CN111129135A - 半导体装置 - Google Patents

半导体装置 Download PDF

Info

Publication number
CN111129135A
CN111129135A CN201911024243.8A CN201911024243A CN111129135A CN 111129135 A CN111129135 A CN 111129135A CN 201911024243 A CN201911024243 A CN 201911024243A CN 111129135 A CN111129135 A CN 111129135A
Authority
CN
China
Prior art keywords
layer
region
igbt
semiconductor device
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911024243.8A
Other languages
English (en)
Other versions
CN111129135B (zh
Inventor
高桥彻雄
金田充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN111129135A publication Critical patent/CN111129135A/zh
Application granted granted Critical
Publication of CN111129135B publication Critical patent/CN111129135B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0647Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. vertical bipolar transistor and bipolar lateral transistor and resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)

Abstract

在具备开关元件以及二极管的半导体装置中,抑制开关元件的耐量的降低及制造工序数的增加,并使二极管动作时的恢复损耗降低。半导体装置(100)具备二极管和作为开关元件的IGBT。IGBT具备:p型沟道掺杂层(2),其形成于半导体衬底的正侧的表层部;p+型扩散层(4)以及n+型源极层(3),它们分别在p型沟道掺杂层(2)的表层部选择性地形成;以及发射极电极(11),其与n+型源极层(3)以及p+型扩散层(4)连接。p型沟道掺杂层(2)的一部分到达半导体衬底的正侧的表面与发射极电极(11)连接。在半导体衬底的正侧的表面,在p型沟道掺杂层(2)与n+型源极层(3)之间夹着p+型扩散层(4),p型沟道掺杂层(2)不与n+型源极层(3)邻接。

Description

半导体装置
技术领域
本发明涉及半导体装置,特别地,涉及例如反向导通IGBT等具备开关元件以及二极管的半导体装置。
背景技术
通常,就电力控制用半导体装置(功率器件)而言,存在耐压保持能力、安全工作区域(为了在工作时不导致元件破坏的电流、电压区域)的保证等各种各样的要求,其中之一是低损耗化。功率器件的低损耗化具有装置的小型化、轻量化等效果,进而存在由能量消耗降低带来的有益于地球环境的效果。并且,要求尽可能以低成本实现这些特性。作为响应上述的要求的一个手段,提出了将IGBT的特性与作为续流二极管(FWD)而起作用的二极管的特性通过一个芯片实现的反向导通IGBT(RC-IGBT;Reverse-Conducting Insulated GateBipolar Transistor)。
就反向导通IGBT而言,存在几个技术课题,其中之一是二极管动作时的恢复损耗大。在反向导通IGBT中,在IGBT动作时的特性的一部分与二极管动作时的特性的一部分之间存在折衷关系,如果采取使恢复损耗降低的构造,则产生其它特性恶化等问题。
提出了各种用于解决该问题的技术。例如在专利文献1中,提出了下述技术,即,在反向导通IGBT中,通过使二极管的阳极区域的深度浅,使杂质浓度变低,从而减小二极管的恢复电流。但是,就该技术而言,由于额外需要用于形成阳极区域的工序,因此制造成本的增大成为问题。并且,由于二极管的阳极区域与IGBT的沟道掺杂区域是共用的,因此存在IGBT的RBSOA(反向偏置安全工作区域)恶化等问题。
另外,例如在专利文献2中,提出了下述技术,即,通过在二极管区域设置损伤层(寿命控制层),从而减小二极管的恢复电流。
就该技术而言,也由于需要追加形成损伤层的工序,因此制造成本的增大成为问题。并且,还存在下述问题,即,由于来自未形成损伤层的IGBT区域的电流的流入,损伤层的效果不能充分发挥。
专利文献1:日本特开平3-238871号公报
专利文献2:日本特开2008-192737号公报
发明内容
如前所述,专利文献1、2的反向导通IGBT虽然能够降低二极管动作时的恢复损耗,但作为其副作用,产生如下问题,即,IGBT的耐量(RBSOA耐量等)的降低、由来自IGBT区域的电流的影响导致的恢复损耗的增大等。
本发明就是为了解决上述这样的课题而提出的,其目的在于,在具备开关元件以及二极管的半导体装置中,抑制开关元件的耐量的降低,并使二极管动作时的恢复损耗降低。
本发明涉及的半导体装置具备开关元件和二极管,该开关元件具有:第1导电型的沟道掺杂层,其形成于半导体衬底的正侧的表层部;第1导电型的第1扩散层,其在所述沟道掺杂层的表层部选择性地形成,与所述沟道掺杂层相比杂质浓度高;第2导电型的源极层,其在所述沟道掺杂层的表层部选择性地形成;以及电极,其形成于所述半导体衬底的正侧的表面之上,与所述源极层以及所述第1扩散层连接,该二极管形成于所述第1扩散层与在所述半导体衬底的背侧的表层部形成的第2导电型的第2扩散层之间,所述沟道掺杂层的一部分到达所述半导体衬底的正侧的表面而与所述电极连接,在所述半导体衬底的正侧的表面,在所述沟道掺杂层与所述源极层之间夹着所述第1扩散层,所述沟道掺杂层不与所述源极层邻接。
发明的效果
根据本发明,就开关元件而言,形成到达半导体衬底的表面的沟道掺杂层,与此相应地,第1扩散层的面积变小,从第1扩散层流入二极管的电流得到抑制,因此二极管的恢复损耗降低。另外,在半导体衬底的表面,沟道掺杂层与源极层不邻接,由此寄生晶闸管的动作得到抑制,对开关元件的RBSOA耐量的降低进行抑制。
附图说明
图1是实施方式1涉及的半导体装置的俯视图。
图2是实施方式1涉及的半导体装置的单元区域的俯视图。
图3是实施方式1涉及的半导体装置的单元区域的剖面图。
图4是实施方式1涉及的半导体装置的单元区域的剖面图。
图5是实施方式1涉及的半导体装置的单元区域的剖面图。
图6是实施方式2涉及的半导体装置的俯视图。
图7是实施方式2涉及的半导体装置的单元区域的俯视图。
图8是实施方式2涉及的半导体装置的单元区域的剖面图。
图9是实施方式2涉及的半导体装置的单元区域的剖面图。
图10是实施方式2涉及的半导体装置的单元区域的剖面图。
图11是实施方式3涉及的半导体装置的俯视图。
图12是实施方式3涉及的半导体装置的单元区域的俯视图。
图13是实施方式3涉及的半导体装置的单元区域的剖面图。
图14是实施方式3涉及的半导体装置的单元区域的剖面图。
图15是实施方式3涉及的半导体装置的单元区域的剖面图。
图16是实施方式4涉及的半导体装置的俯视图。
图17是实施方式4涉及的半导体装置的单元区域的俯视图。
图18是实施方式4涉及的半导体装置的单元区域的剖面图。
图19是实施方式5涉及的半导体装置的俯视图。
图20是实施方式5涉及的半导体装置的单元区域的俯视图。
图21是实施方式5涉及的半导体装置的单元区域的剖面图。
图22是实施方式6涉及的半导体装置的单元区域的剖面图。
图23是实施方式6涉及的半导体装置的单元区域的剖面图。
图24是实施方式6涉及的半导体装置的单元区域的剖面图。
图25是实施方式7涉及的半导体装置的单元区域的剖面图。
图26是实施方式7涉及的半导体装置的单元区域的剖面图。
图27是实施方式7涉及的半导体装置的单元区域的剖面图。
标号的说明
1 n-型漂移层,2 p型沟道掺杂层,3 n+型源极层,4 p+型扩散层,5栅极绝缘膜,6栅极电极,7盖绝缘膜,8 n型缓冲层,9 p+型集电极层,10 n+型阴极层,11发射极电极,12集电极(collector)电极(electrode),13接触部,14损伤层,15埋入绝缘膜,16埋入电极,17主电极,18栅极焊盘,100半导体装置,101主电极区域,102栅极焊盘区域,101a IGBT区域,101b二极管区域,103外周区域。
具体实施方式
<实施方式1>
图1是实施方式1涉及的半导体装置100即反向导通IGBT的半导体芯片的俯视图。如图1所示,半导体装置100包含:主电极区域101,其形成有反向导通IGBT的主电极17;栅极焊盘区域102,其形成有反向导通IGBT的控制电极即栅极焊盘18;以及外周区域103,其形成有半导体装置100的终端构造(例如保护环等)。
在主电极17之下形成有构成反向导通IGBT的IGBT的单元(Cell)以及二极管的单元。即,主电极区域101是形成有IGBT单元以及二极管单元的单元区域(以下,有时将主电极区域101称为“单元区域”)。
如图1所示,主电极区域101被分为IGBT单元的形成区域即IGBT区域101a以及二极管单元的形成区域即二极管区域101b。即,IGBT区域101a以及二极管区域101b成为在俯视观察时被相互划分开的块状的区域。
图2是将半导体装置100的单元区域(主电极区域101)处的IGBT区域101a与二极管区域101b的边界部分放大的俯视图,示出半导体衬底表面的结构。即,在图2中,在半导体衬底之上形成的主电极17等未图示。另外,图3~图5是半导体装置100的单元区域的剖面图,图3与沿着图2的A1-A2线的剖面相对应,图4与沿着图2的B1-B2线的剖面相对应,图5与沿着图2的C1-C2线的剖面相对应。
如图3~图5所示,半导体装置100具备在半导体衬底形成的第2导电型(n型)的n-型漂移层1以及在半导体衬底的正侧(图3~图5的上侧)的表层部形成的第1导电型(p型)的p型沟道掺杂层2。n-型漂移层1以及p型沟道掺杂层2遍及IGBT区域101a以及二极管区域101b而形成,n-型漂移层1形成于p型沟道掺杂层2之下。
在p型沟道掺杂层2的表层部分别选择性地形成有与n-型漂移层1相比杂质浓度高的第2导电型的n+型源极层3以及与p型沟道掺杂层2相比杂质浓度高的第1导电型的第1扩散层即p+型扩散层4。
n+型源极层3形成于IGBT区域101a,p+型扩散层4形成于IGBT区域101a以及二极管区域101b这两者。另外,如图5所示,在IGBT区域101a存在既未形成n+型源极层3也未形成p+型扩散层4的部分,在该部分,p型沟道掺杂层2到达半导体衬底的正侧的表面。这里,如图2所示构成为,在半导体衬底的正侧的表面,在p型沟道掺杂层2与n+型源极层3之间夹着p+型扩散层4,p型沟道掺杂层2与n+型源极层3不邻接。
在半导体衬底的正侧形成有到达n-型漂移层1的沟槽。在该沟槽的内壁以及底部形成有栅极绝缘膜5,在栅极绝缘膜5之上形成有埋入沟槽的栅极电极6。另外,在栅极绝缘膜5之上形成有盖绝缘膜7。
如图3所示,在IGBT区域101a,埋入了栅极绝缘膜5的沟槽以与n+型源极层3及其之下的p型沟道掺杂层2邻接的方式配置。即,n+型源极层3及其之下的p型沟道掺杂层2隔着栅极绝缘膜5而与栅极电极6邻接。在IGBT的接通动作时,在与栅极电极6邻接的p型沟道掺杂层2的部分形成成为n-型漂移层1与n+型源极层3之间的电流路径的沟道。
如图2所示,栅极电极6配置成条带状。即,栅极电极6设置有多个,它们沿一个方向延伸而相互平行地配置。IGBT区域101a通过多个栅极电极6而被分割成多个IGBT单元。
此外,在实施方式1中,在二极管区域101b也形成有具有与栅极绝缘膜5以及栅极电极6相同的结构的埋入绝缘膜15以及埋入电极16。二极管区域101b通过埋入电极16而被分割成多个二极管单元。埋入电极16由于不与n+型源极层3邻接,因此不作为对IGBT的接通、断开进行控制的栅极电极而起作用。
另一方面,在n-型漂移层1的下侧遍及IGBT区域101a以及二极管区域101b而形成有第2导电型的n型缓冲层8。
并且,在半导体衬底的背侧(图3~图5的下侧)的表层部、即n型缓冲层8的表层部,在IGBT区域101a形成有第1导电型的p+型集电极层9,在二极管区域101b形成有第2导电型的第2扩散层即n+型阴极层10。
由在IGBT区域101a形成的n-型漂移层1、p型沟道掺杂层2、n+型源极层3、p+型扩散层4、栅极绝缘膜5、栅极电极6、n型缓冲层8以及p+型集电极层9构成作为开关元件的IGBT。另外,由在二极管区域101b形成的n-型漂移层1、p型沟道掺杂层2、p+型扩散层4、n型缓冲层8以及n+型阴极层10构成二极管。即,二极管形成于作为阳极层起作用的p+型扩散层4与n+型阴极层10之间。
在半导体衬底的正侧的表面之上形成有IGBT的发射极电极11。发射极电极11遍及IGBT区域101a以及二极管区域101b而形成,不仅与IGBT区域101a的n+型源极层3以及p+型扩散层4连接,而且与二极管区域101b的p+型扩散层4也连接。因此,发射极电极11也作为二极管的阳极电极起作用。如前所述,IGBT区域101a的p型沟道掺杂层2的一部分到达半导体衬底的正侧的表面,如图5所示,p型沟道掺杂层2的到达半导体衬底表面的部分与发射极电极11连接。
在半导体衬底的背侧的表面之上形成有IGBT的集电极电极12。集电极电极12遍及IGBT区域101a以及二极管区域101b而形成,不仅与IGBT区域101a的p+型集电极层9连接,而且与二极管区域101b的n+型阴极层10也连接。因此,集电极电极12也作为二极管的阴极电极起作用。
此外,发射极电极11成为图1所示的主电极17。另外,栅极电极6在未图示的区域与图1所示的栅极焊盘18连接。
在半导体装置100作为IGBT而动作时(以下称为“IGBT动作时”),在IGBT区域101a,在与栅极电极6邻接的p型沟道掺杂层2形成沟道,n-型漂移层1与n+型源极层3之间导通。因此,电流从集电极电极12经由p+型集电极层9、n型缓冲层8、n-型漂移层1、p型沟道掺杂层2(沟道区域)以及n+型源极层3而流向发射极电极11。
另外,在半导体装置100作为二极管而动作时(以下称为“二极管动作时”),二极管区域101b的p型沟道掺杂层2与p+型扩散层4作为二极管的阳极起作用,电流从发射极电极11经由p+型扩散层4、p型沟道掺杂层2、n-型漂移层1、n型缓冲层8、n+型阴极层10而流向集电极电极12。
这样,半导体装置100作为反向导通IGBT而起作用,该反向导通IGBT能够实现作为IGBT的动作以及作为与该IGBT逆并联地连接的二极管的动作这两者。
此外,在本实施方式中,分别是半导体衬底由硅(Si)形成,栅极绝缘膜5以及盖绝缘膜7由硅氧化膜(SiO2)形成,栅极电极6以及埋入电极16由N型多晶硅形成,发射极电极11以及集电极电极12由包含铝的金属形成。
接下来,对实施方式1涉及的半导体装置100的特征以及由此得到的效果进行说明。在以下的说明中,将发射极电极11与半导体衬底之间的连接部分,即,半导体衬底的表面的与发射极电极11接触的部分称为“接触部”。图3~图5所示的接触部13是指发射极电极11与半导体衬底之间的连接部分的整体。即,接触部13包含发射极电极11与IGBT区域101a的半导体衬底之间的连接部分、以及发射极电极11与二极管区域101b的半导体衬底之间的连接部分这两者。另外,接触部13还包含发射极电极11与p型沟道掺杂层2之间的连接部分、发射极电极11与n+型源极层3之间的连接部分、以及发射极电极11与p+型扩散层4之间的连接部分中的任意者。
就实施方式1涉及的半导体装置100而言,在IGBT区域101a,如图5所示,p型沟道掺杂层2的一部分到达接触部13,并且,在该接触部13,如图2所示,以使p型沟道掺杂层2与n+型源极层3不邻接的方式,在p型沟道掺杂层2与n+型源极层3之间夹着p+型扩散层4。另外,在接触部13,夹在p型沟道掺杂层2与n+型源极层3之间的p+型扩散层4包含第1导电型(p型)的杂质浓度最高的部分。
并且,p型沟道掺杂层2的厚度(从半导体衬底的正侧的表面算起的深度)以及杂质浓度遍及IGBT区域101a以及二极管区域101b是相同的,并且,p+型扩散层4的厚度以及杂质浓度也遍及IGBT区域101a以及二极管区域101b而是相同的。
就这样的构造而言,能够通过在通常的反向导通型IGBT(在p型沟道掺杂层2的表层部的整体形成有n+型源极层3或者p+型扩散层4,p型沟道掺杂层2未到达接触部13的构造)的制造方法中,变更用于形成n+型源极层3或者p+型扩散层4的转印掩模的图案而形成。即,就实施方式1涉及的反向导通型IGBT而言,无需针对通常的反向导通型IGBT的制造方法追加新工序就能够形成,能够抑制制造成本的增大。
在半导体装置100的二极管动作时,主要电流通过从二极管区域101b的p+型扩散层4注入空穴而流动,但如果从位于其附近的IGBT区域101a的p+型扩散层4所形成的寄生二极管也注入大量的空穴,则由此而导致恢复损耗增大。就实施方式1涉及的半导体装置100而言,在IGBT区域101a形成到达半导体衬底的表面的p型沟道掺杂层2,与此相对应地,与通常的反向导通型IGBT相比,在IGBT区域101a形成的p+型扩散层4的面积小,因此寄生二极管的影响得到抑制,恢复损耗降低。
另外,就实施方式1的半导体装置100而言,在IGBT区域101a的一部分,与p+型扩散层4相比杂质浓度低的p型沟道掺杂层2与发射极电极11连接。例如,在IGBT区域101a的p型区域与发射极电极11之间的接触电阻高的情况下,产生如下问题,即,在半导体装置100的IGBT动作时,由n+型源极层3、p型沟道掺杂层2、n-型漂移层1以及p+型集电极层9形成的寄生晶闸管动作,由此IGBT的可控制电流下降,RBSOA变小(RBSOA耐量降低)。就实施方式1的半导体装置而言,构成为,在接触部13,在n+型源极层3的紧旁边处配置有杂质浓度高的p+型扩散层4,与发射极电极11之间的接触电阻较高的p型沟道掺杂层2不与n+型源极层3邻接。根据该结构,能够防止寄生晶闸管动作,能够抑制RBSOA耐量的降低。
此外,优选p+型扩散层4的宽度是考虑到杂质的扩散距离而设定的。p+型扩散层4的形成是通过以下方式进行的,即,通过使用了由照相制版技术形成的掩模的离子注入,向半导体衬底选择性地注入p型的杂质,然后进行热处理而使杂质扩散至必要的深度。在注入了杂质的区域的端部,杂质不仅向深度方向扩散,而且也向横向扩散。通常,向横向的扩散距离是深度方向的扩散距离的0.7~0.8倍左右。因此,为了适当地形成p+型扩散层4的宽度,可以设计为p+型扩散层4的宽度具有大于或等于p+型扩散层4的结深度的7成的大小。
这样,根据实施方式1涉及的半导体装置100,能够抑制IGBT的耐量的降低以及制造工数的增加,并且降低二极管动作时的恢复损耗。
<实施方式2>
图6是实施方式2涉及的半导体装置100即反向导通IGBT的半导体芯片的俯视图。图7是将实施方式2涉及的半导体装置100的单元区域(主电极区域101)处的IGBT区域101a与二极管区域101b之间的边界部分放大的俯视图,示出半导体衬底表面的结构。另外,图8~图10是实施方式2涉及的半导体装置100的单元区域的剖面图,图8与沿着图7的D1-D2线的剖面相对应,图9与沿着图7的E1-E2线的剖面相对应,图10与沿着图7的F1-F2线的剖面相对应。此外,在图6~图10中,对具有与图1~图5所示的要素相同的功能的要素标注相同的标号,这里省略它们的详细说明。
就实施方式2的半导体装置100而言,也与实施方式1同样地,p型沟道掺杂层2的一部分到达半导体衬底的正侧的表面(接触部13)而与发射极电极11连接。另外,在接触部13,在p型沟道掺杂层2与n+型源极层3之间夹着p+型扩散层4,p型沟道掺杂层2与n+型源极层3不邻接。
就实施方式2而言,在IGBT区域101a,p型沟道掺杂层2的与发射极电极11连接的部分(到达接触部13的部分)并非形成于全部IGBT单元,而是仅形成于一部分的IGBT单元。更具体而言,在IGBT区域101a,p型沟道掺杂层2的与发射极电极11连接的部分至少形成于与二极管区域101b邻接的IGBT单元。在图7~图10的例子中,p型沟道掺杂层2的与发射极电极11连接的部分仅形成于与二极管区域101b邻接的IGBT单元。
这样,即使是仅在一部分的IGBT单元处p型沟道掺杂层2与发射极电极11连接的结构,通过减小IGBT区域101a的p+型扩散层4的面积,也与实施方式1同样地,得到寄生二极管的动作减少,二极管动作时的恢复损耗降低的效果。另外,构成为,在IGBT区域101a的接触部13,在n+型源极层3的紧旁边处配置杂质浓度高的p+型扩散层4,p型沟道掺杂层2不与n+型源极层3邻接,从而能够防止寄生晶闸管动作,能够抑制IGBT动作时的RBSOA耐量的降低。
在图7~图10的例子中,p型沟道掺杂层2的与发射极电极11连接的部分仅形成于与二极管区域101b邻接的一排IGBT单元,但也可以形成于从靠近二极管区域101b侧起的多排IGBT单元。优选p型沟道掺杂层2的与发射极电极11连接的部分的配置范围包含从IGBT区域101a与二极管区域101b之间的边界起朝向IGBT区域101a,至与半导体衬底的厚度相同的距离或者其2倍左右的距离为止的区域。由此,上述的范围能够涵盖在半导体装置100的通电时载流子扩散的区域,能够有效地抑制寄生二极管的动作。
另外,就实施方式2的半导体装置100而言,也能够针对通常的反向导通型IGBT的制造方法,通过变更用于形成n+型源极层3或者p+型扩散层4的转印掩模的图案而形成,不需要制造工序数的增加,因此能够抑制制造成本的增大。
<实施方式3>
图11是实施方式3涉及的半导体装置100即反向导通IGBT的半导体芯片的俯视图。图12是将实施方式3涉及的半导体装置100的单元区域(主电极区域101)处的IGBT区域101a与二极管区域101b之间的边界部分放大的俯视图,示出半导体衬底表面的结构。另外,图13~图15是实施方式3涉及的半导体装置100的单元区域的剖面图,图13与沿着图12的G1-G2线的剖面相对应,图14与沿着图12的H1-H2线的剖面相对应,图15与沿着图12的I1-I2线的剖面相对应。此外,在图11~图15中,对具有与图1~图5所示的要素相同的功能的要素标注相同的标号,这里省略它们的详细说明。
就实施方式3的半导体装置100而言,也与实施方式1同样地,p型沟道掺杂层2的一部分到达半导体衬底的正侧的表面(接触部13)而与发射极电极11连接。另外,在接触部13,在p型沟道掺杂层2与n+型源极层3之间夹着p+型扩散层4,p型沟道掺杂层2不与n+型源极层3邻接。
就实施方式3而言,在二极管区域101b也设置有没有形成p+型扩散层4,p型沟道掺杂层2到达半导体衬底的表面而与发射极电极11连接的部分。在图12~图15所示的例子中,在二极管区域101b以方格花纹状(交错状)形成有p+型扩散层4,p型沟道掺杂层2的与发射极电极11连接的部分也以方格花纹状配置。
根据实施方式3的半导体装置100,IGBT区域101a呈与实施方式1相同的结构,因此得到与实施方式1相同的效果。并且,在二极管区域101b,在接触部13的一部分形成有p型沟道掺杂层2,因此二极管的阳极区域的实质上的杂质浓度变低,由此,得到降低二极管动作时的恢复损耗的效果。
通常,就二极管的特性而言,正向压降(Vf)与恢复损耗(Err)存在折衷关系,为了减小恢复损耗,降低阳极的p型杂质浓度是有效的,为了降低正向压降,提高阳极的p型杂质是有效的。因此,二极管区域101b处的p型沟道掺杂层2的与发射极电极11连接的部分的面积根据二极管所要求的特性而决定即可。
另外,在实施方式3中,将二极管区域101b的p+型扩散层4以相同的方格花纹进行配置,但这是为了使在二极管动作时流过二极管区域101b的电流在2维上尽可能均匀。
应用这一点,例如,在二极管区域101b,通过设为越是靠近IGBT区域101a的区域,越降低p+型扩散层4的密度(面积比例)(换言之,越是靠近IGBT区域101a的区域,越提高p型沟道掺杂层2的与发射极电极11连接的部分的面积比例),从而能够在IGBT区域101a与二极管区域101b之间的边界降低附近的阳极的实质上的p型杂质浓度。就这样的结构而言,导通时的IGBT与二极管之间的边界处的导电率调制变小,得到IGBT的向二极管的寄生动作减少的效果。
如本实施方式所示,当在二极管区域101b设置多个二极管单元的情况下,使与IGBT区域101a邻接的二极管单元处的p+型扩散层4的面积比例低于与IGBT区域101a邻接的二极管单元处的p+型扩散层4的面积比例即可。
<实施方式4>
图16是实施方式4涉及的半导体装置100即反向导通IGBT的半导体芯片的俯视图。图17是将实施方式4涉及的半导体装置100的单元区域(主电极区域101)处的IGBT区域101a与二极管区域101b之间的边界部分放大的俯视图,示出半导体衬底表面的结构。另外,图18是实施方式4涉及的半导体装置100的单元区域的剖面图,与沿着图17的J1-J2线的剖面相对应。此外,在图16~图18中,对具有与图1~图5所示的要素相同的功能的要素标注相同的标号,这里省略它们的详细说明。
就实施方式4的半导体装置100而言,在IGBT区域101a,多个IGBT单元被以条带状划分开。即,n+型源极层3沿着条带状的栅极电极6的沟槽而延伸。另外,与实施方式1同样地,p型沟道掺杂层2的一部分到达半导体衬底的正侧的表面(接触部13)而与发射极电极11连接。另外,在接触部13,在p型沟道掺杂层2与n+型源极层3之间夹着p+型扩散层4,p型沟道掺杂层2不与n+型源极层3邻接。其结果,如图17所示,在IGBT区域101a的半导体衬底的正侧的表面,p型沟道掺杂层2的与发射极电极11连接的部分被p+型扩散层4夹着,因此仅与p+型扩散层4邻接。
就实施方式4的半导体装置100而言,IGBT区域101a的接触部13处的p型沟道掺杂层2、n+型源极层3、p+型扩散层4也具有与实施方式1相同的上述特征,因此得到与实施方式1相同的效果。
另外,就实施方式4而言,使p+型扩散层4与n+型源极层3相比形成得深,在p+型扩散层4与n+型源极层3邻接的部分,使p+型扩散层4的一部分延伸至n+型源极层3之下。根据该结构,在不对MOS沟道部分产生影响的区域(与栅极绝缘膜5分离的区域)的n+型源极层3的正下方,p型杂质浓度变高,因此寄生晶闸管的动作得到抑制,得到可控制电流提高而使RBSOA扩大的效果。
此外,就其它实施方式涉及的半导体装置100而言,同样地,只要使p+型扩散层4与n+型源极层3相比形成得深,使p+型扩散层4的一部分延伸至不对MOS沟道部分产生影响的区域的n+型源极层3之下,则得到相同的效果。
<实施方式5>
图19是实施方式5涉及的半导体装置100即反向导通IGBT的半导体芯片的俯视图。图20是将实施方式5涉及的半导体装置100的单元区域(主电极区域101)处的IGBT区域101a与二极管区域101b之间的边界部分放大的俯视图,示出半导体衬底表面的结构。另外,图21是实施方式5涉及的半导体装置100的单元区域的剖面图,与沿着图20的K1-K2线的剖面相对应。此外,在图19~图21中,对具有与图1~图5所示的要素相同的功能的要素标注相同的标号,这里省略它们的详细说明。
就实施方式5的半导体装置100而言,在IGBT区域101a,多个IGBT单元被以格子状划分开。即,n+型源极层3是沿着格子状的栅极电极6的沟槽而以框架状形成的。另外,与实施方式1同样地,p型沟道掺杂层2的一部分到达半导体衬底的正侧的表面(接触部13)而与发射极电极11连接。另外,在接触部13,在p型沟道掺杂层2与n+型源极层3之间夹着p+型扩散层4,p型沟道掺杂层2不与n+型源极层3邻接。其结果,在半导体衬底的正侧的表面,p型沟道掺杂层2的与发射极电极11连接的部分位于各IGBT单元的中央部,被p+型扩散层4包围,因此仅与p+型扩散层4邻接。
就实施方式5的半导体装置100而言,IGBT区域101a的接触部13处的p型沟道掺杂层2、n+型源极层3、p+型扩散层4也具有与实施方式1相同的上述特征,因此得到与实施方式1相同的效果。
<实施方式6>
在实施方式6中,在半导体装置100的二极管区域101b,在成为阳极层的p+型扩散层4以及p型沟道掺杂层2之下的n-型漂移层1设置促进过剩载流子的复合的损伤层。
图22~图24是实施方式6涉及的半导体装置100的单元区域的剖面图。这里,示出相对于实施方式1的半导体装置100,在二极管区域101b形成了损伤层14的例子。即,图22与沿着图2的A1-A2线的剖面相对应,图23与沿着图2的B1-B2线的剖面相对应,图24与沿着图2的C1-C2线的剖面相对应。
就实施方式6的半导体装置100而言,IGBT区域101a的结构与实施方式1相同,因此得到与实施方式1相同的效果。另外,在二极管区域101b设置有用于促进过剩载流子的复合的损伤层14,从而使二极管动作时的恢复损耗降低的效果得到提高。
此外,如果来自没有形成损伤层14的IGBT区域101a的电流的流入多,则损伤层14的效果可能降低。但在本实施方式中,由于在IGBT区域101a形成到达半导体衬底的表面的p型沟道掺杂层2,与此相对应地,在IGBT区域101a形成的p+型扩散层4的面积小,因此来自IGBT区域101a的电流得到抑制,因此能够防止损伤层14的效果降低。
但是,就实施方式6的半导体装置100的制造而言,需要损伤层14的形成工序。损伤层14的形成工序例如能够按如下所述的顺序进行。
首先,利用将除了二极管区域101b以外的区域覆盖且损伤层14的形成区域被开口的具有一定厚度的掩模(例如金属掩模等),覆盖半导体衬底之后,照射质子(H+)等带电粒子。由此,能够抑制向IGBT区域101a的带电粒子的导入,并且在二极管区域101b的特定的深度形成晶体缺陷层。然后,通过对半导体衬底施加热处理,从而能够形成以得到所期望的电气特性的方式调整了复合的量的损伤层14。
在本实施方式中,示出了在阳极层(p+型扩散层4以及p型沟道掺杂层2)的附近的深度局部地形成损伤层14的例子,但也能够在二极管区域101b整体形成损伤层14。形成损伤层14的深度能够根据带电粒子的能量而决定,只要根据所期望的特性而进行调整即可。
这里,示出了在实施方式1的半导体装置100设置了损伤层14的结构,但实施方式6的损伤层14也能够应用于除了实施方式1以外的半导体装置100。
<实施方式7>
在实施方式7中,使在半导体装置100的二极管区域101b设置的埋入电极16与发射极电极11连接。
图25~图27是实施方式7涉及的半导体装置100的单元区域的剖面图。这里,示出相对于实施方式1的半导体装置100,省略二极管区域101b的埋入绝缘膜15之上的盖绝缘膜7,将埋入绝缘膜15与发射极电极11连接的例子。即,图25与沿着图2的A1-A2线的剖面相对应,图26与沿着图2的B1-B2线的剖面相对应,图27与沿着图2的C1-C2线的剖面相对应。
就实施方式6的半导体装置100而言,IGBT区域101a的结构与实施方式1相同,因此得到与实施方式1相同的效果。另外,二极管区域101b的埋入绝缘膜15被固定于发射极电位,从而半导体芯片整体的栅极电容下降,能够使二极管动作时的恢复损耗降低。
另外,实施方式6只要相对于实施方式1的制造方法,仅变更形成埋入绝缘膜15以及埋入电极16的沟槽的图案以及盖绝缘膜7的图案即可,不需要制造工序的追加。
这里,示出了相对于实施方式1的半导体装置100而使埋入绝缘膜15与发射极电极11连接的结构,但实施方式7也能够应用于除了实施方式1以外的半导体装置100。
<变形例>
在以上的各实施方式中,将第1导电型设为p型、将第2导电型设为n型,但也能够使其相反,将第1导电型设为n型、将第2导电型设为p型。
在各实施方式中,作为半导体装置的例子,示出了具备IGBT以及二极管的反向导通IGBT,但半导体装置也可以例如是MOSFET等在内部具有二极管构造的开关元件。另外,栅极电极的构造不限于沟槽型,也可以是平面(planar)型。
并且,即使是在p型沟道掺杂层2的正下方形成了与n-型漂移层1相比杂质浓度高的n型载流子积蓄层的构造,也能够得到与此前所示的各实施方式相同的效果。
并且,半导体衬底、绝缘膜(栅极绝缘膜5以及盖绝缘膜7)、电极(发射极电极11以及集电极电极12)的材料也不限于以上所例示的材料。例如半导体衬底的材料也可以是SiC、氮化镓类材料、金刚石等宽带隙半导体。另外,电极也可以是将多个材料组合而构成的。
此外,本发明能够在其发明的范围内对各实施方式自由地进行组合,或者对各实施方式适当地进行变形、省略。

Claims (11)

1.一种半导体装置,其具备开关元件和二极管,
该开关元件具有:
第1导电型的沟道掺杂层,其形成于半导体衬底的正侧的表层部;
第1导电型的第1扩散层,其在所述沟道掺杂层的表层部选择性地形成,与所述沟道掺杂层相比杂质浓度高;
第2导电型的源极层,其在所述沟道掺杂层的表层部选择性地形成;以及
电极,其形成于所述半导体衬底的正侧的表面之上,与所述源极层以及所述第1扩散层连接,
该二极管形成于所述第1扩散层与在所述半导体衬底的背侧的表层部形成的第2导电型的第2扩散层之间,
所述沟道掺杂层的一部分到达所述半导体衬底的正侧的表面而与所述电极连接,
在所述半导体衬底的正侧的表面,在所述沟道掺杂层与所述源极层之间夹着所述第1扩散层,所述沟道掺杂层不与所述源极层邻接。
2.根据权利要求1所述的半导体装置,其中,
在所述半导体衬底的正侧的表面,所述沟道掺杂层与所述源极层之间的所述第1扩散层是第1导电型的杂质浓度最高的部分。
3.根据权利要求1或2所述的半导体装置,其中,
所述第1扩散层与所述源极层相比形成得深,在与所述源极层邻接的部分处,所述第1扩散层延伸至所述源极层之下。
4.根据权利要求1至3中任一项所述的半导体装置,其中,
所述开关元件是IGBT,该IGBT包含有在所述半导体衬底的背侧的表层部形成的第1导电型的集电极层。
5.根据权利要求4所述的半导体装置,其中,
在所述半导体衬底,形成有所述IGBT的IGBT区域与形成有所述二极管的二极管区域是在俯视观察时相互分开而配置的,
所述沟道掺杂层的与所述电极连接的部分至少在所述IGBT区域形成。
6.根据权利要求5所述的半导体装置,其中,
在所述IGBT区域,多个所述IGBT的单元被以条带状划分开,
在所述IGBT区域的所述半导体衬底的正侧的表面,所述沟道掺杂层的与所述电极连接的部分仅与所述第1扩散层邻接。
7.根据权利要求5所述的半导体装置,其中,
在所述IGBT区域,多个所述IGBT的单元被以格子状划分开,
在所述IGBT区域的所述半导体衬底的正侧的表面,所述沟道掺杂层的与所述电极连接的部分仅与所述第1扩散层邻接。
8.根据权利要求5至7中任一项所述的半导体装置,其中,
所述沟道掺杂层的与所述电极连接的部分至少在与所述二极管区域邻接的所述IGBT的单元形成。
9.根据权利要求5至8中任一项所述的半导体装置,其中,
在所述二极管区域,也是所述沟道掺杂层的一部分到达所述半导体衬底的正侧的表面而与所述电极连接。
10.根据权利要求9所述的半导体装置,其中,
在所述二极管区域,所述沟道掺杂层的与所述电极连接的部分的面积比例越是靠近所述IGBT区域的区域则越高。
11.根据权利要求5至10中任一项所述的半导体装置,其还具备:
第2导电型的漂移层,其形成于所述IGBT区域以及所述二极管区域的所述沟道掺杂层之下;以及
损伤层,其形成于所述二极管区域的所述漂移层。
CN201911024243.8A 2018-10-30 2019-10-25 半导体装置 Active CN111129135B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-203792 2018-10-30
JP2018203792A JP7101593B2 (ja) 2018-10-30 2018-10-30 半導体装置

Publications (2)

Publication Number Publication Date
CN111129135A true CN111129135A (zh) 2020-05-08
CN111129135B CN111129135B (zh) 2023-09-29

Family

ID=70327696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911024243.8A Active CN111129135B (zh) 2018-10-30 2019-10-25 半导体装置

Country Status (4)

Country Link
US (1) US11158630B2 (zh)
JP (1) JP7101593B2 (zh)
CN (1) CN111129135B (zh)
DE (1) DE102019216131A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113764520A (zh) * 2020-06-03 2021-12-07 三菱电机株式会社 半导体装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7475251B2 (ja) 2020-10-01 2024-04-26 三菱電機株式会社 半導体装置
JP7370309B2 (ja) * 2020-10-21 2023-10-27 三菱電機株式会社 逆導通型半導体装置および逆導通型半導体装置の製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146626A (ja) * 2002-10-25 2004-05-20 Toshiba Corp 半導体装置
US20090283798A1 (en) * 2007-06-20 2009-11-19 Denso Corporation Semiconductor device and manufacturing method thereof
JP2012151470A (ja) * 2011-01-17 2012-08-09 Infineon Technologies Austria Ag 半導体素子および逆導通igbt
JP2013161918A (ja) * 2012-02-03 2013-08-19 Toyota Motor Corp 半導体装置
US20150270387A1 (en) * 2014-03-19 2015-09-24 Fuji Electric Co., Ltd. Trench mos semiconductor device
JP2016164952A (ja) * 2015-03-06 2016-09-08 トヨタ自動車株式会社 半導体装置
US20160351561A1 (en) * 2015-05-27 2016-12-01 Toyota Jidosha Kabushiki Kaisha Reverse conducting igbt
JP2016225560A (ja) * 2015-06-03 2016-12-28 トヨタ自動車株式会社 半導体装置
US20170222029A1 (en) * 2016-01-29 2017-08-03 Denso Corporation Semiconductor device
JP2018157017A (ja) * 2017-03-16 2018-10-04 富士電機株式会社 半導体装置の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238871A (ja) 1990-02-15 1991-10-24 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP3524395B2 (ja) 1998-09-02 2004-05-10 株式会社ルネサステクノロジ 半導体スイッチング素子
JP2007115943A (ja) 2005-10-21 2007-05-10 Toyota Central Res & Dev Lab Inc 半導体装置
JP2008192737A (ja) 2007-02-02 2008-08-21 Denso Corp 半導体装置
JP6319057B2 (ja) 2014-11-21 2018-05-09 三菱電機株式会社 逆導通型半導体装置
JP2019145708A (ja) * 2018-02-22 2019-08-29 株式会社東芝 半導体装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146626A (ja) * 2002-10-25 2004-05-20 Toshiba Corp 半導体装置
US20090283798A1 (en) * 2007-06-20 2009-11-19 Denso Corporation Semiconductor device and manufacturing method thereof
JP2012151470A (ja) * 2011-01-17 2012-08-09 Infineon Technologies Austria Ag 半導体素子および逆導通igbt
JP2013161918A (ja) * 2012-02-03 2013-08-19 Toyota Motor Corp 半導体装置
US20150270387A1 (en) * 2014-03-19 2015-09-24 Fuji Electric Co., Ltd. Trench mos semiconductor device
JP2016164952A (ja) * 2015-03-06 2016-09-08 トヨタ自動車株式会社 半導体装置
US20160351561A1 (en) * 2015-05-27 2016-12-01 Toyota Jidosha Kabushiki Kaisha Reverse conducting igbt
JP2016225560A (ja) * 2015-06-03 2016-12-28 トヨタ自動車株式会社 半導体装置
US20170222029A1 (en) * 2016-01-29 2017-08-03 Denso Corporation Semiconductor device
JP2018157017A (ja) * 2017-03-16 2018-10-04 富士電機株式会社 半導体装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113764520A (zh) * 2020-06-03 2021-12-07 三菱电机株式会社 半导体装置

Also Published As

Publication number Publication date
DE102019216131A1 (de) 2020-04-30
US11158630B2 (en) 2021-10-26
CN111129135B (zh) 2023-09-29
JP7101593B2 (ja) 2022-07-15
JP2020072137A (ja) 2020-05-07
US20200135717A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
US11735584B2 (en) Semiconductor device
US11081481B2 (en) Semiconductor device with an IGBT region and a non-switchable diode region
KR101745776B1 (ko) 전력용 반도체 소자
JP5787853B2 (ja) 電力用半導体装置
US9257543B2 (en) Reverse-conducting insulated gate bipolar transistor and diode with one structure semiconductor device
US7557386B2 (en) Reverse conducting IGBT with vertical carrier lifetime adjustment
US7838926B2 (en) Semiconductor device
CN108074924B (zh) 半导体装置
CN111129135B (zh) 半导体装置
EP3025373B1 (en) Mos-bipolar device
JP2022079281A (ja) 半導体装置
US11575001B2 (en) Semiconductor device
US11699744B2 (en) Semiconductor device and semiconductor apparatus
CN111066148B (zh) 半导体装置
KR102170068B1 (ko) 바이폴라 논-펀치-스루 전력 반도체 디바이스
JP7471192B2 (ja) 半導体装置
US11942539B2 (en) Semiconductor device
JP2023032722A (ja) 炭化珪素半導体装置
JP2022136213A (ja) 半導体装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant