JP2020031155A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2020031155A
JP2020031155A JP2018156613A JP2018156613A JP2020031155A JP 2020031155 A JP2020031155 A JP 2020031155A JP 2018156613 A JP2018156613 A JP 2018156613A JP 2018156613 A JP2018156613 A JP 2018156613A JP 2020031155 A JP2020031155 A JP 2020031155A
Authority
JP
Japan
Prior art keywords
region
semiconductor substrate
trench gate
lifetime control
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018156613A
Other languages
English (en)
Inventor
圭佑 木村
Keisuke Kimura
圭佑 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018156613A priority Critical patent/JP2020031155A/ja
Publication of JP2020031155A publication Critical patent/JP2020031155A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

【課題】ライフタイム制御領域が形成されている半導体装置であって、電気的特性の悪化が抑えられた半導体装置を提供すること。【解決手段】IGBT領域とダイオード領域が半導体基板内に一体化された半導体装置であって、ドリフト領域には、半導体基板の同一面内に位置するライフタイム制御領域が形成されており、ライフタイム制御領域は、半導体基板の表面に直交する方向から見たときに、トレンチゲートに重複する位置には配置されておらず、半導体基板の厚み方向の結晶欠陥密度は、ライフタイム制御領域より深い側よりもライフタイム制御領域より浅い側が多い。【選択図】図1

Description

本明細書が開示する技術は、半導体装置に関する。
特許文献1及び特許文献2は、IGBT領域とダイオード領域が半導体基板内に一体化された逆導通IGBT(Reverse Conducting Insulated Gate Bipolar Transistor)と称される種類の半導体装置を開示する。この種の半導体装置は、半導体基板の表層部にトレンチゲートが形成されており、半導体基板の裏層部にp型のコレクタ領域とn型のカソード領域が形成されている。p型のコレクタ領域が設けられている範囲がIGBT領域となり、n型のカソード領域が設けられている範囲がダイオード領域となる。逆導通IGBTでは、ダイオード領域に形成されたダイオード構造がフリーホイールダイオードとして動作する。
このような逆導通IGBTでは、ダイオード領域のダイオード構造の電気的特性を調整するために、ドリフト領域内にライフタイム制御領域を形成することが行われている。ライフタイム制御領域は、結晶欠陥が多量に形成された領域であり、キャリア再結合中心となる領域である。
特開2011−238872号公報 特開2015−138801号公報
ダイオード領域のドリフト領域のみにライフタイム制御領域を形成すると、ダイオード領域とIGBT領域の境界部分において、オフのときに電界が集中することが懸念される。このため、ダイオード領域とIGBT領域の双方のドリフト領域に亘ってライフタイム制御領域を一様に形成することが行われている。
このようなライフタイム制御領域は、半導体基板に対してヘリウムイオン等の荷電粒子を照射することで形成されることが多い。このような荷電粒子は、半導体基板の表面から照射されることもあれば、半導体基板の裏面から照射されることもある。しかしながら、半導体基板の裏面から荷電粒子を照射すると、半導体基板の裏面から所定深さまでの広い範囲に亘って結晶欠陥が形成されるので、リーク電流が増加することが懸念される。このため、ライフタイム制御領域を形成するためには、半導体基板の表面から荷電粒子を照射することが望ましい。
通常、ライフタイム制御領域を形成するための荷電粒子の照射工程は、トレンチゲートのような半導体装置の表面構造を半導体基板に形成した後に実施される。従来技術では、半導体基板の表面全体に向けて荷電粒子を照射することで、ライフタイム制御領域を形成している。このような製造方法によると、半導体基板の表層部に形成されているトレンチゲートを通過する荷電粒子によってトレンチゲートにダメージが加えられることが懸念される。これにより、半導体装置の電気的特性が悪化することが懸念される。本明細書は、ライフタイム制御領域が形成されている半導体装置であって、電気的特性の悪化が抑えられた半導体装置を提供することを目的とする。
本願明細書が開示する半導体装置は、IGBT領域とダイオード領域が半導体基板内に一体化された半導体装置である。前記IGBT領域に構成されるIGBT構造は、前記半導体基板の裏層部に形成されている第1導電型のコレクタ領域と、前記半導体基板の表層部に形成されている第1導電型のボディ領域と、前記半導体基板に形成されており、前記コレクタ領域と前記ボディ領域の間に設けられている第2導電型のドリフト領域と、前記半導体基板の表面から前記ボディ領域を貫通して前記ドリフト領域に達するトレンチゲートと、を備えることができる。前記ドリフト領域には、前記半導体基板の同一面内に位置するライフタイム制御領域が形成されている。前記ライフタイム制御領域は、前記半導体基板の前記表面に直交する方向から見たときに、前記トレンチゲートに重複する位置には配置されていない。さらに、前記半導体基板の厚み方向の結晶欠陥密度は、前記ライフタイム制御領域より深い側よりも前記ライフタイム制御領域より浅い側が多い。
まず、上記半導体装置では、前記半導体基板の厚み方向の結晶欠陥密度が、前記ライフタイム制御領域より深い側よりも前記ライフタイム制御領域より浅い側が多い。このため、前記ライフタイム制御領域を形成するための荷電粒子が、前記半導体基板の表面から照射されている。上記半導体装置ではさらに、前記ライフタイム制御領域が、前記半導体基板の前記表面に直交する方向から見たときに、前記トレンチゲートに重複する位置には配置されていない。換言すると、前記ライフタイム制御領域を形成するために照射された荷電粒子が、前記トレンチゲートを通過していない。このため、上記半導体装置では、前記ライフタイム制御領域を形成するために前記半導体基板の表面から荷電粒子を照射しても、トレンチゲートにダメージが加えられていない。したがって、上記半導体装置は、前記ライフタイム制御領域を形成するために前記半導体基板の表面から荷電粒子を照射することによる電気的特性の悪化が抑えられた構造を有している。
半導体装置の概要を表す平面図を模式的に示す。 図1のII-II線に対応した断面図であり、半導体装置の要部縦断面図を模式的に示す。 半導体基板の厚み方向における結晶欠陥密度の分布を示す。 結晶欠陥を形成する工程中の半導体装置の要部断面図を模式的に示す。
図1に示されるように、半導体装置1は、逆導通IGBTと称される種類の半導体装置であり、IGBT領域2aとダイオード領域2bに区画された素子領域2を有する半導体基板10を備えている。この例では、素子領域2内のIGBT領域2aとダイオード領域2bが、一方向に沿って交互に繰り返すように区画されている。
図2に示されるように、半導体装置1は、半導体基板10の裏面10Aを被覆するコレクタ電極22、半導体基板10の表面10Bを被覆するエミッタ電極24、半導体基板10の表層部のうちのIGBT領域2aに形成されている複数のトレンチゲート30、及び、半導体基板10の表層部のうちのダイオード領域2bに形成されている複数のダミートレンチゲート40を備えている。一例では、コレクタ電極22及びエミッタ電極24は、Al(またはAlSi)、Ti、Ni及びAuが順に積層した電極である。
半導体基板10は、シリコン基板であり、p+型のコレクタ領域11、n+型のカソード領域12、n+型のバッファ領域13、n型のドリフト領域14、p型のボディ領域15、n型のキャリア蓄積層16、p+型のボディコンタクト領域17、及び、n+型のエミッタ領域18を有している。
コレクタ領域11は、半導体基板10の裏層部の一部に設けられており、半導体基板10の裏面10Aに露出している。また、コレクタ領域11は、ドリフト領域14の下方の一部に設けられており、IGBT領域2aに配置されている。半導体基板10では、コレクタ領域11が存在する範囲をIGBT領域2aという。コレクタ領域11は、その不純物濃度が濃く、コレクタ電極22にオーミック接触している。コレクタ領域11は、例えば、イオン注入技術を利用して、半導体基板10の裏面10Aからボロンを導入することで形成されている。
カソード領域12は、半導体基板10の裏層部の一部に設けられており、コレクタ領域11に隣接しており、半導体基板10の裏面10Aに露出している。また、カソード領域12は、ドリフト領域14の下方の一部に設けられており、ダイオード領域2bに配置されている。半導体基板10では、カソード領域12が存在する範囲をダイオード領域2bという。カソード領域12は、その不純物濃度が濃く、コレクタ電極22にオーミック接触している。カソード領域12は、例えば、イオン注入技術を利用して、半導体基板10の裏面10Aからリンを導入することで形成されている。
バッファ領域13は、コレクタ領域11とドリフト領域14の間、及びカソード領域12とドリフト領域14の間に設けられており、IGBT領域2aとダイオード領域2bの双方に配置されている。バッファ領域13は、例えば、イオン注入技術を利用して、半導体基板10の裏面からリンを導入することで形成されている。
ドリフト領域14は、バッファ領域13とボディ領域15の間に設けられており、IGBT領域2aとダイオード領域2bの双方に配置されている。ドリフト領域14は、IGBT領域2aにおいてトレンチゲート30の底部に接しており、ダイオード領域2bにおいてダミートレンチゲート40の底部に接している。ドリフト領域14は、半導体基板10に他の領域を形成した残部であり、不純物濃度は厚み方向に一定である。
ボディ領域15は、ドリフト領域14の上方に設けられており、ドリフト領域14に接しており、IGBT領域2aとダイオード領域2bの双方に配置されている。ボディ領域15は、IGBT領域2aにおいてトレンチゲート30の側面に接しており、ダイオード領域2bにおいてダミートレンチゲート40の側面に接している。ボディ領域15は、キャリア蓄積層16よりも下側に位置する部分をボトムボディ領域15aといい、キャリア蓄積層16よりも上側に位置する部分をトップボディ領域15bという。ボディ領域15は、例えば、イオン注入技術を利用して、半導体基板10の表面からボロンを導入することで形成されている。
キャリア蓄積層16は、ボトムボディ領域15aとトップボディ領域15bの間に設けられており、IGBT領域2aとダイオード領域2bの双方に配置されている。キャリア蓄積層16は、IGBT領域2aにおいてトレンチゲート30の側面に接しており、ダイオード領域2bにおいてダミートレンチゲート40の側面に接している。キャリア蓄積層16の電位はフローティングである。この例に代えて、キャリア蓄積層16は、IGBT領域2aに選択的に設けられていてもよい。キャリア蓄積層16は、例えば、イオン注入技術を利用して、半導体基板10の表面からリンを導入することで形成されている。
複数のボディコンタクト領域17は、ボディ領域15の上方に設けられており、ボディ領域15に接しており、IGBT領域2aとダイオード領域2bの双方に配置されており、半導体基板10の表面10Bに露出している。ボディコンタクト領域17は、その不純物濃度がボディ領域15よりも濃く、エミッタ電極24にオーミック接触している。複数のボディコンタクト領域17は、例えば、イオン注入技術を利用して、半導体基板10の表面からボロンを導入することで形成されている。
複数のエミッタ領域18は、ボディ領域15の上方に設けられており、ボディ領域15に接しており、IGBT領域2aに配置されており、トレンチゲート30の側面に接しており、半導体基板10の表面10Bに露出している。エミッタ領域18は、その不純物濃度が濃く、エミッタ電極24にオーミック接触している。複数のエミッタ領域18は、例えば、イオン注入技術を利用して、半導体基板10の表面からリンを導入することで形成されている。
複数のトレンチゲート30は、IGBT領域2aに配置されており、半導体基板10の表面10Bからトップボディ領域15b、キャリア蓄積層16及びボトムボディ領域15aを貫通してドリフト領域14に達して形成されている。トレンチゲート30は、ポリシリコンを材料とするトレンチゲート電極32と、そのトレンチゲート電極32を被覆する酸化シリコンを材料とするゲート絶縁膜34を有している。一例では、複数のトレンチゲート30は、半導体基板10の表面10Bに直交する方向から観測したときに、ストライプ状に配置されている
複数のダミートレンチゲート40は、ダイオード領域2bに配置されており、半導体基板10の表面10Bからトップボディ領域15b、キャリア蓄積層16及びボトムボディ領域15aを貫通してドリフト領域14に達して形成されている。ダミートレンチゲート40は、ポリシリコンを材料とするダミートレンチゲート電極42と、そのダミートレンチゲート電極42を被覆する酸化シリコンを材料とするダミーゲート絶縁膜44を有している。ダミートレンチゲート電極42は、エミッタ電極24に短絡している。一例では、複数のダミートレンチゲート40は、半導体基板10の表面10Bに直交する方向から観測したときに、ストライプ状に配置されている。
半導体装置は、コレクタ電極22、コレクタ領域11、バッファ領域13、ドリフト領域14、ボディ領域15、キャリア蓄積層16、ボディコンタクト領域17、エミッタ領域18、エミッタ電極24及びトレンチゲート30がIGBT構造を構成する。半導体装置では、コレクタ電極22、カソード領域12、バッファ領域13、ドリフト領域14、ボディ領域15、キャリア蓄積層16及びエミッタ電極24がダイオード構造を構成する。ダイオード構造においては、コレクタ電極22がカソード電極として機能し、エミッタ電極24がアノード電極として機能する。なお、この例では、ダイオード領域にキャリア蓄積層16及びダミートレンチゲート40が設けられているが、これらが設けられていなくてもよい。
図2に示されるように、半導体装置1では、ドリフト領域14内に複数のライフタイム制御領域52が形成されている。複数のライフタイム制御領域52は、半導体基板10の所定深さにおいて同一面内に配置されている。複数のライフタイム制御領域52は、トレンチゲート30及びダミートレンチゲート40の底部よりも深い位置であって、ドリフト領域14のうちのボディ領域15側、換言すると、ボディ領域15までの距離がバッファ領域13までの距離よりも短い位置に配置されている。複数のライフタイム制御領域52は、半導体基板10の表面10Bに直交する方向から見たときに、トレンチゲート30及びダミートレンチゲート40と重複する位置に形成されておらず、トレンチゲート30とトレンチゲート30の間、ダミートレンチ40とダミートレンチ40の間、及び、トレンチゲート30とダミートレンチ40の間に選択的に形成されている。
ライフタイム制御領域52は、結晶欠陥が多量に形成された領域であり、キャリア再結合中心となる領域である。ライフタイム制御領域52は、ダイオード領域2bのダイオード構造の電気的特性を調整するために形成されている。ライフタイム制御領域52は、ダイオード構造の電気的特性の調整だけを考慮すれば、ダイオード領域2bのみに形成することも考えられる。しかしながら、そのような構成では、ダイオード領域2bとIGBT領域2aの境界部分において、オフのときに電界が集中することが懸念される。このため、半導体装置1では、ダイオード領域2bとIGBT領域2aの双方のドリフト領域14に亘ってライフタイム制御領域52が一様に形成されている。
図3に、半導体基板10の表面10Bからの深さにおける結晶欠陥密度の分布を示す。横軸の原点が、半導体基板10の表面10Bに対応する。図中の結晶欠陥密度のピーク位置がライフタイム制御領域52の位置である。なお、本願明細書では、ライフタイム制御領域52の範囲は、結晶欠陥密度のピーク値から2分の1までの結晶欠陥密度となる範囲と定義されてもよい。図3に示されるように、半導体基板10の厚み方向の結晶欠陥密度は、ライフタイム制御領域52より深い側よりもライフタイム制御領域52より浅い側が多い。より詳細には、ライフタイム制御領域52より浅い側における結晶欠陥密度の厚み方向の平均値は、ライフタイム制御領域52より深い側における結晶欠陥密度の厚み方向の平均値よりも高い。後述するように、ライフタイム制御領域52は、半導体基板10の表面10Bからヘリウムイオンを照射することで形成される。このため、ヘリウムイオンが通過する半導体基板10の表層部には、半導体基板10の表面10Bから所定深さまで略一様に結晶欠陥が形成されている。このため、図3に示すような結晶欠陥密度の分布が形成される。
次に、半導体装置1の製造方法のうちのライフタイム制御領域52を形成する工程について説明する。なお、ライフタイム制御領域52の形成工程は、半導体装置1の表面構造を形成した後に実施される。これは、半導体装置1の表面構造を形成するためのクリーンルーム内に、ヘリウムイオンの照射装置を導入できないからである。
図4に、ヘリウムイオンを照射して結晶欠陥を形成する工程中の半導体装置1の要部断面図を模式的に示す。なお、図示明瞭化のために、半導体装置1の各構成要素の符号については省略している。図4に示されるように、半導体基板10の表面10Bの上方に遮蔽マスク62が配置される。遮蔽マスク62は、半導体基板10の表面10Bに直交する方向から見たときに、全てのトレンチゲート30及びダミートレンチゲート40を遮蔽するとともに、トレンチゲート30とトレンチゲート30の間、ダミートレンチ40とダミートレンチ40の間、及び、トレンチゲート30とダミートレンチ40の間が開口するような形態を有している。次に、そのような遮蔽マスク62越しに、ヘリウムイオンを半導体基板10の表面10Bに向けて照射する。ヘリウムイオンは、ドリフト領域14内に結晶欠陥のピークが形成される大きさのエネルギーで照射される。照射されたヘリウムイオンは、エミッタ電極24及び半導体基板10の表層部を貫通して半導体基板10の所定深さに残留する。これにより、その所定深さにおいて結晶欠陥密度がピークとなり、ライフタイム制御領域52が形成される。
上記したように、遮蔽マスク62は、トレンチゲート30及びダミートレンチゲート40を遮蔽するような形態を有している。このため、照射されたヘリウムイオンは、トレンチゲート30及びダミートレンチゲート40を通過しない。特に、照射されたヘリウムイオンがトレンチゲート30を通過しないことにより、少なくとも以下のような効果の1つが得られる。
(1)トレンチゲート30のトレンチゲート電極32とエミッタ領域18の間のゲート絶縁膜34、及び、トレンチゲート30のトレンチゲート電極32とトップボディ領域15bの間のゲート絶縁膜34にヘリウムイオン照射によるダメージが加えられないことから、入力容量のばらつきが抑えられる。これにより、閾値電圧(Vth)のばらつきが抑えられ、飽和電流のばらつきも抑えられることから、半導体装置1の耐量が改善される。
(2)トレンチゲート30のトレンチゲート電極32とボトムボディ領域15aの間のゲート絶縁膜34、及び、トレンチゲート30のトレンチゲート電極32とドリフト領域14の間のゲート絶縁膜34にヘリウムイオン照射によるダメージが加えられないことから、帰還容量のばらつき及び増加が抑えられる。これにより、スイッチング損失の増大、サージ電圧の増大が抑えられることから、半導体装置1の信頼性が向上する。
(3)トレンチゲート30の底部近傍のドリフト領域14にヘリウムイオン照射によるダメージが加えられないことから、その部分の欠陥形成が抑えられる。これにより、オフのときのトレンチゲート30の底部近傍における電界保持能の低下が抑えられることから、半導体装置1の耐圧が向上する。
(4)トレンチゲート30のトレンチゲート電極32及びゲート絶縁膜34にヘリウムイオン照射によるダメージが加えられないことから、これらの部分に対する欠陥形成が抑えられる。これにより、ゲートリーク電流が抑えられることから、半導体装置1の信頼性が向上する。
(5)トレンチゲート30のゲート絶縁膜34にヘリウムイオン照射によるダメージが加えられないことから、ゲート絶縁膜34の全体の容量(Qg)の増大が抑えられる。これにより、ゲート駆動電力を低く抑えることができることから、ゲートドライバの小型化によるコスト低下に寄与することができる。
上記実施形態は、図1に示すように、IGBT領域2aとダイオード領域2bがストライプ状にレイアウトされた例であった。本明細書が開示するライフタイム制御領域52は、IGBT領域2aとダイオード領域2bの様々なレイアウトに採用することができる。例えば、ダイオード領域2bがIGBT領域2a内に島状に分散したレイアウトであってよい。また、上記実施形態では、本明細書が開示するライフタイム制御領域52が、IGBT領域2aとダイオード領域2bの全範囲に適用されていた。この例に代えて、本明細書が開示するライフタイム制御領域52は、IGBT領域2aの少なくとも一部の範囲に適用されていてもよい。
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
1:半導体装置
10:半導体基板
11:コレクタ領域
12:カソード領域
13:バッファ領域
14:ドリフト領域
15:ボディ領域
15a:ボトムボディ領域
15b:トップボディ領域
16:キャリア蓄積層
17:ボディコンタクト領域
18:エミッタ領域
22:コレクタ電極
24:エミッタ電極
30:トレンチゲート
32:トレンチゲート電極
34:ゲート絶縁膜
52:ライフタイム制御領域

Claims (1)

  1. IGBT領域とダイオード領域が半導体基板内に一体化された半導体装置であって、
    前記IGBT領域に構成されるIGBT構造は、
    前記半導体基板の裏層部に形成されている第1導電型のコレクタ領域と、
    前記半導体基板の表層部に形成されている第1導電型のボディ領域と、
    前記半導体基板に形成されており、前記コレクタ領域と前記ボディ領域の間に設けられている第2導電型のドリフト領域と、
    前記半導体基板の表面から前記ボディ領域を貫通して前記ドリフト領域に達するトレンチゲートと、を備えており、
    前記ドリフト領域には、前記半導体基板の同一面内に位置するライフタイム制御領域が形成されており、
    前記ライフタイム制御領域は、前記半導体基板の前記表面に直交する方向から見たときに、前記トレンチゲートに重複する位置には配置されておらず、
    前記半導体基板の厚み方向の結晶欠陥密度は、前記ライフタイム制御領域より深い側よりも前記ライフタイム制御領域より浅い側が多い、半導体装置。
JP2018156613A 2018-08-23 2018-08-23 半導体装置 Pending JP2020031155A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018156613A JP2020031155A (ja) 2018-08-23 2018-08-23 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018156613A JP2020031155A (ja) 2018-08-23 2018-08-23 半導体装置

Publications (1)

Publication Number Publication Date
JP2020031155A true JP2020031155A (ja) 2020-02-27

Family

ID=69624349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018156613A Pending JP2020031155A (ja) 2018-08-23 2018-08-23 半導体装置

Country Status (1)

Country Link
JP (1) JP2020031155A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021251011A1 (ja) * 2020-06-09 2021-12-16
CN113851380A (zh) * 2021-09-24 2021-12-28 上海积塔半导体有限公司 Igbt器件及其制作方法
CN116504822A (zh) * 2023-05-29 2023-07-28 上海林众电子科技有限公司 基于沟槽栅的逆导型igbt
DE112023000171T5 (de) 2022-03-16 2024-04-18 Fuji Electric Co., Ltd. Halbleitervorrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162950A (ja) * 2015-03-04 2016-09-05 トヨタ自動車株式会社 半導体装置
JP2017108079A (ja) * 2015-12-11 2017-06-15 トヨタ自動車株式会社 半導体装置の製造方法
WO2018110703A1 (ja) * 2016-12-16 2018-06-21 富士電機株式会社 半導体装置および製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162950A (ja) * 2015-03-04 2016-09-05 トヨタ自動車株式会社 半導体装置
JP2017108079A (ja) * 2015-12-11 2017-06-15 トヨタ自動車株式会社 半導体装置の製造方法
WO2018110703A1 (ja) * 2016-12-16 2018-06-21 富士電機株式会社 半導体装置および製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021251011A1 (ja) * 2020-06-09 2021-12-16
WO2021251011A1 (ja) * 2020-06-09 2021-12-16 富士電機株式会社 半導体装置
JP7384287B2 (ja) 2020-06-09 2023-11-21 富士電機株式会社 半導体装置
CN113851380A (zh) * 2021-09-24 2021-12-28 上海积塔半导体有限公司 Igbt器件及其制作方法
CN113851380B (zh) * 2021-09-24 2023-06-13 上海积塔半导体有限公司 Igbt器件及其制作方法
DE112023000171T5 (de) 2022-03-16 2024-04-18 Fuji Electric Co., Ltd. Halbleitervorrichtung
CN116504822A (zh) * 2023-05-29 2023-07-28 上海林众电子科技有限公司 基于沟槽栅的逆导型igbt
CN116504822B (zh) * 2023-05-29 2024-02-09 上海林众电子科技有限公司 基于沟槽栅的逆导型igbt

Similar Documents

Publication Publication Date Title
US10418441B2 (en) Semiconductor device and method for manufacturing the semiconductor device
JP6078961B2 (ja) 半導体装置の製造方法
JP5787853B2 (ja) 電力用半導体装置
JP7003688B2 (ja) 半導体装置及びその製造方法
JP5865618B2 (ja) 半導体装置
JP2020031155A (ja) 半導体装置
US11158630B2 (en) Semiconductor device
JP5886548B2 (ja) 半導体装置
JP2013149909A (ja) 半導体装置およびその製造方法
US10818784B2 (en) Semiconductor device and method for manufacturing the same
WO2014087499A1 (ja) 半導体装置
JP2010098189A (ja) 半導体装置
WO2020075248A1 (ja) 半導体装置及びその製造方法
JP2017126724A (ja) 半導体装置および半導体装置の製造方法
JP2020043301A (ja) 半導体装置
JP5003598B2 (ja) 半導体装置
JP6665713B2 (ja) 半導体装置
JP2018006648A (ja) 半導体装置
JP7488778B2 (ja) 半導体装置
KR102660669B1 (ko) 수퍼 정션 반도체 장치 및 이의 제조 방법
JP2020115550A (ja) 半導体装置および半導体装置の製造方法
JP2009246037A (ja) 横型半導体装置
JP2021089988A (ja) 半導体装置の駆動方法
JP2013251465A (ja) 半導体装置
KR100555444B1 (ko) 트렌치 게이트형 전력용 반도체 소자 및 그 제조 방법

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220705