KR101436564B1 - 비정질 실리콘 박막 형성 방법 - Google Patents

비정질 실리콘 박막 형성 방법 Download PDF

Info

Publication number
KR101436564B1
KR101436564B1 KR1020080042367A KR20080042367A KR101436564B1 KR 101436564 B1 KR101436564 B1 KR 101436564B1 KR 1020080042367 A KR1020080042367 A KR 1020080042367A KR 20080042367 A KR20080042367 A KR 20080042367A KR 101436564 B1 KR101436564 B1 KR 101436564B1
Authority
KR
South Korea
Prior art keywords
thin film
semiconductor substrate
silicon thin
plasma
supplying
Prior art date
Application number
KR1020080042367A
Other languages
English (en)
Other versions
KR20090116433A (ko
Inventor
김종수
박형상
유용민
권학용
윤태호
Original Assignee
한국에이에스엠지니텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에이에스엠지니텍 주식회사 filed Critical 한국에이에스엠지니텍 주식회사
Priority to KR1020080042367A priority Critical patent/KR101436564B1/ko
Priority to US12/433,629 priority patent/US8076242B2/en
Publication of KR20090116433A publication Critical patent/KR20090116433A/ko
Application granted granted Critical
Publication of KR101436564B1 publication Critical patent/KR101436564B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

비정질 실리콘 박막 형성 방법을 제공한다. 상기 박막 형성 방법은 반도체 기판 상에 실리콘 소스를 공급하는 제1 단계, 상기 반도체 기판 상에 H2 가스를 공급하고, 플라스마를 여기시켜 상기 실리콘 소스에서 리간드를 제거하여 실리콘 박막을 형성하는 제2 단계, 및 상기 실리콘 박막이 형성된 상기 반도체 기판 상에 퍼지 가스를 공급하는 제3 단계를 포함한다. 여기서, 상기 제 1 단계와 상기 제2 단계는 동시에 진행된다.
실리콘 소스, 플라스마, 원자층 증착

Description

비정질 실리콘 박막 형성 방법{Forming method of amorphous silicone thin film}
본 발명은 실리콘 박막 형성 방법에 관한 것이다.
반도체 집적기술의 발달로 인하여 고순도, 고품질의 박막을 증착시키는 공정은 반도체 제조공정 중에서 중요한 부분을 차지하게 되었다. 박막형성의 대표적인 방법으로 화학 기상 증착(Chemical Vapor Deposition, CVD)법과 물리 기상 증착(Physical Vapor Deposition, PVD)법이 있다.
스퍼터링(sputtering)법 등의 물리 기상 증착법은 형성된 박막의 단차피복성(step coverage)이 나쁘기 때문에 요철이 있는 표면에 균일한 두께의 막을 형성하는 데에는 사용할 수 없다.
화학 증착법은 가열된 기판의 표면 위에서 기체 상태의 물질들이 반응하고, 그 반응으로 생성된 화합물이 기판 표면에 증착되는 방법이다. 화학 기상 증착법은 물리 기상 증착법에 비하여 단차 피복성이 좋고, 박막이 증착되는 기판의 손상이 적고, 박막의 증착 비용이 적게 들며, 박막을 대량 생산할 수 있기 때문에 많이 적용되고 있다.
단차가 높은 구조에서 소자 격리를 위해 실리콘 산화막을 채워주어야 하는데, 실리콘 산화막의 밀도가 낮아 원하는 결과를 얻기 힘들다. 그래서, 스핀 온 글래스(Spin on glass, SOG) 공정 전에 단차 피복성이 우수하고, 치밀한 비정질 실리콘 박막을 형성한 후 SOG공정을 진행하여 열처리를 하게 되면 비정질의 실리콘이 실리콘 산화막으로 상변태를 유발하여 매우 치밀한 실리콘 산화막으로 소자 격리를 할 수 있다.
SixHy, SixHyClz 또는 SixCly 계의 전구체를 이용하여 실리콘 박막을 증착할 때, 기존의 저압 화학 기상 증착법(Low pressure chemical vapor deposition, LPCVD)을 이용하면 반응에 필요한 온도가 상대적으로 높기 때문에 일반적으로 비정질 보다는 다결정질 박막이 얻어지게 되면서 표면의 거칠기 또한 커지는 경향이 있다. 플라스마 CVD 공정을 이용하는 경우에는 보다 낮은 온도에서 증착이 가능하고, 비정질 실리콘 박막을 얻을 수 있으나, 단차비가 큰 미세 패턴에서는 높은 단차 피복도를 얻기가 어려운 단점이 있다.
한편, 원자층 증착법(Atomic layer deposition, ALD)을 이용한 방법은 저압 화학 기상 증착법의 경우와 마찬가지로 상대적으로 400도 미만의 저온에서 공정을 수행하기가 어려워서 낮은 열수지(thermal budget)를 요구하는 공정에는 적용하기 어렵다.
플라스마 강화 원자층 증착법(Plasma enhanced atomic layer deposition)을 이용하면 보다 낮은 온도에서 증착이 가능하나, 이 경우에도 전구체의 흡착이 잘 이루어지지 않으면, 충분한 증착 속도를 얻기 어렵거나, 증착이 되지 않는다. 실리 콘 박막은 단원자 성분으로 이루어져 있어서, 표면에서 화학 그룹간의 교환반응이 일어나기 어렵고, 따라서 화학 흡착을 일으키기 어렵다.
예를 들어 헥사클로로디실란(Hexachlorodisilane, HCDS) 전구체를 표면에 흡착시키기 위해서는 표면에서 교환반응이 일어나야 하는데, SiO2나 SiN과는 달리 Si만을 증착할 때는 기판 표면에 교환반응을 제공해주는 리간드가 없어서 흡착이 잘 되지 않는다. 그런데, 헥사클로로디실란과 H2 플라스마를 반응시키면, HCl이 부산물로 얻어지면서 Si를 증착시킬 수 있는 것으로 알려져 있다. 그러나, 원자층 증착 방식을 이용하는 경우에는 기판상에 헥사클로로디실란(HCDS) 분자의 흡착이 어려워 Si 박막이 제대로 형성되지 않는 문제가 있다.
따라서, 본 발명이 해결하고자 하는 과제는 비정질 실리콘 박막을 형성하기 위해 실리콘 소스가 반도체 기판에 잘 흡착되어 증착이 이루어지도록 하는 비정질 실리콘 박막 형성 방법을 제공하는데 있다.
본 발명의 일 실시예에 따른 실리콘 박막 형성 방법은 반도체 기판 상에 실리콘 소스를 공급하는 제1 단계, 상기 반도체 기판 상에 H2 가스를 공급하고, 플라스마를 여기시켜 상기 실리콘 소스에서 리간드를 제거하여 실리콘 박막을 형성하는 제2 단계, 및 상기 실리콘 박막이 형성된 상기 반도체 기판 상에 퍼지 가스를 공급하는 제3 단계를 포함한다. 여기서, 상기 제1 단계와 상기 제2 단계는 동시에 일어나는 것을 특징으로 한다.
상기 제1 단계 내지 상기 제3 단계는 적어도 2회 이상 반복될 수 있다.
본 발명의 다른 실시예에 따른 실리콘 박막 형성 방법은 반도체 기판상에 실리콘 소스를 공급하는 제1 단계, 상기 반도체 기판 상에 H2 가스를 공급하고, 플라스마를 여기시켜 상기 반도체 기판 상에 흡착층을 형성하는 제2 단계, 상기 흡착층이 형성된 상기 반도체 기판 상에 퍼지 가스를 공급하는 제3 단계, 상기 반도체 기판 상에 H2 가스를 공급하며, 상기 흡착층에서 리간드를 제거하여 실리콘 박막을 형성하는 제4 단계, 및 상기 실리콘 박막이 형성된 상기 반도체 기판 상에 퍼지 가스를 공급하는 제5 단계를 포함한다. 여기서, 상기 제1 단계와 상기 제2 단계는 동시에 일어나는 것을 특징으로 한다.
상기 제4 단계에서는 H2 가스를 공급하는 것과 함께 플라스마를 여기시킬 수 있다.
상기 제1 단계 내지 상기 제5 단계는 적어도 2회 이상 반복할 수 있다.
본 발명의 또 다른 실시예에 따른 박막 형성 방법은 반도체 기판 상에 실리콘 소스를 공급하는 제1 단계, 고주파 플라스마를 인가하여 상기 실리콘 소스를 활성화시킴으로써 흡착층을 형성하는 제2 단계, 상기 흡착층이 형성된 상기 반도체 기판 상에 퍼지 가스를 공급하는 제3 단계, 상기 흡착층이 형성된 상기 반도체 기판 상에 H2 가스를 공급하여 실리콘 박막을 형성하는 제4 단계, 및 상기 실리콘 박막이 형성된 상기 반도체 기판 상에 퍼지 가스를 공급하는 제5 단계를 포함한다. 여기서, 상기 제1 단계 및 상기 제2 단계는 동시에 일어나는 것을 특징으로 할 수 있다.
상기 제4 단계에서 H2 가스를 공급하는 것과 함께 플라스마를 여기시킬 수 있다.
상기 제1 단계 내지 상기 제5 단계는 적어도 2회 이상 반복할 수 있다.
상기 실리콘 소스는 헥사클로로디실란(haxachlorodisilane, HCDS)일 수 있다.
이와 같이 본 발명의 실시예에 따르면, 반도체 기판 상에 실리콘 소스의 공급과 동시에 플라스마를 여기시키고, 후속하여 공급되는 H2와 반응을 시킴으로써 헥사클로로디실란(hexachlorodisilane, HCDS) 분자가 반도체 기판에 잘 흡착될 수 있고, 균일한 두께의 박막을 형성할 수 있다.
첨부한 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 도면들에 있어서, 층 및 영역들의 두께는 명확성을 기하기 위하여 과장된 것이다. 또한, 층이 다른 층 또는 기판 "상"에 있다고 언급되는 경우에 그것은 다른 층 또는 기판 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 층이 개재될 수도 있다. 명세서 전체에 걸쳐서 동일한 참조번호로 표시된 부분들은 동일한 구성요소들을 의미한다.
도 1은 본 발명의 일실시예에 따른 비정질 실리콘 박막 형성 방법을 설명하기 위한 그래프이다.
도 1을 참조하면, 반도체 기판 상에 Si 원소를 포함하는 Si 전구체를 T1의 시간 동안 공급한다. 이와 동시에 상기 반도체 기판 상에 H2 가스를 공급하며 고주파 플라스마(RF plasma)를 여기시켜, Si 원소를 포함하는 Si 전구체에서 기상 혹은 표면 흡착 반응으로 리간드를 제거하여 비결정질 실리콘 박막을 형성할 수 있다.
Si 전구체는 SixHy, SixHyClz 또는 SixCly 계의 전구체를 이용할 수 있다. 예를 들어, 헥사클로로디실란(hexachlorodisilane, HCDS)과 H2 플라스마를 반응시키면, HCl이 부산물로 얻어지면서 Si를 증착시킬 수 있다. 여기서, Si 전구체는 박막의 구성원소가 되는 실리콘 소스이다.
T1 시간 동안 Si 전구체, H2 가스를 공급한 후, 플라스마 인가를 중단하고 T2 시간 동안 상기 비정질 실리콘 박막이 형성된 상기 반도체 기판 상에 퍼지 가스를 공급하여 잔여 물질을 배출할 수 있다.
이 때, 비정질 실리콘 박막을 형성하는 것은 300도 이하의 온도에서 수행될 수 있다.
T1 및 T2 시간 동안 일어나는 상기 과정을 적어도 2회 이상 반복 진행함으로써 원하는 두께의 박막을 형성할 수 있다.
도 2는 본 발명의 다른 실시예에 따른 비정질 실리콘 박막 형성 방법을 설명하기 위한 그래프이다.
도 2를 참조하면, 반도체 기판 상에 실리콘 소스에 해당하는 Si 전구체를 T1 시간 동안 공급할 수 있다. 이와 동시에 상기 반도체 기판 상에 H2 가스를 공급하고, 플라스마를 여기시켜 상기 반도체 기판 상에 흡착층을 형성할 수 있다. 여기서, 흡착층이란 Si 전구체가 리간드를 여전히 포함한 상태로 반도체 기판에 물리적 또는 화학적으로 결합되어 있는 상태를 말한다.
Si 전구체는 SixHy, SixHyClz 또는 SixCly 계의 전구체를 이용할 수 있다. 예를 들어, 헥사클로로디실란(hexachlorodisilane, HCDS)과 H2 플라스마를 반응시키면, HCl이 부산물로 얻어지면서 Si를 증착시킬 수 있다.
T1 시간 동안 Si 전구체, H2 가스를 공급한 후, 플라스마 인가를 중단하고 T2 시간 동안 상기 흡착층이 형성된 상기 반도체 기판 상에 퍼지 가스를 공급하여 흡착되지 않은 잔여 물질을 제거, 배출할 수 있다.
T3 시간 동안, 상기 흡착층이 형성된 상기 반도체 기판 상에 H2 가스를 공급하며, 상기 흡착층에서 리간드를 제거하여 실리콘 박막을 형성할 수 있다.
T4 시간 동안, 상기 실리콘 박막이 형성된 상기 반도체 기판 상에 퍼지 가스를 공급하여 박막 형성 후 잔여 물질을 배출할 수 있다.
이 때, 비정질 실리콘 박막을 형성하는 것은 300도 이하의 온도에서 수행될 수 있다.
상기 T1 내지 T4 시간 동안 일어나는 상기 과정을 적어도 2회 이상 반복 진행함으로써 원하는 두께의 박막을 형성할 수 있다.
도 3은 본 발명의 또 다른 실시예에 따른 비정질 실리콘 박막 형성 방법을 설명하기 위한 그래프이다.
도 3을 참조하면, 반도체 기판 상에 실리콘 소스에 해당하는 Si 전구체를 T1 시간 동안 공급할 수 있다. 이와 동시에 상기 반도체 기판 상에 H2 가스를 공급하고, 플라스마를 여기시켜 상기 반도체 기판 상에 흡착층을 형성할 수 있다. 여기 서, 흡착층이란 Si 전구체가 리간드를 여전히 포함한 상태로 반도체 기판에 물리적 또는 화학적으로 결합되어 있는 상태를 말한다.
Si 전구체는 SixHy, SixHyClz 또는 SixCly 계의 전구체를 이용할 수 있다. 예를 들어, 헥사클로로디실란(hexachlorodisilane, HCDS)과 H2 플라스마를 반응시키면, HCl이 부산물로 얻어지면서 Si를 증착시킬 수 있다.
T1 시간 동안, Si 전구체, H2 가스를 공급한 후, 플라스마 인가를 중단하고 T2 시간 동안 상기 흡착층이 형성된 상기 반도체 기판 상에 퍼지 가스를 공급하여 흡착되지 않은 잔여 물질을 제거, 배출할 수 있다.
T3 시간 동안, 상기 흡착층이 형성된 상기 반도체 기판 상에 H2 가스를 공급함과 동시에 플라스마를 인가함으로써, 상기 흡착층에서 리간드를 제거하여 실리콘 박막을 형성할 수 있다.
T4 시간 동안, 상기 실리콘 박막이 형성된 상기 반도체 기판 상에 퍼지 가스를 공급하여 박막 형성 후 잔여 물질을 배출할 수 있다.
이 때, 비정질 실리콘 박막을 형성하는 것은 300도 이하의 온도에서 수행될 수 있다.
상기 T1 내지 T4 시간 동안 일어나는 상기 과정을 적어도 2회 이상 반복 진행함으로써 원하는 두께의 박막을 형성할 수 있다.
도 4는 본 발명의 또 다른 실시예에 따른 비정질 실리콘 박막 형성 방법을 설명하기 위한 그래프이다.
도 4를 참조하면, T1 시간 동안, 반도체 기판 상에 Si 원소를 포함하는 Si 전구체를 공급함과 동시에 고주파 플라스마를 인가하여, Si 원소를 포함하는 Si 전구체를 활성화시켜서 표면 흡착을 일으킬 수 있다. 이 때, 흡착층이 형성될 수 있다. 여기서, 흡착층이란 Si 전구체가 리간드를 여전히 포함한 상태로 반도체 기판에 물리적 또는 화학적으로 결합되어 있는 상태를 말한다.
Si 전구체는 SixHy, SixHyClz 또는 SixCly 계의 전구체를 이용할 수 있다. 예를 들어, 헥사클로로디실란(hexachlorodisilane, HCDS)과 H2 플라스마를 반응시키면, HCl이 부산물로 얻어지면서 Si를 증착시킬 수 있다.
T2 시간 동안, 상기 흡착층이 형성된 상기 반도체 기판 상에 퍼지 가스를 공급하여 흡착되지 않는 잔여 물질을 제거, 배출할 수 있다.
T3 시간 동안, 상기 흡착층이 형성된 상기 반도체 기판 상에 H2 가스를 공급함으로써, 상기 흡착층에서 리간드를 제거하여 실리콘 박막을 형성할 수 있다.
T4 시간 동안, 상기 실리콘 박막이 형성된 상기 반도체 기판 상에 퍼지 가스를 공급하여 박막 형성 후 잔여 물질을 제거, 배출할 수 있다.
이 때, 비정질 실리콘 박막을 형성하는 것은 300도 이하의 온도에서 수행될 수 있다.
상기 T1 내지 T4 시간 동안 일어나는 상기 과정을 적어도 2회 이상 반복 진행함으로써 원하는 두께의 박막을 형성할 수 있다.
도 5는 본 발명의 또 다른 실시예에 따른 비정질 실리콘 박막 형성 방법을 설명하기 위한 그래프이다.
도 5를 참조하면, T1 시간 동안, 반도체 기판 상에 Si 원소를 포함하는 Si 전구체를 공급함과 동시에 고주파 플라스마를 인가하여, Si 원소를 포함하는 Si 전구체를 활성화시켜서 표면 흡착을 일으킬 수 있다. 이 때, 흡착층이 형성될 수 있다. 여기서, 흡착층이란 Si 전구체가 리간드를 여전히 포함한 상태로 반도체 기판에 물리적 또는 화학적으로 결합되어 있는 상태를 말한다.
T2 시간 동안, 상기 흡착층이 형성된 상기 반도체 기판 상에 퍼지 가스를 공급하여 흡착되지 않는 잔여 물질을 제거, 배출할 수 있다.
T3 시간 동안, 상기 흡착층이 형성된 상기 반도체 기판 상에 H2 가스를 공급하며, 고주파 플라스마를 여기시킴으로써, 상기 흡착층에서 리간드를 제거하여 실리콘 박막을 형성할 수 있다.
T4 시간 동안, 상기 실리콘 박막이 형성된 상기 반도체 기판 상에 퍼지 가스를 공급하여 박막 형성 후 잔여 물질을 제거, 배출할 수 있다.
이 때, 비정질 실리콘 박막을 형성하는 것은 300도 이하의 온도에서 수행될 수 있다.
상기 T1 내지 T4 시간 동안 일어나는 상기 과정을 적어도 2회 이상 반복 진행함으로써 원하는 두께의 박막을 형성할 수 있다.
본 발명은 전구체와 플라즈마를 동시에 인가하는 것에 특징이 있으므로 일반적인 플라즈마 강화 원자층 증착법에서 전구체와 플라스마가 구분되어 공급되는 것 과 차이가 있다. 원자층 증착방법 또는 플라스마 강화 원자층 증착법으로는 형성하기 어려운 비정질 실리콘 박막을 본 발명을 이용하여 형성할 수 있다.
도 1은 본 발명의 일실시예에 따른 비정질 실리콘 박막 형성 방법을 설명하기 위한 그래프이다.
도 2는 본 발명의 다른 실시예에 따른 비정질 실리콘 박막 형성 방법을 설명하기 위한 그래프이다.
도 3은 본 발명의 또 다른 실시예에 따른 비정질 실리콘 박막 형성 방법을 설명하기 위한 그래프이다.
도 4는 본 발명의 또 다른 실시예에 따른 비정질 실리콘 박막 형성 방법을 설명하기 위한 그래프이다.
도 5는 본 발명의 또 다른 실시예에 따른 비정질 실리콘 박막 형성 방법을 설명하기 위한 그래프이다.

Claims (11)

  1. 삭제
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 반도체 기판 상에 실리콘 소스를 공급함과 동시에 고주파 플라스마를 인가하여 상기 실리콘 소스를 활성화시킴으로써 흡착층을 형성하는 제1 단계,
    상기 흡착층이 형성된 상기 반도체 기판 상에 퍼지 가스를 공급하는 제2 단계,
    상기 흡착층이 형성된 상기 반도체 기판 상에 H2 가스를 공급하여 실리콘 박막을 형성하는 제3 단계, 및
    상기 실리콘 박막이 형성된 상기 반도체 기판 상에 퍼지 가스를 공급하는 제4 단계를 포함하는 비정질 실리콘 박막 형성 방법.
  8. 제7항에서,
    상기 제1 단계 내지 상기 제4 단계는 적어도 2회 이상 반복하는 비정질 실리콘 박막 형성 방법.
  9. 제7항에서,
    상기 제3 단계에서는 H2 가스를 공급하는 것과 함께 플라스마를 여기시키는 비정질 실리콘 박막 형성 방법.
  10. 제9항에서,
    상기 제1 단계 내지 상기 제4 단계는 적어도 2회 이상 반복하는 비정질 실리콘 박막 형성 방법.
  11. 제7항에서,
    상기 실리콘 소스는 SixHy, SixHyClz 또는 SixCly 계의 전구체, 헥사클로로디실란(haxachlorodisilane, HCDS) 중 적어도 하나를 포함하는 비정질 실리콘 박막 형성 방법.
KR1020080042367A 2008-05-07 2008-05-07 비정질 실리콘 박막 형성 방법 KR101436564B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020080042367A KR101436564B1 (ko) 2008-05-07 2008-05-07 비정질 실리콘 박막 형성 방법
US12/433,629 US8076242B2 (en) 2008-05-07 2009-04-30 Methods of forming an amorphous silicon thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080042367A KR101436564B1 (ko) 2008-05-07 2008-05-07 비정질 실리콘 박막 형성 방법

Publications (2)

Publication Number Publication Date
KR20090116433A KR20090116433A (ko) 2009-11-11
KR101436564B1 true KR101436564B1 (ko) 2014-09-02

Family

ID=41266184

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080042367A KR101436564B1 (ko) 2008-05-07 2008-05-07 비정질 실리콘 박막 형성 방법

Country Status (2)

Country Link
US (1) US8076242B2 (ko)
KR (1) KR101436564B1 (ko)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5485772B2 (ja) 2010-03-31 2014-05-07 株式会社エンプラス マイクロ流路チップ及びマイクロ分析システム
US8637411B2 (en) 2010-04-15 2014-01-28 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US9257274B2 (en) 2010-04-15 2016-02-09 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method
US20110256734A1 (en) 2010-04-15 2011-10-20 Hausmann Dennis M Silicon nitride films and methods
US9892917B2 (en) 2010-04-15 2018-02-13 Lam Research Corporation Plasma assisted atomic layer deposition of multi-layer films for patterning applications
US9373500B2 (en) 2014-02-21 2016-06-21 Lam Research Corporation Plasma assisted atomic layer deposition titanium oxide for conformal encapsulation and gapfill applications
US9611544B2 (en) 2010-04-15 2017-04-04 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US9390909B2 (en) 2013-11-07 2016-07-12 Novellus Systems, Inc. Soft landing nanolaminates for advanced patterning
US8956983B2 (en) 2010-04-15 2015-02-17 Novellus Systems, Inc. Conformal doping via plasma activated atomic layer deposition and conformal film deposition
US9076646B2 (en) 2010-04-15 2015-07-07 Lam Research Corporation Plasma enhanced atomic layer deposition with pulsed plasma exposure
US9997357B2 (en) 2010-04-15 2018-06-12 Lam Research Corporation Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors
US8524612B2 (en) * 2010-09-23 2013-09-03 Novellus Systems, Inc. Plasma-activated deposition of conformal films
US8101531B1 (en) * 2010-09-23 2012-01-24 Novellus Systems, Inc. Plasma-activated deposition of conformal films
US9685320B2 (en) 2010-09-23 2017-06-20 Lam Research Corporation Methods for depositing silicon oxide
US8637410B2 (en) * 2011-04-08 2014-01-28 Applied Materials, Inc. Method for metal deposition using hydrogen plasma
US8647993B2 (en) 2011-04-11 2014-02-11 Novellus Systems, Inc. Methods for UV-assisted conformal film deposition
US8592328B2 (en) 2012-01-20 2013-11-26 Novellus Systems, Inc. Method for depositing a chlorine-free conformal sin film
KR102207992B1 (ko) 2012-10-23 2021-01-26 램 리써치 코포레이션 서브-포화된 원자층 증착 및 등각막 증착
WO2014073892A1 (ko) * 2012-11-07 2014-05-15 주식회사 유피케미칼 실리콘-함유 박막의 제조 방법
KR20140059107A (ko) 2012-11-07 2014-05-15 주식회사 유피케미칼 실리콘 질화물 박막 제조 방법
JP6538300B2 (ja) 2012-11-08 2019-07-03 ノベラス・システムズ・インコーポレーテッドNovellus Systems Incorporated 感受性基材上にフィルムを蒸着するための方法
SG2013083241A (en) 2012-11-08 2014-06-27 Novellus Systems Inc Conformal film deposition for gapfill
CN104163398B (zh) * 2013-05-17 2017-02-08 无锡华润上华半导体有限公司 半导体器件中深槽的填充结构及其填充方法
US20150064929A1 (en) * 2013-09-05 2015-03-05 United Microelectronics Corp. Method of gap filling
US9741918B2 (en) 2013-10-07 2017-08-22 Hypres, Inc. Method for increasing the integration level of superconducting electronics circuits, and a resulting circuit
KR102148336B1 (ko) * 2013-11-26 2020-08-27 삼성전자주식회사 표면 처리 방법, 반도체 제조 방법 및 이에 의해 제조된 반도체 장치
US9214334B2 (en) 2014-02-18 2015-12-15 Lam Research Corporation High growth rate process for conformal aluminum nitride
US9478438B2 (en) 2014-08-20 2016-10-25 Lam Research Corporation Method and apparatus to deposit pure titanium thin film at low temperature using titanium tetraiodide precursor
US9478411B2 (en) 2014-08-20 2016-10-25 Lam Research Corporation Method to tune TiOx stoichiometry using atomic layer deposited Ti film to minimize contact resistance for TiOx/Ti based MIS contact scheme for CMOS
US9564312B2 (en) 2014-11-24 2017-02-07 Lam Research Corporation Selective inhibition in atomic layer deposition of silicon-containing films
US10566187B2 (en) 2015-03-20 2020-02-18 Lam Research Corporation Ultrathin atomic layer deposition film accuracy thickness control
US9502238B2 (en) 2015-04-03 2016-11-22 Lam Research Corporation Deposition of conformal films by atomic layer deposition and atomic layer etch
JP6086942B2 (ja) 2015-06-10 2017-03-01 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
US10526701B2 (en) 2015-07-09 2020-01-07 Lam Research Corporation Multi-cycle ALD process for film uniformity and thickness profile modulation
TWI715645B (zh) * 2015-10-22 2021-01-11 美商應用材料股份有限公司 正形及縫隙填充非晶矽薄膜的沉積
US9773643B1 (en) 2016-06-30 2017-09-26 Lam Research Corporation Apparatus and method for deposition and etch in gap fill
US10062563B2 (en) 2016-07-01 2018-08-28 Lam Research Corporation Selective atomic layer deposition with post-dose treatment
US10037884B2 (en) 2016-08-31 2018-07-31 Lam Research Corporation Selective atomic layer deposition for gapfill using sacrificial underlayer
CN117293018A (zh) * 2017-07-24 2023-12-26 应用材料公司 改善在氧化硅上的超薄非晶硅膜的连续性的预处理方法
US10269559B2 (en) 2017-09-13 2019-04-23 Lam Research Corporation Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer
KR20190061872A (ko) 2017-11-28 2019-06-05 주식회사 원익아이피에스 비정질 실리콘막의 형성 방법
KR102551020B1 (ko) * 2018-02-19 2023-07-05 어플라이드 머티어리얼스, 인코포레이티드 두꺼운 막들에서 결정화의 개시를 중단하기 위해 스퍼터 식각을 사용하는 pvd 이산화티타늄 형성
JP2022519321A (ja) 2019-02-11 2022-03-22 アプライド マテリアルズ インコーポレイテッド パルス状にしたrfプラズマを介した膜形成
KR20210014483A (ko) 2019-07-30 2021-02-09 주식회사 원익아이피에스 비정질 실리콘막의 형성 방법
JP7065818B2 (ja) * 2019-10-28 2022-05-12 株式会社Kokusai Electric 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
CN110760925A (zh) * 2019-11-15 2020-02-07 常州时创能源科技有限公司 Pecvd淀积非晶硅薄膜的方法及其应用
JP2023146756A (ja) * 2022-03-29 2023-10-12 東京エレクトロン株式会社 基板処理方法、及び基板処理装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750415A (ja) * 1993-08-06 1995-02-21 Toshiba Corp 薄膜トランジスタの製造方法及び製造装置
KR20070055898A (ko) * 2005-11-28 2007-05-31 주식회사 에이이티 실리콘 박막의 원자층 증착 방법

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE393967B (sv) * 1974-11-29 1977-05-31 Sateko Oy Forfarande och for utforande av stroleggning mellan lagren i ett virkespaket
US4282267A (en) * 1979-09-20 1981-08-04 Western Electric Co., Inc. Methods and apparatus for generating plasmas
US5294286A (en) * 1984-07-26 1994-03-15 Research Development Corporation Of Japan Process for forming a thin film of silicon
GB2162207B (en) * 1984-07-26 1989-05-10 Japan Res Dev Corp Semiconductor crystal growth apparatus
US5693139A (en) * 1984-07-26 1997-12-02 Research Development Corporation Of Japan Growth of doped semiconductor monolayers
GB8516537D0 (en) * 1985-06-29 1985-07-31 Standard Telephones Cables Ltd Pulsed plasma apparatus
US5769950A (en) * 1985-07-23 1998-06-23 Canon Kabushiki Kaisha Device for forming deposited film
US4747367A (en) * 1986-06-12 1988-05-31 Crystal Specialties, Inc. Method and apparatus for producing a constant flow, constant pressure chemical vapor deposition
US4761269A (en) * 1986-06-12 1988-08-02 Crystal Specialties, Inc. Apparatus for depositing material on a substrate
US4851095A (en) * 1988-02-08 1989-07-25 Optical Coating Laboratory, Inc. Magnetron sputtering apparatus and process
US5130269A (en) * 1988-04-27 1992-07-14 Fujitsu Limited Hetero-epitaxially grown compound semiconductor substrate and a method of growing the same
JPH0824191B2 (ja) * 1989-03-17 1996-03-06 富士通株式会社 薄膜トランジスタ
US5549937A (en) * 1989-10-11 1996-08-27 U.S. Philips Corporation Method of plasma-activated reactive deposition of electrically conducting multicomponent material from a gas phase
JP2822536B2 (ja) 1990-02-14 1998-11-11 住友電気工業株式会社 立方晶窒化ホウ素薄膜の形成方法
US5071670A (en) * 1990-06-11 1991-12-10 Kelly Michael A Method for chemical vapor deposition under a single reactor vessel divided into separate reaction chambers each with its own depositing and exhausting means
US5225366A (en) * 1990-06-22 1993-07-06 The United States Of America As Represented By The Secretary Of The Navy Apparatus for and a method of growing thin films of elemental semiconductors
US5483919A (en) * 1990-08-31 1996-01-16 Nippon Telegraph And Telephone Corporation Atomic layer epitaxy method and apparatus
US5146465A (en) * 1991-02-01 1992-09-08 Apa Optics, Inc. Aluminum gallium nitride laser
US5356673A (en) * 1991-03-18 1994-10-18 Jet Process Corporation Evaporation system and method for gas jet deposition of thin film materials
US5242530A (en) 1991-08-05 1993-09-07 International Business Machines Corporation Pulsed gas plasma-enhanced chemical vapor deposition of silicon
US5291066A (en) * 1991-11-14 1994-03-01 General Electric Company Moisture-proof electrical circuit high density interconnect module and method for making same
US5458084A (en) * 1992-04-16 1995-10-17 Moxtek, Inc. X-ray wave diffraction optics constructed by atomic layer epitaxy
DE69328929T2 (de) * 1992-05-22 2000-11-02 Minnesota Mining & Mfg Ii-vi laserdioden mit durch atomlagen- und migrationsverstaerkte epitaxie aufgewachsenen quantum wells
US5278435A (en) * 1992-06-08 1994-01-11 Apa Optics, Inc. High responsivity ultraviolet gallium nitride detector
JPH0750690B2 (ja) * 1992-08-21 1995-05-31 日本電気株式会社 ハロゲン化物を用いる半導体結晶のエピタキシャル成長方法とその装置
US5443647A (en) * 1993-04-28 1995-08-22 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for depositing a refractory thin film by chemical vapor deposition
US5330610A (en) * 1993-05-28 1994-07-19 Martin Marietta Energy Systems, Inc. Method of digital epilaxy by externally controlled closed-loop feedback
JP3618110B2 (ja) * 1993-08-30 2005-02-09 株式会社デンソー エレクトロルミネッセンス素子の製法
JP3181171B2 (ja) * 1994-05-20 2001-07-03 シャープ株式会社 気相成長装置および気相成長方法
US5641984A (en) * 1994-08-19 1997-06-24 General Electric Company Hermetically sealed radiation imager
FI100409B (fi) * 1994-11-28 1997-11-28 Asm Int Menetelmä ja laitteisto ohutkalvojen valmistamiseksi
FI97730C (fi) * 1994-11-28 1997-02-10 Mikrokemia Oy Laitteisto ohutkalvojen valmistamiseksi
FI97731C (fi) * 1994-11-28 1997-02-10 Mikrokemia Oy Menetelmä ja laite ohutkalvojen valmistamiseksi
US6342277B1 (en) * 1996-08-16 2002-01-29 Licensee For Microelectronics: Asm America, Inc. Sequential chemical vapor deposition
US5916365A (en) * 1996-08-16 1999-06-29 Sherman; Arthur Sequential chemical vapor deposition
KR100652909B1 (ko) * 1998-03-06 2006-12-01 에이에스엠 아메리카, 인코포레이티드 하이 스텝 커버리지를 갖는 실리콘 증착 방법
KR100275738B1 (ko) * 1998-08-07 2000-12-15 윤종용 원자층 증착법을 이용한 박막 제조방법
US6200893B1 (en) * 1999-03-11 2001-03-13 Genus, Inc Radical-assisted sequential CVD
KR100273473B1 (ko) 1999-04-06 2000-11-15 이경수 박막 형성 방법
WO2000079576A1 (en) * 1999-06-19 2000-12-28 Genitech, Inc. Chemical deposition reactor and method of forming a thin film using the same
US6203613B1 (en) * 1999-10-19 2001-03-20 International Business Machines Corporation Atomic layer deposition with nitrate containing precursors
US20040224504A1 (en) * 2000-06-23 2004-11-11 Gadgil Prasad N. Apparatus and method for plasma enhanced monolayer processing
US7563715B2 (en) * 2005-12-05 2009-07-21 Asm International N.V. Method of producing thin films
JP4938962B2 (ja) * 2001-09-14 2012-05-23 エーエスエム インターナショナル エヌ.ヴェー. ゲッタリング反応物を用いるaldによる金属窒化物堆積
US7186630B2 (en) * 2002-08-14 2007-03-06 Asm America, Inc. Deposition of amorphous silicon-containing films
US7029995B2 (en) * 2003-06-13 2006-04-18 Asm America, Inc. Methods for depositing amorphous materials and using them as templates for epitaxial films by solid phase epitaxy
US6943097B2 (en) * 2003-08-19 2005-09-13 International Business Machines Corporation Atomic layer deposition of metallic contacts, gates and diffusion barriers
US7112513B2 (en) * 2004-02-19 2006-09-26 Micron Technology, Inc. Sub-micron space liner and densification process
KR100618879B1 (ko) * 2004-12-27 2006-09-01 삼성전자주식회사 게르마늄 전구체, 이를 이용하여 형성된 gst 박막,상기 박막의 제조 방법 및 상변화 메모리 소자
US7629267B2 (en) * 2005-03-07 2009-12-08 Asm International N.V. High stress nitride film and method for formation thereof
US20070049023A1 (en) * 2005-08-29 2007-03-01 Micron Technology, Inc. Zirconium-doped gadolinium oxide films
US8993055B2 (en) * 2005-10-27 2015-03-31 Asm International N.V. Enhanced thin film deposition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750415A (ja) * 1993-08-06 1995-02-21 Toshiba Corp 薄膜トランジスタの製造方法及び製造装置
KR20070055898A (ko) * 2005-11-28 2007-05-31 주식회사 에이이티 실리콘 박막의 원자층 증착 방법

Also Published As

Publication number Publication date
US20090278224A1 (en) 2009-11-12
KR20090116433A (ko) 2009-11-11
US8076242B2 (en) 2011-12-13

Similar Documents

Publication Publication Date Title
KR101436564B1 (ko) 비정질 실리콘 박막 형성 방법
US10699903B2 (en) Two-step process for gapfilling high aspect ratio trenches with amorphous silicon film
KR100385947B1 (ko) 원자층 증착 방법에 의한 박막 형성 방법
JP4403824B2 (ja) シリコン窒化膜の成膜方法
TWI462156B (zh) 循環沈積薄膜之方法
JP4189394B2 (ja) 縦型cvd装置を使用するcvd方法
KR100660890B1 (ko) Ald를 이용한 이산화실리콘막 형성 방법
CN108122736B (zh) 半导体装置的制造方法、基板处理装置以及存储介质
KR101202299B1 (ko) 반도체 장치의 제조 방법 및 기판 처리 장치
US8029858B2 (en) Methods of forming material on a substrate, and a method of forming a field effect transistor gate oxide on a substrate
JP2006257554A (ja) 薄膜蒸着方法
KR20090039083A (ko) 루테늄 막 형성 방법
US7344754B2 (en) Film formation method
KR102058106B1 (ko) 반도체 소자의 제조방법
TWI638903B (zh) 氮化膜的製造方法
TW202245926A (zh) 反應器系統及用於清潔反應器系統之方法
JP2006188751A (ja) インシチュ薄膜蒸着方法
JP7083890B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
US20060024964A1 (en) Method and apparatus of forming thin film using atomic layer deposition
KR101082921B1 (ko) 반도체 소자의 실리콘 산화막 형성 방법
KR100508755B1 (ko) 균일한 두께의 박막을 형성하기 위한 방법 및 이를 위한장치
KR20120070282A (ko) 실리콘카바이드 코팅방법
KR100422577B1 (ko) 원자층증착법에 의한 산화물박막의 형성 방법
KR100988730B1 (ko) 실리콘 나이트라이드의 원자층증착 방법
KR101334221B1 (ko) 다층금속박막 제조 방법 및 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20170804

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180730

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190729

Year of fee payment: 6