WO2012124191A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2012124191A1
WO2012124191A1 PCT/JP2011/070909 JP2011070909W WO2012124191A1 WO 2012124191 A1 WO2012124191 A1 WO 2012124191A1 JP 2011070909 W JP2011070909 W JP 2011070909W WO 2012124191 A1 WO2012124191 A1 WO 2012124191A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor substrate
semiconductor device
leakage current
semiconductor
region
Prior art date
Application number
PCT/JP2011/070909
Other languages
English (en)
French (fr)
Inventor
博樹 脇本
中澤 治雄
靖 宮坂
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2013504507A priority Critical patent/JP5655932B2/ja
Priority to CN201180067442.2A priority patent/CN103370791B/zh
Priority to DE112011105029.1T priority patent/DE112011105029T5/de
Publication of WO2012124191A1 publication Critical patent/WO2012124191A1/ja
Priority to US13/964,219 priority patent/US9018633B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/408Electrodes ; Multistep manufacturing processes therefor with an insulating layer with a particular dielectric or electrostatic property, e.g. with static charges or for controlling trapped charges or moving ions, or with a plate acting on the insulator potential or the insulator charges, e.g. for controlling charges effect or potential distribution in the insulating layer, or with a semi-insulating layer contacting directly the semiconductor surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0661Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body specially adapted for altering the breakdown voltage by removing semiconductor material at, or in the neighbourhood of, a reverse biased junction, e.g. by bevelling, moat etching, depletion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • H01L29/475Schottky barrier electrodes on AIII-BV compounds

Definitions

  • the present invention relates to a semiconductor device.
  • bidirectional switching elements to direct link type conversion circuits such as matrix converters.
  • the matrix converter performs, for example, AC (AC) / AC conversion, AC / DC (DC) conversion, DC / AC conversion, and the like.
  • Application of the bidirectional switching element to the direct link type conversion circuit has attracted attention because the circuit can be miniaturized, reduced in weight, increased in efficiency, increased in response speed, and reduced in cost.
  • the matrix converter is characterized by higher power conversion efficiency than the inverter / converter.
  • the inverter / converter generates an intermediate DC voltage from an AC power supply to further convert this intermediate voltage to an AC voltage, whereas the matrix converter directly generates AC intermediate power without generating an intermediate voltage. This is because an alternating voltage is generated.
  • the inverter / converter uses an electrolytic capacitor for the capacitor that generates the intermediate voltage, there is a problem that the lifetime of the device is determined by the lifetime of the electrolytic capacitor.
  • the matrix converter does not have to include a capacitor for generating an intermediate voltage between the AC power supply and the output part of the AC voltage, it is possible to avoid the above-mentioned problem occurring in the inverter / converter.
  • FIG. 11 is an equivalent circuit diagram showing a matrix converter.
  • FIG. 12 is an equivalent circuit diagram showing a conventional reverse blocking semiconductor device.
  • FIG. 13 is a characteristic diagram showing the electrical characteristics of the conventional reverse blocking semiconductor device.
  • a power semiconductor element 101 applied to a matrix converter as shown in FIG. 11 is a reverse blocking semiconductor device having a configuration in which two transistors 102 having reverse withstand voltages are connected in antiparallel as shown in FIG.
  • the reverse blocking semiconductor device has a normal forward breakdown voltage (a positive voltage is applied to the drain with reference to the source potential), and has a reverse breakdown voltage (source potential) equal to the forward breakdown voltage. Apply a negative voltage to the drain as a reference).
  • FIG. 14 is a cross-sectional view showing a conventional reverse blocking semiconductor device.
  • the p well region 202, the n + source region 203, the gate oxide film 204, the gate electrode 205 and the source electrode 206 are provided on the front surface of the semiconductor substrate to be the n ⁇ drift region 201. And the like are provided.
  • a p-type region hereinafter, referred to as FP: field plate
  • a p-type region 208 in contact with the FP 207 and penetrating from the front surface to the back surface of the semiconductor substrate is provided on the side surface of the semiconductor substrate.
  • a drain electrode 209 in contact with the n ⁇ drift region 201 is provided on the back surface of the semiconductor substrate.
  • a MOS gate structure including a gate electrode and an emitter electrode is provided on one surface layer of an n -- type drift layer made of a semiconductor substrate having a GaN semiconductor or SiC semiconductor as a main semiconductor crystal. cut end surface for chips is, the n - having a p-type protective region connecting the front and back surfaces of the type drift layer, wherein the n - collector electrode shot in contact with the rear surface of the type drift layer key metal
  • An apparatus having a membrane has been proposed (see, for example, Patent Document 1 below).
  • a silicon substrate, a buffer layer formed on the silicon substrate, a gallium nitride semiconductor layer formed on the buffer layer, a silicon substrate and a buffer from the back surface of the silicon substrate A trench groove formed to a depth reaching the gallium nitride semiconductor layer through the layer and a metal film formed in the trench groove, and the metal film and the gallium nitride semiconductor layer form a Schottky junction
  • Patent Document 2 An apparatus to be formed has been proposed (see, for example, Patent Document 2 below).
  • the cut surface (hereinafter referred to as a side surface) of the semiconductor substrate cut into chips is of a conductivity type different from that of the semiconductor substrate by, for example, ion implantation and annealing. It is difficult to form a semiconductor region with a desired width and depth. For this reason, development of a semiconductor device having a configuration capable of easily obtaining reverse breakdown voltage is desired. Further, in the technique described in Patent Document 1 described above, when a reverse voltage is applied to the drain electrode, there is a possibility that the reverse leakage current may increase on the front surface side and the back surface side of the outer peripheral portion of the semiconductor substrate. When reverse leakage current occurs, there is a problem that reverse breakdown voltage decreases.
  • An object of the present invention is to provide a semiconductor device having a high reverse breakdown voltage in order to solve the above-mentioned problems of the prior art.
  • Another object of the present invention is to provide a semiconductor device capable of reducing the leakage current in order to solve the above-mentioned problems of the prior art.
  • a semiconductor device comprises: a semiconductor substrate of a first conductivity type made of a semiconductor material having a wider band gap than silicon; A control electrode provided on the main surface of the semiconductor substrate, an output electrode provided on the second main surface and the side surface of the semiconductor substrate to form a Schottky junction with the semiconductor substrate, and at least an outer peripheral end of the semiconductor substrate And a layer for reducing leakage current generated from at least the outer peripheral end.
  • the layer for reducing the leakage current is provided on a surface layer of the first main surface of the semiconductor substrate and has a second conductivity type in contact with the output electrode. It is characterized by being a first semiconductor region of
  • the first semiconductor region forms an ohmic junction with the output electrode.
  • the layer for reducing the leakage current is provided on a surface layer of the second main surface of the semiconductor substrate and is a second conductivity type in contact with the output electrode. And a second semiconductor region.
  • the layer for reducing the leakage current is an insulating film covering a first main surface of the semiconductor substrate.
  • the layer reducing the leakage current is an auxiliary electrode electrically connected to the output electrode.
  • the layer for reducing the leakage current is in contact with the insulating film covering the first main surface of the semiconductor substrate and the output electrode;
  • An auxiliary electrode provided across the surface of the insulating film, wherein the auxiliary electrode is in contact with the first semiconductor region exposed to the first main surface of the semiconductor substrate.
  • the layer for reducing the leakage current is further provided on a surface layer of a second main surface of the semiconductor substrate and in contact with the output electrode.
  • a second semiconductor region of a conductive type is included.
  • the output electrode is provided across the outer peripheral end of the first main surface from the second main surface to the first main surface of the semiconductor substrate. It is characterized by
  • a semiconductor device is characterized in that, in the above-mentioned invention, the semiconductor substrate is made of silicon carbide or gallium nitride.
  • n consisting of the semiconductor substrate - and the drift region, as well as from the interface between the output electrodes provided on the back surface of the semiconductor substrate, n - drift region, provided on the side surface of the semiconductor substrate output A depletion layer also extends from the interface with the electrode. Therefore, it is possible to configure a reverse blocking semiconductor device configured to maintain reverse breakdown voltage without forming a p-type region (p-type region 208 in FIG. 14) on the side surface of the semiconductor substrate as in the prior art. Therefore, a semiconductor device having a reverse breakdown voltage can be configured more easily than a conventional semiconductor device.
  • the semiconductor device further includes a layer for reducing the leakage current covering the n ⁇ drift region exposed on the front surface of the semiconductor substrate in the outer peripheral portion of the semiconductor substrate.
  • the n ⁇ drift region and the output electrode are compared to the case where a semiconductor substrate made of silicon is used.
  • the reverse breakdown voltage maintained by the Schottky junction can be improved.
  • the reverse withstand voltage can be improved.
  • FIG. 1 is a cross-sectional view showing a semiconductor device according to the embodiment.
  • FIG. 2 is a cross-sectional view showing another example of the semiconductor device according to the embodiment.
  • FIG. 3 is a cross-sectional view showing another example of the semiconductor device according to the embodiment.
  • FIG. 4 is a cross-sectional view showing another example of the semiconductor device according to the embodiment.
  • FIG. 5 is a cross-sectional view showing another example of the semiconductor device according to the embodiment.
  • FIG. 6 is a cross-sectional view showing another example of the semiconductor device according to the embodiment.
  • FIG. 7 is a cross-sectional view showing another example of the semiconductor device according to the embodiment.
  • FIG. 8 is a cross-sectional view showing another example of the semiconductor device according to the embodiment.
  • FIG. 1 is a cross-sectional view showing a semiconductor device according to the embodiment.
  • FIG. 2 is a cross-sectional view showing another example of the semiconductor device according to the embodiment.
  • FIG. 3 is a cross-
  • FIG. 9 is a cross-sectional view showing another example of the semiconductor device according to the embodiment.
  • FIG. 10 is a characteristic diagram showing the electrical characteristics of the semiconductor device according to the embodiment.
  • FIG. 11 is an equivalent circuit diagram showing a matrix converter.
  • FIG. 12 is an equivalent circuit diagram showing a conventional reverse blocking semiconductor device.
  • FIG. 13 is a characteristic diagram showing the electrical characteristics of the conventional reverse blocking semiconductor device.
  • FIG. 14 is a cross-sectional view showing a conventional reverse blocking semiconductor device.
  • FIG. 1 is a cross-sectional view showing a semiconductor device according to the embodiment.
  • the semiconductor device shown in FIG. 1 is provided with an active region 10 through which current flows when the semiconductor device is in an on state, and a breakdown voltage structure 11 surrounding the active region 10.
  • the breakdown voltage structure portion 11 is provided on an outer peripheral portion of an n-type (first conductivity type) semiconductor substrate to be the n ⁇ drift region 1.
  • This withstand voltage structure 11 is located to the left and right of the active region 10 as viewed in the cross-sectional view shown in FIG.
  • the semiconductor substrate is made of a semiconductor material having a wider band gap than silicon (so-called "wide band gap semiconductor material").
  • the semiconductor substrate is preferably made of, for example, silicon carbide (SiC) or gallium nitride (GaN).
  • SiC silicon carbide
  • GaN gallium nitride
  • the semiconductor substrate made of a wide band gap semiconductor material it is possible to improve the reverse breakdown voltage maintained by a Schottky junction, which will be described later, as compared to the case where a semiconductor substrate made of silicon is used.
  • a semiconductor substrate made of a wide band gap semiconductor material a semiconductor device with low loss and high efficiency can be manufactured as compared to the case where a semiconductor substrate made of silicon is used.
  • the p-well region 2 is selectively provided in the surface layer of the front surface (first main surface) of the semiconductor substrate.
  • An n + source region 3 is selectively provided in the surface layer of the p well region 2.
  • a gate electrode 5 is provided via a gate oxide film 4 on the surface of the p well region 2 exposed on the front surface of the semiconductor substrate between the n ⁇ drift region 1 and the n + source region 3.
  • Source electrode 6 is in contact with p well region 2 and n + source region 3.
  • the source electrode 6 is insulated from the gate electrode (control electrode) 5 by an interlayer insulating film (not shown).
  • an interlayer insulating film not shown.
  • a drain electrode (output electrode) 7 in contact with the n ⁇ drift region 1 is provided from the back surface (second main surface) of the semiconductor substrate to a cut surface (hereinafter referred to as a side surface) of the semiconductor substrate cut into chips. There is.
  • the drain electrode 7 is provided from the active region 10 to the breakdown voltage structure portion 11, and is provided on the entire back surface and side surface of the semiconductor substrate.
  • Drain electrode 7 is provided to form a Schottky junction with n - drift region 1 formed of a semiconductor substrate, and a shot by drain electrode 7 and n - drift region 1 is formed on the entire back and side surfaces of the semiconductor substrate. A key junction is formed. Thereby, when a reverse voltage is applied to the drain electrode 7, a depletion layer extends from the interface between the n ⁇ drift region 1 and the drain electrode 7 on the back surface and the side surface of the semiconductor substrate. Therefore, the reverse breakdown voltage of the semiconductor device can be maintained.
  • the side surface of the drain electrode 7 has, for example, a configuration (tapered shape) inclining with such an inclination that the width of the semiconductor substrate gradually increases from the back surface side (drain side) to the front surface side (source side). can do.
  • the side surface of the drain electrode 7 is, for example, a configuration (tapered shape) in which the width of the semiconductor substrate gradually widens from the front surface side (source side) to the back surface side (drain side) And may be perpendicular to the front surface of the semiconductor substrate.
  • a layer (hereinafter referred to as a leakage current reduction layer) 20 for reducing the leakage current from the outer peripheral end is provided as a withstand voltage structure 11 at least at the outer peripheral end of the semiconductor substrate.
  • the leakage current reduction layer 20 is provided between at least the left and right outer peripheral ends of the withstand voltage structure 11 and the active region 10.
  • a plurality of p-type guard rings or field limiting rings may be provided on the surface of the pressure-resistant structure portion 11. By providing these p-type guard rings and field limiting rings, the width of the pressure-resistant structure 11 can be narrowed.
  • the n ⁇ drift region 1 is not exposed on the front surface of the semiconductor substrate in the withstand voltage structure 11. . Therefore, when a negative voltage (reverse voltage) is applied to the drain electrode 7 with reference to the source potential, carriers are not generated on the front surface side of the semiconductor substrate of the n ⁇ drift region 1 of the withstand voltage structure 11. Thereby, it is possible to reduce the leakage current (hereinafter referred to as a reverse leakage current) when applying the reverse voltage.
  • a reverse leakage current the leakage current
  • the outer peripheral end 20 a of the leakage current reduction layer 20 is provided in contact with the upper end 7 a of the drain electrode 7.
  • n ⁇ between the outer peripheral end 20 a of the leak current reduction layer 20 and the upper end 7 a of the drain electrode 7 There is no gap where the drift region 1 is exposed.
  • the leakage current reduction layer 20 may be, for example, a layer covering the surface of the front surface of the semiconductor substrate, or may be a layer provided inside the semiconductor substrate. Although not shown in FIG. 1, the leakage current reduction layer 20 surrounds the active region 10.
  • FIGS. 2 and 4 show an example in which the leakage current reduction layer 20 is provided on the surface of the front surface of the semiconductor substrate.
  • FIG. 3 shows an example in which the leakage current reduction layer 20 is provided on the surface layer of the front surface of the semiconductor substrate.
  • the leakage current reduction layer 20 shown in the description of the semiconductor device shown in FIGS. 2 to 4 is an example of the leakage current reduction layer 20 shown in FIG. 1 (the same applies to the semiconductor device shown in FIGS.
  • the leakage current reduction layer 20 shown in the description of the semiconductor device is the leakage current reduction layer 20 shown in FIG.
  • the leakage current reduction layer 20 is an insulating film 21 covering at least the n ⁇ drift region 1 exposed on the front surface of the semiconductor substrate in the outer peripheral portion of the semiconductor substrate.
  • the outer peripheral portion is a portion outside the active region 10 and indicates the pressure resistant structure portion 11.
  • the gap is provided between the outer peripheral end 21 a of the insulating film 21 and the upper end 7 a of the drain electrode 7 without any gap for exposing the n ⁇ drift region 1.
  • FIG. 2 the semiconductor device of the structure which provided the insulating film 21 as the leakage current reduction layer 20 is shown.
  • n ⁇ drift region 1 p well region 2, n + source region 3, gate oxide film 4, gate electrode 5, source electrode 6 and drain electrode 7 which are other configurations are shown. It has the same arrangement as that of the semiconductor device shown in FIG.
  • the insulating film 21 as the leakage current reduction layer 20 in the breakdown voltage structure portion 11 the n ⁇ drift region 1 exposed on the front surface of the semiconductor substrate can be reduced.
  • generation of carriers at the outer peripheral portion of the semiconductor substrate can be suppressed, and an increase in reverse leakage current can be prevented.
  • the leakage current reduction layer 20 is provided on the surface layer on the front surface of the outer peripheral portion of the semiconductor substrate and is in contact with the drain electrode 7 provided on the side surface of the semiconductor substrate. It is a mold region (first semiconductor region of the second conductivity type) 22.
  • the first p-type region 22 is provided to be exposed at the outer peripheral end of the front surface of the semiconductor substrate.
  • the gap is not provided between the outer peripheral end 22a of the first p-type region 22 and the upper end 7a of the drain electrode 7 so that the n ⁇ drift region 1 is not exposed.
  • the protrusion of the first p-type region 22 is in the reverse direction to the depletion layer extending from the active region toward the breakdown voltage structure when forward bias is applied. , Suppresses the spread of the depletion layer and acts as a channel stopper. During reverse bias, the protrusion of the first p-type region 22 is forward with respect to the depletion layer extending from the drain electrode toward the active region, and the depletion layer can be expanded to reduce the electric field strength.
  • the junction between the first p-type region 22 and the drain electrode 7 provided on the side surface of the semiconductor substrate is preferably an ohmic junction in order to stabilize the potential of the drain electrode 7.
  • the semiconductor device shown in FIG. 3 has a configuration in which the first p-type region 22 is provided as the leakage current reduction layer 20, and other configurations such as n - drift region 1, p well region 2 and n + source region 3 are provided.
  • the gate oxide film 4, the gate electrode 5, the source electrode 6, and the drain electrode 7 are arranged in the same manner as the semiconductor device shown in FIG. Further, an insulating film (not shown) may be provided on the semiconductor substrate between the first p-type region 22 and the p-well region 2.
  • the depletion layer also extends from the pn junction portion formed of the first p-type region 22 and the n ⁇ drift region 1. Therefore, when a reverse voltage is applied to the drain electrode 7, it is possible to suppress the reverse leakage current generated from the corner portion 41 on the front surface side of the semiconductor substrate which is likely to generate the reverse leakage current.
  • the corner portion 41 on the front surface side of the semiconductor substrate is the first edge at the outer peripheral end on the front surface side of the semiconductor substrate. The interface between the p-type region 22 and the drain electrode 7 in FIG.
  • the drain electrode 23 is provided to extend from the side surface of the semiconductor substrate to the front surface of the semiconductor substrate so as to straddle the outer peripheral end of the front surface.
  • the drain electrode 23 is provided on the whole of the back surface and the side surface of the semiconductor substrate, and on part of the front surface.
  • the width of the folded portion 23a in which the drain electrode 23 straddles the front surface of the semiconductor substrate can be variously changed in accordance with the design conditions of the semiconductor device, and at least the corner 41 on the front surface side of the semiconductor substrate is covered. The width should be sufficient. In this case, a portion (folded portion 23 a) covering the outer peripheral portion of the front surface of the semiconductor substrate of the drain electrode 23 becomes the leakage current reduction layer 20.
  • the semiconductor device shown in FIG. 4 has a configuration in which the folded portion 23a of the drain electrode 23 is provided as the leakage current reduction layer 20, and other configurations such as n - drift region 1, p well region 2 and n + source region 3 are provided.
  • the gate oxide film 4, the gate electrode 5, the source electrode 6, and the drain electrode 23 are arranged in the same manner as the semiconductor device shown in FIG.
  • the semiconductor substrate In the outer peripheral portion of the semiconductor substrate, it is exposed on the front surface of the semiconductor substrate from the end on the active region 10 side of the folded portion 23 a of the drain electrode 23 to the end on the breakdown voltage structure 11 side of the p well region 2.
  • the width of the n ⁇ drift region 1 becomes shorter, the electric field strength in the vicinity of the end of the active region 10 on the side of the withstand voltage structure 11 becomes higher. Therefore, the width of the folded portion 23a of the drain electrode 23 may be variously changed in accordance with the design conditions of the semiconductor device.
  • the n ⁇ drift region 1 and the turnback portion 23a of the drain electrode 23 on the front surface of the semiconductor substrate A depletion layer also extends from the interface. Therefore, when a reverse voltage is applied to the drain electrode 23, it is possible to suppress the reverse leakage current generated from the corner 42 on the front surface side of the semiconductor substrate which is likely to generate the reverse leakage current.
  • the corner 42 on the front surface side of the semiconductor substrate corresponds to the outer peripheral edge on the front surface side of the semiconductor substrate.
  • the leakage current reduction layer 20 includes the insulating film 21 and the first p-type region 22 described above, and the folded portion 23a of the drain electrode 23 provided across the outer peripheral portion of the front surface from the side surface of the semiconductor substrate.
  • the leakage current reduction layer 20 includes the insulating film 21 and the first p-type region 22 described above, and the folded portion 23a of the drain electrode 23 provided across the outer peripheral portion of the front surface from the side surface of the semiconductor substrate.
  • Various combinations may be provided.
  • 5 to 9 are cross-sectional views showing another example of the semiconductor device according to the embodiment.
  • the leakage current reduction layer 20 includes the insulating film 21 covering the n ⁇ drift region 1 exposed at least on the front surface of the semiconductor substrate and the front surface of the semiconductor substrate. It is a first p-type region 22 exposed at the outer peripheral end of the surface. In the semiconductor device shown in FIG. 5, the n ⁇ drift region 1 and the first p type region 22 are exposed on the front surface of the semiconductor substrate in the outer peripheral portion of the semiconductor substrate.
  • the insulating film 21 may cover the n ⁇ drift region 1 and the first p type region 22 exposed on the front surface of the semiconductor substrate.
  • the outer peripheral end 22a of the first p-type region 22 is provided in a state where there is no gap for exposing the n - drift region 1 between the upper end 7a of the drain electrode 7.
  • the outer peripheral end 21 a of the insulating film 21 may be provided between the upper end 7 a of the drain electrode 7 and the space where the first p-type region 22 is exposed.
  • the semiconductor device shown in FIG. 5 has a configuration in which insulating film 21 and first p-type region 22 are provided as leakage current reduction layer 20, and n ⁇ drift region 1, p well region 2 and n are other configurations.
  • the + source region 3, the gate oxide film 4, the gate electrode 5, the source electrode 6, and the drain electrode 7 are configured in the same arrangement as the semiconductor device shown in FIG. 1.
  • the leakage current reduction layer 20 includes the first p-type region 22 exposed at the outer peripheral end of the front surface of the semiconductor substrate and the outer peripheral portion of the front surface from the side of the semiconductor substrate.
  • the folded portion 23 a of the drain electrode 23 straddles the In the semiconductor device shown in FIG. 6, the n ⁇ drift region 1 and the first p type region 22 are exposed on the front surface of the semiconductor substrate in the outer peripheral portion of the semiconductor substrate.
  • a portion (folded portion 23a) provided on the front surface of the semiconductor substrate of the drain electrode 23 covers the first p-type region 22 exposed on the front surface of the semiconductor substrate.
  • the outer peripheral end 22a of the first p-type region 22 is provided in a state where the n - drift region 1 is in contact with the folded portion 23a of the drain electrode 23 and there is no gap.
  • the semiconductor device shown in FIG. 6 has a configuration in which the first p-type region 22 and the folded portion 23a of the drain electrode 23 are provided as the leakage current reduction layer 20, and other configurations are n - drift region 1 and p well.
  • Region 2, n + source region 3, gate oxide film 4, gate electrode 5, source electrode 6, and drain electrode 23 are configured in the same arrangement as the semiconductor device shown in FIG.
  • the first p-type region 22 causes the corner on the front surface side of the semiconductor substrate to easily generate reverse leakage current.
  • the reverse leakage current generated from the part 41 can be suppressed.
  • a reverse voltage is applied to the drain electrode 23 by the folded back portion 23 a of the drain electrode 23, the reverse leakage current generated from the corner 42 on the front surface side of the semiconductor substrate is easily generated. It can be suppressed.
  • the leakage current reduction layer 20 is in contact with the insulating film 21 covering the n ⁇ drift region 1 exposed on the front surface of at least the semiconductor substrate in the outer peripheral portion of the semiconductor substrate It is the electrode 24.
  • the insulating film 21 covers at least the corner 42 on the front surface side of the semiconductor substrate.
  • the auxiliary electrode 24 is in contact with the drain electrode 7 and covers a part of the insulating film 21 across the surface of the insulating film 21 from the drain electrode 7. Since the auxiliary electrode 24 is not in contact with the n ⁇ drift region 1, it is not necessary to form a Schottky junction.
  • the auxiliary electrode 24 functions as a field plate and weakens the electric field strength on the front surface side of the semiconductor substrate when a reverse voltage is applied to the drain electrode 7.
  • the reverse breakdown voltage of the semiconductor device can be easily maintained.
  • the outer peripheral end 21a of the insulating film 21 is provided between the upper end 7a of the drain electrode 7 and the space where the n - drift region 1 is exposed.
  • the auxiliary electrode 24 is provided without any gap between the auxiliary electrode 24 and the upper end 7 a of the drain electrode 7 so as to be joined to the upper end 7 a of the drain electrode 7.
  • the semiconductor device shown in FIG. 7 has a configuration in which insulating film 21 and auxiliary electrode 24 are provided as leakage current reduction layer 20, and n ⁇ drift region 1, p well region 2 and n + source region 3 are other configurations.
  • the gate oxide film 4, the gate electrode 5, the source electrode 6, and the drain electrode 7 are arranged in the same manner as the semiconductor device shown in FIG.
  • the insulating film 21 and the auxiliary electrode 24 As described above, by providing the insulating film 21 and the auxiliary electrode 24, generation of carriers at the outer peripheral portion of the semiconductor substrate can be suppressed by the insulating film 21, and an increase in reverse leakage current can be prevented. Further, when a reverse voltage is applied to the drain electrode 7 by the auxiliary electrode 24, the electric field strength of the front surface of the semiconductor substrate is reduced. Therefore, the reverse breakdown voltage of the semiconductor device can be easily maintained.
  • the leakage current reduction layer 20 is an insulating film 21 covering the n ⁇ drift region 1 exposed on the front surface of at least the semiconductor substrate in the outer peripheral portion of the semiconductor substrate, and the front surface of the semiconductor substrate.
  • the auxiliary electrode 25 electrically connected to the drain electrode 7.
  • the n ⁇ drift region 1 and the first p type region 22 are exposed on the front surface of the semiconductor substrate in the outer peripheral portion of the semiconductor substrate.
  • the insulating film 21 may cover a part of the first p-type region 22.
  • the auxiliary electrode 25 is provided across the outer peripheral end of the front surface and the surface of the insulating film 21.
  • the first p-type region 22 not covered by the insulating film 21 is covered by the auxiliary electrode 25.
  • the semiconductor device shown in FIG. 8 differs from the semiconductor device shown in FIG. 7 in that it has a first p-type region 22 and a first p-type region 22 exposed on the front surface of the semiconductor substrate. It is a point where the auxiliary electrode 25 contacts.
  • the auxiliary electrode 25 is in contact with the first p-type region 22 and provided across the surface of the insulating film 21 from the first p-type region 22 to have, for example, a step-like cross-sectional shape.
  • the auxiliary electrode 25 is electrically connected to the drain electrode 7 provided on the side surface of the semiconductor substrate via the first p-type region 22.
  • the auxiliary electrode 25 may or may not be in direct contact with the drain electrode 7 provided on the side surface of the semiconductor substrate.
  • the outer peripheral end of the first p-type region 22 is provided between the upper end 7 a of the drain electrode 7 and the space where the n ⁇ drift region 1 is exposed.
  • the insulating film 21 as a leakage current reducing layer 20 a structure in which a first p-type region 22 and the auxiliary electrode 25, as other constituent n - drift region 1, p-well Region 2, n + source region 3, gate oxide film 4, gate electrode 5, source electrode 6, and drain electrode 7 are configured in the same arrangement as the semiconductor device shown in FIG.
  • the insulating film 21 suppresses generation of carriers in the outer peripheral portion of the semiconductor substrate by providing the insulating film 21, the first p-type region 22 and the auxiliary electrode 25.
  • the reverse leakage current can be prevented from increasing.
  • the first p-type region 22 is provided to suppress the reverse leakage current generated from the corner portion 41 on the front surface side of the semiconductor substrate which is likely to cause the reverse leakage current. be able to.
  • the provision of the auxiliary electrode 25 can reduce the electric field strength on the front surface of the semiconductor substrate when a reverse voltage is applied to the drain electrode 7.
  • the reverse breakdown voltage of the semiconductor device can be easily maintained.
  • the semiconductor device shown in FIG. 9 is provided as a leakage current reduction layer 20 on the side surface of the semiconductor substrate and the surface layer on the back surface of the semiconductor substrate.
  • a second p-type region (second semiconductor region of a second conductivity type) 26 in contact with the drain electrode 7 is provided.
  • the second p-type region 26 is provided at the corner portion 43 on the back surface side of the semiconductor substrate, and is in contact with the drain electrode 7 provided on the side surface and the back surface of the semiconductor substrate.
  • the corner 43 on the back surface side of the semiconductor substrate refers to the interface between the n ⁇ drift region 1 and the drain electrode 7 at the outer peripheral end on the back surface side of the semiconductor substrate when the second p-type region 26 is not provided. is there.
  • the semiconductor device shown in FIG. 9 has a configuration in which a second p-type region 26 is further provided in addition to the insulating film 21, the first p-type region 22 and the auxiliary electrode 25 as the leakage current reduction layer 20.
  • the n - drift region 1, the p well region 2, the n + source region 3, the gate oxide film 4, the gate electrode 5, the source electrode 6 and the drain electrode 7 are arranged in the same arrangement as the semiconductor device shown in FIG. It is done.
  • the depletion layer also extends from the pn junction formed of the second p-type region 26 and the n ⁇ drift region 1. Therefore, when the reverse voltage is applied to the drain electrode 7, it is possible to suppress the reverse leakage current generated from the corner 43 on the back surface side of the semiconductor substrate which is likely to generate the reverse leakage current.
  • the semiconductor device shown in FIGS. 5 to 8 described above the insulating film 21 provided as the leakage current reduction layer 20 in the semiconductor device shown in FIGS. 2 to 4, the first p-type region 22 and the folded portion of the drain electrode 23 It contains two or more of any of 23a. Therefore, the semiconductor device shown in FIGS. 5 to 8 can obtain an effect obtained by combining a plurality of effects obtained by the semiconductor devices shown in FIGS. 1 to 4. Specifically, in each case, the following effects can be obtained.
  • the reverse direction to the drain electrode 7 is provided.
  • a voltage is applied, generation of carriers at the outer peripheral portion of the semiconductor substrate can be suppressed, and an increase in reverse leakage current can be prevented.
  • the first p-type region 22 exposed at the outer peripheral end of the front surface of the semiconductor substrate is provided (FIGS. 5, 6, and 8), and from the side surface of the semiconductor substrate to the outer peripheral portion of the front surface.
  • the folded portion 23a of the drain electrode 23 is provided straddling (FIG. 6)
  • the pn junction composed of the first p-type region 22 and the n - drift region 1, the n - drift region 1 and the drain A depletion layer also extends from the interface of the electrode 23 with the folded portion 23a. Therefore, when a reverse voltage is applied to the drain electrode 7, it is possible to suppress the reverse leakage current generated from the corner 41 on the front surface side of the semiconductor substrate.
  • auxiliary electrodes 24 and 25 electrically connected to the drain electrode 7 are provided (FIGS. 7 and 8), when a reverse voltage is applied to the drain electrode 7 by the auxiliary electrodes 24 and 25, The electric field strength of the front surface of the semiconductor substrate can be reduced. Therefore, the reverse breakdown voltage of the semiconductor device can be easily maintained.
  • the second p-type region 26 is provided at the corner 43 on the back side of the semiconductor substrate provided as the leakage current reduction layer 20 in the semiconductor device shown in FIG. You may provide.
  • the depletion is also caused from the pn junction consisting of the second p-type region 26 and the n ⁇ drift region 1 Layers extend. Therefore, when a reverse voltage is applied to the drain electrode 7, it is possible to suppress the reverse leakage current generated from the corner 43 on the back surface side of the semiconductor substrate.
  • the front and back surfaces of the semiconductor substrate forming the Schottky junction are preferably flat and clean in order to reduce reverse leakage current generated from the surface of the semiconductor substrate.
  • the side surface of the semiconductor substrate in each configuration example described above may be perpendicular to the front surface of the semiconductor substrate or may be tapered.
  • the side surface of the semiconductor substrate is inclined such that the width of the semiconductor substrate gradually increases from the back surface side (drain side) to the front surface side (source side)
  • the structure was inclined.
  • the interface of the semiconductor substrate in contact with the Schottky electrode needs to be processed into a flat and clean surface.
  • the drain electrodes 7 and 23 are formed on the back surface and the side surface of the semiconductor substrate by sputtering or evaporation as compared with the case where the side surface of the semiconductor substrate is perpendicular to the front surface. It becomes easy to form.
  • a metal film to be the drain electrodes 7 and 23 on the entire side surface of the semiconductor substrate as compared to the case where the side surface of the semiconductor substrate is perpendicular to the front surface. It becomes easy to form a film uniformly.
  • annealing can be uniformly performed on the metal films to be the drain electrodes 7 and 23.
  • the drain electrodes 7 and 23 can be formed on the side surfaces of the semiconductor substrate with good controllability.
  • the side surface of the semiconductor substrate may be perpendicular to the front surface, as long as a metal film to be the drain electrodes 7 and 23 can be uniformly formed and annealed on the side surface of the semiconductor substrate. Further, the side surface of the semiconductor substrate may be perpendicular to the front surface as long as a Schottky junction can be formed by the drain electrodes 7 and 23 on the side surface of the semiconductor substrate.
  • FIG. 10 is a characteristic diagram showing the electrical characteristics of the semiconductor device according to the embodiment.
  • FIG. 10 shows reverse leakage current waveforms of the semiconductor device shown in FIGS. 1 to 9 described above.
  • the horizontal axis of FIG. 10 is a voltage Vsd applied to the drain with reference to the source potential.
  • the vertical axis in FIG. 10 is the leakage current Isd that flows when the voltage Vsd is applied to the drain.
  • the voltage Vsd is positive when a negative voltage is applied to the drain.
  • the leakage current Isd makes the current flowing from the source to the drain positive.
  • a first curve 31 is a reverse leakage current waveform of the semiconductor device in which the leakage current reduction layer 20 is not provided.
  • the semiconductor device in which the leakage current reduction layer 20 is not provided is a semiconductor device for verifying the effect of the leakage current reduction layer 20 provided in the semiconductor device according to the embodiment.
  • the second curve 32 is a reverse leakage current waveform of the semiconductor device shown in FIGS.
  • the third curve 33 is a reverse leakage current waveform of the semiconductor device shown in FIG.
  • the semiconductor devices (the second curve 32 and the third curve 33) shown in FIGS. 1 to 9 are the same as the semiconductor device (the first curve 31) in which the leakage current reduction layer 20 is not provided.
  • the reverse leakage current is smaller than that.
  • the semiconductor device (third curve 33) shown in FIG. 9 has a smaller reverse leakage current than the semiconductor device (second curve 32) shown in FIGS. Thereby, the reverse leakage current is reduced more than the semiconductor device shown in FIGS. 1 to 8 by the extent that the semiconductor device shown in FIG. I was able to confirm that.
  • the drain electrode 7 is provided from the back surface to the side surface of the semiconductor substrate.
  • the drain electrode 7 forms a Schottky junction with the n ⁇ drift region 1 made of a semiconductor substrate.
  • the depletion layer also extends from it. Therefore, it is possible to configure a reverse blocking semiconductor device configured to maintain reverse breakdown voltage without forming a p-type region (p-type region 208 in FIG. 14) on the side surface of the semiconductor substrate as in the prior art.
  • the semiconductor device of the embodiment does not need to form a p-type region on the side surface of the semiconductor substrate as in the conventional semiconductor device. Therefore, as compared with the conventional semiconductor device in which the p-type region is formed on the side surface of the semiconductor substrate by ion implantation and annealing, for example, the reverse blocking semiconductor device can be easily formed only by forming the drain electrode 7 by sputtering or evaporation. You can get it.
  • the reverse blocking semiconductor device can be easily manufactured as compared to the case of manufacturing the conventional semiconductor device (see FIG. 14). Further, according to the embodiment, by forming the side surface of the semiconductor substrate in a tapered shape, it is possible to manufacture a reverse blocking semiconductor device having a configuration in which the drain electrode 7 can be easily formed.
  • the semiconductor device of the embodiment includes the leakage current reduction layer 20 covering the n ⁇ drift region 1 exposed to the front surface of the semiconductor substrate at the outer peripheral portion of the semiconductor substrate.
  • reverse breakdown voltage maintained by a Schottky junction by n - drift region 1 and drain electrode 7 is improved as compared to the case of using a semiconductor substrate made of silicon. It can be improved. Specifically, when a semiconductor substrate made of silicon is used, the breakdown voltage maintained by the Schottky junction is about 200V. On the other hand, in the case of using a semiconductor substrate made of a wide band gap semiconductor material, the withstand voltage maintained by the Schottky junction can be about 1200 V.
  • the present invention is not limited to the above-described embodiment, and various combinations of the insulating film to be the leakage current reduction layer, the first p-type region, the folded portion of the drain electrode, and the second p-type region can be used.
  • a folded portion of the insulating film and the drain electrode may be provided as a leakage current reduction layer, and the folded portion of the drain electrode may be provided so as to cover a part of the surface of the insulating film.
  • the first conductivity type is n-type and the second conductivity type is p-type, but the present invention similarly applies even if the first conductivity type is p-type and the second conductivity type is n-type You can get the effect of
  • the semiconductor device according to the present invention is useful for a power semiconductor device used for a direct link type converter circuit such as a matrix converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

 半導体装置がオン状態のときに電流が流れる活性領域(10)と、活性領域(10)を囲む耐圧構造部(11)とが設けられている。活性領域(10)において、半導体基板のおもて面には、pウェル領域(2)、n+ソース領域(3)、ゲート電極(5)およびソース電極(6)などからなるMOSゲート構造が設けられている。半導体基板の裏面から側面にかけて、n-ドリフト領域(1)に接するドレイン電極(7)が設けられている。ドレイン電極(7)は、半導体基板からなるn-ドリフト領域(1)とのショットキー接合を形成する。耐圧構造部(11)において、半導体基板の少なくとも外周端部には、外周端部からの漏れ電流を低減する層(漏れ電流低減層)(20)が設けられている。

Description

半導体装置
 この発明は、半導体装置に関する。
 最近、半導体電力変換装置において、マトリックスコンバータなどの直接リンク形変換回路への双方向スイッチング素子の適用が着目されている。マトリックスコンバータは、例えば、AC(交流)/AC変換、AC/DC(直流)変換、DC/AC変換などを行う。直接リンク形変換回路への双方向スイッチング素子の適用は、回路の小型化、軽量化、高効率化、高速応答化および低コスト化などを図ることができるため着目されている。
 マトリックスコンバータは、インバータ/コンバータよりも電力変換効率が高いという特徴を有する。通常、インバータ/コンバータが、交流電源から直流の中間電圧を生成して、この中間電圧をさらに交流電圧に変換するのに対し、マトリックスコンバータは、中間電圧を生成することなく、直接、交流電源から交流電圧を生成するからである。
 さらに、インバータ/コンバータは、中間電圧を生成するコンデンサに電解コンデンサを用いるため、電解コンデンサの寿命によって装置の寿命が決まるなどの問題があった。それに対して、マトリックスコンバータは、交流電源と交流電圧の出力部との間に中間電圧を生成するコンデンサを備える必要がないため、インバータ/コンバータに生じていた上記問題を回避することができる。
 図11は、マトリックスコンバータを示す等価回路図である。また、図12は、従来の逆阻止型半導体装置を示す等価回路図である。図13は、従来の逆阻止型半導体装置の電気的特性を示す特性図である。図11に示すようなマトリックスコンバータに適用するパワー半導体素子101は、図12に示すように、逆耐圧を有する2個のトランジスタ102が逆並列に接続された構成の逆阻止型半導体装置である。図13に示すように、逆阻止型半導体装置は、通常の順方向耐圧(ソース電位を基準にドレインへ正電圧を印加)を有し、かつ順方向耐圧と同等の逆方向耐圧(ソース電位を基準にドレインへ負電圧を印加)を有する。
 図14は、従来の逆阻止型半導体装置を示す断面図である。図14に示す逆阻止型半導体装置は、n-ドリフト領域201となる半導体基板のおもて面に、pウェル領域202、n+ソース領域203、ゲート酸化膜204、ゲート電極205およびソース電極206などからなるMOSゲート構造が設けられている。半導体基板のおもて面の端部には、p型領域(以下、FP:フィールドプレートとする)207が設けられている。半導体基板の側面には、FP207に接し、かつ半導体基板のおもて面から裏面に貫通するp型領域208が設けられている。半導体基板の裏面には、n-ドリフト領域201に接するドレイン電極209が設けられている。
 このような従来の逆阻止型半導体装置として、GaN半導体またはSiC半導体を主たる半導体結晶とする半導体基板からなるn-型ドリフト層の一方の表面層にゲート電極とエミッタ電極を含むMOSゲート構造を備え、チップ化のための切断端面が、前記n-型ドリフト層の表面と裏面とを連結するp型保護領域を有し、前記n-型ドリフト層の裏面に接触するコレクタ電極がショットキー性金属膜を有する装置が提案されている(例えば、下記特許文献1参照。)。
 また、別の従来の逆阻止型半導体装置として、シリコン基板と、シリコン基板上に形成されたバッファ層と、バッファ層上に形成された窒化ガリウム半導体層と、シリコン基板の裏面からシリコン基板ならびにバッファ層を貫通して窒化ガリウム半導体層に達する深さで形成されたトレンチ溝と、当該トレンチ溝の中に形成された金属膜と、を備え、金属膜と窒化ガリウム半導体層とがショットキー接合を形成する装置が提案されている(例えば、下記特許文献2参照。)。
特開2009-123914号公報 特開2010-258327号公報
 しかしながら、上述した特許文献1に示す技術では、チップ状に切断された半導体基板の切断面(以下、側面とする)に、例えばイオン注入およびアニールによって、当該半導体基板の導電型と異なる導電型の半導体領域を所望の幅や深さで形成することが困難である。このため、容易に逆方向耐圧を得ることのできる構成を有する半導体装置の開発が望まれる。また、上述した特許文献1に示す技術では、ドレイン電極に逆方向電圧が印加されたときに、半導体基板の外周部のおもて面側および裏面側に逆漏れ電流が増大する虞がある。逆漏れ電流が発生した場合、逆方向耐圧が低下するという問題がある。
 この発明は、上述した従来技術による問題点を解消するため、高い逆方向耐圧を有する半導体装置を提供することを目的とする。また、この発明は、上述した従来技術による問題点を解消するため、漏れ電流を低減することができる半導体装置を提供することを目的とする。
 上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、シリコンよりもバンドギャップが広い半導体材料からなる第1導電型の半導体基板と、前記半導体基板の第1の主面に設けられた制御電極と、前記半導体基板の第2の主面および側面に設けられ、当該半導体基板とのショットキー接合を形成する出力電極と、前記半導体基板の少なくとも外周端部に設けられ、少なくとも当該外周端部から生じる漏れ電流を低減する層と、を備えることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記漏れ電流を低減する層は、前記半導体基板の第1の主面の表面層に設けられた、前記出力電極に接する第2導電型の第1の半導体領域であることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第1の半導体領域は、前記出力電極とのオーミック接合を形成することを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記漏れ電流を低減する層は、前記半導体基板の第2の主面の表面層に設けられた、前記出力電極に接する第2導電型の第2の半導体領域であることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記漏れ電流を低減する層は、前記半導体基板の第1の主面を覆う絶縁膜であることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記漏れ電流を低減する層は、前記出力電極に電気的に接続された補助電極であることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記漏れ電流を低減する層は、前記半導体基板の第1の主面を覆う絶縁膜と、前記出力電極に接し、当該出力電極から前記絶縁膜の表面に跨って設けられた補助電極と、からなり、前記補助電極は、前記半導体基板の第1の主面に露出する前記第1の半導体領域に接することを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記漏れ電流を低減する層は、さらに、前記半導体基板の第2の主面の表面層に設けられた、前記出力電極に接する第2導電型の第2の半導体領域を含むことを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記出力電極は、前記半導体基板の第2の主面から第1の主面にかけて、第1の主面の外周端部に跨って設けられていることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記半導体基板は、炭化珪素または窒化ガリウムからなることを特徴とする。
 上述した発明によれば、半導体基板からなるn-ドリフト領域と、半導体基板の裏面に設けられた出力電極との界面からだけでなく、n-ドリフト領域と、半導体基板の側面に設けられた出力電極との界面からも空乏層が伸びる。このため、従来のように半導体基板の側面にp型領域(図14のp型領域208)を形成することなく、逆方向耐圧を維持する構成の逆阻止型半導体装置を構成することができる。したがって、従来の半導体装置よりも容易に逆方向耐圧を有する半導体装置を構成することができる。
 また、半導体基板の外周部において、半導体基板のおもて面に露出するn-ドリフト領域を覆う漏れ電流を低減する層を備える。これにより、ドレイン電極に逆方向電圧が印加されたときに、逆漏れ電流を低減することができる。
 また、シリコンよりもバンドギャップが広い半導体材料(以下、ワイドバンドギャップ半導体材料とする)からなる半導体基板を用いることで、シリコンからなる半導体基板を用いる場合に比べて、n-ドリフト領域と出力電極とによるショットキー接合によって維持される逆方向耐圧を向上することができる。
 本発明にかかる半導体装置によれば、逆方向耐圧を向上することができるという効果を奏する。また、漏れ電流を低減することができるという効果を奏する。
図1は、実施の形態にかかる半導体装置を示す断面図である。 図2は、実施の形態にかかる半導体装置の別の一例を示す断面図である。 図3は、実施の形態にかかる半導体装置の別の一例を示す断面図である。 図4は、実施の形態にかかる半導体装置の別の一例を示す断面図である。 図5は、実施の形態にかかる半導体装置の別の一例を示す断面図である。 図6は、実施の形態にかかる半導体装置の別の一例を示す断面図である。 図7は、実施の形態にかかる半導体装置の別の一例を示す断面図である。 図8は、実施の形態にかかる半導体装置の別の一例を示す断面図である。 図9は、実施の形態にかかる半導体装置の別の一例を示す断面図である。 図10は、実施の形態にかかる半導体装置の電気的特性について示す特性図である。 図11は、マトリックスコンバータを示す等価回路図である。 図12は、従来の逆阻止型半導体装置を示す等価回路図である。 図13は、従来の逆阻止型半導体装置の電気的特性を示す特性図である。 図14は、従来の逆阻止型半導体装置を示す断面図である。
 以下に添付図面を参照して、この発明にかかる半導体装置の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
(実施の形態)
 図1は、実施の形態にかかる半導体装置を示す断面図である。図1に示す半導体装置には、半導体装置がオン状態のときに電流が流れる活性領域10と、活性領域10を囲む耐圧構造部11とが設けられている。耐圧構造部11は、n-ドリフト領域1となるn型(第1の導電型)の半導体基板の外周部に設けられている。この耐圧構造部11は、図1に示す断面図でみて、活性領域10の左右に位置する。半導体基板は、シリコンよりもバンドギャップが広い半導体材料(いわゆる「ワイドバンドギャップ半導体材料」)からなる。
 具体的には、半導体基板は、例えば、炭化珪素(SiC)や窒化ガリウム(GaN)からなるのが好ましい。ワイドバンドギャップ半導体材料からなる半導体基板を用いることで、シリコンからなる半導体基板を用いる場合に比べて、後述するショットキー接合によって維持される逆方向耐圧を向上することができる。また、ワイドバンドギャップ半導体材料からなる半導体基板を用いることで、シリコンからなる半導体基板を用いる場合に比べて、低損失で、かつ高効率な半導体装置を作製することができる。
 活性領域10において、半導体基板のおもて面(第1の主面)の表面層には、pウェル領域2が選択的に設けられている。pウェル領域2の表面層には、n+ソース領域3が選択的に設けられている。n-ドリフト領域1とn+ソース領域3との間で半導体基板のおもて面に露出するpウェル領域2の表面には、ゲート酸化膜4を介してゲート電極5が設けられている。
 ソース電極6は、pウェル領域2およびn+ソース領域3に接する。また、ソース電極6は、図示省略する層間絶縁膜によってゲート電極(制御電極)5と絶縁されている。このように、活性領域10において、半導体基板のおもて面には、pウェル領域2、n+ソース領域3、ゲート電極5およびソース電極6などからなるMOSゲート構造が設けられている。
 半導体基板の裏面(第2の主面)からチップ状に切断された半導体基板の切断面(以下、側面とする)にかけて、n-ドリフト領域1に接するドレイン電極(出力電極)7が設けられている。ドレイン電極7は、活性領域10から耐圧構造部11にかけて設けられ、半導体基板の裏面および側面の全面に設けられている。
 ドレイン電極7は半導体基板からなるn-ドリフト領域1とのショットキー接合を形成するように設けられており、半導体基板の裏面および側面の全面に、ドレイン電極7とn-ドリフト領域1とによるショットキー接合が形成されている。これにより、ドレイン電極7に逆方向電圧が印加されたときに、半導体基板の裏面および側面の、n-ドリフト領域1とドレイン電極7との界面から空乏層が伸びる。このため、半導体装置の逆方向耐圧を維持することができる。
 ドレイン電極7の側面は、例えば、裏面側(ドレイン側)からおもて面側(ソース側)に向かって半導体基板の幅が徐々に広くなるような斜度で傾いた構成(テーパー状)とすることができる。また、ドレイン電極7の側面は、例えば、おもて面側(ソース側)から裏面側(ドレイン側)に向かって半導体基板の幅が徐々に広くなるような斜度で傾いた構成(テーパー状)であってもよく、半導体基板のおもて面に対して垂直であってもよい。
 図1に示すように、耐圧構造部11として、半導体基板の少なくとも外周端部に、外周端部からの漏れ電流を低減する層(以下、漏れ電流低減層とする)20を設ける。図1に示す断面図でみて、漏れ電流低減層20は、耐圧構造部11の少なくとも左右の外周端部から活性領域10に至るまでの間に設ける。なお、耐圧構造部11の表面には、p型のガードリングやフィールドリミッティングリングを複数設けてもよい。これらp型のガードリングやフィールドリミッティングリングを設けることによって、耐圧構造部11の幅を狭めることができる。
 耐圧構造部11の外周端部から活性領域10に至るまでの間に漏れ電流低減層20を設けることで、耐圧構造部11において、半導体基板のおもて面にn-ドリフト領域1が露出しない。このため、ソース電位を基準としてドレイン電極7に負電圧(逆方向電圧)が印加されたときに、耐圧構造部11のn-ドリフト領域1の半導体基板おもて面側にキャリアが発生しない。これにより、逆方向電圧印加時の漏れ電流(以下、逆漏れ電流とする)を低減することができる。
 また、漏れ電流低減層20の外周端部20aは、ドレイン電極7の上端部7aに接するように設ける。漏れ電流低減層20の外周端部20aをドレイン電極7の上端部7aに接するように設けた場合、漏れ電流低減層20の外周端部20aとドレイン電極7の上端部7aとの間にn-ドリフト領域1が露出する隙間が生じない。
 これにより、ドレイン電極7に逆方向電圧が印加されたときに、半導体基板の外周端部近傍のn-ドリフト領域1にキャリアが発生しないため、逆方向電圧印加時の漏れ電流(以下、逆漏れ電流とする)を低減することができる。漏れ電流低減層20は、例えば、半導体基板のおもて面の表面を覆う層であってもよいし、半導体基板の内部に設けられた層であってもよい。図1では図示を省略するが、漏れ電流低減層20は活性領域10を囲んでいる。
 つぎに、図1を用いて説明した漏れ電流低減層20の各種構成例について、図2~図4を用いて説明する。図2~図4は、実施の形態にかかる半導体装置の別の一例を示す断面図である。図2,図4は、半導体基板のおもて面の表面に漏れ電流低減層20を設けた場合の一例である。図3は、漏れ電流低減層20を半導体基板のおもて面の表面層に設けた場合の一例である。以下、図2~図4に示す半導体装置の説明において示す漏れ電流低減層20は、図1に示す漏れ電流低減層20の一例である(図5~図9に示す半導体装置についても同様に、半導体装置の説明において示す漏れ電流低減層20は、図1に示す漏れ電流低減層20である)。
 図2に示す半導体装置において、漏れ電流低減層20は、半導体基板の外周部の少なくとも半導体基板のおもて面に露出するn-ドリフト領域1を覆う絶縁膜21である。外周部とは、活性領域10よりも外側の部分であり、耐圧構造部11を示す。図2に示す構成例では、絶縁膜21の外周端部21aとドレイン電極7の上端部7aとの間にn-ドリフト領域1が露出する隙間がない状態で設ける。
 図2においては、漏れ電流低減層20として絶縁膜21を設けた構成の半導体装置を示している。図2に示す半導体装置においては、他の構成であるn-ドリフト領域1、pウェル領域2、n+ソース領域3、ゲート酸化膜4、ゲート電極5、ソース電極6、ドレイン電極7は、図1に示す半導体装置と同様の配置で構成されている。
 このように、耐圧構造部11に漏れ電流低減層20として絶縁膜21を設けることにより、半導体基板のおもて面に露出するn-ドリフト領域1を少なくすることができる。これにより、ドレイン電極7に逆方向電圧が印加されたときに、半導体基板の外周部でのキャリアの発生を抑え、逆漏れ電流が増大することを防止することができる。
 図3に示す半導体装置では、漏れ電流低減層20は、半導体基板の外周部のおもて面の表面層に設けられ、かつ半導体基板の側面に設けられたドレイン電極7に接する第1のp型領域(第2導電型の第1の半導体領域)22である。第1のp型領域22は、半導体基板のおもて面の外周端部に露出するように設けられる。図3に示す構成例では、第1のp型領域22の外周端部22aとドレイン電極7の上端部7aとの間にn-ドリフト領域1が露出する隙間がない状態で設ける。
 半導体基板の外周部に第1のp型領域22を設けることによって、第1のp型領域22の突出が順バイアス時には、活性領域から耐圧構造部に向かって伸びる空乏層に対して逆方向となり、空乏層の拡がりを抑制し、チャネルストッパの働きをする。逆バイアス時には、ドレイン電極から活性領域に向かって伸びる空乏層に対して第1のp型領域22の突出が順方向となり、空乏層を拡げて電界強度の緩和を図ることができる。第1のp型領域22と、半導体基板の側面に設けられたドレイン電極7との接合は、ドレイン電極7の電位を安定させるためにオーミック接合となっているのが望ましい。
 図3に示す半導体装置においては、漏れ電流低減層20として第1のp型領域22を設けた構成であり、他の構成であるn-ドリフト領域1、pウェル領域2、n+ソース領域3、ゲート酸化膜4、ゲート電極5、ソース電極6、ドレイン電極7は、図1に示す半導体装置と同様の配置で構成されている。また、第1のp型領域22とpウェル領域2との間の半導体基板上には図示していない絶縁膜を設けてもよい。
 このように、第1のp型領域22を設けることにより、第1のp型領域22とn-ドリフト領域1とからなるpn接合部からも空乏層が伸びる。このため、ドレイン電極7に逆方向電圧が印加されたときに、逆漏れ電流が発生しやすい半導体基板のおもて面側の角部41から生じる逆漏れ電流を抑制することができる。半導体基板のおもて面に第1のp型領域22を設けた場合、半導体基板のおもて面側の角部41とは、半導体基板のおもて面側の外周端部における第1のp型領域22とドレイン電極7との界面部分である。
 図4に示す半導体装置では、半導体基板の側面から半導体基板のおもて面にかけて、おもて面の外周端部に跨るようにドレイン電極23を設けている。ドレイン電極23は、半導体基板の裏面および側面の全面、およびおもて面の一部に設けられている。ドレイン電極23が半導体基板のおもて面に跨る折り返し部23aの幅は、半導体装置の設計条件に合わせて種々変更可能であり、少なくとも半導体基板のおもて面側の角部41を覆うような幅であればよい。この場合、ドレイン電極23の、半導体基板のおもて面の外周部を覆う部分(折り返し部23a)が漏れ電流低減層20となる。
 図4に示す半導体装置においては、漏れ電流低減層20としてドレイン電極23の折り返し部23aを設けた構成であり、他の構成であるn-ドリフト領域1、pウェル領域2、n+ソース領域3、ゲート酸化膜4、ゲート電極5、ソース電極6、ドレイン電極23は、図1に示す半導体装置と同様の配置で構成されている。
 図4に示す半導体装置においては、ドレイン電極23の折り返し部23aを、半導体基板のおもて面の外周端部を含む外周部の一部を覆うように設けることが望ましい。また、ドレイン電極23の折り返し部23aとpウェル領域2との間の半導体基板上には図示していない絶縁膜を設けてもよい。
 また、半導体基板の外周部において、ドレイン電極23の折り返し部23aの活性領域10側の端部からpウェル領域2の耐圧構造部11側の端部にかけて、半導体基板のおもて面に露出するn-ドリフト領域1の幅が短くなるにしたがい、活性領域10の耐圧構造部11側の端部近傍の電界強度が高くなる。このため、ドレイン電極23の折り返し部23aの幅は、半導体装置の設計条件に合わせて種々変更するのがよい。
 ドレイン電極23の折り返し部23aを設けることにより、ドレイン電極23に逆方向電圧が印加されたときに、半導体基板のおもて面の、n-ドリフト領域1とドレイン電極23の折り返し部23aとの界面からも空乏層が伸びる。このため、ドレイン電極23に逆方向電圧が印加されたときに、逆漏れ電流が発生しやすい半導体基板のおもて面側の角部42から生じる逆漏れ電流を抑制することができる。半導体基板の外周部のおもて面全面にn-ドリフト領域1が露出する場合、半導体基板のおもて面側の角部42とは、半導体基板のおもて面側の外周端部におけるn-ドリフト領域1とドレイン電極7との界面部分である。
 また、漏れ電流低減層20は、上述した絶縁膜21、第1のp型領域22および、半導体基板の側面からおもて面の外周部に跨って設けられたドレイン電極23の折り返し部23aを種々組み合わせて備えていてもよい。図5~図9は、実施の形態にかかる半導体装置の別の一例を示す断面図である。
 図5に示す半導体装置において、漏れ電流低減層20は、半導体基板の外周部の少なくとも半導体基板のおもて面に露出するn-ドリフト領域1を覆う絶縁膜21、および半導体基板のおもて面の外周端部に露出する第1のp型領域22である。図5に示す半導体装置においては、半導体基板の外周部において、半導体基板のおもて面に、n-ドリフト領域1および第1のp型領域22が露出する。
 このため、絶縁膜21は、半導体基板のおもて面に露出するn-ドリフト領域1および第1のp型領域22を覆ってもよい。図5に示す構成例では、第1のp型領域22の外周端部22aをドレイン電極7の上端部7aとの間にn-ドリフト領域1が露出する隙間がない状態で設ける。絶縁膜21の外周端部21aをドレイン電極7の上端部7aとの間に第1のp型領域22が露出する隙間がない状態で設けてもよい。
 図5に示す半導体装置においては、漏れ電流低減層20として絶縁膜21および第1のp型領域22を設けた構成であり、他の構成であるn-ドリフト領域1、pウェル領域2、n+ソース領域3、ゲート酸化膜4、ゲート電極5、ソース電極6、ドレイン電極7は、図1に示す半導体装置と同様の配置で構成されている。
 図5に示す半導体装置においては、絶縁膜21および第1のp型領域22を設けることにより、絶縁膜21によって、半導体基板の外周部でのキャリアの発生を抑え、逆漏れ電流が増大することを防止することができる。また、第1のp型領域22によって、ドレイン電極7に逆方向電圧が印加されたときに、逆漏れ電流が発生しやすい半導体基板のおもて面側の角部41から生じる逆漏れ電流を抑制することができる。
 図6に示す半導体装置において、漏れ電流低減層20は、半導体基板のおもて面の外周端部に露出する第1のp型領域22および、半導体基板の側面からおもて面の外周部に跨るドレイン電極23の折り返し部23aである。図6に示す半導体装置においては、半導体基板の外周部において、半導体基板のおもて面に、n-ドリフト領域1および第1のp型領域22が露出する。
 このため、ドレイン電極23の、半導体基板のおもて面に設けられた部分(折り返し部23a)は、半導体基板のおもて面に露出する第1のp型領域22を覆う。図6に示す構成例では、第1のp型領域22の外周端部22aを、n-ドリフト領域1がドレイン電極23の折り返し部23aに接し、隙間がない状態で設ける。
 図6に示す半導体装置においては、漏れ電流低減層20として第1のp型領域22およびドレイン電極23の折り返し部23aを設けた構成であり、他の構成であるn-ドリフト領域1、pウェル領域2、n+ソース領域3、ゲート酸化膜4、ゲート電極5、ソース電極6、ドレイン電極23は、図1に示す半導体装置と同様の配置で構成されている。
 このように、第1のp型領域22およびドレイン電極23の折り返し部23aを設けることにより、第1のp型領域22によって、逆漏れ電流が発生しやすい半導体基板のおもて面側の角部41から生じる逆漏れ電流を抑制することができる。また、ドレイン電極23の折り返し部23aによって、ドレイン電極23に逆方向電圧が印加されたときに、逆漏れ電流が発生しやすい半導体基板のおもて面側の角部42から生じる逆漏れ電流を抑制することができる。
 図7に示す半導体装置において、漏れ電流低減層20は、半導体基板の外周部の少なくとも半導体基板のおもて面に露出するn-ドリフト領域1を覆う絶縁膜21、およびドレイン電極7に接する補助電極24である。図7に示す半導体装置においては、絶縁膜21は、少なくとも半導体基板のおもて面側の角部42を覆う。補助電極24は、ドレイン電極7に接し、かつドレイン電極7から絶縁膜21の表面に跨って絶縁膜21の一部を覆う。補助電極24は、n-ドリフト領域1に接していないため、ショットキー接合を形成しなくてもよい。
 図7に示す半導体装置においては、補助電極24は、フィールドプレートとして機能し、ドレイン電極7に逆方向電圧が印加されたときに、半導体基板のおもて面側の電界強度を弱める。これにより、半導体装置の逆方向耐圧を維持しやすくすることができる。図7に示す構成例では、絶縁膜21の外周端部21aをドレイン電極7の上端部7aとの間にn-ドリフト領域1が露出する隙間がない状態で設ける。補助電極24はドレイン電極7の上端部7aに接合するよう、これら補助電極24とドレイン電極7の上端部7aとの間に隙間がない状態で設ける。
 図7に示す半導体装置においては、漏れ電流低減層20として絶縁膜21および補助電極24を設けた構成であり、他の構成であるn-ドリフト領域1、pウェル領域2、n+ソース領域3、ゲート酸化膜4、ゲート電極5、ソース電極6、ドレイン電極7は、図1に示す半導体装置と同様の配置で構成されている。
 このように、絶縁膜21および補助電極24を設けることにより、絶縁膜21によって、半導体基板の外周部でのキャリアの発生を抑え、逆漏れ電流が増大することを防止することができる。また、補助電極24によって、ドレイン電極7に逆方向電圧が印加されたときに、半導体基板のおもて面の電界強度が低減される。このため、半導体装置の逆方向耐圧を維持しやすくすることができる。
 図8に示す半導体装置において、漏れ電流低減層20は、半導体基板の外周部の少なくとも半導体基板のおもて面に露出するn-ドリフト領域1を覆う絶縁膜21、半導体基板のおもて面の外周端部に露出する第1のp型領域22、およびドレイン電極7に電気的に接続された補助電極25である。図8に示す半導体装置においては、半導体基板の外周部において、半導体基板のおもて面に、n-ドリフト領域1および第1のp型領域22が露出する。
 図8に示す半導体装置においては、絶縁膜21は、第1のp型領域22の一部を覆ってもよい。補助電極25は、おもて面の外周端部から絶縁膜21の表面に跨って設けられている。絶縁膜21に覆われていない第1のp型領域22は、補助電極25によって覆われている。
 図8に示す半導体装置おいて、図7に示す半導体装置と異なる点は、第1のp型領域22を備える点と、半導体基板のおもて面に露出する第1のp型領域22に補助電極25が接する点である。補助電極25は、第1のp型領域22に接し、かつ第1のp型領域22から絶縁膜21の表面に跨って設けられることで、例えば段差状の断面形状を有する。補助電極25は、第1のp型領域22を介して、半導体基板の側面に設けられたドレイン電極7に電気的に接続されている。
 このため、補助電極25は、半導体基板の側面に設けられたドレイン電極7に直接接していてもよいし、接していなくてもよい。図8に示す構成例では、第1のp型領域22の外周端部をドレイン電極7の上端部7aとの間にn-ドリフト領域1が露出する隙間がない状態で設ける。
 図8に示す半導体装置においては、漏れ電流低減層20として絶縁膜21、第1のp型領域22および補助電極25を設けた構成であり、他の構成であるn-ドリフト領域1、pウェル領域2、n+ソース領域3、ゲート酸化膜4、ゲート電極5、ソース電極6、ドレイン電極7は、図1に示す半導体装置と同様の配置で構成されている。
 このように、図8に示す半導体装置においては、絶縁膜21、第1のp型領域22および補助電極25を設けることにより、絶縁膜21によって、半導体基板の外周部でのキャリアの発生を抑え、逆漏れ電流が増大することを防止することができる。また、図8に示す半導体装置においては、第1のp型領域22を設けることによって、逆漏れ電流が発生しやすい半導体基板のおもて面側の角部41から生じる逆漏れ電流を抑制することができる。
 また、図8に示す半導体装置においては、補助電極25を設けることによって、ドレイン電極7に逆方向電圧が印加されたときに、半導体基板のおもて面の電界強度を低減することができる。このように、図8に示す半導体装置によれば、半導体装置の逆方向耐圧を維持しやすくすることができる。
 また、図9に示す半導体装置は、図8に示す半導体装置の構成に加えて、漏れ電流低減層20として、さらに、半導体基板の裏面の表面層であって、かつ半導体基板の側面に設けられたドレイン電極7に接する第2のp型領域(第2導電型の第2の半導体領域)26を設けている。
 第2のp型領域26は、半導体基板の裏面側の角部43に設けられており、半導体基板の側面および裏面に設けられたドレイン電極7に接する。半導体基板の裏面側の角部43とは、第2のp型領域26を設けていない場合の、半導体基板の裏面側の外周端部におけるn-ドリフト領域1とドレイン電極7との界面部分である。
 図9に示す半導体装置は、漏れ電流低減層20として絶縁膜21、第1のp型領域22、補助電極25のほかに、さらに第2のp型領域26を設けた構成であり、他の構成であるn-ドリフト領域1、pウェル領域2、n+ソース領域3、ゲート酸化膜4、ゲート電極5、ソース電極6、ドレイン電極7は、図1に示す半導体装置と同様の配置で構成されている。
 このように、第2のp型領域26を設けることにより、第2のp型領域26とn-ドリフト領域1とからなるpn接合部からも空乏層が伸びる。このため、ドレイン電極7に逆方向電圧が印加されたときに、逆漏れ電流が発生しやすい半導体基板の裏面側の角部43から生じる逆漏れ電流を抑制することができる。
 上述した図5~図8に示す半導体装置は、図2~図4に示す半導体装置に漏れ電流低減層20として設けられた絶縁膜21、第1のp型領域22およびドレイン電極23の折り返し部23aのいずれかを2つ以上含む。このため、図5~図8に示す半導体装置は、図1~図4に示す半導体装置で得られるそれぞれの効果を複数組み合わせた効果を得ることができる。具体的には、それぞれの場合において、以下のような効果を得ることができる。
 半導体基板の外周部の少なくとも半導体基板のおもて面に露出するn-ドリフト領域1を覆う絶縁膜21を設けた場合(図5,図7,図8)には、ドレイン電極7に逆方向電圧が印加されたときに、半導体基板の外周部でのキャリアの発生を抑え、逆漏れ電流が増大することを防止することができる。
 半導体基板のおもて面の外周端部に露出する第1のp型領域22を設けた場合(図5,図6,図8)、および半導体基板の側面からおもて面の外周部に跨ってドレイン電極23の折り返し部23aを設けた場合(図6)には、それぞれ、第1のp型領域22とn-ドリフト領域1とからなるpn接合部、およびn-ドリフト領域1とドレイン電極23の折り返し部23aとの界面からも空乏層が伸びる。このため、ドレイン電極7に逆方向電圧が印加されたときに、半導体基板のおもて面側の角部41から生じる逆漏れ電流を抑制することができる。
 ドレイン電極7に電気的に接続された補助電極24,25を設けた場合(図7,図8)には、補助電極24,25によって、ドレイン電極7に逆方向電圧が印加されたときに、半導体基板のおもて面の電界強度を低減することができる。このため、半導体装置の逆方向耐圧を維持しやすくすることができる。
 また、上述した図1~図7に示す半導体装置は、図9に示す半導体装置に漏れ電流低減層20として設けられた、半導体基板の裏面側の角部43に第2のp型領域26を設けてもよい。半導体基板の裏面側の角部43に第2のp型領域26を設けた場合(図9)には、第2のp型領域26とn-ドリフト領域1とからなるpn接合部からも空乏層が伸びる。このため、ドレイン電極7に逆方向電圧が印加されたときに、半導体基板の裏面側の角部43から生じる逆漏れ電流を抑制することができる。
 ショットキー接合を形成する半導体基板のおもて面および裏面は、半導体基板表面から生じる逆漏れ電流を低減するために、平坦で清浄な面であることが好ましい。
 上述した各構成例における半導体基板の側面は、半導体基板のおもて面に垂直であってもよいし、テーパー状であってもよい。図1~図9に示した構成例では、半導体基板の側面が、裏面側(ドレイン側)からおもて面側(ソース側)に向かって半導体基板の幅が徐々に広くなるような斜度で傾いた構成とした。ショットキー電極が接触する半導体基板の界面は、平坦で清浄な面に加工されている必要がある。半導体基板の側面をテーパー状にした場合、半導体基板の側面がおもて面に対して垂直な場合に比べて、スパッタリング法や蒸着法によって、半導体基板の裏面および側面にドレイン電極7,23を形成しやすくなる。
 このため、半導体基板の側面をテーパー状にすることで、半導体基板の側面がおもて面に対して垂直な場合に比べて、半導体基板の側面の全面にドレイン電極7,23となる金属膜を均一に成膜しやすくなる。また、半導体基板の側面にドレイン電極7,23となる金属膜を成膜した後に、ドレイン電極7,23となる金属膜にアニール処理を均一に行うことができる。これにより、半導体基板の側面に制御性よくドレイン電極7,23を形成することができる。
 半導体基板の側面にドレイン電極7,23となる金属膜を均一に成膜しアニールすることができるのであれば、半導体基板の側面はおもて面に対して垂直であってもよい。また、半導体基板の側面にドレイン電極7,23によるショットキー接合を形成することができるのであれば、半導体基板の側面はおもて面に対して垂直であってもよい。
 実施の形態にかかる半導体装置の漏れ電流の大きさについて検証した。図10は、実施の形態にかかる半導体装置の電気的特性について示す特性図である。図10に、上述した図1~図9に示す半導体装置の逆漏れ電流波形を示す。図10の横軸は、ソース電位を基準としてドレインに印加する電圧Vsdである。図10の縦軸は、ドレインに電圧Vsdを印加したときに流れる漏れ電流Isdである。電圧Vsdは、ドレインに負電圧を印加した場合を正とする。漏れ電流Isdは、ソースからドレインに流れる電流を正とする。
 図10において、第1の曲線31は、漏れ電流低減層20を設けていない半導体装置の逆漏れ電流波形である。漏れ電流低減層20を設けていない半導体装置は、実施の形態にかかる半導体装置に設けられた漏れ電流低減層20による効果を検証するための半導体装置である。第2の曲線32は、図1~図8に示す半導体装置の逆漏れ電流波形である。第3の曲線33は、図9に示す半導体装置の逆漏れ電流波形である。
 図10に示すように、図1~図9に示す半導体装置(第2の曲線32,第3の曲線33)は、漏れ電流低減層20を設けていない半導体装置(第1の曲線31)に比べて逆漏れ電流が小さくなる。これにより、半導体基板の外周部や裏面側の角部43における逆漏れ電流の発生が抑制されていることを確認することができた。
 また、図9に示す半導体装置(第3の曲線33)は、図1~図8に示す半導体装置(第2の曲線32)に比べて逆漏れ電流が小さくなる。これにより、図9に示す半導体装置が半導体基板の裏面側の角部43における逆漏れ電流の発生を防止することができる分だけ、図1~図8に示す半導体装置よりも逆漏れ電流を低減することを確認することができた。
 以上、説明したように、実施の形態によれば、半導体基板の裏面から側面にかけてドレイン電極7が設けられている。ドレイン電極7は、半導体基板からなるn-ドリフト領域1とのショットキー接合を形成する。これにより、n-ドリフト領域1と、半導体基板の裏面に設けられたドレイン電極7との界面からだけでなく、n-ドリフト領域1と、半導体基板の側面に設けられたドレイン電極7との界面からも空乏層が伸びる。このため、従来のように半導体基板の側面にp型領域(図14のp型領域208)を形成することなく、逆方向耐圧を維持する構成の逆阻止型半導体装置を構成することができる。
 実施の形態の半導体装置は、従来の半導体装置のように半導体基板の側面にp型領域を形成する必要がない。したがって、例えばイオン注入およびアニールによって半導体基板の側面にp型領域を形成する従来の半導体装置に比べて、例えばスパッタ法や蒸着法によりドレイン電極7を形成するのみで逆阻止型半導体装置を容易に得ることができる。
 これにより、実施の形態によれば、従来の半導体装置(図14参照)を作製する場合に比べて、逆阻止型半導体装置を容易に作製することができる。また、実施の形態によれば、半導体基板の側面をテーパー状にすることで、さらにドレイン電極7を形成しやすい構成の逆阻止型半導体装置を作製することができる。
 また、実施の形態の半導体装置は、半導体基板の外周部において、半導体基板のおもて面に露出するn-ドリフト領域1を覆う漏れ電流低減層20を備える。これにより、ドレイン電極7に逆方向電圧が印加されたときに、逆漏れ電流を低減することができる。
 また、ワイドバンドギャップ半導体材料からなる半導体基板を用いることで、シリコンからなる半導体基板を用いる場合に比べて、n-ドリフト領域1とドレイン電極7とによるショットキー接合によって維持される逆方向耐圧を向上することができる。具体的には、シリコンからなる半導体基板を用いた場合、ショットキー接合によって維持される耐圧は200V程度である。一方、ワイドバンドギャップ半導体材料からなる半導体基板を用いた場合、ショットキー接合によって維持される耐圧を1200V程度とすることができる。
 以上において本発明では、上述した実施の形態に限らず、漏れ電流低減層となる絶縁膜、第1のp型領域、ドレイン電極の折り返し部および第2のp型領域を種々組み合わせ可能である。例えば、漏れ電流低減層として絶縁膜およびドレイン電極の折り返し部を設け、ドレイン電極の折り返し部が絶縁膜の表面の一部を覆うように設けてもよい。上述した実施の形態においては、第1導電型をn型とし、第2導電型をp型としたが、本発明は第1導電型をp型とし、第2導電型をn型としても同様の効果を得ることができる。
 以上のように、本発明にかかる半導体装置は、マトリックスコンバータなどの直接リンク形変換回路などに使用されるパワー半導体装置に有用である。
 1 n-ドリフト領域
 2 pウェル領域
 3 n+ソース領域
 4 ゲート酸化膜
 5 ゲート電極
 6 ソース電極
 7 ドレイン電極
 10 活性領域
 11 耐圧構造部
 20 漏れ電流低減層

Claims (10)

  1.  シリコンよりもバンドギャップが広い半導体材料からなる第1導電型の半導体基板と、
     前記半導体基板の第1の主面に設けられた制御電極と、
     前記半導体基板の第2の主面および側面に設けられ、当該半導体基板とのショットキー接合を形成する出力電極と、
     前記半導体基板の少なくとも外周端部に設けられ、少なくとも当該外周端部から生じる漏れ電流を低減する層と、
     を備えることを特徴とする半導体装置。
  2.  前記漏れ電流を低減する層は、前記半導体基板の第1の主面の表面層に設けられた、前記出力電極に接する第2導電型の第1の半導体領域であることを特徴とする請求項1に記載の半導体装置。
  3.  前記第1の半導体領域は、前記出力電極とのオーミック接合を形成することを特徴とする請求項2に記載の半導体装置。
  4.  前記漏れ電流を低減する層は、前記半導体基板の第2の主面の表面層に設けられた、前記出力電極に接する第2導電型の第2の半導体領域であることを特徴とする請求項1に記載の半導体装置。
  5.  前記漏れ電流を低減する層は、前記半導体基板の第1の主面を覆う絶縁膜であることを特徴とする請求項1に記載の半導体装置。
  6.  前記漏れ電流を低減する層は、前記出力電極に電気的に接続された補助電極であることを特徴とする請求項1に記載の半導体装置。
  7.  前記漏れ電流を低減する層は、
     前記半導体基板の第1の主面を覆う絶縁膜と、
     前記出力電極に接し、当該出力電極から前記絶縁膜の表面に跨って設けられた補助電極と、からなり、
     前記補助電極は、前記半導体基板の第1の主面に露出する前記第1の半導体領域に接することを特徴とする請求項2に記載の半導体装置。
  8.  前記漏れ電流を低減する層は、さらに、前記半導体基板の第2の主面の表面層に設けられた、前記出力電極に接する第2導電型の第2の半導体領域を含むことを特徴とする請求項7に記載の半導体装置。
  9.  前記出力電極は、前記半導体基板の第2の主面から第1の主面にかけて、第1の主面の外周端部に跨って設けられていることを特徴とする請求項1に記載の半導体装置。
  10.  前記半導体基板は、炭化珪素または窒化ガリウムからなることを特徴とする請求項1~9のいずれか一つに記載の半導体装置。
PCT/JP2011/070909 2011-03-14 2011-09-13 半導体装置 WO2012124191A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013504507A JP5655932B2 (ja) 2011-03-14 2011-09-13 半導体装置
CN201180067442.2A CN103370791B (zh) 2011-03-14 2011-09-13 半导体器件
DE112011105029.1T DE112011105029T5 (de) 2011-03-14 2011-09-13 Halbleitervorrichtung
US13/964,219 US9018633B2 (en) 2011-03-14 2013-08-12 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011055946 2011-03-14
JP2011-055946 2011-03-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/964,219 Continuation US9018633B2 (en) 2011-03-14 2013-08-12 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2012124191A1 true WO2012124191A1 (ja) 2012-09-20

Family

ID=46830292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070909 WO2012124191A1 (ja) 2011-03-14 2011-09-13 半導体装置

Country Status (5)

Country Link
US (1) US9018633B2 (ja)
JP (1) JP5655932B2 (ja)
CN (1) CN103370791B (ja)
DE (1) DE112011105029T5 (ja)
WO (1) WO2012124191A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034250A1 (ja) * 2016-08-19 2018-02-22 ローム株式会社 半導体装置および半導体装置の製造方法
US11081410B2 (en) 2018-10-30 2021-08-03 Fuji Electric Co., Ltd. Method of manufacturing semiconductor device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015000206T5 (de) 2014-10-03 2016-08-25 Fuji Electric Co., Ltd. Halbleitervorrichtung und Verfahren zum Herstellen einer Halbleitervorrichtung
CN105023949A (zh) * 2015-08-12 2015-11-04 无锡同方微电子有限公司 能实现反向阻断的mosfet
EP3182463A1 (en) * 2015-12-17 2017-06-21 ABB Technology AG Reverse blocking power semiconductor device
CN105810723B (zh) * 2016-03-21 2018-07-13 无锡紫光微电子有限公司 能实现反向阻断的mosfet的结构和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04332173A (ja) * 1991-05-07 1992-11-19 Fuji Electric Co Ltd プレーナ型半導体装置及びその製造方法
JPH08306937A (ja) * 1995-04-28 1996-11-22 Fuji Electric Co Ltd 高耐圧半導体装置
JPH11133365A (ja) * 1997-10-29 1999-05-21 Yazaki Corp 波長可変フィルタおよびその製造方法
JP2002299624A (ja) * 2001-03-30 2002-10-11 Shindengen Electric Mfg Co Ltd 半導体装置およびその製造方法
JP2006303410A (ja) * 2005-03-25 2006-11-02 Fuji Electric Holdings Co Ltd 半導体装置およびその製造方法
JP2009123914A (ja) * 2007-11-15 2009-06-04 Fuji Electric Device Technology Co Ltd 逆耐圧を有するスイッチング用半導体装置
JP2010206109A (ja) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd 半導体装置及び電力変換装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4624004A (en) * 1985-07-15 1986-11-18 Eaton Corporation Buried channel MESFET with backside source contact
US5236854A (en) * 1989-12-11 1993-08-17 Yukio Higaki Compound semiconductor device and method for fabrication thereof
JP5560519B2 (ja) * 2006-04-11 2014-07-30 日産自動車株式会社 半導体装置及びその製造方法
JP2009094203A (ja) * 2007-10-05 2009-04-30 Denso Corp 炭化珪素半導体装置
JP2010206002A (ja) 2009-03-04 2010-09-16 Fuji Electric Systems Co Ltd pチャネル型炭化珪素MOSFET
JP2010239098A (ja) * 2009-03-10 2010-10-21 Showa Denko Kk 発光ダイオード、発光ダイオードランプ及び照明装置
JP5468286B2 (ja) * 2009-04-07 2014-04-09 株式会社東芝 半導体装置およびその製造方法
JP5682102B2 (ja) 2009-04-28 2015-03-11 富士電機株式会社 逆耐圧を有する縦型窒化ガリウム半導体装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04332173A (ja) * 1991-05-07 1992-11-19 Fuji Electric Co Ltd プレーナ型半導体装置及びその製造方法
JPH08306937A (ja) * 1995-04-28 1996-11-22 Fuji Electric Co Ltd 高耐圧半導体装置
JPH11133365A (ja) * 1997-10-29 1999-05-21 Yazaki Corp 波長可変フィルタおよびその製造方法
JP2002299624A (ja) * 2001-03-30 2002-10-11 Shindengen Electric Mfg Co Ltd 半導体装置およびその製造方法
JP2006303410A (ja) * 2005-03-25 2006-11-02 Fuji Electric Holdings Co Ltd 半導体装置およびその製造方法
JP2009123914A (ja) * 2007-11-15 2009-06-04 Fuji Electric Device Technology Co Ltd 逆耐圧を有するスイッチング用半導体装置
JP2010206109A (ja) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd 半導体装置及び電力変換装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034250A1 (ja) * 2016-08-19 2018-02-22 ローム株式会社 半導体装置および半導体装置の製造方法
JPWO2018034250A1 (ja) * 2016-08-19 2019-07-11 ローム株式会社 半導体装置および半導体装置の製造方法
US10923562B2 (en) 2016-08-19 2021-02-16 Rohm Co., Ltd. Semiconductor device, and method for manufacturing semicondcutor device
JP7048497B2 (ja) 2016-08-19 2022-04-05 ローム株式会社 半導体装置および半導体装置の製造方法
US11081410B2 (en) 2018-10-30 2021-08-03 Fuji Electric Co., Ltd. Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
US9018633B2 (en) 2015-04-28
DE112011105029T5 (de) 2014-01-02
US20140061672A1 (en) 2014-03-06
JPWO2012124191A1 (ja) 2014-07-17
CN103370791B (zh) 2016-09-14
JP5655932B2 (ja) 2015-01-21
CN103370791A (zh) 2013-10-23

Similar Documents

Publication Publication Date Title
JP4843253B2 (ja) 電力用半導体装置
JP5613995B2 (ja) 炭化珪素半導体装置およびその製造方法
US8816355B2 (en) Semiconductor device
JP6415749B2 (ja) 炭化珪素半導体装置
JP5711646B2 (ja) ダイオード
WO2012124191A1 (ja) 半導体装置
WO2014103126A1 (ja) サージ保護素子及び半導体装置
JP2010135646A (ja) 半導体装置
JP2013051345A (ja) ダイオード、半導体装置およびmosfet
JP2020047680A (ja) 半導体装置
JP5735611B2 (ja) SiC半導体装置
JP5630552B2 (ja) 炭化珪素半導体装置およびその製造方法
JP2012248736A (ja) 半導体装置
JP2012004466A (ja) 半導体装置
JP7257912B2 (ja) 半導体装置
JP2010092978A (ja) 絶縁ゲートバイポーラトランジスタ
US10763355B2 (en) Power semiconductor device
US10777674B2 (en) Semiconductor device
US20110193099A1 (en) Semiconductor device
JP5358141B2 (ja) 半導体装置
JP2002026314A (ja) 半導体装置
JP2008235588A (ja) ショットキーバリアダイオード
JP3879697B2 (ja) 半導体装置
JP7408947B2 (ja) 炭化珪素半導体装置
JP4869489B2 (ja) 半導体デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013504507

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120111050291

Country of ref document: DE

Ref document number: 112011105029

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860924

Country of ref document: EP

Kind code of ref document: A1