WO2014087499A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2014087499A1
WO2014087499A1 PCT/JP2012/081483 JP2012081483W WO2014087499A1 WO 2014087499 A1 WO2014087499 A1 WO 2014087499A1 JP 2012081483 W JP2012081483 W JP 2012081483W WO 2014087499 A1 WO2014087499 A1 WO 2014087499A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
semiconductor substrate
impurity concentration
depth
semiconductor device
Prior art date
Application number
PCT/JP2012/081483
Other languages
English (en)
French (fr)
Inventor
亀山 悟
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to KR1020157013114A priority Critical patent/KR20150066596A/ko
Priority to JP2014550844A priority patent/JPWO2014087499A1/ja
Priority to CN201280077544.7A priority patent/CN104838503A/zh
Priority to DE112012007200.6T priority patent/DE112012007200T5/de
Priority to PCT/JP2012/081483 priority patent/WO2014087499A1/ja
Priority to BR112015012736A priority patent/BR112015012736A2/pt
Priority to US14/443,509 priority patent/US20150318385A1/en
Publication of WO2014087499A1 publication Critical patent/WO2014087499A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66128Planar diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes

Definitions

  • the technology described in this specification relates to a semiconductor device.
  • Patent Document 1 discloses a technique for reducing the amount of holes injected into the cathode region in order to improve high speed and low loss.
  • Patent Document 1 discloses a shallow high-concentration p exposed on the surface of a semiconductor substrate in order to reduce the dose of p-type impurities in the anode region and reduce the amount of holes injected into the cathode region.
  • the layers and the deep low-concentration p layers exposed on the surface of the semiconductor substrate are alternately arranged in the planar direction of the semiconductor substrate.
  • the first semiconductor device disclosed in this specification includes a semiconductor substrate having an anode region and a cathode region.
  • the anode region has a first conductivity type first region having a maximum value of the first conductivity type impurity concentration at a position that is a first depth from the surface of the semiconductor substrate, and the surface side of the semiconductor substrate from the first depth.
  • the first conductivity type second region having the maximum value of the first conductivity type impurity concentration at a position of the second depth, and between the first region and the second region, the first conductivity type
  • a third region having an impurity concentration of 1/10 or less of the surface of the semiconductor substrate.
  • the first region affects the hole injection amount. This can be suppressed.
  • the first conductivity type impurity concentration in the first region can be increased in order to ensure the breakdown voltage, and the first conductivity type impurity in the second region can be decreased in order to suppress the hole injection amount. And a reduction in the amount of hole injection can both be achieved.
  • the third region may be a region containing a second conductivity type impurity. Furthermore, at least a part of the third region is exposed on the surface of the semiconductor substrate, and may be Schottky bonded to the surface electrode of the semiconductor substrate.
  • the impurity concentration at the first depth in the first region is preferably 1 ⁇ 10 16 atoms / cm 3 or less.
  • the second semiconductor device disclosed in this specification includes a diode region and an IGBT region on the same semiconductor substrate.
  • the diode region includes an anode region and a cathode region.
  • the anode region has a first conductivity type first region having a maximum value of the first conductivity type impurity concentration at a position that is a first depth from the surface of the semiconductor substrate, and the surface side of the semiconductor substrate from the first depth.
  • the second region of the first conductivity type having the maximum value of the impurity concentration of the first conductivity type.
  • the IGBT region includes a first conductivity type body region, a second conductivity type drift region, a second conductivity type emitter region, and a first conductivity type collector region, and the body region is a surface of the semiconductor substrate.
  • the first conductivity type impurity concentration has a first maximum value at a position at a first depth from the first depth, and the first conductivity type impurity concentration has a position closer to the surface side of the semiconductor substrate than the first depth. It has a second maximum value.
  • the second semiconductor device in order to increase the first conductivity type impurity concentration in the first region in order to ensure a breakdown voltage, and to suppress the hole injection amount. Impurities of the first conductivity type in the second region can be reduced.
  • the third region having a sufficiently low impurity concentration of the first conductivity type is included between the first region and the second region, it is possible to suppress the first region from affecting the hole injection amount.
  • the breakdown voltage is ensured in the region having the first maximum value, and holes can be efficiently extracted in the region having the second maximum value during the IGBT operation.
  • FIG. 1 is a plan view of a semiconductor device according to Example 1.
  • FIG. FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 2 is a diagram conceptually showing an impurity concentration distribution in an anode region of the semiconductor device of FIG. 1.
  • 6 is a diagram illustrating a method for manufacturing the semiconductor device of Example 1.
  • FIG. 6 is a diagram illustrating a method for manufacturing the semiconductor device of Example 1.
  • FIG. 6 is a diagram illustrating a method for manufacturing the semiconductor device of Example 1.
  • FIG. 6 is a diagram illustrating a method for manufacturing the semiconductor device of Example 1.
  • FIG. It is a longitudinal cross-sectional view of the semiconductor device which concerns on a modification. It is a top view of the semiconductor device which concerns on a modification.
  • FIG. 7 is a longitudinal sectional view of a semiconductor device according to Example 2.
  • FIG. FIG. 12 is a diagram conceptually showing an impurity concentration distribution in an anode region of the semiconductor device of FIG. 11.
  • 6 is a diagram illustrating a method for manufacturing the semiconductor device of Example 2.
  • FIG. 6 is a diagram illustrating a method for manufacturing the semiconductor device of Example 2.
  • FIG. 6 is a diagram illustrating a method for manufacturing the semiconductor device of Example 2.
  • FIG. 6 is a diagram illustrating a method for manufacturing the semiconductor device of Example 2.
  • FIG. 6 is a diagram illustrating a method for manufacturing the semiconductor device of Example 2.
  • FIG. 6 is a diagram illustrating a method for manufacturing the semiconductor device of Example 2.
  • FIG. 6 is a diagram illustrating a method for manufacturing the semiconductor device of Example 2.
  • FIG. 12 is a diagram conceptually showing an impurity concentration distribution in an anode region of the semiconductor device of FIG. 11.
  • 6 is a diagram illustrating a method for manufacturing the semiconductor device
  • FIG. 6 is a longitudinal sectional view of a semiconductor device of Example 3.
  • FIG. FIG. 20 conceptually shows an impurity concentration distribution in an anode region of the semiconductor device of FIG. 19.
  • FIG. 20 conceptually shows an impurity concentration distribution in the body region of the semiconductor device of FIG. 19 and in the vicinity thereof. It is a longitudinal cross-sectional view of the semiconductor device which concerns on a modification.
  • the semiconductor device 10 includes a semiconductor substrate 100 including a cell region 11 and a peripheral region 12.
  • the surface electrode 132 is not shown.
  • the semiconductor substrate 100 includes an n-type cathode layer 101 exposed on the back surface (surface in the negative direction of the z-axis), and an n-type drift layer provided on the surface of the cathode layer 101 (surface in the positive direction of the z-axis). 102.
  • the cathode layer 101 and the drift layer 102 constitute a cathode region.
  • the cathode layer 101 is in contact with the back electrode 131.
  • an anode region 120 is provided on the surface of the drift layer 102, and the anode region 120 includes a first region 103 in contact with the surface of the drift layer 102 and a second region 105 exposed on the surface of the semiconductor substrate 100.
  • a third region 104 provided between the first region 103 and the second region 105.
  • the second region 105 is in contact with the surface electrode 132.
  • p-type FLR layers 111 and 112 are provided on the surface of the drift layer 102.
  • the surface of the FLR layer 111 is in contact with the surface electrode 132 on the central side of the semiconductor substrate 100 and in contact with the insulating film 133 on the peripheral side.
  • the FLR layers 111 and 112 are peripheral breakdown voltage structures of the semiconductor device 10.
  • the form of the peripheral breakdown voltage structure is not limited to the FLR layer, and a conventionally known structure such as a RESURF layer can be used.
  • FIG. 3 is a diagram showing a p-type impurity concentration distribution in the depth direction of the anode region 120.
  • the vertical axis indicates the position of the semiconductor substrate 100 in the depth direction.
  • A1 is the position of the upper end of the second area 105
  • B1 is the position of the boundary between the second area 105 and the third area 104
  • C1 is the position of the boundary between the third area 104 and the first area 103.
  • D1 is the position of the boundary between the first region 103 and the drift layer 102.
  • Reference numerals 173 and 175 indicate p-type impurity concentration distributions of the first region 103 and the second region 105, respectively.
  • a p-type impurity concentration distribution in an anode region of a conventional semiconductor device is also illustrated as a reference number 179.
  • the maximum value of the p-type impurity concentration in the distribution 173 is located at the first depth from the surface of the semiconductor substrate 100, and the maximum value of the p-type impurity concentration in the distribution 175 is the second value from the surface of the semiconductor substrate 100. Located at depth.
  • the maximum value of the p-type impurity concentration in the first region 103 (the peak concentration value of the distribution 173) is 2 ⁇ 10 16 atoms / cm 3 .
  • the p-type impurity concentration in the second region is the highest on the surface of the semiconductor substrate 100 (that is, the depth A1) and is 1 ⁇ 10 17 atoms / cm 3 .
  • the p-type impurity concentration of the third region 104 is lower than 1 ⁇ 10 16 atoms / cm 3 .
  • the p-type impurity concentration in the third region 104 is not more than 1/10 of the p-type impurity concentration at the depth A 1 that is the surface position of the semiconductor substrate 100.
  • the p-type impurity concentration in the anode region becomes the maximum with the surface (depth A1) of the semiconductor substrate being increased, and becomes lower as the depth increases. Therefore, in order to increase the p-type impurity concentration in the region near the cathode region of the anode region in order to ensure the breakdown voltage of the semiconductor device, it is necessary to increase the p-type impurity concentration on the surface of the semiconductor substrate. If the p-type impurity concentration on the surface of the semiconductor substrate is high, the amount of holes injected increases, and the high speed and low loss characteristics of the semiconductor device decrease.
  • the p-type impurity concentration distribution 173 in the first region 103 and the p-type impurity concentration distribution 175 in the second region 105 can be individually designed independently.
  • the semiconductor device 10 includes a third region 104 having a low p-type impurity concentration between the first region 103 and the second region 105.
  • the p-type impurity concentration of the third region 104 is 1/10 or less of the p-type impurity concentration at the depth A1 that is the surface position of the semiconductor substrate 100 as in this embodiment, the first region 103 It is possible to sufficiently suppress the influence of the p-type impurity concentration on the hole injection amount.
  • FIGS. 4 to 6 show only the cell region 11 of FIG. 2, and only the step of forming the anode region 120 in the cell region 11 will be described using these drawings.
  • Other configurations of the semiconductor device 10 can be formed by a method similar to a conventional method for manufacturing a semiconductor device.
  • a semiconductor substrate 500 is prepared.
  • an n + layer 501 that becomes the cathode layer 101 and an n layer 502 that becomes the drift layer 102 are stacked in this order from the back surface side.
  • p-type impurity ions are implanted into the n layer 502 at a position that becomes the second depth from the surface of the semiconductor substrate 500.
  • the second depth is a position that is substantially the surface of the semiconductor substrate 500.
  • a p-type ion implantation layer 505 is formed as shown in FIG.
  • the n + layer 501 may be formed on the semiconductor substrate 500 after performing the step of forming the surface structure of the semiconductor device 10 described below.
  • p-type impurity ions are implanted into the first layer from the surface of the semiconductor substrate 500 in the n layer 502, and as shown in FIG. 503 is formed.
  • the first depth is a position deeper than the second depth (position in the negative direction of the z axis).
  • an intermediate layer 504 having a low p-type impurity concentration is formed between the ion implantation layer 503 and the ion implantation layer 505.
  • the second region 105 covers the entire surface of the third region 104.
  • the present invention is not limited to this.
  • the second region 205 may be formed in a part of the surface of the third region 204 in the cell region.
  • the second region 205 is formed in a stripe shape extending in the y direction when the surface of the semiconductor substrate 200 is viewed in plan.
  • the second region 205 and the third region 204 are exposed on the surface of the semiconductor substrate 200 and are in contact with the surface electrode 132.
  • the second region 205 and the surface electrode 132 are in ohmic contact, and the third region 204 and the surface electrode 132 are in Schottky contact.
  • circular second regions 215 may be distributed on the surface of the third region 214.
  • FIG. 11 is a longitudinal sectional view of the cell region of the semiconductor device 30 according to the second embodiment.
  • the semiconductor device 30 includes a semiconductor substrate 300.
  • the semiconductor substrate 300 includes an n-type cathode layer 301, an n-type drift layer 302, a p-type first region 303, an n-type third region 304, and a p-type, which are stacked in order from the back side.
  • the second region 305 is provided.
  • the cathode layer 301 and the drift layer 302 constitute a cathode region.
  • the first region 303, the third region 304 and the second region 305 constitute an anode region 320.
  • the cathode layer 301 is in contact with the back electrode 131, and the second region 305 is in contact with the front electrode 132.
  • the other configuration of the semiconductor device 30 is the same as that of the semiconductor device 10 shown in FIG.
  • FIG. 12 is a diagram showing an impurity concentration distribution in the depth direction of the anode region 320.
  • the vertical axis indicates the position of the semiconductor substrate 300 in the depth direction.
  • A2 is the position of the upper end of the second area 305
  • B2 is the position of the boundary between the second area 305 and the third area 304
  • C2 is the position of the boundary between the third area 304 and the first area 303.
  • D2 is the position of the boundary between the first region 303 and the drift layer 302.
  • Reference numbers 373 and 375 indicate p-type impurity concentration distributions in the first region 303 and the second region 305, respectively
  • reference number 374 indicates an n-type impurity concentration distribution in the third region 304, respectively.
  • the maximum value of the p-type impurity concentration in the distribution 373 is located at the first depth (position between the depths C2 and D2) from the surface of the semiconductor substrate 300, and the curve indicating the concentration distribution is approximately the first. It extends in the area 303.
  • the maximum value of the p-type impurity concentration in the distribution 375 is located at the second depth (depth A1 in this embodiment) from the surface of the semiconductor substrate 300, and the curve indicating the concentration distribution extends to the first region 303. ing.
  • the maximum value of the n-type impurity concentration in the distribution 374 is located at the third depth (position between the depths B2 and C2) from the surface of the semiconductor substrate 300, and the curve indicating the concentration distribution is approximately the third value. It extends in the area 304.
  • the maximum value of the p-type impurity concentration in the first region 303 (the peak concentration value of the distribution 373) is 2 ⁇ 10 16 atoms / cm 3 .
  • the p-type impurity concentration in the second region is highest at the surface of the semiconductor substrate 300 (that is, the depth A2) and is 1 ⁇ 10 17 atoms / cm 3 .
  • the p-type impurity concentration in the third region 304 is lower than 1 ⁇ 10 16 atoms / cm 3 .
  • the p-type impurity concentration of the third region 304 is not more than 1/10 of the p-type impurity concentration at the depth A 2 that is the surface position of the semiconductor substrate 300.
  • a semiconductor substrate 550 is prepared.
  • an n + layer 551 serving as the cathode layer 301 and an n layer 552 serving as the drift layer 302 are stacked in this order from the back surface side.
  • p-type impurity ions are implanted into the n layer 552 at a position that becomes the second depth from the surface of the semiconductor substrate 550.
  • the second depth is a position that is substantially the surface of the semiconductor substrate 550.
  • a p-type ion implantation layer 555 is formed as shown in FIG.
  • p-type impurity ions are implanted into the first depth from the surface of the semiconductor substrate 550 in the ion implantation layer 555, and as shown in FIG. 16, p-type ion implantation is performed.
  • Layer 553 is formed.
  • the first depth is a position deeper than the second depth (position in the negative direction of the z axis).
  • n-type impurity ions are implanted into a position between the first depth and the second depth in the ion implantation layer 555, and as shown in FIG. An injection layer 554 is formed.
  • the semiconductor substrate 550 in the state shown in FIG. 18 is annealed, the semiconductor device 30 having the annealing layer 320 including the first region 303, the second region 305, and the third region 304 can be manufactured as shown in FIG.
  • the third region 304 may be formed by performing n-type ion implantation.
  • the distribution of the p-type impurity concentration having the maximum value in the second region 305 may be spread over the entire anode region 320 as indicated by the distribution 375.
  • FIG. 19 is a longitudinal sectional view of the cell region of the semiconductor device 70 according to the third embodiment.
  • the semiconductor device 70 includes a semiconductor substrate 700 on which an IGBT region 71 and a diode region 72 are formed.
  • a p-type collector layer 711, an n-type buffer layer 712, an n-type drift layer 702, a p-type first body layer 713, A p-type second body layer 714 is laminated.
  • a p-type body contact layer 715 and an n-type emitter layer 716 are formed on the surface of the second body layer 714 and exposed on the surface of the semiconductor substrate 700.
  • the buffer layer 712 and the drift layer 702 extend to the diode region 72.
  • the semiconductor substrate 700 is provided with a trench gate 741 that penetrates the first body layer 713 and the second body layer 714 from the surface to reach the drift region 702.
  • the trench gate 741 is in contact with the emitter layer 716 on its side surface.
  • the first body layer 713, the second body layer 714, and the body contact layer 715 function as a body region in the IGBT region 71.
  • an n-type cathode layer 701, a buffer layer 712, a drift layer 702, a p-type first region 703, and an n-type third region 704 are stacked in that order from the back surface side.
  • a p-type second region 705 is formed on a part of the surface of the third region 704 and is exposed on the surface of the semiconductor substrate 700.
  • the cathode region of the diode region 72 includes a cathode layer 701, a buffer layer 712, and a drift layer 702, and the anode region 720 includes a first region 703, a second region 705, and a third region 704.
  • the semiconductor substrate 700 is provided with a dummy gate 742 that reaches the drift region 702 through the second region 704 and the first region 703 from the surface thereof.
  • the second region 705, the third region 704, the body contact layer 715, and the emitter layer 716 are in contact with the surface electrode 732.
  • the cathode layer 701 and the collector layer 711 are exposed on the back surface of the semiconductor substrate 700 adjacent to each other and are in contact with the back electrode 731.
  • FIG. 20 is a diagram showing a p-type impurity concentration distribution in the depth direction of the anode region 720.
  • the vertical axis indicates the position of the semiconductor substrate 700 in the depth direction.
  • A3 is the position of the upper end of the second region 705
  • B3 is the position of the lower end of the second region 705
  • C3 is the position of the boundary between the third region 704 and the first region 703,
  • D3 is the first region. This is the position of the boundary between 703 and the drift layer 702.
  • Reference numerals 773 and 775 indicate p-type impurity concentration distributions of the first region 703 and the second region 705, respectively.
  • FIG. 21 is a diagram showing a p-type impurity concentration distribution in the depth direction from the body contact layer 715 to the first body layer 713.
  • the vertical axis indicates the position of the semiconductor substrate 700 in the depth direction.
  • A4 is the position of the upper end of the body contact layer 715
  • B4 is the position of the lower end of the body contact layer 715
  • C4 is the position of the boundary between the second body layer 714 and the first body layer 713
  • D4 is the first position.
  • 1 is a boundary position between the body layer 713 and the drift layer 702.
  • Reference numerals 783, 784, and 785 indicate p-type impurity concentration distributions of the first body layer 713 and the second region 705, respectively.
  • the distribution 775 and the distribution 785 may be formed by the same process. Further, the distribution 773 and the distribution 783 may be formed by the same process. As shown in FIG. 21, the body region of IGBT region 71 has a first maximum value (maximum value of distribution 783) of the p-type impurity concentration at a position at the first depth from the surface of semiconductor substrate 700. In addition, the second maximum value (maximum value of the distribution 775) of the p-type impurity concentration is provided at a position closer to the surface side of the semiconductor substrate 700 than the first depth. A region having a relatively low p-type impurity concentration exists between the region having the first maximum value and the region having the second maximum value.
  • the semiconductor device may include a semiconductor element structure other than a diode as a part thereof.
  • the semiconductor device 70 is an RC-IGBT that includes an IGBT region 71 and a diode region 72 in the same semiconductor substrate 700.
  • a lifetime control region for example, a high concentration formed by ion irradiation or the like is used to reduce the carrier lifetime and improve the switching characteristics. In some cases, a region including a crystal defect) is formed. According to the semiconductor device 70, since the amount of holes injected from the anode region to the cathode region can be reduced in the diode region 72, the lifetime control function of the lifetime control region can be reduced.
  • the IGBT region 71 By reducing the lifetime control function, it is possible to suppress the deterioration of the characteristics of the IGBT region 71 due to the lifetime control region and reduce the leakage current.
  • a breakdown voltage is secured in the region having the first maximum value (first body layer 713), and in the region having the second maximum value (body contact layer 715), holes are generated during the IGBT operation. Can be pulled out efficiently.
  • the impurity concentration of the region (second body layer 714) between the region having the first maximum value and the region having the second maximum value n formed along the trench gate 741 during the IGBT operation Type channel control.
  • the configuration of the IGBT region is not limited to the form described in the third embodiment.
  • the IGBT region 71 of the semiconductor substrate 700a may include a region 71a including the emitter layer 716 and a region 71b not including the emitter layer 716.
  • the region 71b a channel is not formed when the gate is turned on, and the channel density of the IGBT region 71 is reduced, so that carriers can be accumulated. For this reason, in the semiconductor device 70a, the on-resistance can be lowered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 本明細書が開示する第1の半導体装置は、アノード領域と、カソード領域とを有する半導体基板を備えている。アノード領域は、半導体基板の表面から第1の深さとなる位置に第1導電型の不純物濃度の最大値を有する、第1導電型の第1領域と、第1の深さより半導体基板の表面側の第2の深さとなる位置に第1導電型の不純物濃度の最大値を有する第1導電型の第2領域と、第1領域と第2領域との間に設けられ、第1導電型の不純物濃度が半導体基板の表面の1/10以下である第3領域と、を含む。

Description

半導体装置
 本明細書に記載の技術は、半導体装置に関する。
 ダイオードの素子構造を有する半導体装置では、アノード領域の設計は、耐圧、高速性、低損失性等の特性に影響する。例えば、日本国特許公開公報2004-88012号(特許文献1)では、高速性および低損失性を向上させるために、カソード領域へのホール注入量を低減する技術を開示している。具体的には、特許文献1には、アノード領域のp型の不純物のドーズ量を低減してカソード領域へのホール注入量を低減するために、半導体基板の表面に露出する浅い高濃度のp層と、半導体基板の表面に露出する深い低濃度のp層とを半導体基板の平面方向に交互に配置している。
特開2004-88012号公報
 日本国特許公開公報2004-88012号に記載されているように、カソード領域へのホール注入量を低減するためにアノード領域のp型の不純物のドーズ量を低減すると、耐圧が低下する。アノード領域の深さや不純物濃度、不純物のドーズ量は、半導体装置の耐圧の確保のために制限される。従来の半導体装置では、耐圧の確保とホール注入量の低減とを両立することが困難である。
 本明細書が開示する第1の半導体装置は、アノード領域と、カソード領域とを有する半導体基板を備えている。アノード領域は、半導体基板の表面から第1の深さとなる位置に第1導電型の不純物濃度の最大値を有する、第1導電型の第1領域と、第1の深さより半導体基板の表面側の第2の深さとなる位置に第1導電型の不純物濃度の最大値を有する第1導電型の第2領域と、第1領域と第2領域との間に設けられ、第1導電型の不純物濃度が半導体基板の表面の1/10以下である第3領域と、を含む。
 上記の第1の半導体装置によれば、第1領域と第2領域の間に、第1導電型の不純物濃度が十分に低い第3領域を含むため、第1領域がホール注入量に影響することを抑制できる。耐圧を確保するために第1領域の第1導電型の不純物濃度を高くするともに、ホール注入量を抑制するために第2領域の第1導電型の不純物を低くすることができ、耐圧の確保とホール注入量の低減とを両立することができる。
 上記の第1の半導体装置では、第3領域は、第2導電型の不純物を含む領域であってもよい。さらには、第3領域の少なくとも一部は、半導体基板の表面に露出しており、半導体基板の表面電極とショットキー接合していてもよい。
 上記の半導体装置では、第1領域の第1の深さとなる位置の不純物濃度は、1×1016atoms/cm以下であることが好ましい。
 本明細書が開示する第2の半導体装置は、ダイオード領域と、IGBT領域とを同一の半導体基板に備えている。ダイオード領域は、アノード領域と、カソード領域とを含む。アノード領域は、半導体基板の表面から第1の深さとなる位置に第1導電型の不純物濃度の最大値を有する、第1導電型の第1領域と、第1の深さより半導体基板の表面側の第2の深さとなる位置に第1導電型の不純物濃度の最大値を有する第1導電型の第2領域とを含む。IGBT領域は、第1導電型のボディ領域と、第2導電型のドリフト領域と、第2導電型のエミッタ領域と、第1導電型のコレクタ領域とを含み、ボディ領域は、半導体基板の表面から第1の深さとなる位置に第1導電型の不純物濃度の第1の極大値を有し、かつ、第1の深さより半導体基板の表面側となる位置に第1導電型の不純物濃度の第2の極大値を有する。
 上記の第2の半導体装置によれば、第1の半導体装置と同様に、耐圧を確保するために第1領域の第1導電型の不純物濃度を高くするともに、ホール注入量を抑制するために第2領域の第1導電型の不純物を低くすることができる。また、第1領域と第2領域の間に、第1導電型の不純物濃度が十分に低い第3領域を含むため、第1領域がホール注入量に影響することを抑制できる。また、IGBT領域では、第1の極大値を有する領域において耐圧が確保されるとともに、第2の極大値を有する領域において、IGBT動作時にホールを効率よく引き抜くことができる。
実施例1に係る半導体装置の平面図である。 図1のII-II線断面図である。 図1の半導体装置のアノード領域における不純物濃度分布を概念的に示す図である。 実施例1の半導体装置の製造方法を説明する図である。 実施例1の半導体装置の製造方法を説明する図である。 実施例1の半導体装置の製造方法を説明する図である。 実施例1の半導体装置の製造方法を説明する図である。 変形例に係る半導体装置の縦断面図である。 変形例に係る半導体装置の平面図である。 変形例に係る半導体装置の平面図である。 実施例2に係る半導体装置の縦断面図である。 図11の半導体装置のアノード領域における不純物濃度分布を概念的に示す図である。 実施例2の半導体装置の製造方法を説明する図である。 実施例2の半導体装置の製造方法を説明する図である。 実施例2の半導体装置の製造方法を説明する図である。 実施例2の半導体装置の製造方法を説明する図である。 実施例2の半導体装置の製造方法を説明する図である。 実施例2の半導体装置の製造方法を説明する図である。 実施例3の半導体装置の縦断面図である。 図19の半導体装置のアノード領域における不純物濃度分布を概念的に示す図である。 図19の半導体装置のボディ領域およびその近傍における不純物濃度分布を概念的に示す図である。 変形例に係る半導体装置の縦断面図である。
 図1,2に示すように、半導体装置10は、セル領域11と周辺領域12とを含む半導体基板100を備えている。なお、図1においては、表面電極132の図示を省略している。
 半導体基板100は、その裏面(z軸の負方向の面)に露出するn型のカソード層101と、カソード層101の表面(z軸の正方向の面)に設けられたn型のドリフト層102とを備えている。カソード層101およびドリフト層102は、カソード領域を構成している。カソード層101は、裏面電極131と接している。セル領域11では、ドリフト層102の表面にアノード領域120が備えられており、アノード領域120は、ドリフト層102の表面に接する第1領域103と、半導体基板100の表面に露出する第2領域105と、第1領域103と第2領域105との間に設けられた第3領域104とを含んでいる。第2領域105は、表面電極132に接している。周辺領域12では、ドリフト層102の表面に、p型のFLR層111,112が備えられている。FLR層111の表面は、半導体基板100の中央側において表面電極132に接し、周辺側において絶縁膜133に接している。FLR層111,112は、半導体装置10の周辺耐圧構造である。周辺耐圧構造の形態は、FLR層に限定されず、リサーフ層等の従来公知の構造を用いることができる。
 図3は、アノード領域120の深さ方向のp型の不純物濃度分布を示す図である。縦軸は半導体基板100の深さ方向の位置を示している。A1は第2領域105の上端の位置であり、B1は第2領域105と第3領域104との境界の位置であり、C1は第3領域104と第1領域103との境界の位置であり、D1は第1領域103とドリフト層102との境界の位置である。参照番号の173,175は、それぞれ、第1領域103、第2領域105のp型の不純物濃度分布を示している。比較のため、参照番号179として、従来の半導体装置のアノード領域のp型の不純物濃度分布を併せて図示している。
 分布173のp型の不純物濃度の最大値は、半導体基板100の表面から第1の深さに位置し、分布175のp型の不純物濃度の最大値は、半導体基板100の表面から第2の深さに位置している。第1領域103のp型の不純物濃度の最大値(分布173のピーク濃度値)は、2×1016atoms/cmである。第2領域のp型の不純物濃度は、半導体基板100の表面(すなわち、深さA1)において最も高く、1×1017atoms/cmである。第3領域104のp型の不純物濃度は、1×1016atoms/cmよりも低い。第3領域104のp型の不純物濃度は、半導体基板100の表面位置である深さA1におけるp型の不純物濃度の1/10以下である。
 従来の半導体装置では、分布179のように、アノード領域のp型の不純物濃度は、半導体基板の表面(深さA1)を最大として、深くなるに従って低くなる。このため、半導体装置の耐圧を確保するために、アノード領域のカソード領域に近い領域でp型の不純物濃度を高くするには、半導体基板表面のp型の不純物濃度を高くする必要がある。半導体基板表面のp型の不純物濃度が高いと、ホールの注入量が多くなって、半導体装置の高速性および低損失性が低下する。
 これに対して、半導体装置10では、第1領域103のp型の不純物濃度の分布173と、第2領域105のp型の不純物濃度の分布175とを別個でそれぞれ独自に設計できる。耐圧を高くするためには第1領域103のp型の不純物濃度のみを適宜高くすればよく、併せて第2領域105のp型の不純物濃度を高くする必要がない。これによって、第2領域105のp型の不純物濃度を十分に低くすることができるため、ホール注入量を抑制することができる。また、半導体装置10は、第1領域103と第2領域105との間に、p型不純物濃度が低い第3領域104を有している。このため、第1領域103のp型の不純物がホール注入量に影響することを抑制することができる。本実施例のように、第3領域104のp型の不純物濃度が、半導体基板100の表面位置である深さA1におけるp型の不純物濃度の1/10以下であれば、第1領域103のp型の不純物濃度がホール注入量に影響することを十分に抑制できる。
 半導体装置10の製造方法について、図4~6を参照しながら説明する。なお、図4~6では、図2のセル領域11のみを図示しており、これらの図を用いて、セル領域11にアノード領域120を形成する工程のみを説明する。半導体装置10のその他の構成は、従来の半導体装置の製造方法と同様の方法によって形成することができる。
 まず、図4に示すように、半導体基板500を準備する。半導体基板500は、裏面側から順に、カソード層101となるn層501と、ドリフト層102となるn層502が積層されている。この状態で、図4に示すように、n層502内の半導体基板500の表面から第2深さとなる位置にp型の不純物イオンを注入する。第2深さは、半導体基板500のほぼ表面となる位置である。これによって、図5に示すように、p型のイオン注入層505を形成する。なお、n層501は、下記に示す半導体装置10の表面構造を形成する工程を行った後で、半導体基板500に形成されてもよい。
 次に、図6に示すように、n層502内の半導体基板500の表面から第1深さとなる位置にp型の不純物イオンを注入し、図7に示すように、p型のイオン注入層503を形成する。第1深さは、第2深さよりも深い位置(z軸の負方向の位置)である。また、これによって、イオン注入層503とイオン注入層505との間に、p型の不純物濃度が低い中間層504が形成される。図7に示す状態の半導体基板500をアニール処理すると、図2に示すように、第1領域103、第2領域105、第3領域104を含むアノード領域120を有する半導体装置10を製造できる。
(変形例)
 実施例1では、第2領域105が第3領域104の表面全体を覆っていたが、これに限定されない。例えば、図8,9に示す半導体装置20のように、セル領域において、第3領域204の表面の一部に第2領域205が形成されていてもよい。第2領域205は、半導体基板200の表面を平面視したときに、y方向伸びる縞状に形成されている。半導体基板200の表面には、第2領域205と第3領域204が露出し、表面電極132と接している。第2領域205と表面電極132とはオーミック接合しており、第3領域204と表面電極132とはショットキー接合している。また、図10に示すように、半導体基板210の表面を平面視したとき、第3領域214の表面に円形状の第2領域215が分布していてもよい。
 図11は、実施例2に係る半導体装置30のセル領域の縦断面図を示している。半導体装置30は、半導体基板300を備えている。半導体基板300は、その裏面側から順に積層された、n型のカソード層301と、n型のドリフト層302と、p型の第1領域303と、n型の第3領域304と、p型の第2領域305とを備えている。カソード層301およびドリフト層302は、カソード領域を構成している。第1領域303、第3領域304および第2領域305は、アノード領域320を構成している。カソード層301は、裏面電極131と接しており、第2領域305は、表面電極132と接している。半導体装置30のその他の構成は、図1に示す半導体装置10と同様であるため、説明を省略する。
 図12は、アノード領域320の深さ方向の不純物濃度分布を示す図である。縦軸は半導体基板300の深さ方向の位置を示している。A2は第2領域305の上端の位置であり、B2は第2領域305と第3領域304との境界の位置であり、C2は第3領域304と第1領域303との境界の位置であり、D2は第1領域303とドリフト層302との境界の位置である。参照番号の373,375は、それぞれ、第1領域303、第2領域305のp型の不純物濃度分布を示し、参照番号374は、第3領域304のn型の不純物濃度分布を示している。
 分布373のp型の不純物濃度の最大値は、半導体基板300の表面から第1の深さ(深さC2とD2の間の位置)に位置し、その濃度分布を示す曲線は、概ね第1領域303内に広がっている。分布375のp型の不純物濃度の最大値は、半導体基板300の表面から第2の深さ(本実施例では深さA1)に位置し、濃度分布を示す曲線は、第1領域303まで広がっている。分布374のn型の不純物濃度の最大値は、半導体基板300の表面から第3の深さに位置(深さB2とC2の間の位置)し、その濃度分布を示す曲線は、概ね第3領域304内に広がっている。
 第1領域303のp型の不純物濃度の最大値(分布373のピーク濃度値)は、2×1016atoms/cmである。第2領域のp型の不純物濃度は、半導体基板300の表面(すなわち、深さA2)において最も高く、1×1017atoms/cmである。第3領域304のp型の不純物濃度は、1×1016atoms/cmよりも低い。第3領域304のp型の不純物濃度は、半導体基板300の表面位置である深さA2におけるp型の不純物濃度の1/10以下である。
 半導体装置30の製造方法について、図13~18を参照しながら説明する。まず、図13に示すように、半導体基板550を準備する。半導体基板550は、裏面側から順に、カソード層301となるn層551と、ドリフト層302となるn層552が積層されている。この状態で、図13に示すように、n層552内の半導体基板550の表面から第2深さとなる位置にp型の不純物イオンを注入する。第2深さは、半導体基板550のほぼ表面となる位置である。これによって、図14に示すように、p型のイオン注入層555を形成する。
 次に、図15に示すように、イオン注入層555内の半導体基板550の表面から第1深さとなる位置にp型の不純物イオンを注入し、図16に示すように、p型のイオン注入層553を形成する。第1深さは、第2深さよりも深い位置(z軸の負方向の位置)である。
 次に、図17に示すように、イオン注入層555内の第1深さと第2深さとの間となる位置にn型の不純物イオンを注入し、図18に示すように、n型のイオン注入層554を形成する。図18に示す状態の半導体基板550をアニール処理すると、図11に示すように、第1領域303、第2領域305、第3領域304を含むアニール層320を有する半導体装置30を製造できる。
 本実施例のように、n型のイオン注入を行うことによって、第3領域304を形成してもよい。この場合、第2領域305に最大値を有するp型の不純物濃度の分布は、分布375に示すようにアノード領域320全体に広がっていてもよい。
 図19は、実施例3に係る半導体装置70のセル領域の縦断面図を示している。半導体装置70は、IGBT領域71とダイオード領域72とが形成された半導体基板700を備えている。半導体基板700のIGBT領域71には、その裏面側から順に、p型のコレクタ層711と、n型のバッファ層712と、n型のドリフト層702と、p型の第1ボディ層713と、p型の第2ボディ層714が積層されている。第2ボディ層714の表面に、p型のボディコンタクト層715およびn型のエミッタ層716が形成され、半導体基板700の表面に露出している。バッファ層712およびドリフト層702は、ダイオード領域72まで伸びている。半導体基板700には、その表面から第1ボディ層713および第2ボディ層714を貫通してドリフト領域702に達するトレンチゲート741が設けられている。トレンチゲート741は、その側面においてエミッタ層716と接している。第1ボディ層713と、第2ボディ層714と、ボディコンタクト層715とは、IGBT領域71におけるボディ領域として機能する。
 ダイオード領域72には、その裏面側から順に、n型のカソード層701と、バッファ層712と、ドリフト層702と、p型の第1領域703と、n型の第3領域704が積層されている。第3領域704の表面の一部に、p型の第2領域705が形成され、半導体基板700の表面に露出している。ダイオード領域72のカソード領域は、カソード層701と、バッファ層712と、ドリフト層702によって構成され、アノード領域720は、第1領域703と、第2領域705と、第3領域704によって構成されている。半導体基板700には、その表面から第2領域704および第1領域703を貫通してドリフト領域702に達するダミーゲート742が設けられている。
 第2領域705、第3領域704、ボディコンタクト層715およびエミッタ層716は、表面電極732と接している。カソード層701とコレクタ層711とは、互いに隣接して半導体基板700の裏面に露出しており、裏面電極731に接している。
 図20は、アノード領域720の深さ方向のp型の不純物濃度分布を示す図である。縦軸は半導体基板700の深さ方向の位置を示している。A3は第2領域705の上端の位置であり、B3は第2領域705の下端の位置であり、C3は第3領域704と第1領域703との境界の位置であり、D3は第1領域703とドリフト層702との境界の位置である。参照番号の773,775は、それぞれ、第1領域703、第2領域705のp型の不純物濃度分布を示している。
 図21は、ボディコンタクト層715から第1ボディ層713までの深さ方向のp型の不純物濃度分布を示す図である。縦軸は半導体基板700の深さ方向の位置を示している。A4はボディコンタクト層715の上端の位置であり、B4はボディコンタクト層715の下端の位置であり、C4は第2ボディ層714と第1ボディ層713との境界の位置であり、D4は第1ボディ層713とドリフト層702との境界の位置である。参照番号の783,784,785は、それぞれ、第1ボディ層713、第2領域705のp型の不純物濃度分布を示している。分布775と分布785とは、同一工程によって形成されてもよい。また、分布773と分布783とは、同一工程によって形成されてもよい。図21に示すように、IGBT領域71のボディ領域は、半導体基板700の表面から第1の深さとなる位置にp型の不純物濃度の第1の極大値(分布783の最大値)を有し、かつ、第1の深さより半導体基板700の表面側となる位置にp型の不純物濃度の第2の極大値(分布775の最大値)を有する。第1の極大値を有する領域と第2の極大値を有する領域の間には、p型の不純物濃度が比較的低い領域が存在している。
 本実施例のように、半導体装置は、ダイオード以外の半導体素子構造をその一部に含んでいてもよい。半導体装置70は、IGBT領域71と、ダイオード領域72とを同一の半導体基板700に含むRC-IGBTである。RC-IGBTにおいては、ダイオード領域72内のドリフト層702内に、キャリアのライフタイムを低減してスイッチング特性を向上させるために、ライフタイム制御領域(例えば、イオン照射等によって形成される高濃度に結晶欠陥を含む領域)を形成する場合がある。半導体装置70によれば、ダイオード領域72において、アノード領域からカソード領域へのホール注入量を低減することができるため、ライフタイム制御領域のライフタイム制御機能を低減することができる。ライフタイム制御機能を低減させることで、ライフタイム制御領域に起因するIGBT領域71の特性悪化を抑制し、リーク電流を低減することができる。また、IGBT領域71では、第1の極大値を有する領域(第1ボディ層713)において耐圧が確保されるとともに、第2の極大値を有する領域(ボディコンタクト層715)において、IGBT動作時にホールを効率よく引き抜くことができる。第1の極大値を有する領域と第2の極大値を有する領域の間の領域(第2ボディ層714)の不純物濃度を調整することによって、IGBT動作時にトレンチゲート741に沿って形成されるn型のチャネル制御を行うことができる。
(変形例)
 IGBT領域の構成は、実施例3で説明した形態に限定されない。例えば、図22に示す半導体装置70aのように、半導体基板700aのIGBT領域71は、エミッタ層716を含む領域71aと、エミッタ層716を含まない領域71bとを含んでいてもよい。領域71bでは、ゲートオン時にチャネルが形成されず、IGBT領域71のチャネル密度が低くなるため、キャリアを蓄積することができる。このため、半導体装置70aでは、オン抵抗を低くすることができる。
 以上、本発明の実施例について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
 本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。

 

Claims (5)

  1.  アノード領域と、カソード領域とを有する半導体基板を備えた半導体装置であって、
     アノード領域は、
      半導体基板の表面から第1の深さとなる位置に第1導電型の不純物濃度の最大値を有する、第1導電型の第1領域と、
      第1の深さより半導体基板の表面側の第2の深さとなる位置に第1導電型の不純物濃度の最大値を有する第1導電型の第2領域と、
      第1領域と第2領域との間に設けられ、第1導電型の不純物濃度が半導体基板の表面の1/10以下である第3領域と、を含む、半導体装置。
  2.  第3領域は、第2導電型の不純物を含む領域である、請求項1に記載の半導体装置。
  3.  第3領域の少なくとも一部は、半導体基板の表面に露出しており、半導体基板の表面電極とショットキー接合する、請求項2に記載の半導体装置。
  4.  第1領域の第1の深さとなる位置の不純物濃度は、1×1016atoms/cm以下である、請求項1~3のいずれか一項に記載の半導体装置。
  5.  ダイオード領域と、IGBT領域とを同一の半導体基板に備えており、
     ダイオード領域は、アノード領域と、カソード領域とを含み、
     アノード領域は、
      半導体基板の表面から第1の深さとなる位置に第1導電型の不純物濃度の最大値を有する、第1導電型の第1領域と、
      第1の深さより半導体基板の表面側の第2の深さとなる位置に第1導電型の不純物濃度の最大値を有する第1導電型の第2領域とを含み、
     IGBT領域は、第1導電型のボディ領域と、第2導電型のドリフト領域と、第2導電型のエミッタ領域と、第1導電型のコレクタ領域とを含み、
      ボディ領域は、半導体基板の表面から第1の深さとなる位置に第1導電型の不純物濃度の第1の極大値を有し、かつ、第1の深さより半導体基板の表面側となる位置に第1導電型の不純物濃度の第2の極大値を有する、半導体装置。
     
PCT/JP2012/081483 2012-12-05 2012-12-05 半導体装置 WO2014087499A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020157013114A KR20150066596A (ko) 2012-12-05 2012-12-05 반도체 장치
JP2014550844A JPWO2014087499A1 (ja) 2012-12-05 2012-12-05 半導体装置
CN201280077544.7A CN104838503A (zh) 2012-12-05 2012-12-05 半导体装置
DE112012007200.6T DE112012007200T5 (de) 2012-12-05 2012-12-05 Halbleitereinrichtung
PCT/JP2012/081483 WO2014087499A1 (ja) 2012-12-05 2012-12-05 半導体装置
BR112015012736A BR112015012736A2 (pt) 2012-12-05 2012-12-05 dispositivo semicondutor
US14/443,509 US20150318385A1 (en) 2012-12-05 2012-12-05 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/081483 WO2014087499A1 (ja) 2012-12-05 2012-12-05 半導体装置

Publications (1)

Publication Number Publication Date
WO2014087499A1 true WO2014087499A1 (ja) 2014-06-12

Family

ID=50882949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081483 WO2014087499A1 (ja) 2012-12-05 2012-12-05 半導体装置

Country Status (7)

Country Link
US (1) US20150318385A1 (ja)
JP (1) JPWO2014087499A1 (ja)
KR (1) KR20150066596A (ja)
CN (1) CN104838503A (ja)
BR (1) BR112015012736A2 (ja)
DE (1) DE112012007200T5 (ja)
WO (1) WO2014087499A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019165159A (ja) * 2018-03-20 2019-09-26 株式会社東芝 半導体装置
JP2019186313A (ja) * 2018-04-04 2019-10-24 富士電機株式会社 半導体装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015006059T5 (de) * 2015-01-27 2017-10-12 Mitsubishi Electric Corporation Halbleitervorrichtung
WO2017146148A1 (ja) * 2016-02-23 2017-08-31 富士電機株式会社 半導体装置
JP6560142B2 (ja) * 2016-02-26 2019-08-14 トヨタ自動車株式会社 スイッチング素子
JP6560141B2 (ja) * 2016-02-26 2019-08-14 トヨタ自動車株式会社 スイッチング素子
JP6804379B2 (ja) * 2017-04-24 2020-12-23 三菱電機株式会社 半導体装置
JP7250473B2 (ja) * 2018-10-18 2023-04-03 三菱電機株式会社 半導体装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116998A (ja) * 1996-10-14 1998-05-06 Toyota Motor Corp 半導体装置およびその製造方法
JP2003163357A (ja) * 2001-11-26 2003-06-06 Fuji Electric Co Ltd 半導体装置およびその製造方法
JP2009267116A (ja) * 2008-04-25 2009-11-12 Toyota Motor Corp ダイオードとそのダイオードを備えている半導体装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19713962C1 (de) * 1997-04-04 1998-07-02 Siemens Ag Leistungsdiode (FCI-Diode)
KR100510096B1 (ko) * 1997-10-31 2006-02-28 실리코닉스 인코퍼레이티드 트렌치-게이트형 파워 mosfet
JP4006879B2 (ja) * 1999-04-07 2007-11-14 富士電機ホールディングス株式会社 ショットキーバリアダイオードおよびその製造方法
JP2007266134A (ja) * 2006-03-27 2007-10-11 Toyota Central Res & Dev Lab Inc 半導体装置
JP5443670B2 (ja) * 2007-02-20 2014-03-19 株式会社豊田中央研究所 半導体装置とその製造方法
JP4333782B2 (ja) * 2007-07-05 2009-09-16 株式会社デンソー ジャンクションバリアショットキーダイオードを備えた炭化珪素半導体装置
EP2442355B1 (en) * 2009-06-11 2014-04-23 Toyota Jidosha Kabushiki Kaisha Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116998A (ja) * 1996-10-14 1998-05-06 Toyota Motor Corp 半導体装置およびその製造方法
JP2003163357A (ja) * 2001-11-26 2003-06-06 Fuji Electric Co Ltd 半導体装置およびその製造方法
JP2009267116A (ja) * 2008-04-25 2009-11-12 Toyota Motor Corp ダイオードとそのダイオードを備えている半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019165159A (ja) * 2018-03-20 2019-09-26 株式会社東芝 半導体装置
JP2019186313A (ja) * 2018-04-04 2019-10-24 富士電機株式会社 半導体装置
JP7115000B2 (ja) 2018-04-04 2022-08-09 富士電機株式会社 半導体装置

Also Published As

Publication number Publication date
JPWO2014087499A1 (ja) 2017-01-05
CN104838503A (zh) 2015-08-12
DE112012007200T5 (de) 2015-08-20
BR112015012736A2 (pt) 2017-07-11
US20150318385A1 (en) 2015-11-05
KR20150066596A (ko) 2015-06-16

Similar Documents

Publication Publication Date Title
WO2014087499A1 (ja) 半導体装置
US10418441B2 (en) Semiconductor device and method for manufacturing the semiconductor device
US8952449B2 (en) Semiconductor device having both IGBT area and diode area
JP5282823B2 (ja) ダイオード領域とigbt領域を有する半導体基板を備える半導体装置
AU2011375931B2 (en) Semiconductor device
US20150228717A1 (en) Method for manufacturing semiconductor device and semiconductor device
JP5697744B2 (ja) 半導体装置およびその製造方法
JP2008251620A (ja) 半導体装置とその製造方法
CN110085671B (zh) 半导体装置及其制造方法
JP2009289904A (ja) 半導体装置
KR101701667B1 (ko) 트렌치 게이트 전극을 이용하는 igbt
JP2012054532A (ja) 横型ダイオードを有する半導体装置
WO2016009736A1 (ja) スイッチング素子
JP6903222B2 (ja) 炭化珪素半導体装置およびその製造方法
JP2020031155A (ja) 半導体装置
JP5443670B2 (ja) 半導体装置とその製造方法
CN111129135A (zh) 半导体装置
JP5741069B2 (ja) 半導体装置
JP2017191817A (ja) スイッチング素子の製造方法
JP6665713B2 (ja) 半導体装置
JP2018067690A (ja) 半導体装置とその製造方法
US10109749B2 (en) Semiconductor device and semiconductor device manufacturing method
JP6935373B2 (ja) 半導体装置
JP7354868B2 (ja) スイッチング素子
JP2019125625A (ja) 半導体装置及び半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550844

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14443509

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157013114

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112012007200

Country of ref document: DE

Ref document number: 1120120072006

Country of ref document: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015012736

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 12889520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015012736

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150601