JP6787690B2 - 高速ダイオード及びその製造方法 - Google Patents

高速ダイオード及びその製造方法 Download PDF

Info

Publication number
JP6787690B2
JP6787690B2 JP2016100861A JP2016100861A JP6787690B2 JP 6787690 B2 JP6787690 B2 JP 6787690B2 JP 2016100861 A JP2016100861 A JP 2016100861A JP 2016100861 A JP2016100861 A JP 2016100861A JP 6787690 B2 JP6787690 B2 JP 6787690B2
Authority
JP
Japan
Prior art keywords
type semiconductor
semiconductor layer
concentration
mosfet
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016100861A
Other languages
English (en)
Other versions
JP2017208490A (ja
Inventor
高岡 潤
潤 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2016100861A priority Critical patent/JP6787690B2/ja
Priority to US15/597,556 priority patent/US10249751B2/en
Publication of JP2017208490A publication Critical patent/JP2017208490A/ja
Application granted granted Critical
Publication of JP6787690B2 publication Critical patent/JP6787690B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66128Planar diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • H01L29/7805Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode in antiparallel, e.g. freewheel diode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Description

この発明は、半導体装置およびその製造方法に関し、特に、高速ダイオード(ファーストリカバリーダイオード(FRD))と称される逆回復時間の短いダイオードおよびその製造方法に関する。
ファーストリカバリーダイオードが公知であり、高周波電源の整流等に活用されている。従来のファーストリカバリーダイオードの中には、スイッチング時の逆回復時間trr(Reverse Recovery Time)を短くするために、電子線照射によるライフタイムキラーの導入により、優れたオン,オフ特性を実現しているものがある。(たとえば特許文献1)
特開2005−183605号公報
図15は、モータ駆動装置のブロック図(一部に回路図を含む)である。
モータ駆動装置500は、ホールコンパレータ511と、ロジック部512と、ドライバ部513と、三角波発振器514と、PWMコンパレータ515と、回転速度検出部516とを集積化して成る半導体装置である。なお、モータ駆動装置500には、その駆動対象であるモータ502(たとえば、三相全波モータ)と、モータ502を構成する各相(U相、V相、W相)のコイルに各々付加されたホールセンサ503U、503V、503Wとが外部接続されている。
ホールコンパレータ511は、ホールセンサ503U、503V、503Wから各々入力される正弦波形状の各相ホール信号(+/−)を互いに比較して矩形波形状の各相出力信号を生成し、これをロジック部512に送出する手段である。
ロジック部512は、モータ502の各相駆動信号UH、UL、VH、VL、WH、WLを生成し、これをドライバ部513に送出する手段である。また、ロジック部512には、ホールコンパレータ511の各相出力信号に基づいて、回転速度信号RV(モータ502の回転速度を示す信号)を生成する機能や、PWMコンパレータ515で生成されるPWM信号に基づいて、モータ502の回転速度制御を行う機能が具備されている。
ドライバ部513は、モータ502を構成する各相コイルに所望の駆動電流IU、IV、IWを供給する手段であり、スイッチング素子として、PチャネルIGBT P1〜P3と、NチャネルIGBT N1〜N3とを有して成る。IGBT P1〜P3のエミッタは、いずれも電源ラインに接続されており、IGBT N1〜N3のエミッタは、いずれも接地ラインに接続されている。IGBT P1〜P3のコレクタとIGBT N1〜N3のコレクタは、相毎に共通接続されており、その接続ノードは、モータ502を構成する各相コイルの一端に接続されている。また、IGBT P1〜P3およびN1〜N3には、それぞれ、FRD(ファストリカバリーダイオード)Di1〜Di6が逆方向に接続されている。モータ502を構成する各相コイルの他端は、互いに共通接続されている。IGBT P1、N1、P2、N2、P3、N3のゲートには、ロジック部512から各相の駆動信号(UH、UL、VH、VL、WH、WL)が印加されている。
三角波発振器514は、例えば、キャパシタを充放電させることで、所望の三角波電圧V2を生成し、これをPWMコンパレータ515の反転入力端(−)に印加する手段である。なお、三角波発振器514は、回転速度検出部516からの制御信号CTRLに基づいて、例えば、キャパシタの容量や充放電時の電流量を変化させることにより、三角波電圧V2の発振周波数を可変制御する機能を具備している。
PWMコンパレータ515は、非反転入力端(+)に印加される速度指令電圧V1と、反転入力端(−)に印加される三角波電圧V2を比較し、ドライバ部513を構成するスイッチ素子のオン期間をチョッピングするためのPWM信号を生成する手段である。なお、速度指令電圧V1が三角波電圧V2よりも高ければ、PWM信号はハイレベルとなり、逆に、速度指令電圧V1が三角波電圧V2よりも低ければ、PWM信号はローレベルとなる。また、速度指令電圧V1は、所望の回転速度に応じてその電圧値が可変制御される電圧信号であり、モータ502の回転速度を上げるときには、速度指令電圧V1が高く設定され、モータ502の回転速度を下げるときには、速度指令電圧V1が低く設定される。
回転速度検出部516は、ロジック部512から入力される回転速度信号RVに基づいて、モータ502の回転速度を検出し、その検出結果に応じた制御信号CTRLを三角波発振器514に送出する手段である。
近年、電気自動車(EV:Electric Vehicle)、ハイブリッド電気自動車(HEV:Hybrid Electric Vehicle)の高出力化に伴い、各スイッチング素子は大電力下で用いられることが多く、たとえば数十A〜数百Aの電流能力が求められる。
従来、このような高出力用途の半導体素子では、通常、チップ面積を増大することによって対応してきた。
一方、特にEVやHEVに用いられるモータを駆動するためのインバータ回路では、高い耐環境性と、高い耐振動性はもちろんのこと、大幅な小型化が求められるため、従来のようにチップ面積を単純に増大させることができないという事情がある。
このような用途においては、たとえばFZウエハを用いたウエハ薄化技術により作成された薄型・高効率のIGBT、FRDが用いられている。このような薄型ウエハを用いたIGBT、FRDでは、良好なVf特性が得られ、少ないチップ面積でも大きな電流を効率よく流すことができる。
さらに、このような薄型ウエハを用いたファーストリカバリーダイオードは、スイッチング時に生じる逆回復時間trrの短縮(即ち、trrの高速化)と、サージ電圧(スイッチング逆電圧Vr)に起因するスイッチングノイズの低減が、市場からの要求として高く、これらを満足するものが望まれている。
前者の逆回復時間trrの短縮要求に対しては、たとえば上記特許文献1に開示されているように、電子線照射によりデバイス全面のキャリアの再結合時間を高速化することで、改善できることが確認されている。
しかし、後者のサージ電圧Vrの低減に対しては、未だ十分な効果のある構成については実現されていないのが現状である。
また、ノイズ発生は少数キャリア分布が支配的ではあるが、動作時の空乏層の状態にも影響を受ける。小チップで特性をよくするためにはウエハを薄くする必要があるが、厚みが薄い状態だと、逆回復動作時に耐圧を出すときに裏面に空乏層が当たるのが早くなってしまう(空乏層は表面から広がる)。
空乏層が裏面に当たるが早いとサージの一因となるため薄チップだとサージが起こりやすくなる。(空乏層が裏面に当たるとキャリアの掃出しが早くなってしまう。)
そのため、上記のようにダイオードをEV、HEVのインバータ回路に適用する場合、600V〜1200V系の耐圧素子が要求される。この場合、ウエハ厚が150μm以下であると、空乏層に起因するサージ電圧が問題となる。また、600V耐圧を得るためには、50μm以上であることが望ましい。
この発明は、このような背景のもとになされたもので、高速ダイオード(ファーストリカバリーダイオード)の低電流時の電圧ノイズを低減することを目的とする。
また、この発明は、低電流時の電圧ノイズが低減された高速ダイオード(ファーストリカバリーダイオード)の製造方法を提供することを目的とする。
この発明の一実施形態に係る高速ダイオードは、n型半導体層と、前記n型半導体層の上に積層されたp型半導体層とを含み、前記n型半導体層と前記p型半導体層との境界部においてpn接合が形成されており、前記p型半導体層の上面から前記n型半導体層の底面に向かって、出現頻度が次第に小さくなるように結晶欠陥が形成されている。
この発明の一実施形態に係る高速ダイオードでは、前記n型半導体層は、高濃度n型半導体基板と、前記高濃度n型半導体基板の上面にエピタキシャル成長により積層された低濃度n型半導体層とを含み、前記pn接合は、前記低濃度n型半導体層と前記p型半導体層との境界部において形成されていてもよい。
この発明の一実施形態に係る高速ダイオードでは、前記高濃度n型半導体基板の下面には、カソード電極が接続されており、前記p型半導体層の上面には、アノード電極が接続されていてもよい。
この発明の一実施形態に係る高速ダイオードの製造方法は、pn接合が形成された半導体ウエハを準備する工程と、前記pn接合が形成された位置上の半導体ウエハ表面から所定の加速電圧によって前記pn接合部に向けて電子線を照射する工程とを有し、前記電子線を照射する工程において、前記電子線の出力部と前記電子線の照射を受ける前記半導体ウエハ表面との間に所定のアブソーバを介在させ、前記電子線の照射を受ける前記半導体ウエハに対して、ウエハ上面からの距離が深くなるに従って相対線量が少なくなるように電子線を照射する工程、を含む。
この発明の一実施形態に係る高速ダイオードの製造方法では、前記所定のアブソーバは、加工対象とは別の半導体ウエハであってもよい。
この発明によれば、スイッチング時に生じる逆回復時間trrの短縮が図れ、かつ、サージ電圧の低減を図って低電流時の電圧ノイズを低減した、市場要求に応えられる高性能な高速ダイオードを提供することができる。
また、この発明によれば、上記の高速ダイオードを製造するための簡易な製造方法を提供することができ、産業界の発展に寄与し得る。
図1は、本発明の一実施形態に係るpnダイオードの模式的な平面図である。 図2は、図1のII−II切断線における断面図である。 図3は、前記pnダイオードの製造方法を示す図である。 図4は、半導体ウエハに与えられる電子線の相対線量の変化を示すグラフである。 図5は、pn接合が形成された半導体の低電流時の正孔濃度分布を示すグラフである。 図6は、半導体層内(デバイス内)におけるキャリアの再結合時間の縦方向分布を示すグラフである。 図7は、スイッチング時の逆電圧Vrの波形を示すグラフである。 図8は、スイッチング時の逆回復時間trrの波形を示すグラフである。 図9は、高速ダイオードの順電圧Vf特性を示すグラフである。 図10は、IGBTおよび前記pnダイオードを含む半導体パッケージの模式的な平面図である。 図11は、図10のXI-XI切断線における断面図である。 図12は、三相インバータ回路を示す電気回路図である。 図13は、図12のU相用モジュールの外観を示す模式的な斜視図である。 図14は、主として、モジュールの電源端子に接続された外部配線と、それに接続されたスナバ回路とを示す平面図である。 図15は、モータ駆動装置のブロック図(一部に回路図を含む)である。
以下には、図面を参照して、この発明の実施形態について具体的に説明をする。
図1は、本発明の一実施形態に係るpnダイオード1の模式的な平面図である。図2は、図1のII−II切断線における断面図である。
pnダイオード1は、たとえば、平面視正方形、平面視長方形のチップ状である。そのチップサイズは、たとえば、1.0mm×1.0mm〜20mm×20mmであってもよい。pnダイオード1は、アクティブ領域201と、アクティブ領域201を取り囲む外周領域202と、外周領域202を取り囲むスクライブ領域203とを含む。表面保護膜204(図1のハッチング部分)は、アクティブ領域201および外周領域202を覆う一方、スクライブ領域203を露出させるように形成されている。また、表面保護膜204には、後述するアノード電極11の一部をパッドとして露出させる開口205が形成されている。
pnダイオード1は、半導体層2を含む。半導体層2は、n型領域3およびn型領域4を含む。半導体層2は、ベース基板としてのn型領域3上に、n型領域4をエピタキシャル成長させることによって構成されていてもよいし、いわゆるFZウエハを用いてもよい。
アクティブ領域201において、半導体層2には、p型領域5が形成されている。p型領域5は、n型領域4の表面部に選択的に形成された不純物拡散層であってもよい。これにより、半導体層2には、p型領域5とn型領域4との間にpn接合が形成されている。
外周領域202においてn型領域4の表面部には、p型ウェル10およびp型FLR(Field Limiting Ring)17が形成されている。p型ウェル10は、p型領域5の径よりも大きい外径を有する環状に形成されており、p型領域5の周縁部9を全体にわたって下方から覆うように配置されている、また、p型ウェル10の外周縁は、p型領域5の外周縁よりも外側に配置されている。
p型FLR17は、p型ウェル10を取り囲むように複数形成されている。この実施形態では、p型FLR17は、p型ウェル10に近い側から遠ざかる順に4つのp型FLR17A〜17Dを含んでいる。互いに隣り合うp型FLR17の間隔W1〜W4(最も内側のp型FLR17についてはp型ウェル10との間隔)は、p型ウェル10に近い側から遠ざかる順に広くなっている。たとえば、間隔W1=15μm、間隔W2=17μm、間隔W3=19μmおよび間隔W4=23μm程度であってもよい。
また、外周領域202においてn型領域4の表面部にはさらに、n型チャネルストップ領域18が形成されている。n型チャネルストップ領域18は、外周領域202から半導体層2の端面19に至るように形成されていてもよい。
半導体層2の表面6には、フィールド絶縁膜7が形成されている。フィールド絶縁膜7は、p型領域5を選択的に露出させるコンタクト孔8を有している。p型領域5は、コンタクト孔8の内方領域全体に形成され、さらにコンタクト孔8の外側に跨るように延びている。これにより、p型領域5の周縁部9はフィールド絶縁膜7に覆われている。また、コンタクト孔8は、たとえば、その開口端から半導体層2の表面6に向かって径が狭まるテーパ状の側面を有していてもよい。
また、フィールド絶縁膜7は、p型FLR17を選択的に露出させるコンタクト孔38と、n型チャネルストップ領域18を選択的に露出させる外周除去領域39とを有している。
半導体層2の表面6上には、電極膜40が選択的に形成されている。電極膜40は、アノード電極11、フィールドプレート58およびEQR(EQui−potential Ring:等電位ポテンシャルリング)電極59を含む。
アノード電極11は、フィールド絶縁膜7のコンタクト孔8内でp型領域5に接続されている。また、アノード電極11は、コンタクト孔8からフィールド絶縁膜7上に乗り上がり、フィールド絶縁膜7を挟んでp型領域5の周縁部9およびp型ウェル10に対向するオーバーラップ部12を有している。オーバーラップ部12の外周縁の位置は、p型領域5の外周縁とp型ウェル10の外周縁との間であってもよい。
フィールドプレート58は、各p型FLR17A〜17Dに一つずつ形成されている。各フィールドプレート58は、フィールド絶縁膜7のコンタクト孔38内でp型FLR17A〜17Dに接続されている。最も外側でp型FLR17Dに接続されたフィールドプレート58は、フィールド絶縁膜7上において端面19側に引き出された引き出し部60を有している。引き出し部60の長さは、たとえば、50μm程度であってもよい。
EQR電極59は、フィールド絶縁膜7の外周除去領域39内でn型チャネルストップ領域18に接続されている。また、EQR電極59の内周縁と最も外側のフィールドプレート58の外周縁との距離L(絶縁距離)は、たとえば、30μm〜60μmであってもよい。
そして、表面保護膜204は、電極膜40を覆うように形成されている。
半導体層2の裏面13上には、カソード電極14が形成されている。カソード電極14は、半導体層2の裏面13においてn型領域3に接続されている。
pnダイオード1の各部の詳細について以下に説明を加える。
半導体層2は、たとえば、Siを含む半導体材料からなり、具体的には、SiまたはSiCからなっていてもよい。
型領域3、n型領域4およびn型チャネルストップ領域18は、n型不純物を含有する半導体領域である。含有されるn型不純物としては、たとえば、N(窒素)、P(リン)、As(ひ素)等を使用できる(以下、n型不純物というときには同じ)。また、n型領域3の不純物濃度は、たとえば1×1017cm−3〜1×1022cm−3であり、n型領域4の不純物濃度は、たとえば1×1013cm−3〜1×1015cm−3であり、n型チャネルストップ領域18の不純物濃度は、たとえば1×1017cm−3〜1×1022cm−3であってもよい。また、n型領域3の厚さは、たとえば0.3μm〜600μmであり、n型領域4の厚さは、たとえば30μm〜300μmであってもよい。また、n型チャネルストップ領域18の表面6からの深さは、たとえば2μm〜3μmであってもよい。
p型領域5、p型ウェル10およびp型FLR17は、p型不純物を含有する半導体領域である。含有されるp型不純物としては、たとえば、B(ホウ素)、Al(アルミニウム)、Ar(アルゴン)等を使用できる(以下、p型不純物というときには同じ)。また、p型領域5、p型ウェル10およびp型FLR17の不純物濃度は、たとえば1×1015cm−3〜1×1020cm−3であるが、この実施形態では、この範囲内でp型領域5の不純物濃度が、p型ウェル10およびp型FLR17の不純物濃度よりも低くなっている。また、p型領域5の表面6からの深さは、p型ウェル10およびp型FLR17よりも浅く、たとえば1μm〜3μmである。一方、p型ウェル10およびp型FLR17の表面6からの深さは、互いに同じであり、たとえば6μm〜10μmであってもよい。
フィールド絶縁膜7は、たとえば、SiO(酸化シリコン)で構成することができ、たとえば、熱酸化やCVD(化学的気相成長)によって形成できる。フィールド絶縁膜7の厚さは、たとえば0.5μm〜5.0μmであってもよい。
表面保護膜204は、たとえば、ポリイミドで構成することができ、たとえば、スピンコート法によって形成できる。
この実施形態に係るpnダイオード1の特徴は、p型領域5の上面からn型領域4の底面に向かって、出現頻度が次第に小さくなるように結晶欠陥が形成されていることである。結晶欠陥は、原子、分子レベルの構造欠陥であり、図2において図示することは困難であるが、図2では、模式的に、n型領域4に、その上方から下方に向かって数が多い側から少ない側へと順次変化する「×」を付し、結晶欠陥がp型領域5とn型領域4とのpn接合部50側で多く形成されており、n型領域4の底面に向かうに従って、結晶欠陥の形成割合が少なくなっていることが示されている。この結晶欠陥は、アクティブ領域201だけでなく、外周領域202にも形成されている。図2では、明瞭化のためp型FLR17の直下の結晶欠陥のみを示しているが、結晶欠陥は、外周領域202のその他の部分に形成されていてもよい。
このように、この実施形態に係るpnダイオード1の特徴は、n型領域4内において、pn接合部50からn型領域4の底面に向かって、結晶欠陥が、大から小へと傾斜した分布にしたことである。そして、それによって、n型領域4内におけるキャリア再結合時間の分布が、表面側(pn接合部50側)で早く、裏面側(n型領域4の底部側)で遅くなるように調整されている。(後述する図6を参照)
次に、この実施形態に係るpnダイオード1の製造方法について、その要所となる作製の仕方を説明する。
(1)半導体ウエハの準備
図3(A)に示すように、まず、pnダイオード1を作製するための半導体ウエハ20を準備する。半導体ウエハ20としては、たとえば、FZ法により製造されたn型のシリコン単結晶の半導体ウエハが準備される。つまり、半導体ウエハ20が準備された段階では、その全体がn型領域4となっている。
次に、半導体ウエハ20の表面側に、p型領域5等の表面側素子構造部を形成する。図3(A)では、明瞭化のためアクティブ領域201のp型領域5のみ示しているが、表面側素子構造部の形成工程は、外周領域202のp型FLR17等の不純物領域等を形成する工程を含んでいてもよい。
次に、半導体ウエハ20の表面側に、接着テープ等を介して支持基板(図示せず)を接合する。接着テープは、たとえば、PET製のテープ基材の両面に、加熱によって発泡することにより剥離可能な発泡テープ型シートよりなる発泡剤部と、UV光の照射で接着剤が硬化することにより剥離可能な耐熱性のあるUVテープ型シートよりなるUVテープ層が、それぞれ設けられた構成となっていてもよい。支持基板には、接着テープのUVテープ層が貼り付けられる。
次に、支持基板を接合した状態で、半導体ウエハ20の裏面をバックグラインドやウエットエッチング等により研削し、表面側素子構造部を含む半導体ウエハ20全体の厚さを所望の厚さにする。
次に、半導体ウエハ20の裏面に、例えばn型不純物であるリンなどを注入する。その後、半導体ウエハ20の裏面にたとえばレーザーを照射してアニールを行う。これにより、カソード層となるn型領域3を形成する。
ついで、半導体ウエハ20の裏面の全面に、例えばアルミニウム、チタン、ニッケルおよび金などの複数の金属膜を成膜し、カソード電極14なる裏面電極を形成する。
(2)電子線照射プロセス
図3(B)は、上記の準備した半導体ウエハ20(図3(A)を参照)に対して、電子線を照射するプロセスを図解的に示す図である。
電子線の照射は、半導体ウエハ20に対し、その表面側(p型領域5が形成された側)から照射する。
この電子線照射時においては、電子線の加速電圧を低く設定し、かつ、電子線の出力部と半導体ウエハ20との間に、たとえばシリコンウエハにより構成されたアブソーバ30を挿入して、電子線照射を行う。
このとき、電子線照射により半導体ウエハ20に達する電子線の相対線量が、図4に示す相対線量となるように、電子線照射時の加速電圧およびアブソーバ30の厚み等を調整する。
電子線照射により半導体ウエハ20内に進入した電子は、半導体ウエハ20内を一定の距離透過して、そのエネルギーを失うが、透過の際に半導体ウエハ20の結晶に欠陥を形成する。半導体ウエハ20に与えられる電子線の相対線量が、図4に示すように、半導体ウエハ20の上面からの距離が深くなるほど電子線の相対線量が少なくなるようにすれば、半導体ウエハ20の上面ほど多くの電子が進入し、半導体ウエハ20の上面からの距離が深くなるほど電子の進入が少なくなる。そして進入した電子により結晶構造が壊されて結晶欠陥が生じるから、半導体ウエハ20の中の結晶欠陥は、半導体ウエハ20の上面において出現頻度が大きく、半導体ウエハ20の上面から底面に向かうに従って次第に出現頻度が小さくなる構造が形成される。
このように半導体ウエハ20において、p型領域5の上面からn型領域4の底面に向かって、出現頻度が次第に小さくなるように結晶欠陥を形成した場合、低電流時の正孔濃度分布は図5に示す分布となる。低電流とは、たとえば動作時の順方向電流密度が、1A/mm以下であることを示す。
図5は、pn接合が形成された半導体の低電流時の正孔濃度分布を示すグラフであり、縦軸は正孔濃度、横軸は半導体表面からの距離を表わしている。上述のように、図4に示す電子線相対線量で電子線照射を行った半導体は、図5の実線L1で示すように、半導体表面側の正孔が少なく、表面からの距離が離れると正孔が増加するという正孔濃度分布となる。
なお、図5において、破線L2は、電子線照射プロセスを行わなかった半導体の低電流時の正孔濃度分布であり、1点鎖線L3は、アブソーバ30を用いることなく電子線照射を行った半導体の低電流時の正孔濃度分布を、参考として示している。
この実施形態にかかる半導体ウエハ20は、図4に示す相対線量の電子線照射を受けているため、低電流時の正孔濃度分布が、図4の実線L1で示す正孔濃度分布となる。
そして、かかる正孔濃度分布であれば、図6に示すように、半導体内における縦方向のキャリア再結合時間を表面からの距離によって変化させ、表面側を早く、裏面側を遅くすることができる。
図6は、半導体層内(デバイス内)におけるキャリアの再結合時間の縦方向分布を示すグラフである。縦軸は正孔のライフタイム再結合時間を示しており、下から上に向かって再結合時間が遅くなる。また、横軸は表面からの距離(半導体層内での深さ)を示している。実線L1は、この実施形態にかかる半導体素子の特性であり、破線L2は電子線照射を行わなかった場合の特性であり、1点鎖線L3は均一な電子線照射を行った場合の特性を示している。
電子線照射を図4に示すように、相対線量が半導体の上面からの距離によって減少するように照射した場合、図6の実線L1で示すように、正孔ライフタイム再結合時間は、表面側で早く、表面から遠ざかるほど遅くなるという特性を示す。
その結果、図7に示すように、スイッチング時の逆電圧Vrに起因する電圧ノイズを低減することができる。
図7は、スイッチング時の逆電圧Vr波形を示しており、実線L1は、この実施形態にかかるpnダイオード1の特性であり、破線L2は電子線照射プロセスを行わなかった従来の高速ダイオードの逆電圧Vr波形であり、1点鎖線L3は、均一な電子線照射を行った場合の高速ダイオードの逆電圧Vr波形を示している。この波形図から明らかなように、この実施形態に係るpnダイオード1では、著しいサージ電圧低減が実現されている。
図8は、この実施形態にかかるpnダイオード1において、逆回復時間trrの短縮が実現されていることを示すグラフである。
図8において、縦軸は電圧変化、横軸は時間を示している。実線L1は、この実施形態にかかるpnダイオード1のスイッチング逆回復時間trrの波形であり、破線L2は、従来の高速ダイオードのtrrの波形であり、1点鎖線L3は、均一な電子線照射を行った場合の高速ダイオードのtrrの波形を示している。
図9は、さらに、高速ダイオードの順電圧Vf特性を示す図であり、実線L1は、この実施形態にかかるpnダイオード1、破線L2は、従来の高速ダイオード、1点鎖線L3は、均一な電子線照射を行った場合の高速ダイオードの、それぞれ順電圧Vf特性を示している。
図9に示すように、半導体層中に、出現頻度が変化する結晶欠陥を作っても、高速ダイオードにおける順電圧Vf特性は影響を受けることがないことが証明されている。
<パッケージの説明>
図10は、IGBTおよび前記pnダイオードを含む半導体パッケージの模式的な平面図である。図11は、図10のXI-XI切断線における断面図である。
次に、前述のpnダイオード1およびIGBT21を含むパッケージの構成を、図10および図11を参照して説明する。
半導体パッケージ81は、両面放熱タイプのパッケージであって、樹脂パッケージ82の上面および下面の両面から熱を逃がすことができる。
半導体パッケージ81は、下側ヒートスプレッダ83と、上側ヒートスプレッダ84と、下側ヒートスプレッダ83および上側ヒートスプレッダ84で挟まれたIGBT21およびpnダイオード1とを含む。IGBT21としては、一般的なものを使用できる。
IGBT21およびpnダイオード1は、それぞれ、カソード電極14(図示せず)およびコレクタ電極37を半田85で下側ヒートスプレッダ83に接合することによって、下側ヒートスプレッダ83上に設けられている。IGBT21のエミッタ電極35およびpnダイオード1のアノード電極11(図示せず)と上側ヒートスプレッダ84との間には、たとえばCuからなる導電スペーサ86が設けられている。エミッタ電極35およびアノード電極11と導電スペーサ86とは半田87で接合され、導電スペーサ86と上側ヒートスプレッダ84とは半田88で接合されている。また、IGBT21は、ボンディングワイヤ89によって複数のリード90に接続されている。
樹脂パッケージ82は、下側ヒートスプレッダ83、上側ヒートスプレッダ84および複数のリード90の一部を端子91,92,93として露出させるようにこれらを覆っている。また、下側ヒートスプレッダ83の一表面は、樹脂パッケージ82の下面94から放熱面95として露出している。一方、上側ヒートスプレッダ84の一表面は、樹脂パッケージ82の上面96から放熱面97として露出している。
<モジュールの説明>
次に、前述のpnダイオード1を用いたモジュールの構成について、その一例を示す。
図12は、三相インバータ回路101を示す電気回路図である。
この三相インバータ回路101は、三相ブラシレスモータ108(以下、「電動モータ」という)を駆動するための回路である。電動モータ108は、U相界磁巻線108UとV相界磁巻線108VとW相界磁巻線108Wを有するステータと、永久磁石が固定されたロータとを備えている。
三相インバータ回路101は、U相用モジュール103と、V相用モジュール104と、W相用モジュール105とを含む。U相用モジュール103は、第1電源端子(P端子)131と、第2電源端子(N端子)132と、出力端子(OUT端子)133と、2つのゲート端子134,137と、2つのソース端子135,138と、2つのソースセンス端子136,139とを備えている。
V相用モジュール104は、第1電源端子(P端子)141と、第2電源端子(N端子)142と、出力端子(OUT端子)143と、2つのゲート端子144,147と、2つのソース端子145,148と、2つのソースセンス端子146,149とを備えている。W相用モジュール105は、第1電源端子(P端子)151と、第2電源端子(N端子)152と、出力端子(OUT端子)153と、2つのゲート端子154,157と、2つのソース端子155,158と、2つのソースセンス端子156,159とを備えている。
各モジュール103,104,105の第1電源端子131,141,151は、外部配線を介して電源106(直流電源)の正極端子に接続されている。具体的には、U相用モジュール103の第1電源端子131は、第1外部配線161を介して、電源106の正極端子に接続されている。V相用モジュール104の第1電源端子141は、第2外部配線162を介して、第1外部配線161の中間部に接続されている。W相用モジュール105の第1電源端子151は、第3外部配線163を介して、第1外部配線161の中間部に接続されている。
各モジュール103,104,105の第2電源端子132,142,152は、外部配線を介して電源106の負極端子に接続されている。具体的には、U相用モジュール103の第2電源端子132は、第4外部配線164を介して、電源106の負極端子に接続されている。V相用モジュール104の第2電源端子142は、第5外部配線165を介して、第4外部配線164の中間部に接続されている。W相用モジュール105の第2電源端子152は、第6外部配線166を介して、第4外部配線164の中間部に接続されている。各外部配線161〜166には、それぞれインダクタンスが寄生している。
電源106には、平滑用コンデンサ107が並列に接続されている。各モジュール103,104,105の出力端子133,143,153は、それぞれ第7、第8および第9の外部配線167,168,169を介して電動モータ108のU相界磁巻線108U、V相界磁巻線108VおよびW相界磁巻線108Wに接続されている。各モジュール103,104,105のゲート端子134,137,144,147,154,157と、ソースセンス端子136,139,146,149、156,159には、図示しない制御ユニットが接続される。なお、各モジュール103,104,105のゲート端子134,137,144,147,154,157には、制御ユニットによって、それぞれ図示しないゲート抵抗を介してゲート駆動信号が供給される。
U相用モジュール103は、ハイサイドの第1のMOSFET111と、それに直列に接続されたローサイドの第2のMOSFET112とを含む。MOSFET111,112は、それぞれ第1のpnダイオード(ボディダイオード)111aおよび第2のpnダイオード112aを内蔵している。このpnダイオード111a,112aが、前述のpnダイオード1である。各pnダイオード111a,112aのアノードは対応するMOSFET111,112のソースに電気的に接続され、そのカソードは対応するMOSFET111,112のドレインに電気的に接続されている。また、MOSFET111,112は、それぞれ電流検出部111b,112bを備えている。
第1のMOSFET111のドレインは、接続金属部材171を介してU相用モジュール103の第1電源端子131に接続されている。第1のMOSFET111のソースは、接続金属部材172を介して、U相用モジュール103の出力端子133に接続されている。接続金属部材171,172には、それぞれインダクタンスL11,L12が寄生している。第1のMOSFET111のソースは、さらにU相用モジュール103のソース端子135に接続されている。電流検出部111bは、U相用モジュール103のソースセンス端子136に接続されている。第1のMOSFET111のゲートは、U相用モジュール103のゲート端子134に接続されている。
第2のMOSFET112のドレインは、接続金属部材173を介してU相用モジュール103の出力端子133に接続されている。第2のMOSFET112のソースは、接続金属部材174を介して、U相用モジュール103の第2電源端子132に接続されている。接続金属部材173,174には、それぞれインダクタンスL13,L14が寄生している。第2のMOSFET112のソースは、さらにU相用モジュール103のソース端子138に接続されている。電流検出部112bは、U相用モジュール103のソースセンス端子139に接続されている。第2のMOSFET112のゲートは、U相用モジュール103のゲート端子137に接続されている。
V相用モジュール104は、ハイサイドの第3のMOSFET113と、それに直列に接続されたローサイドの第4のMOSFET114とを含む。MOSFET113,114は、それぞれ第3および第4のpnダイオード(ボディダイオード)113a,114aを内蔵している。このpnダイオード113a,114aが、前述のpnダイオード1である。各pnダイオード113a,114aのアノードは対応するMOSFET113,114のソースに電気的に接続され、そのカソードは対応するMOSFET113,114のドレインに電気的に接続されている。また、MOSFET113,114は、それぞれ電流検出部113b,114bを備えている。
第3のMOSFET113のドレインは、接続金属部材175を介してV相用モジュール104の第1電源端子141に接続されている。第3のMOSFET113のソースは、接続金属部材176を介して、V相用モジュール104の出力端子143に接続されている。接続金属部材175,176には、それぞれインダクタンスL15,L16が寄生している。第3のMOSFET113のソースは、さらにV相用モジュール104のソース端子145に接続されている。電流検出部113bは、V相用モジュール104のソースセンス端子146に接続されている。第3のMOSFET113のゲートは、V相用モジュール104のゲート端子144に接続されている。
第4のMOSFET114のドレインは、接続金属部材177を介してV相用モジュール104の出力端子143に接続されている。第4のMOSFET114のソースは、接続金属部材178を介して、V相用モジュール104の第2電源端子142に接続されている。接続金属部材177,178には、それぞれインダクタンスL17,L18が寄生している。第4のMOSFET114のソースは、さらにV相用モジュール104のソース端子148に接続されている。電流検出部114bは、V相用モジュール104のソースセンス端子149に接続されている。第4のMOSFET114のゲートは、V相用モジュール104のゲート端子147に接続されている。
W相用モジュール105は、ハイサイドの第5のMOSFET115と、それに直列に接続されたローサイドの第6のMOSFET116とを含む。MOSFET115,116は、それぞれ第5および第6のpnダイオード(ボディダイオード)115a,116aを内蔵している。このpnダイオード115a,116aが、前述のpnダイオード1である。各pnダイオード115a,116aのアノードは対応するMOSFET115,116のソースに電気的に接続され、そのカソードは対応するMOSFET115,116のドレインに電気的に接続されている。また、MOSFET115,116は、それぞれ電流検出部115b,116bを備えている。
第5のMOSFET115のドレインは、接続金属部材179を介してW相用モジュール105の第1電源端子151に接続されている。第5のMOSFET115のソースは、接続金属部材180を介して、W相用モジュール105の出力端子153に接続されている。接続金属部材179,180には、それぞれインダクタンスL19,L20が寄生している。第5のMOSFET115のソースは、さらにW相用モジュール105のソース端子155に接続されている。電流検出部115bは、W相用モジュール105のソースセンス端子156に接続されている。第5のMOSFET115のゲートは、W相用モジュール105のゲート端子154に接続されている。
第6のMOSFET116のドレインは、接続金属部材181を介してW相用モジュール105の出力端子153に接続されている。第6のMOSFET116のソースは、接続金属部材182を介して、W相用モジュール105の第2電源端子152に接続されている。接続金属部材181,182には、それぞれインダクタンスL21,L22が寄生している。第6のMOSFET116のソースは、さらにW相用モジュール105のソース端子158に接続されている。電流検出部116bは、W相用モジュール105のソースセンス端子159に接続されている。第6のMOSFET116のゲートは、W相用モジュール105のゲート端子157に接続されている。
第1〜第6のMOSFET111〜116は、たとえば、化合物半導体の一例であるSiC(炭化シリコン)を半導体材料として用いたSiC−DMOSFET等のSiC−MOSFETである。
第1外部配線161におけるU相用モジュール103の第1電源端子131寄りの部分と、第4外部配線164におけるU相用モジュール103の第2電源端子132寄りの部分との間に、コンデンサ191からなるスナバ回路が接続されている。
第1外部配線161とコンデンサ191との接続点を接続点A1とする。第1外部配線161における電源106の正極端子と接続点A1との間部分にはインダクタンスL1aが寄生しており、第1外部配線161における接続点A1と第1電源端子131との間部分にはインダクタンスL1bが寄生している。第4外部配線164とコンデンサ191との接続点を接続点A4とする。第4外部配線164における電源106の負極端子と接続点A4との間部分にはインダクタンスL4aが寄生しており、第4外部配線164における接続点A4と第2電源端子132との間部分にはインダクタンスL4bが寄生している。
第2外部配線162におけるV相用モジュール104の第1電源端子141寄りの部分と、第5外部配線165におけるV相用モジュール104の第2電源端子142寄りの部分との間に、コンデンサ192からなるスナバ回路が接続されている。
第2外部配線162とコンデンサ192との接続点を接続点A2とする。第2外部配線162における接続点A2と第1電源端子141との間部分にはインダクタンスL2bが寄生しており、残りの部分にはインダクタンスL2aが寄生している。第5外部配線165とコンデンサ192との接続点を接続点A5とする。第5外部配線165における接続点A5と第2電源端子142との間部分にはインダクタンスL5bが寄生しており、残りの部分にはインダクタンスL5aが寄生している。
第3外部配線163におけるW相用モジュール105の第1電源端子151寄りの部分と、第6外部配線166におけるW相用モジュール105の第2電源端子152寄りの部分との間に、コンデンサ193からなるスナバ回路が接続されている。
第3外部配線162とコンデンサ192との接続点を接続点A3とする。第3外部配線163における接続点A3と第1電源端子151との間部分にはインダクタンスL3bが寄生しており、残りの部分にはインダクタンスL3aが寄生している。第6外部配線166とコンデンサ193との接続点を接続点A6とする。第6外部配線166における接続点A6と第2電源端子152との間部分にはインダクタンスL6bが寄生しており、残りの部分にはインダクタンスL6aが寄生している。コンデンサ(スナバ回路)191〜193は、サージ電圧を抑制するために設けられている。
図13は、図12のU相用モジュール103の外観を示す図解的な斜視図である。
U相用モジュール103は、放熱板121と、放熱板121に固定され、MOSFET111,112、各端子131〜139の基端等が固定された基板(図示略)と、放熱板121の一方の表面に固定され、基板を収容するケース122とを含む。ケース122は、平面視において略矩形に形成されている。モジュール103の出力端子133は、ケース122内において二股に分岐しており、2つの平板状の枝部を有している。各枝部の先端部133a,133bは、ケース122の上面を貫通して、ケース122の外側に露出している。これらの先端部133a,133bは、それぞれケース122上面の一端部の両側部において、ケース122の上面に沿った状態で配置されている。モジュール103の第1電源端子131および第2電源端子132は平板状であり、その先端部131a,132aは、ケース122の上面を貫通して、ケース122の外側に露出している。これらの先端部131a,132aは、それぞれケース122上面の他端部の両側部において、ケース122の上面に沿った状態で配置されている。
モジュール103の一方のゲート端子134、ソース端子135およびソースセンス端子136は、棒状であり、その先端部134a、135a、136aは、ケース122の上面を貫通して、ケース122の外方に突出している。これらの先端部134a、135a、136aは、それぞれケース122上面における第1電源端子131の先端部131aに隣接して配置されている。モジュール103の他方のゲート端子137、ソース端子138およびソースセンス端子139は、棒状であり、その先端部137a、138a、139aは、ケース122の上面を貫通して、ケース122外方に突出している。これらの先端部137a、138a、139aは、それぞれケース122上面における出力端子133の一方の先端部133bに隣接して配置されている。
V相用モジュール104およびW相用モジュール105の外観および構造も、U相用モジュール103の外観および構造と同様であるので、その説明を省略する。
図14は、主として、モジュール102,103,104の電源端子131,132,141,142,151,152に接続された外部配線と、それに接続されたスナバ回路とを示す平面図である。
各モジュール103,104,105は、冷却板301に取り付けられている。U相用モジュール103の出力端子133は、外部配線167を介して電動モータ108のU相界磁巻線108Uに接続されている。V相用モジュール104の出力端子143は、外部配線168を介して電動モータ108のV相界磁巻線108Vに接続されている。W相用モジュール105の出力端子153は、外部配線169を介して電動モータ108のW相界磁巻線108Wに接続されている。
U相用モジュール103の第1電源端子131には、バスバー161aの一端部がねじ止めされている。バスバー161aの他端部は、接続線161bを介して電源106の正極端子に接続されている。バスバー161aと接続線161bとによって、図12の第1外部配線161が構成されている。U相用モジュール103の第2電源端子131には、バスバー164aの一端部がねじ止めされている。バスバー164aの他端部は、接続線164bを介して電源106の負極端子に接続されている。バスバー164aと接続線164bとによって、図12の第4外部配線164が構成されている。電源106には、平滑用コンデンサ107が並列に接続されている。
V相用モジュール104の第1電源端子141には、バスバー162(図12の第2外部配線162に相当する)の一端部がねじ止めされている。バスバー162の他端部は、バスバー161aの中間部に連結されている。V相用モジュール104の第2電源端子142には、バスバー165(図12の第5外部配線165に相当する)の一端部がねじ止めされている。バスバー165の他端部は、バスバー164aの中間部に連結されている。
W相用モジュール105の第1電源端子151には、バスバー163(図12の第3外部配線163に相当する)の一端部がねじ止めされている。バスバー163の他端部は、バスバー161aの中間部に連結されている。W相用モジュール105の第2電源端子162には、バスバー166(図12の第6外部配線166に相当する)の一端部がねじ止めされている。バスバー166の他端部は、バスバー164aの中間部に連結されている。
バスバー161aにおける第1電源端子131寄りの部分と、バスバー164aにおける第2電源端子132寄りの部分との間に、コンデンサ191が接続されている。バスバー162における第1電源端子141寄りの部分と、バスバー165における第2電源端子142寄りの部分との間に、コンデンサ192が接続されている。バスバー163における第1電源端子151寄りの部分と、バスバー166における第2電源端子152寄りの部分との間に、コンデンサ193が接続されている。
各コンデンサ191,192,193の一端は、対応するバスバー161a,162,163における第1電源端子131,141,151側の一端(位置A)と、対応するバスバー161a,162,163における第1電源端子131,141,151の外端に最も近い位置(位置B)に対して第1電源端子131,141,151から遠ざかる方向に所定距離xだけ離れた位置(位置C)との間(A−C間の領域S)に接続されることが好ましい。
同様に、各コンデンサ191,192,193の他端は、対応するバスバー164a,165,166における第2電源端子132,142,152側の一端(位置A)と、対応するバスバー164a,165,166における第2電源端子132,142,152の外端に最も近い位置(位置B)に対して第2電源端子132,142,152から遠ざかる方向に所定距離xだけ離れた位置(位置C)との間(A−C間の領域S)に接続されることが好ましい。
前記所定距離xは、バスバー161a,162,163,164a,165,166における位置Bから位置Cまでの部分のインダクタンスが6.25(nH)以下となるような距離に設定されていることが好ましい。このようにxを設定すると、後述するように、MOSFETがターンオフしたときのスイッチング損失および当該MOSFETに印加されるサージ電圧をともに低減させることが可能となる。
なお、モジュール103の2つの電源端子131,132に接続された2つのバスバー161a,164aは、それらのインダクタンス成分が相殺されるように、平面視においてその中間部が互いに上下に重なるように配置されることが好ましい。同様に、モジュール104の2つの電源端子141,142に接続された2つのバスバー162,165は、平面視においてその中間部が互いに上下に重なるように配置されることが好ましい。同様に、モジュール105の2つの電源端子151,152に接続された2つのバスバー163,166は、平面視においてその中間部が互いに上下に重なるように配置されることが好ましい。
図12に戻り、MOSFET111〜116のうち、例えば、U相用モジュール103内のハイサイドのMOSFET111とV相用モジュール104内のローサイドのMOSFET114がオンされると、電源106の正極端子から、第1外部配線161、第1電源端子131、接続金属部材171、MOSFET111、接続金属部材172、出力端子133、第7外部配線167、電動モータ108のU相界磁巻線108UおよびV相界磁巻線108V、第8外部配線168、出力端子143、接続金属部材177、MOSFET114、接続金属部材178、第2電源端子142、第5外部配線165および第4外部配線164を経て電源106の負極端子へと電流が流れる。
この状態から、U相用モジュール103内のハイサイドのMOSFET111がターンオフすると、出力端子133、第7外部配線167、電動モータ108のU相界磁巻線108UおよびV相界磁巻線108V、第8外部配線168、出力端子143、接続金属部材177、MOSFET114、接続金属部材178、第2電源端子142、第5外部配線165、第4外部配線164における第5外部配線165との接続点と第2出力端子132との間部分、第2出力端子132、接続金属部材174、pnダイオード112aおよび接続金属部材173を含む閉回路を負荷電流が還流する。
この場合、MOSFET111のドレイン電流の電流変化率(di/dt)と、回路配線の所定の寄生インダクタンスLsによるサージ電圧(Ls・di/dt)が、MOSFET111に印加される。
スナバ回路191〜193が設けられていない場合には、MOSFET111に印加されるサージ電圧の発生原因となるインダクタンスLstは、第4外部配線164における第5配線165との接続点と電源106の負極端子との間のインダクタンス(L4aの一部)と、第1外部配線161のインダクタンス(L1a+L1b)と、接続金属部材171,172のインダクタンスL11,L12と、第4外部配線164における第5配線165との接続点と第2電源端子132との間部分のインダクタンス(L4aの一部とL4bとの和)と、接続金属部材173,174のインダクタンスL13,L14との和となる。
この実施形態では、スナバ回路191〜193が設けられているので、第4外部配線164における接続点A4と電源106の負極端子との間部分のインダクタンスL4aと、第1外部配線161における電源106の正極端子と接続点A1との間部分のインダクタンスL1aに蓄積されたエネルギーは、コンデンサ191によって吸収される。この結果、MOSFET111に印加されるサージ電圧の発生原因となるインダクタンスLsnは、第1外部配線161における接続点A1と第1電源端子131との間部分のインダクタンスL1bと、接続金属部材171,172,173,174のインダクタンスL11,L12,L13,L14と、第4外部配線164における接続点A4と第2電源端子131の間部分のインダクタンスL4bとの和となる。つまり、MOSFET111に印加されるサージ電圧の発生原因となるインダクタンスLsnは、スナバ回路191〜193が設けられてない場合のインダクタンスLstに比べて大幅に低減される。このため、MOSFET111に印加されるサージ電圧は、スナバ回路191〜193が設けられてない場合に比べて大幅に低減される。
MOSFET111とMOSFET114とがオンされている状態から、例えばV相用モジュール104内のローサイドのMOSFET114がターンオフされると、第1電源端子131、接続金属部材171、MOSFET111、接続金属部材172、出力端子133、第7外部配線167、電動モータ108のU相界磁巻線108UおよびV相界磁巻線108V、第8外部配線168、出力端子143、接続金属部材176、pnダイオード113a、接続金属部材175、第1電源端子141、第2外部配線162および第1外部配線161における第2外部配線162との接続点と第1電源端子131との間部分を含む閉回路を負荷電流が還流する。
この場合、MOSFET114のドレイン電流の電流変化率(di/dt)と、回路配線の所定の寄生インダクタンスLsによるサージ電圧(Ls・di/dt)が、MOSFET114に印加される。
スナバ回路191〜193が設けられていない場合には、MOSFET114に印加されるサージ電圧の発生原因となるインダクタンスLstは、第1外部配線161における電源106の正極端子と第2配線162との接続点との間のインダクタンス(L1aの一部)と、接続金属部材177,178のインダクタンスL17,L18と、第5外部配線165のインダクタンス(L5a+L5b)と、第4外部配線164における第5外部配線165との接続点と電源106の負極端子との間部分のインダクタンス(L4aの一部)と、第2外部配線部材162のインダクタンス(L2a+L2b)と、接続金属部材175,176のインダクタンスL15,L16との和となる。
この実施形態では、スナバ回路191〜193が設けられているので、第1外部配線161における電源106の正極端子と第2配線162との接続点との間部分のインダクタンス(L1aの一部)と、第5外部配線165における接続点A5と第4外部配線164との接続点との間部分のインダクタンスL5aと、第4外部配線164における第5外部配線165との接続点と電源106の負極端子との間部分のインダクタンス(L4aの一部)と、第2外部配線162における第1外部配線161との接続点と接続点A2との間部分のインダクタンスL2aに蓄積されたエネルギーは、コンデンサ192によって吸収される。この結果、MOSFET114に印加されるサージ電圧の発生原因となるインダクタンスLsnは、第2外部配線162における接続点A2と第1電源端子141との間部分のインダクタンスL2bと、接続金属部材175,176,177,178のインダクタンスL15,L16,L17,L18と、第5外部配線165における第2電源端子142と接続点A5との間部分のインダクタンスL5bとの和となる。つまり、MOSFET114に印加されるサージ電圧の発生原因となるインダクタンスLsnは、スナバ回路191〜193が設けられてない場合のインダクタンスLstに比べて大幅に低減される。このため、MOSFET114に印加されるサージ電圧は、スナバ回路191〜193が設けられてない場合に比べて大幅に低減される。
なお、MOSFET111とMOSFET114とがオンされている状態から、MOSFET111とMOSFET114の両方が同時にターンオフされた場合には、第4外部配線164、第2電源端子132、接続金属部材174、pnダイオード112a、接続金属部材173、出力端子133、第7外部配線167、電動モータ108のU相界磁巻線108UおよびV相界磁巻線108V、第8外部配線168、出力端子143、接続金属部材176、pnダイオード113a、接続金属部材175、第1電源端子141、第2外部配線162および第1外部配線161における第2外部配線162との接続点と電源106の正極端子との間部分に、第4外部配線164から第1外部配線161に向かう方向に負荷電流が流れる。
この場合、コンデンサ191,192によって、外部配線に寄生されているインダクタンスに蓄積されたエネルギーのうちの大部分が吸収される。このため、MOSFET111に印加されるサージ電圧の発生原因となるインダクタンスLsnは、L1bとL11〜L12(U相用モジュール103内の内部インダクタンス)とL4bとの和となる。一方、MOSFET111に印加されるサージ電圧の発生原因となるインダクタンスLsnは、L2bとL15〜L18(V相用モジュール104内の内部インダクタンス)とL5bの和となる。
つまり、U相用モジュール103内のMOSFET111,112のいずれか一方がターンオフしたときに、当該MOSFETに印加されるサージ電圧の発生原因となるインダクタンスLsn(以下において、「Lsn」という場合がある)は、L1bとL11〜L12(U相用モジュール103内の内部インダクタンス)とL4bとの和となる。
また、V相用モジュール104内のMOSFET113,114のいずれか一方がターンオフしたときに、当該MOSFETに印加されるサージ電圧の発生原因となるインダクタンスLsn(以下において、「Lsn」という場合がある)は、L2bとL15〜L18(V相用モジュール104内の内部インダクタンス)とL5bの和となる。
また、W相用モジュール105内のMOSFET115,116のいずれか一方がターンオフしたときに、当該MOSFETに印加されるサージ電圧の発生原因となるインダクタンスLsn(以下において、「Lsn」という場合がある)は、L3bとL19〜L22(W相用モジュール105内の内部インダクタンス)とL6bの和となる。この実施形態では、LsnとLsnとLsnとは、ほぼ等しい。Lsn,Lsn,Lsnは、後述するように、40(nH)以下であることが好ましい。
前記三相インバータ回路101において、コンデンサ191〜193の対応するバスバーへの接続位置を変化させ、ターンオフしたMOSFETに印加されるサージ電圧が一定となるようにMOSFETに対するゲート抵抗を変化させた場合、当該MOSFETに印加されるサージ電圧の発生原因となるインダクタンスLsn(スナバ回路191〜193によって蓄積されたエネルギーが吸収されるインダクタンスを除く)が小さいほど、当該MOSFETのドレイン電流の変化率di/dtが大きく(diの立下りが早く)なるため、当該MOSFETのターンオフ時のスイッチング損失は小さくなる。このため、サージ電圧の発生原因となるインダクタンスLsnを小さくすることによって、MOSFETのターンオフ時のスイッチング損失を低減できるとともにサージ電圧を低減させることができる。
前記実施形態では、コンデンサ191,192,193の一端は、それぞれ外部配線161,162,163における第1電源端子131,141,151寄りの位置に接続されているので、スナバ回路191,192,193それぞれの一端と第1電源端子131,141,151との間の外部配線部分のインダクタンスL1b,L2b,L3bを小さくできる。また、コンデンサ191,192,193の他端は、それぞれ外部配線164,165,166における第2電源端子132,142,152寄りの位置に接続されているので、スナバ回路191,192,193それぞれの他端と第2電源端子132,142,152との間の外部配線部分のインダクタンスL4b,L5b,L6bを小さくできる。
したがって、任意のMOSFETがターンオフされた場合の、当該MOSFETに印加されるサージ電圧の発生原因となるインダクタンスLsnを小さくすることができる。これにより、MOSFETのターンオフ時のスイッチング損失を低減できるとともにサージ電圧を低減させることができる。
次に、ターンオフしたMOSFETに印加されるサージ電圧の発生原因となるインダクタンスLsnと、MOSFETのターンオフ時のスイッチング損失およびドレイン電流の変化率di/dtとの関係について説明する。
インダクタンスLsnが異なる複数のサンプルa〜gを用意した。具体的には、バスバー161a,164a,162,165,163,166における電源端子131,132,141,142,151,152側の一端からコンデンサ191〜193の接続位置までの距離を変化させることにより、インダクタンスLsnが異なる複数のサンプルa〜gを用意した。
バスバー161a,164a,162,165,163,166における電源端子131,132,141,142,151,152側の一端からコンデンサ191〜193の接続位置までの距離は、サンプルaが最も短く、a、b、c、d、e、f、gの順に長くなるように設定されている。
サンプルaでは、図14に示すように、各コンデンサ191〜193の両端は、対応するバスバー161a,164a,162,165,163,166における電源端子131,132,141,142,151,152側の一端(位置A)と電源端子131,132,141,142,151,152の外端に対応する位置(位置B)との間(A−B間)に接続されている。サンプルb〜gでは、各コンデンサ191〜193の両端は、対応するバスバー161a,164a,162,165,163,166における電源端子131,132,141,142,151,152の外端に対応する位置(位置B)よりも電源端子131,132,141,142,151,152から離れた位置に接続されている。
したがって、インダクタンスL1b,L4b、L2b,L5b、L3b,L5bは、a、b、c、d、e、f、gの順に大きくなる。このため、ターンオフされたMOSFETに印加されるサージ電圧の発生原因となるインダクタンスLsnは、a、b、c、d、e、f、gの順に大きくなる。
各サンプルa〜gについて、MOSFET111とMOSFET114とがオンされている状態からMOSFET111をターンオフさせ、ターンオフさせた際にMOSFET111に印加されるサージ電圧(Lsn・di/dt)が所定値となるようにゲート抵抗を調整した。サージ電圧が所定値となるようにゲート抵抗を調整した後において、MOSFET111とMOSFET114とがオンされている状態からMOSFET111をターンオフさせ、MOSFET111のターンオフ時のスイッチング損失(mJ)と、MOSFET111のドレイン電流の変化率di/dt(A/ns)とを測定した。この場合には、MOSFET111に印加されるサージ電圧の発生原因となるインダクタンスLsnは、Lsn(=L1b+L4b+L11+L12+L13+L14)となる。
以上のように、この発明の一実施形態は、より特定すれば、当該高速ダイオード(ファーストリカバリーダイオード)11は、
ダイオードの動作条件が、diF/dt=2500A/μs以上の高速動作を求められる用途において特に有効である。これは、これ以下の応答速度ではキャリアの枯渇によるスイッチングノイズがそれほど大きな問題にならないことによる。
また、本発明は、動作時の順方向電流密度が、1A/mm以下、である場合において特に有効である。
また、保証耐圧が600V以上のものに適用することにより、本発明のサージ電圧低減効果が特に有効である。
その他、この発明は、請求項記載の範囲内において種々の変更が可能である。
1 pnダイオード
3 n型領域
4 n型領域
5 p型領域
11 アノード電極
14 カソード電極
20 半導体ウエハ
30 アブソーバ
50 pn接合部

Claims (12)

  1. SiCからなるn型半導体層と、
    前記n型半導体層の上に積層されたp型半導体層とを含み、
    前記n型半導体層と前記p型半導体層との境界部においてpn接合が形成されており、
    前記pn接合から前記n型半導体層の底面に向かって、出現頻度が次第に小さくなるように結晶欠陥が形成されていることを特徴とする、高速ダイオード。
  2. 前記n型半導体層は、高濃度n型半導体基板と、前記高濃度n型半導体基板の上面にエピタキシャル成長により積層された低濃度n型半導体層とを含み、
    前記pn接合は、前記低濃度n型半導体層と前記p型半導体層との境界部において形成され、
    前記結晶欠陥の出現頻度は前記低濃度n型半導体層において、前記pn接合から前記低濃度n型半導体層の底面に向かって小さくなっていることを特徴とする、請求項1記載の高速ダイオード。
  3. 前記高濃度n型半導体基板の下面には、カソード電極が接続されており、
    前記p型半導体層の上面には、アノード電極が接続されていることを特徴とする、請求項2記載の高速ダイオード。
  4. 請求項1〜3のいずれかに記載の高速ダイオードの製造方法であって、
    pn接合が形成されたSiCからなる半導体ウエハを準備する工程と、
    前記pn接合が形成された位置上の半導体ウエハ表面から所定の加速電圧によって前記pn接合部に向けて電子線を照射する工程とを有し、
    前記電子線を照射する工程において、前記電子線の出力部と前記電子線の照射を受ける前記半導体ウエハ表面との間に所定のアブソーバを介在させ、
    前記電子線の照射を受ける前記半導体ウエハに対して、ウエハ上面からの距離が深くなるに従って相対線量が少なくなるように電子線を照射する工程、
    を含むことを特徴とする、高速ダイオードの製造方法。
  5. 前記所定のアブソーバは、加工対象とは別の半導体ウエハであることを特徴とする、請求項4記載の高速ダイオードの製造方法。
  6. SiCからなり、アクティブ領域および外周領域を有するn型半導体層と、
    前記n型半導体層の上に積層されたp型半導体層とを含み、
    前記n型半導体層は、高濃度n型半導体基板と、前記高濃度n型半導体基板の上面にエピタキシャル成長により積層された低濃度n型半導体層とを有し、
    前記低濃度n型半導体層と前記p型半導体層との境界部においてpn接合が形成されており、
    前記アクティブ領域および前記外周領域において、前記pn接合から前記n型半導体層の底面に向かって、出現頻度が次第に小さくなるように結晶欠陥が形成されていることを特徴とする、高速ダイオード。
  7. 前記pn接合は、前記アクティブ領域および前記外周領域のそれぞれの前記低濃度n型半導体層と前記p型半導体層との境界部において形成されていることを特徴とする、請求項6記載の高速ダイオード。
  8. 前記高濃度n型半導体基板の下面には、カソード電極が接続されており、
    前記p型半導体層の上面には、アノード電極が接続されていることを特徴とする、請求項7記載の高速ダイオード。
  9. 前記n型半導体層の表面に形成され、前記p型半導体層を選択的に露出させるコンタクト孔を有するフィールド絶縁膜と、
    前記フィールド絶縁膜の表面に形成された表面保護層とを有し、
    前記アノード電極は、前記コンタクト孔内で前記p型半導体層に接続され、前記コンタクト孔から前記フィールド絶縁膜上に乗りあがり、前記フィールド絶縁膜を挟んで前記p型半導体層の周縁部に対向するオーバーラップ部を有していることを特徴とする、請求項8に記載の高速ダイオード。
  10. 動作時の順方向電流密度が1A/mm以下となる正孔濃度分布を発現することを特徴とする、請求項6〜9のいずれかに記載の高速ダイオード。
  11. 前記n型半導体層に形成されたMOSFETを含み、
    前記pn接合は、前記MOSFETのボディダイオードとして形成されていることを特徴とする、請求項6〜10のいずれかに記載の高速ダイオード。
  12. 前記n型半導体層は、SiC層であることを特徴とする、請求項6〜11のいずれかに記載の高速ダイオード。
JP2016100861A 2016-05-19 2016-05-19 高速ダイオード及びその製造方法 Active JP6787690B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016100861A JP6787690B2 (ja) 2016-05-19 2016-05-19 高速ダイオード及びその製造方法
US15/597,556 US10249751B2 (en) 2016-05-19 2017-05-17 High-speed diode with crystal defects and method of manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016100861A JP6787690B2 (ja) 2016-05-19 2016-05-19 高速ダイオード及びその製造方法

Publications (2)

Publication Number Publication Date
JP2017208490A JP2017208490A (ja) 2017-11-24
JP6787690B2 true JP6787690B2 (ja) 2020-11-18

Family

ID=60330468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016100861A Active JP6787690B2 (ja) 2016-05-19 2016-05-19 高速ダイオード及びその製造方法

Country Status (2)

Country Link
US (1) US10249751B2 (ja)
JP (1) JP6787690B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105814694B (zh) 2014-10-03 2019-03-08 富士电机株式会社 半导体装置以及半导体装置的制造方法
CN109950305A (zh) * 2017-12-21 2019-06-28 比亚迪股份有限公司 一种半导体功率器件及其制备方法
JP7190256B2 (ja) 2018-02-09 2022-12-15 ローム株式会社 半導体装置
CN108987487A (zh) * 2018-07-24 2018-12-11 电子科技大学 一种可集成的超势垒横向二极管器件
JP7142606B2 (ja) * 2019-06-04 2022-09-27 三菱電機株式会社 半導体装置
US11600724B2 (en) 2020-09-24 2023-03-07 Wolfspeed, Inc. Edge termination structures for semiconductor devices

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148699A (ja) * 1994-11-21 1996-06-07 Shindengen Electric Mfg Co Ltd 整流ダイオ−ド
JPH08186277A (ja) 1994-12-27 1996-07-16 Toyo Electric Mfg Co Ltd 高速ダイオードの製造方法
JPH10200132A (ja) 1997-01-10 1998-07-31 Fuji Electric Co Ltd 高速ダイオード
JPH10321876A (ja) 1997-05-22 1998-12-04 Sansha Electric Mfg Co Ltd ダイオード
JP2002185017A (ja) 2000-12-12 2002-06-28 Ngk Insulators Ltd 高耐圧高速ダイオード
JP4354213B2 (ja) 2003-05-29 2009-10-28 三菱電機株式会社 パワーモジュール及びインバータ装置
JP4647202B2 (ja) 2003-12-18 2011-03-09 日本インター株式会社 ダイオード
JP2006108346A (ja) * 2004-10-05 2006-04-20 Matsushita Electric Ind Co Ltd チップ型半導体素子とその製造方法
US7696598B2 (en) 2005-12-27 2010-04-13 Qspeed Semiconductor Inc. Ultrafast recovery diode
JP5124964B2 (ja) * 2006-03-27 2013-01-23 サンケン電気株式会社 半導体装置の製法
JP2008004704A (ja) 2006-06-21 2008-01-10 Rohm Co Ltd 半導体素子の製造方法
JP2008091705A (ja) * 2006-10-03 2008-04-17 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2008236932A (ja) 2007-03-22 2008-10-02 Rohm Co Ltd モータ駆動装置及びこれを用いた電気機器
JP2010147239A (ja) * 2008-12-18 2010-07-01 Toshiba Corp 半導体装置及びその製造方法
JP5671867B2 (ja) * 2010-08-04 2015-02-18 富士電機株式会社 半導体装置およびその製造方法
WO2012169022A1 (ja) * 2011-06-08 2012-12-13 トヨタ自動車株式会社 半導体装置とその製造方法
JP5999677B2 (ja) 2011-09-20 2016-09-28 ローム株式会社 電子回路
JP2013074181A (ja) * 2011-09-28 2013-04-22 Toyota Motor Corp 半導体装置とその製造方法
JP6111572B2 (ja) * 2012-09-12 2017-04-12 富士電機株式会社 半導体装置および半導体装置の製造方法
JP5700028B2 (ja) * 2012-12-11 2015-04-15 トヨタ自動車株式会社 半導体装置
CN104160488B (zh) * 2013-03-06 2016-08-31 丰田自动车株式会社 半导体晶片的正向电压偏差减少方法
JP6236456B2 (ja) * 2013-09-09 2017-11-22 株式会社日立製作所 半導体装置およびその製造方法
JP5895950B2 (ja) * 2014-01-20 2016-03-30 トヨタ自動車株式会社 半導体装置の製造方法
JP2015153784A (ja) * 2014-02-10 2015-08-24 トヨタ自動車株式会社 半導体装置の製造方法及び半導体装置
JP2016001671A (ja) 2014-06-12 2016-01-07 サンケン電気株式会社 半導体装置
CN106062966B (zh) * 2014-09-04 2019-04-26 富士电机株式会社 半导体装置及半导体装置的制造方法
JP6197773B2 (ja) * 2014-09-29 2017-09-20 トヨタ自動車株式会社 半導体装置

Also Published As

Publication number Publication date
JP2017208490A (ja) 2017-11-24
US20170338335A1 (en) 2017-11-23
US10249751B2 (en) 2019-04-02

Similar Documents

Publication Publication Date Title
JP6787690B2 (ja) 高速ダイオード及びその製造方法
US10199484B2 (en) Semiconductor device and manufacturing method thereof
EP3147950B1 (en) Semiconductor device and method of manufacturing the same
JP5087828B2 (ja) 半導体装置の製造方法
JP5963385B2 (ja) 半導体装置
JP6652802B2 (ja) 半導体装置、および当該半導体装置を備えるインバータ装置
US20130221403A1 (en) Semiconductor device and method of manufacturing semiconductor device
Shiraishi et al. Side gate HiGT with low dv/dt noise and low loss
JP2006344779A (ja) 半導体装置および半導体装置の制御方法
TWI753996B (zh) 電子裝置
US10916631B2 (en) Semiconductor device including an n-type carrier stored layer, power conversion device, and method of manufacturing the semiconductor device
WO2013088544A1 (ja) 半導体装置および電力変換装置
JP2010147239A (ja) 半導体装置及びその製造方法
US10930771B2 (en) Semiconductor device having an insulated gate bipolar transistor and method of manufacturing the same
JP6904279B2 (ja) 半導体装置およびその製造方法並びに電力変換装置
JP2707883B2 (ja) インバータ装置
JP4857814B2 (ja) モータ駆動装置
JPH07153942A (ja) 絶縁ゲート型バイポーラトランジスタおよびその製造方法
JP3494023B2 (ja) 半導体装置および半導体装置の駆動方法並びに電力変換装置
JP3622405B2 (ja) 半導体スイッチング素子及びigbtモジュール
JP5672269B2 (ja) 半導体装置の製造方法
CN111370399B (zh) 智能功率模块、制备方法及装置
JP2018046127A (ja) 半導体装置、パワーモジュールおよび電力変換装置
JP2017112171A (ja) 半導体装置、パワーモジュール、電力変換装置、自動車および鉄道車両
WO2020206867A1 (zh) 直插式功率器件、半导体组件、轮毂电机驱动器或汽车驱动器和新能源汽车

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201029

R150 Certificate of patent or registration of utility model

Ref document number: 6787690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250