US20060088523A1 - Antibody formulations - Google Patents

Antibody formulations Download PDF

Info

Publication number
US20060088523A1
US20060088523A1 US11/254,182 US25418205A US2006088523A1 US 20060088523 A1 US20060088523 A1 US 20060088523A1 US 25418205 A US25418205 A US 25418205A US 2006088523 A1 US2006088523 A1 US 2006088523A1
Authority
US
United States
Prior art keywords
formulation
antibody
antibodies
her2
histidine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/254,182
Other languages
English (en)
Inventor
James Andya
Shiang Gwee
Jun Liu
Ye Shen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genentech Inc
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36203665&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20060088523(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Genentech Inc filed Critical Genentech Inc
Priority to US11/254,182 priority Critical patent/US20060088523A1/en
Assigned to GENENTECH, INC. reassignment GENENTECH, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIU, JUN, ANDYA, JAMES, GWEE, SHIANG C., SHEN, YU
Publication of US20060088523A1 publication Critical patent/US20060088523A1/en
Priority to US12/554,194 priority patent/US8372396B2/en
Priority to US13/660,114 priority patent/US9017671B2/en
Priority to US14/672,598 priority patent/US20150196642A1/en
Priority to US15/936,047 priority patent/US20180221488A1/en
Priority to US16/784,467 priority patent/US20200179515A1/en
Priority to US17/808,029 priority patent/US20230263895A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39541Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against normal tissues, cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7012Compounds having a free or esterified carboxyl group attached, directly or through a carbon chain, to a carbon atom of the saccharide radical, e.g. glucuronic acid, neuraminic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39591Stabilisation, fragmentation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2878Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance

Definitions

  • the present invention concerns antibody formulations, including monoclonal antibodies formulated in histidine-acetate buffer, as well as a formulation comprising an antibody that binds to domain II of HER2 (for example, Pertuzumab), and a formulation comprising an antibody that binds to DR5 (for example, Apomab).
  • proteins are larger and more complex than traditional organic and inorganic drugs (i.e. possessing multiple functional groups in addition to complex three-dimensional structures), the formulation of such proteins poses special problems.
  • a formulation must preserve intact the conformational integrity of at least a core sequence of the protein's amino acids while at the same time protecting the protein's multiple functional groups from degradation.
  • Degradation pathways for proteins can involve chemical instability (i.e. any process which involves modification of the protein by bond formation or cleavage resulting in a new chemical entity) or physical instability (i.e. changes in the higher order structure of the protein).
  • Chemical instability can result from deamidation, racemization, hydrolysis, oxidation, beta elimination or disulfide exchange. Physical instability can result from denaturation, aggregation, precipitation or adsorption, for example.
  • the three most common protein degradation pathways are protein aggregation, deamidation and oxidation. Cleland et al. Critical Reviews in Therapeutic Drug Carrier Systems 10(4): 307-377 (1993).
  • an antibody useful for therapy is an antibody which binds to the HER2 antigen, such as Pertuzumab.
  • U.S. Pat. No. 6,339,142 describes a HER2 antibody composition comprising a mixture of anti-HER2 antibody and one or more acidic variants thereof, wherein the amount of the acidic variant(s) is less than about 25%.
  • Trastuzumab is an exemplified HER2 antibody.
  • U.S. Pat. Nos. 6,267,958 and 6,685,940 describe lyophilized antibody formulations, including HER2 and IgE antibody formulations.
  • WO97/04807 and US 2004/0197326A1 describe methods for treating allergic asthma with an IgE antibody.
  • WO99/01556 (Lowman et al.) relates to IgE antibody with aspartyl residues prone to isomerization, and improved variants thereof.
  • US 2002/0045571 (Liu et al.) provides reduced viscosity concentrated protein formulations, exemplified by humanized IgE antibody formulations, rhuMAb E25 and E26.
  • WO 02/096457 and US 2004/0170623 (Arvinte et al.) describes stable liquid formulations comprising anti-IgE antibody E25. See, also, US 2004/0197324 A1 (Liu and Shire) concerning high concentration anti-IgE formulation.
  • U.S. Pat. No. 6,171,586 (Lam et al.) describes stable aqueous antibody formulations.
  • a F(ab′)2 rhuMAb CD18 antibody was formulated in sodium acetate and histidine-HCl buffers.
  • the preferred formulation for rhuMAb CD18 was 10 mM sodium acetate, 8% trehalose, 0.01% TWEEN 20TM, pH 5.0.
  • Acetate (pH 5.0) formulations of rhuMAb CD20 stored at 40° for one month demonstrated greater stability than those samples formulated in histidine (pH 5.0 or 6.0).
  • WO2004/071439 (Burke et al.) state that impurities arose in a natalizumab (anti-alpha4 integrin humanized monoclonal antibody) formulation from the degradation of polysorbate 80, apparently through an oxidation reaction involving metal ions and hisitidine. Thus, a phosphate buffer was selected.
  • WO 2000/066160 (English language counterpart EP 1 174 148A1) (Okada et al.) refers to a formulation of a humanized C4G1 antibody which binds to a fibrinogen receptor of a human platelet membrane glycoprotein GPIIb/IIIa, in a sodium phosphate or sodium citrate buffer.
  • WO2004/019861 (Johnson et al.) concerns CDP870, a pegylated anti-TNF ⁇ Fab fragment, formulated at 200 mg/ml in 50 mM sodium acetate (pH 5.5) and 125 mM sodium chloride.
  • WO2004/004639 (Nesta, P.) refers to a formulation for huC242-DM1, a tumor-activated immunotoxin, in a 50 mM succinic acid buffer (pH 6.0) and sucrose (5% w/v).
  • Daclizumab a humanized IL-2 receptor antibody
  • WO 2004/001007 concerns a CD80 monoclonal antibody in a histidine HCl, sodium acetate or sodium citrate buffer.
  • U.S. Pat. No. 6,252,055 refers to anti-CD4 and anti-CD23 antibodies formulated in maleate, succinate, sodium acetate or phosphate buffers, with phosphate being identified as the preferred buffer.
  • U.S. Pat. No. 5,608,038 (Eibl et al.) refers to highly concentrated polyclonal immunoglobulin preparations with immunoglobulin, glucose or sucrose, and sodium chloride therein.
  • WO03/015894 refers to an aqueous formulation of 100 mg/mL SYNAGIS®, 25 mM histidine-HCl, 1.6 mM glycine, pH 6.0, and a lyophilized SYNAGIS® which when formulated (before lyophilization) contains 25 mM histidine, 1.6 mM glycine and 3% w/v mannitol at pH 6.0.
  • US 2003/0113316 A1 (Kaisheva et al.) refers to a lyophilized anti-IL2 receptor antibody formulation.
  • the HER family of receptor tyrosine kinases are important mediators of cell growth, differentiation and survival.
  • the receptor family includes four distinct members including epidermal growth factor receptor (EGFR, ErbB1, or HER1), HER2 (ErbB2 or p185 neu ), HER3 (ErbB3) and HER4 (ErbB4 or tyro2).
  • EGFR epidermal growth factor receptor
  • HER2 ErbB2 or p185 neu
  • HER3 ErbB3
  • HER4 ErbB4 or tyro2
  • the second member of the HER family, p185 neu was originally identified as the product of the transforming gene from neuroblastomas of chemically treated rats.
  • the activated form of the neu proto-oncogene results from a point mutation (valine to glutamic acid) in the transmembrane region of the encoded protein.
  • Amplification of the human homolog of neu is observed in breast and ovarian cancers and correlates with a poor prognosis (Slamon et al., Science, 235:177-182 (1987); Slamon et al., Science, 244:707-712 (1989); and U.S. Pat. No. 4,968,603).
  • no point mutation analogous to that in the neu proto-oncogene has been reported for human tumors.
  • HER2 Overexpression of HER2 (frequently but not uniformly due to gene amplification) has also been observed in other carcinomas including carcinomas of the stomach, endometrium, salivary gland, lung, kidney, colon, thyroid, pancreas and bladder. See, among others, King et al., Science, 229:974 (1985); Yokota et al., Lancet: 1:765-767 (1986); Fukushige et al., Mol Cell Biol., 6:955-958 (1986); Guerin et al., Oncogene Res., 3:21-31 (1988); Cohen et al., Oncogene, 4:81-88 (1989); Yonemura et al., Cancer Res., 51:1034 (1991); Borst et al., Gynecol.
  • HER2 may be overexpressed in prostate cancer (Gu et al. Cancer Lett. 99:185-9 (1996); Ross et al. Hum. Pathol. 28:827-33 (1997); Ross et al. Cancer 79:2162-70 (1997); and Sadasivan et al. J. Urol. 150:126-31 (1993)).
  • Hudziak et al., Mol. Cell. Biol. 9(3):1165-1172 (1989) describe the generation of a panel of HER2 antibodies which were characterized using the human breast tumor cell line SK-BR-3. Relative cell proliferation of the SK-BR-3 cells following exposure to the antibodies was determined by crystal violet staining of the monolayers after 72 hours. Using this assay, maximum inhibition was obtained with the antibody called 4D5 which inhibited cellular proliferation by 56%. Other antibodies in the panel reduced cellular proliferation to a lesser extent in this assay. The antibody 4D5 was further found to sensitize HER2-overexpressing breast tumor cell lines to the cytotoxic effects of TNF- ⁇ . See also U.S. Pat. No. 5,677,171 issued Oct.
  • HER2 antibodies discussed in Hudziak et al. are further characterized in Fendly et al. Cancer Research 50:1550-1558 (1990); Kotts et al. In Vitro 26(3):59A (1990); Sarup et al. Growth Regulation 1:72-82 (1991); Shepard et al. J. Clin. Immunol. 11(3):117-127 (1991); Kumar et al. Mol. Cell. Biol. 11(2):979-986 (1991); Lewsi et al. Cancer Immunol. Immunother. 37:255-263 (1993); Pietras et al. Oncogene 9:1829-1838 (1994); Vitetta et al.
  • a recombinant humanized version of the murine HER2 antibody 4D5 (huMAb4D5-8, rhuMAb HER2, Trastuzumab or HERCEPTIN®; U.S. Pat. No. 5,821,337) is clinically active in patients with HER2-overexpressing metastatic breast cancers that have received extensive prior anti-cancer therapy (Baselga et al., J. Clin. Oncol. 14:737-744 (1996)).
  • Trastuzumab received marketing approval from the Food and Drug Administration Sep. 25, 1998 for the treatment of patients with metastatic breast cancer whose tumors overexpress the HER2 protein.
  • HER2 antibodies with various properties have been described in Tagliabue et al. Int. J. Cancer 47:933-937 (1991); McKenzie et al. Oncogene 4:543-548 (1989); Maier et al. Cancer Res. 51:5361-5369 (1991); Bacus et al. Molecular Carcinogenesis 3:350-362 (1990); Stancovski et al. PNAS ( USA ) 88:8691-8695 (1991); Bacus et al. Cancer Research 52:2580-2589 (1992); Xu et al. Int. J. Cancer 53:401-408 (1993); WO94/00136; Kasprzyk et al.
  • HER3 U.S. Pat. Nos. 5,183,884 and 5,480,968 as well as Kraus et al. PNAS ( USA ) 86:9193-9197 (1989)
  • HER4 EP Pat Appln No 599,274; Plowman et al., Proc. Natl. Acad. Sci. USA, 90:1746-1750 (1993); and Plowman et al., Nature, 366:473-475 (1993)). Both of these receptors display increased expression on at least some breast cancer cell lines.
  • HER receptors are generally found in various combinations in cells and heterodimerization is thought to increase the diversity of cellular responses to a variety of HER ligands (Earp et al. Breast Cancer Research and Treatment 35: 115-132 (1995)).
  • EGFR is bound by six different ligands; epidermal growth factor (EGF), transforming growth factor alpha (TGF- ⁇ ), amphiregulin, heparin binding epidermal growth factor (HB-EGF), betacellulin and epiregulin (Groenen et al. Growth Factors 11:235-257 (1994)).
  • a family of heregulin proteins resulting from alternative splicing of a single gene are ligands for HER3 and HER4.
  • the heregulin family includes alpha, beta and gamma heregulins (Holmes et al., Science, 256:1205-1210 (1992); U.S. Pat. No. 5,641,869; and Schaefer et al. Oncogene 15:1385-1394 (1997)); neu differentiation factors (NDFs), glial growth factors (GGFs); acetylcholine receptor inducing activity (ARIA); and sensory and motor neuron derived factor (SMDF).
  • NDFs neu differentiation factors
  • GGFs glial growth factors
  • ARIA acetylcholine receptor inducing activity
  • SMDF sensory and motor neuron derived factor
  • neuregulin-2 which is reported to bind either HER3 or HER4 (Chang et al. Nature 387 509-512 (1997); and Carraway et al Nature 387:512-516 (1997)); neuregulin-3 which binds HER4 (Zhang et al. PNAS (USA) 94(18):9562-7 (1997)); and neuregulin-4 which binds HER4 (Harari et al. Oncogene 18:2681-89 (1999)) HB-EGF, betacellulin and epiregulin also bind to HER4.
  • EGF and TGF ⁇ do not bind HER2, EGF stimulates EGFR and HER2 to form a heterodimer, which activates EGFR and results in transphosphorylation of HER2 in the heterodimer. Dimerization and/or transphosphorylation appears to activate the HER2 tyrosine kinase. See Earp et al., supra.
  • HER3 is co-expressed with HER2, an active signaling complex is formed and antibodies directed against HER2 are capable of disrupting this complex (Sliwkowski et al., J. Biol. Chem., 269(20):14661-14665 (1994)).
  • HER3 for heregulin (HRG) is increased to a higher affinity state when co-expressed with HER2.
  • HRG heregulin
  • HER4 like HER3, forms an active signaling complex with HER2 (Carraway and Cantley, Cell 78:5-8 (1994)).
  • rhuMAb 2C4 Pertuzumab, OMNITARGTM
  • Pertuzumab OMNITARGTM
  • rhuMAb 2C4 was developed as a humanized antibody that inhibits the dimerization of HER2 with other HER receptors, thereby inhibiting ligand-driven phosphorylation and activation, and downstream activation of the RAS and AKT pathways.
  • Pertuzumab 3 subjects with advanced ovarian cancer were treated with Pertuzumab.
  • TNF tumor necrosis factor
  • TNF-alpha tumor necrosis factor-alpha
  • TNF-beta tumor necrosis factor-beta
  • LT-beta lymphotoxin-beta
  • CD30 ligand CD27 ligand
  • CD40 ligand CD40 ligand
  • OX-40 ligand 4-IBB ligand
  • LIGHT Apo-1 ligand
  • Apo-2 ligand also referred to as Apo2L or TRAIL
  • Apo-3 ligand also referred to as TWEAK
  • APRIL OPG ligand
  • OPG ligand also referred to as RANK ligand, ODF, or TRANCE
  • TALL-1 also referred to as BlyS, BAFF or THANK
  • TNF family ligands Induction of various cellular responses mediated by such TNF family ligands is typically initiated by their binding to specific cell receptors. Some, but not all, TNF family ligands bind to, and induce various biological activity through, cell surface “death receptors” to activate caspases, or enzymes that carry out the cell death or apoptosis pathway (Salvesen et al., Cell, 91:443-446 (1997)).
  • TRAIL-R1 also referred to as TRAIL-R1
  • DR5 also referred to as Apo-2 or TRAIL-R2
  • OPG osteoprotegerin
  • RANK also referred to as DR3 or TRAMP
  • TNF receptor family members share the typical structure of cell surface receptors including extracellular, transmembrane and intracellular regions, while others are found naturally as soluble proteins lacking a transmembrane and intracellular domain.
  • the extracellular portion of typical TNFRs contains a repetitive amino acid sequence pattern of multiple cysteine-rich domains (CRDs), starting from the NH 2 -terminus.
  • the ligand referred to as Apo-2L or TRAIL was identified several years ago as a member of the TNF family of cytokines. (see, e.g., Wiley et al., Immunity, 3:673-682 (1995); Pitti et al., J. Biol. Chem., 271: 12697-12690 (1996); WO 97/01633; WO 97/25428; U.S. Pat. No. 5,763,223 issued Jun. 9, 1998; U.S. Pat. No. 6,284,236 issued Sep. 4, 2001).
  • the full-length native sequence human Apo2L/TRAIL polypeptide is a 281 amino acid long, Type II transmembrane protein.
  • Some cells can produce a natural soluble form of the polypeptide, through enzymatic cleavage of the polypeptide's extracellular region (Mariani et al., J. Cell. Biol., 137:221-229 (1997)). Crystallographic studies of soluble forms of Apo2L/TRAIL reveal a homotrimeric structure similar to the structures of TNF and other related proteins (Hymowitz et al., Molec. Cell, 4:563-571 (1999); Cha et al., Immunity, 11:253-261 (1999); Mongkolsapaya et al., Nature Structural Biology, 6:1048 (1999); Hymowitz et al., Biochemistry, 39:633-644 (2000)).
  • Apo2L/TRAIL unlike other TNF family members however, was found to have a unique structural feature in that three cysteine residues (at position 230 of each subunit in the homotrimer) together coordinate a zinc atom, and that the zinc binding is important for trimer stability and biological activity. (Hymowitz et al., supra; Bodmer et al., J. Biol. Chem., 275:20632-20637 ( 2000)).
  • Apo2L/TRAIL may play a role in immune system modulation, including autoimmune diseases such as rheumatoid arthritis (see, e.g., Thomas et al., J. Immunol., 161:2195-2200 (1998); Johnsen et al., Cytokine, 11:664-672 (1999); Griffith et al., J. Exp. Med., 189:1343-1353 (1999); Song et al., J. Exp. Med., 191: 1095-1103 (2000)).
  • autoimmune diseases such as rheumatoid arthritis
  • Soluble forms of Apo2L/TRAIL have also been reported to induce apoptosis in a variety of cancer cells, including colon, lung, breast, prostate, bladder, kidney, ovarian and brain tumors, as well as melanoma, leukemia, and multiple myeloma (see, e.g., Wiley et al., supra; Pitti et al., supra; U.S. Pat. No. 6,030,945 issued Feb. 29, 2000; U.S. Pat. No. 6,746,668 issued Jun. 8, 2004; Rieger et al., FEBS Letters, 427:124-128 (1998); Ashkenazi et al., J. Clin.
  • Apo2L/TRAIL preparations may vary in terms of biochemical properties and biological activities on diseased versus normal cells, depending, for example, on the presence or absence of a tag molecule, zinc content, and % trimer content (See, Lawrence et al., Nature Med., Letter to the Editor, 7:383-385 (2001); Qin et al., Nature Med., Letter to the Editor, 7:385-386 ( 2001)).
  • Apo2/TRAIL has been found to bind at least five different receptors. At least two of the receptors which bind Apo2L/TRAIL contain a functional, cytoplasmic death domain.
  • One such receptor has been referred to as “DR4” (and alternatively as TR4 or TRAIL-R1) (Pan et al., Science, 276:111-113 (1997); see also WO98/32856 published Jul. 30, 1998; WO99/37684 published Jul. 29, 1999; WO 00/73349 published Dec. 7, 2000; U.S. Pat. No. 6,433,147 issued Aug. 13, 2002; U.S. Pat. No. 6,461,823 issued Oct. 8, 2002, and U.S. Pat. No. 6,342,383 issued Jan. 29, 2002).
  • DR5 Another such receptor for Apo2L/TRAIL has been referred to as Apo-2; TRAIL-R or TRAIL-R2, TR6, Tango-63, hAPO8, TRICK2 or KILLER
  • Apo-2 TRAIL-R or TRAIL-R2
  • TR6, Tango-63, hAPO8, TRICK2 or KILLER See, e.g., Sheridan et al., Science, 277:818-821 (1997), Pan et al., Science, 277:815-818 (1997), WO98/51793 published Nov. 19, 1998; WO98/41629 published Sep. 24, 1998; Screaton et al., Curr.
  • DR5 is reported to contain a cytoplasmic death domain and be capable of signaling apoptosis upon ligand binding (or upon binding a molecule, such as an agonist antibody, which mimics the activity of the ligand).
  • the crystal structure of the complex formed between Apo-2L/TRAIL and DR5 is described in Hymowitz et al., Molecular Cell, 4:563-571 (1999).
  • both DR4 and DR5 can trigger apoptosis independently by recruiting and activating the apoptosis initiator, caspase-8, through the death-domain-containing adaptor molecule referred to as FADD/Mortl (Kischkel et al., Immunity, 12:611-620 (2000); Sprick et al., Immunity, 12:599-609 (2000); Bodmer et al., Nature Cell Biol., 2:241-243 (2000)).
  • DcR1 also referred to as TRID, LIT or TRAIL-R3
  • TRID TRID, LIT or TRAIL-R3
  • McFarlane et al. J. Biol. Chem., 272:25417-25420 (1997); Schneider et al., FEBS Letters, 416:329-334 (1997); Degli-Esposti et al., J.
  • DcR2 also called TRUNDD or TRAIL-R4
  • TRUNDD also called TRUNDD
  • TRAIL-R4 Ros et al., Curr. Biol., 7:1003-1006(1997); Pan et al., FEBS Letters, 424:41-45 (1998); Degli-Esposti et al., Immunity, 7:813-820 (1997)
  • OPG OPG
  • anti-DR4 antibodies directed to the DR4 receptor and having agonistic or apoptotic activity in certain mammalian cells are described in, e.g., WO 99/37684 published Jul. 29, 1999; WO 00/73349 published Jul. 12, 2000; WO 03/066661 published Aug. 14, 2003. See, also, e.g., Griffith et al., J. Immunol., 162:2597-2605 (1999); Chuntharapai et al., J. Immunol., 166:4891-4898 (2001); WO 02/097033 published Dec.
  • the invention herein relates, at least in part, to the identification of histidine-acetate, pH 5.5 to 6.5, as a particularly useful buffer for formulating monoclonal antibodies, especially full length IgGI antibodies which are susceptible to deamidation and/or aggregation.
  • the formulation retards degradation of the antibody product therein.
  • the invention concerns a stable pharmaceutical formulation comprising a monoclonal antibody in histidine-acetate buffer, pH 5.5 to 6.5.
  • the monoclonal antibody preferably binds an antigen selected from the group consisting of HER2, CD20, DR5, BR3, IgE, and VEGF.
  • the invention concerns a method of treating a disease or disorder in a subject comprising administering the formulation to a subject in an amount effective to treat the disease or disorder.
  • the invention concerns a pharmaceutical formulation
  • a pharmaceutical formulation comprising: (a) a full length IgG1 antibody susceptible to deamidation or aggregation in an amount from about 10 mg/mL to about 250 mg/mL; (b) histidine-acetate buffer, pH 5.5 to 6.5; (c) saccharide selected from the group consisting of trehalose and sucrose, in an amount from about 60 mM to about 250 mM; and (d) polysorbate 20 in an amount from about 0.01% to about 0.1%.
  • the invention also provides a method for reducing deamidation or aggregation of a therapeutic monoclonal antibody, comprising formulating the antibody in a histidine-acetate buffer, pH 5.5 to 6.5.
  • the invention concerns a pharmaceutical formulation
  • a pharmaceutical formulation comprising an antibody that binds to domain II of HER2 in a histidine buffer at a pH from about 5.5 to about 6.5, a saccharide and a surfactant.
  • the invention also relates to a pharmaceutical formulation comprising Pertuzumab in an amount from about 20 mg/mL to about 40 mg/mL, histidine-acetate buffer, sucrose, and polysorbate 20, wherein the pH of the formulation is from about 5.5 to about 6.5.
  • the invention also pertains to a pharmaceutical formulation
  • a pharmaceutical formulation comprising a DR5 antibody in a histidine buffer at a pH from about 5.5 to about 6.5, a saccharide, and a surfactant.
  • the invention concerns a pharmaceutical formulation comprising Apomab in an amount from about 10 mg/mL to about 30 mg/mL, histidine-acetate buffer, trehalose, and polysorbate 20, wherein the pH of the formulation is from about 5.5 to about 6.5.
  • the invention provides a method of treating cancer in a subject, comprising administering the pharmaceutical formulation to the subject in an amount effective to treat the cancer.
  • the invention also concerns a vial with a stopper pierceable by a syringe or a stainless steel tank comprising the formulation inside the vial or tank, optionally in frozen form.
  • the invention provides a method of making a pharmaceutical formulation comprising: (a) preparing the monoclonal antibody formulation; and (b) evaluating physical stability, chemical stability, or biological activity of the monoclonal antibody in the formulation.
  • FIG. 1 depicts Domains I-IV (SEQ ID Nos. 19-22, respectively) of the extracellular domain of HER2.
  • FIGS. 2A and 2B depict alignments of the amino acid sequences of the variable light (V L ) ( FIG. 2A ) and variable heavy (V H ) ( FIG. 2B ) domains of murine monoclonal antibody 2C4 (SEQ ID Nos. 1 and 2, respectively); V L and V H domains of humanized 2C4 version 574 (SEQ ID Nos. 3 and 4, respectively), and human V L and V H consensus frameworks (hum ⁇ 1, light kappa subgroup I; humIII, heavy subgroup III) (SEQ ID Nos. 5 and 6, respectively).
  • Asterisks identify differences between humanized 2C4 version 574 and murine monoclonal antibody 2C4 or between humanized 2C4 version 574 and the human framework.
  • Complementarity Determining Regions are in brackets.
  • FIGS. 3A and 3B show the amino acid sequences of Pertuzumab light chain and heavy chain (SEQ ID Nos. 15 and 16, respectively). CDRs are shown in bold. Calculated molecular mass of the light chain and heavy chain are 23,526.22 Da and 49,216.56 Da (cysteines in reduced form). The carbohydrate moiety is attached to Asn 299 of the heavy chain.
  • FIGS. 4A and 4B show the amino acid sequences of Pertuzumab light and heavy chain, each including an intact amino terminal signal peptide sequence (SEQ ID Nos. 17 and 18, respectively).
  • FIG. 5 depicts, schematically, binding of 2C4 at the heterodimeric binding site of HER2, thereby preventing heterodimerization with activated EGFR or HER3.
  • FIG. 6 depicts coupling of HER2/HER3 to the MAPK and Akt pathways.
  • FIG. 7 compares activities of Trastuzumab and Pertuzumab.
  • FIG. 8 depicts stability of Pertuzumab formulation by ion exchange (IEX) analyses.
  • FIG. 9 shows stability of Pertuzumab formulation by size exclusion chromatography (SEC) analysis.
  • FIG. 10 reflects physical stability Pertuzumab in different formulations.
  • FIG. 11 is from an agitation study of Pertuzumab liquid formulations.
  • FIG. 12 is from another agitation study of Pertuzumab liquid formulations.
  • FIG. 13 is from a freeze-thawing study of Pertuzumab formulation.
  • FIGS. 14A and 14B show the amino acid sequences of Trastuzumab light chain (SEQ ID No. 13) and heavy chain (SEQ ID No. 14).
  • FIGS. 15A and 15B depict a variant Pertuzumab light chain sequence (SEQ ID No. 23) and a variant Pertuzumab heavy chain sequence (SEQ ID No. 24).
  • FIG. 16A and 16B shows oligosaccharide structures commonly observed in IgG antibodies.
  • FIGS. 17A and 17B show the sequences of the light and heavy chains (SEQ ID Nos. 37-44) of specific anti-IgE antibodies E25, E26, HAE1 and Hu-901.
  • the variable light domain ends with the residues VEIK, residue 111.
  • the variable heavy domain ends with the residues VTVSS, around residue 120.
  • FIG. 18A is a sequence alignment comparing the amino acid sequences of the variable light domain (V L ) of each of murine 2H7 (SEQ ID No. 25), humanized 2H7v16 variant (SEQ ID No. 26), and the human kappa light chain subgroup 1 (SEQ ID No. 27).
  • the CDRs of V L of 2H7 and hu2H7v16 are as follows: CDR1 (SEQ ID No. 57), CDR2 (SEQ ID No. 58), and CDR3 (SEQ ID No. 59).
  • FIG. 18B is a sequence alignment comparing the amino acid sequences of the variable heavy domain (V H ) of each of murine 2H7 (SEQ ID No. 28), humanized 2H7v16 variant (SEQ ID No. 29), and the human consensus sequence of the heavy chain subgroup III (SEQ ID No. 30).
  • the CDRs of V H of 2H7 and hu2H7v16 are as follows: CDR1 (SEQ ID No. 60), CDR2 (SEQ ID No. 61), and CDR3 (SEQ ID No. 62).
  • FIG. 18A and FIG. 18B the CDR1, CDR2 and CDR3 in each chain are enclosed within brackets, flanked by the framework regions, FR1-FR4, as indicated.
  • 2H7 refers to murine 2H7 antibody.
  • the asterisks in between two rows of sequences indicate the positions that are different between the two sequences. Residue numbering is according to Kabat et al. Sequences of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991), with insertions shown as a, b, c, d, and e.
  • FIG. 19 depicts variable domain sequences of three different VEGF antibodies with SEQ ID Nos. 31-36.
  • FIG. 20 shows size exclusion chromatography (SEC) elution profile of the following Apomab samples: (a) control and formulations prepared at (b) pH 4.0, (c) pH 5.0, (d) pH 6.0 and (e) pH 7.0. The formulated samples were stored at 40° C. for 2 months prior to the analysis.
  • SEC size exclusion chromatography
  • FIG. 21 depicts pH rate profile for the loss in Apomab antibody monomer during storage. Monomer kinetics by SEC was monitored during storage at 30° C. and 40° C. and the first-order rate constants were calculated.
  • FIG. 22 provides ion exchange chromatography (IEC) elution profile of Apomab samples as follows: (a) control and formulations prepared at (b) pH 4.0, (c) pH 5.0, (d) pH 6.0 and (e) pH 7.0. The formulated samples were stored at 40° C. for 2 months prior to the analysis.
  • IEC ion exchange chromatography
  • FIG. 23 shows pH rate profile for the loss in IEC main peak during storage. Main peak kinetics by IEC was monitored during storage at 30° C. and 40° C. and the first-order rate constants were calculated.
  • FIG. 24 shows the nucleotide sequence of human Apo-2 ligand cDNA (SEQ ID No. 45) and its derived amino acid sequence (SEQ ID No. 46).
  • the “N” at nucleotide position 447 (in SEQ ID No. 45) is used to indicate the nucleotide base may be a “T” or “G”.
  • FIGS. 25A and 25B show the 411 amino acid sequence of human DR5 receptor (SEQ ID No. 47) as published in WO 98/51793 on Nov. 19, 1998, and the encoding nucleotide sequence (SEQ ID No. 48).
  • FIGS. 26A and 26B show the 440 amino acid sequence of human DR5 receptor (SEQ ID No. 49) and the encoding nucleotide sequence (SEQ ID No. 50), as also published in WO 98/35986 on Aug. 20, 1998.
  • FIG. 27 shows the Apomab 7.3 heavy chain amino acid sequence (SEQ ID No. 51).
  • FIG. 28 shows the Apomab 7.3 light chain amino acid sequence (SEQ ID No.52).
  • FIG. 29 show the alignment of 16E2 heavy chain (SEQ ID No. 53) and Apomab 7.3 heavy chain (SEQ ID No. 51) amino acid sequences.
  • FIG. 30 shows the alignment of 16E2 light chain (SEQ ID No. 54) and Apomab 7.3 light chain (SEQ ID No. 52) amino acid sequences.
  • FIGS. 31A and 31B depict the variable heavy amino acid sequence ( FIG. 31A ; SEQ ID No. 55) and variable light amino acid sequence ( FIG. 31B ; SEQ ID No. 56) of Apomab 7.3. CDR residues are identified in bold.
  • FIG. 32 shows an alignment of the mature 2H7v16 and 2H7v511 light chains (SEQ ID Nos. 63 and 64, respectively). Sequences shown with Kabat variable domain residue numbering and Eu constant domain residue numbering.
  • FIG. 33 shows an alignment of the mature 2H7v16 and 2H7v511 heavy chains (SEQ ID Nos. 65 and 66, respectively). Sequences shown with Kabat variable domain residue numbering and Eu constant domain residue numbering.
  • pharmaceutical formulation refers to a preparation which is in such form as to permit the biological activity of the active ingredient to be effective, and which contains no additional components which are unacceptably toxic to a subject to which the formulation would be administered. Such formulations are sterile.
  • a “sterile” formulation is asceptic or free from all living microorganisms and their spores.
  • a “frozen” formulation is one at a temperature below 0° C.
  • the frozen formulation is not freeze-dried, nor is it subjected to prior, or subsequent, lyophilization.
  • the frozen formulation comprises frozen drug substance for storage (in stainless steel tank) or frozen drug product (in final vial configuration).
  • a “stable” formulation is one in which the protein therein essentially retains its physical stability and/or chemical stability and/or biological activity upon storage.
  • the formulation essentially retains its physical and chemical stability, as well as its biological activity upon storage.
  • the storage period is generally selected based on the intended shelf-life of the formulation.
  • Various analytical techniques for measuring protein stability are available in the art and are reviewed in Peptide and Protein Drug Delivery, 247-301, Vincent Lee Ed., Marcel Dekker, Inc., New York, N.Y., Pubs. (1991) and Jones, A. Adv. Drug Delivery Rev. 10: 29-90 (1993), for example.
  • Stability can be measured at a selected temperature for a selected time period.
  • the formulation is stable at about 40° C.
  • the formulation is preferably stable following freezing (to, e.g., ⁇ 70° C.) and thawing of the formulation, for example following 1, 2 or 3 cycles of freezing and thawing.
  • Stability can be evaluated qualitatively and/or quantitatively in a variety of different ways, including evaluation of aggregate formation (for example using size exclusion chromatography, by measuring turbidity, and/or by visual inspection); by assessing charge heterogeneity using cation exchange chromatography or capillary zone electrophoresis; amino-terminal or carboxy-terminal sequence analysis; mass spectrometric analysis; SDS-PAGE analysis to compare reduced and intact antibody; peptide map (for example tryptic or LYS-C) analysis; evaluating biological activity or antigen binding function of the antibody; etc.
  • Instability may involve any one or more of: aggregation, deamidation (e.g. Asn deamidation), oxidation (e.g.
  • Met oxidation isomerization (e.g. Asp isomeriation), clipping/hydrolysis/fragmentation (e.g. hinge region fragmentation), succinimide formation, unpaired cysteine(s), N-terminal extension, C-terminal processing, glycosylation differences, etc.
  • a “deamidated” monoclonal antibody herein is one in which one or more asparagine residue thereof has been derivitized, e.g. to an aspartic acid or an iso-aspartic acid.
  • An antibody which is “susceptible to deamidation” is one comprising one or more residue which has been found to be prone to deamidate.
  • An antibody which is “susceptible to aggregation” is one which has been found to aggregate with other antibody molecule(s), especially upon freezing and/or agitation.
  • An antibody which is “susceptible to fragmentation” is one which has been found to be cleaved into two or more fragments, for example at a hinge region thereof.
  • reducing deamidation, aggregation, or fragmentation is intended preventing or decreasing the amount of deamidation, aggregation, or fragmentation relative to the monoclonal antibody formulated at a different pH or in a different buffer.
  • biological activity of a monoclonal antibody refers to the ability of the antibody to bind to antigen and result in a measurable biological response which can be measured in vitro or in vivo. Such activity may be antagonistic (for example where the antibody is a HER2 antibody) or agonistic (for instance where the antibody binds DR5).
  • the biological activity refers to the ability of the formulated antibody to inhibit proliferation of the human breast cancer cell line MDA-MB-175-VII.
  • the biological activity can refer, for example, to the ability of the formulated antibody to kill colon carcinoma, Colo205, cells.
  • isotonic is meant that the formulation of interest has essentially the same osmotic pressure as human blood. Isotonic formulations will generally have an osmotic pressure from about 250 to 350 mOsm. Isotonicity can be measured using a vapor pressure or ice-freezing type osmometer, for example.
  • buffer refers to a buffered solution that resists changes in pH by the action of its acid-base conjugate components.
  • the buffer of this invention preferably has a pH in the range from about 5.0 to about 7.0, preferably from about 5.5 to about 6.5, for example from about 5.8 to about 6.2, and most preferably has a pH of about 6.0.
  • buffers that will control the pH in this range include acetate, succinate, succinate, gluconate, histidine, citrate, glycylglycine and other organic acid buffers.
  • the preferred buffer herein is a histidine buffer.
  • a “histidine buffer” is a buffer comprising histidine ions.
  • histidine buffers include histidine chloride, histidine acetate, histidine phosphate, histidine sulfate.
  • the preferred histidine buffer identified in the examples herein was found to be histidine acetate.
  • the histidine acetate buffer is prepared by titrating L-histidine (free base, solid) with acetic acid (liquid).
  • the histidine buffer or histidine-acetate buffer is at pH 5.5 to 6.5, preferably pH 5.8 to 6.2.
  • a “saccharide” herein comprises the general composition (CH2O)n and derivatives thereof, including monosaccharides, disaccharides, trisaccharides, polysaccharides, sugar alcohols, reducing sugars, nonreducing sugars, etc.
  • saccharides herein include glucose, sucrose, trehalose, lactose, fructose, maltose, dextran, glycerin, dextran, erythritol, glycerol, arabitol, sylitol, sorbitol, mannitol, mellibiose, melezitose, raffinose, mannotriose, stachyose, maltose, lactulose, maltulose, glucitol, maltitol, lactitol, iso-maltulose, etc.
  • the preferred saccharide herein is a nonreducing disaccharide, such as trehalose or sucrose.
  • a “surfactant” refers to a surface-active agent, preferably a nonionic surfactant.
  • surfactants herein include polysorbate (for example, polysorbate 20 and, polysorbate 80); poloxamer (e.g.
  • poloxamer 188 Triton; sodium dodecyl sulfate (SDS); sodium laurel sulfate; sodium octyl glycoside; lauryl-, myristyl-, linoleyl-, or stearyl-sulfobetaine; lauryl-, myristyl-, linoleyl- or stearyl-sarcosine; linoleyl-, myristyl-, or cetyl-betaine; lauroamidopropyl-, cocamidopropyl-, linoleamidopropyl-, myristamidopropyl-, palmidopropyl-, or isostearamidopropyl-betaine (e.g.
  • lauroamidopropyl myristamidopropyl-, palmidopropyl-, or isostearamidopropyl-dimethylamine; sodium methyl cocoyl-, or disodium methyl oleyl-taurate; and the MONAQUATTM series (Mona Industries, Inc., Paterson, N.J.); polyethyl glycol, polypropyl glycol, and copolymers of ethylene and propylene glycol (e.g. Pluronics, PF68 etc); etc.
  • the preferred surfactant herein is polysorbate 20.
  • HER receptor is a receptor protein tyrosine kinase which belongs to the HER receptor family and includes EGFR, HER2, HER3 and HER4 receptors and other members of this family to be identified in the future.
  • the HER receptor will generally comprise an extracellular domain, which may bind an HER ligand; a lipophilic transmembrane domain; a conserved intracellular tyrosine kinase domain; and a carboxyl-terminal signaling domain harboring several tyrosine residues which can be phosphorylated.
  • the HER receptor is native sequence human HER receptor.
  • the extracellular domain of HER2 comprises four domains, Domain I (amino acid residues from about 1-195), Domain II (amino acid residues from about 196-320), Domain III (amino acid residues from about 321-488), and Domain IV (amino acid residues from about 489-632) (residue numbering without signal peptide).
  • Domain I amino acid residues from about 1-195
  • Domain II amino acid residues from about 196-320
  • Domain III amino acid residues from about 321-488
  • Domain IV amino acid residues from about 489-632
  • ErbB1 refers to EGFR as disclosed, for example, in Carpenter et al. Ann. Rev. Biochem. 56:881-914 (1987), including naturally occurring mutant forms thereof (e.g. a deletion mutant EGFR as in Humphrey et al. PNAS ( USA ) 87:4207-4211 (1990)).
  • erbB1 refers to the gene encoding the EGFR protein product.
  • ErbB2 and HER2 are used interchangeably herein and refer to human HER2 protein described, for example, in Semba et al., PNAS ( USA ) 82:6497-6501 (1985) and Yamamoto et al. Nature 319:230-234 (1986) (Genebank accession number X03363).
  • the term “erbB2” refers to the gene encoding human ErbB2 and “neu” refers to the gene encoding rat p185 neu .
  • Preferred HER2 is native sequence human HER2.
  • ErbB3 and HER3 refer to the receptor polypeptide as disclosed, for example, in U.S. Pat. Nos. 5,183,884 and 5,480,968 as well as Kraus et al. PNAS ( USA ) 86:9193-9197 (1989).
  • ErbB4 and HER4 herein refer to the receptor polypeptide as disclosed, for example, in EP Pat Appln No 599,274; Plowman et al., Proc. Natl. Acad. Sci. USA, 90:1746-1750 (1993); and Plowman et al., Nature, 366:473-475 (1993), including isoforms thereof, e.g., as disclosed in WO99/19488, published Apr. 22, 1999.
  • HER ligand is meant a polypeptide which binds to and/or activates a HER receptor.
  • the HER ligand of particular interest herein is a native sequence human HER ligand such as epidermal growth factor (EGF) (Savage et al., J. Biol. Chem. 247:7612-7621 (1972)); transforming growth factor alpha (TGF- ⁇ ) (Marquardt et al., Science 223:1079-1082 (1984)); amphiregulin also known as schwanoma or keratinocyte autocrine growth factor (Shoyab et al. Science 243:1074-1076 (1989); Kimura et al.
  • EGF epidermal growth factor
  • TGF- ⁇ transforming growth factor alpha
  • amphiregulin also known as schwanoma or keratinocyte autocrine growth factor
  • HER ligands which bind EGFR include EGF, TGF- ⁇ , amphiregulin, betacellulin, HB-EGF and epiregulin.
  • HER ligands which bind HER3 include heregulins.
  • HER ligands capable of binding HER4 include betacellulin, epiregulin, HB-EGF, NRG-2, NRG-3, NRG-4 and heregulins.
  • Heregulin when used herein refers to a polypeptide encoded by the heregulin gene product as disclosed in U.S. Pat. No. 5,641,869 or Marchionni et al., Nature, 362:312-318 (1993).
  • Examples of heregulins include heregulin- ⁇ , heregulin- ⁇ 1, heregulin- ⁇ 2 and heregulin- ⁇ 3 (Holmes et al., Science, 256:1205-1210 (1992); and U.S. Pat. No. 5,641,869); neu differentiation factor (NDF) (Peles et al.
  • the term includes biologically active fragments and/or amino acid sequence variants of a native sequence HRG polypeptide, such as an EGF-like domain fragment thereof (e.g. HRG ⁇ 1 177-244 ).
  • a “HER dimer” herein is a noncovalently associated dimer comprising at least two different HER receptors. Such complexes may form when a cell expressing two or more HER receptors is exposed to an HER ligand and can be isolated by immunoprecipitation and analyzed by SDS-PAGE as described in Sliwkowski et al., J. Biol. Chem., 269(20):14661-14665 (1994), for example. Examples of such HER dimers include EGFR-HER2, HER2-HER3 and HER3-HER4 heterodimers. Moreover, the HER dimer may comprise two or more HER2 receptors combined with a different HER receptor, such as HER3, HER4 or EGFR. Other proteins, such as a cytokine receptor subunit (e.g. gp130) may be associated with the dimer.
  • a cytokine receptor subunit e.g. gp130
  • a “heterodimeric binding site” on HER2 refers to a region in the extracellular domain of HER2 that contacts, or interfaces with, a region in the extracellular domain of EGFR, HER3 or HER4 upon formation of a dimer therewith. The region is found in Domain II of HER2. Franklin et al. Cancer Cell 5:317-328 (2004).
  • HER activation or “HER2 activation” refers to activation, or phosphorylation, of any one or more HER receptors, or HER2 receptors. Generally, HER activation results in signal transduction (e.g. that caused by an intracellular kinase domain of a HER receptor phosphorylating tyrosine residues in the HER receptor or a substrate polypeptide). HER activation may be mediated by HER ligand binding to a HER dimer comprising the HER receptor of interest.
  • HER ligand binding to a HER dimer may activate a kinase domain of one or more of the HER receptors in the dimer and thereby results in phosphorylation of tyrosine residues in one or more of the HER receptors and/or phosphorylation of tyrosine residues in additional substrate polypeptides(s), such as Akt or MAPK intracellular kinases.
  • antibody herein is used in the broadest sense and specifically covers full length monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g. bispecific antibodies) formed from at least two full length antibodies, and antibody fragments, so long as they exhibit the desired biological activity.
  • the term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical and/or bind the same epitope, except for possible variants that may arise during production of the monoclonal antibody, such variants generally being present in minor amounts.
  • each monoclonal antibody is directed against a single determinant on the antigen.
  • the monoclonal antibodies are advantageous in that they are uncontaminated by other immunoglobulins.
  • the modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
  • the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (see, e.g., U.S. Pat. No. 4,816,567).
  • the “monoclonal antibodies” may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature, 352:624-628 (1991) and Marks et al., J. Mol. Biol., 222:581-597 (1991), for example.
  • the monoclonal antibodies herein specifically include “chimeric” antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Pat. No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984)).
  • Chimeric antibodies of interest herein include “primatized” antibodies comprising variable domain antigen-binding sequences derived from a non-human primate (e.g. Old World Monkey, Ape etc) and human constant region sequences.
  • Antibody fragments comprise a portion of a full length antibody, preferably comprising the antigen-binding or variable region thereof.
  • Examples of antibody fragments include Fab, Fab′, F(ab′) 2 , and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules; and multispecific antibodies formed from antibody fragment(s).
  • a “full length antibody” is one which comprises an antigen-binding variable region as well as a light chain constant domain (C L ) and heavy chain constant domains, C H 1, C H 2 and C H 3.
  • the constant domains may be native sequence constant domains (e.g. human native sequence constant domains) or amino acid sequence variants thereof.
  • the full length antibody has one or more effector functions.
  • main species antibody refers to the antibody structure in a composition which is the quantitatively predominant antibody molecule in the composition.
  • the main species antibody is a HER2 antibody, such as an antibody that binds to Domain II of HER2, antibody that inhibits HER dimerization more effectively than Trastuzumab, and/or an antibody which binds to a heterodimeric binding site of HER2.
  • the preferred embodiment herein of a main species HER2 antibody is one comprising the variable light and variable heavy amino acid sequences in SEQ ID Nos. 3 and 4, and most preferably comprising the light chain and heavy chain amino acid sequences in SEQ ID Nos. 15 and 16 (Pertuzumab).
  • amino acid sequence variant antibody herein is an antibody with an amino acid sequence which differs from a main species antibody.
  • amino acid sequence variants will possess at least about 70% homology with the main species antibody, and preferably, they will be at least about 80%, more preferably at least about 90% homologous with the main species antibody.
  • the amino acid sequence variants possess substitutions, deletions, and/or additions at certain positions within or adjacent to the amino acid sequence of the main species antibody.
  • amino acid sequence variants herein include acidic variant (e.g. deamidated antibody variant), basic variant, the antibody with an amino-terminal leader extension (e.g.
  • VHS- on one or two light chains thereof, antibody with a C-terminal lysine residue on one or two heavy chains thereof, etc, and includes combinations of variations to the amino acid sequences of heavy and/or light chains.
  • the antibody variant of particular interest herein is the antibody comprising an amino-terminal leader extension on one or two light chains thereof, optionally further comprising other amino acid sequence and/or glycosylation differences relative to the main species antibody.
  • a “therapeutic monoclonal antibody” is an antibody used for therapy of a human subject.
  • Therapeutic monoclonal antibodies disclosed herein include: HER2 antibodies for cancer and various non-malignant diseases or disorders; CD20 or BR3 antibodies for therapy of B cell malignancies, autoimmune diseases, graft rejection, or blocking an immune response to a foreign antigen; IgE antibodies for therapy of an IgE-mediated disorder; DR5 or VEGF antibodies for cancer therapy.
  • glycosylation variant antibody herein is an antibody with one or more carbohydrate moeities attached thereto which differ from one or more carbohydate moieties attached to a main species antibody.
  • glycosylation variants herein include antibody with a G1 or G2 oligosaccharide structure, instead a G0 oligosaccharide structure, attached to an Fc region thereof, antibody with one or two carbohydrate moieties attached to one or two light chains thereof, antibody with no carbohydrate attached to one or two heavy chains of the antibody, etc, and combinations of glycosylation alterations.
  • an oligosaccharide structure such as that shown in FIG. 16 herein may be attached to one or two heavy chains of the antibody, e.g. at residue 299 (298, Eu numbering of residues).
  • residue 299 298, Eu numbering of residues.
  • G0 was the predominant oligosaccharide structure, with other oligosaccharide structures such as G0-F, G-1, Man5, Man6, G1-1, G1(1-6), G1(1-3) and G2 being found in lesser amounts in the Pertuzumab composition.
  • G1 oligosaccharide structure herein includes G-1, G1-1, G1(1-6) and G1(1-3) structures.
  • amino-terminal leader extension herein refers to one or more amino acid residues of the amino-terminal leader sequence that are present at the amino-terminus of any one or more heavy or light chains of an antibody.
  • An exemplary amino-terminal leader extension comprises or consists of three amino acid residues, VHS, present on one or both light chains of an antibody variant.
  • “Homology” is defined as the percentage of residues in the amino acid sequence variant that are identical after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent homology. Methods and computer programs for the alignment are well known in the art. One such computer program is “Align 2”, authored by Genentech, Inc., which was filed with user documentation in the United States Copyright Office, Washington, D.C. 20559, on Dec. 10, 1991.
  • Antibody effector functions refer to those biological activities attributable to the Fc region (a native sequence Fc region or amino acid sequence variant Fc region) of an antibody.
  • Examples of antibody effector functions include C1q binding; complement dependent cytotoxicity; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g. B cell receptor; BCR), etc.
  • full length antibodies can be assigned to different “classes”. There are five major classes of full length antibodies: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into “subclasses” (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA, and IgA2.
  • the heavy-chain constant domains that correspond to the different classes of antibodies are called ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ , respectively.
  • the subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known.
  • Antibody-dependent cell-mediated cytotoxicity and “ADCC” refer to a cell-mediated reaction in which nonspecific cytotoxic cells that express Fc receptors (FcRs) (e.g. Natural Killer (NK) cells, neutrophils, and macrophages) recognize bound antibody on a target cell and subsequently cause lysis of the target cell.
  • FcRs Fc receptors
  • FcR expression on hematopoietic cells in summarized is Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991).
  • ADCC activity of a molecule of interest may be assessed in vitro, such as that described in U.S. Pat. Nos. 5,500,362 or 5,821,337.
  • Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells.
  • PBMC peripheral blood mononuclear cells
  • NK Natural Killer
  • ADCC activity of the molecule of interest may be assessed in vivo, e.g., in a animal model such as that disclosed in Clynes et al. PNAS ( USA ) 95:652-656 (1998).
  • Human effector cells are leukocytes which express one or more FcRs and perform effector functions. Preferably, the cells express at least Fc ⁇ RIII and perform ADCC effector function. Examples of human leukocytes which mediate ADCC include peripheral blood mononuclear cells (PBMC), natural killer (NK) cells, monocytes, cytotoxic T cells and neutrophils; with PBMCs and NK cells being preferred.
  • PBMC peripheral blood mononuclear cells
  • NK natural killer cells
  • monocytes cytotoxic T cells and neutrophils
  • the effector cells may be isolated from a native source thereof, e.g. from blood or PBMCs as described herein.
  • Fc receptor or “FcR” are used to describe a receptor that binds to the Fc region of an antibody.
  • the preferred FcR is a native sequence human FcR.
  • a preferred FcR is one which binds an IgG antibody (a gamma receptor) and includes receptors of the Fc ⁇ RI, Fc ⁇ RII, and Fc ⁇ RIII subclasses, including allelic variants and alternatively spliced forms of these receptors.
  • Fc ⁇ RII receptors include Fc ⁇ RIIA (an “activating receptor”) and Fc ⁇ RIIB (an “inhibiting receptor”), which have similar amino acid sequences that differ primarily in the cytoplasmic domains thereof.
  • Activating receptor Fc ⁇ RIIA contains an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic domain.
  • Inhibiting receptor Fc ⁇ RIIB contains an immunoreceptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic domain.
  • ITAM immunoreceptor tyrosine-based activation motif
  • ITIM immunoreceptor tyrosine-based inhibition motif
  • FcR FcR
  • FcRn neonatal receptor
  • “Complement dependent cytotoxicity” or “CDC” refers to the ability of a molecule to lyse a target in the presence of complement.
  • the complement activation pathway is initiated by the binding of the first component of the complement system (Clq) to a molecule (e.g. an antibody) complexed with a cognate antigen.
  • a CDC assay e.g. as described in Gazzano-Santoro et al., J. Immunol. Methods 202:163 (1996), may be performed.
  • “Native antibodies” are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies among the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (V H ) followed by a number of constant domains. Each light chain has a variable domain at one end (V L ) and a constant domain at its other end. The constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light-chain variable domain is aligned with the variable domain of the heavy chain. Particular amino acid residues are believed to form an interface between the light chain and heavy chain variable domains.
  • variable refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called hypervariable regions both in the light chain and the heavy chain variable domains. The more highly conserved portions of variable domains are called the framework regions (FRs).
  • the variable domains of native heavy and light chains each comprise four FRs, largely adopting a ⁇ -sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the ⁇ -sheet structure.
  • the hypervariable regions in each chain are held together in close proximity by the FRs and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)).
  • the constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody dependent cellular cytotoxicity (ADCC).
  • hypervariable region when used herein refers to the amino acid residues of an antibody which are responsible for antigen-binding.
  • the hypervariable region generally comprises amino acid residues from a “complementarity determining region” or “CDR” (e.g. residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the light chain variable domain and 31-35 (H1), 50-65 (H2) and 95-102 (H3) in the heavy chain variable domain; Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)) and/or those residues from a “hypervariable loop” (e.g.
  • “Framework Region” or “FR” residues are those variable domain residues other than the hypervariable region residues as herein defined.
  • Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments, each with a single antigen-binding site, and a residual “Fc” fragment, whose name reflects its ability to crystallize readily. Pepsin treatment yields an F(ab′) 2 fragment that has two antigen-binding sites and is still capable of cross-linking antigen.
  • “Fv” is the minimum antibody fragment which contains a complete antigen-recognition and antigen-binding site. This region consists of a dimer of one heavy chain and one light chain variable domain in tight, non-covalent association. It is in this configuration that the three hypervariable regions of each variable domain interact to define an antigen-binding site on the surface of the V H -V L dimer. Collectively, the six hypervariable regions confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three hypervariable regions specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.
  • the Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain.
  • Fab′ fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region.
  • Fab′-SH is the designation herein for Fab′ in which the cysteine residue(s) of the constant domains bear at least one free thiol group.
  • F(ab′) 2 antibody fragments originally were produced as pairs of Fab′ fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.
  • the “light chains” of antibodies from any vertebrate species can be assigned to one of two clearly distinct types, called kappa ( ⁇ ) and lambda ( ⁇ ), based on the amino acid sequences of their constant domains.
  • Single-chain Fv or “scFv” antibody fragments comprise the V H and V L domains of antibody, wherein these domains are present in a single polypeptide chain.
  • the Fv polypeptide further comprises a polypeptide linker between the V H and V L domains which enables the scFv to form the desired structure for antigen binding.
  • HER2 antibody scFv fragments are described in WO93/16185; U.S. Pat. No. 5,571,894; and U.S. Pat. No. 5,587,458.
  • diabodies refers to small antibody fragments with two antigen-binding sites, which fragments comprise a variable heavy domain (V H ) connected to a variable light domain (V L ) in the same polypeptide chain (V H -V L ).
  • V H variable heavy domain
  • V L variable light domain
  • the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites.
  • Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993).
  • “Humanized” forms of non-human (e.g., rodent) antibodies are chimeric antibodies that contain minimal sequence derived from non-human immunoglobulin.
  • humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and capacity.
  • donor antibody such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and capacity.
  • framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues.
  • humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance.
  • the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence.
  • the humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
  • Fc immunoglobulin constant region
  • Humanized HER2 antibodies include huMAb4D5-1, huMAb4D5-2, huMAb4D5-3, huMAb4D5-3, huMAb4D5-4, huMAb4D5-5, huMAb4D5-6, huMAb4D5-7 and huMAb4D5-8 or Trastuzumab (HERCEPTIN®) as described in Table 3 of U.S. Pat. No. 5,821,337 expressly incorporated herein by reference; humanized 520C9 (WO93/21319) and humanized 2C4 antibodies as described herein.
  • Trastuzumab refers to an antibody comprising the light and heavy chain amino acid sequences in SEQ ID NOS. 13 and 14, respectively.
  • Pertuzumab refers to an antibody comprising the variable light and variable heavy amino acid sequences in SEQ ID Nos. 3 and 4, respectfully. Where Pertuzumab is a full length antibody, it preferably comprises the light chain and heavy chain amino acid sequences in SEQ ID NOS. 15 and 16, respectively.
  • naked antibody is an antibody (as herein defined) that is not conjugated to a heterologous molecule, such as a cytotoxic moiety or radiolabel.
  • affinity matured antibody is one with one or more alterations in one or more hypervariable regions thereof which result an improvement in the affinity of the antibody for antigen, compared to a parent antibody which does not possess those alteration(s).
  • Preferred affinity matured antibodies will have nanomolar or even picomolar affinities for the target antigen.
  • Affinity matured antibodies are produced by procedures known in the art. Marks et al. Bio/Technology 10:779-783 (1992) describes affinity maturation by VH and VL domain shuffling. Random mutagenesis of CDR and/or framework residues is described by: Barbas et al. Proc Nat. Acad. Sci, USA 91:3809-3813 (1994); Schier et al.
  • an “agonist antibody” is an antibody which binds to and activates a receptor.
  • the receptor activation capability of the agonist antibody will be at least qualitatively similar (and may be essentially quantitatively similar) to a native agonist ligand of the receptor.
  • An example of an agonist antibody is one which binds to a receptor in the TNF receptor superfamily, such as DR5, and induces apoptosis of cells expressing the TNF receptor (e.g. DR5).
  • Assays for determining induction of apoptosis are described in WO98/51793 and WO99/37684, both of which are expressly incorporated herein by reference.
  • an “isolated” antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes.
  • the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain.
  • Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.
  • a HER2 antibody which “inhibits HER dimerization more effectively than Trastuzumab” is one which reduces or eliminates HER dimers more effectively (for example at least about 2-fold more effectively) than Trastuzumab.
  • such an antibody inhibits HER2 dimerization at least about as effectively as an antibody selected from the group consisting of murine monoclonal antibody 2C4, a Fab fragment of murine monoclonal antibody 2C4, Pertuzumab, and a Fab fragment of Pertuzumab.
  • Assays for screening for antibodies with the ability to inhibit HER dimerization more effectively than Trastuzumab are described in Agus et al. Cancer Cell 2: 127-137 (2002) and WO01/00245 (Adams et al.).
  • one may assay for inhibition of HER dimerization by assessing, for example, inhibition of HER dimer formation (see, e.g., FIG. 1A -B of Agus et al.
  • Cancer Cell 2 127-137 (2002); and WO01/00245); reduction in HER ligand activation of cells which express HER dimers (WO01/00245and FIG. 2A -B of Agus et al. Cancer Cell 2: 127-137 (2002), for example); blocking of HER ligand binding to cells which express HER dimers (WO01/00245, and FIG. 2E of Agus et al. Cancer Cell 2: 127-137 (2002), for example); cell growth inhibition of cancer cells (e.g.
  • MCF7, MDA-MD-134, ZR-75-1, MD-MB-175, T-47D cells which express HER dimers in the presence (or absence) of HER ligand (WO01/00245and FIGS. 3 A-D of Agus et al. Cancer Cell 2: 127-137 (2002), for instance); inhibition of downstream signaling (for instance, inhibition of HRG-dependent AKT phosphorylation or inhibition of HRG- or TGF ⁇ -dependent MAPK phosphorylation) (see, WO01/00245, and FIG. 2C -D of Agus et al. Cancer Cell 2: 127-137 (2002), for example).
  • inhibition of downstream signaling for instance, inhibition of HRG-dependent AKT phosphorylation or inhibition of HRG- or TGF ⁇ -dependent MAPK phosphorylation
  • the HER2 antibody may “inhibit HRG-dependent AKT phosphorylation” and/or inhibit “HRG-or TGF ⁇ -dependent MAPK phosphorylation” more effectively (for instance at least 2-fold more effectively) than Trastuzumab (see Agus et al. Cancer Cell 2: 127-137 (2002) and WO01/00245, by way of example).
  • the HER2 antibody may be one which does “not inhibit HER2 ectodomain cleavage” (Molina et al. Cancer Res. 61:4744-4749(2001).
  • an antibody that “binds to domain II” of HER2 binds to residues in domain II and optionally residues in other domain(s) of HER2, such as domains I and III.
  • the antibody that binds to domain II binds to the junction between domains I, II and III of HER2.
  • a “growth inhibitory agent” when used herein refers to a compound or composition which inhibits growth of a cell, especially a HER expressing cancer cell either in vitro or in vivo.
  • the growth inhibitory agent may be one which significantly reduces the percentage of HER expressing cells in S phase.
  • growth inhibitory agents include agents that block cell cycle progression (at a place other than S phase), such as agents that induce G1 arrest and M-phase arrest.
  • Classical M-phase blockers include the vincas (vincristine and vinblastine), taxanes, and topo II inhibitors such as doxorubicin, epirubicin, daunorubicin, etoposide, and bleomycin.
  • DNA alkylating agents such as tamoxifen, prednisone, dacarbazine, mechlorethamine, cisplatin, methotrexate, 5-fluorouracil, and ara-C. Further information can be found in The Molecular Basis of Cancer, Mendelsohn and Israel, eds., Chapter 1, entitled “Cell cycle regulation, oncogenes, and antineoplastic drugs” by Murakami et al. (WB Saunders: Philadelphia, 1995), especially p. 13.
  • growth inhibitory antibodies are those which bind to HER2 and inhibit the growth of cancer cells overexpressing HER2.
  • Preferred growth inhibitory HER2 antibodies inhibit growth of SK-BR-3 breast tumor cells in cell culture by greater than 20%, and preferably greater than 50% (e.g. from about 50% to about 100%) at an antibody concentration of about 0.5 to 30 ⁇ /ml, where the growth inhibition is determined six days after exposure of the SK-BR-3 cells to the antibody (see U.S. Pat. No. 5,677,171 issued Oct. 14, 1997).
  • the SK-BR-3 cell growth inhibition assay is described in more detail in that patent and hereinbelow.
  • the preferred growth inhibitory antibody is a humanized variant of murine monoclonal antibody 4D5, e.g., Trastuzumab.
  • An antibody which “induces apoptosis” is one which induces programmed cell death as determined by binding of annexin V, fragmentation of DNA, cell shrinkage, dilation of endoplasmic reticulum, cell fragmentation, and/or formation of membrane vesicles (called apoptotic bodies).
  • the cell is usually one which expresses the antigen to which the antibody binds.
  • the cell is a tumor cell.
  • phosphatidyl serine (PS) translocation can be measured by annexin binding; DNA fragmentation can be evaluated through DNA laddering; and nuclear/chromatin condensation along with DNA fragmentation can be evaluated by any increase in hypodiploid cells.
  • the antibody which induces apoptosis is one which results in about 2 to 50 fold, preferably about 5 to 50 fold, and most preferably about 10 to 50 fold, induction of annexin binding relative to untreated cell in an annexin binding assay using cells that express an antigen to which the antibody binds.
  • antibodies that induce apoptosis are HER2 antibodies 7C2 and 7F3, and certain DR5 antibodies.
  • the “epitope 2C4” is the region in the extracellular domain of HER2 to which the antibody 2C4 binds.
  • a routine cross-blocking assay such as that described in Antibodies, A Laboratory Manual , Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed.
  • epitope mapping can be performed to assess whether the antibody binds to the 2C4 epitope of HER2.
  • Epitope 2C4 comprises residues from domain II in the extracellular domain of HER2.
  • 2C4 and Pertuzumab bind to the extracellular domain of HER2 at the junction of domains I, II and III. Franklin et al. Cancer Cell 5:317-328 (2004).
  • the “epitope 4D5” is the region in the extracellular domain of HER2 to which the antibody 4D5 (ATCC CRL 10463) and Trastuzumab bind. This epitope is close to the transmembrane domain of HER2, and within Domain IV of HER2.
  • a routine cross-blocking assay such as that described in Antibodies, A Laboratory Manual , Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed.
  • epitope mapping can be performed to assess whether the antibody binds to the 4D5 epitope of HER2 (e.g. any one or more residues in the region from about residue 529 to about residue 625, inclusive, of HER2).
  • epitope 7C2/7F3 is the region at the amino terminus, within Domain I, of the extracellular domain of HER2 to which the 7C2 and/or 7F3 antibodies (each deposited with the ATCC, see below) bind.
  • a routine cross-blocking assay such as that described in Antibodies, A Laboratory Manual , Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed.
  • epitope mapping can be performed to establish whether the antibody binds to the 7C2/7F3 epitope on HER2 (e.g. any one or more of residues in the region from about residue 22 to about residue 53 of HER2).
  • Treatment refers to both therapeutic treatment and prophylactic or preventative measures. Those in need of treatment include those already with the disease as well as those in which the disease is to be prevented. Hence, the patient to be treated herein may have been diagnosed as having the disease or may be predisposed or susceptible to the disease.
  • cancer and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth.
  • examples of cancer include, but are not limited to, carcinoma, lymphoma, blastoma (including medulloblastoma and retinoblastoma), sarcoma (including liposarcoma and synovial cell sarcoma), neuroendocrine tumors (including carcinoid tumors, gastrinoma,and islet cell cancer), mesothelioma, schwannoma (including acoustic neuroma), meningioma, adenocarcinoma, melanoma, and leukemia or lymphoid malignancies.
  • cancers include squamous cell cancer (e.g. epithelial squamous cell cancer), lung cancer including small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung and squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer including gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, rectal cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney or renal cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, anal carcinoma, penile carcinoma, testicular cancer, esophagael cancer, tumors of the biliary tract, as well as head and neck cancer.
  • lung cancer including small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung and squamous carcinoma of the
  • the term “effective amount” refers to an amount of a drug effective to a disease in the patient.
  • the effective amount of the drug may reduce the number of cancer cells; reduce the tumor size; inhibit (i.e., slow to some extent and preferably stop) cancer cell infiltration into peripheral organs; inhibit (i.e., slow to some extent and preferably stop) tumor metastasis; inhibit, to some extent, tumor growth; and/or relieve to some extent one or more of the symptoms associated with the cancer.
  • the drug may prevent growth and/or kill existing cancer cells, it may be cytostatic and/or cytotoxic.
  • the effective amount may extend progression free survival, result in an objective response (including a partial response, PR, or complete response, CR), increase overall survival time, and/or improve one or more symptoms of cancer.
  • a “HER2-expressing cancer” is one comprising cells which have HER2 protein present at their cell surface.
  • a cancer which “overexpresses” a HER receptor is one which has significantly higher levels of a HER receptor, such as HER2, at the cell surface thereof, compared to a noncancerous cell of the same tissue type.
  • Such overexpression may be caused by gene amplification or by increased transcription or translation.
  • HER receptor overexpression may be determined in a diagnostic or prognostic assay by evaluating increased levels of the HER protein present on the surface of a cell (e.g. via an immunohistochemistry assay; IHC). Alternatively, or additionally, one may measure levels of HER-encoding nucleic acid in the cell, e.g.
  • FISH fluorescent in situ hybridization
  • PCR polymerase chain reaction
  • RT-PCR real time quantitative PCR
  • HER receptor overexpression by measuring shed antigen (e.g., HER extracellular domain) in a biological fluid such as serum (see, e.g., U.S. Pat. No. 4,933,294 issued Jun. 12, 1990;WO91/05264 published Apr. 18, 1991; U.S. Pat. No. 5,401,638 issued Mar. 28, 1995; and Sias et al. J. Immunol. Methods 132: 73-80 (1990)).
  • various in vivo assays are available to the skilled practitioner.
  • a detectable label e.g. a radioactive isotope
  • a cancer which “does not overexpress HER2 receptor” is one which does not express higher than normal levels of HER2 receptor compared to a noncancerous cell of the same tissue type.
  • a cancer which “overexpresses” a HER ligand is one which produces significantly higher levels of that ligand compared to a noncancerous cell of the same tissue type. Such overexpression may be caused by gene amplification or by increased transcription or translation. Overexpression of the HER ligand may be determined diagnostically by evaluating levels of the ligand (or nucleic acid encoding it) in the patient, e.g. in a tumor biopsy or by various diagnostic assays such as the IHC, FISH, southern blotting, PCR or in vivo assays described above.
  • cytotoxic agent refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells.
  • the term is intended to include radioactive isotopes (e.g. At 211 ,I 131 , I 125 , Y 90 , Re 186 , Re 188 , Sm 153 , Bi 212 , P 32 and radioactive isotopes of Lu), chemotherapeutic agents, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof.
  • radioactive isotopes e.g. At 211 ,I 131 , I 125 , Y 90 , Re 186 , Re 188 , Sm 153 , Bi 212 , P 32 and radioactive isotopes of Lu
  • chemotherapeutic agents e.g. At 211 ,I 131 , I 125 , Y 90 , Re 186
  • chemotherapeutic agent is a chemical compound useful in the treatment of cancer.
  • examples of chemotherapeutic agents include alkylating agents such as thiotepa and cyclosphosphamide (CYTOXAN®); alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethiylenethiophosphoramide and trimethylolomelamine; acetogenins (especially bullatacin and bullatacinone); delta-9-tetrahydrocannabinol (dronabinol, MARINOL®); beta-lapachone; lapachol; colchicines; betulinic acid; a camptothecin (including the synthetic analogue topote
  • calicheamicin especially calicheamicin gammalI and calicheamicin omegaIl (see, e.g., Agnew, Chem Intl. Ed. Engl., 33: 183-186 (1994)); dynemicin, including dynemicin A; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antiobiotic chromophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, carminomycin, carzinophilin, chromomycinis, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, doxorubicin (including ADRIAMYCIN®, morpholino-doxorubicin, cyan
  • celecoxib or etoricoxib include proteosome inhibitor (e.g. PS341); bortezomib (VELCADE®); CCI-779; tipifarnib (R11577); orafenib, ABT510; Bcl-2 inhibitor such as oblimersen sodium (GENASENSE®); pixantrone; EGFR inhibitors (see definition below); tyrosine kinase inhibitors (see definition below); and pharmaceutically acceptable salts, acids or derivatives of any of the above; as well as combinations of two or more of the above such as CHOP, an abbreviation for a combined therapy of cyclophosphamide, doxorubicin, vincristine, and prednisolone, and FOLFOX, an abbreviation for a treatment regimen with oxaliplatin (ELOXATINTM) combined with 5-FU and leucovovin.
  • proteosome inhibitor e.g. PS341
  • VELCADE®
  • anti-hormonal agents that act to regulate or inhibit hormone action on tumors
  • anti-estrogens with mixed agonist/antagonist profile including, tamoxifen (NOLVADEX®), 4-hydroxytamoxifen, toremifene (FARESTON®), idoxifene, droloxifene, raloxifene (EVISTA®), trioxifene, keoxifene, and selective estrogen receptor modulators (SERMs) such as SERM3; pure anti-estrogens without agonist properties, such as fulvestrant (FASLODEX®), and EM800 (such agents may block estrogen receptor (ER) dimerization, inhibit DNA binding, increase ER turnover, and/or suppress ER levels); aromatase inhibitors, including steroidal aromatase inhibitors such as formestane and exemestane (AROMASIN®), and nonsteroidal aromatase inhibitors such as anastrazole (ARIMIDEX®), let
  • EGFR-targeted drug refers to a therapeutic agent that binds to EGFR and, optionally, inhibits EGFR activation.
  • agents include antibodies and small molecules that bind to EGFR.
  • antibodies which bind to EGFR include MAb 579 (ATCC CRL HB 8506), MAb 455 (ATCC CRL HB8507), MAb 225 (ATCC CRL 8508), MAb 528 (ATCC CRL 8509) (see, U.S. Pat. No.
  • the anti-EGFR antibody may be conjugated with a cytotoxic agent, thus generating an immunoconjugate (see, e.g., EP659,439A2, Merck Patent GmbH).
  • a cytotoxic agent see, e.g., EP659,439A2, Merck Patent GmbH.
  • small molecules that bind to EGFR include ZD1839 or Gefitinib (IRESSATM; Astra Zeneca), CP-358774 or Erlotinib HCL (TARCEVATM; Genentech/OSI) and AG1478, AG1571 (SU 5271; Sugen).
  • a “tyrosine kinase inhibitor” is a molecule which inhibits to some extent tyrosine kinase activity of a tyrosine kinase such as a HER receptor.
  • examples of such inhibitors include the EGFR-targeted drugs noted in the preceding paragraph as well as small molecule HER2 tyrosine kinase inhibitor such as TAK165 available from Takeda, dual-HER inhibitors such as EKB-569 (available from Wyeth) which preferentially binds EGFR but inhibits both HER2 & EGFR-overexpressing cells, GW572016 (available from Glaxo) an oral HER2 and EGFR tyrosine kinase inhibitor, and PKI-166 (available from Novartis); pan-HER inhibitors such as canertinib (CI-1033; Pharmacia); Raf-1 inhibitors such as antisense agent ISIS-5132 available from ISIS Pharmaceuticals which inhibits Raf-1 signaling; non-HER targeted
  • an “anti-angiogenic agent” refers to a compound which blocks, or interferes with to some degree, the development of blood vessels.
  • the anti-angiogenic factor may, for instance, be a small molecule or antibody that binds to a growth factor or growth factor receptor involved in promoting angiogenesis.
  • the preferred anti-angiogenic factor herein is an antibody that binds to Vascular Endothelial Growth Factor (VEGF), such as Bevacizumab (AVASTIN®).
  • VEGF Vascular Endothelial Growth Factor
  • cytokine is a generic term for proteins released by one cell population which act on another cell as intercellular mediators.
  • cytokines are lymphokines, monokines, and traditional polypeptide hormones. Included among the cytokines are growth hormone such as human growth hormone, N-methionyl human growth hormone, and bovine growth hormone; parathyroid hormone; thyroxine; insulin; proinsulin; relaxin; prorelaxin; glycoprotein hormones such as follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), and luteinizing hormone (LH); hepatic growth factor; fibroblast growth factor; prolactin; placental lactogen; tumor necrosis factor- ⁇ and - ⁇ ; mullerian-inhibiting substance; mouse gonadotropin-associated peptide; inhibin; activin; vascular endothelial growth factor; integrin; thrombopoietin (TPO); nerve growth factors such as NGF- ⁇ ; platelet-growth factor;
  • the antibody which is formulated is preferably essentially pure and desirably essentially homogeneous (i.e. free from contaminating proteins etc).
  • “Essentially pure” antibody means a composition comprising at least about 90% by weight of the antibody, based on total weight of the composition, preferably at least about 95% by weight.
  • “Essentially homogeneous” antibody means a composition comprising at least about 99% by weight of antibody, based on total weight of the composition.
  • B-cell surface marker or “B-cell surface antigen” herein is an antigen expressed on the surface of a B cell that can be targeted with an antibody that binds thereto.
  • Exemplary B-cell surface markers include the CD10, CD19, CD20, CD21, CD22, CD23, CD24, CD37, CD40, CD53, CD72, CD73, CD74 , CDw75, CDw76, CD77, CDw78, CD79a, CD79b, CD80, CD81, CD82, CD83, CDw84, CD85 and CD86 leukocyte surface markers (for descriptions, see The Leukocyte Antigen Facts Book, 2 nd Edition. 1997, ed. Barclay et al.
  • B-cell surface markers include RP105, FcRH2, B-cell CR2, CCR6, P2X5, HILA-DOB, CXCR5, FCER2, BR3, Btig, NAG14, SLGC16270, FcRH1, IRTA2, ATWD578, FcRH3, IRTA1, FcRH6, BCMA, and 239287.
  • the B-cell surface marker of particular interest herein is preferentially expressed on B cells compared to other non-B-cell tissues of a mammal and may be expressed on both precursor B cells and mature B cells.
  • the preferred B-cell surface marker herein is CD20 or BR3.
  • CD20 antigen is an about 35-kDa, non-glycosylated phosphoprotein found on the surface of greater than 90% of B cells from peripheral blood or lymphoid organs. CD20 is present on both normal B cells as well as malignant B cells, but is not expressed on stem cells. Other names for CD20 in the literature include “B-lymphocyte-restricted antigen” and “Bp35”. The CD20 antigen is described in Clark et al. Proc. Natl. Acad. Sci. (USA) 82:1766 (1985), for example.
  • humanized 2H7 refers to a humanized variant of the 2H7 antibody whose CDR sequences are disclosed in U.S. Pat No. 5,500,362 ( FIGS. 5 and 6 ), expressly incorporated herein by reference.
  • humanized 2H7 antibodies herein include the variants described in WO2004/056312, also expressly incorporated herein by reference, as well as other variants, including, but not limited to: 2H7v16, 2H7v31, 2H7v73, 2H7v75, 2H7v96, 2H7v114, 2H7v115, 2H7v116, 2H7v138, 2H7v477, 2H7v375, ect.
  • the humanized 2H7 antibody comprises one, two, three, four, five or six of the following CDR sequences:
  • variable light and variable heavy framework sequences such as substantially the human consensus FR residues of human light chain kappa subgroup I (V L ⁇ I), and substantially the human consensus FR residues of human heavy chain subgroup III (V H III). See also WO 2004/056312 (Lowman et al.).
  • variable heavy region may be joined to a human IgG chain constant region, wherein the region may be, for example, IgG1 or IgG3, including native sequence and variant constant regions.
  • such antibody comprises the variable heavy domain sequence of SEQ ID No. 29 (v16, as shown in FIG. 18B ), optionally also comprising the variable light domain sequence of SEQ ID No. 26 (v16, as shown in FIG. 18A ), which optionally comprises one or more amino acid substitution(s) at positions 56, 100, and/or 100a, e.g. D56A, N100A or N100Y, and/or S100aR in the variable heavy domain and one or more amino acid substitution(s) at positions 32 and/or 92, e.g. M32L and/or S92A, in the variable light domain.
  • the antibody is an intact antibody comprising the light chain amino acid sequences of SEQ ID Nos. 63 or 64, and heavy chain amino acid sequences of SEQ ID No. 65, 66, 71 or 72.
  • a preferred humanized 2H7 antibody is ocrelizumab (Genentech).
  • the antibody herein may further comprise at least one amino acid substitution in the Fc region that improves ADCC activity, such as one wherein the amino acid substitutions are at positions 298, 333, and 334, preferably S298A, E333A, and K334A, using Eu numbering of heavy chain residues. See also U.S. Pat. No. 6,737,056B1, Presta.
  • any of these antibodies may comprise at least one substitution in the Fc region that improves FcRn binding or serum half-life, for example a substitution at heavy chain position 434, such as N434W. See also U.S. Pat. No. 6,737,056B1, Presta.
  • any of these antibodies may further comprise at least one amino acid substitution in the Fc region that increases CDC activity, for example, comprising at least a substitution at position 326, preferably K326A or K326W. See also U.S. Pat. No. 6,528,624B1 (Idusogie et al.).
  • Some preferred humanized 2H7 variants are those comprising the variable light domain of SEQ ID No. 26 and the variable heavy domain of SEQ ID No. 29, including those with or without substitutions in an Fc region (if present), and those comprising a variable heavy domain with alteration N100A; or D56A and N100A; or D56A, N100Y, and S100aR; in SEQ ID No. 29 and a variable light domain with alteration M32L; or S92A; or M32L and S92A; in SEQ ID No. 26.
  • M34 in the variable heavy chain of 2H7v 16 has been identified as a potential source of antibody stability and is another potential candidate for substitution.
  • variable region of variants based on 2H7v16 comprise the amino acid sequences of v16 except at the positions of amino acid substitutions that are indicated in the Table below. Unless otherwise indicated, the 2H7 variants will have the same light chain as that of v16.
  • V H Heavy chain Light chain 2H7 Version
  • V L changes Fc changes 16 for — reference 31 — — S298A, E333A, K334A 73 N100A M32L 75 N100A M32L S298A, E333A, K334A 96 D56A, N100A S92A 114 D56A, N100A M32L, S92A S298A, E333A, K334A 115 D56A, N100A M32L, S92A S298A, E333A, K334A, E356D, M358L 116 D56A, N100A M32L, S92A S298A, K334A, K322A 138 D56A, N100A M32L, S92A S298A, E333A, K334A, K326A 477 D56A, N100A M32L, S92A S298A, E333A, K334A, K326A 477 D56A, N
  • One preferred humanized 2H7 comprises 2H7v16 variable light domain sequence: DIQMTQSPSSLSASVGDRVTITCRASSSVSYMHWYQQKPGKAPKPLIYAPSNLASGVPSRFSGSGSGTDF TLTISSLQPEDFATYYCQQWSFNPPTFGQGTKVEIKR (SEQ ID No. 26);
  • humanized 2H7v16 antibody may comprise the light chain amino acid sequence: DIQMTQSPSSLSASVGDRVTITCRASSSVSYMHWYQQKPGKAPKPLIYAPSNLASGVPSRFSGSGSGTDF TLTISSLQPEDFATYYCQQWSFNPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPR EAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFN RGEC (SEQ ID No. 63);
  • Another preferred humanized 2H7 antibody comprises 2H7v511variable light domain sequence: DIQMTQSPSSLSASVGDRVTITCRASSSVSYLHWYQQKPGKAPKPLIYAPSNLASGVPSRFSGSGSGTDF TLTISSLQPEDFATYYCQQWAFNPPTFGQGTKVEIKR (SEQ ID No. 73)
  • variable heavy domain sequence EVQLVESGGGLVQPGGSLRLSCAASGYTFrSYNMHWVRQAPGKGLEWVGAIYPGNGATSYNQKFKGR FTISVDKSKNTLYLQMNSLRAEDTAVYYCARVVYYSYRYWYFDVWGQGTLVTVSS (SEQ ID No. 74).
  • humanized 2H7v511 antibody may comprise the light chain amino acid sequence: DIQMTQSPSSLSASVGDRVTITCRASSSVSYLHWYQQKPGKAPKPLIYAPSNLASGVPSRFSGSGSGTDF TLTISSLQPEDFATYYCQQWAFNPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPR EAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFN RGEC (SEQ ID No. 64)
  • a “B-cell malignancy” herein includes non-Hodgkin's lymphoma (NHL), including low grade/follicular NHL, small lymphocytic (SL) NHL, intermediate grade/follicular NHL, intermediate grade diffuse NHL, high grade immunoblastic NHL, high grade lymphoblastic NHL, high grade small non-cleaved cell NHL, bulky disease NHL, mantle cell lymphoma, AIDS-related lymphoma, and Waldenstrom's Macroglobulinemia; leukemia, including acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), Hairy cell leukemia and chronic myeloblastic leukemia; and other hematologic malignancies. Such malignancies may be treated with antibodies directed against B-cell surface markers, such as CD20.
  • non-Hodgkin's lymphoma refers to a cancer of the lymphatic system other than Hodgkin's lymphomas.
  • Hodgkin's lymphomas can generally be distinguished from non-Hodgkin's lymphomas by the presence of Reed-Sternberg cells in Hodgkin's lymphomas and the absence of said cells in non-Hodgkin's lymphomas.
  • non-Hodgkin's lymphomas encompassed by the term as used herein include any that would be identified as such by one skilled in the art (e.g., an oncologist or pathologist) in accordance with classification schemes known in the art, such as the Revised European-American Lymphoma (REAL) scheme as described in Color Atlas of Clinical Hematology, Third Edition; A. Victor Hoffbrand and John E. Pettit (eds.) (Harcourt Publishers Limited 2000) (see, in particular FIG. 11 . 57 , 11 . 58 and/or 11 . 59 ).
  • RRL Revised European-American Lymphoma
  • More specific examples include, but are not limited to, relapsed or refractory NHL, front line low grade NHL, Stage III/IV NHL, chemotherapy resistant NHL, precursor B lymphoblastic leukemia and/or lymphoma, small lymphocytic lymphoma, B cell chronic lymphacytic leukemia and/or prolymphocytic leukemia and/or small lymphocytic lymphoma, B-cell prolymphocytic lymphoma, immunocytoma and/or lymphoplasmacytic lymphoma, marginal zone B cell lymphoma, splenic marginal zone lymphoma, extranodal marginal zone—MALT lymphoma, nodal marginal zone lymphoma, hairy cell leukemia, plasmacytoma and/or plasma cell myeloma, low grade/follicular lymphoma, intermediate grade/follicular NHL, mantle cell lymphoma, follicle center lymphoma (follicular), intermediate grade diffuse NHL, diffuse large B-cell lympho
  • autoimmune disease herein is a disease or disorder arising from and directed against an individual's own tissues or a co-segregate or manifestation thereof or resulting condition therefrom.
  • autoimmune diseases or disorders include, but are not limited to arthritis (rheumatoid arthritis, juvenile-onset rheumatoid arthritis, osteoarthritis, psoriatic arthritis, and ankylosing spondylitis), psoriasis, dermatitis including atopic dermatitis, chronic idiopathic urticaria, including chronic autoimmune urticaria, polymyositis/dermatomyositis, toxic epidermal necrolysis, scleroderma (including systemic scleroderma), sclerosis such as progressive systemic sclerosis, inflammatory bowel disease (IBD) (for example, Crohn's disease, ulcerative colitis, autoimmune inflammatory bowel disease), pyoderma gangrenosum, erythema nodosum, primary
  • TNF receptor superfamily refers to receptor polypeptides bound by cytokines in the TNF family. Generally, these receptors are Type I transmembrane receptors with one or more cysteine rich repeat sequences in their extracellular domain.
  • the TNF receptor superfamily may be further subdivided into (1) death receptors; (2) decoy receptors; and (3) signaling receptors that lack death domains.
  • the “death receptors” contain in their cytoplasmic or intracellular region a “death domain”, i.e., a region or sequence which acts to transduce signals in the cell which can result in apoptosis or in induction of certain genes.
  • the “decoy receptors” lack a functional death domain and are incapable of transducing signals which result in apoptosis.
  • cytokines in the TNF gene family include Tumor Necrosis Factor-alpha (TNF-alpha), Tumor Necrosis Factor-beta (TNF-beta or lymphotoxin), CD30 ligand, CD27 ligand, CD40 ligand, OX-40 ligand, 4-1BB ligand, Apo-1 ligand (also referred to as Fas ligand or CD95 ligand), Apo-2 ligand (also referred to as TRAIL), Apo-3 ligand (also referred to as TWEAK), osteoprotegerin (OPG), APRIL, RANK ligand (also referred to as TRANCE), and TALL-1 (also referred to as BlyS, BAFF or THANK).
  • TNF-alpha Tumor Necrosis Factor-alpha
  • TNF receptor superfamily examples include: type 1 Tumor Necrosis Factor Receptor (TNFR 1), type 2 Tumor Necrosis Factor Receptor (TNFR2), p75 Nerve Growth Factor receptor (NGFR), the B cell surface antigen CD40, the T cell antigen OX-40, Apo-1 receptor (also called Fas or CD95), Apo-3 receptor (also called DR3, swl-1, TRAMP and LARD), the receptor called “Transmembrane Activator and CAML-Interactor” or “TACI”, BCMA protein, DR4, DR5 (alternatively referred to as Apo-2; TRAIL-R2, TR6, Tango-63, hAPO8, TRICK2 or KILLER), DR6, DcR1 (also referred to as TRID, LIT or TRAIL-R3), DcR2 (also called TRAIL-R4 or TRUNDD), OPG, DcR3 (also called TR6 or M68), CAR1, HVE
  • Apo-2 ligand refers to a polypeptide sequence which includes amino acid residues 114-281, inclusive, 95-281, inclusive, residues 92-281, inclusive, residues 91-281, inclusive, residues 41-281, inclusive, residues 39-281, inclusive, residues 15-281, inclusive, or residues 1-281, inclusive, of the amino acid sequence shown in FIG. 24 (SEQ ID No. 46), as well as biologically active fragments, deletional, insertional, and/or substitutional variants of the above sequences.
  • the polypeptide sequence comprises residues 114-281 of FIG.
  • the polypeptide sequence comprises residues 92-281 or residues 91-281 of FIG. 24 (SEQ ID No. 46).
  • the Apo-2L polypeptides may be encoded by the native nucleotide sequence shown in FIG. 24 (SEQ ID No. 45).
  • the codon which encodes residue Prol 19 may be “CCT” or “CCG”.
  • the fragments or variants are biologically active and have at least about 80% amino acid sequence identity, or at least about 90% sequence identity, or at least 95%, 96%, 97%, 98%, or 99% sequence identity with any one of the above sequences.
  • the definition encompasses substitutional variants of Apo-2 ligand in which at least one of its native amino acids are substituted by another amino acid such as an alanine residue.
  • the definition also encompasses a native sequence Apo-2 ligand isolated from an Apo-2 ligand source or prepared by recombinant and/or synthetic methods.
  • the Apo-2 ligand of the invention includes the polypeptides referred to as Apo-2 ligand or TRAIL disclosed in WO97/01633 published Jan. 16, 1997, WO97/25428 published Jul. 17, 1997, WO99/36535 published Jul. 22, 1999, WO 01/00832 published Jan. 4, 2001, WO02/09755 published Feb. 7, 2002, WO 00/75191 published Dec.
  • “Apo-2 ligand receptor” includes the receptors referred to in the art as “DR4” and “DR5.” Pan et al. have described the TNF receptor family member referred to as “DR4” (Pan et al., Science, 276:111-113 (1997); see also WO98/32856 published Jul. 30, 1998; WO 99/37684 published Jul. 29, 1999; WO 00/73349 published Dec. 7, 2000; U.S. Pat. No. 6,433,147 issued Aug. 13, 2002; U.S. Pat. No. 6,461,823 issued Oct. 8, 2002, and U.S. Pat. No. 6,342,383 issued Jan. 29, 2002).
  • DR5 the receptor has also been alternatively referred to as Apo-2; TRAIL-R, TR6, Tango-63, hAPO8, TRICK2 or KILLER; Screaton et al., Curr.
  • Apo-2L receptor when used herein encompasses native sequence receptor and receptor variants. These terms encompass Apo-2L receptor expressed in a variety of mammals, including humans.
  • Apo-2L receptor may be endogenously expressed as occurs naturally in a variety of human tissue lineages, or may be expressed by recombinant or synthetic methods.
  • a “native sequence Apo-2L receptor” comprises a polypeptide having the same amino acid sequence as an Apo-2L receptor derived from nature.
  • a native sequence Apo-2L receptor can have the amino acid sequence of naturally-occurring Apo-2L receptor from any mammal, including humans.
  • Such native sequence Apo-2L receptor can be isolated from nature or can be produced by recombinant or synthetic means.
  • native sequence Apo-2L receptor specifically encompasses naturally-occurring truncated or secreted forms of the receptor (e.g., a soluble form containing, for instance, an extracellular domain sequence), naturally-occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants.
  • Receptor variants may include fragments or deletion mutants of the native sequence Apo-2L receptor.
  • FIGS. 25 A-C show the 411 amino acid sequence of human DR5 receptor, along with its nucleotide sequence (SEQ ID Nos. 47 and 48) as published in WO 98/51793 on Nov. 19, 1998.
  • a transcriptional splice variant of human DR5 receptor is known in the art.
  • This splice variant encodes the 440 amino acid sequence of human DR5 receptor as shown in FIGS. 26 A-C, along with its nucleotide sequence (SEQ ID Nos. 49 and 50), and as published in WO 98/35986 on Aug. 20, 1998.
  • DR5 receptor antibody “DR5 antibody”, or “anti-DR5 antibody” is used in a broad sense to refer to antibodies that bind to at least one form of a DR5 receptor or extracellular domain thereof.
  • the DR5 antibody is fused or linked to a heterologous sequence or molecule.
  • the heterologous sequence allows or assists the antibody to form higher order or oligomeric complexes.
  • the DR5 antibody binds to DR5 receptor but does not bind or cross-react with any additional Apo-2L receptor (e.g. DR4, DcR1, or DcR2).
  • the antibody is an agonist of DR5 signalling activity.
  • the DR5 antibody of the invention binds to a DR5 receptor at a concentration range of about 0.1 nM to about 20 mM as measured in a BIAcore binding assay.
  • the DR5 antibodies of the invention exhibit an IC50 value of about 0.6 nM to about 18 mM as measured in a BIAcore binding assay.
  • Apomab refers to an agonist antibody which binds to DR5 and comprises the variable heavy and variable light amino acid sequences of SEQ ID Nos. 55 and 56.
  • Apomab comprises the heavy and light chains of SEQ ID Nos. 51 and 52, respectively.
  • the antigen to which the antibody binds is a biologically important glycoprotein and administration of the antibody to a mammal suffering from a disease or disorder can result in a therapeutic benefit in that mammal.
  • antibodies directed against nonpolypeptide antigens are also contemplated.
  • the antigen is a polypeptide, it may be a transmembrane molecule (e.g. receptor) or ligand such as a growth factor.
  • exemplary antigens include molecules such as renin; a growth hormone, including human growth hormone and bovine growth hormone; growth hormone releasing factor; parathyroid hormone; thyroid stimulating hormone; lipoproteins; alpha-1-antitrypsin; insulin A-chain; insulin B-chain; proinsulin; follicle stimulating hormone; calcitonin; luteinizing hormone; glucagon; clotting factors such as factor VIIIC, factor IX, tissue factor (TF), and von Willebrands factor; anti-clotting factors such as Protein C; atrial natriuretic factor; lung surfactant; a plasminogen activator, such as urokinase or human urine or tissue-type plasminogen activator (t-PA); bombesin; thrombin; hemopoietic growth factor; tumor necrosis factor-alpha and
  • Exemplary molecular targets for antibodies encompassed by the present invention include CD proteins such as CD3, CD4, CD8, CD19, CD20, CD22, CD34 and CD40; members of the ErbB receptor family shuch as the EGF receptor, HER2, HER3 or HER4 receptor; B cell surface antigens, such as CD20 or BR3; a member of the tumor necrosis receptor superfamily, including DR5; prostate stem cell antigen (PSCA); cell adhesion molecules such as LFA-1, Mac1, p150.95, VLA-4, ICAM-1, VCAM, alpha4/beta7 integrin, and alphav/beta3 integrin including either alpha or beta subunits thereof (e.g.
  • anti-CD11a, anti-CD18 or anti-CD11b antibodies growth factors such as VEGF as well as receptors therefor; tissue factor (TF); a tumor necrosis factor (TNF) such as TNF-alpha or TNF-beta, alpha interferon (alpha-IFN); an interleukin, such as IL-8; IgE; blood group antigens; flk2/flt3 receptor; obesity (OB) receptor; mp1 receptor; CTLA-4; protein C etc.
  • tissue factor TF
  • TNF tumor necrosis factor
  • alpha-IFN alpha interferon
  • interleukin such as IL-8
  • IgE blood group antigens
  • flk2/flt3 receptor flk2/flt3 receptor
  • OB obesity
  • mp1 receptor CTLA-4
  • protein C etc protein C etc.
  • the monoclonal antibodies may be made using the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Pat. No. 4,816,567).
  • a mouse or other appropriate host animal such as a hamster
  • lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization.
  • lymphocytes may be immunized in vitro. Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp. 59-103 (Academic Press, 1986)).
  • the hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells.
  • a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells.
  • the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.
  • Preferred myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium.
  • preferred myeloma cell lines are murine myeloma lines, such as those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, Calif. USA, and SP-2 or X63-Ag8-653 cells available from the American Type Culture Collection, Rockville, Md. USA.
  • Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); and Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987)).
  • Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen.
  • the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA).
  • RIA radioimmunoassay
  • ELISA enzyme-linked immunoabsorbent assay
  • the binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson et al., Anal. Biochem., 107:220 (1980).
  • the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)). Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium.
  • the hybridoma cells may be grown in vivo as ascites tumors in an animal.
  • the monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional antibody purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
  • DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies).
  • the hybridoma cells serve as a preferred source of such DNA.
  • the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese Hamster Ovary (CHO) cells, or myeloma cells that do not otherwise produce antibody protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells.
  • host cells such as E. coli cells, simian COS cells, Chinese Hamster Ovary (CHO) cells, or myeloma cells that do not otherwise produce antibody protein.
  • Review articles on recombinant expression in bacteria of DNA encoding the antibody include Skerra et al., Curr. Opinion in Immunol., 5:256-262 (19
  • monoclonal antibodies or antibody fragments can be isolated from antibody phage libraries generated using the techniques described in McCafferty et al., Nature, 348:552-554 (1990). Clackson et al., Nature, 352:624-628 (1991) and Marks et al., J. Mol. Biol., 222:581-597 (1991) describe the isolation of murine and human antibodies, respectively, using phage libraries.
  • the DNA also may be modified, for example, by substituting the coding sequence for human heavy chain and light chain constant domains in place of the homologous murine sequences (U.S. Pat. No. 4,816,567; and Morrison, et al., Proc. Natl Acad. Sci. USA, 81:6851 (1984)), or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide.
  • a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain.
  • Humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting hypervariable region sequences for the corresponding sequences of a human antibody.
  • humanized antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567) wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.
  • humanized antibodies are typically human antibodies in which some hypervariable region residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
  • variable domains both light and heavy
  • sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences.
  • the human sequence which is closest to that of the rodent is then accepted as the human framework region (FR) for the humanized antibody (Sims et al., J. Immunol., 151:2296 (1993); Chothia et al., J. Mol. Biol., 196:901 (1987)).
  • Another method uses a particular framework region derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains.
  • the same framework may be used for several different humanized antibodies (Carter et al., Proc. Natl. Acad. Sci. USA, 89:4285 (1992); Presta et al., J. Immunol., 151:2623 (1993)).
  • humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences.
  • Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art.
  • Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen.
  • FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved.
  • the hypervariable region residues are directly and most substantially involved in influencing antigen binding.
  • WO01/00245 describes production of exemplary humanized HER2 antibodies which bind HER2 and block ligand activation of a HER receptor.
  • the humanized antibody of particular interest herein blocks EGF, TGF- ⁇ and/or HRG mediated activation of MAPK essentially as effectively as murine monoclonal antibody 2C4 (or a Fab fragment thereof) and/or binds HER2 essentially as effectively as murine monoclonal antibody 2C4 (or a Fab fragment thereof).
  • the humanized antibody herein may, for example, comprise nonhuman hypervariable region residues incorporated into a human variable heavy domain and may further comprise a framework region (FR) substitution at a position selected from the group consisting of 69H, 71H and 73H utilizing the variable domain numbering system set forth in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991).
  • the humanized antibody comprises FR substitutions at two or all of positions 69H, 71H and 73H.
  • An exemplary humanized antibody of interest herein comprises variable heavy domain complementarity determining residues GFTFTDYTMX, where X is preferably D or S (SEQ ID No. 7); DVNPNSGGSIYNQRFKG (SEQ ID No. 8); and/or NLGPSFYFDY (SEQ ID No. 9), optionally comprising amino acid modifications of those CDR residues, e.g. where the modifications essentially maintain or improve affinity of the antibody.
  • the antibody variant of interest may have from about one to about seven or about five amino acid substitutions in the above variable heavy CDR sequences.
  • Such antibody variants may be prepared by affinity maturation, e.g., as described below.
  • the most preferred humanized antibody comprises the variable heavy domain amino acid sequence in SEQ ID No. 4.
  • the antibody variant of interest may have from about one to about seven or about five amino acid substitutions in the above variable light CDR sequences.
  • Such antibody variants may be prepared by affinity maturation, e.g., as described below.
  • the most preferred humanized antibody comprises the variable light domain amino acid sequence in SEQ ID No. 3.
  • the present application also contemplates affinity matured antibodies which bind HER2 and block ligand activation of a HER receptor.
  • the parent antibody may be a human antibody or a humanized antibody, e.g., one comprising the variable light and/or heavy sequences of SEQ ID Nos. 3 and 4, respectively (i.e. variant 574).
  • the affinity matured antibody preferably binds to HER2 receptor with an affinity superior to that of murine 2C4 or variant 574 (e.g. from about two or about four fold, to about 100 fold or about 1000 fold improved affinity, e.g. as assessed using a HER2-extracellular domain (ECD) ELISA).
  • ECD HER2-extracellular domain
  • variable heavy CDR residues for substitution include H28, H30, H34, H35, H64, H96, H99, or combinations of two more (e.g. two, three, four, five, six, or seven of these residues).
  • variable light CDR residues for alteration include L28, L50, L53, L56, L91, L92, L93, L94, L96, L97 or combinations of two or more (e.g. two to three, four, five or up to about ten of these residues.)
  • the humanized antibody or affinity matured antibody may be an antibody fragment, such as a Fab, which is optionally conjugated with one or more cytotoxic agent(s) in order to generate an immunoconjugate.
  • the humanized antibody or affinity matured antibody may be an full length antibody, such as an full length IgG1 antibody.
  • human antibodies can be generated.
  • transgenic animals e.g., mice
  • transgenic animals e.g., mice
  • J H antibody heavy-chain joining region
  • transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., Proc. Natl. Acad. Sci.
  • phage display technology can be used to produce human antibodies and antibody fragments in vitro, from immunoglobulin variable (V) domain gene repertoires from unimmunized donors.
  • V domain genes are cloned in-frame into either a major or minor coat protein gene of a filamentous bacteriophage, such as M13 or fd, and displayed as functional antibody fragments on the surface of the phage particle. Because the filamentous particle contains a single-stranded DNA copy of the phage genome, selections based on the functional properties of the antibody also result in selection of the gene encoding the antibody exhibiting those properties.
  • the phage mimics some of the properties of the B-cell.
  • Phage display can be performed in a variety of formats; for their review see, e.g., Johnson, Kevin S. and Chiswell, David J., Current Opinion in Structural Biology 3:564-571 (1993).
  • V-gene segments can be used for phage display. Clackson et al., Nature, 352:624-628 (1991) isolated a diverse array of anti-oxazolone antibodies from a small random combinatorial library of V genes derived from the spleens of immunized mice.
  • a repertoire of V genes from unimmunized human donors can be constructed and antibodies to a diverse array of antigens (including self-antigens) can be isolated essentially following the techniques described by Marks et al., J. Mol. Biol. 222:581-597 (1991), or Griffith et al, EMBO J. 12:725-734 (1993). See, also, U.S. Pat. Nos. 5,565,332 and 5,573,905.
  • human antibodies may also be generated by in vitro activated B cells (see U.S. Pat. Nos. 5,567,610 and 5,229,275).
  • antibody fragments Traditionally, these fragments were derived via proteolytic digestion of full length antibodies (see, e.g., Morimoto et al., Journal of Biochemical and Biophysical Methods 24:107-117 (1992); and Brennan et al., Science, 229:81 (1985)). However, these fragments can now be produced directly by recombinant host cells. For example, the antibody fragments can be isolated from the antibody phage libraries discussed above. Alternatively, Fab′-SH fragments can be directly recovered from E. coli and chemically coupled to form F(ab′) 2 fragments (Carter et al., Bio/Technology 10:163-167 (1992)).
  • F(ab′) 2 fragments can be isolated directly from recombinant host cell culture.
  • the antibody of choice is a single chain Fv fragment (scFv). See WO 93/16185; U.S. Pat. No. 5,571,894; and U.S. Pat. No. 5,587,458.
  • the antibody fragment may also be a “linear antibody”, e.g., as described in U.S. Pat. No. 5,641,870 for example. Such linear antibody fragments may be monospecific or bispecific.
  • Bispecific antibodies are antibodies that have binding specificities for at least two different epitopes.
  • Exemplary bispecific antibodies may bind to two different epitopes of the HER2 protein.
  • Other such antibodies may combine a HER2 binding site with binding site(s) for EGFR, HER3 and/or HER4.
  • a HER2 arm may be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2 or CD3), or Fc receptors for IgG (Fc ⁇ R), such as Fc ⁇ RI (CD64), Fc ⁇ RII (CD32) and Fc ⁇ RIII (CD16) so as to focus cellular defense mechanisms to the HER2-expressing cell.
  • a triggering molecule such as a T-cell receptor molecule (e.g. CD2 or CD3), or Fc receptors for IgG (Fc ⁇ R), such as Fc ⁇ RI (CD64), Fc ⁇ RII (CD32) and
  • Bispecific antibodies may also be used to localize cytotoxic agents to cells which express HER2. These antibodies possess a HER2-binding arm and an arm which binds the cytotoxic agent (e.g. saporin, anti-interferon-a, vinca alkaloid, ricin A chain, methotrexate or radioactive isotope hapten). Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab′) 2 bispecific antibodies).
  • cytotoxic agent e.g. saporin, anti-interferon-a, vinca alkaloid, ricin A chain, methotrexate or radioactive isotope hapten.
  • Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab′) 2 bispecific antibodies).
  • WO 96/16673 describes a bispecific HER2/Fc ⁇ RIII antibody and U.S. Pat. No. 5,837,234 discloses a bispecific HER2/Fc ⁇ RI antibody IDM1 (Osidem). A bispecific HER2/Fca antibody is shown in WO98/02463. U.S. Pat. No.5,821,337 teaches a bispecific HER2/CD3 antibody. MDX-210 is a bispecific HER2-Fc ⁇ RIII Ab.
  • bispecific antibodies are known in the art. Traditional production of full length bispecific antibodies is based on the coexpression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Millstein et al., Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. Purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).
  • antibody variable domains with the desired binding specificities are fused to immunoglobulin constant domain sequences.
  • the fusion preferably is with an immunoglobulin heavy chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light chain binding, present in at least one of the fusions.
  • DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain are inserted into separate expression vectors, and are co-transfected into a suitable host organism.
  • the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).
  • the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture.
  • the preferred interface comprises at least a part of the C H 3 domain of an antibody constant domain.
  • one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan).
  • Compensatory “cavities” of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.
  • Bispecific antibodies include cross-linked or “heteroconjugate” antibodies.
  • one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin.
  • Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/200373, and EP 03089).
  • Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Pat. No. 4,676,980, along with a number of cross-linking techniques.
  • bispecific antibodies can be prepared using chemical linkage.
  • Brennan et al., Science, 229: 81 (1985) describe a procedure wherein full length antibodies are proteolytically cleaved to generate F(ab′) 2 fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation.
  • the Fab′ fragments generated are then converted to thionitrobenzoate (TNB) derivatives.
  • One of the Fab′-TNB derivatives is then reconverted to the Fab′-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab′-TNB derivative to form the bispecific antibody.
  • the bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.
  • bispecific antibodies have been produced using leucine zippers.
  • the leucine zipper peptides from the Fos and Jun proteins were linked to the Fab′ portions of two different antibodies by gene fusion.
  • the antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers.
  • the fragments comprise a heavy-chain variable domain (V H ) connected to a light-chain variable domain (V L ) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V H and V L domains of one fragment are forced to pair with the complementary V L and V H domains of another fragment, thereby forming two antigen-binding sites.
  • V H and V L domains of one fragment are forced to pair with the complementary V L and V H domains of another fragment, thereby forming two antigen-binding sites.
  • sFv single-chain Fv
  • Antibodies with more than two valencies are contemplated.
  • trispecific antibodies can be prepared. Tutt et al. J. Immunol. 147: 60 (1991).
  • Amino acid sequence modification(s) of the antibodies described herein are contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody.
  • Amino acid sequence variants of the Antibody are prepared by introducing appropriate nucleotide changes into the Antibody nucleic acid, or by peptide synthesis. Such modifications include, for example, deletions from, and/or insertions into and/or substitutions of, residues within the amino acid sequences of the Antibody. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired characteristics.
  • the amino acid changes also may alter post-translational processes of the Antibody, such as changing the number or position of glycosylation sites.
  • a useful method for identification of certain residues or regions of the Antibody that are preferred locations for mutagenesis is called “alanine scanning mutagenesis” as described by Cunningham and Wells Science, 244:1081-1085 (1989).
  • a residue or group of target residues are identified (e.g., charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with antigen.
  • Those amino acid locations demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at, or for, the sites of substitution.
  • the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se need not be predetermined. For example, to analyze the performance of a mutation at a given site, ala scanning or random mutagenesis is conducted at the target codon or region and the expressed Antibody variants are screened for the desired activity.
  • Amino acid sequence insertions include amino-and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues.
  • terminal insertions include a Antibody with an N-terminal methionyl residue or the antibody fused to a cytotoxic polypeptide.
  • Other insertional variants of the Antibody molecule include the fusion to the N— or C-terminus of the Antibody to an enzyme (e.g. for ADEPT) or a polypeptide which increases the serum half-life of the antibody.
  • variants are an amino acid substitution variant. These variants have at least one amino acid residue in the Antibody molecule replaced by a different residue.
  • the sites of greatest interest for substitutional mutagenesis include the hypervariable regions, but FR or Fc region alterations are also contemplated.
  • Conservative substitutions are shown in Table 1 under the heading of “preferred substitutions”. If such substitutions result in a change in biological activity, then more substantial changes, denominated “exemplary substitutions” in Table 1, or as further described below in reference to amino acid classes, may be introduced and the products screened.
  • Substantial modifications in the biological properties of the antibody are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain.
  • Amino acids may be grouped according to similarities in the properties of their side chains (in A. L. Lehninger, in Biochemistry , second ed., pp. 73-75, Worth Publishers, New York (1975)):
  • Naturally occurring residues may be divided into groups based on common side-chain properties:
  • Non-conservative substitutions will entail exchanging a member of one of these classes for another class.
  • cysteine residue not involved in maintaining the proper conformation of the Antibody also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking.
  • cysteine bond(s) may be added to the antibody to improve its stability (particularly where the antibody is an antibody fragment such as an Fv fragment).
  • a particularly preferred type of substitutional variant involves substituting one or more hypervariable region residues of a parent antibody (e.g. a humanized or human antibody).
  • a parent antibody e.g. a humanized or human antibody
  • the resulting variant(s) selected for further development will have improved biological properties relative to the parent antibody from which they are generated.
  • a convenient way for generating such substitutional variants involves affinity maturation using phage display. Briefly, several hypervariable region sites (e.g. 6-7 sites) are mutated to generate all possible amino substitutions at each site.
  • the antibody variants thus generated are displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of M13 packaged within each particle. The phage-displayed variants are then screened for their biological activity (e.g. binding affinity) as herein disclosed.
  • alanine scanning mutagenesis can be performed to identify hypervariable region residues contributing significantly to antigen binding.
  • Another type of amino acid variant of the antibody alters the original glycosylation pattern of the antibody. By altering is meant deleting one or more carbohydrate moieties found in the antibody, and/or adding one or more glycosylation sites that are not present in the antibody.
  • N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue.
  • the tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain.
  • O-linked glycosylation refers commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.
  • glycosylation sites to the antibody is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites).
  • the alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the original antibody (for O-linked glycosylation sites).
  • the carbohydrate attached thereto may be altered.
  • antibodies with a mature carbohydrate structure that lacks fucose attached to an Fc region of the antibody are described in US Pat Appl No US 2003/0157108 A1, Presta, L. See also US 2004/0093621 A1(Kyowa Hakko Kogyo Co., Ltd).
  • Antibodies with a bisecting N-acetylglucosamine (GlcNAc) in the carbohydrate attached to an Fc region of the antibody are referenced in WO03/01 1878, Jean-Mairet et al. and U.S. Pat. No. 6,602,684, Umana et al.
  • Antibodies with at least one galactose residue in the oligosaccharide attached to an Fc region of the antibody are reported in WO97/30087, Patel et al. See, also, WO98/58964 (Raju, S.) and WO99/22764 (Raju, S.) concerning antibodies with altered carbohydrate attached to the Fc region thereof.
  • Antibody compositions comprising main species antibody with such carbohydrate structures attached to the Fc region are contemplated herein.
  • Nucleic acid molecules encoding amino acid sequence variants of the Antibody are prepared by a variety of methods known in the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants) or preparation by oligonucleotide-mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of the antibody.
  • the ability of the antibody to block HER ligand binding to cells expressing the HER receptor may be determined. For example, cells naturally expressing, or transfected to express, HER receptors of the HER hetero-oligomer may be incubated with the antibody and then exposed to labeled HER ligand. The ability of the HER2 antibody to block ligand binding to the HER receptor in the HER hetero-oligomer may then be evaluated.
  • inhibition of HRG binding to MCF7 breast tumor cell lines by HER2 antibodies may be performed using monolayer MCF7 cultures on ice in a 24-well-plate format essentially as described in WO01/00245.
  • HER2 monoclonal antibodies may be added to each well and incubated for 30 minutes.
  • 125 I-labeled rHRG ⁇ 1 177-224 25 pm
  • Dose response curves may be prepared and an IC 50 value may be calculated for the antibody of interest.
  • the antibody which blocks ligand activation of an HER receptor will have an IC 50 for inhibiting HRG binding to MCF7 cells in this assay of about 50 nM or less, more preferably 10 nM or less.
  • the IC 50 for inhibiting HRG binding to MCF7 cells in this assay may, for example, be about 100 nM or less, more preferably 50 nM or less.
  • the ability of the HER2 antibody to block HER ligand-stimulated tyrosine phosphorylation of a HER receptor present in a HER hetero-oligomer may be assessed.
  • cells endogenously expressing the HER receptors or transfected to expressed them may be incubated with the antibody and then assayed for HER ligand-dependent tyrosine phosphorylation activity using an anti-phosphotyrosine monoclonal (which is optionally conjugated with a detectable label).
  • the kinase receptor activation assay described in U.S. Pat. No. 5,766,863 is also available for determining HER receptor activation and blocking of that activity by an antibody.
  • one may screen for an antibody which inhibits HRG stimulation of p180 tyrosine phosphorylation in MCF7 cells essentially as described in WO01/00245.
  • the MCF7 cells may be plated in 24-well plates and monoclonal antibodies to HER2 may be added to each well and incubated for 30 minutes at room temperature; then rHRG ⁇ 1 177-244 may be added to each well to a final concentration of 0.2 nM, and the incubation may be continued for 8 minutes.
  • Media may be aspirated from each well, and reactions may be stopped by the addition of 100 ⁇ l of SDS sample buffer (5% SDS, 25 mM DTT, and 25 mM Tris-HCl, pH 6.8).
  • Each sample (25 ⁇ l) may be electrophoresed on a 4-12% gradient gel (Novex) and then electrophoretically transferred to polyvinylidene difluoride membrane.
  • Antiphosphotyrosine (at 1 ⁇ g/ml) immunoblots may be developed, and the intensity of the predominant reactive band at M r ⁇ 180,000 may be quantified by reflectance densitometry.
  • the antibody selected will preferably significantly inhibit HRG stimulation of p180 tyrosine phosphorylation to about 0-35% of control in this assay.
  • a dose-response curve for inhibition of HRG stimulation of p180 tyrosine phosphorylation as determined by reflectance densitometry may be prepared and an IC 50 for the antibody of interest may be calculated.
  • the antibody which blocks ligand activation of a HER receptor will have an IC 50 for inhibiting HRG stimulation of p180 tyrosine phosphorylation in this assay of about 50 nM or less, more preferably 10 nM or less.
  • the IC 50 for inhibiting HRG stimulation of p180 tyrosine phosphorylation in this assay may, for example, be about 100 nM or less, more preferably 50 nM or less.
  • MDA-MB-175 cells may also assess the growth inhibitory effects of the antibody on MDA-MB-175 cells, e.g, essentially as described in Schaefer et al. Oncogene 15:1385-1394 (1997).
  • MDA-MB-175 cells may treated with a HER2 monoclonal antibody (10 ⁇ g/mL) for 4 days and stained with crystal violet.
  • Incubation with a HER2 antibody may show a growth inhibitory effect on this cell line similar to that displayed by monoclonal antibody 2C4.
  • exogenous HRG will not significantly reverse this inhibition.
  • the antibody will be able to inhibit cell proliferation of MDA-MB-175 cells to a greater extent than monoclonal antibody 4D5 (and optionally to a greater extent than monoclonal antibody 7F3), both in the presence and absence of exogenous HRG.
  • the HER2 antibody of interest may block heregulin dependent association of HER2 with HER3 in both MCF7 and SK-BR-3 cells as determined in a co-immunoprecipitation experiment such as that described in WO01/00245 substantially more effectively than monoclonal antibody 4D5, and preferably substantially more effectively than monoclonal antibody 7F3.
  • the growth inhibitory antibody of choice is able to inhibit growth of SK-BR-3 cells in cell culture by about 20-100% and preferably by about 50-100% at an antibody concentration of about 0.5 to 30 ⁇ g/ml.
  • the SK-BR-3 assay described in U.S. Pat. No. 5,677,171 can be performed. According to this assay, SK-BR-3 cells are grown in a 1:1 mixture of F12 and DMEM medium supplemented with 10% fetal bovine serum, glutamine and penicillin streptomycin.
  • the SK-BR-3 cells are plated at 20,000 cells in a 35 mm cell culture dish (2 mls/35 mm dish). 0.5 to 30 ⁇ g/ml of the HER2 antibody is added per dish. After six days, the number of cells, compared to untreated cells are counted using an electronic COULTERTM cell counter.
  • Those antibodies which inhibit growth of the SK-BR-3 cells by about 20-100% or about 50-100% may be selected as growth inhibitory antibodies. See U.S. Pat. No. 5,677,171 for assays for screening for growth inhibitory antibodies, such as 4D5 and 3E8.
  • an annexin binding assay using BT474 cells is available.
  • the BT474 cells are cultured and seeded in dishes as discussed in the preceding paragraph.
  • the medium is then removed and replaced with fresh medium alone or medium containing 10 ⁇ g/ml of the monoclonal antibody.
  • monolayers are washed with PBS and detached by trypsinization.
  • Cells are then centrifuged, resuspended in Ca 2+ binding buffer and aliquoted into tubes as discussed above for the cell death assay. Tubes then receive labeled annexin (e.g. annexin V-FTIC) (1 ⁇ g/ml).
  • labeled annexin e.g. annexin V-FTIC
  • Samples may be analyzed using a FACSCANTM flow cytometer and FACSCONVERTTM CellQuest software (Becton Dickinson). Those antibodies which induce statistically significant levels of annexin binding relative to control are selected as apoptosis-inducing antibodies. In addition to the annexin binding assay, a DNA staining assay using BT474 cells is available.
  • BT474 cells which have been treated with the antibody of interest as described in the preceding two paragraphs are incubated with 9 ⁇ g/ml HOECHST 33342TM for 2 hr at 37° C., then analyzed on an EPICS ELITETMflow cytometer (Coulter Corporation) using MODFIT LTTM software (Verity Software House).
  • Antibodies which induce a change in the percentage of apoptotic cells which is 2 fold or greater (and preferably 3 fold or greater) than untreated cells (up to 100% apoptotic cells) may be selected as pro-apoptotic antibodies using this assay. See WO98/17797 for assays for screening for HER2 antibodies which induce apoptosis, such as 7C2 and 7F3.
  • a routine cross-blocking assay such as that described in Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed to assess whether the antibody cross-blocks binding of an antibody, such as 2C4 or Pertuzumab, to HER2.
  • epitope mapping can be performed by methods known in the art and/or one can study the antibody-HER2 structure (Franklin et al. Cancer Cell 5:317-328 (2004)) to see what domain(s) of HER2 is/are bound by the antibody.
  • the invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g. a small molecule toxin or an enzymatically active toxin of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof), or a radioactive isotope (i.e., a radioconjugate).
  • a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g. a small molecule toxin or an enzymatically active toxin of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof), or a radioactive isotope (i.e., a radioconjugate).
  • Conjugates of an antibody and one or more small molecule toxins such as a calicheamicin, a maytansine (U.S. Pat. No. 5,208,020), a trichothene, and CC1065 are also contemplated herein.
  • the antibody is conjugated to one or more maytansine molecules (e.g. about 1 to about 10 maytansine molecules per antibody molecule).
  • Maytansine may, for example, be converted to May-SS-Me which may be reduced to May-SH3 and reacted with modified antibody (Chari et al. Cancer Research 52: 127-131 (1992)) to generate a maytansinoid-antibody immunoconjugate.
  • Another immunoconjugate of interest comprises a HER2 antibody conjugated to one or more calicheamicin molecules.
  • the calicheamicin family of antibiotics are capable of producing double-stranded DNA breaks at sub-picomolar concentrations.
  • Structural analogues of calicheamicin which may be used include, but are not limited to, ⁇ 1 1 , ⁇ 2 1 , ⁇ 3 1 , N-acetyl- ⁇ 1 1 , PSAG and ⁇ 1 1 , (Hinman et al. Cancer Research 53: 3336-3342(1993) and Lode et al. Cancer Research 58: 2925-2928 (1998)). See, also, U.S. Pat. Nos. 5,714,586; 5,712,374; 5,264,586; and 5,773,001 expressly incorporated herein by reference.
  • Enzymatically active toxins and fragments thereof which can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa ), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin and the tricothecenes. See, for example, WO 93/21232 published Oct. 28, 1993.
  • the present invention further contemplates an immunoconjugate formed between an antibody and a compound with nucleolytic activity (e.g. a ribonuclease or a DNA endonuclease such as a deoxyribonuclease; DNase).
  • a compound with nucleolytic activity e.g. a ribonuclease or a DNA endonuclease such as a deoxyribonuclease; DNase.
  • radioactive isotopes are available for the production of radioconjugated HER2 antibodies. Examples include At 211 , I 131 , I 125 , Y 90 , Re 186 , Re 188 , Sm 153 ,Bi 212 , P 32 and radioactive isotopes of Lu.
  • Conjugates of the antibody and cytotoxic agent may be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-diflu
  • a ricin immunotoxin can be prepared as described in Vitetta et al. Science 238: 1098 (1987).
  • Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.
  • the linker may be a “cleavable linker” facilitating release of the cytotoxic drug in the cell.
  • an acid-labile linker, peptidase-sensitive linker, dimethyl linker or disulfide-containing linker (Chari et al. Cancer Research 52: 127-131 (1992)) may be used.
  • a fusion protein comprising the HER2 antibody and cytotoxic agent may be made, e.g. by recombinant techniques or peptide synthesis.
  • the antibody may be conjugated to a “receptor” (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a “ligand” (e.g. avidin) which is conjugated to a cytotoxic agent (e.g. a radionucleotide).
  • a “receptor” such streptavidin
  • a ligand e.g. avidin
  • cytotoxic agent e.g. a radionucleotide
  • the antibody may be linked to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, polyoxyalkylenes, or copolymers of polyethylene glycol and polypropylene glycol.
  • the antibody also may be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules), or in macroemulsions.
  • colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules
  • ADCC antigen-dependent cell-mediated cyotoxicity
  • CDC complement dependent cytotoxicity
  • This may be achieved by introducing one or more amino acid substitutions in an Fc region of the antibody.
  • cysteine residue(s) may be introduced in the Fc region, thereby allowing interchain disulfide bond formation in this region.
  • the homodimeric antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med. 176:1191-1195 (1992) and Shopes, B. J. Immunol.
  • Homodimeric antibodies with enhanced anti-tumor activity may also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research 53:2560-2565 (1993).
  • an antibody can be engineered which has dual Fc regions and may thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al. Anti - Cancer Drug Design 3:219-230 (1989).
  • WO00/42072 (Presta, L.) describes antibodies with improved ADCC function in the presence of human effector cells, where the antibodies comprise amino acid substitutions in the Fc region thereof.
  • the antibody with improved ADCC comprises substitutions at positions 298, 333, and/or 334 of the Fc region.
  • the altered Fc region is a human IgG1 Fc region comprising or consisting of substitutions at one, two or three of these positions.
  • Antibodies with altered C1q binding and/or complement dependent cytotoxicity are described in WO99/51642, U.S. Pat. No. 6,194,551 B1, U.S. Pat. No. 6,242,195B1, U.S. Pat. No. 6,528,624B1 and U.S. Pat. No. 6,538,124 (Idusogie et al.).
  • the antibodies comprise an amino acid substitution at one or more of amino acid positions 270, 322, 326, 327, 329, 313, 333 and/or 334 of the Fc region thereof.
  • a salvage receptor binding epitope refers to an epitope of the Fc region of an IgG molecule (e.g., IgG 1 , IgG 2 , IgG 3 , or IgG 4 ) that is responsible for increasing the in vivo serum half-life of the IgG molecule.
  • IgG 1 , IgG 2 , IgG 3 , or IgG 4 an epitope of the Fc region of an IgG molecule that is responsible for increasing the in vivo serum half-life of the IgG molecule.
  • Antibodies with substitutions in an Fc region thereof and increased serum half-lives are also described in WO00/42072 (Presta, L.).
  • the HER2 antibodies disclosed herein may also be formulated as immunoliposomes.
  • Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82:3688 (1985); Hwang et al., Proc. Natl Acad. Sci. USA, 77:4030 (1980); U.S. Pat. Nos. 4,485,045 and 4,544,545; and WO97/38731 published Oct. 23, 1997. Liposomes with enhanced circulation time are disclosed in U.S. Pat. No. 5,013,556.
  • Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter.
  • Fab′ fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al. J. Biol. Chem. 257: 286-288 (1982) via a disulfide interchange reaction. A chemotherapeutic agent is optionally contained within the liposome. See Gabizon et al. J. National Cancer Inst. 81(19)1484 (1989).
  • Exemplary antibodies which can be formulated according to the present invention include, but are not limited to the following:
  • the present invention in at least one aspect, concerns formulations comprising a composition which comprises a mixture of a main species antibody and one or more variants thereof.
  • the main species antibody binds HER2
  • the HER2 antibody is one which binds to Domain II of HER2, inhibits HER dimerization more effectively than Trastuzumab, and/or binds to a heterodimeric binding site of HER2.
  • the preferred embodiment herein of the main species antibody is one comprising the variable light and variable heavy amino acid sequences in SEQ ID Nos. 3 and 4, and most preferably comprising a light chain amino acid sequence selected from SEQ ID No. 15 and 23, and a heavy chain amino acid sequence selected from SEQ ID No. 16 and 24.
  • the formulated HER2 antibody composition comprises a mixture of the main species HER2 antibody and an amino acid sequence variant thereof comprising an amino-terminal leader extension.
  • the amino-terminal leader extension is on a light chain of the antibody variant (e.g. on one or two light chains of the antibody variant).
  • the main species HER2 antibody or the antibody variant may be an full length antibody or antibody fragment (e.g. Fab of F(ab′)2 fragments), but preferably both are full length antibodies.
  • the antibody variant herein may comprise an amino-terminal leader extension on any one or more of the heavy or light chains thereof.
  • the amino-terminal leader extension is on one or two light chains of the antibody.
  • the amino-terminal leader extension preferably comprises or consists of VHS-.
  • Presence of the amino-terminal leader extension in the composition can be detected by various analytical techniques including, but not limited to, N-terminal sequence analysis, assay for charge heterogeneity (for instance, cation exchange chromatography or capillary zone electrophoresis), mass spectrometry, etc.
  • the amount of the antibody variant in the composition generally ranges from an amount that constitutes the detection limit of any assay (preferably N-terminal sequence analysis) used to detect the variant to an amount less than the amount of the main species antibody. Generally, about 20% or less (e.g. from about 1% to about 15%, for instance from 5% to about 15%) of the antibody molecules in the composition comprise an amino-terminal leader extension.
  • Such percentage amounts are preferably determined using quantitative N-terminal sequence analysis or cation exchange analysis (preferably using a high-resolution, weak cation-exchange column, such as a PROPAC WCX-10TM cation exchange column).
  • a high-resolution, weak cation-exchange column such as a PROPAC WCX-10TM cation exchange column.
  • further amino acid sequence alterations of the main species antibody and/or variant are contemplated, including but not limited to an antibody comprising a C-terminal lysine residue on one or both heavy chains thereof, a deamidated antibody variant, etc.
  • the main species antibody or variant may further comprise glycosylation variations, non-limiting examples of which include HER2 antibody comprising a G1 or G2 oligosaccharide structure attached to the Fc region thereof, HER2 antibody comprising a carbohydrate moiety attached to a light chain thereof (e.g. one or two carbohydrate moieties attached to one or two light chains of the antibody), HER2 antibody comprising a non-glycosylated heavy chain.
  • glycosylation variations non-limiting examples of which include HER2 antibody comprising a G1 or G2 oligosaccharide structure attached to the Fc region thereof, HER2 antibody comprising a carbohydrate moiety attached to a light chain thereof (e.g. one or two carbohydrate moieties attached to one or two light chains of the antibody), HER2 antibody comprising a non-glycosylated heavy chain.
  • the present invention provides, in a first aspect, a stable pharmaceutical formulation comprising a monoclonal antibody, preferably a full length human or humanized IgG1 antibody, in histidine-acetate buffer, pH 5.5 to 6.5, preferably pH 5.8 to 6.2.
  • the antibody in the formulation may be an antibody fragment comprising an antigen-binding region, such as a Fab or F(ab′)2 fragment.
  • the invention concerns a pharmaceutical formulation
  • a pharmaceutical formulation comprising, or consisting essentially of, a full length IgG1 antibody susceptible to deamidation or aggregation in an amount from about 10 mg/mL to about 250 mg/mL; histidine-acetate buffer, pH 5.5 to 6.5; saccharide selected from the group consisting of trehalose and sucrose, in an amount from about 60 mM to about 250 mM; and polysorbate 20 in an amount from about 0.01% to about 0.1%.
  • the invention provides a pharmaceutical formulation comprising an antibody that binds to domain II of HER2 in a histidine buffer at a pH from about 5.5 to about 6.5, a saccharide and a surfactant.
  • the formulation may comprise Pertuzumab in an amount from about 20 mg/mL to about 40 mg/mL, histidine-acetate buffer, sucrose, and polysorbate 20, wherein the pH of the formulation is from about 5.5 to about 6.5
  • the invention provides a pharmaceutical formulation comprising a DR5 antibody in a histidine buffer at a pH from about 5.5 to about 6.5, a saccharide, and a surfactant.
  • a pharmaceutical formulation comprising a DR5 antibody in a histidine buffer at a pH from about 5.5 to about 6.5, a saccharide, and a surfactant.
  • Such a formulation may, for example, comprise, Apomab in an amount from about 10 mg/mL to about 30 mg/mL, histidine-acetate buffer, trehalose, and polysorbate 20, wherein the pH of the formulation is from about 5.5 to about 6.5.
  • the formulation is especially useful for antibodies that are susceptible to deamidation and/or aggregation and/or fragmentation, in that the buffer retards deamidation and/or aggregation and/or fragmentation of the antibody formulated therein.
  • the histidine-acetate buffer lacks the chloride ion which was found to be beneficial herein in that this buffer when combined with saccharide had the same protective effect on antibody as polysorbate 20, and was stable and compatible with storage in stainless steel tanks.
  • the invention provides a method for reducing deamidation, aggregation and/or fragmentation of a therapeutic monoclonal antibody (for example, relative to a composition at a different pH or in a different buffer), comprising formulating the antibody in a histidine-acetate buffer, pH 5.5 to 6.5.
  • a therapeutic monoclonal antibody for example, relative to a composition at a different pH or in a different buffer
  • formulating the antibody in a histidine-acetate buffer pH 5.5 to 6.5.
  • one may determine or measure deamidation, aggregation and/or fragmentation before and after the antibody is formulated, with the formulated antibody demonstrating acceptable deamidation, aggregation and/or fragmentation in the formulation and upon storage thereof.
  • the antibody in the formulation may bind an antigen including but not limited to: HER2, CD20, IgE, DR5, BR3 and VEGF.
  • the formulated antibody binds HER2, it preferably is one which binds to Domain II of HER2, inhibits HER dimerization more effectively than Trastuzumab, and/or binds to a heterodimeric binding site of HER2.
  • the preferred embodiment herein of a formulated HER2 antibody is one comprising the variable light and variable heavy amino acid sequences in SEQ ID Nos. 3 and 4, and most preferably comprising the light chain and heavy chain amino acid sequences in SEQ ID Nos. 15 and 16 (Pertuzumab).
  • CD20 antibodies which can be formulated herein include: “C2B8” which is now called “Rituximab” (“RITUXAN®”) commercially available from Genentech (see also U.S. Pat. No. 5,736,137, expressly incorporated herein by reference); the yttrium-[90]-labeled 2B8 murine antibody designated “Y2B8” or “Ibritumomab Tiuxetan” ZEVALIN® commercially available from Biogen-Idec (see also U.S. Pat. No.
  • the CD20 antibody is a humanized 2H7 antibody.
  • Prefered humanized 2H7 antibodies herein are 2H7vl6 and 2H7v511.
  • the humanized 2H7v16 may be an intact antibody or antibody fragment comprising the variable light and variable heavy sequences in FIGS. 18 A-B (SEQ ID Nos. 26 and 29).
  • the humanized 2H7v16 antibody is a full length antibody, preferably it comprises the light and heavy chain amino acid sequences with SEQ ID Nos. 63 and 65.
  • the antibody binds VEGF, it preferably comprises the variable domain sequences as depicted in FIG. 19 .
  • the most preferred anti-VEGF antibody is full length humanized IgG1antibody, Bevacizumab (AVASTINTM), commercially available from Genentech.
  • the formulated antibody binds IgE
  • it is preferably selected from the group consisting of: E25, Omalizumab (XOLAIR®) commercially available from Genentech (see also FIGS. 17 A-B), E26 (FIGS. 17 A-B herein), HAE1 (FIGS. 17 A-B herein), IgE antibody with an amino acid substitution at position 265 of an Fc region thereof (US 2004/0191244 A1), Hu-901 (FIGS. 17 A-B herein), an IgE antibody as in WO2004/070011, or an antibody (including antibody fragments and full length antibodies) comprising the variable domains of any of those IgE antibodies.
  • the antibody binds to a receptor in the tumor necrosis factor (TNF) superfamily or to a death receptor, it preferably binds to DR5, and preferably is an agonist antibody.
  • Publications in this area include Sheridan et al., Science, 277:818-821 (1997), Pan et al., Science, 277:815-818 (1997), WO09/51793 published Nov. 19, 1998; WO98/41629 published Sep. 24, 1998; Screaton et al., Curr.
  • Each of the formulations noted above comprises a buffer, preferably a histidine buffer, and most preferably a histidine-acetate buffer with a pH of 5.5 to 6.5, preferably 5.8 to 6.2, for example approximately 6.0.
  • the concentration of the buffer is dictated, at least in part, by the desired pH. Exemplary concentrations for the buffer are in the range from about 1 mM to about 200 mM, preferably from about 10 mM to about 40 mM, most preferably about 20 mM.
  • the antibody concentration in the formulation is preferably in the range from about 10 mg/mL to about 250 mg/mL.
  • the antibody concentration may be determined based on the intended use and mode of administration of the formulation.
  • the antibody concentration in the formulation is preferably from about 20 mg/mL to about 40 mg/mL.
  • the antibody concentration was from about 20 mg/mL to about 40 mg/mL, most preferably about 30 mg/mL.
  • the antibody is for SQ or IM administration (e.g. for an anti-IgE antibody)
  • higher concentrations of the antibody may be desired.
  • Such substantially high antibody concentrations may be from about 50 mg/mL to about 250 mg/mL, or from about 80 mg/mL to about 250 mg/mL, or from about 100 mg/mL to about 200 mg/mL.
  • exemplary antibody concentrations are from about 10 mg/mL to about 30 mg/mL, for example about 20 mg/mL DR5 antibody; such formulation being useful for intravenous administration.
  • the formulation for administration is preferably an aqueous formulation (not lyophilized) and has not been subjected to prior lyophilization. While the formulation may be lyophilized, preferably it is not. However, freezing of the aqueous formulation, without simultaneous drying that occurs during freeze-drying, is specifically contemplated herein, facilitating longer term storage thereof, for instance in a stainless steel tank.
  • the formulation preferably further comprises a saccharide, most preferably a disaccharide, such as trehalose or sucrose.
  • the saccharide is generally included in an amount which reduces soluble aggregate formation, such as that which occurs upon freeze/thaw.
  • Exemplary saccharide concentrations are in the range from about 10 mM to about 1 M, for example from about 60 mM to about 250 mM, and most preferably about 120 mM for a HER2 antibody formulation, and about 240 mM for a DR5 antibody formulation.
  • the formulation optionally further comprises surfactant, such as polysorbate, most preferably polysorbate 20.
  • the surfactant is generally included in an amount which reduces insoluble aggregate formation (such as that which occurs upon shaking or shipping).
  • the surfactant concentration is preferably from about 0.0001% to about 1.0%, most preferably from about 0.01% to about 0.1%, for example about 0.02%.
  • the formulation does not contain a tonicifying amount of a salt such as sodium chloride.
  • the formulation is generally sterile, and this can be achieved according to the procedures known to the skilled person for generating sterile pharmaceutical formulations suitable for administration to human subjects, including filtration through sterile filtration membranes, prior to, or following, preparation of the formulation.
  • the formulation is desirably one which has been demonstrated to be stable upon storage.
  • Various stability assays are available to the skilled practitioner for confirming the stability of the formulation.
  • the formulation may be one which is found to be stable upon storage: at about 40° C. for at least 4 weeks; at about 5° C. or about 15° C. for at least 3 months or at least 1 year; and/or about ⁇ 20° C. for at least 3 months. Stability can be tested by evaluating physical stability, chemical stability, and/or biological activity of the antibody in the formulation around the time of formulation as well as following storage at the noted temperatures.
  • Physical and/or stability can be evaluated qualitatively and/or quantitatively in a variety of different ways, including evaluation of aggregate formation (for example using size exclusion chromatography, by measuring turbidity, and/or by visual inspection); by assessing charge heterogeneity using cation exchange chromatography or capillary zone electrophoresis; amino-terminal or carboxy-terminal sequence analysis; mass spectrometric analysis; SDS-PAGE analysis to compare reduced and intact antibody; peptide map (for example tryptic or LYS-C) analysis; evaluting biological activity or antigen binding function of the antibody; etc. Instability may result in aggregation, deamidation (e.g. Asn deamidation), oxidation (e.g.
  • Met oxidation isomerization (e.g. Asp isomeriation), clipping/hydrolysis/fragmentation (e.g. hinge region fragmentation), succinimide formation, unpaired cysteine(s), N-terminal extension, C-terminal processing, glycosylation differences, etc.
  • Biological activity or antigen binding function can be evaluated using various techniques available to the skilled practitioner.
  • the formulation can be tested for stability upon freezing and thawing.
  • the invention also provides a method of making a pharmaceutical formulation comprising preparing the formulation as described herein, and evaluating physical stability, chemical stability, or biological activity of the monoclonal antibody in the formulation.
  • the formulation is provided inside a vial with a stopper pierceable by a syringe, preferably in aqueous form.
  • the vial is desirably stored at about 2-8° C. until it is administered to a subject in need thereof.
  • the vial may for example be a 20 cc vial (for example for a 420 mg dose) or 50 cc vial (for example for a 1050 mg dose).
  • the formulation may be provided in a 5cc glass vial (e.g. 5.5 ml fill).
  • the formulation is provided inside a stainless steel tank.
  • the formulation in the stainless steel tank is optionally frozen and not freeze-dried.
  • One or more other pharmaceutically acceptable carriers, excipients or stabilizers such as those described in Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980) may be included in the formulation provided that they do not adversely affect the desired characteristics of the formulation.
  • Acceptable carriers, excipients or stabilizers are nontoxic to recipients at the dosages and concentrations employed and include; additional buffering agents; co-solvents; antioxidants including ascorbic acid and methionine; chelating agents such as EDTA; metal complexes (e.g. Zn-protein complexes); biodegradable polymers such as polyesters; preservatives; and/or salt-forming counterions such as sodium.
  • the invention provides a method of treating a disease or disorder in a subject comprising administering the formulation described herein to a subject in an amount effective to treat the disease or disorder.
  • the antibody in the formulation binds to HER2, it is preferably used to treat cancer.
  • the cancer will generally comprise HER2-expressing cells, such that the HER2 antibody herein is able to bind to the cancer cells.
  • the invention in this embodiment concerns a method for treating HER2-expressing cancer in a subject, comprising administering the HER2 antibody pharmaceutical formulation to the subject in an amount effective to treat the cancer.
  • HER2 antibody pharmaceutical formulation to the subject in an amount effective to treat the cancer.
  • the HER2 antibody formulation may be used to treat various non-malignant diseases or disorders, such a include autoimmune disease (e.g. psoriasis); endometriosis; scleroderma; restenosis; polyps such as colon polyps, nasal polyps or gastrointestinal polyps; fibroadenoma; respiratory disease (see definition above); cholecystitis; neurofibromatosis; polycystic kidney disease; inflammatory diseases; skin disorders including psoriasis and dermatitis; vascular disease (see definition above); conditions involving abnormal proliferation of vascular epithelial cells; gastrointestinal ulcers; Menetrier's disease, secreting adenomas or protein loss syndrome; renal disorders; angiogenic disorders; ocular disease such as age related macular degeneration, presumed ocular histoplasmosis syndrome, retinal neovascularization from proliferative diabetic retinopathy, retinal vascularization, diabetic reti
  • autoimmune disease
  • microbial infections including microbial pathogens selected from adenovirus, hantaviruses, Borrelia burgdorferi, Yersinia spp. and Bordetella pertussis; thrombus caused by platelet aggregation; reproductive conditions such as endometriosis, ovarian hyperstimulation syndrome, preeclampsia, dysfunctional uterine bleeding, or menometrorrhagia; synovitis; atheroma; acute and chronic nephropathies (including proliferative glomerulonephritis and diabetes-induced renal disease); eczema; hypertrophic scar formation; endotoxic shock and fungal infection; familial adenomatosis polyposis; neurodedenerative diseases (e.g.
  • Preferred non-malignant indications for therapy herein include psoriasis, endometriosis, scleroderma, vascular disease (e.g. restenosis, artherosclerosis, coronary artery disease, or hypertension), colon polyps, fibroadenoma or respiratory disease (e.g. asthma, chronic bronchitis, bronchieactasis or cystic fibrosis).
  • vascular disease e.g. restenosis, artherosclerosis, coronary artery disease, or hypertension
  • colon polyps e.g. asthma, chronic bronchitis, bronchieactasis or cystic fibrosis.
  • the formulation may be used to treat a B-cell malignancy, such as NHL or CLL, an autoimmune disease, graft rejection, or to block an immune response to a foreign antigen, such as an antibody, a toxin, a gene therapy viral vector, a graft, an infectious agent, or an alloantigen (see WO 01/03734, Grillo-Lopez et al.).
  • a B-cell malignancy such as NHL or CLL
  • an autoimmune disease such as a autoimmune disease
  • graft rejection or to block an immune response to a foreign antigen, such as an antibody, a toxin, a gene therapy viral vector, a graft, an infectious agent, or an alloantigen (see WO 01/03734, Grillo-Lopez et al.).
  • the antibody in the formulation is an IgE antibody
  • it may be used to treat an IgE-mediated disorder (USSN 2004/0197324 A1, Liu and Shire), such as allergic asthma, allergic rhinitis, atopic dermatitis, allergic gastroenteropathy, hypersensitivity, eczema, urticaria, allergic bronchopulmonary aspergillosis, parasitic disease, hyper-IgE syndrome, ataxia-telangiectasia, Wiskott-Aldrich syndrome, thymic alymphoplasia, IgE myeloma, and graft-versus-host reaction.
  • an IgE-mediated disorder such as allergic asthma, allergic rhinitis, atopic dermatitis, allergic gastroenteropathy, hypersensitivity, eczema, urticaria, allergic bronchopulmonary aspergillosis, parasitic disease, hyper-IgE syndrome, ataxia-telangiectasia, Wiskott-Aldrich
  • Antibodies that bind to a receptor in the TNF superfamily may be used to treat cancer, various forms of which are described in the definitions section above.
  • the cancer treated with a DR5 antibody formulation is a solid tumor or NHL.
  • the patient may be treated with a combination of the antibody formulation, and a chemotherapeutic agent.
  • the combined administration includes coadministration or concurrent administration, using separate formulations or a single pharmaceutical formulation, and consecutive administration in either order, wherein preferably there is a time period while both (or all) active agents simultaneously exert their biological activities.
  • the chemotherapeutic agent may be administered prior to, or following, administration of the composition.
  • the timing between at least one administration of the chemotherapeutic agent and at least one administration of the composition is preferably approximately 1 month or less, and most preferably approximately 2 weeks or less.
  • the chemotherapeutic agent and the composition are administered concurrently to the patient, in a single formulation or separate formulations.
  • Treatment with the formulation will result in an improvement in the signs or symptoms of cancer or disease.
  • the disease being treated is cancer
  • such therapy may result in an improvement in survival (overall survival and/or progression free survival) and/or may result in an objective clinical response (partial or complete).
  • treatment with the combination of the chemotherapeutic agent and the antibody formulation may result in a synergistic, or greater than additive, therapeutic benefit to the patient.
  • the antibody in the formulation administered is a naked antibody.
  • the antibody administered may be conjugated with a cytotoxic agent.
  • the immunoconjugate and/or antigen to which it is bound is/are internalized by the cell, resulting in increased therapeutic efficacy of the immunoconjugate in killing the cancer cell to which it binds.
  • the cytotoxic agent targets or interferes with nucleic acid in the cancer cell. Examples of such cytotoxic agents include maytansinoids, calicheamicins, ribonucleases and DNA endonucleases.
  • the formulation is administered to a human patient in accord with known methods, such as intravenous administration, e.g., as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal, intracerobrospinal, subcutaneous, intra-articular, intrasynovial, intrathecal, oral, topical, or inhalation routes.
  • intravenous administration e.g., as a bolus or by continuous infusion over a period of time
  • intramuscular, intraperitoneal, intracerobrospinal subcutaneous, intra-articular, intrasynovial, intrathecal, oral, topical, or inhalation routes.
  • Intravenous, intramuscular or subcutaneous administration of antibody composition is preferred, with intravenous administration being most preferred.
  • the formulation may be administered via syringe; injection device (e.g. the INJECT-EASETM and GENJECTM device); injector pen (such as the GENPENTM); needleless device (e.g. MEDIJECTORTMand BIOJECTORTM); or subcutaneous patch delivery system.
  • injection device e.g. the INJECT-EASETM and GENJECTM device
  • injector pen such as the GENPENTM
  • needleless device e.g. MEDIJECTORTMand BIOJECTORTM
  • subcutaneous patch delivery system e.g. the formulation may be administered via syringe; injection device (e.g. the INJECT-EASETM and GENJECTM device); injector pen (such as the GENPENTM); needleless device (e.g. MEDIJECTORTMand BIOJECTORTM); or subcutaneous patch delivery system.
  • the appropriate dosage of the antibody will depend on the type of disease to be treated, as defined above, the severity and course of the disease, whether the antibody is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the antibody, and the discretion of the attending physician.
  • the antibody is suitably administered to the patient at one time or over a series of treatments.
  • about 1 ⁇ g/kg to 50 mg/kg (e.g. 0.1-20 mg/kg) of HER2 or DR5 antibody is an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion.
  • the dosage of the antibody will generally be in the range from about 0.05 mg/kg to about 10 mg/kg.
  • a chemotherapeutic agent is administered, it is usually administered at dosages known therefor, or optionally lowered due to combined action of the drugs or negative side effects attributable to administration of the chemotherapeutic agent.
  • Preparation and dosing schedules for such chemotherapeutic agents may be used according to manufacturers' instructions or as determined empirically by the skilled practitioner. Preparation and dosing schedules for such chemotherapy are also described in Chemotherapy Service Ed., M. C. Perry, Williams & Wilkins, Baltimore, Md. (1992).
  • chemotherapeutic agent(s) i.e. “cocktails” of different chemotherapeutic agents
  • another monoclonal antibody a growth inhibitory agent; a cytotoxic agent; a chemotherapeutic agent; EGFR-targeted drug; tyrosine kinase inhibitor; anti-angiogenic agent; and/or cytokine; etc.
  • the patient may be subjected to surgical removal of cancer cells and/or radiation therapy.
  • an article of manufacture which contains the pharmaceutical formulation of the present invention and provides instructions for its use.
  • the article of manufacture comprises a container. Suitable containers include, for example, bottles, vials (e.g. dual chamber vials), syringes (such as dual chamber syringes) and test tubes.
  • the container may be formed from a variety of materials such as glass or plastic.
  • the container holds the formulation and the label on, or associated with, the container may indicate directions for use.
  • the container holding the formulation may be a multi-use vial, which allows for repeat administrations (e.g. from 2-6 administrations) of the reconstituted formulation.
  • the article of manufacture may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, syringes, and package inserts with instructions for use as noted in the previous section.
  • the color, appearance, and clarity of the samples were determined by visual inspection of vials against a white and black background under white fluorescence light at room temperature.
  • the liquid product aliquot was first diluted with formulation buffer so that the A max near 278 nm is within 0.5-1.0 absorbance unit.
  • the UV absorbance of the diluted samples was measured in a quartz cuvette with 1 cm path length on an HP 8453 spectrophotometer. Absorbance was measured at 278 nm and 320 nm. The absorbance from 320 nm is used to correct background light scattering due to larger aggregates, bubbles and particles. The measurements were blanked against the formulation buffer.
  • the protein concentration was determined using the absorptivity of 1.50 (mg/mL) ⁇ 1 cm ⁇ 1 .
  • the pH was measured at room temperature using a RADIOMETER COPENHAGEN PHM82TM pH meter.
  • the probe used was a combined glass/reference electrode with radiometer connector (Sigma, Cat# E-5759). Standard solutions of pH 4.01 and pH 7.00 (EM Science) were used for calibration of the pH meter.
  • Cation exchange chromatography was employed to measure changes in charge variants.
  • This assay utilizes a DIONEX PROPAC WCX-10TM column on an HP 1100TM HPLC system. Samples were diluted to 1 mg/mL with the mobile phase A containing 20 mM MES at pH 6.0. 50 mL of diluted samples were then loaded on the column that was kept at ambient temperature. The peaks were eluted with a shallow NaCl gradient using mobile B containing 20 mM MES, 250 mM NaC1, pH 6.0. The eluent was monitored at 280 nm. The data were analyzed using HP CHEMSTATION® software (Rev A08.03).
  • Fab and F(ab′) 2 fragments were determined by CZE. This assay was run on a BIORAD BIOFOCUSTM 300TM capillary electrophoresis system with a BIOCAP XLTM capillary, 50 ⁇ m I.D., 44.6 cm total length and 40 cm to the detector.
  • Size exclusion chromatography was used to quantitate aggregates and fragments.
  • This assay utilizes a TSK G3000 SWXLTM, 7.8 ⁇ 300 mm column and runs on an HP 1100TM HPLC system. Samples were diluted to 10 mg/mL with the mobile phase and injection volume was 20 ⁇ L. The mobile phase was 100 mM K 2 HPO 4 at pH 6.8 and the protein was eluted with an isocratic gradient at 0.5 mL/min for 45 minutes. The eluent absorbance was monitored at 280 nm. Integration was done using HP CHEMSTATIONMTM software (Rev A08.03).
  • Pertuzumab The biological activity of Pertuzumab was determined by measuring its ability to inhibit proliferation of the human breast cancer cell line MDA-MB-175-VII.
  • Pertuzumab Fab and F(ab′) 2 antibody fragments were formulated at protein concentration of 1.0 mg/mL in the following buffer conditions:
  • Pertuzumab was formulated into 20 mM histidine-acetate buffer with 120 mM sucrose and 0.02% polysorbate 20. The pHs of formulations were adjusted with acetic acid to final pH between 5.0 and 7.0. The protein concentration was 30 mg/mL. Each formulation was filled into 3 cc USP Type I glass vials and stored at 40° C. for stability analysis. The results showed that Pertuzumab was most stable around pH 6.0. TABLE 3 Effect of pH on degradation of Pertuzumab stored at 40° C.
  • Pertuzumab formulations at protein concentration of 100 mg/mL were prepared in the following excipients:
  • Pertuzumab was concentrated by ultrafiltration/diafiltration to various concentrations in the following buffers:
  • Pertuzumab was formulated at 30 mg/mL in 20 mM histidine-acetate, 120 mM sucrose, 0.02% polysorbate 20, pH 6.0. Pertuzmab was filled in 316L and HASTELLOYTM stainless steel miniature tanks. All samples were stored at ⁇ 20° C. and 5° C. and evaluated for quality (CAC), purity (SEC, IEC) and strength (UV-Vis). The stability analyses showed that Pertuzumab was stable in this formulation upon storage at ⁇ 20° C. and 5° C. for at least 3 months. The chloride free formulation is compatible with 316L and HASTELLOYTM stainless steel tank.
  • Pertuzumab was formulated using tangential flow filtration (TFF).
  • the final formulation contains 20 mM histidine-acetate, 120 mM sucrose, 0.02% polysorbate 20, pH 6.0 at protein concentration of 30 mg/mL.
  • Samples were filled into a 20 Ml FORMA VITRUMTM USP Type I glass vial, capped with the 20 mm FLUROTECTM faced butyl rubber stoppers, and sealed with aluminium flip-top caps. All samples were stored at ⁇ 70° C., 5° C., 15° C., and stability was evaluated for quality (CAC), purity (SEC, IEC), strength (UV-Vis), and potency (Bioassay).
  • Pertuzumab was formulated at 100 mg/mL in the following buffer conditions:
  • Pertuzumab was prepared in the following formulations:
  • Pertuzumab was formulated as follows:
  • the preferred Pertuzumab formulation for therapeutic use consists essentially of 30 mg/mL Pertuzumab in 20 mM histidine acetate, 120 mM sucrose, 0.02% polysorbate 20, at pH 6.0.
  • This example concerns another Pertuzumab formulation which has been used in Phase I and Phase II clinical trials.
  • the composition consists of 25 mg/ml Pertuzumab, 10 mM Histidine-HCl buffer, 240 mM sucrose, 0.02% Polysorbate 20, pH 6.0.
  • Ingredient Concentration Pertuzumab 25 mg/ml L-His HCl.H 2 O (MW 209.6) 1.12 mg/ml (0.0125 M) L-His(MW 155.2) 0.72 mgml (0.0099 M) Sucrose (MW342.3) 82.15 mg/ml (0.240 M) Polysorbate 20 0.2 mg/ml (0.02%)
  • apoptosis is mediated by intrinsic and extrinsic pathways. Chemotherapy can cause cell damage and may trigger apoptosis by the intrinsic pathway in response to cellular damage. However, cancer cells often develop resistance to chemotherapy through mutations in the p53 tumor suppressor gene (Ashkenazi A. Targeting Death and Decoy Receptors of the Tumour-Necrosis Factor Superfamily. Nature Reviews 2:420-430 (2002)). Death receptors, such as DR4 and DR5, located on the surface of cells trigger apoptosis via the extrinsic pathway that does not involve p53.
  • DR4 and DR5 located on the surface of cells trigger apoptosis via the extrinsic pathway that does not involve p53.
  • Agonistic molecules such as Apo2L, bind to DR4 and DR5 receptors and activate caspases 8 and 10 through Fas-associated death domain. Caspase 8 and 10 then activate caspases 3, 6, and 7 to induce apoptosis.
  • Molecular signaling of death receptors on tumor cells has therapeutic potential for the elimination of cancer cells that are resistant to conventional therapies and molecules, like Apo2L, are currently undergoing clinical evaluation.
  • Apomab is a full-length CHO derived humanized IgG1 constructed with a lamda light chain. It is an agonist antibody against DR5 that has been shown to induce apoptosis of various cancer cell lines. Preclinical studies using a murine tumor implant model have shown that Apomab has similar or improved tumor reduction compared to Apo2L. Apomab is being evaluated as an anti-cancer agent in the indications of advanced solid tumors and Non-Hodgkin's Lymphoma (NHL). The heavy and light chain amino acid sequences of Apomab used in these experiments are shown in FIGS. 27 and 28 .
  • Apomab had very dilute protein concentration and high pH.
  • the material was concentrated to approximately 20 mg/mL and exchanged into 20 mM sodium acetate, pH 5.0 buffer using a Millipore Labscale tangential flow filtration (TFF) system with MILLIPORE PELLICONTM XL, PLCGC10, 50 cm membrane.
  • Apomab samples were formulated into various buffer systems covering pH range from 4.0 to 7.0 using sodium acetate, histidine acetate, and sodium phosphate without trehalose and TWEEN 20® using dialysis with a 10,000 Da molecular weight cut off membrane (Pierce, Inc). Trehalose at 240 mM was added in the last dialysis.
  • TWEEN 20TM was added to the formulation and the samples were filtered with 0.22 ⁇ m filters (Millipore, Inc.). A 0.5 mL volume of Apomab was filled into sterile 3 cc glass vials (Forma Vitrum, Inc.) and sealed with 13 mm stoppers (Daikyo, Inc). Protein stability was evaluated at ⁇ 70° C., 5° C. 30° C. and 40° C. with storage for up to 3 months.
  • Apomab formulated bulk filled into 5 cc FORMA VITRUM® glass vials were formulated. Vials were filled with 5.5 mL of formulated antibody, fitted with 20 mm DAIKYO® stoppers, and stored at ⁇ 70° C., 5° C., 30° C., and 40° C. in the upright position.
  • Apomab formulated bulk was sterile filtered through a 0.22 ⁇ m filter and 10 mL was filled into autoclaved 20 cc 316L stainless steel mini-tanks. The tanks were placed upright at ⁇ 20° C. and 5° C. A 1 mL aliquot was aseptically removed from the mini-tanks at specified time intervals to assess protein quality.
  • the control vials were 1 mL aliquots in 3 cc glass vials stored at ⁇ 20° C.
  • Protein concentration was determined by ultraviolet absorption spectroscopy using an AGILENT 8453TM spectrophotometer. The samples were diluted with appropriate formulation buffer blanks to give an absorbance from 0.5 to 1.0. The instrument was blanked with the diluent solution and the spectrum was scanned from 240 to 500 nm. The absorbance value at 320 nm was subtracted from the absorbance at 279 nm to correct for offset and light scattering. The protein concentrations were calculated by the following equation: Conc .
  • the absorptivity coefficient based on sequence was initially determined to be 1.32 cm ⁇ 1 (mg/mL) ⁇ 1 and this value was used for the pH screening studies.
  • a later value of 1.7 cm ⁇ 1 (mg/mL) ⁇ 1 was determined by amino acid analysis and proteolysis methods and this value was used for the stability analysis of Apomab used in Toxicology studies.
  • Ion exchange chromatography was carried out on an 1100 series HPLC (Agilent Technologies, Inc.) equipped with a diode array detector. Chromatography was carried out on a PROPAC WCX-10TM (Dionex) column (4 ⁇ 250 mm) at a flow rate of 0.5 mL/min and with column temperature at 40° C. Mobile phase A was 25 mM sodium phosphate, pH 6.5. Mobile phase B was 100 mM sodium chloride in the same buffer as mobile phase A. The column was equilibrated with 100% mobile phase A. For pH screening samples an amount of 20 mg of Apomab was loaded onto the column and the absorbance was monitored at 214 nm. Protein was eluted from the column with the following gradient: Time (min) % A % B 0 100 0 50 0 100 51 100 0 70 100 0
  • Size exclusion chromatography was carried out on an 1100 series HPLC (Agilent Technologies, Inc.) equipped with a diode array detector. An amount of 50 ⁇ g Apomab was loaded onto a TSK Gel 3000SWXLTM (7.8 ⁇ 300 mm) column and run at a flow rate of 0.9 mL/min for 20 minutes for pH screening samples and 0.5 mL/min for 30 minutes for Toxicology stability samples with 0.20 M potassium phosphate, 0.25 M potassium chloride, pH 6.2 as a mobile phase. Absorbance was monitored at 280 nm.
  • the purpose of the potency bioassay was to measure the ability of Apomab to kill Colo205 cells using ALAMARBLUETM.
  • Colo205 is a colon carcinoma cell line, which expresses both DR5 and DR4 death receptors.
  • This assay incorporates a fluorometric/colorimetric growth indicator based on detection of metabolic activity.
  • ALAMARBLUETM is a redox dye that is blue and non-fluorescent in oxidized state. The intracellular metabolic reduction converts it into a red color that is also fluorescent. The changes in color and fluorescence are proportional to the metabolic activity and number of living cells. The signal decreased when cells die.
  • Apomab was diluted in medium with anti-Fc and then Colo 205 cells were added to Apomab samples and incubate at 37° C. for 48 hours.
  • ALAMARBLUETM is added for the last 2-3 hours.
  • the plate was read at 530 nm excitation and 590 nm emission to get relative fluorescence units (RFU).
  • the data were analyzed by KALEIDAGRAPHTM. A dilution curve of killing was generated.
  • Apomab produced from an unamplified stable cell line.
  • Apomab was formulated at 20 mg/mL antibody in 20 mM sodium acetate buffer at pH 4.0, 4.5, 5.0, 5.5; 20 mM histidine acetate buffer at pH 6.0 and 6.5; and 20 mM sodium phosphate buffer at pH 7.0. All of the formulations contained 240 mM trehalose and 0.02% TWEEN 20TM.
  • the formulations were stored for up to 3 months at temperatures of ⁇ 70° C., 5° C., 30° C., and 40° C. and protein stability was determined by various analytical assays, including CAC, pH, concentration, SEC and IEC. No significant changes in CAC, pH or protein concentration were observed during storage of the samples.
  • Apomab charge heterogeneity was monitored by IEC. No significant changes in the IEC profile occurred during storage at 5° C. and ⁇ 70° C. However, degradation observed as the formation of acidic or basic variants occurred depending on the formulation ( FIG. 22 ). In general, increased basic variants were formed at lower formulation pH and more acidic variants were formed at higher formulation pH. To compare the formulations, IEC main peak kinetics was monitored during storage and the first-order rate constants were calculated. The obtained pH rate profile for the loss in IEC main peak is shown in FIG. 23 . The rate constants observed by IEC were approximately 10 fold higher than those from SEC ( FIG. 21 ). Therefore, the loss in IEC main peak was the primary degradation of the antibody that will ultimately limit the product shelf life. Furthermore, as observed by SEC, optimal antibody stability to stabilize IEC main peak was obtained by formulating in histidine acetate buffer at pH 6.0.
  • an Apomab formulation was selected that comprised 20 mg/mL antibody in 20 mM histidine acetate, 240 mM trehalose, 0.02% polysorbate 20, pH 6.0.
  • the vial configuration consisted of 5.5 mL fill in a 5 cc FORMA VITRUMTM vial with a 20 mM DAIKYOTM West stopper.
  • Apomab was stored in stainless steel tanks.
  • Apomab Drug Product was evaluated in the 5 cc glass vial configuration described above. Vials were stored at ⁇ 70° C. (controls), 5° C., 30° C., and 40° C. Samples were pulled at specific time intervals and analyzed by the following assays: color, appearance, clarity (CAC), pH, protein concentration, SEC, IEC and potency. The results from these assays are shown in Table 6 for samples stored at ⁇ 70° C. and 5° C. and Table 7 for samples stored at 30° C. and 40° C. TABLE 6 Stability Data for Apomab Stored at ⁇ 70° C. and 5° C.
  • Table 7 shows that changes in protein quality occurred at 30° C. and 40° C.
  • SEC showed a decrease in % monomer with a rise primarily in fragment species. Aggregates increase as well at higher temperature, but the rate was much slower. However, the aggregates increase significantly after 6 months at 40° C.
  • IEC % main peak decreased with a corresponding increase in acidic variants.
  • Basic peaks decreased slightly after 2 months at 40° C. and 9 months at 30° C. After six months of storage at 40° C., degradation occurred to an extent that IEC main peak could no longer be integrated.
  • the cell killing bioassay showed loss of % specific activity at higher temperature with longer storage time. Protein concentration and pH were unchanged. The solution becomes slightly yellow after 3 months at 40° C. and 9 months at 30° C. and becomes yellow after 9 months at 40° C.
  • Freeze-thaw stability data for drug substance are shown in Table 8. TABLE 8 Freeze-Thaw Stability Data for Apomab Filled in Miniature Stainless Steel Tanks Temp (° C.) Freeze-Thaw Concentration SEC (Frozen/thaw) Cycle No. Clarity Color pH (mg/mL) (% Monomer) Acceptance Criteria: Report Report 6.0 ⁇ 0.3 20.0 ⁇ 2.0 ⁇ 95% Control 0 Clear Colorless 6.0 20.9 99.6 (unfrozen) ⁇ 20/25 1 Clear Colorless 6.0 20.8 99.6 ⁇ 20/25 2 Clear Colorless 6.0 20.8 99.6 ⁇ 20/25 3 Clear Colorless 6.0 20.9 99.6
  • Apomab showed no change in protein quality at 5° C. by pH, CAC, protein concentration and % main peak by IEC but lost 0.1% monomer by SEC every 3 months. Decreased potency was observed during storage at 5° C. for 3 months. However, the potency of the sample increased again at the 6 and 9 month timepoints. Therefore, the observed potency difference at the 3 month timepoint was attributed to assay variation.
  • Apomab showed no change in protein quality at ⁇ 20° C. by pH, CAC, protein concentration, % monomer by SEC, % main peak by IEC, and no significant change in potency.
  • the stability data show that Apomab is stable for at least 1 year at ⁇ 20° C. and three months at 5° C.
  • Formulation screening studies were performed to select a formulation for Apomab.
  • a pH screen covering the pH range 4.0 to 7.0 using sodium acetate, histidine acetate, and sodium phosphate as buffers with 240 mM trehalose dihydrate and 0.02% polysorbate 20 showed that Apomab is most stable in solution at pH 6.0. Therefore, a formulation consisting of 20 mM histidine acetate, 240 mM trehalose, 0.02% polysorbate 2, pH 6.0 was developed and demonstrated experimentally to be stable. Using this formulation, Apomab was shown to be stable for at least 12 months at 5° C. Furthermore, Apomab was shown to be stable for at least 12 months at ⁇ 20° C. and three months at 5° C. when stored in 316L stainless steel containers. Apomab was also shown to be stable when subjected to up to 3 freeze/thaw cycles.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
US11/254,182 2004-10-20 2005-10-19 Antibody formulations Abandoned US20060088523A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US11/254,182 US20060088523A1 (en) 2004-10-20 2005-10-19 Antibody formulations
US12/554,194 US8372396B2 (en) 2004-10-20 2009-09-04 Antibody formulations
US13/660,114 US9017671B2 (en) 2004-10-20 2012-10-25 Method of treating cancer with a pharmaceutical formulation comprising a HER2 antibody
US14/672,598 US20150196642A1 (en) 2004-10-20 2015-03-30 Antibody formulations
US15/936,047 US20180221488A1 (en) 2004-10-20 2018-03-26 Antibody formulations
US16/784,467 US20200179515A1 (en) 2004-10-20 2020-02-07 Antibody formulations
US17/808,029 US20230263895A1 (en) 2004-10-20 2022-06-21 Antibody formulations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US62041304P 2004-10-20 2004-10-20
US11/254,182 US20060088523A1 (en) 2004-10-20 2005-10-19 Antibody formulations

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/554,194 Continuation US8372396B2 (en) 2004-10-20 2009-09-04 Antibody formulations

Publications (1)

Publication Number Publication Date
US20060088523A1 true US20060088523A1 (en) 2006-04-27

Family

ID=36203665

Family Applications (7)

Application Number Title Priority Date Filing Date
US11/254,182 Abandoned US20060088523A1 (en) 2004-10-20 2005-10-19 Antibody formulations
US12/554,194 Active 2026-07-19 US8372396B2 (en) 2004-10-20 2009-09-04 Antibody formulations
US13/660,114 Active US9017671B2 (en) 2004-10-20 2012-10-25 Method of treating cancer with a pharmaceutical formulation comprising a HER2 antibody
US14/672,598 Abandoned US20150196642A1 (en) 2004-10-20 2015-03-30 Antibody formulations
US15/936,047 Abandoned US20180221488A1 (en) 2004-10-20 2018-03-26 Antibody formulations
US16/784,467 Abandoned US20200179515A1 (en) 2004-10-20 2020-02-07 Antibody formulations
US17/808,029 Pending US20230263895A1 (en) 2004-10-20 2022-06-21 Antibody formulations

Family Applications After (6)

Application Number Title Priority Date Filing Date
US12/554,194 Active 2026-07-19 US8372396B2 (en) 2004-10-20 2009-09-04 Antibody formulations
US13/660,114 Active US9017671B2 (en) 2004-10-20 2012-10-25 Method of treating cancer with a pharmaceutical formulation comprising a HER2 antibody
US14/672,598 Abandoned US20150196642A1 (en) 2004-10-20 2015-03-30 Antibody formulations
US15/936,047 Abandoned US20180221488A1 (en) 2004-10-20 2018-03-26 Antibody formulations
US16/784,467 Abandoned US20200179515A1 (en) 2004-10-20 2020-02-07 Antibody formulations
US17/808,029 Pending US20230263895A1 (en) 2004-10-20 2022-06-21 Antibody formulations

Country Status (35)

Country Link
US (7) US20060088523A1 (es)
EP (3) EP2371388A3 (es)
JP (4) JP5025482B2 (es)
KR (1) KR101243590B1 (es)
CN (2) CN102319430A (es)
AU (1) AU2005295394B2 (es)
BR (1) BRPI0516299B8 (es)
CA (1) CA2579861C (es)
CR (1) CR9129A (es)
DK (1) DK1802344T3 (es)
EC (1) ECSP077308A (es)
ES (1) ES2389911T3 (es)
GT (1) GT200500298A (es)
HK (2) HK1104483A1 (es)
HR (1) HRP20120893T1 (es)
IL (3) IL181738A (es)
JO (1) JO3000B1 (es)
MA (1) MA29014B1 (es)
MY (1) MY146100A (es)
NO (1) NO343683B1 (es)
NZ (1) NZ553625A (es)
PA (1) PA8650001A1 (es)
PE (2) PE20091327A1 (es)
PL (1) PL1802344T3 (es)
PT (1) PT1802344E (es)
RS (1) RS52512B (es)
RU (2) RU2426554C2 (es)
SG (1) SG196859A1 (es)
SI (1) SI1802344T1 (es)
SV (1) SV2006002275A (es)
TN (1) TNSN07088A1 (es)
TW (1) TWI394582B (es)
UA (1) UA89798C2 (es)
WO (1) WO2006044908A2 (es)
ZA (1) ZA200702521B (es)

Cited By (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030147884A1 (en) * 1997-12-12 2003-08-07 Genentech, Inc. Treatment with anti-ErbB2 antibodies
US20030180296A1 (en) * 2001-12-20 2003-09-25 Theodora Salcedo Antibodies that immunospecifically bind to trail receptors
US20030228309A1 (en) * 2000-11-08 2003-12-11 Theodora Salcedo Antibodies that immunospecifically bind to TRAIL receptors
US20050129616A1 (en) * 2001-05-25 2005-06-16 Human Genome Sciences, Inc. Antibodies that immunospecifically bind to TRAIL receptors
US20050208043A1 (en) * 1999-06-25 2005-09-22 Genentech, Inc. Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies
US20050214209A1 (en) * 2001-05-25 2005-09-29 Human Genome Sciences, Inc. Antibodies that immunospecifically bind to TRAIL receptors
US20060013819A1 (en) * 2004-06-16 2006-01-19 Genentech, Inc. Therapy of platinum-resistant cancer
US20060062786A1 (en) * 2000-11-08 2006-03-23 Human Genome Sciences, Inc. Antibodies that immunospecifically bind to TRAIL receptors
US20060165702A1 (en) * 2005-01-21 2006-07-27 Genentech, Inc. Fixed dosing of HER antibodies
US20060188509A1 (en) * 2005-02-23 2006-08-24 Genentech, Inc. Extending time to disease progression or survival in cancer patients
US20060270837A1 (en) * 2001-05-25 2006-11-30 Human Genome Sciences, Inc. Antibodies that immunospecifically bind to TRAIL receptors
US20070020261A1 (en) * 2005-07-22 2007-01-25 Sliwkowski Mark X Combination therapy of her expressing tumors
US20070041979A1 (en) * 2005-08-19 2007-02-22 Raju T S Proteolysis resistant antibody preparations
US20070059793A1 (en) * 2003-03-19 2007-03-15 Biogen Idec Ma Inc. Nogo receptor binding protein
US20070128204A1 (en) * 2002-11-27 2007-06-07 Irm Llc Methods and compositions for inducing apoptosis in cancer cells
US20070184055A1 (en) * 1999-06-25 2007-08-09 Genentech, Inc. Treatment with anti-erbb2 antibodies
US20070269429A1 (en) * 1999-06-25 2007-11-22 Genentech, Inc. Treatment with anti-erbb2 antibodies
US7348003B2 (en) 2001-05-25 2008-03-25 Human Genome Sciences, Inc. Methods of treating cancer using antibodies that immunospecifically bind to TRAIL receptors
US20080292642A1 (en) * 2007-03-29 2008-11-27 Borhani David W Crystalline anti-human IL-12 antibodies
US20080317753A1 (en) * 2004-12-07 2008-12-25 Genentech, Inc. Selecting patients for therapy with a her inhibitor
US20090130119A1 (en) * 2005-03-08 2009-05-21 Justin Abate Anti-ctla-4 antibody compositions
US7560111B2 (en) 2004-07-22 2009-07-14 Genentech, Inc. HER2 antibody composition
US20100015131A1 (en) * 2008-07-09 2010-01-21 Biogen Idec Ma Inc. Composition Comprising Antibodies to LINGO or Fragments Thereof
US20100015157A1 (en) * 2004-10-20 2010-01-21 Genentech, Inc. Antibody formulations
WO2010075249A2 (en) 2008-12-22 2010-07-01 Genentech, Inc. A method for treating rheumatoid arthritis with b-cell antagonists
US20100266542A1 (en) * 2004-03-23 2010-10-21 Biogen Idec Ma Inc. Receptor coupling agents and therapeutic uses thereof
US20100278822A1 (en) * 2009-05-04 2010-11-04 Abbott Biotechnology, Ltd. Stable high protein concentration formulations of human anti-tnf-alpha-antibodies
US20100297121A1 (en) * 2007-10-11 2010-11-25 Biogen Idec Ma Inc. Methods for Treating Pressure Induced Optic Neuropathy, Preventing Neuronal Degeneration and Promoting Neuronal Cell Survival Via Administration of LINGO-1 Antagonists and TrkB Agonists
US20100322931A1 (en) * 2009-06-17 2010-12-23 Harding Fiona A Anti-vegf antibodies and their uses
WO2010146059A2 (en) 2009-06-16 2010-12-23 F. Hoffmann-La Roche Ag Biomarkers for igf-1r inhibitor therapy
US20110044977A1 (en) * 2009-07-31 2011-02-24 Genentech, Inc. Subcutaneous anti-HER2 antibody formulations and uses thereof
US20110076273A1 (en) * 2009-09-11 2011-03-31 Genentech, Inc. Highly Concentrated Pharmaceutical Formulations
US20110123553A1 (en) * 2007-11-08 2011-05-26 Biogen Idec Ma Inc. Use of LINGO-4 Antagonists in the Treatment of Conditions Involving Demyelination
US20110177095A1 (en) * 2009-12-16 2011-07-21 Abbott Biotherapeutics Corporation Anti-her2 antibodies and their uses
US20110182888A1 (en) * 2008-04-08 2011-07-28 Peter Ordentlich Administration of an Inhibitor of HDAC, an Inhibitor of HER-2, and a Selective Estrogen Receptor Modulator
US8128926B2 (en) 2007-01-09 2012-03-06 Biogen Idec Ma Inc. Sp35 antibodies and uses thereof
US20120201812A1 (en) * 2009-09-03 2012-08-09 Ablynx N.V. Stable formulations of polypeptides and uses thereof
EP2543384A2 (en) 2005-12-02 2013-01-09 Biogen Idec MA Inc. Treatment of conditions involving demyelination
US20130078232A1 (en) * 2010-03-22 2013-03-28 Genentech, Inc. Compositions and methods useful for stabilizing protein-containing formulations
WO2013055874A2 (en) 2011-10-14 2013-04-18 Genentech, Inc. Uses for and article of manufacture including her2 dimerization inhibitor pertuzumab
US20130186797A1 (en) * 2012-01-23 2013-07-25 Regeneron Pharmaceuticals, Inc. Stabilized Formulations Containing Anti-Ang2 Antibodies
US8551476B2 (en) 2005-07-08 2013-10-08 Biogen Idec Ma Inc. SP35 antibodies and uses thereof
WO2013165791A1 (en) * 2012-05-03 2013-11-07 Boehringer Ingelheim International Gmbh Anti-il-23p19 antibodies
WO2013186700A1 (en) * 2012-06-12 2013-12-19 Novartis Ag Antibody formulation
WO2013164789A3 (en) * 2012-05-04 2014-02-13 Novartis Ag Lyophilised and aqueous anti-cd40 antibody formulations
US8652474B2 (en) 2008-01-30 2014-02-18 Genentech, Inc. Composition comprising antibody that binds to domain II of HER2 and acidic variants thereof
WO2014057074A1 (en) 2012-10-12 2014-04-17 Spirogen Sàrl Pyrrolobenzodiazepines and conjugates thereof
WO2014068026A1 (en) * 2012-10-31 2014-05-08 Amgen Research (Munich) Gmbh Liquid formulation comprising gm-csf neutralizing compound
WO2014093203A1 (en) 2012-12-13 2014-06-19 Merck Sharp & Dohme Corp. SOLUTION FORMULATIONS OF ENGINEERED ANTI-IL-23p19 ANTIBODIES
US8795658B2 (en) 2010-09-17 2014-08-05 Baxter International Inc. Stabilization of immunoglobulins through aqueous formulation with histidine at weak acidic to neutral pH
US8821865B2 (en) 2010-11-11 2014-09-02 Abbvie Biotechnology Ltd. High concentration anti-TNFα antibody liquid formulations
WO2014140174A1 (en) 2013-03-13 2014-09-18 Spirogen Sàrl Pyrrolobenzodiazepines and conjugates thereof
US20140271636A1 (en) * 2013-03-15 2014-09-18 Takeda Gmbh Formulation of an antibody and use thereof
US8883146B2 (en) 2007-11-30 2014-11-11 Abbvie Inc. Protein formulations and methods of making same
US8883979B2 (en) 2012-08-31 2014-11-11 Bayer Healthcare Llc Anti-prolactin receptor antibody formulations
AU2013202020B2 (en) * 2009-07-31 2014-11-27 F. Hoffmann-La Roche Ag Subcutaneous anti-HER2 antibody formulation
US8940302B2 (en) 2007-03-02 2015-01-27 Genentech, Inc. Predicting response to a HER inhibitor
US9023356B2 (en) 2007-03-15 2015-05-05 Ludwig Institute For Cancer Research Ltd Treatment method using EGFR antibodies and SRC inhibitors and related formulations
US20150157709A1 (en) * 2012-06-01 2015-06-11 Ophthotech Corporation Compositions Comprising an Anti-PDGF Aptamer and a VEGF Antagonist
US9068992B2 (en) 2004-06-24 2015-06-30 Biogen Ma Inc. Screening methods for identifying Sp35 antagonists
US9072798B2 (en) 2009-02-18 2015-07-07 Ludwig Institute For Cancer Research Ltd. Specific binding proteins and uses thereof
US9090693B2 (en) 2007-01-25 2015-07-28 Dana-Farber Cancer Institute Use of anti-EGFR antibodies in treatment of EGFR mutant mediated disease
US9120855B2 (en) 2010-02-10 2015-09-01 Novartis Ag Biologic compounds directed against death receptor 5
US20150266965A1 (en) * 2012-10-31 2015-09-24 Markus Rast Method for Preparation of a High Concentration Liquid Formulation of an Antibody
WO2015164665A1 (en) 2014-04-25 2015-10-29 Genentech, Inc. Methods of treating early breast cancer with trastuzumab-mcc-dm1 and pertuzumab
US20150307617A1 (en) * 2014-03-31 2015-10-29 Genentech, Inc. Anti-ox40 antibodies and methods of use
WO2015164581A1 (en) * 2014-04-24 2015-10-29 Millennium Pharmaceuticals, Inc. Pharmaceutical formulation of an anti-guanylyl cyclase c antibody conjugate comprising histidine or a salt thereof and polysorbate 20
US9265834B2 (en) 2009-03-05 2016-02-23 Ablynx N.V. Stable formulations of polypeptides and uses thereof
US9278131B2 (en) 2012-08-10 2016-03-08 Adocia Process for lowering the viscosity of highly concentrated protein solutions
US9283276B2 (en) 2007-08-14 2016-03-15 Ludwig Institute For Cancer Research Ltd. Monoclonal antibody 175 targeting the EGF receptor and derivatives and uses thereof
WO2016037644A1 (en) 2014-09-10 2016-03-17 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
WO2016073915A1 (en) * 2014-11-07 2016-05-12 Novartis Ag Stable protein solution formulation containing high concentration of an anti-vegf antibody
US9441036B2 (en) 2010-11-04 2016-09-13 Boehringer Ingelheim International Gmbh Anti-IL-23 antibodies
US9487589B2 (en) 2011-06-30 2016-11-08 Genentech, Inc. Anti-c-met-antibody formulations
WO2016196373A2 (en) 2015-05-30 2016-12-08 Genentech, Inc. Methods of treating her2-positive metastatic breast cancer
US9562102B2 (en) 2001-05-11 2017-02-07 Ludwig Institute For Cancer Research Specific binding proteins and uses thereof
WO2017062682A2 (en) 2015-10-06 2017-04-13 Genentech, Inc. Method for treating multiple sclerosis
WO2017087280A1 (en) 2015-11-16 2017-05-26 Genentech, Inc. Methods of treating her2-positive cancer
US9796780B2 (en) 2012-05-14 2017-10-24 Biogen Ma Inc. LINGO-2 antagonists for treatment of conditions involving motor neurons
US9815904B2 (en) 2013-04-16 2017-11-14 Genetech, Inc. Pertuzumab variants and evaluation thereof
US9815893B2 (en) 2012-11-30 2017-11-14 Abbvie Biotherapeutics Inc. Anti-VEGF antibodies and their uses
US9833410B2 (en) 2012-10-31 2017-12-05 Takeda Gmbh Lyophilized formulation comprising GM-CSF neutralizing compound
WO2018069289A1 (en) 2016-10-11 2018-04-19 Medimmune Limited Antibody-drug conjugates with immune-mediated therapy agents
WO2018085513A1 (en) 2016-11-04 2018-05-11 Genentech, Inc. Treatment of her2-positive breast cancer
US10005830B2 (en) 2009-03-05 2018-06-26 Ablynx N.V. Antigen binding dimer-complexes, methods of making/avoiding and uses thereof
WO2018125589A1 (en) 2016-12-28 2018-07-05 Genentech, Inc. Treatment of advanced her2 expressing cancer
WO2018136412A2 (en) 2017-01-17 2018-07-26 Genentech, Inc. Subcutaneous her2 antibody formulations
US10059763B2 (en) 2014-09-03 2018-08-28 Boehringer Ingelheim International Gmbh Compound targeting IL-23A and TNF-alpha and uses thereof
WO2018160654A2 (en) 2017-03-02 2018-09-07 Genentech, Inc. Adjuvant treatment of her2-positive breast cancer
US20180280514A1 (en) * 2013-03-13 2018-10-04 Genentech, Inc. Antibody formulations
WO2018200505A1 (en) 2017-04-24 2018-11-01 Genentech, Inc. Erbb2/her2 mutations in the transmbrane or juxtamembrane domain
US20180369377A1 (en) * 2015-12-07 2018-12-27 Merck Patent Gmbh Aqueous pharmaceutical formulation comprising anti-pd-l1 antibody avelumab
WO2019165077A1 (en) * 2018-02-21 2019-08-29 Five Prime Therapeutics, Inc. B7-h4 antibody formulations
US10407507B2 (en) 2012-09-10 2019-09-10 Prothena Biosciences Limited Anti-MCAM antibodies and associated methods of use
US10407506B2 (en) * 2014-03-12 2019-09-10 Prothena Biosciences Limited Anti-MCAM antibodies and associated methods of use
US10435467B2 (en) 2015-01-08 2019-10-08 Biogen Ma Inc. LINGO-1 antagonists and uses for treatment of demyelinating disorders
WO2019224275A1 (en) 2018-05-23 2019-11-28 Adc Therapeutics Sa Molecular adjuvant
WO2019232323A1 (en) * 2018-05-31 2019-12-05 Board Of Regents, The University Of Texas System Bi-specific antibodies and use thereof
US10507241B2 (en) 2014-07-24 2019-12-17 Boehringer Ingelheim International Gmbh Biomarkers useful in the treatment of IL-23A related diseases
CN110732023A (zh) * 2018-07-18 2020-01-31 江苏恒瑞医药股份有限公司 一种her2抗体药物组合物及其用途
AU2014324703B2 (en) * 2013-09-27 2020-03-19 Genentech, Inc. Anti-PDL1 antibody formulations
US10668167B2 (en) 2016-06-02 2020-06-02 Abbvie Inc. Glucocorticoid receptor agonist and immunoconjugates thereof
US10689457B2 (en) 2008-06-16 2020-06-23 Genentech, Inc. Treatment of metastatic breast cancer
US20200237906A1 (en) * 2017-11-02 2020-07-30 Nanjing Shunxin Pharmaceutical Co., Ltd. Pharmaceutical Composition of Humanized Monoclonal Anti-PD-L1 Antibody
US10745475B2 (en) 2013-08-30 2020-08-18 Takeda Gmbh Antibodies neutralizing GM-CSF for use in the treatment of rheumatoid arthritis or as analgesics
US10772970B2 (en) 2017-12-01 2020-09-15 Abbvie Inc. Glucocorticoid receptor agonist and immunoconjugates thereof
EP3747464A1 (en) 2008-09-16 2020-12-09 F. Hoffmann-La Roche AG Methods for treating progessive multiple sclerosis using an anti-cd20 antibody
AU2015318001B2 (en) * 2014-09-15 2021-03-25 Genentech, Inc. Antibody formulations
GB202102396D0 (en) 2021-02-19 2021-04-07 Adc Therapeutics Sa Molecular adjuvant
US11046776B2 (en) 2016-08-05 2021-06-29 Genentech, Inc. Multivalent and multiepitopic antibodies having agonistic activity and methods of use
US20210353756A1 (en) * 2010-06-24 2021-11-18 Genentech, Inc. Compositions and methods for stabilizing protein-containing formulations
US20210369842A1 (en) * 2018-11-06 2021-12-02 Genmab A/S Antibody formulation
WO2022036129A1 (en) 2020-08-14 2022-02-17 F. Hoffmann-La Roche Ag Methods for treating multiple sclerosis with ocrelizumab
US11273171B2 (en) 2013-07-12 2022-03-15 Iveric Bio, Inc. Methods for treating or preventing ophthalmological conditions
US20220089713A1 (en) * 2017-03-01 2022-03-24 Medimmune Limited Formulations of monoclonal antibodies
US20220110872A1 (en) * 2018-12-14 2022-04-14 Morphosys Ag Antibody formulations
US11306144B2 (en) 2017-08-25 2022-04-19 Five Prime Therapeutics, Inc. B7-H4 antibodies and methods of use thereof
WO2022132636A1 (en) * 2020-12-14 2022-06-23 AmMax Bio, Inc. High concentration formulations of anti-csf1 and anti-csf1r antibodies
US11596690B2 (en) * 2019-03-21 2023-03-07 Regeneron Pharmaceuticals, Inc. Stabilized formulations containing anti-IL-33 antibodies
US11634485B2 (en) 2019-02-18 2023-04-25 Eli Lilly And Company Therapeutic antibody formulation
US11633476B2 (en) 2017-05-02 2023-04-25 Merck Sharp & Dohme Llc Stable formulations of programmed death receptor 1 (PD-1) antibodies and methods of use thereof
US11723975B2 (en) * 2017-05-30 2023-08-15 Bristol-Myers Squibb Company Compositions comprising an anti-LAG-3 antibody or an anti-LAG-3 antibody and an anti-PD-1 or anti-PD-L1 antibody
US20230331861A1 (en) * 2022-04-13 2023-10-19 Genentech, Inc. Pharmaceutical compositions of mosunetuzumab and methods of use
WO2023202685A1 (en) * 2022-04-22 2023-10-26 Eirgenix, Inc. Pharmaceutical compositons containing anti-her2 antibody for subcutaneous administration
US11845798B2 (en) 2017-05-02 2023-12-19 Merck Sharp & Dohme Llc Formulations of anti-LAG3 antibodies and co-formulations of anti-LAG3 antibodies and anti-PD-1 antibodies
US11939383B2 (en) 2018-03-02 2024-03-26 Five Prime Therapeutics, Inc. B7-H4 antibodies and methods and use thereof
US11945859B2 (en) * 2018-12-18 2024-04-02 Novartis Ag Protein solution formulation containing high concentration of an anti-VEGF antibody
US12012464B2 (en) 2016-12-23 2024-06-18 Novartis Ag Factor XI antibodies and methods of use

Families Citing this family (619)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029783B2 (en) * 2005-02-02 2011-10-04 Genentech, Inc. DR5 antibodies and articles of manufacture containing same
US20070212397A1 (en) * 2005-09-15 2007-09-13 Roth Daniel B Pharmaceutical delivery device and method for providing ocular treatment
CA2634547C (en) 2005-12-20 2016-10-11 Bristol-Myers Squibb Company Stable ctla4 formulation for subcutaneous administration
AR058568A1 (es) 2005-12-20 2008-02-13 Bristol Myers Squibb Co Metodos para producir una composicion con moleculas ctla4-ig a partir de un medio de cultivo
US9309316B2 (en) 2005-12-20 2016-04-12 Bristol-Myers Squibb Company Stable subcutaneous protein formulations and uses thereof
ES2439641T3 (es) 2005-12-20 2014-01-24 Bristol-Myers Squibb Company Composiciones y procedimientos de producción de una composición
MX2008016344A (es) 2006-06-21 2009-02-12 Ge Healthcare Ltd Productos radiofarmaceuticos.
AU2013202392B2 (en) * 2006-12-20 2016-02-25 Mmrglobal, Inc. Antibodies and methods for making and using them
CA2673725C (en) 2006-12-20 2016-01-12 Mmr Information Systems, Inc. Antibodies and methods for making and using them
PH12018501459A1 (en) 2007-09-26 2019-11-11 Chugai Pharmaceutical Co Ltd Modified antibody constant region
US20090162359A1 (en) 2007-12-21 2009-06-25 Christian Klein Bivalent, bispecific antibodies
US9266967B2 (en) 2007-12-21 2016-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
PT2234600E (pt) * 2007-12-21 2014-09-25 Hoffmann La Roche Formulação de anticorpos
PE20091174A1 (es) 2007-12-27 2009-08-03 Chugai Pharmaceutical Co Ltd Formulacion liquida con contenido de alta concentracion de anticuerpo
CN101951885A (zh) * 2007-12-28 2011-01-19 生物发明国际公司 制剂
KR20110014607A (ko) 2008-04-29 2011-02-11 아보트 러보러터리즈 이원 가변 도메인 면역글로불린 및 이의 용도
NZ589434A (en) 2008-06-03 2012-11-30 Abbott Lab Dual variable domain immunoglobulins and uses thereof
EP2297208A4 (en) 2008-06-03 2012-07-11 Abbott Lab DUAL VARIABLE DOMAIN IMMUNOGLOBULINS AND ITS USES
CA2729949A1 (en) 2008-07-08 2010-01-14 Abbott Laboratories Prostaglandin e2 dual variable domain immunoglobulins and uses thereof
SI2331090T1 (en) * 2008-09-19 2018-04-30 Pfizer Inc. Stable liquid antibody formulation
TWI440469B (zh) 2008-09-26 2014-06-11 Chugai Pharmaceutical Co Ltd Improved antibody molecules
US8268314B2 (en) 2008-10-08 2012-09-18 Hoffmann-La Roche Inc. Bispecific anti-VEGF/anti-ANG-2 antibodies
CA2743469C (en) * 2008-11-12 2019-01-15 Medimmune, Llc Antibody formulation
KR101676887B1 (ko) * 2008-11-20 2016-11-16 제넨테크, 인크. 치료 단백질 제형
FR2944448B1 (fr) 2008-12-23 2012-01-13 Adocia Composition pharmaceutique stable comprenant au moins un anticorps monodonal et au moins un polysacharide amphiphile comprenant des substituants derives d'alcools hydrofobes ou d'amines hydrophobes.
US8623395B2 (en) 2010-01-29 2014-01-07 Forsight Vision4, Inc. Implantable therapeutic device
EP2391419B1 (en) 2009-01-29 2019-06-12 ForSight Vision4, Inc. Posterior segment drug delivery
EP2403874A1 (en) * 2009-03-06 2012-01-11 Genentech, Inc. Antibody formulation
RU2565809C2 (ru) * 2009-03-19 2015-10-20 Чугаи Сейяку Кабусики Кайся Фармацевтический состав, содержащий молекулы антител с улучшенными свойствами
BRPI1014089A2 (pt) 2009-04-02 2016-04-19 Roche Glycart Ag anticorpos multiespecíficos que compreendem anticorpos de comprimento completo e fragmentos fab de cadeia simples
JP5616428B2 (ja) 2009-04-07 2014-10-29 ロシュ グリクアート アクチェンゲゼルシャフト 三価の二重特異性抗体
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
US8703132B2 (en) * 2009-06-18 2014-04-22 Hoffmann-La Roche, Inc. Bispecific, tetravalent antigen binding proteins
US8221753B2 (en) 2009-09-30 2012-07-17 Tracon Pharmaceuticals, Inc. Endoglin antibodies
WO2011029823A1 (en) 2009-09-09 2011-03-17 Novartis Ag Monoclonal antibody reactive with cd63 when expressed at the surface of degranulated mast cells
NZ598962A (en) 2009-09-16 2014-12-24 Genentech Inc Coiled coil and/or tether containing protein complexes and uses thereof
WO2011084750A1 (en) * 2009-12-21 2011-07-14 Genentech, Inc. Antibody formulation
FR2958646B1 (fr) 2010-04-07 2012-05-18 Adocia Polysaccharides comportant des groupes fonctionnels carboxyles substitues par un derive d'acide hydrophobe.
TWI609698B (zh) 2010-01-20 2018-01-01 Chugai Pharmaceutical Co Ltd 穩定化的含抗體溶液製劑
EP2536748B1 (en) 2010-02-18 2014-08-20 Genentech, Inc. Neuregulin antagonists and use thereof in treating cancer
CA3101298A1 (en) 2010-03-01 2011-09-09 Bayer Healthcare Llc Optimized monoclonal antibodies against tissue factor pathway inhibitor (tfpi)
BR112012022044A2 (pt) 2010-03-24 2020-08-25 Genentech Inc ''anticorpo,imunoconjugado,formulação farmacêutica,uso do anticorpo,método de tratamento,anticorpo biespecifico isolado e célula hospedeira''.
AR080793A1 (es) 2010-03-26 2012-05-09 Roche Glycart Ag Anticuerpos biespecificos
WO2011147834A1 (en) 2010-05-26 2011-12-01 Roche Glycart Ag Antibodies against cd19 and uses thereof
CA3051311A1 (en) 2010-05-27 2011-12-01 Genmab A/S Monoclonal antibodies against her2
TW201204388A (en) 2010-06-18 2012-02-01 Genentech Inc Anti-Axl antibodies and methods of use
WO2011161119A1 (en) 2010-06-22 2011-12-29 F. Hoffmann-La Roche Ag Antibodies against insulin-like growth factor i receptor and uses thereof
WO2011161189A1 (en) 2010-06-24 2011-12-29 F. Hoffmann-La Roche Ag Anti-hepsin antibodies and methods of use
EP2399604A1 (en) * 2010-06-25 2011-12-28 F. Hoffmann-La Roche AG Novel antibody formulation
JOP20190250A1 (ar) * 2010-07-14 2017-06-16 Regeneron Pharma صيغ مستقرة تحتوي على الأجسام المضادة لمضاد عامل نمو الأعصاب
TW201201840A (en) 2010-07-15 2012-01-16 Hoffmann La Roche Antibodies specifically binding to human TSLPR and methods of use
WO2012010582A1 (en) 2010-07-21 2012-01-26 Roche Glycart Ag Anti-cxcr5 antibodies and methods of use
AU2011285852B2 (en) 2010-08-03 2014-12-11 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
JP2013541937A (ja) 2010-08-05 2013-11-21 エフ.ホフマン−ラ ロシュ アーゲー 抗mhc抗体−抗ウイルス性サイトカイン融合タンパク質
AU2011285545B2 (en) 2010-08-05 2014-03-13 Forsight Vision4, Inc. Injector apparatus and method for drug delivery
JP6111194B2 (ja) 2010-08-05 2017-04-05 フォーサイト・ビジョン フォー・インコーポレーテッド 組み合わせ薬物送達方法および装置
PT2600812T (pt) 2010-08-05 2021-11-09 Forsight Vision4 Inc Aparelho para tratar um olho
SI2603530T1 (en) 2010-08-13 2018-02-28 Roche Glycart Ag Anti-FAP antibodies and methods of use
TW201209063A (en) 2010-08-13 2012-03-01 Roche Glycart Ag Anti-tenascin-C A2 antibodies and methods of use
JP2013537539A (ja) 2010-08-13 2013-10-03 ジェネンテック, インコーポレイテッド 疾患の治療のためのIL−1β及びIL−18に対する抗体
CA2807278A1 (en) 2010-08-24 2012-03-01 F. Hoffmann - La Roche Ag Bispecific antibodies comprising a disulfide stabilized - fv fragment
WO2012025536A1 (en) 2010-08-25 2012-03-01 F. Hoffmann-La Roche Ag Antibodies against il-18r1 and uses thereof
PE20140229A1 (es) 2010-08-26 2014-03-27 Abbvie Inc Inmunoglobulinas con dominio variable dual y usos de las mismas
CN103154037A (zh) 2010-10-05 2013-06-12 诺瓦提斯公司 抗IL12Rβ1抗体及它们在治疗自身免疫病和炎性疾病中的用途
MY158130A (en) 2010-10-06 2016-08-30 Regeneron Pharma Stabilized formulations containing anti-interleukin-4 receptor )il-4r) antibodies
CN103228674B (zh) 2010-11-10 2019-07-05 霍夫曼-拉罗奇有限公司 用于神经疾病免疫疗法的方法和组合物
EP2640360A2 (en) 2010-11-19 2013-09-25 Forsight Vision4, Inc. Therapeutic agent formulations for implanted devices
EP2648750B1 (en) 2010-12-10 2017-01-25 Novartis AG Antibody formulation
EP3447491A3 (en) 2010-12-16 2019-06-05 F. Hoffmann-La Roche AG Diagnosis and treatments relating to th2 inhibition
EP2655418B1 (en) 2010-12-20 2017-10-04 F. Hoffmann-La Roche AG Anti-mesothelin antibodies and immunoconjugates
US20120195910A1 (en) 2010-12-22 2012-08-02 Genentech, Inc. Anti-pcsk9 antibodies and methods of use
WO2012085111A1 (en) 2010-12-23 2012-06-28 F. Hoffmann-La Roche Ag Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery
EP2471554A1 (en) * 2010-12-28 2012-07-04 Hexal AG Pharmaceutical formulation comprising a biopharmaceutical drug
WO2012093068A1 (en) 2011-01-03 2012-07-12 F. Hoffmann-La Roche Ag A pharmaceutical composition of a complex of an anti-dig antibody and digoxigenin that is conjugated to a peptide
MX2013009151A (es) 2011-02-10 2013-08-29 Roche Glycart Ag Inmunoterapia mejorada.
CA2824824A1 (en) 2011-02-28 2012-09-07 F. Hoffmann-La Roche Ag Monovalent antigen binding proteins
MX341921B (es) 2011-02-28 2016-09-07 Hoffmann La Roche Proteinas de union a antigeno.
MX354359B (es) 2011-03-29 2018-02-28 Roche Glycart Ag Variantes de fragmento cristalizable (fc) de los anticuerpos.
LT2691112T (lt) 2011-03-31 2018-07-25 Merck Sharp & Dohme Corp. Stabilios antikūnų kompozicijos prieš žmogaus programuojamos mirties receptorių pd-1 ir susiję gydymo būdai
CN103596983B (zh) 2011-04-07 2016-10-26 霍夫曼-拉罗奇有限公司 抗fgfr4抗体及使用方法
US20140170148A1 (en) * 2011-04-20 2014-06-19 Genmab A/S Bispecific antibodies against her2
JP2014514314A (ja) 2011-04-20 2014-06-19 ゲンマブ エー/エス Her2およびcd3に対する二重特異性抗体
RU2013150331A (ru) 2011-04-20 2015-05-27 Рош Гликарт Аг СПОСОБ И УСТРОЙСТВА ДЛЯ рН-ЗАВИСИМОГО ПРОХОЖДЕНИЯ ГЕМАТОЭНЦЕФАЛИЧЕСКОГО БАРЬЕРА
WO2012146630A1 (en) 2011-04-29 2012-11-01 F. Hoffmann-La Roche Ag N-terminal acylated polypeptides, methods for their production and uses thereof
CN103596980B (zh) 2011-05-16 2017-08-08 霍夫曼-拉罗奇有限公司 Fgfr1激动剂及使用方法
WO2012171996A1 (en) 2011-06-15 2012-12-20 F. Hoffmann-La Roche Ag Anti-human epo receptor antibodies and methods of use
CN103649125A (zh) 2011-06-22 2014-03-19 霍夫曼-拉罗奇有限公司 利用包含mhc i类的复合物通过循环中的病毒特异性细胞毒性t细胞清除靶细胞
EP4249059A3 (en) 2011-06-28 2023-11-29 ForSight Vision4, Inc. An apparatus for collecting a sample of fluid from a reservoir chamber of a therapeutic device for the eye
AR087305A1 (es) 2011-07-28 2014-03-12 Regeneron Pharma Formulaciones estabilizadas que contienen anticuerpos anti-pcsk9, metodo de preparacion y kit
EP2739252A4 (en) 2011-08-05 2015-08-12 Forsight Vision4 Inc SMALL MOLECULE ADMINISTRATION USING AN IMPLANTABLE THERAPEUTIC DEVICE
JP2014526891A (ja) 2011-08-17 2014-10-09 ジェネンテック, インコーポレイテッド ニューレグリン抗体とその使用
RU2605390C2 (ru) 2011-08-23 2016-12-20 Рош Гликарт Аг Биспецифические антитела, специфичные к антигенам, активирующим т-клетки, и опухолевому антигену, и способы их применения
KR101723273B1 (ko) 2011-08-23 2017-04-04 로슈 글리카트 아게 2 개의 fab 단편을 포함하는 fc-부재 항체 및 이용 방법
RU2014109038A (ru) 2011-08-23 2015-09-27 Рош Гликарт Аг Антитела к хондроитинсульфат протеогликану меланомы
WO2013033380A1 (en) 2011-08-31 2013-03-07 Genentech, Inc. Diagnostic markers
CN103930781A (zh) 2011-09-15 2014-07-16 霍夫曼-拉罗奇有限公司 促进分化的方法
HUE054578T2 (hu) 2011-09-16 2021-09-28 Forsight Vision4 Inc Fluidumcserélõ berendezés
CA2845147A1 (en) 2011-09-23 2013-03-28 Roche Glycart Ag Bispecific anti-egfr/anti igf-1r antibodies
CN103917556B (zh) 2011-10-14 2018-02-06 霍夫曼-拉罗奇有限公司 抗HtrA1抗体及使用方法
WO2013056148A2 (en) 2011-10-15 2013-04-18 Genentech, Inc. Methods of using scd1 antagonists
WO2013059531A1 (en) 2011-10-20 2013-04-25 Genentech, Inc. Anti-gcgr antibodies and uses thereof
SG11201401360XA (en) 2011-10-25 2014-05-29 Onclave Therapeutics Ltd Antibody formulations and methods
MX2014004991A (es) 2011-10-28 2014-05-22 Genentech Inc Combinaciones terapeuticas y metodos para tratar el melanoma.
BR112014010198B1 (pt) 2011-10-28 2022-12-06 Prothena Biosciences Limited Anticorpos humanizados que reconhecem alfa-sinucleína
LT3091029T (lt) * 2011-10-31 2023-02-27 F. Hoffmann-La Roche Ag Anti-il13 antikūno kompozicijos
CN104066748A (zh) 2011-11-21 2014-09-24 霍夫曼-拉罗奇有限公司 抗c-met抗体的纯化
DE102011056142A1 (de) * 2011-12-07 2013-06-13 Manfred Rüdinger Metabolisierbare Salze und deren Verwendung in Diagnostik und Therapie
AU2012362326A1 (en) 2011-12-30 2014-07-24 Abbvie Inc. Dual variable domain immunoglobulins against IL-13 and/or IL-17
RU2014133547A (ru) 2012-01-18 2016-03-10 Дженентек, Инк. Способы применения модуляторов fgf19
TW201335187A (zh) 2012-01-18 2013-09-01 Genentech Inc 抗lrp5抗體及使用方法
US8790644B2 (en) 2012-01-27 2014-07-29 Neotope Biosciences Limited Humanized antibodies that recognize alpha-synuclein
US10010448B2 (en) 2012-02-03 2018-07-03 Forsight Vision4, Inc. Insertion and removal methods and apparatus for therapeutic devices
WO2013119966A2 (en) 2012-02-10 2013-08-15 Genentech, Inc. Single-chain antibodies and other heteromultimers
JP6545959B2 (ja) 2012-02-11 2019-07-17 ジェネンテック, インコーポレイテッド Rスポンジン転位およびその使用方法
TR201808458T4 (tr) 2012-02-15 2018-07-23 Hoffmann La Roche FC-reseptör bazlı afinite kromatografisi.
AR090244A1 (es) * 2012-03-08 2014-10-29 Hoffmann La Roche Formulacion de anticuerpo anti-selectina p
US9592289B2 (en) 2012-03-26 2017-03-14 Sanofi Stable IgG4 based binding agent formulations
EP3431104A1 (en) * 2012-03-26 2019-01-23 Sanofi Stable igg4 binding agent formulations
AR090549A1 (es) 2012-03-30 2014-11-19 Genentech Inc Anticuerpos anti-lgr5 e inmunoconjugados
AU2013244999A1 (en) 2012-04-05 2014-09-25 F. Hoffmann-La Roche Ag Bispecific antibodies against human TWEAK and human IL17 and uses thereof
US20130281355A1 (en) 2012-04-24 2013-10-24 Genentech, Inc. Cell culture compositions and methods for polypeptide production
EP2844300B1 (en) 2012-05-01 2018-10-17 Genentech, Inc. Anti-pmel17 antibodies and immunoconjugates
WO2013170191A1 (en) 2012-05-11 2013-11-14 Genentech, Inc. Methods of using antagonists of nad biosynthesis from nicotinamide
SG10201709555SA (en) 2012-05-18 2017-12-28 Genentech Inc High-concentration monoclonal antibody formulations
AR092325A1 (es) 2012-05-31 2015-04-15 Regeneron Pharma Formulaciones estabilizadas que contienen anticuerpos anti-dll4 y kit
AR091462A1 (es) 2012-06-15 2015-02-04 Genentech Inc Anticuerpos anti-pcsk9, formulaciones, dosificacion y metodos de uso
CA2877363A1 (en) 2012-06-21 2013-12-27 Indiana University Research And Technology Corporation Incretin receptor ligand polypeptide fc-region fusion polypeptides and conjugates with altered fc-effector function
EP2867253B1 (en) 2012-06-27 2016-09-14 F. Hoffmann-La Roche AG Method for selection and production of tailor-made highly selective and multi-specific targeting entities containing at least two different binding entities and uses thereof
WO2014001326A1 (en) 2012-06-27 2014-01-03 F. Hoffmann-La Roche Ag Method for the selection and production of tailor-made, selective and multi-specific therapeutic molecules comprising at least two different targeting entities and uses thereof
BR112014028368A2 (pt) 2012-06-27 2017-11-14 Hoffmann La Roche método de produção de conjugado de região fc de anticorpo, conjugado de região fc de anticorpo e formulação farmacêutica
EP2869848B1 (en) 2012-07-04 2016-09-21 F. Hoffmann-La Roche AG Covalently linked antigen-antibody conjugates
CN104394886B (zh) 2012-07-04 2017-05-24 弗·哈夫曼-拉罗切有限公司 抗茶碱抗体及使用方法
EP3339328A1 (en) 2012-07-04 2018-06-27 F. Hoffmann-La Roche AG Anti-biotin antibodies and methods of use
MX2015000359A (es) 2012-07-09 2015-04-14 Genentech Inc Anticuerpos e inmunoconjugados anti-cd79b.
CA2873889A1 (en) 2012-07-09 2014-01-16 Genentech, Inc. Anti-cd22 antibodies and immunoconjugates
ES2661572T3 (es) 2012-07-09 2018-04-02 Genentech, Inc. Inmunoconjugados que comprenden anticuerpos anti-CD79b
CN104428007B (zh) 2012-07-09 2018-03-16 基因泰克公司 包含抗cd22抗体的免疫缀合物
HUE056217T2 (hu) 2012-07-13 2022-02-28 Roche Glycart Ag Bispecifikus anti-VEGF/anti-ANG-2 antitestek és ezek alkalmazása szemészeti érbetegségek kezelésében
EP2880170B1 (en) 2012-08-02 2016-08-24 F. Hoffmann-La Roche AG METHOD FOR PRODUCING SOLUBLE FcR AS Fc-FUSION WITH INERT IMMUNOGLOBULIN Fc-REGION AND USES THEREOF
AU2013301582B2 (en) 2012-08-07 2018-09-06 Roche Glycart Ag Composition comprising two antibodies engineered to have reduced and increased effector function
US9592297B2 (en) 2012-08-31 2017-03-14 Bayer Healthcare Llc Antibody and protein formulations
UA115789C2 (uk) * 2012-09-05 2017-12-26 Трейкон Фармасутікалз, Інк. Композиція антитіла до cd105 та її застосування
RU2646159C2 (ru) 2012-09-14 2018-03-01 Ф. Хоффманн-Ля Рош Аг Способ получения и отбора молекул, включающих по меньшей мере две различные группировки, и их применение
US9926366B2 (en) 2012-10-04 2018-03-27 Novelmed Therapeutics, Inc. Methods of treating a hemolytic disorder comprising administering anti-properdin antibodies
UA118441C2 (uk) 2012-10-08 2019-01-25 Протена Біосаєнсиз Лімітед Антитіло, що розпізнає альфа-синуклеїн
BR112015007120A2 (pt) 2012-10-08 2017-12-12 Roche Glycart Ag anticorpo biespecífico, composição farmacêutica, uso, célula hospedeira e método de produção de um anticorpo
CA2884220A1 (en) 2012-10-08 2014-04-17 F. Hoffmann-La Roche Ag Cell penetrating peptides which bind irf5
KR20210090298A (ko) 2012-10-30 2021-07-19 에스퍼란스 파마슈티컬스, 인코포레이티드 항체/약물 컨쥬게이트 및 이의 사용 방법
SG11201503412RA (en) 2012-11-01 2015-05-28 Abbvie Inc Anti-vegf/dll4 dual variable domain immunoglobulins and uses thereof
WO2014072306A1 (en) 2012-11-08 2014-05-15 F. Hoffmann-La Roche Ag Her3 antigen binding proteins binding to the beta-hairpin of her3
TWI657095B (zh) 2012-11-13 2019-04-21 美商建南德克公司 抗血球凝集素抗體及使用方法
CN104853782A (zh) * 2012-12-13 2015-08-19 宾夕法尼亚大学理事会 Dna抗体构建体及其使用方法
CN104884474A (zh) 2012-12-21 2015-09-02 弗·哈夫曼-拉罗切有限公司 包含i类mhc的二硫键连接多价多功能蛋白质
AU2013360812B2 (en) * 2012-12-21 2018-11-08 Ichnos Sciences SA Anti HER2 antibody formulation
WO2014116749A1 (en) 2013-01-23 2014-07-31 Genentech, Inc. Anti-hcv antibodies and methods of using thereof
UY35315A (es) 2013-02-08 2014-09-30 Novartis Ag Anticuerpos anti-il-17a y su uso en el tratamiento de trastornos autoinmunes e inflamatorios
KR20150118159A (ko) 2013-02-22 2015-10-21 에프. 호프만-라 로슈 아게 암의 치료 방법 및 약물 내성의 예방 방법
US20140242083A1 (en) 2013-02-26 2014-08-28 Roche Glycart Ag Anti-mcsp antibodies
CN105246511A (zh) 2013-03-06 2016-01-13 豪夫迈·罗氏有限公司 治疗和预防癌症药物抗性的方法
WO2014165277A2 (en) 2013-03-12 2014-10-09 Amgen Inc. POTENT AND SELECTIVE INHIBITORS OF Nav1.7
US9636418B2 (en) 2013-03-12 2017-05-02 Amgen Inc. Potent and selective inhibitors of NAV1.7
EP2970474B1 (en) 2013-03-14 2017-12-20 Genentech, Inc. Anti-b7-h4 antibodies and immunoconjugates
WO2014152959A1 (en) 2013-03-14 2014-09-25 Forsight Vision4, Inc. Systems for sustained intraocular delivery of low solubility compounds from a port delivery system implant
EP2968565A2 (en) 2013-03-14 2016-01-20 Genentech, Inc. Methods of treating cancer and preventing cancer drug resistance
US9562099B2 (en) 2013-03-14 2017-02-07 Genentech, Inc. Anti-B7-H4 antibodies and immunoconjugates
JP2016522793A (ja) 2013-03-15 2016-08-04 アッヴィ・インコーポレイテッド IL−1βおよび/またはIL−17に対して指向された二重特異的結合タンパク質
JP2016515515A (ja) * 2013-03-15 2016-05-30 バイエル・ヘルスケア・エルエルシーBayer HealthCare LLC 抗プロラクチン受容体抗体製剤
AU2014236815B2 (en) 2013-03-15 2019-04-04 Genentech, Inc. Compositions and methods for diagnosis and treatment of hepatic cancers
TR201809571T4 (tr) 2013-03-15 2018-07-23 Hoffmann La Roche Ll-22 polipeptidleri ile ıl-22 fc füzyon proteinleri ve kullanım yöntemleri.
KR20150131177A (ko) 2013-03-15 2015-11-24 제넨테크, 인크. 항-CRTh2 항체 및 그의 용도
JP2016520528A (ja) 2013-03-15 2016-07-14 ジェネンテック, インコーポレイテッド 癌の治療及び抗癌剤耐性の防止方法
JP6568514B2 (ja) 2013-03-15 2019-08-28 エーシー イミューン エス.エー. 抗タウ抗体及び使用方法
CA2905798C (en) 2013-03-15 2023-01-24 Genentech, Inc. Biomarkers and methods of treating pd-1 and pd-l1 related conditions
RU2718986C2 (ru) 2013-03-15 2020-04-15 Дженентек, Инк. Композиции клеточных культур с антиоксидантами и способы получения полипептидов
EP2978393B1 (en) 2013-03-28 2023-12-27 ForSight Vision4, Inc. Ophthalmic implant for delivering therapeutic substances
WO2014161570A1 (en) 2013-04-03 2014-10-09 Roche Glycart Ag Antibodies against human il17 and uses thereof
UA118028C2 (uk) 2013-04-03 2018-11-12 Рош Глікарт Аг Біспецифічне антитіло, специфічне щодо fap і dr5, антитіло, специфічне щодо dr5, і спосіб їх застосування
EP3327034A1 (en) 2013-04-29 2018-05-30 F. Hoffmann-La Roche AG Fcrn-binding abolished anti-igf-1r antibodies and their use in the treatment of vascular eye diseases
EP2992010B1 (en) 2013-04-29 2021-03-24 F.Hoffmann-La Roche Ag Fc-receptor binding modified asymmetric antibodies and methods of use
MY172430A (en) 2013-04-29 2019-11-25 Hoffmann La Roche Human fcrn-binding modified antibodies and methods of use
JP2014214153A (ja) * 2013-04-30 2014-11-17 ニプロ株式会社 水溶液製剤およびその製造方法
TWI573805B (zh) 2013-05-20 2017-03-11 建南德克公司 抗轉鐵蛋白受體抗體及其使用方法
US10513555B2 (en) * 2013-07-04 2019-12-24 Prothena Biosciences Limited Antibody formulations and methods
WO2015014979A1 (en) 2013-08-01 2015-02-05 F. Hoffmann-La Roche Ag Tnfa-il-17 bispecific antibodies
BR112016002198A2 (pt) * 2013-08-14 2017-09-12 Novartis Ag métodos de tratamento de miosite por corpos de inclusão esporádica
CA2922889A1 (en) 2013-09-17 2015-03-26 Genentech, Inc. Methods of using anti-lgr5 antibodies
KR20160068855A (ko) 2013-10-11 2016-06-15 제넨테크, 인크. Nsp4 억제제 및 사용 방법
BR112016006929A2 (pt) 2013-10-11 2017-09-19 Hoffmann La Roche Anticorpo, ácido nucleico, vetor de expressão, célula hospedeira, métodos de preparação de anticorpo, de tratamento de pacientes e de geração de um anticorpo, composição farmacêutica e uso do anticorpo
RU2016114074A (ru) 2013-10-18 2017-11-23 Дженентек, Инк. Анти-rspo антитела и способы применения
EP3060685B1 (en) 2013-10-23 2019-05-01 F. Hoffmann-La Roche AG Method of predicting the response of an asthma patient to therapy
EP3071181B1 (en) 2013-11-18 2021-03-24 Formycon AG Pharmaceutical composition of an anti-vegf antibody
EP3071237B1 (en) 2013-11-21 2024-06-26 Genmab A/S Antibody-drug conjugate lyophilised formulation
NZ717673A (en) 2013-11-21 2020-02-28 Hoffmann La Roche Anti-alpha-synuclein antibodies and methods of use
KR20160098328A (ko) 2013-12-13 2016-08-18 제넨테크, 인크. 항-cd33 항체 및 면역접합체
HUE047699T2 (hu) 2013-12-17 2020-05-28 Hoffmann La Roche Eljárások rákbetegségek kezelésére PD-1-tengelyhez kötõdõ antagonisták és taxánok alkalmazásával
US20150210772A1 (en) 2013-12-17 2015-07-30 Genentech, Inc. Methods of treating cancer using pd-1 axis binding antagonists and an anti-cd20 antibody
EP3083687A2 (en) 2013-12-17 2016-10-26 F. Hoffmann-La Roche AG Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
CN105899533B (zh) 2013-12-20 2019-10-11 豪夫迈·罗氏有限公司 人源化的抗-Tau(pS422)抗体和使用方法
EP3082847A1 (en) 2013-12-20 2016-10-26 Indiana University Research and Technology Corporation Lipidated incretin receptor ligand human immunoglobulin fc-region fusion polypeptides
TWI728373B (zh) 2013-12-23 2021-05-21 美商建南德克公司 抗體及使用方法
MX2016008191A (es) 2014-01-03 2017-11-16 Hoffmann La Roche Conjugados de toxina polipeptidica-anticuerpo unidos covalentemente.
BR112016012666A2 (pt) 2014-01-03 2017-09-26 Hoffmann La Roche conjugado, anticorpos, formulação farmacêutica e usos de conjugado
JP6476194B2 (ja) 2014-01-03 2019-02-27 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 二重特異性抗ハプテン/抗血液脳関門受容体抗体、それらの複合体、及び血液脳関門シャトルとしてのそれらの使用
RU2694659C2 (ru) 2014-01-06 2019-07-16 Ф. Хоффманн-Ля Рош Аг Одновалентные модули-переносчики через гематоэнцефалический барьер
EP3835318A1 (en) 2014-01-15 2021-06-16 F. Hoffmann-La Roche AG Fc-region variants with modified fcrn- and maintained protein a-binding properties
EP3096797A1 (en) 2014-01-24 2016-11-30 F. Hoffmann-La Roche AG Methods of using anti-steap1 antibodies and immunoconjugates
CN106163548A (zh) 2014-02-08 2016-11-23 健泰科生物技术公司 治疗阿尔茨海默氏病的方法
AU2015213741B2 (en) 2014-02-08 2020-10-08 Genentech, Inc. Methods of treating Alzheimer's Disease
TW201902515A (zh) 2014-02-12 2019-01-16 美商建南德克公司 抗jagged1抗體及使用方法
KR20160124165A (ko) 2014-02-21 2016-10-26 제넨테크, 인크. 항-il-13/il-17 이중특이적 항체 및 그의 용도
WO2015130172A1 (en) 2014-02-28 2015-09-03 Merus B.V. Antibodies that bind egfr and erbb3
US11279770B2 (en) 2014-02-28 2022-03-22 Merus N.V. Antibody that binds ErbB-2 and ErbB-3
US20170107294A1 (en) 2014-03-21 2017-04-20 Nordlandssykehuset Hf Anti-cd14 antibodies and uses thereof
CR20160500A (es) 2014-03-31 2016-12-14 Genentech Inc Anticuerpos anti-ox40 y métodos de uso
RU2689145C2 (ru) 2014-04-16 2019-05-24 Биокон Лтд. Стабильные белковые препараты, содержащие молярный избыток сорбитола
CN105012949A (zh) * 2014-04-28 2015-11-04 上海药明康德新药开发有限公司 重组人抗人TNFα单克隆抗体的制剂
MX2016015162A (es) 2014-05-22 2017-03-03 Genentech Inc Anticuerpos anti - gpc3 e inmunoconjugados.
ES2572919T3 (es) 2014-05-23 2016-06-03 Ares Trading S.A. Composición farmacéutica líquida
JP2017524371A (ja) 2014-05-23 2017-08-31 ジェネンテック, インコーポレイテッド Mitバイオマーカーとその使用方法
ES2607489T3 (es) 2014-05-23 2017-03-31 Ares Trading S.A. Composición farmacéutica líquida
PT2946765T (pt) 2014-05-23 2016-11-10 Ares Trading Sa Composição farmacêutica líquida
MX2016016233A (es) 2014-06-11 2017-03-31 Genentech Inc Anticuerpos anti-lgr5 y sus usos.
US20230190750A1 (en) 2014-06-13 2023-06-22 Genentech, Inc. Methods of treating and preventing cancer drug resistance
EP3161001A2 (en) 2014-06-25 2017-05-03 Novartis AG Antibodies specific for il-17a fused to hyaluronan binding peptide tags
AR100978A1 (es) 2014-06-26 2016-11-16 Hoffmann La Roche LANZADERAS CEREBRALES DE ANTICUERPO HUMANIZADO ANTI-Tau(pS422) Y USOS DE LAS MISMAS
EP3164419A1 (en) 2014-06-26 2017-05-10 F. Hoffmann-La Roche AG Anti-brdu antibodies and methods of use
CN106488775A (zh) 2014-07-11 2017-03-08 基因泰克公司 Notch途径抑制
WO2016011191A1 (en) 2014-07-15 2016-01-21 Forsight Vision4, Inc. Ocular implant delivery device and method
EP3177289A4 (en) 2014-08-08 2018-03-21 Forsight Vision4, Inc. Stable and soluble formulations of receptor tyrosine kinase inhibitors, and methods of preparation thereof
EP3186284B1 (en) 2014-08-28 2022-04-06 BioAtla, Inc. Conditionally active chimeric antigen receptors for modified t-cells
TW201625689A (zh) 2014-09-12 2016-07-16 建南德克公司 抗-b7-h4抗體及免疫結合物
EP3191520B1 (en) 2014-09-12 2020-01-01 Genentech, Inc. Anti-cll-1 antibodies and immunoconjugates
SG10201809668TA (en) 2014-09-12 2018-11-29 Genentech Inc Anti-her2 antibodies and immunoconjugates
US10077318B2 (en) 2014-09-12 2018-09-18 Genentech, Inc. Cysteine engineered antibodies and conjugates
CN107124870A (zh) 2014-09-17 2017-09-01 基因泰克公司 包含抗her2抗体和吡咯并苯并二氮杂*的免疫缀合物
EP3689910A3 (en) 2014-09-23 2020-12-02 F. Hoffmann-La Roche AG Method of using anti-cd79b immunoconjugates
EP3207057A2 (en) 2014-10-16 2017-08-23 F. Hoffmann-La Roche AG Anti-alpha-synuclein antibodies and methods of use
BR112017006591A2 (pt) 2014-11-06 2018-01-16 Hoffmann La Roche polipeptídeo heterodimérico, formulação farmacêutica e uso de um polipeptídeo heterodimérico
WO2016071376A2 (en) 2014-11-06 2016-05-12 F. Hoffmann-La Roche Ag Fc-region variants with modified fcrn-binding and methods of use
WO2016073157A1 (en) 2014-11-06 2016-05-12 Genentech, Inc. Anti-ang2 antibodies and methods of use thereof
EA201791029A1 (ru) 2014-11-10 2017-12-29 Дженентек, Инк. Антитела против интерлейкина-33 и их применение
WO2016077369A1 (en) 2014-11-10 2016-05-19 Genentech, Inc. Animal model for nephropathy and agents for treating the same
SG11201703726XA (en) 2014-11-10 2017-06-29 Forsight Vision4 Inc Expandable drug delivery devices and method of use
US10155820B2 (en) 2014-11-12 2018-12-18 Tracon Pharmaceuticals, Inc. Anti-endoglin antibodies and uses thereof
US9926375B2 (en) 2014-11-12 2018-03-27 Tracon Pharmaceuticals, Inc. Anti-endoglin antibodies and uses thereof
HUE049982T2 (hu) 2014-11-14 2020-11-30 Hoffmann La Roche TNF-családba tartozó ligandum-trimert tartalmazó antigénkötõ molekulák
US20160166685A1 (en) 2014-11-17 2016-06-16 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
EP3221362B1 (en) 2014-11-19 2019-07-24 F.Hoffmann-La Roche Ag Anti-transferrin receptor antibodies and methods of use
US10882920B2 (en) 2014-11-19 2021-01-05 Genentech, Inc. Antibodies against BACE1 and use thereof for neural disease immunotherapy
CN107250158B (zh) 2014-11-19 2022-03-25 基因泰克公司 抗转铁蛋白受体/抗bace1多特异性抗体和使用方法
ES2835823T3 (es) 2014-11-20 2021-06-23 Hoffmann La Roche Politerapia de moléculas de unión a antígeno biespecíficas activadoras de linfocitos T para CD3 y para el receptor de folato 1 (FolR1) y antagonistas de la unión al eje de PD-1
WO2016087416A1 (en) 2014-12-03 2016-06-09 F. Hoffmann-La Roche Ag Multispecific antibodies
EP3227336B1 (en) 2014-12-05 2019-07-03 F.Hoffmann-La Roche Ag Anti-cd79b antibodies and methods of use
CN104922668B (zh) * 2014-12-10 2019-08-23 信达生物制药(苏州)有限公司 一种稳定的抗vegf抗体制剂及其用途
WO2016094566A2 (en) 2014-12-10 2016-06-16 Genentech, Inc. Blood brain barrier receptor antibodies and methods of use
WO2016094881A2 (en) 2014-12-11 2016-06-16 Abbvie Inc. Lrp-8 binding proteins
EP3633371A1 (en) 2014-12-18 2020-04-08 F. Hoffmann-La Roche AG Assay and method for determining cdc eliciting antibodies
LT3233921T (lt) 2014-12-19 2021-12-10 Chugai Seiyaku Kabushiki Kaisha Anti-c5 antikūnai ir panaudojimo būdai
EP3240571A4 (en) * 2014-12-31 2018-06-13 NovelMed Therapeutics, Inc. Formulation of aglycosylated therapeutic antibodies
EP3247723A1 (en) 2015-01-22 2017-11-29 Chugai Seiyaku Kabushiki Kaisha A combination of two or more anti-c5 antibodies and methods of use
JP6602875B2 (ja) 2015-01-26 2019-11-06 マクロジェニクス,インコーポレーテッド Dr5結合ドメインを含む多価分子
CN107206080B (zh) 2015-01-28 2022-07-08 辉瑞公司 稳定的水性抗血管内皮细胞生长因子(vegf)抗体制剂
CN105985435B (zh) 2015-01-30 2019-10-15 嘉和生物药业有限公司 全人源her2抗体的突变抗体及其编码基因和应用
KR102605798B1 (ko) 2015-02-05 2023-11-23 추가이 세이야쿠 가부시키가이샤 이온 농도 의존적 항원 결합 도메인을 포함하는 항체, Fc 영역 개변체, IL-8에 결합하는 항체, 및 그들의 사용
CN107635581A (zh) * 2015-02-13 2018-01-26 赛诺菲 用于单克隆抗体的稳定液体制剂
TWI805046B (zh) 2015-02-27 2023-06-11 日商中外製藥股份有限公司 Il-6受體抗體用於製備醫藥組成物的用途
MX2017011486A (es) 2015-03-16 2018-06-15 Genentech Inc Métodos de detección y cuantificación de il-13 y sus usos en el diagnóstico y tratamiento de enfermedades asociadas a th2.
WO2016146833A1 (en) 2015-03-19 2016-09-22 F. Hoffmann-La Roche Ag Biomarkers for nad(+)-diphthamide adp ribosyltransferase resistance
SI3286315T1 (sl) 2015-04-24 2021-09-30 F. Hoffmann-La Roche Ag Postopek identifikacije bakterij, ki obsegajo vezavne polipeptide
EP3288981A1 (en) 2015-05-01 2018-03-07 Genentech, Inc. Masked anti-cd3 antibodies and methods of use
US11091543B2 (en) 2015-05-07 2021-08-17 Swedish Orphan Biovitrum Ag Methods, compositions and dosing regimens for treating or preventing interferon-gamma related indications
CA2985001A1 (en) 2015-05-07 2016-11-10 Novimmune Sa Methods and compositions for diagnosis and treatment of disorders in patients with elevated levels of cxcl9 and other biomarkers
JP2018520658A (ja) 2015-05-29 2018-08-02 ジェネンテック, インコーポレイテッド ヒト化抗エボラウイルス糖タンパク質抗体及びその使用
WO2016196523A1 (en) * 2015-05-29 2016-12-08 Expression Pathology, Inc. Quantifying her2 protein for optimal cancer therapy
JP2018516933A (ja) 2015-06-02 2018-06-28 ジェネンテック, インコーポレイテッド 抗il−34抗体を使用して神経学的疾患を治療するための組成物及び方法
JP6793134B2 (ja) 2015-06-05 2020-12-02 ジェネンテック, インコーポレイテッド 抗tau抗体及び使用方法
EP3303397A1 (en) 2015-06-08 2018-04-11 H. Hoffnabb-La Roche Ag Methods of treating cancer using anti-ox40 antibodies and pd-1 axis binding antagonists
AU2016274585A1 (en) 2015-06-08 2017-12-14 Genentech, Inc. Methods of treating cancer using anti-OX40 antibodies
TW201710286A (zh) 2015-06-15 2017-03-16 艾伯維有限公司 抗vegf、pdgf及/或其受體之結合蛋白
EP3307780A1 (en) 2015-06-15 2018-04-18 Genentech, Inc. Antibodies and immunoconjugates
TW201718647A (zh) 2015-06-16 2017-06-01 建南德克公司 抗-cll-1抗體及使用方法
EP3916018A1 (en) 2015-06-16 2021-12-01 Genentech, Inc. Anti-cd3 antibodies and methods of use
AR105026A1 (es) 2015-06-16 2017-08-30 Genentech Inc ANTICUERPOS MADURADOS POR AFINIDAD Y HUMANIZADOS PARA FcRH5 Y MÉTODOS PARA SU USO
KR20180018538A (ko) 2015-06-17 2018-02-21 제넨테크, 인크. Pd-1 축 결합 길항제 및 탁산을 사용하여 국소적 진행성 또는 전이성 유방암을 치료하는 방법
AU2016280159A1 (en) 2015-06-17 2017-12-07 Genentech, Inc. Anti-HER2 antibodies and methods of use
KR101808234B1 (ko) 2015-06-23 2017-12-12 (주)알테오젠 IgG Fc 도메인을 가지는 융합 단백질의 안정한 액상 제제
LT3313879T (lt) 2015-06-24 2022-03-25 F. Hoffmann-La Roche Ag Antikūnai prieš transferino receptorių su pritaikytu giminingumu
WO2016207245A1 (en) 2015-06-24 2016-12-29 F. Hoffmann-La Roche Ag Humanized anti-tau(ps422) antibodies and methods of use
TWI797060B (zh) 2015-08-04 2023-04-01 美商再生元醫藥公司 補充牛磺酸之細胞培養基及用法
US10772956B2 (en) 2015-08-18 2020-09-15 Regeneron Pharmaceuticals, Inc. Methods for reducing or eliminating the need for lipoprotein apheresis in patients with hyperlipidemia by administering alirocumab
JP6720293B2 (ja) * 2015-08-19 2020-07-08 アストラゼネカ・アクチエボラーグAstrazeneca Aktiebolag 安定な抗ifnar1製剤
WO2017040342A1 (en) 2015-08-28 2017-03-09 Genentech, Inc. Anti-hypusine antibodies and uses thereof
TWI751300B (zh) 2015-09-18 2022-01-01 日商中外製藥股份有限公司 Il-8 結合抗體及其用途
SG10201911226QA (en) 2015-09-23 2020-01-30 Genentech Inc Optimized variants of anti-vegf antibodies
AU2016326738B2 (en) 2015-09-24 2023-08-31 Abvitro Llc HIV antibody compositions and methods of use
CA2997290A1 (en) 2015-09-24 2017-03-30 Genentech, Inc. Methods for the treatment of epilepsy
JP6764474B2 (ja) 2015-09-25 2020-09-30 ジェネンテック, インコーポレイテッド 抗tigit抗体及び使用方法
BR112018005349A2 (pt) * 2015-09-28 2018-10-09 Suzhou Suncadia Biopharmaceuticals Co., Ltd. preparação farmacêutica de anticorpo anti-pd-1 estável e sua aplicação em medicamentos
AR106188A1 (es) 2015-10-01 2017-12-20 Hoffmann La Roche Anticuerpos anti-cd19 humano humanizados y métodos de utilización
TWI819458B (zh) 2015-10-02 2023-10-21 瑞士商赫孚孟拉羅股份公司 雙特異性抗‐人類cd20/人類轉鐵蛋白受體抗體及使用方法
AR106189A1 (es) 2015-10-02 2017-12-20 Hoffmann La Roche ANTICUERPOS BIESPECÍFICOS CONTRA EL A-b HUMANO Y EL RECEPTOR DE TRANSFERRINA HUMANO Y MÉTODOS DE USO
MA43345A (fr) 2015-10-02 2018-08-08 Hoffmann La Roche Conjugués anticorps-médicaments de pyrrolobenzodiazépine et méthodes d'utilisation
EP3150636A1 (en) 2015-10-02 2017-04-05 F. Hoffmann-La Roche AG Tetravalent multispecific antibodies
WO2017055404A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Bispecific antibodies specific for pd1 and tim3
EP3356403A2 (en) 2015-10-02 2018-08-08 H. Hoffnabb-La Roche Ag Bispecific antibodies specific for a costimulatory tnf receptor
EP3356404B1 (en) 2015-10-02 2021-08-18 F. Hoffmann-La Roche AG Anti-pd1 antibodies and methods of use
MX2018004157A (es) 2015-10-07 2019-04-01 F Hoffmann ­La Roche Ag Anticuerpos biespecificos con tetravalencia para un receptor de fnt coestimulador.
MA45326A (fr) 2015-10-20 2018-08-29 Genentech Inc Conjugués calichéamicine-anticorps-médicament et procédés d'utilisation
CN108602888B (zh) 2015-10-23 2022-10-04 美勒斯公司 抑制癌症生长的结合分子
MA44334A (fr) 2015-10-29 2018-09-05 Novartis Ag Conjugués d'anticorps comprenant un agoniste du récepteur de type toll
EP3184547A1 (en) 2015-10-29 2017-06-28 F. Hoffmann-La Roche AG Anti-tpbg antibodies and methods of use
CN115925962A (zh) 2015-10-30 2023-04-07 豪夫迈·罗氏有限公司 铰链修饰的抗体片段和其制备方法
CN108289951A (zh) 2015-10-30 2018-07-17 豪夫迈·罗氏有限公司 抗-因子d抗体和缀合物
EP3371217A1 (en) 2015-11-08 2018-09-12 H. Hoffnabb-La Roche Ag Methods of screening for multispecific antibodies
WO2017083525A1 (en) 2015-11-11 2017-05-18 Opi Vi- Ip Holdco Llc Composition and methods for anti-tnfr2 antibodies
CN108430405B (zh) 2015-11-20 2021-04-13 弗赛特影像4股份有限公司 用于缓释药物递送装置的多孔结构
TWI747936B (zh) 2015-12-18 2021-12-01 日商中外製藥股份有限公司 抗c5抗體及使用方法
CA3006529A1 (en) 2016-01-08 2017-07-13 F. Hoffmann-La Roche Ag Methods of treating cea-positive cancers using pd-1 axis binding antagonists and anti-cea/anti-cd3 bispecific antibodies
IL260218B2 (en) 2016-01-11 2023-04-01 Novartis Ag Humanized monoclonal antibodies that elicit an immune response against interleukin-2, and their fusion proteins
SG11201805534TA (en) * 2016-01-13 2018-07-30 Genmab As Formulation for antibody and drug conjugate thereof
CN108602883A (zh) 2016-01-20 2018-09-28 基因泰克公司 用于阿尔茨海默氏病的高剂量治疗
JP7109369B2 (ja) 2016-02-24 2022-07-29 バイオマリン ファーマシューティカル インコーポレイテッド ターゲティングされた治療用リソソーム酵素融合タンパク質、関連する製剤、およびその使用
CN114191428A (zh) * 2016-03-02 2022-03-18 卫材研究发展管理有限公司 基于艾日布林的抗体-药物偶联物和使用方法
EP4112641A1 (en) 2016-03-15 2023-01-04 Chugai Seiyaku Kabushiki Kaisha Methods of treating cancers using pd-1 axis binding antagonists and anti-gpc3 antibodies
EP3231813A1 (en) 2016-03-29 2017-10-18 F. Hoffmann-La Roche AG Trimeric costimulatory tnf family ligand-containing antigen binding molecules
WO2017176886A1 (en) 2016-04-05 2017-10-12 Forsight Vision4, Inc. Implantable ocular drug delivery devices
US20170319688A1 (en) 2016-04-14 2017-11-09 Genentech, Inc. Anti-rspo3 antibodies and methods of use
UA123323C2 (uk) 2016-05-02 2021-03-17 Ф. Хоффманн-Ля Рош Аг Димерний злитий поліпептид
EP3455254B1 (en) 2016-05-11 2021-07-07 F. Hoffmann-La Roche AG Antigen binding molecules comprising a tnf family ligand trimer and a tenascin binding moiety
CN109071640B (zh) 2016-05-11 2022-10-18 豪夫迈·罗氏有限公司 经修饰抗生腱蛋白抗体及使用方法
EP3243836A1 (en) 2016-05-11 2017-11-15 F. Hoffmann-La Roche AG C-terminally fused tnf family ligand trimer-containing antigen binding molecules
EP3243832A1 (en) 2016-05-13 2017-11-15 F. Hoffmann-La Roche AG Antigen binding molecules comprising a tnf family ligand trimer and pd1 binding moiety
US11254742B2 (en) 2016-05-13 2022-02-22 Bioatla, Inc. Anti-Ror2 antibodies, antibody fragments, their immunoconjugates and uses thereof
IL262996B2 (en) 2016-06-06 2024-03-01 Hoffmann La Roche Fusion proteins for ophthalmology with increased grip in the eye
EP3464280B1 (en) 2016-06-06 2021-10-06 F. Hoffmann-La Roche AG Silvestrol antibody-drug conjugates and methods of use
WO2017223405A1 (en) 2016-06-24 2017-12-28 Genentech, Inc. Anti-polyubiquitin multispecific antibodies
EP3479819B1 (en) 2016-06-30 2024-01-24 Celltrion Inc. Stable liquid pharmaceutical preparation
CN109415435B (zh) 2016-07-04 2024-01-16 豪夫迈·罗氏有限公司 新型抗体形式
JP6527643B2 (ja) 2016-08-05 2019-06-05 中外製薬株式会社 Il−8関連疾患の治療用又は予防用組成物
EP3497129A1 (en) 2016-08-08 2019-06-19 H. Hoffnabb-La Roche Ag Therapeutic and diagnostic methods for cancer
SG10201607778XA (en) 2016-09-16 2018-04-27 Chugai Pharmaceutical Co Ltd Anti-Dengue Virus Antibodies, Polypeptides Containing Variant Fc Regions, And Methods Of Use
AU2017330405B2 (en) 2016-09-23 2024-02-01 Genentech, Inc. Uses of IL-13 antagonists for treating atopic dermatitis
CN109844536B (zh) 2016-09-26 2023-04-14 豪夫迈·罗氏有限公司 预测对pd-1轴抑制剂的响应
CN110267678A (zh) 2016-10-29 2019-09-20 霍夫曼-拉罗奇有限公司 抗mic抗体和使用方法
TWI791471B (zh) 2016-11-15 2023-02-11 美商建南德克公司 用於用抗cd20/抗cd3雙特異性抗體進行治療之給藥
TW201829463A (zh) 2016-11-18 2018-08-16 瑞士商赫孚孟拉羅股份公司 抗hla-g抗體及其用途
JOP20190100A1 (ar) 2016-11-19 2019-05-01 Potenza Therapeutics Inc بروتينات ربط مولد ضد مضاد لـ gitr وطرق استخدامها
EP3468991A1 (en) 2016-11-21 2019-04-17 cureab GmbH Anti-gp73 antibodies and immunoconjugates
JP7116059B2 (ja) 2016-11-21 2022-08-09 ジャスト-エヴォテック バイオロジックス、インコーポレイテッド アフリベルセプト製剤及びその使用
AR110321A1 (es) 2016-12-07 2019-03-20 Genentech Inc Anticuerpos antitau y métodos de uso
JP2020511937A (ja) 2016-12-07 2020-04-23 ジェネンテック, インコーポレイテッド 抗tau抗体及び使用方法
AU2017375946A1 (en) 2016-12-12 2019-06-20 Genentech, Inc. Methods of treating cancer using anti-PD-l1 antibodies and antiandrogens
CA3045931A1 (en) 2016-12-14 2018-06-21 Progenity, Inc. Treatment of a disease of the gastrointestinal tract with an integrin inhibitor
KR102616436B1 (ko) 2016-12-14 2023-12-27 비오라 쎄라퓨틱스, 인크. Tnf 저해제로의 위장관 질환의 치료
CN117045784A (zh) 2016-12-14 2023-11-14 比奥拉治疗股份有限公司 使用利用可摄入装置释放的il-12/il-23抑制剂治疗胃肠道疾病
EP3554541B1 (en) 2016-12-14 2023-06-07 Biora Therapeutics, Inc. Treatment of a disease of the gastrointestinal tract with a chemokine/chemokine receptor inhibitor
WO2018112223A1 (en) 2016-12-14 2018-06-21 Progenity Inc. Treatment of a disease of the gastrointestinal tract with a tlr modulator
WO2018112237A1 (en) 2016-12-14 2018-06-21 Progenity Inc. Treatment of a disease of the gastrointestinal tract with an il-6r inhibitor
WO2018112235A1 (en) 2016-12-14 2018-06-21 Progenity Inc. Treatment of a disease of the gastrointestinal tract with a smad7 inhibitor
WO2018112255A1 (en) 2016-12-14 2018-06-21 Progenity Inc. Treatment of a disease of the gastrointestinal tract with an immunosuppressant
EP4190318A1 (en) 2016-12-14 2023-06-07 Biora Therapeutics, Inc. Treatment of a disease of the gastrointestinal tract with a jak inhibitor and devices
EP3554343A1 (en) 2016-12-14 2019-10-23 Progenity, Inc. Treatment of a disease of the gastrointestinal tract with an il-1 inhibitor
EP3554542A1 (en) 2016-12-19 2019-10-23 H. Hoffnabb-La Roche Ag Combination therapy with targeted 4-1bb (cd137) agonists
PL3559034T3 (pl) 2016-12-20 2021-04-19 F. Hoffmann-La Roche Ag Terapia skojarzona dwuswoistymi przeciwciałami anty-CD20/anty-CD3 i agonistami 4-1BB (CD137)
AU2017381657B2 (en) 2016-12-21 2020-07-23 F. Hoffmann-La Roche Ag Method for in vitro glycoengineering of antibodies
CA3044920C (en) 2016-12-21 2022-06-28 Roberto Falkenstein In vitro glycoengineering of antibodies
CA3043158A1 (en) 2016-12-21 2018-06-28 F. Hoffmann-La Roche Ag Re-use of enzymes in in vitro glycoengineering of antibodies
CN110049778A (zh) 2016-12-22 2019-07-23 豪夫迈·罗氏有限公司 减少冻干多肽重构时间的方法和制剂
JOP20190134A1 (ar) 2016-12-23 2019-06-02 Potenza Therapeutics Inc بروتينات رابطة لمولد ضد مضادة لنيوروبيلين وطرق استخدامها
CN108239150A (zh) 2016-12-24 2018-07-03 信达生物制药(苏州)有限公司 抗pcsk9抗体及其用途
TW201829469A (zh) 2017-01-03 2018-08-16 瑞士商赫孚孟拉羅股份公司 包含抗4-1bb純系20h4.9之雙特異性抗原結合分子
AR110873A1 (es) 2017-02-10 2019-05-08 Genentech Inc Anticuerpos contra triptasa, composiciones de estos y usos de estos
CA3056248A1 (en) 2017-03-22 2018-09-27 Genentech, Inc. Optimized antibody compositions for treatment of ocular disorders
CN108623686A (zh) 2017-03-25 2018-10-09 信达生物制药(苏州)有限公司 抗ox40抗体及其用途
JP2020515543A (ja) 2017-03-28 2020-05-28 ジェネンテック, インコーポレイテッド 神経変性疾患の治療方法
CN110573528B (zh) 2017-03-29 2023-06-09 豪夫迈·罗氏有限公司 针对共刺激性tnf受体的双特异性抗原结合分子
WO2018178074A1 (en) 2017-03-29 2018-10-04 F. Hoffmann-La Roche Ag Trimeric antigen binding molecules specific for a costimulatory tnf receptor
EP3601346A1 (en) 2017-03-29 2020-02-05 H. Hoffnabb-La Roche Ag Bispecific antigen binding molecule for a costimulatory tnf receptor
EP3600249A1 (en) 2017-03-30 2020-02-05 Progenity Inc. Treatment of a disease of the gastrointestinal tract with a chst15 inhibitor
WO2018183931A1 (en) 2017-03-30 2018-10-04 Progenity Inc. Treatment of a disease of the gastrointestinal tract with il-10 or an il-10 agonist
WO2018183941A2 (en) 2017-03-30 2018-10-04 Progenity Inc. Treatment of a disease of the gastrointestinal tract with live biotherapeutics
WO2018183932A1 (en) 2017-03-30 2018-10-04 Progenity Inc. Treatment of a disease of the gastrointestinal tract with a il-13 inhibitor
JOP20190203A1 (ar) 2017-03-30 2019-09-03 Potenza Therapeutics Inc بروتينات رابطة لمولد ضد مضادة لـ tigit وطرق استخدامها
EP3600416B1 (en) 2017-03-30 2023-06-07 Biora Therapeutics, Inc. Treatment of a disease of the gastrointestinal tract with an immune modulatory agent released using an ingestible device
AU2018246873B2 (en) 2017-03-31 2021-05-06 Merus N.V. ErbB-2 and ErbB3 binding bispecific antibodies for use in the treatment f cells that have an NRG1 fusion gene
EP3603669B1 (en) 2017-03-31 2024-06-19 Meiji Seika Pharma Co., Ltd. Aqueous formulation, aqueous formulation in injector, antibody protein disaggregating agent, and antibody protein disaggregation method
MA49039A (fr) 2017-04-04 2020-02-12 Hoffmann La Roche Nouvelles molécules bispécifiques de liaison à l'antigène capables de se lier spécifiquement à cd40 et à fap
EP3606954B1 (en) 2017-04-05 2022-07-20 F. Hoffmann-La Roche AG Anti-lag3 antibodies
SG11201909154SA (en) 2017-04-05 2019-10-30 Hoffmann La Roche Bispecific antibodies specifically binding to pd1 and lag3
CN108686204A (zh) * 2017-04-07 2018-10-23 浙江海正药业股份有限公司 包含组氨酸缓冲体系的英夫利西单抗组合物
CN108686205B (zh) * 2017-04-07 2021-12-10 海正生物制药有限公司 英夫利西单抗冻干制剂
KR20190136076A (ko) 2017-04-13 2019-12-09 에프. 호프만-라 로슈 아게 암 치료 방법에 사용하기 위한 인터루킨-2 면역접합체, cd40 작용제 및 임의적인 pd-1 축 결합 길항제
TW201839400A (zh) 2017-04-14 2018-11-01 美商建南德克公司 用於癌症之診斷及治療方法
MX2019012419A (es) 2017-04-21 2019-12-05 Genentech Inc Uso de antagonistas de klk5 para el tratamiento de una enfermedad.
CN110799541A (zh) 2017-04-27 2020-02-14 特沙诺有限公司 针对淋巴细胞活化基因-3(lag-3)的抗体药剂及其用途
AR111651A1 (es) 2017-04-28 2019-08-07 Novartis Ag Conjugados de anticuerpos que comprenden agonistas del receptor de tipo toll y terapias de combinación
US11851486B2 (en) 2017-05-02 2023-12-26 National Center Of Neurology And Psychiatry Method for predicting and evaluating therapeutic effect in diseases related to IL-6 and neutrophils
TWI797124B (zh) 2017-05-05 2023-04-01 香港商安立璽榮生醫(香港)有限公司 抗干擾素-γ之抗體及其應用
CA3063324A1 (en) 2017-05-16 2018-11-22 Bhami's Research Laboratory, Pvt. Ltd. High concentration protein formulations with reduced viscosity
WO2018210898A1 (en) 2017-05-18 2018-11-22 F. Hoffmann-La Roche Ag Reduction of application-related side reaction of a therapeutic antibody
WO2018220100A1 (en) 2017-06-02 2018-12-06 F. Hoffmann-La Roche Ag Administration routes for immune agonists
EP3418302A1 (en) 2017-06-19 2018-12-26 F. Hoffmann-La Roche AG Administration routes for immune agonists
PL3658589T3 (pl) 2017-07-26 2024-03-18 Forty Seven, Inc. Przeciwciała anty-sirp-alfa i powiązane sposoby
SG11202001050PA (en) 2017-08-09 2020-03-30 Merus Nv Antibodies that bind egfr and cmet
MX2020000903A (es) 2017-08-11 2020-07-22 Genentech Inc Anticuerpos anti-cd8 y usos de los mismos.
US20200306516A1 (en) 2017-08-14 2020-10-01 Progenity, Inc. Treatment of a disease of the gastrointestinal tract with glatiramer or a pharmaceutically acceptable salt thereof
CN109422811A (zh) 2017-08-29 2019-03-05 信达生物制药(苏州)有限公司 抗cd47抗体及其用途
JP7382922B2 (ja) 2017-09-20 2023-11-17 中外製薬株式会社 Pd-1系結合アンタゴニストおよびgpc3標的化剤を使用する併用療法のための投与レジメン
CA3071236A1 (en) 2017-09-29 2019-04-04 Chugai Seiyaku Kabushiki Kaisha Multispecific antigen-binding molecule having blood coagulation factor viii (fviii) cofactor function-substituting activity, and pharmaceutical formulation containing said molecule as active ingredient
JP6851549B2 (ja) 2017-10-16 2021-03-31 エーザイ・アール・アンド・ディー・マネジメント株式会社 抗タウ抗体及びその使用
BR112020007736A2 (pt) 2017-10-30 2020-10-20 F. Hoffmann-La Roche Ag composição e método de tratamento
AU2018359506A1 (en) 2017-11-01 2020-04-23 F. Hoffmann-La Roche Ag Combination therapy with targeted OX40 agonists
EP3703746A1 (en) 2017-11-01 2020-09-09 F. Hoffmann-La Roche AG Novel tnf family ligand trimer-containing antigen binding molecules
KR102559706B1 (ko) 2017-11-01 2023-07-25 에프. 호프만-라 로슈 아게 Trifab-콘톨스바디
US20210324108A1 (en) 2017-11-01 2021-10-21 Hoffmann-La Roche Inc. Bispecific 2+1 contorsbodies
WO2019086394A1 (en) 2017-11-01 2019-05-09 F. Hoffmann-La Roche Ag The compbody - a multivalent target binder
WO2019103906A1 (en) 2017-11-21 2019-05-31 Forsight Vision4, Inc. Fluid exchange apparatus for expandable port delivery system and methods of use
JP2021504482A (ja) * 2017-11-30 2021-02-15 バイオ−テラ ソリュ−ションズ,エルティーディー. Il‐6関連疾患を治療するためのヒト化抗体の液体製剤
EP3502140A1 (en) 2017-12-21 2019-06-26 F. Hoffmann-La Roche AG Combination therapy of tumor targeted icos agonists with t-cell bispecific molecules
US20190211098A1 (en) 2017-12-22 2019-07-11 Genentech, Inc. Use of pilra binding agents for treatment of a disease
WO2019129137A1 (zh) 2017-12-27 2019-07-04 信达生物制药(苏州)有限公司 抗lag-3抗体及其用途
WO2019129136A1 (zh) 2017-12-27 2019-07-04 信达生物制药(苏州)有限公司 抗pd-l1抗体及其用途
CN109970857B (zh) 2017-12-27 2022-09-30 信达生物制药(苏州)有限公司 抗pd-l1抗体及其用途
CN111511400A (zh) 2017-12-29 2020-08-07 豪夫迈·罗氏有限公司 抗vegf抗体及其使用方法
JP7426724B2 (ja) 2018-01-05 2024-02-02 エイシー イミューン ソシエテ アノニム ミスフォールドされたtdp-43結合分子
CA3088649A1 (en) 2018-01-16 2019-07-25 Lakepharma, Inc. Bispecific antibody that binds cd3 and another target
KR20200125590A (ko) 2018-01-26 2020-11-04 제넨테크, 인크. 조성물 및 사용 방법
MA51676A (fr) 2018-01-26 2021-05-05 Hoffmann La Roche Protéines de fusion il-22 fc et procédés d'utilisation
US20210031012A1 (en) 2018-01-26 2021-02-04 Progenity, Inc. Treatment of a disease of the gastrointestinal tract with a pde4 inhibitor
AU2019214183B2 (en) 2018-02-01 2022-04-07 Innovent Biologics (Suzhou) Co., Ltd. Fully human anti-B cell maturation antigen (BCMA) single chain variable fragment, and application thereof
WO2019153200A1 (zh) 2018-02-08 2019-08-15 北京韩美药品有限公司 抗pd-1/抗her2天然抗体结构样异源二聚体形式双特异抗体及其制备
WO2019158645A1 (en) 2018-02-14 2019-08-22 Abba Therapeutics Ag Anti-human pd-l2 antibodies
MA51907A (fr) 2018-02-21 2021-05-26 Hoffmann La Roche Posologie pour un traitement avec des protéines de fusion il-22 fc
CN111836831A (zh) 2018-02-26 2020-10-27 豪夫迈·罗氏有限公司 用于抗tigit拮抗剂抗体和抗pd-l1拮抗剂抗体治疗的给药
CN111655731A (zh) 2018-03-13 2020-09-11 豪夫迈·罗氏有限公司 用靶向性4-1bb(cd137)激动剂的组合疗法
AU2019236372B2 (en) 2018-03-13 2024-06-20 F. Hoffmann-La Roche Ag Therapeutic combination of 4-1 BB agonists with anti-CD20 antibodies
US20200040103A1 (en) 2018-03-14 2020-02-06 Genentech, Inc. Anti-klk5 antibodies and methods of use
SG11202009010RA (en) 2018-03-15 2020-10-29 Chugai Pharmaceutical Co Ltd Anti-dengue virus antibodies having cross-reactivity to zika virus and methods of use
JP7104458B2 (ja) 2018-04-02 2022-07-21 上海博威生物医薬有限公司 リンパ球活性化遺伝子-3(lag-3)結合抗体およびその使用
WO2019195313A1 (en) * 2018-04-04 2019-10-10 Pollack Aryeh L Anti-vegf antagonist and pedf agonist constructs and uses thereof
PE20210652A1 (es) 2018-04-13 2021-03-26 Hoffmann La Roche Moleculas de union a antigeno dirigidas a her2 que comprenden 4-1bbl
AR115052A1 (es) 2018-04-18 2020-11-25 Hoffmann La Roche Anticuerpos multiespecíficos y utilización de los mismos
AR114789A1 (es) 2018-04-18 2020-10-14 Hoffmann La Roche Anticuerpos anti-hla-g y uso de los mismos
EP3560945A1 (en) 2018-04-27 2019-10-30 F. Hoffmann-La Roche AG Methods for purification of polypeptides using polysorbates
CN112739323A (zh) 2018-05-10 2021-04-30 瑞泽恩制药公司 含有高浓度vegf受体融合蛋白的制剂
EP3805400A4 (en) 2018-06-04 2022-06-29 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule showing changed half-life in cytoplasm
EP3810085A1 (en) 2018-06-20 2021-04-28 Progenity, Inc. Treatment of a disease of the gastrointestinal tract with an integrin inhibitor
WO2019246273A1 (en) 2018-06-20 2019-12-26 Progenity, Inc. Treatment of a disease of the gastrointestinal tract with a jak or other kinase inhibitor
EP3810095A1 (en) 2018-06-20 2021-04-28 Progenity, Inc. Treatment of a disease of the gastrointestinal tract with a tnf inhibitor
WO2019246312A1 (en) 2018-06-20 2019-12-26 Progenity, Inc. Treatment of a disease of the gastrointestinal tract with an immunomodulator
US20230009902A1 (en) 2018-06-20 2023-01-12 Progenity, Inc. Treatment of a disease or condition in a tissue orginating from the endoderm
US20210363233A1 (en) 2018-06-20 2021-11-25 Progenity, Inc. Treatment of a disease of the gastrointestinal tract with an il-12/il-23 inhibitor
US20200030443A1 (en) 2018-06-23 2020-01-30 Genentech, Inc. Methods of treating lung cancer with a pd-1 axis binding antagonist, a platinum agent, and a topoisomerase ii inhibitor
CN112424228A (zh) 2018-07-04 2021-02-26 豪夫迈·罗氏有限公司 新型双特异性激动性4-1bb抗原结合分子
WO2020018789A1 (en) 2018-07-18 2020-01-23 Genentech, Inc. Methods of treating lung cancer with a pd-1 axis binding antagonist, an antimetabolite, and a platinum agent
KR20200010103A (ko) * 2018-07-19 2020-01-30 (주)셀트리온 안정한 액체 약제학적 제제
MX2021000745A (es) 2018-07-20 2021-03-26 Surface Oncology Inc Composiciones anti-cd112r y metodos.
SG11202100746WA (en) 2018-07-25 2021-03-30 Innovent Biologics Suzhou Co Ltd Anti-tigit antibody and use thereof
SG11202101152QA (en) 2018-08-03 2021-03-30 Chugai Pharmaceutical Co Ltd Antigen-binding molecule containing two antigen-binding domains that are linked to each other
CN112839960A (zh) 2018-08-10 2021-05-25 中外制药株式会社 抗cd137抗原结合分子及其应用
TW202021618A (zh) 2018-08-17 2020-06-16 美商23與我有限公司 抗il1rap抗體及其使用方法
JP7475336B2 (ja) 2018-09-21 2024-04-26 ジェネンテック, インコーポレイテッド トリプルネガティブ乳癌のための診断方法
TWI791894B (zh) 2018-09-21 2023-02-11 大陸商信達生物製藥(蘇州)有限公司 新型白介素2及其用途
WO2020057645A1 (zh) 2018-09-21 2020-03-26 信达生物制药(苏州)有限公司 新型白介素2及其用途
CN112654641A (zh) 2018-10-01 2021-04-13 豪夫迈·罗氏有限公司 具有与cd40的三价结合的双特异性抗原结合分子
JP7221379B2 (ja) 2018-10-01 2023-02-13 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト 抗fapクローン212を含む二重特異性抗原結合分子
WO2020081493A1 (en) 2018-10-16 2020-04-23 Molecular Templates, Inc. Pd-l1 binding proteins
BR112021007946A2 (pt) * 2018-10-29 2021-08-03 F. Hoffmann-La Roche Ag formulação de anticorpo
WO2020108530A1 (zh) 2018-11-27 2020-06-04 信达生物制药(苏州)有限公司 抗IL-23p19抗体及其用途
KR20210100656A (ko) 2018-12-05 2021-08-17 제넨테크, 인크. 암 면역요법을 위한 진단 방법 및 조성물
MX2021006573A (es) 2018-12-06 2021-07-15 Genentech Inc Tratamiento conjunto de linfoma difuso de linfocitos b grandes que comprende un inmunoconjugado anti-cd79b, un agente alquilante y un anticuerpo anti-cd20.
EP3898667A2 (en) 2018-12-20 2021-10-27 F. Hoffmann-La Roche AG Modified antibody fcs and methods of use
AR117327A1 (es) 2018-12-20 2021-07-28 23Andme Inc Anticuerpos anti-cd96 y métodos de uso de estos
CA3120474A1 (en) 2018-12-21 2020-06-25 23Andme, Inc. Anti-il-36 antibodies and methods of use thereof
WO2020127618A1 (en) 2018-12-21 2020-06-25 F. Hoffmann-La Roche Ag Tumor-targeted agonistic cd28 antigen binding molecules
TW202030204A (zh) 2018-12-21 2020-08-16 瑞士商赫孚孟拉羅股份公司 靶向腫瘤之超促效cd28抗原結合分子
AU2019406712A1 (en) 2018-12-21 2021-06-17 F. Hoffmann-La Roche Ag Antibody that binds to VEGF and IL-1beta and methods of use
CN111375057B (zh) * 2018-12-28 2024-06-21 上海复宏汉霖生物技术股份有限公司 一种包含抗Her2单克隆抗体的药物配制剂
JP2022515473A (ja) 2018-12-28 2022-02-18 エフ.ホフマン-ラ ロシュ アーゲー 免疫応答が増幅された患者における治療的使用のためのペプチド-mhc-i-抗体融合タンパク質
TW202043272A (zh) 2019-01-14 2020-12-01 美商建南德克公司 使用pd-1軸結合拮抗劑及rna疫苗治療癌症之方法
WO2020154405A2 (en) 2019-01-22 2020-07-30 Genentech, Inc. Immunoglobulin a antibodies and methods of production and use
EP3915581A4 (en) 2019-01-24 2023-03-22 Chugai Seiyaku Kabushiki Kaisha NOVEL CANCER ANTIGENS AND ANTIBODIES OF THESE ANTIGENS
TWI756621B (zh) 2019-01-25 2022-03-01 大陸商信達生物製藥(蘇州)有限公司 新型雙特異性抗體分子以及同時結合pd-l1和lag-3的雙特異性抗體
EP3931220A1 (en) 2019-02-27 2022-01-05 F. Hoffmann-La Roche AG Dosing for treatment with anti-tigit and anti-cd20 or anti-cd38 antibodies
CN111686247B (zh) * 2019-03-13 2022-07-29 苏州康乃德生物医药有限公司 包含人白介素-4受体α的抗体的液体组合物
WO2020186176A1 (en) 2019-03-14 2020-09-17 Genentech, Inc. Treatment of cancer with her2xcd3 bispecific antibodies in combination with anti-her2 mab
WO2020208049A1 (en) 2019-04-12 2020-10-15 F. Hoffmann-La Roche Ag Bispecific antigen binding molecules comprising lipocalin muteins
AU2020258480A1 (en) 2019-04-19 2021-10-21 Genentech, Inc. Anti-mertk antibodies and their methods of use
CN114269376A (zh) 2019-05-03 2022-04-01 豪夫迈·罗氏有限公司 用抗pd-l1抗体治疗癌症的方法
MX2021013825A (es) 2019-05-14 2022-01-18 Genentech Inc Procedimientos de uso de inmunoconjugados anti-cd79b para tratar el linfoma folicular.
BR112021023487A2 (pt) 2019-05-23 2022-02-08 Ac Immune Sa Moléculas de ligação anti-tdp-43 e usos das mesmas
TW202115124A (zh) 2019-06-26 2021-04-16 瑞士商赫孚孟拉羅股份公司 結合至cea之新穎抗原結合分子
WO2020260326A1 (en) 2019-06-27 2020-12-30 F. Hoffmann-La Roche Ag Novel icos antibodies and tumor-targeted antigen binding molecules comprising them
TW202116805A (zh) 2019-07-10 2021-05-01 日商中外製藥股份有限公司 Claudin-6結合分子以及其用途
AR119382A1 (es) 2019-07-12 2021-12-15 Hoffmann La Roche Anticuerpos de pre-direccionamiento y métodos de uso
WO2021021924A1 (en) * 2019-07-29 2021-02-04 Huang Cai Gu Formulation of antibody based drugs for treating lung cancer by inhalation
JP2022546454A (ja) * 2019-08-30 2022-11-04 ドラゴンフライ セラピューティクス, インコーポレイテッド がん処置のためのher2、nkg2dおよびcd16に結合する多重特異性結合タンパク質の医薬製剤および投薬量レジメン
AR119887A1 (es) 2019-09-04 2022-01-19 Genentech Inc Agentes de unión a cd8 y sus usos
CA3150999A1 (en) 2019-09-18 2021-03-25 James Thomas Koerber Anti-klk7 antibodies, anti-klk5 antibodies, multispecific anti-klk5/klk7 antibodies, and methods of use
PE20221110A1 (es) 2019-09-27 2022-07-11 Genentech Inc Administracion de dosis para tratamiento con anticuerpos antagonistas anti-tigit y anti-pd-l1
EP4045090A1 (en) 2019-10-18 2022-08-24 Genentech, Inc. Methods of using anti-cd79b immunoconjugates to treat diffuse large b-cell lymphoma
CN118178645A (zh) 2019-10-18 2024-06-14 四十七公司 用于治疗骨髓增生异常综合征和急性髓系白血病的联合疗法
WO2021079337A1 (en) * 2019-10-23 2021-04-29 Cadila Healthcare Limited Pharmaceutical formulation of anti-her2 antibody and preparation thereof
CN115066613A (zh) 2019-11-06 2022-09-16 基因泰克公司 用于治疗血液癌症的诊断和治疗方法
KR20220113790A (ko) 2019-12-13 2022-08-16 제넨테크, 인크. 항-ly6g6d 항체 및 사용 방법
KR20220113791A (ko) 2019-12-18 2022-08-16 에프. 호프만-라 로슈 아게 이중특이적 항-ccl2 항체
US20230058982A1 (en) 2019-12-27 2023-02-23 Chugai Seiyaku Kabushiki Kaisha Anti-ctla-4 antibody and use thereof
EP4087866A1 (en) 2020-01-09 2022-11-16 F. Hoffmann-La Roche AG New 4-1bbl trimer-containing antigen binding molecules
CN110818795B (zh) 2020-01-10 2020-04-24 上海复宏汉霖生物技术股份有限公司 抗tigit抗体和使用方法
WO2021194481A1 (en) 2020-03-24 2021-09-30 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
WO2022050954A1 (en) 2020-09-04 2022-03-10 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
MX2022009391A (es) 2020-01-31 2022-09-26 Genentech Inc Metodos para inducir linfocitos t especificos para neoepitopo con un antagonista de union al eje de pd-1 y una vacuna de arn.
AU2021218927A1 (en) 2020-02-10 2022-09-22 Shanghai Escugen Biotechnology Co., Ltd. Claudin 18.2 antibody and use thereof
EP4105237A4 (en) 2020-02-10 2024-03-27 Shanghai Escugen Biotechnology Co., Ltd. ANTI-CLDN18.2 ANTIBODIES AND ITS USE
TW202144395A (zh) 2020-02-12 2021-12-01 日商中外製藥股份有限公司 用於癌症之治療的抗cd137抗原結合分子
WO2021177980A1 (en) 2020-03-06 2021-09-10 Genentech, Inc. Combination therapy for cancer comprising pd-1 axis binding antagonist and il6 antagonist
WO2021181317A1 (en) * 2020-03-11 2021-09-16 Lupin Limited Monoclonal antibody pharmaceutical composition
IL296256A (en) 2020-03-13 2022-11-01 Genentech Inc Antibodies against interleukin-33 and uses thereof
WO2021185362A1 (zh) 2020-03-19 2021-09-23 信达生物制药(苏州)有限公司 白介素2突变体及其用途
CN117551194A (zh) 2020-03-19 2024-02-13 基因泰克公司 同种型选择性抗TGF-β抗体及使用方法
TW202144419A (zh) 2020-03-24 2021-12-01 美商建南德克公司 Tie2結合劑及其使用方法
EP4126940A1 (en) 2020-03-30 2023-02-08 F. Hoffmann-La Roche AG Antibody that binds to vegf and pdgf-b and methods of use
AR121706A1 (es) 2020-04-01 2022-06-29 Hoffmann La Roche Moléculas de unión a antígeno biespecíficas dirigidas a ox40 y fap
WO2021207662A1 (en) 2020-04-10 2021-10-14 Genentech, Inc. Use of il-22fc for the treatment or prevention of pneumonia, acute respiratory distress syndrome, or cytokine release syndrome
IL297541A (en) 2020-04-24 2022-12-01 Genentech Inc Methods for using anti-cd79b immunoconjugates
CN115885050A (zh) 2020-04-28 2023-03-31 基因泰克公司 用于非小细胞肺癌免疫疗法的方法和组合物
EP4146283A1 (en) 2020-05-03 2023-03-15 Levena (Suzhou) Biopharma Co., Ltd. Antibody-drug conjugates (adcs) comprising an anti-trop-2 antibody, compositions comprising such adcs, as well as methods of making and using the same
WO2021224215A1 (en) 2020-05-05 2021-11-11 F. Hoffmann-La Roche Ag Predicting response to pd-1 axis inhibitors
JP2023525825A (ja) * 2020-05-13 2023-06-19 イノベント バイオロジクス(スーチョウ)カンパニー,リミティド 抗IL-23p19抗体を含む製剤、その調製方法および使用
KR20230018425A (ko) 2020-05-29 2023-02-07 23앤드미 인코포레이티드 항-cd200r1 항체 및 이의 사용 방법
BR112022024472A2 (pt) 2020-06-01 2022-12-27 Genentech Inc Métodos para produzir um anticorpo, para detectar um anticorpo em uma amostra, para classificar células produtoras de anticorpos e para produzir uma pluralidade de vesículas, métodos de produção de um anticorpo e de tratamento de um indivíduo com uma doença, anticorpos isolados, ácido nucleico isolado, célula hospedeira, composição farmacêutica, uso do anticorpo isolado e kit
CN115697489A (zh) 2020-06-08 2023-02-03 豪夫迈·罗氏有限公司 抗hbv抗体及其使用方法
WO2021252977A1 (en) 2020-06-12 2021-12-16 Genentech, Inc. Methods and compositions for cancer immunotherapy
CA3181820A1 (en) 2020-06-16 2021-12-23 Genentech, Inc. Methods and compositions for treating triple-negative breast cancer
BR112022025801A2 (pt) 2020-06-18 2023-10-03 Hoffmann La Roche Métodos para tratar um paciente e para tratar um paciente com escc avançado, kit, anticorpo, uso de um anticorpo e uso de um antagonista de ligação
CN116234824A (zh) 2020-06-22 2023-06-06 阿尔米雷尔有限公司 抗il-36抗体及其使用方法
US20220017637A1 (en) 2020-06-23 2022-01-20 Hoffmann-La Roche Inc. Agonistic cd28 antigen binding molecules targeting her2
WO2021260064A1 (en) 2020-06-25 2021-12-30 F. Hoffmann-La Roche Ag Anti-cd3/anti-cd28 bispecific antigen binding molecules
CN115776879A (zh) * 2020-06-29 2023-03-10 韩兀生物制药股份有限公司 抗fcrn抗体制剂
AU2021303508A1 (en) 2020-07-10 2023-02-02 F. Hoffmann-La Roche Ag Antibodies which bind to cancer cells and target radionuclides to said cells
WO2022016037A1 (en) 2020-07-17 2022-01-20 Genentech, Inc. Anti-notch2 antibodies and methods of use
WO2022031749A1 (en) 2020-08-03 2022-02-10 Genentech, Inc. Diagnostic and therapeutic methods for lymphoma
WO2022034228A1 (en) 2020-08-14 2022-02-17 Ac Immune Sa Humanized anti-tdp-43 binding molecules and uses thereof
WO2022043517A2 (en) 2020-08-27 2022-03-03 Cureab Gmbh Anti-golph2 antibodies for macrophage and dendritic cell differentiation
IL300616A (en) 2020-09-04 2023-04-01 Hoffmann La Roche Antibody that binds to VEGF-A and ANG2 and methods of use
AU2021341526A1 (en) 2020-09-14 2023-04-27 Ichnos Sciences SA Antibodies that bind to il1rap and uses thereof
IL301547A (en) 2020-10-05 2023-05-01 Genentech Inc Dosage for treatment with bispecific anti-FCRH5/anti-CD3 antibodies
TW202233671A (zh) 2020-10-20 2022-09-01 美商建南德克公司 Peg結合抗mertk抗體及其使用方法
CN116685325A (zh) 2020-10-20 2023-09-01 豪夫迈·罗氏有限公司 Pd-1轴结合拮抗剂和lrrk2抑制剂的组合疗法
AU2021366287A1 (en) 2020-10-20 2023-04-13 Kantonsspital St. Gallen Antibodies or antigen-binding fragments specifically binding to Gremlin-1 and uses thereof
AU2020475443A1 (en) 2020-11-02 2023-06-01 UCB Biopharma SRL Use of anti-trem1 neutralizing antibodies for the treatment of motor neuron neurodegenerative disorders
EP4240493A2 (en) 2020-11-04 2023-09-13 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies and anti-cd79b antibody drug conjugates
MX2023005132A (es) 2020-11-04 2023-05-25 Genentech Inc Dosificacion para el tratamiento con anticuerpos biespecificos anti-cd20/anti-cd3.
WO2022098628A2 (en) 2020-11-04 2022-05-12 Genentech, Inc. Subcutaneous dosing of anti-cd20/anti-cd3 bispecific antibodies
JP2023549316A (ja) 2020-11-16 2023-11-24 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Fapを標的としたcd40アゴニストとの併用療法
JP2024500308A (ja) * 2020-12-03 2024-01-09 江▲蘇▼恒瑞医▲薬▼股▲フン▼有限公司 抗tslp抗体医薬組成物及びその使用
MX2023006650A (es) 2020-12-07 2023-06-21 UCB Biopharma SRL Anticuerpos multiespecificos y combinaciones de anticuerpos.
WO2022122652A1 (en) 2020-12-07 2022-06-16 UCB Biopharma SRL Antibodies against interleukin-22
CR20230263A (es) 2020-12-17 2023-08-21 Hoffmann La Roche Anticuerpos anti-hla-g y uso de estos
US20240101692A1 (en) 2020-12-29 2024-03-28 Cemm - Forschungszentrum Für Molekulare Medizin Gmbh Anti-april antibodies and uses thereof
EP4274658A1 (en) 2021-01-06 2023-11-15 F. Hoffmann-La Roche AG Combination therapy employing a pd1-lag3 bispecific antibody and a cd20 t cell bispecific antibody
KR20230131204A (ko) 2021-01-12 2023-09-12 에프. 호프만-라 로슈 아게 암 세포에 결합하여 방사성핵종을 상기 세포에 표적화하는분할 항체
JP2024503654A (ja) 2021-01-13 2024-01-26 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト 併用療法
WO2022162587A1 (en) 2021-01-27 2022-08-04 Centre Hospitalier Universitaire Vaudois (C.H.U.V.) Anti-sars-cov-2 antibodies and use thereof in the treatment of sars-cov-2 infection
WO2022162203A1 (en) 2021-01-28 2022-08-04 Vaccinvent Gmbh Method and means for modulating b-cell mediated immune responses
CN117120084A (zh) 2021-01-28 2023-11-24 维肯芬特有限责任公司 用于调节b细胞介导的免疫应答的方法和手段
JP2024509695A (ja) 2021-02-03 2024-03-05 ジェネンテック, インコーポレイテッド 多重特異性結合タンパク質分解プラットフォームおよび使用方法
JP2024512377A (ja) 2021-03-12 2024-03-19 ジェネンテック, インコーポレイテッド 抗klk7抗体、抗klk5抗体、多重特異性抗klk5/klk7抗体、及び使用方法
AR125344A1 (es) 2021-04-15 2023-07-05 Chugai Pharmaceutical Co Ltd Anticuerpo anti-c1s
TW202310876A (zh) 2021-05-12 2023-03-16 美商建南德克公司 使用抗cd79b免疫結合物治療瀰漫性大b細胞淋巴瘤之方法
TW202310871A (zh) 2021-05-14 2023-03-16 美商建南德克公司 用莫蘇妥珠單抗及帕羅托珠單抗維多汀治療cd20陽性增生性失調之方法
AR126009A1 (es) 2021-06-02 2023-08-30 Hoffmann La Roche Moléculas agonistas de unión al antígeno cd28 que se dirigen a epcam
TW202306994A (zh) 2021-06-04 2023-02-16 日商中外製藥股份有限公司 抗ddr2抗體及其用途
EP4351582A1 (en) 2021-06-09 2024-04-17 F. Hoffmann-La Roche AG Combination of a particular braf inhibitor (paradox breaker) and a pd-1 axis binding antagonist for use in the treatment of cancer
WO2022263638A1 (en) 2021-06-17 2022-12-22 Centre Hospitalier Universitaire Vaudois (C.H.U.V.) Anti-sars-cov-2 antibodies and use thereof in the treatment of sars-cov-2 infection
EP4355775A1 (en) 2021-06-18 2024-04-24 F. Hoffmann-La Roche AG Bispecific anti-ccl2 antibodies
IL309115A (en) 2021-06-25 2024-02-01 Chugai Pharmaceutical Co Ltd Anti-CTLA-4 antibodies
TW202311291A (zh) 2021-06-25 2023-03-16 日商中外製藥股份有限公司 抗ctla-4抗體的用途
WO2023279092A2 (en) 2021-07-02 2023-01-05 Genentech, Inc. Methods and compositions for treating cancer
EP4373859A1 (en) 2021-07-22 2024-05-29 F. Hoffmann-La Roche AG Heterodimeric fc domain antibodies
CN117715936A (zh) 2021-07-28 2024-03-15 豪夫迈·罗氏有限公司 用于治疗癌症的方法和组合物
WO2023012147A1 (en) 2021-08-03 2023-02-09 F. Hoffmann-La Roche Ag Bispecific antibodies and methods of use
WO2023019092A1 (en) 2021-08-07 2023-02-16 Genentech, Inc. Methods of using anti-cd79b immunoconjugates to treat diffuse large b-cell lymphoma
IL310382A (en) 2021-08-27 2024-03-01 Genentech Inc Methods for treating tau pathologies
WO2023034750A1 (en) 2021-08-30 2023-03-09 Genentech, Inc. Anti-polyubiquitin multispecific antibodies
JPWO2023053282A1 (es) 2021-09-29 2023-04-06
TW202321308A (zh) 2021-09-30 2023-06-01 美商建南德克公司 使用抗tigit抗體、抗cd38抗體及pd—1軸結合拮抗劑治療血液癌症的方法
WO2023057404A1 (en) 2021-10-06 2023-04-13 F. Hoffmann-La Roche Ag Novel combined administration
KR20240082388A (ko) 2021-10-08 2024-06-10 추가이 세이야쿠 가부시키가이샤 프리필드 시린지 제제의 조제 방법
AU2022379952A1 (en) 2021-11-05 2024-05-16 American Diagnostics & Therapy, Llc (Adxrx) Monoclonal antibodies against carcinoembryonic antigens, and their uses
WO2023086807A1 (en) 2021-11-10 2023-05-19 Genentech, Inc. Anti-interleukin-33 antibodies and uses thereof
TW202337494A (zh) 2021-11-16 2023-10-01 美商建南德克公司 用莫蘇妥珠單抗治療全身性紅斑狼瘡(sle)之方法及組成物
TW202334202A (zh) 2021-11-16 2023-09-01 瑞士商Ac免疫有限公司 用於治療和診斷的新分子
WO2023109900A1 (en) 2021-12-17 2023-06-22 Shanghai Henlius Biotech, Inc. Anti-ox40 antibodies, multispecific antibodies and methods of use
WO2023109901A1 (en) 2021-12-17 2023-06-22 Shanghai Henlius Biotech, Inc. Anti-ox40 antibodies and methods of use
WO2023141445A1 (en) 2022-01-19 2023-07-27 Genentech, Inc. Anti-notch2 antibodies and conjugates and methods of use
AR128540A1 (es) 2022-02-16 2024-05-22 Ac Immune Sa Moléculas de unión anti-tdp-43 humanizadas y usos de las mismas
TW202346345A (zh) 2022-04-01 2023-12-01 瑞士商赫孚孟拉羅股份公司 面肩胛肱肌失養症(fshd)之新治療
WO2023191816A1 (en) 2022-04-01 2023-10-05 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023194565A1 (en) 2022-04-08 2023-10-12 Ac Immune Sa Anti-tdp-43 binding molecules
WO2023201299A1 (en) 2022-04-13 2023-10-19 Genentech, Inc. Pharmaceutical compositions of therapeutic proteins and methods of use
WO2023203177A1 (en) 2022-04-20 2023-10-26 Kantonsspital St. Gallen Antibodies or antigen-binding fragments pan-specifically binding to gremlin-1 and gremlin-2 and uses thereof
TW202406934A (zh) 2022-05-03 2024-02-16 美商建南德克公司 抗Ly6E抗體、免疫結合物及其用途
WO2023219613A1 (en) 2022-05-11 2023-11-16 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023217933A1 (en) 2022-05-11 2023-11-16 F. Hoffmann-La Roche Ag Antibody that binds to vegf-a and il6 and methods of use
WO2023237706A2 (en) 2022-06-08 2023-12-14 Institute For Research In Biomedicine (Irb) Cross-specific antibodies, uses and methods for discovery thereof
US20240043553A1 (en) 2022-06-22 2024-02-08 Genentech, Inc. Methods for treatment of previously untreated follicular lymphoma with mosunetuzumab and lenalidomide
WO2024015897A1 (en) 2022-07-13 2024-01-18 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
TW202409078A (zh) * 2022-07-18 2024-03-01 中國大陸商蘇州創勝醫藥集團有限公司 穩定之包含抗gremlin1抗體的藥物製劑
WO2024020432A1 (en) 2022-07-19 2024-01-25 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024020564A1 (en) 2022-07-22 2024-01-25 Genentech, Inc. Anti-steap1 antigen-binding molecules and uses thereof
US11773160B1 (en) 2022-08-05 2023-10-03 Anaveon AG Immune-stimulating IL-2 fusion proteins
WO2024044675A1 (en) 2022-08-25 2024-02-29 Beigene, Ltd. Methods of cancer treatment using anti-pd1 antibodies in combination with anti-tim3 antibodies
WO2024049949A1 (en) 2022-09-01 2024-03-07 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
WO2024068996A1 (en) 2022-09-30 2024-04-04 Centre Hospitalier Universitaire Vaudois (C.H.U.V.) Anti-sars-cov-2 antibodies and use thereof in the treatment of sars-cov-2 infection
WO2024091991A1 (en) 2022-10-25 2024-05-02 Genentech, Inc. Therapeutic and diagnostic methods for multiple myeloma
WO2024100200A1 (en) 2022-11-09 2024-05-16 Cis Pharma Ag Anti-l1-cam antibodies and their uses for diagnostic and therapeutic applications
WO2024110905A1 (en) 2022-11-24 2024-05-30 Beigene, Ltd. Anti-cea antibody drug conjugates and methods of use
WO2024126660A1 (en) 2022-12-15 2024-06-20 F. Hoffmann-La Roche Ag Combination therapy for cancer treatment

Citations (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968603A (en) * 1986-12-31 1990-11-06 The Regents Of The University Of California Determination of status in neoplastic disease
US5183884A (en) * 1989-12-01 1993-02-02 United States Of America Dna segment encoding a gene for a receptor related to the epidermal growth factor receptor
US5608038A (en) * 1993-12-28 1997-03-04 Immuno Aktiengesellschaft Highly concentrated immunoglobulin preparation and method for its production
US5641869A (en) * 1991-05-24 1997-06-24 Genentech, Inc. Method for purifying heregulin
US5677171A (en) * 1988-01-12 1997-10-14 Genentech, Inc. Monoclonal antibodies directed to the HER2 receptor
US5720937A (en) * 1988-01-12 1998-02-24 Genentech, Inc. In vivo tumor detection assay
US5763223A (en) * 1995-06-29 1998-06-09 Immunex Corporation DNA encoding a cytokine that induces apoptosis
US5783186A (en) * 1995-12-05 1998-07-21 Amgen Inc. Antibody-induced apoptosis
US5821337A (en) * 1991-06-14 1998-10-13 Genentech, Inc. Immunoglobulin variants
US5824311A (en) * 1987-11-30 1998-10-20 Trustees Of The University Of Pennsylvania Treatment of tumors with monoclonal antibodies against oncogene antigens
US6030945A (en) * 1996-01-09 2000-02-29 Genentech, Inc. Apo-2 ligand
US6054297A (en) * 1991-06-14 2000-04-25 Genentech, Inc. Humanized antibodies and methods for making them
US6072047A (en) * 1997-02-13 2000-06-06 Immunex Corporation Receptor that binds trail
US6171586B1 (en) * 1997-06-13 2001-01-09 Genentech, Inc. Antibody formulation
US6252055B1 (en) * 1996-05-24 2001-06-26 Glaxo Wellcome Inc. Concentrated antibody preparation
US6252050B1 (en) * 1998-06-12 2001-06-26 Genentech, Inc. Method for making monoclonal antibodies and cross-reactive antibodies obtainable by the method
US6267958B1 (en) * 1995-07-27 2001-07-31 Genentech, Inc. Protein formulation
US20010010924A1 (en) * 1997-03-14 2001-08-02 Keith Charles Deen Tumor necrosis factor related receptor, tr6 polynecleotides
US20010014326A1 (en) * 1995-07-27 2001-08-16 Genentech, Inc. Protein formulation
US6284236B1 (en) * 1995-06-29 2001-09-04 Immunex Corporation Cytokine that induces apoptosis
US6313269B1 (en) * 1997-03-14 2001-11-06 Smithkline Beecham Corporation Tumor necrosis factor related receptor, TR6
US20010045571A1 (en) * 1998-09-23 2001-11-29 Dhrumil Gandhi Cell architecture with local interconnect and method for making same
US20020001587A1 (en) * 2000-03-16 2002-01-03 Sharon Erickson Methods of treatment using anti-ErbB antibody-maytansinoid conjugates
US6339142B1 (en) * 1998-05-06 2002-01-15 Genentech, Inc. Protein purification
US6342369B1 (en) * 1997-05-15 2002-01-29 Genentech, Inc. Apo-2-receptor
US6342383B1 (en) * 1994-02-04 2002-01-29 Bio Merieux Cell lines and viral isolates associated with multiple sclerosis
US20020048785A1 (en) * 1997-04-16 2002-04-25 Millennium Pharmaceuticals, Inc. A Delaware Corporation Novel polypeptides within the tumor necrosis factor receptor superfamily and uses therefor
US20020072091A1 (en) * 1997-03-17 2002-06-13 Human Genome Sciences, Inc. Death domain containing receptor 5
US20020098550A1 (en) * 1997-03-17 2002-07-25 Human Genome Sciences, Inc. Death domain containing receptor 5
US6433147B1 (en) * 1997-01-28 2002-08-13 Human Genome Sciences, Inc. Death domain containing receptor-4
US6461823B1 (en) * 1997-01-28 2002-10-08 Human Genome Sciences, Inc. Death domain containing receptor-4 antibodies
US20020160446A1 (en) * 2000-11-14 2002-10-31 Holtzman Douglas A. Novel genes encoding proteins having prognostic diagnostic preventive therapeutic and other uses
US20030111316A1 (en) * 2001-12-05 2003-06-19 Gregory Winters Methods and systems for detecting coin fraud in coin-counting machines and other devices
US20030124119A1 (en) * 1999-12-28 2003-07-03 Tadao Yamazaki Stable antibody compositions and injection preparations
US20030147884A1 (en) * 1997-12-12 2003-08-07 Genentech, Inc. Treatment with anti-ErbB2 antibodies
US6627196B1 (en) * 1999-08-27 2003-09-30 Genentech, Inc. Dosages for treatment with anti-ErbB2 antibodies
US20030190316A1 (en) * 2000-08-11 2003-10-09 Masaya Kakuta Stabilized antibody-containing preparations
US20040106161A1 (en) * 2002-07-15 2004-06-03 Birgit Bossenmaier Methods for identifying tumors that are responsive to treatment with anti-ErbB2 antibodies
US6746668B2 (en) * 1996-01-09 2004-06-08 Genentech, Inc. Apo-2 ligand
US20040170623A1 (en) * 2001-05-31 2004-09-02 Tudor Arvinte Stable liquid formulations of antibodies
US20040191243A1 (en) * 2002-12-13 2004-09-30 Bei Chen System and method for stabilizing antibodies with histidine
US6800738B1 (en) * 1991-06-14 2004-10-05 Genentech, Inc. Method for making humanized antibodies
US20040197324A1 (en) * 2003-04-04 2004-10-07 Genentech, Inc. High concentration antibody and protein formulations
US20040197326A1 (en) * 1995-07-27 2004-10-07 Genentech, Inc. Method for treatment of allergic asthma
US20050208043A1 (en) * 1999-06-25 2005-09-22 Genentech, Inc. Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies
US20060013819A1 (en) * 2004-06-16 2006-01-19 Genentech, Inc. Therapy of platinum-resistant cancer
US20060018899A1 (en) * 2004-07-22 2006-01-26 Genentech, Inc. HER2 antibody composition
US20060034840A1 (en) * 2004-04-08 2006-02-16 Agus David B ErbB antagonists for pain therapy
US20060083739A1 (en) * 1999-06-25 2006-04-20 Sliwkowski Mark X Treating prostate cancer with anti-ErbB2 antibodies
US7041292B1 (en) * 1999-06-25 2006-05-09 Genentech, Inc. Treating prostate cancer with anti-ErbB2 antibodies
US20060121044A1 (en) * 2004-12-07 2006-06-08 Genentech, Inc. Selecting patients for therapy with a her inhibitor
US20060165702A1 (en) * 2005-01-21 2006-07-27 Genentech, Inc. Fixed dosing of HER antibodies
US20060188509A1 (en) * 2005-02-23 2006-08-24 Genentech, Inc. Extending time to disease progression or survival in cancer patients
US20060204505A1 (en) * 2005-03-08 2006-09-14 Sliwkowski Mark X Methods for identifying tumors responsive to treatment with HER dimerization inhibitors (HDIs)
US20060228745A1 (en) * 2000-05-19 2006-10-12 Genentech, Inc. Gene detection assay for improving the likelhood of an effective response to an ErbB antagonist cancer therapy
US20070009976A1 (en) * 2005-07-06 2007-01-11 Helmut Lenz Detection of a target antigen irrespective of the presence or absence of a corresponding therapeutic antibody
US20070020261A1 (en) * 2005-07-22 2007-01-25 Sliwkowski Mark X Combination therapy of her expressing tumors
US20070026001A1 (en) * 1998-03-27 2007-02-01 Genentech, Inc. APO-2 ligand-anti-her-2 antibody synergism
US20070037228A1 (en) * 2005-08-12 2007-02-15 Joachim Moecks Method for predicting the response to a treatment
US20070184055A1 (en) * 1999-06-25 2007-08-09 Genentech, Inc. Treatment with anti-erbb2 antibodies
US20070224203A1 (en) * 2006-03-22 2007-09-27 Thomas Friess Tumor therapy with an antibody for vascular endothelial growth factor and an antibody for human epithelial growth factor receptor type 2
US20080038271A1 (en) * 2006-06-05 2008-02-14 Amler Lukas C Extending survival of cancer patients with elevated levels of EGF or TGF-alpha
US20080050385A1 (en) * 2006-08-21 2008-02-28 Thomas Friess Tumor therapy with an anti-vegf antibody
US20080050373A1 (en) * 1999-05-14 2008-02-28 Genentech, Inc. Treatment with anti-erbb2 antibodies
US20080102069A1 (en) * 2006-09-15 2008-05-01 Thomas Friess Tumor therapy with a combination of anti-her2 antibodies
US7371376B1 (en) * 1996-10-18 2008-05-13 Genentech, Inc. Anti-ErbB2 antibodies

Family Cites Families (188)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CU22545A1 (es) 1994-11-18 1999-03-31 Centro Inmunologia Molecular Obtención de un anticuerpo quimérico y humanizado contra el receptor del factor de crecimiento epidérmico para uso diagnóstico y terapéutico
FR2413974A1 (fr) 1978-01-06 1979-08-03 David Bernard Sechoir pour feuilles imprimees par serigraphie
US4515893A (en) 1979-04-26 1985-05-07 Ortho Pharmaceutical Corporation Hybrid cell line for producing complement-fixing monoclonal antibody to human T cells
US4485045A (en) 1981-07-06 1984-11-27 Research Corporation Synthetic phosphatidyl cholines useful in forming liposomes
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4544545A (en) 1983-06-20 1985-10-01 Trustees University Of Massachusetts Liposomes containing modified cholesterol for organ targeting
EP0491675A1 (en) 1984-01-30 1992-06-24 Imperial Cancer Research Technology Limited Improvements relating to growth factors
US4943533A (en) 1984-03-01 1990-07-24 The Regents Of The University Of California Hybrid cell lines that produce monoclonal antibodies to epidermal growth factor receptor
US5672347A (en) 1984-07-05 1997-09-30 Genentech, Inc. Tumor necrosis factor antagonists and their use
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
US5091178A (en) 1986-02-21 1992-02-25 Oncogen Tumor therapy with biologically active anti-tumor antibodies
US5401638A (en) 1986-06-04 1995-03-28 Oncogene Science, Inc. Detection and quantification of neu related proteins in the biological fluids of humans
US5567610A (en) 1986-09-04 1996-10-22 Bioinvent International Ab Method of producing human monoclonal antibodies and kit therefor
IL85035A0 (en) 1987-01-08 1988-06-30 Int Genetic Eng Polynucleotide molecule,a chimeric antibody with specificity for human b cell surface antigen,a process for the preparation and methods utilizing the same
US5091313A (en) 1988-08-05 1992-02-25 Tanox Biosystems, Inc. Antigenic epitopes of IgE present on B cell but not basophil surface
JP2749167B2 (ja) 1988-06-21 1998-05-13 ジェネンテク,インコーポレイテッド 心筋梗塞の処置のための方法および治療用組成物
GB8823869D0 (en) 1988-10-12 1988-11-16 Medical Res Council Production of antibodies
US5175384A (en) 1988-12-05 1992-12-29 Genpharm International Transgenic mice depleted in mature t-cells and methods for making transgenic mice
EP0448605A4 (en) * 1988-12-15 1991-11-21 Invitron Corporation Use of basic amino acids to solubilize immunoglobulins
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
WO1990014357A1 (en) 1989-05-19 1990-11-29 Genentech, Inc. Her2 extracellular domain
DE3920358A1 (de) 1989-06-22 1991-01-17 Behringwerke Ag Bispezifische und oligospezifische, mono- und oligovalente antikoerperkonstrukte, ihre herstellung und verwendung
AU641673B2 (en) 1989-06-29 1993-09-30 Medarex, Inc. Bispecific reagents for aids therapy
DE69025946T2 (de) 1989-09-08 1996-10-17 Univ Duke Modifikationen der struktur des egf-rezeptor-gens in menschlichen glioma
EP0494135B1 (en) 1989-09-29 1996-04-10 Oncogene Science, Inc. Human "neu" related protein p100 and use of the same for detecting preneoplastic or neoplastic cells in a human
US5013556A (en) 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5208020A (en) 1989-10-25 1993-05-04 Immunogen Inc. Cytotoxic agents comprising maytansinoids and their therapeutic use
US5229275A (en) 1990-04-26 1993-07-20 Akzo N.V. In-vitro method for producing antigen-specific human monoclonal antibodies
US5571894A (en) 1991-02-05 1996-11-05 Ciba-Geigy Corporation Recombinant antibodies specific for a growth factor receptor
JPH06507398A (ja) 1991-05-14 1994-08-25 リプリジェン コーポレーション Hiv感染治療のための異種複合抗体
US5264586A (en) 1991-07-17 1993-11-23 The Scripps Research Institute Analogs of calicheamicin gamma1I, method of making and using the same
JP3457962B2 (ja) 1991-08-14 2003-10-20 ジェネンテク,インコーポレイテッド 特定Fcεレセプターのための免疫グロブリン変異体
EP0861893A3 (en) 1991-09-19 1999-11-10 Genentech, Inc. High level expression of immunoglobulin polypeptides
US5565332A (en) 1991-09-23 1996-10-15 Medical Research Council Production of chimeric antibodies - a combinatorial approach
US5587458A (en) 1991-10-07 1996-12-24 Aronex Pharmaceuticals, Inc. Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof
WO1993008829A1 (en) 1991-11-04 1993-05-13 The Regents Of The University Of California Compositions that mediate killing of hiv-infected cells
DK1136556T3 (da) 1991-11-25 2005-10-03 Enzon Inc Fremgangsmåde til fremstilling af multivalente antigen-bindende proteiner
AU675929B2 (en) 1992-02-06 1997-02-27 Curis, Inc. Biosynthetic binding protein for cancer marker
EP0626012B1 (en) 1992-02-11 2003-07-09 Cell Genesys, Inc. Homogenotization of gene-targeting events
US5573905A (en) 1992-03-30 1996-11-12 The Scripps Research Institute Encoded combinatorial chemical libraries
WO1993021319A1 (en) 1992-04-08 1993-10-28 Cetus Oncology Corporation HUMANIZED C-erbB-2 SPECIFIC ANTIBODIES
ZA932522B (en) 1992-04-10 1993-12-20 Res Dev Foundation Immunotoxins directed against c-erbB-2(HER/neu) related surface antigens
JPH08504172A (ja) 1992-06-30 1996-05-07 オンコロジクス,インコーポレイティド 抗−erbB−2モノクロナール抗体の組み合わせ物及び使用方法
AU668423B2 (en) 1992-08-17 1996-05-02 Genentech Inc. Bispecific immunoadhesins
DE69315847T2 (de) 1992-08-21 1998-06-25 Genentech Inc Verfahren zur behandlung einer durch lfa-1 vermittelten störung
EP0752248B1 (en) 1992-11-13 2000-09-27 Idec Pharmaceuticals Corporation Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma
US5736137A (en) 1992-11-13 1998-04-07 Idec Pharmaceuticals Corporation Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma
CA2103323A1 (en) 1992-11-24 1994-05-25 Gregory D. Plowman Her4 human receptor tyrosine kinase
AU6527894A (en) 1993-03-30 1994-10-24 Trustees Of The University Of Pennsylvania, The Prevention of tumors with monoclonal antibodies against (neu)
US5595721A (en) 1993-09-16 1997-01-21 Coulter Pharmaceutical, Inc. Radioimmunotherapy of lymphoma using anti-CD20
EP0730646A1 (en) 1993-11-23 1996-09-11 Genentech, Inc. PROTEIN TYROSINE KINASES NAMED Rse
ES2108566T3 (es) 1993-12-10 1997-12-16 Genentech Inc Procedimientos para diagnosticar alergias y para seleccionar agentes terapeuticos antialergicos.
DE69428764T2 (de) 1993-12-24 2002-06-20 Merck Patent Gmbh Immunokonjugate
JP3825798B2 (ja) 1994-01-18 2006-09-27 ジェネンテク,インコーポレイテッド IgEアンタゴニストを用いる寄生虫感染症の治療法
EP0749488A1 (en) 1994-03-03 1996-12-27 Genentech, Inc. Anti-il-8 monoclonal antibodies for treatment of inflammatory disorders
US5773001A (en) 1994-06-03 1998-06-30 American Cyanamid Company Conjugates of methyltrithio antitumor agents and intermediates for their synthesis
WO1996003397A1 (en) 1994-07-21 1996-02-08 Akzo Nobel N.V. Cyclic ketone peroxide formulations
US5804396A (en) 1994-10-12 1998-09-08 Sugen, Inc. Assay for agents active in proliferative disorders
US6214388B1 (en) 1994-11-09 2001-04-10 The Regents Of The University Of California Immunoliposomes that optimize internalization into target cells
AU4289496A (en) 1994-12-02 1996-06-19 Chiron Corporation Method of promoting an immune response with a bispecific antibody
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
CA2216796C (en) 1995-03-30 2003-09-02 Pfizer Inc. Quinazoline derivatives
US5641870A (en) 1995-04-20 1997-06-24 Genentech, Inc. Low pH hydrophobic interaction chromatography for antibody purification
US5739277A (en) 1995-04-14 1998-04-14 Genentech Inc. Altered polypeptides with increased half-life
GB9508537D0 (en) 1995-04-27 1995-06-14 Zeneca Ltd Quinazoline derivatives
GB9508538D0 (en) 1995-04-27 1995-06-14 Zeneca Ltd Quinazoline derivatives
GB9508565D0 (en) 1995-04-27 1995-06-14 Zeneca Ltd Quiazoline derivative
AU6267896A (en) 1995-06-07 1996-12-30 Imclone Systems Incorporated Antibody and antibody fragments for inhibiting the growth oftumors
US5712374A (en) 1995-06-07 1998-01-27 American Cyanamid Company Method for the preparation of substantiallly monomeric calicheamicin derivative/carrier conjugates
US5714586A (en) 1995-06-07 1998-02-03 American Cyanamid Company Methods for the preparation of monomeric calicheamicin derivative/carrier conjugates
US5837234A (en) 1995-06-07 1998-11-17 Cytotherapeutics, Inc. Bioartificial organ containing cells encapsulated in a permselective polyether suflfone membrane
EP2258726A1 (en) 1995-06-14 2010-12-08 The Regents of the University of California High affinity human antibodies to c-erbB-2
ZA966075B (en) 1995-07-27 1998-01-19 Genentech Inc Protein formulation.
AU716785B2 (en) * 1995-07-27 2000-03-09 Genentech Inc. Stabile isotonic lyophilized protein formulation
DK0877626T3 (da) 1996-01-23 2002-12-30 Univ Vermont Anti-CD18 antistoffer til anvendelse mod slagtilfælde
GB9603256D0 (en) 1996-02-16 1996-04-17 Wellcome Found Antibodies
RO121900B1 (ro) 1996-04-12 2008-07-30 Warner-Lambert Company Compuşi inhibitori, ireversibili, ai tirozin kinazelor, compoziţie farmaceutică care îi conţine şi utilizarea acestora
US5922845A (en) 1996-07-11 1999-07-13 Medarex, Inc. Therapeutic multispecific compounds comprised of anti-Fcα receptor antibodies
US7147851B1 (en) 1996-08-15 2006-12-12 Millennium Pharmaceuticals, Inc. Humanized immunoglobulin reactive with α4β7 integrin
AU4982097A (en) 1996-10-18 1998-05-15 Board Of Regents, The University Of Texas System Anti-erbb2 antibodies
PT939804E (pt) 1996-10-25 2005-11-30 Human Genome Sciences Inc Neutroquina alfa
EP0852951A1 (de) 1996-11-19 1998-07-15 Roche Diagnostics GmbH Stabile lyophilisierte pharmazeutische Zubereitungen von mono- oder polyklonalen Antikörpern
WO1998023761A1 (en) 1996-11-27 1998-06-04 Genentech, Inc. HUMANIZED ANTI-CD11a ANTIBODIES
IL130061A (en) 1996-11-27 2001-09-13 Genentech Inc Affinity purification of polypeptide on protein a matrix
JP4138013B2 (ja) 1996-12-23 2008-08-20 イミュネックス・コーポレーション Tnfスーパーファミリーのメンバーであるnf−kappa bの受容体アクティベーターに対するリガンド
UA73073C2 (uk) 1997-04-03 2005-06-15 Уайт Холдінгз Корпорейшн Заміщені 3-ціанохіноліни, спосіб їх одержання та фармацевтична композиція
US5994071A (en) 1997-04-04 1999-11-30 Albany Medical College Assessment of prostate cancer
SI0975754T2 (sl) 1997-04-16 2016-04-29 Amgen Inc., Vezivni proteini in receptorji osteoprotegerina
US6235883B1 (en) 1997-05-05 2001-05-22 Abgenix, Inc. Human monoclonal antibodies to epidermal growth factor receptor
CA2287911C (en) 1997-05-15 2014-05-06 Genentech, Inc. Apo-2 receptor
AU7830398A (en) 1997-06-11 1998-12-30 Human Genome Sciences, Inc. Human tumor necrosis factor receptor tr9
DE69810481T2 (de) 1997-06-13 2003-09-25 Genentech Inc Stabilisierte antikörperformulierung
ATE296315T1 (de) 1997-06-24 2005-06-15 Genentech Inc Galactosylierte glykoproteine enthaltende zusammensetzungen und verfahren zur deren herstellung
US5994511A (en) 1997-07-02 1999-11-30 Genentech, Inc. Anti-IgE antibodies and methods of improving polypeptides
AU8400398A (en) 1997-07-11 1999-02-08 Trustees Of The University Of Pennsylvania, The Nucleic acid encoding a novel chemotherapy-induced protein, and methods of use
ZA986729B (en) 1997-07-29 1999-02-02 Warner Lambert Co Irreversible inhibitors of tyrosine kinases
ZA986732B (en) 1997-07-29 1999-02-02 Warner Lambert Co Irreversible inhibitiors of tyrosine kinases
TW436485B (en) 1997-08-01 2001-05-28 American Cyanamid Co Substituted quinazoline derivatives
CA2301202A1 (en) 1997-08-15 1999-02-25 Idun Pharmaceuticals, Inc. Trail receptors, nucleic acids encoding the same, and methods of use thereof
WO1999011791A2 (en) 1997-09-05 1999-03-11 University Of Washington Tumor necrosis factor family receptors and ligands, encoding nucleic acids and related binding agents
WO1999019488A1 (en) 1997-10-15 1999-04-22 Children's Medical Center Corporation Novel human egf receptors and use thereof
ATE419009T1 (de) 1997-10-31 2009-01-15 Genentech Inc Methoden und zusammensetzungen bestehend aus glykoprotein-glykoformen
PT1045906E (pt) 1998-01-15 2009-01-27 Genentech Inc Ligando apo-2
DK1053256T3 (da) 1998-01-26 2011-10-03 Genentech Inc Antistoffer mod Dødsreceptor 4 (DR4) og anvendelser deraf
US6242195B1 (en) 1998-04-02 2001-06-05 Genentech, Inc. Methods for determining binding of an analyte to a receptor
US6528624B1 (en) 1998-04-02 2003-03-04 Genentech, Inc. Polypeptide variants
US6194551B1 (en) 1998-04-02 2001-02-27 Genentech, Inc. Polypeptide variants
EP1068241B1 (en) 1998-04-02 2007-10-10 Genentech, Inc. Antibody variants and fragments thereof
PT1071700E (pt) 1998-04-20 2010-04-23 Glycart Biotechnology Ag Modificação por glicosilação de anticorpos para melhorar a citotoxicidade celular dependente de anticorpos
US6573043B1 (en) 1998-10-07 2003-06-03 Genentech, Inc. Tissue analysis and kits therefor
KR100940380B1 (ko) 1999-01-15 2010-02-02 제넨테크, 인크. 효과기 기능이 변화된 폴리펩티드 변이체
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
WO2000066160A1 (fr) 1999-04-28 2000-11-09 Yamanouchi Pharmaceutical Co., Ltd. Composition medicamenteuse parenterale a fragment d'anticorps monoclonal humanise et procede de stabilisation
AU781952B2 (en) 1999-05-28 2005-06-23 Genentech Inc. DR4 antibodies and uses thereof
US6946129B1 (en) 1999-06-08 2005-09-20 Seattle Genetics, Inc. Recombinant anti-CD40 antibody and uses thereof
ATE330972T1 (de) 1999-06-09 2006-07-15 Genentech Inc Apo-2l rezeptor-agonist und cpt-11 synergie- effekt
US20040013667A1 (en) 1999-06-25 2004-01-22 Genentech, Inc. Treatment with anti-ErbB2 antibodies
AU784045B2 (en) 1999-06-25 2006-01-19 Genentech Inc. Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies
KR100674528B1 (ko) 1999-06-28 2007-01-29 제넨테크, 인크. 2가 금속 이온을 사용한 Apo-2 리간드 제조 방법
JP2003528805A (ja) 1999-07-12 2003-09-30 ジェネンテック・インコーポレーテッド Cd20に結合するアンタゴニストを用いた異種抗原に対する免疫応答のブロッキング
CN1413220A (zh) 1999-10-29 2003-04-23 杰南技术公司 抗前列腺干细胞抗原(psca)抗体组合物及其应用方法
US6632979B2 (en) 2000-03-16 2003-10-14 Genentech, Inc. Rodent HER2 tumor model
NZ521540A (en) 2000-04-11 2004-09-24 Genentech Inc Multivalent antibodies and uses therefor
AU2001279055A1 (en) 2000-07-27 2002-02-13 Genentech, Inc. Apo-2L receptor agonist and CPT-11 synergism
US6984494B2 (en) 2000-08-15 2006-01-10 Genentech, Inc. Analytical method
DE60139944D1 (de) * 2000-10-12 2009-10-29 Genentech Inc Niederviskose konzentrierte proteinformulierungen
JP4309758B2 (ja) 2001-05-25 2009-08-05 ヒューマン ジノーム サイエンシーズ, インコーポレイテッド Trailレセプターに免疫特異的に結合する抗体
US7321026B2 (en) 2001-06-27 2008-01-22 Skytech Technology Limited Framework-patched immunoglobulins
AU2002366430B2 (en) 2001-07-03 2008-09-18 Genentech, Inc. Human DR4 antibodies and uses thereof
US20030113316A1 (en) 2001-07-25 2003-06-19 Kaisheva Elizabet A. Stable lyophilized pharmaceutical formulation of IgG antibodies
CA2838062C (en) 2001-08-03 2015-12-22 Roche Glycart Ag Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity
EA007984B1 (ru) 2001-08-03 2007-02-27 Дженентек, Инк. ПОЛИПЕПТИДЫ TACIs И BR3 И ИХ ПРИМЕНЕНИЕ
US7208026B2 (en) 2001-08-09 2007-04-24 Dainippon Ink And Chemicals, Inc. Heat-resistant filter
AU2002337935B2 (en) 2001-10-25 2008-05-01 Genentech, Inc. Glycoprotein compositions
HU230378B1 (hu) 2001-11-01 2016-03-29 Uab Research Foundation Anti-DR5 ellenanyagok és anti-DR4 ellenanyagok és más terápiás ágensek kombinációi
ES2357225T3 (es) 2001-11-01 2011-04-20 Uab Research Foundation Combinaciones de anticuerpos anti-dr5 y anticuerpos anti-dr4 y otros agentes terapéuticos.
PT1441589E (pt) 2001-11-08 2012-08-13 Abbott Biotherapeutics Corp Formulação farmacêutica líquida estável de anticorpos igg
AU2002352676A1 (en) 2001-11-14 2003-05-26 Human Genome Sciences, Inc. Antibodies that immunospecifically bind to trail receptors
US20040093621A1 (en) 2001-12-25 2004-05-13 Kyowa Hakko Kogyo Co., Ltd Antibody composition which specifically binds to CD20
EP3192528A1 (en) * 2002-02-14 2017-07-19 Chugai Seiyaku Kabushiki Kaisha Formulation of anti-il6r antibody-containing solutions comprising a sugar as a stabilizer
EP1519959B1 (en) 2002-02-14 2014-04-02 Immunomedics, Inc. Anti-cd20 antibodies and fusion proteins thereof and methods of use
AU2003224916B2 (en) 2002-04-10 2009-01-08 Genentech, Inc. Anti-HER2 antibody variants
EP1519736A2 (en) 2002-06-12 2005-04-06 Max-Planck-Gesellschaft Zur Förderung Der Wissenschaften E.V. Use of hec1 antagonists in the treatment of proliferative disorders and cancer
US7425618B2 (en) * 2002-06-14 2008-09-16 Medimmune, Inc. Stabilized anti-respiratory syncytial virus (RSV) antibody formulations
US7132100B2 (en) * 2002-06-14 2006-11-07 Medimmune, Inc. Stabilized liquid anti-RSV antibody formulations
NZ537687A (en) 2002-06-21 2008-04-30 Biogen Idec Inc Buffered formulations for concentrating antibodies and methods of use thereof
EP1539239A4 (en) 2002-07-02 2005-09-14 Smithkline Beecham Corp NEW STABLE FORMULATION
US20040033228A1 (en) 2002-08-16 2004-02-19 Hans-Juergen Krause Formulation of human antibodies for treating TNF-alpha associated disorders
AU2003265361A1 (en) 2002-08-28 2004-03-19 Pharmacia Corporation Stable ph optimized formulation of a modified antibody
HUE033623T2 (en) 2002-09-11 2017-12-28 Genentech Inc protein purification
WO2004035607A2 (en) 2002-10-17 2004-04-29 Genmab A/S Human monoclonal antibodies against cd20
WO2004048525A2 (en) * 2002-11-21 2004-06-10 Genentech, Inc. Therapy of non-malignant diseases or disorders with anti-erbb2 antibodies
BRPI0316779B1 (pt) * 2002-12-16 2020-04-28 Genentech Inc anticorpo humanizado que liga cd20 humano, composição, artigo manufaturado, método de indução da apoptose, método de tratamento de câncer cd20 positivo, métodos de tratamento de doenças autoimunes, ácidos nucléicos isolados, vetores de expressão, células hospedeiras, método para a produção de um anticorpo 2h7 humanizado, polipeptídeo isolado, formulação líquida, método de tratamento de artrite reumatóide (ra) e anticorpos de ligação de cd20 humanizados
WO2004066957A2 (en) 2003-01-30 2004-08-12 Medimmune, Inc. ANTI-INTEGRIN ανβ3 ANTIBODY FORMULATIONS AND USES THEREOF
EP1592777A4 (en) 2003-02-01 2008-06-04 Tanox Inc METHOD OF GENERATING HIGH-ANTIBODY ANTIBODIES
MY162623A (en) 2003-02-10 2017-06-30 Biogen Ma Inc Immunoglobulin formulation and method of preparation thereof
US20040185269A1 (en) 2003-03-18 2004-09-23 Loper Scott W. Scratch and mar resistant low VOC coating composition
HUE050171T2 (hu) 2003-07-28 2020-11-30 Genentech Inc Protein-A kioldódásának csökkentése protein-A affinitáskromatográfia során
KR101200133B1 (ko) 2004-06-01 2012-11-13 제넨테크, 인크. 항체 약물 접합체 및 방법
US20060029551A1 (en) 2004-08-05 2006-02-09 Kui Liu Stable particle formulations of erythropoietin receptor agonists
TW200621282A (en) 2004-08-13 2006-07-01 Wyeth Corp Stabilizing formulations
KR20080080675A (ko) 2004-08-19 2008-09-04 제넨테크, 인크. 변경된 이펙터 기능을 갖는 폴리펩티드 변이체
JO3000B1 (ar) 2004-10-20 2016-09-05 Genentech Inc مركبات أجسام مضادة .
US20060212956A1 (en) 2005-03-14 2006-09-21 Genentech, Inc. Animal model of ligand activated HER2 expressing tumors
JP2006316040A (ja) 2005-05-13 2006-11-24 Genentech Inc Herceptin(登録商標)補助療法
US9084777B2 (en) 2005-12-28 2015-07-21 Chugai Seiyaku Kabushiki Kaisha Stabilized antibody-containing formulations
MX2009008981A (es) * 2007-03-02 2009-09-02 Genentech Inc Prediccion de respuesta a un inhibidor her.
EP1997534A1 (en) 2007-05-31 2008-12-03 Pierre Fabre Medicament Cancer treatment combination therapy comprising vinflunine and trastuzumab
AU2008258859A1 (en) 2007-06-06 2008-12-11 F.Hoffmann-La Roche Ag Composition of a first non-labeled monoclonal antibody binding to a tumor antigen and a non-cross reactive second monoclonal antibody labeled with a NIR fluorescence label
US9551033B2 (en) 2007-06-08 2017-01-24 Genentech, Inc. Gene expression markers of tumor resistance to HER2 inhibitor treatment
ES2417148T3 (es) 2007-06-08 2013-08-06 Genentech, Inc. Marcadores de expresión génica de la resistencia tumoral al tratamiento con inhibidor de HER2
US8247397B2 (en) 2007-09-12 2012-08-21 Genentech, Inc. Combinations of phosphoinositide 3-kinase inhibitor compounds and chemotherapeutic agents, and methods of use
SG175597A1 (en) 2007-10-30 2011-11-28 Genentech Inc Antibody purification by cation exchange chromatography
PE20091174A1 (es) 2007-12-27 2009-08-03 Chugai Pharmaceutical Co Ltd Formulacion liquida con contenido de alta concentracion de anticuerpo
TWI472339B (zh) 2008-01-30 2015-02-11 Genentech Inc 包含結合至her2結構域ii之抗體及其酸性變異體的組合物
TW200942552A (en) 2008-03-06 2009-10-16 Genentech Inc Combination therapy with c-Met and HER antagonists
UA127472C2 (uk) 2008-03-18 2023-09-06 Дженентек, Інк. Комбінація кон'югата анти-her2-антитіло-лікарський засіб і хіміотерапевтичного засобу і спосіб застосування
BRPI0812682A2 (pt) 2008-06-16 2010-06-22 Genentech Inc tratamento de cáncer de mama metastático
EP2435071A1 (en) 2009-05-29 2012-04-04 F. Hoffmann-La Roche AG Modulators for her2 signaling in her2 expressing patients with gastric cancer
US9345661B2 (en) 2009-07-31 2016-05-24 Genentech, Inc. Subcutaneous anti-HER2 antibody formulations and uses thereof
WO2011146568A1 (en) 2010-05-19 2011-11-24 Genentech, Inc. Predicting response to a her inhibitor
BR112013014316A2 (pt) 2010-12-09 2016-09-27 Genentech Inc tratamento de câncer her2-positivo com paclitaxel e trastuzumabe-mcc-dm1
WO2012120004A1 (en) 2011-03-07 2012-09-13 F. Hoffmann-La Roche Ag In vivo selection of therapeutically active antibodies
DK2766040T3 (da) 2011-10-14 2019-07-22 Hoffmann La Roche Pertuzumab, trastuzumab, docetaxel og carboplatin til behandling af brystkræft i et tidligt stadie
WO2013083810A1 (en) 2011-12-09 2013-06-13 F. Hoffmann-La Roche Ag Identification of non-responders to her2 inhibitors
WO2013096812A1 (en) 2011-12-23 2013-06-27 Genentech, Inc. Articles of manufacture and methods for co-administration of antibodies
NZ702244A (en) 2012-06-08 2017-06-30 Hoffmann La Roche Mutant selectivity and combinations of a phosphoinositide 3 kinase inhibitor compound and chemotherapeutic agents for the treatment of cancer
AR094403A1 (es) 2013-01-11 2015-07-29 Hoffmann La Roche Terapia de combinación de anticuerpos anti-her3

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968603A (en) * 1986-12-31 1990-11-06 The Regents Of The University Of California Determination of status in neoplastic disease
US5824311A (en) * 1987-11-30 1998-10-20 Trustees Of The University Of Pennsylvania Treatment of tumors with monoclonal antibodies against oncogene antigens
US5770195A (en) * 1988-01-12 1998-06-23 Genentech, Inc. Monoclonal antibodies directed to the her2 receptor
US5677171A (en) * 1988-01-12 1997-10-14 Genentech, Inc. Monoclonal antibodies directed to the HER2 receptor
US5720937A (en) * 1988-01-12 1998-02-24 Genentech, Inc. In vivo tumor detection assay
US5720954A (en) * 1988-01-12 1998-02-24 Genentech, Inc. Monoclonal antibodies directed to the HER2 receptor
US5725856A (en) * 1988-01-12 1998-03-10 Genentech, Inc. Monoclonal antibodies directed to the HER2 receptor
US6387371B1 (en) * 1988-01-12 2002-05-14 Genentech, Inc. Monoclonal antibodies directed to the HER2 receptor
US6399063B1 (en) * 1988-01-12 2002-06-04 Genentech, Inc. Monoclonal antibodies directed to the HER2 receptor
US5772997A (en) * 1988-01-12 1998-06-30 Genentech, Inc. Monoclonal antibodies directed to the HER2 receptor
US5480968A (en) * 1989-12-01 1996-01-02 The United States Of America As Represented By The Department Of Health And Human Services Isolated polypeptide erbB-3, related to the epidermal growth factor receptor and antibody thereto
US5183884A (en) * 1989-12-01 1993-02-02 United States Of America Dna segment encoding a gene for a receptor related to the epidermal growth factor receptor
US5641869A (en) * 1991-05-24 1997-06-24 Genentech, Inc. Method for purifying heregulin
US5821337A (en) * 1991-06-14 1998-10-13 Genentech, Inc. Immunoglobulin variants
US6719971B1 (en) * 1991-06-14 2004-04-13 Genentech, Inc. Method for making humanized antibodies
US6054297A (en) * 1991-06-14 2000-04-25 Genentech, Inc. Humanized antibodies and methods for making them
US6800738B1 (en) * 1991-06-14 2004-10-05 Genentech, Inc. Method for making humanized antibodies
US6639055B1 (en) * 1991-06-14 2003-10-28 Genentech, Inc. Method for making humanized antibodies
US6407213B1 (en) * 1991-06-14 2002-06-18 Genentech, Inc. Method for making humanized antibodies
US5608038A (en) * 1993-12-28 1997-03-04 Immuno Aktiengesellschaft Highly concentrated immunoglobulin preparation and method for its production
US6342383B1 (en) * 1994-02-04 2002-01-29 Bio Merieux Cell lines and viral isolates associated with multiple sclerosis
US6284236B1 (en) * 1995-06-29 2001-09-04 Immunex Corporation Cytokine that induces apoptosis
US5763223A (en) * 1995-06-29 1998-06-09 Immunex Corporation DNA encoding a cytokine that induces apoptosis
US20030202972A1 (en) * 1995-07-27 2003-10-30 Genentech, Inc. Protein formulation
US20040197326A1 (en) * 1995-07-27 2004-10-07 Genentech, Inc. Method for treatment of allergic asthma
US6685940B2 (en) * 1995-07-27 2004-02-03 Genentech, Inc. Protein formulation
US20010014326A1 (en) * 1995-07-27 2001-08-16 Genentech, Inc. Protein formulation
US6267958B1 (en) * 1995-07-27 2001-07-31 Genentech, Inc. Protein formulation
US5783186A (en) * 1995-12-05 1998-07-21 Amgen Inc. Antibody-induced apoptosis
US6746668B2 (en) * 1996-01-09 2004-06-08 Genentech, Inc. Apo-2 ligand
US6030945A (en) * 1996-01-09 2000-02-29 Genentech, Inc. Apo-2 ligand
US6252055B1 (en) * 1996-05-24 2001-06-26 Glaxo Wellcome Inc. Concentrated antibody preparation
US7371376B1 (en) * 1996-10-18 2008-05-13 Genentech, Inc. Anti-ErbB2 antibodies
US20080112957A1 (en) * 1996-10-18 2008-05-15 Board Of Regents, The University Of Texas System Anti-ErbB2 antibodies
US6433147B1 (en) * 1997-01-28 2002-08-13 Human Genome Sciences, Inc. Death domain containing receptor-4
US6461823B1 (en) * 1997-01-28 2002-10-08 Human Genome Sciences, Inc. Death domain containing receptor-4 antibodies
US6569642B1 (en) * 1997-02-13 2003-05-27 Immunex Corporation Receptor that binds trail
US6642358B1 (en) * 1997-02-13 2003-11-04 Immunex Corporation Receptor that binds trail
US6072047A (en) * 1997-02-13 2000-06-06 Immunex Corporation Receptor that binds trail
US6313269B1 (en) * 1997-03-14 2001-11-06 Smithkline Beecham Corporation Tumor necrosis factor related receptor, TR6
US20010010924A1 (en) * 1997-03-14 2001-08-02 Keith Charles Deen Tumor necrosis factor related receptor, tr6 polynecleotides
US20020098550A1 (en) * 1997-03-17 2002-07-25 Human Genome Sciences, Inc. Death domain containing receptor 5
US20020072091A1 (en) * 1997-03-17 2002-06-13 Human Genome Sciences, Inc. Death domain containing receptor 5
US6743625B2 (en) * 1997-03-17 2004-06-01 Human Genome Sciences, Inc. Death domain containing receptor 5
US20020048785A1 (en) * 1997-04-16 2002-04-25 Millennium Pharmaceuticals, Inc. A Delaware Corporation Novel polypeptides within the tumor necrosis factor receptor superfamily and uses therefor
US20030125540A1 (en) * 1997-04-16 2003-07-03 Millennium Pharmaceuticals, Inc. Novel genes encoding proteins having prognostic, diagnostic, preventive, therapeutic and other uses
US6342369B1 (en) * 1997-05-15 2002-01-29 Genentech, Inc. Apo-2-receptor
US6171586B1 (en) * 1997-06-13 2001-01-09 Genentech, Inc. Antibody formulation
US20030147884A1 (en) * 1997-12-12 2003-08-07 Genentech, Inc. Treatment with anti-ErbB2 antibodies
US20040037823A9 (en) * 1997-12-12 2004-02-26 Genentech, Inc. Treatment with anti-ErbB2 antibodies
US20050002928A1 (en) * 1997-12-12 2005-01-06 Genentech, Inc. Treatment with anti-ErbB2 antibodies
US20070026001A1 (en) * 1998-03-27 2007-02-01 Genentech, Inc. APO-2 ligand-anti-her-2 antibody synergism
US20080160026A1 (en) * 1998-03-27 2008-07-03 Genentech, Inc. Apo-2 ligand-anti-her-2 antibody synergism
US6339142B1 (en) * 1998-05-06 2002-01-15 Genentech, Inc. Protein purification
US6252050B1 (en) * 1998-06-12 2001-06-26 Genentech, Inc. Method for making monoclonal antibodies and cross-reactive antibodies obtainable by the method
US20010045571A1 (en) * 1998-09-23 2001-11-29 Dhrumil Gandhi Cell architecture with local interconnect and method for making same
US20080050373A1 (en) * 1999-05-14 2008-02-28 Genentech, Inc. Treatment with anti-erbb2 antibodies
US20060198843A1 (en) * 1999-06-25 2006-09-07 Genentech, Inc. Treatment with anti-ErbB2 antibodies and chemotherapeutic agents
US20060083739A1 (en) * 1999-06-25 2006-04-20 Sliwkowski Mark X Treating prostate cancer with anti-ErbB2 antibodies
US7041292B1 (en) * 1999-06-25 2006-05-09 Genentech, Inc. Treating prostate cancer with anti-ErbB2 antibodies
US20060193854A1 (en) * 1999-06-25 2006-08-31 Genentech, Inc. Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies
US20060073143A1 (en) * 1999-06-25 2006-04-06 Genentech, Inc. Treatment with anti-ErbB2 antibodies and anti-hormonal compounds
US20050208043A1 (en) * 1999-06-25 2005-09-22 Genentech, Inc. Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies
US6949245B1 (en) * 1999-06-25 2005-09-27 Genentech, Inc. Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies
US20050238640A1 (en) * 1999-06-25 2005-10-27 Genentech, Inc. Treatment with anti-ErbB2 antibodies and EGFR-targeted drugs
US20070184055A1 (en) * 1999-06-25 2007-08-09 Genentech, Inc. Treatment with anti-erbb2 antibodies
US20060034842A1 (en) * 1999-06-25 2006-02-16 Genentech, Inc. Treatment with anti-ErbB2 antibody combinations
US7371379B2 (en) * 1999-08-27 2008-05-13 Genentech, Inc. Dosages for treatment with anti-ErbB2 antibodies
US6627196B1 (en) * 1999-08-27 2003-09-30 Genentech, Inc. Dosages for treatment with anti-ErbB2 antibodies
US20060210561A1 (en) * 1999-08-27 2006-09-21 Genentech, Inc. Dosages for treatment with anti-EGFR antibodies
US20030124119A1 (en) * 1999-12-28 2003-07-03 Tadao Yamazaki Stable antibody compositions and injection preparations
US20020001587A1 (en) * 2000-03-16 2002-01-03 Sharon Erickson Methods of treatment using anti-ErbB antibody-maytansinoid conjugates
US7097840B2 (en) * 2000-03-16 2006-08-29 Genentech, Inc. Methods of treatment using anti-ErbB antibody-maytansinoid conjugates
US20070202516A1 (en) * 2000-05-19 2007-08-30 Genentech, Inc. Gene detection assay for improving the likelihood of an effective response to an egfr antagonist cancer therapy
US20080112958A1 (en) * 2000-05-19 2008-05-15 Genentech, Inc. GENE DETECTION ASSAY FOR IMPROVING THE LIKELIHOOD OF AN EFFECTIVE RESPONSE TO AN ErbB ANTAGONIST CANCER THERAPY
US20070166753A1 (en) * 2000-05-19 2007-07-19 Genentech, Inc. Gene detection assay for improving the likelihood of an effective response to a her2 antibody cancer therapy
US20060228745A1 (en) * 2000-05-19 2006-10-12 Genentech, Inc. Gene detection assay for improving the likelhood of an effective response to an ErbB antagonist cancer therapy
US20030190316A1 (en) * 2000-08-11 2003-10-09 Masaya Kakuta Stabilized antibody-containing preparations
US20020160446A1 (en) * 2000-11-14 2002-10-31 Holtzman Douglas A. Novel genes encoding proteins having prognostic diagnostic preventive therapeutic and other uses
US20040170623A1 (en) * 2001-05-31 2004-09-02 Tudor Arvinte Stable liquid formulations of antibodies
US20060127395A1 (en) * 2001-05-31 2006-06-15 Tudor Arvinte Stable liquid formulations of antibodies
US20030111316A1 (en) * 2001-12-05 2003-06-19 Gregory Winters Methods and systems for detecting coin fraud in coin-counting machines and other devices
US20040106161A1 (en) * 2002-07-15 2004-06-03 Birgit Bossenmaier Methods for identifying tumors that are responsive to treatment with anti-ErbB2 antibodies
US20040191243A1 (en) * 2002-12-13 2004-09-30 Bei Chen System and method for stabilizing antibodies with histidine
US20040197324A1 (en) * 2003-04-04 2004-10-07 Genentech, Inc. High concentration antibody and protein formulations
US20060034840A1 (en) * 2004-04-08 2006-02-16 Agus David B ErbB antagonists for pain therapy
US20060013819A1 (en) * 2004-06-16 2006-01-19 Genentech, Inc. Therapy of platinum-resistant cancer
US20060018899A1 (en) * 2004-07-22 2006-01-26 Genentech, Inc. HER2 antibody composition
US20060121044A1 (en) * 2004-12-07 2006-06-08 Genentech, Inc. Selecting patients for therapy with a her inhibitor
US20060165702A1 (en) * 2005-01-21 2006-07-27 Genentech, Inc. Fixed dosing of HER antibodies
US20060188509A1 (en) * 2005-02-23 2006-08-24 Genentech, Inc. Extending time to disease progression or survival in cancer patients
US20060204505A1 (en) * 2005-03-08 2006-09-14 Sliwkowski Mark X Methods for identifying tumors responsive to treatment with HER dimerization inhibitors (HDIs)
US20070009976A1 (en) * 2005-07-06 2007-01-11 Helmut Lenz Detection of a target antigen irrespective of the presence or absence of a corresponding therapeutic antibody
US20070020261A1 (en) * 2005-07-22 2007-01-25 Sliwkowski Mark X Combination therapy of her expressing tumors
US20070037228A1 (en) * 2005-08-12 2007-02-15 Joachim Moecks Method for predicting the response to a treatment
US20070224203A1 (en) * 2006-03-22 2007-09-27 Thomas Friess Tumor therapy with an antibody for vascular endothelial growth factor and an antibody for human epithelial growth factor receptor type 2
US20080038271A1 (en) * 2006-06-05 2008-02-14 Amler Lukas C Extending survival of cancer patients with elevated levels of EGF or TGF-alpha
US20080050385A1 (en) * 2006-08-21 2008-02-28 Thomas Friess Tumor therapy with an anti-vegf antibody
US20080102069A1 (en) * 2006-09-15 2008-05-01 Thomas Friess Tumor therapy with a combination of anti-her2 antibodies

Cited By (260)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080187533A1 (en) * 1997-12-12 2008-08-07 Genentech, Inc. Treatment with anti-erbb2 antibodies
US8075892B2 (en) 1997-12-12 2011-12-13 Genentech, Inc. Treatment with anti-ErbB2 antibodies
US7892549B2 (en) 1997-12-12 2011-02-22 Genentech, Inc. Treatment with anti-ErbB2 antibodies
US20040037823A9 (en) * 1997-12-12 2004-02-26 Genentech, Inc. Treatment with anti-ErbB2 antibodies
US8425908B2 (en) 1997-12-12 2013-04-23 Genentech, Inc. Treatment with anti-ErbB2 antibodies
US7846441B1 (en) 1997-12-12 2010-12-07 Genentech, Inc. Treatment with anti-ErbB2 antibodies
US8309087B2 (en) 1997-12-12 2012-11-13 Genentech, Inc. Treatment with anti-ErbB2 antibodies
US20030147884A1 (en) * 1997-12-12 2003-08-07 Genentech, Inc. Treatment with anti-ErbB2 antibodies
US7862817B2 (en) 1999-06-25 2011-01-04 Genentech, Inc. Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies
US20050208043A1 (en) * 1999-06-25 2005-09-22 Genentech, Inc. Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies
US20050238640A1 (en) * 1999-06-25 2005-10-27 Genentech, Inc. Treatment with anti-ErbB2 antibodies and EGFR-targeted drugs
US20060073143A1 (en) * 1999-06-25 2006-04-06 Genentech, Inc. Treatment with anti-ErbB2 antibodies and anti-hormonal compounds
US20060034842A1 (en) * 1999-06-25 2006-02-16 Genentech, Inc. Treatment with anti-ErbB2 antibody combinations
US20110129464A1 (en) * 1999-06-25 2011-06-02 Genentech, Inc. Humanized anti-erbb2 antibodies and treatment with anti-erbb2 antibodies
US20060198843A1 (en) * 1999-06-25 2006-09-07 Genentech, Inc. Treatment with anti-ErbB2 antibodies and chemotherapeutic agents
US20070269429A1 (en) * 1999-06-25 2007-11-22 Genentech, Inc. Treatment with anti-erbb2 antibodies
US20070184055A1 (en) * 1999-06-25 2007-08-09 Genentech, Inc. Treatment with anti-erbb2 antibodies
US20060062786A1 (en) * 2000-11-08 2006-03-23 Human Genome Sciences, Inc. Antibodies that immunospecifically bind to TRAIL receptors
US20030228309A1 (en) * 2000-11-08 2003-12-11 Theodora Salcedo Antibodies that immunospecifically bind to TRAIL receptors
US9562102B2 (en) 2001-05-11 2017-02-07 Ludwig Institute For Cancer Research Specific binding proteins and uses thereof
US20050214209A1 (en) * 2001-05-25 2005-09-29 Human Genome Sciences, Inc. Antibodies that immunospecifically bind to TRAIL receptors
US20060270837A1 (en) * 2001-05-25 2006-11-30 Human Genome Sciences, Inc. Antibodies that immunospecifically bind to TRAIL receptors
US7348003B2 (en) 2001-05-25 2008-03-25 Human Genome Sciences, Inc. Methods of treating cancer using antibodies that immunospecifically bind to TRAIL receptors
US7361341B2 (en) 2001-05-25 2008-04-22 Human Genome Sciences, Inc. Methods of treating cancer using antibodies that immunospecifically bind to trail receptors
US20050129616A1 (en) * 2001-05-25 2005-06-16 Human Genome Sciences, Inc. Antibodies that immunospecifically bind to TRAIL receptors
US20030180296A1 (en) * 2001-12-20 2003-09-25 Theodora Salcedo Antibodies that immunospecifically bind to trail receptors
US8173128B2 (en) 2002-11-27 2012-05-08 Irm Llc Methods and compositions for inducing apoptosis in cancer cells with an anti-DR5 antibody
US20070128204A1 (en) * 2002-11-27 2007-06-07 Irm Llc Methods and compositions for inducing apoptosis in cancer cells
US7785829B2 (en) 2003-03-19 2010-08-31 Biogen Idec Ma, Inc. Nogo receptor binding protein
US8765662B2 (en) 2003-03-19 2014-07-01 Biogen Idec Ma Inc. NOGO receptor binding protein
US8932821B2 (en) 2003-03-19 2015-01-13 Biogen Idec Ma Inc. NOGO receptor binding protein
US20070059793A1 (en) * 2003-03-19 2007-03-15 Biogen Idec Ma Inc. Nogo receptor binding protein
US20100266542A1 (en) * 2004-03-23 2010-10-21 Biogen Idec Ma Inc. Receptor coupling agents and therapeutic uses thereof
US7947271B2 (en) 2004-03-23 2011-05-24 Biogen Idec Ma Inc. Methods of decreasing tumor volume and reducing tumor burden using TNF-receptor-coupling agents
US20060013819A1 (en) * 2004-06-16 2006-01-19 Genentech, Inc. Therapy of platinum-resistant cancer
US9068992B2 (en) 2004-06-24 2015-06-30 Biogen Ma Inc. Screening methods for identifying Sp35 antagonists
US7879325B2 (en) 2004-07-22 2011-02-01 Genentech, Inc. HER2 antibody composition
US8241630B2 (en) 2004-07-22 2012-08-14 Genentech, Inc. HER2 antibody composition
US20110117097A1 (en) * 2004-07-22 2011-05-19 Genentech, Inc. Her2 antibody composition
US7560111B2 (en) 2004-07-22 2009-07-14 Genentech, Inc. HER2 antibody composition
US9017671B2 (en) 2004-10-20 2015-04-28 Genentech, Inc. Method of treating cancer with a pharmaceutical formulation comprising a HER2 antibody
US8372396B2 (en) 2004-10-20 2013-02-12 Genetech, Inc. Antibody formulations
US20100015157A1 (en) * 2004-10-20 2010-01-21 Genentech, Inc. Antibody formulations
US20080317753A1 (en) * 2004-12-07 2008-12-25 Genentech, Inc. Selecting patients for therapy with a her inhibitor
US8404234B2 (en) 2005-01-21 2013-03-26 Genentech, Inc. Fixed dosing of HER antibodies
US20150093381A1 (en) * 2005-01-21 2015-04-02 Genentech, Inc. Fixed dosing of her antibodies
US20060165702A1 (en) * 2005-01-21 2006-07-27 Genentech, Inc. Fixed dosing of HER antibodies
US8691232B2 (en) 2005-02-23 2014-04-08 Genentech, Inc. Extending time to disease progression or survival in cancer patients
US20060188509A1 (en) * 2005-02-23 2006-08-24 Genentech, Inc. Extending time to disease progression or survival in cancer patients
US20090130119A1 (en) * 2005-03-08 2009-05-21 Justin Abate Anti-ctla-4 antibody compositions
US9487581B2 (en) * 2005-03-08 2016-11-08 Pfizer Inc. Anti-CTLA-4 antibody compositions
US9066984B2 (en) 2005-07-08 2015-06-30 Biogen Ma Inc. Sp35 antibodies and uses thereof
US8551476B2 (en) 2005-07-08 2013-10-08 Biogen Idec Ma Inc. SP35 antibodies and uses thereof
US8163287B2 (en) 2005-07-22 2012-04-24 Genentech, Inc. Combination therapy of her expressing tumors
US20070020261A1 (en) * 2005-07-22 2007-01-25 Sliwkowski Mark X Combination therapy of her expressing tumors
AU2006283560B2 (en) * 2005-08-19 2011-12-08 Centocor, Inc. Proteolysis resistant antibody preparations
US20110124024A1 (en) * 2005-08-19 2011-05-26 Raju T Shantha Proteolysis Resistant Antibody Preparations
US20070041979A1 (en) * 2005-08-19 2007-02-22 Raju T S Proteolysis resistant antibody preparations
EP2543384A2 (en) 2005-12-02 2013-01-09 Biogen Idec MA Inc. Treatment of conditions involving demyelination
US8128926B2 (en) 2007-01-09 2012-03-06 Biogen Idec Ma Inc. Sp35 antibodies and uses thereof
US8609407B2 (en) 2007-01-09 2013-12-17 Biogen Idec Ma Inc. Sp35 antibodies and uses thereof
US9090693B2 (en) 2007-01-25 2015-07-28 Dana-Farber Cancer Institute Use of anti-EGFR antibodies in treatment of EGFR mutant mediated disease
US8940302B2 (en) 2007-03-02 2015-01-27 Genentech, Inc. Predicting response to a HER inhibitor
US9023356B2 (en) 2007-03-15 2015-05-05 Ludwig Institute For Cancer Research Ltd Treatment method using EGFR antibodies and SRC inhibitors and related formulations
US8168760B2 (en) 2007-03-29 2012-05-01 Abbott Laboratories Crystalline anti-human IL-12 antibodies
US8940873B2 (en) 2007-03-29 2015-01-27 Abbvie Inc. Crystalline anti-human IL-12 antibodies
US8404819B2 (en) 2007-03-29 2013-03-26 Abbvie Inc. Crystalline anti-human IL-12 antibodies
US20080292642A1 (en) * 2007-03-29 2008-11-27 Borhani David W Crystalline anti-human IL-12 antibodies
US9283276B2 (en) 2007-08-14 2016-03-15 Ludwig Institute For Cancer Research Ltd. Monoclonal antibody 175 targeting the EGF receptor and derivatives and uses thereof
US20100297121A1 (en) * 2007-10-11 2010-11-25 Biogen Idec Ma Inc. Methods for Treating Pressure Induced Optic Neuropathy, Preventing Neuronal Degeneration and Promoting Neuronal Cell Survival Via Administration of LINGO-1 Antagonists and TrkB Agonists
US20110123553A1 (en) * 2007-11-08 2011-05-26 Biogen Idec Ma Inc. Use of LINGO-4 Antagonists in the Treatment of Conditions Involving Demyelination
US11167030B2 (en) 2007-11-30 2021-11-09 Abbvie Biotechnology Ltd Protein formulations and methods of making same
US8883146B2 (en) 2007-11-30 2014-11-11 Abbvie Inc. Protein formulations and methods of making same
US11191834B2 (en) 2007-11-30 2021-12-07 Abbvie Biotechnology Ltd Protein formulations and methods of making same
US9085619B2 (en) 2007-11-30 2015-07-21 Abbvie Biotechnology Ltd. Anti-TNF antibody formulations
EP4119583A1 (en) 2008-01-30 2023-01-18 Genentech, Inc. Composition comprising antibody that binds to domain ii of her2 and acidic variants thereof
US9181346B2 (en) 2008-01-30 2015-11-10 Genentech, Inc. Composition comprising antibody that binds to domain II of HER2 and acidic variants thereof
US8652474B2 (en) 2008-01-30 2014-02-18 Genentech, Inc. Composition comprising antibody that binds to domain II of HER2 and acidic variants thereof
EP3401335A1 (en) 2008-01-30 2018-11-14 Genentech, Inc. Composition comprising antibody that binds to domain ii of her2 and acidic variants thereof
US11414498B2 (en) 2008-01-30 2022-08-16 Genentech, Inc. Composition comprising antibody that binds to domain II of HER2 and acidic variants thereof
US11597776B2 (en) 2008-01-30 2023-03-07 Genentech, Inc. Composition comprising antibody that binds to domain II of HER2 and acidic variants thereof
US20110182888A1 (en) * 2008-04-08 2011-07-28 Peter Ordentlich Administration of an Inhibitor of HDAC, an Inhibitor of HER-2, and a Selective Estrogen Receptor Modulator
US11655305B2 (en) 2008-06-16 2023-05-23 Genentech, Inc. Treatment of metastatic breast cancer
US10689457B2 (en) 2008-06-16 2020-06-23 Genentech, Inc. Treatment of metastatic breast cancer
US8058406B2 (en) 2008-07-09 2011-11-15 Biogen Idec Ma Inc. Composition comprising antibodies to LINGO or fragments thereof
US20100015131A1 (en) * 2008-07-09 2010-01-21 Biogen Idec Ma Inc. Composition Comprising Antibodies to LINGO or Fragments Thereof
US9745375B2 (en) 2008-07-09 2017-08-29 Biogen Ma Inc. Compositions comprising antibodies to LINGO or fragments thereof
US8425910B2 (en) 2008-07-09 2013-04-23 Biogen Idec Ma Inc. Composition comprising antibodies to LINGO or fragments thereof
EP3747464A1 (en) 2008-09-16 2020-12-09 F. Hoffmann-La Roche AG Methods for treating progessive multiple sclerosis using an anti-cd20 antibody
EP4364800A2 (en) 2008-09-16 2024-05-08 F. Hoffmann-La Roche AG Methods for treating progressive multiple sclerosis
WO2010075249A2 (en) 2008-12-22 2010-07-01 Genentech, Inc. A method for treating rheumatoid arthritis with b-cell antagonists
US9072798B2 (en) 2009-02-18 2015-07-07 Ludwig Institute For Cancer Research Ltd. Specific binding proteins and uses thereof
US10919954B2 (en) 2009-03-05 2021-02-16 Ablynx N.V. Antigen binding dimer-complexes, methods of making/avoiding and uses thereof
US10005830B2 (en) 2009-03-05 2018-06-26 Ablynx N.V. Antigen binding dimer-complexes, methods of making/avoiding and uses thereof
US9265834B2 (en) 2009-03-05 2016-02-23 Ablynx N.V. Stable formulations of polypeptides and uses thereof
US20100278822A1 (en) * 2009-05-04 2010-11-04 Abbott Biotechnology, Ltd. Stable high protein concentration formulations of human anti-tnf-alpha-antibodies
WO2010146059A2 (en) 2009-06-16 2010-12-23 F. Hoffmann-La Roche Ag Biomarkers for igf-1r inhibitor therapy
US20100322931A1 (en) * 2009-06-17 2010-12-23 Harding Fiona A Anti-vegf antibodies and their uses
US9079953B2 (en) 2009-06-17 2015-07-14 Abbvie Biotherapeutics Inc. Anti-VEGF antibodies and their uses
EP4257150A3 (en) * 2009-07-31 2023-11-01 F. Hoffmann-La Roche AG Subcutaneous anti-her2 antibody formulation
EP2687202B1 (en) * 2009-07-31 2023-05-10 F. Hoffmann-La Roche AG Subcutaneous anti-her2 antibody formulation
AU2010277657B2 (en) * 2009-07-31 2013-05-02 F. Hoffmann-La Roche Ag Subcutaneous anti-HER2 antibody formulation
US9968676B2 (en) 2009-07-31 2018-05-15 Genentech, Inc. Subcutaneous anti-HER2 antibody formulations and uses thereof
EP4339212A3 (en) * 2009-07-31 2024-06-19 F. Hoffmann-La Roche AG Subcutaneous anti-her2 antibody formulation
EP2459167B2 (en) 2009-07-31 2022-03-02 F. Hoffmann-La Roche AG Subcutaneous anti-her2 antibody formulation
US20110044977A1 (en) * 2009-07-31 2011-02-24 Genentech, Inc. Subcutaneous anti-HER2 antibody formulations and uses thereof
US9345661B2 (en) * 2009-07-31 2016-05-24 Genentech, Inc. Subcutaneous anti-HER2 antibody formulations and uses thereof
US20130216532A1 (en) * 2009-07-31 2013-08-22 Genentech, Inc. Subcutaneous anti-HER2 Antibody Formulations and Uses Thereof
AU2013202020B2 (en) * 2009-07-31 2014-11-27 F. Hoffmann-La Roche Ag Subcutaneous anti-HER2 antibody formulation
US9884117B2 (en) * 2009-09-03 2018-02-06 Ablynx N.V. Stable formulations of polypeptides and uses thereof
US20120201812A1 (en) * 2009-09-03 2012-08-09 Ablynx N.V. Stable formulations of polypeptides and uses thereof
US20110076273A1 (en) * 2009-09-11 2011-03-31 Genentech, Inc. Highly Concentrated Pharmaceutical Formulations
US10377831B2 (en) 2009-09-11 2019-08-13 Genentech, Inc. Highly concentrated pharmaceutical formulations
US10752696B2 (en) 2009-09-11 2020-08-25 Genentech, Inc. Highly concentrated pharmaceutical formulations
US10280227B2 (en) 2009-09-11 2019-05-07 Genentech, Inc. Highly concentrated pharmaceutical formulations
US20110177095A1 (en) * 2009-12-16 2011-07-21 Abbott Biotherapeutics Corporation Anti-her2 antibodies and their uses
US8937159B2 (en) 2009-12-16 2015-01-20 Abbvie Biotherapeutics Inc. Anti-HER2 antibodies and their uses
US9120855B2 (en) 2010-02-10 2015-09-01 Novartis Ag Biologic compounds directed against death receptor 5
US20130078232A1 (en) * 2010-03-22 2013-03-28 Genentech, Inc. Compositions and methods useful for stabilizing protein-containing formulations
US9662395B2 (en) * 2010-03-22 2017-05-30 Genentech, Inc. Compositions and methods useful for stabilizing protein-containing formulations
US20210353756A1 (en) * 2010-06-24 2021-11-18 Genentech, Inc. Compositions and methods for stabilizing protein-containing formulations
US11938189B2 (en) * 2010-06-24 2024-03-26 Genentech, Inc Compositions and methods for stabilizing protein-containing formulations
US9855331B2 (en) 2010-09-17 2018-01-02 Baxalta Incorporated Stabilization of immunoglobulins through aqueous formulation with histidine at weak acidic to neutral pH
TWI621625B (zh) * 2010-09-17 2018-04-21 巴克斯歐塔公司 在弱酸性至中性ph中經由具有組胺酸的水性調配物穩定免疫球蛋白
US8795658B2 (en) 2010-09-17 2014-08-05 Baxter International Inc. Stabilization of immunoglobulins through aqueous formulation with histidine at weak acidic to neutral pH
US10202448B2 (en) 2010-11-04 2019-02-12 Boehringer Ingelheim International Gmbh Anti-IL-23 antibodies
US9441036B2 (en) 2010-11-04 2016-09-13 Boehringer Ingelheim International Gmbh Anti-IL-23 antibodies
US8821865B2 (en) 2010-11-11 2014-09-02 Abbvie Biotechnology Ltd. High concentration anti-TNFα antibody liquid formulations
US9487589B2 (en) 2011-06-30 2016-11-08 Genentech, Inc. Anti-c-met-antibody formulations
EP3598981A2 (en) 2011-10-14 2020-01-29 F. Hoffmann-La Roche AG Uses for and article of manufacture including her2 dimerization inhibitor pertuzumab
EP4234034A2 (en) 2011-10-14 2023-08-30 F. Hoffmann-La Roche AG Uses for and article of manufacture including her2 dimerization inhibitor pertuzumab
EP4241849A2 (en) 2011-10-14 2023-09-13 F. Hoffmann-La Roche AG Uses for and article of manufacture including her2 dimerization inhibitor pertuzumab
WO2013055874A2 (en) 2011-10-14 2013-04-18 Genentech, Inc. Uses for and article of manufacture including her2 dimerization inhibitor pertuzumab
EP4234033A2 (en) 2011-10-14 2023-08-30 F. Hoffmann-La Roche AG Uses for and article of manufacture including her2 dimerization inhibitor pertuzumab
US20130186797A1 (en) * 2012-01-23 2013-07-25 Regeneron Pharmaceuticals, Inc. Stabilized Formulations Containing Anti-Ang2 Antibodies
US9402898B2 (en) * 2012-01-23 2016-08-02 Regeneron Pharmaceuticals, Inc. Stabilized formulations containing anti-Ang2 antibodies
WO2013165791A1 (en) * 2012-05-03 2013-11-07 Boehringer Ingelheim International Gmbh Anti-il-23p19 antibodies
AU2018200239B2 (en) * 2012-05-03 2019-10-17 Boehringer Ingelheim International Gmbh Anti-IL-23p19 antibodies
CN104507497A (zh) * 2012-05-03 2015-04-08 勃林格殷格翰国际有限公司 抗IL-23p19抗体
EP4039275A1 (en) * 2012-05-03 2022-08-10 Boehringer Ingelheim International GmbH Anti-il-23p19 antibodies
EP3326649A1 (en) * 2012-05-03 2018-05-30 Boehringer Ingelheim International GmbH Anti-il-23p19 antibodies
CN109206516A (zh) * 2012-05-03 2019-01-15 勃林格殷格翰国际有限公司 抗IL-23p19抗体
US11078265B2 (en) 2012-05-03 2021-08-03 Boehringer Ingelheim International Gmbh Anti-IL-23 antibodies
US11612659B2 (en) 2012-05-04 2023-03-28 Novartis Ag Anti-CD40 antibody formulation delivery device
US10588976B2 (en) 2012-05-04 2020-03-17 Novartis Ag Anti-CD40 antibody formulation
EP3693016A1 (en) * 2012-05-04 2020-08-12 Novartis AG Lyophilised and aqueous anti-cd40 antibody formulations
WO2013164789A3 (en) * 2012-05-04 2014-02-13 Novartis Ag Lyophilised and aqueous anti-cd40 antibody formulations
EA031436B1 (ru) * 2012-05-04 2019-01-31 Новартис Аг Водная фармацевтическая композиция, содержащий ее предварительно заполненный шприц и применение композиции в лечении аутоиммунных заболеваний
US10111958B2 (en) 2012-05-04 2018-10-30 Novartis Ag Anti-CD40 antibody formulation
US9796780B2 (en) 2012-05-14 2017-10-24 Biogen Ma Inc. LINGO-2 antagonists for treatment of conditions involving motor neurons
US20150157709A1 (en) * 2012-06-01 2015-06-11 Ophthotech Corporation Compositions Comprising an Anti-PDGF Aptamer and a VEGF Antagonist
US9216219B2 (en) 2012-06-12 2015-12-22 Novartis Ag Anti-BAFFR antibody formulation
EP3593814A1 (en) * 2012-06-12 2020-01-15 Novartis AG Antibody formulation
US9751951B2 (en) 2012-06-12 2017-09-05 Novartis Ag Methods of treatment by administering an anti-BAFFR antibody therapeutic formulation
WO2013186700A1 (en) * 2012-06-12 2013-12-19 Novartis Ag Antibody formulation
EA033373B1 (ru) * 2012-06-12 2019-10-31 Novartis Ag Композиции на водной основе, предварительно наполненный шприц, их применения и способ доставки гипофукозилированного или нефукозилированного антитела против baffr млекопитающему
US10689451B2 (en) 2012-06-12 2020-06-23 Novartis Ag Anti-BAFFR antibody therapeutic formulations
US9278131B2 (en) 2012-08-10 2016-03-08 Adocia Process for lowering the viscosity of highly concentrated protein solutions
US8883979B2 (en) 2012-08-31 2014-11-11 Bayer Healthcare Llc Anti-prolactin receptor antibody formulations
US10414825B2 (en) 2012-09-10 2019-09-17 Prothena Biosciences Limited Anti-MCAM antibodies and associated methods of use
US10407507B2 (en) 2012-09-10 2019-09-10 Prothena Biosciences Limited Anti-MCAM antibodies and associated methods of use
WO2014057074A1 (en) 2012-10-12 2014-04-17 Spirogen Sàrl Pyrrolobenzodiazepines and conjugates thereof
EP2839860A1 (en) 2012-10-12 2015-02-25 Spirogen Sàrl Pyrrolobenzodiazepines and conjugates thereof
WO2014068026A1 (en) * 2012-10-31 2014-05-08 Amgen Research (Munich) Gmbh Liquid formulation comprising gm-csf neutralizing compound
EA032829B1 (ru) * 2012-10-31 2019-07-31 Эмджен Рисерч (Мьюник) Гмбх Водная композиция, содержащая антитело к gm-csf
US20150266965A1 (en) * 2012-10-31 2015-09-24 Markus Rast Method for Preparation of a High Concentration Liquid Formulation of an Antibody
US9919051B2 (en) 2012-10-31 2018-03-20 Amgen Research (Munich) Gmbh Liquid formulation comprising GM-CSF neutralizing compound
US10758621B2 (en) 2012-10-31 2020-09-01 Amgen Research (Munich) Gmbh Liquid formulation comprising GM-CSF neutralizing compound
US9833410B2 (en) 2012-10-31 2017-12-05 Takeda Gmbh Lyophilized formulation comprising GM-CSF neutralizing compound
EP3744344A1 (en) * 2012-10-31 2020-12-02 Amgen Research (Munich) GmbH Liquid formulation comprising gm-csf neutralizing compound
AU2013340845B2 (en) * 2012-10-31 2018-02-22 Amgen Research (Munich) Gmbh Liquid formulation comprising GM-CSF neutralizing compound
US9815893B2 (en) 2012-11-30 2017-11-14 Abbvie Biotherapeutics Inc. Anti-VEGF antibodies and their uses
WO2014093203A1 (en) 2012-12-13 2014-06-19 Merck Sharp & Dohme Corp. SOLUTION FORMULATIONS OF ENGINEERED ANTI-IL-23p19 ANTIBODIES
WO2014140174A1 (en) 2013-03-13 2014-09-18 Spirogen Sàrl Pyrrolobenzodiazepines and conjugates thereof
US10925966B2 (en) * 2013-03-13 2021-02-23 Genentech, Inc. Antibody formulations
US20180280514A1 (en) * 2013-03-13 2018-10-04 Genentech, Inc. Antibody formulations
US20140271636A1 (en) * 2013-03-15 2014-09-18 Takeda Gmbh Formulation of an antibody and use thereof
US20160022585A1 (en) * 2013-03-15 2016-01-28 Takeda Gmbh Formulation of an antibody and use thereof
US11433029B2 (en) * 2013-03-15 2022-09-06 Takeda Pharmaceutical Company Limited Formulation of an antibody and use thereof
US11576863B2 (en) * 2013-03-15 2023-02-14 Takeda Pharmaceutical Company Limited Formulation of an antibody and use thereof
US9969811B2 (en) 2013-04-16 2018-05-15 Genentech, Inc. Pertuzumab variants and evaluation thereof
US9815904B2 (en) 2013-04-16 2017-11-14 Genetech, Inc. Pertuzumab variants and evaluation thereof
US12016875B2 (en) 2013-07-12 2024-06-25 Iveric Bio, Inc. Methods for treating or preventing ophthalmological conditions
US11273171B2 (en) 2013-07-12 2022-03-15 Iveric Bio, Inc. Methods for treating or preventing ophthalmological conditions
US11795216B2 (en) 2013-08-30 2023-10-24 Takeda Pharmaceutical Company Limited Antibodies neutralizing GM-CSF for use in the treatment of rheumatoid arthritis or as analgesics
US10745475B2 (en) 2013-08-30 2020-08-18 Takeda Gmbh Antibodies neutralizing GM-CSF for use in the treatment of rheumatoid arthritis or as analgesics
US10875922B2 (en) 2013-09-27 2020-12-29 Genentech, Inc. Anti-PDL1 antibody formulations
AU2020203267B2 (en) * 2013-09-27 2022-06-23 Genentech, Inc. Anti-PDL1 antibody formulations
AU2014324703B2 (en) * 2013-09-27 2020-03-19 Genentech, Inc. Anti-PDL1 antibody formulations
AU2014324703C1 (en) * 2013-09-27 2020-10-29 Genentech, Inc. Anti-PDL1 antibody formulations
US10407506B2 (en) * 2014-03-12 2019-09-10 Prothena Biosciences Limited Anti-MCAM antibodies and associated methods of use
US10730951B2 (en) 2014-03-31 2020-08-04 Genentech, Inc. Anti-OX40 antibodies and methods of use
US9975957B2 (en) * 2014-03-31 2018-05-22 Genentech, Inc. Anti-OX40 antibodies and methods of use
US20150307617A1 (en) * 2014-03-31 2015-10-29 Genentech, Inc. Anti-ox40 antibodies and methods of use
WO2015164581A1 (en) * 2014-04-24 2015-10-29 Millennium Pharmaceuticals, Inc. Pharmaceutical formulation of an anti-guanylyl cyclase c antibody conjugate comprising histidine or a salt thereof and polysorbate 20
WO2015164665A1 (en) 2014-04-25 2015-10-29 Genentech, Inc. Methods of treating early breast cancer with trastuzumab-mcc-dm1 and pertuzumab
US10507241B2 (en) 2014-07-24 2019-12-17 Boehringer Ingelheim International Gmbh Biomarkers useful in the treatment of IL-23A related diseases
US10059763B2 (en) 2014-09-03 2018-08-28 Boehringer Ingelheim International Gmbh Compound targeting IL-23A and TNF-alpha and uses thereof
US11680096B2 (en) 2014-09-03 2023-06-20 Boehringer Ingelheim International Gmbh Compound targeting IL-23A and TNF-alpha and uses thereof
US10793629B2 (en) 2014-09-03 2020-10-06 Boehringer Ingelheim International Gmbh Compound targeting IL-23A and TNF-alpha and uses thereof
WO2016037644A1 (en) 2014-09-10 2016-03-17 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US11370833B2 (en) * 2014-09-15 2022-06-28 Genentech, Inc. Antibody formulations
AU2015318001B2 (en) * 2014-09-15 2021-03-25 Genentech, Inc. Antibody formulations
TWI806150B (zh) * 2014-11-07 2023-06-21 瑞士商諾華公司 穩定的含有高濃度抗vegf抗體之蛋白質溶液調配物
IL280087A (en) * 2014-11-07 2021-03-01 Novartis Ag Stable formulations of protein solutions containing high concentrations of anti-vegf antibody
US10689438B2 (en) 2014-11-07 2020-06-23 Novartis Ag Stable protein solution formulation containing high concentration of an anti-VEGF antibody
AU2020244614B2 (en) * 2014-11-07 2023-06-01 Novartis Ag Stable protein solution formulation containing high concentration of an anti-VEGF antibody
AU2015342815B2 (en) * 2014-11-07 2018-12-13 Novartis Ag Stable protein solution formulation containing high concentration of an anti-VEGF antibody
WO2016073915A1 (en) * 2014-11-07 2016-05-12 Novartis Ag Stable protein solution formulation containing high concentration of an anti-vegf antibody
US10435467B2 (en) 2015-01-08 2019-10-08 Biogen Ma Inc. LINGO-1 antagonists and uses for treatment of demyelinating disorders
US11406715B2 (en) 2015-05-30 2022-08-09 Genentech, Inc. Methods of treating HER2-positive metastatic breast cancer
WO2016196373A2 (en) 2015-05-30 2016-12-08 Genentech, Inc. Methods of treating her2-positive metastatic breast cancer
WO2017062682A2 (en) 2015-10-06 2017-04-13 Genentech, Inc. Method for treating multiple sclerosis
WO2017087280A1 (en) 2015-11-16 2017-05-26 Genentech, Inc. Methods of treating her2-positive cancer
US20180369377A1 (en) * 2015-12-07 2018-12-27 Merck Patent Gmbh Aqueous pharmaceutical formulation comprising anti-pd-l1 antibody avelumab
US11058769B2 (en) * 2015-12-07 2021-07-13 Merck Patent Gmbh Aqueous pharmaceutical formulation comprising anti-PD-L1 antibody Avelumab
US10668167B2 (en) 2016-06-02 2020-06-02 Abbvie Inc. Glucocorticoid receptor agonist and immunoconjugates thereof
US11046776B2 (en) 2016-08-05 2021-06-29 Genentech, Inc. Multivalent and multiepitopic antibodies having agonistic activity and methods of use
WO2018069289A1 (en) 2016-10-11 2018-04-19 Medimmune Limited Antibody-drug conjugates with immune-mediated therapy agents
WO2018085513A1 (en) 2016-11-04 2018-05-11 Genentech, Inc. Treatment of her2-positive breast cancer
US12012464B2 (en) 2016-12-23 2024-06-18 Novartis Ag Factor XI antibodies and methods of use
WO2018125589A1 (en) 2016-12-28 2018-07-05 Genentech, Inc. Treatment of advanced her2 expressing cancer
EP3570884B1 (en) 2017-01-17 2020-09-30 Genentech, Inc. Subcutaneous her2 antibody formulations
WO2018136412A2 (en) 2017-01-17 2018-07-26 Genentech, Inc. Subcutaneous her2 antibody formulations
EP3868404A1 (en) 2017-01-17 2021-08-25 F. Hoffmann-La Roche AG Subcutaneous her2 antibody formulations
US11654105B2 (en) 2017-01-17 2023-05-23 Genentech, Inc. Subcutaneous HER2 antibody formulations
US10849849B2 (en) 2017-01-17 2020-12-01 Genentech Inc. Subcutaneous HER2 antibody formulations
US20220089713A1 (en) * 2017-03-01 2022-03-24 Medimmune Limited Formulations of monoclonal antibodies
US11992529B2 (en) 2017-03-02 2024-05-28 Genentech, Inc. Adjuvant treatment of HER2-positive breast cancer
EP4368199A2 (en) 2017-03-02 2024-05-15 Genentech, Inc. Adjuvant treatment of her2-positive breast cancer
US11638756B2 (en) 2017-03-02 2023-05-02 Genentech, Inc. Adjuvant treatment of HER2-positive breast cancer
WO2018160654A2 (en) 2017-03-02 2018-09-07 Genentech, Inc. Adjuvant treatment of her2-positive breast cancer
US11077189B2 (en) 2017-03-02 2021-08-03 Genentech Inc. Adjuvant treatment of HER2-positive breast cancer
WO2018200505A1 (en) 2017-04-24 2018-11-01 Genentech, Inc. Erbb2/her2 mutations in the transmbrane or juxtamembrane domain
US11845798B2 (en) 2017-05-02 2023-12-19 Merck Sharp & Dohme Llc Formulations of anti-LAG3 antibodies and co-formulations of anti-LAG3 antibodies and anti-PD-1 antibodies
US11633476B2 (en) 2017-05-02 2023-04-25 Merck Sharp & Dohme Llc Stable formulations of programmed death receptor 1 (PD-1) antibodies and methods of use thereof
US11723975B2 (en) * 2017-05-30 2023-08-15 Bristol-Myers Squibb Company Compositions comprising an anti-LAG-3 antibody or an anti-LAG-3 antibody and an anti-PD-1 or anti-PD-L1 antibody
US11814431B2 (en) 2017-08-25 2023-11-14 Five Prime Therapeutics, Inc. B7-H4 antibodies and methods of use thereof
US11306144B2 (en) 2017-08-25 2022-04-19 Five Prime Therapeutics, Inc. B7-H4 antibodies and methods of use thereof
US20200237906A1 (en) * 2017-11-02 2020-07-30 Nanjing Shunxin Pharmaceutical Co., Ltd. Pharmaceutical Composition of Humanized Monoclonal Anti-PD-L1 Antibody
US10772970B2 (en) 2017-12-01 2020-09-15 Abbvie Inc. Glucocorticoid receptor agonist and immunoconjugates thereof
US20210070861A1 (en) * 2018-02-21 2021-03-11 Five Prime Therapeutics, Inc. B7-h4 antibody formulations
JP2021514379A (ja) * 2018-02-21 2021-06-10 ファイブ プライム セラピューティクス, インコーポレイテッド B7−h4抗体製剤
WO2019165077A1 (en) * 2018-02-21 2019-08-29 Five Prime Therapeutics, Inc. B7-h4 antibody formulations
CN111741978A (zh) * 2018-02-21 2020-10-02 戊瑞治疗有限公司 B7-h4抗体制剂
US11939383B2 (en) 2018-03-02 2024-03-26 Five Prime Therapeutics, Inc. B7-H4 antibodies and methods and use thereof
WO2019224275A1 (en) 2018-05-23 2019-11-28 Adc Therapeutics Sa Molecular adjuvant
WO2019232323A1 (en) * 2018-05-31 2019-12-05 Board Of Regents, The University Of Texas System Bi-specific antibodies and use thereof
CN110732023A (zh) * 2018-07-18 2020-01-31 江苏恒瑞医药股份有限公司 一种her2抗体药物组合物及其用途
US20210369842A1 (en) * 2018-11-06 2021-12-02 Genmab A/S Antibody formulation
US20220110872A1 (en) * 2018-12-14 2022-04-14 Morphosys Ag Antibody formulations
US11945859B2 (en) * 2018-12-18 2024-04-02 Novartis Ag Protein solution formulation containing high concentration of an anti-VEGF antibody
US11634485B2 (en) 2019-02-18 2023-04-25 Eli Lilly And Company Therapeutic antibody formulation
US11596690B2 (en) * 2019-03-21 2023-03-07 Regeneron Pharmaceuticals, Inc. Stabilized formulations containing anti-IL-33 antibodies
WO2022036129A1 (en) 2020-08-14 2022-02-17 F. Hoffmann-La Roche Ag Methods for treating multiple sclerosis with ocrelizumab
WO2022132636A1 (en) * 2020-12-14 2022-06-23 AmMax Bio, Inc. High concentration formulations of anti-csf1 and anti-csf1r antibodies
GB202102396D0 (en) 2021-02-19 2021-04-07 Adc Therapeutics Sa Molecular adjuvant
US11958906B2 (en) * 2022-04-13 2024-04-16 Genentech, Inc. Pharmaceutical compositions of mosunetuzumab and methods of use
US20230331861A1 (en) * 2022-04-13 2023-10-19 Genentech, Inc. Pharmaceutical compositions of mosunetuzumab and methods of use
WO2023202685A1 (en) * 2022-04-22 2023-10-26 Eirgenix, Inc. Pharmaceutical compositons containing anti-her2 antibody for subcutaneous administration

Also Published As

Publication number Publication date
US20180221488A1 (en) 2018-08-09
CN101084015A (zh) 2007-12-05
CN101084015B (zh) 2011-08-10
JO3000B1 (ar) 2016-09-05
WO2006044908A2 (en) 2006-04-27
PE20061043A1 (es) 2006-10-19
KR101243590B1 (ko) 2013-03-21
SG196859A1 (en) 2014-02-13
CA2579861C (en) 2012-12-18
EP1802344B1 (en) 2012-08-15
NO343683B1 (no) 2019-05-06
SI1802344T1 (sl) 2012-11-30
PL1802344T3 (pl) 2013-01-31
EP2371388A2 (en) 2011-10-05
IL211393A0 (en) 2011-05-31
HRP20120893T1 (hr) 2012-11-30
BRPI0516299B8 (pt) 2021-05-25
UA89798C2 (ru) 2010-03-10
TW200618811A (en) 2006-06-16
JP5025482B2 (ja) 2012-09-12
BRPI0516299B1 (pt) 2020-10-06
GT200500298A (es) 2006-05-08
KR20070068385A (ko) 2007-06-29
US20230263895A1 (en) 2023-08-24
ZA200702521B (en) 2008-07-30
AU2005295394B2 (en) 2011-06-23
SV2006002275A (es) 2006-03-06
ECSP077308A (es) 2007-04-26
EP3498294A1 (en) 2019-06-19
HK1108391A1 (en) 2008-05-09
CN102319430A (zh) 2012-01-18
IL211393A (en) 2016-05-31
MY146100A (en) 2012-06-29
US8372396B2 (en) 2013-02-12
CR9129A (es) 2009-05-25
BRPI0516299A (pt) 2008-09-02
US9017671B2 (en) 2015-04-28
US20100015157A1 (en) 2010-01-21
HK1104483A1 (en) 2008-01-18
PT1802344E (pt) 2012-11-15
RU2007118648A (ru) 2008-11-27
RU2426554C2 (ru) 2011-08-20
TNSN07088A1 (en) 2008-06-02
EP2371388A3 (en) 2012-03-28
IL237756A0 (en) 2015-05-31
MA29014B1 (fr) 2007-11-01
NO20072513L (no) 2007-07-19
PE20091327A1 (es) 2009-09-03
US20130071384A1 (en) 2013-03-21
CA2579861A1 (en) 2006-04-27
AU2005295394A1 (en) 2006-04-27
ES2389911T3 (es) 2012-11-02
IL181738A (en) 2015-04-30
PA8650001A1 (es) 2007-01-17
RU2011104955A (ru) 2012-08-20
JP2012176970A (ja) 2012-09-13
RS52512B (en) 2013-04-30
EP1802344A2 (en) 2007-07-04
IL181738A0 (en) 2007-07-04
US20200179515A1 (en) 2020-06-11
DK1802344T3 (da) 2012-10-08
JP2016065091A (ja) 2016-04-28
WO2006044908A3 (en) 2006-08-31
NZ553625A (en) 2009-10-30
TWI394582B (zh) 2013-05-01
US20150196642A1 (en) 2015-07-16
JP2008520551A (ja) 2008-06-19
JP2014159469A (ja) 2014-09-04

Similar Documents

Publication Publication Date Title
US20230263895A1 (en) Antibody formulations
US20230416401A1 (en) Composition comprising antibody that binds to domain ii of her2 and acidic variants thereof
AU2011213721A1 (en) Antibody formulation in histidine-acetate buffer
MX2007004732A (es) Formulaciones de anticuerpos

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENENTECH, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ANDYA, JAMES;GWEE, SHIANG C.;LIU, JUN;AND OTHERS;REEL/FRAME:017162/0444;SIGNING DATES FROM 20051220 TO 20060104

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION