WO2016051973A1 - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
WO2016051973A1
WO2016051973A1 PCT/JP2015/072933 JP2015072933W WO2016051973A1 WO 2016051973 A1 WO2016051973 A1 WO 2016051973A1 JP 2015072933 W JP2015072933 W JP 2015072933W WO 2016051973 A1 WO2016051973 A1 WO 2016051973A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
semiconductor substrate
peak
semiconductor device
lifetime
Prior art date
Application number
PCT/JP2015/072933
Other languages
English (en)
French (fr)
Inventor
博樹 脇本
博 瀧下
吉村 尚
田村 隆博
勇一 小野澤
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201580002976.5A priority Critical patent/CN105814694B/zh
Priority to JP2016551621A priority patent/JP6319453B2/ja
Priority to DE112015000206.5T priority patent/DE112015000206T5/de
Publication of WO2016051973A1 publication Critical patent/WO2016051973A1/ja
Priority to US15/169,740 priority patent/US10312331B2/en
Priority to US16/430,444 priority patent/US10923570B2/en
Priority to US17/168,124 priority patent/US11646350B2/en
Priority to US18/310,554 priority patent/US20230275129A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/221Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities of killers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66128Planar diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0647Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. vertical bipolar transistor and bipolar lateral transistor and resistor
    • H01L27/0652Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0664Vertical bipolar transistor in combination with diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction

Definitions

  • the present invention relates to a semiconductor device and a method of manufacturing the semiconductor device.
  • Patent Document 1 Japanese Patent Application Publication No. 2012-199577 Patent Document 2 International Publication 2013/100155 Pamphlet Patent Document 3 US Patent No. 6482681 Specification Patent Document 4 US Patent No. 6707111 Specification Patent Document 5 Japanese Patent Application Laid-Open No. 2001-160559 Patent Document 6 JP-A-2001-156299 Patent Document 7 JP-A-7-193218 Patent Document 8 US Patent Application Publication No. 2008-1257 Specification Patent Document 9 US Patent Application Publication No. 2008-54369 Specification
  • low reverse recovery loss ie peak current Irp of small reverse recovery current and tail current of small reverse recovery current
  • gradual reverse recovery ie slow reverse recovery voltage time rate of change dV / Dt
  • the carrier lifetime distribution in the direction perpendicular to the surface of the semiconductor substrate As a method of controlling the carrier lifetime, there is a technique of irradiating an electron beam into a semiconductor substrate. However, when the carrier lifetime is controlled by electron beam irradiation, the carrier lifetime in the semiconductor substrate is uniformly shortened. In this case, the tail current can be reduced. However, dV / dt and Irp tend to be large.
  • the semiconductor device may include an n-type semiconductor substrate.
  • the semiconductor device may comprise a p-type anode region.
  • the anode region may be formed on the surface side of the semiconductor substrate.
  • the semiconductor device may comprise an n-type field stop region.
  • the field stop region may be formed with a proton as a donor on the back surface side of the semiconductor substrate.
  • the semiconductor device may comprise an n-type cathode region.
  • the cathode region may be formed on the back surface side of the semiconductor substrate than the field stop region.
  • the concentration distribution of donors in the depth direction in the field stop region has a first peak and a second peak whose concentration is lower than the first peak on the back surface side of the semiconductor substrate than the first peak. Good.
  • the carrier lifetime in at least a partial region between the anode region and the cathode region may be longer than any of the carrier lifetimes in the anode region and the cathode region.
  • the carrier lifetime at the depth position where the concentration distribution of the donor shows the first peak may be longer than any of the carrier lifetimes at the anode region and the cathode region.
  • the concentration distribution of the donor in the depth direction in the field stop region may have a plurality of peaks, and the first peak may be the peak closest to the surface of the semiconductor substrate among the plurality of peaks.
  • the region where the carrier lifetime is longer than that of the anode region may extend to the surface side of the semiconductor substrate than the position where the concentration distribution of the donor shows the first peak.
  • the edge on the back surface side of the semiconductor substrate of the depletion layer extending from the boundary between the anode region and the n-type region of the semiconductor substrate It may have a first peak at a position corresponding to the part.
  • the back surface side of the semiconductor substrate may have a local lifetime killer that shortens the carrier lifetime.
  • the region where the local lifetime killer is present may be formed at a position not in contact with the depletion layer extending from the boundary between the anode region and the n-type region of the semiconductor substrate when the rated reverse voltage of the semiconductor device is applied.
  • the injection amount of the local lifetime killer may be 1/300 or more of the injection amount of the peak proton at the back surface side of the semiconductor substrate in the concentration distribution of the donor.
  • the injection amount of the local lifetime killer may be 1/150 or more, or 1/100 or more of the injection amount of the proton.
  • a lifetime killer may be irradiated to shorten the carrier lifetime of the entire semiconductor substrate.
  • the lifetime killer may be one in which crystal defects formed by the lifetime killer can be terminated by protons.
  • the carrier lifetime of the cathode region may be longer than the carrier lifetime of the anode region.
  • n-type semiconductor substrate An n-type semiconductor substrate, a p-type anode region formed on the front surface side of the semiconductor substrate, an n-type field stop region formed using a proton as a donor on the back surface side of the semiconductor substrate, and a semiconductor than the field stop region
  • the donor concentration distribution in the depth direction in the field stop region is determined from the first peak and the first peak.
  • a proton injection step may be provided in which protons are injected from the back surface side of the semiconductor substrate such that the back surface side of the semiconductor substrate has a second peak lower in concentration than the first peak.
  • the semiconductor substrate is annealed to diffuse protons, whereby the carrier lifetime in at least a partial region between the anode region and the cathode region is longer than any of the carrier lifetimes in the anode region and the cathode region.
  • a lifetime annealing step may be provided.
  • the manufacturing method may further include a lifetime killer irradiation step of irradiating the semiconductor substrate with a lifetime killer that shortens the carrier lifetime of the entire semiconductor substrate. By diffusing the protons in the lifetime annealing step, the carrier lifetime in the region where the protons are diffused may be restored.
  • the manufacturing method may further include a proton annealing step of annealing the semiconductor substrate between the proton injection step and the lifetime killer irradiation step. The position of the first peak may be adjusted according to the withstand voltage class of the semiconductor device.
  • the semiconductor substrate may be irradiated with an electron beam.
  • FIG. 14 is a schematic cross sectional view of the semiconductor device 100 and a diagram showing carrier concentration distribution in the FS region 40.
  • FIG. 7 is a schematic view showing an example of distribution of carrier lifetimes in the depth direction of the semiconductor substrate 10;
  • FIG. 6 is a diagram showing an example of a leak current waveform of the semiconductor device 100.
  • FIG. 6 is a view showing an example of the manufacturing direction of the semiconductor device 100. It is a figure which shows an example of FS area
  • FIG. 17 is a diagram showing an example of the end position of the depletion layer when a reverse voltage is applied to the semiconductor device 100. It is a figure which shows an example of the relationship between the irradiation amount of helium as a local lifetime killer, and the forward direction voltage of the semiconductor device. It is a figure which shows an example of the time waveform of the voltage between anode cathodes at the time of reverse recovery, and anode current.
  • a 1/7 to 2/7 the depth region of the carrier lifetime shows the relationship between the time waveform of the anode current I A.
  • the relationship between the carrier lifetime (forward voltage) in the depth region from 2/7 to 3/7 and the time waveform of the anode-cathode voltage VKA is shown.
  • the carrier lifetime in the depth region of from 2/7 to 3/7 shows the relationship between the time waveform of the anode current I A.
  • the relationship between the carrier lifetime (forward voltage) in the depth region from 3/7 to 4/7 and the time waveform of the anode-cathode voltage VKA is shown.
  • the carrier lifetime in the depth region of from 3/7 to 4/7 shows the relationship between the time waveform of the anode current I A.
  • the relationship between the carrier lifetime (forward voltage) in the depth region from 4/7 to 5/7 and the time waveform of the anode-cathode voltage VKA is shown.
  • a 4/7 to 5/7 the depth region of the carrier lifetime (forward voltage) shows the relationship between the time waveform of the anode current I A.
  • the relationship between the carrier lifetime (forward voltage) in the depth region from 5/7 to 6/7 and the time waveform of the anode-cathode voltage VKA is shown.
  • the carrier lifetime in the depth region of from 5/7 to 6/7 shows the relationship between the time waveform of the anode current I A.
  • the relationship between the carrier lifetime (forward voltage) in the depth region from 6/7 to the back surface of the semiconductor substrate 10 and the time waveform of the anode-cathode voltage VKA is shown.
  • the carrier lifetime in the depth region of to the back surface of the semiconductor substrate 10 (forward voltage) from 6/7 shows the relationship between the time waveform of the anode current I A.
  • FIG. 16 is a diagram showing an example of a method of manufacturing the semiconductor device 200.
  • FIG. 16 is a view showing another example of the carrier concentration distribution in the FS region 40.
  • FIG. 1 is a diagram showing an outline of a semiconductor device 100 according to an embodiment of the present invention.
  • FIG. 1 shows a schematic view of a cross section of the semiconductor device 100.
  • the semiconductor device 100 in this example is used, for example, as a free wheeling diode (FWD) provided in parallel with a high breakdown voltage switch such as an IGBT.
  • the semiconductor device 100 of this example includes an n ⁇ -type semiconductor substrate 10, an insulating film 22, an anode electrode 24, and a cathode electrode 32. Further, a p + -type anode region is formed on the front surface side of the semiconductor substrate 10, and a field stop region (FS region 40) and an n + -type cathode region 30 are formed on the back surface side.
  • FWD free wheeling diode
  • IGBT high breakdown voltage switch
  • the semiconductor device 100 of this example includes an n ⁇ -type semiconductor substrate 10, an insulating film 22, an anode electrode 24, and a cathode electrode 32
  • the semiconductor substrate 10 is, for example, a silicon substrate.
  • the insulating film 22 is formed to cover the surface of the semiconductor substrate 10. However, the insulating film 22 has an opening that exposes the anode region 20.
  • the insulating film 22 is formed of, for example, an insulator such as silicon oxide or silicon nitride.
  • the anode electrode 24 is formed on the anode region 20 exposed to the opening of the insulating film 22.
  • the anode electrode 24 is formed of, for example, a metal such as aluminum.
  • the FS region 40 is an n-type region formed using a proton (hydrogen ion) as a donor.
  • the impurity concentration of the FS region (in this example, the donor concentration) is higher than the impurity concentration of the semiconductor substrate 10.
  • the cathode region 30 is formed on the back surface side of the semiconductor substrate 10 than the FS region 40.
  • the cathode region 30 is an n + -type region formed using, for example, phosphorus as a donor.
  • the impurity concentration of the cathode region 30 is higher than both the impurity concentration of the semiconductor substrate 10 and the impurity concentration of the FS region 40.
  • the cathode electrode 32 is formed on the back surface of the semiconductor substrate 10 and connected to the cathode region 30. With such a configuration, the semiconductor device 100 functions as a diode.
  • FIG. 2 is a schematic cross-sectional view of the semiconductor device 100 and a diagram showing carrier concentration distribution in the FS region 40.
  • the insulating film 22, the anode electrode 24, and the cathode electrode 32 are abbreviate
  • the horizontal axis indicates the depth position from the end on the back surface side of the FS region 40, and the vertical axis indicates the carrier concentration.
  • the carrier concentration corresponds to the donor concentration due to the proton injected into the FS region 40.
  • the donor concentration distribution in the depth direction in the FS region 40 has a plurality of peaks.
  • the peak indicates, for example, a maximum value.
  • a first peak, a second peak, a third peak, and a fourth peak are present.
  • the first peak is present in the FS region 40 at the deepest position as viewed from the back surface side (cathode side) of the semiconductor substrate 10.
  • a place where the distance from the back surface side (cathode side) of the semiconductor substrate 10 is larger is referred to as a “deep position”
  • a place where the distance is smaller is referred to as a “shallow position”.
  • the second peak is present at a position shallower than the first peak.
  • the donor concentration in the second peak is lower than the donor concentration in the first peak.
  • the third peak is located shallower than the second peak.
  • the donor concentration in the third peak is higher than both the donor concentration in the second peak and the donor concentration found in the first peak.
  • the donor concentration in the third peak may be lower than at least one of the donor concentration in the second peak and the donor concentration in the first peak.
  • the fourth peak is present at a position shallower than the third peak.
  • the fourth peak is present at the shallowest position in the FS region 40.
  • the fourth peak may be provided adjacent to the cathode region 30 or at a remote position.
  • the plurality of peaks may be provided at equal intervals in the depth direction of the FS region 40, or may be provided at unequal intervals.
  • the donor concentration in the fourth peak is higher than any donor concentration in the other peaks.
  • the concentration of the peak decreases in the FS region 40 as the distance from the back surface side of the semiconductor substrate 10 decreases, but the concentration of the first peak at the deepest position is higher than the concentration of the second peak immediately before Become.
  • the concentration of the first peak higher than the concentration of the second peak, the distribution of carrier lifetimes in the depth direction of the semiconductor substrate 10 can be appropriately controlled.
  • the carrier lifetime is controlled by irradiating an electron beam or the like.
  • bonds between atoms such as silicon crystals forming the semiconductor substrate 10 are broken to generate crystal defects. This shortens the carrier lifetime.
  • the electron beam or the like is irradiated, the carrier lifetime is shortened almost equally in the whole of the semiconductor substrate 10.
  • protons terminate broken atoms and repair the above-mentioned crystal defects. That is, the proton has a function of recovering the carrier lifetime. Therefore, by controlling the concentration distribution of protons implanted into the semiconductor substrate 10, the distribution of carrier lifetime can be controlled.
  • FIG. 3 is a schematic view showing an example of distribution of carrier lifetimes in the depth direction of the semiconductor substrate 10.
  • the horizontal axis indicates the position in the depth direction of the semiconductor substrate 10
  • the vertical axis indicates the carrier lifetime.
  • the distribution example shown in FIG. 3 is a schematic one, and the thickness of the semiconductor substrate 10 and the thickness of the FS region 40 do not coincide with the example of FIG.
  • the first peak of the FS region is located near the center of the anode region 20 and the cathode region 30.
  • the carrier lifetime in at least a partial region between the anode region 20 and the cathode region 30 is longer than any of the carrier lifetimes in the anode region 20 and the cathode region 30.
  • the concentration distribution of protons to be injected is controlled so as to obtain such a carrier lifetime distribution.
  • the carrier lifetime at the depth position indicating the first peak shown in FIG. 2 is longer than any of the carrier lifetimes in the anode region 20 and the cathode region 30.
  • the peak current Irp and tail current of the reverse recovery current can be reduced to reduce reverse recovery loss, and the time change of the reverse recovery voltage A gradual reverse recovery can be realized by reducing the rate dV / dt.
  • the amount of extension of the region is estimated to be about 30 to 40 ⁇ m from the first peak position, as described later in FIG. It is preferable to determine the depth position of the first peak in consideration of the amount of extension.
  • FIG. 4 is a view showing an example of the leak current waveform of the semiconductor device 100.
  • the horizontal axis indicates the reverse voltage between the anode and the cathode, and the vertical axis indicates the leak current.
  • a leak current waveform of the semiconductor device in which the FS region 40 is not formed is indicated by a broken line.
  • the semiconductor device 100 of this example in which the FS region 40 is formed has a leakage current substantially reduced as compared with the semiconductor device in which the FS region 40 is not formed.
  • the slope of the increase in leakage current with respect to the reverse voltage is large until the reverse voltage is about 200 to 300 V. If the reverse voltage is further increased, the slope of the current decreases. The decrease in the current slope is considered to be due to the fact that the depletion layer expanded by the increase in voltage enters the region where the carrier lifetime has been recovered by proton.
  • Vbi is a built-in voltage
  • N A is an acceptor concentration
  • N D is a donor concentration
  • is a dielectric constant of the semiconductor substrate 10
  • q is a charge.
  • the depletion layer width W corresponding to the voltage at the change point where the slope of the current changes is approximately 50 to 60 ⁇ m.
  • the first peak is located about 30 ⁇ m from the back surface of the semiconductor substrate 10.
  • the thickness of the semiconductor substrate 10 is about 110 ⁇ m. Therefore, as described in FIG. 3, it is estimated that protons are diffused by about 30 ⁇ m from the position of the first peak to the surface side of the semiconductor substrate 10.
  • FIG. 5 is a view showing an example of the manufacturing direction of the semiconductor device 100.
  • the semiconductor substrate 12 is prepared.
  • the semiconductor substrate 12 functions as the semiconductor substrate 10 by grinding the back surface in a grinding step S320 described later. That is, the semiconductor substrate 12 is formed of the same material as the semiconductor substrate 10 and is thicker than the semiconductor substrate 10.
  • the substrate specific resistance of the semiconductor substrate 12 and the semiconductor substrate 10 may be about 70 to 90 ⁇ cm.
  • an element structure on the front side of the semiconductor substrate 12 is formed.
  • the anode region 20, the insulating film 22 and the anode electrode 24 are formed on the surface of the semiconductor substrate 12.
  • a protective film for protecting the element structure may be formed. The protective film may be removed after the semiconductor device 100 is manufactured. Since the structure on the surface side is formed using the thick semiconductor substrate 12, the possibility of the occurrence of cracking or the like of the semiconductor substrate 12 in the surface side forming step S310 can be reduced.
  • the back surface side of the semiconductor substrate 12 is ground to form the semiconductor substrate 10.
  • the thickness of the semiconductor substrate 10 after grinding is determined by the rated voltage of the semiconductor device 100 or the like. In the present example, the thickness of the semiconductor substrate 10 is about 100 to 130 ⁇ m.
  • the cathode region 30 is formed on the back surface of the semiconductor substrate 10.
  • n-type impurities such as phosphorus are ion implanted from the back surface side of the semiconductor substrate 10.
  • the region where the cathode region 30 is to be formed is subjected to, for example, laser annealing to activate impurity ions to be donors. Thereby, the cathode region 30 is formed.
  • protons are injected into the region where the FS region 40 is to be formed.
  • S340 as shown in FIG. 2, protons are injected into the FS region 40 such that the concentration distribution of protons in the depth direction in the FS region 40 has a plurality of peaks.
  • the first peak on the front surface side of the semiconductor substrate 10 is larger than the second peak on the back surface side of the semiconductor substrate 10 than the first peak.
  • the FS region 40 is formed.
  • the condition ranges of the acceleration voltage of the proton and the injection amount in this example are as follows. Values in parentheses are one example value. Thereby, the same concentration distribution as the example of FIG. 2 is formed.
  • First peak 1 to 4 MeV (1.5 MeV), 3E12 to 3E13 cm -2 (1E13 cm -2 )
  • Second peak 0.8 to 3 MeV (1 Mev), 1E12 to 1E13 cm -2 (7E12 cm -2 )
  • Third peak 0.6 to 2 MeV (0.8 MeV), 3E12 to 3E13 cm -2 (1E13 cm -2 )
  • Fourth peak 0.2 to 1 MeV (0.4 MeV), 3E13 to 1E15 cm -2 (3E14 cm -2 )
  • region 40 in this example and the depth from a back surface is the following. Values in parentheses are one example value.
  • the second peak, the third peak, and the fourth peak are formed in the passing region of protons in the further peak, so that the donor concentration is increased due to the influence of donorization in the passing region. Be done. Therefore, for example, even if the injection amount of protons of the first peak and the injection amount of protons of the third peak are the same, the donor concentration of the third peak is higher than that of the first peak. This is because the donor concentration in the proton passage region of the first and second peaks is added.
  • the first peak 2E14 to 2E15 cm -3 (9E14 cm -3 ), 15 to 150 ⁇ m (30 ⁇ m)
  • Second peak 1E14 to 1E15 cm -3 (5E14 cm -3 ), 10 to 100 ⁇ m (15 ⁇ m)
  • Third peak 3E14 to 3E15 cm -3 (2E15 cm -3 ), 5 to 50 ⁇ m (10 ⁇ m)
  • the position of the first peak may be determined according to the withstand voltage class of the semiconductor device 100. As described above, the protons diffuse toward the surface side of the semiconductor substrate 10 by a certain distance. Since it is determined according to the pressure resistance class of the semiconductor device 100 how much the region where protons do not diffuse on the surface side of the semiconductor substrate 10 is desired to be left, the position of the first peak may be determined in consideration of the diffusion distance of protons. . For example, the position of the first peak in the semiconductor device 100 with a withstand voltage of 1700 V is deeper than the position of the first peak in the semiconductor device 100 with a withstand voltage of 1200 V. Further, in the semiconductor device 100 having a withstand voltage of 600 V, the first peak is provided at a position shallower than the semiconductor device 100 having a withstand voltage of 1200 V.
  • the lifetime killer is irradiated from the back surface side of the semiconductor substrate 10.
  • an electron beam is irradiated from the back surface side of the semiconductor substrate 10.
  • the lifetime killer is not limited to the electron beam, but the one that can recover the carrier lifetime reduced by the lifetime killer by protons is used.
  • the semiconductor substrate 10 is annealed. As a result, protons diffuse in the semiconductor substrate 10, the carrier lifetime of a partial region is recovered, and the carrier lifetime distribution as shown in FIG. 3 is obtained.
  • the cathode electrode 32 is formed on the back surface side of the semiconductor substrate 10. After the cathode electrode 32 is formed, heat treatment may be performed on the cathode electrode 32. Thus, the semiconductor device 100 can be manufactured.
  • FIG. 6 is a diagram showing an example of the FS area formation step S340 and the lifetime control step S350.
  • the FS region formation step S340 of this example has a proton injection step S342 and a proton annealing step S344.
  • the lifetime control step S350 includes a lifetime killer irradiation step S352 and a lifetime annealing step S354.
  • the semiconductor substrate 10 is annealed.
  • the annealing temperature in the proton annealing step S344 is, for example, about 300 to 500 ° C.
  • the annealing time is, for example, about 0.5 hour to 10 hours.
  • a lifetime killer is irradiated (S352), and lifetime annealing is performed (S354).
  • the annealing temperature in the lifetime annealing step S354 is, for example, about 300 to 500 ° C.
  • the annealing time is, for example, about 0.5 hour to 10 hours.
  • an electron beam of 80 kGy is irradiated.
  • a proton annealing step S344 for annealing the semiconductor substrate 10 is provided between the proton implantation step S342 and the lifetime killer irradiation step S352, and excess protons are released from the semiconductor substrate 10 in the proton annealing step S344.
  • FIG. 7 is a view showing another example of the FS area formation step S340 and the lifetime control step S350.
  • the FS region forming step S340 does not have the proton annealing step S344. Others are the same as the example shown in FIG.
  • FIG. 8 is a diagram comparing leakage current waveforms of the semiconductor device 100 manufactured by performing the proton annealing and the semiconductor device 100 manufactured without performing the proton annealing.
  • lifetime annealing is performed after proton implantation and lifetime killer irradiation without performing proton annealing, a large amount of protons remain at the time of lifetime annealing, and almost all crystal defects formed by lifetime killer irradiation are recovered. It will For this reason, as shown in FIG. 8, the effect of lifetime killer irradiation disappears.
  • the remaining amount of protons during lifetime killer annealing can be appropriately controlled. For this reason, distribution control of carrier lifetime becomes easy.
  • FIG. 9 is a view showing another example of the carrier lifetime distribution.
  • the carrier lifetime in the cathode region 30 is reduced compared to the distribution shown in FIG.
  • a local lifetime killer for shortening the carrier lifetime is injected on the back surface side of the semiconductor substrate 10.
  • the local lifetime killer in this example is helium. As described later, it is possible to reduce the tail current by reducing the carrier lifetime on the cathode region 30 side, and it is possible to reduce the reverse recovery loss.
  • the depth not in contact with the depletion layer extending from the boundary between anode region 20 and the n-type region of semiconductor substrate 10 when the rated reverse voltage of semiconductor device 100 is applied.
  • the region where the local lifetime killer is present is at a depth position not in contact with the depletion layer extending from the boundary between the anode region 20 and the n-type region of the semiconductor substrate 10 when the breakdown voltage is applied to the semiconductor device 100. It may be formed.
  • FIG. 10 is a diagram showing an example of the end position of the depletion layer when a reverse voltage is applied to the semiconductor device 100.
  • the doping concentration distribution of the impurities is also shown.
  • FIG. 10 shows the distance from the back surface of the semiconductor substrate 10 of the end portion of the depletion layer in the case where the reverse voltage is 400V, 600V, 800V, 1000V, 1100V, and 1200V.
  • the depletion layer spreads from the front surface to the back surface of the semiconductor substrate 10, and the end of the depletion layer reaches a position 4 ⁇ m from the back surface.
  • the rated reverse voltage is 1200 V in the configuration of this example, it is preferable that the local lifetime killer is not injected and diffused to a position deeper than 2.5 ⁇ m from the back surface of the semiconductor substrate 10, for example.
  • the injection position of the local lifetime killer and the fourth peak position of the proton injection overlap.
  • the crystal defects generated by helium irradiation are affected by the defect recovery by proton as in the electron beam irradiation. Therefore, it is preferable to adjust the injection amount of the local lifetime killer according to the injection amount of protons in the region.
  • FIG. 11 is a diagram showing an example of the relationship between the irradiation amount of helium as a local lifetime killer and the forward voltage of the semiconductor device 100. As shown in FIG. The forward voltage in the case of not irradiating helium was about 1.5 to 1.6 V.
  • the injection amount of protons in the fourth peak is 3E14 cm ⁇ 2 .
  • the injection amount of the local lifetime killer is preferably at least 1/300 of the injection amount of protons.
  • the injection amount of the local lifetime killer may be 1/150 or more, or 1/100 or more of the proton injection amount. Further, the injection amount of the local lifetime killer is preferably 1/3 or less of the injection amount of protons.
  • FIG. 12 is a diagram showing an example of time waveforms of the anode-cathode voltage and the anode current at the time of reverse recovery.
  • the reverse recovery loss can be reduced by reducing the peak current value Irp and the tail current shown in FIG.
  • the reverse recovery can be moderated by increasing the slope dV / dt of the voltage between the anode and the cathode.
  • FIG. 13 is a diagram showing the relationship between the forward voltage and dV / dt when the semiconductor substrate 10 is divided into seven in the depth direction and the carrier lifetime of each region is changed.
  • the relationship is calculated by device simulation.
  • the forward voltage Vf is in a rising relationship.
  • 14A is from the surface of the semiconductor substrate 10, showing the forward voltage Vf of changing the carrier lifetime in the region up to a depth of up to 1/7, the relationship between the time waveform of the anode-cathode voltage V KA There is.
  • Figure 14B the surface of the semiconductor substrate 10, showing the forward voltage Vf of changing the carrier lifetime in the region up to a depth of up to 1/7, the relationship between the time waveform of the anode current I A.
  • Figure 15A shows the forward voltage Vf of changing the carrier lifetime in the depth region of from 1/7 to 2/7, the relationship between the time waveform of the anode-cathode voltage V KA.
  • 15B is a surface of the semiconductor substrate 10, shows the forward voltage Vf of changing the carrier lifetime in the depth region of from 1/7 to 2/7, the relationship between the time waveform of the anode current I A ing.
  • Figure 16A shows the forward voltage Vf of changing the carrier lifetime in the depth region of from 2/7 to 3/7, the relationship between the time waveform of the anode-cathode voltage V KA.
  • 16B is a surface of the semiconductor substrate 10, shown from 2/7 and the forward voltage Vf of changing the carrier lifetime in the depth region up to 3/7, the relationship between the time waveform of the anode current I A ing.
  • 17A shows the forward voltage Vf of changing the carrier lifetime in the depth region of from 3/7 to 4/7, the relationship between the time waveform of the anode-cathode voltage V KA.
  • 17B is a surface of the semiconductor substrate 10, shows the forward voltage Vf of changing the carrier lifetime in the depth region of from 3/7 to 4/7, the relationship between the time waveform of the anode current I A ing.
  • Figure 18A shows the forward voltage Vf of changing the carrier lifetime in the depth region of from 4/7 to 5/7, the relationship between the time waveform of the anode-cathode voltage V KA.
  • Figure 18B the surface of the semiconductor substrate 10, shows the forward voltage Vf of changing the carrier lifetime in the depth region of from 4/7 to 5/7, the relationship between the time waveform of the anode current I A ing.
  • Figure 19A shows the forward voltage Vf of changing the carrier lifetime in the depth region of from 5/7 to 6/7, the relationship between the time waveform of the anode-cathode voltage V KA.
  • 19B is a surface of the semiconductor substrate 10, shows the forward voltage Vf of changing the carrier lifetime in the depth region of from 5/7 to 6/7, the relationship between the time waveform of the anode current I A ing.
  • Figure 20A shows the relationship between the 6/7 and the forward voltage Vf of changing the carrier lifetime in the depth region of to the back surface of the semiconductor substrate 10, a time waveform of the anode-cathode voltage V KA.
  • Figure 20B shows the forward voltage Vf of changing the carrier lifetime in the depth region of from 6/7 to the back surface of the semiconductor substrate 10, the relationship between the time waveform of the anode current I A.
  • the carrier lifetime of the region may be shorter than the region from 3/7 to 5/7 and longer than the region from the surface of the semiconductor substrate 10 to 3/7.
  • the above phenomenon can also be understood as follows. At the time of reverse recovery, the depletion layer spreads from the anode region 20 side. Carriers present in the depletion region are discharged and become reverse recovery current. Therefore, when the number of carriers on the surface side of the semiconductor substrate 10 is large, the peak Irp of the current flowing first tends to be high.
  • the IGBT or the like draws a predetermined current from the semiconductor device 100. At this time, if there are many carriers in the semiconductor substrate 10, the current can be supplied to the IGBT or the like even if the depletion layer spreads slowly. On the other hand, when the number of carriers is small, the depletion layer is rapidly spread to supply the current, and the slope dV / dt of the reverse recovery voltage becomes large. For this reason, if the number of carriers in the middle of the semiconductor substrate 10 in the middle of the expansion of the depletion layer is large, the slope dV / dt of the reverse recovery voltage is reduced.
  • the first peak is at the end of the back surface side of the semiconductor substrate 10 of the above described depletion layer when the voltage between the electrodes of the diode at the time of reverse recovery of the semiconductor device 100 becomes half of the applied voltage.
  • they are provided at corresponding positions.
  • the applied voltage at the time of reverse recovery is often set to about half of the device withstand voltage.
  • reverse recovery is performed at an applied voltage of 600 V.
  • the dV / dt becomes largest at the time of reverse recovery when the voltage between the anode and the cathode becomes half of the applied voltage.
  • the semiconductor device 100 of this example injects protons to form the FS region 40, and diffuses the protons to recover the carrier lifetime.
  • it since it has a distribution of protons as shown in FIG. 2 etc., it is possible to form a carrier lifetime distribution having a peak in the middle of the semiconductor substrate 10 as shown in FIG. 3 or FIG. .
  • a small peak current Irp, a small tail current, and a gradual reverse recovery voltage slope dV / dt can be realized.
  • FIG. 21 is a diagram showing a configuration example of a semiconductor device 200 according to another embodiment.
  • the semiconductor device 200 of this example is an RC-IGBT device in which an IGBT element 140 and an FWD element 150 connected in reverse parallel are integrally formed.
  • the semiconductor device 200 includes a semiconductor substrate 10, an insulating film 122, an emitter anode electrode 124, and a collector cathode electrode 132.
  • the semiconductor substrate 10 has a p-type region 120 formed on the front side.
  • the semiconductor substrate 10 also has a plurality of trenches 104 formed through the p-type region 120 from the surface of the semiconductor substrate 10.
  • the tip of each trench 104 on the back surface side of the semiconductor substrate 10 protrudes more than the end of the p-type region 120.
  • Each trench 104 has a trench gate 102 formed through the p-type region 120 from the surface of the semiconductor substrate 10.
  • Each trench gate 102 and each semiconductor layer are insulated by the insulating film 103.
  • n + -type region 106 and p + -type region 108 are formed in a part of p-type region 120 corresponding to IGBT element 140 among the plurality of p-type regions 120 separated by trench 104.
  • the n + -type region 106 is provided adjacent to the trench 104 at the surface of the p-type region 120.
  • the p + -type region 108 is provided between the n + -type region 106 on the surface of the p-type region 120.
  • the p-type region 120 corresponding to the FWD element 150 functions as the anode region 20 described in FIGS. 1 to 20B.
  • the n + -type region 106 and the p + -type region 108 may be formed in the p-type region 120 corresponding to the FWD element 150 as well.
  • An emitter anode electrode 124 is connected to each p-type region 120.
  • the emitter anode electrode 124 is connected to both the n + -type region 106 and the p + -type region 108.
  • the emitter anode electrode 124 is connected to the p-type region 120.
  • the emitter anode electrode 124 and the trench gate 102 are insulated by the insulating film 122.
  • Each trench gate 102 is connected to a gate electrode not shown.
  • a voltage to trench gate 102 By applying a voltage to trench gate 102, a channel in the vertical direction is formed in p type region 120 between n + type region 106 and semiconductor substrate 10.
  • the semiconductor substrate 10 includes an FS region 40 formed on the back surface side.
  • the FS area 40 has the same structure and characteristics as the FS area 40 described in FIGS. 1 to 20B. Further, p-type collector region 130 is formed in the region corresponding to IGBT element 140 in the back surface of FS region 40, and n-type cathode region 30 is formed in the region corresponding to FWD element 150.
  • a common collector cathode electrode 132 is formed on the back surface of the collector region 130 and the cathode region 30.
  • the RC-IGBT type semiconductor device 200 is effective to control the carrier lifetime by adjusting the proton injection concentration in the FS region 40 as described in FIGS. 1 to 20B. .
  • FIG. 22 is a diagram showing an example of a method of manufacturing the semiconductor device 200.
  • the semiconductor substrate 12 is prepared as in the example of FIG.
  • the surface element structure formation step S402 the element structure on the surface side of the semiconductor substrate 12 is formed.
  • the p-type region 120, the trench 104, the n + -type region 106, the p + -type region 108, the n-type region 110, and the insulating film 122 are formed on the surface of the semiconductor substrate 12.
  • the emitter anode electrode 124 is formed in the surface electrode formation step S404.
  • the back surface grinding step S406 the back surface of the semiconductor substrate 12 is ground.
  • the back surface diffusion layer ion implantation step S408 p-type impurity ions and n-type impurity ions are respectively implanted into the region of the back surface of the semiconductor substrate 10 corresponding to the collector region 130 and the cathode region 30.
  • the back surface laser annealing step S410 the collector region 130 and the cathode region 30 are formed by laser annealing the region in which the p-type impurity ions and the n-type impurity ions are implanted.
  • the surface protective film formation step S412 a protective film is formed on the surface of the semiconductor substrate 10.
  • the FS region 40 is formed in the proton injection step S412 and the proton annealing step S414.
  • the proton injection step S412 and the proton annealing step S414 are the same as the proton injection step S342 and the proton annealing step S344 in FIG. Thereby, an FS region 40 having a concentration distribution of protons as shown in FIG. 2 is formed.
  • the carrier lifetime is controlled in the lifetime killer irradiation step S416 and the lifetime annealing step S418.
  • the lifetime killer irradiation step S416 and the lifetime annealing step S418 are the same as the lifetime killer irradiation step S352 and the lifetime annealing step S354 in FIG. Thereby, carrier lifetime distribution as shown in FIG. 3 or FIG. 9 is realized.
  • the collector cathode electrode 132 is formed.
  • the semiconductor device 200 is manufactured.
  • FIG. 23 is a view showing another example of the carrier concentration distribution in the FS region 40.
  • the horizontal axis indicates the depth position from the rear surface side end of the FS region 40, and the vertical axis indicates the carrier concentration.
  • the carrier concentration corresponds to the donor concentration due to the proton injected into the FS region 40.
  • the donor concentration distribution in the depth direction in the FS region 40 has a plurality of peaks.
  • the first peak, the second peak, the third peak, and the fourth peak are present as in the example of FIG.
  • the first to third peaks excluding the fourth peak closest to the rear surface side end of the FS region 40 have a larger carrier concentration as the distance from the rear surface end is larger. That is, the first peak has a higher carrier concentration than the second peak and the third peak, and the second peak has a higher carrier concentration than the third peak.
  • the FS region 40 prevents the depletion layer extending from the boundary between the p + -type anode region 20 and the n ⁇ -type semiconductor substrate 10 from reaching the cathode region 30.
  • the depletion layer may extend up to the peak closest to the rear end of the plurality of peaks.
  • the concentrations of the first to third peaks gradually decrease from the substrate front side to the back side.
  • the smallest peak concentration is larger than that in the example of FIG. Therefore, the slope dV / dt of the reverse recovery voltage can be reduced.
  • FIG. 24 is a view showing an example of the impurity concentration distribution in the depth direction of the semiconductor substrate 10 together with the helium distribution and the hydrogen distribution.
  • p-type and n-type impurity concentrations are shown together.
  • a high concentration p-type anode region 20 is formed to a depth of about several ⁇ m from the surface of the semiconductor substrate 10.
  • an n--type region as a drift region is formed to a depth of about 55 ⁇ m
  • an FS region 40 and a cathode region 30 are formed at a migration depth of about 55 ⁇ m.
  • the impurity concentration of Comparative Example 300 is indicated by a dotted line.
  • the peak of the impurity concentration closest to the surface of the semiconductor substrate 10 is larger than the peak in the comparative example 300.
  • helium ions are irradiated from the surface of the semiconductor substrate 10 in order to control the carrier lifetime on the surface side of the semiconductor substrate 10.
  • the average range of helium ions is Rp
  • the half-value width of the range distribution of helium ions is ⁇ Rp.
  • the peak position of the range of helium ions irradiated from the surface of the semiconductor substrate 10 is the most peak of the semiconductor substrate 10 among the peaks of the donor concentration distribution of the FS region 40. It may be arranged in the range of 40 ⁇ m from the peak on the surface side. The distance from the peak may be measured from the position at which the donor concentration is half the maximum value of the peak on the substrate surface side of the peak maximum point.
  • the half value position Rp ⁇ Rp of the range distribution of the helium ions may be set within a range of 40 ⁇ m from the relevant peak of the donor concentration distribution of the FS region 40. Thereby, the leakage current can be reduced more efficiently.
  • the distribution position of helium ions is not limited to these ranges. Even if the peak position Rp of the range of helium ions is separated by 40 ⁇ m or more from the peak of the donor concentration distribution of the FS region 40, the leakage current can be reduced to some extent although hydrogen diffused from the peak is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thyristors (AREA)

Abstract

 n型の半導体基板と、半導体基板の表面側に形成されたp型のアノード領域と、半導体基板の裏面側においてプロトンをドナーとして形成されたn型のフィールドストップ領域と、フィールドストップ領域よりも半導体基板の裏面側に形成されたn型のカソード領域とを備え、フィールドストップ領域における深さ方向のドナーの濃度分布は、第1のピークと、第1のピークよりも半導体基板の裏面側において第1のピークよりも濃度の低い第2のピークとを有し、アノード領域およびカソード領域の間における少なくとも一部の領域におけるキャリアライフタイムが、アノード領域およびカソード領域におけるキャリアライフタイムのいずれよりも長い半導体装置を提供する。

Description

半導体装置および半導体装置の製造方法
 本発明は、半導体装置および半導体装置の製造方法に関する。
 従来、半導体基板の表面および裏面にアノードおよびカソードを設けた縦型の半導体装置が知られている。当該半導体装置は、例えばFWD(Free Wheeling Diode)として用いられる(例えば、特許文献1参照)。関連する先行技術文献として下記の文献がある。
 特許文献1 特開2012-199577号公報
 特許文献2 国際公開第2013/100155号パンフレット
 特許文献3 米国特許第6482681号明細書
 特許文献4 米国特許第6707111号明細書
 特許文献5 特開2001-160559号公報
 特許文献6 特開2001-156299号公報
 特許文献7 特開平7-193218号公報
 特許文献8 米国特許出願公開第2008-1257号明細書
 特許文献9 米国特許出願公開第2008-54369号明細書
 上述した半導体装置の特性として、低い逆回復損失(すなわち、小さい逆回復電流のピーク電流Irpおよび小さい逆回復電流のテール電流)および緩やかな逆回復(すなわち、緩やかな逆回復電圧の時間変化率dV/dt)が好ましい。これらの特性は、半導体基板の表面に垂直な方向のキャリアライフタイム分布に影響される。キャリアライフタイムを制御する方法として、電子線を半導体基板内に照射する技術がある。しかし、電子線照射でキャリアライフタイムを制御すると、半導体基板内部のキャリアライフタイムは一律に短くなる。この場合、テール電流は小さくできる。しかし、dV/dtおよびIrpは大きいという傾向がある。
 [発明の一般的開示]
 半導体装置は、n型の半導体基板を備えてよい。半導体装置は、p型のアノード領域を備えてよい。アノード領域は、半導体基板の表面側に形成されてよい。半導体装置は、n型のフィールドストップ領域を備えてよい。フィールドストップ領域は、半導体基板の裏面側においてプロトンをドナーとして形成されてよい。半導体装置は、n型のカソード領域を備えてよい。カソード領域は、フィールドストップ領域よりも半導体基板の裏面側に形成されてよい。フィールドストップ領域における深さ方向のドナーの濃度分布は、第1のピークと、第1のピークよりも半導体基板の裏面側において第1のピークよりも濃度の低い第2のピークとを有してよい。アノード領域およびカソード領域の間における少なくとも一部の領域におけるキャリアライフタイムが、アノード領域およびカソード領域におけるキャリアライフタイムのいずれよりも長くてよい。
 ドナーの濃度分布が第1のピークを示す深さ位置におけるキャリアライフタイムが、アノード領域およびカソード領域におけるキャリアライフタイムのいずれよりも長くてよい。フィールドストップ領域における深さ方向のドナーの濃度分布は複数のピークを有し、第1のピークは、複数のピークのうち最も半導体基板の表面側のピークであってよい。アノード領域よりもキャリアライフタイムが長い領域が、ドナーの濃度分布が第1のピークを示す位置よりも半導体基板の表面側に延伸していてよい。
 半導体装置の逆回復時のダイオードの電極間電圧が、印加電圧の半分の値になった場合に、アノード領域と半導体基板のn型領域との境界から広がる空乏層の半導体基板の裏面側の端部に応じた位置に、第1のピークを有してよい。半導体基板の裏面側に、キャリアライフタイムを短くする局所ライフタイムキラーを有してよい。
 局所ライフタイムキラーが存在する領域は、半導体装置の定格逆電圧が印加された場合に、アノード領域と半導体基板のn型領域との境界から広がる空乏層と接しない位置に形成されてよい。局所ライフタイムキラーの注入量が、ドナーの濃度分布において最も半導体基板の裏面側におけるピークのプロトンの注入量の1/300以上であってよい。局所ライフタイムキラーの注入量は、当該プロトンの注入量の1/150以上であってよく、1/100以上であってもよい。
 半導体基板全体のキャリアライフタイムを短くするライフタイムキラーが照射されてよい。当該ライフタイムキラーは、当該ライフタイムキラーにより形成された結晶欠陥が、プロトンにより終端可能であるものを用いてよい。カソード領域のキャリアライフタイムは、アノード領域のキャリアライフタイムよりも長くてよい。
 n型の半導体基板と、半導体基板の表面側に形成されたp型のアノード領域と、半導体基板の裏面側においてプロトンをドナーとして形成されたn型のフィールドストップ領域と、フィールドストップ領域よりも半導体基板の裏面側に形成されたn型のカソード領域とを備える半導体装置を製造する製造方法は、フィールドストップ領域における深さ方向のドナーの濃度分布が、第1のピークと、第1のピークよりも半導体基板の裏面側において第1のピークよりも濃度の低い第2のピークとを有するように、半導体基板の裏面側からプロトンを注入するプロトン注入段階を備えてよい。製造方法は、半導体基板をアニールしてプロトンを拡散させることで、アノード領域およびカソード領域の間における少なくとも一部の領域におけるキャリアライフタイムを、アノード領域およびカソード領域におけるキャリアライフタイムのいずれよりも長くするライフタイムアニール段階を備えてよい。
 製造方法は、半導体基板全体のキャリアライフタイムを短くするライフタイムキラーを半導体基板に照射するライフタイムキラー照射段階を更に備えてよい。ライフタイムアニール段階でプロトンを拡散させることで、プロトンが拡散した領域のキャリアライフタイムを回復させてよい。製造方法は、プロトン注入段階とライフタイムキラー照射段階との間に、半導体基板をアニールするプロトンアニール段階を更に備えてよい。半導体装置の耐圧クラスに応じて、第1のピークの位置を調整してよい。ライフタイムキラー照射段階において、半導体基板に電子線を照射してよい。
 なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
本発明の実施形態に係る半導体装置100の概要を示す図である。 半導体装置100の断面模式図と、FS領域40におけるキャリア濃度分布を示す図である。 半導体基板10の深さ方向におけるキャリアライフタイムの分布例を示す模式図である。 半導体装置100のリーク電流波形の一例を示す図である。 半導体装置100の製造方向の一例を示す図である。 FS領域形成段階S340およびライフタイム制御段階S350の一例を示す図である。 FS領域形成段階S340およびライフタイム制御段階S350の他の例を示す図である。 プロトンアニールを実施して製造した半導体装置100と、プロトンアニールを実施せずに製造した半導体装置100のリーク電流波形を比較する図である。 キャリアライフタイム分布の他の例を示す図である。 半導体装置100に逆電圧を印加したときにおける、空乏層の端部位置の一例を示す図である。 局所ライフタイムキラーとしてのヘリウムの照射量と、半導体装置100の順方向電圧との関係の一例を示す図である。 逆回復時におけるアノードカソード間電圧およびアノード電流の時間波形の一例を示す図である。 半導体基板10を深さ方向に7分割して、それぞれの領域のキャリアライフタイムを変更したときの、順方向電圧とdV/dtとの関係を示す図である。 半導体基板10の表面から、1/7までの深さまでの領域のキャリアライフタイム(順方向電圧)と、アノードカソード間電圧VKAの時間波形との関係を示している。 半導体基板10の表面から、1/7までの深さまでの領域のキャリアライフタイム(順方向電圧)と、アノード電流Iの時間波形との関係を示している。 1/7から2/7までの深さ領域のキャリアライフタイム(順方向電圧)と、アノードカソード間電圧VKAの時間波形との関係を示している。 半導体基板10の表面から、1/7から2/7までの深さ領域のキャリアライフタイム(順方向電圧)と、アノード電流Iの時間波形との関係を示している。 2/7から3/7までの深さ領域のキャリアライフタイム(順方向電圧)と、アノードカソード間電圧VKAの時間波形との関係を示している。 半導体基板10の表面から、2/7から3/7までの深さ領域のキャリアライフタイム(順方向電圧)と、アノード電流Iの時間波形との関係を示している。 3/7から4/7までの深さ領域のキャリアライフタイム(順方向電圧)と、アノードカソード間電圧VKAの時間波形との関係を示している。 半導体基板10の表面から、3/7から4/7までの深さ領域のキャリアライフタイム(順方向電圧)と、アノード電流Iの時間波形との関係を示している。 4/7から5/7までの深さ領域のキャリアライフタイム(順方向電圧)と、アノードカソード間電圧VKAの時間波形との関係を示している。 半導体基板10の表面から、4/7から5/7までの深さ領域のキャリアライフタイム(順方向電圧)と、アノード電流Iの時間波形との関係を示している。 5/7から6/7までの深さ領域のキャリアライフタイム(順方向電圧)と、アノードカソード間電圧VKAの時間波形との関係を示している。 半導体基板10の表面から、5/7から6/7までの深さ領域のキャリアライフタイム(順方向電圧)と、アノード電流Iの時間波形との関係を示している。 6/7から半導体基板10の裏面までの深さ領域のキャリアライフタイム(順方向電圧)と、アノードカソード間電圧VKAの時間波形との関係を示している。 6/7から半導体基板10の裏面までの深さ領域のキャリアライフタイム(順方向電圧)と、アノード電流Iの時間波形との関係を示している。 他の実施形態に係る半導体装置200の構成例を示す図である。 半導体装置200の製造方法の一例を示す図である。 FS領域40におけるキャリア濃度分布の他の例を示す図である。 半導体基板10の深さ方向における不純物濃度分布の一例を、ヘリウム分布および水素分布とともに示す図である。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、本発明の実施形態に係る半導体装置100の概要を示す図である。図1は、半導体装置100の断面の模式図を示している。本例における半導体装置100は、例えばIGBT等の高耐圧スイッチと並列に設けられる還流ダイオード(FWD)として用いられる。本例の半導体装置100は、n-型の半導体基板10、絶縁膜22、アノード電極24およびカソード電極32を備える。また、半導体基板10の表面側にはp+型のアノード領域が形成され、裏面側にはフィールドストップ領域(FS領域40)と、n+型のカソード領域30とが形成される。
 半導体基板10は、例えばシリコン基板である。絶縁膜22は、半導体基板10の表面を覆うように形成される。ただし、絶縁膜22は、アノード領域20を露出させる開口を有する。絶縁膜22は、例えば酸化シリコンまたは窒化シリコン等の絶縁物で形成される。アノード電極24は、絶縁膜22の開口に露出したアノード領域20上に形成される。アノード電極24は、例えばアルミニウム等の金属で形成される。
 FS領域40は、プロトン(水素イオン)をドナーとして形成されたn型領域である。FS領域の不純物濃度(本例ではドナー濃度)は、半導体基板10の不純物濃度よりも高い。カソード領域30は、FS領域40よりも半導体基板10の裏面側に形成される。カソード領域30は、例えばリン等をドナーとして形成されたn+型領域である。カソード領域30の不純物濃度は、半導体基板10の不純物濃度およびFS領域40の不純物濃度のいずれよりも高い。カソード電極32は、半導体基板10の裏面に形成されて、カソード領域30と接続される。このような構成により、半導体装置100はダイオードとして機能する。
 図2は、半導体装置100の断面模式図と、FS領域40におけるキャリア濃度分布を示す図である。図2における半導体装置100の断面模式図では、絶縁膜22、アノード電極24およびカソード電極32を省略している。また、図2に示す濃度分布において横軸は、FS領域40の裏面側端部からの深さ位置を示し、縦軸はキャリア濃度を示す。当該キャリア濃度は、FS領域40に注入されたプロトンによるドナー濃度に対応する。
 図2に示すように、FS領域40における深さ方向のドナー濃度分布は、複数のピークを有する。ピークとは、例えば極大値を指す。本例のFS領域40のドナー濃度分布には、第1のピーク、第2のピーク、第3のピーク、第4のピークが存在する。第1のピークは、FS領域40において、半導体基板10の裏面側(カソード側)から見て最も深い位置に存在する。本明細書においては、半導体基板10の裏面側(カソード側)からの距離がより大きい場所をより「深い位置」と称し、距離がより小さい場所をより「浅い位置」と称する。
 第2のピークは、第1のピークよりも浅い位置に存在する。また、第2のピークにおけるドナー濃度は、第1のピークにおけるドナー濃度よりも低い。第3のピークは、第2のピークよりも浅い位置に存在する。本例では、第3のピークにおけるドナー濃度は、第2のピークにおけるドナー濃度および第1のピークにおえるドナー濃度のいずれよりも高い。第3のピークにおけるドナー濃度は、第2のピークにおけるドナー濃度および第1のピークにおけるドナー濃度の少なくとも一方よりも低くてもよい。
 第4のピークは、第3のピークよりも浅い位置に存在する。本例では、第4のピークは、FS領域40において最も浅い位置に存在する。第4のピークは、カソード領域30と隣接する位置に設けられてよく、離れた位置に設けられてもよい。複数のピークは、FS領域40の深さ方向において等間隔に設けられてよく、不等間隔に設けられてもよい。本例では、第4のピークにおけるドナー濃度は、他のピークのいずれのドナー濃度よりも高い。
 つまり本例では、FS領域40において、半導体基板10の裏面側から離れるほどピークの濃度が低くなるが、最も深い位置における第1のピークの濃度が、直前の第2のピークの濃度よりも高くなる。このように、第1のピークの濃度を、第2のピークの濃度よりも高くすることで、半導体基板10の深さ方向におけるキャリアライフタイムの分布を適切に制御することができる。
 例えば、半導体基板10においては、電子線等を照射することでキャリアライフタイムを制御する。電子線等の照射により、半導体基板10を形成するシリコン結晶等の原子間の結合が切れて結晶欠陥が発生する。これにより、キャリアライフタイムが短くなる。なお電子線等を照射すると、半導体基板10の全体においてほぼ均等にキャリアライフタイムが短くなってしまう。
 一方、プロトンは、結合が切れた原子を終端して上述した結晶欠陥を修復する。つまりプロトンは、キャリアライフタイムを回復させる機能を有する。このため、半導体基板10に注入するプロトンの濃度分布を制御することで、キャリアライフタイムの分布を制御することができる。
 図3は、半導体基板10の深さ方向におけるキャリアライフタイムの分布例を示す模式図である。図3において横軸は半導体基板10の深さ方向における位置を示し、縦軸はキャリアライフタイムを示す。ただし図3に示す分布例は模式的なものであり、半導体基板10の厚みおよびFS領域40の厚みは、図2の例と一致していない。例えば、図3においては、FS領域の第1のピークは、アノード領域20およびカソード領域30の中央近傍に位置している。
 図2に示したような濃度分布となるようにプロトンを注入した後にアニール等でプロトンを拡散させると、拡散したプロトンにより結晶欠陥が水素終端されてキャリアライフタイムが回復する。本例では、FS領域40の最も深い位置に注入されるプロトンの濃度が高いので、図3に示すように、半導体基板10の表面および裏面よりも、半導体基板10の中間部分のキャリアライフタイムが長くなる。
 つまり、アノード領域20およびカソード領域30の間における少なくとも一部の領域におけるキャリアライフタイムが、アノード領域20およびカソード領域30におけるキャリアライフタイムのいずれよりも長くなる。なお、このようなキャリアライフタイムの分布となるように、注入するプロトンの濃度分布を制御する。本例では、図2に示した第1のピークを示す深さ位置におけるキャリアライフタイムが、アノード領域20およびカソード領域30におけるキャリアライフタイムのいずれよりも長くなる。
 このようなキャリアライフタイムの分布を有することで、後述するように、逆回復電流のピーク電流Irpおよびテール電流を小さくして逆回復損失を低減することができ、且つ、逆回復電圧の時間変化率dV/dtを小さくして緩やかな逆回復を実現することができる。
 なお、プロトンが半導体基板10の表面側に拡散するため、図3に示すように、アノード領域20よりもキャリアライフタイムが長い領域が、FS領域40の最深部における第1のピークを示す位置よりも半導体基板10の表面側に延伸する。当該領域の延伸量は、図4において後述するように、第1のピーク位置から30~40μm程度と見積もられる。当該延伸量を考慮して、第1のピークの深さ位置を決定することが好ましい。
 図4は、半導体装置100のリーク電流波形の一例を示す図である。図4において横軸はアノードカソード間の逆電圧を示し、縦軸はリーク電流を示す。また、比較例として、FS領域40を形成していない半導体装置のリーク電流波形を破線で示す。FS領域40を形成した本例の半導体装置100は、FS領域40を形成していない半導体装置に比べて、概ねリーク電流が低減している。
 本例の半導体装置100は、逆電圧が200~300V程度までは、逆電圧に対する漏れ電流増加の傾きが大きい。逆電圧を更に大きくすると、電流の傾きは小さくなる。電流の傾きの減少は、電圧の増加によって広がった空乏層が、プロトンによりキャリアライフタイムが回復した領域に入ったためと考えられる。
 逆電圧Vと空乏層幅Wの関係は、以下の式で与えられる。
Figure JPOXMLDOC01-appb-M000001
 ただし、Vbiはビルトイン電圧、Nはアクセプタ濃度、Nはドナー濃度、εは半導体基板10の誘電率、qは電荷を示す。上式より、電流の傾きが変化する変化点の電圧に対応する空乏層幅Wを算出すると、50~60μm程度となる。第1のピークは、半導体基板10の裏面から30μm程度の位置にある。また、半導体基板10の厚みは110μm程度である。従って、図3において説明したように、プロトンは第1のピークの位置から半導体基板10の表面側に30μm程度拡散していると見積もられる。
 図5は、半導体装置100の製造方向の一例を示す図である。まず、基板準備段階S300において、半導体基板12を準備する。半導体基板12は、後述する研削段階S320において裏面を研削することで半導体基板10として機能する。つまり、半導体基板12は、半導体基板10と同一の材料で形成され、且つ、半導体基板10よりも厚い。半導体基板12および半導体基板10の基板比抵抗は、70~90Ωcm程度であってよい。
 次に表面側形成段階S310において、半導体基板12の表面側の素子構造を形成する。本例では、半導体基板12の表面にアノード領域20、絶縁膜22およびアノード電極24を形成する。また、素子構造を形成した後に、素子構造を保護する保護膜を形成してもよい。当該保護膜は、半導体装置100を製造した後に除去してよい。厚い半導体基板12を用いて表面側の構造を形成するので、表面側形成段階S310において半導体基板12の割れ等が発生する可能性を低減できる。
 次に研削段階S320において、半導体基板12の裏面側を研削して、半導体基板10を形成する。研削後の半導体基板10の厚みは、半導体装置100の定格電圧等によって定める。本例において半導体基板10の厚みは、100~130μm程度である。
 次にカソード領域形成段階S330において、半導体基板10の裏面にカソード領域30を形成する。S330においては、リン等のn型不純物を半導体基板10の裏面側からイオン注入する。不純物をイオン注入した後、カソード領域30を形成すべき領域を例えばレーザアニールして、不純物イオンを活性化させてドナー化する。これにより、カソード領域30を形成する。
 次にFS領域形成段階S340において、FS領域40を形成すべき領域にプロトンを注入する。S340においては、図2に示したように、FS領域40における深さ方向におけるプロトンの濃度分布が複数のピークを有するように、FS領域40にプロトンを注入する。なお、当該複数のピークのうち、最も半導体基板10の表面側の第1のピークは、第1のピークよりも半導体基板10の裏面側にある第2のピークよりも大きい。これにより、FS領域40を形成する。なお、本例におけるプロトンの加速電圧および注入量の条件範囲は以下である。括弧内は1つの実施例となる値である。これにより、図2の例と同様の濃度分布を形成する。
 第1のピーク:1~4MeV(1.5MeV)、3E12~3E13cm-2(1E13cm-2
 第2のピーク:0.8~3MeV(1Mev)、1E12~1E13cm-2(7E12cm-2
 第3のピーク:0.6~2MeV(0.8MeV)、3E12~3E13cm-2(1E13cm-2
 第4のピーク:0.2~1MeV(0.4MeV)、3E13~1E15cm-2(3E14cm-2
 また、本例におけるFS領域40の各ピーク濃度および裏面からの深さの好ましい範囲は以下である。括弧内は1つの実施例となる値である。また、第2のピーク、第3のピーク、第4のピークは、それより奥のピークにおけるプロトンの通過領域に形成されるので、通過領域のドナー化の影響を受けて、ドナー濃度がかさ上げされる。そのため、例えば第1のピークのプロトンの注入量と、第3のピークのプロトンの注入量を同じとしても、第3のピークは、第1のピークよりもドナー濃度が増加する。第1および第2のピークのプロトンの通過領域のドナー濃度が追加されるからである。
 第1のピーク:2E14~2E15cm-3(9E14cm-3)、15~150μm(30μm)
 第2のピーク:1E14~1E15cm-3(5E14cm-3)、10~100μm(15μm)
 第3のピーク:3E14~3E15cm-3(2E15cm-3)、5~50μm(10μm)
 第4のピーク:3E14~3E16cm-3(5E15cm-3)、1.5~15μm(3μm)
 なお、第1のピークの位置は、半導体装置100の耐圧クラスに応じて定めてよい。上述したように、プロトンは半導体基板10の表面側に向かって一定の距離だけ拡散する。半導体基板10の表面側においてプロトンが拡散しない領域をどれだけ残したいかは、半導体装置100の耐圧クラスに応じて定まるので、プロトンの拡散距離を考慮して第1のピークの位置を定めてよい。例えば1700V耐圧の半導体装置100における第1のピークの位置は、1200V耐圧の半導体装置100における第1のピークの位置よりも深い。また、600V耐圧の半導体装置100においては、1200V耐圧の半導体装置100よりも浅い位置に第1のピークを設ける。
 次にライフタイム制御段階S350において、半導体基板10の裏面側からライフタイムキラーを照射する。S350においては、例えば電子線を半導体基板10の裏面側から照射する。ライフタイムキラーは電子線に限定されないが、当該ライフタイムキラーによって低下させたキャリアライフタイムを、プロトンにより回復できるものを用いる。S350においては、ライフタイムキラーを照射した後に、半導体基板10をアニールする。これによりプロトンが半導体基板10内を拡散して、一部の領域のキャリアライフタイムが回復し、図3に示したようなキャリアライフタイム分布となる。
 次にカソード電極形成段階S360において、半導体基板10の裏面側にカソード電極32を形成する。カソード電極32の形成後に、カソード電極32の熱処理を行ってもよい。これにより、半導体装置100を製造できる。
 図6は、FS領域形成段階S340およびライフタイム制御段階S350の一例を示す図である。本例のFS領域形成段階S340は、プロトン注入段階S342およびプロトンアニール段階S344を有する。また、ライフタイム制御段階S350は、ライフタイムキラー照射段階S352およびライフタイムアニール段階S354を有する。
 プロトン注入段階S342においては、上述したようにFS領域40を形成すべき領域にプロトンを注入する。そして、プロトンアニール段階S344において、半導体基板10をアニールする。半導体基板10をアニールすることで、半導体基板10内に過剰に存在するプロトンを放出させることができる。プロトンアニール段階S344におけるアニール温度は例えば300~500℃程度、アニール時間は例えば0.5時間~10時間程度である。
 そして、プロトンアニール段階S344の後に、ライフタイムキラーを照射して(S352)、ライフタイムアニールを実施する(S354)。ライフタイムアニール段階S354におけるアニール温度は例えば300~500℃程度、アニール時間は例えば0.5時間~10時間程度である。本例では、80kGyの電子線を照射する。本例では、プロトン注入段階S342とライフタイムキラー照射段階S352との間に、半導体基板10をアニールするプロトンアニール段階S344を備え、プロトンアニール段階S344において過剰なプロトンを半導体基板10から放出しているので、ライフタイムアニールにより適度なプロトンが拡散する。これにより、プロトンが拡散した領域のキャリアライフタイムが回復する。このため、ライフタイムキラー照射によるアノード領域20側およびカソード領域30側のキャリアライフタイムの低減と、プロトン拡散によるアノード領域20およびカソード領域30の間の領域におけるキャリアライフタイムの回復とを両立することができる。
 図7は、FS領域形成段階S340およびライフタイム制御段階S350の他の例を示す図である。本例では、FS領域形成段階S340は、プロトンアニール段階S344を有さない。他は、図6に示した例と同一である。
 図8は、プロトンアニールを実施して製造した半導体装置100と、プロトンアニールを実施せずに製造した半導体装置100のリーク電流波形を比較する図である。プロトンアニールを実施せずに、プロトン注入およびライフタイムキラー照射の後にライフタイムアニールした場合、ライフタイムアニール時にプロトンが多量に残存しており、ライフタイムキラー照射により形成した結晶欠陥をほぼすべて回復してしまう。このため、図8に示すようにライフタイムキラー照射の効果がなくなる。一方、プロトン注入後、および、ライフタイムキラー照射後のそれぞれにおいて個別にアニールを実施すると、ライフタイムキラーアニール時におけるプロトンの残存量を適切に制御することができる。このため、キャリアライフタイムの分布制御が容易となる。
 図9は、キャリアライフタイム分布の他の例を示す図である。本例では、図3に示した分布に比べて、カソード領域30におけるキャリアライフタイムを低減している。本例の半導体装置100は、半導体基板10の裏面側に、キャリアライフタイムを短くする局所ライフタイムキラーが注入されている。本例において局所ライフタイムキラーは、ヘリウムである。後述するように、カソード領域30側のキャリアライフタイムを下げることでテール電流を小さくすることができるの、逆回復損失を低減することができる。
 ただし、半導体装置100に逆電圧を印加した時に広がる空乏層が、局所ライフタイムキラーが存在する領域まで広がると、漏れ電流が大きく増加してしまう。このため、局所ライフタイムキラーが存在する領域は、半導体装置100の定格逆電圧が印加された場合に、アノード領域20と半導体基板10のn型領域との境界から広がる空乏層と接しない深さ位置に形成されることが好ましい。また、局所ライフタイムキラーが存在する領域は、半導体装置100に降伏電圧が印加された場合に、アノード領域20と半導体基板10のn型領域との境界から広がる空乏層と接しない深さ位置に形成されてもよい。
 図10は、半導体装置100に逆電圧を印加したときにおける、空乏層の端部位置の一例を示す図である。なお図10では、不純物のドープ濃度分布を合わせて示している。また、図10においては、逆電圧が400V、600V、800V、1000V、1100V、1200Vの場合の空乏層端部の、半導体基板10の裏面からの距離を示している。
 例えば逆電圧として1200Vが印加された場合、空乏層は半導体基板10の表面から裏面に向かって広がり、空乏層端が裏面から4μmの位置まで達する。本例の構成において定格逆電圧が1200Vの場合、局所ライフタイムキラーは、例えば半導体基板10の裏面から2.5μmよりも深い位置には注入および拡散されないことが好ましい。
 なお、このように半導体基板10の裏面から浅い位置に局所ライフタイムキラーを注入した場合、局所ライフタイムキラーの注入位置とプロトン注入の第4のピーク位置とが重なる。ヘリウム照射により発生した結晶欠陥は、電子線照射と同様にプロトンによる欠陥回復の影響を受ける。このため、局所ライフタイムキラーの注入量は、当該領域におけるプロトンの注入量に応じて調整することが好ましい。
 図11は、局所ライフタイムキラーとしてのヘリウムの照射量と、半導体装置100の順方向電圧との関係の一例を示す図である。なお、ヘリウムを照射しない場合の順方向電圧は、1.5~1.6V程度であった。
 本例では、第4のピークにおけるプロトンの注入量は、3E14cm-2である。これに対して、図11に示すように、ヘリウムの照射量が1E12cm-2より小さい範囲では、ヘリウムを照射しない場合に比べて順方向電圧の増加が見られない。これは、ヘリウムの照射量がプロトンの注入量に比べて小さすぎて、ヘリウム照射による欠陥が、ほぼ全てプロトンにより水素終端されてしまったためと考えられる。従って、局所ライフタイムキラーの注入量は、プロトンの注入量の1/300以上であることが好ましい。局所ライフタイムキラーの注入量は、プロトンの注入量の1/150以上であってよく、1/100以上であってもよい。また、局所ライフタイムキラーの注入量は、プロトンの注入量の1/3以下であることが好ましい。
 図12は、逆回復時におけるアノードカソード間電圧およびアノード電流の時間波形の一例を示す図である。半導体装置100においては、図12に示したピーク電流値Irpおよびテール電流を小さくすることで逆回復損失を低減できる。また、アノードカソード間電圧の傾きdV/dtを大きくすることで、逆回復を緩やかにすることができる。
 図13は、半導体基板10を深さ方向に7分割して、それぞれの領域のキャリアライフタイムを変更したときの、順方向電圧とdV/dtとの関係を示す図である。図13に示した例では、デバイスシミュレーションにより当該関係を算出した。一般に、キャリアライフタイムを短くすると、順方向電圧Vfは上昇する関係にある。
 図14Aは、半導体基板10の表面から、1/7までの深さまでの領域のキャリアライフタイムを変更したときの順方向電圧Vfと、アノードカソード間電圧VKAの時間波形との関係を示している。図14Bは、半導体基板10の表面から、1/7までの深さまでの領域のキャリアライフタイムを変更したときの順方向電圧Vfと、アノード電流Iの時間波形との関係を示している。なお、図14Aから図20Bにおいては、Vf=1.66V、1.70V、1.80V、1.90V、2.00Vの例を示している。各図においてVf=1.66Vおよび2.00Vのグラフを矢印で指し示しているが、Vf=1.70V、1.80V、1.90Vのグラフは、Vf=1.66Vおよび2.00Vのグラフの間に、Vfの大きさの順番に並んでいる。
 図15Aは、1/7から2/7までの深さ領域のキャリアライフタイムを変更したときの順方向電圧Vfと、アノードカソード間電圧VKAの時間波形との関係を示している。図15Bは、半導体基板10の表面から、1/7から2/7までの深さ領域のキャリアライフタイムを変更したときの順方向電圧Vfと、アノード電流Iの時間波形との関係を示している。
 図16Aは、2/7から3/7までの深さ領域のキャリアライフタイムを変更したときの順方向電圧Vfと、アノードカソード間電圧VKAの時間波形との関係を示している。図16Bは、半導体基板10の表面から、2/7から3/7までの深さ領域のキャリアライフタイムを変更したときの順方向電圧Vfと、アノード電流Iの時間波形との関係を示している。
 図17Aは、3/7から4/7までの深さ領域のキャリアライフタイムを変更したときの順方向電圧Vfと、アノードカソード間電圧VKAの時間波形との関係を示している。図17Bは、半導体基板10の表面から、3/7から4/7までの深さ領域のキャリアライフタイムを変更したときの順方向電圧Vfと、アノード電流Iの時間波形との関係を示している。
 図18Aは、4/7から5/7までの深さ領域のキャリアライフタイムを変更したときの順方向電圧Vfと、アノードカソード間電圧VKAの時間波形との関係を示している。図18Bは、半導体基板10の表面から、4/7から5/7までの深さ領域のキャリアライフタイムを変更したときの順方向電圧Vfと、アノード電流Iの時間波形との関係を示している。
 図19Aは、5/7から6/7までの深さ領域のキャリアライフタイムを変更したときの順方向電圧Vfと、アノードカソード間電圧VKAの時間波形との関係を示している。図19Bは、半導体基板10の表面から、5/7から6/7までの深さ領域のキャリアライフタイムを変更したときの順方向電圧Vfと、アノード電流Iの時間波形との関係を示している。
 図20Aは、6/7から半導体基板10の裏面までの深さ領域のキャリアライフタイムを変更したときの順方向電圧Vfと、アノードカソード間電圧VKAの時間波形との関係を示している。図20Bは、6/7から半導体基板10の裏面までの深さ領域のキャリアライフタイムを変更したときの順方向電圧Vfと、アノード電流Iの時間波形との関係を示している。
 図13から図20Aから、下記が理解できる。
 ・半導体基板10の表面(アノード側表面)から3/7までの領域は、順方向電圧Vfの変動はIrpへの影響が大きい。一方、順方向電圧Vfが高くなってもdV/dtは下がる傾向にある。このため、当該領域においては、Irpを小さくするためにキャリアライフタイムが短いことが好ましい。
 ・半導体基板10の表面から見て3/7から5/7までの領域は、順方向電圧Vfの変動はdV/dtへの影響が大きい。このため、緩やかなdV/dtを実現するために当該領域のキャリアライフタイムは長い方が好ましい。
 ・半導体基板10の表面から見て5/7から半導体基板10の裏面(カソード側表面)までの領域は、順方向電圧Vfの変動はテール電流への影響が大きい。このため、テール電流を小さくするためにはキャリアライフタイムは短い方がよい。一方、キャリアライフタイムを短くしすぎるとカソード側のキャリアが減少しすぎて、逆回復時に電圧、電流の発振現象を引き起こす場合がある。このため、当該領域のキャリアライフタイムは、3/7から5/7までの領域よりも短く、半導体基板10の表面から3/7までの領域よりも長くてよい。
 なお、上記の現象は以下のようにも理解できる。逆回復時には、アノード領域20側から空乏層が広がる。空乏層の領域に存在していたキャリアが吐き出されて逆回復電流になる。従って、半導体基板10の表面側のキャリアが多いと、最初に流れる電流のピークIrpが高くなりやすい。
 また、空乏層の拡大が止まった状態で、空乏層と半導体基板10の裏面との間の領域に存在するキャリアはテール電流として流れる。このため、半導体基板10の裏面側のキャリアが多いと、テール電流が大きくなりやすい。
 また、半導体装置100がIGBT等の還流ダイオードとして用いられているような場合、IGBT等が半導体装置100から所定の電流を引き込む。このとき、半導体基板10に多くのキャリアが存在していたほうが、空乏層がゆっくり広がっても当該電流をIGBT等に供給することができる。一方、キャリアが少ないと、当該電流を供給するために空乏層がはやく広がることになり、逆回復電圧の傾きdV/dtが大きくなる。このため、空乏層が拡大していく途中の半導体基板10の中ほどのキャリアが多いと、逆回復電圧の傾きdV/dtは小さくなる。
 また、第1のピークは、半導体装置100の逆回復時のダイオードの電極間電圧が、印加電圧の半分の値になった場合に、上述した空乏層の半導体基板10の裏面側の端部に応じた位置に設けられることが好ましい。一般的に、逆回復時の印加電圧は、素子耐圧の半分程度に設定されることが多い。例えば1200V耐圧の素子では、印加電圧600Vで逆回復させる。逆回復時にdV/dtが最も大きくなるのは、アノードカソード間電圧が、当該印加電圧の半分となったときである。当該アノードカソード間電圧のときに空乏層が進展している位置に、第1のピークを配置することで、dV/dtを効率よく緩和することができる。
 本例の半導体装置100は、プロトンを注入してFS領域40を形成しつつ、当該プロトンを拡散させることでキャリアライフタイムを回復させる。本例では、図2等に示したようなプロトンの分布を有するので、図3または図9に示したように、半導体基板10の中間でピークを有するキャリアライフタイムの分布を形成することができる。当該キャリアライフタイムの分布により、図13から図20Aにおいて説明したように、小さいピーク電流Irp、小さいテール電流、および、緩やかな逆回復電圧の傾きdV/dtを実現することができる。
 図21は、他の実施形態に係る半導体装置200の構成例を示す図である。本例の半導体装置200は、逆並列に接続されたIGBT素子140とFWD素子150とが一体に形成されたRC-IGBT装置である。半導体装置200は、半導体基板10、絶縁膜122、エミッタアノード電極124およびコレクタカソード電極132を備える。
 半導体基板10は、表面側に形成されたp型領域120を有する。また、半導体基板10は、半導体基板10の表面からp型領域120を貫通して形成された複数のトレンチ104を有する。それぞれのトレンチ104の半導体基板10の裏面側における先端は、p型領域120の端部よりも突出している。それぞれのトレンチ104は、半導体基板10の表面からp型領域120を貫通して形成されたトレンチゲート102を有する。また、それぞれのトレンチゲート102と、それぞれの半導体層とは、絶縁膜103により絶縁される。
 また、トレンチ104により分離された複数のp型領域120のうち、IGBT素子140に対応するp型領域120の一部には、n+型領域106およびp+型領域108が形成される。n+型領域106は、p型領域120の表面において、トレンチ104と隣接して設けられる。p+型領域108は、p型領域120の表面において、n+型領域106により挟まれて設けられる。
 また、複数のp型領域120のうち、FWD素子150に対応するp型領域120は、図1から図20Bにおいて説明したアノード領域20として機能する。なお、FWD素子150に対応するp型領域120にも、n+型領域106およびp+型領域108が形成されていてもよい。
 それぞれのp型領域120には、エミッタアノード電極124が接続される。p型領域120にn+型領域106およびp+型領域108が形成されている場合、エミッタアノード電極124は、n+型領域106およびp+型領域108の双方に接続する。n+型領域106およびp+型領域108が形成されていない場合、エミッタアノード電極124はp型領域120に接続される。
 また、エミッタアノード電極124とトレンチゲート102とは、絶縁膜122により絶縁される。それぞれのトレンチゲート102は、図示していないゲート電極に接続される。トレンチゲート102に電圧が印加されることで、n+型領域106および半導体基板10の間のp型領域120に縦方向のチャネルが形成される。
 半導体基板10は、裏面側に形成されたFS領域40を備える。FS領域40は、図1から図20Bにおいて説明したFS領域40と同一の構造および特性を有する。また、FS領域40の裏面のうち、IGBT素子140に対応する領域にはp型のコレクタ領域130が形成され、FWD素子150に対応する領域にはn型のカソード領域30が形成される。コレクタ領域130およびカソード領域30の裏面には、共通のコレクタカソード電極132が形成される。
 本例のようなRC-IGBT型の半導体装置200においても、図1から図20Bにおいて説明したように、FS領域40におけるプロトン注入濃度を調整して、キャリアライフタイムを制御することは有効である。
 図22は、半導体装置200の製造方法の一例を示す図である。まず、図5の例と同様に半導体基板12を準備する。次に表面素子構造形成段階S402において、半導体基板12の表面側の素子構造を形成する。本例では、半導体基板12の表面に、p型領域120、トレンチ104、n+型領域106、p+型領域108、n型領域110、および、絶縁膜122を形成する。
 次に表面電極形成段階S404においてエミッタアノード電極124を形成する。次に、裏面研削段階S406において半導体基板12の裏面を研削する。次に裏面拡散層イオン注入段階S408において、コレクタ領域130およびカソード領域30に対応する半導体基板10の裏面の領域に、それぞれp型不純物イオンおよびn型不純物イオンを注入する。次に裏面レーザアニール段階S410において、p型不純物イオンおよびn型不純物イオンを注入した領域をレーザアニールすることでコレクタ領域130およびカソード領域30を形成する。次に、表面保護膜形成段階S412において、半導体基板10の表面に保護膜を形成する。
 次に、プロトン注入段階S412およびプロトンアニール段階S414においてFS領域40を形成する。プロトン注入段階S412およびプロトンアニール段階S414は、図6におけるプロトン注入段階S342およびプロトンアニール段階S344と同一である。これにより、図2に示したようなプロトンの濃度分布を有するFS領域40を形成する。
 次に、ライフタイムキラー照射段階S416およびライフタイムアニール段階S418において、キャリアライフタイムを制御する。ライフタイムキラー照射段階S416およびライフタイムアニール段階S418は、図6におけるライフタイムキラー照射段階S352およびライフタイムアニール段階S354と同一である。これにより、図3または図9に示したようなキャリアライフタイム分布を実現する。
 そして、裏面電極形成段階S420において、コレクタカソード電極132を形成する。これにより半導体装置200が製造される。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 図23は、FS領域40におけるキャリア濃度分布の他の例を示す図である。図23において横軸はFS領域40の裏面側端部からの深さ位置を示し、縦軸はキャリア濃度を示す。当該キャリア濃度は、FS領域40に注入されたプロトンによるドナー濃度に対応する。
 図23に示すように、FS領域40における深さ方向のドナー濃度分布は、複数のピークを有する。本例においても、図2の例と同様に、第1のピーク、第2のピーク、第3のピーク、第4のピークが存在する。ただし本例において、FS領域40の裏面側端部に最も近い第4のピークを除く第1から第3のピークは、裏面端部からの距離が大きいほどキャリア濃度が大きい。つまり、第1のピークは、第2のピークおよび第3のピークよりもキャリア濃度が大きく、第2のピークは第3のピークよりもキャリア濃度が大きい。
 FS領域40は、p+型のアノード領域20およびn-型の半導体基板10の境界から広がる空乏層が、カソード領域30まで到達することを防ぐ。空乏層は、最大で、複数のピークのうちの最も裏面端部に近いピークまで広がってよい。
 本例では、第1から第3のピークの濃度が、基板表面側から裏面側に向かって徐々に減少する。また、最も小さいピーク濃度は、図2の例に比べて大きい。このため、逆回復電圧の傾きdV/dtを小さくすることができる。
 図24は、半導体基板10の深さ方向における不純物濃度分布の一例を、ヘリウム分布および水素分布とともに示す図である。図24においては、p型およびn型の不純物濃度を合わせて示している。本例では、半導体基板10の表面から数μm程度の深さまで、高濃度のp型のアノード領域20が形成される。アノード領域20の端部から、55μm程度の深さまでドリフト領域としてのn-型領域が形成され、55μm程度移行の深さに、FS領域40およびカソード領域30が形成されている。
 また図24においては、比較例300の不純物濃度を点線で示している。本例の半導体装置100のFS領域40において、最も半導体基板10の表面に近い不純物濃度のピークが、比較例300における当該ピークよりも大きくなっている。
 また、本例の半導体装置100では、半導体基板10の表面側のキャリアライフタイムを制御するために、半導体基板10の表面からヘリウムイオンを照射している。本例では、ヘリウムイオンの平均飛程をRp、ヘリウムイオンの飛程分布の半値幅をΔRpとする。
 半導体基板10の表面から照射したヘリウムイオンの飛程のピーク位置(すなわち、半導体基板10の表面から深さRpの位置)は、FS領域40のドナー濃度分布のピークのうち、最も半導体基板10の表面側のピークから40μmの範囲に配置されてよい。ピークからの距離は、ピークの極大点よりも基板表面側において、ドナー濃度が当該ピークの極大値の半分となる位置から計測してよい。
 このような構成により、ヘリウムイオンを照射したことにより生じた空孔に起因するダングリングボンドが、FS領域40の当該ピークから拡散した水素により所定量終端される。このため、ヘリウムおよび空孔に起因する漏れ電流を低減することができる。また、図3に示したキャリアライフタイム分布を容易に実現できる。
 なお、ヘリウムイオンの飛程分布の半値位置Rp-ΔRpを、FS領域40のドナー濃度分布の当該ピークから40μmの範囲内としてもよい。これにより、より効率よく漏れ電流を低減することができる。ただし、ヘリウムイオンの分布位置は、これらの範囲に限定されない。ヘリウムイオンの飛程のピーク位置Rpが、FS領域40のドナー濃度分布の当該ピークから40μm以上離れていても、当該ピークから拡散する水素は少なくなるものの、ある程度漏れ電流を低減することができる。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10・・・半導体基板、12・・・半導体基板、20・・・アノード領域、22・・・絶縁膜、24・・・アノード電極、30・・・カソード領域、32・・・カソード電極、40・・・FS領域、100・・・半導体装置、102・・・トレンチゲート、103・・・絶縁膜、104・・・トレンチ、106・・・n+型領域、108・・・p+型領域、110・・・n型領域、120・・・p型領域、122・・・絶縁膜、124・・・エミッタアノード電極、130・・・コレクタ領域、132・・・コレクタカソード電極、140・・・IGBT素子、150・・・FWD素子、200・・・半導体装置、300・・・比較例

Claims (13)

  1.  n型の半導体基板と、
     前記半導体基板の表面側に形成されたp型のアノード領域と、
     前記半導体基板の裏面側においてプロトンをドナーとして形成されたn型のフィールドストップ領域と、
     前記フィールドストップ領域よりも前記半導体基板の裏面側に形成されたn型のカソード領域と
     を備え、
     前記フィールドストップ領域における深さ方向の前記ドナーの濃度分布は、第1のピークと、前記第1のピークよりも前記半導体基板の裏面側において前記第1のピークよりも濃度の低い第2のピークとを有し、
     前記アノード領域および前記カソード領域の間における少なくとも一部の領域におけるキャリアライフタイムが、前記アノード領域および前記カソード領域におけるキャリアライフタイムのいずれよりも長い半導体装置。
  2.  前記ドナーの濃度分布が前記第1のピークを示す深さ位置における前記キャリアライフタイムが、前記アノード領域および前記カソード領域におけるキャリアライフタイムのいずれよりも長い
     請求項1に記載の半導体装置。
  3.  前記フィールドストップ領域における深さ方向の前記ドナーの濃度分布は複数のピークを有し、
     前記第1のピークは、前記複数のピークのうち最も前記半導体基板の表面側のピークである
     請求項2に記載の半導体装置。
  4.  前記アノード領域よりもキャリアライフタイムが長い領域が、前記ドナーの濃度分布が前記第1のピークを示す位置よりも前記半導体基板の表面側に延伸している
     請求項3に記載の半導体装置。
  5.  前記半導体装置の逆回復時のアノードおよびカソードの電極間電圧が、逆回復時の印加電圧の半分の値になった場合に、前記アノード領域と前記半導体基板のn型領域との境界から広がる空乏層の前記半導体基板の裏面側の端部に応じた位置に、前記第1のピークを有する
     請求項3または4に記載の半導体装置。
  6.  前記半導体基板の裏面側に、前記キャリアライフタイムを短くする局所ライフタイムキラーを有する
     請求項3または4に記載の半導体装置。
  7.  前記局所ライフタイムキラーが存在する領域は、前記半導体装置の定格逆電圧が印加された場合に、前記アノード領域と前記半導体基板のn型領域との境界から広がる空乏層と接しない位置に形成される
     請求項6に記載の半導体装置。
  8.  前記局所ライフタイムキラーの注入量が、前記ドナーの濃度分布において最も前記半導体基板の裏面側におけるピークの前記プロトンの注入量の1/300以上である
     請求項6に記載の半導体装置。
  9.  n型の半導体基板と、前記半導体基板の表面側に形成されたp型のアノード領域と、前記半導体基板の裏面側においてプロトンをドナーとして形成されたn型のフィールドストップ領域と、前記フィールドストップ領域よりも前記半導体基板の裏面側に形成されたn型のカソード領域とを備える半導体装置を製造する製造方法であって、
     前記フィールドストップ領域における深さ方向の前記ドナーの濃度分布が、第1のピークと、前記第1のピークよりも前記半導体基板の裏面側において前記第1のピークよりも濃度の低い第2のピークとを有するように、前記半導体基板の裏面側からプロトンを注入するプロトン注入段階と、
     前記半導体基板をアニールして前記プロトンを拡散させることで、前記アノード領域および前記カソード領域の間における少なくとも一部の領域におけるキャリアライフタイムを、前記アノード領域および前記カソード領域におけるキャリアライフタイムのいずれよりも長くするライフタイムアニール段階と
     を備える製造方法。
  10.  前記半導体基板全体のキャリアライフタイムを短くするライフタイムキラーを前記半導体基板に照射するライフタイムキラー照射段階を更に備え、
     前記ライフタイムアニール段階で前記プロトンを拡散させることで、前記プロトンが拡散した領域の前記キャリアライフタイムを回復させる
     請求項9に記載の製造方法。
  11.  前記プロトン注入段階と前記ライフタイムキラー照射段階との間に、前記半導体基板をアニールするプロトンアニール段階を更に備える
     請求項10に記載の製造方法。
  12.  前記半導体装置の耐圧クラスに応じて、前記第1のピークの位置を調整する
     請求項9から11のいずれか一項に記載の製造方法。
  13.  前記ライフタイムキラー照射段階において、前記半導体基板に電子線を照射する
     請求項10に記載の製造方法。
PCT/JP2015/072933 2014-10-03 2015-08-13 半導体装置および半導体装置の製造方法 WO2016051973A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201580002976.5A CN105814694B (zh) 2014-10-03 2015-08-13 半导体装置以及半导体装置的制造方法
JP2016551621A JP6319453B2 (ja) 2014-10-03 2015-08-13 半導体装置および半導体装置の製造方法
DE112015000206.5T DE112015000206T5 (de) 2014-10-03 2015-08-13 Halbleitervorrichtung und Verfahren zum Herstellen einer Halbleitervorrichtung
US15/169,740 US10312331B2 (en) 2014-10-03 2016-06-01 Semiconductor device, and method of manufacturing semiconductor device
US16/430,444 US10923570B2 (en) 2014-10-03 2019-06-04 Manufacturing method for controlling carrier lifetimes in semiconductor substrates that includes injection and annealing
US17/168,124 US11646350B2 (en) 2014-10-03 2021-02-04 Semiconductor device, and method of manufacturing semiconductor device
US18/310,554 US20230275129A1 (en) 2014-10-03 2023-05-02 Semiconductor device, and method of manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014204849 2014-10-03
JP2014-204849 2014-10-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/169,740 Continuation US10312331B2 (en) 2014-10-03 2016-06-01 Semiconductor device, and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2016051973A1 true WO2016051973A1 (ja) 2016-04-07

Family

ID=55630019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072933 WO2016051973A1 (ja) 2014-10-03 2015-08-13 半導体装置および半導体装置の製造方法

Country Status (5)

Country Link
US (4) US10312331B2 (ja)
JP (2) JP6319453B2 (ja)
CN (1) CN105814694B (ja)
DE (1) DE112015000206T5 (ja)
WO (1) WO2016051973A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10304928B2 (en) 2015-06-17 2019-05-28 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
WO2019181852A1 (ja) * 2018-03-19 2019-09-26 富士電機株式会社 半導体装置および半導体装置の製造方法
WO2020100995A1 (ja) * 2018-11-16 2020-05-22 富士電機株式会社 半導体装置および製造方法
US10825904B2 (en) 2017-01-17 2020-11-03 Fuji Electric Co., Ltd. Semiconductor device
WO2021177422A1 (ja) * 2020-03-04 2021-09-10 富士電機株式会社 半導体装置、半導体装置の製造方法および半導体装置を備えた電力変換装置
US11901419B2 (en) 2019-10-11 2024-02-13 Fuji Electric Co., Ltd. Semiconductor device and manufacturing method of semiconductor device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051970A1 (ja) * 2014-09-30 2016-04-07 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6319453B2 (ja) 2014-10-03 2018-05-09 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6610768B2 (ja) 2016-02-23 2019-11-27 富士電機株式会社 半導体装置
DE102016118012A1 (de) * 2016-09-23 2018-03-29 Infineon Technologies Ag Halbleiterbauelement und Verfahren zum Bilden eines Halbleiterbauelements
DE102017118975B4 (de) * 2017-08-18 2023-07-27 Infineon Technologies Ag Halbleitervorrichtung mit einem cz-halbleiterkörper und verfahren zum herstellen einer halbleitervorrichtung mit einem cz-halbleiterkörper
CN110660847B (zh) * 2018-06-28 2022-04-12 上海先进半导体制造有限公司 双极型晶体管及其制造方法
DE102018010379B4 (de) 2018-09-24 2024-04-25 Infineon Technologies Ag Verfahren zum Herstellen eines Leistungshalbleitertransistors
DE102018123439B4 (de) * 2018-09-24 2020-04-23 Infineon Technologies Ag Leistungshalbleitertransistor, Verfahren zum Verarbeiten eines Leistungshalbleitertransistors und Verfahren zum Produzieren eines Leistungshalbleitertransistors
DE112019001738T5 (de) * 2018-11-16 2020-12-17 Fuji Electric Co., Ltd. Halbleitervorrichtung und herstellungsverfahren
WO2020149354A1 (ja) * 2019-01-18 2020-07-23 富士電機株式会社 半導体装置および半導体装置の製造方法
US20220223583A1 (en) * 2019-07-12 2022-07-14 Mitsubishi Electric Corporation Semiconductor device, and method for manufacturing semiconductor device
DE112021000038T5 (de) * 2020-01-17 2022-04-07 Fuji Electric Co., Ltd. Halbleitervorrichtung und herstellungsverfahren einer halbleitervorrichtung
JP7361634B2 (ja) * 2020-03-02 2023-10-16 三菱電機株式会社 半導体装置及び半導体装置の製造方法
JP7456349B2 (ja) 2020-10-08 2024-03-27 三菱電機株式会社 半導体装置および半導体装置の製造方法
WO2023176887A1 (ja) * 2022-03-16 2023-09-21 富士電機株式会社 半導体装置および半導体装置の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232332A (ja) * 1996-02-27 1997-09-05 Fuji Electric Co Ltd 半導体装置
JP2000223720A (ja) * 1999-01-29 2000-08-11 Meidensha Corp 半導体素子およびライフタイム制御方法
US20080001257A1 (en) * 2006-06-30 2008-01-03 Infineon Technologies Austria Ag Semiconductor device with a field stop zone
JP2008211148A (ja) * 2007-02-28 2008-09-11 Fuji Electric Device Technology Co Ltd 半導体装置およびその製造方法
WO2013141141A1 (ja) * 2012-03-19 2013-09-26 富士電機株式会社 半導体装置の製造方法

Family Cites Families (229)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3645808A (en) * 1967-07-31 1972-02-29 Hitachi Ltd Method for fabricating a semiconductor-integrated circuit
US4047976A (en) * 1976-06-21 1977-09-13 Motorola, Inc. Method for manufacturing a high-speed semiconductor device
US4203780A (en) * 1978-08-23 1980-05-20 Sony Corporation Fe Ion implantation into semiconductor substrate for reduced lifetime sensitivity to temperature
DE3037316C2 (de) * 1979-10-03 1982-12-23 Tokyo Shibaura Denki K.K., Kawasaki, Kanagawa Verfahren zur Herstellung von Leistungsthyristoren
JPS59189679A (ja) * 1983-04-13 1984-10-27 Hitachi Ltd ダイオ−ド
US4651189A (en) * 1983-12-19 1987-03-17 Hitachi, Ltd. Semiconductor device provided with electrically floating control electrode
EP0178582A3 (en) * 1984-10-15 1989-02-08 Hitachi, Ltd. Reverse blocking type semiconductor device
JPH07123166B2 (ja) * 1986-11-17 1995-12-25 日産自動車株式会社 電導度変調形mosfet
US6100575A (en) * 1987-08-19 2000-08-08 Mitsubishi Denki Kabushiki Kaisha Semiconductor switching device having different carrier lifetimes between a first portion serving as a main current path and the remaining portion of the device
US4855799A (en) * 1987-12-22 1989-08-08 Kabushiki Kaisha Toshiba Power MOS FET with carrier lifetime killer
JPH07107935B2 (ja) * 1988-02-04 1995-11-15 株式会社東芝 半導体装置
KR930003555B1 (ko) * 1988-12-16 1993-05-06 산켄 덴끼 가부시끼가이샤 반도체 장치의 제조방법
US4925812A (en) * 1989-09-21 1990-05-15 International Rectifier Corporation Platinum diffusion process
JPH0650738B2 (ja) * 1990-01-11 1994-06-29 株式会社東芝 半導体装置及びその製造方法
JP2504862B2 (ja) * 1990-10-08 1996-06-05 三菱電機株式会社 半導体装置及びその製造方法
US5608244A (en) * 1992-04-28 1997-03-04 Mitsubishi Denki Kabushiki Kaisha Semiconductor diode with reduced recovery current
JPH06196723A (ja) * 1992-04-28 1994-07-15 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2743057B2 (ja) * 1993-02-24 1998-04-22 三星電子株式会社 半導体装置
US5342805A (en) * 1993-07-01 1994-08-30 G.I. Corporation Method of growing a semiconductor material by epilaxy
JPH07193218A (ja) 1993-12-27 1995-07-28 Hitachi Ltd 荷電粒子注入方法及び結晶欠陥層を有する半導体装置
DE69430913D1 (de) * 1994-07-25 2002-08-08 Cons Ric Microelettronica Verfahren zur lokalen Reduzierung der Ladungsträgerlebensdauer
JPH08102545A (ja) 1994-09-30 1996-04-16 Meidensha Corp 半導体素子のライフタイム制御方法
JPH08125200A (ja) * 1994-10-25 1996-05-17 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2883017B2 (ja) * 1995-02-20 1999-04-19 ローム株式会社 半導体装置およびその製法
JPH10116998A (ja) 1996-10-14 1998-05-06 Toyota Motor Corp 半導体装置およびその製造方法
JP4167313B2 (ja) * 1997-03-18 2008-10-15 株式会社東芝 高耐圧電力用半導体装置
JP3287269B2 (ja) * 1997-06-02 2002-06-04 富士電機株式会社 ダイオードとその製造方法
EP1014453B1 (en) * 1997-08-14 2016-04-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
JP4156717B2 (ja) * 1998-01-13 2008-09-24 三菱電機株式会社 半導体装置
JP2000022174A (ja) 1998-06-30 2000-01-21 Toshiba Corp 半導体装置の製造方法
DE59909045D1 (de) * 1998-07-17 2004-05-06 Infineon Technologies Ag Leistungshalbleiterbauelement für hohe sperrspannungen
WO2000025364A2 (de) * 1998-10-26 2000-05-04 Infineon Technologies Ag Bipolares hochvolt-leistungsbauelement
JP2000252477A (ja) * 1999-03-02 2000-09-14 Fuji Electric Co Ltd 半導体装置
JP4862207B2 (ja) 1999-11-26 2012-01-25 富士電機株式会社 半導体装置の製造方法
DE10055446B4 (de) * 1999-11-26 2012-08-23 Fuji Electric Co., Ltd. Halbleiterbauelement und Verfahren zu seiner Herstellung
JP3684962B2 (ja) 1999-12-01 2005-08-17 富士電機デバイステクノロジー株式会社 半導体装置の製造方法
JP4581179B2 (ja) * 2000-04-26 2010-11-17 富士電機システムズ株式会社 絶縁ゲート型半導体装置
US6482681B1 (en) 2000-05-05 2002-11-19 International Rectifier Corporation Hydrogen implant for buffer zone of punch-through non epi IGBT
US6599818B2 (en) * 2000-10-10 2003-07-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device manufacturing method, heat treatment apparatus, and heat treatment method
JP3906076B2 (ja) * 2001-01-31 2007-04-18 株式会社東芝 半導体装置
JP5061407B2 (ja) * 2001-01-31 2012-10-31 富士電機株式会社 半導体装置およびその製造方法
GB0102734D0 (en) * 2001-02-03 2001-03-21 Koninkl Philips Electronics Nv Bipolar diode
DE10205323B4 (de) * 2001-02-09 2011-03-24 Fuji Electric Systems Co., Ltd. Verfahren zur Herstellung eines Halbleiterbauelements
US20020137264A1 (en) * 2001-03-23 2002-09-26 Ming-Jer Kao Method of fabrication thin wafer IGBT
DE10235198B4 (de) * 2001-08-02 2011-08-11 Fuji Electric Systems Co., Ltd. Leistungs-Halbleitergleichrichter mit ringförmigen Gräben
JP4539011B2 (ja) * 2002-02-20 2010-09-08 富士電機システムズ株式会社 半導体装置
DE102004017723B4 (de) * 2003-04-10 2011-12-08 Fuji Electric Co., Ltd In Rückwärtsrichtung sperrendes Halbleiterbauteil und Verfahren zu seiner Herstellung
JP4765000B2 (ja) * 2003-11-20 2011-09-07 富士電機株式会社 絶縁ゲート型半導体装置
DE102004012818B3 (de) * 2004-03-16 2005-10-27 Infineon Technologies Ag Verfahren zum Herstellen eines Leistungshalbleiterbauelements
JP2005340528A (ja) * 2004-05-27 2005-12-08 Fuji Electric Device Technology Co Ltd 半導体装置およびその製造方法
JP4867140B2 (ja) * 2004-07-01 2012-02-01 富士電機株式会社 半導体装置
DE102004047749B4 (de) * 2004-09-30 2008-12-04 Infineon Technologies Austria Ag Halbleiterbauteil Diode und IGBT sowie dafür geeignetes Herstellungsverfahren
EP1758171A4 (en) * 2005-03-04 2009-04-29 Sumitomo Electric Industries VERTICAL GALLIUM NITRIDE SEMICONDUCTOR ELEMENT AND EPITACTIC SUBSTRATE
DE102005026408B3 (de) * 2005-06-08 2007-02-01 Infineon Technologies Ag Verfahren zur Herstellung einer Stoppzone in einem Halbleiterkörper und Halbleiterbauelement mit einer Stoppzone
US7897452B2 (en) * 2005-06-20 2011-03-01 Fuji Electric Systems Co., Ltd. Method of producing a semiconductor device with an aluminum or aluminum alloy rear electrode
JP5087828B2 (ja) * 2005-08-26 2012-12-05 富士電機株式会社 半導体装置の製造方法
JP2007103770A (ja) * 2005-10-06 2007-04-19 Sanken Electric Co Ltd 絶縁ゲート型バイポーラトランジスタ
US7728409B2 (en) * 2005-11-10 2010-06-01 Fuji Electric Device Technology Co., Ltd. Semiconductor device and method of manufacturing the same
JP2007134625A (ja) * 2005-11-14 2007-05-31 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP5104314B2 (ja) * 2005-11-14 2012-12-19 富士電機株式会社 半導体装置およびその製造方法
JP5984282B2 (ja) * 2006-04-27 2016-09-06 富士電機株式会社 縦型トレンチ型絶縁ゲートmos半導体装置
US7880166B2 (en) * 2006-05-10 2011-02-01 Ho-Yuan Yu Fast recovery reduced p-n junction rectifier
US8669554B2 (en) * 2006-05-10 2014-03-11 Ho-Yuan Yu Fast recovery reduced p-n junction rectifier
DE102006025958B3 (de) * 2006-06-02 2007-10-11 Infineon Technologies Ag Sanft schaltendes Halbleiterbauelement mit hoher Robustheit und geringen Schaltverlusten
DE102006034786B4 (de) * 2006-07-27 2011-01-20 Siltronic Ag Monokristalline Halbleiterscheibe mit defektreduzierten Bereichen und Verfahren zur Ausheilung GOI-relevanter Defekte in einer monokristallinen Halbleiterscheibe
US7989888B2 (en) * 2006-08-31 2011-08-02 Infineon Technologies Autria AG Semiconductor device with a field stop zone and process of producing the same
JP2008085050A (ja) * 2006-09-27 2008-04-10 Renesas Technology Corp 半導体装置の製造方法
JP2008091705A (ja) * 2006-10-03 2008-04-17 Mitsubishi Electric Corp 半導体装置及びその製造方法
EP2093802B1 (en) * 2006-12-04 2015-11-11 Sanken Electric Co., Ltd. Insulating-gate fet and its manufacturing method
US8008734B2 (en) * 2007-01-11 2011-08-30 Fuji Electric Co., Ltd. Power semiconductor device
DE102007020039B4 (de) * 2007-04-27 2011-07-14 Infineon Technologies Austria Ag Verfahren zur Herstellung einer vertikal inhomogenen Platin- oder Goldverteilung in einem Halbleitersubstrat und in einem Halbleiterbauelement, derart hergestelltes Halbleitersubstrat und Halbleiterbauelement
US7755130B2 (en) * 2007-05-10 2010-07-13 Qimonda Ag Minority carrier sink for a memory cell array comprising nonvolatile semiconductor memory cells
GB0714866D0 (en) * 2007-07-31 2007-09-12 Univ Leeds Biosensor
JP4930904B2 (ja) * 2007-09-07 2012-05-16 サンケン電気株式会社 電気回路のスイッチング装置
US9620614B2 (en) * 2007-12-31 2017-04-11 Alpha And Omega Semiconductor Incorporated Sawtooth electric field drift region structure for power semiconductor devices
JP5365009B2 (ja) * 2008-01-23 2013-12-11 富士電機株式会社 半導体装置およびその製造方法
JP5374883B2 (ja) * 2008-02-08 2013-12-25 富士電機株式会社 半導体装置およびその製造方法
KR101191281B1 (ko) * 2008-03-31 2012-10-16 미쓰비시덴키 가부시키가이샤 반도체장치
JP4788734B2 (ja) * 2008-05-09 2011-10-05 トヨタ自動車株式会社 半導体装置
JP2010098189A (ja) * 2008-10-17 2010-04-30 Toshiba Corp 半導体装置
JP4873002B2 (ja) 2008-12-12 2012-02-08 株式会社デンソー 半導体装置の製造方法
JP4905559B2 (ja) * 2009-01-27 2012-03-28 株式会社デンソー 半導体装置
JP2010238835A (ja) * 2009-03-31 2010-10-21 Fuji Electric Systems Co Ltd 複合半導体整流素子とそれを用いた電力変換装置
JP5507118B2 (ja) * 2009-05-20 2014-05-28 富士電機株式会社 半導体装置およびその製造方法
JP2010283132A (ja) * 2009-06-04 2010-12-16 Mitsubishi Electric Corp 半導体装置
US8766413B2 (en) * 2009-11-02 2014-07-01 Fuji Electric Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
JP5740820B2 (ja) * 2010-03-02 2015-07-01 富士電機株式会社 半導体装置および半導体装置の製造方法
JP5195816B2 (ja) * 2010-05-17 2013-05-15 富士電機株式会社 半導体装置の製造方法
JP5361808B2 (ja) * 2010-06-23 2013-12-04 三菱電機株式会社 電力用半導体装置
JP5865618B2 (ja) * 2010-09-21 2016-02-17 株式会社東芝 半導体装置
JP5606240B2 (ja) * 2010-09-22 2014-10-15 三菱電機株式会社 半導体装置
JPWO2012056536A1 (ja) * 2010-10-27 2014-03-20 富士電機株式会社 半導体装置および半導体装置の製造方法
US9570541B2 (en) * 2010-12-17 2017-02-14 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing the same
WO2012124191A1 (ja) * 2011-03-14 2012-09-20 富士電機株式会社 半導体装置
JP2012204395A (ja) * 2011-03-23 2012-10-22 Toshiba Corp 半導体装置およびその製造方法
WO2012137000A1 (en) * 2011-04-06 2012-10-11 Isis Innovation Limited Processing a wafer for an electronic circuit
JP5633468B2 (ja) * 2011-05-11 2014-12-03 三菱電機株式会社 半導体装置
JP2012256628A (ja) * 2011-06-07 2012-12-27 Renesas Electronics Corp Igbtおよびダイオード
WO2012169053A1 (ja) * 2011-06-09 2012-12-13 トヨタ自動車株式会社 半導体装置および半導体装置の製造方法
JP5937413B2 (ja) * 2011-06-15 2016-06-22 株式会社デンソー 半導体装置
JP5348276B2 (ja) * 2011-07-04 2013-11-20 株式会社デンソー 半導体装置
TWI463925B (zh) * 2011-07-08 2014-12-01 Unimicron Technology Corp 封裝基板及其製法
US9240456B2 (en) * 2011-07-15 2016-01-19 Fuji Electric Co., Ltd. Method for manufacturing semiconductor device
DE102011052605B4 (de) * 2011-08-11 2014-07-10 Infineon Technologies Austria Ag Verfahren zur Herstellung einer Halbleitervorrichtung
JP5961357B2 (ja) * 2011-09-09 2016-08-02 昭和電工株式会社 SiCエピタキシャルウェハ及びその製造方法
DE102011113549B4 (de) 2011-09-15 2019-10-17 Infineon Technologies Ag Ein Halbleiterbauelement mit einer Feldstoppzone in einem Halbleiterkörper und ein Verfahren zur Herstellung einer Feldstoppzone in einem Halbleiterkörper
JP2013074181A (ja) * 2011-09-28 2013-04-22 Toyota Motor Corp 半導体装置とその製造方法
JP5776485B2 (ja) * 2011-10-12 2015-09-09 三菱電機株式会社 半導体装置
JP5817686B2 (ja) * 2011-11-30 2015-11-18 株式会社デンソー 半導体装置
KR101702942B1 (ko) * 2011-12-15 2017-02-06 후지 덴키 가부시키가이샤 반도체 장치 및 반도체 장치의 제조방법
CN103946985B (zh) * 2011-12-28 2017-06-23 富士电机株式会社 半导体装置及半导体装置的制造方法
EP2806461B1 (en) * 2012-01-19 2021-11-24 Fuji Electric Co., Ltd. Semiconductor device and method for producing same
JP6015745B2 (ja) 2012-03-19 2016-10-26 富士電機株式会社 半導体装置の製造方法
JP6078961B2 (ja) * 2012-03-19 2017-02-15 富士電機株式会社 半導体装置の製造方法
US11152224B2 (en) * 2012-03-23 2021-10-19 Fuji Electric Co., Ltd. Semiconductor device with field stop layer and semiconductor device manufacturing method thereof
US9385211B2 (en) * 2012-03-30 2016-07-05 Fuji Electric Co., Ltd. Manufacturing method for semiconductor device
US20130277793A1 (en) * 2012-04-24 2013-10-24 Fairchild Korea Semiconductor, Ltd. Power device and fabricating method thereof
WO2013172059A1 (ja) * 2012-05-15 2013-11-21 富士電機株式会社 半導体装置
WO2013179761A1 (ja) * 2012-06-01 2013-12-05 富士電機株式会社 半導体装置
JP5672269B2 (ja) 2012-06-04 2015-02-18 富士電機株式会社 半導体装置の製造方法
US9299698B2 (en) * 2012-06-27 2016-03-29 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
EP2871679B1 (en) * 2012-07-03 2019-02-06 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device
WO2014030457A1 (ja) * 2012-08-22 2014-02-27 富士電機株式会社 半導体装置および半導体装置の製造方法
CN104285285B (zh) * 2012-08-22 2017-03-01 富士电机株式会社 半导体装置的制造方法
US9490128B2 (en) * 2012-08-27 2016-11-08 Ultratech, Inc. Non-melt thin-wafer laser thermal annealing methods
JP2014063980A (ja) * 2012-08-30 2014-04-10 Toshiba Corp 半導体装置
US8860040B2 (en) * 2012-09-11 2014-10-14 Dow Corning Corporation High voltage power semiconductor devices on SiC
JP6111572B2 (ja) * 2012-09-12 2017-04-12 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6090329B2 (ja) * 2012-10-23 2017-03-08 富士電機株式会社 半導体装置およびその製造方法
JP2014086600A (ja) * 2012-10-24 2014-05-12 Fuji Electric Co Ltd 半導体装置、半導体装置の製造方法および半導体装置の制御方法
JP6263966B2 (ja) * 2012-12-12 2018-01-24 富士電機株式会社 半導体装置
WO2014112239A1 (ja) * 2013-01-16 2014-07-24 富士電機株式会社 半導体素子
JP6197294B2 (ja) * 2013-01-16 2017-09-20 富士電機株式会社 半導体素子
US9627517B2 (en) 2013-02-07 2017-04-18 Infineon Technologies Ag Bipolar semiconductor switch and a manufacturing method therefor
US8836090B1 (en) * 2013-03-01 2014-09-16 Ixys Corporation Fast recovery switching diode with carrier storage area
US9299801B1 (en) * 2013-03-14 2016-03-29 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor device with a tuned dopant profile
WO2014156849A1 (ja) * 2013-03-25 2014-10-02 富士電機株式会社 半導体装置
JP6117602B2 (ja) * 2013-04-25 2017-04-19 トヨタ自動車株式会社 半導体装置
JP6037012B2 (ja) * 2013-06-26 2016-11-30 富士電機株式会社 半導体装置および半導体装置の製造方法
CN105122458B (zh) * 2013-09-18 2018-02-02 富士电机株式会社 半导体装置及其制造方法
JP6268948B2 (ja) * 2013-11-07 2018-01-31 富士電機株式会社 Mos型半導体装置の製造方法
US10304939B2 (en) * 2013-11-13 2019-05-28 Mitsubishi Electric Corporation SiC semiconductor device having pn junction interface and method for manufacturing the SiC semiconductor device
JP6311723B2 (ja) * 2013-12-16 2018-04-18 富士電機株式会社 半導体装置および半導体装置の製造方法
CN105900221B (zh) * 2014-02-28 2019-01-22 三菱电机株式会社 半导体装置以及半导体装置的制造方法
JP6271309B2 (ja) * 2014-03-19 2018-01-31 株式会社東芝 半導体基板の製造方法、半導体基板および半導体装置
US9312135B2 (en) 2014-03-19 2016-04-12 Infineon Technologies Ag Method of manufacturing semiconductor devices including generating and annealing radiation-induced crystal defects
US9887125B2 (en) 2014-06-06 2018-02-06 Infineon Technologies Ag Method of manufacturing a semiconductor device comprising field stop zone
CN105793991B (zh) * 2014-06-12 2019-03-19 富士电机株式会社 半导体装置
JP6271356B2 (ja) * 2014-07-07 2018-01-31 株式会社東芝 半導体装置の製造方法
WO2016006663A1 (ja) * 2014-07-10 2016-01-14 株式会社豊田自動織機 半導体基板および半導体基板の製造方法
WO2016010097A1 (ja) * 2014-07-17 2016-01-21 富士電機株式会社 半導体装置および半導体装置の製造方法
DE112015000670T5 (de) * 2014-09-17 2016-11-03 Fuji Electric Co., Ltd. Halbleitervorrichtungsverfahren zur Herstellung einer Halbleitervorrichtung
JP2016063190A (ja) * 2014-09-22 2016-04-25 住友電気工業株式会社 炭化珪素エピタキシャル基板の製造方法、炭化珪素エピタキシャル基板および炭化珪素半導体装置
JP6319453B2 (ja) * 2014-10-03 2018-05-09 富士電機株式会社 半導体装置および半導体装置の製造方法
US9559171B2 (en) * 2014-10-15 2017-01-31 Fuji Electric Co., Ltd. Semiconductor device
WO2016063683A1 (ja) * 2014-10-24 2016-04-28 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6467882B2 (ja) * 2014-11-13 2019-02-13 富士電機株式会社 半導体装置、および、半導体装置の製造方法
DE102014116666B4 (de) 2014-11-14 2022-04-21 Infineon Technologies Ag Ein Verfahren zum Bilden eines Halbleiterbauelements
JP6415946B2 (ja) * 2014-11-26 2018-10-31 株式会社東芝 半導体装置の製造方法及び半導体装置
US10083843B2 (en) * 2014-12-17 2018-09-25 Ultratech, Inc. Laser annealing systems and methods with ultra-short dwell times
JP2016127177A (ja) * 2015-01-06 2016-07-11 住友電気工業株式会社 炭化珪素基板、炭化珪素半導体装置および炭化珪素基板の製造方法
KR101970087B1 (ko) * 2015-01-27 2019-04-17 미쓰비시덴키 가부시키가이샤 반도체 장치
JP2016174032A (ja) * 2015-03-16 2016-09-29 株式会社東芝 半導体装置及びその製造方法
JP6272799B2 (ja) * 2015-06-17 2018-01-31 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6334465B2 (ja) * 2015-06-17 2018-05-30 富士電機株式会社 半導体装置
US10026831B2 (en) * 2015-08-18 2018-07-17 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
JP6597102B2 (ja) * 2015-09-16 2019-10-30 富士電機株式会社 半導体装置
WO2017047285A1 (ja) * 2015-09-16 2017-03-23 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6728638B2 (ja) * 2015-11-10 2020-07-22 富士電機株式会社 半導体デバイスの製造方法
JP6365790B2 (ja) * 2015-11-16 2018-08-01 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6690198B2 (ja) * 2015-11-16 2020-04-28 富士電機株式会社 炭化珪素半導体装置の製造方法
CN108431962B (zh) * 2015-12-28 2021-05-18 三菱电机株式会社 半导体装置、半导体装置的制造方法
US9812454B2 (en) * 2016-02-08 2017-11-07 Kilopass Technology, Inc. Methods and systems for reducing electrical disturb effects between thyristor memory cells using buried metal cathode lines
CN107086217B (zh) * 2016-02-16 2023-05-16 富士电机株式会社 半导体装置
JP6604430B2 (ja) * 2016-03-10 2019-11-13 富士電機株式会社 半導体装置
US9768285B1 (en) * 2016-03-16 2017-09-19 Semiconductor Components Industries, Llc Semiconductor device and method of manufacture
US10276362B2 (en) * 2016-04-29 2019-04-30 Infineon Technologies Ag Method for processing a semiconductor region and an electronic device
JP6787690B2 (ja) * 2016-05-19 2020-11-18 ローム株式会社 高速ダイオード及びその製造方法
JP6703915B2 (ja) * 2016-07-29 2020-06-03 富士電機株式会社 炭化珪素半導体基板、炭化珪素半導体基板の製造方法、半導体装置および半導体装置の製造方法
WO2018030444A1 (ja) * 2016-08-12 2018-02-15 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6844163B2 (ja) * 2016-09-14 2021-03-17 富士電機株式会社 炭化珪素半導体装置
CN109314139B (zh) * 2016-09-20 2022-04-15 富士电机株式会社 半导体装置和半导体装置的制造方法
CN107958906B (zh) * 2016-10-14 2023-06-23 富士电机株式会社 半导体装置
JP6589817B2 (ja) * 2016-10-26 2019-10-16 株式会社デンソー 半導体装置
CN109075213B (zh) * 2016-11-16 2021-10-15 富士电机株式会社 半导体装置
EP3324443B1 (en) * 2016-11-17 2019-09-11 Fuji Electric Co., Ltd. Semiconductor device
DE112017002352B4 (de) * 2016-12-08 2023-12-14 Fuji Electric Co., Ltd. Verfahren zum herstellen einer halbleitervorrichtung
US10867798B2 (en) * 2016-12-08 2020-12-15 Fuji Electric Co., Ltd. Method of manufacturing semiconductor device
JP6780709B2 (ja) * 2016-12-16 2020-11-04 富士電機株式会社 半導体装置および製造方法
US9818696B1 (en) * 2016-12-26 2017-11-14 Sanken Electric Co., Ltd. Semiconductor device
JP6820738B2 (ja) * 2016-12-27 2021-01-27 三菱電機株式会社 半導体装置、電力変換装置および半導体装置の製造方法
WO2018135147A1 (ja) * 2017-01-17 2018-07-26 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6903931B2 (ja) * 2017-02-13 2021-07-14 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6645594B2 (ja) * 2017-02-15 2020-02-14 富士電機株式会社 半導体装置
JP7325167B2 (ja) * 2017-03-16 2023-08-14 富士電機株式会社 半導体装置の製造方法
US10396189B2 (en) * 2017-05-30 2019-08-27 Fuji Electric Co., Ltd. Semiconductor device
WO2018220879A1 (ja) * 2017-05-31 2018-12-06 富士電機株式会社 半導体装置
JP6988175B2 (ja) * 2017-06-09 2022-01-05 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP6815285B2 (ja) * 2017-06-26 2021-01-20 株式会社東芝 半導体装置
US10170559B1 (en) * 2017-06-29 2019-01-01 Alpha And Omega Semiconductor (Cayman) Ltd. Reverse conducting IGBT incorporating epitaxial layer field stop zone and fabrication method
JP6747593B2 (ja) * 2017-07-14 2020-08-26 富士電機株式会社 半導体装置
US10193000B1 (en) * 2017-07-31 2019-01-29 Ixys, Llc Fast recovery inverse diode
US10319669B2 (en) * 2017-08-31 2019-06-11 Ixys, Llc Packaged fast inverse diode component for PFC applications
US10424677B2 (en) * 2017-08-31 2019-09-24 Littelfuse, Inc. Charge carrier extraction inverse diode
JP6777244B2 (ja) * 2017-10-18 2020-10-28 富士電機株式会社 半導体装置
DE112018001627T5 (de) * 2017-11-15 2020-01-16 Fuji Electric Co., Ltd. Halbleitervorrichtung
CN110574146B (zh) * 2017-11-16 2024-02-13 富士电机株式会社 半导体装置
JP7052322B2 (ja) * 2017-11-28 2022-04-12 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP6881599B2 (ja) * 2017-12-06 2021-06-02 富士電機株式会社 半導体装置
WO2019116696A1 (ja) * 2017-12-14 2019-06-20 富士電機株式会社 半導体装置
JP6863479B2 (ja) * 2017-12-14 2021-04-21 富士電機株式会社 半導体装置およびその製造方法
CN109979935A (zh) * 2017-12-28 2019-07-05 富士电机株式会社 半导体装置及半导体装置的制造方法
JP7106881B2 (ja) * 2018-02-09 2022-07-27 株式会社デンソー 炭化珪素基板および炭化珪素半導体装置
JP7095303B2 (ja) * 2018-02-14 2022-07-05 富士電機株式会社 半導体装置
JP6947281B2 (ja) * 2018-02-14 2021-10-13 富士電機株式会社 半導体装置
CN111052393B (zh) * 2018-02-14 2023-11-14 富士电机株式会社 半导体装置
JP7091693B2 (ja) * 2018-02-19 2022-06-28 富士電機株式会社 半導体装置
JP7124339B2 (ja) * 2018-02-28 2022-08-24 富士電機株式会社 半導体装置
JP7187787B2 (ja) * 2018-03-15 2022-12-13 富士電機株式会社 半導体装置
CN117936538A (zh) * 2018-03-15 2024-04-26 富士电机株式会社 半导体装置
JP7102808B2 (ja) * 2018-03-15 2022-07-20 富士電機株式会社 半導体装置
JP7131003B2 (ja) * 2018-03-16 2022-09-06 富士電機株式会社 半導体装置
DE112019000094T5 (de) * 2018-03-19 2020-09-24 Fuji Electric Co., Ltd. Halbleitervorrichtung und verfahren zum herstellen einerhalbleitervorrichtung
JP6958732B2 (ja) * 2018-05-10 2021-11-02 富士電機株式会社 半導体装置の製造方法
JP7181520B2 (ja) * 2018-06-25 2022-12-01 国立研究開発法人産業技術総合研究所 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP6964566B2 (ja) * 2018-08-17 2021-11-10 三菱電機株式会社 半導体装置およびその製造方法
JP7230434B2 (ja) * 2018-10-30 2023-03-01 富士電機株式会社 半導体装置の製造方法
JP7268330B2 (ja) * 2018-11-05 2023-05-08 富士電機株式会社 半導体装置および製造方法
JP7263740B2 (ja) * 2018-11-06 2023-04-25 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232332A (ja) * 1996-02-27 1997-09-05 Fuji Electric Co Ltd 半導体装置
JP2000223720A (ja) * 1999-01-29 2000-08-11 Meidensha Corp 半導体素子およびライフタイム制御方法
US20080001257A1 (en) * 2006-06-30 2008-01-03 Infineon Technologies Austria Ag Semiconductor device with a field stop zone
JP2008211148A (ja) * 2007-02-28 2008-09-11 Fuji Electric Device Technology Co Ltd 半導体装置およびその製造方法
WO2013141141A1 (ja) * 2012-03-19 2013-09-26 富士電機株式会社 半導体装置の製造方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11335772B2 (en) 2015-06-17 2022-05-17 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US10756182B2 (en) 2015-06-17 2020-08-25 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US10304928B2 (en) 2015-06-17 2019-05-28 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US10825904B2 (en) 2017-01-17 2020-11-03 Fuji Electric Co., Ltd. Semiconductor device
US11984482B2 (en) 2017-01-17 2024-05-14 Fuji Electric Co., Ltd. Semiconductor device
JPWO2019181852A1 (ja) * 2018-03-19 2020-10-01 富士電機株式会社 半導体装置および半導体装置の製造方法
US11824095B2 (en) 2018-03-19 2023-11-21 Fuji Electric Co., Ltd. Semiconductor device and semiconductor device manufacturing method
WO2019181852A1 (ja) * 2018-03-19 2019-09-26 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2021073733A (ja) * 2018-03-19 2021-05-13 富士電機株式会社 半導体装置および半導体装置の製造方法
US11239324B2 (en) 2018-03-19 2022-02-01 Fuji Electric Co., Ltd. Semiconductor device and semiconductor device manufacturing method
JP7024896B2 (ja) 2018-03-19 2022-02-24 富士電機株式会社 半導体装置および半導体装置の製造方法
JPWO2020100995A1 (ja) * 2018-11-16 2021-05-20 富士電機株式会社 半導体装置および製造方法
WO2020100995A1 (ja) * 2018-11-16 2020-05-22 富士電機株式会社 半導体装置および製造方法
JP7099541B2 (ja) 2018-11-16 2022-07-12 富士電機株式会社 半導体装置および製造方法
US11715771B2 (en) 2018-11-16 2023-08-01 Fuji Electric Co., Ltd. Semiconductor device and manufacturing method
US11901419B2 (en) 2019-10-11 2024-02-13 Fuji Electric Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
JPWO2021177422A1 (ja) * 2020-03-04 2021-09-10
JP7323049B2 (ja) 2020-03-04 2023-08-08 富士電機株式会社 半導体装置および半導体装置を備えた電力変換装置
WO2021177422A1 (ja) * 2020-03-04 2021-09-10 富士電機株式会社 半導体装置、半導体装置の製造方法および半導体装置を備えた電力変換装置

Also Published As

Publication number Publication date
US20230275129A1 (en) 2023-08-31
JP2018125537A (ja) 2018-08-09
JP6508372B2 (ja) 2019-05-08
US10923570B2 (en) 2021-02-16
US20210159317A1 (en) 2021-05-27
JP6319453B2 (ja) 2018-05-09
US10312331B2 (en) 2019-06-04
JPWO2016051973A1 (ja) 2017-07-20
US20160276446A1 (en) 2016-09-22
US11646350B2 (en) 2023-05-09
CN105814694B (zh) 2019-03-08
DE112015000206T5 (de) 2016-08-25
US20190288078A1 (en) 2019-09-19
CN105814694A (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
JP6508372B2 (ja) 半導体装置および半導体装置の製造方法
JP6642609B2 (ja) 半導体装置および半導体装置の製造方法
CN107408581B (zh) 半导体装置及半导体装置的制造方法
US10629678B2 (en) Semiconductor device and method of manufacturing semiconductor device
CN106887385B (zh) 半导体装置的制造方法
JP2013074181A (ja) 半導体装置とその製造方法
US9887190B2 (en) Semiconductor device and method for manufacturing the same
JP6661575B2 (ja) 半導体装置およびその製造方法
TWI553714B (zh) 半導體裝置之製造方法
JP7361634B2 (ja) 半導体装置及び半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847234

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015000206

Country of ref document: DE

Ref document number: 1120150002065

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2016551621

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15847234

Country of ref document: EP

Kind code of ref document: A1