CN105990108B - 超薄原子层沉积膜厚度的精密控制 - Google Patents
超薄原子层沉积膜厚度的精密控制 Download PDFInfo
- Publication number
- CN105990108B CN105990108B CN201610160517.6A CN201610160517A CN105990108B CN 105990108 B CN105990108 B CN 105990108B CN 201610160517 A CN201610160517 A CN 201610160517A CN 105990108 B CN105990108 B CN 105990108B
- Authority
- CN
- China
- Prior art keywords
- substrate
- atomic layer
- layer deposition
- gas
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000231 atomic layer deposition Methods 0.000 title claims abstract description 195
- 239000000758 substrate Substances 0.000 claims abstract description 314
- 239000007789 gas Substances 0.000 claims abstract description 273
- 238000000034 method Methods 0.000 claims abstract description 207
- 238000000151 deposition Methods 0.000 claims abstract description 100
- 230000008021 deposition Effects 0.000 claims abstract description 73
- 239000000376 reactant Substances 0.000 claims description 119
- 230000008569 process Effects 0.000 claims description 98
- 239000002243 precursor Substances 0.000 claims description 93
- 238000012545 processing Methods 0.000 claims description 70
- 239000004065 semiconductor Substances 0.000 claims description 63
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 62
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 62
- 238000002791 soaking Methods 0.000 claims description 52
- 238000010926 purge Methods 0.000 claims description 50
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims description 46
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 45
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 44
- 238000007654 immersion Methods 0.000 claims description 44
- 229910052710 silicon Inorganic materials 0.000 claims description 42
- 239000010703 silicon Substances 0.000 claims description 38
- 239000007800 oxidant agent Substances 0.000 claims description 36
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 34
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 31
- 229910052760 oxygen Inorganic materials 0.000 claims description 31
- 239000001301 oxygen Substances 0.000 claims description 31
- 229910052757 nitrogen Inorganic materials 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 22
- 239000001272 nitrous oxide Substances 0.000 claims description 19
- 239000001307 helium Substances 0.000 claims description 18
- 229910052734 helium Inorganic materials 0.000 claims description 18
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 18
- 230000001590 oxidative effect Effects 0.000 claims description 18
- 229910052786 argon Inorganic materials 0.000 claims description 17
- 150000004756 silanes Chemical group 0.000 claims description 15
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 15
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 14
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 14
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 14
- 239000011261 inert gas Substances 0.000 claims description 11
- 229910044991 metal oxide Inorganic materials 0.000 claims description 9
- 150000004706 metal oxides Chemical class 0.000 claims description 9
- 230000008878 coupling Effects 0.000 claims description 7
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- 150000004767 nitrides Chemical class 0.000 claims description 7
- 239000003638 chemical reducing agent Substances 0.000 claims description 5
- VOSJXMPCFODQAR-UHFFFAOYSA-N trisilylamine group Chemical group [SiH3]N([SiH3])[SiH3] VOSJXMPCFODQAR-UHFFFAOYSA-N 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 3
- 230000001351 cycling effect Effects 0.000 claims 1
- 239000010408 film Substances 0.000 description 113
- 210000002381 plasma Anatomy 0.000 description 105
- 235000012431 wafers Nutrition 0.000 description 36
- 239000012159 carrier gas Substances 0.000 description 35
- 239000010410 layer Substances 0.000 description 31
- 239000000203 mixture Substances 0.000 description 21
- -1 for example Substances 0.000 description 20
- 239000007788 liquid Substances 0.000 description 17
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 16
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 16
- 229960001730 nitrous oxide Drugs 0.000 description 16
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 13
- 229910052799 carbon Inorganic materials 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000002156 mixing Methods 0.000 description 11
- 238000009834 vaporization Methods 0.000 description 11
- 230000008016 vaporization Effects 0.000 description 11
- 150000001412 amines Chemical class 0.000 description 10
- 125000000217 alkyl group Chemical group 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 8
- 229910002091 carbon monoxide Inorganic materials 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 6
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 6
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 6
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical class [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 5
- 150000001343 alkyl silanes Chemical group 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- XUKFPAQLGOOCNJ-UHFFFAOYSA-N dimethyl(trimethylsilyloxy)silicon Chemical compound C[Si](C)O[Si](C)(C)C XUKFPAQLGOOCNJ-UHFFFAOYSA-N 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 5
- 238000011065 in-situ storage Methods 0.000 description 5
- YBRBMKDOPFTVDT-UHFFFAOYSA-N tert-butylamine Chemical compound CC(C)(C)N YBRBMKDOPFTVDT-UHFFFAOYSA-N 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229910001868 water Inorganic materials 0.000 description 5
- SNYNNFDVNITLRQ-UHFFFAOYSA-N 2,2,4,4,6,6,8-heptamethyl-1,3,5,7,2,4,6,8$l^{3}-tetraoxatetrasilocane Chemical compound C[Si]1O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 SNYNNFDVNITLRQ-UHFFFAOYSA-N 0.000 description 4
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 4
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 4
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- BMFVGAAISNGQNM-UHFFFAOYSA-N isopentylamine Chemical compound CC(C)CCN BMFVGAAISNGQNM-UHFFFAOYSA-N 0.000 description 4
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 4
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 4
- WZJUBBHODHNQPW-UHFFFAOYSA-N 2,4,6,8-tetramethyl-1,3,5,7,2$l^{3},4$l^{3},6$l^{3},8$l^{3}-tetraoxatetrasilocane Chemical compound C[Si]1O[Si](C)O[Si](C)O[Si](C)O1 WZJUBBHODHNQPW-UHFFFAOYSA-N 0.000 description 3
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 238000001636 atomic emission spectroscopy Methods 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 3
- 238000005137 deposition process Methods 0.000 description 3
- UBHZUDXTHNMNLD-UHFFFAOYSA-N dimethylsilane Chemical compound C[SiH2]C UBHZUDXTHNMNLD-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 125000001183 hydrocarbyl group Chemical group 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 238000000678 plasma activation Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- UHUUYVZLXJHWDV-UHFFFAOYSA-N trimethyl(methylsilyloxy)silane Chemical compound C[SiH2]O[Si](C)(C)C UHUUYVZLXJHWDV-UHFFFAOYSA-N 0.000 description 3
- VEDJZFSRVVQBIL-UHFFFAOYSA-N trisilane Chemical compound [SiH3][SiH2][SiH3] VEDJZFSRVVQBIL-UHFFFAOYSA-N 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- JZKAJIFHBZJCAI-UHFFFAOYSA-N 1,2-ditert-butylhydrazine Chemical compound CC(C)(C)NNC(C)(C)C JZKAJIFHBZJCAI-UHFFFAOYSA-N 0.000 description 2
- 239000005046 Chlorosilane Substances 0.000 description 2
- HTJDQJBWANPRPF-UHFFFAOYSA-N Cyclopropylamine Chemical compound NC1CC1 HTJDQJBWANPRPF-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 2
- YTEISYFNYGDBRV-UHFFFAOYSA-N [(dimethyl-$l^{3}-silanyl)oxy-dimethylsilyl]oxy-dimethylsilicon Chemical compound C[Si](C)O[Si](C)(C)O[Si](C)C YTEISYFNYGDBRV-UHFFFAOYSA-N 0.000 description 2
- 150000001336 alkenes Chemical group 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- FIRQYUPQXNPTKO-UHFFFAOYSA-N ctk0i2755 Chemical class N[SiH2]N FIRQYUPQXNPTKO-UHFFFAOYSA-N 0.000 description 2
- KZZKOVLJUKWSKX-UHFFFAOYSA-N cyclobutanamine Chemical compound NC1CCC1 KZZKOVLJUKWSKX-UHFFFAOYSA-N 0.000 description 2
- 229940043279 diisopropylamine Drugs 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- XGZNHFPFJRZBBT-UHFFFAOYSA-N ethanol;titanium Chemical compound [Ti].CCO.CCO.CCO.CCO XGZNHFPFJRZBBT-UHFFFAOYSA-N 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- NEXSMEBSBIABKL-UHFFFAOYSA-N hexamethyldisilane Chemical compound C[Si](C)(C)[Si](C)(C)C NEXSMEBSBIABKL-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Chemical group 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 2
- 229910052743 krypton Inorganic materials 0.000 description 2
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 150000001247 metal acetylides Chemical group 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- SWGZAKPJNWCPRY-UHFFFAOYSA-N methyl-bis(trimethylsilyloxy)silicon Chemical compound C[Si](C)(C)O[Si](C)O[Si](C)(C)C SWGZAKPJNWCPRY-UHFFFAOYSA-N 0.000 description 2
- ULWOJODHECIZAU-UHFFFAOYSA-N n,n-diethylpropan-2-amine Chemical compound CCN(CC)C(C)C ULWOJODHECIZAU-UHFFFAOYSA-N 0.000 description 2
- CATWEXRJGNBIJD-UHFFFAOYSA-N n-tert-butyl-2-methylpropan-2-amine Chemical compound CC(C)(C)NC(C)(C)C CATWEXRJGNBIJD-UHFFFAOYSA-N 0.000 description 2
- XWESXZZECGOXDQ-UHFFFAOYSA-N n-tert-butylhydroxylamine Chemical compound CC(C)(C)NO XWESXZZECGOXDQ-UHFFFAOYSA-N 0.000 description 2
- 235000013842 nitrous oxide Nutrition 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229920000548 poly(silane) polymer Polymers 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- BHRZNVHARXXAHW-UHFFFAOYSA-N sec-butylamine Chemical compound CCC(C)N BHRZNVHARXXAHW-UHFFFAOYSA-N 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- LFKDJXLFVYVEFG-UHFFFAOYSA-N tert-butyl carbamate Chemical compound CC(C)(C)OC(N)=O LFKDJXLFVYVEFG-UHFFFAOYSA-N 0.000 description 2
- MNWRORMXBIWXCI-UHFFFAOYSA-N tetrakis(dimethylamido)titanium Chemical compound CN(C)[Ti](N(C)C)(N(C)C)N(C)C MNWRORMXBIWXCI-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- AQRLNPVMDITEJU-UHFFFAOYSA-N triethylsilane Chemical compound CC[SiH](CC)CC AQRLNPVMDITEJU-UHFFFAOYSA-N 0.000 description 2
- PQDJYEQOELDLCP-UHFFFAOYSA-N trimethylsilane Chemical compound C[SiH](C)C PQDJYEQOELDLCP-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- CCPYCNSBZPTUMJ-UHFFFAOYSA-N 1,3,5,7,9,2,4,6,8,10-pentaoxapentasilecane Chemical class O1[SiH2]O[SiH2]O[SiH2]O[SiH2]O[SiH2]1 CCPYCNSBZPTUMJ-UHFFFAOYSA-N 0.000 description 1
- BCHXFGQPSOXSTC-UHFFFAOYSA-N 1-dimethylsilylethyl(dimethyl)silane Chemical compound C[SiH](C)C(C)[SiH](C)C BCHXFGQPSOXSTC-UHFFFAOYSA-N 0.000 description 1
- BEEYLGLWYXWFAG-UHFFFAOYSA-N 2-aminosilyl-2-methylpropane Chemical compound CC(C)(C)[SiH2]N BEEYLGLWYXWFAG-UHFFFAOYSA-N 0.000 description 1
- MAYUMUDTQDNZBD-UHFFFAOYSA-N 2-chloroethylsilane Chemical compound [SiH3]CCCl MAYUMUDTQDNZBD-UHFFFAOYSA-N 0.000 description 1
- GELMWIVBBPAMIO-UHFFFAOYSA-N 2-methylbutan-2-amine Chemical compound CCC(C)(C)N GELMWIVBBPAMIO-UHFFFAOYSA-N 0.000 description 1
- MNTMWHBQGOKGDD-UHFFFAOYSA-N 3-methylbutylsilane Chemical compound CC(C)CC[SiH3] MNTMWHBQGOKGDD-UHFFFAOYSA-N 0.000 description 1
- DLLBFAKYMTYRBD-UHFFFAOYSA-N CCCC(C)(C)[Si] Chemical compound CCCC(C)(C)[Si] DLLBFAKYMTYRBD-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Chemical group 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 101000735417 Homo sapiens Protein PAPPAS Proteins 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- QZGQVFVHXTVRHA-UHFFFAOYSA-N N-(butan-2-ylamino)silylbutan-2-amine Chemical compound CCC(C)N[SiH2]NC(CC)C QZGQVFVHXTVRHA-UHFFFAOYSA-N 0.000 description 1
- ZZHXBZOWQPNBCA-UHFFFAOYSA-N N-(propan-2-ylamino)silylpropan-2-amine Chemical compound CC(C)N[SiH2]NC(C)C ZZHXBZOWQPNBCA-UHFFFAOYSA-N 0.000 description 1
- 102100034919 Protein PAPPAS Human genes 0.000 description 1
- 229910007161 Si(CH3)3 Inorganic materials 0.000 description 1
- 229910003828 SiH3 Inorganic materials 0.000 description 1
- 229910003074 TiCl4 Inorganic materials 0.000 description 1
- 229910010342 TiF4 Inorganic materials 0.000 description 1
- 229910010386 TiI4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- GJWAPAVRQYYSTK-UHFFFAOYSA-N [(dimethyl-$l^{3}-silanyl)amino]-dimethylsilicon Chemical compound C[Si](C)N[Si](C)C GJWAPAVRQYYSTK-UHFFFAOYSA-N 0.000 description 1
- VEZYCISMGXNHOV-UHFFFAOYSA-N [dimethyl-[(trimethylsilylamino)silylamino]silyl]methane Chemical compound C[Si](C)(C)N[SiH2]N[Si](C)(C)C VEZYCISMGXNHOV-UHFFFAOYSA-N 0.000 description 1
- HDYRYUINDGQKMC-UHFFFAOYSA-M acetyloxyaluminum;dihydrate Chemical compound O.O.CC(=O)O[Al] HDYRYUINDGQKMC-UHFFFAOYSA-M 0.000 description 1
- 238000001994 activation Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001345 alkine derivatives Chemical group 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 229940009827 aluminum acetate Drugs 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- VQPFDLRNOCQMSN-UHFFFAOYSA-N bromosilane Chemical compound Br[SiH3] VQPFDLRNOCQMSN-UHFFFAOYSA-N 0.000 description 1
- AUOLYXZHVVMFPD-UHFFFAOYSA-N butan-2-yl(chloro)silane Chemical compound CCC(C)[SiH2]Cl AUOLYXZHVVMFPD-UHFFFAOYSA-N 0.000 description 1
- VBLDUBUUQYXSCG-UHFFFAOYSA-N butan-2-ylsilane Chemical compound CCC(C)[SiH3] VBLDUBUUQYXSCG-UHFFFAOYSA-N 0.000 description 1
- YXMVRBZGTJFMLH-UHFFFAOYSA-N butylsilane Chemical compound CCCC[SiH3] YXMVRBZGTJFMLH-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- CRIVIYPBVUGWSC-UHFFFAOYSA-N chloro(propan-2-yl)silane Chemical compound CC(C)[SiH2]Cl CRIVIYPBVUGWSC-UHFFFAOYSA-N 0.000 description 1
- KIGALSBMRYYLFJ-UHFFFAOYSA-N chloro-(2,3-dimethylbutan-2-yl)-dimethylsilane Chemical compound CC(C)C(C)(C)[Si](C)(C)Cl KIGALSBMRYYLFJ-UHFFFAOYSA-N 0.000 description 1
- KAADXUXXXANQKW-UHFFFAOYSA-N chloro-dimethyl-(2-methylpentan-2-yl)silane Chemical compound CCCC(C)(C)[Si](C)(C)Cl KAADXUXXXANQKW-UHFFFAOYSA-N 0.000 description 1
- YGHUUVGIRWMJGE-UHFFFAOYSA-N chlorodimethylsilane Chemical compound C[SiH](C)Cl YGHUUVGIRWMJGE-UHFFFAOYSA-N 0.000 description 1
- AZFVLHQDIIJLJG-UHFFFAOYSA-N chloromethylsilane Chemical compound [SiH3]CCl AZFVLHQDIIJLJG-UHFFFAOYSA-N 0.000 description 1
- SLLGVCUQYRMELA-UHFFFAOYSA-N chlorosilicon Chemical compound Cl[Si] SLLGVCUQYRMELA-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- IMSPRWXXRYFLEJ-UHFFFAOYSA-N cyclopenta-1,3-diene;manganese(2+) Chemical compound [Mn+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 IMSPRWXXRYFLEJ-UHFFFAOYSA-N 0.000 description 1
- DDJSWKLBKSLAAZ-UHFFFAOYSA-N cyclotetrasiloxane Chemical compound O1[SiH2]O[SiH2]O[SiH2]O[SiH2]1 DDJSWKLBKSLAAZ-UHFFFAOYSA-N 0.000 description 1
- JJRDHFIVAPVZJN-UHFFFAOYSA-N cyclotrisiloxane Chemical class O1[SiH2]O[SiH2]O[SiH2]1 JJRDHFIVAPVZJN-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- UWGIJJRGSGDBFJ-UHFFFAOYSA-N dichloromethylsilane Chemical compound [SiH3]C(Cl)Cl UWGIJJRGSGDBFJ-UHFFFAOYSA-N 0.000 description 1
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 1
- UCXUKTLCVSGCNR-UHFFFAOYSA-N diethylsilane Chemical compound CC[SiH2]CC UCXUKTLCVSGCNR-UHFFFAOYSA-N 0.000 description 1
- VSLPMIMVDUOYFW-UHFFFAOYSA-N dimethylazanide;tantalum(5+) Chemical compound [Ta+5].C[N-]C.C[N-]C.C[N-]C.C[N-]C.C[N-]C VSLPMIMVDUOYFW-UHFFFAOYSA-N 0.000 description 1
- PRWJWJFNTJLFKK-UHFFFAOYSA-N ditert-butyl(chloro)silicon Chemical compound CC(C)(C)[Si](Cl)C(C)(C)C PRWJWJFNTJLFKK-UHFFFAOYSA-N 0.000 description 1
- LFLMSLJSSVNEJH-UHFFFAOYSA-N ditert-butyl(silyl)silane Chemical compound CC(C)(C)[SiH]([SiH3])C(C)(C)C LFLMSLJSSVNEJH-UHFFFAOYSA-N 0.000 description 1
- JTGAUXSVQKWNHO-UHFFFAOYSA-N ditert-butylsilicon Chemical compound CC(C)(C)[Si]C(C)(C)C JTGAUXSVQKWNHO-UHFFFAOYSA-N 0.000 description 1
- 239000000386 donor Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- NPEOKFBCHNGLJD-UHFFFAOYSA-N ethyl(methyl)azanide;hafnium(4+) Chemical compound [Hf+4].CC[N-]C.CC[N-]C.CC[N-]C.CC[N-]C NPEOKFBCHNGLJD-UHFFFAOYSA-N 0.000 description 1
- KCWYOFZQRFCIIE-UHFFFAOYSA-N ethylsilane Chemical compound CC[SiH3] KCWYOFZQRFCIIE-UHFFFAOYSA-N 0.000 description 1
- XPBBUZJBQWWFFJ-UHFFFAOYSA-N fluorosilane Chemical compound [SiH3]F XPBBUZJBQWWFFJ-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- IDIOJRGTRFRIJL-UHFFFAOYSA-N iodosilane Chemical compound I[SiH3] IDIOJRGTRFRIJL-UHFFFAOYSA-N 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000012705 liquid precursor Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- GTLNCANDXCIVJA-UHFFFAOYSA-N magnesium;propylcyclopentane Chemical compound [Mg].CCC[C]1[CH][CH][CH][CH]1.CCC[C]1[CH][CH][CH][CH]1 GTLNCANDXCIVJA-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002736 metal compounds Chemical group 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- IFVRUKGTKXWWQF-UHFFFAOYSA-N methylaminosilicon Chemical compound CN[Si] IFVRUKGTKXWWQF-UHFFFAOYSA-N 0.000 description 1
- UIUXUFNYAYAMOE-UHFFFAOYSA-N methylsilane Chemical compound [SiH3]C UIUXUFNYAYAMOE-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- OWKFQWAGPHVFRF-UHFFFAOYSA-N n-(diethylaminosilyl)-n-ethylethanamine Chemical compound CCN(CC)[SiH2]N(CC)CC OWKFQWAGPHVFRF-UHFFFAOYSA-N 0.000 description 1
- VYIRVGYSUZPNLF-UHFFFAOYSA-N n-(tert-butylamino)silyl-2-methylpropan-2-amine Chemical compound CC(C)(C)N[SiH2]NC(C)(C)C VYIRVGYSUZPNLF-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 150000001282 organosilanes Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- DNAJDTIOMGISDS-UHFFFAOYSA-N prop-2-enylsilane Chemical compound [SiH3]CC=C DNAJDTIOMGISDS-UHFFFAOYSA-N 0.000 description 1
- YYVGYULIMDRZMJ-UHFFFAOYSA-N propan-2-ylsilane Chemical compound CC(C)[SiH3] YYVGYULIMDRZMJ-UHFFFAOYSA-N 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 125000001339 silanediyl group Chemical group [H][Si]([H])(*)* 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical group Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- UTYRQCFTOYUATF-UHFFFAOYSA-N tert-butyl(chloro)silane Chemical compound CC(C)(C)[SiH2]Cl UTYRQCFTOYUATF-UHFFFAOYSA-N 0.000 description 1
- IPGXXWZOPBFRIZ-UHFFFAOYSA-N tert-butyl(silyl)silane Chemical compound CC(C)(C)[SiH2][SiH3] IPGXXWZOPBFRIZ-UHFFFAOYSA-N 0.000 description 1
- BCNZYOJHNLTNEZ-UHFFFAOYSA-N tert-butyldimethylsilyl chloride Chemical compound CC(C)(C)[Si](C)(C)Cl BCNZYOJHNLTNEZ-UHFFFAOYSA-N 0.000 description 1
- KNSVRQSOPKYFJN-UHFFFAOYSA-N tert-butylsilicon Chemical compound CC(C)(C)[Si] KNSVRQSOPKYFJN-UHFFFAOYSA-N 0.000 description 1
- QIMILRIEUVPAMG-UHFFFAOYSA-N tert-butylsilyl carbamate Chemical compound C(N)(O[SiH2]C(C)(C)C)=O QIMILRIEUVPAMG-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- UBZYKBZMAMTNKW-UHFFFAOYSA-J titanium tetrabromide Chemical compound Br[Ti](Br)(Br)Br UBZYKBZMAMTNKW-UHFFFAOYSA-J 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- NLLZTRMHNHVXJJ-UHFFFAOYSA-J titanium tetraiodide Chemical compound I[Ti](I)(I)I NLLZTRMHNHVXJJ-UHFFFAOYSA-J 0.000 description 1
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 1
- 239000005052 trichlorosilane Substances 0.000 description 1
- QXTIBZLKQPJVII-UHFFFAOYSA-N triethylsilicon Chemical compound CC[Si](CC)CC QXTIBZLKQPJVII-UHFFFAOYSA-N 0.000 description 1
- WDIWAJVQNKHNGJ-UHFFFAOYSA-N trimethyl(propan-2-yl)silane Chemical compound CC(C)[Si](C)(C)C WDIWAJVQNKHNGJ-UHFFFAOYSA-N 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/0228—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
-
- H01L21/205—
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
- C23C16/402—Silicon dioxide
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45534—Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45536—Use of plasma, radiation or electromagnetic fields
- C23C16/45542—Plasma being used non-continuously during the ALD reactions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45544—Atomic layer deposition [ALD] characterized by the apparatus
- C23C16/45548—Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
- C23C16/45551—Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45553—Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
- H01J37/32449—Gas control, e.g. control of the gas flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32733—Means for moving the material to be treated
- H01J37/32743—Means for moving the material to be treated for introducing the material into processing chamber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32798—Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
- H01J37/32899—Multiple chambers, e.g. cluster tools
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02164—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02211—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02299—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
- H01L21/02312—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/18—Vacuum control means
- H01J2237/182—Obtaining or maintaining desired pressure
- H01J2237/1825—Evacuating means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/20—Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
- H01J2237/201—Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated for mounting multiple objects
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/20—Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
- H01J2237/202—Movement
- H01J2237/20278—Motorised movement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/332—Coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32798—Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
- H01J37/32816—Pressure
- H01J37/32834—Exhausting
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electromagnetism (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明涉及超薄原子层沉积膜厚度的精密控制,提供了通过原子层沉积来沉积具有减小的晶片比晶片的变化的超薄膜的方法。方法涉及在第一原子层沉积循环之前,将衬底暴露于包含在原子层沉积循环的等离子体暴露操作期间使用的一种或多种气体的浸泡气体以将衬底加热到沉积温度。
Description
技术领域
本发明总体上涉及半导体处理领域,具体涉及超薄原子层沉积膜厚度的精密控制。
背景技术
半导体器件的各种薄膜层可以用原子层沉积(ALD)工艺来沉积。但是,现有的ALD工艺可能不适合于沉积具有约50埃以下厚度的超薄膜。例如,用于沉积超薄膜的许多现有ALD工艺导致在从衬底至衬底(from substrate to substrate)上沉积的膜之间的大的晶片比晶片(wafer-to-wafer)的变化。
发明内容
本发明提供了用于处理半导体衬底的方法和装置。一个方面涉及一种用于通过原子层沉积在半导体衬底上沉积氧化硅膜的方法,该方法包括:(a)将衬底插入室内;(b)在将所述衬底插入到所述室之后并于在沉积温度下执行第一原子层沉积循环之前,通过将所述衬底暴露于浸泡气体持续约500秒或500秒以下的时间,使所述衬底的温度升高至约所述沉积温度;以及(c)执行原子层沉积,其中,所述原子层沉积循环包括将所述衬底在非等离子体环境中暴露于含硅前体持续足以使所述含硅前体基本上吸附到所述衬底的表面上的时间,以及在等离子体环境中将所述衬底暴露于氧化剂,以形成氧化硅膜的至少一部分,其中浸泡所述衬底包括将所述衬底暴露于仅包含在所述原子层沉积循环期间在所述等离子体环境中将所述衬底暴露于所述氧化剂以形成所述氧化硅膜的至少一部分时使用的一种或多种气体的浸泡气体,并且其中通过所述原子层沉积而沉积的所述氧化硅膜的厚度为小于约5纳米。
在(b)中的所述浸泡气体仅包含在所述等离子体环境中将所述衬底暴露于所述氧化剂以形成所述氧化硅膜的至少一部分时使用的一种或多种气体。在一些实施方式中,在(b)中的所述浸泡气体包含在所述等离子体环境中将所述衬底暴露于所述氧化剂以形成所述氧化硅膜的至少一部分时使用的两种或更多种气体,且没有其它的气体,并且其中所述两种或更多种气体以与它们在所述氧化剂中的比例基本相同的比例存在于所述浸泡气体中。
在多种实施方式中,在(b)中的所述浸泡气体选自由氩气、氮气、氧气、一氧化二氮以及它们的组合组成的组。在(b)中的所述浸泡气体可以不含氦气。
在(b)中的所述浸泡气体的流率是在通过所述室能达到的最大流率的约10%以内。在一些实施方式中,在(b)中的所述浸泡气体的流率为至少约15slm。在多种实施方式中,在(b)中的所述浸泡气体的流率介于在所述原子层沉积循环期间在所述等离子体环境中将所述衬底暴露于所述氧化剂时使用的所述一种或多种气体的流率的至少约25%到约200%之间。
在多种实施方式中,(c)包括执行两个或更多个原子层沉积循环以在所述衬底上沉积所述氧化硅膜。在一些实施方式中,执行介于2个至约50个之间的原子层沉积循环。
所述含硅前体可以选自由硅烷、二硅烷、三硅烷、四硅烷、任何上述硅烷的经卤素取代的变体、任何上述硅烷的经胺取代的变体、以及三甲硅烷基胺组成的组。所述氧化剂可以选自由氧气、一氧化二氮以及它们的组合组成的组。所述原子层沉积可以在介于约30℃和约70℃之间的温度下进行。在多种实施方式中,所述原子层沉积循环还包括在每个暴露操作之间清扫所述室。
另一方面涉及一种用于通过原子层沉积在半导体衬底上沉积膜的方法,该方法包括:(a)将衬底插入室内;(b)在将所述衬底插入到所述室之后并于在沉积温度下执行第一原子层沉积循环之前,通过将所述衬底暴露于浸泡气体持续约500秒或500秒以下的时间,使所述衬底的温度升高至约所述沉积温度;以及(c)执行所述原子层沉积,其中,所述原子层沉积循环包括将所述衬底在非等离子体环境中暴露于前体持续足以使所述前体基本上吸附到所述衬底的表面上的时间,以及将所述衬底在等离子体环境中暴露于第二反应物以形成所述膜的至少一部分;以及其中浸泡所述衬底包括将所述衬底暴露于仅包含在所述原子层沉积循环期间在所述等离子体环境中将所述衬底暴露于所述第二反应物以形成所述膜的至少一部分时使用的一种或多种气体的浸泡气体;并且其中通过所述原子层沉积而沉积的所述膜的厚度为小于约5纳米。
在(b)中的所述浸泡气体可以仅包含在所述等离子体环境中将所述衬底暴露于所述第二反应物以形成所述膜的至少一部分时使用的一种或多种气体。在多种实施方式中,在(b)中的所述浸泡气体包含在所述等离子体环境中将所述衬底暴露于所述第二反应物以形成所述膜的至少一部分时使用的两种或更多种气体,且没有其它的气体,并且其中所述两种或更多种气体以与它们在所述第二反应物中的比例基本相同的比例存在于所述浸泡气体中。
在(b)中的所述浸泡气体可以选自由氩气、氮气、氧气、一氧化二氮以及它们的组合组成的组。在(b)中的所述浸泡气体可以不含氦气。
在多种实施方式中,在(b)中的所述浸泡气体的流率是在通过所述室能达到的最大流率的约10%以内。在一些实施方式中,在(b)中的所述浸泡气体的流率为至少约15slm。在多种实施方式中,在(b)中的所述浸泡气体的流率介于在所述原子层沉积循环期间在所述等离子体环境中将所述衬底暴露于所述第二反应物时使用的所述一种或多种气体的流率的至少约25%到约200%之间。
在所述衬底的表面上的所述膜的平均厚度的晶片比晶片的变化可以小于约在一些实施方式中,(c)包括执行两个或更多个原子层沉积循环以在所述衬底上沉积所述膜。例如,在一些实施方式中,执行介于2个与约50个之间的原子层沉积循环。
通过所述原子层沉积而沉积的所述膜可以选自由氧化硅、氮化硅、碳化硅、金属氧化物、掺杂的氧化硅、掺杂的氮化硅、掺杂的碳化硅和掺杂的金属氧化物组成的组。在一些实施方式中,通过所述原子层沉积而沉积的所述膜是氧化物并且所述原子层沉积是在约50℃的温度下进行的。在一些实施方式中,通过所述原子层沉积而沉积的所述膜是氮化物或碳化物,并且所述原子层沉积是在介于约200℃和约300℃之间的温度下进行的。
所述前体可以包含从由硅、金属、供电子原子、供电子基团组成的组中选择的化学物质。在多种实施方式中,所述第二反应物是还原剂或氧化剂。
所述原子层沉积的所述循环还可以包括在每个暴露操作之间清扫所述室。
另一方面涉及一种用于处理半导体衬底的装置,该装置包括:(a)一个或多个站,每个站包括用于保持衬底的基座;(b)用于耦合到真空的至少一个出口;(c)用于耦合到前体源和反应物源的一个或多个处理气体入口;(d)用于将衬底插入所述一个或多个站的机械手;以及(e)用于控制所述装置中的操作的控制器,所述控制器包含用于下述操作的机器可读指令:(i)将衬底插入所述一个或多个站中的一个,(ii)引入浸泡气体持续约500秒或500秒以下的时间;(iii)将含硅前体引入持续足以使所述含硅前体基本上吸附到所述衬底的表面上的时间;(iv)将第二反应物引入所述一个或多个站并点燃等离子体;且(v)重复(iii)和(iv),以在所述衬底上形成膜,该膜具有小于约5纳米的厚度,其中,在(ii)中的所述浸泡气体仅包括在(iv)中使用的一种或多种气体。
所述控制器还可以包括用于以下操作的机器可读指令:在每个新的衬底通过机械手插入所述一个或多个站中的一个之后至少执行(ii)一次。在一些实施方式中,所述装置包括两个或更多个站。
具体而言,本发明的一些方面可以描述如下:
1.一种用于通过原子层沉积在半导体衬底上沉积氧化硅膜的方法,该方法包括:
(a)将衬底插入室内;
(b)在将所述衬底插入到所述室之后并于在沉积温度下执行第一原子层沉积循环之前,通过将所述衬底暴露于浸泡气体持续约500秒或500秒以下的时间,使所述衬底的温度升高至约所述沉积温度;以及
(c)执行所述原子层沉积,
其中,所述原子层沉积循环包括
将所述衬底在非等离子体环境中暴露于含硅前体持续足以使所述含硅前体基本上吸附到所述衬底的表面上的时间,以及
在等离子体环境中将所述衬底暴露于氧化剂以形成所述氧化硅膜的至少一部分,
其中浸泡所述衬底包括将所述衬底暴露于仅包含在所述原子层沉积循环期间在所述等离子体环境中将所述衬底暴露于所述氧化剂以形成所述氧化硅膜的至少一部分时使用的一种或多种气体的浸泡气体,并且
其中通过所述原子层沉积而沉积的所述氧化硅膜的厚度为小于约5纳米。
2.根据条款1所述的方法,其中在(b)中的所述浸泡气体仅包含在所述等离子体环境中将所述衬底暴露于所述氧化剂以形成所述氧化硅膜的至少一部分时使用的一种或多种气体。
3.根据条款1所述的方法,其中在(b)中的所述浸泡气体包含在所述等离子体环境中将所述衬底暴露于所述氧化剂以形成所述氧化硅膜的至少一部分时使用的两种或更多种气体,且没有其它气体,并且其中所述两种或更多种气体以与它们在所述氧化剂中的比例基本相同的比例存在于所述浸泡气体中。
4.根据条款1所述的方法,其中在(b)中的所述浸泡气体选自由氩气、氮气、氧气、一氧化二氮以及它们的组合组成的组。
5.根据条款1所述的方法,其中在(b)中的所述浸泡气体不含氦气。
6.根据条款1所述的方法,其中在(b)中的所述浸泡气体的流率在通过所述室能达到的最大流率的约10%以内。
7.根据条款6所述的方法,其中在(b)中的所述浸泡气体的流率为至少约15slm。
8.根据条款1所述的方法,其中在(b)中的所述浸泡气体的流率介于在所述原子层沉积循环期间在所述等离子体环境中将所述衬底暴露于所述氧化剂时使用的所述一种或多种气体的流率的至少约25%到约200%之间。
10.根据条款1-9中任一项所述的方法,其中(c)包括执行两个或更多个原子层沉积循环以在所述衬底上沉积所述氧化硅膜。
11.根据条款10所述的方法,其中,执行介于2个与约50个之间的原子层沉积循环。
12.根据条款1-9中任一项所述的方法,其中所述含硅前体选自由硅烷、二硅烷、三硅烷、四硅烷、任何上述硅烷的经卤素取代的变体、任何上述硅烷的经胺取代的变体、以及三甲硅烷基胺组成的组。
13.根据条款1-9中任一项所述的方法,其中所述氧化剂选自由氧气、一氧化二氮以及它们的组合组成的组。
14.根据条款1-9中任一项所述的方法,其中所述原子层沉积是在介于约30℃和约70℃之间的温度下进行的。
15.根据条款1-9中任一项所述的方法,其中所述原子层沉积循环还包括在每个暴露操作之间清扫所述室。
16.一种用于通过原子层沉积在半导体衬底上沉积膜的方法,该方法包括:
(a)将衬底插入室内;
(b)在将所述衬底插入到所述室之后并于在沉积温度下执行第一原子层沉积循环之前,通过将所述衬底暴露于浸泡气体持续约500秒或500秒以下的时间,使所述衬底的温度升高至约所述沉积温度;以及
(c)执行所述原子层沉积,
其中,所述原子层沉积循环包括
将所述衬底在非等离子体环境中暴露于前体持续足以使所述前体基本上吸附到所述衬底的表面上的时间,以及
将所述衬底在等离子体环境中暴露于第二反应物以形成所述膜的至少一部分,
其中浸泡所述衬底包括将所述衬底暴露于仅包含在所述原子层沉积循环期间在所述等离子体环境中将所述衬底暴露于所述第二反应物以形成所述膜的至少一部分时使用的一种或多种气体的浸泡气体,并且
其中通过所述原子层沉积而沉积的所述膜的厚度为小于约5纳米。
17.根据条款16所述的方法,其中在(b)中的所述浸泡气体仅包含在所述等离子体环境中将所述衬底暴露于所述第二反应物以形成所述膜的至少一部分时使用的一种或多种气体。
18.根据条款16所述的方法,其中在(b)中的所述浸泡气体包含在所述等离子体环境中将所述衬底暴露于所述第二反应物以形成所述膜的至少一部分时使用的两种或更多种气体,且没有其它的气体,并且其中所述两种或更多种气体以与它们在所述第二反应物中的比例基本相同的比例存在于所述浸泡气体中。
19.根据条款16所述的方法,其中在(b)中的所述浸泡气体选自由氩气、氮气、氧气、一氧化二氮以及它们的组合组成的组。
20.根据条款16所述的方法,其中在(b)中的所述浸泡气体不含氦气。
21.根据条款16所述的方法,其中在(b)中的所述浸泡气体的流率是在通过所述室能达到的最大流率的约10%以内。
22.根据条款21所述的方法,其中在(b)中的所述浸泡气体的流率为至少约15slm。
23.根据条款16所述的方法,其中在(b)中的所述浸泡气体的流率在所述原子层沉积循环期间在所述等离子体环境中将所述衬底暴露于所述第二反应物时使用的所述一种或多种气体的流率的至少约25%到约200%之间。
25.根据条款16-24中任一项所述的方法,其中(c)包括执行两个或更多个原子层沉积循环以在所述衬底上沉积所述膜。
26.根据条款25所述的方法,其中,执行介于2个与约50个之间的原子层沉积循环。
27.根据条款16-24中任一项所述的方法,其中通过所述原子层沉积而沉积的所述膜选自由氧化硅、氮化硅、碳化硅、金属氧化物、掺杂的氧化硅、掺杂的氮化硅、掺杂的碳化硅和掺杂的金属氧化物组成的组。
28.根据条款16-24中任一项所述的方法,其中通过所述原子层沉积而沉积的所述膜是氧化物,且所述原子层沉积是在约50℃的温度下进行的。
29.根据条款16-24中任一项所述的方法,其中通过所述原子层沉积而沉积的所述膜是氮化物或碳化物,并且所述原子层沉积是在介于约200℃和约300℃之间的温度下进行的。
30.根据条款16-24中任一项所述的方法,其中所述前体包含从由硅、金属、供电子原子、和供电子基团组成的组中选择的化学物质。
31.根据条款16-24中任一项所述的方法,其中所述第二反应物是还原剂或氧化剂。
32.根据条款16-24中任一项所述的方法,其中所述原子层沉积的所述循环还包括在每个暴露操作之间清扫所述室。
33.一种用于处理半导体衬底的装置,该装置包括:
(a)一个或多个站,每个站包括用于保持衬底的基座;
(b)用于耦合到真空的至少一个出口;
(c)用于耦合到前体源和反应物源的一个或多个处理气体入口;
(d)用于将衬底插入所述一个或多个站的机械手;以及
(e)用于控制所述装置中的操作的控制器,所述控制器包含用于下述操作的机器可读指令:
(i)将衬底插入所述一个或多个站中的一个,
(ii)引入浸泡气体持续约500秒或500秒以下的时间;
(iii)将含硅前体引入持续足以使所述含硅前体基本上吸附到所述衬底的表面上的时间;
(iv)将第二反应物引入所述一个或多个站并点燃等离子体;且
(v)重复(iii)和(iv),以在所述衬底上形成膜,该膜具有小于约5纳米的厚度,
其中,在(ii)中的所述浸泡气体仅包括在(iv)中使用的一种或多种气体。
34.根据条款33所述的装置,其中,所述控制器还包括用于以下操作的机器可读指令:在每个新的衬底通过所述机械手插入所述一个或多个站中的一个之后至少执行(ii)一次。
35.根据条款33所述的装置,其中所述装置包括两个或更多个站。
这些和其它方面将在下面参照相关附图进行说明。
附图说明
图1是描述根据所公开的实施方式所述的方法的操作的工艺流程图。
图2是显示根据所公开的实施方式所述的方法中的循环的实施例的时序示意图。
图3是用于执行所公开的实施方式的示例性处理站的示意图。
图4是用于执行所公开的实施方式的示例性处理工具的示意图。
图5是描绘来自根据所公开的实施方式进行的试验的试验结果的曲线图。
具体实施方式
在下面的描述中,阐述了许多具体细节以提供对所呈现的实施方式的透彻理解。在没有这些具体细节中的一些或所有的情形下可以实施所公开的实施方式。在其他情形下,未详细描述公知的处理操作,以避免不必要地模糊所公开的实施方式。虽然将结合具体的实施方式描述了所公开的实施方式,但是应理解的是并不意在限制所公开的实施方式。
半导体器件的制造典型地包括在集成制造工艺中在衬底上沉积一个或多个保形的薄膜。例如,一些前段制程(front-end-of-the-line)工艺会涉及通过原子层沉积(ALD)进行保形膜的沉积。ALD是使用连续的自限性反应沉积薄的材料层的技术。ALD工艺使用表面介导的沉积反应,以在循环中逐层地沉积膜。举例而言,ALD循环可包括以下操作:(i)输送/吸附含硅前体,(ii)从室清扫含硅前体,(iii)输送第二反应物并点燃等离子体,以及(iv)从该室清扫副产物。
随着器件缩小,保形层变得更薄,并且使用越来越少的ALD循环在衬底上沉积膜。其结果是,理想的是,精确地控制每个衬底(from substrate to substrate)的膜厚度。衬底的膜厚度可以通过获取在衬底的表面上的平均膜厚而测得。从衬底到衬底的厚度变化可以被称为“晶片比晶片的变化”(“wafer-to-wafer variation”)。相比于沉积较薄的膜,在通过ALD沉积的较厚的膜中,在ALD的初始循环中厚度的变化具有较小的影响,因为在沉积较厚的膜中执行多个循环的ALD。例如,相比于具有10埃的厚度的膜之间的±5埃的厚度的晶片比晶片的变化,在沉积到厚度500埃的膜之间的±5埃的厚度的晶片比晶片的变化是小比例的。因此,对于超薄膜的沉积,例如对于具有小于约50埃的平均膜厚度的膜的沉积,晶片比晶片的变化的精确控制是特别有利的。超薄膜可以用在多种应用中,例如用在前段制程间隔件、插头衬垫和帽层的制造。随着器件缩小,其他形式的变化也成为问题。这样的变化包括在晶片内的变化:即,在单一晶片上从一个位置到另一位置的层厚度的变化。虽然本文大多数的讨论涉及晶片比晶片的变化,但所公开的改善可同样适用于其他形式的变化。
变化会取决于许多因素,包括在衬底上执行ALD循环前的室条件。常规的ALD方法通常通过将衬底放置在室或站内的基座上,该室或站可以是用于制造半导体衬底的装置、反应器、或工具的一部分。为了以所期望的沉积温度执行ALD,将基座设定为所期望的沉积温度,并且一旦衬底被放置在基座中,衬底就被加热,使得衬底温度与基座温度大致相同。所述衬底在被放置在基座上之前,可以处于与基座的温度不同的温度下。例如,衬底的温度可以是在室温下,使得所述衬底温度在基座上升高到沉积温度。用于稳定衬底温度的常规方法涉及将衬底暴露于某些条件,以使衬底温度更有效地达到或接近沉积温度的温度。暴露于这些条件有时被称为“浸泡”(“soak”)。为了提高吞吐量和减少衬底温度升高所需的时间,通常将晶片暴露于具有高热导率的氦气以稳定衬底温度。然而,传统的方法污染或增加在衬底之间的沉积的膜的晶片比晶片的变化。例如,虽然该室可在衬底暴露于氦气之后被清扫,但一些氦气可能仍然存在于该室内,使得当等离子体点燃时,等离子体具有浅紫色的颜色(这与氦等离子体一致),并且用于ALD工艺的成核和培育(incubation)期都受到影响,从而增大在衬底之间的晶片比晶片的变化。
本发明提供了执行ALD之前浸泡衬底以减少在衬底之间晶片比晶片的变化的方法。方法可以用于沉积超薄膜,超薄膜被限定为具有厚度为约50埃或更小、或约30埃或更小、或约20埃或更小、或约10埃或更小的膜。方法涉及将衬底暴露于浸泡气体,该浸泡气体包括与ALD循环的第二反应物一起使用的一种或多种气体。在多种实施方式中,浸泡气体仅包括与ALD循环的第二反应物一起使用的气体。沉积的膜从衬底到衬底是均匀的,晶片比晶片的变化对于超薄膜的沉积小于约或者小于约在多种实施方式中,如果执行介于约2个至约10个之间的ALD循环,获得小于约的晶片比晶片的变化。公开的实施方式适用于通过ALD沉积的任何膜的沉积,如介电膜、金属膜、半导体膜、和在半导体衬底的制造中所使用的任何材料的膜的沉积。例如,所公开的实施方式可被用于沉积氧化硅(SiO)、氮化硅(SiN)、碳化硅(SiC)、氮氧化硅(SiON)、碳氮氧化硅(SiOCN)、金属氧化物、掺杂的氧化硅、掺杂的氮化硅、掺杂的碳化硅、或掺杂的金属氧化物。在一些实施方式中,所公开的实施方式可被用于沉积氮化钛、氮化钽、钨、氧化铝和氮化铝。所沉积的材料可具有正常化学计量(例如,SiO2)或其变体。
本文所提供的方法涉及通过ALD进行的沉积。不像化学气相沉积(CVD)技术,ALD工艺使用表面介导的沉积反应以逐层地沉积膜。在ALD工艺的一个实施例中,包含表面活性位点群的衬底表面暴露于被提供到容纳衬底的处理站的剂量的第一前体的气相分配。该第一前体的分子被吸附在衬底表面,使得该表面包括第一前体的化学吸附物质和/或物理吸附分子。应当理解的是,当化合物被吸附到如本文所述衬底表面时,吸附层可以包括该化合物以及该化合物的衍生物。例如,含硅前体的吸附层可包括含硅前体以及含硅前体的衍生物。在某些实施方式中,ALD前体的剂量部分地充满衬底的表面。在一些实施方式中,在使前体接触衬底以均匀地充满表面之前,结束ALD循环的投配阶段。典型地,在这时将前体流关闭或转移,并且仅仅清扫气体流动。通过在这种亚充满状态下工作,ALD工艺减少了循环时间并提高了吞吐量。但是,由于前体吸附不是饱和受限的,因此被吸附的前体浓度在整个衬底表面可以略有变化。在亚饱和状态操作ALD工艺的实施例在2013年10月23日提交的、名称为“SUB-SATURATED ATOMIC LAYER DEPOSITION AND CONFORMAL FILM DEPOSITION,”的美国专利申请No.14/061587中被提供,该专利通过引用整体并入本发明。第一前体投配之后,接着将反应器排空,以去除气相中剩余的任何第一前体,使得仅剩余所吸附的物质。将第二反应物引入到反应器中,使得这些分子中的一些与吸附在表面上的第一前体反应。在一些工艺中,第二反应物与所吸附的第一前体立刻反应。在其他实施方式中,第二前体仅在施加活化源(例如等离子体)之后反应。在本文描述的多种实施方式中,当等离子体被点燃时,第二反应物与吸附的第一前体反应。然后可将反应器再次排空以去除未结合的第二反应物分子。在一些实现方式中,所述ALD方法包括等离子体活化。如本文所述,本文所述的ALD方法和装置可以是共形膜沉积(CFD)法,其概括地描述在2011年4月11日提交的名称为“PLASMAACTIVATED CONFORMAL FILM DEPOSITION”的美国专利申请No.13/084399(现在的美国专利No.8728956)和2011年4月11日提交的名称“SILICON NITRIDE FILMS AND METHODS”的美国专利申请No.13/084305中,这些专利文件通过引用整体并入本文。
“ALD循环”的概念与本文的多个实施方式的讨论相关。通常,ALD循环是用于进行一次表面沉积反应的最小的一组操作。一个循环的结果是在衬底表面上产生氧化硅膜层的至少一部分。通常,ALD循环包括输送并吸附至少一种反应物到衬底表面上以及然后使所吸附的反应物与一种或更多种反应物反应以形成膜层的一部分的操作。所述循环可包括某些辅助操作,例如打扫反应物或副产物之一和/或处理所沉积的膜的部分。通常,循环包括独特系列操作的一个示例。ALD循环可被用于构建膜的厚度。
图1提供了用于执行根据所公开的实施方式的操作的工艺流程图。图2是根据所公开的实施方式的示例性脉冲的时序图。图2示出了在一个示例性的ALD工艺200中针对各种工艺参数的阶段,如针对载气流、第一前体流、等离子体和第二反应物流的阶段。图2包括两个沉积循环210A和210B以及在第一ALD循环(沉积循环210A)之前的预ALD浸泡250。线表示所述流或等离子体相应地被接通和关断的时间。图1和2将在下面一起说明。
在图1的操作101中,将衬底提供至处理室。所述处理室包括放置有衬底的基座或衬底支架。所述衬底可以是硅晶片,例如,200mm的晶片,300mm的晶片或450mm的晶片,包括具有一个或更多个材料层的晶片,该材料例如沉积在晶片上的电介质、导电材料或半导电材料。衬底可具有“特征”,例如通孔或接触孔,其可表征为一个或更多个狭窄的和/或内凹的(re-entrant)开口、特征内收缩部和高深宽比。所述特征可以在一个或更多个上述层中形成。特征的一个示例是半导体衬底或该衬底上的层中的孔或通孔。另一个示例是衬底或层中的沟槽。在多个实施方式中,所述特征可以具有下层,例如阻挡层或粘合层。下层的非限制性实施例包括介电层和导电层,例如,硅氧化物、硅氮化物、硅碳化物、金属氧化物、金属氮化物、金属碳化物和金属层。
在一些实施方式中,所述特征的深宽比可以为至少约2:1、至少约4:1、至少约6:1、至少约10:1、或更高。该特征也可具有接近开口的尺寸,例如,介于约10纳米至500纳米之间的开口直径或线宽度,例如介于约25纳米至约300纳米之间的开口直径或线宽度。所公开的方法可以在具有特征的衬底上进行,特征具有小于约150nm的开口。特征通孔或沟槽可以被称为未填充的特征或特征。特征可具有从特征的底部、封闭端或内部向特征开口变窄的内凹特征。
在操作101期间,基座被设置成沉积温度。例如,基座可以被设置为将在随后的操作中通过ALD沉积膜的过程中使用的温度。在多种实施方式中,基座被设定为比室温高的温度,例如大于约20℃,或大于约25℃的温度。沉积温度取决于将要在衬底上沉积的膜的类型和用于沉积膜的化学过程。例如,在一些实施方式中,用于沉积氧化物的沉积温度可小于约100℃,或小于约50℃,或约50℃。在一些实施方式中,沉积氮化物或碳化物的沉积温度可以小于约400℃,或小于约300℃,或小于约200℃,或介于约200℃至约300℃之间。在一些实施方式中,沉积温度可以大于约400℃。
在操作中150中,将衬底暴露于浸泡气体,然后在衬底上执行第一ALD循环。将衬底暴露于浸泡气体,以使衬底的温度升高至或接近沉积温度的温度。例如,从外部环境插入到处理室中的衬底可以是处于约20℃的室温,并且衬底暴露于浸泡气体以使衬底的温度升高到约50℃的温度,从而进行氧化物的沉积。当衬底暴露于浸泡气体时使衬底温度上升的过程被称为“浸泡”。
在多种实施方式中,浸泡气体是无氦气的,使得在操作150期间没有氦气存在于处理室中。浸泡气体可以是载气、或在ALD中所使用的任何第二反应物、或它们的任意组合。在多种实施方式中,浸泡气体是在ALD循环的等离子体步骤与第二反应物一起使用的一种或多种气体,这将在下面参照操作111描述。浸泡气体的另外的实施例包括氩气(Ar)、氦气(He)、氢气(H2)、氙气(Xe)、氪(Kr)、氮气(N2)、氧气(O2)、一氧化二氮(N2O)、氨(NH3)、联氨、臭氧(O3)、一氧化氮(NO)、二氧化氮(NO2)、一氧化碳(CO)、二氧化碳(CO2)、一氧化硫(SO)和水(H2O)。在一些实施方式中,浸泡气体不含有在ALD循环期间引入第二反应物时存在的气体以外的气体。例如,如果在此阶段存在的唯一的气体是氩气、氧气和一氧化二氮,则浸泡气体将包括氩气,氧和一氧化二氮中的一种或一种以上,但没有其他气体。
对于氧化硅的沉积,所述浸泡气体可以是氧化剂和/或在ALD循环中当衬底在等离子体环境中被暴露于该氧化剂时所使用的载气。用于氧化硅的沉积的浸泡气体的实施例包括,但不限于,Ar、N2、O2、N2O、O3、包括过氧化氢(H2O2)的过氧化物、H2O、醇(如甲醇,乙醇和异丙醇)、NO、NO2、CO、以及CO2。在一些实施方式中,氧化剂可以是O2与诸如N2O、CO、CO2、NO、NO2、SO、SO2、CxHyOz和/或H2O等弱氧化剂的混合物。
对于氮化硅的沉积,浸泡气体可以是含氮的反应物和/或在ALD循环中当衬底在等离子体环境中被暴露于该含氮的反应物时所使用的载气。用于氮化硅的沉积的示例性浸泡气体包括Ar、H2、N2和NH3。含氮的反应物的其它实施例包括含有至少一个氮的化合物,例如,肼,胺类(含碳的胺类),如甲胺,二甲胺,乙胺,异丙胺,叔丁胺,二叔丁胺,环丙胺,仲丁胺,环丁胺,异戊胺,2-甲基丁-2-胺,三甲胺,二异丙基胺,二乙基异丙基胺,二叔丁基肼,以及含芳烃的胺类,如苯胺,吡啶,和苄胺。胺类可以是伯胺、仲胺、叔胺或季胺(例如,四烷基铵化合物)。含氮的反应物可含有除氮以外的杂原子,例如,羟基胺、叔丁氧羰基胺和N-叔丁基羟基胺是含氮的反应物。
所使用的浸泡气体的组成可以取决于当衬底在ALD循环的等离子体环境中暴露于第二反应物时使用的组合物。在一些实施方式中,浸泡气体仅包含载气。在一些实施方式中,浸泡气体仅包含所述第二反应物。
本文所列出的所有百分比和比率是对于流率而言的。在一些实施方式中,在操作150中的浸泡气体的组成与在操作111中的气体的组成是相同的。在一些实施方式中,在操作150中的浸泡气体的组成与在操作111中的气体的组成是不同的。例如,在操作150中的浸泡气体的流率可以是在操作111中的气体的流率的至少约25%到至少约200%。在一些实施方式中,在操作150中的浸泡气体的组成包括载气和第二反应物,其中该第二反应物可包括一种或多种气体,并且该载气的流率可以介于在操作111中的载气的流率的约25%到约200%之间。同样,在操作150中的第二反应物的流率可以介于在操作111中的第二反应物的流率的至少约25%到至少约200%之间。
例如,在氧化物的沉积中,浸泡气体的组成可以包括氩气、氮气和氧气。氩气、氮气和氧气中的每一种的流率可以相应地是在操作111中使用的氩气、氮气和氧气的流率的至少约25%到约200%。在另一实施例中,沉积氧化物之前使用的浸泡气体的组成可以包括一氧化二氮和氧气,使得一氧化二氮与氧的流率比可以是介于约1:5和约2:1之间。
在氮化物的沉积中,浸泡气体的示例性组成可包括具有载气和含氮气体的组成。在金属化合物的沉积中,浸泡气体的示例性组成可以包括包含载气和含氮气体的组成。载气和含氮气体的流率可以是在操作111中使用载气和含氮气体时所使用的相应的气体的流率的至少约25%至约200%。
在碳化物的沉积中,浸泡气体的示例性组成可包括载气和含碳气体。载气和含碳气体的流率可以是在操作111中使用载气和含碳气体时所使用的相应的气体的流率的至少约25%至约200%。
操作150期间浸泡气体的流率对于包括四个站的室可以是至少约500sccm,每个站都包括衬底。在一些实施方式中,在操作150期间的浸泡气体的流率是在通过室能达到的最大流率的约10%以内。例如,浸泡气体的流率可以是至少约15slm,或至少约20slm,或介于约15slm和约20slm之间,例如约17slm。
在操作150中,衬底被暴露于一种或多种浸泡气体持续短的时间段。短的时间段被定义为小于约150秒,或小于约100秒,或小于约60秒的持续时间。例如,衬底可暴露于一种或多种浸泡气体持续介于约5秒与约60秒之间的持续时间,例如约5秒的持续时间。
每当新衬底插入装置的处理室中时,可以执行操作150,该装置可以是包括一个或多个站的多站式工具。在一些实施方式中,该装置包括用于处理衬底的四个站。示例性装置的进一步的描述在下文参照图3和4描述。在多种实施方式中,每当新的衬底插入工具,如插入多站式工具的站中的一个时,可执行操作150。因此在针对多站式工具的室中的任何单个衬底进行每个第一ALD循环之前,可以执行操作150。即使在多站式工具中的其它衬底已部分沉积ALD膜,也可以执行操作150。在一些实施方式中,在操作150之后清扫所述室。应当理解的是,多站式工具可以以多种模式操作。在某些模式中,将所有的衬底插入,然后在移除任何衬底之前完成处理。在其他模式中,每次在工具中将衬底从一个站换位到下一个站时,就移除一个衬底,并插入另一个衬底。在其他模式中,添加两个衬底并移除两个衬底,但在某些换位操作中保留至少两个其它衬底。可采用其他模式。
图2示出了第一ALD沉积循环210A之前的预ALD浸泡250。在可以对应于图1的操作150的预ALD浸泡250期间,第一前体被关断,并且等离子体被关断,而清扫气体或载气和第二反应物被接通。需要注意的是用于预ALD浸泡250的第二反应物的关断/接通条件和第二反应物等离子体暴露阶段260A和260B的第二反应物的所示的关断/接通条件相同。注意,在一些实施方式中,载气在预ALD浸泡250期间不流入。如在别处所解释的,可以在浸泡中使用在操作260B中使用的气体的各种组合。
返回到图1,操作103-113可以是ALD循环的操作。在操作103-113期间,惰性气体可以流入。在一些实施方式中,惰性气体在操作150-113期间流入。所公开的实施方式可在介于约0.1托至约20托之间的室压强下进行。在多种实施方式中,惰性气体用作载气。示例性的载气包括氩气(Ar)、氦气(He)、氢气(H2)、氧(O2)、氪(Kr)、氙气(Xe)和氖(Ne)。该惰性气体可以被提供,以协助处理室的压强和/或温度控制、液体反应物的蒸发、反应物和/或用于从处理室和/或处理室的管道去除工艺气体的清扫气体的较快速的输送。图2中的示例性序列示出了载气,该载气在整个工艺过程中连续地流动。
在图1的操作103中,衬底被暴露于第一前体,使得第一前体吸附到衬底表面。在一些实施方式中,第一前体以自限方式吸附到衬底表面使得一旦活性位点被第一前体占据,就很少或没有额外的第一前体将被吸附在衬底表面上。在多种实施方式中,当第一前体流到站时,第一前体就吸附在衬底的表面上的活性位点上,从而在该表面上形成第一前体的薄层。在多种实施方式中,该层可以小于单层,和可具有介于约0.2埃和约0.8埃之间的厚度。
在多种实施方式中,第一前体包括供电子原子或供电子基团。在多种实施方式中,第一前体是含硅前体或含金属前体。在一些实施方式中,第一前体是适于通过ALD沉积氧化硅膜的含硅前体。第一前体还可以是两种或更多种化合物的混合物。在一些实施方式中,含硅前体的选择取决于将要沉积的含硅膜的类型。
示例性的含硅前体包括,但不限于,硅烷、聚硅烷、卤代硅烷和氨基硅烷。硅烷含有氢和/或碳基团,但不包含卤素。聚硅烷可具有式(H3Si-(SiH2)n-SiH3),其中n≥1。硅烷的实施例包括硅烷(SiH4)、乙硅烷(Si2H6)、丙硅烷、丁硅烷和有机硅烷,如甲基硅烷、乙基硅烷、异丙基硅烷、叔丁基硅烷、二甲基硅烷、二乙基硅烷、二叔丁基硅烷、烯丙基硅烷、仲丁基硅烷、叔己基硅烷(thexylsilane)、异戊硅烷,叔丁基二硅烷、二叔丁基二硅烷、四乙基原硅酸(也称为四乙氧基硅烷或TEOS)等。
卤代硅烷含有至少一个卤素基团,并且可以含有或可以不含有氢和/或碳基团。卤代硅烷可以具有式SiXaHy,其中X=Cl、F、I或Br,且a+y=4,其中a≥1,卤代硅烷可以具有式SiXaHy(CH3)z,其中X=Cl、F、I或Br,且a+y+z=4,其中a≥1。卤代硅烷的实例是碘硅烷、溴硅烷、氯硅烷和氟硅烷。虽然卤代硅烷,尤其是氟硅烷,可以形成可以蚀刻硅材料的反应性卤化物,但在本发明所描述的某些实施方式中,当等离子体被激励时,含硅前体不存在。具体的氯硅烷是四氯硅烷(SiCl4)、三氯硅烷(HSiCl3)、二氯硅烷(H2SiCl2)、单氯硅烷(ClSiH3)、氯烯丙基硅烷、氯甲基硅烷、二氯甲基硅烷、氯二甲基硅烷、氯乙基硅烷、叔丁基氯硅烷、二-叔丁基氯硅烷、氯异丙基硅烷、氯仲丁基硅烷、叔丁基二甲基氯硅烷、叔己基二甲基氯硅烷(thexyldimethylchlorosilane)、一氯三甲基硅烷、以及类似物。
氨基硅烷包含键合到硅原子的至少一个氮原子,但也可以含有氢、氧、卤素和碳。氨基硅烷的实例是单氨基硅烷、二氨基硅烷、三氨基硅烷和四氨基硅烷(分别为H3Si(NH2)4,H2Si(NH2)2,HSi(NH2)3和Si(NH2)4),以及经取代的单氨基硅烷、二氨基硅烷、三氨基硅烷和四氨基硅烷,例如,叔丁基氨基硅烷、甲基氨基硅烷、叔丁基硅烷胺,双(叔丁基氨基)硅烷(SiH2(NHC(CH3)3)2(BTBAS)、叔丁基甲硅烷基氨基甲酸酯、SiH(CH3)-(N(CH3)2)2、SiHCl-(N(CH3)2)2、(Si(CH3)2NH)3、二(仲丁基氨基)-硅烷(DSBAS)、二(异丙基氨基)硅烷(DIPAS)、双(二乙基氨基)硅烷(BDEAS)、以及类似物。氨基硅烷的另一个实例是三甲硅烷基胺(N-(SiH3)3)。
用于沉积碳化硅的含硅前体的实例包括硅氧烷、烷基硅烷或经烃取代的硅烷、或含氮含碳反应物。示例性的硅氧烷包括2,4,6,8-四甲基环四硅氧烷(TMCTS)、七甲基环四硅氧烷(HMCTS)、倍半硅氧烷、二硅氧烷(如五甲基二硅氧烷(PMDSO)和四甲基二硅氧烷(TMDSO))、和三硅氧烷,如六甲基三硅氧烷、七甲基三硅氧烷。烷基硅烷包括键合有一个或多个烷基以及键合有一个或多个氢原子的中心硅原子。在一些实施方式中,烷基中的任何一个或多个含1-5个碳原子。烃基可以是饱和或不饱和的(例如,烯烃(例如,乙烯)、炔烃、和芳香基团)。实例包括但不限于三甲基硅烷(3MS)、三乙基硅烷、五甲基二硅甲烷((CH3)2Si-CH2-Si(CH3)3)、和二甲基硅烷(2MS)。此外,二硅烷、三硅烷、或其它较高级的硅烷可以用来代替甲硅烷。在一些实施方式中,硅原子中的一个可具有与其连接的含碳基团或烃基,而硅原子中的一个可具有与其连接的氢原子。示例性的包含氮的含碳反应物包括经甲基取代的二硅氮烷和三硅氮烷,如四甲基氮烷和六甲基三硅氮烷。
示例性的用于沉积掺杂氧的碳化硅膜的第一前体包括硅氧烷,例如环四硅氧烷,如七甲基环四硅氧烷(HMCTS)和四甲基环四硅氧烷。其它环状硅氧烷还可以包括但不限于环三硅氧烷和环戊硅氧烷。对于沉积掺杂氧的碳化硅膜,合适的前体的其它实例包括直链硅氧烷,例如,但不限于,二硅氧烷,如五甲基二硅氧烷(PMDSO)、四甲基二硅氧烷(TMDSO)、六甲基三硅氧烷和七甲基三硅氧烷。对于未掺杂的碳化硅,合适的前体的实例包括经一个或多个烷基、烯烃、和/或炔基(含有例如1-5个碳原子)取代的甲硅烷。实例包括但不限于三甲基硅烷(3MS)、二甲基硅烷(2MS)、三乙基硅烷(TES)、和五甲基二硅甲烷(pentamethyldisilamethane)(PMDS)。此外,二硅烷、三硅烷、或其它较高级的硅烷可以用来代替甲硅烷。来自所述烷基硅烷类的这样的乙硅烷的一个实例是六甲基二硅烷(HMDS)。来自烷基硅烷类的二硅烷的另一实例可包括五甲基二硅氧烷(PMDS)。其他类型的烷基硅烷可包括烷基碳硅烷,其可以具有支链的聚合物结构,其中碳键合到硅原子以及烷基键合到硅原子。实例包括二甲基三甲基甲硅烷基甲烷(DTMSM)和双-二甲基甲硅烷基乙烷(BDMSE)。对于沉积氮掺杂的碳化硅(SiNC)膜,合适的前体的实例包括,例如,烷基二硅氮烷和可能的包括独立地键合到一个或多个硅原子的氨基(-NH2)和烷基的化合物。烷基二硅氮烷包括硅氮烷(silizanes)和键合到两个硅原子的烷基。实例包括1,1,3,3-四甲基二硅氮烷(TMDSN)。
在一些实施方式中,第一前体是含有金属的前体。示例性的前体可以包括金属烷基胺、金属醇盐、金属烷基酰胺、金属卤化物、金属β-二酮、金属羰基化合物等。含有金属的前体也可包括有机金属化合物,如烷基金属化合物以及在沉积条件下具有高的蒸气压的金属卤化物。这些化合物存在于气相状态并很容易传递到衬底并吸附在其上。本文描述的一些方法可以适用于含金属膜的ALD沉积。金属的实例包括钛(Ti)、铪(Hf)、锆(Zr)、锰(Mn)、钨(W)和钽(Ta)。合适的含金属的前体将包括被期望掺入膜中的金属。例如,含钽层可通过使五(二甲氨基)钽与氨或作为第二反应物的另一还原剂反应来沉积。可以使用的含金属的前体的进一步的实例包括三甲基铝、乙酸铝、烷醇铝、铝卤化物(halide)、四乙氧基钛、四二甲基氨基钛、四(乙基甲基酰胺)铪、双(环戊二烯基)锰、双(正丙基环戊二烯基)镁、四(二甲氨基)钛(TDMAT)、四乙氧基钛、四二甲基氨基钛、异丙醇钛、四异丙醇钛、和具有式TiXn的化合物,其中n是介于2到4之间的整数且包括2和4,并且X是卤素。具体的例子包括TiI4、TiCl4、TiF4、和TiBr4。
操作103可对应于图2的第一前体暴露阶段220A。在第一前体暴露阶段220A期间,第一前体与任选的清扫气体或载气一起流入,并且将等离子体和第二反应物关断。
返回到图1,在操作105中,处理室被任选清扫以去除气相中的没有吸附到衬底表面上的过量的第一前体。清扫会涉及打扫气体,打扫气体可以是在其它操作中使用的载气或不同的气体。打扫处理站可以避免气相反应,其中第二反应物对于等离子体活化是不稳定的或可能形成不希望有的物质。此外,打扫处理站可去除表面吸附的配体,配体可能保留且污染膜。在一些实施方式中,清扫会涉及排空该室。
操作105可对应于图2的清扫阶段240A。清扫阶段240A可具有任何合适的持续时间。在一些实施方式中,增大一种或多种清扫气体的流率可以减少清扫阶段240A的持续时间。例如,清扫气体流率可以根据各种反应物的热力学特性和/或处理站和/或处理站管道的几何特征进行调整以修改清扫阶段240A的持续时间。在一个非限制性实例中,清扫阶段的持续时间可以通过清扫气体流率的调整来优化。这可能会减少沉积循环时间,从而可以提高衬底吞吐量。
在一些实施方式中,清扫阶段240A可以包括一个或多个排空子阶段以排空处理站。可替代地,应理解,在一些实施方式中,清扫阶段240A可省略。清扫阶段240A可具有任何合适的持续时间,例如介于约0秒和约60秒之间,或约0.01秒。在一些实施方式中,增大一种或多种清扫气体的流率可以减少清扫阶段240A的持续时间。例如,清扫气体流率可以根据各种反应物的热力学特性和/或处理站和/或处理站管道的几何特征进行调整以修改清扫阶段240A的持续时间。在一非限制性实施例中,清扫阶段的持续时间可以通过调节打扫气体的流率进行调节。这可能会减少沉积循环时间,从而可以提高衬底吞吐量。在清扫后,该含硅前体保持吸附在衬底表面上。
返回到图1,在操作111中,将衬底暴露于第二反应物,并且点燃等离子体。将衬底暴露于第二反应物持续足以在衬底的表面上通过反应来形成材料层的时间。
“等离子体”是指在反应室中点燃的等离子体或远程点燃并被送入反应室内的等离子体。等离子体可以包括本文所描述的反应物,并且可以包括其它试剂,例如,载气,或反应性物质,如氢气。反应物和其它试剂可以在等离子体被激励时存在于反应室中,或者远程等离子体可流入存在反应物的室内,和/或反应物和/或载气可以被远程点燃成等离子体并送入反应室。“等离子体”是指包括已知的技术上可行的任何等离子体,包括感应耦合等离子体和微波表面波等离子体。
在多种实施方式中,等离子体是原位等离子体,以使得等离子体在室中的衬底表面的正上方形成。原位等离子体可以以介于约0.2122瓦/平方厘米至约2.122瓦/平方厘米之间的每衬底面积的功率点燃。例如,对于处理4个300毫米晶片的室,功率范围可为介于约600W至约6000W之间。用于ALD工艺的等离子体可通过使用两个电容耦合板施加射频(RF)场给气体而产生。这些板之间的气体通过RF场进行的电离点燃等离子体,从而在等离子体放电区域产生自由电子。这些电子被RF场加速,并且可以与气相反应物分子发生碰撞。这些电子与反应物分子的碰撞可形成参与沉积过程的自由基物质。在室中的未用于通过ALD沉积膜的残留气体影响在操作111期间的气体电离,从而降低了被沉积的膜的质量。例如,如果任何氦被吸附到来自之前的处理的衬底的表面上,则在操作111中点燃的等离子体具有氦等离子体的典型的紫色,并且通常不在ALD工艺中使用,从而使在衬底上沉积的膜的厚度比所期望的薄。通过在操作150使用是在操作111中使用的一种或多种气体的浸泡气体,将在操作111沉积和形成的膜的质量和厚度被保持。例如,对于氧化硅膜的沉积,如果在操作150中使用的浸泡气体是比例为约1:1的氧气和一氧化二氮的混合物,那么,假如在操作111中使用相同的气体和相同的气体混合比,所沉积的氧化硅膜的质量或厚度不会受到浸泡气体的影响。这可确保浸泡气体在沉积过程可以使用多次,例如每当新的衬底被插入到室时使用,而不影响所沉积的膜。
在操作111期间,应当理解的是,RF场可以经由任何合适的电极耦合。电极的非限制性实例包括处理气体分配喷头和衬底支撑基座。应当理解,用于ALD工艺的等离子体可以由与RF场电容耦合至气体不同的一种或多种合适的方法形成。在一些实施方式中,等离子体是远程等离子体,使得第二反应物在站上游的远程等离子体产生器内点燃,然后输送到容纳衬底的站。
第二反应物可以是氧化剂或还原剂。在多种实施方式中,第二反应物是含氧的反应物、或含氮的反应物、或含卤素的反应物、或含碳的反应物、或掺杂剂。第二反应物可以包括这些化合物中的一种或多种。
示例性的氧化剂包括,但不限于,臭氧(O3),包含过氧化氢(H2O2)的过氧化物、氧(O2)、水(H2O)、醇类(如甲醇、乙醇和异丙醇)、一氧化氮(NO)、二氧化氮(NO2)、一氧化二氮(N2O)、一氧化碳(CO)和二氧化碳(CO2)。示例性的含氧反应物包括氧气、臭氧、一氧化二氮、一氧化氮、二氧化氮、一氧化碳、二氧化碳、一氧化硫、二氧化硫、水、含氧烃(CxHyOz)等。
含氮的反应物中含有至少一个氮,例如N2,氨,肼,胺类(含碳的胺类),如甲胺,二甲胺,乙胺,异丙胺,叔丁胺,二叔丁胺,环丙胺,仲丁胺,环丁胺,异戊胺,2-甲基丁-2-胺,三甲胺,二异丙胺,二乙基异丙胺,乙二胺,叔丁胺,二叔丁基肼,以及含芳烃的胺类,如苯胺,吡啶,和苄胺。胺类可以是伯胺、仲胺、叔胺或季胺(例如,四烷基铵化合物)。含氮的反应物可含有除氮以外的杂原子,例如,羟基胺、叔丁胺(TBA)、叔丁氧羰基胺和N-叔丁基羟基胺是含氮的反应物。
在一些实施方式中,第二反应物的流率可为介于约0.1slm和约20slm之间(例如,介于约1slm与约10slm之间)。在一些实施方式中,载气可以在暴露于第二反应物期间使用。合适的载气的实例是氮气(N2),并且如果使用氮作为载气并与第二反应物共同流入,则氮气可以以介于约500sccm和10slm之间的流率流动。
操作111可以对应于第二反应物与等离子体暴露阶段260A。如图2所示,在260A期间,等离子体和第二反应物被接通,具有任选的清扫气体或载气,同时第一前体流被关断。在许多实施方式中,衬底被暴露于第二反应物持续介于约1秒至约60秒之间的时间,或约2.5秒或约30秒的时间。
返回到图1,在操作113中,室可任选地用清扫气体清扫。清扫气体可以是上文相对于操作105所述的任何清扫气体。清扫气体可以流入持续足以从室去除过量的副产物的时间。此操作可对应于图2的清扫阶段280A,由此在第一前体、等离子体、和第二反应物被关断时,使清扫气体流入。
在图1的操作115中,确定膜是否已沉积到足够的厚度。如果不是,则在循环中重复操作103-113。在所公开的实施方式中,可以包含至少约2个或更多个沉积循环来沉积所需的膜厚度。例如,可以执行介于约2个至约50个之间的循环,或介于约2个至约30个之间的循环,或介于约2个至约20个之间的循环,或介于约2个至约10个之间的循环。
图2示出了两个沉积循环210A和210B。如图所示,在沉积循环210B,在图1中的操作被重复,使得衬底在第一前体暴露阶段220B期间暴露于第一前体,室在清扫阶段240B被清扫,在操作260B中,将衬底暴露于第二反应物和等离子体,且再次在清扫阶段280B清扫该室。
装置
图3绘出了具有用于保持低压环境的处理室主体302的原子层沉积(ALD)处理站300的一实施方式的示意图。多个ALD处理站300可以包含在通常低压处理工具环境中。例如,图4绘出了多站处理工具400的一实施方式。在一些实施方式中,ALD处理站300的一个或一个以上的硬件参数(包含下文详细讨论的那些)可以由一个或一个以上的计算机控制器550以编程方式调节。
ALD处理站300与反应物输送系统301流体连通,以将处理气体输送至分配喷头306。反应物输送系统301包含混合容器304,混合容器304用于混合和/或调节处理气体以输送至喷头306。一个或一个以上的混合容器入口阀320可以对处理气体导入至混合容器304进行控制。
举例而言,图3的实施方式包含汽化点303,汽化点303用于汽化将供应至混合容器304的液体反应物。在一些实施方式中,汽化点303可以是加热的蒸发器。从这样的蒸发器产生的饱和的反应物蒸气会在下游输送管道凝结。不兼容气体暴露至凝结的反应物会产生小颗粒。这些小颗粒可能阻塞管道、阻碍阀操作、污染衬底等。处理这些问题的一些方法涉及清扫和/或排空输送管道以去除残留反应物。然而,清扫输送管道会增加处理站循环时间,降低处理站吞吐量。因此,在一些实施方式中,汽化点303下游的输送管道可以被热追踪。在一些实施例中,混合容器304也可以被热追踪。在一个非限制性示例中,汽化点303下游的管道具有增大的温度分布,在混合容器304处从约100℃延伸至约150℃。
在一些实施方式中,液体前体或者液体反应物可以在液体喷射器处汽化。例如,液体喷射器可以将液体反应物的脉冲喷射到混合容器上游的载体气体流中。在一个实施方式中,液体喷射器可以通过将液体从较高压闪变到较低压来汽化反应物。在另一个示例中,液体喷射器可以将液体雾化为接下来在加热的输送管中汽化的分散的微滴。较小的液滴比较大的液滴可以较快汽化,从而减小了在液体注入和完成汽化之间的延迟。较快的汽化可以减小汽化点303下游的管道长度。在一个方案中,液体喷射器可以直接装载到混合容器304。在另一个方案中,液体喷射器可以直接装载到喷头306。
在一些实施方式中,可以在汽化点303上游设置液体流控制器(LFC)来控制用于汽化并输送至处理站300的液体的质量流量。例如,LFC可以包含位于LFC下游的热质量流量计(MFM)。然后可以响应于由与MFM电通信的比例积分微分(PID)控制器提供的反馈控制信号,来调节LFC的柱塞阀。然而,其可以采取一秒或一秒以上来使用反馈控制以稳定液体流。这可以延长投配液体反应物的时间。因此,在一些实施方式中,LFC可以在反馈控制模式和直接控制模式之间动态切换。在一些实施方式中,这可以通过禁用PID控制器和LFC的感测管道来执行。
喷头306朝衬底312分配处理气体。在图3所示的实施方式中,衬底312位于喷头306下方,并且示出为安置在基座308上。喷头306可以具有任何适当的形状,并可以具有任何适当数量和布置的端口,以将处理气体分配至衬底312。示例性的工艺气体包括浸泡气体、第一前体气体、载气或清扫气体、以及第二反应物气体。
在一些实施方式中,微体积307位于喷头306下方。在微体积中执行所公开的实施方式而不是在处理室的整个体积中执行所公开的实施方式,这样可以减少反应物的暴露和清扫次数,可减少用于改变工艺条件(例如,压力、温度等)的次数,可以限制处理站的机械手暴露于工艺气体等。示例性的微体积尺寸包括但不限于介于0.1升和2升之间的体积。这也影响生产的产量。在一些实施方式中,所公开的实施方式不在微体积中执行。
在一些实施方式中,基座308可以升高或降低以暴露衬底312给微体积307和/或改变微体积307的体积。例如,在衬底传送阶段,基座308可被升高以将衬底312定位在微体积307内。在一些实施方式中,微体积307可完全围绕衬底312以及基座308的一部分,以创建高流动性阻抗区域。
任选地,可将基座308在处理的部分期间降低和/或升高以调节微体积307内的处理压强、反应物浓度等。在处理室主体302在处理期间保持在基本压强的一种情况下,降低基座308可使得微体积307能被排空。微体积比处理室体积的示例性比率包括,但不限于,介于1:500和1:10之间的体积比。应理解的是,在一些实施方式中,基座高度可以经由合适的计算机控制器350通过编程方式进行调节。
在另一种情况下,调节基座308的高度可以使得等离子体密度在包含在工艺中的等离子体活化和/或处理循环期间能够变化。在处理阶段结束时,基座308可以在另一衬底传送阶段被降低以使得衬底312能从基座308移走。
虽然在本发明描述的示例性微体积变化指的是高度可调的基座,但应该理解的是,在一些实施方式中,喷头306的位置可以相对于基座308调节以改变微体积307的体积。此外,应当理解的是,基座308和/或喷头306的垂直位置可以通过本公开内容的范围内的任何合适的机构来改变。在一些实施方式中,基座308可包括用于旋转衬底312的方位的旋转轴线。应该理解的是,在一些实施方式中,这些示例性调节中的一种或多种可以通过一个或多个适当的计算机控制器350以编程方式执行。
在如上所述可以使用等离子体的一些实施方式中,喷头306和基座308电连接射频(RF)功率源314和匹配网络316来对等离子体提供功率。在一些实施方式中,等离子体的能量可通过控制处理站的压强、气体的浓度、RF源功率、RF源频率以及等离子体功率脉冲时序中的一个或多个来控制。例如,RF功率源314和匹配网络316可在任何合适的功率下进行操作,以形成具有所期望的自由基物质的组分的等离子体。合适的功率的实施例包括在上文中。同样,RF功率源314可以提供任何适当频率的RF功率。在一些实施方式中,RF功率源314可以被配置为控制彼此独立的高频RF功率源和低频RF功率源。示例性的低频RF频率可以包括,但不限于,介于50kHz和500kHz之间的频率。示例性的高频RF频率可以包括,但不限于,介于1.8MHz和2.45GHz之间的频率,例如,2MHz、13.56MHz、27MHz的频率。应当理解,任何合适的参数可被离散地或连续地调制以提供用于表面反应的等离子体能量。在一个非限制性实例中,等离子体功率可以间歇地施以脉冲,以相对于被连续激励的等离子体减少对衬底表面的离子轰击。
在一些实施方式中,等离子体可由一个或多个等离子体监控器原位监控。在一种情形中,等离子体功率可通过一个或多个电压、电流传感器(例如,VI探针)进行监控。在另一种情况下,等离子体密度和/或工艺气体的浓度可以由一个或多个光发射光谱传感器(OES)来测量。在一些实施方式中,一个或多个等离子体参数可基于来自这样的原位等离子体监控器的测量结果通过编程方式进行调节。例如,OES传感器可用于反馈回路中以提供对等离子体功率的编程式控制。应理解的是,在一些实施方式中,可使用其它监控器来监控等离子体和其他工艺特性。这样的监控器可包括,但不限于,红外(IR)监控器、声学监控器、以及压力传感器。
在一些实施方式中,可以经由输入/输出控制(IOC)测序指令来提供用于控制器350的指令。在一个示例中,用于设置工艺阶段的条件的指令可被包括在工艺配方的相应的配方阶段中。在某些情况下,工艺配方阶段可按顺序排列,使得用于工艺阶段的所有指令与该工艺阶段同时执行。在一些实施方式中,用于设定一个或多个反应器参数的指令可以被包括在配方阶段中。例如,第一配方阶段可以包括用于设置作为浸泡气体的惰性气体和/或反应物气体(例如,第二反应物)的流率的指令、用于设置载气(诸如氮)的流率的指令;用于设置基座的温度的指令、以及用于第一配方阶段的时延指令。接下来的第二配方阶段可以包含用于调制或者停止惰性气体和/或反应物气体的流率的指令、用于调制载体或者清扫气体的流率的指令、以及用于第二配方阶段的时延指令。第三配方阶段可以包含用于设定惰性气体和/或反应物气体(例如第一前体)的流率的指令、用于调制载气的流率的指令、以及用于第三配方阶段的时延指令。第四配方阶段可以包含用于调制或者停止惰性气体和/或反应物气体的流率的指令、用于调制载气或者清扫气体的流率的指令;以及用于第四配方阶段的时延指令。第五配方阶段可以包括用于设置惰性气体和/或反应物气体(其可以与在第一配方阶段使用的气体(例如,第二反应物)相同或不同)的流率的指令、用于调制载气的流率的指令;以及用于第五配方阶段的时延指令。应该理解的是,在本公开的范围内,这些配方阶段可以进一步细分和/或以任何适当的方式重复。
在一些实施方式中,基座308可以经由加热器310进行温度控制。基座可以被设置为沉积温度。例如,基座可以被设置为在介于约200℃至约300℃之间的温度以沉积氮化物或碳化物。此外,在一些实施方式中,对于处理站300的压力控制可以由蝶形阀318提供。如在图3的实施方式中所示,蝶形阀318对由下游真空泵(未示出)提供的真空进行调节。然而,在一些实施方式中,压力控制处理站300还可以通过改变引入至处理站300的一种或多种气体的流率来调节。
如上所述,一个或一个以上的处理站可以包含在多站处理工具中。图4示出了多站式处理工具400的实施方式的概要视图,其具有入站装载锁402和出站装载锁404,其一者或者两者可以包括远程等离子体源。处于大气压的机械手406被配置为将晶片或衬底从通过舱408装载的盒经由大气端口410移动至入站装载锁402内。衬底由机械手406放置在入站装载锁402中的基座412上,大气端口410被关闭,且装载锁被抽空。当入站装载锁402包括远程等离子体源时,衬底在被引入处理室414之前,可以暴露至装载锁中的远程等离子体处理。此外,衬底另外也可以在入站装载锁402中加热,例如以移除湿气和吸附的气体。接下来,通向处理室414的室传输端口416被打开,且另一个机械手(未示出)将衬底放置到在反应器中被示出的第一站的基座上的反应器中以用于处理。尽管在图4中绘出的实施方式包含装载锁,但应该理解的是,在一些实施方式中,可以使衬底直接进入处理站。在多种实施方式中,浸泡气体在衬底由机械手406被放在基座412上时引入所述站。
绘出的处理室414包括4个处理站,图4所示的实施方式中编号为1至4。每个站具有加热的基座(对于站1示出为418)和气体管线入口。应该理解的是,在一些实施方式中,每个处理站可以具有不同或者多个用途。例如,在一些实施方式中,处理站可以是可在ALD与等离子体增强的ALD处理模式之间切换的。附加地或替代地,在一些实施方式中,处理室414可以包含一个或多个ALD和等离子体增强的ALD处理站的匹配对。尽管绘出的处理室414包括4个站,但要理解的是,根据本公开所述的处理室可以具有任何适当数量的站。例如,在一些实施方式中,处理室可以具有5个或5个以上的站,而在其他实施方式中,处理室可以具有3个或者更少的站。
图4绘出了用于在处理室414内传输晶片的晶片搬运系统的实施方式。在一些实施方式中,晶片搬运系统可以在各种处理站之间和/或处理站与装载锁之间传输晶片。应该理解的是,可以采用任何适当的晶片搬运系统。非限制性示例包含晶片转盘和搬运晶片的机械手。图4还绘出了采用来控制处理工具400的处理条件和硬件状态的系统控制器450的实施方式。系统控制器450可以包含一个或多个存储器设备456、一个或多个海量存储设备454和一个或多个处理器452。处理器452可以包含计算机或者CPU、模拟和/或数字输入/输出连接、步进马达控制器板等。
在一些实施方式中,系统控制器450控制处理工具400的所有活动。系统控制器450执行存储在海量存储设备454、载入存储器设备456、并由处理器452执行的系统控制软件458。替代地,控制逻辑可以在控制器450中硬编码。特定应用集成电路、可编程逻辑设备(例如现场可编程栅极阵列、或者FPGA)等可以用于这些目的。在下面的讨论中,无论使用“软件”还是“代码”时,可以使用功能上相当的硬编码的逻辑来取代。系统控制软件458可以包含用于控制时序、气体的混合、气流的量、室和/或站压力、室和/或站温度、衬底温度、目标功率电平、RF功率电平、衬底基座、卡盘和/或底座位置、以及由处理工具400执行的特定处理的其他参数的指令。系统控制软件458可以以任何适当的方式配置。例如,各种处理工具组件子程序或者控制对象可以写入以控制用于执行各种处理工具处理的处理工具组件的操作。系统控制软件458可以以任何适当的计算机可读编程语言来编码。
在一些实施方式中,系统控制软件458可以包含用于控制上述各种参数的输入/输出控制(IOC)测序指令。在一些实施方式中可以采用与系统控制器450关联的、存储在海量存储设备454和/或存储器设备456的其他计算机软件和/或程序。用于该目的的程序或者程序段的示例包含衬底定位程序、处理气体控制程序、压力控制程序、加热器控制程序、以及等离子体控制程序。
衬底定位程序可以包括用于处理工具组件的程序代码,该处理工具组件用于将衬底装载到基座418,并控制衬底和处理工具400的其它部分之间的间隔。
工艺气体控制程序可包括用于控制气体组成(例如,如本文所述的第一前体气体、浸泡气体、第二反应物气体、以及清扫气体)和流率的指令和任选地用于使气体在沉积之前流到一个或多个处理站中以稳定在处理站中的压强的指令。压强控制程序可以包括用于通过调节例如在处理站的排放系统中的节流阀、流入处理站内的气流等等来控制处理站内的压强的代码。
加热器控制程序可包括用于控制流向用于加热衬底的加热单元的电流的代码。可替代地,加热器控制程序可控制传热气体(如浸泡气体)朝向衬底上的传送。
等离子体控制程序可包括用于根据本文的实施方式设置施加到一个或多个处理站内的处理电极的RF功率电平的代码。
压强控制程序可以包括用于根据本文的实施方式保持反应室内的压强的代码。
在一些实施方式中,可以存在与系统控制器450相关联的用户界面。用户界面可以包括显示屏、装置和/或工艺条件的图形软件显示器、以及诸如定点设备、键盘、触摸屏、麦克风等用户输入设备。
在一些实施方式中,由系统控制器450调节的参数会涉及工艺条件。非限制性实例包括工艺气体组成和流率、温度、压强、等离子体条件(例如,RF偏置功率电平)等。这些参数可以以配方的形式提供给用户,配方可以利用所述用户界面输入。
用于监控处理的信号可以由系统控制器450的模拟和/或数字输入连接件从各种处理工具传感器提供。用于控制处理的信号可以通过处理工具400的模拟和/或数字输出连接件输出。可被监控的处理工具传感器的非限制性实例包括质量流量控制器、压力传感器(例如压力计)、热电偶等等。经适当编程的反馈和控制算法可以与来自这些传感器的数据一起使用,以保持工艺条件。
系统控制器450可以提供用于执行上述沉积处理的机器可读指令,所述沉积处理如在发起用于插入所述反应室中的衬底的ALD之前采用浸泡的处理,该浸泡在本文所述的任何浸泡条件下进行。所述程序指令可以控制多种处理参数,如DC功率电平、RF偏置功率电平、压力、温度等。所述指令可以控制这些参数以根据本发明所描述的多种实施方式操作膜叠层的原位沉积。
系统控制器将通常包括一个或多个存储器设备和被配置成执行指令的一个或多个处理器以使该装置将执行根据所公开的实施方式所述的方法。包含用于控制根据所公开的实施方式的处理操作的指令的机器可读的介质可以耦合到系统控制器。
在一些实现方式中,系统控制器450是系统的一部分,该系统可以是上述实施例的一部分。这种系统可以包括半导体处理设备,该半导体处理设备包括一个或多个处理工具、一个或多个处理室、用于处理的一个或多个平台和/或具体的处理组件(晶片基座、气流系统等)。这些系统可以与用于控制它们在处理半导体晶片或衬底之前、期间和之后的操作的电子器件一体化。电子器件可以称为“控制器”,该控制器可以控制一个或多个系统的各种元件或子部件。根据处理要求和/或系统的类型,系统控制器450可以被编程以控制本文公开的任何工艺,包括控制处理气体输送、温度设置(例如,加热和/或冷却)、压强设置、真空设置、功率设置、射频(RF)产生器设置、RF匹配电路设置、频率设置、流速设置、流体输送设置、位置及操作设置、晶片转移进出工具和其它转移工具和/或与具体系统连接或通过接口连接的装载锁。
广义而言,系统控制器450可以定义为接收指令、发布指令、控制操作、启用清洁操作、启用端点测量等等的具有各种集成电路、逻辑、存储器和/或软件的电子器件。集成电路可以包括存储程序指令的固件形式的芯片、数字信号处理器(DSP)、定义为专用集成电路(ASIC)的芯片和/或一个或多个微处理器或执行程序指令(例如,软件)的微控制器。程序指令可以是以各种单独设置的形式(或程序文件)传送到系统控制器450的指令,该设置定义用于在半导体晶片或系统上或针对半导体晶片或系统执行特定处理的操作参数。在一些实施方式中,操作参数可以是由工艺工程师定义的用于在制备晶片的一或多个(种)层、材料、金属、氧化物、硅、二氧化硅、表面、电路和/或管芯期间完成一个或多个处理步骤的配方(recipe)的一部分。
在一些实现方式中,系统控制器450可以是与系统集成、耦合或者说是通过网络连接系统或它们的组合的计算机的一部分或者与该计算机耦合。例如,系统控制器450可以在“云端”或者是fab主机系统的全部或一部分,从而可以允许远程访问晶片处理。计算机可以启用对系统的远程访问以监控制造操作的当前进程,检查过去的制造操作的历史,检查多个制造操作的趋势或性能标准,改变当前处理的参数,设置处理步骤以跟随当前的处理或者开始新的工艺。在一些实施例中,远程计算机(例如,服务器)可以通过网络给系统提供工艺配方,网络可以包括本地网络或互联网。远程计算机可以包括允许输入或编程参数和/或设置的用户界面,该参数和/或设置然后从远程计算机传送到系统。在一些实施例中,系统控制器450接收数据形式的指令,该指令指明在一个或多个操作期间将要执行的每个处理步骤的参数。应当理解,参数可以针对将要执行的工艺类型以及工具类型,系统控制器450被配置成连接或控制该工具类型。因此,如上所述,系统控制器450可以例如通过包括一个或多个分立的控制器而为分布式,这些分立的控制器通过网络连接在一起并且朝着共同的目标(例如,本文所述的工艺和控制)工作。用于这些目的的分布式控制器的实施例可以是与结合以控制室内工艺的一个或多个远程集成电路(例如,在平台水平或作为远程计算机的一部分)通信的室上的一个或多个集成电路。
在非限制性的条件下,示例的系统可以包括等离子体蚀刻室或模块、沉积室或模块、旋转清洗室或模块、金属电镀室或模块、清洁室或模块、倒角边缘蚀刻室或模块、物理气相沉积(PVD)室或模块、化学气相沉积(CVD)室或模块、ALD室或模块、原子层蚀刻(ALE)室或模块、离子注入室或模块、轨道室或模块、以及在半导体晶片的制备和/或制造中可以关联上或使用的任何其它的半导体处理系统。
如上所述,根据工具将要执行的一个或多个工艺步骤,系统控制器450可以与一个或多个其它的工具电路或模块、其它工具组件、组合工具、其它工具界面、相邻的工具、邻接工具、位于整个工厂中的工具、主机、另一个控制器、或者在将晶片的容器往来于半导体制造工厂中的工具位置和/或装载口搬运的材料搬运中使用的工具通信。
用于执行本文公开的方法的适当装置在2011年4月11日提交的名称为“等离子体激活的共形膜沉积”的美国专利申请No.13/084399;2011年4月11日提交的名称为“氮化硅膜和方法”的美国专利申请No.13/084305中进一步讨论并说明,这些专利中的每个整体并入本文。
本文所述的装置/工艺可以与光刻图案化工具或工艺结合使用,例如,用于制备或制造半导体器件、显示器、LED、光伏电池板等。通常,虽然不是必要地,这些工具/工艺将在共同的制造设施中一起使用或操作。膜的光刻图案化通常包括以下操作中的一些或所有,每个操作启用多个可行的工具:(1)使用旋涂或喷涂工具在工件,即,衬底上涂覆光致抗蚀剂;(2)使用热板或加热炉或UV固化工具固化光致抗蚀剂;(3)使用例如晶片步进曝光机之类的工具使光致抗蚀剂暴露于可见光或紫外线或x-射线;(4)使抗蚀剂显影以便选择性地去除抗蚀剂并且从而使用例如湿式工作台之类的工具将其图案化;(5)通过使用干式或等离子体辅助蚀刻工具将抗蚀剂图案转印到下方的膜或工件上;并且(6)使用例如射频或微波等离子体抗蚀剂剥离器之类的工具去除抗蚀剂。
试验
试验1
实验通过比较在ALD之前使用氦气作为浸泡气体通过ALD沉积的膜和在ALD之前使用将在ALD的等离子体环境操作期间使用的气体沉积的膜之间的膜厚度来进行。基座被设定为50℃的温度。衬底被放置在基座上以使衬底温度从室温升高到50℃。
在一个试验中,将衬底暴露于氦浸泡气体持续7秒,然后执行足以沉积的氧化硅的ALD循环。只沉积了的氧化硅。在第二个试验中,将衬底暴露于氩浸泡气体持续9秒,然后执行足以沉积的氧化硅的ALD循环。在ALD循环中,在氧化剂与等离子体暴露期间,氩气用作载气。沉积的氧化硅膜的厚度为在第三试验中,将衬底暴露于一氧化二氮(N2O)和氧气(O2)的混合物持续9秒,然后执行足以沉积的氧化硅的ALD循环。在氧化剂与等离子体暴露阶段期间,在每个循环中,使用相同的N2O和O2的混合物。沉积的氧化硅膜的厚度为在第四试验中,将衬底暴露于氮气(N2)持续9秒,然后执行足以沉积的氧化硅的ALD循环。在每个循环中,在氧化剂与等离子体暴露阶段期间,使用氮气作为载气。沉积的氧化硅膜的厚度为如下表1所示,使用在ALD循环的第二反应物与等离子体阶段所使用的气体沉积的膜的厚度较接近要沉积的厚度,如通过所述数量的ALD循环所测得的。用氦气浸泡导致的膜厚度充分地低于所期望的厚度。
表1.用浸泡气体沉积的氧化硅膜的厚度
试验2
执行实验来测量使用所公开的实施方式沉积的膜之间的晶片比晶片的变化。在四站式工具中使用相同序列的ALD循环对一百个衬底进行沉积。对每个衬底沉积了足够的循环后,将工具换位。每当衬底插入工具时,将氮气(N2)作为浸泡气体引入该工具持续60秒,然后重新开始ALD循环。每个ALD循环包括:暴露于N2,用N2清扫气体清扫,暴露于一氧化二氮(N2O)和氧气(O2)以及等离子体,并用N2清扫气体清扫。每个衬底暴露于足够的ALD循环以理想地沉积的氧化硅。
所得到的各种晶片沉积的膜的厚度的一组实验数据示于图5中。这组实验数据的线触发时间(the line priming time)为7秒。在图5所示的晶片产生或约的类似厚度的膜,这表明所公开的实施方式可以在可重复性方面表现出高的一致性。
结论
尽管出于清楚理解目的,已详细说明了上述实施方式,但显而易见的是,在所附的权利要求的范围内可以进行某些改变和修改。应该注意的是,有实现本发明的实施方式的处理、系统、以及装置的很多替代方式。因而,本发明的实施方式被认为是示例性的,本发明的实施方式不受限于本文给出的细节。
Claims (42)
1.一种用于通过原子层沉积在半导体衬底上沉积氧化硅膜的方法,该方法包括:
(a)将衬底插入室内;
(b)在将所述衬底插入到所述室之后并于在沉积温度下执行第一原子层沉积循环之前,通过将所述衬底暴露于浸泡气体持续500秒或500秒以下的时间,使所述衬底的温度升高至所述沉积温度;以及
(c)执行所述原子层沉积,
其中,所述原子层沉积循环包括
将所述衬底在非等离子体环境中暴露于含硅前体持续足以使所述含硅前体吸附到所述衬底的表面上的时间,以及
在等离子体环境中将所述衬底暴露于氧化剂以形成所述氧化硅膜的至少一部分,
其中浸泡所述衬底包括将所述衬底暴露于仅包含在所述原子层沉积循环期间在所述等离子体环境中将所述衬底暴露于所述氧化剂以形成所述氧化硅膜的至少一部分时使用的一种或多种气体的浸泡气体,并且
其中通过所述原子层沉积而沉积的所述氧化硅膜的厚度为小于5纳米。
2.根据权利要求1所述的方法,其中在(b)中的所述浸泡气体仅包含在所述等离子体环境中将所述衬底暴露于所述氧化剂以形成所述氧化硅膜的至少一部分时使用的一种或多种气体。
3.根据权利要求1所述的方法,其中在(b)中的所述浸泡气体包含在所述等离子体环境中将所述衬底暴露于所述氧化剂以形成所述氧化硅膜的至少一部分时使用的两种或更多种气体,且没有其它气体,并且其中所述两种或更多种气体以与它们在所述氧化剂中的比例相同的比例存在于所述浸泡气体中。
4.根据权利要求1所述的方法,其中在(b)中的所述浸泡气体选自由氩气、氮气、氧气、一氧化二氮以及它们的组合组成的组。
5.根据权利要求1所述的方法,其中在(b)中的所述浸泡气体不含氦气。
6.根据权利要求1所述的方法,其中在(b)中的所述浸泡气体的流率在通过所述室能达到的最大流率的10%以内。
7.根据权利要求6所述的方法,其中在(b)中的所述浸泡气体的流率为至少15slm。
8.根据权利要求1所述的方法,其中在(b)中的所述浸泡气体的流率介于在所述原子层沉积循环期间在所述等离子体环境中将所述衬底暴露于所述氧化剂时使用的所述一种或多种气体的流率的至少25%到200%之间。
10.根据权利要求1-9中任一项所述的方法,其中(c)包括执行两个或更多个原子层沉积循环以在所述衬底上沉积所述氧化硅膜。
11.根据权利要求10所述的方法,其中,执行介于2个与50个之间的原子层沉积循环。
12.根据权利要求1-9中任一项所述的方法,其中所述含硅前体选自由硅烷、二硅烷、三硅烷、四硅烷、任何上述硅烷的经卤素取代的变体、任何上述硅烷的经胺取代的变体、以及三甲硅烷基胺组成的组。
13.根据权利要求1-9中任一项所述的方法,其中所述氧化剂选自由氧气、一氧化二氮以及它们的组合组成的组。
14.根据权利要求1-9中任一项所述的方法,其中所述原子层沉积是在介于30℃和70℃之间的温度下进行的。
15.根据权利要求1-9中任一项所述的方法,其中所述原子层沉积循环还包括在每个暴露操作之间清扫所述室。
16.一种用于通过原子层沉积在半导体衬底上沉积膜的方法,该方法包括:
(a)将衬底插入室内;
(b)在将所述衬底插入到所述室之后并于在沉积温度下执行第一原子层沉积循环之前,通过将所述衬底暴露于浸泡气体持续500秒或500秒以下的时间,使所述衬底的温度升高至所述沉积温度;以及
(c)执行所述原子层沉积,
其中,所述原子层沉积循环包括
将所述衬底在非等离子体环境中暴露于前体持续足以使所述前体吸附到所述衬底的表面上的时间,以及
将所述衬底在等离子体环境中暴露于第二反应物以形成所述膜的至少一部分,
其中浸泡所述衬底包括将所述衬底暴露于仅包含在所述原子层沉积循环期间在所述等离子体环境中将所述衬底暴露于所述第二反应物以形成所述膜的至少一部分时使用的一种或多种气体的浸泡气体,并且
其中通过所述原子层沉积而沉积的所述膜的厚度为小于5纳米。
17.根据权利要求16所述的方法,其中在(b)中的所述浸泡气体仅包含在所述等离子体环境中将所述衬底暴露于所述第二反应物以形成所述膜的至少一部分时使用的一种或多种气体。
18.根据权利要求16所述的方法,其中在(b)中的所述浸泡气体包含在所述等离子体环境中将所述衬底暴露于所述第二反应物以形成所述膜的至少一部分时使用的两种或更多种气体,且没有其它的气体,并且其中所述两种或更多种气体以与它们在所述第二反应物中的比例相同的比例存在于所述浸泡气体中。
19.根据权利要求16所述的方法,其中在(b)中的所述浸泡气体选自由氩气、氮气、氧气、一氧化二氮以及它们的组合组成的组。
20.根据权利要求16所述的方法,其中在(b)中的所述浸泡气体不含氦气。
21.根据权利要求16所述的方法,其中在(b)中的所述浸泡气体的流率是在通过所述室能达到的最大流率的10%以内。
22.根据权利要求21所述的方法,其中在(b)中的所述浸泡气体的流率为至少15slm。
23.根据权利要求16所述的方法,其中在(b)中的所述浸泡气体的流率在所述原子层沉积循环期间在所述等离子体环境中将所述衬底暴露于所述第二反应物时使用的所述一种或多种气体的流率的至少25%到200%之间。
25.根据权利要求16-24中任一项所述的方法,其中(c)包括执行两个或更多个原子层沉积循环以在所述衬底上沉积所述膜。
26.根据权利要求25所述的方法,其中,执行介于2个与50个之间的原子层沉积循环。
27.根据权利要求16-24中任一项所述的方法,其中通过所述原子层沉积而沉积的所述膜选自由氧化硅、氮化硅、碳化硅、金属氧化物、掺杂的氧化硅、掺杂的氮化硅、掺杂的碳化硅和掺杂的金属氧化物组成的组。
28.根据权利要求16-24中任一项所述的方法,其中通过所述原子层沉积而沉积的所述膜是氧化物,且所述原子层沉积是在50℃的温度下进行的。
29.根据权利要求16-24中任一项所述的方法,其中通过所述原子层沉积而沉积的所述膜是氮化物或碳化物,并且所述原子层沉积是在介于200℃和300℃之间的温度下进行的。
30.根据权利要求16-24中任一项所述的方法,其中所述前体包含从由硅、金属、供电子原子、和供电子基团组成的组中选择的化学物质。
31.根据权利要求16-24中任一项所述的方法,其中所述第二反应物是还原剂或氧化剂。
32.根据权利要求16-24中任一项所述的方法,其中所述原子层沉积的所述循环还包括在每个暴露操作之间清扫所述室。
33.根据权利要求1-9或16-24中任一项所述的方法,其中所述原子层沉积是在至少25℃的温度下进行的。
34.根据权利要求1-9或16-24中任一项所述的方法,其中所述原子层沉积是在低于100℃的温度下进行的。
35.一种用于处理半导体衬底的装置,该装置包括:
(a)一个或多个站,每个站包括用于保持衬底的基座;
(b)用于耦合到真空的至少一个出口;
(c)用于耦合到前体源和反应物源的一个或多个处理气体入口;
(d)用于将衬底插入所述一个或多个站的机械手;以及
(e)用于控制所述装置中的操作的控制器,所述控制器包含用于下述操作的机器可读指令:
(i)将衬底插入所述一个或多个站中的一个,
(ii)引入浸泡气体持续500秒或500秒以下的时间;
(iii)将含硅前体引入持续足以使所述含硅前体上吸附到所述衬底的表面上的时间;
(iv)将第二反应物引入所述一个或多个站并点燃等离子体;且
(v)重复(iii)和(iv),以在所述衬底上形成膜,该膜具有小于5纳米的厚度,
其中,在(ii)中的所述浸泡气体仅包括在(iv)中使用的一种或多种气体。
36.根据权利要求35所述的装置,其中,所述控制器还包括用于以下操作的机器可读指令:在每个新的衬底通过所述机械手插入所述一个或多个站中的一个之后至少执行(ii)一次。
37.根据权利要求35所述的装置,其中所述装置包括两个或更多个站。
38.一种通过等离子体增强原子层沉积在半导体衬底上沉积氧化硅膜的方法,该方法包括:
(a)将第一半导体衬底插入室中;
(b)在将第一半导体衬底插入所述室之后并且在沉积温度下执行等离子体增强原子层沉积的第一循环之前,通过将第一半导体衬底暴露到浸泡气体中持续500秒或更短的时间将第一半导体衬底的温度升高到沉积温度以减少晶片比晶片的变化;
(c)进行等离子体增强原子层沉积以在第一半导体衬底上沉积第一氧化硅膜;和
(d)在第一半导体衬底上沉积第一氧化硅膜之后,在一个或多个循环中执行等离子体增强原子层沉积以在第二半导体衬底上沉积第二氧化硅膜,其中所述等离子体增强原子层沉积的循环包括:
在非等离子体环境中将所述衬底暴露于含硅前体持续足以将所述含硅前体吸附到所述衬底的表面上的时间;以及
在等离子体环境中将所述衬底暴露于氧化剂以形成氧化硅膜的至少一部分,
其中,所述浸泡气体仅包含在等离子体增强原子层沉积循环期间在所述等离子体环境中将第一半导体衬底暴露于所述氧化剂以形成所述第一氧化硅膜的至少一部分时使用的一种或多种气体;
其中(b)中的浸泡气体包括惰性气体和含氧气体,所述惰性气体选自氮气、氩气及其组合,所述含氧气体选自氧气、一氧化二氮及其组合;以及
其中第一氧化硅膜的沉积厚度小于5nm。
39.一种通过等离子体增强原子层沉积在半导体衬底上沉积膜的方法,该方法包括:
(a)将第一半导体衬底插入室中;
(b)在将第一半导体衬底插入所述室之后并且在沉积温度下执行等离子体增强原子层沉积的第一循环之前,通过将第一半导体衬底暴露到浸泡气体中持续500秒或更短的时间将第一半导体衬底的温度升高到沉积温度以减少晶片比晶片的变化;
(c)进行等离子体增强原子层沉积以在第一半导体衬底上沉积第一膜;和
(d)在第一半导体衬底上沉积第一膜之后,在一个或多个循环中执行等离子体增强原子层沉积以在第二半导体衬底上沉积第二膜,
其中所述等离子体增强原子层沉积的循环包括:
在非等离子体环境中将所述衬底暴露于前体持续足以将所述前体吸附到所述衬底的表面上的时间;以及
在等离子体环境中将所述衬底暴露于第二反应剂以形成所述膜的至少一部分,
其中,所述浸泡气体仅包含在等离子体增强原子层沉积循环期间在所述等离子体环境中将第一半导体衬底暴露于所述第二反应剂以形成所述第一膜的至少一部分时使用的一种或多种气体;
其中(b)中的浸泡气体包括惰性气体和含氧气体,所述惰性气体选自氮气、氩气及其组合,所述含氧气体选自氧气、一氧化二氮及其组合;以及
其中所述第一膜的沉积厚度小于5nm。
40.一种通过等离子体增强原子层沉积在两个或多个半导体衬底上沉积氧化硅膜的方法,该方法包括:
(a)将第一半导体衬底插入室中;
(b)在将第一半导体衬底插入所述室之后并且在沉积温度下执行等离子体增强原子层沉积的第一循环之前,通过将第一半导体衬底暴露到无氦浸泡气体中持续500秒或更短的时间将第一半导体衬底的温度升高到沉积温度以减少晶片比晶片的变化;和
(c)进行等离子体增强原子层沉积以在第一半导体衬底上沉积第一氧化硅膜,
其中所述等离子体增强原子层沉积的循环包括:
在非等离子体环境中将所述第一半导体衬底暴露于含硅前体持续足以将所述含硅前体吸附到所述第一半导体衬底的表面上的时间;以及
在等离子体环境中将所述第一半导体衬底暴露于氧化剂以形成所述氧化硅膜的至少一部分,
其中,所述无氦浸泡气体仅包含在等离子体增强原子层沉积循环期间在所述等离子体环境中将第一半导体衬底暴露于所述氧化剂以形成所述氧化硅膜的至少一部分时使用的一种或多种气体;
其中氧化硅膜的沉积厚度小于5nm,和
41.根据权利要求40所述的方法,其中所述无氦浸泡气体是温度稳定的浸泡气体,其稳定所述第一半导体衬底的温度。
42.一种通过等离子体增强原子层沉积在半导体衬底上沉积膜的方法,该方法包括:
(a)将第一半导体衬底插入室中;和
(b)在将第一半导体衬底插入所述室之后并且在沉积温度下执行等离子体增强原子层沉积的第一循环之前,通过将第一半导体衬底暴露到浸泡气体中持续500秒或更短的时间将第一半导体衬底的温度升高到沉积温度以减少晶片比晶片的变化;
(c)进行离子体增强原子层沉积以在第一半导体衬底上沉积第一膜至厚度小于5nm;和
(d)在第一半导体衬底上沉积第一膜后,在一个或多个循环中进行离子体增强原子层沉积以在第二半导体衬底上沉积第二膜,
其中所述离子体增强原子层沉积的循环包括
在非等离子体环境中将所述衬底暴露于前体持续足以将所述前体吸附到所述衬底的表面上的时间;以及
在等离子体环境中将所述衬底暴露于第二反应剂以形成所述膜的至少一部分,和
其中,所述浸泡气体仅包含在等离子体增强原子层沉积循环期间在所述等离子体环境中将第一半导体衬底暴露于所述第二反应剂以形成所述第一膜的至少一部分时使用的一种或多种气体。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/664,545 US10566187B2 (en) | 2015-03-20 | 2015-03-20 | Ultrathin atomic layer deposition film accuracy thickness control |
US14/664,545 | 2015-03-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105990108A CN105990108A (zh) | 2016-10-05 |
CN105990108B true CN105990108B (zh) | 2020-05-01 |
Family
ID=56925020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610160517.6A Active CN105990108B (zh) | 2015-03-20 | 2016-03-21 | 超薄原子层沉积膜厚度的精密控制 |
Country Status (5)
Country | Link |
---|---|
US (5) | US10566187B2 (zh) |
KR (2) | KR20160113014A (zh) |
CN (1) | CN105990108B (zh) |
SG (2) | SG10201602127RA (zh) |
TW (1) | TWI718131B (zh) |
Families Citing this family (356)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10378106B2 (en) | 2008-11-14 | 2019-08-13 | Asm Ip Holding B.V. | Method of forming insulation film by modified PEALD |
US9394608B2 (en) | 2009-04-06 | 2016-07-19 | Asm America, Inc. | Semiconductor processing reactor and components thereof |
US8802201B2 (en) | 2009-08-14 | 2014-08-12 | Asm America, Inc. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US9997357B2 (en) | 2010-04-15 | 2018-06-12 | Lam Research Corporation | Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors |
US9312155B2 (en) | 2011-06-06 | 2016-04-12 | Asm Japan K.K. | High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules |
US10364496B2 (en) | 2011-06-27 | 2019-07-30 | Asm Ip Holding B.V. | Dual section module having shared and unshared mass flow controllers |
US10854498B2 (en) | 2011-07-15 | 2020-12-01 | Asm Ip Holding B.V. | Wafer-supporting device and method for producing same |
US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
US9017481B1 (en) | 2011-10-28 | 2015-04-28 | Asm America, Inc. | Process feed management for semiconductor substrate processing |
US9659799B2 (en) | 2012-08-28 | 2017-05-23 | Asm Ip Holding B.V. | Systems and methods for dynamic semiconductor process scheduling |
US9021985B2 (en) | 2012-09-12 | 2015-05-05 | Asm Ip Holdings B.V. | Process gas management for an inductively-coupled plasma deposition reactor |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
US9589770B2 (en) | 2013-03-08 | 2017-03-07 | Asm Ip Holding B.V. | Method and systems for in-situ formation of intermediate reactive species |
US9484191B2 (en) | 2013-03-08 | 2016-11-01 | Asm Ip Holding B.V. | Pulsed remote plasma method and system |
US9240412B2 (en) | 2013-09-27 | 2016-01-19 | Asm Ip Holding B.V. | Semiconductor structure and device and methods of forming same using selective epitaxial process |
US10683571B2 (en) | 2014-02-25 | 2020-06-16 | Asm Ip Holding B.V. | Gas supply manifold and method of supplying gases to chamber using same |
US10167557B2 (en) | 2014-03-18 | 2019-01-01 | Asm Ip Holding B.V. | Gas distribution system, reactor including the system, and methods of using the same |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US9837271B2 (en) | 2014-07-18 | 2017-12-05 | Asm Ip Holding B.V. | Process for forming silicon-filled openings with a reduced occurrence of voids |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US9890456B2 (en) | 2014-08-21 | 2018-02-13 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US9657845B2 (en) | 2014-10-07 | 2017-05-23 | Asm Ip Holding B.V. | Variable conductance gas distribution apparatus and method |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
KR102300403B1 (ko) | 2014-11-19 | 2021-09-09 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 |
KR102263121B1 (ko) | 2014-12-22 | 2021-06-09 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자 및 그 제조 방법 |
US10529542B2 (en) | 2015-03-11 | 2020-01-07 | Asm Ip Holdings B.V. | Cross-flow reactor and method |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US10566187B2 (en) * | 2015-03-20 | 2020-02-18 | Lam Research Corporation | Ultrathin atomic layer deposition film accuracy thickness control |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10600673B2 (en) | 2015-07-07 | 2020-03-24 | Asm Ip Holding B.V. | Magnetic susceptor to baseplate seal |
US10043661B2 (en) | 2015-07-13 | 2018-08-07 | Asm Ip Holding B.V. | Method for protecting layer by forming hydrocarbon-based extremely thin film |
US10083836B2 (en) | 2015-07-24 | 2018-09-25 | Asm Ip Holding B.V. | Formation of boron-doped titanium metal films with high work function |
WO2017052905A1 (en) * | 2015-09-22 | 2017-03-30 | Applied Materials, Inc. | Apparatus and method for selective deposition |
US9960072B2 (en) | 2015-09-29 | 2018-05-01 | Asm Ip Holding B.V. | Variable adjustment for precise matching of multiple chamber cavity housings |
US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
US10322384B2 (en) | 2015-11-09 | 2019-06-18 | Asm Ip Holding B.V. | Counter flow mixer for process chamber |
US9786491B2 (en) | 2015-11-12 | 2017-10-10 | Asm Ip Holding B.V. | Formation of SiOCN thin films |
US10388515B2 (en) | 2015-11-16 | 2019-08-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Treatment to control deposition rate |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
DE102016200506B4 (de) * | 2016-01-17 | 2024-05-02 | Robert Bosch Gmbh | Ätzvorrichtung und Ätzverfahren |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10468251B2 (en) | 2016-02-19 | 2019-11-05 | Asm Ip Holding B.V. | Method for forming spacers using silicon nitride film for spacer-defined multiple patterning |
US10501866B2 (en) | 2016-03-09 | 2019-12-10 | Asm Ip Holding B.V. | Gas distribution apparatus for improved film uniformity in an epitaxial system |
US10343920B2 (en) | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
US9892913B2 (en) | 2016-03-24 | 2018-02-13 | Asm Ip Holding B.V. | Radial and thickness control via biased multi-port injection settings |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10190213B2 (en) | 2016-04-21 | 2019-01-29 | Asm Ip Holding B.V. | Deposition of metal borides |
US10087522B2 (en) | 2016-04-21 | 2018-10-02 | Asm Ip Holding B.V. | Deposition of metal borides |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US10032628B2 (en) | 2016-05-02 | 2018-07-24 | Asm Ip Holding B.V. | Source/drain performance through conformal solid state doping |
US9644271B1 (en) * | 2016-05-13 | 2017-05-09 | Lam Research Corporation | Systems and methods for using electrical asymmetry effect to control plasma process space in semiconductor fabrication |
KR102592471B1 (ko) | 2016-05-17 | 2023-10-20 | 에이에스엠 아이피 홀딩 비.브이. | 금속 배선 형성 방법 및 이를 이용한 반도체 장치의 제조 방법 |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US10388509B2 (en) | 2016-06-28 | 2019-08-20 | Asm Ip Holding B.V. | Formation of epitaxial layers via dislocation filtering |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US9793135B1 (en) | 2016-07-14 | 2017-10-17 | ASM IP Holding B.V | Method of cyclic dry etching using etchant film |
US10714385B2 (en) | 2016-07-19 | 2020-07-14 | Asm Ip Holding B.V. | Selective deposition of tungsten |
KR102354490B1 (ko) | 2016-07-27 | 2022-01-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
KR102532607B1 (ko) | 2016-07-28 | 2023-05-15 | 에이에스엠 아이피 홀딩 비.브이. | 기판 가공 장치 및 그 동작 방법 |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10177025B2 (en) | 2016-07-28 | 2019-01-08 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10395919B2 (en) * | 2016-07-28 | 2019-08-27 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10090316B2 (en) | 2016-09-01 | 2018-10-02 | Asm Ip Holding B.V. | 3D stacked multilayer semiconductor memory using doped select transistor channel |
US10703915B2 (en) * | 2016-09-19 | 2020-07-07 | Versum Materials Us, Llc | Compositions and methods for the deposition of silicon oxide films |
KR102698026B1 (ko) * | 2016-09-28 | 2024-08-21 | 삼성전자주식회사 | 유전막 형성 방법 및 반도체 장치의 제조 방법 |
US10410943B2 (en) | 2016-10-13 | 2019-09-10 | Asm Ip Holding B.V. | Method for passivating a surface of a semiconductor and related systems |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US11735413B2 (en) * | 2016-11-01 | 2023-08-22 | Versum Materials Us, Llc | Precursors and flowable CVD methods for making low-k films to fill surface features |
US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10435790B2 (en) | 2016-11-01 | 2019-10-08 | Asm Ip Holding B.V. | Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10643904B2 (en) | 2016-11-01 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for forming a semiconductor device and related semiconductor device structures |
US10134757B2 (en) | 2016-11-07 | 2018-11-20 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
KR102546317B1 (ko) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기체 공급 유닛 및 이를 포함하는 기판 처리 장치 |
US10340135B2 (en) | 2016-11-28 | 2019-07-02 | Asm Ip Holding B.V. | Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride |
KR20180068582A (ko) | 2016-12-14 | 2018-06-22 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US9916980B1 (en) | 2016-12-15 | 2018-03-13 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
KR102700194B1 (ko) | 2016-12-19 | 2024-08-28 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US10655221B2 (en) | 2017-02-09 | 2020-05-19 | Asm Ip Holding B.V. | Method for depositing oxide film by thermal ALD and PEALD |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10242866B2 (en) * | 2017-03-08 | 2019-03-26 | Lam Research Corporation | Selective deposition of silicon nitride on silicon oxide using catalytic control |
KR102324630B1 (ko) | 2017-03-29 | 2021-11-10 | 삼성전자주식회사 | 집적회로 소자의 제조 방법 |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
US10283353B2 (en) | 2017-03-29 | 2019-05-07 | Asm Ip Holding B.V. | Method of reforming insulating film deposited on substrate with recess pattern |
US10103040B1 (en) | 2017-03-31 | 2018-10-16 | Asm Ip Holding B.V. | Apparatus and method for manufacturing a semiconductor device |
US10460932B2 (en) | 2017-03-31 | 2019-10-29 | Asm Ip Holding B.V. | Semiconductor device with amorphous silicon filled gaps and methods for forming |
USD830981S1 (en) | 2017-04-07 | 2018-10-16 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate processing apparatus |
CN107022753B (zh) * | 2017-04-19 | 2019-09-27 | 同济大学 | 一种原子层沉积反应装置及通孔材料表面薄膜沉积工艺 |
KR102457289B1 (ko) | 2017-04-25 | 2022-10-21 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 및 반도체 장치의 제조 방법 |
US11158500B2 (en) | 2017-05-05 | 2021-10-26 | Asm Ip Holding B.V. | Plasma enhanced deposition processes for controlled formation of oxygen containing thin films |
US10446393B2 (en) | 2017-05-08 | 2019-10-15 | Asm Ip Holding B.V. | Methods for forming silicon-containing epitaxial layers and related semiconductor device structures |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US10770286B2 (en) * | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
JP7183187B2 (ja) | 2017-05-16 | 2022-12-05 | エーエスエム アイピー ホールディング ビー.ブイ. | 誘電体上の酸化物の選択的peald |
KR102271771B1 (ko) | 2017-05-25 | 2021-07-01 | 삼성전자주식회사 | 박막 형성 방법 및 이를 이용한 집적회로 소자의 제조 방법 |
US10504742B2 (en) | 2017-05-31 | 2019-12-10 | Asm Ip Holding B.V. | Method of atomic layer etching using hydrogen plasma |
US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US10685834B2 (en) | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
WO2019012797A1 (ja) * | 2017-07-13 | 2019-01-17 | 株式会社Kokusai Electric | 半導体装置の製造方法、基板処理装置およびプログラム |
KR20190009245A (ko) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물 |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10312055B2 (en) | 2017-07-26 | 2019-06-04 | Asm Ip Holding B.V. | Method of depositing film by PEALD using negative bias |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10605530B2 (en) | 2017-07-26 | 2020-03-31 | Asm Ip Holding B.V. | Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US10249524B2 (en) | 2017-08-09 | 2019-04-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
US10236177B1 (en) | 2017-08-22 | 2019-03-19 | ASM IP Holding B.V.. | Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures |
USD900036S1 (en) | 2017-08-24 | 2020-10-27 | Asm Ip Holding B.V. | Heater electrical connector and adapter |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
KR102491945B1 (ko) | 2017-08-30 | 2023-01-26 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
KR102401446B1 (ko) | 2017-08-31 | 2022-05-24 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US10607895B2 (en) | 2017-09-18 | 2020-03-31 | Asm Ip Holdings B.V. | Method for forming a semiconductor device structure comprising a gate fill metal |
KR102630301B1 (ko) | 2017-09-21 | 2024-01-29 | 에이에스엠 아이피 홀딩 비.브이. | 침투성 재료의 순차 침투 합성 방법 처리 및 이를 이용하여 형성된 구조물 및 장치 |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10319588B2 (en) | 2017-10-10 | 2019-06-11 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
KR102443047B1 (ko) | 2017-11-16 | 2022-09-14 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 방법 및 그에 의해 제조된 장치 |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
JP7214724B2 (ja) | 2017-11-27 | 2023-01-30 | エーエスエム アイピー ホールディング ビー.ブイ. | バッチ炉で利用されるウェハカセットを収納するための収納装置 |
WO2019103610A1 (en) | 2017-11-27 | 2019-05-31 | Asm Ip Holding B.V. | Apparatus including a clean mini environment |
US10290508B1 (en) | 2017-12-05 | 2019-05-14 | Asm Ip Holding B.V. | Method for forming vertical spacers for spacer-defined patterning |
US10319586B1 (en) * | 2018-01-02 | 2019-06-11 | Micron Technology, Inc. | Methods comprising an atomic layer deposition sequence |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
CN111630203A (zh) | 2018-01-19 | 2020-09-04 | Asm Ip私人控股有限公司 | 通过等离子体辅助沉积来沉积间隙填充层的方法 |
TWI799494B (zh) | 2018-01-19 | 2023-04-21 | 荷蘭商Asm 智慧財產控股公司 | 沈積方法 |
USD903477S1 (en) | 2018-01-24 | 2020-12-01 | Asm Ip Holdings B.V. | Metal clamp |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US10535516B2 (en) | 2018-02-01 | 2020-01-14 | Asm Ip Holdings B.V. | Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
JP7124098B2 (ja) | 2018-02-14 | 2022-08-23 | エーエスエム・アイピー・ホールディング・ベー・フェー | 周期的堆積プロセスにより基材上にルテニウム含有膜を堆積させる方法 |
US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
KR102636427B1 (ko) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 장치 |
US10658181B2 (en) | 2018-02-20 | 2020-05-19 | Asm Ip Holding B.V. | Method of spacer-defined direct patterning in semiconductor fabrication |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
KR102646467B1 (ko) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조 |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US10510536B2 (en) | 2018-03-29 | 2019-12-17 | Asm Ip Holding B.V. | Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber |
KR102501472B1 (ko) | 2018-03-30 | 2023-02-20 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
US20210384029A1 (en) * | 2018-04-09 | 2021-12-09 | Lam Research Corporation | Modifying hydrophobicity of a wafer surface using an organosilicon precursor |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
TWI843623B (zh) | 2018-05-08 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | 藉由循環沉積製程於基板上沉積氧化物膜之方法及相關裝置結構 |
KR20190129718A (ko) | 2018-05-11 | 2019-11-20 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상에 피도핑 금속 탄화물 막을 형성하는 방법 및 관련 반도체 소자 구조 |
KR102596988B1 (ko) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 그에 의해 제조된 장치 |
US10774422B2 (en) * | 2018-06-01 | 2020-09-15 | Asm Ip Holding B.V. | Systems and methods for controlling vapor phase processing |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
TWI840362B (zh) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 水氣降低的晶圓處置腔室 |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
KR102568797B1 (ko) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 시스템 |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
TW202409324A (zh) | 2018-06-27 | 2024-03-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於形成含金屬材料之循環沉積製程 |
WO2020003000A1 (en) | 2018-06-27 | 2020-01-02 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
KR102686758B1 (ko) | 2018-06-29 | 2024-07-18 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 및 반도체 장치의 제조 방법 |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
US10388513B1 (en) * | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10755922B2 (en) * | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
US10483099B1 (en) | 2018-07-26 | 2019-11-19 | Asm Ip Holding B.V. | Method for forming thermally stable organosilicon polymer film |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
CN110858541B (zh) * | 2018-08-24 | 2022-05-10 | 中芯国际集成电路制造(上海)有限公司 | 半导体结构及其形成方法 |
KR102707956B1 (ko) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
TWI844567B (zh) | 2018-10-01 | 2024-06-11 | 荷蘭商Asm Ip私人控股有限公司 | 基材保持裝置、含有此裝置之系統及其使用之方法 |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102592699B1 (ko) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치 |
US10847365B2 (en) | 2018-10-11 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming conformal silicon carbide film by cyclic CVD |
US10811256B2 (en) | 2018-10-16 | 2020-10-20 | Asm Ip Holding B.V. | Method for etching a carbon-containing feature |
KR102546322B1 (ko) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
KR102605121B1 (ko) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US10381219B1 (en) | 2018-10-25 | 2019-08-13 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
KR20200051105A (ko) | 2018-11-02 | 2020-05-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 기판 처리 장치 |
CN112997282A (zh) * | 2018-11-05 | 2021-06-18 | 朗姆研究公司 | 用于将蚀刻层蚀刻的方法 |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10559458B1 (en) | 2018-11-26 | 2020-02-11 | Asm Ip Holding B.V. | Method of forming oxynitride film |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
KR102636428B1 (ko) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치를 세정하는 방법 |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
JP7504584B2 (ja) | 2018-12-14 | 2024-06-24 | エーエスエム・アイピー・ホールディング・ベー・フェー | 窒化ガリウムの選択的堆積を用いてデバイス構造体を形成する方法及びそのためのシステム |
TWI819180B (zh) | 2019-01-17 | 2023-10-21 | 荷蘭商Asm 智慧財產控股公司 | 藉由循環沈積製程於基板上形成含過渡金屬膜之方法 |
KR20200091543A (ko) | 2019-01-22 | 2020-07-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
CN111524788B (zh) | 2019-02-01 | 2023-11-24 | Asm Ip私人控股有限公司 | 氧化硅的拓扑选择性膜形成的方法 |
TWI845607B (zh) | 2019-02-20 | 2024-06-21 | 荷蘭商Asm Ip私人控股有限公司 | 用來填充形成於基材表面內之凹部的循環沉積方法及設備 |
KR102626263B1 (ko) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치 |
JP2020136678A (ja) | 2019-02-20 | 2020-08-31 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基材表面内に形成された凹部を充填するための方法および装置 |
KR20200102357A (ko) | 2019-02-20 | 2020-08-31 | 에이에스엠 아이피 홀딩 비.브이. | 3-d nand 응용의 플러그 충진체 증착용 장치 및 방법 |
JPWO2020171114A1 (ja) * | 2019-02-20 | 2021-12-16 | パナソニックIpマネジメント株式会社 | 製膜方法、製膜装置および電極箔の製造方法 |
TWI842826B (zh) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | 基材處理設備及處理基材之方法 |
KR20200108243A (ko) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | SiOC 층을 포함한 구조체 및 이의 형성 방법 |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
KR20200108242A (ko) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체 |
JP7202230B2 (ja) * | 2019-03-20 | 2023-01-11 | 株式会社Screenホールディングス | 基板処理方法および基板処理装置 |
KR20200116033A (ko) | 2019-03-28 | 2020-10-08 | 에이에스엠 아이피 홀딩 비.브이. | 도어 개방기 및 이를 구비한 기판 처리 장치 |
KR20200116855A (ko) | 2019-04-01 | 2020-10-13 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자를 제조하는 방법 |
KR20200123380A (ko) | 2019-04-19 | 2020-10-29 | 에이에스엠 아이피 홀딩 비.브이. | 층 형성 방법 및 장치 |
KR20200125453A (ko) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 기상 반응기 시스템 및 이를 사용하는 방법 |
KR20200130121A (ko) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | 딥 튜브가 있는 화학물질 공급원 용기 |
KR20200130118A (ko) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | 비정질 탄소 중합체 막을 개질하는 방법 |
KR20200130652A (ko) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조 |
JP2020188254A (ja) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
JP2020188255A (ja) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
KR20200141003A (ko) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | 가스 감지기를 포함하는 기상 반응기 시스템 |
KR20200143254A (ko) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조 |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
KR20210005515A (ko) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법 |
JP7499079B2 (ja) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | 同軸導波管を用いたプラズマ装置、基板処理方法 |
CN112216646A (zh) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | 基板支撑组件及包括其的基板处理装置 |
KR20210010307A (ko) | 2019-07-16 | 2021-01-27 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR20210010820A (ko) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 게르마늄 구조를 형성하는 방법 |
KR20210010816A (ko) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 라디칼 보조 점화 플라즈마 시스템 및 방법 |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
TWI839544B (zh) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | 形成形貌受控的非晶碳聚合物膜之方法 |
KR20210010817A (ko) | 2019-07-19 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 토폴로지-제어된 비정질 탄소 중합체 막을 형성하는 방법 |
CN112309843A (zh) | 2019-07-29 | 2021-02-02 | Asm Ip私人控股有限公司 | 实现高掺杂剂掺入的选择性沉积方法 |
CN112309899A (zh) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | 基板处理设备 |
CN112309900A (zh) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | 基板处理设备 |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
CN118422165A (zh) | 2019-08-05 | 2024-08-02 | Asm Ip私人控股有限公司 | 用于化学源容器的液位传感器 |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
JP2021031769A (ja) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | 成膜原料混合ガス生成装置及び成膜装置 |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
KR20210024423A (ko) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 홀을 구비한 구조체를 형성하기 위한 방법 |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
KR20210024420A (ko) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법 |
KR20210029090A (ko) | 2019-09-04 | 2021-03-15 | 에이에스엠 아이피 홀딩 비.브이. | 희생 캡핑 층을 이용한 선택적 증착 방법 |
KR20210029663A (ko) | 2019-09-05 | 2021-03-16 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
CN112593212B (zh) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法 |
TWI846953B (zh) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理裝置 |
KR20210042810A (ko) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | 활성 종을 이용하기 위한 가스 분배 어셈블리를 포함한 반응기 시스템 및 이를 사용하는 방법 |
KR20210043460A (ko) | 2019-10-10 | 2021-04-21 | 에이에스엠 아이피 홀딩 비.브이. | 포토레지스트 하부층을 형성하기 위한 방법 및 이를 포함한 구조체 |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
TWI834919B (zh) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | 氧化矽之拓撲選擇性膜形成之方法 |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
KR20210047808A (ko) | 2019-10-21 | 2021-04-30 | 에이에스엠 아이피 홀딩 비.브이. | 막을 선택적으로 에칭하기 위한 장치 및 방법 |
KR20210050453A (ko) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | 기판 표면 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조 |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
KR20210054983A (ko) | 2019-11-05 | 2021-05-14 | 에이에스엠 아이피 홀딩 비.브이. | 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템 |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
KR20210062561A (ko) | 2019-11-20 | 2021-05-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템 |
CN112951697A (zh) | 2019-11-26 | 2021-06-11 | Asm Ip私人控股有限公司 | 基板处理设备 |
KR20210065848A (ko) | 2019-11-26 | 2021-06-04 | 에이에스엠 아이피 홀딩 비.브이. | 제1 유전체 표면과 제2 금속성 표면을 포함한 기판 상에 타겟 막을 선택적으로 형성하기 위한 방법 |
CN112885692A (zh) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | 基板处理设备 |
CN112885693A (zh) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | 基板处理设备 |
JP7527928B2 (ja) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基板処理装置、基板処理方法 |
KR20210070898A (ko) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
TW202125596A (zh) | 2019-12-17 | 2021-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成氮化釩層之方法以及包括該氮化釩層之結構 |
US11527403B2 (en) | 2019-12-19 | 2022-12-13 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
KR20210089079A (ko) | 2020-01-06 | 2021-07-15 | 에이에스엠 아이피 홀딩 비.브이. | 채널형 리프트 핀 |
TW202140135A (zh) | 2020-01-06 | 2021-11-01 | 荷蘭商Asm Ip私人控股有限公司 | 氣體供應總成以及閥板總成 |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
US20210225634A1 (en) * | 2020-01-17 | 2021-07-22 | Asm Ip Holding B.V. | FORMATION OF SiCN THIN FILMS |
KR102675856B1 (ko) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 및 박막 표면 개질 방법 |
TW202130846A (zh) | 2020-02-03 | 2021-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 形成包括釩或銦層的結構之方法 |
TW202146882A (zh) | 2020-02-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 驗證一物品之方法、用於驗證一物品之設備、及用於驗證一反應室之系統 |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
TW202203344A (zh) | 2020-02-28 | 2022-01-16 | 荷蘭商Asm Ip控股公司 | 專用於零件清潔的系統 |
KR20210116240A (ko) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | 조절성 접합부를 갖는 기판 핸들링 장치 |
KR20210116249A (ko) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | 록아웃 태그아웃 어셈블리 및 시스템 그리고 이의 사용 방법 |
CN113394086A (zh) | 2020-03-12 | 2021-09-14 | Asm Ip私人控股有限公司 | 用于制造具有目标拓扑轮廓的层结构的方法 |
KR20210124042A (ko) | 2020-04-02 | 2021-10-14 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 |
TW202146689A (zh) | 2020-04-03 | 2021-12-16 | 荷蘭商Asm Ip控股公司 | 阻障層形成方法及半導體裝置的製造方法 |
TW202145344A (zh) | 2020-04-08 | 2021-12-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於選擇性蝕刻氧化矽膜之設備及方法 |
WO2021207654A1 (en) * | 2020-04-10 | 2021-10-14 | Lam Research Corporation | Loss prevention during atomic layer deposition |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
KR20210128343A (ko) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | 크롬 나이트라이드 층을 형성하는 방법 및 크롬 나이트라이드 층을 포함하는 구조 |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
TW202146831A (zh) | 2020-04-24 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 垂直批式熔爐總成、及用於冷卻垂直批式熔爐之方法 |
JP2021172884A (ja) | 2020-04-24 | 2021-11-01 | エーエスエム・アイピー・ホールディング・ベー・フェー | 窒化バナジウム含有層を形成する方法および窒化バナジウム含有層を含む構造体 |
KR20210132600A (ko) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템 |
KR20210134226A (ko) | 2020-04-29 | 2021-11-09 | 에이에스엠 아이피 홀딩 비.브이. | 고체 소스 전구체 용기 |
KR20210134869A (ko) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Foup 핸들러를 이용한 foup의 빠른 교환 |
TW202147543A (zh) | 2020-05-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 半導體處理系統 |
KR20210141379A (ko) | 2020-05-13 | 2021-11-23 | 에이에스엠 아이피 홀딩 비.브이. | 반응기 시스템용 레이저 정렬 고정구 |
TW202146699A (zh) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 形成矽鍺層之方法、半導體結構、半導體裝置、形成沉積層之方法、及沉積系統 |
KR20210143653A (ko) | 2020-05-19 | 2021-11-29 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR20210145078A (ko) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법 |
KR102702526B1 (ko) | 2020-05-22 | 2024-09-03 | 에이에스엠 아이피 홀딩 비.브이. | 과산화수소를 사용하여 박막을 증착하기 위한 장치 |
TW202201602A (zh) | 2020-05-29 | 2022-01-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
TW202212620A (zh) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 處理基板之設備、形成膜之方法、及控制用於處理基板之設備之方法 |
TW202218133A (zh) | 2020-06-24 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成含矽層之方法 |
TW202217953A (zh) | 2020-06-30 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
KR102707957B1 (ko) | 2020-07-08 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
TW202219628A (zh) | 2020-07-17 | 2022-05-16 | 荷蘭商Asm Ip私人控股有限公司 | 用於光微影之結構與方法 |
TW202204662A (zh) | 2020-07-20 | 2022-02-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於沉積鉬層之方法及系統 |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
KR20220027026A (ko) | 2020-08-26 | 2022-03-07 | 에이에스엠 아이피 홀딩 비.브이. | 금속 실리콘 산화물 및 금속 실리콘 산질화물 층을 형성하기 위한 방법 및 시스템 |
TW202229601A (zh) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成圖案化結構的方法、操控機械特性的方法、裝置結構、及基板處理系統 |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
KR20220045900A (ko) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 함유 재료를 증착하기 위한 증착 방법 및 장치 |
CN114293174A (zh) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | 气体供应单元和包括气体供应单元的衬底处理设备 |
TW202229613A (zh) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 於階梯式結構上沉積材料的方法 |
KR20220053482A (ko) | 2020-10-22 | 2022-04-29 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐 금속을 증착하는 방법, 구조체, 소자 및 증착 어셈블리 |
TW202223136A (zh) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | 用於在基板上形成層之方法、及半導體處理系統 |
US20220139765A1 (en) * | 2020-11-03 | 2022-05-05 | Applied Materials, Inc. | Flowable chemical vapor deposition of metal oxides |
TW202235649A (zh) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | 填充間隙之方法與相關之系統及裝置 |
TW202235675A (zh) | 2020-11-30 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | 注入器、及基板處理設備 |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
TW202231903A (zh) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成 |
US20220270870A1 (en) * | 2021-02-12 | 2022-08-25 | Applied Materials, Inc. | Deposition of silicon-based dielectric films |
KR20220130620A (ko) | 2021-03-18 | 2022-09-27 | 에이에스엠 아이피 홀딩 비.브이. | 구조체를 형성하는 방법, 반도체 처리 시스템, 및 반도체 소자 구조체 |
US11955333B2 (en) | 2021-03-22 | 2024-04-09 | Applied Materials, Inc. | Methods and apparatus for processing a substrate |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7625820B1 (en) * | 2006-06-21 | 2009-12-01 | Novellus Systems, Inc. | Method of selective coverage of high aspect ratio structures with a conformal film |
CN101802984A (zh) * | 2007-10-22 | 2010-08-11 | 应用材料股份有限公司 | 在基板上形成氧化硅层的方法 |
CN103946963A (zh) * | 2011-11-18 | 2014-07-23 | 国际商业机器公司 | 在用于cmos器件的含锗沟道上对氧化硅和高k栅极电介质的无氧化锗的原子层沉积 |
Family Cites Families (493)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4843472A (zh) | 1971-10-04 | 1973-06-23 | ||
US4500563A (en) | 1982-12-15 | 1985-02-19 | Pacific Western Systems, Inc. | Independently variably controlled pulsed R.F. plasma chemical vapor processing |
CA1327338C (en) | 1987-02-02 | 1994-03-01 | Chorng-Ping Chang | Process for producing devices containing silicon nitride films |
JPH0293071A (ja) | 1988-09-29 | 1990-04-03 | Toshiba Corp | 薄膜の形成方法 |
JPH0311635A (ja) | 1989-06-08 | 1991-01-18 | Sekiyu Sangyo Katsuseika Center | 化合物半導体装置の製造方法 |
US5094984A (en) | 1990-10-12 | 1992-03-10 | Hewlett-Packard Company | Suppression of water vapor absorption in glass encapsulation |
US5344454A (en) * | 1991-07-24 | 1994-09-06 | Baxter International Inc. | Closed porous chambers for implanting tissue in a host |
US5230929A (en) * | 1992-07-20 | 1993-07-27 | Dow Corning Corporation | Plasma-activated chemical vapor deposition of fluoridated cyclic siloxanes |
TW201848B (zh) | 1991-11-08 | 1993-03-11 | Advanced Micro Devices Inc | |
DE4136987A1 (de) | 1991-11-11 | 1993-05-13 | Leybold Ag | Verfahren zur oberflaechenpassivierung von sensoren |
JPH05226279A (ja) | 1992-02-10 | 1993-09-03 | Toshiba Corp | 半導体装置の製造方法 |
US5223443A (en) | 1992-02-19 | 1993-06-29 | Integrated Device Technology, Inc. | Method for determining wafer cleanliness |
JPH06177120A (ja) | 1992-10-27 | 1994-06-24 | Sony Corp | 層間絶縁膜の形成方法 |
US5932286A (en) | 1993-03-16 | 1999-08-03 | Applied Materials, Inc. | Deposition of silicon nitride thin films |
US5496608A (en) | 1993-09-22 | 1996-03-05 | Brother Kogyo Kabushiki Kaisha | Optical recording medium |
JPH09102494A (ja) | 1995-10-09 | 1997-04-15 | Toshiba Corp | 半導体装置の保護膜およびその形成方法 |
US6191026B1 (en) | 1996-01-09 | 2001-02-20 | Applied Materials, Inc. | Method for submicron gap filling on a semiconductor substrate |
US5593914A (en) | 1996-03-19 | 1997-01-14 | Radiant Technologies, Inc. | Method for constructing ferroelectric capacitor-like structures on silicon dioxide surfaces |
US6342277B1 (en) | 1996-08-16 | 2002-01-29 | Licensee For Microelectronics: Asm America, Inc. | Sequential chemical vapor deposition |
US6399221B1 (en) | 1996-06-25 | 2002-06-04 | Northwestern University | Organic light-emitting diodes and methods for assembly and emission control |
US6156149A (en) | 1997-05-07 | 2000-12-05 | Applied Materials, Inc. | In situ deposition of a dielectric oxide layer and anti-reflective coating |
US5670432A (en) | 1996-08-01 | 1997-09-23 | Taiwan Semiconductor Manufacturing Company, Ltd. | Thermal treatment to form a void free aluminum metal layer for a semiconductor device |
US5916365A (en) | 1996-08-16 | 1999-06-29 | Sherman; Arthur | Sequential chemical vapor deposition |
JPH1098032A (ja) | 1996-09-20 | 1998-04-14 | Hitachi Ltd | 薄膜形成方法及び薄膜形成装置 |
US5994209A (en) | 1996-11-13 | 1999-11-30 | Applied Materials, Inc. | Methods and apparatus for forming ultra-shallow doped regions using doped silicon oxide films |
US6809421B1 (en) | 1996-12-02 | 2004-10-26 | Kabushiki Kaisha Toshiba | Multichip semiconductor device, chip therefor and method of formation thereof |
US6069058A (en) | 1997-05-14 | 2000-05-30 | United Semiconductor Corp. | Shallow trench isolation for semiconductor devices |
US7393561B2 (en) | 1997-08-11 | 2008-07-01 | Applied Materials, Inc. | Method and apparatus for layer by layer deposition of thin films |
US5874368A (en) | 1997-10-02 | 1999-02-23 | Air Products And Chemicals, Inc. | Silicon nitride from bis(tertiarybutylamino)silane |
US6861356B2 (en) | 1997-11-05 | 2005-03-01 | Tokyo Electron Limited | Method of forming a barrier film and method of forming wiring structure and electrodes of semiconductor device having a barrier film |
US5856003A (en) | 1997-11-17 | 1999-01-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for forming pseudo buried layer for sub-micron bipolar or BiCMOS device |
US6346741B1 (en) | 1997-11-20 | 2002-02-12 | Advanced Technology Materials, Inc. | Compositions and structures for chemical mechanical polishing of FeRAM capacitors and method of fabricating FeRAM capacitors using same |
US6100202A (en) | 1997-12-08 | 2000-08-08 | Taiwan Semiconductor Manufacturing Company | Pre deposition stabilization method for forming a void free isotropically etched anisotropically patterned doped silicate glass layer |
US6509601B1 (en) | 1998-07-31 | 2003-01-21 | Samsung Electronics Co., Ltd. | Semiconductor memory device having capacitor protection layer and method for manufacturing the same |
KR100275738B1 (ko) | 1998-08-07 | 2000-12-15 | 윤종용 | 원자층 증착법을 이용한 박막 제조방법 |
US6218293B1 (en) | 1998-11-13 | 2001-04-17 | Micron Technology, Inc. | Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride |
WO2000047404A1 (en) | 1999-02-12 | 2000-08-17 | Gelest, Inc. | Chemical vapor deposition of tungsten nitride |
US6200893B1 (en) | 1999-03-11 | 2001-03-13 | Genus, Inc | Radical-assisted sequential CVD |
WO2000055901A1 (en) | 1999-03-17 | 2000-09-21 | Semiconductor 300 Gmbh & Co. Kg | Method for filling gaps on a semiconductor wafer |
KR100273473B1 (ko) | 1999-04-06 | 2000-11-15 | 이경수 | 박막 형성 방법 |
JP3770542B2 (ja) | 1999-07-22 | 2006-04-26 | コーニング インコーポレイテッド | 遠紫外軟x線投影リソグラフィー法およびマスク装置 |
US6313042B1 (en) | 1999-09-03 | 2001-11-06 | Applied Materials, Inc. | Cleaning contact with successive fluorine and hydrogen plasmas |
US6576053B1 (en) | 1999-10-06 | 2003-06-10 | Samsung Electronics Co., Ltd. | Method of forming thin film using atomic layer deposition method |
FI118804B (fi) | 1999-12-03 | 2008-03-31 | Asm Int | Menetelmä oksidikalvojen kasvattamiseksi |
KR100356473B1 (ko) | 1999-12-29 | 2002-10-18 | 주식회사 하이닉스반도체 | 반도체 소자의 알루미늄 옥사이드 박막 형성 방법 |
AU2001245388A1 (en) | 2000-03-07 | 2001-09-17 | Asm America, Inc. | Graded thin films |
JP3437832B2 (ja) | 2000-03-22 | 2003-08-18 | 東京エレクトロン株式会社 | 成膜方法及び成膜装置 |
JP2001274404A (ja) | 2000-03-24 | 2001-10-05 | Toshiba Corp | 薄膜トランジスタおよびその製造方法 |
US6759325B2 (en) | 2000-05-15 | 2004-07-06 | Asm Microchemistry Oy | Sealing porous structures |
US20030008070A1 (en) | 2001-06-12 | 2003-01-09 | Applied Materials,Inc | Low-resistivity tungsten from high-pressure chemical vapor deposition using metal-organic precursor |
JP2002009072A (ja) | 2000-06-23 | 2002-01-11 | Tokyo Electron Ltd | シリコン窒化膜の形成方法及び形成装置 |
KR100721503B1 (ko) | 2000-06-08 | 2007-05-23 | 에이에스엠지니텍코리아 주식회사 | 박막 형성 방법 |
EP2293322A1 (en) | 2000-06-08 | 2011-03-09 | Genitech, Inc. | Method for forming a metal nitride layer |
US7964505B2 (en) * | 2005-01-19 | 2011-06-21 | Applied Materials, Inc. | Atomic layer deposition of tungsten materials |
US7405158B2 (en) * | 2000-06-28 | 2008-07-29 | Applied Materials, Inc. | Methods for depositing tungsten layers employing atomic layer deposition techniques |
US7732327B2 (en) * | 2000-06-28 | 2010-06-08 | Applied Materials, Inc. | Vapor deposition of tungsten materials |
KR100444149B1 (ko) * | 2000-07-22 | 2004-08-09 | 주식회사 아이피에스 | Ald 박막증착설비용 클리닝방법 |
US20050230047A1 (en) | 2000-08-11 | 2005-10-20 | Applied Materials, Inc. | Plasma immersion ion implantation apparatus |
US6482726B1 (en) | 2000-10-17 | 2002-11-19 | Advanced Micro Devices, Inc. | Control trimming of hard mask for sub-100 nanometer transistor gate |
JP2002134497A (ja) | 2000-10-23 | 2002-05-10 | Sony Corp | 半導体装置の製造方法 |
US6441491B1 (en) * | 2000-10-25 | 2002-08-27 | International Business Machines Corporation | Ultralow dielectric constant material as an intralevel or interlevel dielectric in a semiconductor device and electronic device containing the same |
US6689220B1 (en) | 2000-11-22 | 2004-02-10 | Simplus Systems Corporation | Plasma enhanced pulsed layer deposition |
JP3437830B2 (ja) | 2000-11-28 | 2003-08-18 | 東京エレクトロン株式会社 | 成膜方法 |
US6576345B1 (en) | 2000-11-30 | 2003-06-10 | Novellus Systems Inc | Dielectric films with low dielectric constants |
KR100385947B1 (ko) | 2000-12-06 | 2003-06-02 | 삼성전자주식회사 | 원자층 증착 방법에 의한 박막 형성 방법 |
US6428859B1 (en) | 2000-12-06 | 2002-08-06 | Angstron Systems, Inc. | Sequential method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD) |
US6878402B2 (en) | 2000-12-06 | 2005-04-12 | Novellus Systems, Inc. | Method and apparatus for improved temperature control in atomic layer deposition |
US6416822B1 (en) | 2000-12-06 | 2002-07-09 | Angstrom Systems, Inc. | Continuous method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD) |
US20020076507A1 (en) | 2000-12-15 | 2002-06-20 | Chiang Tony P. | Process sequence for atomic layer deposition |
KR100408733B1 (ko) | 2001-02-02 | 2003-12-11 | 주성엔지니어링(주) | 박막 증착 방법 |
US6951804B2 (en) | 2001-02-02 | 2005-10-04 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
EP1421607A2 (en) | 2001-02-12 | 2004-05-26 | ASM America, Inc. | Improved process for deposition of semiconductor films |
US6632478B2 (en) | 2001-02-22 | 2003-10-14 | Applied Materials, Inc. | Process for forming a low dielectric constant carbon-containing film |
JP4406178B2 (ja) | 2001-03-28 | 2010-01-27 | 株式会社渡辺商行 | 成膜装置 |
US7005392B2 (en) | 2001-03-30 | 2006-02-28 | Advanced Technology Materials, Inc. | Source reagent compositions for CVD formation of gate dielectric thin films using amide precursors and method of using same |
US6610169B2 (en) | 2001-04-21 | 2003-08-26 | Simplus Systems Corporation | Semiconductor processing system and method |
US6528430B2 (en) | 2001-05-01 | 2003-03-04 | Samsung Electronics Co., Ltd. | Method of forming silicon containing thin films by atomic layer deposition utilizing Si2C16 and NH3 |
US6828218B2 (en) | 2001-05-31 | 2004-12-07 | Samsung Electronics Co., Ltd. | Method of forming a thin film using atomic layer deposition |
US6391803B1 (en) * | 2001-06-20 | 2002-05-21 | Samsung Electronics Co., Ltd. | Method of forming silicon containing thin films by atomic layer deposition utilizing trisdimethylaminosilane |
US7098131B2 (en) | 2001-07-19 | 2006-08-29 | Samsung Electronics Co., Ltd. | Methods for forming atomic layers and thin films including tantalum nitride and devices including the same |
WO2003030224A2 (en) * | 2001-07-25 | 2003-04-10 | Applied Materials, Inc. | Barrier formation using novel sputter-deposition method |
US8110489B2 (en) * | 2001-07-25 | 2012-02-07 | Applied Materials, Inc. | Process for forming cobalt-containing materials |
JP2003045864A (ja) | 2001-08-02 | 2003-02-14 | Hitachi Kokusai Electric Inc | 基板処理装置 |
EP1421606A4 (en) | 2001-08-06 | 2008-03-05 | Genitech Co Ltd | PLASMA ACTIVE ATOMIC LAYER (PEALD) DEPOSITION APPARATUS AND METHOD OF FORMING THIN FILM USING SAID APPARATUS |
US6756318B2 (en) | 2001-09-10 | 2004-06-29 | Tegal Corporation | Nanolayer thick film processing system and method |
US6551893B1 (en) | 2001-11-27 | 2003-04-22 | Micron Technology, Inc. | Atomic layer deposition of capacitor dielectric |
US7081271B2 (en) | 2001-12-07 | 2006-07-25 | Applied Materials, Inc. | Cyclical deposition of refractory metal silicon nitride |
US7108771B2 (en) * | 2001-12-13 | 2006-09-19 | Advanced Technology Materials, Inc. | Method for removal of impurities in cyclic siloxanes useful as precursors for low dielectric constant thin films |
DE10208450B4 (de) | 2002-02-27 | 2004-09-16 | Infineon Technologies Ag | Verfahren zum Abscheiden dünner Schichten mittels ALD/CVD-Prozessen in Verbindung mit schnellen thermischen Prozessen |
US6962876B2 (en) | 2002-03-05 | 2005-11-08 | Samsung Electronics Co., Ltd. | Method for forming a low-k dielectric layer for a semiconductor device |
EP1485513A2 (en) | 2002-03-08 | 2004-12-15 | Sundew Technologies, LLC | Ald method and apparatus |
KR20030081144A (ko) | 2002-04-11 | 2003-10-17 | 가부시키가이샤 히다치 고쿠사이 덴키 | 종형 반도체 제조 장치 |
US6987240B2 (en) | 2002-04-18 | 2006-01-17 | Applied Materials, Inc. | Thermal flux processing by scanning |
KR100468729B1 (ko) | 2002-04-25 | 2005-01-29 | 삼성전자주식회사 | Hcd 소스를 이용하여 실리콘 산화막을 원자층 증착하는방법 |
US7374617B2 (en) | 2002-04-25 | 2008-05-20 | Micron Technology, Inc. | Atomic layer deposition methods and chemical vapor deposition methods |
US6777308B2 (en) | 2002-05-17 | 2004-08-17 | Micron Technology, Inc. | Method of improving HDP fill process |
US20040129212A1 (en) | 2002-05-20 | 2004-07-08 | Gadgil Pradad N. | Apparatus and method for delivery of reactive chemical precursors to the surface to be treated |
US7041335B2 (en) | 2002-06-04 | 2006-05-09 | Applied Materials, Inc. | Titanium tantalum nitride silicide layer |
KR100472777B1 (ko) | 2002-06-26 | 2005-03-10 | 동부전자 주식회사 | 박막 적층 방법 |
US7294582B2 (en) | 2002-07-19 | 2007-11-13 | Asm International, N.V. | Low temperature silicon compound deposition |
US7297641B2 (en) | 2002-07-19 | 2007-11-20 | Asm America, Inc. | Method to form ultra high quality silicon-containing compound layers |
KR100542736B1 (ko) | 2002-08-17 | 2006-01-11 | 삼성전자주식회사 | 원자층 증착법을 이용한 산화막의 형성방법 및 이를이용한 반도체 장치의 캐패시터 형성방법 |
EP1535321A4 (en) * | 2002-08-18 | 2009-05-27 | Asml Us Inc | LOW TEMPERATURE DEPOSITION OF OXIDES AND SILICON OXYNITRIDES |
US6730164B2 (en) | 2002-08-28 | 2004-05-04 | Micron Technology, Inc. | Systems and methods for forming strontium- and/or barium-containing layers |
US6794284B2 (en) | 2002-08-28 | 2004-09-21 | Micron Technology, Inc. | Systems and methods for forming refractory metal nitride layers using disilazanes |
US6967159B2 (en) | 2002-08-28 | 2005-11-22 | Micron Technology, Inc. | Systems and methods for forming refractory metal nitride layers using organic amines |
US6784049B2 (en) | 2002-08-28 | 2004-08-31 | Micron Technology, Inc. | Method for forming refractory metal oxide layers with tetramethyldisiloxane |
US6774040B2 (en) | 2002-09-12 | 2004-08-10 | Applied Materials, Inc. | Apparatus and method for surface finishing a silicon film |
WO2004032196A2 (en) | 2002-10-03 | 2004-04-15 | Pan Jit Americas, Inc. | Method of fabricating semiconductor by nitrogen doping of silicon film |
US7749563B2 (en) | 2002-10-07 | 2010-07-06 | Applied Materials, Inc. | Two-layer film for next generation damascene barrier application with good oxidation resistance |
KR100496265B1 (ko) | 2002-11-29 | 2005-06-17 | 한국전자통신연구원 | 반도체 소자의 박막 형성방법 |
US7097886B2 (en) | 2002-12-13 | 2006-08-29 | Applied Materials, Inc. | Deposition process for high aspect ratio trenches |
CN100567564C (zh) | 2002-12-20 | 2009-12-09 | 应用材料有限公司 | 形成高质量的低温氮化硅层的方法和设备 |
US7172792B2 (en) | 2002-12-20 | 2007-02-06 | Applied Materials, Inc. | Method for forming a high quality low temperature silicon nitride film |
US6890656B2 (en) | 2002-12-20 | 2005-05-10 | General Electric Company | High rate deposition of titanium dioxide |
KR100546852B1 (ko) | 2002-12-28 | 2006-01-25 | 동부아남반도체 주식회사 | 반도체 소자의 제조 방법 |
US7122222B2 (en) | 2003-01-23 | 2006-10-17 | Air Products And Chemicals, Inc. | Precursors for depositing silicon containing films and processes thereof |
US7713592B2 (en) | 2003-02-04 | 2010-05-11 | Tegal Corporation | Nanolayer deposition process |
US6930059B2 (en) | 2003-02-27 | 2005-08-16 | Sharp Laboratories Of America, Inc. | Method for depositing a nanolaminate film by atomic layer deposition |
US7084076B2 (en) * | 2003-02-27 | 2006-08-01 | Samsung Electronics, Co., Ltd. | Method for forming silicon dioxide film using siloxane |
US7288292B2 (en) | 2003-03-18 | 2007-10-30 | International Business Machines Corporation | Ultra low k (ULK) SiCOH film and method |
US6930058B2 (en) | 2003-04-21 | 2005-08-16 | Micron Technology, Inc. | Method of depositing a silicon dioxide comprising layer doped with at least one of P, B and Ge |
EP1616043B1 (en) | 2003-04-23 | 2020-09-23 | Eugenus Inc. | Transient enhanced atomic layer deposition |
US7115528B2 (en) | 2003-04-29 | 2006-10-03 | Micron Technology, Inc. | Systems and method for forming silicon oxide layers |
US6949442B2 (en) | 2003-05-05 | 2005-09-27 | Infineon Technologies Ag | Methods of forming MIM capacitors |
US6765303B1 (en) | 2003-05-06 | 2004-07-20 | Advanced Micro Devices, Inc. | FinFET-based SRAM cell |
EP1623454A2 (en) | 2003-05-09 | 2006-02-08 | ASM America, Inc. | Reactor surface passivation through chemical deactivation |
JP4329403B2 (ja) | 2003-05-19 | 2009-09-09 | 東京エレクトロン株式会社 | プラズマ処理装置 |
US6930060B2 (en) | 2003-06-18 | 2005-08-16 | International Business Machines Corporation | Method for forming a uniform distribution of nitrogen in silicon oxynitride gate dielectric |
JP2007523994A (ja) * | 2003-06-18 | 2007-08-23 | アプライド マテリアルズ インコーポレイテッド | バリヤ物質の原子層堆積 |
US7125815B2 (en) | 2003-07-07 | 2006-10-24 | Micron Technology, Inc. | Methods of forming a phosphorous doped silicon dioxide comprising layer |
US7264849B2 (en) | 2003-07-11 | 2007-09-04 | Optisolar, Inc. | Roll-vortex plasma chemical vapor deposition method |
US7399388B2 (en) | 2003-07-25 | 2008-07-15 | Applied Materials, Inc. | Sequential gas flow oxide deposition technique |
US6943097B2 (en) | 2003-08-19 | 2005-09-13 | International Business Machines Corporation | Atomic layer deposition of metallic contacts, gates and diffusion barriers |
KR100568859B1 (ko) | 2003-08-21 | 2006-04-10 | 삼성전자주식회사 | 디램 반도체 장치의 트랜지스터 제조방법 |
KR100500472B1 (ko) | 2003-10-13 | 2005-07-12 | 삼성전자주식회사 | 리세스 게이트 트랜지스터 구조 및 형성방법 |
US7261919B2 (en) | 2003-11-18 | 2007-08-28 | Flx Micro, Inc. | Silicon carbide and other films and method of deposition |
US20050109276A1 (en) | 2003-11-25 | 2005-05-26 | Applied Materials, Inc. | Thermal chemical vapor deposition of silicon nitride using BTBAS bis(tertiary-butylamino silane) in a single wafer chamber |
US7291271B2 (en) | 2003-12-09 | 2007-11-06 | Separation Design Group, Llc | Meso-frequency traveling wave electro-kinetic continuous adsorption system |
JP2005210076A (ja) | 2003-12-25 | 2005-08-04 | Semiconductor Leading Edge Technologies Inc | 窒化珪素膜の成膜方法及びこの方法を使用する半導体装置の製造方法 |
KR100545697B1 (ko) | 2003-12-29 | 2006-01-24 | 주식회사 하이닉스반도체 | 반도체소자의 트렌치 소자분리 방법 |
KR100560654B1 (ko) | 2004-01-08 | 2006-03-16 | 삼성전자주식회사 | 질화실리콘막을 형성을 위한 질소화합물 및 이를 이용한질화실리콘 막의 형성방법 |
US20050181535A1 (en) | 2004-02-17 | 2005-08-18 | Yun Sun J. | Method of fabricating passivation layer for organic devices |
US7088003B2 (en) | 2004-02-19 | 2006-08-08 | International Business Machines Corporation | Structures and methods for integration of ultralow-k dielectrics with improved reliability |
JP4279176B2 (ja) | 2004-03-02 | 2009-06-17 | 株式会社アルバック | シリコン窒化膜の形成方法 |
KR100538096B1 (ko) | 2004-03-16 | 2005-12-21 | 삼성전자주식회사 | 원자층 증착 방법을 이용하는 커패시터 형성 방법 |
JP2005310927A (ja) | 2004-04-20 | 2005-11-04 | Toshiba Corp | 紫外線照射による高品質シリコン窒化膜の成膜方法 |
US7259050B2 (en) | 2004-04-29 | 2007-08-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and method of making the same |
US7001844B2 (en) | 2004-04-30 | 2006-02-21 | International Business Machines Corporation | Material for contact etch layer to enhance device performance |
US7651729B2 (en) | 2004-05-14 | 2010-01-26 | Samsung Electronics Co., Ltd. | Method of fabricating metal silicate layer using atomic layer deposition technique |
US8119210B2 (en) | 2004-05-21 | 2012-02-21 | Applied Materials, Inc. | Formation of a silicon oxynitride layer on a high-k dielectric material |
KR100591157B1 (ko) | 2004-06-07 | 2006-06-19 | 동부일렉트로닉스 주식회사 | 반도체 소자의 제조방법 |
US7449345B2 (en) | 2004-06-15 | 2008-11-11 | Headway Technologies, Inc. | Capping structure for enhancing dR/R of the MTJ device |
JP4396547B2 (ja) | 2004-06-28 | 2010-01-13 | 東京エレクトロン株式会社 | 成膜方法、成膜装置及び記憶媒体 |
US20050287747A1 (en) | 2004-06-29 | 2005-12-29 | International Business Machines Corporation | Doped nitride film, doped oxide film and other doped films |
US7488690B2 (en) | 2004-07-06 | 2009-02-10 | Applied Materials, Inc. | Silicon nitride film with stress control |
JP4595702B2 (ja) | 2004-07-15 | 2010-12-08 | 東京エレクトロン株式会社 | 成膜方法、成膜装置及び記憶媒体 |
US7241686B2 (en) | 2004-07-20 | 2007-07-10 | Applied Materials, Inc. | Atomic layer deposition of tantalum-containing materials using the tantalum precursor TAIMATA |
JP4179311B2 (ja) | 2004-07-28 | 2008-11-12 | 東京エレクトロン株式会社 | 成膜方法、成膜装置及び記憶媒体 |
JP4470023B2 (ja) | 2004-08-20 | 2010-06-02 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | シリコン窒化物膜の製造方法 |
US7629270B2 (en) | 2004-08-27 | 2009-12-08 | Asm America, Inc. | Remote plasma activated nitridation |
US7449416B2 (en) | 2004-09-01 | 2008-11-11 | Axcelis Technologies, Inc. | Apparatus and plasma ashing process for increasing photoresist removal rate |
US20060084283A1 (en) | 2004-10-20 | 2006-04-20 | Paranjpe Ajit P | Low temperature sin deposition methods |
US7790633B1 (en) | 2004-10-26 | 2010-09-07 | Novellus Systems, Inc. | Sequential deposition/anneal film densification method |
US7148155B1 (en) | 2004-10-26 | 2006-12-12 | Novellus Systems, Inc. | Sequential deposition/anneal film densification method |
US20060105106A1 (en) | 2004-11-16 | 2006-05-18 | Applied Materials, Inc. | Tensile and compressive stressed materials for semiconductors |
KR100648252B1 (ko) | 2004-11-22 | 2006-11-24 | 삼성전자주식회사 | 텅스텐막 형성 방법 및 이를 이용하는 반도체 소자의 형성방법 |
JP4701691B2 (ja) | 2004-11-29 | 2011-06-15 | 東京エレクトロン株式会社 | エッチング方法 |
US7429402B2 (en) * | 2004-12-10 | 2008-09-30 | Applied Materials, Inc. | Ruthenium as an underlayer for tungsten film deposition |
US8193096B2 (en) | 2004-12-13 | 2012-06-05 | Novellus Systems, Inc. | High dose implantation strip (HDIS) in H2 base chemistry |
US7482247B1 (en) | 2004-12-30 | 2009-01-27 | Novellus Systems, Inc. | Conformal nanolaminate dielectric deposition and etch bag gap fill process |
US7205187B2 (en) | 2005-01-18 | 2007-04-17 | Tokyo Electron Limited | Micro-feature fill process and apparatus using hexachlorodisilane or other chlorine-containing silicon precursor |
US20060162661A1 (en) | 2005-01-22 | 2006-07-27 | Applied Materials, Inc. | Mixing energized and non-energized gases for silicon nitride deposition |
US7838072B2 (en) | 2005-01-26 | 2010-11-23 | Tokyo Electron Limited | Method and apparatus for monolayer deposition (MLD) |
US20060240187A1 (en) * | 2005-01-27 | 2006-10-26 | Applied Materials, Inc. | Deposition of an intermediate catalytic layer on a barrier layer for copper metallization |
US20060183055A1 (en) | 2005-02-15 | 2006-08-17 | O'neill Mark L | Method for defining a feature on a substrate |
KR100622609B1 (ko) | 2005-02-16 | 2006-09-19 | 주식회사 하이닉스반도체 | 박막 형성 방법 |
US7629267B2 (en) | 2005-03-07 | 2009-12-08 | Asm International N.V. | High stress nitride film and method for formation thereof |
JP4258518B2 (ja) | 2005-03-09 | 2009-04-30 | 東京エレクトロン株式会社 | 成膜方法、成膜装置及び記憶媒体 |
CN100554506C (zh) | 2005-03-09 | 2009-10-28 | 东京毅力科创株式会社 | 半导体处理用的成膜方法及装置 |
US7109129B1 (en) | 2005-03-09 | 2006-09-19 | Novellus Systems, Inc. | Optimal operation of conformal silica deposition reactors |
KR100640638B1 (ko) | 2005-03-10 | 2006-10-31 | 삼성전자주식회사 | 원자층 증착법에 의한 고유전막 형성 방법 및 고유전막을 갖는 반도체소자의 제조 방법 |
JP4506677B2 (ja) | 2005-03-11 | 2010-07-21 | 東京エレクトロン株式会社 | 成膜方法、成膜装置及び記憶媒体 |
US7608549B2 (en) | 2005-03-15 | 2009-10-27 | Asm America, Inc. | Method of forming non-conformal layers |
JP2006261434A (ja) | 2005-03-17 | 2006-09-28 | L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude | シリコン酸化膜の形成方法 |
US7435454B2 (en) | 2005-03-21 | 2008-10-14 | Tokyo Electron Limited | Plasma enhanced atomic layer deposition system and method |
US7341959B2 (en) | 2005-03-21 | 2008-03-11 | Tokyo Electron Limited | Plasma enhanced atomic layer deposition system and method |
US7314835B2 (en) | 2005-03-21 | 2008-01-01 | Tokyo Electron Limited | Plasma enhanced atomic layer deposition system and method |
JP4228150B2 (ja) | 2005-03-23 | 2009-02-25 | 東京エレクトロン株式会社 | 成膜装置、成膜方法及び記憶媒体 |
US7422636B2 (en) | 2005-03-25 | 2008-09-09 | Tokyo Electron Limited | Plasma enhanced atomic layer deposition system having reduced contamination |
JP4607637B2 (ja) | 2005-03-28 | 2011-01-05 | 東京エレクトロン株式会社 | シリコン窒化膜の形成方法、シリコン窒化膜の形成装置及びプログラム |
US7365027B2 (en) | 2005-03-29 | 2008-04-29 | Micron Technology, Inc. | ALD of amorphous lanthanide doped TiOx films |
US7687409B2 (en) | 2005-03-29 | 2010-03-30 | Micron Technology, Inc. | Atomic layer deposited titanium silicon oxide films |
US7361538B2 (en) | 2005-04-14 | 2008-04-22 | Infineon Technologies Ag | Transistors and methods of manufacture thereof |
US7390756B2 (en) * | 2005-04-28 | 2008-06-24 | Micron Technology, Inc. | Atomic layer deposited zirconium silicon oxide films |
US7875556B2 (en) | 2005-05-16 | 2011-01-25 | Air Products And Chemicals, Inc. | Precursors for CVD silicon carbo-nitride and silicon nitride films |
US7176084B2 (en) | 2005-06-09 | 2007-02-13 | Taiwan Semiconductor Manufacturing Co., Ltd. | Self-aligned conductive spacer process for sidewall control gate of high-speed random access memory |
US7473655B2 (en) | 2005-06-17 | 2009-01-06 | Applied Materials, Inc. | Method for silicon based dielectric chemical vapor deposition |
US7651955B2 (en) | 2005-06-21 | 2010-01-26 | Applied Materials, Inc. | Method for forming silicon-containing materials during a photoexcitation deposition process |
US20060286774A1 (en) | 2005-06-21 | 2006-12-21 | Applied Materials. Inc. | Method for forming silicon-containing materials during a photoexcitation deposition process |
JP4752349B2 (ja) | 2005-06-23 | 2011-08-17 | 大日本印刷株式会社 | パターン形成体およびその製造方法 |
US20070006557A1 (en) * | 2005-07-05 | 2007-01-11 | Treatyou Medical Technology Co. | Filter system for respiratory mask and method of implementing the filter system |
JP2007019145A (ja) | 2005-07-06 | 2007-01-25 | Tokyo Electron Ltd | シリコン酸窒化膜の形成方法、シリコン酸窒化膜の形成装置及びプログラム |
JP2007043147A (ja) | 2005-07-29 | 2007-02-15 | Samsung Electronics Co Ltd | 原子層蒸着工程を用いたシリコンリッチナノクリスタル構造物の形成方法及びこれを用いた不揮発性半導体装置の製造方法 |
US7132353B1 (en) | 2005-08-02 | 2006-11-07 | Applied Materials, Inc. | Boron diffusion barrier by nitrogen incorporation in spacer dielectrics |
JP4305427B2 (ja) | 2005-08-02 | 2009-07-29 | 東京エレクトロン株式会社 | 成膜方法、成膜装置及び記憶媒体 |
KR100652427B1 (ko) | 2005-08-22 | 2006-12-01 | 삼성전자주식회사 | Ald에 의한 도전성 폴리실리콘 박막 형성 방법 및 이를이용한 반도체 소자의 제조 방법 |
US7402534B2 (en) * | 2005-08-26 | 2008-07-22 | Applied Materials, Inc. | Pretreatment processes within a batch ALD reactor |
KR100734748B1 (ko) | 2005-09-08 | 2007-07-03 | 주식회사 아이피에스 | 인시튜 질화물(in-situ nitride) 박막증착방법 |
US20070087581A1 (en) | 2005-09-09 | 2007-04-19 | Varian Semiconductor Equipment Associates, Inc. | Technique for atomic layer deposition |
US20070065576A1 (en) | 2005-09-09 | 2007-03-22 | Vikram Singh | Technique for atomic layer deposition |
US20070065578A1 (en) | 2005-09-21 | 2007-03-22 | Applied Materials, Inc. | Treatment processes for a batch ALD reactor |
US7524743B2 (en) | 2005-10-13 | 2009-04-28 | Varian Semiconductor Equipment Associates, Inc. | Conformal doping apparatus and method |
US8034727B2 (en) | 2005-10-14 | 2011-10-11 | Nec Corporation | Method and apparatus for manufacturing semiconductor devices |
US20070119371A1 (en) | 2005-11-04 | 2007-05-31 | Paul Ma | Apparatus and process for plasma-enhanced atomic layer deposition |
US7897217B2 (en) | 2005-11-18 | 2011-03-01 | Tokyo Electron Limited | Method and system for performing plasma enhanced atomic layer deposition |
WO2007064376A2 (en) | 2005-11-28 | 2007-06-07 | Honeywell International Inc. | Organometallic precursors and related intermediates for deposition processes, their production and methods of use |
US7592251B2 (en) | 2005-12-08 | 2009-09-22 | Micron Technology, Inc. | Hafnium tantalum titanium oxide films |
US7615438B2 (en) | 2005-12-08 | 2009-11-10 | Micron Technology, Inc. | Lanthanide yttrium aluminum oxide dielectric films |
US7829159B2 (en) | 2005-12-16 | 2010-11-09 | Asm Japan K.K. | Method of forming organosilicon oxide film and multilayer resist structure |
JP2007180362A (ja) | 2005-12-28 | 2007-07-12 | Toshiba Corp | 半導体装置 |
JP4434149B2 (ja) | 2006-01-16 | 2010-03-17 | 東京エレクトロン株式会社 | 成膜方法、成膜装置及び記憶媒体 |
US20070218701A1 (en) | 2006-03-15 | 2007-09-20 | Asm Japan K.K. | Semiconductor-processing apparatus with rotating susceptor |
US20070215036A1 (en) | 2006-03-15 | 2007-09-20 | Hyung-Sang Park | Method and apparatus of time and space co-divided atomic layer deposition |
US7959985B2 (en) | 2006-03-20 | 2011-06-14 | Tokyo Electron Limited | Method of integrating PEALD Ta-containing films into Cu metallization |
US7601651B2 (en) | 2006-03-31 | 2009-10-13 | Applied Materials, Inc. | Method to improve the step coverage and pattern loading for dielectric films |
WO2007118026A2 (en) | 2006-03-31 | 2007-10-18 | Applied Materials, Inc. | Step coverage and pattern loading for dielectric films |
US7645484B2 (en) | 2006-03-31 | 2010-01-12 | Tokyo Electron Limited | Method of forming a metal carbide or metal carbonitride film having improved adhesion |
JP4929811B2 (ja) | 2006-04-05 | 2012-05-09 | 東京エレクトロン株式会社 | プラズマ処理装置 |
JP2007287890A (ja) | 2006-04-14 | 2007-11-01 | Kochi Univ Of Technology | 絶縁膜の成膜方法、半導体装置の製法、プラズマcvd装置 |
JP2007287889A (ja) | 2006-04-14 | 2007-11-01 | Kochi Univ Of Technology | 絶縁膜の成膜方法、半導体装置の製法 |
US7524750B2 (en) | 2006-04-17 | 2009-04-28 | Applied Materials, Inc. | Integrated process modulation (IPM) a novel solution for gapfill with HDP-CVD |
US7727413B2 (en) | 2006-04-24 | 2010-06-01 | Applied Materials, Inc. | Dual plasma source process using a variable frequency capacitively coupled source to control plasma ion density |
FR2900276B1 (fr) | 2006-04-25 | 2008-09-12 | St Microelectronics Sa | Depot peald d'un materiau a base de silicium |
KR100756809B1 (ko) | 2006-04-28 | 2007-09-07 | 주식회사 하이닉스반도체 | 반도체 소자 및 그 제조 방법 |
US7798096B2 (en) | 2006-05-05 | 2010-09-21 | Applied Materials, Inc. | Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool |
US8530361B2 (en) * | 2006-05-23 | 2013-09-10 | Air Products And Chemicals, Inc. | Process for producing silicon and oxide films from organoaminosilane precursors |
US7498273B2 (en) | 2006-05-30 | 2009-03-03 | Applied Materials, Inc. | Formation of high quality dielectric films of silicon dioxide for STI: usage of different siloxane-based precursors for harp II—remote plasma enhanced deposition processes |
US20070281106A1 (en) | 2006-05-30 | 2007-12-06 | Applied Materials, Inc. | Process chamber for dielectric gapfill |
JP5543203B2 (ja) | 2006-06-16 | 2014-07-09 | フジフィルム マニュファクチャリング ユーロプ ビー.ブイ. | 大気圧グロー放電プラズマを使用した原子層堆積の方法及び装置 |
US8232176B2 (en) | 2006-06-22 | 2012-07-31 | Applied Materials, Inc. | Dielectric deposition and etch back processes for bottom up gapfill |
US20080014759A1 (en) | 2006-07-12 | 2008-01-17 | Applied Materials, Inc. | Method for fabricating a gate dielectric layer utilized in a gate structure |
KR100791334B1 (ko) | 2006-07-26 | 2008-01-07 | 삼성전자주식회사 | 원자층 증착법을 이용한 금속 산화막 형성 방법 |
US7435684B1 (en) | 2006-07-26 | 2008-10-14 | Novellus Systems, Inc. | Resolving of fluorine loading effect in the vacuum chamber |
US7601648B2 (en) | 2006-07-31 | 2009-10-13 | Applied Materials, Inc. | Method for fabricating an integrated gate dielectric layer for field effect transistors |
US7592231B2 (en) | 2006-08-01 | 2009-09-22 | United Microelectronics Corp. | MOS transistor and fabrication thereof |
US7749879B2 (en) | 2006-08-03 | 2010-07-06 | Micron Technology, Inc. | ALD of silicon films on germanium |
JP4929932B2 (ja) | 2006-09-01 | 2012-05-09 | 東京エレクトロン株式会社 | 成膜方法、成膜装置及び記憶媒体 |
KR101057877B1 (ko) | 2006-09-19 | 2011-08-19 | 도쿄엘렉트론가부시키가이샤 | 플라즈마 세정 방법 및 플라즈마 cvd 방법 |
JP5258229B2 (ja) | 2006-09-28 | 2013-08-07 | 東京エレクトロン株式会社 | 成膜方法および成膜装置 |
TWI462179B (zh) | 2006-09-28 | 2014-11-21 | Tokyo Electron Ltd | 用以形成氧化矽膜之成膜方法與裝置 |
US7939455B2 (en) | 2006-09-29 | 2011-05-10 | Tokyo Electron Limited | Method for forming strained silicon nitride films and a device containing such films |
JP2010506408A (ja) | 2006-10-05 | 2010-02-25 | エーエスエム アメリカ インコーポレイテッド | 金属シリケート膜のald |
US20080087890A1 (en) | 2006-10-16 | 2008-04-17 | Micron Technology, Inc. | Methods to form dielectric structures in semiconductor devices and resulting devices |
US20080139003A1 (en) | 2006-10-26 | 2008-06-12 | Shahid Pirzada | Barrier coating deposition for thin film devices using plasma enhanced chemical vapor deposition process |
US20080124484A1 (en) * | 2006-11-08 | 2008-05-29 | Asm Japan K.K. | Method of forming ru film and metal wiring structure |
KR100816759B1 (ko) | 2006-11-09 | 2008-03-25 | 삼성전자주식회사 | 가변저항 스토리지를 갖는 비휘발성 기억 장치 및 동작방법 |
US7749574B2 (en) * | 2006-11-14 | 2010-07-06 | Applied Materials, Inc. | Low temperature ALD SiO2 |
US20080119098A1 (en) * | 2006-11-21 | 2008-05-22 | Igor Palley | Atomic layer deposition on fibrous materials |
US20080142483A1 (en) | 2006-12-07 | 2008-06-19 | Applied Materials, Inc. | Multi-step dep-etch-dep high density plasma chemical vapor deposition processes for dielectric gapfills |
CN101657564A (zh) | 2007-02-12 | 2010-02-24 | 莲花应用技术有限责任公司 | 用原子层沉积制备复合材料 |
US20080213479A1 (en) | 2007-02-16 | 2008-09-04 | Tokyo Electron Limited | SiCN film formation method and apparatus |
US20080207007A1 (en) | 2007-02-27 | 2008-08-28 | Air Products And Chemicals, Inc. | Plasma Enhanced Cyclic Chemical Vapor Deposition of Silicon-Containing Films |
KR100805018B1 (ko) | 2007-03-23 | 2008-02-20 | 주식회사 하이닉스반도체 | 반도체 소자의 제조 방법 |
US7651961B2 (en) | 2007-03-30 | 2010-01-26 | Tokyo Electron Limited | Method for forming strained silicon nitride films and a device containing such films |
US7776733B2 (en) | 2007-05-02 | 2010-08-17 | Tokyo Electron Limited | Method for depositing titanium nitride films for semiconductor manufacturing |
US20080274626A1 (en) * | 2007-05-04 | 2008-11-06 | Frederique Glowacki | Method for depositing a high quality silicon dielectric film on a germanium substrate with high quality interface |
KR101457656B1 (ko) | 2007-05-17 | 2014-11-04 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체장치의 제조방법, 표시장치의 제조방법, 반도체장치,표시장치 및 전자기기 |
JP2008294260A (ja) | 2007-05-25 | 2008-12-04 | Sony Corp | 半導体装置とその製造方法並びに積層絶縁膜とその形成方法 |
JP5151260B2 (ja) | 2007-06-11 | 2013-02-27 | 東京エレクトロン株式会社 | 成膜方法及び成膜装置 |
KR100956210B1 (ko) | 2007-06-19 | 2010-05-04 | 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 | 금속 실리콘 질화물 박막의 플라즈마 강화 사이클릭증착방법 |
US8017182B2 (en) | 2007-06-21 | 2011-09-13 | Asm International N.V. | Method for depositing thin films by mixed pulsed CVD and ALD |
US7638170B2 (en) | 2007-06-21 | 2009-12-29 | Asm International N.V. | Low resistivity metal carbonitride thin film deposition by atomic layer deposition |
US7566627B2 (en) * | 2007-06-29 | 2009-07-28 | Texas Instruments Incorporated | Air gap in integrated circuit inductor fabrication |
EP2011898B1 (en) | 2007-07-03 | 2021-04-07 | Beneq Oy | Method in depositing metal oxide materials |
US7572052B2 (en) | 2007-07-10 | 2009-08-11 | Applied Materials, Inc. | Method for monitoring and calibrating temperature in semiconductor processing chambers |
US20090041952A1 (en) | 2007-08-10 | 2009-02-12 | Asm Genitech Korea Ltd. | Method of depositing silicon oxide films |
JP5098882B2 (ja) | 2007-08-31 | 2012-12-12 | 東京エレクトロン株式会社 | プラズマ処理装置 |
US7633125B2 (en) | 2007-08-31 | 2009-12-15 | Intel Corporation | Integration of silicon boron nitride in high voltage and small pitch semiconductors |
US20090065896A1 (en) | 2007-09-07 | 2009-03-12 | Seoul National University Industry Foundation | CAPACITOR HAVING Ru ELECTRODE AND TiO2 DIELECTRIC LAYER FOR SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME |
TWI489547B (zh) | 2007-09-18 | 2015-06-21 | Air Liquide | 形成含矽膜的方法 |
US8119424B2 (en) | 2007-09-28 | 2012-02-21 | Everspin Technologies, Inc. | Electronic device including a magneto-resistive memory device and a process for forming the electronic device |
CA2701412C (en) * | 2007-10-01 | 2017-06-20 | Kovio, Inc. | Profile engineered thin film devices and structures |
US7867923B2 (en) | 2007-10-22 | 2011-01-11 | Applied Materials, Inc. | High quality silicon oxide films by remote plasma CVD from disilane precursors |
KR20090057665A (ko) | 2007-12-03 | 2009-06-08 | 주식회사 아이피에스 | 금속을 함유하는 박막 형성방법 |
US7651959B2 (en) | 2007-12-03 | 2010-01-26 | Asm Japan K.K. | Method for forming silazane-based dielectric film |
US20090155606A1 (en) | 2007-12-13 | 2009-06-18 | Asm Genitech Korea Ltd. | Methods of depositing a silicon nitride film |
KR101221598B1 (ko) | 2007-12-18 | 2013-01-14 | 삼성전자주식회사 | 유전막 패턴 형성 방법 및 이를 이용한 비휘발성 메모리소자 제조방법. |
US7964515B2 (en) | 2007-12-21 | 2011-06-21 | Tokyo Electron Limited | Method of forming high-dielectric constant films for semiconductor devices |
KR20090067576A (ko) | 2007-12-21 | 2009-06-25 | 삼성전자주식회사 | 트렌치의 매립 방법 및 이를 이용한 소자 분리막 구조물의형성 방법 |
JP4935684B2 (ja) | 2008-01-12 | 2012-05-23 | 東京エレクトロン株式会社 | 成膜方法及び成膜装置 |
JP4935687B2 (ja) | 2008-01-19 | 2012-05-23 | 東京エレクトロン株式会社 | 成膜方法及び成膜装置 |
JP5297048B2 (ja) | 2008-01-28 | 2013-09-25 | 三菱重工業株式会社 | プラズマ処理方法及びプラズマ処理装置 |
TWI388078B (zh) | 2008-01-30 | 2013-03-01 | Osram Opto Semiconductors Gmbh | 電子組件之製造方法及電子組件 |
JP4959733B2 (ja) * | 2008-02-01 | 2012-06-27 | 東京エレクトロン株式会社 | 薄膜形成方法、薄膜形成装置及びプログラム |
US20090203197A1 (en) | 2008-02-08 | 2009-08-13 | Hiroji Hanawa | Novel method for conformal plasma immersed ion implantation assisted by atomic layer deposition |
US8153348B2 (en) | 2008-02-20 | 2012-04-10 | Applied Materials, Inc. | Process sequence for formation of patterned hard mask film (RFP) without need for photoresist or dry etch |
JP5405031B2 (ja) | 2008-03-06 | 2014-02-05 | AzエレクトロニックマテリアルズIp株式会社 | シリカ質膜の製造に用いる浸漬用溶液およびそれを用いたシリカ質膜の製造法 |
JP2009260151A (ja) | 2008-04-18 | 2009-11-05 | Tokyo Electron Ltd | 金属ドープ層の形成方法、成膜装置及び記憶媒体 |
US8383525B2 (en) | 2008-04-25 | 2013-02-26 | Asm America, Inc. | Plasma-enhanced deposition process for forming a metal oxide thin film and related structures |
KR101436564B1 (ko) | 2008-05-07 | 2014-09-02 | 한국에이에스엠지니텍 주식회사 | 비정질 실리콘 박막 형성 방법 |
US20090286402A1 (en) | 2008-05-13 | 2009-11-19 | Applied Materials, Inc | Method for critical dimension shrink using conformal pecvd films |
US8133797B2 (en) | 2008-05-16 | 2012-03-13 | Novellus Systems, Inc. | Protective layer to enable damage free gap fill |
US7622369B1 (en) | 2008-05-30 | 2009-11-24 | Asm Japan K.K. | Device isolation technology on semiconductor substrate |
US8298628B2 (en) | 2008-06-02 | 2012-10-30 | Air Products And Chemicals, Inc. | Low temperature deposition of silicon-containing films |
JP5190307B2 (ja) | 2008-06-29 | 2013-04-24 | 東京エレクトロン株式会社 | 成膜方法、成膜装置及び記憶媒体 |
JP2011529126A (ja) * | 2008-07-24 | 2011-12-01 | コヴィオ インコーポレイテッド | アルミニウムインク及びその製造方法、アルミニウムインクを堆積する方法、並びにアルミニウムインクの印刷及び/又は堆積により形成されたフィルム |
US8373254B2 (en) | 2008-07-29 | 2013-02-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure for reducing integrated circuit corner peeling |
ES2335638B1 (es) | 2008-08-01 | 2011-02-09 | Cosentino, S.A. | Articulo en forma de tabla o losa fabricado de aglomerado petreo recubierto con laminas delgadas transparentes de tio2 o zno mediante tecnicas de deposicion en via seca con alta resistencia frente a la degradacion solar. |
US8129555B2 (en) | 2008-08-12 | 2012-03-06 | Air Products And Chemicals, Inc. | Precursors for depositing silicon-containing films and methods for making and using same |
US8357617B2 (en) | 2008-08-22 | 2013-01-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of patterning a metal gate of semiconductor device |
US20100051578A1 (en) | 2008-09-04 | 2010-03-04 | Shuo-Che Chang | Method for fabricating an integrated circuit |
US8726838B2 (en) * | 2010-03-31 | 2014-05-20 | Intermolecular, Inc. | Combinatorial plasma enhanced deposition and etch techniques |
JP2010103484A (ja) | 2008-09-29 | 2010-05-06 | Adeka Corp | 半導体デバイス、その製造装置及び製造方法 |
US20100081274A1 (en) * | 2008-09-29 | 2010-04-01 | Tokyo Electron Limited | Method for forming ruthenium metal cap layers |
US8303780B2 (en) | 2008-09-30 | 2012-11-06 | Tdk Corporation | Method of forming mask for dry etching and manufacturing method of magnetic head using the same method |
US7981808B2 (en) * | 2008-09-30 | 2011-07-19 | Freescale Semiconductor, Inc. | Method of forming a gate dielectric by in-situ plasma |
US20100081293A1 (en) | 2008-10-01 | 2010-04-01 | Applied Materials, Inc. | Methods for forming silicon nitride based film or silicon carbon based film |
JP5233562B2 (ja) | 2008-10-04 | 2013-07-10 | 東京エレクトロン株式会社 | 成膜方法及び成膜装置 |
US8591661B2 (en) | 2009-12-11 | 2013-11-26 | Novellus Systems, Inc. | Low damage photoresist strip method for low-K dielectrics |
US7910491B2 (en) | 2008-10-16 | 2011-03-22 | Applied Materials, Inc. | Gapfill improvement with low etch rate dielectric liners |
US7745346B2 (en) | 2008-10-17 | 2010-06-29 | Novellus Systems, Inc. | Method for improving process control and film conformality of PECVD film |
US8252653B2 (en) | 2008-10-21 | 2012-08-28 | Applied Materials, Inc. | Method of forming a non-volatile memory having a silicon nitride charge trap layer |
KR20110084275A (ko) | 2008-10-27 | 2011-07-21 | 어플라이드 머티어리얼스, 인코포레이티드 | 삼원 화합물의 기상 증착 방법 |
US8580993B2 (en) | 2008-11-12 | 2013-11-12 | Air Products And Chemicals, Inc. | Amino vinylsilane precursors for stressed SiN films |
US8647722B2 (en) | 2008-11-14 | 2014-02-11 | Asm Japan K.K. | Method of forming insulation film using plasma treatment cycles |
US10378106B2 (en) | 2008-11-14 | 2019-08-13 | Asm Ip Holding B.V. | Method of forming insulation film by modified PEALD |
US9336925B1 (en) * | 2008-11-26 | 2016-05-10 | Thin Film Electronics Asa | Siloxanes, doped siloxanes, methods for their synthesis, compositions containing the same, and films formed therefrom |
CN101736326B (zh) | 2008-11-26 | 2011-08-10 | 中微半导体设备(上海)有限公司 | 电容耦合型等离子体处理反应器 |
US20100136313A1 (en) | 2008-12-01 | 2010-06-03 | Asm Japan K.K. | Process for forming high resistivity thin metallic film |
GB0823565D0 (en) | 2008-12-24 | 2009-01-28 | Oxford Instr Plasma Technology | Signal generating system |
JP5293168B2 (ja) | 2008-12-25 | 2013-09-18 | 富士通株式会社 | レジスト組成物及びそれを用いた半導体装置の製造方法 |
JP2010183069A (ja) | 2009-01-07 | 2010-08-19 | Hitachi Kokusai Electric Inc | 半導体装置の製造方法及び基板処理装置 |
US8142862B2 (en) | 2009-01-21 | 2012-03-27 | Asm Japan K.K. | Method of forming conformal dielectric film having Si-N bonds by PECVD |
US7919416B2 (en) | 2009-01-21 | 2011-04-05 | Asm Japan K.K. | Method of forming conformal dielectric film having Si-N bonds by PECVD |
US7972980B2 (en) | 2009-01-21 | 2011-07-05 | Asm Japan K.K. | Method of forming conformal dielectric film having Si-N bonds by PECVD |
JP2010177652A (ja) | 2009-02-02 | 2010-08-12 | Toshiba Corp | 半導体装置の製造方法 |
JP5298938B2 (ja) | 2009-02-24 | 2013-09-25 | 住友電気工業株式会社 | 半導体素子の製造方法 |
JP4792097B2 (ja) | 2009-03-25 | 2011-10-12 | 株式会社東芝 | 不揮発性記憶装置及びその製造方法 |
US8197915B2 (en) | 2009-04-01 | 2012-06-12 | Asm Japan K.K. | Method of depositing silicon oxide film by plasma enhanced atomic layer deposition at low temperature |
US9159571B2 (en) | 2009-04-16 | 2015-10-13 | Lam Research Corporation | Tungsten deposition process using germanium-containing reducing agent |
JP2010251654A (ja) | 2009-04-20 | 2010-11-04 | Elpida Memory Inc | 成膜方法および半導体装置の製造方法 |
JP5408483B2 (ja) | 2009-07-03 | 2014-02-05 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
US20110008972A1 (en) * | 2009-07-13 | 2011-01-13 | Daniel Damjanovic | Methods for forming an ald sio2 film |
JP2011023718A (ja) | 2009-07-15 | 2011-02-03 | Asm Japan Kk | PEALDによってSi−N結合を有するストレス調節された誘電体膜を形成する方法 |
JP2011023576A (ja) | 2009-07-16 | 2011-02-03 | Hitachi Kokusai Electric Inc | 半導体装置の製造方法及び基板処理装置 |
JP2011023655A (ja) | 2009-07-17 | 2011-02-03 | Shimadzu Corp | 窒化シリコン薄膜成膜方法および窒化シリコン薄膜成膜装置 |
US7989365B2 (en) | 2009-08-18 | 2011-08-02 | Applied Materials, Inc. | Remote plasma source seasoning |
US8169024B2 (en) | 2009-08-18 | 2012-05-01 | International Business Machines Corporation | Method of forming extremely thin semiconductor on insulator (ETSOI) device without ion implantation |
KR101680899B1 (ko) | 2009-09-02 | 2016-11-29 | 소니 주식회사 | 고체 촬상 장치 및 그 제조 방법 |
JP5569153B2 (ja) | 2009-09-02 | 2014-08-13 | ソニー株式会社 | 固体撮像装置およびその製造方法 |
KR101732187B1 (ko) | 2009-09-03 | 2017-05-02 | 에이에스엠 저펜 가부시기가이샤 | 플라즈마 강화된 화학기상 증착법에 의해 규소-질소 결합을 갖는 등각성 유전체 막을 형성하는 방법 |
US8072800B2 (en) | 2009-09-15 | 2011-12-06 | Grandis Inc. | Magnetic element having perpendicular anisotropy with enhanced efficiency |
US8278224B1 (en) | 2009-09-24 | 2012-10-02 | Novellus Systems, Inc. | Flowable oxide deposition using rapid delivery of process gases |
JP2011067744A (ja) | 2009-09-25 | 2011-04-07 | Dowa Holdings Co Ltd | 水素製造用触媒、水素製造方法、水素製造装置および燃料電池システム |
US8076241B2 (en) | 2009-09-30 | 2011-12-13 | Tokyo Electron Limited | Methods for multi-step copper plating on a continuous ruthenium film in recessed features |
US8173554B2 (en) | 2009-10-14 | 2012-05-08 | Asm Japan K.K. | Method of depositing dielectric film having Si-N bonds by modified peald method |
US8946672B2 (en) | 2009-11-11 | 2015-02-03 | Nec Corporation | Resistance changing element capable of operating at low voltage, semiconductor device, and method for forming resistance change element |
US8691675B2 (en) | 2009-11-25 | 2014-04-08 | International Business Machines Corporation | Vapor phase deposition processes for doping silicon |
WO2011072143A2 (en) | 2009-12-09 | 2011-06-16 | Novellus Systems, Inc. | Novel gap fill integration |
US20110143548A1 (en) | 2009-12-11 | 2011-06-16 | David Cheung | Ultra low silicon loss high dose implant strip |
US8662053B2 (en) | 2009-12-22 | 2014-03-04 | Cummins Inc. | Pre-combustion device for an internal combustion engine |
JP2013515376A (ja) | 2009-12-22 | 2013-05-02 | アプライド マテリアルズ インコーポレイテッド | 連続プラズマを用いるpecvd(プラズマ化学気相堆積)マルチステップ処理 |
US8501629B2 (en) | 2009-12-23 | 2013-08-06 | Applied Materials, Inc. | Smooth SiConi etch for silicon-containing films |
US20110159202A1 (en) | 2009-12-29 | 2011-06-30 | Asm Japan K.K. | Method for Sealing Pores at Surface of Dielectric Layer by UV Light-Assisted CVD |
JP2011166106A (ja) | 2010-01-13 | 2011-08-25 | Renesas Electronics Corp | 半導体装置の製造方法及び半導体装置 |
US8703625B2 (en) | 2010-02-04 | 2014-04-22 | Air Products And Chemicals, Inc. | Methods to prepare silicon-containing films |
JP5514129B2 (ja) | 2010-02-15 | 2014-06-04 | 東京エレクトロン株式会社 | 成膜方法、成膜装置、および成膜装置の使用方法 |
US9608119B2 (en) * | 2010-03-02 | 2017-03-28 | Micron Technology, Inc. | Semiconductor-metal-on-insulator structures, methods of forming such structures, and semiconductor devices including such structures |
JP5742185B2 (ja) | 2010-03-19 | 2015-07-01 | 東京エレクトロン株式会社 | 成膜装置、成膜方法、回転数の最適化方法及び記憶媒体 |
MX2012010322A (es) * | 2010-03-30 | 2012-09-28 | Huntsman Int Llc | Metodo para producir una composicion de isocianato modificado con uretonimina. |
EP2730676A1 (en) | 2010-04-01 | 2014-05-14 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for deposition of silicon nitride layers |
US8993460B2 (en) | 2013-01-10 | 2015-03-31 | Novellus Systems, Inc. | Apparatuses and methods for depositing SiC/SiCN films via cross-metathesis reactions with organometallic co-reactants |
US8956983B2 (en) | 2010-04-15 | 2015-02-17 | Novellus Systems, Inc. | Conformal doping via plasma activated atomic layer deposition and conformal film deposition |
US9257274B2 (en) | 2010-04-15 | 2016-02-09 | Lam Research Corporation | Gapfill of variable aspect ratio features with a composite PEALD and PECVD method |
US9892917B2 (en) | 2010-04-15 | 2018-02-13 | Lam Research Corporation | Plasma assisted atomic layer deposition of multi-layer films for patterning applications |
US9373500B2 (en) | 2014-02-21 | 2016-06-21 | Lam Research Corporation | Plasma assisted atomic layer deposition titanium oxide for conformal encapsulation and gapfill applications |
US9076646B2 (en) | 2010-04-15 | 2015-07-07 | Lam Research Corporation | Plasma enhanced atomic layer deposition with pulsed plasma exposure |
US8728956B2 (en) | 2010-04-15 | 2014-05-20 | Novellus Systems, Inc. | Plasma activated conformal film deposition |
US8637411B2 (en) | 2010-04-15 | 2014-01-28 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
US9997357B2 (en) | 2010-04-15 | 2018-06-12 | Lam Research Corporation | Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors |
US9611544B2 (en) | 2010-04-15 | 2017-04-04 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
US9287113B2 (en) | 2012-11-08 | 2016-03-15 | Novellus Systems, Inc. | Methods for depositing films on sensitive substrates |
US9390909B2 (en) | 2013-11-07 | 2016-07-12 | Novellus Systems, Inc. | Soft landing nanolaminates for advanced patterning |
EP3664165B1 (en) | 2010-05-21 | 2022-06-29 | ASM International N.V. | Method of manufacturing a solar cell |
US8912353B2 (en) | 2010-06-02 | 2014-12-16 | Air Products And Chemicals, Inc. | Organoaminosilane precursors and methods for depositing films comprising same |
US8343881B2 (en) | 2010-06-04 | 2013-01-01 | Applied Materials, Inc. | Silicon dioxide layer deposited with BDEAS |
KR101710658B1 (ko) | 2010-06-18 | 2017-02-27 | 삼성전자 주식회사 | 관통 전극을 갖는 3차원 적층 구조의 반도체 장치 및 그 반도체 장치의 시그널링 방법 |
DE102010027606A1 (de) * | 2010-07-20 | 2012-01-26 | Magna Car Top Systems Gmbh | Dichtungsvorrichtung für ein Faltverdeck |
US20120021252A1 (en) | 2010-07-22 | 2012-01-26 | Synos Technology, Inc. | Treating Surface of Substrate Using Inert Gas Plasma in Atomic Layer Deposition |
US8669185B2 (en) | 2010-07-30 | 2014-03-11 | Asm Japan K.K. | Method of tailoring conformality of Si-containing film |
KR101147728B1 (ko) | 2010-08-02 | 2012-05-25 | 주식회사 유진테크 | 사이클릭 박막 증착 방법 |
US8394466B2 (en) | 2010-09-03 | 2013-03-12 | Asm Japan K.K. | Method of forming conformal film having si-N bonds on high-aspect ratio pattern |
US20120064682A1 (en) | 2010-09-14 | 2012-03-15 | Jang Kyung-Tae | Methods of Manufacturing Three-Dimensional Semiconductor Memory Devices |
US9685320B2 (en) | 2010-09-23 | 2017-06-20 | Lam Research Corporation | Methods for depositing silicon oxide |
US8524612B2 (en) | 2010-09-23 | 2013-09-03 | Novellus Systems, Inc. | Plasma-activated deposition of conformal films |
US8101531B1 (en) | 2010-09-23 | 2012-01-24 | Novellus Systems, Inc. | Plasma-activated deposition of conformal films |
CN102412180A (zh) * | 2010-09-25 | 2012-04-11 | 中国科学院微电子研究所 | 一种soi衬底和具有soi衬底的半导体器件及其形成方法 |
US20120213940A1 (en) | 2010-10-04 | 2012-08-23 | Applied Materials, Inc. | Atomic layer deposition of silicon nitride using dual-source precursor and interleaved plasma |
TW201224190A (en) | 2010-10-06 | 2012-06-16 | Applied Materials Inc | Atomic layer deposition of photoresist materials and hard mask precursors |
KR101815527B1 (ko) | 2010-10-07 | 2018-01-05 | 삼성전자주식회사 | 반도체 소자 및 그 제조 방법 |
WO2012057889A1 (en) | 2010-10-29 | 2012-05-03 | Applied Materials, Inc. | Atomic layer deposition film with tunable refractive index and absorption coefficient and methods of making |
EP3839335A1 (en) | 2010-11-10 | 2021-06-23 | Nanosys, Inc. | Quantum dot films, lighting devices, and lighting methods |
US20120149213A1 (en) * | 2010-12-09 | 2012-06-14 | Lakshminarayana Nittala | Bottom up fill in high aspect ratio trenches |
US20120164834A1 (en) | 2010-12-22 | 2012-06-28 | Kevin Jennings | Variable-Density Plasma Processing of Semiconductor Substrates |
US8901016B2 (en) | 2010-12-28 | 2014-12-02 | Asm Japan K.K. | Method of forming metal oxide hardmask |
JP2012160671A (ja) | 2011-02-02 | 2012-08-23 | Toshiba Corp | 磁気ランダムアクセスメモリ及びその製造方法 |
JP5661523B2 (ja) | 2011-03-18 | 2015-01-28 | 東京エレクトロン株式会社 | 成膜方法及び成膜装置 |
US20120255612A1 (en) * | 2011-04-08 | 2012-10-11 | Dieter Pierreux | Ald of metal oxide film using precursor pairs with different oxidants |
US8647993B2 (en) | 2011-04-11 | 2014-02-11 | Novellus Systems, Inc. | Methods for UV-assisted conformal film deposition |
WO2012148439A1 (en) | 2011-04-25 | 2012-11-01 | William Marsh Rice University | Direct growth of graphene films on non-catalyst surfaces |
EP3929326A3 (en) * | 2011-06-03 | 2022-03-16 | Versum Materials US, LLC | Compositions and processes for depositing carbon-doped silicon-containing films |
WO2013015412A1 (ja) * | 2011-07-28 | 2013-01-31 | 凸版印刷株式会社 | 積層体、ガスバリアフィルム、及びこれらの製造方法 |
US9006802B2 (en) | 2011-08-18 | 2015-04-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device manufacturing methods and methods of forming insulating material layers |
JP5551129B2 (ja) | 2011-09-07 | 2014-07-16 | 株式会社東芝 | 記憶装置 |
JP2013058521A (ja) | 2011-09-07 | 2013-03-28 | Toshiba Corp | 記憶装置及びその製造方法 |
TW201319299A (zh) | 2011-09-13 | 2013-05-16 | Applied Materials Inc | 用於低溫電漿輔助沉積的活化矽前驅物 |
WO2013039881A2 (en) | 2011-09-13 | 2013-03-21 | Applied Materials, Inc. | Carbosilane precursors for low temperature film deposition |
WO2013043330A1 (en) | 2011-09-23 | 2013-03-28 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
US8809169B2 (en) | 2011-09-30 | 2014-08-19 | Tokyo Electron Limited | Multi-layer pattern for alternate ALD processes |
JP6043546B2 (ja) | 2011-10-21 | 2016-12-14 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム |
KR20140093973A (ko) | 2011-11-02 | 2014-07-29 | 우베 고산 가부시키가이샤 | 트리스(디알킬아미드)알루미늄 화합물, 및 그것을 이용한 알루미늄-함유 박막의 제조 방법 |
US9318431B2 (en) | 2011-11-04 | 2016-04-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuit having a MOM capacitor and method of making same |
KR20130056608A (ko) | 2011-11-22 | 2013-05-30 | 에스케이하이닉스 주식회사 | 상변화 메모리 장치 및 그의 제조방법 |
WO2013095396A1 (en) | 2011-12-20 | 2013-06-27 | Intel Corporation | Conformal low temperature hermetic dielectric diffusion barriers |
US8592328B2 (en) | 2012-01-20 | 2013-11-26 | Novellus Systems, Inc. | Method for depositing a chlorine-free conformal sin film |
JP5843318B2 (ja) | 2012-02-14 | 2016-01-13 | 株式会社Adeka | Ald法用窒化アルミニウム系薄膜形成用原料及び該薄膜の製造方法 |
US8728955B2 (en) | 2012-02-14 | 2014-05-20 | Novellus Systems, Inc. | Method of plasma activated deposition of a conformal film on a substrate surface |
US8846484B2 (en) | 2012-02-15 | 2014-09-30 | Intermolecular, Inc. | ReRAM stacks preparation by using single ALD or PVD chamber |
US8846536B2 (en) * | 2012-03-05 | 2014-09-30 | Novellus Systems, Inc. | Flowable oxide film with tunable wet etch rate |
JP5547763B2 (ja) | 2012-03-16 | 2014-07-16 | 三井造船株式会社 | プラズマ生成方法、この方法を用いた薄膜形成方法及びプラズマ生成装置 |
JP6125247B2 (ja) | 2012-03-21 | 2017-05-10 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム |
US8952765B2 (en) | 2012-03-23 | 2015-02-10 | Mks Instruments, Inc. | System and methods of bimodal automatic power and frequency tuning of RF generators |
US8956704B2 (en) | 2012-05-21 | 2015-02-17 | Novellus Systems, Inc. | Methods for modulating step coverage during conformal film deposition |
US8716149B2 (en) | 2012-05-29 | 2014-05-06 | GlobalFoundries, Inc. | Methods for fabricating integrated circuits having improved spacers |
US10211310B2 (en) * | 2012-06-12 | 2019-02-19 | Novellus Systems, Inc. | Remote plasma based deposition of SiOC class of films |
US9234276B2 (en) * | 2013-05-31 | 2016-01-12 | Novellus Systems, Inc. | Method to obtain SiC class of films of desired composition and film properties |
US8962078B2 (en) | 2012-06-22 | 2015-02-24 | Tokyo Electron Limited | Method for depositing dielectric films |
US8975184B2 (en) * | 2012-07-27 | 2015-03-10 | Novellus Systems, Inc. | Methods of improving tungsten contact resistance in small critical dimension features |
US20140030444A1 (en) | 2012-07-30 | 2014-01-30 | Novellus Systems, Inc. | High pressure, high power plasma activated conformal film deposition |
WO2014035933A1 (en) * | 2012-08-28 | 2014-03-06 | Applied Materials, Inc. | Methods and apparatus for forming tantalum silicate layers on germanium or iii-v semiconductor devices |
KR20140028992A (ko) * | 2012-08-31 | 2014-03-10 | 에스케이하이닉스 주식회사 | 텅스텐 게이트전극을 구비한 반도체장치 및 그 제조 방법 |
US8795774B2 (en) | 2012-09-23 | 2014-08-05 | Rohm And Haas Electronic Materials Llc | Hardmask |
US9355839B2 (en) | 2012-10-23 | 2016-05-31 | Lam Research Corporation | Sub-saturated atomic layer deposition and conformal film deposition |
SG2013083241A (en) | 2012-11-08 | 2014-06-27 | Novellus Systems Inc | Conformal film deposition for gapfill |
US20140199854A1 (en) * | 2013-01-16 | 2014-07-17 | United Microelectronics Corp. | Method of forming film on different surfaces |
US8846550B1 (en) | 2013-03-14 | 2014-09-30 | Asm Ip Holding B.V. | Silane or borane treatment of metal thin films |
US20140271097A1 (en) | 2013-03-15 | 2014-09-18 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
US9123651B2 (en) * | 2013-03-27 | 2015-09-01 | Lam Research Corporation | Dense oxide coated component of a plasma processing chamber and method of manufacture thereof |
US9012336B2 (en) | 2013-04-08 | 2015-04-21 | Applied Materials, Inc. | Method for conformal treatment of dielectric films using inductively coupled plasma |
US9136340B2 (en) * | 2013-06-05 | 2015-09-15 | Taiwan Semiconductor Manufacturing Co., Ltd. | Doped protection layer for contact formation |
CN104347421A (zh) | 2013-08-07 | 2015-02-11 | 中芯国际集成电路制造(北京)有限公司 | 鳍式场效应管的形成方法 |
KR102081195B1 (ko) | 2013-08-28 | 2020-02-25 | 삼성전자주식회사 | 반도체 장치 및 이의 제조 방법 |
US9564361B2 (en) | 2013-09-13 | 2017-02-07 | Qualcomm Incorporated | Reverse self aligned double patterning process for back end of line fabrication of a semiconductor device |
US10453675B2 (en) * | 2013-09-20 | 2019-10-22 | Versum Materials Us, Llc | Organoaminosilane precursors and methods for depositing films comprising same |
US9368348B2 (en) | 2013-10-01 | 2016-06-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Self-aligned patterning process |
US20150109814A1 (en) | 2013-10-17 | 2015-04-23 | Nanosys, Inc. | Light emitting diode (led) devices |
US20150118863A1 (en) * | 2013-10-25 | 2015-04-30 | Lam Research Corporation | Methods and apparatus for forming flowable dielectric films having low porosity |
KR20210020175A (ko) | 2013-11-13 | 2021-02-23 | 레르 리키드 쏘시에떼 아노님 뿌르 레뜌드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 | 5 족 전이 금속-함유 필름의 증착을 위한 5 족 전이 금속-함유 화합물 |
US10179947B2 (en) | 2013-11-26 | 2019-01-15 | Asm Ip Holding B.V. | Method for forming conformal nitrided, oxidized, or carbonized dielectric film by atomic layer deposition |
TWI480415B (zh) | 2013-11-27 | 2015-04-11 | Ind Tech Res Inst | 多模式薄膜沉積設備以及薄膜沉積方法 |
US20150159271A1 (en) | 2013-12-09 | 2015-06-11 | Veeco Ald Inc. | Deposition of non-isostructural layers for flexible substrate |
US9214334B2 (en) | 2014-02-18 | 2015-12-15 | Lam Research Corporation | High growth rate process for conformal aluminum nitride |
CN103928396A (zh) | 2014-04-08 | 2014-07-16 | 上海华力微电子有限公司 | 扩大沟槽开口的方法 |
US9305837B2 (en) | 2014-04-10 | 2016-04-05 | Taiwan Semiconductor Manufacturing Company Limited | Semiconductor arrangement and formation thereof |
US9543375B2 (en) | 2014-06-27 | 2017-01-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | MIM/RRAM structure with improved capacitance and reduced leakage current |
TWI735912B (zh) | 2014-08-22 | 2021-08-11 | 美商蘭姆研究公司 | 在一狀態期間中的次脈動用之電漿系統、電漿工具、射頻產生器、控制器、及方法 |
US9589790B2 (en) | 2014-11-24 | 2017-03-07 | Lam Research Corporation | Method of depositing ammonia free and chlorine free conformal silicon nitride film |
US9564312B2 (en) | 2014-11-24 | 2017-02-07 | Lam Research Corporation | Selective inhibition in atomic layer deposition of silicon-containing films |
US9620377B2 (en) | 2014-12-04 | 2017-04-11 | Lab Research Corporation | Technique to deposit metal-containing sidewall passivation for high aspect ratio cylinder etch |
CN105719954B (zh) | 2014-12-04 | 2018-09-07 | 中芯国际集成电路制造(上海)有限公司 | 半导体结构的形成方法 |
US9496169B2 (en) | 2015-02-12 | 2016-11-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming an interconnect structure having an air gap and structure thereof |
US10566187B2 (en) | 2015-03-20 | 2020-02-18 | Lam Research Corporation | Ultrathin atomic layer deposition film accuracy thickness control |
US9502238B2 (en) | 2015-04-03 | 2016-11-22 | Lam Research Corporation | Deposition of conformal films by atomic layer deposition and atomic layer etch |
US9406693B1 (en) | 2015-04-20 | 2016-08-02 | Sandisk Technologies Llc | Selective removal of charge-trapping layer for select gate transistors and dummy memory cells in 3D stacked memory |
US9502428B1 (en) | 2015-04-29 | 2016-11-22 | Sandisk Technologies Llc | Sidewall assisted process for wide and narrow line formation |
US9299830B1 (en) | 2015-05-07 | 2016-03-29 | Texas Instruments Incorporated | Multiple shielding trench gate fet |
US20160329206A1 (en) | 2015-05-08 | 2016-11-10 | Lam Research Corporation | Methods of modulating residual stress in thin films |
US10378107B2 (en) | 2015-05-22 | 2019-08-13 | Lam Research Corporation | Low volume showerhead with faceplate holes for improved flow uniformity |
US9653571B2 (en) | 2015-06-15 | 2017-05-16 | International Business Machines Corporation | Freestanding spacer having sub-lithographic lateral dimension and method of forming same |
US10526701B2 (en) | 2015-07-09 | 2020-01-07 | Lam Research Corporation | Multi-cycle ALD process for film uniformity and thickness profile modulation |
CN106373880B (zh) | 2015-07-22 | 2021-05-25 | 联华电子股份有限公司 | 半导体元件及其形成方法 |
US9523148B1 (en) | 2015-08-25 | 2016-12-20 | Asm Ip Holdings B.V. | Process for deposition of titanium oxynitride for use in integrated circuit fabrication |
US9768272B2 (en) | 2015-09-30 | 2017-09-19 | International Business Machines Corporation | Replacement gate FinFET process using a sit process to define source/drain regions, gate spacers and a gate cavity |
KR102250656B1 (ko) | 2015-10-08 | 2021-05-11 | 삼성전자주식회사 | 반도체 소자의 패턴 형성 방법 |
US9455138B1 (en) * | 2015-11-10 | 2016-09-27 | Asm Ip Holding B.V. | Method for forming dielectric film in trenches by PEALD using H-containing gas |
US9627221B1 (en) | 2015-12-28 | 2017-04-18 | Asm Ip Holding B.V. | Continuous process incorporating atomic layer etching |
US9773643B1 (en) | 2016-06-30 | 2017-09-26 | Lam Research Corporation | Apparatus and method for deposition and etch in gap fill |
US10062563B2 (en) | 2016-07-01 | 2018-08-28 | Lam Research Corporation | Selective atomic layer deposition with post-dose treatment |
US10037884B2 (en) | 2016-08-31 | 2018-07-31 | Lam Research Corporation | Selective atomic layer deposition for gapfill using sacrificial underlayer |
US10703915B2 (en) | 2016-09-19 | 2020-07-07 | Versum Materials Us, Llc | Compositions and methods for the deposition of silicon oxide films |
US10269559B2 (en) | 2017-09-13 | 2019-04-23 | Lam Research Corporation | Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer |
KR102251040B1 (ko) * | 2017-10-24 | 2021-05-12 | (주)덕산테코피아 | 아미노실란 전구체 화합물 및 이를 사용하는 박막 형성 방법 |
-
2015
- 2015-03-20 US US14/664,545 patent/US10566187B2/en active Active
-
2016
- 2016-03-17 KR KR1020160032037A patent/KR20160113014A/ko not_active IP Right Cessation
- 2016-03-18 TW TW105108365A patent/TWI718131B/zh active
- 2016-03-18 SG SG10201602127RA patent/SG10201602127RA/en unknown
- 2016-03-18 SG SG10201908096U patent/SG10201908096UA/en unknown
- 2016-03-21 CN CN201610160517.6A patent/CN105990108B/zh active Active
-
2019
- 2019-06-28 US US16/457,635 patent/US11101129B2/en active Active
-
2020
- 2020-01-10 US US16/740,075 patent/US11670503B2/en active Active
-
2021
- 2021-07-16 US US17/305,938 patent/US11646198B2/en active Active
- 2021-12-08 KR KR1020210174878A patent/KR20210152447A/ko not_active IP Right Cessation
-
2023
- 2023-03-22 US US18/188,325 patent/US20230298884A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7625820B1 (en) * | 2006-06-21 | 2009-12-01 | Novellus Systems, Inc. | Method of selective coverage of high aspect ratio structures with a conformal film |
CN101802984A (zh) * | 2007-10-22 | 2010-08-11 | 应用材料股份有限公司 | 在基板上形成氧化硅层的方法 |
CN103946963A (zh) * | 2011-11-18 | 2014-07-23 | 国际商业机器公司 | 在用于cmos器件的含锗沟道上对氧化硅和高k栅极电介质的无氧化锗的原子层沉积 |
Also Published As
Publication number | Publication date |
---|---|
TW201700786A (zh) | 2017-01-01 |
US20210343520A1 (en) | 2021-11-04 |
KR20210152447A (ko) | 2021-12-15 |
US11646198B2 (en) | 2023-05-09 |
US20230298884A1 (en) | 2023-09-21 |
TWI718131B (zh) | 2021-02-11 |
US20160276148A1 (en) | 2016-09-22 |
US20190378710A1 (en) | 2019-12-12 |
US10566187B2 (en) | 2020-02-18 |
US11101129B2 (en) | 2021-08-24 |
KR20160113014A (ko) | 2016-09-28 |
US20200152446A1 (en) | 2020-05-14 |
CN105990108A (zh) | 2016-10-05 |
US11670503B2 (en) | 2023-06-06 |
SG10201908096UA (en) | 2019-10-30 |
SG10201602127RA (en) | 2016-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105990108B (zh) | 超薄原子层沉积膜厚度的精密控制 | |
KR102694640B1 (ko) | 저온 ald 막들을 위한 챔버 언더코팅 준비 방법 | |
CN111247269B (zh) | 介电膜的几何选择性沉积 | |
CN108425100B (zh) | 氧化硅的选择性沉积 | |
CN109937467B (zh) | 用于高模数ALD SiO2间隔物的方法 | |
US9865455B1 (en) | Nitride film formed by plasma-enhanced and thermal atomic layer deposition process | |
CN107680903B (zh) | 用于半导体图案化应用的掺杂ald膜 | |
CN107799390B (zh) | 用于半导体图案化应用的高干法蚀刻速率材料 | |
US9502238B2 (en) | Deposition of conformal films by atomic layer deposition and atomic layer etch | |
US9214333B1 (en) | Methods and apparatuses for uniform reduction of the in-feature wet etch rate of a silicon nitride film formed by ALD | |
KR20180103018A (ko) | 촉매 제어를 사용한 실리콘 옥사이드 상의 실리콘 나이트라이드의 선택적 증착 | |
CN112368804A (zh) | 含金属硬掩模薄膜的选择性生长 | |
CN115428122A (zh) | 接缝减轻和用于间隙填充的整合式衬垫 | |
CN114245832A (zh) | 原子层沉积期间的膜特性的原位控制 | |
KR20170021208A (ko) | 반도체 디바이스에서 막들을 치밀화하는 방법 | |
CN115398032A (zh) | 原子层沉积过程中的损失预防 | |
US20220384186A1 (en) | Methods to enable seamless high quality gapfill | |
CN116137931A (zh) | 减少半导体设备中的层内电容 | |
TW202340510A (zh) | 用於針對低溫前驅物改進保形性的原子層沉積脈衝序列工程 | |
CN118786512A (zh) | 表面抑制原子层沉积 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |