JP4929932B2 - 成膜方法、成膜装置及び記憶媒体 - Google Patents

成膜方法、成膜装置及び記憶媒体 Download PDF

Info

Publication number
JP4929932B2
JP4929932B2 JP2006237558A JP2006237558A JP4929932B2 JP 4929932 B2 JP4929932 B2 JP 4929932B2 JP 2006237558 A JP2006237558 A JP 2006237558A JP 2006237558 A JP2006237558 A JP 2006237558A JP 4929932 B2 JP4929932 B2 JP 4929932B2
Authority
JP
Japan
Prior art keywords
gas
film forming
film
forming method
supplying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006237558A
Other languages
English (en)
Other versions
JP2008060455A (ja
Inventor
一秀 長谷部
保華 周
好太 梅澤
健太郎 門永
皓翔 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2006237558A priority Critical patent/JP4929932B2/ja
Priority to US11/892,948 priority patent/US7964241B2/en
Priority to KR1020070088261A priority patent/KR101140069B1/ko
Priority to CN200710147867XA priority patent/CN101135046B/zh
Priority to TW096132665A priority patent/TWI518780B/zh
Publication of JP2008060455A publication Critical patent/JP2008060455A/ja
Application granted granted Critical
Publication of JP4929932B2 publication Critical patent/JP4929932B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/225Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/281Nitrides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/282Carbides, silicides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/283Borides, phosphides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd

Description

本発明は、半導体ウエハ等の被処理体に薄膜を形成する成膜方法、成膜装置及びこの成膜装置をコンピュータ制御するプログラムを記憶する記憶媒体に関する。
一般に、半導体集積回路を製造するためにはシリコン基板等よりなる半導体ウエハに対して、成膜処理、エッチング処理、酸化処理、拡散処理、改質処理、自然酸化膜の除去処理等の各種の処理が行なわれる。これらの処理を特許文献1等に開示されている縦型の、いわゆるバッチ式の熱処理装置にて行う場合には、まず、半導体ウエハを複数枚、例えば25枚程度収容できるカセットから、半導体ウエハを縦型のウエハボートへ移載してこれに多段に支持させる。このウエハボートは、例えばウエハサイズにもよるが30〜150枚程度のウエハを載置できる。このウエハボートは、排気可能な処理容器内にその下方より搬入(ロード)された後、処理容器内が気密に維持される。そして、処理ガスの流量、プロセス圧力、プロセス温度等の各種のプロセス条件を制御しつつ所定の熱処理が施される。
ここで上記半導体集積回路の特性を向上させる要因の1つとして、集積回路中の絶縁膜の特性を向上させることは重要である。上記集積回路中の絶縁膜としては、一般的にはSiO 、PSG(Phospho Silicate Glass)、P(プラズマ)−SiO、P(プラズマ)−SiN、SOG(Spin On Glass)、Si (シリコン窒化膜)等が用いられる。そして、特にシリコン窒化膜は、絶縁特性がシリコン酸化膜より比較的良好なこと、及びエッチングストッパ膜や層間絶縁膜としても十分に機能することから多用される傾向にある。また同様な理由でボロン窒化膜も用いられる傾向にある。
半導体ウエハの表面に上述したようなシリコン窒化膜を形成するには、成膜ガスとしてモノシラン(SiH )やジクロルシラン(SiH Cl )やヘキサクロロジシラン(Si Cl )、ビス ターシャル ブチルアミノシラン(BTBAS)や(t−C NH) SiH 等のシラン系ガスを用いて熱CVD(Chemical Vapor Deposition)により成膜する方法が知られている(例えば特許文献1参照)。
そして、上記絶縁膜の誘電率を小さくするためにシリコン窒化膜に不純物として例えばボロン(B)を添加して絶縁膜を形成するようにした提案もなされている(特許文献2)。
ところで、最近にあっては半導体集積回路の更なる高集積化及び高微細化の要求が強くなされており、回路素子の特性の向上を目的として半導体集積回路の製造工程における熱履歴も低減化することが望まれている。このような状況下において、縦型の、いわゆるバッチ式の縦型の処理装置においても、ウエハをそれ程の高温に晒さなくても目的とする処理が可能なことから、原料ガス等を間欠的に供給しながら原子レベルで1層〜数層ずつ、或いは分子レベルで1層〜数層ずつ繰り返し成膜する方法が知られている(特許文献3、4等)。このような成膜方法は一般的にはALD(Atomic Layer Deposition)と称されている。
ここで従来の成膜方法としては、シラン系ガスであるジクロロシラン(以下、「DCS」とも称す)と窒化ガスであるNH ガスとを用いてシリコン窒化膜(SiN)を形成している。具体的には、処理容器内に、DCSとNH ガスとを交互に間欠的に供給し、NH ガスを供給する時にRF(高周波)を印加してプラズマを立て、窒化反応を促進するようにしている。この場合、DCSを処理容器内へ供給することにより、ウエハ表面上にDCSが分子レベルで一層、或いは複数層吸着し、そして余分なDCSを不活性ガスパージ、或いは真空引きで排除した後、NH を供給してプラズマを立てることによって低温での窒化を促進して窒化膜を形成し、この一連の工程を繰り返し行っている。
特開平11−172439号公報 特開平2−93071号公報 特開平6−45256号公報 特開平11−87341号公報
ところで、上述したような絶縁膜を形成した後に、この上に別の薄膜を形成する場合には、上記絶縁膜の表面が有機物やパーティクル等の汚染物が付着している可能性があるので、この汚染物を除去する目的で、上記半導体ウエハを希フッ酸等のクリーニング液に浸漬させて上記絶縁膜の表面をエッチングすることによりこの表面を非常に薄く削り取り、これにより上記汚染物を除去するクリーニング処理が行われる場合がある。
しかしながら、この場合、上記絶縁膜を例えば760℃程度の高温の熱CVDで成膜した場合には、このような高温の熱CVDで形成した絶縁膜のクリーニング時のエッチングレートはかなり小さいので、クリーニング時にこの絶縁膜が過度に削り取られることがなく、膜厚の制御性が良い状態でクリーニング処理を行うことができるが、下地層に耐熱性の低い薄膜が形成されている場合には、高温の熱CVD処理を採用できない。
これに対して、上記絶縁膜を例えば400℃程度の低い温度でALD成膜した場合には、このような低温で形成した絶縁膜のクリーニング時のエッチングレートはかなり大きいので、クリーニング時にこの絶縁膜が過度に削り取られる場合が発生し、クリーニング処理時の膜厚の制御性が劣ってしまう、といった問題があった。またこのシリコン窒化膜は前述したようにエッチングストッパ膜や層間絶縁膜等の絶縁膜として使用する場合もあるが、この場合にはエッチングレートを十分に小さくする必要があり、従来の成膜方法では、この要請に十分に応えることはできなかった。
本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものである。本発明の目的は、比較的低温で成膜してもクリーニング時のエッチングレートを比較的小さくでき、もってクリーニング時の膜厚の制御性を向上させることができ、且つエッチングストッパ膜や層間絶縁膜等の絶縁膜として十分機能する絶縁膜を形成することができる成膜方法、成膜装置及び記憶媒体を提供することにある。尚、本発明は、本出願人が先に出願した特開2003−282566号公報及び特願2006−004191号に開示した発明の改良発明である。
請求項1に係る発明は、複数枚の被処理体が収容されて真空引き可能になされた処理容器内に、シラン系ガスと窒化ガスとボロン含有ガスと炭化水素ガスとを供給して前記被処理体の表面にSiBCN膜よりなる薄膜を形成する成膜方法において、前記ボロン含有ガス及び炭化水素ガスよりなる群から選択されたいずれか一方のガスと前記シラン系ガスとの同時供給を行う同時供給工程と、前記同時供給工程で選択されなかった他方のガスを供給する非選択ガス供給工程と、前記窒化ガスを供給する窒化ガス供給工程とを、前記同時供給工程、前記非選択ガス供給工程及び前記窒化ガス供給工程の順序で繰り返し行うようにしたことを特徴とする成膜方法である。
このように、ボロン含有ガス及び炭化水素ガスよりなる群から選択されたいずれか一方のガスとシラン系ガスとの同時供給を行う同時供給工程と、同時供給工程で選択されなかった他方のガスを供給する非選択ガス供給工程と、窒化ガスを供給する窒化ガス供給工程とを、上記順序で繰り返し行うようにしてSiBCN膜(シリコン・ボロン・カーボン窒化膜)を形成するようにしたので、比較的低温で成膜してもクリーニング時のエッチングレートを比較的小さくでき、もってクリーニング時の膜厚の制御性を向上させることができ、且つエッチングストッパ膜や層間絶縁膜等の絶縁膜として十分機能する絶縁膜を形成することができる。
この場合、例えば請求項2に記載されたように、前記非選択ガス供給工程では、前記他方のガスと前記シラン系ガスとが同時に供給される。
また例えば請求項3に記載されたように、前記同時供給工程と前記非選択ガス供給工程とを連続的に行う。
また例えば請求項4に記載されたように、前記窒化ガス供給工程の前後には間欠期間が設けられており、該間欠期間には、前記処理容器内は不活性ガスパージされていること及び/又は全てのガスの供給が停止されて真空引きされている。
また例えば請求項5に記載されたように、前記窒化ガスは、前記処理容器内で高周波電力によって発生したプラズマによって活性化される。
また例えば請求項6に記載されたように、前記窒化ガスの供給開始から所定の時間が経過した後に、前記高周波電力が印加される。
また例えば請求項7に記載されたように、前記薄膜の成膜時の温度は、300℃〜700℃の範囲内である。
また例えば請求項8に記載されたように、前記薄膜の成膜時の圧力は、13Pa(0.1Torr)〜13300Pa(100Torr)の範囲内である。
また例えば請求項9に記載されたように、前記シラン系ガスは、ジクロロシラン(DCS)、ヘキサクロロジシラン(HCD)、モノシラン[SiH ]、ジシラン[Si ]、ヘキサメチルジシラザン(HMDS)、テトラクロロシラン(TCS)、ジシリルアミン(DSA)、トリシリルアミン(TSA)、ビスターシャルブチルアミノシラン(BTBAS)よりなる群より選択される1以上のガスである。
また例えば請求項10に記載されたように、前記窒化ガスは、アンモニア[NH ]、窒素[N ]、一酸化二窒素[N O]、一酸化窒素[NO]よりなる群より選択される1以上のガスである。
また例えば請求項11に記載されたように、前記ボロン含有ガスは、BCl 、B 、BF 、B(CH よりなる群より選択される1以上のガスである。
また例えば請求項12に記載されたように、前記炭化水素ガスは、アセチレン、エチレン、メタン、エタン、プロパン、ブタンよりなる群より選択される1以上のガスである。
請求項13に係る発明によれば、シラン系ガスと窒化ガスとボロン含有ガスと炭化水素ガスとを用いて被処理体に対してSiBCN膜よりなる薄膜を形成するための成膜装置において、真空引き可能になされた縦型の筒体状の処理容器と、前記被処理体を複数段に保持して前記処理容器内に挿脱される保持手段と、前記処理容器の外周に設けられる加熱手段と、前記処理容器内へシラン系ガスを供給するシラン系ガス供給手段と、前記処理容器内へ窒化ガスを供給する窒化ガス供給手段と、前記処理容器内へボロン含有ガスを供給するボロン含有ガス供給手段と、前記処理容器内へ炭化水素ガスを供給する炭化水素ガス供給手段と、前記窒化ガスを高周波によって発生するプラズマにより活性化する活性化手段と、請求項1乃至12のいずれか一項に記載の成膜方法を実施するように装置全体を制御する制御手段と、を備えたことを特徴とする成膜装置である。
この場合、例えば請求項14に記載されたように、前記活性化手段は、前記処理容器の側壁に前記処理容器内に開口を介して連通させるようにして接合された凹部状のプラズマ区画壁と、前記プラズマ区画壁に取り付けられると共に高周波電源に接続されたプラズマ電極とを有する
請求項15に係る発明は、真空引き可能になされた縦型の筒体状の処理容器と、前記被処理体を複数段に保持して前記処理容器内に挿脱される保持手段と、前記処理容器の外周に設けられる加熱手段と、前記処理容器内へシラン系ガスを供給するシラン系ガス供給手段と、前記処理容器内へ窒化ガスを供給する窒化ガス供給手段と、前記処理容器内へボロン含有ガスを供給するボロン含有ガス供給手段と、前記処理容器内へ炭化水素ガスを供給する炭化水素ガス供給手段と、前記窒化ガスを高周波によって発生するプラズマにより活性化する活性化手段と、装置全体を制御する制御手段と、を備えた成膜装置によりシラン系ガスと窒化ガスとボロン含有ガスと炭化水素ガスとを用いて被処理体に対してSiBCN膜よりなる薄膜を形成するに際して、請求項1乃至12のいずれか一項に記載の成膜方法を実施するように装置全体を制御するプログラムを記憶することを特徴とする記憶媒体である。

本発明に係る成膜方法、成膜装置及びこれをコンピュータ制御するプログラムを記憶する記憶媒体によれば、比較的低温で成膜してもクリーニング時のエッチングレートを比較的小さくでき、もってクリーニング時の膜厚の制御性を向上させることができ、且つエッチングストッパ膜や層間絶縁膜等の絶縁膜として十分機能する絶縁膜を形成することができる。
以下に、本発明に係る成膜方法、成膜装置及び記憶媒体の一実施例を添付図面に基づいて詳述する。
図1は本発明の係る成膜装置の一例を示す縦断面構成図、図2は成膜装置(加熱手段は省略)を示す横断面構成図である。尚、ここではシラン系ガスとしてジクロロシラン(DCS)を用い、窒化ガスとしてアンモニアガス(NH )を用い、ボロン含有ガスとしてBCl ガスを用い、炭化水素ガスとしてC ガス(エチレンガス)を用い、上記NH ガスをプラズマにより活性化して炭素含有のSiBCN膜を成膜する場合を例にとって説明する。
図示するように、プラズマを形成することができるこの成膜装置2は、下端が開口された有天井の円筒体状の処理容器4を有している。この処理容器4の全体は、例えば石英により形成されており、この処理容器4内の天井には、石英製の天井板6が設けられて封止されている。また、この処理容器4の下端開口部には、例えばステンレススチールにより円筒体状に成形されたマニホールド8がOリング等のシール部材10を介して連結されている。尚、ステンレス製のマニホールド8を設けないで、全体を円筒体状の石英製の処理容器で構成した装置もある。
上記処理容器4の下端は、上記マニホールド8によって支持されており、このマニホールド8の下方より多数枚の被処理体としての半導体ウエハWを多段に載置した保持手段としての石英製のウエハボート12が昇降可能に挿脱自在になされている。本実施例の場合において、このウエハボート12の支柱12Aには、例えば50〜100枚程度の直径が300mmのウエハWを略等ピッチで多段に支持できるようになっている。
このウエハボート12は、石英製の保温筒14を介してテーブル16上に載置されており、このテーブル16は、マニホールド8の下端開口部を開閉する例えばステンレススチール製の蓋部18を貫通する回転軸20上に支持される。
そして、この回転軸20の貫通部には、例えば磁性流体シール22が介設され、この回転軸20を気密にシールしつつ回転可能に支持している。また、蓋部18の周辺部とマニホールド8の下端部には、例えばOリング等よりなるシール部材24が介設されており、処理容器4内のシール性を保持している。
上記した回転軸20は、例えばボートエレベータ等の昇降機構(図示せず)に支持されたアーム26の先端に取り付けられており、ウエハボート12及び蓋部18等を一体的に昇降して処理容器4内へ挿脱できるようになされている。尚、上記テーブル16を上記蓋部18側へ固定して設け、ウエハボート12を回転させることなくウエハWの処理を行うようにしてもよい。
このマニホールド8には、処理容器4内の方へプラズマ化される窒化ガスとして、例えばアンモニア(NH )ガスを供給する窒化ガス供給手段28と、成膜ガスであるシラン系ガスとして例えばDCS(ジクロロシラン)ガスを供給するシラン系ガス供給手段30と、ボロン含有ガスとして例えばBCl ガスを供給するボロン含有ガス供給手段32と、炭化水素ガスとして例えばC (エチレン)ガスを供給する炭化水素ガス供給手段34と、パージガスとして不活性ガス、例えばN ガスを供給するパージガス供給手段36とが設けられる。具体的には、上記窒化ガス供給手段28は、上記マニホールド8の側壁を内側へ貫通して上方向へ屈曲されて延びる石英管よりなるガス分散ノズル38を有している。このガス分散ノズル38には、その長さ方向に沿って複数(多数)のガス噴射孔38Aが所定の間隔を隔てて形成されており、各ガス噴射孔38Aから水平方向に向けて略均一にアンモニアガスを噴射できるようになっている。
また同様に上記シラン系ガス供給手段30も、上記マニホールド8の側壁を内側へ貫通して上方向へ屈曲されて延びる石英管よりなるガス分散ノズル40を有している。このガス分散ノズル40には、その長さ方向に沿って複数(多数)のガス噴射孔40Aが所定の間隔を隔てて形成されており、各ガス噴射孔40Aから水平方向に向けて略均一にシラン系ガスであるDCSガスを噴射できるようになっている。また同様にボロン含有ガス供給手段32も、上記マニホールド8の側壁を内側へ貫通して上方向へ屈曲されて延びる石英管よりなるガス分散ノズル42を有している。このガス分散ノズル42には、上記シラン系ガスのガス分散ノズル40と同様にその長さ方向に沿って複数(多数)のガス噴射孔42A(図2参照)が所定の間隔を隔てて形成されており、各ガス噴射孔42Aから水平方向に向けて略均一にBCl ガスを噴射できるようになっている。
また同様に炭化水素ガス供給手段34も、上記マニホールド8の側壁を内側へ貫通して上方向へ屈曲されて延びる石英管よりなるガス分散ノズル44を有している。このガス分散ノズル44には、上記シラン系ガスのガス分散ノズル44と同様にその長さ方向に沿って複数(多数)のガス噴射孔44A(図2参照)が所定の間隔を隔てて形成されており、各ガス噴射孔44Aから水平方向に向けて略均一にC ガスを噴射できるようになっている。
また同様に上記パージガス供給手段36は、上記マニホールド8の側壁を貫通して設けたガスノズル46を有している。上記各ノズル38、40、42、44、46には、それぞれのガス通路48、50、52、54、56が接続されている。そして、各ガス通路48、50、52、54、56には、それぞれ開閉弁48A、50A、52A、54A、56A及びマスフローコントローラのような流量制御器48B、50B、52B、54B、56Bが介設されており、NH ガス、DCSガス、BCl ガス、C ガス及びN ガスをそれぞれ流量制御しつつ供給できるようになっている。これらの各ガスの供給、供給停止、ガス流量の制御及び後述する高周波のオン・オフ制御等は例えばコンピュータ等よりなる制御手段60により行われる。またこの制御手段60は、上記制御に加え、この装置全体の動作も制御する。そして、この制御手段60は、上記制御を行うためのプログラムが記憶されているフロッピディスクやフラッシュメモリやハードディスク等よりなる記憶媒体62を有している。
一方、上記処理容器4の側壁の一部には、その高さ方向に沿ってプラズマを発生させて窒化ガスを活性化させる活性化手段66が形成されると共に、この活性化手段66に対向する処理容器4の反対側には、この内部雰囲気を真空排気するために処理容器4の側壁を、例えば上下方向へ削りとることによって形成した細長い排気口68が設けられている。具体的には、上記活性化手段66は、上記処理容器4の側壁を上下方向に沿って所定の幅で削りとることによって上下に細長い開口70を形成し、この開口70をその外側より覆うようにして断面凹部状になされた上下に細長い例えば石英製のプラズマ区画壁72を容器外壁に気密に溶接接合することにより形成されている。これにより、この処理容器4の側壁の一部を凹部状に外側へ窪ませることにより一側が処理容器4内へ開口されて連通された活性化手段66が一体的に形成されることになる。すなわちプラズマ区画壁72の内部空間は、上記処理容器4内に一体的に連通された状態となっている。上記開口70は、ウエハボート12に保持されている全てのウエハWを高さ方向においてカバーできるように上下方向に十分に長く形成されている。
そして、上記プラズマ区画壁72の両側壁の外側面には、その長さ方向(上下方向)に沿って互いに対向するようにして細長い一対のプラズマ電極74が設けられると共に、このプラズマ電極74にはプラズマ発生用の高周波電源76が給電ライン78を介して接続されており、上記プラズマ電極74に例えば13.56MHzの高周波電圧を印加することによりプラズマを発生し得るようになっている。尚、この高周波電圧の周波数は13.56MHzに限定されず、他の周波数、例えば400kHz等を用いてもよい。
そして、上記処理容器4内を上方向に延びていく窒化ガス用のガス分散ノズル38は途中で処理容器4の半径方向外方へ屈曲されて、上記プラズマ区画壁72内の一番奥(処理容器4の中心より一番離れた部分)に位置され、この一番奥の部分に沿って上方に向けて起立させて設けられている。従って、高周波電源76がオンされている時に上記ガス分散ノズル38のガス噴射孔38Aから噴射されたアンモニアガスはここで活性化されて処理容器4の中心に向けて拡散しつつ流れるようになっている。
そして上記プラズマ区画壁72の外側には、これを覆うようにして例えば石英よりなる絶縁保護カバー80が取り付けられている。また、この絶縁保護カバー80の内側部分には、図示しない冷媒通路が設けられており、冷却された窒素ガスや冷却水を流すことにより上記プラズマ電極74を冷却し得るようになっている。
そして上記プラズマ区画壁72の開口70の外側近傍、すなわち開口70の外側(処理容器4内)には、上記シラン系ガス用のガス分散ノズル40とボロン含有ガス用のガス分散ノズル42と炭化水素ガス用のガス分散ノズル44とがそれぞれ起立させて設けられており、各ノズル40、42、44に設けた各ガス噴射孔40A、42A、44Aより処理容器4の中心方向に向けてシラン系ガスとBCl ガスとC ガスとをそれぞれ噴射し得るようになっている。
一方、上記開口70に対向させて設けた排気口68には、これを覆うようにして石英よりなる断面コ字状に成形された排気口カバー部材82が溶接により取り付けられている。この排気口カバー部材82は、上記処理容器4の側壁に沿って上方に延びており、処理容器4の上方のガス出口84より図示しない真空ポンプ等を介設した真空排気系により真空引きされる。そして、この処理容器4の外周を囲むようにしてこの処理容器4及びこの内部のウエハWを加熱する筒体状の加熱手段86が設けられている。
次に、以上のように構成された成膜装置2を用いて行なわれるプラズマによる本発明の成膜方法(いわゆるALD成膜)について説明する。
本発明方法では、ボロン含有ガス(例えばBCl )及び炭化水素ガス(例えばC )よりなる群から選択されたいずれか一方のガスとシラン系ガス(例えばDCS)との同時供給を行う同時供給工程と、同時供給工程で選択されなかった他方のガスを供給する非選択ガス供給工程と、窒化ガスを供給する窒化ガス供給工程とを、上記順序で繰り返し行うようにしてSiBCN膜よりなる薄膜を形成する。
<成膜方法の第1実施例>
まず、本発明方法の第1実施例について説明する。
図3は本発明の成膜方法の第1実施例における各種ガスの供給のタイミングとRF(高周波)の印加タイミングを示すタイミングチャートである。まず、常温の多数枚、例えば50〜100枚の300mmサイズのウエハWが載置された状態のウエハボート12を予め所定の温度になされた処理容器4内にその下方より上昇させてロードし、蓋部18でマニホールド8の下端開口部を閉じることにより容器内を密閉する。
そして処理容器4内を真空引きして所定のプロセス圧力に維持すると共に、加熱手段86への供給電力を増大させることにより、ウエハ温度を上昇させてプロセス温度を維持する。上記DCSガスをシラン系ガス供給手段30から供給し、BCl ガスをボロン含有ガス供給手段32から供給し、C ガスを炭化水素ガス34から供給し、そして、NH ガスを窒化ガス供給手段28から供給する。具体的には、図3に示すように、まずDCSガスとBCl ガス及びC ガスよりなる群より選択した一方のガス、例えばBCl ガスとを同時供給する同時供給工程と、非選択の他方のガスであるC ガスを供給する非選択ガス供給工程と、NH ガスを供給する窒化ガス供給工程とを、上記した順序で繰り返し行う。この際、上記窒化ガス供給工程の前後には、パージを行う間欠期間を設けるようにするのがよい。尚、この間欠期間を設けなくてもよい。また隣接する同時供給工程同士間が1サイクルとなる。
これにより、回転しているウエハボート12に支持されているウエハWの表面にSiBCN薄膜を形成する。この際、NH ガスを単独で供給する時に、全供給時間に亘って、或いは全供給時間の一部において高周波電源(RF電源)62をオンしてプラズマを立てるようにする。尚、図3(E)ではNH ガスの供給開始から所定時間経過してから高周波を印加するようにしている。
具体的には、NH ガスはガス分散ノズル38の各ガス噴射孔38Aから水平方向へ噴射され、また、DCSガスはガス分散ノズル40の各ガス噴射孔40Aから水平方向へ噴射され、またBCl はガス分散ノズル42の各ガス噴射孔42Aから水平方向へ噴射され、またC ガスはガス分散ノズル44の各ガス噴射孔44Aから水平方向へ噴射され、各ガスが反応してSiBCN薄膜が形成される。この場合、上記各ガスは、連続的に供給されるのではなく、図3に示すようにDCS及びBCl ガスは同じタイミングで間欠的に、パルス状に供給する(同時供給工程)。C ガスは上記同時供給工程の直後に単独でパルス状に供給する(非選択ガス供給工程)。上記両工程により各ガスがウエハ表面にそれぞれ吸着されることになる。NH ガスは上記2つの工程からタイミングをずらして上記3種のガスの供給停止の時に供給する(窒化ガス供給工程)。
そして、上記窒化ガス供給工程の前後にはパージを行う間欠期間を挟み込んでおり、SiBCN膜を一層ずつ繰り返し積層する。すなわち、図3(A)及び図3(C)に示すように、DCSとBCl とは常に同時に、共通のタイミングで間欠的に供給される。また図3(D)に示すように、C は、上記DCSとBCl の同時供給の直後に単独で続けて供給する。これに対して、図3(B)に示すようにNH は上記DCS、BCl 、C ガスの供給休止期間の略中央にて単独で供給される。また間欠期間90においては真空引きが継続されて容器内に残留するガスを排除している。そして、NH ガスを単独で流す時には、図3(E)に示すようにRF電源がオンされてプラズマが立てられて、供給されるNH ガスを活性化して活性種等が作られ、反応(分解)が促進される。
この場合、NH ガスの供給期間の全期間に亘ってRF電源をオンしてもよいし、図3(B)及び図3(E)に示すようにNH ガスの供給開始から所定の時間Δtが経過した後に、RF電源をオンするようにしてもよい。この所定の時間ΔtとはNH ガスの流量が安定するまでの時間であり、例えば5秒程度である。このように、NH ガスの流量が安定化した後にRF電源をオンすることにより、ウエハWの面間方向(高さ方向)における活性種の濃度均一性を向上できる。また間欠期間90では、不活性ガスであるN ガスを処理容器4内へ供給して残留ガスを排除するようにしてもよいし(不活性ガスパージ)、或いは、全てのガスの供給を停止したまま真空引きを継続して行うことにより(バキュームとも称す)、処理容器4内の残留ガスを排除するようにしてもよい。更には、間欠期間90の前半はバキュームを行い、後半は不活性ガスパージを行うようにしてもよい。
この場合、第1の吸着工程であるDCS及びBCl ガスの供給期間T1は10秒程度、第2の吸着工程であるC ガスの供給期間T2は10秒程度、反応工程(窒化工程)である単独のNH ガスの供給期間T3は20秒程度、パージ期間である間欠期間90の長さT4は5〜15秒程度、RF電源のオン時間T5は10秒程度であるが、これらの各時間は単に一例を示したに過ぎず、この数値に限定されない。通常、1サイクルによって形成される膜厚は1.1〜1.3Å/サイクル程度であるので、目標膜厚が例えば700Åであるならば、600サイクル程度繰り返し行うことになる。上記のように成膜処理を行うことにより、形成されるSiBCN薄膜の誘電率を非常に低くでき、且つそのドライエッチング時のエッチング耐性を大幅に向上させることができる。
その理由は、次のように考えられる。すなわち、一般的にはシリコン窒化膜(SiN)にボロンを添加するとエッチング耐性は劣化するが、上記実施例のように、更にNH ガスの供給時にプラズマでNH ガスを活性化させると窒化が促進される結果、Si−H結合が減少してエッチング耐性の強いSi−N結合が増加するからであると考えられる。
また、上記のように、シリコン窒化膜を成膜する際に、炭化水素ガスとして例えばC ガスを処理容器8内へ供給することにより、ウエハ表面に形成される膜中に炭素成分が含有された状態となる。このように、膜中に炭素成分が含有されると、従来の成膜温度、例えば760℃程度よりも低い温度、例えば550℃で成膜したにもかかわらず、この表面のクリーニング処理時やエッチング処理時に用いられる希フッ酸に対するエッチングレートを小さくでき、この結果、クリーニング処理時にこの薄膜が過度に削り取られることを防止して、この膜厚の制御性を向上させることが可能となる。またエッチングストッパ膜や層間絶縁膜としての機能も十分に果すことができる。
またDCSガスを間欠的に供給して間欠期間T4を間欠的に設けるようにしているので、各間欠期間T4の直前で成膜されたSiBCN膜の表面が間欠期間T4で改質されて膜質が向上するので、エッチングレートを一層抑制することができる。この間欠処理時の原子レベルの作用は次のように考えられる。すなわち、炭素原子を含有するSiBCN膜の成膜時には、この薄膜の最表面にDCSガス中の付着乃至堆積時に脱離できなかったCl原子が活性化状態で結合しているが、DCSガスの供給が停止される間欠期間T4を設けることで、この間欠期間T4においてC ガスやNH ガス中のC原子やN原子が上記薄膜最表面のCl原子と置換されて膜中のCl成分が減少し、結果的にエッチングレートを抑制でき、特にC ガスを用いることにより膜中に取り込まれるC原子の量が増加することとなるのでエッチングレートを一層抑制することが可能となる。
またシリコン窒化膜にボロンと炭素を添加すると、添加しない場合と比較して成膜レートが20〜30%程度上げることができる。この理由は、炭素の添加によりウエハ表面に対するボロンの吸着が促進されるからである、と考えられる。
ここで上記成膜処理のプロセス条件について説明すると、DCSガスの流量は50〜2000sccmの範囲内、例えば1000sccm(1slm)であり、NH ガスの流量は500〜5000sccmの範囲内、例えば1000sccmであり、BCl ガスの流量は1〜15sccmの範囲内、例えば4sccmであり、C ガスの流量は200〜2000sccmの範囲内、例えば500sccmである。ここでC ガスの流量はDCSガスの流量の3倍以下である。その理由は、炭化水素ガスであるC ガスの流量が過度に多過ぎると、膜質が急激に低下する、という不都合が生ずるからである。
またプロセス温度はCVD成膜処理よりも低い温度であり、具体的には300〜700℃の範囲内、好ましくは550〜630℃の範囲内である。このプロセス温度が300℃よりも低いと、反応が生ぜずにほとんど膜が堆積せず、また700℃よりも高い場合には、膜質の劣るCVDによる堆積膜が形成されてしまうのみならず、前工程ですでに形成されている金属膜等に熱的ダメージを与えてしまう。
またプロセス圧力は13Pa(0.1Torr)〜13300Pa(100Torr)の範囲内、好ましくは40Pa(0.3Torr)〜266Pa(2Torr)の範囲内、より好ましくは93P(0.7Torr)〜107P(0.8Torr)の範囲内であり、例えば第1及び第2の吸着工程では1Torr、プラズマを用いる窒化工程では0.3Torrである。ここでプロセス圧力が13Paよりも小さい場合には、成膜レートが実用レベル以下になってしまう。またプロセス圧力が13300Paまでは、ウエハWに対する反応は吸着反応が主流であるので、膜質が良好な薄膜を高い成膜速度で安定的に堆積させることができ、良好な結果を得ることができる。
しかし、プロセス圧力が13300Paよりも大きくなると、反応形態が吸着反応から気相反応へ移行してこの気相反応が主流となり、この結果、膜厚の面間及び面内均一性が低下するのみならず、気相反応に起因するパーティクルが急激に増大するので好ましくない。
<成膜方法の第2実施例>
次に本発明の成膜方法の第2実施例について説明する。
図4は本発明の成膜方法の第2実施例における各種ガスの供給のタイミングとRF(高周波)の印加タイミングを示すタイミングチャートである。図3に示す第1実施例では、非選択ガス供給工程(第2の吸着工程)では、C ガスを単独で供給したが、この第2実施例では図4に示すようにDCSガスも同時に供給するようにしている。尚、他のガス供給態様等は図3に示す場合と同じであり、第1実施例にて説明した事項がここでも適用される。このように、C ガスの供給の際にDCSガスを同時に供給する場合には、ウエハ表面に吸着したC ガスの炭素がSiと混合して存在する状態となり、この時の状態がSiと炭素が結合しており、後工程のNH ガスを供給する窒化ガス供給工程での炭素の離脱を抑制することができる、という利点を有する。
この第2実施例の場合にも、シリコン窒化膜中に炭素成分が含有されることになるので、第1実施例の場合と同様に、従来の成膜温度、例えば760℃程度よりも低い温度、例えば550℃で成膜したにもかかわらず、この表面のクリーニング処理時やエッチング処理時に用いられる希フッ酸に対するエッチングレートを小さくでき、この結果、クリーニング処理時にこの薄膜が過度に削り取られることを防止して、この膜厚の制御性を向上させることが可能となる。またエッチングストッパ膜や層間絶縁膜としての機能も十分に果すことができる。
<成膜方法の第3実施例>
次に本発明の成膜方法の第3実施例について説明する。
図5は本発明の成膜方法の第3実施例における各種ガスの供給のタイミングとRF(高周波)の印加タイミングを示すタイミングチャートである。
図3に示す第1実施例では、同時供給工程(第1の吸着工程)においては、BCl とC とよりなる群より選択したBCl を供給し、この工程に続く非選択ガス供給工程(第2の吸着工程)では上記同時供給工程で選択されなかった他方のガスであるC ガスを供給するようにしたが、図5に示すこの第3実施例では、上記の2つのガスの順序を逆にしている。すなわち、同時供給工程ではC ガスを供給し、この工程に続く非選択ガス供給工程ではBCl を単独で供給するようにしている。尚、他のガス供給態様等は図3に示す場合と同じであり、ここでも第1実施例にて説明した事項が適用される。
この第3実施例の場合も、シリコン窒化膜中に炭素成分が含有されることになるので、第1実施例の場合と同様に、従来の成膜温度、例えば760℃程度よりも低い温度、例えば550℃で成膜したにもかかわらず、この表面のクリーニング処理時やエッチング処理時に用いられる希フッ酸に対するエッチングレートを小さくでき、この結果、クリーニング処理時にこの薄膜が過度に削り取られることを防止して、この膜厚の制御性を向上させることが可能となる。またエッチングストッパ膜や層間絶縁膜としての機能も十分に果すことができる。
<成膜方法の第4実施例>
次に本発明の成膜方法の第4実施例について説明する。
図6は本発明の成膜方法の第4実施例における各種ガスの供給のタイミングとRF(高周波)の印加タイミングを示すタイミングチャートである。図5に示す第3実施例では、非選択ガス供給工程(第2の吸着工程)では、BCl ガスを単独で供給したが、この第4実施例では図6に示すようにDCSガスも同時に供給するようにしている。尚、他のガス供給態様等は図5に示す場合と同じであり、第1実施例にて説明した事項がここでも適用される。このように、BCl ガスの供給の際にDCSガスを同時に供給する場合には、積層膜中の下層にSi/C層を、上層にSiB層をそれぞれ形成することができ、上記第2実施例の場合よりも、後工程のNH ガスを供給する窒化ガス供給工程での炭素の離脱を更に抑制することができる、という利点を有する。
この第4実施例の場合も、シリコン窒化膜中に炭素成分が含有されることになるので、第1実施例の場合と同様に、従来の成膜温度、例えば760℃程度よりも低い温度、例えば550℃で成膜したにもかかわらず、この表面のクリーニング処理時やエッチング処理時に用いられる希フッ酸に対するエッチングレートを小さくでき、この結果、クリーニング処理時にこの薄膜が過度に削り取られることを防止して、この膜厚の制御性を向上させることが可能となる。またエッチングストッパ膜や層間絶縁膜としての機能も十分に果すことができる。
<各実施例の評価>
次に、上記第1乃至第4実施例(第3実施例は除く)を用いて各薄膜を形成して評価を行ったので、その評価結果について説明する。また、これと同時に本出願の先の出願(特願2006−004191)にて開示した方法発明により形成したSiBCN膜及び従来方法で形成したSiN膜の各評価も比較のために併記する。
図7は本出願人の先の出願で開示したSiBCN膜の成膜方法における各種ガスの供給タイミングとRF(高周波)の印加タイミングを示すタイミングチャート、図8は各SiBCN膜のエッチングレートの評価結果を示すグラフである。
図7に示すように、本出願人による先の出願のSiBCN膜の成膜方法ではDCSガスとBCl ガスとC ガスの3種類のガスの同時供給と、窒化ガスであるNH ガスの供給とを間欠的に且つ交互に行うようにし、また、NH ガスの供給時の一部においてRFによるプラズマを立てるようにしている。またエッチングの評価を行う時には、エッチング液として1%の希釈フッ化水素水[DHF(1%)]を用いた。
図8には記載されていないが、炭素(C)が含まれていない従来のSiBN膜のエッチングレートは17Å/min程度である。これに対して、図8に示すように本出願人による先の出願において開示された炭素が含まれたSiBCN膜のエッチングレートは5.80Åであって、炭素が含まれた分だけエッチングレートを低下させることができることが判る。そして、本発明の成膜方法の第1、第2及び第4実施例ではエッチングレートはそれぞれ4.91Å/min、4.38Å/min、3.73Å/minであり、本出願人による先の出願の成膜方法によるSiBCN膜よりも、全てにおいてエッチングレートを更に低下させることができることを確認することができた。この第1、第2及び第4実施例の各エッチングレートは、SiN膜の値、すなわち4.99Å/minと同様か、或いはそれ以下の値であり、良好な結果を示すことを確認することができた。
このように、第1、第2及び第4実施例によるSiBCN膜が、エッチングレートに関して先の本出願人による成膜方法の場合よりも優れている理由は、次の点である。すなわち、NH ガスを供給する窒化ガス供給工程で行なう吸着成分の窒化処理中に再離脱する炭素量を抑制することができ、形成された膜中の炭素濃度を高く維持することができる。
上記各第1乃至第4実施例にあっては、プラズマによりNH ガスを活性化させて反応を促進させたが、NH ガスを活性化させないようにしてもよい。この場合には、プラズマを用いないことによるエネルギーの低下を補償するためにプロセス温度を少し上げて成膜処理を行うようにする。
また上記各実施例では、炭化水素ガスとしてはエチレンガスを用いたが、これに限定されず、アセチレン、エチレン、メタン、エタン、プロパン、ブタンよりなる群より選択される1または2以上のガスを用いることができる。
また上記各実施例では、シラン系ガスとしてDCSガスを用いたが、これに限定されず、ジクロロシラン(DCS)、ヘキサクロロジシラン(HCD)、モノシラン[SiH ]、ジシラン[Si ]、ヘキサメチルジシラザン(HMDS)、テトラクロロシラン(TCS)、ジシリルアミン(DSA)、トリシリルアミン(TSA)、ビスターシャルブチルアミノシラン(BTBAS)よりなる群より選択される1以上のガスを用いることができる。
また、上記各実施例では、窒化ガスとしてNH ガスを用いたが、これに限定されず、アンモニア[NH ]、窒素[N ]、一酸化二窒素[N O]、一酸化窒素[NO]よりなる群より選択される1以上のガスを用いることができる。
また、上記各実施例では、ボロン含有ガスとしてBCl ガスを用いたが、これに限定されず、BCl 、B 、BF 、B(CH よりなる群より選択される1以上のガスを用いることができる。
また被処理体としては、半導体ウエハに限定されず、ガラス基板やLCD基板等にも本発明を適用することができる。
本発明の係る成膜装置の一例を示す縦断面構成図である。 成膜装置を示す横断面構成図である。 本発明の成膜方法の第1実施例における各種ガスの供給のタイミングとRF(高周波)の印加タイミングを示すタイミングチャートである。 本発明の成膜方法の第2実施例における各種ガスの供給のタイミングとRF(高周波)の印加タイミングを示すタイミングチャートである。 本発明の成膜方法の第3実施例における各種ガスの供給のタイミングとRF(高周波)の印加タイミングを示すタイミングチャートである。 本発明の成膜方法の第4実施例における各種ガスの供給のタイミングとRF(高周波)の印加タイミングを示すタイミングチャートである。 本出願人の先の出願で開示したSiBCN膜の成膜方法における各種ガスの供給タイミングとRF(高周波)の印加タイミングを示すタイミングチャートである。 各SiBCN膜のエッチングレートの評価結果を示すグラフである。
符号の説明
2 成膜装置
4 処理容器
12 ウエハボート(保持手段)
28 窒化ガス供給手段
30 シラン系ガス供給手段
32 ボロン含有ガス供給手段
34 炭化水素ガス供給手段
38,40,42,44 ガス分散ノズル
60 制御手段
62 記憶媒体
66 活性化手段
74 プラズマ電極
76 高周波電源
86 加熱手段
W 半導体ウエハ(被処理体)

Claims (15)

  1. 複数枚の被処理体が収容されて真空引き可能になされた処理容器内に、シラン系ガスと窒化ガスとボロン含有ガスと炭化水素ガスとを供給して前記被処理体の表面にSiBCN膜よりなる薄膜を形成する成膜方法において、
    前記ボロン含有ガス及び炭化水素ガスよりなる群から選択されたいずれか一方のガスと前記シラン系ガスとの同時供給を行う同時供給工程と、
    前記同時供給工程で選択されなかった他方のガスを供給する非選択ガス供給工程と、
    前記窒化ガスを供給する窒化ガス供給工程とを、
    前記同時供給工程、前記非選択ガス供給工程及び前記窒化ガス供給工程の順序で繰り返し行うようにしたことを特徴とする成膜方法。
  2. 前記非選択ガス供給工程では、前記他方のガスと前記シラン系ガスとが同時に供給されることを特徴とする請求項1記載の成膜方法。
  3. 前記同時供給工程と前記非選択ガス供給工程とを連続的に行うことを特徴とする請求項1又は2記載の成膜方法。
  4. 前記窒化ガス供給工程の前後には間欠期間が設けられており、該間欠期間には、前記処理容器内は不活性ガスパージされていること及び/又は全てのガスの供給が停止されて真空引きされていることを特徴とする請求項1乃至3のいずれか一項に記載の成膜方法。
  5. 前記窒化ガスは、前記処理容器内で高周波電力によって発生したプラズマによって活性化されることを特徴とする請求項1乃至4のいずれか一項に記載の成膜方法。
  6. 前記窒化ガスの供給開始から所定の時間が経過した後に、前記高周波電力が印加されることを特徴とする請求項5記載の成膜方法。
  7. 前記薄膜の成膜時の温度は、300℃〜700℃の範囲内であることを特徴とする請求項1乃至6のいずれか一項に記載の成膜方法。
  8. 前記薄膜の成膜時の圧力は、13Pa(0.1Torr)〜13300Pa(100Torr)の範囲内であることを特徴とする請求項1乃至7のいずれか一項に記載の成膜方法。
  9. 前記シラン系ガスは、ジクロロシラン(DCS)、ヘキサクロロジシラン(HCD)、モノシラン[SiH ]、ジシラン[Si ]、ヘキサメチルジシラザン(HMDS)、テトラクロロシラン(TCS)、ジシリルアミン(DSA)、トリシリルアミン(TSA)、ビスターシャルブチルアミノシラン(BTBAS)よりなる群より選択される1以上のガスであることを特徴とする請求項1乃至8のいずれか一項に記載の成膜方法。
  10. 前記窒化ガスは、アンモニア[NH ]、窒素[N ]、一酸化二窒素[N O]、一酸化窒素[NO]よりなる群より選択される1以上のガスであることを特徴とする請求項1乃至9のいずれか一項に記載の成膜方法。
  11. 前記ボロン含有ガスは、BCl 、B 、BF 、B(CH よりなる群より選択される1以上のガスであることを特徴とする請求項1乃至10のいずれか一項に記載の成膜方法。
  12. 前記炭化水素ガスは、アセチレン、エチレン、メタン、エタン、プロパン、ブタンよりなる群より選択される1以上のガスであることを特徴とする請求項1乃至11のいずれか一項に記載の成膜方法。
  13. シラン系ガスと窒化ガスとボロン含有ガスと炭化水素ガスとを用いて被処理体に対してSiBCN膜よりなる薄膜を形成するための成膜装置において、
    真空引き可能になされた縦型の筒体状の処理容器と、
    前記被処理体を複数段に保持して前記処理容器内に挿脱される保持手段と、
    前記処理容器の外周に設けられる加熱手段と、
    前記処理容器内へシラン系ガスを供給するシラン系ガス供給手段と、
    前記処理容器内へ窒化ガスを供給する窒化ガス供給手段と、
    前記処理容器内へボロン含有ガスを供給するボロン含有ガス供給手段と、
    前記処理容器内へ炭化水素ガスを供給する炭化水素ガス供給手段と、
    前記窒化ガスを高周波によって発生するプラズマにより活性化する活性化手段と、
    請求項1乃至12のいずれか一項に記載の成膜方法を実施するように装置全体を制御する制御手段と、
    を備えたことを特徴とする成膜装置。
  14. 前記活性化手段は、前記処理容器の側壁に前記処理容器内に開口を介して連通させるようにして接合された凹部状のプラズマ区画壁と、前記プラズマ区画壁に取り付けられると共に高周波電源に接続されたプラズマ電極とを有すること特徴とする請求項13記載の成膜装置。
  15. 真空引き可能になされた縦型の筒体状の処理容器と、
    前記被処理体を複数段に保持して前記処理容器内に挿脱される保持手段と、
    前記処理容器の外周に設けられる加熱手段と、
    前記処理容器内へシラン系ガスを供給するシラン系ガス供給手段と、
    前記処理容器内へ窒化ガスを供給する窒化ガス供給手段と、
    前記処理容器内へボロン含有ガスを供給するボロン含有ガス供給手段と、
    前記処理容器内へ炭化水素ガスを供給する炭化水素ガス供給手段と、
    前記窒化ガスを高周波によって発生するプラズマにより活性化する活性化手段と、
    装置全体を制御する制御手段と、
    を備えた成膜装置によりシラン系ガスと窒化ガスとボロン含有ガスと炭化水素ガスとを用いて被処理体に対してSiBCN膜よりなる薄膜を形成するに際して、
    請求項1乃至12のいずれか一項に記載の成膜方法を実施するように装置全体を制御するプログラムを記憶することを特徴とする記憶媒体。
JP2006237558A 2006-09-01 2006-09-01 成膜方法、成膜装置及び記憶媒体 Active JP4929932B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006237558A JP4929932B2 (ja) 2006-09-01 2006-09-01 成膜方法、成膜装置及び記憶媒体
US11/892,948 US7964241B2 (en) 2006-09-01 2007-08-28 Film formation method and apparatus for semiconductor process
KR1020070088261A KR101140069B1 (ko) 2006-09-01 2007-08-31 반도체 처리용의 성막 방법 및 장치 및 컴퓨터로 판독가능한 매체
CN200710147867XA CN101135046B (zh) 2006-09-01 2007-08-31 半导体处理用的成膜方法和装置
TW096132665A TWI518780B (zh) 2006-09-01 2007-08-31 半導體製程用薄膜形成方法與裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006237558A JP4929932B2 (ja) 2006-09-01 2006-09-01 成膜方法、成膜装置及び記憶媒体

Publications (2)

Publication Number Publication Date
JP2008060455A JP2008060455A (ja) 2008-03-13
JP4929932B2 true JP4929932B2 (ja) 2012-05-09

Family

ID=39159370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006237558A Active JP4929932B2 (ja) 2006-09-01 2006-09-01 成膜方法、成膜装置及び記憶媒体

Country Status (5)

Country Link
US (1) US7964241B2 (ja)
JP (1) JP4929932B2 (ja)
KR (1) KR101140069B1 (ja)
CN (1) CN101135046B (ja)
TW (1) TWI518780B (ja)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4403824B2 (ja) * 2003-05-26 2010-01-27 東京エレクトロン株式会社 シリコン窒化膜の成膜方法
JP4279176B2 (ja) * 2004-03-02 2009-06-17 株式会社アルバック シリコン窒化膜の形成方法
US8129288B2 (en) * 2008-05-02 2012-03-06 Intermolecular, Inc. Combinatorial plasma enhanced deposition techniques
US8298628B2 (en) * 2008-06-02 2012-10-30 Air Products And Chemicals, Inc. Low temperature deposition of silicon-containing films
JP4638550B2 (ja) * 2008-09-29 2011-02-23 東京エレクトロン株式会社 マスクパターンの形成方法、微細パターンの形成方法及び成膜装置
JP5384291B2 (ja) 2008-11-26 2014-01-08 株式会社日立国際電気 半導体装置の製造方法、基板処理方法及び基板処理装置
JP5703354B2 (ja) * 2008-11-26 2015-04-15 株式会社日立国際電気 半導体装置の製造方法及び基板処理装置
JP5490585B2 (ja) * 2009-05-29 2014-05-14 株式会社日立国際電気 基板処理装置、基板処理方法および半導体装置の製造方法
JP5467007B2 (ja) * 2009-09-30 2014-04-09 株式会社日立国際電気 半導体装置の製造方法および基板処理装置
US20130078376A1 (en) * 2010-04-01 2013-03-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Metal nitride containing film deposition using combination of amino-metal and halogenated metal precursors
US8728956B2 (en) 2010-04-15 2014-05-20 Novellus Systems, Inc. Plasma activated conformal film deposition
US9390909B2 (en) 2013-11-07 2016-07-12 Novellus Systems, Inc. Soft landing nanolaminates for advanced patterning
US9997357B2 (en) 2010-04-15 2018-06-12 Lam Research Corporation Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors
US8956983B2 (en) 2010-04-15 2015-02-17 Novellus Systems, Inc. Conformal doping via plasma activated atomic layer deposition and conformal film deposition
US9611544B2 (en) 2010-04-15 2017-04-04 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US8637411B2 (en) 2010-04-15 2014-01-28 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US9257274B2 (en) 2010-04-15 2016-02-09 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method
US9076646B2 (en) 2010-04-15 2015-07-07 Lam Research Corporation Plasma enhanced atomic layer deposition with pulsed plasma exposure
US9373500B2 (en) 2014-02-21 2016-06-21 Lam Research Corporation Plasma assisted atomic layer deposition titanium oxide for conformal encapsulation and gapfill applications
US9892917B2 (en) 2010-04-15 2018-02-13 Lam Research Corporation Plasma assisted atomic layer deposition of multi-layer films for patterning applications
JP5573772B2 (ja) * 2010-06-22 2014-08-20 東京エレクトロン株式会社 成膜方法及び成膜装置
US9685320B2 (en) 2010-09-23 2017-06-20 Lam Research Corporation Methods for depositing silicon oxide
JP5847566B2 (ja) * 2011-01-14 2016-01-27 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP2012174782A (ja) * 2011-02-18 2012-09-10 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法
US8647993B2 (en) 2011-04-11 2014-02-11 Novellus Systems, Inc. Methods for UV-assisted conformal film deposition
JP5901978B2 (ja) * 2011-04-11 2016-04-13 株式会社日立国際電気 基板処理装置、基板処理装置制御プログラム、及び半導体装置の製造方法
JP6199292B2 (ja) * 2011-09-23 2017-09-20 ノベラス・システムズ・インコーポレーテッドNovellus Systems Incorporated プラズマ活性化されるコンフォーマル誘電体膜
US8592328B2 (en) 2012-01-20 2013-11-26 Novellus Systems, Inc. Method for depositing a chlorine-free conformal sin film
KR102207992B1 (ko) 2012-10-23 2021-01-26 램 리써치 코포레이션 서브-포화된 원자층 증착 및 등각막 증착
SG2013083241A (en) 2012-11-08 2014-06-27 Novellus Systems Inc Conformal film deposition for gapfill
SG2013083654A (en) 2012-11-08 2014-06-27 Novellus Systems Inc Methods for depositing films on sensitive substrates
JP6129573B2 (ja) 2013-02-13 2017-05-17 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
US9214334B2 (en) 2014-02-18 2015-12-15 Lam Research Corporation High growth rate process for conformal aluminum nitride
JP6291297B2 (ja) 2014-03-17 2018-03-14 東京エレクトロン株式会社 成膜方法、成膜装置及び記憶媒体
US9478438B2 (en) 2014-08-20 2016-10-25 Lam Research Corporation Method and apparatus to deposit pure titanium thin film at low temperature using titanium tetraiodide precursor
US9478411B2 (en) 2014-08-20 2016-10-25 Lam Research Corporation Method to tune TiOx stoichiometry using atomic layer deposited Ti film to minimize contact resistance for TiOx/Ti based MIS contact scheme for CMOS
US9214333B1 (en) 2014-09-24 2015-12-15 Lam Research Corporation Methods and apparatuses for uniform reduction of the in-feature wet etch rate of a silicon nitride film formed by ALD
US9564312B2 (en) 2014-11-24 2017-02-07 Lam Research Corporation Selective inhibition in atomic layer deposition of silicon-containing films
US9589790B2 (en) 2014-11-24 2017-03-07 Lam Research Corporation Method of depositing ammonia free and chlorine free conformal silicon nitride film
US10566187B2 (en) 2015-03-20 2020-02-18 Lam Research Corporation Ultrathin atomic layer deposition film accuracy thickness control
US9502238B2 (en) 2015-04-03 2016-11-22 Lam Research Corporation Deposition of conformal films by atomic layer deposition and atomic layer etch
US10526701B2 (en) 2015-07-09 2020-01-07 Lam Research Corporation Multi-cycle ALD process for film uniformity and thickness profile modulation
US9601693B1 (en) 2015-09-24 2017-03-21 Lam Research Corporation Method for encapsulating a chalcogenide material
JP6523186B2 (ja) * 2016-02-01 2019-05-29 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
JP6473269B2 (ja) * 2016-02-29 2019-02-20 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
JP6175541B2 (ja) * 2016-06-03 2017-08-02 東京エレクトロン株式会社 シード層の形成方法、シリコン膜の成膜方法および成膜装置
US9773643B1 (en) 2016-06-30 2017-09-26 Lam Research Corporation Apparatus and method for deposition and etch in gap fill
US10062563B2 (en) 2016-07-01 2018-08-28 Lam Research Corporation Selective atomic layer deposition with post-dose treatment
US10629435B2 (en) 2016-07-29 2020-04-21 Lam Research Corporation Doped ALD films for semiconductor patterning applications
US9892961B1 (en) * 2016-08-09 2018-02-13 International Business Machines Corporation Air gap spacer formation for nano-scale semiconductor devices
US10074543B2 (en) 2016-08-31 2018-09-11 Lam Research Corporation High dry etch rate materials for semiconductor patterning applications
US10037884B2 (en) 2016-08-31 2018-07-31 Lam Research Corporation Selective atomic layer deposition for gapfill using sacrificial underlayer
US9865455B1 (en) 2016-09-07 2018-01-09 Lam Research Corporation Nitride film formed by plasma-enhanced and thermal atomic layer deposition process
US10832908B2 (en) 2016-11-11 2020-11-10 Lam Research Corporation Self-aligned multi-patterning process flow with ALD gapfill spacer mask
US10454029B2 (en) 2016-11-11 2019-10-22 Lam Research Corporation Method for reducing the wet etch rate of a sin film without damaging the underlying substrate
US10134579B2 (en) 2016-11-14 2018-11-20 Lam Research Corporation Method for high modulus ALD SiO2 spacer
JP6857503B2 (ja) * 2017-02-01 2021-04-14 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
US10269559B2 (en) 2017-09-13 2019-04-23 Lam Research Corporation Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer
KR20200118504A (ko) 2018-03-02 2020-10-15 램 리써치 코포레이션 가수분해를 사용한 선택적인 증착

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293071A (ja) * 1988-09-29 1990-04-03 Toshiba Corp 薄膜の形成方法
JPH0645256A (ja) * 1992-07-21 1994-02-18 Rikagaku Kenkyusho ガスパルスの供給方法およびこれを用いた成膜方法
JP3529989B2 (ja) * 1997-09-12 2004-05-24 株式会社東芝 成膜方法及び半導体装置の製造方法
US5874368A (en) * 1997-10-02 1999-02-23 Air Products And Chemicals, Inc. Silicon nitride from bis(tertiarybutylamino)silane
KR100407542B1 (ko) * 1999-03-09 2003-11-28 동경 엘렉트론 주식회사 반도체 장치 및 그 제조 방법
JP3915697B2 (ja) * 2002-01-15 2007-05-16 東京エレクトロン株式会社 成膜方法及び成膜装置
CN100373559C (zh) 2002-01-15 2008-03-05 东京毅力科创株式会社 形成含硅绝缘膜的cvd方法和装置
JP4403824B2 (ja) * 2003-05-26 2010-01-27 東京エレクトロン株式会社 シリコン窒化膜の成膜方法
JP4396547B2 (ja) * 2004-06-28 2010-01-13 東京エレクトロン株式会社 成膜方法、成膜装置及び記憶媒体
US20060019032A1 (en) * 2004-07-23 2006-01-26 Yaxin Wang Low thermal budget silicon nitride formation for advance transistor fabrication
JP4179311B2 (ja) * 2004-07-28 2008-11-12 東京エレクトロン株式会社 成膜方法、成膜装置及び記憶媒体
JP4258518B2 (ja) * 2005-03-09 2009-04-30 東京エレクトロン株式会社 成膜方法、成膜装置及び記憶媒体

Also Published As

Publication number Publication date
CN101135046A (zh) 2008-03-05
TWI518780B (zh) 2016-01-21
CN101135046B (zh) 2011-12-21
TW200832551A (en) 2008-08-01
US7964241B2 (en) 2011-06-21
JP2008060455A (ja) 2008-03-13
US20080063791A1 (en) 2008-03-13
KR101140069B1 (ko) 2012-04-30
KR20080020963A (ko) 2008-03-06

Similar Documents

Publication Publication Date Title
JP4929932B2 (ja) 成膜方法、成膜装置及び記憶媒体
JP4258518B2 (ja) 成膜方法、成膜装置及び記憶媒体
JP4893729B2 (ja) 成膜方法、成膜装置及び記憶媒体
JP4434149B2 (ja) 成膜方法、成膜装置及び記憶媒体
JP4924437B2 (ja) 成膜方法及び成膜装置
JP4935684B2 (ja) 成膜方法及び成膜装置
JP5151260B2 (ja) 成膜方法及び成膜装置
JP4935687B2 (ja) 成膜方法及び成膜装置
JP4179311B2 (ja) 成膜方法、成膜装置及び記憶媒体
JP5190307B2 (ja) 成膜方法、成膜装置及び記憶媒体
JP4396547B2 (ja) 成膜方法、成膜装置及び記憶媒体
JP5699980B2 (ja) 成膜方法及び成膜装置
JP5920242B2 (ja) 成膜方法及び成膜装置
JP4506677B2 (ja) 成膜方法、成膜装置及び記憶媒体
JP4305427B2 (ja) 成膜方法、成膜装置及び記憶媒体
JP6024484B2 (ja) 成膜方法及び成膜装置
JP2010090413A (ja) 成膜方法及び成膜装置
JP5346904B2 (ja) 縦型成膜装置およびその使用方法
JP2009260151A (ja) 金属ドープ層の形成方法、成膜装置及び記憶媒体
JP5887962B2 (ja) 成膜装置
US20150031216A1 (en) Cleaning method, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP2006066884A (ja) 成膜方法、成膜装置及び記憶媒体
JP5082595B2 (ja) 成膜装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R150 Certificate of patent or registration of utility model

Ref document number: 4929932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250