JP2007115943A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2007115943A
JP2007115943A JP2005306786A JP2005306786A JP2007115943A JP 2007115943 A JP2007115943 A JP 2007115943A JP 2005306786 A JP2005306786 A JP 2005306786A JP 2005306786 A JP2005306786 A JP 2005306786A JP 2007115943 A JP2007115943 A JP 2007115943A
Authority
JP
Japan
Prior art keywords
region
semiconductor region
semiconductor
type
type emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005306786A
Other languages
English (en)
Inventor
Sachiko Kawaji
佐智子 河路
Masayasu Ishiko
雅康 石子
Jun Saito
順 斎藤
Toyokazu Onishi
豊和 大西
Kimimori Hamada
公守 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2005306786A priority Critical patent/JP2007115943A/ja
Publication of JP2007115943A publication Critical patent/JP2007115943A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 第4半導体領域を形成する位置にバラツキが生じても、性能が変化しづらい半導体装置を提供する。
【解決手段】 表面のY方向に伸びているn型エミッタ領域60と、n型エミッタ領域60を取囲んでいるp型ボディ領域50と、その上部にp型ボディ領域50が位置しており、p型ボディ領域50によってn型エミッタ領域60から分離されているn型ドリフト領域20と、Y方向において断続的にn型エミッタ領域60とp型ボディ領域50の間に存在することによって、n型エミッタ領域60とn型ドリフト領域20の間を断続的に分離しているp型エミッタ領域70と、n型エミッタ領域60とn型ドリフト領域20を分離している位置においてp型ボディ領域50に絶縁層12を介して対向しているとともにY方向に伸びているゲート電極14とを備えている。
【選択図】 図1

Description

本発明は、製造条件のバラツキにもかかわらず、安定した性能を発揮する半導体装置に関する。
MOSFETやIGBT(Insulated Gate Bipolar Transistor)といった半導体装置が知られている。その半導体装置の性能を向上させるために、所定方向に伸びるゲート電極に沿ってn型エミッタ領域を断続的に設けるとともに、n型エミッタ領域の屈曲部をp型エミッタ領域で覆う技術が提案されており、その一例が特許文献1に開示されている。
図13に示すように、特許文献1の半導体装置100はIGBTであり、n型エミッタ領域(第1半導体領域)160と、ボディ領域(第2半導体領域)150と、ドリフト領域(第3半導体領域)120と、p型エミッタ領域(第4半導体領域)170と、n型バッファ領域130と、p型コレクタ領域140と、ゲート電極114を備えている。
第1半導体領域160は、n型(第1導電型)不純物を高濃度に含むとともに、所定方向(Y方向)に断続的に形成されている。第2半導体領域150は、p型(第2導電型)不純物を低濃度に含むとともに、第1半導体領域160を取囲んでいる。第3半導体領域120は、n型(第1導電型)不純物を含むとともに、第2半導体領域150の周囲に位置しており、第2半導体領域150によって第1半導体領域160から分離されている。n型バッファ領域130は、n型(第1導電型)不純物を高濃度に含むとともに、第3半導体領域120の裏面に形成されている。p型コレクタ領域140は、p型(第2導電型)不純物を高濃度に含むとともに、n型バッファ領域130の裏面に形成されている。
ゲート電極114は、第1半導体領域160と第3半導体領域120を分離している位置において第2半導体領域150に絶縁層115を介して対向しているともに、前記所定方向(Y方向)に伸びている。第4半導体領域170は、p型(第2導電型)不純物を高濃度に含み、前記所定方向(Y方向)長く伸び、第1半導体領域160と第2半導体領域150の間に存在することによって、第1半導体領域160の曲率の大きな部分(屈曲部)162を覆い、屈曲部162を第2半導体領域150から分離している。
半導体装置100のゲート電極114にオン電圧が印加されると、ゲート電極114の側壁に接する部分においてp型のボディ領域150が反転してチャネルが形成される。このために、n型エミッタ領域160が形成されている部分(図13に示す範囲”Ld”、及び範囲”Lf”)では、電子が、n型エミッタ領域160→形成されたチャネル→n型ドリフト領域120に移動する。それと同時に、正孔(ホール)が、p型コレクタ領域140→n型バッファ領域130→n型ドリフト領域120に移動する。この結果、n型ドリフト領域120において伝導度変調現象が生じ、n型エミッタ領域160とp型コレクタ領域140間が導通する。その一方において、n型エミッタ領域160が形成されていない部分(図13に示す範囲”Le”では、チャネルに電流が流れない。
半導体装置100では、n型エミッタ領域160がゲート電極114に沿って断続的に形成されている。n型エミッタ領域がゲート電極に沿って連続的に形成されている場合と比較すると、半導体装置100ではn型エミッタ領域160の体積が減少している。n型エミッタ領域160の体積を減少させると、飽和電流が減少し、負荷短絡耐量を増加させることができる。
特開2002−270842号公報
半導体装置100では、図14の実線が示すように、第1半導体領域160の曲率の大きな部分(屈曲部)162を第4半導体領域170で覆うことによって、屈曲部162を第2半導体領域150から分離している。
仮に第4半導体領域170が存在しないと、半導体装置100がオフしている場合に、屈曲部162の近傍に電界集中が生じ易く、その電界集中によって半導体装置100の負荷短絡耐量が低下してしまう。従って、半導体装置100の負荷短絡耐量の低下を避けるためには、屈曲部162を第4半導体領域170で覆っておく必要がある。
第4半導体領域170を形成するとしても、それが図14の破線に示す位置に形成されていれば、第4半導体領域170で屈曲部162を覆うことができず、半導体装置100の負荷短絡耐量は低下してしまう。
その一方において、第4半導体領域170が図14の一点鎖線に示すように第1半導体領域160の底面を覆う位置に形成されていると、第4半導体領域170で屈曲部162を覆うことはできても、ゲート電極114に対向しており、ゲート電極114にオン電圧が印加されたときに反転すべき位置171のp型不純物濃度が高濃度となり、反転しないことになる。これでは、半導体装置100がオン動作できない。
従来の半導体装置100は、第1半導体領域160と第4半導体領域170の位置関係を精密に管理する必要がある。両者が離れすぎれば(図14の破線の状態)、第1半導体領域160の屈曲部162を第4半導体領域170で覆うことができず、半導体装置100の負荷短絡耐量が敏感に低下してしまう。両者が接近しすぎれば(図14の一点鎖線の状態)、ゲート電極114に対向する位置171の不純物濃度が増大して半導体装置100のオン電圧が敏感に増大してしまう。
従来の半導体装置100は、上記したように第4半導体領域170を形成する位置を精密に管理する必要があり、性能が安定した半導体装置100を量産するのが難しい。
本発明は、上記の問題点を解決するために創作された。本発明では、第4半導体領域を形成する位置にバラツキが生じても、性能が変化しづらい半導体装置を提供する。本発明によると、製造条件のバラツキによって第4半導体領域を形成する位置にバラツキが生じても、製造される半導体装置の性能はあまり変わらない。性能の安定した半導体装置を量産しやすくなる。
(請求項1に記載の発明)
上記課題を解決するために、本発明の半導体装置は、少なくとも、第1半導体領域と、第2半導体領域と、第3半導体領域と、第4半導体領域と、ゲート電極を備えている。
第1半導体領域は、第1導電型不純物を高濃度に含むとともに、表面の所定方向に伸びている。第2半導体領域は、第2導電型不純物を低濃度に含むとともに第1半導体領域を取囲んでいる。第3半導体領域は、第1導電型不純物を含むとともに、その上部に第2半導体領域が設けられており、第2半導体領域によって第1半導体領域から分離されている。4半導体領域は、第2導電型不純物を高濃度に含み、前記所定方向において断続的に、第1半導体領域と第2半導体領域の間、及び/又は、第2半導体領域と第3半導体領域の間に存在することによって、第1半導体領域と第3半導体領域の間を断続的に分離している。ゲート電極は、第1半導体領域と第3半導体領域を分離している位置において第2半導体領域に絶縁層を介して対向しているともに、前記所定方向に伸びている。なお、第1半導体領域は、ゲート電極に沿って形成されていればよく、ゲート電極に沿って連続的に形成されている態様と、ゲート電極に沿って断続的に形成されている態様の両方を含む。
本発明の半導体装置によれば、断続的に形成されている第4半導体領域によって、第1半導体領域が断続的に第3半導体領域から分離される。ゲート電極にオン電圧が印加されてオン状態となっても、ゲート電極に沿って第4半導体領域が断続的に形成されている部分では、第1半導体領域と第3半導体領域の間を電流が流れない。実質的には第1半導体領域を断続的に形成するのに等しく、第1半導体領域の体積を減少させるのに等しい。第4半導体領域を断続的に形成することによって、半導体装置の飽和電流が減少し、負荷短絡耐量を増加させることができる。
また、本発明の半導体装置によれば、第4半導体領域を第1半導体領域と第2半導体領域の間に設ける場合には、ゲート電極に沿って第4半導体領域が存在する部分では、第1半導体領域の曲率が大きい部分(屈曲部)を、第4半導体領域で覆うことができる。第4半導体領域が存在しない部分では、第1半導体領域の屈曲部を、第4半導体領域で覆うことはできない。しかしながら、第4半導体領域が断続的に形成されており、第1半導体領域の屈曲部を断続的に第4半導体領域で覆えば、屈曲部162の近傍で生じ易い電界集中の発生を抑制することができる。電界集中が生じやすい第1半導体領域の屈曲部を、第4半導体領域で覆うことができ、半導体装置の負荷短絡耐量を増加させることができる。この構成では、第4半導体領域が第1半導体領域を断続的に取囲んでいればよい。従来の技術のように、第4半導体領域が第1半導体領域の屈曲部を覆うとともに、1半導体領域の底面は覆わないといった、微妙な位置関係が要求されない。また、本発明の半導体装置によれば、第4半導体領域を第2半導体領域と第3半導体領域の間に設ける場合には、第4半導体領域が、ゲート電極側壁で、チャネルが形成される第2半導体領域と第3半導体領域を断続的に分離していればよく、微妙な位置関係が要求されない。すなわち、本発明の半導体装置では、第4半導体領域を形成する位置のズレに対して半導体装置の特性が敏感に変化しない。これにより、性能の安定した半導体装置を量産しやすい。
(請求項2に記載の発明)
本発明は、トレンチ型のゲート電極を持つ半導体装置に実現することもできれば、プレーナ型のゲート電極を持つ半導体装置に実現することもできる。トレンチ型のゲート電極を持つ半導体装置に実現する場合には、ゲート電極が、第1半導体領域から第2半導体領域を貫通して第3半導体領域に達するトレンチゲート電極となる。この半導体装置は、トレンチゲート電極に沿って第4半導体領域が存在しない位置では、表面側から順に第1半導体領域と第2半導体領域と第3半導体領域が積層された積層構造が存在し、トレンチゲート電極に沿って第4半導体領域が存在する位置では、表面側から順に第1半導体領域と第4半導体領域と第2半導体領域と第3半導体領域が積層された積層構造が存在していることを特徴とする。
このトレンチゲート型の半導体装置は、断続的に形成されている第4半導体領域によって、実質的には第1半導体領域を断続的に形成されているのに等しくなる。半導体装置の飽和電流が減少し、負荷短絡耐量を増加させることができる。また、第1半導体領域の屈曲部を第4半導体領域によって断続的に覆うことができる。そして、電界集中の発生を抑制することができ、半導体装置の負荷短絡耐量を増加させることができる。さらに、第4半導体領域が第1半導体領域を断続的に取囲んでいればよく、第1半導体領域と第4半導体領域の相対的な位置関係のズレに対して半導体装置の特性があまり変化しない。これにより、高いレベルで性能が安定した半導体装置を量産しやすい。
(請求項3に記載の発明)
本発明をプレーナ型のゲート電極を持つ半導体装置に適用する場合には、ゲート電極が第1半導体領域と第2半導体領域と第3半導体領域の表面に対向するプレーナゲート電極となる。この半導体装置は、プレーナゲート電極に沿って第4半導体領域が存在しない位置では、第1半導体領域と第2半導体領域と第3半導体領域が順に配置されており、プレーナゲート電極に沿って第4半導体領域が存在する位置では、第1半導体領域と第4半導体領域と第2半導体領域と第3半導体領域が順に配置されていることを特徴とする。
このプレーナゲート型の半導体装置も、断続的に形成されている第4半導体領域によって、実質的には第1半導体領域を断続的に形成されているのに等しくなる。半導体装置の飽和電流が減少し、負荷短絡耐量を増加させることができる。また、第1半導体領域の屈曲部を第4半導体領域によって断続的に覆うことができる。そして、電界集中の発生を抑制することができ、半導体装置の負荷短絡耐量を増加させることができる。さらに、第4半導体領域が第1半導体領域を断続的に取囲んでいればよく、第1半導体領域と第4半導体領域の相対的な位置関係のズレに対して半導体装置の特性があまり変化しない。これにより、高いレベルで性能が安定した半導体装置を量産しやすい。
(請求項4に記載の発明)
本発明は、MOSFETのようなユニポーラの半導体装置に実現することもできるが、IGBTのようなバイポーラの半導体装置に実現することもできる。バイポーラの半導体装置に実現する場合には、第2導電型不純物を高濃度に含む第5半導体領域が裏面に設けられていることが好ましい。第5半導体領域は第4半導体領域の裏面に直接的に形成されていてもよいし、第1導電型不純物を高濃度に含むバッファ領域(ないしはフィールドストップ領域)を介して形成されていてもよい。
本発明の半導体装置によれば、第5半導体領域と第1半導体領域から導電型を異にするキャリアが供給され、伝導度変調現象を利用して低いオン電圧を実現することができる。
本発明によると、負荷短絡耐量が高いレベルで安定する半導体装置を量産することが可能となる。
以下に説明する実施例の主要な特徴を列記しておく。
(第1実施形態)
トレンチゲート電極が直線的に伸びている。そのトレンチゲート電極に沿って第1半導体領域(n型エミッタ領域)が直線的に連続的に伸びている。第1半導体領域をはさんだトレンチゲート電極と反対の側に、第4半導体領域が断続的に形成されている。
第4半導体領域は第1半導体領域よりも深い。第1半導体領域よりも深部では、絶縁層を介して第4半導体領域がトレンチゲート電極に対向している。第4半導体領域は、トレンチゲート電極にオン電圧が印加されても、反転しない不純物濃度を備えている。
(第2実施形態)
第4半導体領域と第4半導体領域の間隔は、第1半導体領域の屈曲部の近傍に発生し易い電界集中が許容値に抑制される間隔未満に調整されている。
(第3実施形態)
一対の第1半導体領域と一対の第2半導体領域と一対の第4半導体領域が鏡対称に配置されている。プレーナゲート電極が、第4半導体領域が存在しない位置では、一方の第1半導体領域から一方の第2半導体領域と第3半導体領域と他方の第2半導体領域を経て他方の第1半導体領域にまで伸びている。第4半導体領域が存在する位置では、一方の第1半導体領域から一方の第4半導体領域と一方の第2半導体領域と第3半導体領域と他方の第2半導体領域と他方の第4半導体領域を経て他方の第1半導体領域にまで伸びている。
(第1実施例)
以下に第1実施例の半導体装置10を図1〜図6を参照して説明する。第1実施例は、トレンチゲート電極を有するパンチスルー型のIGBTに本発明を適用したものである。
図1は、第1実施例の半導体装置10の要部斜視図を示す。図2は、図1のII−II線に対応する半導体装置10の断面図を示す。図3は、半導体装置10の製造過程において、トレンチゲート電極14が形成された状態を示す。図4は、トレンチゲート電極14に沿ってn型のエミッタ領域60が形成された状態を示す。図5は、p型のエミッタ領域70が形成された状態を示す。図6は、第1実施例の半導体装置10では、n型のエミッタ領域60とp型のエミッタ領域70の相対的位置関係の精度が緩和される様子を説明する。
図1に示すように、半導体装置10は、n型のドリフト領域(特許請求の範囲の第3半導体領域の実施例)20を備えている。ドリフト領域20の裏面側(図1に示す下側)には、n型のバッファ領域30が設けられている。n型のバッファ領域30の裏面側には、p型のコレクタ領域(特許請求の範囲の第5半導体領域の実施例)40が設けられている。また、ドリフト領域20の表面側(図1に示す上側)には、p型のボディ領域(特許請求の範囲の第2半導体領域の実施例)50が設けられている。ボディ領域50の表面からボディ領域50を貫通してドリフト領域20に達する深さまでトレンチ11が形成されている。このトレンチ11は、ボディ領域50の表面に沿って所定方向に長く伸びている。トレンチ11の内壁にはゲート絶縁層12が設けられ、その内部にはポリシリコン13が充填されてトレンチゲート電極14が形成されている。
トレンチゲート電極14は、トレンチゲート電極14の延伸方向であるY方向(特許請求の範囲の所定方向の実施例)に連続的に形成されている。トレンチゲート電極14の両サイドには、n型のエミッタ領域(特許請求の範囲の第1半導体領域の実施例)60が設けられている。n型のエミッタ領域60を挟んでトレンチゲート電極14と反対側のボディ領域50の表面には、p型のエミッタ領域(特許請求の範囲の第4半導体領域の実施例)70が設けられている。p型のエミッタ領域70は、n型のエミッタ領域60に隣接する位置において、Y方向に断続的に設けられている。図1では、Y方向に伸びる範囲”La”と”Lc”の範囲(後述する、電流の非導通範囲)ではp型のエミッタ領域70が形成されており、その間の”Lb”の範囲(後述する、電流の導通範囲)ではp型のエミッタ領域70が形成されていないことを図示している。
型のエミッタ領域70は、図1の断面に示されているように、n型のエミッタ領域60を、深さ方向(Z方向)でも巾方向(X方向)でも覆っている。p型のエミッタ領域70は、p型のエミッタ領域70が存在する”La”と”Lc”の範囲では、p型のエミッタ領域70が存在しなければボディ領域50に接するn型のエミッタ領域60の境界面61を完全に覆っている。
型のエミッタ領域70は、n型のエミッタ領域60の境界面61を完全に覆ってしまえばよい。n型のエミッタ領域60の境界面61を部分的に覆う必要はない。n型のエミッタ領域60の境界面61を部分的に覆う必要がないことから、p型のエミッタ領域70とn型のエミッタ領域60の相対的位置関係に関する要件は緩和されている。
なお、図1のII−II断面図である図2に示すように、Y方向における”Lb”の範囲では、p型のエミッタ領域70が設けられていない。
ここで、半導体装置10の製造方法を、図3〜図5を用いて簡単に説明する。まず、図3に示すように、ドリフト領域20、バッファ領域30、コレクタ領域40が積層された半導体基板を準備する。次に、ドリフト領域20の表面に、イオン注入技術及び熱拡散技術を利用してボディ領域50を形成する。次に、トレンチゲート電極14を形成する部分に開口部を設けたマスク(図示していない。)をボディ領域50の表面に形成する。次にマスクの開口部からエッチングしてドリフト領域20にまで達するトレンチ11を形成する。そして、トレンチ11の内壁にゲート絶縁層12を形成した後、マスクが除去される。次に、ゲート絶縁層12で覆われたトレンチ11内にポリシリコンを埋め込み、トレンチゲート電極14を完成する。
次に図4に示すように、マスクM1がボディ領域50の表面に形成される。このマスクM1には、n型のエミッタ領域60を形成する部分に開口部が設けられている。そして開口部からn型(特許請求の範囲の第1導電型の実施例)不純物であるリンをドープした後、マスクM1を除去する。
次に図5に示すように、マスクM2をボディ領域50の表面に形成する。このマスクM2には、p型のエミッタ領域70を形成する部分に開口部が設けられている。そして、開口部からp型(特許請求の範囲の第2導電型の実施例)不純物であるボロンをドープし後、マスクM2を除去する。そして、ドープされたリンとボロンが熱拡散されることで、n型のエミッタ領域60とp型のエミッタ領域70が形成される。
このとき、リンよりもボロンを深く注入しておいて熱拡散すると、n型のエミッタ領域60の下方にまでp型のエミッタ領域70が形成される。n型のエミッタ領域60はp型のエミッタ領域70によって完全に覆われる。n型のエミッタ領域60の下方では、p型のエミッタ領域70がトレンチゲート電極14のゲート絶縁層12に接する。ゲート絶縁層12に接するp型のエミッタ領域70の濃度が高いために、トレンチゲート電極14にオン電圧を印加しても、ゲート絶縁層12に接するp型のエミッタ領域70は反転しない。トレンチゲート電極14にオン電圧を印加しても、図1に示される断面では電流が流れず、図2に示される断面でのみ電流が流れる。ゲート絶縁層12に沿って電流が流れる範囲が、Y方向において断続的であることから、半導体相置10の飽和電流が制限され、負荷短絡耐量が増加する。
型のエミッタ領域70が形成される部分では、p型のエミッタ領域70でn型のエミッタ領域60の境界面61が全て覆われるように形成されればよい。
例えば、図6に示すように、p型のエミッタ領域70は、実線で示す位置に形成されていてもよいし、一点鎖線で示す位置に形成されていてもよい。図5に示したマスクM2の開口部がn型のエミッタ領域60寄りに設けられた場合等には、p型のエミッタ領域70は、実線で示す位置よりも一点鎖線で示す位置寄りに形成される。n型のエミッタ領域60の境界面61を部分的にp型のエミッタ領域70で覆う必要がないことから、p型のエミッタ領域70とn型のエミッタ領域60の相対的位置関係に関する要件は大幅に緩和されている。
本実施例の「リン」は本発明の「第1導電型不純物」に、本実施例の「ボロン」は本発明の「第2導電型不純物」に対応する。
このように構成された半導体装置10のn型のエミッタ領域60とp型のエミッタ領域70にはエミッタ電極が接続され、p型のコレクタ領域40にはコレクタ電極が接続される。そして、エミッタ電極を接地し、コレクタ電極に正電圧を印加した状態で、トレンチゲート電極14に印加するゲート電圧を制御する。
トレンチゲート電極14にオン電圧を印加すると、図2の断面に示すように、p型のエミッタ領域70が形成されていない範囲(図1の”Lb”で示されている範囲)では、トレンチゲート電極14に接するp型のボディ領域50にチャネル領域が形成される。そして、n型のエミッタ領域60から流出した電子が、形成されたチャネル領域を介してドリフト領域20に向けて移動する。したがって、範囲”Lb”は電流の導通範囲(n型のエミッタ領域60から電子が流出する部分)となっている。
一方、p型のエミッタ領域70が形成されている範囲(図1の”La”と”Lc”で示されている範囲)では、図1の断面に示すように、n型のエミッタ領域60の境界面61を覆っているp型のエミッタ領域70のボロン濃度が高いので、p型のエミッタ領域70は反転しない。すなわち、図1の”La”と”Lc”で示されている範囲では、n型のエミッタ領域60からは電子が流出せず、範囲”La”と範囲”Lc”は電流の非導通範囲(n型のエミッタ領域60から電子が流出しない部分)となっている。
また、p+型のコレクタ領域40からは、ドリフト領域20に向けて正孔(ホール)が移動する。したがって、ドリフト領域20には、電子と正孔が注入され、伝導度変調現象が生じ、一部の電子と正孔は結合する。また、一部の正孔はp型のエミッタ領域70からエミッタ電極に移動する。こうして、半導体装置10はオン状態となる。
本実施例の半導体装置10を用いれば、Y方向に断続的に形成されいいるp型のエミッタ領域70によって、n型のエミッタ領域60の一部がボディ領域50から断続的に分離される。そして、p型のエミッタ領域70が形成されている部分では、半導体装置10がオン状態の際に、トレンチゲートの側壁に接するボディ領域に形成されたチャネル領域に、n型のエミッタ領域60から電子が流出しない。これにより、半導体装置10がオン状態の際に流出する電子が減少し、半導体装置の飽和電流が減少する。したがって、負荷が短絡する事態となっても半導体装置10に流れる電流の量が制限され、負荷短絡耐量が増加する。
また、本実施例の半導体装置10では、断面視したときに、p型のエミッタ領域70が、n型のエミッタ領域60とp型のボディ領域50を完全に分離すればよい。すなわち、p型のエミッタ領域70が、n型のエミッタ領域60の境界面61を全て覆うように形成されていればよい。従来の技術では、p型のエミッタ領域70がn型のエミッタ領域60の屈曲部62を覆うと同時に、n型のエミッタ領域60とp型のボディ領域50の境界面61を全ては覆わないようにする必要があり、p型のエミッタ領域70とn型のエミッタ領域60の相対的位置関係を精密に管理する必要があった。本実施例の半導体装置10では、p型のエミッタ領域70でn型のエミッタ領域60の境界面61を全て覆ってしまえばよい。したがって、n型のエミッタ領域60とp型のエミッタ領域70を形成する際の相対的な位置合わせが容易である。n型のエミッタ領域60とp型のエミッタ領域70の相対的な位置にばらつきが生じても、半導体装置10の特性にはあまり影響しない。性能の安定した半導体装置10を量産しやすい。
本実施例では、n型のエミッタ領域60が、トレンチゲート電極14に沿って連続的に設けられている場合について説明したが、n型のエミッタ領域60は連続的に設けられていなくてもよい。すなわち、n型のエミッタ領域60トレンチゲート電極14に沿って断続的に設けられていてもよい。その場合、断続的に形成されているn型のエミッタ領域60の境界面61がp型のエミッタ領域70で覆われていればよい。これによれば、半導体装置10がオン状態の際に形成されるチャネル領域の面積が、さらに減少し、半導体装置の飽和電流が一層減少する。
(第2実施例)
次に第2実施例の半導体装置10aを、図7、図8を参照して説明する。本実施例は、プレーナゲート電極を有するパンチスルー型のIGBTに本発明を適用したものである。図7と図8は、第2実施例の半導体装置10aの断面図を示す。図7は、p型のエミッタ領域70a,70eが設けられている範囲での断面を示し、図8は、p型のエミッタ領域70a,70eが設けられていない範囲での断面を示す。
図7、図8に示すように、半導体装置10aは、n型のドリフト領域(特許請求の範囲の第3半導体領域の実施例)20aを備えている。n型のドリフト領域20aの裏面側(図7に示す下側)には、n型のバッファ領域30aとp型のコレクタ領域(特許請求の範囲の第5半導体領域の実施例)40aが設けられている。また、n型のドリフト領域20の表面側(図7に示す上側)の一部には、p型のボディ領域(特許請求の範囲の第2半導体領域の実施例)50a,50eが設けられている。そして、各ボディ領域50a,50eの表面の一部には、n型のエミッタ領域(特許請求の範囲の第1半導体領域の実施例)60a,60eが形成される。
そして図7に示すように、電子の流出を抑えて飽和電流を抑制する部分では、n型のエミッタ領域60aとp型のボディ領域50aの間にp型のエミッタ領域70aが形成されており、p型のエミッタ領域70aがn型のエミッタ領域60aとp型のボディ領域50aを分離している。同様に、n型のエミッタ領域60eとp型のボディ領域50eの間にp型のエミッタ領域70eが形成されており、p型のエミッタ領域70eがn型のエミッタ領域60eとp型のボディ領域50eを分離している。
一方、図8に示す電子流出部分では、p型のエミッタ領域70a,70eは設けられていない。
そして、n型のエミッタ領域60aの表面からn型のエミッタ領域60eの表面まで、プレーナゲート電極14aが形成されている。
なお、半導体装置10aの製造方法については、一般的な方法であるので、説明を省略する。
このように構成された半導体装置10aの、n型のエミッタ領域60aとp型のエミッタ領域70aにはエミッタ電極が接続され、p型のコレクタ領域40aにはコレクタ電極が接続される。そして、エミッタ電極を接地し、コレクタ電極に正電圧を印加した状態で、プレーナゲート電極14aに印加する電圧を制御する。
プレーナゲート電極14aにオン電圧を印加すると、図8に示すようにp型のエミッタ領域70a,70eが形成されていない断面を有する部分では、プレーナゲート電極14a下にチャネル領域が形成され、n型のエミッタ領域60aから流出した電子が、形成されたチャネル領域を介してドリフト領域20aに向けて移動する。同様に、n型のエミッタ領域60eから流出した電子が、形成されたチャネル領域を介してドリフト領域20aに向けて移動する。
一方、図7に示すようにp型のエミッタ領域70a,70eが形成されている断面を有する部分では、プレーナゲート電極14a下に形成されたチャネル領域に、n型のエミッタ領域60a,60eから電子が流出しない。
また、p型のコレクタ領域40aからは、ドリフト領域20に向けて正孔が移動する。したがって、ドリフト領域20aには電子と正孔が注入され、伝導度変調現象が生じ、一部の電子と正孔は結合する。また一部の正孔は、p型のエミッタ領域70a,70eからエミッタ電極に移動する。こうして、半導体装置10aはオン状態となる。
本実施例の半導体装置10aを用いれば、p型のエミッタ領域70a,70eによって、n型のエミッタ領域60a,60eの一部がボディ領域50a,50eから断続的に分離される。そして、p型のエミッタ領域70a,70eが形成されている断面を有する部分では、当該半導体装置10aがオン状態の際に、プレーナゲート電極14aの下に形成されるチャネル領域に、n型のエミッタ領域60a,60eから電子が流出しない。これにより、半導体装置10aがオン状態の際に流出する電子が減少し、半導体装置10aの飽和電流が減少する。したがって、負荷が短絡する事態となっても半導体装置10aに流れる電流の量が制限され、負荷短絡耐量が増加する。
また、本実施例の半導体装置10aでは、断面視したときに、p型のエミッタ領域70a,70eが、n型のエミッタ領域60a,60eとp型のボディ領域50a,50eを完全に分離すればよい。すなわち、p型のエミッタ領域70a,70eがn型のエミッタ領域60a,60eの境界面61a,61eを全て覆うように形成されていればよい。従来の技術では、p型のエミッタ領域70a,70eがn型のエミッタ領域60の屈曲部62a,62eを其々覆うと同時に、n型のエミッタ領域60a,60eとp型のエミッタ領域70a,70eの境界面61a,61eを全ては覆さないようにする必要があり、p型のエミッタ領域70a,70eとn型のエミッタ領域60a,60eの相対的位置関係を精密に管理する必要があった。本実施の形態の形態の半導体装置10aでは、p型のエミッタ領域70a,70eでn型のエミッタ領域60a,60eの境界面61a,61eを全て覆ってしまえばよい。したがって、n型のエミッタ領域60a,60eとp型のエミッタ領域70a,70eを形成する際の相対的な位置合わせが容易である。そして、n型のエミッタ領域60a,60eとp型のエミッタ領域70a,70eの相対的な位置にばらつきが生じても、半導体装置10aの特性にはあまり影響しない。これにより、性能の安定した半導体装置10aを量産しやすい。
第2実施例の半導体装置10aでは、図7に示す範囲では、p型のエミッタ領域70a,70eにより、n型のエミッタ領域60a,60eとボディ領域50a,50eとの境界面61a,61eが全て覆われる場合について説明したが、各p型のエミッタ領域70a,70eは、図9に示すように、絶縁プレーナゲート14a下において、各n型のエミッタ領域60a,60eとドリフト領域20aを隔絶するように形成されていてもよい。これによれば、p型のエミッタ領域70a,70eを形成する際に、p型の不純物をドープする時間が短くてよい。あるいは、p型の不純物をドープする量が少なくてよい。
また、第1及び第2実施例では、本発明の半導体装置がIGBTである場合について説明したが、本発明の半導体装置は、図10、図11に示すようなパワーMOSFETであってもよい。図10には、トレンチゲート電極14bを有する半導体装置10bの電流の非導通範囲(電子の非流出部分)を示す。半導体装置10bの電流の非導通範囲には、ボディ領域50b(第2半導体領域)とドリフト領域20b(第3半導体領域)との間にp型半導体領域70bが設けられている。図11には、プレーナゲート電極14cを有する半導体装置10cの電流の非導通範囲(電子の非流出部分)を示す。半導体装置10cの電流の非導通範囲には、ボディ領域50c(第2半導体領域)とドリフト領域20c(第3半導体領域)との間にp型半導体領域70cが設けられている。このような構成の半導体装置10b,10cでは、p型半導体領域70b,70cが、ボディ領域50b,50cとドリフト領域20b,20cを断続的に分離していればよく、微妙な位置関係が要求されない。すなわち、半導体装置10b,10cでは、p型半導体領域70b,70cを形成する位置のズレに対して半導体装置10b,10cの特性が敏感に変化しない。これにより、性能の安定した半導体装置を量産しやすい。
また、本発明の半導体装置は、図12に示すように、ゲート電極G及びソース電極S及びドレイン電極Dが半導体装置10dの表面に形成されており、電流を素子について水平方向に流すMOSFETであってもよい。図12に示す半導体装置10dの電流の非導通範囲(電子の非流出部分)には、ゲート絶縁層下であって、チャネル領域が形成されるボディ領域50d(第2半導体領域)に、ソース領域60d(第1半導体領域)に接してp型半導体領域70d(第4半導体領域)が設けられている。p型半導体領域70dは、ドレイン領域61dに接して設けられていてもよい。このような構成の半導体装置10dでは、p型半導体領域70dが、ソース領域60dあるいはドレイン領域61dとボディ領域50dを断続的に分離していればよく、微妙な位置関係が要求されない。すなわち、半導体装置10dでは、p型半導体領域70dを形成する位置のズレに対して半導体装置10dの特性が敏感に変化しない。これにより、性能の安定した半導体装置を量産しやすい。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
第1実施例の半導体装置10の要部の斜視図を示す。 半導体装置10の電子流出部分の断面図を示す。 半導体装置10の製造過程において、トレンチゲート電極14が形成された状態を示す。 トレンチゲート電極14に沿ってn型のエミッタ領域60が形成された状態を示す。 型のエミッタ領域70が形成された状態を示す。 第1実施例の半導体装置10の製造する過程で、n型のエミッタ領域60とp型のエミッタ領域70の相対的位置関係の精度が緩和される様子を示す図である。 第2実施例の半導体装置10aについて、電子非流出部分の断面図を示す。 半導体装置10aの電子流出部分の断面図を示す。 半導体装置10aの電子非流出部分の変更例を示す。 半導体装置10bの電子非流出部分の断面図を示す。 半導体装置10cの電子非流出部分の断面図を示す。 半導体装置10dの電子非流出部分の断面図を示す。 従来技術を示す半導体装置100の要部斜視図である。 従来の半導体装置100の製造過程で、n型のエミッタ領域160とp型のエミッタ領域170の相対的位置関係に、厳密な精度が要求されることを説明する図である。
符号の説明
10,10a 半導体装置
11 トレンチ
12 絶縁層
13 電極
14 トレンチゲート電極
14a プレーナゲート電極
20,20a n型のドリフト領域
30,30a n型のバッファ領域
40,40a p型のコレクタ領域
50,50a,50e p型のボディ領域
60,60a,60e n型のエミッタ領域
61,61a,61e 境界面
62,62a,62e 屈曲部
70,70a,70e p型のエミッタ領域
M1,M2 マスク

Claims (4)

  1. 第1導電型不純物を高濃度に含むとともに、表面の所定方向に伸びている第1半導体領域と、
    第2導電型不純物を低濃度に含むとともに、第1半導体領域を取囲んでいる第2半導体領域と、
    第1導電型不純物を含むとともに、その上部に第2半導体領域が設けられており、第2半導体領域によって第1半導体領域から分離されている第3半導体領域と、
    第2導電型不純物を高濃度に含み、前記所定方向において断続的に、第1半導体領域と第2半導体領域の間、及び/又は、第2半導体領域と第3半導体領域の間に存在することによって、第1半導体領域と第3半導体領域の間を断続的に分離している第4半導体領域と、
    第1半導体領域と第3半導体領域を分離している位置において第2半導体領域に絶縁層を介して対向しているとともに、前記所定方向に伸びているゲート電極と、
    を備えている半導体装置。
  2. ゲート電極は、第1半導体領域から第2半導体領域を貫通して第3半導体領域に達するトレンチゲート電極であり、
    トレンチゲート電極に沿って第4半導体領域が存在しない位置では、表面側から順に第1半導体領域と第2半導体領域と第3半導体領域が積層された積層構造が存在し、
    トレンチゲート電極に沿って第4半導体領域が存在する位置では、表面側から順に第1半導体領域と第4半導体領域と第2半導体領域と第3半導体領域が積層された積層構造が存在していることを特徴とする請求項1の半導体装置。
  3. ゲート電極は、第1半導体領域と第2半導体領域と第3半導体領域の表面に対向するプレーナゲート電極であり、
    プレーナゲート電極に沿って第4半導体領域が存在しない位置では、第1半導体領域と第2半導体領域と第3半導体領域が順に配置されており、
    プレーナゲート電極に沿って第4半導体領域が存在する位置では、第1半導体領域と第4半導体領域と第2半導体領域と第3半導体領域が順に配置されていることを特徴とする請求項1の半導体装置。
  4. 第2導電型不純物を高濃度に含む第5半導体領域が裏面に設けられていることを特徴とする請求項1〜3のいずれかの半導体装置。
JP2005306786A 2005-10-21 2005-10-21 半導体装置 Pending JP2007115943A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005306786A JP2007115943A (ja) 2005-10-21 2005-10-21 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005306786A JP2007115943A (ja) 2005-10-21 2005-10-21 半導体装置

Publications (1)

Publication Number Publication Date
JP2007115943A true JP2007115943A (ja) 2007-05-10

Family

ID=38097856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306786A Pending JP2007115943A (ja) 2005-10-21 2005-10-21 半導体装置

Country Status (1)

Country Link
JP (1) JP2007115943A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014102916A1 (ja) * 2012-12-26 2014-07-03 株式会社日立製作所 炭化珪素半導体装置
JP2014154739A (ja) 2013-02-12 2014-08-25 Sanken Electric Co Ltd 半導体装置
US11158630B2 (en) 2018-10-30 2021-10-26 Mitsubishi Electric Corporation Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613620A (ja) * 1992-03-18 1994-01-21 Mitsubishi Electric Corp ゲート絶縁型半導体装置及びその製造方法
JPH0870121A (ja) * 1994-08-30 1996-03-12 Mitsubishi Electric Corp 絶縁ゲート型半導体装置
JPH10321859A (ja) * 1997-05-07 1998-12-04 Samsung Electron Co Ltd 寄生サイリスターラッチアップを防止するために不連続のエミッター領域を含む電力半導体装置
JP2001250947A (ja) * 2000-03-06 2001-09-14 Toshiba Corp 電力用半導体素子およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613620A (ja) * 1992-03-18 1994-01-21 Mitsubishi Electric Corp ゲート絶縁型半導体装置及びその製造方法
JPH0870121A (ja) * 1994-08-30 1996-03-12 Mitsubishi Electric Corp 絶縁ゲート型半導体装置
JPH10321859A (ja) * 1997-05-07 1998-12-04 Samsung Electron Co Ltd 寄生サイリスターラッチアップを防止するために不連続のエミッター領域を含む電力半導体装置
JP2001250947A (ja) * 2000-03-06 2001-09-14 Toshiba Corp 電力用半導体素子およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014102916A1 (ja) * 2012-12-26 2014-07-03 株式会社日立製作所 炭化珪素半導体装置
JP2014154739A (ja) 2013-02-12 2014-08-25 Sanken Electric Co Ltd 半導体装置
US9059237B2 (en) 2013-02-12 2015-06-16 Sanken Electric Co., Ltd. Semiconductor device having an insulated gate bipolar transistor
US11158630B2 (en) 2018-10-30 2021-10-26 Mitsubishi Electric Corporation Semiconductor device

Similar Documents

Publication Publication Date Title
US20210126117A1 (en) Trench-type insulated gate semiconductor device including an emitter trench and an overlapped floating region
US11121242B2 (en) Method of operating a semiconductor device having a desaturation channel structure
US10818782B2 (en) Insulated-gate bipolar transistor (IGBT) including a branched gate trench
US8994102B2 (en) Semiconductor device
JP4764987B2 (ja) 超接合半導体素子
US8829608B2 (en) Semiconductor device
US8975690B2 (en) Semiconductor device
JP2005183563A (ja) 半導体装置
EP3340311B1 (en) Trench gate igbt
CN102804385A (zh) 半导体器件
US9318590B2 (en) IGBT using trench gate electrode
JP7478716B2 (ja) 半導体装置
JP2013102213A (ja) 半導体素子
CN112201690A (zh) Mosfet晶体管
JP4595327B2 (ja) 半導体素子
JP4686580B2 (ja) 電力用半導体装置
JP2001015747A (ja) 半導体装置
JP4692313B2 (ja) 半導体装置
JP2007115943A (ja) 半導体装置
JP4383820B2 (ja) トレンチゲート型半導体装置
US8072027B2 (en) 3D channel architecture for semiconductor devices
KR102417146B1 (ko) 전력 반도체 소자
KR101420528B1 (ko) 전력 반도체 소자
CN116998019A (zh) 半导体装置
JP2014225615A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080613

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313