CN115602764A - 半导体器件和包括该半导体器件的半导体器件封装 - Google Patents

半导体器件和包括该半导体器件的半导体器件封装 Download PDF

Info

Publication number
CN115602764A
CN115602764A CN202211246664.7A CN202211246664A CN115602764A CN 115602764 A CN115602764 A CN 115602764A CN 202211246664 A CN202211246664 A CN 202211246664A CN 115602764 A CN115602764 A CN 115602764A
Authority
CN
China
Prior art keywords
intensity
semiconductor layer
layer
conductive semiconductor
location
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211246664.7A
Other languages
English (en)
Inventor
崔洛俊
金炳祚
吴炫智
丁星好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Liyu Semiconductor Co ltd
Original Assignee
Suzhou Liyu Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160118243A external-priority patent/KR102648472B1/ko
Priority claimed from KR1020160140466A external-priority patent/KR102632215B1/ko
Priority claimed from KR1020170115836A external-priority patent/KR102400338B1/ko
Application filed by Suzhou Liyu Semiconductor Co ltd filed Critical Suzhou Liyu Semiconductor Co ltd
Priority claimed from PCT/KR2017/010065 external-priority patent/WO2018052252A1/ko
Publication of CN115602764A publication Critical patent/CN115602764A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本申请实施例公开了一种半导体器件和包括其的半导体器件封装,该半导体器件包括:发光结构,发光结构包括第一导电半导体层、第二导电半导体层和有源层,有源层设置在第一导电半导体层和第二导电半导体层之间;第二导电半导体层具有范围为1:1.25至1:100的第二最短距离W2与第一最短距离W1的比率,第二最短距离W2是从第一表面到第二点的距离,第一最短距离W1是从第一表面到第一点的距离;第一表面为第二半导体层的远离有源层的表面;第一点是第二导电半导体层的铝成分与有源层的最靠近第二导电半导体层的阱层的铝成分相同的点;并且第二点是第二导电半导体层具有与铝成分相同的掺杂剂成分的点。

Description

半导体器件和包括该半导体器件的半导体器件封装
本申请是国际申请日为2017年9月13日、国际申请号为PCT/KR2017/010065、进入中国国家阶段的申请号为201780056302.2,发明名称为“半导体器件和包括该半导体器件的半导体器件封装”的发明专利申请的分案申请。
相关申请的交叉引用
本申请要求享有于2016年9月13日在韩国递交的韩国专利申请第10-2016-0118243号、于2016年10月26日在韩国递交的韩国专利申请第10-2016-0140466号和于2017年9月11日在韩国递交的韩国专利申请第10-2017-0115836号的优先权,该申请的全部内容通过参考合并于此。
技术领域
实施例涉及一种半导体器件和一种包括该半导体器件的半导体器件封装。
背景技术
包括诸如GaN和AlGaN之类的化合物的半导体器件具有诸如可调节的宽带隙能之类的许多优点并且因此可以广泛用作发光器件、光接收器件、各种二极管等。
特别地,由于薄膜生长技术和器件材料的发展,使用III-V或II-VI族化合物半导体的发光器件或者诸如激光二极管之类的发光器件可以实现各种颜色的光,例如红光、绿光、蓝光和紫外光,也可以通过使用荧光材料或组合颜色实现高效的白色光线。与诸如荧光灯、白炽灯之类的传统光源相比,这些发光器件也具有低功耗、半永久寿命、快速响应速度、安全和环保等优点。
另外,当使用III-V或II-VI族化合物半导体制造诸如光学检测器或太阳能电池之类的光接收器件时,由于器件材料的发展,由于各种波长范围的光吸收可以产生光电流。因而,可以使用从伽马射线到无线电波长范围的各种波长范围内的光。另外,光接收器件具有快速响应时间、安全、环保以及易于调整器件材料的优点,并且可以容易地用于功率控制、微波电路或通信模块。
因此,半导体器件已经广泛用于以下场合:光通信装置的传输模块;替代冷阴极荧光灯(CCFL)的发光二极管背光,该冷阴极荧光灯(CCFL)用于形成液晶显示(LCD)器件的背光;白色发光二极管灯,用于替代荧光灯或白炽灯;车辆前灯;交通信号灯;以及用于检测气体或火灾的传感器。此外,半导体器件还可以广泛用于高频应用电路、其他功率控制器件以及甚至通信模块。
具体地,发出紫外线波长范围的光的发光器件由于其固化或消毒作用而可以用于固化、医疗和消毒用途。
近来,已经积极进行了有关紫外发光器件的研究,但是紫外发光器件难以垂直实现,并且在衬底分离工艺中的结晶度也降低。
发明内容
技术问题
实施例提供了一种垂直式紫外发光器件。
实施例还提供了一种具有增强的光输出功率的发光器件。
实施例要解决的问题不限于此,而是包括以下技术方案和通过实施例可理解的效果的目的。
解决方案
根据本发明的实施例的半导体器件包括:发光结构,发光结构包括第一导电半导体层、第二导电半导体层和有源层,有源层设置在第一导电半导体层和第二导电半导体层之间;与第一导电半导体层电连接的第一电极;以及与第二导电半导体层电连接的第二电极。第二导电半导体层可以包括其上设置有第二电极的第一表面。第二导电半导体层的第二最短距离W2与第一最短距离W1的比率(W2:W1)可以为1:1.25至1:100,第二最短距离W2是从第一表面到第二点的距离,第一最短距离W1是从第一表面到第一点的距离。第一点可以是这样一个点,在该点处,第二导电半导体层的铝成分与最靠近第二导电半导体层的有源层的阱层的铝成分相同。第二点可以是这样一个点,在该点处,第二导电半导体层具有与铝成分相同的掺杂剂成分。
发明的有益效果
根据实施例,可以制造垂直式紫外发光器件。
还可以增强光输出功率。
本发明的各种有利的优点和效果不限于以上描述,并且可以通过详细描述本发明的实施例容易地理解这些优点和效果。
附图说明
图1是根据本发明的实施例的发光结构的概念视图;
图2是示出根据本发明的实施例的发光结构的铝成分的曲线图;
图3是根据本发明的第一实施例的发光结构的二次离子质谱(SIMS)曲线图;
图4是图3的局部放大图;
图5是根据本发明的第二实施例的发光结构的SIMS曲线图;
图6是图5的局部放大图;
图7是根据本发明的第三实施例的发光结构的SIMS曲线图;
图8是图7的局部放大图;
图9是根据本发明的实施例的半导体器件的概念视图;
图10是示出根据本发明的实施例的半导体结构的铝成分的曲线图;
图11a和图11b示出了根据本发明的实施例的半导体结构的SIMS数据;
图11c和图11d示出了根据本发明的另一个实施例的半导体结构的SIMS数据;
图12是示出图11a至图11d的铝离子强度的图;
图13a是示出图12中的(a)部分放大的SIMS数据的图;
图13b是示出图12中的(b)部分的转换为线性标度的SIMS数据的图;
图14a是根据本发明的实施例的第二导电半导体层的概念视图;
图14b示出了通过测量根据本发明的实施例的第二导电半导体层的表面获得的AFM数据;
图14c示出了通过测量GaN薄膜的表面获得的AFM数据;
图14d示出了通过测量高速生长的第二导电半导体层的表面获得的AFM数据;
图15是根据本发明的实施例的半导体器件的概念视图;
图16a和图16b是示出其中光输出功率随着凹槽数量的变化而增强的配置的图;
图17是图15的A部分的放大图;
图18是根据本发明的另一个实施例的半导体器件的概念视图;
图19是图18的平面图;
图20是根据本发明的实施例的半导体器件封装的概念视图;
图21是根据本发明的实施例的半导体器件封装的平面图;
图22是图21的变型;
图23是根据本发明的另一个实施例的半导体器件封装的剖视图;
图24是根据本发明的实施例的发光结构的概念视图;
图25是示出根据本发明的实施例的发光结构的铝成分的曲线图;
图26是示出根据本发明的另一个实施例的发光结构的铝成分的曲线图;
图27是通过测量包括传统发光结构的半导体器件的光效率获得的曲线图;
图28是通过测量根据本发明的另一个实施例的发光结构的光效率获得的曲线图;
图29是示出根据本发明的又一个实施例的发光结构的铝成分的曲线图;
图30是生长在衬底上的发光结构的概念视图;
图31是示出分离衬底的工艺的图;
图32是示出蚀刻发光结构的工艺的图;以及
图33是示出制作的半导体器件的图。
具体实施方式
以下实施例可以进行修改或彼此结合,本发明的范围不限于这些实施例。
在具体实施例中描述的细节可以理解为是与其他实施例有关的描述,即使在其他实施例中没有这样的描述,除非另有说明或存在矛盾之处。
例如,当元件A的特征在一个具体实施例中描述,而元件B的特征在另一个实施例中描述时,将元件A和元件B彼此结合的实施例应理解为落入本发明的范围内,即使没有明确陈述,除非另有说明或存在矛盾之处。
在描述实施例时,如果将一个元件描述为位于另一个元件上方或下方,那么这两个元件可以彼此直接接触,或者一个或多个其他元件可以设置在这两个元件之间。另外,本文使用的词语“位于上方或下方”可以表示相对于一个元件的向上方向以及向下方向。
在下文,将参考附图详细描述示例性实施例,以使本领域技术人员容易实施。
根据本发明的实施例的发光结构可以输出紫外线波长光。例如,发光结构可以输出近紫外线波长光(UV-A)、远紫外线波长光(UV-B)或深紫外线波长光(UV-C)。波长范围可以通过发光结构120的铝成分来确定。
例如,近紫外线波长光(UV-A)的波长可以为320nm至420nm,远紫外线波长光(UV-B)的波长可以为280nm至320nm,以及深紫外线波长光(UV-C)的波长可以为100nm至280nm。
图1是根据本发明的实施例的发光结构的概念视图;图2是示出根据本发明的实施例的半导体结构的铝成分的曲线图。
参见图1,根据实施例的半导体器件包括发光结构,发光结构包括第一导电半导体层124、第二导电半导体层127以及有源层126,有源层126设置在第一导电半导体层124和第二导电半导体层127之间。
第一导电半导体层124可以由III-V族或II-VI族化合物半导体制成,并且可以掺杂有第一掺杂剂。第一导电半导体层124可以由选自经验式为Inx1Aly1Ga1-x1-y1N(0≤x1≤1、0≤y1≤1以及0≤x1+y1≤1)的多种半导体材料(例如,GaN、AlGaN、InGaN、InAlGaN等)中的一种材料制成。而且,第一掺杂剂可以是n型掺杂剂,例如Si、Ge、Sn、Se和Te。当第一掺杂剂是n型掺杂剂时,掺杂有第一掺杂剂的第一导电半导体层124可以是n型半导体层。
有源层126设置在第一导电半导体层124和第二导电半导体层127之间。有源层126是这样一个层,在该层中,通过第一导电半导体层124注入的电子(或空穴)与通过第二导电半导体层127注入的空穴(或电子)结合。由于电子和空穴之间的复合,有源层126可以转变为低能级,并产生具有紫外线波长的光。
有源层126可以具有单阱结构、多阱结构、单量子阱结构、多量子阱(MQW)结构、量子点结构以及量子线结构中的任何一种,但不限于此。
第二导电半导体层127可以形成在有源层126上,并且可以由III-V族或II-VI族化合物半导体制成。而且,第二导电半导体层127可以掺杂有第二掺杂剂。第二导电半导体层127可以由经验式为Inx5Aly2Ga1-x5-y2N(0≤x5≤1、0≤y2≤1以及0≤x5+y2≤1)的半导体材料制成或者由选自AlInN、AlGaAs、GaP、GaAs、GaAsP以及AlGaInP中的一种材料制成。当第二掺杂剂是p型掺杂剂时,例如Mg、Zn、Ca、Sr和Ba,掺杂有第二掺杂剂的第二导电半导体层127可以是p型半导体层。
第二导电半导体层127可以包括2-1(第二-初级(prime))导电半导体层127a、2-2(第二-二-初级)导电半导体层127b以及2-3(第二-三-初级)导电半导体层127c。2-1导电半导体层127a的铝成分可以低于2-2导电半导体层127b的铝成分。
电子阻挡层129可以设置在有源层126和第二导电半导体层127之间。电子阻挡层129可以阻挡第一导电半导体层124提供的电子流动到第二导电半导体层127,从而增加了电子和空穴在有源层126复合的可能性。电子阻挡层129的能带隙可以高于有源层126和/或第二导电半导体层127的能带隙。
电子阻挡层129可以由选自经验式为Inx1Aly1Ga1-x1-y1N(0≤x1≤1、0≤y1≤1以及0≤x1+y1≤1)的多种半导体材料(例如,AlGaN、InGaN、InAlGaN等)中的一种材料制成,但不限于此。含铝成分高的第一层129b以及含铝成分低的第二层129a可以交替设置在电子阻挡层129中。
参见图2,第一导电半导体层124、势垒层126b、阱层126a、2-1导电半导体层127a、2-2导电半导体层127b以及2-3导电半导体层127c都可以包含铝。因此,第一导电半导体层124、势垒层126b、阱层126a、2-1导电半导体层127a、2-2导电半导体层127b以及2-3导电半导体层127c都可以由AlGaN制成。然而,本发明不限于此。
电子阻挡层129可以具有50%至90%的铝成分。阻挡层129可以具有含铝成分较高的多个第一阻挡层129a以及含铝成分较低的多个第二阻挡层129b,这些第一阻挡层129a和第二阻挡层129b交替设置在阻挡层129中。当阻挡层129的铝成分小于50%时,用于阻挡电子的能量势垒可能不够高,并且阻挡层129可能吸收从有源层126发出的光。当阻挡层129的铝成分大于90%时,半导体器件的电气特性可能降低。
电子阻挡层129可以包括1-1部分129-1和1-2部分129-2。1-1部分129-1含有的铝成分可以朝向阻挡层129增加。1-1部分129-1可以具有80%至100%的铝成分。也就是说,1-1部分129-1可以由AlGaN或AlN制成。或者,1-1部分129-1可以是其中AlGaN和AlN交替设置的超晶格层。
1-1部分129-1的厚度可以是大约0.1nm至大约4nm。当1-1部分129-1的厚度小于0.1nm时,可能无法有效阻挡电子移动。当1-1部分129-1的厚度大于4nm时,有可能降低空穴注入有源层126的效率。
1-2部分129-2可以包括未掺杂部分。1-2部分129-2可以作用为防止掺杂剂从第二导电半导体层127扩散到有源层126。
2-2导电半导体层127b的厚度可以大于10nm且小于200nm。例如,2-2导电半导体层127b的厚度可以等于25nm。当2-2导电半导体层127b的厚度小于10nm时,电阻在水平方向上增加,从而可能降低电流注入效率。当2-2导电半导体层127b的厚度大于200nm时,电阻在垂直方向上增加,从而可能降低电流注入效率。
2-2导电半导体层127b的铝成分可以高于阱层126a的铝成分。为了产生紫外光,阱层126a可以具有大约30%至大约70%的铝成分。当2-2导电半导体层127b的铝成分低于阱层126a的铝成分时,2-2导电半导体层127b吸收光,因此有可能降低光提取效率。然而,为了防止发光结构的结晶度劣化,本发明不限于此。例如,在一些部分中,2-2导电半导体层127b的铝成分可以低于阱层126a的铝成分。
2-2导电半导体层127b可以具有大于40%且小于80%的铝成分。当2-2导电半导体层127b的铝成分小于40%时,光可能被吸收。当2-2导电半导体层127b的铝成分大于80%时,电流注入效率可能降低。例如,当阱层126a的铝成分是30%时,2-2导电半导体层127b的铝成分可以是40%。
2-1导电半导体层127a的铝成分可以低于阱层126a的铝成分。当2-1导电半导体层127a的铝成分高于阱层126a的铝成分时,因为2-1导电半导体层127a与p欧姆电极之间的电阻增加,所以2-1导电半导体层127a不能与p欧姆电极充分地欧姆接触,从而有可能降低电流注入效率。
2-1导电半导体层127a可以具有大于1%且小于50%的铝成分。当铝成分大于50%时,2-1导电半导体层127a有可能不能与p欧姆电极充分地欧姆接触。当铝成分小于大约1%时,2-1导电半导体层127a含有的成分接近GaN,因此可以吸收光。
2-1导电半导体层127a的厚度可以是1nm至30nm或1nm至10nm。如上所述,2-1导电半导体层127a所含的铝成分很低使得其可以欧姆化,并因此可以吸收紫外光。因此,就光输出功率而言,将2-1导电半导体层127a调整为尽可能薄可能是有利的。
然而,当2-1导电半导体层127a的厚度控制在1nm或更小时,在一些部分中可能没有设置2-1导电半导体层127a,并且可能存在这样一个区域,在该区域中,2-2导电半导体层127b暴露于发光结构120的外部。另外,当厚度大于30nm时,吸收的光量如此大,以致使光输出功率效率有可能降低。
2-1导电半导体层127a的厚度可以小于2-2导电半导体层127b的厚度。2-2导电半导体层127b与2-1导电半导体层127a的厚度比率的范围可以是1.5:1至20:1。当厚度比率小于1.5:1时,2-2导电半导体层127b如此薄,使得电流注入效率有可能降低。当厚度比率大于20:1时,2-1导电半导体层127a过薄,从而欧姆可靠性可能降低。
随着2-2导电半导体层127b远离有源层126,2-2导电半导体层127b的铝成分可以降低。此外,随着2-1导电半导体层127a远离有源层126,2-1导电半导体层127a的铝成分可能减少。
在这种情况下,2-1导电半导体层127a的铝成分减少的程度可以大于2-2导电半导体层127b的铝成分减少的程度。也就是说,2-1导电半导体层127a在厚度方向上的铝成分的变化可以比2-2导电半导体层127b在厚度方向上的铝成分的变化大。
2-2导电半导体层127b的厚度大于2-1导电半导体层127a的厚度并且含有的铝成分高于阱层126a的铝成分。因此,2-2导电半导体层127b的铝成分可以相对缓慢地减少。
然而,2-1导电半导体层127a的厚度较小,并且铝成分的变化较大。因此,2-1导电半导体层127a的铝成分减少程度比较大。
2-3导电半导体层127c可以具有均匀的铝成分。2-3导电半导体层127c的厚度可以为20nm至60nm。2-3导电半导体层127c可以具有40%至70%的铝成分。
图3是根据本发明的第一实施例的发光结构的二次离子质谱(SIMS)曲线图,图4是图3的局部放大图。
参见图3和图4,发光结构的铝成分和p-型杂质(Mg)成分可以随着其厚度减小而改变。第二导电半导体层127的铝成分可以减少,并且第二导电半导体层127的p-型杂质(Mg)成分可以朝向其表面而增加。
第二导电半导体层127可以具有第二最短距离W2与第一最短距离W1的比率(W2:W1),其范围是1:1.25至1:100或1:1.25至1:10,第二最短距离W2是表面(第一表面,厚度为零)和第二点P21之间的距离,第一最短距离W1是表面和第一点P11之间的距离。
当第二最短距离W2与第一最短距离W1的比率(W2:W1)小于1:1.25时,第一最短距离W1和第二最短距离W2很接近,使得铝成分会快速变化。当比率W2:W1大于1:100时,第二导电半导体层127的厚度太大,使得第二导电半导体层127的结晶度可能降低或者施加到衬底的应力可能增加,从而使从有源层发出的光的波长变化。
这里,在第一点P11,第二导电半导体具有与阱层126a相同的铝成分,阱层126a是离第二导电半导体最近的有源层的一部分。第一点P11的范围可以被限定为通过SIMS测量的光谱。第一点P11的范围可以被限定为第二导电半导体层的一部分,该第二导电半导体层的铝成分与有源层的阱层的铝成分相同。
为了测量第一点P11,可以应用使用SIMS光谱的方法,但本发明不限于此。再如,还可以应用TEM和XRD测量方法。简单地说,第一点P11可以通过SIMS光谱进行限定。
第二点P21可以是SIMS光谱的点,在该点,第二导电半导体层的掺杂剂(例如,Mg)的光谱与铝的光谱相交。
在测量期间,第二导电半导体层的掺杂剂的取值单位可以根据具体情况而不同。然而,2-1导电半导体层127a和2-2导电半导体层127b之间的边界区域可以包含在这样一个点的范围内,在该点,包含第二导电半导体层的铝成分的拐点的区域与第二导电半导体层的掺杂剂的光谱相交。因此,可以测量2-1导电半导体层127a和2-2导电半导体层127b之间的边界区域并限定其范围。
然而,本发明不限于此,第二点P21可以是位于含5%至55%的铝成分的区域内的点。当第二点P21的铝成分小于5%时,2-1导电半导体层127a过薄,使得半导体的功耗效率有可能降低。当第二点P21的铝成分大于55%时,2-1导电半导体层127a过厚,使得光提取效率有可能降低。在这种情况下,第二点P21的铝成分可以小于第一点P11的铝成分。例如,第二点P21可以具有40%至70%的铝成分。
例如,第一最短距离W1可以是25nm至100nm,第二最短距离W2可以是1nm至20nm。
第一差值H1与第二差值H2的比率(H1:H2)可以是1:1.2至1:10,第一差值H1是电子阻挡层129的平均铝成分与第一点P11的铝成分之间的差值,第二差值H2是电子阻挡层129的平均铝成分与第二点P21的铝成分之间的差值。
当第一差值与第二差值的比率(H1:H2)小于1:1.2时,第一点P11和第二点P21之间的部分的铝成分变化缓慢,因此减少接触层的铝成分比较困难。此外,当第一差值与第二差值(H1:H2)的比率大于1:10时,铝成分变化迅速,因此有可能增加有源层发出的光的吸收概率。
图5是根据本发明的第二实施例的发光结构的SIMS曲线图,图6是图5的局部放大图,图7是根据本发明的第三实施例的发光结构的SIMS曲线图,图8是图7的局部放大图。
参见图5至图8,可以看出第二最短距离W2与第一最短距离W1的比率是1:1.25至1:100或1:1.25至1:10。例如,参见图8,可以看出第一点P13和第二点P23彼此很靠近。
此外,还可以看出,第一差值H1与第二差值H2的比率(H1:H2)可以是1:1.2至1:10,第一差值H1是电子阻挡层129的平均铝成分与第一点P12和P13的铝成分之间的差值,第二差值H2是电子阻挡层129的平均铝成分与第二点P22和P23的铝成分之间的差值。
当满足这样的条件时,第二导电半导体层127的表面的铝成分可以调节为1%至10%。
图9是根据本发明的实施例的半导体结构的概念视图,图10是示出根据本发明的实施例的半导体结构的铝成分的曲线图。
参见图9和10,根据实施例的半导体器件包括半导体结构120,半导体结构120包括第一导电半导体层124、第二导电半导体层127以及有源层126,有源层126设置在第一导电半导体层124和第二导电半导体层127之间。
根据本发明的实施例的半导体结构120可以输出紫外线波长光。例如,半导体结构120可以输出近紫外线波长光(UV-A)、远紫外线波长光(UV-B)或深紫外线波长光(UV-C)。波长范围可以通过半导体结构120的铝成分来确定。
例如,近紫外线波长光(UV-A)的波长可以为320nm至420nm,远紫外线波长光(UV-B)的波长可以为280nm至320nm,以及深紫外线波长光(UV-C)的波长可以为100nm至280nm。
当半导体结构120发射紫外线波长光时,半导体结构120的每个半导体层均可以包括含铝的材料Inx1Aly1Ga1-x1-y1N(0≤x1≤1、0<y1≤1、0≤x1+y1≤1)。这里,铝成分可以表示为Al的原子量与总原子量的比率,总原子量包括In的原子量、Ga的原子量以及Al的原子量。例如,当铝成分为40%,Ga成分为60%时,材料可以是Al40Ga60N。
而且,在描述实施例时,成分高低可以通过每个半导体层的成分百分比(和/或百分点)之差来理解。例如,当第一半导体层具有30%的铝成分而第二导电半导体层具有60%的铝成分时,第二导电半导体层的铝成分可以表示为比第一半导体层的铝成分高30%。
第一导电半导体层124可以由III-V族或II-VI族化合物半导体制成,并且可以掺杂有第一掺杂剂。第一导电半导体层124可以由选自经验式为Inx1Aly1Ga1-x1-y1N(0≤x1≤1、0≤y1≤1以及0≤x1+y1≤1)的多种半导体材料(例如,AlGaN、AlN、InAlGaN等)中的一种材料制成。而且,第一掺杂剂可以是n型掺杂剂,例如Si、Ge、Sn、Se和Te。当第一掺杂剂是n型掺杂剂时,掺杂有第一掺杂剂的第一导电半导体层124可以是n型半导体层。然而,本发明不限于此,第一导电半导体层124可以是p型半导体层。
第一导电半导体层124可以包括1-1导电半导体层124a、1-2导电半导体层124c以及中间层124b,中间层124b设置在1-1导电半导体层124a和1-2导电半导体层124c之间。
1-1导电半导体层124a可以具有50%至80%的铝成分。当1-1导电半导体层124a的铝成分大于50%时,可以通过降低从有源层126发射的深紫外线波长光(UV-C)的吸收率来提高光提取效率。当1-1导电半导体层124a的铝成分小于80%时,可以确保有源层126的电流注入特性和1-1导电半导体层124a的电流扩散特性。
1-2导电半导体层124c可以设置为比1-1导电半导体层124a更靠近有源层126。1-2导电半导体层124c的铝成分可以低于1-1导电半导体层124a的铝成分。
当半导体结构120发射深紫外线波长光(UV-C)时,1-2导电半导体层124c的铝成分可以在40%至70%的范围内。
当1-2导电半导体层124c的铝成分大于或等于40%时,可以通过降低从有源层126发射的深紫外线波长光(UV-C)的吸收率来提高光提取效率。当1-2导电半导体层124c的铝成分小于或等于70%时,可以确保有源层126的电流注入特性和1-2导电半导体层124c的电流扩散特性。
1-1导电半导体层124a的铝成分和1-2导电半导体层124c的铝成分高于阱层126a的铝成分。因此,当有源层126发射紫外线波长光时,可以降低半导体结构120中的紫外线波长光的吸收率。
此外,当1-2导电半导体层124c的铝成分高于1-1导电半导体层124a的铝成分时,由于折射率不同,可以容易地将光从有源层126提取到半导体结构120的外部。因此,可以提高半导体结构120的光提取效率。
1-2导电半导体层124c可以比1-1导电半导体层124a薄。1-1导电半导体层124a的厚度可以大于或等于1-2导电半导体层124c的厚度的130%。根据这种配置,在充分确保含铝成分高的1-1导电半导体层124a的厚度之后再设置中间层124b。因此,可以提高半导体结构120的整体结晶度。
中间层124b的铝成分可以低于第一导电半导体层124的铝成分和第二导电半导体层127的铝成分。在用于去除生长衬底的激光剥离(LLO)工艺期间,中间层124b可用于吸收发射到半导体结构120的激光以防止损坏有源层126。因此,根据实施例的半导体器件可以防止在LLO工艺期间损坏有源层126,从而增强光输出功率和电气特性。
而且,当中间层124b与第一电极接触时,中间层124b的铝成分可以低于1-1导电半导体层124a的铝成分和1-2半导体层124c的铝成分,以减小中间层124b和第一电极之间的电阻,因此确保电流注入效率。
可以适当调节中间层124b的厚度和铝成分,以吸收在LLO工艺期间发射到半导体结构120的激光。因此,中间层124b的铝成分可以对应于LLO工艺期间使用的激光的波长。
当LLO激光的波长为200nm至300nm时,中间层124b可以具有30%至70%的铝成分以及1nm至10nm的厚度。
例如,当LLO激光的波长小于270nm时,中间层124b的铝成分可以增加以对应于LLO激光的波长。例如,中间层124b的铝成分可以增加至50%至70%。
当中间层124b的铝含量高于阱层126a的铝含量时,中间层124b可能不能吸收从有源层126发射的光。因此,可以提高光提取效率。根据本发明的实施例,LLO激光的波长可以小于从阱层126a发射的光的波长。因此,中间层124b可以具有合适的铝成分,以使中间层124b吸收LLO激光但不吸收从阱层126a发射的光。
中间层124b可以包括第一中间层(未示出)和第二中间层(未示出),第一中间层的铝成分低于第一导电半导体层124的铝成分,第二中间层的铝成分高于第一导电半导体层124的铝成分。多个第一中间层和多个第二中间层可以交替设置。
有源层126可以设置在第一导电半导体层124和第二导电半导体层127之间。有源层126可以包括多个阱层126a和多个势垒层126b。阱层126a是这样一个层,在该层中,通过第一导电半导体层124注入的第一载流子(电子或空穴)与通过第二导电半导体层127注入的第二载流子(空穴或电子)结合。当导带中的第一载流子(或第二载流子)以及价带中的第二载流子(或第一载流子)在有源层126的阱层126a中复合时,可以产生波长对应于阱层126a的导带和价带之间的能级差(能带隙)的光。
有源层126可以具有单阱结构、多阱结构、单量子阱结构、多量子阱(MQW)结构、量子点结构以及量子线结构中的任何一种,但不限于此。
有源层126可以包括多个阱层126a和多个势垒层126b。这些阱层126a和势垒层126b中的每一个均可以具有经验式Inx2Aly2Ga1-x2-y2N(0≤x2≤1、0<y2≤1以及0≤x2+y2≤1)。阱层126a含有的铝成分可以根据发光波长而不同。
第二导电半导体层127可以形成在有源层126上,并且可以由III-V族或II-VI族化合物半导体制成。而且,第二导电半导体层127可以掺杂有第二掺杂剂。
第二导电半导体层127可以由具有经验式Inx5Aly2Ga1-x5-y2N(0≤x5≤1、0<y2≤1、以及0≤x5+y2≤1)的半导体材料或选自AlInN、AlGaAs、GaP、GaAs、GaAsP和AlGaInP的材料制成。
当第二掺杂剂是诸如Mg、Zn、Ca、Sr和Ba的p型掺杂剂时,掺杂有第二掺杂剂的第二导电半导体层127可以是p型半导体层。然而,本发明不限于此,第二导电半导体层124可以是n型半导体层。
第二导电半导体层127可以包括2-1导电半导体层127a、2-2导电半导体层127b以及2-3导电半导体层127c。2-1导电半导体层127a的铝成分可以低于2-2导电半导体层127b的铝成分和2-3导电半导体层127c的铝成分。
阻挡层129可以设置在有源层126和第二导电半导体层127之间。阻挡层129可以阻挡从第一导电半导体层124提供的电子流到第二导电半导体层127,从而增加电子和空穴在有源层126中彼此复合的可能性。阻挡层129的能带隙可以高于有源层126和/或第二导电半导体层127的能带隙。阻挡层129掺杂有第二掺杂剂,因而可以定义为第二导电半导体层127的部分区域。
阻挡层129可以由从经验式为Inx1Aly1Ga1-x1-y1N(0≤x1≤1、0<y1≤1以及0≤x1+y1≤1)的多种半导体材料(例如,AlGaN、AlN、InAlGaN等)中选择的材料制成,但不限于此。
根据实施例,第一导电半导体层124、有源层126、第二导电半导体层127和阻挡层129都可以包含铝。因此,第一导电半导体层124、有源层126、第二导电半导体层127以及阻挡层129可以含有成分AlGaN、InAlGaN或AlN。
阻挡层129的铝成分可以高于阱层126a的铝成分。例如,阻挡层129的铝成分可以在50%至100%的范围内。当阻挡层129的铝成分大于或等于50%时,阻挡层129可以具有足够的能量势垒来阻挡第一载流子,并且可能无法吸收从有源层126发射的光。
阻挡层129可以包括1-1部分129a和1-2部分129c。
1-1部分129a含有的铝成分可以从第一导电半导体层124朝向第二导电半导体层127增加。
1-1部分129a的铝成分可以为80%至100%。因此,阻挡层129的1-1部分129a可以是半导体结构120中含有最高铝成分的部分。
1-1部分129a可以包括AlGaN或AlN。或者,1-1部分129a可以是其中AlGaN和AlN交替设置的超晶格层。
1-1部分129a的厚度可以是大约0.1nm至大约4nm。为了有效阻挡第一载流子移动到第二导电半导体层127,1-1部分129a可以形成0.1nm或更大的厚度。而且,为了确保从第二导电半导体层127注入到有源层126的第二载流子的注入效率,1-1部分129a可以形成4nm或更小的厚度。
在一个实施例中,1-1部分129a形成0.1nm至4nm的厚度,以确保空穴注入效率和电子阻挡效率,但不限于此。例如,当需要选择性地进一步确保第一载流子阻挡功能和第二载流子注入功能中的任何一种时,可能与前述数值范围存在偏差。
设置在1-1部分129a和1-2部分129c之间的1-3部分129b可以包括不含有掺杂剂的未掺杂部分。因此,1-3部分129b可用于防止第二掺杂剂从第二导电半导体层127扩散到有源层126。
第二导电半导体层127可以包括2-1导电半导体层127a、2-2导电半导体层127b和2-3导电半导体层127c。
2-2导电半导体层127b的厚度可以大于10nm且小于50nm。例如,2-2导电半导体层127b的厚度可以等于25nm。当2-2导电半导体层127b的厚度大于或等于10nm时,可以确保2-2导电半导体层127b的电流扩散特性。此外,当该厚度小于或等于50nm时,可以确保将第二载流子注入到有源层126中的注入效率并且降低2-2导电半导体层127b中对有源层126发射的光的吸收率。
2-2导电半导体层127b含有的铝成分可以高于阱层126a含有的铝成分。为了产生紫外光,阱层126a的铝成分可以为大约30%至大约70%。因此,2-2导电半导体层127b的铝成分可以在40%至80%的范围内。
当2-2导电半导体层127b的铝成分大于或等于40%时,可以减少光吸收,并且当2-2导电半导体层127b的铝成分小于或等于80%时,还可以减缓电流注入效率的劣化。例如,当阱层126a的铝成分等于30%时,2-2导电半导体层127b的铝成分可以等于40%。
2-1导电半导体层127a的铝成分可以低于阱层126a的铝成分。当2-1导电半导体层127a的铝成分高于阱层126a的铝成分时,2-1导电半导体层127a和第二电极由于其间的电阻增加而不能充分地欧姆接触,并且还会降低电流注入效率。
2-1导电半导体层127a的铝成分可以在1%至50%的范围内。当铝成分小于或等于50%时,可以降低第二电极的电阻。当该铝成分大于或等于1%时,可以减少2-1导电半导体层127a中的光吸收。2-1导电半导体层127a的铝成分可以低于中间层124的铝成分。
1-1导电半导体层127a的厚度可以是1nm至30nm。因此,因为2-1导电半导体层127a能够吸收紫外光,所以就光输出功率而言,将2-1导电半导体层127a调整为尽可能薄可能是比较有利的。
然而,当2-1导电半导体层127a的厚度大于或等于1nm时,可以减小2-1导电半导体层127a的电阻,从而改善半导体器件的电气特性。此外,当该厚度小于或等于30nm时,可以通过减少2-1导电半导体层127a吸收的光量来提高光输出功率效率。
2-1导电半导体层127a的厚度可以小于2-2导电半导体层127b的厚度。2-1导电半导体层127a与2-2导电半导体层127b的厚度比率可以在1:1.5至1:20的范围内。当厚度比率大于1:1.5时,2-2导电半导体层127b的厚度增加,从而可以提高电流注入效率。此外,当厚度比率小于1:20时,2-1导电半导体层127a的厚度增加,从而可以减缓结晶度的劣化。当2-1导电半导体层127a过薄时,需要铝成分在厚度范围内快速变化,因此可以降低结晶度。
2-2导电半导体层127b含有的铝成分可以随着远离有源层126而减少。此外,2-1导电半导体层127a含有的铝成分可以随着远离有源层126而减少。
在这种情况下,2-1导电半导体层127a在厚度上的铝的减少程度可以大于2-2导电半导体层127b在厚度上的铝的减少程度。也就是说,2-1导电半导体层127a在厚度方向上的铝成分的变化可以大于2-2导电半导体层127b在厚度方向上的铝成分的变化。
2-1导电半导体层127a的铝成分可以低于阱层126a的铝成分,以实现与第二电极的低接触电阻。因此,2-1导电半导体层127a可以吸收从阱层126a发射的一部分光。
因此,为了抑制光吸收,2-1导电半导体层127a可以形成1nm至30nm的厚度。
结果是,2-1导电半导体层127a的厚度较小但铝的变化比较大。因此,2-1导电半导体层127a可以具有在厚度上相对高的铝的减少程度。
另一方面,2-2导电半导体层127b比2-1导电半导体层127a厚,并且含有的铝成分高于阱层126a的铝成分。因而,2-2导电半导体层127b含有的铝可以相对缓慢地减少。
由于2-1导电半导体层127a比较薄且铝成分在厚度上的变化较大,因而可以在相对缓慢地生长2-1导电半导体层127a的同时改变铝成分。
2-3导电半导体层127c可以具有均匀的铝成分。2-3导电半导体层127c的厚度可以是20nm至60nm。2-3导电半导体层127c可以具有40%至70%的铝成分。当2-3导电半导体层127c的铝成分大于或等于40%时,降低2-1导电半导体层127a和2-2导电半导体层127b的结晶度是不太可能的。当铝成分小于70%时,可以防止由于2-1导电半导体层127a和2-2导电半导体层127b的铝成分快速变化导致的结晶度降低,从而增强半导体器件的电气特性。
如上文所述,2-1导电半导体层127a的厚度可以是1nm至10nm,2-2导电半导体层127b的厚度可以是10nm至50nm,2-3导电半导体层127c的厚度可以是20nm至60nm。
因此,2-1导电半导体层127a的厚度与第二导电半导体层127的总厚度的比率可以在1:3至1:120的范围内。当比率大于1:3时,2-1导电半导体层127a可以确保半导体器件的电气特性(例如,工作电压)。当比率小于1:120时,2-1导电半导体层127a可以确保半导体器件的光学特性(例如,光输出功率)。然而,本发明不限于此,2-1导电半导体层127a的厚度与第二导电半导体层127的总厚度的比率可以在1:3至1:150或1:3到1:70的范围内。
根据本发明的实施例的第二导电半导体层127可以具有第一点P1和第三点P3,在第一点P1半导体结构的铝成分最高,在第三点P3半导体结构的铝成分最低。这里,第一点P1可以是铝成分最高的阻挡层129的1-1部分129a,第三点P3可以是铝成分最低的2-1导电半导体层127a。
第一导电半导体层124可以具有第二点P2和第四点P4,在第二点P2第一导电半导体层的铝成分最高,在第四点P4第一导电半导体层的铝成分最低。第二点P2可以是1-1导电半导体层124a和/或1-2导电半导体层124c,第四点P4可以是中间层124b。
1-1部分129a可以具有80%至100%的铝成分。2-1导电半导体层127a可以具有1%至50%的铝成分。在这种情况下,2-1导电半导体层127a含有的铝成分可以低于阱层126a含有的铝成分。
因此,第三点P3和第一点P1之间的铝成分比率可以在1:4至1:100的范围内。当铝成分比率大于或等于1:4时,第一点P1的铝成分可以增加,从而有效阻挡第一载流子穿过第二导电半导体层。当铝成分比率小于或等于1:100时,第三点P3的铝成分可以增加,从而减少第三点P3处的光吸收。
1-1导电半导体层124a可以具有50%至80%的铝成分。中间层124b可以具有30%至70%的铝成分。在这种情况下,中间层124b的铝成分可以低于1-1导电半导体层的铝成分。因此,第四点P4和第二点P2之间的铝成分比率可以在1:0.5至1:0.9的范围内。
当铝成分比率大于或等于1:0.5时,1-1导电半导体层124a的铝成分可以增加,从而提高结晶度。当铝成分比率小于或等于1:0.9时,中间层124b的铝成分可以增加,从而减少紫外线波长光的吸收。
图11a和图11b示出了根据本发明的实施例的半导体结构的SIMS数据,图11c和图11d示出了根据本发明的另一个实施例的半导体结构的SIMS数据,图12是示出图11a至图11d的铝离子强度的图,图13a是示出图12(a)的部分放大的SIMS数据的图,图13b是示出图12(b)的转换为线性标度的SIMS数据的图。
参见图11a,半导体结构可以具有成分铝(Al)、镓(Ga)、第一掺杂剂、第二掺杂剂、氧(O)和碳(C),这些成分在从第一导电半导体层124到第二导电半导体层127的方向上变化。第一掺杂剂可以是硅(Si),第二掺杂剂可以是镁(Mg)。然而,本发明不限于此。
可以通过飞行时间二次离子质谱(TOF-SIMS)分析SIMS数据。
可以通过将初级离子发射到目标表面并计算排出的二次离子的数量来分析SIMS数据。在这种情况下,可以从O2+、Cs+、Bi+等中选择初级离子,可以调节加速电压使其处于大约20keV至30keV的范围内,可以调节发射电流使其处于大约0.1pA至5.0pA的范围内,目标面积可以为20nm×20nm。
可以通过在朝向第一导电半导体层的方向上逐渐蚀刻第二导电半导体层的表面(深度为零的点)的同时收集二次离子质谱来获得SIMS数据。
然而,本发明不限于此,可以采用不同的测量条件来检测AlGaN基和/或GaN基半导体材料、第一掺杂剂材料和第二掺杂剂材料。
此外,可以通过解释二次离子强度的光谱或每种材料的掺杂浓度来获得SMIS分析结果。当二次离子强度或掺杂浓度得到解释时,结果可以包括以0.9到1.1的因子产生的噪音。因此,词语“相同/等同”指的是包括相对于特定的二次离子强度或掺杂浓度以0.9到1.1的因子为比例的噪音。
图11a至图11d的SIMS数据中的铝和镓是二次离子强度的光谱数据,第一掺杂剂、第二掺杂剂、氧和碳是通过测量掺杂浓度获得的数据。即,图11a至11d放在单个图中来表示SIMS数据和掺杂浓度数据。
参照图11a,其示出了铝的强度水平的光谱和第一掺杂剂和第二掺杂剂的浓度的光谱彼此部分相交。然而,关于强度的数据以及关于掺杂剂浓度的数据可以具有独立的关系。
例如,示出了铝离子强度和第二掺杂剂的掺杂浓度在表面附近(深度为零的点)彼此相交。然而,当将掺杂浓度参考点(即,位于该图左边的Y轴的最低点)设置为较低时,掺杂浓度可以在曲线图上降低。例如,当第二掺杂剂掺杂浓度的参考点从1.00E+14减小到1.00E+12时,第二掺杂剂浓度在曲线图上降低,因而第二掺杂剂数据和铝数据可能彼此不相交。
第一掺杂剂、第二掺杂剂、氧或碳的浓度的测量方法不限于特定形式。而且,在本实施例中,示出了纵轴(即,Y轴)并将其转换为对数刻度。
可以看出,铝离子强度随着距离表面的深度而逐渐增加,并且在最大强度点之后铝离子强度交替增加和减小。由于通过在GaN基半导体材料中用Ga原子取代Al原子来形成材料AlGaN,因而镓离子强度可以与铝离子强度对称。
根据实施例的离子强度可以根据测量条件增加或减小。然而,二次离子强度(例如,铝离子)通常可以在初级离子强度增加时在曲线图上增加,并且二次离子强度通常可以在初级离子强度减小时减小。因此,即使测量条件改变,离子强度在厚度方向上的改变也可以是相似的。
第二掺杂剂的掺杂浓度在表面上可以是最高的并且随着远离表面可以逐渐降低。第二掺杂剂可以存在于第二导电半导体层的所有区域和有源层的一些区域中,但不限于此。第二掺杂剂可以仅布置在第二导电半导体层中,但是可以向上扩散到有源层。因此,可以提高将第二掺杂剂注入有源层的注入效率。然而,当第二掺杂剂向上扩散到第一导电半导体层时,可能发生半导体器件的漏电流和/或第一载流子和第二载流子之间的非辐射复合,从而降低半导体器件的可靠性和/或发光效率。
第一掺杂剂可以在第一导电半导体层和有源层之间具有部分R1,在部分R1中第一掺杂剂的浓度低于氧的浓度。第一掺杂剂甚至可以部分分布在有源层中。因此,可以提高注入有源层的第一载流子的注入效率,并且还可以提高第一载流子和第二载流子之间的辐射复合效率。
可以确认图11b至图11d示出了与图11a相同的趋势。
参见图12和图13a,铝离子强度可以包括第一点至第六点P1、P2、P3、P4、P5和P6的铝离子强度。图12中的(a)部分示出了图11a的铝离子强度,图12中的(b)部分示出了图11b的铝离子强度,图12中的(c)部分示出了图11c的铝离子强度,图12中的(d)部分示出了图11d的铝离子强度。
图12中的(c)部分和图12中的(d)部分示出了与图12中的(a)部分的铝离子强度的分布类似的分布,除了位于第一点P1和第三点P3之间的离子强度改变的凹凸部分P7之外。例如,根据图12中的(c)部分和图12中的(d)部分的实施例,存在这样一种结构,在该结构中还在阻挡层上设置超晶格层。
第一点P1的铝离子强度在半导体结构120中可以是最高的。由于第一点P1的铝离子强度最高,因而可以防止第一载流子与第二载流子在第二导电半导体层中进行非辐射复合。因此,可以提高半导体器件的光输出功率。第一点P1可以是与阻挡层129的1-1部分129a对应的区域,但不限于此。
第二点P2的二次离子强度可以对应于从第一点P1沿第一方向D(即,深度增加的方向)延伸的具有铝离子强度的多个点中铝离子强度最高的点。
第二点P2可以是第一导电半导体层124的铝离子强度最高的点,并且还可以是第一导电半导体层124中最靠近有源层126的点。
第二点P2可用于通过在第一导电半导体层124中减少注入有源层的第一载流子能量来平衡在有源层中复合的第一载流子和第二载流子的浓度或密度。因此,可以提高发光效率,从而改善半导体器件的光输出功率特性。
第三点P3的第三离子强度可以对应于从第一点P1到半导体结构120的表面的方向(与第一方向相反的方向)上的铝离子强度最低的点。
当第三点P3与第二电极接触时,因为第三点P3的铝离子强度最低,所以第三点P3和第二电极之间的电阻可以较低。因此,可以确保通过第二电极将电流注入半导体结构120的注入效率。
第四点P4的第四离子强度可以对应于从第二点P2在第一方向上铝离子强度最低的点。
当在半导体器件的工艺期间应用LLO工艺时,第四点P4可以吸收激光,使得激光不穿透有源层,从而防止由LLO工艺造成的对有源层的损坏。
而且,当第四点P4与第一电极接触时,可以通过减小第一电极和第四点P4之间的电阻来提高电流注入到半导体结构中的注入效率。在这方面,第四点P4的铝离子强度可以是从第二点P2在第一方向上铝离子强度最低的点。
第五点P5可以设置在第二点P2和第四点P4之间。第五点P5的铝离子强度可以在第二点P2的铝离子强度与第四点P4的铝离子强度之间。第五点P5可以是单个具体点,或者可以形成为单个层。通过在包括第五点P5的层中均匀分布经由第四点P4注入的电流,可以改善的是使注入有源层的电流的每单位面积密度均匀。
此外,可以从第四点P4沿第一方向D单独设置多个点(或层),这些点(或层)的铝离子强度与第五点P5的铝离子强度相同或类似。也就是说,可以存在这样一个部分,在该部分中,离子强度从第四点P4沿第一方向增加。因此,第四点P4可以设置在多个点(或层)之间,这些点(或层)的铝离子强度与第五点P5的铝离子强度相同。然而,本发明不限于此,在第一方向D上与第五点P5分开并且在第一方向D上间隔得比第四点P4远的区域的铝离子强度可以高于第五点P5的铝离子强度。
第十点P10可以设置在第一点P1和第三点P3之间,并且可以具有与点S22相同的铝离子强度,点S22位于第一点P1和第二点P2之间且离子强度最低。
第十点P10和第三点P3之间的区域可以具有1nm至30nm的厚度,以抑制半导体器件发射的光的吸收并降低与第二电极的接触电阻。
而且,与第二电极电连接的第三点P3的导电性可以低于与第一电极连接的第四点P4的导电性。因此,第三点P3的离子强度可以小于第四点P4的离子强度。
第十点P10和第三点P3之间的铝离子强度的平均变化可以大于第一点P1和第十点P10之间的铝离子强度的平均变化。这里,可以通过将铝离子强度的最大变化除以厚度来获得平均变化。
位于第三点P3和第十点P10之间的区域S11可以具有这样一个部分,在该部分,铝离子强度朝向表面S0减小,并且区域S11还具有反向部分P6,在反向部分P6,铝离子强度不朝向表面S0减小。反向部分P6可以是这样一个部分,在该部分铝离子强度朝向表面S0增加或保持不变。
当反向部分P6设置在第三点P3和第十点P10之间的区域中时,通过第三点P3注入的电流可以均匀地扩散,并且因此可以控制注入有源层的电流密度是均匀的。因此,可以增强半导体器件的光输出功率特性和电气特性。
可以通过温度控制反向部分P6。例如,第三点P3和第十点P10之间的区域可以具有通过温度控制来控制的铝成分。在这种情况下,当温度降低过快时,可以显著降低第二导电半导体层的结晶度。
因此,在连续降低或升高温度的过程中,在已经降低的温度升高时立即包含大量的铝,因而可以形成反向部分P6。
也就是说,在具有的铝离子强度与有源层中铝离子强度最低的点相同的第十点P10形成之后形成第三点P3的过程中,可以通过温度控制铝成分,并且可以布置反向部分P6以确保第二导电半导体层的结晶度并确保电流扩散特性。
然而,本发明不限于此。根据另一个实施例,为了进一步确保电流注入特性,铝离子强度可以在没有反向部分P6的情况下在从第十点P10到第三点P3的方向上连续减小。
参见图13a,在铝离子强度的曲线图中,半导体结构可以包括在深度增加的方向上的第一部分S1、第二部分S2和第三部分S3。
第一部分S1可以设置在第一点P1和第三点P3之间,并且可以配置为第二导电半导体层127。第二部分S2可以设置在第一点P1和第二点P2之间,并且可以配置为有源层126。第三部分S3可以从第二点P2沿第一方向设置,并且可以配置为第一导电半导体层124。
第二部分S2可以设置在第一点P1和第二点P2之间。如上文所述,第一点P1可以是半导体结构中铝的铝强度最高的点,第二点P2可以是该图上远离表面的第一方向(深度增加的方向)上单独设置的点,并且第二点P2的离子强度高于第二部分S2的最大离子强度(峰值离子强度)。
然而,本发明不限于此,第二点的高度可以与第五点的高度相同。在这种情况下,第二部分可以设置在第一点和第五点之间。
第二部分S2是对应于有源层126的部分,并且可以具有多个波峰S21和多个波谷S22。波谷S22可以是阱层的离子强度,波峰S21可以是势垒层的离子强度。
离子强度最低的波谷S22的点与第一点P1的离子强度比率M1可以为1:0.4至1:0.6,波谷S22与波峰S21的离子强度比率M2可以为1:0.5至1:0.75。
当离子强度最低的波谷S22的点与第一点P1的铝离子强度比率M1大于或等于1:0.4时,可以确保比有源层设置得更近的第一点P1和第三点P3之间的第二导电半导体层的结晶度,还可以防止第一载流子注入第二导电半导体层,以增加有源层中辐射复合的可能性。因此,可以改善半导体器件的光输出功率特性。
此外,当离子强度比率M1小于或等于1:0.6时,可以确保第一点P1和第三点P3之间的第二导电半导体层的结晶度,第一点P1和第三点P3设置得比有源层更靠近表面。
当波谷S22与波峰S21的离子强度比率M2大于或等于1:0.5时,势垒层可以有效防止载流子从包括在有源层中的阱层流动到第一导电半导体层和/或第二导电半导体层,以增加阱层中辐射复合的可能性,从而增强半导体器件的光输出功率特性。
此外,当离子强度比率M2小于或等于1:0.75时,可以确保半导体结构的结晶度,减少由于应变引起的波长变化,和/或通过减少由于阱层和势垒层之间的晶格常数差异产生的应力来增加辐射复合的可能性。
比率M1与比率M2的比率可以满足1:0.3至1:0.8的范围。因此,比率M1与比率M2的比率满足1:0.3至1:0.8的范围的部分可以是实际上设置有源层的部分。
第三点P3的离子强度可以具有小于第二部分S2中的最小离子强度(即,阱层的离子强度)的离子强度。在这种情况下,有源层可以包括在第二部分S2中,并且可以限定为在最靠近第一点P1的波谷P8与距离第一点P1最远的波谷P9之间的区域。
而且,相邻波谷S22之间的距离可以小于第一点P1和第二点P2之间的距离。这是因为阱层和势垒层的厚度小于有源层126的整个厚度。
第一部分S1可以包括表面区域S11,表面区域S11的离子强度小于第四点P4的离子强度。在这种情况下,表面区域S11的离子强度可以在与第一方向D相反的方向上减小。
根据SIMS数据,第二点P2和第四点P4之间的第一强度差D1与第一点P1和第三点P3之间的第二强度差D2的比率(D1:D2)可以在1:1.5至1:2.5的范围内。当强度差比率D1:D2大于或等于1:1.5(例如,1:1.6)时,第二强度差D2减小,因而可以充分减少第一点P1的铝成分。因此,可以减小与第二电极的接触电阻。
而且,当强度差比率D1:D2小于或等于1:2.5(例如,1:2.4)时,可以防止有源层126发射的光由于铝成分过低而被2-1导电半导体层127a吸收,从而防止半导体的光学特性劣化。
第七点P7和第一点P1之间的第三强度差D3与第四点P4和第三点P3之间的第四强度差D4的比率(D3:D4)可以在1:0.2至1:2或1:0.2至1:1的范围内。
当强度差比率大于或等于1:0.2时,第四强度差D4相对增大,因而可以充分减少铝成分。因此,可以减小与第二电极的接触电阻。此外,当成分比率小于或等于1:2时,可以防止由于在2-1导电半导体层127a的厚度范围内铝成分快速变化导致的结晶度降低。而且,可以防止有源层126发射的光由于铝成分过低而被2-1导电半导体层127a吸收。
通常,插入薄的GaN层,用于第二导电半导体层127和电极之间的欧姆接触。然而,在这种情况下,由于与电极接触的GaN层不含铝,因而第三点P3的铝离子强度不进行测量或显著降低。因此,第一强度差D1与第二强度差D2的比率(D1:D2)以及第三强度差D3与第四强度差D4的比率(D3:D4)可以偏离上述范围。
第一点P1和第三点P3之间的强度差与第五点P5和第三点P3之间的强度差的比率可以在1:0.5至1:0.8的范围内。当强度差比率大于或等于1:0.5时,第五点P5的强度增加。因而,可以提高结晶度并提高光提取效率。此外,当强度差比率小于1:0.8时,可以减轻有源层126与第一导电半导体层124之间的晶格失配。
第三点P3与第一点P1的离子强度比率(P3:P1)可以在1:2至1:4的范围内。当第三点P3与第一点P1的离子强度比率大于或等于1:2(例如,1:2.1)时,第三点P3的强度大大降低,因而可以减小与第二电极的接触电阻。此外,当第三点P3与第一点P1的离子强度比率小于或等于1:4(例如,1:3.9)时,第三点P3的铝强度可以增加。因此,可以防止光在第三点P3被吸收。
第十点P10与第一点P1的离子强度比率可以在1:1.3至1:2.5的范围内。当第十点P10与第一点P1的离子强度比率大于或等于1:1.3时,第一点P1的离子强度增加,因而可以有效防止第一载流子通过有源层。当第十点P10与第一点P1的离子强度比率小于或等于1:2.5时,第十点P10的离子强度增加,因而阱层可以产生紫外线波长光。
第三点P3与第四点P4的离子强度比率可以在1:1.1至1:2的范围内。当第三点P3与第四点P4的离子强度比率大于或等于1:1.1时,第四点P4的离子强度增加,因而可以降低紫外线波长光的吸收率。此外,当第三点P3至第四点P4的离子强度比率小于或等于1:2时,充分确保了第三点的离子强度,因而可以降低紫外线波长光的吸收率。
第二点P2与第一点P1的离子强度比率可以在1:1.1至1:2的范围内。当第二点P2与第一点P1的离子强度比率大于或等于1:1.1时,第一点P1的离子强度增加,因而可以有效防止第一载流子通过有源层。此外,当第二点P2与第一点P1的离子强度比率小于或等于1:2时,注入有源层并且彼此辐射复合的第一载流子和第二载流子可以在浓度上达到平衡,并且可以增强半导体器件发射的光的量。
第四点P4与第二点P2的离子强度比率可以在1:1.2至1:2.5的范围内。当第四点P4与第二点P2的离子强度比率大于或等于1:1.2时,可以减小第四点P4和第一电极之间的电阻。此外,当第四点P4与第二点P2的离子强度比率小于或等于1:2.5时,第四点P4的离子强度增加,因而可以降低紫外线波长光的吸收率。
第五点P5与第二点P2的离子强度比率可以在1:1.1至1:2.0的范围内。根据实施例,与发射蓝光的半导体结构相比,发射深紫外光的半导体结构可以由包含大量铝的GaN基材料制成。因此,发射深紫外光的半导体结构的第一载流子的迁移率与第二载流子的迁移率的比率不同于发射蓝光的半导体结构的第一载流子的迁移率与第二载流子的迁移率的比率。也就是说,当第五点P5与第二点P2的离子强度比率大于或等于1:1.1时,可以确保注入到有源层中的第一载流子的浓度。此外,当第五点P5与第二点P2的离子强度比率小于或等于1:2.0时,第五点P5的离子强度增加,因而可以提高结晶度。
第四点P4与第五点P5的离子强度比率可以在1:1.1至1:2.0的范围内。当第四点P4与第五点P5的离子强度比率大于或等于1:1.1时,第五点P5的离子强度增加,因而可以改善结晶度。此外,当第四点P4与第五点P5的离子强度比率小于或等于1:2.0时,第四点P4的离子强度增加,因而可以降低紫外线波长光的吸收率。
在图12和图13a中,铝离子强度用对数刻度表示。然而,本发明不限于此,铝离子强度可用线性标度表示。
根据实施例,可以看出,因为第三点P3含有铝,所以第一点P1和第三点P3实际上设置在单个数量级内。数量级可以是离子强度的级别单位。例如,第一数量级可以是1.0×101,第二数量级可以是1.0×102。此外,每个数量级可以具有十个子级别。
例如,第一数量级的第一子级别可以是1.0×101,第一数量级的第二子级别可以是2.0×101,第一数量级的第三子级别可以是3.0×101,第一数量级的第九子级别可以是9.0×101,第一数量级的第十子级别可以是1.0×102。也就是说,第一数量级的第十子级别可以等于第二数量级的第一子级别。在图13b中,虚线表示每两个子级别。
图14a是根据本发明的实施例的第二导电半导体层的概念视图,图14b示出了通过测量根据本发明的实施例的第二导电半导体层的表面获得的AFM数据,图14c示出了通过测量GaN薄膜的表面获得的AMF数据,图14d示出了通过测量高速生长的第二导电半导体层的表面获得的AFM数据。
参见图14a,根据实施例的第二导电半导体层127可以包括2-1导电半导体层127a、2-2导电半导体层127b和2-3导电半导体层127c。2-1导电半导体层127a可以是与第二电极接触的接触层。可以应用上文描述来说明这些层的特征。
2-1导电半导体层127a的表面可以包括多个簇C1。每一个簇C1可以是从表面突出的突起。例如,每一个簇C1可以是从平均表面高度突出超过大约10或20nm的突起。每一个簇C1可以由于铝(Al)和镓(Ga)之间的晶格失配而形成。
根据实施例,2-1导电半导体层127a含有铝,而所含的铝基于厚度的变化较大,并且2-1导电半导体层127a比其他层薄。因而,2-1导电半导体层127a不是以单层的形式而是以簇C1的形式形成在表面上。每一个簇C1可以包含Al、Ga、N、Mg等。然而,本发明不限于此。
参见图14b,可以看出,簇C1以比较亮的点的形状形成在第二导电半导体层127的表面上。根据实施例,2-1导电半导体层127a具有1%至10%的铝成分,因而2-1导电半导体层127a可以以簇C1的形式形成,以增加接合面积。因此,可以增强电气特性。
在第二导电半导体层127的表面上每平均1μm2可以观察到一个到八个簇C1。这里,平均值是在大约10个或更多不同位置处测量的多个值的平均值。通过测量图14b的位置E1获得的结果是每单位面积(2μm×2μm)观察到12个簇C1。仅测量了从表面突出超过25nm的簇C1。通过调节AFM图像的对比度,可以确保可以仅输出从表面突出超过25nm的簇。
基于测量结果使用转换单位的簇C1的密度可以为1×10-8/cm2至8×10-6/cm2。当簇C1的密度小于1×10-8/cm2时,接触面积相对减小,因而可以增加与第二电极的接触电阻。
此外,当簇C1的密度大于8×10-6/cm2时,有源层126发射的光由包含在一些簇中的Ga吸收,因而可以减小光输出功率。
根据实施例,簇C1的密度可以满足1×10-8/cm2至8×10-6/cm2。因此,可以在不减小光输出功率的同时减小与第二电极的接触电阻。
参见图14c,可以看出,没有从GaN薄膜的表面观察到任何簇。这是因为随着簇的密度增加,GaN薄膜形成为单层。因此,可以看出,当在第二导电半导体层和第二电极之间形成GaN薄膜时,在接触表面上没有形成簇。
参见图14d,可以看出,当第二导电半导体层高速生长时,簇未能良好生长。因此,可以看出,当第二导电半导体层高速生长时,尽管第二导电半导体层的铝成分在其表面控制为1%至10%的范围,但是仍没有形成簇C1。例如,图14d是通过在以0.06nm/s的速度生长P-AlGaN之后测量表面获得的照片。
也就是说,可以看出,表面层应具有1%至10%的铝成分,并且还具有很低的生长速度,以在第二导电半导体层127中形成多个簇C1。
根据实施例,2-1导电半导体层可以具有比2-2导电半导体层和2-3导电半导体层低的生长速度。例如,2-2导电半导体层与2-1导电半导体层的生长速度比率可以在1:0.2至1:0.8的范围内。当生长速度比率小于1:0.2时,2-1导电半导体层的生长速度很低,使得可以通过在生长AlGaN的高温下蚀刻Ga来生长铝成分高的AlGaN,因而可以降低其欧姆特性。当生长速度比率大于1:0.8时,2-1导电半导体层的生长速度很高,从而可以降低结晶度。
图15是根据本发明的实施例的半导体器件的概念视图,图16a和图16b是示出其中光输出功率随着凹槽数量的变化而增强的配置的图,图17是图15的A部分的放大图。
参见图15,根据实施例的半导体器件可以包括半导体结构120(半导体结构120包括第一导电半导体层124、第二导电半导体层127和有源层126)、第一电极142以及第二电极146,第一电极142与第一导电半导体层124电连接,第二电极146与第二导电半导体层127电连接。
第一导电半导体层124、有源层126和第二导电半导体层127可以沿第一方向(即,Y方向)设置。这里,作为每一个层的厚度方向的第一方向(即,Y方向)定义为竖直方向,以及垂直于第一方向(即,Y方向)的第二方向(即,X方向)定义为水平方向。
上述所有结构可以应用于根据实施例的半导体结构120。半导体结构120可以包括多个凹槽128,凹槽128甚至穿过第二导电半导体层127和有源层126设置在第一导电半导体层124的一部分中。
第一电极142可以设置在凹槽128的顶部并且与第一导电半导体层124电连接。第二电极146可以形成在第二导电半导体层127下方。
第一电极142和第二电极146中的每一个可以是欧姆电极。第一电极142和第二电极146中的每一个可以由下列至少之一制成:氧化铟锡(ITO)、氧化铟锌(IZO)、铟锌锡氧化物(IZTO)、铟铝锌氧化物(IAZO)、铟镓锌氧化物(IGZO)、铟镓锡氧化物(IGTO)、氧化铝锌(AZO)、氧化锑锡(ATO)、氧化镓锌(GZO)、IZO氮化物(IZON)、Al-Ga ZnO(AGZO)、In-Ga ZnO(IGZO)、ZnO、IrOx、RuOx、NiO、RuOx/ITO、Ni/IrOx/Au、Ni/IrOx/Au/ITO、Ag、Ni、Cr、Ti、Al、Rh、Pd、Ir、Sn、In、Ru、Mg、Zn、Pt、Au和Hf,但不限于此。例如,第一电极可以具有多个金属层(例如,Cr、Al和Ni),第二电极可以由ITO制成。
参见图16a,当GaN基半导体结构120发射紫外光时,GaN基半导体结构120可以包含铝。当半导体结构120的铝成分增加时,可以降低半导体结构120中的电流扩散特性。而且,与基于GaN的蓝色发光器件(TM模式)相比,当有源层126包含铝并发射紫外光时,有源层126可以具有发射到侧面的增加的光量。TM模式可主要发生在紫外半导体器件中。
与蓝色GaN基半导体器件相比,紫外半导体器件具有降低的电流扩散特性。因此,与蓝色GaN基半导体器件相比,紫外半导体器件需要在其中设置相对大量的第一电极142。
当铝成分增加时,电流扩散特性可能劣化。参见图16a,电流仅在与每个第一电极142相邻的点处扩散,而电流密度可以在远离每个第一电极142的点处快速减小。因此,可以使有效的发光区域P2变窄。
一直到这样一个边界的区域可以限定为有效发光区域P2,该边界的电流密度为电流密度最高的第一电极142的40%或更少。例如,可以取决于注入的电流水平和铝成分在距离每个凹槽128的中心不到40μm的范围来调节有效发光区域P2。
低电流密度区域P3的电流密度可以低于有效发光区域P2的电流密度,因而,低电流密度区域P3的光量少于有效发光区域P2的光量。因此,可以通过将大量第一电极142设置在具有低电流密度的低电流密度区域P3中或者通过使用反射结构来增强光输出功率。
通常,由于发射蓝光的GaN半导体层具有比较优异的电流扩散特性,因而优选的是最小化凹槽128和第一电极142的面积。这是因为随着凹槽128和第一电极142的面积增大,有源层126的面积减小。然而,根据实施例,因为铝成分较高,所以电流扩散特性比较低。因此,优选的是,通过增加第一电极142的面积和/或数量(尽管这样减小了有源层126的面积)来减小低电流密度区域P3或者优选地将反射结构设置在低电流密度区域P3中。
参见图16b,当凹槽128的数量增加到48时,凹槽128可以布置成Z字形形式,而不是笔直地布置在水平或竖直方向上。在这种情况下,低电流密度区域C3的面积可以减小,因而大部分有源层126可以参与发光。
紫外发光器件可以在半导体结构120中具有降低的电流扩散特性。因而,需要平稳注入电流来确保半导体结构120中的均匀电流密度特性并确保半导体器件的电学和光学特性以及可靠性。因此,为了平稳地注入电流,与GaN基半导体结构120相比,可以形成比较大量的凹槽128,然后第一电极142可以设置在凹槽128上。
参见图17,第一绝缘层131可以使第一电极142与有源层126和第二导电半导体层127电绝缘。此外,第一绝缘层131可以使第二电极146和第二导电层150与第一导电层165电绝缘。此外,第一绝缘层131可以用于在半导体器件的工艺期间防止有源层126的侧面氧化。
第一绝缘层131可以由选自SiO2、SixOy、Si3N4、SixNy、SiOxNy、Al2O3、TiO2和AlN中的至少一种材料制成,但不限于此。第一绝缘层131可以形成为单层或多层。例如,第一绝缘层131可以是具有多层结构的分布式布拉格反射器(DBR),该多层结构包括Si氧化物或Ti化合物。然而,本发明不限于此,第一绝缘层131可以包括各种反射结构。
当第一绝缘层131具有反射功能时,第一绝缘层131可以向上反射从有源层126水平发射的光,从而增强光提取效率。在这种情况下,随着凹槽128的数量增加,光提取效率可以提高。
第一电极142的直径W3可以为24μm至50μm。当满足该范围时,这在扩散电流方面是有利的,并且可以设置大量第一电极142。当第一电极142的直径W3大于或等于24μm时,可以充分确保注入到第一导电半导体层124的电流。当第一电极142的直径W3小于或等于50μm时,可以充分确保设置在第一导电半导体层124的区域中的第一电极142的数量,并且还确保电流扩散特性。
每个凹槽128的直径W1可以为38μm至60μm。每个凹槽128的直径W1可以限定为设置在第二导电半导体层127下方的凹槽的最大面积。每个凹槽128的直径W1可以是设置在第二导电半导体层127的底表面处的凹槽的直径。
当每个凹槽128的直径W1大于或等于38μm时,可以在将要设置在每个凹槽128内部的第一电极142形成时,确保其中第一电极142与第一导电半导体层124电连接的区域的工艺余量(margin)。当每个凹槽128的直径W1小于或等于60μm时,可以防止有源层126的体积减小以便设置第一电极142,因而发光效率可能劣化。
每个凹槽128的坡度角θ5可以为70度至90度。当满足该范围时,这对在凹槽128的顶部形成第一电极142是有利的,并且可以形成大量凹槽128。
当坡度角θ5小于70度时,有源层126的去除区域可增加,但是将要设置第一电极142的区域可减小。因此,可以降低电流注入特性和发光效率。因此,可以通过使用每个凹槽128的坡度角θ5来调节第一电极142与第二电极146的面积比率。
第二电极146可以比第一绝缘层131薄。因此,可以确保包围第二电极146的第二导电层150和第二绝缘层132的台阶覆盖特性并且提高半导体器件的可靠性。第二电极146可以设置为与第一绝缘层131间隔开大约1μm至4μm的第一间隔距离S1。当间隔距离大于或等于1μm时,可以确保相对于第一绝缘层131设置第二电极146的工艺余量,从而改善半导体器件的电气特性、光学特性和可靠性。当间隔距离小于或等于4μm时,可以确保可布置第二电极146的整个区域,并且可以改善半导体器件的工作电压特性。
第二导电层150可以覆盖第二电极146。因此,第二电极焊盘166、第二导电层150和第二电极146可以形成一个电气通道。
第二导电层150可以完全包围第二电极146并且可以与第一绝缘层131的一个侧表面和上表面接触。第二导电层150可以由与第一绝缘层131具有良好粘结性的材料制成,并且由选自包括Cr、Al、Ti、Ni和Au或其合金的一组材料中的至少一种材料制成。而且,第二导电层150可以形成为单层或多层。
当第二导电层150与第一绝缘层131的侧表面和底表面接触时,可以增强第二电极146的热可靠性和电可靠性。第二导电层150可以延伸到第一绝缘层131的下部。在这种情况下,可以抑制第一绝缘层131的端部的脱离。因此,可以防止外部水分或污染物渗透。此外,第二导电层150可以具有反射功能,用于向上反射从第一绝缘层131和第二电极146之间的间隙发射的光。
第二导电层150可以设置在位于第一绝缘层131和第二电极146之间的第一间隔距离S1处。也就是说,第二导电层150可以设置在第一间隔距离S1处而与第二电极146的一个侧表面和上表面以及第一绝缘层131的一个侧表面和上表面接触。另外,一个区域可以设置在第一间隔距离S1内,在该区域内第二导电半导体层126与第二导电层150接触形成肖特基结。通过形成肖特基结,可以促进电流分布。然而,本发明不限于此,可以自由进行布置,只要第二电极146和第二导电半导体层127之间的电阻大于第二导电层150和第二导电半导体层127之间的电阻即可。
第二绝缘层132可以使第二电极146和第二导电层150与第一导电层165电绝缘。第一导电层165可以经由第二绝缘层132电连接至第一电极142。第二绝缘层132和第一绝缘层131可以由相同材料或不同材料制成。
根据实施例,第二绝缘层132设置在第一电极142和第二电极146之间以及第一绝缘层131上方,因而,即使在第一绝缘层131中出现缺陷,也可以防止外部水分和/或其他污染物的渗透。
例如,当第一绝缘层131和第二绝缘层132形成为单层时,诸如裂纹之类的缺陷容易在厚度方向上传播。因此,外部水分或污染物可能通过暴露的缺陷渗透到半导体结构中。
然而,根据实施例,第二绝缘层132单独设置在第一绝缘层131上方,因而使形成在第一绝缘层131中的缺陷难以传播到第二绝缘层132。即,第一绝缘层131和第二绝缘层132之间的界面用于阻挡缺陷的传播。
再次参见图15,第二导电层150可以将第二电极与第二电极焊盘166电连接。
第二电极146可以直接设置在第二导电半导体层127上。当第二导电半导体层127由AlGaN制成时,因为导电性较低,所以空穴可能无法平稳注入。因此,需要适当调节第二导电半导体层127的铝成分。这将在后文描述。
第二导电层150可以由选自一组材料中的至少一种材料制成,该组材料包含Cr、Al、Ti、Ni和Au或其合金。而且,第二导电层150可以形成为单层或多层。
第一导电层165和接合层160可以根据半导体结构120的底表面和凹槽128的形状来设置。第一导电层165可以由优质的反射材料制成。例如,第一导电层165可以包含铝。当第一导电层165包含铝时,第一导电层165可用来沿朝向衬底的方向向上反射有源层126发射的光,从而提高光提取效率。然而,本发明不限于此,第一导电层165可以提供电连接至第一电极142的功能。第一导电层165可以不包含高反射材料,例如铝和/或银(Ag)。在这种情况下,含有高反射材料的反射金属层(未示出)可以设置在第一导电层165和设置在凹槽128中的第一电极142之间以及第二导电半导体层127和第一导电层165之间。
接合层160可以包含导电材料。例如,接合层160可以包含从一组材料中选择的一种材料,该组材料包含金、锡、铟、铝、硅、银、镍和铜或其合金。
衬底170可以由导电材料制成。例如,衬底170可以包含金属或半导体材料。例如,衬底170可以由具有优异导电性和/或热传导性的金属制成。在这种情况下,半导体器件工作时产生的热量可以快速释放到外部。而且,当衬底170由导电材料制成时,第一电极142可以通过衬底170接收从外部源提供的电流。
衬底170可以包含从一组材料中选择的一种材料,该组材料包含硅、钼、钨、铜和铝或其合金。
钝化层180可以设置在半导体结构120的上表面和一个侧表面上。钝化层180的厚度可以为200nm至500nm。当厚度大于或等于200nm时,可以保护器件免受外部水分或外来材料的影响,因而可以提高电学和光学可靠性。当厚度小于或等于500nm时,可以减小施加到半导体器件的应力,并且还可以防止由于半导体器件的光学和电学可靠性降低或半导体器件的处理时间延长导致半导体成本增加。
方波图案可以形成在半导体结构120的上表面上。方波图案可以提高从半导体结构120发射的光的提取效率。方波图案取决于紫外线波长可以具有不同的平均高度,并且UV-C光的平均高度为300nm至800nm。当平均高度为500nm至600nm时,可以提高光提取效率。
图18是根据本发明的另一个实施例的半导体器件的概念视图,图19是图18的平面图。
参见图18,上述结构可以同样应用于半导体结构120。而且,多个凹槽128可以穿过第二导电半导体层127和有源层126设置在第一导电半导体层124的一部分中。
半导体器件可以包括设置在其边缘上的侧反射器Z1。侧反射器Z1可以由第二导电层150、第一导电层165和沿厚度方向(Y轴方向)突出的衬底170形成。参见图20,侧反射器Z1可以沿着半导体器件的边缘设置以包围半导体结构120。
侧反射器Z1的第二导电层150比有源层126突出得远,使得第二导电层150可以向上反射有源层126发射的光。因此,在没有形成单独的反射层的情况下,由于TM模式,可以在其最外面部分向上反射沿水平方向(X轴方向)发射的光。
侧反射器Z1的坡度角可以大于90度且小于145度。坡度角可以是第二导电层150相对于水平面(即,XZ平面)的角度。当该角度小于90度或大于145度时,朝向侧面行进的光向上反射的效率可能降低。
图20是根据本发明的实施例的半导体器件封装的概念视图,图21是根据本发明的实施例的半导体器件封装的平面图,图22是图21的变型,图23是根据本发明的另一个实施例的半导体器件封装的剖视图。
参见图20,半导体器件封装可以包括:主体2,具有槽(即,开口)3;半导体器件1,设置在主体2中;以及一对引线框5a和5b,设置在主体2中并电连接至半导体器件1。半导体器件1可以包括上述所有元件。
主体2可以包括紫外光反射材料或涂布层。可以通过堆叠多个层2a、2b、2c、2d和2e形成主体2。多个层2a、2b、2c、2d和2e可以由相同的材料制成或包含不同的材料。例如,多个层2a、2b、2c、2d和2e可以包含铝。
槽3可以具有随着远离半导体器件增加的宽度,并且具有倾斜表面,该倾斜表面中形成有台阶部分3a。
透光层4可以覆盖槽3。透光层4可以由玻璃制成,但不限于此。对透光层4的材料没有限制,只要该材料可以有效透射紫外光即可。槽3中形成的空间可以是空的。
参见图21,半导体器件10可以设置在第一引线框5a上并通过导线与第二引线框5b连接。在这种情况下,第二引线框5b可以设置为包围第一引线框5a的侧表面。
参见图22,半导体器件封装中可以设置有多个半导体器件10a、10b、10c和10d。在这种情况下,引线框可以包括第一引线框5a、第二引线框5b、第三引线框5c、第四引线框5d和第五引线框5e。
第一半导体器件10a可以设置在第一引线框5a上并通过导线与第二引线框5b连接。第二半导体器件10b可以设置在第二引线框5b上并通过导线与第三引线框5c连接。第三半导体器件10c可以设置在第三引线框5c上并通过导线与第四引线框5d连接。第四半导体器件10d可以设置在第四引线框5d上并通过导线与第五引线框5e连接。
参见图23,半导体器件封装可以包括:主体10,包括腔体11;半导体器件100,设置在腔体11内部;以及透光构件50,设置在腔体11上。
可以通过处理铝衬底来制造主体10。因此,根据实施例的主体10可以具有都具有导电性的内表面和外表面。这种结构具有各种优势。当诸如AlN和Al2O3的非导电材料用于主体10时,紫外线波长带的反射率仅为20%至40%。因此,需要设置单独的反射构件。而且,可能需要单独的电路图案和诸如引线框之类的导电构件。因此,可能增加生产成本并使工艺复杂化。而且,诸如金(Au)之类的导电构件吸收紫外光,因而光提取效率降低。
然而,根据实施例,主体10自身由铝制成,因而,由于在紫外线波长带中的高反射率,可以省略单独的反射构件。而且,主体自身10是导电的,因而可以省略单独的电路图案和引线框。而且,由于主体10由铝制成,因而主体10优异的热传导率可以为140W/m·k至160W/m·k。因此,可以提高散热效率。
主体10可以包括第一导电部件10a和第二导电部件10b。第一绝缘部件42可以设置在第一导电部件10a和第二导电部件10b之间。由于第一导电部件10a和第二导电部件10b都是导电的,因而需要设置第一绝缘部件42来分离磁极。
主体10可以包括:槽14,设置在下表面12和侧表面13之间的边缘处;以及第二绝缘部件41,设置在槽14上。槽14可以沿下表面12和侧表面13之间的边缘设置。
第二绝缘部件41可以由与第一绝缘部件42的材料相同的材料制成,但不限于此。第一绝缘部件42和第二绝缘部件41中的每一个均可以由从以下各种材料中选择的一种材料制成:环氧模塑化合物(EMC)、白色硅(white silicon)、光成像阻焊剂(PSR)、硅树脂组合物、改性环氧树脂组合物(如硅改性环氧树脂)、改性硅树脂组合物(如环氧改性硅树脂)、聚酰亚胺树脂组合物、改性聚酰亚胺树脂组合物、聚邻苯二甲酰胺(PPA)、聚碳酸酯树脂、聚苯硫醚(PPS)、液晶聚合物(LCP)、丙烯腈丁二烯苯乙烯(ABS)树脂、酚醛树脂、丙烯酸树脂以及聚对苯二甲酸丁二醇酯PBT树脂。
根据一个实施例,第二绝缘部件41设置在主体10的下边缘处,因而可以防止在封装进行切割时在边缘出现毛刺。与其他金属衬底相比,铝衬底出现毛刺的情况可能更频繁。当出现毛刺时,下表面12可能不平坦,使得不能很好地进行安装。此外,当出现毛刺时,厚度可能变得不均匀并且可能出现测量错误。
第三绝缘部件43可以设置在主体10的下表面12并且与第二绝缘部件41和第一绝缘部件42连接。根据一个实施例,主体10的下表面12、第二绝缘部件41的下表面以及第三绝缘部件43的下表面可以设置在同一平面上。
图24是根据本发明的实施例的发光结构的概念视图,图25是示出根据本发明的实施例的半导体结构的铝成分的曲线图。
参见图24,根据实施例的半导体器件包括发光结构120A,发光结构120A包括第一导电半导体层124、第二导电半导体层127和有源层126。每个半导体层可以具有与基于图1描述的结构相同的配置。
参见图25,第一导电半导体层124、有源层126、阻挡层129和第二导电半导体层127都可以包含铝。
因此,第一导电半导体层124、有源层126、阻挡层129和第二导电半导体127可以由AlGaN制成。然而,本发明不限于此。一些层可以由GaN或AlN制成。
有源层126可以包括交替设置的多个阱层126a和多个势垒层126b。每个阱层126a可以具有大约30%至大约50%的铝成分,以发射紫外光。每个势垒层126b可以具有50%至70%的铝成分,以捕获载流子。
例如,阱层126a中最靠近阻挡层129的阱层定义为第一阱层126a,而设置在第一阱层126a和阻挡层129之间的最后一个势垒层定义为第一势垒层126b。
阻挡层129可以具有50%至90%的铝成分。阻挡层129可以具有含铝成分较高的多个第一阻挡层129d以及含铝成分较低的多个第二层129a,这些第一阻挡层129d和第二层129a交替设置在阻挡层129中。当阻挡层129的铝成分小于50%时,用于阻挡电子的能量势垒可能不够高,阻挡层129可能吸收从有源层126发出的光。当阻挡层129的铝成分大于90%时,半导体器件的电气特性可能降低。
每个第一阻挡层129d可以具有70%至90%的铝成分,而每个第二阻挡层129e可以具有50%至70%的铝成分。然而,本发明不限于此,可以适当调节每个第一阻挡层129d和每个第二阻挡层129e的铝成分。
第一中间层S10可以设置在阻挡层129和有源层126的第一阱层126a之间。第一中间层S10可以包括3-1部分S11和3-2部分S12,3-1部分S11的铝成分低于阻挡层129的铝成分,3-2部分S12的铝成分高于阻挡层129的铝成分。
第一中间层S10可以是第一势垒层126b。因此,第一中间层S10的厚度可以与相邻的势垒层126b的厚度相同。例如,第一中间层S10的厚度可以为2nm至10nm。然而,本发明不限于此,第一中间层S10可以是阻挡层129的一部分或者是设置在第一势垒层126b和阻挡层之间的单独的半导体层。
3-1部分S11可以具有50%至70%的铝成分。也就是说,3-1部分S11的铝成分可以与相邻的势垒层126b的铝成分基本相同。3-1部分S11的厚度可以为大约1nm至大约8nm。当3-1部分的厚度小于或等于1nm时,阱层126a的铝成分迅速增加,因而防止结晶度降低可能是比较困难的。而且,当3-1部分S11的厚度大于8nm时,可能降低注入有源层126的空穴的注入效率,因而降低了光学特性。
3-2部分S12的铝成分可以高于阻挡层129的铝成分。3-2部分S12的铝成分可以朝向阻挡层129增加。3-2部分S12的铝成分可以在80%至100%的范围内。也就是说,3-2部分S12可以由AlGaN或AlN制成。或者,3-2部分S12可以是其中AlGaN和AlN交替设置的超晶格层。
3-2部分S12可以比3-1部分S11薄。3-2部分S12的厚度可以为大约0.1nm至大约4nm。当3-2部分S12的厚度小于0.1nm时,可能无法阻挡电子移动。当3-2部分S12的厚度大于4nm时,可能降低将空穴注入有源层的效率。
3-1部分S11与3-2部分S12的厚度比率可以为10:1至1:1。当满足该条件时,在阻挡电子移动的同时可能降低空穴注入效率。
3-2部分S12可以包括未掺杂部分。尽管在没有提供掺杂剂的情况下生长3-2部分S12,但是阻挡层129的Mg可以扩散到第一部分的一部分。然而,为了防止掺杂剂扩散到有源层126,3-2部分S12的至少一些区域可以包括未掺杂部分。
图26是示出根据本发明的另一个实施例的发光结构的铝成分的曲线图,图27是通过测量包括传统发光结构的半导体器件的光输出功率获得的曲线图,图28是通过测量根据本发明的另一个实施例的发光结构的光输出功率获得的曲线图。
参见图26,除第二中间层S20外,可以同样应用已经参考图25描述的结构。第二中间层S20可以是阻挡层129的一部分,但不限于此。
第二中间层S20的铝成分可以低于阻挡层129的铝成分,但高于3-1部分S11的铝成分。例如,第二中间层S20的铝成分可以在50%至80%的范围内。
第二中间层S20可以包括不含p型掺杂剂的4-1部分S21以及含有p型掺杂剂的4-2部分S22。
4-1部分S21可以包括未掺杂部分。因此,可以抑制在阻挡层129生长时掺杂剂扩散到有源层126。4-1部分S21的厚度可以为4nm至19nm。当4-1部分S21的厚度小于4nm时,可以抑制掺杂剂的扩散。当4-1部分S21的厚度大于19nm时,可以降低空穴注入效率。
4-2部分S22可以含有p型掺杂剂。4-2部分S22含有掺杂剂,并且可以提高将空穴注入4-1部分S21的效率。也就是说,4-2部分S22可以用作降低电阻水平的低电阻层。
4-2部分S22的厚度可以为1nm至6nm。当厚度小于1nm时,有效减小电阻比较困难。当厚度大于6nm时,4-1部分S21的厚度减小,并且可能难以抑制掺杂剂扩散。4-1部分S21的厚度与4-2部分S22的厚度的比率可以在19:1至1:1.5的范围内。
然而,本发明不限于此,第二中间层S20可以具有超晶格结构,4-1部分S21和4-2部分S22交替设置在该超晶格结构中。
参见图27,可以看出,具有传统发光结构的半导体器件在经过大约100个小时后光输出功率降低了20%。而且,可以看出,在经过大约500个小时后,光输出功率降低了25%。
另一方面,参见图28,可以看出,具有根据实施例的发光结构的半导体器件在经过100个小时后发光强度降低了大约3.5%,而在甚至经过大约500个小时后具有几乎相同的光输出功率。也就是说,可以看出,与传统结构相比,在没有根据实施例的中间层的情况下,光输出功率提高了大约20%。
图29是示出根据本发明的又一个实施例的发光结构的铝成分的曲线图。
参见图29,第二导电半导体层129可以包括2-1导电半导体层129a和2-2导电半导体层129b。
2-1导电半导体层127a的厚度可以大于10nm且小于200nm。当2-1导电半导体层127a的厚度小于10nm时,电阻在水平方向上增加,因而可以降低电流注入效率。当2-1导电半导体层127a的厚度大于200nm时,电阻在垂直方向上增加,因而可以降低电流注入效率。
2-1导电半导体层127a的铝成分可以低于阱层126a的铝成分。为了产生紫外光,阱层126a的铝成分可以为大约30%至大约50%。当2-1导电半导体层127a的铝成分低于阱层126a的铝成分时,2-1导电半导体层127a吸收光,因而可以降低光提取效率。
2-1导电半导体层127a可以具有大于40%且小于80%的铝成分。当2-1导电半导体层127a的铝成分小于40%时,光可能被吸收。当2-1导电半导体层127a的铝成分大于80%时,电流注入效率可能降低。例如,当阱层126a的铝成分等于30%时,2-1导电半导体层127a的铝成分可以等于40%。
2-2导电半导体层127a的铝成分可以低于阱层126a的铝成分。当2-2导电半导体层127a铝成分高于阱层126a的铝成分时,2-2导电半导体层127a和p欧姆电极由于其间的电阻增加而不能充分地欧姆接触,并且还会降低电流注入效率。
2-2导电半导体层127a的铝成分可以大于1%且小于50%。当铝成分大于50%时,2-2导电半导体层127a可能不能与p欧姆电极充分地欧姆接触。当铝成分小于1%时,2-2导电半导体层127a的成分可以接近GaN,因此吸收光。
2-2导电半导体层127a的厚度可以大于大约1nm且小于大约30nm。如上文所述,2-2导电半导体层127a所含的铝成分很低使得其可以欧姆化,并因而可以吸收紫外光。因此,就光输出功率而言,将2-2导电半导体层127a调整为尽可能薄可能是比较有利的。
然而,当2-2导电半导体层127a的厚度控制在1nm或更小时,在一些部分可能没有设置2-2导电半导体层127a,并且可能存在这样一个区域,在该区域中,2-1导电半导体层127a暴露于发光结构120的外部。另外,当厚度大于30nm时,吸收的光量很大以致使光输出功率效率有可能降低。
2-2导电半导体层127a还可以包括第一子层127e和第二子层127d。第一子层127e可以是与第二电极接触的表面层,第二子层127d可以是调节铝成分的层。
第一子层127e可以具有大于1%且小于20%的铝成分。或者,铝成分可以大于1%且小于10%。
当铝成分小于1%时,第一子层127e可以具有很高的光吸收率。当铝成分大于20%时,第二电极(即,p-欧姆电极)的接触电阻增加,因而可以降低电流注入效率。
然而,本发明不限于此,可以在考虑电流注入特性和光吸收率的基础上调节第一子层127e的铝成分。或者,可以根据产品要求的光输出功率来调节铝成分。
例如,当电流注入特性比光吸收率更重要时,可以调节铝成分使其处于1%至10%的范围。当光输出功率特性比产品的电气特性更重要时,可以调节第一子层127e的铝成分使其处于1%至20%的范围。
当第一子层127e的铝成分大于1%且小于20%时,由于第一子层127e和第二电极之间的电阻减小,因而工作电压可以减小。因此,可以增强电气特性。第一子层127e的厚度可以大于1nm且小于10nm。因此,可以缓解光吸收问题。
2-2导电半导体层127a的厚度可以小于2-1导电半导体层127a的厚度。2-1导电半导体层127a与2-2导电半导体层127a的厚度比率可以在1.5:1至20:1的范围内。当厚度比率小于1.5:1时,2-1导电半导体层127a太薄,使得电流注入效率可能降低。当厚度比率大于20:1时,2-2导电半导体层127a过薄,从而可能降低欧姆可靠性。
2-1导电半导体层127a的铝成分可以随着远离有源层126减少。而且,2-2导电半导体层127a的铝成分可以随着远离有源层126减少。因此,第一子层127e的铝成分可以满足1%至10%的范围。
然而,本发明不限于此,2-1导电半导体层127a和2-2导电半导体层127a可以包括一些部分,在这些部分中,2-1导电半导体层127a和2-2导电半导体层127a的铝成分没有减少,而不是铝成分持续减少。
在这种情况下,2-2导电半导体层127a的铝成分减少的程度可以大于2-1导电半导体层127a的铝成分减少的程度。也就是说,2-2导电半导体层127a在厚度方向上的铝成分的变化可以比2-1导电半导体层127a在厚度方向上的铝成分的变化大。这里,厚度方向可以指从第一导电半导体层124到第二导电半导体层127的方向或从第二导电半导体层127到第一导电半导体层124的方向。
2-1导电半导体层127a的厚度大于2-2导电半导体层127a的厚度并且铝成分高于阱层126a的铝成分。因此,2-1导电半导体层127a的铝成分可以相对缓慢地减少。
然而,2-2导电半导体层127a的厚度较小,铝成分的变化较大。因此,2-2导电半导体层127a的铝成分减少程度相对较高。
图30是生长在衬底上的发光结构的概念视图,图31是示出衬底分离工艺的图,图32是示出蚀刻发光结构的工艺的图,以及图33是示出制作的半导体器件的图。
参见图30,缓冲层122、光吸收层123、第一导电半导体层124、有源层126、第二导电半导体层127、第二电极246和第二导电层150可以依次形成在生长衬底121上。
在这种情况下,第一中间层和第二中间层可以生长在有源层126和阻挡层129之间。第一势垒层可以进行生长以具有1-1部分和1-2部分,1-1部分具有50%至70%的铝成分,1-2部分具有80%至100%的铝成分。而且,第二中间层可以进行生长以具有未掺杂p型掺杂剂的2-1部分以及掺杂有掺杂剂的2-2部分。
光吸收层123包括铝成分低的第一光吸收层123a以及铝成分高的第二光吸收层123b。多个第一光吸收层123a和多个第二光吸收层123b可以交替设置。
第一光吸收层123a的铝成分可以低于第一导电半导体层124的铝成分。第一光吸收层123a可以在激光剥离(LLO)工艺期间在吸收激光时进行分离。因此,可以去除生长衬底。
可以适当调节第一光吸收层123a的厚度和铝成分以吸收预定波长(例如,246nm)的激光。第一光吸收层123a的铝成分可以在20%至50%的范围内,第一光吸收层123的厚度可以在1nm至10nm的范围内。例如,第一光吸收层123a可以由AlGaN制成,但不限于此。
第二光吸收层123b的铝成分可以高于第一导电半导体层124的铝成分。第二光吸收层123b可以通过增加由第一光吸收层123a减少的铝成分来增强生长在光吸收层123上的第一导电半导体层124的结晶度。
例如,第二光吸收层123b的铝成分可以在60%至100%的范围内,第二光吸收层123b的厚度可以在0.1nm至2.0nm的范围内。第二光吸收层123b可以由AlGaN或AlN制成。
为了吸收波长为246nm的激光,第一光吸收层123a可以比第二光吸收层123b厚。第一光吸收层123a的厚度可以在1nm至10nm的范围内,第二光吸收层123b的厚度可以在0.5nm至2.0nm的范围内。
第一光吸收层123a与第二光吸收层123b的厚度比率可以在2:1至6:1的范围内。当厚度比率小于2:1时,第一光吸收层123a过薄,使得充分吸收激光比较困难。当厚度比率大于6:1时,第二光吸收层123b过薄,使得光吸收层的总铝成分可能减少。
光吸收层123的总厚度可以大于100nm且小于400nm。当厚度小于大约100nm时,第一光吸收层123a过薄,使得充分吸收246nm的激光比较困难。当厚度大于大约400nm时,总的铝成分减少,因而结晶度可能变差。
根据实施例,可以通过形成具有超晶格结构的光吸收层123来增强结晶度。由于这种结构,光吸收层123可以用作缓冲层,用于缓解生长衬底121和发光结构120之间的晶格失配。
参见图31,去除生长衬底121的步骤可以包括通过从生长衬底121所在的一侧发射激光L1来分离生长衬底121。激光L1可以具有可由第一光吸收层123a吸收的波段。例如,激光可以是波段为248nm的KrF激光。
生长衬底121和第二光吸收层123b的能带隙太高而不能吸收激光L1。然而,含有较低铝成分的第一光吸收层123a可以通过吸收激光L1而分解。因此,可以将第一光吸收层123a与生长衬底121一起分离。
随后,可以通过标记工艺去除在第一导电半导体层124上的残留的光吸收层123-2。
参见图32,在第二导电层150形成在第二导电半导体层127上方之后,可以形成多个凹槽128以向上穿过发光结构120的第一导电半导体层124的一部分。随后,绝缘层130可以形成在凹槽128的一侧和第二导电半导体层127上方。随后,第一电极142可以形成在凹槽128暴露的第一导电半导体层124b上。
参见图33,第一导电层165可以形成在绝缘层130下方。第一导电层165可以通过绝缘层130与第二导电层150电绝缘。
随后,导电衬底170可以形成在第一导电层165下方,第二电极焊盘166可以形成在通过台面蚀刻工艺暴露的第二导电层150上。
半导体器件可以应用于各种光源设备。例如,从概念上讲,光源设备可以包括消毒设备、固化设备、照明设备、显示设备和车灯。也就是说,半导体器件可以通过被设置在其壳体中而被应用于提供光的各种电子设备。
消毒设备可以通过设置根据实施例的半导体器件对期望区域进行消毒。消毒设备可以应用于家用电器,例如净水器、空调和冰箱,但不限于此。也就是说,消毒设备可以应用于需要消毒的各种产品(例如,医疗设备)。
例如,通过设置根据实施例的消毒设备,净水器可以对循环水进行消毒。消毒设备可以设置在使水循环的喷嘴或排放口,并且配置为发射紫外光。在这种情况下,消毒设备可以包括防水结构。
通过设置根据实施例的半导体器件,固化设备可以固化各种液体。从概念上讲,液体可以包括在发射紫外光时固化的各种材料。例如,固化设备可以固化各种类型的树脂。或者,固化设备也可用于固化美容产品,例如美甲产品。
照明设备可以包括光源模块,该光源模块包括衬底和根据实施例的半导体器件。照明设备还可以包括:散热单元,配置为散发光源模块的热量;以及电源单元,配置为处理或转换外部源提供的电信号,并将电信号提供给光源模块。而且,照明设备可以包括灯、前照灯或路灯。
显示设备可以包括底罩、反射板、发光模块、导光板、光学片、显示面板、图像信号输出电路和滤色器。底罩、反射板、发光模块、导光板和光学片可以构成背光单元。
反射板可以设置在底罩上,发光模块可以发出光。导光板可以设置在反射板的前面,以向前引导发光模块发出的光。光学片可以包括棱镜片等,并且可以设置在导光板前面。显示面板可以设置在光学片前面。图像信号输出电路可以将图像信号提供给显示面板。滤色器可以设置在显示面板前面。
当半导体器件用作显示器件的背光单元时,半导体器件可以用作边缘型背光单元或直下型背光单元。
半导体器件可以是激光二极管,而不是上述发光二极管。
像发光器件一样,激光二极管可以包括具有上述结构的第一导电半导体层、有源层和第二导电半导体层。激光二极管还可以利用电致发光现象,在该现象中在p型第一导电半导体和n型第二导电半导体彼此接合之后电流流动时发光,但是发出的光的方向和相位存在差异。也就是说,激光二极管利用受激发射和相长干涉使得具有单个特定波长的光可以沿相同方向以相同相位发射。由于这些特性,激光二极管可以用于光学通信设备、医疗设备、半导体处理设备等。
光接收器件可以包括例如光检测器,该光检测器是一种被配置为检测光并将光的强度转换成电信号的变换器。该光检测器可以包括光电池(硅或硒)、光输出元件(硫化镉或硒化镉)、光电二极管(在可见盲光谱区域或真盲光谱区域中具有峰值波长的PD)、光电晶体管、光电倍增管、光电管(真空或充满气体)、红外(IR)检测器等,但本发明不限于此。
通常,可以使用光电转换效率高的直接带隙半导体来制造诸如光检测器等半导体器件。或者,光检测器可以具有多种结构。作为最常见的结构,光检测器可以包括使用p-n结的pin型光检测器、使用肖特基结的肖特基光检测器以及金属-半导体-金属(MSM)光检测器等。
像发光器件一样,光电二极管可以包括具有上述结构的第一导电半导体层、有源层和第二导电半导体层,并且可以形成为p-n结或pin结构。光电二极管在施加反向偏压或零偏压时工作。当光入射到光电二极管时,电子和空穴产生,使得电流流动。在这种情况下,电流的幅值可以与入射到光电二极管的光的强度近似成比例。
作为一种光电二极管,光电池或太阳能电池可以把光转换为电流。与发光器件类似,太阳能电池可以包括具有上述结构的第一导电半导体层、有源层和第二导电半导体层。
此外,太阳能电池可以通过使用p-n结的普通二极管的整流特性用作电子电路的整流器,并且可以应用于微波电路的振荡电路等。
此外,上述半导体器件不一定仅用半导体来实现。根据具体情况,半导体器件还可以包括金属材料。例如,诸如光接收器件等半导体器件可以使用Ag、Al、Au、In、Ga、N、Zn、Se、P和As中的至少之一来实现,并且可以使用本征半导体材料或掺杂有p型掺杂剂或n型掺杂剂的半导体材料实现。
虽然已经参考示例性实施例描述了本发明,但是这些实施例只是一些例子并且不限制本发明。本领域技术人员应该理解,可以在不脱离实施例的必要特性的情况下作出各种修改和应用。例如,可以修改和实现上文实施例中详细描述的元件。此外,与这些修改和应用有关的差异应理解为包括在由所附权利要求书限定的本发明的范围内。

Claims (24)

1.一种半导体器件,包括:
发光结构,所述发光结构包括:
第一半导体层;
第二半导体层;以及
含铝并且设置在所述第一半导体层和所述第二半导体层之间的有源层;
其中当初级离子轰击所述发光结构而从所述第一半导体层、所述有源层以及所述第二半导体层溅射出包含铝的二次离子时,沿着所述第一半导体层、所述有源层以及所述第二半导体层的厚度方向产生相应强度的包含铝的二次离子;
第一强度位置,在所述第二半导体层中展示最大强度,其强度为第一强度;
第三强度位置,在所述发光结构的整个区域中展示最小强度,其强度为第三强度;
第四强度位置,在所述第一半导体层中展示最小强度,其强度为第四强度;
第二强度位置,位于与所述第一强度分开的位置处,且为在所述第一强度与所述第四强度之间的区域中的最大峰值强度的位置,其强度为第二强度;
第五强度位置,位于所述第二强度位置和所述第四强度位置之间,其强度为第五强度,且所述第五强度的大小在所述第二强度和所述第四强度之间;
其中,所述第一强度位置与所述第三强度位置在第一方向上分开,所述第二强度位置与所述第一强度位置在所述第一方向上分开;
其中,所述第二半导体层包括第二区域,所述第二区域具有介于所述第一强度和所述第三强度之间的二次离子强度;
其中,所述有源层包括第三区域,所述第三区域具有介于所述第一强度和所述第二强度之间的二次离子强度;
其中,所述第一方向为所述发光结构的厚度方向,且为从所述第二半导体层至所述第一半导体层的方向。
2.根据权利要求1所述的半导体器件,其中,所述第四强度与所述第二强度的比率在1:1.2至1:2.5的范围内。
3.根据权利要求1所述的半导体器件,其中,所述第二强度与所述第一强度的比率在1:1.1至1:2的范围内。
4.根据权利要求1所述的半导体器件,其中,所述第三强度与所述第四强度的比率在1:1.1至1:2的范围内。
5.根据权利要求1所述的半导体器件,其中,所述第五强度与所述第二强度的比率在1:1.1至1:2.0的范围内。
6.根据权利要求1所述的半导体器件,其中,所述第四强度与所述第五强度的比率在1:1.1至1:2.0的范围内。
7.根据权利要求1所述的半导体器件,还包括:
第十强度位置,位于所述第一强度位置和所述第三强度位置之间,其强度为第十强度,且所述第十强度的大小与在所述第一强度位置与所述第二强度位置之间的区域中的最小的离子强度的大小相同。
8.根据权利要求7所述的半导体器件,其中,所述第十强度与所述第一强度的比率在1:1.3至1:2.5的范围内。
9.根据权利要求7所述的半导体器件,其中,所述第十强度位置和所述第三强度位置之间的区域具有1nm至30nm的厚度。
10.根据权利要求1所述的半导体器件,其中,所述第二半导体层包括P型半导体层和电子阻挡层,所述电子阻挡层包括1-1部分和1-2部分,所述第一强度位置位于所述1-1部分中,所述1-1部分的厚度为0.1nm至4nm。
11.根据权利要求1所述的半导体器件,其中,所述第一半导体层包括位于所述第二强度位置的第二强度部分,所述第二强度部分的强度为所述第二强度,所述第二强度部分的厚度小于所述有源层中一对阱层和势垒层的厚度之和。
12.根据权利要求1所述的半导体器件,其中,所述第二半导体层包括P型半导体层和电子阻挡层,所述P型半导体层包括铝组成随远离所述有源层而以一斜率渐小的半导体层。
13.一种半导体器件,包括:
发光结构,所述发光结构包括:
第一半导体层;
第二半导体层;以及
含铝并且设置在所述第一半导体层和所述第二半导体层之间的有源层;
其中当初级离子轰击所述发光结构而从所述第一半导体层、所述有源层以及所述第二半导体层溅射出包含铝的二次离子时,沿着所述第一半导体层、所述有源层以及所述第二半导体层的厚度方向产生相应强度的包含铝的二次离子;
第一强度位置,在所述第二半导体层中展示最大强度,其强度为第一强度;
第三强度位置,在所述发光结构的整个区域中展示最小强度,其强度为第三强度;
第四强度位置,在所述第一半导体层中展示最小强度,其强度为第四强度;
第二强度位置,位于与所述第一强度分开的位置处,且为在所述第一强度与所述第四强度之间的区域中的最大峰值强度的位置,其强度为第二强度;
第十强度位置,位于所述第一强度位置和所述第三强度位置之间,其强度为第十强度,且所述第十强度的大小与在所述第一强度位置与所述第二强度位置之间的区域中的最小的离子强度的大小相同;
其中,所述第十强度位置和所述第三强度位置之间的区域具有1nm至30nm的厚度。
14.根据权利要求13所述的半导体器件,其中,所述第十强度与所述第一强度的比率在1:1.3至1:2.5的范围内。
15.根据权利要求13所述的半导体器件,其中,所述第十强度位置和所述第三强度位置之间的铝离子强度的平均变化大于所述第一强度位置和所述第十强度位置之间的铝离子强度的平均变化。
16.根据权利要求13所述的半导体器件,其中,所述第十强度位置和所述第三强度位置之间的区域具有反向部分;
其中,在所述第十强度位置和所述第三强度位置之间的区域中,包含铝的二次离子的强度整体上沿从所述第十强度位置至所述第三强度位置的方向减小;在所述反向部分,包含铝的二次离子的强度沿从所述第十强度位置至所述第三强度位置的方向增加或保持不变。
17.根据权利要求13所述的半导体器件,其中,所述第四强度与所述第二强度的比率在1:1.2至1:2.5的范围内。
18.根据权利要求13所述的半导体器件,其中,所述第二强度与所述第一强度的比率在1:1.1至1:2的范围内。
19.根据权利要求13所述的半导体器件,其中,所述第三强度与所述第四强度的比率在1:1.1至1:2的范围内。
20.根据权利要求13所述的半导体器件,还包括:
第一电极,与所述第一半导体层电连接;以及
第二电极,与所述第二半导体层电连接;
其中,所述第四强度位置与所述第一电极接触。
21.根据权利要求13所述的半导体器件,还包括:
第一电极,与所述第一半导体层电连接;以及
第二电极,与所述第二半导体层电连接;
其中,所述第三强度位置与所述第二电极接触。
22.根据权利要求13所述的半导体器件,其中,所述第二半导体层包括P型半导体层和电子阻挡层,所述电子阻挡层包括1-1部分和1-2部分,所述第一强度位置位于所述1-1部分中,所述1-1部分的厚度为0.1nm至4nm。
23.根据权利要求13所述的半导体器件,其中,所述第一导电半导体层包括第一导电半导体层第一子层、第一导电半导体层第二子层、第一导电半导体层第三子层,其中,所述第一导电半导体层第二子层设置在所述第一导电半导体层第一子层和所述第一导电半导体层第三子层之间。
24.根据权利要求13所述的半导体器件,其中,所述第一半导体层包括位于所述第二强度位置的第二强度部分,所述第二强度部分的强度为所述第二强度,所述第二强度部分的厚度小于所述有源层中一对阱层和势垒层的厚度之和。
CN202211246664.7A 2016-09-13 2017-09-13 半导体器件和包括该半导体器件的半导体器件封装 Pending CN115602764A (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR1020160118243A KR102648472B1 (ko) 2016-09-13 2016-09-13 반도체 소자 및 이를 포함하는 반도체 소자 패키지
KR10-2016-0118243 2016-09-13
KR10-2016-0140466 2016-10-26
KR1020160140466A KR102632215B1 (ko) 2016-10-26 2016-10-26 반도체 소자 및 이를 포함하는 반도체 소자 패키지
KR10-2017-0115836 2017-09-11
KR1020170115836A KR102400338B1 (ko) 2017-08-04 2017-09-11 반도체 소자 및 이를 포함하는 반도체 소자 패키지
PCT/KR2017/010065 WO2018052252A1 (ko) 2016-09-13 2017-09-13 반도체 소자 및 이를 포함하는 반도체 소자 패키지
CN201780056302.2A CN109791960B (zh) 2016-09-13 2017-09-13 半导体器件和包括该半导体器件的半导体器件封装

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201780056302.2A Division CN109791960B (zh) 2016-09-13 2017-09-13 半导体器件和包括该半导体器件的半导体器件封装

Publications (1)

Publication Number Publication Date
CN115602764A true CN115602764A (zh) 2023-01-13

Family

ID=66495631

Family Applications (6)

Application Number Title Priority Date Filing Date
CN202211246713.7A Pending CN115602765A (zh) 2016-09-13 2017-09-13 半导体器件和包括该半导体器件的半导体器件封装
CN202211246664.7A Pending CN115602764A (zh) 2016-09-13 2017-09-13 半导体器件和包括该半导体器件的半导体器件封装
CN201780056302.2A Active CN109791960B (zh) 2016-09-13 2017-09-13 半导体器件和包括该半导体器件的半导体器件封装
CN202211245094.XA Pending CN115566116A (zh) 2016-09-13 2017-09-13 半导体器件和包括该半导体器件的半导体器件封装
CN202211246735.3A Pending CN115763652A (zh) 2016-09-13 2017-09-13 半导体器件和包括该半导体器件的半导体器件封装
CN202211246672.1A Pending CN115498078A (zh) 2016-09-13 2017-09-13 半导体器件和包括该半导体器件的半导体器件封装

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202211246713.7A Pending CN115602765A (zh) 2016-09-13 2017-09-13 半导体器件和包括该半导体器件的半导体器件封装

Family Applications After (4)

Application Number Title Priority Date Filing Date
CN201780056302.2A Active CN109791960B (zh) 2016-09-13 2017-09-13 半导体器件和包括该半导体器件的半导体器件封装
CN202211245094.XA Pending CN115566116A (zh) 2016-09-13 2017-09-13 半导体器件和包括该半导体器件的半导体器件封装
CN202211246735.3A Pending CN115763652A (zh) 2016-09-13 2017-09-13 半导体器件和包括该半导体器件的半导体器件封装
CN202211246672.1A Pending CN115498078A (zh) 2016-09-13 2017-09-13 半导体器件和包括该半导体器件的半导体器件封装

Country Status (4)

Country Link
US (1) US10910519B2 (zh)
EP (1) EP3514840A4 (zh)
JP (1) JP7403797B2 (zh)
CN (6) CN115602765A (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6803411B2 (ja) * 2017-02-17 2020-12-23 Dowaエレクトロニクス株式会社 深紫外発光素子およびその製造方法
JP7410508B2 (ja) * 2019-03-07 2024-01-10 旭化成株式会社 窒化物半導体素子
JP7488456B2 (ja) 2020-06-08 2024-05-22 日亜化学工業株式会社 発光素子
TWI792190B (zh) * 2021-02-20 2023-02-11 兆勁科技股份有限公司 發光元件
JPWO2023013374A1 (zh) * 2021-08-03 2023-02-09
CN114497304A (zh) * 2022-01-28 2022-05-13 安徽格恩半导体有限公司 一种半导体元件
WO2023233778A1 (ja) * 2022-05-31 2023-12-07 パナソニックホールディングス株式会社 窒化物発光素子
DE102023108165A1 (de) * 2023-03-30 2024-10-02 Ams-Osram International Gmbh Halbleiterschichtenfolge

Family Cites Families (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3884659T2 (de) 1987-04-21 1994-05-05 Nippon Electric Co Optische Halbleiteranordnung.
US5153889A (en) 1989-05-31 1992-10-06 Kabushiki Kaisha Toshiba Semiconductor light emitting device
JP2927158B2 (ja) 1993-09-29 1999-07-28 サンケン電気株式会社 半導体発光素子
US6340824B1 (en) 1997-09-01 2002-01-22 Kabushiki Kaisha Toshiba Semiconductor light emitting device including a fluorescent material
JP3033564B2 (ja) 1997-10-02 2000-04-17 セイコーエプソン株式会社 半導体装置の製造方法
JP3614070B2 (ja) 2000-01-17 2005-01-26 日亜化学工業株式会社 窒化物半導体発光ダイオード
KR100425341B1 (ko) 2000-02-08 2004-03-31 삼성전기주식회사 질화물 반도체 발광 소자
JP3786114B2 (ja) 2000-11-21 2006-06-14 日亜化学工業株式会社 窒化物半導体素子
US6777253B2 (en) 2000-12-20 2004-08-17 Matsushita Electric Industrial Co., Ltd. Method for fabricating semiconductor, method for fabricating semiconductor substrate, and semiconductor light emitting device
JP4161603B2 (ja) 2001-03-28 2008-10-08 日亜化学工業株式会社 窒化物半導体素子
US6958497B2 (en) 2001-05-30 2005-10-25 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
JP5055678B2 (ja) 2001-09-28 2012-10-24 日亜化学工業株式会社 窒化物半導体発光素子
TWI275220B (en) 2001-11-05 2007-03-01 Nichia Corp Nitride semiconductor device
JP4236840B2 (ja) 2001-12-25 2009-03-11 富士フイルム株式会社 半導体レーザ素子
EP2105977B1 (en) 2002-01-28 2014-06-25 Nichia Corporation Nitride semiconductor element with supporting substrate and method for producing nitride semiconductor element
KR101030068B1 (ko) 2002-07-08 2011-04-19 니치아 카가쿠 고교 가부시키가이샤 질화물 반도체 소자의 제조방법 및 질화물 반도체 소자
US7521693B2 (en) 2003-10-16 2009-04-21 Alis Corporation Ion sources, systems and methods
KR100541102B1 (ko) 2004-02-13 2006-01-11 삼성전기주식회사 오믹 접촉을 개선한 질화물 반도체 발광소자 및 그 제조방법
JP3863177B2 (ja) 2004-04-16 2006-12-27 ナイトライド・セミコンダクター株式会社 窒化ガリウム系発光装置
JP2006032779A (ja) 2004-07-20 2006-02-02 Sanyo Electric Co Ltd 窒化物半導体発光素子
WO2006043422A1 (ja) 2004-10-19 2006-04-27 Nichia Corporation 半導体素子
TWI413274B (zh) 2005-03-18 2013-10-21 Mitsubishi Chem Corp 發光裝置,白色發光裝置,照明裝置及影像顯示裝置
US20060260671A1 (en) 2005-05-17 2006-11-23 Rohm Co., Ltd. Semiconductor device and semiconductor light emitting device
JP4225510B2 (ja) * 2005-07-06 2009-02-18 昭和電工株式会社 化合物半導体発光ダイオードおよびその製造方法
JP2007103690A (ja) 2005-10-05 2007-04-19 Matsushita Electric Ind Co Ltd 半導体発光装置及びその製造方法
JP4968617B2 (ja) 2005-11-11 2012-07-04 日亜化学工業株式会社 半導体発光素子及びその製造方法
TWI318013B (en) 2006-09-05 2009-12-01 Epistar Corp A light emitting device and the manufacture method thereof
KR100820546B1 (ko) 2006-09-07 2008-04-07 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
CN102779918B (zh) 2007-02-01 2015-09-02 日亚化学工业株式会社 半导体发光元件
KR101330898B1 (ko) * 2007-04-05 2013-11-18 엘지전자 주식회사 반도체 레이저 다이오드
US20100006884A1 (en) 2007-08-07 2010-01-14 Epistar Corporation Light Emitting Device and Manufacturing Method Therof
JP5474292B2 (ja) 2007-11-06 2014-04-16 シャープ株式会社 窒化物半導体発光ダイオード素子
JP2008285758A (ja) 2008-06-02 2008-11-27 Nippon Steel Corp 一方向性電磁鋼板
KR20100003321A (ko) 2008-06-24 2010-01-08 삼성전자주식회사 발광 소자, 이를 포함하는 발광 장치, 상기 발광 소자 및발광 장치의 제조 방법
JP4572963B2 (ja) * 2008-07-09 2010-11-04 住友電気工業株式会社 Iii族窒化物系半導体発光素子、及びエピタキシャルウエハ
JP5305790B2 (ja) 2008-08-28 2013-10-02 株式会社東芝 半導体発光素子
US8008683B2 (en) 2008-10-22 2011-08-30 Samsung Led Co., Ltd. Semiconductor light emitting device
DE112009003719T5 (de) 2008-12-10 2012-08-16 Furukawa Electric Co., Ltd., Halbleiterlaserelement und herstellungsverfahren dafür
JP5407359B2 (ja) 2009-01-23 2014-02-05 信越半導体株式会社 発光ダイオード
US20120085986A1 (en) 2009-06-18 2012-04-12 Panasonic Corporation Gallium nitride-based compound semiconductor light-emitting diode
KR101007087B1 (ko) 2009-10-26 2011-01-10 엘지이노텍 주식회사 발광소자 및 그 제조방법
KR101636182B1 (ko) 2010-02-24 2016-07-04 고쿠리쓰 겐큐 가이하쓰 호징 리가가쿠 겐큐소 질화물 반도체 다중 양자 장벽을 갖는 발광 소자 및 그 제조 방법
JP2011187591A (ja) 2010-03-08 2011-09-22 Uv Craftory Co Ltd 窒化物半導体紫外線発光素子
US8154042B2 (en) 2010-04-29 2012-04-10 Koninklijke Philips Electronics N V Light emitting device with trenches and a top contact
JP5659966B2 (ja) 2010-06-29 2015-01-28 日亜化学工業株式会社 半導体素子及びその製造方法
JP5319628B2 (ja) 2010-08-26 2013-10-16 シャープ株式会社 窒化物半導体素子および半導体光学装置
DE102010044986A1 (de) 2010-09-10 2012-03-15 Osram Opto Semiconductors Gmbh Leuchtdiodenchip und Verfahren zur Herstellung eines Leuchtdiodenchips
US20120112218A1 (en) 2010-11-04 2012-05-10 Agency For Science, Technology And Research Light Emitting Diode with Polarized Light Emission
JP6096121B2 (ja) 2010-12-01 2017-03-15 日東電工株式会社 ドーパントの濃度勾配を有する放射性セラミック材料、ならびにその製造方法および使用方法
JP5175918B2 (ja) 2010-12-01 2013-04-03 株式会社東芝 半導体発光素子
JP2012216603A (ja) 2011-03-31 2012-11-08 Sharp Corp 窒化物半導体発光素子およびその製造方法
JP4989773B1 (ja) 2011-05-16 2012-08-01 株式会社東芝 半導体発光素子
US9252329B2 (en) 2011-10-04 2016-02-02 Palo Alto Research Center Incorporated Ultraviolet light emitting devices having compressively strained light emitting layer for enhanced light extraction
JP5988568B2 (ja) 2011-11-14 2016-09-07 Dowaエレクトロニクス株式会社 半導体発光素子およびその製造方法
JP2013149889A (ja) 2012-01-23 2013-08-01 Stanley Electric Co Ltd GaN系半導体発光素子
JP5857786B2 (ja) 2012-02-21 2016-02-10 日亜化学工業株式会社 半導体発光素子の製造方法
US20130292685A1 (en) 2012-05-05 2013-11-07 Texas Tech University System Structures and Devices Based on Boron Nitride and Boron Nitride-III-Nitride Heterostructures
JP5978758B2 (ja) 2012-05-21 2016-08-24 日亜化学工業株式会社 半導体発光素子
KR101941033B1 (ko) 2012-07-05 2019-01-22 엘지이노텍 주식회사 발광소자
TWI544658B (zh) 2012-08-01 2016-08-01 晶元光電股份有限公司 發光二極體結構
KR101953716B1 (ko) 2012-08-23 2019-03-05 엘지이노텍 주식회사 발광소자, 발광 소자 패키지 및 조명 시스템
US9401452B2 (en) 2012-09-14 2016-07-26 Palo Alto Research Center Incorporated P-side layers for short wavelength light emitters
KR20140038886A (ko) 2012-09-21 2014-03-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
KR101976455B1 (ko) * 2012-10-19 2019-05-09 엘지이노텍 주식회사 발광 소자 및 발광 소자 패키지
JP2014127708A (ja) 2012-12-27 2014-07-07 Toshiba Corp 半導体発光素子及び半導体発光素子の製造方法
JP2016084822A (ja) 2013-01-21 2016-05-19 ジヤトコ株式会社 マルチディスク変速機
KR101958419B1 (ko) 2013-01-29 2019-03-14 삼성전자 주식회사 반도체 발광 소자
KR102037865B1 (ko) 2013-02-01 2019-10-30 삼성전자주식회사 반도체 발광소자 및 반도체 발광소자 제조방법
JP2014154597A (ja) 2013-02-05 2014-08-25 Tokuyama Corp 窒化物半導体発光素子
US20160005919A1 (en) * 2013-02-05 2016-01-07 Tokuyama Corporation Nitride semiconductor light emitting device
JP6118575B2 (ja) 2013-02-12 2017-04-19 日亜化学工業株式会社 発光装置
JP6287317B2 (ja) 2013-02-28 2018-03-07 日亜化学工業株式会社 半導体発光素子
KR20140130618A (ko) 2013-05-01 2014-11-11 서울바이오시스 주식회사 솔더 페이스트를 통해 접착된 발광 다이오드를 갖는 발광 다이오드 모듈 및 발광 다이오드
JP6466653B2 (ja) * 2013-05-17 2019-02-06 スタンレー電気株式会社 窒化物半導体発光素子、および窒化物半導体ウェーハ
JP6192378B2 (ja) 2013-06-18 2017-09-06 学校法人 名城大学 窒化物半導体発光素子
US9847457B2 (en) 2013-07-29 2017-12-19 Seoul Viosys Co., Ltd. Light emitting diode, method of fabricating the same and LED module having the same
WO2015033557A1 (ja) 2013-09-05 2015-03-12 パナソニックIpマネジメント株式会社 発光装置
JP5818853B2 (ja) 2013-10-15 2015-11-18 株式会社トクヤマ n型窒化アルミニウム単結晶基板を用いた縦型窒化物半導体デバイス
KR102070089B1 (ko) 2013-10-23 2020-01-29 삼성전자주식회사 반도체 발광소자 패키지 및 이를 이용한 조명장치
KR102098245B1 (ko) 2014-02-11 2020-04-07 삼성전자 주식회사 광원 패키지 및 그를 포함하는 표시 장치
US9397309B2 (en) 2014-03-13 2016-07-19 Universal Display Corporation Organic electroluminescent devices
JP6262036B2 (ja) 2014-03-14 2018-01-17 スタンレー電気株式会社 発光装置
KR101458389B1 (ko) 2014-04-01 2014-11-06 (주)유비쿼스 G.hn 기술을 엑세스 네트워크에 적용하기 위한 장치
EP3131129B1 (en) 2014-04-07 2020-07-15 LG Innotek Co., Ltd. Light-emitting element
JP2015216352A (ja) 2014-04-24 2015-12-03 国立研究開発法人理化学研究所 紫外発光ダイオードおよびそれを備える電気機器
US10361343B2 (en) 2014-07-02 2019-07-23 Trustees Of Boston University Ultraviolet light emitting diodes
EP2988339B1 (en) * 2014-08-20 2019-03-27 LG Innotek Co., Ltd. Light emitting device
JP6337686B2 (ja) 2014-08-21 2018-06-06 三菱ケミカル株式会社 GaN基板およびGaN基板の製造方法
KR102282141B1 (ko) 2014-09-02 2021-07-28 삼성전자주식회사 반도체 발광소자
JP6330604B2 (ja) 2014-09-24 2018-05-30 日亜化学工業株式会社 半導体発光素子
KR20160037060A (ko) 2014-09-26 2016-04-05 서울바이오시스 주식회사 발광소자 및 그 제조 방법
KR102263066B1 (ko) 2014-11-12 2021-06-10 서울바이오시스 주식회사 발광 소자
WO2016076637A1 (en) 2014-11-12 2016-05-19 Seoul Viosys Co., Ltd. Light emitting device
KR20160062659A (ko) 2014-11-25 2016-06-02 서울바이오시스 주식회사 자외선 발광 다이오드
WO2016099061A1 (en) 2014-12-19 2016-06-23 Seoul Viosys Co., Ltd. Semiconductor light emitting device and method of manufacturing the same
US9865772B2 (en) 2015-01-06 2018-01-09 Apple Inc. LED structures for reduced non-radiative sidewall recombination
JP5953447B1 (ja) * 2015-02-05 2016-07-20 Dowaエレクトロニクス株式会社 Iii族窒化物半導体発光素子およびその製造方法
KR102329719B1 (ko) 2015-02-23 2021-11-23 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광 소자 및 이를 구비한 라이트 유닛
KR102303502B1 (ko) 2015-02-25 2021-09-17 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광 소자 및 이를 구비한 발광 소자 패키지
KR20160105126A (ko) 2015-02-27 2016-09-06 서울바이오시스 주식회사 스트레인 강화된 웰층을 갖는 발광 다이오드
KR102239627B1 (ko) 2015-03-26 2021-04-12 엘지이노텍 주식회사 발광 소자 패키지
KR102416010B1 (ko) 2015-03-31 2022-07-05 서울바이오시스 주식회사 자외선 발광 소자
WO2016163083A1 (ja) 2015-04-09 2016-10-13 パナソニックIpマネジメント株式会社 窒化物半導体発光素子
JP6860293B2 (ja) 2015-04-28 2021-04-14 日機装株式会社 発光素子および発光素子の製造方法
KR102388284B1 (ko) 2015-05-26 2022-04-19 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자
US9540252B1 (en) 2015-06-08 2017-01-10 Rayvio Corporation Ultraviolet disinfection system
CN108140695B (zh) 2015-09-17 2021-02-09 晶体公司 包含二维空穴气体的紫外发光器件
KR102391513B1 (ko) 2015-10-05 2022-04-27 삼성전자주식회사 물질막 적층체, 발광 소자, 발광 패키지, 및 발광 소자의 제조 방법
US10734547B2 (en) 2016-06-24 2020-08-04 Lg Innotek Co., Ltd. Semiconductor device and semiconductor device package comprising same
US10340415B2 (en) 2016-09-01 2019-07-02 Lg Innotek Co., Ltd. Semiconductor device and semiconductor device package including the same
US10903395B2 (en) 2016-11-24 2021-01-26 Lg Innotek Co., Ltd. Semiconductor device having varying concentrations of aluminum

Also Published As

Publication number Publication date
CN109791960B (zh) 2022-10-21
CN109791960A (zh) 2019-05-21
JP2019530228A (ja) 2019-10-17
EP3514840A4 (en) 2019-08-21
CN115498078A (zh) 2022-12-20
CN115566116A (zh) 2023-01-03
US10910519B2 (en) 2021-02-02
CN115602765A (zh) 2023-01-13
JP7403797B2 (ja) 2023-12-25
US20190267514A1 (en) 2019-08-29
EP3514840A1 (en) 2019-07-24
CN115763652A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
US10937923B2 (en) Semiconductor device and semiconductor device package including the same
CN109791960B (zh) 半导体器件和包括该半导体器件的半导体器件封装
CN109417111B (zh) 半导体器件
US10734547B2 (en) Semiconductor device and semiconductor device package comprising same
CN108110110B (zh) 半导体器件和包括该半导体器件的半导体器件封装
CN114725267B (zh) 半导体器件和包括该半导体器件的半导体器件封装
KR102533221B1 (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지
KR102600336B1 (ko) 발광소자
KR102619743B1 (ko) 반도체 소자
KR102466006B1 (ko) 반도체 소자
KR102552889B1 (ko) 반도체 소자, 반도체 소자 패키지, 및 반도체 소자 제조방법
KR20200077179A (ko) 반도체 소자
KR20190135078A (ko) 반도체 소자 및 반도체 소자 패키지

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination