WO2012169022A1 - 半導体装置とその製造方法 - Google Patents

半導体装置とその製造方法 Download PDF

Info

Publication number
WO2012169022A1
WO2012169022A1 PCT/JP2011/063137 JP2011063137W WO2012169022A1 WO 2012169022 A1 WO2012169022 A1 WO 2012169022A1 JP 2011063137 W JP2011063137 W JP 2011063137W WO 2012169022 A1 WO2012169022 A1 WO 2012169022A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
drift layer
resistance
drift
semiconductor device
Prior art date
Application number
PCT/JP2011/063137
Other languages
English (en)
French (fr)
Inventor
明高 添野
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2012508844A priority Critical patent/JP5505498B2/ja
Priority to EP11867376.3A priority patent/EP2720254B1/en
Priority to PCT/JP2011/063137 priority patent/WO2012169022A1/ja
Priority to US13/695,749 priority patent/US20140077253A1/en
Priority to CN2011800683169A priority patent/CN103392224A/zh
Publication of WO2012169022A1 publication Critical patent/WO2012169022A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT

Definitions

  • the technology described in this specification relates to a semiconductor device and a manufacturing method thereof.
  • a crystal defect is formed by irradiating a part of a semiconductor substrate with charged particles.
  • Patent Document 1 in a semiconductor device in which a diode and an IGBT are formed on the same semiconductor substrate, a crystal is formed in a region near the bottom surface of the trench gate of the drift layer of the semiconductor substrate. A defect is formed.
  • Crystal defects are usually formed by irradiating a semiconductor substrate with charged particles.
  • the charged particles pass through the semiconductor substrate and stop in the semiconductor substrate, and a local defect region having a high crystal defect density is formed near the position where the charged particles stop.
  • This local defect region effectively functions as a lifetime control region.
  • crystal defects are also formed in the region through which the charged particles have passed.
  • the region where crystal defects are formed by the charged particles has a higher specific resistance than before the charged particle irradiation. As a result, the change in the depth direction of the specific resistance of the semiconductor substrate is increased, and the leakage current of the semiconductor device and the breakdown voltage are liable to occur.
  • a semiconductor device disclosed in this specification includes a first conductivity type drift layer formed on a semiconductor substrate, and a second conductivity type body layer located on a surface side of the drift layer and formed on the surface of the semiconductor substrate. ,have.
  • the drift layer has a lifetime control region, and when the maximum value of the crystal defect density of the drift layer that changes in the depth direction of the semiconductor substrate is h, the crystal defect density is h. This is an area that is equal to or greater than / 2.
  • the lifetime control region is formed by irradiating charged particles to a first conductivity type pre-drift layer including a first resistance layer and a second resistance layer having a specific resistance lower than that of the first resistance layer. At least a part of the control region is formed within the second resistance layer.
  • the semiconductor device described above at least a part of the lifetime control region is formed within the range of the second resistance layer. Since the specific resistance of the second resistance layer is lower than the specific resistance of the first resistance layer, the specific resistance of the second resistance layer becomes too high even if crystal defects are formed in the second resistance layer at a high density. Is prevented. A semiconductor device in which the change in the depth direction of the specific resistance of the drift layer is mitigated as compared with the prior art can be provided.
  • the first resistance layer includes a third resistance layer through which charged particles pass and a fourth resistance layer through which charged particles do not pass when the pre-drift layer is irradiated with charged particles.
  • the second resistance layer may be disposed on one side of the front surface or the back surface, and the fourth resistance layer may be disposed on the other side of the front surface or the back surface of the second resistance layer. In this case, it is preferable that the specific resistance of the third resistance layer is lower than the specific resistance of the fourth resistance layer.
  • the second resistance layer may be an epitaxial layer.
  • the present specification can also provide a method for manufacturing the semiconductor device. That is, the present specification has a first conductivity type drift layer formed on a semiconductor substrate and a second conductivity type body layer located on the surface side of the drift layer and formed on the surface of the semiconductor substrate.
  • the drift layer has a lifetime control region in which the crystal defect density is h / 2 or more, where h is the maximum value of the crystal defect density of the drift layer that changes in the depth direction of the semiconductor substrate.
  • a method for manufacturing a semiconductor device can be provided.
  • the step of manufacturing the drift layer includes forming a first conductivity type pre-drift layer including a first resistance layer and a second resistance layer having a specific resistance lower than that of the first resistance layer; Irradiating the pre-drift layer with charged particles so that at least a part of the lifetime control region is included in the second resistance layer.
  • the first resistance layer may include a third resistance layer and a fourth resistance layer having a specific resistance lower than that of the third resistance layer.
  • the second resistance layer is formed between the third resistance layer and the fourth resistance layer, and in the step of irradiating the charged particles, the charged particles are transferred to the fourth resistance layer.
  • the pre-drift layer is preferably irradiated from the side.
  • the second resistance layer may be formed by an epitaxial method.
  • FIG. 6 is a diagram showing specific resistance values before and after crystal defect formation of the semiconductor device according to Example 1.
  • FIG. It is a figure which shows the specific resistance value before and behind crystal defect formation of the conventional semiconductor device.
  • 6 is a diagram for explaining the method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 6 is a diagram for explaining the method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 6 is a diagram for explaining the method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 6 is a diagram for explaining the method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 6 is a diagram for explaining the method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 6 is a diagram for explaining the method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 6 is a diagram showing specific resistance values before and after crystal defect formation in a semiconductor device according to Example 2.
  • the first resistance layer may be a single layer having a specific resistance within a predetermined range or a plurality of layers having specific resistances different from each other. May be.
  • the first resistance layer may include a third resistance layer and a fourth resistance layer having a specific resistance lower than that of the third resistance layer.
  • the second resistance layer is formed between the third resistance layer and the fourth resistance layer, and in the step of irradiating the charged particles, the charged particles are transferred to the fourth resistance layer.
  • the pre-drift layer is preferably irradiated from the side.
  • the second resistance layer includes a constant resistance region in which the specific resistance is constant in the depth direction, and the specific resistance of the constant resistance region is the second resistance layer. It may be the minimum value of the specific resistance.
  • a constant resistance region in which the specific resistance is minimum in the depth direction and constant in the depth direction may be formed in a part of the second resistance layer.
  • the constant resistance region can be formed by an epitaxial method.
  • the second resistance layer is preferably formed by an epitaxial method.
  • the specific resistance distribution (distribution in the depth direction of the semiconductor substrate) of the second resistance layer is preferably a distribution having a minimum value, and a curved shape having a peak. Particularly preferred.
  • the lifetime control region has a peak of crystal defect density formed by irradiating charged particles.
  • MX maximum value of the specific resistance in the depth direction of the second resistance layer
  • MN low resistance region where the specific resistance of the second resistance layer is MN + (MX ⁇ MN) / 2 or less. It is preferable that it overlaps at least a part of the lifetime control region.
  • the step of irradiating the charged particles it is particularly preferable to irradiate the charged particles so that the peak of the crystal defect density is formed in the second resistance layer. That is, it is preferable that the irradiation is performed so that the charged particles stop on the second resistance layer.
  • the semiconductor device according to the present application may be any device as long as the drift layer is irradiated with charged particles to form a lifetime control region having a high crystal defect density.
  • a diode, IGBT, or an RC-IGBT in which an IGBT and a free wheel diode are formed on the same semiconductor substrate may be used.
  • a first conductivity type semiconductor layer having a first conductivity type impurity concentration higher than that of the drift layer is formed on the back surface of the semiconductor substrate (the back surface side of the drift layer).
  • the first conductivity type semiconductor layer and the body layer function as a cathode and an anode of the diode.
  • a collector layer is formed on the back surface of the semiconductor substrate (the back surface side of the drift layer).
  • a body layer is formed on the surface of the semiconductor substrate (the surface side of the drift layer).
  • An emitter layer is formed on a part of the surface of the body layer. The body layer and the emitter layer are exposed on the surface of the semiconductor substrate.
  • An insulated gate is formed on the surface side of the semiconductor substrate so as to be in contact with the body layer in a portion that separates the emitter layer and the drift layer.
  • a collector layer or a cathode layer is formed on the back surface of the semiconductor substrate (the back surface side of the drift layer).
  • a body layer is formed on the surface of the semiconductor substrate (the surface side of the drift layer).
  • An emitter layer is formed on a part of the surface of the body layer. The body layer and the emitter layer are exposed on the surface of the semiconductor substrate.
  • a gate electrode is formed on the surface side of the semiconductor substrate so as to be in contact with a portion of the body layer that separates the emitter layer and the drift layer.
  • the RC-IGBT may be a semiconductor device in which a diode region in which a diode element is formed and an IGBT region in which an IGBT element is formed are separated. Further, the semiconductor device may be a semiconductor device in which the structure on the front surface side of the semiconductor substrate is common, the structure on the back surface side is a collector layer or a cathode layer, and diode elements and IGBT elements are mixed.
  • a semiconductor device 10 shown in FIG. 1 is an RC-IGBT in which an IGBT and a free wheel diode are formed on the same semiconductor substrate 100.
  • the semiconductor device 10 includes a semiconductor substrate 100, an insulating gate 120 and a surface insulating film 131 formed on the surface side of the semiconductor substrate 100, a surface electrode 141 in contact with the surface of the semiconductor substrate 100, and a back surface in contact with the back surface of the semiconductor substrate 100. And an electrode 142.
  • the semiconductor substrate 100 has an n-type drift layer 110 and a p-type low concentration body layer 104.
  • an n + -type cathode layer 101 and a p + -type collector layer 102 are formed on the back side of the semiconductor substrate 100 adjacent to each other, and are in contact with the back electrode 142.
  • an n + -type emitter layer 105 and a p + -type high-concentration body layer 106 are formed.
  • the insulated gate 120 includes a trench 121, a gate insulating film 122 formed on the inner wall of the trench 121, and a gate electrode 123 that is covered with the gate insulating film 122 and is filled in the trench 121.
  • the insulated gate 120 is in contact with a portion of the low-concentration body layer 104 that separates the emitter layer 105 and the drift layer 110.
  • the emitter layer 105 and the high-concentration body layer 106 are in contact with the surface electrode 141.
  • the gate electrode 123 is isolated from the surface electrode 141 by the surface insulating film 131.
  • a first drift layer 111, a second drift layer 112, and a third drift layer 113 are stacked in order from the surface side of the semiconductor substrate 100.
  • a lifetime control region 115 is formed in the second drift layer 112.
  • the lifetime control region 115 is a region where the crystal defect density is h / 2 or more, where h is the maximum value of the crystal defect density of the drift layer 110 that changes in the depth direction of the semiconductor substrate 100.
  • the peak of crystal defect density is located in the second drift layer 112.
  • the specific resistance of the first drift layer 111 is ⁇ (1)
  • the specific resistance of the second drift layer 112 is ⁇ (2)
  • the specific resistance of the third drift layer 113 is ⁇ (3), ⁇ (1) , ⁇ (2), ⁇ (3) are substantially equal ( ⁇ (1) ⁇ (2) ⁇ (3)).
  • the specific resistance of the drift layer 110 is substantially constant in the depth direction of the semiconductor substrate 100. Note that the thickness of the third drift layer 113 is larger than the thickness of the first drift layer 111 and the second drift layer 112, and the surface of the drift layer 110 (drift from the peak of the crystal defect density in the lifetime control region 115).
  • the distance to the interface between the layer 110 and the body layer 104 is from the peak of the crystal defect density in the lifetime control region 115 to the back surface of the drift layer 110 (the interface between the drift layer 110, the cathode layer 101, and the collector layer 102). Is significantly shorter than the distance.
  • FIG. 2 is a diagram showing the specific resistance ⁇ of the drift layer 110 of the semiconductor device 10 and also shows the specific resistance of the drift layer (pre-drift layer) before crystal defect formation.
  • the solid line 11 indicates the relationship between the specific resistance ⁇ of the drift layer 110 and the depth D of the drift layer 110
  • the broken line 12 indicates the relationship between the specific resistance ⁇ of the pre-drift layer and the depth D of the pre-drift layer.
  • Reference numerals 111 to 113 indicate the positions of the first drift layer 111, the second drift layer 112, and the third drift layer 113 in the depth direction.
  • the specific resistance ⁇ (P1) of the layer (referred to as the first pre-drift layer) located in the first drift layer 111 and the layer (third pre-drift layer) located in the third drift layer 113
  • the specific resistance ⁇ (P3) of the drift layer) is substantially constant and higher than the specific resistance ⁇ (P2) of the layer (referred to as the second pre-drift layer) located in the second drift layer 112.
  • the specific resistance ⁇ (P1) is higher than the specific resistance ⁇ (P3) ( ⁇ (P1)> ⁇ (P3)> ⁇ (P2)).
  • the first pre-drift layer and the third pre-drift layer correspond to a first resistance layer
  • the second pre-drift layer corresponds to a second resistance layer having a specific resistance lower than that of the first resistance layer.
  • the first pre-drift layer corresponds to a third resistance layer
  • the third pre-drift layer corresponds to a fourth resistance layer having a specific resistance lower than that of the third resistance layer.
  • the specific resistance distribution of the second pre-drift layer is a distribution having a minimum value as shown by a broken line 12 in a stage before irradiation with charged particles, and particularly a curve shape having a peak. preferable.
  • the density distribution of crystal defects formed by irradiating charged particles has a curved shape having a maximum value peak in the depth direction of the semiconductor device. If the specific resistance distribution of the second pre-drift layer has a curved shape having a minimum value peak, it is possible to efficiently obtain the effect of alleviating the decrease in the specific resistance of the second pre-drift layer due to crystal defects. The change in the depth direction of the specific resistance can be reduced.
  • the second pre-drift layer is irradiated.
  • a peak of crystal defect density is formed in the drift layer.
  • Low density crystal defects are also formed in the third pre-drift layer, which is a layer through which the charged particles have passed (third resistance layer).
  • no crystal defect is formed in the first pre-drift layer where the charged particles do not reach.
  • the crystal defect density is distributed in the depth direction of the semiconductor substrate in a shape in which the broken line 12 is inverted up and down.
  • FIG. 3 illustrates the distribution of the specific resistance ⁇ of the pre-drift layer and the drift layer of the conventional semiconductor device. Since the only difference between the conventional semiconductor device and the semiconductor device 10 according to the first embodiment is the distribution in the depth direction of the specific resistance of the pre-drift layer and the drift layer, the specific structure of the conventional semiconductor device will be described. Is omitted.
  • the solid line 21 shows the relationship between the specific resistance ⁇ and the depth D of the conventional drift layer, and the broken line 22 shows the relationship between the specific resistance ⁇ of the conventional pre-drift layer and the depth D of the pre-drift layer. .
  • the specific resistance of the pre-drift layer is substantially constant in the depth direction
  • the peak of the crystal defect density is formed at the position of the second pre-drift layer
  • the specific resistance of the drift layer is It has a distribution in the depth direction as shown by the solid line 21.
  • the specific resistance of the drift layer has a distribution with a large change in the depth direction as shown by the solid line 21, the effective carrier density of the drift layer is lowered during the IGBT operation, and the depletion layer is likely to expand. As a result, the depletion layer easily reaches the collector layer on the back surface, the breakdown voltage of the semiconductor device is lowered, and the leakage current is increased.
  • As a method for suppressing the breakdown voltage reduction there are a method of increasing the thickness of the semiconductor substrate and a method of reducing the specific resistance of the entire pre-drift layer. However, increasing the thickness of the semiconductor substrate increases the resistance of the entire semiconductor device, which tends to cause poor conduction. When the specific resistance of the entire pre-drift layer is reduced, the characteristic variation of the diode increases.
  • the specific resistance of the pre-drift layer is distributed so as to cancel out the specific resistance ⁇ that increases by irradiating charged particles. Yes.
  • the specific resistance of the drift layer 110 obtained by forming crystal defects can be made substantially constant in the depth direction.
  • the breakdown voltage is reduced and the leakage current is increased in the semiconductor device having the lifetime control region. It is possible to achieve both suppression and suppression of conduction failure by thinning the semiconductor substrate. Further, in a semiconductor device provided with a diode, variation in characteristics of the diode can be suppressed.
  • Pre-drift layer formation process 4 to 6 show a process of forming the pre-drift layer 510.
  • FIG. 4 an n-type semiconductor wafer is prepared as the third pre-drift layer 513.
  • the thickness of the n-type wafer shown in FIG. 4 is substantially equal to the thickness of the third pre-drift layer 513.
  • a second pre-drift layer 512 which is an epitaxial layer, is formed on the surface of the third pre-drift layer 513 using an epitaxial method. Since the specific resistance of the pre-drift layer becomes lower as the impurity concentration is higher, the specific resistance of the second pre-drift layer 512 can be adjusted by adjusting the impurity concentration of the second pre-drift layer 512. In the presence of an n-type dopant gas and a silicon growth gas adjusted so that the n-type impurity concentration of the second pre-drift layer 512 is higher than the n-type impurity concentration of the third pre-drift layer 513 The second pre-drift layer 512 is formed by performing the method.
  • a first pre-drift layer 511 that is an epitaxial layer is formed on the surface of the second pre-drift layer 512 by using an epitaxial method. N-type dopant gas and silicon growth adjusted so that the n-type impurity concentration of the first pre-drift layer 511 is lower than the n-type impurity concentration of the second pre-drift layer 512 and the third pre-drift layer 513
  • the first pre-drift layer 511 is formed by performing an epitaxial method in the presence of gas. Thereafter, annealing treatment such as heat treatment is performed to activate the n-type dopant.
  • the specific resistance ⁇ (P1) of the first pre-drift layer 511, the specific resistance ⁇ (P2) of the second pre-drift layer 512, and the specific resistance ⁇ (P3) of the third pre-drift layer 513 are represented by ⁇ (P1) It is possible to manufacture the pre-drift layer 510 adjusted so that> ⁇ (P3)> ⁇ (P2).
  • FIG. 7 shows a state after the formation of the front-side and back-side structures of the semiconductor substrate 100 excluding the front-side electrode 141 and the back-side electrode 142 after the pre-drift layer 510 is formed.
  • the charged particles are irradiated from the back side of the semiconductor substrate 100.
  • Charged particles to be irradiated is not particularly limited, helium (4 He, 3 He) ions, hydrogen (1 H, 2 H, 3 H) ion is particularly preferable.
  • the charged particles irradiated from the back side of the semiconductor substrate 100 pass through the third pre-drift layer 513 and stop in the second pre-drift layer 512.
  • the second pre-drift layer 512 where the charged particles stop, a peak of crystal defect density is formed, and high-density crystal defects are formed. Low density crystal defects are also formed in the third pre-drift layer 513 through which the charged particles pass.
  • the first pre-drift layer 511, the second pre-drift layer 512, and the third pre-drift layer 513 are converted into the first drift layer 111, the second drift layer 112, and the third drift layer 113, respectively, as shown in FIG. It becomes.
  • the crystal defect density formed in the first pre-drift layer 111 by irradiation of charged particles is X (1)
  • the crystal defect density formed in the second pre-drift layer 112 is X (2)
  • the third pre-drift layer Assuming that the crystal defect density formed at 113 is X (3), X (2)> X (3)> X (1).
  • the specific resistance of each pre-drift layer is ⁇ (P1)> ⁇ (P3)> ⁇ (P2), the difference in specific resistance of each drift layer obtained after irradiation with charged particles can be reduced.
  • the specific resistance ⁇ (P1) of each pre-drift layer is such that the specific resistance of each drift layer becomes ⁇ (1) ⁇ (2) ⁇ (3).
  • ⁇ (P2), ⁇ (P3) are adjusted in advance.
  • the pre-drift layer 510 in the step of forming the pre-drift layer 510, the first pre-drift layer 511 that is the third resistance layer and the third resistance layer that is the fourth resistance layer. A pre-drift layer 513 and a second pre-drift layer 512 that is a second resistance layer are formed.
  • the pre-drift layer 510 is irradiated with charged particles so that at least a part of the lifetime control region 115 is included in the second pre-drift layer 512.
  • the charged particles pass through the third pre-drift layer 513 and stop in the second pre-drift layer 512.
  • Crystal defects are formed in the second pre-drift layer 512 at a high density and in the third pre-drift layer 513 at a low density.
  • the peak of crystal defect density is located in the second pre-drift layer 512 where the charged particles stop. Since the specific resistance of the second pre-drift layer 512 is lower than that of the first pre-drift layer 511 and the third pre-drift layer 513, the specific resistance of the second pre-drift layer 512 is formed by forming crystal defects at a high density. Can be prevented from becoming too high.
  • the specific resistance of the third pre-drift layer 513 through which the charged particles pass is lower than the specific resistance of the first pre-drift layer 511 through which the charged particles do not pass, crystals formed in the third pre-drift layer 513 at a low density It can be prevented that the specific resistance of the third pre-drift layer 513 is increased due to the defect. According to the present embodiment, it is possible to easily manufacture the semiconductor device 10 in which the change in the depth direction of the specific resistance of the drift layer 110 is reduced as compared with the conventional example.
  • the second pre-drift layer 512 is formed as an epitaxial layer, the non-conductive impurities (for example, carbon and oxygen) in the second pre-drift layer 512 have a low concentration and a small variation.
  • the semiconductor wafer can be used as the thickest third pre-drift layer 513, the semiconductor device 10 can be thinned and the manufacturing process of the semiconductor device 10 can be simplified. The material cost and manufacturing cost of the semiconductor device 10 can be reduced.
  • the second pre-drift layer 512 may be formed so as to include a constant resistance region having a constant specific resistance. That is, before the annealing treatment, the pre-drift layer 510 may have a specific resistance distribution as indicated by a thin broken line 13 in FIG.
  • the specific resistance of the second pre-drift layer 512 may include a constant resistance region where the specific resistance is constant as indicated by a thin broken line 13 before the annealing process. In this case, the specific resistance of the constant resistance region may be the minimum value of the specific resistance of the second pre-drift layer 512.
  • the pre-drift layer 510 having the curved specific resistance distribution indicated by the broken line 12 in FIG. 9 is changed.
  • the second pre-drift layer 512 having a constant resistance region where the specific resistance is constant as indicated by the thin broken line 13 can be easily formed. Is possible.
  • Example 2 the pre-drift layer forming process of the semiconductor device 10 described in Example 1 will be described with another example.
  • the description of other components of the semiconductor device 10 is omitted, but those skilled in the art can understand that it can be manufactured using a conventionally known manufacturing method.
  • the charged particle irradiation process is the same as that in the first embodiment, and thus the description thereof is omitted.
  • Pre-drift layer formation process 10 to 12 show a process of forming the pre-drift layer 610.
  • FIG. 10 an n-type semiconductor wafer is prepared as the third pre-drift layer 613. Note that the thickness of the n-type semiconductor wafer shown in FIG. 10 is larger than the thickness of the third pre-drift layer 613 after completion of the pre-drift layer forming step.
  • the surface layer of the third pre-drift layer 613 is irradiated with an n-type dopant so that the n-type impurity concentration is higher than that of the third pre-drift layer 613. 612 is formed.
  • the thickness of the third pre-drift layer 613 is reduced by the thickness of the second pre-drift 612.
  • a first pre-drift layer 611 that is an epitaxial layer is formed on the surface of the second pre-drift layer 612 using an epitaxial method.
  • N-type dopant gas and silicon growth adjusted so that the n-type impurity concentration of the first pre-drift layer 611 is lower than the n-type impurity concentration of the second pre-drift layer 612 and the third pre-drift layer 613
  • An epitaxial method is performed in the presence of gas to form the first pre-drift layer 611. Thereafter, annealing treatment such as heat treatment is performed to activate the n-type dopant.
  • the pre-drift layer 610 adjusted to satisfy ⁇ (P1)> ⁇ (P3)> ⁇ (P2) can be manufactured.
  • the second pre-drift layer 612 is not formed as an epitaxial layer, the material cost and the manufacturing cost can be further reduced as compared with the method described in Example 1. Thereafter, in FIG.
  • the structure on the front surface side and the back surface side of the semiconductor substrate 100 excluding the front surface electrode 141 and the back surface electrode 142 is formed as in the first embodiment. Then, a charged particle irradiation process is performed. Thereby, the semiconductor device 10 can be manufactured.
  • the semiconductor device 30 includes a semiconductor substrate 300, an insulating gate 320 and a surface insulating film 331 formed on the surface side of the semiconductor substrate 300, a surface electrode 341 in contact with the surface of the semiconductor substrate 300, a semiconductor And a back electrode 342 in contact with the back surface of the substrate 300.
  • the semiconductor substrate 300 has an n-type drift layer 310 and a p-type low-concentration body layer 304.
  • a p + -type collector layer 302 is formed on the back side of the drift layer 310.
  • the collector layer 302 is exposed on the back surface of the semiconductor substrate 300 and is in contact with the back electrode 342.
  • a first drift layer 311, a second drift layer 312, and a third drift layer 313 are stacked in order from the back surface side of the semiconductor substrate 300.
  • a lifetime control region 315 is formed in the second drift layer 312.
  • the lifetime control region 315 is a region where the crystal defect density is h / 2 or more, where h is the maximum value of the crystal defect density of the drift layer 310 that changes in the depth direction of the semiconductor substrate 300.
  • the peak of crystal defect density is located in the second drift layer 312.
  • the specific resistance of the first drift layer 311 is ⁇ (1)
  • the specific resistance of the second drift layer 312 is ⁇ (2)
  • the specific resistance of the third drift layer 313 is ⁇ (3)
  • ⁇ (1) , ⁇ (2), ⁇ (3) are substantially equal ( ⁇ (1) ⁇ (2) ⁇ (3)).
  • the specific resistance of the drift layer 310 is substantially constant in the depth direction of the semiconductor substrate 300. Note that the thickness of the third drift layer 313 is thicker than the thickness of the first drift layer 311 and the second drift layer 312, and the back surface of the drift layer 310 (drift from the peak of the crystal defect density in the lifetime control region 115).
  • the distance from the peak of the crystal defect density in the lifetime control region 315 to the surface of the drift layer 310 (interface between the drift layer 310 and the body layer 304) is larger than the distance from the layer 310 to the collector layer 302). Remarkably short. Since the other configuration is the same as that of the semiconductor device 10 shown in FIG. 1, the description is omitted by replacing the reference numbers in the 100s with the 300s.
  • FIG. 14 is a diagram showing the specific resistance ⁇ of the drift layer 310 of the semiconductor device 30 and also shows the specific resistance of the drift layer (pre-drift layer) before crystal defect formation.
  • a solid line 31 indicates the relationship between the specific resistance ⁇ of the drift layer 310 and the depth D of the drift layer 310, and a broken line 32 indicates the relationship between the specific resistance ⁇ of the pre-drift layer and the depth D of the pre-drift layer.
  • Reference numerals 311 to 313 indicate the positions of the first drift layer 311, the second drift layer 312, and the third drift layer 313 in the depth direction.
  • the specific resistance ⁇ (P1) of the layer (referred to as the first pre-drift layer) located in the first drift layer 311 and the layer (third pre-drift layer) located in the third drift layer 313
  • the specific resistance ⁇ (P3) of the drift layer is substantially constant and higher than the specific resistance ⁇ (P2) of the layer (referred to as the second pre-drift layer) located in the second drift layer 312.
  • the specific resistance ⁇ (P1) is higher than the specific resistance ⁇ (P3) ( ⁇ (P1)> ⁇ (P3)> ⁇ (P2)).
  • the first pre-drift layer and the third pre-drift layer correspond to a first resistance layer
  • the second pre-drift layer corresponds to a second resistance layer having a specific resistance lower than that of the first resistance layer.
  • the first pre-drift layer corresponds to a third resistance layer
  • the third pre-drift layer corresponds to a fourth resistance layer having a specific resistance lower than that of the third resistance layer.
  • the second pre-drift layer is irradiated.
  • a peak of crystal defect density is formed in the drift layer.
  • Low density crystal defects are also formed in the third pre-drift layer, which is a layer through which the charged particles have passed (third resistance layer).
  • no crystal defect is formed in the first pre-drift layer where the charged particles do not reach.
  • the crystal defect density is distributed in the depth direction of the semiconductor substrate in a shape in which the broken line 32 is inverted up and down.
  • the manufacturing method described in the first and second embodiments can be applied.
  • the first pre-drift layer and the second pre-drift layer are formed by the method described in Example 1 or 2, and charged particles are irradiated from the surface side of the semiconductor substrate Then, the semiconductor device 30 can be easily manufactured.
  • a drift layer can be manufactured by an epitaxial method using a semiconductor wafer as a collector layer.
  • RC-IGBT and IGBT have been described as examples, but the present invention is not limited to this.
  • the semiconductor device is a diode, the configurations and manufacturing methods of Examples 1 to 3 can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

 本明細書が開示する半導体装置は、半導体基板に形成された第1導電型のドリフト層と、ドリフト層の表面側に位置し、半導体基板の表面に形成された第2導電型のボディ層と、を有している。ドリフト層は、ライフタイム制御領域を有しており、ライフタイム制御領域は、半導体基板の深さ方向に変化するドリフト層の結晶欠陥密度の極大値をhとした場合に、結晶欠陥密度がh/2以上である。ライフタイム制御領域は、第1抵抗層と、第1抵抗層よりも比抵抗が低い第2抵抗層とを含む第1導電型のプレドリフト層に荷電粒子を照射することによって形成され、ライフタイム制御領域の少なくとも一部は、第2抵抗層の範囲内に形成される。

Description

半導体装置とその製造方法
 本明細書に記載の技術は、半導体装置とその製造方法に関する。
 キャリアのライフタイムを制御する目的で、半導体基板の一部に荷電粒子を照射して結晶欠陥を形成することが行われている。例えば、日本国特許公開公報2005-317751号(特許文献1)には、ダイオードとIGBTが同一の半導体基板に形成された半導体装置において、半導体基板のドリフト層のトレンチゲートの底面に近い領域に結晶欠陥を形成している。
特開2005-317751号公報
 結晶欠陥は、通常、半導体基板に対して荷電粒子を照射することによって形成される。荷電粒子は、半導体基板を通過して半導体基板内で停止し、荷電粒子が停止した位置付近に、結晶欠陥密度の高い局所欠陥領域が形成される。この局所欠陥領域がライフタイム制御領域として効果的に機能する。この際、荷電粒子が通過した領域にも、結晶欠陥が形成される。荷電粒子によって結晶欠陥が形成された領域は、荷電粒子の照射前よりも比抵抗が高くなる。その結果、半導体基板の比抵抗の深さ方向の変化が大きくなり、半導体装置のリーク電流の増大や耐圧低下が起こり易くなる。
 本明細書が開示する半導体装置は、半導体基板に形成された第1導電型のドリフト層と、ドリフト層の表面側に位置し、半導体基板の表面に形成された第2導電型のボディ層と、を有している。ドリフト層は、ライフタイム制御領域を有しており、ライフタイム制御領域は、半導体基板の深さ方向に変化するドリフト層の結晶欠陥密度の極大値をhとした場合に、結晶欠陥密度がh/2以上となる領域である。ライフタイム制御領域は、第1抵抗層と、第1抵抗層よりも比抵抗が低い第2抵抗層とを含む第1導電型のプレドリフト層に荷電粒子を照射することによって形成され、ライフタイム制御領域の少なくとも一部は、第2抵抗層の範囲内に形成される。
 上記の半導体装置によれば、ライフタイム制御領域の少なくとも一部は、第2抵抗層の範囲内に形成される。第2抵抗層の比抵抗は、第1抵抗層の比抵抗よりも低いので、第2抵抗層内に結晶欠陥が高密度に形成されても、第2抵抗層の比抵抗が高くなり過ぎることが防止される。従来と比較して、ドリフト層の比抵抗の深さ方向の変化が緩和された半導体装置を提供できる。
 第1抵抗層は、プレドリフト層に荷電粒子を照射する際に、荷電粒子が通過する第3抵抗層と、荷電粒子が通過しない第4抵抗層を備えており、第3抵抗層は、第2抵抗層の表面又は裏面の一方側に配置され、第4抵抗層は、第2抵抗層の表面又は裏面の他方側に配置されていてもよい。この場合、第3抵抗層の比抵抗は、第4抵抗層の比抵抗よりも低いことが好ましい。
 第2抵抗層は、エピタキシャル層であってもよい。
 本明細書は、上記の半導体装置の製造方法を提供することもできる。すなわち、本明細書は、半導体基板に形成された第1導電型のドリフト層と、ドリフト層の表面側に位置し、半導体基板の表面に形成された第2導電型のボディ層と、を有しており、ドリフト層は、半導体基板の深さ方向に変化するドリフト層の結晶欠陥密度の極大値をhとした場合に、結晶欠陥密度がh/2以上である、ライフタイム制御領域を有する半導体装置の製造方法を提供することができる。この製造方法では、ドリフト層を製造する工程は、第1抵抗層と、第1抵抗層よりも比抵抗が低い第2抵抗層とを含む第1導電型のプレドリフト層を形成する工程と、ライフタイム制御領域の少なくとも一部が第2抵抗層に含まれるように、プレドリフト層に荷電粒子を照射する工程とを含む。
 上記の半導体装置の製造方法では、第1抵抗層は、第3抵抗層と、第3抵抗層よりも比抵抗が低い第4抵抗層を有していてもよい。この場合、プレドリフト層を形成する工程では、第2抵抗層は、第3抵抗層と第4抵抗層との間に形成され、荷電粒子を照射する工程では、荷電粒子は、第4抵抗層側からプレドリフト層に照射されることが好ましい。
 第2抵抗層は、エピタキシャル法によって形成してもよい。
実施例1に係る半導体装置の断面図である。 実施例1に係る半導体装置の結晶欠陥形成前後の比抵抗値を示す図である。 従来の半導体装置の結晶欠陥形成前後の比抵抗値を示す図である。 実施例1に係る半導体装置の製造方法を説明する図である。 実施例1に係る半導体装置の製造方法を説明する図である。 実施例1に係る半導体装置の製造方法を説明する図である。 実施例1に係る半導体装置の製造方法を説明する図である。 実施例1に係る半導体装置の製造方法を説明する図である。 変形例に係る半導体装置の製造方法を説明する図である。 変形例に係る半導体装置の製造方法を説明する図である。 変形例に係る半導体装置の製造方法を説明する図である。 変形例に係る半導体装置の製造方法を説明する図である。 実施例2に係る半導体装置の断面図である。 実施例2に係る半導体装置の結晶欠陥形成前後の比抵抗値を示す図である。
 本明細書が開示する半導体装置およびその製造方法では、第1抵抗層は、比抵抗が所定の範囲内である単一層であってもよいし、互いに相違する比抵抗を有する複数の層であってもよい。例えば、第1抵抗層は、第3抵抗層と、第3抵抗層よりも比抵抗が低い第4抵抗層を有していてもよい。この場合、プレドリフト層を形成する工程では、第2抵抗層は、第3抵抗層と第4抵抗層との間に形成され、荷電粒子を照射する工程では、荷電粒子は、第4抵抗層側からプレドリフト層に照射されることが好ましい。
 本明細書が開示する半導体装置およびその製造方法では、第2抵抗層は、比抵抗が深さ方向に一定となる定抵抗領域を含んでおり、定抵抗領域の比抵抗は、第2抵抗層の比抵抗の最小値であってもよい。プレドリフト層を形成する工程では、第2抵抗層の一部に比抵抗が深さ方向に最小かつ深さ方向に一定である定抵抗領域を形成してもよい。定抵抗領域は、エピタキシャル法によって形成することができる。この場合、第2抵抗層は、エピタキシャル法によって形成することが好ましい。荷電粒子を照射する前の段階で、第2抵抗層の比抵抗分布(半導体基板の深さ方向の分布)は、極小値を有する分布であることが好ましく、ピークを有する曲線形状であることが特に好ましい。
 ライフタイム制御領域は、荷電粒子を照射することによって形成される結晶欠陥密度のピークを有している。第2抵抗層の深さ方向の比抵抗の最大値をMXとし、最小値をMNとした場合に、第2抵抗層の比抵抗がMN+(MX-MN)/2以下である低抵抗領域が、ライフタイム制御領域の少なくとも一部と重なっていることが好ましい。荷電粒子を照射する工程では、この結晶欠陥密度のピークが第2抵抗層に形成されるように荷電粒子を照射することが特に好ましい。すなわち、第2抵抗層に荷電粒子が停止するように、照射が行われることが好ましい。
 本願に係る半導体装置は、ドリフト層に荷電粒子を照射して、結晶欠陥密度が高いライフタイム制御領域を形成するものであればよい。例えば、ダイオード、IGBT、またはIGBTと還流ダイオードが同一半導体基板に形成されたRC-IGBTであってもよい。
 半導体装置がダイオードである場合には、半導体基板の裏面(ドリフト層の裏面側)に、ドリフト層よりも第1導電型の不純物濃度が高い第1導電型の半導体層が形成されている。この第1導電型の半導体層とボディ層は、ダイオードのカソード、アノードとして機能する。
 半導体装置がIGBTである場合には、半導体基板の裏面(ドリフト層の裏面側)にコレクタ層が形成されている。半導体基板の表面(ドリフト層の表面側)にボディ層が形成されている。ボディ層の表面の一部にエミッタ層が形成されている。ボディ層およびエミッタ層は半導体基板の表面に露出している。半導体基板の表面側に、エミッタ層とドリフト層とを隔離する部分のボディ層に接する絶縁ゲートが形成されている。
 半導体装置が、IGBTと還流ダイオードが同一半導体基板に形成されたRC-IGBTである場合には、半導体基板の裏面(ドリフト層の裏面側)にコレクタ層またはカソード層が形成されている。半導体基板の表面(ドリフト層の表面側)にボディ層が形成されている。ボディ層の表面の一部にエミッタ層が形成されている。ボディ層およびエミッタ層は半導体基板の表面に露出している。半導体基板の表面側に、エミッタ層とドリフト層とを隔離する部分のボディ層に接するゲート電極が形成されている。RC-IGBTは、ダイオード素子が形成されているダイオード領域とIGBT素子が形成されているIGBT領域が分離されている半導体装置であってもよい。また、半導体基板の表面側の構造が共通しており、裏面側の構造がコレクタ層またはカソード層であって、ダイオード素子とIGBT素子が混在している半導体装置であってもよい。
(半導体装置)
 図1に示す半導体装置10は、IGBTと還流ダイオードが同一の半導体基板100に形成されたRC-IGBTである。
 半導体装置10は、半導体基板100と、半導体基板100の表面側に形成された絶縁ゲート120および表面絶縁膜131と、半導体基板100の表面に接する表面電極141と、半導体基板100の裏面に接する裏面電極142とを備えている。
 半導体基板100は、n型のドリフト層110とp型の低濃度ボディ層104を有している。ドリフト層110の裏面側には、n型のカソード層101とp型のコレクタ層102が形成されている。カソード層101とコレクタ層102は、互いに隣接して半導体基板100の裏面に露出しており、裏面電極142に接している。低濃度ボディ層104の表面側に、n型のエミッタ層105およびp型の高濃度ボディ層106が形成されている。なお、「n型」との表現は、カソード層101およびエミッタ層105のn型の不純物濃度がドリフト層110よりも高いことを示している。同様に、「p型」との表現は、コレクタ層102および高濃度ボディ層106のp型の不純物濃度が低濃度ボディ層104よりも高いことを示している。絶縁ゲート120は、トレンチ121と、トレンチ121の内壁に形成されたゲート絶縁膜122と、ゲート絶縁膜122に覆われてトレンチ121内に充填されているゲート電極123とを備えている。絶縁ゲート120は、エミッタ層105とドリフト層110とを隔離する部分の低濃度ボディ層104に接している。エミッタ層105および高濃度ボディ層106は、表面電極141に接している。ゲート電極123は、表面絶縁膜131によって、表面電極141と隔離されている。
 ドリフト層110は、半導体基板100の表面側から順に、第1ドリフト層111と、第2ドリフト層112と、第3ドリフト層113が積層されている。第2ドリフト層112には、ライフタイム制御領域115が形成されている。ライフタイム制御領域115は、半導体基板100の深さ方向に変化するドリフト層110の結晶欠陥密度の極大値をhとした場合に、結晶欠陥密度がh/2以上の領域である。結晶欠陥密度のピークは第2ドリフト層112内に位置している。第1ドリフト層111の比抵抗をρ(1)とし、第2ドリフト層112の比抵抗をρ(2)とし、第3ドリフト層113の比抵抗をρ(3)とすると、ρ(1)、ρ(2)、ρ(3)は、ほぼ等しい(ρ(1)≒ρ(2)≒ρ(3))。ドリフト層110の比抵抗は、半導体基板100の深さ方向に略一定である。なお、第3ドリフト層113の厚さは、第1ドリフト層111および第2ドリフト層112の厚さに比べて厚く、ライフタイム制御領域115の結晶欠陥密度のピークからドリフト層110の表面(ドリフト層110とボディ層104との界面)までの距離は、ライフタイム制御領域115の結晶欠陥密度のピークからドリフト層110の裏面(ドリフト層110と、カソード層101およびコレクタ層102との界面)までの距離よりも著しく短い。
 図2は、半導体装置10のドリフト層110の比抵抗ρを示す図であって、結晶欠陥形成前のドリフト層(プレドリフト層)の比抵抗を併せて図示している。実線11はドリフト層110の比抵抗ρとドリフト層110の深さDとの関係を示しており、破線12はプレドリフト層の比抵抗ρとプレドリフト層の深さDとの関係を示している。参照番号111~113は、第1ドリフト層111、第2ドリフト層112、第3ドリフト層113の深さ方向の位置を示している。
 図2に示すように、プレドリフト層では、第1ドリフト層111に位置する層(第1プレドリフト層という)の比抵抗ρ(P1)および第3ドリフト層113に位置する層(第3プレドリフト層という)の比抵抗ρ(P3)は、略一定であり、第2ドリフト層112に位置する層(第2プレドリフト層という)の比抵抗ρ(P2)よりも高い。さらに、比抵抗ρ(P1)は、比抵抗ρ(P3)よりも高い(ρ(P1)>ρ(P3)>ρ(P2))。すなわち、第1プレドリフト層および第3プレドリフト層は、第1抵抗層に相当し、第2プレドリフト層は、第1抵抗層よりも比抵抗が低い第2抵抗層に相当する。第1プレドリフト層は、第3抵抗層に相当し、第3プレドリフト層は、第3抵抗層よりも比抵抗が低い第4抵抗層に相当する。なお、荷電粒子を照射する前の段階で、第2プレドリフト層の比抵抗分布は、破線12に示すような極小値を有する分布であることが好ましく、ピークを有する曲線形状であることが特に好ましい。荷電粒子を照射することによって形成される結晶欠陥の密度分布は、半導体装置の深さ方向に極大値ピークを有する曲線形状である。第2プレドリフト層の比抵抗分布が極小値ピークを有する曲線形状であれば、結晶欠陥による第2プレドリフト層の比抵抗の減少を緩和する効果を効率よく得ることができ、第2ドリフト層の比抵抗の深さ方向の変化を小さくすることができる。
 荷電粒子が第3プレドリフト層を通過して第2プレドリフト層内に停止するように半導体基板の裏面側(第3プレドリフト層側)からプレドリフト層に荷電粒子を照射すると、第2プレドリフト層に結晶欠陥密度のピークが形成される。荷電粒子が通過した層(第3抵抗層)である第3プレドリフト層にも、低密度の結晶欠陥が形成される。一方、荷電粒子が到達しない第1プレドリフト層には結晶欠陥が形成されない。結晶欠陥密度は、破線12を上下に反転させたような形状に半導体基板の深さ方向に分布した状態となる。荷電粒子の照射によって形成される結晶欠陥密度が高いほど、結晶欠陥を形成する前に比べて比抵抗が高くなる。結晶欠陥を形成することによって高くなる比抵抗Δρは、結晶欠陥密度分布と同様に、破線12を上下に反転させたような形状に半導体基板の深さ方向に分布した状態となる。
 図3は、従来の半導体装置のプレドリフト層とドリフト層の比抵抗ρの分布を図示している。従来の半導体装置と実施例1に係る半導体装置10との相違点は、プレドリフト層およびドリフト層の比抵抗の深さ方向の分布のみであるので、従来の半導体装置の具体的構造についての説明を省略する。実線21は従来のドリフト層の比抵抗ρと深さDとの関係を示しており、破線22は従来のプレドリフト層の比抵抗ρとプレドリフト層の深さDとの関係を示している。破線22に示すように、プレドリフト層の比抵抗が深さ方向に略一定である場合には、第2プレドリフト層の位置に結晶欠陥密度のピークを形成すると、ドリフト層の比抵抗は、実線21に示すような深さ方向の分布を有するものとなる。
 ドリフト層の比抵抗が実線21に示すような深さ方向の変化の大きい分布になると、IGBT動作時において、ドリフト層の実効的なキャリア密度が低下して、空乏層が拡がり易くなる。その結果、空乏層が裏面のコレクタ層まで達し易くなり、半導体装置の耐圧が低下し、リーク電流が増大する。耐圧低下を抑制する方法としては、半導体基板を厚くする方法とプレドリフト層全体の比抵抗を小さくする方法が挙げられる。しかしながら、半導体基板を厚くすると、半導体装置全体の抵抗が大きくなり、導通不良が起こり易くなる。プレドリフト層全体の比抵抗を小さくすると、ダイオードの特性ばらつきが大きくなる。
 これに対して、実施例1に係る半導体装置10では、図2に示すように、プレドリフト層の比抵抗は、荷電粒子を照射することによって増加する比抵抗Δρを相殺するように分布している。このため、結晶欠陥を形成することによって得られるドリフト層110の比抵抗を深さ方向に略一定とすることができる。半導体装置10では、従来の半導体装置と比較してドリフト層の比抵抗の深さ方向の変化が緩和されているため、ライフタイム制御領域を有する半導体装置において、耐圧の低下およびリーク電流の増大を抑制することと、半導体基板を薄くして導通不良を抑制することとを両立することができる。また、ダイオードを備えた半導体装置においては、ダイオードの特性ばらつきを抑制することができる。
(半導体装置の製造方法)
 半導体装置10のドリフト層を製造する工程を一例を挙げて説明する。なお、半導体装置10のその他の構成については説明を省略するが、従来公知の製造方法を用いて製造することが可能であることは当業者であれば理解できる。
 (プレドリフト層形成工程)
 図4~図6は、プレドリフト層510を形成する工程を示している。図4に示すように、第3プレドリフト層513として、n型の半導体ウェハを準備する。図4に示すn型のウェハの厚さは、第3プレドリフト層513の厚さに略等しい。
 次に、図5に示すように、エピタキシャル法を用いて、第3プレドリフト層513の表面に、エピタキシャル層である第2プレドリフト層512を形成する。不純物濃度が高いほど、プレドリフト層の比抵抗は低くなるから、第2プレドリフト層512の不純物濃度を調整することによって、第2プレドリフト層512の比抵抗を調整できる。第2プレドリフト層512のn型の不純物濃度が、第3プレドリフト層513のn型の不純物濃度よりも高くなるように調整されたn型のドーパントガスおよびシリコン成長ガスの存在下で、エピタキシャル法を行って、第2プレドリフト層512を形成する。
 次に、図6に示すように、エピタキシャル法を用いて、第2プレドリフト層512の表面に、エピタキシャル層である第1プレドリフト層511を形成する。第1プレドリフト層511のn型の不純物濃度が、第2プレドリフト層512および第3プレドリフト層513のn型の不純物濃度よりも低くなるように調整されたn型のドーパントガスおよびシリコン成長ガスの存在下で、エピタキシャル法を行って、第1プレドリフト層511を形成する。その後、熱処理等のアニール処理を行って、n型のドーパントを活性化させる。これによって、第1プレドリフト層511の比抵抗ρ(P1)、第2プレドリフト層512の比抵抗ρ(P2)、第3プレドリフト層513の比抵抗ρ(P3)について、ρ(P1)>ρ(P3)>ρ(P2)となるように調整されたプレドリフト層510を製造することができる。
 (荷電粒子照射工程)
 図7,8は荷電粒子を照射する工程を示している。図7は、プレドリフト層510を形成した後に、さらに、表面電極141および裏面電極142を除く半導体基板100の表面側および裏面側の構造を形成した後の状態を示している。
 荷電粒子を照射する工程では、半導体基板100の裏面側から荷電粒子を照射する。照射する荷電粒子は、特に限定されないが、ヘリウム(He、He)イオン、水素(H、H、H)イオンが特に好ましい。半導体基板100の裏面側から照射された荷電粒子は、第3プレドリフト層513を通過し、第2プレドリフト層512内に停止する。荷電粒子が停止する第2プレドリフト層512には、結晶欠陥密度のピークが形成され、高密度の結晶欠陥が形成される。荷電粒子が通過する第3プレドリフト層513にも、低密度の結晶欠陥が形成される。これによって、第1プレドリフト層511、第2プレドリフト層512、第3プレドリフト層513は、図1に示すように、それぞれ第1ドリフト層111、第2ドリフト層112、第3ドリフト層113となる。荷電粒子の照射によって第1プレドリフト層111に形成される結晶欠陥密度をX(1)とし、第2プレドリフト層112に形成される結晶欠陥密度をX(2)とし、第3プレドリフト層113に形成される結晶欠陥密度をX(3)とすると、X(2)>X(3)>X(1)である。荷電粒子の照射によって形成される結晶欠陥密度が高いほど、荷電粒子の照射によるドリフト層の比抵抗の上昇が大きくなる。第1プレドリフト層511と第1ドリフト層111との比抵抗の差をΔρ(1)=ρ(1)-ρ(P1)とし、第2プレドリフト層512と第2ドリフト層112との比抵抗の差をΔρ(2)=ρ(2)-ρ(P2)とし、第3プレドリフト層513と第3ドリフト層113との比抵抗の差をΔρ(3)=ρ(3)-ρ(P3)とすると、Δρ(1)<Δρ(3)<Δρ(2)である。ここで、各プレドリフト層の比抵抗について、ρ(P1)>ρ(P3)>ρ(P2)であるから、荷電粒子を照射した後に得られる各ドリフト層の比抵抗の差を小さくできる。本実施例では、荷電粒子を照射した後に、各ドリフト層の比抵抗が、ρ(1)≒ρ(2)≒ρ(3)となるように、各プレドリフト層の比抵抗ρ(P1)、ρ(P2)、ρ(P3)が予め調整されている。
 上記のとおり、本実施例に係る半導体装置の製造方法によれば、プレドリフト層510を形成する工程において、第3抵抗層である第1プレドリフト層511と、第4抵抗層である第3プレドリフト層513と、第2抵抗層である第2プレドリフト層512が形成される。その後に行う荷電粒子を照射する工程では、ライフタイム制御領域115の少なくとも一部が第2プレドリフト層512に含まれるように、プレドリフト層510に荷電粒子を照射する。荷電粒子は、第3プレドリフト層513を通過して、第2プレドリフト層512内に停止する。結晶欠陥は、第2プレドリフト層512内に高密度に形成され、第3プレドリフト層513内に低密度に形成される。結晶欠陥密度のピークは、荷電粒子が停止する第2プレドリフト層512内に位置する。第2プレドリフト層512の比抵抗は、第1プレドリフト層511および第3プレドリフト層513よりも低いので、結晶欠陥が高密度に形成されることによって、第2プレドリフト層512の比抵抗が高くなり過ぎることが防止できる。荷電粒子が通過する第3プレドリフト層513の比抵抗は、荷電粒子が通過しない第1プレドリフト層511の比抵抗よりも低いので、第3プレドリフト層513内に低密度に形成される結晶欠陥に起因して第3プレドリフト層513の比抵抗が高くなることが防止できる。本実施例によれば、従来と比較して、ドリフト層110の比抵抗の深さ方向の変化が緩和された半導体装置10を容易に製造することができる。また、第2プレドリフト層512をエピタキシャル層として形成するため、第2プレドリフト層512中の非導電型不純物(例えば、炭素、酸素)は、低濃度かつばらつきが小さくなる。その結果、荷電粒子を照射することによってライフタイム制御領域115を形成した場合に、非導電型不純物に起因して形成される結晶欠陥のばらつきが小さくなり、半導体装置10の特性ばらつきを小さくすることができる。また、半導体ウェハをもっとも厚い第3プレドリフト層513として利用できるので、半導体装置10を薄くすることができるとともに、半導体装置10の製造工程を簡略化することができる。半導体装置10の材料コスト、製造コストを低減できる。
 (変形例)
 上記に説明した実施例において、第2プレドリフト層512は、比抵抗が一定である定抵抗領域を含むように形成されてもよい。すなわち、アニール処理前の段階では、プレドリフト層510は、図9の細い破線13に示すような比抵抗の分布を有するものであってもよい。第2プレドリフト層512の比抵抗は、アニール処理前には、細い破線13に示すように比抵抗が一定である定抵抗領域を含むものであってもよい。また、この場合、定抵抗領域の比抵抗は、第2プレドリフト層512の比抵抗の最小値であってもよい。なお、図9の細い破線13に示す比抵抗分布を有するプレドリフト層510にアニール処理を行うと、図9の破線12に示す曲線状の比抵抗分布を有するプレドリフト層510に変化する。上記で説明した、第2プレドリフト層512をエピタキシャル法で形成する方法では、細い破線13のような比抵抗が一定である定抵抗領域を有する第2プレドリフト層512を容易に形成することが可能である。
 実施例2では、実施例1で説明した半導体装置10のプレドリフト層形成工程について、他の一例を挙げて説明する。なお、実施例1と同様に、半導体装置10のその他の構成については説明を省略するが、従来公知の製造方法を用いて製造することが可能であることは当業者であれば理解できる。また、荷電粒子照射工程は、実施例1と同様の工程であるので、説明を省略する。
 (プレドリフト層形成工程)
 図10~図12は、プレドリフト層610を形成する工程を示している。図10に示すように、第3プレドリフト層613として、n型の半導体ウェハを準備する。なお、図10に示すn型の半導体ウェハの厚さは、プレドリフト層形成工程終了後の第3プレドリフト層613の厚さよりも厚い。
 次に、図11に示すように、第3プレドリフト層613の表層に、n型のドーパントを照射して、第3プレドリフト層613よりもn型の不純物濃度が高い、第2プレドリフト層612を形成する。第3プレドリフト層613の厚さは、第2プレドリフト612の厚さの分だけ薄くなる。
 次に、図12に示すように、エピタキシャル法を用いて、第2プレドリフト層612の表面に、エピタキシャル層である第1プレドリフト層611を形成する。第1プレドリフト層611のn型の不純物濃度が、第2プレドリフト層612および第3プレドリフト層613のn型の不純物濃度よりも低くなるように調整されたn型のドーパントガスおよびシリコン成長ガスの存在下で、エピタキシャル法を行って、第1プレドリフト層611を形成する。その後、熱処理等のアニール処理を行って、n型のドーパントを活性化させる。これによって、実施例1と同様に、第1プレドリフト層611の比抵抗ρ(P1)、第2プレドリフト層612の比抵抗ρ(P2)、第3プレドリフト層613の比抵抗ρ(P3)について、ρ(P1)>ρ(P3)>ρ(P2)となるように調整されたプレドリフト層610を製造することができる。実施例2では、第2プレドリフト層612をエピタキシャル層として形成しないため、実施例1で説明した方法よりも、材料コスト、製造コストをより低減することができる。その後、図7において、プレドリフト層510に代えてプレドリフト層610を用いて、実施例1と同様に、表面電極141および裏面電極142を除く半導体基板100の表面側および裏面側の構造を形成し、荷電粒子照射工程を行う。これによって、半導体装置10を製造することができる。
 実施例3では、半導体装置30としてIGBTを例示し、半導体基板の表面側から荷電粒子を照射して結晶欠陥を形成する場合について説明する。図13に示すように、半導体装置30は、半導体基板300と、半導体基板300の表面側に形成された絶縁ゲート320および表面絶縁膜331と、半導体基板300の表面に接する表面電極341と、半導体基板300の裏面に接する裏面電極342とを備えている。半導体基板300は、n型のドリフト層310とp型の低濃度ボディ層304を有している。ドリフト層310の裏面側には、p型のコレクタ層302が形成されている。コレクタ層302は、半導体基板300の裏面に露出しており、裏面電極342に接している。
 ドリフト層310は、半導体基板300の裏面側から順に、第1ドリフト層311と、第2ドリフト層312と、第3ドリフト層313が積層されている。第2ドリフト層312には、ライフタイム制御領域315が形成されている。ライフタイム制御領域315は、半導体基板300の深さ方向に変化するドリフト層310の結晶欠陥密度の極大値をhとした場合に、結晶欠陥密度がh/2以上の領域である。結晶欠陥密度のピークは第2ドリフト層312内に位置している。第1ドリフト層311の比抵抗をρ(1)とし、第2ドリフト層312の比抵抗をρ(2)とし、第3ドリフト層313の比抵抗をρ(3)とすると、ρ(1)、ρ(2)、ρ(3)は、ほぼ等しい(ρ(1)≒ρ(2)≒ρ(3))。ドリフト層310の比抵抗は、半導体基板300の深さ方向に略一定である。なお、第3ドリフト層313の厚さは、第1ドリフト層311および第2ドリフト層312の厚さに比べて厚く、ライフタイム制御領域115の結晶欠陥密度のピークからドリフト層310の裏面(ドリフト層310と、コレクタ層302との界面)までの距離は、ライフタイム制御領域315の結晶欠陥密度のピークからドリフト層310の表面(ドリフト層310とボディ層304との界面)までの距離よりも著しく短い。その他の構成については、図1に示す半導体装置10と同様であるので、100番台の参照番号を300番台に読み替えることによって、説明を省略する。
 図14は、半導体装置30のドリフト層310の比抵抗ρを示す図であって、結晶欠陥形成前のドリフト層(プレドリフト層)の比抵抗を併せて図示している。実線31はドリフト層310の比抵抗ρとドリフト層310の深さDとの関係を示しており、破線32はプレドリフト層の比抵抗ρとプレドリフト層の深さDとの関係を示している。参照番号311~313は、第1ドリフト層311、第2ドリフト層312、第3ドリフト層313の深さ方向の位置を示している。
 図14に示すように、プレドリフト層では、第1ドリフト層311に位置する層(第1プレドリフト層という)の比抵抗ρ(P1)および第3ドリフト層313に位置する層(第3プレドリフト層という)の比抵抗ρ(P3)は、略一定であり、第2ドリフト層312に位置する層(第2プレドリフト層という)の比抵抗ρ(P2)よりも高い。さらに、比抵抗ρ(P1)は、比抵抗ρ(P3)よりも高い(ρ(P1)>ρ(P3)>ρ(P2))。すなわち、第1プレドリフト層および第3プレドリフト層は、第1抵抗層に相当し、第2プレドリフト層は、第1抵抗層よりも比抵抗が低い第2抵抗層に相当する。第1プレドリフト層は、第3抵抗層に相当し、第3プレドリフト層は、第3抵抗層よりも比抵抗が低い第4抵抗層に相当する。
 荷電粒子が第3プレドリフト層を通過して第2プレドリフト層内に停止するように半導体基板の表面側(第3プレドリフト層側)からプレドリフト層に荷電粒子を照射すると、第2プレドリフト層に結晶欠陥密度のピークが形成される。荷電粒子が通過した層(第3抵抗層)である第3プレドリフト層にも、低密度の結晶欠陥が形成される。一方、荷電粒子が到達しない第1プレドリフト層には結晶欠陥が形成されない。結晶欠陥密度は、破線32を上下に反転させたような形状に半導体基板の深さ方向に分布した状態となる。荷電粒子の照射によって形成される結晶欠陥密度が高いほど、結晶欠陥を形成する前に比べて比抵抗が高くなる。結晶欠陥を形成することによって高くなる比抵抗Δρは、結晶欠陥密度分布と同様に、破線32を上下に反転させたような形状に半導体基板の深さ方向に分布した状態となる。
 半導体装置30の製造方法としては、実施例1,2で説明した製造方法を適用することができる。n型の半導体ウェハを第3プレドリフト層として用いて、実施例1または2で説明した方法で第1プレドリフト層および第2プレドリフト層を形成し、半導体基板の表面側から荷電粒子を照射すれば、半導体装置30を容易に製造することができる。
 なお、実施例で説明した製造方法では、半導体ウェハをドリフト層の一部として用いる場合を例示して説明したが、これに限定されない。例えば、半導体装置30において、半導体ウェハをコレクタ層として用いて、ドリフト層をエピタキシャル法によって製造することもできる。また、実施例では、RC-IGBTおよびIGBTを例示して説明したが、これに限定されない。例えば、半導体装置がダイオードである場合にも、実施例1~3の構成および製造方法を適用することができる。
 以上、本発明の実施例について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
 本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
 

Claims (6)

  1.  半導体基板に形成された第1導電型のドリフト層と、
     ドリフト層の表面側に位置し、半導体基板の表面に形成された第2導電型のボディ層と、を有しており、
     ドリフト層は、ライフタイム制御領域を有しており、
     ライフタイム制御領域は、半導体基板の深さ方向に変化するドリフト層の結晶欠陥密度の極大値をhとした場合に、結晶欠陥密度がh/2以上となる領域であり、第1抵抗層と、第1抵抗層よりも比抵抗が低い第2抵抗層とを含む第1導電型のプレドリフト層に荷電粒子を照射することによって形成され、
     ライフタイム制御領域の少なくとも一部は、第2抵抗層の範囲内に形成される、半導体装置。
  2.  第1抵抗層は、プレドリフト層に荷電粒子を照射する際に、荷電粒子が通過する第3抵抗層と、荷電粒子が通過しない第4抵抗層を備えており、
     第3抵抗層は、第2抵抗層の表面又は裏面の一方側に配置され、第4抵抗層は、第2抵抗層の表面又は裏面の他方側に配置されており、
     第3抵抗層の比抵抗は、第4抵抗層の比抵抗よりも低い、請求項1に記載の半導体装置。
  3.  第2抵抗層は、エピタキシャル層である、請求項1または2に記載の半導体装置。
  4.  半導体基板に形成された第1導電型のドリフト層と、
     ドリフト層の表面側に位置し、半導体基板の表面に形成された第2導電型のボディ層と、を有しており、
     ドリフト層は、半導体基板の深さ方向に変化するドリフト層の結晶欠陥密度の極大値をhとした場合に、結晶欠陥密度がh/2以上である、ライフタイム制御領域を有する半導体装置の製造方法であって、
     ドリフト層を製造する工程は、
     第1抵抗層と、第1抵抗層よりも比抵抗が低い第2抵抗層とを含む第1導電型のプレドリフト層を形成する工程と、
     ライフタイム制御領域の少なくとも一部が第2抵抗層に含まれるように、プレドリフト層に荷電粒子を照射する工程とを含む、半導体装置の製造方法。
  5.  第1抵抗層は、第3抵抗層と、第3抵抗層よりも比抵抗が低い第4抵抗層を有しており、
     プレドリフト層を形成する工程では、第2抵抗層は、第3抵抗層と第4抵抗層との間に形成され、
     荷電粒子を照射する工程では、荷電粒子は、第4抵抗層側からプレドリフト層に照射される、請求項4に記載の半導体装置の製造方法。
  6.  第2抵抗層は、エピタキシャル法によって形成する、請求項4または5に記載の半導体装置の製造方法。
     
     
PCT/JP2011/063137 2011-06-08 2011-06-08 半導体装置とその製造方法 WO2012169022A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012508844A JP5505498B2 (ja) 2011-06-08 2011-06-08 半導体装置とその製造方法
EP11867376.3A EP2720254B1 (en) 2011-06-08 2011-06-08 Semiconductor device and method for producing same
PCT/JP2011/063137 WO2012169022A1 (ja) 2011-06-08 2011-06-08 半導体装置とその製造方法
US13/695,749 US20140077253A1 (en) 2011-06-08 2011-06-08 Semiconductor device and method of manufacturing the same
CN2011800683169A CN103392224A (zh) 2011-06-08 2011-06-08 半导体装置及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/063137 WO2012169022A1 (ja) 2011-06-08 2011-06-08 半導体装置とその製造方法

Publications (1)

Publication Number Publication Date
WO2012169022A1 true WO2012169022A1 (ja) 2012-12-13

Family

ID=47295629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063137 WO2012169022A1 (ja) 2011-06-08 2011-06-08 半導体装置とその製造方法

Country Status (5)

Country Link
US (1) US20140077253A1 (ja)
EP (1) EP2720254B1 (ja)
JP (1) JP5505498B2 (ja)
CN (1) CN103392224A (ja)
WO (1) WO2012169022A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166703A1 (ja) * 2014-04-28 2015-11-05 トヨタ自動車株式会社 半導体装置及び半導体装置の製造方法
JPWO2014013821A1 (ja) * 2012-07-18 2016-06-30 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2019080035A (ja) * 2017-10-26 2019-05-23 株式会社デンソー 炭化珪素半導体装置およびその製造方法
JP7363336B2 (ja) 2019-10-11 2023-10-18 富士電機株式会社 半導体装置および半導体装置の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013002031T5 (de) * 2012-08-22 2015-03-12 Fuji Electric Co., Ltd. Halbleitervorrichtung und Halbleitervorrichtungsherstellungsverfahren
JP6185511B2 (ja) * 2015-05-26 2017-08-23 トヨタ自動車株式会社 半導体装置
JP6514035B2 (ja) * 2015-05-27 2019-05-15 株式会社豊田中央研究所 半導体装置
CN107086217B (zh) * 2016-02-16 2023-05-16 富士电机株式会社 半导体装置
JP6787690B2 (ja) * 2016-05-19 2020-11-18 ローム株式会社 高速ダイオード及びその製造方法
TWI607563B (zh) * 2017-04-21 2017-12-01 Maxpower Semiconductor Inc With a thin bottom emitter layer and in the trenches in the shielded area and the termination ring Incoming dopant vertical power transistors
WO2019198182A1 (ja) * 2018-04-11 2019-10-17 三菱電機株式会社 半導体装置、半導体ウエハおよび半導体装置の製造方法
US20200105874A1 (en) * 2018-10-01 2020-04-02 Ipower Semiconductor Back side dopant activation in field stop igbt
CN114639607B (zh) * 2022-03-16 2023-05-26 江苏东海半导体股份有限公司 Mos器件的形成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077357A (ja) * 1999-08-31 2001-03-23 Toshiba Corp 半導体装置
JP2002093813A (ja) * 2000-09-13 2002-03-29 Toyota Motor Corp 半導体装置の製造方法
WO2007055352A1 (ja) * 2005-11-14 2007-05-18 Fuji Electric Device Technology Co., Ltd. 半導体装置およびその製造方法
JP2008135439A (ja) * 2006-11-27 2008-06-12 Toyota Motor Corp バイポーラ半導体装置とその製造方法
JP2008171952A (ja) * 2007-01-10 2008-07-24 Toyota Central R&D Labs Inc 半導体装置とその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2213988B (en) * 1987-12-18 1992-02-05 Matsushita Electric Works Ltd Semiconductor device
JPH07107935B2 (ja) * 1988-02-04 1995-11-15 株式会社東芝 半導体装置
JPH03171777A (ja) * 1989-11-30 1991-07-25 Toshiba Corp 半導体装置
JPH09172167A (ja) * 1995-12-19 1997-06-30 Toshiba Corp 半導体装置
JP3488599B2 (ja) * 1996-10-17 2004-01-19 株式会社東芝 半導体装置
JP3622405B2 (ja) * 1997-02-28 2005-02-23 株式会社日立製作所 半導体スイッチング素子及びigbtモジュール
WO1999009600A1 (en) * 1997-08-14 1999-02-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method for manufacturing the same
US6261874B1 (en) * 2000-06-14 2001-07-17 International Rectifier Corp. Fast recovery diode and method for its manufacture
JP3906076B2 (ja) * 2001-01-31 2007-04-18 株式会社東芝 半導体装置
JP4791704B2 (ja) * 2004-04-28 2011-10-12 三菱電機株式会社 逆導通型半導体素子とその製造方法
JP5374883B2 (ja) * 2008-02-08 2013-12-25 富士電機株式会社 半導体装置およびその製造方法
JP2011086883A (ja) * 2009-10-19 2011-04-28 Denso Corp 絶縁ゲートバイポーラトランジスタおよびその設計方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077357A (ja) * 1999-08-31 2001-03-23 Toshiba Corp 半導体装置
JP2002093813A (ja) * 2000-09-13 2002-03-29 Toyota Motor Corp 半導体装置の製造方法
WO2007055352A1 (ja) * 2005-11-14 2007-05-18 Fuji Electric Device Technology Co., Ltd. 半導体装置およびその製造方法
JP2008135439A (ja) * 2006-11-27 2008-06-12 Toyota Motor Corp バイポーラ半導体装置とその製造方法
JP2008171952A (ja) * 2007-01-10 2008-07-24 Toyota Central R&D Labs Inc 半導体装置とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2720254A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014013821A1 (ja) * 2012-07-18 2016-06-30 富士電機株式会社 半導体装置および半導体装置の製造方法
WO2015166703A1 (ja) * 2014-04-28 2015-11-05 トヨタ自動車株式会社 半導体装置及び半導体装置の製造方法
JP2015211149A (ja) * 2014-04-28 2015-11-24 トヨタ自動車株式会社 半導体装置及び半導体装置の製造方法
JP2019080035A (ja) * 2017-10-26 2019-05-23 株式会社デンソー 炭化珪素半導体装置およびその製造方法
JP7102948B2 (ja) 2017-10-26 2022-07-20 株式会社デンソー 炭化珪素半導体装置およびその製造方法
JP7363336B2 (ja) 2019-10-11 2023-10-18 富士電機株式会社 半導体装置および半導体装置の製造方法

Also Published As

Publication number Publication date
JP5505498B2 (ja) 2014-05-28
EP2720254B1 (en) 2019-04-24
EP2720254A4 (en) 2014-11-26
CN103392224A (zh) 2013-11-13
US20140077253A1 (en) 2014-03-20
JPWO2012169022A1 (ja) 2015-02-23
EP2720254A1 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5505498B2 (ja) 半導体装置とその製造方法
US10629678B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP5034315B2 (ja) 半導体装置及びその製造方法
JP6181597B2 (ja) 半導体装置及び半導体装置の製造方法
JP4919700B2 (ja) 半導体装置及びその製造方法
JP5742962B2 (ja) 半導体装置およびその製造方法
JP2013074181A (ja) 半導体装置とその製造方法
WO2014087499A1 (ja) 半導体装置
JP2019003969A (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US20150008478A1 (en) Semiconductor device and manufacturing method of the same
KR20160064194A (ko) 절연 게이트 바이폴러 트랜지스터 및 그 제조 방법
JP2010067901A (ja) 半導体装置とその製造方法
JPH06314801A (ja) 半導体装置およびその製造方法
JP6103839B2 (ja) 半導体装置および半導体装置の製造方法
JP2008140968A (ja) トレンチショットキバリアダイオード
JP6665713B2 (ja) 半導体装置
WO2015037101A1 (ja) 半導体装置とその製造方法
JP6639739B2 (ja) 半導体装置
JP2017092283A (ja) 半導体装置およびその製造方法
JP5588270B2 (ja) 半導体装置及びその製造方法
JP5548066B2 (ja) 半導体装置及びその製造方法
JP2015090953A (ja) Mos型半導体装置の製造方法
JP5707765B2 (ja) 半導体装置の製造方法
CN116547788A (zh) 半导体装置的制造方法以及半导体装置
JP2011108915A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012508844

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13695749

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867376

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011867376

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE