 320, and the second conductive semiconductor layer 310 are sequentially stacked. It is formed.
  • the semiconductor light emitting device 300 according to the present embodiment includes a first electrode layer 360 formed between the conductive substrate 340 and the first conductive semiconductor layer 330; And a second electrode part including an electrode pad part 350-b, an electrode extension part 350-a, and an electrode connection part 350-c.
  • the electrode pad part 350-b extends from the first electrode layer 360 to the surface of the second conductive semiconductor layer 310, and has a first electrode layer 360, a first conductive semiconductor layer 330, and an active layer. And electrically isolated from 320.
  • the electrode extension part 350-a extends from the first electrode layer 360 to the inside of the second conductive semiconductor layer 310, and has a first electrode layer 360, a first conductive semiconductor layer 330, and an active layer ( And electrically separated from it.
  • the electrode connection part 350-c is formed on the same layer as the first electrode layer but is electrically separated from the first electrode layer 360.
  • the electrode pad part 350-b and the electrode extension part 350-a are separated from each other. ) Function.
  • the conductive substrate 340 may be a metallic substrate or a semiconductor substrate.
  • the conductive substrate 340 may be made of any one of Au, Ni, Cu, and W.
  • the semiconductor substrate may be any one of Si, Ge, and GaAs.
  • a plating method of forming a plating seed layer to form a substrate, or separately preparing a conductive substrate 340 and using a conductive adhesive such as Au, Au-Sn, or Pb-Sr And a substrate bonding method for bonding together may be used.
  • Each of the semiconductor layers 330 and 310 may be formed of, for example, an inorganic semiconductor such as a GaN based semiconductor, a ZnO based semiconductor, a GaAs based semiconductor, a GaP based semiconductor, and a GaAsP based semiconductor.
  • the formation of the semiconductor layer may be performed using, for example, a molecular beam epitaxy (MBE) method.
  • the semiconductor layers may be appropriately selected from the group consisting of a group III-V semiconductor, a group II-VI semiconductor, and Si.
  • the active layer 320 is a layer that activates light emission and is formed using a material having an energy band gap less than that of the first conductive semiconductor layer 330 and the second conductive semiconductor layer 310.
  • the active layer is formed using an InAlGaN-based compound semiconductor having an energy band gap smaller than that of GaN. 320 may be formed. That is, the active layer 320 may be In x Al y Ga (1-xy) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • the impurities are not doped due to the characteristics of the active layer 320, and the wavelength of light emitted by controlling the molar ratio of the constituent material may be adjusted. Therefore, the semiconductor light emitting device 300 may emit light of any one of infrared rays, visible rays, and ultraviolet rays according to the characteristics of the active layer 320.
  • an energy well structure appears in the entire energy band diagram of the semiconductor light emitting device 300, and electrons and holes from each of the semiconductor layers 330 and 310 move and become trapped in the energy well structure. More efficiently.
  • the first electrode layer 360 is an electrode that electrically connects the first conductive semiconductor layer 330 to an external power source (not shown).
  • the first electrode layer 360 may be made of metal.
  • the first electrode layer 360 may be formed of, for example, Ti as an n-type electrode and Pd or Au as a p-type electrode.
  • the first electrode layer 360 preferably reflects light generated from the active layer. The reflected light is directed to the light emitting surface, and the light emitting efficiency of the semiconductor light emitting device is increased.
  • the first electrode layer 360 is preferably a white-based metal in the visible light region.
  • the first electrode layer 360 may be any one of Ag, Al, and Pt. The first electrode layer 360 will be further described below with reference to FIGS. 14A to 14C.
  • the second electrode unit 350 is an electrode that electrically connects the second conductive semiconductor layer 310 to an external power source (not shown).
  • the second electrode unit 350 may be made of metal.
  • the second electrode unit 350 may be formed of Ti as an n-type electrode and Pd or Au as a p-type electrode.
  • the second electrode unit 350 according to the present invention includes an electrode pad unit 350-b, an electrode extension unit 350-a, and an electrode connection unit 350-c.
  • an electrode pad part 350-b is formed on a surface of the second conductive semiconductor layer 310, and the plurality of electrode extension parts 350-a, which are indicated by dotted lines, are formed of the second conductive type. It is shown that it is located inside the semiconductor layer 310.
  • FIG. 13B illustrates that the upper surface of the second conductive semiconductor layer 310 shown in FIG. 13A is cut along A-A ', B-B', and C-C '.
  • A-A ' is a cross section including only the electrode extension part 350-a
  • B-B' is a cross section including the electrode pad part 350-b and the electrode extension part 350-a
  • C- C ' was selected to take a cross section not including the electrode extension portion 350-a and the electrode pad portion 350-b.
  • 14A to 14C are cross-sectional views taken along line A-A ', B-B', and C-C 'of the semiconductor light emitting device shown in FIG. 13B, respectively.
  • FIGS. 12, 13A, 13B, and 14A to 14C will be given with reference to FIGS. 12, 13A, 13B, and 14A to 14C.
  • the electrode extension part 350-a extends from the first electrode layer 360 to the inside of the second conductive semiconductor layer 310.
  • the electrode extension part 350-a extends through the first conductive semiconductor layer 330 and the active layer 320 to the second conductive semiconductor layer 310, and at least of the second conductive semiconductor layer 310. Although extended to a part, it does not need to extend to the surface of the second conductive semiconductor layer 310 like the electrode pad portion 350-b. This is because the electrode extension part 350-a is for distributing a current to the second conductive semiconductor layer 310.
  • the electrode extension part 350-a Since the electrode extension part 350-a is to disperse current in the second conductive semiconductor layer 310, the electrode extension part 350-a should have a predetermined area. However, since it is not for electrical connection like the electrode pad part 350-b, it is preferable that a predetermined number is formed on the second conductive semiconductor layer 310 with as small an area as possible to distribute the current uniformly. If the electrode extension portion 350-a is formed in too small number, current dispersion becomes difficult, and the electrical characteristics may deteriorate. If formed in too many numbers, the emission area may be reduced due to difficulty in forming process and reduction of active layer. Can be appropriately selected in consideration of these conditions. Therefore, the electrode extension part 350-a is implemented in a shape in which current distribution is effective while occupying as little area as possible.
  • the electrode extension part 350-a is preferably plural for current dispersion.
  • the electrode extension part 350-a may have a cylindrical shape, and an area thereof is preferably smaller than that of the electrode pad part 350-b.
  • the electrode pad part 350-b is preferably formed to be spaced apart from the predetermined distance. Since the electrode pad part 350-c to be described later may be connected to each other on the first electrode layer 360, the current is uniformly spaced apart from the predetermined distance. This is because
  • the electrode extension part 350-a is formed from the first electrode layer 360 to the inside of the second conductive semiconductor layer 310.
  • the electrode extension part 350-a may be electrically separated from other layers because it is for current distribution of the second conductive semiconductor layer. There is a need. Therefore, the first electrode layer 360, the first conductive semiconductor layer 330, and the active layer 320 may be electrically separated from each other. Electrical separation can be performed using an insulating material, such as a dielectric.
  • the electrode pad part 350-b extends from the first electrode layer 360 to the surface of the second conductive semiconductor layer 310.
  • the electrode pad part 350-b starts from the first electrode layer 360, passes through the first conductive semiconductor layer 330, the active layer 320, and the second conductive semiconductor layer 310 to form the second conductive type. It extends to the surface of the semiconductor layer 310.
  • the electrode pad part 350-b is particularly for connection with an external power source (not shown) of the second electrode part 350, the second electrode part 350 may include at least one electrode pad part 350-b. It is preferable to have a.
  • the electrode pad part 350-b extends from the first electrode layer 360 to the surface of the second conductive semiconductor layer 310. Since the electrode pad part 350-b is electrically connected to an external power source on the surface of the second conductive semiconductor layer 310 to supply current to the electrode extension part, the first electrode layer 360 and the first conductive semiconductor layer 330 and the active layer 320 are preferably electrically separated. Electrical separation may be performed by forming an insulating layer using an insulating material such as a dielectric.
  • the electrode pad part 350-b performs a function of supplying current to the electrode extension part 350-a, but in addition, the electrode pad part 350-b is not electrically separated from the second conductive semiconductor layer 310 so as to directly disperse the current. .
  • the electrode pad part 350-b has a second conductivity type in consideration of a function required to supply current to the electrode extension part 350-a and a function of distributing current to the second conductive type semiconductor layer 310.
  • the semiconductor layer 310 may be properly electrically separated from the semiconductor layer 310.
  • the electrode pad portion 350-b preferably has an area of a cross section in the active layer 320 smaller than an area of a cross section in the surface of the second conductive semiconductor layer 310. This is to ensure maximum luminous efficiency.
  • the surface of the second conductive semiconductor layer 310 needs to have a predetermined area for connection with an external power source (not shown).
  • the electrode pad part 350-b may be positioned at the center of the semiconductor light emitting device 300.
  • the electrode extension part 350-a may be evenly spaced apart from the electrode pad part 350-b as much as possible. It is preferable to be distributed.
  • the electrode pad part 350-b and the electrode extension part 350-a are uniformly distributed on the second conductive semiconductor layer 310 to optimize current distribution.
  • one electrode pad unit 350-b is provided and 12 electrode extension units 350-a are illustrated.
  • each number represents an electrical connection situation (for example, the position of an external power source).
  • a current distribution situation such as a thickness of the second conductive semiconductor layer 310, and the like.
  • both the electrode pad part 350-b and the plurality of electrode extension parts 350-a may be directly connected.
  • the electrode pad part 350-2 is formed at the center of the semiconductor light emitting device 300
  • the electrode extension part 350-a is positioned around the electrode pad part
  • the electrode connecting part 350-c is radially formed.
  • 350-b) and the electrode extension part 350-a may be directly connected.
  • some of the electrode extension parts 350-a of the plurality of electrode extension parts 350-a are directly connected to the electrode pad part 350-b, and the remaining electrode extension parts 350-a are the electrode pad parts.
  • the electrode extension part 350-a directly connected to the 350-b may be indirectly connected to the electrode pad part 350-b. In this case, a larger number of electrode extension portions 350-a can be formed, thereby improving the efficiency of current dispersion.
  • an electrode connector 350-c is formed on the first electrode layer 360 to connect the electrode pad part 350-b and the electrode extension part 350-a. Therefore, a substantial portion of the second electrode unit 350 is located on the rear surface opposite to the light traveling direction of the active layer 320 emitting light, thereby increasing the luminous efficiency.
  • the electrode connection part 350-c is positioned on the first electrode layer 360 so that the second electrode part 350 is formed of the first conductive semiconductor layer 330, the active layer 320, and the second electrode. The state is not positioned on the conductive semiconductor layer 310. Therefore, in the case of FIG. 14C, the electrode pad part 350-b and the electrode extension part 350-a do not affect the light emission, thereby increasing the luminous efficiency.
  • the first electrode layer 360 may be in contact with the conductive substrate 340 to be connected to an external power source (not shown).
  • the electrode connector 350-c is electrically separated from the first electrode layer 360. Since the first electrode layer 360 and the second electrode unit 350 are electrodes having opposite polarities to each other, external power is supplied to the first conductive semiconductor layer 330 and the second conductive semiconductor layer 310, respectively. Both electrodes must be electrically isolated. Electrical separation can be performed using an insulating material, such as a dielectric.
  • the electrode pad part 350-b is positioned on the surface of the second conductive semiconductor layer 310 to exhibit characteristics of the vertical semiconductor light emitting device.
  • the electrode connection part 350-c may be formed. Since it is located on the same plane as the first electrode layer 360, it can exhibit the characteristics of the horizontal semiconductor light emitting device. Therefore, the semiconductor light emitting device 300 has a structure in which a horizontal type and a vertical type are integrated.
  • the second conductive semiconductor layer may be an n-type semiconductor layer, and the second electrode portion may be an n-type electrode portion.
  • the first conductive semiconductor layer 330 may be a p-type semiconductor layer
  • the first electrode layer 360 may be a p-type electrode.
  • the electrode pad part 350-b, the electrode extending part 350-a, and the electrode connecting part 350-c are second electrode parts 350 connected to each other, and the second electrode part 350 is an n-type electrode.
  • the insulating part 370 may be formed using an insulating material to be electrically separated from the first electrode layer 360, which is a p-type electrode.
  • FIG. 15A is a view showing light emission of a semiconductor light emitting device having a concave-convex pattern 380 formed on a surface according to a modification of the present embodiment
  • FIG. 15B is a semiconductor in which a concave-convex pattern 380 is formed on a surface according to another modified embodiment of the present embodiment. It is a figure which shows current dispersion in a light emitting element.
  • the outermost surface in the traveling direction of the emitted light includes the second conductive semiconductor layer 310. Therefore, it is easy to form an uneven
  • the uneven pattern 380 may have a photonic crystal structure.
  • Photonic crystals indicate that the media having different refractive indices are regularly arranged like crystals. Such photonic crystals can further adjust the light extraction effect by controlling light in units of lengths of multiples of the wavelength of light.
  • the photonic crystal structure may be performed through a predetermined suitable process after forming the second conductive semiconductor layer 310 and fabricating up to the second electrode unit 350. For example, it may be formed by an etching process.
  • the uneven pattern 380 is formed in the second conductive semiconductor layer 310, current dispersion is not affected.
  • the current dispersion in the electrode extension part 350-a is not affected by the uneven pattern 380.
  • Each electrode extension portion 350-a distributes current under the uneven pattern, and the uneven pattern extracts emitted light to increase luminous efficiency.
  • 16 is a graph showing a relationship between the current density of the light emitting surface and the light emitting efficiency.
  • the current density is about 10 A / cm 2 or more
  • the light emission efficiency is high when the current density is small, and the light emission efficiency is low when the current density is large.
  • the reduction of the current density in the light emitting surface has a problem that may damage the electrical characteristics of the semiconductor light emitting device.
  • the problem in electrical characteristics that may occur due to the decrease in current density may be overcome by a method of forming an electrode extension part which is formed in the light emitting surface and is responsible for current dispersion. Therefore, the semiconductor light emitting device according to the present invention can obtain the desired light emitting area while obtaining the desired current dispersion degree, thereby obtaining a desirable light emitting efficiency.
  • FIGS. 17 through 20 A semiconductor light emitting device according to another exemplary embodiment of the present invention will be described with reference to FIGS. 17 through 20.
  • FIG. 17 is a cross-sectional view of a light emitting device according to still another embodiment of the present invention
  • FIGS. 18A and 18B are top views of the light emitting device of FIG. 17
  • FIGS. 19A to 19C are views of A of the light emitting device shown in FIG. 18B, respectively. It is sectional drawing in -A ', B-B', and C-C '.
  • the light emitting device 400 includes the first and second conductive semiconductor layers 430 and 410 and the active layer 420 formed therebetween, and the first and second conductive semiconductors.
  • Light emitting stacks 430, 420, 410 provided as layers 430, 410 and having opposite first and second sides; At least extending from the second surface of the light emitting stacks 430, 420, 410 to at least a portion of the second conductive semiconductor layer 410 so that the light emitting stacks 430, 420, 410 are separated into a plurality of light emitting regions.
  • the light emitting stacks 430, 420, and 410 include first and second conductive semiconductor layers 430 and 410, and an active layer 420 formed therebetween.
  • the light emitting stacks 4430, 420, and 410 have an outer surface of the second conductive semiconductor layer 410 as a first surface, and an outer surface of the first conductive semiconductor layer 430 as a second surface.
  • Each of the semiconductor layers 430 and 410 may be formed of a semiconductor such as, for example, a GaN based semiconductor, a ZnO based semiconductor, a GaAs based semiconductor, a GaP based semiconductor, or a GaAsP based semiconductor.
  • the formation of the semiconductor layer may be performed using, for example, a molecular beam epitaxy (MBE) method.
  • the semiconductor layers may be appropriately selected from the group consisting of a group III-V semiconductor, a group II-VI semiconductor, and Si.
  • the light emitting stack may be grown on a nonconductive substrate (not shown) such as a sapphire substrate having a relatively low lattice mismatch. The non-conductive substrate (not shown) is later removed before the conductive substrate bonding.
  • the active layer 420 is a layer for activating light emission and is formed using a material having an energy band gap less than that of the second conductive semiconductor layer 410 and the first conductive semiconductor layer 430.
  • the active layer is formed using an InAlGaN-based compound semiconductor having an energy band gap smaller than that of GaN. 420 may be formed. That is, the active layer 420 may include In x Al y Ga (1-xy) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • the impurities are not doped due to the characteristics of the active layer 420, and the wavelength of light emitted by controlling the molar ratio of the constituent material may be adjusted. Therefore, the light emitting device 400 may emit light of any one of infrared rays, visible rays, and ultraviolet rays according to the characteristics of the active layer 420.
  • an energy well structure appears in the overall energy band diagram of the light emitting device 400, and electrons and holes from each of the semiconductor layers 430 and 410 move, trapping the energy well structure, and emitting light more. It occurs efficiently.
  • the partition portion 470 may be formed of at least a second conductive semiconductor layer 410 from the second surface of the light emitting stacks 430, 420, and 410 so that the light emitting stacks 430, 420, and 410 are separated into a plurality of light emitting regions. It extends to some areas.
  • the partition 470 separates the second conductive semiconductor layer 410 into a plurality of regions to form a growth substrate formed on the second conductive semiconductor layer 410 and the second conductive semiconductor layer 410 (not shown). In the case of applying a separation means such as a laser between the), the stress due to the thermal energy applied to the interface is reduced.
  • the temperature at the interface is about 1000 ° C.
  • stresses that induce shrinkage and expansion in the semiconductor layer and the conductive substrate 450 to be bonded later.
  • the magnitude of the stress is proportional to the area, such a stress may have a particularly adverse effect in a large area light emitting device.
  • the light emitting device 400 since the light emitting device 400 according to the present exemplary embodiment includes the partition wall portion 470, the area of the second conductive semiconductor layer 410 may be reduced by the area of the plurality of light emitting regions, thereby reducing stress. That is, expansion and contraction of each of the plurality of light emitting regions may be more easily performed to stabilize light emission of the light emitting stacks 430, 420, and 410.
  • the partition wall portion 470 electrically insulates the semiconductor layers 430 and 410 and the active layer 420 from which the partition wall portion may be filled with air.
  • the partition 470 may form an insulating layer on the inner surface, and the inside of the insulating layer may be filled with air.
  • electrical insulation may be performed by filling the entire interior with an insulating material such as a dielectric.
  • the partition 470 may extend from the second surface to the top surface of the second conductive semiconductor layer 410 in order to electrically insulate the light emitting stacks 430 and 410, but the second conductive semiconductor layer must be formed. It is not necessary to extend to the upper surface of the 410, it may extend to the inside of the second conductive semiconductor layer 410.
  • the partition wall portion 470 may be configured as a single structure, but may alternatively include a plurality of partition walls separated from each other.
  • the plurality of partition walls may be formed differently so as to provide the necessary electrical insulation characteristics.
  • the partition walls surrounding the bonding portion 461 and the partition walls surrounding the contact hole 462 may be different from each other. It may have a height or shape.
  • the second electrode structure 460 is formed to be connected to the second conductive semiconductor layer 410 located in the plurality of light emitting regions separated by the partition 470.
  • the second electrode structure 460 includes a contact hole 462, a bonding part 461, and a wiring part 463.
  • a plurality of contact holes 462 may be provided, and each of the plurality of contact holes 462 may be provided in each of the plurality of light emitting regions.
  • the contact hole 462 may be provided with a single contact hole in a single light emitting area or a plurality of contact holes in a single light emitting area.
  • the contact hole 462 is formed to be electrically connected to the second conductive semiconductor layer 410 and to be electrically insulated from the first conductive semiconductor layer 430 and the active layer 420. And extend from at least a portion of the second conductive semiconductor layer 410 to the second surface of the second conductive semiconductor layer 420 and 410.
  • the contact hole 462 is formed on the second conductive semiconductor layer 410 to disperse current.
  • the bonding part 461 is formed to be connected to at least one of the plurality of contact holes 462 from the first surface of the light emitting stacks 430, 420, and 410, and an area exposed to the first surface is provided as a bonding area. .
  • the wiring part 463 is provided on the second surface of the light emitting stacks 430, 420, and 410 and is electrically insulated from at least the first conductive semiconductor layer 430 and connected to the bonding part 461. ) And the other contact hole 462 are electrically connected to each other.
  • the wiring unit 463 may electrically connect the contact hole 462 and the other contact hole 462, and may also connect the contact hole 462 and the bonding unit 461.
  • the wiring part 463 may be disposed under the second conductive semiconductor layer 410 and the active layer to improve luminous efficiency.
  • the first electrode structure 440 is formed on the second surface of the light emitting stacks 430, 420, and 410 to be electrically connected to the first conductive semiconductor layer 430. That is, the first electrode structure 440 is an electrode that electrically connects the first conductive semiconductor layer 430 to an external power source (not shown).
  • the first electrode structure 440 may be made of metal.
  • the first electrode structure 440 may be formed of, for example, Ti as an n-type electrode and Pd or Au as a p-type electrode.
  • the first electrode structure 440 preferably reflects light generated from the active layer 420. Since the first electrode structure 440 is positioned below the active layer 420, the first electrode structure 440 is located on the opposite side to the light emitting direction of the light emitting device based on the active layer 420. Therefore, the light traveling from the active layer 420 to the first electrode structure 440 is in the opposite direction to the light emitting direction, and thus light must be reflected to increase the light emitting efficiency. Therefore, the light reflected from the first electrode structure 440 is directed toward the light emitting surface, and the light emitting efficiency of the light emitting device is increased.
  • the first electrode structure 440 is preferably a white-based metal in the visible light region.
  • the first electrode structure 420 may be any one of Ag, Al, and Pt.
  • the first electrode structure 440 will be further described below with reference to FIGS. 19A to 19C.
  • the conductive substrate 450 is formed on the second surface of the light emitting stacks 430, 420, and 410 to be electrically connected to the first electrode structure 440.
  • the conductive substrate 450 may be a metallic substrate or a semiconductor substrate.
  • the conductive substrate 450 may be formed of any one of Au, Ni, Cu, and W.
  • the conductive substrate 450 is a semiconductor substrate, it may be a semiconductor substrate of any one of Si, Ge, and GaAs.
  • a plating method of forming a plating seed layer to form a substrate or separately preparing a conductive substrate 450 and using a conductive adhesive such as Au, Au-Sn, or Pb-Sr Substrate joining can be used.
  • a bonding portion 461 is formed on a surface of the second conductive semiconductor layer 410, and the plurality of contact holes 462, which are indicated by dotted lines, of the second conductive semiconductor layer 410. It is located inside.
  • the second conductive semiconductor layer 410 includes a plurality of light emitting regions separated from each other by the partition 470.
  • 18A and 18B only one bonding unit 461 is illustrated, but a plurality of bonding units 461 may be formed in the same emission area, or a plurality of bonding areas 461 may be formed in each of the plurality of emission areas.
  • one contact hole 462 is formed in each light emitting area, a plurality of contact holes 462 may be formed in a single light emitting area to further improve current dispersion.
  • FIG. 18B illustrates the upper surface of the second conductive semiconductor layer 410 shown in FIG. 18A cut into A-A ', B-B', and C-C '.
  • A-A ' is a cross section including only the contact hole 462
  • B-B' is a cross section including the bonding portion 461 and the contact hole 462
  • C-C ' is a contact hole 462 And not including the bonding portion 461, but to take a cross section including only the wiring portion 463.
  • 19A to 19C are cross-sectional views taken along line A-A ', B-B', and C-C 'of the light emitting device shown in Fig. 18B, respectively.
  • a description will be given with reference to FIGS. 17, 18A, 18B, and 19A to 19C.
  • the contact hole 462 extends from the first electrode structure 440 to the inside of the second conductive semiconductor layer 410.
  • the contact hole 462 extends through the first conductive semiconductor layer 430 and the active layer 420 to the second conductive semiconductor layer 410, and extends to at least a portion of the second conductive semiconductor layer 410. However, it does not need to extend to the surface of the second conductive semiconductor layer 410 like the bonding portion 461. However, since the contact hole 462 is for distributing current to the second conductive semiconductor layer 410, the contact hole 462 should extend to the second conductive semiconductor layer 410.
  • the contact hole 462 Since the contact hole 462 is for distributing the current to the second conductive semiconductor layer 410, it must have a predetermined area. However, since it is not for electrical connection like the bonding portion 461, it is preferable that a predetermined number is formed on the second conductive semiconductor layer 410 with as small an area as possible to distribute the current uniformly. If the contact holes 462 are formed in too small a number, current dispersion becomes difficult, so that the electrical characteristics may be deteriorated. If the contact holes 462 are formed in a too small number, the light emitting area may be reduced due to difficulty in forming and reduction of the active layer. It may be appropriately selected in consideration of these conditions. Accordingly, the contact hole 462 is implemented in a shape in which current distribution is effective while occupying as little area as possible.
  • the contact hole 462 is preferably plural for current distribution.
  • the contact hole 462 may have a cylindrical shape, and the area of the cross section may be smaller than the area of the cross section of the bonding portion 461.
  • the bonding portion 461 may be formed to be spaced apart from the bonding portion 461.
  • the first conductive semiconductor layer may be spaced apart from the bonding portion 461 by a wiring portion 463 to be connected to each other on the first electrode structure 440. This is because uniform current distribution must be induced within 410.
  • the contact hole 462 is formed from the first electrode structure 440 to the inside of the second conductive semiconductor layer 410.
  • the contact hole 462 is for current distribution of the second conductive semiconductor layer, and thus the first conductive semiconductor layer 430 and It needs to be electrically separated from the active layer 420. Therefore, the first electrode structure 440, the first conductive semiconductor layer 430, and the active layer 420 may be electrically separated from each other. Electrical separation can be performed using an insulating material, such as a dielectric.
  • the bonding portion 461 starts with the first electrode structure 440 and passes through the first conductive semiconductor layer 430, the active layer 420, and the second conductive semiconductor layer 410 to form a second portion. It extends to the surface of the conductive semiconductor layer 410. It is formed to be connected to at least one of the plurality of contact holes 462 from the first surfaces of the light emitting stacks 430, 420, and 410, and an area exposed to the first surface is provided as a bonding region.
  • the bonding part 461 is particularly for connection with an external power source (not shown) of the second electrode structure 460
  • the second electrode structure 460 preferably includes at least one bonding part 461. .
  • the bonding portion 461 is electrically connected to an external power source on the surface of the second conductive semiconductor layer 410 to supply a current to the contact hole, the first electrode structure 440 and the second conductive semiconductor layer 410 are provided. , And are electrically isolated from the active layer 420. Electrical separation may be performed by forming an insulating layer using an insulating material such as a dielectric.
  • the bonding unit 461 may perform a function of supplying a current to the contact hole 462, but may be configured to not be electrically separated from the second conductive semiconductor layer 410 to directly distribute current.
  • the bonding unit 461 may include the second conductive semiconductor layer 410 in consideration of a function required to supply current to the contact hole 462 and a function of distributing current to the second conductive semiconductor layer 410. It can be suitably electrically separated.
  • the bonding portion 461 preferably has a cross-sectional area of the active layer 420 smaller than that of the cross-section of the surface of the second conductive semiconductor layer 410. This is to increase the luminous efficiency.
  • the bonding portion 461 preferably has a predetermined area on the surface of the second conductive semiconductor layer 410 for connection with an external power source (not shown).
  • the bonding part 461 may be positioned at the center of the light emitting device 400.
  • the contact hole 462 may be evenly distributed and spaced apart from the bonding part 461 as much as possible.
  • the bonding portion 461 and the contact hole 462 are evenly distributed on the second conductive semiconductor layer 410 to optimize current distribution.
  • FIG. 18A a case is illustrated in which one bonding portion 461 is one and eight contact holes 462 are shown.
  • each of the numbers is an electrical connection state (for example, an external power source) and a second conductive semiconductor. It may be appropriately selected in consideration of the current distribution situation, such as the thickness of the layer 410.
  • both the bonding portion 461 and the plurality of contact holes 462 may be directly connected.
  • a bonding portion 461 is formed at the center of the light emitting device 400, and a contact hole 462 is disposed around the wiring portion 463, and the wiring portion 463 radially directly connects the bonding portion 461 and the contact hole 462. Can be connected.
  • the bonding unit 461 may be indirectly connected. In this case, a larger number of contact holes 462 can be formed, thereby improving the efficiency of current dispersion.
  • the wiring part 463 is formed on the first electrode structure 440 to connect the bonding part 461 and the contact hole 462. Therefore, a substantial portion of the first electrode structure 440 is located at the rear surface opposite to the light traveling direction of the active layer 420 emitting the light, thereby increasing the luminous efficiency.
  • the wiring portion 463 is disposed on the first electrode structure 440, and the second electrode structure 460 is the second conductive semiconductor layer 410, the active layer 420, and the second conductive type. It is a state not located on the semiconductor layer 410. Therefore, in the case of FIG. 19C, the bonding portion 461 and the contact hole 462 do not affect the light emission, and thus the light emission efficiency is increased.
  • the wiring portion 463 is electrically separated from the first electrode structure 440.
  • the second electrode structure 460 and the first electrode structure 440 are electrodes having opposite polarities, so that external power is supplied to the second conductive semiconductor layer 410 and the first conductive semiconductor layer 430, respectively. Therefore, both electrodes must be electrically separated. Electrical separation may be performed by forming the insulating layer 480 using an insulating material such as a dielectric.
  • the bonding portion 461 since the bonding portion 461 is positioned on the surface of the second conductive semiconductor layer 410, the characteristics of the vertical light emitting device may be exhibited.
  • the wiring portion 463 may have the first electrode structure 440. Because it is located in the same plane as can represent the characteristics of the horizontal light emitting device. Therefore, the light emitting device 400 has a structure in which a horizontal type and a vertical type are integrated.
  • the first conductive semiconductor layer may be a p-type semiconductor layer, and the first electrode structure may be a p-type electrode portion.
  • the second conductive semiconductor layer 410 may be an n-type semiconductor layer
  • the second electrode structure 460 may be an n-type electrode.
  • the bonding part 461, the contact hole 462, and the wiring part 463 are second electrode structures 460 connected to each other.
  • an insulating material is used.
  • the insulating layer 480 may be formed to be electrically separated from the first electrode structure 440 which is a p-type electrode.
  • the outermost surface in the traveling direction of the emitted light includes the second conductive semiconductor layer 410. Therefore, it is easy to form an uneven
  • the uneven pattern 490 may have a photonic crystal structure.
  • Photonic crystals indicate that the media having different refractive indices are regularly arranged like crystals. Such photonic crystals can further adjust the light extraction effect by controlling light in units of lengths of multiples of the wavelength of light.
  • the photonic crystal structure may be performed through any suitable process after forming the second conductive semiconductor layer 410 and manufacturing the first electrode structure 460. For example, it may be formed by an etching process.
  • the barrier rib portion 470 is preferably not formed to the surface of the second conductive semiconductor layer 410 but only to the inside thereof.
  • the partition 470 serves to separate the light emitting area into a plurality of parts without adversely affecting the light extraction efficiency improvement performance of the uneven pattern 490.
  • FIGS. 21 through 25 A semiconductor light emitting device according to another exemplary embodiment of the present invention will be described with reference to FIGS. 21 through 25.
  • FIG. 21 is a perspective view of a semiconductor light emitting device according to still another embodiment of the present invention
  • FIG. 22 is a plan view of the semiconductor light emitting device of FIG. 21.
  • a description with reference to FIGS. 21 and 22 is as follows.
  • the semiconductor light emitting device 500 may include a first conductive semiconductor layer 511, an active layer 512, a second conductive semiconductor layer 513, a second electrode layer 520, and a first insulating layer 530. ), The first electrode layer 540 and the conductive substrate 550 are sequentially stacked.
  • the second electrode layer 520 includes a region where a part of the interface of the second conductive semiconductor layer 513 is exposed, and the first electrode layer 540 is electrically connected to the first conductive semiconductor layer 511.
  • the contact hole 541 is further included.
  • the semiconductor light emitting device 500 Since the light emission of the semiconductor light emitting device 500 is performed in the first conductive semiconductor layer 511, the active layer 512, and the second conductive semiconductor layer 513, these are referred to as light emitting stacks 510. That is, the semiconductor light emitting device 500 is electrically connected to the first electrode layer 540 and the second conductive semiconductor layer 513 which are electrically connected to the light emitting stack 510 and the first conductive semiconductor layer 511.
  • the second electrode layer 520 and the first insulating layer 530 for electrically insulating the electrode layers 520 and 540 are included.
  • the substrate for growing or supporting the semiconductor light emitting device 500 includes a conductive substrate 550.
  • the semiconductor layers 511 and 513 may include, for example, semiconductors such as GaN-based semiconductors, ZnO-based semiconductors, GaAs-based semiconductors, GaP-based semiconductors, and GaAsP-based semiconductors.
  • the formation of the semiconductor layer may be performed using, for example, a molecular beam epitaxy (MBE) method.
  • the semiconductor layers may be appropriately selected from the group consisting of a group III-V semiconductor, a group II-VI semiconductor, and Si.
  • the semiconductor layers 511 and 513 are doped with an appropriate impurity in consideration of the respective conductivity type to the semiconductor described above.
  • the active layer 512 is a layer that activates light emission and is formed using a material having an energy band gap less than that of the first conductive semiconductor layer 511 and the second conductive semiconductor layer 513.
  • the first conductive semiconductor layer 511 and the second conductive semiconductor layer 513 are GaN-based compound semiconductors
  • an InAlGaN-based compound semiconductor having an energy band gap smaller than that of GaN may be used.
  • the active layer 512 may be formed. That is, the active layer 512 may include In x Al y Ga (1-xy) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • the impurities are not doped due to the characteristics of the active layer 512, and the wavelength of light emitted by controlling the molar ratio of the constituent material may be adjusted. Therefore, the semiconductor light emitting device 500 may emit light of any one of infrared rays, visible rays, and ultraviolet rays according to the characteristics of the active layer 512.
  • the electrode layers 520 and 540 are layers for applying a voltage to the same conductive semiconductor layer, respectively, and may include metal in consideration of electrical conductivity. That is, the electrode layers 520 and 540 are electrodes that electrically connect the semiconductor layers 511 and 513 to an external power source (not shown).
  • the electrode layers 520 and 540 may include, for example, Ti as an n-type electrode and Pd or Au as a p-type electrode.
  • the first insulating layer 540 is connected to different conductive types.
  • the layers 530 are electrically separated from each other. Since the first insulating layer 530 is preferably made of a material having low electrical conductivity, the first insulating layer 530 may include an oxide such as SiO 2 .
  • the second electrode layer 520 preferably reflects light generated from the active layer 512. Since the second electrode layer 520 is located under the active layer 512, the second electrode layer 520 is located on the opposite side to the light emitting direction of the semiconductor light emitting device 500 based on the active layer 512. The light emitting efficiency of the semiconductor light emitting device 500 traveling from the active layer 512 to the second electrode layer 520 is opposite to that of the semiconductor light emitting device 500, and the light traveling toward the second electrode layer 520 is reflected. Therefore, when the second electrode layer 520 exhibits light reflectivity, the reflected light is directed toward the light emitting surface, and the light emitting efficiency of the semiconductor light emitting device 500 is increased.
  • the second electrode layer 520 is preferably a white-based metal in the visible light region.
  • the second electrode layer 520 may be any one of Ag, Al, and Pt.
  • the second electrode layer 520 includes a region where part of an interface with the second conductive semiconductor layer 513 is exposed.
  • the lower surface is in contact with the conductive substrate 550, and is electrically connected to an external power source (not shown) through the conductive substrate 550.
  • the second electrode layer 520 needs a separate connection area to be connected to an external power source (not shown). Therefore, the second electrode layer 520 has a portion of the light emitting stack 510 exposed by etching or the like.
  • FIG. 21 an embodiment of the via hole 514 formed by etching the center of the light emitting stack 510 for the exposed region of the second electrode layer 520 is illustrated.
  • the electrode pad part 560 may be further formed on the exposed area of the second electrode layer 520.
  • the second electrode layer 520 may be electrically connected to an external power source (not shown) through the exposed area.
  • the second electrode layer 520 is connected using the electrode pad part 560. Since the connection to the external power source (not shown) may use a wire, for example, the diameter of the via hole is preferably increased in the direction of the first conductive semiconductor layer from the second electrode layer.
  • the via hole 514 may be etched only through the light emitting stack 510 including the semiconductor, and the second electrode layer 520 including the metal may be selectively etched so as not to etch.
  • the diameter of the via hole 514 may be appropriately selected by those skilled in the art in consideration of light emitting area, electrical connection efficiency, and current dispersion in the second electrode layer 520.
  • the first electrode layer 540 is electrically connected to the first conductive semiconductor layer 511, is electrically insulated from the second conductive semiconductor layer 513 and the active layer 512, and is formed of the first conductive semiconductor layer ( One or more contact holes 541 extending to at least a portion of the region 511.
  • the first electrode layer 540 is a second electrode layer between the first electrode layer 540 and the second conductive semiconductor layer 513 to be connected to an external power source (not shown) of the first conductive semiconductor layer 511.
  • the first electrode layer 540 includes only one contact hole 541.
  • the first electrode layer 540 may include a plurality of contact holes 541 at predetermined positions to uniformly distribute currents transmitted to the first conductive semiconductor layer 511.
  • the conductive substrate 550 is formed in contact with the second electrode layer 520 and electrically connected thereto.
  • the conductive substrate 550 may be a metallic substrate or a semiconductor substrate.
  • the conductive substrate 550 may be made of any one of Au, Ni, Cu, and W.
  • the conductive substrate 550 is a semiconductor substrate, it may be a semiconductor substrate of any one of Si, Ge, and GaAs.
  • These conductive substrates 550 may be growth substrates, or may be a support substrate bonded after removing a non-conductive substrate after using a non-conductive substrate such as a sapphire substrate having a relatively low lattice mismatch as a growth substrate.
  • the conductive substrate 550 When the conductive substrate 550 is a support substrate, it may be formed using a plating method or a substrate bonding method.
  • a method of forming the conductive substrate 550 in the semiconductor light emitting device 500 may be performed by forming a plating seed layer to form a substrate, or by separately preparing the conductive substrate 550 to form Au, Au-Sn, or the like.
  • Substrate bonding methods that bond using a conductive adhesive such as Pb-Sr may be used.
  • a plan view of the semiconductor light emitting device 500 is illustrated.
  • the via hole 514 is formed on the upper surface of the semiconductor light emitting device 500, and the electrode pad part 560 is positioned in the exposed area formed in the second electrode layer 520.
  • the contact hole 541 is illustrated by a dotted line to indicate the position of the contact hole 541.
  • the first insulating layer 530 may extend around the contact hole 541 to be electrically separated from the second electrode layer 520, the second conductive semiconductor layer 513, and the active layer 512. This will be described later with reference to FIGS. 23B and 23C.
  • A-A ' is a cross section of the semiconductor light emitting device 500
  • B-B' is a cross section including a contact hole 541 and a via hole 514
  • C-C ' is a cross section including only a contact hole 541.
  • the contact hole 541 or the via hole 514 does not appear. Since the contact hole 541 is not connected through a separate connection line but electrically connected through the first electrode layer 540, it is not shown in the A-A cross section of FIG. 23.
  • the contact hole 541 extends from the interface of the first electrode layer 540 and the second electrode layer 520 to the inside of the first conductive semiconductor layer 511.
  • the contact hole 541 extends through the second conductive semiconductor layer 513 and the active layer 512 to the first conductive semiconductor layer 511, and at least the active layer 512 and the first conductive semiconductor layer 511. ) Extends to the interface. Preferably, it extends to a part of the first conductive semiconductor layer 511.
  • the contact hole 530 is for electrical connection and current distribution, the contact hole 530 does not need to extend to the outer surface of the first conductive semiconductor layer 511 because the contact hole 530 serves the purpose of contact with the first conductive semiconductor layer 5111. .
  • the contact hole 541 is to disperse the current in the first conductive semiconductor layer 511 and thus has a predetermined area.
  • the number of contact holes 530 is preferably formed on the first conductive semiconductor layer 511 in a small number as small as possible so that current can be uniformly distributed. If the contact holes 541 are formed in too small a number, current dispersion becomes difficult, so that the electrical characteristics may deteriorate. If the contact holes 541 are formed in a too small number, the light emitting area may be reduced due to difficulty in forming and reduction of the active layer. In consideration of these conditions, the number may be appropriately selected. Therefore, the contact hole 541 is implemented in a shape in which current distribution is effective while occupying as little area as possible.
  • the contact hole 541 is formed from the second electrode layer 520 to the inside of the first conductive semiconductor layer 511.
  • the contact hole 541 is used for current dispersion of the first conductive semiconductor layer, and thus the second conductive semiconductor layer 513 and the active layer are formed.
  • 512 needs to be electrically separated. Therefore, the second electrode layer 520, the second conductive semiconductor layer 513, and the active layer 512 may be electrically separated from each other. Therefore, the first insulating layer 530 may extend while surrounding the circumference of the contact hole 530. Electrical separation can be performed using an insulating material, such as a dielectric.
  • the exposed area of the second electrode layer 520 is an area for electrical connection with an external power source (not shown) of the second electrode layer 520.
  • the electrode pad part 560 may be located in the exposed area.
  • a second insulating layer 570 may be formed on the inner surface of the via hole 514 to electrically separate the light emitting stack 510 and the electrode pad part 560.
  • the semiconductor light emitting device 500 since the first electrode layer 540 and the second electrode layer 520 are disposed on the same plane, the semiconductor light emitting device 500 exhibits characteristics of the horizontal semiconductor light emitting device 500. Since the 560 is located on the surface of the first conductive semiconductor layer 511, the semiconductor light emitting device 500 may exhibit characteristics of the vertical semiconductor light emitting device. Therefore, the semiconductor light emitting device 500 has a structure in which a horizontal type and a vertical type are integrated.
  • the first conductive semiconductor layer 511 may be an n-type semiconductor layer
  • the first electrode layer 540 may be an n-type electrode
  • the second conductive semiconductor layer 513 may be a p-type semiconductor layer
  • the second electrode layer 520 may be a p-type electrode.
  • the second electrode layer 520, which is a p-type electrode may be electrically insulated with a first insulating layer 530 therebetween.
  • FIG. 24 is a diagram showing light emission in a semiconductor light emitting element having a concave-convex pattern formed on its surface according to the present embodiment. Description of the same components already described will be omitted.
  • the outermost surface in the traveling direction of the emitted light is composed of the first conductive semiconductor layer 511. Therefore, it is easy to form the uneven pattern 580 on the surface by using a known method such as a photolithography method. In this case, the light emitted from the active layer 512 is extracted through the uneven pattern 580 formed on the surface of the first conductive semiconductor layer 511 and the light extraction efficiency is increased by the uneven pattern 580.
  • the uneven pattern 580 may have a photonic crystal structure.
  • Photonic crystals indicate that the media having different refractive indices are regularly arranged like crystals. Such photonic crystals can further adjust the light extraction effect by controlling light in units of lengths of multiples of the wavelength of light.
  • FIG. 25 is a view illustrating a second electrode layer exposed at a corner in the semiconductor light emitting device according to the present embodiment.
  • the first conductive semiconductor layer 511 ', the active layer 512', the second conductive semiconductor layer 513 ', the second electrode layer 520', the insulating layer 530 ' Sequentially stacking the first electrode layer 540 'and the conductive substrate 550'; Forming a region in which a portion of an interface of the second electrode layer 520 'with the second conductive semiconductor layer 513' is exposed; And the first electrode layer 540 'is electrically connected to the first conductive semiconductor layer 511' and electrically insulated from the second conductive semiconductor layer 513 'and the active layer 512'. And forming one or more contact holes 541 'extending from one surface of the surface 540' to at least a portion of the first conductive semiconductor layer 511 '. Is provided.
  • the exposed region of the second electrode layer 520 ' is formed by forming a via hole 514' in the light emitting stack 510 '(see FIG. 21), or as shown in FIG. 25, the light emitting stack 510 ') Can be formed by mesa etching.
  • the same components as in the embodiment described with reference to FIG. 21 will be omitted.
  • one edge of the semiconductor light emitting device 500 ′ is mesa-etched. Etching is performed on the light emitting stacked structure 510 'so that the second electrode layer 520' is exposed at the interface side with the second conductive semiconductor layer 513 '. Therefore, the exposed region of the second electrode layer 520 'is formed at the corner of the semiconductor light emitting device 500'. If formed in the corner is a simpler process than the case of forming the via hole as in the above-described embodiment, the electrical connection process can also be easily performed later.
  • FIGS. 26 through 36 A semiconductor light emitting device according to another exemplary embodiment of the present invention will be described with reference to FIGS. 26 through 36.
  • FIG. 26 is a perspective view of a semiconductor light emitting device according to the present embodiment
  • FIG. 27 is a top plan view of the semiconductor light emitting device of FIG. 26
  • FIG. 28 is a cross-sectional view taken along line AA ′ of the semiconductor light emitting device shown in FIG. 27.
  • a description with reference to FIGS. 26 to 28 is as follows.
  • the first conductive semiconductor layer 611, the active layer 612, the second conductive semiconductor layer 613, the second electrode layer 620, and the insulating layer are sequentially stacked. 630, a first electrode layer 640, and a conductive substrate 650.
  • the first electrode layer 640 is electrically insulated from the second conductive semiconductor layer 613 and the active layer 612 so as to be electrically connected to the first conductive semiconductor layer 611.
  • At least one contact hole 641 extends from one surface of the substrate to at least a portion of the first conductivity-type semiconductor layer 611.
  • the first electrode layer 640 is not an essential component in this embodiment.
  • the first electrode layer may not be included, and the contact hole 641 may be formed from one surface of the conductive substrate. That is, the conductive line substrate 650 is electrically insulated from the second conductive semiconductor layer 113 and the active layer 112 so as to be electrically connected to the first conductive semiconductor layer 111. One or more contact holes 641 may extend from one surface of the substrate to at least a portion of the first conductivity-type semiconductor layer 611. In this case, the conductive substrate is electrically connected to an external power source (not shown), and a voltage is applied to the first conductive semiconductor layer through the conductive substrate.
  • the second electrode layer 620 is part of an interface with the second conductive semiconductor layer 613 by etching the first conductive semiconductor layer 611, the active layer 612, and the second conductive semiconductor layer 613. Includes an exposed region 614, and an etch stop layer 621 is formed in the exposed region 614.
  • the semiconductor light emitting device 600 may include a first electrode layer 640 and a second conductive semiconductor layer electrically connected to the light emitting stack 610 and the first conductive semiconductor layer 611 by a contact hole 641.
  • a second electrode layer 620 electrically connected to the 613, and an insulating layer 630 for electrically insulating the electrode layers 620 and 640.
  • a conductive substrate 650 is included to support the semiconductor light emitting device 600.
  • the first conductive type and the second conductive type semiconductor layers 611 and 613 are not limited thereto, for example, a semiconductor such as a GaN based semiconductor, a ZnO based semiconductor, a GaAs based semiconductor, a GaP based semiconductor, or a GaAsP based semiconductor. It may include a substance.
  • the semiconductor layers 611 and 613 may be appropriately selected from the group consisting of group III-V semiconductors, group II-VI semiconductors, and Si.
  • the semiconductor layers 611 and 613 may be doped with n-type impurities or p-type impurities in consideration of the respective conductivity types.
  • the active layer 612 is a layer that activates light emission and is formed using a material having an energy band gap smaller than that of the first conductive semiconductor layer 611 and the second conductive semiconductor layer 613.
  • the first conductivity-type semiconductor layer 611 and the second conductivity-type semiconductor layer 613 are GaN-based compound semiconductors
  • an InAlGaN-based compound semiconductor having an energy band gap smaller than that of GaN is used.
  • the active layer 612 may be formed. That is, the active layer 612 may include In x Al y Ga (1-xy) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • the semiconductor light emitting device 600 may emit light of any one of infrared rays, visible rays, and ultraviolet rays according to the characteristics of the active layer 612.
  • the first electrode layer 640 and the second electrode layer 620 are layers for applying a voltage to a semiconductor layer of the same conductivity type, respectively.
  • the semiconductor layers 611 and 613 are externally formed by the electrode layers 620 and 640. It is electrically connected to a power source (not shown).
  • the insulating layer 630 is preferably made of a material having low electrical conductivity.
  • the insulating layer 630 may include an oxide such as SiO 2 .
  • the first electrode layer 640 is electrically insulated from the second conductive semiconductor layer 613 and the active layer 612 in order to electrically connect the first conductive semiconductor layer 611 (the first electrode layer and the second electrode).
  • the insulating layer 630 positioned between the electrode layers may be formed to extend).
  • One or more contact holes 641 may extend to a portion of the first conductivity-type semiconductor layer 611.
  • the contact hole 641 extends through the second electrode layer 620, the insulating layer 630, and the active layer 612 to the first conductivity type semiconductor layer 611 and includes an electrode material.
  • the first electrode layer 640 and the first conductive semiconductor layer 611 are electrically connected to each other by the contact hole 641, and the first conductive semiconductor layer 611 is connected to an external power source (not shown).
  • the first electrode layer 640 may include one contact hole 641. However, the first electrode layer 640 may include one or more contact holes 641 at predetermined positions in order to uniformly distribute currents transmitted to the first conductive semiconductor layer 611.
  • the second electrode layer 620 is disposed below the active layer 612 and is positioned on a surface opposite to the light emitting direction of the semiconductor light emitting device 600 based on the active layer 612. Therefore, the light propagating toward the second electrode layer 620 should be reflected to increase the luminous efficiency.
  • the second electrode layer 620 is preferably a white series metal in the visible light region.
  • a white series metal for example, Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, It may include one or more of materials such as Zn, Pt, Au.
  • the second electrode layer 620 is part of an interface with the second conductive semiconductor layer 613 by etching the first conductive semiconductor layer 611, the active layer 612, and the second conductive semiconductor layer 613. Is exposed. An etch stop layer 621 is formed in the exposed region 614.
  • the first electrode layer 640 is in contact with the conductive substrate 650 disposed on the lower surface thereof so that the first electrode layer 640 can be connected to an external power source, while the second electrode layer 620 is a separate connection area for connection with an external power source (not shown). This is necessary. Accordingly, the second electrode layer 620 has an exposed region 614 at a portion of an interface with the second conductive semiconductor layer 613 by etching one region of the light emitting stack 610. As a result, the second conductivity-type semiconductor layer 613 is connected to an external power source (not shown) by the second electrode layer 620.
  • the area of the exposed area 614 may be appropriately selected by those skilled in the art in consideration of light emitting area, electrical connection efficiency, and current dispersion in the second electrode layer 620.
  • 27 to 29 illustrate embodiments in which the edges of the light emitting stack 610 are etched to expose the exposed areas 614 of the second electrode layer 620.
  • the exposed area 614 is etched only a part of the light emitting stack 610, and the second electrode layer 620 including a metal is usually performed by selective etching so as not to etch.
  • selective etching for etching one region of the light emitting stack 610 is difficult to control completely, so that some etching may be performed on the second electrode layer located on the bottom surface of the light emitting stack 610.
  • a metal material constituting the second electrode layer 620 is bonded to the second conductive semiconductor layer 613 to generate a leakage current. Therefore, the etch stop layer 621 is formed in the region of the second electrode layer 620 where the light emitting stack 610 is etched (the exposed region of the second electrode layer).
  • the etch stop layer 621 may prevent the metal constituting the second electrode layer 620 from being bonded to the side surface of the light emitting stack 610 to reduce the leakage current, and the etching may be easily performed.
  • the etch stop layer 621 is a material for suppressing the etching of the light emitting laminate 600.
  • the etch stop layer 621 is not limited thereto, such as silicon oxides such as SiO 2 , SiO x N y , Si x N y , and silicon nitride. It may be an insulating material.
  • the etch stop layer 621 does not necessarily need to be an insulating material, and even the conductive material does not affect the operation of the device. Therefore, the etch stop layer 621 may be appropriately selected from conductive materials as long as it can perform only the etch stop function.
  • an electrode pad part 660 may be formed in the exposed area 614 through the etch stop layer 621.
  • the electrode pad part is electrically connected to the second electrode layer through the etch stop layer 621. In this case, electrical connection between the second electrode layer 620 and an external power source (not shown) becomes easier.
  • the conductive substrate 650 is positioned on the lower surface of the first electrode layer 640, and is in contact with and electrically connected to the first electrode layer 640.
  • the conductive substrate 650 may be a metallic substrate or a semiconductor substrate.
  • the conductive substrate 650 may be formed of a material including any one of Au, Ni, Al, Cu, W, Si, Se, and GaAs, for example, an alloy form of Si and Al. In this case, depending on the selected material, the conductive substrate 650 may be formed by a method such as plating or bonding bonding.
  • the conductive substrate 650 may be a support substrate bonded by removing a sapphire substrate after using a sapphire substrate having a relatively low lattice mismatch as a growth substrate.
  • a top plan view of the semiconductor light emitting device 600 is illustrated. Although not shown on the top surface of the semiconductor light emitting device 600, the contact hole 641 is illustrated in dotted lines to indicate the position of the contact hole 641.
  • the contact hole 641 may have an insulating layer 630 extending around the second electrode layer 620, the second conductive semiconductor layer 613, and the active layer 612. This will be described below in detail with reference to FIG. 28.
  • FIG. 28 is a cross-sectional view taken along line AA ′ of the semiconductor light emitting device of FIG. 27.
  • A-A ' was chosen to take a cross section including contact hole 641 and exposed area 614.
  • the contact hole 641 passes through the second electrode layer 620, the second conductivity type semiconductor layer 613, and the active layer 612 from the interface of the first electrode layer 640 to form the first conductivity type semiconductor. Extends into layer 611. It extends at least to the interface between the active layer 612 and the first conductivity type semiconductor layer 611, preferably to a part of the first conductivity type semiconductor layer 611. However, since the contact hole 641 is for electrical connection and current distribution of the first conductive semiconductor layer 611, the first conductive semiconductor layer 611 is achieved by contacting the first conductive semiconductor layer 611. It does not have to extend to the outer surface of).
  • the contact hole 641 is intended to disperse current in the first conductivity-type semiconductor layer 611, and thus preferably has a predetermined area.
  • the contact holes 641 are preferably formed in a predetermined number on the first conductivity type semiconductor layer 611 with a small area as small as possible for the current to be uniformly distributed. If the contact holes 641 are formed in too small a number, current dispersion becomes difficult, and thus the electrical characteristics may deteriorate. If the contact holes 641 are formed in a too small number, the light emitting area may be reduced due to difficulty in forming and reduction of the active layer. The number may be appropriately selected. Accordingly, the contact hole 641 is implemented in a shape in which current distribution is effective while occupying as little area as possible.
  • the contact hole 641 is formed from the first electrode layer 640 to the inside of the first conductivity-type semiconductor layer 611.
  • the contact hole 641 is used for current distribution of the first conductivity-type semiconductor layer, and thus the second conductivity-type semiconductor layer 613 and the active layer. It is necessary to be electrically separated from 612.
  • the insulating layer 630 may extend while surrounding the circumference of the contact hole 641.
  • the second electrode layer 620 includes a region 614 in which part of an interface with the second conductive semiconductor layer 613 is exposed, which is an external power source (not shown) of the second electrode layer 620. This is the area for electrical connection with.
  • An etch stop layer 621 is formed in the exposed region 614.
  • the electrode pad part 660 may be electrically connected to the second electrode layer 620 through the etch stop layer 621.
  • an insulating layer 670 may be formed on an inner side surface of the exposed area 614 to electrically separate the light emitting stack 610 and the electrode pad part 660.
  • the semiconductor light emitting device 600 since the first electrode layer 640 and the second electrode layer 620 are located on the same plane, the semiconductor light emitting device 600 exhibits characteristics of a horizontal semiconductor light emitting device, and the electrode pad part 660 is formed of the first conductive layer. Since the semiconductor light emitting device 600 is positioned on the surface of the semiconductor device 611, the semiconductor light emitting device 600 may exhibit characteristics of the vertical semiconductor light emitting device. Therefore, the semiconductor light emitting device 600 has a structure in which a horizontal type and a vertical type are integrated.
  • FIG. 29 to 31 show a semiconductor light emitting device according to another embodiment
  • FIG. 29 is a perspective view of the semiconductor light emitting device
  • FIG. 30 is a top plan view
  • FIG. 31 is A-A of the semiconductor light emitting device shown in FIG. 'It's a cross section from the line.
  • 29 to 31 show that the center of the light emitting stack 710 is etched so that a part of the exposed region 714 of the interface of the second electrode layer 720 with the second conductive semiconductor layer is located at the center. Description of the same components already described will be omitted.
  • a portion of the etch stop layer 721 formed in the exposed region may be removed to be electrically connected to an external power source (not shown), and may be electrically connected to the second electrode layer 720 through the etch stop layer 721.
  • the electrode pad part 760 may be included. Since the connection to an external power source (not shown) may use a wire, the exposure area 714 is preferably formed to increase in the direction of the first conductive semiconductor layer from the second electrode layer for convenience of connection.
  • FIG. 32 and 33 show a modification of the semiconductor light emitting device according to the present embodiment
  • FIG. 32 is a perspective view of the semiconductor light emitting device
  • FIG. 33 is a side cross-sectional view of the semiconductor light emitting device.
  • the top plan view of the semiconductor light emitting device is similar to that of FIG. 27, and
  • FIG. 33 is a cross-sectional view taken along line A-A 'similarly to FIG. 28. Description of the same components already described will be omitted.
  • the second electrode layer is exposed to the etching of the light emitting stack 610 ′, and the etch stop layer 621 ′ formed in the exposed region is the second conductive semiconductor layer 613 ′. And to the side of the active layer 612 '. In this case, not only the metal material of the second electrode layer is prevented from being bonded to the semiconductor side during the etching of the first conductivity-type semiconductor layer 611 'as described above, but also the active layer 612' is protected. You can get the effect.
  • FIGS. 26 to 28 are cross-sectional views illustrating a method of manufacturing a semiconductor light emitting device according to the present embodiment, and more specifically, illustrates a method of manufacturing the semiconductor light emitting device shown in FIGS. 26 to 28.
  • the first conductive semiconductor layer 611, the active layer 612, the second conductive semiconductor layer 613, and the second electrode layer 620 are sequentially disposed on the non-conductive substrate 680. Laminated by.
  • the lamination of the semiconductor layer and the active layer may use a known process.
  • an organometallic vapor deposition method MOCVD
  • MBE molecular beam growth method
  • HVPE hybrid vapor deposition method
  • the non-conductive substrate 680 may use a sapphire substrate that is easy to grow a nitride semiconductor layer.
  • an etch stop layer 621 is exposed to an area to be exposed by etching the first conductive semiconductor layer 611, the active layer 612, and the second conductive semiconductor layer 613. It is laminated while forming.
  • a first electrode layer 640 may be formed between the insulating layer 630 and the conductive substrate 650.
  • the conductive substrate 650 is electrically insulated from the second conductive semiconductor layer 613 and the active layer 612 so as to be electrically connected to the first conductive semiconductor layer 611. And at least one contact hole 641 extending from one surface of the first conductive semiconductor layer 611 to a partial region of the first conductivity type semiconductor layer 611.
  • the contact hole 641 is formed from one surface of the first electrode layer 640. do. That is, the first electrode layer 640 is electrically insulated from the second conductivity type semiconductor layer 613 and the active layer 612 so as to be electrically connected to the first conductivity type semiconductor layer 611.
  • One or more contact holes 641 extending from one surface of the electrode layer 640 to a portion of the first conductivity-type semiconductor layer 611 are formed.
  • the contact hole 641 is for current distribution of the first conductive semiconductor layer 611, the contact hole 641 needs to be electrically separated from the second conductive semiconductor layer 613 and the active layer 612.
  • the insulating layer 630 may extend while surrounding the circumference of the contact hole 641.
  • the non-conductive substrate 680 is removed, and the first conductive semiconductor layer 611, the active layer 612, and the second conductive semiconductor layer 613 are removed.
  • the exposed region 614 is formed at a part of the interface between the second electrode layer 620 and the second conductive semiconductor layer 613 by etching one region of the substrate.
  • the exposed region 614 may be etched only a part of the light emitting stack 610, and the second electrode layer 620 including the metal may be selectively etched so as not to be etched.
  • the selective etching for etching one region of the light emitting stack 610 is difficult to control completely, so that some etching may be performed on the second electrode layer 620 located on the bottom surface of the light emitting stack 610.
  • the etching may be easily performed by forming the etching lower layer 621 in the region where the etching is performed.
  • the metal of the second electrode layer 620 may be prevented from being bonded to the side surface of the light emitting stack 610, thereby reducing the leakage current.
  • one region of the etch stop layer 621 may be removed to connect the second electrode layer 620 to an external power source.
  • the electrode pad part 660 may be formed in the region where the etch stop layer 621 is removed.
  • the insulating layer 670 may be formed on the inner surface of the light emitting stack where the etching is performed to electrically separate the light emitting stack 610 and the electrode pad part 660.
  • FIG. 34 illustrates an example in which an exposed area 614 of the second electrode layer 620 is formed at an edge by etching one edge of the light emitting stack 610.
  • a semiconductor light emitting device having a shape as shown in FIG. 29 may be manufactured.
  • FIG. 35 is a cross-sectional view illustrating a method of manufacturing a semiconductor light emitting device according to a modification of the present embodiment, and more specifically, illustrates a method of manufacturing the semiconductor light emitting device shown in FIGS. 32 and 33.
  • the same components as those of the embodiment described with reference to FIG. 34 will be omitted.
  • the first conductive semiconductor layer 611 ′, the active layer 612 ′, the second conductive semiconductor layer 613 ′, and the second electrode layer (not shown) on the non-conductive substrate 680 ′. 620 ') are sequentially stacked.
  • the second electrode layer 620 ' is an etch stop layer 621 in a region to be exposed by etching the first conductive semiconductor layer 611', the active layer 612 ', and the second conductive semiconductor layer 613'. Are stacked while forming ').
  • the second conductive semiconductor layer 621 ′, the active layer 612 ′, and the first conductive semiconductor are formed.
  • One region of the layer 613 ' is first etched first.
  • An etch stop layer 621 ′ is formed on the second conductive semiconductor layer 613 ′, the active layer 612 ′, and the first conductive semiconductor layer 611 ′ which are exposed by being primarily etched.
  • an insulating layer 630 ′, a first electrode layer 640 ′, and a conductive substrate 650 ′ are formed on the second electrode layer 620 ′.
  • the first electrode layer 640 ' is electrically connected to the second conductive semiconductor layer 613' and the active layer 612 'so as to be electrically connected to the first conductive semiconductor layer 611'.
  • at least one contact hole 641 ' extending from one surface of the first electrode layer 640' to a partial region of the first conductivity-type semiconductor layer 611 '.
  • the contact hole 641 ′ is for current distribution of the first conductive semiconductor layer 611 ′, and thus, the contact hole 641 ′ needs to be electrically separated from the second conductive semiconductor layer 613 ′ and the active layer 612 ′. have. Therefore, the insulating layer 630 ′ may extend while surrounding the circumference of the contact hole 641 ′.
  • an exposed region 614 ′ is formed on the second electrode layer 610 ′ so that a part of an interface with the second conductive semiconductor layer is exposed.
  • the nonconductive substrate 680 ' is removed, and the first conductive semiconductor layer 611' is etched.
  • the exposed region 614 ′ may be formed only by etching the first conductive semiconductor layer.
  • an etch stop layer 621 ′ is formed in the exposed region 614 ′ of the second electrode layer 620 ′ when the light emitting stack 610 ′ is etched, so that etching may proceed easily.
  • only the etching of the first conductivity-type semiconductor layer 611 ′ is performed due to the primary etching performed in FIG. 35A, thereby protecting the active layer.
  • one region of the etch stop layer 621 ′ formed on the exposed region 614 ′ may be removed to connect the second electrode layer 620 ′ to the external power source.
  • the electrode pad part 660 ′ may be formed in the region where the etch stop layer 621 ′ is removed to be electrically connected to the second electrode layer.
  • an insulation layer for electrically separating the electrode pad portion 660 ′ is not required.
  • the conductive substrates 650, 650 ′, 750 are electrically connected to the first lead frame, and the electrode pad parts 660, 660 ′ are mounted.
  • 760 is electrically connected to the second lead frame through a wire or the like.
  • the die bonding type and the wire bonding type can be used in combination, so that the luminous efficiency can be guaranteed to the maximum, and the process can be performed at a relatively low cost.
  • the semiconductor light emitting device 600 ′′ according to the present modification includes the first conductive semiconductor layer 611 ′′, the active layer 612 ′′, and the second stacked sequentially as in the previous embodiment.
  • a passivation layer 670 ′′ having an uneven structure is added, and the elements described in the same terms are described in the previous embodiment, so only the passivation layer 670 ′′ will be described.
  • the passivation layer 670 ′′ is defined as a light emitting structure, a structure including a first conductivity type semiconductor layer 611 ′′, an active layer 612 ′′ and a second conductivity type semiconductor layer 613 ′′, It is formed to cover the side of the light emitting structure, thereby, in particular, serves to protect the active layer 612 ''.
  • the passivation layer 670 ′′ may be formed on the upper surface of the light emitting structure besides the side surface of the light emitting structure, and may also be formed on the etch stop layer 620 ′′.
  • the passivation layer 670 ′′ may be formed of silicon oxide or silicon nitride such as SiO 2 , SiO x N y , Si x N y, etc. to perform a protective function of the light emitting structure, and the thickness thereof may be about 0.1 ⁇ m to 2 ⁇ m. desirable. Accordingly, the passivation layer 670 ′′ has a refractive index of about 1.4 to 2.0, and it is difficult for the light emitted from the active layer 670 ′′ to escape to the outside due to the difference in refractive index between the mold structure of the air or the package. Can be. In the present embodiment, an uneven structure is formed in the passivation layer 670 ′′ to improve external light extraction efficiency. In particular, as shown in FIG.
  • the active layer 612 ′′ is emitted toward the side of the active layer 612 ′′.
  • the amount of light emitted to the side surface of the semiconductor light emitting device 600 ′′ may increase.
  • about 5% or more of light extraction is performed. The efficiency improvement effect was shown.
  • the uneven structure of the passivation layer 670 ′′ is also formed in a region corresponding to the top surface of the first conductivity type semiconductor layer 611 ′′ to improve the vertical light extraction efficiency. In addition, it may be formed on the side of the passivation layer 670 ′′.
  • a semiconductor light emitting device according to another exemplary embodiment of the present invention will be described with reference to FIGS. 37 to 57.
  • FIG. 37 is a perspective view schematically showing a semiconductor light emitting element according to the present embodiment.
  • FIG. 38 is a schematic plan view of the semiconductor light emitting device viewed from above based on FIG. 37
  • FIG. 39 is a schematic cross-sectional view of the semiconductor light emitting device of FIG. 37 taken along line AA ′ of FIG. 38. 37 to 39
  • a first conductive contact layer 804 is formed on a conductive substrate 807
  • a first conductive contact layer 804 is formed on the conductive substrate 807.
  • a light emitting structure that is, a structure including a first conductive semiconductor layer 803, an active layer 802, and a second conductive semiconductor layer 801 is formed.
  • the high resistance portion 808 is formed on the side surface of the light emitting structure, and as will be described later, the high resistance portion 808 may be obtained by implanting ions into the side surface of the light emitting structure.
  • the first conductive contact layer 804 is electrically separated from the conductive substrate 807, and an insulator 806 is interposed between the first conductive contact layer 804 and the conductive substrate 807.
  • the first and second conductivity-type semiconductor layers 803 and 801 may be p-type and n-type semiconductor layers, respectively, and may be formed of a nitride semiconductor. Therefore, the present invention is not limited thereto, but in the present embodiment, the first and second conductivity types may be understood to mean p-type and n-type, respectively.
  • the first and second conductivity-type semiconductor layers 803 and 801 are Al x In y Ga (1-xy) N composition formulas, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and 0 ⁇ x + y ⁇ 1. ), For example, GaN, AlGaN, InGaN, and the like may correspond to this.
  • the active layer 802 formed between the first and second conductivity type semiconductor layers 803 and 801 emits light having a predetermined energy by recombination of electrons and holes, and the quantum well layer and the quantum barrier layer alternate with each other. It may be made of a multi-quantum well (MQW) structure stacked. In the case of a multi-quantum well structure, for example, an InGaN / GaN structure may be used.
  • MQW multi-quantum well
  • the first conductive contact layer 804 may reflect the light emitted from the active layer 802 toward the upper portion of the semiconductor light emitting device 800, that is, the second conductive semiconductor layer 801. Furthermore, it is preferable to form an ohmic contact with the first conductivity type semiconductor layer 803.
  • the first conductivity type contact layer 804 may include a material such as Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, and the like. In this case, although not shown in detail, the first conductivity type contact layer 804 may be adopted in two or more layers to improve reflection efficiency.
  • a portion of the first conductivity type contact layer 104 may be exposed to the outside, and as shown, the exposed area may be a region where the light emitting structure is not formed.
  • the exposed region of the first conductivity type contact layer 804 corresponds to an electrical connection portion for applying an electrical signal, and an electrode pad 805 may be formed thereon.
  • the conductive substrate 807 serves as a support for supporting the light emitting structure in a process such as laser lift-off, and performs any one of Au, Ni, Al, Cu, W, Si, Se, and GaAs. It may be made of a material comprising, for example, an alloy in the form of Si and Al. In this case, depending on the material selected, the conductive substrate 807 may be formed by a method such as plating or bonding bonding. In the present embodiment, the conductive substrate 807 is electrically connected to the second conductive semiconductor layer 801, and thus an electrical signal is applied to the second conductive semiconductor layer 801 through the conductive substrate 807. Can be applied. For this purpose, as illustrated in FIGS. 39 and 40, the conductive via v extending from the conductive substrate 807 and connected to the second conductive semiconductor layer 801 needs to be provided.
  • the conductive vias v are connected to the second conductive semiconductor layer 801 and therein, and the number, shape, pitch, and contact area of the second conductive semiconductor layer 801 are appropriately adjusted so that the contact resistance is lowered. Can be.
  • the conductive via v needs to be electrically separated from the active layer 802, the first conductivity type semiconductor layer 803, and the first conductivity type contact layer 804.
  • An insulator 806 is formed therebetween.
  • the insulator 806 may be any object having electrical insulation, but it is preferable to absorb light to a minimum, so that silicon oxide such as SiO 2 , SiO x N y , Si x N y , or silicon nitride may be used.
  • silicon oxide such as SiO 2 , SiO x N y , Si x N y , or silicon nitride may be used.
  • silicon oxide such as SiO 2 , SiO x N y , Si x N y , or silicon nitride may be used
  • the conductive substrate 807 is connected to the second conductivity-type semiconductor layer 801 by a conductive via (v), and the electrode is separately formed on the upper surface of the second conductivity-type semiconductor layer 801.
  • the amount of light emitted to the upper surface of the second conductivity-type semiconductor layer 801 may be increased.
  • conductive vias (v) are formed in a portion of the active layer 802 to reduce the light emitting area, the light extraction efficiency improvement effect obtained by eliminating the electrode on the upper surface of the second conductive semiconductor layer 801 is further improved. It can be said to be large.
  • the overall electrode arrangement may be considered to be similar to the horizontal electrode structure rather than the vertical electrode structure.
  • the current dispersion effect may be sufficiently ensured by the conductive vias v formed in the second conductive semiconductor layer 801.
  • the high resistance portion 808 is formed on the side surface of the light emitting structure, and serves to protect the light emitting structure, in particular, the active layer 802 from the outside, thereby improving the electrical reliability of the device. Since the active layer 802 exposed to the outside may act as a current leakage path during the operation of the semiconductor light emitting device 800, current leakage may be prevented by forming a high resistance portion 808 having a relatively high electrical resistance on the side of the light emitting structure. It can prevent. In this case, the high resistance portion 808 may be formed by ion implantation. Specifically, when ions accelerated by a particle accelerator or the like are injected into the light emitting structure, the semiconductor layer constituting the light emitting structure suffers crystal damage and thus uses a principle of increasing resistance.
  • the implanted ions can be recovered by heat treatment, it is preferable to use ions having a relatively large particle size so as not to be recovered at a general heat treatment temperature of the semiconductor layer.
  • ions of atoms such as Ar, C, N, Kr, Xe, Cr, O, Fe, Ti may be used as ions implanted into the light emitting structure.
  • FIG. 40 and 41 are cross-sectional views schematically illustrating a semiconductor light emitting device according to an embodiment modified from the embodiment of FIG. 37.
  • the side surface of the light emitting structure is formed to be inclined toward the first conductive type contact layer 804.
  • This inclined shape of the light emitting structure may be naturally formed by a process of etching the light emitting structure to expose the first conductivity type contact layer 804, as will be described later.
  • the semiconductor light emitting device 800-2 of FIG. 41 has a structure in which the unevenness is formed on the upper surface of the light emitting structure, specifically, on the upper surface of the second conductive semiconductor layer 801 in the embodiment of FIG.
  • a first conductive type contact layer 904 is formed on the conductive substrate 907 and the first conductive type contact layer is formed as in the previous embodiment.
  • a light emitting structure that is, a structure including a first conductivity type semiconductor layer 903, an active layer 902, and a first conductivity type semiconductor layer 901 is formed.
  • the high resistance portion 908 is formed on the side surface of the light emitting structure by ion implantation.
  • the conductive substrate 907 is electrically connected to the first conductive semiconductor layer 903 instead of the second conductive semiconductor layer 901. Therefore, the first conductivity type contact layer 904 is not necessarily required. In this case, the first conductivity type semiconductor layer 903 and the conductive substrate 907 may be in direct contact with each other.
  • the second conductive semiconductor layer 901 and the conductive vias v connected therein pass through the active layer 902, the first conductive semiconductor layer 903, and the first conductive contact layer 904 to form a second layer. It is connected to the conductive electrode 909.
  • the second conductivity type electrode 909 extends from the conductive via v in the lateral direction of the light emitting structure and has an electrical connection exposed to the outside, and an electrode pad 905 may be formed in the electrical connection.
  • the second conductive electrode 909 and the conductive via v are electrically connected to the active layer 902, the first conductive semiconductor layer 903, the first conductive contact layer 904, and the conductive substrate 907.
  • An insulator 906 is formed to be separated.
  • FIG. 43 is a plan view schematically illustrating a semiconductor light emitting device according to still another embodiment
  • FIG. 44 is a schematic cross-sectional view taken along the line BB ′ of the semiconductor light emitting device of FIG. 43.
  • the first conductive contact layer 804 ′ is formed on the conductive substrate 807 ′
  • the first conductive contact is formed in the semiconductor light emitting device 800 ′ according to the present embodiment.
  • a light emitting structure that is, a structure including a first conductive semiconductor layer 803', an active layer 802 ', and a first conductive semiconductor layer 801' is formed.
  • a high resistance portion 808 ' is formed by ion implantation.
  • the first conductive contact layer 804 ' is electrically separated from the conductive substrate 807', and an insulator 806 is formed between the first conductive contact layer 804 'and the conductive substrate 807'. ') Is intervened.
  • the light emitting structure is divided into a plurality of pieces on the conductive substrate 807 '.
  • the light scattering effect may be increased by the structure in which the light emitting structure is divided, thereby improving the light extraction efficiency.
  • the light emitting structure may be implemented in a hexagonal shape when viewed from the top, as shown in FIG. 43, in order to secure a sufficient external area.
  • the divided light emitting structures are preferably arranged in close contact with each other.
  • the etching process is performed to divide the light emitting structure, it is necessary to protect the side surface of the light emitting structure, so that the high resistance portion 808 'is formed on each side of the divided light emitting structure by ion implantation. It is preferable.
  • 45 to 53 are cross-sectional views for each process for explaining the method for manufacturing the semiconductor light emitting device according to the present embodiment. Specifically, the method corresponds to a method of manufacturing a semiconductor light emitting device having the structure described with reference to FIGS. 37 to 39.
  • the second conductive semiconductor layer 801, the active layer 802, and the first conductive semiconductor layer 803 are disposed on the semiconductor growth substrate B such as MOCVD, MBE, HVPE, or the like.
  • a light emitting structure is formed by sequentially growing using a semiconductor layer growth process.
  • the semiconductor growth substrate B a substrate made of a material such as sapphire, SiC, MgAl 2 O 4 , MgO, LiAlO 2 , LiGaO 2 , GaN, or the like may be used.
  • the sapphire is a Hexa-Rhombo R3c symmetric crystal and the lattice constants of c-axis and a-direction are 13.001 13.
  • C (0001) plane, A (1120) plane, R 1102 surface and the like are mainly used as a nitride growth substrate because the C surface is relatively easy to grow and stable at high temperatures.
  • a first conductivity type contact layer 804 is formed on the first conductivity type semiconductor layer 803.
  • the first conductive contact layer 804 is formed of Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, in consideration of the light reflection function and the ohmic contact function with the first conductive semiconductor layer 803. It may be formed to include a material such as Au, and may be suitably used a process such as sputtering or vapor deposition known in the art.
  • grooves are formed in the first conductivity type contact layer 804 and the light emitting structure.
  • the groove is for forming a conductive via connected to the second conductive semiconductor layer 801 by filling a conductive material in a subsequent process.
  • the first conductive contact layer 804 and the first conductive semiconductor layer The second conductive semiconductor layer 801 penetrates through 803 and the active layer 802 and is exposed to the bottom surface. 47 may also be performed using an etching process known in the art, for example, ICP-RIE.
  • an insulator such as SiO 2 , SiO x N y , Si x N y
  • an insulator such as SiO 2 , SiO x N y , Si x N y
  • the insulator 806 is preferably formed in a range not covering the entire bottom of the groove.
  • a conductive material is formed on the inside of the groove and the insulator 806 to form a conductive via v and a conductive substrate 807.
  • the conductive substrate 807 has a structure connected to the conductive via v connected to the second conductive semiconductor layer 801.
  • the conductive substrate 807 may be made of a material including any one of Au, Ni, Al, Cu, W, Si, Se, and GaAs, and may be appropriately formed by a process such as plating, sputtering, and deposition.
  • the conductive via v and the conductive substrate 807 may be formed of the same material.
  • the conductive via v may be formed of a different material from the conductive substrate 807 and may be formed in separate processes. It may be. For example, after the conductive via v is formed by a deposition process, the conductive substrate 807 may be previously formed and bonded to the light emitting structure.
  • FIG. 50 is a diagram illustrating a state in which the semiconductor growth substrate B is removed and rotated 180 ° as compared with FIG. 49.
  • the light emitting structure that is, the first conductive semiconductor layer 803, the active layer 802, and the second conductive semiconductor layer 801 may be partially removed to remove the first conductive type contact.
  • Expose layer 804. This is for applying an electrical signal through the exposed first conductive contact layer 804.
  • the process of removing the light emitting structure may also be used to divide the light emitting structure into a plurality as described above.
  • a process of forming an electrode pad on an exposed area of the first conductive contact layer 804 may be added.
  • the light emitting structure may be etched by ICP-RIE.
  • the etch stop layer 809 in the light emitting structure may be formed in advance.
  • a high resistance portion 808 having electrical insulation is formed on the side surface of the light emitting structure.
  • the high resistance portion 808 corresponds to a region where the crystal is damaged by ions implanted into the side surface of the semiconductor layer constituting the light emitting structure.
  • the implanted ions can be recovered by heat treatment, it is preferable to use ions having a relatively large particle size so as not to be recovered at a general heat treatment temperature of the semiconductor layer.
  • ions of atoms such as Ar, C, N, Kr, Xe, Cr, O, Fe, Ti may be used as ions implanted into the light emitting structure.
  • FIGS. 45 to 47 are cross-sectional views for each step for describing a method for manufacturing a semiconductor light emitting device according to still another embodiment. Specifically, this corresponds to the method of manufacturing the semiconductor light emitting device having the structure described with reference to FIG. 42. In this case, the process described with reference to FIGS. 45 to 47 can be adopted as it is in this embodiment. Hereinafter, a subsequent process of forming a groove in the first conductive contact layer 904 and the light emitting structure will be described.
  • an insulator 906 is formed to deposit a material such as SiO 2 , SiO x N y , Si x N y , and so on to cover the top of the first conductivity-type contact layer 904 and the sidewall of the groove. ).
  • the insulator 906 may be referred to as a first insulator to distinguish it from an insulator formed to cover the second conductivity type electrode 909 in a subsequent process.
  • the insulator 906 is not formed on the entire upper surface of the first conductivity type contact layer 904 because the conductive substrate 907 and the first conductivity type contact layer 904 must be connected. to be.
  • the insulator 906 is formed in advance on a portion of the upper surface of the first conductive type contact layer 904, specifically, a region in which the second conductive type electrode 909 connected to the second conductive type semiconductor layer 901 is to be formed. It may be formed in consideration.
  • the conductive material is formed on the inside of the groove and the insulator 906 to form the second conductive electrode 909.
  • the second conductivity type electrode 909 may include conductive vias v connected to the second conductivity type semiconductor layer 901.
  • the insulator 906 is formed in advance to correspond to the region where the second conductivity type electrode 909 is to be formed, and thus the second conductivity type electrode 909 may be formed, and in particular, exposed to the outside. And extend in the horizontal direction from the conductive via v to serve as an electrical connection.
  • the insulator 906 is formed to cover the second conductivity type electrode 909 and the conductive substrate 907 is electrically connected to the first conductivity type contact layer 904 thereon.
  • the insulator 906 formed in this process may be referred to as a second insulator, and may form one insulation structure together with the insulator previously formed.
  • the second conductivity type electrode 909 may be electrically separated from the first conductivity type contact 9204, the conductive substrate 907, and the like.
  • the semiconductor growth substrate B is removed to expose the second conductivity-type semiconductor layer 901.
  • the process of exposing the second conductive electrode 909 by partially removing the light emitting structure and forming the high resistance portion 908 by ion implantation on the side of the light emitting structure may be performed by the process described above. Will be available.
  • a semiconductor light emitting device according to another exemplary embodiment of the present invention will be described with reference to FIGS. 58 to 77.
  • FIG. 58 is a perspective view schematically showing a semiconductor light emitting element according to the present embodiment.
  • FIG. 59 is a schematic plan view of the second conductive semiconductor layer of the semiconductor light emitting device as viewed from above, and
  • FIG. 60 is a schematic cross-sectional view of the semiconductor light emitting device of FIG. 58 taken along line AA ′ of FIG. 59. to be.
  • a first conductive contact layer 1004 is formed on a conductive substrate 1007, and a light emitting structure, that is, a first conductive layer, is formed on the first conductive contact layer 1004.
  • a structure including the type semiconductor layer 1003, the active layer 1002, and the first conductivity type semiconductor layer 1001 is formed.
  • An undoped semiconductor layer 1008 is formed on the first conductive semiconductor layer 1001, and the undoped semiconductor layer 1008 is provided with irregularities on its upper surface to improve the external extraction efficiency of light emitted from the active layer 1002. You can.
  • the first conductive contact layer 1004 is electrically separated from the conductive substrate 1007, and an insulator 1006 is interposed between the first conductive contact layer 1004 and the conductive substrate 1007.
  • the first and second conductivity-type semiconductor layers 1003 and 1001 may be p-type and n-type semiconductor layers, respectively, and may be formed of a nitride semiconductor. Therefore, the present invention is not limited thereto, but in the present embodiment, the first and second conductivity types may be understood to mean p-type and n-type, respectively.
  • the first and second conductivity type semiconductor layers 1003 and 1001 are Al x In y Ga (1-xy) N composition formulas, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and 0 ⁇ x + y ⁇ 1. ), For example, GaN, AlGaN, InGaN, and the like may correspond to this.
  • the active layer 1002 formed between the first and second conductive semiconductor layers 1003 and 1001 emits light having a predetermined energy by recombination of electrons and holes, and the quantum well layer and the quantum barrier layer alternate with each other. It may be made of a multi-quantum well (MQW) structure stacked. In the case of a multi-quantum well structure, for example, an InGaN / GaN structure may be used.
  • MQW multi-quantum well
  • the first conductive contact layer 1004 may reflect the light emitted from the active layer 1002 toward the upper portion of the semiconductor light emitting device 1000, that is, the second conductive semiconductor layer 1001. Furthermore, it is preferable to form an ohmic contact with the first conductivity type semiconductor layer 1003.
  • the first conductivity-type contact layer 1004 may include materials such as Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, and the like.
  • the first conductivity type contact layer 1004 may have a structure of two or more layers to improve reflection efficiency. Specific examples thereof include Ni / Ag, Zn / Ag, Ni / Al, and Zn.
  • a portion of the first conductivity type contact layer 1004 may be exposed to the outside, and as shown, the exposed area may be a region where the light emitting structure is not formed.
  • the exposed area of the first conductivity type contact layer 1004 corresponds to an electrical connection part for applying an electrical signal, and an electrode pad 1005 may be formed thereon.
  • the conductive substrate 1007 serves as a support for supporting the light emitting structure in a process such as laser lift-off, and performs any one of Au, Ni, Al, Cu, W, Si, Se, and GaAs. It may be made of a material comprising, for example, an alloy in the form of Si and Al. In this case, depending on the selected material, the conductive substrate 1007 may be formed by a method such as plating or bonding bonding. In the present embodiment, the conductive substrate 1007 is electrically connected to the second conductive semiconductor layer 1001, so that an electrical signal is transmitted to the second conductive semiconductor layer 1001 through the conductive substrate 1007. Can be applied. For this purpose, as illustrated in FIGS. 59 and 60, a conductive via v extending from the conductive substrate 1007 and connected to the second conductive semiconductor layer 1001 needs to be provided.
  • the conductive via v is connected to the second conductive semiconductor layer 1001 and therein, and the number, shape, pitch, and contact area with the second conductive semiconductor layer 1001 are appropriately adjusted so that the contact resistance is lowered. Can be.
  • the conductive via v needs to be electrically separated from the active layer 1002, the first conductive semiconductor layer 1003, and the first conductive contact layer 1004.
  • An insulator 1006 is formed therebetween.
  • the insulator 1006 may be any object having electrical insulation, but it is preferable to absorb light to a minimum, and thus, for example, silicon oxide such as SiO 2 , SiO x N y , Si x N y , or silicon nitride may be used.
  • silicon oxide such as SiO 2 , SiO x N y , Si x N y , or silicon nitride may be used.
  • silicon oxide such as SiO 2 , SiO x N y , Si x N y , or silicon nitride may be
  • the conductive substrate 1007 is connected to the second conductivity-type semiconductor layer 1001 by a conductive via (v), and the electrodes are separately formed on the upper surface of the second conductivity-type semiconductor layer 1001.
  • the amount of light emitted to the top surface of the second conductivity-type semiconductor layer 1001 may be increased.
  • conductive vias (v) are formed in a part of the active layer (1002), the light emitting area is reduced, but the light extraction efficiency improvement effect obtained by eliminating the electrode on the upper surface of the second conductive semiconductor layer 1001 is further improved. It can be said to be large.
  • the overall arrangement of the electrodes may be similar to that of the horizontal electrode structure rather than the vertical electrode structure.
  • the current dispersion effect may be sufficiently secured by the conductive vias v formed in the second conductive semiconductor layer 1001.
  • Undoped semiconductor layer 1008 is formed on an upper surface of the second conductive semiconductor layer 1001, and as will be described later, the undoped semiconductor layer 1008 is employed as a buffer layer before growth of the semiconductor layer forming the light emitting structure.
  • undoped means that the semiconductor layer is not subjected to an impurity doping process separately, and is used as a dopant when growing an impurity concentration of the level originally present in the semiconductor layer, for example, gallium nitride semiconductor using MOCVD.
  • Si may be included at a level of about 10 16 to 10 18 / cm 3, although not intended.
  • the undoped semiconductor layer 1008 since the electrode is not required to be formed on the upper surface of the second conductivity-type semiconductor layer 1001, the undoped semiconductor layer 1008 is not removed. As a result, the undoped semiconductor layer 1008 has the second conductivity. It may be formed to cover the entire upper surface of the type semiconductor layer 1001. Furthermore, by forming the uneven structure in the undoped semiconductor layer 1008, the probability that light incident in the direction of the active layer 1002 can be emitted to the outside is increased. However, in the present embodiment, the structure in which the unevenness is formed only in the undoped semiconductor 1008 has been described. However, the unevenness may occur in some regions of the second conductivity-type semiconductor layer 1001 depending on the etching conditions.
  • the undoped semiconductor layer 1008 is removed to form the uneven structure of the second conductivity type semiconductor layer 1001, a part of the second conductivity type semiconductor layer 1001 may be lost. If the process is not precisely controlled, the thickness of the second conductivity-type semiconductor layer 1001 may not be kept constant depending on the product. Therefore, as in the present embodiment, if the electrode connection structure of the second conductive semiconductor layer 1001 is formed below through the inside of the second conductive semiconductor layer 1001, the undoped semiconductor layer (not removed) This problem can be solved by forming irregularities in 1008).
  • 61 and 62 are cross-sectional views schematically illustrating a semiconductor light emitting device according to an embodiment modified from the embodiment of FIG. 58.
  • the side surface of the light emitting structure is formed to be inclined toward the first conductive contact layer 1004, specifically, to be inclined toward the upper portion of the light emitting structure.
  • This inclined shape of the light emitting structure may be naturally formed by a process of etching the light emitting structure to expose the first conductivity type contact layer 1004, as will be described later.
  • the semiconductor light emitting device 1000-2 of FIG. 62 is a structure in which the passivation layer 1009 is formed to cover the side surface of the light emitting structure in the embodiment of FIG. 61.
  • the passivation layer 1009 protects the light emitting structure, in particular, the active layer 1002 from the outside.
  • the passivation layer 1009 may be formed of silicon oxide such as SiO 2 , SiO x N y , Si x N y , or silicon nitride, and has a thickness of 0.1. About 2 micrometers are preferable.
  • the active layer 1002 exposed to the outside may act as a current leakage path during operation of the semiconductor light emitting device 1000, and this problem may be prevented by forming the passivation layer 1009 on the side of the light emitting structure.
  • the passivation layer 1009 may be formed to extend on the exposed top surface of the first conductivity type contact layer 1004. Meanwhile, the modifications of FIGS. 61 and 62 described above may be applied to other embodiments of FIGS. 63 and 64.
  • the first conductive contact layer 1104 is formed on the conductive substrate 1107 as in the previous embodiment, and the first conductive contact layer is formed.
  • a light emitting structure that is, a structure including a first conductivity type semiconductor layer 1103, an active layer 1102, and a first conductivity type semiconductor layer 1101 is formed on 1104.
  • An undoped semiconductor layer 1108 is formed on the first conductive semiconductor layer 1101, and the undoped semiconductor layer 1108 is provided with irregularities on an upper surface thereof.
  • the first conductive contact layer 1104 is electrically separated from the conductive substrate 1107, and an insulator 1106 is interposed between the first conductive contact layer 1104 and the conductive substrate 1107. .
  • the first conductive contact layer corresponds to the edge of the light emitting structure when the electrical connection of the first conductive contact layer 1004 is viewed from the top of the light emitting structure.
  • An electrical connection of 1104 is formed in the region corresponding to the center of the light emitting structure when viewed from above the light emitting structure. As described above, in the present invention, the position of the region where the first conductivity type contact layer 1104 is exposed may be changed.
  • An electrode pad 1105 may be formed at the electrical connection portion of the first conductive contact layer 1104.
  • a first conductive contact layer 1204 is formed on a conductive substrate 1207, and a light emitting structure is formed on the first conductive contact layer 1204. That is, a structure including the first conductive semiconductor layer 1203, the active layer 1202, and the first conductive semiconductor layer 1201 is formed.
  • An undoped semiconductor layer 1208 is formed on the light emitting structure, that is, on the first conductivity type semiconductor layer 1201, and the undoped semiconductor layer 1208 has an uneven structure formed on an upper surface thereof.
  • the structural difference from the above embodiment is that the conductive substrate 1207 is electrically connected to the first conductive semiconductor layer 1203 instead of the second conductive semiconductor layer 1201. Therefore, the first conductivity type contact layer 1204 is not necessarily required. In this case, the first conductivity type semiconductor layer 1203 and the conductive substrate 1207 may directly contact each other.
  • the second conductivity type electrode 1209 extends from the conductive via v in the lateral direction of the light emitting structure and has an electrical connection exposed to the outside, and an electrode pad 1205 may be formed on the electrical connection.
  • the second conductivity type electrode 1209 and the conductive via v are electrically connected to the active layer 1202, the first conductivity type semiconductor layer 1203, the first conductivity type contact layer 1204, and the conductive substrate 1207.
  • An insulator 1206 is formed for separation.
  • 65 to 73 are cross-sectional views for each process for explaining the method for manufacturing the semiconductor light emitting device according to the present embodiment. Specifically, the method corresponds to a method of manufacturing a semiconductor light emitting device having the structure described with reference to FIGS. 58 to 60.
  • the MOCVD, the buffer layer 1008, the second conductivity-type semiconductor layer 1001, the active layer 1002, and the first conductivity-type semiconductor layer 1003 are disposed on the substrate B for semiconductor growth.
  • the light emitting structure is formed by sequentially growing using a semiconductor layer growth process such as MBE and HVPE.
  • the light emitting structure is defined as a structure including the second conductive semiconductor layer 1001, the active layer 1002, and the first conductive semiconductor layer 1003.
  • the buffer layer 1008 may also be regarded as an element constituting the light emitting structure. Accordingly, the light emitting structure will be defined as a structure including a buffer layer 1008, a second conductive semiconductor layer 1001, an active layer 1002, and a first conductive semiconductor layer 1003.
  • the semiconductor growth substrate B a substrate made of a material such as sapphire, SiC, MgAl 2 O 4 , MgO, LiAlO 2 , LiGaO 2 , GaN, or the like may be used.
  • the sapphire is a Hexa-Rhombo R3c symmetric crystal and the lattice constants of c-axis and a-direction are 13.001 13. and 4.758 ⁇ , respectively, C (0001) plane, A (1120) plane, R 1102 surface and the like.
  • the C plane is mainly used as a nitride growth substrate because the C surface is relatively easy to grow and stable at high temperatures.
  • the buffer layer 1008 may be employed as an undoped semiconductor layer made of nitride or the like, and may mitigate lattice defects of the light emitting structure grown thereon.
  • the first conductive contact layer 1004 is formed on the first conductive semiconductor layer 1003.
  • the first conductive contact layer 1004 is formed of Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, in consideration of the light reflection function and the ohmic contact function with the first conductive semiconductor layer 1003. It may be formed to include a material such as Au, and may be suitably used a process such as sputtering or vapor deposition known in the art.
  • grooves are formed in the first conductive contact layer 1004 and the light emitting structure.
  • the groove is for forming a conductive via connected to the second conductive semiconductor layer 1001 by filling a conductive material in a subsequent process.
  • the first conductive contact layer 1004 and the first conductive semiconductor layer are formed. It penetrates through the 1003 and the active layer 1002, and has a shape in which the first conductive semiconductor layer 1001 is exposed to the bottom surface. 67 may also be performed using an etching process known in the art, such as ICP-RIE.
  • an insulator such as SiO 2 , SiO x N y , Si x N y
  • SiO 2 , SiO x N y , Si x N y may be deposited to cover the top of the first conductivity-type contact layer 1004 and the sidewall of the groove. 1006).
  • the insulator 1006 is preferably formed in a range not covering the entire bottom of the groove.
  • a conductive material is formed on the inside of the groove and the insulator 1006 to form a conductive via v and a conductive substrate 1007.
  • the conductive substrate 1007 has a structure connected to the conductive via v connected to the second conductive semiconductor layer 1001.
  • the conductive substrate 1007 may be made of a material including any one of Au, Ni, Al, Cu, W, Si, Se, and GaAs, and may be appropriately formed by a process such as plating, sputtering, and deposition.
  • the conductive via v and the conductive substrate 1007 may be formed of the same material, but in some cases, the conductive via v may be formed of a different material from the conductive substrate 1007 and may be formed in separate processes. It may be. For example, after the conductive via v is formed by a deposition process, the conductive substrate 1007 may be previously formed and bonded to the light emitting structure.
  • FIG. 70 is a view illustrating a state in which the semiconductor growth substrate B is removed and rotated 180 ° as compared with FIG. 69.
  • the light emitting structure that is, the buffer layer 1008, the first conductive semiconductor layer 1003, the active layer 1002, and the second conductive semiconductor layer 1001 are partially removed.
  • the first conductive contact layer 1004 is exposed. This is for applying an electrical signal through the exposed first conductive contact layer 1004.
  • a process of forming an electrode pad on an exposed area of the first conductivity type contact layer 1004 may be added.
  • the light emitting structure may be etched by a method such as ICP-RIE. In this case, in order to prevent the material constituting the first conductivity-type contact layer 1004 from moving toward the side of the light emitting structure in the etching process, as shown in FIG.
  • the etch stop layer 1010 is previously formed in the light emitting structure. It may be formed. Further, as a more reliable insulating structure, after the light emitting structure is etched, the passivation layer 1009 of FIG. 62 can be formed on the side of the light emitting structure.
  • an uneven structure is formed in the buffer layer 1008.
  • the region where the unevenness is mainly formed is an upper surface of the buffer layer 1008 exposed by removing the semiconductor growth substrate B, and the light extraction efficiency can be improved by the uneven structure formed as described above.
  • the formation of the uneven structure may be performed by using a dry or wet etching process, etc., but it is desirable to form the uneven structure having irregular sizes, shapes, cycles, etc. by using wet etching.
  • FIGS. 65 to 67 are cross-sectional views for each process for describing a method of manufacturing the semiconductor light emitting device according to yet another embodiment. Specifically, this corresponds to the method of manufacturing the semiconductor light emitting device having the structure described with reference to FIG. 64. In this case, the process described with reference to FIGS. 65 to 67 can be employed as it is in this embodiment.
  • a subsequent process of forming a groove in the first conductive contact layer 1204 and the light emitting structure will be described.
  • an insulator 1206 is deposited to cover a top surface of the first conductivity-type contact layer 1204 and sidewalls of the groove by depositing a material such as SiO 2 , SiO x N y , Si x N y, and the like. ).
  • the insulator 1206 may be referred to as a first insulator to distinguish it from an insulator formed to cover the second conductivity type electrode 1209 in a subsequent process.
  • the insulator 1206 is not formed on the entire upper surface of the first conductivity type contact layer 1204, since the conductive substrate 1207 and the first conductivity type contact layer 1204 must be connected. to be.
  • the insulator 1206 may previously form a portion of the upper surface of the first conductivity type contact layer 1204, specifically, a region in which the second conductivity type electrode 1209 connected to the second conductivity type semiconductor layer 1201 is to be formed. It may be formed in consideration.
  • the conductive material is formed on the inside of the groove and the insulator 1206 to form the second conductive electrode 1209.
  • the second conductivity type electrode 1209 may include conductive vias v connected to the second conductivity type semiconductor layer 1201.
  • the insulator 1206 is formed in advance to correspond to the region where the second conductivity type electrode 1209 is to be formed, and accordingly, the second conductivity type electrode 1209 may be formed, and particularly, exposed to the outside. And extend in the horizontal direction from the conductive via v to serve as an electrical connection.
  • the insulator 1206 is formed to cover the second conductivity type electrode 1209 and is electrically connected to the first conductivity type contact layer 1204 thereon.
  • the insulator 1206 formed in this process may be referred to as a second insulator, and may form one insulation structure together with the insulator previously formed.
  • the second conductivity type electrode 1209 may be electrically separated from the first conductivity type contact layer 1204, the conductive substrate 1207, and the like.
  • the semiconductor growth substrate B is removed to expose the buffer layer 1208. Subsequently, although not shown separately, the process of exposing the second conductive electrode 1209 by removing a part of the light emitting structure and forming the uneven structure on the buffer layer 1208 may use the above-described process.
  • a semiconductor light emitting device according to another exemplary embodiment of the present invention will be described with reference to FIGS. 78 to 91.
  • FIG. 78 is a sectional views schematically showing a semiconductor light emitting device according to the present embodiment
  • FIG. 79 is a circuit diagram corresponding to the semiconductor light emitting device of FIG. 78.
  • a plurality of light emitting structures C1 and C2 are disposed on a substrate 1306, and the light emitting structures C1 and C2 are electrically connected to each other.
  • two light emitting structures will be referred to as first and second light emitting structures C1 and C2, respectively.
  • the first and second light emitting structures C1 and C2 have a structure in which the first conductive semiconductor layer 1303, the active layer 1302, and the first conductive semiconductor layer 1301 are sequentially stacked, and electrically connected to each other. It has first and second electrical connections 1304 and 1307 for connection.
  • the first electrical connector 1304 is formed under the first conductive semiconductor layer 1303, and can perform ohmic contact and light reflection functions in addition to the electrical connection function.
  • the second electrical connector 1307 is electrically connected to the second conductive semiconductor layer 1301, and the conductive via penetrates through the first electrical connector 1304, the first conductive semiconductor layer 1303, and the active layer 1302. (v) to be connected to the second conductivity-type semiconductor layer 1301.
  • the first and second light emitting structures C1 and C2 may include a second electrical connection of the first light emitting structure C1, that is, a conductive via v and a first electrical connection 1304 of the second light emitting structure C2. It is electrically connected to each other through the substrate 1306.
  • the substrate 1306 is formed of a material having electrical conductivity. With such an electrical connection structure, the semiconductor light emitting device 1300 can be operated even when AC power is applied from the outside.
  • the first and second conductivity-type semiconductor layers 1303 and 1301 may be p-type and n-type semiconductor layers, respectively, and may be formed of a nitride semiconductor. Therefore, the present invention is not limited thereto, but in the present embodiment, the first and second conductivity types may be understood to mean p-type and n-type, respectively.
  • the first and second conductivity-type semiconductor layers 1303 and 1301 are Al x In y Ga (1-xy) N composition formulas, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and 0 ⁇ x + y ⁇ 1. ), For example, GaN, AlGaN, InGaN, and the like may correspond to this.
  • the active layer 1302 formed between the first and second conductivity type semiconductor layers 1303 and 1301 emits light having a predetermined energy by recombination of electrons and holes, and the quantum well layer and the quantum barrier layer alternate with each other. It may be made of a multi-quantum well (MQW) structure stacked. In the case of a multi-quantum well structure, for example, an InGaN / GaN structure may be used.
  • MQW multi-quantum well
  • the first electrical connector 1304 reflects the light emitted from the active layer 102 toward the upper portion of the semiconductor light emitting device 1300, that is, the second conductive semiconductor layer 1301. In addition, it is preferable to make an ohmic contact with the first conductivity-type semiconductor layer 1303.
  • the first electrical connector 1304 may include a material such as Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, or the like.
  • the first electrical connection part 104 may have a structure of two or more layers to improve reflection efficiency. Specific examples thereof include Ni / Ag, Zn / Ag, Ni / Al, and Zn / Al. , Pd / Ag, Pd / Al, Ir / Ag. Ir / Au, Pt / Ag, Pt / Al, Ni / Ag / Pt, etc. are mentioned.
  • the substrate 1306 serves as a support for supporting the first and second light emitting structures C1 and C2 in a process such as laser lift-off.
  • a conductive substrate may be employed to electrically connect the second light emitting structures C1 and C2.
  • the substrate 1306 may be formed using a material including any one of Au, Ni, Al, Cu, W, Si, Se, and GaAs, for example, an alloy form of Si and Al. . In this case, depending on the material selected, the substrate 1306 may be formed by a method such as plating or bonding bonding.
  • the conductive vias v provided in the second electrical connectors 1307 are connected to the second conductive semiconductor layer 1301 therein, and have a number, a shape, a pitch, and a second conductive semiconductor layer (ie, low contact resistance).
  • the contact area with 1301 can be adjusted as appropriate.
  • the conductive via v needs to be electrically separated from the active layer 1302, the first conductivity type semiconductor layer 1303, and the first electrical connection portion 1304, so that the conductive via v and the insulator are interposed therebetween. 1305 is formed.
  • the insulator 1305 may be any object having electrical insulation, but it is preferable to absorb light to a minimum, so that silicon oxides such as SiO 2 , SiO x N y , Si x N y , and silicon nitride may be used.
  • silicon oxides such as SiO 2 , SiO x N y , Si x N y , and silicon nitride may be used.
  • the second electrical connection unit 1307 when the second electrical connection unit 1307 is formed below the second conductive semiconductor layer 1301, it is necessary to separately form an electrode on the upper surface of the second conductive semiconductor layer 1301. none. Accordingly, the amount of light emitted to the top surface of the second conductivity-type semiconductor layer 1301 may be increased. In this case, although conductive vias (v) are formed in a portion of the active layer 1302, the light emitting area is reduced, but the light extraction efficiency improvement effect obtained by eliminating the electrode on the upper surface of the second conductive semiconductor layer 1301 is further improved. It can be said to be large.
  • the overall electrode arrangement may be considered to be similar to the horizontal electrode structure rather than the vertical electrode structure.
  • the current dispersion effect may be sufficiently secured by the conductive vias v formed in the second conductive semiconductor layer 1301.
  • an uneven structure may be formed on an upper surface of the second conductivity-type semiconductor layer 1301, and light incident from the direction of the active layer 1302 is emitted to the outside by the uneven structure. Chances of becoming increased can be increased.
  • the semiconductor light emitting device 1300 may be driven by an AC power source.
  • the first and second light emitting structures C1 and C2 form an n-p junction.
  • This np junction for example, connects the second electrical connector v of the first light emitting structure C1 and the first electrical connector 1304 of the second light emitting structure C2, and the first light emitting structure C1 is formed of the first light emitting structure C1. It may be implemented by applying an external power source to the first electrical connector 1304 and the second electrical connector 1307 of the second light emitting structure C1. Specifically, in FIG.
  • the A and B terminals correspond to the first electrical connection 1304 of the first light emitting structure C1 and the second electrical connection 1307 of the second light emitting structure C1, respectively, and the C terminal. Corresponds to the substrate 1306.
  • the AC light emitting device may be implemented.
  • first and second light emitting structures C1 and C2 are disposed on a substrate 1406, where the first light emitting structure C1 is the first light emitting device of FIG. 78. It has the same structure as the structure. In the present embodiment, unlike the previous embodiment, some of the light emitting structures may be employed as vertical electrode structures.
  • the second light emitting structure C2 corresponds to a vertical electrode structure, and specifically, the first conductive semiconductor layer 1403 and the active layer 1402 on the first electrical connection 1404 connected to the substrate 1406. ) And the second conductive semiconductor layer 1401 are sequentially formed, and the second electrical connector 1407 is formed on the second conductive semiconductor 1401.
  • the embodiment of Figs. 81 and 82 shows a structure in which the substrate is formed of an electrically insulating material in Figs. 78 and 79, respectively.
  • first and second light emitting structures C1 and C2 are disposed on an electrically insulating substrate 1506.
  • the first and second light emitting structures C1 and C2 are formed of the first conductive semiconductor layer 1503, the active layer 1502, and the second conductive layer 1504.
  • the conductive semiconductor layer 1501 is stacked, and the second electrical connectors 1507a and 1507b have conductive vias v connected to the second conductive semiconductor layer 1501.
  • an insulator 1505 is formed to electrically separate the second electrical connectors 1507a and 1507b from the first electrical connectors 1504, the first conductive semiconductor layer 1503, and the active layer 1502.
  • the second electrical connection 1507a of the first light emitting structure C1 is secondly emitted by a portion extending from the conductive via v in a direction parallel to the substrate 1506. It is connected to the first electrical connection 1504 of the structure (C2).
  • the second light emitting structure C2 may include the first conductive semiconductor layer 1603 and the active layer on the first electrical connection 1604.
  • the 1602 and the second conductive semiconductor layer 1601 are sequentially formed, and the second electrical connector 1607 is formed on the second conductive semiconductor 1601.
  • the second electrical connection portion 1607a of the first light emitting structure C1 is connected to the substrate 1606 from the conductive via v connected to the second conductive semiconductor layer 1601.
  • the second light emitting structure C2 extends in a parallel direction. Accordingly, the first and second light emitting structures C1 and C2 may share the second electrical connection 1607a with each other.
  • the AC driving light emitting device is implemented using two light emitting structures
  • the number and connection structure of the light emitting structures that is, the light emitting diodes may be variously modified.
  • 83 shows a circuit diagram corresponding to the semiconductor light emitting element according to the present embodiment.
  • one diode is a light emitting diode and corresponds to a light emitting structure.
  • the circuit diagram shown in FIG. 83 corresponds to a so-called ladder network circuit, and has a structure including a total of 14 light emitting structures. In this case, nine light emitting structures are operated when a forward voltage is applied, and nine light emitting structures can be operated even when a reverse voltage is applied.
  • 84 and 85 are cross-sectional views schematically showing an example of an n-p junction.
  • 84 and 85 first and second light emitting structures C1 and C2 that form n-p junctions with each other are disposed on the substrates 1706 and 1706 '.
  • the first and second light emitting structures C1 and C2 are sequentially stacked with a first conductive semiconductor layer 1703, an active layer 1702, and a second conductive semiconductor layer 1701 on the first electrical connection 1704.
  • the conductive via (v) connected to the second conductive semiconductor layer 1701 from the first electrical connection 1704 the first conductive semiconductor layer 1703, and the active layer 1702. Insulator 1705 is formed.
  • the second electrical connector 1707 of the first light emitting structure C1 is connected to the first electrical connector 1704 of the second light emitting structure C2.
  • the shape of the second electrical connection 1707 is slightly different, respectively, FIGS. 78 and FIG. It is similar to the structure described in 81.
  • the second electrical connection part provided in the second light emitting structure C2 that is, the conductive via v is It can be understood as a state of being electrically connected to another light emitting structure other than a structure for applying an external electric signal.
  • 86 to 88 are cross-sectional views schematically illustrating examples of n-n junctions.
  • first and second light emitting structures C1 and C2 that form n-n junctions with each other are disposed on substrates 1806 and 1806 '.
  • the first and second light emitting structures C1 and C2 are sequentially stacked with a first conductive semiconductor layer 1803, an active layer 1802, and a second conductive semiconductor layer 1801 on the first electrical connection 1804.
  • the conductive via (v) connected inside the second conductive semiconductor layer 1801 is electrically separated from the first electrical connection 1804, the first conductive semiconductor layer 1803, and the active layer 1802.
  • An insulator 1805 is formed for this purpose.
  • the second electrical connectors 1807 of the first and second light emitting structures C1 and C2 need to be connected to each other.
  • the conductive vias v provided in the first and second light emitting structures C1 and C2 may be connected through the conductive substrate 1806.
  • the first and second light emitting structures C1 may be formed by the second electrical connection portion 1807 extending in a direction parallel to the substrate 1806 ′.
  • C2 may be connected to conductive vias v provided respectively.
  • the connection method through the electrical connection unit as shown in FIG.
  • the second conductivity-type semiconductor layer 1801 ′ may be used.
  • the first and second light emitting structures C1 and C2 may share the second conductive semiconductor layer 1801 ′, and in this case, the nn junction may be formed even if the conductive vias v provided in the first and second light emitting structures C1 and C2 are not connected to each other. Can be implemented.
  • FIGS. 89 to 91 are cross-sectional views schematically showing an example of the p-p junction.
  • first and second light emitting structures C1 and C2 forming p-p junctions are disposed on the substrates 1906 and 1906 '.
  • the first and second light emitting structures C1 and C2 are sequentially stacked with a first conductive semiconductor layer 1903, an active layer 1902, and a second conductive semiconductor layer 1901 on the first electrical connection 1904.
  • the conductive via v connected therein to the second conductive semiconductor layer 1901 is electrically separated from the first electrical connection 1904, the first conductive semiconductor layer 1901, and the active layer 1902.
  • An insulator 1905 is formed for this purpose.
  • the first electrical connectors 1904 of the first and second light emitting structures C1 and C2 need to be connected to each other.
  • the conductive via v may be connected to another light emitting structure (not shown) constituting the entire AC light emitting device together.
  • the first electrical connectors 1904 provided in the first and second light emitting structures C1 and C2 may be connected through the conductive substrate 1906.
  • the structure in which the first electrical connection unit 1904 is commonly used for the first and second light emitting structures C1 and C2 may be employed without using the connection metal layer.
  • FIGS. 92 through 102 A semiconductor light emitting device according to another exemplary embodiment of the present invention will be described with reference to FIGS. 92 through 102.
  • FIG. 92 is a cross-sectional view illustrating a vertical structure semiconductor light emitting device according to the present embodiment, and FIGS. 93 and 94 show a vertical structure semiconductor light emitting device according to an embodiment modified from the embodiment of FIG. 92.
  • the vertical semiconductor light emitting device 2000 includes n-type and p-type semiconductor layers 2001 and 2003 and an active layer 2002 formed therebetween to form a light emitting structure.
  • the reflective metal layer 2004 and the conductive substrate 2005 are formed under the light emitting structure.
  • an n-type electrode 2006 is formed on the n-type semiconductor layer 2001, and a passivation layer 2007 having an uneven structure is formed to cover the side surface of the light emitting structure.
  • the n-type semiconductor layer 2001 and the p-type semiconductor layer 2003 may be typically formed of a nitride semiconductor.
  • the n-type semiconductor layer 2001 and the p-type semiconductor layer 2003 is Al x In y Ga (1-xy) N composition formula (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + n-type impurities and p-type impurities having y ⁇ 1), and may be formed of a semiconductor material doped, and typically, GaN, AlGaN, InGaN.
  • Si, Ge, Se, Te and the like may be used as the n-type impurity
  • the p-type impurity is Mg, Zn, Be and the like. Meanwhile, an uneven structure may be formed on an upper surface of the n-type semiconductor layer 101 in order to improve the efficiency of light emitted in the vertical direction.
  • the active layer 2002 formed between the n-type and p-type nitride semiconductor layers 2001 and 2003 emits light having a predetermined energy by recombination of electrons and holes, and the quantum well layer and the quantum barrier layer alternate with each other. It may be made of a stacked multi quantum well (MQW) structure. In the case of a multi-quantum well structure, generally, an InGaN / GaN structure may be used.
  • the reflective metal layer 2004 may function to reflect light emitted from the active layer 2002 in the direction of the n-type nitride semiconductor layer 2001, and may include Ag, Ni, Al, Rh, Pd, Ir, and Ru. , Mg, Zn, Pt, Au and the like.
  • the reflective metal layer 2004 may have a structure of two or more layers to improve reflection efficiency.
  • Ni / Ag, Zn / Ag, Ni / Al, Zn / Al, Pd / Ag, Pd / Al, Ir / Ag. Ir / Au, Pt / Ag, Pt / Al, Ni / Ag / Pt, etc. are mentioned.
  • the reflective metal layer 2004 is not an essential element, and in some cases, the reflective metal layer 2004 may be omitted.
  • the conductive substrate 2005 may serve as a p-type electrode and may include a light emitting structure, that is, an n-type semiconductor layer 2001, an active layer 2002, and a p-type semiconductor layer 2003 in a laser lift-off process to be described later. Play a role.
  • the conductive substrate 2005 may be made of a material such as Si, Cu, Ni, Au, W, Ti, or the like, and may be formed by plating or bonding bonding, depending on the selected material.
  • the passivation layer 2007 is an insulating layer for protecting the light emitting structure, in particular, the active layer 2002, and is formed in a region where the light emitting structure is partially removed. Specifically, the passivation layer 2007 is illustrated in FIG. 92 in addition to the side surface of the light emitting structure. As described above, a portion of the top surface of the n-type semiconductor layer 2001 and the top surface of the reflective metal layer 2004 may be formed. In this case, when the reflective metal layer 2004 is not employed, the passivation layer 2007 is formed on the upper surface of the conductive substrate 2005. In the case where the light emitting structure is partially removed and exposed, as shown in FIG. 92, the light emitting structure may be inclined upward, and the light emitting area may be improved by the structure, and thus, the passivation layer 2007 may be formed. This may be easier.
  • the passivation layer 2007 may be made of silicon oxide, silicon nitride, such as SiO 2 , SiO x N y , Si x N y, etc., in order to perform a protective function, and the thickness thereof is preferably about 0.1 ⁇ m to 2 ⁇ m. Accordingly, the passivation layer 2007 has a refractive index of about 1.4 to 2.0, and it is difficult for the light emitted from the active layer 2002 to escape to the outside due to a difference in refractive index between the mold structure of the air or the package.
  • the thickness of the p-type semiconductor layer 2003 is relatively thin so that light emitted in the lateral direction of the active layer 2002 passes through the passivation layer 2007.
  • the light emitted laterally from the active layer 2002 toward the passivation layer 2007 is very small and the incident angle with respect to the outer surface of the passivation layer 2007 is very small. Becomes difficult.
  • an uneven structure is formed in the passivation layer 2007 to improve external light extraction efficiency.
  • light emitted in the lateral direction of the active layer 2002 is When the concave-convex structure is formed in the passing region, the amount of light emitted to the side surface of the vertical semiconductor light emitting device 2000 may increase.
  • the region through which the light emitted in the lateral direction of the active layer 2002 passes may be regarded as the region where the light emitting structure is not formed on the upper surface of the reflective metal layer 2004.
  • the light extraction efficiency of the structure employing the concave-convex structure to the passivation layer (2007) the structure of which all other components are the same but without the concave-convex structure
  • the uneven structure of the passivation layer 2007 is also formed in the region corresponding to the upper surface of the n-type semiconductor layer 2001 can improve the vertical light extraction efficiency. .
  • the uneven structure forming region of the passivation layer may be variously changed to maximize the external light extraction efficiency.
  • the uneven structure may be formed on the side surface of the passivation layer 2007 ′.
  • the concave-convex structure is preferably formed on the lower surface of the passivation layer 2007 '', that is, the surface facing the reflective metal layer 2004. In this case, the pattern having the shape corresponding to the reflective metal layer 2004 is formed. ) May be formed.
  • 95 to 98 are cross-sectional views of processes for describing a method of manufacturing the vertical semiconductor light emitting device having the structure described with reference to FIG. 92.
  • the n-type semiconductor layer 2001, the active layer 2002, and the p-type semiconductor layer 2003 are subjected to a process such as MOCVD, MBE, HVPE, etc. on the semiconductor single crystal growth substrate 2008. Thereby sequentially growing to form a light emitting structure.
  • a substrate made of a material such as sapphire, SiC, MgAl 2 O 4 , MgO, LiAlO 2 , LiGaO 2 , GaN, or the like may be used.
  • the sapphire is a Hexa-Rhombo R3c symmetric crystal and the lattice constants of c-axis and a-direction are 13.001 13.
  • C (0001) plane, A (1120) plane, R 1102 surface and the like are mainly used as a nitride growth substrate because the C surface is relatively easy to grow and stable at high temperatures.
  • the reflective metal layer 2004 and the conductive substrate 2005 are formed on the p-type semiconductor layer 2003 by plating or submount bonding. Subsequently, although not specifically illustrated, the semiconductor single crystal growth substrate 2008 is removed by an appropriate lift-off process such as laser lift-off or chemical lift-off.
  • a portion of the light emitting structure is removed to form a dicing and passivation layer of a device unit.
  • the exposed side may be inclined upward.
  • an uneven structure may be formed on the upper surface of the n-type semiconductor layer 2001, that is, the surface where the semiconductor single crystal growth substrate is removed and exposed by wet etching.
  • a passivation layer 2007 for protecting the light emitting structure is formed.
  • silicon oxide or silicon nitride may be appropriately deposited, and an uneven structure may be formed on the light emitting surface of the passivation layer 2007 to improve lateral light emission efficiency.
  • the formation of the uneven structure can be carried out using a dry or wet etching process known in the art as appropriate.
  • the concave-convex structure may be formed on another light emitting surface of the passivation layer 2007.
  • an n-type electrode may be formed on the n-type semiconductor layer 2001 to obtain a completed structure shown in FIG. 92.
  • the present invention provides a semiconductor light emitting device having a structure modified from the above-described vertical structure so that the electrical and optical properties can be further improved.
  • the semiconductor light emitting device 2100 may include a conductive substrate 2105, a first conductive semiconductor layer 2103, an active layer 2102, and a second layer sequentially formed on the conductive substrate 2105.
  • the active layer 2102 is shown in a relatively upper position compared to the structure shown in FIG. 92 and the like, but the position of the active layer 2102 may be changed in various ways, for example, the passivation 2107 may be formed. It may be formed at a height similar to that of the lower part.
  • the n-type electrode is formed on the exposed surface of the n-type semiconductor layer from which the sapphire substrate is removed, but in this embodiment, the conductive via is used to pass through the n-type semiconductor layer downward direction.
  • the second conductive type electrode 2106 penetrates through the first conductive type semiconductor layer 2104 and the active layer 2102 and is connected to the second conductive type semiconductor layer 2101 and the inside thereof, and It extends therefrom and has an electrical connection P exposed to the outside of the light emitting structure.
  • the insulator 2108 is of the second conductive type. It is appropriately formed around the electrode 2106.
  • the insulator 2108 may be any material as long as it has a low electrical conductivity. However, the insulator 2108 is preferably low in light absorbing power.
  • the insulator 2108 may be formed of the same material as the passivation layer 2107.
  • the second conductivity type semiconductor layer 2101 may be formed of a metal material capable of making ohmic contact.
  • the electrical connection part P may be made of a different material from other parts in consideration of the fact that the electrical connection part P may be used as a bonding pad part. Will be able to form.
  • the present invention is not necessarily limited thereto, but considering the manufacturing process described above, the first and second conductivity-type semiconductor layers 2101 and 2103 may be p-type and n-type semiconductor layers, respectively.
  • FIG. 1 As an additional element, as shown in FIG.
  • a first contact layer 2104 may be formed between the first conductivity-type semiconductor layer 2103 and the conductive substrate 2105, and the reflectivity such as Ag, Al, or the like may be used. High metals can be employed. In this case, the first contact layer 2104 and the second conductivity type electrode 2106 are electrically separated from each other by the insulator 2108.
  • the second conductive semiconductor layer 2101 may be applied with an electrical signal from the inside instead of the top thereof.
  • the electrode since the electrode is not formed on the upper surface of the second conductivity-type semiconductor layer 2101, the emission area may be increased, and the current dispersion effect may be improved by the conductive vias v formed therein.
  • the desired electrical characteristics may be obtained by appropriately adjusting the number, area, shape, and the like of the conductive vias v.
  • the main steps such as forming the conductive substrate and removing the sapphire substrate use the manufacturing process of the vertical structure semiconductor light emitting device, but the shape of the device obtained by the process can be considered to be closer to the horizontal structure. In this respect, it may be referred to as a mixed structure of vertical structure and horizontal structure.
  • the passivation layer 2107 is formed on the side surface of the light emitting structure and the like, and an uneven structure is formed on the path of the light emitted from the active layer 2102, thereby forming the passivation layer 2107 from the active layer 2102. Can be used to improve the extraction efficiency of the light emitted laterally.
  • an uneven structure may be formed on the upper surface of the second conductivity-type semiconductor layer 2101, and although not separately illustrated, the uneven surface may be formed on the inclined side surface of the passivation layer 2107. There will be.
  • FIG. 100 is a schematic cross-sectional view illustrating a semiconductor light emitting device having a modified structure in FIG. 99.
  • the etch stop layer 2109 is added to the structure described with reference to FIG. 99, and only the etch stop layer 2109 will be described below.
  • the etch stop layer 2109 is formed on at least a region of the top surface of the conductive substrate 2105 where the light emitting structure is not formed, and has a different etching characteristic from a semiconductor material forming a light emitting structure for a specific etching method, for example, a nitride semiconductor. (Oxides such as SiO 2 ).
  • the etch depth may be controlled by the etch stop layer 2109.
  • the etch stop layer 2109 and the insulator 2108 may be formed of the same material for ease of processing.
  • a material forming the conductive substrate 2105 or the first contact layer 2104 is deposited on the side of the light emitting structure to leak the leakage current. Since the etch stop layer 2109 may be formed below the light emitting structure to be removed by etching, this problem may be minimized.
  • FIG. 101 is a schematic cross-sectional view illustrating a semiconductor light emitting device according to yet another embodiment
  • FIG. 102 illustrates a structure in which an etch stop layer is added to the structure of FIG. 101.
  • the semiconductor light emitting device 2200 may include a conductive substrate 2205, a first conductive semiconductor layer 2203, an active layer 2202, and a second layer sequentially formed on the conductive substrate 2205.
  • a light emitting structure having a conductive semiconductor layer 2201, a second contact layer 2204 for applying an electrical signal to the first conductive semiconductor layer 2203, and a second conductive semiconductor layer from the conductive substrate 2205 ( And a passivation layer 2207 having a concave-convex structure formed on a side surface of the light emitting structure.
  • the conductive substrate 2205 is electrically connected to the second conductive semiconductor layer 2201 and is connected to the first conductive semiconductor layer 2203.
  • the first contact layer 2204 has an electrical connection P and is exposed to the outside.
  • the conductive substrate 2205 may be electrically separated from the first contact layer 2204, the first conductivity type semiconductor layer 2203, and the active layer 2202 by the insulator 2208. That is, in the embodiment of FIG. 99, the second conductivity type electrode 2106 connected to the second conductivity type semiconductor layer 2101 is exposed to the outside to provide an electrical connection part P.
  • the first conductivity type semiconductor is provided.
  • the first contact layer 2204 connected to the layer 2203 is exposed to the outside to provide an electrical connection P.
  • other structures and effects obtained therefrom are the same as those described with reference to FIG. 99, and an etch stop layer 2209 may also be employed as illustrated in FIG. 102.
  • the embodiment of FIG. 101 that is, the structure in which the first contact layer 2204 is exposed to the outside has a somewhat easier process of forming the insulator 2208 as compared with the embodiment of FIG. 99.
  • the light emitting device package according to the present invention includes the semiconductor light emitting device described above.
  • 103 is a schematic view showing a white light emitting device package according to an embodiment of the present invention.
  • the white light emitting device package 3010 includes a blue light emitting device 3015 and a resin packaging part 3019 having a lens shape convex upwardly.
  • the resin packaging portion 3019 employed in the present embodiment is exemplified in a form having a hemispherical lens shape so as to secure a wide orientation.
  • the blue light emitting device 3015 may be directly mounted on a separate circuit board.
  • the resin packaging part 3019 may be made of the silicone resin, the epoxy resin, or a combination thereof.
  • the green phosphor 3012 and the red phosphor 3014 are dispersed in the resin packaging part 3019.
  • M 2 SiO 4 Eu
  • Re is a silicate-based phosphor
  • MA 2 D 4 Eu
  • ⁇ -SiAlON Eu
  • M It may be at least one phosphor selected from the group consisting of oxide phosphors of 'A' 2 O 4 : Ce, Re '.
  • M is at least two elements selected from Ba, Sr, Ca, and Mg
  • A is at least one selected from Ga, Al, and In
  • D is at least one selected from S, Se, and Te
  • Mg is at least one selected from, A 'is at least one selected from Sc, Y, Gd, La, Lu, Al and In
  • Re is Y, La, Ce, Nd, Pm, Sm, Gd, At least one selected from Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br, and I
  • the red phosphor 3014 employable in the present embodiment is at least one selected from a nitride phosphor of M'AlSiN x : Eu, Re (1 ⁇ x ⁇ 5) and a sulfide phosphor of M'D: Eu, Re. .
  • M ' is at least one selected from Ba, Sr, Ca, Mg, D is at least one selected from S, Se and Te
  • A' is at least selected from Sc, Y, Gd, La, Lu, Al
  • In Re is at least one selected from Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br and I, and the amount of Re is 1 ppm To 50000 ppm.
  • white light having a high color rendering index of 70 or more can be provided by combining a specific green phosphor and a specific red phosphor in consideration of half width, peak wavelength, and / or conversion efficiency.
  • color reproducibility can be improved.
  • the main wavelength of the blue light emitting device may range from 430 nm to 455 nm.
  • the emission wavelength peak of the green phosphor 3012 is in the range of 500 to 550 nm
  • the emission wavelength peak of the red phosphor 3014 is in order to secure a broad spectrum in the visible light band and improve a larger color rendering index. It may range from 610 to 660 nm.
  • the blue light emitting device may have a half width of 10 to 30 nm
  • the green phosphor may have a half width of 30 to 100 nm
  • the red phosphor may have a half width of 50 to 150 nm.
  • red phosphor 3012 and green phosphor 3014 in addition to the above-described red phosphor 3012 and green phosphor 3014, it may further include a yellow or yellow orange phosphor. In this case, a more improved color rendering index can be obtained. This embodiment is illustrated in FIG. 104.
  • the white light emitting device package 3020 includes a package main body 3021 having a reflective cup at the center, a blue light emitting device 3025 mounted at a bottom of the reflective cup, and a reflective cup.
  • the inside includes a transparent resin packaging part 3029 encapsulating the blue light emitting element 3025.
  • the resin packaging part 3029 may be formed using, for example, a silicone resin, an epoxy resin, or a combination thereof.
  • the resin packaging portion 3029 further includes a yellow phosphor or an orange orange phosphor 3026 together with the green phosphor 3012 and the red phosphor 3014 described in FIG.
  • the green phosphor 3022 is a silicate phosphor of M 2 SiO 4 : Eu, Re, a sulfide phosphor of MA 2 D 4 : Eu, Re, a phosphor of ⁇ -SiAlON: Eu, Re, and M'A ' 2.
  • At least one phosphor selected from the group consisting of an oxide phosphor of O 4 : Ce, Re ', and the red phosphor 3024 is a nitride phosphor of M'AlSiN x : Eu, Re (1 ⁇ x ⁇ 5).
  • the present embodiment further includes a third phosphor 3026.
  • the third phosphor may be a yellow or yellow orange phosphor capable of emitting light in a wavelength band positioned between the green and red wavelength bands.
  • the yellow phosphor may be a silicate-based phosphor, and the yellow orange phosphor may be a phosphor having ⁇ -SiAlON: Eu, Re.
  • the two or three phosphors may be provided in different layer structures.
  • the green phosphor, the red phosphor, and the yellow or yellow orange phosphor may be provided as a multilayered phosphor film by dispersing the phosphor powder at high pressure.
  • the phosphor-containing resin layer structure may be implemented.
  • the white light emitting device package 3030 includes a package body 3031 having a reflection cup formed at the center and a blue light emitting device mounted at the bottom of the reflection cup, similar to the previous embodiment. 3035 and a transparent resin packaging part 3039 encapsulating the blue light emitting element 3035 in the reflection cup.
  • the wavelength conversion portion is formed into the first resin layer 3032 containing the green phosphor, the second resin layer 3034 containing the red phosphor, and the third resin layer 3036 containing the yellow or yellow orange phosphor. Can be configured.
  • the same or similar phosphor as the phosphor shown and described in FIG. 104 may be adopted and used.
  • White light obtained through the combination of the phosphors proposed in the present invention can obtain a high color rendering index. More specifically, this will be described with reference to FIG. 106.
  • yellow light converted with the blue wavelength light may be obtained. Since there is little wavelength light in the green and red bands in the entire visible light spectrum, it is difficult to secure a color rendering index close to natural light. In particular, since the converted yellow light has a narrow half width to obtain high conversion efficiency, the color rendering index will be further lowered in this case. In addition, in the existing example, since the characteristics of the white light expressed according to a single yellow conversion degree are easily changed, it is difficult to ensure excellent color reproducibility.
  • the color rendering index may be further improved by further including a yellow or yellowish orange phosphor capable of providing an intermediate wavelength band between the green and red bands.
  • 107 to 109 show results of light generated from a blue light emitting device (about 440 nm) as a wavelength spectrum of the phosphor proposed in the present invention.
  • 107A to 107D show spectra for the green phosphor employed in the present invention.
  • a silicate-based phosphor having M 2 SiO 4 : Eu, Re (wherein M is at least two elements selected from Ba, Sr, Ca, and Mg, and Re is Y, La, Ce, Nd). , Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br and I, and Re ranges from 1 ppm to 50000 ppm.
  • the converted green light has a peak wavelength of about 530 nm and a half width of about 65 nm.
  • the converted green light has a peak wavelength of about 515 nm and a half width of about 100 nm.
  • a sulfide-based phosphor of MA 2 D 4 Eu, Re (wherein M is at least two elements selected from Ba, Sr, Ca, and Mg, and A is at least one selected from Ga, Al, and In) D is at least one selected from S, Se, and Te, and Re is Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br And at least one selected from I, and Re ranges from 1 ppm to 50000 ppm.
  • the converted green light has a peak wavelength of about 535 nm and a half width of about 60 nm.
  • phosphors ⁇ -SiAlON Eu, Re (where Re is Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, At least one selected from Cl, Br and I, and Re ranges from 1 ppm to 50000 ppm).
  • the converted green light has a peak wavelength of about 540 nm and a half width of about 45 nm.
  • 108A and 108B show spectra for the red phosphor employed in the present invention.
  • the converted red light has a peak wavelength of about 640 nm and a half width of about 85 nm.
  • the converted red light has a peak wavelength of about 655 nm and a half width of about 55 nm.
  • 109A and 109B show spectra for yellow or yellowish orange phosphors that may optionally be employed in the present invention.
  • the converted yellow light has a peak wavelength of about 555 nm and a half width of about 90 nm.
  • the converted yellow light has a peak wavelength of about 580 nm and a half width of about 35 nm.
  • a combination of a specific green phosphor and a specific red phosphor or a yellow or yellow orange phosphor in the combination forms a high color rendering index of 70 or more.
  • White light having may be provided.
  • the emission wavelength peak of the green phosphor may be in the range of 500 to 550 nm, and the emission wavelength peak of the red phosphor may be in the range of 610 to 660 nm.
  • the emission wavelength peak of the yellow or yellow orange phosphor may range from 550 nm to 600 nm.
  • the green phosphor may have a half width of 30 to 100 nm
  • the red phosphor may have a half width of 50 to 150 nm
  • the yellow or yellowish orange phosphor may have a half width of 20 to 100 nm.
  • each phosphor having such a condition in the present invention, it is possible to secure a broad spectrum in the visible light band and provide excellent white light having a larger color rendering index.
  • Such a light emitting device package may provide a white light source module that can be advantageously used as a light source of the LCD backlight unit. That is, the white light source module according to the present invention may be combined with various optical members (diffusion plate, light guide plate, reflector plate, prism sheet, etc.) as a light source of the LCD backlight unit to form a backlight assembly. 110 and 111 illustrate this white light source module.
  • the light source module 3100 for an LCD backlight includes a circuit board 3101 and an array of a plurality of white light emitting device packages 3010 mounted thereon.
  • a conductive pattern (not shown) connected to the LED device 3010 may be formed on the upper surface of the circuit board 3101.
  • Each white light emitting device package 3010 may be understood as the white light emitting device package illustrated and described with reference to FIG. 103. That is, the blue light emitting device 3015 is directly mounted on the circuit board 3101 by a chip on board (COB) method. Each white light emitting device package 3010 has a hemispherical resin package 3019 having a lens function without a separate reflective wall, so that each white light emitting device package 3100 has a wide orientation angle. Can be represented. The wide direct angle of each white light source can contribute to reducing the size (thickness or width) of the LCD display.
  • COB chip on board
  • the light source module 3200 for an LCD backlight includes a circuit board 3201 and an array of a plurality of white light emitting device packages 3020 mounted thereon.
  • the white light emitting device package 3020 includes a blue light emitting device 3025 mounted in a reflection cup of a package body 3021 and a resin packing part 3029 encapsulating the same.
  • yellow or yellowish orange phosphors 3026 are dispersed and included together with the green and red phosphors 3022 and 3024.
  • 112 is a cross-sectional view of a light emitting device package according to another embodiment of the present invention.
  • the light emitting device package 4000 includes a light emitting device 4011, an electrode structure 4012 and 4013, a package body 4015, a transparent transparent resin 4016, and A recess 4018 on which the light emitting device 4011 is mounted is provided.
  • the light emitting element 4011 is bonded to each end of a pair of (metal) wires 4014a and 4014b, and the electrode structures 4012 and 4013 are connected to each of the pair of wires 4014a and 4014b. Each other end is bonded and connected.
  • the light emitting device 4011 may be a light emitting device according to various embodiments of the present invention described above.
  • the package body 4015 is a molding structure which is injection molded with a resin material to seal the bottom surface and to form an open cavity 4017 at the top.
  • the cavity 4017 has an upper inclined surface that is inclined at a predetermined angle, and the upper inclined surface has a high reflectance such as Al, Ag, Ni, etc. to reflect light generated by the light emitting device 4011. It may be provided with a reflective member 4017a.
  • the package body 4015 has the pair of electrode structures 4012 and 4013 integrally formed and fixed thereto, and a portion of the upper end surface of the electrode structures 4012 and 4013 is formed through the bottom surface of the cavity 4017. It is exposed to the outside.
  • the other ends of the electrode structures 4012 and 4013 are exposed to the outer surface of the package body 4015 so as to be connected to an external power source.
  • the depression 4018 is formed by recessing the upper surface of the electrode structures 4012 and 4013 exposed to the bottom surface of the cavity 4017 to a predetermined depth.
  • the depression 4018 may be formed in an electrode structure 4012 on which the light emitting device 4011 is mounted among the pair of electrode structures 4012 and 4013.
  • the depression 4018 is provided as a bent portion that is bent downward at one end of the electrode structure 4012 on which at least one light emitting element 4011 is mounted, and the bent portion is a flat mounting surface on which the light emitting element 4011 is mounted. And a pair of left and right lower inclined surfaces 4012a and 4013a extending inclined upward at a predetermined angle from the mounting surface to left and right sides and facing the outer surface of the light emitting device 4011.
  • the lower inclined surfaces 4012a and 4013a may be provided with reflecting members to reflect light generated when the light emitting device 4011 emits light.
  • the depth H of the depression 4018 may be about 50 ⁇ m to about 400 ⁇ m in consideration of the height h of the light emitting device 4011 mounted thereon. By doing so, the height (H) of the cavity of the package body can be lowered to 150 ⁇ m to 500 ⁇ m, and the manufacturing cost can be reduced and the brightness can be improved by reducing the filling amount of the transparent transparent resin filled in the cavity 4017. On the other hand, the product can be miniaturized.
  • FIG. 113 is a cross-sectional view of a light emitting device package according to a modification of the embodiment shown in FIG. 112.
  • the light emitting device package according to the present modification has the package body 4015 between the ends of the pair of electrode structures 4012 and 4013 facing each other, unlike the recess 4018 of the previous embodiment.
  • the groove 4018a is formed to be recessed to a predetermined depth from the bottom surface of the cavity 4017 during molding.
  • the transparent transparent resin 4016 covers the light emitting device 4011 and the wires 4014a and 4014b to cover the light emitting elements 4011 and 4014b to be protected from the external environment, such as epoxy, silicon, and resin filled in the cavity 4017. It is made of the same transparent resin material.
  • the transparent transparent resin 4016 is a fluorescence which is a wavelength conversion means of any one of the YAG-based, TAG-based, Silicate-based, Sulfide-based or Nitride-based to convert the light generated from the light emitting device 4011 to white light Substances may be included.
  • YAG and TAG fluorescent materials can be selected from (Y, Tb, Lu, Sc, La, Gd, Sm) 3 (Al, Ga, In, Si, Fe) 5 (O, S) 12: Ce, Silicate fluorescent material may be selected from (Sr, Ba, Ca, Mg) 2 SiO 4: (Eu, F, Cl).
  • the sulfide-based fluorescent material may be selected from (Ca, Sr) S: Eu, (Sr, Ca, Ba) (Al, Ga) 2S4: Eu
  • the Nitride-based phosphor may be selected from (Sr, Ca, Si, Al, O) N: Eu (e.g., CaAlSiN4: Eu ⁇ -SiAlON: Eu) or Ca- ⁇ SiAlON: Eu based (Cax, My) (Si, Al) 12 (O, N) 16, wherein M is Eu, Tb, At least one of Yb or Er is 0.05 ⁇ (x + y) ⁇ 0.3, 0.02 ⁇ x ⁇ 0.27 and 0.03 ⁇ y ⁇ 0.3, and may be selected from phosphor components.
  • the white light may include yellow (Y) phosphor or green (G) and red (R) phosphor or yellow (Y), green (G), and red (R) in the blue (B) light emitting device.
  • Yellow, green, and red phosphors are excited by a blue light emitting device to emit yellow light, green light, and red light, respectively, and the yellow light, green light, and red light are mixed with some blue light emitted from the blue light emitting device to output white light.
  • a reflecting member is provided to reflect light generated when the light emitting device 4011 emits light. It is preferable to have lower inclined surfaces 4012b and 4013b, respectively.
  • the LED package (4000, 4000 ') having the above configuration is mounted on the mounting surface of the recessed portion in which the light emitting element 4011 disposed in the center of the cavity 4017 is bent downward in the electrode structure 4012 or By being mounted in the recesses 4018a which are recessed between the opposite ends of the electrode structures 4012 and 4013 facing each other, wire bonding is performed via the electrode structures 4012 and 4013 and the wires 4014a and 4014b.
  • the upper surface of the light emitting element 4011 may be disposed to be approximately equal to the height of the upper surfaces of the electrode structures 4012 and 4013.
  • the maximum height of the wires 4014a and 4014b wire-bonded with the light emitting device 4011 may be lowered as the mounting height of the light emitting device 4011 is lowered.
  • the filling amount of the transparent transparent resin 4016 filled in the cavity 4017 may be reduced so as to protect the light emitting device 4011 and the wires 4014a and 4014b, and the filling height H of the transparent resin.
  • the mounting height of the light emitting device 4011 may be lowered, the light luminance of light generated when the light emitting device 4011 is emitted may be relatively increased as compared with the related art.
  • the top height of the body of the package body 4015 is also lowered as the filling height is lowered, thereby miniaturizing the overall size of the package. You can do it.
  • 114A to 114C are schematic views illustrating a process of forming an external lead frame in the light emitting device package according to the present embodiment in detail.
  • the negative and positive electrode structures 4012 and 4013 are integrally fixed to the package body 4015 through which most of the body is injection molded of resin material, but the end of the package body 4015 may be connected to an external power source. Exposed to the outer surface of the package body 4015
  • the electrode structures 4012 and 4013 exposed downward to the outside of the package body 4015 are bent through side and / or bottom surfaces of the package to be bent in a direction opposite to the light emitting surface on which the cavity 4017 is formed. .
  • the electrode structures 4012 and 4013 are formed by bending the electrode structures to the side and / or the rear side (rear or bottom) of the mounting surface (bottom surface) 4019 of the package.
  • Forming process is first bend the end of the electrode structure (4012) exposed to the package bottom surface as shown in Figure 114b first to fit the side shape of the package 4000, then package bottom surface as shown in Figure 114c Bending backward 404019 completes the shape of the entire electrode structure 4012.
  • the method for producing ⁇ -sialon phosphor according to the present invention has a chemical formula represented by Si (6-x) Al x O y N (6-y) : Ln z , wherein Ln is a rare earth element, and 0 ⁇
  • the ⁇ -sialon phosphor is prepared by mixing raw materials and heating in a nitrogen-containing atmosphere gas.
  • raw materials containing silicon, aluminum, and rare earth metals, which are active materials are used.
  • silicon As a raw material of silicon, silicon may be used as a raw material including silicon, and silicon may be used by using only metal silicon or by further mixing a silicon compound containing silicon in addition to metal silicon.
  • silicon compound silicon nitride or silicon oxide may be used.
  • the metal silicon is preferably a high purity metal silicon which is powdery and has a low content of impurities such as Fe.
  • the particle diameter and distribution do not directly affect the particle system of the phosphor.
  • the particle diameter and distribution of the silicon powder affect the particle size characteristics such as particle size and shape of the phosphor, and also affect the light emission characteristics of the phosphor, depending on the firing conditions or the raw materials to be combined. ⁇ ⁇ or less is preferable.
  • the particle diameter of the metal silicon does not necessarily have to be small because the raw material to be blended and the firing speed are not necessarily reduced, and the shape of the metal silicon is not limited to powder.
  • any one of aluminum compounds including metal aluminum and aluminum may be used. Or metal aluminum and an aluminum compound can be used together.
  • an aluminum compound containing aluminum, aluminum nitride, aluminum oxide, or aluminum hydroxide can be used, for example.
  • metal silicon is used as the silicon raw material, it is not necessary to use metal aluminum as the aluminum raw material, and only aluminum compounds can be used.
  • the particle diameter of the metal aluminum is preferably 300 ⁇ m or less.
  • the particle diameter of the metal aluminum does not necessarily have to be small, and the shape thereof is not limited to the powder form because it is also affected by the raw materials to be blended and the firing speed.
  • any one rare earth metal selected from the group consisting of Eu, Ce, Sm, Yb, Dy, Pr, and Tb may be used. Specific examples thereof include oxides such as Eu 2 O 3 , Sm 2 O 3 , Yb 2 O 3 , CeO, Pr 7 O 11 , and Tb 3 O 4 , Eu (NO 3 ) 3 , EuCl 3 , and the like. have.
  • the activator raw material may be Eu or Ce.
  • ⁇ -sialon phosphor prepared according to the present invention may be a phosphor having the following formula (1).
  • Ln is a rare earth element, preferably 0 ⁇ x ⁇ 4.2, 0 ⁇ y ⁇ 4.2, and 0 ⁇ z ⁇ 1.0.
  • the ⁇ -sialon phosphor may be a green light emitting phosphor, and its peak wavelength may be 500 nm to 570 nm.
  • a silicon raw material including metal silicon and an aluminum raw material including at least one of metal aluminum and aluminum compound
  • Each of the active raw materials is weighed, mixed, filled into a crucible of boron nitride, and the raw material mixture is calcined at high temperature in a nitrogen-containing atmosphere to prepare a ⁇ -sialon phosphor.
  • the raw material mixture is made into a phosphor by firing in a high temperature nitrogen atmosphere.
  • the N 2 concentration in the nitrogen gas atmosphere containing 90% or more.
  • the nitrogen-containing atmosphere gas pressure may be 0.1 Mpa to 20 Mpa.
  • the heating is preferably a high temperature of 1850 °C to 2150 °C. Although it may vary depending on the composition of the raw material, firing at a high temperature of 1900 ° C. to 2100 ° C. at a gas pressure of 0.8 Mpa or more is preferable to prepare a phosphor having high brightness. Then, after heating, the heated raw material mixture may be ground or classified to adjust the particle size characteristics. The ground or classified raw material compound may be refired at high temperature.
  • each raw material is weighed by a predetermined amount of a silicon raw material, an aluminum raw material, and an active raw material, which are parent raw materials, and mixed with a ball mill or a mixer to prepare a mixture.
  • the raw material mixture is placed in a high temperature heat resistant container such as a BN crucible and placed in an electric furnace where pressurized and vacuum fired. This was heated to a temperature rise rate of 20 ° C./min or less under a pressure of 2 Mpa at a gas pressure of 0.2 Mpa in a nitrogen-containing atmosphere and heated to 1800 ° C. or more to prepare a ⁇ -sialon phosphor.
  • the phosphors of Comparative Example 3 in Comparative Example 1 prepared by using the silicon raw material, the aluminum raw material and the compounding ratio thereof in Example 1 to Example 9 and the silicon raw material not containing metal silicon were all activated by Eu.
  • ⁇ -sialon phosphor which is a green luminescent phosphor having a peak wavelength of 520 to 560 nm.
  • Silicon nitride (Si 3 N 4 ) and metal silicon (Si) are used as the silicon raw material, alumina (Al 2 O 3 ) is used as the aluminum raw material, and europium oxide (Eu 2 O 3 ) is used as the active material. It was. 4.047 g of Si 3 N 4 , 5.671 g of Si, 0.589 g of Al 2 O 3 , and 0.141 g of Eu 2 O 3 were weighed, mixed with a mixer and a sieve, and then charged into a BN crucible, followed by a pressure resistant electric furnace. Set in. Firing was heated to 500 ° C. under vacuum and N 2 gas was introduced at 500 ° C. The temperature was raised to 5 ° C every minute from 500 ° C to 1950 ° C under N 2 gas atmosphere, and calcined at 1950 ° C for 5 hours while the gas pressure was 0.8 Mpa or more.
  • the mixture was cooled, the crucible was taken out of the electric furnace, and the resulting phosphor was fired at a high temperature to pulverize, and a phosphor of 100 mesh was used to obtain a phosphor.
  • the prepared phosphor was washed with hydrofluoric acid and hydrochloric acid and dispersed, and then sufficiently dried, and the phosphor was classified using a 50 mesh sieve to obtain the phosphor of Example 1.
  • ⁇ -sialon phosphor was prepared in the same manner as in Example 1 except that 1.349 g of Si 3 N 4 and 7.291 g of Si were used.
  • ⁇ -sialon phosphor was prepared in the same manner as in Example 1 except that 6.744 g of Si 3 N 4 and 4.051 g of Si were used.
  • ⁇ -sialon phosphor was prepared in the same manner as in Example 1 except that 9.442 g of Si 3 N 4 and 2.430 g of Si were used.
  • Si 3 N 4 As a silicon source material, it was prepared by only 8.101 g except that is uses the same method as in Example 1, a sialon phosphor between ⁇ - Si.
  • ⁇ -sialon phosphor was prepared in the same manner as in Example 1 except that Si 3 N 4 was used only and 13.488 g of Si 3 N 4 was used as the silicon raw material.
  • Silicon nitride (Si 3 N 4 ) and metal silicon (Si) were used as the silicon raw material, aluminum nitride (AlN) was used as the aluminum raw material, and europium oxide (Eu 2 O 3 ) was used as the active material.
  • Si 3 N 4 , 3.241 g of Si, 0.379 g of AlN, and 0.137 g of Eu 2 O 3 were weighed, mixed with a mixer and a sieve, charged into a BN crucible, and placed in a pressure resistant electric furnace. It was. Firing was heated at 1450 ° C. for 5 hours or more under a nitrogen atmosphere, and after cooling, the fired product was pulverized.
  • the pulverized fired product was again charged into a BN crucible and placed in a pressure resistant electric furnace. Heat to 500 ° C. under vacuum and introduce N 2 gas at 500 ° C. The temperature was raised from 500 ° C to 2000 ° C every minute at 5 ° C under N 2 gas atmosphere, and calcined at 2000 ° C for 5 hours while the gas pressure was 0.8 Mpa or more.
  • the mixture was cooled, the crucible was taken out of the electric furnace, and the resulting phosphor was fired at a high temperature to pulverize, and a phosphor of 100 mesh was used to obtain a phosphor.
  • the prepared phosphor was washed with hydrofluoric acid and hydrochloric acid and dispersed, and then sufficiently dried, and the phosphor was classified using a 50 mesh sieve to obtain the phosphor of Example 6.
  • ⁇ -sialon phosphor was prepared in the same manner as in Example 6 except that 7.554 g of Si 3 N 4 and 1.944 g of Si were used.
  • ⁇ -sialon phosphor was prepared in the same manner as in Example 6 except that Si 3 N 4 alone was used 10.791 g instead of Si as a silicon raw material.
  • ⁇ -sialon phosphor was manufactured in the same manner as in Example 9 except that Si 3 N 4 was used only and 13.488 g of Si 3 and 0.473 g of Al were used as the silicon raw materials.
  • Table 2 shows the compounding ratios of the raw materials used in the above-described examples and comparative examples.
  • Phosphor prepared according to Example 1 was subjected to classification by powder X-ray diffraction (XRD), the results are shown in FIG. Referring to FIG. 115 and using JCPDS data, it was confirmed that the prepared phosphor was ⁇ -sialon phosphor.
  • the emission characteristics were measured by irradiation of excitation light at 460 nm, and the emission spectrum results of the ⁇ -sialon phosphor of Example 1 and the ⁇ -sialon phosphor of Comparative Example 1 are shown in FIG. 116.
  • the ⁇ -sialon phosphor of Example 1 has a light emission peak at 541 nm and a half width at 54.7 nm for green light emission phosphor.
  • the brightness is 27% higher than that of the ⁇ -sialon phosphor of Comparative Example 1.
  • the excitation spectrum of the ⁇ -sialon phosphor of Example 1 was measured as luminescence color of 541 nm as detection light. The result is shown in FIG. It can be seen that there is an excitation zone up to the ultraviolet and visible region around 500 nm.
  • Example 1 7 parts by weight of the ⁇ -sialon phosphors of Comparative Example 3 in Example 9 and Comparative Example 1, 3 parts by weight of the red CaAlSiN 3 : Eu phosphor, and 10 parts by weight of the silicone resin were mixed well, and the slurry was The slurry was poured into a cup on a mount lid equipped with a blue light emitting LED light emitting element, and cured at 130 ° C. for 1 hour after injection to prepare a white LED using the present phosphor. The luminance of the manufactured white LED was measured.
  • Example 1 to Example 9 and Comparative Example 1 the peak emission wavelength of the ⁇ -sialon phosphor of Comparative Example 3 and the brightness of the white LED manufactured using the same are shown in Table 3 below. (Parts by weight)
  • Example 1 to Example 9 and Comparative Example 1 in Comparative Example 3 the emission peak wavelength is about 540nm it can be seen that the green phosphor.
  • the white LED using the phosphor of Example 3 in Example 1 exhibited relatively high luminance, with luminance of 124 to 127.
  • Example 4 in which the ratio of the metal silicon was smaller than the ratio of the silicon nitride, the luminance was lower than that of Example 3 in Examples 1 in which the ratio of the metal silicon was larger than the ratio of the silicon nitride.
  • Example 5 and Example 8 using only Si as the silicon raw material Example 4 showed lower luminance than that of Examples 3 and 6, but the proportion of metal silicon was less than that of silicon nitride.
  • the ⁇ -sialon phosphor of a higher brightness can be produced by using a metal silicon showing a higher luminance than Example 7, the ratio of the metal silicon is smaller than Example 6.
  • Comparative Example 3 has a luminance of 100, respectively, and as compared with the case where the metal raw material is not used as the parent raw material, the luminance is lower.
  • the ⁇ -sialon phosphor described above can be advantageously applied to light emitting devices and modules that provide white light through different phosphor combinations.
  • the backlight device according to the present invention includes the above-described light emitting device package.
  • the light emitting device package mounting the semiconductor light emitting device according to the present invention may be applied to a light source of various other devices such as a lighting device and a vehicle headlight, in addition to a surface light source device such as a backlight device.
  • 118 is a schematic view illustrating a surface light source device having a flat light guide plate, that is, a backlight device, according to an embodiment of the present invention.
  • the backlight device 5000 having the flat light guide plate according to the present invention is a tandem surface light source device, and includes n LED light source modules 5010 and n flat light guide plates 5020.
  • a plurality of light emitting device packages 5012 are arranged in a line on the substrate 5011, and n LED light source modules 5010 configured as described above are arranged in parallel with each other.
  • a flat light guide plate 5020 arranged on one side of each of the n LED light source modules 5010 is provided.
  • the backlight device having the flat light guide plate 5020 is disposed under the LED light source module 5010 and the bottom of the flat light guide plate 5020 to reflect the light emitted from the LED light source module 5010 (not shown). May be provided).
  • the upper portion of the flat light guide plate 5020 is reflected by a reflecting member, and the light passing through the diffusion sheet or the diffusion sheet for diffusing the light refracted by the flat light guide plate to the liquid crystal panel side in various directions is collected into the front viewing angle. It may be provided with an optical sheet (not shown) such as a prism sheet to serve.
  • the LED light source module 5010 may be formed of a plurality of light emitting device packages 5012 mounted in a top view.
  • the flat light guide plate 5020 is a plate-type, and is disposed in a direction in which light is emitted from the LED light source and is made of a transparent material to allow light to pass therethrough.
  • the flat light guide plate has a simpler shape compared to the wedge light guide plate and is easy to mass-produce, and it is also easy to align the light guide plate on the LED light source.
  • the flat light guide plate 5020 is formed in a light incident part 5021 to which light from the LED light source 5010 is incident, and is formed in a flat plate shape having a uniform thickness, and emits light incident from the LED light source to the liquid crystal panel side with illumination light.
  • a light guide plate 5024 having a light emitting surface having an exit surface, and a front end portion 5022 formed protruding from the light incident portion 5021 on the basis of the light exit portion, and having a thickness smaller than the thickness of the light incident portion;
  • a tip portion 5022 of 5020 is disposed to cover the top of the LED light source 5010. That is, the n + 1 th LED light source 5010 is positioned under the tip portion 5022 of the n th flat light guide plate 5020.
  • the tip portion 5022 of the flat light guide plate 5020 has a prism shape 5023 on its lower surface.
  • the light emitted from the LED package 5012 is not emitted directly to the light guide plate 5020, but is scattered by the prism shape 5023 provided on the bottom surface of the tip portion 5022 of the flat light guide plate 5020. Is dispersed. As a result, hot spots generated in the light guide plate on the LED light source 5010 can be removed.
  • FIG. 119 is a schematic perspective view illustrating the flat light guide plate 5020 illustrated in FIG. 118.
  • the flat light guide plate 5020 is formed as a light incident part 5021 to which light from an LED light source 5010 made of a plurality of LED packages 5012 is incident, and has a flat plate shape having a uniform thickness.
  • a light exit part 5024 having an exit surface for emitting light incident on the light incident part 5021 to the liquid crystal panel (not shown) as illumination light, and a light exit part 5021 opposite to the light exit part 5024.
  • a tip portion 5022 having a cross section of a thickness narrower than that of the light incident portion 5021.
  • Tip portion 5022 has a prism shape 5023 to disperse a portion of the light from the LED package 5012 arranged below it.
  • the prism shape 5023 may be at least one of a triangular prism, a conical prism, and a hemispherical prism capable of dispersing and scattering incident light.
  • the prism shape of the tip portion 5022 may be formed on the entirety of the tip portion 5022, or may be partially formed only on the LED package 5012. Such a prism shape may eliminate hot spots generated in the light guide plate 5020 on the LED package 5012.
  • the light guide plate 5020 on the LED package 5012 is formed by a part of the light emitted from the LED package 5012 by processing the prism shape 5023 on the lower surface of the tip portion 5022.
  • a process of processing a separate diffusion sheet and a prism sheet between the LED package and the light guide plate is unnecessary.
  • FIGS. 120 to 125 a backlight device having a flat light guide plate according to another embodiment of the present invention will be described with reference to FIGS. 120 to 125.
  • FIG. 120 is an exploded perspective view of a backlight device according to another exemplary embodiment of the present invention
  • FIG. 121 is a cross-sectional view taken along line II ′ of the backlight device illustrated in FIG. 120.
  • the backlight device may include a plurality of light guide plates, but two light guide plates are illustrated for convenience of description.
  • the backlight device 6000 includes a lower cover 6010, a light guide plate 6020, a light source device 6030, and a fixing unit 6040.
  • the lower cover 6010 has a storage space.
  • the storage space may be formed by a plate forming a bottom surface of the lower cover 6010 and a sidewall bent at an edge of the plate.
  • the lower cover 6010 may include a fastener or a fastening part 6011 to which the fixing means 6040 to be described later is fastened.
  • the fastener or fastening part 6011 may be a through-hole part through which the fixing means 6040 to be described later, or a groove part into which the fixing means is inserted.
  • the light guide plate 6020 is divided into a plurality of parts.
  • the plurality of light guide plates 6020 are arranged in parallel in the storage space of the lower cover 6010.
  • Each of the light guide plates 6020 has a through hole 6061 penetrating the body.
  • the through hole 6061 is disposed at an edge of the light guide plate 6020.
  • the embodiment of the present invention is not limited to the position and the number of the through holes 6061.
  • the through hole 6061 is disposed to correspond to the fastening part 6011.
  • the shape of the light guide plate 6020 is illustrated as a quadrangular shape, the light guide plate 6020 may have various shapes such as a triangle and a hexagon.
  • a plurality of light source devices 6030 for providing light to the light guide plate 6020 is disposed at one side of each of the light guide plates 6020.
  • Each light source device 6030 may include a light source for forming light, that is, a light emitting device package 6031 and a substrate 6062 having a plurality of circuit patterns for applying a driving voltage of the light emitting device package 6031. Can be.
  • the light emitting device package 6031 may include a sub light emitting device for implementing blue, green, and red colors, respectively.
  • the blue, green, and red lights emitted from the sub-light emitting devices implementing the blue, green, and red colors may be mixed with each other to implement white light.
  • the light emitting device may include a blue light emitting device and a phosphor for converting a part of the blue light emitted from the blue light emitting device into yellow. In this case, the blue and the yellow may be mixed to implement white light.
  • the light formed by the light source device 6030 is incident on the side surface of the light guide plate 6020 and is emitted upward by total internal reflection of the light guide plate 6020.
  • the fixing means 6040 serves to fix the light guide plate 6020 to the lower cover 6010 to prevent the light guide plate 6020 from flowing.
  • the fixing means 6040 is inserted into the through hole 6061 of the light guide plate 6020 to fix the light guide plate 6020 on the lower cover 6010.
  • the fixing means 6040 may pass through the fastening part 6011 of the light guide plate 6020, for example, the through hole part or be inserted into the insertion groove via the through hole 6061 of the light guide plate 120. have.
  • the fixing means 6040 includes a body portion 6062 and a head portion 6061 extending from the body portion 6062.
  • the body portion 6062 may pass through the through hole of the light guide plate 6020 and may be fastened to the fastening portion 6011. That is, the body part 6062 couples the light guide plate 6020 and the lower cover 6010 to each other to fix the light guide plate 6020 on the lower cover 6010.
  • the head portion 6061 has a wider width than the body portion 6062, thereby preventing the fixing means 6040 from completely exiting through the through hole 6061 of the light guide plate 6020.
  • the head 6061 may have a cross-sectional shape of any one of various shapes, for example, semicircular, semi-elliptic, square, and triangle.
  • the head portion 6061 has a triangular cross-sectional shape, the contact between the fixing means 6040 and the optical member 6060 to be described later can be minimized, and black spots due to the fixing means 6040 are generated. You can minimize it.
  • the light emitted from the light guide plate 6020 may be uniformly provided on the optical member 6060.
  • the head part 6061 supports the optical member 6060, thereby maintaining a gap between the light guide plate 6020 and the optical member 6060 to be described later.
  • the gap between the light guide plate 6020 and the optical member 6060 may be adjusted by adjusting the height of the head 6061.
  • the fixing member 6040 may be made of a material transmitting light, for example, transparent plastic, in order to minimize the influence on the image quality.
  • a reflective member 6050 may be disposed under each of the light guide plates 6020.
  • the reflective member 6050 reflects the light emitted to the lower portion of the light guide plate 6020 and re-injects the light into the light guide plate 6020, thereby improving light efficiency of the backlight device.
  • the reflective member 6050 may include a through hole 6061 and a through part 6061 corresponding to the fastening part 6011.
  • the fixing means 6040 may be fastened to the fastening part 6011 via the through hole 6061 and the through part 6061.
  • the reflective member 6050 may be fixed on the lower cover 6010 by the fixing means 6040.
  • the backlight device may further include an optical member 6060 disposed on the light guide plate 6020.
  • the optical member 6060 may include a diffusion plate, a diffusion sheet, a prism sheet, and a protective sheet disposed on the light guide plate 6040.
  • the backlight device includes a plurality of light guide plates, the local dimming effect by partial driving may be further improved.
  • the light guide plates divided into a plurality of parts may be fixed on the lower cover by using fixing means, thereby preventing defects due to the flow of the light guide plates.
  • the gap between the light guide plate and the optical member may be maintained by the fixing means, thereby providing uniform light to the liquid crystal panel.
  • FIG. 122 is a plan view showing an LED backlight device according to still another embodiment of the present invention
  • FIG. 123 is a cross-sectional perspective view of a region A shown in FIG. 122 before the substrate is fastened
  • FIG. Sectional perspective view. 125 is a sectional view seen along the cutting line II-II 'of FIG. 124.
  • the LED backlight device includes a lower cover 6110 having a fastener or a fastening portion formed of a first through hole 6110a or a groove, and the lower cover 6110.
  • a plurality of light guide plates 6120 disposed on the bottom of the lower cover 6110 on one side of each of the light guide plates 6120, and wires to which a voltage is applied from the outside.
  • a plurality of LED packages 6132 providing a plurality of light guide plates, and a light guide plate 6120 adjacent to and coupled to a second through hole 6131a of the substrate 6131 and / or a first through hole 6110a of the lower cover 6110.
  • the lower cover having a first through hole (6110a) (or (concave) groove formed concave on the plate) to form a storage space penetrating the plate forming the bottom surface to form a circular, rectangular or oval shape ( 6110 is made of iron (Fe) or electro-galvanized steel sheet (EGI) and the like to form a lower frame, and furthermore, the lower cover 6110 is formed to extend vertically upward from the edge region of the plate forming the bottom surface It may have side walls, ie side frames.
  • the bottom surface of the lower frame may be divided into a plurality of areas formed in a row for the configuration of the split type backlight device, and the plurality of areas may be bounded by, for example, concave grooves formed in one region. have.
  • the concave grooves that distinguish the plurality of regions here correspond to the accommodating grooves of the substrate 6131 described later.
  • first through hole 6110a on the lower cover 6110 may have various shapes in addition to a circular, oval or rectangular shape, but a through hole having a long width, more precisely, two long sides and two long sides that are parallel to each other. It can take the form of a through hole having two short sides formed to be connected to each other with a predetermined curvature at both ends, wherein the long axis direction (Y axis) of the first through hole (6110a) is in the same direction as the light traveling direction It is more preferably formed on the lower cover 6110 to achieve.
  • the (fastening) grooves also have the same structural characteristics as above.
  • a reflecting plate (not shown) is attached to the bottom surface except for the recessed groove.
  • a reflective plate is usually used a white polyester film or a film coated with a metal (Ag, Al), etc., the light reflectance of the visible light in the reflecting plate is about 90 ⁇ 97%, the thicker the coated film, the higher the reflectance.
  • the plurality of reflecting plates provided on the bottom surface of the lower cover 6110 may be positioned between the LED package 6132 provided with light and the light guide plate 6120 located adjacent to the back surface of the LED package 6132. It may be extended.
  • an optical member (not shown) provided on one side of the light guide plate 6120 is provided on the upper side after being reflected back by the reflecting plate without being interfered by the LED package 6132 disposed on the other side of the light guide plate 6120. It can be provided in the direction of) can be increased the reflection efficiency of the light.
  • the LED light source 6130 is provided at one side of the concave accommodation groove or the light guide plate 6120 of the lower cover 6110. At this time, the LED light source 6130 is provided in the concave receiving groove, for example, is provided horizontally on the bottom surface of the lower cover 6110, the wiring is formed so that voltage can be applied from the outside and the first of the lower cover 6110
  • a substrate 6131 has a second through hole 6131a corresponding to the through hole 6110a, that is, a PCB and an LED package 6132 mounted on the substrate 6131.
  • the substrate 6131 has a second through hole 6131a formed between the LED package 6132 and the LED package 6132, and thus, the substrate 6131 having the second through hole 6131a has a lower cover.
  • the second through hole 6131a formed on the bottom surface of the lower cover 6110 so as to correspond to (or face) the first through hole 6110a of 6110 is formed on the substrate 6131.
  • first through hole 6110a of the lower cover 6110 may be circular or elliptical, but in the present invention, a through hole having a width in a long direction, that is, two long sides parallel to each other, and both ends of the two long sides It has the shape of a through hole having two short sides formed to be connected to each other with a predetermined curvature, the long axis direction (X axis) of the second through hole (6131a) is formed to be perpendicular to the traveling direction of the light, and eventually the substrate (6131)
  • the second through hole 6131 a of the second axis has a long axis direction (X axis) of the first through hole 6110 a of the lower cover 6110. It is formed to intersect with the major axis direction (Y axis).
  • the size of the second through hole (6131a) formed on the substrate (6131), more specifically, the distance (or distance) between the two long sides may be related to the diameter of the body of the fixing means (6140) formed with a thread, This is because the size of the second through hole 6131a may affect the distance between the LED package 6132 providing the light and the light guide plate 6120 to which the light provided from the LED package 6132 is incident. We will see more about this later.
  • the LED package 6132 is fixed on the substrate 6131 again to form an outer frame, and the light emitting is mounted in the receiving body of the package main body 6133 and the receiving groove of the package main body 6133 to provide light And a pair of first and second electrode structures (not shown) formed so as to be exposed to the element 6133 and the accommodating groove, and to which the light emitting element 6133 is mounted and electrically connected to the wiring on the substrate 6131.
  • the LED package 6132 may further include a resin packing part 6136 formed in the receiving groove to provide white light when the light emitting device 6133 is a blue light emitting device, wherein the resin packing part 6136 is yellow. It may include a phosphor.
  • the resin packaging part 6136 may inject a gel-type epoxy resin containing a YAG-based yellow phosphor or a gel-type silicone resin containing a YAG-based yellow phosphor into a storage groove of the package body 6133. It can be formed through UV (ultraviolet) curing or thermosetting.
  • the present invention is not intended to be limited to the LED package 6132, which is composed of a blue light emitting element and a yellow phosphor, and for example, a resin package in which red, green, and blue phosphors are provided on the near ultraviolet chip and the near ultraviolet chip. It may be made of a resin packaging portion formed by sequentially stacking negative or red, green, and blue phosphors, respectively.
  • a plurality of light guide plates 6120 are provided on the bottom surface of the lower cover 6110 divided into a plurality of regions.
  • the side surface of the light guide plate 6120 is provided to be in close contact with the package body 6133 so that light provided from the light emitting element 6133 mounted in the receiving groove of the package body 6133 can be introduced into the light guide plate 6120 without loss. It may be desirable.
  • the light guide plate 6120 is made of PMMA, and the light absorbing plate 6120 is the least absorbing light in the visible light region of the polymer material, so that the transparency and gloss are very high. It does not break or deform due to its high mechanical strength, and is light and chemically resistant. In addition, the transmittance of visible light is as high as 90-91%, the internal loss is very low, and it is also strong in mechanical properties such as tensile strength, bending strength, elongation strength, chemical properties, and resistance.
  • the fixing means 6140 is fastened to the substrate 6131 between the light guide plate 6120 and the light guide plate 6120.
  • the fixing means 6140 is a screw-like shape made of a transparent material, and the light guide plate is provided on both sides of the LED package 6132, that is, the front surface from which light is emitted and the rear surface opposite to the front surface.
  • the lower cover 6110 corresponding to the second through hole 6131a and the second through hole 6131a of the substrate 6131 so as to simultaneously fix the adjacent light guide plate 6120 while keeping the interval of the 6120 constant. Is penetrated through the first through hole 6110a.
  • the fixing means 6140 of the present invention is made of a transparent material so that the light guided in the light guide plate 6120 can be provided to the optical member disposed on the upper side without interference, made of the same material as the light guide plate 6120. Seems desirable.
  • the fixing means 6140 of the present invention consists of a head having a variety of shapes, such as substantially circular or square, and a body portion of a cylindrical or cylindrical shape formed extending to the head, the fixing means (6140) It may be fixed to the second through hole (6131a) of the substrate (6131) and / or the first through hole (6110a) of the lower cover (6110) through the thread formed on the outer surface of the body portion of the.
  • the body portion of the fixing means 6140 may also form a square pillar.
  • the size of the head part is designed to cover a part of the gap between the light guide plate 6120 and the light guide plate 6120 and one side edge area of the light guide plate 6120, so that the size of the head part is slightly changed according to the distance between the light guide plate 6120 and the light guide plate 6120.
  • the diameter of the body portion is formed to be equal to the distance or distance between the two long sides parallel to each other in the second through hole (6131a) of the substrate (6131) and / or the first through hole (6110a) of the lower cover (6110). It would be desirable to be.
  • the fixing means 6140 may change the size of the head portion or the length of the diameter of the body portion slightly, even with respect to the size of the second through hole 6131 a of the substrate 6131, as described above.
  • the smaller size of the second through hole 6131a of 6131 is that the diameter of the body portion of the fixing means 6140 becomes smaller, which in turn can narrow the gap between the LED package 6132 and the light guide plate 6120. Can mean.
  • the fixing means 6140 may be formed of a light guide plate 6120 which is disposed adjacent to the substrate 6131 to which the LED package 6132 is fixed when screwed to the substrate 6131 and / or the lower cover 6110. By pressing the upper corner region to the head portion, even if an external impact occurs, the light guide plate 6120 may be prevented from flowing.
  • the fixing means 6140 may be additionally tightened with the nut through the first through hole 6110a of the lower cover 6110 so that the strength of the force may be reinforced.
  • the fixing means 6140 fastened on the substrate 6131 may serve as a spacer between the LED package 6132 and the light guide plate 6120, and thus, a gap between the LED package 6132 and the light guide plate 6120. It is possible to cope with the contraction and / or expansion of the light guide plate (6120) by maintaining a constant.
  • the fixing means 6140 is not necessarily to form a screw thread.
  • the first through hole of the second through hole 6131 a of the substrate 6131 and the lower cover 6110 through the hook portion formed at the end portion corresponding to the head of the screw. After being fastened through the 6210a, it may be fixed by the lower cover 6110.
  • optical member (not shown) is provided on the upper side of the plurality of light guide plates 6120 to compensate for the optical characteristics of the light provided through the light guide plate 6120.
  • the optical member may include, for example, a diffuser plate having a diffusion pattern for alleviating non-uniformity of light transmitted through the light guide plate 6120, a prism sheet having a condensation pattern for increasing the front luminance of the light, and the like.
  • the present invention maintains a constant distance by the fixing means 6140 provided between the light guide plate 6120 and the light guide plate 6120 to fix the light guide plate 6120 by external impact or the like. Can be prevented, and the light guide plate 6120 can be contracted in a direction (X axis) perpendicular to the traveling direction of the light.
  • the fixing means 6140 fastened to the first through hole 6110a of the lower cover 6110 having a long axis direction (Y-axis) formed along the light traveling direction and the first through hole 6110a.
  • the light guide plate 6120, the fixing means 6140, and / or the substrate 6131 are provided along the long axis direction (Y axis) of the first through hole 6110a of the lower cover 6110. ) Can be moved together, so that a certain distance between the light guide plate 6120 and the LED package 6132 can be maintained as it is, so that the bright spot and bright phenomenon can be improved.
  • the liquid crystal display according to the present invention may include the LED backlight device according to the above embodiments, and may further include a liquid crystal panel (not shown) provided on the optical member.
  • the liquid crystal display may further include a mold structure called a main support in order to prevent distortion of the display device from an external impact or the like.
  • a backlight device is provided under the main support and a liquid crystal panel is provided on the upper side. Is loaded.
  • the liquid crystal panel includes a thin film transistor array substrate and a color filter substrate bonded to each other, and includes a liquid crystal layer injected between the two substrates.
  • the signal lines such as the gate line and the data line cross each other on the thin film transistor array substrate, and the thin film transistor TFT is formed at the intersection of the data line and the gate line.
  • These TFTs switch the video signals to be transmitted from the data line to the liquid crystal cell of the liquid crystal layer, that is, the data signals of red (R), green (G), and blue (B) in response to the scan signal provided through the gate line.
  • a pixel electrode is formed in the pixel region between the data line and the gate line.
  • a black matrix formed corresponding to the gate and data lines of the thin film transistor array substrate and a region partitioned by the black matrix are provided to provide colors of red (R), green (G), and blue (B).
  • a common electrode provided on the black matrix and the color filter.
  • a data pad extending from the data line and a gate pad extending from the gate line are formed.
  • the pads are connected to the data pad and the gate pad, respectively.
  • a gate driver and a data driver for applying a signal are provided.
  • an upper cover may be provided on the liquid crystal panel to cover the four edge regions of the liquid crystal panel and to be fixed to the lower cover 210 or the sidewall of the main support.
  • the upper cover is also made of the same material as the lower cover 210.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 도전성 기판, 제1전극층, 절연층, 제2전극층, 제2반도체층, 활성층 및 제1반도체층이 순차적으로 적층된 반도체 발광소자를 제공하되, 상기 제1전극층과 제1반도체층이 접촉하는 면적이 상기 반도체 발광 소자의 면적의 3 내지 13%이 되도록 하여 발광 효율이 높은 반도체 발광소자를 제공하는 것을 목적으로 한다.

Description

반도체 발광 소자
본 발명은 반도체 발광 소자에 관한 것으로, 전극의 배치구조를 변경하여, 고전류 동작이 가능하고 발광효율이 높은 반도체 발광 소자에 관한 것이다.
반도체 발광소자는 소자 내에 포함되어 있는 물질이 빛을 발광하는 소자로서, 예를 들면, LED와 같이 다이오드를 이용하여 반도체를 접합한 형태로 전자/정공 재결합에 따른 에너지를 광으로 변환하여 방출하는 소자이다. 이러한 반도체 발광소자는 현재 조명, 표시장치 및 광원으로서 널리 이용되며 그 개발이 가속화되고 있는 추세이다.
이러한 반도체 접합 발광소자 구조는 p형 반도체 및 n형 반도체의 접합구조인 것이 일반적이다. 반도체 접합 구조에서는 양반도체의 접합영역에서 전자/정공 재결합에 따른 발광이 있을 수 있으나, 그 발광을 보다 활성화시키기 위하여 양반도체 사이에 활성층을 구비할 수도 있다. 이러한 반도체 접합 발광소자는 반도체층을 위한 전극의 위치에 따라 수직형 구조 및 수평형 구조가 있고, 수평형 구조에는 성장형(epi-up) 및 플립칩형(flip-chip)이 있다.
도 1은 종래의 수평형 반도체 발광소자이고, 도 2는 종래의 수직형 반도체 발광소자의 단면도이다. 이하에서는 설명의 편의를 위하여, 도 1 및 도 2에서 기판과 접촉되는 반도체층이 n형 반도체층이고, 활성층상에 형성되는 반도체층은 p형 반도체층으로 가정하여 설명하기로 한다.
먼저, 도 1을 참조하여 수평형 반도체 발광소자를 설명하기로 한다.
수평형 반도체 발광 소자의 반도체 발광소자(1)는 부도전성 기판(13), n형 반도체층(12), 활성층(11), 및 p형 반도체층(10)을 포함한다. n형 반도체층(12)에는 n형 전극(15)이, p형 반도체층(10) 측에는 p형 전극(14)이 형성되어 있어 전압 등의 인가를 위하여 외부전원(미도시)과 전기적으로 연결되어 있다.
각각의 전극(14, 15)을 통하여 반도체 발광소자(1)에 전압이 인가되면, n형 반도체층(12)으로부터 전자가 이동하고, p형 반도체층(10)으로부터 정공이 이동하여 전자 및 정공의 재결합을 통하여 발광이 일어난다. 반도체 발광소자(1)는 활성층(11)을 포함하고, 발광은 활성층(11)에서 발생한다. 활성층(11)에서는 반도체 발광소자(1)의 발광이 활성화되고, 빛이 발광된다. 전기적 연결을 위하여 n형 반도체층(12)에는 n형 전극이, p형 반도체층(10)에는 p형전극이 접촉저항값을 최소로 하면서 위치한다.
기판의 종류에 따라서 전극의 위치가 달라질 수 있는데, 예를 들어, 본 도면에서와 같이 기판(13)이 부도전성 기판인 사파이어 기판인 경우라면, n형 반도체층(12)의 전극은 부도전성 기판(13)상에 형성될 수 없고, n형 반도체층(12)에 형성되어야 한다.
따라서, n형 반도체층(12)상에 n형 전극(15)이 형성될 때, 오믹 접촉 부위의 형성을 이유로 상부의 p형 반도체층(10) 및 활성층(12)이 소모된 것을 알 수 있다. 이러한 전극형성으로 인하여 반도체 발광소자(1)의 발광면적은 감소하게 되고, 그에 따라 발광효율도 감소하게 된다.
이러한 단점을 포함한 이외의 다른 여러 단점을 극복하기 위하여, 부도전성 기판이 아닌 도전성 기판을 사용하는 반도체 발광소자가 등장하였다.
도 2에 도시된 발광소자(2)는 수직형 반도체 발광소자로서, 도전성 기판(23)을 사용하여 기판상에 n형 전극(25)을 형성할 수 있다. 또는, 도 2에서는 도전성 기판(23)상에 n형 전극을 형성하였으나, 부도전성 기판을 이용하여 반도체층을 성장시킨 후 기판을 제거하고 n형 반도체층 상에 직접 n형 전극을 형성하여 수직형 발광소자를 제조할 수도 있다.
도전성 기판(23)을 사용하면, 도전성 기판(23)을 통하여 n형 반도체층(22)으로의 전압의 인가가 가능하므로 기판 자체에 전극을 형성할 수 있다.
따라서, 도 2에서와 같이 도전성 기판(23) 상에 n형 전극(25)이 형성되고, p형 반도체층(20) 상에 p형 전극(24)이 형성되어 수직구조형의 반도체 발광소자가 제조될 수 있다.
그러나, 이 경우, 특히 고출력을 위한 대면적 발광소자를 제조하는 경우, 전류분산을 위하여 전극의 기판에 대한 면적비율이 높을 것이 요구된다. 그에 따라 광추출의 제한 및 광흡수로 인한 광손실 및 발광효율이 감소되는 단점이 있었다.
도 1 및 도 2를 참조하여 설명한 수평형 반도체 발광소자 및 수직형 반도체 발광소자는 각각 반도체 발광소자의 발광면적은 감소하게 되고, 그에 따라 발광효율도 감소하게 되는 문제점 및 광 추출의 제한 및 광흡수로 인한 광손실 및 발광효율 감소가 되는 문제점이 있다.
따라서, 상기와 같은 종래의 반도체 발광소자의 문제점들을 해결하는 새로운 구조의 반도체 발광소자의 개발이 시급한 사항이다.
본 발명의 과제는 새로운 구조의 반도체 발광소자를 제공함에 그 목적이 있다.
또한, 본 발명의 다른 목적은 발광효율이 높은 반도체 발광소자를 제공함에 그 목적이 있다.
또한, 본 발명의 또 다른 목적은 고전류 반도체 발광소자를 제공함에 그 목적이 있다.
상기 기술적 과제를 이루기 위하여 본 발명의 일 측면은 반도체 발광소자를 제공한다. 상기 반도체 발광소자는 도전성 기판, 제1전극층, 절연층, 제2전극층, 제2반도체층, 활성층 및 제1반도체층이 순차적으로 적층된 반도체 발광소자를 포함하되, 상기 제2전극층은 상기 제2반도체층과의 계면을 이루는 표면 중 일부가 노출된 영역을 하나 이상 구비하고, 상기 제1전극층은 상기 제2전극층, 제2반도체층 및 활성층을 관통하고, 상기 제1반도체층의 일정 영역까지 관통한 복수 개의 콘택홀을 통해 상기 제1반도체층의 일정 영역까지 연장되어 상기 제1반도체층과 전기적으로 연결되도록 구비하고, 상기 절연층은 상기 제1전극층과 제2전극층 사이 및 상기 콘택홀들의 측면에 구비되어 상기 제1전극층과 제2전극층, 제2반도체층 및 활성층이 절연되도록 구비하고, 상기 제1전극층과 제1반도체층이 접촉하는 면적이 상기 반도체 발광 소자의 면적의 0.615 내지 15.68%이 될 수 있다.
또한, 상기 콘택홀들이 균일하게 배치될 수 있다.
또한, 상기 콘택홀들이 1 내지 48000개일 수 있다.
또한, 상기 반도체 발광 소자의 면적 1000000㎛2 당 상기 제1전극층과 반도체층이 접촉하는 면적이 6150 내지 156800㎛2인일 수 있다.
또한, 상기 콘택홀들 중 서로 이웃한 콘택홀의 중심점들간의 거리는 5㎛ 내지 500㎛일 수 있다.
또한, 상기 제2전극층의 노출된 영역 상에 형성된 전극패드부를 더 포함할 수 있다.
또한, 상기 제2전극층의 노출된 영역이 상기 반도체 발광 소자의 모서리에 형성될 수 있다.
또한, 상기 제2전극층이 상기 활성층으로부터 발생한 빛을 반사시킬 수 있다.
또한, 상기 제2전극층은 Ag, Al, Pt, Ni, Pt, Pd, Au, Ir 및 투명전도성 산화물로 구성된 그룹으로부터 선택된 어느 하나의 물질을 포함할 수 있다.
또한, 상기 도전성 기판은 Au, Ni, Al, Cu, W, Si, Se 및 GaAs로 구성된 그룹으로부터 선택된 어느 하나의 물질을 포함할 수 있다.
또한, 상기 제1전극층과 제1반도체층이 접촉하는 면적이 상기 발광구조물 면적의 3 내지 13%일 수 있다.
한편, 본 발명의 다른 실시 형태는,
도전성 기판과, 상기 도전성 기판 상에 순차적으로 형성된 제2반도체층, 활성층 및 제1반도체층을 구비하는 발광구조물과, 상기 제2반도체층 및 활성층을 관통하여 상기 제1반도체층과 그 내부에서 접속된 콘택홀 및 상기 콘택홀로부터 연장되어 상기 발광구조물의 외부로 노출된 전기 연결부를 구비하는 제1전극층 및 상기 제1전극층을 상기 도전성 기판, 제2반도체층 및 활성층과 전기적으로 분리시키기 위한 절연층을 포함하며, 상기 콘택홀과 상기 제1반도체층이 접촉하는 면적은 상기 발광구조물 면적의 0.615 내지 15.68%인 반도체 발광 소자를 제공한다.
본 발명의 반도체 발광소자에 있어서, 제1전극을 발광면 상에 일부 형성하고, 나머지 일부는 활성층 하부에 배치시킴으로써, 발광 면적을 최대로 확보할 수 있다.
또한, 상기 발광면상에 배치된 전극을 균일하게 배치하므로써, 높은 동작 전류를 인가하여도 상기 전류를 안정적으로 분산할 수 있다.
또한, 전류의 균일한 분포가 가능하여, 고전류 동작에서 전류집중 현상을 완할 수 있어, 신뢰성 특성을 향상시킬 수 있다.
도 1은 종래의 수평형 반도체 발광소자이다.
도 2는 종래의 수직형 반도체 발광소자의 단면도이다.
도 3는 본 발명의 일 실시 예에 따른 반도체 발광 소자를 도시한 평면도이다.
도 4는 본 발명의 일 실시 예에 따른 반도체 발광 소자를 도시한 단면도이다.
도 5는 면적이 1000×1000μ㎡인 반도체 발광 소자의 n형 오믹접촉 저항 및 p형 오믹접촉 저항을 보여주는 그래프이다.
도 6은 제1반도체층과 제1전극층이 접촉하는 접촉 면적에 따른 제1접촉 저항과 제2접촉 저항의 총저항을 보여주는 그래프이다.
도 7은 제1반도체층과 제1전극층의 접촉 면적에 따른 발광 효율을 보여주는 그래프이다.
도 8은 도 4의 실시 형태에서 변형된 실시 형태에 따른 반도체 발광소자를 나타낸다.
도 9는 본 발명의 다른 실시 예에 따른 반도체 발광 소자를 도시한 단면도이다.
도 10 및 도 11은 n형 고유 접촉 저항을 달리하여 시뮬레이션을 수행한 결과를 나타낸다.
도 12 내지 도 16은 본 발명의 또 다른 실시예에 따른 반도체 발광소자를 설명하는 도면들이다.
도 17 내지 도 20은 본 발명의 또 다른 실시예에 따른 반도체 발광소자를 설명하는 도면들이다.
도 21 내지 도 25는 본 발명의 또 다른 실시예에 따른 반도체 발광소자를 설명하는 도면들이다.
도 26 내지 도 36은 본 발명의 또 다른 실시예에 따른 반도체 발광소자를 설명하는 도면들이다.
도 37 내지 도 57은 본 발명의 또 다른 실시예에 따른 반도체 발광소자를 설명하는 도면들이다.
도 58 내지 도 77은 본 발명의 또 다른 실시예에 따른 반도체 발광소자를 설명하는 도면들이다.
도 78 내지 도 91은 본 발명의 또 다른 실시예에 따른 반도체 발광소자를 설명하는 도면들이다.
도 92 내지 도 102는 본 발명의 또 다른 실시예에 따른 반도체 발광소자를 설명하는 도면들이다.
도 103 내지 도 105는 본 발명의 일 실시형태에 따른 백색 발광소자 패키지의 다양한 실시예를 나타내는 개략도이다.
도 106은 본 발명의 일 실시형태에 따른 백색 발광소자 패키지의 발광 스펙트럼을 나타낸다.
도 107a 내지 도 107d는 본 발명에 채용가능한 녹색 형광체의 발광특성을 나타내는 파장스펙트럼이다.
도 108a 및 도 108b은 본 발명에 채용가능한 적색 형광체의 발광특성을 나타내는 파장스펙트럼이다.
도 109a 및 도 109b는 본 발명에 채용가능한 황색 형광체의 발광특성을 나타내는 파장스펙트럼이다.
도 110 및 도 111은 본 발명의 일 실시형태에 따른 백색 광원 모듈의 다양한 실시예를 개략적으로 나타내는 측단면도이다.
도 112 및 도 113은 본 발명의 다른 실시형태에 따른 발광소자 패키지의 다양한 실시예를 나타내는 개략도이다.
도 114는 도 112의 발광소자 패키지에서 외부의 리드 프레임을 형성하는 공정을 구체적으로 도시한 개략도이다.
도 115 내지 도 117은 실시예 1에 따라 제조된 β-사이알론 형광체의 X선 회절분석결과, 발광스펙트럼, 여기스펙트럼을 나타내는 그래프이다.
도 118 및 도 119는 본 발명의 일실시 형태에 따른 평판형 도광판을 갖는 면 광원장치 및 평판형 도광판을 설명하기 위한 개략적인 사시도이다.
도 120 내지 도 125는 본 발명의 다른 실시형태에 따른 평판형 도광판을 갖는 백라이트장치를 설명하는 도면들이다.
<도면의 주요 부분에 대한 부호의 설명>
110 : 도전성 기판 120 : 제1전극층
130 : 절연층 140 : 제2전극층
150 : 제2반도체층 160 : 활성층
170 : 제1반도체층 180 : 콘택홀
190 : 접촉 영역
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시형태들을 설명한다.
그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술 분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 명확한 설명을 위해 과장될 수 있으며, 도면상의 동일한 부호로 표시되는 요소는 동일한 요소이다.
우선, 본 발명에 따른 반도체 발광소자에 대해 다양한 실시형태를 통해 구체적으로 설명하고, 이러한 반도체 발광소자를 사용한 발광소자 패키지와 백라이트장치에 대해 설명한다.
< 반도체 발광소자 >
도 3 및 도 4는 본 발명의 일 실시형태에 따른 반도체 발광소자를 도시한 평면도 및 단면도이다. 이때, 상기 도 4는 상기 도 3의 I-I'선을 따라 절취한 단면도이다.
도 3 및 도 4를 참조하여 설명하면, 본 발명의 일 실시형태에 따른 반도체 발광소자(100)는 도전성 기판(110), 제1전극층(120), 절연층(130), 제2전극층(140), 제2반도체층(150), 활성층(160) 및 제1반도체층(170)을 포함하며, 상기 각 층들은 순차적으로 적층되어 구비되어 있다.
상기 도전성 기판(110)은 전기가 흐를 수 있는 물질로 구성될 수 있다. 상기 도전성 기판(110)은 Au, Ni, Al, Cu, W, Si, Se, GaAs 중 어느 하나를 포함하는 물질, 예컨대, Si와 Al의 합금 형태의 물질로 이루어질 수 있다.
상기 도전성 기판(110) 상에는 상기 제1전극층(120)이 적층되어 구비되어 있는데, 상기 제1전극층(120)은 상기 도전성 기판(110) 및 활성층(160)과 전기적으로 연결됨으로 상기 도전성 기판(110) 및 활성층(160)과 접촉 저항이 최소화되는 물질로 구성되는 것이 바람직하다.
상기 제1전극층(120)은 상기 도전성 기판(110) 상에 적층되어 구비되어 있을 뿐만 아니라, 도 4에 도시하고 있는 바와 같이, 그 일부 영역이 상기 절연층(130), 제2전극층(140), 제2반도체층(150) 및 활성층(160)을 관통하고, 상기 제1반도체층(170)의 일정 영역까지 관통한 콘택홀(180)을 통해 연장되어 상기 제1반도체층(170)과 접촉하여 상기 도전성 기판(110)과 제1반도체층(170)은 전기적으로 연결되도록 구비되어 있다.
즉, 상기 제1전극층(120)은 상기 도전성 기판(110)과 제1반도체층(170)을 전기적으로 연결하되, 상기 콘택홀(180)을 통해 전기적으로 연결하므로써, 상기 콘택홀(180)의 크기, 더 정확하게는 상기 콘택홀(180)에 동해 상기 제1전극층(120)과 제1반도체층(170)이 접촉하는 면적인 접촉 영역(190)을 통해 전기적으로 연결된다.
한편, 상기 제1전극층(120) 상에는 상기 제1전극층(120)이 상기 도전성 기판(110) 및 제1반도체층(170)을 제외한 다른 층과는 전기적으로 절연시키기 위한 절연층(120)이 구비된다. 즉, 상기 절연층(120)은 상기 제1전극층(120)과 제2전극층(140)의 사이뿐만 아니라 상기 콘택홀(180)에 의해 노출되는 상기 제2전극층(140), 제2반도체층(150) 및 활성층(160)의 측면들과 상기 제1전극층(120) 사이에도 구비된다. 또한, 상기 콘택홀(180)이 관통한 상기 제1반도체층(180)의 일정 영역의 측면에도 상기 절연층(120)을 구비하여 절연하는 것이 바람직하다.
상기 제2전극층(140)은 상기 절연층(120)상에 구비된다. 물론, 상기에서도 상술하고 있는 바와 같이 상기 콘택홀(180)이 관통하는 일정 영역들에는 상기 제2전극층(140)이 존재하지 않는다.
이때, 상기 제2전극층(140)은 도면에서 도시하고 있는 바와 같이 상기 제2반도체층(150)과 접촉하는 계면 중 일부가 노출된 영역, 즉 노출 영역(145)을 적어도 하나 이상 구비하고 있다. 상기 노출 영역(145) 상에는 외부 전원을 상기 제2전극층(140)에 연결하기 위한 전극패드부(147)를 구비할 수 있다. 한편, 상기 노출 영역(145) 상에는 이후 설명될 상기 제2반도체층(150), 활성층(160) 및 제1반도체층(170)이 구비되어 있지 않다. 또한, 상기 노출 영역(145)은 도 3에 도시하고 있는 바와 같이 상기 반도체 발광 소자(100)의 모서리에 형성하는 것이 바람직한데, 이는 상기 반도체 발광 소자(100)의 발광 면적을 최대화하기 위해서이다.
한편, 상기 제2전극층(140)은 Ag, Al, Pt, Ni, Pt, Pd, Au, Ir, 투명전도성 산화물을 포함하는 물질로 이루어지는 것이 바람직한데, 이는 상기 제2전극층(140)이 상기 제2반도체층(150)과 전기적으로 접촉하기 때문에 상기 제2반도체층(150)의 접촉 저항을 최소화하는 특성을 가지는 동시에 상기 활성층(160)에서 생성된 빛을 반사시켜 외부로 향하게 하여 발광 효율을 높일 수 있는 기능을 갖는 층으로 구비되는 것이 바람직하기 때문이다.
상기 제2반도체층(150)은 상기 제2전극층(140) 상에 구비되고, 상기 활성층(160)은 상기 제2반도체층(150) 상에 구비되고, 상기 제1반도체층(170)은 상기 활성층(160) 상에 구비된다.
이때, 상기 제1반도체층(170)은 n형 질화물 반도체이고, 상기 제2반도체층(150)은 p형 질화물 반도체인 것이 바람하다.
한편, 상기 활성층(160)은 상기 제1반도체층(170) 및 제2반도체층(150)을 이루는 물질에 따라 다른 물질을 선택하여 형성할 수 있다. 즉, 상기 활성층(160)은 전자/전공이 재결합에 따른 에너지를 빛으로 변화하여 방출하는 층이므로 상기 제1반도체층(170) 및 제2반도체층(150)의 에너지 밴드 갭보다 적은 에너지 밴드 갭을 갖는 물질로 형성하는 것이 바람직하다.
도 8은 도 4의 실시형태에서 변형된 실시형태에 따른 반도체 발광소자를 나타낸다. 도 8의 반도체 발광소자(100')의 경우, 발광구조물, 즉, 제2반도체층(150), 활성층(160) 및 제1반도체층(170)을 구비하는 구조물의 측면에 패시베이션층(191)이 형성되며, 제1반도체층(170) 상면에 요철이 형성된 점에서, 이전 실시 형태와 차이가 있으며, 나머지 구조는 동일한다. 패시베이션층(191)은 발광구조물, 특히, 활성층(160)을 외부로부터 보호하는 것으로서, SiO2, SiOxNy, SixNy 등의 실리콘 산화물, 실리콘 질화물로 이루어질 수 있으며, 그 두께는 0.1 ~ 2㎛ 정도가 바람직하다. 외부로 노출된 활성층(160)은 반도체 발광소자(100')의 작동 중에 전류 누설 경로로 작용할 수 있으며, 패시베이션층(191)을 발광구조물의 측면에 형성함으로써 이러한 문제를 방지할 수 있다. 이 경우, 도 8에 도시된 것과 같이, 패시베이션층(191)에 요철을 형성할 경우, 광 추출 효율의 향상을 기대할 수 있다. 이와 마찬가지로, 제1반도체층(170) 상면에 요철 구조가 형성될 수 있으며, 이에 의하여, 활성층(160) 방향에서 입사된 빛이 외부로 방출될 확률이 증가될 수 있다. 한편, 따로 도시하지는 않았으나, 제조 공정에서 제2전극층(140)을 노출시키기 위하여 발광구조물을 식각할 경우, 제2전극층(140)을 이루는 물질이 활성층(160) 측면에 달라붙는 문제를 방지하기 위하여 제2전극층(140) 상에는 식각저지층이 추가로 형성될 수 있다. 상기와 같이 설명한 도 8의 변형예는 도 9의 실시 형태에도 적용될 수 있을 것이다.
한편, 본 발명에서 제안하는 반도체 발광소자는 상기와 같은 구조에서 변형되어 콘택홀과 연결된 제1전극층이 외부로 노출될 수도 있다. 도 9는 본 발명의 다른 실시예에 따른 반도체 발광소자를 도시한 단면도이다. 본 실시형태에 따른 반도체 발광소자(200)는 도전성 기판(210) 상에 제2반도체층(250), 활성층(260) 및 제1반도체층(260)이 형성된다. 이 경우, 제2반도체층(250)과 도전성 기판(210) 사이에는 제2전극층(240)이 배치될 수 있으며, 앞선 실시형태와 달리 제2전극층(240)은 반드시 요구되는 것은 아니다. 본 실시형태의 경우, 제1반도체층(270)과 접촉되는 접촉 영역(290)을 갖는 컨택홀(280)은 제1전극층(220)과 연결되며, 제1전극층(220)은 외부로 노출되어 전기연결부(245)를 갖는다. 전기연결부(245)에는 전극패드부(247)가 형성될 수 있다. 제1전극층(220)은 절연층(230)에 의하여 활성층(260), 제2반도체층(250), 제2전극층(240), 도전성 기판(210)과 전기적으로 분리될 수 있다. 앞선 실시 형태에서, 콘택홀이 도전성 기판과 연결되었던 것과 달리 본 실시 형태의 경우, 콘택홀(280)은 도전성 기판(210)과 전기적으로 분리되며, 콘택홀(280)과 연결된 제1전극층(220)이 외부로 노출된다. 이에 따라, 도전성 기판(210)은 제2반도체층(240)과 전기적으로 연결되어 앞선 실시 형태에서와 극성이 달라진다.
이하, 본 발명에서 제안한 반도체 발광소자에서 제1전극층과 제1반도체층의 접촉 면적에 따른 전기적 특성의 변화를 시뮬레이션하여 콘택홀의 크기 및 형상에 있어서 최적의 상태를 찾고자 한다. 이 경우, 아래의 시뮬레이션 결과는 도 3 및 도 8의 구조에 모두 적용될 수 있다. 또한, 제1 및 제2반도체층을 각각 n형 및 p형 반도체층으로 구성하였다.
도 5는 면적이 1000×1000㎛2인 반도체 발광 소자의 n형 오믹접촉 저항 및 p형 오믹접촉 저항을 보여주는 그래프이다.
도 5의 시뮬레이션에서, n형 고유 접촉 저항(specific contact resistance),즉, 제1전극층과 콘택홀의 고유 접촉 저항은 10-4ohm/㎠이며, p형 고유 접촉 저항, 즉, 제2반도체층과 제2전극층에서의 고유 접촉 저항은 10-2ohm/㎠이다.
도 5를 참조하여 설명하면, 본 발명의 일 실시형태에 따른 반도체 발광소자(100)가 1000000㎛2의 크기, 즉 가로 1000㎛, 세로 1000㎛의 크기를 갖는 직사각형의 칩이라고 가정한다면, 상기 반도체 발광소자(100)의 저항은 상기 제1전극층(120), 제2전극층(140), 제1반도체층(170), 제2반도체층(150), 상기 제2반도체층(150)과 제2전극층(140)의 접촉 저항(이하, 제2접촉 저항이라고 함) 및 상기 제1반도체층(170)과 제1전극층(120)의 접촉 저항(이하, 제1접촉 저항이라고 함)이 있을 수 있는데, 상기 제1접촉 저항(R1) 및 제2접촉 저항(R2)이 접촉 면적에 따라 가장 많은 변화를 보이는 저항들이다.
특히, 도 5에서 도시하고 있는 바와 같이 상기 제2접촉 저항(R2) 보다는 상기 제1접촉 저항(R1)이 접촉 면적이 증가함에 따라 가장 많은 변화를 보인다. 이때, 도 5의 X축은 상기 제1반도체층(170)과 제1전극층(120)이 접촉하는 접촉 면적의 크기를 의미하고, Y축은 접촉 저항의 크기를 의미하므로 상기 X축의 숫자는 상기 제1반도체층(170)과 제1전극층(120)이 접촉하는 접촉 면적을 의미하고, 상기 제2반도체층(150)과 제2전극층(140)이 접촉하는 접촉 면적은 상기 반도체 발광 소자(100)의 총면적(1000000㎛2)에서 상기 X축의 값을 뺀 값이 제2접촉 저항(R2)에 대응하는 상기 제2반도체층(150)과 제2전극층(140)의 접촉 면적이 된다.
이때, 상기 제1반도체층(170)과 제1전극층(120)이 접촉하는 접촉 면적은 상기 도 3 및 도 4를 참조하여 설명한 바와 같이 상기 콘택홀(180)을 통해 상기 제1전극층(120)과 제1반도체층(170)이 접촉하는 영역인 접촉 영역(190)의 총 면적, 즉, 상기 콘택홀(180)이 복수 개이므로 상기 접촉 영역(190)들 각각의 면적들의 합을 의미한다.
도 6은 제1반도체층과 제1전극층이 접촉하는 접촉 면적에 따른 제1접촉 저항과 제2접촉 저항의 총저항을 보여주는 그래프이다.
도 6을 참조하여 설명하면, 본 발명의 일 실시예에 따른 반도체 발광소자(100)의 제1접촉 저항(R1) 및 제2접촉 저항(R2)은 서로 직렬로 연결됨으로, 상기 제1접촉 저항(R1)과 제2접촉 저항(R2)을 더한 총저항(R3)이 상기 반도체 발광 소자(100)의 저항들 중 접촉 면적에 따라 가장 많은 영향을 주는 저항이 된다.
이때, 도 6에서 보여 주는 바와 같이 상기 제1반도체층(170)과 제1전극층(120)의 접촉 면적(X축의 값을 참조)이 증가함에 따라 총저항(R3)의 값(Y축의 값을 참조)은 초기에는 급속한 감소를 하다가 상기 상기 제1반도체층(170)과 제1전극층(120)의 접촉 면적이 커짐에 따라 총저항(R3)이 증가하는 경향을 보이는 것을 알 수 있다.
한편, n형 및 p형 접촉 저항은, 상기 반도체 발광 소자(100)의 크기가 1000000μ㎡ 인 경우, 약 1.6ohm 이하인 것이 바람직하므로 상기 제1반도체층(170)과 제1전극층(120)의 접촉 면적은 약 30000 내지 250000㎛2인 것이 바람직하다.
반도체 발광소자의 통상적인 동작 전압은 3.0~3.2V이며, 동작 전류는 약 0.35A이다. 만약, 반도체 발광소자의 총 저항이 약 2ohm일 경우, 전압은 0.35A * 2ohm = 0.70V가 되어 상용 스펙 범위라 볼 수 있는 2.8~3.8V를 벗어나게 된다. 이와 같이, 전압 범위를 넘어설 경우, 기존 회로 구성의 변경이 필요할 뿐만 아니라, 입력 전력의 증가로 인한 발열이나 광 출력 저하 등의 문제 등이 야기될 수 있다. 따라서, 반도체 발광소자의 총 저항은 2ohm 이하인 것이 바람직하며, 본 발명에서 제안하는 구조의 반도체 발광소자에서 n형 및 p형 접촉 저항의 합은 총 저항의 약 80%에 해당하므로, 기준 접촉 저항으로 2ohm * 0.8 = 1.6ohm이 도출될 수 있다.
즉, 상기 도 3 및 도 4를 참조하여 설명한 본 발명의 반도체 발광소자(100)는 상기 콘택홀(180)을 통해 상기 제1전극층(120)과 제1반도체층(170)이 접촉하는 영역인 접촉 영역(190)들의 총 접촉 면적이 약 30000 내지 250000㎛2인 것이 접촉 저항 측면에서는 가장 바람직하다.
도 7은 제1반도체층과 제1전극층의 접촉 면적에 따른 발광 효율을 보여주는 그래프이다.
상기 도 6을 참조하여 설명한 바에 의하면 상기 제1반도체층(170)과 제1전극층(120)의 접촉 면적이 30000 내지 250000㎛2인 것이 총저항이 낮아 반도체 발광 소자(100)의 발광 효율이 높을 것으로 보이나 이는 상기 제1반도체층(170)과 제1전극층(120)의 접촉 면적이 증가함에 따라 상기 반도체 발광 소자(100)의 실제 발광 면적이 줄어드는 것을 감안하지 않고 있다.
즉, 도 7에서 도시하고 있는 바와 같이 반도체 발광소자(100)의 발광 효율은 상기 제1반도체층(170)과 제1전극층(120)의 접촉 면적이 70000㎛2이 될 때까지는 총저항을 낮추어 발광 효율을 높이지만, 상기 제1반도체층(170)과 제1전극층(120)의 접촉 면적이 70000㎛2이상으로 계속 증가하게 되면 발광 효율이 낮아 지게 되는데, 이는 상기 제1반도체층(170)과 제1전극층(120)의 접촉 면적의 증가는 상기 제2반도체층(150)과 제2전극층(140)의 접촉 면적의 감소를 의미하여 상기 반도체 발광 소자(100)의 발광량을 낮추게 된다.
따라서 상기 제1반도체층(170)과 제1전극층(120)의 접촉 면적이 적절하게 결정되는 것이 바람직한데, 상기 제1반도체층(170)과 제1전극층(120)의 접촉 면적은 도 7에 도시된 바와 같이 발광효율이 90% 이상이 되도록 하는 130000㎛2이하가 되는 것이 바람직하다.
결론적으로 본 발명의 일 실시예에 따른 반도체 발광소자(100)는 상기 콘택홀(180)을 통해 상기 제1반도체층(170)과 제1전극층(120)의 접촉 면적이 30000 내지 130000㎛2이 되는 것이 가장 바람직하며, 상기 반도체 발광소자(100)의 칩 크기가 1000000㎛2인 경우이므로 상기 제1전극층(170)과 반도체층(120)이 접촉하는 면적이 상기 반도체 발광소자(100)의 면적의 3 내지 13%인 경우가 가장 적절한 접촉 면적임을 나타낸다.
한편, 상기 콘택홀(180)의 갯수가 너무 작은 경우, 상기 제1반도체층(170)과 제1전극층(120)의 접촉 영역(190) 하나 당 제1반도체층(170)과 제1전극층(120)의 접촉 면적은 증가하나, 그에 따라 전류를 공급해야 하는 제1반도체층(170)의 면적이 증가하게 되어 상기 접촉 영역(190)에서 공급해야 하는 전류량이 증가하게 되고, 이로 인해 상기 제1반도체층(170)과 제1전극층(120)의 접촉 영역(190)에 전류가 집중되는 문제가 발생한다.
또한, 상기 콘택홀(180)의 갯수가 너무 많은 경우에는 상기 콘택홀(180)의 크기가 너무 작어지게 되어 제조 공정상에 어려움이 따르게 되는 문제가 발생한다.
따라서, 상기 콘택홀(180)의 갯수는 상기 반도체 발광 소자(100)의 크기, 즉 칩 크기에 따라 적절하게 선택되는 것이 바람직한데, 상기 반도체 발광 소자(100)의 크기가 1000000㎛2인 경우에는 상기 콘택홀(180)의 갯수는 5 내지 50개인 것이 바람직하다.
한편, 상기 반도체 발광소자(100)의 콘택홀(180)들은 복수 개 구비되는데, 상기 콘택홀(180)들은 균일하게 배치되는 것이 바람직하다. 이는 상기 콘택홀(180)들을 통해 상기 제1반도체층(170)과 제1전극층(120)이 접촉하게 됨으로 전류가 균일하게 분산되기 위해서는 상기 콘택홀(180)들이 균일하게 배치, 즉, 상기 제1반도체층(170)과 제1전극층(120)의 접촉 영역(190)들이 균일하게 배치되는 것이 바람직하다.
여기서, 상기 반도체 발광소자(100)의 크기가 1000000㎛2인 경우에 상기 콘택홀(180)의 갯수는 5 내지 50개일 경우, 상기 반도체 발광 소자(100)가 균일하게 배치되기 위해서는 복수개의 콘택홀들 중 이웃한 콘택홀들간의 이격 거리는 100㎛ 내지 400㎛일 수 있다. 이때, 상기 이격 거리는 이웃한 콘택홀들의 중심점을 연결하여 측정된 값이다.
한편, 상기 반도체 발광소자(100)는 상기 콘택홀(180)들이 상기에서 상술한 바와 같이 복수 개가 균일하게 배치됨으로써 고른 전류 분산을 이룰 수 있어 크기가 1000000㎛2 반도체 발광 소자의 경우, 종래에는 약 350mA에서 동작하였으나 본 발명의 일 실시 예에 따른 반도체 발광소자(100)의 경우에는 2A 정도의 높은 전류를 인가하여도 매우 안정적인 동작하고 전류 집중(current crowding) 현상이 완화되어 신뢰성 특성이 향상된 반도체 발광소자를 제공하고 있다.
도 10 및 도 11은 n형 고유 접촉 저항을 달리하여 시뮬레이션을 수행한 결과를 나타낸다. 본 시뮬레이션의 경우, n형 고유 접촉 저항은 10-6ohm/㎠이며, p형 고유 접촉 저항은 10-2ohm/㎠이다. n형 고유 접촉 저항은 n형 반도체층의 도핑 수준, n형 전극 물질, 이들의 열처리 방식 등에 영향을 받는다. 따라서, n형 반도체층의 도핑 농도를 높이거나 n형 전극 물질로서 Al, Ti, Cr 등과 같이 금속 에너지 장벽이 낮은 물질을 채용하는 등의 방법으로 n형 고유 접촉 저항은 10-6ohm/㎠ 수준까지 낮아질 수 있다. 즉, 통상적으로 사용되는 n형 고유 접촉 저항은 10-4 ~ 10-6ohm/㎠이라 할 수 있다.
우선, 도 10을 참조하면, n형 및 p형 고유 접촉 저항의 총합, 즉, 총 접촉 저항(R4)은 도 6의 결과와 비교하였을 때, 작은 접촉면적에서도 매우 낮은 수준을 유지할 수 있다. 또한, 도 10을 참조하여 접촉면적에 따른 광 효율을 살펴보면, 도 7의 결과와 비교하였을 때, 작은 접촉면적에서도 높은 수준을 유지할 수 있으며, 이 경우, 광 효율이 100%보다 큰 것은 도 7의 결과에 대한 상대 값을 나타낸 것이다. 도 10 및 도 11의 시뮬레이션 결과를 참조하면, 총 접촉 저항이 1.6ohm 이하가 되며, 광 효율이 90% 이상이 되는 조건은 반도체 발광 소자의 면적 1000000㎛2당 제1전극층과 반도체층이 접촉하는 면적이 6150 내지 156800㎛2인 경우임을 알 수 있다.
이러한 결과를 토대로 콘택홀의 개수를 결정할 경우, 앞선 시뮬레이션 결과에서 설명한 내용을 적용할 수 있다. 구체적으로, 반지름이 약 1~50㎛인 원형 콘택홀의 경우, 상기와 같은 면적 조건을 충족하기 위해서는 약 1 ~ 48000개가 요구된다. 나아가, 콘택홀이 균일하게 배치되어 있다고 가정하였을 때, 서로 인접한 2개의 콘택홀 간 거리는 약 5 ~ 500㎛을 충족할 필요가 있다.
이하에서는 본 발명의 다른 실시형태에 따른 반도체 발광소자의 구조를 다양한 실시예를 통해 설명한다.
우선, 도 12 내지 도 16을 참조하여 본 발명의 또 다른 실시예에 따른 반도체 발광소자에 대해 설명한다.
본 발명의 또 다른 실시예에 따른 반도체 발광소자(300)는 도전성 기판(340), 제1도전형 반도체층(330), 활성층(320) 및 제2도전형 반도체층(310)이 순서대로 적층되어 형성된다. 특히, 본 실시예에 따른 반도체 발광소자(300)는 도전성 기판(340) 및 제1도전형 반도체층(330) 사이에 형성된 제1전극층(360); 및 전극패드부(350-b), 전극연장부(350-a), 및 전극연결부(350-c)를 포함하는 제2전극부를 포함한다.
전극패드부(350-b)는 제1전극층(360)으로부터 제2도전형 반도체층(310)의 표면까지 연장되고, 제1전극층(360), 제1도전형 반도체층(330), 및 활성층(320)과 전기적으로 분리되어 있다. 전극연장부(350-a)는 제1전극층(360)으로부터 제2도전형 반도체층(310) 내부까지 연장되고, 제1전극층(360), 제1도전형 반도체층(330), 및 활성층(320)과 전기적으로 분리되어 있다. 그리고, 전극연결부(350-c)는 제1전극층과 동일층 상에 형성되나 제1전극층(360)과는 전기적으로 분리되어 있는데, 전극패드부(350-b) 및 전극연장부(350-a)를 연결하는 기능을 수행한다.
도전성 기판(340)은 금속성 기판이거나 반도체 기판일 수 있다. 도전성 기판(340)이 금속인 경우, Au, Ni, Cu, 및 W 중 어느 하나의 금속으로 구성될 수 있다. 또한, 도전성 기판(340)이 반도체 기판인 경우, Si, Ge, 및 GaAs 중 어느 하나의 반도체 기판일 수 있다. 도전성 기판을 반도체 발광소자에 형성하는 방법으로는 도금씨드층을 형성하여 기판을 형성하는 도금법이나, 도전성 기판(340)을 별도로 준비하여 Au, Au-Sn, 또는 Pb-Sr과 같은 도전성 접착제를 이용하여 접합시키는 기판접합법이 이용될 수 있다.
각각의 반도체층(330, 310)은, 예를 들면, GaN계반도체, ZnO계반도체, GaAs계반도체, GaP계반도체, 및 GaAsP계반도체와 같은 무기반도체로 구성될 수 있다. 반도체층의 형성은 예를 들면, 분자선 에피택시(Molecular beam epitaxy, MBE)방법을 이용하여 수행될 수 있다. 이외에도, 반도체층들은 III-V 족 반도체, II-VI 족 반도체, 및 Si로 구성된 군으로부터 적절히 선택되어 구현될 수 있다.
활성층(320)은 발광을 활성화시키는 층으로서, 제1도전형 반도체층(330) 및 제2도전형 반도체층(310)의 에너지 밴드 갭보다 적은 에너지 밴드 갭을 갖는 물질을 이용하여 형성한다. 예를 들어 제1도전형 반도체층(330) 및 제2도전형 반도체층(310)이 GaN계 화합물 반도체인 경우, GaN의 에너지 밴드 갭보다 적은 에너지 밴드 갭을 갖는 InAlGaN계 화합물 반도체를 이용하여 활성층(320)을 형성할 수 있다. 즉, 활성층(320)은 InxAlyGa(1-x-y)N(0≤x≤1, 0≤y≤1, 0≤x+y≤1)일 수 있다.
이때, 활성층(320)의 특성상, 불순물은 도핑되지 않는 것이 바람직하며, 구성물질의 몰비를 조절하여 발광하는 빛의 파장을 조절할 수도 있다. 따라서, 반도체 발광소자(300)는 활성층(320)의 특성에 따라 적외선, 가시광선, 및 자외선 중 어느 하나의 빛을 발광할 수 있다.
활성층(320)에 따라 반도체 발광소자(300)의 전체 에너지 밴드 다이어그램에는 에너지 우물 구조가 나타나게 되고, 각각의 반도체층(330, 310)으로부터의 전자 및 정공은 이동하다 에너지 우물 구조 갇히게 되고, 발광이 더욱 효율적으로 발생하게 된다.
제1전극층(360)은 제1도전형 반도체층(330)을 외부전원(미도시)과 전기적으로 연결하는 전극이다. 제1전극층(360)은 금속으로 구성될 수 있다. 제1전극층(360)은 예를 들면, n형 전극으로는 Ti를, p형 전극으로는 Pd 또는 Au로 구성될 수 있다.
제1전극층(360)은 활성층으로부터 발생한 빛을 반사시키는 것이 바람직하다. 반사된 빛은 발광면으로 향하게 되고, 반도체 발광소자의 발광효율이 증가된다. 활성층으로부터 발생한 빛을 반사시키기 위하여 제1전극층(360)은 가시광선영역에서 백색계열인 금속인 것이 바람직한데, 예를 들면, Ag, Al, 및 Pt 중 어느 하나일 수 있다. 제1전극층(360)에 대하여는, 도 14a 내지 도 14c를 참조하여 이하 더 설명하기로 한다.
제2전극부(350)는 제2도전형 반도체층(310)을 외부전원(미도시)과 전기적으로 연결하는 전극이다. 제2전극부(350)는 금속으로 구성될 수 있다. 제2전극부(350)는 예를 들면, n형 전극으로는 Ti를, p형 전극으로는 Pd 또는 Au로 구성될 수 있다. 특히, 본 발명에 따른 제2전극부(350)는 전극패드부(350-b), 전극연장부(350-a), 및 전극연결부(350-c)를 포함한다.
도 13a를 참조하면, 제2도전형 반도체층(310)상에 표면에는 전극패드부(350-b)가 형성되어 있고, 점선으로 표시된 복수의 전극연장부(350-a)는 제2도전형 반도체층(310)의 내부에 위치하고 있음이 나타나 있다.
도 13b는 도 13a에 나타난 제2도전형 반도체층(310)의 상면을 A-A', B-B', 및 C-C'로 절단한 것이 나타나 있다. A-A'는 전극연장부(350-a)만을 포함하는 단면을 B-B'는 전극패드부(350-b) 및 전극연장부(350-a)를 포함하는 단면을, 그리고, C-C'는 전극연장부(350-a) 및 전극패드부(350-b)를 포함하지 않는 단면을 취하기 위하여 선택되었다.
도 14a 내지 도 14c는 각각 도 13b에 도시된 반도체 발광소자의 A-A', B-B', 및 C-C'에서의 단면도이다. 이하, 도 12, 도 13a, 도 13b, 도 14a 내지 도14c를 참조하여 설명하기로 한다.
도 14a에서, 전극연장부(350-a)는 제1전극층(360)으로부터 제2도전형 반도체층(310) 내부까지 연장된다. 전극연장부(350-a)는 제1도전형 반도체층(330) 및 활성층(320)을 통과하여 제2도전형 반도체층(310)까지 연장되고, 적어도 제2도전형 반도체층(310)의 일부까지 연장되나, 전극패드부(350-b)와 같이 제2도전형 반도체층(310)의 표면까지 연장될 필요는 없다. 전극연장부(350-a)는 제2도전형 반도체층(310)에 전류를 분산시키기 위한 것이기 때문이다.
전극연장부(350-a)는 제2도전형 반도체층(310)에 전류를 분산시키기 위한 것이므로 소정면적을 가져야 한다. 그러나, 전극패드부(350-b)와 같이 전기적 연결을 위한 것이 아니므로 제2도전형 반도체층(310)상에 전류가 균일하게 분포될 수 있는 가능한 적은 면적으로 소정개수 형성되는 것이 바람직하다. 전극연장부(350-a)가 너무 적은 개수로 형성되면 전류분산이 어려워져 전기적 특성이 악화될 수 있고, 너무 많은 개수로 형성되면 형성을 위한 공정의 어려움 및 활성층의 감소로 인한 발광면적의 감소가 초래되므로 이러한 조건을 고려하여 적절히 선택될 수 있다. 따라서, 전극연장부(350-a)는 가능한 한 적은 면적을 차지하면서 전류분산이 효과적인 형상으로 구현된다.
전극연장부(350-a)는 전류분산을 위하여 복수개인 것이 바람직하다. 또한, 전극연장부(350-a)는 원통형의 형상일 수 있는데, 그 면적은 전극패드부(350-b)의 면적보다 작은 것이 바람직하다. 그리고 전극패드부(350-b)와 소정거리 이격되어 형성되는 것이 바람직한데, 후술하는 전극연결부(350-c)에 의하여 제1전극층(360)상에서 서로 연결될 수 있으므로 소정거리 이격되어 균일한 전류분산을 유도하여야 하기 때문이다.
전극연장부(350-a)는 제1전극층(360)으로부터 제2도전형 반도체층(310) 내부까지 형성되는데, 제2도전형 반도체층의 전류분산을 위한 것이므로 다른 층과는 전기적으로 분리될 필요가 있다. 따라서, 제1전극층(360), 제1도전형 반도체층(330), 및 활성층(320)과 전기적으로 분리되는 것이 바람직하다. 전기적 분리는 유전체와 같은 절연물질을 이용하여 수행할 수 있다.
도 14b에서, 전극패드부(350-b)는 제1전극층(360)으로부터 제2도전형 반도체층(310)의 표면까지 연장된다. 전극패드부(350-b)는 제1전극층(360)에서부터 시작하여, 제1도전형 반도체층(330), 활성층(320) 및 제2도전형 반도체층(310)을 통과하여 제2도전형 반도체층(310)의 표면까지 연장된다. 전극패드부(350-b)는 특히 제2전극부(350)의 외부전원(미도시)과의 연결을 위한 것이므로, 제2전극부(350)는 적어도 하나의 전극패드부(350-b)를 구비하는 것이 바람직하다.
전극패드부(350-b)는 제1전극층(360)으로부터 제2도전형 반도체층(310)의 표면까지 연장되어 있다. 전극패드부(350-b)는 제2도전형 반도체층(310)의 표면에서 외부전원과 전기적으로 연결되어 전극연장부에 전류를 공급하게 되므로 제1전극층(360), 제1도전형 반도체층(330), 및 활성층(320)과 전기적으로 분리되는 것이 바람직하다. 전기적 분리는 유전체와 같은 절연물질을 이용하여 절연층을 형성하여 수행할 수 있다.
전극패드부(350-b)는 전극연장부(350-a)에 전류를 공급하는 기능을 수행하나, 이외에도 제2도전형 반도체층(310)과 전기적으로 분리되지 않아 직접 전류를 분산시킬 수 있다. 전극패드부(350-b)는 전극연장부(350-a)에 전류를 공급하는 기능과 제2도전형 반도체층(310)에 전류를 분산시키는 기능 중 요구되는 기능을 고려하여 제2도전형 반도체층(310)과 적절히 전기적으로 분리시킬 수 있다.
전극패드부(350-b)는 특히, 활성층(320)에서의 단면의 면적이 제2도전형 반도체층(310)의 표면에서의 단면의 면적보다 작은 것이 바람직한데, 이는 활성층(320)을 보다 최대한 확보하여 발광효율을 증가시키기 위해서이다. 그러나, 제2도전형 반도체층(310)의 표면에서는 외부전원(미도시)과의 연결을 위하여 소정면적을 가질 필요가 있다.
전극패드부(350-b)는 반도체 발광소자(300)의 중앙에 위치할 수 있는데, 이 경우 전극연장부(350-a)는 가능한한 전극패드부(350-b)와 소정거리 이격되어 골고루 분산되어 위치하는 것이 바람직하다. 도 13a를 참조하면, 전극패드부(350-b)와 전극연장부(350-a)가 제2도전형 반도체층(310)상에 골고루 분산되어 위치하여 전류분산을 최적화하고 있다. 도 13a에서는 전극패드부(350-b)가 1개이고, 전극연장부(350-a)가 12개인 경우를 상정하여 도시하였으나, 각각의 개수는 전기적 연결 상황(예를 들면, 외부전원의 위치) 및 제2도전형 반도체층(310)의 두께 등과 같은 전류분산 상황을 고려하여 적절히 선택될 수 있다.
전극연장부(350-a)가 복수개인 경우, 전극패드부(350-b)와 복수개의 전극연장부(350-a) 모두는 직접적으로 연결될 수 있다. 이 경우, 반도체 발광소자(300) 중심부에 전극 패드부(350-2)가 형성되고, 전극연장부(350-a)가 그 둘레에 위치하고 전극연결부(350-c)는 방사형으로 전극패드부(350-b) 및 전극연장부(350-a)를 직접 연결시킬 수 있다.
또는 복수의 전극연장부(350-a) 중 몇몇의 전극연장부(350-a)는 전극패드부(350-b)에 직접 연결되어 있고, 나머지 전극연장부(350-a)는 전극패드부(350-b)에 직접 연결된 전극연장부(350-a)와 연결되어 전극패드부(350-b)와는 간접적으로 연결될 수 있다. 이 경우에는 더욱 많은 수의 전극연장부(350-a)를 형성할 수 있어서, 전류분산의 효율화를 향상시키게 된다.
도 14a 내지 도 14c에서, 전극연결부(350-c)는 제1전극층(360) 상에 형성되어 전극패드부(350-b) 및 전극연장부(350-a)를 연결한다. 따라서, 제2전극부(350)의 상당부분이 빛을 발광하는 활성층(320)의 빛의 진행방향의 반대쪽 후면에 위치하게 되어 발광효율을 증가시키게 된다. 특히, 도 14c에서, 전극연결부(350-c)만이 제1전극층(360)상에 위치하여 제2전극부(350)가 제1도전형 반도체층(330), 활성층(320), 및 제2도전형 반도체층(310)상에 위치하지 않는 상태를 나타낸다. 따라서, 도 14c와 같은 경우, 전극패드부(350-b) 및 전극연장부(350-a)가 발광에 영향을 미치지 않아 발광효율이 높이지는 영역이 된다. 도 14c에는 특히 도시되어 있지 않으나 제1전극층(360)은 도전성 기판(340)과 접촉되어 외부전원(미도시)과 연결될 수 있다.
그리고, 전극연결부(350-c)는 제1전극층(360)과 전기적으로 분리되어 있다. 제1전극층(360)과 제2전극부(350)는 서로 반대극성을 나타내는 전극들이어서, 외부전원을 제1도전형 반도체층(330) 및 제2도전형 반도체층(310)에 각각 공급하므로 양 전극은 반드시 전기적으로 분리되어야 한다. 전기적 분리는 유전체와 같은 절연물질을 이용하여 수행할 수 있다.
도 14b에서 전극패드부(350-b)가 제2도전형 반도체층(310)의 표면에 위치함으로써, 수직형 반도체 발광소자의 특성을 나타낼 수 있고, 도 14c에서는 전극연결부(350-c)가 제1전극층(360)과 같은 평면에 위치하므로 수평형 반도체 발광소자의 특성을 나타낼 수 있다. 따라서 반도체 발광소자(300)는 수평형 및 수직형을 통합한 형태의 구조를 나타내게 된다.
도 14a 내지 도 14c에서, 제2도전형 반도체층은 n형 반도체층이고, 제2전극부는 n형 전극부일 수 있다. 이 경우, 제1도전형 반도체층(330)은 p형 반도체층이고, 제1전극층(360)은 p형 전극일 수 있다. 전극패드부(350-b), 전극연장부(350-a) 및 전극연결부(350-c)는 서로 연결되어 있는 제2전극부(350)인데, 제2전극부(350)가 n형 전극인 경우, 절연물질을 이용하여 절연부(370)를 형성하여 p형 전극인 제1전극층(360)과 전기적으로 분리될 수 있다.
도 15a는 본 실시예의 변형예에 따라 표면에 요철패턴(380)이 형성된 반도체 발광소자의 발광을 나타내는 도면이고, 도 15b는 본 실시예의 다른 변형예에 따라 표면에 요철패턴(380)이 형성된 반도체 발광소자에서의 전류분산을 나타내는 도면이다.
본 실시예에 따른 반도체 발광소자(300)는 발광된 빛의 진행방향의 최외곽 표면이 제2도전형 반도체층(310)으로 구성되어 있다. 따라서, 포토리소그래피 방법과 같은 공지의 방법을 이용하여 표면에 요철 패턴을 형성하는 것이 용이하다. 이 경우, 활성층(320)으로부터 발광된 빛은 제2도전형 반도체층(310)의 표면에 형성된 요철패턴(380)을 통과하여 추출되고 요철패턴(380)에 의해 광추출효율이 증가된다.
요철패턴(380)은 광결정(photonic crystal) 구조일 수 있다. 광결정은 굴절률이 서로 다른 매질이 결정처럼 규칙적으로 배열된 것을 나타내는데, 이러한 광결정은 빛의 파장의 배수의 길이 단위의 빛 조절이 가능하여 광추출효과를 더욱 높일 수 있다. 광결정 구조는 제2도전형 반도체층(310)을 형성하고 제2전극부(350)까지 제조한 후에, 소정의 적절한 공정을 통하여 수행될 수 있다. 예를 들면, 식각 공정에 의하여 형성될 수 있다.
제2도전형 반도체층(310)에 요철패턴(380)이 형성되어 있다고 하여도 전류분산에는 영향이 없다. 도 15b를 참조하면, 전극연장부(350-a)에서의 전류분산은 요철패턴(380)에 영향을 받지 않기 때문이다. 각각의 전극연장부(350-a)는 요철패턴 아래에서 전류를 분산시키고 요철패턴은 발광된 빛을 추출하여 발광효율이 높아지게 된다.
도 16은 발광면의 전류밀도와 발광효율의 관계를 도시하는 그래프를 나타내는 도면이다. 그래프에서 전류밀도가 약 10A/cm2이상인 경우, 전류밀도가 작은 경우에는 발광효율이 높고, 전류밀도가 큰 경우에는 발광효율이 낮은 경향을 나타낸다.
이러한 수치를 이하의 표 1에 나타내었다.
표 1
발광면적(cm2) 전류밀도(A/cm2) 발광효율(lm/W) 향상율(%)
0.0056 62.5 46.9 100
0.0070 50.0 51.5 110
0.0075 46.7 52.9 113
0.0080 43.8 54.1 115
발광면적이 높을수록 발광효율이 높아지나, 발광면적을 확보하기 위하여는 분포된 전극의 면적이 감소되어야 하므로 발광면의 전류밀도는 감소하는 경향을 나타낸다. 그러나 이러한 발광면에서의 전류밀도의 감소는 반도체 발광소자의 전기적 특성을 해칠 수 있다는 문제점이 있다.
그러나, 이러한 문제점은 본 발명에서의 전극연장부를 이용한 전류분산의 확보를 통하여 해소가 가능하다. 따라서, 전류밀도가 감소하여 발생할 수 있는 전기적 특성상의 문제점은 발광표면까지 형성되지 않고 그 내부에 형성되어 전류분산을 담당하는 전극연장부를 형성시키는 방법을 통하여 극복될 수 있다. 따라서, 본 발명에 따른 반도체 발광소자는 원하는 전류분산정도를 획득하면서 최대의 발광면적을 확보하여 바람직한 발광효율을 얻을 수 있다.
도 17 내지 도 20을 참조하여 본 발명의 또 다른 실시예에 따른 반도체 발광소자에 대해 설명한다.
도 17은 본 발명의 또 다른 실시예에 따른 발광소자의 단면도이고, 도 18a 및 도 18b는 도 17의 발광소자의 상면도이며, 도 19a 내지 도 19c는 각각 도 18b에 도시된 발광소자의 A-A', B-B', 및 C-C'에서의 단면도이다.
본 발명의 또 다른 실시예에 따른 발광소자(400)는 제1 및 제2도전형 반도체층(430, 410)과 그 사이에 형성된 활성층(420)을 포함하며, 제1 및 제2도전형 반도체층(430, 410)으로 제공되며 서로 반대되는 제1면 및 제2면을 갖는 발광 적층체(430, 420, 410); 발광 적층체(430, 420, 410)가 복수의 발광영역으로 분리되도록 발광 적층체(430, 420, 410)의 제2면으로부터 적어도 제2도전형 반도체층(410)의 일부 영역까지 연장된 적어도 하나의 전기적 절연성의 격벽부(470); 복수의 발광영역에 위치한 제2도전형 반도체층(410)에 각각 접속되도록 형성된 제2전극구조(460); 제1도전형 반도체층(430)에 접속되도록 발광 적층체(430, 420, 410)의 제2면에 형성된 제1전극구조(440); 및 제1전극구조(440)에 전기적으로 연결되도록 발광 적층체(430, 420, 410)의 제2면에 형성된 도전성 기판(450)을 포함한다.
발광 적층체(430, 420, 410)는 제1 및 제2도전형 반도체층(430, 410)과 그 사이에 형성된 활성층(420)을 포함한다. 발광 적층체(4430, 420, 410)는 제2도전형 반도체층(410)의 외부면을 제1면으로, 제1도전형 반도체층(430)의 외부면을 제2면으로 갖는다.
각각의 반도체층(430, 410)은, 예를 들면, GaN계반도체, ZnO계반도체, GaAs계반도체, GaP계반도체, 및 GaAsP계반도체와 같은 반도체로 구성될 수 있다. 반도체층의 형성은 예를 들면, 분자선 에피택시(Molecular beam epitaxy, MBE)방법을 이용하여 수행될 수 있다. 이외에도, 반도체층들은 III-V 족 반도체, II-VI 족 반도체, 및 Si로 구성된 군으로부터 적절히 선택되어 구현될 수 있다. 발광적층체는 격자부정합이 비교적 낮은 사파이어 기판과 같은 부도전성 기판(미도시)상에서 성장할 수 있다. 부도전성 기판(미도시)은 추후 도전성 기판 접합 전에 제거된다.
활성층(420)은 발광을 활성화시키는 층으로서, 제2도전형 반도체층(410) 및 제1도전형 반도체층(430)의 에너지 밴드 갭보다 적은 에너지 밴드 갭을 갖는 물질을 이용하여 형성한다. 예를 들어 제2도전형 반도체층(410) 및 제1도전형 반도체층(430)이 GaN계 화합물 반도체인 경우, GaN의 에너지 밴드 갭보다 적은 에너지 밴드 갭을 갖는 InAlGaN계 화합물 반도체를 이용하여 활성층(420)을 형성할 수 있다. 즉, 활성층(420)은 InxAlyGa(1-x-y)N(0≤x≤1, 0≤y≤1, 0≤x+y≤1)을 포함할 수 있다.
이때, 활성층(420)의 특성상, 불순물은 도핑되지 않는 것이 바람직하며, 구성물질의 몰비를 조절하여 발광하는 빛의 파장을 조절할 수도 있다. 따라서, 발광소자(400)는 활성층(420)의 특성에 따라 적외선, 가시광선, 및 자외선 중 어느 하나의 빛을 발광할 수 있다.
활성층(420)에 따라 발광소자(400)의 전체 에너지 밴드 다이어그램에는 에너지 우물 구조가 나타나게 되고, 각각의 반도체층(430, 410)으로부터의 전자 및 정공은 이동하다 에너지 우물 구조 갇히게 되고, 발광이 더욱 효율적으로 발생하게 된다.
격벽부(470)는 발광 적층체(430, 420, 410)가 복수의 발광영역으로 분리되도록 발광 적층체(430, 420, 410)의 제2면으로부터 적어도 제2도전형 반도체층(410)의 일부 영역까지 연장되어 형성된다. 격벽부(470)는 제2도전형 반도체층(410)을 복수의 영역으로 분리시켜 제2도전형 반도체층(410)과 제2도전형 반도체층(410)상에 형성된 성장용 기판(미도시)과의 사이에 레이저 등의 분리수단을 적용할 경우, 계면에 인가되는 열에너지로 인한 응력을 감소시킨다.
예를 들어, 성장용 기판과의 분리수단으로서 레이저를 이용하는 경우 계면에서의 온도는 약 1000℃이다. 따라서, 그에 따른 열에너지로 분리시키지만 이러한 열은 추후 반도체층 및 접합될 도전성 기판(450)에 수축 및 팽창을 유도하는 응력을 발생시킨다. 일반적으로 응력의 크기는 면적에 비례하므로 대면적 발광소자에서는 이러한 응력이 특히 불리한 영향을 미칠 수 있다.
그러나, 본 실시예에 따른 발광소자(400)는 격벽부(470)를 구비하고 있으므로 제2도전형 반도체층(410)의 면적은 복수개의 발광영역의 면적으로 작아지므로 응력을 감소시킬 수 있다. 즉, 각각의 복수개의 발광영역별로 보다 용이하게 팽창 및 수축이 진행되어 발광적층체(430, 420, 410)의 발광을 안정화시킬 수 있다.
바람직하게, 격벽부(470)는 반도체층(430, 410) 및 활성층(420)을 전기적으로 절연시키는데, 이를 위하여 격벽부는 공기로 충전될 수 있다. 또는 격벽부(470)는 내면에 절연층을 형성하고, 절연층 내부는 공기로 충전될 수 있다. 이외에도 내부 전체를 유전체와 같은 절연물질로 충전하여 전기적 절연을 수행할 수 있다.
격벽부(470)는 발광적층체(430, 410)를 전기적으로 절연하기 위하여 제2면으로부터 제2도전형 반도체층(410)의 상면까지 연장되어 형성될 수 있으나, 반드시 제2도전형 반도체층(410)의 상면까지 연장될 필요는 없고, 제2도전형 반도체층(410)의 내부까지 연장될 수 있다.
또한, 격벽부(470)는 하나의 구조로 구성될 수 있으나, 이와 달리 서로 분리된 복수의 격벽을 포함하여 구성될 수 있다. 이 경우, 복수의 격벽은 필요한 전기적 절연특성을 부여할 수 있도록 각각 다르게 형성할 수 있는데, 예를 들면, 본딩부(461)를 둘러싸는 격벽부 및 콘택홀(462)을 둘러싸는 격벽부는 서로 다른 높이나 형상을 갖을 수 있다.
제2전극구조(460)는 격벽부(470)로 분리된 복수의 발광영역에 위치한 제2도전형 반도체층(410)에 각각 접속되도록 형성된다. 제2전극구조(460)는 콘택홀(462), 본딩부(461) 및 배선부(463)를 포함한다.
콘택홀(462)은 복수개 구비될 수 있는데, 복수의 콘택홀(462) 각각은 복수의 발광영역에 각각 제공될 수 있다. 콘택홀(462)은 단일발광영역에 단일콘택홀이 제공되거나 또는 단일발광영역에 복수의 콘택홀이 제공될 수 있다. 콘택홀(462)은 제2도전형 반도체층(410)에 전기적으로 접속되고 제1도전형 반도체층(430) 및 활성층(420)과는 전기적으로 절연되도록 형성되는데, 이를 위하여 발광 적층체(430, 420, 410)의 제2면으로부터 제2도전형 반도체층(410)의 적어도 일부 영역까지 연장된다. 콘택홀(462)은 제2도전형 반도체층(410)상에 전류를 분산시키기 위하여 형성된다.
본딩부(461)는 발광 적층체(430, 420, 410)의 제1면으로부터 복수의 콘택홀(462) 중 적어도 하나에 연결되도록 형성되며, 제1면에 노출된 영역이 본딩영역으로 제공된다.
배선부(463)는 발광 적층체(430, 420, 410)의 제2면에 제공되며, 적어도 제1도전형 반도체층(430)과 전기적으로 절연되면서 본딩부(461)에 연결된 콘택홀(462)과 다른 콘택홀(462)을 서로 전기적으로 연결하도록 형성된다. 배선부(463)는 콘택홀(462)과 다른 콘택홀(462)을 전기적으로 연결하고, 또한, 콘택홀(462) 및 본딩부(461)를 연결할 수 있다. 제2도전형 반도체층(410) 및 활성층 아래에 배선부(463)가 위치하여 발광효율을 향상시킬 수 있다.
이하, 도 18a 내지 도 19c를 참조하여, 콘택홀(462), 본딩부(461) 및 배선부(463)를 더욱 상세히 설명하기로 한다.
제1전극구조(440)는 제1도전형 반도체층(430)에 전기적으로 접속되도록 발광 적층체(430, 420, 410)의 제2면에 형성된다. 즉, 제1전극구조(440)는 제1도전형 반도체층(430)을 외부전원(미도시)과 전기적으로 연결하는 전극이다. 제1전극구조(440)는 금속으로 구성될 수 있다. 제1전극구조(440)는 예를 들면, n형 전극으로는 Ti를, p형 전극으로는 Pd 또는 Au로 구성될 수 있다.
제1전극구조(440)는 활성층(420)으로부터 발생한 빛을 반사시키는 것이 바람직하다. 제1전극구조(440)는 활성층(420)의 하측에 위치하므로 활성층(420)을 기준으로 하여 발광소자의 발광방향과 반대면에 위치한다. 따라서, 활성층(420)으로부터 제1전극구조(440)로 진행하는 빛은 발광방향과 반대방향이고, 따라서 이러한 빛은 반사되어야 발광효율이 증가된다. 따라서, 제1전극구조(440)에서 반사된 빛은 발광면으로 향하게 되고, 발광소자의 발광효율이 증가된다.
활성층(420)으로부터 발생한 빛을 반사시키기 위하여 제1전극구조(440)는 가시광선영역에서 백색계열인 금속인 것이 바람직한데, 예를 들면, Ag, Al, 및 Pt 중 어느 하나일 수 있다. 제1전극구조(440)에 대하여는, 도 19a 내지 도 19c를 참조하여 이하 더 설명하기로 한다.
도전성 기판(450)은 제1전극구조(440)에 전기적으로 연결되도록 발광 적층체(430, 420, 410)의 제2면에 형성된다. 도전성 기판(450)은 금속성 기판이거나 반도체 기판일 수 있다. 도전성 기판(450)이 금속인 경우, Au, Ni, Cu, 및 W 중 어느 하나의 금속으로 구성될 수 있다. 또한, 도전성 기판(450)이 반도체 기판인 경우, Si, Ge, 및 GaAs 중 어느 하나의 반도체 기판일 수 있다. 도전성 기판을 발광소자에 형성하는 방법으로는 도금씨드층을 형성하여 기판을 형성하는 도금법이나, 도전성 기판(450)을 별도로 준비하여 Au, Au-Sn, 또는 Pb-Sr과 같은 도전성 접착제를 이용하여 접합시키는 기판접합법이 이용될 수 있다.
도 18a를 참조하면, 제2도전형 반도체층(410)상에 표면에는 본딩부(461)가 형성되어 있고, 점선으로 표시된 복수의 콘택홀(462)은 제2도전형 반도체층(410)의 내부에 위치하고 있음이 나타나 있다. 제2도전형 반도체층(410)은 격벽부(470)로 서로 분리된 복수의 발광영역을 포함한다. 도 18a 및 도 18b에서 본딩부(461)는 하나만이 도시되어 있으나, 동일 발광영역에 복수개 형성되거나 또는 복수개의 발광영역 각각에 복수개 형성될 수 있다. 또한, 콘택홀(462)은 각각의 발광영역에 하나씩 형성되어 있으나, 단일 발광영역에 복수개 형성되어 전류분산을 더욱 향상시킬 수 있다.
도 18b는 도 18a에 나타난 제2도전형 반도체층(410)의 상면을 A-A', B-B', 및 C-C'로 절단한 것을 도시한다. A-A'는 콘택홀(462)만을 포함하는 단면을, B-B'는 본딩부(461) 및 콘택홀(462)을 포함하는 단면을, 그리고, C-C'는 콘택홀(462) 및 본딩부(461)를 포함하지 않고, 배선부(463)만을 포함하는 단면을 취하기 위하여 선택되었다.
도 19a 내지 도 19c는 각각 도 18b에 도시된 발광소자의 A-A', B-B', 및 C-C'에서의 단면도이다. 이하, 도 17, 도 18a, 도 18b, 도 19a 내지 도 19c를 참조하여 설명하기로 한다.
도 19a에서, 콘택홀(462)은 제1전극구조(440)으로부터 제2도전형 반도체층(410) 내부까지 연장된다. 콘택홀(462)은 제1도전형 반도체층(430) 및 활성층(420)을 통과하여 제2도전형 반도체층(410)까지 연장되고, 적어도 제2도전형 반도체층(410)의 일부까지 연장되나, 본딩부(461)와 같이 제2도전형 반도체층(410)의 표면까지 연장될 필요는 없다. 그러나, 콘택홀(462)은 제2도전형 반도체층(410)에 전류분산을 위한 것이므로 제2도전형 반도체층(410)까지는 연장되어야 한다.
콘택홀(462)은 제2도전형 반도체층(410)에 전류를 분산시키기 위한 것이므로 소정면적을 가져야 한다. 그러나, 본딩부(461)와 같이 전기적 연결을 위한 것이 아니므로 제2도전형 반도체층(410)상에 전류가 균일하게 분포될 수 있는 가능한 적은 면적으로 소정개수 형성되는 것이 바람직하다. 콘택홀(462)이 너무 적은 개수로 형성되면 전류분산이 어려워져 전기적 특성이 악화될 수 있고, 너무 많은 개수로 형성되면 형성을 위한 공정의 어려움 및 활성층의 감소로 인한 발광면적의 감소가 초래되므로 이러한 조건을 고려하여 적절히 선택될 수 있다. 따라서, 콘택홀(462)은 가능한 한 적은 면적을 차지하면서 전류분산이 효과적인 형상으로 구현된다.
콘택홀(462)은 전류분산을 위하여 복수개인 것이 바람직하다. 또한, 콘택홀(462)은 원통형의 형상일 수 있는데, 그 단면의 면적은 본딩부(461)의 단면의 면적보다 작을 수 있다. 그리고 본딩부(461)와 소정거리 이격되어 형성되는 것이 바람직한데, 후술하는 배선부(463)에 의하여 제1전극구조(440)상에서 서로 연결될 수 있으므로 소정거리 이격되어 가능한한 제1도전형 반도체층(410)내에서 균일한 전류분산을 유도하여야 하기 때문이다.
콘택홀(462)은 제1전극구조(440)으로부터 제2도전형 반도체층(410) 내부까지 형성되는데, 제2도전형 반도체층의 전류분산을 위한 것이므로 제1도전형 반도체층(430) 및 활성층(420)과는 전기적으로 분리될 필요가 있다. 따라서, 제1전극구조(440), 제1도전형 반도체층(430) 및 활성층(420)과 전기적으로 분리되는 것이 바람직하다. 전기적 분리는 유전체와 같은 절연물질을 이용하여 수행할 수 있다.
도 19b에서, 본딩부(461)는 제1전극구조(440)에서부터 시작하여, 제1도전형 반도체층(430), 활성층(420) 및 제2도전형 반도체층(410)을 통과하여 제2도전형 반도체층(410)의 표면까지 연장된다. 발광 적층체(430, 420, 410)의 제1면으로부터 복수의 콘택홀(462) 중 적어도 하나에 연결되도록 형성되며, 제1면에 노출된 영역이 본딩영역으로 제공된다.
본딩부(461)는 특히 제2전극구조(460)의 외부전원(미도시)과의 연결을 위한 것이므로, 제2전극구조(460)는 적어도 하나의 본딩부(461)를 구비하는 것이 바람직하다.
본딩부(461)는 제2도전형 반도체층(410)의 표면에서 외부전원과 전기적으로 연결되어 콘택홀에 전류를 공급하게 되므로 제1전극구조(440), 제2도전형 반도체층(410), 및 활성층(420)과 전기적으로 분리되는 것이 바람직하다. 전기적 분리는 유전체와 같은 절연물질을 이용하여 절연층을 형성하여 수행할 수 있다.
본딩부(461)는 콘택홀(462)에 전류를 공급하는 기능을 수행하나, 이외에도 제2도전형 반도체층(410)과 전기적으로 분리되지 않도록 구성되어 직접 전류를 분산시킬 수 있다. 본딩부(461)는 콘택홀(462)에 전류를 공급하는 기능과 제2도전형 반도체층(410)에 전류를 분산시키는 기능 중 요구되는 기능을 고려하여 제2도전형 반도체층(410)과 적절히 전기적으로 분리시킬 수 있다.
본딩부(461)는 특히, 활성층(420)에서의 단면의 면적이 제2도전형 반도체층(410)의 표면에서의 단면의 면적보다 작은 것이 바람직한데, 이는 활성층(420)을 보다 최대한 확보하여 발광효율을 증가시키기 위해서이다. 그러나, 본딩부(461)는 제2도전형 반도체층(410)의 표면에서는 외부전원(미도시)과의 연결을 위하여 소정면적을 가지는 것이 바람직하다.
본딩부(461)는 발광소자(400)의 중앙에 위치할 수 있는데, 이 경우 콘택홀(462)은 가능한한 본딩부(461)와 소정거리 이격되어 골고루 분산되어 위치하는 것이 바람직하다. 다시 도 18a를 참조하면, 본딩부(461)와 콘택홀(462)이 제2도전형 반도체층(410)상에 골고루 분산되어 위치하여 전류분산을 최적화하고 있다. 도 18a에서는 본딩부(461)가 1개이고, 콘택홀(462)이 8개인 경우를 상정하여 도시하였으나, 각각의 개수는 전기적 연결 상황(예를 들면, 외부전원의 위치) 및 제2도전형 반도체층(410)의 두께 등과 같은 전류분산 상황을 고려하여 적절히 선택될 수 있다.
콘택홀(462)이 복수개인 경우, 본딩부(461)와 복수개의 콘택홀(462) 모두는 직접적으로 연결될 수 있다. 이 경우, 발광소자(400) 중심부에 본딩부(461)가 형성되고, 콘택홀(462)이 그 둘레에 위치하고 배선부(463)는 방사형으로 본딩부(461) 및 콘택홀(462)을 직접 연결시킬 수 있다.
또는 복수의 콘택홀(462) 중 몇몇의 콘택홀(462)은 본딩부(461)에 직접 연결되어 있고, 나머지 콘택홀(462)은 본딩부(461)에 직접 연결된 콘택홀(462)과 연결되어 본딩부(461)와는 간접적으로 연결될 수 있다. 이 경우에는 더욱 많은 수의 콘택홀(462)을 형성할 수 있어서, 전류분산의 효율화를 향상시키게 된다.
도 19a 내지 도 19c에서, 배선부(463)는 제1전극구조(440)상에 형성되어 본딩부(461) 및 콘택홀(462)을 연결한다. 따라서, 제1전극구조(440)의 상당부분이 빛을 발광하는 활성층(420)의 빛의 진행방향의 반대쪽 후면에 위치하게 되어 발광효율을 증가시키게 된다. 특히, 도 19c에서, 배선부(463)만이 제1전극구조(440)상에 위치하고 제2전극구조(460)가 제2도전형 반도체층(410), 활성층(420), 및 제2도전형 반도체층(410)상에 위치하지 않는 상태를 나타낸다. 따라서, 도 19c와 같은 경우, 본딩부(461) 및 콘택홀(462)이 발광에 영향을 미치지 않아 발광효율이 높이지는 영역이 된다.
그리고, 배선부(463)는 제1전극구조(440)와 전기적으로 분리되어 있다. 제2전극구조(460)와 제1전극구조(440)는 서로 반대극성을 나타내는 전극들이어서, 외부전원을 제2도전형 반도체층(410) 및 제1도전형 반도체층(430)에 각각 공급하므로 양 전극은 반드시 전기적으로 분리되어야 한다. 전기적 분리는 유전체와 같은 절연물질을 이용하여 절연층(480)을 형성하여 수행할 수 있다.
도 19b에서 본딩부(461)가 제2도전형 반도체층(410)의 표면에 위치함으로써, 수직형 발광소자의 특성을 나타낼 수 있고, 도 19c에서는 배선부(463)가 제1전극구조(440)과 같은 평면에 위치하므로 수평형 발광소자의 특성을 나타낼 수 있다. 따라서 발광소자(400)는 수평형 및 수직형을 통합한 형태의 구조를 나타내게 된다.
도 19a 내지 도 19c에서, 제1도전형 반도체층은 p형 반도체층이고, 제1전극구조는 p형 전극부일 수 있다. 이 경우, 제2도전형 반도체층(410)은 n형 반도체층이고, 제2전극구조(460)는 n형 전극일 수 있다. 본딩부(461), 콘택홀(462) 및 배선부(463)는 서로 연결되어 있는 제2전극구조(460)인데, 제2전극구조(460)가 n형 전극인 경우, 절연물질을 이용하여 절연층(480)를 형성하여 p형 전극인 제1전극구조(440)와 전기적으로 분리될 수 있다.
도 20은 본 발명의 따라 표면에 요철패턴이 형성된 발광소자에서의 발광을 도시하는 도면이다. 본 실시예에 따른 발광소자는 발광된 빛의 진행방향의 최외곽 표면이 제2도전형 반도체층(410)으로 구성되어 있다. 따라서, 포토리소그래피 방법과 같은 공지의 방법을 이용하여 표면에 요철 패턴을 형성하는 것이 용이하다. 이 경우, 활성층(420)으로부터 발광된 빛은 제2도전형 반도체층(410)의 표면에 형성된 요철패턴(490)을 통과하여 추출되고 요철패턴(490)에 의해 광추출효율이 증가된다.
요철패턴(490)은 광결정(photonic crystal) 구조일 수 있다. 광결정은 굴절률이 서로 다른 매질이 결정처럼 규칙적으로 배열된 것을 나타내는데, 이러한 광결정은 빛의 파장의 배수의 길이 단위의 빛 조절이 가능하여 광추출효과를 더욱 높일 수 있다. 광결정 구조는 제2도전형 반도체층(410)을 형성하고 제1전극구조(460)까지 제조한 후에, 소정의 적절한 공정을 통하여 수행될 수 있다. 예를 들면, 식각 공정에 의하여 형성될 수 있다.
요철패턴(490)이 제2도전형 반도체층(410)에 형성된 경우, 격벽부(470)는 제2도전형 반도체층(410)의 표면까지 형성되지 않고 그 내부까지만 형성되는 것이 바람직하다. 격벽부(470)는 요철패턴(490)의 광추출효율향상성능에 불리한 영향을 미치지 않으면서, 발광영역을 복수개로 분리하는 역할을 수행한다.
도 21 내지 도 25를 참조하여 본 발명의 또 다른 실시예에 따른 반도체 발광소자에 대해 설명한다.
도 21은 본 발명의 또 다른 실시예에 따른 반도체 발광소자의 사시도이고, 도 22는 도 21의 반도체 발광소자의 평면도이다. 이하, 도 21 및 도 22를 참조하여 설명한다.
본 실시예에 따른 반도체 발광소자(500)는 제1도전형 반도체층(511), 활성층(512), 제2도전형 반도체층(513), 제2전극층(520), 제1절연층(530), 제1전극층(540) 및 도전성 기판(550)이 순차 적층되어 형성된다. 이 때, 제2전극층(520)은 제2도전형 반도체층(513)의 계면 중 일부가 노출된 영역을 포함하고, 제1전극층(540)은, 제1도전형 반도체층(511)에 전기적으로 접속되고 제2도전형 반도체층(513) 및 활성층(512)과는 전기적으로 절연되어 제1전극층(540)의 일면으로부터 제1도전형 반도체층(513)의 적어도 일부 영역까지 연장된 하나 또는 그 이상의 콘택홀(541)을 포함한다.
반도체 발광소자(500)의 발광은 제1도전형 반도체층(511), 활성층(512), 및 제2도전형 반도체층(513)에서 수행되므로, 이들을 이하, 발광적층체(510)라 한다. 즉, 반도체 발광소자(500)는 발광적층체(510) 및 제1도전형 반도체층(511)과 전기적으로 접속되는 제1전극층(540), 제2도전형 반도체층(513)과 전기적으로 접속되는 제2전극층(520), 및 전극층들(520, 540)을 전기적으로 절연시키기 위한 제1절연층(530)을 포함한다. 또한, 반도체 발광소자(500)의 성장 또는 지지를 위한 기판으로서, 도전성 기판(550)을 포함한다.
반도체층들(511, 513)은, 예를 들면, GaN계반도체, ZnO계반도체, GaAs계반도체, GaP계반도체, 및 GaAsP계반도체와 같은 반도체를 포함할 수 있다. 반도체층의 형성은 예를 들면, 분자선 에피택시(Molecular beam epitaxy, MBE)방법을 이용하여 수행될 수 있다. 이외에도, 반도체층들은 III-V 족 반도체, II-VI 족 반도체, 및 Si로 구성된 군으로부터 적절히 선택되어 구현될 수 있다. 반도체층들(511, 513)은 전술한 반도체에 각각의 도전형을 고려하여 적절한 불순물로 도핑된다.
활성층(512)은 발광을 활성화시키는 층으로서, 제1도전형 반도체층(511) 및 제2도전형 반도체층(513)의 에너지 밴드 갭보다 적은 에너지 밴드 갭을 갖는 물질을 이용하여 형성한다. 예를 들어, 제1도전형 반도체층(511) 및 제2도전형 반도체층(513)이 GaN계 화합물 반도체인 경우, GaN의 에너지 밴드 갭보다 적은 에너지 밴드 갭을 갖는 InAlGaN계 화합물 반도체를 이용하여 활성층(512)을 형성할 수 있다. 즉, 활성층(512)은 InxAlyGa(1-x-y)N(0≤x≤1, 0≤y≤1, 0≤x+y≤1)을 포함할 수 있다.
이때, 활성층(512)의 특성상, 불순물은 도핑되지 않는 것이 바람직하며, 구성물질의 몰비를 조절하여 발광하는 빛의 파장을 조절할 수도 있다. 따라서, 반도체 발광소자(500)는 활성층(512)의 특성에 따라 적외선, 가시광선, 및 자외선 중 어느 하나의 빛을 발광할 수 있다.
전극층들(520, 540)은 각각 동일한 도전형의 반도체층에 전압을 인가하기 위한 층들이므로 전기전도성을 고려하여 금속을 포함할 수 있다. 즉, 전극층들(520, 540)은 반도체층들(511, 513)을 외부전원(미도시)과 전기적으로 연결하는 전극이다. 전극층들(520, 540)은 예를 들면, n형 전극으로는 Ti를, p형 전극으로는 Pd 또는 Au를 포함할 수 있다.
제1전극층(540)은 제1도전형 반도체층(511)에, 제2전극층(520)은 제2도전형 반도체층(513)에 각각 접속되므로 서로 다른 도전형에 접속되는 특성상, 제1절연층(530)을 통하여 서로 전기적으로 분리된다. 제1절연층(530)은 전기전도성이 낮은 물질로 구성되는 것이 바람직하므로 예를 들어, SiO2와 같은 산화물을 포함할 수 있다.
제2전극층(520)은 활성층(512)으로부터 발생한 빛을 반사시키는 것이 바람직하다. 제2전극층(520)은 활성층(512)의 하측에 위치하므로 활성층(512)을 기준으로 하여 반도체 발광소자(500)의 발광방향과 반대면에 위치한다. 활성층(512)으로부터 제2전극층(520)로 진행하는 반도체 발광소자(500)의 발광방향과 반대방향이고, 제2전극층(520)을 향하여 진행하는 빛은 반사되어야 발광효율이 증가된다. 따라서, 제2전극층(520)이 광반사성을 나타낸다면 반사된 빛은 발광면으로 향하게 되고, 반도체 발광소자(500)의 발광효율이 증가된다.
활성층(512)으로부터 발생한 빛을 반사시키기 위하여 제2전극층(520)은 가시광선영역에서 백색계열인 금속인 것이 바람직한데, 예를 들면, Ag, Al, 및 Pt 중 어느 하나일 수 있다.
제2전극층(520)은 제2도전형 반도체층(513)과의 계면 중 일부가 노출된 영역을 포함한다. 제1전극층(540)의 경우, 하면에 도전성 기판(550)과 접촉되어 있고, 도전성 기판(550)을 통하여 외부전원(미도시)과 전기적으로 연결된다. 그러나, 제2전극층(520)은 외부전원(미도시)과 연결되기 위하여 별도의 연결영역이 필요하다. 따라서, 제2전극층(520)은 발광적층체(510) 중 일부가 에칭등이 되어 노출된 영역을 갖는다.
도 21에서는 제2전극층(520)의 노출 영역을 위하여 발광적층체(510)의 중앙이 에칭되어 형성된 비아홀(514)의 실시예가 도시되어 있다. 제2전극층(520)의 노출된 영역상에는 전극패드부(560)가 더 형성될 수 있다. 제2전극층(520)은 노출된 영역을 통하여 외부전원(미도시)과 전기적으로 연결될 수 있는데, 이 때 전극패드부(560)를 이용하여 연결된다. 외부전원(미도시)과의 연결은 예를 들면 와이어를 이용할 수 있으므로 연결의 편의 상 비아홀의 직경은 제2전극층에서 제1도전형 반도체층 방향으로 증가하는 것이 바람직하다.
비아홀(514)은 반도체를 포함하는 발광적층체(510)만을 에칭하고, 통상 금속을 포함하는 제2전극층(520)은 에칭하지 않도록 선택적 에칭을 통하여 수행한다. 비아홀(514)의 직경은 발광면적, 전기적 연결효율 및 제2전극층(520)에서의 전류분산을 고려하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의하여 적절히 선택될 수 있다.
제1전극층(540)은, 제1도전형 반도체층(511)에 전기적으로 접속되고, 제2도전형 반도체층(513) 및 활성층(512)과는 전기적으로 절연되어 제1도전형 반도체층(511)의 적어도 일부 영역까지 연장된 하나 또는 그 이상의 콘택홀(541)을 포함한다. 제1전극층(540)은 제1도전형 반도체층(511)의 외부전원(미도시)과의 연결을 위하여, 제1전극층(540) 및 제2도전형 반도체층(513) 사이의 제2전극층(520), 제2도전형 반도체층(513), 및 활성층(512)을 관통하여 제1도전형 반도체층(511)까지 연장되고 전극물질을 포함하는 콘택홀(541)을 적어도 하나 이상 포함하는 것이다.
콘택홀(541)이 단지 전기적 연결만을 위한 것이라면, 제1전극층(540)은 콘택홀(541)을 하나만 포함하는 것이 가능하다. 다만, 제1도전형 반도체층(511)에 전달되는 전류의 균일한 분산을 위하여 제1전극층(540)은 콘택홀(541)을 소정위치에 복수개 구비할 수 있다.
도전성 기판(550)은 제2전극층(520)과 접촉하여 형성되어 전기적으로 연결된다. 도전성 기판(550)은 금속성 기판이거나 반도체 기판일 수 있다. 도전성 기판(550)이 금속인 경우, Au, Ni, Cu, 및 W 중 어느 하나의 금속으로 구성될 수 있다. 또한, 도전성 기판(550)이 반도체 기판인 경우, Si, Ge, 및 GaAs 중 어느 하나의 반도체 기판일 수 있다. 이들 도전성 기판(550)은 성장기판일 수 있고, 또는 격자부정합이 비교적 낮은 사파이어 기판같은 부도전성 기판을 성장기판으로 사용한 후, 부도전성 기판을 제거하고 접합된 지지기판일 수 있다.
도전성 기판(550)이 지지기판일 때, 도금법 또는 기판접합법을 이용하여 형성될 수 있다. 상술하면, 도전성 기판(550)을 반도체 발광소자(500)에 형성하는 방법으로는 도금씨드층을 형성하여 기판을 형성하는 도금법이나, 도전성 기판(550)을 별도로 준비하여 Au, Au-Sn, 또는 Pb-Sr과 같은 도전성 접착제를 이용하여 접합시키는 기판접합법이 이용될 수 있다.
도 22를 참조하면, 반도체 발광소자(500)의 평면도가 도시되어 있다. 반도체 발광소자(500)의 상면에는 비아홀(514)이 형성되고, 제2전극층(520)에 형성된 노출된 영역에는 전극패드부(560)가 위치한다. 이외에도, 실제 반도체 발광소자(500)의 상면에는 나타나지 않지만 콘택홀(541)의 위치를 표시하기 위하여 콘택홀(541)을 점선으로 도시하였다. 콘택홀(541)은 제2전극층(520), 제2도전형 반도체층(513) 및 활성층(512)과 전기적으로 분리되기 위하여 그 둘레에 제1절연층(530)이 연장될 수 있다. 이에 대하여는 이하, 도 23b 및 도 23c를 참조하여 더 설명하기로 한다.
도 23a 내지 도 23c는 각각 도 22에 도시된 반도체 발광소자의 A-A', B-B' 및 C-C'선에서의 단면도이다. A-A'는 반도체 발광소자(500)의 단면을, B-B'는 콘택홀(541) 및 비아홀(514)을 포함하는 단면을, C-C'는 콘택홀(541)만을 포함하는 단면을 취하기 위하여 선택되었다. 이하, 도 21 내지 23c를 참조하여 설명하기로 한다.
도 23a를 참조하면, 콘택홀(541) 또는 비아홀(514)이 나타나지 않는다. 콘택홀(541)은 별도의 연결선을 통하여 연결되어 있는 것이 아니라 제1전극층(540)을 통하여 전기적으로 연결되므로 도 23에서 A-A 단면에는 도시되지 않는다.
도 23b 및 도 23c를 참조하면, 콘택홀(541)은 제1전극층(540) 및 제2전극층(520)의 계면에서부터 제1도전형 반도체층(511) 내부까지 연장된다. 콘택홀(541)은 제2도전형 반도체층(513) 및 활성층(512)을 통과하여 제1도전형 반도체층(511)까지 연장되고, 적어도 활성층(512) 및 제1도전형 반도체층(511)의 계면까지는 연장된다. 바람직하게는 제1도전형 반도체층(511)의 일부까지 연장된다. 다만, 콘택홀(530)은 전기적 연결 및 전류분산을 위한 것이므로 제1도전형 반도체층(5111)과 접촉하면 목적을 달성하므로 제1도전형 반도체층(511)의 외부표면까지 연장될 필요는 없다.
콘택홀(541)은 제1도전형 반도체층(511)에 전류를 분산시키기 위한 것이므로 소정면적을 가져야 한다. 콘택홀(530)은 제1도전형 반도체층(511)상에 전류가 균일하게 분포될 수 있는 가능한 작은 면적으로 소정개수 형성되는 것이 바람직하다. 콘택홀(541)이 너무 적은 개수로 형성되면 전류분산이 어려워져 전기적 특성이 악화될 수 있고, 너무 많은 개수로 형성되면 형성을 위한 공정의 어려움 및 활성층의 감소로 인한 발광면적의 감소가 초래되므로 이러한 조건을 고려하여 그 개수는 적절히 선택될 수 있다. 따라서, 콘택홀(541)은 가능한 한 적은 면적을 차지하면서 전류분산이 효과적인 형상으로 구현된다.
콘택홀(541)은 제2전극층(520)으로부터 제1도전형 반도체층(511) 내부까지 형성되는데, 제1도전형 반도체층의 전류분산을 위한 것이므로 제2도전형 반도체층(513) 및 활성층(512)과는 전기적으로 분리될 필요가 있다. 따라서, 제2전극층(520), 제2도전형 반도체층(513) 및 활성층(512)과 전기적으로 분리되는 것이 바람직하다. 따라서, 제1절연층(530)은 콘택홀(530)의 둘레를 감싸면서 연장될 수 있다. 전기적 분리는 유전체와 같은 절연물질을 이용하여 수행할 수 있다.
도 23b에서, 제2전극층(520)의 노출된 영역은 제2전극층(520)의 외부전원(미도시)과의 전기적 연결을 위한 영역이다. 노출영역에는 전극패드부(560)가 위치할 수 있다. 이 때, 비아홀(514) 내측면에는 제2절연층(570)이 형성되어 발광적층체(510) 및 전극패드부(560)를 전기적으로 분리할 수 있다.
도 23a에서 제1전극층(540) 및 제2전극층(520)은 같은 평면상에 위치하므로 반도체 발광소자(500)는 수평형 반도체 발광소자(500)의 특성을 나타내고, 도 23b에서 전극패드부(560)가 제1도전형 반도체층(511)의 표면에 위치하므로, 반도체 발광소자(500)는 수직형 반도체 발광소자의 특성을 나타낼 수 있다. 따라서 반도체 발광소자(500)는 수평형 및 수직형을 통합한 형태의 구조를 나타내게 된다.
도 23a내지 도 23c에서, 제1도전형 반도체층(511)은 n형 반도체층이고, 제1전극층(540)는 n형 전극일 수 있다. 이 경우, 제2도전형 반도체층(513)은 p형 반도체층이고, 제2전극층(520)는 p형 전극일 수 있다. 따라서, n형 전극인 제1전극층(540) 및 p형 전극인 제2전극층(520)은 제1절연층(530)을 그 사이에 구비하여 전기적으로 절연될 수 있다.
도 24는 본 실시예에 따라 표면에 요철패턴이 형성된 반도체 발광소자에서의 발광을 도시하는 도면이다. 이미 설명한 동일한 구성요소에 대하여는 설명을 생략하기로 한다.
본 발명에 따른 반도체 발광소자(500)는 발광된 빛의 진행방향의 최외곽 표면이 제1도전형 반도체층(511)으로 구성되어 있다. 따라서, 포토리소그래피 방법과 같은 공지의 방법을 이용하여 표면에 요철 패턴(580)을 형성하는 것이 용이하다. 이 경우, 활성층(512)으로부터 발광된 빛은 제1도전형 반도체층(511)의 표면에 형성된 요철패턴(580)을 통과하여 추출되고 요철패턴(580)에 의해 광추출효율이 증가된다.
요철패턴(580)은 광결정(photonic crystal) 구조일 수 있다. 광결정은 굴절률이 서로 다른 매질이 결정처럼 규칙적으로 배열된 것을 나타내는데, 이러한 광결정은 빛의 파장의 배수의 길이 단위의 빛 조절이 가능하여 광추출효과를 더욱 높일 수 있다.
도 25는 본 실시예에 따른 반도체 발광소자에서, 모서리에 제2전극층이 노출된 것을 나타낸 도면이다.
본 발명의 다른 측면에 따르면, 제1도전형 반도체층(511'), 활성층(512'), 제2도전형 반도체층(513'), 제2전극층(520'), 절연층(530'), 제1전극층(540') 및 도전성 기판(550')을 순차 적층하는 단계; 제2전극층(520')의 제2도전형 반도체층(513')과의 계면 중 일부가 노출된 영역을 형성하는 단계; 및 제1전극층(540')이 제1도전형 반도체층(511')에 전기적으로 접속되고, 제2도전형 반도체층(513') 및 활성층(512')과는 전기적으로 절연되어 제1전극층(540')의 일면으로부터 제1도전형 반도체층(511')의 적어도 일부 영역까지 연장된 하나 또는 그 이상의 콘택홀(541')을 포함하도록 형성하는 단계;를 포함하는 반도체 발광소자 제조방법이 제공된다.
이 때, 제2전극층(520')의 노출된 영역은 발광적층체(510')에 비아홀(514')을 형성하여 마련하거나(도 21 참조), 도 25에서와 같이, 발광적층체(510')를 메사식각하여 형성할 수 있다. 본 실시예에서 도 21을 참조하여 설명한 실시예와 동일한 구성요소에 대하여는 그 설명을 생략하기로 한다.
도 25를 참조하면, 반도체 발광소자(500')의 일모서리가 메사식각되어 있다. 식각은 발광적층체(510')에 수행되어 제2전극층(520')이 제2도전형 반도체층(513')와의 계면측에서 노출되어 있다. 따라서, 제2전극층(520')의 노출된 영역은, 반도체 발광소자(500')의 모서리에 형성된다. 모서리에 형성되는 경우는 전술한 실시예에서와 같이 비아홀을 형성하는 경우보다 간단한 공정이면서, 추후 전기적 연결공정 또한 용이하게 수행될 수 있다.
도 26 내지 도 36을 참조하여 본 발명의 또 다른 실시예에 따른 반도체 발광소자에 대해 설명한다.
도 26은 본 실시예에 따른 반도체 발광소자의 사시도이고, 도 27은 도 26의 반도체 발광소자의 상부평면도이며, 도 28은 도 27에 도시된 반도체 발광소자의 A-A'선에서의 단면도이다. 이하, 도 26 내지 도 28을 참조하여 설명한다.
본 실시예에 따른 반도체 발광소자(600)는 순차적으로 적층된 제1 도전형 반도체층(611), 활성층(612), 제2 도전형 반도체층(613), 제2 전극층(620), 절연층(630), 제1 전극층(640) 및 도전성 기판(650)을 포함한다. 이 때 제1 전극층(640)은 제1 도전형 반도체층(611)에 전기적으로 접속하기 위하여 제2 도전형 반도체층(613) 및 활성층(612)과는 전기적으로 절연되어 제1 전극층(640)의 일면으로부터 제1 도전형 반도체층(611)의 적어도 일부 영역까지 연장된 하나이상의 콘택 홀(641)을 포함한다. 상기 제1 전극층(640)은 본 실시예에서 필수적인 구성요소는 아니다. 도시되지 않았지만, 제1 전극층을 포함하지 않을 수 있고, 콘택 홀(641)은 도전성 기판의 일면으로부터 형성될 수 있다. 즉, 도전선 기판(650)은 제1 도전형 반도체층(111)에 전기적으로 접속하기 위하여 제2 도전형 반도체층(113) 및 활성층(112)과는 전기적으로 절연되어 제1 전극층(140)의 일면으로부터 제1 도전형 반도체층(611)의 적어도 일부 영역까지 연장된 하나이상의 콘택 홀(641)을 포함할 수 있다. 이때, 도전성 기판은 외부 전원(미도시)과 전기적으로 연결되고, 제1 도전형 반도체층은 도전성 기판을 통하여 전압이 인가된다.
제2 전극층(620)은 제1 도전형 반도체층(611), 활성층(612) 및 제2 도전형 반도체층(613)의 식각에 의하여, 제2 도전형 반도체층(613)과의 계면 중 일부가 노출된 영역(614)을 포함하고, 상기 노출 영역(614)에는 식각 저지층(621)이 형성된다.
반도체 발광소자(600)의 발광은 제1 도전형 반도체층(611), 활성층(612), 및 제2 도전형 반도체층(613)에서 수행되므로, 이들을 이하, 발광적층체(610)라 한다. 즉, 반도체 발광소자(600)는 발광적층체(610) 및 제1 도전형 반도체층(611)과 콘택 홀(641)에 의하여 전기적으로 접속되는 제1 전극층(640), 제2 도전형 반도체층(613)과 전기적으로 접속되는 제2 전극층(620), 및 전극층들(620, 640)을 전기적으로 절연시키기 위한 절연층(630)을 포함한다. 또한, 반도체 발광소자(600)의 지지를 위하여 도전성 기판(650)을 포함한다.
상기 제1 도전형 및 제2 도전형 반도체층(611, 613)은 이에 제한되는 것은 아니나, 예를 들면 GaN계 반도체, ZnO계 반도체, GaAs계 반도체, GaP계 반도체, 또는 GaAsP계 반도체와 같은 반도체 물질을 포함할 수 있다. 이외에도, 상기 반도체층(611, 613)은 III-V족 반도체, II-VI족 반도체 및 Si로 이루어진 군으로부터 적절히 선택될 수 있다. 또한 상기 반도체층(611, 613)은 상술한 반도체에 각각의 도전형을 고려하여 n형 불순물 또는 p형 불순물로 도핑될 수 있다.
상기 활성층(612)은 발광을 활성화시키는 층으로서, 제1 도전형 반도체층(611) 및 제2 도전형 반도체층(613)의 에너지 밴드 갭보다 작은 에너지 밴드 갭을 갖는 물질을 이용하여 형성한다. 예를 들어, 제1 도전형 반도체층(611) 및 제2 도전형 반도체층(613)이 GaN계 화합물 반도체인 경우, GaN의 에너지 밴드 갭보다 적은 에너지 밴드 갭을 갖는 InAlGaN계 화합물 반도체를 이용하여 활성층(612)을 형성할 수 있다. 즉, 활성층(612)은 InxAlyGa(1-x-y)N(0≤x≤1, 0≤y≤1, 0≤x+y≤1)을 포함할 수 있다.
이때, 활성층(612)의 특성상 불순물은 도핑되지 않는 것이 바람직하며, 구성물질의 몰비를 조절하여 발광하는 빛의 파장을 조절할 수도 있다. 따라서, 반도체 발광소자(600)는 활성층(612)의 특성에 따라 적외선, 가시광선, 및 자외선 중 어느 하나의 빛을 발광할 수 있다.
상기 제1 전극층(640) 및 제2 전극층(620)은 각각 동일한 도전형의 반도체층에 전압을 인가하기 위한 층들로써, 상기 전극층(620, 640)에 의하여 상기 반도체층(611, 613)은 외부전원(미도시)과 전기적으로 연결된다.
제1 전극층(640)은 제1 도전형 반도체층(611)에, 제2 전극층(620)은 제2 도전형 반도체층(613)에 각각 접속되므로 제1 절연층(630)을 통하여 서로 전기적으로 분리된다. 상기 절연층(630)은 전기 전도성이 낮은 물질로 구성되는 것이 바람직한데, 예를 들면, SiO2와 같은 산화물을 포함할 수 있다.
제1 전극층(640)은 제1 도전형 반도체층(611)에 전기적으로 접속하기 위하여, 제2 도전형 반도체층(613) 및 활성층(612)과는 전기적으로 절연되어(제1 전극층 및 제2 전극층 사이에 위치하는 절연층(630)이 연장되어 형성될 수 있음) 제1 도전형 반도체층(611)의 일부 영역까지 연장된 하나 이상의 콘택 홀(641)을 포함한다. 상기 콘택 홀(641)은 제2 전극층(620), 절연층(630) 및 활성층(612)을 관통하여 제1 도전형 반도체층(611)까지 연장되고 전극물질을 포함한다. 상기 콘택 홀(641)에 의하여 제1 전극층(640) 및 제1 도전형 반도체층(611)이 전기적으로 접속되어, 제1 도전형 반도체층(611)은 외부전원(미도시)과 연결된다.
상기 콘택 홀(641)이 단지 제1 도전형 반도체층(611)의 전기적 연결만을 위한 것이라면, 제1 전극층(640)은 하나의 콘택 홀(641)을 포함할 수 있다. 다만, 제1 도전형 반도체층(611)에 전달되는 전류의 균일한 분산을 위하여 제1 전극층(640)은 콘택 홀(641)을 소정 위치에 하나 이상 구비할 수 있다.
제2 전극층(620)은 활성층(612)의 하측에 위치하여 활성층(612)을 기준으로 하여 반도체 발광소자(600)의 발광방향과 반대 면에 위치한다. 따라서, 제2 전극층(620)을 향하여 진행하는 빛은 반사되어야 발광효율이 증가한다.
제2 전극층(620)은 활성층(612)으로부터 발생한 빛을 반사시키기 위하여 가시광선영역에서 백색계열 금속인 것이 바람직한데, 예를 들면, Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au 등의 물질 중 하나 이상을 포함할 수 있다.
제2 전극층(620)은 제1 도전형 반도체층(611), 활성층(612) 및 제2 도전형 반도체층(613)의 식각에 의하여, 제2 도전형 반도체층(613)과의 계면 중 일부가 노출된다. 상기 노출 영역(614)에는 식각 저지층(621)이 형성된다. 제1 전극층(640)은 하면에 위치한 도전성 기판(650)과 접촉되어 있어 외부 전원과 연결될 수 있는 반면에, 제2 전극층(620)은 외부 전원(미도시)과의 연결을 위하여 별도의 연결영역이 필요하다. 따라서, 제2 전극층(620)은 발광적층체(610)의 일 영역을 식각하여 제2 도전형 반도체층(613)과의 계면 중 일부에 노출 영역(614)을 갖는다. 이로써, 제2 도전형 반도체층(613)은 제2 전극층(620)에 의하여 외부 전원(미도시)과 연결된다.
상기 노출 영역(614)의 면적은 발광면적, 전기적 연결효율 및 제2 전극층(620)에서의 전류분산을 고려하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의하여 적절히 선택될 수 있다. 도 27 내지 도 29는 발광 적층체(610)의 모서리가 식각되어, 제2 전극층(620)의노출 영역(614)이 모서리에 위치한 실시예가 도시되어 있다.
상기 노출영역(614)은 발광적층체(610)의 일부만을 식각하고, 통상 금속을 포함하는 제2 전극층(620)은 식각하지 않도록 선택적 식각을 통하여 수행한다. 그러나, 발광적층체(610)의 일 영역을 식각하기 위한 선택적 식각은 완벽하게 제어하기 어려워 발광적층체(610) 하면에 위치하고 있는 제2 전극층도 일부 식각이 진행될 수 있다. 이와 같이 제2 전극층(620)의 일부가 식각되는 경우 제2 전극층(620)을 이루는 금속 물질이 제2 도전형 반도체층(613)에 접합되어 누설전류가 발생된다. 따라서, 제2 전극층(620)은 발광적층체(610)의 식각이 진행되는 영역(제 2 전극층의 노출영역)에 식각 저지층(621)이 형성된다.
상기 식각 저지층(621)에 의하여 제2 전극층(620)을 이루는 금속이 발광 적층체(610)의 측면에 접합하는 것을 방지하여 누설전류를 감소시킬 수 있고, 식각이 용이하게 진행될 수 있다. 상기 식각 저지층(621)은 발광 적층체(600)의 식각을 억제하기 위한 물질로써, 이에 제한되는 것은 아니나, SiO2, SiOxNy, SixNy 등의 실리콘 산화물, 실리콘 질화물과 같은 절연 물질일 수 있다. 다만, 식각 저지층(621)은 반드시 절연 물질일 필요는 없으며, 도전성 물질이더라도 소자의 작동에 영향을 미치지 않는다. 따라서, 식각 저지층(621)은 식각 저지 기능만 수행할 수 있다면 도전성 물질 중에서 적절히 선택될 수도 있을 것이다.
또한, 상기 노출 영역(614)에는 식각 저지층(621)을 관통하여 전극 패드부(660)가 형성될 수 있다. 전극 패드부는 식각 저지층(621)을 관통하여 제2 전극층과 전기적으로 연결된다. 이 경우 제2 전극층(620)과 외부전원(미도시)의 전기적 연결은 보다 용이해 진다.
도전성 기판(650)은 제1 전극층(640)의 하면에 위치하는 것으로, 제1 전극층(640) 접촉되어 전기적으로 연결된다. 도전성 기판(650)은 금속성 기판이거나 반도체 기판일 수 있다. 도전성 기판(650)은 Au, Ni, Al, Cu, W, Si, Se, GaAs 중 어느 하나를 포함하는 물질, 예컨대, Si와 Al의 합금 형태의 물질로 이루어질 수 있다. 이 경우, 선택된 물질에 따라, 도전성 기판(650)은 도금 또는 본딩 접합 등의 방법으로 형성될 수 있을 것이다. 이들 도전성 기판(650)은 격자 부정합이 비교적 낮은 사파이어 기판을 성장기판으로 사용한 후, 사파이어 기판을 제거하고 접합된 지지기판일 수 있다.
도 27을 참조하면, 반도체 발광소자(600)의 상부평면도가 도시되어 있다. 반도체 발광소자(600)의 상면에는 나타나지 않지만 콘택 홀(641)의 위치를 표시하기 위하여 콘택 홀(641)을 점선으로 도시하였다. 콘택 홀(641)은 제2 전극층(620), 제2 도전형 반도체층(613) 및 활성층(612)과 전기적으로 분리되기 위하여 그 둘레에 절연층(630)이 연장될 수 있다. 이에 대하여는 이하, 도 28을 참조하여 자세히 설명하기로 한다.
도 28은 도 27에 도시된 반도체 발광소자의 A-A'선에서의 단면도이다. A-A'는 콘택 홀(641) 및 노출 영역(614)을 포함하는 단면을 취하기 위하여 선택되었다.
도 28을 참조하면, 콘택 홀(641)은 제1 전극층(640)의 계면에서부터 제2 전극층(620), 제2 도전형 반도체층(613) 및 활성층(612)을 통과하여 제1 도전형 반도체층(611) 내부까지 연장된다. 적어도 활성층(612) 및 제1 도전형 반도체층(611)의 계면까지는 연장되고, 바람직하게는 제1 도전형 반도체층(611)의 일부까지 연장된다. 다만, 콘택 홀(641)은 제1 도전형 반도체층(611)의 전기적 연결 및 전류분산을 위한 것이므로 제1 도전형 반도체층(611)과 접촉하면 목적을 달성하므로 제1 도전형 반도체층(611)의 외부표면까지 연장될 필요는 없다.
또한 콘택 홀(641)은 제1 도전형 반도체층(611)에 전류를 분산시키기 위한 것이므로 소정면적을 가지는 것이 바람직하다. 콘택 홀(641)은 제1 도전형 반도체층(611)상에 전류가 균일하게 분포될 수 있는 가능한 작은 면적으로 소정개수가 형성되는 것이 바람직하다. 콘택 홀(641)이 너무 적은 개수로 형성되면 전류분산이 어려워져 전기적 특성이 악화될 수 있고, 너무 많은 개수로 형성되면 형성을 위한 공정의 어려움 및 활성층의 감소로 인한 발광면적의 감소가 초래되므로 그 개수는 적절히 선택될 수 있다. 따라서, 콘택 홀(641)은 가능한 한 적은 면적을 차지하면서 전류분산이 효과적인 형상으로 구현된다.
콘택 홀(641)은 제1 전극층(640)으로부터 제1 도전형 반도체층(611) 내부까지 형성되는데, 제1 도전형 반도체층의 전류분산을 위한 것이므로 제2 도전형 반도체층(613) 및 활성층(612)과는 전기적으로 분리될 필요가 있다. 따라서, 절연층(630)은 콘택 홀(641)의 둘레를 감싸면서 연장될 수 있다.
도 28에서, 제2 전극층(620)은 제2 도전형 반도체층(613)과의 계면 중 일부가 노출된 영역(614)을 포함하는데, 이는 제2 전극층(620)의 외부전원(미도시)과의 전기적 연결을 위한 영역이다. 노출 영역(614)에는 식각 저지층(621)이 형성된다. 상기 식각 저지층(621)을 관통하여 상기 제2 전극층(620)과 전기적으로 연결된 전극 패드부(660)를 포함할 수 있다. 이 때, 노출 영역(614)의 내측면에는 발광적층체(610) 및 전극패드부(660)를 전기적으로 분리하기 위해 절연층(670)이 형성될 수 있다.
도 28에서 제1 전극층(640) 및 제2 전극층(620)은 같은 평면상에 위치하므로 반도체 발광소자(600)는 수평형 반도체 발광소자의 특성을 나타내고, 전극 패드부(660)가 제1 도전형 반도체층(611)의 표면에 위치하므로, 반도체 발광소자(600)는 수직형 반도체 발광소자의 특성을 나타낼 수 있다. 따라서 반도체 발광소자(600)는 수평형 및 수직형을 통합한 형태의 구조를 나타내게 된다.
도 29 내지 도 31은 다른 실시형태에 따른 반도체 발광소자를 도시한 것으로 도 29는 반도체 발광소자의 사시고이고, 도 30은 상부 평면도이며, 도 31은 도 30에 도시된 반도체 발광소자의 A-A'선에서의 단면도이다.
도 29 내지 도 31은 발광적층체(710)의 중앙이 식각되어, 제2 전극층(720)의 제2 도전형 반도체층과의 계면 중 일부 노출된 영역(714)이 중앙에 위치한다. 이미 설명한 동일한 구성요소에 대하여는 설명을 생략하기로 한다. 이 경우 노출 영역에 형성되는 식각 저지층(721)의 일부를 제거하여 외부 전원(미도시)과 전기적으로 연결될 수 있고, 식각 저지층(721)을 관통하여 제2 전극층(720)과 전기적으로 연결된 전극 패드부(760)를 포함할 수 있다. 외부전원(미도시)과의 연결은 와이어를 이용할 수 있으므로 연결의 편의상 노출 영역(714)은 제2 전극층에서 제1 도전형 반도체층 방향으로 증가하도록 형성되는 것이 바람직하다.
도 32 및 도 33은 본 실시예에 따른 반도체 발광소자의 변형예를 도시한 것으로, 도 32는 반도체 발광소자의 사시도이고, 도 33은 반도체 발광소자의 측단면도이다. 이 경우 반도체 발광소자의 상부 평면도는 도 27과 유사하고, 도 33은 도 28과 유사하게 A-A'선에서의 단면도이다. 이미 설명한 동일한 구성요소에 대하여는 설명을 생략하기로 한다.
도 32 및 도 33을 참조하면, 발광 적층체(610')의 식각에 제2 전극층이 노출되고, 노출된 영역에 형성되는 식각 저지층(621')이 제2 도전형 반도체층(613') 및 활성층(612')의 측면으로 확장된다. 이러한 경우, 상술한 바와 같이 제1 도전형 반도체층(611')의 식각을 수행하는 동안 제2 전극층의 금속 물질이 반도체측에 접합되는 것을 방지할 수 있을 뿐만 아니라, 활성층(612')을 보호하는 효과를 얻을 수 있다.
이하, 상기에서 설명한 반도체 발광수조를 제조하는 방법을 설명한다.
도 34는 본 실시예에 따른 반도체 발광소자의 제조방법을 나타내는 단면도로써, 보다 구체적으로는 도 26 내지 도 28에 도시된 반도체 발광소자의 제조방법을 나타낸다.
우선, 도 34a에 도시되 바와 같이 부도전성 기판(680)상에 제1 도전형 반도체층(611), 활성층(612), 제2 도전형 반도체층(613), 제2 전극층(620)을 순차적으로 적층한다.
이 경우 반도체층 및 활성층의 적층은 공지된 공정을 이용할 수 있는데, 예를 들면, 유기금속 기상증착법(MOCVD), 분자빔성장법(MBE), 또는 하이브리드 기상증착법(HVPE)을 이용할 수 있다. 상기 부도전성 기판(680)은 질화물 반도체층의 성장이 용이한 사파이어 기판을 이용할 수 있다.
상기 제2 전극층(620)의 형성시, 상기 제1 도전형 반도체층(611), 활성층(612) 및 제2 도전형 반도체층(613)의 식각에 의하여 노출될 영역에 식각 저지층(621)을 형성하면서 적층된다.
다음으로, 제2 전극층(620) 상에 절연층(630) 및 도전성 기판(650)을 형성한다. 이때, 도 34b에 도시된 바와 같이 상기 절연층(630) 및 도전성 기판(650) 사이에 제1 전극층(640)을 형성할 수 있다.
상기 도전성 기판(650)은 상기 제1 도전형 반도체층(611)에 전기적으로 접속하기 위하여, 상기 제2 도전형 반도체층(613) 및 활성층(612)과는 전기적으로 절연되어 도전성 기판(650)의 일면으로부터 제1 도전형 반도체층(611)의 일부 영역까지 연장된 하나 이상의 콘택 홀(641)을 포함하도록 형성한다.
도 34a에 도시된 바와 같이, 상기 절연층(630) 및 도전성 기판(650) 사이에 제1 전극층(640)이 형성되는 경우, 상기 콘택 홀(641)은 제1 전극층(640)의 일면으로부터 형성된다. 즉, 상기 제1 전극층(640)은 상기 제1 도전형 반도체층(611)에 전기적으로 접속하기 위하여, 상기 제2 도전형 반도체층(613) 및 활성층(612)과는 전기적으로 절연되어 제1 전극층(640)의 일면으로부터 제1 도전형 반도체층(611)의 일부 영역까지 연장된 하나 이상의 콘택 홀(641)을 포함하도록 형성한다.
이 때, 콘택 홀(641)은 제1 도전형 반도체층(611)의 전류분산을 위한 것이므로 제2 도전형 반도체층(613) 및 활성층(612)과는 전기적으로 분리될 필요가 있다. 따라서, 절연층(630)은 콘택 홀(641)의 둘레를 감싸면서 연장될 수 있다.
다음으로, 도 34c에 도시된 바와 같이(도 34b를 뒤집어 도시) 부도전성 기판(680)을 제거하고, 제1 도전형 반도체층(611), 활성층(612) 및 제2 도전형 반도체층(613)의 일 영역을 식각하여 제2 전극층(620)과 제2 도전형 반도체층(613)의 계면 중 일부에 노출 영역(614)을 형성한다.
상기 노출 영역(614)은 발광 적층체(610)의 일부만을 식각하고, 통상 금속을 포함하는 제2 전극층(620)은 식각하지 않도록 선택적 식각을 통하여 수행한다.
상술한 바와 같이 발광적층체(610)의 일 영역을 식각하기 위한 선택적 식각은 완벽하게 제어하기 어려워 발광적층체(610) 하면에 위치하고 있는 제2 전극층(620)도 일부 식각이 진행될 수 있으나, 본 발명은 식각이 진행되는 영역에 식각 저치층(621)을 형성하여 식각이 용이하게 진행될 수 있다. 이에 의하여 제2 전극층(620)의 금속이 발광 적층체(610)의 측면에 접합하는 것을 방지하여 누설전류를 감소시킬 수 있다.
다음으로, 도 34d에 도시된 바와 같이 제2 전극층(620)과 외부전원과의 연결을 위하여 상기 식각 저지층(621)의 일 영역을 제거할 수 있다. 이때, 식각 저지층(621)이 제거된 영역에는 전극 패드부(660)를 형성할 수 있다. 또한 발광적층체(610) 및 전극패드부(660)를 전기적으로 분리하기 위하여 식각이 진행된 발광적층의 내측면에 절연층(670)을 형성할 수 있다.
도 34는 발광 적층체(610)의 일 모서리를 식각하여 제2 전극층(620)의 노출 영역(614)이 모서리에 형성되는 예를 도시한 것이다. 발광 적층체(610)의 중앙부를 식각하는 경우 도 29에 도시된 바와 같은 형태의 반도체 발광소자를 제조할 수 있다.
도 35는 본 실시예의 변형예에 따른 반도체 발광소자의 제조방법을 나타내는 단면도로써, 보다 구체적으로는 도 32 및 도 33에 도시된 반도체 발광소자의 제조방법을 나타낸다. 상기 도 34를 참조하여 설명한 실시예와 동일한 구성요소에 대하여는 그 설명을 생략하기로 한다.
우선, 도 35a에 도시되 바와 같이 부도전성 기판(680')상에 제1 도전형 반도체층(611'), 활성층(612'), 제2 도전형 반도체층(613'), 제2 전극층(620')을 순차적으로 적층한다.
상기 제2 전극층(620')은 상기 제1 도전형 반도체층(611'), 활성층(612') 및 제2 도전형 반도체층(613')의 식각에 의하여 노출될 영역에 식각 저지층(621')을 형성하면서 적층된다. 이때, 노출 영역(614')을 형성하기 위한 발광 적층체(610')의 식각 전에, 도 36a에서와 같이 제2 도전형 반도체층(621'), 활성층(612') 및 제1 도전형 반도체층(613')의 일 영역을 1차로 먼저 식각한다. 상기 1차로 식각되어 노출된 제2 도전형 반도체층(613'), 활성층(612') 및 제1 도전형 반도체층(611')에 식각 저지층(621')을 확장하여 형성한다.
이 경우, 도 35c에 도시된 바와 같이 제2 전극층(620')에 노출 영역(614')을 형성하기 위한 발광 적층체(610')의 식각시 제1 도전형 반도체층(611')만을 식각할 수 있게 되어, 활성층을 보호하는 추가적인 효과를 얻을 수 있다.
다음으로, 도 35b에 도시된 바와 같이 제2 전극층(620') 상에 절연층(630'), 제1 전극층(640') 및 도전성 기판(650')을 형성한다.
이 경우, 상기 제1 전극층(640')은 상기 제1 도전형 반도체층(611')에 전기적으로 접속하기 위하여, 상기 제2 도전형 반도체층(613') 및 활성층(612')과는 전기적으로 절연되어 제1 전극층(640')의 일면으로부터 제1 도전형 반도체층(611')의 일부 영역까지 연장된 하나 이상의 콘택 홀(641')을 포함하도록 형성한다. 이 때, 콘택 홀(641')은 제1 도전형 반도체층(611')의 전류분산을 위한 것이므로 제2 도전형 반도체층(613') 및 활성층(612')과는 전기적으로 분리될 필요가 있다. 따라서, 절연층(630')은 콘택 홀(641')의 둘레를 감싸면서 연장될 수 있다.
다음으로, 도 35c에 도시된 바와 같이(도 35b를 뒤집어 도시) 제2 전극층(610')상에 제2 도전형 반도체층과의 계면 중 일부가 노출되도록 노출 영역(614')을 형성한다. 우선, 부도전성 기판(680')을 제거하고, 제1 도전형 반도체층(611')을 식각한다. 상술한 바와 같이 도 36a에서 활성층(612') 및 제2 도전형 반도체층(613')의 식각은 수행되었으므로, 제1 도전형 반도체층의 식각만으로 노출 영역(614')이 형성될 수 있다.
상술한 바와 같이, 발광 적층체(610')의 식각시 제2 전극층(620')의 노출 영역(614')에는 식각 저지층(621')이 형성되어, 식각이 용이하게 진행될 수 있다. 또한, 상기 도 35a에서 진행된 1차 식각으로 인하여 제1 도전형 반도체층(611')의 식각만 진행되어 활성층을 보호하는 효과가 있다.
다음으로, 도 35d에 도시된 바와 같이 제2 전극층(620')과 외부전원과의 연결을 위하여 노출 영역(614')상에 형성되는 식각 저지층(621')의 일 영역을 제거할 수 있다. 이때, 식각 저지층(621')이 제거된 영역에는 제2 전극층과 전기적으로 연결되도록 전극 패드부(660')를 형성할 수 있다. 이 경우, 도 34의 공정과는 달리 제1 도전형 반도체층(611')만 노출되므로, 전극패드부(660')와 전기적으로 분리하기 위한 절연층의 형성을 요하지 않는다.
본 실시예에 따른 반도체 발광소자(600, 600', 700)를 실장하는 경우, 도전성 기판(650, 650', 750)은 제1리드프레임과 전기적으로 연결되고, 전극 패드부(660, 660', 760)는 와이어 등을 통하여 제2리드프레임과 전기적으로 연결된다. 즉, 다이본딩 형식 및 와이어 본딩 형식을 혼용하여 실장될 수 있어 발광효율을 최대한 보장할 수 있으면서도 비교적 저비용으로 공정수행이 가능하다.
도 36은 본 발명의 또 다른 변형예에 따른 반도체 발광소자를 나타내는 개략적인 단면도이다. 도 36을 참조하면, 본 변형예에 따른 반도체 발광소자(600'')는 이전 실시 형태와 마찬가지로 순차적으로 적층된 제1 도전형 반도체층(611''), 활성층(612''), 제2 도전형 반도체층(613''), 제2 전극층(620''), 절연층(630''), 제1 전극층(640''), 도전성 기판(650''), 식각저지층(620'') 및 전극 패드부(660'')를 포함하며, 제1 전극층(640'')은 제1 도전형 반도체층(611'')에 전기적으로 접속하기 위하여 제2 도전형 반도체층(613'') 및 활성층(612'')과는 전기적으로 절연되어 제1 전극층(640'')의 일면으로부터 제1 도전형 반도체층(611'')의 적어도 일부 영역까지 연장된 하나 이상의 콘택 홀(641'')을 포함한다. 본 변형예에서는 요철 구조를 갖는 패시베이션층(670'')이 추가되었으며, 동일한 용어로 기재된 요소는 이전 실시 형태에서 설명되었으므로 패시베이션층(670'')에 대해서만 설명한다.
패시베이션층(670'')은 제1 도전형 반도체층(611''), 활성층(612'') 및 제2 도전형 반도체층(613'')을 구비하는 구조를 발광구조물이라 정의할 때, 상기 발광구조물의 측면을 덮도록 형성되며, 이에 의해, 특히, 활성층(612'')을 보호하는 기능을 한다. 이 경우, 도 36에 도시된 것과 같이, 패시베이션층(670'')은 상기 발광구조물의 측면 외에 상면에도 형성될 수 있으며, 식각저지층(620'') 상부에도 형성될 수 있다.
패시베이션층(670'')은 발광구조물의 보호 기능을 수행하기 위해 SiO2, SiOxNy, SixNy 등의 실리콘 산화물, 실리콘 질화물로 이루어질 수 있으며, 그 두께는 0.1 ~ 2㎛ 정도가 바람직하다. 이에 따라, 패시베이션층(670'')은 굴절률이 약 1.4 ~ 2.0 정도가 되며, 공기 또는 패키지의 몰드 구조와 굴절률 차이로 인해 상기 활성층(670'')에서 방출된 빛이 외부로 빠져나가기가 어려울 수 있다. 본 실시 형태의 경우, 패시베이션층(670'')에 요철 구조를 형성하여 외부 광 추출효율이 향상되도록 하였으며, 특히, 도 36에 도시된 바와 같이, 활성층(612'')의 측 방향으로 방출된 빛이 통과하는 영역에 요철 구조가 형성될 경우, 반도체 발광소자(600'')의 측면으로 방출되는 빛의 양이 증가될 수 있다. 구체적으로, 패시베이션층(670'')에 요철 구조를 채용한 구조를 다른 구성 요소가 모두 동일하되 요철 구조가 없는 구조와 광 추출효율을 비교한 시뮬레이션 결과, 본 실시 형태에서 약 5% 이상의 광 추출효율 향상 효과를 보였다. 한편, 본 실시 형태에서 반드시 요구되는 사항은 아니지만, 패시베이션층(670'')의 요철 구조는 제1 도전형 반도체층(611'')의 상면에 해당하는 영역에도 형성되어 수직 방향 광 추출효율을 향상시킬 수 있으며, 나아가, 패시베이션층(670'')의 측면에도 형성될 수 있다.
도 37 내지 도 57을 참조하여 본 발명의 또 다른 실시예에 따른 반도체 발광소자에 대해 설명한다.
도 37은 본 실시형태에 따른 반도체 발광소자를 개략적으로 나타내는 사시도이다. 도 38은 도 37을 기준으로 반도체 발광소자를 상부에서 바라본 개략적인 평면도이며, 도 39는 도 37의 반도체 발광소자를 도 38의 AA` 라인으로 자른 개략적인 단면도이다. 도 37 내지 39를 참조하면, 본 실시형태에 따른 반도체 발광소자(800)는 도전성 기판(807) 상에 제1 도전형 컨택층(804)이 형성되며, 제1 도전형 컨택층(804) 상에는 발광구조물, 즉, 제1 도전형 반도체층(803), 활성층(802) 및 제2 도전형 반도체층(801)을 구비하는 구조가 형성된다. 발광구조물의 측면에는 고저항부(808)가 형성되며, 후술할 바와 같이, 고저항부(808)는 발광구조물의 측면으로 이온을 주입하여 얻어질 수 있다. 제1 도전형 컨택층(804)은 전기적으로 도전성 기판(807)과 분리되어 있으며, 이를 위하여 제1 도전형 컨택층(804)과 도전성 기판(807) 사이에는 절연체(806)가 개재된다.
본 실시형태에서, 제1 및 제2 도전형 반도체층(803, 801)은 각각 p형 및 n형 반도체층이 될 수 있으며, 질화물 반도체로 이루어질 수 있다. 따라서, 이에 제한되는 것은 아니지만, 본 실시형태의 경우, 제1 및 제2 도전형은 각각 p형 및 n형 의미하는 것으로 이해될 수 있다. 제1 및 제2 도전형 반도체층(803, 801)은 AlxInyGa(1-x-y)N 조성식(여기서, 0≤x≤1, 0≤y≤1, 0≤x+y≤1임)을 가지며, 예컨대, GaN, AlGaN, InGaN 등의 물질이 이에 해당될 수 있다. 제1 및 제2 도전형 반도체층(803, 801) 사이에 형성되는 활성층(802)은 전자와 정공의 재결합에 의해 소정의 에너지를 갖는 광을 방출하며, 양자우물층과 양자장벽층이 서로 교대로 적층된 다중 양자우물(MQW) 구조로 이루어질 수 있다. 다중 양자우물 구조의 경우, 예컨대, InGaN/GaN 구조가 사용될 수 있다.
제1 도전형 컨택층(804)은 활성층(802)에서 방출된 빛을 반도체 발광소자(800)의 상부, 즉, 제2 도전형 반도체층(801) 방향으로 반사하는 기능을 수행할 수 있으며, 나아가, 제1 도전형 반도체층(803)과 오믹 컨택을 이루는 것이 바람직하다. 이러한 기능을 고려하여, 제1 도전형 컨택층(804)은 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au 등의 물질을 포함할 수 있다. 이 경우, 자세하게 도시하지는 않았으나, 제1 도전형 컨택층(804)은 2층 이상의 구조로 채용되어 반사 효율을 향상시킬 수 있으며, 구체적인 예로서, Ni/Ag, Zn/Ag, Ni/Al, Zn/Al, Pd/Ag, Pd/Al, Ir/Ag. Ir/Au, Pt/Ag, Pt/Al, Ni/Ag/Pt 등을 들 수 있다. 본 실시형태에서 제1 도전형 컨택층(104)은 일부가 외부로 노출될 수 있으며, 도시된 것과 같이, 상기 노출 영역은 상기 발광구조물이 형성되지 않은 영역이 될 수 있다. 제1 도전형 컨택층(804)의 상기 노출 영역은 전기 신호를 인가하기 위한 전기연결부에 해당하며, 그 위에는 전극 패드(805)가 형성될 수 있다.
도전성 기판(807)은 후술할 바와 같이, 레이저 리프트 오프 등의 공정에서 상기 발광구조물을 지지하는 지지체의 역할을 수행하며, Au, Ni, Al, Cu, W, Si, Se, GaAs 중 어느 하나를 포함하는 물질, 예컨대, Si와 Al의 합금 형태의 물질로 이루어질 수 있다. 이 경우, 선택된 물질에 따라, 도전성 기판(807)은 도금 또는 본딩 접합 등의 방법으로 형성될 수 있을 것이다. 본 실시 형태의 경우, 도전성 기판(807)은 제2 도전형 반도체층(801)과 전기적으로 연결되며, 이에 따라, 도전성 기판(807)을 통하여 제2 도전형 반도체층(801)에 전기 신호가 인가될 수 있다. 이를 위하여, 도 39 및 도 40에 도시된 것과 같이, 도전성 기판(807)으로부터 연장되어 제2 도전형 반도체층(801)과 접속된 도전성 비아(v)가 구비될 필요가 있다.
도전성 비아(v)는 제2 도전형 반도체층(801)과 그 내부에서 접속되며, 접촉 저항이 낮아지도록 개수, 형상, 피치, 제2 도전형 반도체층(801)과의 접촉 면적 등이 적절히 조절될 수 있다. 이 경우, 도전성 비아(v)는 활성층(802), 제1 도전형 반도체층(803) 및 제1 도전형 컨택층(804)과는 전기적으로 분리될 필요가 있으므로, 도전성 비아(v)와 이들 사이에는 절연체(806)가 형성된다. 절연체(806)는 전기 절연성을 갖는 물체라면 어느 것이나 채용 가능하지만, 빛을 최소한으로 흡수하는 것이 바람직하므로, 예컨대, SiO2, SiOxNy, SixNy 등의 실리콘 산화물, 실리콘 질화물을 이용할 수 있을 것이다.
상술한 바와 같이, 본 실시형태의 경우, 도전성 기판(807)이 도전성 비아(v)에 의하여 제2 도전형 반도체층(801)과 연결되며, 제2 도전형 반도체층(801) 상면에 따로 전극을 형성할 필요가 없다. 이에 따라, 제2 도전형 반도체층(801) 상면으로 방출되는 빛의 양이 증가될 수 있다. 이 경우, 활성층(802)의 일부에 도전성 비아(v)가 형성되어 발광 영역이 줄어들기는 하지만, 제2 도전형 반도체층(801) 상면의 전극이 없어짐으로써 얻을 수 있는 광 추출 효율 향상 효과가 더 크다고 할 수 있다. 한편, 본 실시형태에 따른 반도체 발광소자(800)는 제2 도전형 반도체층(801) 상면에 전극이 배치되지 않음에 따라 전체적인 전극의 배치가 수직 전극 구조보다는 수평 전극 구조와 유사하다고 볼 수 있지만, 제2 도전형 반도체층(801) 내부에 형성된 도전성 비아(v)에 의하여 전류 분산 효과가 충분히 보장될 수 있다.
고저항부(808)는 발광구조물의 측면에 형성되며, 발광구조물, 특히, 활성층(802)을 외부로부터 보호하는 기능을 함으로써 소자의 전기적 신뢰성을 향상시킬 수 있다. 외부로 노출된 활성층(802)은 반도체 발광소자(800)의 작동 중에 전류 누설 경로로 작용할 수 있으므로, 발광구조물의 측면에 상대적으로 높은 전기저항을 갖는 고저항부(808)를 형성함으로써 전류 누설을 방지할 수 있다. 이 경우, 고저항부(808)는 이온 주입에 의하여 형성될 있다. 구체적으로, 입자 가속기 등에 의하여 가속된 상태의 이온을 발광구조물에 주입할 경우, 발광구조물을 이루는 반도체층은 결정 손상을 입게 되어 저항이 상승하는 원리를 이용한다. 이 경우, 주입된 이온은 열처리에 의하여 복구될 수 있으므로, 반도체층의 일반적인 열처리 온도에서는 복구되지 않도록 상대적으로 입자 크기가 큰 이온을 이용하는 것이 바람직하다. 예컨대, 발광구조물에 주입되는 이온으로서 Ar, C, N, Kr, Xe, Cr, O, Fe, Ti과 같은 원자의 이온을 이용할 수 있을 것이다.
도 40 및 도 41은 도 37의 실시형태에서 변형된 실시형태에 따른 반도체 발광소자를 개략적으로 나타내는 단면도이다. 우선, 도 40의 반도체 발광소자(800-1)의 경우, 발광구조물의 측면이 제1 도전형 컨택층(804)에 대하여 기울어지도록, 구체적으로, 발광구조물의 상부를 향하여 기울어지도록 형성된다. 발광구조물의 이러한 기울어진 형상은 후술할 바와 같이, 제1 도전형 컨택층(804)을 노출하기 위하여 발광구조물을 에칭하는 공정에 의하여 자연스럽게 형성될 수 있다. 도 41의 반도체 발광소자(800-2)는 도 40의 실시 형태에서 발광구조물의 상면, 구체적으로, 제2 도전형 반도체층(801)의 상면에 요철이 형성된 구조이며, 건식 식각, 습식 식각 공정에 의하여 적절히 요철을 형성할 수 있으나, 습식 식각을 이용하여 크기, 형상, 주기 등이 불규칙한 요철 구조를 형성하는 것이 바람직할 것이다. 이러한 요철 구조에 의하여 활성층(802) 방향으로부터 입사된 빛이 외부로 방출된 확률이 증가될 수 있다. 한편, 상기와 같이 설명한 도 40 및 도 41의 변형예는 도 42 내지 도 44의 다른 실시형태에도 적용될 수 있을 것이다.
도 42는 다른 실시형태에 따른 반도체 발광소자를 개략적으로 나타내는 단면도이다. 도 42를 참조하면, 본 실시형태에 따른 반도체 발광소자(900)는 앞선 실시 형태와 같이, 도전성 기판(907) 상에 제1 도전형 컨택층(904)이 형성되며, 제1 도전형 컨택층(904) 상에는 발광구조물, 즉, 제1 도전형 반도체층(903), 활성층(902) 및 제1 도전형 반도체층(901)을 구비하는 구조가 형성된다. 발광구조물의 측면에는 이온 주입에 의하여 고저항부(908)가 형성된다. 앞선 실시 형태와의 구조적 차이는, 도전성 기판(907)이 제2 도전형 반도체층(901)이 아닌 제1 도전형 반도체층(903)과 전기적으로 연결된다는 것이다. 따라서, 제1 도전형 컨택층(904)이 반드시 요구되지 않으며, 이 경우, 제1 도전형 반도체층(903)과 도전성 기판(907)은 직접 접촉할 수 있을 것이다.
제2 도전형 반도체층(901)과 그 내부에서 접속된 도전성 비아(v)는 활성층(902), 제1 도전형 반도체층(903) 및 제1 도전형 컨택층(904)을 관통하여 제2 도전형 전극(909)과 연결된다. 제2 도전형 전극(909)은 도전성 비아(v)로부터 발광구조물의 측 방향으로 연장 형성되며 외부로 노출된 전기연결부를 갖고, 상기 전기연결부에는 전극 패드(905)가 형성될 수 있다. 이 경우, 제2 도전형 전극(909) 및 도전성 비아(v)을 활성층(902), 제1 도전형 반도체층(903), 제1 도전형 컨택층(904) 및 도전성 기판(907)과 전기적으로 분리되기 위한 절연체(906)가 형성된다.
도 43은 또 다른 실시형태에 따른 반도체 발광소자를 개략적으로 나타내는 평면도이며, 도 44는 도 43의 반도체 발광소자를 BB` 라인으로 자른 개략적인 단면도이다. 본 실시형태에 따른 반도체 발광소자(800')는 도 37 내지 도 39의 형태와 같이, 도전성 기판(807') 상에 제1 도전형 컨택층(804')이 형성되며, 제1 도전형 컨택층(804') 상에는 발광구조물, 즉, 제1 도전형 반도체층(803'), 활성층(802') 및 제1 도전형 반도체층(801')을 구비하는 구조가 형성된다. 발광구조물의 측면에는 이온 주입에 의하여 고저항부(808')가 형성된다. 또한, 제1 도전형 컨택층(804')은 전기적으로 도전성 기판(807')과 분리되어 있으며, 이를 위하여 제1 도전형 컨택층(804')과 도전성 기판(807') 사이에는 절연체(806')가 개재된다. 본 실시형태의 경우, 도전성 기판(807') 상에 발광구조물은 복수 개로 분할되어 있다. 이렇게 발광구조물이 분할된 구조에 의하여 빛의 산란 효과가 증가될 수 있으며, 이에 따라, 광 추출 효율의 향상을 기대할 수 있다. 이에 제한되는 것은 아니지만, 충분한 외부 면적을 확보하기 위한 측면에서, 발광구조물은 도 43에 도시된 것과 같이, 그 상부에서 보았을 때 육각형으로 구현될 수 있다. 이 경우, 발광구조물 간의 간격이 커진다면 활성층(802') 자체의 면적이 줄어들어 발광 효율이 저하될 수 있으므로, 분할된 발광구조물은 가급적 밀착 배치되는 것이 바람직하다. 앞서 설명한 바와 같이, 발광구조물을 분할하기 위하여 식각 공정을 거칠 경우, 발광구조물의 측면을 보호할 필요가 있으므로, 분할된 발광구조물 각각의 측면에 이온 주입에 의한 고저항부(808')를 형성하는 것이 바람직하다.
이하, 상기와 같은 구조를 갖는 반도체 발광소자를 제조하는 공정을 설명한다.
도 45 내지 도 53은 본 실시형태에 따른 반도체 발광소자의 제조방법을 설명하기 위한 공정별 단면도이다. 구체적으로, 도 37 내지 도 39에서 설명한 구조를 갖는 반도체 발광소자의 제조방법에 해당한다.
우선, 도 45에 도시된 것과 같이, 반도체 성장용 기판(B) 위에 제2 도전형 반도체층(801), 활성층(802) 및 제1 도전형 반도체층(803)을 MOCVD, MBE, HVPE 등과 같은 반도체층 성장 공정을 이용하여 순차적으로 성장시켜 발광구조물을 형성한다. 반도체 성장용 기판(B)은 사파이어, SiC, MgAl2O4, MgO, LiAlO2, LiGaO2 , GaN 등의 물질로 이루어진 기판을 사용할 수 있다. 이 경우, 사파이어는 육각-롬보형(Hexa-Rhombo R3c) 대칭성을 갖는 결정체로서 c축 및 a측 방향의 격자상수가 각각 13.001Å과 4.758Å이며, C(0001)면, A(1120)면, R(1102)면 등을 갖는다. 이 경우, 상기 C면은 비교적 질화물 박막의 성장이 용이하며, 고온에서 안정하기 때문에 질화물 성장용 기판으로 주로 사용된다.
다음으로, 도 46에 도시된 바와 같이, 제1 도전형 반도체층(803) 상에 제1 도전형 컨택층(804)을 형성한다. 제1 도전형 컨택층(804)은 광 반사 기능과 제1 도전형 반도체층(803)과 오믹 컨택 기능을 고려하여 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au 등의 물질을 포함하도록 형성할 수 있으며, 당 기술 분야에서 공지된 스퍼터링이나 증착 등의 공정을 적절히 이용할 수 있다. 다음으로, 도 47에 도시된 바와 같이, 제1 도전형 컨택층(804) 및 상기 발광구조물에 홈을 형성한다. 구체적으로, 상기 홈은 후속 공정에서 도전성 물질을 충진하여 제2 도전형 반도체층(801)과 연결되는 도전성 비아를 형성하기 위한 것으로서, 제1 도전형 컨택층(804), 제1 도전형 반도체층(803) 및 활성층(802)을 관통하며, 제2 도전형 반도체층(801)이 저면으로 노출되는 형상을 갖는다. 도 47의 흠 형성 공정 역시, 당 기술 분야에서 공지된 식각 공정, 예컨대, ICP-RIE 등을 이용하여 실행될 수 있다.
다음으로, 도 48에 도시된 바와 같이, SiO2, SiOxNy, SixNy 등과 같은 물질을 증착시켜 제1 도전형 컨택층(804)의 상부 및 상기 홈의 측벽을 덮도록 절연체(806)를 형성한다. 이 경우, 상기 홈의 저면에 해당하는 제2 도전형 반도체층(801)은 적어도 일부가 노출될 필요가 있으므로, 절연체(806)는 상기 홈의 저면 전체를 덮지 않는 범위에서 형성되는 것이 바람직하다.
다음으로, 도 49에 도시된 바와 같이, 상기 홈 내부와 절연체(806) 상에 도전 물질을 형성하여 도전성 비아(v) 및 도전성 기판(807)을 형성한다. 이에 따라, 도전성 기판(807)은 제2 도전형 반도체층(801)과 접속되는 도전성 비아(v)와 연결된 구조가 된다. 도전성 기판(807)은 Au, Ni, Al, Cu, W, Si, Se, GaAs 중 어느 하나를 포함하는 물질로 이루어질 수 있으며, 도금, 스퍼터링, 증착 등의 공정으로 적절히 형성될 수 있다. 이 경우, 도전성 비아(v)와 도전성 기판(807)을 동일한 물질로 형성할 수 있으나, 경우에 따라, 도전성 비아(v)는 도전성 기판(807)과 다른 물질로 이루어져 서로 별도의 공정으로 형성될 수도 있다. 예컨대, 도전성 비아(v)를 증착 공정으로 형성한 후, 도전성 기판(807)은 미리 형성되어 발광구조물에 본딩될 수 있을 것이다.
다음으로, 도 50에 도시된 바와 같이, 제2 도전형 반도체층(801)이 노출되도록 반도체 성장용 기판(B)을 제거한다. 이 경우, 반도체 성장용 기판(B)은 레이저 리프트 오프나 화학적 리프트 오프 등과 같은 공정을 이용하여 제거될 수 있다. 도 50은 반도체 성장용 기판(B)이 제거된 상태로서, 도 49와 비교하여 180°회전시켜 도시하였다.
다음으로, 도 51에 도시된 바와 같이, 상기 발광구조물, 즉, 제1 도전형 반도체층(803), 활성층(802) 및 제2 도전형 반도체층(801)을 일부 제거하여 제1 도전형 컨택층(804)을 노출시킨다. 이는 노출된 제1 도전형 컨택층(804)을 통하여 전기 신호를 인가하기 위한 것이다. 또한, 이러한 발광구조물의 제거 공정은 앞서 설명한 바와 같이 발광구조물을 복수 개로 분할하는 것에도 이용될 수 있을 것이다. 한편, 도시하지는 않았으나, 제1 도전형 컨택층(804)의 노출 영역 상에 전극 패드를 형성하는 공정이 부가될 수 있다. 제1 도전형 컨택층(804)을 노출시키기 위하여, 발광구조물을 ICP-RIE 등의 방법으로 식각할 수 있다. 이 경우, 식각 과정에서, 제1 도전형 컨택층(804)을 이루는 물질이 발광구조물의 측면으로 이동하여 붙는 것을 방지하기 위하여, 도 52에 도시된 바와 같이, 발광구조물 내에 식각저지층(809) 미리 형성하여 둘 수도 있을 것이다.
다음으로, 도 53에 도시된 바와 같이, 발광구조물의 측면에 전기절연성을 갖는 고저항부(808)를 형성한다. 고저항부(808)는 발광구조물을 이루는 반도체층에서 측면에 주입된 이온에 의해 결정이 손상된 영역에 해당하다. 이 경우, 주입된 이온은 열처리에 의하여 복구될 수 있으므로, 반도체층의 일반적인 열처리 온도에서는 복구되지 않도록 상대적으로 입자 크기가 큰 이온을 이용하는 것이 바람직하다. 예컨대, 발광구조물에 주입되는 이온으로서 Ar, C, N, Kr, Xe, Cr, O, Fe, Ti과 같은 원자의 이온을 이용할 수 있을 것이다.
도 54 내지 57은 또 다른 실시형태에 따른 반도체 발광소자의 제조방법을 설명하기 위한 공정별 단면도이다. 구체적으로, 도 42에서 설명한 구조의 반도체 발광소자의 제조방법에 해당한다. 이 경우, 도 45 내지 도 47에서 설명한 공정은 본 실시형태에서도 그대로 채용될 수 있다. 이하에서는 제1 도전형 컨택층(904)과 발광구조물에 홈을 형성하는 단계의 후속 공정을 설명한다.
우선, 도 54에 도시된 바와 같이, SiO2, SiOxNy, SixNy 등과 같은 물질을 증착시켜 제1 도전형 컨택층(904)의 상부 및 상기 홈의 측벽을 덮도록 절연체(906)를 형성한다. 여기서, 절연체(906)는 후속 공정에서 제2 도전형 전극(909)을 덮도록 형성되는 절연체와 구별하기 위해 제1 절연체로 칭할 수 있다. 이전 실시 형태와 다른 점은 절연체(906)가 제1 도전형 컨택층(904)의 상면 전체에 형성되지 않으며, 이는 도전성 기판(907)과 제1 도전형 컨택층(904)이 접속되어야 하기 때문이다. 즉, 절연체(906)는 제1 도전형 컨택층(904)의 상면 중 일부, 구체적으로, 제2 도전형 반도체층(901)과 연결되는 제2 도전형 전극(909)이 형성될 영역을 미리 고려하여 형성될 수 있다.
다음으로, 도 55에 도시된 바와 같이, 홈 내부와 절연체(906) 상에 도전 물질을 형성하여 제2 도전형 전극(909)을 형성한다. 이에 따라, 제2 도전형 전극(909)은 제2 도전형 반도체층(901)과 접속되는 도전성 비아(v)를 구비할 수 있다. 본 단계의 경우, 제2 도전형 전극(909)이 형성될 영역에 대응하여 미리 절연체(906)가 형성되어 있어 이를 따라 제2 도전형 전극(909)을 형성할 수 있으며, 특히, 외부로 노출되어 전기 연결부로 기능할 수 있도록 도전성 비아(v)로부터 수평 방향으로 연장되도록 형성하는 것이 바람직하다.
다음으로, 도 56에 도시된 바와 같이, 제2 도전형 전극(909)을 덮도록 절연체(906)를 형성하고 그 위에 제1 도전형 컨택층(904)과 전기적으로 연결되도록 도전성 기판(907)을 형성한다. 이 경우, 본 공정에서 형성되는 절연체(906)는 제2 절연체로 칭할 수 있으며, 앞서 형성된 절연체와 더불어 하나의 절연 구조를 이룰 수 있다. 본 공정에 의하여, 제2 도전형 전극(909)은 제1 도전형 컨택9204), 도전성 기판(907) 등과 전기적으로 분리될 수 있다. 다음으로, 도 57에 도시된 바와 같이, 제2 도전형 반도체층(901)이 노출되도록 반도체 성장용 기판(B)을 제거한다. 이후, 따로 도시하지는 않았으나, 발광구조물을 일부 제거하여 제2 도전형 전극(909)을 노출시키는 공정과 발광구조물의 측면에 이온 주입에 의한 고저항부(908)를 형성하는 단계는 앞서 설명한 공정을 이용할 수 있을 것이다.
도 58 내지 도 77을 참조하여 본 발명의 또 다른 실시예에 따른 반도체 발광소자에 대해 설명한다.
도 58은 본 실시형태에 따른 반도체 발광소자를 개략적으로 나타내는 사시도이다. 또한, 도 59는 도 58를 기준으로 반도체 발광소자의 제2 도전형 반도체층을 상부에서 바라본 개략적인 평면도이며, 도 60은 도 58의 반도체 발광소자를 도 59의 AA` 라인으로 자른 개략적인 단면도이다. 본 실시형태에 따른 반도체 발광소자(1000)는 도전성 기판(1007) 상에 제1 도전형 컨택층(1004)이 형성되며, 제1 도전형 컨택층(1004) 상에는 발광구조물, 즉, 제1 도전형 반도체층(1003), 활성층(1002) 및 제1 도전형 반도체층(1001)을 구비하는 구조가 형성된다. 제1 도전형 반도체층(1001) 상에는 언도프 반도체층(1008)이 형성되며, 언도프 반도체층(1008)은 그 상면에 요철이 구비되어 활성층(1002)에서 방출된 빛의 외부 추출 효율을 향상시킬 수 있다. 제1 도전형 컨택층(1004)은 전기적으로 도전성 기판(1007)과 분리되어 있으며, 이를 위하여 제1 도전형 컨택층(1004)과 도전성 기판(1007) 사이에는 절연체(1006)가 개재된다.
본 실시형태에서, 제1 및 제2 도전형 반도체층(1003, 1001)은 각각 p형 및 n형 반도체층이 될 수 있으며, 질화물 반도체로 이루어질 수 있다. 따라서, 이에 제한되는 것은 아니지만, 본 실시 형태의 경우, 제1 및 제2 도전형은 각각 p형 및 n형 의미하는 것으로 이해될 수 있다. 제1 및 제2 도전형 반도체층(1003, 1001)은 AlxInyGa(1-x-y)N 조성식(여기서, 0≤x≤1, 0≤y≤1, 0≤x+y≤1임)을 가지며, 예컨대, GaN, AlGaN, InGaN 등의 물질이 이에 해당될 수 있다. 제1 및 제2 도전형 반도체층(1003, 1001) 사이에 형성되는 활성층(1002)은 전자와 정공의 재결합에 의해 소정의 에너지를 갖는 광을 방출하며, 양자우물층과 양자장벽층이 서로 교대로 적층된 다중 양자우물(MQW) 구조로 이루어질 수 있다. 다중 양자우물 구조의 경우, 예컨대, InGaN/GaN 구조가 사용될 수 있다.
제1 도전형 컨택층(1004)은 활성층(1002)에서 방출된 빛을 반도체 발광소자(1000)의 상부, 즉, 제2 도전형 반도체층(1001) 방향으로 반사하는 기능을 수행할 수 있으며, 나아가, 제1 도전형 반도체층(1003)과 오믹 컨택을 이루는 것이 바람직하다. 이러한 기능을 고려하여, 제1 도전형 컨택층(1004)은 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au 등의 물질을 포함할 수 있다. 이 경우, 자세하게 도시하지는 않았으나, 제1 도전형 컨택층(1004)은 2층 이상의 구조로 채용되어 반사 효율을 향상시킬 수 있으며, 구체적인 예로서, Ni/Ag, Zn/Ag, Ni/Al, Zn/Al, Pd/Ag, Pd/Al, Ir/Ag. Ir/Au, Pt/Ag, Pt/Al, Ni/Ag/Pt 등을 들 수 있다. 본 실시 형태에서 제1 도전형 컨택층(1004)은 일부가 외부로 노출될 수 있으며, 도시된 것과 같이, 상기 노출 영역은 상기 발광구조물이 형성되지 않은 영역이 될 수 있다. 제1 도전형 컨택층(1004)의 상기 노출 영역은 전기 신호를 인가하기 위한 전기연결부에 해당하며, 그 위에는 전극 패드(1005)가 형성될 수 있다.
도전성 기판(1007)은 후술할 바와 같이, 레이저 리프트 오프 등의 공정에서 상기 발광구조물을 지지하는 지지체의 역할을 수행하며, Au, Ni, Al, Cu, W, Si, Se, GaAs 중 어느 하나를 포함하는 물질, 예컨대, Si와 Al의 합금 형태의 물질로 이루어질 수 있다. 이 경우, 선택된 물질에 따라, 도전성 기판(1007)은 도금 또는 본딩 접합 등의 방법으로 형성될 수 있을 것이다. 본 실시 형태의 경우, 도전성 기판(1007)은 제2 도전형 반도체층(1001)과 전기적으로 연결되며, 이에 따라, 도전성 기판(1007)을 통하여 제2 도전형 반도체층(1001)에 전기 신호가 인가될 수 있다. 이를 위하여, 도 59 및 도 60에 도시된 것과 같이, 도전성 기판(1007)으로부터 연장되어 제2 도전형 반도체층(1001)과 접속된 도전성 비아(v)가 구비될 필요가 있다.
도전성 비아(v)는 제2 도전형 반도체층(1001)과 그 내부에서 접속되며, 접촉 저항이 낮아지도록 개수, 형상, 피치, 제2 도전형 반도체층(1001)과의 접촉 면적 등이 적절히 조절될 수 있다. 이 경우, 도전성 비아(v)는 활성층(1002), 제1 도전형 반도체층(1003) 및 제1 도전형 컨택층(1004)과는 전기적으로 분리될 필요가 있으므로, 도전성 비아(v)과 이들 사이에는 절연체(1006)가 형성된다. 절연체(1006)는 전기 절연성을 갖는 물체라면 어느 것이나 채용 가능하지만, 빛을 최소한으로 흡수하는 것이 바람직하므로, 예컨대, SiO2, SiOxNy, SixNy 등의 실리콘 산화물, 실리콘 질화물을 이용할 수 있을 것이다.
상술한 바와 같이, 본 실시형태의 경우, 도전성 기판(1007)이 도전성 비아(v)에 의하여 제2 도전형 반도체층(1001)과 연결되며, 제2 도전형 반도체층(1001) 상면에 따로 전극을 형성할 필요가 없다. 이에 따라, 제2 도전형 반도체층(1001) 상면으로 방출되는 빛의 양이 증가될 수 있다. 이 경우, 활성층(1002)의 일부에 도전성 비아(v)가 형성되어 발광 영역이 줄어들기는 하지만, 제2 도전형 반도체층(1001) 상면의 전극이 없어짐으로써 얻을 수 있는 광 추출 효율 향상 효과가 더 크다고 할 수 있다. 한편, 본 실시 형태에 따른 반도체 발광소자(1000)는 제2 도전형 반도체층(1001) 상면에 전극이 배치되지 않음에 따라 전체적인 전극의 배치가 수직 전극 구조보다는 수평 전극 구조와 유사하다고 볼 수 있지만, 제2 도전형 반도체층(1001) 내부에 형성된 도전성 비아(v)에 의하여 전류 분산 효과가 충분히 보장될 수 있다.
제2 도전형 반도체층(1001) 상면에는 언도프 반도체층(1008)이 형성되며, 후술할 바와 같이, 언도프 반도체층(1008)은 상기 발광구조물을 이루는 반도체층의 성장 전에 버퍼층으로 채용된 것이다. 이 경우, 언도프라 함은 반도체층에 불순물 도핑 공정을 따로 거치지 않은 것을 의미하며, 반도체층에 본래 존재하던 수준의 불순물 농도, 예컨대, 질화갈륨 반도체를 MOCVD를 이용하여 성장시킬 경우, 도펀트로 사용되는 Si 등이 의도하지 않더라도 약 1016~ 1018/㎤인 수준으로 포함될 수 있다. 본 실시형태에서는 제2 도전형 반도체층(1001) 상면에 전극을 형성할 필요가 없으므로, 언도프 반도체층(1008)을 제거하지 않았으며, 이에 따라, 언도프 반도체층(1008)은 제2 도전형 반도체층(1001) 상면 전체를 덮도록 형성될 수 있다. 나아가, 언도프 반도체층(1008)에 요철 구조를 형성함으로써 활성층(1002) 방향에서 입사된 빛이 외부로 방출될 수 있는 확률이 증가되도록 하였다. 다만, 본 실시형태에서는 요철이 언도프 반도체(1008)에만 형성된 구조를 설명하였으나, 식각 조건에 따라, 제2 도전형 반도체층(1001)의 일부 영역까지 요철이 형성되는 경우가 생길 수 있을 것이다.
만약, 언도프 반도체층(1008)을 제거하고 제2 도전형 반도체층(1001) 요철 구조를 형성할 경우에는 제2 도전형 반도체층(1001)의 일부가 손실되는 문제가 있으며, 특히, 요철 형성 공정이 정밀하게 제어되지 않는다면 제품에 따라 제2 도전형 반도체층(1001)의 두께가 일정하게 유지되지 않을 수 있다. 따라서, 본 실시형태와 같이, 제2 도전형 반도체층(1001)의 전극 연결 구조를 제2 도전형 반도체층(1001)의 내부를 통하여 하부에 형성한다면, 제거되지 않은 상태의 언도프 반도체층(1008)에 요철을 형성함으로써 이러한 문제를 해결할 수 있다.
도 61 및 도 62는 도 58의 실시형태에서 변형된 실시형태에 따른 반도체 발광소자를 개략적으로 나타내는 단면도이다. 우선, 도 61의 발광소자(1000-1)의 경우, 발광구조물의 측면이 제1 도전형 컨택층(1004)에 대하여 기울어지도록, 구체적으로, 발광구조물의 상부를 향하여 기울어지도록 형성된다. 발광구조물의 이러한 기울어진 형상은 후술할 바와 같이, 제1 도전형 컨택층(1004)을 노출하기 위하여 발광구조물을 에칭하는 공정에 의하여 자연스럽게 형성될 수 있다. 도 62의 반도체 발광소자(1000-2)는 도 61의 실시형태에서 발광구조물의 측면을 덮도록 패시베이션층(1009)이 형성된 구조이다. 패시베이션층(1009)은 발광구조물, 특히, 활성층(1002)을 외부로부터 보호하는 것으로서, SiO2, SiOxNy, SixNy 등의 실리콘 산화물, 실리콘 질화물로 이루어질 수 있으며, 그 두께는 0.1 ~ 2㎛ 정도가 바람직하다.
외부로 노출된 활성층(1002)은 반도체 발광소자(1000)의 작동 중에 전류 누설 경로로 작용할 수 있으며, 패시베이션층(1009)을 발광구조물의 측면에 형성함으로써 이러한 문제를 방지할 수 있다. 이러한 점을 고려하여, 도 62에 도시된 것과 같이, 패시베이션층(1009)은 제1 도전형 컨택층(1004)의 노출된 상면에도 연장되어 형성될 수 있다. 한편, 상기와 같이 설명한 도 61 및 도 62의 변형예는 도 63 및 도 64의 다른 실시형태에도 적용될 수 있을 것이다.
도 63은 본 실시예의 다른 실시형태에 따른 반도체 발광소자를 개략적으로 나타내는 단면도이다. 도 63을 참조하면, 본 실시형태에 따른 반도체 발광소자(1100)는 앞선 실시형태와 같이, 도전성 기판(1107) 상에 제1 도전형 컨택층(1104)이 형성되며, 제1 도전형 컨택층(1104) 상에는 발광구조물, 즉, 제1 도전형 반도체층(1103), 활성층(1102) 및 제1 도전형 반도체층(1101)을 구비하는 구조가 형성된다. 제1 도전형 반도체층(1101) 상에는 언도프 반도체층(1108)이 형성되며, 언도프 반도체층(1108)은 그 상면에는 요철이 구비된다. 또한, 제1 도전형 컨택층(1104)은 전기적으로 도전성 기판(1107)과 분리되어 있으며, 이를 위하여 제1 도전형 컨택층(1104)과 도전성 기판(1107) 사이에는 절연체(1106)가 개재된다.
앞선 실시형태의 경우, 제1 도전형 컨택층(1004)의 전기연결부가 발광구조물의 상부에서 보았을 때 발광구조물의 모서리에 대응는 영역에 형성된 것과 달리, 본 실시형태의 경우, 제1 도전형 컨택층(1104)의 전기연결부가 상기 발광구조물의 상부에서 보았을 때 상기 발광구조물의 중앙에 대응는 영역에 형성된다. 이와 같이, 본 발명에서는 필요에 따라 제1 도전형 컨택층(1104)이 노출되는 영역의 위치가 변경될 수 있다. 제1 도전형 컨택층(1104)의 상기 전기연결부에는 전극 패드(1105)가 형성될 수 있다.
도 64는 또 다른 실시형태에 따른 반도체 발광소자를 개략적으로 나타내는 단면도이다. 도 64를 참조하면, 본 실시형태에 따른 반도체 발광소자(1200)는 도전성 기판(1207) 상에 제1 도전형 컨택층(1204)이 형성되며, 제1 도전형 컨택층(1204) 상에는 발광구조물, 즉, 제1 도전형 반도체층(1203), 활성층(1202) 및 제1 도전형 반도체층(1201)을 구비하는 구조가 형성된다. 발광구조물 상, 즉, 제1 도전형 반도체층(1201) 상에는 언도프 반도체층(1208)이 형성되며, 언도프 반도체층(1208)은 그 상면에는 형성된 요철 구조를 구비한다. 앞선 실시 형태와의 구조적 차이는, 도전성 기판(1207)이 제2 도전형 반도체층(1201)이 아닌 제1 도전형 반도체층(1203)과 전기적으로 연결된다는 것이다. 따라서, 제1 도전형 컨택층(1204)이 반드시 요구되지 않으며, 이 경우, 제1 도전형 반도체층(1203)과 도전성 기판(1207)은 직접 접촉할 수 있을 것이다.
제2 도전형 반도체층(1201)과 그 내부에서 접속된 도전성 비아(v)는 활성층(1202), 제1 도전형 반도체층(1203) 및 제1 도전형 컨택층(1204)을 관통하여 제2 도전형 전극(1209)과 연결된다. 제2 도전형 전극(1209)은 도전성 비아(v)로부터 발광구조물의 측 방향으로 연장 형성되며 외부로 노출된 전기연결부를 갖고, 상기 전기연결부에는 전극 패드(1205)가 형성될 수 있다. 이 경우, 제2 도전형 전극(1209) 및 도전성 비아(v)을 활성층(1202), 제1 도전형 반도체층(1203), 제1 도전형 컨택층(1204) 및 도전성 기판(1207)과 전기적으로 분리되기 위한 절연체(1206)가 형성된다.
이하, 상기와 같은 구조를 갖는 반도체 발광소자를 제조하는 공정을 설명한다.
도 65 내지 도 73은 본 실시형태에 따른 반도체 발광소자의 제조방법을 설명하기 위한 공정별 단면도이다. 구체적으로, 도 58 내지 도 60에서 설명한 구조를 갖는 반도체 발광소자의 제조방법에 해당한다.
우선, 도 65에 도시된 것과 같이, 반도체 성장용 기판(B) 위에 버퍼층(1008), 제2 도전형 반도체층(1001), 활성층(1002) 및 제1 도전형 반도체층(1003)을 MOCVD, MBE, HVPE 등과 같은 반도체층 성장 공정을 이용하여 순차적으로 성장시켜 발광구조물을 형성한다. 이 경우, 상술한 바와 같이, 구조적인 면에서는 발광구조물을 제2 도전형 반도체층(1001), 활성층(1002) 및 제1 도전형 반도체층(1003)을 구비하는 구조로 정의하였으나, 성장 및 식각 공정 측면에서는, 버퍼층(1008)도 발광구조물을 구성하는 요소로 볼 수 있다. 따라서, 이하에서는 발광구조물을 버퍼층(1008), 제2 도전형 반도체층(1001), 활성층(1002) 및 제1 도전형 반도체층(1003)을 구비하는 구조로 정의하기로 한다.
반도체 성장용 기판(B)은 사파이어, SiC, MgAl2O4, MgO, LiAlO2, LiGaO2 , GaN 등의 물질로 이루어진 기판을 사용할 수 있다. 이 경우, 사파이어는 육각-롬보형(Hexa-Rhombo R3c) 대칭성을 갖는 결정체로서 c축 및 a측 방향의 격자상수가 각각 13.001Å과 4.758Å이며, C(0001)면, A(1120)면, R(1102)면 등을 갖는다. 이 경우, 상기 C면은 비교적 질화물 박막의 성장이 용이하며, 고온에서 안정하기 때문에 질화물 성장용 기판으로 주로 사용된다. 상술한 바와 같이, 버퍼층은(1008)은 질화물 등으로 이루어진 언도프 반도체층으로 채용될 수 있으며, 그 위에 성장되는 발광구조물의 격자 결함을 완화시킬 수 있다.
다음으로, 도 66에 도시된 바와 같이, 제1 도전형 반도체층(1003) 상에 제1 도전형 컨택층(1004)을 형성한다. 제1 도전형 컨택층(1004)은 광 반사 기능과 제1 도전형 반도체층(1003)과 오믹 컨택 기능을 고려하여 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au 등의 물질을 포함하도록 형성할 수 있으며, 당 기술 분야에서 공지된 스퍼터링이나 증착 등의 공정을 적절히 이용할 수 있다. 다음으로, 도 67에 도시된 바와 같이, 제1 도전형 컨택층(1004) 및 상기 발광구조물에 홈을 형성한다. 구체적으로, 상기 홈은 후속 공정에서 도전성 물질을 충진하여 제2 도전형 반도체층(1001)과 연결되는 도전성 비아를 형성하기 위한 것으로서, 제1 도전형 컨택층(1004), 제1 도전형 반도체층(1003) 및 활성층(1002)을 관통하며, 제1 도전형 반도체층(1001)이 저면으로 노출되는 형상을 갖는다. 도 67의 흠 형성 공정 역시, 당 기술 분야에서 공지된 식각 공정, 예컨대, ICP-RIE 등을 이용하여 실행될 수 있다.
다음으로, 도 68에 도시된 바와 같이, SiO2, SiOxNy, SixNy 등과 같은 물질을 증착시켜 제1 도전형 컨택층(1004)의 상부 및 상기 홈의 측벽을 덮도록 절연체(1006)를 형성한다. 이 경우, 상기 홈의 저면에 해당하는 제2 도전형 반도체층(1001)은 적어도 일부가 노출될 필요가 있으므로, 절연체(1006)는 상기 홈의 저면 전체를 덮지 않는 범위에서 형성되는 것이 바람직하다.
다음으로, 도 69에 도시된 바와 같이, 상기 홈 내부와 절연체(1006) 상에 도전 물질을 형성하여 도전성 비아(v) 및 도전성 기판(1007)을 형성한다. 이에 따라, 도전성 기판(1007)은 제2 도전형 반도체층(1001)과 접속되는 도전성 비아(v)와 연결된 구조가 된다. 도전성 기판(1007)은 Au, Ni, Al, Cu, W, Si, Se, GaAs 중 어느 하나를 포함하는 물질로 이루어질 수 있으며, 도금, 스퍼터링, 증착 등의 공정으로 적절히 형성될 수 있다. 이 경우, 도전성 비아(v)와 도전성 기판(1007)을 동일한 물질로 형성할 수 있으나, 경우에 따라, 도전성 비아(v)는 도전성 기판(1007)과 다른 물질로 이루어져 서로 별도의 공정으로 형성될 수도 있다. 예컨대, 도전성 비아(v)를 증착 공정으로 형성한 후, 도전성 기판(1007)은 미리 형성되어 발광구조물에 본딩될 수 있을 것이다.
다음으로, 도 70에 도시된 바와 같이, 버퍼층(1008)이 노출되도록 반도체 성장용 기판(B)을 제거한다. 이 경우, 반도체 성장용 기판(B)은 레이저 리프트 오프나 화학적 리프트 오프 등과 같은 공정을 이용하여 제거될 수 있다. 도 70은 반도체 성장용 기판(B)이 제거된 상태로서, 도 69와 비교하여 180°회전시켜 도시하였다.
다음으로, 도 71에 도시된 바와 같이, 상기 발광구조물, 즉, 버퍼층(1008), 제1 도전형 반도체층(1003), 활성층(1002) 및 제2 도전형 반도체층(1001)을 일부 제거하여 제1 도전형 컨택층(1004)을 노출시킨다. 이는 노출된 제1 도전형 컨택층(1004)을 통하여 전기 신호를 인가하기 위한 것이다. 도시하지는 않았으나, 제1 도전형 컨택층(1004)의 노출 영역 상에 전극 패드를 형성하는 공정이 부가될 수 있다. 제1 도전형 컨택층(1004)을 노출시키기 위하여, 발광구조물을 ICP-RIE 등의 방법으로 식각할 수 있다. 이 경우, 식각 과정에서, 제1 도전형 컨택층(1004)을 이루는 물질이 발광구조물의 측면으로 이동하여 붙는 것을 방지하기 위하여 도 72에 도시된 바와 같이, 발광구조물 내에 식각저지층(1010) 미리 형성하여 둘 수도 있을 것이다. 또한, 더욱 확실한 절연 구조로서, 발광구조물을 식각한 후에, 도 62의 패시베이션층(1009)을 발광구조물의 측면에 형성할 수 있다.
다음으로, 도 73에 도시된 바와 같이, 버퍼층(1008)에 요철 구조를 형성한다. 이 경우, 주요하게 요철이 형성되는 영역은 반도체 성장용 기판(B)이 제거되어 노출된 버퍼층(1008)의 상면이며, 이렇게 형성된 요철 구조에 의하여 광 추출 효율이 향상될 수 있다. 이 경우, 요철 구조의 형성은 건식 또는 습식 식각 공정 등을 적절히 이용하여 실행될 수 있으나, 습식 식각을 이용하여 크기, 형상, 주기 등이 불규칙한 요철 구조를 형성하는 것이 바람직할 것이다. 본 실시 형태의 경우, 전기전도도가 낮은 버퍼층(1008)을 제거하지 않아도 제1 도전형 반도체층(1001)에 전기 신호를 인가하는 것에 문제가 없으며, 버퍼층(1008)에 요철을 형성함으로써 제1 도전형 반도체층(1001)의 균일한 두께를 보장할 수 있다.
도 74 내지 도 77은 또 다른 실시형태에 따른 반도체 발광소자의 제조방법을 설명하기 위한 공정별 단면도이다. 구체적으로, 도 64에서 설명한 구조의 반도체 발광소자의 제조방법에 해당한다. 이 경우, 도 65 내지 도 67에서 설명한 공정은 본 실시형태에서도 그대로 채용될 수 있다. 이하에서는 제1 도전형 컨택층(1204)과 발광구조물에 홈을 형성하는 단계의 후속 공정을 설명한다.
우선, 도 74에 도시된 바와 같이, SiO2, SiOxNy, SixNy 등과 같은 물질을 증착시켜 제1 도전형 컨택층(1204)의 상부 및 상기 홈의 측벽을 덮도록 절연체(1206)를 형성한다. 여기서, 절연체(1206)는 후속 공정에서 제2 도전형 전극(1209)을 덮도록 형성되는 절연체와 구별하기 위해 제1 절연체로 칭할 수 있다. 이전 실시 형태와 다른 점은 절연체(1206)가 제1 도전형 컨택층(1204)의 상면 전체에 형성되지 않으며, 이는 도전성 기판(1207)과 제1 도전형 컨택층(1204)이 접속되어야 하기 때문이다. 즉, 절연체(1206)는 제1 도전형 컨택층(1204)의 상면 중 일부, 구체적으로, 제2 도전형 반도체층(1201)과 연결되는 제2 도전형 전극(1209)이 형성될 영역을 미리 고려하여 형성될 수 있다.
다음으로, 도 75에 도시된 바와 같이, 홈 내부와 절연체(1206) 상에 도전 물질을 형성하여 제2 도전형 전극(1209)을 형성한다. 이에 따라, 제2 도전형 전극(1209)은 제2 도전형 반도체층(1201)과 접속되는 도전성 비아(v)를 구비할 수 있다. 본 단계의 경우, 제2 도전형 전극(1209)이 형성될 영역에 대응하여 미리 절연체(1206)가 형성되어 있어 이를 따라 제2 도전형 전극(1209)을 형성할 수 있으며, 특히, 외부로 노출되어 전기 연결부로 기능할 수 있도록 도전성 비아(v)로부터 수평 방향으로 연장되도록 형성하는 것이 바람직하다.
다음으로, 도 76에 도시된 바와 같이, 제2 도전형 전극(1209)을 덮도록 절연체(1206)를 형성하고 그 위에 제1 도전형 컨택층(1204)과 전기적으로 연결되도록 도전성 기판(1207)을 형성한다. 이 경우, 본 공정에서 형성되는 절연체(1206)는 제2 절연체로 칭할 수 있으며, 앞서 형성된 절연체와 더불어 하나의 절연 구조를 이룰 수 있다. 본 공정에 의하여, 제2 도전형 전극(1209)은 제1 도전형 컨택층(1204), 도전성 기판(1207) 등과 전기적으로 분리될 수 있다. 다음으로, 도 77에 도시된 바와 같이, 버퍼층(1208)이 노출되도록 반도체 성장용 기판(B)을 제거한다. 이후, 따로 도시하지는 않았으나, 발광구조물을 일부 제거하여 제2 도전형 전극(1209)을 노출시키는 공정과 버퍼층(1208)에 요철 구조를 형성하는 단계는 앞서 설명한 공정을 이용할 수 있을 것이다.
도 78 내지 도 91을 참조하여 본 발명의 또 다른 실시예에 따른 반도체 발광소자에 대해 설명한다.
도 78은 본 실시형태에 따른 반도체 발광소자를 개략적으로 나타내는 단면도이며, 도 79는 도 78의 반도체 발광소자에 해당하는 회로도이다. 도 78을 참조하면, 본 실시형태에 따른 반도체 발광소자(1300)는 기판(1306) 상에 복수의 발광구조물(C1, C2)이 배치되며, 발광구조물(C1, C2)은 서로 전기적으로 연결된 구조를 갖는다. 이하, 2개의 발광구조물을 각각 제1 및 제2 발광구조물(C1, C2)로 칭한다. 제1 및 제2 발광구조물(C1, C2)은 제1 도전형 반도체층(1303), 활성층(1302) 및 제1 도전형 반도체층(1301)이 순차적으로 적층된 구조를 구비하며, 서로 간의 전기적 연결을 위하여 제1 및 제2 전기연결부(1304, 1307)를 갖는다.
제1 전기연결부(1304)는 제1 도전형 반도체층(1303) 하부에 형성되며, 전기 연결 기능 외에도 오믹 컨택 및 광 반사 기능을 수행할 수 있다. 제2 전기연결부(1307)는 제2 도전형 반도체층(1301)과 전기적으로 연결되며, 제1 전기연결부(1304), 제1 도전형 반도체층(1303) 및 활성층(1302)을 관통하는 도전성 비아(v)를 구비하여 제2 도전형 반도체층(1301)과 접속될 수 있다. 제1 및 제2 발광구조물(C1, C2)은 제1 발광구조물(C1)의 제2 전기연결부, 즉, 도전성 비아(v)와 제2 발광구조물(C2)의 제1 전기연결부(1304)가 기판(1306)을 통하여 서로 전기적으로 연결된다. 이를 위하여, 기판(1306)은 전기전도성을 갖는 물질로 형성된다. 이러한 전기 연결 구조를 가짐에 따라, 외부에서 교류 전원이 인가되더라도 반도체 발광소자(1300)의 동작이 가능하다.
본 실시형태에서, 제1 및 제2 도전형 반도체층(1303, 1301)은 각각 p형 및 n형 반도체층이 될 수 있으며, 질화물 반도체로 이루어질 수 있다. 따라서, 이에 제한되는 것은 아니지만, 본 실시 형태의 경우, 제1 및 제2 도전형은 각각 p형 및 n형 의미하는 것으로 이해될 수 있다. 제1 및 제2 도전형 반도체층(1303, 1301)은 AlxInyGa(1-x-y)N 조성식(여기서, 0≤x≤1, 0≤y≤1, 0≤x+y≤1임)을 가지며, 예컨대, GaN, AlGaN, InGaN 등의 물질이 이에 해당될 수 있다. 제1 및 제2 도전형 반도체층(1303, 1301) 사이에 형성되는 활성층(1302)은 전자와 정공의 재결합에 의해 소정의 에너지를 갖는 광을 방출하며, 양자우물층과 양자장벽층이 서로 교대로 적층된 다중 양자우물(MQW) 구조로 이루어질 수 있다. 다중 양자우물 구조의 경우, 예컨대, InGaN/GaN 구조가 사용될 수 있다.
상술한 바와 같이, 제1 전기 연결부(1304)는 활성층(102)에서 방출된 빛을 반도체 발광소자(1300)의 상부, 즉, 제2 도전형 반도체층(1301) 방향으로 반사하는 기능을 수행할 수 있으며, 나아가, 제1 도전형 반도체층(1303)과 오믹 컨택을 이루는 것이 바람직하다. 이러한 기능을 고려하여, 제1 전기연결부(1304)는 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au 등의 물질을 포함할 수 있다. 이 경우, 자세하게 도시하지는 않았으나, 제1 전기연결부(104)는 2층 이상의 구조로 채용되어 반사 효율을 향상시킬 수 있으며, 구체적인 예로서, Ni/Ag, Zn/Ag, Ni/Al, Zn/Al, Pd/Ag, Pd/Al, Ir/Ag. Ir/Au, Pt/Ag, Pt/Al, Ni/Ag/Pt 등을 들 수 있다.
기판(1306)은 반도체 발광소자(1300)를 제조함에 있어서, 레이저 리프트 오프 등의 공정에서 제1 및 제2 발광구조물(C1, C2)을 지지하는 지지체의 역할을 수행하며, 또한, 제1 및 제2 발광구조물(C1, C2)을 전기적으로 연결하기 위하여 도전성 기판이 채용될 수 있다. 도전성 물질의 경우, Au, Ni, Al, Cu, W, Si, Se, GaAs 중 어느 하나를 포함하는 물질, 예컨대, Si와 Al의 합금 형태의 물질을 이용하여 기판(1306)을 형성할 수 있다. 이 경우, 선택된 물질에 따라, 기판(1306)은 도금 또는 본딩 접합 등의 방법으로 형성될 수 있을 것이다.
제2 전기연결부(1307)에 구비되는 도전성 비아(v)는 제2 도전형 반도체층(1301)과 그 내부에서 접속되며, 접촉 저항이 낮아지도록 개수, 형상, 피치, 제2 도전형 반도체층(1301)과의 접촉 면적 등이 적절히 조절될 수 있다. 이 경우, 도전성 비아(v)는 활성층(1302), 제1 도전형 반도체층(1303) 및 제1 전기연결부(1304)와는 전기적으로 분리될 필요가 있으므로, 도전성 비아(v)와 이들 사이에는 절연체(1305)가 형성된다. 절연체(1305)는 전기 절연성을 갖는 물체라면 어느 것이나 채용 가능하지만, 빛을 최소한으로 흡수하는 것이 바람직하므로, 예컨대, SiO2, SiOxNy, SixNy 등의 실리콘 산화물, 실리콘 질화물을 이용할 수 있을 것이다.
본 실시형태와 같이, 제2 전기연결부(1307)를 제2 도전형 반도체층(1301)을 통하여 그 하부에 형성할 경우, 제2 도전형 반도체층(1301) 상면에 따로 전극을 형성할 필요가 없다. 이에 따라, 제2 도전형 반도체층(1301) 상면으로 방출되는 빛의 양이 증가될 수 있다. 이 경우, 활성층(1302)의 일부에 도전성 비아(v)가 형성되어 발광 영역이 줄어들기는 하지만, 제2 도전형 반도체층(1301) 상면의 전극이 없어짐으로써 얻을 수 있는 광 추출 효율 향상 효과가 더 크다고 할 수 있다. 한편, 본 실시 형태에 따른 반도체 발광소자(1300)는 제2 도전형 반도체층(1301) 상면에 전극이 배치되지 않음에 따라 전체적인 전극의 배치가 수직 전극 구조보다는 수평 전극 구조와 유사하다고 볼 수 있지만, 제2 도전형 반도체층(1301) 내부에 형성된 도전성 비아(v)에 의하여 전류 분산 효과가 충분히 보장될 수 있다. 또한, 본 발명에서 부가될 수 있는 구조로서, 제2 도전형 반도체층(1301) 상면에는 요철 구조가 형성될 수 있으며, 이러한 요철 구조에 의하여, 활성층(1302) 방향으로부터 입사된 빛이 외부로 방출될 확률이 증가될 수 있다.
앞서 설명한 바와 같이, 반도체 발광소자(1300)는 교류 전원에서 구동이 가능하며, 이를 위해, 도 79에 도시된 바와 같이, 제1 및 제2 발광구조물(C1, C2)이 n-p 접합을 이루도록 하였다. 이러한 n-p 접합은 예컨대, 제1 발광구조물(C1)의 제2 전기연결부(v)와 제2 발광구조물(C2)의 제1 전기연결부(1304)를 연결하고, 제1 발광구조물(C1)의 제1 전기연결부(1304)와 제2 발광구조물(C1)의 제2 전기연결부(1307)에 외부 전원을 인가함으로써 구현될 수 있다. 구체적으로, 도 79a에서, A 및 B 단자는 각각 제1 발광구조물(C1)의 제1 전기연결부(1304) 및 제2 발광구조물(C1)의 제2 전기연결부(1307)에 해당하며, C 단자는 기판(1306)에 해당한다. 이 경우, 도 79b와 같이, A 및 B 단자를 연결하고, 이렇게 연결된 단자와 C 단자에 교류 신호를 인가할 경우, 교류 발광 소자가 구현될 수 있다.
도 80 내지 도 82은 도 78의 실시형태에서 변형된 실시형태에 따른 반도체 발광소자를 개략적으로 나타내는 단면도이다. 도 80 내지 도 82의 변형된 실시형태의 경우, 발광구조물들 간의 전기 연결 구조에서 이전 실시 형태와 차이가 있으며, 구현된 소자의 회로도는 도 80과 동일하다. 우선, 도 80의 반도체 발광소자(1400)는 기판(1406) 상에 제1 및 제2 발광구조물(C1, C2)이 배치되며, 여기서, 제1 발광구조물(C1)은 도 78의 제1 발광구조물과 같은 구조를 갖는다. 본 실시형태에서는 이전 실시형태와 달리, 발광구조물 중 일부를 수직 전극 구조로 채용이 가능하다. 구체적으로, 제2 발광구조물(C2)은 수직 전극 구조에 해당하는 것으로서, 구체적으로, 기판(1406)과 연결된 제1 전기연결부(1404) 상에 제1 도전형 반도체층(1403), 활성층(1402) 및 제2 도전형 반도체층(1401)이 순차적으로 형성되며, 제2 전기연결부(1407)는 제2 도전형 반도체(1401) 상에 형성된다.
다음으로, 도 81 및 도 82의 실시형태는 각각, 도 78 및 도 79에서 기판을 전기절연성 물질로 형성한 구조를 나타낸다. 도 81의 반도체 발광소자(1500)는 전기절연성을 갖는 기판(1506) 상에 제1 및 제2 발광구조물(C1, C2)이 배치된다. 이 경우, 도 78의 실시 형태와 마찬가지로, 제1 및 제2 발광구조물(C1, C2)은 제1 전기연결부(1504) 상에 제1 도전형 반도체층(1503), 활성층(1502) 및 제2 도전형 반도체층(1501)이 적층되며, 제2 전기연결부(1507a, 1507b)는 제2 도전형 반도체층(1501)과 접속된 도전성 비아(v)를 갖는다. 또한, 제2 전기연결부(1507a, 1507b)를 제1 전기연결부(1504), 제1 도전형 반도체층(1503) 및 활성층(1502)과 전기적으로 분리하기 위하여 절연체(1505)가 형성된다. 전기절연성 기판(1506)이 사용됨에 따라, 제1 발광구조물(C1)의 제2 전기연결부(1507a)는 도전성 비아(v)로부터 기판(1506)에 평행한 방향으로 연장된 부분에 의하여 제2 발광구조물(C2)의 제1 전기연결부(1504)와 연결된다.
마찬가지로, 도 82의 반도체 발광소자(1600)의 경우, 도 80의 실시형태와 마찬가지로, 제2 발광구조물(C2)은 제1 전기연결부(1604) 상에 제1 도전형 반도체층(1603), 활성층(1602) 및 제2 도전형 반도체층(1601)이 순차적으로 형성되며, 제2 전기연결부(1607)는 제2 도전형 반도체(1601) 상에 형성된다. 전기절연성 기판(1606)이 사용됨에 따라, 제1 발광구조물(C1)의 제2 전기연결부(1607a)는 제2 도전형 반도체층(1601)과 접속된 도전성 비아(v)로부터 기판(1606)에 평행한 방향으로 제2 발광구조물(C2)까지 연장된다. 이에 따라, 제1 및 제2 발광구조물(C1, C2)은 서로 제2 전기연결부(1607a)를 공유하게 될 수 있다.
한편, 상술한 실시 형태들의 경우에는 2개의 발광구조물을 이용하여 교류 구동 발광소자를 구현하였으나, 발광구조물, 즉, 발광다이오드의 개수와 연결 구조는 다양하게 변형될 수 있다. 도 83은 본 실시형태에 따른 반도체 발광소자에 해당하는 회로도를 나타낸다. 도 83에서, 하나의 다이오드는 발광 다이오드로서, 발광구조물에 대응한다. 도 83에 도시된 회로도는 소위 사다리망 회로에 해당하며, 총 14개의 발광구조물을 구비하는 구조이다. 이 경우, 순 방향 전압이 인가될 경우 9개의 발광구조물이 작동되며, 역 방향 전압이 인가될 경우에도 9개의 발광구조물이 작동될 수 있는 구조이다. 이러한 구조를 갖기 위한 기본적인 전기 연결구조는 3가지로서, 도 83에 도시된 바와 같이, n-p 접합, n-n 접합 및 p-p 접합이 이에 해당한다. 아래와 같이, n-p 접합, n-n 접합 및 p-p 접합의 예를 설명하며, 이러한 기본 접합들을 이용하여 다양한 개수의 발광다이오드와 회로 구조를 갖는 교류 구동 발광소자를 얻을 수 있을 것이다.
우선, 도 84 및 도 85는 n-p 접합의 구현 예를 개략적으로 나타내는 단면도이다. 도 84 및 도 85를 참조하면, 기판(1706, 1706') 상에 서로 n-p 접합을 형성하는 제1 및 제2 발광구조물(C1, C2)이 배치된다. 제1 및 제2 발광구조물(C1, C2)은 제1 전기연결부(1704) 상에 제1 도전형 반도체층(1703), 활성층(1702) 및 제2 도전형 반도체층(1701)이 순차적으로 적층되며, 제2 도전형 반도체층(1701)과 내부에서 접속되는 도전성 비아(v)를 제1 전기연결부(1704), 제1 도전형 반도체층(1703) 및 활성층(1702)과 전기적으로 분리시키기 위하여 절연체(1705)가 형성된다. 제1 발광구조물(C1)의 제2 전기연결부(1707)는 제2 발광구조물(C2)의 제1 전기연결부(1704)와 연결된다. 이 경우, 도전성 기판(1706)을 사용한 도 84의 구조와 전기절연성 기판(1706')을 사용한 도 85의 구조에서 제2 전기연결부(1707)의 형태가 다소 상이하게 되며, 각각, 도 78 및 도 81에서 설명한 구조와 유사하다. 다만, n-p 접합의 경우는 단독으로 교류 구동에 사용되기보다는 다른 발광구조물과 연결되어 전체 소자를 구성하므로, 제2 발광구조물(C2)에 구비된 제2 전기연결부, 즉, 도전성 비아(v)는 외부 전기 신호를 인가하기 위한 구조가 아닌 다른 발광구조물과 전기적으로 연결된 상태로 이해할 수 있다.
다음으로, 도 86 내지 도 88은 n-n 접합의 구현 예를 개략적으로 나타내는 단면도이다. 도 86 내지 도 88을 참조하면, 기판(1806, 1806') 상에 서로 n-n 접합을 형성하는 제1 및 제2 발광구조물(C1, C2)이 배치된다. 제1 및 제2 발광구조물(C1, C2)은 제1 전기연결부(1804) 상에 제1 도전형 반도체층(1803), 활성층(1802) 및 제2 도전형 반도체층(1801)이 순차적으로 적층된 구조를 갖는다. 이 경우, 제2 도전형 반도체층(1801)과 내부에서 접속되는 도전성 비아(v)를 제1 전기연결부(1804), 제1 도전형 반도체층(1803) 및 활성층(1802)과 전기적으로 분리시키기 위하여 절연체(1805)가 형성된다. n-n 접합을 형성하기 위하여, 제1 및 제2 발광구조물(C1, C2)의 제2 전기연결부(1807)가 서로 연결될 필요가 있다. 이러한 예로서, 도 86과 같이, 도전성 기판(1806)을 통하여 제1 및 제2 발광구조물(C1, C2)에 각각 구비된 도전성 비아(v)를 연결할 수 있다. 또한, 도 87과 같이, 전기절연성 기판(1806')을 사용할 경우에는 제2 전기연결부(1807)는 기판(1806')에 평행한 방향으로 연장된 부분에 의하여 제1 및 제2 발광구조물(C1, C2)에 각각 구비된 도전성 비아(v)를 연결할 수 있다. 전기연결부를 통한 접속 방식 외에도, 도 88에 도시된 방법과 같이, 제2 도전형 반도체층(1801')을 이용할 수도 있다. 제1 및 제2 발광구조물(C1, C2)은 제2 도전형 반도체층(1801')을 서로 공유할 수 있으며, 이 경우, 각각에 구비된 도전성 비아(v)를 따로 연결하지 않더라도 n-n 접합을 구현할 수 있다.
마지막으로, 도 89 내지 도 91은 p-p 접합의 구현 예를 개략적으로 나타내는 단면도이다. 도 89 내지 91을 참조하면, 기판(1906, 1906') 상에 서로 p-p 접합을 형성하는 제1 및 제2 발광구조물(C1, C2)이 배치된다. 제1 및 제2 발광구조물(C1, C2)은 제1 전기연결부(1904) 상에 제1 도전형 반도체층(1903), 활성층(1902) 및 제2 도전형 반도체층(1901)이 순차적으로 적층된 구조를 갖는다. 이 경우, 제2 도전형 반도체층(1901)과 내부에서 접속되는 도전성 비아(v)를 제1 전기연결부(1904), 제1 도전형 반도체층(1903) 및 활성층(1902)과 전기적으로 분리시키기 위하여 절연체(1905)가 형성된다. p-p 접합을 형성하기 위하여, 제1 및 제2 발광구조물(C1, C2)의 제1 전기연결부(1904)가 서로 연결될 필요가 있다. 이 경우, 도전성 비아(v)는 전체 교류 발광소자를 함께 구성하는 다른 발광구조물(도시하지 않음)과 연결될 수 있을 것이다. p-p 접합의 예로서, 도 89와 같이, 도전성 기판(1906)을 통하여 제1 및 제2 발광구조물(C1, C2)에 각각 구비된 제1 전기연결부(1904)를 연결할 수 있다. 이 경우, 도 90과 같이, 전기절연성 기판(1906')을 사용할 경우에는 연결금속층(1908)을 따로 배치하여 제1 및 제2 발광구조물(C1, C2)에 각각 구비된 제1 전기연결부(1904)를 연결할 수 있다. 또한, 연결금속층을 따로 채용하지 않고, 도 91과 같이, 제1 및 제2 발광구조물(C1, C2)에 대하여 제1 전기연결부(1904)를 공통으로 사용한 구조도 채용이 가능할 것이다.
도 92 내지 도 102를 참조하여 본 발명의 또 다른 실시예에 따른 반도체 발광소자에 대해 설명한다.
도 92는 본 실시형태에 따른 수직구조 반도체 발광소자를 나타내는 단면도이며, 도 93 및 도 94는 도 92의 실시형태로부터 변형된 실시형태에 따른 수직구조 반도체 발광소자를 나타낸다.
도 92를 참조하면, 본 실시형태에 따른 수직구조 반도체 발광소자(2000)는 n형 및 p형 반도체층(2001, 2003)과 그 사이에 형성된 활성층(2002)을 구비하여 발광구조물을 이루며, 상기 발광구조물 하부에는 반사금속층(2004) 및 도전성 기판(2005)이 형성된다. 또한, 상기 n형 반도체층(2001) 위에는 n형 전극(2006)이 형성되며, 상기 발광구조물의 측면을 덮도록 요철 구조를 갖는 패시베이션층(2007)이 형성된다.
상기 n형 반도체층(2001) 및 p형 반도체층(2003)은 대표적으로 질화물 반도체로 이루어질 수 있다. 즉, 상기 n형 반도체층(2001) 및 p형 반도체층(2003)은 AlxInyGa(1-x-y)N 조성식(여기서, 0≤x≤1, 0≤y≤1, 0≤x+y≤1임)을 갖는 n형 불순물 및 p형 불순물이 도핑 된 반도체 물질로 이루어질 수 있으며, 대표적으로, GaN, AlGaN, InGaN이 있다. 또한, 상기 n형 불순물로 Si, Ge, Se, Te 등이 사용될 수 있으며, 상기 p형 불순물로는 Mg, Zn, Be 등이 대표적이다. 한편, 수직 방향으로 방출되는 빛의 효율을 향상시키기 위하여 상기 n형 반도체층(101) 상면에는 요철 구조가 형성될 수 있다.
상기 n형 및 p형 질화물 반도체층(2001, 2003) 사이에 형성되는 활성층(2002)은 전자와 정공의 재결합에 의해 소정의 에너지를 갖는 광을 방출하며, 양자우물층과 양자장벽층이 서로 교대로 적층 된 다중 양자우물(MQW) 구조로 이루어질 수 있다. 다중 양자우물 구조의 경우, 일반적으로, InGaN/GaN 구조가 사용될 수 있다.
상기 반사금속층(2004)은 상기 활성층(2002)에서 발광 된 빛을 상기 n형 질화물 반도체층(2001) 방향으로 반사하는 기능을 수행할 수 있으며, Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au 등으로 이루어진다. 이 경우, 자세하게 도시하지는 않았으나, 반사금속층(2004)은 2층 이상의 구조로 채용되어 반사 효율을 향상시킬 수 있으며, 구체적인 예로서, Ni/Ag, Zn/Ag, Ni/Al, Zn/Al, Pd/Ag, Pd/Al, Ir/Ag. Ir/Au, Pt/Ag, Pt/Al, Ni/Ag/Pt 등을 들 수 있다. 다만, 본 실시 형태에서 상기 반사금속층(2004)은 필수적인 요소는 아니며, 경우에 따라 상기 반사금속층(2004)이 생략된 구조도 가능하다.
상기 도전성 기판(2005)은 p형 전극 역할과 함께 후술할 레이저 리프트 오프 공정에서 발광구조물, 즉, n형 반도체층(2001), 활성층(2002) 및 p형 반도체층(2003)을 지지하는 지지체의 역할을 수행한다. 이 경우, 상기 도전성 기판(2005)은 Si, Cu, Ni, Au, W, Ti 등의 물질로 이루어질 수 있으며, 선택된 물질에 따라, 도금 또는 본딩 접합 등의 방법으로 형성될 수 있다.
상기 패시베이션층(2007)은 발광구조물, 특히, 상기 활성층(2002)을 보호하기 위한 절연층으로서, 상기 발광구조물이 일부 제거된 영역에 형성되며, 구체적으로, 상기 발광구조물의 측면 외에 도 92에 도시된 바와 같이, 상기 n형 반도체층(2001)의 상면 중 일부 영역 및 상기 반사금속층(2004)의 상면에까지 형성될 수 있다. 이 경우, 상기 반사금속층(2004)이 채용되지 않은 경우에는 상기 패시베이션층(2007)은 상기 도전성 기판(2005) 상면에 형성된다. 상기 발광구조물이 일부 제거되어 노출된 측면의 경우, 도 92에 도시된 바와 같이, 상부를 향하여 기울어질 수 있으며, 이러한 구조에 의해 발광 면적의 향상을 가져올 수 있으며, 나아가, 패시베이션층(2007) 형성이 보다 용이할 수 있다.
상기 패시베이션층(2007)은 보호 기능을 수행하기 위해 SiO2, SiOxNy, SixNy 등의 실리콘 산화물, 실리콘 질화물로 이루어질 수 있으며, 그 두께는 0.1 ~ 2㎛ 정도가 바람직하다. 이에 따라, 상기 패시베이션층(2007)은 굴절률이 약 1.4 ~ 2.0 정도가 되며, 공기 또는 패키지의 몰드 구조와 굴절률 차이로 인해 상기 활성층(2002)에서 방출된 빛이 외부로 빠져나가기가 어렵다. 특히, 본 실시 형태와 같은 수직구조 반도체 발광소자(2000)의 경우, p형 반도체층(2003)의 두께가 상대적으로 얇아 활성층(2002)의 측 방향으로 방출된 빛은 패시베이션층(2007)을 통과하여야 외부로 방출될 수 있으나, 상기 활성층(2002)으로부터 상기 패시베이션층(2007)을 향하여 측 방향으로 방출된 빛은 상기 패시베이션층(2007)의 외부 면에 대한 입사각이 매우 작아 외부로 빠져나가기는 더욱 어렵게 된다.
본 실시형태의 경우, 상기 패시베이션층(2007)에 요철 구조를 형성하여 외부 광 추출효율이 향상되도록 하였으며, 특히, 도 92에 도시된 바와 같이, 상기 활성층(2002)의 측 방향으로 방출된 빛이 통과하는 영역에 요철 구조가 형성될 경우, 수직구조 반도체 발광소자(2000)의 측면으로 방출되는 빛의 양이 증가될 수 있다. 여기서, 상기 활성층(2002)의 측 방향으로 방출된 빛이 통과하는 영역은 상기 반사금속층(2004)의 상면 중 발광구조물이 형성되지 않은 영역으로 볼 수 있다. 패시베이션층(2007)에 요철 구조를 채용한 구조를 다른 구성 요소가 모두 동일하되 요철 구조가 없는 구조와 광 추출효율을 비교한 시뮬레이션 결과, 본 실시형태에서 약 5% 이상의 광 추출효율 향상 효과를 보였다. 한편, 본 실시형태에서 반드시 요구되는 사항은 아니지만, 상기 패시베이션층(2007)의 요철 구조는 상기 n형 반도체층(2001)의 상면에 해당하는 영역에도 형성되어 수직 방향 광 추출효율을 향상시킬 수 있다.
도 93 및 도 94에 도시된 바와 같이, 패시베이션층의 요철 구조 형성 영역은 외부 광 추출효율의 극대화를 위하여 다양하게 변화될 수 있다. 도 93과 같이, 요철 구조는 패시베이션층(2007')의 측면에까지 형성될 수 있다. 또한, 도 94와 같이, 패시베이션층(2007'')의 하면, 즉, 반사금속층(2004)을 향하는 면에도 요철 구조가 형성됨이 바람직하며, 이 경우, 이에 대응하는 형상의 패턴이 반사금속층(2004)에 형성될 수 있다.
도 95 내지 도 98은 도 92에서 설명한 구조를 갖는 수직구조 반도체 발광소자의 제조방법을 설명하기 위한 공정별 단면도이다.
우선, 도 95에 도시된 바와 같이, 반도체 단결정 성장용 기판(2008) 위에 n형 반도체층(2001), 활성층(2002) 및 p형 반도체층(2003)을 MOCVD, MBE, HVPE 등과 같은 공정을 이용하여 순차적으로 성장시킴으로써 발광구조물을 형성한다. 상기 반도체 단결정 성장용 기판(2008)은 사파이어, SiC, MgAl2O4, MgO, LiAlO2, LiGaO2 , GaN 등의 물질로 이루어진 기판을 사용할 수 있다. 이 경우, 사파이어는 육각-롬보형(Hexa-Rhombo R3c) 대칭성을 갖는 결정체로서 c축 및 a측 방향의 격자상수가 각각 13.001Å과 4.758Å이며, C(0001)면, A(1120)면, R(1102)면 등을 갖는다. 이 경우, 상기 C면은 비교적 질화물 박막의 성장이 용이하며, 고온에서 안정하기 때문에 질화물 성장용 기판으로 주로 사용된다.
다음으로, 도 96에 도시된 바와 같이, 상기 p형 반도체층(2003) 상에 반사금속층(2004)과 도전성 기판(2005)을 도금 또는 서브마운트 본딩 등의 방법으로 형성한다. 이후, 구체적으로 도시하지는 않았으나, 레이저 리프트 오프 또는 화학적 리프트 오프 등의 적절한 리프트 오프 공정에 의해 상기 반도체 단결정 성장용 기판(2008)을 제거한다.
다음으로, 도 97에 도시된 바와 같이, 소자 단위의 다이싱 및 패시베이션층 형성을 위해 상기 발광구조물을 일부 제거하며, 이 경우, 제거되어 노출된 측면이 상부를 향하여 기울어지도록 할 수 있다. 또한, 수직 방향으로 광 추출효율을 향상시키기 위해 n형 반도체층(2001)의 상면, 즉, 반도체 단결정 성장용 기판이 제거되어 노출된 면에 습식 식각 등의 공정으로 요철 구조를 형성할 수 있다.
다음으로, 도 98에 도시된 바와 같이, 발광구조물을 보호하기 위한 패시베이션층(2007)을 형성한다. 본 단계의 경우, 예컨대, 실리콘 산화물 또는 실리콘 질화물을 적절히 증착하여 실행될 수 있으며, 상기 패시베이션층(2007)의 광 방출면에는 요철 구조를 형성하여 측 방향 광방출효율을 향상시킬 수 있다. 이 경우, 요철 구조 형성은 당해 기술분야에서 공지된 건식 또는 습식 식각 공정을 적절히 이용하여 실행될 수 있다. 또한, 필요에 따라, 상기 패시베이션층(2007)의 다른 광 방출면에도 요철 구조를 형성할 수 있다. 패시베이션층(2007)을 형성한 후에는 상기 n형 반도체층(2001) 상면에 n형 전극 형성하여 도 92에 도시된 완성된 구조를 얻을 수 있다.
본 발명에서는 전기적 특성과 광학적 특성이 더욱 향상될 수 있도록 상술한 수직구조에서 변형된 구조를 갖는 반도체 발광소자를 제공한다.
도 99는 다른 실시형태에 따른 반도체 발광소자를 나타내는 개략적인 단면도이다. 도 99를 참조하면, 본 실시형태에 따른 반도체 발광소자(2100)는 도전성 기판(2105), 도전성 기판(2105) 위에 순차적으로 형성된 제1 도전형 반도체층(2103), 활성층(2102) 및 제2 도전형 반도체층(2101)을 구비하는 발광구조물, 제2 도전형 반도체층(2101)에 전기적 신호를 인가하기 위한 제2 도전형 전극(2106) 및 상기 발광구조물의 측면에 형성된 요철 구조의 패시베이션층(2107)을 구비하는 구조이다. 도 99의 경우, 활성층(2102)이 도 92 등에 도시된 구조와 비교하여 상대적으로 상부에 위치하게 도시되어 있으나, 활성층(2102)의 위치는 다양하게 변경될 수 있으며, 예컨대, 패시베이션(2107)의 하부와 비슷한 높이로 형성될 수도 있을 것이다.
이전 실시형태, 즉, 수직구조 반도체 발광소자의 경우, 사파이어 기판이 제거된 n형 반도체층 노출면에 n형 전극을 형성하지만, 본 실시 형태에서는 도전성 비아를 이용하여 n형 반도체층 하부 방향을 통해 외부로 노출된다. 구체적으로, 제2 도전형 전극(2106)은 제1 도전형 반도체층(2104) 및 활성층(2102)을 관통하여 제2 도전형 반도체층(2101)과 그 내부에서 접속된 도전성 비아(v) 및 이로부터 연장되어 상기 발광구조물의 외부로 노출된 전기 연결부(P)를 구비한다. 이 경우, 제2 도전형 전극(2106)이 도전성 기판(2105), 제1 도전형 반도체층(2103) 및 활성층(2102)과 전기적으로 분리될 필요가 있으므로, 절연체(2108)가 제2 도전형 전극(2106) 주변에 적절히 형성된다. 절연체(2108)는 전기 전도도가 낮은 물질이면 어느 것이 사용 가능하지만, 광 흡수력이 낮은 것이 바람직하며, 예컨대, 패시베이션층(2107)과 같은 물질로 형성할 수 있다.
제2 도전형 전극(2106)의 경우, 제2 도전형 반도체층(2101)과 오믹 컨택을 이룰 수 있는 금속 물질로 이루어질 수 있다. 또한, 제2 도전형 전극(2106)은 전체를 동일한 물질로 형성할 수도 있겠으나, 전기 연결부(P)가 본딩 패드부로 사용될 수 있는 점을 고려하여 전기 연결부(P)를 다른 부분과 상이한 물질로 형성할 수 있을 것이다. 한편, 반드시 이에 제한되는 것은 아니지만, 이전에서 설명한 제조 공정을 감안하였을 때, 통상적으로 제1 및 제2 도전형 반도체층(2101, 2103)은 각각 p형 및 n형 반도체층이 될 수 있다. 부가적인 요소로서, 도 99에 도시된 것과 같이, 제1 도전형 반도체층(2103)과 도전성 기판(2105) 사이에는 제1 컨택층(2104)이 형성될 수 있으며, Ag, Al 등과 같이 반사도가 높은 금속이 채용될 수 있다. 이 경우, 제1 컨택층(2104)과 제2 도전형 전극(2106)은 절연체(2108)에 의하여 서로 전기적으로 분리된다.
상술한 내용의 전기 연결 구조에 의하여 제2 도전형 반도체층(2101)은 그 상부가 아닌 내부로부터 전기 신호가 인가될 수 있다. 특히, 제2 도전형 반도체층(2101)의 상면에 전극이 형성되지 않아 발광 면적이 증가될 수 있으며, 내부에 형성된 도전성 비아(v)에 의하여 전류 분산 효과가 향상될 수 있다. 이 경우, 도전성 비아(v)의 개수, 면적, 형상 등을 적절히 조절하여 원하는 전기적 특성을 얻을 수 있을 것이다. 본 실시형태의 경우, 도전성 기판을 형성하는 것이나 사파이어 기판을 제거하는 등의 주요 공정은 수직구조 반도체 발광소자의 제조 공정을 이용하지만, 공정에 의하여 얻어진 소자의 형상은 수평 구조에 보다 가까운 것으로 볼 수 있는 점에서, 수직구조와 수평구조의 혼합 구조로 칭할 수 있을 것이다.
이전 실시형태와 마찬가지로, 상기 발광구조물의 측면 등에는 패시베이션층(2107)이 형성되며, 활성층(2102)에서 방출된 광의 경로 상에 요철 구조가 형성되며, 이에 의하여 활성층(2102)으로부터 패시베이션층(2107)을 향하여 측 방향으로 방출된 빛의 추출 효율을 향상시킬 수 있다. 이와 더불어, 도 99에 도시된 것과 같이, 제2 도전형 반도체층(2101) 상면에도 요철 구조가 형성될 수 있으며, 따로 도시하지는 않았으나, 패시베이션층(2107)의 경사진 측면에도 요철이 형성될 수 있을 것이다.
도 100은 도 99에서 변형된 구조를 갖는 반도체 발광소자를 나타내는 개략적인 단면도이다. 도 100에 도시된 실시형태의 경우, 도 99에서 설명한 구조에서 식각저지층(2109)이 추가된 구조로서 이하에서는 식각저지층(2109)에 대해서만 설명한다. 식각저지층(2109)은 적어도 도전성 기판(2105) 상면 중 상기 발광구조물이 형성되지 않은 영역 위에 형성되며, 특정 식각 방식에 대하여 발광구조물을 이루는 반도체 물질, 예컨대, 질화물 반도체와 다른 식각 특성을 갖는 물질(SiO2 등의 산화물)로 이루어진다. 발광구조물이 식각될 경우 식각저지층(2109)이 위치한 영역까지만 식각될 수 있으므로, 식각저지층(2109)에 의해 식각 깊이가 제어될 수 있다. 이 경우, 공정의 용이성을 위하여 식각저지층(2109)과 절연체(2108)를 동일한 물질로 형성할 수 있을 것이다. 제2 도전형 전극(2106)이 외부로 노출될 필요성 등으로 상기 발광구조물을 식각할 경우, 도전성 기판(2105)이나 제1 컨택층(2104)을 이루는 물질이 발광구조물의 측면으로 퇴적되어 누설 전류가 발생할 수 있으므로, 식각에 의해 제거될 발광구조물 하부에 미리 식각저지층(2109)을 형성하여 둠으로써 이러한 문제를 최소화할 수 있다.
도 101은 또 다른 실시형태에 따른 반도체 발광소자를 나타내는 개략적인 단면도이며, 도 102는 도 101의 구조에서 식각저지층이 추가된 구조를 나타낸다. 도 101을 참조하면, 본 실시형태에 따른 반도체 발광소자(2200)는 도전성 기판(2205), 도전성 기판(2205) 위에 순차적으로 형성된 제1 도전형 반도체층(2203), 활성층(2202) 및 제2 도전형 반도체층(2201)을 구비하는 발광구조물, 제1 도전형 반도체층(2203)에 전기 신호를 인가하기 위한 제2 컨택층(2204), 도전성 기판(2205)으로부터 제2 도전형 반도체층(2201)의 내부까지 연장된 도전성 비아(v) 및 상기 발광구조물의 측면에 형성된 요철 구조의 패시베이션층(2207)을 구비하는 구조이다.
도 99에서 설명한 구조와 다른 사항을 중심으로 설명하면, 우선, 도전성 기판(2205)은 제2 도전형 반도체층(2201)과 전기적으로 연결되며, 제1 도전형 반도체층(2203)과 연결되는 제1 컨택층(2204)이 전기 연결부(P)를 구비하여 외부로 노출된다. 도전성 기판(2205)은 절연체(2208)에 의하여 제1 컨택층(2204), 제1 도전형 반도체층(2203) 및 활성층(2202)과 전기적으로 분리될 수 있다. 즉, 도 99의 실시 형태에서는 제2 도전형 반도체층(2101)과 연결된 제2 도전형 전극(2106)이 외부로 노출되어 전기 연결부(P)를 제공하며, 본 실시형태에서는 제1 도전형 반도체층(2203)과 연결된 제1 컨택층(2204)이 외부로 노출되어 전기 연결부(P)를 제공하는 점에서 구조적인 차이가 있다. 이러한 전기 연결 방식의 차이 외에 다른 구조와 이로부터 얻어지는 효과는 도 99에서 설명한 내용과 같으며, 도 102에 도시된 것과 같이 식각저지층(2209)도 채용될 수 있다. 다만, 도 101의 실시형태, 즉, 제1 컨택층(2204)이 외부로 노출된 구조가 도 99의 실시 형태와 비교하여 절연체(2208)의 형성 공정이 다소 용이한 면이 있다.
< 발광소자 패키지 및 광원 모듈 >
본 발명에 따른 발광소자 패키지는 상술한 반도체 발광소자를 구비한다.
이하에서는 다양한 실시형태를 통해 본 발명에 따른 반도체 발광소자를 구비하는 발광소자 패키지에 대해 설명한다.
도 103은 본 발명의 일 실시형태에 따른 백색 발광소자 패키지를 나타내는 개략도이다.
도 103에 도시된 바와 같이, 본 실시형태에 따른 백색 발광소자 패키지(3010)는, 청색 발광소자(3015)와 이를 포장하며 상부로 볼록한 렌즈 형상을 갖는 수지 포장부(3019)를 포함한다.
본 실시형태에 채용된 수지포장부(3019)는, 넓은 지향을 확보할 수 있도록 반구 형상의 렌즈 형상을 갖는 형태로 예시되어 있다. 상기 청색 발광소자(3015)는 별도의 회로기판에 직접 실장될 수 있다. 상기 수지 포장부(3019)는 상기 실리콘 수지나 에폭시 수지 또는 그 조합으로 이루어질 수 있다. 상기 수지포장부(3019)의 내부에는 녹색 형광체(3012)와 적색 형광체(3014)가 분산된다.
본 실시형태에 채용가능한 녹색 형광체(3012)는, M2SiO4:Eu,Re인 규산염계 형광체, MA2D4:Eu,Re인 황화물계 형광체, β-SiAlON:Eu,Re인 형광체 및 M'A'2O4:Ce,Re'인 산화물계 형광체로 구성된 그룹으로부터 선택된 적어도 하나의 형광체일 수 있다.
여기서, M은 Ba, Sr, Ca, Mg 중 선택된 적어도 2종의 원소이고, A는 Ga, Al 및 In 중 선택된 적어도 하나이고, D는 S, Se 및 Te 중 선택된 적어도 하나이며, M'는 Ba, Sr, Ca, Mg 중 선택된 적어도 하나이고, A'은 Sc, Y, Gd, La, Lu, Al 및 In 중 선택된 적어도 하나이며, Re는 Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br 및 I 중 선택된 적어도 하나이고, Re'는 Nd, Pm, Sm, Tb, Dy, Ho, Er, Tm, Yb, F, Cl, Br 및 I 중 선택된 적어도 하나이다. 또한, Re 및 Re'의 첨가량은 1ppm 내지 50000ppm의 범위이다.
한편, 본 실시형태에 채용가능한 적색 형광체(3014)는, M'AlSiNx:Eu,Re(1≤x≤5)인 질화물계 형광체 및 M'D:Eu,Re인 황화물계 형광체 중 선택된 적어도 하나이다.
여기서, M'는 Ba, Sr, Ca, Mg 중 선택된 적어도 하나이고, D는 S, Se 및 Te 중 선택된 적어도 하나이며, A'은 Sc, Y, Gd, La, Lu, Al 및 In 중 선택된 적어도 하나이며, Re는 Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br 및 I 중 선택된 적어도 하나이며, Re의 첨가량는 1ppm 내지 50000ppm의 범위이다.
이와 같이, 본 발명에서 반치폭, 피크파장 및/또는 변환효율 등을 고려하여 특정한 녹색 형광체와 특정한 적색 형광체를 조합한 형태로 제공함으로써 70 이상의 높은 연색지수를 갖는 백색광을 제공할 수 있다. 또한, 복수의 형광체를 통해 여러 파장대역의 광이 얻어지므로, 색재현성을 향상시킬 수 있다.
상기 청색 발광소자의 주파장은 430~455nm 범위일 수 있다. 이 경우에, 가시광선대역에서 넓은 스펙트럼을 확보하여 보다 큰 연색지수의 향상을 위해서, 상기 녹색 형광체(3012)의 발광파장 피크는 500∼550nm범위이며, 상기 적색 형광체(3014)의 발광파장 피크는 610∼660nm범위일 수 있다.
바람직하게, 상기 청색 발광소자는 10~30nm의 반치폭을 가지며, 상기 녹색 형광체는 30~100nm의 반치폭을 갖고, 상기 적색 형광체는 50~150nm의 반치폭을 가질 수 있다.
본 발명의 다른 실시형태에서는, 상술된 적색 형광체(3012)와 녹색 형광체(3014) 외에 추가적으로 황색 또는 황등색 형광체를 포함할 수 있다. 이 경우에 보다 향상된 연색지수를 확보할 수 있다. 이러한 실시형태는 도 104에 도시되어 있다.
도 104를 참조하면, 본 실시형태에 따른 백색 발광소자 패키지(3020)는, 중앙에 반사컵이 형성된 패키지 본체(3021)와, 반사컵 바닥부에 실장된 청색 발광소자(3025)와, 반사컵 내에는 청색 발광소자(3025)를 봉지하는 투명 수지 포장부(3029)를 포함한다.
상기 수지 포장부(3029)는 예를 들어, 실리콘 수지나 에폭시 수지 또는 그 조합을 사용하여 형성될 수 있다. 본 실시형태에서는, 상기 수지 포장부(3029)에 도 103에서 설명된 녹색 형광체(3012) 및 적색 형광체(3014)와 함께 추가적으로 황색 형광체 또는 황등색 형광체(3026)를 포함한다.
즉, 녹색 형광체(3022)는, M2SiO4:Eu,Re인 규산염계 형광체, MA2D4:Eu,Re인 황화물계 형광체, β-SiAlON:Eu,Re인 형광체 및 M'A'2O4:Ce,Re'인 산화물계 형광체로 구성된 그룹으로부터 선택된 적어도 하나의 형광체일 수 있으며, 적색 형광체(3024)는, M'AlSiNx:Eu,Re(1≤x≤5)인 질화물계 형광체 및 M'D:Eu,Re인 황화물계 형광체 중 선택된 적어도 하나이다.
추가적으로, 본 실시형태에서는 제3 형광체(3026)를 더 포함한다. 상기 제3 형광체는 녹색과 적색 파장대역의 중간에 위치한 파장대역의 광을 방출할 수 있는 황색 또는 황등색 형광체일 수 있다. 상기 황색 형광체는 규산염계 형광체일수 있으며, 상기 황등색 형광체는 α-SiAlON:Eu,Re인 형광체일 수 있다.
상술된 실시형태에서는, 2종 이상의 형광체 분말을 단일한 수지포장부영역에 혼합분산시킨 형태를 예시하였으나, 다른 구조를 다양하게 변경되어 실시될 수 있다. 보다 구체적으로, 상기한 2종 또는 3종의 형광체는 서로 다른 층구조로 제공될 수 있다. 일 예에서, 상기 녹색 형광체, 상기 적색 형광체 및 상기 황색 또는 황등색 형광체는 그 형광체 분말을 고압으로 분산시켜 복층 구조의 형광체막으로 제공될 수도 있다.
이와 달리, 도 105에 도시된 바와 같이, 복수의 형광체 함유 수지층 구조로 구현될 수 있다.
도 105를 참조하면, 본 실시형태에 따른 백색 발광소자 패키지(3030)는, 앞선 실시형태와 유사하게, 중앙에 반사컵이 형성된 패키지 본체(3031)와, 반사컵 바닥부에 실장된 청색 발광소자(3035)와, 반사컵 내에는 청색 발광소자(3035)를 봉지하는 투명 수지 포장부(3039)를 포함한다.
상기 수지 포장부(3039) 상에는 각각 다른 형광체가 함유된 수지층이 제공된다. 즉, 상기 녹색 형광체가 함유된 제1 수지층(3032), 상기 적색 형광체가 함유된 제2 수지층(3034) 및 상기 황색 또는 황등색 형광체가 함유된 제3 수지층(3036)로 파장변환부가 구성될 수 있다.
본 실시형태에서 사용되는 형광체는 도 104에서 도시되어 설명된 형광체와 동일하거나 유사한 형광체가 채택되어 사용될 수 있다.
본 발명에서 제안된 형광체의 조합을 통해 얻어지는 백색광은 높은 연색지수를 얻을 수 있다. 보다 구체적으로, 이에 대해서 도 106을 참조하여 설명한다.
도 106에 도시된 바와 같이, 기존예의 경우에는 청색 발광소자에 황색 형광체를 결합할 경우에, 청색 파장광과 함께 변환된 황색광을 얻을 수 있다. 전체 가시광선 스펙트럼에서 볼 때에 녹색 및 적색 대역의 파장광이 거의 없으므로, 자연광에 가까운 연색지수를 확보하기 어렵다. 특히, 변환된 황색광은 높은 변환효율을 얻기 위해서 좁은 반치폭을 갖게 되므로, 이 경우 연색지수는 더욱 낮아질 것이다. 또한, 기존예에서는, 단일한 황색 변환정도에 따라 발현되는 백색광의 특성이 쉽게 변경되므로, 우수한 색재현성을 보장하기 어렵다.
이에 반하여, 청색 발광소자와 녹색 형광체(G)와 적색 형광체(R)를 조합하는 발명예에는, 기존예에 비해 녹색 및 적색 대역에서 발광되므로, 가시광선 대역에서 보다 넓은 스펙트럼을 얻을 수 있으며, 결과적으로 연색지수를 크게 향상시킬 수 있다. 추가적으로, 녹색 및 적색 대역 사이에 중간파장대역을 제공할 수 있는 황색 또는 황등색 형광체를 더 포함함으로써 연색지수를 더욱 크게 향상시킬 수 있다.
본 발명에 채용되는 녹색 형광체, 적색 형광체 및 선택적으로 추가될 수 있는 황색 또는 황등색 형광체에 관련하여 도 107 내지 도 109를 참조하여 설명한다.
도 107 내지 도 109는 본 발명에서 제안된 형광체의 파장스펙트럼으로서 청색 발광소자(약 440㎚)로부터 발생되는 광에 대한 결과이다.
도 107a 내지 도 107d에는 본 발명에 채용되는 녹색 형광체에 대한 스펙트럼이 도시되어 있다.
우선, 도 107a를 참조하면, M2SiO4:Eu,Re인 규산염계 형광체(여기서, M는 Ba, Sr, Ca, Mg 중 선택된 적어도 2종의 원소이고, Re는 Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br 및 I 중 선택된 적어도 하나이고, Re는 1ppm 내지 50000ppm의 범위임)의 스펙트럼이 도시되어 있다. 변환된 녹색광은 약 530㎚의 피크파장과 약 65㎚의 반치폭을 나타낸다.
도 107b를 참조하면, M'A'2O4:Ce,Re'인 산화물계 형광체(여기서, M'는 Ba, Sr, Ca, Mg 중 선택된 적어도 하나이고, A'은 Sc, Y, Gd, La, Lu, Al 및 In 중 선택된 적어도 하나이며, Re'는 Nd, Pm, Sm, Tb, Dy, Ho, Er, Tm, Yb, F, Cl, Br 및 I 중 선택된 적어도 하나이며, Re'는 1ppm 내지 50000ppm의 범위임)의 스펙트럼이 도시되어 있다. 변환된 녹색광은 약 515㎚의 피크파장과 약 100㎚의 반치폭을 나타낸다.
도 107c를 참조하면, MA2D4:Eu,Re인 황화물계 형광체(여기서, M는 Ba, Sr, Ca, Mg 중 선택된 적어도 2종의 원소이고, A은 Ga, Al 및 In 중 선택된 적어도 하나이고, D는 S, Se 및 Te 중 선택된 적어도 하나이며, Re는 Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br 및 I 중 선택된 적어도 하나이고, Re는 1ppm 내지 50000ppm의 범위임)의 스펙트럼이 도시되어 있다. 변환된 녹색광은 약 535㎚의 피크파장과 약 60㎚의 반치폭을 나타낸다.
도 107d를 참조하면, β-SiAlON:Eu,Re인 형광체(여기서, Re는 Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br 및 I 중 선택된 적어도 하나이고, Re는 1ppm 내지 50000ppm의 범위임)의 스펙트럼이 도시되어 있다. 변환된 녹색광은 약 540㎚의 피크파장과 약 45㎚의 반치폭을 나타낸다.
도 108a 및 도 108b에는 본 발명에 채용되는 적색 형광체에 대한 스펙트럼이 도시되어 있다.
도 108a를 참조하면, M'AlSiNx:Eu,Re(1≤x≤5)인 질화물계 형광체(여기서, M'는 Ba, Sr, Ca, Mg 중 선택된 적어도 하나이고, Re는 Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br 및 I 중 선택된 적어도 하나이고, Re는 1ppm 내지 50000ppm의 범위임)의 스펙트럼이 도시되어 있다. 변환된 적색광은 약 640㎚의 피크파장과 약 85㎚의 반치폭을 나타낸다.
도 108b를 참조하면, M'D:Eu,Re인 황화물계 형광체(여기서, M'는 Ba, Sr, Ca, Mg 중 선택된 적어도 하나이고, D는 S, Se 및 Te 중 선택된 적어도 하나이며, Re는 Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br 및 I 중 선택된 적어도 하나이고, Re는 1ppm 내지 50000ppm의 범위임)의 스펙트럼이 도시되어 있다. 변환된 적색광은 약 655㎚의 피크파장과 약 55㎚의 반치폭을 나타낸다.
도 109a 및 도 109b에는 본 발명에 선택적으로 채용될 수 있는 황색 또는 황등색 형광체에 대한 스펙트럼이 도시되어 있다.
도 109a를 참조하면, 규산염계 형광체의 스펙트럼이 도시되어 있다. 변환된 황색광은 약 555㎚의 피크파장과 약 90㎚의 반치폭을 나타낸다.
도 109b를 참조하면, α-SiAlON:Eu,Re인 형광체의 스펙트럼(여기서, Re는 Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br 및 I 중 선택된 적어도 하나이고, Re는 1ppm 내지 50000ppm의 범위임)이 도시되어 있다. 변환된 황색광은 약 580㎚의 피크파장과 약 35㎚의 반치폭을 나타낸다.
이와 같이, 본 발명에서 반치폭, 피크파장 및/또는 변환효율 등을 고려하여 특정한 녹색 형광체와 특정한 적색 형광체를 조합한 형태 또는 이 조합형태에서 황색 또는 황등색 형광체를 추가함로으로써 70 이상의 높은 연색지수를 갖는 백색광을 제공할 수 있다.
청색 발광소자의 주파장이 430~455nm 범위일 경우에, 녹색 형광체의 발광파장 피크는 500∼550nm범위이며, 적색 형광체의 발광파장 피크는 610∼660nm범위일 수 있다. 황색 또는 황등색 형광체의 발광파장 피크는 550∼600nm범위일 수 있다.
또한, 청색 발광소자가 10~30nm의 반치폭을 갖는 경우에, 상기 녹색 형광체는 30~100nm의 반치폭을 갖고, 상기 적색 형광체는 50~150nm의 반치폭을 가질 수 있다. 황색 또는 황등색 형광체는 20~100nm의 반치폭을 가질 수 있다.
이러한 조건을 갖는 각 형광체의 선택과 조합을 통해서 본 발명에서는, 가시광선대역에서 넓은 스펙트럼을 확보할 수 있으며, 보다 큰 연색지수를 갖는 우수한 백색광을 제공할 수 있다.
이와 같은 발광소자 패키지는 LCD 백라이트 유닛의 광원으로 유익하게 사용될 수 있는 백색 광원 모듈을 제공할 수 있다. 즉, 본 발명에 따른 백색 광원 모듈은 LCD 백라이트 유닛의 광원으로서 여러가지 광학 부재(확산판, 도광판, 반사판, 프리즘 시트 등)와 결합되어 백라이트 어셈블리를 구성할 수 있다. 도 110 및 도 111은 이러한 백색 광원 모듈을 예시한다.
우선, 도 110을 참조하면, LCD 백라이트용 광원 모듈(3100)은, 회로 기판(3101)과 그 위에 실장된 복수의 백색 발광소자 패키지(3010)들의 배열을 포함한다. 회로 기판(3101) 상면에는 LED 장치(3010)와 접속되는 도전패턴(미도시)이 형성될 수 있다.
각각의 백색 발광소자 패키지(3010)는, 도 103에서 도시되어 설명된 백색 발광소자 패키지로 이해할 수 있다. 즉, 청색 발광소자(3015)가 회로 기판(3101)에 COB(Chip On Board) 방식으로 직접 실장된다. 각각의 백색 발광소자 패키지(3010)의 구성은, 별도의 반사벽을 갖지 않고 렌즈 기능을 갖는 반구형상의 수지 포장부(3019)를 구비함으로써, 각각의 백색 발광소자 패키지(3100)는 넓은 지향각을 나타낼 수 있다. 각 백색 광원의 넓은 지향각은, LCD 디스플레이의 사이즈(두께 또는 폭)를 감소시키는데 기여할 수 있다.
도 111을 참조하면, LCD 백라이트용 광원 모듈(3200)은, 회로 기판(3201)과 그 위에 실장된 복수의 백색 발광소자 패키지(3020)들의 배열을 포함한다. 상기 백색 발광소자 패키지(3020)는 도 104에서 설명된 바와 같이 패키지 본체(3021)의 반사컵 내에 실장된 청색 발광소자(3025)와 이를 봉지하는 수지 포장부(3029)를 구비하고, 수지 포장부(3029) 내에는, 녹색 및 적색 형광체(3022,3024)와 함께 황색 또는 황등색 형광체(3026)가 분산되어 포함된다.
도 112는 본 발명의 다른 실시형태에 따른 발광소자 패키지의 단면도이다.
도 112에 도시된 바와 같이, 본 발명의 다른 실시예에 따른 발광소자 패키지(4000)는 발광소자(4011), 전극구조(4012, 4013), 패키지 본체(4015), 투광성 투명수지(4016) 및 상기 발광소자(4011)가 탑재되는 함몰부(4018)를 구비하고 있다.
상기 발광소자(4011)는 한 쌍의 (금속)와이어(4014a, 4014b)의 각 일단부와 본딩되어 접속되고, 상기 전극구조(4012, 4013)는 상기 한 쌍의 와이어(4014a, 4014b)의 각 타단부와 각각 본딩되어 접속되어 있다.
여기서, 상기 발광소자(4011)는 앞서 설명한 본 발명의 다양한 실시형태에 따른 발광소자가 사용될 수 있다.
상기 패키지 본체(4015)는 바닥면을 밀폐하고 상부는 개방된 캐비티(4017)를 형성하도록 수지물로 사출성형되는 성형 구조물이다.
여기서, 상기 캐비티(4017)는 일정 각도로 경사진 상부 경사면을 구비하고, 상기 상부 경사면에는 상기 발광소자(4011)에서 발생된 빛을 반사시킬 수 있도록 Al, Ag, Ni 등과 같이 반사율이 높은 금속소재로 이루어진 반사부재(4017a)를 구비할 수도 있다.
이러한 패키지 본체(4015)는 상기 한쌍의 전극구조(4012, 4013)가 일체로 성형되어 이를 고정하고, 상기 전극구조(4012, 4013)의 일단부 상부면 일부는 캐비티(4017)의 바닥면을 통해 외부로 노출되어 있다.
상기 전극 구조(4012, 4013)의 타단부는 외부전원과 연결될 수 있도록 상기 패키지 본체(4015)의 외부면에 노출되어 있다.
상기 함몰부(4018)는 상기 캐비티(4017)의 바닥면에 노출되는 전극구조(4012, 4013)의 상부면이 하부로 일정깊이 함몰되어 형성된다. 여기서, 상기 함몰부(4018)는 한쌍의 전극 구조(4012, 4013) 중 상기 발광소자(4011)가 탑재되는 전극 구조(4012)에 형성될 수 있다.
이러한 함몰부(4018)는 적어도 하나의 발광소자(4011)가 탑재되는 전극구조(4012)의 일단부에 하향 절곡되는 절곡부로 구비되며, 이러한 절곡부는 상기 발광소자(4011)가 탑재되는 평평한 탑재면과, 상기 탑재면으로부터 좌우양측으로 일정각도 상향 경사지게 연장되어 상기 발광소자(4011)의 외부면과 마주하는 좌우 한쌍의 하부 경사면(4012a, 4013a)으로 구비된다.
이러한 하부 경사면(4012a, 4013a)에는 상기 발광소자(4011)의 발광시 발생된 빛을 반사시킬 수 있도록 반사부재가 구비될 수도 있다.
상기 함몰부(4018)의 형성깊이(H)는 이에 탑재되는 발광소자(4011)의 높이(h)를 고려하여 50㎛ ~ 400㎛정도 일 수 있다. 이렇게 함으로써, 패키지 본체의 캐비티의 높이(H)를 150㎛ ~ 500㎛로 낮출 수 있으며, 캐비티(4017) 내에 충진되는 투광성 투명수지의 충진 사용량을 줄여 제조원가를 절감하고, 또한 광휘도를 향상시킬 수 있는 한편, 제품의 소형화를 도모할 수 있는 것이다.
도 113은 도 112에 도시한 실시예의 변형예에 따른 발광소자 패키지의 단면도이다.
도 113에 도시된 바와 같이, 본 변형예에 따른 발광소자 패키지는 이전 실시예의 상기 함몰부(4018)와는 달리 서로 마주하는 한쌍의 전극구조(4012, 4013)의 단부 사이에 상기 패키지 본체(4015)의 성형시 캐비티(4017)의 바닥면으로부터 일정깊이 함몰되어 형성되는 요홈(4018a)을 구비하고 있다.
따라서, 이를 제외한 기타 구성요소와 관련해서는 도 112의 실시예에 따른 발광소자 패키지와 동일하므로 그 내용들로 대신하고자 한다.
그리고, 그 내용에 좀더 덧붙이면 상기 투광성 투명수지(4016)는 상기 발광소자(4011) 및 와이어(4014a, 4014b)를 덮어 외부 환경으로부터 보호하도록 상기 캐비티(4017)에 충진되는 에폭시, 실리콘 및 레진 등과 같은 투명한 수지 재료로 이루어진다.
여기서, 상기 투광성 투명수지(4016)에는 상기 발광소자(4011)에서 발생된 빛을 백색광으로 변환시킬 수 있는 YAG계, TAG계, Silicate계, Sulfide계 또는 Nitride계 중 어느 하나의 파장변환수단인 형광물질이 포함될 수 있다.
YAG 및 TAG계 형광물질에는 (Y, Tb, Lu, Sc ,La, Gd, Sm)3(Al, Ga, In, Si, Fe)5(O, S)12:Ce 중에서 선택하여 사용가능하며, Silicate계 형광물질에는 (Sr, Ba, Ca, Mg)2SiO4: (Eu, F, Cl) 중에서 선택 사용 가능하다. 또한 Sulfide계 형광물질에는 (Ca,Sr)S:Eu, (Sr,Ca,Ba)(Al,Ga)2S4:Eu 중에서 선택 하여 사용가능하며, Nitride계 형광체는 (Sr, Ca, Si, Al, O)N:Eu (예, CaAlSiN4:Eu β-SiAlON:Eu) 또는 Ca-α SiAlON:Eu계인 (Cax,My)(Si,Al)12(O,N)16, 여기서 M 은 Eu, Tb, Yb 또는 Er 중 적어도 하나의 물질이며 0.05<(x+y)<0.3, 0.02<x<0.27 and 0.03<y<0.3, 형광체 성분 중에서 선택하여 사용 할 수 있다.
상기 백색광은 청색(B) 발광소자에 황색(Y) 형광체 또는 녹색(G) 및 적색(R) 형광체 또는 황색(Y), 녹색(G), 적색(R)을 포함 할 수 있다. 황색, 녹색 및 적색 형광체는 청색 발광소자에 의해 여기되어 각각 황색광, 녹색광 및 적색광을 발하며, 이 황색광, 녹색광 및 적색광은 청색 발광소자로부터 방출된 일부 청색광과 혼색되어 백색광을 출력한다.
이러한 백색광의 출력을 위한 각 형광체에 대한 구체적인 설명은 이미 전술한 실시예에서 상세히 설명하였으므로 본 변형예에서는 생략한다.
상기 요홈(4018a)에 탑재된 발광소자(4011)의 외부면과 마주하는 전극구조(4012, 4013) 단부에는 상기 발광소자(4011)의 발광시 발생된 빛을 반사시킬 수 있도록 반사부재가 구비되는 하부 경사면(4012b, 4013b)을 각각 구비하는 것이 바람직하다.
한편, 상기와 같은 구성을 갖는 LED 패키지(4000, 4000')는 캐비티(4017)의 정중앙에 배치되는 발광소자(4011)가 상기 전극 구조(4012)에 하향 절곡 형성되는 함몰부의 탑재면에 탑재되거나 서로 마주하는 전극 구조(4012, 4013)의 서로 마주하는 단부사이에 함몰형성되는 요홈(4018a)에 탑재됨으로써, 상기 전극 구조(4012, 4013)와 와이어(4014a, 4014b)를 매개로 하여 와이어 본딩되는 발광소자(4011)의 상부면은 상기 전극 구조(4012, 4013)의 상부면 높이와 대략적으로 동일하도록 배치할 수도 있다.
이러한 경우, 상기 발광소자(4011)와 와이어 본딩되는 와이어(4014a, 4014b)의 최대 높이는 상기 발광소자(4011)의 탑재 높이가 낮아진 만큼 낮출 수 있는 것이다.
이에 따라, 상기 발광소자(4011) 및 와이어(4014a, 4014b)를 보호하도록 상기 캐비티(4017)에 충진되는 투광성 투명수지(4016)의 충진량을 줄일 수 있는 한편, 상기 투광성 수지의 충진 높이(H)도 상기 발광소자(4011)의 탑재 높이가 낮아진 만큼 낮아질 수 있고, 이로 인하여 상기 발광소자(4011)의 발광시 발생된 빛의 광 휘도를 종래에 비하여 상대적으로 높일 수 있는 것이다.
그리고, 상기 캐비티(4017)에 충진되는 투광성 투명수지(4016)의 충진 높이(H)를 낮춤으로써 상기 패키지 본체(4015) 몸체의 상단 높이도 상기 충진 높이가 낮아진 만큼 낮아져 패키지의 전체 크기를 보다 소형화할 수 있는 것이다.
도 114a 내지 도 114c는 본 실시예에 따른 발광소자 패키지에서 외부의 리드 프레임을 형성하는 공정을 구체적으로 도시한 개략도이다.
도 114a에서와 같이, 우선 음 및 양극 전극구조(4012, 4013)는 몸체 대부분이 수지물로 사출성형되는 패키지 본체(4015)에 일체로 고정되지만 단부는 외부 전원과 연결될 수 있도록 상기 패키지 본체(4015)의 외부면으로 노출된다.
상기 패키지 본체(4015)의 외부로 하향 노출된 전극구조(4012, 4013)는 패키지의 측면 및/또는 하면을 통해 절곡되어 캐비티(4017)가 형성되어진 발광면과는 반대 방향으로 절곡되어 형성되어진다.
상기 전극구조(4012, 4013)는 패키지의 실장면(바닥면, 4019)의 측면 및/또는 뒷면(후방 또는 하부)으로 전극구조가 절곡 형성되어 있다.
형성 과정은 먼저 도 114b에서와 같이 패키지 바닥면으로 노출된 전극구조(4012)의 끝부분을 1차로 절곡하여 패키지(4000)의 측면쪽 형상에 맞추고, 그 다음 도 114c에 도시된 대로 패키지 바닥면(4019)의 후방으로 절곡하여 전체 전극구조(4012)의 형상을 완성한다.
한편, 이하에서는 상술한 형광체 중에서 고휘도 및 원하는 입도특성을 갖도록 조절할 수 있는 β-사이알론 형광체 제조방법에 대해 설명한다.
본 발명에 따른 β-사이알론 형광체 제조방법은, Si(6-x)AlxOyN(6-y):Lnz으로 표현되는 화학식을 갖고, 식 중, Ln은 희토류원소이고, 0<x≤4.2이고, 0<y≤4.2이며, 0<z≤1.0인 것을 특징으로 하는 β-사이알론 형광체 제조방법으로서, 금속규소를 포함하는 규소원료물질과 규소원료물질, 금속알루미늄 및 알루미늄 화합물 중 적어도 어느 하나를 포함하는 알루미늄 원료물질을 포함하는 모체 원료물질, 및 모체를 활성화시키는 활성체원료물질을 혼합하여 원료물질 혼합물을 제조하는 단계; 및 원료물질혼합물을 질소 함유 분위기 가스 중에서 가열하는 단계;를 포함한다.
본 발명에 따르면, 원료물질을 혼합하여 질소 함유 분위기 가스 중에서 가열하여 β-사이알론 형광체를 제조한다. 원료물질로는 규소, 알루미늄, 및 활성체인 희토류금속을 각각 포함하는 원료물질이 사용된다.
규소원료물질로는 규소를 포함하는 원료물질로서 규소는 금속규소만을 사용하거나, 금속규소 이외에 규소를 포함하는 규소화합물을 더 혼합하여 사용할 수 있다. 규소화합물로는 질화규소 또는 산화규소를 사용할 수 있다.
금속규소는 분말상이면서 Fe와 같은 불순물의 함유량이 적은 고순도 금속규소인 것이 바람직하다. 금속규소분말은, 입자 직경이나 분포가 직접 형광체의 입자계에 영향을 미치지는 않는다. 그러나, 소성조건이나 조합하는 원재료에 의해 규소분말의 입자 직경이나 분포가 형광체의 입경이나 형상 등의 입도 특성에 영향을 미치고, 아울러 형광체의 발광 특성에도 영향을 주기 때문에 금속규소분말의 입자 직경은 300㎛이하가 바람직하다.
반응성의 관점에서 보면, 금속규소의 입자직경은 작을 수록 반응성이 높기 때문에 보다 바람직하다. 다만, 배합되는 원료나 소성속도에도 영향을 받기 때문에 반드시 금속규소의 입자직경이 작을 필요는 없고 또한 금속규소의 형태가 분말상인 것에 한정되지 않는다.
알루미늄 원료물질로는 금속알루미늄 및 알루미늄을 포함하는 알루미늄 화합물 중 어느 하나를 사용할 수 있다. 또는 금속 알루미늄과 알루미늄 화합물을 함께 사용할 수 있다. 알루미늄을 포함하는 알루미늄 화합물로는 예를들면, 질화알루미늄, 산화알루미늄, 또는 수산화알루미늄을 사용할 수 있다. 규소 원료물질로 금속규소를 사용하는 경우에는, 알루미늄 원료물질로 반드시 금속 알루미늄을 사용할 필요는 없고, 알루미늄 화합물만을 사용할 수 있다.
금속알루미늄을 사용하는 경우, 분말상이면서 Fe와 같은 불순물의 함유량이 적은 고순도 금속알루미늄인 것이 바람직하다. 전술한 바와 같은 관점에서 보면, 금속알루미늄의 입자 직경은 300㎛ 이하가 바람직하다. 다만, 금속알루미늄의 경우에도 배합되는 원료나 소성속도에도 영향을 받기 때문에 반드시 금속알루미늄의 입자직경이 작을 필요는 없고 또한 그 형태가 분말상인 것에 한정되지 않는다.
활성체 원료물질로는 Eu, Ce, Sm, Yb, Dy, Pr, 및 Tb로 구성되는 군으로부터 선택되는 어느 하나의 희토류금속을 사용할 수 있다. 구체적인 예로는, Eu2O3, Sm2O3, Yb2O3, CeO, Pr7O11, 및 Tb3O4 와 같은 산화물이나, Eu(NO3)3, 또는 EuCl3 등을 사용할 수 있다. 바람직하게, 활성체 원료물질은 Eu 또는 Ce일 수 있다.
규소 원료물질 및 알루미늄 원료물질의 배합비를 조절하면, β-사이알론 형광체의 입자특성을 제어할 수 있다. 나아가, 규소원료물질 중 금속규소와 규소화합물의 배합비 또는 알루미늄 원료물질 중 금속알루미늄과 알루미늄 화합물의 배합비를 조절하면, 역시 β-사이알론 형광체의 입자특성을 제어할 수 있다. 이러한 금속규소 또는 금속알루미늄의 원료물질에 대한 효과는 이하 실시예에서 더욱 상세히 설명하기로 한다.
본 발명에 따라 제조되는 β-사이알론 형광체는 다음의 화학식 1을 갖는 형광체일 수 있다.
[화학식 1]
Si(6-x)AlxOyN(6-y):Lnz
상기 식 중, Ln은 희토류원소이고, 0<x≤4.2이고, 0<y≤4.2이며, 0<z≤1.0인 것이 바람직하다. 이러한 β-사이알론 형광체는 녹색발광형광체일 수 있고, 그 피크파장이 500nm 부터 570nm일 수 있다.
전술한 바와 같이 금속규소를 포함하는 규소원료물질과 금속 알루미늄 및 알루미늄 화합물 중 적어도 하나를 포함하는 알루미늄 원료물질에 활성체로서 Eu, Sm, Yb, Ce, Pr, 또는 Tb과 같은 희토류 원소를 포함하는 활성체 원료물질을 각각 계량해, 혼합하고, 질화 붕소제의 도가니에 충전하고, 원료물질 혼합물을 질소 함유 분위기 하에서 고온에서 소성하여 β-사이알론 형광체를 제조한다.
원료물질 혼합물은 고온의 질소분위기에서 소성하여 형광체로 제조된다. 여기서, 질소 함유 분위기 가스의 N2 농도가 90%이상인 것이 바람직하다. 또한, 질소 함유 분위기 가스압은 0.1Mpa 에서 20 Mpa일 수 있다. 질소분위기를 형성하기 위하여 진공상태로 만든 후 질소 함유 분위기 가스를 도입할 수 있는데, 이와 달리 진공상태로 만들지 않고 질소 함유 분위기 가스를 도입할 수 있고, 가스 도입은 불연속적으로 수행하는 것도 가능하다.
금속규소를 포함하는 원료물질 혼합물을 질소분위기에서 소성하면, 질소가 규소와 반응하여 규소를 질화하여 사이알론을 형성하게 되어 질소가스가 질소 공급원의 역할을 하게 된다. 이 때, 규소와 알루미늄 및 활성체 원료는 질화 전 또는 질화 중 함께 반응하므로 균일한 조성의 사이알론 제조가 가능하여 제조된 β-사이알론 형광체의 휘도가 향상된다.
소성하는 단계에서 가열은 1850℃ 에서 2150℃의 고온인 것이 바람직하다. 원료물질의 조성에 따라 달라질 수 있으나, 가스압이 0.8 Mpa 이상에서 1900℃ 에서 2100℃의 고온에서 소성하는 것이 고휘도의 형광체를 제조하기 위하여 바람직하다. 그리고, 가열한 후, 가열된 원료물질 혼합물을 입도 특성을 조절하기 위하여 분쇄처리 또는 분급처리할 수 있다. 분쇄처리 또는 분급처리된 원료물질 화합물은 고온에서 재소성할 수 있다.
이하, 본 발명의 β-사이알론 형광체 제조방법에 따라 β-사이알론 형광체를 제조한 실시예를 참조하여 본 발명을 더욱 상세히 설명하기로 한다.
이하의 실시예에서 각 원료물질들은 모체원료인 규소원료물질 및 알루미늄 원료물질과 활성체 원료물질을 소정량 계량해, 볼 밀이나 혼합기로 혼합하여 혼합물을 제조한다. 원료물질 혼합물은 BN도가니 등 고온 내열성의 용기에 넣고 가압소성과 진공소성이 생기는 전기로에 넣는다. 이를 질소 함유 분위기 중 가스압 0.2 Mpa 에서 2 Mpa의 가압하에서 20℃/분 이하의 온도상승 속도로 온도상승시켜 1800℃이상으로 가열하여 β-사이알론 형광체를 제조한다.
규소원료물질과 알루미늄 원료물질 및 그 배합비를 변화시켜 제조하는 실시예 1 에서 실시예 9와 금속규소를 포함하지 않는 규소원료물질을 사용하여 제조하는 비교예 1 에서 비교예 3의 형광체는 모두 Eu 활성화된 β-사이알론 형광체이고, 피크 파장이 520 부터 560 nm에 있는 녹색 발광의 형광체이다.
(실시예 1)
규소원료물질로서 질화 규소(Si3N4)와 금속규소(Si)를 사용하고, 알루미늄 원료물질로서 알루미나(Al2O3)를 사용하고, 활성체로서 산화유로퓸(Eu2O3)을 사용하였다. Si3N4를 4.047 g, Si를 5.671 g, Al2O3를 0.589 g, Eu2O3를 0.141 g계량하고, 혼합기와 체를 사용하여 혼합한 후, BN도가니에 충전해, 내압제 전기로에 넣어 세트하였다. 소성은 진공하에서 500℃까지 가열하고, 500℃에서 N2 가스를 도입하였다. N2가스 분위기하에서 500℃에서 1950℃까지 매분 5℃로 온도상승시키고, 가스압이 0.8 Mpa 이상이 되도록 하면서 1950℃의 온도에서 5시간 소성하였다.
소성 후 냉각시키고, 전기로로부터 도가니를 꺼내 고온에서 소성하여 생성한 형광체를 분쇄하고, 100 메쉬의 체를 사용하여 형광체를 얻었다. 제조된 형광체는 불화수소산 및 염산을 이용해 세척하고 분산한 후, 충분히 건조하고, 50 메쉬의 체를 이용하여 형광체를 분급하여 실시예 1의 형광체를 얻었다.
(실시예 2)
Si3N4를 1.349 g, Si를 7.291 g 사용하는 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 β-사이알론 형광체를 제조하였다.
(실시예 3)
Si3N4를 6.744 g, Si를 4.051 g 사용하는 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 β-사이알론 형광체를 제조하였다.
(실시예 4)
Si3N4를 9.442 g, Si를 2.430 g 사용하는 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 β-사이알론 형광체를 제조하였다.
(실시예 5)
규소원료물질로 Si3N4를 사용하지 않고, Si만을 8.101 g 사용하는 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 β-사이알론 형광체를 제조하였다.
(비교예 1)
규소원료물질로 Si를 사용하지 않고, Si3N4만을 13.488 g 사용하는 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 β-사이알론 형광체를 제조하였다.
(실시예 6)
규소원료물질로서 질화 규소(Si3N4)와 금속규소(Si)를 사용하고, 알루미늄 원료물질로서 질화알루미늄(AlN)을 사용하고, 활성체로서 산화유로퓸(Eu2O3)을 사용하였다. Si3N4를 5.395 g, Si를 3.241 g, AlN을 0.379 g, Eu2O3를 0.137 g 계량하고, 혼합기와 체를 사용하여 혼합한 후, BN도가니에 충전해, 내압제 전기로에 넣어 세트하였다. 소성은 질소분위기 하에서 1450℃로 5시간 이상으로 가열하고, 냉각한 후 소성물을 분쇄하였다. 분쇄된 소성물은 다시 BN도가니에 충전하고, 내압제 전기로에 넣어 세트하였다. 진공하에서 500℃까지 가열하고 500℃에서 N2 가스를 도입하였다. N2가스 분위기하에서 500℃에서 2000℃까지 매분 5℃로 온도상승시키고, 가스압이 0.8 Mpa 이상이 되도록 하면서 2000℃의 온도에서 5시간 소성하였다.
소성 후 냉각시키고, 전기로로부터 도가니를 꺼내 고온에서 소성하여 생성한 형광체를 분쇄하고, 100 메쉬의 체를 사용하여 형광체를 얻었다. 제조된 형광체는 불화수소산 및 염산을 이용해 세척하고 분산한 후, 충분히 건조하고, 50 메쉬의 체를 이용하여 형광체를 분급하여 실시예 6의 형광체를 얻었다.
(실시예 7)
Si3N4를 7.554 g, Si를 1.944 g 사용하는 것을 제외하고는 실시예 6과 동일한 방법을 사용하여 β-사이알론 형광체를 제조하였다.  
(실시예 8)
규소원료물질로 Si3N4를 사용하지 않고, Si만을 6.481 g 사용하는 것을 제외하고는 실시예 6과 동일한 방법을 사용하여 β-사이알론 형광체를 제조하였다.
(비교예 2)
규소원료물질로 Si를 사용하지 않고, Si3N4만을 10.791 g 사용하는 것을 제외하고는 실시예 6과 동일한 방법을 사용하여 β-사이알론 형광체를 제조하였다.
(실시예 9)
Si3N4를 6.744 g, Si를 4.051 g, 알루미늄 원료물질로 Al2O3 또는 AlN을 사용하지 않고 금속 알루미늄(Al)만을 0.312 g, Eu2O3를 0.172 g 사용하는 것을 제외하고는 실시예 6과 동일한 방법을 사용하여 β-사이알론 형광체를 제조하였다.
(비교예 3)
규소원료물질로 Si를 사용하지 않고, Si3N4만을 13.488 g 사용하고, Al을 0.473 g 사용하는 것을 제외하고는 실시예 9와 동일한 방법을 사용하여 β-사이알론 형광체를 제조하였다.
이하, 전술한 실시예들 및 비교예들에 사용된 원료물질의 배합비를 표 2에 나타낸다.
표 2
실시예번호 Si3N4(g) Si(g) Al2O3(g) AlN(g) Al(g) Eu2O3(g)
실시예 1 4.047 5.671 0.589 - - 0.141
실시예 2 1.349 7.291 0.589 - - 0.141
실시예 3 6.744 4.051 0.589 - - 0.141
실시예 4 9.442 2.430 0.589 - - 0.141
실시예 5 - 8.101 0.589 - - 0.141
비교예 1 13.488 - 0.589 - - 0.141
실시예 6 5.395 3.241 - 0.379 - 0.137
실시예 7 7.554 1.944 - 0.379 - 0.137
실시예 8 - 6.481 - 0.379 - 0.137
비교예 2 10.791 - - 0.379 - 0.137
실시예 9 6.744 4.051 -  - 0.312 0.172
비교예 3 13.488 - - - 0.473 0.172
실시예 1에 따라 제조된 형광체는 분말 X선회절(XRD)에 의한 분류를 실시하였는데 그 결과를 도 115에 나타내었다. 도 115를 참조하고 JCPDS 데이터를 이용하여, 제조된 형광체가 β-사이알론 형광체임을 확인하였다.
또, 발광 특성은 460 nm의 여기빛을 조사해 측정하였는데 실시예 1의 β-사이알론 형광체 및 비교예 1의 β-사이알론 형광체의 발광스펙트럼 결과를 도 116에 나타내었다. 실시예 1의 β-사이알론 형광체는 발광피크가 541 nm에 나타나고, 반치폭은 54.7 nm의 녹색 발광의 형광체이다. 그 휘도는 비교예 1의 β-사이알론 형광체와 비교하여 27% 높다.
실시예 1의 β-사이알론 형광체의 여기 스펙트럼을, 541 nm의 발광색을 검출빛으로서 측정했다. 그 결과는 도 117에 나타나있다. 자외선 및 500 nm부근의 가시광선 영역까지 여기대가 있는 것을 알 수 있다.
실시예 1에서 실시예 9 및 비교예 1에서 비교예 3의 β-사이알론 형광체를 각각 7 중량부, 적색의 CaAlSiN3:Eu형광체를 3 중량부, 그리고, 실리콘 수지 10 중량부를 잘 혼합해 슬러리화하여, 이 슬러리를 청색 발광 LED 발광소자가 장비된 마운트 리드 상의 컵 내에 주입해, 주입 후 130℃로 1시간 경화해, 본 형광체를 이용한 백색 LED를 제조하였다. 제조된 백색 LED의 휘도를 측정하였다.
실시예 1에서 실시예 9 및 비교예 1에서 비교예 3의 β-사이알론 형광체의 발광피크파장 및 이를 사용하여 제조된 백색 LED의 휘도를 이하의 표 3에 나타냈다. (중량부)
표 3
실시예번호 규소원료물질 알루미늄원료물질 발광 피크 파장(nm) 휘도(sb)
종류 Si/Si3N4(중량부) 종류
실시예 1 Si/Si3N4 70/30 Al2O3 541 127
실시예 2 Si/Si3N4 90/10 Al2O3 541 124
실시예 3 Si/Si3N4 50/50 Al2O3 541 124
실시예 4 Si/Si3N4 30/70 Al2O3 541 107
실시예 5 Si - Al2O3 541 118
비교예 1 Si3N4 - Al2O3 541 100
실시예 6 Si/Si3N4 50/50 AlN 540 113
실시예 7 Si/Si3N4 30/70 AlN 538 115
실시예 8 Si - AlN 540 106
비교예 2 Si3N4 - AlN 540 100
실시예 9 Si/Si3N4 50/50 Al 540 119
비교예 3 Si3N4 - AlN 536 100
실시예 1에서 실시예 9 및 비교예 1에서 비교예 3의 발광피크파장은 약 540nm로서 녹색형광체임을 알 수 있다. 실시예 1 에서 실시예 3의 형광체를 이용한 백색 LED는 휘도가 124 에서 127로서 비교적 높은 휘도를 나타내었다.
그러나, 금속규소의 비율이 질화규소의 비율보다 작은 실시예 4의 경우는 금속규소의 비율이 질화규소의 비율보다 큰 실시예 1 에서 실시예 3의 경우보다 낮은 휘도를 나타내었다. 규소원료물질로 Si만 사용한 실시예 5 및 실시예 8의 경우, 실시예 1 에서 실시예 3 및 실시예 6의 경우보다는 낮은 휘도를 나타내었으나, 금속규소의 비율이 질화규소의 비율보다 작은 실시예 4 및 실시예 6보다 금속규소의 비율이 작은 실시예 7보다는 높은 휘도를 나타내어 금속규소를 사용하여 보다 고휘도의 β-사이알론 형광체를 제조할 수 있음을 확인할 수 있었다.
규소원료물질로 Si3N4만을 사용한 비교예 1 에서 비교예 3은 각각 휘도가 100으로서, 실시예들과 같이 모체원료물질로 금속규소를 사용하지 않은 경우에 비하여 휘도가 낮은 것을 알 수 있다.
아울러, 실시예 9에서와 같이 금속규소 및 금속알루미늄을 함께 사용한 경우에도 고휘도를 나타내었다.
상술된 β-사이알론 형광체는 다른 형광체 조합을 통해 백색광을 제공하는 발광장치 및 모듈에 유익하게 적용될 수 있다.
< 백라이트장치 >
본 발명에 따른 백라이트장치는 상술한 발광소자 패키지를 구비한다. 그리고, 본 발명에 따른 반도체 발광소자를 실장하는 발광소자 패키지는 백라이트장치와 같은 면광원장치 이외에 조명장치, 차량용 헤드라이트등 다른 다양한 장치의 광원으로도 응용될 수 있다.
이하에서는 다양한 실시형태를 통해 본 발명에 따른 발광소자 패키지를 구비하는 백라이트장치에 대해 설명한다.
도 118은 본 발명의 일 실시형태에 따른 평판형 도광판을 갖는 면광원장치 즉, 백라이트장치를 설명하기 위한 개략적인 도면이다.
도 118a에 도시된 바와 같이, 본 발명에 따른 평판형 도광판을 갖는 백라이트장치(5000)는 탠덤(tandem)형 면광원장치이며, n개의 LED 광원 모듈(5010)과, n개의 평판형 도광판(5020)을 갖는다.
LED 광원 모듈(5010)은 기판(5011)위에 복수개의 발광소자 패키지(5012)가 일렬로 배열되고, 이렇게 구성된 n개의 LED 광원 모듈(5010)이 서로 평행하게 배열된다. 이들 n개의 LED 광원모듈(5010)을 따라 한 측에 각각 배열 설치되는 평판형 도광판(5020)을 구비한다.
또한, 평판형 도광판(5020)을 갖는 백라이트장치는 LED 광원 모듈(5010)의 하부 및 평판형 도광판(5020)의 하부에 배치되어 LED 광원 모듈(5010)에서 출광된 광을 반사시키는 반사부재(미도시)를 구비할 수 있다.
또한, 상기 평판형 도광판(5020)의 상부에는 반사부재에서 반사되고, 평판형 도광판에서 굴절되어 액정패널측으로 출사되는 광을 여러 방향으로 확산시키는 확산시트나 확산시트를 통과한 광을 정면 시야각 안으로 모아주는 역할을 하는 프리즘 시트와 같은 광학시트(미도시)를 구비할 수 있다.
구체적으로, LED 광원 모듈(5010)은 탑 뷰(Top View)방식으로 각각 실장된 복수개의 발광소자 패키지(5012)로 이루어질 수 있다. 그리고, 평판형 도광판(5020)은 평판형(plate-type)으로, LED 광원에서 광이 방출되는 방향으로 배치되며 광을 통과시킬 수 있도록 투명한 소재로 이루어진다. 평판형 도광판은 웨지형 도광판과 비교하여 그 형상이 간단하여 양산이 용이하며, LED 광원위에 도광판의 위치를 맞추는 것 또한 용이하다.
상기 평판형 도광판(5020)은 LED 광원(5010)으로부터 나온 광이 입사되는 입광부(5021), 균일한 두께를 갖는 평판형으로 형성되고, LED 광원으로부터 입사된 광을 조명광으로 액정패널측에 출사하는 출사면을 갖는 출사부(5024), 및 상기 출사부를 기준으로 입광부(5021)의 맞은 편에 돌출형성되고, 입광부의 두께보다 작은 두께를 가지는 선단부(5022)를 구비하며, 평판형 도광판(5020)의 선단부(5022)가 LED 광원(5010)의 위를 덮도록 배치된다. 즉, n번째 평판형 도광판(5020)의 선단부(5022)의 하부에 n+1번째 LED 광원(5010)이 위치한다. 그리고 평판형 도광판(5020)의 선단부(5022)는 하면에 프리즘 형상(5023)을 갖는다.
도 118b에서와 같이, LED 패키지(5012)로부터 나온 광은 도광판(5020)에 직접 출사되지 않고, 평판형 도광판(5020)의 선단부(5022)의 하면에 구비된 프리즘 형상(5023)에 의해 산란되어 분산된다. 이에 의해 LED 광원(5010) 위의 도광판에 생기는 핫 스팟을 제거할 수 있다.
도 119는 도 118에 도시된 평판형 도광판(5020)을 설명하기 위한 개략적인 사시도이다. 도 119에 도시된 바와 같이, 평판형 도광판(5020)은 복수개의 LED 패키지(5012)로 이루어진 LED 광원(5010)으로부터 나온 광이 입사되는 입광부(5021), 균일한 두께의 평판형으로 형성되고, 입광부(5021)로 입사된 광을 조명광으로 액정패널(미도시)측에 출사하는 출사면을 갖는 출사부(5024), 및 출사부(5024)를 기준으로 입광부(5021)의 맞은 편에 형성되고, 입광부(5021)의 입사단면보다 좁은 두께의 단면을 갖는 선단부(5022)를 구비한다.
선단부(5022)는 자신의 하부에 배열되는 LED 패키지(5012)로부터 나온 광의 일부를 분산하기 위해 프리즘 형상(5023)을 구비한다. 이러한 프리즘 형상(5023)은 입사된 광을 분산 및 산란시킬 수 있는 삼각형 프리즘, 원뿔형 프리즘 및 반구형 프리즘 중 적어도 어느 하나일 수 있다.
또한, 선단부(5022)의 프리즘 형상은 선단부(5022) 전체에 형성될 수 있으며, 또는 LED 패키지(5012) 상부에만 일부 형성될 수도 있다. 이러한 프리즘 형상에 의해 LED 패키지(5012) 위의 도광판(5020)에 발생 되는 핫 스팟의 제거가 가능하다.
따라서 본 발명은 평판형 도광판(5020)에 있어서, 선단부(5022)의 하면에 프리즘 형상(5023)을 가공함으로써 LED 패키지(5012)로부터 나온 광의 일부에 의해 LED 패키지(5012) 위의 도광판(5020)에 발생되는 핫 스팟을 분산시키기 위해, LED 패키지와 도광판 사이에 별도의 확산시트 및 프리즘시트를 가공하는 공정이 불필요하다.
한편, 도 120 내지 도 125를 참조하여 본 발명의 다른 실시형태에 따른 평판형 도광판을 갖는 백라이트장치를 설명한다.
도 120은 본 발명의 다른 실시예에 따른 백라이트장치의 분해사시도이고, 도 121은 도 120에 도시된 백라이트장치의 적층후 I-I'선을 따라 본 절단면도이다. 여기서, 백라이트장치는 다수의 도광판들을 구비할 수 있으나, 설명의 편의상 2개의 도광판을 도시하였다.
도 120 및 도 121을 참조하면, 백라이트장치(6000)는 하부커버(6010), 도광판(6020), 광원장치(6030) 및 고정수단(6040)을 포함한다.
상기 하부커버(6010)는 수납공간을 가진다. 예컨대, 상기 수납공간은 상기 하부커버(6010)의 바닥면을 이루는 플레이트(plate) 및 상기 플레이트의 가장자리에서 절곡된 측벽에 의해 형성될 수 있다.
상기 하부커버(6010)는 후술 될 고정수단(6040)이 체결되는 체결구 혹은 체결부(6011)를 구비할 수 있다. 여기서, 상기 체결구 혹은 체결부(6011)는 후술 될 고정수단(6040)이 관통되는 관통홀부 또는 상기 고정수단이 삽입되기 위한 홈부일 수 있다.
상기 도광판(6020)은 다수개로 분할되어 있다. 다수개로 분할된 상기 도광판(6020)은 상기 하부커버(6010)의 수납공간에 병렬적으로 배치되어 있다.
상기 각 도광판(6020)은 몸체를 관통하는 관통홀(6021)을 구비한다. 상기 관통홀(6021)은 상기 도광판(6020)의 에지에 배치되어 있다. 그러나, 본 발명의 실시예에서 상기 관통홀(6021)의 위치 및 개수에 대해 한정하는 것은 아니다. 상기 관통홀(6021)은 상기 체결부(6011)와 대응되도록 배치된다.
상기 도광판(6020)의 형태는 사각형 형상으로 도시하였으나, 이에 한정되지 않고 삼각형, 육각형등 여러 형태를 가질 수 있다.
상기 각 도광판(6020)의 일측에는 상기 도광판(6020)으로 광을 제공하는 복수의 광원장치(6030)가 배치되어 있다. 상기 각 광원장치(6030)는 광을 형성하는 광원, 즉 발광소자 패키지(6031) 및 상기 발광소자 패키지(6031)의 구동전압을 인가하기 위한 다수의 회로패턴을 구비하는 기판(6032)을 포함할 수 있다.
예컨대, 상기 발광소자 패키지(6031)는 청색, 녹색 및 적색을 각각 구현하는 서브 발광소자를 포함할 수 있다. 이때, 청색, 녹색 및 적색을 각각 구현하는 서브 발광소자로부터 방출된 청색, 녹색 및 적색광은 서로 혼색되어 백색광을 구현할 수 있다. 또는, 상기 발광소자는 청색 발광소자 및 상기 청색 발광소자에서 방출된 청색광의 일부를 황색으로 변환시키는 형광체를 포함할 수 있다. 이때, 상기 청색과 상기 황색이 혼색되어 백색광을 구현할 수 있다.
상기 발광소자 패키지 및 상기 형광체에 대한 구체적인 설명은 이미 전술한 실시예에서 상세히 설명하였으므로 생략한다.
상기 광원장치(6030)에서 형성된 광은 상기 도광판(6020)의 측면에 입사되고, 상기 도광판(6020)의 내부 전반사에 의해 상부로 출사된다.
상기 고정수단(6040)은 상기 도광판(6020)의 유동을 방지하기 위하여 상기 도광판(6020)을 상기 하부커버(6010)에 고정하는 역할을 한다. 상기 고정수단(6040)은 상기 도광판(6020)의 관통홀(6021)에 삽입되어 상기 도광판(6020)을 상기 하부커버(6010)상에 고정시킨다. 이에 더하여, 상기 고정수단(6040)은 상기 도광판(120)의 관통홀(6021)을 경유하여 상기 도광판(6020)의 체결부(6011), 예컨대 상기 관통홀부를 관통하거나 상기 삽입홈에 삽입될 수 있다.
상기 고정수단(6040)은 몸통부(6042) 및 상기 몸통부(6042)로부터 연장된 머리부(6041)를 포함한다.
상기 몸통부(6042)는 상기 도광판(6020)의 관통홀을 관통하며 상기 체결부(6011)에 체결된다. 즉, 상기 몸통부(6042)는 상기 도광판(6020)과 상기 하부커버(6010)를 서로 결합시켜, 상기 도광판(6020)을 상기 하부커버(6010)상에 고정시키는 역할을 한다.
상기 머리부(6041)는 상기 몸통부(6042)보다 넓은 너비를 가짐에 따라, 상기 고정수단(6040)이 상기 도광판(6020)의 관통홀(6021)을 통해 완전히 빠져나가는 것을 방지한다.
상기 머리부(6041)는 여러 형태, 예컨대 반원형, 반타원형, 사각형 및 삼각형 중 어느 하나의 단면 형태를 가질 수 있다. 여기서, 상기 머리부(6041)가 삼각형의 단면 형태를 가질 경우, 상기 고정수단(6040)과 후술 될 광학부재(6060)간의 접촉을 최소화할 수 있어, 상기 고정수단(6040)으로 인한 흑점이 발생하는 것을 최소화할 수 있다.
상기 도광판(6020)과 상기 광학부재(6060)는 일정한 간격을 가짐에 따라, 상기 도광판(6020)으로부터 출사된 광은 상기 광학부재(6060)상에 균일하게 제공될 수 있다. 여기서, 상기 머리부(6041)는 상기 광학부재(6060)를 지지함에 따라, 상기 도광판(6020)과 후술 될 광학부재(6060)간의 간격을 유지하는 역할을 하게 된다. 여기서, 상기 도광판(6020)과 상기 광학부재(6060)의 간격은 상기 머리부(6041)의 높이를 조절함에 따라 조정될 수 있다.
상기 고정부재(6040)는 화질에 미치는 영향을 최소화하기 위해, 광을 투과하는 재질, 예컨대 투명한 플라스틱으로 이루어질 수 있다.
이에 더하여, 상기 각 도광판(6020)의 하부에 반사부재(6050)가 배치될 수 있다. 상기 반사부재(6050)는 상기 도광판(6020)의 하부로 출사되는 광을 반사하여 상기 도광판(6020)으로 재입사시킴으로써, 백라이트장치의 광효율을 향상시킨다.
상기 반사부재(6050)는 상기 관통홀(6021) 및 상기 체결부(6011)와 대응되는 관통부(6051)를 구비할 수 있다. 상기 고정수단(6040)은 상기 관통홀(6021) 및 상기 관통부(6051)를 경유하여 상기 체결부(6011)에 체결될 수 있다. 이로써, 상기 반사부재(6050)가 상기 도광판(6020)과 같이 다수개로 분할될 경우, 상기 고정수단(6040)에 의해 상기 하부커버(6010)상에 고정될 수 있다.
이에 더하여, 상기 백라이트장치는 상기 도광판(6020)상에 배치된 광학부재(6060)를 더 포함할 수 있다. 상기 광학부재(6060)의 예로서는 상기 도광판(6040)에 배치된 확산판, 확산시트, 프리즘시트 및 보호시트를 포함할 수 있다.
따라서, 본 발명의 실시예에서, 백라이트장치는 다수개로 분할된 도광판을 구비함에 따라, 부분 구동에 의한 로컬 디밍 효과를 더욱 향상시킬 수 있다.
또한, 다수개로 분할된 상기 도광판들은 고정수단을 이용하여 하부커버상에 고정시킴으로써, 상기 도광판의 유동에 의한 불량을 방지할 수 있다.
또한, 상기 고정수단에 의해 상기 도광판과 상기 광학부재간의 간격을 일정하게 유지할 수 있어, 균일한 광을 액정패널에 제공할 수 있다.
도 122는 본 발명의 또 다른 실시예에 따른 LED 백라이트장치를 나타내는 평면도이고, 도 123는 도 122에 나타낸 A영역의 기판 체결전의 단면사시도이며, 도 124은 도 122에 나타낸 A영역의 기판 체결후의 단면사시도이다. 또한, 도 125은 도 124의 절단선(II-II')을 따라 본 절단면도이다.
도 122 내지 도 125에 도시된 바와 같이, 본 발명에 따른 LED 백라이트장치는 제1관통홀(6110a) 혹은 홈 등으로 이루어진 체결구 혹은 체결부를 갖는 갖는 하부커버(6110)와, 상기 하부커버(6110)상에 배치되는 복수개의 도광판(6120)과, 상기 각 도광판(6120)의 일측에서 하부커버(6110)의 바닥면에 수평하게 구비되고 외부로부터 전압이 인가되는 배선이 형성되며 상기 하부커버(6110)의 제1관통홀(6110a)에 대응(혹은 대면)하는 제2관통홀(6131a)을 갖는 기판(6131)과, 상기 도광판(6120)의 일측에 구비되는 기판(6131)상에 실장되어 빛을 제공하는 다수의 LED 패키지(6132), 및 상기 기판(6131)의 제2관통홀(6131a) 및/혹은 상기 하부커버(6110)의 제1관통홀(6110a)에 체결되어 인접하는 도광판(6120)의 일측 가장자리영역을 압박하는 고정수단(6140)을 포함하고 있다.
여기서, 수납공간을 형성하여 바닥면을 이루는 플레이트를 관통하여 원형, 직사각형 혹은 타원형 등의 형태를 이루는 제1관통홀(6110a)(혹은 플레이트상에 오목하게 형성된 (체결)홈)을 갖는 하부커버(6110)는 철(Fe) 혹은 전기아연도금강판(EGI) 등을 재질로 하여 하부 프레임을 이루며, 더 나아가서 하부커버(6110)는 바닥면을 이루는 플레이트의 가장자리영역에서 상측방향으로 수직하게 연장되어 형성된 측벽, 즉 측면 프레임을 가질 수 있다. 이때, 하부 프레임의 바닥면은 분할형 백라이트장치의 구성을 위하여 일렬로 형성되는 복수의 영역으로 구분될 수 있는데, 이때 그 복수의 영역은 예를 들어 일측영역에 형성된 오목한 홈에 의해 경계를 이룰 수 있다. 물론, 여기서 복수의 영역을 구분짓는 오목한 홈은 이후 기술되는 기판(6131)의 수납 홈에 해당된다.
또한, 하부커버(6110)상의 제1관통홀(6110a)은 원형, 타원형 혹은 직사각형 이외에도 다양한 형태를 이룰 수 있지만, 긴 방향의 폭을 갖는 관통홀, 더 정확하게는 서로 나란한 두개의 장변과 그 두 장변의 양끝에서 소정의 곡률을 갖고 서로 연결되도록 형성된 두개의 단변을 가지는 관통홀의 형태를 띨 수 있으며, 이때 그 제1관통홀(6110a)의 장축방향(Y축)이 빛의 진행방향과 동일한 방향을 이루도록 하부커버(6110)상에 형성되는 것이 더욱 바람직하다. (체결)홈의 경우에도 위와 같은 동일한 구조적 특징을 갖는다.
그리고, 하부커버(6110)의 전체 바닥면, 혹은 기판(6131)이 수납되는 오목한 수납 홈이 형성되는 경우에는 그 오목한 홈을 제외한 복수의 바닥면상에 반사판(미도시)이 부착되어 있다. 이러한 반사판은 보통 백색 폴리에스테르 필름이나 금속(Ag, Al) 등이 코팅된 필름을 사용하게 되는데, 반사판에서의 가시광의 광 반사율은 90∼97%정도이며 코팅된 필름이 두꺼울수록 반사율이 높게 된다.
이때, 하부커버(6110)의 바닥면에서 복수개 구비되는 반사판은 각각 빛이 제공되는 LED 패키지(6132)와, 그 LED 패키지(6132)의 배면에 서로 인접하여 위치하는 도광판(6120) 사이에 위치하도록 연장되어 형성될 수도 있다. 이와 같은 경우, 도광판(6120) 일측으로부터 제공되어 유도된 빛이 도광판(6120) 타측에 배치된 LED 패키지(6132)의 간섭을 받지 않고 반사판에 의해 다시 반사된 후 상측에 구비되는 광학부재(미도시)의 방향으로 제공될 수 있어 광의 반사효율이 증대될 수 있을 것이다.
상기 하부커버(6110)의 오목한 수납 홈 혹은 도광판(6120)의 일측에는 LED 광원(6130)이 구비되어 있다. 이때, LED 광원(6130)은 예컨대 오목한 수납 홈에 구비되어 하부커버(6110)의 바닥면에 수평을 이루어 구비되고 외부로부터 전압이 인가될 수 있도록 배선이 형성되며 상기 하부커버(6110)의 제1관통홀(6110a)에 대응하는 제2관통홀(6131a)을 갖는 기판(6131), 즉 PCB와, 그 기판(6131)상에 실장된 LED 패키지(6132)로 구성되어 있다.
여기서, 기판(6131)은 LED 패키지(6132)와 LED 패키지(6132) 사이에 형성된 제2관통홀(6131a)을 가지게 되는데, 이와 같이 제2관통홀(6131a)을 갖는 기판(6131)은 하부커버(6110)의 제1관통홀(6110a)에 대응(혹은 대면)되도록 하여 그 하부커버(6110)의 바닥면에 구비되어 있고, 또 그 기판(6131)상에 형성된 제2관통홀(6131a)은 하부커버(6110)의 제1관통홀(6110a)과 마찬가지로 원형 혹은 타원형 등을 이룰 수 있지만, 본 발명에서는 긴 방향의 폭을 갖는 관통홀, 즉 서로 나란한 두개의 장변과, 그 두 장변의 양끝에서 소정의 곡률을 갖고 서로 연결되도록 형성된 두개의 단변을 갖는 관통홀의 형태를 띠되, 그 제2관통홀(6131a)의 장축방향(X축)이 빛의 진행방향과 수직을 이루도록 형성됨으로써 결국 기판(6131)의 제2관통홀(6131a)은 그 장축방향(X축)이 하부커버(6110)의 제1관통홀(6110a)의 장축방향(Y축)과 서로 교차되도록 형성되어 있다.
이때 기판(6131)상에 형성된 제2관통홀(6131a)의 크기, 더 정확히 말해서 두 장변간 간격(혹은 거리)은 나사산이 형성된 고정수단(6140)의 몸체의 지름에 관계될 수 있는데, 그 제2관통홀(6131a)의 크기는 빛을 제공하는 LED 패키지(6132)와 그 LED 패키지(6132)로부터 제공된 빛이 입사되어 유도되는 도광판(6120)과의 간격에 영향을 미칠 수 있기 때문이다. 이와 관련해서는 이후에 좀더 살펴보기로 한다.
또한, LED 패키지(6132)는 다시 상기 기판(6131)상에 고정되어 외부 프레임을 형성하고 수납 홈을 갖는 패키지 본체(6133)와, 패키지 본체(6133)의 수납 홈에 실장되어 빛을 제공하는 발광소자(6135), 및 상기 수납 홈에 노출되도록 형성되어 발광소자(6135)가 탑재되고 기판(6131)상의 배선과 전기적으로 접속되는 한쌍의 제1 및 제2전극구조(미도시)로 이루어져 있다.
이때, LED 패키지(6132)는 발광소자(6135)가 청색 발광소자인 경우 백색광을 제공하기 위해 수납 홈에 형성된 수지포장부(6136)를 추가적으로 구비할 수 있는데, 이때 수지포장부(6136)는 황색 형광체를 포함할 수 있다. 예컨대 그 수지포장부(6136)는 YAG계의 황색 형광체를 함유하는 젤 형태의 에폭시 수지 혹은 YAG계의 황색 형광체를 함유하는 젤 형태의 실리콘 수지를 패키지 본체(6133)의 수납 홈에 주입 한 후, UV(ultraviolet) 경화나 열경화를 통해 형성될 수 있다.
물론 여기에서도 본 발명은 청색 발광소자와 황색 형광체로 이루어지는 LED 패키지(6132)에 대하여 한정하려는 것은 아니며, 가령 근자외선 칩과 그 근자외선 칩상에 구비되는 적색, 녹색, 청색의 형광체가 혼합된 수지포장부 혹은 적색, 녹색, 청색의 형광체가 각각 포함되어 순차적으로 적층하여 형성된 수지포장부로 이루어질 수도 있을 것이다.
복수의 영역으로 구분되는 하부커버(6110)의 바닥면에는 복수개의 도광판(6120)이 각각 구비되어 있다. 이때 도광판(6120)의 측면은 패키지 본체(6133)의 수납 홈 내에 실장된 발광소자(6135)로부터 제공된 빛이 손실없이 도광판(6120)으로 유입될 수 있도록 하기 위하여 패키지 본체(6133)와 밀착되도록 구비되는 것이 바람직할 수 있다.
이러한 도광판(6120)은 PMMA를 재질로 하여 형성되며, 가시광선영역에서 광에 대한 흡수성이 고분자 재료 중 가장 적어 투명성 및 광택이 매우 크다. 이는 기계적 강도가 높아 깨지거나 변형되지 않으며, 가볍고 내화학성이 강하다. 또한 가시광선의 투과율이 90∼91% 정도로 높고, 내부 손실이 대단히 적으며 인장 강도, 휨강도, 신장 강도 등의 기계적 성질과 화학성, 내성 등에도 강하다.
그리고, 도광판(6120)과 도광판(6120) 사이의 기판(6131)에는 고정수단(6140)이 체결되어 있다. 이러한 고정수단(6140)은 투명한 재질로 이루어진 나사와 같은 형태로서 LED 패키지(6132)의 양측, 즉 광이 출사되는 전면(前面)과 그 전면의 반대쪽에 위치하는 후면(後面)에 각각 구비되는 도광판(6120)들의 간격을 일정하게 유지시키면서 그 인접하는 도광판(6120)을 동시에 고정하기 위하여 기판(6131)의 제2관통홀(6131a) 및 그 제2관통홀(6131a)에 대응하는 하부커버(6110)의 제1관통홀(6110a)을 관통하여 체결되어 있다.
이때, 본 발명에서의 고정수단(6140)은 도광판(6120) 내에서 유도되는 빛이 간섭 없이 상측에 배치된 광학부재로 제공될 수 있도록 투명한 재질을 이루되, 도광판(6120)과 동일 재질로 이루어지는 것이 바람직해 보인다.
그리고, 본 발명의 고정수단(6140)은 실질적으로 원형 혹은 사각형상 등의 다양한 형상을 갖는 머리부와, 그 머리부에 연장되어 형성된 원통형 혹은 원기둥 형태의 몸체부로 이루어져 있으며, 그 고정수단(6140)의 몸체부 외부면에 형성된 나사산을 통해 기판(6131)의 제2관통홀(6131a) 및/혹은 하부커버(6110)의 제1관통홀(6110a)에 고정될 수 있다. 물론, 여기에서 고정수단(6140)의 몸체부는 사각기둥의 형태를 이룰 수도 있을 것이다.
이때, 머리부의 크기는 도광판(6120)과 도광판(6120) 사이의 간격과 도광판(6120)의 일측 가장자리영역을 일부 덮을 수 있도록 설계되므로 도광판(6120)과 도광판(6120) 사이의 간격에 따라 조금 변경될 수 있고, 또 몸체부의 지름은 기판(6131)의 제2관통홀(6131a) 및/혹은 하부커버(6110)의 제1관통홀(6110a)에서 서로 나란한 두 장변간 간격 혹은 거리와 동일하게 형성되는 것이 바람직할 것이다.
더 나아가서, 고정수단(6140)은 앞서 언급한 바 있는 기판(6131)의 제2관통홀(6131a)의 크기에 관계해서도 머리부의 크기나 몸체부의 지름의 길이가 조금 변경될 수 있는데, 가령 기판(6131)의 제2관통홀(6131a)의 크기가 작다는 것은 고정수단(6140)의 몸체부의 지름이 작아지는 것이며, 이는 결국 LED 패키지(6132)와 도광판(6120)간 간격을 좁힐 수 있는 것을 의미할 수 있다.
이러한 고정수단(6140)은 기판(6131) 및/혹은 하부커버(6110)에 나사 방식으로 체결시 LED 패키지(6132)가 고정되어 있는 기판(6131)상에 인접하여 배치되어 있는 도광판(6120)의 상측 모서리 영역을 헤드 부위로 압박하게 됨으로써 외부 충격이 발생하더라도 도광판(6120)의 유동이 방지될 수 있을 것이다.
이때 더 나아가서 고정수단(6140)은 하부커버(6110)의 제1관통홀(6110a)을 관통하여 외부로 노출된 부위에는 추가적으로 너트가 체결됨으로써 그 힘의 강도가 보강될 수 있을 것이다.
결국, 기판(6131)상에 체결되는 고정수단(6140)은 LED 패키지(6132)와 도광판(6120)간 스페이서(spacer)의 역할을 할 수 있기 때문에 LED 패키지(6132)와 도광판(6120)간 간격을 일정하게 유지시켜 도광판(6120)의 수축 및/혹은 팽창에도 대응할 수 있게 된다.
물론, 상기의 고정수단(6140)이 반드시 나사산 형태를 이루어야 하는 것은 아니다. 예를 들어 앞서 언급했듯이 도 121에 도시된 바와 같이 나사의 머리부와 대응하는 끝 부위에 형성된 갈고리부를 통해 기판(6131)의 제2관통홀(6131a)과 하부커버(6110)의 제1관통홀(6110a)을 관통하여 체결된 후 하부커버(6110)에 의해 고정될 수 있다.
그리고, 복수의 도광판(6120) 상측에는 도광판(6120)을 통해 제공된 빛의 광학적 특성을 보완하기 위한 광학부재(미도시)가 구비되어 있다. 이때, 광학부재는 예를 들어 도광판(6120)을 투과하여 나온 빛의 불균일성을 완화시키기 위한 확산패턴이 형성된 확산판과, 빛의 정면 휘도를 높이기 위한 집광패턴이 형성된 프리즘 시트 등을 포함할 수 있다.
상기의 구성을 통해, 본 발명은 도광판(6120)과 도광판(6120) 사이에 구비된 고정수단(6140)에 의해 일정한 간격을 유지시켜 도광판(6120)을 고정함으로써 외부의 충격 등에 의한 도광판(6120)의 유동을 방지할 수 있고, 빛의 진행방향과 수직한 방향(X축)으로의 도광판(6120) 수축에 대응할 수 있게 된다.
또한, 장축방향과 단축방향을 갖도록 형성된 기판(6131)의 제2관통홀(6131a)에 의해 그 제2관통홀(6131a)의 장축방향(X축)으로 기판(6131)의 수축이 발생하더라도 이에 대응할 수 있다.
더 나아가서, 빛의 진행방향을 따라 형성된 장축방향(Y축)을 갖는 하부커버(6110)의 제1관통홀(6110a)과 그 제1관통홀(6110a)에 체결된 고정수단(6140)을 통해서는 도광판(6120)의 팽창 및/혹은 수축 발생시 하부커버(6110)의 제1관통홀(6110a)의 장축방향(Y축)을 따라 도광판(6120)과 고정수단(6140) 및/혹은 기판(6131)이 함께 이동할 수 있기 때문에, 결국 도광판(6120)과 LED 패키지(6132)간 일정 간격이 그대로 유지될 수 있어 (종래 대비) 휘점 및 휘선 현상이 개선될 수 있을 것이다.
한편, 본 발명에 따른 액정표시장치는 상기의 실시예들에 따른 LED 백라이트장치를 구비하고, 동시에 상기의 광학부재상에 구비된 액정패널(미도시)을 추가적으로 포함할 수 있다.
이때, 액정표시장치는 외부의 충격 등으로부터 표시장치의 뒤틀림을 방지하기 위하여 메인 서포트(main support)라는 몰드 구조물을 추가적으로 구비할 수 있는데, 그 메인 서포트의 하측에는 백라이트장치가 구비되고 상측에는 액정패널이 적재된다.
상기의 액정패널은 박막트랜지스터 어레이기판 및 컬러필터기판이 합착된 것으로서, 그 두 기판 사이에 주입된 액정층을 포함하여 구성되어 있다.
이때 박막트랜지스터 어레이기판상에는 게이트 라인과 데이터 라인 등의 신호배선이 서로 교차하여 형성되고, 데이터 라인과 게이트 라인의 교차부에 박막트랜지스터(TFT)가 형성되어 있다. 이러한 TFT는 게이트 라인을 통해 제공된 스캔 신호에 응답하여 데이터 라인으로부터 액정층의 액정셀에 전송될 비디오 신호, 즉 적색(R), 녹색(G), 및 청색(B)의 데이터 신호를 절환하도록 하고 있다. 또한, 데이터 라인과 게이트 라인 사이의 화소영역에는 화소전극이 형성되어 있다.
상기 컬러필터기판상에는 박막트랜지스터 어레이기판의 게이트 및 데이터 라인에 대응하여 형성된 블랙 매트릭스와, 블랙매트릭스에 의해 구획되는 영역에 형성되어 적색(R), 녹색(G), 청색(B)의 컬러를 제공하는 컬러필터, 그리고 상기 블랙매트릭스와 컬러필터상에 구비되어 있는 공통전극 등이 형성되어 있다.
이와 같은 컬러필터기판이 부착되어 있는 박막트랜지스터 어레이기판의 가장자리영역에는 데이터 라인으로부터 연장되어 형성된 데이터 패드와, 게이트 라인으로부터 연장되어 형성된 게이트 패드가 형성되어 있는데, 이러한 데이터 패드 및 게이트 패드에 각각 접속되어 신호를 인가하는 게이트 구동부 및 데이터 구동부가 구비되어 있다.
또 액정패널상에는 그 액정패널의 4면 가장자리영역을 덮는 동시에 하부커버(210) 혹은 메인 서포트의 측벽에 고정되는 상부커버가 구비될 것이다. 물론 상부커버 또한 하부커버(210)와 동일 재질로 이루어지게 된다.
본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되는 것이 아니며, 첨부된 청구범위에 의해 한정된다. 따라서, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 치환, 변형 및 변경이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이며, 이 또한 첨부된 청구범위에 기재된 기술적 사상에 속한다 할 것이다.

Claims (19)

  1. 도전성 기판, 제1전극층, 절연층, 제2전극층, 제2반도체층, 활성층 및 제1반도체층이 순차적으로 적층된 발광구조물을 포함하되,
    상기 제2전극층은 상기 제2반도체층과의 계면을 이루는 표면 중 일부가 노출된 영역을 하나 이상 구비하고,
    상기 제1전극층은 상기 제2전극층, 제2반도체층 및 활성층을 관통하고, 상기 제1반도체층의 일정 영역까지 관통한 복수개의 콘택홀을 통해 상기 제1반도체층의 일정 영역까지 연장되어 상기 제1반도체층과 전기적으로 연결되도록 구비하고,
    상기 절연층은 상기 제1전극층과 제2전극층 사이 및 상기 콘택홀들의 측면에 구비되어 상기 제1전극층과 제2전극층, 제2반도체층 및 활성층이 절연되도록 구비하고,
    상기 제1전극층과 제1반도체층이 접촉하는 면적이 상기 발광구조물 면적의 0.615 내지 15.68%인 반도체 발광 소자.
  2. 제 1 항에 있어서,
    상기 콘택홀들은 균일하게 배치되어 있는 반도체 발광 소자.
  3. 제 1 항에 있어서,
    상기 콘택홀들은 1 내지 48000개인 반도체 발광 소자.
  4. 제 1 항에 있어서,
    상기 반도체 발광 소자의 면적 1000000㎛2당 상기 제1전극층과 반도체층이 접촉하는 면적이 6150 내지 156800㎛2인 반도체 발광 소자.
  5. 제 2 항에 있어서,
    상기 콘택홀들 중 서로 이웃한 콘택홀의 중심점들간의 거리는 5 내지 500㎛인 반도체 발광 소자.
  6. 제 1 항에 있어서,
    상기 제2전극층의 노출된 영역 상에 형성된 전극패드부를 더 포함하는 반도체 발광 소자.
  7. 제 6 항에 있어서,
    상기 제2전극층의 노출된 영역은 상기 반도체 발광 소자의 모서리에 형성되는 반도체 발광 소자.
  8. 제 1 항에 있어서,
    상기 제2전극층은 상기 활성층으로부터 발생한 빛을 반사시키는 반도체 발광 소자.
  9. 제 1 항에 있어서,
    상기 제2전극층은 Ag, Al, Pt, Ni, Pt, Pd, Au, Ir 및 투명전도성 산화물로 구성된 그룹으로부터 선택된 어느 하나의 물질을 포함하는 반도체 발광 소자.
  10. 제 1 항에 있어서,
    상기 도전성 기판은 Au, Ni, Al, Cu, W, Si, Se 및 GaAs로 구성된 그룹으로부터 선택된 어느 하나의 물질을 포함하는 반도체 발광 소자.
  11. 제 1 항에 있어서,
    상기 제1전극층과 제1반도체층이 접촉하는 면적이 상기 발광구조물 면적의 3 내지 13%인 반도체 발광 소자.
  12. 도전성 기판;
    상기 도전성 기판 상에 순차적으로 형성된 제2반도체층, 활성층 및 제1반도체층을 구비하는 발광구조물;
    상기 제2반도체층 및 활성층을 관통하여 상기 제1반도체층과 그 내부에서 접속된 콘택홀 및 상기 콘택홀로부터 연장되어 상기 발광구조물의 외부로 노출된 전기 연결부를 구비하는 제1전극층; 및
    상기 제1전극층을 상기 도전성 기판, 제2반도체층 및 활성층과 전기적으로 분리시키기 위한 절연층;을 포함하며,
    상기 콘택홀과 상기 제1반도체층이 접촉하는 면적은 상기 발광구조물 면적의 0.615 내지 15.68%인 반도체 발광 소자.
  13. 제 12 항에 있어서,
    상기 콘택홀들은 균일하게 배치되어 있는 반도체 발광 소자.
  14. 제 12 항에 있어서,
    상기 콘택홀들은 1 내지 48000개인 반도체 발광 소자.
  15. 제 12 항에 있어서,
    상기 반도체 발광 소자의 면적 1000000㎛2당 상기 제1전극층과 반도체층이 접촉하는 면적이 6150 내지 156800㎛2인 반도체 발광 소자.
  16. 제 13 항에 있어서,
    상기 콘택홀들 중 서로 이웃한 콘택홀의 중심점들간의 거리는 5 내지 500㎛인 반도체 발광 소자.
  17. 제 12 항에 있어서,
    상기 제1전극층과 제1반도체층이 접촉하는 면적이 상기 발광구조물 면적의 3 내지 13%인 반도체 발광 소자.
  18. 제 12 항에 있어서,
    상기 제2전극층은 Ag, Al, Pt, Ni, Pt, Pd, Au, Ir 및 투명전도성 산화물로 구성된 그룹으로부터 선택된 어느 하나의 물질을 포함하는 반도체 발광 소자.
  19. 제 12 항에 있어서,
    상기 도전성 기판은 Au, Ni, Al, Cu, W, Si, Se 및 GaAs로 구성된 그룹으로부터 선택된 어느 하나의 물질을 포함하는 반도체 발광 소자.
PCT/KR2009/006144 2008-10-22 2009-10-22 반도체 발광 소자 WO2010047553A2 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN200980142209.9A CN102217105B (zh) 2008-10-22 2009-10-22 半导体发光器件
EP09822229.2A EP2357680B1 (en) 2008-10-22 2009-10-22 Semiconductor light emitting device
US13/125,256 US8686454B2 (en) 2008-10-22 2009-10-22 Semiconductor light emitting device
US14/080,455 US8975653B2 (en) 2008-10-22 2013-11-14 Semiconductor light emitting device
US14/612,244 US9680050B2 (en) 2008-10-22 2015-02-02 Semiconductor light emitting device
US15/604,469 US9997663B2 (en) 2008-10-22 2017-05-24 Semiconductor light emitting device
US15/992,822 US10333023B2 (en) 2008-10-22 2018-05-30 Method of manufacturing semiconductor light emitting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20080103671 2008-10-22
KR10-2008-0103671 2008-10-22
KR10-2009-0100912 2009-10-22
KR1020090100912A KR101601626B1 (ko) 2008-10-22 2009-10-22 반도체 발광 소자

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/125,256 A-371-Of-International US8686454B2 (en) 2008-10-22 2009-10-22 Semiconductor light emitting device
US14/080,455 Division US8975653B2 (en) 2008-10-22 2013-11-14 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
WO2010047553A2 true WO2010047553A2 (ko) 2010-04-29
WO2010047553A3 WO2010047553A3 (ko) 2010-07-29

Family

ID=42096571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006144 WO2010047553A2 (ko) 2008-10-22 2009-10-22 반도체 발광 소자

Country Status (8)

Country Link
US (6) US8008683B2 (ko)
EP (1) EP2357680B1 (ko)
JP (1) JP5256101B2 (ko)
KR (1) KR101601626B1 (ko)
CN (1) CN102217105B (ko)
DE (2) DE202009018090U1 (ko)
TW (1) TWI488339B (ko)
WO (1) WO2010047553A2 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332512A (zh) * 2010-07-12 2012-01-25 Lg伊诺特有限公司 发光器件
US20120168712A1 (en) * 2010-12-29 2012-07-05 Lextar Electronics Corporation High bright light emitting diode
US20120299047A1 (en) * 2011-05-23 2012-11-29 Tae Jin Kim Light emitting device, light emitting device package, and light unit
JP2013546200A (ja) * 2010-12-16 2013-12-26 マイクロン テクノロジー, インク. 接近可能な電極を具備する固体照明装置および製造方法
US20140219304A1 (en) * 2013-02-01 2014-08-07 Samsung Electronics Co., Ltd. Semiconductor light emitting device
CN110246948A (zh) * 2018-03-09 2019-09-17 三星电子株式会社 发光二极管封装件及其制造方法
CN110854251A (zh) * 2015-01-27 2020-02-28 首尔伟傲世有限公司 发光二极管
CN113421953A (zh) * 2021-06-24 2021-09-21 马鞍山杰生半导体有限公司 深紫外发光二极管及其制作方法

Families Citing this family (516)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100499129B1 (ko) 2002-09-02 2005-07-04 삼성전기주식회사 발광 다이오드 및 그 제조방법
KR100587020B1 (ko) 2004-09-01 2006-06-08 삼성전기주식회사 고출력 발광 다이오드용 패키지
KR100764386B1 (ko) 2006-03-20 2007-10-08 삼성전기주식회사 고온공정에 적합한 절연구조체 및 그 제조방법
JP4228012B2 (ja) 2006-12-20 2009-02-25 Necライティング株式会社 赤色発光窒化物蛍光体およびそれを用いた白色発光素子
US7905618B2 (en) 2007-07-19 2011-03-15 Samsung Led Co., Ltd. Backlight unit
KR101371511B1 (ko) * 2007-10-04 2014-03-11 엘지이노텍 주식회사 수직형 발광 소자
KR100891761B1 (ko) 2007-10-19 2009-04-07 삼성전기주식회사 반도체 발광소자, 그의 제조방법 및 이를 이용한 반도체발광소자 패키지
US7985979B2 (en) * 2007-12-19 2011-07-26 Koninklijke Philips Electronics, N.V. Semiconductor light emitting device with light extraction structures
CN102106009B (zh) 2008-07-03 2013-07-24 三星电子株式会社 波长转换发光二极管芯片和具有该芯片的发光二极管装置
WO2010002226A2 (ko) 2008-07-03 2010-01-07 삼성엘이디 주식회사 Led 패키지 및 그 led 패키지를 포함하는 백라이트 유닛
US8008683B2 (en) 2008-10-22 2011-08-30 Samsung Led Co., Ltd. Semiconductor light emitting device
EP2357679B1 (en) 2008-11-14 2018-08-29 Samsung Electronics Co., Ltd. Vertical/horizontal light-emitting diode for semiconductor
KR101650840B1 (ko) 2009-08-26 2016-08-24 삼성전자주식회사 발광소자 및 이의 제조방법
JP4886869B2 (ja) * 2010-03-03 2012-02-29 株式会社東芝 半導体発光素子およびその製造方法
KR101111750B1 (ko) * 2010-04-22 2012-02-16 삼성엘이디 주식회사 반도체 발광 소자
DE102010024079A1 (de) 2010-06-17 2011-12-22 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip
KR101525913B1 (ko) * 2010-06-22 2015-06-10 순천대학교 산학협력단 수직구조 발광다이오드 및 이의 제조방법
KR101714039B1 (ko) * 2010-07-01 2017-03-08 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법, 발광 소자 패키지 및 조명 시스템
KR101711960B1 (ko) * 2010-07-01 2017-03-06 삼성전자주식회사 반도체 발광장치
KR101252032B1 (ko) 2010-07-08 2013-04-10 삼성전자주식회사 반도체 발광소자 및 이의 제조방법
US8901586B2 (en) * 2010-07-12 2014-12-02 Samsung Electronics Co., Ltd. Light emitting device and method of manufacturing the same
KR101313262B1 (ko) 2010-07-12 2013-09-30 삼성전자주식회사 화학 기상 증착 장치 및 이를 이용한 반도체 에피 박막의 제조 방법
KR101683583B1 (ko) * 2010-07-21 2016-12-07 엘지이노텍 주식회사 발광 소자
KR101692410B1 (ko) 2010-07-26 2017-01-03 삼성전자 주식회사 발광소자 및 그 제조방법
US8476652B2 (en) * 2010-07-30 2013-07-02 Invenlux Corporation Three-dimensional light-emitting devices and method for fabricating the same
WO2012026757A2 (ko) 2010-08-25 2012-03-01 삼성엘이디 주식회사 형광체 필름, 이의 제조방법, 형광층 도포 방법, 발광소자 패키지의 제조방법 및 발광소자 패키지
KR101675583B1 (ko) * 2010-08-25 2016-11-11 엘지이노텍 주식회사 발광 소자
DE102010044986A1 (de) 2010-09-10 2012-03-15 Osram Opto Semiconductors Gmbh Leuchtdiodenchip und Verfahren zur Herstellung eines Leuchtdiodenchips
KR20120027987A (ko) 2010-09-14 2012-03-22 삼성엘이디 주식회사 질화갈륨계 반도체소자 및 그 제조방법
KR101710159B1 (ko) 2010-09-14 2017-03-08 삼성전자주식회사 Ⅲ족 질화물 나노로드 발광소자 및 그 제조 방법
KR101114191B1 (ko) * 2010-09-17 2012-03-13 엘지이노텍 주식회사 발광소자
DE102010045784B4 (de) * 2010-09-17 2022-01-20 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronischer Halbleiterchip
US9070851B2 (en) * 2010-09-24 2015-06-30 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
KR20120032329A (ko) 2010-09-28 2012-04-05 삼성전자주식회사 반도체 소자
DE102010046792A1 (de) 2010-09-28 2012-03-29 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung
KR101039610B1 (ko) * 2010-10-12 2011-06-09 엘지이노텍 주식회사 발광 소자 및 발광 소자 패키지
EP2442374B1 (en) * 2010-10-12 2016-09-21 LG Innotek Co., Ltd. Light emitting device
KR101663192B1 (ko) * 2010-10-20 2016-10-06 엘지이노텍 주식회사 발광 소자
KR20120042500A (ko) 2010-10-25 2012-05-03 삼성엘이디 주식회사 반도체 발광 소자 및 그 제조방법
KR20120050282A (ko) 2010-11-10 2012-05-18 삼성엘이디 주식회사 발광 소자 패키지 및 그 제조 방법
KR101194844B1 (ko) * 2010-11-15 2012-10-25 삼성전자주식회사 발광소자 및 그 제조방법
KR101182584B1 (ko) * 2010-11-16 2012-09-18 삼성전자주식회사 Led 패키지의 제조 장치 및 제조 방법
KR101591991B1 (ko) 2010-12-02 2016-02-05 삼성전자주식회사 발광소자 패키지 및 그 제조 방법
KR20120067153A (ko) 2010-12-15 2012-06-25 삼성엘이디 주식회사 발광소자, 발광소자 패키지, 발광소자의 제조방법, 및 발광소자의 패키징 방법
KR101722630B1 (ko) * 2010-12-16 2017-04-03 엘지이노텍 주식회사 발광소자
KR101154320B1 (ko) 2010-12-20 2012-06-13 엘지이노텍 주식회사 발광소자, 발광소자 패키지 및 이를 포함하는 조명 장치
KR101748334B1 (ko) 2011-01-17 2017-06-16 삼성전자 주식회사 백색 발광 소자의 제조 방법 및 제조 장치
JP5050109B2 (ja) * 2011-03-14 2012-10-17 株式会社東芝 半導体発光素子
EP2503606B1 (en) 2011-03-25 2020-02-26 Samsung Electronics Co., Ltd. Light Emitting Diode, Manufacturing Method Thereof, Light Emitting Diode Module, and Manufacturing Method Thereof
DE102011015821B4 (de) 2011-04-01 2023-04-20 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronischer Halbleiterchip
JP4989773B1 (ja) * 2011-05-16 2012-08-01 株式会社東芝 半導体発光素子
KR101798884B1 (ko) 2011-05-18 2017-11-17 삼성전자주식회사 발광소자 어셈블리 및 이를 포함하는 전조등
KR101860973B1 (ko) 2011-05-25 2018-05-24 오스람 옵토 세미컨덕터스 게엠베하 광전 반도체 칩
KR101303168B1 (ko) * 2011-07-26 2013-09-09 안상정 반도체 발광부 연결체
KR20130021296A (ko) * 2011-08-22 2013-03-05 엘지이노텍 주식회사 발광소자, 발광소자 패키지, 및 라이트 유닛
JP6262935B2 (ja) * 2011-08-24 2018-01-17 株式会社日本触媒 有機電界発光素子
JP6262933B2 (ja) * 2011-08-24 2018-01-17 株式会社日本触媒 有機電界発光素子
DE102011112000B4 (de) 2011-08-31 2023-11-30 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Leuchtdiodenchip
DE102011115659A1 (de) * 2011-09-28 2013-03-28 Osram Opto Semiconductors Gmbh Photovoltaischer Halbleiterchip
CN103035800B (zh) 2011-10-07 2016-06-08 清华大学 发光二极管
CN103035799B (zh) 2011-10-07 2015-08-26 清华大学 发光二极管
CN103035798B (zh) 2011-10-07 2015-08-26 清华大学 发光二极管
CN103094274B (zh) * 2011-11-01 2016-02-10 三星电子株式会社 半导体发光装置
JP5139576B1 (ja) * 2011-12-09 2013-02-06 株式会社東芝 半導体発光素子の製造方法
WO2013089459A1 (en) * 2011-12-14 2013-06-20 Seoul Opto Device Co., Ltd. Semiconductor device and method of fabricating the same
CN104126096B (zh) 2011-12-16 2017-06-20 三星电子株式会社 照明装置的散热结构以及照明装置
US8748847B2 (en) 2011-12-23 2014-06-10 Samsung Electronics Co., Ltd. Method of manufacturing white light emitting device (LED) and apparatus measuring phosphor film
TWI546979B (zh) * 2012-03-05 2016-08-21 晶元光電股份有限公司 對位接合之發光二極體裝置與其製造方法
KR101903361B1 (ko) 2012-03-07 2018-10-04 삼성전자주식회사 질화물 반도체 발광소자 및 그 제조방법
KR20130109319A (ko) 2012-03-27 2013-10-08 삼성전자주식회사 반도체 발광장치, 발광모듈 및 조명장치
JP2013207108A (ja) * 2012-03-28 2013-10-07 Mitsubishi Chemicals Corp 発光ダイオード素子およびその製造方法
KR101891257B1 (ko) 2012-04-02 2018-08-24 삼성전자주식회사 반도체 발광장치 및 그 제조방법
KR101865942B1 (ko) * 2012-04-16 2018-06-08 엘지이노텍 주식회사 발광소자, 발광소자 패키지 및 라이트 유닛
JP6135213B2 (ja) * 2012-04-18 2017-05-31 日亜化学工業株式会社 半導体発光素子
KR101907390B1 (ko) 2012-04-23 2018-10-12 삼성전자주식회사 백색 발광 장치 및 이를 이용한 디스플레이 장치
KR101887942B1 (ko) 2012-05-07 2018-08-14 삼성전자주식회사 발광소자
KR101946914B1 (ko) * 2012-06-08 2019-02-12 엘지이노텍 주식회사 발광소자, 발광소자 패키지 및 라이트 유닛
KR101929933B1 (ko) * 2012-06-12 2019-03-14 엘지이노텍 주식회사 발광 소자 및 이를 포함하는 조명 시스템
KR101974153B1 (ko) * 2012-06-12 2019-04-30 엘지이노텍 주식회사 발광 소자 및 이를 포함하는 조명 시스템
CN104508842B (zh) 2012-06-14 2017-06-09 安相贞 半导体发光器件及其制造方法
KR101891777B1 (ko) 2012-06-25 2018-08-24 삼성전자주식회사 유전체 리플렉터를 구비한 발광소자 및 그 제조방법
JP2014022401A (ja) * 2012-07-12 2014-02-03 Toshiba Corp 窒化物半導体発光素子
KR102055794B1 (ko) * 2012-07-16 2019-12-13 엘지이노텍 주식회사 발광소자, 발광소자 패키지 및 라이트 유닛
US9362446B2 (en) 2012-07-26 2016-06-07 Sang Jeong An Semiconductor light-emitting device
KR101978968B1 (ko) 2012-08-14 2019-05-16 삼성전자주식회사 반도체 발광소자 및 발광장치
EP2701212B1 (en) * 2012-08-20 2020-06-17 LG Innotek Co., Ltd. Light emitting diode
US9196807B2 (en) * 2012-10-24 2015-11-24 Nichia Corporation Light emitting element
JP6011244B2 (ja) * 2012-10-24 2016-10-19 日亜化学工業株式会社 半導体発光素子
KR101976459B1 (ko) * 2012-11-02 2019-05-09 엘지이노텍 주식회사 발광소자, 발광소자 패키지 및 라이트 유닛
KR101898680B1 (ko) 2012-11-05 2018-09-13 삼성전자주식회사 나노구조 발광 소자
DE102012110775A1 (de) * 2012-11-09 2014-05-15 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips
KR101967836B1 (ko) 2012-12-14 2019-04-10 삼성전자주식회사 3차원 발광 소자 및 그 제조방법
KR101898679B1 (ko) 2012-12-14 2018-10-04 삼성전자주식회사 나노구조 발광소자
KR102011101B1 (ko) 2012-12-26 2019-08-14 삼성전자주식회사 발광 소자 패키지
KR102008328B1 (ko) * 2013-02-15 2019-08-07 엘지이노텍 주식회사 발광소자, 발광소자 패키지 및 라이트 유닛
KR102018615B1 (ko) 2013-01-18 2019-09-05 삼성전자주식회사 반도체 발광소자 및 그 제조방법
KR101603207B1 (ko) 2013-01-29 2016-03-14 삼성전자주식회사 나노구조 반도체 발광소자 제조방법
KR101554032B1 (ko) 2013-01-29 2015-09-18 삼성전자주식회사 나노구조 반도체 발광소자
KR102022266B1 (ko) 2013-01-29 2019-09-18 삼성전자주식회사 나노구조 반도체 발광소자 제조방법
CN103972348B (zh) * 2013-01-30 2018-11-06 Lg伊诺特有限公司 发光器件
US8994058B2 (en) * 2013-01-30 2015-03-31 Lg Innotek Co., Ltd. Light emitting device having an ohmic layer with a plurality of protruding contact portions
US20140217355A1 (en) * 2013-02-05 2014-08-07 Rensselaer Polytechnic Institute Semiconductor light emitting device
CN104969367B (zh) * 2013-02-11 2019-04-16 亮锐控股有限公司 发光器件和用于制造发光器件的方法
KR102036347B1 (ko) 2013-02-12 2019-10-24 삼성전자 주식회사 발광소자 어레이부 및 이를 포함하는 발광소자 모듈
KR102191933B1 (ko) * 2013-02-19 2020-12-18 루미리즈 홀딩 비.브이. 다층 구조체에 의해 형성되는 발광 다이 컴포넌트
KR101958418B1 (ko) 2013-02-22 2019-03-14 삼성전자 주식회사 발광 소자 패키지
DE102013102667A1 (de) * 2013-03-15 2014-10-02 Osram Opto Semiconductors Gmbh Anzeigevorrichtung
US9676047B2 (en) 2013-03-15 2017-06-13 Samsung Electronics Co., Ltd. Method of forming metal bonding layer and method of manufacturing semiconductor light emitting device using the same
KR101879220B1 (ko) * 2013-03-29 2018-07-17 동우 화인켐 주식회사 투명 전극 패턴 적층체 및 이를 구비한 터치 스크린 패널
EP2960961B1 (en) * 2013-04-01 2022-03-09 LG Display Co., Ltd. Organic light emitting element
KR102098110B1 (ko) * 2013-04-11 2020-04-08 엘지이노텍 주식회사 발광소자, 발광소자 패키지 및 라이트 유닛
EP2803715B1 (en) * 2013-05-16 2020-02-26 LG Innotek Co., Ltd. Phosphor and light emitting device package including the same
KR102038885B1 (ko) 2013-05-27 2019-10-31 삼성전자주식회사 반도체 발광소자
US9190270B2 (en) 2013-06-04 2015-11-17 Samsung Electronics Co., Ltd. Low-defect semiconductor device and method of manufacturing the same
KR102075148B1 (ko) * 2013-06-13 2020-02-10 엘지이노텍 주식회사 발광 소자 및 발광 소자 패키지
KR102122366B1 (ko) 2013-06-14 2020-06-12 삼성전자주식회사 질화물 반도체 박막 제조방법 및 이를 이용한 질화물 반도체 소자 제조방법
KR102070088B1 (ko) 2013-06-17 2020-01-29 삼성전자주식회사 반도체 발광소자
KR102075983B1 (ko) 2013-06-18 2020-02-11 삼성전자주식회사 반도체 발광소자
TWI661578B (zh) 2013-06-20 2019-06-01 晶元光電股份有限公司 發光裝置及發光陣列
DE102013212294A1 (de) * 2013-06-26 2014-12-31 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip
KR20150002361A (ko) 2013-06-28 2015-01-07 삼성전자주식회사 반도체 발광소자 장치 및 광원 모듈의 제조 방법
KR102053408B1 (ko) 2013-07-11 2019-12-06 엘지이노텍 주식회사 발광 소자
KR102061563B1 (ko) 2013-08-06 2020-01-02 삼성전자주식회사 반도체 발광소자
KR102074950B1 (ko) 2013-08-13 2020-03-02 삼성전자 주식회사 조명 장치, 조명 제어 시스템 및 조명 장치의 제어 방법.
TWI536605B (zh) * 2013-08-20 2016-06-01 隆達電子股份有限公司 發光二極體
KR20150021814A (ko) 2013-08-21 2015-03-03 삼성전자주식회사 Led 구동 장치 및 조명 장치
TWI616004B (zh) * 2013-11-27 2018-02-21 晶元光電股份有限公司 半導體發光元件
US11329195B2 (en) 2013-08-27 2022-05-10 Epistar Corporation Semiconductor light-emitting device
US9461209B2 (en) 2013-11-27 2016-10-04 Epistar Corporation Semiconductor light-emitting device
KR20150025264A (ko) 2013-08-28 2015-03-10 삼성전자주식회사 정공주입층을 구비하는 반도체 발광 소자 및 그 제조 방법
KR102075988B1 (ko) 2013-09-25 2020-03-02 삼성전자주식회사 반도체 발광소자 제조방법
KR102094471B1 (ko) 2013-10-07 2020-03-27 삼성전자주식회사 질화물 반도체층의 성장방법 및 이에 의하여 형성된 질화물 반도체
KR102075985B1 (ko) 2013-10-14 2020-02-11 삼성전자주식회사 나노구조 반도체 발광소자
KR102122360B1 (ko) 2013-10-16 2020-06-12 삼성전자주식회사 발광모듈 테스트 장치
KR102075992B1 (ko) 2013-10-17 2020-02-11 삼성전자주식회사 반도체 발광소자
KR102098250B1 (ko) 2013-10-21 2020-04-08 삼성전자 주식회사 반도체 버퍼 구조체, 이를 포함하는 반도체 소자 및 반도체 버퍼 구조체를 이용한 반도체 소자 제조방법
KR20150046554A (ko) 2013-10-22 2015-04-30 삼성전자주식회사 Led 구동 장치, 조명 장치 및 led 구동 장치의 제어 회로
KR102070089B1 (ko) 2013-10-23 2020-01-29 삼성전자주식회사 반도체 발광소자 패키지 및 이를 이용한 조명장치
KR101919626B1 (ko) * 2013-10-28 2018-11-19 매그나칩 반도체 유한회사 반도체 소자
US9099573B2 (en) 2013-10-31 2015-08-04 Samsung Electronics Co., Ltd. Nano-structure semiconductor light emitting device
KR102099877B1 (ko) 2013-11-05 2020-04-10 삼성전자 주식회사 질화물 반도체 디바이스의 제조 방법
KR102061696B1 (ko) 2013-11-05 2020-01-03 삼성전자주식회사 반극성 질화물 반도체 구조체 및 이의 제조 방법
KR102086360B1 (ko) 2013-11-07 2020-03-09 삼성전자주식회사 n형 질화물 반도체의 전극형성방법, 질화물 반도체 소자 및 그 제조방법
KR102223034B1 (ko) 2013-11-14 2021-03-04 삼성전자주식회사 조명 시스템 및 그를 위한 신호 변환 장치
US9551825B2 (en) 2013-11-15 2017-01-24 Reald Spark, Llc Directional backlights with light emitting element packages
TWI632692B (zh) 2013-11-18 2018-08-11 晶元光電股份有限公司 半導體發光元件
US9190563B2 (en) 2013-11-25 2015-11-17 Samsung Electronics Co., Ltd. Nanostructure semiconductor light emitting device
KR102132651B1 (ko) 2013-12-03 2020-07-10 삼성전자주식회사 나노구조 반도체 발광소자
KR102075984B1 (ko) 2013-12-06 2020-02-11 삼성전자주식회사 반도체 발광소자 및 이를 구비한 반도체 발광장치
KR102122359B1 (ko) 2013-12-10 2020-06-12 삼성전자주식회사 발광장치 제조방법
US9725648B2 (en) 2013-12-10 2017-08-08 Samsung Electronics Co., Ltd. Phosphor and light-emitting device including the same
USD820288S1 (en) * 2013-12-13 2018-06-12 Kbc Advanced Technologies Plc Display screen with graphical user interface
US9196812B2 (en) 2013-12-17 2015-11-24 Samsung Electronics Co., Ltd. Semiconductor light emitting device and semiconductor light emitting apparatus having the same
KR102122363B1 (ko) * 2014-01-08 2020-06-12 삼성전자주식회사 발광장치 및 광원 구동장치
KR102070092B1 (ko) 2014-01-09 2020-01-29 삼성전자주식회사 반도체 발광소자
KR101584201B1 (ko) 2014-01-13 2016-01-13 삼성전자주식회사 반도체 발광소자 및 이의 제조방법
KR20150084311A (ko) 2014-01-13 2015-07-22 삼성전자주식회사 발광모듈
KR102070093B1 (ko) 2014-01-14 2020-01-29 삼성전자주식회사 차량용 조명 시스템
KR102198693B1 (ko) 2014-01-15 2021-01-06 삼성전자주식회사 반도체 발광소자
KR102098591B1 (ko) 2014-01-16 2020-04-08 삼성전자주식회사 반도체 발광소자
KR102285786B1 (ko) 2014-01-20 2021-08-04 삼성전자 주식회사 반도체 발광 소자
KR102122358B1 (ko) 2014-01-20 2020-06-15 삼성전자주식회사 반도체 발광 소자
KR102188495B1 (ko) 2014-01-21 2020-12-08 삼성전자주식회사 반도체 발광소자의 제조 방법
KR102075986B1 (ko) 2014-02-03 2020-02-11 삼성전자주식회사 반도체 발광소자
KR102075987B1 (ko) 2014-02-04 2020-02-12 삼성전자주식회사 질화물 반도체 발광소자
KR20150092674A (ko) 2014-02-05 2015-08-13 삼성전자주식회사 발광 소자 및 발광 소자 패키지
KR102098245B1 (ko) 2014-02-11 2020-04-07 삼성전자 주식회사 광원 패키지 및 그를 포함하는 표시 장치
KR102145209B1 (ko) 2014-02-12 2020-08-18 삼성전자주식회사 플래시 장치, 영상 촬영 장치, 및 방법
DE102014101896A1 (de) * 2014-02-14 2015-08-20 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils sowie optoelektronisches Halbleiterbauteil
KR102140789B1 (ko) 2014-02-17 2020-08-03 삼성전자주식회사 결정 품질 평가장치, 및 그것을 포함한 반도체 발광소자의 제조 장치 및 제조 방법
KR102116986B1 (ko) 2014-02-17 2020-05-29 삼성전자 주식회사 발광 다이오드 패키지
KR102122362B1 (ko) 2014-02-18 2020-06-12 삼성전자주식회사 나노구조 반도체 발광소자
DE102014102029A1 (de) 2014-02-18 2015-08-20 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von Halbleiterbauelementen und Halbleiterbauelement
KR102075981B1 (ko) 2014-02-21 2020-02-11 삼성전자주식회사 발광다이오드 패키지의 제조방법
KR102175723B1 (ko) 2014-02-25 2020-11-09 삼성전자주식회사 반도체 패키지
KR102204392B1 (ko) 2014-03-06 2021-01-18 삼성전자주식회사 Led 조명 구동장치, 조명장치 및 조명장치의 동작방법.
KR102075994B1 (ko) 2014-03-25 2020-02-12 삼성전자주식회사 기판 분리 장치 및 기판 분리 시스템
KR102374671B1 (ko) * 2015-03-13 2022-03-16 서울바이오시스 주식회사 발광 다이오드
KR102188497B1 (ko) 2014-03-27 2020-12-09 삼성전자주식회사 나노구조 반도체 발광소자
EP3131129B1 (en) * 2014-04-07 2020-07-15 LG Innotek Co., Ltd. Light-emitting element
KR102163956B1 (ko) * 2014-04-07 2020-10-12 엘지이노텍 주식회사 발광소자 및 조명시스템
KR102145207B1 (ko) 2014-04-17 2020-08-19 삼성전자주식회사 발광장치, 백라이트 유닛 및 디스플레이 장치
KR102188493B1 (ko) 2014-04-25 2020-12-09 삼성전자주식회사 질화물 단결정 성장방법 및 질화물 반도체 소자 제조방법
KR102145205B1 (ko) 2014-04-25 2020-08-19 삼성전자주식회사 반도체 소자 제조방법 및 증착 장치의 유지보수방법
KR20150138479A (ko) 2014-05-29 2015-12-10 삼성전자주식회사 발광 소자 패키지의 제조 방법
KR102277125B1 (ko) 2014-06-09 2021-07-15 삼성전자주식회사 광원 모듈, 조명 장치 및 조명 시스템
KR102192572B1 (ko) 2014-06-09 2020-12-18 삼성전자주식회사 광원 모듈의 불량 검사방법, 광원 모듈의 제조 방법 및 광원 모듈 검사장치
KR102164087B1 (ko) 2014-06-10 2020-10-12 엘지이노텍 주식회사 발광소자 및 이를 구비한 발광소자 패키지
KR102145208B1 (ko) 2014-06-10 2020-08-19 삼성전자주식회사 발광소자 패키지 제조방법
KR102181429B1 (ko) * 2014-06-11 2020-11-23 엘지이노텍 주식회사 발광소자 및 조명시스템
KR102153125B1 (ko) * 2014-06-11 2020-09-07 엘지이노텍 주식회사 발광소자 및 조명시스템
KR102181398B1 (ko) * 2014-06-11 2020-11-23 엘지이노텍 주식회사 발광소자 및 조명시스템
KR102171024B1 (ko) 2014-06-16 2020-10-29 삼성전자주식회사 반도체 발광소자 패키지의 제조 방법
KR102277126B1 (ko) 2014-06-24 2021-07-15 삼성전자주식회사 Led 구동 장치 및 조명 장치
KR102203461B1 (ko) 2014-07-10 2021-01-18 삼성전자주식회사 나노 구조 반도체 발광 소자
KR102203460B1 (ko) 2014-07-11 2021-01-18 삼성전자주식회사 나노구조 반도체 발광소자의 제조방법
KR102198694B1 (ko) 2014-07-11 2021-01-06 삼성전자주식회사 반도체 발광소자 및 반도체 발광소자 제조방법
KR102188499B1 (ko) 2014-07-11 2020-12-09 삼성전자주식회사 나노구조 반도체 발광소자
KR102188494B1 (ko) 2014-07-21 2020-12-09 삼성전자주식회사 반도체 발광소자, 반도체 발광소자 제조방법 및 반도체 발광소자 패키지 제조방법
KR102188500B1 (ko) 2014-07-28 2020-12-09 삼성전자주식회사 발광다이오드 패키지 및 이를 이용한 조명장치
KR102379164B1 (ko) 2014-07-29 2022-03-25 삼성전자주식회사 가스 내부누출 자동 검사 방법 및 led 칩 제조 방법
KR20160015447A (ko) 2014-07-30 2016-02-15 삼성전자주식회사 발광소자 패키지용 렌즈, 광원 모듈, 조명 장치 및 조명 시스템
JP5671648B1 (ja) * 2014-08-08 2015-02-18 黒崎播磨株式会社 溶射材
KR102212561B1 (ko) 2014-08-11 2021-02-08 삼성전자주식회사 반도체 발광 소자 및 반도체 발광 소자 패키지
KR102223036B1 (ko) 2014-08-18 2021-03-05 삼성전자주식회사 나노구조 반도체 발광소자
KR102227772B1 (ko) 2014-08-19 2021-03-16 삼성전자주식회사 반도체 발광소자
KR102212559B1 (ko) 2014-08-20 2021-02-08 삼성전자주식회사 반도체 발광소자 및 이를 이용한 반도체 발광소자 패키지
KR102227771B1 (ko) 2014-08-25 2021-03-16 삼성전자주식회사 나노구조 반도체 발광소자
KR20160024170A (ko) 2014-08-25 2016-03-04 삼성전자주식회사 반도체 발광 소자
KR102164796B1 (ko) 2014-08-28 2020-10-14 삼성전자주식회사 나노구조 반도체 발광소자
KR102227770B1 (ko) 2014-08-29 2021-03-16 삼성전자주식회사 나노구조 반도체 발광소자
CN105449058A (zh) * 2014-09-02 2016-03-30 展晶科技(深圳)有限公司 磊晶基板、磊晶基板的制造方法及发光二极管
KR102282141B1 (ko) 2014-09-02 2021-07-28 삼성전자주식회사 반도체 발광소자
KR20160028014A (ko) 2014-09-02 2016-03-11 삼성전자주식회사 반도체 소자 패키지 제조방법
KR102198695B1 (ko) 2014-09-03 2021-01-06 삼성전자주식회사 광원 모듈 및 이를 포함하는 백라이트 유닛
KR102337405B1 (ko) 2014-09-05 2021-12-13 삼성전자주식회사 나노구조 반도체 발광소자
CN105468184B (zh) * 2014-09-12 2020-06-26 东友精细化工有限公司 透明电极层压体和包括该透明电极层压体的触摸屏面板
KR20160033815A (ko) 2014-09-18 2016-03-29 삼성전자주식회사 반도체 발광소자
KR20160034534A (ko) 2014-09-19 2016-03-30 삼성전자주식회사 반도체 발광 소자
KR20160037060A (ko) * 2014-09-26 2016-04-05 서울바이오시스 주식회사 발광소자 및 그 제조 방법
KR102244218B1 (ko) 2014-10-01 2021-04-27 삼성전자주식회사 나노구조 반도체 발광소자 제조방법
KR102223037B1 (ko) 2014-10-01 2021-03-05 삼성전자주식회사 반도체 발광소자 제조방법
KR102224848B1 (ko) 2014-10-06 2021-03-08 삼성전자주식회사 발광 소자 패키지 제조 방법
KR102244220B1 (ko) 2014-10-15 2021-04-27 삼성전자주식회사 반도체 발광 소자
KR102277127B1 (ko) 2014-10-17 2021-07-15 삼성전자주식회사 발광소자 패키지
KR102227773B1 (ko) 2014-10-21 2021-03-16 삼성전자주식회사 발광장치
KR102227774B1 (ko) 2014-10-23 2021-03-16 삼성전자주식회사 발광다이오드 패키지 제조방법
KR20160051394A (ko) * 2014-11-03 2016-05-11 엘지이노텍 주식회사 발광소자 및 조명시스템
KR102240023B1 (ko) 2014-11-03 2021-04-15 삼성전자주식회사 자외선 발광장치
KR102252993B1 (ko) 2014-11-03 2021-05-20 삼성전자주식회사 반도체 발광소자 및 반도체 발광소자의 제조방법
KR102212557B1 (ko) 2014-11-03 2021-02-08 삼성전자주식회사 나노구조 반도체 발광소자
KR20160054073A (ko) 2014-11-05 2016-05-16 삼성전자주식회사 디스플레이 장치 및 디스플레이 패널
KR102237144B1 (ko) * 2014-11-06 2021-04-07 엘지이노텍 주식회사 발광 소자 및 발광 소자 패키지
KR102227769B1 (ko) 2014-11-06 2021-03-16 삼성전자주식회사 반도체 발광소자 및 이를 이용한 반도체 발광소자 패키지
KR102307062B1 (ko) 2014-11-10 2021-10-05 삼성전자주식회사 반도체 소자, 반도체 소자 패키지 및 조명 장치
KR102369932B1 (ko) 2014-11-10 2022-03-04 삼성전자주식회사 불화물계 형광체, 발광장치, 불화물계 형광체 제조방법 및 발광장치 제조방법
KR20160056167A (ko) 2014-11-11 2016-05-19 삼성전자주식회사 발광 장치의 제조 방법, 발광 모듈 검사 장비 및 발광 모듈의 양불 판단 방법
KR102255214B1 (ko) 2014-11-13 2021-05-24 삼성전자주식회사 발광 소자
KR102335105B1 (ko) 2014-11-14 2021-12-06 삼성전자 주식회사 발광 소자 및 그의 제조 방법
KR102282137B1 (ko) 2014-11-25 2021-07-28 삼성전자주식회사 반도체 발광소자 및 이를 구비한 반도체 발광장치
KR102240022B1 (ko) 2014-11-26 2021-04-15 삼성전자주식회사 반도체 장치 및 반도체 장치의 제조 방법
KR102372893B1 (ko) 2014-12-04 2022-03-10 삼성전자주식회사 발광 소자 제조용 화학 기상 증착 장치
KR102337406B1 (ko) 2014-12-09 2021-12-13 삼성전자주식회사 불화물 형광체, 불화물 형광체 제조방법, 백색 발광장치, 디스플레이 장치 및 조명장치
KR102252992B1 (ko) 2014-12-12 2021-05-20 삼성전자주식회사 반도체 발광소자 패키지의 제조 방법
KR102357584B1 (ko) 2014-12-17 2022-02-04 삼성전자주식회사 질화물 형광체, 백색 발광장치, 디스플레이 장치 및 조명장치
KR102252994B1 (ko) 2014-12-18 2021-05-20 삼성전자주식회사 발광소자 패키지 및 발광소자 패키지용 파장 변환 필름
KR20160074861A (ko) 2014-12-18 2016-06-29 삼성전자주식회사 광 측정 시스템
KR102353443B1 (ko) 2014-12-22 2022-01-21 삼성전자주식회사 산질화물계 형광체 및 이를 포함하는 백색 발광 장치
KR102355081B1 (ko) 2014-12-26 2022-01-26 삼성전자주식회사 불화물 형광체 제조방법, 백색 발광장치, 디스플레이 장치 및 조명장치
KR102300558B1 (ko) 2014-12-26 2021-09-14 삼성전자주식회사 광원 모듈
KR20160083408A (ko) 2014-12-31 2016-07-12 삼성전자주식회사 퓨즈 패키지 및 이를 이용한 발광소자 모듈
KR102345751B1 (ko) 2015-01-05 2022-01-03 삼성전자주식회사 반도체 발광소자 패키지 및 그 제조 방법
KR102346798B1 (ko) 2015-02-13 2022-01-05 삼성전자주식회사 반도체 발광장치
JP6156402B2 (ja) * 2015-02-13 2017-07-05 日亜化学工業株式会社 発光装置
KR102292640B1 (ko) 2015-03-06 2021-08-23 삼성전자주식회사 발광 소자 패키지 및 발광 소자를 포함하는 전자 장치
JP6160726B2 (ja) * 2015-04-27 2017-07-12 日亜化学工業株式会社 発光装置
KR102378822B1 (ko) 2015-04-30 2022-03-30 삼성전자주식회사 Led 구동 장치
JP6260640B2 (ja) * 2015-05-22 2018-01-17 日亜化学工業株式会社 発光素子
KR102382886B1 (ko) * 2015-05-26 2022-04-05 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자
KR102388284B1 (ko) * 2015-05-26 2022-04-19 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자
US9666754B2 (en) 2015-05-27 2017-05-30 Samsung Electronics Co., Ltd. Method of manufacturing semiconductor substrate and substrate for semiconductor growth
KR102323250B1 (ko) 2015-05-27 2021-11-09 삼성전자주식회사 반도체 발광소자 제조방법
US10217914B2 (en) 2015-05-27 2019-02-26 Samsung Electronics Co., Ltd. Semiconductor light emitting device
KR20160141301A (ko) 2015-05-29 2016-12-08 삼성전자주식회사 반도체 발광 소자 패키지
KR102380825B1 (ko) 2015-05-29 2022-04-01 삼성전자주식회사 반도체 발광다이오드 칩 및 이를 구비한 발광장치
KR102471271B1 (ko) 2015-06-05 2022-11-29 삼성전자주식회사 광학 소자 및 이를 포함하는 광원 모듈
KR102409965B1 (ko) 2015-06-08 2022-06-16 삼성전자주식회사 발광소자 패키지, 파장 변환 필름 및 그 제조 방법
JP2017005191A (ja) 2015-06-15 2017-01-05 株式会社東芝 半導体発光装置
KR102306671B1 (ko) 2015-06-16 2021-09-29 삼성전자주식회사 발광 소자 패키지
KR20160149363A (ko) 2015-06-17 2016-12-28 삼성전자주식회사 반도체 발광소자
KR102335106B1 (ko) 2015-06-19 2021-12-03 삼성전자 주식회사 발광 소자 패키지 및 그 제조 방법
KR102382440B1 (ko) 2015-06-22 2022-04-05 삼성전자주식회사 반도체 발광소자
KR102300560B1 (ko) 2015-06-26 2021-09-14 삼성전자주식회사 Led 구동 장치 및 그를 포함하는 조명 장치
KR102374267B1 (ko) 2015-06-26 2022-03-15 삼성전자주식회사 Led 구동 장치 및 그를 포함하는 조명 장치
KR102409961B1 (ko) 2015-06-26 2022-06-16 삼성전자주식회사 광학소자 및 이를 포함하는 발광소자 패키지
KR102410788B1 (ko) * 2015-06-30 2022-06-21 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광 소자
KR102397910B1 (ko) 2015-07-06 2022-05-16 삼성전자주식회사 불화물계 형광체, 불화물계 형광체 제조방법 및 발광장치
KR102432859B1 (ko) 2015-07-10 2022-08-16 삼성전자주식회사 발광 장치 및 이를 포함하는 발광 모듈
KR102414187B1 (ko) 2015-07-24 2022-06-28 삼성전자주식회사 발광 다이오드 모듈
BR102016015672B1 (pt) * 2015-07-30 2021-11-30 Nichia Corporation Elemento emissor de luz com uma forma plana hexagonal e dispositivo emissor de luz
KR102422246B1 (ko) 2015-07-30 2022-07-19 삼성전자주식회사 발광 소자 패키지
KR102369933B1 (ko) 2015-08-03 2022-03-04 삼성전자주식회사 반도체 발광소자 및 그 제조 방법
KR102477353B1 (ko) 2015-08-06 2022-12-16 삼성전자주식회사 적색 형광체, 백색 발광장치 및 조명 장치
KR102342546B1 (ko) 2015-08-12 2021-12-30 삼성전자주식회사 Led 구동 장치, 조명 장치 및 전류 제어 회로
KR102397907B1 (ko) 2015-08-12 2022-05-16 삼성전자주식회사 광원 모듈 및 이를 포함하는 조명 장치
KR102594189B1 (ko) * 2015-08-18 2023-10-26 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광 소자, 이 소자를 포함하는 발광 소자 패키지 및 이 패키지를 포함하는 발광 장치
KR102357585B1 (ko) 2015-08-18 2022-02-04 삼성전자주식회사 반도체 자외선 발광소자
KR102476138B1 (ko) 2015-08-19 2022-12-14 삼성전자주식회사 커넥터, 광원모듈 및 이를 이용한 광원모듈 어레이
KR102415331B1 (ko) 2015-08-26 2022-06-30 삼성전자주식회사 발광 소자 패키지, 및 이를 포함하는 장치
KR102397909B1 (ko) 2015-08-27 2022-05-16 삼성전자주식회사 기판 및 이를 포함하는 광원 모듈
KR102378952B1 (ko) * 2015-08-27 2022-03-25 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자 및 이를 포함하는 발광소자 패키지
KR20170026801A (ko) 2015-08-28 2017-03-09 삼성전자주식회사 반도체 발광소자 패키지 및 이를 이용한 광원모듈
KR102443035B1 (ko) 2015-09-02 2022-09-16 삼성전자주식회사 Led 구동 장치 및 그를 포함하는 조명 장치
KR102374268B1 (ko) 2015-09-04 2022-03-17 삼성전자주식회사 발광소자 패키지
KR102378823B1 (ko) 2015-09-07 2022-03-28 삼성전자주식회사 반도체 기판 및 이를 이용한 반도체 발광소자의 제조 방법
KR102460072B1 (ko) 2015-09-10 2022-10-31 삼성전자주식회사 반도체 발광 소자
KR101666844B1 (ko) 2015-09-10 2016-10-19 삼성전자주식회사 광학 소자 및 이를 포함하는 광원 모듈
KR102427641B1 (ko) 2015-09-16 2022-08-02 삼성전자주식회사 반도체 발광소자
KR20170033947A (ko) 2015-09-17 2017-03-28 삼성전자주식회사 광원 모듈 및 이를 포함하는 조명 장치
KR102409966B1 (ko) 2015-09-17 2022-06-16 삼성전자주식회사 광원 모듈의 제조방법
KR102430499B1 (ko) 2015-09-22 2022-08-11 삼성전자주식회사 Led 조명의 검사 장치 및 검사 방법
CN106558597B (zh) 2015-09-30 2020-03-06 三星电子株式会社 发光器件封装件
KR102374266B1 (ko) 2015-10-02 2022-03-18 삼성전자주식회사 백색 발광 모듈 및 led 조명 장치
KR102391513B1 (ko) 2015-10-05 2022-04-27 삼성전자주식회사 물질막 적층체, 발광 소자, 발광 패키지, 및 발광 소자의 제조 방법
KR102443033B1 (ko) 2015-10-12 2022-09-16 삼성전자주식회사 발광소자 패키지 및 이를 포함하는 조명 장치
KR102419890B1 (ko) 2015-11-05 2022-07-13 삼성전자주식회사 발광 장치 및 그 제조 방법
KR102417181B1 (ko) 2015-11-09 2022-07-05 삼성전자주식회사 발광 패키지, 반도체 발광 소자, 발광 모듈 및 발광 패키지의 제조 방법
KR102481646B1 (ko) 2015-11-12 2022-12-29 삼성전자주식회사 반도체 발광소자 패키지
KR102427644B1 (ko) 2015-11-16 2022-08-02 삼성전자주식회사 광원 모듈, 광원 모듈의 제조방법 및 이를 포함하는 디스플레이 장치
KR20170058515A (ko) 2015-11-18 2017-05-29 삼성전자주식회사 조명 제어 시스템 및 그 제어 방법
KR20170059068A (ko) 2015-11-19 2017-05-30 삼성전자주식회사 광원 모듈, 디스플레이 패널 및 이를 구비한 디스플레이 장치
KR102450574B1 (ko) 2015-11-19 2022-10-11 삼성전자주식회사 반도체 패키지용 본딩 와이어 및 이를 포함하는 반도체 패키지
US9793450B2 (en) 2015-11-24 2017-10-17 Samsung Electronics Co., Ltd. Light emitting apparatus having one or more ridge structures defining at least one circle around a common center
FR3044468B1 (fr) * 2015-11-27 2018-07-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif de photo-detection a revetement comportant des tranchees a revetement de grande bande interdite et procede de fabrication
KR102546307B1 (ko) 2015-12-02 2023-06-21 삼성전자주식회사 발광 소자 및 이를 포함하는 표시 장치
KR102546654B1 (ko) 2015-12-11 2023-06-23 삼성전자주식회사 조명 시스템, 조명 장치 및 그 제어 방법
JP6692155B2 (ja) * 2015-12-15 2020-05-13 スタンレー電気株式会社 半導体発光素子アレイおよび車両用灯具
KR102601579B1 (ko) 2015-12-16 2023-11-13 삼성전자주식회사 발광소자 실장용 회로 기판 및 이를 이용한 반도체 발광소자 패키지
KR20170075897A (ko) 2015-12-23 2017-07-04 삼성전자주식회사 발광 다이오드 패키지
KR102550413B1 (ko) 2016-01-13 2023-07-05 삼성전자주식회사 Led 구동 장치 및 조명 장치
KR102530756B1 (ko) 2016-01-13 2023-05-10 삼성전자주식회사 불화물계 형광체, 불화물계 형광체 제조방법 및 발광장치
KR20170089053A (ko) 2016-01-25 2017-08-03 삼성전자주식회사 수지 도포 장치 및 이를 사용한 발광소자 패키지 제조방법
KR102408721B1 (ko) 2016-01-27 2022-06-15 삼성전자주식회사 반도체 발광소자 제조방법
KR102524805B1 (ko) 2016-02-12 2023-04-25 삼성전자주식회사 광원 모듈, 디스플레이 패널 및 이를 구비한 디스플레이 장치
KR102527387B1 (ko) 2016-02-24 2023-04-28 삼성전자주식회사 발광 소자 패키지 및 그 제조 방법
KR102476137B1 (ko) 2016-02-25 2022-12-12 삼성전자주식회사 발광소자 패키지의 제조 방법
KR102263041B1 (ko) 2016-02-26 2021-06-09 삼성전자주식회사 멀티 컬러를 구현할 수 있는 발광 소자
US10106666B2 (en) 2016-03-02 2018-10-23 Samsung Electronics Co., Ltd. Curable silicone resin composition containing inorganic oxide and optical member using same
KR20170104031A (ko) 2016-03-03 2017-09-14 삼성전자주식회사 패키지 기판 및 발광소자 패키지
KR102435523B1 (ko) 2016-03-10 2022-08-23 삼성전자주식회사 발광 소자 및 이의 제조 방법
KR102515622B1 (ko) * 2016-03-11 2023-03-30 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광 소자
KR20170106575A (ko) 2016-03-11 2017-09-21 삼성전자주식회사 광원 모듈 및 이를 포함하는 조명 장치
KR102553628B1 (ko) 2016-03-11 2023-07-11 삼성전자주식회사 발광소자 패키지의 검사 장치 및 제조 장치
KR102443694B1 (ko) 2016-03-11 2022-09-15 삼성전자주식회사 전류 확산 특성 및 광 추출 효율을 향상시킬 수 있는 발광 소자
KR102365686B1 (ko) 2016-03-16 2022-02-21 삼성전자주식회사 Led 구동 장치 및 발광 장치
KR102503215B1 (ko) 2016-03-28 2023-02-24 삼성전자 주식회사 발광 소자 패키지
KR102517336B1 (ko) 2016-03-29 2023-04-04 삼성전자주식회사 디스플레이 패널 및 이를 구비한 멀티비전 장치
CN205944139U (zh) 2016-03-30 2017-02-08 首尔伟傲世有限公司 紫外线发光二极管封装件以及包含此的发光二极管模块
KR102513080B1 (ko) 2016-04-04 2023-03-24 삼성전자주식회사 Led 광원 모듈 및 디스플레이 장치
KR102518368B1 (ko) 2016-04-06 2023-04-13 삼성전자주식회사 조명 장치
KR102480220B1 (ko) 2016-04-08 2022-12-26 삼성전자주식회사 발광 다이오드 모듈 및 이를 구비한 디스플레이 패널
KR20170121777A (ko) 2016-04-25 2017-11-03 삼성전자주식회사 반도체 발광장치
KR102534245B1 (ko) 2016-05-04 2023-05-18 삼성전자주식회사 칩 스케일 렌즈를 포함한 발광장치
KR20170129983A (ko) 2016-05-17 2017-11-28 삼성전자주식회사 발광소자 패키지, 이를 이용한 디스플레이 장치 및 그 제조방법
KR102608902B1 (ko) 2016-06-14 2023-12-04 삼성전자주식회사 질화물 반도체 기판 제조방법
KR102530759B1 (ko) 2016-06-14 2023-05-11 삼성전자주식회사 발광소자 패키지 및 그 제조방법
KR102530758B1 (ko) 2016-06-21 2023-05-11 삼성전자주식회사 반도체 발광소자 패키지
KR102519668B1 (ko) 2016-06-21 2023-04-07 삼성전자주식회사 반도체 발광 소자 및 그 제조 방법
KR102530760B1 (ko) 2016-07-18 2023-05-11 삼성전자주식회사 반도체 발광소자
KR102528559B1 (ko) 2016-07-26 2023-05-04 삼성전자주식회사 대면적 기판 제조 장치
KR20180015496A (ko) 2016-08-03 2018-02-13 삼성전자주식회사 발광소자 패키지의 검사 장치 및 제조 장치
KR102476139B1 (ko) 2016-08-03 2022-12-09 삼성전자주식회사 반도체 발광소자
KR102116988B1 (ko) 2016-08-11 2020-06-01 삼성전자 주식회사 광원 모듈, 이의 제조 방법, 및 이를 포함하는 백라이트 유닛
KR102605585B1 (ko) 2016-08-11 2023-11-24 삼성전자주식회사 발광소자 패키지 제조방법
KR102553630B1 (ko) 2016-08-11 2023-07-10 삼성전자주식회사 발광소자 패키지 및 이를 이용한 디스플레이 장치
CN107768495A (zh) * 2016-08-18 2018-03-06 新世纪光电股份有限公司 微型发光二极管及其制造方法
KR20180021348A (ko) 2016-08-19 2018-03-02 삼성전자주식회사 발광소자 어레이 및 이를 이용한 광원장치
KR102543179B1 (ko) 2016-08-22 2023-06-14 삼성전자주식회사 발광다이오드 모듈 제조방법
KR102551353B1 (ko) 2016-08-22 2023-07-04 삼성전자 주식회사 광원 모듈 및 이를 포함하는 백라이트 유닛
US10340415B2 (en) 2016-09-01 2019-07-02 Lg Innotek Co., Ltd. Semiconductor device and semiconductor device package including the same
EP3511990B1 (en) 2016-09-10 2023-12-13 Suzhou Lekin Semiconductor Co., Ltd. Semiconductor device
CN115602764A (zh) 2016-09-13 2023-01-13 苏州立琻半导体有限公司(Cn) 半导体器件和包括该半导体器件的半导体器件封装
KR102623546B1 (ko) 2016-09-23 2024-01-10 삼성전자주식회사 조명용 렌즈, 조명용 렌즈 어레이 및 이를 포함하는 조명 장치
WO2018080874A1 (en) 2016-10-31 2018-05-03 Spy Eye, Llc Femtoprojector optical systems
US10903395B2 (en) 2016-11-24 2021-01-26 Lg Innotek Co., Ltd. Semiconductor device having varying concentrations of aluminum
US10147760B2 (en) 2016-12-08 2018-12-04 Samsung Electronics Co., Ltd. Light-emitting devices
KR102611980B1 (ko) 2016-12-14 2023-12-08 삼성전자주식회사 멀티 컬러를 구현할 수 있는 발광 소자
KR102680862B1 (ko) 2016-12-16 2024-07-03 삼성전자주식회사 반도체 발광장치
KR102652087B1 (ko) 2016-12-16 2024-03-28 삼성전자주식회사 반도체 발광소자
US10164159B2 (en) 2016-12-20 2018-12-25 Samsung Electronics Co., Ltd. Light-emitting diode package and method of manufacturing the same
KR20180076066A (ko) 2016-12-27 2018-07-05 삼성전자주식회사 발광소자 패키지
KR102604739B1 (ko) 2017-01-05 2023-11-22 삼성전자주식회사 반도체 발광 장치
KR102600002B1 (ko) 2017-01-11 2023-11-08 삼성전자주식회사 반도체 발광 소자
KR102598043B1 (ko) 2017-01-12 2023-11-06 삼성전자주식회사 플로팅 도전성 패턴을 포함하는 반도체 발광 소자
CN108336190B (zh) * 2017-01-20 2020-05-05 展晶科技(深圳)有限公司 覆晶发光二极管及其制造方法
KR20180089117A (ko) 2017-01-31 2018-08-08 삼성전자주식회사 Led장치 및 이를 이용한 led램프
KR20180095397A (ko) 2017-02-17 2018-08-27 삼성전자주식회사 Led 구동 장치, 이를 포함하는 조명 장치 및 led 구동 방법
KR20180098904A (ko) 2017-02-27 2018-09-05 삼성전자주식회사 컴퓨팅 장치 및 컴퓨팅 장치에 포함된 복수의 코어들에 전력을 할당하는 방법
US10141290B2 (en) * 2017-03-12 2018-11-27 Mikro Mesa Technology Co., Ltd. Display device and method for manufacturing the same
US10026757B1 (en) 2017-03-12 2018-07-17 Mikro Mesa Technology Co., Ltd. Micro-light emitting display device
KR102385571B1 (ko) 2017-03-31 2022-04-12 삼성전자주식회사 반도체 발광 소자
US11677059B2 (en) 2017-04-26 2023-06-13 Samsung Electronics Co., Ltd. Light-emitting device package including a lead frame
KR102335216B1 (ko) 2017-04-26 2021-12-03 삼성전자 주식회사 발광소자 패키지
KR102373817B1 (ko) 2017-05-02 2022-03-14 삼성전자주식회사 백색 발광장치 및 조명 장치
KR102430500B1 (ko) 2017-05-30 2022-08-08 삼성전자주식회사 반도체 발광소자 및 이를 이용한 led 모듈
KR102450579B1 (ko) 2017-06-05 2022-10-07 삼성전자주식회사 Led램프
KR102389815B1 (ko) 2017-06-05 2022-04-22 삼성전자주식회사 양자점 유리셀 및 이를 포함하는 발광소자 패키지
KR102369934B1 (ko) 2017-06-23 2022-03-03 삼성전자주식회사 칩 실장장치 및 이를 이용한 칩 실장방법
US10256218B2 (en) 2017-07-11 2019-04-09 Samsung Electronics Co., Ltd. Light emitting device package
KR102549171B1 (ko) 2017-07-12 2023-06-30 삼성전자주식회사 발광소자 패키지 및 이를 이용한 디스플레이 장치
KR102302593B1 (ko) 2017-07-13 2021-09-15 삼성전자주식회사 발광 소자, 이를 포함하는 패키지, 및 이의 제조 방법
KR102302592B1 (ko) 2017-07-18 2021-09-15 삼성전자주식회사 반도체 발광 소자
CN107437542B (zh) * 2017-07-31 2023-05-05 广东工业大学 一种紫外led芯片及其制备方法
KR102390828B1 (ko) 2017-08-14 2022-04-26 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체 소자
KR102476136B1 (ko) 2017-09-05 2022-12-09 삼성전자주식회사 Led를 이용한 디스플레이 장치
KR102539962B1 (ko) 2017-09-05 2023-06-05 삼성전자주식회사 Led 구동 장치 및 조명 장치
US10123386B1 (en) 2017-09-08 2018-11-06 Samsung Electronics Co., Ltd. Lighting apparatus
US10362654B2 (en) 2017-09-08 2019-07-23 Samsung Electronics Co., Ltd. Lighting apparatus
KR102609560B1 (ko) 2017-09-08 2023-12-04 삼성전자주식회사 반도체 제조 장치
US10446722B2 (en) 2017-09-29 2019-10-15 Samsung Electronics Co., Ltd. White light emitting device
KR102427637B1 (ko) 2017-09-29 2022-08-01 삼성전자주식회사 반도체 발광소자
KR20190038976A (ko) 2017-10-02 2019-04-10 삼성전자주식회사 임프린트 장치
KR102611981B1 (ko) 2017-10-19 2023-12-11 삼성전자주식회사 발광 장치 및 그 제조 방법
US10388641B2 (en) 2017-10-19 2019-08-20 Tectus Corporation Ultra-dense LED projector
US10768515B2 (en) 2017-12-12 2020-09-08 Tectus Corporation Method for manufacturing ultra-dense LED projector using thinned gallium nitride
KR102460074B1 (ko) 2017-10-30 2022-10-28 삼성전자주식회사 반도체 패키지 분리 장치
KR102476140B1 (ko) 2017-11-20 2022-12-09 삼성전자주식회사 광학 소자 및 이를 포함하는 광원 모듈
KR102430497B1 (ko) 2017-12-07 2022-08-08 삼성전자주식회사 발광소자의 제조 방법
KR102509639B1 (ko) 2017-12-12 2023-03-15 삼성전자주식회사 발광소자 패키지 제조방법
KR102666539B1 (ko) 2017-12-13 2024-05-17 삼성전자주식회사 자외선 반도체 발광소자
KR102477357B1 (ko) 2017-12-14 2022-12-15 삼성전자주식회사 발광 소자 패키지
KR102582424B1 (ko) 2017-12-14 2023-09-25 삼성전자주식회사 발광소자 패키지 및 이를 이용한 디스플레이 장치
KR102421729B1 (ko) 2017-12-14 2022-07-15 삼성전자주식회사 발광소자 패키지 및 이를 이용한 디스플레이 장치
KR102427640B1 (ko) 2017-12-19 2022-08-01 삼성전자주식회사 자외선 반도체 발광소자
KR102524809B1 (ko) 2017-12-19 2023-04-24 삼성전자주식회사 자외선 반도체 발광소자
KR102518369B1 (ko) 2017-12-19 2023-04-05 삼성전자주식회사 반도체 발광소자
KR102513082B1 (ko) 2017-12-19 2023-03-23 삼성전자주식회사 반도체 발광소자
KR102601580B1 (ko) 2017-12-20 2023-11-13 삼성전자주식회사 Uwb 센서를 이용한 조명 시스템, 조명 장치 및 조명 제어 방법
KR102542426B1 (ko) 2017-12-20 2023-06-12 삼성전자주식회사 파장변환 필름과, 이를 구비한 반도체 발광장치
KR102656815B1 (ko) * 2017-12-27 2024-04-15 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체 소자
EP3506374A1 (en) * 2017-12-27 2019-07-03 Lg Innotek Co. Ltd Semiconductor device
CN108172591B (zh) * 2018-01-05 2024-09-27 广东迅扬科技股份有限公司 一种Micro LED彩色显示阵列结构
KR102427642B1 (ko) 2018-01-25 2022-08-01 삼성전자주식회사 반도체 발광소자
KR102543183B1 (ko) 2018-01-26 2023-06-14 삼성전자주식회사 반도체 발광소자
KR102481647B1 (ko) 2018-01-31 2022-12-28 삼성전자주식회사 Led 모듈 및 조명 장치
US10673414B2 (en) 2018-02-05 2020-06-02 Tectus Corporation Adaptive tuning of a contact lens
KR102443027B1 (ko) 2018-03-02 2022-09-14 삼성전자주식회사 반도체 발광소자
KR102450150B1 (ko) 2018-03-02 2022-10-04 삼성전자주식회사 반도체 발광소자
US10862015B2 (en) 2018-03-08 2020-12-08 Samsung Electronics., Ltd. Semiconductor light emitting device package
KR20190116827A (ko) * 2018-04-05 2019-10-15 엘지이노텍 주식회사 반도체 소자
US10499471B2 (en) 2018-04-13 2019-12-03 Samsung Electronics Co., Ltd. Light-emitting diode lighting module and lighting apparatus including the same
KR102551354B1 (ko) 2018-04-20 2023-07-04 삼성전자 주식회사 반도체 발광 소자 및 그 제조 방법
US10964852B2 (en) 2018-04-24 2021-03-30 Samsung Electronics Co., Ltd. LED module and LED lamp including the same
KR102573271B1 (ko) 2018-04-27 2023-08-31 삼성전자주식회사 반도체 발광소자
KR102550415B1 (ko) 2018-05-09 2023-07-05 삼성전자주식회사 Led 장치 및 이를 이용한 led 램프
KR102607596B1 (ko) 2018-05-11 2023-11-29 삼성전자주식회사 반도체 발광소자 및 이를 이용한 반도체 발광소자 패키지
US10649239B2 (en) 2018-05-30 2020-05-12 Tectus Corporation Eyeglasses with embedded femtoprojectors
KR20190137458A (ko) 2018-06-01 2019-12-11 삼성전자주식회사 Led를 이용한 디스플레이 모듈 제조방법
KR102613239B1 (ko) 2018-06-04 2023-12-14 삼성전자주식회사 백색 led 모듈 및 조명 장치
KR102551746B1 (ko) 2018-06-05 2023-07-07 삼성전자주식회사 광원모듈
KR102530068B1 (ko) 2018-06-26 2023-05-08 삼성전자주식회사 발광 소자 패키지, 이를 포함하는 디스플레이 장치, 및 그 제조 방법
KR102619665B1 (ko) 2018-06-29 2023-12-29 삼성전자주식회사 발광 장치
KR102553265B1 (ko) 2018-07-09 2023-07-07 삼성전자 주식회사 발광 소자 및 이를 포함하는 광원 모듈
KR102534248B1 (ko) 2018-07-17 2023-05-18 삼성전자주식회사 발광 소자 패키지
KR102653015B1 (ko) 2018-07-18 2024-03-29 삼성전자주식회사 발광 장치, 운송 수단용 헤드램프, 및 그를 포함하는 운송 수단
CN115775852A (zh) * 2018-08-10 2023-03-10 林宏诚 流体移转系统、发光二极管装置及制作方法、发光及显示设备
KR102575569B1 (ko) * 2018-08-13 2023-09-07 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체 소자
JP6848944B2 (ja) 2018-08-30 2021-03-24 日亜化学工業株式会社 配線基板の製造方法および配線基板
JP6826761B2 (ja) 2018-08-31 2021-02-10 日亜化学工業株式会社 半導体装置の製造方法
KR102651547B1 (ko) * 2018-09-07 2024-03-28 삼성전자주식회사 발광 장치 및 이를 포함하는 디스플레이 장치
KR102617962B1 (ko) 2018-10-02 2023-12-27 삼성전자주식회사 반도체 발광소자
CN111106015B (zh) * 2018-10-25 2021-07-09 江苏罗化新材料有限公司 方便csp焊接的侧壁电极增大制作工艺
KR102617089B1 (ko) 2018-11-05 2023-12-27 삼성전자주식회사 발광소자 패키지 및 이를 이용한 디스플레이 장치
KR102023089B1 (ko) * 2018-12-10 2019-11-04 엘지이노텍 주식회사 발광소자, 발광소자 패키지 및 라이트 유닛
KR20200111323A (ko) 2019-03-18 2020-09-29 삼성전자주식회사 반도체 발광소자 및 그 제조 방법
KR20200112369A (ko) 2019-03-22 2020-10-05 삼성전자주식회사 발광 소자 패키지
KR20200118333A (ko) 2019-04-05 2020-10-15 삼성전자주식회사 조명 시스템 및 조명 장치
CN109994583B (zh) * 2019-04-19 2020-05-01 厦门乾照光电股份有限公司 一种大功率紫外发光二极管及其制作方法
KR20200139307A (ko) 2019-06-03 2020-12-14 삼성전자주식회사 발광장치, 백라이트 유닛 및 디스플레이 장치
CN110085714B (zh) * 2019-06-05 2024-03-22 广东省半导体产业技术研究院 直流发光器件及其制作方法
KR20210000351A (ko) 2019-06-24 2021-01-05 삼성전자주식회사 반도체 발광소자 및 디스플레이 장치
WO2020258027A1 (zh) * 2019-06-25 2020-12-30 苏州晶湛半导体有限公司 发光器件、发光器件的模板及其制备方法
KR102684977B1 (ko) 2019-07-08 2024-07-17 삼성전자주식회사 반도체 발광소자 제조방법
KR20210006567A (ko) 2019-07-08 2021-01-19 삼성전자주식회사 발광소자 패키지 및 이를 이용한 디스플레이 패널
KR20210019335A (ko) 2019-08-12 2021-02-22 삼성전자주식회사 유기 발광 소자 및 그 제조방법
US11374202B2 (en) 2019-09-11 2022-06-28 Samsung Electronics Co., Ltd. Light emitting device and method of manufacturing the same
KR20210034726A (ko) 2019-09-20 2021-03-31 삼성전자주식회사 메모리 모듈, 그것을 제어하는 메모리 제어기의 에러 정정 방법, 및 그것을포함하는 컴퓨팅 시스템
KR20210048621A (ko) 2019-10-23 2021-05-04 삼성전자주식회사 발광장치 및 식물생장용 조명장치
KR20210052626A (ko) 2019-10-29 2021-05-11 삼성전자주식회사 Led 모듈 및 제조방법
KR20210063518A (ko) 2019-11-22 2021-06-02 삼성전자주식회사 발광다이오드 패키지
KR20210064855A (ko) 2019-11-26 2021-06-03 삼성전자주식회사 반도체 발광 소자 및 그의 제조 방법
KR20210078200A (ko) 2019-12-18 2021-06-28 삼성전자주식회사 색온도 가변 조명 장치
KR20210097855A (ko) 2020-01-30 2021-08-10 삼성전자주식회사 금속 베이스 배선 기판 및 전자소자 모듈
KR20210099681A (ko) 2020-02-04 2021-08-13 삼성전자주식회사 3차원 구조 반도체 발광소자 및 디스플레이 장치
KR20210102741A (ko) 2020-02-12 2021-08-20 삼성전자주식회사 반도체 발광 소자 및 이의 제조 방법
US20230070416A1 (en) * 2020-02-19 2023-03-09 Lg Electronics Inc. Display device using semiconductor light-emitting elements and method of manufacturing same
KR20210116828A (ko) 2020-03-17 2021-09-28 삼성전자주식회사 광원 모듈 및 이를 이용한 디스플레이 패널
KR20210141036A (ko) 2020-05-15 2021-11-23 삼성전자주식회사 광원 패키지 및 이를 포함하는 모바일 기기
KR20210143452A (ko) 2020-05-20 2021-11-29 삼성전자주식회사 반도체 발광소자 및 이를 구비한 발광소자 패키지
KR20210144485A (ko) 2020-05-22 2021-11-30 삼성전자주식회사 반도체 발광 소자 및 그 제조 방법
KR20210144483A (ko) 2020-05-22 2021-11-30 삼성전자주식회사 발광 장치 및 운송 수단용 헤드램프
KR20210145587A (ko) 2020-05-25 2021-12-02 삼성전자주식회사 버퍼 구조체를 포함하는 반도체 발광 소자
KR20210145590A (ko) 2020-05-25 2021-12-02 삼성전자주식회사 발광 소자를 포함하는 광원 모듈
KR20210145553A (ko) 2020-05-25 2021-12-02 삼성전자주식회사 발광 소자, 광원 모듈 및 발광 소자 제조 방법
KR102338179B1 (ko) 2020-05-26 2021-12-10 주식회사 에스엘바이오닉스 반도체 발광소자 및 이의 제조방법
JP7431110B2 (ja) * 2020-06-11 2024-02-14 新光電気工業株式会社 発光装置
KR20210158254A (ko) 2020-06-23 2021-12-30 삼성전자주식회사 Led 패키지 및 이를 포함하는 디스플레이 장치
KR20210158701A (ko) 2020-06-24 2021-12-31 삼성전자주식회사 반도체 발광 소자
US11264535B1 (en) 2020-08-12 2022-03-01 Jyh-Chia Chen Pixel device and display using a monolithic blue/green LED combined with red luminescence materials
KR20220034972A (ko) 2020-09-11 2022-03-21 삼성전자주식회사 반도체 발광 소자
KR20220036176A (ko) 2020-09-15 2022-03-22 삼성전자주식회사 반도체 발광소자 및 이를 구비한 발광소자 패키지
KR20220045832A (ko) 2020-10-06 2022-04-13 삼성전자주식회사 LED(Light Emitting Diode) 패키지 및 이를 포함하는 전자 장치
KR20220065153A (ko) 2020-11-12 2022-05-20 삼성전자주식회사 광원 모듈 및 이를 포함하는 모바일 기기
KR20220068558A (ko) 2020-11-19 2022-05-26 삼성전자주식회사 Led 조명 장치 및 그것의 동작 방법
KR20220070757A (ko) 2020-11-23 2022-05-31 삼성전자주식회사 Led 장치 및 이를 포함하는 조명 장치
KR20220073301A (ko) 2020-11-26 2022-06-03 삼성전자주식회사 Led 패키지 및 이를 포함하는 전자 장치
KR20220087298A (ko) 2020-12-17 2022-06-24 삼성전자주식회사 반도체 발광 소자 및 그 제조 방법
KR20220094291A (ko) 2020-12-28 2022-07-06 삼성전자주식회사 Led 모듈 및 조명 장치
KR20220094290A (ko) 2020-12-28 2022-07-06 삼성전자주식회사 백색 발광장치 및 조명 장치
KR20220094991A (ko) 2020-12-29 2022-07-06 삼성전자주식회사 발광 소자 및 운송 수단용 헤드 램프
KR20220095289A (ko) 2020-12-29 2022-07-07 삼성전자주식회사 발광소자 패키지
KR20220097816A (ko) 2020-12-31 2022-07-08 삼성전자주식회사 Led 조명 장치
KR20220102508A (ko) 2021-01-13 2022-07-20 삼성전자주식회사 LED(Light Emitting Diode) 패키지 및 이를 포함하는 조명 장치
KR20220107485A (ko) 2021-01-25 2022-08-02 삼성전자주식회사 Led 제어 장치 및 이를 포함하는 조명 장치
KR20220112375A (ko) 2021-02-04 2022-08-11 삼성전자주식회사 플래시 led 모듈
KR20220112908A (ko) 2021-02-04 2022-08-12 삼성전자주식회사 반도체 발광장치
KR20220133634A (ko) 2021-03-25 2022-10-05 삼성전자주식회사 발광 소자 및 이의 제조 방법
US11721796B2 (en) 2021-03-29 2023-08-08 Tectus Corporation LED displays fabricated using hybrid bonding
KR20220151076A (ko) 2021-05-04 2022-11-14 삼성전자주식회사 발광장치 및 식물생장용 조명장치
KR20220169286A (ko) 2021-06-18 2022-12-27 삼성전자주식회사 셀 매트릭스를 포함하는 디스플레이 장치
KR20230010139A (ko) 2021-07-09 2023-01-18 삼성전자주식회사 반도체 발광소자 패키지
KR20230079869A (ko) 2021-11-29 2023-06-07 삼성전자주식회사 Led 구동 장치 및 이를 포함하는 조명 장치
KR20230099316A (ko) 2021-12-27 2023-07-04 삼성전자주식회사 Led 제어 장치 및 이를 포함하는 조명 장치
KR20230134363A (ko) 2022-03-14 2023-09-21 삼성전자주식회사 발광 셀 어레이, 헤드램프 구동 장치, 및 헤드램프 제어 시스템
US12027107B2 (en) 2022-07-15 2024-07-02 Samsung Electronics Co., Ltd. Display apparatus
KR20240031788A (ko) 2022-09-01 2024-03-08 삼성전자주식회사 디스플레이용 발광 소자 및 이를 포함하는 백라이트 유닛

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US237622A (en) * 1881-02-08 Fly-net for horses
US191215A (en) * 1877-03-30 1877-05-22 L R Witherell Sash-holder
FR2696334B1 (fr) 1992-10-01 1994-12-02 Boudjema J Pascal Dispositif pour transplantation de greffons capillaires de petit diamètre.
EP1744365B1 (en) 1996-08-27 2009-04-15 Seiko Epson Corporation Exfoliating method and transferring method of thin film device
JPH1098210A (ja) 1996-09-19 1998-04-14 Toyoda Gosei Co Ltd 半導体発光素子
USRE38466E1 (en) 1996-11-12 2004-03-16 Seiko Epson Corporation Manufacturing method of active matrix substrate, active matrix substrate and liquid crystal display device
JPH10294491A (ja) * 1997-04-22 1998-11-04 Toshiba Corp 半導体発光素子およびその製造方法ならびに発光装置
JP3369089B2 (ja) 1997-11-13 2003-01-20 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子
US7208725B2 (en) 1998-11-25 2007-04-24 Rohm And Haas Electronic Materials Llc Optoelectronic component with encapsulant
JP3906654B2 (ja) 2000-07-18 2007-04-18 ソニー株式会社 半導体発光素子及び半導体発光装置
US7233028B2 (en) * 2001-02-23 2007-06-19 Nitronex Corporation Gallium nitride material devices and methods of forming the same
CN1241272C (zh) 2001-08-22 2006-02-08 索尼公司 氮化物半导体器件及其制造方法
DE10147886B4 (de) 2001-09-28 2006-07-13 Osram Opto Semiconductors Gmbh Lumineszenzdiode mit vergrabenem Kontakt und Herstellungsverfahren
JP2003218034A (ja) 2002-01-17 2003-07-31 Sony Corp 選択成長方法、半導体発光素子及びその製造方法
JP3815335B2 (ja) 2002-01-18 2006-08-30 ソニー株式会社 半導体発光素子及びその製造方法
US6828596B2 (en) * 2002-06-13 2004-12-07 Lumileds Lighting U.S., Llc Contacting scheme for large and small area semiconductor light emitting flip chip devices
KR100499129B1 (ko) 2002-09-02 2005-07-04 삼성전기주식회사 발광 다이오드 및 그 제조방법
US7002182B2 (en) 2002-09-06 2006-02-21 Sony Corporation Semiconductor light emitting device integral type semiconductor light emitting unit image display unit and illuminating unit
US6995401B2 (en) * 2002-10-23 2006-02-07 Shin-Etsu Handotai Co., Ltd. Light emitting device and method of fabricating the same
KR100714639B1 (ko) 2003-10-21 2007-05-07 삼성전기주식회사 발광 소자
KR100506740B1 (ko) 2003-12-23 2005-08-08 삼성전기주식회사 질화물 반도체 발광소자 및 그 제조방법
KR101332771B1 (ko) 2004-02-20 2013-11-25 오스람 옵토 세미컨덕터스 게엠베하 광전 소자, 다수의 광전 소자를 구비한 장치 및 광전 소자를 제조하기 위한 방법
US7679097B2 (en) * 2004-10-21 2010-03-16 Nichia Corporation Semiconductor light emitting device and method for manufacturing the same
KR100664985B1 (ko) 2004-10-26 2007-01-09 삼성전기주식회사 질화물계 반도체 소자
US7736945B2 (en) * 2005-06-09 2010-06-15 Philips Lumileds Lighting Company, Llc LED assembly having maximum metal support for laser lift-off of growth substrate
WO2006138465A2 (en) * 2005-06-17 2006-12-28 Goldeneye, Inc. Light emitting diodes with reflective electrode and side electrode
KR100665222B1 (ko) 2005-07-26 2007-01-09 삼성전기주식회사 확산재료를 이용한 엘이디 패키지 및 그 제조 방법
KR100661614B1 (ko) 2005-10-07 2006-12-26 삼성전기주식회사 질화물계 반도체 발광소자 및 그 제조방법
JP4777757B2 (ja) 2005-12-01 2011-09-21 スタンレー電気株式会社 半導体発光素子及びその製造方法
KR100723247B1 (ko) 2006-01-10 2007-05-29 삼성전기주식회사 칩코팅형 led 패키지 및 그 제조방법
KR100735325B1 (ko) 2006-04-17 2007-07-04 삼성전기주식회사 발광다이오드 패키지 및 그 제조방법
US7842963B2 (en) * 2006-10-18 2010-11-30 Koninklijke Philips Electronics N.V. Electrical contacts for a semiconductor light emitting apparatus
KR100930171B1 (ko) 2006-12-05 2009-12-07 삼성전기주식회사 백색 발광장치 및 이를 이용한 백색 광원 모듈
KR100818466B1 (ko) 2007-02-13 2008-04-02 삼성전기주식회사 반도체 발광소자
US7601989B2 (en) * 2007-03-27 2009-10-13 Philips Lumileds Lighting Company, Llc LED with porous diffusing reflector
KR100849826B1 (ko) 2007-03-29 2008-07-31 삼성전기주식회사 발광소자 및 이를 포함하는 패키지
KR100855065B1 (ko) 2007-04-24 2008-08-29 삼성전기주식회사 발광 다이오드 패키지
DE102007022947B4 (de) * 2007-04-26 2022-05-05 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronischer Halbleiterkörper und Verfahren zur Herstellung eines solchen
US20080277678A1 (en) * 2007-05-08 2008-11-13 Huga Optotech Inc. Light emitting device and method for making the same
KR100982980B1 (ko) 2007-05-15 2010-09-17 삼성엘이디 주식회사 면 광원 장치 및 이를 구비하는 lcd 백라이트 유닛
KR100890714B1 (ko) 2007-05-25 2009-03-27 김윤관 진동융착장치
KR101164026B1 (ko) 2007-07-12 2012-07-18 삼성전자주식회사 질화물계 반도체 발광소자 및 그 제조방법
KR100887072B1 (ko) 2007-10-19 2009-03-04 삼성전기주식회사 반도체 발광소자, 및 이를 이용한 반도체 발광소자 패키지
KR100891761B1 (ko) 2007-10-19 2009-04-07 삼성전기주식회사 반도체 발광소자, 그의 제조방법 및 이를 이용한 반도체발광소자 패키지
US9634191B2 (en) * 2007-11-14 2017-04-25 Cree, Inc. Wire bond free wafer level LED
KR101428053B1 (ko) 2007-12-13 2014-08-08 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
TWI371873B (en) * 2008-02-22 2012-09-01 Huga Optotech Inc Semiconductor light-emitting device
DE102008032318A1 (de) * 2008-03-31 2009-10-01 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines solchen
KR101332794B1 (ko) 2008-08-05 2013-11-25 삼성전자주식회사 발광 장치, 이를 포함하는 발광 시스템, 상기 발광 장치 및발광 시스템의 제조 방법
KR20100030470A (ko) 2008-09-10 2010-03-18 삼성전자주식회사 다양한 색 온도의 백색광을 제공할 수 있는 발광 장치 및 발광 시스템
KR101530876B1 (ko) 2008-09-16 2015-06-23 삼성전자 주식회사 발광량이 증가된 발광 소자, 이를 포함하는 발광 장치, 상기 발광 소자 및 발광 장치의 제조 방법
US8008683B2 (en) 2008-10-22 2011-08-30 Samsung Led Co., Ltd. Semiconductor light emitting device
CN101937960B (zh) * 2010-08-20 2012-08-22 厦门市三安光电科技有限公司 一种垂直结构AlGaInP发光二极管及其制造方法
CN101931039B (zh) * 2010-08-23 2012-07-25 安徽三安光电有限公司 具有双层交错贯穿孔洞的氮化镓基发光二极管及其制作工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2357680A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332512A (zh) * 2010-07-12 2012-01-25 Lg伊诺特有限公司 发光器件
CN102332512B (zh) * 2010-07-12 2016-05-04 Lg伊诺特有限公司 发光器件
JP2013546200A (ja) * 2010-12-16 2013-12-26 マイクロン テクノロジー, インク. 接近可能な電極を具備する固体照明装置および製造方法
US20120168712A1 (en) * 2010-12-29 2012-07-05 Lextar Electronics Corporation High bright light emitting diode
US20120299047A1 (en) * 2011-05-23 2012-11-29 Tae Jin Kim Light emitting device, light emitting device package, and light unit
US20140219304A1 (en) * 2013-02-01 2014-08-07 Samsung Electronics Co., Ltd. Semiconductor light emitting device
US9300111B2 (en) * 2013-02-01 2016-03-29 Samsung Electronics Co., Ltd. Semiconductor light emitting device
CN110854251A (zh) * 2015-01-27 2020-02-28 首尔伟傲世有限公司 发光二极管
CN110854251B (zh) * 2015-01-27 2023-03-07 首尔伟傲世有限公司 发光二极管
CN110246948A (zh) * 2018-03-09 2019-09-17 三星电子株式会社 发光二极管封装件及其制造方法
CN113421953A (zh) * 2021-06-24 2021-09-21 马鞍山杰生半导体有限公司 深紫外发光二极管及其制作方法
CN113421953B (zh) * 2021-06-24 2022-12-13 马鞍山杰生半导体有限公司 深紫外发光二极管及其制作方法

Also Published As

Publication number Publication date
KR101601626B1 (ko) 2016-03-17
TWI488339B (zh) 2015-06-11
EP2357680B1 (en) 2017-01-04
DE102009030243A1 (de) 2010-05-12
US20150147835A1 (en) 2015-05-28
US8975653B2 (en) 2015-03-10
US20140070263A1 (en) 2014-03-13
EP2357680A2 (en) 2011-08-17
US9997663B2 (en) 2018-06-12
US20100096652A1 (en) 2010-04-22
US9680050B2 (en) 2017-06-13
US20120032218A1 (en) 2012-02-09
CN102217105A (zh) 2011-10-12
US20170323999A1 (en) 2017-11-09
CN102217105B (zh) 2015-04-22
US20180351033A1 (en) 2018-12-06
US10333023B2 (en) 2019-06-25
DE202009018090U1 (de) 2011-02-10
TW201034246A (en) 2010-09-16
WO2010047553A3 (ko) 2010-07-29
JP5256101B2 (ja) 2013-08-07
US8686454B2 (en) 2014-04-01
US8008683B2 (en) 2011-08-30
EP2357680A4 (en) 2014-07-09
KR20100044726A (ko) 2010-04-30
JP2010103469A (ja) 2010-05-06

Similar Documents

Publication Publication Date Title
WO2010047553A2 (ko) 반도체 발광 소자
WO2010056083A2 (ko) 반도체 발광소자
WO2010039014A2 (ko) 액정고분자를 이용한 발광다이오드 패키지
WO2017160119A1 (ko) 반도체 소자 및 이를 포함하는 표시장치
WO2017222279A1 (ko) 반도체 소자
WO2011099800A2 (ko) 형광체, 발광장치, 면광원장치, 디스플레이 장치 및 조명장치
WO2010002226A2 (ko) Led 패키지 및 그 led 패키지를 포함하는 백라이트 유닛
WO2011028033A2 (ko) 형광체, 형광체 제조방법 및 백색 발광 소자
WO2017191966A1 (ko) 반도체 소자 패키지
WO2013069924A1 (en) Light emitting device
WO2019054547A1 (ko) 발광소자 패키지 및 이를 포함하는 조명장치
WO2019045167A1 (ko) 발광소자 패키지 및 이를 구비한 광원 장치
WO2012020880A1 (ko) 형광체, 형광체 제조방법 및 백색 발광 소자
WO2019004518A1 (ko) 발광소자 패키지 및 광원 장치
WO2017078402A1 (ko) 광학 플레이트, 조명 소자 및 광원 모듈
WO2019074149A1 (ko) 발광소자 패키지 및 광원 장치
WO2018164371A1 (ko) 반도체 소자 및 반도체 소자 패키지
WO2018048275A1 (ko) 반도체 소자
WO2019132490A1 (ko) 반도체소자
WO2019045166A1 (ko) 발광소자 패키지
WO2017034356A1 (ko) 발광소자 및 이를 포함하는 발광소자 패키지
WO2019045513A1 (ko) 발광소자 패키지 및 이를 포함하는 조명장치
WO2019054548A1 (ko) 발광소자 패키지
WO2018052252A1 (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지
WO2016126066A1 (ko) 발광 모듈 및 이를 구비한 조명 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980142209.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09822229

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009822229

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009822229

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13125256

Country of ref document: US