WO2013176772A1 - Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription - Google Patents
Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription Download PDFInfo
- Publication number
- WO2013176772A1 WO2013176772A1 PCT/US2013/032589 US2013032589W WO2013176772A1 WO 2013176772 A1 WO2013176772 A1 WO 2013176772A1 US 2013032589 W US2013032589 W US 2013032589W WO 2013176772 A1 WO2013176772 A1 WO 2013176772A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dna
- activity
- cell
- site
- targeting rna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H6/00—Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
- A01H6/46—Gramineae or Poaceae, e.g. ryegrass, rice, wheat or maize
- A01H6/4684—Zea mays [maize]
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/465—Hydrolases (3) acting on ester bonds (3.1), e.g. lipases, ribonucleases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/102—Mutagenizing nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/111—General methods applicable to biologically active non-coding nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/746—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for lactic acid bacteria (Streptococcus; Lactococcus; Lactobacillus; Pediococcus; Enterococcus; Leuconostoc; Propionibacterium; Bifidobacterium; Sporolactobacillus)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
- C12N15/907—Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/10—Cells modified by introduction of foreign genetic material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases [RNase]; Deoxyribonucleases [DNase]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/686—Polymerase chain reaction [PCR]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/04—Phosphoric diester hydrolases (3.1.4)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02299—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
- H01L21/02312—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/70—Fusion polypeptide containing domain for protein-protein interaction
- C07K2319/71—Fusion polypeptide containing domain for protein-protein interaction containing domain for transcriptional activaation, e.g. VP16
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/85—Fusion polypeptide containing an RNA binding domain
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/11—Antisense
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/13—Decoys
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering nucleic acids [NA]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/20—Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPR]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/32—Chemical structure of the sugar
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/33—Chemical structure of the base
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/35—Nature of the modification
- C12N2310/351—Conjugate
- C12N2310/3519—Fusion with another nucleic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/50—Physical structure
- C12N2310/53—Physical structure partially self-complementary or closed
- C12N2310/531—Stem-loop; Hairpin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/80—Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- CRISPR clustered regularly interspaced short palindromic repeats
- Cas CRISPR-associated
- Type II CRISPR system from Streptococcus pyogenes involves only a single gene encoding the Cas9 protein and two RNAs - a mature CRISPR RNA (crRNA) and a partially complementary trans-acting RNA (tracrRNA) - which are necessary and sufficient for RNA-guided silencing of foreign DNAs.
- crRNA mature CRISPR RNA
- tracrRNA partially complementary trans-acting RNA
- RNA interference RNA interference
- the present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA.
- the present disclosure further provides site-specific modifying polypeptides.
- the present disclosure further provides methods of site- specific modification of a target DNA and/or a polypeptide associated with the target DNA.
- the present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided.
- the present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
- RNA-targeting RNA comprising: (i) a first segment comprising a nucleotide sequence that is complementary to a sequence in a target DNA; and (ii) a second segment that interacts with a site-directed modifying polypeptide.
- the first segment comprises 8 nucleotides that have 100% complementarity to a sequence in the target DNA.
- the second segment comprises a nucleotide sequence with at least 60% identity over a stretch of at least 8 contiguous nucleotides to any one of the nucleotide sequences set forth in SEQ ID NOs:431-682 (e.g., 431-562).
- the second segment comprises a nucleotide sequence with at least 60% identity over a stretch of at least 8 contiguous nucleotides to any one of the nucleotide sequences set forth in SEQ ID NOs:563-682.
- the site -directed modifying polypeptide comprises an amino acid sequence having at least about 75% amino acid sequence identity to amino acids 7-166 or 731-1003 of the Cas9/Csnl amino acid sequence depicted in Figure 3, or to the corresponding portions in any of the amino acid sequences set forth as SEQ ID NOs: 1-256 and 795-1346.
- nucleotide sequence that encodes the DNA-targeting RNA comprises a recombinant expression vector comprises the DNA polynucleotide.
- nucleotide sequence encoding the DNA- targeting RNA is operably linked to a promoter.
- the promoter is an inducible promoter.
- nucleotide sequence encoding the DNA-targeting RNA further comprises a multiple cloning site.
- features of the present disclosure include an in vitro genetically modified host cell comprising the DNA polynucleotide.
- a recombinant expression vector comprising: (i) a nucleotide sequence encoding a DNA-targeting RNA, wherein the DNA-targeting RNA comprises: (a) a first segment comprising a nucleotide sequence that is complementary to a sequence in a target DNA; and (b) a second segment that interacts with a site-directed modifying polypeptide; and (ii) a nucleotide sequence encoding the site-directed modifying polypeptide comprising: (a) an RNA-binding portion that interacts with the DNA-targeting RNA; and (b) an activity portion that exhibits site -directed enzymatic activity, wherein the site of enzymatic activity is determined by the DNA-targeting RNA.
- a recombinant expression vector comprising: (i) a nucleotide sequence encoding a DNA-targeting RNA, wherein the DNA-targeting RNA comprises: (a) a first segment comprising a nucleotide sequence that is complementary to a sequence in a target DNA; and (b) a second segment that interacts with a site-directed modifying polypeptide; and (ii) a nucleotide sequence encoding the site-directed modifying polypeptide, where the site -directed modifying polypeptide comprises: (a) an RNA-binding portion that interacts with the DNA-targeting RNA; and (b) an activity portion that modulates transcription within the target DNA, wherein the site of modulated transcription within the target DNA is determined by the DNA-targeting RNA.
- the variant site-directed modifying polypeptide comprises an H840A mutation of the S.
- the variant site-directed modifying polypeptide comprises a D10A mutation of the S. pyogenes sequence SEQ ID NO: 8 or the corresponding mutation in any of the amino acid sequences set forth as SEQ ID NOs:l- 256 and 795-1346. In some cases, the variant site -directed modifying polypeptide comprises both (i) a D10A mutation of the S.
- a chimeric site -directed modifying polypeptide comprising: (i) an RNA-binding portion that interacts with a DNA-targeting RNA, wherein the DNA -targeting RNA comprises a nucleotide sequence that is complementary to a sequence in a target DNA; and (ii) an activity portion that exhibits site -directed enzymatic activity, wherein the site of enzymatic activity is determined by the DNA-targeting RNA.
- the chimeric site -directed modifying polypeptide of comprises an amino acid sequence having at least about 75% amino acid sequence identity to amino acids 7-166 or 731-1003 of the
- the DNA-targeting RNA further comprises a nucleotide sequence with at least 60% identity over a stretch of at least 8 contiguous nucleotides to any one of the nucleotide sequences set forth in SEQ ID NOs:431-682 (e.g., SEQ ID NOs:563-682).
- the DNA-targeting RNA further comprises a nucleotide sequence with at least 60% identity over a stretch of at least 8 contiguous nucleotides to any one of the nucleotide sequences set forth in SEQ ID NOs:431-562.
- the enzymatic activity of the chimeric site -directed modifying polypeptide modifies the target DNA.
- the enzymatic activity of the chimeric site-directed modifying polypeptide is nuclease activity, methyltransferase activity, demethylase activity, DNA repair activity, DNA damage activity, deamination activity, dismutase activity, alkylation activity, depurination activity, oxidation activity, pyrimidine dimer forming activity, integrase activity, transposase activity, recombinase activity, polymerase activity, ligase activity, helicase activity, photolyase activity or glycosylase activity.
- the enzymatic activity of the chimeric site -directed modifying polypeptide is nuclease activity.
- the nuclease activity introduces a double strand break in the target DNA.
- the enzymatic activity of the chimeric site-directed modifying polypeptide modifies a target polypeptide associated with the target DNA.
- the enzymatic activity of the chimeric site- directed modifying polypeptide is methyltransferase activity, demethylase activity,
- acetyltransferase activity deacetylase activity, kinase activity, phosphatase activity, ubiquitin ligase activity, deubiquitinating activity, adenylation activity, deadenylation activity, SUMOylating activity, deSUMOylating activity, ribosylation activity, deribosylation activity, myristoylation activity or demyristoylation activity.
- features of the present disclosure include a polynucleotide comprising a nucleotide sequence encoding a chimeric site -directed modifying polypeptide.
- the polynucleotide is an RNA polynucleotide.
- the polynucleotide is a DNA polynucleotide.
- features of the present disclosure include a recombinant expression vector comprising the polynucleotide.
- the polynucleotide is operably linked to a promoter.
- the promoter is an inducible promoter.
- features of the present disclosure include an in vitro genetically modified host cell comprising the polynucleotide.
- RNA-binding portion that interacts with a DNA-targeting RNA, wherein the DNA -targeting RNA comprises a nucleotide sequence that is complementary to a sequence in a target DNA; and (ii) an activity portion that modulates transcription within the target DNA, wherein the site of modulated transcription within the target DNA is determined by the DNA- targeting RNA.
- the activity portion increases transcription within the target DNA. In some cases, the activity portion decreases transcription within the target DNA.
- a genetically modified cell comprising a recombinant site -directed modifying polypeptide comprising an RNA-binding portion that interacts with a DNA-targeting RNA; and an activity portion that exhibits site -directed enzymatic activity, wherein the site of enzymatic activity is determined by the DNA-targeting RNA.
- the site-directed modifying polypeptide comprises an amino acid sequence having at least about 75% amino acid sequence identity to amino acids 7-166 or 731-1003 of the Cas9/Csnl amino acid sequence depicted in Figure 3, or to the corresponding portions in any of the amino acid sequences set forth as SEQ ID NOs:l-256 and 795-1346.
- the cell is selected from the group consisting of: an archaeal cell, a bacterial cell, a eukaryotic cell, a eukaryotic single- cell organism, a somatic cell, a germ cell, a stem cell, a plant cell, an algal cell, an animal cell, in invertebrate cell, a vertebrate cell, a fish cell, a frog cell, a bird cell, a mammalian cell, a pig cell, a cow cell, a goat cell, a sheep cell, a rodent cell, a rat cell, a mouse cell, a non-human primate cell, and a human cell.
- an archaeal cell a bacterial cell, a eukaryotic cell, a eukaryotic single- cell organism, a somatic cell, a germ cell, a stem cell, a plant cell, an algal cell, an animal cell, in invertebrate cell, a vertebrate cell, a fish cell,
- transgenic non-human organism whose genome comprises a transgene comprising a nucleotide sequence encoding a recombinant site -directed modifying polypeptide comprising: (i) an RNA-binding portion that interacts with a DNA- targeting RNA; and (ii) an activity portion that exhibits site -directed enzymatic activity, wherein the site of enzymatic activity is determined by the DNA-targeting RNA.
- the site- directed modifying polypeptide comprises an amino acid sequence having at least about 75% amino acid sequence identity to amino acids 7-166 or 731-1003 of the Cas9/Csnl amino acid sequence depicted in Figure 3, or to the corresponding portions in any of the amino acid sequences set forth as SEQ ID NOs: l-256 and 795-1346.
- the organism is selected from the group consisting of: an archaea, a bacterium, a eukaryotic single -cell organism, an algae, a plant, an animal, an invertebrate, a fly, a worm, a cnidarian, a vertebrate, a fish, a frog, a bird, a mammal, an ungulate, a rodent, a rat, a mouse, and a non-human primate.
- compositions comprising: (i) a DNA-targeting RNA, or a DNA polynucleotide encoding the same, the DNA-targeting RNA comprising: (a) a first segment comprising a nucleotide sequence that is complementary to a sequence in a target DNA; and (b) a second segment that interacts with a site -directed modifying polypeptide; and (ii) the site -directed modifying polypeptide, or a polynucleotide encoding the same, the site -directed modifying polypeptide comprising: (a) an RNA-binding portion that interacts with the DNA- targeting RNA; and (b) an activity portion that exhibits site-directed enzymatic activity, wherein the site of enzymatic activity is determined by the DNA-targeting RNA.
- the first segment of the DNA-targeting RNA comprises 8 nucleotides that have at least 100%
- the second segment of the DNA-targeting RNA comprises a nucleotide sequence with at least 60% identity over a stretch of at least 8 contiguous nucleotides to any one of the nucleotide sequences set forth in SEQ ID NOs:431-682 (e.g., SEQ ID NOs:563-682).
- the second segment of the DNA- targeting RNA comprises a nucleotide sequence with at least 60% identity over a stretch of at least 8 contiguous nucleotides to any one of the nucleotide sequences set forth in SEQ ID NOs:431-562.
- the site-directed modifying polypeptide comprises an amino acid sequence having at least about 75% amino acid sequence identity to amino acids 7-166 or 731- 1003 of the Cas9/Csnl amino acid sequence depicted in Figure 3, or to the corresponding portions in any of the amino acid sequences set forth as SEQ ID NOs: 1-256 and 795-1346.
- the enzymatic activity modifies the target DNA.
- the enzymatic activity is nuclease activity, methyltransferase activity, demethylase activity, DNA repair activity, DNA damage activity, deamination activity, dismutase activity, alkylation activity, depurination activity, oxidation activity, pyrimidine dimer forming activity, integrase activity, transposase activity, recombinase activity, polymerase activity, ligase activity, helicase activity, photolyase activity or glycosylase activity.
- the enzymatic activity is nuclease activity.
- the nuclease activity introduces a double strand break in the target DNA.
- the enzymatic activity modifies a target polypeptide associated with the target DNA.
- the enzymatic activity is methyltransferase activity, demethylase activity, acetyltransferase activity, deacetylase activity, kinase activity, phosphatase activity, ubiquitin ligase activity, deubiquitinating activity, adenylation activity, deadenylation activity,
- the target polypeptide is a histone and the enzymatic activity is methyltransferase activity, demethylase activity, acetyltransferase activity, deacetylase activity, kinase activity, phosphatase activity, ubiquitin ligase activity or deubiquitinating activity.
- the DNA-targeting RNA is a double- molecule DNA-targeting RNA and the composition comprises both a targeter-RNA and an activator-RNA, the duplex-forming segments of which are complementary and hybridize to form the second segment of the DNA-targeting RNA.
- the duplex-forming segment of the activator-RNA comprises a nucleotide sequence with at least 60% identity over a stretch of at least 8 contiguous nucleotides to any one of the nucleotide sequences set forth in SEQ ID NO:SEQ ID NOs:431-682.
- compositions comprising: (i) a DNA-targeting RNA of the present disclosure, or a DNA polynucleotide encoding the same; and (ii) a buffer for stabilizing nucleic acids.
- compositions comprising: (i) a site -directed modifying polypeptide of the present disclosure, or a polynucleotide encoding the same; and (ii) a buffer for stabilizing nucleic acids and/or proteins.
- compositions comprising: (i) a DNA-targeting RNA, or a DNA
- the DNA-targeting RNA comprising: (a) a first segment comprising a nucleotide sequence that is complementary to a sequence in a target DNA; and (b) a second segment that interacts with a site-directed modifying polypeptide; and (ii) the site- directed modifying polypeptide, or a polynucleotide encoding the same, the site-directed modifying polypeptide comprising: (a) an RNA-binding portion that interacts with the DNA- targeting RNA; and (b) an activity portion that modulates transcription within the target DNA, wherein the site of modulated transcription within the target DNA is determined by the DNA- targeting RNA. In some cases, the activity portion increases transcription within the target DNA.
- the activity portion decreases transcription within the target DNA.
- compositions comprising: (i) a site-directed modifying polypeptide, or a polynucleotide encoding the same; and (ii) a buffer for stabilizing nucleic acids and/or proteins.
- DNA the method comprising: contacting the target DNA with: (i) a DNA-targeting RNA, or a DNA polynucleotide encoding the same, wherein the DNA-targeting RNA comprises: (a) a first segment comprising a nucleotide sequence that is complementary to a sequence in the target DNA; and (b) a second segment that interacts with a site-directed modifying polypeptide; and (ii) a site-directed modifying polypeptide, or a polynucleotide encoding the same, wherein the site -directed modifying polypeptide comprises: (a) an RNA-binding portion that interacts with the DNA-targeting RNA; and (b) an activity portion that exhibits site-directed enzymatic activity.
- the DNA-targeting RNA comprises: (a) a first segment comprising a nucleotide sequence that is complementary to a sequence in the target DNA; and (b) a second segment that interacts with a site-directed modifying polypeptide
- the target DNA is extrachromosomal.
- the target DNA comprises a PAM sequence of the complementary strand that is 5'-CCY-3' , wherein Y is any DNA nucleotide and Y is immediately 5' of the target sequence of the complementary strand of the target DNA.
- the target DNA is part of a chromosome in vitro.
- the target DNA is part of a chromosome in vivo.
- the target DNA is part of a chromosome in a cell.
- the cell is selected from the group consisting of: an archaeal cell, a bacterial cell, a eukaryotic cell, a eukaryotic single-cell organism, a somatic cell, a germ cell, a stem cell, a plant cell, an algal cell, an animal cell, in invertebrate cell, a vertebrate cell, a fish cell, a frog cell, a bird cell, a mammalian cell, a pig cell, a cow cell, a goat cell, a sheep cell, a rodent cell, a rat cell, a mouse cell, a non-human primate cell, and a human cell.
- an archaeal cell a bacterial cell, a eukaryotic cell, a eukaryotic single-cell organism, a somatic cell, a germ cell, a stem cell, a plant cell, an algal cell, an animal cell, in invertebrate cell, a vertebrate cell, a fish cell,
- the DNA-targeting RNA comprises a nucleotide sequence with at least 60% identity over a stretch of at least 8 contiguous nucleotides to any one of the nucleotide sequences set forth in SEQ ID NOs:431-682 (e.g., SEQ ID NOs:563-682). In some cases, the DNA-targeting RNA comprises a nucleotide sequence with at least 60% identity over a stretch of at least 8 contiguous nucleotides to any one of the nucleotide sequences set forth SEQ ID NOs:431-562.
- the DNA-modifying polypeptide comprises an amino acid sequence having at least about 75% amino acid sequence identity to amino acids 7-166 or 731-1003 of the Cas9/Csnl amino acid sequence depicted in Figure 3, or to the corresponding portions in any of the amino acid sequences set forth as SEQ ID NOs: 1-256 and 795-1346.
- the enzymatic activity modifies the target DNA.
- the enzymatic activity is nuclease activity, methyltransf erase activity, demethylase activity, DNA repair activity, DNA damage activity, deamination activity, dismutase activity, alkylation activity, depurination activity, oxidation activity, pyrimidine dimer forming activity, integrase activity, transposase activity, recombinase activity, polymerase activity, ligase activity, helicase activity, photolyase activity or glycosylase activity.
- the DNA-modifying enzymatic activity is nuclease activity.
- the nuclease activity introduces a double strand break in the target DNA.
- the contacting occurs under conditions that are permissive for nonhomologous end joining or homology-directed repair.
- the method further comprises contacting the target DNA with a donor polynucleotide, wherein the donor polynucleotide, a portion of the donor polynucleotide, a copy of the donor polynucleotide, or a portion of a copy of the donor polynucleotide integrates into the target DNA.
- the method does not comprise contacting the cell with a donor polynucleotide, wherein the target DNA is modified such that nucleotides within the target DNA are deleted.
- the enzymatic activity modifies a target polypeptide associated with the target DNA.
- the enzymatic activity is methyltransf erase activity, demethylase activity, acetyltransferase activity, deacetylase activity, kinase activity, phosphatase activity, ubiquitin ligase activity, deubiquitinating activity, adenylation activity, deadenylation activity, SUMOylating activity, deSUMOylating activity, ribosylation activity, deribosylation activity, myristoylation activity or demyristoylation activity.
- the target polypeptide is a histone and the enzymatic activity is methyltransf erase activity, demethylase activity, acetyltransferase activity, deacetylase activity, kinase activity, phosphatase activity, ubiquitin ligase activity or deubiquitinating activity.
- the complex further comprises an activator-RNA.
- the activator-RNA comprises a nucleotide sequence with at least 60% identity over a stretch of at least 8 contiguous nucleotides to any one of the nucleotide sequences set forth in SEQ ID NOs:431-682.
- Features of the present disclosure include a method of modulating site-specific transcription within a target DNA, the method comprising contacting the target DNA with: (i) a DNA- targeting RNA, or a DNA polynucleotide encoding the same, wherein the DNA-targeting RNA comprises: (a) a first segment comprising a nucleotide sequence that is complementary to a sequence in the target DNA; and (b) a second segment that interacts with a site-directed modifying polypeptide; and (ii) a site -directed modifying polypeptide, or a polynucleotide encoding the same, wherein the site-directed modifying polypeptide comprises: (a) an RNA- binding portion that interacts with the DNA-targeting RNA; and (b) an activity portion that modulates transcription, wherein said contacting results in modulating transcription within the target DNA.
- transcription within the target DNA is increased.
- transcription within the target DNA is decreased.
- Features of the present disclosure include a method of site-specific modification at target DNA, the method comprising: contacting the target DNA with: (i) a DNA-targeting RNA, or a DNA polynucleotide encoding the same, wherein the DNA-targeting RNA comprises: (a) a first segment comprising a nucleotide sequence that is complementary to a sequence in the target DNA; and (b) a second segment that interacts with a site-directed modifying polypeptide; and (ii) a site-directed modifying polypeptide, or a polynucleotide encoding the same, wherein the site -directed modifying polypeptide comprises: (a) an RNA-binding portion that interacts with the DNA-targeting RNA; and (b) an activity portion that modulates transcription within the target DNA.
- the site -directed modifying polypeptide increases transcription within the target DNA. In some cases, the site -directed modifying polypeptide decreases transcription within the target DNA.
- the DNA-targeting RNA comprises: (a) a first segment comprising a nucleotide sequence that is complementary to a sequence in the target DNA; and (b) a second segment that interacts with a site-directed modifying polypeptide; and (ii) a site -directed modifying polypeptide, or a polynucleotide encoding the same, wherein the site-directed modifying polypeptide comprises: (a) an RNA- binding portion that interacts with the DNA-targeting RNA; and (b) an activity portion
- the method does not comprise contacting the cell with a donor polynucleotide, wherein the target DNA is modified such that nucleotides within the target DNA are deleted.
- the cell is selected from the group consisting of: an archaeal cell, a bacterial cell, a eukaryotic cell, a eukaryotic single -cell organism, a somatic cell, a germ cell, a stem cell, a plant cell, an algal cell, an animal cell, in invertebrate cell, a vertebrate cell, a fish cell, a frog cell, a bird cell, a mammalian cell, a pig cell, a cow cell, a goat cell, a sheep cell, a rodent cell, a rat cell, a mouse cell, a non-human primate cell, and a human cell.
- the cell is in vitro. In some cases, the cell is in vivo.
- RNA-targeting RNA comprises: (a) a first segment comprising a nucleotide sequence that is complementary to a sequence in the target DNA; and (b) a second segment that interacts with a site-directed modifying polypeptide; and (ii) a site-directed modifying polypeptide, or a polynucleotide encoding the same, wherein the site -directed modifying polypeptide comprises: (a) an RNA-binding portion that interacts with the DNA-targeting RNA; and (b) an activity portion that exhibits nuclease activity that creates a double strand break in the target DNA; wherein the site of the double strand break is determined by the DNA-targeting RNA, the contacting
- the method further comprises contacting the cell with a donor polynucleotide, wherein the donor polynucleotide, a portion of the donor polynucleotide, a copy of the donor polynucleotide, or a portion of a copy of the donor polynucleotide integrates into the target DNA.
- the method does not comprise contacting the cell with a donor polynucleotide, wherein the target DNA is modified such that nucleotides within the target DNA are deleted.
- the cell is selected from the group consisting of: an archaeal cell, a bacterial cell, a eukaryotic cell, a eukaryotic single -cell organism, a somatic cell, a germ cell, a stem cell, a plant cell, an algal cell, an animal cell, in invertebrate cell, a vertebrate cell, a fish cell, an amphibian cell, a bird cell, a mammalian cell, an ungulate cell, a rodent cell, a non-human primate cell, and a human cell.
- an archaeal cell a bacterial cell, a eukaryotic cell, a eukaryotic single -cell organism, a somatic cell, a germ cell, a stem cell, a plant cell, an algal cell, an animal cell, in invertebrate cell, a vertebrate cell, a fish cell, an amphibian cell, a bird cell, a mammalian cell, an ungulate cell,
- nucleotide sequence encoding an exogenous site-directed modifying polypeptide comprising introducing into the genetically modified cell a DNA-targeting RNA, or a DNA polynucleotide encoding the same, wherein: (i) the DNA- targeting RNA comprises: (a) a first segment comprising a nucleotide sequence that is complementary to a sequence in the target DNA; and (b) a second segment that interacts with a site -directed modifying polypeptide; and (ii) the site-directed modifying polypeptide comprises: (a) an RNA-binding portion that interacts with the DNA-targeting RNA; and (b) an activity portion that exhibits nuclease activity.
- the site-directed modifying polypeptide comprises an amino acid sequence having at least about 75% amino acid sequence identity to amino acids 7-166 or 731-1003 of the Cas9/Csnl amino acid sequence depicted in Figure 3, or to the corresponding portions in any of the amino acid sequences set forth as SEQ ID NOs: 1-256 and 795-1346.
- the cell is selected from the group consisting of: an archaeal cell, a bacterial cell, a eukaryotic cell, a eukaryotic single -cell organism, a somatic cell, a germ cell, a stem cell, a plant cell, an algal cell, an animal cell, in invertebrate cell, a vertebrate cell, a fish cell, an amphibian cell, a bird cell, a mammalian cell, an ungulate cell, a rodent cell, a non- human primate cell, and a human cell.
- the cell is in vivo.
- the cell is in vitro.
- the expression of the site -directed modifying polypeptide is under the control of an inducible promoter.
- the expression of the site-directed modifying polypeptide is under the control of a cell type-specific promoter.
- kits comprising: the DNA-targeting RNA, or a DNA polynucleotide encoding the same; and a reagent for reconstitution and/or dilution.
- the kit further comprises a reagent selected from the group consisting of: a buffer for introducing into cells the DNA-targeting RNA, a wash buffer, a control reagent, a control expression vector or RNA polynucleotide, a reagent for transcribing the DNA-targeting RNA from DNA, and combinations thereof.
- kits comprising: a site -directed modifying
- the kit further comprises a reagent selected from the group consisting of: a buffer for introducing into cells the site-directed modifying polypeptide, a wash buffer, a control reagent, a control expression vector or RNA
- polynucleotide a reagent for in vitro production of the site-directed modifying polypeptide from DNA, and combinations thereof.
- kits comprising: a site -directed modifying
- kits comprising: a DNA-targeting RNA, or a DNA polynucleotide encoding the same, the DNA-targeting RNA comprising: (a) a first segment comprising a nucleotide sequence that is complementary to a sequence in a target DNA; and (b) a second segment that interacts with a site-directed modifying polypeptide; and (ii) the site -directed modifying polypeptide, or a polynucleotide encoding the same, the site-directed modifying polypeptide comprising: (a) an RNA-binding portion that interacts with the DNA-targeting RNA; and (b) an activity portion that exhibits site-directed enzymatic activity, wherein the site of enzymatic activity is determined by the DNA-targeting RNA.
- kits comprising: (i) a DNA-targeting RNA, or a
- DNA polynucleotide encoding the same comprising: (a) a first segment comprising a nucleotide sequence that is complementary to a sequence in a target DNA; and (b) a second segment that interacts with a site-directed modifying polypeptide; and (ii) the site-directed modifying polypeptide, or a polynucleotide encoding the same, comprising: (a) an RNA-binding portion that interacts with the DNA-targeting RNA; and (b) an activity portion that that modulates transcription within the target DNA, wherein the site of modulated transcription within the target DNA is determined by the DNA-targeting RNA.
- kits comprising: (i) any of the recombinant
- kits comprising: (i) any of the recombinant expression vectors above; and (ii) a recombinant expression vector comprising a nucleotide sequence that encodes a site- directed modifying polypeptide, wherein the site-directed modifying polypeptide comprises: (a) an RNA-binding portion that interacts with the DNA-targeting RNA; and (b) an activity portion that exhibits site -directed enzymatic activity, wherein the site of enzymatic activity is determined by the DNA-targeting RNA.
- kits comprising: (i) any of the recombinant expression vectors above; and (ii) a recombinant expression vector comprising a nucleotide sequence that encodes a site-directed modifying polypeptide, wherein the site-directed modifying polypeptide comprises: (a) an RNA -binding portion that interacts with the DNA-targeting RNA; and (b) an activity portion that modulates transcription within the target DNA, wherein the site of modulated transcription within the target DNA is determined by the DNA-targeting RNA.
- kits for targeting target DNA comprising: two or more DNA-targeting RNAs, or DNA polynucleotides encoding the same, wherein the first segment of at least one of the two or more DNA-targeting RNAs differs by at least one nucleotide from the first segment of at least one other of the two or more DNA-targeting RNAs.
- Figures 1A-B provide a schematic drawing of two exemplary subject DNA-targeting RNAs, each associated with a site-directed modifying polypeptide and with a target DNA.
- Figure 2 depicts target DNA editing through double-stranded DNA breaks introduced using a Cas9/Csnl site-directed modifying polypeptide and a DNA-targeting RNA.
- FIGS. 3A-B depict the amino acid sequence of a Cas9/Csnl protein from Streptococcus pyogenes (SEQ ID NO:8).
- Cas9 has domains homologous to both HNH and RuvC
- Figures 4A-B depict the percent identity between the Cas9/Csnl proteins from multiple
- Figure 5 depicts a multiple sequence alignment of motifs 1-4 of Cas9/Csnl proteins from
- Figures 6A-B provide alignments of naturally occurring tracrRNA ("activator-RNA”)
- N meningitides
- P multocida
- S. thermophilus2 SEQ ID NO:271
- S. pyogenes SEQ ID NO:267).
- A multiple sequence alignment of selected tracrRNA orthologues (AlignX, VectorNTI package, Invitrogen) associated with CRISPR/Cas loci of similar architecture and highly similar Cas9/Csnl sequences.
- Black boxes represent shared nucleotides (B) multiple sequence alignment of selected tracrRNA orthologues (AlignX, VectorNTI package, Invitrogen) associated with CRISPR/Cas loci of different architecture and non-closely related Cas9/Csnl sequences. Note the sequence similarity of N. meningitidis and P. multocida tracrRNA orthologues. Black boxes represent shared nucleotides. For more exemplary activator-RNA sequences, see SEQ ID NOs:431-562.
- Figures 7A-B provide alignments of naturally occurring duplex-forming segments of crRNA ("targeter-RNA") sequences from various species (L. innocua (SEQ ID NO://); S. pyogenes (SEQ ID NO://); S. mutans (SEQ ID NO://); S. thermophilusl (SEQ ID NO://); C. jejuni (SEQ ID NO://); S. pyogenes (SEQ ID NO://); F. novicida (SEQ ID NO://); M. mobile (SEQ ID NO://); N. meningitides (SEQ ID NO://); P. multocida (SEQ ID NO://); and S. thermophilus2 (SEQ ID NO://).
- A multiple sequence alignments of exemplary duplex -forming segment of targeter-RNA sequences (AlignX, VectorNTI package, Invitrogen) associated with the loci of similar architecture and highly similar Cas9/Csnl sequences.
- B multiple sequence alignments of exemplary duplex-forming segment of targeter-RNA sequences (AlignX, VectorNTI package, Invitrogen) associated with the loci of different architecture and diverse Cas9 sequences. Black boxes represent shared nucleotides. For more exemplary duplex-forming segments targeter-RNA sequences, see SEQ ID NOs:563-679.
- Figure 8 provides a schematic of hybridization for naturally occurring duplex-forming
- the CRISPR loci belong to the Type II (Nmeni/CASS4) CRISPR/Cas system. Nomenclature is according to the CRISPR database (CRISPR DB). S. pyogenes (SEQ ID NO:// and //); S. mutans (SEQ ID NO:// and //); S. thermophilusl (SEQ ID NO:// and //); S. thermophilus2 (SEQ ID NO:// and //); L. innocua (SEQ ID NO:// and //); T.
- Figure 9 depicts example tracrRNA (activator-RNA) and crRNA (targeter-RNA) sequences from two species.
- S.pyogenes Cas9/Csnl protein is functional with tracrRNA and crRNA derived from Linnocua.
- (I) denotes a canonical Watson-Crick base pair while ( ⁇ ) denotes a G-U wobble base pair.
- "Variable 20nt” or "20nt” represents the DNA-targeting segment that is complementary to a target DNA (this region can be up to about lOOnt in length).
- the design of single-molecule DNA-targeting RNA that incorporates features of the targeter-RNA and the activator-RNA.
- Listeria innocua top to bottom: (SEQ ID NO://, //, //).
- the sequences provided are non-limiting examples and are meant to illustrate how single-molecule DNA-targeting RNAs and two- molecule DNA-targeting RNAs can be designed based on naturally existing sequences from a wide variety of species.
- Various examples of suitable seuqences from a wide variety of species are set forth as follows (Cas9 protein: SEQ ID NOs:l-259; tracrRNAs: SEQ ID NOs:431-562, or the complements thereof; crRNAs: SEQ ID NOs:563-679, or the complements thereof; and example single-molecule DNA-targeting RNAs: SEQ ID NOs:680-682).
- Figures 10A-E show that Cas9 is a DNA endonuclease guided by two RNA molecules.
- Figure E top to bottom, SEQ ID NOs: 278-280, and //).
- Figures 11A-B demonstrate that Cas9 uses two nuclease domains to cleave the two strands in the target DNA.
- Figures 12A-E illustrate that Cas9-catalyzed cleavage of target DNA requires an activating domain in tracrRNA and is governed by a seed sequence in the crRNA.
- Figure 12C top to bottom, SEQ ID NO:278-280, and //
- Figure 12D top to bottom, SEQ ID NOs: 281-290
- Figure 12E top to bottom, SEQ ID NOs: 291-292, 283, 293-298.
- Figures 13A-C show that a PAM is required to license target DNA cleavage by the Cas9- tracrRNA: crRNA complex.
- FIGS 14A-C illustrate that Cas9 can be programmed using a single engineered RNA
- Chimera A (SEQ ID NO:299); Chimera B (SEQ ID NO:300).
- Figure 15 depicts the type II RNA-mediated CRISPR/Cas immune pathway.
- Figures 16A-B depict purification of Cas9 nucleases.
- Figures 17A-C show that Cas9 guided by dual-tracrRNA:crRNA cleaves protospacer plasmid and oligonucleotide DNA.
- Figure 17B top to bottom, SEQ ID NOs: 301-303, and //; and
- Figure 17C top to bottom, SEQ ID NO:304-306, and //).
- Figures 18A-B show that Cas9 is a Mg2+-dependent endonuclease with 3 '-5' exonuclease activity.
- Figures 19A-C illustrate that dual-tracrRNA:crRNA directed Cas9 cleavage of target DNA is site specific.
- Figure 19C (top to bottom, SEQ ID NOs: 307-309, //, 337-339, and //).
- Figures 20A-B show that dual-tracrRNA:crRNA directed Cas9 cleavage of target DNA is fast and efficient.
- Figures 21A-B show that the HNH and RuvC-like domains of Cas9 direct cleavage of the complementary and noncomplementary DNA strand, respectively.
- Figure 22 demonstrates that tracrRNA is required for target DNA recognition.
- Figures 23A-B show that a minimal region of tracrRNA is capable of guiding dualtracrRNA: crRNA directed cleavage of target DNA.
- Figures 24A-D demonstrate that dual-tracrRNA:crRNA guided target DNA cleavage by Cas9 can be species specific.
- Figures 25 A- C show that a seed sequence in the crRNA governs dual tracrRNA :crRN A
- FIG. 25A target DNA probe 1 (SEQ ID NO:310); spacer 4 crRNA (1-42) (SEQ ID NO:311); tracrRNA (15-89) (SEQ ID NO://).
- Figure 25B left panel (SEQ ID NO:310).
- Figures 26A-C demonstrate that the PAM sequence is essential for protospacer plasmid DNA cleavage by Cas9-tracrRNA:crRNA and for Cas9-mediated plasmid DNA interference in bacterial cells.
- Figure 26B top to bottom, SEQ ID NOs:312-314; and Figure 26C (top to bottom, SEQ ID NO:315-320).
- Figures 27A-C show that Cas9 guided by a single chimeric RNA mimicking dual
- tracrRNA crRNA cleaves protospacer DNA.
- Figure 27C top to bottom, SEQ ID NO:321-324).
- Figures 28A-D depict de novo design of chimeric RNAs targeting the Green Fluorescent
- FIG. 28B (top to bottom, SEQ ID NOs:325-326).
- Figure 28C GFP1 target sequence (SEQ ID NO: 327); GFP2 target sequence (SEQ ID NO: 328); GFP3 target sequence (SEQ ID NO:329); GFP4 target sequence (SEQ ID NO:330); GFP5 target sequence (SEQ ID NO:331); GFP1 chimeric RNA (SEQ ID NO:332); GFP2 chimeric RNA (SEQ ID NO:333); GFP3 chimeric RNA (SEQ ID NO:334); GFP4 chimeric RNA (SEQ ID NO:335); GFP5 chimeric RNA (SEQ ID NO:336).
- Figures 29A-E demonstrate that co-expression of Cas9 and guide RNA in human cells generates double-strand DNA breaks at the target locus.
- Figure 29C (top to bottom, SEQ ID NO:425-428).
- Figures 30A-B demonstrate that cell lysates contain active Cas9:sgRNA and support site- specific DNA cleavage.
- Figures 31A-B demonstrate that 3' extension of sgRNA constructs enhances site-specific
- Figures 32A-B depict a phylogenetic tree of representative Cas9 sequences from various organisms (A) as well as Cas9 locus architectures for the main groups of the tree (B).
- Figures 33A-E depict the architecture of type II CRISPR-Cas from selected bacterial species.
- Figures 34A-B depict tracrRNA and pre-crRNA co-processing in selected type II CRISPR Cas systems.
- Figure 34A top to bottom, SEQ ID NO://,//,//,//,//,//,///;
- Figure 34B top to bottom,
- Figure 35 depicts a sequence alignment of tracrRNA orthologues demonstrating the diversity of tracrRNA sequences.
- Figures 36A-F depict the expression of bacterial tracrRNA orthologues and crRNAs revealed by deep RNA sequencing.
- Figures 37A-0 list all tracrRNA orthologues and mature crRNAs retrieved by sequencing for the bacterial species studied, including coordinates (region of interest) and corresponding cDNA sequences (5' to 3') ⁇
- Figures 38 A-B present a table of bacterial species containing type II CRISPR-Cas loci
- FIGS 39 A-B depict the design of the CRISPR interference (CRISPRi) system.
- Figures 40 A-E demonstrate that CRISPRi effectively silences transcription elongation and initiation.
- Figures 41 A-B demonstrate that CRISPRi functions by blocking transcription elongation.
- Figures 42 A-C demonstrate the targeting specificity of the CRISPRi system.
- Figures 43 A-F depict the characterization of factors that affect silencing efficiency.
- Figures 44 A-C depict functional profiling of a complex regulatory network using CRISPRi gene knockdown.
- Figures 45 A-B demonstrates gene silencing using CRISPRi in mammalian cells.
- Figure 46 depicts the mechanism of the type II CRISPR system from S. pyogenes.
- Figures 47 A-B depict the growth curves of E. coli cell cultures co-transformed with dCas9 and sgRNA.
- Figure 48 shows that CRISPRi could silence expression of a reporter gene on a multiple -copy plasmid.
- Figures 49 A-C depict the RNA-seq data of cells with sgRNAs that target different genes.
- Figures 50 A-E depict the silencing effects of sgRNAs with adjacent double mismatches.
- Figures 51 A-C depict the combinatorial silencing effects of using two sgRNAs to regulate a single gene.
- Figure 52 shows that sgRNA repression is dependent on the target loci and relatively distance from the transcription start.
- Figures 53 A-C depict experimental results demonstrating that a variant Cas9 site-directed polypeptide (dCas9) is works for the subject methods when dCas9 has reduced activity in the
- RuvCl domain only e.g., D10A
- HNH domain only e.g., H840A
- both domains e.g.
- Figures 54 A-C list examples of suitable fusion partners (or fragments thereof) for a subject variant Cas9 site -directed polypeptide. Examples include, but are not limited to those listed.
- Figures 55 A-D demonstrate that a chimeric site -directed polypeptide can be used to activate (increase) transcription in human cells.
- Figure 56 demonstrates that a chimeric site -directed polypeptide can be used to repress
- Figures 57A-B demonstrate that artificial sequences that share roughly 50% identity with
- tracrRNAs and crRNAs can function with Cas9 to cleave target DNA as long as the structure of the protein-binding domain of the DNA-targeting RNA is conserved.
- polynucleotide and “nucleic acid,” used interchangeably herein, refer to a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides.
- this term includes, but is not limited to, single-, double-, or multi-stranded DNA or RNA, genomic DNA, cDNA, DNA-RNA hybrids, or a polymer comprising purine and pyrimidine bases or other natural, chemically or biochemically modified, non-natural, or derivatized nucleotide bases.
- Oligonucleotide generally refers to polynucleotides of between about 5 and about 100 nucleotides of single- or double-stranded DNA. However, for the purposes of this disclosure, there is no upper limit to the length of an oligonucleotide. Oligonucleotides are also known as “oligomers” or “oligos” and may be isolated from genes, or chemically synthesized by methods known in the art. The terms “polynucleotide” and “nucleic acid” should be understood to include, as applicable to the embodiments being described, single-stranded (such as sense or antisense) and double-stranded polynucleotides.
- a “stem-loop structure” refers to a nucleic acid having a secondary structure that includes a region of nucleotides which are known or predicted to form a double strand (step portion) that is linked on one side by a region of predominantly single-stranded nucleotides (loop portion).
- the terms “hairpin” and “fold-back” structures are also used herein to refer to stem-loop structures. Such structures are well known in the art and these terms are used consistently with their known meanings in the art.
- a stem-loop structure does not require exact base- pairing.
- the stem may include one or more base mismatches.
- the base- pairing may be exact, i.e. not include any mismatches.
- hybridizable or “complementary” or “substantially complementary” it is meant that a
- nucleic acid e.g. RNA
- nucleic acid comprises a sequence of nucleotides that enables it to non-covalently bind, i.e. form Watson-Crick base pairs and/or G/U base pairs, "anneal", or “hybridize,” to another nucleic acid in a sequence-specific, antiparallel, manner (i.e., a nucleic acid specifically binds to a complementary nucleic acid) under the appropriate in vitro and/or in vivo conditions of temperature and solution ionic strength.
- standard Watson-Crick base- pairing includes: adenine (A) pairing with thymidine (T), adenine (A) pairing with uracil (U), and guanine (G) pairing with cytosine (C) [DNA, RNA].
- A adenine
- U uracil
- G guanine
- C cytosine
- G/U base-pairing is partially responsible for the degeneracy (i.e., redundancy) of the genetic code in the context of tRNA anti-codon base-pairing with codons in mRNA.
- a guanine (G) of a protein-binding segment (dsRNA duplex) of a subject DNA-targeting RNA molecule is considered complementary to a uracil (U), and vice versa.
- G guanine
- U uracil
- Hybridization and washing conditions are well known and exemplified in Sambrook, J., Fritsch, E. F. and Maniatis, T. Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1989), particularly Chapter 11 and Table 11.1 therein; and Sambrook, J. and Russell, W., Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2001). The conditions of temperature and ionic strength determine the "stringency" of the hybridization. [0094] Hybridization requires that the two nucleic acids contain complementary sequences, although mismatches between bases are possible.
- the conditions appropriate for hybridization between two nucleic acids depend on the length of the nucleic acids and the degree of complementation, variables well known in the art. The greater the degree of complementation between two nucleotide sequences, the greater the value of the melting temperature (Tm) for hybrids of nucleic acids having those sequences.
- Tm melting temperature
- the position of mismatches becomes important (see Sambrook et al., supra, 11.7-11.8).
- the length for a hybridizable nucleic acid is at least about 10 nucleotides.
- Illustrative minimum lengths for a hybridizable nucleic acid are: at least about 15 nucleotides; at least about 20 nucleotides; at least about 22 nucleotides; at least about 25 nucleotides; and at least about 30 nucleotides).
- the temperature and wash solution salt concentration may be adjusted as necessary according to factors such as length of the region of complementation and the degree of complementation.
- polynucleotide need not be 100% complementary to that of its target nucleic acid to be specifically hybridizable or hybridizable. Moreover, a polynucleotide may hybridize over one or more segments such that intervening or adjacent segments are not involved in the hybridization event (e.g., a loop structure or hairpin structure).
- a polynucleotide can comprise at least 70%, at least 80%, at least 90%, at least 95%, at least 99%, or 100% sequence complementarity to a target region within the target nucleic acid sequence to which they are targeted.
- an antisense nucleic acid in which 18 of 20 nucleotides of the antisense compound are complementary to a target region, and would therefore specifically hybridize, would represent 90 percent complementarity.
- the remaining noncomplementary nucleotides may be clustered or interspersed with
- BLAST programs basic local alignment search tools
- PowerBLAST programs known in the art (Altschul et al., J. Mol. Biol., 1990, 215, 403-410; Zhang and Madden, Genome Res., 1997, 7, 649-656) or by using the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison Wis.), using default settings, which uses the algorithm of Smith and Waterman (Adv. Appl. Math., 1981, 2, 482-489).
- peptide refers to a polymeric form of amino acids of any length, which can include coded and non-coded amino acids, chemically or biochemically modified or derivatized amino acids, and polypeptides having modified peptide backbones.
- Binding refers to a non-covalent interaction between macromolecules (e.g., between a protein and a nucleic acid). While in a state of non-covalent interaction, the macromolecules are said to be
- binding interaction e.g., when a molecule X is said to interact with a molecule Y, it is meant the molecule X binds to molecule Y in a non-covalent manner). Not all components of a binding interaction need be sequence-specific (e.g., contacts with phosphate residues in a DNA backbone), but some portions of a binding interaction may be sequence- specific.
- Binding interactions are generally characterized by a dissociation constant (Kd) of less than 10 "6 M, less than 10 "7 M, less than 10 "8 M, less than 10 "9 M, less than 10 "10 M, less than 10 "11 M, less than 10 "12 M, less than 10 "13 M, less than 10 "14 M, or less than 10 "15 M.
- Kd dissociation constant
- Affinity refers to the strength of binding, increased binding affinity being correlated with a lower Kd.
- binding domain it is meant a protein domain that is able to bind non-covalently to another molecule.
- a binding domain can bind to, for example, a DNA molecule (a DNA-binding protein), an RNA molecule (an RNA-binding protein) and/or a protein molecule (a protein- binding protein).
- a DNA-binding protein a DNA-binding protein
- RNA-binding protein an RNA-binding protein
- protein-binding protein it can bind to itself (to form homodimers, homotrimers, etc.) and/or it can bind to one or more molecules of a different protein or proteins.
- a group of amino acids having aliphatic side chains consists of glycine, alanine, valine, leucine, and isoleucine; a group of amino acids having aliphatic -hydroxyl side chains consists of serine and threonine; a group of amino acids having amide containing side chains consisting of asparagine and glutamine; a group of amino acids having aromatic side chains consists of phenylalanine, tyrosine, and tryptophan; a group of amino acids having basic side chains consists of lysine, arginine, and histidine; a group of amino acids having acidic side chains consists of glutamate and aspartate; and a group of amino acids having sulfur containing side chains consists of cysteine and methionine.
- Exemplary conservative amino acid substitution groups are: valine -leucine - iso
- a polynucleotide or polypeptide has a certain percent "sequence identity" to another
- polynucleotide or polypeptide meaning that, when aligned, that percentage of bases or amino acids are the same, and in the same relative position, when comparing the two sequences.
- Sequence identity can be determined in a number of different manners. To determine sequence identity, sequences can be aligned using various methods and computer programs (e.g., BLAST, T-COFFEE, MUSCLE, MAFFT, etc.), available over the world wide web at sites including ncbi.nlm.nili.gov/BLAST, ebi.ac.uk Tools/msa/tcoffee/, ebi.ac.uk/Tools/msa/muscle/, mafft.cbrc.jp/alignment/software/. See, e.g., Altschul et al. (1990), J. Mol. Bioi. 215:403-10.
- a DNA sequence that "encodes" a particular RNA is a DNA nucleic acid sequence that is
- a DNA polynucleotide may encode an RNA (mRNA) that is translated into protein, or a DNA polynucleotide may encode an RNA that is not translated into protein (e.g. tRNA, rRNA, or a DNA-targeting RNA; also called “non-coding” RNA or "ncRNA”).
- mRNA RNA
- rRNA RNA-targeting RNA
- a "protein coding sequence” or a sequence that encodes a particular protein or polypeptide is a nucleic acid sequence that is transcribed into mRNA (in the case of DNA) and is translated (in the case of mRNA) into a polypeptide in vitro or in vivo when placed under the control of appropriate regulatory sequences.
- the boundaries of the coding sequence are determined by a start codon at the 5' terminus (N-terminus) and a translation stop nonsense codon at the 3' terminus (C -terminus).
- a coding sequence can include, but is not limited to, cDNA from prokaryotic or eukaryotic mRNA, genomic DNA sequences from prokaryotic or eukaryotic DNA, and synthetic nucleic acids.
- a transcription termination sequence will usually be located 3' to the coding sequence.
- a "promoter sequence” is a DNA regulatory region capable of binding RNA polymerase and initiating transcription of a downstream (3' direction) coding or non-coding sequence.
- the promoter sequence is bounded at its 3' terminus by the transcription initiation site and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background.
- a transcription initiation site within the promoter sequence will be found a transcription initiation site, as well as protein binding domains responsible for the binding of RNA polymerase.
- Eukaryotic promoters will often, but not always, contain "TATA" boxes and "CAT” boxes.
- Various promoters, including inducible promoters may be used to drive the various vectors of the present invention.
- a promoter can be a constitutively active promoter (i.e., a promoter that is constitutively in an active/"ON” state), it may be an inducible promoter (i.e., a promoter whose state, active/"ON” or inactive/"OFF", is controlled by an external stimulus, e.g., the presence of a particular temperature, compound, or protein.), it may be a spatially restricted promoter (i.e.,
- transcriptional control element e.g., tissue specific promoter, cell type specific promoter, etc.
- tissue specific promoter e.g., tissue specific promoter, cell type specific promoter, etc.
- temporally restricted promoter i.e., the promoter is in the "ON" state or “OFF” state during specific stages of embryonic development or during specific stages of a biological process, e.g., hair follicle cycle in mice.
- Suitable promoters can be derived from viruses and can therefore be referred to as viral promoters, or they can be derived from any organism, including prokaryotic or eukaryotic organisms. Suitable promoters can be used to drive expression by any RNA polymerase (e.g., pol I, pol II, pol III).
- Exemplary promoters include, but are not limited to the SV40 early promoter, mouse mammary tumor virus long terminal repeat (LTR) promoter; adenovirus major late promoter (Ad MLP); a herpes simplex virus (HSV) promoter, a cytomegalovirus (CMV) promoter such as the CMV immediate early promoter region (CMVIE), a rous sarcoma virus (RSV) promoter, a human U6 small nuclear promoter (U6) (Miyagishi et al. , Nature
- LTR adenovirus major late promoter
- HSV herpes simplex virus
- CMV cytomegalovirus
- CMVIE CMV immediate early promoter region
- RSV rous sarcoma virus
- U6 small nuclear promoter U6 small nuclear promoter
- an enhanced U6 promoter e.g., Xia et al., Nucleic Acids Res. 2003 Sep 1 ;31(17)
- a human HI promoter HI
- inducible promoters include, but are not limited toT7 RNA polymerase promoter, T3 RNA polymerase promoter, Isopropyl-beta-D-thiogalactopyranoside (IPTG) -regulated promoter, lactose induced promoter, heat shock promoter, Tetracycline-regulated promoter, Steroid-regulated promoter, Metal-regulated promoter, estrogen receptor-regulated promoter, etc.
- Inducible promoters can therefore be regulated by molecules including, but not limited to, doxycycline; RNA polymerase, e.g., T7 RNA polymerase; an estrogen receptor; an estrogen receptor fusion; etc.
- the promoter is a spatially restricted promoter (i.e., cell type specific promoter, tissue specific promoter, etc.) such that in a multi-cellular organism, the promoter is active (i.e., "ON") in a subset of specific cells.
- spatially restricted promoters may also be referred to as enhancers, transcriptional control elements, control sequences, etc.
- any convenient spatially restricted promoter may be used and the choice of suitable promoter (e.g., a brain specific promoter, a promoter that drives expression in a subset of neurons, a promoter that drives expression in the germline, a promoter that drives expression in the lungs, a promoter that drives expression in muscles, a promoter that drives expression in islet cells of the pancreas, etc.) will depend on the organism.
- various spatially restricted promoters are known for plants, flies, worms, mammals, mice, etc.
- a spatially restricted promoter can be used to regulate the expression of a nucleic acid encoding a subject site-directed modifying polypeptide in a wide variety of different tissues and cell types, depending on the organism.
- Some spatially restricted promoters are also temporally restricted such that the promoter is in the "ON" state or "OFF" state during specific stages of embryonic development or during specific stages of a biological process (e.g., hair follicle cycle in mice).
- examples of spatially restricted promoters include, but are not limited to, neuron-specific promoters, adipocyte-specific promoters, cardiomyocyte-specific promoters, smooth muscle-specific promoters, photoreceptor-specific promoters, etc.
- Neuron-specific spatially restricted promoters include, but are not limited to, a neuron-specific enolase (NSE) promoter (see, e.g., EMBL HSEN02, X51956); an aromatic amino acid decarboxylase (AADC) promoter; a neurofilament promoter (see, e.g., GenBank HUMNFL, L04147); a synapsin promoter (see, e.g., GenBank HUMSYNIB, M55301); a thy-1 promoter (see, e.g., Chen et al. (1987) Cell 51:7-19; and Llewellyn, et al. (2010) Nat. Med.
- NSE neuron-specific enolase
- AADC aromatic amino acid decarboxylase
- a GnRH promoter see, e.g., Radovick et al. (1991) Proc. Natl. Acad. Sci. USA 88:3402-3406); an L7 promoter (see, e.g., Oberdick et al. (1990) Science 248:223-226); a DNMT promoter (see, e.g., Bartge et al. (1988) Proc. Natl. Acad. Sci. USA 85:3648-3652); an enkephalin promoter (see, e.g., Comb et al.
- Adipocyte-specific spatially restricted promoters include, but are not limited to aP2 gene
- promoter/enhancer e.g., a region from -5.4 kb to +21 bp of a human aP2 gene (see, e.g., Tozzo et al. (1997) Endocrinol. 138: 1604; Ross et al. (1990) Proc. Natl. Acad. Sci. USA 87:9590; and Pavjani et al. (2005) Nat. Med. 11 :797); a glucose transporter-4 (GLUT4) promoter (see, e.g., Knight et al. (2003) Proc. Natl. Acad. Sci. USA 100: 14725); a fatty acid translocase
- a leptin promoter see, e.g., Mason et al. (1998) Endocrinol. 139: 1013; and Chen et al. (1999) Biochem. Biophys. Res. Comm. 262: 187); an adiponectin promoter (see, e.g., Kita et al. (2005) Biochem. Biophys. Res. Comm. 331 :484; and Chakrabarti (2010) Endocrinol. 151 :2408); an adipsin promoter (see, e.g., Piatt et al. (1989) Proc. Natl. Acad. Sci. USA 86:7490); a resistin promoter (see, e.g., Seo et al. (2003) Molec. Endocrinol. 17: 1522); and the like.
- a leptin promoter see, e.g., Mason et al. (1998) Endocrino
- Cardiomyocyte-specific spatially restricted promoters include, but are not limited to control sequences derived from the following genes: myosin light chain-2, a-myosin heavy chain, AE3, cardiac troponin C, cardiac actin, and the like.
- Franz et al. (1997) Cardiovasc. Res. 35:560-566; Robbins et al. (1995) Ann. N.Y. Acad. Sci. 752:492-505; Linn et al. (1995) Circ. Res. 76:584- 591 ; Parmacek et al. (1994) Mol. Cell. Biol. 14: 1870-1885; Hunter et al.
- Smooth muscle-specific spatially restricted promoters include, but are not limited to an SM22a promoter (see, e.g., Akyurek et al. (2000) Mol. Med. 6:983; and U.S. Patent No. 7,169,874); a smoothelin promoter (see, e.g., WO 2001/018048); an a-smooth muscle actin promoter; and the like.
- a 0.4 kb region of the SM22a promoter, within which lie two CArG elements, has been shown to mediate vascular smooth muscle cell-specific expression (see, e.g., Kim, et al. (1997) Mol. Cell. Biol. 17, 2266-2278; Li, et al., (1996) J. Cell Biol. 132, 849-859; and
- Photoreceptor-specific spatially restricted promoters include, but are not limited to, a rhodopsin promoter; a rhodopsin kinase promoter (Young et al. (2003) Ophthalmol. Vis. Sci. 44:4076); a beta phosphodiesterase gene promoter (Nicoud et al. (2007) J. Gene Med. 9: 1015); a retinitis pigmentosa gene promoter (Nicoud et al. (2007) supra); an interphotoreceptor retinoid-binding protein (IRBP) gene enhancer (Nicoud et al. (2007) supra); an IRBP gene promoter (Yokoyama et al. (1992) Exp Eye Res. 55:225); and the like.
- DNA regulatory sequences refer to transcriptional and translational control sequences, such as promoters, enhancers, polyadenylation signals, terminators, protein degradation signals, and the like, that provide for and/or regulate transcription of a non-coding sequence (e.g., DNA-targeting RNA) or a coding sequence (e.g., site -directed modifying polypeptide, or Cas9/Csnl polypeptide) and/or regulate translation of an encoded polypeptide.
- a non-coding sequence e.g., DNA-targeting RNA
- a coding sequence e.g., site -directed modifying polypeptide, or Cas9/Csnl polypeptide
- nucleic acid refers to a nucleic acid, polypeptide, cell, or organism that is found in nature.
- a polypeptide or polynucleotide sequence that is present in an organism (including viruses) that can be isolated from a source in nature and which has not been intentionally modified by a human in the laboratory is naturally occurring.
- chimeric refers to two components that are defined by structures derived from different sources.
- chimeric polypeptide e.g., a chimeric Cas9/Csnl protein
- the chimeric polypeptide includes amino acid sequences that are derived from different polypeptides.
- a chimeric polypeptide may comprise either modified or naturally-occurring polypeptide sequences (e.g., a first amino acid sequence from a modified or unmodified
- Cas9/Csnl protein and a second amino acid sequence other than the Cas9/Csnl protein).
- chimeric in the context of a polynucleotide encoding a chimeric polypeptide includes nucleotide sequences derived from different coding regions (e.g., a first nucleotide sequence encoding a modified or unmodified Cas9/Csnl protein; and a second nucleotide sequence encoding a polypeptide other than a Cas9/Csnl protein).
- chimeric polypeptide refers to a polypeptide which is made by the combination (i.e., "fusion") of two otherwise separated segments of amino sequence, usually through human intervention.
- a polypeptide that comprises a chimeric amino acid sequence is a chimeric polypeptide.
- Some chimeric polypeptides can be referred to as "fusion variants.”
- Heterologous means a nucleotide or polypeptide sequence that is not found in the native nucleic acid or protein, respectively.
- the RNA-binding domain of a naturally-occurring bacterial Cas9/Csnl polypeptide may be fused to a heterologous polypeptide sequence (i.e. a polypeptide sequence from a protein other than Cas9/Csnl or a polypeptide sequence from another organism).
- the heterologous polypeptide sequence may exhibit an activity (e.g., enzymatic activity) that will also be exhibited by the chimeric Cas9/Csnl protein (e.g., methyltransferase activity, acetyltransferase activity, kinase activity, ubiquitinating activity, etc.).
- a heterologous nucleic acid sequence may be linked to a naturally-occurring nucleic acid sequence (or a variant thereof) (e.g., by genetic engineering) to generate a chimeric nucleotide sequence encoding a chimeric polypeptide.
- a variant Cas9 site-directed polypeptide may be fused to a heterologous polypeptide (i.e. a polypeptide other than Cas9), which exhibits an activity that will also be exhibited by the fusion variant Cas9 site -directed polypeptide.
- a heterologous nucleic acid sequence may be linked to a variant Cas9 site -directed polypeptide (e.g., by genetic engineering) to generate a nucleotide sequence encoding a fusion variant Cas9 site -directed polypeptide.
- Recombinant means that a particular nucleic acid (DNA or RNA) is the
- DNA sequences encoding polypeptides can be assembled from cDNA fragments or from a series of synthetic oligonucleotides, to provide a synthetic nucleic acid which is capable of being expressed from a recombinant transcriptional unit contained in a cell or in a cell-free transcription and translation system.
- Genomic DNA comprising the relevant sequences can also be used in the formation of a recombinant gene or transcriptional unit.
- Sequences of non-translated DNA may be present 5' or 3' from the open reading frame, where such sequences do not interfere with manipulation or expression of the coding regions, and may indeed act to modulate production of a desired product by various mechanisms (see “DNA regulatory sequences", below).
- DNA sequences encoding RNA e.g., DNA-targeting RNA
- recombinant nucleic acid refers to one which is not naturally occurring, e.g., is made by the artificial combination of two otherwise separated segments of sequence through human intervention.
- This artificial combination is often accomplished by either chemical synthesis means, or by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques. Such is usually done to replace a codon with a codon encoding the same amino acid, a conservative amino acid, or a non-conservative amino acid. Alternatively, it is performed to join together nucleic acid segments of desired functions to generate a desired combination of functions. This artificial combination is often accomplished by either chemical synthesis means, or by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques.
- a recombinant polynucleotide encodes a polypeptide
- the sequence of the encoded polypeptide can be naturally occurring ("wild type") or can be a variant (e.g., a mutant) of the naturally occurring sequence.
- the term "recombinant" polypeptide does not necessarily refer to a polypeptide whose sequence does not naturally occur.
- a "recombinant" polypeptide is encoded by a recombinant DNA sequence, but the sequence of the polypeptide can be naturally occurring ("wild type") or non-naturally occurring (e.g., a variant, a mutant, etc.).
- a "recombinant" polypeptide is the result of human intervention, but may be a naturally occurring amino acid sequence.
- a "vector” or "expression vector” is a replicon, such as plasmid, phage, virus, or cosmid, to which another DNA segment, i.e. an "insert”, may be attached so as to bring about the replication of the attached segment in a cell.
- An "expression cassette” comprises a DNA coding sequence operably linked to a promoter.
- “Operably linked” refers to a juxtaposition wherein the components so described are in a relationship permitting them to function in their intended manner.
- a promoter is operably linked to a coding sequence if the promoter affects its transcription or expression.
- recombinant expression vector or "DNA construct” are used interchangeably herein to refer to a DNA molecule comprising a vector and at least one insert.
- Recombinant expression vectors are usually generated for the purpose of expressing and/or propagating the insert(s), or for the construction of other recombinant nucleotide sequences.
- the insert(s) may or may not be operably linked to a promoter sequence and may or may not be operably linked to DNA regulatory sequences.
- a cell has been "genetically modified” or “transformed” or “transfected” by exogenous DNA, e.g. a recombinant expression vector, when such DNA has been introduced inside the cell.
- exogenous DNA e.g. a recombinant expression vector
- the presence of the exogenous DNA results in permanent or transient genetic change.
- the transforming DNA may or may not be integrated (covalently linked) into the genome of the cell.
- the transforming DNA may be maintained on an episomal element such as a plasmid.
- a stably transformed cell is one in which the transforming DNA has become integrated into a
- chromosome so that it is inherited by daughter cells through chromosome replication. This stability is demonstrated by the ability of the eukaryotic cell to establish cell lines or clones that comprise a population of daughter cells containing the transforming DNA.
- a "clone” is a population of cells derived from a single cell or common ancestor by mitosis.
- a "cell line” is a clone of a primary cell that is capable of stable growth in vitro for many generations.
- Suitable methods of genetic modification include e.g., viral or bacteriophage infection, transfection, conjugation, protoplast fusion, lipofection, electroporation, calcium phosphate precipitation, polyethyleneimine (PEI) -mediated transfection, DEAE-dextran mediated transfection, liposome-mediated transfection, particle gun technology, calcium phosphate precipitation, direct micro injection, nanoparticle-mediated nucleic acid delivery (see, e.g., Panyam et., al Adv Drug Deliv Rev. 2012 Sep 13. pii: S0169- 409X(12)00283-9. doi: 10.1016/j.addr.2012.09.023 ), and the like.
- transformation include e.g., viral or bacteriophage infection, transfection, conjugation, protoplast fusion, lipofection, electroporation, calcium phosphate precipitation, polyethyleneimine (PEI) -mediated transfection, DEAE-dextran mediated transfection, liposome-mediated transfection,
- a "target DNA” as used herein is a DNA polynucleotide that comprises a "target site” or “target sequence.”
- target site or “target sequence” or “target protospacer DNA” are used interchangeably herein to refer to a nucleic acid sequence present in a target DNA to which a DNA-targeting segment of a subject DNA-targeting RNA will bind (see Figure 1 and Figure 39), provided sufficient conditions for binding exist.
- the target site (or target sequence) 5'-GAGCATATC-3' (SEQ ID NO://) within a target DNA is targeted by (or is bound by, or hybridizes with, or is complementary to) the RNA sequence 5'-GAUAUGCUC-3' (SEQ ID NO://).
- Suitable DNA/RNA binding conditions include physiological conditions normally present in a cell.
- Other suitable DNA/RNA binding conditions e.g., conditions in a cell-free system
- the strand of the target DNA that is complementary to and hybridizes with the DNA-targeting RNA is referred to as the
- complementary strand (and is therefore not complementary to the DNA-targeting RNA) is referred to as the "noncomplementary strand” or “non-complementary strand” (see Figure 12).
- site-directed modifying polypeptide or "RNA-binding site -directed polypeptide” or
- RNA-binding site -directed modifying polypeptide or "site-directed polypeptide” it is meant a polypeptide that binds RNA and is targeted to a specific DNA sequence.
- a site -directed modifying polypeptide as described herein is targeted to a specific DNA sequence by the RNA molecule to which it is bound.
- the RNA molecule comprises a sequence that is complementary to a target sequence within the target DNA, thus targeting the bound polypeptide to a specific location within the target DNA (the target sequence).
- cleavage it is meant the breakage of the covalent backbone of a DNA molecule. Cleavage can be initiated by a variety of methods including, but not limited to, enzymatic or chemical hydrolysis of a phosphodiester bond. Both single-stranded cleavage and double-stranded cleavage are possible, and double-stranded cleavage can occur as a result of two distinct single- stranded cleavage events. DNA cleavage can result in the production of either blunt ends or staggered ends.
- a complex comprising a DNA -targeting RNA and a site -directed modifying polypeptide is used for targeted double-stranded DNA cleavage.
- Nuclease and “endonuclease” are used interchangeably herein to mean an enzyme which possesses catalytic activity for DNA cleavage.
- cleavage domain or “active domain” or “nuclease domain” of a nuclease it is meant the polypeptide sequence or domain within the nuclease which possesses the catalytic activity for DNA cleavage.
- a cleavage domain can be contained in a single polypeptide chain or cleavage activity can result from the association of two (or more) polypeptides.
- a single nuclease domain may consist of more than one isolated stretch of amino acids within a given polypeptide.
- RNA molecule that binds to the site -directed modifying polypeptide and targets the
- DNA- targeting RNA or “DNA-targeting RNA polynucleotide” (also referred to herein as a “guide RNA” or “gRNA”).
- a subject DNA-targeting RNA comprises two segments, a “DNA-targeting segment” and a “protein-binding segment.”
- segment it is meant a segment/section/region of a molecule, e.g., a contiguous stretch of nucleotides in an RNA.
- a segment can also mean a region/section of a complex such that a segment may comprise regions of more than one molecule.
- the protein-binding segment (described below) of a DNA- targeting RNA is one RNA molecule and the protein-binding segment therefore comprises a region of that RNA molecule.
- the protein-binding segment (described below) of a DNA-targeting RNA comprises two separate molecules that are hybridized along a region of complementarity.
- a protein-binding segment of a DNA- targeting RNA that comprises two separate molecules can comprise (i) base pairs 40-75 of a first RNA molecule that is 100 base pairs in length; and (ii) base pairs 10-25 of a second RNA molecule that is 50 base pairs in length.
- segment unless otherwise specifically defined in a particular context, is not limited to a specific number of total base pairs, is not limited to any particular number of base pairs from a given RNA molecule, is not limited to a particular number of separate molecules within a complex, and may include regions of RNA molecules that are of any total length and may or may not include regions with complementarity to other molecules.
- the DNA-targeting segment (or "DNA-targeting sequence”) comprises a nucleotide sequence that is complementary to a specific sequence within a target DNA (the complementary strand of the target DNA).
- the protein-binding segment (or "protein-binding sequence”) interacts with a site -directed modifying polypeptide.
- site-directed modifying polypeptide is a Cas9 or Cas9 related polypeptide (described in more detail below)
- site-specific cleavage of the target DNA occurs at locations determined by both (i) base-pairing complementarity between the DNA-targeting RNA and the target DNA; and (ii) a short motif (referred to as the protospacer adjacent motif (PAM)) in the target DNA.
- PAM protospacer adjacent motif
- the protein-binding segment of a subject DNA-targeting RNA comprises two complementary stretches of nucleotides that hybridize to one another to form a double stranded RNA duplex (dsRNA duplex).
- a subject nucleic acid e.g., a DNA-targeting RNA, a nucleic acid
- nucleotide sequence encoding a DNA-targeting RNA; a nucleic acid encoding a site -directed polypeptide; etc.
- a modification or sequence that provides for an additional desirable feature (e.g., modified or regulated stability; subcellular targeting; tracking, e.g., a fluorescent label; a binding site for a protein or protein complex; etc.).
- Non-limiting examples include: a 5' cap (e.g., a 7-methylguanylate cap (m7G)); a 3' polyadenylated tail (i.e., a 3' poly(A) tail); a riboswitch sequence (e.g., to allow for regulated stability and/or regulated accessibility by proteins and/or protein complexes); a stability control sequence; a sequence that forms a dsRNA duplex (i.e., a hairpin)); a modification or sequence that targets the RNA to a subcellular location (e.g., nucleus, mitochondria, chloroplasts, and the like); a modification or sequence that provides for tracking (e.g., direct conjugation to a fluorescent molecule, conjugation to a moiety that facilitates fluorescent detection, a sequence that allows for fluorescent detection, etc.); a modification or sequence that provides a binding site for proteins (e.g., proteins that act on DNA, including transcriptional activators, transcriptional repressors, DNA
- a DNA-targeting RNA comprises an additional segment at either the 5' or 3' end that provides for any of the features described above.
- a suitable third segment can comprise a 5' cap (e.g., a 7-methylguanylate cap (m7G)); a 3' polyadenylated tail (i.e., a 3' poly(A) tail); a riboswitch sequence (e.g., to allow for regulated stability and/or regulated accessibility by proteins and protein complexes); a stability control sequence; a sequence that forms a dsRNA duplex (i.e., a hairpin)); a sequence that targets the RNA to a subcellular location (e.g., nucleus, mitochondria, chloroplasts, and the like); a modification or sequence that provides for tracking (e.g., direct conjugation to a fluorescent molecule, conjugation to a moiety that facilitates fluorescent detection, a sequence that allows for fluorescent detection, etc.);
- a subject DNA-targeting RNA and a subject site -directed modifying polypeptide form a complex (i.e., bind via non-covalent interactions).
- the DNA- targeting RNA provides target specificity to the complex by comprising a nucleotide sequence that is complementary to a sequence of a target DNA.
- the site-directed modifying polypeptide of the complex provides the site-specific activity.
- the site -directed modifying polypeptide is guided to a target DNA sequence (e.g. a target sequence in a chromosomal nucleic acid; a target sequence in an extrachromosomal nucleic acid, e.g.
- an episomal nucleic acid, a minicircle, etc. a target sequence in a mitochondrial nucleic acid; a target sequence in a chloroplast nucleic acid; a target sequence in a plasmid; etc.) by virtue of its association with the protein-binding segment of the DNA-targeting RNA.
- a subject DNA-targeting RNA comprises two separate RNA molecules (RNA polynucleotides: an "activator-RNA” and a “targeter-RNA”, see below) and is referred to herein as a “double-molecule DNA-targeting RNA” or a "two-molecule DNA-targeting RNA.”
- the subject DNA-targeting RNA is a single RNA molecule (single RNA polynucleotide) and is referred to herein as a "single-molecule DNA-targeting RNA,” a “single- guide RNA,” or an "sgRNA.”
- the term "DNA-targeting RNA” or “gRNA” is inclusive, referring both to double-molecule DNA-targeting RNAs and to single-molecule DNA-targeting RNAs (i.e., sgRNAs).
- An exemplary two-molecule DNA-targeting RNA comprises a crRNA-like (“CRISPR RNA” or “targeter-RNA” or “crRNA” or “crRNA repeat”) molecule and a corresponding tracrRNA-like (“trans-acting CRISPR RNA” or “activator-RNA” or “tracrRNA”) molecule.
- a crRNA-like molecule comprises both the DNA-targeting segment (single stranded) of the DNA-targeting RNA and a stretch ("duplex-forming segment") of nucleotides that forms one half of the dsRNA duplex of the protein-binding segment of the DNA-targeting RNA.
- a corresponding tracrRNA-like molecule comprises a stretch of nucleotides (duplex-forming segment) that forms the other half of the dsRNA duplex of the protein-binding segment of the DNA-targeting RNA.
- a stretch of nucleotides of a crRNA-like molecule are complementary to and hybridize with a stretch of nucleotides of a tracrRNA-like molecule to form the dsRNA duplex of the protein-binding domain of the DNA-targeting RNA.
- each crRNA-like molecule can be said to have a corresponding tracrRNA-like molecule.
- the crRNA-like molecule additionally provides the single stranded DNA-targeting segment.
- a crRNA-like and a tracrRNA-like molecule hybridize to form a DNA-targeting RNA.
- the exact sequence of a given crRNA or tracrRNA molecule is characteristic of the species in which the RNA molecules are found.
- Various crRNAs and tracrRNAs are depicted in corresponding complementary pairs in Figures 8.
- a subject double- molecule DNA-targeting RNA can comprise any corresponding crRNA and tracrRNA pair.
- a subject double-molecule DNA-targeting RNA can comprise any corresponding crRNA and tracrRNA pair.
- activator-RNA is used herein to mean a tracrRNA-like molecule of a double- molecule DNA-targeting RNA.
- targeter-RNA is used herein to mean a crRNA-like molecule of a double-molecule DNA-targeting RNA.
- duplex-forming segment is used herein to mean the stretch of nucleotides of an activator-RNA or a targeter-RNA that contributes to the formation of the dsRNA duplex by hybridizing to a stretch of nucleotides of a corresponding activator-RNA or targeter-RNA molecule.
- an activator-RNA comprises a duplex-forming segment that is complementary to the duplex-forming segment of the corresponding targeter-RNA.
- an activator-RNA comprises a duplex-forming segment while a targeter-RNA comprises both a duplex-forming segment and the DNA-targeting segment of the DNA-targeting RNA. Therefore, a subject double-molecule DNA-targeting RNA can be comprised of any corresponding activator-RNA and targeter-RNA pair.
- a "host cell,” as used herein, denotes an in vivo or in vitro eukaryotic cell, a prokaryotic cell
- a cell from a multicellular organism e.g., a cell line
- a cell from a multicellular organism e.g., a cell line
- eukaryotic or prokaryotic cells can be, or have been, used as recipients for a nucleic acid, and include the progeny of the original cell which has been transformed by the nucleic acid.
- the progeny of a single cell may not necessarily be completely identical in morphology or in genomic or total DNA complement as the original parent, due to natural, accidental, or deliberate mutation.
- a “recombinant host cell” (also referred to as a “genetically modified host cell”) is a host cell into which has been introduced a heterologous nucleic acid, e.g., an expression vector.
- a subject bacterial host cell is a genetically modified bacterial host cell by virtue of introduction into a suitable bacterial host cell of an exogenous nucleic acid (e.g., a plasmid or recombinant expression vector)
- a subject eukaryotic host cell is a genetically modified eukaryotic host cell (e.g., a mammalian germ cell), by virtue of introduction into a suitable eukaryotic host cell of an exogenous nucleic acid.
- stem cell is used herein to refer to a cell (e.g., plant stem cell, vertebrate stem cell) that has the ability both to self-renew and to generate a differentiated cell type (see Morrison et al. (1997) Cell 88:287-298).
- the adjective "differentiated”, or “differentiating” is a relative term.
- a “differentiated cell” is a cell that has progressed further down the developmental pathway than the cell it is being compared with.
- pluripotent stem cells can differentiate into lineage-restricted progenitor cells (e.g., mesodermal stem cells), which in turn can differentiate into cells that are further restricted (e.g., neuron progenitors), which can differentiate into end-stage cells (i.e., terminally differentiated cells, e.g., neurons, cardiomyocytes, etc.), which play a characteristic role in a certain tissue type, and may or may not retain the capacity to proliferate further.
- progenitor cells e.g., mesodermal stem cells
- end-stage cells i.e., terminally differentiated cells, e.g., neurons, cardiomyocytes, etc.
- Stem cells may be characterized by both the presence of specific markers (e.g., proteins, RNAs, etc.) and the absence of specific markers.
- Stem cells may also be identified by functional assays both in vitro and in vivo, particularly assays relating to the ability of stem cells to give rise to multiple differentiated
- Stem cells of interest include pluripotent stem cells (PSCs).
- PSC pluripotent stem cell
- the term "pluripotent stem cell” or “PSC” is used herein to mean a stem cell capable of producing all cell types of the organism. Therefore, a PSC can give rise to cells of all germ layers of the organism (e.g., the endoderm, mesoderm, and ectoderm of a vertebrate).
- Pluripotent cells are capable of forming teratomas and of contributing to ectoderm, mesoderm, or endoderm tissues in a living organism.
- Pluripotent stem cells of plants are capable of giving rise to all cell types of the plant (e.g., cells of the root, stem, leaves, etc.).
- PSCs of animals can be derived in a number of different ways.
- ESCs embryonic stem cells
- iPSCs induced pluripotent stem cells
- somatic cells Takahashi et. al, Cell. 2007 Nov 30; 131(5):861-72; Takahashi et. al, Nat Protoc. 2007 ;2( 12): 3081-9; Yu et. al, Science. 2007 Dec 21 ;318(5858):1917-20. Epub 2007 Nov 20).
- PSC refers to pluripotent stem cells regardless of their derivation
- the term PSC encompasses the terms ESC and iPSC, as well as the term embryonic germ stem cells (EGSC), which are another example of a PSC.
- ESC and iPSC as well as the term embryonic germ stem cells (EGSC), which are another example of a PSC.
- EGSC embryonic germ stem cells
- PSCs may be in the form of an established cell line, they may be obtained directly from primary embryonic tissue, or they may be derived from a somatic cell. PSCs can be target cells of the methods described herein.
- ESC embryonic stem cell
- ESC lines are listed in the NIH Human Embryonic Stem Cell Registry, e.g.
- hESBGN-01, hESBGN-02, hESBGN-03, hESBGN-04 (BresaGen, Inc.); HES-1, HES-2, HES-3, HES-4, HES-5, HES-6 (ES Cell International); Miz-hESl (MizMedi Hospital-Seoul National University); HSF-1, HSF-6 (University of California at San Francisco); and HI, H7, H9, HI 3, H14 (Wisconsin Alumni Research Foundation (WiCell Research
- Stem cells of interest also include embryonic stem cells from other primates, such as Rhesus stem cells and marmoset stem cells.
- the stem cells may be obtained from any mammalian species, e.g. human, equine, bovine, porcine, canine, feline, rodent, e.g. mice, rats, hamster, primate, etc. (Thomson et al. (1998) Science 282:1145; Thomson et al. (1995) Proc. Natl. Acad. Sci USA 92:7844; Thomson et al. (1996) Biol. Reprod. 55:254; Shamblott et al., Proc. Natl. Acad. Sci. USA 95:13726, 1998).
- ESCs In culture, ESCs typically grow as flat colonies with large nucleo-cytoplasmic ratios, defined borders and prominent nucleoli. In addition, ESCs express SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, and Alkaline Phosphatase, but not SSEA-1. Examples of methods of generating and characterizing ESCs may be found in, for example, US Patent No. 7,029,913, US Patent No. 5,843,780, and US Patent No. 6,200,806, the disclosures of which are incorporated herein by reference. Methods for proliferating hESCs in the
- EGSC embryonic germ stem cell
- EG cell a PSC that is derived from germ cells and/or germ cell progenitors, e.g. primordial germ cells, i.e. those that would become sperm and eggs.
- Embryonic germ cells EG cells
- Examples of methods of generating and characterizing EG cells may be found in, for example, US Patent No. 7,153,684; Matsui, Y., et al., (1992) Cell 70:841; Shamblott, M., et al. (2001) Proc. Natl. Acad. Sci.
- iPSC induced pluripotent stem cell
- PSC induced pluripotent stem cell
- iPSCs can be derived from multiple different cell types, including terminally differentiated cells. iPSCs have an ES cell-like morphology, growing as flat colonies with large nucleo-cytoplasmic ratios, defined borders and prominent nuclei.
- iPSCs express one or more key pluripotency markers known by one of ordinary skill in the art, including but not limited to Alkaline Phosphatase, SSEA3, SSEA4, Sox2, Oct3/4, Nanog, TRA160, TRA181, TDGF 1, Dnmt3b, FoxD3, GDF3, Cyp26al, TERT, and zfp42. Examples of methods of generating and characterizing iPSCs may be found in, for example, U.S. Patent Publication Nos. US20090047263, US20090068742,
- somatic cells are provided with reprogramming factors (e.g. Oct4, SOX2, KLF4, MYC, Nanog, Lin28, etc.) known in the art to reprogram the somatic cells to become pluripotent stem cells.
- reprogramming factors e.g. Oct4, SOX2, KLF4, MYC, Nanog, Lin28, etc.
- amino cell it is meant any cell in an organism that, in the absence of experimental
- somatic cells are cells that have differentiated sufficiently that they will not naturally generate cells of all three germ layers of the body, i.e. ectoderm, mesoderm and endoderm.
- somatic cells would include both neurons and neural progenitors, the latter of which may be able to naturally give rise to all or some cell types of the central nervous system but cannot give rise to cells of the mesoderm or endoderm lineages.
- mitotic cell it is meant a cell undergoing mitosis. Mitosis is the process by which a
- eukaryotic cell separates the chromosomes in its nucleus into two identical sets in two separate nuclei. It is generally followed immediately by cytokinesis, which divides the nuclei, cytoplasm, organelles and cell membrane into two cells containing roughly equal shares of these cellular components.
- post-mitotic cell it is meant a cell that has exited from mitosis, i.e., it is "quiescent", i.e. it is no longer undergoing divisions. This quiescent state may be temporary, i.e. reversible, or it may be permanent.
- meiotic cell it is meant a cell that is undergoing meiosis.
- Meiosis is the process by which a cell divides its nuclear material for the purpose of producing gametes or spores. Unlike mitosis, in meiosis, the chromosomes undergo a recombination step which shuffles genetic material between chromosomes. Additionally, the outcome of meiosis is four (genetically unique) haploid cells, as compared with the two (genetically identical) diploid cells produced from mitosis.
- HDR homology-directed repair
- Homology-directed repair may result in an alteration of the sequence of the target molecule (e.g., insertion, deletion, mutation), if the donor polynucleotide differs from the target molecule and part or all of the sequence of the donor polynucleotide is incorporated into the target DNA.
- the donor polynucleotide, a portion of the donor polynucleotide, a copy of the donor polynucleotide, or a portion of a copy of the donor polynucleotide integrates into the target DNA.
- non-homologous end joining it is meant the repair of double-strand breaks in DNA by direct ligation of the break ends to one another without the need for a homologous template (in contrast to homology-directed repair, which requires a homologous sequence to guide repair). NHEJ often results in the loss (deletion) of nucleotide sequence near the site of the double-strand break.
- treatment means obtaining a desired pharmacologic and/or physiologic effect.
- the effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or may be therapeutic in terms of a partial or complete cure for a disease and/or adverse effect attributable to the disease.
- Treatment covers any treatment of a disease or symptom in a mammal, and includes: (a) preventing the disease or symptom from occurring in a subject which may be predisposed to acquiring the disease or symptom but has not yet been diagnosed as having it; (b) inhibiting the disease or symptom, i.e., arresting its development; or (c) relieving the disease, i.e., causing regression of the disease.
- the therapeutic agent may be administered before, during or after the onset of disease or injury.
- the treatment of ongoing disease, where the treatment stabilizes or reduces the undesirable clinical symptoms of the patient, is of particular interest. Such treatment is desirably performed prior to complete loss of function in the affected tissues.
- the subject therapy will desirably be administered during the symptomatic stage of the disease, and in some cases after the symptomatic stage of the disease.
- a polynucleotide includes a plurality of such polynucleotides and reference to “the polypeptide” includes reference to one or more polypeptides and equivalents thereof known to those skilled in the art, and so forth.
- the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.
- the present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA.
- the present disclosure further provides site-specific modifying polypeptides.
- the present disclosure further provides methods of site- specific modification of a target DNA and/or a polypeptide associated with the target DNA.
- the present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided.
- the present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms. NUCLEIC ACIDS
- the present disclosure provides a DNA-targeting RNA that directs the activities of an
- a subject DNA-targeting RNA comprises: a first segment (also referred to herein as a "DNA-targeting segment” or a "DNA-targeting sequence") and a second segment (also referred to herein as a "protein-binding segment” or a "protein-binding sequence”).
- the DNA-targeting segment of a subject DNA-targeting RNA comprises a nucleotide sequence that is complementary to a sequence in a target DNA.
- the DNA-targeting segment of a subject DNA-targeting RNA interacts with a target DNA in a sequence-specific manner via hybridization (i.e., base pairing).
- the nucleotide sequence of the DNA- targeting segment may vary and determines the location within the target DNA that the DNA- targeting RNA and the target DNA will interact.
- the DNA-targeting segment of a subject DNA- targeting RNA can be modified (e.g., by genetic engineering) to hybridize to any desired sequence within a target DNA.
- the DNA-targeting segment can have a length of from about 12 nucleotides to about 100
- the DNA-targeting segment can have a length of from about 12 nucleotides (nt) to about 80 nt, from about 12 nt to about 50nt, from about 12 nt to about 40 nt, from about 12 nt to about 30 nt, from about 12 nt to about 25 nt, from about 12 nt to about 20 nt, or from about 12 nt to about 19 nt.
- the DNA-targeting segment can have a length of from about 19 nt to about 20 nt, from about 19 nt to about 25 nt, from about 19 nt to about 30 nt, from about 19 nt to about 35 nt, from about 19 nt to about 40 nt, from about 19 nt to about 45 nt, from about 19 nt to about 50 nt, from about 19 nt to about 60 nt, from about 19 nt to about 70 nt, from about 19 nt to about 80 nt, from about 19 nt to about 90 nt, from about 19 nt to about 100 nt, from about 20 nt to about 25 nt, from about 20 nt to about 30 nt, from about 20 nt to about 35 nt, from about 20 nt to about 40 nt, from about 20 nt to about 45 nt, from about 20 nt to about 50 nt, from about 20 nt,
- the nucleotide sequence (the DNA-targeting sequence) of the DNA-targeting segment that is complementary to a nucleotide sequence (target sequence) of the target DNA can have a length at least about 12 nt.
- the DNA-targeting sequence of the DNA-targeting segment that is complementary to a target sequence of the target DNA can have a length at least about 12 nt, at least about 15 nt, at least about 18 nt, at least about 19 nt, at least about 20 nt, at least about 25 nt, at least about 30 nt, at least about 35 nt or at least about 40 nt.
- the DNA-targeting sequence of the DNA-targeting segment that is complementary to a target sequence of the target DNA can have a length of from about 12 nucleotides (nt) to about 80 nt, from about 12 nt to about 50nt, from about 12 nt to about 45 nt, from about 12 nt to about 40 nt, from about 12 nt to about 35 nt, from about 12 nt to about 30 nt, from about 12 nt to about 25 nt, from about 12 nt to about 20 nt, from about 12 nt to about 19 nt, from about 19 nt to about 20 nt, from about 19 nt to about 25 nt, from about 19 nt to about 30 nt, from about 19 nt to about 35 nt, from about 19 nt to about 40 nt, from about 19 nt to about 45 nt, from about 19 nt to about 50 nt, from about 19 nt to about
- complementary to a target sequence of the target DNA is 20 nucleotides in length. In some cases, the DNA-targeting sequence of the DNA-targeting segment that is complementary to a target sequence of the target DNA is 19 nucleotides in length.
- segment and the target sequence of the target DNA can be at least 60% (e.g., at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, or 100%).
- the percent complementarity between the DNA-targeting sequence of the DNA-targeting segment and the target sequence of the target DNA is 100% over the seven contiguous 5 '-most nucleotides of the target sequence of the complementary strand of the target DNA.
- the percent complementarity between the DNA-targeting sequence of the DNA-targeting segment and the target sequence of the target DNA is at least 60% over about 20 contiguous nucleotides.
- the percent complementarity between the DNA-targeting sequence of the DNA-targeting segment and the target sequence of the target DNA is 100% over the fourteen contiguous 5 '-most nucleotides of the target sequence of the complementary strand of the target DNA and as low as 0% over the remainder.
- the DNA-targeting sequence can be considered to be 14 nucleotides in length (see Figure 12D-E).
- the percent complementarity between the DNA- targeting sequence of the DNA-targeting segment and the target sequence of the target DNA is 100% over the seven contiguous 5 '-most nucleotides of the target sequence of the
- the DNA-targeting sequence can be considered to be 7 nucleotides in length.
- the protein-binding segment of a subject DNA-targeting RNA interacts with a site -directed modifying polypeptide.
- the subject DNA-targeting RNA guides the bound polypeptide to a specific nucleotide sequence within target DNA via the above mentioned DNA-targeting segment.
- the protein-binding segment of a subject DNA-targeting RNA comprises two stretches of nucleotides that are complementary to one another. The complementary nucleotides of the protein-binding segment hybridize to form a double stranded RNA duplex (dsRNA) (see Figures 1A and IB).
- dsRNA double stranded RNA duplex
- a subject double-molecule DNA-targeting RNA comprises two separate RNA molecules.
- Each of the two RNA molecules of a subject double-molecule DNA-targeting RNA comprises a stretch of nucleotides that are complementary to one another such that the complementary nucleotides of the two RNA molecules hybridize to form the double stranded RNA duplex of the protein-binding segment ( Figure 1A).
- the duplex-forming segment of the activator-RNA is at least about 60% identical to one of the activator-RNA (tracrRNA) molecules set forth in SEQ ID NOs:431-562, or a complement thereof, over a stretch of at least 8 contiguous nucleotides.
- the duplex-forming segment of the activator-RNA (or the DNA encoding the duplex-forming segment of the activator-RNA) is at least about 60% identical, at least about 65% identical, at least about 70% identical, at least about 75% identical, at least about 80% identical, at least about 85% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical, or 100 % identical, to one of the tracrRNA sequences set forth in SEQ ID NOs:431-562, or a complement thereof, over a stretch of at least 8 contiguous nucleotides.
- the duplex-forming segment of the targeter-RNA is at least about 60% identical to one of the targeter-RNA (crRNA) seqeunces set forth in SEQ ID NOs:563-679, or a complement thereof, over a stretch of at least 8 contiguous nucleotides.
- the duplex-forming segment of the targeter-RNA (or the DNA encoding the duplex-forming segment of the targeter-RNA) is at least about 65% identical, at least about 70% identical, at least about 75% identical, at least about 80% identical, at least about 85% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical or 100 % identical to one of the crRNA sequences set forth in SEQ ID NOs:563- 679, or a complement thereof, over a stretch of at least 8 contiguous nucleotides.
- a two-molecule DNA-targeting RNA can be designed to allow for controlled (i.e., conditional) binding of a targeter-RNA with an activator-RNA. Because a two-molecule DNA-targeting RNA is not functional unless both the activator-RNA and the targeter-RNA are bound in a functional complex with dCas9, a two-molecule DNA-targeting RNA can be inducible (e.g., drug inducible) by rendering the binding between the activator-RNA and the targeter-RNA to be inducible.
- RNA aptamers can be used to regulate (i.e., control) the binding of the activator-RNA with the targeter-RNA. Accordingly, the activator-RNA and/or the targeter-RNA can comprise an RNA aptamer sequence.
- RNA aptamers are known in the art and are generally a synthetic version of a riboswitch.
- the terms "RNA aptamer” and “riboswitch” are used interchangeably herein to encompass both synthetic and natural nucleic acid sequences that provide for inducible regulation of the structure (and therefore the availability of specific sequences) of the RNA molecule of which they are part.
- RNA aptamers usually comprise a sequence that folds into a particular structure (e.g., a hairpin), which specifically binds a particular drug (e.g., a small molecule). Binding of the drug causes a structural change in the folding of the RNA, which changes a feature of the nucleic acid of which the aptamer is a part.
- an activator-RNA with an aptamer may not be able to bind to the cognate targeter-RNA unless the aptamer is bound by the appropriate drug;
- a targeter-RNA with an aptamer may not be able to bind to the cognate activator-RNA unless the aptamer is bound by the appropriate drug;
- a targeter-RNA and an activator-RNA, each comprising a different aptamer that binds a different drug may not be able to bind to each other unless both drugs are present.
- a two- molecule DNA-targeting RNA can be designed to be inducible.
- aptamers and riboswitches can be found, for example, in: Nakamura et al., Genes Cells. 2012 May;17(5):344-64; Vavalle et al., Future Cardiol. 2012 May;8(3):371-82; Citartan et al., Biosens Bioelectron. 2012 Apr 15;34(1): 1-11; and Liberman et al., Wiley Interdiscip Rev RNA. 2012 May-Jun;3(3):369-84; all of which are herein incorporated by reference in their entirety.
- Non-limiting examples of nucleotide sequences that can be included in a two-molecule DNA- targeting RNA include either of the sequences set forth in SEQ ID NOs:431-562, or
- a subject single-molecule DNA-targeting RNA comprises two stretches of nucleotides (a
- targeter-RNA and an activator-RNA that are complementary to one another, are covalently linked by intervening nucleotides (“linkers” or “linker nucleotides”), and hybridize to form the double stranded RNA duplex (dsRNA duplex) of the protein-binding segment, thus resulting in a stem-loop structure ( Figure IB).
- the targeter-RNA and the activator-RNA can be covalently linked via the 3' end of the targeter-RNA and the 5' end of the activator-RNA.
- targeter-RNA and the activator-RNA can be covalently linked via the 5' end of the targeter-RNA and the 3' end of the activator-RNA.
- the linker of a single-molecule DNA-targeting RNA can have a length of from about 3
- the linker can have a length of from about 3 nucleotides (nt) to about 90 nt, from about 3 nucleotides (nt) to about 80 nt, from about 3 nucleotides (nt) to about 70 nt, from about 3 nucleotides (nt) to about 60 nt, from about 3 nucleotides (nt) to about 50 nt, from about 3 nucleotides (nt) to about 40 nt, from about 3 nucleotides (nt) to about 30 nt, from about 3 nucleotides (nt) to about 20 nt or from about 3 nucleotides (nt) to about 10 nt.
- the linker can have a length of from about 3 nt to about 5 nt, from about 5 nt to about 10 nt, from about 10 nt to about 15 nt, from about 15 nt to about 20 nt, from about 20 nt to about 25 nt, from about 25 nt to about 30 nt, from about 30 nt to about 35 nt, from about 35 nt to about 40 nt, from about 40 nt to about 50 nt, from about 50 nt to about 60 nt, from about 60 nt to about 70 nt, from about 70 nt to about 80 nt, from about 80 nt to about 90 nt, or from about 90 nt to about 100 nt.
- the linker of a single- molecule DNA-targeting RNA is 4 nt.
- An exemplary single-molecule DNA-targeting RNA comprises two complementary stretches of nucleotides that hybridize to form a dsRNA duplex.
- one of the two complementary stretches of nucleotides of the single -molecule DNA-targeting RNA (or the DNA encoding the stretch) is at least about 60% identical to one of the activator-RNA
- tracrRNA molecules set forth in SEQ ID NOs:431-562, or a complement thereof, over a stretch of at least 8 contiguous nucleotides.
- one of the two complementary stretches of nucleotides of the single-molecule DNA-targeting RNA (or the DNA encoding the stretch) is at least about 65% identical, at least about 70% identical, at least about 75% identical, at least about 80% identical, at least about 85% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical or 100 % identical to one of the tracrRNA sequences set forth in SEQ ID NOs:431-562, or a complement thereof, over a stretch of at least 8 contiguous nucleotides.
- one of the two complementary stretches of nucleotides of the single- molecule DNA-targeting RNA is at least about 60% identical to one of the targeter-RNA (crRNA) sequences set forth in SEQ ID NOs:563-679, or a complement thereof, over a stretch of at least 8 contiguous nucleotides.
- crRNA targeter-RNA
- one of the two complementary stretches of nucleotides of the single-molecule DNA-targeting RNA is at least about 65% identical, at least about 70% identical, at least about 75% identical, at least about 80% identical, at least about 85% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical or 100 % identical to one of the crRNA sequences set forth in SEQ ID NOs:563-679, or a complement thereof, over a stretch of at least 8 contiguous nucleotides.
- SEQ ID NOs:431-679 by taking into account the speices name and base-pairing (for the dsRNA duplex of the protein-binding domain) when determining appropriate cognate pairs (see Figure 8 as a non-limiting example).
- Figure 57 demonstrates that artificial sequences that share very little (roughly 50% identity) with naturally occurring a tracrRNAs and crRNAs can function with Cas9 to cleave target DNA as long as the structure of the protein-binding domain of the DNA- targeting RNA is conserved.
- RNA folding structure of a naturally ocuring protein-binding domain of a DNA-trageting RNA can be taken into account in order to design artificial protein- binding domains (either two-molecule or single-molecule versions).
- the functional artificial DNA-trageting RNA of Figure 57 was designed based on the structure of the protein-binding segment of the naturally occurring DNA-targeting (e.g., including the same number of base pairs along the RNA duplex and including the same "buldge" region as present in the naturally occurring RNA).
- an artificial DNA-targeting-RNA can be designed to mimic the natural structure for a given species when using the Cas9 (or a related Cas9, see Figure 32A) from that species, (see Figure 24D and related details in Example 1).
- a suitable DNA-targeting RNA can be an artificially designed RNA (non-naturally occurring) comprising a protein-binding domain that was desgined to mimic the structure of a protein-binding domain of a naturally occurring DNA-targeting RNA. (see SEQ ID NOs:431-679, taking into account the speices name when determining appropriate cognate pairs).
- the protein-binding segment can have a length of from about 10 nucleotides to about 100
- the protein-binding segment can have a length of from about 15 nucleotides (nt) to about 80 nt, from about 15 nt to about 50 nt, from about 15 nt to about 40 nt, from about 15 nt to about 30 nt or from about 15 nt to about 25 nt.
- the dsRNA duplex of the protein-binding segment can have a length from about 6 base pairs (bp) to about 50bp.
- the dsRNA duplex of the protein-binding segment can have a length from about 6 bp to about 40 bp, from about 6 bp to about 30bp, from about 6 bp to about 25 bp, from about 6 bp to about 20 bp, from about 6 bp to about 15 bp, from about 8 bp to about 40 bp, from about 8 bp to about 30bp, from about 8 bp to about 25 bp, from about 8 bp to about 20 bp or from about 8 bp to about 15 bp.
- the dsRNA duplex of the protein-binding segment can have a length from about from about 8 bp to about 10 bp, from about 10 bp to about 15 bp, from about 15 bp to about 18 bp, from about 18 bp to about 20 bp, from about 20 bp to about 25 bp, from about 25 bp to about 30 bp, from about 30 bp to about 35 bp, from about 35 bp to about 40 bp, or from about 40 bp to about 50 bp.
- the dsRNA duplex of the protein-binding segment has a length of 36 base pairs.
- the percent complementarity between the nucleotide sequences that hybridize to form the dsRNA duplex of the protein-binding segment can be at least about 60%.
- the percent complementarity between the nucleotide sequences that hybridize to form the dsRNA duplex of the protein-binding segment can be at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, or at least about 99% .
- the percent complementarity between the nucleotide sequences that hybridize to form the dsRNA duplex of the protein-binding segment is 100%.
- a subject DNA-targeting RNA and a subject site -directed modifying polypeptide form a
- the DNA-targeting RNA provides target specificity to the complex by comprising a nucleotide sequence that is complementary to a sequence of a target DNA (as noted above).
- the site -directed modifying polypeptide of the complex provides the site-specific activity. In other words, the site-directed modifying polypeptide is guided to a DNA sequence (e.g. a
- chromosomal sequence or an extrachromosomal sequence e.g. an episomal sequence, a minicircle sequence, a mitochondrial sequence, a chloroplast sequence, etc.
- extrachromosomal sequence e.g. an episomal sequence, a minicircle sequence, a mitochondrial sequence, a chloroplast sequence, etc.
- a subject site -directed modifying polypeptide modifies target DNA (e.g., cleavage or
- a site-directed modifying polypeptide is also referred to herein as a "site -directed polypeptide" or an "RNA binding site-directed modifying polypeptide.”
- the site -directed modifying polypeptide is a naturally-occurring modifying
- the site -directed modifying polypeptide is not a naturally-occurring polypeptide (e.g., a chimeric polypeptide as discussed below or a naturally-occurring polypeptide that is modified, e.g., mutation, deletion, insertion).
- Exemplary naturally-occurring site -directed modifying polypeptides are set forth in SEQ ID NOs: 1-255 as a non-limiting and non-exhaustive list of naturally occurring Cas9/Csnl endonucleases. These naturally occurring polypeptides, as disclosed herein, bind a DNA- targeting RNA, are thereby directed to a specific sequence within a target DNA, and cleave the target DNA to generate a double strand break.
- a subject site-directed modifying polypeptide comprises two portions, an RNA-binding portion and an activity portion.
- a subject site -directed modifying polypeptide comprises: (i) an RNA-binding portion that interacts with a DNA-targeting RNA, wherein the DNA -targeting RNA comprises a nucleotide sequence that is complementary to a sequence in a target DNA; and (ii) an activity portion that exhibits site -directed enzymatic activity (e.g., activity for DNA methylation, activity for DNA cleavage, activity for histone acetylation, activity for histone methylation, etc.), wherein the site of enzymatic activity is determined by the DNA-targeting RNA.
- site enzymatic activity e.g., activity for DNA methylation, activity for DNA cleavage, activity for histone acetylation, activity for histone methylation, etc.
- a subject site -directed modifying polypeptide comprises: (i) an RNA- binding portion that interacts with a DNA-targeting RNA, wherein the DNA-targeting RNA comprises a nucleotide sequence that is complementary to a sequence in a target DNA; and (ii) an activity portion that modulates transcription within the target DNA (e.g., to increase or decrease transcription), wherein the site of modulated transcription within the target DNA is determined by the DNA-targeting RNA.
- a subject site-directed modifying polypeptide has enzymatic activity that
- target DNA e.g., nuclease activity, methyltransferase activity, demethylase activity, DNA repair activity, DNA damage activity, deamination activity, dismutase activity, alkylation activity, depurination activity, oxidation activity, pyrimidine dimer forming activity, integrase activity, transposase activity, recombinase activity, polymerase activity, ligase activity, helicase activity, photolyase activity or glycosylase activity).
- target DNA e.g., nuclease activity, methyltransferase activity, demethylase activity, DNA repair activity, DNA damage activity, deamination activity, dismutase activity, alkylation activity, depurination activity, oxidation activity, pyrimidine dimer forming activity, integrase activity, transposase activity, recombinase activity, polymerase activity, ligase activity, helicase activity, photolyase activity or
- a subject site-directed modifying polypeptide has enzymatic activity that
- a polypeptide e.g., a histone
- target DNA e.g., methyltransferase activity, demethylase activity, acetyltransferase activity, deacetylase activity, kinase activity, phosphatase activity, ubiquitin ligase activity, deubiquitinating activity, adenylation activity, deadenylation activity, SUMOylating activity, deSUMOylating activity, ribosylation activity, deribosylation activity, myristoylation activity or demyristoylation activity).
- a polypeptide e.g., a histone
- target DNA e.g., methyltransferase activity, demethylase activity, acetyltransferase activity, deacetylase activity, kinase activity, phosphatase activity, ubiquitin ligase activity, deubiquitinating activity, adenylation activity, deadenylation activity
- the site -directed modifying polypeptide comprises an amino acid sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 99%, or 100%, amino acid sequence identity to amino acids 7-166 or 731-1003 of the Cas9/Csnl amino acid sequence depicted in Figure 3, or to the corresponding portions in any of the amino acid sequences set forth as SEQ ID NOs: 1-256 and 795-1346.
- a subject nucleic acid comprises one or more modifications, e.g., a base modification, a backbone modification, etc, to provide the nucleic acid with a new or enhanced feature (e.g., improved stability).
- a nucleoside is a base-sugar combination.
- the base portion of the nucleoside is normally a heterocyclic base.
- the two most common classes of such heterocyclic bases are the purines and the pyrimidines.
- Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside.
- the phosphate group can be linked to the 2', the 3', or the 5' hydroxyl moiety of the sugar.
- the phosphate groups covalently link adjacent nucleosides to one another to form a linear polymeric compound.
- the respective ends of this linear polymeric compound can be further joined to form a circular compound, however, linear compounds are generally suitable.
- linear compounds may have internal nucleotide base complementarity and may therefore fold in a manner as to produce a fully or partially double-stranded compound.
- the phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide.
- the normal linkage or backbone of RNA and DNA is a 3' to 5' phosphodiester linkage.
- nucleic acids containing modifications include nucleic acids containing modified backbones or non-natural internucleoside linkages.
- Nucleic acids (having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone.
- Suitable modified oligonucleotide backbones containing a phosphorus atom therein include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates, 5'-alkylene phosphonates and chiral phosphonates, phosphinates,
- phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, phosphorodiamidates , thionophosphor amidates , thionoalkylphosphonates ,
- oligonucleotides having inverted polarity comprise a single 3' to 3' linkage at the 3'-most internucleotide linkage i.e. a single inverted nucleoside residue which may be a basic (the nucleobase is missing or has a hydroxyl group in place thereof).
- MMI type internucleoside linkages are disclosed in the above referenced U.S. Pat. No. 5,489,677. Suitable
- nucleic acids having morpholino backbone structures as described in, e.g.,
- a subject nucleic acid comprises a 6-membered morpholino ring in place of a ribose ring.
- a phosphorodiamidate or other non-phosphodiester internucleoside linkage replaces a
- Suitable modified polynucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages.
- morpholino linkages formed in part from the sugar portion of a nucleoside
- siloxane backbones sulfide, sulfoxide and sulfone backbones
- formacetyl and thioformacetyl backbones methylene formacetyl and thioformacetyl backbones
- riboacetyl backbones alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH 2 component parts.
- a subject nucleic acid can be a nucleic acid mimetic.
- mimetic as it is applied to polynucleotides is intended to include polynucleotides wherein only the furanose ring or both the fur anose ring and the internucleotide linkage are replaced with non-fur anose groups, replacement of only the furanose ring is also referred to in the art as being a sugar surrogate.
- the heterocyclic base moiety or a modified heterocyclic base moiety is maintained for hybridization with an appropriate target nucleic acid.
- PNA peptide nucleic acid
- the sugar-backbone of a polynucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone.
- the nucleotides are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone.
- PNA peptide nucleic acid
- the backbone in PNA compounds is two or more linked aminoethylglycine units which gives PNA an amide containing backbone.
- the heterocyclic base moieties are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone.
- Representative U.S. patents that describe the preparation of PNA compounds include, but are not limited to: U.S. Pat. Nos. 5,539,082; 5,714,331 ; and 5,719,262.
- Another class of polynucleotide mimetic that has been studied is based on linked morpholino units (morpholino nucleic acid) having heterocyclic bases attached to the morpholino ring.
- a number of linking groups have been reported that link the morpholino monomeric units in a morpholino nucleic acid.
- One class of linking groups has been selected to give a non-ionic oligomeric compound.
- the non-ionic morpholino-based oligomeric compounds are less likely to have undesired interactions with cellular proteins.
- Morpholino-based polynucleotides are non- ionic mimics of oligonucleotides which are less likely to form undesired interactions with cellular proteins (Dwaine A.
- Morpholino-based polynucleotides are disclosed in U.S. Pat. No. 5,034,506. A variety of compounds within the morpholino class of polynucleotides have been prepared, having a variety of different linking groups joining the monomeric subunits.
- a further class of polynucleotide mimetic is referred to as cyclohexenyl nucleic acids (CeNA).
- CeNA DMT protected phosphoramidite monomers have been prepared and used for oligomeric compound synthesis following classical phosphoramidite chemistry. Fully modified CeNA oligomeric compounds and oligonucleotides having specific positions modified with CeNA have been prepared and studied (see Wang et al., J. Am. Chem. Soc, 2000, 122, 8595- 8602).
- CeNA monomers into a DNA chain increases its stability of a DNA/RNA hybrid.
- CeNA oligoadenylates formed complexes with RNA and DNA complements with similar stability to the native complexes.
- the study of incorporating CeNA structures into natural nucleic acid structures was shown by NMR and circular dichroism to proceed with easy conformational adaptation.
- a further modification includes Locked Nucleic Acids (LNAs) in which the 2'-hydroxyl group is linked to the 4' carbon atom of the sugar ring thereby forming a 2'-C,4'-C-oxymethylene linkage thereby forming a bicyclic sugar moiety.
- the linkage can be a methylene (-CH 2 -), group bridging the 2' oxygen atom and the 4' carbon atom wherein n is 1 or 2 (Singh et al., Chem. Commun., 1998, 4, 455-456).
- Potent and nontoxic antisense oligonucleotides containing LNAs have been described (Wahlestedt et al., Proc. Natl. Acad. Sci. U.S.A., 2000, 97, 5633-5638).
- LNA monomers adenine, cytosine, guanine, 5-methyl- cytosine, thymine and uracil, along with their oligomerization, and nucleic acid recognition properties have been described (Koshkin et al., Tetrahedron, 1998, 54, 3607-3630). LNAs and preparation thereof are also described in WO 98/39352 and WO 99/14226.
- a subject nucleic acid can also include one or more substituted sugar moieties.
- polynucleotides comprise a sugar substituent group selected from: OH; F; 0-, S-, or N-alkyl; 0-, S-, or N-alkenyl; 0-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C.sub.l to Ci 0 alkyl or C 2 to Ci 0 alkenyl and alkynyl.
- Particularly suitable are 0((CH 2 ) n O) m CH 3 , 0(CH 2 ) n OCH 3 , 0(CH 2 ) n NH 2 , 0(CH 2 ) n CH 3 , 0(CH 2 ) n ONH 2 , and 0(CH 2 ) n ON((CH 2 ) n CH 3 ) 2 , where n and m are from 1 to about 10.
- Suitable polynucleotides comprise a sugar substituent group selected from: Q to Ci 0 lower alkyl, substituted lower alkyl, alkenyl, alkynyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH 3 , OCN, CI, Br, CN, CF 3 , OCF 3 , SOCH 3 , S0 2 CH 3 , ON0 2 , N0 2 , N 3 , NH 2 , heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an
- oligonucleotide and other substituents having similar properties.
- a suitable modification includes 2'-methoxyethoxy (2'-0-CH 2 CH 2 OCH 3 , also known as 2'-0-(2-methoxyethyl) or 2'- MOE) (Martin et al., Helv. Chim. Acta, 1995, 78, 486-504) i.e., an alkoxyalkoxy group.
- a further suitable modification includes 2'-dimethylaminooxyethoxy, i.e., a 0(CH 2 ) 2 ON(CH 3 ) 2 group, also known as 2'-DMAOE, as described in examples hereinbelow, and 2'- dimethylaminoethoxyethoxy (also known in the art as 2'-0-dimethyl-amino-ethoxy-ethyl or 2'- DMAEOE), i.e., 2'-0-CH 2 -0-CH 2 -N(CH 3 ) 2 .
- 2'-sugar substituent groups may be in the arabino (up) position or ribo (down) position.
- a suitable 2'- arabino modification is 2'-F.
- Similar modifications may also be made at other positions on the oligomeric compound, particularly the 3' position of the sugar on the 3' terminal nucleoside or in 2'-5' linked oligonucleotides and the 5' position of 5' terminal nucleotide.
- Oligomeric compounds may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Base modifications and substitutions
- a subject nucleic acid may also include nucleobase (often referred to in the art simply as
- nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U).
- nucleobases include tricyclic pyrimidines such as phenoxazine cytidine(lH-pyrimido(5,4-b)(l,4)benzoxazin-2(3H)-one), phenothiazine cytidine (lH-pyrimido(5,4-b)(l,4)benzothiazin-2(3H)-one), G-clamps such as a substituted phenoxazine cytidine (e.g.
- Heterocyclic base moieties may also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deaza-adenine, 7-deazaguanosine, 2- aminopyridine and 2-pyridone.
- Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. I., ed. John Wiley & Sons, 1990, those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y.
- nucleobases are useful for increasing the binding affinity of an oligomeric compound.
- These include 5-substituted pyrimidines, 6- azapyrimidines and N-2, N-6 and 0-6 substituted purines, including 2-aminopropyladenine, 5- propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C.
- Another possible modification of a subject nucleic acid involves chemically linking to the polynucleotide one or more moieties or conjugates which enhance the activity, cellular distribution or cellular uptake of the oligonucleotide.
- moieties or conjugates can include conjugate groups covalently bound to functional groups such as primary or secondary hydroxyl groups.
- Conjugate groups include, but are not limited to, intercalators, reporter molecules, polyamines, polyamides, polyethylene glycols, polyethers, groups that enhance the
- Suitable conjugate groups include, but are not limited to, cholesterols, lipids, phospholipids, biotin, phenazine, folate, phenanthridine, anthraquinone, acridine, fluoresceins, rhodamines, coumarins, and dyes.
- Groups that enhance the pharmacodynamic properties include groups that improve uptake, enhance resistance to degradation, and/or strengthen sequence-specific hybridization with the target nucleic acid.
- Groups that enhance the pharmacokinetic properties include groups that improve uptake, distribution, metabolism or excretion of a subject nucleic acid.
- Conjugate moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86, 6553-6556), cholic acid (Manoharan et al., Bioorg. Med. Chem. Let., 1994, 4, 1053-1060), a thioether, e.g., hexyl-S-tritylthiol
- a conjugate may include a "Protein Transduction Domain” or PTD (also known as a CPP - cell penetrating peptide), which may refer to a polypeptide, polynucleotide, carbohydrate, or organic or inorganic compound that facilitates traversing a lipid bilayer, micelle, cell membrane, organelle membrane, or vesicle membrane.
- PTD Protein Transduction Domain
- a PTD attached to another molecule which can range from a small polar molecule to a large macromolecule and/or a nanoparticle, facilitates the molecule traversing a membrane, for example going from extracellular space to intracellular space, or cytosol to within an organelle.
- a PTD is covalently linked to the amino terminus of an exogenous polypeptide (e.g., a site-directed modifying polypeptide). In some embodiments, a PTD is covalently linked to the carboxyl terminus of an exogenous polypeptide (e.g., a site -directed modifying polypeptide). In some embodiments, a PTD is covalently linked to a nucleic acid (e.g., a DNA-targeting RNA, a polynucleotide encoding a DNA -targeting RNA, a polynucleotide encoding a site-directed modifying polypeptide, etc.).
- a nucleic acid e.g., a DNA-targeting RNA, a polynucleotide encoding a DNA -targeting RNA, a polynucleotide encoding a site-directed modifying polypeptide, etc.
- Exemplary PTDs include but are not limited to a minimal undecapeptide protein transduction domain (corresponding to residues 47-57 of HIV- 1 TAT comprising YGRKKRRQRRR; SEQ ID NO: 264); a polyarginine sequence comprising a number of arginines sufficient to direct entry into a cell (e.g., 3, 4, 5, 6, 7, 8, 9, 10, or 10-50 arginines); a VP22 domain (Zender et al. (2002) Cancer Gene Ther. 9(6):489-96); an Drosophila Antennapedia protein transduction domain (Noguchi et al. (2003) Diabetes 52(7): 1732-1737); a truncated human calcitonin peptide (Trehin et al.
- a minimal undecapeptide protein transduction domain corresponding to residues 47-57 of HIV- 1 TAT comprising YGRKKRRQRRR; SEQ ID NO: 264
- a polyarginine sequence comprising a number of arginines
- Exemplary PTDs include but are not limited to, YGRKKRRQRRR (SEQ ID NO:264), RKKRRQRRR (SEQ ID NO:269); an arginine homopolymer of from 3 arginine residues to 50 arginine residues;
- Exemplary PTD domain amino acid sequences include, but are not limited to, any of the following: YGRKKRRQRRR (SEQ ID NO:264); RKKRRQRR (SEQ ID NO:270); YARAAARQARA (SEQ ID NO:271); THRLPRRRRRR (SEQ ID NO:272); and GGRRARRRRRR (SEQ ID NO:273).
- the PTD is an activatable CPP (ACPP) (Aguilera et al. (2009) Integr Biol (Camb) June; 1(5-6): 371-381).
- ACPPs comprise a polycationic CPP (e.g., Arg9 or "R9") connected via a cleavable linker to a matching polyanion (e.g., Glu9 or "E9”), which reduces the net charge to nearly zero and thereby inhibits adhesion and uptake into cells.
- a polyanion e.g., Glu9 or "E9
- a suitable DNA-targeting RNA comprises two separate RNA polynucleotide molecules.
- the first of the two separate RNA polynucleotide molecules comprises a nucleotide sequence having at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, at least about 99%, or 100% nucleotide sequence identity over a stretch of at least 8 contiguous nucleotides to any one of the nucleotide sequences set forth in SEQ ID NOs:431-562, or complements thereof.
- the second of the two separate RNA polynucleotide molecules comprises a nucleotide sequence having at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, at least about 99%, or 100% nucleotide sequence identity over a stretch of at least 8 contiguous nucleotides to any one of the nucleotide sequences set forth in SEQ ID NOs:563-679, or complements thereof.
- a suitable DNA-targeting RNA is a single RNA polynucleotide and comprises a first nucleotide sequence having at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, at least about 99%, or 100% nucleotide sequence identity over a stretch of at least 8 contiguous nucleotides to any one of the nucleotide sequences set forth in SEQ ID NOs:431-562 and a second nucleotide sequence having at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, at least about 99%, or 100% nucleotide sequence identity over a stretch of at least 8 contiguous nucleotides to any one of the nucleotide sequence
- the DNA-targeting RNA is a double-molecule DNA-targeting RNA and the targeter-RNA comprises the sequence 5'GUUUUAGAGCUA-3' (SEQ ID NO: 679) linked at its 5' end to a stretch of nucleotides that are complementary to a target DNA.
- the DNA-targeting RNA is a double-molecule DNA-targeting RNA and the activator-RNA comprises the sequence 5' UAGC AAGUUAAAAUAAGGCUAGUCCG-3 ' (SEQ ID NO://).
- the DNA-targeting RNA is a single-molecule DNA-targeting RNA and comprises the sequence 5'-GUUUUAGAGCUA-linker-
- UAGCAAGUUAAAAUA AGGCUAGUCCG-3 linked at its 5' end to a stretch of nucleotides that are complementary to a target DNA (where "linker” denotes any a linker nucleotide sequence that can comprise any nucleotide sequence) (SEQ ID NO://).
- linker denotes any a linker nucleotide sequence that can comprise any nucleotide sequence
- SEQ ID NO:// Other exemplary single- molecule DNA-targeting RNAs include those set forth in SEQ ID NOs: 680-682.
- a nucleic acid comprising a nucleotide sequence encoding a subject DNA-targeting RNA and/or a subject site-directed modifying polypeptide.
- a subject DNA-targeting RNA -encoding nucleic acid is an expression vector, e.g., a recombinant expression vector.
- a subject method involves contacting a target DNA or introducing into a cell (or a population of cells) one or more nucleic acids comprising nucleotide sequences encoding a DNA -targeting RNA and/or a site -directed modifying polypeptide.
- a cell comprising a target DNA is in vitro.
- a cell comprising a target DNA is in vivo.
- Suitable nucleic acids comprising nucleotide sequences encoding a DNA-targeting RNA and/or a site-directed modifying polypeptide include expression vectors, where an expression vector comprising a nucleotide sequence encoding a DNA-targeting RNA and/or a site-directed modifying polypeptide is a "recombinant expression vector.”
- the recombinant expression vector is a viral construct, e.g., a
- recombinant adeno-associated virus construct see, e.g., U.S. Patent No. 7,078,387), a recombinant adenoviral construct, a recombinant lentiviral construct, a recombinant retroviral construct, etc.
- Suitable expression vectors include, but are not limited to, viral vectors (e.g. viral vectors based on vaccinia virus; poliovirus; adenovirus (see, e.g., Li et al., Invest Opthalmol Vis Sci 35:2543 2549, 1994; Borras et al., Gene Ther 6:515 524, 1999; Li and Davidson, PNAS 92:7700 7704, 1995; Sakamoto et al., H Gene Ther 5: 1088 1097, 1999; WO 94/12649, WO 93/03769; WO 93/19191 ; WO 94/28938; WO 95/11984 and WO 95/00655); adeno-associated virus (see, e.g., Ali et al., Hum Gene Ther 9:81 86, 1998, Flannery et al., PNAS 94:6916 6921, 1997; Bennett et al.,
- a retroviral vector e.g., Murine Leukemia Virus, spleen necrosis virus, and vectors derived from retroviruses such as Rous Sarcoma Virus, Harvey Sarcoma Virus, avian leukosis virus, a lentivirus, human immunodeficiency virus, myeloproliferative sarcoma virus, and mammary tumor virus; and the like.
- Suitable expression vectors are known to those of skill in the art, and many are commercially available.
- the following vectors are provided by way of example; for eukaryotic host cells: pXTl, pSG5 (Stratagene), pSVK3, pBPV, pMSG, and pSVLSV40 (Pharmacia).
- any other vector may be used so long as it is compatible with the host cell.
- any of a number of suitable transcription and translation control elements including constitutive and inducible promoters, transcription enhancer elements, transcription terminators, etc. may be used in the expression vector (see e.g., Bitter et al. (1987) Methods in Enzymology, 153:516-544).
- a nucleotide sequence encoding a DNA-targeting RNA and/or a site- directed modifying polypeptide is operably linked to a control element, e.g., a transcriptional control element, such as a promoter.
- a control element e.g., a transcriptional control element, such as a promoter.
- the transcriptional control element may be functional in either a eukaryotic cell, e.g., a mammalian cell; or a prokaryotic cell (e.g., bacterial or archaeal cell).
- a nucleotide sequence encoding a DNA-targeting RNA and/or a site -directed modifying polypeptide is operably linked to multiple control elements that allow expression of the nucleotide sequence encoding a DNA-targeting RNA and/or a site -directed modifying polypeptide in both prokaryotic and eukaryotic cells.
- Non-limiting examples of suitable eukaryotic promoters include those from cytomegalovirus (CMV) immediate early, herpes simplex virus (HSV) thymidine kinase, early and late SV40, long terminal repeats (LTRs) from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.
- the expression vector may also contain a ribosome binding site for translation initiation and a transcription terminator.
- the expression vector may also include appropriate sequences for amplifying expression.
- the expression vector may also include nucleotide sequences encoding protein tags (e.g., 6xHis tag, hemagglutinin tag, green fluorescent protein, etc.) that are fused to the site -directed modifying polypeptide, thus resulting in a chimeric polypeptide.
- protein tags e.g., 6xHis tag, hemagglutinin tag, green fluorescent protein, etc.
- a nucleotide sequence encoding a DNA-targeting RNA and/or a site- directed modifying polypeptide is operably linked to an inducible promoter. In some embodiments, a nucleotide sequence encoding a DNA-targeting RNA and/or a site-directed modifying polypeptide is operably linked to a constitutive promoter.
- Methods of introducing a nucleic acid into a host cell are known in the art, and any known method can be used to introduce a nucleic acid (e.g., an expression construct) into a cell. Suitable methods include e.g., viral or bacteriophage infection, transfection, conjugation, protoplast fusion, lipofection, electroporation, calcium phosphate precipitation, polyethyleneimine (PEI)- mediated transfection, DEAE-dextran mediated transfection, liposome-mediated transfection, particle gun technology, calcium phosphate precipitation, direct micro injection, nanoparticle- mediated nucleic acid delivery (see, e.g., Panyam et., al Adv Drug Deliv Rev. 2012 Sep 13. pii: S0169-409X(12)00283-9. doi: 10.1016/j.addr.2012.09.023 ), and the like. CHIMERIC POLYPEPTIDES
- the present disclosure provides a chimeric site -directed modifying polypeptide.
- a subject chimeric site -directed modifying polypeptide interacts with (e.g., binds to) a subject DNA- targeting RNA (described above).
- the DNA-targeting RNA guides the chimeric site -directed modifying polypeptide to a target sequence within target DNA (e.g. a chromosomal sequence or an extrachromosomal sequence, e.g. an episomal sequence, a minicircle sequence, a mitochondrial sequence, a chloroplast sequence, etc.).
- a subject chimeric site -directed modifying polypeptide modifies target DNA (e.g., cleavage or methylation of target DNA) and/or a polypeptide associated with target DNA (e.g., methylation or acetylation of a histone tail).
- target DNA e.g., cleavage or methylation of target DNA
- a polypeptide associated with target DNA e.g., methylation or acetylation of a histone tail
- a subject chimeric site -directed modifying polypeptide modifies target DNA (e.g., cleavage or methylation of target DNA) and/or a polypeptide associated with target DNA (e.g., methylation or acetylation of a histone tail).
- target DNA e.g., cleavage or methylation of target DNA
- polypeptide associated with target DNA e.g., methylation or acetylation of a histone tail.
- a chimeric site-directed modifying polypeptide is also referred to herein as a "chimeric site-directed polypeptide" or a "chimeric RNA binding site -directed modifying polypeptide.”
- a subject chimeric site -directed modifying polypeptide comprises two portions, an RNA- binding portion and an activity portion.
- a subject chimeric site -directed modifying polypeptide comprises amino acid sequences that are derived from at least two different polypeptides.
- a subject chimeric site -directed modifying polypeptide can comprise modified and/or naturally- occurring polypeptide sequences (e.g., a first amino acid sequence from a modified or unmodified Cas9/Csnl protein; and a second amino acid sequence other than the Cas9/Csnl protein).
- RNA-binding portion of a subject chimeric site -directed modifying polypeptide is not a naturally-occurring molecule (modified, e.g., mutation, deletion, insertion).
- Naturally-occurring RNA-binding portions of interest are derived from site -directed modifying polypeptides known in the art.
- SEQ ID NOs:l-256 and 795-1346 provide a non-limiting and non-exhaustive list of naturally occurring Cas9/Csnl endonucleases that can be used as site-directed modifying polypeptides.
- the RNA-binding portion of a subject chimeric site-directed modifying polypeptide comprises an amino acid sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, at least about 99%, or 100%, amino acid sequence identity to the RNA-binding portion of a polypeptide having any of the amino acid sequences set forth as SEQ ID NOs: 1-256 and 795-1346).
- the site -directed modifying polypeptide comprises an amino acid sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 99%, or 100%, amino acid sequence identity to amino acids 7-166 or 731-1003 of the Cas9/Csnl amino acid sequence depicted in Figure 3, or to the corresponding portions in any of the amino acid sequences set forth as SEQ ID NOs: 1-256 and 795-1346.
- RNA-binding portion In addition to the RNA-binding portion, the chimeric site-directed modifying polypeptide
- the activity portion of a subject chimeric site -directed modifying polypeptide comprises the naturally-occurring activity portion of a site- directed modifying polypeptide (e.g., Cas9/Csnl endonuclease).
- the activity portion of a subject chimeric site-directed modifying polypeptide comprises a modified amino acid sequence (e.g., substitution, deletion, insertion) of a naturally-occurring activity portion of a site-directed modifying polypeptide.
- Naturally-occurring activity portions of interest are derived from site -directed modifying polypeptides known in the art.
- SEQ ID NOs: 1-256 and 795-1346 provide a non-limiting and non-exhaustive list of naturally occurring Cas9/Csnl endonucleases that can be used as site-directed modifying polypeptides.
- the activity portion of a subject chimeric site-directed modifying polypeptide is variable and may comprise any heterologous polypeptide sequence that may be useful in the methods disclosed herein.
- a subject chimeric site -directed modifying polypeptide comprises: (i) an RNA-binding portion that interacts with a DNA -targeting RNA, wherein the DNA-targeting RNA comprises a nucleotide sequence that is complementary to a sequence in a target DNA; and (ii) an activity portion that exhibits site -directed enzymatic activity (e.g., activity for DNA methylation, activity for DNA cleavage, activity for histone acetylation, activity for histone methylation, etc.), wherein the site of enzymatic activity is determined by the DNA-targeting RNA.
- site enzymatic activity e.g., activity for DNA methylation, activity for DNA cleavage, activity for histone acetylation, activity for histone methylation, etc.
- a subject chimeric site -directed modifying polypeptide comprises: (i) an RNA-binding portion that interacts with a DNA-targeting RNA, wherein the DNA-targeting RNA comprises a nucleotide sequence that is complementary to a sequence in a target DNA; and (ii) an activity portion that modulates transcription within the target DNA (e.g., to increase or decrease transcription), wherein the site of modulated transcription within the target DNA is determined by the DNA-targeting RNA.
- the activity portion of a subject chimeric site-directed modifying polypeptide has enzymatic activity that modifies target DNA (e.g., nuclease activity, methyltransferase activity, demethylase activity, DNA repair activity, DNA damage activity, deamination activity, dismutase activity, alkylation activity, depurination activity, oxidation activity, pyrimidine dimer forming activity, integrase activity, transposase activity, recombinase activity, polymerase activity, ligase activity, helicase activity, photolyase activity or glycosylase activity).
- target DNA e.g., nuclease activity, methyltransferase activity, demethylase activity, DNA repair activity, DNA damage activity, deamination activity, dismutase activity, alkylation activity, depurination activity, oxidation activity, pyrimidine dimer forming activity, integrase activity, transposase activity, recombina
- the activity portion of a subject chimeric site -directed modifying polypeptide has enzymatic activity (e.g., methyltransf erase activity, demethylase activity, acetyltransferase activity, deacetylase activity, kinase activity, phosphatase activity, ubiquitin ligase activity, deubiquitinating activity, adenylation activity, deadenylation activity, SUMOylating activity, deSUMOylating activity, ribosylation activity, deribosylation activity, myristoylation activity or demyristoylation activity ) that modifies a polypeptide associated with target DNA (e.g., a histone).
- target DNA e.g., a histone
- the activity portion of a subject chimeric site-directed modifying polypeptide exhibits enzymatic activity (described above). In other cases, the activity portion of a subject chimeric site -directed modifying polypeptide modulates transcription of the target DNA
- the activity portion of a subject chimeric site-directed modifying polypeptide is variable and may comprise any heterologous polypeptide sequence that may be useful in the methods disclosed herein.
- the activity portion of the chimeric site -directed modifying polypeptide comprises a modified form of the Cas9/Csnl protein.
- the modified form of the Cas9/Csnl protein comprises an amino acid change (e.g., deletion, insertion, or substitution) that reduces the naturally-occurring nuclease activity of the Cas9/Csnl protein.
- the modified form of the Cas9/Csnl protein has less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, less than 5%, or less than 1% of the nuclease activity of the corresponding wild- type Cas9/Csnl polypeptide.
- the modified form of the Cas9/Csnl polypeptide has no substantial nuclease activity.
- the modified form of the Cas9/Csnl polypeptide is a DIOA (aspartate to alanine at amino acid position 10 of SEQ ID NO:8) mutation (or the corresponding mutation of any of the proteins presented in SEQ ID NOs: 1-256 and 795-1346) that can cleave the complementary strand of the target DNA but has reduced ability to cleave the non- complementary strand of the target DNA (see Figure 11).
- the modified form of the Cas9/Csnl polypeptide is a H840A (histidine to alanine at amino acid position 840) mutation (or the corresponding mutation of any of the proteins set forth as SEQ ID NOs: 1-256 and 795-1346) that can cleave the non-complementary strand of the target DNA but has reduced ability to cleave the complementary strand of the target DNA (see Figure 11).
- the modified form of the Cas9/Csnl polypeptide harbors both the DIOA and the H840A mutations (or the corresponding mutations of any of the proteins set forth as SEQ ID NOs: 1-256 and 795-1346) such that the polypeptide has a reduced ability to cleave both the complementary and the non-complementary strands of the target DNA.
- Other residues can be mutated to achieve the above effects (i.e. inactivate one or the other nuclease portions).
- residues D10, G12, G17, E762, H840, N854, N863, H982, H983, A984, D986, and/or A987 can be altered (i.e., substituted) (see Figure 3, Figure 5, Figure 11A, and Table 1 for more information regarding the conservation of Cas9 amino acid residues). Also, mutations other than alanine substitutions are suitable. For more information of important
- Table 1 lists 4 motifs that are present in Cas9 sequences from various species (see also Figure 3 and Figure 5). The amino acids listed here are from the Cas9 from S. pyogenes (SEQ ID NO:8).
- the chimeric site -directed modifying polypeptide comprises an amino acid
- amino acid sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 99% or 100% amino acid sequence identity to amino acids 7- 166 or 731-1003 of the Cas9/Csnl amino acid sequence depicted in Figure 3, or to the corresponding portions in any of the amino acid sequences set forth as SEQ ID NOs: 1-256 and 795-1346.
- the chimeric site-directed modifying polypeptide comprises 4 motifs (as listed in Table 4 and depicted in Figure 3A and Figure 5), each with amino acid sequences having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 99% or 100% amino acid sequence identity to each of the 4 motifs listed in Table 1(SEQ ID NOs:260-263), or to the corresponding portions in any of the amino acid sequences set forth as SEQ ID NOs: 1-256 and 795-1346.
- the chimeric site- directed modifying polypeptide comprises amino acid sequences having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 99% or 100% amino acid sequence identity to amino acids 7-166 or 731-1003 of the Cas9/Csnl amino acid sequence depicted in Figure 3, or to the corresponding portions in any of the amino acid sequences set forth as SEQ ID NOs:l-256 and 795-1346.
- the activity portion of the site -directed modifying polypeptide comprises a heterologous polypeptide that has DNA-modifying activity and/or transcription factor activity and/or DNA-associated polypeptide-modifying activity.
- a heterologous polypeptide replaces a portion of the Cas9/Csnl polypeptide that provides nuclease activity.
- a subject site-directed modifying polypeptide comprises both a portion of the Cas9/Csnl polypeptide that normally provides nuclease activity (and that portion can be fully active or can instead be modified to have less than 100% of the corresponding wild-type activity) and a heterologous polypeptide.
- a subject chimeric site-directed modifying polypeptide is a fusion polypeptide comprising both the portion of the Cas9/Csnl polypeptide that normally provides nuclease activity and the heterologous polypeptide.
- a subject chimeric site-directed modifying polypeptide is a fusion polypeptide comprising a modified variant of the activity portion of the Cas9/Csnl polypeptide (e.g., amino acid change, deletion, insertion) and a heterologous polypeptide.
- a subject chimeric site- directed modifying polypeptide is a fusion polypeptide comprising a heterologous polypeptide and the RNA-binding portion of a naturally-occurring or a modified site-directed modifying polypeptide.
- a naturally-occurring or modified, e.g.,
- bacterial Cas9/Csnl polypeptide may be fused to a heterologous polypeptide sequence (i.e. a polypeptide sequence from a protein other than Cas9/Csnl or a polypeptide sequence from another organism).
- the heterologous polypeptide sequence may exhibit an activity (e.g., enzymatic activity) that will also be exhibited by the chimeric
- Cas9/Csnl protein e.g., methyltransf erase activity, acetyltransferase activity, kinase activity, ubiquitinating activity, etc.
- a heterologous nucleic acid sequence may be linked to another nucleic acid sequence (e.g., by genetic engineering) to generate a chimeric nucleotide sequence encoding a chimeric polypeptide.
- a chimeric Cas9/Csnl polypeptide is generated by fusing a Cas9/Csnl polypeptide (e.g., wild type Cas9 or a Cas9 variant, e.g., a Cas9 with reduced or inactivated nuclease activity) with a heterologous sequence that provides for subcellular localization (e.g., a nuclear localization signal (NLS) for targeting to the nucleus; a mitochondrial localization signal for targeting to the mitochondria; a chloroplast localization signal for targeting to a chloroplast; an ER retention signal; and the like).
- a nuclear localization signal NLS
- the heterologous sequence can provide a tag for ease of tracking or purification (e.g., a fluorescent protein, e.g., green fluorescent protein (GFP), YFP, RFP, CFP, mCherry, tdTomato, and the like; a HIS tag, e.g., a 6XHis tag; a hemagglutinin (HA) tag; a FLAG tag; a Myc tag; and the like).
- GFP green fluorescent protein
- RFP red fluorescent protein
- CFP CFP
- mCherry mCherry
- tdTomato e.g., a HIS tag
- HIS tag e.g., a 6XHis tag
- HA hemagglutinin
- FLAG tag e.g., hemagglutinin
- Myc tag e.g., Myc tag
- the heterologous sequence can provide a binding domain (e.g., to provide the ability of a chimeric Cas9 polypeptide to bind to another protein of interest, e.g., a DNA or histone modifying protein, a transcription factor or transcription repressor, a recruiting protein, etc.).
- a binding domain e.g., to provide the ability of a chimeric Cas9 polypeptide to bind to another protein of interest, e.g., a DNA or histone modifying protein, a transcription factor or transcription repressor, a recruiting protein, etc.
- Examples of various additional suitable fusion partners (or fragments thereof) for a subject variant Cas9 site -directed polypeptide include, but are not limited to those listed in Figure 54.
- the present disclosure provides a nucleic acid comprising a nucleotide sequence encoding a subject chimeric site -directed modifying polypeptide.
- the nucleic acid comprising a nucleotide sequence encoding a subject chimeric site -directed modifying polypeptide is an expression vector, e.g., a recombinant expression vector.
- a subject method involves contacting a target DNA or introducing into a cell (or a population of cells) one or more nucleic acids comprising a chimeric site-directed modifying polypeptide.
- Suitable nucleic acids comprising nucleotide sequences encoding a chimeric site -directed modifying polypeptide include expression vectors, where an expression vector comprising a nucleotide sequence encoding a chimeric site-directed modifying polypeptide is a "recombinant expression vector.”
- the recombinant expression vector is a viral construct, e.g., a
- recombinant adeno-associated virus construct see, e.g., U.S. Patent No. 7,078,387), a recombinant adenoviral construct, a recombinant lentiviral construct, etc.
- Suitable expression vectors include, but are not limited to, viral vectors (e.g. viral vectors based on vaccinia virus; poliovirus; adenovirus (see, e.g., Li et al., Invest Opthalmol Vis Sci 35:2543 2549, 1994; Borras et al., Gene Ther 6:515 524, 1999; Li and Davidson, PNAS 92:7700 7704, 1995; Sakamoto et al., H Gene Ther 5:1088 1097, 1999; WO 94/12649, WO 93/03769; WO 93/19191; WO 94/28938; WO 95/11984 and WO 95/00655); adeno-associated virus (see, e.g., Ali et al., Hum Gene Ther 9:81 86, 1998, Flannery et al., PNAS 94:6916 6921, 1997; Bennett et al., Invest
- SV40 herpes simplex virus
- human immunodeficiency virus see, e.g., Miyoshi et al., PNAS 94:10319 23, 1997; Takahashi et al., J Virol 73:7812 7816, 1999
- a retroviral vector e.g., Murine Leukemia Virus, spleen necrosis virus, and vectors derived from retroviruses such as Rous Sarcoma Virus, Harvey Sarcoma Virus, avian leukosis virus, a lentivirus, human immunodeficiency virus, myeloproliferative sarcoma virus, and mammary tumor virus
- retroviral vector e.g., Murine Leukemia Virus, spleen necrosis virus, and vectors derived from retroviruses such as Rous Sarcoma Virus, Harvey Sarcoma Virus, avian leukosis virus, a lentivirus, human immunodeficiency virus, myelop
- telomeres are provided by way of example; for eukaryotic host cells: pXTl, pSG5 (Stratagene), pSVK3, pBPV, pMSG, and pSVLSV40 (Pharmacia). However, any other vector may be used so long as it is compatible with the host cell.
- any of a number of suitable transcription and translation control elements including constitutive and inducible promoters, transcription enhancer elements, transcription terminators, etc. may be used in the expression vector (see e.g., Bitter et al. (1987) Methods in Enzymology, 153:516-544).
- a nucleotide sequence encoding a chimeric site-directed modifying polypeptide is operably linked to a control element, e.g., a transcriptional control element, such as a promoter.
- a control element e.g., a transcriptional control element, such as a promoter.
- the transcriptional control element may be functional in either a eukaryotic cell, e.g., a mammalian cell; or a prokaryotic cell (e.g., bacterial or archaeal cell).
- a nucleotide sequence encoding a chimeric site-directed modifying polypeptide is operably linked to multiple control elements that allow expression of the nucleotide sequence encoding a chimeric site -directed modifying polypeptide in both prokaryotic and eukaryotic cells.
- Non-limiting examples of suitable eukaryotic promoters include those from cytomegalovirus (CMV) immediate early, herpes simplex virus (HSV) thymidine kinase, early and late SV40, long terminal repeats (LTRs) from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.
- the expression vector may also contain a ribosome binding site for translation initiation and a transcription terminator.
- the expression vector may also include appropriate sequences for amplifying expression.
- the expression vector may also include nucleotide sequences encoding protein tags (e.g., 6xHis tag, hemagglutinin (HA) tag, a fluorescent protein (e.g., a green fluorescent protein; a yellow fluorescent protein, etc.), etc.) that are fused to the chimeric site-directed modifying polypeptide.
- protein tags e.g., 6xHis tag, hemagglutinin (HA) tag, a fluorescent protein (e.g., a green fluorescent protein; a yellow fluorescent protein, etc.
- a nucleotide sequence encoding a chimeric site-directed modifying polypeptide is operably linked to an inducible promoter (e.g., heat shock promoter, Tetracycline - regulated promoter, Steroid-regulated promoter, Metal-regulated promoter, estrogen receptor- regulated promoter, etc.).
- a nucleotide sequence encoding a chimeric site- directed modifying polypeptide is operably linked to a spatially restricted and/or temporally restricted promoter (e.g., a tissue specific promoter, a cell type specific promoter, etc.).
- a nucleotide sequence encoding a chimeric site-directed modifying polypeptide is operably linked to a constitutive promoter.
- a method can be used to introduce a nucleic acid (e.g., an expression construct) into a stem cell or progenitor cell.
- Suitable methods include, include e.g., viral or bacteriophage infection, transfection, conjugation, protoplast fusion, lipofection, electroporation, calcium phosphate precipitation, polyethyleneimine (PEI) -mediated transfection, DEAE-dextran mediated transfection, liposome-mediated transfection, particle gun technology, calcium phosphate precipitation, direct micro injection, nanoparticle-mediated nucleic acid delivery (see, e.g., Panyam et., al Adv Drug Deliv Rev. 2012 Sep 13. pii: S0169-409X(12)00283-9. doi:
- a subject method involves contacting a target DNA with a complex (a "targeting complex"), which complex comprises a DNA-targeting RNA and a site- directed modifying polypeptide.
- the DNA-targeting RNA provides target specificity to the complex by comprising a nucleotide sequence that is complementary to a sequence of a target DNA.
- the site-directed modifying polypeptide of the complex provides the site-specific activity.
- a subject complex modifies a target DNA, leading to, for example, DNA cleavage, DNA methylation, DNA damage, DNA repair, etc.
- a subject complex modifies a target polypeptide associated with target DNA (e.g., a histone, a DNA-binding protein, etc.), leading to, for example, histone methylation, histone acetylation, histone ubiquitination, and the like.
- the target DNA may be, for example, naked DNA in vitro, chromosomal DNA in cells in vitro, chromosomal DNA in cells in vivo, etc.
- the site -directed modifying polypeptide exhibits nuclease activity that cleaves target DNA at a target DNA sequence defined by the region of complementarity between the DNA-targeting RNA and the target DNA.
- site-directed modifying polypeptide is a Cas9 or Cas9 related polypeptide
- site-specific cleavage of the target DNA occurs at locations determined by both (i) base-pairing complementarity between the DNA- targeting RNA and the target DNA; and (ii) a short motif [referred to as the protospacer adjacent motif (PAM)] in the target DNA.
- PAM protospacer adjacent motif
- the PAM sequence of the non-complementary strand is 5' -XGG-3', where X is any DNA nucleotide and X is immediately 3' of the target sequence of the non-complementary strand of the target DNA (see Figure 10).
- the PAM sequence of the complementary strand is 5'-CCY-3', where Y is any DNA nucleotide and Y is immediately 5' of the target sequence of the complementary strand of the target DNA (see Figure 10 where the PAM of the non-complementary strand is 5'-GGG-3' and the PAM of the complementary strand is 5'-CCC-3').
- Cas9 proteins i.e., Cas9 proteins from various species.
- Cas9 proteins from various species may require different PAM sequences in the target DNA.
- the PAM sequence requirement may be different than the 5' -XGG-3' sequence described above.
- protiens share only a few identical amino acids. All identified Cas9 orthologs have the same domain architecture with a central HNH endonuclease domain and a split RuvC/RNaseH domain (See Figures 3A, 3B, Figure 5, and Table 1). Cas9 proteins share 4 key motifs with a conserved architecture. Motifs 1, 2, and 4 are RuvC like motifs while motif 3 is an HNH-motif.
- a suitable site-directed modifying polypeptide comprises an amino acid sequence having 4 motifs, each of motifs 1-4 having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 99% or 100% amino acid sequence identity to the motif s 1-4 of the Cas9/Csnl amino acid sequence depicted in Figure 3A (SEQ ID NOs:260- 263, respectively, as depicted in Table 1), or to the corresponding portions in any of the amino acid sequences set forth in SEQ ID NOs:l-256 and 795-1346 (see Figure 5 for an alignment of motifs 1-4 from divergent Cas9 sequences).
- a suitable site-directed modifying polypeptide comprises an amino acid sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 99% or 100% amino acid sequence identity to amino acids 7-166 or 731-1003 of the Cas9/Csnl amino acid sequence depicted in Figure 3, or to the corresponding portions in any of the amino acid sequences set forth as SEQ ID NOs: 1-256 and 795-1346.
- Any Cas9 protein as defined above can be used as a site -directed modifying polypeptide or as part of a chimeric site-directed modifying polypeptide of the subject methods.
- the nuclease activity cleaves target DNA to produce double strand breaks. These breaks are then repaired by the cell in one of two ways: non-homologous end joining, and homology- directed repair ( Figure 2).
- non-homologous end joining NHEJ
- the double-strand breaks are repaired by direct ligation of the break ends to one another. As such, no new nucleic acid material is inserted into the site, although some nucleic acid material may be lost, resulting in a deletion.
- a donor polynucleotide with homology to the cleaved target DNA sequence is used as a template for repair of the cleaved target DNA sequence, resulting in the transfer of genetic information from the donor polynucleotide to the target DNA.
- new nucleic acid material may be inserted/copied into the site.
- a target DNA is contacted with a subject donor polynucleotide.
- a subject donor polynucleotide is introduced into a subject cell.
- the modifications of the target DNA due to NHEJ and/or homology-directed repair lead to, for example, gene correction, gene replacement, gene tagging, transgene insertion, nucleotide deletion, gene disruption, gene mutation, etc.
- cleavage of DNA by a site-directed modifying polypeptide may be used to delete nucleic acid material from a target DNA sequence (e.g., to disrupt a gene that makes cells susceptible to infection (e.g. the CCR5 or CXCR4 gene, which makes T cells susceptible to HIV infection), to remove disease-causing trinucleotide repeat sequences in neurons, to create gene knockouts and mutations as disease models in research, etc.) by cleaving the target DNA sequence and allowing the cell to repair the sequence in the absence of an exogenously provided donor polynucleotide.
- the subject methods can be used to knock out a gene (resulting in complete lack of transcription or altered transcription) or to knock in genetic material into a locus of choice in the target DNA.
- the subject methods may be used to add, i.e. insert or replace, nucleic acid material to a target DNA sequence (e.g. to "knock in” a nucleic acid that encodes for a protein, an siRNA, an miRNA, etc.), to add a tag (e.g., 6xHis, a fluorescent protein (e.g., a green fluorescent protein; a yellow fluorescent protein, etc.), hemagglutinin (HA), FLAG, etc.), to add a regulatory sequence to a gene (e.g.
- a complex comprising a DNA-targeting RNA and a site-directed modifying polypeptide is useful in any in vitro or in vivo application in which it is desirable to modify DNA in a site- specific, i.e. "targeted", way, for example gene knock-out, gene knock-in, gene editing, gene tagging, etc., as used in, for example, gene therapy, e.g.
- a disease or as an antiviral, antipathogenic, or anticancer therapeutic the production of genetically modified organisms in agriculture, the large scale production of proteins by cells for therapeutic, diagnostic, or research purposes, the induction of iPS cells, biological research, the targeting of genes of pathogens for deletion or replacement, etc.
- the site -directed modifying polypeptide comprises a modified form of the Cas9/Csnl protein.
- the modified form of the Cas9/Csnl protein comprises an amino acid change (e.g., deletion, insertion, or substitution) that reduces the naturally- occurring nuclease activity of the Cas9/Csnl protein.
- the modified form of the Cas9/Csnl protein has less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, less than 5%, or less than 1% of the nuclease activity of the corresponding wild-type Cas9/Csnl polypeptide.
- the modified form of the Cas9/Csnl polypeptide has no substantial nuclease activity.
- a subject site -directed modifying polypeptide is a modified form of the Cas9/Csnl polypeptide that has no substantial nuclease activity, it can be referred to as "dCas9.”
- the modified form of the Cas9/Csnl polypeptide is a DIOA (aspartate to alanine at amino acid position 10 of SEQ ID NO: 8) mutation (or the corresponding mutation of any of the proteins set forth as SEQ ID NOs: 1-256 and 795-1346) that can cleave the complementary strand of the target DNA but has reduced ability to cleave the non- complementary strand of the target DNA (thus resulting in a single strand break (SSB) instead of a DSB; see Figure 11).
- DIOA aspartate to alanine at amino acid position 10 of SEQ ID NO: 8
- the modified form of the Cas9/Csnl polypeptide is a H840A (histidine to alanine at amino acid position 840 of SEQ ID NO: 8) mutation (or the corresponding mutation of any of the proteins set forth as SEQ ID NOs:l-256 and 795-1346) that can cleave the non-complementary strand of the target DNA but has reduced ability to cleave the complementary strand of the target DNA (thus resulting in a single strand break (SSB) instead of a DSB; see Figure 11).
- H840A histidine to alanine at amino acid position 840 of SEQ ID NO: 8
- SEQ ID NOs:l-256 and 795-1346 or the corresponding mutation of any of the proteins set forth as SEQ ID NOs:l-256 and 795-1346
- DIOA or H840A variant of Cas9 can alter the expected biological outcome because the non-homologous end joining (NHEJ) is much more likely to occur when DSBs are present as opposed to SSBs.
- NHEJ non-homologous end joining
- a DIOA or H840A variant of Cas9 can be used.
- Other residues can be mutated to achieve the same effect (i.e. inactivate one or the other nuclease portions).
- residues D10, G12, G17, E762, H840, N854, N863, H982, H983, A984, D986, and/or A987 can be altered (i.e., substituted) (see Figure 3, Figure 5, Figure 11A, and Table 1 for more information regarding the conservation of Cas9 amino acid residues). Also, mutations other than alanine substitutions are suitable.
- a site-directed polypeptide e.g., site-directred modifying polypeptide
- a Cas9 protein has a D10, G12, G17, E762, H840, N854, N863, H982, H983, A984, D986, and/or a A987 mutation, e.g., DIOA, G12A, G17A, E762A, H840A, N854A, N863A, H982A, H983A, A984A, and/or D986A
- the polypeptide can still bind to target DNA in a site-specific manner (because it is still guided to a target DNA sequence by a DNA -targeting RNA) as long as it retains the ability to interact with the DNA-targeting RNA.
- the modified form of the Cas9/Csnl polypeptide harbors both the DIOA and the H840A mutations (or the corresponding mutations of any of the proteins set forth as SEQ ID NOs:l-256 and 795-1346) such that the polypeptide has a reduced ability to cleave both the complementary and the non-complementary strands of the target DNA (i.e., the variant can have no substantial nuclease activity).
- Other residues can be mutated to achieve the same effect (i.e. inactivate one or the other nuclease portions).
- residues D10, G12, G17, E762, H840, N854, N863, H982, H983, A984, D986, and/or A987 can be altered (i.e., substituted) (see Figure 3, Figure 5, Figure 11A, and Table 1 for more information regarding the conservation of Cas9 amino acid residues). Also, mutations other than alanine substitutions are suitable.
- the site -directed modifying polypeptide comprises a heterologous
- a heterologous sequence can provide for subcellular localization of the site -directed modifying polypeptide (e.g., a nuclear localization signal (NLS) for targeting to the nucleus; a mitochondrial localization signal for targeting to the mitochondria; a chloroplast localization signal for targeting to a chloroplast; a ER retention signal; and the like).
- a nuclear localization signal NLS
- a heterologous sequence can provide a tag for ease of tracking or purification (e.g., a fluorescent protein, e.g., green fluorescent protein (GFP), YFP, RFP, CFP, mCherry, tdTomato, and the like; a his tag, e.g., a 6XHis tag; a hemagglutinin (HA) tag; a FLAG tag; a Myc tag; and the like).
- the heterologous sequence can provide for increased or decreased stability.
- a subject site -directed modifying polypeptide can be codon-optimized.
- a human codon-optimized Cas9 (or variant, e.g., enzymatically inactive variant) would be a suitable site-directed modifying polypeptide (see SEQ ID NO:256 for an example).
- Any suitable site -directed modifying polypeptide e.g., any Cas9 such as any of the sequences set forth in SEQ ID NOs: 1-256 and 795-1346 can be codon optimized.
- a mouse codon-optimized Cas9 or variant, e.g., enzymatically inactive variant
- a suitable site -directed modifying polypeptide While codon optimization is not required, it is acceptable and may be preferable in certain cases.
- a subject DNA-targeting RNA and a subject site -directed modifying polypeptide are used as an inducible system for shutting off gene expression in bacterial cells.
- nucleic acids encoding an appropriate DNA-targeting RNA and/or an appropriate site -directed polypeptide are incorporated into the chromosome of a target cell and are under control of an inducible promoter.
- the target DNA is cleaved (or otherwise modified) at the location of interest (e.g., a target gene on a separate plasmid), when both the DNA-targeting RNA and the site -directed modifying polypeptide are present and form a complex.
- the location of interest e.g., a target gene on a separate plasmid
- bacterial expression strains are engineered to include nucleic acid sequences encoding an appropriate site-directed modifying polypeptide in the bacterial genome and/or an appropriate DNA-targeting RNA on a plasmid (e.g., under control of an inducible promoter), allowing experiments in which the expression of any targeted gene (expressed from a separate plasmid introduced into the strain) could be controlled by inducing expression of the DNA-targeting RNA and the site-directed polypeptide.
- a plasmid e.g., under control of an inducible promoter
- the site -directed modifying polypeptide has enzymatic activity that modifies target DNA in ways other than introducing double strand breaks.
- Enzymatic activity of interest that may be used to modify target DNA (e.g., by fusing a heterologous polypeptide with enzymatic activity to a site -directed modifying polypeptide, thereby generating a chimeric site- directed modifying polypeptide) includes, but is not limited methyltransferase activity, demethylase activity, DNA repair activity, DNA damage activity, deamination activity, dismutase activity, alkylation activity, depurination activity, oxidation activity, pyrimidine dimer forming activity, integrase activity, transposase activity, recombinase activity, polymerase activity, ligase activity, helicase activity, photolyase activity or glycosylase activity).
- Methylation and demethylation is recognized in the art as an important mode of epigenetic gene regulation while DNA damage and repair activity is essential for cell survival and for proper genome maintenance in response to environmental stresses.
- the methods herein find use in the epigenetic modification of target DNA and may be employed to control epigenetic modification of target DNA at any location in a target DNA by genetically engineering the desired complementary nucleic acid sequence into the DNA- targeting segment of a DNA-targeting RNA.
- the methods herein also find use in the intentional and controlled damage of DNA at any desired location within the target DNA.
- the methods herein also find use in the sequence-specific and controlled repair of DNA at any desired location within the target DNA. Methods to target DNA -modifying enzymatic activities to specific locations in target DNA find use in both research and clinical applications.
- the site -directed modifying polypeptide has activity that modulates the
- a chimeric site-directed modifying polypeptides comprising a heterologous polypeptide that exhibits the ability to increase or decrease transcription (e.g., transcriptional activator or transcription repressor polypeptides) is used to increase or decrease the transcription of target DNA at a specific location in a target DNA, which is guided by the DNA-targeting segment of the DNA-targeting RNA.
- source polypeptides for providing a chimeric site -directed modifying polypeptide with transcription modulatory activity include, but are not limited to light-inducible transcription regulators, small molecule/drug-responsive transcription regulators, transcription factors, transcription repressors, etc.
- the subject method is used to control the expression of a targeted coding-RNA (protein-encoding gene) and/or a targeted non-coding RNA (e.g., tRNA, rRNA, snoRNA, siRNA, miRNA, long ncRNA, etc.).
- the site -directed modifying polypeptide has enzymatic activity that modifies a polypeptide associated with DNA (e.g. histone).
- the enzymatic activity is methyltransf erase activity, demethylase activity, acetyltransferase activity, deacetylase activity, kinase activity, phosphatase activity, ubiquitin ligase activity (i.e., ubiquitination activity), deubiquitinating activity, adenylation activity, deadenylation activity, SUMOylating activity, deSUMOylating activity, ribosylation activity, deribosylation activity, myristoylation activity, demyristoylation activity glycosylation activity (e.g., from O-GlcNAc transferase) or deglycosylation activity.
- the enzymatic activities listed herein catalyze covalent modifications to proteins. Such modifications are known in the art to alter the stability or activity of the target protein (e.g., phosphorylation due to kinase activity can stimulate or silence protein activity depending on the target protein). Of particular interest as protein targets are histones. Histone proteins are known in the art to bind DNA and form complexes known as nucleosomes. Histones can be modified (e.g., by methylation, acetylation, ubuitination, phosphorylation) to elicit structural changes in the surrounding DNA, thus controlling the accessibility of potentially large portions of DNA to interacting factors such as transcription factors, polymerases and the like.
- a single histone can be modified in many different ways and in many different combinations (e.g., trimethylation of lysine 27 of histone 3, H3K27, is associated with DNA regions of repressed transcription while trimethylation of lysine 4 of histone 3, H3K4, is associated with DNA regions of active transcription).
- a site-directed modifying polypeptide with histone- modifying activity finds use in the site specific control of DNA structure and can be used to alter the histone modification pattern in a selected region of target DNA. Such methods find use in both research and clinical applications.
- multiple DNA-targeting RNAs are used simultaneously to
- two or more DNA-targeting RNAs target the same gene or transcript or locus. In some embodiments, two or more DNA-targeting RNAs target different unrelated loci. In some embodiments, two or more DNA-targeting RNAs target different, but related loci.
- the site -directed modifying polypeptide is provided directly as a protein.
- fungi e.g., yeast
- spheroplast transformation see Kawai et al., Bioeng Bugs. 2010 Nov- Dec;l(6):395-403 : "Transformation of Saccharomyces cerevisiae and other fungi: methods and possible underlying mechanism”; and Tanka et al., Nature. 2004 Mar 18;428(6980):323-8: "Conformational variations in an infectious protein determine prion strain differences"; both of which are herein incorporated by reference in their entirety).
- a site -directed modifying polypeptide (e.g., Cas9) can be incorporated into a spheroplast (with or without nucleic acid encoding a DNA-targeting RNA and with or without a donor polynucleotide) and the spheroplast can be used to introduce the content into a yeast cell.
- a site-directed modifying polypeptide can be introduced into a cell (provided to the cell) by any convenient method; such methods are known to those of ordinary skill in the art.
- a site-directed modifying polypeptide can be injected directly into a cell (e.g., with or without nucleic acid encoding a DNA-targeting RNA and with or without a donor polynucleotide), e.g., a cell of a zebrafish embryo, the pronucleus of a fertilized mouse oocyte, etc.
- a cell e.g., with or without nucleic acid encoding a DNA-targeting RNA and with or without a donor polynucleotide
- a cell of a zebrafish embryo e.g., a cell of a zebrafish embryo, the pronucleus of a fertilized mouse oocyte, etc.
- Target cells of interest are of interest
- the subject methods may be employed to induce DNA
- a mitotic and/or post-mitotic cell of interest in the disclosed methods may include a cell from any organism (e.g.
- a bacterial cell e.g., a bacterial cell, an archaeal cell, a cell of a single-cell eukaryotic organism, a plant cell, an algal cell, e.g., Botryococcus braunii, Chlamydomonas reinhardtii, Nannochloropsis gaditana, Chlorella pyrenoidosa, Sargassum patens C. Agardh, and the like, a fungal cell (e.g., a yeast cell), an animal cell, a cell from an invertebrate animal (e.g.
- fruit fly cnidarian, echinoderm, nematode, etc.
- a cell from a vertebrate animal e.g., fish, amphibian, reptile, bird, mammal
- a cell from a mammal e.g., a cell from a rodent, a cell from a human, etc.
- Any type of cell may be of interest (e.g. a stem cell, e.g. an embryonic stem (ES) cell, an
- iPS induced pluripotent stem
- germ cell a germ cell
- somatic cell e.g. a fibroblast, a hematopoietic cell, a neuron, a muscle cell, a bone cell, a hepatocyte, a pancreatic cell
- in vitro or in vivo embryonic cell of an embryo at any stage e.g., a 1-cell, 2-cell, 4-cell, 8-cell, etc. stage zebrafish embryo; etc.
- Cells may be from established cell lines or they may be primary cells, where "primary cells”, “primary cell lines”, and “primary cultures” are used interchangeably herein to refer to cells and cells cultures that have been derived from a subject and allowed to grow in vitro for a limited number of passages, i.e. splittings, of the culture.
- primary cultures are cultures that may have been passaged 0 times, 1 time, 2 times, 4 times, 5 times, 10 times, or 15 times, but not enough times go through the crisis stage.
- the primary cell lines of the present invention are maintained for fewer than 10 passages in vitro.
- Target cells are in many embodiments unicellular organisms, or are grown in culture.
- the cells are primary cells, they may be harvest from an individual by any convenient method.
- leukocytes may be conveniently harvested by apheresis, leukocytapheresis, density gradient separation, etc., while cells from tissues such as skin, muscle, bone marrow, spleen, liver, pancreas, lung, intestine, stomach, etc. are most conveniently harvested by biopsy.
- An appropriate solution may be used for dispersion or suspension of the harvested cells.
- Such solution will generally be a balanced salt solution, e.g. normal saline, phosphate-buffered saline (PBS), Hank's balanced salt solution, etc., conveniently supplemented with fetal calf serum or other naturally occurring factors, in conjunction with an acceptable buffer at low concentration, generally from 5-25 mM.
- Convenient buffers include HEPES, phosphate buffers, lactate buffers, etc.
- the cells may be used immediately, or they may be stored, frozen, for long periods of time, being thawed and capable of being reused. In such cases, the cells will usually be frozen in 10% DMSO, 50% serum, 40% buffered medium, or some other such solution as is commonly used in the art to preserve cells at such freezing temperatures, and thawed in a manner as commonly known in the art for thawing frozen cultured cells.
- a subject method involves contacting a target DNA or introducing into a cell (or a population of cells) one or more nucleic acids comprising nucleotide sequences encoding a DNA-targeting RNA and/or a site -directed modifying polypeptide and/or a donor polynucleotide.
- Suitable nucleic acids comprising nucleotide sequences encoding a DNA- targeting RNA and/or a site-directed modifying polypeptide include expression vectors, where an expression vector comprising a nucleotide sequence encoding a DNA-targeting RNA and/or a site -directed modifying polypeptide is a "recombinant expression vector.”
- the recombinant expression vector is a viral construct, e.g., a
- recombinant adeno-associated virus construct see, e.g., U.S. Patent No. 7,078,387), a recombinant adenoviral construct, a recombinant lentiviral construct, etc.
- Suitable expression vectors include, but are not limited to, viral vectors (e.g. viral vectors based on vaccinia virus; poliovirus; adenovirus (see, e.g., Li et al., Invest Opthalmol Vis Sci 35:2543 2549, 1994; Borras et al., Gene Ther 6:515 524, 1999; Li and Davidson, PNAS 92:7700 7704, 1995; Sakamoto et al., H Gene Ther 5: 1088 1097, 1999; WO 94/12649, WO 93/03769; WO 93/19191 ; WO 94/28938; WO 95/11984 and WO 95/00655); adeno-associated virus (see, e.g., Ali et al., Hum Gene Ther 9:81 86, 1998, Flannery et al., PNAS 94:6916 6921, 1997; Bennett et al.,
- a retroviral vector e.g., Murine Leukemia Virus, spleen necrosis virus, and vectors derived from retroviruses such as Rous Sarcoma Virus, Harvey Sarcoma Virus, avian leukosis virus, a lentivirus, human immunodeficiency virus, myeloproliferative sarcoma virus, and mammary tumor virus; and the like.
- Suitable expression vectors are known to those of skill in the art, and many are commercially available.
- the following vectors are provided by way of example; for eukaryotic host cells: pXTl, pSG5 (Stratagene), pSVK3, pBPV, pMSG, and pSVLSV40 (Pharmacia).
- any other vector may be used so long as it is compatible with the host cell.
- a nucleotide sequence encoding a DNA-targeting RNA and/or a site- directed modifying polypeptide is operably linked to a control element, e.g., a transcriptional control element, such as a promoter.
- a control element e.g., a transcriptional control element, such as a promoter.
- the transcriptional control element may be functional in either a eukaryotic cell, e.g., a mammalian cell, or a prokaryotic cell (e.g., bacterial or archaeal cell).
- a nucleotide sequence encoding a DNA-targeting RNA and/or a site -directed modifying polypeptide is operably linked to multiple control elements that allow expression of the nucleotide sequence encoding a DNA-targeting RNA and/or a site -directed modifying polypeptide in both prokaryotic and eukaryotic cells.
- any of a number of suitable transcription and translation control elements including constitutive and inducible promoters, transcription enhancer elements, transcription terminators, etc. may be used in the expression vector (e.g., U6 promoter, HI promoter, etc.; see above) (see e.g., Bitter et al. (1987) Methods in Enzymology, 153:516-544).
- a DNA-targeting RNA and/or a site -directed modifying polypeptide can be provided as RNA.
- the DNA-targeting RNA and/or the RNA encoding the site- directed modifying polypeptide can be produced by direct chemical synthesis or may be transcribed in vitro from a DNA encoding the DNA-targeting RNA. Methods of synthesizing RNA from a DNA template are well known in the art.
- the DNA-targeting RNA and/or the RNA encoding the site-directed modifying polypeptide will be synthesized in vitro using an RNA polymerase enzyme (e.g., T7 polymerase, T3 polymerase, SP6 polymerase, etc.).
- an RNA polymerase enzyme e.g., T7 polymerase, T3 polymerase, SP6 polymerase, etc.
- the RNA may directly contact a target DNA or may be introduced into a cell by any of the well-known techniques for introducing nucleic acids into cells (e.g.,
- Nucleotides encoding a DNA-targeting RNA (introduced either as DNA or RNA) and/or a site- directed modifying polypeptide (introduced as DNA or RNA) and/or a donor polynucleotide may be provided to the cells using well-developed transfection techniques; see, e.g. Angel and Yanik (2010) PLoS ONE 5(7): el 1756, and the commercially available TransMessenger® reagents from Qiagen, StemfectTM RNA Transfection Kit from Stemgent, and TransIT®-mRNA Transfection Kit from Mirus Bio LLC. See also Beumer et al.
- nucleic acids encoding a DNA-targeting RNA and/or a site -directed modifying polypeptide and/or a chimeric site -directed modifying polypeptide and/or a donor polynucleotide may be provided on DNA vectors.
- Many vectors, e.g. plasmids, cosmids, minicircles, phage, viruses, etc., useful for transferring nucleic acids into target cells are available.
- the vectors comprising the nucleic acid(s) may be maintained episomally, e.g.
- plasmids as plasmids, minicircle DNAs, viruses such cytomegalovirus, adenovirus, etc., or they may be integrated into the target cell genome, through homologous recombination or random integration, e.g. retrovirus-derived vectors such as MMLV, HIV-1, ALV, etc.
- Vectors may be provided directly to the subject cells.
- the cells are contacted with vectors comprising the nucleic acid encoding DNA-targeting RNA and/or a site-directed modifying polypeptide and/or a chimeric site-directed modifying polypeptide and/or a donor polynucleotide such that the vectors are taken up by the cells.
- Methods for contacting cells with nucleic acid vectors that are plasmids including electroporation, calcium chloride transfection, microinjection, and lipofection are well known in the art.
- the cells are contacted with viral particles comprising the nucleic acid encoding a DNA-targeting RNA and/or a site -directed modifying polypeptide and/or a chimeric site-directed modifying polypeptide and/or a donor polynucleotide.
- Retroviruses for example, lentiviruses, are particularly suitable to the method of the invention. Commonly used retroviral vectors are "defective", i.e. unable to produce viral proteins required for productive infection. Rather, replication of the vector requires growth in a packaging cell line.
- the retroviral nucleic acids comprising the nucleic acid are packaged into viral capsids by a packaging cell line. Different packaging cell lines provide a different envelope protein (ecotropic, amphotropic or xenotropic) to be incorporated into the capsid, this envelope protein determining the specificity of the viral particle for the cells (ecotropic for murine and rat;
- the appropriate packaging cell line may be used to ensure that the cells are targeted by the packaged viral particles.
- Methods of introducing the retroviral vectors comprising the nucleic acid encoding the reprogramming factors into packaging cell lines and of collecting the viral particles that are generated by the packaging lines are well known in the art.
- Nucleic acids can also introduced by direct micro-injection (e.g., injection of RNA into a zebrafish embryo).
- Vectors used for providing the nucleic acids encoding DNA-targeting RNA and/or a site- directed modifying polypeptide and/or a chimeric site-directed modifying polypeptide and/or a donor polynucleotide to the subject cells will typically comprise suitable promoters for driving the expression, that is, transcriptional activation, of the nucleic acid of interest.
- the nucleic acid of interest will be operably linked to a promoter. This may include ubiquitously acting promoters, for example, the CMV- -actin promoter, or inducible promoters, such as promoters that are active in particular cell populations or that respond to the presence of drugs such as tetracycline.
- vectors used for providing a DNA- targeting RNA and/or a site-directed modifying polypeptide and/or a chimeric site-directed modifying polypeptide and/or a donor polynucleotide to the subject cells may include nucleic acid sequences that encode for selectable markers in the target cells, so as to identify cells that have taken up the DNA-targeting RNA and/or a site-directed modifying polypeptide and/or a chimeric site -directed modifying polypeptide and/or a donor polynucleotide.
- a subject DNA-targeting RNA and/or a site-directed modifying polypeptide and/or a chimeric site-directed modifying polypeptide may instead be used to contact DNA or introduced into cells as RNA.
- Methods of introducing RNA into cells are known in the art and may include, for example, direct injection, transfection, or any other method used for the introduction of DNA.
- a subject site -directed modifying polypeptide may instead be provided to cells as a
- polypeptide Such a polypeptide may optionally be fused to a polypeptide domain that increases solubility of the product.
- the domain may be linked to the polypeptide through a defined protease cleavage site, e.g. a TEV sequence, which is cleaved by TEV protease.
- the linker may also include one or more flexible sequences, e.g. from 1 to 10 glycine residues.
- the cleavage of the fusion protein is performed in a buffer that maintains solubility of the product, e.g. in the presence of from 0.5 to 2 M urea, in the presence of polypeptides and/or polynucleotides that increase solubility, and the like.
- Domains of interest include endosomolytic domains, e.g. influenza HA domain; and other polypeptides that aid in production, e.g. IF2 domain, GST domain, GRPE domain, and the like.
- the polypeptide may be formulated for improved stability.
- the peptides may be PEGylated, where the polyethyleneoxy group provides for enhanced lifetime in the blood stream.
- the subject site-directed modifying polypeptide may be fused to a polypeptide permeant domain to promote uptake by the cell.
- a permeant domains are known in the art and may be used in the non-integrating polypeptides of the present invention, including peptides, peptidomimetics, and non-peptide carriers.
- a permeant peptide may be derived from the third alpha helix of Drosophila melanogaster transcription factor Antennapaedia, referred to as penetratin, which comprises the amino acid sequence
- the permeant peptide comprises the HIV-1 tat basic region amino acid sequence, which may include, for example, amino acids 49-57 of naturally-occurring tat protein.
- Other permeant domains include poly- arginine motifs, for example, the region of amino acids 34-56 of HIV-1 rev protein, nona- arginine, octa-arginine, and the like.
- the nona-arginine (R9) sequence is one of the more efficient PTDs that have been characterized (Wender et al. 2000; Uemura et al. 2002).
- the site at which the fusion is made may be selected in order to optimize the biological activity, secretion or binding characteristics of the polypeptide. The optimal site will be determined by routine experimentation.
- a subject site -directed modifying polypeptide may be produced in vitro or by eukaryotic cells or by prokaryotic cells, and it may be further processed by unfolding, e.g. heat denaturation, DTT reduction, etc. and may be further refolded, using methods known in the art.
- Modifications of interest that do not alter primary sequence include chemical derivatization of polypeptides, e.g., acylation, acetylation, carboxylation, amidation, etc. Also included are modifications of glycosylation, e.g. those made by modifying the glycosylation patterns of a polypeptide during its synthesis and processing or in further processing steps; e.g. by exposing the polypeptide to enzymes which affect glycosylation, such as mammalian glycosylating or deglycosylating enzymes. Also embraced are sequences that have phosphorylated amino acid residues, e.g. phosphotyrosine, phosphoserine, or phosphothreonine.
- modifications of glycosylation e.g. those made by modifying the glycosylation patterns of a polypeptide during its synthesis and processing or in further processing steps; e.g. by exposing the polypeptide to enzymes which affect glycosylation, such as mammalian glycosylating or
- DNA-targeting RNAs and site-directed modifying polypeptides that have been modified using ordinary molecular biological techniques and synthetic chemistry so as to improve their resistance to proteolytic degradation, to change the target sequence specificity, to optimize solubility properties, to alter protein activity (e.g., transcription modulatory activity, enzymatic activity, etc) or to render them more suitable as a therapeutic agent.
- Analogs of such polypeptides include those containing residues other than naturally occurring L-amino acids, e.g. D-amino acids or non-naturally occurring synthetic amino acids. D-amino acids may be substituted for some or all of the amino acid residues.
- the site -directed modifying polypeptides may be prepared by in vitro synthesis, using
- cysteines can be used to make thioethers, histidines for linking to a metal ion complex, carboxyl groups for forming amides or esters, amino groups for forming amides, and the like.
- the site -directed modifying polypeptides may also be isolated and purified in accordance with conventional methods of recombinant synthesis.
- a lysate may be prepared of the expression host and the lysate purified using HPLC, exclusion chromatography, gel electrophoresis, affinity chromatography, or other purification technique.
- the compositions which are used will comprise at least 20% by weight of the desired product, more usually at least about 75% by weight, preferably at least about 95% by weight, and for therapeutic purposes, usually at least about 99.5% by weight, in relation to contaminants related to the method of preparation of the product and its purification. Usually, the percentages will be based upon total protein.
- the DNA-targeting RNA and/or the site -directed modifying polypeptide and/or the donor polynucleotide are provided to the cells for about 30 minutes to about 24 hours, e.g., 1 hour, 1.5 hours, 2 hours, 2.5 hours, 3 hours, 3.5 hours 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 12 hours, 16 hours, 18 hours, 20 hours, or any other period from about 30 minutes to about 24 hours, which may be repeated with a frequency of about every day to about every 4 days, e.g., every 1.5 days, every 2 days, every 3 days, or any other frequency from about every day to about every four days.
- the agent(s) may be provided to the subject cells one or more times, e.g. one time, twice, three times, or more than three times, and the cells allowed to incubate with the agent(s) for some amount of time following each contacting event e.g. 16-24 hours, after which time the media is replaced with fresh media and the cells are cultured further.
- the complexes may be provided simultaneously (e.g. as two polypeptides and/or nucleic acids), or delivered simultaneously. Alternatively, they may be provided consecutively, e.g. the targeting complex being provided first, followed by the second targeting complex, etc. or vice versa.
- polypeptide and/or donor polynucleotide is provided to the target DNA or cells to induce cleavage.
- An effective amount of the DNA-targeting RNA and/or site -directed modifying polypeptide and/or donor polynucleotide is the amount to induce a 2— fold increase or more in the amount of target modification observed between two homologous sequences relative to a negative control, e.g. a cell contacted with an empty vector or irrelevant polypeptide.
- an effective amount or dose of the DNA-targeting RNA and/or site-directed modifying polypeptide and/or donor polynucleotide will induce a 2-fold increase, a 3-fold increase, a 4-fold increase or more in the amount of target modification observed at a target DNA region, in some instances a 5-fold increase, a 6-fold increase or more, sometimes a 7-fold or 8-fold increase or more in the amount of recombination observed, e.g. an increase of 10-fold, 50-fold, or 100-fold or more, in some instances, an increase of 200-fold, 500-fold, 700-fold, or 1000-fold or more, e.g. a 5000-fold, or 10,000-fold increase in the amount of recombination observed.
- the amount of target modification may be measured by any convenient method.
- a silent reporter construct comprising complementary sequence to the targeting segment (targeting sequence) of the DNA-targeting RNA flanked by repeat sequences that, when recombined, will reconstitute a nucleic acid encoding an active reporter may be cotransfected into the cells, and the amount of reporter protein assessed after contact with the DNA-targeting RNA and/or site- directed modifying polypeptide and/or donor polynucleotide, e.g. 2 hours, 4 hours, 8 hours, 12 hours, 24 hours, 36 hours, 48 hours, 72 hours or more after contact with the DNA-targeting RNA and/or site-directed modifying polypeptide and/or donor polynucleotide.
- the extent of recombination at a genomic DNA region of interest comprising target DNA sequences may be assessed by PCR or Southern hybridization of the region after contact with a DNA-targeting RNA and/or site-directed modifying polypeptide and/or donor polynucleotide, e.g. 2 hours, 4 hours, 8 hours, 12 hours, 24 hours, 36 hours, 48 hours, 72 hours or more after contact with the DNA-targeting RNA and/or site -directed modifying polypeptide and/or donor polynucleotide.
- a DNA-targeting RNA and/or site-directed modifying polypeptide and/or donor polynucleotide may occur in any culture media and under any culture conditions that promote the survival of the cells.
- cells may be suspended in any appropriate nutrient medium that is convenient, such as Iscove's modified DMEM or RPMI 1640, supplemented with fetal calf serum or heat inactivated goat serum (about 5-10%), L-glutamine, a thiol, particularly 2-mercaptoethanol, and antibiotics, e.g. penicillin and streptomycin.
- the culture may contain growth factors to which the cells are responsive.
- Growth factors are molecules capable of promoting survival, growth and/or differentiation of cells, either in culture or in the intact tissue, through specific effects on a transmembrane receptor. Growth factors include polypeptides and non-polypeptide factors. Conditions that promote the survival of cells are typically permissive of nonhomologous end joining and homology-directed repair.
- a polynucleotide comprising a donor sequence to be inserted is also provided to the cell.
- a donor sequence or “donor polynucleotide” it is meant a nucleic acid sequence to be inserted at the cleavage site induced by a site-directed modifying polypeptide.
- the donor polynucleotide will contain sufficient homology to a genomic sequence at the cleavage site, e.g. 70%, 80%, 85%, 90%, 95%, or 100% homology with the nucleotide sequences flanking the cleavage site, e.g.
- Donor sequences can be of any length, e.g.
- nucleotides or more 10 nucleotides or more, 50 nucleotides or more, 100 nucleotides or more, 250 nucleotides or more, 500 nucleotides or more, 1000 nucleotides or more, 5000 nucleotides or more, etc.
- the donor sequence is typically not identical to the genomic sequence that it replaces. Rather, the donor sequence may contain at least one or more single base changes, insertions, deletions, inversions or rearrangements with respect to the genomic sequence, so long as sufficient homology is present to support homology-directed repair.
- the donor sequence comprises a non-homologous sequence flanked by two regions of homology, such that homology-directed repair between the target DNA region and the two flanking sequences results in insertion of the non-homologous sequence at the target region.
- Donor sequences may also comprise a vector backbone containing sequences that are not homologous to the DNA region of interest and that are not intended for insertion into the DNA region of interest.
- the homologous region(s) of a donor sequence will have at least 50% sequence identity to a genomic sequence with which recombination is desired. In certain embodiments, 60%, 70%, 80%, 90%, 95%, 98%, 99%, or 99.9% sequence identity is present. Any value between 1% and 100% sequence identity can be present, depending upon the length of the donor polynucleotide.
- the donor sequence may comprise certain sequence differences as compared to the genomic sequence, e.g. restriction sites, nucleotide polymorphisms, selectable markers (e.g., drug resistance genes, fluorescent proteins, enzymes etc.), etc., which may be used to assess for successful insertion of the donor sequence at the cleavage site or in some cases may be used for other purposes (e.g., to signify expression at the targeted genomic locus).
- selectable markers e.g., drug resistance genes, fluorescent proteins, enzymes etc.
- sequence differences may include flanking recombination sequences such as FLPs, loxP sequences, or the like, that can be activated at a later time for removal of the marker sequence.
- the donor sequence may be provided to the cell as single-stranded DNA, single-stranded RNA, double-stranded DNA, or double-stranded RNA. It may be introduced into a cell in linear or circular form. If introduced in linear form, the ends of the donor sequence may be protected (e.g., from exonucleolytic degradation) by methods known to those of skill in the art. For example, one or more dideoxynucleotide residues are added to the 3' terminus of a linear molecule and/or self-complementary oligonucleotides are ligated to one or both ends. See, for example, Chang et al. (1987) Proc. Natl.
- Additional methods for protecting exogenous polynucleotides from degradation include, but are not limited to, addition of terminal amino group(s) and the use of modified internucleotide linkages such as, for example, phosphorothioates, phosphor amidates, and O-methyl ribose or deoxyribose residues.
- additional lengths of sequence may be included outside of the regions of homology that can be degraded without impacting recombination.
- a donor sequence can be introduced into a cell as part of a vector molecule having additional sequences such as, for example, replication origins, promoters and genes encoding antibiotic resistance.
- donor sequences can be introduced as naked nucleic acid, as nucleic acid complexed with an agent such as a liposome or poloxamer, or can be delivered by viruses (e.g., adenovirus, AAV), as described above for nucleic acids encoding a DNA -targeting RNA and/or site -directed modifying polypeptide and/or donor polynucleotide.
- viruses e.g., adenovirus, AAV
- a DNA region of interest may be cleaved and modified, i.e. "genetically modified", ex vivo.
- the population of cells may be enriched for those comprising the genetic modification by separating the genetically modified cells from the remaining population.
- the "genetically modified” cells may make up only about 1% or more (e.g., 2% or more, 3% or more, 4% or more, 5% or more, 6% or more, 7% or more, 8% or more, 9% or more, 10% or more, 15% or more, or 20% or more) of the cellular population.
- Separation of "genetically modified" cells may be achieved by any convenient separation technique appropriate for the selectable marker used. For example, if a fluorescent marker has been inserted, cells may be separated by fluorescence activated cell sorting, whereas if a cell surface marker has been inserted, cells may be separated from the heterogeneous population by affinity separation techniques, e.g. magnetic separation, affinity chromatography, "panning" with an affinity reagent attached to a solid matrix, or other convenient technique.
- Techniques providing accurate separation include fluorescence activated cell sorters, which can have varying degrees of sophistication, such as multiple color channels, low angle and obtuse light scattering detecting channels, impedance channels, etc.
- the cells may be selected against dead cells by employing dyes associated with dead cells (e.g. propidium iodide). Any technique may be employed which is not unduly detrimental to the viability of the genetically modified cells.
- Cell compositions that are highly enriched for cells comprising modified DNA are achieved in this manner.
- highly enriched it is meant that the genetically modified cells will be 70% or more, 75% or more, 80% or more, 85% or more, 90% or more of the cell composition, for example, about 95% or more, or 98% or more of the cell composition.
- the composition may be a substantially pure composition of genetically modified cells.
- the cells may be frozen at liquid nitrogen temperatures and stored for long periods of time, being thawed and capable of being reused.
- the cells will usually be frozen in 10% dimethylsulf oxide (DMSO), 50% serum, 40% buffered medium, or some other such solution as is commonly used in the art to preserve cells at such freezing temperatures, and thawed in a manner as commonly known in the art for thawing frozen cultured cells.
- DMSO dimethylsulf oxide
- the genetically modified cells may be cultured in vitro under various culture conditions.
- the cells may be expanded in culture, i.e. grown under conditions that promote their proliferation.
- Culture medium may be liquid or semi-solid, e.g. containing agar, methylcellulose, etc.
- the cell population may be suspended in an appropriate nutrient medium, such as Iscove's modified DMEM or RPMI 1640, normally supplemented with fetal calf serum (about 5-10%),
- the culture may contain growth factors to which the regulatory T cells are responsive.
- Growth factors as defined herein, are molecules capable of promoting survival, growth and/or differentiation of cells, either in culture or in the intact tissue, through specific effects on a transmembrane receptor. Growth factors include polypeptides and non-polypeptide factors.
- Cells that have been genetically modified in this way may be transplanted to a subject for
- the subject may be a neonate, a juvenile, or an adult.
- Mammalian species that may be treated with the present methods include canines and felines; equines; bovines; ovines; etc. and primates, particularly humans.
- Animal models, particularly small mammals e.g. mouse, rat, guinea pig, hamster, lagomorpha (e.g., rabbit), etc. may be used for experimental investigations.
- Cells may be provided to the subject alone or with a suitable substrate or matrix, e.g. to support their growth and/or organization in the tissue to which they are being transplanted.
- a suitable substrate or matrix e.g. to support their growth and/or organization in the tissue to which they are being transplanted.
- at least 1x103 cells will be administered, for example 5x103 cells, 1x104 cells, 5x104 cells, 1x105 cells, 1 x 106 cells or more.
- the cells may be introduced to the subject via any of the following routes: parenteral, subcutaneous, intravenous, intracranial, intraspinal, intraocular, or into spinal fluid.
- the cells may be introduced by injection, catheter, or the like. Examples of methods for local delivery, that is, delivery to the site of injury, include, e.g. through an Ommaya reservoir, e.g.
- Cells may also be introduced into an embryo (e.g., a blastocyst) for the purpose of generating a transgenic animal (e.g., a transgenic mouse).
- the number of administrations of treatment to a subject may vary. Introducing the genetically modified cells into the subject may be a one-time event; but in certain situations, such treatment may elicit improvement for a limited period of time and require an on-going series of repeated treatments. In other situations, multiple administrations of the genetically modified cells may be required before an effect is observed.
- the exact protocols depend upon the disease or condition, the stage of the disease and parameters of the individual subject being treated.
- polypeptide and/or donor polynucleotide are employed to modify cellular DNA in vivo, again for purposes such as gene therapy, e.g. to treat a disease or as an antiviral, antipathogenic, or anticancer therapeutic, for the production of genetically modified organisms in agriculture, or for biological research.
- a DNA-targeting RNA and/or site -directed modifying polypeptide and/or donor polynucleotide are administered directly to the individual.
- a DNA-targeting RNA and/or site -directed modifying polypeptide and/or donor polynucleotide may be administered by any of a number of well-known methods in the art for the administration of peptides, small molecules and nucleic acids to a subject.
- a DNA-targeting RNA and/or site- directed modifying polypeptide and/or donor polynucleotide can be incorporated into a variety of formulations. More particularly, a DNA-targeting RNA and/or site-directed modifying polypeptide and/or donor polynucleotide of the present invention can be formulated into pharmaceutical compositions by combination with appropriate pharmaceutically acceptable carriers or diluents.
- compositions that include one or more a DNA-targeting RNA and/or site-directed modifying polypeptide and/or donor polynucleotide present in a
- “Pharmaceutically acceptable vehicles” may be vehicles approved by a regulatory agency of the Federal or a state government or listed in the U.S.
- lipids e.g. liposomes, e.g. liposome dendrimers
- liquids such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like, saline; gum acacia, gelatin, starch paste, talc, keratin, colloidal silica, urea, and the like.
- compositions may be formulated into preparations in solid, semisolid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments, solutions, suppositories, injections, inhalants, gels, microspheres, and aerosols.
- administration of the a DNA-targeting RNA and/or site -directed modifying polypeptide and/or donor may be formulated into preparations in solid, semisolid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments, solutions, suppositories, injections, inhalants, gels, microspheres, and aerosols.
- polynucleotide can be achieved in various ways, including oral, buccal, rectal, parenteral, intraperitoneal, intradermal, transdermal, intratracheal, intraocular, etc., administration.
- the active agent may be systemic after administration or may be localized by the use of regional administration, intramural administration, or use of an implant that acts to retain the active dose at the site of implantation.
- the active agent may be formulated for immediate activity or it may be formulated for sustained release.
- BBB blood-brain barrier
- osmotic means such as mannitol or leukotrienes
- vasoactive substances such as bradykinin.
- a BBB disrupting agent can be co-administered with the therapeutic compositions of the invention when the compositions are administered by intravascular injection.
- Endogenous transport systems including Caveolin-1 mediated transcytosis, carrier-mediated transporters such as glucose and amino acid carriers, receptor-mediated transcytosis for insulin or transferrin, and active efflux transporters such as p- glycoprotein.
- Active transport moieties may also be conjugated to the therapeutic compounds for use in the invention to facilitate transport across the endothelial wall of the blood vessel.
- drug delivery of therapeutics agents behind the BBB may be by local delivery, for example by intrathecal delivery, e.g. through an Ommaya reservoir (see e.g. US Patent Nos. 5,222,982 and 5385582, incorporated herein by reference); by bolus injection, e.g. by a syringe, e.g. intravitreally or intracranially; by continuous infusion, e.g. by cannulation, e.g. with convection (see e.g. US Application No. 20070254842, incorporated here by reference); or by implanting a device upon which the agent has been reversably affixed (see e.g. US Application Nos. 20080081064 and 20090196903, incorporated herein by reference).
- intrathecal delivery e.g. through an Ommaya reservoir
- bolus injection e.g. by a syringe, e.g. intravitreally or intracranially
- continuous infusion e
- an effective amount or effective dose of a DNA-targeting RNA and/or site- directed modifying polypeptide and/or donor polynucleotide in vivo is the amount to induce a 2 fold increase or more in the amount of recombination observed between two homologous sequences relative to a negative control, e.g. a cell contacted with an empty vector or irrelevant polypeptide.
- the amount of recombination may be measured by any convenient method, e.g. as described above and known in the art.
- polynucleotide to be administered is within the skill of one of ordinary skill in the art, and will be routine to those persons skilled in the art.
- the final amount to be administered will be dependent upon the route of administration and upon the nature of the disorder or condition that is to be treated.
- the effective amount given to a particular patient will depend on a variety of factors, several of which will differ from patient to patient.
- a competent clinician will be able to determine an effective amount of a therapeutic agent to administer to a patient to halt or reverse the progression the disease condition as required.
- a clinician can determine the maximum safe dose for an individual, depending on the route of administration. For instance, an intravenously
- administered dose may be more than an intrathecally administered dose, given the greater body of fluid into which the therapeutic composition is being administered.
- compositions which are rapidly cleared from the body may be administered at higher doses, or in repeated doses, in order to maintain a therapeutic concentration.
- the competent clinician will be able to optimize the dosage of a particular therapeutic in the course of routine clinical trials.
- RNA-targeting RNA and/or site -directed modifying for inclusion in a medicament, a DNA-targeting RNA and/or site -directed modifying
- polypeptide and/or donor polynucleotide may be obtained from a suitable commercial source.
- the total pharmaceutically effective amount of the a DNA-targeting RNA and/or site -directed modifying polypeptide and/or donor polynucleotide administered parenterally per dose will be in a range that can be measured by a dose response curve.
- Therapies based on a DNA-targeting RNA and/or site-directed modifying polypeptide and/or donor polynucleotides i.e. preparations of a DNA-targeting RNA and/or site-directed modifying polypeptide and/or donor polynucleotide to be used for therapeutic administration, must be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 ⁇ membranes).
- Therapeutic compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
- the therapies based on a DNA-targeting RNA and/or site- directed modifying polypeptide and/or donor polynucleotide may be stored in unit or multi-dose containers, for example, sealed ampules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution.
- a lyophilized formulation 10-mL vials are filled with 5 ml of sterile-filtered 1 % (w/v) aqueous solution of compound, and the resulting mixture is lyophilized.
- the infusion solution is prepared by reconstituting the lyophilized compound using bacteriostatic Water-for-Injection.
- compositions can include, depending on the formulation desired,
- compositions which are defined as vehicles commonly used to formulate pharmaceutical compositions for animal or human administration.
- the diluent is selected so as not to affect the biological activity of the combination. Examples of such diluents are distilled water, buffered water, physiological saline, PBS, Ringer's solution, dextrose solution, and Hank's solution.
- the pharmaceutical composition or formulation can include other carriers, adjuvants, or non-toxic, nontherapeutic, nonimmunogenic stabilizers, excipients and the like.
- the compositions can also include additional substances to approximate physiological conditions, such as pH adjusting and buffering agents, toxicity adjusting agents, wetting agents and detergents.
- the composition can also include any of a variety of stabilizing agents, such as an antioxidant for example.
- the pharmaceutical composition includes a polypeptide
- the polypeptide can be complexed with various well-known compounds that enhance the in vivo stability of the polypeptide, or otherwise enhance its pharmacological properties (e.g., increase the half-life of the polypeptide, reduce its toxicity, enhance solubility or uptake). Examples of such
- nucleic acids or polypeptides of a composition can also be complexed with molecules that enhance their in vivo attributes.
- molecules include, for example, carbohydrates, polyamines, amino acids, other peptides, ions (e.g., sodium, potassium, calcium, magnesium, manganese), and lipids.
- compositions can be administered for prophylactic and/or therapeutic purposes.
- Toxicity and therapeutic efficacy of the active ingredient can be determined according to standard pharmaceutical procedures in cell cultures and/or experimental animals, including, for example, determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population).
- the dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Therapies that exhibit large therapeutic indices are preferred.
- the data obtained from cell culture and/or animal studies can be used in formulating a range of dosages for humans.
- the dosage of the active ingredient typically lines within a range of circulating concentrations that include the ED50 with low toxicity.
- the dosage can vary within this range depending upon the dosage form employed and the route of administration utilized.
- compositions intended for in vivo use are usually sterile. To the extent that a given compound must be synthesized prior to use, the resulting product is typically substantially free of any potentially toxic agents, particularly any endotoxins, which may be present during the synthesis or purification process.
- compositions for parental administration are also sterile, substantially isotonic and made under GMP conditions.
- a competent clinician will be able to determine an effective amount of a therapeutic agent to administer to a patient to halt or reverse the progression the disease condition as required.
- a clinician can determine the maximum safe dose for an individual, depending on the route of administration. For instance, an intravenously administered dose may be more than an intrathecally administered dose, given the greater body of fluid into which the therapeutic composition is being administered. Similarly, compositions which are rapidly cleared from the body may be administered at higher doses, or in repeated doses, in order to maintain a therapeutic concentration.
- the competent clinician will be able to optimize the dosage of a particular therapeutic in the course of routine clinical trials.
- the present disclosure provides genetically modified host cells, including isolated genetically modified host cells, where a subject genetically modified host cell comprises (has been genetically modified with: 1) an exogenous DNA-targeting RNA; 2) an exogenous nucleic acid comprising a nucleotide sequence encoding a DNA-targeting RNA; 3) an exogenous site- directed modifying polypeptide (e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.); 4) an exogenous nucleic acid comprising a nucleotide sequence encoding a site -directed modifying polypeptide; or 5) any combination of the above.
- a subject genetically modified host cell comprises (has been genetically modified with: 1) an exogenous DNA-targeting RNA; 2) an exogenous nucleic acid comprising a nucleotide sequence encoding a DNA-targeting RNA; 3) an exogenous site- directed
- a subject genetically modified cell is generated by genetically modifying a host cell with, for example: 1) an exogenous DNA-targeting RNA; 2) an exogenous nucleic acid comprising a nucleotide sequence encoding a DNA-targeting RNA; 3) an exogenous site -directed modifying polypeptide; 4) an exogenous nucleic acid comprising a nucleotide sequence encoding a site- directed modifying polypeptide; or 5) any combination of the above.)-
- All cells suitable to be a target cell are also suitable to be a genetically modified host cell.
- a genetically modified host cells of interest can be a cell from any organism (e.g. a bacterial cell, an archaeal cell, a cell of a single -cell eukaryotic organism, a plant cell, an algal cell, e.g., Botryococcus braunii, Chlamydomonas reinhardtii, Nannochloropsis gaditana, Chlorella pyrenoidosa, Sargassum patens C.
- organism e.g. a bacterial cell, an archaeal cell, a cell of a single -cell eukaryotic organism, a plant cell, an algal cell, e.g., Botryococcus braunii, Chlamydomonas reinhardtii, Nannochloropsis gaditana, Chlorella pyrenoidosa, Sargassum patens C.
- a fungal cell e.g., a yeast cell
- an animal cell e.g. fruit fly, cnidarian, echinoderm, nematode, etc.
- a cell from a vertebrate animal e.g., fish, amphibian, reptile, bird, mammal
- a cell from a mammal e.g., a pig, a cow, a goat, a sheep, a rodent, a rat, a mouse, a non-human primate, a human, etc.
- a genetically modified host cell has been genetically modified with an exogenous nucleic acid comprising a nucleotide sequence encoding a site -directed modifying polypeptide (e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.).
- a site -directed modifying polypeptide e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.
- the DNA of a genetically modified host cell can be targeted for modification by introducing into the cell a DNA-targeting RNA (or a DNA encoding a DNA- targeting RNA, which determines the genomic location/sequence to be modified) and optionally a donor nucleic acid.
- the nucleotide sequence encoding a site-directed modifying polypeptide is operably linked to an inducible promoter (e.g., heat shock promoter, Tetracycline-regulated promoter, Steroid-regulated promoter, Metal-regulated promoter, estrogen receptor-regulated promoter, etc.).
- the nucleotide sequence encoding a site-directed modifying polypeptide is operably linked to a spatially restricted and/or temporally restricted promoter (e.g., a tissue specific promoter, a cell type specific promoter, etc.).
- the nucleotide sequence encoding a site -directed modifying polypeptide is operably linked to a constitutive promoter.
- a subject genetically modified host cell is in vitro.
- a subject genetically modified host cell is in vivo. In some embodiments, a subject genetically modified host cell is a prokaryotic cell or is derived from a prokaryotic cell. In some embodiments, a subject genetically modified host cell is a bacterial cell or is derived from a bacterial cell. In some embodiments, a subject genetically modified host cell is an archaeal cell or is derived from an archaeal cell. In some embodiments, a subject genetically modified host cell is a eukaryotic cell or is derived from a eukaryotic cell. In some embodiments, a subject genetically modified host cell is a plant cell or is derived from a plant cell. In some embodiments,
- a subject genetically modified host cell is an animal cell or is derived from an animal cell. In some embodiments, a subject genetically modified host cell is an invertebrate cell or is derived from an invertebrate cell. In some embodiments, a subject genetically modified host cell is a vertebrate cell or is derived from a vertebrate cell. In some embodiments, a subject genetically modified host cell is a mammalian cell or is derived from a mammalian cell. In some embodiments, a subject genetically modified host cell is a rodent cell or is derived from a rodent cell. In some embodiments, a subject genetically modified host cell is a human cell or is derived from a human cell.
- the present disclosure further provides progeny of a subject genetically modified cell, where the progeny can comprise the same exogenous nucleic acid or polypeptide as the subject genetically modified cell from which it was derived.
- the present disclosure further provides a composition comprising a subject genetically modified host cell.
- a subject genetically modified host cell is a genetically modified stem cell or progenitor cell.
- Suitable host cells include, e.g., stem cells (adult stem cells, embryonic stem cells, iPS cells, etc.) and progenitor cells (e.g., cardiac progenitor cells, neural progenitor cells, etc.).
- Suitable host cells include mammalian stem cells and progenitor cells, including, e.g., rodent stem cells, rodent progenitor cells, human stem cells, human progenitor cells, etc.
- Suitable host cells include in vitro host cells, e.g., isolated host cells.
- a subject genetically modified host cell comprises an exogenous DNA- targeting RNA nucleic acid. In some embodiments, a subject genetically modified host cell comprises an exogenous nucleic acid comprising a nucleotide sequence encoding a DNA- targeting RNA. In some embodiments, a subject genetically modified host cell comprises an exogenous site-directed modifying polypeptide (e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.).
- site-directed modifying polypeptide e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.
- a subject genetically modified host cell comprises an exogenous nucleic acid comprising a nucleotide sequence encoding a site-directed modifying polypeptide. In some embodiments, a subject genetically modified host cell comprises exogenous nucleic acid comprising a nucleotide sequence encoding 1) a DNA-targeting RNA and 2) a site -directed modifying polypeptide.
- the site -directed modifying polypeptide comprises an amino acid sequence
- the present invention provides a composition comprising a subject DNA-targeting RNA and/or a site -directed modifying polypeptide.
- the site-directed modifying polypeptide is a subject chimeric polypeptide.
- a subject composition is useful for carrying out a method of the present disclosure, e.g., a method for site-specific modification of a target DNA; a method for site-specific modification of a polypeptide associated with a target DNA; etc.
- compositions comprising a DNA-targeting RNA
- the present invention provides a composition comprising a subject DNA-targeting RNA.
- the composition can comprise, in addition to the DNA-targeting RNA, one or more of: a salt, e.g., NaCl, MgCl 2 , KC1, MgS0 4 , etc.; a buffering agent, e.g., a Tris buffer, N-(2- Hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) (HEPES), 2-(N-Morpholino)ethanesulfonic acid (MES), MES sodium salt, 3-(N-Morpholino)propanesulfonic acid (MOPS), N- tris[Hydroxymethyl]methyl-3-aminopropanesulfonic acid (TAPS), etc.; a solubilizing agent; a detergent, e.g., a non-ionic detergent such as Tween-20, etc.; a nuclease inhibitor;
- a DNA-targeting RNA present in a subject composition is pure, e.g., at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, at least about 99%, or more than 99% pure, where "% purity" means that DNA-targeting RNA is the recited percent free from other macromolecules, or contaminants that may be present during the production of the DNA-targeting RNA.
- compositions comprising a subject chimeric polypeptide
- the present invention provides a composition a subject chimeric polypeptide.
- the composition can comprise, in addition to the DNA-targeting RNA, one or more of: a salt, e.g., NaCl, MgCl 2 , KC1, MgS0 4 , etc.; a buffering agent, e.g., a Tris buffer, HEPES, MES, MES sodium salt, MOPS, TAPS, etc.; a solubilizing agent; a detergent, e.g., a non-ionic detergent such as Tween-20, etc.; a protease inhibitor; a reducing agent (e.g., dithiothreitol); and the like.
- a salt e.g., NaCl, MgCl 2 , KC1, MgS0 4 , etc.
- a buffering agent e.g., a Tris buffer, HEPES, MES, MES sodium salt, MOPS, TAPS, etc.
- a subject chimeric polypeptide present in a subject composition is pure, e.g., at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, at least about 99%, or more than 99% pure, where "% purity" means that the site -directed modifying polypeptide is the recited percent free from other proteins, other macromolecules, or contaminants that may be present during the production of the chimeric polypeptide.
- Compositions comprising a DNA-targeting RNA and a site -directed modifying polypeptide
- the present invention provides a composition comprising: (i) a DNA-targeting RNA or a DNA polynucleotide encoding the same; and ii) a site -directed modifying polypeptide, or a polynucleotide encoding the same.
- the site -directed modifying polypeptide is a subject chimeric site -directed modifying polypeptide.
- the site-directed modifying polypeptide is a naturally-occurring site-directed modifying polypeptide.
- the site -directed modifying polypeptide exhibits enzymatic activity that modifies a target DNA.
- the site -directed modifying polypeptide exhibits enzymatic activity that modifies a polypeptide that is associated with a target DNA.
- the site-directed modifying polypeptide modulates transcription of the target DNA.
- the present invention provides a composition comprising: (i) a DNA-targeting RNA, as
- the DNA-targeting RNA comprising: (a) a first segment comprising a nucleotide sequence that is complementary to a sequence in a target DNA; and (b) a second segment that interacts with a site-directed modifying polypeptide; and (ii) the site -directed modifying polypeptide, or a polynucleotide encoding the same, the site-directed modifying polypeptide comprising: (a) an RNA-binding portion that interacts with the DNA-targeting RNA; and (b) an activity portion that exhibits site-directed enzymatic activity, wherein the site of enzymatic activity is determined by the DNA-targeting RNA.
- a subject composition comprises: a composition comprising: (i) a subject DNA-targeting RNA, the DNA-targeting RNA comprising: (a) a first segment comprising a nucleotide sequence that is complementary to a sequence in a target DNA; and (b) a second segment that interacts with a site -directed modifying polypeptide; and (ii) the site-directed modifying polypeptide, the site -directed modifying polypeptide comprising: (a) an RNA-binding portion that interacts with the DNA-targeting RNA; and (b) an activity portion that exhibits site- directed enzymatic activity, wherein the site of enzymatic activity is determined by the DNA- targeting RNA.
- a subject composition comprises: (i) a polynucleotide encoding a subject DNA-targeting RNA, the DNA-targeting RNA comprising: (a) a first segment comprising a nucleotide sequence that is complementary to a sequence in a target DNA; and (b) a second segment that interacts with a site -directed modifying polypeptide; and (ii) a polynucleotide encoding the site -directed modifying polypeptide, the site -directed modifying polypeptide comprising: (a) an RNA-binding portion that interacts with the DNA-targeting RNA; and (b) an activity portion that exhibits site -directed enzymatic activity, wherein the site of enzymatic activity is determined by the DNA-targeting RNA.
- a subject composition includes both RNA molecules of a double- molecule DNA-targeting RNA.
- a subject composition includes an activator-RNA that comprises a duplex-forming segment that is complementary to the duplex- forming segment of a targeter-RNA (see Figure 1A).
- the duplex-forming segments of the activator-RNA and the targeter-RNA hybridize to form the dsRNA duplex of the protein-binding segment of the DNA-targeting RNA.
- the targeter-RNA further provides the DNA-targeting segment (single stranded) of the DNA-targeting RNA and therefore targets the DNA-targeting RNA to a specific sequence within the target DNA.
- the duplex- forming segment of the activator-RNA comprises a nucleotide sequence that has at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 98%, or 100% identity with the sequence 5'-UAGCAAGUUAAAAU-3' (SEQ ID NO:562).
- the duplex-forming segment of the targeter-RNA comprises a nucleotide sequence that has at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 98%, or 100% identity with the sequence 5'-GUUUUAGAGCUA-3' (SEQ ID NO:679).
- the present disclosure provides a composition comprising: (i) a DNA-targeting RNA, or a DNA polynucleotide encoding the same, the DNA-targeting RNA comprising: (a) a first segment comprising a nucleotide sequence that is complementary to a sequence in a target DNA; and (b) a second segment that interacts with a site -directed modifying polypeptide; and (ii) the site -directed modifying polypeptide, or a polynucleotide encoding the same, the site -directed modifying polypeptide comprising: (a) an RNA-binding portion that interacts with the DNA- targeting RNA; and (b) an activity portion that modulates transcription within the target DNA, wherein the site of modulated transcription within the target DNA is determined by the DNA- targeting RNA.
- a subject composition comprises: (i) a DNA-targeting RNA, the DNA-targeting RNA comprising: (a) a first segment comprising a nucleotide sequence that is complementary to a sequence in a target DNA; and (b) a second segment that interacts with a site -directed modifying polypeptide; and (ii) the site-directed modifying polypeptide, the site- directed modifying polypeptide comprising: (a) an RNA-binding portion that interacts with the DNA-targeting RNA; and (b) an activity portion that modulates transcription within the target DNA, wherein the site of modulated transcription within the target DNA is determined by the DNA-targeting RNA.
- a subject composition comprises: (i) a DNA polynucleotide encoding a DNA-targeting RNA, the DNA-targeting RNA comprising: (a) a first segment comprising a nucleotide sequence that is complementary to a sequence in a target DNA; and (b) a second segment that interacts with a site-directed modifying polypeptide; and (ii) a polynucleotide encoding the site -directed modifying polypeptide, the site -directed modifying polypeptide comprising: (a) an RNA-binding portion that interacts with the DNA-targeting RNA; and (b) an activity portion that modulates transcription within the target DNA, wherein the site of modulated transcription within the target DNA is determined by the DNA-targeting RNA.
- a subject composition can comprise, in addition to i) a subject DNA-targeting RNA, or a DNA polynucleotide encoding the same; and ii) a site -directed modifying polypeptide, or a polynucleotide encoding the same, one or more of: a salt, e.g., NaCl, MgCl 2 , KC1, MgS0 4 , etc.; a buffering agent, e.g., a Tris buffer, HEPES, MES, MES sodium salt, MOPS, TAPS, etc.; a solubilizing agent; a detergent, e.g., a non-ionic detergent such as Tween-20, etc.; a protease inhibitor; a reducing agent (e.g., dithiothreitol); and the like.
- a salt e.g., NaCl, MgCl 2 , KC1, MgS0 4 , etc.
- the components of the composition are individually pure, e.g., each of the
- components is at least about 75%, at least about 80%, at least about 90%, at least about 95%, at least about 98%, at least about 99%, or at least 99%, pure.
- the individual components of a subject composition are pure before being added to the composition.
- a site-directed modifying polypeptide present in a subject composition is pure, e.g., at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, at least about 99%, or more than 99% pure, where "% purity" means that the site-directed modifying polypeptide is the recited percent free from other proteins (e.g., proteins other than the site-directed modifying polypeptide), other macromolecules, or contaminants that may be present during the production of the site -directed modifying polypeptide.
- kits for carrying out a subject method can include one or more of: a site-directed modifying polypeptide; a nucleic acid comprising a nucleotide encoding a site-directed modifying polypeptide; a DNA-targeting RNA; a nucleic acid comprising a nucleotide sequence encoding a DNA-targeting RNA; an activator-RNA; a nucleic acid comprising a nucleotide sequence encoding an activator-RNA; a targeter-RNA; and a nucleic acid comprising a nucleotide sequence encoding a targeter-RNA.
- a site-directed modifying polypeptide; a nucleic acid comprising a nucleotide encoding a site -directed modifying polypeptide; a DNA-targeting RNA; a nucleic acid comprising a nucleotide sequence encoding a DNA-targeting RNA; an activator-RNA; a nucleic acid comprising a nucleotide sequence encoding an activator-RNA; a targeter-RNA; and a nucleic acid comprising a nucleotide sequence encoding a targeter-RNA, are described in detail above.
- a kit may comprise a complex that comprises two or more of: a site-directed modifying polypeptide; a nucleic acid comprising a nucleotide encoding a site -directed modifying polypeptide; a DNA-targeting RNA; a nucleic acid comprising a nucleotide sequence encoding a DNA-targeting RNA; an activator- RNA; a nucleic acid comprising a nucleotide sequence encoding an activator-RNA; a targeter- RNA; and a nucleic acid comprising a nucleotide sequence encoding a targeter-RNA.
- a subject kit comprises a site -directed modifying polypeptide, or a
- the site -directed modifying polypeptide comprises: (a) an RNA-binding portion that interacts with the DNA-targeting RNA; and (b) an activity portion that modulates transcription within the target DNA, wherein the site of modulated transcription within the target DNA is determined by the DNA-targeting RNA.
- the activity portion of the site-directed modifying polypeptide exhibits reduced or inactivated nuclease activity.
- the site-directed modifying polypeptide is a chimeric site -directed modifying polypeptide.
- a subject kit comprises: a site -directed modifying polypeptide, or a polynucleotide encoding the same, and a reagent for reconstituting and/or diluting the site- directed modifying polypeptide.
- a subject kit comprises a nucleic acid (e.g., DNA, RNA) comprising a nucleotide encoding a site-directed modifying polypeptide.
- a subject kit comprises: a nucleic acid (e.g., DNA, RNA) comprising a nucleotide encoding a site -directed modifying polypeptide; and a reagent for reconstituting and/or diluting the site -directed modifying polypeptide.
- a nucleic acid e.g., DNA, RNA
- a reagent for reconstituting and/or diluting the site -directed modifying polypeptide e.g., DNA, RNA
- a subject kit comprising a site -directed modifying polypeptide, or a polynucleotide encoding the same, can further include one or more additional reagents, where such additional reagents can be selected from: a buffer for introducing the site -directed modifying polypeptide into a cell; a wash buffer; a control reagent; a control expression vector or RNA polynucleotide; a reagent for in vitro production of the site-directed modifying polypeptide from DNA, and the like.
- the site-directed modifying polypeptide included in a subject kit is a chimeric site- directed modifying polypeptide, as described above.
- a subject kit comprises a DNA-targeting RNA, or a DNA polynucleotide encoding the same, the DNA-targeting RNA comprising: (a) a first segment comprising a nucleotide sequence that is complementary to a sequence in a target DNA; and (b) a second segment that interacts with a site -directed modifying polypeptide.
- the DNA-targeting RNA further comprises a third segment (as described above).
- a subject kit comprises: (i) a DNA-targeting RNA, or a DNA polynucleotide encoding the same, the DNA-targeting RNA comprising: (a) a first segment comprising a nucleotide sequence that is complementary to a sequence in a target DNA; and (b) a second segment that interacts with a site -directed modifying polypeptide; and (ii) a site-directed modifying polypeptide, or a polynucleotide encoding the same, the site-directed modifying polypeptide comprising: (a) an RNA-binding portion that interacts with the DNA-targeting RNA; and (b) an activity portion that exhibits site -directed enzymatic activity, wherein the site of enzymatic activity is determined by the DNA-targeting RNA.
- the activity portion of the site -directed modifying polypeptide does not exhibit enzymatic activity (comprises an inactivated nuclease, e.g., via mutation).
- the kit comprises a DNA- targeting RNA and a site -directed modifying polypeptide.
- the kit comprises: (i) a nucleic acid comprising a nucleotide sequence encoding a DNA-targeting RNA; and (ii) a nucleic acid comprising a nucleotide sequence encoding site-directed modifying polypeptide.
- a subject kit can include: (i) a DNA-targeting RNA, or a DNA
- the kit comprises: (i) a DNA- targeting RNA; and a site -directed modifying polypeptide.
- the kit comprises: (i) a nucleic acid comprising a nucleotide sequence encoding a DNA-targeting RNA; and (ii) a nucleic acid comprising a nucleotide sequence encoding site-directed modifying polypeptide.
- kits comprising: (1) a recombinant expression vector
- DNA-targeting RNA comprising (i) a nucleotide sequence encoding a DNA-targeting RNA
- the DNA- targeting RNA comprises: (a) a first segment comprising a nucleotide sequence that is complementary to a sequence in a target DNA; and (b) a second segment that interacts with a site -directed modifying polypeptide; and (ii) a nucleotide sequence encoding the site-directed modifying polypeptide, wherein the site-directed modifying polypeptide comprises: (a) an RNA- binding portion that interacts with the DNA-targeting RNA; and (b) an activity portion that exhibits site -directed enzymatic activity, wherein the site of enzymatic activity is determined by the DNA-targeting RNA.; and (2) a reagent for reconstitution and/or dilution of the expression vector.
- kits comprising: (1) a recombinant expression vector
- DNA-targeting RNA comprising: (i) a nucleotide sequence encoding a DNA-targeting RNA, wherein the DNA- targeting RNA comprises: (a) a first segment comprising a nucleotide sequence that is complementary to a sequence in a target DNA; and (b) a second segment that interacts with a site -directed modifying polypeptide; and (ii) a nucleotide sequence encoding the site-directed modifying polypeptide, wherein the site-directed modifying polypeptide comprises: (a) an RNA- binding portion that interacts with the DNA-targeting RNA; and (b) an activity portion that modulates transcription within the target DNA, wherein the site of modulated transcription within the target DNA is determined by the DNA-targeting RNA; and (2) a reagent for reconstitution and/or dilution of the recombinant expression vector.
- kits comprising: (1) a recombinant expression vector
- nucleic acid comprising a nucleotide sequence that encodes a DNA targeting RNA comprising: (i) a first segment comprising a nucleotide sequence that is complementary to a sequence in a target DNA; and (ii) a second segment that interacts with a site -directed modifying polypeptide; and (2) a reagent for reconstitution and/or dilution of the recombinant expression vector.
- the kit comprises: a recombinant expression vector comprising a nucleotide sequence that encodes a site-directed modifying polypeptide, wherein the site-directed modifying polypeptide comprises: (a) an RNA -binding portion that interacts with the DNA-targeting RNA; and (b) an activity portion that exhibits site-directed enzymatic activity, wherein the site of enzymatic activity is determined by the DNA-targeting RNA.
- the kit comprises: a recombinant expression vector comprising a nucleotide sequence that encodes a site-directed modifying polypeptide, wherein the site- directed modifying polypeptide comprises: (a) an RNA-binding portion that interacts with the DNA-targeting RNA; and (b) an activity portion that modulates transcription within the target DNA, wherein the site of modulated transcription within the target DNA is determined by the DNA-targeting RNA.
- the kit comprises an activator-RNA or a
- the kit comprises a single- molecule DNA-targeting RNA. In some embodiments of any of the above kits, the kit comprises two or more double-molecule or single-molecule DNA-targeting RNAs. In some embodiments of any of the above kits, a DNA-targeting RNA (e.g., including two or more DNA-targeting RNAs) can be provided as an array (e.g., an array of RNA molecules, an array of DNA molecules encoding the DNA-targeting RNA(s), etc.). Such kits can be useful, for example, for use in conjunction with the above described genetically modified host cells that comprise a subject site-directed modifying polypeptide. In some embodiments of any of the above kits, the kit further comprises a donor polynucleotide to effect the desired genetic modification.
- Components of a subject kit can be in separate containers; or can be combined in a single container.
- kits can further include one or more additional reagents, where such additional reagents can be selected from: a dilution buffer; a reconstitution solution; a wash buffer; a control reagent; a control expression vector or RNA polynucleotide; a reagent for in vitro production of the site-directed modifying polypeptide from DNA, and the like.
- additional reagents can be selected from: a dilution buffer; a reconstitution solution; a wash buffer; a control reagent; a control expression vector or RNA polynucleotide; a reagent for in vitro production of the site-directed modifying polypeptide from DNA, and the like.
- a subject kit can further include instructions for using the components of the kit to practice the subject methods.
- the instructions for practicing the subject methods are generally recorded on a suitable recording medium.
- the instructions may be printed on a substrate, such as paper or plastic, etc.
- the instructions may be present in the kits as a package insert, in the labeling of the container of the kit or components thereof (i.e., associated with the packaging or subpackaging) etc.
- the instructions are present as an electronic storage data file present on a suitable computer readable storage medium, e.g. CD-ROM, diskette, flash drive, etc.
- the actual instructions are not present in the kit, but means for obtaining the instructions from a remote source, e.g. via the internet, are provided.
- An example of this embodiment is a kit that includes a web address where the instructions can be viewed and/or from which the instructions can be downloaded. As with the instructions, this means for obtaining the instructions is recorded on a suitable substrate.
- a genetically modified host cell has been genetically modified with an exogenous nucleic acid comprising a nucleotide sequence encoding a site -directed modifying polypeptide (e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.). If such a cell is a eukaryotic single -cell organism, then the modified cell can be considered a genetically modified organism.
- subject non-human genetically modified organism is a Cas9 transgenic multicellular organism.
- a subject genetically modified non-human host cell e.g., a cell that has been genetically modified with an exogenous nucleic acid comprising a nucleotide sequence encoding a site-directed modifying polypeptide, e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.
- a subject genetically modified non- human organism e.g., a mouse, a fish, a frog, a fly, a worm, etc.
- the genetically modified host cell is a pluripotent stem cell (i.e., PSC) or a germ cell (e.g., sperm, oocyte, etc.)
- a pluripotent stem cell i.e., PSC
- a germ cell e.g., sperm, oocyte, etc.
- an entire genetically modified organism can be derived from the genetically modified host cell.
- the genetically modified host cell is a pluripotent stem cell (e.g., ESC, iPSC, pluripotent plant stem cell, etc.) or a germ cell (e.g., sperm cell, oocyte, etc.), either in vivo or in vitro, that can give rise to a genetically modified organism.
- the genetically modified host cell is a vertebrate PSC (e.g., ESC, iPSC, etc.) and is used to generate a genetically modified organism (e.g. by injecting a PSC into a blastocyst to produce a chimeric/mosaic animal, which could then be mated to generate non-chimeric/non-mosaic genetically modified organisms; grafting in the case of plants; etc.).
- a vertebrate PSC e.g., ESC, iPSC, etc.
- a genetically modified organism e.g. by injecting a PSC into a blastocyst to produce a chimeric/mosaic animal, which could then be mated to generate non-chimeric/non-mosaic genetically modified organisms; grafting in the case of plants; etc.
- Any convenient method/protocol for producing a genetically modified organism is suitable for producing a genetically modified host cell comprising an exogenous nucleic acid comprising a nucleotide sequence encoding a site -directed modifying polypeptide (e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.).
- a site -directed modifying polypeptide e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.
- Methods of producing genetically modified organisms are known in the art. For example, see Cho et al., Curr Protoc Cell Biol. 2009 Mar;Chapter 19:Unit 19.11:
- a genetically modified organism comprises a target cell for methods of the invention, and thus can be considered a source for target cells.
- a genetically modified cell comprising an exogenous nucleic acid comprising a nucleotide sequence encoding a site -directed modifying polypeptide (e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.) is used to generate a genetically modified organism, then the cells of the genetically modified organism comprise the exogenous nucleic acid comprising a nucleotide sequence encoding a site-directed modifying polypeptide (e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.).
- a site -directed modifying polypeptide e.g., a naturally occurring Cas9; a modified, i.e., mut
- the DNA of a cell or cells of the genetically modified organism can be targeted for modification by introducing into the cell or cells a DNA -targeting RNA (or a DNA encoding a DNA -targeting RNA) and optionally a donor nucleic acid.
- a DNA -targeting RNA or a DNA encoding a DNA-targeting RNA
- a subset of cells e.g., brain cells, intestinal cells, kidney cells, lung cells, blood cells, etc.
- the genetically modified organism can target the DNA of such cells for modification, the genomic location of which will depend on the DNA-targeting sequence of the introduced DNA-targeting RNA.
- a genetically modified organism is a source of target cells for methods of the invention.
- a genetically modified organism comprising cells that are genetically modified with an exogenous nucleic acid comprising a nucleotide sequence encoding a site -directed modifying polypeptide (e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.) can provide a source of genetically modified cells, for example PSCs (e.g., ESCs, iPSCs, sperm, oocytes, etc.), neurons, progenitor cells,
- PSCs e.g., ESCs, iPSCs, sperm, oocytes, etc.
- a genetically modified cell is a PSC comprising an exogenous nucleic acid comprising a nucleotide sequence encoding a site-directed modifying polypeptide (e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.).
- a site-directed modifying polypeptide e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.
- the PSC can be a target cell such that the DNA of the PSC can be targeted for modification by introducing into the PSC a DNA -targeting RNA (or a DNA encoding a DNA-targeting RNA) and optionally a donor nucleic acid, and the genomic location of the modification will depend on the DNA-targeting sequence of the introduced DNA-targeting RNA.
- a DNA -targeting RNA or a DNA encoding a DNA-targeting RNA
- a donor nucleic acid optionally a donor nucleic acid
- the methods described herein can be used to modify the DNA (e.g., delete and/or replace any desired genomic location) of PSCs derived from a subject genetically modified organism.
- modified PSCs can then be used to generate organisms having both (i) an exogenous nucleic acid comprising a nucleotide sequence encoding a site -directed modifying polypeptide (e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.) and (ii) a DNA modification that was introduced into the PSC.
- a site -directed modifying polypeptide e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.
- An exogenous nucleic acid comprising a nucleotide sequence encoding a site -directed
- modifying polypeptide e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.
- an unknown promoter e.g., when the nucleic acid randomly integrates into a host cell genome
- a known promoter e.g., when the nucleic acid randomly integrates into a host cell genome
- Suitable known promoters can be any known promoter and include constitutively active promoters (e.g., CMV promoter), inducible promoters (e.g., heat shock promoter, Tetracycline -regulated promoter, Steroid- regulated promoter, Metal-regulated promoter, estrogen receptor-regulated promoter, etc.), spatially restricted and/or temporally restricted promoters (e.g., a tissue specific promoter, a cell type specific promoter, etc.), etc.
- constitutively active promoters e.g., CMV promoter
- inducible promoters e.g., heat shock promoter, Tetracycline -regulated promoter, Steroid- regulated promoter, Metal-regulated promoter, estrogen receptor-regulated promoter, etc.
- spatially restricted and/or temporally restricted promoters e.g., a tissue specific promoter, a cell type specific promoter, etc.
- a subject genetically modified organism e.g. an organism whose cells comprise a nucleotide sequence encoding a site -directed modifying polypeptide, e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.
- a plant e.g., a plant; algae; an invertebrate (e.g., a cnidarian, an echinoderm, a worm, a fly, etc.); a vertebrate (e.g., a fish (e.g., zebrafish, puffer fish, gold fish, etc.), an amphibian (e.g., salamander, frog, etc.), a reptile, a bird, a mammal, etc.); an ungulate (e.g., a goat, a pig, a sheep, a cow, etc.); a rodent (e.g
- the site -directed modifying polypeptide comprises an amino acid sequence
- a subject nucleic acid e.g., a nucleotide sequence encoding a site-directed modifying polypeptide, e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.
- a subject recombinant expression vector is used as a transgene to generate a transgenic animal that produces a site-directed modifying polypeptide.
- the present invention further provides a transgenic non-human animal, which animal comprises a transgene comprising a subject nucleic acid comprising a nucleotide sequence encoding a site -directed modifying polypeptide, e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc., as described above.
- the genome of the transgenic non-human animal comprises a subject nucleotide sequence encoding a site -directed modifying polypeptide.
- the transgenic non-human animal is homozygous for the genetic modification.
- the transgenic non-human animal is heterozygous for the genetic modification.
- the transgenic non-human animal is a vertebrate, for example, a fish (e.g., zebra fish, gold fish, puffer fish, cave fish, etc.), an amphibian (frog, salamander, etc.), a bird (e.g., chicken, turkey, etc.), a reptile (e.g., snake, lizard, etc.), a mammal (e.g., an ungulate, e.g., a pig, a cow, a goat, a sheep, etc.; a lagomorph (e.g., a rabbit); a rodent (e.g., a rat, a mouse); a non- human primate; etc.), etc.
- a fish e.g., zebra fish, gold fish, puffer fish, cave fish, etc.
- an amphibian frog, salamander, etc.
- a bird e.g., chicken, turkey, etc.
- a reptile e.g
- An exogenous nucleic acid comprising a nucleotide sequence encoding a site -directed nucleotide sequence encoding a site -directed nucleotide sequence encoding a site -directed nucleotide sequence encoding a site -directed nucleotide sequence encoding a site -directed nucleotide sequence encoding a site -directed nucleotide sequence encoding a site -directed
- modifying polypeptide e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.
- an unknown promoter e.g., when the nucleic acid randomly integrates into a host cell genome
- a known promoter e.g., when the nucleic acid randomly integrates into a host cell genome
- Suitable known promoters can be any known promoter and include constitutively active promoters (e.g., CMV promoter), inducible promoters (e.g., heat shock promoter, Tetracycline -regulated promoter, Steroid- regulated promoter, Metal-regulated promoter, estrogen receptor-regulated promoter, etc.), spatially restricted and/or temporally restricted promoters (e.g., a tissue specific promoter, a cell type specific promoter, etc.), etc.
- constitutively active promoters e.g., CMV promoter
- inducible promoters e.g., heat shock promoter, Tetracycline -regulated promoter, Steroid- regulated promoter, Metal-regulated promoter, estrogen receptor-regulated promoter, etc.
- spatially restricted and/or temporally restricted promoters e.g., a tissue specific promoter, a cell type specific promoter, etc.
- the site -directed modifying polypeptide comprises an amino acid sequence
- a subject nucleic acid e.g., a nucleotide sequence encoding a site-directed modifying polypeptide, e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.
- a subject recombinant expression vector is used as a transgene to generate a transgenic plant that produces a site-directed modifying polypeptide.
- the present invention further provides a transgenic plant, which plant comprises a transgene comprising a subject nucleic acid comprising a nucleotide sequence encoding site-directed modifying polypeptide, e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc., as described above.
- site-directed modifying polypeptide e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.
- the genome of the transgenic plant comprises a subject nucleic acid.
- the transgenic plant is homozygous for the genetic modification.
- the transgenic plant is heterozygous for the genetic modification.
- Methods of introducing exogenous nucleic acids into plant cells are well known in the art. Such plant cells are considered “transformed,” as defined above. Suitable methods include viral infection (such as double stranded DNA viruses), transfection, conjugation, protoplast fusion, electroporation, particle gun technology, calcium phosphate precipitation, direct microinjection, silicon carbide whiskers technology, Agrobacterium-mediated transformation and the like. The choice of method is generally dependent on the type of cell being transformed and the circumstances under which the transformation is taking place (i.e. in vitro, ex vivo, or in vivo).
- Transformation methods based upon the soil bacterium Agrobacterium tumefaciens are
- the wild type form of Agrobacterium contains a Ti (tumor-inducing) plasmid that directs production of tumorigenic crown gall growth on host plants. Transfer of the tumor-inducing T-DNA region of the Ti plasmid to a plant genome requires the Ti plasmid-encoded virulence genes as well as T-DNA borders, which are a set of direct DNA repeats that delineate the region to be transferred.
- An Agrobacterium-based vector is a modified form of a Ti plasmid, in which the tumor inducing functions are replaced by the nucleic acid sequence of interest to be introduced into the plant host.
- Agrobacterium-mediated transformation generally employs cointegrate vectors or binary vector systems, in which the components of the Ti plasmid are divided between a helper vector, which resides permanently in the Agrobacterium host and carries the virulence genes, and a shuttle vector, which contains the gene of interest bounded by T-DNA sequences.
- binary vectors are well known in the art and are commercially available, for example, from Clontech (Palo Alto, Calif.).
- Methods of coculturing Agrobacterium with cultured plant cells or wounded tissue such as leaf tissue, root explants, hypocotyledons, stem pieces or tubers, for example, also are well known in the art. See., e.g., Glick and Thompson, (eds.), Methods in Plant Molecular Biology and Biotechnology, Boca Raton, Fla.: CRC Press (1993).
- Microprojec tile-mediated transformation also can be used to produce a subject transgenic plant.
- a subject nucleic acid may be introduced into a plant in a manner such that the nucleic acid is able to enter a plant cell(s), e.g., via an in vivo or ex vivo protocol.
- in vivo it is meant in the nucleic acid is administered to a living body of a plant e.g. infiltration.
- ex vivo it is meant that cells or explants are modified outside of the plant, and then such cells or organs are regenerated to a plant.
- non-Ti vectors can be used to transfer the DNA into plants and cells by using free DNA delivery techniques.
- transgenic plants such as wheat, rice (Christou (1991) Bio/Technology 9:957-9 and 4462) and corn (Gordon-Kamm (1990) Plant Cell 2: 603-618) can be produced.
- An immature embryo can also be a good target tissue for monocots for direct DNA delivery techniques by using the particle gun (Weeks et al. (1993) Plant Physiol 102: 1077-1084; Vasil (1993)
- Exemplary methods for introduction of DNA into chloroplasts are biolistic bombardment, polyethylene glycol transformation of protoplasts, and microinjection (Danieli et al Nat.
- Any vector suitable for the methods of biolistic bombardment, polyethylene glycol transformation of protoplasts and microinjection will be suitable as a targeting vector for chloroplast transformation.
- Any double stranded DNA vector may be used as a transformation vector, especially when the method of introduction does not utilize Agrobacterium.
- Plants which can be genetically modified include grains, forage crops, fruits, vegetables, oil seed crops, palms, forestry, and vines. Specific examples of plants which can be modified follow: maize, banana, peanut, field peas, sunflower, tomato, canola, tobacco, wheat, barley, oats, potato, soybeans, cotton, carnations, sorghum, lupin and rice.
- Also provided by the subject invention are transformed plant cells, tissues, plants and products that contain the transformed plant cells.
- a feature of the subject transformed cells, and tissues and products that include the same is the presence of a subject nucleic acid integrated into the genome, and production by plant cells of a site -directed modifying polypeptide, e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.
- Recombinant plant cells of the present invention are useful as populations of recombinant cells, or as a tissue, seed, whole plant, stem, fruit, leaf, root, flower, stem, tuber, grain, animal feed, a field of plants, and the like.
- a nucleic acid comprising a nucleotide sequence encoding a site -directed modifying
- polypeptide e.g., a naturally occurring Cas9; a modified, i.e., mutated or variant, Cas9; a chimeric Cas9; etc.
- an unknown promoter e.g., when the nucleic acid randomly integrates into a host cell genome
- Suitable known promoters can be any known promoter and include constitutively active promoters, inducible promoters, spatially restricted and/or temporally restricted promoters, etc.
- the site -directed modifying polypeptide comprises an amino acid sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 99%, or 100%, amino acid sequence identity to amino acids 7-166 or 731-1003 of the Cas9/Csnl amino acid sequence depicted in Figure 3, or to the corresponding portions in any of the amino acid sequences set forth as SEQ ID NOs: 1-256 and 795-1346.
- reproductive material of a subject transgenic plant where reproductive material includes seeds, progeny plants and clonal material.
- nucleic acid refers to a nucleic acid, polypeptide, cell, or organism that is found in nature.
- a polypeptide or polynucleotide sequence that is present in an organism (including viruses) that can be isolated from a source in nature and which has not been intentionally modified by a human in the laboratory is naturally occurring.
- Heterologous means a nucleotide or polypeptide sequence that is not found in the native nucleic acid or protein, respectively.
- a variant Cas9 site -directed polypeptide may be fused to a heterologous polypeptide (i.e. a polypeptide other than Cas9).
- the heterologous polypeptide may exhibit an activity (e.g., enzymatic activity) that will also be exhibited by the fusion variant Cas9 site -directed polypeptide.
- a heterologous nucleic acid sequence may be linked to a variant Cas9 site -directed polypeptide (e.g., by genetic engineering) to generate a nucleotide sequence encoding a fusion variant Cas9 site -directed polypeptide.
- chimeric polypeptide refers to a polypeptide which is not naturally occurring, e.g., is made by the artificial combination of two otherwise separated segments of amino sequence through human intervention. Thus, a chimeric polypeptide is also the result of human intervention. Thus, a polypeptide that comprises a chimeric amino acid sequence is a chimeric polypeptide.
- site-directed polypeptide or "RNA-binding site -directed polypeptide” or “RNA- binding site-directed polypeptide” it is meant a polypeptide that binds RNA and is targeted to a specific DNA sequence.
- a site -directed polypeptide as described herein is targeted to a specific DNA sequence by the RNA molecule to which it is bound.
- the RNA molecule comprises a sequence that is complementary to a target sequence within the target DNA, thus targeting the bound polypeptide to a specific location within the target DNA (the target sequence).
- a subject nucleic acid e.g., a DNA-targeting RNA, a nucleic acid comprising a nucleotide sequence encoding a DNA-targeting RNA; a nucleic acid encoding a site -directed polypeptide; etc.
- a modification or sequence that provides for an additional desirable feature (e.g., modified or regulated stability; subcellular targeting; tracking, e.g., a fluorescent label; a binding site for a protein or protein complex; etc.).
- Non-limiting examples include: a 5' cap (e.g., a 7-methylguanylate cap (m 7 G)); a 3' polyadenylated tail (i.e., a 3' poly(A) tail); a riboswitch sequence (e.g., to allow for regulated stability and/or regulated accessibility by proteins and/or protein complexes); a modification or sequence that targets the RNA to a subcellular location (e.g., nucleus, mitochondria, chloroplasts, and the like); a modification or sequence that provides for tracking (e.g., direct conjugation to a fluorescent molecule, conjugation to a moiety that facilitates fluorescent detection, a sequence that allows for fluorescent detection, etc.); a modification or sequence that provides a binding site for proteins (e.g., proteins that act on DNA, including transcriptional activators, transcriptional repressors, DNA methy transferases, DNA demethylases, histone acety transferases, histone deacetylases
- a DNA-targeting RNA comprises an additional segment at either the 5' or 3' end that provides for any of the features described above.
- a suitable third segment can comprise a 5' cap (e.g., a 7-methylguanylate cap (m 7 G)); a 3' polyadenylated tail (i.e., a 3' poly(A) tail); a riboswitch sequence (e.g., to allow for regulated stability and/or regulated accessibility by proteins and protein complexes); a sequence that targets the RNA to a subcellular location (e.g., nucleus, mitochondria, chloroplasts, and the like); a modification or sequence that provides for tracking (e.g., direct conjugation to a fluorescent molecule, conjugation to a moiety that facilitates fluorescent detection, a sequence that allows for fluorescent detection, etc.); a modification or sequence that provides a binding site for proteins (e.g., proteins that act on DNA, including transcriptional activators,
- a subject DNA-targeting RNA and a subject site -directed polypeptide form a complex
- the DNA-targeting RNA provides target specificity to the complex by comprising a nucleotide sequence that is complementary to a sequence of a target DNA.
- the site -directed polypeptide of the complex provides the site-specific activity. In other words, the site -directed polypeptide is guided to a target DNA sequence (e.g. a target sequence in a chromosomal nucleic acid; a target sequence in an extrachromosomal nucleic acid, e.g.
- a subject DNA-targeting RNA comprises two separate RNA molecules (RNA polynucleotides) and is referred to herein as a "double -molecule DNA- targeting RNA” or a "two-molecule DNA-targeting RNA.”
- a subject DNA-targeting RNA is a single RNA molecule (single RNA polynucleotide) and is referred to herein as a "single -molecule DNA-targeting RNA.”
- DNA- targeting RNA is inclusive, referring to both single-molecule DNA-targeting RNAs and double- molecule DNA-targeting RNAs.
- a subject two-molecule DNA-targeting RNA comprises two separate RNA molecules (a
- targeter-RNA and an “activator-RNA”
- Each of the two RNA molecules of a subject two- molecule DNA-targeting RNA comprises a stretch of nucleotides that are complementary to one another such that the complementary nucleotides of the two RNA molecules hybridize to form the double stranded RNA duplex of the protein-binding segment.
- a subject single-molecule DNA-targeting RNA comprises two stretches of nucleotides
- targeter-RNA and an activator-RNA that are complementary to one another, are covalently linked by intervening nucleotides (“linkers” or “linker nucleotides”), and hybridize to form the double stranded RNA duplex (dsRNA duplex) of the protein-binding segment, thus resulting in a stem-loop structure.
- linkers or “linker nucleotides”
- dsRNA duplex double stranded RNA duplex
- the targeter-RNA and the activator-RNA can be covalently linked via the 3' end of the targeter-RNA and the 5' end of the activator-RNA.
- targeter-RNA and the activator-RNA can be covalently linked via the 5' end of the targeter-RNA and the 3' end of the activator-RNA.
- An exemplary two-molecule DNA-targeting RNA comprises a crRNA-like ("CRISPR
- RNA or “targeter-RNA” or “crRNA” or “crRNA repeat”) molecule and a corresponding tracrRNA-like (“trans-acting CRISPR RNA” or “activator-RNA” or “tracrRNA”) molecule.
- a crRNA-like molecule comprises both the DNA-targeting segment (single stranded) of the DNA-targeting RNA and a stretch ("duplex-forming segment") of nucleotides that forms one half of the dsRNA duplex of the protein-binding segment of the DNA-targeting RNA.
- a corresponding tracrRNA-like molecule comprises a stretch of nucleotides (duplex-forming segment) that forms the other half of the dsRNA duplex of the protein-binding segment of the DNA-targeting RNA.
- a stretch of nucleotides of a crRNA-like molecule are complementary to and hybridize with a stretch of nucleotides of a tracrRNA-like molecule to form the dsRNA duplex of the protein-binding domain of the DNA- targeting RNA.
- each crRNA-like molecule can be said to have a corresponding tracrRNA-like molecule.
- the crRNA-like molecule additionally provides the single stranded DNA-targeting segment.
- a crRNA-like and a tracrRNA-like molecule hybridize to form a DNA-targeting RNA.
- the exact sequence of a given crRNA or tracrRNA molecule is characteristic of the species in which the RNA molecules are found.
- activator-RNA is used herein to mean a tracrRNA-like molecule of a double- molecule DNA-targeting RNA.
- targeter-RNA is used herein to mean a crRNA-like molecule of a double-molecule DNA-targeting RNA.
- duplex-forming segment is used herein to mean the stretch of nucleotides of an activator-RNA or a targeter-RNA that contributes to the formation of the dsRNA duplex by hybridizing to a stretch of nucleotides of a corresponding activator-RNA or targeter-RNA molecule.
- an activator-RNA comprises a duplex-forming segment that is complementary to the duplex-forming segment of the corresponding targeter-RNA.
- an activator-RNA comprises a duplex-forming segment while a targeter-RNA comprises both a duplex-forming segment and the DNA-targeting segment of the DNA-targeting RNA. Therefore, a subject double-molecule DNA-targeting RNA can be comprised of any corresponding activator-RNA and targeter-RNA pair.
- a two-molecule DNA-targeting RNA can be designed to allow for controlled (i.e., conditional) binding of a targeter-RNA with an activator-RNA.
- a two-molecule DNA-targeting RNA can be inducible (e.g., drug inducible) by rendering the binding between the activator-RNA and the targeter-RNA to be inducible.
- RNA aptamers can be used to regulate (i.e., control) the binding of the activator-RNA with the targeter-RNA.
- the activator-RNA and/or the targeter-RNA can comprise an RNA aptamer sequence.
- RNA aptamers are known in the art and are generally a synthetic version of a riboswitch.
- RNA aptamer and “riboswitch” are used interchangeably herein to encompass both synthetic and natural nucleic acid sequences that provide for inducible regulation of the structure (and therefore the availability of specific sequences) of the RNA molecule of which they are part.
- RNA aptamers usually comprise a sequence that folds into a particular structure (e.g., a hairpin), which specifically binds a particular drug (e.g., a small molecule). Binding of the drug causes a structural change in the folding of the RNA, which changes a feature of the nucleic acid of which the aptamer is a part.
- an activator-RNA with an aptamer may not be able to bind to the cognate targeter-RNA unless the aptamer is bound by the appropriate drug;
- a targeter-RNA with an aptamer may not be able to bind to the cognate activator-RNA unless the aptamer is bound by the appropriate drug;
- a targeter-RNA and an activator-RNA, each comprising a different aptamer that binds a different drug may not be able to bind to each other unless both drugs are present.
- a two- molecule DNA-targeting RNA can be designed to be inducible.
- aptamers and riboswitches can be found, for example, in: Nakamura et al.,
- Non-limiting examples of nucleotide sequences that can be included in a two-molecule DNA- targeting RNA include targeter RNAs (e.g., SEQ ID NOs:566-567) that can pair with the duplex forming seqment of any one of the activator RNAs set forth in SEQ ID NOs:671-678.
- An exemplary single-molecule DNA-targeting RNA comprises two complementary stretches of nucleotides that hybridize to form a dsRNA duplex.
- one of the two complementary stretches of nucleotides of the single-molecule DNA-targeting RNA (or the DNA encoding the stretch) is at least about 60% identical to one of the activator-RNA (tracrRNA) sequences set forth in SEQ ID NOs:431-562 over a stretch of at least 8 contiguous nucleotides.
- one of the two complementary stretches of nucleotides of the single- molecule DNA-targeting RNA is at least about 65% identical, at least about 70% identical, at least about 75% identical, at least about 80% identical, at least about 85% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical or 100 % identical to one of the tracrRNA sequences set forth in SEQ ID NOs:431-562over a stretch of at least 8 contiguous nucleotides.
- one of the two complementary stretches of nucleotides of the single-molecule DNA-targeting RNA is at least about 60% identical to one of the targeter-RNA (crRNA) sequences set forth in SEQ ID NOs:563-679 over a stretch of at least 8 contiguous nucleotides.
- one of the two complementary stretches of nucleotides of the single-molecule DNA-targeting RNA is at least about 65% identical, at least about 70% identical, at least about 75% identical, at least about 80% identical, at least about 85% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical or 100 % identical to one of the crRNA sequences set forth in SEQ ID NOs:563-679 over a stretch of at least 8 contiguous nucleotides.
- a "host cell,” as used herein, denotes an in vivo or in vitro eukaryotic cell, a
- prokaryotic cell e.g., bacterial or archaeal cell
- a cell from a multicellular organism e.g., a cell line
- eukaryotic or prokaryotic cells can be, or have been, used as recipients for a nucleic acid, and include the progeny of the original cell which has been transformed by the nucleic acid. It is understood that the progeny of a single cell may not necessarily be completely identical in morphology or in genomic or total DNA complement as the original parent, due to natural, accidental, or deliberate mutation.
- a “recombinant host cell” (also referred to as a “genetically modified host cell”) is a host cell into which has been introduced a heterologous nucleic acid, e.g., an expression vector.
- a subject bacterial host cell is a genetically modified bacterial host cell by virtue of introduction into a suitable bacterial host cell of an exogenous nucleic acid (e.g., a plasmid or recombinant expression vector)
- a subject eukaryotic host cell is a genetically modified eukaryotic host cell (e.g., a mammalian germ cell), by virtue of introduction into a suitable eukaryotic host cell of an exogenous nucleic acid.
- an and “the” include plural referents unless the context clearly dictates otherwise.
- reference to “an enzymatically inactive Cas9 polypeptide” includes a plurality of such polypeptides and reference to “the target nucleic acid” includes reference to one or more target nucleic acids and equivalents thereof known to those skilled in the art, and so forth.
- the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.
- the present disclosure provides methods of modulating transcription of a target nucleic acid in a host cell.
- the methods generally involve contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a single-guide RNA.
- the methods are useful in a variety of applications, which are also provided.
- a transcriptional modulation method of the present disclosure overcomes some of the drawbacks of methods involving RNAi.
- a transcriptional modulation method of the present disclosure finds use in a wide variety of applications, including research applications, drug discovery (e.g., high throughput screening), target validation, industrial applications (e.g., crop engineering; microbial engineering, etc.), diagnostic applications, therapeutic applications, and imaging techniques.
- the present disclosure provides a method of selectively modulating transcription of a target DNA in a host cell.
- the method generally involves: a) introducing into the host cell: i) a DNA -targeting RNA, or a nucleic acid comprising a nucleotide sequence encoding the DNA- targeting RNA; and ii) a variant Cas9 site-directed polypeptide ("variant Cas9 polypeptide"), or a nucleic acid comprising a nucleotide sequence encoding the variant Cas9 polypeptide, where the variant Cas9 polypeptide exhibits reduced endodeoxyribonuclease activity.
- variant Cas9 polypeptide variant Cas9 site-directed polypeptide
- DNA-targeting RNA also referred to herein as "crRNA”; or “guide RNA”; or
- gRNA comprises: i) a first segment comprising a nucleotide sequence that is complementary to a target sequence in a target DNA; ii) a second segment that interacts with a site-directed polypeptide; and iii) a transcriptional terminator.
- the first segment comprising a nucleotide sequence that is complementary to a target sequence in a target DNA, is referred to herein as a "targeting segment”.
- the second segment which interacts with a site -directed polypeptide, is also referred to herein as a "protein-binding sequence" or “dCas9-binding hairpin,” or “dCas9 handle.”
- segment it is meant a segment/section/region of a molecule, e.g., a contiguous stretch of nucleotides in an RNA.
- the definition of "segment,” unless otherwise specifically defined in a particular context, is not limited to a specific number of total base pairs, and may include regions of RNA molecules that are of any total length and may or may not include regions with complementarity to other molecules.
- a DNA -targeting RNA according to the present disclosure can be a single RNA molecule (single RNA polynucleotide), which can be referred to herein as a "single-molecule DNA-targeting RNA," a “single-guide RNA,” or an "sgRNA.”
- a DNA-targeting RNA according to the present disclosure can comprise two RNA molecules.
- the term "DNA-targeting RNA” or "gRNA” is inclusive, referring both to two- molecule DNA-targeting RNAs and to single-molecule DNA-targeting RNAs (i.e., sgRNAs).
- the variant Cas9 site-directed polypeptide comprises: i) an RNA-binding portion that interacts with the DNA-targeting RNA; and ii) an activity portion that exhibits reduced endodeoxyribonuclease activity.
- the DNA-targeting RNA and the variant Cas9 polypeptide form a complex in the host cell; the complex selectively modulates transcription of a target DNA in the host cell.
- a transcription modulation method of the present disclosure provides for selective modulation (e.g., reduction or increase) of a target nucleic acid in a host cell.
- selective modulation e.g., reduction or increase
- "selective" reduction of transcription of a target nucleic acid reduces transcription of the target nucleic acid by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or greater than 90%, compared to the level of transcription of the target nucleic acid in the absence of a DNA-targeting RNA/variant Cas9 polypeptide complex.
- Selective reduction of transcription of a target nucleic acid reduces transcription of the target nucleic acid, but does not substantially reduce transcription of a non-target nucleic acid, e.g., transcription of a non-target nucleic acid is reduced, if at all, by less than 10% compared to the level of transcription of the non-target nucleic acid in the absence of the DNA-targeting RNA/variant Cas9 polypeptide complex.
- "Selective" increased transcription of a target DNA can increase transcription of the target DNA by at least about 1.1 fold (e.g., at least about 1.2 fold, at least about 1.3 fold, at least about 1.4 fold, at least about 1.5 fold, at least about 1.6 fold, at least about 1.7 fold, at least about 1.8 fold, at least about 1.9 fold, at least about 2 fold, at least about 2.5 fold, at least about 3 fold, at least about 3.5 fold, at least about 4 fold, at least about 4.5 fold, at least about 5 fold, at least about 6 fold, at least about 7 fold, at least about 8 fold, at least about 9 fold, at least about 10 fold, at least about 12 fold, at least about 15 fold, or at least about 20-fold) compared to the level of transcription of the target DNA in the absence of a DNA-targeting RNA/variant Cas9 polypeptide complex.
- Selective increase of transcription of a target DNA increases transcription of the target DNA, but does not substantially increase transcription of a non-target DNA, e.g., transcription of a non-target DNA is increased, if at all, by less than about 5-fold (e.g., less than about 4-fold, less than about 3-fold, less than about 2-fold, less than about 1.8-fold, less than about 1.6-fold, less than about 1.4-fold, less than about 1.2-fold, or less than about 1.1 -fold) compared to the level of transcription of the non-targeted DNA in the absence of the DNA- targeting RNA/variant Cas9 polypeptide complex.
- less than about 5-fold e.g., less than about 4-fold, less than about 3-fold, less than about 2-fold, less than about 1.8-fold, less than about 1.6-fold, less than about 1.4-fold, less than about 1.2-fold, or less than about 1.1 -fold
- Suitable fusion partners include, but are not limited to, a polypeptide that provides an activity that indirectly increases transcription by acting directly on the target DNA or on a polypeptide (e.g., a histone or other DNA-binding protein) associated with the target DNA.
- Suitable fusion partners include, but are not limited to, a polypeptide that provides for methyltransf erase activity, demethylase activity, acetyltransferase activity, deacetylase activity, kinase activity, phosphatase activity, ubiquitin ligase activity, deubiquitinating activity, adenylation activity, deadenylation activity, SUMOylating activity, deSUMOylating activity, ribosylation activity, deribosylation activity, myristoylation activity, or demyristoylation activity.
- Additional suitable fusion partners include, but are not limited to, a polypeptide that directly provides for increased transcription of the target nucleic acid (e.g., a transcription activator or a fragment thereof, a protein or fragment thereof that recruits a transcription activator, a small molecule/drug-responsive transcription regulator, etc.).
- a polypeptide that directly provides for increased transcription of the target nucleic acid e.g., a transcription activator or a fragment thereof, a protein or fragment thereof that recruits a transcription activator, a small molecule/drug-responsive transcription regulator, etc.
- a non-limiting example of a subject method using a dCas9 fusion protein to increase transcription in a prokaryote includes a modification of the bacterial one-hybrid (B1H) or two- hybrid (B2H) system.
- B1H bacterial one-hybrid
- B2H two- hybrid
- AD bacterial transcription activation domain
- a subject dCas9 can be fused to a heterologous sequence comprising an AD.
- the AD e.g., RNAPa
- the BD is not directly fused to the AD; instead, their interaction is mediated by a protein-protein interaction (e.g., GAL1 IP - GAL4 interaction).
- dCas9 can be fused to a first protein sequence that provides for protein-protein interaction (e.g., the yeast GAL1 IP and/or GAL4 protein) and RNAa can be fused to a second protein sequence that completes the protein-protein interaction (e.g., GAL4 if GAL11P is fused to dCas9, GAL1 IP if GAL4 is fused to dCas9, etc.).
- the binding affinity between GAL1 IP and GAL4 increases the efficiency of binding and transcription firing rate.
- transcription in a eukaryotes includes fusion of dCas9 to an activation domain (AD) (e.g., GAL4, herpesvirus activation protein VP16 or VP64, human nuclear factor NF- ⁇ p65 subunit, etc.).
- AD activation domain
- expression of the dCas9 fusion protein can be controlled by an inducible promoter (e.g., Tet-ON, Tet-OFF, etc.).
- the DNA -targeting RNA can be design to target known transcription response elements (e.g., promoters, enhancers, etc.), known upstream activating sequences (UAS), sequences of unknown or known function that are suspected of being able to control expression of the target DNA, etc.
- Non-limiting examples of fusion partners to accomplish increased or decreased transcription are listed in Figure 54 and include transcription activator and transcription repressor domains (e.g., the Kriippel associated box (KRAB or SKD); the Mad mSIN3 interaction domain (SID); the ERF repressor domain (ERD), etc).
- transcription activator and transcription repressor domains e.g., the Kriippel associated box (KRAB or SKD); the Mad mSIN3 interaction domain (SID); the ERF repressor domain (ERD), etc.
- the dCas9 fusion protein is targeted by the DNA-targeting RNA to a specific location (i.e., sequence) in the target DNA and exerts locus-specific regulation such as blocking RNA polymerase binding to a promoter (which selectively inhibits transcription activator function), and/or modifying the local chromatin status (e.g., when a fusion sequence is used that modifies the target DNA or modifies a polypeptide associated with the target DNA).
- the changes are transient (e.g., transcription repression or activation).
- the changes are inheritable (e.g., when epigenetic modifications are made to the target DNA or to proteins associated with the target DNA, e.g., nucleosomal histones).
- the heterologous sequence can be fused to the C-terminus of the dCas9 polypeptide. In some embodiments, the heterologous sequence can be fused to the N-terminus of the dCas9 polypeptide. In some embodiments, the heterologous sequence can be fused to an internal portion (i.e., a portion other than the N- or C- terminus) of the dCas9 polypeptide.
- the biological effects of a method using a subject dCas9 fusion protein can be detected by any convenient method (e.g., gene expression assays; chromatin-based assays, e.g., Chromatin immunoPrecipitation (ChiP), Chromatin in vivo Assay (CiA), etc.; and the like).
- any convenient method e.g., gene expression assays; chromatin-based assays, e.g., Chromatin immunoPrecipitation (ChiP), Chromatin in vivo Assay (CiA), etc.; and the like).
- a subject method involves use of two or more different DNA-targeting RNAs.
- a subject transcriptional modulation method can further comprise introducing into the host cell a second DNA-targeting RNA, or a nucleic acid comprising a nucleotide sequence encoding the second DNA-targeting RNA, where the second DNA-targeting RNA comprises: i) a first segment comprising a nucleotide sequence that is complementary to a second target sequence in the target DNA; ii) a second segment that interacts with the site- directed polypeptide; and iii) a transcriptional terminator.
- use of two different DNA-targeting RNAs targeting two different targeting sequences in the same target nucleic acid provides for increased modulation (e.g., reduction or increase) in transcription of the target nucleic acid.
- a subject transcriptional modulation method can further comprise introducing into the host cell a second DNA-targeting RNA, or a nucleic acid comprising a nucleotide sequence encoding the second DNA-targeting RNA, where the second DNA-targeting RNA comprises: i) a first segment comprising a nucleotide sequence that is complementary to a target sequence in at least a second target DNA; ii) a second segment that interacts with the site -directed polypeptide; and iii) a transcriptional terminator.
- a subject nucleic acid e.g., a DNA-targeting RNA, e.g., a single- molecule DNA-targeting RNA, an activator-RNA, a targeter-RNA, etc.; a donor polynucleotide; a nucleic acid encoding a site -directed modifying polypeptide; etc.
- a modification or sequence that provides for an additional desirable feature (e.g., modified or regulated stability; subcellular targeting; tracking, e.g., a fluorescent label; a binding site for a protein or protein complex; etc.).
- Non-limiting examples include: a 5' cap (e.g., a 7-methylguanylate cap (m 7 G)); a 3' polyadenylated tail (i.e., a 3' poly(A) tail); a riboswitch sequence or an aptamer sequence (e.g., to allow for regulated stability and/or regulated accessibility by proteins and/or protein complexes); a terminator sequence; a sequence that forms a dsRNA duplex (i.e., a hairpin)); a modification or sequence that targets the RNA to a subcellular location (e.g., nucleus, mitochondria, chloroplasts, and the like); a modification or sequence that provides for tracking (e.g., direct conjugation to a fluorescent molecule, conjugation to a moiety that facilitates fluorescent detection, a sequence that allows for fluorescent detection, etc.); a modification or sequence that provides a binding site for proteins (e.g., proteins that act on DNA, including transcriptional activators, transcriptional
- DNA-targeting segment demethylases, histone acetyltransf erases, histone deacetylases, and the like); and combinations thereof.
- DNA-targeting segment (or "DNA-targeting sequence") of a DNA-targeting RNA
- crRNA comprises a nucleotide sequence that is complementary to a specific sequence within a target DNA (the complementary strand of the target DNA).
- the DNA-targeting segment of a subject DNA-targeting RNA interacts with a target DNA in a sequence-specific manner via hybridization (i.e., base pairing).
- the nucleotide sequence of the DNA-targeting segment may vary and determines the location within the target DNA that the DNA-targeting RNA and the target DNA will interact.
- the DNA- targeting segment of a subject DNA-targeting RNA can be modified (e.g., by genetic engineering) to hybridize to any desired sequence within a target DNA.
- the DNA-targeting segment can have a length of from about 12 nucleotides to about 100 nucleotides.
- the DNA-targeting segment can have a length of from about 12 nucleotides (nt) to about 80 nt, from about 12 nt to about 50nt, from about 12 nt to about 40 nt, from about 12 nt to about 30 nt, from about 12 nt to about 25 nt, from about 12 nt to about 20 nt, or from about 12 nt to about 19 nt.
- the DNA-targeting segment can have a length of from about 19 nt to about 20 nt, from about 19 nt to about 25 nt, from about 19 nt to about 30 nt, from about 19 nt to about 35 nt, from about 19 nt to about 40 nt, from about 19 nt to about 45 nt, from about 19 nt to about 50 nt, from about 19 nt to about 60 nt, from about 19 nt to about 70 nt, from about 19 nt to about 80 nt, from about 19 nt to about 90 nt, from about 19 nt to about 100 nt, from about 20 nt to about 25 nt, from about 20 nt to about 30 nt, from about 20 nt to about 35 nt, from about 20 nt to about 40 nt, from about 20 nt to about 45 nt, from about 20 nt to about 50 nt, from about 20 nt,
- the nucleotide sequence (the DNA-targeting sequence) of the DNA-targeting segment that is complementary to a nucleotide sequence (target sequence) of the target DNA can have a length at least about 12 nt.
- the DNA-targeting sequence of the DNA-targeting segment that is complementary to a target sequence of the target DNA can have a length at least about 12 nt, at least about 15 nt, at least about 18 nt, at least about 19 nt, at least about 20 nt, at least about 25 nt, at least about 30 nt, at least about 35 nt or at least about 40 nt.
- the DNA- targeting sequence of the DNA-targeting segment that is complementary to a target sequence of the target DNA can have a length of from about 12 nucleotides (nt) to about 80 nt, from about 12 nt to about 50nt, from about 12 nt to about 45 nt, from about 12 nt to about 40 nt, from about 12 nt to about 35 nt, from about 12 nt to about 30 nt, from about 12 nt to about 25 nt, from about 12 nt to about 20 nt, from about 12 nt to about 19 nt, from about 19 nt to about 20 nt, from about 19 nt to about 25 nt, from about 19 nt to about 30 nt, from about 19 nt to about 35 nt, from about 19 nt to about 40 nt, from about 19 nt to about 45 nt, from about 19 nt to about 50 nt, from about 19 nt to about 60
- complementary to a target sequence of the target DNA is 20 nucleotides in length. In some cases, the DNA-targeting sequence of the DNA-targeting segment that is complementary to a target sequence of the target DNA is 19 nucleotides in length.
- the percent complementarity between the DNA-targeting sequence of the DNA-targeting segment and the target sequence of the target DNA can be at least 60% (e.g., at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, or 100%). In some cases, the percent complementarity between the DNA-targeting sequence of the DNA-targeting segment and the target sequence of the target DNA is 100% over the seven contiguous 5 '-most nucleotides of the target sequence of the complementary strand of the target DNA.
- the percent complementarity between the DNA-targeting sequence of the DNA-targeting segment and the target sequence of the target DNA is at least 60% over about 20 contiguous nucleotides. In some cases, the percent complementarity between the DNA-targeting sequence of the DNA-targeting segment and the target sequence of the target DNA is 100% over the fourteen contiguous 5 '-most nucleotides of the target sequence of the complementary strand of the target DNA and as low as 0% over the remainder. In such a case, the DNA-targeting sequence can be considered to be 14 nucleotides in length.
- the percent complementarity between the DNA-targeting sequence of the DNA-targeting segment and the target sequence of the target DNA is 100% over the seven contiguous 5 '-most nucleotides of the target sequence of the complementary strand of the target DNA and as low as 0% over the remainder.
- the DNA-targeting sequence can be considered to be 7 nucleotides in length.
- protein-binding segment i.e., "protein-binding sequence" of a DNA-targeting RNA
- the protein-binding segment of a DNA-targeting RNA comprises two complementary stretches of nucleotides that hybridize to one another to form a double stranded RNA duplex (dsRNA duplex).
- the protein-binding segment of a DNA-targeting RNA of the present disclosure comprises two stretches of nucleotides (a targeter-RNA and an activator-RNA) that are complementary to one another, are covalently linked by intervening nucleotides (e.g., in the case of a single-molecule DNA-targeting RNA)("linkers” or “linker nucleotides”), and hybridize to form the double stranded RNA duplex (dsRNA duplex, or "dCas9-binding hairpin”) of the protein-binding segment, thus resulting in a stem-loop structure.
- This stem-loop structure is shown schematically in Figrue 39 A.
- targeter-RNA and the activator-RNA can be covalently linked via the 3' end of the targeter-RNA and the 5' end of the activator-RNA.
- targeter-RNA and the activator-RNA can be covalently linked via the 5' end of the targeter-RNA and the 3' end of the activator-RNA.
- the protein-binding segment can have a length of from about 10 nucleotides to about 100 nucleotides, e.g., from about 10 nucleotides (nt) to about 20 nt, from about 20 nt to about 30 nt, from about 30 nt to about 40 nt, from about 40 nt to about 50 nt, from about 50 nt to about 60 nt, from about 60 nt to about 70 nt, from about 70 nt to about 80 nt, from about 80 nt to about 90 nt, or from about 90 nt to about 100 nt.
- nt nucleotides
- the protein-binding segment can have a length of from about 15 nucleotides (nt) to about 80 nt, from about 15 nt to about 50 nt, from about 15 nt to about 40 nt, from about 15 nt to about 30 nt or from about 15 nt to about 25 nt.
- the dsRNA duplex of the protein-binding segment can have a length from about 6 base pairs (bp) to about 50bp.
- the dsRNA duplex of the protein-binding segment can have a length from about 6 bp to about 40 bp, from about 6 bp to about 30bp, from about 6 bp to about 25 bp, from about 6 bp to about 20 bp, from about 6 bp to about 15 bp, from about 8 bp to about 40 bp, from about 8 bp to about 30bp, from about 8 bp to about 25 bp, from about 8 bp to about 20 bp or from about 8 bp to about 15 bp.
- the dsRNA duplex of the protein-binding segment can have a length from about from about 8 bp to about 10 bp, from about 10 bp to about 15 bp, from about 15 bp to about 18 bp, from about 18 bp to about 20 bp, from about 20 bp to about 25 bp, from about 25 bp to about 30 bp, from about 30 bp to about 35 bp, from about 35 bp to about 40 bp, or from about 40 bp to about 50 bp.
- the dsRNA duplex of the protein-binding segment has a length of 36 base pairs.
- the percent complementarity between the nucleotide sequences that hybridize to form the dsRNA duplex of the protein- binding segment can be at least about 60%.
- the percent complementarity between the nucleotide sequences that hybridize to form the dsRNA duplex of the protein-binding segment can be at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, or at least about 99%.
- the percent complementarity between the nucleotide sequences that hybridize to form the dsRNA duplex of the protein-binding segment is 100%.
- the linker can have a length of from about 3 nucleotides to about 100 nucleotides.
- the linker can have a length of from about 3 nucleotides (nt) to about 90 nt, from about 3 nucleotides (nt) to about 80 nt, from about 3 nucleotides (nt) to about 70 nt, from about 3 nucleotides (nt) to about 60 nt, from about 3 nucleotides (nt) to about 50 nt, from about 3 nucleotides (nt) to about 40 nt, from about 3 nucleotides (nt) to about 30 nt, from about 3 nucleotides (nt) to about 20 nt or from about 3 nucleotides (nt) to about 10 nt.
- the linker can have a length of from about 3 nt to about 5 nt, from about 5 nt to about 10 nt, from about 10 nt to about 15 nt, from about 15 nt to about 20 nt, from about 20 nt to about 25 nt, from about 25 nt to about 30 nt, from about 30 nt to about 35 nt, from about 35 nt to about 40 nt, from about 40 nt to about 50 nt, from about 50 nt to about 60 nt, from about 60 nt to about 70 nt, from about 70 nt to about 80 nt, from about 80 nt to about 90 nt, or from about 90 nt to about 100 nt.
- the linker of a DNA-targeting RNA is 4 nt.
- Non-limiting examples of nucleotide sequences that can be included in a suitable protein- binding segment are set forth in SEQ ID NOs:563-682 (For examples, see Figure 8 and Figure 9).
- a suitable protein-binding segment comprises a nucleotide sequence that differs by 1, 2, 3, 4, or 5 nucleotides from any one of the above -listed sequences.
- Stability control sequence e.g., transcriptional terminator segment
- a stability control sequence influences the stability of an RNA (e.g., a DNA-targeting RNA, a targeter-RNA, an activator-RNA, etc.).
- RNA e.g., a DNA-targeting RNA, a targeter-RNA, an activator-RNA, etc.
- a transcriptional terminator segment i.e., a transcription termination sequence
- a transcriptional terminator segment of a subject DNA-targeting RNA can have a total length of from about 10 nucleotides to about 100 nucleotides, e.g., from about 10 nucleotides (nt) to about 20 nt, from about 20 nt to about 30 nt, from about 30 nt to about 40 nt, from about 40 nt to about 50 nt, from about 50 nt to about 60 nt, from about 60 nt to about 70 nt, from about 70 nt to about 80 nt, from about 80 nt to about 90 nt, or from about 90 nt to about 100 nt.
- the transcriptional terminator segment can have a length of from about 15 nucleotides (nt) to about 80 nt, from about 15 nt to about 50 nt, from about 15 nt to about 40 nt, from about 15 nt to about 30 nt or from about 15 nt to about 25 nt.
- the transcription termination sequence is one that is functional in a eukaryotic cell. In some cases, the transcription termination sequence is one that is functional in a prokaryotic cell.
- Non-limiting examples of nucleotide sequences that can be included in a stability control sequence include sequences set forth in SEQ ID NO:683-696 and, for example,
- a DNA-targeting RNA comprises at least one additional segment at either the 5' or 3' end.
- a suitable additional segment can comprise a 5' cap (e.g., a 7-methylguanylate cap (m 7 G)); a 3' polyadenylated tail (i.e., a 3' poly(A) tail); a riboswitch sequence (e.g., to allow for regulated stability and/or regulated accessibility by proteins and protein complexes); a sequence that forms a dsRNA duplex (i.e., a hairpin)); a sequence that targets the RNA to a subcellular location (e.g., nucleus, mitochondria, chloroplasts, and the like); a modification or sequence that provides for tracking (e.g., direct conjugation to a fluorescent molecule, conjugation to a moiety that facilitates fluorescent detection, a sequence that allows for fluorescent detection, etc.); a modification or sequence that provides a binding site for proteins
- multiple DNA-targeting RNAs are used simultaneously in the same cell to simultaneously modulate transcription at different locations on the same target DNA or on different target DNAs.
- two or more DNA-targeting RNAs target the same gene or transcript or locus.
- two or more DNA-targeting RNAs target different unrelated loci.
- two or more DNA-targeting RNAs target different, but related loci.
- DNA-targeting RNAs are small and robust they can be simultaneously present on the same expression vector and can even be under the same transcriptional control if so desired.
- two or more (e.g., 3 or more, 4 or more, 5 or more, 10 or more, 15 or more, 20 or more, 25 or more, 30 or more, 35 or more, 40 or more, 45 or more, or 50 or more) DNA-targeting RNAs are simultaneously expressed in a target cell (from the same or different vectors).
- the expressed DNA-targeting RNAs can be differently recognized by dCas9 proteins from different bacteria, such as S. pyogenes, S. thermophilus, L. innocua, andN. meningitidis.
- an artificial RNA processing system mediated by the Csy4 endoribonuclease can be used.
- Multiple DNA-targeting RNAs can be concatenated into a tandem array on a precursor transcript (e.g., expressed from a U6 promoter), and separated by Csy4-specific RNA sequence.
- Co-expressed Csy4 protein cleaves the precursor transcript into multiple DNA-targeting RNAs.
- Advantages for using an RNA processing system include: first, there is no need to use multiple promoters; second, since all DNA-targeting RNAs are processed from a precursor transcript, their concentrations are normalized for similar dCas9-binding.
- Csy4 is a small endoribonuclease (RNase) protein derived from bacteria Pseudomonas
- Csy4 specifically recognizes a minimal 17-bp RNA hairpin, and exhibits rapid ( ⁇ 1 min) and highly efficient (>99.9 ) RNA cleavage. Unlike most RNases, the cleaved RNA fragment remains stable and functionally active.
- the Csy4-based RNA cleavage can be repurposed into an artificial RNA processing system. In this system, the 17-bp RNA hairpins are inserted between multiple RNA fragments that are transcribed as a precursor transcript from a single promoter. Co-expression of Csy4 is effective in generating individual RNA fragments.
- a subject DNA-targeting RNA and a variant Cas9 site-directed polypeptide form a complex.
- the DNA-targeting RNA provides target specificity to the complex by comprising a nucleotide sequence that is complementary to a sequence of a target DNA.
- the variant Cas9 site-directed polypeptide has reduced endodeoxyribonuclease activity.
- a variant Cas9 site-directed polypeptide suitable for use in a transcription modulation method of the present disclosure exhibits less than about 20%, less than about 15%, less than about 10%, less than about 5%, less than about 1%, or less than about 0.1%, of the
- the variant Cas9 site -directed polypeptide has substantially no detectable endodeoxyribonuclease activity.
- a site-directed polypeptide has reduced catalytic activity (e.g., when a Cas9 protein has a D10, G12, G17, E762, H840, N854, N863, H982, H983, A984, D986, and/or a A987 mutation, e.g., D10A, G12A, G17A, E762A, H840A, N854A, N863A, H982A, H983A, A984A, and/or D986A), the polypeptide can still bind to target DNA in a site-specific manner (because it is still guided to a target DNA sequence by a DNA-targeting RNA) as long as it retains the ability to interact with the DNA-targeting RNA.
- the polypeptide can still bind to target DNA in a site-specific manner (because it is still guided to a target DNA sequence by a DNA-targeting RNA) as long as it retains the ability to interact with the DNA-targeting RNA.
- a suitable variant Cas9 site -directed polypeptide comprises an amino acid sequence having at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 99% or 100% amino acid sequence identity to amino acids 7- 166 or 731-1003 of the Cas9/Csnl amino acid sequence depicted in Figure 3 (SEQ ID NO:8), or to the corresponding portions in any one of the amino acid sequences SEQ ID NOs: 1-256 and 795-1346.
- the variant Cas9 site -directed polypeptide can cleave the complementary strand of the target DNA but has reduced ability to cleave the non-complementary strand of the target DNA.
- the variant Cas9 site -directed polypeptide can have a mutation (amino acid substitution) that reduces the function of the RuvC domain (e.g., "domain 1" of Figure 3).
- the variant Cas9 site -directed polypeptide is a D10A (aspartate to alanine) mutation of the amino acid sequence depicted in Figure 3 (or the corresponding mutation of any of the amino acid sequences set forth in SEQ ID NOs: 1-256 and 795-1346).
- the variant Cas9 site -directed polypeptide can cleave the non-complementary strand of the target DNA but has reduced ability to cleave the complementary strand of the target DNA.
- the variant Cas9 site -directed polypeptide can have a mutation (amino acid substitution) that reduces the function of the HNH domain (RuvC/HNH/RuvC domain motifs, "domain 2" of Figure 3).
- the variant Cas9 site- directed polypeptide is a H840A (histidine to alanine at amino acid position 840 of SEQ ID NO: 8) or the corresponding mutation of any of the amino acid sequences set forth in SEQ ID NOs: 1-256 and 795-1346).
- the variant Cas9 site -directed polypeptide has a reduced ability to cleave both the complementary and the non-complementary strands of the target DNA.
- the variant Cas9 site-directed polypeptide harbors both D10A and H840A mutations of the amino acid sequence depicted in Figure 3 (or the corresponding mutations of any of the amino acid sequences set forth in SEQ ID NOs:l-256 and 795-1346).
- variant Cas9 site -directed polypeptide is a fusion polypeptide (a "variant
- Cas9 fusion polypeptide i.e., a fusion polypeptide comprising: i) a variant Cas9 site-directed polypeptide; and b) a covalently linked heterologous polypeptide (also referred to as a "fusion partner").
- the heterologous polypeptide may exhibit an activity (e.g., enzymatic activity) that will also be exhibited by the variant Cas9 fusion polypeptide (e.g., methyltransf erase activity,
- a heterologous nucleic acid sequence may be linked to another nucleic acid sequence (e.g., by genetic engineering) to generate a chimeric nucleotide sequence encoding a chimeric polypeptide.
- a variant Cas9 fusion polypeptide is generated by fusing a variant Cas9 polypeptide with a heterologous sequence that provides for subcellular localization (i.e., the heterologous sequence is a subcellular localization sequence, e.g., a nuclear localization signal (NLS) for targeting to the nucleus; a mitochondrial localization signal for targeting to the mitochondria; a chloroplast localization signal for targeting to a chloroplast; an ER retention signal; and the like).
- a subcellular localization sequence e.g., a nuclear localization signal (NLS) for targeting to the nucleus
- a mitochondrial localization signal for targeting to the mitochondria
- chloroplast localization signal for targeting to a chloroplast
- an ER retention signal e.g., a subcellular localization sequence that provides for subcellular localization
- the heterologous sequence is a subcellular localization sequence, e.g., a nuclear localization signal (NLS) for targeting to the nucleus;
- the heterologous sequence can provide a tag (i.e., the heterologous sequence is a detectable label) for ease of tracking and/or purification (e.g., a fluorescent protein, e.g., green fluorescent protein (GFP), YFP, RFP, CFP, mCherry, tdTomato, and the like; a histidine tag, e.g., a 6XHis tag; a hemagglutinin (HA) tag; a FLAG tag; a Myc tag; and the like).
- a fluorescent protein e.g., green fluorescent protein (GFP), YFP, RFP, CFP, mCherry, tdTomato, and the like
- GFP green fluorescent protein
- YFP green fluorescent protein
- RFP red fluorescent protein
- CFP CFP
- mCherry mCherry
- tdTomato e.g., a histidine tag
- HA hemagglutinin
- the heterologous sequence can provide for increased or decreased stability (i.e., the heterologous sequence is a stability control peptide, e.g., a degron, which in some cases is controllable (e.g., a temperature sensitive or drug controllable degron sequence, see below).
- a stability control peptide e.g., a degron
- controllable e.g., a temperature sensitive or drug controllable degron sequence, see below.
- the heterologous sequence can provide for increased or decreased transcription from the target DNA (i.e., the heterologous sequence is a transcription modulation sequence, e.g., a transcription factor/activator or a fragment thereof, a protein or fragment thereof that recruits a transcription factor/activator, a transcription repressor or a fragment thereof, a protein or fragment thereof that recruits a transcription repressor, a small molecule/drug-responsive transcription regulator, etc.).
- a transcription modulation sequence e.g., a transcription factor/activator or a fragment thereof, a protein or fragment thereof that recruits a transcription factor/activator, a transcription repressor or a fragment thereof, a protein or fragment thereof that recruits a transcription repressor, a small molecule/drug-responsive transcription regulator, etc.
- the heterologous sequence can provide a binding domain (i.e., the heterologous sequence is a protein binding sequence, e.g., to provide the ability of a chimeric dCas9 polypeptide to bind to another protein of interest, e.g., a DNA or histone modifying protein, a transcription factor or transcription repressor, a recruiting protein, etc.).
- a protein binding sequence e.g., to provide the ability of a chimeric dCas9 polypeptide to bind to another protein of interest, e.g., a DNA or histone modifying protein, a transcription factor or transcription repressor, a recruiting protein, etc.
- Suitable fusion partners that provide for increased or decreased stability include, but are not limited to degron sequences.
- Degrons are readily understood by one of ordinary skill in the art to be amino acid sequences that control the stability of the protein of which they are part.
- the stability of a protein comprising a degron sequence is controlled at least in part by the degron sequence.
- a suitable degron is constitutive such that the degron exerts its influence on protein stability independent of experimental control (i.e., the degron is not drug inducible, temperature inducible, etc.)
- the degron provides the variant Cas9 polypeptide with controllable stability such that the variant Cas9 polypeptide can be turned “on” (i.e., stable) or “off (i.e., unstable, degraded) depending on the desired conditions.
- the variant Cas9 polypeptide may be functional (i.e., "on", stable) below a threshold temperature (e.g., 42°C, 41°C, 40°C, 39°C, 38°C, 37°C, 36°C, 35°C, 34°C, 33°C, 32°C, 31°C, 30°C, etc.) but non-functional (i.e., "off, degraded) above the threshold temperature.
- a threshold temperature e.g., 42°C, 41°C, 40°C, 39°C, 38°C, 37°C, 36°C, 35°C, 34°C, 33°C, 32°C, 31°C, 30°C, etc.
- an exemplary drug inducible degron is derived from the FKBP12 protein.
- the stability of the degron is controlled by the presence or absence of a small molecule that binds to the degron.
- degrons include, but are not limited to those degrons controlled by
- Non-limiting examples of suitable degrons are known in the art (e.g., Dohmen et al., Science, 1994. 263(5151): p. 1273-1276: Heat-inducible degron: a method for constructing temperature-sensitive mutants; Schoeber et al., Am J Physiol Renal Physiol. 2009 Jan;296(l):F204-l l : Conditional fast expression and function of multimeric TRPV5 channels using Shield-1 ; Chu et al., Bioorg Med Chem Lett.
- a dCas9 fusion protein can comprise a YFP sequence for detection, a degron sequence for stability, and transcription activator sequence to increase transcription of the target DNA.
- the number of fusion partners that can be used in a dCas9 fusion protein is unlimited.
- a dCas9 fusion protein comprises one or more (e.g. two or more, three or more, four or more, or five or more) heterologous sequences.
- Suitable fusion partners include, but are not limited to, a polypeptide that provides for
- methyltransf erase activity demethylase activity, acetyltransferase activity, deacetylase activity, kinase activity, phosphatase activity, ubiquitin ligase activity, deubiquitinating activity, adenylation activity, deadenylation activity, SUMOylating activity, deSUMOylating activity, ribosylation activity, deribosylation activity, myristoylation activity, or demyristoylation activity, any of which can be directed at modifying the DNA directly (e.g., methylation of DNA) or at modifying a DNA-associated polypeptide (e.g., a histone or DNA binding protein).
- a DNA-associated polypeptide e.g., a histone or DNA binding protein
- fusion partners include, but are not limited to boundary elements (e.g., CTCF), proteins and fragments thereof that provide periphery recruitment (e.g., Lamin A, Lamin B, etc.), and protein docking elements (e.g., FKBP/FRB, Pill/Abyl, etc.).
- boundary elements e.g., CTCF
- proteins and fragments thereof that provide periphery recruitment e.g., Lamin A, Lamin B, etc.
- protein docking elements e.g., FKBP/FRB, Pill/Abyl, etc.
- Examples of various additional suitable fusion partners (or fragments thereof) for a subject variant Cas9 site -directed polypeptide include, but are not limited to those listed in Figure 54.
- a subject site -directed modifying polypeptide can be codon- optimized. This type of optimization is known in the art and entails the mutation of foreign- derived DNA to mimic the codon preferences of the intended host organism or cell while encoding the same protein. Thus, the codons are changed, but the encoded protein remains unchanged. For example, if the intended target cell was a human cell, a human codon-optimized dCas9 (or dCas9 variant) would be a suitable site-directed modifying polypeptide.
- a mouse codon-optimized Cas9 or variant, e.g., enzymatically inactive variant
- a suitable Cas9 site-directed polypeptide While codon optimization is not required, it is acceptable and may be preferable in certain cases.
- a method of the present disclosure to modulate transcription may be employed to induce
- a mitotic and/or post-mitotic cell can be any of a variety of host cell, where suitable host cells include, but are not limited to, a bacterial cell; an archaeal cell; a single-celled eukaryotic organism; a plant cell; an algal cell, e.g., Botryococcus braunii, Chlamydomonas reinhardtii, Nannochloropsis gaditana, Chlorella pyrenoidosa, Sargassum patens, C.
- a fungal cell e.g., an animal cell; a cell from an invertebrate animal (e.g., an insect, a cnidarian, an echinoderm, a nematode, etc.); a eukaryotic parasite (e.g., a malarial parasite, e.g., Plasmodium falciparum; a helminth; etc.); a cell from a vertebrate animal (e.g., fish, amphibian, reptile, bird, mammal); a mammalian cell, e.g., a rodent cell, a human cell, a non-human primate cell, etc.
- an invertebrate animal e.g., an insect, a cnidarian, an echinoderm, a nematode, etc.
- a eukaryotic parasite e.g., a malarial parasite, e.g., Plasmodium
- Suitable host cells include naturally-occurring cells; genetically modified cells (e.g., cells genetically modified in a laboratory, e.g., by the "hand of man”); and cells manipulated in vitro in any way. In some cases, a host cell is isolated.
- Any type of cell may be of interest (e.g. a stem cell, e.g. an embryonic stem (ES) cell, an
- iPS induced pluripotent stem
- germ cell a germ cell
- somatic cell e.g. a fibroblast, a hematopoietic cell, a neuron, a muscle cell, a bone cell, a hepatocyte, a pancreatic cell
- in vitro or in vivo embryonic cell of an embryo at any stage e.g., a 1-cell, 2-cell, 4-cell, 8-cell, etc. stage zebrafish embryo; etc.
- Cells may be from established cell lines or they may be primary cells, where "primary cells”, “primary cell lines”, and “primary cultures” are used interchangeably herein to refer to cells and cells cultures that have been derived from a subject and allowed to grow in vitro for a limited number of passages, i.e. splittings, of the culture.
- primary cultures include cultures that may have been passaged 0 times, 1 time, 2 times, 4 times, 5 times, 10 times, or 15 times, but not enough times go through the crisis stage.
- Primary cell lines can be are maintained for fewer than 10 passages in vitro.
- Target cells are in many embodiments unicellular organisms, or are grown in culture.
- the cells are primary cells, such cells may be harvest from an individual by any convenient method.
- leukocytes may be conveniently harvested by apheresis,
- leukocytapheresis leukocytapheresis, density gradient separation, etc.
- cells from tissues such as skin, muscle, bone marrow, spleen, liver, pancreas, lung, intestine, stomach, etc. are most conveniently harvested by biopsy.
- An appropriate solution may be used for dispersion or suspension of the harvested cells.
- Such solution will generally be a balanced salt solution, e.g. normal saline, phosphate-buffered saline (PBS), Hank's balanced salt solution, etc., conveniently supplemented with fetal calf serum or other naturally occurring factors, in conjunction with an acceptable buffer at low concentration, e.g., from 5-25 mM.
- Convenient buffers include HEPES, phosphate buffers, lactate buffers, etc.
- the cells may be used immediately, or they may be stored, frozen, for long periods of time, being thawed and capable of being reused.
- the cells will usually be frozen in 10% dimethyl sulfoxide (DMSO), 50% serum, 40% buffered medium, or some other such solution as is commonly used in the art to preserve cells at such freezing temperatures, and thawed in a manner as commonly known in the art for thawing frozen cultured cells.
- DMSO dimethyl sulfoxide
- nucleic acid into a host cell
- a DNA -targeting RNA, or a nucleic acid comprising a nucleotide sequence encoding same can be introduced into a host cell by any of a variety of well-known methods.
- a subject method involves introducing into a host cell a nucleic acid comprising a nucleotide sequence encoding a variant Cas9 site-directed polypeptide
- such a nucleic acid can be introduced into a host cell by any of a variety of well-known methods.
- Methods of introducing a nucleic acid into a host cell are known in the art, and any known method can be used to introduce a nucleic acid (e.g., an expression construct) into a stem cell or progenitor cell.
- a nucleic acid e.g., an expression construct
- Suitable methods include, include e.g., viral or bacteriophage infection, transfection, conjugation, protoplast fusion, lipofection, electroporation, calcium phosphate precipitation, polyethyleneimine (PEI) -mediated transfection, DEAE-dextran mediated transfection, liposome-mediated transfection, particle gun technology, calcium phosphate precipitation, direct micro injection, nanoparticle-mediated nucleic acid delivery (see, e.g., Panyam et., al Adv Drug Deliv Rev. 2012 Sep 13. pii: S0169-409X(12)00283-9. doi:
- the present disclosure provides an isolated nucleic acid comprising a nucleotide sequence encoding a subject DNA-targeting RNA.
- a subject nucleic acid also comprises a nucleotide sequence encoding a variant Cas9 site -directed polypeptide.
- a subject method involves introducing into a host cell (or a population of host cells) one or more nucleic acids comprising nucleotide sequences encoding a DNA- targeting RNA and/or a variant Cas9 site -directed polypeptide.
- a cell comprising a target DNA is in vitro.
- a cell comprising a target DNA is in vivo.
- Suitable nucleic acids comprising nucleotide sequences encoding a DNA-targeting RNA and/or a site-directed polypeptide include expression vectors, where an expression vector comprising a nucleotide sequence encoding a DNA-targeting RNA and/or a site -directed polypeptide is a "recombinant expression vector.”
- the recombinant expression vector is a viral construct, e.g., a
- recombinant adeno-associated virus construct see, e.g., U.S. Patent No. 7,078,387), a recombinant adenoviral construct, a recombinant lentiviral construct, a recombinant retroviral construct, etc.
- Suitable expression vectors include, but are not limited to, viral vectors (e.g. viral vectors based on vaccinia virus; poliovirus; adenovirus (see, e.g., Li et al., Invest Opthalmol Vis Sci 35:2543 2549, 1994; Borras et al., Gene Ther 6:515 524, 1999; Li and Davidson, PNAS 92:7700 7704, 1995; Sakamoto et al., H Gene Ther 5:1088 1097, 1999; WO 94/12649, WO 93/03769; WO 93/19191; WO 94/28938; WO 95/11984 and WO 95/00655); adeno-associated virus (see, e.g., Ali et al., Hum Gene Ther 9:81 86, 1998, Flannery et al., PNAS 94:6916 6921, 1997; Bennett et al., Invest
- a retroviral vector e.g., Murine Leukemia Virus, spleen necrosis virus, and vectors derived from retroviruses such as Rous Sarcoma Virus, Harvey Sarcoma Virus, avian leukosis virus, a lentivirus, human immunodeficiency virus, myeloproliferative sarcoma virus, and mammary tumor virus; and the like.
- Suitable expression vectors are known to those of skill in the art, and many are commercially available.
- the following vectors are provided by way of example; for eukaryotic host cells: pXTl, pSG5 (Stratagene), pSVK3, pBPV, pMSG, and pSVLSV40 (Pharmacia).
- any other vector may be used so long as it is compatible with the host cell.
- any of a number of suitable transcription and translation control elements including constitutive and inducible promoters, transcription enhancer elements, transcription terminators, etc. may be used in the expression vector (see e.g., Bitter et al. (1987) Methods in Enzymology, 153:516-544).
- a nucleotide sequence encoding a DNA -targeting RNA and/or a variant Cas9 site-directed polypeptide is operably linked to a control element, e.g., a transcriptional control element, such as a promoter.
- a control element e.g., a transcriptional control element, such as a promoter.
- the transcriptional control element may be functional in either a eukaryotic cell, e.g., a mammalian cell; or a prokaryotic cell (e.g., bacterial or archaeal cell).
- a nucleotide sequence encoding a DNA-targeting RNA and/or a variant Cas9 site -directed polypeptide is operably linked to multiple control elements that allow expression of the nucleotide sequence encoding a DNA-targeting RNA and/or a variant Cas9 site -directed polypeptide in both prokaryotic and eukaryotic cells.
- a promoter can be a constitutively active promoter (i.e., a promoter that is constitutively in an active/"ON” state), it may be an inducible promoter (i.e., a promoter whose state, active/"ON” or inactive/"OFF", is controlled by an external stimulus, e.g., the presence of a particular temperature, compound, or protein.), it may be a spatially restricted promoter (i.e.,
- transcriptional control element e.g., tissue specific promoter, cell type specific promoter, etc.
- tissue specific promoter e.g., tissue specific promoter, cell type specific promoter, etc.
- it may be a temporally restricted promoter (i.e., the promoter is in the "ON" state or "OFF” state during specific stages of embryonic development or during specific stages of a biological process, e.g., hair follicle cycle in mice).
- Suitable promoters can be derived from viruses and can therefore be referred to as viral
- promoters or they can be derived from any organism, including prokaryotic or eukaryotic organisms. Suitable promoters can be used to drive expression by any RNA polymerase (e.g., pol I, pol II, pol III).
- RNA polymerase e.g., pol I, pol II, pol III
- Exemplary promoters include, but are not limited to the SV40 early promoter, mouse mammary tumor virus long terminal repeat (LTR) promoter; adenovirus major late promoter (Ad MLP); a herpes simplex virus (HSV) promoter, a cytomegalovirus (CMV) promoter such as the CMV immediate early promoter region (CMVIE), a rous sarcoma virus (RSV) promoter, a human U6 small nuclear promoter (U6) (Miyagishi et al. , Nature
- LTR adenovirus major late promoter
- HSV herpes simplex virus
- CMV cytomegalovirus
- CMVIE CMV immediate early promoter region
- RSV rous sarcoma virus
- U6 small nuclear promoter U6 small nuclear promoter
- an enhanced U6 promoter e.g., Xia et al., Nucleic Acids Res. 2003 Sep 1;31(17)
- a human HI promoter HI
- inducible promoters include, but are not limited toT7 RNA polymerase promoter, T3 RNA polymerase promoter, Isopropyl-beta-D-thiogalactopyranoside (IPTG) -regulated promoter, lactose induced promoter, heat shock promoter, Tetracycline-regulated promoter (e.g., Tet-ON, Tet-OFF, etc.), Steroid-regulated promoter, Metal-regulated promoter, estrogen receptor-regulated promoter, etc.
- Inducible promoters can therefore be regulated by molecules including, but not limited to, doxycycline; RNA polymerase, e.g., T7 RNA polymerase; an estrogen receptor; an estrogen receptor fusion; etc.
- the promoter is a spatially restricted promoter (i.e., cell type specific promoter, tissue specific promoter, etc.) such that in a multi-cellular organism, the promoter is active (i.e., "ON") in a subset of specific cells.
- spatially restricted promoters may also be referred to as enhancers, transcriptional control elements, control sequences, etc.
- any convenient spatially restricted promoter may be used and the choice of suitable promoter (e.g., a brain specific promoter, a promoter that drives expression in a subset of neurons, a promoter that drives expression in the germline, a promoter that drives expression in the lungs, a promoter that drives expression in muscles, a promoter that drives expression in islet cells of the pancreas, etc.) will depend on the organism.
- various spatially restricted promoters are known for plants, flies, worms, mammals, mice, etc.
- a spatially restricted promoter can be used to regulate the expression of a nucleic acid encoding a subject site-directed polypeptide in a wide variety of different tissues and cell types, depending on the organism.
- Some spatially restricted promoters are also temporally restricted such that the promoter is in the "ON" state or "OFF" state during specific stages of embryonic development or during specific stages of a biological process (e.g., hair follicle cycle in mice).
- examples of spatially restricted promoters include, but are not limited to, neuron-specific promoters, adipocyte-specific promoters, cardiomyocyte-specific promoters, smooth muscle-specific promoters, photoreceptor-specific promoters, etc.
- Neuron-specific spatially restricted promoters include, but are not limited to, a neuron-specific enolase (NSE) promoter (see, e.g., EMBL HSEN02, X51956); an aromatic amino acid decarboxylase (AADC) promoter; a neurofilament promoter (see, e.g., GenBank HUMNFL, L04147); a synapsin promoter (see, e.g., GenBank HUMSYNIB, M55301); a thy-1 promoter (see, e.g., Chen et al. (1987) Cell 51:7-19; and Llewellyn, et al. (2010) Nat. Med.
- NSE neuron-specific enolase
- AADC aromatic amino acid decarboxylase
- a serotonin receptor promoter see, e.g., GenBank S62283; a tyrosine hydroxylase promoter (TH) (see, e.g., Oh et al. (2009) Gene Ther 16:437; Sasaoka et al. (1992) Mol. Brain Res. 16:274; Boundy et al. (1998) . Neurosci. 18:9989; and Kaneda et al. (1991) Neuron 6:583-594); a GnRH promoter (see, e.g., Radovick et al. (1991) Proc. Natl. Acad. Sci.
- enhancer/platelet-derived growth factor- ⁇ promoter see, e.g., Liu et al. (2004) Gene Therapy 11 :52-60; and the like.
- Adipocyte-specific spatially restricted promoters include, but are not limited to aP2 gene promoter/enhancer, e.g., a region from -5.4 kb to +21 bp of a human aP2 gene (see, e.g., Tozzo et al. (1997) Endocrinol. 138: 1604; Ross et al. (1990) Proc. Natl. Acad. Sci. USA 87:9590; and Pavjani et al. (2005) Nat. Med. 11 :797); a glucose transporter-4 (GLUT4) promoter (see, e.g., Knight et al. (2003) Proc. Natl. Acad. Sci.
- aP2 gene promoter/enhancer e.g., a region from -5.4 kb to +21 bp of a human aP2 gene (see, e.g., Tozzo et al. (1997) Endocrinol. 138
- fatty acid translocase (FAT/CD36) promoter see, e.g., Kuriki et al. (2002) Biol. Pharm. Bull. 25: 1476; and Sato et al. (2002) . Biol. Chem. 277: 15703
- SCD1 stearoyl-CoA desaturase-1
- SCD1 stearoyl-CoA desaturase-1
- leptin promoter see, e.g., Mason et al. (1998) Endocrinol. 139: 1013; and Chen et al. (1999) Biochem. Biophys. Res. Comm. 262: 187
- an adiponectin promoter see, e.g., Kita et al. (2005) Biochem. Biophys. Res. Comm. 331 :484; and Chakrabarti (2010)
- Cardiomyocyte-specific spatially restricted promoters include, but are not limited to control sequences derived from the following genes: myosin light chain-2, a-myosin heavy chain, AE3, cardiac troponin C, cardiac actin, and the like.
- Franz et al. (1997) Cardiovasc. Res. 35:560-566; Robbins et al. (1995) Ann. N.Y. Acad. Sci. 752:492-505; Linn et al. (1995) Circ. Res. 76:584- 591 ; Parmacek et al. (1994) Mol. Cell. Biol. 14: 1870-1885; Hunter et al. (1993) Hypertension 22:608-617; and Sartorelli et al. (1992) Proc. Natl. Acad. Sci. USA 89:4047-4051.
- Smooth muscle-specific spatially restricted promoters include, but are not limited to an SM22a promoter (see, e.g., Akyurek et al. (2000) Mol. Med. 6:983; and U.S. Patent No. 7,169,874); a smoothelin promoter (see, e.g., WO 2001/018048); an a-smooth muscle actin promoter; and the like.
- a 0.4 kb region of the SM22a promoter, within which lie two CArG elements has been shown to mediate vascular smooth muscle cell-specific expression (see, e.g., Kim, et al. (1997) Mol. Cell. Biol. 17, 2266-2278; Li, et al., (1996) J. Cell Biol. 132, 849-859; and
- Photoreceptor-specific spatially restricted promoters include, but are not limited to, a
- rhodopsin promoter a rhodopsin kinase promoter (Young et al. (2003) Ophthalmol. Vis. Sci. 44:4076); a beta phosphodiesterase gene promoter (Nicoud et al. (2007) . Gene Med. 9: 1015); a retinitis pigmentosa gene promoter (Nicoud et al. (2007) supra); an interphotoreceptor retinoid- binding protein (IRBP) gene enhancer (Nicoud et al. (2007) supra); an IRBP gene promoter (Yokoyama et al. (1992) Exp Eye Res. 55:225); and the like.
- IRBP interphotoreceptor retinoid- binding protein
- the present disclosure provides a library of DNA-targeting RNAs.
- the present disclosure provides a library of nucleic acids comprising nucleotides encoding DNA-targeting RNAs.
- a subject library of nucleic acids comprising nucleotides encoding DNA-targeting RNAs can comprises a library of recombinant expression vectors comprising nucleotides encoding the DNA-targeting RNAs.
- a subject library can comprise from about 10 individual members to about 10 12 individual members; e.g., a subject library can comprise from about 10 individual members to about 10 2 individual members, from about 10 2 individual members to about 10 3 individual members, from about 10 3 individual members to about 10 5 individual members, from about 10 5 individual members to about 10 7 individual members, from about 10 7 individual members to about 10 9 individual members, or from about 10 9 individual members to about 10 12 individual members.
- each individual member of a subject library differs from other members of the library in the nucleotide sequence of the DNA targeting segment of the DNA-targeting RNA.
- each individual member of a subject library can comprise the same or substantially the same nucleotide sequence of the protein-binding segment as all other members of the library; and can comprise the same or substantially the same nucleotide sequence of the transcriptional termination segment as all other members of the library; but differs from other members of the library in the nucleotide sequence of the DNA targeting segment of the DNA-targeting RNA.
- the library can comprise members that bind to different target nucleic acids. UTILITY
- a method for modulating transcription according to the present disclosure finds use in a
- Applications include research applications; diagnostic applications; industrial applications; and treatment applications.
- Research applications include, e.g., determining the effect of reducing or increasing
- transcription of a target nucleic acid on, e.g., development, metabolism, expression of a downstream gene, and the like.
- High through-put genomic analysis can be carried out using a subject transcription modulation method, in which only the DNA -targeting segment of the DNA-targeting RNA needs to be varied, while the protein-binding segment and the transcription termination segment can (in some cases) be held constant.
- a library e.g., a subject library
- comprising a plurality of nucleic acids used in the genomic analysis would include: a promoter operably linked to a DNA- targeting RNA-encoding nucleotide sequence, where each nucleic acid would include a different DNA-targeting segment, a common protein-binding segment, and a common transcription termination segment.
- a chip could contain over 5 x 10 4 unique DNA-targeting RNAs.
- Applications would include large-scale phenotyping, gene-to-function mapping, and meta- genomic analysis.
- the subject methods disclosed herein find use in the field of metabolic engineering. Because transcription levels can be efficiently and predictably controlled by designing an appropriate DNA-targeting RNA, as disclosed herein, the activity of metabolic pathways (e.g., biosynthetic pathways) can be precisely controlled and tuned by controlling the level of specific enzymes (e.g., via increased or decreased transcription) within a metabolic pathway of interest. Metabolic pathways of interest include those used for chemical (fine chemicals, fuel, antibiotics, toxins, agonists, antagonists, etc.) and/or drug production.
- Biosynthetic pathways of interest include but are not limited to (1) the mevalonate pathway (e.g., HMG-CoA reductase pathway ) (converts acetyl-CoA to dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP), which are used for the biosynthesis of a wide variety of biomolecules including terpenoids/isoprenoids), (2) the non-mevalonate pathway (i.e., the "2-C-methyl-D-erythritol 4-phosphate/l-deoxy-D -xylulose 5-phosphate pathway" or "MEP/DOXP pathway” or “DXP pathway”)(also produces DMAPP and IPP, instead by converting pyruvate and glyceraldehyde 3 -phosphate into DMAPP and IPP via an alternative pathway to the mevalonate pathway), (3) the polyketide synthesis pathway (produces a variety of polyketides
- Polyketides include naturally occurring small molecules used for chemotherapy (e. g., tetracyclin, and macrolides) and industrially important polyketides include rapamycin (immunosuppressant), erythromycin (antibiotic), lovastatin (anticholesterol drug), and epothilone B (anticancer drug)), (4) fatty acid synthesis pathways, (5) the DAHP (3-deoxy-D-arabino-heptulosonate 7-phosphate) synthesis pathway, (6) pathways that produce potential biofuels (such as short-chain alcohols and alkane, fatty acid methyl esters and fatty alcohols, isoprenoids, etc.), etc.
- rapamycin immunosuppressant
- erythromycin antibiotic
- lovastatin anticholesterol drug
- epothilone B anticancer drug
- the methods disclosed herein can be used to design integrated networks (i.e., a cascade or cascades) of control.
- a subject DNA-targeting RNA / variant Cas9 site-directed polypeptide may be used to control (i.e., modulate, e.g., increase, decrease) the expression of another DNA-tageting RNA or another subject variant Cas9 site-directed polypeptide.
- a first DNA-targeting RNA may be designed to target the modulation of transcription of a second chimeric dCas9 polypeptide with a function that is different than the first variant Cas9 site-directed polypeptide (e.g., methyltransferase activity, demethylase activity, acetyltansf erase activity, deacetylase activity, etc.).
- the second chimeric dCas9 polypeptide can be derived from a different species than the first dCas9 polypeptide above.
- the second chimeric dCas9 polypeptide can be selected such that it may not interact with the first DNA-targeting RNA. In other cases, the second chimeric dCas9 polypeptide can be selected such that it does interact with the first DNA-targeting RNA. In some such cases, the activities of the two (or more) dCas9 proteins may compete (e.g., if the polypeptides have opposing activities) or may synergize (e.g., if the polypeptides have similar or synergistic activities).
- any of the complexes i.e., DNA-targeting RNA / dCas9 polypeptide
- any of the complexes in the network can be designed to control other DNA-targeting RNAs or dCas9 polypeptides.
- a subject DNA-targeting RNA and subject variant Cas9 site -directed polypeptide can be targeted to any desired DNA sequence, the methods described herein can be used to control and regulate the expression of any desired target.
- the integrated networks i.e., cascades of interactions
- the level of expression of one component of the network may affect the level of expression (e.g., may increase or decrease the expression) of another component of the network.
- the expression of one component may affect the expression of a different component in the same network, and the network may include a mix of components that increase the expression of other components, as well as components that decrease the expression of other components.
- level of expression of one component may affect the level of expression of one or more different component(s) are for illustrative purposes, and are not limiting.
- An additional layer of complexity may be optionally introduced into a network when one or more components are modified (as described above) to be manipulable (i.e., under experimental control, e.g., temperature control; drug control, i.e., drug inducible control; light control; etc.).
- a first DNA-targeting RNA can bind to the promoter of a second DNA -targeting RNA, which controls the expression of a target therapeutic/metabolic gene.
- conditional expression of the first DNA-targeting RNA indirectly activates the therapeutic/metabolic gene.
- RNA cascades of this type are useful, for example, for easily converting a repressor into an activator, and can be used to control the logics or dynamics of expression of a target gene.
- a subject transcription modulation method can also be used for drug discovery and target validation.
- a subject kit comprises: a) a DNA-targeting RNA of the present disclosure, or a nucleic acid comprising a nucleotide sequence encoding the DNA-targeting RNA, wherein the DNA-targeting RNA comprises: i)) a first segment comprising a nucleotide sequence that is complementary to a target sequence in the target DNA; ii)) a second segment that interacts with a site -directed polypeptide; and iii) a transcriptional terminator; and b) a buffer.
- the nucleic acid comprising a nucleotide sequence encoding the DNA-targeting RNA further comprises a nucleotide sequence encoding a variant Cas9 site -directed polypeptide that exhibits reduced endodeoxyribonuclease activity relative to wild-type Cas9.
- a subject kit further comprises a variant Cas9 site -directed polypeptide that exhibits reduced endodeoxyribonuclease activity relative to wild-type Cas9.
- a subject kit further comprises a nucleic acid comprising a nucleotide sequence encoding a variant Cas9 site-directed polypeptide that exhibits reduced
- a subject can further include one or more additional reagents, where such additional reagents can be selected from: a buffer; a wash buffer; a control reagent; a control expression vector or RNA polynucleotide; a reagent for in vitro production of the variant Cas9 site -directed polypeptide from DNA; and the like.
- additional reagents can be selected from: a buffer; a wash buffer; a control reagent; a control expression vector or RNA polynucleotide; a reagent for in vitro production of the variant Cas9 site -directed polypeptide from DNA; and the like.
- the variant Cas9 site-directed polypeptide included in a subject kit is a fusion variant Cas9 site -directed polypeptide, as described above.
- Components of a subject kit can be in separate containers; or can be combined in a single container.
- a subject kit can further include
- the instructions for practicing the subject methods are generally recorded on a suitable recording medium.
- the instructions may be printed on a substrate, such as paper or plastic, etc.
- the instructions may be present in the kits as a package insert, in the labeling of the container of the kit or components thereof (i.e., associated with the packaging or subpackaging) etc.
- the instructions are present as an electronic storage data file present on a suitable computer readable storage medium, e.g. CD-ROM, diskette, flash drive, etc.
- the actual instructions are not present in the kit, but means for obtaining the instructions from a remote source, e.g. via the internet, are provided.
- An example of this embodiment is a kit that includes a web address where the instructions can be viewed and/or from which the instructions can be downloaded. As with the instructions, this means for obtaining the instructions is recorded on a suitable substrate.
- Standard abbreviations may be used, e.g., bp, base pair(s); kb, kilobase(s); pi, picoliter(s); s or sec, second(s); min, minute(s); h or hr, hour(s); aa, amino acid(s); kb, kilobase(s); bp, base pair(s); nt, nucleotide(s); i.m.,
- Example 1 Use of Cas9 to generate modifications in target DNA.
- Streptococcus pyogenes cultured in THY medium (Todd Hewitt Broth (THB, Bacto, Becton
- E. coli cultured in Luria-Bertani (LB) medium and agar, was incubated at 37°C with shaking.
- suitable antibiotics were added to the medium at the following final concentrations: ampicillin, 100 ⁇ g/ml for E. coli; chloramphenicol, 33 ⁇ g/ml for Escherichia coli; kanamycin, 25 ⁇ g/ml for E. coli and 300 ⁇ g/ml for S. pyogenes.
- Bacterial cell growth was monitored periodically by measuring the optical density of culture aliquots at 620 nm using a microplate reader (SLT Spectra Reader).
- Plasmid DNA transformation into E. coli cells was performed according to a standard heat shock protocol. Transformation of S. pyogenes was performed as previously described with some modifications. The transformation assay performed to monitor in vivo CRISPR/Cas activity on plasmid maintenance was essentially carried out as described previously. Briefly,
- DNA manipulations including DNA preparation, amplification, digestion, ligation, purification, agarose gel electrophoresis were performed according to standard techniques with minor modifications.
- Protospacer plasmids for the in vitro cleavage and S. pyogenes transformation assays were constructed as described previously (4).
- Additional pUC19-based protospacer plasmids for in vitro cleavage assays were generated by ligating annealed oligonucleotides between digested EcoRI and BamHI sites in pUC19.
- the GFP gene -containing plasmid has been described previously (41). Kits (Qiagen) were used for DNA purification and plasmid preparation.
- Plasmid mutagenesis was performed using QuikChange® II XL kit (Stratagene) or QuikChange site-directed mutagenesis kit (Agilent). VBC-Biotech Services, Sigma-Aldrich and Integrated DNA Technologies supplied the synthetic oligonucleotides and RNAs. Oligonucleotides for in vitro transcription templates
- OLEC1521 F 5' tracrRNA: SEQ ID NO: 340
- OLEC1522 (R 3' tracrRNA): SEQ ID NO: 341
- OLEC2176 F crRNA-spl: SEQ ID NO: 342
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Mycology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Environmental Sciences (AREA)
- Cell Biology (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Immunology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Epidemiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Natural Medicines & Medicinal Plants (AREA)
Priority Applications (58)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MX2014014477A MX349744B (es) | 2012-05-25 | 2013-03-15 | Metodos y composiciones para la modificacion de adn objetivo dirigida por arn y para la modulacion de la transcripcion dirigida por arn. |
| KR1020147036096A KR20150016588A (ko) | 2012-05-25 | 2013-03-15 | Rna-유도된 표적 dna 변형 및 전사의 rna-유도된 조절을 위한 방법 및 조성물 |
| EP25159662.3A EP4570908A3 (en) | 2012-05-25 | 2013-03-15 | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
| HK15104473.1A HK1204003A1 (en) | 2012-05-25 | 2013-03-15 | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
| RS20170783A RS56119B1 (sr) | 2012-05-25 | 2013-03-15 | Postupci i sastavi za rnk-usmerenu modifikaciju ciljane dnk i za rnk-usmerenu modulaciju transkripcije |
| MYPI2014003102A MY184753A (en) | 2012-05-25 | 2013-03-15 | Methods and compositions for rna-directed target dna modification and for rna-directed modulation transcription |
| EP19157590.1A EP3597749B1 (en) | 2012-05-25 | 2013-03-15 | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
| SG11201407702XA SG11201407702XA (en) | 2012-05-25 | 2013-03-15 | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
| HK15112610.8A HK1211978B (en) | 2012-05-25 | 2013-03-15 | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
| SI201330747T SI2800811T1 (sl) | 2012-05-25 | 2013-03-15 | Postopki in sestavki za RNA usmerjeno modifikacijo tarčne DNA in za RNA usmerjeno modulacijo prepisovanja |
| PE2019000945A PE20190844A1 (es) | 2012-05-25 | 2013-03-15 | Modulacion de transcripcion con arn de direccion a adn generico |
| MYPI2018700285A MY189533A (en) | 2012-05-25 | 2013-03-15 | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
| DK13793997.1T DK2800811T3 (en) | 2012-05-25 | 2013-03-15 | METHODS AND COMPOSITIONS FOR RNA DIRECTIVE TARGET DNA MODIFICATION AND FOR RNA DIRECTIVE MODULATION OF TRANSCRIPTION |
| EP23187511.3A EP4289948B1 (en) | 2012-05-25 | 2013-03-15 | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
| PL18152360T PL3401400T3 (pl) | 2012-05-25 | 2013-03-15 | Sposób i kompozycje do modyfikacji docelowego dna przez ukierunkowujący RNA oraz do modulacji transkrypcji przez ukierunkowujący RNA |
| EP21207127.8A EP4043564A1 (en) | 2012-05-25 | 2013-03-15 | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
| EP13793997.1A EP2800811B1 (en) | 2012-05-25 | 2013-03-15 | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
| LTEP13793997.1T LT2800811T (lt) | 2012-05-25 | 2013-03-15 | Būdai ir kompozicijos, skirti tikslinės dnr modifikavimui, panaudojant adresuotą rnr, ir transkripcijos moduliavimui, panaudojant adresuotą rnr |
| MX2017010309A MX362866B (es) | 2012-05-25 | 2013-03-15 | Metodos y composiciones para la modificacion de adn objetivo dirigida por arn y para la modulacion de la transcripcion dirigida por arn. |
| UAA201413835A UA118014C2 (uk) | 2012-05-25 | 2013-03-15 | Спосіб модифікації днк-мішені |
| CN201380038920.6A CN104854241B (zh) | 2012-05-25 | 2013-03-15 | 用于rna定向的靶dna修饰和用于rna定向的转录调节的方法和组合物 |
| JP2015514015A JP6343605B2 (ja) | 2012-05-25 | 2013-03-15 | Rna依存性標的dna修飾およびrna依存性転写調節のための方法および組成物 |
| ES13793997.1T ES2636902T3 (es) | 2012-05-25 | 2013-03-15 | Métodos y composiciones para la modificación de ADN objetivo dirigida por ARN y para la modulación de la transcripción dirigida por ARN |
| HK15106335.4A HK1207107B (en) | 2012-05-25 | 2013-03-15 | Methods and compositions for rna-directed target dna modification |
| PE2019000943A PE20190842A1 (es) | 2012-05-25 | 2013-03-15 | Arn de direccion a adn de dos moleculas |
| GB1420270.9A GB2518764C (en) | 2012-05-25 | 2013-03-15 | Methods and compositions for RNA-directed target DNA modification |
| US14/403,475 US20160046961A1 (en) | 2012-05-25 | 2013-03-15 | Methods and Compositions for RNA-Directed Target DNA Modification and For RNA-Directed Modulation of Transcription |
| EA201401319A EA038924B1 (ru) | 2012-05-25 | 2013-03-15 | Способы и композиции рнк-специфической модификации днк-мишени и рнк-специфической модуляции транскрипции |
| BR112014029441-0A BR112014029441B1 (pt) | 2012-05-25 | 2013-03-15 | Método de modificação de um dna alvo, composição, rna tendo como alvo dna, um ou mais ácidos nucleicos, kit, método para modular a transcrição específica do sítio em um dna alvo e método para modificar um polipeptídeo associado com um dna alvo |
| CA2872241A CA2872241C (en) | 2012-05-25 | 2013-03-15 | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
| MA37663A MA37663B1 (fr) | 2012-05-25 | 2013-03-15 | Procédés et compositions permettant la modification de l'adn cible dirigée par l'arn et la modulation de la transcription dirigée par l'arn |
| EP18152360.6A EP3401400B1 (en) | 2012-05-25 | 2013-03-15 | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
| MX2019001995A MX369077B (es) | 2012-05-25 | 2013-03-15 | Metodos y composiciones para la modificacion de adn objetivo dirigida por arn y para la modulacion de la transcripcion dirigida por arn. |
| AU2013266968A AU2013266968B2 (en) | 2012-05-25 | 2013-03-15 | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| PE2019000944A PE20190843A1 (es) | 2012-05-25 | 2013-03-15 | Arn de direccion a adn generico |
| HRP20171163TT HRP20171163T1 (hr) | 2012-05-25 | 2013-03-15 | Postupci i sastavi za rnk-usmjerenu modifikaciju ciljane dnk i rnk-usmjerene modulacije transkripcije |
| MEP-2017-180A ME02836B (me) | 2012-05-25 | 2013-03-15 | Postupci i sastavi za rnk-usmerenu modifikaciju ciljane dnk i za rnk-usmerenu modulaciju transkripcije |
| KR1020177034069A KR20170134766A (ko) | 2012-05-25 | 2013-03-15 | Rna-유도된 표적 dna 변형 및 전사의 rna-유도된 조절을 위한 방법 및 조성물 |
| IL235461A IL235461B (en) | 2012-05-25 | 2014-11-02 | Methods and compounds for targeting rna for the purpose of modifying dna and regulating the targeting of chart rna |
| PH12014502574A PH12014502574B1 (en) | 2012-05-25 | 2014-11-19 | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
| CR20140538A CR20140538A (es) | 2012-05-25 | 2014-11-24 | Métodos y composiciones para la modificación de adn objetivo dirigida por arn y para la modificación de la transcripción dirigida por arn |
| TN2014000493A TN2014000493A1 (en) | 2012-05-25 | 2014-11-25 | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
| CO14259531A CO7151523A2 (es) | 2012-05-25 | 2014-11-25 | Método y composiciones para la modificación de adn objetivo dirigida por arn y para la modulación de la transcripción dirigida por arn |
| US15/090,511 US20170051312A1 (en) | 2012-05-25 | 2016-04-04 | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
| CY20171100846T CY1119282T1 (el) | 2012-05-25 | 2017-08-08 | Μεθοδοι και συνθεσεις για κατευθυνομενη απο rna τροποποιηση dna στοχου και για κατευθυνομενη απο rna ρυθμιση της μεταγραφης |
| AU2017225060A AU2017225060B2 (en) | 2012-05-25 | 2017-09-07 | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US15/803,424 US10519467B2 (en) | 2012-05-25 | 2017-11-03 | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| IL261563A IL261563A (en) | 2012-05-25 | 2018-09-03 | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
| IL261569A IL261569B (en) | 2012-05-25 | 2018-09-03 | Methods and compounds for targeting rna for the purpose of modifying dna and regulating the targeting of chart rna |
| IL261570A IL261570B (en) | 2012-05-25 | 2018-09-03 | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
| IL261565A IL261565B (en) | 2012-05-25 | 2018-09-03 | Methods and compounds for targeting rna for the purpose of modifying dna and regulating the targeting of chart rna |
| IL261566A IL261566B (en) | 2012-05-25 | 2018-09-03 | Methods and compounds for targeting rna for the purpose of modifying dna and regulating the targeting of chart rna |
| IL261568A IL261568B (en) | 2012-05-25 | 2018-09-03 | Methods and compounds for RNA-directed target DNA modification and RNA-directed transcriptional regulation |
| IL261567A IL261567B (en) | 2012-05-25 | 2018-09-03 | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
| AU2019201850A AU2019201850B2 (en) | 2012-05-25 | 2019-03-18 | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| CY20191100536T CY1121657T1 (el) | 2012-05-25 | 2019-05-20 | Μεθοδοι και συνθεσεις για κατευθυνομενη απο rna τροποποιηση dna στοχου και για κατευθυνομενη απο rna ρυθμιση της μεταγραφης |
| AU2021200952A AU2021200952B2 (en) | 2012-05-25 | 2021-02-12 | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| AU2023248113A AU2023248113A1 (en) | 2012-05-25 | 2023-10-11 | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
Applications Claiming Priority (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201261652086P | 2012-05-25 | 2012-05-25 | |
| US61/652,086 | 2012-05-25 | ||
| US201261716256P | 2012-10-19 | 2012-10-19 | |
| US61/716,256 | 2012-10-19 | ||
| US201361757640P | 2013-01-28 | 2013-01-28 | |
| US61/757,640 | 2013-01-28 | ||
| US201361765576P | 2013-02-15 | 2013-02-15 | |
| US61/765,576 | 2013-02-15 |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/403,475 A-371-Of-International US20160046961A1 (en) | 2012-05-25 | 2013-03-15 | Methods and Compositions for RNA-Directed Target DNA Modification and For RNA-Directed Modulation of Transcription |
| US15/090,511 Continuation US20170051312A1 (en) | 2012-05-25 | 2016-04-04 | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2013176772A1 true WO2013176772A1 (en) | 2013-11-28 |
Family
ID=49624232
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2013/032589 Ceased WO2013176772A1 (en) | 2012-05-25 | 2013-03-15 | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
Country Status (41)
Cited By (830)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8697359B1 (en) | 2012-12-12 | 2014-04-15 | The Broad Institute, Inc. | CRISPR-Cas systems and methods for altering expression of gene products |
| CN103820454A (zh) * | 2014-03-04 | 2014-05-28 | 黄行许 | CRISPR-Cas9特异性敲除人PD1基因的方法以及用于特异性靶向PD1基因的sgRNA |
| US8795965B2 (en) | 2012-12-12 | 2014-08-05 | The Broad Institute, Inc. | CRISPR-Cas component systems, methods and compositions for sequence manipulation |
| WO2014144155A1 (en) * | 2013-03-15 | 2014-09-18 | Regents Of The University Of Minnesota | Engineering plant genomes using crispr/cas systems |
| US8865406B2 (en) | 2012-12-12 | 2014-10-21 | The Broad Institute Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
| US8889356B2 (en) | 2012-12-12 | 2014-11-18 | The Broad Institute Inc. | CRISPR-Cas nickase systems, methods and compositions for sequence manipulation in eukaryotes |
| US20140356867A1 (en) * | 2013-05-29 | 2014-12-04 | Agilent Technologies, Inc. | Nucleic acid enrichment using cas9 |
| US8906616B2 (en) | 2012-12-12 | 2014-12-09 | The Broad Institute Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
| WO2014186686A3 (en) * | 2013-05-17 | 2015-01-08 | Two Blades Foundation | Targeted mutagenesis and genome engineering in plants using rna-guided cas nucleases |
| EP2828386A1 (en) | 2012-03-20 | 2015-01-28 | Vilnius University | RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX |
| WO2015017866A1 (en) | 2013-08-02 | 2015-02-05 | Enevolv, Inc. | Processes and host cells for genome, pathway, and biomolecular engineering |
| WO2015040402A1 (en) | 2013-09-18 | 2015-03-26 | Kymab Limited | Methods. cells & organisms |
| US8993233B2 (en) | 2012-12-12 | 2015-03-31 | The Broad Institute Inc. | Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains |
| EP2784162B1 (en) | 2012-12-12 | 2015-04-08 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
| WO2014191521A3 (en) * | 2013-05-29 | 2015-04-16 | Cellectis | New compact scaffold of cas9 in the type ii crispr system |
| CN104531632A (zh) * | 2014-11-18 | 2015-04-22 | 李云英 | 快速降解的Cas9-ODC422-461融合蛋白及其应用 |
| WO2015035139A3 (en) * | 2013-09-06 | 2015-04-30 | Prisident And Fellows Of Harvard College | Switchable cas9 nucleases and uses thereof |
| US9023649B2 (en) | 2012-12-17 | 2015-05-05 | President And Fellows Of Harvard College | RNA-guided human genome engineering |
| EP2877213A2 (en) | 2012-07-25 | 2015-06-03 | The Broad Institute, Inc. | Inducible dna binding proteins and genome perturbation tools and applications thereof |
| WO2015088643A1 (en) | 2013-12-11 | 2015-06-18 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a genome |
| WO2015089354A1 (en) * | 2013-12-12 | 2015-06-18 | The Broad Institute Inc. | Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders |
| US20150166981A1 (en) * | 2013-12-12 | 2015-06-18 | President And Fellows Of Harvard College | Methods for nucleic acid editing |
| WO2015086795A1 (en) * | 2013-12-13 | 2015-06-18 | Cellectis | Cas9 nuclease platform for microalgae genome engineering |
| WO2015089375A1 (en) | 2013-12-13 | 2015-06-18 | The General Hospital Corporation | Soluble high molecular weight (hmw) tau species and applications thereof |
| WO2015099850A1 (en) * | 2013-12-26 | 2015-07-02 | The General Hospital Corporation | Multiplex guide rnas |
| US9074199B1 (en) | 2013-11-19 | 2015-07-07 | President And Fellows Of Harvard College | Mutant Cas9 proteins |
| WO2015103153A1 (en) * | 2013-12-31 | 2015-07-09 | The Regents Of The University Of California | Cas9 crystals and methods of use thereof |
| WO2015105928A1 (en) | 2014-01-08 | 2015-07-16 | President And Fellows Of Harvard College | Rna-guided gene drives |
| WO2015108993A1 (en) | 2014-01-14 | 2015-07-23 | Lam Therapeutics, Inc. | Mutagenesis methods |
| WO2015112896A2 (en) | 2014-01-24 | 2015-07-30 | North Carolina State University | Methods and compositions for sequences guiding cas9 targeting |
| WO2015113063A1 (en) | 2014-01-27 | 2015-07-30 | Georgia Tech Research Corporation | Methods and systems for identifying crispr/cas off-target sites |
| US20150232883A1 (en) * | 2013-12-12 | 2015-08-20 | The Broad Institute Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components |
| WO2015123339A1 (en) * | 2014-02-11 | 2015-08-20 | The Regents Of The University Of Colorado, A Body Corporate | Crispr enabled multiplexed genome engineering |
| WO2015071474A3 (en) * | 2013-11-18 | 2015-08-27 | Crispr Therapeutics Ag | Crispr-cas system materials and methods |
| US20150240263A1 (en) * | 2014-02-24 | 2015-08-27 | Sangamo Biosciences, Inc. | Methods and compositions for nuclease-mediated targeted integration |
| EP2912175A1 (en) | 2012-10-23 | 2015-09-02 | Toolgen Incorporated | Composition for cleaving a target dna comprising a guide rna specific for the target dna and cas protein-encoding nucleic acid or cas protein, and use thereof |
| WO2015139008A1 (en) | 2014-03-14 | 2015-09-17 | Cibus Us Llc | Methods and compositions for increasing efficiency of targeted gene modification using oligonucleotide-mediated gene repair |
| EP2922393A1 (en) | 2013-02-27 | 2015-09-30 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) | Gene editing in the oocyte by cas9 nucleases |
| WO2015153791A1 (en) * | 2014-04-01 | 2015-10-08 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating herpes simplex virus type 2 (hsv-2) |
| EP2928496A1 (en) | 2012-12-06 | 2015-10-14 | Sigma Aldrich Co. LLC | Crispr-based genome modification and regulation |
| US9163284B2 (en) | 2013-08-09 | 2015-10-20 | President And Fellows Of Harvard College | Methods for identifying a target site of a Cas9 nuclease |
| EP2931897A2 (en) | 2012-12-12 | 2015-10-21 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
| EP2931899A1 (en) * | 2012-12-12 | 2015-10-21 | The Broad Institute, Inc. | Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof |
| WO2014152432A3 (en) * | 2013-03-15 | 2015-10-29 | The General Hospital Corporation | Rna-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci |
| WO2015161276A3 (en) * | 2014-04-18 | 2015-12-10 | Editas Medicine, Inc. | Crispr-cas-related methods, compositions and components for cancer immunotherapy |
| WO2015188109A1 (en) | 2014-06-06 | 2015-12-10 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for modifying a targeted locus |
| WO2015200805A2 (en) | 2014-06-26 | 2015-12-30 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modifications and methods of use |
| US9234213B2 (en) | 2013-03-15 | 2016-01-12 | System Biosciences, Llc | Compositions and methods directed to CRISPR/Cas genomic engineering systems |
| US20160040189A1 (en) * | 2014-08-07 | 2016-02-11 | Agilent Technologies, Inc. | Cis-blocked guide rna |
| WO2016022363A2 (en) | 2014-07-30 | 2016-02-11 | President And Fellows Of Harvard College | Cas9 proteins including ligand-dependent inteins |
| US9260752B1 (en) | 2013-03-14 | 2016-02-16 | Caribou Biosciences, Inc. | Compositions and methods of nucleic acid-targeting nucleic acids |
| US9267135B2 (en) | 2013-06-04 | 2016-02-23 | President And Fellows Of Harvard College | RNA-guided transcriptional regulation |
| WO2016028843A2 (en) | 2014-08-19 | 2016-02-25 | President And Fellows Of Harvard College | Rna-guided systems for probing and mapping of nucleic acids |
| WO2016011080A3 (en) * | 2014-07-14 | 2016-03-03 | The Regents Of The University Of California | Crispr/cas transcriptional modulation |
| WO2016036754A1 (en) | 2014-09-02 | 2016-03-10 | The Regents Of The University Of California | Methods and compositions for rna-directed target dna modification |
| US20160076093A1 (en) * | 2014-08-04 | 2016-03-17 | University Of Washington | Multiplex homology-directed repair |
| WO2016049531A1 (en) | 2014-09-26 | 2016-03-31 | Purecircle Usa Inc. | Single nucleotide polymorphism (snp) markers for stevia |
| WO2016050512A1 (en) | 2014-10-03 | 2016-04-07 | Bayer Cropscience Nv | Methods and means for increasing stress tolerance and biomass in plants |
| WO2016061374A1 (en) | 2014-10-15 | 2016-04-21 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for generating or maintaining pluripotent cells |
| US9322037B2 (en) | 2013-09-06 | 2016-04-26 | President And Fellows Of Harvard College | Cas9-FokI fusion proteins and uses thereof |
| WO2016070037A2 (en) | 2014-10-31 | 2016-05-06 | Massachusetts Institute Of Technology | Massively parallel combinatorial genetics for crispr |
| WO2016073433A1 (en) * | 2014-11-06 | 2016-05-12 | E. I. Du Pont De Nemours And Company | Peptide-mediated delivery of rna-guided endonuclease into cells |
| WO2016081923A2 (en) | 2014-11-21 | 2016-05-26 | Regeneron Pharmaceuticals, Inc. | METHODS AND COMPOSITIONS FOR TARGETED GENETIC MODIFICATION USING PAIRED GUIDE RNAs |
| WO2016083811A1 (en) | 2014-11-27 | 2016-06-02 | Imperial Innovations Limited | Genome editing methods |
| WO2016089883A1 (en) * | 2014-12-01 | 2016-06-09 | Novartis Ag | Compositions and methods for diagnosis and treatment of prostate cancer |
| WO2016089433A1 (en) | 2014-12-03 | 2016-06-09 | Agilent Technologies, Inc. | Guide rna with chemical modifications |
| WO2016097751A1 (en) * | 2014-12-18 | 2016-06-23 | The University Of Bath | Method of cas9 mediated genome engineering |
| JP2016518142A (ja) * | 2013-05-10 | 2016-06-23 | サンガモ バイオサイエンシーズ, インコーポレイテッド | ヌクレアーゼ媒介ゲノム遺伝子操作のための送達方法および組成物 |
| WO2016100857A1 (en) | 2014-12-19 | 2016-06-23 | Regeneron Pharmaceuticals, Inc. | Stem cells for modeling type 2 diabetes |
| EP2946015A4 (en) * | 2013-01-16 | 2016-07-06 | Univ Emory | CAS9 NUCLEIC ACID COMPLEXES AND USES THEREOF |
| GB2534074A (en) * | 2011-12-30 | 2016-07-13 | Caribou Biosciences Inc | Modified cascade ribonucleoproteins and uses thereof |
| JP2016521554A (ja) * | 2013-06-04 | 2016-07-25 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Rna誘導性転写制御 |
| KR20160089527A (ko) * | 2013-12-12 | 2016-07-27 | 더 브로드 인스티튜트, 인코퍼레이티드 | 게놈 편집을 위한 crispr-cas 시스템 및 조성물의 전달, 용도 및 치료적 응용 |
| JP2016521995A (ja) * | 2013-06-17 | 2016-07-28 | ザ・ブロード・インスティテュート・インコーポレイテッド | ウイルス成分を使用して障害および疾患をターゲティングするためのCRISPR−Cas系および組成物の送達、使用および治療上の適用 |
| JP2016521975A (ja) * | 2013-05-15 | 2016-07-28 | サンガモ バイオサイエンシーズ, インコーポレイテッド | 遺伝的状態の処置のための方法および組成物 |
| JP2016523082A (ja) * | 2013-06-17 | 2016-08-08 | ザ・ブロード・インスティテュート・インコーポレイテッド | 分裂終了細胞の疾患および障害をターゲティングおよびモデリングするための系、方法および組成物の送達、エンジニアリングおよび最適化 |
| JP2016523559A (ja) * | 2013-07-09 | 2016-08-12 | プレジデント アンド フェローズ オブ ハーバード カレッジ | 多重rna誘導型ゲノム編集 |
| JP2016523560A (ja) * | 2013-07-10 | 2016-08-12 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Rna誘導性遺伝子制御および編集のための直交性cas9タンパク質 |
| JP2016524472A (ja) * | 2013-06-17 | 2016-08-18 | ザ・ブロード・インスティテュート・インコーポレイテッド | 肝臓ターゲティングおよび治療のためのCRISPR−Cas系、ベクターおよび組成物の送達および使用 |
| WO2016135559A2 (en) | 2015-02-23 | 2016-09-01 | Crispr Therapeutics Ag | Materials and methods for treatment of human genetic diseases including hemoglobinopathies |
| WO2016135558A2 (en) | 2015-02-23 | 2016-09-01 | Crispr Therapeutics Ag | Materials and methods for treatment of hemoglobinopathies |
| US9434782B2 (en) | 2009-07-08 | 2016-09-06 | Kymab Limited | Animal models and therapeutic molecules |
| WO2016141224A1 (en) | 2015-03-03 | 2016-09-09 | The General Hospital Corporation | Engineered crispr-cas9 nucleases with altered pam specificity |
| JP2016528894A (ja) * | 2013-07-26 | 2016-09-23 | プレジデント アンド フェローズ オブ ハーバード カレッジ | ゲノムエンジニアリング |
| WO2016154344A1 (en) | 2015-03-24 | 2016-09-29 | The Regents Of The University Of California | Adeno-associated virus variants and methods of use thereof |
| WO2016164356A1 (en) | 2015-04-06 | 2016-10-13 | The Board Of Trustees Of The Leland Stanford Junior University | Chemically modified guide rnas for crispr/cas-mediated gene regulation |
| CN106062197A (zh) * | 2013-06-17 | 2016-10-26 | 布罗德研究所有限公司 | 用于序列操纵的串联指导系统、方法和组合物的递送、工程化和优化 |
| US9487802B2 (en) | 2014-05-30 | 2016-11-08 | The Board Of Trustees Of The Leland Stanford Junior University | Compositions and methods to treat latent viral infections |
| WO2016186953A1 (en) | 2015-05-15 | 2016-11-24 | Pioneer Hi Bred International Inc | Guide rna/cas endonuclease systems |
| US9504236B2 (en) | 2009-07-08 | 2016-11-29 | Kymab Limited | Animal models and therapeutic molecules |
| CN106170550A (zh) * | 2014-04-03 | 2016-11-30 | 麻省理工学院 | 用于产生导引rna的方法和组合物 |
| US9512446B1 (en) | 2015-08-28 | 2016-12-06 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
| CN106191043A (zh) * | 2016-07-26 | 2016-12-07 | 吉林大学 | 一种基因片段、载体pPlasmid‑Clearance及应用 |
| WO2016196887A1 (en) * | 2015-06-03 | 2016-12-08 | Board Of Regents Of The University Of Nebraska | Dna editing using single-stranded dna |
| WO2016198361A1 (en) * | 2015-06-12 | 2016-12-15 | Wageningen Universiteit | Thermostable cas9 nucleases |
| WO2017004261A1 (en) | 2015-06-29 | 2017-01-05 | Ionis Pharmaceuticals, Inc. | Modified crispr rna and modified single crispr rna and uses thereof |
| WO2017011721A1 (en) | 2015-07-15 | 2017-01-19 | Rutgers, The State University Of New Jersey | Nuclease-independent targeted gene editing platform and uses thereof |
| JP2017018100A (ja) * | 2015-07-13 | 2017-01-26 | 国立研究開発法人農業・食品産業技術総合研究機構 | 不稔化植物、不稔化植物の作出方法、及びベクター |
| WO2017027423A1 (en) * | 2015-08-07 | 2017-02-16 | Caribou Biosciences, Inc. | Engineered crispr-cas9 compositions and methods of use |
| WO2017027910A1 (en) | 2015-08-14 | 2017-02-23 | The University Of Sydney | Connexin 45 inhibition for therapy |
| JP2017505640A (ja) * | 2014-02-13 | 2017-02-23 | タカラ バイオ ユーエスエー,インコーポレイティド | 核酸の初期収集物から標的分子を減損させる方法、並びにそれを実施するための組成物及びキット |
| WO2017040348A1 (en) | 2015-08-28 | 2017-03-09 | The General Hospital Corporation | Engineered crispr-cas9 nucleases |
| WO2017044776A1 (en) * | 2015-09-10 | 2017-03-16 | Texas Tech University System | Single-guide rna (sgrna) with improved knockout efficiency |
| WO2017058751A1 (en) * | 2015-09-28 | 2017-04-06 | North Carolina State University | Methods and compositions for sequence specific antimicrobials |
| JPWO2015133554A1 (ja) * | 2014-03-05 | 2017-04-06 | 国立大学法人神戸大学 | 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体 |
| JP2017509710A (ja) * | 2014-03-28 | 2017-04-06 | アポセンス リミテッドAposense Ltd. | 分子の膜貫通送達のための化合物および方法 |
| JP2017509632A (ja) * | 2014-03-21 | 2017-04-06 | ジェンザイム・コーポレーション | 網膜色素変性症のための遺伝子治療 |
| WO2017062855A1 (en) | 2015-10-09 | 2017-04-13 | Monsanto Technology Llc | Novel rna-guided nucleases and uses thereof |
| US9623048B2 (en) | 2013-02-08 | 2017-04-18 | Shanghai Institutes For Biological Sciences, Chinese Academy Of Sciences | Human hepatocyte-like cells and uses thereof |
| WO2017066760A1 (en) | 2015-10-16 | 2017-04-20 | The Trustees Of Columbia University In The City Of New York | Compositions and methods for inhibition of lineage specific antigens |
| WO2017070032A1 (en) | 2015-10-20 | 2017-04-27 | Pioneer Hi-Bred International, Inc. | Restoring function to a non-functional gene product via guided cas systems and methods of use |
| WO2017072590A1 (en) | 2015-10-28 | 2017-05-04 | Crispr Therapeutics Ag | Materials and methods for treatment of duchenne muscular dystrophy |
| EP2800811B1 (en) | 2012-05-25 | 2017-05-10 | The Regents of The University of California | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
| WO2017077386A1 (en) | 2015-11-06 | 2017-05-11 | Crispr Therapeutics Ag | Materials and methods for treatment of glycogen storage disease type 1a |
| WO2017079724A1 (en) | 2015-11-06 | 2017-05-11 | The Jackson Laboratory | Large genomic dna knock-in and uses thereof |
| WO2017077394A2 (en) | 2015-11-04 | 2017-05-11 | Crispr Therapeutics Ag | Materials and methods for treatment of hemoglobinopathies |
| WO2017079026A1 (en) | 2015-11-06 | 2017-05-11 | E. I. Du Pont De Nemours And Company | Generation of complex trait loci in soybean and methods of use |
| WO2017093804A2 (en) | 2015-12-01 | 2017-06-08 | Crispr Therapeutics Ag | Materials and methods for treatment of alpha-1 antitrypsin deficiency |
| WO2017096328A1 (en) * | 2015-12-04 | 2017-06-08 | Caribou Biosciences, Inc. | Engineered nucleic-acid targeting nucleic acids |
| WO2017106414A1 (en) * | 2015-12-18 | 2017-06-22 | Danisco Us Inc. | Methods and compositions for polymerase ii (pol-ii) based guide rna expression |
| WO2017104404A1 (ja) * | 2015-12-18 | 2017-06-22 | 国立研究開発法人科学技術振興機構 | 遺伝子改変非ヒト生物、卵細胞、受精卵、及び標的遺伝子の改変方法 |
| JP2017517256A (ja) * | 2014-05-20 | 2017-06-29 | リージェンツ オブ ザ ユニバーシティ オブ ミネソタ | 遺伝子配列を編集する方法 |
| JP2017517268A (ja) * | 2014-06-11 | 2017-06-29 | デューク ユニバーシティ | 合成代謝弁を用いた迅速かつ動的なフラックス制御のための組成物及び方法 |
| WO2017109757A1 (en) | 2015-12-23 | 2017-06-29 | Crispr Therapeutics Ag | Materials and methods for treatment of amyotrophic lateral sclerosis and/or frontal temporal lobular degeneration |
| US9701964B2 (en) | 2015-05-06 | 2017-07-11 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
| KR20170087959A (ko) * | 2014-12-17 | 2017-07-31 | 이 아이 듀폰 디 네모아 앤드 캄파니 | 원형 폴리뉴클레오티드 변형 주형과 함께 가이드 RNA/Cas 엔도뉴클레아제 시스템을 이용하여 대장균에서 효율적으로 유전자 편집을 하기 위한 조성물 및 방법 |
| WO2017134529A1 (en) | 2016-02-02 | 2017-08-10 | Crispr Therapeutics Ag | Materials and methods for treatment of severe combined immunodeficiency (scid) or omenn syndrome |
| US9737604B2 (en) | 2013-09-06 | 2017-08-22 | President And Fellows Of Harvard College | Use of cationic lipids to deliver CAS9 |
| WO2017143042A2 (en) | 2016-02-16 | 2017-08-24 | Yale University | Compositions for enhancing targeted gene editing and methods of use thereof |
| WO2017141109A1 (en) | 2016-02-18 | 2017-08-24 | Crispr Therapeutics Ag | Materials and methods for treatment of severe combined immunodeficiency (scid) or omenn syndrome |
| WO2017143061A1 (en) | 2016-02-16 | 2017-08-24 | Yale University | Compositions and methods for treatment of cystic fibrosis |
| WO2017155717A1 (en) | 2016-03-11 | 2017-09-14 | Pioneer Hi-Bred International, Inc. | Novel cas9 systems and methods of use |
| WO2017155715A1 (en) | 2016-03-11 | 2017-09-14 | Pioneer Hi-Bred International, Inc. | Novel cas9 systems and methods of use |
| WO2017155714A1 (en) | 2016-03-11 | 2017-09-14 | Pioneer Hi-Bred International, Inc. | Novel cas9 systems and methods of use |
| EP3219799A1 (en) | 2016-03-17 | 2017-09-20 | IMBA-Institut für Molekulare Biotechnologie GmbH | Conditional crispr sgrna expression |
| JP2017527256A (ja) * | 2013-12-12 | 2017-09-21 | ザ・ブロード・インスティテュート・インコーポレイテッド | HBV及びウイルス性疾患及び障害のためのCRISPR−Cas系及び組成物の送達、使用及び治療適用 |
| WO2017158422A1 (en) | 2016-03-16 | 2017-09-21 | Crispr Therapeutics Ag | Materials and methods for treatment of hereditary haemochromatosis |
| EP3107999A4 (en) * | 2014-02-18 | 2017-10-04 | Duke University | Compositions for the inactivation of virus replication and methods of making and using the same |
| WO2017173453A1 (en) | 2016-04-01 | 2017-10-05 | The Brigham And Women's Hospital, Inc. | Stimuli-responsive nanoparticles for biomedical applications |
| US9783593B2 (en) | 2013-05-02 | 2017-10-10 | Kymab Limited | Antibodies, variable domains and chains tailored for human use |
| US9783618B2 (en) | 2013-05-01 | 2017-10-10 | Kymab Limited | Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics |
| US9788534B2 (en) | 2013-03-18 | 2017-10-17 | Kymab Limited | Animal models and therapeutic molecules |
| WO2017182881A2 (en) | 2016-04-18 | 2017-10-26 | Crispr Therapeutics Ag | Materials and methods for treatment of hemoglobinopathies |
| WO2017189870A1 (en) | 2016-04-27 | 2017-11-02 | Massachusetts Institute Of Technology | Stable nanoscale nucleic acid assemblies and methods thereof |
| WO2017189683A1 (en) | 2016-04-26 | 2017-11-02 | Massachusetts Institute Of Technology | Extensible recombinase cascades |
| WO2017191503A1 (en) | 2016-05-05 | 2017-11-09 | Crispr Therapeutics Ag | Materials and methods for treatment of hemoglobinopathies |
| WO2017193139A1 (en) | 2016-05-06 | 2017-11-09 | The Brigham And Women's Hospital, Inc. | Binary self assembled gels for controlled delivery of encapsulated agents to cartilage |
| WO2017197128A1 (en) | 2016-05-11 | 2017-11-16 | Yale University | Poly(amine-co-ester) nanoparticles and methods of use thereof |
| WO2017201476A1 (en) | 2016-05-20 | 2017-11-23 | Regeneron Pharmaceuticals, Inc. | Methods for breaking immunological tolerance using multiple guide rnas |
| WO2017205846A1 (en) * | 2016-05-27 | 2017-11-30 | Aadigen, Llc | Peptides and nanoparticles for intracellular delivery of genome-editing molecules |
| JPWO2016133165A1 (ja) * | 2015-02-19 | 2017-11-30 | 国立大学法人徳島大学 | Cas9 mRNAを哺乳動物の受精卵にエレクトロポレーションにより導入する方法 |
| US9833513B2 (en) | 2013-09-11 | 2017-12-05 | Eagle Biologics, Inc. | Liquid protein formulations for injection comprising 1-butyl-3-methylimidazolium methanesulfonate and uses thereof |
| US9834791B2 (en) | 2013-11-07 | 2017-12-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
| US9834786B2 (en) | 2012-04-25 | 2017-12-05 | Regeneron Pharmaceuticals, Inc. | Nuclease-mediated targeting with large targeting vectors |
| WO2017218185A1 (en) | 2016-06-14 | 2017-12-21 | Pioneer Hi-Bred International, Inc. | Use of cpf1 endonuclease for plant genome modifications |
| US9850525B2 (en) * | 2014-01-29 | 2017-12-26 | Agilent Technologies, Inc. | CAS9-based isothermal method of detection of specific DNA sequence |
| WO2017222773A1 (en) | 2016-06-20 | 2017-12-28 | Pioneer Hi-Bred International, Inc. | Novel cas systems and methods of use |
| US9856497B2 (en) | 2016-01-11 | 2018-01-02 | The Board Of Trustee Of The Leland Stanford Junior University | Chimeric proteins and methods of regulating gene expression |
| WO2018002762A1 (en) | 2016-06-29 | 2018-01-04 | Crispr Therapeutics Ag | Materials and methods for treatment of amyotrophic lateral sclerosis (als) and other related disorders |
| WO2018002783A1 (en) | 2016-06-29 | 2018-01-04 | Crispr Therapeutics Ag | Materials and methods for treatment of friedreich ataxia and other related disorders |
| WO2018002812A1 (en) | 2016-06-29 | 2018-01-04 | Crispr Therapeutics Ag | Materials and methods for treatment of myotonic dystrophy type 1 (dm1) and other related disorders |
| WO2018007976A1 (en) | 2016-07-06 | 2018-01-11 | Crispr Therapeutics Ag | Materials and methods for treatment of pain related disorders |
| WO2018007980A1 (en) | 2016-07-06 | 2018-01-11 | Crispr Therapeutics Ag | Materials and methods for treatment of pain related disorders |
| WO2018007871A1 (en) | 2016-07-08 | 2018-01-11 | Crispr Therapeutics Ag | Materials and methods for treatment of transthyretin amyloidosis |
| US20180010134A1 (en) * | 2014-09-24 | 2018-01-11 | The Broad Institute Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling competition fo multiple cancer mutations in vivo |
| WO2018013932A1 (en) | 2016-07-15 | 2018-01-18 | Salk Institute For Biological Studies | Methods and compositions for genome editing in non-dividing cells |
| WO2018015444A1 (en) | 2016-07-22 | 2018-01-25 | Novozymes A/S | Crispr-cas9 genome editing with multiple guide rnas in filamentous fungi |
| WO2018020323A2 (en) | 2016-07-25 | 2018-02-01 | Crispr Therapeutics Ag | Materials and methods for treatment of fatty acid disorders |
| WO2018023014A1 (en) | 2016-07-29 | 2018-02-01 | Regeneron Pharmaceuticals, Inc. | Mice comprising mutations resulting in expression of c-truncated fibrillin-1 |
| WO2018022967A1 (en) | 2016-07-28 | 2018-02-01 | Regeneron Pharmaceuticals, Inc. | Gpr156 variants and uses thereof |
| JP2018503386A (ja) * | 2015-01-28 | 2018-02-08 | パイオニア ハイ−ブレッド インターナショナル, インコーポレイテッド | Crisprハイブリッドdna/rnaポリヌクレオチドおよび使用方法 |
| US9888673B2 (en) | 2014-12-10 | 2018-02-13 | Regents Of The University Of Minnesota | Genetically modified cells, tissues, and organs for treating disease |
| GB2552861A (en) * | 2016-06-02 | 2018-02-14 | Sigma Aldrich Co Llc | Using programmable DNA binding proteins to enhance targeted genome modification |
| CN107709555A (zh) * | 2015-05-15 | 2018-02-16 | 达尔马科恩有限公司 | 用于Cas9介导的基因编辑的合成的单向导RNA |
| WO2018044920A1 (en) | 2016-08-29 | 2018-03-08 | The Regents Of The University Of California | Topical formulations based on ionic species for skin treatment |
| WO2018053037A1 (en) | 2016-09-13 | 2018-03-22 | The Jackson Laboratory | Targeted enhanced dna demethylation |
| US9926546B2 (en) | 2015-08-28 | 2018-03-27 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
| US9924705B2 (en) | 2012-03-28 | 2018-03-27 | Kymab Limited | Animal models and therapeutic molecules |
| WO2018054911A1 (en) | 2016-09-23 | 2018-03-29 | Bayer Cropscience Nv | Targeted genome optimization in plants |
| US9938521B2 (en) | 2014-03-10 | 2018-04-10 | Editas Medicine, Inc. | CRISPR/CAS-related methods and compositions for treating leber's congenital amaurosis 10 (LCA10) |
| WO2018071892A1 (en) | 2016-10-14 | 2018-04-19 | Joung J Keith | Epigenetically regulated site-specific nucleases |
| WO2018073237A1 (en) | 2016-10-17 | 2018-04-26 | The University Court Of The University Of Edinburgh | Swine comprising modified cd163 and associated methods |
| US9957515B2 (en) | 2013-03-15 | 2018-05-01 | Cibus Us Llc | Methods and compositions for targeted gene modification |
| WO2018080573A1 (en) | 2016-10-28 | 2018-05-03 | Massachusetts Institute Of Technology | Crispr/cas global regulator screening platform |
| US9963716B2 (en) | 2011-09-26 | 2018-05-08 | Kymab Limited | Chimaeric surrogate light chains (SLC) comprising human VpreB |
| US9982279B1 (en) | 2017-06-23 | 2018-05-29 | Inscripta, Inc. | Nucleic acid-guided nucleases |
| US9982277B2 (en) | 2013-06-11 | 2018-05-29 | The Regents Of The University Of California | Methods and compositions for target DNA modification |
| WO2018112470A1 (en) | 2016-12-16 | 2018-06-21 | The Brigham And Women's Hospital, Inc. | Co-delivery of nucleic acids for simultaneous suppression and expression of target genes |
| US10011849B1 (en) | 2017-06-23 | 2018-07-03 | Inscripta, Inc. | Nucleic acid-guided nucleases |
| US10011850B2 (en) | 2013-06-21 | 2018-07-03 | The General Hospital Corporation | Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing |
| US10017760B2 (en) | 2016-06-24 | 2018-07-10 | Inscripta, Inc. | Methods for generating barcoded combinatorial libraries |
| WO2018129129A1 (en) | 2017-01-05 | 2018-07-12 | Rutgers, The State University Of New Jersey | Targeted gene editing platform independent of dna double strand break and uses thereof |
| WO2018136758A1 (en) | 2017-01-23 | 2018-07-26 | Regeneron Pharmaceuticals, Inc. | Hsd17b13 variants and uses thereof |
| EP3354732A1 (en) | 2014-06-23 | 2018-08-01 | Regeneron Pharmaceuticals, Inc. | Nuclease-mediated dna assembly |
| EP3262162A4 (en) * | 2015-02-23 | 2018-08-08 | Voyager Therapeutics, Inc. | Regulatable expression using adeno-associated virus (aav) |
| WO2018154462A2 (en) | 2017-02-22 | 2018-08-30 | Crispr Therapeutics Ag | Materials and methods for treatment of spinocerebellar ataxia type 2 (sca2) and other spinocerebellar ataxia type 2 protein (atxn2) gene related conditions or disorders |
| WO2018154418A1 (en) | 2017-02-22 | 2018-08-30 | Crispr Therapeutics Ag | Materials and methods for treatment of early onset parkinson's disease (park1) and other synuclein, alpha (snca) gene related conditions or disorders |
| WO2018154387A1 (en) | 2017-02-22 | 2018-08-30 | Crispr Therapeutics Ag | Compositions and methods for gene editing |
| JP2018524018A (ja) * | 2015-05-08 | 2018-08-30 | ザ チルドレンズ メディカル センター コーポレイション | 胎児型ヘモグロビン再誘導のための、bcl11aエンハンサー機能性領域を標的とする方法 |
| EP3230445A4 (en) * | 2014-12-12 | 2018-09-26 | Tod M. Woolf | Compositions and methods for editing nucleic acids in cells utilizing oligonucleotides |
| WO2018187493A1 (en) | 2017-04-04 | 2018-10-11 | Yale University | Compositions and methods for in utero delivery |
| WO2018195545A2 (en) | 2017-04-21 | 2018-10-25 | The General Hospital Corporation | Variants of cpf1 (cas12a) with altered pam specificity |
| US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
| WO2018197520A1 (en) | 2017-04-24 | 2018-11-01 | Dupont Nutrition Biosciences Aps | Methods and compositions of anti-crispr proteins for use in plants |
| US10117911B2 (en) | 2015-05-29 | 2018-11-06 | Agenovir Corporation | Compositions and methods to treat herpes simplex virus infections |
| WO2018212361A1 (en) * | 2017-05-17 | 2018-11-22 | Edigene Corporation | Method of treating diseases associated with myd88 pathways using crispr-gndm system |
| WO2018213351A1 (en) * | 2017-05-16 | 2018-11-22 | The Regents Of The University Of California | Thermostable rna-guided endonucleases and methods of use thereof |
| US10136649B2 (en) | 2015-05-29 | 2018-11-27 | North Carolina State University | Methods for screening bacteria, archaea, algae, and yeast using CRISPR nucleic acids |
| EP3008186B1 (en) | 2013-06-14 | 2018-11-28 | Cellectis | Methods for non-transgenic genome editing in plants |
| WO2018218206A1 (en) | 2017-05-25 | 2018-11-29 | The General Hospital Corporation | Bipartite base editor (bbe) architectures and type-ii-c-cas9 zinc finger editing |
| US10149462B2 (en) | 2013-10-01 | 2018-12-11 | Kymab Limited | Animal models and therapeutic molecules |
| WO2018226560A1 (en) | 2017-06-05 | 2018-12-13 | Regeneron Pharmaceuticals, Inc. | B4galt1 variants and uses thereof |
| US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
| US10166255B2 (en) | 2015-07-31 | 2019-01-01 | Regents Of The University Of Minnesota | Intracellular genomic transplant and methods of therapy |
| WO2019006034A1 (en) | 2017-06-27 | 2019-01-03 | Regeneron Pharmaceuticals, Inc. | NON-HUMAN ANIMALS COMPRISING A HUMANIZED ASGR1 LOCUS |
| WO2019002218A2 (en) | 2017-06-25 | 2019-01-03 | Snipr Technologies Limited | MODIFICATION OF MICROBIAL POPULATIONS AND MODIFICATION OF MICROBIOTA |
| US10195273B2 (en) | 2016-06-05 | 2019-02-05 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
| WO2019028032A1 (en) | 2017-07-31 | 2019-02-07 | Regeneron Pharmaceuticals, Inc. | EMBRYONIC STEM CELLS OF TRANSGENIC MOUSE CASES AND MICE AND USES THEREOF |
| WO2019028029A1 (en) | 2017-07-31 | 2019-02-07 | Regeneron Pharmaceuticals, Inc. | EVALUATION OF CRISPR / CAS INDUCED RECOMBINATION WITH IN VIVO EXOGENIC DONOR NUCLEIC ACID |
| WO2019028023A2 (en) | 2017-07-31 | 2019-02-07 | Regeneron Pharmaceuticals, Inc. | METHODS AND COMPOSITIONS FOR EVALUATING CRISPR / CAS MEDIATED DISRUPTION OR EXCISION AND CRISPR / CAS INDUCED RECOMBINATION USING IN VIVO EXOGENIC DONOR NUCLEIC ACID |
| WO2019036599A1 (en) * | 2017-08-18 | 2019-02-21 | The Board Of Regents Of The University Of Texas System | EXON DELETION CORRECTION OF MUTATIONS OF DUCHENNE MUSCLE DYSTROPHY IN ACTINE DYSTROPHINE BINDING DOMAIN 1 Using a GENOME CRISPR EDITION |
| EP3186375A4 (en) * | 2014-08-28 | 2019-03-13 | North Carolina State University | Novel CAS9 PROTEINS AND CHARACTERISTICS FOR DNA TARGETING AND GENOME EDITING |
| WO2019051033A1 (en) | 2017-09-07 | 2019-03-14 | Regeneron Pharmaceuticals, Inc. | VARIANTS OF MEMBER 1 OF SOLUT TRANSPORTER FAMILY 14 (SLC14A1) AND USES THEREOF |
| WO2019050899A1 (en) | 2017-09-06 | 2019-03-14 | Regeneron Pharmaceuticals, Inc. | SINGLE IMMUNOGLOBULIN INTERLEUKIN 1 (SIGIRR) RELATED INTERCEPTOR-RELATED VARIANTS AND USES THEREOF |
| WO2019053725A1 (en) | 2017-09-18 | 2019-03-21 | Futuragene Israel Ltd. | TISSUE-SPECIFIC EXPRESSION CONTROL OF DELLA POLYPEPTIDES |
| WO2019052577A1 (zh) | 2017-09-18 | 2019-03-21 | 博雅辑因(北京)生物科技有限公司 | 一种基因编辑t细胞及其用途 |
| EP3460063A1 (en) | 2013-12-11 | 2019-03-27 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a genome |
| WO2019060115A1 (en) | 2017-09-19 | 2019-03-28 | Advaxis, Inc. | COMPOSITIONS AND METHODS FOR LYOPHILIZATION OF BACTERIA OR LISTERIA STRAINS |
| WO2019067910A1 (en) * | 2017-09-29 | 2019-04-04 | Intellia Therapeutics, Inc. | POLYNUCLEOTIDES, COMPOSITIONS AND METHODS FOR GENOMIC EDITION |
| WO2019067875A1 (en) | 2017-09-29 | 2019-04-04 | Regeneron Pharmaceuticals, Inc. | NON-HUMAN ANIMALS COMPRISING A HUMANIZED TTR LOCUS AND METHODS OF USE |
| US10253316B2 (en) | 2017-06-30 | 2019-04-09 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems |
| US10251377B2 (en) | 2012-03-28 | 2019-04-09 | Kymab Limited | Transgenic non-human vertebrate for the expression of class-switched, fully human, antibodies |
| WO2019071276A1 (en) | 2017-10-06 | 2019-04-11 | Camp4 Therapeutics Corporation | METHODS AND COMPOSITIONS FOR THE TREATMENT OF UREA CYCLE DISORDERS, IN PARTICULAR OF OTC DEFICIENCY |
| WO2019079527A1 (en) | 2017-10-17 | 2019-04-25 | Casebia Therapeutics Limited Liability Partnership | COMPOSITIONS AND METHODS FOR GENETIC EDITION FOR HEMOPHILIA A |
| WO2019079238A1 (en) | 2017-10-16 | 2019-04-25 | Regeneron Pharmaceuticals, Inc. | CORNULIN VARIANTS (CRNN) AND USES THEREOF |
| WO2019080917A1 (zh) | 2017-10-27 | 2019-05-02 | 博雅辑因(北京)生物科技有限公司 | 一种提高胎儿血红蛋白表达的方法 |
| WO2019081982A1 (en) | 2017-10-26 | 2019-05-02 | Crispr Therapeutics Ag | SUBSTANCES AND METHODS FOR THE TREATMENT OF HEMOGLOBINOPATHIES |
| WO2019087113A1 (en) | 2017-11-01 | 2019-05-09 | Novartis Ag | Synthetic rnas and methods of use |
| WO2019090173A1 (en) * | 2017-11-02 | 2019-05-09 | Arbor Biotechnologies, Inc. | Novel crispr-associated transposon systems and components |
| US10287590B2 (en) | 2014-02-12 | 2019-05-14 | Dna2.0, Inc. | Methods for generating libraries with co-varying regions of polynuleotides for genome modification |
| WO2019094928A1 (en) | 2017-11-10 | 2019-05-16 | Massachusetts Institute Of Technology | Microbial production of pure single stranded nucleic acids |
| WO2019092507A2 (en) | 2017-11-09 | 2019-05-16 | Crispr Therapeutics Ag | Crispr/cas systems for treatment of dmd |
| WO2019094735A1 (en) | 2017-11-10 | 2019-05-16 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising slc30a8 mutation and methods of use |
| WO2019092042A1 (en) | 2017-11-10 | 2019-05-16 | Novozymes A/S | Temperature-sensitive cas9 protein |
| WO2019100053A1 (en) | 2017-11-20 | 2019-05-23 | University Of Georgia Research Foundation, Inc. | Compositions and methods for modulating hif-2α to improve muscle generation and repair |
| WO2019097305A2 (en) | 2017-05-12 | 2019-05-23 | Crispr Therapeutics Ag | Materials and methods for engineering cells and uses thereof in immuno-oncology |
| WO2019108983A1 (en) | 2017-11-30 | 2019-06-06 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized trkb locus |
| US10314297B2 (en) | 2014-08-14 | 2019-06-11 | Biocytogen Boston Corp | DNA knock-in system |
| WO2019113149A1 (en) | 2017-12-05 | 2019-06-13 | Crispr Therapeutics Ag | Crispr-cas9 modified cd34+ human hematopoietic stem and progenitor cells and uses thereof |
| US10323258B2 (en) | 2017-09-30 | 2019-06-18 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems comprising flow-through electroporation devices |
| US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
| EP3347464A4 (en) * | 2015-09-08 | 2019-06-19 | University of Massachusetts | DNASE-H ACTIVITY OF NEISSERIA MENINGITIDIS CAS9 |
| WO2019118463A1 (en) | 2017-12-15 | 2019-06-20 | Danisco Us Inc | Cas9 variants and methods of use |
| WO2019118935A1 (en) * | 2017-12-14 | 2019-06-20 | Casebia Therapeutics Limited Liability Partnership | Novel rna-programmable endonuclease systems and their use in genome editing and other applications |
| US10328182B2 (en) | 2013-05-14 | 2019-06-25 | University Of Georgia Research Foundation, Inc. | Compositions and methods for reducing neointima formation |
| WO2019123429A1 (en) | 2017-12-21 | 2019-06-27 | Casebia Therapeutics Llp | Materials and methods for treatment of usher syndrome type 2a |
| US10336807B2 (en) | 2016-01-11 | 2019-07-02 | The Board Of Trustees Of The Leland Stanford Junior University | Chimeric proteins and methods of immunotherapy |
| WO2019138083A1 (en) | 2018-01-12 | 2019-07-18 | Basf Se | Gene underlying the number of spikelets per spike qtl in wheat on chromosome 7a |
| WO2019140330A1 (en) | 2018-01-12 | 2019-07-18 | Casebia Therapeutics Limited Liability Partnership | Compositions and methods for gene editing by targeting transferrin |
| WO2019147275A1 (en) * | 2018-01-26 | 2019-08-01 | Integrated Dna Technologies, Inc. | Crispr-based compositions and methods of use |
| WO2019152941A1 (en) | 2018-02-05 | 2019-08-08 | Caribou Biosciences, Inc. | Engineered gut microbes for reduction of reactivation of detoxified drugs |
| WO2019150203A1 (en) | 2018-02-05 | 2019-08-08 | Crispr Therapeutics Ag | Materials and methods for treatment of hemoglobinopathies |
| WO2019150196A1 (en) | 2018-02-05 | 2019-08-08 | Crispr Therapeutics Ag | Materials and methods for treatment of hemoglobinopathies |
| US10376889B1 (en) | 2018-04-13 | 2019-08-13 | Inscripta, Inc. | Automated cell processing instruments comprising reagent cartridges |
| US10377998B2 (en) | 2013-12-12 | 2019-08-13 | The Broad Institute, Inc. | CRISPR-CAS systems and methods for altering expression of gene products, structural information and inducible modular CAS enzymes |
| US20190249200A1 (en) * | 2018-02-15 | 2019-08-15 | Sigma-Aldrich Co., Llc | Engineered cas9 systems for eukaryotic genome modification |
| US10385359B2 (en) | 2013-04-16 | 2019-08-20 | Regeneron Pharmaceuticals, Inc. | Targeted modification of rat genome |
| WO2019161310A1 (en) | 2018-02-16 | 2019-08-22 | Casebia Therapeutics Limited Liability Partnership | Compositions and methods for gene editing by targeting fibrinogen-alpha |
| US10392616B2 (en) | 2017-06-30 | 2019-08-27 | Arbor Biotechnologies, Inc. | CRISPR RNA targeting enzymes and systems and uses thereof |
| WO2019173684A1 (en) | 2018-03-09 | 2019-09-12 | Advaxis, Inc. | Compositions and methods for evaluating attenuation and infectivity of listeria strains |
| US10421957B2 (en) | 2013-07-29 | 2019-09-24 | Agilent Technologies, Inc. | DNA assembly using an RNA-programmable nickase |
| WO2019179445A1 (en) | 2018-03-20 | 2019-09-26 | Tsinghua University | Alzheimer's disease animal model and use thereof |
| WO2019183123A1 (en) | 2018-03-19 | 2019-09-26 | Regeneron Pharmaceuticals, Inc. | Transcription modulation in animals using crispr/cas systems |
| US10428319B2 (en) | 2017-06-09 | 2019-10-01 | Editas Medicine, Inc. | Engineered Cas9 nucleases |
| US10435685B2 (en) | 2014-08-19 | 2019-10-08 | Pacific Biosciences Of California, Inc. | Compositions and methods for enrichment of nucleic acids |
| US10435662B1 (en) | 2018-03-29 | 2019-10-08 | Inscripta, Inc. | Automated control of cell growth rates for induction and transformation |
| WO2019195611A1 (en) | 2018-04-04 | 2019-10-10 | Cibus Us Llc | Fad2 genes and mutations |
| US10450576B2 (en) | 2015-03-27 | 2019-10-22 | E I Du Pont De Nemours And Company | Soybean U6 small nuclear RNA gene promoters and their use in constitutive expression of small RNA genes in plants |
| WO2019204668A1 (en) | 2018-04-18 | 2019-10-24 | Casebia Therapeutics Limited Liability Partnership | Compositions and methods for knockdown of apo(a) by gene editing for treatment of cardiovascular disease |
| WO2019210034A1 (en) | 2018-04-27 | 2019-10-31 | Advaxis, Inc. | Compositions and methods for evaluating potency of listeria-based immunotherapeutics |
| US10465042B2 (en) | 2011-12-02 | 2019-11-05 | Yale University | Poly(amine-co-ester) nanoparticles and methods of use thereof |
| EP3452055A4 (en) * | 2016-05-06 | 2019-11-06 | Tod M. Woolf | IMPROVED METHODS FOR GENERIC MODIFICATION WITH AND WITHOUT PROGRAMMABLE NUCLEASES |
| JP2019532642A (ja) * | 2016-09-29 | 2019-11-14 | オックスフォード ナノポール テクノロジーズ リミテッド | ナノポアを通した誘導による核酸検出方法 |
| WO2019217803A1 (en) | 2018-05-10 | 2019-11-14 | Auxolytic Ltd. | Gene therapy methods and compositions using auxotrophic regulatable cells |
| US10494621B2 (en) | 2015-06-18 | 2019-12-03 | The Broad Institute, Inc. | Crispr enzyme mutations reducing off-target effects |
| US10501738B2 (en) | 2018-04-24 | 2019-12-10 | Inscripta, Inc. | Automated instrumentation for production of peptide libraries |
| US10501794B2 (en) | 2014-06-23 | 2019-12-10 | The General Hospital Corporation | Genomewide unbiased identification of DSBs evaluated by sequencing (GUIDE-seq) |
| WO2019236566A1 (en) * | 2018-06-05 | 2019-12-12 | Lifeedit, Inc. | Rna-guided nucleases and active fragments and variants thereof and methods of use |
| US10519457B2 (en) | 2013-08-22 | 2019-12-31 | E I Du Pont De Nemours And Company | Soybean U6 polymerase III promoter and methods of use |
| WO2020002592A1 (en) | 2018-06-29 | 2020-01-02 | Stichting Het Nederlands Kanker Instituut - Antoni Van Leeuwenhoek Ziekenhuis | Traf2 inhibitors for use in the treatment of a cancer |
| US10526590B2 (en) | 2015-08-31 | 2020-01-07 | Agilent Technologies, Inc. | Compounds and methods for CRISPR/Cas-based genome editing by homologous recombination |
| US10526589B2 (en) | 2013-03-15 | 2020-01-07 | The General Hospital Corporation | Multiplex guide RNAs |
| US10526598B2 (en) | 2018-04-24 | 2020-01-07 | Inscripta, Inc. | Methods for identifying T-cell receptor antigens |
| US10533152B1 (en) | 2018-08-14 | 2020-01-14 | Inscripta, Inc. | Instruments, modules, and methods for improved detection of edited sequences in live cells |
| US10532324B1 (en) | 2018-08-14 | 2020-01-14 | Inscripta, Inc. | Instruments, modules, and methods for improved detection of edited sequences in live cells |
| WO2020014235A1 (en) | 2018-07-09 | 2020-01-16 | The Regents Of The University Of California | Gene targets for t-cell-based immunotherapy |
| US10538750B2 (en) | 2016-02-29 | 2020-01-21 | Agilent Technologies, Inc. | Methods and compositions for blocking off-target nucleic acids from cleavage by CRISPR proteins |
| US10550372B2 (en) | 2013-12-12 | 2020-02-04 | The Broad Institute, Inc. | Systems, methods and compositions for sequence manipulation with optimized functional CRISPR-Cas systems |
| EP3470519B1 (en) | 2015-06-18 | 2020-02-12 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
| EP3237615B1 (en) | 2014-12-24 | 2020-02-12 | The Broad Institute, Inc. | Crispr having or associated with destabilization domains |
| WO2020047164A1 (en) | 2018-08-28 | 2020-03-05 | Vor Biopharma, Inc | Genetically engineered hematopoietic stem cells and uses thereof |
| WO2020047353A1 (en) | 2018-08-31 | 2020-03-05 | Yale University | Compositions and methods for enhancing triplex and nuclease-based gene editing |
| US10584358B2 (en) | 2013-10-30 | 2020-03-10 | North Carolina State University | Compositions and methods related to a type-II CRISPR-Cas system in Lactobacillus buchneri |
| WO2020056122A1 (en) | 2018-09-13 | 2020-03-19 | Regeneron Pharmaceuticals, Inc. | Complement factor h gene knockout rat as a model of c3 glomerulopathy |
| US10604802B2 (en) * | 2014-02-04 | 2020-03-31 | Jumpcode Genomics, Inc. | Genome fractioning |
| US10604746B1 (en) | 2018-10-22 | 2020-03-31 | Inscripta, Inc. | Engineered enzymes |
| WO2020065062A1 (en) | 2018-09-28 | 2020-04-02 | Wageningen Universiteit | Off-target activity inhibitors for guided endonucleases |
| WO2020071528A1 (ja) | 2018-10-04 | 2020-04-09 | 株式会社カネカ | 植物のゲノム編集に用いられるdna構築物 |
| WO2020082041A1 (en) | 2018-10-18 | 2020-04-23 | Intellia Therapeutics, Inc. | Nucleic acid constructs and methods of use |
| WO2020082042A2 (en) | 2018-10-18 | 2020-04-23 | Intellia Therapeutics, Inc. | Compositions and methods for transgene expression from an albumin locus |
| WO2020081843A1 (en) | 2018-10-17 | 2020-04-23 | Casebia Therapeutics Limited Liability Partnership | Compositions and methods for delivering transgenes |
| WO2020082046A2 (en) | 2018-10-18 | 2020-04-23 | Intellia Therapeutics, Inc. | Compositions and methods for expressing factor ix |
| WO2020082047A1 (en) | 2018-10-18 | 2020-04-23 | Intellia Therapeutics, Inc. | Compositions and methods for treating alpha-1 antitrypsin deficiencey |
| WO2020079033A1 (en) | 2018-10-15 | 2020-04-23 | Fondazione Telethon | Genome editing methods and constructs |
| WO2020089448A1 (en) | 2018-11-01 | 2020-05-07 | Keygene N.V. | Dual guide rna for crispr/cas genome editing in plants cells |
| WO2020092057A1 (en) | 2018-10-30 | 2020-05-07 | Yale University | Compositions and methods for rapid and modular generation of chimeric antigen receptor t cells |
| EP3653048A1 (en) | 2014-12-19 | 2020-05-20 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification through single-step multiple targeting |
| WO2020101042A1 (en) | 2018-11-16 | 2020-05-22 | Astellas Pharma Inc. | Method for treating muscular dystrophy by targeting utrophin gene |
| US10660943B2 (en) | 2013-02-07 | 2020-05-26 | The Rockefeller University | Sequence specific antimicrobials |
| US10660316B2 (en) | 2016-11-04 | 2020-05-26 | Akeagen, Inc. | Genetically modified non-human animals and methods for producing heavy chain-only antibodies |
| US10669320B2 (en) | 2015-11-18 | 2020-06-02 | The Regents Of The University Of Michigan | Mps1 and KNL1 phosphorylation system |
| US10667501B2 (en) | 2012-05-17 | 2020-06-02 | Kymab Limited | Transgenic non-human vertebrate for the in vivo production of dual specificity immunoglobulins or hypermutated heavy chain only immunoglobulins |
| WO2020112195A1 (en) | 2018-11-30 | 2020-06-04 | Yale University | Compositions, technologies and methods of using plerixafor to enhance gene editing |
| WO2020109412A1 (en) | 2018-11-28 | 2020-06-04 | Keygene N.V. | Targeted enrichment by endonuclease protection |
| US10676754B2 (en) | 2014-07-11 | 2020-06-09 | E I Du Pont De Nemours And Company | Compositions and methods for producing plants resistant to glyphosate herbicide |
| WO2020123377A1 (en) | 2018-12-10 | 2020-06-18 | Neoimmunetech, Inc. | Nrf-2 deficient cells and uses thereof |
| US10689669B1 (en) | 2020-01-11 | 2020-06-23 | Inscripta, Inc. | Automated multi-module cell processing methods, instruments, and systems |
| WO2020131632A1 (en) | 2018-12-20 | 2020-06-25 | Regeneron Pharmaceuticals, Inc. | Nuclease-mediated repeat expansion |
| WO2020128478A1 (en) | 2018-12-19 | 2020-06-25 | King's College London | Immunotherapeutic methods and compositions |
| US10696986B2 (en) | 2014-12-12 | 2020-06-30 | The Board Institute, Inc. | Protected guide RNAS (PGRNAS) |
| US10704033B1 (en) | 2019-12-13 | 2020-07-07 | Inscripta, Inc. | Nucleic acid-guided nucleases |
| US10711267B2 (en) | 2018-10-01 | 2020-07-14 | North Carolina State University | Recombinant type I CRISPR-Cas system |
| US10711285B2 (en) | 2013-06-17 | 2020-07-14 | The Broad Institute, Inc. | Optimized CRISPR-Cas double nickase systems, methods and compositions for sequence manipulation |
| US20200222478A1 (en) * | 2019-01-10 | 2020-07-16 | Janssen Biotech, Inc. | Prostate neoantigens and their uses |
| WO2020148206A1 (en) | 2019-01-14 | 2020-07-23 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and kits for generating and selecting a variant of a binding protein with increased binding affinity and/or specificity |
| US10738327B2 (en) | 2017-08-28 | 2020-08-11 | Inscripta, Inc. | Electroporation cuvettes for automation |
| US10738303B2 (en) | 2015-09-30 | 2020-08-11 | The General Hospital Corporation | Comprehensive in vitro reporting of cleavage events by sequencing (CIRCLE-seq) |
| WO2020163396A1 (en) | 2019-02-04 | 2020-08-13 | The General Hospital Corporation | Adenine dna base editor variants with reduced off-target rna editing |
| US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
| WO2020168362A1 (en) | 2019-02-15 | 2020-08-20 | Crispr Therapeutics Ag | Gene editing for hemophilia a with improved factor viii expression |
| US10752874B2 (en) | 2018-08-14 | 2020-08-25 | Inscripta, Inc. | Instruments, modules, and methods for improved detection of edited sequences in live cells |
| WO2020169974A1 (en) | 2019-02-19 | 2020-08-27 | King's College London | Hypoxia-responsive chimeric antigen receptors |
| US10760075B2 (en) | 2018-04-30 | 2020-09-01 | Snipr Biome Aps | Treating and preventing microbial infections |
| US10760065B2 (en) | 2013-09-05 | 2020-09-01 | Massachusetts Institute Of Technology | Tuning microbial populations with programmable nucleases |
| WO2020176389A1 (en) | 2019-02-25 | 2020-09-03 | Caribou Biosciences, Inc. | Plasmids for gene editing |
| US20200277630A1 (en) * | 2017-09-29 | 2020-09-03 | Toolgen Incorporated | Gene manipulation for treatment of retinal dysfunction disorder |
| US10767173B2 (en) | 2015-09-09 | 2020-09-08 | National University Corporation Kobe University | Method for converting genome sequence of gram-positive bacterium by specifically converting nucleic acid base of targeted DNA sequence, and molecular complex used in same |
| US10767175B2 (en) | 2016-06-08 | 2020-09-08 | Agilent Technologies, Inc. | High specificity genome editing using chemically modified guide RNAs |
| US10767176B2 (en) | 2014-12-18 | 2020-09-08 | Integrated Dna Technologies, Inc. | CRISPR-based compositions and methods of use |
| WO2020178759A1 (en) | 2019-03-04 | 2020-09-10 | King Abdullah University Of Science And Technology | Compositions and methods of targeted nucleic acid enrichment by loop adapter protection and exonuclease digestion |
| US10780108B2 (en) | 2016-08-04 | 2020-09-22 | Arrowhead Pharmaceuticals, Inc. | RNAi agents for Hepatitis B virus infection |
| US10781444B2 (en) | 2013-06-17 | 2020-09-22 | The Broad Institute, Inc. | Functional genomics using CRISPR-Cas systems, compositions, methods, screens and applications thereof |
| WO2020190932A1 (en) | 2019-03-18 | 2020-09-24 | Regeneron Pharmaceuticals, Inc. | Crispr/cas screening platform to identify genetic modifiers of tau seeding or aggregation |
| WO2020191243A1 (en) * | 2019-03-19 | 2020-09-24 | The Broad Institute, Inc. | Methods and compositions for editing nucleotide sequences |
| WO2020190927A1 (en) | 2019-03-18 | 2020-09-24 | Regeneron Pharmaceuticals, Inc. | Crispr/cas dropout screening platform to reveal genetic vulnerabilities associated with tau aggregation |
| US10787684B2 (en) | 2013-11-19 | 2020-09-29 | President And Fellows Of Harvard College | Large gene excision and insertion |
| US10787654B2 (en) | 2014-01-24 | 2020-09-29 | North Carolina State University | Methods and compositions for sequence guiding Cas9 targeting |
| WO2020206202A1 (en) | 2019-04-05 | 2020-10-08 | Danisco Us Inc | Methods for integrating a donor dna sequence into the genome of bacillus using linear recombinant dna constructs and compositions thereof |
| WO2020204159A1 (ja) | 2019-04-05 | 2020-10-08 | 国立大学法人大阪大学 | ノックイン細胞の作製方法 |
| WO2020206197A1 (en) | 2019-04-05 | 2020-10-08 | Danisco Us Inc | Methods for polynucleotide integration into the genome of bacillus using dual circular recombinant dna constructs and compositions thereof |
| WO2020206134A1 (en) | 2019-04-04 | 2020-10-08 | Regeneron Pharmaceuticals, Inc. | Methods for scarless introduction of targeted modifications into targeting vectors |
| WO2020206139A1 (en) | 2019-04-04 | 2020-10-08 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized coagulation factor 12 locus |
| WO2020206162A1 (en) | 2019-04-03 | 2020-10-08 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for insertion of antibody coding sequences into a safe harbor locus |
| WO2020212541A1 (en) | 2019-04-16 | 2020-10-22 | University Of Nottingham | Fungal strains, production and uses thereof |
| US10815467B2 (en) | 2019-03-25 | 2020-10-27 | Inscripta, Inc. | Simultaneous multiplex genome editing in yeast |
| WO2020221291A1 (zh) | 2019-04-30 | 2020-11-05 | 博雅辑因(北京)生物科技有限公司 | 一种血红蛋白病治疗有效性预测方法 |
| US10837021B1 (en) | 2019-06-06 | 2020-11-17 | Inscripta, Inc. | Curing for recursive nucleic acid-guided cell editing |
| EP3636760A4 (en) * | 2017-06-05 | 2020-11-18 | Guangzhou Ribobio Co., Ltd. | DNA EDITING SYSTEM AND CORRESPONDING APPLICATION |
| WO2020229241A1 (en) | 2019-05-10 | 2020-11-19 | Basf Se | Regulatory nucleic acid molecules for enhancing gene expression in plants |
| WO2020237217A1 (en) | 2019-05-23 | 2020-11-26 | Vor Biopharma, Inc | Compositions and methods for cd33 modification |
| USRE48345E1 (en) | 2011-06-30 | 2020-12-08 | Arrowhead Pharmaceuticals Inc. | Compositions and methods for inhibiting gene expression of hepatitis B virus |
| US10858761B2 (en) | 2018-04-24 | 2020-12-08 | Inscripta, Inc. | Nucleic acid-guided editing of exogenous polynucleotides in heterologous cells |
| EP3541945A4 (en) * | 2016-11-18 | 2020-12-09 | Genedit Inc. | COMPOSITIONS AND METHODS OF MODIFICATION OF TARGET NUCLEIC ACIDS |
| WO2020247812A1 (en) | 2019-06-07 | 2020-12-10 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized albumin locus |
| WO2020247452A1 (en) | 2019-06-04 | 2020-12-10 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized ttr locus with a beta-slip mutation and methods of use |
| WO2020252340A1 (en) | 2019-06-14 | 2020-12-17 | Regeneron Pharmaceuticals, Inc. | Models of tauopathy |
| WO2020223514A3 (en) * | 2019-04-30 | 2020-12-24 | Emendobio Inc. | Novel omni-50 crispr nuclease |
| WO2020264339A1 (en) | 2019-06-27 | 2020-12-30 | Regeneron Pharmaceuticals, Inc. | Modeling tdp-43 proteinopathy |
| EP3755798A1 (en) | 2018-02-19 | 2020-12-30 | Yale University | Phosphopeptide-encoding oligonucleotide libraries and methods for detecting phosphorylation-dependent molecular interactions |
| US10883103B2 (en) | 2015-06-02 | 2021-01-05 | Monsanto Technology Llc | Compositions and methods for delivery of a polynucleotide into a plant |
| US10883095B1 (en) | 2019-12-10 | 2021-01-05 | Inscripta, Inc. | Mad nucleases |
| WO2021001534A1 (en) | 2019-07-03 | 2021-01-07 | Wageningen Universiteit | Crispr type v-u1 system from mycobacterium mucogenicum and uses thereof |
| WO2021009692A1 (en) | 2019-07-15 | 2021-01-21 | Medimmune Limited | Tripartite systems for protein dimerization and methods of use |
| WO2021010303A1 (ja) | 2019-07-12 | 2021-01-21 | 国立研究開発法人理化学研究所 | 顕性型変異遺伝子に由来する疾患の治療剤 |
| US10907125B2 (en) | 2019-06-20 | 2021-02-02 | Inscripta, Inc. | Flow through electroporation modules and instrumentation |
| US10912797B2 (en) | 2016-10-18 | 2021-02-09 | Intima Bioscience, Inc. | Tumor infiltrating lymphocytes and methods of therapy |
| US20210040460A1 (en) | 2012-04-27 | 2021-02-11 | Duke University | Genetic correction of mutated genes |
| US10920189B2 (en) | 2019-06-21 | 2021-02-16 | Inscripta, Inc. | Genome-wide rationally-designed mutations leading to enhanced lysine production in E. coli |
| US20210047632A1 (en) * | 2018-01-26 | 2021-02-18 | The Children's Medical Center Corporation | Targeting bcl11a distal regulatory elements with a cas9-cas9 fusion for fetal hemoglobin reinduction |
| US10927385B2 (en) | 2019-06-25 | 2021-02-23 | Inscripta, Inc. | Increased nucleic-acid guided cell editing in yeast |
| US10930367B2 (en) | 2012-12-12 | 2021-02-23 | The Broad Institute, Inc. | Methods, models, systems, and apparatus for identifying target sequences for Cas enzymes or CRISPR-Cas systems for target sequences and conveying results thereof |
| US10934536B2 (en) | 2018-12-14 | 2021-03-02 | Pioneer Hi-Bred International, Inc. | CRISPR-CAS systems for genome editing |
| WO2021041977A1 (en) | 2019-08-28 | 2021-03-04 | Vor Biopharma, Inc. | Compositions and methods for cd123 modification |
| WO2021041971A1 (en) | 2019-08-28 | 2021-03-04 | Vor Biopharma, Inc. | Compositions and methods for cll1 modification |
| WO2021042060A1 (en) | 2019-08-30 | 2021-03-04 | Yale University | Compositions and methods for delivery of nucleic acids to cells |
| WO2021043278A1 (zh) | 2019-09-04 | 2021-03-11 | 博雅辑因(北京)生物科技有限公司 | 基于脱靶评估评价基因编辑治疗的方法 |
| US10947517B2 (en) | 2019-02-15 | 2021-03-16 | Sigma-Aldrich Co. Llc | CRISPR/Cas fusion proteins and systems |
| WO2021050940A1 (en) | 2019-09-13 | 2021-03-18 | Regeneron Pharmaceuticals, Inc. | Transcription modulation in animals using crispr/cas systems delivered by lipid nanoparticles |
| WO2021050755A1 (en) * | 2019-09-10 | 2021-03-18 | Caspr Biotech Corporation | Novel class 2 type ii and type v crispr-cas rna-guided endonucleases |
| WO2021048316A1 (en) | 2019-09-12 | 2021-03-18 | Basf Se | Regulatory nucleic acid molecules for enhancing gene expression in plants |
| US10954514B2 (en) * | 2014-12-12 | 2021-03-23 | The Broad Institute, Inc. | Escorted and functionalized guides for CRISPR-Cas systems |
| US10968536B2 (en) | 2015-02-25 | 2021-04-06 | Jumpcode Genomics, Inc. | Methods and compositions for sequencing |
| WO2021067788A1 (en) * | 2019-10-03 | 2021-04-08 | Artisan Development Labs, Inc. | Crispr systems with engineered dual guide nucleic acids |
| KR20210040985A (ko) | 2018-08-07 | 2021-04-14 | 가부시키가이샤 모달리스 | 신규 전사 액티베이터 |
| WO2021069387A1 (en) | 2019-10-07 | 2021-04-15 | Basf Se | Regulatory nucleic acid molecules for enhancing gene expression in plants |
| GB202103131D0 (en) | 2021-03-05 | 2021-04-21 | Biosystems Tech Limited | Method for preparation of research organisms |
| US11001831B2 (en) | 2019-03-25 | 2021-05-11 | Inscripta, Inc. | Simultaneous multiplex genome editing in yeast |
| WO2021092513A1 (en) | 2019-11-08 | 2021-05-14 | Regeneron Pharmaceuticals, Inc. | Crispr and aav strategies for x-linked juvenile retinoschisis therapy |
| US11008557B1 (en) | 2019-12-18 | 2021-05-18 | Inscripta, Inc. | Cascade/dCas3 complementation assays for in vivo detection of nucleic acid-guided nuclease edited cells |
| WO2021101950A1 (en) | 2019-11-19 | 2021-05-27 | Danisco Us Inc | Selection marker free methods for modifying the genome of bacillus and compositions thereof |
| WO2021105191A1 (en) | 2019-11-29 | 2021-06-03 | Basf Se | Increasing resistance against fungal infections in plants |
| WO2021108363A1 (en) | 2019-11-25 | 2021-06-03 | Regeneron Pharmaceuticals, Inc. | Crispr/cas-mediated upregulation of humanized ttr allele |
| US11028429B2 (en) | 2015-09-11 | 2021-06-08 | The General Hospital Corporation | Full interrogation of nuclease DSBs and sequencing (FIND-seq) |
| US11028388B2 (en) | 2014-03-05 | 2021-06-08 | Editas Medicine, Inc. | CRISPR/Cas-related methods and compositions for treating Usher syndrome and retinitis pigmentosa |
| WO2021110582A1 (en) | 2019-12-03 | 2021-06-10 | Basf Se | Regulatory nucleic acid molecules for enhancing gene expression in plants |
| WO2021113494A1 (en) | 2019-12-03 | 2021-06-10 | Beam Therapeutics Inc. | Synthetic guide rna, compositions, methods, and uses thereof |
| US11033584B2 (en) | 2017-10-27 | 2021-06-15 | The Regents Of The University Of California | Targeted replacement of endogenous T cell receptors |
| US11041169B2 (en) | 2018-03-26 | 2021-06-22 | National University Corporation Kobe University | Method for modifying target site in double-stranded DNA in cell |
| WO2021122528A1 (en) | 2019-12-20 | 2021-06-24 | Basf Se | Decreasing toxicity of terpenes and increasing the production potential in micro-organisms |
| WO2021123775A2 (en) | 2019-12-17 | 2021-06-24 | Jpv01 Ltd | Engineered platelets for targeted delivery of a therapeutic agent |
| WO2021122687A1 (en) | 2019-12-19 | 2021-06-24 | Basf Se | Increasing space-time-yield, carbon-conversion-efficiency and carbon substrate flexibility in the production of fine chemicals |
| WO2021130752A1 (en) | 2019-12-22 | 2021-07-01 | Yeda Research And Development Co. Ltd. | Systems and methods for identifying cells that have undergone genome editing |
| US11051497B2 (en) | 2011-09-19 | 2021-07-06 | Kymab Limited | Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics |
| WO2021136415A1 (zh) | 2019-12-30 | 2021-07-08 | 博雅辑因(北京)生物科技有限公司 | 一种纯化ucart细胞的方法与应用 |
| WO2021136176A1 (zh) | 2019-12-30 | 2021-07-08 | 博雅辑因(北京)生物科技有限公司 | 一种靶向t细胞淋巴瘤细胞的通用型car-t及其制备方法和应用 |
| WO2021148447A1 (en) | 2020-01-21 | 2021-07-29 | Limagrain Europe | Wheat haploid inducer plant and uses |
| US11078483B1 (en) | 2016-09-02 | 2021-08-03 | KSQ Therapeutics, Inc. | Methods for measuring and improving CRISPR reagent function |
| US11078481B1 (en) | 2016-08-03 | 2021-08-03 | KSQ Therapeutics, Inc. | Methods for screening for cancer targets |
| EP3858992A1 (en) | 2015-03-13 | 2021-08-04 | The Jackson Laboratory | A three-component crispr/cas complex system and uses thereof |
| WO2021154791A1 (en) | 2020-01-28 | 2021-08-05 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized pnpla3 locus and methods of use |
| WO2021158883A1 (en) | 2020-02-07 | 2021-08-12 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized klkb1 locus and methods of use |
| US11098325B2 (en) | 2017-06-30 | 2021-08-24 | Intima Bioscience, Inc. | Adeno-associated viral vectors for gene therapy |
| US20210261932A1 (en) * | 2020-01-24 | 2021-08-26 | The General Hospital Corporation | Crispr-cas enzymes with enhanced on-target activity |
| WO2021165508A1 (en) | 2020-02-21 | 2021-08-26 | Biogemma | Prime editing technology for plant genome engineering |
| US11111521B2 (en) | 2011-12-22 | 2021-09-07 | President And Fellows Of Harvard College | Compositions and methods for analyte detection |
| WO2021178556A1 (en) | 2020-03-04 | 2021-09-10 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for sensitization of tumor cells to immune therapy |
| US11118194B2 (en) | 2015-12-18 | 2021-09-14 | The Regents Of The University Of California | Modified site-directed modifying polypeptides and methods of use thereof |
| US20210284978A1 (en) * | 2020-01-24 | 2021-09-16 | The General Hospital Corporation | Unconstrained Genome Targeting with near-PAMless Engineered CRISPR-Cas9 Variants |
| US11124794B2 (en) | 2014-04-25 | 2021-09-21 | The Children's Medical Center Corporation | Compositions and methods to treating hemoglobinopathies |
| WO2021195079A1 (en) | 2020-03-23 | 2021-09-30 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized ttr locus comprising a v30m mutation and methods of use |
| WO2021193865A1 (ja) | 2020-03-26 | 2021-09-30 | 国立研究開発法人農業・食品産業技術総合研究機構 | 温度感受性雄性不稔植物の製造方法 |
| US11135273B2 (en) | 2013-02-07 | 2021-10-05 | The Rockefeller University | Sequence specific antimicrobials |
| WO2021202938A1 (en) | 2020-04-03 | 2021-10-07 | Creyon Bio, Inc. | Oligonucleotide-based machine learning |
| US11142740B2 (en) | 2018-08-14 | 2021-10-12 | Inscripta, Inc. | Detection of nuclease edited sequences in automated modules and instruments |
| US11141493B2 (en) | 2014-03-10 | 2021-10-12 | Editas Medicine, Inc. | Compositions and methods for treating CEP290-associated disease |
| US11149267B2 (en) | 2013-10-28 | 2021-10-19 | The Broad Institute, Inc. | Functional genomics using CRISPR-Cas systems, compositions, methods, screens and applications thereof |
| US11155795B2 (en) | 2013-12-12 | 2021-10-26 | The Broad Institute, Inc. | CRISPR-Cas systems, crystal structure and uses thereof |
| US11155823B2 (en) | 2015-06-15 | 2021-10-26 | North Carolina State University | Methods and compositions for efficient delivery of nucleic acids and RNA-based antimicrobials |
| WO2021230385A1 (en) | 2020-05-15 | 2021-11-18 | Astellas Pharma Inc. | Method for treating muscular dystrophy by targeting utrophin gene |
| WO2021228944A1 (en) | 2020-05-13 | 2021-11-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Base editing approaches for the treatment of betahemoglobinopathies |
| US11180792B2 (en) | 2015-01-28 | 2021-11-23 | The Regents Of The University Of California | Methods and compositions for labeling a single-stranded target nucleic acid |
| US11180793B2 (en) | 2015-04-24 | 2021-11-23 | Editas Medicine, Inc. | Evaluation of Cas9 molecule/guide RNA molecule complexes |
| US11186843B2 (en) | 2014-02-27 | 2021-11-30 | Monsanto Technology Llc | Compositions and methods for site directed genomic modification |
| EP3678680A4 (en) * | 2017-09-05 | 2021-12-01 | Regeneron Pharmaceuticals, Inc. | ADMINISTRATION OF A GENE EDITING SYSTEM CONTAINING A SINGLE RETROVIRAL PARTICLE AND METHODS OF GENERATION AND USE |
| US11193149B2 (en) | 2017-02-21 | 2021-12-07 | Duke University | Compositions and methods for robust dynamic metabolic control of alanine production |
| US11203762B2 (en) | 2019-11-19 | 2021-12-21 | Inscripta, Inc. | Methods for increasing observed editing in bacteria |
| US11203744B2 (en) | 2018-06-21 | 2021-12-21 | Duke University | Compositions and methods for the production of pyruvic acid and related products using dynamic metabolic control |
| WO2021262894A1 (en) | 2020-06-23 | 2021-12-30 | The Regents Of The University Of Colorado, A Body Corporate | Methods for diagnosing respiratory pathogens and predicting covid-19 related outcomes |
| WO2021263146A2 (en) | 2020-06-26 | 2021-12-30 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized ace2 locus |
| US11214781B2 (en) | 2018-10-22 | 2022-01-04 | Inscripta, Inc. | Engineered enzyme |
| US11220693B2 (en) | 2015-11-27 | 2022-01-11 | National University Corporation Kobe University | Method for converting monocot plant genome sequence in which nucleic acid base in targeted DNA sequence is specifically converted, and molecular complex used therein |
| GB202117314D0 (en) | 2021-11-30 | 2022-01-12 | Clarke David John | Cyclic nucleic acid fragmentation |
| WO2022008935A1 (en) | 2020-07-10 | 2022-01-13 | Horizon Discovery Limited | Method for producing genetically modified cells |
| US11225674B2 (en) | 2020-01-27 | 2022-01-18 | Inscripta, Inc. | Electroporation modules and instrumentation |
| EP3937963A2 (en) * | 2019-03-12 | 2022-01-19 | CRISPR Therapeutics AG | Novel high fidelity rna-programmable endonuclease systems and uses thereof |
| US11230710B2 (en) | 2017-01-09 | 2022-01-25 | Aposense Ltd | Compounds and methods for trans-membrane delivery of molecules |
| GB202118058D0 (en) | 2021-12-14 | 2022-01-26 | Univ Warwick | Methods to increase yields in crops |
| US11236313B2 (en) | 2016-04-13 | 2022-02-01 | Editas Medicine, Inc. | Cas9 fusion molecules, gene editing systems, and methods of use thereof |
| US11242525B2 (en) | 2014-03-26 | 2022-02-08 | Editas Medicine, Inc. | CRISPR/CAS-related methods and compositions for treating sickle cell disease |
| WO2022032085A1 (en) | 2020-08-07 | 2022-02-10 | The Jackson Laboratory | Targeted sequence insertion compositions and methods |
| WO2022036180A1 (en) | 2020-08-13 | 2022-02-17 | Yale University | Compositions and methods for engineering and selection of car t cells with desired phenotypes |
| WO2022047165A1 (en) | 2020-08-28 | 2022-03-03 | Vor Biopharma Inc. | Compositions and methods for cd123 modification |
| US20220064612A1 (en) * | 2018-09-14 | 2022-03-03 | Joint Stock Company "Biocad" | PaCas9 nuclease |
| WO2022047424A1 (en) | 2020-08-31 | 2022-03-03 | Yale University | Compositions and methods for delivery of nucleic acids to cells |
| WO2022047168A1 (en) | 2020-08-28 | 2022-03-03 | Vor Biopharma Inc. | Compositions and methods for cll1 modification |
| US11268092B2 (en) | 2018-01-12 | 2022-03-08 | GenEdit, Inc. | Structure-engineered guide RNA |
| US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
| US11268088B2 (en) | 2020-04-24 | 2022-03-08 | Inscripta, Inc. | Compositions, methods, modules and instruments for automated nucleic acid-guided nuclease editing in mammalian cells via viral delivery |
| WO2022050413A1 (ja) | 2020-09-04 | 2022-03-10 | 国立大学法人神戸大学 | 小型化シチジンデアミナーゼを含む二本鎖dnaの改変用複合体 |
| WO2022056489A1 (en) | 2020-09-14 | 2022-03-17 | Vor Biopharma, Inc. | Compositions and methods for cd38 modification |
| WO2022056459A1 (en) | 2020-09-14 | 2022-03-17 | Vor Biopharma, Inc. | Compositions and methods for cd5 modification |
| US11279928B2 (en) | 2015-06-29 | 2022-03-22 | Massachusetts Institute Of Technology | Compositions comprising nucleic acids and methods of using the same |
| WO2022061115A1 (en) | 2020-09-18 | 2022-03-24 | Vor Biopharma Inc. | Compositions and methods for cd7 modification |
| US11286468B2 (en) | 2017-08-23 | 2022-03-29 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
| WO2022067240A1 (en) | 2020-09-28 | 2022-03-31 | Vor Biopharma, Inc. | Compositions and methods for cd6 modification |
| US11293021B1 (en) | 2016-06-23 | 2022-04-05 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems |
| WO2022069756A1 (en) | 2020-10-02 | 2022-04-07 | Limagrain Europe | Crispr-mediated directed codon re-write |
| WO2022072643A1 (en) | 2020-09-30 | 2022-04-07 | Vor Biopharma Inc. | Compositions and methods for cd30 gene modification |
| WO2022070107A1 (en) | 2020-09-30 | 2022-04-07 | Crispr Therapeutics Ag | Materials and methods for treatment of amyotrophic lateral sclerosis |
| US11299767B2 (en) | 2013-03-12 | 2022-04-12 | President And Fellows Of Harvard College | Method for generating a three-dimensional nucleic acid containing matrix |
| US11299731B1 (en) | 2020-09-15 | 2022-04-12 | Inscripta, Inc. | CRISPR editing to embed nucleic acid landing pads into genomes of live cells |
| WO2022074058A1 (en) | 2020-10-06 | 2022-04-14 | Keygene N.V. | Targeted sequence addition |
| US11306298B1 (en) | 2021-01-04 | 2022-04-19 | Inscripta, Inc. | Mad nucleases |
| US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
| WO2022079020A1 (en) | 2020-10-13 | 2022-04-21 | Centre National De La Recherche Scientifique (Cnrs) | Targeted-antibacterial-plasmids combining conjugation and crispr /cas systems and uses thereof |
| US11318206B2 (en) | 2014-03-28 | 2022-05-03 | Aposense Ltd | Compounds and methods for trans-membrane delivery of molecules |
| US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
| WO2022094245A1 (en) | 2020-10-30 | 2022-05-05 | Vor Biopharma, Inc. | Compositions and methods for bcma modification |
| WO2022093983A1 (en) | 2020-10-27 | 2022-05-05 | Vor Biopharma, Inc. | Compositions and methods for treating hematopoietic malignancy |
| WO2022097663A1 (ja) | 2020-11-06 | 2022-05-12 | エディットフォース株式会社 | FokIヌクレアーゼドメインの変異体 |
| US11332742B1 (en) | 2021-01-07 | 2022-05-17 | Inscripta, Inc. | Mad nucleases |
| WO2022104090A1 (en) | 2020-11-13 | 2022-05-19 | Vor Biopharma Inc. | Methods and compositions relating to genetically engineered cells expressing chimeric antigen receptors |
| US11339437B2 (en) | 2014-03-10 | 2022-05-24 | Editas Medicine, Inc. | Compositions and methods for treating CEP290-associated disease |
| US11339427B2 (en) | 2016-02-12 | 2022-05-24 | Jumpcode Genomics, Inc. | Method for target specific RNA transcription of DNA sequences |
| WO2022112316A1 (en) | 2020-11-24 | 2022-06-02 | Keygene N.V. | Targeted enrichment using nanopore selective sequencing |
| WO2022120022A1 (en) | 2020-12-02 | 2022-06-09 | Regeneron Pharmaceuticals, Inc. | Crispr sam biosensor cell lines and methods of use thereof |
| US11359208B2 (en) | 2018-01-09 | 2022-06-14 | Cibus Us Llc | Shatterproof genes and mutations |
| EP4019635A1 (en) * | 2015-03-25 | 2022-06-29 | Editas Medicine, Inc. | Crispr/cas-related methods, compositions and components |
| WO2022147347A1 (en) | 2020-12-31 | 2022-07-07 | Vor Biopharma Inc. | Compositions and methods for cd34 gene modification |
| WO2022147133A1 (en) | 2020-12-30 | 2022-07-07 | Intellia Therapeutics, Inc. | Engineered t cells |
| US11384360B2 (en) | 2012-06-19 | 2022-07-12 | Regents Of The University Of Minnesota | Gene targeting in plants using DNA viruses |
| US11384383B2 (en) | 2017-08-08 | 2022-07-12 | Depixus | In vitro isolation and enrichment of nucleic acids using site-specific nucleases |
| WO2022148955A1 (en) | 2021-01-05 | 2022-07-14 | Horizon Discovery Limited | Method for producing genetically modified cells |
| US11390888B2 (en) | 2013-12-19 | 2022-07-19 | Amyris, Inc. | Methods for genomic integration |
| US11390884B2 (en) | 2015-05-11 | 2022-07-19 | Editas Medicine, Inc. | Optimized CRISPR/cas9 systems and methods for gene editing in stem cells |
| WO2022155265A2 (en) | 2021-01-12 | 2022-07-21 | Mitolab Inc. | Context-dependent, double-stranded dna-specific deaminases and uses thereof |
| US11407997B2 (en) | 2017-02-22 | 2022-08-09 | Crispr Therapeutics Ag | Materials and methods for treatment of primary hyperoxaluria type 1 (PH1) and other alanine-glyoxylate aminotransferase (AGXT) gene related conditions or disorders |
| EP3790976A4 (en) * | 2018-05-10 | 2022-08-10 | Syngenta Participations Ag | METHODS AND COMPOSITIONS FOR TARGETED EDITING OF POLYNUCLEOTIDS |
| US11421251B2 (en) | 2015-10-13 | 2022-08-23 | Duke University | Genome engineering with type I CRISPR systems in eukaryotic cells |
| US11419932B2 (en) | 2019-01-24 | 2022-08-23 | Massachusetts Institute Of Technology | Nucleic acid nanostructure platform for antigen presentation and vaccine formulations formed therefrom |
| US11421241B2 (en) | 2015-01-27 | 2022-08-23 | Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences | Method for conducting site-specific modification on entire plant via gene transient expression |
| US11427817B2 (en) | 2015-08-25 | 2022-08-30 | Duke University | Compositions and methods of improving specificity in genomic engineering using RNA-guided endonucleases |
| WO2022180153A1 (en) | 2021-02-25 | 2022-09-01 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Allele-specific genome editing of the nr2e3 mutation g56r |
| CN114990143A (zh) * | 2015-02-02 | 2022-09-02 | 梅里特斯英国第二有限公司 | 通过对选择性剪接进行适体介导的调节来实现的基因表达调控 |
| US11434494B2 (en) | 2013-03-15 | 2022-09-06 | Cibus Us Llc | Targeted gene modification using oligonucleotide-mediated gene repair |
| US11434476B2 (en) | 2016-08-19 | 2022-09-06 | Whitehead Institute For Biomedical Research | Methods of editing DNA methylation |
| US11434491B2 (en) | 2018-04-19 | 2022-09-06 | The Regents Of The University Of California | Compositions and methods for gene editing |
| US11439712B2 (en) | 2014-04-08 | 2022-09-13 | North Carolina State University | Methods and compositions for RNA-directed repression of transcription using CRISPR-associated genes |
| US11453865B2 (en) * | 2017-09-19 | 2022-09-27 | Massachusetts Institute Of Technology | Applications of engineered Streptococcus canis Cas9 variants on single-base PAM targets |
| US11466271B2 (en) | 2017-02-06 | 2022-10-11 | Novartis Ag | Compositions and methods for the treatment of hemoglobinopathies |
| WO2022217086A1 (en) | 2021-04-09 | 2022-10-13 | Vor Biopharma Inc. | Photocleavable guide rnas and methods of use thereof |
| US11471479B2 (en) | 2014-10-01 | 2022-10-18 | Eagle Biologics, Inc. | Polysaccharide and nucleic acid formulations containing viscosity-lowering agents |
| US11470826B2 (en) * | 2014-11-17 | 2022-10-18 | National University Corporation Tokyo Medical And Dental University | Method of conveniently producing genetically modified non-human mammal with high efficiency |
| WO2022219175A1 (en) | 2021-04-15 | 2022-10-20 | Keygene N.V. | Mobile endonucleases for heritable mutations |
| WO2022221699A1 (en) | 2021-04-16 | 2022-10-20 | Beam Therapeutics, Inc. | Genetic modification of hepatocytes |
| WO2022219181A1 (en) | 2021-04-15 | 2022-10-20 | Keygene N.V. | Co-regeneration recalcitrant plants |
| US11479802B2 (en) | 2017-04-11 | 2022-10-25 | Regeneron Pharmaceuticals, Inc. | Assays for screening activity of modulators of members of the hydroxy steroid (17-beta) dehydrogenase (HSD17B) family |
| WO2022226291A1 (en) | 2021-04-22 | 2022-10-27 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for treating cancer |
| US11492630B2 (en) | 2015-05-19 | 2022-11-08 | KWS SAAT SE & Co. KGaA | Methods and hybrids for targeted nucleic acid editing in plants using CRISPR/Cas systems |
| US11499151B2 (en) | 2017-04-28 | 2022-11-15 | Editas Medicine, Inc. | Methods and systems for analyzing guide RNA molecules |
| WO2022240846A1 (en) | 2021-05-10 | 2022-11-17 | Sqz Biotechnologies Company | Methods for delivering genome editing molecules to the nucleus or cytosol of a cell and uses thereof |
| US11512311B2 (en) | 2016-03-25 | 2022-11-29 | Editas Medicine, Inc. | Systems and methods for treating alpha 1-antitrypsin (A1AT) deficiency |
| US11512297B2 (en) | 2020-11-09 | 2022-11-29 | Inscripta, Inc. | Affinity tag for recombination protein recruitment |
| US11514331B2 (en) | 2016-04-27 | 2022-11-29 | Massachusetts Institute Of Technology | Sequence-controlled polymer random access memory storage |
| WO2022251644A1 (en) | 2021-05-28 | 2022-12-01 | Lyell Immunopharma, Inc. | Nr4a3-deficient immune cells and uses thereof |
| US11518994B2 (en) * | 2016-01-30 | 2022-12-06 | Bonac Corporation | Artificial single guide RNA and use thereof |
| WO2022256440A2 (en) | 2021-06-01 | 2022-12-08 | Arbor Biotechnologies, Inc. | Gene editing systems comprising a crispr nuclease and uses thereof |
| WO2022256578A2 (en) | 2021-06-02 | 2022-12-08 | Beam Therapeutics Inc. | Circular guide rnas for crispr/cas editing systems |
| WO2022256437A1 (en) | 2021-06-02 | 2022-12-08 | Lyell Immunopharma, Inc. | Nr4a3-deficient immune cells and uses thereof |
| WO2022261115A1 (en) | 2021-06-07 | 2022-12-15 | Yale University | Peptide nucleic acids for spatiotemporal control of crispr-cas binding |
| US11530253B2 (en) | 2016-02-25 | 2022-12-20 | The Children's Medical Center Corporation | Customized class switch of immunoglobulin genes in lymphoma and hybridoma by CRISPR/CAS9 technology |
| WO2022263824A1 (en) | 2021-06-16 | 2022-12-22 | Xap Therapeutics Limited | Methods and compositions |
| US11534453B2 (en) | 2015-08-07 | 2022-12-27 | Arrowhead Pharmaceuticals, Inc. | RNAi therapy for hepatitis B virus infection |
| US11542554B2 (en) | 2015-11-03 | 2023-01-03 | President And Fellows Of Harvard College | Method and apparatus for volumetric imaging |
| US11542493B2 (en) | 2012-11-27 | 2023-01-03 | The Children's Medical Center Corporation | Targeting BCL11A distal regulatory elements for fetal hemoglobin reinduction |
| US11542466B2 (en) | 2015-12-22 | 2023-01-03 | North Carolina State University | Methods and compositions for delivery of CRISPR based antimicrobials |
| US11542515B2 (en) | 2016-02-09 | 2023-01-03 | Cibus Us Llc | Methods and compositions for increasing efficiency of targeted gene modification using oligonucleotide-mediated gene repair |
| US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
| US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
| WO2023283585A2 (en) | 2021-07-06 | 2023-01-12 | Vor Biopharma Inc. | Inhibitor oligonucleotides and methods of use thereof |
| US11560568B2 (en) | 2014-09-12 | 2023-01-24 | E. I. Du Pont De Nemours And Company | Generation of site-specific-integration sites for complex trait loci in corn and soybean, and methods of use |
| US11559588B2 (en) | 2017-02-22 | 2023-01-24 | Crispr Therapeutics Ag | Materials and methods for treatment of Spinocerebellar Ataxia Type 1 (SCA1) and other Spinocerebellar Ataxia Type 1 Protein (ATXN1) gene related conditions or disorders |
| US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
| WO2023004409A1 (en) | 2021-07-23 | 2023-01-26 | Beam Therapeutics Inc. | Guide rnas for crispr/cas editing systems |
| US20230028069A1 (en) * | 2017-09-19 | 2023-01-26 | Massachusetts Institute Of Technology | Streptococcus Canis Cas9 as a Genome Engineering Platform with Novel PAM Specificity |
| US11566263B2 (en) | 2016-08-02 | 2023-01-31 | Editas Medicine, Inc. | Compositions and methods for treating CEP290 associated disease |
| WO2023010133A2 (en) | 2021-07-30 | 2023-02-02 | Tune Therapeutics, Inc. | Compositions and methods for modulating expression of frataxin (fxn) |
| WO2023010135A1 (en) | 2021-07-30 | 2023-02-02 | Tune Therapeutics, Inc. | Compositions and methods for modulating expression of methyl-cpg binding protein 2 (mecp2) |
| US11572574B2 (en) * | 2017-09-28 | 2023-02-07 | Toolgen Incorporated | Artificial genome manipulation for gene expression regulation |
| WO2023015182A1 (en) | 2021-08-02 | 2023-02-09 | Vor Biopharma Inc. | Compositions and methods for gene modification |
| US11578312B2 (en) | 2015-06-18 | 2023-02-14 | The Broad Institute Inc. | Engineering and optimization of systems, methods, enzymes and guide scaffolds of CAS9 orthologs and variants for sequence manipulation |
| US11578333B2 (en) | 2018-10-14 | 2023-02-14 | Snipr Biome Aps | Single-vector type I vectors |
| US11597947B2 (en) | 2016-12-29 | 2023-03-07 | Asc Therapeutics Inc. | Gene editing method using virus |
| US11597924B2 (en) | 2016-03-25 | 2023-03-07 | Editas Medicine, Inc. | Genome editing systems comprising repair-modulating enzyme molecules and methods of their use |
| EP4144841A1 (en) * | 2021-09-07 | 2023-03-08 | Bayer AG | Novel small rna programmable endonuclease systems with impoved pam specificity and uses thereof |
| KR20230037586A (ko) | 2020-07-09 | 2023-03-16 | 가부시키가이샤 모달리스 | Mapt 유전자를 표적으로 하는 알츠하이머병의 치료 방법 |
| WO2023049926A2 (en) | 2021-09-27 | 2023-03-30 | Vor Biopharma Inc. | Fusion polypeptides for genetic editing and methods of use thereof |
| US11617783B2 (en) | 2015-11-16 | 2023-04-04 | Research Institute At Nationwide Children's Hospital | Repairing a mutant human titin gene using CRISPR technology |
| WO2023052366A1 (en) | 2021-09-28 | 2023-04-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Base editing approaches for the treatment of beta-hemoglobinopathies |
| US11624077B2 (en) | 2017-08-08 | 2023-04-11 | Peking University | Gene knockout method |
| WO2023064924A1 (en) | 2021-10-14 | 2023-04-20 | Codiak Biosciences, Inc. | Modified producer cells for extracellular vesicle production |
| WO2023064732A1 (en) | 2021-10-15 | 2023-04-20 | Georgia State University Research Foundation, Inc. | Delivery of therapeutic recombinant uricase using nanoparticles |
| WO2023069979A1 (en) | 2021-10-20 | 2023-04-27 | University Of Rochester | Isolated glial progenitor cells for use in the competition treatment of age-related white matter loss |
| WO2023070043A1 (en) | 2021-10-20 | 2023-04-27 | Yale University | Compositions and methods for targeted editing and evolution of repetitive genetic elements |
| WO2023049742A3 (en) * | 2021-09-21 | 2023-05-04 | Scribe Therapeutics Inc. | Engineered casx repressor systems |
| WO2023077012A1 (en) | 2021-10-27 | 2023-05-04 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for expressing factor ix for hemophilia b therapy |
| WO2023077053A2 (en) | 2021-10-28 | 2023-05-04 | Regeneron Pharmaceuticals, Inc. | Crispr/cas-related methods and compositions for knocking out c5 |
| WO2023076944A1 (en) | 2021-10-26 | 2023-05-04 | Regeneron Pharmaceuticals, Inc. | Overexpression of lemd2, lemd3, or chmp7 as a therapeutic modality for tauopathy |
| WO2023081847A1 (en) | 2021-11-04 | 2023-05-11 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a modified cacng1 locus |
| WO2023086422A1 (en) | 2021-11-09 | 2023-05-19 | Vor Biopharma Inc. | Compositions and methods for erm2 modification |
| US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
| US11667911B2 (en) | 2015-09-24 | 2023-06-06 | Editas Medicine, Inc. | Use of exonucleases to improve CRISPR/CAS-mediated genome editing |
| US11667677B2 (en) | 2017-04-21 | 2023-06-06 | The General Hospital Corporation | Inducible, tunable, and multiplex human gene regulation using CRISPR-Cpf1 |
| WO2023099591A1 (en) | 2021-12-01 | 2023-06-08 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for increasing fetal hemoglobin content by editing the +55-kb region of the erythroid-specific bcl11a enhancer |
| WO2023108047A1 (en) | 2021-12-08 | 2023-06-15 | Regeneron Pharmaceuticals, Inc. | Mutant myocilin disease model and uses thereof |
| WO2023105000A1 (en) | 2021-12-09 | 2023-06-15 | Zygosity Limited | Vector |
| US11680268B2 (en) | 2014-11-07 | 2023-06-20 | Editas Medicine, Inc. | Methods for improving CRISPR/Cas-mediated genome-editing |
| EP4198124A1 (en) | 2021-12-15 | 2023-06-21 | Versitech Limited | Engineered cas9-nucleases and method of use thereof |
| WO2023111225A1 (en) | 2021-12-17 | 2023-06-22 | Keygene N.V. | Double decapitation of plants |
| WO2023122506A1 (en) | 2021-12-20 | 2023-06-29 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising humanized ace2 and tmprss loci |
| WO2023129974A1 (en) | 2021-12-29 | 2023-07-06 | Bristol-Myers Squibb Company | Generation of landing pad cell lines |
| US11702700B2 (en) | 2017-10-11 | 2023-07-18 | Regeneron Pharmaceuticals, Inc. | Inhibition of HSD17B13 in the treatment of liver disease in patients expressing the PNPLA3 I148M variation |
| WO2023137472A2 (en) | 2022-01-14 | 2023-07-20 | Tune Therapeutics, Inc. | Compositions, systems, and methods for programming t cell phenotypes through targeted gene repression |
| WO2023137471A1 (en) | 2022-01-14 | 2023-07-20 | Tune Therapeutics, Inc. | Compositions, systems, and methods for programming t cell phenotypes through targeted gene activation |
| US11707056B2 (en) | 2013-05-02 | 2023-07-25 | Kymab Limited | Animals, repertoires and methods |
| US11713485B2 (en) | 2016-04-25 | 2023-08-01 | President And Fellows Of Harvard College | Hybridization chain reaction methods for in situ molecular detection |
| US11713467B2 (en) | 2015-12-18 | 2023-08-01 | Oncosec Medical Incorporated | Plasmid constructs for heterologous protein expression and methods of use |
| WO2023144104A1 (en) | 2022-01-25 | 2023-08-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Base editing approaches for the treatment of βeta-thalassemia |
| EP4223877A1 (en) * | 2022-02-08 | 2023-08-09 | Eberhard Karls Universität Tübingen Medizinische Fakultät | System and method for editing genomic dna to modulate splicing |
| WO2023150798A1 (en) | 2022-02-07 | 2023-08-10 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for defining optimal treatment timeframes in lysosomal disease |
| WO2023150181A1 (en) | 2022-02-01 | 2023-08-10 | President And Fellows Of Harvard College | Methods and compositions for treating cancer |
| WO2023150620A1 (en) | 2022-02-02 | 2023-08-10 | Regeneron Pharmaceuticals, Inc. | Crispr-mediated transgene insertion in neonatal cells |
| US11725228B2 (en) | 2017-10-11 | 2023-08-15 | The General Hospital Corporation | Methods for detecting site-specific and spurious genomic deamination induced by base editing technologies |
| WO2023154861A1 (en) | 2022-02-11 | 2023-08-17 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for screening 4r tau targeting agents |
| WO2023152351A1 (en) | 2022-02-14 | 2023-08-17 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Treatment of liver cancers by disrupting the beta-catenin/tcf-4 binding site located upstream of meg3 in the dlk1/dio3 locus |
| US11732258B2 (en) * | 2016-11-02 | 2023-08-22 | President And Fellows Of Harvard College | Engineered guide RNA sequences for in situ detection and sequencing |
| US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
| US20230272373A1 (en) * | 2016-03-31 | 2023-08-31 | President And Fellows Of Harvard College | Methods and Compositions for the Single Tube Preparation of Sequencing Libraries Using Cas9 |
| WO2023164636A1 (en) | 2022-02-25 | 2023-08-31 | Vor Biopharma Inc. | Compositions and methods for homology-directed repair gene modification |
| AU2020217388B2 (en) * | 2013-03-15 | 2023-09-07 | Cibus Europe B.V. | Methods And Compositions For Increasing Efficiency Of Targeted Gene Modification Using Oligonucleotide-Mediated Gene |
| US11753460B2 (en) | 2016-12-13 | 2023-09-12 | Seattle Children's Hospital | Methods of exogenous drug activation of chemical-induced signaling complexes expressed in engineered cells in vitro and in vivo |
| US11767536B2 (en) | 2015-08-14 | 2023-09-26 | Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences | Method for obtaining glyphosate-resistant rice by site-directed nucleotide substitution |
| US11766400B2 (en) | 2016-10-24 | 2023-09-26 | Yale University | Biodegradable contraceptive implants |
| WO2023192872A1 (en) | 2022-03-28 | 2023-10-05 | Massachusetts Institute Of Technology | Rna scaffolded wireframe origami and methods thereof |
| WO2023196816A1 (en) | 2022-04-04 | 2023-10-12 | Vor Biopharma Inc. | Compositions and methods for mediating epitope engineering |
| US11787841B2 (en) | 2020-05-19 | 2023-10-17 | Inscripta, Inc. | Rationally-designed mutations to the thrA gene for enhanced lysine production in E. coli |
| US11788087B2 (en) | 2017-05-25 | 2023-10-17 | The Children's Medical Center Corporation | BCL11A guide delivery |
| US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
| WO2023212677A2 (en) | 2022-04-29 | 2023-11-02 | Regeneron Pharmaceuticals, Inc. | Identification of tissue-specific extragenic safe harbors for gene therapy approaches |
| WO2023213831A1 (en) | 2022-05-02 | 2023-11-09 | Fondazione Telethon Ets | Homology independent targeted integration for gene editing |
| US11814624B2 (en) | 2017-06-15 | 2023-11-14 | The Regents Of The University Of California | Targeted non-viral DNA insertions |
| WO2023217888A1 (en) | 2022-05-10 | 2023-11-16 | Institut National de la Santé et de la Recherche Médicale | Base editing approaches for correcting the cd39 (cag>tag) mutation in patients suffering from βeta-thalassemia |
| WO2023220603A1 (en) | 2022-05-09 | 2023-11-16 | Regeneron Pharmaceuticals, Inc. | Vectors and methods for in vivo antibody production |
| WO2023225665A1 (en) | 2022-05-19 | 2023-11-23 | Lyell Immunopharma, Inc. | Polynucleotides targeting nr4a3 and uses thereof |
| WO2023235725A2 (en) | 2022-05-31 | 2023-12-07 | Regeneron Pharmaceuticals, Inc. | Crispr-based therapeutics for c9orf72 repeat expansion disease |
| WO2023235726A2 (en) | 2022-05-31 | 2023-12-07 | Regeneron Pharmaceuticals, Inc. | Crispr interference therapeutics for c9orf72 repeat expansion disease |
| WO2023235677A1 (en) | 2022-05-31 | 2023-12-07 | Regeneron Pharmaceuticals, Inc. | Animal model of tdp-43 proteinopathy |
| US11845933B2 (en) | 2016-02-03 | 2023-12-19 | Massachusetts Institute Of Technology | Structure-guided chemical modification of guide RNA and its applications |
| US11845987B2 (en) | 2018-04-17 | 2023-12-19 | The General Hospital Corporation | Highly sensitive in vitro assays to define substrate preferences and sites of nucleic acid cleaving agents |
| US11851690B2 (en) | 2017-03-14 | 2023-12-26 | Editas Medicine, Inc. | Systems and methods for the treatment of hemoglobinopathies |
| WO2023250511A2 (en) | 2022-06-24 | 2023-12-28 | Tune Therapeutics, Inc. | Compositions, systems, and methods for reducing low-density lipoprotein through targeted gene repression |
| US11859219B1 (en) | 2016-12-30 | 2024-01-02 | Flagship Pioneering Innovations V, Inc. | Methods of altering a target nucleotide sequence with an RNA-guided nuclease and a single guide RNA |
| WO2024003579A1 (en) | 2022-06-30 | 2024-01-04 | University Of Newcastle Upon Tyne | Preventing disease recurrence in mitochondrial replacement therapy |
| WO2024005186A1 (ja) | 2022-06-30 | 2024-01-04 | リージョナルフィッシュ株式会社 | tracrRNAユニット、及びゲノム編集方法 |
| WO2024006955A1 (en) | 2022-06-29 | 2024-01-04 | Intellia Therapeutics, Inc. | Engineered t cells |
| US11866726B2 (en) | 2017-07-14 | 2024-01-09 | Editas Medicine, Inc. | Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites |
| US11873496B2 (en) | 2017-01-09 | 2024-01-16 | Whitehead Institute For Biomedical Research | Methods of altering gene expression by perturbing transcription factor multimers that structure regulatory loops |
| WO2024015881A2 (en) | 2022-07-12 | 2024-01-18 | Tune Therapeutics, Inc. | Compositions, systems, and methods for targeted transcriptional activation |
| WO2024015925A2 (en) | 2022-07-13 | 2024-01-18 | Vor Biopharma Inc. | Compositions and methods for artificial protospacer adjacent motif (pam) generation |
| WO2024018056A1 (en) | 2022-07-22 | 2024-01-25 | Institut National de la Santé et de la Recherche Médicale | Base editing approaches for correcting the ivs2-1 (g>a) mutation in patients suffering from βeta-thalassemia |
| WO2024020597A1 (en) | 2022-07-22 | 2024-01-25 | The Johns Hopkins University | Dendrimer-enabled targeted intracellular crispr/cas system delivery and gene editing |
| US11884915B2 (en) | 2021-09-10 | 2024-01-30 | Agilent Technologies, Inc. | Guide RNAs with chemical modification for prime editing |
| US11884924B2 (en) | 2021-02-16 | 2024-01-30 | Inscripta, Inc. | Dual strand nucleic acid-guided nickase editing |
| WO2024023734A1 (en) | 2022-07-26 | 2024-02-01 | Bit Bio Limited | MULTI-gRNA GENOME EDITING |
| WO2024026313A1 (en) | 2022-07-25 | 2024-02-01 | The Regents Of The University Of California | Methods of producing and using avian embryonic stem cells and avian telencephalic organoids |
| WO2024026474A1 (en) | 2022-07-29 | 2024-02-01 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for transferrin receptor (tfr)-mediated delivery to the brain and muscle |
| WO2024026488A2 (en) | 2022-07-29 | 2024-02-01 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a modified transferrin receptor locus |
| WO2024031053A1 (en) | 2022-08-05 | 2024-02-08 | Regeneron Pharmaceuticals, Inc. | Aggregation-resistant variants of tdp-43 |
| US11897920B2 (en) | 2017-08-04 | 2024-02-13 | Peking University | Tale RVD specifically recognizing DNA base modified by methylation and application thereof |
| US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
| US11896686B2 (en) | 2014-05-09 | 2024-02-13 | Yale University | Hyperbranched polyglycerol-coated particles and methods of making and using thereof |
| US11905532B2 (en) | 2019-06-25 | 2024-02-20 | Massachusetts Institute Of Technology | Compositions and methods for molecular memory storage and retrieval |
| WO2024040254A2 (en) | 2022-08-19 | 2024-02-22 | Tune Therapeutics, Inc. | Compositions, systems, and methods for regulation of hepatitis b virus through targeted gene repression |
| US11911415B2 (en) | 2015-06-09 | 2024-02-27 | Editas Medicine, Inc. | CRISPR/Cas-related methods and compositions for improving transplantation |
| US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
| US11913015B2 (en) | 2017-04-17 | 2024-02-27 | University Of Maryland, College Park | Embryonic cell cultures and methods of using the same |
| US11918695B2 (en) | 2014-05-09 | 2024-03-05 | Yale University | Topical formulation of hyperbranched polymer-coated particles |
| WO2024047247A1 (en) | 2022-09-02 | 2024-03-07 | Institut National de la Santé et de la Recherche Médicale | Base editing approaches for the treatment of amyotrophic lateral sclerosis |
| US11939593B2 (en) | 2018-08-01 | 2024-03-26 | University Of Georgia Research Foundation, Inc. | Compositions and methods for improving embryo development |
| WO2024064952A1 (en) | 2022-09-23 | 2024-03-28 | Lyell Immunopharma, Inc. | Methods for culturing nr4a-deficient cells overexpressing c-jun |
| WO2024064958A1 (en) | 2022-09-23 | 2024-03-28 | Lyell Immunopharma, Inc. | Methods for culturing nr4a-deficient cells |
| WO2024064824A2 (en) | 2022-09-21 | 2024-03-28 | Yale University | Compositions and methods for identification of membrane targets for enhancement of nk cell therapy |
| WO2024064642A2 (en) | 2022-09-19 | 2024-03-28 | Tune Therapeutics, Inc. | Compositions, systems, and methods for modulating t cell function |
| WO2024073679A1 (en) | 2022-09-29 | 2024-04-04 | Regeneron Pharmaceuticals, Inc. | Correction of hepatosteatosis in humanized liver animals through restoration of il6/il6r/gp130 signaling in human hepatocytes |
| WO2024073606A1 (en) | 2022-09-28 | 2024-04-04 | Regeneron Pharmaceuticals, Inc. | Antibody resistant modified receptors to enhance cell-based therapies |
| WO2024073751A1 (en) | 2022-09-29 | 2024-04-04 | Vor Biopharma Inc. | Methods and compositions for gene modification and enrichment |
| WO2024077174A1 (en) | 2022-10-05 | 2024-04-11 | Lyell Immunopharma, Inc. | Methods for culturing nr4a-deficient cells |
| WO2024081736A2 (en) | 2022-10-11 | 2024-04-18 | Yale University | Compositions and methods of using cell-penetrating antibodies |
| WO2024080067A1 (ja) | 2022-10-14 | 2024-04-18 | 株式会社インプランタイノベーションズ | ゲノム編集方法およびゲノム編集用組成物 |
| US11965154B2 (en) | 2018-08-30 | 2024-04-23 | Inscripta, Inc. | Detection of nuclease edited sequences in automated modules and instruments |
| US11963982B2 (en) | 2017-05-10 | 2024-04-23 | Editas Medicine, Inc. | CRISPR/RNA-guided nuclease systems and methods |
| WO2024083579A1 (en) | 2022-10-20 | 2024-04-25 | Basf Se | Regulatory nucleic acid molecules for enhancing gene expression in plants |
| US11975029B2 (en) | 2017-02-28 | 2024-05-07 | Vor Biopharma Inc. | Compositions and methods for inhibition of lineage specific proteins |
| WO2024098002A1 (en) | 2022-11-04 | 2024-05-10 | Regeneron Pharmaceuticals, Inc. | Calcium voltage-gated channel auxiliary subunit gamma 1 (cacng1) binding proteins and cacng1-mediated delivery to skeletal muscle |
| US11987804B2 (en) | 2018-04-27 | 2024-05-21 | Seattle Children's Hospital | Rapamycin resistant cells |
| WO2024107670A1 (en) | 2022-11-16 | 2024-05-23 | Regeneron Pharmaceuticals, Inc. | Chimeric proteins comprising membrane bound il-12 with protease cleavable linkers |
| WO2024107765A2 (en) | 2022-11-14 | 2024-05-23 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for fibroblast growth factor receptor 3-mediated delivery to astrocytes |
| WO2024119101A1 (en) | 2022-12-01 | 2024-06-06 | Yale University | Stimuli-responsive traceless engineering platform for intracellular payload delivery |
| WO2024118881A1 (en) | 2022-12-01 | 2024-06-06 | Genencor International Bv | Iterative muliplex genome engineering in microbial cells using a bidirectional selection marker system |
| WO2024118876A1 (en) | 2022-12-01 | 2024-06-06 | Genencor International Bv | Iterative multiplex genome engineering in microbial cells using a recombinant self-excisable selection marker system |
| WO2024118882A1 (en) | 2022-12-01 | 2024-06-06 | Genencor International Bv | Iterative multiplex genome engineering in microbial cells using a selection marker swapping system |
| WO2024123789A1 (en) | 2022-12-07 | 2024-06-13 | Sanofi | Predicting indel frequencies |
| US12012598B2 (en) | 2016-08-12 | 2024-06-18 | Toolgen Incorporated | Manipulated immunoregulatory element and immunity altered thereby |
| WO2024133851A1 (en) | 2022-12-22 | 2024-06-27 | Keygene N.V. | Regeneration by protoplast callus grafting |
| WO2024138189A2 (en) | 2022-12-22 | 2024-06-27 | Intellia Therapeutics, Inc. | Methods for analyzing nucleic acid cargos of lipid nucleic acid assemblies |
| US12031132B2 (en) | 2018-03-14 | 2024-07-09 | Editas Medicine, Inc. | Systems and methods for the treatment of hemoglobinopathies |
| US12037407B2 (en) | 2021-10-14 | 2024-07-16 | Arsenal Biosciences, Inc. | Immune cells having co-expressed shRNAS and logic gate systems |
| US12037616B2 (en) | 2022-03-01 | 2024-07-16 | Crispr Therapeutics Ag | Methods and compositions for treating angiopoietin-like 3 (ANGPTL3) related conditions |
| US12043835B2 (en) | 2015-03-16 | 2024-07-23 | Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences | Method for making site-directed modification to plant genomes by using non-inheritable materials |
| US12049480B2 (en) | 2015-10-20 | 2024-07-30 | Institut National De La Sante Et De La Recherche Medicale (INSERM) Paris, FRANCE | Methods and products for genetic engineering |
| WO2024159071A1 (en) | 2023-01-27 | 2024-08-02 | Regeneron Pharmaceuticals, Inc. | Modified rhabdovirus glycoproteins and uses thereof |
| WO2024163615A1 (en) | 2023-02-02 | 2024-08-08 | University Of Florida Research Foundation, Incorporated | Brain-derived neurotrophic factor-nano luciferase transgenic rodents and methods of use thereof |
| WO2024163683A2 (en) | 2023-02-01 | 2024-08-08 | Tune Therapeutics, Inc. | Systems, compositions, and methods for modulating expression of methyl-cpg binding protein 2 (mecp2) and x-inactive specific transcript (xist) |
| WO2024163650A1 (en) | 2023-02-01 | 2024-08-08 | Regeneron Pharmaceuticals, Inc. | Animals comprising a modified klhdc7b locus |
| WO2024163678A2 (en) | 2023-02-01 | 2024-08-08 | Tune Therapeutics, Inc. | Fusion proteins and systems for targeted activation of frataxin (fxn) and related methods |
| US12058986B2 (en) | 2017-04-20 | 2024-08-13 | Egenesis, Inc. | Method for generating a genetically modified pig with inactivated porcine endogenous retrovirus (PERV) elements |
| WO2024168312A1 (en) | 2023-02-09 | 2024-08-15 | Vor Biopharma Inc. | Methods for treating hematopoietic malignancy |
| WO2024165484A1 (en) | 2023-02-06 | 2024-08-15 | Institut National de la Santé et de la Recherche Médicale | Enrichment of genetically modified hematopoietic stem cells through multiplex base editing |
| WO2024173645A1 (en) | 2023-02-15 | 2024-08-22 | Arbor Biotechnologies, Inc. | Gene editing method for inhibiting aberrant splicing in stathmin 2 (stmn2) transcript |
| US12070022B2 (en) | 2014-04-28 | 2024-08-27 | Recombinetics, Inc. | Methods for making genetic edits |
| WO2024174016A2 (pt) | 2023-05-30 | 2024-08-29 | Hapiseeds Pesquisa E Desenvolvimento Ltda. | Plantas com características agronômicas aprimoradas mediante supressâo de genes da rede regulatória aip10/abap1 |
| US12076375B2 (en) | 2022-06-29 | 2024-09-03 | Snipr Biome Aps | Treating and preventing E coli infections |
| IT202300004443A1 (it) | 2023-03-09 | 2024-09-09 | Int Centre For Genetic Engineering And Biotechnology Icgeb | Sequenza codificante per alfa galattosidasi a umana per il trattamento della malattia di fabry |
| US12084676B2 (en) | 2018-02-23 | 2024-09-10 | Pioneer Hi-Bred International, Inc. | Cas9 orthologs |
| US12098425B2 (en) | 2018-10-10 | 2024-09-24 | Readcoor, Llc | Three-dimensional spatial molecular indexing |
| WO2024206911A2 (en) | 2023-03-30 | 2024-10-03 | Children's Hospital Medical Center | Clinical-grade organoids |
| US12110545B2 (en) | 2017-01-06 | 2024-10-08 | Editas Medicine, Inc. | Methods of assessing nuclease cleavage |
| WO2024211887A1 (en) * | 2023-04-07 | 2024-10-10 | Genentech, Inc. | Modified guide rnas |
| IT202300007968A1 (it) | 2023-04-21 | 2024-10-21 | Fond Telethon Ets | Metodi di editing genomico e costrutti |
| US12133884B2 (en) | 2018-05-11 | 2024-11-05 | Beam Therapeutics Inc. | Methods of substituting pathogenic amino acids using programmable base editor systems |
| WO2024233894A1 (en) * | 2023-05-11 | 2024-11-14 | University Of Massachusetts | Compositions and methods for improved genome editing with nme2cas9 and nme2-smucas9 variants |
| WO2024238977A2 (en) | 2023-05-18 | 2024-11-21 | Children's Hospital Medical Center | Liver organoids with intrahepatic sympathetic nerves, and methods of use thereof |
| US12152240B2 (en) | 2014-10-24 | 2024-11-26 | Ospedale San Raffaele S.R.L. | Permanent epigenetic gene silencing |
| US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
| US12157883B2 (en) * | 2017-05-05 | 2024-12-03 | California Institute Of Technology | DNA sequence modification-based gene drive |
| WO2024254376A1 (en) | 2023-06-08 | 2024-12-12 | Regeneron Pharmaceuticals, Inc. | Animal model with rapid onset of alzheimer's amyloid beta plaque pathology |
| WO2024259309A1 (en) | 2023-06-15 | 2024-12-19 | Regeneron Pharmaceuticals, Inc. | Gene therapy for hearing disorders |
| WO2024259135A1 (en) | 2023-06-13 | 2024-12-19 | Intellia Therapeutics, Inc. | Assays for analysis of ribonucleic acid (rna) molecules |
| US12173291B2 (en) | 2017-12-29 | 2024-12-24 | The Scripps Research Institute | Unnatural base pair compositions and methods of use |
| WO2024263961A2 (en) | 2023-06-23 | 2024-12-26 | Children's Hospital Medical Center | Methods of matrix-free suspension culture |
| WO2024261323A1 (en) | 2023-06-23 | 2024-12-26 | Astrazeneca Ab | Molecular switches |
| WO2025006963A1 (en) | 2023-06-30 | 2025-01-02 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for increasing homology-directed repair |
| US12194327B2 (en) | 2018-11-14 | 2025-01-14 | University Of Florida Research Foundation, Inc. | Materials and methods for modifying Wolbachia and paratransformation of arthropods |
| US12203110B2 (en) | 2018-03-19 | 2025-01-21 | Crispr Therapeutics Ag | RNA-programmable endonuclease systems and uses thereof |
| US12203136B2 (en) | 2020-08-17 | 2025-01-21 | Readcoor, Llc | Methods and systems for spatial mapping of genetic variants |
| US12203123B2 (en) | 2018-10-01 | 2025-01-21 | North Carolina State University | Recombinant type I CRISPR-Cas system and uses thereof for screening for variant cells |
| US12201699B2 (en) | 2014-10-10 | 2025-01-21 | Editas Medicine, Inc. | Compositions and methods for promoting homology directed repair |
| WO2025017033A1 (en) | 2023-07-17 | 2025-01-23 | Institut National de la Santé et de la Recherche Médicale | Prime editing of the -115 region in the hbg1 and/or hbg2 promoter for increasing fetal hemoglobin content in a eukaryotic cell |
| WO2025017030A1 (en) | 2023-07-17 | 2025-01-23 | Institut National de la Santé et de la Recherche Médicale | Prime editing of the -200 region in the hbg1 and/or hbg2 promoter for increasing fetal hemoglobin content in a eukaryotic cell |
| US12214056B2 (en) | 2016-07-19 | 2025-02-04 | Duke University | Therapeutic applications of CPF1-based genome editing |
| US12215366B2 (en) | 2015-02-09 | 2025-02-04 | Duke University | Compositions and methods for epigenome editing |
| US12213468B2 (en) | 2015-05-26 | 2025-02-04 | California Institute Of Technology | Population control using engineered translocations |
| US12215345B2 (en) | 2013-03-19 | 2025-02-04 | Duke University | Compositions and methods for the induction and tuning of gene expression |
| WO2025029654A2 (en) | 2023-07-28 | 2025-02-06 | Regeneron Pharmaceuticals, Inc. | Use of bgh-sv40l tandem polya to enhance transgene expression during unidirectional gene insertion |
| WO2025029840A1 (en) | 2023-07-31 | 2025-02-06 | Tune Therapeutics, Inc. | Compositions and methods for multiplexed activation and repression of t cell gene expression |
| WO2025027165A1 (en) | 2023-08-01 | 2025-02-06 | Basf Plant Science Company Gmbh | Increased resistance by expression of an ics protein |
| WO2025029662A1 (en) | 2023-07-28 | 2025-02-06 | Regeneron Pharmaceuticals, Inc. | Anti-tfr: acid sphingomyelinase for treatment of acid sphingomyelinase deficiency |
| WO2025027166A1 (en) | 2023-08-01 | 2025-02-06 | Basf Plant Science Company Gmbh | Increased resistance by expression of msbp1 protein |
| WO2025029835A1 (en) | 2023-07-31 | 2025-02-06 | Tune Therapeutics, Inc. | Compositions and methods for modulating il-2 gene expression |
| WO2025030010A1 (en) | 2023-08-01 | 2025-02-06 | Vor Biopharma Inc. | Compositions comprising genetically engineered hematopoietic stem cells and methods of use thereof |
| WO2025029657A2 (en) | 2023-07-28 | 2025-02-06 | Regeneron Pharmaceuticals, Inc. | Anti-tfr:gaa and anti-cd63:gaa insertion for treatment of pompe disease |
| WO2025038750A2 (en) | 2023-08-14 | 2025-02-20 | President And Fellows Of Harvard College | Methods and compositions for treating cancer |
| WO2025038494A1 (en) | 2023-08-11 | 2025-02-20 | Tune Therapeutics, Inc. | Compositions, systems, and methods for lymphoid cell differentiation using targeted gene activation |
| US12234453B2 (en) | 2016-12-12 | 2025-02-25 | Whitehead Institute For Biomedical Research | Regulation of transcription through CTCF loop anchors |
| EP4512403A1 (en) | 2023-08-22 | 2025-02-26 | Friedrich-Schiller-Universität Jena | Neuropeptide b and w-receptor as a target for treating mood disorders and/or chronic stress |
| US12241090B2 (en) | 2014-05-28 | 2025-03-04 | Children's Hospital Medical Center | Methods and systems for converting precursor cells into gastric tissues through directed differentiation |
| WO2025049524A1 (en) | 2023-08-28 | 2025-03-06 | Regeneron Pharmaceuticals, Inc. | Cxcr4 antibody-resistant modified receptors |
| WO2025059215A1 (en) | 2023-09-12 | 2025-03-20 | Aadigen, Llc | Methods and compositions for treating or preventing cancer |
| WO2025059073A1 (en) | 2023-09-11 | 2025-03-20 | Tune Therapeutics, Inc. | Epigenetic editing methods and systems for differentiating stem cells |
| US12258573B2 (en) | 2019-08-21 | 2025-03-25 | Research Institute At Nationwide Children's Hospital | Adeno-associated virus vector delivery of alpha-sarcoglycan and the treatment of muscular dystrophy |
| US12258584B2 (en) | 2010-05-06 | 2025-03-25 | Children's Hospital Medical Center | Methods and systems for converting precursor cells into intestinal tissues through directed differentiation |
| WO2025062150A1 (en) | 2023-09-22 | 2025-03-27 | The University Of Manchester | Methods of producing homoplasmic modified plants or parts thereof |
| US12263230B2 (en) | 2018-01-31 | 2025-04-01 | Research Institute At Nationwide Children's Hospital | Gene therapy for limb-girdle muscular dystrophy type 2C |
| US12263227B2 (en) | 2018-11-28 | 2025-04-01 | Crispr Therapeutics Ag | Optimized mRNA encoding CAS9 for use in LNPs |
| US12264330B2 (en) | 2018-10-01 | 2025-04-01 | North Carolina State University | Recombinant type I CRISPR-Cas system and uses thereof for killing target cells |
| US12264313B2 (en) | 2018-10-01 | 2025-04-01 | North Carolina State University | Recombinant type I CRISPR-Cas system and uses thereof for genome modification and alteration of expression |
| WO2025072803A1 (en) | 2023-09-29 | 2025-04-03 | Children's Hospital Medical Center | Ntrk2 signaling-mediated alveolar capillary injury and repair |
| JP2025062594A (ja) * | 2013-06-05 | 2025-04-14 | デューク ユニバーシティ | Rnaガイド遺伝子編集及び遺伝子調節 |
| US12275963B2 (en) | 2017-05-08 | 2025-04-15 | Toolgen Incorporated | Artificially manipulated immune cell |
| US12281334B2 (en) | 2017-04-14 | 2025-04-22 | Children's Hospital Medical Center | Multi donor stem cell compositions and methods of making same |
| US12281338B2 (en) | 2018-10-29 | 2025-04-22 | The Broad Institute, Inc. | Nucleobase editors comprising GeoCas9 and uses thereof |
| EP4541374A2 (en) | 2015-06-15 | 2025-04-23 | Mpeg LA, L.l.c. | Defined multi-conjugate oligonucleotides |
| US12286727B2 (en) | 2016-12-19 | 2025-04-29 | Editas Medicine, Inc. | Assessing nuclease cleavage |
| US12285497B2 (en) | 2021-10-15 | 2025-04-29 | Research Institute At Nationwide Children's Hospital | Self-complementary adeno-associated virus vector and its use in treatment of muscular dystrophy |
| WO2025090427A1 (en) | 2023-10-23 | 2025-05-01 | University Of Rochester | Glial-targeted relief of hyperexcitability in neurodegenerative diseases |
| WO2025096638A2 (en) | 2023-10-30 | 2025-05-08 | Turnstone Biologics Corp. | Genetically modified tumor infilitrating lymphocytes and methods of producing and using the same |
| US12297457B2 (en) | 2017-10-10 | 2025-05-13 | Children's Hospital Medical Center | Esophageal tissue and/or organoid compositions and methods of making same |
| US12295997B2 (en) | 2020-07-06 | 2025-05-13 | Janssen Biotech, Inc. | Prostate neoantigens and their uses |
| WO2025122754A1 (en) | 2023-12-07 | 2025-06-12 | Regeneron Pharmaceuticals, Inc. | Gaa knockout non-human animals |
| US12331347B2 (en) | 2014-07-11 | 2025-06-17 | President And Fellows Of Harvard College | Methods for high-throughput labelling and detection of biological features in situ using microscopy |
| US12337036B2 (en) | 2018-01-01 | 2025-06-24 | Aposense Ltd | Compounds and methods for trans-membrane delivery of molecules |
| US12338436B2 (en) | 2018-06-29 | 2025-06-24 | Editas Medicine, Inc. | Synthetic guide molecules, compositions and methods relating thereto |
| US12338444B2 (en) | 2011-03-23 | 2025-06-24 | Pioneer Hi-Bred International, Inc. | Methods for producing a complex transgenic trait locus |
| WO2025137439A2 (en) | 2023-12-20 | 2025-06-26 | Intellia Therapeutics, Inc. | Engineered t cells |
| US12351837B2 (en) | 2019-01-23 | 2025-07-08 | The Broad Institute, Inc. | Supernegatively charged proteins and uses thereof |
| US12350284B2 (en) | 2018-05-02 | 2025-07-08 | The Children's Medical Center Corporation | BCL11A microRNAs for treating hemoglobinopathies |
| US12359201B2 (en) | 2018-03-21 | 2025-07-15 | Regeneron Pharmaceuticals, Inc. | 17ß-hydroxysteroid dehydrogenase type 13 (HSD17B13) iRNA compositions and methods of use thereof |
| WO2025160340A2 (en) | 2024-01-26 | 2025-07-31 | Regeneron Pharmaceuticals, Inc. | Combination immunosuppression for inhibiting an immune response and enabling immunogen administration and re-administration |
| WO2025160324A2 (en) | 2024-01-26 | 2025-07-31 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for using plasma cell depleting agents and/or b cell depleting agents to suppress host anti-aav antibody response and enable aav transduction and re-dosing |
| WO2025158400A1 (en) | 2024-01-24 | 2025-07-31 | Yale University | Compositions and methods of natural killer cell hyperboosts for enhancement of nk cell therapy |
| US12379372B2 (en) | 2017-12-21 | 2025-08-05 | Children's Hospital Medical Center | Digitalized human organoids and methods of using same |
| US12377170B2 (en) | 2019-02-26 | 2025-08-05 | Research Institute At Nationwide Children's Hospital | Adeno-associated virus vector delivery of β-sarcoglycan and the treatment of muscular dystrophy |
| WO2025162985A1 (en) | 2024-01-30 | 2025-08-07 | Basf Plant Science Company Gmbh | Increased plant disease resistance by expression of a glycine-rich protein |
| WO2025171210A1 (en) | 2024-02-09 | 2025-08-14 | Arbor Biotechnologies, Inc. | Compositions and methods for gene editing via homology-mediated end joining |
| US12390538B2 (en) | 2023-05-15 | 2025-08-19 | Nchroma Bio, Inc. | Compositions and methods for epigenetic regulation of HBV gene expression |
| US12390514B2 (en) | 2017-03-09 | 2025-08-19 | President And Fellows Of Harvard College | Cancer vaccine |
| US12391928B2 (en) | 2018-06-29 | 2025-08-19 | Research Institute At Nationwide Children's Hospital | Recombinant adeno-associated virus products and methods for treating limb girdle muscular dystrophy 2A |
| RU2845909C2 (ru) * | 2015-06-18 | 2025-08-27 | Те Брод Инститьют, Инк. | Мутации фермента crispr, уменьшающие нецелевые эффекты |
| US12406749B2 (en) | 2017-12-15 | 2025-09-02 | The Broad Institute, Inc. | Systems and methods for predicting repair outcomes in genetic engineering |
| WO2025184603A2 (en) | 2024-03-01 | 2025-09-04 | Regeneron Pharmaceuticals, Inc. | The use of cd40 inhibitors for inhibiting an immune response and enabling immunogen administration and re-administration |
| WO2025184567A1 (en) | 2024-03-01 | 2025-09-04 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for re-dosing aav using anti-cd40 antagonistic antibody to suppress host anti-aav antibody response |
| US12414967B2 (en) | 2016-11-04 | 2025-09-16 | Children's Hospital Medical Center | Compositions and methods of treating liver disease |
| US12421506B2 (en) | 2013-12-12 | 2025-09-23 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions with new architectures for sequence manipulation |
| US12421500B2 (en) | 2018-07-26 | 2025-09-23 | Children's Hospital Medical Center | Hepato-biliary-pancreatic tissues and methods of making same |
| US12428622B2 (en) | 2018-09-12 | 2025-09-30 | Children's Hospital Medical Center | Organoid compositions for the production of hematopoietic stem cells and derivatives thereof |
| US12428631B2 (en) | 2016-04-13 | 2025-09-30 | Duke University | CRISPR/Cas9-based repressors for silencing gene targets in vivo and methods of use |
| WO2025202473A1 (en) | 2024-03-28 | 2025-10-02 | Revvity Discovery Limited | A nucleic acid deaminase, a base editor and uses thereof |
| US12435330B2 (en) | 2019-10-10 | 2025-10-07 | The Broad Institute, Inc. | Methods and compositions for prime editing RNA |
| WO2025212920A1 (en) | 2024-04-03 | 2025-10-09 | Children's Hospital Medical Center | Multi-zonal liver organoids |
| US12441814B2 (en) | 2018-08-31 | 2025-10-14 | Yale University | Compositions and methods for enhancing donor oligonucleotide-based gene editing |
| AU2023200084B2 (en) * | 2017-11-10 | 2025-10-16 | University Of Massachusetts | Targeted CRISPR delivery platforms |
| WO2025217202A1 (en) | 2024-04-08 | 2025-10-16 | Children's Hospital Medical Center | Bile duct organoid |
| WO2025217398A1 (en) | 2024-04-10 | 2025-10-16 | Lyell Immunopharma, Inc. | Methods for culturing cells with improved culture medium |
| US12454694B2 (en) | 2018-09-07 | 2025-10-28 | Beam Therapeutics Inc. | Compositions and methods for improving base editing |
| WO2025224715A1 (en) | 2024-04-26 | 2025-10-30 | King Abdullah Univeristy Of Science And Technology | Methods for improving precise genome modification and reducing unwanted mutations by crispr-cas editing |
| US12460231B2 (en) | 2014-04-02 | 2025-11-04 | Editas Medicine, Inc. | Crispr/CAS-related methods and compositions for treating primary open angle glaucoma |
| US12467086B2 (en) | 2011-10-14 | 2025-11-11 | President And Fellows Of Harvard College | Sequencing by structure assembly |
| WO2025235388A1 (en) | 2024-05-06 | 2025-11-13 | Regeneron Pharmaceuticals, Inc. | Transgene genomic identification by nuclease-mediated long read sequencing |
| US12479918B2 (en) | 2018-11-27 | 2025-11-25 | Grand Decade Developments Limited | Plasmid constructs for treating cancer and methods of use |
| WO2025250457A1 (en) | 2024-05-28 | 2025-12-04 | University Of Rochester | Enhanced brain transduction by gene therapeutics |
| WO2025250495A1 (en) | 2024-05-28 | 2025-12-04 | Regeneron Pharmaceuticals, Inc. | Acceleration of human hepatocyte engraftment in humanized liver animals by supplementing paracrine ligands or agonists that activate human liver regeneration signals |
| US12497597B2 (en) | 2019-05-31 | 2025-12-16 | Children's Hospital Medical Center | Methods of generating and expanding hematopoietic stem cells |
| WO2025260068A1 (en) | 2024-06-14 | 2025-12-18 | Tune Therapeutics, Inc. | Lipid nanoparticle formulation for delivery of nucleic acids to cells |
| WO2025259669A1 (en) | 2024-06-10 | 2025-12-18 | Regeneron Pharmaceuticals, Inc. | Methods and systems for characterizing modified oligonucleotides |
| WO2025257212A1 (en) | 2024-06-11 | 2025-12-18 | Keygene N.V. | Screening and regeneration of protoplast callus |
| WO2025265017A1 (en) | 2024-06-20 | 2025-12-26 | Regeneron Pharmaceuticals, Inc. | Ass1 gene insertion for the treatment of citrullinemia type i |
| WO2026006832A1 (en) | 2024-06-28 | 2026-01-02 | University Of Connecticut | Gene modulation for treating cancer |
| WO2026006542A2 (en) | 2024-06-26 | 2026-01-02 | Yale University | Compositions and methods for crispr/cas9 based reactivation of human angelman syndrome |
| US12522807B2 (en) | 2018-07-09 | 2026-01-13 | The Broad Institute, Inc. | RNA programmable epigenetic RNA modifiers and uses thereof |
| US12522811B2 (en) | 2018-05-01 | 2026-01-13 | The Children's Medical Center Corporation | Enhanced BCL11A RNP / CRISPR delivery and editing using a 3XNLS-CAS9 |
Families Citing this family (762)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2010099296A1 (en) | 2009-02-26 | 2010-09-02 | Transposagen Biopharmaceuticals, Inc. | Hyperactive piggybac transposases |
| US9457077B2 (en) | 2009-11-18 | 2016-10-04 | Katherine Rose Kovarik | Method and system for targeting the microbiome to promote health and treat allergic and inflammatory diseases |
| US9585920B2 (en) | 2011-02-04 | 2017-03-07 | Katherine Rose Kovarik | Method and system for treating cancer cachexia |
| US10010568B2 (en) | 2011-02-04 | 2018-07-03 | Katherine Rose Kovarik | Method and system for reducing the likelihood of a spirochetes infection in a human being |
| US11273187B2 (en) | 2015-11-30 | 2022-03-15 | Joseph E. Kovarik | Method and system for reducing the likelihood of developing depression in an individual |
| US11951140B2 (en) | 2011-02-04 | 2024-04-09 | Seed Health, Inc. | Modulation of an individual's gut microbiome to address osteoporosis and bone disease |
| US11191665B2 (en) | 2011-02-04 | 2021-12-07 | Joseph E. Kovarik | Method and system for reducing the likelihood of a porphyromonas gingivalis infection in a human being |
| US12257272B2 (en) | 2015-12-24 | 2025-03-25 | Seed Health, Inc. | Method and system for reducing the likelihood of developing depression in an individual |
| US10548761B2 (en) | 2011-02-04 | 2020-02-04 | Joseph E. Kovarik | Method and system for reducing the likelihood of colorectal cancer in a human being |
| US12279989B2 (en) | 2011-02-04 | 2025-04-22 | Seed Health, Inc. | Method and system for increasing beneficial bacteria and decreasing pathogenic bacteria in the oral cavity |
| US11523934B2 (en) | 2011-02-04 | 2022-12-13 | Seed Health, Inc. | Method and system to facilitate the growth of desired bacteria in a human's mouth |
| US10512661B2 (en) | 2011-02-04 | 2019-12-24 | Joseph E. Kovarik | Method and system for reducing the likelihood of developing liver cancer in an individual diagnosed with non-alcoholic fatty liver disease |
| US10940169B2 (en) | 2015-11-30 | 2021-03-09 | Joseph E. Kovarik | Method for reducing the likelihood of developing cancer in an individual human being |
| US11844720B2 (en) | 2011-02-04 | 2023-12-19 | Seed Health, Inc. | Method and system to reduce the likelihood of dental caries and halitosis |
| US9730967B2 (en) | 2011-02-04 | 2017-08-15 | Katherine Rose Kovarik | Method and system for treating cancer cachexia |
| US10314865B2 (en) | 2011-02-04 | 2019-06-11 | Katherine Rose Kovarik | Method and system for treating cancer and other age-related diseases by extending the healthspan of a human |
| US9987224B2 (en) | 2011-02-04 | 2018-06-05 | Joseph E. Kovarik | Method and system for preventing migraine headaches, cluster headaches and dizziness |
| US10086018B2 (en) | 2011-02-04 | 2018-10-02 | Joseph E. Kovarik | Method and system for reducing the likelihood of colorectal cancer in a human being |
| US11419903B2 (en) | 2015-11-30 | 2022-08-23 | Seed Health, Inc. | Method and system for reducing the likelihood of osteoporosis |
| US11357722B2 (en) | 2011-02-04 | 2022-06-14 | Seed Health, Inc. | Method and system for preventing sore throat in humans |
| US10245288B2 (en) | 2011-02-04 | 2019-04-02 | Joseph E. Kovarik | Method and system for reducing the likelihood of developing NASH in an individual diagnosed with non-alcoholic fatty liver disease |
| US10687975B2 (en) | 2011-02-04 | 2020-06-23 | Joseph E. Kovarik | Method and system to facilitate the growth of desired bacteria in a human's mouth |
| US10835560B2 (en) | 2013-12-20 | 2020-11-17 | Joseph E. Kovarik | Reducing the likelihood of skin cancer in an individual human being |
| US10111913B2 (en) | 2011-02-04 | 2018-10-30 | Joseph E. Kovarik | Method of reducing the likelihood of skin cancer in an individual human being |
| US11998479B2 (en) | 2011-02-04 | 2024-06-04 | Seed Health, Inc. | Method and system for addressing adverse effects on the oral microbiome and restoring gingival health caused by sodium lauryl sulphate exposure |
| US10085938B2 (en) | 2011-02-04 | 2018-10-02 | Joseph E. Kovarik | Method and system for preventing sore throat in humans |
| US10842834B2 (en) | 2016-01-06 | 2020-11-24 | Joseph E. Kovarik | Method and system for reducing the likelihood of developing liver cancer in an individual diagnosed with non-alcoholic fatty liver disease |
| US11951139B2 (en) | 2015-11-30 | 2024-04-09 | Seed Health, Inc. | Method and system for reducing the likelihood of osteoporosis |
| US10583033B2 (en) | 2011-02-04 | 2020-03-10 | Katherine Rose Kovarik | Method and system for reducing the likelihood of a porphyromonas gingivalis infection in a human being |
| JP2015500648A (ja) | 2011-12-16 | 2015-01-08 | ターゲットジーン バイオテクノロジーズ リミテッド | 所定の標的核酸配列を修飾するための組成物及び方法 |
| WO2013177560A1 (en) | 2012-05-25 | 2013-11-28 | The Regents Of The University Of California | Microfluidic systems for particle trapping and separation |
| CA2876076A1 (en) * | 2012-06-12 | 2013-12-19 | Soren WARMING | Methods and compositions for generating conditional knock-out alleles |
| KR20190137932A (ko) * | 2012-10-23 | 2019-12-11 | 주식회사 툴젠 | 표적 DNA에 특이적인 가이드 RNA 및 Cas 단백질을 암호화하는 핵산 또는 Cas 단백질을 포함하는, 표적 DNA를 절단하기 위한 조성물 및 이의 용도 |
| EP2920319B1 (en) | 2012-11-16 | 2020-02-19 | Poseida Therapeutics, Inc. | Site-specific enzymes and methods of use |
| EP2963113B1 (en) * | 2013-02-14 | 2019-11-06 | Osaka University | Method for isolating specific genomic region using molecule binding specifically to endogenous dna sequence |
| SG11201505968WA (en) | 2013-02-20 | 2015-08-28 | Regeneron Pharma | Genetic modification of rats |
| US20140349400A1 (en) * | 2013-03-15 | 2014-11-27 | Massachusetts Institute Of Technology | Programmable Modification of DNA |
| US20140273230A1 (en) * | 2013-03-15 | 2014-09-18 | Sigma-Aldrich Co., Llc | Crispr-based genome modification and regulation |
| US12331303B2 (en) | 2013-03-15 | 2025-06-17 | Cibus Us Llc | Methods and compositions for increasing efficiency of targeted gene modification using oligonucleotide-mediated gene repair |
| US20160186208A1 (en) * | 2013-04-16 | 2016-06-30 | Whitehead Institute For Biomedical Research | Methods of Mutating, Modifying or Modulating Nucleic Acid in a Cell or Nonhuman Mammal |
| WO2014190181A1 (en) * | 2013-05-22 | 2014-11-27 | Northwestern University | Rna-directed dna cleavage and gene editing by cas9 enzyme from neisseria meningitidis |
| WO2014191518A1 (en) * | 2013-05-29 | 2014-12-04 | Cellectis | A method for producing precise dna cleavage using cas9 nickase activity |
| US9663782B2 (en) * | 2013-07-19 | 2017-05-30 | Larix Bioscience Llc | Methods and compositions for producing double allele knock outs |
| WO2015021426A1 (en) * | 2013-08-09 | 2015-02-12 | Sage Labs, Inc. | A crispr/cas system-based novel fusion protein and its application in genome editing |
| US9359599B2 (en) | 2013-08-22 | 2016-06-07 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
| UY35816A (es) * | 2013-11-04 | 2015-05-29 | Dow Agrosciences Llc | ?locus óptimos de la soja?. |
| WO2015069682A2 (en) * | 2013-11-05 | 2015-05-14 | President And Fellows Of Harvard College | Precise microbiota engineering at the cellular level |
| WO2015070062A1 (en) * | 2013-11-07 | 2015-05-14 | Massachusetts Institute Of Technology | Cell-based genomic recorded accumulative memory |
| US9994831B2 (en) * | 2013-12-12 | 2018-06-12 | The Regents Of The University Of California | Methods and compositions for modifying a single stranded target nucleic acid |
| US20150191744A1 (en) * | 2013-12-17 | 2015-07-09 | University Of Massachusetts | Cas9 effector-mediated regulation of transcription, differentiation and gene editing/labeling |
| CA3225456A1 (en) | 2013-12-19 | 2015-06-25 | Novartis Ag | Human mesothelin chimeric antigen receptors and uses thereof |
| US12005085B2 (en) | 2013-12-20 | 2024-06-11 | Seed Health, Inc. | Probiotic method and composition for maintaining a healthy vaginal microbiome |
| WO2015095895A1 (en) | 2013-12-20 | 2015-06-25 | Fred Hutchinson Cancer Research Center | Tagged chimeric effector molecules and receptors thereof |
| US11672835B2 (en) | 2013-12-20 | 2023-06-13 | Seed Health, Inc. | Method for treating individuals having cancer and who are receiving cancer immunotherapy |
| US11213552B2 (en) | 2015-11-30 | 2022-01-04 | Joseph E. Kovarik | Method for treating an individual suffering from a chronic infectious disease and cancer |
| US11980643B2 (en) | 2013-12-20 | 2024-05-14 | Seed Health, Inc. | Method and system to modify an individual's gut-brain axis to provide neurocognitive protection |
| US11529379B2 (en) | 2013-12-20 | 2022-12-20 | Seed Health, Inc. | Method and system for reducing the likelihood of developing colorectal cancer in an individual human being |
| US12329783B2 (en) | 2013-12-20 | 2025-06-17 | Seed Health, Inc. | Method and system to improve the health of a person's skin microbiome |
| US11642382B2 (en) | 2013-12-20 | 2023-05-09 | Seed Health, Inc. | Method for treating an individual suffering from bladder cancer |
| US11833177B2 (en) | 2013-12-20 | 2023-12-05 | Seed Health, Inc. | Probiotic to enhance an individual's skin microbiome |
| US11998574B2 (en) | 2013-12-20 | 2024-06-04 | Seed Health, Inc. | Method and system for modulating an individual's skin microbiome |
| EP4420663A3 (en) | 2013-12-20 | 2024-10-30 | Novartis AG | Regulatable chimeric antigen receptor |
| US11026982B2 (en) | 2015-11-30 | 2021-06-08 | Joseph E. Kovarik | Method for reducing the likelihood of developing bladder or colorectal cancer in an individual human being |
| US11826388B2 (en) | 2013-12-20 | 2023-11-28 | Seed Health, Inc. | Topical application of Lactobacillus crispatus to ameliorate barrier damage and inflammation |
| US12318377B2 (en) | 2013-12-20 | 2025-06-03 | Seed Health, Inc. | Method and system for reducing the likelihood of a porphyromonas gingivalis infection in a human being |
| US11839632B2 (en) | 2013-12-20 | 2023-12-12 | Seed Health, Inc. | Topical application of CRISPR-modified bacteria to treat acne vulgaris |
| US11969445B2 (en) | 2013-12-20 | 2024-04-30 | Seed Health, Inc. | Probiotic composition and method for controlling excess weight, obesity, NAFLD and NASH |
| US12246043B2 (en) | 2013-12-20 | 2025-03-11 | Seed Health, Inc. | Topical application to treat acne vulgaris |
| US11315659B2 (en) * | 2014-01-27 | 2022-04-26 | Georgia Tech Research Corporation | Methods and systems for identifying nucleotide-guided nuclease off-target sites |
| US20180142307A1 (en) * | 2014-02-11 | 2018-05-24 | California Institute Of Technology | Recording and mapping lineage information and molecular events in individual cells |
| CN106163547A (zh) | 2014-03-15 | 2016-11-23 | 诺华股份有限公司 | 使用嵌合抗原受体治疗癌症 |
| WO2015142661A1 (en) | 2014-03-15 | 2015-09-24 | Novartis Ag | Regulatable chimeric antigen receptor |
| CN112964883A (zh) * | 2014-03-24 | 2021-06-15 | 艾摩科诊断公司 | 用于全身性和非全身性自身免疫紊乱的改进的抗核抗体检测和诊断 |
| EP3122870B1 (en) * | 2014-03-25 | 2022-06-29 | Ginkgo Bioworks Inc. | Methods and genetic systems for cell engineering |
| CN111514283B (zh) | 2014-04-07 | 2025-10-14 | 诺华股份有限公司 | 使用抗cd19嵌合抗原受体治疗癌症 |
| WO2015168404A1 (en) * | 2014-04-30 | 2015-11-05 | Massachusetts Institute Of Technology | Toehold-gated guide rna for programmable cas9 circuitry with rna input |
| AU2015259191B2 (en) * | 2014-05-13 | 2019-03-21 | Sangamo Therapeutics, Inc. | Methods and compositions for prevention or treatment of a disease |
| PL3145934T3 (pl) | 2014-05-19 | 2021-08-16 | Pfizer Inc. | Podstawione związki 6,8-dioksabicyklo[3.2.1]oktano-2,3-diolu jako środki kierujące do ASGPR |
| WO2015188065A1 (en) * | 2014-06-05 | 2015-12-10 | Sangamo Biosciences, Inc. | Methods and compositions for nuclease design |
| US11274302B2 (en) * | 2016-08-17 | 2022-03-15 | Diacarta Ltd | Specific synthetic chimeric Xenonucleic acid guide RNA; s(XNA-gRNA) for enhancing CRISPR mediated genome editing efficiency |
| WO2015191693A2 (en) | 2014-06-10 | 2015-12-17 | Massachusetts Institute Of Technology | Method for gene editing |
| CA2952121A1 (en) | 2014-06-13 | 2015-12-17 | Childrens' Medical Center Corporation | Products and methods to isolate mitochondria |
| AU2015277180A1 (en) * | 2014-06-17 | 2017-01-12 | Poseida Therapeutics, Inc. | A method for directing proteins to specific loci in the genome and uses thereof |
| WO2016011070A2 (en) * | 2014-07-14 | 2016-01-21 | The Regents Of The University Of California | A protein tagging system for in vivo single molecule imaging and control of gene transcription |
| ES2959683T3 (es) | 2014-07-15 | 2024-02-27 | Juno Therapeutics Inc | Células manipuladas para terapia celular adoptiva |
| US20160053304A1 (en) * | 2014-07-18 | 2016-02-25 | Whitehead Institute For Biomedical Research | Methods Of Depleting Target Sequences Using CRISPR |
| US20160053272A1 (en) * | 2014-07-18 | 2016-02-25 | Whitehead Institute For Biomedical Research | Methods Of Modifying A Sequence Using CRISPR |
| MX2017001011A (es) | 2014-07-21 | 2018-05-28 | Novartis Ag | Tratamiento de cancer de usando un receptor quimerico de antigeno anti-bcma. |
| AU2015294354B2 (en) * | 2014-07-21 | 2021-10-28 | Illumina, Inc. | Polynucleotide enrichment using CRISPR-Cas systems |
| US11542488B2 (en) | 2014-07-21 | 2023-01-03 | Novartis Ag | Sortase synthesized chimeric antigen receptors |
| WO2016014530A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Combinations of low, immune enhancing. doses of mtor inhibitors and cars |
| EP3172234B1 (en) | 2014-07-21 | 2020-04-08 | Novartis AG | Treatment of cancer using a cd33 chimeric antigen receptor |
| WO2016019300A1 (en) | 2014-07-31 | 2016-02-04 | Novartis Ag | Subset-optimized chimeric antigen receptor-containing t-cells |
| CN113789317B (zh) | 2014-08-06 | 2024-02-23 | 基因工具股份有限公司 | 使用空肠弯曲杆菌crispr/cas系统衍生的rna引导的工程化核酸酶的基因编辑 |
| US10513711B2 (en) | 2014-08-13 | 2019-12-24 | Dupont Us Holding, Llc | Genetic targeting in non-conventional yeast using an RNA-guided endonuclease |
| CA2958200A1 (en) | 2014-08-14 | 2016-02-18 | Novartis Ag | Treatment of cancer using a gfr alpha-4 chimeric antigen receptor |
| US9879270B2 (en) * | 2014-08-15 | 2018-01-30 | Wisconsin Alumni Research Foundation | Constructs and methods for genome editing and genetic engineering of fungi and protists |
| AU2015305531B2 (en) | 2014-08-19 | 2021-05-20 | Novartis Ag | Anti-CD123 chimeric antigen receptor (CAR) for use in cancer treatment |
| EP3183367B1 (en) | 2014-08-19 | 2019-06-26 | Pacific Biosciences Of California, Inc. | Compositions and methods for enrichment of nucleic acids |
| US9970030B2 (en) | 2014-08-27 | 2018-05-15 | Caribou Biosciences, Inc. | Methods for increasing CAS9-mediated engineering efficiency |
| ES2891332T3 (es) | 2014-09-17 | 2022-01-27 | Novartis Ag | Direccionamiento a células citotóxicas con receptores quiméricos para la inmunoterapia adoptiva |
| US20170233762A1 (en) * | 2014-09-29 | 2017-08-17 | The Regents Of The University Of California | Scaffold rnas |
| WO2016054032A1 (en) | 2014-09-29 | 2016-04-07 | The Jackson Laboratory | High efficiency, high throughput generation of genetically modified mammals by electroporation |
| EP3207131B1 (en) * | 2014-10-17 | 2022-09-28 | Howard Hughes Medical Institute | Genomic probes |
| US20170306306A1 (en) * | 2014-10-24 | 2017-10-26 | Life Technologies Corporation | Compositions and Methods for Enhancing Homologous Recombination |
| BR112017008693A2 (pt) | 2014-10-31 | 2018-02-27 | The Trustees Of The University Of Pennsylvania | célula t modificada, métodos para gerar uma célula t modificada, para tratar uma doença ou condição, para estimular uma resposta imune mediada por célula t e para terapia de transferência de célula adotiva, uso de uma célula t modificada, e, composição. |
| WO2016073559A1 (en) * | 2014-11-05 | 2016-05-12 | The Regents Of The University Of California | Methods for autocatalytic genome editing and neutralizing autocatalytic genome editing |
| CN107208070B (zh) * | 2014-11-26 | 2021-09-07 | 技术创新动力基金(以色列)有限合伙公司 | 细菌基因的靶向消除 |
| WO2016093668A2 (ko) * | 2014-12-12 | 2016-06-16 | 한국한의학연구원 | 일체형 유전자 치료 유도만능줄기세포 제작방법 |
| ES2991077T3 (es) | 2014-12-16 | 2024-12-02 | C3J Therapeutics Inc | Composiciones y procedimientos para la modificación in vitro de genomas víricos |
| WO2016098078A2 (en) | 2014-12-19 | 2016-06-23 | Novartis Ag | Dimerization switches and uses thereof |
| AU2015364286B2 (en) | 2014-12-20 | 2021-11-04 | Arc Bio, Llc | Compositions and methods for targeted depletion, enrichment, and partitioning of nucleic acids using CRISPR/Cas system proteins |
| CN113337533A (zh) | 2014-12-23 | 2021-09-03 | 先正达参股股份有限公司 | 用于鉴定和富集包含位点特异性基因组修饰的细胞的方法和组合物 |
| US11339399B2 (en) * | 2014-12-31 | 2022-05-24 | Viridos, Inc. | Compositions and methods for high efficiency in vivo genome editing |
| US11396665B2 (en) * | 2015-01-06 | 2022-07-26 | Dsm Ip Assets B.V. | CRISPR-CAS system for a filamentous fungal host cell |
| US11208638B2 (en) | 2015-01-12 | 2021-12-28 | The Regents Of The University Of California | Heterodimeric Cas9 and methods of use thereof |
| MA41349A (fr) * | 2015-01-14 | 2017-11-21 | Univ Temple | Éradication de l'herpès simplex de type i et d'autres virus de l'herpès associés guidée par arn |
| US10059940B2 (en) * | 2015-01-27 | 2018-08-28 | Minghong Zhong | Chemically ligated RNAs for CRISPR/Cas9-lgRNA complexes as antiviral therapeutic agents |
| KR102605464B1 (ko) * | 2015-01-30 | 2023-11-22 | 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 | 일차 조혈 세포에서의 단백질 전달 |
| SG10201913124RA (en) | 2015-02-06 | 2020-03-30 | Nat Univ Singapore | Methods for enhancing efficacy of therapeutic immune cells |
| WO2016142427A1 (en) | 2015-03-10 | 2016-09-15 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method ank kit for reprogramming somatic cells |
| WO2016149422A1 (en) * | 2015-03-16 | 2016-09-22 | The Broad Institute, Inc. | Encoding of dna vector identity via iterative hybridization detection of a barcode transcript |
| CN113846144B (zh) | 2015-03-17 | 2023-09-26 | 生物辐射实验室股份有限公司 | 检测基因组编辑 |
| CN108124453B (zh) | 2015-03-31 | 2022-04-05 | 爱克莱根科技公司 | 用于将DNA序列靶向并入细胞或生物体的基因组中的Cas9逆转录病毒整合酶和Cas9重组酶系统 |
| JP6892642B2 (ja) * | 2015-04-13 | 2021-06-23 | 国立大学法人 東京大学 | 光依存的に又は薬物存在下でヌクレアーゼ活性若しくはニッカーゼ活性を示す、又は標的遺伝子の発現を抑制若しくは活性化するポリペプチドのセット |
| AU2016249402B2 (en) | 2015-04-15 | 2021-09-09 | Synthetic Genomics, Inc. | Algal chloroplastic SRP54 mutants |
| US11674144B2 (en) * | 2015-04-16 | 2023-06-13 | California Institute Of Technology | Fractional regulation of transcription |
| WO2016172583A1 (en) | 2015-04-23 | 2016-10-27 | Novartis Ag | Treatment of cancer using chimeric antigen receptor and protein kinase a blocker |
| US11827904B2 (en) | 2015-04-29 | 2023-11-28 | Fred Hutchinson Cancer Center | Modified stem cells and uses thereof |
| CN108026566A (zh) * | 2015-05-04 | 2018-05-11 | 特拉维夫大学拉莫特有限公司 | 用于使dna片段化的方法和试剂盒 |
| US11253616B2 (en) | 2017-09-06 | 2022-02-22 | The Trustees Of The University Of Pennsylvania | Small molecules for dual function positron emission tomography (PET) and cell suicide switches |
| WO2016183402A2 (en) * | 2015-05-13 | 2016-11-17 | President And Fellows Of Harvard College | Methods of making and using guide rna for use with cas9 systems |
| US11535871B2 (en) * | 2015-05-14 | 2022-12-27 | University Of Southern California | Optimized gene editing utilizing a recombinant endonuclease system |
| EP3303634B1 (en) | 2015-06-03 | 2023-08-30 | The Regents of The University of California | Cas9 variants and methods of use thereof |
| EP3302525A2 (en) | 2015-06-05 | 2018-04-11 | Novartis AG | Methods and compositions for diagnosing, treating, and monitoring treatment of shank3 deficiency associated disorders |
| US20160362667A1 (en) | 2015-06-10 | 2016-12-15 | Caribou Biosciences, Inc. | CRISPR-Cas Compositions and Methods |
| KR20180034389A (ko) | 2015-06-12 | 2018-04-04 | 론자 워커스빌 아이엔씨. | 합성 전사인자를 이용한 핵 역분화 방법 |
| JP2018518181A (ja) | 2015-06-17 | 2018-07-12 | ザ ユーエービー リサーチ ファンデーション | 血液細胞系列の細胞に機能的ポリペプチドを導入するためのCRISPR/Cas9複合体 |
| CN107949641A (zh) | 2015-06-17 | 2018-04-20 | Uab研究基金会 | 用于基因组编辑的crispr/cas9复合物 |
| EP3929286A1 (en) * | 2015-06-17 | 2021-12-29 | Poseida Therapeutics, Inc. | Compositions and methods for directing proteins to specific loci in the genome |
| WO2016205749A1 (en) * | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
| MA42895A (fr) | 2015-07-15 | 2018-05-23 | Juno Therapeutics Inc | Cellules modifiées pour thérapie cellulaire adoptive |
| WO2017015101A1 (en) * | 2015-07-17 | 2017-01-26 | University Of Washington | Methods for maximizing the efficiency of targeted gene correction |
| WO2017015637A1 (en) | 2015-07-22 | 2017-01-26 | Duke University | High-throughput screening of regulatory element function with epigenome editing technologies |
| WO2017024047A1 (en) * | 2015-08-03 | 2017-02-09 | Emendobio Inc. | Compositions and methods for increasing nuclease induced recombination rate in cells |
| WO2017024319A1 (en) | 2015-08-06 | 2017-02-09 | Dana-Farber Cancer Institute, Inc. | Tunable endogenous protein degradation |
| WO2017027392A1 (en) | 2015-08-07 | 2017-02-16 | Novartis Ag | Treatment of cancer using chimeric cd3 receptor proteins |
| CN108138176B (zh) | 2015-08-19 | 2022-05-24 | 阿克生物公司 | 使用基于核酸引导的核酸酶的系统捕获核酸 |
| US10898522B2 (en) | 2015-08-19 | 2021-01-26 | Children's Research Institute, Children's National Medical Center | Compositions and methods for treating graft versus host disease |
| BR112018004108A2 (pt) | 2015-08-28 | 2018-12-11 | Du Pont | ochrobactrum haywardense h1 isolada, ochrobactrum haywardense h1, método para produzir uma célula vegetal transformada, kit e vetor |
| US20170058272A1 (en) | 2015-08-31 | 2017-03-02 | Caribou Biosciences, Inc. | Directed nucleic acid repair |
| WO2017044885A1 (en) * | 2015-09-09 | 2017-03-16 | uBiome, Inc. | Method and system for microbiome-derived diagnostics and therapeutics for conditions associated with cerebro-craniofacial health |
| US11773455B2 (en) * | 2015-09-09 | 2023-10-03 | Psomagen, Inc. | Method and system for microbiome-derived diagnostics and therapeutics infectious disease and other health conditions associated with antibiotic usage |
| EP3349802B1 (en) | 2015-09-14 | 2021-08-04 | The Board of Regents of the University of Texas System | Lipocationic dendrimers and uses thereof |
| US20180237800A1 (en) * | 2015-09-21 | 2018-08-23 | The Regents Of The University Of California | Compositions and methods for target nucleic acid modification |
| WO2017053729A1 (en) | 2015-09-25 | 2017-03-30 | The Board Of Trustees Of The Leland Stanford Junior University | Nuclease-mediated genome editing of primary cells and enrichment thereof |
| US20170088828A1 (en) * | 2015-09-29 | 2017-03-30 | Agenovir Corporation | Compositions and methods for treatment of latent viral infections |
| WO2017059241A1 (en) | 2015-10-02 | 2017-04-06 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Lentiviral protein delivery system for rna-guided genome editing |
| KR102628801B1 (ko) | 2015-10-12 | 2024-01-25 | 이아이디피, 인크. | 세포내 유전자 변형 및 증가된 상동 재조합을 위한 보호 dna 주형 및 이용 방법 |
| US9862941B2 (en) | 2015-10-14 | 2018-01-09 | Pioneer Hi-Bred International, Inc. | Single cell microfluidic device |
| FR3042506B1 (fr) * | 2015-10-16 | 2018-11-30 | IFP Energies Nouvelles | Outil genetique de transformation de bacteries clostridium |
| AU2016342038B2 (en) | 2015-10-22 | 2022-09-08 | Massachusetts Institute Of Technology | Type VI-B CRISPR enzymes and systems |
| WO2017068120A1 (en) | 2015-10-22 | 2017-04-27 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Endonuclease-barcoding |
| ES2699848T3 (es) | 2015-10-23 | 2019-02-13 | Caribou Biosciences Inc | Acido nucleico CRISPR clase 2 de tipo cruzado modificado que se dirige a ácidos nucleicos |
| WO2017081288A1 (en) | 2015-11-11 | 2017-05-18 | Lonza Ltd | Crispr-associated (cas) proteins with reduced immunogenicity |
| US10851367B2 (en) | 2015-11-12 | 2020-12-01 | Pfizer Inc. | Tissue-specific genome engineering using CRISPR-Cas9 |
| WO2017083766A1 (en) * | 2015-11-13 | 2017-05-18 | Massachusetts Institute Of Technology | High-throughput crispr-based library screening |
| EP4620519A3 (en) | 2015-11-30 | 2025-10-22 | Sana Biotechnology, Inc. | Methods and compositions relating to chondrisomes from blood products |
| US10086024B2 (en) | 2015-11-30 | 2018-10-02 | Joseph E. Kovarik | Method and system for protecting honey bees, bats and butterflies from neonicotinoid pesticides |
| US11529412B2 (en) | 2015-11-30 | 2022-12-20 | Seed Health, Inc. | Method and system for protecting honey bees from pesticides |
| US10568916B2 (en) | 2015-11-30 | 2020-02-25 | Joseph E. Kovarik | Method and system for protecting honey bees, bats and butterflies from neonicotinoid pesticides |
| US10675347B2 (en) | 2015-11-30 | 2020-06-09 | Joseph E. Kovarik | Method and system for protecting honey bees from fipronil pesticides |
| US10933128B2 (en) | 2015-11-30 | 2021-03-02 | Joseph E. Kovarik | Method and system for protecting honey bees from pesticides |
| CN108779466B (zh) | 2015-11-30 | 2024-03-29 | 杜克大学 | 用于通过基因编辑修正人肌营养不良蛋白基因的治疗靶标和使用方法 |
| US12239706B2 (en) | 2015-11-30 | 2025-03-04 | Seed Health, Inc. | Method and system for protecting monarch butterflies from pesticides |
| US10946042B2 (en) | 2015-12-01 | 2021-03-16 | The Trustees Of The University Of Pennsylvania | Compositions and methods for selective phagocytosis of human cancer cells |
| US11293029B2 (en) | 2015-12-07 | 2022-04-05 | Zymergen Inc. | Promoters from Corynebacterium glutamicum |
| US9988624B2 (en) | 2015-12-07 | 2018-06-05 | Zymergen Inc. | Microbial strain improvement by a HTP genomic engineering platform |
| US10787662B2 (en) | 2015-12-07 | 2020-09-29 | Arc Bio, Llc | Methods and compositions for the making and using of guide nucleic acids |
| US11208649B2 (en) | 2015-12-07 | 2021-12-28 | Zymergen Inc. | HTP genomic engineering platform |
| DK3387134T3 (da) | 2015-12-11 | 2020-12-21 | Danisco Us Inc | Fremgangsmåder og sammensætninger til øget nukleasemedieret genommodifikation og reducerede virkninger uden for målstedet |
| EP3390631B1 (en) | 2015-12-18 | 2020-04-08 | Danisco US Inc. | Methods and compositions for t-rna based guide rna expression |
| US11761007B2 (en) | 2015-12-18 | 2023-09-19 | The Scripps Research Institute | Production of unnatural nucleotides using a CRISPR/Cas9 system |
| US11026969B2 (en) | 2015-12-23 | 2021-06-08 | Fred Hutchinson Cancer Research Center | High affinity T cell receptors and uses thereof |
| EP4219689A3 (en) | 2015-12-30 | 2023-12-20 | Novartis AG | Immune effector cell therapies with enhanced efficacy |
| US11441146B2 (en) | 2016-01-11 | 2022-09-13 | Christiana Care Health Services, Inc. | Compositions and methods for improving homogeneity of DNA generated using a CRISPR/Cas9 cleavage system |
| US11427837B2 (en) * | 2016-01-12 | 2022-08-30 | The Regents Of The University Of California | Compositions and methods for enhanced genome editing |
| AU2017208086A1 (en) | 2016-01-15 | 2018-08-09 | The Jackson Laboratory | Genetically modified non-human mammals by multi-cycle electroporation of Cas9 protein |
| AU2017208013B2 (en) | 2016-01-15 | 2022-12-01 | Beth Israel Deaconess Medical Center, Inc. | Therapeutic use of mitochondria and combined mitochondrial agents |
| US11136589B2 (en) | 2016-01-26 | 2021-10-05 | Pioneer Hi-Bred International, Inc. | Waxy corn |
| EP3199632A1 (en) | 2016-01-26 | 2017-08-02 | ACIB GmbH | Temperature-inducible crispr/cas system |
| JP2019513345A (ja) * | 2016-02-10 | 2019-05-30 | ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン | 核酸の検知 |
| WO2017139309A1 (en) | 2016-02-12 | 2017-08-17 | Ceres, Inc. | Methods and materials for high throughput testing of mutagenized allele combinations |
| US9896696B2 (en) | 2016-02-15 | 2018-02-20 | Benson Hill Biosystems, Inc. | Compositions and methods for modifying genomes |
| EP3417061B1 (en) | 2016-02-18 | 2022-10-26 | The Regents of the University of California | Methods and compositions for gene editing in stem cells |
| ES2847252T3 (es) | 2016-02-22 | 2021-08-02 | Caribou Biosciences Inc | Procedimientos de modulación de resultados de reparación de ADN |
| CN105646719B (zh) * | 2016-02-24 | 2019-12-20 | 无锡市妇幼保健院 | 一种高效定点转基因的工具及其应用 |
| SG11201807025SA (en) * | 2016-02-26 | 2018-09-27 | Lanzatech New Zealand Ltd | Crispr/cas systems for c-1 fixing bacteria |
| JP2019507610A (ja) | 2016-03-04 | 2019-03-22 | インドア バイオテクノロジーズ インコーポレイテッド | CRISPR−Casゲノム編集に基づく、Fel d1ノックアウト並びに関連組成物及び方法 |
| EP3429635A4 (en) * | 2016-03-15 | 2019-11-27 | University of Massachusetts | ANTI-CRISPR COMPOUNDS AND METHOD OF USE |
| JP2019515654A (ja) | 2016-03-16 | 2019-06-13 | ザ ジェイ. デヴィッド グラッドストーン インスティテューツ | 肥満及び/又は糖尿病を処置するための方法及び組成物、並びに候補処置薬剤を識別するための方法及び組成物 |
| EP3443085B1 (en) * | 2016-04-14 | 2022-09-14 | BOCO Silicon Valley, Inc. | Genome editing of human neural stem cells using nucleases |
| KR20180134385A (ko) | 2016-04-15 | 2018-12-18 | 노파르티스 아게 | 선택적 단백질 발현을 위한 조성물 및 방법 |
| AU2017250769B2 (en) | 2016-04-15 | 2022-07-14 | Memorial Sloan Kettering Cancer Center | Transgenic T cell and chimeric antigen receptor T cell compositions and related methods |
| US12065667B2 (en) | 2016-04-16 | 2024-08-20 | Ohio State Innovation Foundation | Modified Cpf1 MRNA, modified guide RNA, and uses thereof |
| CN109414450A (zh) * | 2016-04-22 | 2019-03-01 | 因特利亚治疗公司 | 用于治疗与转录因子4中三核苷酸重复相关的疾病的组合物和方法 |
| US11499158B2 (en) | 2016-05-13 | 2022-11-15 | Kaneka Corporation | Method for modifying plant |
| CN109152343A (zh) | 2016-05-13 | 2019-01-04 | 株式会社钟化 | 转化植物的制备方法 |
| WO2017195906A1 (ja) * | 2016-05-13 | 2017-11-16 | 株式会社カネカ | 植物のゲノム編集方法 |
| EP3463484B1 (en) | 2016-05-27 | 2026-01-07 | The Regents of the University of California | Methods and compositions for targeting rna polymerases and non-coding rna biogenesis to specific loci |
| US11779657B2 (en) | 2016-06-10 | 2023-10-10 | City Of Hope | Compositions and methods for mitochondrial genome editing |
| JP6940117B2 (ja) * | 2016-06-15 | 2021-09-22 | ツールゲン インコーポレイテッドToolgen Incorporated | オンターゲットおよびオフターゲットの多標的システムを用いた標的特異的ヌクレアーゼをスクリーニングするための方法およびその利用 |
| US10337051B2 (en) | 2016-06-16 | 2019-07-02 | The Regents Of The University Of California | Methods and compositions for detecting a target RNA |
| CN109642231A (zh) * | 2016-06-17 | 2019-04-16 | 博德研究所 | Vi型crispr直向同源物和系统 |
| EP3474849B1 (en) | 2016-06-27 | 2025-05-21 | The Broad Institute, Inc. | Compositions and methods for detecting and treating diabetes |
| US20190359992A1 (en) | 2016-06-28 | 2019-11-28 | Cellectis | Altering expression of gene products in plants through targeted insertion of nucleic acid sequences |
| WO2018005793A1 (en) | 2016-06-30 | 2018-01-04 | Zymergen Inc. | Methods for generating a glucose permease library and uses thereof |
| EP3478833A4 (en) | 2016-06-30 | 2019-10-02 | Zymergen, Inc. | METHOD FOR PRODUCING A BACTERIAL HEMOGLOBIN LIBRARY AND ITS USE |
| CA3030837A1 (en) | 2016-07-15 | 2018-01-18 | Novartis Ag | Treatment and prevention of cytokine release syndrome using a chimeric antigen receptor in combination with a kinase inhibitor |
| KR101710026B1 (ko) | 2016-08-10 | 2017-02-27 | 주식회사 무진메디 | Cas9 단백질 및 가이드 RNA의 혼성체를 함유하는 나노 리포좀 전달체 조성물 |
| WO2018031950A1 (en) | 2016-08-12 | 2018-02-15 | Caribou Biosciences, Inc. | Protein engineering methods |
| EP3500669A4 (en) * | 2016-08-16 | 2020-01-22 | The Regents of the University of California | METHOD FOR SEARCHING FOR LOW ABUNDANCE SEQUENCES BY HYBRIDIZATION (FLASH) |
| JP2019528691A (ja) * | 2016-08-19 | 2019-10-17 | ブルーバード バイオ, インコーポレイテッド | ゲノム編集エンハンサー |
| EP3500677A4 (en) * | 2016-08-20 | 2020-04-01 | Avellino Lab USA, Inc. | Single guide rna, crispr/cas9 systems, and methods of use thereof |
| CN106399311A (zh) * | 2016-09-07 | 2017-02-15 | 同济大学 | 用于Chip‑seq全基因组结合谱的内源蛋白标记的方法 |
| EP3510407A1 (en) | 2016-09-08 | 2019-07-17 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for diagnosing and treating nephrotic syndrome |
| WO2018049168A1 (en) | 2016-09-09 | 2018-03-15 | The Board Of Trustees Of The Leland Stanford Junior University | High-throughput precision genome editing |
| US20190275171A1 (en) * | 2016-09-23 | 2019-09-12 | Ionis Pharmaceuticals, Inc. | Gene therapy and targeted delivery of conjugated compounds |
| AU2017331362B2 (en) | 2016-09-23 | 2025-01-23 | Fred Hutchinson Cancer Center | TCRs specific for minor histocompatibility (H) antigen HA-1 and uses thereof |
| JP2019532672A (ja) | 2016-09-28 | 2019-11-14 | ノバルティス アーゲー | 多孔質膜系巨大分子送達システム |
| WO2018060238A1 (en) * | 2016-09-29 | 2018-04-05 | F. Hoffmann-La Roche Ag | Method to analyze and optimize gene editing modules and delivery approaches |
| AU2017335883B2 (en) * | 2016-09-30 | 2024-06-13 | The Regents Of The University Of California | RNA-guided nucleic acid modifying enzymes and methods of use thereof |
| AU2017335890B2 (en) | 2016-09-30 | 2024-05-09 | The Regents Of The University Of California | RNA-guided nucleic acid modifying enzymes and methods of use thereof |
| US10669539B2 (en) | 2016-10-06 | 2020-06-02 | Pioneer Biolabs, Llc | Methods and compositions for generating CRISPR guide RNA libraries |
| CN110225927B (zh) | 2016-10-07 | 2024-01-12 | 诺华股份有限公司 | 用于治疗癌症的嵌合抗原受体 |
| WO2018069232A1 (en) | 2016-10-10 | 2018-04-19 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the risk of having cardiac hypertrophy |
| WO2018071448A1 (en) | 2016-10-11 | 2018-04-19 | The Regents Of The University Of California | Systems and methods to encapsulate and preserve organic matter for analysis |
| CN109844121A (zh) | 2016-10-13 | 2019-06-04 | 先锋国际良种公司 | 产生北方叶枯病抗性玉蜀黍 |
| WO2018081531A2 (en) | 2016-10-28 | 2018-05-03 | Ariad Pharmaceuticals, Inc. | Methods for human t-cell activation |
| WO2018083606A1 (en) | 2016-11-01 | 2018-05-11 | Novartis Ag | Methods and compositions for enhancing gene editing |
| CN109689693B (zh) * | 2016-11-03 | 2022-06-28 | 深圳华大生命科学研究院 | 提高基因编辑效率的方法和系统 |
| CA3042259A1 (en) | 2016-11-04 | 2018-05-11 | Flagship Pioneering Innovations V. Inc. | Novel plant cells, plants, and seeds |
| EP3538140A1 (en) | 2016-11-14 | 2019-09-18 | Institut National de la Sante et de la Recherche Medicale (INSERM) | Methods and pharmaceutical compositions for modulating stem cells proliferation or differentiation |
| CN110268049B (zh) | 2016-11-22 | 2024-06-14 | 新加坡国立大学 | 用于t细胞恶性肿瘤免疫疗法的cd7表达阻滞剂和嵌合抗原受体 |
| CN110382695A (zh) | 2016-11-28 | 2019-10-25 | 得克萨斯州大学系统董事会 | 通过crispr/cpf1介导的基因编辑来预防肌营养不良 |
| WO2018100190A1 (en) | 2016-12-02 | 2018-06-07 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for diagnosing renal cell carcinoma |
| US9816093B1 (en) | 2016-12-06 | 2017-11-14 | Caribou Biosciences, Inc. | Engineered nucleic acid-targeting nucleic acids |
| JP2020500541A (ja) | 2016-12-08 | 2020-01-16 | ザ ボード オブ リージェンツ オブ ザ ユニバーシティー オブ テキサス システム | ヒト化デュシェンヌ型筋ジストロフィー変異を有するdmdレポーターモデル |
| BR112019012155A2 (pt) * | 2016-12-14 | 2019-11-12 | Wageningen Universiteit | uso de pelo menos uma molécula-guia de rna e uma proteína cas, método de ligação, clivagem, marcação ou modificação de um polinucleotídeo alvo de fita dupla, célula transformada, e, complexo de nucleoproteína |
| RU2019121992A (ru) | 2016-12-14 | 2021-01-15 | Лигандал, Инк. | Способы и композиции для доставки полезной нагрузки в виде нуклеиновых кислот и белков |
| WO2018119225A1 (en) | 2016-12-22 | 2018-06-28 | Monsanto Technology Llc | Genome editing-based crop engineering and production of brachytic plants |
| WO2018118585A1 (en) * | 2016-12-22 | 2018-06-28 | Agenovir Corporation | Antiviral compositions |
| AU2017382323B2 (en) * | 2016-12-23 | 2024-06-13 | President And Fellows Of Harvard College | Gene editing of PCSK9 |
| EP3342868B1 (en) | 2016-12-30 | 2019-12-25 | Systasy Bioscience GmbH | Constructs and screening methods |
| JOP20190166A1 (ar) | 2017-01-05 | 2019-07-02 | Univ Texas | استراتيجية مثلى من أجل تعديلات تخطي إكسون باستخدام crispr/cas9 مع متواليات توجيه ثلاثي |
| EP3346001A1 (en) | 2017-01-06 | 2018-07-11 | TXCell | Monospecific regulatory t cell population with cytotoxicity for b cells |
| WO2018127585A1 (en) | 2017-01-06 | 2018-07-12 | Txcell | Monospecific regulatory t cell population with cytotoxicity for b cells |
| ES2928176T3 (es) | 2017-01-10 | 2022-11-16 | Christiana Care Gene Editing Inst Llc | Métodos para mutagénesis dirigida al sitio in vitro mediante el uso de tecnologías de edición de genes |
| US20230190958A1 (en) * | 2017-01-13 | 2023-06-22 | Jichi Medical University | AAV Vector for Disrupting Coagulation Factor-Related Gene on Liver Genome |
| EP3571304A4 (en) | 2017-01-20 | 2020-08-19 | The Regents of the University of California | TARGETED ACTIVATION OF GENES IN PLANTS |
| WO2018140362A1 (en) | 2017-01-26 | 2018-08-02 | The Regents Of The University Of California | Targeted gene demethylation in plants |
| EP4043485A1 (en) | 2017-01-26 | 2022-08-17 | Novartis AG | Cd28 compositions and methods for chimeric antigen receptor therapy |
| SG11201906795SA (en) | 2017-01-28 | 2019-08-27 | Inari Agriculture Inc | Novel plant cells, plants, and seeds |
| EP3577134A1 (en) | 2017-01-31 | 2019-12-11 | Novartis AG | Treatment of cancer using chimeric t cell receptor proteins having multiple specificities |
| EP3577227A4 (en) | 2017-02-02 | 2020-12-30 | Cargill Inc. | GENETICALLY MODIFIED CELLS PRODUCING C6-C10 FATTY ACID DERIVATIVES |
| JP2020513790A (ja) | 2017-02-06 | 2020-05-21 | ザイマージェン インコーポレイテッド | 発酵によりチラミンを生成させるための遺伝子操作型生合成経路 |
| US10995333B2 (en) * | 2017-02-06 | 2021-05-04 | 10X Genomics, Inc. | Systems and methods for nucleic acid preparation |
| WO2018148440A1 (en) | 2017-02-08 | 2018-08-16 | Dana-Farber Cancer Institute, Inc. | Regulating chimeric antigen receptors |
| WO2018148511A1 (en) | 2017-02-10 | 2018-08-16 | Zymergen Inc. | A modular universal plasmid design strategy for the assembly and editing of multiple dna constructs for multiple hosts |
| JP7341060B2 (ja) | 2017-02-10 | 2023-09-08 | アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル | Mapk経路の活性化に関連付けられる癌の処置のための方法及び医薬組成物 |
| US20200048359A1 (en) | 2017-02-28 | 2020-02-13 | Novartis Ag | Shp inhibitor compositions and uses for chimeric antigen receptor therapy |
| JP7145517B2 (ja) | 2017-03-08 | 2022-10-03 | ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン | 分析物の検出 |
| WO2018170015A1 (en) * | 2017-03-14 | 2018-09-20 | The Regents Of The University Of California | Engineering crispr cas9 immune stealth |
| JP7037577B2 (ja) | 2017-03-15 | 2022-03-16 | フレッド ハッチンソン キャンサー リサーチ センター | 高親和性mage-a1特異的tcr及びその使用 |
| EP3595645A1 (en) | 2017-03-15 | 2020-01-22 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Pharmaceutical compositions for the treatment of thrombosis in patients suffering from a myeloproliferative neoplasm |
| EP3600269A1 (en) | 2017-03-24 | 2020-02-05 | INSERM - Institut National de la Santé et de la Recherche Médicale | Gfi1 inhibitors for the treatment of hyperglycemia |
| CA3050616A1 (en) | 2017-03-24 | 2018-09-27 | Curevac Ag | Nucleic acids encoding crispr-associated proteins and uses thereof |
| EP3600427A1 (en) | 2017-03-24 | 2020-02-05 | INSERM - Institut National de la Santé et de la Recherche Médicale | Methods and compositions for treating melanoma |
| WO2018183403A1 (en) | 2017-03-28 | 2018-10-04 | Caribou Biosciences, Inc. | Crispr-associated (cas) protein |
| WO2018183607A1 (en) | 2017-03-30 | 2018-10-04 | Pioneer Hi-Bred International, Inc. | Methods of identifying and characterizing gene editing variations in nucleic acids |
| JP2020515588A (ja) | 2017-03-30 | 2020-05-28 | アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル | ミトコンドリア遺伝子疾患の処置方法 |
| US11834670B2 (en) * | 2017-04-19 | 2023-12-05 | Global Life Sciences Solutions Usa Llc | Site-specific DNA modification using a donor DNA repair template having tandem repeat sequences |
| US11458118B2 (en) | 2017-04-21 | 2022-10-04 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for the treatment of diseases associated with reduced CFTR function |
| WO2018201056A1 (en) | 2017-04-28 | 2018-11-01 | Novartis Ag | Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor |
| WO2018201051A1 (en) | 2017-04-28 | 2018-11-01 | Novartis Ag | Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor |
| CN110997705A (zh) | 2017-05-05 | 2020-04-10 | 巴塞罗那自治大学 | 纳米结构蛋白及其用途 |
| CN111093640A (zh) | 2017-05-17 | 2020-05-01 | 国家健康与医学研究院 | 用于改善阿片类药物疼痛治疗的flt3抑制剂 |
| CA3064000A1 (en) | 2017-05-24 | 2018-11-29 | Effector Therapeutics, Inc. | Methods and compositions for cellular immunotherapy |
| EP3635112A2 (en) | 2017-06-06 | 2020-04-15 | Zymergen, Inc. | A htp genomic engineering platform for improving fungal strains |
| JP2020524490A (ja) | 2017-06-06 | 2020-08-20 | ザイマージェン インコーポレイテッド | Escherichia Coliを改良するためのHTPゲノム操作プラットフォーム |
| US20210079100A1 (en) | 2017-06-08 | 2021-03-18 | Inserm (Institute National De La Sante Et De La Recherche Medicale) | Methods and compositions for treating hyperpigmentation disorders |
| US11517901B2 (en) | 2017-06-09 | 2022-12-06 | The Regents Of The University Of California | High-efficiency particle encapsulation in droplets with particle spacing and downstream droplet sorting |
| WO2018227210A1 (en) | 2017-06-09 | 2018-12-13 | The Regents Of The University Of California | High-efficiency encapsulation in droplets based on hydrodynamic vortices control |
| EP3638789A4 (en) * | 2017-06-12 | 2021-03-10 | California Institute of Technology | RNA CONDITIONAL GUIDES |
| EP3638797A1 (en) | 2017-06-13 | 2020-04-22 | Flagship Pioneering Innovations V, Inc. | Compositions comprising curons and uses thereof |
| RU2769475C2 (ru) | 2017-06-23 | 2022-04-01 | Инскрипта, Инк. | Направляемые нуклеиновыми кислотами нуклеазы |
| JP7588391B2 (ja) | 2017-06-30 | 2024-11-22 | コデクシス, インコーポレイテッド | T7 rnaポリメラーゼバリアント |
| AU2018292104B2 (en) | 2017-06-30 | 2025-03-27 | Codexis, Inc. | T7 RNA polymerase variants |
| EP3645721A1 (en) | 2017-06-30 | 2020-05-06 | Novartis AG | Methods for the treatment of disease with gene editing systems |
| AU2018300069C1 (en) | 2017-07-11 | 2025-11-20 | Synthorx, Inc. | Incorporation of unnatural nucleotides and methods thereof |
| EP3427756A1 (en) | 2017-07-14 | 2019-01-16 | Universidad Autónoma De Barcelona (UAB) | Therapeutic nanoconjugates and uses thereof |
| US11452967B2 (en) | 2017-07-17 | 2022-09-27 | Zymergen Inc. | Metal-organic framework materials |
| WO2019018551A2 (en) | 2017-07-18 | 2019-01-24 | Lee Tzumin | METHODS AND COMPOSITIONS FOR GENETICALLY GENETIC HANDLING OF GENES AND CELLS |
| WO2019016310A1 (en) | 2017-07-20 | 2019-01-24 | INSERM (Institut National de la Santé et de la Recherche Médicale) | METHODS AND COMPOSITIONS FOR TREATING CANCERS |
| US11926664B2 (en) | 2017-07-25 | 2024-03-12 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for modulating monocytopoiesis |
| CN109295054B (zh) * | 2017-07-25 | 2024-02-06 | 广州普世利华科技有限公司 | 用于靶向病原体基因RNA的gRNA及基于C2c2的病原体基因的检测方法及试剂盒 |
| SG11202000840YA (en) | 2017-07-31 | 2020-02-27 | Reflection Biotechnologies Ltd | Cellular models of and therapies for ocular diseases |
| WO2019030695A1 (en) | 2017-08-09 | 2019-02-14 | Benson Hill Biosystems, Inc. | Compositions and methods for modifying genomes |
| JP2020533962A (ja) | 2017-08-11 | 2020-11-26 | フレッド ハッチンソン キャンサー リサーチ センター | Braf特異的tcrおよびその使用 |
| CN111263810A (zh) * | 2017-08-22 | 2020-06-09 | 纳匹基因公司 | 使用多核苷酸指导的核酸内切酶的细胞器基因组修饰 |
| US12350312B2 (en) | 2017-09-06 | 2025-07-08 | Fred Hutchinson Cancer Center | Methods for improving adoptive cell therapy |
| JP7407701B2 (ja) | 2017-09-06 | 2024-01-04 | フレッド ハッチンソン キャンサー センター | strepタグ特異的キメラ受容体およびその使用 |
| WO2019051097A1 (en) | 2017-09-08 | 2019-03-14 | The Regents Of The University Of California | RNA-GUIDED ENDONUCLEASE FUSION POLYPEPTIDES AND METHODS OF USING SAME |
| CA3075507A1 (en) * | 2017-09-11 | 2019-03-14 | The Regents Of The University Of California | Antibody-mediated delivery of cas9 to mammalian cells |
| US20190076814A1 (en) * | 2017-09-11 | 2019-03-14 | Synthego Corporation | Biopolymer synthesis system and method |
| CN110168093B (zh) * | 2017-09-12 | 2023-08-15 | 中科蓝华(广州)生物医药技术有限公司 | 一种转染细胞内寄生虫的试剂盒及其应用 |
| WO2019055862A1 (en) | 2017-09-14 | 2019-03-21 | Fred Hutchinson Cancer Research Center | HIGH AFFINITY T CELL RECEPTORS AND USES THEREOF |
| AU2018338418B2 (en) | 2017-09-19 | 2025-06-05 | Admare Vintageco1 Investments Ltd | Anti-HLA-A2 antibodies and methods of using the same |
| WO2019057649A1 (en) | 2017-09-19 | 2019-03-28 | INSERM (Institut National de la Santé et de la Recherche Médicale) | METHODS AND PHARMACEUTICAL COMPOSITIONS FOR THE TREATMENT OF ACUTE MYELOID LEUKEMIA |
| IT201700105372A1 (it) * | 2017-09-20 | 2019-03-20 | Fondazione St Italiano Tecnologia | Molecola di acido nucleico funzionale e relativo uso |
| CN111655340A (zh) | 2017-09-20 | 2020-09-11 | 国家医疗保健研究所 | 用于调节自噬的方法和药物组合物 |
| BR112020005519A2 (pt) | 2017-09-20 | 2020-10-27 | The University Of British Columbia | novos anticorpos anti-hla-a2 e usos dos mesmos |
| WO2019060903A1 (en) | 2017-09-25 | 2019-03-28 | Agrospheres, Inc. | COMPOSITIONS AND METHODS FOR PRODUCING AND EVOLVING ADMINISTRATION OF BIOLOGICAL PRODUCTS |
| EP3692091A4 (en) | 2017-10-05 | 2021-08-04 | Zymergen Inc. | OPTICALLY TRANSPARENT POLYIMIDES |
| WO2019075409A1 (en) | 2017-10-12 | 2019-04-18 | The Regents Of The University Of California | ISOLATION AND IDENTIFICATION WITHOUT MICROFLUIDIC LABEL OF CELLS USING FLUORESCENCE LIFE IMAGING (FLIM) |
| EP3697435A1 (en) | 2017-10-20 | 2020-08-26 | Fred Hutchinson Cancer Research Center | Compositions and methods of immunotherapy targeting tigit and/or cd112r or comprising cd226 overexpression |
| US11499127B2 (en) | 2017-10-20 | 2022-11-15 | The Regents Of The University Of California | Multi-layered microfluidic systems for in vitro large-scale perfused capillary networks |
| US11745179B2 (en) * | 2017-10-20 | 2023-09-05 | The Regents Of The University Of California | Microfluidic systems and methods for lipoplex-mediated cell transfection |
| WO2019135816A2 (en) * | 2017-10-23 | 2019-07-11 | The Broad Institute, Inc. | Novel nucleic acid modifiers |
| US11690856B2 (en) | 2017-10-23 | 2023-07-04 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Compounds for treating CMV related diseases |
| KR102013798B1 (ko) | 2017-10-25 | 2019-08-23 | 성균관대학교산학협력단 | 노화 모델 제조 방법 및 이에 의해 제조된 세포 또는 동물 노화 모델 |
| US20210179709A1 (en) | 2017-10-31 | 2021-06-17 | Novartis Ag | Anti-car compositions and methods |
| US11970719B2 (en) | 2017-11-01 | 2024-04-30 | The Regents Of The University Of California | Class 2 CRISPR/Cas compositions and methods of use |
| US12227753B2 (en) | 2017-11-01 | 2025-02-18 | The Regents Of The University Of California | CasY compositions and methods of use |
| CA3080493A1 (en) | 2017-11-01 | 2019-05-09 | The Regents Of The University Of California | Casz compositions and methods of use |
| CN120310773A (zh) | 2017-11-16 | 2025-07-15 | 阿斯利康(瑞典)有限公司 | 用于改善基于Cas9的敲入策略的有效性的组合物和方法 |
| WO2019101995A1 (en) | 2017-11-27 | 2019-05-31 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for cardiac regeneration |
| US20190160120A1 (en) * | 2017-11-29 | 2019-05-30 | Snipr Biome Aps | Dna, methods etc |
| US20220267403A1 (en) | 2017-12-01 | 2022-08-25 | Fred Hutchinson Cancer Research Center | Binding proteins specific for 5t4 and uses thereof |
| JP7460531B2 (ja) * | 2017-12-05 | 2024-04-02 | バイオピーエルエックス,インコーポレイティド | 微生物感染を防ぐための方法および組成物 |
| EP3720453B1 (en) | 2017-12-05 | 2024-07-10 | Caribou Biosciences, Inc. | Modified lymphocytes |
| JP2021505154A (ja) | 2017-12-07 | 2021-02-18 | ザイマージェン インコーポレイテッド | 発酵によって(6e)−8−ヒドロキシゲラニオールを生産するための設計された生合成経路 |
| MX2020005939A (es) | 2017-12-08 | 2020-08-24 | Synthetic Genomics Inc | Mejoramiento de la productividad de lipidos de algas a traves de la modificacion genetica de una proteina que contiene un dominio tpr. |
| US11661599B1 (en) | 2017-12-14 | 2023-05-30 | National Technology & Engineering Solutions Of Sandia, Llc | CRISPR-Cas based system for targeting single-stranded sequences |
| EP3724327A4 (en) | 2017-12-14 | 2022-01-12 | EZY Biotech LLC | SUBJECT-SPECIFIC TUMOR-INHIBITING CELLS AND THEIR USE |
| CN111819185A (zh) | 2017-12-15 | 2020-10-23 | 旗舰创业创新第六有限责任公司 | 包含环状多核糖核苷酸的组合物及其用途 |
| US20190201548A1 (en) | 2017-12-29 | 2019-07-04 | Rubius Therapeutics, Inc. | Gene editing and targeted transcriptional modulation for engineering erythroid cells |
| CN111527101B (zh) | 2017-12-29 | 2025-01-03 | 合成基因组股份有限公司 | 用于改善生长的光合生物基因调节 |
| WO2019134946A1 (en) | 2018-01-04 | 2019-07-11 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma resistant |
| EP3735462A1 (en) | 2018-01-05 | 2020-11-11 | The Board of Regents of The University of Texas System | Therapeutic crispr/cas9 compositions and methods of use |
| WO2019140278A1 (en) | 2018-01-11 | 2019-07-18 | Fred Hutchinson Cancer Research Center | Immunotherapy targeting core binding factor antigens |
| EP3740483B1 (en) | 2018-01-17 | 2023-01-11 | Vertex Pharmaceuticals Incorporated | Quinoxalinone compounds, compositions, methods, and kits for increasing genome editing efficiency |
| CN111741955B (zh) * | 2018-01-17 | 2024-02-23 | 沃泰克斯药物股份有限公司 | Dna-pk抑制剂 |
| US12509492B2 (en) | 2018-01-19 | 2025-12-30 | Duke University | Genome engineering with CRISPR-Cas systems in eukaryotes |
| US12145984B2 (en) | 2018-01-24 | 2024-11-19 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Methods for preventing ischemia reperfusion injury in an organ with antibody antagonists of IL-33 |
| US11926835B1 (en) | 2018-01-29 | 2024-03-12 | Inari Agriculture Technology, Inc. | Methods for efficient tomato genome editing |
| CN112153984A (zh) | 2018-01-30 | 2020-12-29 | 福宏治疗公司 | 化合物及其用途 |
| EA202091828A1 (ru) | 2018-01-31 | 2021-05-24 | Дзе Борд Оф Риджентс Оф Дзе Юниверсити Оф Техас Систем | Композиции и способы коррекции мутаций дистрофина в кардиомиоцитах человека |
| WO2019150309A1 (en) | 2018-02-02 | 2019-08-08 | Hammack Scott | Modulators of gpr68 and uses thereof for treating and preventing diseases |
| CA3087715A1 (en) | 2018-02-08 | 2019-08-15 | Zymergen Inc. | Genome editing using crispr in corynebacterium |
| JP7384811B2 (ja) | 2018-02-16 | 2023-11-21 | アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル | 白斑を処置するための方法及び組成物 |
| US20210079061A1 (en) | 2018-02-26 | 2021-03-18 | Fred Hutchinson Cancer Research Center | Compositions and methods for cellular immunotherapy |
| US11713472B2 (en) | 2018-03-06 | 2023-08-01 | The Board Of Trustees Of The University Of Illinois | Genome editing in Archaea |
| ES3036459T3 (en) * | 2018-03-12 | 2025-09-19 | Pioneer Hi Bred Int | Methods for plant transformation |
| BR112020018658A2 (pt) | 2018-03-15 | 2020-12-29 | KSQ Therapeutics, Inc. | Composições de regulação gênica e métodos para imu-noterapia aprimorada |
| CA3104989A1 (en) * | 2018-03-27 | 2019-10-03 | G+Flas Life Sciences | Sequence-specific in vivo cell targeting |
| CN112204148B (zh) | 2018-03-27 | 2024-04-30 | 宾夕法尼亚大学董事会 | 具有增强功能的修饰的免疫细胞及其筛选方法 |
| WO2019193375A1 (en) | 2018-04-04 | 2019-10-10 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of fzd7 inhibitors for the treatment of retinal neovascularization |
| AU2019247490A1 (en) | 2018-04-06 | 2020-10-22 | Children's Medical Center Corporation | Compositions and methods for somatic cell reprogramming and modulating imprinting |
| EP3774907A1 (en) | 2018-04-13 | 2021-02-17 | Sangamo Therapeutics France | Chimeric antigen receptor specific for interleukin-23 receptor |
| WO2019210153A1 (en) | 2018-04-27 | 2019-10-31 | Novartis Ag | Car t cell therapies with enhanced efficacy |
| AU2019266347B2 (en) | 2018-05-11 | 2024-05-02 | Lupagen, Inc. | Systems and methods for closed loop, real-time modifications of patient cells |
| WO2019222545A1 (en) | 2018-05-16 | 2019-11-21 | Synthego Corporation | Methods and systems for guide rna design and use |
| AU2019269601A1 (en) | 2018-05-17 | 2020-11-26 | Regents Of The University Of Minnesota | Drug-resistant immune cells and methods of use thereof |
| JP7545726B2 (ja) * | 2018-05-22 | 2024-09-05 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | tRNA/プレmiRNA組成物およびがん治療における使用 |
| WO2019226945A1 (en) | 2018-05-23 | 2019-11-28 | National University Of Singapore | Blockade of cd2 surface expression and expression of chimeric antigen receptors for immunotherapy of t-cell malignancies |
| EP3572512A1 (en) | 2018-05-24 | 2019-11-27 | B.R.A.I.N. Ag | A method for engineering a protein |
| US11866719B1 (en) | 2018-06-04 | 2024-01-09 | Inari Agriculture Technology, Inc. | Heterologous integration of regulatory elements to alter gene expression in wheat cells and wheat plants |
| WO2019236893A2 (en) * | 2018-06-07 | 2019-12-12 | Allen Institute | Stem cell lines containing endogenous, differentially-expressed tagged proteins, methods of production, and use thereof |
| FR3082208A1 (fr) | 2018-06-11 | 2019-12-13 | Fondation Mediterranee Infection | Methode de modification d'une sequence cible d'acide nucleique d'une cellule hote |
| MX2020013443A (es) | 2018-06-13 | 2021-02-26 | Novartis Ag | Receptores de antigeno quimerico de bcma y usos de los mismos. |
| EP3821012A4 (en) | 2018-07-13 | 2022-04-20 | The Regents of The University of California | Retrotransposon-based delivery vehicle and methods of use thereof |
| CN113039276A (zh) | 2018-07-16 | 2021-06-25 | 密歇根大学董事会 | 核酸酶介导的核酸修饰 |
| WO2020018964A1 (en) | 2018-07-20 | 2020-01-23 | Fred Hutchinson Cancer Research Center | Compositions and methods for controlled expression of antigen-specific receptors |
| BR112021001343A2 (pt) * | 2018-07-24 | 2021-05-04 | Flagship Pioneering Innovations Vi, Llc | composições compreendendo poliribonucleotídeos circulares e seus usos |
| MX2021001070A (es) * | 2018-07-31 | 2021-05-27 | Intellia Therapeutics Inc | Composiciones y métodos para editar el gen hidroxiácido oxidasa 1 (hao1) para tratar la hiperoxaluria primaria tipo 1 (ph1). |
| EP3829652A4 (en) * | 2018-08-01 | 2022-05-11 | University of Maryland, Baltimore | MODULATION OF MTORC1 ACTIVITY AND AUTOPHAGY BY CIB2-RHEB INTERACTION |
| EP3830301B1 (en) | 2018-08-01 | 2024-05-22 | Mammoth Biosciences, Inc. | Programmable nuclease compositions and methods of use thereof |
| KR20210046006A (ko) | 2018-08-10 | 2021-04-27 | 상가모 테라퓨틱스 프랑스 | Tnfr2 도메인을 포함하는 신규한 car 작제물 |
| CA3107002A1 (en) | 2018-08-15 | 2020-04-30 | Zymergen Inc. | Applications of crispri in high throughput metabolic engineering |
| WO2020037142A1 (en) | 2018-08-17 | 2020-02-20 | Yale University | Compositions and methods for high-throughput activation screening to boost t cell effector function |
| WO2020055547A2 (en) | 2018-08-18 | 2020-03-19 | Seed Health, Inc. | Methods and compositions for honey bee health |
| US12421507B2 (en) * | 2018-08-20 | 2025-09-23 | The Broad Institute, Inc. | Methods and compositions for optochemical control of CRISPR-CAS9 |
| AU2019324162A1 (en) | 2018-08-22 | 2021-03-04 | Fred Hutchinson Cancer Center | Immunotherapy targeting KRAS or Her2 antigens |
| WO2020041456A1 (en) | 2018-08-22 | 2020-02-27 | The Regents Of The University Of California | Variant type v crispr/cas effector polypeptides and methods of use thereof |
| WO2020041249A1 (en) | 2018-08-23 | 2020-02-27 | Sangamo Therapeutics, Inc. | Engineered target specific base editors |
| AU2019329984A1 (en) | 2018-08-28 | 2021-03-11 | Fred Hutchinson Cancer Center | Methods and compositions for adoptive T cell therapy incorporating induced notch signaling |
| BR112021003469A2 (pt) | 2018-08-30 | 2021-05-18 | The University Of North Carolina At Chapel Hill | genes sintéticos de feedback ativado, cassetes de seed match alvo e seus usos |
| US11479762B1 (en) | 2018-08-31 | 2022-10-25 | Inari Agriculture Technology, Inc. | Compositions, systems, and methods for genome editing |
| WO2020048942A1 (en) | 2018-09-04 | 2020-03-12 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for enhancing cytotoxic t lymphocyte-dependent immune responses |
| US12253528B2 (en) | 2018-09-05 | 2025-03-18 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Methods and compositions for treating asthma and allergic diseases |
| US12378572B2 (en) | 2018-09-07 | 2025-08-05 | Crispr Therapeutics Ag | Universal donor cells |
| EP3847251A1 (en) | 2018-09-07 | 2021-07-14 | Astrazeneca AB | Compositions and methods for improved nucleases |
| WO2020053125A1 (en) | 2018-09-10 | 2020-03-19 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for the treatment of neurofibromatosis |
| CN113056289A (zh) | 2018-09-21 | 2021-06-29 | 哈佛学院校长同事会 | 用于治疗糖尿病的方法和组合物以及用于富集编码分泌蛋白的mRNA的方法 |
| WO2020068702A1 (en) | 2018-09-24 | 2020-04-02 | Fred Hutchinson Cancer Research Center | Chimeric receptor proteins and uses thereof |
| US12473357B2 (en) | 2018-09-25 | 2025-11-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of antagonists of Th17 cytokines for the treatment of bronchial remodeling in patients suffering from allergic asthma |
| WO2020070062A1 (en) | 2018-10-01 | 2020-04-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of tim-3 inhibitors for the treatment of exacerbations in patients suffering from severe asthma |
| US12351634B2 (en) | 2018-10-09 | 2025-07-08 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of cilengitide for ameliorating cardiac fibrosis occurring in response to myocardial infarction |
| US20220030788A1 (en) | 2018-10-16 | 2022-02-03 | Pioneer Hi-Bred International, Inc. | Genome edited fine mapping and causal gene identification |
| WO2020081588A1 (en) | 2018-10-17 | 2020-04-23 | Dana-Farber Cancer Institute, Inc. | Swi/snf family chromatin remodeling complexes and uses thereof |
| WO2020079162A1 (en) | 2018-10-18 | 2020-04-23 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for inducing full ablation of hematopoiesis |
| US11946047B2 (en) * | 2018-10-23 | 2024-04-02 | Texas Tech University System | Treatment strategies against anthrax by interfering with critical host factors |
| US11407995B1 (en) | 2018-10-26 | 2022-08-09 | Inari Agriculture Technology, Inc. | RNA-guided nucleases and DNA binding proteins |
| UY38427A (es) | 2018-10-26 | 2020-05-29 | Novartis Ag | Métodos y composiciones para terapia con células oculares |
| MX2021005028A (es) | 2018-10-31 | 2021-08-24 | Zymergen Inc | Ensamble determinista multiplexado de genotecas de adn. |
| US11434477B1 (en) | 2018-11-02 | 2022-09-06 | Inari Agriculture Technology, Inc. | RNA-guided nucleases and DNA binding proteins |
| US12460189B2 (en) | 2018-11-09 | 2025-11-04 | Inari Agriculture Technology, Inc. | RNA-guided nucleases and DNA binding proteins |
| CN113286815B (zh) | 2018-11-09 | 2024-04-26 | 弗雷德哈钦森癌症中心 | 间皮素特异性t细胞受体及其在免疫治疗中的应用 |
| RU2712497C1 (ru) * | 2018-11-26 | 2020-01-29 | Автономная некоммерческая образовательная организация высшего образования Сколковский институт науки и технологий | Средство разрезания ДНК на основе Cas9 белка из биотехнологически значимой бактерии Clostridium cellulolyticum |
| WO2020113135A1 (en) * | 2018-11-29 | 2020-06-04 | Flagship Pioneering Innovations V, Inc. | Methods of modulating rna |
| US20220025405A1 (en) * | 2018-12-12 | 2022-01-27 | Kyushu University, National University Corporation | Production method for genome-edited cells |
| US11166996B2 (en) | 2018-12-12 | 2021-11-09 | Flagship Pioneering Innovations V, Inc. | Anellovirus compositions and methods of use |
| US11384344B2 (en) * | 2018-12-17 | 2022-07-12 | The Broad Institute, Inc. | CRISPR-associated transposase systems and methods of use thereof |
| CN113347990A (zh) | 2018-12-21 | 2021-09-03 | 西北大学 | 膜联蛋白在预防和治疗肌膜损伤中的用途 |
| CN113874395A (zh) * | 2018-12-24 | 2021-12-31 | 威特拉公司 | 鉴定表位和互补位的方法 |
| WO2020136216A1 (en) | 2018-12-27 | 2020-07-02 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods of identifying subjects having or at risk of having a coagulation related disorder |
| KR20210149686A (ko) | 2018-12-27 | 2021-12-09 | 라이프에디트 테라퓨틱스, 인크. | 유전자 편집에 유용한 폴리펩티드 및 사용 방법 |
| CA3124489A1 (en) * | 2018-12-31 | 2020-07-09 | Htg Molecular Diagnostics, Inc. | Methods of detecting dna and rna in the same sample |
| BR112021013157A8 (pt) | 2019-01-03 | 2022-12-06 | Inst Nat Sante Rech Med | Usos de um inibidor de nrp-1, uso de uma combinação, uso de um anticorpo multiespecífico, método ex vivo para predizer, uso de um inibidor, anticorpo multiespecífico, população de células modificadas, método ex vivo de produção e uso de uma população de células t |
| EP3931313A2 (en) | 2019-01-04 | 2022-01-05 | Mammoth Biosciences, Inc. | Programmable nuclease improvements and compositions and methods for nucleic acid amplification and detection |
| WO2020150144A1 (en) | 2019-01-15 | 2020-07-23 | Seminis Vegetable Seeds, Inc. | Green bean plants with improved disease resistance |
| EP3911669A1 (en) | 2019-01-16 | 2021-11-24 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Variants of erythroferrone and their use |
| US20220072084A1 (en) | 2019-01-17 | 2022-03-10 | Universitat Autonoma De Barcelona (Uab) | Therapeutic nanoconjugates and uses thereof |
| US12509453B2 (en) | 2019-01-29 | 2025-12-30 | Foghorn Therapeutics Inc. | BRM/BRG1 inhibitors and uses thereof |
| US12384776B2 (en) | 2019-01-29 | 2025-08-12 | Foghorn Therapeutics Inc. | Compounds and uses thereof |
| WO2020160125A1 (en) * | 2019-01-29 | 2020-08-06 | Flagship Pioneering Innovations V, Inc. | Compositions comprising an endonuclease and methods for purifying an endonuclease |
| WO2020161083A1 (en) | 2019-02-04 | 2020-08-13 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for modulating blood-brain barrier |
| WO2020163856A1 (en) | 2019-02-10 | 2020-08-13 | The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone | Modified mitochondrion and methods of use thereof |
| WO2020169472A2 (en) | 2019-02-18 | 2020-08-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods of inducing phenotypic changes in macrophages |
| CA3130618A1 (en) | 2019-02-20 | 2020-08-27 | Fred Hutchinson Cancer Research Center | Binding proteins specific for ras neoantigens and uses thereof |
| EP3930735A1 (en) | 2019-02-26 | 2022-01-05 | The Regents of the University of Colorado, a body corporate | Method and composition for treating gastrointestinal inflammatory disorders |
| WO2020180699A1 (en) * | 2019-03-01 | 2020-09-10 | Arbor Biotechnologies, Inc. | Novel crispr dna targeting enzymes and systems |
| CA3130789A1 (en) | 2019-03-07 | 2020-09-10 | The Regents Of The University Of California | Crispr-cas effector polypeptides and methods of use thereof |
| CN113728106A (zh) | 2019-03-08 | 2021-11-30 | 齐默尔根公司 | 微生物中的迭代基因组编辑 |
| US11053515B2 (en) | 2019-03-08 | 2021-07-06 | Zymergen Inc. | Pooled genome editing in microbes |
| US12448430B2 (en) | 2019-03-11 | 2025-10-21 | Fred Hutchinson Cancer Center | High avidity WT1 T cell receptors and uses thereof |
| SG11202109972QA (en) | 2019-03-11 | 2021-10-28 | Sorrento Therapeutics Inc | Improved process for integration of dna constructs using rna-guided endonucleases |
| CA3131319A1 (en) | 2019-03-25 | 2020-10-01 | Avak Kahvejian | Compositions comprising modified circular polyribonucleotides and uses thereof |
| EP3947425A1 (en) | 2019-03-27 | 2022-02-09 | Pioneer Hi-Bred International, Inc. | Plant explant transformation |
| WO2020193740A1 (en) | 2019-03-28 | 2020-10-01 | INSERM (Institut National de la Santé et de la Recherche Médicale) | New strategy for treating pancreatic cancer |
| EP3946330A1 (en) | 2019-03-29 | 2022-02-09 | Institut National de la Santé et de la Recherche Médicale (INSERM) | Methods for the treatment of keloid, hypertrophic scars and/or hyperpigmentation disorders |
| WO2020201362A2 (en) | 2019-04-02 | 2020-10-08 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods of predicting and preventing cancer in patients having premalignant lesions |
| WO2020208082A1 (en) | 2019-04-09 | 2020-10-15 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method for treating cmv related diseases |
| EP4530351A3 (en) | 2019-04-12 | 2025-06-18 | Astrazeneca AB | Compositions and methods for improved gene editing |
| EP3956349A1 (en) | 2019-04-17 | 2022-02-23 | The Broad Institute, Inc. | Adenine base editors with reduced off-target effects |
| EP3959320A1 (en) | 2019-04-24 | 2022-03-02 | Novartis AG | Compositions and methods for selective protein degradation |
| WO2020221796A1 (en) | 2019-04-30 | 2020-11-05 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
| US11692197B2 (en) | 2019-05-06 | 2023-07-04 | Inari Agriculture Technology, Inc. | Delivery of biological molecules to plant cells |
| EP3966327A1 (en) | 2019-05-08 | 2022-03-16 | Vertex Pharmaceuticals Incorporated | Crispr/cas all-in-two vector systems for treatment of dmd |
| WO2020237045A1 (en) | 2019-05-21 | 2020-11-26 | Sangamo Therapeutics, Inc. | Controlled transgene expression in regulatory t cells |
| WO2020239623A1 (en) | 2019-05-24 | 2020-12-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of ngal inhibitors for the treating chronic wound |
| CA3138214A1 (en) | 2019-05-29 | 2020-12-03 | Monsanto Technology Llc | Methods and compositions for generating dominant alleles using genome editing |
| EP3980012A1 (en) | 2019-06-04 | 2022-04-13 | Institut National de la Santé et de la Recherche Médicale (INSERM) | A neuropilin antagonist in combination with a p38alpha-kinase inhibitor for the treatment of cancer |
| US12523663B2 (en) | 2019-06-04 | 2026-01-13 | Inserm (Institut National De La Santé Et De La Rescherche Médicale) | Use of CD9 as a biomarker and as a biotarget in glomerulonephritis or glomerulosclerosis |
| CA3142883A1 (en) | 2019-06-07 | 2020-12-10 | Benjamin OAKES | Engineered casx systems |
| WO2020249769A1 (en) | 2019-06-14 | 2020-12-17 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating ocular diseases related to mitochondrial dna maintenance |
| AU2020301236A1 (en) | 2019-06-25 | 2021-11-25 | Inari Agriculture Technology, Inc. | Improved homology dependent repair genome editing |
| WO2021001427A1 (en) | 2019-07-02 | 2021-01-07 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for the prophylactic treatment of cancer in patients suffering from pancreatitis |
| WO2021001431A1 (en) | 2019-07-02 | 2021-01-07 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of pi3ka-selective inhibitors for treating metastatic disease in patients suffering from pancreatic cancer |
| US10557149B1 (en) | 2019-07-15 | 2020-02-11 | Vigene Biosciences, Inc. | Recombinantly-modified adeno-associated virus helper vectors and their use to improve the packaging efficiency of recombinantly-modified adeno-associated virus |
| US10801042B1 (en) | 2019-07-15 | 2020-10-13 | Vigene Biosciences, Inc. | Use of ion concentrations to increase the packaging efficiency of recombinant adeno-associated virus |
| US10653731B1 (en) | 2019-07-15 | 2020-05-19 | Vigene Biosciences Inc. | Recombinantly-modified adeno-associated virus (rAAV) having improved packaging efficiency |
| WO2021009299A1 (en) | 2019-07-17 | 2021-01-21 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Bcl-xl:fkbp12 fusion proteins suitable for screening agents capable of slowing down the aging process |
| EP4003325A1 (en) | 2019-07-24 | 2022-06-01 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Inhibitors of the sting pathway for the treatment of hidradenitis suppurativa |
| CN114401743A (zh) | 2019-08-02 | 2022-04-26 | 法国国家健康和医学研究院 | 中和颗粒酶b用于向经历过心肌梗塞的受试者提供心脏保护 |
| US12179199B2 (en) | 2019-08-09 | 2024-12-31 | The Regents Of The University Of California | Microfluidic single-cell pairing array for studying cell-cell interactions in isolated compartments |
| WO2021028359A1 (en) | 2019-08-09 | 2021-02-18 | Sangamo Therapeutics France | Controlled expression of chimeric antigen receptors in t cells |
| MX2022001849A (es) * | 2019-08-12 | 2022-03-11 | Lifeedit Therapeutics Inc | Nucleasas guiadas por acido ribonucleico (arn) y sus fragmentos activos y variantes y metodos de uso. |
| KR20220050176A (ko) | 2019-08-20 | 2022-04-22 | 프레드 헛친슨 켄서 리서치 센터 | Wt-1에 특이적인 t-세포 면역요법 |
| EP4417695A3 (en) * | 2019-08-28 | 2025-01-22 | The Board of Trustees of the Leland Stanford Junior University | Modified circular rnas and methods of use thereof |
| WO2021046155A1 (en) | 2019-09-03 | 2021-03-11 | Voyager Therapeutics, Inc. | Vectorized editing of nucleic acids to correct overt mutations |
| US20220340975A1 (en) | 2019-09-05 | 2022-10-27 | INSERM (Institute National de la Santé et de la Recherche Médicale) | Method of treatment and pronostic of acute myeloid leukemia |
| US11118195B2 (en) | 2019-09-05 | 2021-09-14 | Crispr Therapeutics Ag | Universal donor cells |
| WO2021044377A1 (en) | 2019-09-05 | 2021-03-11 | Crispr Therapeutics Ag | Universal donor cells |
| US20220333124A1 (en) | 2019-09-05 | 2022-10-20 | Benson Hill, Inc. | Compositions and methods for modifying genomes |
| WO2021047775A1 (en) | 2019-09-12 | 2021-03-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of inhibitors of tgfb/activinb signaling pathway for the treatment of patients suffering from medulloblastoma group 3 |
| CN114391040A (zh) | 2019-09-23 | 2022-04-22 | 欧米茄治疗公司 | 用于调节载脂蛋白b(apob)基因表达的组合物和方法 |
| EP4041894A1 (en) | 2019-09-23 | 2022-08-17 | Omega Therapeutics, Inc. | COMPOSITIONS AND METHODS FOR MODULATING HEPATOCYTE NUCLEAR FACTOR 4-ALPHA (HNF4a) GENE EXPRESSION |
| SG10202008262UA (en) | 2019-09-26 | 2021-04-29 | Seminis Vegetable Seeds Inc | Lettuce plants having resistance to nasonovia ribisnigri biotype nr:1 |
| WO2021063968A1 (en) | 2019-09-30 | 2021-04-08 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method and composition for diagnosing chronic obstructive pulmonary disease |
| JP2022549519A (ja) * | 2019-09-30 | 2022-11-25 | シグマ-アルドリッチ・カンパニー・リミテッド・ライアビリティ・カンパニー | 標的化ヌクレアーゼを用いたマイクロバイオータ組成の調節 |
| US20220354811A1 (en) | 2019-10-03 | 2022-11-10 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for modulating macrophages polarization |
| KR20220079832A (ko) | 2019-10-11 | 2022-06-14 | 스미또모 가가꾸 가부시끼가이샤 | 핵산 올리고머의 제조 방법 |
| JP7680440B2 (ja) * | 2019-10-15 | 2025-05-20 | エージェンシー フォー サイエンス, テクノロジー アンド リサーチ | 核酸修飾酵素活性を測定するためのアッセイ法 |
| EP3808766A1 (en) | 2019-10-15 | 2021-04-21 | Sangamo Therapeutics France | Chimeric antigen receptor specific for interleukin-23 receptor |
| WO2021078359A1 (en) | 2019-10-21 | 2021-04-29 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of inhibitors of cubilin for the treatment of chronic kidney diseases |
| US11591607B2 (en) * | 2019-10-24 | 2023-02-28 | Pairwise Plants Services, Inc. | Optimized CRISPR-Cas nucleases and base editors and methods of use thereof |
| EP4051286A1 (en) | 2019-10-29 | 2022-09-07 | Institut National de la Santé et de la Recherche Médicale (INSERM) | Methods and compositions for treating uveal melanoma |
| US20210139850A1 (en) * | 2019-11-13 | 2021-05-13 | Crispr Therapeutics Ag | Manufacturing process for making t cells expressing chimeric antigen receptors |
| CA3158118A1 (en) * | 2019-11-13 | 2021-05-20 | Julie Carson | Methods of manufacturing car-t cells |
| US12338468B2 (en) | 2019-11-20 | 2025-06-24 | Corbion Biotech, Inc. | Sucrose invertase variants |
| CN110938659B (zh) * | 2019-11-22 | 2022-05-10 | 广东省微生物研究所(广东省微生物分析检测中心) | 一种提高纤维堆囊菌埃博霉素产量的dCas9载体及其构建方法 |
| US20230037414A1 (en) | 2019-11-22 | 2023-02-09 | INSERM (Institut National de la Santé et de la Recherche Médicale | Inhibitors of adrenomedullin for the treatment of acute myeloid leukemia by eradicating leukemic stem cells |
| IL292924A (en) | 2019-11-26 | 2022-07-01 | Novartis Ag | Chimeric antigen receptors cd19 and cd22 and their uses |
| US20230357796A1 (en) | 2019-11-27 | 2023-11-09 | Danmarks Tekniske Universitet | Constructs, compositions and methods thereof having improved genome editing efficiency and specificity |
| EP4065224A1 (en) | 2019-11-27 | 2022-10-05 | Institut National de la Santé et de la Recherche Médicale (INSERM) | Use of neuropilin antagonists for the treatment of endometriosis |
| AU2020392245A1 (en) | 2019-11-27 | 2022-06-23 | Promega Corporation | Multipartite luciferase peptides and polypeptides |
| EP3842452A1 (en) | 2019-12-26 | 2021-06-30 | Universitat Autònoma de Barcelona | Scaffold proteins and therapeutic nanoconjugates based on nidogen |
| WO2021138560A2 (en) | 2020-01-02 | 2021-07-08 | The Trustees Of Columbia University In The City Of New York | Programmable and portable crispr-cas transcriptional activation in bacteria |
| CN110982820A (zh) * | 2020-01-03 | 2020-04-10 | 云南中烟工业有限责任公司 | 一种烟草单倍体的基因编辑方法 |
| US20230076415A1 (en) | 2020-01-17 | 2023-03-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
| KR20220133878A (ko) | 2020-01-29 | 2022-10-05 | 스미또모 가가꾸 가부시끼가이샤 | 핵산 올리고머의 제조 방법 |
| WO2021152402A1 (en) * | 2020-01-29 | 2021-08-05 | Jenthera Therapeutics Inc. | Nuclease-scaffold composition delivery platform |
| TWI859406B (zh) | 2020-01-29 | 2024-10-21 | 美商福宏治療公司 | 化合物及其用途 |
| CN115003680B (zh) | 2020-01-29 | 2025-01-28 | 住友化学株式会社 | 制备核酸寡聚物的方法 |
| EP4110817A1 (en) | 2020-02-26 | 2023-01-04 | Sorrento Therapeutics, Inc. | Activatable antigen binding proteins with universal masking moieties |
| EP4114952A4 (en) * | 2020-03-05 | 2024-05-08 | Board of Regents of the University of Nebraska | Crispr/cas9 system for multistrain hiv-1 treatment |
| CN116096886A (zh) | 2020-03-11 | 2023-05-09 | 欧米茄治疗公司 | 用于调节叉头框p3(foxp3)基因表达的组合物和方法 |
| EP4119166A4 (en) | 2020-03-12 | 2024-06-05 | Institute for Basic Science | COMPOSITION FOR INDUCING APOPTOSIS OF CELLS HAVING GENOMIC SEQUENCE VARIATION AND METHOD FOR INDUCING APOPTOSIS OF CELLS USING THE COMPOSITION |
| MX2022011562A (es) | 2020-03-19 | 2022-12-13 | Intellia Therapeutics Inc | Métodos y composiciones para edición dirigida de genoma. |
| US20230147657A1 (en) | 2020-03-20 | 2023-05-11 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Chimeric antigen receptor specific for human cd45rc and uses thereof |
| CN115335387A (zh) | 2020-03-27 | 2022-11-11 | 住友化学株式会社 | 核酸寡聚物的制造方法 |
| JP2023522848A (ja) | 2020-04-08 | 2023-06-01 | アストラゼネカ・アクチエボラーグ | 改善された部位特異的改変のための組成物及び方法 |
| WO2021204878A1 (en) | 2020-04-08 | 2021-10-14 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of cdon inhibitors for the treatment of endothelial dysfunction |
| US20230167191A1 (en) | 2020-04-24 | 2023-06-01 | Sorrento Therapeutics, Inc. | Memory Dimeric Antigen Receptors (mDARs) |
| TW202208626A (zh) | 2020-04-24 | 2022-03-01 | 美商生命編輯公司 | Rna引導核酸酶及其活性片段與變體,以及使用方法 |
| WO2021220132A1 (en) | 2020-04-27 | 2021-11-04 | Novartis Ag | Methods and compositions for ocular cell therapy |
| JP2023525007A (ja) | 2020-05-04 | 2023-06-14 | サリオジェン セラピューティクス インコーポレイテッド | 転位に基づく療法 |
| EP4145991A1 (en) | 2020-05-05 | 2023-03-15 | Genus Plc | Methods for improving the health of porcine species by targeted inactivation of cd163 |
| EP4146797A1 (en) | 2020-05-06 | 2023-03-15 | Orchard Therapeutics (Europe) Limited | Treatment for neurodegenerative diseases |
| WO2021224401A1 (en) | 2020-05-07 | 2021-11-11 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for determining a reference range of β-galactose exposure platelet |
| US12383555B2 (en) | 2020-05-20 | 2025-08-12 | Foghorn Therapeutics Inc. | Methods of treating cancers |
| US11263022B2 (en) * | 2020-05-21 | 2022-03-01 | Microsoft Technology Licensing, Llc | Mechanism to turn on/off post-processing features in the device media foundation transform |
| WO2021248052A1 (en) | 2020-06-05 | 2021-12-09 | The Broad Institute, Inc. | Compositions and methods for treating neoplasia |
| EP4161583A1 (en) | 2020-06-05 | 2023-04-12 | Institut National de la Santé et de la Recherche Médicale (INSERM) | Methods and pharmaceutical compositions for treating ocular diseases |
| WO2021252920A1 (en) | 2020-06-11 | 2021-12-16 | Novartis Ag | Zbtb32 inhibitors and uses thereof |
| CN111748539B (zh) * | 2020-06-11 | 2021-10-22 | 中国农业科学院农产品加工研究所 | CRISPR/LpCas9基因编辑系统及其应用 |
| EP4168006A1 (en) | 2020-06-18 | 2023-04-26 | Institut National de la Santé et de la Recherche Médicale (INSERM) | New strategy for treating pancreatic cancer |
| WO2022008597A1 (en) | 2020-07-08 | 2022-01-13 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical composition for the treatment of infectious diseases |
| WO2022011007A1 (en) * | 2020-07-08 | 2022-01-13 | The Jackson Laboratory | Transgenic mouse models supporting human innate immune function |
| KR20230049100A (ko) | 2020-07-15 | 2023-04-12 | 라이프에디트 테라퓨틱스, 인크. | 우라실 안정화 단백질 및 그의 활성 단편 및 변이체 및 사용 방법 |
| AU2021204717A1 (en) | 2020-07-15 | 2022-02-03 | Seminis Vegetable Seeds, Inc. | Green Bean Plants with Improved Disease Resistance |
| US20230323299A1 (en) | 2020-08-03 | 2023-10-12 | Inserm (Institut National De La Santé Et De La Recherch Médicale) | Population of treg cells functionally committed to exert a regulatory activity and their use for adoptive therapy |
| WO2022040134A1 (en) | 2020-08-18 | 2022-02-24 | Pioneer Hi-Bred International, Inc. | Multiple disease resistance genes and genomic stacks thereof |
| KR102859548B1 (ko) | 2020-08-20 | 2025-09-12 | 에이투 바이오쎄라퓨틱스, 인크. | 메소텔린 양성 암을 치료하기 위한 조성물 및 방법 |
| CA3188867A1 (en) | 2020-08-20 | 2022-02-24 | Xueyin Wang | Compositions and methods for treating ceacam positive cancers |
| EP4058474B1 (en) | 2020-08-20 | 2024-05-08 | A2 Biotherapeutics, Inc. | Compositions and methods for treating egfr positive cancers |
| MX2023002281A (es) * | 2020-08-24 | 2023-05-16 | Metagenomi Inc | Sistemas y metodos para transposicion de secuencias de nucleotidos de carga. |
| CA3173886A1 (en) | 2020-09-11 | 2022-03-17 | Tyson D. BOWEN | Dna modifying enzymes and active fragments and variants thereof and methods of use |
| JP2023543351A (ja) | 2020-09-18 | 2023-10-13 | アーティザン ディヴェロップメント ラブス インコーポレイテッド | 効率的かつ特異的なゲノム編集のためのコンストラクト及びその使用 |
| US20240051986A1 (en) | 2020-09-24 | 2024-02-15 | Sumitomo Chemical Company, Limited | Method for producing nucleic acid oligomer |
| WO2022066973A1 (en) | 2020-09-24 | 2022-03-31 | Fred Hutchinson Cancer Research Center | Immunotherapy targeting pbk or oip5 antigens |
| MX2023003424A (es) * | 2020-09-24 | 2023-05-03 | Flagship Pioneering Innovations V Inc | Composiciones y metodos para inhibir la expresion genica. |
| EP4217387A2 (en) | 2020-09-24 | 2023-08-02 | Fred Hutchinson Cancer Center | Immunotherapy targeting sox2 antigens |
| US10947552B1 (en) | 2020-09-30 | 2021-03-16 | Alpine Roads, Inc. | Recombinant fusion proteins for producing milk proteins in plants |
| EP4222167A1 (en) | 2020-09-30 | 2023-08-09 | Nobell Foods, Inc. | Recombinant milk proteins and food compositions comprising the same |
| US10894812B1 (en) | 2020-09-30 | 2021-01-19 | Alpine Roads, Inc. | Recombinant milk proteins |
| WO2022073915A1 (en) | 2020-10-05 | 2022-04-14 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Gdf3 as biomarker and biotarget in post-ischemic cardiac remodeling |
| WO2022076353A1 (en) | 2020-10-06 | 2022-04-14 | Fred Hutchinson Cancer Research Center | Compositions and methods for treating mage-a1-expressing disease |
| AU2021364781B2 (en) | 2020-10-21 | 2025-10-09 | Massachusetts Institute Of Technology | Systems, methods, and compositions for site-specific genetic engineering using programmable addition via site-specific targeting elements (paste) |
| WO2022084531A1 (en) | 2020-10-23 | 2022-04-28 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating glioma |
| WO2022098693A1 (en) * | 2020-11-04 | 2022-05-12 | Emendobio Inc. | Novel omni-50 crispr nuclease-rna complexes |
| CN112553195B (zh) * | 2020-11-05 | 2022-04-05 | 南方医科大学 | 一种用于CRISPR-Cas9定点突变编辑DNMT1基因的试剂及其应用 |
| KR102875461B1 (ko) | 2020-11-09 | 2025-10-24 | 삼성전자주식회사 | 전자 장치 및 그의 연락처를 관리하는 방법 |
| IL302700A (en) | 2020-11-13 | 2023-07-01 | Novartis Ag | Combination therapies with chimeric antigen receptor (car)-expressing cells |
| EP4244391A1 (en) | 2020-11-16 | 2023-09-20 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for predicting and treating uveal melanoma |
| US20240011040A1 (en) | 2020-11-24 | 2024-01-11 | University Of Houston System | Salicylic acid-inducible gene expression compositions and systems for cells |
| US11459372B2 (en) | 2020-11-30 | 2022-10-04 | Crispr Therapeutics Ag | Gene-edited natural killer cells |
| CA3201258A1 (en) | 2020-12-03 | 2022-06-09 | Sean Higgins | Engineered class 2 type v crispr systems |
| US20250032540A1 (en) | 2020-12-14 | 2025-01-30 | Fred Hutchinson Cancer Center | Compositions and methods for cellular immunotherapy |
| IL303892A (en) | 2020-12-23 | 2023-08-01 | Flagship Pioneering Innovations V Inc | In vitro assembly of RNA-encapsulating enalavirus capsids |
| WO2022144632A1 (en) | 2020-12-30 | 2022-07-07 | Crispr Therapeutics Ag | Compositions and methods for differentiating stem cells into nk cells |
| US11566230B2 (en) | 2020-12-31 | 2023-01-31 | Crispr Therapeutics Ag | Universal donor cells |
| WO2022158898A1 (ko) * | 2021-01-21 | 2022-07-28 | 한국생명공학연구원 | Francisella novicida cas9 모듈 기반의 역전사 효소를 사용한 유전체 치환 및 삽입 기술 |
| WO2022164796A1 (en) | 2021-01-26 | 2022-08-04 | California Institute Of Technology | Allosteric conditional guide rnas for cell-selective regulation of crispr/cas |
| AU2022216614A1 (en) | 2021-02-05 | 2023-02-23 | Christiana Care Gene Editing Institute, Inc. | Methods of and compositions for reducing gene expression and/or activity |
| CA3206576A1 (en) * | 2021-02-08 | 2022-08-11 | Lior IZHAR | Omni 103 crispr nuclease |
| AU2022215636A1 (en) * | 2021-02-08 | 2023-09-21 | Emendobio Inc. | Omni 90-99, 101, 104-110, 114, 116, 118-123, 125, 126, 128, 129, and 131-138 crispr nucleases |
| MX2023009581A (es) | 2021-02-16 | 2023-08-23 | A2 Biotherapeutics Inc | Composiciones y metodos para tratar tipos de cancer her2 positivos. |
| AU2022227650A1 (en) | 2021-02-25 | 2023-10-12 | Celyntra Therapeutics Sa | Compositions and methods for targeting, editing, or modifying genes |
| US20240141399A1 (en) * | 2021-03-01 | 2024-05-02 | The Regents Of The University Of California | Methods for generating a crispr array |
| WO2022194908A1 (en) | 2021-03-17 | 2022-09-22 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
| TW202300649A (zh) | 2021-03-22 | 2023-01-01 | 美商生命編輯治療學公司 | Dna修飾酶及活性片段及其變體及使用方法 |
| WO2022214522A2 (en) | 2021-04-07 | 2022-10-13 | Astrazeneca Ab | Compositions and methods for site-specific modification |
| WO2022214632A1 (en) | 2021-04-07 | 2022-10-13 | Neoplants Sas | Compositions and methods for indoor air remediation |
| US20240382592A1 (en) | 2021-04-09 | 2024-11-21 | Institut National de la Santé et de la Recherche Médicale | Methods for the treatment of anaplastic large cell lymphoma |
| EP4326903A1 (en) | 2021-04-23 | 2024-02-28 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Methods and compositions for treating cell senescence accumulation related disease |
| EP4347805A1 (en) | 2021-05-27 | 2024-04-10 | Astrazeneca AB | Cas9 effector proteins with enhanced stability |
| WO2022256448A2 (en) | 2021-06-01 | 2022-12-08 | Artisan Development Labs, Inc. | Compositions and methods for targeting, editing, or modifying genes |
| WO2022254337A1 (en) | 2021-06-01 | 2022-12-08 | Novartis Ag | Cd19 and cd22 chimeric antigen receptors and uses thereof |
| CA3173953A1 (en) | 2021-06-11 | 2023-12-10 | Tyson D. BOWEN | Rna polymerase iii promoters and methods of use |
| WO2022266538A2 (en) | 2021-06-18 | 2022-12-22 | Artisan Development Labs, Inc. | Compositions and methods for targeting, editing or modifying human genes |
| US20230016422A1 (en) | 2021-06-23 | 2023-01-19 | Crispr Therapeutics Ag | Engineered cells with improved protection from natural killer cell killing |
| WO2022272293A1 (en) * | 2021-06-23 | 2022-12-29 | The Board Of Trustees Of The Leland Stanford Junior University | Compositions and methods for efficient retron production and genetic editing |
| EP4367242A2 (en) | 2021-07-07 | 2024-05-15 | Omega Therapeutics, Inc. | Compositions and methods for modulating secreted frizzled receptor protein 1 (sfrp1) gene expression |
| US20240352452A1 (en) * | 2021-07-09 | 2024-10-24 | The Brigham And Women's Hospital, Inc. | Crispr-based protein barcoding and surface assembly |
| TW202317602A (zh) | 2021-07-15 | 2023-05-01 | 福瑞德哈金森腫瘤中心 | 嵌合多肽 |
| KR102573948B1 (ko) | 2021-08-09 | 2023-09-01 | 경상국립대학교산학협력단 | Mips1과 이의 상동체 동시 타겟 유전자교정 시스템 및 이의 용도 |
| KR102573947B1 (ko) | 2021-08-09 | 2023-09-01 | 경상국립대학교산학협력단 | 콩 유전자교정 효율 증대를 위한 유전자교정 시스템 및 이의 용도 |
| KR102573952B1 (ko) | 2021-08-09 | 2023-09-01 | 경상국립대학교산학협력단 | E2와 이의 상동체 동시 타겟 유전자교정 시스템 및 이의 용도 |
| KR102584891B1 (ko) | 2021-08-09 | 2023-10-04 | 경상국립대학교산학협력단 | GmIPK1 유전자교정 시스템 및 이의 용도 |
| KR102574819B1 (ko) | 2021-08-09 | 2023-09-04 | 경상국립대학교산학협력단 | P34와 이의 상동체 동시 타겟 유전자교정 시스템 및 이의 용도 |
| AU2022344256A1 (en) | 2021-09-08 | 2024-02-29 | Arbor Biotechnologies, Inc. | Compositions comprising a crispr nuclease and uses thereof |
| EP4409007A4 (en) | 2021-09-27 | 2025-10-08 | Monsanto Technology Llc | COMPOSITIONS AND METHODS FOR TRANSFORMING EXPLANTS OF EXCISED EMBRYO FROM MONOCOTYLEDONOUS SEEDS |
| EP4408995A4 (en) | 2021-09-28 | 2025-08-13 | Acrigen Biosciences | COMPOSITIONS AND METHODS FOR NUCLEIC ACID MODIFICATIONS |
| JPWO2023054350A1 (enExample) | 2021-09-28 | 2023-04-06 | ||
| EP4408996A2 (en) | 2021-09-30 | 2024-08-07 | Astrazeneca AB | Use of inhibitors to increase efficiency of crispr/cas insertions |
| CA3233097A1 (en) | 2021-09-30 | 2023-04-06 | Katherine Diane GRIBBLE | Compositions and methods for treating kcnq4-associated hearing loss |
| WO2023059115A1 (ko) | 2021-10-06 | 2023-04-13 | 주식회사 진코어 | 유전자 편집을 위한 target 시스템 및 이의 용도 |
| WO2023064813A2 (en) * | 2021-10-13 | 2023-04-20 | University Of Massachusetts | Modified guide rnas for neisseria meningitidis cas9 |
| EP4421164A4 (en) | 2021-10-22 | 2025-11-12 | Tokyo Metropolitan Inst Medical Science | ANIMAL MODEL NEURODEGENERATIVE AND AMYOTROPHIC |
| AU2022375820A1 (en) | 2021-11-01 | 2024-06-13 | Tome Biosciences, Inc. | Single construct platform for simultaneous delivery of gene editing machinery and nucleic acid cargo |
| WO2023081756A1 (en) | 2021-11-03 | 2023-05-11 | The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone | Precise genome editing using retrons |
| US20240426823A1 (en) | 2021-11-03 | 2024-12-26 | Institut National de la Santé et de la Recherche Médicale | Methods and compositions for treating triple negative breast cancer (tnbc) |
| WO2023091954A2 (en) | 2021-11-19 | 2023-05-25 | The Trustees Of The University Of Pennsylvania | Engineered pan-leukocyte antigen cd45 to facilitate car t cell therapy |
| US20230193310A1 (en) | 2021-12-10 | 2023-06-22 | Seminis Vegetabe Seeds, Inc. | Lettuce plants having resistance to downy mildew |
| US20250064032A1 (en) | 2021-12-10 | 2025-02-27 | Pig Improvement Company Uk Limited | Editing tmprss2/4 for disease resistance in livestock |
| WO2023111173A1 (en) | 2021-12-16 | 2023-06-22 | INSERM (Institut National de la Santé et de la Recherche Médicale) | An ezh2 degrader or inhibitor for use in the treatment of resistant acute myeloid leukemia |
| EP4453199A1 (en) | 2021-12-21 | 2024-10-30 | Benson Hill, Inc. | Compositions and methods for modifying genomes |
| US20250197854A1 (en) | 2021-12-21 | 2025-06-19 | Alia Therapeutics Srl | Type ii cas proteins and applications thereof |
| EP4452257A1 (en) | 2021-12-21 | 2024-10-30 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
| AU2022420615A1 (en) | 2021-12-22 | 2024-07-04 | Tome Biosciences, Inc. | Co-delivery of a gene editor construct and a donor template |
| JP2025501755A (ja) | 2021-12-23 | 2025-01-23 | ユニバーシティー オブ マサチューセッツ | 脆弱x関連障害に対する治療的処置 |
| WO2023141602A2 (en) | 2022-01-21 | 2023-07-27 | Renagade Therapeutics Management Inc. | Engineered retrons and methods of use |
| EP4466349A1 (en) | 2022-01-24 | 2024-11-27 | LifeEDIT Therapeutics, Inc. | Rna-guided nucleases and active fragments and variants thereof and methods of use |
| WO2023144235A1 (en) | 2022-01-27 | 2023-08-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for monitoring and treating warburg effect in patients with pi3k-related disorders |
| EP4479536A1 (en) | 2022-02-17 | 2024-12-25 | The Board Of Regents Of The University Of Texas System | Crispr/spcas9 variant and methods for enhanced correcton of duchenne muscular dystrophy mutations |
| WO2023156587A1 (en) | 2022-02-18 | 2023-08-24 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of tcr-deficient car-tregs in combination with anti-tcr complex monoclonal antibodies for inducing durable tolerance |
| AU2022201166B2 (en) * | 2022-02-21 | 2024-02-22 | Zhuhai Shu Tong Medical Technology Co., Ltd. | Type ii crispr/cas9 genome editing system and the application thereof |
| US12157886B2 (en) * | 2022-02-21 | 2024-12-03 | Zhuhai Shu Tong Medical Technology Co., Ltd. | Type II CRISPR/Cas9 genome editing system and the application thereof |
| WO2023164670A2 (en) * | 2022-02-25 | 2023-08-31 | Duke University | Crispr-cas9 compositions and methods with a novel cas9 protein for genome editing and gene regulation |
| EP4486881A1 (en) | 2022-03-01 | 2025-01-08 | Celyntra Therapeutics SA | Composition and methods for transgene insertion |
| KR20240162536A (ko) | 2022-03-23 | 2024-11-15 | 스미또모 가가꾸 가부시끼가이샤 | 핵산 올리고머의 제조 방법 |
| WO2023194359A1 (en) | 2022-04-04 | 2023-10-12 | Alia Therapeutics Srl | Compositions and methods for treatment of usher syndrome type 2a |
| WO2023205744A1 (en) | 2022-04-20 | 2023-10-26 | Tome Biosciences, Inc. | Programmable gene insertion compositions |
| CN114864002B (zh) * | 2022-04-28 | 2023-03-10 | 广西科学院 | 一种基于深度学习的转录因子结合位点识别方法 |
| WO2023215725A1 (en) | 2022-05-02 | 2023-11-09 | Fred Hutchinson Cancer Center | Compositions and methods for cellular immunotherapy |
| WO2023215831A1 (en) | 2022-05-04 | 2023-11-09 | Tome Biosciences, Inc. | Guide rna compositions for programmable gene insertion |
| EP4522198A1 (en) * | 2022-05-13 | 2025-03-19 | SRI International | Programmable recruitment of transcription factors to endogenous genes |
| WO2023225670A2 (en) | 2022-05-20 | 2023-11-23 | Tome Biosciences, Inc. | Ex vivo programmable gene insertion |
| EP4526884A2 (en) | 2022-05-20 | 2025-03-26 | Artisan Development Labs, Inc. | Systems and methods for assessing risk of genome editing events |
| WO2023230570A2 (en) | 2022-05-25 | 2023-11-30 | Flagship Pioneering Innovations Vii, Llc | Compositions and methods for modulating genetic drivers |
| EP4532767A2 (en) | 2022-05-25 | 2025-04-09 | Flagship Pioneering Innovations VII, LLC | Compositions and methods for modulating cytokines |
| AU2023276757A1 (en) | 2022-05-25 | 2024-11-21 | Flagship Pioneering Innovations Vii, Llc | Compositions and methods for modulation of tumor suppressors and oncogenes |
| AU2023276715A1 (en) | 2022-05-25 | 2025-01-09 | Flagship Pioneering Innovations Vii, Llc | Compositions and methods for modulating circulating factors |
| AU2023276714A1 (en) | 2022-05-25 | 2024-11-21 | Flagship Pioneering Innovations Vii, Llc | Compositions and methods for modulation of immune responses |
| WO2023233342A2 (en) | 2022-06-01 | 2023-12-07 | Crispr Therapeutics Ag | Gene-edited natural killer cells |
| WO2023233339A1 (en) | 2022-06-01 | 2023-12-07 | Crispr Therapeutics Ag | Compositions and methods for differentiating stem cells into nk cells |
| US20230404003A1 (en) | 2022-06-21 | 2023-12-21 | Seminis Vegetable Seeds, Inc. | Novel qtls conferring resistance to cucumber mosaic virus |
| EP4548351A1 (en) | 2022-06-30 | 2025-05-07 | Pioneer Hi-Bred International, Inc. | Artificial intelligence-mediated methods and systems for genome editing |
| WO2024005863A1 (en) | 2022-06-30 | 2024-01-04 | Inari Agriculture Technology, Inc. | Compositions, systems, and methods for genome editing |
| WO2024005864A1 (en) | 2022-06-30 | 2024-01-04 | Inari Agriculture Technology, Inc. | Compositions, systems, and methods for genome editing |
| EP4299739A1 (en) | 2022-06-30 | 2024-01-03 | Inari Agriculture Technology, Inc. | Compositions, systems, and methods for genome editing |
| EP4299733A1 (en) | 2022-06-30 | 2024-01-03 | Inari Agriculture Technology, Inc. | Compositions, systems, and methods for genome editing |
| WO2024008799A1 (en) | 2022-07-06 | 2024-01-11 | Institut National de la Santé et de la Recherche Médicale | Methods for the treatment of proliferative glomerulonephritis |
| WO2024013514A2 (en) | 2022-07-15 | 2024-01-18 | Pig Improvement Company Uk Limited | Gene edited livestock animals having coronavirus resistance |
| AU2023311964A1 (en) | 2022-07-18 | 2025-01-30 | Renagade Therapeutics Management Inc. | Gene editing components, systems, and methods of use |
| WO2024020587A2 (en) | 2022-07-22 | 2024-01-25 | Tome Biosciences, Inc. | Pleiopluripotent stem cell programmable gene insertion |
| KR20250046255A (ko) | 2022-07-28 | 2025-04-02 | 스미또모 가가꾸 가부시끼가이샤 | 티오화 용액 |
| EP4565217A1 (en) | 2022-08-04 | 2025-06-11 | Institut National de la Santé et de la Recherche Médicale | Methods for the treatment of lymphoproliferative disorders |
| EP4569122A2 (en) | 2022-08-09 | 2025-06-18 | Pioneer Hi-Bred International, Inc. | Guide polynucleotide multiplexing |
| CN120112633A (zh) | 2022-08-12 | 2025-06-06 | 生命编辑治疗股份有限公司 | Rna引导的核酸酶及其活性片段和变体以及使用方法 |
| CA3265664A1 (en) | 2022-08-25 | 2024-02-29 | Life Edit Therapeutics, Inc. | CHEMICAL MODIFICATION OF GUIDE RNA WITH A LOCKED NUCLEIC ACID FOR RNA-GUIDED NUCLEASE-MEDIATED GENE EDITING |
| WO2024044723A1 (en) | 2022-08-25 | 2024-02-29 | Renagade Therapeutics Management Inc. | Engineered retrons and methods of use |
| WO2024042165A2 (en) | 2022-08-26 | 2024-02-29 | UCB Biopharma SRL | Novel rna-guided nucleases and nucleic acid targeting systems comprising such rna-guided nucleases |
| WO2024042168A1 (en) | 2022-08-26 | 2024-02-29 | UCB Biopharma SRL | Novel rna-guided nucleases and nucleic acid targeting systems comprising such rna-guided nucleases |
| JP2025528459A (ja) | 2022-08-31 | 2025-08-28 | アンスティテュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル(インセルム) | より効率的なcar-t細胞を生成する方法 |
| WO2024052318A1 (en) | 2022-09-06 | 2024-03-14 | Institut National de la Santé et de la Recherche Médicale | Novel dual split car-t cells for the treatment of cd38-positive hematological malignancies |
| WO2024056659A1 (en) | 2022-09-13 | 2024-03-21 | Institut National de la Santé et de la Recherche Médicale | Method for treating prostate cancer and other epithelial cancers |
| WO2024056880A2 (en) | 2022-09-16 | 2024-03-21 | Alia Therapeutics Srl | Enqp type ii cas proteins and applications thereof |
| JP2025529546A (ja) * | 2022-09-19 | 2025-09-04 | エメンドバイオ・インコーポレイテッド | Cishの両アレルノックアウト |
| EP4605000A1 (en) | 2022-10-21 | 2025-08-27 | Institut National de la Santé et de la Recherche Médicale | Methods and pharmaceutical compositions for the treatment of osteoarthritis |
| WO2024086805A2 (en) | 2022-10-21 | 2024-04-25 | Watchmaker Genomics, Inc. | Methods and compositions for sequencing library normalization |
| US20250136632A1 (en) | 2022-10-27 | 2025-05-01 | Sumitomo Chemical Company, Limited | Method for producing oligonucleotide |
| CN115678903B (zh) * | 2022-11-03 | 2024-04-02 | 贵州大学 | 一种白背飞虱Ago1基因、合成dsRNA的方法及其应用 |
| KR20250126155A (ko) | 2022-11-04 | 2025-08-22 | 라이프 에디트 테라퓨틱스, 인크. | 내부 삽입 부위를 갖는 진화된 아데닌 데아미나제 및 rna-가이드 뉴클레아제 융합 단백질 및 사용 방법 |
| WO2024102434A1 (en) | 2022-11-10 | 2024-05-16 | Senda Biosciences, Inc. | Rna compositions comprising lipid nanoparticles or lipid reconstructed natural messenger packs |
| WO2024105162A1 (en) | 2022-11-16 | 2024-05-23 | Alia Therapeutics Srl | Type ii cas proteins and applications thereof |
| CN120769907A (zh) | 2022-11-18 | 2025-10-10 | 京都府公立大学法人 | 用于线粒体自噬诱导的组合物及其用途 |
| WO2024123786A1 (en) | 2022-12-06 | 2024-06-13 | Pioneer Hi-Bred International, Inc. | Methods and compositions for co-delivery of t-dnas expressing multiple guide polynucleotides into plants |
| WO2024127369A1 (en) | 2022-12-16 | 2024-06-20 | LifeEDIT Therapeutics, Inc. | Guide rnas that target foxp3 gene and methods of use |
| CN120693404A (zh) | 2022-12-16 | 2025-09-23 | 生命编辑治疗股份有限公司 | 靶向trac基因的引导rna及使用方法 |
| WO2024138194A1 (en) | 2022-12-22 | 2024-06-27 | Tome Biosciences, Inc. | Platforms, compositions, and methods for in vivo programmable gene insertion |
| WO2024133723A1 (en) | 2022-12-22 | 2024-06-27 | Institut National de la Santé et de la Recherche Médicale | Methods for decreasing therapeutic acquired resistance to chemotherapy and/or radiotherapy |
| EP4644404A1 (en) | 2022-12-26 | 2025-11-05 | Sumitomo Chemical Company, Limited | Oligonucleotide production method |
| CN120882867A (zh) | 2023-01-11 | 2025-10-31 | 阿利亚治疗有限公司 | Ii型cas蛋白及其应用 |
| EP4649093A2 (en) | 2023-01-12 | 2025-11-19 | National University of Singapore | Blockade of cd8 expression and chimeric antigen receptors for immunotherapy of t-cell and nk-cell malignancies |
| EP4662324A2 (en) * | 2023-02-07 | 2025-12-17 | Applied StemCell, Inc. | Integrase variants for gene insertion in human cell |
| WO2024168348A1 (en) * | 2023-02-10 | 2024-08-15 | Tryptagenix, Inc. | Production of monoterpene indole alkaloid compounds in a heterologous host |
| WO2024196921A1 (en) | 2023-03-20 | 2024-09-26 | Pioneer Hi-Bred International, Inc. | Cas polypeptides with altered pam recognition |
| US12383615B2 (en) | 2023-03-23 | 2025-08-12 | Carbon Biosciences, Inc. | Protoparvovirus compositions comprising a protoparvovirus variant VP1 capsid polypeptide and related methods |
| WO2024196965A1 (en) | 2023-03-23 | 2024-09-26 | Carbon Biosciences, Inc. | Parvovirus compositions and related methods for gene therapy |
| CN121127605A (zh) | 2023-03-29 | 2025-12-12 | 阿斯利康(瑞典)有限公司 | 使用抑制剂来提高CRISPR/Cas插入的效率 |
| WO2024206714A1 (en) * | 2023-03-31 | 2024-10-03 | Mammoth Biosciences, Inc. | Engineered effector proteins, compositions, systems and methods of use thereof |
| WO2024211287A1 (en) | 2023-04-03 | 2024-10-10 | Seagen Inc. | Production cell lines with targeted integration sites |
| MX2024004405A (es) | 2023-04-14 | 2024-11-08 | Seminis Vegetable Seeds Inc | Métodos y composiciones de resistencia a peronospora en la espinaca |
| WO2024220135A1 (en) | 2023-04-17 | 2024-10-24 | University Of Massachusetts | Prime editing systems having pegrna with reduced auto-inhibitory interaction |
| WO2024218295A1 (en) | 2023-04-21 | 2024-10-24 | Vib Vzw | Allelic combinations in crops for yield increase |
| WO2024226499A1 (en) | 2023-04-24 | 2024-10-31 | The Broad Institute, Inc. | Compositions and methods for modifying fertility |
| AU2024260090A1 (en) | 2023-04-26 | 2025-12-04 | Eurus Therapeutics Inc. | Non-natural polynucleotides for modification of target nucleotide sequence |
| WO2024226156A1 (en) | 2023-04-27 | 2024-10-31 | University Of Massachusetts | Cas-embedded cytidine deaminase ribonucleoprotein complexes having improved base editing specificity and efficiency |
| WO2024227131A1 (en) * | 2023-04-27 | 2024-10-31 | Rensselaer Polytechnic Institute | Recombinant enzyme for the accurate insertion of dna sequences in eukaryotic cells |
| WO2024233328A1 (en) * | 2023-05-05 | 2024-11-14 | Insmed Incorporated | Nannochloropsis-producing viruses and methods and compositions for making the same |
| WO2024234006A1 (en) | 2023-05-11 | 2024-11-14 | Tome Biosciences, Inc. | Systems, compositions, and methods for targeting liver sinusodial endothelial cells (lsecs) |
| WO2024235991A1 (en) | 2023-05-15 | 2024-11-21 | UCB Biopharma SRL | Rna-guided nucleases and nucleic acid targeting systems comprising such rna-guided nucleases |
| WO2024236336A1 (en) | 2023-05-17 | 2024-11-21 | Institut National de la Santé et de la Recherche Médicale | Lipc variant in the treatment of hypercholesterolemia and atherosclerotic cardiovascular disease |
| WO2024243438A2 (en) | 2023-05-23 | 2024-11-28 | Omega Therapeutics, Inc. | Compositions and methods for reducing cxcl9, cxcl10, and cxcl11 gene expression |
| WO2024245951A1 (en) | 2023-05-26 | 2024-12-05 | Institut National de la Santé et de la Recherche Médicale | Combination of slc8a1 inhibitor and mitochondria-targeted antioxidant for treating melanoma |
| WO2024246162A1 (en) | 2023-05-30 | 2024-12-05 | Institut National de la Santé et de la Recherche Médicale | Method and pharmaceutical composition for use in the treatment of focal cortical dysplasia |
| WO2024256635A1 (en) | 2023-06-15 | 2024-12-19 | Institut National de la Santé et de la Recherche Médicale | Dpm1 inhibitor for treating cancer |
| WO2024259559A1 (en) | 2023-06-19 | 2024-12-26 | Hangzhou Enhe Biotechnology Co., Ltd. | Fusion polypeptides for production of 7-dehydrocholesterol and methods of use thereof |
| WO2024261302A1 (en) | 2023-06-22 | 2024-12-26 | Institut National de la Santé et de la Recherche Médicale | Nlrp3 inhibitors, pak1/2 inhibitors and/or caspase 1 inhibitors for use in the treatment of rac2 monogenic disorders |
| WO2025003344A1 (en) | 2023-06-28 | 2025-01-02 | Alia Therapeutics Srl | Type ii cas proteins and applications thereof |
| WO2025012316A2 (en) | 2023-07-10 | 2025-01-16 | Universiteit Gent | Method of genome-editing |
| WO2025021839A1 (en) | 2023-07-25 | 2025-01-30 | Institut National de la Santé et de la Recherche Médicale | Method to treat metabolic disorders |
| WO2025022367A2 (en) | 2023-07-27 | 2025-01-30 | Life Edit Therapeutics, Inc. | Rna-guided nucleases and active fragments and variants thereof and methods of use |
| WO2025032112A1 (en) | 2023-08-08 | 2025-02-13 | Institut National de la Santé et de la Recherche Médicale | Methods for the treatment of type 2-mediated diseases |
| WO2025038948A2 (en) * | 2023-08-16 | 2025-02-20 | The Regents Of The University Of California | Alpha-crystalline domain proteins and their use in genome modification |
| WO2025050069A1 (en) | 2023-09-01 | 2025-03-06 | Tome Biosciences, Inc. | Programmable gene insertion using engineered integration enzymes |
| WO2025049959A2 (en) | 2023-09-01 | 2025-03-06 | Renagade Therapeutics Management Inc. | Gene editing systems, compositions, and methods for treatment of vexas syndrome |
| WO2025059184A1 (en) | 2023-09-12 | 2025-03-20 | Pioneer Hi-Bred International, Inc. | Methods and compositions for generating genome-edited paternal doubled haploids |
| WO2025064408A1 (en) | 2023-09-18 | 2025-03-27 | The Broad Institute, Inc. | Compositions and methods for treating cardiovascular disease |
| EP4554371A1 (en) | 2023-10-03 | 2025-05-21 | Inari Agriculture Technology, Inc. | Viral delivery of grna to the scion |
| WO2025076306A1 (en) | 2023-10-06 | 2025-04-10 | University Of Massachusetts | Prime editors having improved prime editing efficiency |
| WO2025078851A1 (en) | 2023-10-11 | 2025-04-17 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Methods of treating cognitive deficit |
| WO2025081123A1 (en) | 2023-10-12 | 2025-04-17 | Fred Hutchinson Cancer Center | Methods and compositions for improving t cell immunotherapy |
| WO2025078632A1 (en) | 2023-10-12 | 2025-04-17 | Institut National de la Santé et de la Recherche Médicale | Methods of prognosis and treatment of patients suffering from cancer |
| WO2025081042A1 (en) | 2023-10-12 | 2025-04-17 | Renagade Therapeutics Management Inc. | Nickase-retron template-based precision editing system and methods of use |
| WO2025083169A1 (en) | 2023-10-17 | 2025-04-24 | Tenpoint Therapeutics Limited | Combination of a vegf inhibitor and a complement pathway inhibitor for treating ocular disorders |
| WO2025101820A1 (en) | 2023-11-08 | 2025-05-15 | Fred Hutchinson Cancer Center | Compositions and methods for cellular immunotherapy |
| TW202523695A (zh) | 2023-11-22 | 2025-06-16 | 美商旗艦先鋒創新有限責任(Vii)公司 | 用於治療非酒精性脂肪性肝病之方法及組成物 |
| WO2025132479A1 (en) | 2023-12-18 | 2025-06-26 | Institut National de la Santé et de la Recherche Médicale | Flt3 inhibitor for modulating macrophages polarization |
| WO2025155753A2 (en) | 2024-01-17 | 2025-07-24 | Renagade Therapeutics Management Inc. | Improved gene editing system, guides, and methods |
| WO2025153608A1 (en) | 2024-01-18 | 2025-07-24 | Institut National de la Santé et de la Recherche Médicale | Wip1 inhibitor for the treatment of glomerular disease |
| WO2025162980A1 (en) | 2024-01-30 | 2025-08-07 | Institut National de la Santé et de la Recherche Médicale | Methods for the treatment of breast cancer using a jnk-1 inhibitor |
| WO2025168705A1 (en) | 2024-02-08 | 2025-08-14 | Vib Vzw | Means and methods for the production of saponins with endosomal escape-enhancing properties |
| WO2025174908A1 (en) | 2024-02-12 | 2025-08-21 | Life Edit Therapeutics, Inc. | Novel rna-guided nucleases and proteins for polymerase editing |
| WO2025174765A1 (en) | 2024-02-12 | 2025-08-21 | Renagade Therapeutics Management Inc. | Lipid nanoparticles comprising coding rna molecules for use in gene editing and as vaccines and therapeutic agents |
| WO2025184759A1 (en) | 2024-03-04 | 2025-09-12 | Pioneer Hi-Bred International, Inc. | Maize plants comprising resistance to gray leaf spot and compositions and methods for selecting and producing the same |
| WO2025191018A1 (en) | 2024-03-13 | 2025-09-18 | Institut National de la Santé et de la Recherche Médicale | Mrgpre binding agent for use in the treatment of inflammatory and pain disorders |
| WO2025194019A1 (en) | 2024-03-14 | 2025-09-18 | Flagship Pioneering Innovations Vii, Llc | Methods for treating liver fibrosis and non-alcoholic fatty liver disease |
| WO2025202874A1 (en) | 2024-03-25 | 2025-10-02 | Crispr Therapeutics Ag | Genetically modified cells expressing glp-1 receptor agonist |
| WO2025210123A1 (en) | 2024-04-03 | 2025-10-09 | Institut National de la Santé et de la Recherche Médicale | Methods and pharmaceutical composition for treating cancers |
| EP4677108A1 (en) | 2024-04-22 | 2026-01-14 | Basecamp Research Ltd | Method and compositions for detecting off-target editing |
| WO2025224182A2 (en) | 2024-04-23 | 2025-10-30 | Basecamp Research Ltd | Single construct platform for simultaneous delivery of gene editing machinery and nucleic acid cargo |
| WO2025224297A1 (en) | 2024-04-26 | 2025-10-30 | Institut National de la Santé et de la Recherche Médicale | Antibodies having specificity to tgfbi and uses thereof |
| WO2025226912A1 (en) * | 2024-04-26 | 2025-10-30 | Sri International | Cell-type specific delivery of gene editors and methods of use thereof |
| EP4643858A1 (en) | 2024-04-29 | 2025-11-05 | Institut National de la Santé et de la Recherche Médicale | Methods and pharmaceutical composition for the treatment of uterine disease |
| CN118127022B (zh) * | 2024-04-30 | 2024-07-12 | 四川大学 | 变异链球菌环状RNA circcsbD及应用、其过表达菌株及构建方法和应用 |
| WO2025228998A1 (en) | 2024-04-30 | 2025-11-06 | Institut National de la Santé et de la Recherche Médicale | Use of hdac4 inhibitors for the treatment of melanoma |
| WO2025240947A1 (en) | 2024-05-17 | 2025-11-20 | University Of Massachusetts | Therapeutic treatment for fragile x-associated disorder |
| WO2025245188A2 (en) | 2024-05-21 | 2025-11-27 | Flagship Pioneering Innovations Vii, Llc | Methods of treating liver steatosis and non-alcoholic fatty liver disease |
| WO2025245169A1 (en) | 2024-05-21 | 2025-11-27 | Fred Hutchinson Cancer Center | Immunotherapy cells equipped with a collagen-targeting payload |
| WO2025247829A1 (en) | 2024-05-27 | 2025-12-04 | Institut National de la Santé et de la Recherche Médicale | Methods and pharmaceutical composition for treating prostate cancer |
| WO2025248102A1 (en) | 2024-05-31 | 2025-12-04 | Institut National de la Santé et de la Recherche Médicale | Tbk1 inhibitor for use in the treatment of vitiligo |
| WO2025257151A1 (en) | 2024-06-10 | 2025-12-18 | Institut National de la Santé et de la Recherche Médicale | Methods and pharmaceutical composition for treating ciliopathies |
| EP4667628A1 (en) | 2024-06-19 | 2025-12-24 | Albert-Ludwigs-Universität Freiburg Körperschaft des öffentlichen Rechts | Synthetic lethality to treat autosomal dominant polycystic kidney disease (adpkd) |
| WO2025261741A1 (en) | 2024-06-19 | 2025-12-26 | Albert-Ludwigs-Universitaet Freiburg Koerperschaft Des Oeffentlichen Rechts | Synthetic lethality to treat autosomal dominant polycystic kidney disease (adpkd) |
| WO2026002934A1 (en) | 2024-06-25 | 2026-01-02 | Institut National de la Santé et de la Recherche Médicale | Combination of a slc16a1 inhibitor and a smad3 inhibitor for treating cancer |
| WO2026003754A1 (en) | 2024-06-25 | 2026-01-02 | Life Edit Therapeutics, Inc. | Novel reverse transcriptases and uses thereof |
| CN119867017B (zh) * | 2025-01-13 | 2025-11-18 | 西南医科大学 | 一种同时检测果蝇采食量和排泄物面积的方法 |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100076057A1 (en) * | 2008-09-23 | 2010-03-25 | Northwestern University | TARGET DNA INTERFERENCE WITH crRNA |
| US20110189776A1 (en) * | 2008-07-25 | 2011-08-04 | University Of Georgia Research Foundation, Inc. | PROKARYOTIC RNAi-LIKE SYSTEM AND METHODS OF USE |
Family Cites Families (210)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US106048A (en) | 1870-08-02 | Materials of different | ||
| DE1133825B (de) | 1960-06-15 | 1962-07-26 | Danfoss Ved Ing M Clausen | Elektromagnetisches Relais |
| US3687808A (en) | 1969-08-14 | 1972-08-29 | Univ Leland Stanford Junior | Synthetic polynucleotides |
| US4952496A (en) | 1984-03-30 | 1990-08-28 | Associated Universities, Inc. | Cloning and expression of the gene for bacteriophage T7 RNA polymerase |
| US5034506A (en) | 1985-03-15 | 1991-07-23 | Anti-Gene Development Group | Uncharged morpholino-based polymers having achiral intersubunit linkages |
| WO1988008450A1 (en) | 1987-05-01 | 1988-11-03 | Birdwell Finlayson | Gene therapy for metabolite disorders |
| US5350689A (en) | 1987-05-20 | 1994-09-27 | Ciba-Geigy Corporation | Zea mays plants and transgenic Zea mays plants regenerated from protoplasts or protoplast-derived cells |
| US5585362A (en) | 1989-08-22 | 1996-12-17 | The Regents Of The University Of Michigan | Adenovirus vectors for gene therapy |
| US5451513A (en) | 1990-05-01 | 1995-09-19 | The State University of New Jersey Rutgers | Method for stably transforming plastids of multicellular plants |
| US5767367A (en) | 1990-06-23 | 1998-06-16 | Hoechst Aktiengesellschaft | Zea mays (L.) with capability of long term, highly efficient plant regeneration including fertile transgenic maize plants having a heterologous gene, and their preparation |
| US5602240A (en) | 1990-07-27 | 1997-02-11 | Ciba Geigy Ag. | Backbone modified oligonucleotide analogs |
| US5489677A (en) | 1990-07-27 | 1996-02-06 | Isis Pharmaceuticals, Inc. | Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms |
| EP0571525A1 (en) | 1991-02-11 | 1993-12-01 | OMMAYA, Ayub K. | Spinal fluid driven artificial organ |
| US5222982A (en) | 1991-02-11 | 1993-06-29 | Ommaya Ayub K | Spinal fluid driven artificial organ |
| US5714331A (en) | 1991-05-24 | 1998-02-03 | Buchardt, Deceased; Ole | Peptide nucleic acids having enhanced binding affinity, sequence specificity and solubility |
| US5719262A (en) | 1993-11-22 | 1998-02-17 | Buchardt, Deceased; Ole | Peptide nucleic acids having amino acid side chains |
| US5539082A (en) | 1993-04-26 | 1996-07-23 | Nielsen; Peter E. | Peptide nucleic acids |
| ES2197145T3 (es) | 1991-08-20 | 2004-01-01 | The Government Of The Usa As Represented By The Secretary Of The Deptm. Of Health And Human Services | Transferencia de genes mediada por adenovirus al gastrointestinal. |
| US7150982B2 (en) | 1991-09-09 | 2006-12-19 | Third Wave Technologies, Inc. | RNA detection assays |
| US5252479A (en) | 1991-11-08 | 1993-10-12 | Research Corporation Technologies, Inc. | Safe vector for gene therapy |
| FR2688514A1 (fr) | 1992-03-16 | 1993-09-17 | Centre Nat Rech Scient | Adenovirus recombinants defectifs exprimant des cytokines et medicaments antitumoraux les contenant. |
| US7153684B1 (en) | 1992-10-08 | 2006-12-26 | Vanderbilt University | Pluripotential embryonic stem cells and methods of making same |
| EP0673431A1 (en) | 1992-12-03 | 1995-09-27 | Genzyme Corporation | Gene therapy for cystic fibrosis |
| WO1995000655A1 (en) | 1993-06-24 | 1995-01-05 | Mc Master University | Adenovirus vectors for gene therapy |
| ATE437232T1 (de) | 1993-10-25 | 2009-08-15 | Canji Inc | Rekombinanter adenoviren-vektor und verfahren zur verwendung |
| US5576198A (en) | 1993-12-14 | 1996-11-19 | Calgene, Inc. | Controlled expression of transgenic constructs in plant plastids |
| US5545817A (en) | 1994-03-11 | 1996-08-13 | Calgene, Inc. | Enhanced expression in a plant plastid |
| US5545818A (en) | 1994-03-11 | 1996-08-13 | Calgene Inc. | Expression of Bacillus thuringiensis cry proteins in plant plastids |
| US5843780A (en) | 1995-01-20 | 1998-12-01 | Wisconsin Alumni Research Foundation | Primate embryonic stem cells |
| DE69636225T2 (de) | 1995-08-30 | 2006-10-12 | Basf Plant Science Gmbh | Stimulierung der homologen rekombination in pflanzlichen organismen mittels rekombinations fördernder enzyme |
| AU724661B2 (en) | 1996-08-29 | 2000-09-28 | Bausch & Lomb Surgical, Inc. | Dual loop frequency and power control |
| JP3756313B2 (ja) | 1997-03-07 | 2006-03-15 | 武 今西 | 新規ビシクロヌクレオシド及びオリゴヌクレオチド類縁体 |
| DE69829760T3 (de) | 1997-09-12 | 2016-04-14 | Exiqon A/S | Bi- und tri-zyklische - nukleosid, nukleotid und oligonukleotid-analoga |
| JP3880795B2 (ja) | 1997-10-23 | 2007-02-14 | ジェロン・コーポレーション | フィーダー細胞を含まない培養物中で、霊長類由来始原幹細胞を増殖させるための方法 |
| US20040186071A1 (en) | 1998-04-13 | 2004-09-23 | Bennett C. Frank | Antisense modulation of CD40 expression |
| US20020182673A1 (en) | 1998-05-15 | 2002-12-05 | Genentech, Inc. | IL-17 homologous polypedies and therapeutic uses thereof |
| US7410798B2 (en) | 2001-01-10 | 2008-08-12 | Geron Corporation | Culture system for rapid expansion of human embryonic stem cells |
| US6667176B1 (en) | 2000-01-11 | 2003-12-23 | Geron Corporation | cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells |
| US7078387B1 (en) | 1998-12-28 | 2006-07-18 | Arch Development Corp. | Efficient and stable in vivo gene transfer to cardiomyocytes using recombinant adeno-associated virus vectors |
| EP1147209A2 (en) | 1999-02-03 | 2001-10-24 | The Children's Medical Center Corporation | Gene repair involving the induction of double-stranded dna cleavage at a chromosomal target site |
| US6593292B1 (en) | 1999-08-24 | 2003-07-15 | Cellgate, Inc. | Compositions and methods for enhancing drug delivery across and into epithelial tissues |
| US7229961B2 (en) | 1999-08-24 | 2007-06-12 | Cellgate, Inc. | Compositions and methods for enhancing drug delivery across and into ocular tissues |
| EP1083231A1 (en) | 1999-09-09 | 2001-03-14 | Introgene B.V. | Smooth muscle cell promoter and uses thereof |
| US7256286B2 (en) | 1999-11-30 | 2007-08-14 | The Board Of Trustees Of The Leland Stanford Junior University | Bryostatin analogues, synthetic methods and uses |
| WO2002026967A2 (en) | 2000-09-25 | 2002-04-04 | Thomas Jefferson University | Targeted gene correction by single-stranded oligodeoxynucleotides |
| AU1412702A (en) | 2000-10-27 | 2002-05-06 | Chiron Spa | Nucleic acids and proteins from streptococcus groups a and b |
| AU2002306500C1 (en) | 2001-02-16 | 2006-09-28 | Cellgate, Inc. | Transporters comprising spaced arginine moieties |
| ES2566561T3 (es) | 2001-07-12 | 2016-04-13 | University Of Massachusetts | Producción in vivo de ARN pequeños de interferencia que median el silenciamiento génico |
| US7169874B2 (en) | 2001-11-02 | 2007-01-30 | Bausch & Lomb Incorporated | High refractive index polymeric siloxysilane compositions |
| US20060253913A1 (en) | 2001-12-21 | 2006-11-09 | Yue-Jin Huang | Production of hSA-linked butyrylcholinesterases in transgenic mammals |
| CN100575485C (zh) | 2002-01-23 | 2009-12-30 | 犹他大学研究基金会 | 使用锌指核酸酶的定向染色体诱变 |
| WO2003080809A2 (en) | 2002-03-21 | 2003-10-02 | Sangamo Biosciences, Inc. | Methods and compositions for using zinc finger endonucleases to enhance homologous recombination |
| WO2003087993A2 (en) | 2002-04-09 | 2003-10-23 | Beattie Kenneth L | Oligonucleotide probes for genosensor chips |
| CA2497913C (en) | 2002-09-05 | 2014-06-03 | California Institute Of Technology | Use of chimeric nucleases to stimulate gene targeting |
| WO2005070948A1 (en) | 2004-01-23 | 2005-08-04 | Intronn, Inc. | Correction of alpha-1-antitrypsin genetic defects using spliceosome mediated rna trans splicing |
| US7972854B2 (en) | 2004-02-05 | 2011-07-05 | Sangamo Biosciences, Inc. | Methods and compositions for targeted cleavage and recombination |
| US7919277B2 (en) | 2004-04-28 | 2011-04-05 | Danisco A/S | Detection and typing of bacterial strains |
| US7892224B2 (en) | 2005-06-01 | 2011-02-22 | Brainlab Ag | Inverse catheter planning |
| US7534819B2 (en) | 2005-06-10 | 2009-05-19 | University Of Washington | Compositions and methods for intracellular delivery of biotinylated cargo |
| CN101273141B (zh) | 2005-07-26 | 2013-03-27 | 桑格摩生物科学股份有限公司 | 外源核酸序列的靶向整合和表达 |
| US10022457B2 (en) | 2005-08-05 | 2018-07-17 | Gholam A. Peyman | Methods to regulate polarization and enhance function of cells |
| KR20080045141A (ko) | 2005-08-24 | 2008-05-22 | 톰슨 라이센싱 | 지상 방송 수신기를 갖는 로우빙 디바이스용 팝 스크린다이얼로그를 위한 방법 및 장치 |
| DK2325332T3 (da) | 2005-08-26 | 2013-01-28 | Dupont Nutrition Biosci Aps | Anvendelse af CRISPR-associerede gener (CAS) |
| NZ569530A (en) | 2005-12-13 | 2011-07-29 | Univ Kyoto | Nuclear reprogramming factor |
| US20090227032A1 (en) | 2005-12-13 | 2009-09-10 | Kyoto University | Nuclear reprogramming factor and induced pluripotent stem cells |
| US8278104B2 (en) | 2005-12-13 | 2012-10-02 | Kyoto University | Induced pluripotent stem cells produced with Oct3/4, Klf4 and Sox2 |
| WO2007106690A2 (en) | 2006-03-15 | 2007-09-20 | Siemens Healthcare Diagnostics Inc. | Degenerate nucleobase analogs |
| HUE030903T2 (en) | 2006-04-25 | 2017-06-28 | Univ California | Administration of growth factors for the treatment of CNS disorders |
| ES2367661T3 (es) | 2006-05-10 | 2011-11-07 | Deinove | Proceso de ingeniería cromosómica mediante el uso de un nuevo sistema de reparación del adn. |
| PL2426220T3 (pl) | 2006-05-19 | 2017-01-31 | Dupont Nutrition Biosciences Aps | Wyznakowane mikroorganizmy i sposoby wyznakowania |
| WO2007139982A2 (en) | 2006-05-25 | 2007-12-06 | Sangamo Biosciences, Inc. | Methods and compositions for gene inactivation |
| ES2610811T3 (es) | 2006-06-16 | 2017-05-03 | Dupont Nutrition Biosciences Aps | Bacteria Streptococcus thermophilus |
| EP2518155B1 (en) | 2006-08-04 | 2014-07-23 | Georgia State University Research Foundation, Inc. | Enzyme sensors, methods for preparing and using such sensors, and methods of detecting protease activity |
| WO2008060360A2 (en) | 2006-09-28 | 2008-05-22 | Surmodics, Inc. | Implantable medical device with apertures for delivery of bioactive agents |
| AU2008223544B2 (en) | 2007-03-02 | 2014-06-05 | Dupont Nutrition Biosciences Aps | Cultures with improved phage resistance |
| WO2008148304A1 (en) | 2007-05-31 | 2008-12-11 | Xiamen University | Rna interference target for treating aids |
| JP2008307007A (ja) | 2007-06-15 | 2008-12-25 | Bayer Schering Pharma Ag | 出生後のヒト組織由来未分化幹細胞から誘導したヒト多能性幹細胞 |
| EP2868315B1 (en) * | 2007-12-04 | 2017-05-31 | Remedy Pharmaceuticals, Inc. | Improved formulations and methods for lyophilization and lyophilates provided thereby |
| US9683232B2 (en) | 2007-12-10 | 2017-06-20 | Kyoto University | Efficient method for nuclear reprogramming |
| JP2011510750A (ja) | 2008-01-29 | 2011-04-07 | クライマン、ギルバート・エイチ | 薬物送達デバイス、キット及びそれらの方法 |
| CA2734235C (en) | 2008-08-22 | 2019-03-26 | Sangamo Biosciences, Inc. | Methods and compositions for targeted single-stranded cleavage and targeted integration |
| ES2615829T3 (es) | 2008-09-15 | 2017-06-08 | The Children's Medical Center Corporation | Modulación de BCL11A para el tratamiento de hemoglobinopatías |
| WO2010054108A2 (en) | 2008-11-06 | 2010-05-14 | University Of Georgia Research Foundation, Inc. | Cas6 polypeptides and methods of use |
| EP2362915B1 (en) | 2008-11-07 | 2016-12-21 | DuPont Nutrition Biosciences ApS | Bifidobacteria crispr sequences |
| ES2499032T3 (es) | 2008-12-12 | 2014-09-26 | Dupont Nutrition Biosciences Aps | Grupo genético de cepas de Streptococcus thermophilus que tiene propiedades reológicas únicas para fermentación láctica |
| WO2010075424A2 (en) | 2008-12-22 | 2010-07-01 | The Regents Of University Of California | Compositions and methods for downregulating prokaryotic genes |
| GB0823658D0 (en) | 2008-12-30 | 2009-02-04 | Angiomed Ag | Stent delivery device |
| EP2206723A1 (en) | 2009-01-12 | 2010-07-14 | Bonas, Ulla | Modular DNA-binding domains |
| WO2010117646A1 (en) | 2009-04-09 | 2010-10-14 | Motorola, Inc. | Retransmission technique for a communication network |
| JP6215533B2 (ja) | 2009-04-09 | 2017-10-18 | サンガモ セラピューティクス, インコーポレイテッド | 幹細胞への標的組込み |
| SI2424571T1 (sl) | 2009-04-30 | 2020-10-30 | Ospedale San Raffaele S.R.L. | Genski vektor |
| US20120192298A1 (en) | 2009-07-24 | 2012-07-26 | Sigma Aldrich Co. Llc | Method for genome editing |
| KR20120097483A (ko) | 2009-07-24 | 2012-09-04 | 시그마-알드리치 컴퍼니., 엘엘씨 | 게놈 편집을 위한 방법 |
| JP5866283B2 (ja) | 2009-07-28 | 2016-02-17 | サンガモ バイオサイエンシーズ, インコーポレイテッド | トリヌクレオチド反復疾患を治療するための方法および組成物 |
| US20110104787A1 (en) | 2009-11-05 | 2011-05-05 | President And Fellows Of Harvard College | Fusion Peptides That Bind to and Modify Target Nucleic Acid Sequences |
| US20110294114A1 (en) | 2009-12-04 | 2011-12-01 | Cincinnati Children's Hospital Medical Center | Optimization of determinants for successful genetic correction of diseases, mediated by hematopoietic stem cells |
| DK2510096T4 (en) | 2009-12-10 | 2018-05-14 | Univ Iowa State Res Found Inc | NUMBER EFFECTOR-MEDIATED DNA MODIFICATION |
| AU2011215557B2 (en) | 2010-02-09 | 2016-03-10 | Sangamo Therapeutics, Inc. | Targeted genomic modification with partially single-stranded donor molecules |
| US10087431B2 (en) | 2010-03-10 | 2018-10-02 | The Regents Of The University Of California | Methods of generating nucleic acid fragments |
| CA2798703A1 (en) | 2010-05-10 | 2011-11-17 | The Regents Of The University Of California | Endoribonuclease compositions and methods of use thereof |
| KR101953237B1 (ko) | 2010-05-17 | 2019-02-28 | 상가모 테라퓨틱스, 인코포레이티드 | 신규 dna 결합 단백질 및 이의 용도 |
| WO2011156430A2 (en) | 2010-06-07 | 2011-12-15 | Fred Hutchinson Cancer Research Center | Generation and expression of engineered i-onui endonuclease and its homologues and uses thereof |
| JP2013537410A (ja) | 2010-07-23 | 2013-10-03 | シグマ−アルドリッチ・カンパニー・リミテッド・ライアビリティ・カンパニー | 標的化エンドヌクレアーゼおよび一本鎖核酸を用いたゲノム編集 |
| DK2601611T3 (da) | 2010-08-02 | 2021-02-01 | Integrated Dna Tech Inc | Fremgangsmåder til forudsigelse af stabilitet og smeltetemperaturer for nukleinsyreduplekser |
| MX2013004338A (es) | 2010-10-20 | 2013-05-20 | Dupont Nutrition Biosci Aps | Secuencias de repeticiones palindromicas cortas separadas regularmente agrupadas-cas (crisp-cas). |
| KR20120096395A (ko) | 2011-02-22 | 2012-08-30 | 주식회사 툴젠 | 뉴클레아제에 의해 유전자 변형된 세포를 농축시키는 방법 |
| WO2012164565A1 (en) | 2011-06-01 | 2012-12-06 | Yeda Research And Development Co. Ltd. | Compositions and methods for downregulating prokaryotic genes |
| CA3186126A1 (en) | 2011-09-21 | 2013-03-28 | Sangamo Biosciences, Inc. | Methods and compositions for regulation of transgene expression |
| US8450107B1 (en) | 2011-11-30 | 2013-05-28 | The Broad Institute Inc. | Nucleotide-specific recognition sequences for designer TAL effectors |
| US9046593B2 (en) | 2011-12-15 | 2015-06-02 | The Boeing Company | Method and apparatus for detecting and classifying signals |
| GB201122458D0 (en) | 2011-12-30 | 2012-02-08 | Univ Wageningen | Modified cascade ribonucleoproteins and uses thereof |
| EP3272356A1 (en) | 2012-02-24 | 2018-01-24 | Fred Hutchinson Cancer Research Center | Compositions and methods for the treatment of hemoglobinopathies |
| RU2639277C2 (ru) | 2012-02-29 | 2017-12-20 | Сангамо Байосайенсиз, Инк. | Способы и составы лечения болезни хантингтона |
| US9637739B2 (en) | 2012-03-20 | 2017-05-02 | Vilnius University | RNA-directed DNA cleavage by the Cas9-crRNA complex |
| WO2013141680A1 (en) | 2012-03-20 | 2013-09-26 | Vilnius University | RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX |
| AU2013204327B2 (en) | 2012-04-20 | 2016-09-01 | Aviagen | Cell transfection method |
| US11518997B2 (en) | 2012-04-23 | 2022-12-06 | BASF Agricultural Solutions Seed US LLC | Targeted genome engineering in plants |
| US9834786B2 (en) | 2012-04-25 | 2017-12-05 | Regeneron Pharmaceuticals, Inc. | Nuclease-mediated targeting with large targeting vectors |
| JP6352250B2 (ja) | 2012-05-02 | 2018-07-04 | ダウ アグロサイエンシィズ エルエルシー | リンゴ酸デヒドロゲナーゼの標的改変 |
| CA2871524C (en) | 2012-05-07 | 2021-07-27 | Sangamo Biosciences, Inc. | Methods and compositions for nuclease-mediated targeted integration of transgenes |
| WO2013169398A2 (en) | 2012-05-09 | 2013-11-14 | Georgia Tech Research Corporation | Systems and methods for improving nuclease specificity and activity |
| US10266850B2 (en) * | 2012-05-25 | 2019-04-23 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| WO2013181440A1 (en) | 2012-05-30 | 2013-12-05 | Baylor College Of Medicine | Supercoiled minivectors as a tool for dna repair, alteration and replacement |
| WO2013188037A2 (en) | 2012-06-11 | 2013-12-19 | Agilent Technologies, Inc | Method of adaptor-dimer subtraction using a crispr cas6 protein |
| CA2876076A1 (en) | 2012-06-12 | 2013-12-19 | Soren WARMING | Methods and compositions for generating conditional knock-out alleles |
| EP2674501A1 (en) | 2012-06-14 | 2013-12-18 | Agence nationale de sécurité sanitaire de l'alimentation,de l'environnement et du travail | Method for detecting and identifying enterohemorrhagic Escherichia coli |
| US9688971B2 (en) | 2012-06-15 | 2017-06-27 | The Regents Of The University Of California | Endoribonuclease and methods of use thereof |
| BR112014031891A2 (pt) | 2012-06-19 | 2017-08-01 | Univ Minnesota | direcionamento genético nas plantas utilizando vírus de dna |
| WO2014011237A1 (en) | 2012-07-11 | 2014-01-16 | Sangamo Biosciences, Inc. | Methods and compositions for the treatment of lysosomal storage diseases |
| JP6329537B2 (ja) | 2012-07-11 | 2018-05-23 | サンガモ セラピューティクス, インコーポレイテッド | 生物学的薬剤の送達のための方法および組成物 |
| KR20230065381A (ko) | 2012-07-25 | 2023-05-11 | 더 브로드 인스티튜트, 인코퍼레이티드 | 유도 dna 결합 단백질 및 게놈 교란 도구 및 이의 적용 |
| EP2880171B1 (en) | 2012-08-03 | 2018-10-03 | The Regents of The University of California | Methods and compositions for controlling gene expression by rna processing |
| CN104704110B (zh) | 2012-08-29 | 2018-06-01 | 桑格摩生物科学股份有限公司 | 用于治疗遗传性病状的方法和组合物 |
| UA118090C2 (uk) | 2012-09-07 | 2018-11-26 | ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі | Спосіб інтегрування послідовності нуклеїнової кислоти, що представляє інтерес, у ген fad2 у клітині сої та специфічний для локусу fad2 білок, що зв'язується, здатний індукувати спрямований розрив |
| UA119135C2 (uk) | 2012-09-07 | 2019-05-10 | ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі | Спосіб отримання трансгенної рослини |
| HK1217732A1 (zh) | 2012-09-07 | 2017-01-20 | 美国陶氏益农公司 | Fad3性能基因座及相應的能夠誘導靶向斷裂的靶位點特異性結合蛋白 |
| EP2906602B1 (en) | 2012-10-12 | 2019-01-16 | The General Hospital Corporation | Transcription activator-like effector (tale) - lysine-specific demethylase 1 (lsd1) fusion proteins |
| CN110669758A (zh) | 2012-10-23 | 2020-01-10 | 基因工具股份有限公司 | 用于切割靶dna 的组合物及其用途 |
| AU2013337951B2 (en) | 2012-10-30 | 2019-10-03 | Recombinetics, Inc. | Control of sexual maturation in animals |
| WO2014071006A1 (en) | 2012-10-31 | 2014-05-08 | Cellectis | Coupling herbicide resistance with targeted insertion of transgenes in plants |
| US20140127752A1 (en) | 2012-11-07 | 2014-05-08 | Zhaohui Zhou | Method, composition, and reagent kit for targeted genomic enrichment |
| CA3034794A1 (en) | 2012-12-06 | 2014-06-12 | Sigma-Aldrich Co. Llc | Crispr-based genome modification and regulation |
| WO2014093479A1 (en) | 2012-12-11 | 2014-06-19 | Montana State University | Crispr (clustered regularly interspaced short palindromic repeats) rna-guided control of gene regulation |
| EP3434776A1 (en) | 2012-12-12 | 2019-01-30 | The Broad Institute, Inc. | Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof |
| US8697359B1 (en) | 2012-12-12 | 2014-04-15 | The Broad Institute, Inc. | CRISPR-Cas systems and methods for altering expression of gene products |
| RU2721275C2 (ru) | 2012-12-12 | 2020-05-18 | Те Брод Инститьют, Инк. | Доставка, конструирование и оптимизация систем, способов и композиций для манипуляции с последовательностями и применения в терапии |
| AU2013359212B2 (en) | 2012-12-12 | 2017-01-19 | Massachusetts Institute Of Technology | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
| EP4234696A3 (en) | 2012-12-12 | 2023-09-06 | The Broad Institute Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
| EP2940140B1 (en) | 2012-12-12 | 2019-03-27 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
| WO2014093701A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof |
| CN105121648B (zh) | 2012-12-12 | 2021-05-07 | 布罗德研究所有限公司 | 用于序列操纵的系统、方法和优化的指导组合物的工程化 |
| WO2014093655A2 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains |
| WO2014093694A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes |
| BR102013031932A2 (pt) | 2012-12-13 | 2014-10-14 | Dow Agrosciences Llc | Processos melhorados para o isolamento do ácido 4-amino-3-cloro -6-(4-cloro-2-fluoro-3-metoxifenil)-piridina-2-carboxí lico |
| AU2013359146B2 (en) | 2012-12-13 | 2017-12-07 | Corteva Agriscience Llc | DNA detection methods for site specific nuclease activity |
| US8939652B2 (en) | 2012-12-13 | 2015-01-27 | Us Synthetic Corporation | Roller bearing apparatuses including compliant rolling elements, and related methods of manufacture |
| EP2931891B1 (en) | 2012-12-17 | 2019-05-15 | President and Fellows of Harvard College | Rna-guided human genome engineering |
| NL2010038C2 (en) | 2012-12-21 | 2014-06-24 | Koni Bv | Shock absorber. |
| JP6583918B2 (ja) | 2012-12-27 | 2019-10-02 | キージーン ナムローゼ フェンノートシャップ | 植物における遺伝連鎖を解消するための方法 |
| CA2898184A1 (en) | 2013-01-16 | 2014-07-24 | Emory University | Cas9-nucleic acid complexes and uses related thereto |
| CN103233028B (zh) | 2013-01-25 | 2015-05-13 | 南京徇齐生物技术有限公司 | 一种无物种限制无生物安全性问题的真核生物基因打靶方法及螺旋结构dna序列 |
| WO2014127287A1 (en) | 2013-02-14 | 2014-08-21 | Massachusetts Institute Of Technology | Method for in vivo tergated mutagenesis |
| SG11201505968WA (en) | 2013-02-20 | 2015-08-28 | Regeneron Pharma | Genetic modification of rats |
| US10227610B2 (en) | 2013-02-25 | 2019-03-12 | Sangamo Therapeutics, Inc. | Methods and compositions for enhancing nuclease-mediated gene disruption |
| US20140273230A1 (en) | 2013-03-15 | 2014-09-18 | Sigma-Aldrich Co., Llc | Crispr-based genome modification and regulation |
| US10760064B2 (en) | 2013-03-15 | 2020-09-01 | The General Hospital Corporation | RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci |
| MX376838B (es) | 2013-03-15 | 2025-03-07 | Univ Minnesota | Ingenieria genomica de plantas utilizando sistemas crispr/cas. |
| KR102271291B1 (ko) | 2013-03-15 | 2021-07-02 | 더 제너럴 하스피탈 코포레이션 | 특정 게놈 좌위에 대한 유전적 및 후성적 조절 단백질의 rna-안내 표적화 |
| US11332719B2 (en) | 2013-03-15 | 2022-05-17 | The Broad Institute, Inc. | Recombinant virus and preparations thereof |
| US9234213B2 (en) | 2013-03-15 | 2016-01-12 | System Biosciences, Llc | Compositions and methods directed to CRISPR/Cas genomic engineering systems |
| US20140364333A1 (en) | 2013-03-15 | 2014-12-11 | President And Fellows Of Harvard College | Methods for Live Imaging of Cells |
| WO2014165825A2 (en) | 2013-04-04 | 2014-10-09 | President And Fellows Of Harvard College | Therapeutic uses of genome editing with crispr/cas systems |
| WO2014165612A2 (en) | 2013-04-05 | 2014-10-09 | Dow Agrosciences Llc | Methods and compositions for integration of an exogenous sequence within the genome of plants |
| LT2986729T (lt) | 2013-04-16 | 2018-10-25 | Regeneron Pharmaceuticals, Inc. | Žiurkės genomo tikslinė modifikacija |
| CN103224947B (zh) | 2013-04-28 | 2015-06-10 | 陕西师范大学 | 一种基因打靶系统 |
| US10604771B2 (en) | 2013-05-10 | 2020-03-31 | Sangamo Therapeutics, Inc. | Delivery methods and compositions for nuclease-mediated genome engineering |
| WO2014190181A1 (en) | 2013-05-22 | 2014-11-27 | Northwestern University | Rna-directed dna cleavage and gene editing by cas9 enzyme from neisseria meningitidis |
| WO2014191021A1 (en) | 2013-05-28 | 2014-12-04 | Telefonaktiebolaget L M Ericsson (Publ) | Method, apparatus and computer program for updating a prioritization level of a service data flow based on traffic size per time unit of said data flow |
| US9873907B2 (en) | 2013-05-29 | 2018-01-23 | Agilent Technologies, Inc. | Method for fragmenting genomic DNA using CAS9 |
| US9267135B2 (en) | 2013-06-04 | 2016-02-23 | President And Fellows Of Harvard College | RNA-guided transcriptional regulation |
| CA2915837A1 (en) | 2013-06-17 | 2014-12-24 | The Broad Institute, Inc. | Optimized crispr-cas double nickase systems, methods and compositions for sequence manipulation |
| EP3725885A1 (en) | 2013-06-17 | 2020-10-21 | The Broad Institute, Inc. | Functional genomics using crispr-cas systems, compositions methods, screens and applications thereof |
| WO2014204729A1 (en) | 2013-06-17 | 2014-12-24 | The Broad Institute Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using viral components |
| NL2010994C2 (en) | 2013-06-17 | 2014-12-18 | Fuji Seal Europe Bv | Container sleeving method and device. |
| EP3011035B1 (en) | 2013-06-17 | 2020-05-13 | The Broad Institute, Inc. | Assay for quantitative evaluation of target site cleavage by one or more crispr-cas guide sequences |
| EP3011029B1 (en) | 2013-06-17 | 2019-12-11 | The Broad Institute, Inc. | Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation |
| BR112015031608A2 (pt) | 2013-06-17 | 2017-08-22 | Massachusetts Inst Technology | Aplicação e uso dos sistemas crispr-cas, vetores e composições para direcionamento e terapia hepáticos |
| AU2014281030B2 (en) | 2013-06-17 | 2020-07-09 | Massachusetts Institute Of Technology | Delivery, engineering and optimization of systems, methods and compositions for targeting and modeling diseases and disorders of post mitotic cells |
| CN103343120B (zh) | 2013-07-04 | 2015-03-04 | 中国科学院遗传与发育生物学研究所 | 一种小麦基因组定点改造方法 |
| BR112016000571B1 (pt) | 2013-07-10 | 2023-12-26 | President And Fellows Of Harvard College | Métodos in vitro para modular a expressão e para alterar um ou mais ácidos nucleicos alvo em uma célula simultaneamente com a regulação da expressão de um ou mais ácidos nucleicos alvo em uma célula, bem como célula de levedura ou bactéria compreendendo ácidos nucleicos |
| US10421957B2 (en) | 2013-07-29 | 2019-09-24 | Agilent Technologies, Inc. | DNA assembly using an RNA-programmable nickase |
| AU2014341925B2 (en) | 2013-11-04 | 2017-06-29 | Corteva Agriscience Llc | Optimal soybean loci |
| UY35816A (es) | 2013-11-04 | 2015-05-29 | Dow Agrosciences Llc | ?locus óptimos de la soja?. |
| UY35812A (es) | 2013-11-04 | 2015-05-29 | Dow Agrosciences Llc | ?loci de maíz óptimos?. |
| EP3066201B1 (en) | 2013-11-07 | 2018-03-07 | Editas Medicine, Inc. | Crispr-related methods and compositions with governing grnas |
| CA2930877A1 (en) | 2013-11-18 | 2015-05-21 | Crispr Therapeutics Ag | Crispr-cas system materials and methods |
| US10787684B2 (en) | 2013-11-19 | 2020-09-29 | President And Fellows Of Harvard College | Large gene excision and insertion |
| CN110951779B (zh) | 2013-12-11 | 2024-04-16 | 瑞泽恩制药公司 | 用于靶向修饰基因组的方法和组合物 |
| US9840699B2 (en) | 2013-12-12 | 2017-12-12 | President And Fellows Of Harvard College | Methods for nucleic acid editing |
| CN106536729A (zh) | 2013-12-12 | 2017-03-22 | 布罗德研究所有限公司 | 使用粒子递送组分靶向障碍和疾病的crispr‑cas系统和组合物的递送、用途和治疗应用 |
| EP3985124A1 (en) | 2013-12-26 | 2022-04-20 | The General Hospital Corporation | Multiplex guide rnas |
| US9850525B2 (en) | 2014-01-29 | 2017-12-26 | Agilent Technologies, Inc. | CAS9-based isothermal method of detection of specific DNA sequence |
| WO2015117041A1 (en) | 2014-01-30 | 2015-08-06 | Nair Ramesh B | Gene modification-mediated methods and compositions for generating dominant traits in eukaryotic systems |
| US20150225801A1 (en) | 2014-02-11 | 2015-08-13 | California Institute Of Technology | Recording and mapping lineage information and molecular events in individual cells |
| JP6606088B2 (ja) | 2014-02-24 | 2019-11-13 | サンガモ セラピューティクス, インコーポレイテッド | ヌクレアーゼ媒介性標的化組み込みのための方法および組成物 |
| CA2942762C (en) | 2014-03-18 | 2023-10-17 | Sangamo Biosciences, Inc. | Methods and compositions for regulation of zinc finger protein expression |
| EP4123024B1 (en) | 2014-04-01 | 2024-12-18 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating herpes simplex virus type 1 (hsv-1) |
| DE102015226614A1 (de) | 2015-12-23 | 2017-06-29 | Robert Bosch Gmbh | Verfahren zum Betreiben eines Kraftfahrzeugs, Steuerungseinheit für ein Antriebssystem und ein Antriebssystem |
| US10250380B2 (en) | 2016-12-12 | 2019-04-02 | Qualcomm Incorporated | Techniques for unified synchronization channel design in new radio |
| US11352698B2 (en) | 2019-04-25 | 2022-06-07 | Samsung Electronics Co., Ltd. | Atomic layer deposition apparatus and methods of fabricating semiconductor devices using the same |
-
2013
- 2013-03-15 US US13/842,859 patent/US10266850B2/en active Active
- 2013-03-15 PL PL18152360T patent/PL3401400T3/pl unknown
- 2013-03-15 PE PE2019000945A patent/PE20190844A1/es unknown
- 2013-03-15 PT PT171634348T patent/PT3241902T/pt unknown
- 2013-03-15 EP EP21207127.8A patent/EP4043564A1/en not_active Withdrawn
- 2013-03-15 HR HRP20250549TT patent/HRP20250549T1/hr unknown
- 2013-03-15 SG SG10201701800YA patent/SG10201701800YA/en unknown
- 2013-03-15 GE GEAP201313674A patent/GEP20217251B/en unknown
- 2013-03-15 EP EP19157590.1A patent/EP3597749B1/en active Active
- 2013-03-15 SG SG11201407702XA patent/SG11201407702XA/en unknown
- 2013-03-15 WO PCT/US2013/032589 patent/WO2013176772A1/en not_active Ceased
- 2013-03-15 PL PL13793997T patent/PL2800811T3/pl unknown
- 2013-03-15 MY MYPI2014003102A patent/MY184753A/en unknown
- 2013-03-15 SI SI201330747T patent/SI2800811T1/sl unknown
- 2013-03-15 JP JP2015514015A patent/JP6343605B2/ja active Active
- 2013-03-15 RS RS20250443A patent/RS66774B1/sr unknown
- 2013-03-15 PL PL19157590.1T patent/PL3597749T3/pl unknown
- 2013-03-15 MX MX2014014477A patent/MX349744B/es active IP Right Grant
- 2013-03-15 RS RSP20190673 patent/RS59199B1/sr unknown
- 2013-03-15 LT LTEP23187511.3T patent/LT4289948T/lt unknown
- 2013-03-15 EA EA201401319A patent/EA038924B1/ru unknown
- 2013-03-15 LT LTEP19157590.1T patent/LT3597749T/lt unknown
- 2013-03-15 EP EP23187511.3A patent/EP4289948B1/en active Active
- 2013-03-15 DE DE202013012242.0U patent/DE202013012242U1/de not_active Expired - Lifetime
- 2013-03-15 HU HUE18152360A patent/HUE043861T2/hu unknown
- 2013-03-15 UA UAA201413835A patent/UA118014C2/uk unknown
- 2013-03-15 NZ NZ714353A patent/NZ714353A/en unknown
- 2013-03-15 BR BR112014029441-0A patent/BR112014029441B1/pt active IP Right Grant
- 2013-03-15 SI SI201332099T patent/SI4289948T1/sl unknown
- 2013-03-15 US US14/403,475 patent/US20160046961A1/en not_active Abandoned
- 2013-03-15 HU HUE17163434A patent/HUE038850T2/hu unknown
- 2013-03-15 PL PL23187511.3T patent/PL4289948T3/pl unknown
- 2013-03-15 RS RS20170783A patent/RS56119B1/sr unknown
- 2013-03-15 DK DK23187511.3T patent/DK4289948T3/da active
- 2013-03-15 HR HRP20231042TT patent/HRP20231042T1/hr unknown
- 2013-03-15 ES ES13793997.1T patent/ES2636902T3/es active Active
- 2013-03-15 DK DK18152360.6T patent/DK3401400T3/da active
- 2013-03-15 FI FIEP19157590.1T patent/FI3597749T3/fi active
- 2013-03-15 PE PE2019000944A patent/PE20190843A1/es unknown
- 2013-03-15 MA MA37663A patent/MA37663B1/fr unknown
- 2013-03-15 DE DE202013012240.4U patent/DE202013012240U1/de not_active Expired - Lifetime
- 2013-03-15 AU AU2013266968A patent/AU2013266968B2/en active Active
- 2013-03-15 EP EP18152360.6A patent/EP3401400B1/en not_active Revoked
- 2013-03-15 ES ES19157590T patent/ES2960803T3/es active Active
- 2013-03-15 ME MEP-2017-180A patent/ME02836B/me unknown
- 2013-03-15 SI SI201332059T patent/SI3597749T1/sl unknown
- 2013-03-15 HK HK15104473.1A patent/HK1204003A1/xx unknown
- 2013-03-15 EP EP13793997.1A patent/EP2800811B1/en not_active Revoked
- 2013-03-15 PL PL17163434T patent/PL3241902T3/pl unknown
- 2013-03-15 ES ES18152360T patent/ES2728782T3/es active Active
- 2013-03-15 CA CA2872241A patent/CA2872241C/en active Active
- 2013-03-15 GB GB1601071.2A patent/GB2537000C/en active Active
- 2013-03-15 PT PT137939971T patent/PT2800811T/pt unknown
- 2013-03-15 DK DK19157590.1T patent/DK3597749T5/da active
- 2013-03-15 KR KR1020177034069A patent/KR20170134766A/ko active Pending
- 2013-03-15 MX MX2017010309A patent/MX362866B/es unknown
- 2013-03-15 ES ES23187511T patent/ES3028090T3/es active Active
- 2013-03-15 FI FIEP23187511.3T patent/FI4289948T3/fi active
- 2013-03-15 GB GB1420270.9A patent/GB2518764C/en active Active
- 2013-03-15 PT PT231875113T patent/PT4289948T/pt unknown
- 2013-03-15 PE PE2014002211A patent/PE20150336A1/es active IP Right Grant
- 2013-03-15 DK DK17163434.8T patent/DK3241902T3/en active
- 2013-03-15 KR KR1020147036096A patent/KR20150016588A/ko not_active Ceased
- 2013-03-15 ME MEP-2019-155A patent/ME03530B/me unknown
- 2013-03-15 LT LTEP13793997.1T patent/LT2800811T/lt unknown
- 2013-03-15 PE PE2019000943A patent/PE20190842A1/es unknown
- 2013-03-15 MX MX2019001995A patent/MX369077B/es unknown
- 2013-03-15 DE DE202013012241.2U patent/DE202013012241U1/de not_active Expired - Lifetime
- 2013-03-15 ES ES17163434.8T patent/ES2670718T3/es active Active
- 2013-03-15 TR TR2018/06812T patent/TR201806812T4/tr unknown
- 2013-03-15 LT LTEP18152360.6T patent/LT3401400T/lt unknown
- 2013-03-15 SI SI201331048T patent/SI3241902T1/en unknown
- 2013-03-15 PT PT191575901T patent/PT3597749T/pt unknown
- 2013-03-15 DK DK13793997.1T patent/DK2800811T3/en active
- 2013-03-15 NZ NZ728024A patent/NZ728024A/en unknown
- 2013-03-15 PT PT18152360T patent/PT3401400T/pt unknown
- 2013-03-15 CN CN201710585690.5A patent/CN107603976B/zh active Active
- 2013-03-15 EP EP17163434.8A patent/EP3241902B1/en not_active Revoked
- 2013-03-15 RS RS20230851A patent/RS64622B1/sr unknown
- 2013-03-15 MY MYPI2018700285A patent/MY189533A/en unknown
- 2013-03-15 EP EP25159662.3A patent/EP4570908A3/en active Pending
- 2013-03-15 SI SI201331467T patent/SI3401400T1/sl unknown
- 2013-03-15 RS RS20180482A patent/RS57287B1/sr unknown
- 2013-03-15 LT LTEP17163434.8T patent/LT3241902T/lt unknown
- 2013-03-15 SG SG10201809817UA patent/SG10201809817UA/en unknown
- 2013-03-15 HR HRP20171163TT patent/HRP20171163T1/hr unknown
- 2013-03-15 HU HUE19157590A patent/HUE064300T2/hu unknown
- 2013-03-15 CN CN201380038920.6A patent/CN104854241B/zh active Active
-
2014
- 2014-11-02 IL IL235461A patent/IL235461B/en active IP Right Grant
- 2014-11-19 PH PH12014502574A patent/PH12014502574B1/en unknown
- 2014-11-24 CR CR20140538A patent/CR20140538A/es unknown
- 2014-11-25 MX MX2019012772A patent/MX2019012772A/es unknown
- 2014-11-25 TN TN2014000493A patent/TN2014000493A1/fr unknown
- 2014-11-25 EC ECIEPI201428704A patent/ECSP14028704A/es unknown
- 2014-11-25 CO CO14259531A patent/CO7151523A2/es unknown
- 2014-11-25 CL CL2014003208A patent/CL2014003208A1/es unknown
-
2015
- 2015-04-13 US US14/685,514 patent/US20160060654A1/en not_active Abandoned
- 2015-04-13 US US14/685,516 patent/US20160068864A1/en not_active Abandoned
- 2015-04-13 US US14/685,504 patent/US10301651B2/en active Active
- 2015-04-13 US US14/685,502 patent/US10000772B2/en active Active
- 2015-04-13 US US14/685,513 patent/US20160060653A1/en not_active Abandoned
- 2015-07-03 GB GBGB1511669.2A patent/GB201511669D0/en not_active Ceased
- 2015-11-16 US US14/942,782 patent/US10227611B2/en active Active
-
2016
- 2016-04-04 US US15/090,511 patent/US20170051312A1/en not_active Abandoned
- 2016-04-26 US US15/138,604 patent/US10113167B2/en active Active
-
2017
- 2017-02-16 US US15/435,233 patent/US10407697B2/en active Active
- 2017-08-08 CY CY20171100846T patent/CY1119282T1/el unknown
- 2017-09-07 AU AU2017225060A patent/AU2017225060B2/en active Active
- 2017-11-03 US US15/803,424 patent/US10519467B2/en active Active
-
2018
- 2018-03-07 US US15/915,020 patent/US20190062790A1/en not_active Abandoned
- 2018-03-19 US US15/925,544 patent/US10385360B2/en active Active
- 2018-04-06 US US15/947,718 patent/US20180230497A1/en active Pending
- 2018-04-06 US US15/947,700 patent/US20180230496A1/en active Pending
- 2018-04-06 US US15/947,680 patent/US20180230495A1/en active Pending
- 2018-04-23 US US15/959,782 patent/US20180245100A1/en not_active Abandoned
- 2018-04-23 US US15/959,735 patent/US20180298407A1/en not_active Abandoned
- 2018-04-23 US US15/959,762 patent/US20180237801A1/en not_active Abandoned
- 2018-04-23 US US15/959,802 patent/US20180273981A1/en not_active Abandoned
- 2018-04-23 US US15/959,715 patent/US20180298406A1/en not_active Abandoned
- 2018-04-27 US US15/965,598 patent/US20180245101A1/en not_active Abandoned
- 2018-04-27 US US15/965,603 patent/US20180251791A1/en not_active Abandoned
- 2018-05-16 CY CY20181100506T patent/CY1120291T1/el unknown
- 2018-05-16 US US15/981,808 patent/US20180251794A1/en active Pending
- 2018-05-16 US US15/981,809 patent/US20180251795A1/en active Pending
- 2018-05-16 US US15/981,807 patent/US20180251793A1/en active Pending
- 2018-05-21 JP JP2018097369A patent/JP6692856B2/ja active Active
- 2018-05-21 HR HRP20180794TT patent/HRP20180794T1/hr unknown
- 2018-07-11 US US16/033,016 patent/US10308961B2/en active Active
- 2018-07-11 US US16/033,002 patent/US10421980B2/en active Active
- 2018-07-11 US US16/033,005 patent/US10415061B2/en active Active
- 2018-09-03 IL IL261563A patent/IL261563A/en unknown
- 2018-09-03 IL IL261569A patent/IL261569B/en unknown
- 2018-09-03 IL IL261567A patent/IL261567B/en active IP Right Grant
- 2018-09-03 IL IL261570A patent/IL261570B/en unknown
- 2018-09-03 IL IL261568A patent/IL261568B/en unknown
- 2018-09-03 IL IL261565A patent/IL261565B/en unknown
- 2018-09-03 IL IL261566A patent/IL261566B/en unknown
- 2018-09-19 US US16/136,165 patent/US20190002922A1/en active Pending
- 2018-09-19 US US16/136,159 patent/US20190002921A1/en active Pending
- 2018-09-19 US US16/136,168 patent/US20190002923A1/en active Pending
- 2018-09-19 US US16/136,175 patent/US20190010520A1/en active Pending
- 2018-11-27 US US16/201,848 patent/US10337029B2/en active Active
- 2018-11-27 US US16/201,865 patent/US10669560B2/en active Active
- 2018-11-27 US US16/201,855 patent/US10351878B2/en active Active
- 2018-11-27 US US16/201,862 patent/US10626419B2/en active Active
- 2018-11-27 US US16/201,853 patent/US10358659B2/en active Active
- 2018-11-27 US US16/201,836 patent/US10358658B2/en active Active
-
2019
- 2019-02-14 US US16/276,343 patent/US10400253B2/en active Active
- 2019-02-14 US US16/276,361 patent/US20190169645A1/en active Pending
- 2019-02-14 US US16/276,374 patent/US20190169648A1/en active Pending
- 2019-02-14 US US16/276,368 patent/US20190169647A1/en active Pending
- 2019-02-14 US US16/276,352 patent/US10640791B2/en active Active
- 2019-02-14 US US16/276,365 patent/US20190169646A1/en active Pending
- 2019-02-14 US US16/276,348 patent/US10428352B2/en active Active
- 2019-02-14 US US16/276,356 patent/US10443076B2/en active Active
- 2019-02-15 US US16/277,090 patent/US10487341B2/en active Active
- 2019-03-18 AU AU2019201850A patent/AU2019201850B2/en active Active
- 2019-04-10 US US16/380,781 patent/US10533190B2/en active Active
- 2019-04-10 US US16/380,758 patent/US10526619B2/en active Active
- 2019-04-11 US US16/382,093 patent/US10513712B2/en active Active
- 2019-04-11 US US16/382,097 patent/US10563227B2/en active Active
- 2019-04-11 US US16/382,096 patent/US10550407B2/en active Active
- 2019-04-11 US US16/382,100 patent/US10570419B2/en active Active
- 2019-04-12 US US16/383,422 patent/US10577631B2/en active Active
- 2019-04-12 US US16/383,433 patent/US10676759B2/en active Active
- 2019-04-12 US US16/383,412 patent/US10612045B2/en active Active
- 2019-04-12 US US16/383,443 patent/US10597680B2/en active Active
- 2019-04-16 US US16/385,360 patent/US20200071728A1/en not_active Abandoned
- 2019-04-16 US US16/385,383 patent/US11634730B2/en active Active
- 2019-05-20 CY CY20191100536T patent/CY1121657T1/el unknown
- 2019-05-28 HR HRP20190965TT patent/HRP20190965T1/hr unknown
- 2019-11-21 JP JP2019210828A patent/JP6887479B2/ja active Active
-
2020
- 2020-02-13 US US16/790,368 patent/US10752920B2/en active Active
- 2020-03-20 US US16/825,807 patent/US20200277631A1/en not_active Abandoned
- 2020-04-27 US US16/859,182 patent/US20200308605A1/en not_active Abandoned
- 2020-06-04 US US16/892,631 patent/US10774344B1/en active Active
- 2020-06-04 US US16/892,663 patent/US10793878B1/en active Active
- 2020-06-10 US US16/898,197 patent/US20200308607A1/en not_active Abandoned
- 2020-06-10 US US16/898,161 patent/US20200325495A1/en not_active Abandoned
- 2020-06-10 US US16/898,186 patent/US20200308606A1/en not_active Abandoned
- 2020-07-21 US US16/935,011 patent/US10988780B2/en active Active
- 2020-07-21 US US16/935,016 patent/US10982230B2/en active Active
- 2020-07-21 US US16/935,023 patent/US10982231B2/en active Active
- 2020-07-21 US US16/935,007 patent/US10900054B2/en active Active
- 2020-10-23 US US17/079,070 patent/US11242543B2/en active Active
- 2020-10-29 US US17/084,014 patent/US11186849B2/en active Active
- 2020-10-29 US US17/084,023 patent/US11028412B2/en active Active
- 2020-10-29 US US17/084,020 patent/US10988782B2/en active Active
- 2020-11-23 US US17/102,059 patent/US11008590B2/en active Active
- 2020-11-23 US US17/102,050 patent/US11001863B2/en active Active
- 2020-11-23 US US17/102,031 patent/US11008589B2/en active Active
-
2021
- 2021-02-12 AU AU2021200952A patent/AU2021200952B2/en not_active Expired - Fee Related
- 2021-04-01 US US17/220,692 patent/US11674159B2/en active Active
- 2021-04-01 US US17/220,693 patent/US11814645B2/en active Active
- 2021-05-18 JP JP2021083800A patent/JP2021121205A/ja not_active Withdrawn
- 2021-05-21 US US17/326,805 patent/US11401532B2/en active Active
- 2021-05-21 US US17/326,818 patent/US11274318B2/en active Active
- 2021-05-21 US US17/326,791 patent/US11293034B2/en active Active
- 2021-06-15 US US17/348,619 patent/US12180504B2/en active Active
- 2021-06-15 US US17/348,590 patent/US20210310028A1/en not_active Abandoned
- 2021-06-15 US US17/348,596 patent/US12180503B2/en active Active
- 2021-09-21 US US17/481,063 patent/US11970711B2/en active Active
- 2021-09-21 US US17/481,052 patent/US11332761B2/en active Active
- 2021-09-21 US US17/481,085 patent/US12123015B2/en active Active
- 2021-10-29 US US17/514,929 patent/US20220119847A1/en not_active Abandoned
- 2021-10-29 US US17/514,940 patent/US20220112521A1/en not_active Abandoned
- 2021-10-29 US US17/514,893 patent/US20220073952A1/en not_active Abandoned
- 2021-10-29 US US17/514,919 patent/US20220119846A1/en not_active Abandoned
- 2021-10-29 US US17/514,936 patent/US20220119848A1/en not_active Abandoned
- 2021-10-29 US US17/514,883 patent/US20220119845A1/en not_active Abandoned
- 2021-10-29 US US17/514,908 patent/US20220127645A1/en not_active Abandoned
- 2021-12-22 US US17/559,860 patent/US12215343B2/en active Active
-
2022
- 2022-03-24 US US17/703,861 patent/US11479794B2/en active Active
- 2022-03-24 US US17/703,849 patent/US11549127B2/en active Active
- 2022-03-24 US US17/703,845 patent/US11473108B2/en active Active
- 2022-11-10 US US18/054,538 patent/US20230227859A1/en not_active Abandoned
- 2022-12-09 US US18/064,011 patent/US20230212614A1/en not_active Abandoned
-
2023
- 2023-06-30 JP JP2023107774A patent/JP2023123755A/ja active Pending
- 2023-10-11 AU AU2023248113A patent/AU2023248113A1/en active Pending
-
2024
- 2024-06-24 US US18/751,730 patent/US20240417756A1/en active Pending
- 2024-10-25 US US18/926,911 patent/US20250122537A1/en active Pending
-
2025
- 2025-01-03 US US19/009,690 patent/US20250146024A1/en active Pending
- 2025-05-21 JP JP2025084873A patent/JP2025148318A/ja active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110189776A1 (en) * | 2008-07-25 | 2011-08-04 | University Of Georgia Research Foundation, Inc. | PROKARYOTIC RNAi-LIKE SYSTEM AND METHODS OF USE |
| US20100076057A1 (en) * | 2008-09-23 | 2010-03-25 | Northwestern University | TARGET DNA INTERFERENCE WITH crRNA |
Non-Patent Citations (4)
| Title |
|---|
| HALE, CARYN R. ET AL.: "RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex", CELL, vol. 139, no. 5, 25 November 2009 (2009-11-25), pages 945 - 956, XP055038712 * |
| JINEK, MARTIN ET AL.: "A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity", SCIENCE, vol. 337, no. 6096, 17 August 2012 (2012-08-17), pages 816 - 821, XP055067747 * |
| SASHITAL, DIPALI G. ET AL.: "Mechanism of foreign DNA selection in a bacterial adaptive immune system", MOLECULAR CELL, vol. 46, no. 5, 19 April 2012 (2012-04-19), pages 606 - 615, XP028522142 * |
| WIEDENHEFT, BLAKE ET AL.: "RNA-guided genetic silencing systems in bacteria and archaea", NATURE, vol. 482, no. 7385, 15 February 2012 (2012-02-15), pages 331 - 338, XP055116249 * |
Cited By (1870)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10165763B2 (en) | 2009-07-08 | 2019-01-01 | Kymab Limited | Animal models and therapeutic molecules |
| US11564380B2 (en) | 2009-07-08 | 2023-01-31 | Kymab Limited | Animal models and therapeutic molecules |
| US9447177B2 (en) | 2009-07-08 | 2016-09-20 | Kymab Limited | Transgenic mouse homozygous for chimeric IgH locus |
| US11812731B2 (en) | 2009-07-08 | 2023-11-14 | Kymab Ltd. | Animal models and therapeutic molecules |
| US10064398B2 (en) | 2009-07-08 | 2018-09-04 | Kymab Limited | Animal models and therapeutic molecules |
| US11606941B2 (en) | 2009-07-08 | 2023-03-21 | Kymab Limited | Animal models and therapeutic molecules |
| US9505827B2 (en) | 2009-07-08 | 2016-11-29 | Kymab Limited | Animal models and therapeutic molecules |
| US9434782B2 (en) | 2009-07-08 | 2016-09-06 | Kymab Limited | Animal models and therapeutic molecules |
| US9504236B2 (en) | 2009-07-08 | 2016-11-29 | Kymab Limited | Animal models and therapeutic molecules |
| US12258584B2 (en) | 2010-05-06 | 2025-03-25 | Children's Hospital Medical Center | Methods and systems for converting precursor cells into intestinal tissues through directed differentiation |
| US12338444B2 (en) | 2011-03-23 | 2025-06-24 | Pioneer Hi-Bred International, Inc. | Methods for producing a complex transgenic trait locus |
| USRE48345E1 (en) | 2011-06-30 | 2020-12-08 | Arrowhead Pharmaceuticals Inc. | Compositions and methods for inhibiting gene expression of hepatitis B virus |
| US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
| US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
| US11051497B2 (en) | 2011-09-19 | 2021-07-06 | Kymab Limited | Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics |
| US9963716B2 (en) | 2011-09-26 | 2018-05-08 | Kymab Limited | Chimaeric surrogate light chains (SLC) comprising human VpreB |
| US12467086B2 (en) | 2011-10-14 | 2025-11-11 | President And Fellows Of Harvard College | Sequencing by structure assembly |
| US10465042B2 (en) | 2011-12-02 | 2019-11-05 | Yale University | Poly(amine-co-ester) nanoparticles and methods of use thereof |
| US11976318B2 (en) | 2011-12-22 | 2024-05-07 | President And Fellows Of Harvard College | Compositions and methods for analyte detection |
| US11566276B2 (en) | 2011-12-22 | 2023-01-31 | President And Fellows Of Harvard College | Compositions and methods for analyte detection |
| US11293052B2 (en) | 2011-12-22 | 2022-04-05 | President And Fellows Of Harvard College | Compositions and methods for analyte detection |
| US11566277B2 (en) | 2011-12-22 | 2023-01-31 | President And Fellows Of Harvard College | Compositions and methods for analyte detection |
| US11293051B2 (en) | 2011-12-22 | 2022-04-05 | President And Fellows Of Harvard College | Compositions and methods for analyte detection |
| US11639518B2 (en) | 2011-12-22 | 2023-05-02 | President And Fellows Of Harvard College | Compositions and methods for analyte detection |
| US11111521B2 (en) | 2011-12-22 | 2021-09-07 | President And Fellows Of Harvard College | Compositions and methods for analyte detection |
| US11549136B2 (en) | 2011-12-22 | 2023-01-10 | President And Fellows Of Harvard College | Compositions and methods for analyte detection |
| GB2534074A (en) * | 2011-12-30 | 2016-07-13 | Caribou Biosciences Inc | Modified cascade ribonucleoproteins and uses thereof |
| US10954498B2 (en) | 2011-12-30 | 2021-03-23 | Caribou Biosciences, Inc. | Modified cascade ribonucleoproteins and uses thereof |
| US9885026B2 (en) | 2011-12-30 | 2018-02-06 | Caribou Biosciences, Inc. | Modified cascade ribonucleoproteins and uses thereof |
| US10435678B2 (en) | 2011-12-30 | 2019-10-08 | Caribou Biosciences, Inc. | Modified cascade ribonucleoproteins and uses thereof |
| US10711257B2 (en) | 2011-12-30 | 2020-07-14 | Caribou Biosciences, Inc. | Modified cascade ribonucleoproteins and uses thereof |
| US11939604B2 (en) | 2011-12-30 | 2024-03-26 | Caribou Biosciences, Inc. | Modified cascade ribonucleoproteins and uses thereof |
| EP3594341A1 (en) * | 2012-03-20 | 2020-01-15 | Vilnius University | Rna-directed dna cleavage by the cas9-crrna complex |
| JP2021019617A (ja) * | 2012-03-20 | 2021-02-18 | ヴィリニュス・ユニヴァーシティー | Cas9−crRNA複合体によるRNA指向性DNA切断 |
| JP2015510778A (ja) * | 2012-03-20 | 2015-04-13 | ヴィリニュス・ユニヴァーシティー | Cas9−crRNA複合体によるRNA指向性DNA切断 |
| JP7113877B2 (ja) | 2012-03-20 | 2022-08-05 | ヴィリニュス・ユニヴァーシティー | Cas9-crRNA複合体によるRNA指向性DNA切断 |
| EP2828386B1 (en) * | 2012-03-20 | 2019-07-10 | Vilnius University | RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX |
| EP2828386A1 (en) | 2012-03-20 | 2015-01-28 | Vilnius University | RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX |
| JP2019030321A (ja) * | 2012-03-20 | 2019-02-28 | ヴィリニュス・ユニヴァーシティー | Cas9−crRNA複合体によるRNA指向性DNA切断 |
| US10844378B2 (en) | 2012-03-20 | 2020-11-24 | Vilnius University | RNA-directed DNA cleavage by the Cas9-crRNA complex |
| US9637739B2 (en) | 2012-03-20 | 2017-05-02 | Vilnius University | RNA-directed DNA cleavage by the Cas9-crRNA complex |
| US11555187B2 (en) | 2012-03-20 | 2023-01-17 | Vilnius University | RNA-directed DNA cleavage by the Cas9-crRNA complex |
| US9938358B2 (en) | 2012-03-28 | 2018-04-10 | Kymab Limited | Animal models and therapeutic molecules |
| US11297811B2 (en) | 2012-03-28 | 2022-04-12 | Kymab Limited | Transgenic non-human vertebrate for the expression of class-switched, fully human, antibodies |
| US10251377B2 (en) | 2012-03-28 | 2019-04-09 | Kymab Limited | Transgenic non-human vertebrate for the expression of class-switched, fully human, antibodies |
| US9896516B2 (en) | 2012-03-28 | 2018-02-20 | Kymab Limited | Animal models and therapeutic molecules |
| US9938357B2 (en) | 2012-03-28 | 2018-04-10 | Kymab Limited | Animal models and therapeutic molecules |
| US10774155B2 (en) | 2012-03-28 | 2020-09-15 | Kymab Limited | Animal models and therapeutic molecules |
| US9924705B2 (en) | 2012-03-28 | 2018-03-27 | Kymab Limited | Animal models and therapeutic molecules |
| US9834786B2 (en) | 2012-04-25 | 2017-12-05 | Regeneron Pharmaceuticals, Inc. | Nuclease-mediated targeting with large targeting vectors |
| US10301646B2 (en) | 2012-04-25 | 2019-05-28 | Regeneron Pharmaceuticals, Inc. | Nuclease-mediated targeting with large targeting vectors |
| US20210040460A1 (en) | 2012-04-27 | 2021-02-11 | Duke University | Genetic correction of mutated genes |
| US11976307B2 (en) | 2012-04-27 | 2024-05-07 | Duke University | Genetic correction of mutated genes |
| US10667501B2 (en) | 2012-05-17 | 2020-06-02 | Kymab Limited | Transgenic non-human vertebrate for the in vivo production of dual specificity immunoglobulins or hypermutated heavy chain only immunoglobulins |
| EP3241902B1 (en) | 2012-05-25 | 2018-02-28 | The Regents of The University of California | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
| US10626419B2 (en) | 2012-05-25 | 2020-04-21 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10563227B2 (en) | 2012-05-25 | 2020-02-18 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US11293034B2 (en) | 2012-05-25 | 2022-04-05 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US12215343B2 (en) | 2012-05-25 | 2025-02-04 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10428352B2 (en) | 2012-05-25 | 2019-10-01 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10752920B2 (en) | 2012-05-25 | 2020-08-25 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US12123015B2 (en) | 2012-05-25 | 2024-10-22 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10421980B2 (en) | 2012-05-25 | 2019-09-24 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10640791B2 (en) | 2012-05-25 | 2020-05-05 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10988780B2 (en) | 2012-05-25 | 2021-04-27 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10415061B2 (en) | 2012-05-25 | 2019-09-17 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10407697B2 (en) | 2012-05-25 | 2019-09-10 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US11970711B2 (en) | 2012-05-25 | 2024-04-30 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US11634730B2 (en) | 2012-05-25 | 2023-04-25 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US11242543B2 (en) | 2012-05-25 | 2022-02-08 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10597680B2 (en) | 2012-05-25 | 2020-03-24 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10900054B2 (en) | 2012-05-25 | 2021-01-26 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10400253B2 (en) | 2012-05-25 | 2019-09-03 | The Regents Of The University Of California | Methods and compositions or RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10385360B2 (en) | 2012-05-25 | 2019-08-20 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10113167B2 (en) | 2012-05-25 | 2018-10-30 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10487341B2 (en) | 2012-05-25 | 2019-11-26 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US11401532B2 (en) | 2012-05-25 | 2022-08-02 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10550407B2 (en) | 2012-05-25 | 2020-02-04 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| EP3597749B1 (en) | 2012-05-25 | 2023-07-26 | The Regents of The University of California | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
| US11479794B2 (en) | 2012-05-25 | 2022-10-25 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10533190B2 (en) | 2012-05-25 | 2020-01-14 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US11674159B2 (en) | 2012-05-25 | 2023-06-13 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10774344B1 (en) | 2012-05-25 | 2020-09-15 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10612045B2 (en) | 2012-05-25 | 2020-04-07 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10358658B2 (en) | 2012-05-25 | 2019-07-23 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US11028412B2 (en) | 2012-05-25 | 2021-06-08 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10358659B2 (en) | 2012-05-25 | 2019-07-23 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US11549127B2 (en) | 2012-05-25 | 2023-01-10 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US11332761B2 (en) | 2012-05-25 | 2022-05-17 | The Regenis of Wie University of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10351878B2 (en) | 2012-05-25 | 2019-07-16 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US12180503B2 (en) | 2012-05-25 | 2024-12-31 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10519467B2 (en) | 2012-05-25 | 2019-12-31 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US11473108B2 (en) | 2012-05-25 | 2022-10-18 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US11186849B2 (en) | 2012-05-25 | 2021-11-30 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10526619B2 (en) | 2012-05-25 | 2020-01-07 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10337029B2 (en) | 2012-05-25 | 2019-07-02 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10570419B2 (en) | 2012-05-25 | 2020-02-25 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US11008589B2 (en) | 2012-05-25 | 2021-05-18 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10676759B2 (en) | 2012-05-25 | 2020-06-09 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10227611B2 (en) | 2012-05-25 | 2019-03-12 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10513712B2 (en) | 2012-05-25 | 2019-12-24 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US11008590B2 (en) | 2012-05-25 | 2021-05-18 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US12180504B2 (en) | 2012-05-25 | 2024-12-31 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10982231B2 (en) | 2012-05-25 | 2021-04-20 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10577631B2 (en) | 2012-05-25 | 2020-03-03 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10982230B2 (en) | 2012-05-25 | 2021-04-20 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US11274318B2 (en) | 2012-05-25 | 2022-03-15 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10793878B1 (en) | 2012-05-25 | 2020-10-06 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10308961B2 (en) | 2012-05-25 | 2019-06-04 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US11814645B2 (en) | 2012-05-25 | 2023-11-14 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US11001863B2 (en) | 2012-05-25 | 2021-05-11 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10301651B2 (en) | 2012-05-25 | 2019-05-28 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| EP3401400B1 (en) | 2012-05-25 | 2019-04-03 | The Regents of The University of California | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
| US10000772B2 (en) | 2012-05-25 | 2018-06-19 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10669560B2 (en) | 2012-05-25 | 2020-06-02 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10266850B2 (en) | 2012-05-25 | 2019-04-23 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| EP2800811B1 (en) | 2012-05-25 | 2017-05-10 | The Regents of The University of California | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
| US10988782B2 (en) | 2012-05-25 | 2021-04-27 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US10443076B2 (en) | 2012-05-25 | 2019-10-15 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
| US11384360B2 (en) | 2012-06-19 | 2022-07-12 | Regents Of The University Of Minnesota | Gene targeting in plants using DNA viruses |
| EP3494997B1 (en) | 2012-07-25 | 2019-09-18 | The Broad Institute, Inc. | Inducible dna binding proteins and genome perturbation tools and applications thereof |
| EP2877213A2 (en) | 2012-07-25 | 2015-06-03 | The Broad Institute, Inc. | Inducible dna binding proteins and genome perturbation tools and applications thereof |
| EP3808844A1 (en) * | 2012-07-25 | 2021-04-21 | The Broad Institute, Inc. | Inducible dna binding proteins and genome perturbation tools and applications thereof |
| AU2018247306B2 (en) * | 2012-07-25 | 2021-08-19 | Massachusetts Institute Of Technology | Inducible dna binding proteins and genome perturbation tools and applications thereof |
| EP3494997A1 (en) * | 2012-07-25 | 2019-06-12 | The Broad Institute, Inc. | Inducible dna binding proteins and genome perturbation tools and applications thereof |
| EP4180526A3 (en) * | 2012-10-23 | 2023-06-14 | Toolgen Incorporated | Composition for cleaving a target dna comprising a guide rna specific for the target dna and cas protein-encoding nucleic acid or cas protein, and use thereof |
| EP3733847A1 (en) * | 2012-10-23 | 2020-11-04 | Toolgen Incorporated | Composition for cleaving a target dna comprising a guide rna specific for the target dna and cas protein-encoding nucleic acid or cas protein, and use thereof |
| EP3346003B1 (en) | 2012-10-23 | 2021-06-09 | Toolgen Incorporated | Composition for cleaving a target dna comprising a guide rna specific for the target dna and cas protein-encoding nucleic acid or cas protein, and use thereof |
| EP3733847B1 (en) | 2012-10-23 | 2022-06-01 | Toolgen Incorporated | Composition for cleaving a target dna comprising a guide rna specific for the target dna and cas protein-encoding nucleic acid or cas protein, and use thereof |
| EP4357457A3 (en) * | 2012-10-23 | 2024-07-17 | Toolgen Incorporated | Composition for cleaving a target dna comprising a guide rna specific for the target dna and cas protein-encoding nucleic acid or cas protein, and use thereof |
| EP4567111A3 (en) * | 2012-10-23 | 2025-10-15 | Toolgen Incorporated | Composition for cleaving a target dna comprising a guide rna specific for the target dna and cas protein-encoding nucleic acid or cas protein, and use thereof |
| US12473559B2 (en) * | 2012-10-23 | 2025-11-18 | Toolgen Incorporated | Cas9/RNA complexes for inducing modifications of target endogenous nucleic acid sequences in nucleuses of eukaryotic cells |
| EP3346003A1 (en) * | 2012-10-23 | 2018-07-11 | Toolgen Incorporated | Composition for cleaving a target dna comprising a guide rna specific for the target dna and cas protein-encoding nucleic acid or cas protein, and use thereof |
| EP2912175A1 (en) | 2012-10-23 | 2015-09-02 | Toolgen Incorporated | Composition for cleaving a target dna comprising a guide rna specific for the target dna and cas protein-encoding nucleic acid or cas protein, and use thereof |
| AU2017254854B2 (en) * | 2012-10-23 | 2019-12-05 | Toolgen Incorporated | Composition For Cleaving A Target DNA Comprising A Guide RNA Specific For The Target DNA And Cas Protein-Encoding Nucleic Acid Or Cas Protein, And Use Thereof |
| EP2912175A4 (en) * | 2012-10-23 | 2015-12-09 | Toolgen Inc | COMPOSITION FOR CUTTING A TARGET DNA WITH A LEAD DNA SPECIFIC TO THE TARGET DNA AND FOR CAS PROTEIN-CODING NUCLEIC ACID OR CAS PROTEIN AND USE THEREOF |
| US10851380B2 (en) | 2012-10-23 | 2020-12-01 | Toolgen Incorporated | Methods for cleaving a target DNA using a guide RNA specific for the target DNA and Cas protein-encoding nucleic acid or Cas protein |
| EP4397759A3 (en) * | 2012-10-23 | 2024-10-09 | Toolgen Incorporated | Composition for cleaving a target dna comprising a guide rna specific for the target dna and cas protein-encoding nucleic acid or cas protein, and use thereof |
| CN110066775B (zh) * | 2012-10-23 | 2024-03-19 | 基因工具股份有限公司 | 用于切割靶dna的组合物及其用途 |
| EP3372679A1 (en) * | 2012-10-23 | 2018-09-12 | Toolgen Incorporated | Composition for cleaving a target dna comprising a guide rna specific for the target dna and cas protein-encoding nucleic acid or cas protein, and use thereof |
| AU2013335451B2 (en) * | 2012-10-23 | 2016-09-15 | Toolgen Incorporated | Composition for cleaving a target DNA comprising a guide RNA specific for the target DNA and Cas protein-encoding nucleic acid or Cas protein, and use thereof |
| CN110066775A (zh) * | 2012-10-23 | 2019-07-30 | 基因工具股份有限公司 | 用于切割靶dna的组合物及其用途 |
| US11542493B2 (en) | 2012-11-27 | 2023-01-03 | The Children's Medical Center Corporation | Targeting BCL11A distal regulatory elements for fetal hemoglobin reinduction |
| EP3360964A1 (en) * | 2012-12-06 | 2018-08-15 | Sigma Aldrich Co. LLC | Crispr-based genome modification and regulation |
| EP3138912A1 (en) * | 2012-12-06 | 2017-03-08 | Sigma-Aldrich Co. LLC | Crispr-based genome modification and regulation |
| AU2020230243B2 (en) * | 2012-12-06 | 2021-10-21 | Sigma-Aldrich Co. Llc | Crispr-based genome modification and regulation |
| EP3611263A1 (en) * | 2012-12-06 | 2020-02-19 | Sigma Aldrich Co. LLC | Crispr-based genome modification and regulation |
| EP3363902B1 (en) | 2012-12-06 | 2019-11-27 | Sigma Aldrich Co. LLC | Crispr-based genome modification and regulation |
| AU2020273316B2 (en) * | 2012-12-06 | 2023-05-18 | Sigma-Aldrich Co. Llc | Crispr-based genome modification and regulation |
| AU2019201344C1 (en) * | 2012-12-06 | 2020-12-24 | Sigma-Aldrich Co. Llc | Crispr-based genome modification and regulation |
| EP3138910B1 (en) | 2012-12-06 | 2017-09-20 | Sigma-Aldrich Co. LLC | Crispr-based genome modification and regulation |
| AU2020230246B2 (en) * | 2012-12-06 | 2020-11-05 | Sigma-Aldrich Co. Llc | Crispr-based genome modification and regulation |
| AU2023216829B2 (en) * | 2012-12-06 | 2025-10-09 | Sigma-Aldrich Co. Llc | Crispr-based genome modification and regulation |
| US10731181B2 (en) | 2012-12-06 | 2020-08-04 | Sigma, Aldrich Co. LLC | CRISPR-based genome modification and regulation |
| AU2013355214B2 (en) * | 2012-12-06 | 2017-06-15 | Sigma-Aldrich Co. Llc | Crispr-based genome modification and regulation |
| AU2019201344B2 (en) * | 2012-12-06 | 2020-09-03 | Sigma-Aldrich Co. Llc | Crispr-based genome modification and regulation |
| EP3138912B1 (en) | 2012-12-06 | 2018-12-05 | Sigma Aldrich Co. LLC | Crispr-based genome modification and regulation |
| EP3138911B1 (en) | 2012-12-06 | 2018-12-05 | Sigma Aldrich Co. LLC | Crispr-based genome modification and regulation |
| US10745716B2 (en) | 2012-12-06 | 2020-08-18 | Sigma-Aldrich Co. Llc | CRISPR-based genome modification and regulation |
| EP2928496B1 (en) | 2012-12-06 | 2019-10-09 | Sigma Aldrich Co. LLC | Crispr-based genome modification and regulation |
| EP3363902A1 (en) * | 2012-12-06 | 2018-08-22 | Sigma Aldrich Co. LLC | Crispr-based genome modification and regulation |
| EP2928496A1 (en) | 2012-12-06 | 2015-10-14 | Sigma Aldrich Co. LLC | Crispr-based genome modification and regulation |
| EP3360964B1 (en) | 2012-12-06 | 2019-10-02 | Sigma Aldrich Co. LLC | Crispr-based genome modification and regulation |
| EP3141604A1 (en) * | 2012-12-06 | 2017-03-15 | Sigma-Aldrich Co. LLC | Crispr-based genome modification and regulation |
| EP3138910A1 (en) * | 2012-12-06 | 2017-03-08 | Sigma-Aldrich Co. LLC | Crispr-based genome modification and regulation |
| EP3135765A1 (en) * | 2012-12-06 | 2017-03-01 | Sigma-Aldrich Co. LLC | Crispr-based genome modification and regulation |
| EP2928496A4 (en) * | 2012-12-06 | 2017-03-01 | Sigma-Aldrich Co. LLC | Crispr-based genome modification and regulation |
| EP3138909A1 (en) * | 2012-12-06 | 2017-03-08 | Sigma-Aldrich Co. LLC | Crispr-based genome modification and regulation |
| EP3138911A1 (en) * | 2012-12-06 | 2017-03-08 | Sigma-Aldrich Co. LLC | Crispr-based genome modification and regulation |
| EP3327127B1 (en) | 2012-12-12 | 2021-03-24 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
| US11041173B2 (en) | 2012-12-12 | 2021-06-22 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
| EP3702463A1 (en) * | 2012-12-12 | 2020-09-02 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
| US8771945B1 (en) | 2012-12-12 | 2014-07-08 | The Broad Institute, Inc. | CRISPR-Cas systems and methods for altering expression of gene products |
| US9840713B2 (en) | 2012-12-12 | 2017-12-12 | The Broad Institute Inc. | CRISPR-Cas component systems, methods and compositions for sequence manipulation |
| EP3252160A1 (en) * | 2012-12-12 | 2017-12-06 | The Broad Institute Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
| US8795965B2 (en) | 2012-12-12 | 2014-08-05 | The Broad Institute, Inc. | CRISPR-Cas component systems, methods and compositions for sequence manipulation |
| EP2921557B1 (en) | 2012-12-12 | 2016-07-13 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
| EP3045537A1 (en) * | 2012-12-12 | 2016-07-20 | The Broad Institute, Inc. | Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains |
| EP3144390B1 (en) * | 2012-12-12 | 2020-03-18 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
| EP2940140B1 (en) | 2012-12-12 | 2019-03-27 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
| EP4545636A3 (en) * | 2012-12-12 | 2025-06-25 | The Broad Institute Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
| EP2931898A2 (en) | 2012-12-12 | 2015-10-21 | The Broad Institute, Inc. | Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains |
| EP2931899A1 (en) * | 2012-12-12 | 2015-10-21 | The Broad Institute, Inc. | Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof |
| EP2931897A2 (en) | 2012-12-12 | 2015-10-21 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
| EP4279588A3 (en) * | 2012-12-12 | 2024-01-17 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
| EP2825654B1 (en) | 2012-12-12 | 2017-04-26 | The Broad Institute, Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
| AU2019236591B2 (en) * | 2012-12-12 | 2022-02-24 | Massachusetts Institute Of Technology | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
| JP2016505256A (ja) * | 2012-12-12 | 2016-02-25 | ザ・ブロード・インスティテュート・インコーポレイテッ | 配列操作のためのCRISPR−Cas成分系、方法および組成物 |
| EP2896697B1 (en) | 2012-12-12 | 2015-09-02 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
| EP2840140B1 (en) | 2012-12-12 | 2016-11-16 | The Broad Institute, Inc. | Crispr-Cas component systems, methods and compositions for sequence manipulation |
| US8697359B1 (en) | 2012-12-12 | 2014-04-15 | The Broad Institute, Inc. | CRISPR-Cas systems and methods for altering expression of gene products |
| EP2764103A2 (en) | 2012-12-12 | 2014-08-13 | The Broad Institute, Inc. | Crispr-cas systems and methods for altering expression of gene products |
| US10930367B2 (en) | 2012-12-12 | 2021-02-23 | The Broad Institute, Inc. | Methods, models, systems, and apparatus for identifying target sequences for Cas enzymes or CRISPR-Cas systems for target sequences and conveying results thereof |
| EP4234696A3 (en) * | 2012-12-12 | 2023-09-06 | The Broad Institute Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
| EP3031921B1 (en) * | 2012-12-12 | 2025-03-12 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
| EP2764103B1 (en) | 2012-12-12 | 2015-08-19 | The Broad Institute, Inc. | Crispr-cas systems and methods for altering expression of gene products |
| US8865406B2 (en) | 2012-12-12 | 2014-10-21 | The Broad Institute Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
| US12454687B2 (en) | 2012-12-12 | 2025-10-28 | The Broad Institute, Inc. | Functional genomics using CRISPR-Cas systems, compositions, methods, knock out libraries and applications thereof |
| AU2013359262C1 (en) * | 2012-12-12 | 2021-05-13 | Massachusetts Institute Of Technology | CRISPR-Cas component systems, methods and compositions for sequence manipulation |
| EP2898075A1 (en) | 2012-12-12 | 2015-07-29 | The Broad Institute, Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
| AU2017202542B2 (en) * | 2012-12-12 | 2019-07-11 | Massachusetts Institute Of Technology | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
| EP3252160B1 (en) | 2012-12-12 | 2020-10-28 | The Broad Institute, Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
| EP3064585B1 (en) | 2012-12-12 | 2020-02-05 | The Broad Institute, Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
| AU2022203759B2 (en) * | 2012-12-12 | 2025-02-27 | Massachusetts Institute Of Technology | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
| US8871445B2 (en) | 2012-12-12 | 2014-10-28 | The Broad Institute Inc. | CRISPR-Cas component systems, methods and compositions for sequence manipulation |
| AU2013359262B2 (en) * | 2012-12-12 | 2019-10-31 | Massachusetts Institute Of Technology | CRISPR-Cas component systems, methods and compositions for sequence manipulation |
| EP4286403A3 (en) * | 2012-12-12 | 2024-02-14 | The Broad Institute Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
| EP4286402A3 (en) * | 2012-12-12 | 2024-02-14 | The Broad Institute, Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
| US9822372B2 (en) | 2012-12-12 | 2017-11-21 | The Broad Institute Inc. | CRISPR-Cas component systems, methods and compositions for sequence manipulation |
| US8889356B2 (en) | 2012-12-12 | 2014-11-18 | The Broad Institute Inc. | CRISPR-Cas nickase systems, methods and compositions for sequence manipulation in eukaryotes |
| AU2013359199B2 (en) * | 2012-12-12 | 2019-10-31 | Massachusetts Institute Of Technology | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
| EP4549566A3 (en) * | 2012-12-12 | 2025-07-09 | The Broad Institute Inc. | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
| EP4570817A3 (en) * | 2012-12-12 | 2025-09-24 | The Broad Institute Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
| EP2931898B1 (en) | 2012-12-12 | 2016-03-09 | The Broad Institute, Inc. | Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains |
| US8889418B2 (en) | 2012-12-12 | 2014-11-18 | The Broad Institute Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
| AU2022202048B2 (en) * | 2012-12-12 | 2025-01-23 | Massachusetts Institute Of Technology | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
| AU2013359199C1 (en) * | 2012-12-12 | 2021-06-17 | Massachusetts Institute Of Technology | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
| EP4286404A3 (en) * | 2012-12-12 | 2024-02-14 | The Broad Institute Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
| US12252707B2 (en) | 2012-12-12 | 2025-03-18 | The Broad Institute, Inc. | Delivery, Engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
| US8895308B1 (en) | 2012-12-12 | 2014-11-25 | The Broad Institute Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
| EP4299741A3 (en) * | 2012-12-12 | 2024-02-28 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
| US8906616B2 (en) | 2012-12-12 | 2014-12-09 | The Broad Institute Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
| EP2898075B1 (en) | 2012-12-12 | 2016-03-09 | The Broad Institute, Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
| EP3825401A1 (en) * | 2012-12-12 | 2021-05-26 | The Broad Institute, Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
| AU2019201608B2 (en) * | 2012-12-12 | 2021-12-09 | Massachusetts Institute Of Technology | CRISPR-Cas systems and methods for altering expression of gene products |
| AU2016244241B2 (en) * | 2012-12-12 | 2019-06-20 | Massachusetts Institute Of Technology | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
| EP2784162B1 (en) | 2012-12-12 | 2015-04-08 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
| US8999641B2 (en) | 2012-12-12 | 2015-04-07 | The Broad Institute Inc. | Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains |
| AU2019283878B2 (en) * | 2012-12-12 | 2022-06-09 | Massachusetts Institute Of Technology | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
| US8993233B2 (en) | 2012-12-12 | 2015-03-31 | The Broad Institute Inc. | Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains |
| EP2931897B1 (en) * | 2012-12-12 | 2017-11-01 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
| US8932814B2 (en) | 2012-12-12 | 2015-01-13 | The Broad Institute Inc. | CRISPR-Cas nickase systems, methods and compositions for sequence manipulation in eukaryotes |
| AU2022203762B2 (en) * | 2012-12-12 | 2025-02-27 | Massachusetts Institute Of Technology | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
| AU2016244241C1 (en) * | 2012-12-12 | 2020-12-17 | Massachusetts Institute Of Technology | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
| AU2019229420B2 (en) * | 2012-12-12 | 2022-06-02 | Massachusetts Institute Of Technology | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
| US8945839B2 (en) | 2012-12-12 | 2015-02-03 | The Broad Institute Inc. | CRISPR-Cas systems and methods for altering expression of gene products |
| US11365429B2 (en) | 2012-12-17 | 2022-06-21 | President And Fellows Of Harvard College | RNA-guided human genome engineering |
| US10717990B2 (en) | 2012-12-17 | 2020-07-21 | President And Fellows Of Harvard College | RNA-guided human genome engineering |
| US10273501B2 (en) | 2012-12-17 | 2019-04-30 | President And Fellows Of Harvard College | RNA-guided human genome engineering |
| EP4481048A3 (en) * | 2012-12-17 | 2025-02-26 | President and Fellows of Harvard College | Rna-guided human genome engineering |
| US9023649B2 (en) | 2012-12-17 | 2015-05-05 | President And Fellows Of Harvard College | RNA-guided human genome engineering |
| EP2931891B1 (en) | 2012-12-17 | 2019-05-15 | President and Fellows of Harvard College | Rna-guided human genome engineering |
| US11359211B2 (en) | 2012-12-17 | 2022-06-14 | President And Fellows Of Harvard College | RNA-guided human genome engineering |
| AU2013363194B2 (en) * | 2012-12-17 | 2019-05-16 | President And Fellows Of Harvard College | RNA-guided human genome engineering |
| US11512325B2 (en) | 2012-12-17 | 2022-11-29 | President And Fellows Of Harvard College | RNA-guided human genome engineering |
| US9260723B2 (en) | 2012-12-17 | 2016-02-16 | President And Fellows Of Harvard College | RNA-guided human genome engineering |
| US9970024B2 (en) | 2012-12-17 | 2018-05-15 | President And Fellows Of Harvard College | RNA-guided human genome engineering |
| JP2021048882A (ja) * | 2012-12-17 | 2021-04-01 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Rna誘導性ヒトゲノム改変 |
| US11236359B2 (en) | 2012-12-17 | 2022-02-01 | President And Fellows Of Harvard College | RNA-guided human genome engineering |
| EP3553174A1 (en) * | 2012-12-17 | 2019-10-16 | President and Fellows of Harvard College | Rna-guided human genome engineering |
| EP2931891A4 (en) * | 2012-12-17 | 2016-07-13 | Harvard College | RNA-CONTROLLED ENGINEERING OF A HUMAN GENOME |
| US11535863B2 (en) | 2012-12-17 | 2022-12-27 | President And Fellows Of Harvard College | RNA-guided human genome engineering |
| US12018272B2 (en) | 2012-12-17 | 2024-06-25 | President And Fellows Of Harvard College | RNA-guided human genome engineering |
| US10435708B2 (en) | 2012-12-17 | 2019-10-08 | President And Fellows Of Harvard College | RNA-guided human genome engineering |
| EP4282970A3 (en) * | 2012-12-17 | 2024-01-17 | President and Fellows of Harvard College | Rna-guided human genome engineering |
| JP2016501036A (ja) * | 2012-12-17 | 2016-01-18 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Rna誘導性ヒトゲノム改変 |
| US10544405B2 (en) | 2013-01-16 | 2020-01-28 | Emory University | Cas9-nucleic acid complexes and uses related thereto |
| US11312945B2 (en) | 2013-01-16 | 2022-04-26 | Emory University | CAS9-nucleic acid complexes and uses related thereto |
| EP2946015A4 (en) * | 2013-01-16 | 2016-07-06 | Univ Emory | CAS9 NUCLEIC ACID COMPLEXES AND USES THEREOF |
| US11135273B2 (en) | 2013-02-07 | 2021-10-05 | The Rockefeller University | Sequence specific antimicrobials |
| US12246061B2 (en) | 2013-02-07 | 2025-03-11 | The Rockefeller University | Sequence specific antimicrobials |
| US12168040B2 (en) | 2013-02-07 | 2024-12-17 | The Rockefeller University | Sequence specific antimicrobials |
| US11491210B2 (en) | 2013-02-07 | 2022-11-08 | The Rockefeller University | Sequence specific antimicrobials |
| US12285466B2 (en) | 2013-02-07 | 2025-04-29 | The Rockefeller University | Sequence specific antimicrobials |
| US11497797B2 (en) | 2013-02-07 | 2022-11-15 | The Rockfeller University | Sequence specific antimicrobials |
| US11491209B2 (en) | 2013-02-07 | 2022-11-08 | The Rockefeller University | Sequence specific antimicrobials |
| US12285467B2 (en) | 2013-02-07 | 2025-04-29 | The Rockfeller University | Sequence specific antimicrobials |
| US12295993B2 (en) | 2013-02-07 | 2025-05-13 | The Rockefeller University | Sequence specific antimicrobials |
| US11918631B2 (en) | 2013-02-07 | 2024-03-05 | The Rockefeller University | Sequence specific antimicrobials |
| US10660943B2 (en) | 2013-02-07 | 2020-05-26 | The Rockefeller University | Sequence specific antimicrobials |
| US11452765B2 (en) | 2013-02-07 | 2022-09-27 | The Rockefeller University | Sequence specific antimicrobials |
| US9623048B2 (en) | 2013-02-08 | 2017-04-18 | Shanghai Institutes For Biological Sciences, Chinese Academy Of Sciences | Human hepatocyte-like cells and uses thereof |
| EP2922393B2 (en) † | 2013-02-27 | 2022-12-28 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) | Gene editing in the oocyte by cas9 nucleases |
| EP2922393B1 (en) | 2013-02-27 | 2019-09-04 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) | Gene editing in the oocyte by cas9 nucleases |
| EP2922393A1 (en) | 2013-02-27 | 2015-09-30 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) | Gene editing in the oocyte by cas9 nucleases |
| US10214723B2 (en) | 2013-02-27 | 2019-02-26 | Helmholtz Zentrum München Deutsches Forschungszentrum Für Gesundheit Und Umwelt | Gene editing in the oocyte by Cas9 nucleases |
| US9783780B2 (en) | 2013-02-27 | 2017-10-10 | Helmholtz Zentrum München Deutsches Forschungszentrum Für Gesundheit Und Umwelt | Gene editing in the oocyte by CAS9 nucleases |
| JP2016507244A (ja) * | 2013-02-27 | 2016-03-10 | ヘルムホルツ・ツェントルム・ミュンヒェン・ドイチェス・フォルシュンクスツェントルム・フューア・ゲズントハイト・ウント・ウムベルト(ゲーエムベーハー)Helmholtz Zentrum MuenchenDeutsches Forschungszentrum fuer Gesundheit und Umwelt (GmbH) | Cas9ヌクレアーゼによる卵母細胞における遺伝子編集 |
| US11299767B2 (en) | 2013-03-12 | 2022-04-12 | President And Fellows Of Harvard College | Method for generating a three-dimensional nucleic acid containing matrix |
| US12264358B2 (en) | 2013-03-12 | 2025-04-01 | President And Fellows Of Harvard College | Method of selectively sequencing amplicons in a biological sample |
| US9410198B2 (en) | 2013-03-14 | 2016-08-09 | Caribou Biosciences, Inc. | Compostions and methods of nucleic acid-targeting nucleic acids |
| EP2971167A4 (en) * | 2013-03-14 | 2016-03-16 | Caribou Biosciences Inc | COMPOSITIONS AND METHODS OF TARGETING NUCLEIC ACIDS BY NUCLEIC ACIDS |
| US11312953B2 (en) | 2013-03-14 | 2022-04-26 | Caribou Biosciences, Inc. | Compositions and methods of nucleic acid-targeting nucleic acids |
| US9725714B2 (en) | 2013-03-14 | 2017-08-08 | Caribou Biosciences, Inc. | Compositions and methods of nucleic acid-targeting nucleic acids |
| JP2021078512A (ja) * | 2013-03-14 | 2021-05-27 | カリブー・バイオサイエンシーズ・インコーポレイテッド | 核酸ターゲティング核酸の組成物および方法 |
| US9803194B2 (en) | 2013-03-14 | 2017-10-31 | Caribou Biosciences, Inc. | Compositions and methods of nucleic acid-targeting nucleic acids |
| US9809814B1 (en) | 2013-03-14 | 2017-11-07 | Caribou Biosciences, Inc. | Compositions and methods of nucleic acid-targeting nucleic acids |
| US9909122B2 (en) | 2013-03-14 | 2018-03-06 | Caribou Biosciences, Inc. | Compositions and methods of nucleic acid-targeting nucleic acids |
| US9260752B1 (en) | 2013-03-14 | 2016-02-16 | Caribou Biosciences, Inc. | Compositions and methods of nucleic acid-targeting nucleic acids |
| JP7008850B2 (ja) | 2013-03-14 | 2022-02-10 | カリブー・バイオサイエンシーズ・インコーポレイテッド | 核酸ターゲティング核酸の組成物および方法 |
| US10125361B2 (en) | 2013-03-14 | 2018-11-13 | Caribou Biosciences, Inc. | Compositions and methods of nucleic acid-targeting nucleic acids |
| AU2021203370B2 (en) * | 2013-03-15 | 2023-07-27 | The General Hospital Corporation | Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing |
| US10844403B2 (en) | 2013-03-15 | 2020-11-24 | The General Hospital Corporation | Increasing specificity for RNA-guided genome editing |
| US9567603B2 (en) | 2013-03-15 | 2017-02-14 | The General Hospital Corporation | Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing |
| US10138476B2 (en) | 2013-03-15 | 2018-11-27 | The General Hospital Corporation | Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing |
| US10415059B2 (en) | 2013-03-15 | 2019-09-17 | The General Hospital Corporation | Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing |
| US10760064B2 (en) | 2013-03-15 | 2020-09-01 | The General Hospital Corporation | RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci |
| US9234213B2 (en) | 2013-03-15 | 2016-01-12 | System Biosciences, Llc | Compositions and methods directed to CRISPR/Cas genomic engineering systems |
| WO2014152432A3 (en) * | 2013-03-15 | 2015-10-29 | The General Hospital Corporation | Rna-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci |
| US9738908B2 (en) | 2013-03-15 | 2017-08-22 | System Biosciences, Llc | CRISPR/Cas systems for genomic modification and gene modulation |
| CN105247066A (zh) * | 2013-03-15 | 2016-01-13 | 通用医疗公司 | 使用RNA引导的FokI核酸酶(RFN)提高RNA引导的基因组编辑的特异性 |
| US10526589B2 (en) | 2013-03-15 | 2020-01-07 | The General Hospital Corporation | Multiplex guide RNAs |
| AU2017204909B2 (en) * | 2013-03-15 | 2019-04-04 | The General Hospital Corporation | Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing |
| US9567604B2 (en) | 2013-03-15 | 2017-02-14 | The General Hospital Corporation | Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing |
| US10544433B2 (en) | 2013-03-15 | 2020-01-28 | The General Hospital Corporation | Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing |
| JP2020031637A (ja) * | 2013-03-15 | 2020-03-05 | ザ ジェネラル ホスピタル コーポレイション | 特定のゲノム遺伝子座へのゲノムおよびエピゲノム調節タンパク質のrna誘導型標的化 |
| JP2019205470A (ja) * | 2013-03-15 | 2019-12-05 | リージェンツ オブ ザ ユニバーシティ オブ ミネソタ | CRISPR/Casシステムを使用した植物ゲノム操作 |
| JP2021192624A (ja) * | 2013-03-15 | 2021-12-23 | ザ ジェネラル ホスピタル コーポレイション | 特定のゲノム遺伝子座へのゲノムおよびエピゲノム調節タンパク質のrna誘導型標的化 |
| US9957515B2 (en) | 2013-03-15 | 2018-05-01 | Cibus Us Llc | Methods and compositions for targeted gene modification |
| AU2020207840B2 (en) * | 2013-03-15 | 2022-07-21 | The General Hospital Corporation | Rna-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci |
| US10378027B2 (en) | 2013-03-15 | 2019-08-13 | The General Hospital Corporation | RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci |
| CN105247066B (zh) * | 2013-03-15 | 2020-10-20 | 通用医疗公司 | 使用RNA引导的FokI核酸酶(RFN)提高RNA引导的基因组编辑的特异性 |
| AU2022209254B2 (en) * | 2013-03-15 | 2025-01-23 | The General Hospital Corporation | Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing |
| WO2014144155A1 (en) * | 2013-03-15 | 2014-09-18 | Regents Of The University Of Minnesota | Engineering plant genomes using crispr/cas systems |
| US10954522B2 (en) | 2013-03-15 | 2021-03-23 | Cibus Us Llc | Methods and compositions for increasing efficiency of targeted gene modification using oligonucleotide-mediated gene repair |
| CN105408483A (zh) * | 2013-03-15 | 2016-03-16 | 通用医疗公司 | 遗传和表观遗传调节蛋白至特定基因组基因座的rna引导的靶向 |
| US9885033B2 (en) | 2013-03-15 | 2018-02-06 | The General Hospital Corporation | Increasing specificity for RNA-guided genome editing |
| JP2023061983A (ja) * | 2013-03-15 | 2023-05-02 | ザ ジェネラル ホスピタル コーポレイション | 特定のゲノム遺伝子座へのゲノムおよびエピゲノム調節タンパク質のrna誘導型標的化 |
| US10119133B2 (en) | 2013-03-15 | 2018-11-06 | The General Hospital Corporation | Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing |
| AU2020202823B2 (en) * | 2013-03-15 | 2022-02-10 | Regents Of The University Of Minnesota | Engineering plant genomes using CRISPR/Cas systems |
| US11634731B2 (en) | 2013-03-15 | 2023-04-25 | The General Hospital Corporation | Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing |
| JP2016512048A (ja) * | 2013-03-15 | 2016-04-25 | リージェンツ オブ ザ ユニバーシティ オブ ミネソタ | CRISPR/Casシステムを使用した植物ゲノム操作 |
| JP2024012446A (ja) * | 2013-03-15 | 2024-01-30 | ザ ジェネラル ホスピタル コーポレイション | 短縮ガイドRNA(tru-gRNA)を用いたRNA誘導型ゲノム編集の特異性の増大 |
| EP4428141A3 (en) * | 2013-03-15 | 2024-12-18 | The General Hospital Corporation | Rna-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci |
| JP2016512264A (ja) * | 2013-03-15 | 2016-04-25 | ザ ジェネラル ホスピタル コーポレイション | 特定のゲノム遺伝子座へのゲノムおよびエピゲノム調節タンパク質のrna誘導型標的化 |
| JP2016512691A (ja) * | 2013-03-15 | 2016-05-09 | ザ ジェネラル ホスピタル コーポレイション | 短縮ガイドRNA(tru−gRNA)を用いたRNA誘導型ゲノム編集の特異性の増大 |
| US10202619B2 (en) | 2013-03-15 | 2019-02-12 | System Biosciences, Llc | Compositions and methods directed to CRISPR/Cas genomic engineering systems |
| US11168338B2 (en) | 2013-03-15 | 2021-11-09 | The General Hospital Corporation | RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci |
| AU2014227653B2 (en) * | 2013-03-15 | 2017-04-20 | The General Hospital Corporation | Using RNA-guided foki nucleases (RFNs) to increase specificity for RNA-guided genome editing |
| EP3741868A1 (en) * | 2013-03-15 | 2020-11-25 | The General Hospital Corporation | Rna-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci |
| US11920152B2 (en) | 2013-03-15 | 2024-03-05 | The General Hospital Corporation | Increasing specificity for RNA-guided genome editing |
| AU2014227831B2 (en) * | 2013-03-15 | 2020-01-30 | Regents Of The University Of Minnesota | Engineering plant genomes using CRISPR/Cas systems |
| US12065668B2 (en) | 2013-03-15 | 2024-08-20 | The General Hospital Corporation | RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci |
| US11098326B2 (en) | 2013-03-15 | 2021-08-24 | The General Hospital Corporation | Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing |
| AU2020217388B2 (en) * | 2013-03-15 | 2023-09-07 | Cibus Europe B.V. | Methods And Compositions For Increasing Efficiency Of Targeted Gene Modification Using Oligonucleotide-Mediated Gene |
| US11434494B2 (en) | 2013-03-15 | 2022-09-06 | Cibus Us Llc | Targeted gene modification using oligonucleotide-mediated gene repair |
| US11761011B2 (en) | 2013-03-15 | 2023-09-19 | Cibus Us Llc | Methods and compositions for increasing efficiency of targeted gene modification using oligonucleotide-mediated gene repair |
| US10226033B2 (en) | 2013-03-18 | 2019-03-12 | Kymab Limited | Animal models and therapeutic molecules |
| US11297810B2 (en) | 2013-03-18 | 2022-04-12 | Kymab Limited | Animal models and therapeutic molecules |
| US9788534B2 (en) | 2013-03-18 | 2017-10-17 | Kymab Limited | Animal models and therapeutic molecules |
| US12215345B2 (en) | 2013-03-19 | 2025-02-04 | Duke University | Compositions and methods for the induction and tuning of gene expression |
| US10975390B2 (en) | 2013-04-16 | 2021-04-13 | Regeneron Pharmaceuticals, Inc. | Targeted modification of rat genome |
| US12037596B2 (en) | 2013-04-16 | 2024-07-16 | Regeneron Pharmaceuticals, Inc. | Targeted modification of rat genome |
| US10385359B2 (en) | 2013-04-16 | 2019-08-20 | Regeneron Pharmaceuticals, Inc. | Targeted modification of rat genome |
| US9783618B2 (en) | 2013-05-01 | 2017-10-10 | Kymab Limited | Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics |
| US11820810B2 (en) | 2013-05-02 | 2023-11-21 | Kymab Limited | Antibodies, variable domains and chains tailored for human use |
| US10730930B2 (en) | 2013-05-02 | 2020-08-04 | Kymab Limited | Antibodies, variable domains and chains tailored for human use |
| US9783593B2 (en) | 2013-05-02 | 2017-10-10 | Kymab Limited | Antibodies, variable domains and chains tailored for human use |
| US11707056B2 (en) | 2013-05-02 | 2023-07-25 | Kymab Limited | Animals, repertoires and methods |
| US10604771B2 (en) | 2013-05-10 | 2020-03-31 | Sangamo Therapeutics, Inc. | Delivery methods and compositions for nuclease-mediated genome engineering |
| JP2016518142A (ja) * | 2013-05-10 | 2016-06-23 | サンガモ バイオサイエンシーズ, インコーポレイテッド | ヌクレアーゼ媒介ゲノム遺伝子操作のための送達方法および組成物 |
| US10328182B2 (en) | 2013-05-14 | 2019-06-25 | University Of Georgia Research Foundation, Inc. | Compositions and methods for reducing neointima formation |
| US11246965B2 (en) | 2013-05-14 | 2022-02-15 | University Of Georgia Research Foundation, Inc. | Compositions and methods for reducing neointima formation |
| US10196651B2 (en) | 2013-05-15 | 2019-02-05 | Sangamo Therapeutics, Inc. | Methods and compositions for treatment of a genetic condition |
| JP2016521975A (ja) * | 2013-05-15 | 2016-07-28 | サンガモ バイオサイエンシーズ, インコーポレイテッド | 遺伝的状態の処置のための方法および組成物 |
| US10196652B2 (en) | 2013-05-15 | 2019-02-05 | Sangamo Therapeutics, Inc. | Methods and compositions for treatment of a genetic condition |
| WO2014186686A3 (en) * | 2013-05-17 | 2015-01-08 | Two Blades Foundation | Targeted mutagenesis and genome engineering in plants using rna-guided cas nucleases |
| JP2016520318A (ja) * | 2013-05-29 | 2016-07-14 | セレクティスCellectis | Ii型crisprシステムにおける新規のコンパクトなcas9足場 |
| US9873907B2 (en) | 2013-05-29 | 2018-01-23 | Agilent Technologies, Inc. | Method for fragmenting genomic DNA using CAS9 |
| EP3004339B1 (en) * | 2013-05-29 | 2021-07-07 | Cellectis | New compact scaffold of cas9 in the type ii crispr system |
| US20140356867A1 (en) * | 2013-05-29 | 2014-12-04 | Agilent Technologies, Inc. | Nucleic acid enrichment using cas9 |
| US11414695B2 (en) | 2013-05-29 | 2022-08-16 | Agilent Technologies, Inc. | Nucleic acid enrichment using Cas9 |
| US10577644B2 (en) | 2013-05-29 | 2020-03-03 | Agilent Technologies, Inc. | Method for fragmenting genomic DNA using CAS9 |
| WO2014191521A3 (en) * | 2013-05-29 | 2015-04-16 | Cellectis | New compact scaffold of cas9 in the type ii crispr system |
| US11685935B2 (en) | 2013-05-29 | 2023-06-27 | Cellectis | Compact scaffold of Cas9 in the type II CRISPR system |
| EP3003392A4 (en) * | 2013-06-04 | 2017-05-03 | President and Fellows of Harvard College | Rna-guideded transcriptional regulation |
| US11981917B2 (en) | 2013-06-04 | 2024-05-14 | President And Fellows Of Harvard College | RNA-guided transcriptional regulation |
| JP2016521554A (ja) * | 2013-06-04 | 2016-07-25 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Rna誘導性転写制御 |
| US10767194B2 (en) | 2013-06-04 | 2020-09-08 | President And Fellows Of Harvard College | RNA-guided transcriptional regulation |
| AU2014274939B2 (en) * | 2013-06-04 | 2020-03-19 | President And Fellows Of Harvard College | RNA-guideded transcriptional regulation |
| JP7376650B2 (ja) | 2013-06-04 | 2023-11-08 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Rna誘導性転写制御 |
| US9267135B2 (en) | 2013-06-04 | 2016-02-23 | President And Fellows Of Harvard College | RNA-guided transcriptional regulation |
| JP2022166077A (ja) * | 2013-06-04 | 2022-11-01 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Rna誘導性転写制御 |
| US10640789B2 (en) | 2013-06-04 | 2020-05-05 | President And Fellows Of Harvard College | RNA-guided transcriptional regulation |
| JP2025062594A (ja) * | 2013-06-05 | 2025-04-14 | デューク ユニバーシティ | Rnaガイド遺伝子編集及び遺伝子調節 |
| AU2022250450B2 (en) * | 2013-06-05 | 2025-05-22 | Duke University | RNA-guided gene editing and gene regulation |
| US9982277B2 (en) | 2013-06-11 | 2018-05-29 | The Regents Of The University Of California | Methods and compositions for target DNA modification |
| EP3008186B1 (en) | 2013-06-14 | 2018-11-28 | Cellectis | Methods for non-transgenic genome editing in plants |
| EP3011034B1 (en) | 2013-06-17 | 2019-08-07 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using viral components |
| EP3597755A1 (en) * | 2013-06-17 | 2020-01-22 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using viral components |
| US10946108B2 (en) | 2013-06-17 | 2021-03-16 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for targeting disorders and diseases using viral components |
| AU2014281026B2 (en) * | 2013-06-17 | 2020-05-28 | Massachusetts Institute Of Technology | Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation |
| US12018275B2 (en) | 2013-06-17 | 2024-06-25 | The Broad Institute, Inc. | Delivery and use of the CRISPR-CAS systems, vectors and compositions for hepatic targeting and therapy |
| US10781444B2 (en) | 2013-06-17 | 2020-09-22 | The Broad Institute, Inc. | Functional genomics using CRISPR-Cas systems, compositions, methods, screens and applications thereof |
| US11008588B2 (en) | 2013-06-17 | 2021-05-18 | The Broad Institute, Inc. | Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation |
| CN106062197A (zh) * | 2013-06-17 | 2016-10-26 | 布罗德研究所有限公司 | 用于序列操纵的串联指导系统、方法和组合物的递送、工程化和优化 |
| JP2016524472A (ja) * | 2013-06-17 | 2016-08-18 | ザ・ブロード・インスティテュート・インコーポレイテッド | 肝臓ターゲティングおよび治療のためのCRISPR−Cas系、ベクターおよび組成物の送達および使用 |
| EP3620524A1 (en) * | 2013-06-17 | 2020-03-11 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for targeting and modeling diseases and disorders of post mitotic cells |
| EP3011032B1 (en) | 2013-06-17 | 2019-10-16 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for targeting and modeling diseases and disorders of post mitotic cells |
| JP2020063238A (ja) * | 2013-06-17 | 2020-04-23 | ザ・ブロード・インスティテュート・インコーポレイテッド | 分裂終了細胞の疾患および障害をターゲティングおよびモデリングするための系、方法および組成物の送達、エンジニアリングおよび最適化 |
| US11597949B2 (en) | 2013-06-17 | 2023-03-07 | The Broad Institute, Inc. | Optimized CRISPR-Cas double nickase systems, methods and compositions for sequence manipulation |
| US10577630B2 (en) | 2013-06-17 | 2020-03-03 | The Broad Institute, Inc. | Delivery and use of the CRISPR-Cas systems, vectors and compositions for hepatic targeting and therapy |
| EP3011031B1 (en) | 2013-06-17 | 2020-09-30 | The Broad Institute Inc. | Delivery and use of the crispr-cas systems, vectors and compositions for hepatic targeting and therapy |
| JP2016521995A (ja) * | 2013-06-17 | 2016-07-28 | ザ・ブロード・インスティテュート・インコーポレイテッド | ウイルス成分を使用して障害および疾患をターゲティングするためのCRISPR−Cas系および組成物の送達、使用および治療上の適用 |
| JP2016523082A (ja) * | 2013-06-17 | 2016-08-08 | ザ・ブロード・インスティテュート・インコーポレイテッド | 分裂終了細胞の疾患および障害をターゲティングおよびモデリングするための系、方法および組成物の送達、エンジニアリングおよび最適化 |
| US12441995B2 (en) | 2013-06-17 | 2025-10-14 | The Broad Institute, Inc. | Functional genomics using CRISPR-Cas systems, compositions, methods, screens and applications thereof |
| US10711285B2 (en) | 2013-06-17 | 2020-07-14 | The Broad Institute, Inc. | Optimized CRISPR-Cas double nickase systems, methods and compositions for sequence manipulation |
| US10011850B2 (en) | 2013-06-21 | 2018-07-03 | The General Hospital Corporation | Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing |
| US11459585B2 (en) | 2013-07-09 | 2022-10-04 | President And Fellows Of Harvard College | Multiplex RNA-guided genome engineering |
| JP2016523559A (ja) * | 2013-07-09 | 2016-08-12 | プレジデント アンド フェローズ オブ ハーバード カレッジ | 多重rna誘導型ゲノム編集 |
| AU2014287393B2 (en) * | 2013-07-09 | 2020-10-22 | President And Fellows Of Harvard College | Multiplex RNA-guided genome engineering |
| US10329587B2 (en) | 2013-07-10 | 2019-06-25 | President And Fellows Of Harvard College | Orthogonal Cas9 proteins for RNA-guided gene regulation and editing |
| JP2020072707A (ja) * | 2013-07-10 | 2020-05-14 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Rna誘導性遺伝子制御および編集のための直交性cas9タンパク質 |
| US11649469B2 (en) | 2013-07-10 | 2023-05-16 | President And Fellows Of Harvard College | Orthogonal Cas9 proteins for RNA-guided gene regulation and editing |
| US9587252B2 (en) | 2013-07-10 | 2017-03-07 | President And Fellows Of Harvard College | Orthogonal Cas9 proteins for RNA-guided gene regulation and editing |
| JP7153992B2 (ja) | 2013-07-10 | 2022-10-17 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Rna誘導性遺伝子制御および編集のための直交性cas9タンパク質 |
| JP2016523560A (ja) * | 2013-07-10 | 2016-08-12 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Rna誘導性遺伝子制御および編集のための直交性cas9タンパク質 |
| US20230257781A1 (en) * | 2013-07-10 | 2023-08-17 | President And Fellows Of Harvard College | Orthogonal Cas9 Proteins for RNA-Guided Gene Regulation and Editing |
| US12473575B2 (en) | 2013-07-26 | 2025-11-18 | President And Fellows Of Harvard College | Genome engineering |
| JP2016528894A (ja) * | 2013-07-26 | 2016-09-23 | プレジデント アンド フェローズ オブ ハーバード カレッジ | ゲノムエンジニアリング |
| US10563225B2 (en) | 2013-07-26 | 2020-02-18 | President And Fellows Of Harvard College | Genome engineering |
| CN111304230B (zh) * | 2013-07-26 | 2024-10-08 | 哈佛大学校长及研究员协会 | 基因组工程 |
| US11306328B2 (en) | 2013-07-26 | 2022-04-19 | President And Fellows Of Harvard College | Genome engineering |
| CN111304230A (zh) * | 2013-07-26 | 2020-06-19 | 哈佛大学校长及研究员协会 | 基因组工程 |
| US10421957B2 (en) | 2013-07-29 | 2019-09-24 | Agilent Technologies, Inc. | DNA assembly using an RNA-programmable nickase |
| WO2015017866A1 (en) | 2013-08-02 | 2015-02-05 | Enevolv, Inc. | Processes and host cells for genome, pathway, and biomolecular engineering |
| US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
| US9163284B2 (en) | 2013-08-09 | 2015-10-20 | President And Fellows Of Harvard College | Methods for identifying a target site of a Cas9 nuclease |
| US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
| US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
| US12378566B2 (en) | 2013-08-22 | 2025-08-05 | Pioneer Hi-Bred International, Inc. | Plant genome modification using guide RNA/Cas endonuclease systems and methods of use |
| US12428645B2 (en) | 2013-08-22 | 2025-09-30 | Pioneer Hi-Bred International, Inc. | Methods for producing genetic modifications in a plant genome without incorporating a selectable transgene marker, and compositions thereof |
| US10519457B2 (en) | 2013-08-22 | 2019-12-31 | E I Du Pont De Nemours And Company | Soybean U6 polymerase III promoter and methods of use |
| EP3036332B1 (en) | 2013-08-22 | 2020-06-24 | E. I. du Pont de Nemours and Company | Plant genome modification using guide rna/cas endonuclease systems and methods of use |
| EP3036333B2 (en) † | 2013-08-22 | 2025-03-12 | E. I. du Pont de Nemours and Company | Methods for producing genetic modifications in a plant genome without incorporating a selectable transgene marker, and compositions thereof |
| EP3036333B1 (en) | 2013-08-22 | 2022-01-19 | E. I. du Pont de Nemours and Company | Methods for producing genetic modifications in a plant genome without incorporating a selectable transgene marker, and compositions thereof |
| US11773400B2 (en) | 2013-08-22 | 2023-10-03 | E.I. Du Pont De Nemours And Company | Methods for producing genetic modifications in a plant genome without incorporating a selectable transgene marker, and compositions thereof |
| EP3041498B1 (en) * | 2013-09-05 | 2022-02-16 | Massachusetts Institute of Technology | Tuning microbial populations with programmable nucleases |
| US20210071159A1 (en) * | 2013-09-05 | 2021-03-11 | Massachusetts Institute Of Technology | Tuning microbial populations with programmable nucleases |
| EP4074330A1 (en) * | 2013-09-05 | 2022-10-19 | Massachusetts Institute of Technology | Tuning microbial populations with programmable nucleases |
| US10760065B2 (en) | 2013-09-05 | 2020-09-01 | Massachusetts Institute Of Technology | Tuning microbial populations with programmable nucleases |
| US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
| US20160208288A1 (en) * | 2013-09-06 | 2016-07-21 | President And Fellows Of Harvard Collegue | Switchable cas9 nucleases and uses thereof |
| WO2015035139A3 (en) * | 2013-09-06 | 2015-04-30 | Prisident And Fellows Of Harvard College | Switchable cas9 nucleases and uses thereof |
| US9737604B2 (en) | 2013-09-06 | 2017-08-22 | President And Fellows Of Harvard College | Use of cationic lipids to deliver CAS9 |
| US12473573B2 (en) | 2013-09-06 | 2025-11-18 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
| US9322037B2 (en) | 2013-09-06 | 2016-04-26 | President And Fellows Of Harvard College | Cas9-FokI fusion proteins and uses thereof |
| EP3693461A1 (en) * | 2013-09-06 | 2020-08-12 | President And Fellows Of Harvard College | Switchable cas9 nucleases and uses thereof |
| US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
| JP2016537008A (ja) * | 2013-09-06 | 2016-12-01 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Cas9バリアントおよびその使用 |
| US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
| US10597679B2 (en) * | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
| US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
| US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
| US11986526B2 (en) | 2013-09-11 | 2024-05-21 | Eagle Biologics, Inc. | Liquid protein formulations containing 4-ethyl-4-methylmorpholinium methylcarbonate (EMMC) |
| US10821183B2 (en) | 2013-09-11 | 2020-11-03 | Eagle Biologics, Inc. | Liquid protein formulations containing 4-(3-butyl-1-imidazolio)-1-butane sulfonate (BIM) |
| US9913905B2 (en) | 2013-09-11 | 2018-03-13 | Eagle Biologics, Inc. | Liquid pharmaceutical formulations for injection comprising thiamine pyrophosphate 1-(3-aminopropyl)-2-methyl-1H-imidazole and uses thereof |
| US10646571B2 (en) | 2013-09-11 | 2020-05-12 | Eagle Biologics, Inc. | Liquid protein formulations containing cimetidine |
| US9925263B2 (en) | 2013-09-11 | 2018-03-27 | Eagle Biologics, Inc. | Liquid pharmaceutical formulations for injection comprising procaine and uses thereof |
| US9833513B2 (en) | 2013-09-11 | 2017-12-05 | Eagle Biologics, Inc. | Liquid protein formulations for injection comprising 1-butyl-3-methylimidazolium methanesulfonate and uses thereof |
| US11819550B2 (en) | 2013-09-11 | 2023-11-21 | Eagle Biologics, Inc. | Liquid protein formulations containing cyclic adenosine monophosphate (cAMP) or adenosine triphosphate (ATP) |
| US10179172B2 (en) | 2013-09-11 | 2019-01-15 | Eagle Biologics, Inc. | Liquid pharmaceutical formulations for injection comprising yellow 5 or orange G and uses thereof |
| US10849977B2 (en) | 2013-09-11 | 2020-12-01 | Eagle Biologics, Inc. | Liquid Protein Formulations Containing Thiamine |
| US10821184B2 (en) | 2013-09-11 | 2020-11-03 | Eagle Biologics, Inc. | Liquid protein formulations containing thiamine pyrophosphate (TPP) |
| US20160257974A1 (en) * | 2013-09-18 | 2016-09-08 | Kymab Limited | Methods, Cells & Organisms |
| EP2877571B1 (en) * | 2013-09-18 | 2018-05-30 | Kymab Limited | Methods, cells and organisms |
| EP3418379B1 (en) * | 2013-09-18 | 2020-12-09 | Kymab Limited | Methods, cells & organisms |
| WO2015040402A1 (en) | 2013-09-18 | 2015-03-26 | Kymab Limited | Methods. cells & organisms |
| US11920128B2 (en) | 2013-09-18 | 2024-03-05 | Kymab Limited | Methods, cells and organisms |
| US11399522B2 (en) | 2013-10-01 | 2022-08-02 | Kymab Limited | Animal models and therapeutic molecules |
| US10149462B2 (en) | 2013-10-01 | 2018-12-11 | Kymab Limited | Animal models and therapeutic molecules |
| US11149267B2 (en) | 2013-10-28 | 2021-10-19 | The Broad Institute, Inc. | Functional genomics using CRISPR-Cas systems, compositions, methods, screens and applications thereof |
| US10584358B2 (en) | 2013-10-30 | 2020-03-10 | North Carolina State University | Compositions and methods related to a type-II CRISPR-Cas system in Lactobacillus buchneri |
| US11499169B2 (en) | 2013-10-30 | 2022-11-15 | North Carolina State University | Compositions and methods related to a type-II CRISPR-Cas system in Lactobacillus buchneri |
| EP3066201B1 (en) | 2013-11-07 | 2018-03-07 | Editas Medicine, Inc. | Crispr-related methods and compositions with governing grnas |
| US11390887B2 (en) | 2013-11-07 | 2022-07-19 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
| US9834791B2 (en) | 2013-11-07 | 2017-12-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
| US10190137B2 (en) | 2013-11-07 | 2019-01-29 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
| US10640788B2 (en) | 2013-11-07 | 2020-05-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAs |
| EP3071695A2 (en) * | 2013-11-18 | 2016-09-28 | Crispr Therapeutics AG | Crispr-cas system materials and methods |
| WO2015071474A3 (en) * | 2013-11-18 | 2015-08-27 | Crispr Therapeutics Ag | Crispr-cas system materials and methods |
| EP3375877A1 (en) * | 2013-11-18 | 2018-09-19 | Crispr Therapeutics AG | Crispr-cas system materials and methods |
| US9074199B1 (en) | 2013-11-19 | 2015-07-07 | President And Fellows Of Harvard College | Mutant Cas9 proteins |
| AU2014353100B2 (en) * | 2013-11-19 | 2020-12-17 | President And Fellows Of Harvard College | Large gene excision and insertion |
| US11286470B2 (en) | 2013-11-19 | 2022-03-29 | President And Fellows Of Harvard College | Mutant Cas9 proteins |
| US10683490B2 (en) | 2013-11-19 | 2020-06-16 | President And Fellows Of Harvard College | Mutant Cas9 proteins |
| US10787684B2 (en) | 2013-11-19 | 2020-09-29 | President And Fellows Of Harvard College | Large gene excision and insertion |
| US10435679B2 (en) | 2013-11-19 | 2019-10-08 | President And Fellows Of Harvard College | Mutant Cas9 proteins |
| US10100291B2 (en) | 2013-11-19 | 2018-10-16 | President And Fellows Of Harvard College | Mutant Cas9 proteins |
| EP3460063A1 (en) | 2013-12-11 | 2019-03-27 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a genome |
| US10711280B2 (en) | 2013-12-11 | 2020-07-14 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a mouse ES cell genome |
| US11820997B2 (en) | 2013-12-11 | 2023-11-21 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a genome |
| US9228208B2 (en) | 2013-12-11 | 2016-01-05 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a genome |
| US9546384B2 (en) | 2013-12-11 | 2017-01-17 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a mouse genome |
| EP4349980A2 (en) | 2013-12-11 | 2024-04-10 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a genome |
| WO2015088643A1 (en) | 2013-12-11 | 2015-06-18 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a genome |
| US10208317B2 (en) | 2013-12-11 | 2019-02-19 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a mouse embryonic stem cell genome |
| JP2017500035A (ja) * | 2013-12-12 | 2017-01-05 | プレジデント アンド フェローズ オブ ハーバード カレッジ | 遺伝子編集用のcas多様体 |
| US12421506B2 (en) | 2013-12-12 | 2025-09-23 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions with new architectures for sequence manipulation |
| WO2015089354A1 (en) * | 2013-12-12 | 2015-06-18 | The Broad Institute Inc. | Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders |
| US20150166981A1 (en) * | 2013-12-12 | 2015-06-18 | President And Fellows Of Harvard College | Methods for nucleic acid editing |
| JP7689420B2 (ja) | 2013-12-12 | 2025-06-06 | ザ・ブロード・インスティテュート・インコーポレイテッド | ゲノム編集のためのCRISPR-Cas系及び組成物の送達、使用及び治療適用 |
| US12215365B2 (en) | 2013-12-12 | 2025-02-04 | President And Fellows Of Harvard College | Cas variants for gene editing |
| US10377998B2 (en) | 2013-12-12 | 2019-08-13 | The Broad Institute, Inc. | CRISPR-CAS systems and methods for altering expression of gene products, structural information and inducible modular CAS enzymes |
| JP7103750B2 (ja) | 2013-12-12 | 2022-07-20 | ザ・ブロード・インスティテュート・インコーポレイテッド | ゲノム編集のためのCRISPR-Cas系及び組成物の送達、使用及び治療適用 |
| US11149259B2 (en) | 2013-12-12 | 2021-10-19 | The Broad Institute, Inc. | CRISPR-Cas systems and methods for altering expression of gene products, structural information and inducible modular Cas enzymes |
| CN106029880A (zh) * | 2013-12-12 | 2016-10-12 | 布罗德研究所有限公司 | 核苷酸重复障碍中CRISPR-Cas系统的组合物和使用方法 |
| US11597919B2 (en) | 2013-12-12 | 2023-03-07 | The Broad Institute Inc. | Systems, methods and compositions for sequence manipulation with optimized functional CRISPR-Cas systems |
| US11407985B2 (en) | 2013-12-12 | 2022-08-09 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for genome editing |
| CN106536729A (zh) * | 2013-12-12 | 2017-03-22 | 布罗德研究所有限公司 | 使用粒子递送组分靶向障碍和疾病的crispr‑cas系统和组合物的递送、用途和治疗应用 |
| US12258595B2 (en) | 2013-12-12 | 2025-03-25 | The Broad Institute, Inc. | Systems, methods and compositions for sequence manipulation with optimized functional CRISPR-Cas systems |
| US12251450B2 (en) | 2013-12-12 | 2025-03-18 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for HBV and viral diseases and disorders |
| US12410435B2 (en) | 2013-12-12 | 2025-09-09 | The Broad Institute, Inc. | Compositions and methods of use of CRISPR-Cas systems in nucleotide repeat disorders |
| JP2020164529A (ja) * | 2013-12-12 | 2020-10-08 | プレジデント アンド フェローズ オブ ハーバード カレッジ | 遺伝子編集用のcas多様体 |
| US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
| US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
| US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
| KR102805572B1 (ko) * | 2013-12-12 | 2025-05-09 | 더 브로드 인스티튜트, 인코퍼레이티드 | 게놈 편집을 위한 crispr-cas 시스템 및 조성물의 전달, 용도 및 치료적 응용 |
| JP2017501149A (ja) * | 2013-12-12 | 2017-01-12 | ザ・ブロード・インスティテュート・インコーポレイテッド | 粒子送達構成成分を用いた障害及び疾患の標的化のためのcrispr−cas系及び組成物の送達、使用及び治療適用 |
| US9068179B1 (en) | 2013-12-12 | 2015-06-30 | President And Fellows Of Harvard College | Methods for correcting presenilin point mutations |
| JP2021019622A (ja) * | 2013-12-12 | 2021-02-18 | ザ・ブロード・インスティテュート・インコーポレイテッド | ゲノム編集のためのCRISPR−Cas系及び組成物の送達、使用及び治療適用 |
| KR20160089527A (ko) * | 2013-12-12 | 2016-07-27 | 더 브로드 인스티튜트, 인코퍼레이티드 | 게놈 편집을 위한 crispr-cas 시스템 및 조성물의 전달, 용도 및 치료적 응용 |
| US10550372B2 (en) | 2013-12-12 | 2020-02-04 | The Broad Institute, Inc. | Systems, methods and compositions for sequence manipulation with optimized functional CRISPR-Cas systems |
| US10851357B2 (en) | 2013-12-12 | 2020-12-01 | The Broad Institute, Inc. | Compositions and methods of use of CRISPR-Cas systems in nucleotide repeat disorders |
| JP2017527256A (ja) * | 2013-12-12 | 2017-09-21 | ザ・ブロード・インスティテュート・インコーポレイテッド | HBV及びウイルス性疾患及び障害のためのCRISPR−Cas系及び組成物の送達、使用及び治療適用 |
| JP2017501151A (ja) * | 2013-12-12 | 2017-01-12 | ザ・ブロード・インスティテュート・インコーポレイテッド | 組成物、及びヌクレオチドリピート障害におけるcrispr−cas系の使用方法 |
| US11155795B2 (en) | 2013-12-12 | 2021-10-26 | The Broad Institute, Inc. | CRISPR-Cas systems, crystal structure and uses thereof |
| EP3604511B1 (en) | 2013-12-12 | 2024-02-28 | President And Fellows Of Harvard College | Cas variants for gene editing |
| JP2022043042A (ja) * | 2013-12-12 | 2022-03-15 | プレジデント アンド フェローズ オブ ハーバード カレッジ | 遺伝子編集用のcas多様体 |
| EP3653703A1 (en) * | 2013-12-12 | 2020-05-20 | The Broad Institute, Inc. | Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders |
| JP2017501699A (ja) * | 2013-12-12 | 2017-01-19 | ザ・ブロード・インスティテュート・インコーポレイテッド | 組成物、及びヌクレオチドリピート障害におけるcrispr−cas系の使用方法 |
| WO2015089419A3 (en) * | 2013-12-12 | 2015-09-17 | The Broad Institute Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components |
| US11591581B2 (en) | 2013-12-12 | 2023-02-28 | The Broad Institute, Inc. | Compositions and methods of use of CRISPR-Cas systems in nucleotide repeat disorders |
| JP2017504312A (ja) * | 2013-12-12 | 2017-02-09 | ザ・ブロード・インスティテュート・インコーポレイテッド | ゲノム編集のためのCRISPR−Cas系及び組成物の送達、使用及び治療適用 |
| US9840699B2 (en) | 2013-12-12 | 2017-12-12 | President And Fellows Of Harvard College | Methods for nucleic acid editing |
| US20150232883A1 (en) * | 2013-12-12 | 2015-08-20 | The Broad Institute Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components |
| WO2015089375A1 (en) | 2013-12-13 | 2015-06-18 | The General Hospital Corporation | Soluble high molecular weight (hmw) tau species and applications thereof |
| JP2016539653A (ja) * | 2013-12-13 | 2016-12-22 | セレクティス | 微小藻類のゲノム操作のためのCas9ヌクレアーゼプラットフォーム |
| WO2015086795A1 (en) * | 2013-12-13 | 2015-06-18 | Cellectis | Cas9 nuclease platform for microalgae genome engineering |
| US11390888B2 (en) | 2013-12-19 | 2022-07-19 | Amyris, Inc. | Methods for genomic integration |
| AU2021203309B2 (en) * | 2013-12-26 | 2023-08-10 | The General Hospital Corporation | Multiplex guide RNAs |
| AU2014370416B2 (en) * | 2013-12-26 | 2021-03-11 | The General Hospital Corporation | Multiplex guide RNAs |
| JP2017505117A (ja) * | 2013-12-26 | 2017-02-16 | ザ ジェネラル ホスピタル コーポレイション | 多重ガイドrna |
| CN113684205A (zh) * | 2013-12-26 | 2021-11-23 | 通用医疗公司 | 多重引导rna |
| CN113684205B (zh) * | 2013-12-26 | 2024-11-12 | 通用医疗公司 | 多重引导rna |
| WO2015099850A1 (en) * | 2013-12-26 | 2015-07-02 | The General Hospital Corporation | Multiplex guide rnas |
| EP3985124A1 (en) * | 2013-12-26 | 2022-04-20 | The General Hospital Corporation | Multiplex guide rnas |
| CN106103706A (zh) * | 2013-12-26 | 2016-11-09 | 通用医疗公司 | 多重引导rna |
| JP2020062018A (ja) * | 2013-12-26 | 2020-04-23 | ザ ジェネラル ホスピタル コーポレイション | 多重ガイドrna |
| JP7005580B2 (ja) | 2013-12-26 | 2022-01-21 | ザ ジェネラル ホスピタル コーポレイション | 多重ガイドrna |
| US9963689B2 (en) | 2013-12-31 | 2018-05-08 | The Regents Of The University Of California | Cas9 crystals and methods of use thereof |
| WO2015103153A1 (en) * | 2013-12-31 | 2015-07-09 | The Regents Of The University Of California | Cas9 crystals and methods of use thereof |
| EP3092310A4 (en) * | 2014-01-08 | 2017-11-22 | President and Fellows of Harvard College | Rna-guided gene drives |
| US10526618B2 (en) | 2014-01-08 | 2020-01-07 | President And Fellows Of Harvard College | RNA-guided gene drives |
| JP2017511685A (ja) * | 2014-01-08 | 2017-04-27 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Rna誘導型遺伝子ドライブ |
| JP7187508B2 (ja) | 2014-01-08 | 2022-12-12 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Rna誘導型遺伝子ドライブ |
| JP2021003112A (ja) * | 2014-01-08 | 2021-01-14 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Rna誘導型遺伝子ドライブ |
| CN106133141A (zh) * | 2014-01-08 | 2016-11-16 | 哈佛学院董事及会员团体 | Rna引导的基因驱动 |
| WO2015105928A1 (en) | 2014-01-08 | 2015-07-16 | President And Fellows Of Harvard College | Rna-guided gene drives |
| WO2015108993A1 (en) | 2014-01-14 | 2015-07-23 | Lam Therapeutics, Inc. | Mutagenesis methods |
| JP2017502683A (ja) * | 2014-01-14 | 2017-01-26 | ラム セラピューティクス, インコーポレイテッド | 変異誘発方法 |
| EP3097212A4 (en) * | 2014-01-24 | 2017-10-04 | North Carolina State University | Methods and compositions for sequences guiding cas9 targeting |
| JP2017503514A (ja) * | 2014-01-24 | 2017-02-02 | ノースカロライナ ステート ユニバーシティーNorth Carolina State University | Cas9ターゲッティングをガイドする配列に関する方法および組成物 |
| JP7429057B2 (ja) | 2014-01-24 | 2024-02-07 | ノースカロライナ ステート ユニバーシティー | Cas9ターゲッティングをガイドする配列に関する方法および組成物 |
| JP2022106883A (ja) * | 2014-01-24 | 2022-07-20 | ノースカロライナ ステート ユニバーシティー | Cas9ターゲッティングをガイドする配列に関する方法および組成物 |
| WO2015112896A3 (en) * | 2014-01-24 | 2015-10-29 | North Carolina State University | Methods and compositions for sequences guiding cas9 targeting |
| US10787654B2 (en) | 2014-01-24 | 2020-09-29 | North Carolina State University | Methods and compositions for sequence guiding Cas9 targeting |
| JP2020103295A (ja) * | 2014-01-24 | 2020-07-09 | ノースカロライナ ステート ユニバーシティーNorth Carolina State University | Cas9ターゲッティングをガイドする配列に関する方法および組成物 |
| WO2015112896A2 (en) | 2014-01-24 | 2015-07-30 | North Carolina State University | Methods and compositions for sequences guiding cas9 targeting |
| WO2015113063A1 (en) | 2014-01-27 | 2015-07-30 | Georgia Tech Research Corporation | Methods and systems for identifying crispr/cas off-target sites |
| US9850525B2 (en) * | 2014-01-29 | 2017-12-26 | Agilent Technologies, Inc. | CAS9-based isothermal method of detection of specific DNA sequence |
| EP4467654A3 (en) * | 2014-02-04 | 2025-02-19 | Jumpcode Genomics, Inc. | Genome fractioning |
| US11761039B2 (en) | 2014-02-04 | 2023-09-19 | Jumpcode Genomics, Inc. | Genome fractioning |
| US11708606B2 (en) | 2014-02-04 | 2023-07-25 | Jumpcode Genomics, Inc. | Genome fractioning |
| US10604802B2 (en) * | 2014-02-04 | 2020-03-31 | Jumpcode Genomics, Inc. | Genome fractioning |
| JP2017505145A (ja) * | 2014-02-11 | 2017-02-16 | ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイトTHE REGENTS OF THE UNIVERSITY OF COLORADO,a body corporate | Crisprにより可能にされる多重ゲノムエンジニアリング |
| CN106164271A (zh) * | 2014-02-11 | 2016-11-23 | 科罗拉多州立大学董事会(法人团体) | Crispr支持的多路基因组工程化 |
| US20190376087A1 (en) * | 2014-02-11 | 2019-12-12 | The Regents Of The University Of Colorado, A Body Corporate | Crispr enabled multiplexed genome engineering |
| WO2015123339A1 (en) * | 2014-02-11 | 2015-08-20 | The Regents Of The University Of Colorado, A Body Corporate | Crispr enabled multiplexed genome engineering |
| JP2019205478A (ja) * | 2014-02-11 | 2019-12-05 | ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイトTHE REGENTS OF THE UNIVERSITY OF COLORADO,a body corporate | Crisprにより可能にされる多重ゲノムエンジニアリング |
| US10711284B2 (en) | 2014-02-11 | 2020-07-14 | The Regents Of The University Of Colorado | CRISPR enabled multiplexed genome engineering |
| US10465207B2 (en) | 2014-02-11 | 2019-11-05 | The Regents Of The University Of Colorado, A Body Corporate | CRISPR enabled multiplexed genome engineering |
| US10731180B2 (en) | 2014-02-11 | 2020-08-04 | The Regents Of The University Of Colorado | CRISPR enabled multiplexed genome engineering |
| EP3690044A1 (en) * | 2014-02-11 | 2020-08-05 | The Regents of the University of Colorado, a body corporate | Crispr enabled multiplexed genome engineering |
| AU2018271257B2 (en) * | 2014-02-11 | 2020-08-13 | The Regents Of The University Of Colorado, A Body Corporate | Crispr enabled multiplexed genome engineering |
| US10435715B2 (en) | 2014-02-11 | 2019-10-08 | The Regents Of The University Of Colorado, A Body Corporate | CRISPR enabled multiplexed genome engineering |
| JP7232540B2 (ja) | 2014-02-11 | 2023-03-03 | ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイト | Crisprにより可能にされる多重ゲノムエンジニアリング |
| US11639511B2 (en) | 2014-02-11 | 2023-05-02 | The Regents Of The University Of Colorado, A Body Corporate | CRISPR enabled multiplexed genome engineering |
| US11702677B2 (en) | 2014-02-11 | 2023-07-18 | The Regents Of The University Of Colorado | CRISPR enabled multiplexed genome engineering |
| EP3105328B1 (en) | 2014-02-11 | 2020-04-08 | The Regents of the University of Colorado, a body corporate | Crispr enabled multiplexed genome engineering |
| KR20160122197A (ko) * | 2014-02-11 | 2016-10-21 | 더 리전츠 오브 더 유니버시티 오브 콜로라도, 어 바디 코퍼레이트 | Crispr 이용의 다중화된 게놈 조작 |
| US10364442B2 (en) | 2014-02-11 | 2019-07-30 | The Regents Of The University Of Colorado, A Body Corporate | CRISPR enabled multiplexed genome engineering |
| GB2544382B (en) * | 2014-02-11 | 2018-05-30 | The Regents Of The Univ Of Colorado A Body Corporate Existing Under The Laws Of The State Of Colorad | CRISPR enabled multiplexed genome engineering |
| US10351877B2 (en) | 2014-02-11 | 2019-07-16 | The Regents Of The University Of Colorado, A Body Corporate | CRISPR enabled multiplexed genome engineering |
| CN111705365A (zh) * | 2014-02-11 | 2020-09-25 | 科罗拉多州立大学董事会(法人团体) | Crispr支持的多路基因组工程化 |
| US10669559B2 (en) | 2014-02-11 | 2020-06-02 | The Regents Of The University Of Colorado, A Body Corporate | CRISPR enabled multiplexed genome engineering |
| CN111705365B (zh) * | 2014-02-11 | 2024-12-17 | 科罗拉多州立大学董事会(法人团体) | Crispr支持的多路基因组工程化 |
| US11795479B2 (en) | 2014-02-11 | 2023-10-24 | The Regents Of The University Of Colorado | CRISPR enabled multiplexed genome engineering |
| AU2015217208B2 (en) * | 2014-02-11 | 2018-08-30 | The Regents Of The University Of Colorado, A Body Corporate | CRISPR enabled multiplexed genome engineering |
| US20210254104A1 (en) * | 2014-02-11 | 2021-08-19 | The Regents Of The University Of Colorado, A Body Corporate | Crispr enabled multiplexed genome engineering |
| US10266849B2 (en) | 2014-02-11 | 2019-04-23 | The Regents Of The University Of Colorado, A Body Corporate | CRISPR enabled multiplexed genome engineering |
| US11078498B2 (en) | 2014-02-11 | 2021-08-03 | The Regents Of The University Of Colorado, A Body Corporate | CRISPR enabled multiplexed genome engineering |
| US10240167B2 (en) | 2014-02-11 | 2019-03-26 | Inscripta, Inc. | CRISPR enabled multiplexed genome engineering |
| GB2544382A (en) * | 2014-02-11 | 2017-05-17 | The Regents Of The Univ Of Colorado A Body Corp (Existing Under The Laws Of The State Of Colorado) | CRISPR enabled multiplexed genome engineering |
| JP2021087454A (ja) * | 2014-02-11 | 2021-06-10 | ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイトTHE REGENTS OF THE UNIVERSITY OF COLORADO,a body corporate | Crisprにより可能にされる多重ゲノムエンジニアリング |
| US11345933B2 (en) | 2014-02-11 | 2022-05-31 | The Regents Of The University Of Colorado | CRISPR enabled multiplexed genome engineering |
| US9982278B2 (en) | 2014-02-11 | 2018-05-29 | The Regents Of The University Of Colorado, A Body Corporate | CRISPR enabled multiplexed genome engineering |
| KR102209636B1 (ko) | 2014-02-11 | 2021-01-29 | 더 리전츠 오브 더 유니버시티 오브 콜로라도, 어 바디 코퍼레이트 | Crispr 이용의 다중화된 게놈 조작 |
| US10287590B2 (en) | 2014-02-12 | 2019-05-14 | Dna2.0, Inc. | Methods for generating libraries with co-varying regions of polynuleotides for genome modification |
| JP2017505640A (ja) * | 2014-02-13 | 2017-02-23 | タカラ バイオ ユーエスエー,インコーポレイティド | 核酸の初期収集物から標的分子を減損させる方法、並びにそれを実施するための組成物及びキット |
| US10988796B2 (en) | 2014-02-13 | 2021-04-27 | Takara Bio Usa, Inc. | Methods of depleting a target molecule from an initial collection of nucleic acids, and compositions and kits for practicing the same |
| US12497647B2 (en) | 2014-02-13 | 2025-12-16 | Takara Bio Usa, Inc. | Methods of depleting a target molecule from an initial collection of nucleic acids, and compositions and kits for practicing the same |
| US11884963B2 (en) | 2014-02-13 | 2024-01-30 | Takara Bio Usa, Inc. | Methods of depleting a target molecule from an initial collection of nucleic acids, and compositions and kits for practicing the same |
| US10150985B2 (en) | 2014-02-13 | 2018-12-11 | Takara Bio Usa, Inc. | Methods of depleting a target molecule from an initial collection of nucleic acids, and compositions and kits for practicing the same |
| EP3107999A4 (en) * | 2014-02-18 | 2017-10-04 | Duke University | Compositions for the inactivation of virus replication and methods of making and using the same |
| US10286084B2 (en) | 2014-02-18 | 2019-05-14 | Duke University | Compositions for the inactivation of virus replication and methods of making and using the same |
| US20150240263A1 (en) * | 2014-02-24 | 2015-08-27 | Sangamo Biosciences, Inc. | Methods and compositions for nuclease-mediated targeted integration |
| US10370680B2 (en) | 2014-02-24 | 2019-08-06 | Sangamo Therapeutics, Inc. | Method of treating factor IX deficiency using nuclease-mediated targeted integration |
| US11591622B2 (en) | 2014-02-24 | 2023-02-28 | Sangamo Therapeutics, Inc. | Method of making and using mammalian liver cells for treating hemophilia or lysosomal storage disorder |
| JP2019206592A (ja) * | 2014-02-24 | 2019-12-05 | サンガモ セラピューティクス, インコーポレイテッド | ヌクレアーゼ媒介性標的化組み込みのための方法および組成物 |
| JP2017506898A (ja) * | 2014-02-24 | 2017-03-16 | サンガモ バイオサイエンシーズ, インコーポレイテッド | ヌクレアーゼ媒介性標的化組み込みのための方法および組成物 |
| US11186843B2 (en) | 2014-02-27 | 2021-11-30 | Monsanto Technology Llc | Compositions and methods for site directed genomic modification |
| US11952578B2 (en) | 2014-02-27 | 2024-04-09 | Monsanto Technology Llc | Compositions and methods for site directed genomic modification |
| US11566254B2 (en) | 2014-02-27 | 2023-01-31 | Monsanto Technology Llc | Compositions and methods for site directed genomic modification |
| CN103820454B (zh) * | 2014-03-04 | 2016-03-30 | 上海金卫生物技术有限公司 | CRISPR-Cas9特异性敲除人PD1基因的方法以及用于特异性靶向PD1基因的sgRNA |
| CN103820454A (zh) * | 2014-03-04 | 2014-05-28 | 黄行许 | CRISPR-Cas9特异性敲除人PD1基因的方法以及用于特异性靶向PD1基因的sgRNA |
| JP2018019705A (ja) * | 2014-03-05 | 2018-02-08 | 国立大学法人神戸大学 | 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体 |
| US10655123B2 (en) | 2014-03-05 | 2020-05-19 | National University Corporation Kobe University | Genomic sequence modification method for specifically converting nucleic acid bases of targeted DNA sequence, and molecular complex for use in same |
| EP3115457B1 (en) | 2014-03-05 | 2019-10-02 | National University Corporation Kobe University | Genomic sequence modification method for specifically converting nucleic acid bases of targeted dna sequence, and molecular complex for use in same |
| US11718846B2 (en) | 2014-03-05 | 2023-08-08 | National University Corporation Kobe University | Genomic sequence modification method for specifically converting nucleic acid bases of targeted DNA sequence, and molecular complex for use in same |
| US11028388B2 (en) | 2014-03-05 | 2021-06-08 | Editas Medicine, Inc. | CRISPR/Cas-related methods and compositions for treating Usher syndrome and retinitis pigmentosa |
| JPWO2015133554A1 (ja) * | 2014-03-05 | 2017-04-06 | 国立大学法人神戸大学 | 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体 |
| US11268086B2 (en) | 2014-03-10 | 2022-03-08 | Editas Medicine, Inc. | CRISPR/CAS-related methods and compositions for treating Leber's Congenital Amaurosis 10 (LCA10) |
| US12234449B2 (en) | 2014-03-10 | 2025-02-25 | Editas Medicine, Inc. | CRISPR/Cas-related methods and compositions for treating Leber's congenital amaurosis 10 (LCA10) |
| US9938521B2 (en) | 2014-03-10 | 2018-04-10 | Editas Medicine, Inc. | CRISPR/CAS-related methods and compositions for treating leber's congenital amaurosis 10 (LCA10) |
| US11339437B2 (en) | 2014-03-10 | 2022-05-24 | Editas Medicine, Inc. | Compositions and methods for treating CEP290-associated disease |
| US11141493B2 (en) | 2014-03-10 | 2021-10-12 | Editas Medicine, Inc. | Compositions and methods for treating CEP290-associated disease |
| US10253312B2 (en) | 2014-03-10 | 2019-04-09 | Editas Medicine, Inc. | CRISPR/CAS-related methods and compositions for treating Leber's Congenital Amaurosis 10 (LCA10) |
| JP2017512494A (ja) * | 2014-03-14 | 2017-05-25 | サイバス ユーエス エルエルシー | オリゴヌクレオチド仲介型遺伝子修復を使用した標的遺伝子修飾の効率を高めるための方法および組成物 |
| EP4357452A2 (en) | 2014-03-14 | 2024-04-24 | Cibus US LLC | Methods and compositions for increasing efficiency of targeted gene modification using oligonucleotide-mediated gene repair |
| WO2015139008A1 (en) | 2014-03-14 | 2015-09-17 | Cibus Us Llc | Methods and compositions for increasing efficiency of targeted gene modification using oligonucleotide-mediated gene repair |
| US10383953B2 (en) | 2014-03-21 | 2019-08-20 | Genzyme Corporation | Gene therapy for retinitis pigmentosa |
| JP2020059737A (ja) * | 2014-03-21 | 2020-04-16 | ジェンザイム・コーポレーション | 網膜色素変性症のための遺伝子治療 |
| US12201698B2 (en) | 2014-03-21 | 2025-01-21 | Genzyme Corporation | Gene therapy for retinitis pigmentosa |
| JP7048563B2 (ja) | 2014-03-21 | 2022-04-05 | ジェンザイム・コーポレーション | 網膜色素変性症のための遺伝子治療 |
| US11103598B2 (en) | 2014-03-21 | 2021-08-31 | Genzyme Corporation | Gene therapy for retinitis pigmentosa |
| JP2017509632A (ja) * | 2014-03-21 | 2017-04-06 | ジェンザイム・コーポレーション | 網膜色素変性症のための遺伝子治療 |
| US11242525B2 (en) | 2014-03-26 | 2022-02-08 | Editas Medicine, Inc. | CRISPR/CAS-related methods and compositions for treating sickle cell disease |
| US11318206B2 (en) | 2014-03-28 | 2022-05-03 | Aposense Ltd | Compounds and methods for trans-membrane delivery of molecules |
| JP2017509710A (ja) * | 2014-03-28 | 2017-04-06 | アポセンス リミテッドAposense Ltd. | 分子の膜貫通送達のための化合物および方法 |
| WO2015153791A1 (en) * | 2014-04-01 | 2015-10-08 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating herpes simplex virus type 2 (hsv-2) |
| US12460231B2 (en) | 2014-04-02 | 2025-11-04 | Editas Medicine, Inc. | Crispr/CAS-related methods and compositions for treating primary open angle glaucoma |
| CN106170550A (zh) * | 2014-04-03 | 2016-11-30 | 麻省理工学院 | 用于产生导引rna的方法和组合物 |
| US11439712B2 (en) | 2014-04-08 | 2022-09-13 | North Carolina State University | Methods and compositions for RNA-directed repression of transcription using CRISPR-associated genes |
| AU2015247323B2 (en) * | 2014-04-18 | 2021-07-01 | Editas Medicine, Inc. | CRISPR-Cas-related methods, compositions and components for cancer immunotherapy |
| JP2017513485A (ja) * | 2014-04-18 | 2017-06-01 | エディタス・メディシン,インコーポレイテッド | がん免疫療法のためのcrispr−cas関連方法、組成物および構成要素 |
| EP3132030B1 (en) * | 2014-04-18 | 2020-08-26 | Editas Medicine, Inc. | Crispr-cas-related methods, compositions and components for cancer immunotherapy |
| WO2015161276A3 (en) * | 2014-04-18 | 2015-12-10 | Editas Medicine, Inc. | Crispr-cas-related methods, compositions and components for cancer immunotherapy |
| US11124794B2 (en) | 2014-04-25 | 2021-09-21 | The Children's Medical Center Corporation | Compositions and methods to treating hemoglobinopathies |
| US11739329B2 (en) | 2014-04-25 | 2023-08-29 | The Children's Medical Center Corporation | Compositions and methods to treating hemoglobinopathies |
| US12070022B2 (en) | 2014-04-28 | 2024-08-27 | Recombinetics, Inc. | Methods for making genetic edits |
| US11918695B2 (en) | 2014-05-09 | 2024-03-05 | Yale University | Topical formulation of hyperbranched polymer-coated particles |
| US11896686B2 (en) | 2014-05-09 | 2024-02-13 | Yale University | Hyperbranched polyglycerol-coated particles and methods of making and using thereof |
| JP2017517256A (ja) * | 2014-05-20 | 2017-06-29 | リージェンツ オブ ザ ユニバーシティ オブ ミネソタ | 遺伝子配列を編集する方法 |
| US12241090B2 (en) | 2014-05-28 | 2025-03-04 | Children's Hospital Medical Center | Methods and systems for converting precursor cells into gastric tissues through directed differentiation |
| US9487802B2 (en) | 2014-05-30 | 2016-11-08 | The Board Of Trustees Of The Leland Stanford Junior University | Compositions and methods to treat latent viral infections |
| US10066241B2 (en) | 2014-05-30 | 2018-09-04 | The Board Of Trustees Of The Leland Stanford Junior University | Compositions and methods of delivering treatments for latent viral infections |
| US10294494B2 (en) | 2014-06-06 | 2019-05-21 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for modifying a targeted locus |
| CN106795521A (zh) * | 2014-06-06 | 2017-05-31 | 瑞泽恩制药公司 | 用于修饰所靶向基因座的方法和组合物 |
| CN106795521B (zh) * | 2014-06-06 | 2021-06-04 | 瑞泽恩制药公司 | 用于修饰所靶向基因座的方法和组合物 |
| RU2704283C9 (ru) * | 2014-06-06 | 2020-02-07 | Регенерон Фармасьютикалз, Инк. | Способы и композиции для модификации целевого локуса |
| RU2704283C2 (ru) * | 2014-06-06 | 2019-10-25 | Регенерон Фармасьютикалз, Инк. | Способы и композиции для модификации целевого локуса |
| US12060571B2 (en) | 2014-06-06 | 2024-08-13 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for modifying a targeted locus |
| WO2015188109A1 (en) | 2014-06-06 | 2015-12-10 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for modifying a targeted locus |
| EP3708671A1 (en) | 2014-06-06 | 2020-09-16 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for modifying a targeted locus |
| US10106820B2 (en) | 2014-06-06 | 2018-10-23 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for modifying a targeted locus |
| JP2020103304A (ja) * | 2014-06-11 | 2020-07-09 | デューク ユニバーシティ | 合成代謝弁を用いた迅速かつ動的なフラックス制御のための組成物及び方法 |
| US10662426B2 (en) | 2014-06-11 | 2020-05-26 | Duke University | Compositions and methods for rapid and dynamic flux control using synthetic metabolic valves |
| US11098307B2 (en) | 2014-06-11 | 2021-08-24 | Duke University | Compositions and methods for rapid and dynamic flux control using synthetic metabolic valves |
| US11142761B2 (en) | 2014-06-11 | 2021-10-12 | Duke University | Compositions and methods for rapid and dynamic flux control using synthetic metabolic valves |
| JP2017517268A (ja) * | 2014-06-11 | 2017-06-29 | デューク ユニバーシティ | 合成代謝弁を用いた迅速かつ動的なフラックス制御のための組成物及び方法 |
| EP3354732A1 (en) | 2014-06-23 | 2018-08-01 | Regeneron Pharmaceuticals, Inc. | Nuclease-mediated dna assembly |
| US12104207B2 (en) | 2014-06-23 | 2024-10-01 | The General Hospital Corporation | Genomewide unbiased identification of DSBs evaluated by sequencing (GUIDE-Seq) |
| US10501794B2 (en) | 2014-06-23 | 2019-12-10 | The General Hospital Corporation | Genomewide unbiased identification of DSBs evaluated by sequencing (GUIDE-seq) |
| EP3708663A1 (en) | 2014-06-23 | 2020-09-16 | Regeneron Pharmaceuticals, Inc. | Nuclease-mediated dna assembly |
| WO2015200805A2 (en) | 2014-06-26 | 2015-12-30 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modifications and methods of use |
| US10793874B2 (en) | 2014-06-26 | 2020-10-06 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modifications and methods of use |
| EP3461885A1 (en) | 2014-06-26 | 2019-04-03 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modifications and methods of use |
| US9902971B2 (en) | 2014-06-26 | 2018-02-27 | Regeneron Pharmaceuticals, Inc. | Methods for producing a mouse XY embryonic (ES) cell line capable of producing a fertile XY female mouse in an F0 generation |
| US10676754B2 (en) | 2014-07-11 | 2020-06-09 | E I Du Pont De Nemours And Company | Compositions and methods for producing plants resistant to glyphosate herbicide |
| US12331347B2 (en) | 2014-07-11 | 2025-06-17 | President And Fellows Of Harvard College | Methods for high-throughput labelling and detection of biological features in situ using microscopy |
| WO2016011080A3 (en) * | 2014-07-14 | 2016-03-03 | The Regents Of The University Of California | Crispr/cas transcriptional modulation |
| WO2016022363A2 (en) | 2014-07-30 | 2016-02-11 | President And Fellows Of Harvard College | Cas9 proteins including ligand-dependent inteins |
| US12398406B2 (en) | 2014-07-30 | 2025-08-26 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
| US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
| EP4079847A1 (en) * | 2014-07-30 | 2022-10-26 | President And Fellows Of Harvard College | Cas9 proteins including ligand-dependent inteins |
| US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
| US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
| EP3177718A4 (en) * | 2014-07-30 | 2018-04-04 | President and Fellows of Harvard College | Cas9 proteins including ligand-dependent inteins |
| US20160076093A1 (en) * | 2014-08-04 | 2016-03-17 | University Of Washington | Multiplex homology-directed repair |
| US20160040189A1 (en) * | 2014-08-07 | 2016-02-11 | Agilent Technologies, Inc. | Cis-blocked guide rna |
| US9932566B2 (en) | 2014-08-07 | 2018-04-03 | Agilent Technologies, Inc. | CIS-blocked guide RNA |
| US11071289B2 (en) | 2014-08-14 | 2021-07-27 | Biocytogen Boston Corp | DNA knock-in system |
| US10314297B2 (en) | 2014-08-14 | 2019-06-11 | Biocytogen Boston Corp | DNA knock-in system |
| US12018321B2 (en) | 2014-08-19 | 2024-06-25 | President And Fellows Of Harvard College | RNA-guided systems for probing and mapping of nucleic acids |
| US10858651B2 (en) | 2014-08-19 | 2020-12-08 | Pacific Biosciences Of California, Inc. | Compositions and methods for enrichment of nucleic acids |
| JP2017530695A (ja) * | 2014-08-19 | 2017-10-19 | プレジデント アンド フェローズ オブ ハーバード カレッジ | 核酸をプロービングおよびマッピングするためのrna誘導型システム |
| US10435685B2 (en) | 2014-08-19 | 2019-10-08 | Pacific Biosciences Of California, Inc. | Compositions and methods for enrichment of nucleic acids |
| WO2016028843A2 (en) | 2014-08-19 | 2016-02-25 | President And Fellows Of Harvard College | Rna-guided systems for probing and mapping of nucleic acids |
| EP3186375A4 (en) * | 2014-08-28 | 2019-03-13 | North Carolina State University | Novel CAS9 PROTEINS AND CHARACTERISTICS FOR DNA TARGETING AND GENOME EDITING |
| US10450584B2 (en) | 2014-08-28 | 2019-10-22 | North Carolina State University | Cas9 proteins and guiding features for DNA targeting and genome editing |
| US11753651B2 (en) | 2014-08-28 | 2023-09-12 | North Carolina State University | Cas9 proteins and guiding features for DNA targeting and genome editing |
| EP3633032A3 (en) * | 2014-08-28 | 2020-07-29 | North Carolina State University | Novel cas9 proteins and guiding features for dna targeting and genome editing |
| US10570418B2 (en) | 2014-09-02 | 2020-02-25 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification |
| WO2016036754A1 (en) | 2014-09-02 | 2016-03-10 | The Regents Of The University Of California | Methods and compositions for rna-directed target dna modification |
| US11560568B2 (en) | 2014-09-12 | 2023-01-24 | E. I. Du Pont De Nemours And Company | Generation of site-specific-integration sites for complex trait loci in corn and soybean, and methods of use |
| US12173294B2 (en) | 2014-09-12 | 2024-12-24 | Corteva Agriscience Llc | Generation of site specific integration sites for complex trait loci in corn and soybean, and methods of use |
| US11124796B2 (en) * | 2014-09-24 | 2021-09-21 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for modeling competition of multiple cancer mutations in vivo |
| US20180010134A1 (en) * | 2014-09-24 | 2018-01-11 | The Broad Institute Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling competition fo multiple cancer mutations in vivo |
| WO2016049531A1 (en) | 2014-09-26 | 2016-03-31 | Purecircle Usa Inc. | Single nucleotide polymorphism (snp) markers for stevia |
| US11471479B2 (en) | 2014-10-01 | 2022-10-18 | Eagle Biologics, Inc. | Polysaccharide and nucleic acid formulations containing viscosity-lowering agents |
| WO2016050512A1 (en) | 2014-10-03 | 2016-04-07 | Bayer Cropscience Nv | Methods and means for increasing stress tolerance and biomass in plants |
| US12201699B2 (en) | 2014-10-10 | 2025-01-21 | Editas Medicine, Inc. | Compositions and methods for promoting homology directed repair |
| WO2016061374A1 (en) | 2014-10-15 | 2016-04-21 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for generating or maintaining pluripotent cells |
| EP3561052A1 (en) | 2014-10-15 | 2019-10-30 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for generating or maintaining pluripotent cells |
| US12152240B2 (en) | 2014-10-24 | 2024-11-26 | Ospedale San Raffaele S.R.L. | Permanent epigenetic gene silencing |
| WO2016070037A3 (en) * | 2014-10-31 | 2016-06-23 | Massachusetts Institute Of Technology | Massively parallel combinatorial genetics for crispr |
| WO2016070037A2 (en) | 2014-10-31 | 2016-05-06 | Massachusetts Institute Of Technology | Massively parallel combinatorial genetics for crispr |
| JP2017534285A (ja) * | 2014-10-31 | 2017-11-24 | マサチューセッツ インスティテュート オブ テクノロジー | Crisprについての超並列コンビナトリアル遺伝学 |
| TWI716367B (zh) * | 2014-10-31 | 2021-01-21 | 麻省理工學院 | 用於常間回文重複序列叢集(crispr)之大量平行組合性基因學 |
| EP3708155A1 (en) | 2014-10-31 | 2020-09-16 | Massachusetts Institute Of Technology | Massively parallel combinatorial genetics for crispr |
| US10208298B2 (en) | 2014-11-06 | 2019-02-19 | E.I. Du Pont De Nemours And Company | Peptide-mediated delivery of RNA-guided endonuclease into cells |
| EA038321B1 (ru) * | 2014-11-06 | 2021-08-09 | Е.И. Дюпон Де Немур Энд Компани | Опосредуемая пептидом доставка направляемой рнк эндонуклеазы в клетки |
| EP3597740A1 (en) * | 2014-11-06 | 2020-01-22 | E. I. du Pont de Nemours and Company | Peptide-mediated delivery of rna-guided endonuclease into cells |
| WO2016073433A1 (en) * | 2014-11-06 | 2016-05-12 | E. I. Du Pont De Nemours And Company | Peptide-mediated delivery of rna-guided endonuclease into cells |
| US10584322B2 (en) | 2014-11-06 | 2020-03-10 | Dupont Us Holding, Llc | Peptide-mediated delivery of RNA-guided endonuclease into cells |
| CN107406838A (zh) * | 2014-11-06 | 2017-11-28 | 纳幕尔杜邦公司 | Rna引导的内切核酸酶向细胞中的肽介导的递送 |
| AU2015343307B2 (en) * | 2014-11-06 | 2021-05-20 | Iff Us Holding, Llc | Peptide-mediated delivery of RNA-guided endonuclease into cells |
| JP2017532979A (ja) * | 2014-11-06 | 2017-11-09 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company | Rna誘導型エンドヌクレアーゼの細胞へのペプチド媒介輸送 |
| US11680268B2 (en) | 2014-11-07 | 2023-06-20 | Editas Medicine, Inc. | Methods for improving CRISPR/Cas-mediated genome-editing |
| US11470826B2 (en) * | 2014-11-17 | 2022-10-18 | National University Corporation Tokyo Medical And Dental University | Method of conveniently producing genetically modified non-human mammal with high efficiency |
| CN104531632A (zh) * | 2014-11-18 | 2015-04-22 | 李云英 | 快速降解的Cas9-ODC422-461融合蛋白及其应用 |
| WO2016081923A2 (en) | 2014-11-21 | 2016-05-26 | Regeneron Pharmaceuticals, Inc. | METHODS AND COMPOSITIONS FOR TARGETED GENETIC MODIFICATION USING PAIRED GUIDE RNAs |
| EP3521437A1 (en) | 2014-11-21 | 2019-08-07 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification using paired guide rnas |
| US10457960B2 (en) | 2014-11-21 | 2019-10-29 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification using paired guide RNAs |
| US11697828B2 (en) | 2014-11-21 | 2023-07-11 | Regeneran Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification using paired guide RNAs |
| WO2016083811A1 (en) | 2014-11-27 | 2016-06-02 | Imperial Innovations Limited | Genome editing methods |
| US10479997B2 (en) | 2014-12-01 | 2019-11-19 | Novartis Ag | Compositions and methods for diagnosis and treatment of prostate cancer |
| WO2016089883A1 (en) * | 2014-12-01 | 2016-06-09 | Novartis Ag | Compositions and methods for diagnosis and treatment of prostate cancer |
| EP4400584A2 (en) | 2014-12-03 | 2024-07-17 | Agilent Technologies, Inc. | Guide rna with chemical modifications |
| US10900034B2 (en) | 2014-12-03 | 2021-01-26 | Agilent Technologies, Inc. | Guide RNA with chemical modifications |
| US10337001B2 (en) | 2014-12-03 | 2019-07-02 | Agilent Technologies, Inc. | Guide RNA with chemical modifications |
| EP3227447B1 (en) | 2014-12-03 | 2024-04-24 | Agilent Technologies, Inc. | Guide rna with chemical modifications |
| WO2016089433A1 (en) | 2014-12-03 | 2016-06-09 | Agilent Technologies, Inc. | Guide rna with chemical modifications |
| US11234418B2 (en) | 2014-12-10 | 2022-02-01 | Regents Of The University Of Minnesota | Genetically modified cells, tissues, and organs for treating disease |
| US10278372B2 (en) | 2014-12-10 | 2019-05-07 | Regents Of The University Of Minnesota | Genetically modified cells, tissues, and organs for treating disease |
| US9888673B2 (en) | 2014-12-10 | 2018-02-13 | Regents Of The University Of Minnesota | Genetically modified cells, tissues, and organs for treating disease |
| US10993419B2 (en) | 2014-12-10 | 2021-05-04 | Regents Of The University Of Minnesota | Genetically modified cells, tissues, and organs for treating disease |
| US12465029B2 (en) | 2014-12-10 | 2025-11-11 | Regents Of The University Of Minnesota | Genetically modified cells, tissues, and organs for treating disease |
| US10954514B2 (en) * | 2014-12-12 | 2021-03-23 | The Broad Institute, Inc. | Escorted and functionalized guides for CRISPR-Cas systems |
| EP4372091A3 (en) * | 2014-12-12 | 2024-07-31 | Tod M. Woolf | Compositions and methods for editing nucleic acids in cells utilizing oligonucleotides |
| EP3230445A4 (en) * | 2014-12-12 | 2018-09-26 | Tod M. Woolf | Compositions and methods for editing nucleic acids in cells utilizing oligonucleotides |
| US10696986B2 (en) | 2014-12-12 | 2020-06-30 | The Board Institute, Inc. | Protected guide RNAS (PGRNAS) |
| US11624078B2 (en) | 2014-12-12 | 2023-04-11 | The Broad Institute, Inc. | Protected guide RNAS (pgRNAS) |
| US12359197B2 (en) | 2014-12-12 | 2025-07-15 | Etagen Pharma, Inc. | Compositions and methods for editing nucleic acids in cells utilizing oligonucleotides |
| KR102424626B1 (ko) * | 2014-12-17 | 2022-07-25 | 이 아이 듀폰 디 네모아 앤드 캄파니 | 원형 폴리뉴클레오티드 변형 주형과 함께 가이드 RNA/Cas 엔도뉴클레아제 시스템을 이용하여 대장균에서 효율적으로 유전자 편집을 하기 위한 조성물 및 방법 |
| KR20170087959A (ko) * | 2014-12-17 | 2017-07-31 | 이 아이 듀폰 디 네모아 앤드 캄파니 | 원형 폴리뉴클레오티드 변형 주형과 함께 가이드 RNA/Cas 엔도뉴클레아제 시스템을 이용하여 대장균에서 효율적으로 유전자 편집을 하기 위한 조성물 및 방법 |
| JP2017538422A (ja) * | 2014-12-17 | 2017-12-28 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company | 環状ポリヌクレオチド修飾鋳型と組み合わせてガイドrna/casエンドヌクレアーゼ系を用いるe.コリ(e.coli)での効率的な遺伝子編集のための組成物および方法 |
| US11459559B2 (en) | 2014-12-18 | 2022-10-04 | Integrated Dna Technologies, Inc. | CRISPR-based compositions and methods of use |
| WO2016097751A1 (en) * | 2014-12-18 | 2016-06-23 | The University Of Bath | Method of cas9 mediated genome engineering |
| US10767176B2 (en) | 2014-12-18 | 2020-09-08 | Integrated Dna Technologies, Inc. | CRISPR-based compositions and methods of use |
| US11326184B2 (en) | 2014-12-19 | 2022-05-10 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification through single-step multiple targeting |
| WO2016100857A1 (en) | 2014-12-19 | 2016-06-23 | Regeneron Pharmaceuticals, Inc. | Stem cells for modeling type 2 diabetes |
| EP3653048A1 (en) | 2014-12-19 | 2020-05-20 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification through single-step multiple targeting |
| US12435320B2 (en) | 2014-12-24 | 2025-10-07 | The Broad Institute, Inc. | CRISPR having or associated with destabilization domains |
| EP3702456A1 (en) * | 2014-12-24 | 2020-09-02 | The Broad Institute, Inc. | Crispr having or associated with destabilization domains |
| EP3237615B1 (en) | 2014-12-24 | 2020-02-12 | The Broad Institute, Inc. | Crispr having or associated with destabilization domains |
| EP3237615B2 (en) † | 2014-12-24 | 2023-07-26 | The Broad Institute, Inc. | Crispr having or associated with destabilization domains |
| US11421241B2 (en) | 2015-01-27 | 2022-08-23 | Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences | Method for conducting site-specific modification on entire plant via gene transient expression |
| US10519468B2 (en) | 2015-01-28 | 2019-12-31 | Pioneer Hi-Bred International, Inc. | Cells containing CRISPR hybrid DNA/RNA polynucleotides |
| US11180792B2 (en) | 2015-01-28 | 2021-11-23 | The Regents Of The University Of California | Methods and compositions for labeling a single-stranded target nucleic acid |
| US10988781B2 (en) | 2015-01-28 | 2021-04-27 | Caribou Biosciences, Inc. | Method of target cleaving using CRISPR hybrid DNA/RNA polynucleotides |
| US11236364B2 (en) | 2015-01-28 | 2022-02-01 | Caribou Biosciences, Inc. | CRISPR hybrid DNA/RNA polynucleotides and methods of use |
| US11459588B2 (en) | 2015-01-28 | 2022-10-04 | Caribou Biosciences, Inc. | Methods of use of CRISPR CPF1 hybrid DNA/RNA polynucleotides |
| JP7038079B2 (ja) | 2015-01-28 | 2022-03-17 | カリブー・バイオサイエンシーズ・インコーポレイテッド | Crisprハイブリッドdna/rnaポリヌクレオチドおよび使用方法 |
| JP2019162140A (ja) * | 2015-01-28 | 2019-09-26 | パイオニア ハイ−ブレッド インターナショナル, インコーポレイテッド | Crisprハイブリッドdna/rnaポリヌクレオチドおよび使用方法 |
| JP2018503386A (ja) * | 2015-01-28 | 2018-02-08 | パイオニア ハイ−ブレッド インターナショナル, インコーポレイテッド | Crisprハイブリッドdna/rnaポリヌクレオチドおよび使用方法 |
| US12416018B2 (en) | 2015-02-02 | 2025-09-16 | MeiraGTx Gene Regulation Limited | Regulation of gene expression by aptamer-mediated modulation of alternative splicing |
| CN114990143A (zh) * | 2015-02-02 | 2022-09-02 | 梅里特斯英国第二有限公司 | 通过对选择性剪接进行适体介导的调节来实现的基因表达调控 |
| US12215366B2 (en) | 2015-02-09 | 2025-02-04 | Duke University | Compositions and methods for epigenome editing |
| JPWO2016133165A1 (ja) * | 2015-02-19 | 2017-11-30 | 国立大学法人徳島大学 | Cas9 mRNAを哺乳動物の受精卵にエレクトロポレーションにより導入する方法 |
| WO2016135557A2 (en) | 2015-02-23 | 2016-09-01 | Crispr Therapeutics Ag | Materials and methods for treatment of hemoglobinopathies |
| WO2016135558A2 (en) | 2015-02-23 | 2016-09-01 | Crispr Therapeutics Ag | Materials and methods for treatment of hemoglobinopathies |
| WO2016135559A2 (en) | 2015-02-23 | 2016-09-01 | Crispr Therapeutics Ag | Materials and methods for treatment of human genetic diseases including hemoglobinopathies |
| US12129471B2 (en) | 2015-02-23 | 2024-10-29 | Vertex Pharmaceuticals Incorporated | Materials and methods for treatment of human genetic diseases including hemoglobinopathies |
| EP3262162A4 (en) * | 2015-02-23 | 2018-08-08 | Voyager Therapeutics, Inc. | Regulatable expression using adeno-associated virus (aav) |
| US10968536B2 (en) | 2015-02-25 | 2021-04-06 | Jumpcode Genomics, Inc. | Methods and compositions for sequencing |
| US9926545B2 (en) | 2015-03-03 | 2018-03-27 | The General Hospital Corporation | Engineered CRISPR-CAS9 nucleases with altered PAM specificity |
| US11859220B2 (en) | 2015-03-03 | 2024-01-02 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
| WO2016141224A1 (en) | 2015-03-03 | 2016-09-09 | The General Hospital Corporation | Engineered crispr-cas9 nucleases with altered pam specificity |
| US10202589B2 (en) | 2015-03-03 | 2019-02-12 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
| US9944912B2 (en) | 2015-03-03 | 2018-04-17 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
| US12180520B2 (en) | 2015-03-03 | 2024-12-31 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
| EP3858990A1 (en) | 2015-03-03 | 2021-08-04 | The General Hospital Corporation | Engineered crispr-cas9 nucleases with altered pam specificity |
| US9752132B2 (en) | 2015-03-03 | 2017-09-05 | The General Hospital Corporation | Engineered CRISPR-CAS9 nucleases with altered PAM specificity |
| US11220678B2 (en) | 2015-03-03 | 2022-01-11 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
| US10479982B2 (en) | 2015-03-03 | 2019-11-19 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
| US10808233B2 (en) | 2015-03-03 | 2020-10-20 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
| US10767168B2 (en) | 2015-03-03 | 2020-09-08 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
| US12428638B2 (en) | 2015-03-13 | 2025-09-30 | The Jackson Laboratory | Three-component CRISPR/Cas complex system and uses thereof |
| EP3858992A1 (en) | 2015-03-13 | 2021-08-04 | The Jackson Laboratory | A three-component crispr/cas complex system and uses thereof |
| US12043835B2 (en) | 2015-03-16 | 2024-07-23 | Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences | Method for making site-directed modification to plant genomes by using non-inheritable materials |
| WO2016154344A1 (en) | 2015-03-24 | 2016-09-29 | The Regents Of The University Of California | Adeno-associated virus variants and methods of use thereof |
| US20230002760A1 (en) * | 2015-03-25 | 2023-01-05 | Editas Medicine, Inc. | Crispr/cas-related methods, compositions and components |
| EP4019635A1 (en) * | 2015-03-25 | 2022-06-29 | Editas Medicine, Inc. | Crispr/cas-related methods, compositions and components |
| US10450576B2 (en) | 2015-03-27 | 2019-10-22 | E I Du Pont De Nemours And Company | Soybean U6 small nuclear RNA gene promoters and their use in constitutive expression of small RNA genes in plants |
| US11306309B2 (en) | 2015-04-06 | 2022-04-19 | The Board Of Trustees Of The Leland Stanford Junior University | Chemically modified guide RNAs for CRISPR/CAS-mediated gene regulation |
| WO2016164356A1 (en) | 2015-04-06 | 2016-10-13 | The Board Of Trustees Of The Leland Stanford Junior University | Chemically modified guide rnas for crispr/cas-mediated gene regulation |
| US11851652B2 (en) | 2015-04-06 | 2023-12-26 | The Board Of Trustees Of The Leland Stanford Junior | Compositions comprising chemically modified guide RNAs for CRISPR/Cas-mediated editing of HBB |
| US11535846B2 (en) | 2015-04-06 | 2022-12-27 | The Board Of Trustees Of The Leland Stanford Junior University | Chemically modified guide RNAS for CRISPR/Cas-mediated gene regulation |
| US11180793B2 (en) | 2015-04-24 | 2021-11-23 | Editas Medicine, Inc. | Evaluation of Cas9 molecule/guide RNA molecule complexes |
| US12514869B2 (en) | 2015-05-06 | 2026-01-06 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
| EP3903586A1 (en) | 2015-05-06 | 2021-11-03 | Snipr Technologies Limited | Altering microbial populations & modifying microbiota |
| US10506812B2 (en) | 2015-05-06 | 2019-12-17 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
| EP3711488A1 (en) | 2015-05-06 | 2020-09-23 | Snipr Technologies Limited | Altering microbial populations & modifying microbiota |
| US11844760B2 (en) | 2015-05-06 | 2023-12-19 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
| EP3907285A1 (en) | 2015-05-06 | 2021-11-10 | Snipr Technologies Limited | Altering microbial populations & modifying microbiota |
| US11642363B2 (en) | 2015-05-06 | 2023-05-09 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
| EP4005386A1 (en) | 2015-05-06 | 2022-06-01 | SNIPR Technologies Limited | Altering microbial populations & modifying microbiota |
| US12226430B2 (en) | 2015-05-06 | 2025-02-18 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
| EP4570253A2 (en) | 2015-05-06 | 2025-06-18 | SNIPR Technologies Limited | Altering microbial populations & modifying microbiota |
| US10524477B2 (en) | 2015-05-06 | 2020-01-07 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
| EP4169383A1 (en) | 2015-05-06 | 2023-04-26 | SNIPR Technologies Limited | Altering microbial populations & modifying microbiota |
| EP4233546A2 (en) | 2015-05-06 | 2023-08-30 | SNIPR Technologies Limited | Altering microbial populations & modifying microbiota |
| US11547716B2 (en) | 2015-05-06 | 2023-01-10 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
| US11400110B2 (en) | 2015-05-06 | 2022-08-02 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
| EP3563684A1 (en) | 2015-05-06 | 2019-11-06 | Snipr Technologies Limited | Altering microbial populations & modifying microbiota |
| US10561148B2 (en) | 2015-05-06 | 2020-02-18 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
| US12502401B2 (en) | 2015-05-06 | 2025-12-23 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
| US11517582B2 (en) | 2015-05-06 | 2022-12-06 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
| US10582712B2 (en) | 2015-05-06 | 2020-03-10 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
| US12514867B2 (en) | 2015-05-06 | 2026-01-06 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
| EP4545082A2 (en) | 2015-05-06 | 2025-04-30 | SNIPR Technologies Limited | Altering microbial populations & modifying microbiota |
| US9701964B2 (en) | 2015-05-06 | 2017-07-11 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
| US10463049B2 (en) | 2015-05-06 | 2019-11-05 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
| US11147830B2 (en) | 2015-05-06 | 2021-10-19 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
| EP3729967A1 (en) | 2015-05-06 | 2020-10-28 | Snipr Technologies Limited | Altering microbial populations & modifying microbiota |
| US11612617B2 (en) | 2015-05-06 | 2023-03-28 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
| US10624349B2 (en) | 2015-05-06 | 2020-04-21 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
| JP2018524018A (ja) * | 2015-05-08 | 2018-08-30 | ザ チルドレンズ メディカル センター コーポレイション | 胎児型ヘモグロビン再誘導のための、bcl11aエンハンサー機能性領域を標的とする方法 |
| JP7755627B2 (ja) | 2015-05-08 | 2025-10-16 | ザ チルドレンズ メディカル センター コーポレーション | 胎児型ヘモグロビン再誘導のための、bcl11aエンハンサー機能性領域を標的とする方法 |
| JP2023165931A (ja) * | 2015-05-08 | 2023-11-17 | ザ チルドレンズ メディカル センター コーポレーション | 胎児型ヘモグロビン再誘導のための、bcl11aエンハンサー機能性領域を標的とする方法 |
| JP7288302B2 (ja) | 2015-05-08 | 2023-06-07 | ザ チルドレンズ メディカル センター コーポレーション | 胎児型ヘモグロビン再誘導のための、bcl11aエンハンサー機能性領域を標的とする方法 |
| US11572543B2 (en) | 2015-05-08 | 2023-02-07 | The Children's Medical Center. Corporation | Targeting BCL11A enhancer functional regions for fetal hemoglobin reinduction |
| JP2022008430A (ja) * | 2015-05-08 | 2022-01-13 | ザ チルドレンズ メディカル センター コーポレーション | 胎児型ヘモグロビン再誘導のための、bcl11aエンハンサー機能性領域を標的とする方法 |
| US11390884B2 (en) | 2015-05-11 | 2022-07-19 | Editas Medicine, Inc. | Optimized CRISPR/cas9 systems and methods for gene editing in stem cells |
| JP2018515142A (ja) * | 2015-05-15 | 2018-06-14 | ダーマコン,インコーポレイテッド. | Cas9介在遺伝子編集用の合成シングルガイドrna |
| WO2016186953A1 (en) | 2015-05-15 | 2016-11-24 | Pioneer Hi Bred International Inc | Guide rna/cas endonuclease systems |
| CN107709555A (zh) * | 2015-05-15 | 2018-02-16 | 达尔马科恩有限公司 | 用于Cas9介导的基因编辑的合成的单向导RNA |
| US11492630B2 (en) | 2015-05-19 | 2022-11-08 | KWS SAAT SE & Co. KGaA | Methods and hybrids for targeted nucleic acid editing in plants using CRISPR/Cas systems |
| US12213468B2 (en) | 2015-05-26 | 2025-02-04 | California Institute Of Technology | Population control using engineered translocations |
| US11261451B2 (en) | 2015-05-29 | 2022-03-01 | North Carolina State University | Methods for screening bacteria, archaea, algae, and yeast using CRISPR nucleic acids |
| US10117911B2 (en) | 2015-05-29 | 2018-11-06 | Agenovir Corporation | Compositions and methods to treat herpes simplex virus infections |
| EP4039816A1 (en) | 2015-05-29 | 2022-08-10 | North Carolina State University | Methods for screening bacteria, archaea, algae, and yeast using crispr nucleic acids |
| US10136649B2 (en) | 2015-05-29 | 2018-11-27 | North Carolina State University | Methods for screening bacteria, archaea, algae, and yeast using CRISPR nucleic acids |
| US10883103B2 (en) | 2015-06-02 | 2021-01-05 | Monsanto Technology Llc | Compositions and methods for delivery of a polynucleotide into a plant |
| WO2016196887A1 (en) * | 2015-06-03 | 2016-12-08 | Board Of Regents Of The University Of Nebraska | Dna editing using single-stranded dna |
| US11555208B2 (en) | 2015-06-03 | 2023-01-17 | Board Of Regents Of The University Of Nebraska | DNA editing using relatively long single-stranded DNA and CRISPR/Cas9 to increase success rate in methods for preparing transgenic embryos and animals |
| US11549126B2 (en) | 2015-06-03 | 2023-01-10 | Board Of Regents Of The University Of Nebraska | Treatment methods using DNA editing with single-stranded DNA |
| US11911415B2 (en) | 2015-06-09 | 2024-02-27 | Editas Medicine, Inc. | CRISPR/Cas-related methods and compositions for improving transplantation |
| WO2016198361A1 (en) * | 2015-06-12 | 2016-12-15 | Wageningen Universiteit | Thermostable cas9 nucleases |
| CN107922931A (zh) * | 2015-06-12 | 2018-04-17 | 普拉克生物化学公司 | 热稳定的Cas9核酸酶 |
| CN107922931B (zh) * | 2015-06-12 | 2022-07-26 | 瓦赫宁根大学 | 热稳定的Cas9核酸酶 |
| US11802277B2 (en) | 2015-06-12 | 2023-10-31 | Wageningen Universiteit | Thermostable Cas9 nucleases |
| EA038500B1 (ru) * | 2015-06-12 | 2021-09-07 | Вагенинген Юниверситет | Термостабильные нуклеазы cas9 |
| EP4299754A2 (en) | 2015-06-15 | 2024-01-03 | North Carolina State University | Methods and compositions for efficient delivery of nucleic acids and rna-based antimicrobials |
| EP4541374A2 (en) | 2015-06-15 | 2025-04-23 | Mpeg LA, L.l.c. | Defined multi-conjugate oligonucleotides |
| US11155823B2 (en) | 2015-06-15 | 2021-10-26 | North Carolina State University | Methods and compositions for efficient delivery of nucleic acids and RNA-based antimicrobials |
| EP3502253B1 (en) | 2015-06-18 | 2020-05-27 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
| US10876100B2 (en) | 2015-06-18 | 2020-12-29 | The Broad Institute, Inc. | Crispr enzyme mutations reducing off-target effects |
| EP3470519B1 (en) | 2015-06-18 | 2020-02-12 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
| US10494621B2 (en) | 2015-06-18 | 2019-12-03 | The Broad Institute, Inc. | Crispr enzyme mutations reducing off-target effects |
| RU2845909C2 (ru) * | 2015-06-18 | 2025-08-27 | Те Брод Инститьют, Инк. | Мутации фермента crispr, уменьшающие нецелевые эффекты |
| US11578312B2 (en) | 2015-06-18 | 2023-02-14 | The Broad Institute Inc. | Engineering and optimization of systems, methods, enzymes and guide scaffolds of CAS9 orthologs and variants for sequence manipulation |
| US12123032B2 (en) | 2015-06-18 | 2024-10-22 | The Broad Institute, Inc. | CRISPR enzyme mutations reducing off-target effects |
| US12168789B2 (en) | 2015-06-18 | 2024-12-17 | The Broad Institute, Inc. | Engineering and optimization of systems, methods, enzymes and guide scaffolds of CAS9 orthologs and variants for sequence manipulation |
| EP4545544A2 (en) | 2015-06-29 | 2025-04-30 | Ionis Pharmaceuticals, Inc. | MODIFIED CRISPR RNA AND MODIFIED SINGLE CRISPR RNA AND THEIR USES |
| WO2017004261A1 (en) | 2015-06-29 | 2017-01-05 | Ionis Pharmaceuticals, Inc. | Modified crispr rna and modified single crispr rna and uses thereof |
| US11414657B2 (en) | 2015-06-29 | 2022-08-16 | Ionis Pharmaceuticals, Inc. | Modified CRISPR RNA and modified single CRISPR RNA and uses thereof |
| US11279928B2 (en) | 2015-06-29 | 2022-03-22 | Massachusetts Institute Of Technology | Compositions comprising nucleic acids and methods of using the same |
| JP2017018100A (ja) * | 2015-07-13 | 2017-01-26 | 国立研究開発法人農業・食品産業技術総合研究機構 | 不稔化植物、不稔化植物の作出方法、及びベクター |
| WO2017011721A1 (en) | 2015-07-15 | 2017-01-19 | Rutgers, The State University Of New Jersey | Nuclease-independent targeted gene editing platform and uses thereof |
| EP3957731A1 (en) | 2015-07-15 | 2022-02-23 | Rutgers, The State University of New Jersey | Nuclease-independent targeted gene editing platform and uses thereof |
| US11266692B2 (en) | 2015-07-31 | 2022-03-08 | Regents Of The University Of Minnesota | Intracellular genomic transplant and methods of therapy |
| US11583556B2 (en) | 2015-07-31 | 2023-02-21 | Regents Of The University Of Minnesota | Modified cells and methods of therapy |
| US11925664B2 (en) | 2015-07-31 | 2024-03-12 | Intima Bioscience, Inc. | Intracellular genomic transplant and methods of therapy |
| US10166255B2 (en) | 2015-07-31 | 2019-01-01 | Regents Of The University Of Minnesota | Intracellular genomic transplant and methods of therapy |
| US11903966B2 (en) | 2015-07-31 | 2024-02-20 | Regents Of The University Of Minnesota | Intracellular genomic transplant and methods of therapy |
| US11642375B2 (en) | 2015-07-31 | 2023-05-09 | Intima Bioscience, Inc. | Intracellular genomic transplant and methods of therapy |
| US11642374B2 (en) | 2015-07-31 | 2023-05-09 | Intima Bioscience, Inc. | Intracellular genomic transplant and methods of therapy |
| US11147837B2 (en) | 2015-07-31 | 2021-10-19 | Regents Of The University Of Minnesota | Modified cells and methods of therapy |
| US10406177B2 (en) | 2015-07-31 | 2019-09-10 | Regents Of The University Of Minnesota | Modified cells and methods of therapy |
| US11111506B2 (en) | 2015-08-07 | 2021-09-07 | Caribou Biosciences, Inc. | Compositions and methods of engineered CRISPR-Cas9 systems using split-nexus Cas9-associated polynucleotides |
| US11534453B2 (en) | 2015-08-07 | 2022-12-27 | Arrowhead Pharmaceuticals, Inc. | RNAi therapy for hepatitis B virus infection |
| US9970026B2 (en) | 2015-08-07 | 2018-05-15 | Caribou Biosciences, Inc. | Compositions and methods of engineered CRISPR-Cas9 systems using split-nexus Cas9-associated polynucleotides |
| WO2017027423A1 (en) * | 2015-08-07 | 2017-02-16 | Caribou Biosciences, Inc. | Engineered crispr-cas9 compositions and methods of use |
| US9970027B2 (en) | 2015-08-07 | 2018-05-15 | Caribou Biosciences, Inc. | Compositions and methods of engineered CRISPR-CAS9 systems using split-nexus CAS9-associated polynucleotides |
| GB2556276A (en) * | 2015-08-07 | 2018-05-23 | Caribou Biosciences Inc | Engineered crispr-CAS9 compositions and methods of use |
| CN107922944B (zh) * | 2015-08-07 | 2021-04-13 | 卡里布生物科学公司 | 工程改造的crispr-cas9组合物和使用方法 |
| CN107922944A (zh) * | 2015-08-07 | 2018-04-17 | 卡里布生物科学公司 | 工程改造的crispr‑cas9组合物和使用方法 |
| EP3461894A1 (en) * | 2015-08-07 | 2019-04-03 | Caribou Biosciences, Inc. | Engineered crispr-cas9 compositions and methods of use |
| US9745600B2 (en) | 2015-08-07 | 2017-08-29 | Caribou Biosciences, Inc. | Compositions and methods of engineered CRISPR-Cas9 systems using split-nexus Cas9-associated polynucleotides |
| US11767536B2 (en) | 2015-08-14 | 2023-09-26 | Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences | Method for obtaining glyphosate-resistant rice by site-directed nucleotide substitution |
| EP4043074A1 (en) | 2015-08-14 | 2022-08-17 | The University of Sydney | Connexin 45 inhibition for therapy |
| WO2017027910A1 (en) | 2015-08-14 | 2017-02-23 | The University Of Sydney | Connexin 45 inhibition for therapy |
| US11427817B2 (en) | 2015-08-25 | 2022-08-30 | Duke University | Compositions and methods of improving specificity in genomic engineering using RNA-guided endonucleases |
| US10093910B2 (en) | 2015-08-28 | 2018-10-09 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
| US9926546B2 (en) | 2015-08-28 | 2018-03-27 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
| US11060078B2 (en) | 2015-08-28 | 2021-07-13 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
| US9512446B1 (en) | 2015-08-28 | 2016-12-06 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
| US10633642B2 (en) | 2015-08-28 | 2020-04-28 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
| EP4036236A1 (en) | 2015-08-28 | 2022-08-03 | The General Hospital Corporation | Engineered crispr-cas9 nucleases |
| WO2017040348A1 (en) | 2015-08-28 | 2017-03-09 | The General Hospital Corporation | Engineered crispr-cas9 nucleases |
| US10526591B2 (en) | 2015-08-28 | 2020-01-07 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
| US10526590B2 (en) | 2015-08-31 | 2020-01-07 | Agilent Technologies, Inc. | Compounds and methods for CRISPR/Cas-based genome editing by homologous recombination |
| EP3347464A4 (en) * | 2015-09-08 | 2019-06-19 | University of Massachusetts | DNASE-H ACTIVITY OF NEISSERIA MENINGITIDIS CAS9 |
| US12104183B2 (en) | 2015-09-08 | 2024-10-01 | University Of Massachusetts | DNase H activity of Neisseria meningitidis Cas9 |
| US10767173B2 (en) | 2015-09-09 | 2020-09-08 | National University Corporation Kobe University | Method for converting genome sequence of gram-positive bacterium by specifically converting nucleic acid base of targeted DNA sequence, and molecular complex used in same |
| WO2017044776A1 (en) * | 2015-09-10 | 2017-03-16 | Texas Tech University System | Single-guide rna (sgrna) with improved knockout efficiency |
| US11028429B2 (en) | 2015-09-11 | 2021-06-08 | The General Hospital Corporation | Full interrogation of nuclease DSBs and sequencing (FIND-seq) |
| US11667911B2 (en) | 2015-09-24 | 2023-06-06 | Editas Medicine, Inc. | Use of exonucleases to improve CRISPR/CAS-mediated genome editing |
| WO2017058751A1 (en) * | 2015-09-28 | 2017-04-06 | North Carolina State University | Methods and compositions for sequence specific antimicrobials |
| US11286480B2 (en) | 2015-09-28 | 2022-03-29 | North Carolina State University | Methods and compositions for sequence specific antimicrobials |
| US10738303B2 (en) | 2015-09-30 | 2020-08-11 | The General Hospital Corporation | Comprehensive in vitro reporting of cleavage events by sequencing (CIRCLE-seq) |
| US11692182B2 (en) | 2015-10-09 | 2023-07-04 | Monsanto Technology Llc | RNA-guided DNA nucleases and uses thereof |
| EP3359644A4 (en) * | 2015-10-09 | 2019-08-14 | Monsanto Technology LLC | NOVEL RNA-GUIDED NUCLEASES AND USES THEREOF |
| EP4400597A3 (en) * | 2015-10-09 | 2024-10-16 | Monsanto Technology LLC | Novel rna-guided nucleases and uses thereof |
| WO2017062855A1 (en) | 2015-10-09 | 2017-04-13 | Monsanto Technology Llc | Novel rna-guided nucleases and uses thereof |
| US12391932B2 (en) | 2015-10-09 | 2025-08-19 | Monsanto Technology Llc | RNA-guided DNA nucleases and uses thereof |
| US11421251B2 (en) | 2015-10-13 | 2022-08-23 | Duke University | Genome engineering with type I CRISPR systems in eukaryotic cells |
| EP4265633A2 (en) | 2015-10-16 | 2023-10-25 | The Trustees Of Columbia University In The City Of New York | Compositions and methods for inhibition of lineage specific antigens |
| WO2017066760A1 (en) | 2015-10-16 | 2017-04-20 | The Trustees Of Columbia University In The City Of New York | Compositions and methods for inhibition of lineage specific antigens |
| US12365707B2 (en) | 2015-10-20 | 2025-07-22 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Methods and products for genetic engineering |
| US12049480B2 (en) | 2015-10-20 | 2024-07-30 | Institut National De La Sante Et De La Recherche Medicale (INSERM) Paris, FRANCE | Methods and products for genetic engineering |
| WO2017070032A1 (en) | 2015-10-20 | 2017-04-27 | Pioneer Hi-Bred International, Inc. | Restoring function to a non-functional gene product via guided cas systems and methods of use |
| US12202860B2 (en) | 2015-10-20 | 2025-01-21 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Methods and products for genetic engineering |
| US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
| US12344869B2 (en) | 2015-10-23 | 2025-07-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
| US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
| US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
| EP4279084A1 (en) | 2015-10-28 | 2023-11-22 | Vertex Pharmaceuticals Inc. | Materials and methods for treatment of duchenne muscular dystrophy |
| EP4632068A2 (en) | 2015-10-28 | 2025-10-15 | Vertex Pharmaceuticals Inc. | Materials and methods for treatment of duchenne muscular dystrophy |
| WO2017072590A1 (en) | 2015-10-28 | 2017-05-04 | Crispr Therapeutics Ag | Materials and methods for treatment of duchenne muscular dystrophy |
| US11542554B2 (en) | 2015-11-03 | 2023-01-03 | President And Fellows Of Harvard College | Method and apparatus for volumetric imaging |
| WO2017077394A2 (en) | 2015-11-04 | 2017-05-11 | Crispr Therapeutics Ag | Materials and methods for treatment of hemoglobinopathies |
| US12043843B2 (en) | 2015-11-04 | 2024-07-23 | Vertex Pharmaceuticals Incorporated | Materials and methods for treatment of hemoglobinopathies |
| US11866727B2 (en) | 2015-11-06 | 2024-01-09 | Crispr Therapeutics Ag | Materials and methods for treatment of glycogen storage disease type 1A |
| WO2017077386A1 (en) | 2015-11-06 | 2017-05-11 | Crispr Therapeutics Ag | Materials and methods for treatment of glycogen storage disease type 1a |
| WO2017079724A1 (en) | 2015-11-06 | 2017-05-11 | The Jackson Laboratory | Large genomic dna knock-in and uses thereof |
| WO2017079026A1 (en) | 2015-11-06 | 2017-05-11 | E. I. Du Pont De Nemours And Company | Generation of complex trait loci in soybean and methods of use |
| US12472239B2 (en) | 2015-11-16 | 2025-11-18 | Research Institute At Nationwide Children's Hospital | Guide RNA for repairing a mutant human titin gene using CRISPR technology |
| US11617783B2 (en) | 2015-11-16 | 2023-04-04 | Research Institute At Nationwide Children's Hospital | Repairing a mutant human titin gene using CRISPR technology |
| US12454559B2 (en) | 2015-11-18 | 2025-10-28 | The Regents Of The University Of Michigan | Activating mitotic checkpoint control mechanisms |
| US10669320B2 (en) | 2015-11-18 | 2020-06-02 | The Regents Of The University Of Michigan | Mps1 and KNL1 phosphorylation system |
| US11220693B2 (en) | 2015-11-27 | 2022-01-11 | National University Corporation Kobe University | Method for converting monocot plant genome sequence in which nucleic acid base in targeted DNA sequence is specifically converted, and molecular complex used therein |
| EP3967758A1 (en) | 2015-12-01 | 2022-03-16 | CRISPR Therapeutics AG | Materials and methods for treatment of alpha-1 antitrypsin deficiency |
| WO2017093804A2 (en) | 2015-12-01 | 2017-06-08 | Crispr Therapeutics Ag | Materials and methods for treatment of alpha-1 antitrypsin deficiency |
| US11851653B2 (en) | 2015-12-01 | 2023-12-26 | Crispr Therapeutics Ag | Materials and methods for treatment of alpha-1 antitrypsin deficiency |
| EP3564371A1 (en) * | 2015-12-04 | 2019-11-06 | Caribou Biosciences, Inc. | Engineered nucleic-acid targeting nucleic acids |
| AU2016363024B2 (en) * | 2015-12-04 | 2020-01-30 | Caribou Biosciences, Inc. | Engineered nucleic-acid targeting nucleic acids |
| US9771600B2 (en) | 2015-12-04 | 2017-09-26 | Caribou Biosciences, Inc. | Engineered nucleic acid-targeting nucleic acids |
| US10100333B2 (en) | 2015-12-04 | 2018-10-16 | Caribou Biosciences, Inc. | Engineered nucleic acid-targeting nucleic acids |
| US9970029B1 (en) | 2015-12-04 | 2018-05-15 | Caribou Biosciences, Inc. | Engineered nucleic acid-targeting nucleic acids |
| WO2017096328A1 (en) * | 2015-12-04 | 2017-06-08 | Caribou Biosciences, Inc. | Engineered nucleic-acid targeting nucleic acids |
| US11505808B2 (en) | 2015-12-04 | 2022-11-22 | Caribou Biosciences, Inc. | Engineered nucleic acid-targeting nucleic acids |
| US11118194B2 (en) | 2015-12-18 | 2021-09-14 | The Regents Of The University Of California | Modified site-directed modifying polypeptides and methods of use thereof |
| US11713467B2 (en) | 2015-12-18 | 2023-08-01 | Oncosec Medical Incorporated | Plasmid constructs for heterologous protein expression and methods of use |
| CN109072218A (zh) * | 2015-12-18 | 2018-12-21 | 国立研究开发法人科学技术振兴机构 | 基因修饰非人生物、卵细胞、受精卵以及目的基因的修饰方法 |
| KR20180086430A (ko) * | 2015-12-18 | 2018-07-31 | 다니스코 유에스 인크. | 중합효소 ii(pol-ii) 기반의 가이드 rna 발현을 위한 방법 및 조성물 |
| WO2017104404A1 (ja) * | 2015-12-18 | 2017-06-22 | 国立研究開発法人科学技術振興機構 | 遺伝子改変非ヒト生物、卵細胞、受精卵、及び標的遺伝子の改変方法 |
| KR102698595B1 (ko) | 2015-12-18 | 2024-08-23 | 다니스코 유에스 인크. | 중합효소 ii(pol-ii) 기반의 가이드 rna 발현을 위한 방법 및 조성물 |
| WO2017106414A1 (en) * | 2015-12-18 | 2017-06-22 | Danisco Us Inc. | Methods and compositions for polymerase ii (pol-ii) based guide rna expression |
| CN109072218B (zh) * | 2015-12-18 | 2023-04-18 | 国立研究开发法人科学技术振兴机构 | 基因修饰非人生物、卵细胞、受精卵以及目的基因的修饰方法 |
| US11542466B2 (en) | 2015-12-22 | 2023-01-03 | North Carolina State University | Methods and compositions for delivery of CRISPR based antimicrobials |
| WO2017109757A1 (en) | 2015-12-23 | 2017-06-29 | Crispr Therapeutics Ag | Materials and methods for treatment of amyotrophic lateral sclerosis and/or frontal temporal lobular degeneration |
| US10336807B2 (en) | 2016-01-11 | 2019-07-02 | The Board Of Trustees Of The Leland Stanford Junior University | Chimeric proteins and methods of immunotherapy |
| US9856497B2 (en) | 2016-01-11 | 2018-01-02 | The Board Of Trustee Of The Leland Stanford Junior University | Chimeric proteins and methods of regulating gene expression |
| US11773411B2 (en) | 2016-01-11 | 2023-10-03 | The Board Of Trustees Of The Leland Stanford Junior University | Chimeric proteins and methods of regulating gene expression |
| US10457961B2 (en) | 2016-01-11 | 2019-10-29 | The Board Of Trustees Of The Leland Stanford Junior University | Chimeric proteins and methods of regulating gene expression |
| US11111287B2 (en) | 2016-01-11 | 2021-09-07 | The Board Of Trustees Of The Leland Stanford Junior University | Chimeric proteins and methods of immunotherapy |
| US11518994B2 (en) * | 2016-01-30 | 2022-12-06 | Bonac Corporation | Artificial single guide RNA and use thereof |
| WO2017134529A1 (en) | 2016-02-02 | 2017-08-10 | Crispr Therapeutics Ag | Materials and methods for treatment of severe combined immunodeficiency (scid) or omenn syndrome |
| US11845933B2 (en) | 2016-02-03 | 2023-12-19 | Massachusetts Institute Of Technology | Structure-guided chemical modification of guide RNA and its applications |
| US11542515B2 (en) | 2016-02-09 | 2023-01-03 | Cibus Us Llc | Methods and compositions for increasing efficiency of targeted gene modification using oligonucleotide-mediated gene repair |
| US11339427B2 (en) | 2016-02-12 | 2022-05-24 | Jumpcode Genomics, Inc. | Method for target specific RNA transcription of DNA sequences |
| WO2017143061A1 (en) | 2016-02-16 | 2017-08-24 | Yale University | Compositions and methods for treatment of cystic fibrosis |
| WO2017143042A2 (en) | 2016-02-16 | 2017-08-24 | Yale University | Compositions for enhancing targeted gene editing and methods of use thereof |
| US11136597B2 (en) | 2016-02-16 | 2021-10-05 | Yale University | Compositions for enhancing targeted gene editing and methods of use thereof |
| WO2017141109A1 (en) | 2016-02-18 | 2017-08-24 | Crispr Therapeutics Ag | Materials and methods for treatment of severe combined immunodeficiency (scid) or omenn syndrome |
| US11530253B2 (en) | 2016-02-25 | 2022-12-20 | The Children's Medical Center Corporation | Customized class switch of immunoglobulin genes in lymphoma and hybridoma by CRISPR/CAS9 technology |
| US10538750B2 (en) | 2016-02-29 | 2020-01-21 | Agilent Technologies, Inc. | Methods and compositions for blocking off-target nucleic acids from cleavage by CRISPR proteins |
| EP3699280A2 (en) | 2016-03-11 | 2020-08-26 | Pioneer Hi-Bred International, Inc. | Novel cas9 systems and methods of use |
| WO2017155714A1 (en) | 2016-03-11 | 2017-09-14 | Pioneer Hi-Bred International, Inc. | Novel cas9 systems and methods of use |
| EP3699280A3 (en) * | 2016-03-11 | 2020-11-18 | Pioneer Hi-Bred International, Inc. | Novel cas9 systems and methods of use |
| WO2017155717A1 (en) | 2016-03-11 | 2017-09-14 | Pioneer Hi-Bred International, Inc. | Novel cas9 systems and methods of use |
| WO2017155715A1 (en) | 2016-03-11 | 2017-09-14 | Pioneer Hi-Bred International, Inc. | Novel cas9 systems and methods of use |
| EP3699281A1 (en) | 2016-03-11 | 2020-08-26 | Pioneer Hi-Bred International, Inc. | Novel cas9 systems and methods of use |
| WO2017158422A1 (en) | 2016-03-16 | 2017-09-21 | Crispr Therapeutics Ag | Materials and methods for treatment of hereditary haemochromatosis |
| US11083799B2 (en) | 2016-03-16 | 2021-08-10 | Crispr Therapeutics Ag | Materials and methods for treatment of hereditary haemochromatosis |
| US12186406B2 (en) | 2016-03-16 | 2025-01-07 | Crispr Therapeutics Ag | Materials and methods for treatment of hereditary haemochromatosis |
| EP3219799A1 (en) | 2016-03-17 | 2017-09-20 | IMBA-Institut für Molekulare Biotechnologie GmbH | Conditional crispr sgrna expression |
| WO2017158153A1 (en) | 2016-03-17 | 2017-09-21 | Imba - Institut Für Molekulare Biotechnologie Gmbh | Conditional crispr sgrna expression |
| US11512311B2 (en) | 2016-03-25 | 2022-11-29 | Editas Medicine, Inc. | Systems and methods for treating alpha 1-antitrypsin (A1AT) deficiency |
| US11597924B2 (en) | 2016-03-25 | 2023-03-07 | Editas Medicine, Inc. | Genome editing systems comprising repair-modulating enzyme molecules and methods of their use |
| US20230272373A1 (en) * | 2016-03-31 | 2023-08-31 | President And Fellows Of Harvard College | Methods and Compositions for the Single Tube Preparation of Sequencing Libraries Using Cas9 |
| WO2017173453A1 (en) | 2016-04-01 | 2017-10-05 | The Brigham And Women's Hospital, Inc. | Stimuli-responsive nanoparticles for biomedical applications |
| US12049651B2 (en) | 2016-04-13 | 2024-07-30 | Editas Medicine, Inc. | Cas9 fusion molecules, gene editing systems, and methods of use thereof |
| US12428631B2 (en) | 2016-04-13 | 2025-09-30 | Duke University | CRISPR/Cas9-based repressors for silencing gene targets in vivo and methods of use |
| US11236313B2 (en) | 2016-04-13 | 2022-02-01 | Editas Medicine, Inc. | Cas9 fusion molecules, gene editing systems, and methods of use thereof |
| WO2017182881A2 (en) | 2016-04-18 | 2017-10-26 | Crispr Therapeutics Ag | Materials and methods for treatment of hemoglobinopathies |
| EP4424829A2 (en) | 2016-04-18 | 2024-09-04 | Vertex Pharmaceuticals Incorporated | Materials and methods for treatment of hemoglobinopathies |
| US11713485B2 (en) | 2016-04-25 | 2023-08-01 | President And Fellows Of Harvard College | Hybridization chain reaction methods for in situ molecular detection |
| US10752904B2 (en) | 2016-04-26 | 2020-08-25 | Massachusetts Institute Of Technology | Extensible recombinase cascades |
| WO2017189683A1 (en) | 2016-04-26 | 2017-11-02 | Massachusetts Institute Of Technology | Extensible recombinase cascades |
| US11961008B2 (en) | 2016-04-27 | 2024-04-16 | Massachusetts Institute Of Technology | Sequence-controlled polymer random access memory storage |
| US11514331B2 (en) | 2016-04-27 | 2022-11-29 | Massachusetts Institute Of Technology | Sequence-controlled polymer random access memory storage |
| WO2017189870A1 (en) | 2016-04-27 | 2017-11-02 | Massachusetts Institute Of Technology | Stable nanoscale nucleic acid assemblies and methods thereof |
| US11410746B2 (en) | 2016-04-27 | 2022-08-09 | Massachusetts Institute Of Technology | Stable nanoscale nucleic acid assemblies and methods thereof |
| WO2017191503A1 (en) | 2016-05-05 | 2017-11-09 | Crispr Therapeutics Ag | Materials and methods for treatment of hemoglobinopathies |
| EP3452055A4 (en) * | 2016-05-06 | 2019-11-06 | Tod M. Woolf | IMPROVED METHODS FOR GENERIC MODIFICATION WITH AND WITHOUT PROGRAMMABLE NUCLEASES |
| EP3978022A1 (en) | 2016-05-06 | 2022-04-06 | The Brigham and Women's Hospital, Inc. | Binary self assembled gels for controlled delivery of encapsulated agents to cartilage |
| WO2017193139A1 (en) | 2016-05-06 | 2017-11-09 | The Brigham And Women's Hospital, Inc. | Binary self assembled gels for controlled delivery of encapsulated agents to cartilage |
| WO2017197128A1 (en) | 2016-05-11 | 2017-11-16 | Yale University | Poly(amine-co-ester) nanoparticles and methods of use thereof |
| WO2017201476A1 (en) | 2016-05-20 | 2017-11-23 | Regeneron Pharmaceuticals, Inc. | Methods for breaking immunological tolerance using multiple guide rnas |
| US12342801B2 (en) | 2016-05-20 | 2025-07-01 | Regeneron Pharmaceuticals, Inc. | Methods for producing antigen-binding proteins against foreign antigens |
| EP4368637A2 (en) | 2016-05-20 | 2024-05-15 | Regeneron Pharmaceuticals, Inc. | Methods for breaking immunological tolerance using multiple guide rnas |
| WO2017205846A1 (en) * | 2016-05-27 | 2017-11-30 | Aadigen, Llc | Peptides and nanoparticles for intracellular delivery of genome-editing molecules |
| AU2017268842B2 (en) * | 2016-05-27 | 2022-08-11 | Aadigen, Llc | Peptides and nanoparticles for intracellular delivery of genome-editing molecules |
| EP3910059A1 (en) * | 2016-05-27 | 2021-11-17 | Aadigen, Llc | Peptides and nanoparticles for intracellular delivery of genome-editing molecules |
| GB2552861B (en) * | 2016-06-02 | 2019-05-15 | Sigma Aldrich Co Llc | Using programmable DNA binding proteins to enhance targeted genome modification |
| US10266851B2 (en) | 2016-06-02 | 2019-04-23 | Sigma-Aldrich Co. Llc | Using programmable DNA binding proteins to enhance targeted genome modification |
| GB2552861A (en) * | 2016-06-02 | 2018-02-14 | Sigma Aldrich Co Llc | Using programmable DNA binding proteins to enhance targeted genome modification |
| US12084675B2 (en) | 2016-06-02 | 2024-09-10 | Sigma-Aldrich Co. Llc | Using programmable DNA binding proteins to enhance targeted genome modification |
| US12275952B2 (en) | 2016-06-02 | 2025-04-15 | Sigma-Aldrich Co. Llc | Using programmable DNA binding proteins to enhance targeted genome modification |
| US10195273B2 (en) | 2016-06-05 | 2019-02-05 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
| US10953090B2 (en) | 2016-06-05 | 2021-03-23 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
| US10300138B2 (en) | 2016-06-05 | 2019-05-28 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
| US11141481B2 (en) | 2016-06-05 | 2021-10-12 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
| US10300139B2 (en) | 2016-06-05 | 2019-05-28 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
| US10603379B2 (en) | 2016-06-05 | 2020-03-31 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
| US12318445B2 (en) | 2016-06-05 | 2025-06-03 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
| US10596255B2 (en) | 2016-06-05 | 2020-03-24 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
| US11351252B2 (en) | 2016-06-05 | 2022-06-07 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
| US11471530B2 (en) | 2016-06-05 | 2022-10-18 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
| US11471531B2 (en) | 2016-06-05 | 2022-10-18 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
| US10363308B2 (en) | 2016-06-05 | 2019-07-30 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
| US11291723B2 (en) | 2016-06-05 | 2022-04-05 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
| US10765740B2 (en) | 2016-06-05 | 2020-09-08 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
| US10767175B2 (en) | 2016-06-08 | 2020-09-08 | Agilent Technologies, Inc. | High specificity genome editing using chemically modified guide RNAs |
| WO2017218185A1 (en) | 2016-06-14 | 2017-12-21 | Pioneer Hi-Bred International, Inc. | Use of cpf1 endonuclease for plant genome modifications |
| WO2017222773A1 (en) | 2016-06-20 | 2017-12-28 | Pioneer Hi-Bred International, Inc. | Novel cas systems and methods of use |
| US11293021B1 (en) | 2016-06-23 | 2022-04-05 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems |
| US10294473B2 (en) | 2016-06-24 | 2019-05-21 | The Regents Of The University Of Colorado, A Body Corporate | Methods for generating barcoded combinatorial libraries |
| US10287575B2 (en) | 2016-06-24 | 2019-05-14 | The Regents Of The University Of Colorado, A Body Corporate | Methods for generating barcoded combinatorial libraries |
| US10017760B2 (en) | 2016-06-24 | 2018-07-10 | Inscripta, Inc. | Methods for generating barcoded combinatorial libraries |
| US11584928B2 (en) | 2016-06-24 | 2023-02-21 | The Regents Of The University Of Colorado, A Body Corporate | Methods for generating barcoded combinatorial libraries |
| WO2018002783A1 (en) | 2016-06-29 | 2018-01-04 | Crispr Therapeutics Ag | Materials and methods for treatment of friedreich ataxia and other related disorders |
| WO2018002762A1 (en) | 2016-06-29 | 2018-01-04 | Crispr Therapeutics Ag | Materials and methods for treatment of amyotrophic lateral sclerosis (als) and other related disorders |
| US11174469B2 (en) | 2016-06-29 | 2021-11-16 | Crispr Therapeutics Ag | Materials and methods for treatment of Amyotrophic Lateral Sclerosis (ALS) and other related disorders |
| WO2018002812A1 (en) | 2016-06-29 | 2018-01-04 | Crispr Therapeutics Ag | Materials and methods for treatment of myotonic dystrophy type 1 (dm1) and other related disorders |
| EP4484443A2 (en) | 2016-06-29 | 2025-01-01 | CRISPR Therapeutics AG | Materials and methods for treatment of friedreich ataxia and other related disorders |
| US11564997B2 (en) | 2016-06-29 | 2023-01-31 | Crispr Therapeutics Ag | Materials and methods for treatment of friedreich ataxia and other related disorders |
| US12442020B2 (en) | 2016-07-06 | 2025-10-14 | Vertex Pharmaceuticals Incorporated | Materials and methods for treatment of pain related disorders |
| US11801313B2 (en) | 2016-07-06 | 2023-10-31 | Vertex Pharmaceuticals Incorporated | Materials and methods for treatment of pain related disorders |
| EP4650364A2 (en) | 2016-07-06 | 2025-11-19 | Vertex Pharmaceuticals Incorporated | Materials and methods for treatment of pain related disorders |
| WO2018007976A1 (en) | 2016-07-06 | 2018-01-11 | Crispr Therapeutics Ag | Materials and methods for treatment of pain related disorders |
| WO2018007980A1 (en) | 2016-07-06 | 2018-01-11 | Crispr Therapeutics Ag | Materials and methods for treatment of pain related disorders |
| US11459587B2 (en) | 2016-07-06 | 2022-10-04 | Vertex Pharmaceuticals Incorporated | Materials and methods for treatment of pain related disorders |
| WO2018007871A1 (en) | 2016-07-08 | 2018-01-11 | Crispr Therapeutics Ag | Materials and methods for treatment of transthyretin amyloidosis |
| US11959094B2 (en) | 2016-07-15 | 2024-04-16 | Salk Institute For Biological Studies | Methods and compositions for genome editing in non-dividing cells |
| EP4321623A2 (en) | 2016-07-15 | 2024-02-14 | Salk Institute for Biological Studies | Methods and compositions for genome editing in non-dividing cells |
| US11674158B2 (en) | 2016-07-15 | 2023-06-13 | Salk Institute For Biological Studies | Methods and compositions for genome editing in non-dividing cells |
| WO2018013932A1 (en) | 2016-07-15 | 2018-01-18 | Salk Institute For Biological Studies | Methods and compositions for genome editing in non-dividing cells |
| US12214056B2 (en) | 2016-07-19 | 2025-02-04 | Duke University | Therapeutic applications of CPF1-based genome editing |
| WO2018015444A1 (en) | 2016-07-22 | 2018-01-25 | Novozymes A/S | Crispr-cas9 genome editing with multiple guide rnas in filamentous fungi |
| WO2018020323A2 (en) | 2016-07-25 | 2018-02-01 | Crispr Therapeutics Ag | Materials and methods for treatment of fatty acid disorders |
| CN106191043A (zh) * | 2016-07-26 | 2016-12-07 | 吉林大学 | 一种基因片段、载体pPlasmid‑Clearance及应用 |
| CN106191043B (zh) * | 2016-07-26 | 2019-07-02 | 吉林大学 | 一种基因片段、载体pPlasmid-Clearance及应用 |
| EP4230648A2 (en) | 2016-07-28 | 2023-08-23 | Regeneron Pharmaceuticals, Inc. | Gpr156 variants and uses thereof |
| WO2018022967A1 (en) | 2016-07-28 | 2018-02-01 | Regeneron Pharmaceuticals, Inc. | Gpr156 variants and uses thereof |
| WO2018023014A1 (en) | 2016-07-29 | 2018-02-01 | Regeneron Pharmaceuticals, Inc. | Mice comprising mutations resulting in expression of c-truncated fibrillin-1 |
| US11566263B2 (en) | 2016-08-02 | 2023-01-31 | Editas Medicine, Inc. | Compositions and methods for treating CEP290 associated disease |
| US11078481B1 (en) | 2016-08-03 | 2021-08-03 | KSQ Therapeutics, Inc. | Methods for screening for cancer targets |
| US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
| US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
| US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
| US11912987B2 (en) | 2016-08-03 | 2024-02-27 | KSQ Therapeutics, Inc. | Methods for screening for cancer targets |
| US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
| US11517584B2 (en) | 2016-08-04 | 2022-12-06 | Arrowhead Pharmaceuticals, Inc. | RNAi agents for Hepatitis B virus infection |
| US11590156B2 (en) | 2016-08-04 | 2023-02-28 | Arrowhead Pharmaceuticals, Inc. | RNAi agents for hepatitis B virus infection |
| US10780108B2 (en) | 2016-08-04 | 2020-09-22 | Arrowhead Pharmaceuticals, Inc. | RNAi agents for Hepatitis B virus infection |
| US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
| US12012598B2 (en) | 2016-08-12 | 2024-06-18 | Toolgen Incorporated | Manipulated immunoregulatory element and immunity altered thereby |
| US12060588B2 (en) | 2016-08-19 | 2024-08-13 | Whitehead Institute For Biomedical Research | Methods of editing DNA methylation |
| US11434476B2 (en) | 2016-08-19 | 2022-09-06 | Whitehead Institute For Biomedical Research | Methods of editing DNA methylation |
| US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
| US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
| WO2018044920A1 (en) | 2016-08-29 | 2018-03-08 | The Regents Of The University Of California | Topical formulations based on ionic species for skin treatment |
| US11946163B2 (en) | 2016-09-02 | 2024-04-02 | KSQ Therapeutics, Inc. | Methods for measuring and improving CRISPR reagent function |
| US11078483B1 (en) | 2016-09-02 | 2021-08-03 | KSQ Therapeutics, Inc. | Methods for measuring and improving CRISPR reagent function |
| WO2018053035A1 (en) | 2016-09-13 | 2018-03-22 | The Jackson Laboratory | Targeted dna demethylation and methylation |
| WO2018053037A1 (en) | 2016-09-13 | 2018-03-22 | The Jackson Laboratory | Targeted enhanced dna demethylation |
| US11780895B2 (en) | 2016-09-13 | 2023-10-10 | The Jackson Laboratory | Targeted DNA demethylation and methylation |
| WO2018054911A1 (en) | 2016-09-23 | 2018-03-29 | Bayer Cropscience Nv | Targeted genome optimization in plants |
| US11085078B2 (en) | 2016-09-29 | 2021-08-10 | Oxford Nanopore Technologies Limited | Method for nucleic acid detection by guiding through a nanopore |
| JP2019532642A (ja) * | 2016-09-29 | 2019-11-14 | オックスフォード ナノポール テクノロジーズ リミテッド | ナノポアを通した誘導による核酸検出方法 |
| JP7065083B2 (ja) | 2016-09-29 | 2022-05-11 | オックスフォード ナノポール テクノロジーズ ピーエルシー | ナノポアを通した誘導による核酸検出方法 |
| US11739379B2 (en) | 2016-09-29 | 2023-08-29 | Oxford Nanopore Technologies Plc | Method for nucleic acid detection by guiding through a nanopore |
| US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
| WO2018071892A1 (en) | 2016-10-14 | 2018-04-19 | Joung J Keith | Epigenetically regulated site-specific nucleases |
| WO2018073237A1 (en) | 2016-10-17 | 2018-04-26 | The University Court Of The University Of Edinburgh | Swine comprising modified cd163 and associated methods |
| US11154574B2 (en) | 2016-10-18 | 2021-10-26 | Regents Of The University Of Minnesota | Tumor infiltrating lymphocytes and methods of therapy |
| US10912797B2 (en) | 2016-10-18 | 2021-02-09 | Intima Bioscience, Inc. | Tumor infiltrating lymphocytes and methods of therapy |
| US11766400B2 (en) | 2016-10-24 | 2023-09-26 | Yale University | Biodegradable contraceptive implants |
| WO2018080573A1 (en) | 2016-10-28 | 2018-05-03 | Massachusetts Institute Of Technology | Crispr/cas global regulator screening platform |
| US11732258B2 (en) * | 2016-11-02 | 2023-08-22 | President And Fellows Of Harvard College | Engineered guide RNA sequences for in situ detection and sequencing |
| US12414967B2 (en) | 2016-11-04 | 2025-09-16 | Children's Hospital Medical Center | Compositions and methods of treating liver disease |
| US11832598B2 (en) | 2016-11-04 | 2023-12-05 | Akeagen, Inc. | Genetically modified non-human animals and methods for producing heavy chain-only antibodies |
| US10660316B2 (en) | 2016-11-04 | 2020-05-26 | Akeagen, Inc. | Genetically modified non-human animals and methods for producing heavy chain-only antibodies |
| EP3541945A4 (en) * | 2016-11-18 | 2020-12-09 | Genedit Inc. | COMPOSITIONS AND METHODS OF MODIFICATION OF TARGET NUCLEIC ACIDS |
| US12234453B2 (en) | 2016-12-12 | 2025-02-25 | Whitehead Institute For Biomedical Research | Regulation of transcription through CTCF loop anchors |
| US11753460B2 (en) | 2016-12-13 | 2023-09-12 | Seattle Children's Hospital | Methods of exogenous drug activation of chemical-induced signaling complexes expressed in engineered cells in vitro and in vivo |
| US12358970B2 (en) | 2016-12-13 | 2025-07-15 | Seattle Children's Hospital | Methods of exogenous drug activation of chemical-induced signaling complexes expressed in engineered cells in vitro and in vivo |
| US12478589B2 (en) | 2016-12-16 | 2025-11-25 | The Brigham And Women's Hospital, Inc. | Co-delivery of nucleic acids for simultaneous suppression and expression of target genes |
| WO2018112470A1 (en) | 2016-12-16 | 2018-06-21 | The Brigham And Women's Hospital, Inc. | Co-delivery of nucleic acids for simultaneous suppression and expression of target genes |
| US12286727B2 (en) | 2016-12-19 | 2025-04-29 | Editas Medicine, Inc. | Assessing nuclease cleavage |
| US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
| US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
| US11597947B2 (en) | 2016-12-29 | 2023-03-07 | Asc Therapeutics Inc. | Gene editing method using virus |
| US11859219B1 (en) | 2016-12-30 | 2024-01-02 | Flagship Pioneering Innovations V, Inc. | Methods of altering a target nucleotide sequence with an RNA-guided nuclease and a single guide RNA |
| WO2018129129A1 (en) | 2017-01-05 | 2018-07-12 | Rutgers, The State University Of New Jersey | Targeted gene editing platform independent of dna double strand break and uses thereof |
| US12110545B2 (en) | 2017-01-06 | 2024-10-08 | Editas Medicine, Inc. | Methods of assessing nuclease cleavage |
| US11230710B2 (en) | 2017-01-09 | 2022-01-25 | Aposense Ltd | Compounds and methods for trans-membrane delivery of molecules |
| US11873496B2 (en) | 2017-01-09 | 2024-01-16 | Whitehead Institute For Biomedical Research | Methods of altering gene expression by perturbing transcription factor multimers that structure regulatory loops |
| WO2018136758A1 (en) | 2017-01-23 | 2018-07-26 | Regeneron Pharmaceuticals, Inc. | Hsd17b13 variants and uses thereof |
| US11845963B2 (en) | 2017-01-23 | 2023-12-19 | Regeneron Pharmaceuticals, Inc. | HSD17B13 variants and uses thereof |
| RU2760851C2 (ru) * | 2017-01-23 | 2021-11-30 | Регенерон Фармасьютикалз, Инк. | Варианты hsd17b13 и их применения |
| US11753628B2 (en) | 2017-01-23 | 2023-09-12 | Regeneron Pharmaceuticals, Inc. | HSD17B13 variants and uses thereof |
| US11485958B2 (en) | 2017-01-23 | 2022-11-01 | Regeneron Pharmaceuticals, Inc. | HSD17B13 variants and uses thereof |
| US11466271B2 (en) | 2017-02-06 | 2022-10-11 | Novartis Ag | Compositions and methods for the treatment of hemoglobinopathies |
| US11236370B2 (en) | 2017-02-21 | 2022-02-01 | Duke University | Compositions and methods for screening microorganisms for robust dynamic metabolic control |
| US11746362B2 (en) | 2017-02-21 | 2023-09-05 | Duke University | Compositions and methods for metabolic control of a biofermentation process with synthetic metabolic valves |
| US11279956B2 (en) | 2017-02-21 | 2022-03-22 | Duke University | Compositions and methods for robust dynamic metabolic control of mevalonate production |
| US11193149B2 (en) | 2017-02-21 | 2021-12-07 | Duke University | Compositions and methods for robust dynamic metabolic control of alanine production |
| US11339413B2 (en) | 2017-02-21 | 2022-05-24 | Duke University | Compositions and methods for robust dynamic metabolic control of 3-hydroxypropionic acid production |
| US11268111B2 (en) | 2017-02-21 | 2022-03-08 | Duke University | Compositions and methods for robust dynamic metabolic control of a biofermentation process |
| US12378581B2 (en) | 2017-02-21 | 2025-08-05 | Duke University | Compositions and methods for metabolic control of a biofermentation process with synthetic metabolic valves |
| WO2018154418A1 (en) | 2017-02-22 | 2018-08-30 | Crispr Therapeutics Ag | Materials and methods for treatment of early onset parkinson's disease (park1) and other synuclein, alpha (snca) gene related conditions or disorders |
| US11407997B2 (en) | 2017-02-22 | 2022-08-09 | Crispr Therapeutics Ag | Materials and methods for treatment of primary hyperoxaluria type 1 (PH1) and other alanine-glyoxylate aminotransferase (AGXT) gene related conditions or disorders |
| WO2018154387A1 (en) | 2017-02-22 | 2018-08-30 | Crispr Therapeutics Ag | Compositions and methods for gene editing |
| US11559588B2 (en) | 2017-02-22 | 2023-01-24 | Crispr Therapeutics Ag | Materials and methods for treatment of Spinocerebellar Ataxia Type 1 (SCA1) and other Spinocerebellar Ataxia Type 1 Protein (ATXN1) gene related conditions or disorders |
| WO2018154462A2 (en) | 2017-02-22 | 2018-08-30 | Crispr Therapeutics Ag | Materials and methods for treatment of spinocerebellar ataxia type 2 (sca2) and other spinocerebellar ataxia type 2 protein (atxn2) gene related conditions or disorders |
| US11920148B2 (en) | 2017-02-22 | 2024-03-05 | Crispr Therapeutics Ag | Compositions and methods for gene editing |
| US11975029B2 (en) | 2017-02-28 | 2024-05-07 | Vor Biopharma Inc. | Compositions and methods for inhibition of lineage specific proteins |
| US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
| US12390514B2 (en) | 2017-03-09 | 2025-08-19 | President And Fellows Of Harvard College | Cancer vaccine |
| US12516308B2 (en) | 2017-03-09 | 2026-01-06 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
| US12435331B2 (en) | 2017-03-10 | 2025-10-07 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
| US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
| US11851690B2 (en) | 2017-03-14 | 2023-12-26 | Editas Medicine, Inc. | Systems and methods for the treatment of hemoglobinopathies |
| US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
| US12268774B2 (en) | 2017-04-04 | 2025-04-08 | Yale University | Compositions and methods for in utero delivery |
| WO2018187493A1 (en) | 2017-04-04 | 2018-10-11 | Yale University | Compositions and methods for in utero delivery |
| US11479802B2 (en) | 2017-04-11 | 2022-10-25 | Regeneron Pharmaceuticals, Inc. | Assays for screening activity of modulators of members of the hydroxy steroid (17-beta) dehydrogenase (HSD17B) family |
| US12281334B2 (en) | 2017-04-14 | 2025-04-22 | Children's Hospital Medical Center | Multi donor stem cell compositions and methods of making same |
| US11913015B2 (en) | 2017-04-17 | 2024-02-27 | University Of Maryland, College Park | Embryonic cell cultures and methods of using the same |
| US12058986B2 (en) | 2017-04-20 | 2024-08-13 | Egenesis, Inc. | Method for generating a genetically modified pig with inactivated porcine endogenous retrovirus (PERV) elements |
| US11667677B2 (en) | 2017-04-21 | 2023-06-06 | The General Hospital Corporation | Inducible, tunable, and multiplex human gene regulation using CRISPR-Cpf1 |
| EP4481049A2 (en) | 2017-04-21 | 2024-12-25 | The General Hospital Corporation | Variants of cpf1 (cas12a) with altered pam specificity |
| WO2018195545A2 (en) | 2017-04-21 | 2018-10-25 | The General Hospital Corporation | Variants of cpf1 (cas12a) with altered pam specificity |
| US12202861B2 (en) | 2017-04-21 | 2025-01-21 | The General Hospital Corporation | Inducible, tunable, and multiplex human gene regulation using CRISPR-Cpf1 |
| US11732251B2 (en) | 2017-04-24 | 2023-08-22 | Dupont Nutrition Biosciences Aps | Anti-CRISPR polynucleotides and polypeptides and methods of use |
| WO2018197520A1 (en) | 2017-04-24 | 2018-11-01 | Dupont Nutrition Biosciences Aps | Methods and compositions of anti-crispr proteins for use in plants |
| US11499151B2 (en) | 2017-04-28 | 2022-11-15 | Editas Medicine, Inc. | Methods and systems for analyzing guide RNA molecules |
| US12157883B2 (en) * | 2017-05-05 | 2024-12-03 | California Institute Of Technology | DNA sequence modification-based gene drive |
| US12275963B2 (en) | 2017-05-08 | 2025-04-15 | Toolgen Incorporated | Artificially manipulated immune cell |
| US11963982B2 (en) | 2017-05-10 | 2024-04-23 | Editas Medicine, Inc. | CRISPR/RNA-guided nuclease systems and methods |
| WO2019097305A2 (en) | 2017-05-12 | 2019-05-23 | Crispr Therapeutics Ag | Materials and methods for engineering cells and uses thereof in immuno-oncology |
| US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
| US11692184B2 (en) | 2017-05-16 | 2023-07-04 | The Regents Of The University Of California | Thermostable RNA-guided endonucleases and methods of use thereof |
| WO2018213351A1 (en) * | 2017-05-16 | 2018-11-22 | The Regents Of The University Of California | Thermostable rna-guided endonucleases and methods of use thereof |
| US11439692B2 (en) | 2017-05-17 | 2022-09-13 | Modalis Therapeutics Corporation | Method of treating diseases associated with MYD88 pathways using CRISPR-GNDM system |
| WO2018212361A1 (en) * | 2017-05-17 | 2018-11-22 | Edigene Corporation | Method of treating diseases associated with myd88 pathways using crispr-gndm system |
| US11788087B2 (en) | 2017-05-25 | 2023-10-17 | The Children's Medical Center Corporation | BCL11A guide delivery |
| WO2018218166A1 (en) | 2017-05-25 | 2018-11-29 | The General Hospital Corporation | Using split deaminases to limit unwanted off-target base editor deamination |
| WO2018218206A1 (en) | 2017-05-25 | 2018-11-29 | The General Hospital Corporation | Bipartite base editor (bbe) architectures and type-ii-c-cas9 zinc finger editing |
| EP3636760A4 (en) * | 2017-06-05 | 2020-11-18 | Guangzhou Ribobio Co., Ltd. | DNA EDITING SYSTEM AND CORRESPONDING APPLICATION |
| WO2018226560A1 (en) | 2017-06-05 | 2018-12-13 | Regeneron Pharmaceuticals, Inc. | B4galt1 variants and uses thereof |
| US11098297B2 (en) | 2017-06-09 | 2021-08-24 | Editas Medicine, Inc. | Engineered Cas9 nucleases |
| US12297466B2 (en) | 2017-06-09 | 2025-05-13 | Editas Medicine, Inc. | Engineered Cas9 nucleases |
| US10428319B2 (en) | 2017-06-09 | 2019-10-01 | Editas Medicine, Inc. | Engineered Cas9 nucleases |
| US12234461B2 (en) | 2017-06-15 | 2025-02-25 | The Regents Of The University Of California, A California Corporation | Targeted non-viral DNA insertions |
| US11814624B2 (en) | 2017-06-15 | 2023-11-14 | The Regents Of The University Of California | Targeted non-viral DNA insertions |
| US11220697B2 (en) | 2017-06-23 | 2022-01-11 | Inscripta, Inc. | Nucleic acid-guided nucleases |
| US12180502B2 (en) | 2017-06-23 | 2024-12-31 | Inscripta, Inc. | Nucleic acid-guided nucleases |
| US11130970B2 (en) | 2017-06-23 | 2021-09-28 | Inscripta, Inc. | Nucleic acid-guided nucleases |
| US11408012B2 (en) | 2017-06-23 | 2022-08-09 | Inscripta, Inc. | Nucleic acid-guided nucleases |
| US10337028B2 (en) | 2017-06-23 | 2019-07-02 | Inscripta, Inc. | Nucleic acid-guided nucleases |
| US10626416B2 (en) | 2017-06-23 | 2020-04-21 | Inscripta, Inc. | Nucleic acid-guided nucleases |
| US12195749B2 (en) | 2017-06-23 | 2025-01-14 | Inscripta, Inc. | Nucleic acid-guided nucleases |
| US10011849B1 (en) | 2017-06-23 | 2018-07-03 | Inscripta, Inc. | Nucleic acid-guided nucleases |
| US10435714B2 (en) | 2017-06-23 | 2019-10-08 | Inscripta, Inc. | Nucleic acid-guided nucleases |
| US11306327B1 (en) | 2017-06-23 | 2022-04-19 | Inscripta, Inc. | Nucleic acid-guided nucleases |
| US11697826B2 (en) | 2017-06-23 | 2023-07-11 | Inscripta, Inc. | Nucleic acid-guided nucleases |
| US9982279B1 (en) | 2017-06-23 | 2018-05-29 | Inscripta, Inc. | Nucleic acid-guided nucleases |
| WO2019002218A2 (en) | 2017-06-25 | 2019-01-03 | Snipr Technologies Limited | MODIFICATION OF MICROBIAL POPULATIONS AND MODIFICATION OF MICROBIOTA |
| EP4623922A2 (en) | 2017-06-25 | 2025-10-01 | SNIPR Technologies Limited | Altering microbial populations & modifying microbiota |
| EP4484562A2 (en) | 2017-06-27 | 2025-01-01 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized asgr1 locus |
| US11696572B2 (en) | 2017-06-27 | 2023-07-11 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized ASGR1 locus |
| WO2019006034A1 (en) | 2017-06-27 | 2019-01-03 | Regeneron Pharmaceuticals, Inc. | NON-HUMAN ANIMALS COMPRISING A HUMANIZED ASGR1 LOCUS |
| US10421959B1 (en) | 2017-06-30 | 2019-09-24 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems |
| US10392616B2 (en) | 2017-06-30 | 2019-08-27 | Arbor Biotechnologies, Inc. | CRISPR RNA targeting enzymes and systems and uses thereof |
| US10584333B1 (en) | 2017-06-30 | 2020-03-10 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems |
| US10323242B1 (en) | 2017-06-30 | 2019-06-18 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems |
| US10947532B2 (en) | 2017-06-30 | 2021-03-16 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems |
| US11098325B2 (en) | 2017-06-30 | 2021-08-24 | Intima Bioscience, Inc. | Adeno-associated viral vectors for gene therapy |
| US10519437B1 (en) | 2017-06-30 | 2019-12-31 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems |
| US10954512B1 (en) | 2017-06-30 | 2021-03-23 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems |
| US10253316B2 (en) | 2017-06-30 | 2019-04-09 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems |
| US10894958B1 (en) | 2017-06-30 | 2021-01-19 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems |
| US10689645B1 (en) | 2017-06-30 | 2020-06-23 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems |
| US10787663B1 (en) | 2017-06-30 | 2020-09-29 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems |
| US10329559B1 (en) | 2017-06-30 | 2019-06-25 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems |
| US11034953B1 (en) | 2017-06-30 | 2021-06-15 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems |
| US10647982B1 (en) | 2017-06-30 | 2020-05-12 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems |
| US11168322B2 (en) | 2017-06-30 | 2021-11-09 | Arbor Biotechnologies, Inc. | CRISPR RNA targeting enzymes and systems and uses thereof |
| US11597921B2 (en) | 2017-06-30 | 2023-03-07 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems |
| US10738301B1 (en) | 2017-06-30 | 2020-08-11 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems |
| US10465185B1 (en) | 2017-06-30 | 2019-11-05 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems |
| US10584334B1 (en) | 2017-06-30 | 2020-03-10 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems |
| US12460203B2 (en) | 2017-06-30 | 2025-11-04 | Arbor Biotechnologies, Inc. | CRISPR RNA targeting enzymes and systems and uses thereof |
| US11203751B2 (en) | 2017-06-30 | 2021-12-21 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems |
| US11866726B2 (en) | 2017-07-14 | 2024-01-09 | Editas Medicine, Inc. | Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites |
| US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
| US12359218B2 (en) | 2017-07-28 | 2025-07-15 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
| US11130999B2 (en) | 2017-07-31 | 2021-09-28 | Regeneron Pharmaceuticals, Inc. | Cas-ready mouse embryonic stem cells and mice and uses thereof |
| US11021719B2 (en) | 2017-07-31 | 2021-06-01 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for assessing CRISPER/Cas-mediated disruption or excision and CRISPR/Cas-induced recombination with an exogenous donor nucleic acid in vivo |
| US11866794B2 (en) | 2017-07-31 | 2024-01-09 | Regeneron Pharmaceuticals, Inc. | Cas-ready mouse embryonic stem cells and mice and uses thereof |
| WO2019028023A2 (en) | 2017-07-31 | 2019-02-07 | Regeneron Pharmaceuticals, Inc. | METHODS AND COMPOSITIONS FOR EVALUATING CRISPR / CAS MEDIATED DISRUPTION OR EXCISION AND CRISPR / CAS INDUCED RECOMBINATION USING IN VIVO EXOGENIC DONOR NUCLEIC ACID |
| WO2019028029A1 (en) | 2017-07-31 | 2019-02-07 | Regeneron Pharmaceuticals, Inc. | EVALUATION OF CRISPR / CAS INDUCED RECOMBINATION WITH IN VIVO EXOGENIC DONOR NUCLEIC ACID |
| WO2019028032A1 (en) | 2017-07-31 | 2019-02-07 | Regeneron Pharmaceuticals, Inc. | EMBRYONIC STEM CELLS OF TRANSGENIC MOUSE CASES AND MICE AND USES THEREOF |
| US11897920B2 (en) | 2017-08-04 | 2024-02-13 | Peking University | Tale RVD specifically recognizing DNA base modified by methylation and application thereof |
| US11384383B2 (en) | 2017-08-08 | 2022-07-12 | Depixus | In vitro isolation and enrichment of nucleic acids using site-specific nucleases |
| US11624077B2 (en) | 2017-08-08 | 2023-04-11 | Peking University | Gene knockout method |
| WO2019036599A1 (en) * | 2017-08-18 | 2019-02-21 | The Board Of Regents Of The University Of Texas System | EXON DELETION CORRECTION OF MUTATIONS OF DUCHENNE MUSCLE DYSTROPHY IN ACTINE DYSTROPHINE BINDING DOMAIN 1 Using a GENOME CRISPR EDITION |
| US12241096B2 (en) | 2017-08-23 | 2025-03-04 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
| US11624058B2 (en) | 2017-08-23 | 2023-04-11 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
| US11286468B2 (en) | 2017-08-23 | 2022-03-29 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
| US10787683B1 (en) | 2017-08-28 | 2020-09-29 | Inscripta, Inc. | Electroporation cuvettes for automation |
| US10738327B2 (en) | 2017-08-28 | 2020-08-11 | Inscripta, Inc. | Electroporation cuvettes for automation |
| US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
| US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
| EP3678680A4 (en) * | 2017-09-05 | 2021-12-01 | Regeneron Pharmaceuticals, Inc. | ADMINISTRATION OF A GENE EDITING SYSTEM CONTAINING A SINGLE RETROVIRAL PARTICLE AND METHODS OF GENERATION AND USE |
| US12404505B2 (en) | 2017-09-05 | 2025-09-02 | Regeneron Pharmaceuticals, Inc. | Delivery of a gene-editing system with a single retroviral particle and methods of generation and use |
| WO2019050899A1 (en) | 2017-09-06 | 2019-03-14 | Regeneron Pharmaceuticals, Inc. | SINGLE IMMUNOGLOBULIN INTERLEUKIN 1 (SIGIRR) RELATED INTERCEPTOR-RELATED VARIANTS AND USES THEREOF |
| WO2019051033A1 (en) | 2017-09-07 | 2019-03-14 | Regeneron Pharmaceuticals, Inc. | VARIANTS OF MEMBER 1 OF SOLUT TRANSPORTER FAMILY 14 (SLC14A1) AND USES THEREOF |
| WO2019053725A1 (en) | 2017-09-18 | 2019-03-21 | Futuragene Israel Ltd. | TISSUE-SPECIFIC EXPRESSION CONTROL OF DELLA POLYPEPTIDES |
| WO2019052577A1 (zh) | 2017-09-18 | 2019-03-21 | 博雅辑因(北京)生物科技有限公司 | 一种基因编辑t细胞及其用途 |
| US11555195B2 (en) | 2017-09-18 | 2023-01-17 | Futuragene Israel Ltd. | Tissue-specific expression control of DELLA polypeptides |
| US20230067345A1 (en) * | 2017-09-19 | 2023-03-02 | Massachusetts Institute Of Technology | Applications of Engineered Streptococcus Canis Cas9 Variants on Single-Base PAM Targets |
| US12054755B2 (en) * | 2017-09-19 | 2024-08-06 | Massachusetts Institute Of Technology | Streptococcus canis Cas9 as a genome engineering platform with novel PAM specificity |
| US11697808B2 (en) * | 2017-09-19 | 2023-07-11 | Massachusetts Institute Of Technology | Applications of engineered Streptococcus canis Cas9 variants on single-base PAM targets |
| WO2019060115A1 (en) | 2017-09-19 | 2019-03-28 | Advaxis, Inc. | COMPOSITIONS AND METHODS FOR LYOPHILIZATION OF BACTERIA OR LISTERIA STRAINS |
| EP4527412A2 (en) | 2017-09-19 | 2025-03-26 | Advaxis, Inc. | Compositions and methods for lyophilization of bacteria or listeria strains |
| US11453865B2 (en) * | 2017-09-19 | 2022-09-27 | Massachusetts Institute Of Technology | Applications of engineered Streptococcus canis Cas9 variants on single-base PAM targets |
| US20230028069A1 (en) * | 2017-09-19 | 2023-01-26 | Massachusetts Institute Of Technology | Streptococcus Canis Cas9 as a Genome Engineering Platform with Novel PAM Specificity |
| US11572574B2 (en) * | 2017-09-28 | 2023-02-07 | Toolgen Incorporated | Artificial genome manipulation for gene expression regulation |
| US12163149B2 (en) * | 2017-09-28 | 2024-12-10 | Toolgen Incorporated | Artificial genome manipulation for gene expression regulation |
| WO2019067910A1 (en) * | 2017-09-29 | 2019-04-04 | Intellia Therapeutics, Inc. | POLYNUCLEOTIDES, COMPOSITIONS AND METHODS FOR GENOMIC EDITION |
| US11697806B2 (en) | 2017-09-29 | 2023-07-11 | Intellia Therapeutics, Inc. | Polynucleotides, compositions, and methods for genome editing |
| KR102822306B1 (ko) * | 2017-09-29 | 2025-06-19 | 인텔리아 테라퓨틱스, 인크. | 게놈 편집을 위한 폴리뉴클레오티드, 조성물 및 방법 |
| AU2018339089B2 (en) * | 2017-09-29 | 2025-08-28 | Intellia Therapeutics, Inc. | Polynucleotides, compositions, and methods for genome editing |
| EP4276185A2 (en) | 2017-09-29 | 2023-11-15 | Regeneron Pharmaceuticals, Inc. | Rodents comprising a humanized ttr locus and methods of use |
| US11845951B2 (en) * | 2017-09-29 | 2023-12-19 | Toolgen Incorporated | Gene manipulation for treatment of retinal dysfunction disorder |
| US20200277630A1 (en) * | 2017-09-29 | 2020-09-03 | Toolgen Incorporated | Gene manipulation for treatment of retinal dysfunction disorder |
| CN111405912B (zh) * | 2017-09-29 | 2025-02-14 | 因特利亚治疗公司 | 用于基因组编辑的多核苷酸、组合物及方法 |
| TWI839337B (zh) * | 2017-09-29 | 2024-04-21 | 美商英特利亞醫療公司 | 用於基因組編輯之多核苷酸、組合物及方法 |
| WO2019067875A1 (en) | 2017-09-29 | 2019-04-04 | Regeneron Pharmaceuticals, Inc. | NON-HUMAN ANIMALS COMPRISING A HUMANIZED TTR LOCUS AND METHODS OF USE |
| KR20200058508A (ko) * | 2017-09-29 | 2020-05-27 | 인텔리아 테라퓨틱스, 인크. | 게놈 편집을 위한 폴리뉴클레오티드, 조성물 및 방법 |
| CN111405912A (zh) * | 2017-09-29 | 2020-07-10 | 因特利亚治疗公司 | 用于基因组编辑的多核苷酸、组合物及方法 |
| US10435713B2 (en) | 2017-09-30 | 2019-10-08 | Inscripta, Inc. | Flow through electroporation instrumentation |
| US10323258B2 (en) | 2017-09-30 | 2019-06-18 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems comprising flow-through electroporation devices |
| US10443074B2 (en) | 2017-09-30 | 2019-10-15 | Inscripta, Inc. | Modification of cells by introduction of exogenous material |
| US10415058B2 (en) | 2017-09-30 | 2019-09-17 | Inscripta, Inc. | Automated nucleic acid assembly and introduction of nucleic acids into cells |
| US10508288B1 (en) | 2017-09-30 | 2019-12-17 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems comprising flow-through electroporation devices |
| US10851389B2 (en) | 2017-09-30 | 2020-12-01 | Inscripta, Inc. | Modification of cells by introduction of exogenous material |
| US10557150B1 (en) | 2017-09-30 | 2020-02-11 | Inscripta, Inc. | Automated nucleic acid assembly and introduction of nucleic acids into cells |
| US10907178B2 (en) | 2017-09-30 | 2021-02-02 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems comprising flow-through electroporation devices |
| US10822621B2 (en) | 2017-09-30 | 2020-11-03 | Inscripta, Inc. | Automated nucleic acid assembly and introduction of nucleic acids into cells |
| WO2019071276A1 (en) | 2017-10-06 | 2019-04-11 | Camp4 Therapeutics Corporation | METHODS AND COMPOSITIONS FOR THE TREATMENT OF UREA CYCLE DISORDERS, IN PARTICULAR OF OTC DEFICIENCY |
| US12297457B2 (en) | 2017-10-10 | 2025-05-13 | Children's Hospital Medical Center | Esophageal tissue and/or organoid compositions and methods of making same |
| US11725228B2 (en) | 2017-10-11 | 2023-08-15 | The General Hospital Corporation | Methods for detecting site-specific and spurious genomic deamination induced by base editing technologies |
| US11702700B2 (en) | 2017-10-11 | 2023-07-18 | Regeneron Pharmaceuticals, Inc. | Inhibition of HSD17B13 in the treatment of liver disease in patients expressing the PNPLA3 I148M variation |
| US12286677B2 (en) | 2017-10-11 | 2025-04-29 | Regeneron Pharmaceuticals, Inc. | Inhibition of HSD17B13 in the treatment of liver disease in patients expressing the PNPLA3 I148M variation |
| WO2019079238A1 (en) | 2017-10-16 | 2019-04-25 | Regeneron Pharmaceuticals, Inc. | CORNULIN VARIANTS (CRNN) AND USES THEREOF |
| US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
| WO2019079527A1 (en) | 2017-10-17 | 2019-04-25 | Casebia Therapeutics Limited Liability Partnership | COMPOSITIONS AND METHODS FOR GENETIC EDITION FOR HEMOPHILIA A |
| WO2019081982A1 (en) | 2017-10-26 | 2019-05-02 | Crispr Therapeutics Ag | SUBSTANCES AND METHODS FOR THE TREATMENT OF HEMOGLOBINOPATHIES |
| WO2019080917A1 (zh) | 2017-10-27 | 2019-05-02 | 博雅辑因(北京)生物科技有限公司 | 一种提高胎儿血红蛋白表达的方法 |
| US12398193B2 (en) | 2017-10-27 | 2025-08-26 | The Regents Of The University Of California | Targeted replacement of endogenous T cell receptors |
| US11590171B2 (en) | 2017-10-27 | 2023-02-28 | The Regents Of The University Of California | Targeted replacement of endogenous T cell receptors |
| US11033584B2 (en) | 2017-10-27 | 2021-06-15 | The Regents Of The University Of California | Targeted replacement of endogenous T cell receptors |
| US11331346B2 (en) | 2017-10-27 | 2022-05-17 | The Regents Of The University Of California | Targeted replacement of endogenous T cell receptors |
| US11083753B1 (en) | 2017-10-27 | 2021-08-10 | The Regents Of The University Of California | Targeted replacement of endogenous T cell receptors |
| WO2019080920A1 (zh) | 2017-10-27 | 2019-05-02 | 博雅辑因(北京)生物科技有限公司 | 一种提高胎儿血红蛋白表达水平的方法 |
| WO2019087113A1 (en) | 2017-11-01 | 2019-05-09 | Novartis Ag | Synthetic rnas and methods of use |
| US12054754B2 (en) | 2017-11-02 | 2024-08-06 | Arbor Biotechnologies, Inc. | CRISPR-associated transposon systems and components |
| US20200291395A1 (en) * | 2017-11-02 | 2020-09-17 | Arbor Biotechnologies, Inc. | Novel crispr-associated transposon systems and components |
| WO2019090173A1 (en) * | 2017-11-02 | 2019-05-09 | Arbor Biotechnologies, Inc. | Novel crispr-associated transposon systems and components |
| WO2019092505A1 (en) | 2017-11-09 | 2019-05-16 | Casebia Therapeutics Llp | Self-inactivating (sin) crispr/cas or crispr/cpf1 systems and uses thereof |
| WO2019092507A2 (en) | 2017-11-09 | 2019-05-16 | Crispr Therapeutics Ag | Crispr/cas systems for treatment of dmd |
| WO2019094735A1 (en) | 2017-11-10 | 2019-05-16 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising slc30a8 mutation and methods of use |
| CN111511908A (zh) * | 2017-11-10 | 2020-08-07 | 诺维信公司 | 温度敏感性cas9蛋白 |
| US10940171B2 (en) | 2017-11-10 | 2021-03-09 | Massachusetts Institute Of Technology | Microbial production of pure single stranded nucleic acids |
| WO2019094928A1 (en) | 2017-11-10 | 2019-05-16 | Massachusetts Institute Of Technology | Microbial production of pure single stranded nucleic acids |
| AU2023200084B2 (en) * | 2017-11-10 | 2025-10-16 | University Of Massachusetts | Targeted CRISPR delivery platforms |
| WO2019092042A1 (en) | 2017-11-10 | 2019-05-16 | Novozymes A/S | Temperature-sensitive cas9 protein |
| US10953036B2 (en) | 2017-11-20 | 2021-03-23 | University Of Georgia Research Foundation, Inc. | Compositions and methods of modulating HIF-2A to improve muscle generation and repair |
| WO2019100053A1 (en) | 2017-11-20 | 2019-05-23 | University Of Georgia Research Foundation, Inc. | Compositions and methods for modulating hif-2α to improve muscle generation and repair |
| US12042507B2 (en) | 2017-11-20 | 2024-07-23 | University Of Georgia Research Foundation, Inc. | Compositions and methods of modulating HIF-2A to improve muscle generation and repair |
| WO2019108983A1 (en) | 2017-11-30 | 2019-06-06 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized trkb locus |
| EP4299732A2 (en) | 2017-11-30 | 2024-01-03 | Regeneron Pharmaceuticals, Inc. | Rats comprising a humanized trkb locus |
| WO2019113149A1 (en) | 2017-12-05 | 2019-06-13 | Crispr Therapeutics Ag | Crispr-cas9 modified cd34+ human hematopoietic stem and progenitor cells and uses thereof |
| US12161674B2 (en) | 2017-12-05 | 2024-12-10 | Vertex Pharmaceuticals Incorporated | CRISPR-CAS9 modified CD34+ human hematopoietic stem and progenitor cells and uses thereof |
| US11578323B2 (en) | 2017-12-14 | 2023-02-14 | Bayer Healthcare Llc | RNA-programmable endonuclease systems and their use in genome editing and other applications |
| WO2019118935A1 (en) * | 2017-12-14 | 2019-06-20 | Casebia Therapeutics Limited Liability Partnership | Novel rna-programmable endonuclease systems and their use in genome editing and other applications |
| WO2019118463A1 (en) | 2017-12-15 | 2019-06-20 | Danisco Us Inc | Cas9 variants and methods of use |
| US12406749B2 (en) | 2017-12-15 | 2025-09-02 | The Broad Institute, Inc. | Systems and methods for predicting repair outcomes in genetic engineering |
| WO2019123429A1 (en) | 2017-12-21 | 2019-06-27 | Casebia Therapeutics Llp | Materials and methods for treatment of usher syndrome type 2a |
| US12379372B2 (en) | 2017-12-21 | 2025-08-05 | Children's Hospital Medical Center | Digitalized human organoids and methods of using same |
| US12173291B2 (en) | 2017-12-29 | 2024-12-24 | The Scripps Research Institute | Unnatural base pair compositions and methods of use |
| US12337036B2 (en) | 2018-01-01 | 2025-06-24 | Aposense Ltd | Compounds and methods for trans-membrane delivery of molecules |
| US11359208B2 (en) | 2018-01-09 | 2022-06-14 | Cibus Us Llc | Shatterproof genes and mutations |
| US11268092B2 (en) | 2018-01-12 | 2022-03-08 | GenEdit, Inc. | Structure-engineered guide RNA |
| WO2019140330A1 (en) | 2018-01-12 | 2019-07-18 | Casebia Therapeutics Limited Liability Partnership | Compositions and methods for gene editing by targeting transferrin |
| WO2019138083A1 (en) | 2018-01-12 | 2019-07-18 | Basf Se | Gene underlying the number of spikelets per spike qtl in wheat on chromosome 7a |
| WO2019147275A1 (en) * | 2018-01-26 | 2019-08-01 | Integrated Dna Technologies, Inc. | Crispr-based compositions and methods of use |
| US12098363B2 (en) * | 2018-01-26 | 2024-09-24 | The Children's Medical Center Corporation | Targeting BCL11A distal regulatory elements with a CAS9-CAS9 fusion for fetal hemoglobin reinduction |
| US20210047632A1 (en) * | 2018-01-26 | 2021-02-18 | The Children's Medical Center Corporation | Targeting bcl11a distal regulatory elements with a cas9-cas9 fusion for fetal hemoglobin reinduction |
| US12263230B2 (en) | 2018-01-31 | 2025-04-01 | Research Institute At Nationwide Children's Hospital | Gene therapy for limb-girdle muscular dystrophy type 2C |
| WO2019150203A1 (en) | 2018-02-05 | 2019-08-08 | Crispr Therapeutics Ag | Materials and methods for treatment of hemoglobinopathies |
| US12492388B2 (en) | 2018-02-05 | 2025-12-09 | Vertex Pharmaceuticals Incorporated | Materials and methods for treatment of hemoglobinopathies |
| WO2019152941A1 (en) | 2018-02-05 | 2019-08-08 | Caribou Biosciences, Inc. | Engineered gut microbes for reduction of reactivation of detoxified drugs |
| WO2019150196A1 (en) | 2018-02-05 | 2019-08-08 | Crispr Therapeutics Ag | Materials and methods for treatment of hemoglobinopathies |
| US11566236B2 (en) | 2018-02-05 | 2023-01-31 | Vertex Pharmaceuticals Incorporated | Materials and methods for treatment of hemoglobinopathies |
| US11268077B2 (en) | 2018-02-05 | 2022-03-08 | Vertex Pharmaceuticals Incorporated | Materials and methods for treatment of hemoglobinopathies |
| US10767193B2 (en) * | 2018-02-15 | 2020-09-08 | Sigma-Aldrich Co. Llc | Engineered CAS9 systems for eukaryotic genome modification |
| US20190249200A1 (en) * | 2018-02-15 | 2019-08-15 | Sigma-Aldrich Co., Llc | Engineered cas9 systems for eukaryotic genome modification |
| US12297449B2 (en) | 2018-02-15 | 2025-05-13 | Sigma-Aldrich Co. Llc | Engineered CAS9 systems for eukaryotic genome modification |
| WO2019161310A1 (en) | 2018-02-16 | 2019-08-22 | Casebia Therapeutics Limited Liability Partnership | Compositions and methods for gene editing by targeting fibrinogen-alpha |
| US11718849B2 (en) | 2018-02-19 | 2023-08-08 | Agilent Technologies, Inc. | Phosphopeptide-encoding oligonucleotide libraries and methods for detecting phosphorylation-dependent molecular interactions |
| EP3755798A1 (en) | 2018-02-19 | 2020-12-30 | Yale University | Phosphopeptide-encoding oligonucleotide libraries and methods for detecting phosphorylation-dependent molecular interactions |
| US12084676B2 (en) | 2018-02-23 | 2024-09-10 | Pioneer Hi-Bred International, Inc. | Cas9 orthologs |
| WO2019173684A1 (en) | 2018-03-09 | 2019-09-12 | Advaxis, Inc. | Compositions and methods for evaluating attenuation and infectivity of listeria strains |
| US12031132B2 (en) | 2018-03-14 | 2024-07-09 | Editas Medicine, Inc. | Systems and methods for the treatment of hemoglobinopathies |
| WO2019183123A1 (en) | 2018-03-19 | 2019-09-26 | Regeneron Pharmaceuticals, Inc. | Transcription modulation in animals using crispr/cas systems |
| US12203110B2 (en) | 2018-03-19 | 2025-01-21 | Crispr Therapeutics Ag | RNA-programmable endonuclease systems and uses thereof |
| WO2019179445A1 (en) | 2018-03-20 | 2019-09-26 | Tsinghua University | Alzheimer's disease animal model and use thereof |
| US12359201B2 (en) | 2018-03-21 | 2025-07-15 | Regeneron Pharmaceuticals, Inc. | 17ß-hydroxysteroid dehydrogenase type 13 (HSD17B13) iRNA compositions and methods of use thereof |
| US11041169B2 (en) | 2018-03-26 | 2021-06-22 | National University Corporation Kobe University | Method for modifying target site in double-stranded DNA in cell |
| US10590375B2 (en) | 2018-03-29 | 2020-03-17 | Inscripta, Inc. | Methods for controlling the growth of prokaryotic and eukaryotic cells |
| US10883077B2 (en) | 2018-03-29 | 2021-01-05 | Inscripta, Inc. | Methods for controlling the growth of prokaryotic and eukaryotic cells |
| US10435662B1 (en) | 2018-03-29 | 2019-10-08 | Inscripta, Inc. | Automated control of cell growth rates for induction and transformation |
| US10717959B2 (en) | 2018-03-29 | 2020-07-21 | Inscripta, Inc. | Methods for controlling the growth of prokaryotic and eukaryotic cells |
| US10443031B1 (en) | 2018-03-29 | 2019-10-15 | Inscripta, Inc. | Methods for controlling the growth of prokaryotic and eukaryotic cells |
| WO2019195611A1 (en) | 2018-04-04 | 2019-10-10 | Cibus Us Llc | Fad2 genes and mutations |
| US10576474B2 (en) | 2018-04-13 | 2020-03-03 | Inscripta, Inc. | Automated cell processing instruments comprising reagent cartridges |
| US10799868B1 (en) | 2018-04-13 | 2020-10-13 | Inscripta, Inc. | Automated cell processing instruments comprising reagent cartridges |
| US10406525B1 (en) | 2018-04-13 | 2019-09-10 | Inscripta, Inc. | Automated cell processing instruments comprising reagent cartridges |
| US10639637B1 (en) | 2018-04-13 | 2020-05-05 | Inscripta, Inc. | Automated cell processing instruments comprising reagent cartridges |
| US10478822B1 (en) | 2018-04-13 | 2019-11-19 | Inscripta, Inc. | Automated cell processing instruments comprising reagent cartridges |
| US10376889B1 (en) | 2018-04-13 | 2019-08-13 | Inscripta, Inc. | Automated cell processing instruments comprising reagent cartridges |
| US10737271B1 (en) | 2018-04-13 | 2020-08-11 | Inscripta, Inc. | Automated cell processing instruments comprising reagent cartridges |
| US11976324B2 (en) | 2018-04-17 | 2024-05-07 | The General Hospital Corporation | Highly sensitive in vitro assays to define substrate preferences and sites of nucleic-acid binding, modifying, and cleaving agents |
| US11845987B2 (en) | 2018-04-17 | 2023-12-19 | The General Hospital Corporation | Highly sensitive in vitro assays to define substrate preferences and sites of nucleic acid cleaving agents |
| US11898203B2 (en) | 2018-04-17 | 2024-02-13 | The General Hospital Corporation | Highly sensitive in vitro assays to define substrate preferences and sites of nucleic-acid binding, modifying, and cleaving agents |
| WO2019204668A1 (en) | 2018-04-18 | 2019-10-24 | Casebia Therapeutics Limited Liability Partnership | Compositions and methods for knockdown of apo(a) by gene editing for treatment of cardiovascular disease |
| US11434491B2 (en) | 2018-04-19 | 2022-09-06 | The Regents Of The University Of California | Compositions and methods for gene editing |
| US11396718B2 (en) | 2018-04-24 | 2022-07-26 | Inscripta, Inc. | Automated instrumentation for production of T-cell receptor peptide libraries |
| US11542633B2 (en) | 2018-04-24 | 2023-01-03 | Inscripta, Inc. | Nucleic acid-guided editing of exogenous polynucleotides in heterologous cells |
| US11236441B2 (en) | 2018-04-24 | 2022-02-01 | Inscripta, Inc. | Nucleic acid-guided editing of exogenous polynucleotides in heterologous cells |
| US10774446B1 (en) | 2018-04-24 | 2020-09-15 | Inscripta, Inc. | Automated instrumentation for production of T-cell receptor peptide libraries |
| US11085131B1 (en) | 2018-04-24 | 2021-08-10 | Inscripta, Inc. | Nucleic acid-guided editing of exogenous polynucleotides in heterologous cells |
| US11473214B2 (en) | 2018-04-24 | 2022-10-18 | Inscripta, Inc. | Automated instrumentation for production of T-cell receptor peptide libraries |
| US10774324B2 (en) | 2018-04-24 | 2020-09-15 | Inscripta, Inc. | Automated instrumentation for production of peptide libraries |
| US11332850B2 (en) | 2018-04-24 | 2022-05-17 | Inscripta, Inc. | Nucleic acid-guided editing of exogenous polynucleotides in heterologous cells |
| US11555184B2 (en) | 2018-04-24 | 2023-01-17 | Inscripta, Inc. | Methods for identifying selective binding pairs |
| US10995424B2 (en) | 2018-04-24 | 2021-05-04 | Inscripta, Inc. | Nucleic acid-guided editing of exogenous polynucleotides in heterologous cells |
| US10501738B2 (en) | 2018-04-24 | 2019-12-10 | Inscripta, Inc. | Automated instrumentation for production of peptide libraries |
| US11293117B2 (en) | 2018-04-24 | 2022-04-05 | Inscripta, Inc. | Automated instrumentation for production of T-cell receptor peptide libraries |
| US10676842B2 (en) | 2018-04-24 | 2020-06-09 | Inscripta, Inc. | Automated instrumentation for production of T-cell receptor peptide libraries |
| US10508273B2 (en) | 2018-04-24 | 2019-12-17 | Inscripta, Inc. | Methods for identifying selective binding pairs |
| US10557216B2 (en) | 2018-04-24 | 2020-02-11 | Inscripta, Inc. | Automated instrumentation for production of T-cell receptor peptide libraries |
| US10526598B2 (en) | 2018-04-24 | 2020-01-07 | Inscripta, Inc. | Methods for identifying T-cell receptor antigens |
| US10711374B1 (en) | 2018-04-24 | 2020-07-14 | Inscripta, Inc. | Automated instrumentation for production of T-cell receptor peptide libraries |
| US10858761B2 (en) | 2018-04-24 | 2020-12-08 | Inscripta, Inc. | Nucleic acid-guided editing of exogenous polynucleotides in heterologous cells |
| WO2019210034A1 (en) | 2018-04-27 | 2019-10-31 | Advaxis, Inc. | Compositions and methods for evaluating potency of listeria-based immunotherapeutics |
| US11987804B2 (en) | 2018-04-27 | 2024-05-21 | Seattle Children's Hospital | Rapamycin resistant cells |
| US11788085B2 (en) | 2018-04-30 | 2023-10-17 | Snipr Biome Aps | Treating and preventing microbial infections |
| US12448619B2 (en) | 2018-04-30 | 2025-10-21 | Snipr Biome Aps | Treating and preventing microbial infections |
| US10920222B2 (en) | 2018-04-30 | 2021-02-16 | Snipr Biome Aps | Treating and preventing microbial infections |
| US11421227B2 (en) | 2018-04-30 | 2022-08-23 | Snipr Biome Aps | Treating and preventing microbial infections |
| US10760075B2 (en) | 2018-04-30 | 2020-09-01 | Snipr Biome Aps | Treating and preventing microbial infections |
| US11485973B2 (en) | 2018-04-30 | 2022-11-01 | Snipr Biome Aps | Treating and preventing microbial infections |
| US11643653B2 (en) | 2018-04-30 | 2023-05-09 | Snipr Biome Aps | Treating and preventing microbial infections |
| US12522811B2 (en) | 2018-05-01 | 2026-01-13 | The Children's Medical Center Corporation | Enhanced BCL11A RNP / CRISPR delivery and editing using a 3XNLS-CAS9 |
| US12350284B2 (en) | 2018-05-02 | 2025-07-08 | The Children's Medical Center Corporation | BCL11A microRNAs for treating hemoglobinopathies |
| WO2019217803A1 (en) | 2018-05-10 | 2019-11-14 | Auxolytic Ltd. | Gene therapy methods and compositions using auxotrophic regulatable cells |
| EP3790976A4 (en) * | 2018-05-10 | 2022-08-10 | Syngenta Participations Ag | METHODS AND COMPOSITIONS FOR TARGETED EDITING OF POLYNUCLEOTIDS |
| US12133884B2 (en) | 2018-05-11 | 2024-11-05 | Beam Therapeutics Inc. | Methods of substituting pathogenic amino acids using programmable base editor systems |
| US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
| AU2019282149B2 (en) * | 2018-06-05 | 2025-08-21 | Life Edit Therapeutics, Inc. | RNA-guided nucleases and active fragments and variants thereof and methods of use |
| US11162114B2 (en) | 2018-06-05 | 2021-11-02 | LifeEDIT Therapeutics, Inc. | RNA-guided nucleases and active fragments and variants thereof and methods of use |
| US12338455B2 (en) | 2018-06-05 | 2025-06-24 | Life Edit Therapeutics, Inc. | RNA-guided nucleases and active fragments and variants thereof and methods of use |
| WO2019236566A1 (en) * | 2018-06-05 | 2019-12-12 | Lifeedit, Inc. | Rna-guided nucleases and active fragments and variants thereof and methods of use |
| US11926843B2 (en) | 2018-06-05 | 2024-03-12 | LifeEDIT Therapeutics, Inc. | RNA-guided nucleases and active fragments and variants thereof and methods of use |
| EP4512900A3 (en) * | 2018-06-05 | 2025-04-02 | LifeEDIT Therapeutics, Inc. | Rna-guided nucleases and active fragments and variants thereof and methods of use |
| US11203744B2 (en) | 2018-06-21 | 2021-12-21 | Duke University | Compositions and methods for the production of pyruvic acid and related products using dynamic metabolic control |
| US12391928B2 (en) | 2018-06-29 | 2025-08-19 | Research Institute At Nationwide Children's Hospital | Recombinant adeno-associated virus products and methods for treating limb girdle muscular dystrophy 2A |
| WO2020002592A1 (en) | 2018-06-29 | 2020-01-02 | Stichting Het Nederlands Kanker Instituut - Antoni Van Leeuwenhoek Ziekenhuis | Traf2 inhibitors for use in the treatment of a cancer |
| US12338436B2 (en) | 2018-06-29 | 2025-06-24 | Editas Medicine, Inc. | Synthetic guide molecules, compositions and methods relating thereto |
| US12522807B2 (en) | 2018-07-09 | 2026-01-13 | The Broad Institute, Inc. | RNA programmable epigenetic RNA modifiers and uses thereof |
| WO2020014235A1 (en) | 2018-07-09 | 2020-01-16 | The Regents Of The University Of California | Gene targets for t-cell-based immunotherapy |
| US12421500B2 (en) | 2018-07-26 | 2025-09-23 | Children's Hospital Medical Center | Hepato-biliary-pancreatic tissues and methods of making same |
| US11939593B2 (en) | 2018-08-01 | 2024-03-26 | University Of Georgia Research Foundation, Inc. | Compositions and methods for improving embryo development |
| KR20210040985A (ko) | 2018-08-07 | 2021-04-14 | 가부시키가이샤 모달리스 | 신규 전사 액티베이터 |
| US10835869B1 (en) | 2018-08-14 | 2020-11-17 | Inscripta, Inc. | Instruments, modules, and methods for improved detection of edited sequences in live cells |
| US11739290B2 (en) | 2018-08-14 | 2023-08-29 | Inscripta, Inc | Instruments, modules, and methods for improved detection of edited sequences in live cells |
| US10647958B2 (en) | 2018-08-14 | 2020-05-12 | Inscripta, Inc. | Instruments, modules, and methods for improved detection of edited sequences in live cells |
| US10954485B1 (en) | 2018-08-14 | 2021-03-23 | Inscripta, Inc. | Instruments, modules, and methods for improved detection of edited sequences in live cells |
| US11365383B1 (en) | 2018-08-14 | 2022-06-21 | Inscripta, Inc. | Detection of nuclease edited sequences in automated modules and instruments |
| US11072774B2 (en) | 2018-08-14 | 2021-07-27 | Inscripta, Inc. | Instruments, modules, and methods for improved detection of edited sequences in live cells |
| US10625212B2 (en) | 2018-08-14 | 2020-04-21 | Inscripta, Inc. | Instruments, modules, and methods for improved detection of edited sequences in live cells |
| US10760043B2 (en) | 2018-08-14 | 2020-09-01 | Inscripta, Inc. | Instruments, modules, and methods for improved detection of edited sequences in live cells |
| US10801008B1 (en) | 2018-08-14 | 2020-10-13 | Inscripta, Inc. | Instruments, modules, and methods for improved detection of edited sequences in live cells |
| US10752874B2 (en) | 2018-08-14 | 2020-08-25 | Inscripta, Inc. | Instruments, modules, and methods for improved detection of edited sequences in live cells |
| US10550363B1 (en) | 2018-08-14 | 2020-02-04 | Inscripta, Inc. | Instruments, modules, and methods for improved detection of edited sequences in live cells |
| US11046928B2 (en) | 2018-08-14 | 2021-06-29 | Inscripta, Inc. | Instruments, modules, and methods for improved detection of edited sequences in live cells |
| US10633626B2 (en) | 2018-08-14 | 2020-04-28 | Inscripta, Inc. | Instruments, modules, and methods for improved detection of edited sequences in live cells |
| US10633627B2 (en) | 2018-08-14 | 2020-04-28 | Inscripta, Inc. | Instruments, modules, and methods for improved detection of edited sequences in live cells |
| US11685889B2 (en) | 2018-08-14 | 2023-06-27 | Inscripta, Inc. | Detection of nuclease edited sequences in automated modules and instruments |
| US11268061B2 (en) | 2018-08-14 | 2022-03-08 | Inscripta, Inc. | Detection of nuclease edited sequences in automated modules and instruments |
| US11142740B2 (en) | 2018-08-14 | 2021-10-12 | Inscripta, Inc. | Detection of nuclease edited sequences in automated modules and instruments |
| US10844344B2 (en) | 2018-08-14 | 2020-11-24 | Inscripta, Inc. | Instruments, modules, and methods for improved detection of edited sequences in live cells |
| US10723995B1 (en) | 2018-08-14 | 2020-07-28 | Inscripta, Inc. | Instruments, modules, and methods for improved detection of edited sequences in live cells |
| US10533152B1 (en) | 2018-08-14 | 2020-01-14 | Inscripta, Inc. | Instruments, modules, and methods for improved detection of edited sequences in live cells |
| US10532324B1 (en) | 2018-08-14 | 2020-01-14 | Inscripta, Inc. | Instruments, modules, and methods for improved detection of edited sequences in live cells |
| US10744463B2 (en) | 2018-08-14 | 2020-08-18 | Inscripta, Inc. | Instruments, modules, and methods for improved detection of edited sequences in live cells |
| WO2020047164A1 (en) | 2018-08-28 | 2020-03-05 | Vor Biopharma, Inc | Genetically engineered hematopoietic stem cells and uses thereof |
| US12251403B2 (en) | 2018-08-28 | 2025-03-18 | Vor Biopharma Inc. | Genetically engineered hematopoietic stem cells and uses thereof |
| EP4512890A2 (en) | 2018-08-28 | 2025-02-26 | Vor Biopharma, Inc. | Genetically engineered hermatopoietic stem cells and uses thereof |
| US11903973B2 (en) | 2018-08-28 | 2024-02-20 | Vor Biopharma Inc. | Genetically engineered hematopoietic stem cells and uses thereof |
| US11965154B2 (en) | 2018-08-30 | 2024-04-23 | Inscripta, Inc. | Detection of nuclease edited sequences in automated modules and instruments |
| WO2020047353A1 (en) | 2018-08-31 | 2020-03-05 | Yale University | Compositions and methods for enhancing triplex and nuclease-based gene editing |
| US12441814B2 (en) | 2018-08-31 | 2025-10-14 | Yale University | Compositions and methods for enhancing donor oligonucleotide-based gene editing |
| US12454694B2 (en) | 2018-09-07 | 2025-10-28 | Beam Therapeutics Inc. | Compositions and methods for improving base editing |
| US12428622B2 (en) | 2018-09-12 | 2025-09-30 | Children's Hospital Medical Center | Organoid compositions for the production of hematopoietic stem cells and derivatives thereof |
| WO2020056122A1 (en) | 2018-09-13 | 2020-03-19 | Regeneron Pharmaceuticals, Inc. | Complement factor h gene knockout rat as a model of c3 glomerulopathy |
| US12173336B2 (en) * | 2018-09-14 | 2024-12-24 | Joint Stock Company “Biocad” | PaCas9 nuclease |
| US20220064612A1 (en) * | 2018-09-14 | 2022-03-03 | Joint Stock Company "Biocad" | PaCas9 nuclease |
| WO2020065062A1 (en) | 2018-09-28 | 2020-04-02 | Wageningen Universiteit | Off-target activity inhibitors for guided endonucleases |
| US12264313B2 (en) | 2018-10-01 | 2025-04-01 | North Carolina State University | Recombinant type I CRISPR-Cas system and uses thereof for genome modification and alteration of expression |
| US12203123B2 (en) | 2018-10-01 | 2025-01-21 | North Carolina State University | Recombinant type I CRISPR-Cas system and uses thereof for screening for variant cells |
| US11680259B2 (en) | 2018-10-01 | 2023-06-20 | North Carolina State University | Recombinant type I CRISPR-CAS system |
| US10711267B2 (en) | 2018-10-01 | 2020-07-14 | North Carolina State University | Recombinant type I CRISPR-Cas system |
| US12264330B2 (en) | 2018-10-01 | 2025-04-01 | North Carolina State University | Recombinant type I CRISPR-Cas system and uses thereof for killing target cells |
| WO2020071528A1 (ja) | 2018-10-04 | 2020-04-09 | 株式会社カネカ | 植物のゲノム編集に用いられるdna構築物 |
| US12098425B2 (en) | 2018-10-10 | 2024-09-24 | Readcoor, Llc | Three-dimensional spatial molecular indexing |
| US12404513B2 (en) | 2018-10-14 | 2025-09-02 | Snipr Biome Aps | Single-vector Type I vectors |
| US11629350B2 (en) | 2018-10-14 | 2023-04-18 | Snipr Biome Aps | Single-vector type I vectors |
| US11578333B2 (en) | 2018-10-14 | 2023-02-14 | Snipr Biome Aps | Single-vector type I vectors |
| US11851663B2 (en) | 2018-10-14 | 2023-12-26 | Snipr Biome Aps | Single-vector type I vectors |
| WO2020079033A1 (en) | 2018-10-15 | 2020-04-23 | Fondazione Telethon | Genome editing methods and constructs |
| WO2020081843A1 (en) | 2018-10-17 | 2020-04-23 | Casebia Therapeutics Limited Liability Partnership | Compositions and methods for delivering transgenes |
| WO2020082042A2 (en) | 2018-10-18 | 2020-04-23 | Intellia Therapeutics, Inc. | Compositions and methods for transgene expression from an albumin locus |
| WO2020082047A1 (en) | 2018-10-18 | 2020-04-23 | Intellia Therapeutics, Inc. | Compositions and methods for treating alpha-1 antitrypsin deficiencey |
| US12214023B2 (en) | 2018-10-18 | 2025-02-04 | Intellia Therapeutics, Inc. | Compositions and methods for expressing factor IX |
| EP4667576A2 (en) | 2018-10-18 | 2025-12-24 | Intellia Therapeutics, Inc. | Nucleic acid constructs and methods of use |
| WO2020082041A1 (en) | 2018-10-18 | 2020-04-23 | Intellia Therapeutics, Inc. | Nucleic acid constructs and methods of use |
| WO2020082046A2 (en) | 2018-10-18 | 2020-04-23 | Intellia Therapeutics, Inc. | Compositions and methods for expressing factor ix |
| US10655114B1 (en) | 2018-10-22 | 2020-05-19 | Inscripta, Inc. | Engineered enzymes |
| US10640754B1 (en) | 2018-10-22 | 2020-05-05 | Inscripta, Inc. | Engineered enzymes |
| US12146170B2 (en) | 2018-10-22 | 2024-11-19 | Inscripta, Inc. | Engineered enzyme |
| US11214781B2 (en) | 2018-10-22 | 2022-01-04 | Inscripta, Inc. | Engineered enzyme |
| US10876102B2 (en) | 2018-10-22 | 2020-12-29 | Inscripta, Inc. | Engineered enzymes |
| US11345903B2 (en) | 2018-10-22 | 2022-05-31 | Inscripta, Inc. | Engineered enzymes |
| US10604746B1 (en) | 2018-10-22 | 2020-03-31 | Inscripta, Inc. | Engineered enzymes |
| US12281338B2 (en) | 2018-10-29 | 2025-04-22 | The Broad Institute, Inc. | Nucleobase editors comprising GeoCas9 and uses thereof |
| WO2020092057A1 (en) | 2018-10-30 | 2020-05-07 | Yale University | Compositions and methods for rapid and modular generation of chimeric antigen receptor t cells |
| WO2020089448A1 (en) | 2018-11-01 | 2020-05-07 | Keygene N.V. | Dual guide rna for crispr/cas genome editing in plants cells |
| US12194327B2 (en) | 2018-11-14 | 2025-01-14 | University Of Florida Research Foundation, Inc. | Materials and methods for modifying Wolbachia and paratransformation of arthropods |
| WO2020101042A1 (en) | 2018-11-16 | 2020-05-22 | Astellas Pharma Inc. | Method for treating muscular dystrophy by targeting utrophin gene |
| US11473071B2 (en) | 2018-11-16 | 2022-10-18 | Astellas Pharma Inc. | Method for treating muscular dystrophy by targeting utrophin gene |
| US12479918B2 (en) | 2018-11-27 | 2025-11-25 | Grand Decade Developments Limited | Plasmid constructs for treating cancer and methods of use |
| US12263227B2 (en) | 2018-11-28 | 2025-04-01 | Crispr Therapeutics Ag | Optimized mRNA encoding CAS9 for use in LNPs |
| WO2020109412A1 (en) | 2018-11-28 | 2020-06-04 | Keygene N.V. | Targeted enrichment by endonuclease protection |
| WO2020112195A1 (en) | 2018-11-30 | 2020-06-04 | Yale University | Compositions, technologies and methods of using plerixafor to enhance gene editing |
| WO2020123377A1 (en) | 2018-12-10 | 2020-06-18 | Neoimmunetech, Inc. | Nrf-2 deficient cells and uses thereof |
| US12365888B2 (en) | 2018-12-14 | 2025-07-22 | Pioneer Hi-Bred International, Inc. | CRISPR-Cas systems for genome editing |
| US10934536B2 (en) | 2018-12-14 | 2021-03-02 | Pioneer Hi-Bred International, Inc. | CRISPR-CAS systems for genome editing |
| US12215364B2 (en) | 2018-12-14 | 2025-02-04 | Pioneer Hi-Bred International, Inc. | CRISPR-cas systems for genome editing |
| US11807878B2 (en) | 2018-12-14 | 2023-11-07 | Pioneer Hi-Bred International, Inc. | CRISPR-Cas systems for genome editing |
| WO2020128478A1 (en) | 2018-12-19 | 2020-06-25 | King's College London | Immunotherapeutic methods and compositions |
| WO2020131632A1 (en) | 2018-12-20 | 2020-06-25 | Regeneron Pharmaceuticals, Inc. | Nuclease-mediated repeat expansion |
| US20200222478A1 (en) * | 2019-01-10 | 2020-07-16 | Janssen Biotech, Inc. | Prostate neoantigens and their uses |
| US11793843B2 (en) * | 2019-01-10 | 2023-10-24 | Janssen Biotech, Inc. | Prostate neoantigens and their uses |
| WO2020148206A1 (en) | 2019-01-14 | 2020-07-23 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and kits for generating and selecting a variant of a binding protein with increased binding affinity and/or specificity |
| US12351837B2 (en) | 2019-01-23 | 2025-07-08 | The Broad Institute, Inc. | Supernegatively charged proteins and uses thereof |
| US11419932B2 (en) | 2019-01-24 | 2022-08-23 | Massachusetts Institute Of Technology | Nucleic acid nanostructure platform for antigen presentation and vaccine formulations formed therefrom |
| WO2020163396A1 (en) | 2019-02-04 | 2020-08-13 | The General Hospital Corporation | Adenine dna base editor variants with reduced off-target rna editing |
| WO2020168362A1 (en) | 2019-02-15 | 2020-08-20 | Crispr Therapeutics Ag | Gene editing for hemophilia a with improved factor viii expression |
| US10947517B2 (en) | 2019-02-15 | 2021-03-16 | Sigma-Aldrich Co. Llc | CRISPR/Cas fusion proteins and systems |
| US11965184B2 (en) | 2019-02-15 | 2024-04-23 | Sigma-Aldrich Co. Llc | CRISPR/Cas fusion proteins and systems |
| WO2020169974A1 (en) | 2019-02-19 | 2020-08-27 | King's College London | Hypoxia-responsive chimeric antigen receptors |
| WO2020176389A1 (en) | 2019-02-25 | 2020-09-03 | Caribou Biosciences, Inc. | Plasmids for gene editing |
| US12377170B2 (en) | 2019-02-26 | 2025-08-05 | Research Institute At Nationwide Children's Hospital | Adeno-associated virus vector delivery of β-sarcoglycan and the treatment of muscular dystrophy |
| WO2020178759A1 (en) | 2019-03-04 | 2020-09-10 | King Abdullah University Of Science And Technology | Compositions and methods of targeted nucleic acid enrichment by loop adapter protection and exonuclease digestion |
| EP3937963B1 (en) * | 2019-03-12 | 2025-05-07 | CRISPR Therapeutics AG | Novel high fidelity rna-programmable endonuclease systems and uses thereof |
| EP3937963A2 (en) * | 2019-03-12 | 2022-01-19 | CRISPR Therapeutics AG | Novel high fidelity rna-programmable endonuclease systems and uses thereof |
| EP4317950A2 (en) | 2019-03-18 | 2024-02-07 | Regeneron Pharmaceuticals, Inc. | Crispr/cas screening platform to identify genetic modifiers of tau seeding or aggregation |
| WO2020190927A1 (en) | 2019-03-18 | 2020-09-24 | Regeneron Pharmaceuticals, Inc. | Crispr/cas dropout screening platform to reveal genetic vulnerabilities associated with tau aggregation |
| WO2020190932A1 (en) | 2019-03-18 | 2020-09-24 | Regeneron Pharmaceuticals, Inc. | Crispr/cas screening platform to identify genetic modifiers of tau seeding or aggregation |
| US12281303B2 (en) | 2019-03-19 | 2025-04-22 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
| US12509680B2 (en) | 2019-03-19 | 2025-12-30 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
| US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
| US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
| WO2020191243A1 (en) * | 2019-03-19 | 2020-09-24 | The Broad Institute, Inc. | Methods and compositions for editing nucleotide sequences |
| US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
| US11746347B2 (en) | 2019-03-25 | 2023-09-05 | Inscripta, Inc. | Simultaneous multiplex genome editing in yeast |
| US11001831B2 (en) | 2019-03-25 | 2021-05-11 | Inscripta, Inc. | Simultaneous multiplex genome editing in yeast |
| US11034945B2 (en) | 2019-03-25 | 2021-06-15 | Inscripta, Inc. | Simultaneous multiplex genome editing in yeast |
| US11306299B2 (en) | 2019-03-25 | 2022-04-19 | Inscripta, Inc. | Simultaneous multiplex genome editing in yeast |
| US11279919B2 (en) | 2019-03-25 | 2022-03-22 | Inscripta, Inc. | Simultaneous multiplex genome editing in yeast |
| US11274296B2 (en) | 2019-03-25 | 2022-03-15 | Inscripta, Inc. | Simultaneous multiplex genome editing in yeast |
| US10815467B2 (en) | 2019-03-25 | 2020-10-27 | Inscripta, Inc. | Simultaneous multiplex genome editing in yeast |
| US11149260B2 (en) | 2019-03-25 | 2021-10-19 | Inscripta, Inc. | Simultaneous multiplex genome editing in yeast |
| US11136572B2 (en) | 2019-03-25 | 2021-10-05 | Inscripta, Inc. | Simultaneous multiplex genome editing in yeast |
| WO2020206162A1 (en) | 2019-04-03 | 2020-10-08 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for insertion of antibody coding sequences into a safe harbor locus |
| WO2020206134A1 (en) | 2019-04-04 | 2020-10-08 | Regeneron Pharmaceuticals, Inc. | Methods for scarless introduction of targeted modifications into targeting vectors |
| WO2020206139A1 (en) | 2019-04-04 | 2020-10-08 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized coagulation factor 12 locus |
| WO2020206197A1 (en) | 2019-04-05 | 2020-10-08 | Danisco Us Inc | Methods for polynucleotide integration into the genome of bacillus using dual circular recombinant dna constructs and compositions thereof |
| WO2020204159A1 (ja) | 2019-04-05 | 2020-10-08 | 国立大学法人大阪大学 | ノックイン細胞の作製方法 |
| WO2020206202A1 (en) | 2019-04-05 | 2020-10-08 | Danisco Us Inc | Methods for integrating a donor dna sequence into the genome of bacillus using linear recombinant dna constructs and compositions thereof |
| WO2020212541A1 (en) | 2019-04-16 | 2020-10-22 | University Of Nottingham | Fungal strains, production and uses thereof |
| WO2020223514A3 (en) * | 2019-04-30 | 2020-12-24 | Emendobio Inc. | Novel omni-50 crispr nuclease |
| US11666641B2 (en) | 2019-04-30 | 2023-06-06 | Emendobio Inc. | CRISPR nuclease |
| WO2020221291A1 (zh) | 2019-04-30 | 2020-11-05 | 博雅辑因(北京)生物科技有限公司 | 一种血红蛋白病治疗有效性预测方法 |
| WO2020229241A1 (en) | 2019-05-10 | 2020-11-19 | Basf Se | Regulatory nucleic acid molecules for enhancing gene expression in plants |
| WO2020237217A1 (en) | 2019-05-23 | 2020-11-26 | Vor Biopharma, Inc | Compositions and methods for cd33 modification |
| US12497597B2 (en) | 2019-05-31 | 2025-12-16 | Children's Hospital Medical Center | Methods of generating and expanding hematopoietic stem cells |
| WO2020247452A1 (en) | 2019-06-04 | 2020-12-10 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized ttr locus with a beta-slip mutation and methods of use |
| US10837021B1 (en) | 2019-06-06 | 2020-11-17 | Inscripta, Inc. | Curing for recursive nucleic acid-guided cell editing |
| US11254942B2 (en) | 2019-06-06 | 2022-02-22 | Inscripta, Inc. | Curing for recursive nucleic acid-guided cell editing |
| US11053507B2 (en) | 2019-06-06 | 2021-07-06 | Inscripta, Inc. | Curing for recursive nucleic acid-guided cell editing |
| US11634719B2 (en) | 2019-06-06 | 2023-04-25 | Inscripta, Inc. | Curing for recursive nucleic acid-guided cell editing |
| WO2020247812A1 (en) | 2019-06-07 | 2020-12-10 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized albumin locus |
| WO2020252340A1 (en) | 2019-06-14 | 2020-12-17 | Regeneron Pharmaceuticals, Inc. | Models of tauopathy |
| US11118153B2 (en) | 2019-06-20 | 2021-09-14 | Inscripta, Inc. | Flow through electroporation modules and instrumentation |
| US10907125B2 (en) | 2019-06-20 | 2021-02-02 | Inscripta, Inc. | Flow through electroporation modules and instrumentation |
| US11015162B1 (en) | 2019-06-20 | 2021-05-25 | Inscripta, Inc. | Flow through electroporation modules and instrumentation |
| US10920189B2 (en) | 2019-06-21 | 2021-02-16 | Inscripta, Inc. | Genome-wide rationally-designed mutations leading to enhanced lysine production in E. coli |
| US11078458B2 (en) | 2019-06-21 | 2021-08-03 | Inscripta, Inc. | Genome-wide rationally-designed mutations leading to enhanced lysine production in E. coli |
| US11905532B2 (en) | 2019-06-25 | 2024-02-20 | Massachusetts Institute Of Technology | Compositions and methods for molecular memory storage and retrieval |
| US10927385B2 (en) | 2019-06-25 | 2021-02-23 | Inscripta, Inc. | Increased nucleic-acid guided cell editing in yeast |
| US11066675B2 (en) | 2019-06-25 | 2021-07-20 | Inscripta, Inc. | Increased nucleic-acid guided cell editing in yeast |
| WO2020264339A1 (en) | 2019-06-27 | 2020-12-30 | Regeneron Pharmaceuticals, Inc. | Modeling tdp-43 proteinopathy |
| WO2021001534A1 (en) | 2019-07-03 | 2021-01-07 | Wageningen Universiteit | Crispr type v-u1 system from mycobacterium mucogenicum and uses thereof |
| WO2021010303A1 (ja) | 2019-07-12 | 2021-01-21 | 国立研究開発法人理化学研究所 | 顕性型変異遺伝子に由来する疾患の治療剤 |
| KR20220034833A (ko) | 2019-07-12 | 2022-03-18 | 리켄 | 현성형 변이 유전자에 유래하는 질환의 치료제 |
| WO2021009692A1 (en) | 2019-07-15 | 2021-01-21 | Medimmune Limited | Tripartite systems for protein dimerization and methods of use |
| US12258573B2 (en) | 2019-08-21 | 2025-03-25 | Research Institute At Nationwide Children's Hospital | Adeno-associated virus vector delivery of alpha-sarcoglycan and the treatment of muscular dystrophy |
| WO2021041971A1 (en) | 2019-08-28 | 2021-03-04 | Vor Biopharma, Inc. | Compositions and methods for cll1 modification |
| WO2021041977A1 (en) | 2019-08-28 | 2021-03-04 | Vor Biopharma, Inc. | Compositions and methods for cd123 modification |
| US12485180B2 (en) | 2019-08-30 | 2025-12-02 | Yale University | Compositions and methods for delivery of nucleic acids to cells |
| US11872286B2 (en) | 2019-08-30 | 2024-01-16 | Yale University | Compositions and methods for delivery of nucleic acids to cells |
| WO2021042060A1 (en) | 2019-08-30 | 2021-03-04 | Yale University | Compositions and methods for delivery of nucleic acids to cells |
| US12005121B2 (en) | 2019-08-30 | 2024-06-11 | Yale University | Compositions and methods for delivery of nucleic acids to cells |
| US11850284B2 (en) | 2019-08-30 | 2023-12-26 | Yale University | Compositions and methods for delivery of nucleic acids to cells |
| WO2021043278A1 (zh) | 2019-09-04 | 2021-03-11 | 博雅辑因(北京)生物科技有限公司 | 基于脱靶评估评价基因编辑治疗的方法 |
| US12529041B2 (en) | 2019-09-07 | 2026-01-20 | Beam Therapeutics Inc. | Compositions and methods for delivering a nucleobase editing system |
| WO2021050755A1 (en) * | 2019-09-10 | 2021-03-18 | Caspr Biotech Corporation | Novel class 2 type ii and type v crispr-cas rna-guided endonucleases |
| EP4028515A1 (en) * | 2019-09-10 | 2022-07-20 | Science Solutions LLC | Novel class 2 type ii and type v crispr-cas rna-guided endonucleases |
| CN114729343A (zh) * | 2019-09-10 | 2022-07-08 | 科学方案有限责任公司 | 新的2类ii型和v型crispr-cas rna指导的内切核酸酶 |
| WO2021048316A1 (en) | 2019-09-12 | 2021-03-18 | Basf Se | Regulatory nucleic acid molecules for enhancing gene expression in plants |
| WO2021050940A1 (en) | 2019-09-13 | 2021-03-18 | Regeneron Pharmaceuticals, Inc. | Transcription modulation in animals using crispr/cas systems delivered by lipid nanoparticles |
| WO2021067788A1 (en) * | 2019-10-03 | 2021-04-08 | Artisan Development Labs, Inc. | Crispr systems with engineered dual guide nucleic acids |
| US12270044B2 (en) | 2019-10-03 | 2025-04-08 | Celyntra Therapeutics Sa | CRISPR systems with engineered dual guide nucleic acids |
| WO2021069387A1 (en) | 2019-10-07 | 2021-04-15 | Basf Se | Regulatory nucleic acid molecules for enhancing gene expression in plants |
| US12435330B2 (en) | 2019-10-10 | 2025-10-07 | The Broad Institute, Inc. | Methods and compositions for prime editing RNA |
| WO2021092513A1 (en) | 2019-11-08 | 2021-05-14 | Regeneron Pharmaceuticals, Inc. | Crispr and aav strategies for x-linked juvenile retinoschisis therapy |
| US11203762B2 (en) | 2019-11-19 | 2021-12-21 | Inscripta, Inc. | Methods for increasing observed editing in bacteria |
| US11319542B2 (en) | 2019-11-19 | 2022-05-03 | Inscripta, Inc. | Methods for increasing observed editing in bacteria |
| WO2021101950A1 (en) | 2019-11-19 | 2021-05-27 | Danisco Us Inc | Selection marker free methods for modifying the genome of bacillus and compositions thereof |
| US11891609B2 (en) | 2019-11-19 | 2024-02-06 | Inscripta, Inc. | Methods for increasing observed editing in bacteria |
| WO2021108363A1 (en) | 2019-11-25 | 2021-06-03 | Regeneron Pharmaceuticals, Inc. | Crispr/cas-mediated upregulation of humanized ttr allele |
| WO2021105191A1 (en) | 2019-11-29 | 2021-06-03 | Basf Se | Increasing resistance against fungal infections in plants |
| WO2021113494A1 (en) | 2019-12-03 | 2021-06-10 | Beam Therapeutics Inc. | Synthetic guide rna, compositions, methods, and uses thereof |
| WO2021110582A1 (en) | 2019-12-03 | 2021-06-10 | Basf Se | Regulatory nucleic acid molecules for enhancing gene expression in plants |
| US11193115B2 (en) | 2019-12-10 | 2021-12-07 | Inscripta, Inc. | Mad nucleases |
| US11085030B2 (en) | 2019-12-10 | 2021-08-10 | Inscripta, Inc. | MAD nucleases |
| US11174471B2 (en) | 2019-12-10 | 2021-11-16 | Inscripta, Inc. | Mad nucleases |
| US10883095B1 (en) | 2019-12-10 | 2021-01-05 | Inscripta, Inc. | Mad nucleases |
| US11053485B2 (en) | 2019-12-10 | 2021-07-06 | Inscripta, Inc. | MAD nucleases |
| US10745678B1 (en) | 2019-12-13 | 2020-08-18 | Inscripta, Inc. | Nucleic acid-guided nucleases |
| US10724021B1 (en) | 2019-12-13 | 2020-07-28 | Inscripta, Inc. | Nucleic acid-guided nucleases |
| US10704033B1 (en) | 2019-12-13 | 2020-07-07 | Inscripta, Inc. | Nucleic acid-guided nucleases |
| WO2021123775A2 (en) | 2019-12-17 | 2021-06-24 | Jpv01 Ltd | Engineered platelets for targeted delivery of a therapeutic agent |
| US11548928B2 (en) | 2019-12-17 | 2023-01-10 | Jpv01 Ltd. | Engineered platelets for targeted delivery of a therapeutic agent |
| US11518796B2 (en) | 2019-12-17 | 2022-12-06 | Jpv01 Ltd. | Engineered platelets for targeted delivery of a therapeutic agent |
| EP4026898A1 (en) | 2019-12-17 | 2022-07-13 | JPV01 Ltd | Engineered platelets for targeted delivery of a therapeutic agent |
| US11359187B1 (en) | 2019-12-18 | 2022-06-14 | Inscripta, Inc. | Cascade/dCas3 complementation assays for in vivo detection of nucleic acid-guided nuclease edited cells |
| US11104890B1 (en) | 2019-12-18 | 2021-08-31 | Inscripta, Inc. | Cascade/dCas3 complementation assays for in vivo detection of nucleic acid-guided nuclease edited cells |
| US11286471B1 (en) | 2019-12-18 | 2022-03-29 | Inscripta, Inc. | Cascade/dCas3 complementation assays for in vivo detection of nucleic acid-guided nuclease edited cells |
| US11198857B2 (en) | 2019-12-18 | 2021-12-14 | Inscripta, Inc. | Cascade/dCas3 complementation assays for in vivo detection of nucleic acid-guided nuclease edited cells |
| US11008557B1 (en) | 2019-12-18 | 2021-05-18 | Inscripta, Inc. | Cascade/dCas3 complementation assays for in vivo detection of nucleic acid-guided nuclease edited cells |
| WO2021122687A1 (en) | 2019-12-19 | 2021-06-24 | Basf Se | Increasing space-time-yield, carbon-conversion-efficiency and carbon substrate flexibility in the production of fine chemicals |
| WO2021122528A1 (en) | 2019-12-20 | 2021-06-24 | Basf Se | Decreasing toxicity of terpenes and increasing the production potential in micro-organisms |
| WO2021130752A1 (en) | 2019-12-22 | 2021-07-01 | Yeda Research And Development Co. Ltd. | Systems and methods for identifying cells that have undergone genome editing |
| WO2021136415A1 (zh) | 2019-12-30 | 2021-07-08 | 博雅辑因(北京)生物科技有限公司 | 一种纯化ucart细胞的方法与应用 |
| WO2021136176A1 (zh) | 2019-12-30 | 2021-07-08 | 博雅辑因(北京)生物科技有限公司 | 一种靶向t细胞淋巴瘤细胞的通用型car-t及其制备方法和应用 |
| US10689669B1 (en) | 2020-01-11 | 2020-06-23 | Inscripta, Inc. | Automated multi-module cell processing methods, instruments, and systems |
| WO2021148447A1 (en) | 2020-01-21 | 2021-07-29 | Limagrain Europe | Wheat haploid inducer plant and uses |
| US20210284978A1 (en) * | 2020-01-24 | 2021-09-16 | The General Hospital Corporation | Unconstrained Genome Targeting with near-PAMless Engineered CRISPR-Cas9 Variants |
| US20210261932A1 (en) * | 2020-01-24 | 2021-08-26 | The General Hospital Corporation | Crispr-cas enzymes with enhanced on-target activity |
| US12264341B2 (en) | 2020-01-24 | 2025-04-01 | The General Hospital Corporation | CRISPR-Cas enzymes with enhanced on-target activity |
| US12312613B2 (en) | 2020-01-24 | 2025-05-27 | The General Hospital Corporation | Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants |
| US11225674B2 (en) | 2020-01-27 | 2022-01-18 | Inscripta, Inc. | Electroporation modules and instrumentation |
| US11667932B2 (en) | 2020-01-27 | 2023-06-06 | Inscripta, Inc. | Electroporation modules and instrumentation |
| WO2021154791A1 (en) | 2020-01-28 | 2021-08-05 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized pnpla3 locus and methods of use |
| WO2021158883A1 (en) | 2020-02-07 | 2021-08-12 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized klkb1 locus and methods of use |
| WO2021165508A1 (en) | 2020-02-21 | 2021-08-26 | Biogemma | Prime editing technology for plant genome engineering |
| WO2021178556A1 (en) | 2020-03-04 | 2021-09-10 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for sensitization of tumor cells to immune therapy |
| WO2021195079A1 (en) | 2020-03-23 | 2021-09-30 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized ttr locus comprising a v30m mutation and methods of use |
| WO2021193865A1 (ja) | 2020-03-26 | 2021-09-30 | 国立研究開発法人農業・食品産業技術総合研究機構 | 温度感受性雄性不稔植物の製造方法 |
| US12400739B2 (en) | 2020-04-03 | 2025-08-26 | Creyon Bio, Inc. | Oligonucleotide-based machine learning |
| US12057197B2 (en) | 2020-04-03 | 2024-08-06 | Creyon Bio, Inc. | Oligonucleotide-based machine learning |
| WO2021202938A1 (en) | 2020-04-03 | 2021-10-07 | Creyon Bio, Inc. | Oligonucleotide-based machine learning |
| US11268088B2 (en) | 2020-04-24 | 2022-03-08 | Inscripta, Inc. | Compositions, methods, modules and instruments for automated nucleic acid-guided nuclease editing in mammalian cells via viral delivery |
| US11407994B2 (en) | 2020-04-24 | 2022-08-09 | Inscripta, Inc. | Compositions, methods, modules and instruments for automated nucleic acid-guided nuclease editing in mammalian cells via viral delivery |
| US11591592B2 (en) | 2020-04-24 | 2023-02-28 | Inscripta, Inc. | Compositions, methods, modules and instruments for automated nucleic acid-guided nuclease editing in mammalian cells using microcarriers |
| US11845932B2 (en) | 2020-04-24 | 2023-12-19 | Inscripta, Inc. | Compositions, methods, modules and instruments for automated nucleic acid-guided nuclease editing in mammalian cells via viral delivery |
| US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
| US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
| WO2021228944A1 (en) | 2020-05-13 | 2021-11-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Base editing approaches for the treatment of betahemoglobinopathies |
| WO2021230385A1 (en) | 2020-05-15 | 2021-11-18 | Astellas Pharma Inc. | Method for treating muscular dystrophy by targeting utrophin gene |
| US11787841B2 (en) | 2020-05-19 | 2023-10-17 | Inscripta, Inc. | Rationally-designed mutations to the thrA gene for enhanced lysine production in E. coli |
| WO2021262894A1 (en) | 2020-06-23 | 2021-12-30 | The Regents Of The University Of Colorado, A Body Corporate | Methods for diagnosing respiratory pathogens and predicting covid-19 related outcomes |
| WO2021263146A2 (en) | 2020-06-26 | 2021-12-30 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized ace2 locus |
| US12295997B2 (en) | 2020-07-06 | 2025-05-13 | Janssen Biotech, Inc. | Prostate neoantigens and their uses |
| KR20230037586A (ko) | 2020-07-09 | 2023-03-16 | 가부시키가이샤 모달리스 | Mapt 유전자를 표적으로 하는 알츠하이머병의 치료 방법 |
| WO2022008935A1 (en) | 2020-07-10 | 2022-01-13 | Horizon Discovery Limited | Method for producing genetically modified cells |
| WO2022032085A1 (en) | 2020-08-07 | 2022-02-10 | The Jackson Laboratory | Targeted sequence insertion compositions and methods |
| WO2022036180A1 (en) | 2020-08-13 | 2022-02-17 | Yale University | Compositions and methods for engineering and selection of car t cells with desired phenotypes |
| US12203136B2 (en) | 2020-08-17 | 2025-01-21 | Readcoor, Llc | Methods and systems for spatial mapping of genetic variants |
| WO2022047168A1 (en) | 2020-08-28 | 2022-03-03 | Vor Biopharma Inc. | Compositions and methods for cll1 modification |
| WO2022047165A1 (en) | 2020-08-28 | 2022-03-03 | Vor Biopharma Inc. | Compositions and methods for cd123 modification |
| WO2022047424A1 (en) | 2020-08-31 | 2022-03-03 | Yale University | Compositions and methods for delivery of nucleic acids to cells |
| WO2022050413A1 (ja) | 2020-09-04 | 2022-03-10 | 国立大学法人神戸大学 | 小型化シチジンデアミナーゼを含む二本鎖dnaの改変用複合体 |
| KR20230061474A (ko) | 2020-09-04 | 2023-05-08 | 고쿠리츠다이가쿠호진 고베다이가쿠 | 소형화 시티딘 데아미나아제를 포함하는 이중쇄 dna의 개변용 복합체 |
| WO2022056489A1 (en) | 2020-09-14 | 2022-03-17 | Vor Biopharma, Inc. | Compositions and methods for cd38 modification |
| WO2022056459A1 (en) | 2020-09-14 | 2022-03-17 | Vor Biopharma, Inc. | Compositions and methods for cd5 modification |
| US11597923B2 (en) | 2020-09-15 | 2023-03-07 | Inscripta, Inc. | CRISPR editing to embed nucleic acid landing pads into genomes of live cells |
| US11299731B1 (en) | 2020-09-15 | 2022-04-12 | Inscripta, Inc. | CRISPR editing to embed nucleic acid landing pads into genomes of live cells |
| WO2022061115A1 (en) | 2020-09-18 | 2022-03-24 | Vor Biopharma Inc. | Compositions and methods for cd7 modification |
| WO2022067240A1 (en) | 2020-09-28 | 2022-03-31 | Vor Biopharma, Inc. | Compositions and methods for cd6 modification |
| WO2022070107A1 (en) | 2020-09-30 | 2022-04-07 | Crispr Therapeutics Ag | Materials and methods for treatment of amyotrophic lateral sclerosis |
| WO2022072643A1 (en) | 2020-09-30 | 2022-04-07 | Vor Biopharma Inc. | Compositions and methods for cd30 gene modification |
| WO2022069756A1 (en) | 2020-10-02 | 2022-04-07 | Limagrain Europe | Crispr-mediated directed codon re-write |
| WO2022074058A1 (en) | 2020-10-06 | 2022-04-14 | Keygene N.V. | Targeted sequence addition |
| WO2022079020A1 (en) | 2020-10-13 | 2022-04-21 | Centre National De La Recherche Scientifique (Cnrs) | Targeted-antibacterial-plasmids combining conjugation and crispr /cas systems and uses thereof |
| WO2022093983A1 (en) | 2020-10-27 | 2022-05-05 | Vor Biopharma, Inc. | Compositions and methods for treating hematopoietic malignancy |
| WO2022094245A1 (en) | 2020-10-30 | 2022-05-05 | Vor Biopharma, Inc. | Compositions and methods for bcma modification |
| WO2022097663A1 (ja) | 2020-11-06 | 2022-05-12 | エディットフォース株式会社 | FokIヌクレアーゼドメインの変異体 |
| US11512297B2 (en) | 2020-11-09 | 2022-11-29 | Inscripta, Inc. | Affinity tag for recombination protein recruitment |
| WO2022104090A1 (en) | 2020-11-13 | 2022-05-19 | Vor Biopharma Inc. | Methods and compositions relating to genetically engineered cells expressing chimeric antigen receptors |
| WO2022112316A1 (en) | 2020-11-24 | 2022-06-02 | Keygene N.V. | Targeted enrichment using nanopore selective sequencing |
| WO2022120022A1 (en) | 2020-12-02 | 2022-06-09 | Regeneron Pharmaceuticals, Inc. | Crispr sam biosensor cell lines and methods of use thereof |
| WO2022147133A1 (en) | 2020-12-30 | 2022-07-07 | Intellia Therapeutics, Inc. | Engineered t cells |
| WO2022147347A1 (en) | 2020-12-31 | 2022-07-07 | Vor Biopharma Inc. | Compositions and methods for cd34 gene modification |
| US11306298B1 (en) | 2021-01-04 | 2022-04-19 | Inscripta, Inc. | Mad nucleases |
| US11965186B2 (en) | 2021-01-04 | 2024-04-23 | Inscripta, Inc. | Nucleic acid-guided nickases |
| WO2022148955A1 (en) | 2021-01-05 | 2022-07-14 | Horizon Discovery Limited | Method for producing genetically modified cells |
| US11332742B1 (en) | 2021-01-07 | 2022-05-17 | Inscripta, Inc. | Mad nucleases |
| WO2022155265A2 (en) | 2021-01-12 | 2022-07-21 | Mitolab Inc. | Context-dependent, double-stranded dna-specific deaminases and uses thereof |
| US11884924B2 (en) | 2021-02-16 | 2024-01-30 | Inscripta, Inc. | Dual strand nucleic acid-guided nickase editing |
| WO2022180153A1 (en) | 2021-02-25 | 2022-09-01 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Allele-specific genome editing of the nr2e3 mutation g56r |
| GB202103131D0 (en) | 2021-03-05 | 2021-04-21 | Biosystems Tech Limited | Method for preparation of research organisms |
| WO2022217086A1 (en) | 2021-04-09 | 2022-10-13 | Vor Biopharma Inc. | Photocleavable guide rnas and methods of use thereof |
| WO2022219175A1 (en) | 2021-04-15 | 2022-10-20 | Keygene N.V. | Mobile endonucleases for heritable mutations |
| WO2022219181A1 (en) | 2021-04-15 | 2022-10-20 | Keygene N.V. | Co-regeneration recalcitrant plants |
| WO2022221699A1 (en) | 2021-04-16 | 2022-10-20 | Beam Therapeutics, Inc. | Genetic modification of hepatocytes |
| WO2022226291A1 (en) | 2021-04-22 | 2022-10-27 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for treating cancer |
| WO2022240846A1 (en) | 2021-05-10 | 2022-11-17 | Sqz Biotechnologies Company | Methods for delivering genome editing molecules to the nucleus or cytosol of a cell and uses thereof |
| WO2022251644A1 (en) | 2021-05-28 | 2022-12-01 | Lyell Immunopharma, Inc. | Nr4a3-deficient immune cells and uses thereof |
| WO2022256440A2 (en) | 2021-06-01 | 2022-12-08 | Arbor Biotechnologies, Inc. | Gene editing systems comprising a crispr nuclease and uses thereof |
| WO2022256578A2 (en) | 2021-06-02 | 2022-12-08 | Beam Therapeutics Inc. | Circular guide rnas for crispr/cas editing systems |
| WO2022256437A1 (en) | 2021-06-02 | 2022-12-08 | Lyell Immunopharma, Inc. | Nr4a3-deficient immune cells and uses thereof |
| WO2022261115A1 (en) | 2021-06-07 | 2022-12-15 | Yale University | Peptide nucleic acids for spatiotemporal control of crispr-cas binding |
| WO2022263824A1 (en) | 2021-06-16 | 2022-12-22 | Xap Therapeutics Limited | Methods and compositions |
| WO2023283585A2 (en) | 2021-07-06 | 2023-01-12 | Vor Biopharma Inc. | Inhibitor oligonucleotides and methods of use thereof |
| WO2023004409A1 (en) | 2021-07-23 | 2023-01-26 | Beam Therapeutics Inc. | Guide rnas for crispr/cas editing systems |
| WO2023010135A1 (en) | 2021-07-30 | 2023-02-02 | Tune Therapeutics, Inc. | Compositions and methods for modulating expression of methyl-cpg binding protein 2 (mecp2) |
| WO2023010133A2 (en) | 2021-07-30 | 2023-02-02 | Tune Therapeutics, Inc. | Compositions and methods for modulating expression of frataxin (fxn) |
| WO2023015182A1 (en) | 2021-08-02 | 2023-02-09 | Vor Biopharma Inc. | Compositions and methods for gene modification |
| EP4144841A1 (en) * | 2021-09-07 | 2023-03-08 | Bayer AG | Novel small rna programmable endonuclease systems with impoved pam specificity and uses thereof |
| WO2023036669A1 (en) * | 2021-09-07 | 2023-03-16 | Bayer Aktiengesellschaft | Novel small rna programmable endonuclease systems with impoved pam specificity and uses thereof |
| US11884915B2 (en) | 2021-09-10 | 2024-01-30 | Agilent Technologies, Inc. | Guide RNAs with chemical modification for prime editing |
| WO2023049742A3 (en) * | 2021-09-21 | 2023-05-04 | Scribe Therapeutics Inc. | Engineered casx repressor systems |
| GB2625500A (en) * | 2021-09-21 | 2024-06-19 | Scribe Therapeutics Inc | Engineered CasX repressor systems |
| WO2023049926A2 (en) | 2021-09-27 | 2023-03-30 | Vor Biopharma Inc. | Fusion polypeptides for genetic editing and methods of use thereof |
| WO2023052366A1 (en) | 2021-09-28 | 2023-04-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Base editing approaches for the treatment of beta-hemoglobinopathies |
| US12037407B2 (en) | 2021-10-14 | 2024-07-16 | Arsenal Biosciences, Inc. | Immune cells having co-expressed shRNAS and logic gate systems |
| WO2023064924A1 (en) | 2021-10-14 | 2023-04-20 | Codiak Biosciences, Inc. | Modified producer cells for extracellular vesicle production |
| US12285497B2 (en) | 2021-10-15 | 2025-04-29 | Research Institute At Nationwide Children's Hospital | Self-complementary adeno-associated virus vector and its use in treatment of muscular dystrophy |
| WO2023064732A1 (en) | 2021-10-15 | 2023-04-20 | Georgia State University Research Foundation, Inc. | Delivery of therapeutic recombinant uricase using nanoparticles |
| WO2023070043A1 (en) | 2021-10-20 | 2023-04-27 | Yale University | Compositions and methods for targeted editing and evolution of repetitive genetic elements |
| WO2023069979A1 (en) | 2021-10-20 | 2023-04-27 | University Of Rochester | Isolated glial progenitor cells for use in the competition treatment of age-related white matter loss |
| US12529076B2 (en) | 2021-10-20 | 2026-01-20 | Celyntra Therapeutics Sa | CRISPR systems with engineered dual guide nucleic acids |
| WO2023069987A1 (en) | 2021-10-20 | 2023-04-27 | University Of Rochester | Rejuvenation treatment of age-related white matter loss cross reference to related application |
| WO2023076944A1 (en) | 2021-10-26 | 2023-05-04 | Regeneron Pharmaceuticals, Inc. | Overexpression of lemd2, lemd3, or chmp7 as a therapeutic modality for tauopathy |
| WO2023077012A1 (en) | 2021-10-27 | 2023-05-04 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for expressing factor ix for hemophilia b therapy |
| WO2023077053A2 (en) | 2021-10-28 | 2023-05-04 | Regeneron Pharmaceuticals, Inc. | Crispr/cas-related methods and compositions for knocking out c5 |
| WO2023081847A1 (en) | 2021-11-04 | 2023-05-11 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a modified cacng1 locus |
| WO2023086422A1 (en) | 2021-11-09 | 2023-05-19 | Vor Biopharma Inc. | Compositions and methods for erm2 modification |
| GB202117314D0 (en) | 2021-11-30 | 2022-01-12 | Clarke David John | Cyclic nucleic acid fragmentation |
| WO2023099591A1 (en) | 2021-12-01 | 2023-06-08 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for increasing fetal hemoglobin content by editing the +55-kb region of the erythroid-specific bcl11a enhancer |
| WO2023108047A1 (en) | 2021-12-08 | 2023-06-15 | Regeneron Pharmaceuticals, Inc. | Mutant myocilin disease model and uses thereof |
| WO2023105000A1 (en) | 2021-12-09 | 2023-06-15 | Zygosity Limited | Vector |
| GB202118058D0 (en) | 2021-12-14 | 2022-01-26 | Univ Warwick | Methods to increase yields in crops |
| WO2023111541A1 (en) | 2021-12-14 | 2023-06-22 | The University Of Warwick | Methods to increase yields in crops |
| EP4198124A1 (en) | 2021-12-15 | 2023-06-21 | Versitech Limited | Engineered cas9-nucleases and method of use thereof |
| WO2023111225A1 (en) | 2021-12-17 | 2023-06-22 | Keygene N.V. | Double decapitation of plants |
| WO2023122506A1 (en) | 2021-12-20 | 2023-06-29 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising humanized ace2 and tmprss loci |
| WO2023129974A1 (en) | 2021-12-29 | 2023-07-06 | Bristol-Myers Squibb Company | Generation of landing pad cell lines |
| WO2023137471A1 (en) | 2022-01-14 | 2023-07-20 | Tune Therapeutics, Inc. | Compositions, systems, and methods for programming t cell phenotypes through targeted gene activation |
| WO2023137472A2 (en) | 2022-01-14 | 2023-07-20 | Tune Therapeutics, Inc. | Compositions, systems, and methods for programming t cell phenotypes through targeted gene repression |
| WO2023144104A1 (en) | 2022-01-25 | 2023-08-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Base editing approaches for the treatment of βeta-thalassemia |
| WO2023150181A1 (en) | 2022-02-01 | 2023-08-10 | President And Fellows Of Harvard College | Methods and compositions for treating cancer |
| WO2023150620A1 (en) | 2022-02-02 | 2023-08-10 | Regeneron Pharmaceuticals, Inc. | Crispr-mediated transgene insertion in neonatal cells |
| WO2023150623A2 (en) | 2022-02-02 | 2023-08-10 | Regeneron Pharmaceuticals, Inc. | Anti-tfr:gaa and anti-cd63:gaa insertion for treatment of pompe disease |
| WO2023150798A1 (en) | 2022-02-07 | 2023-08-10 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for defining optimal treatment timeframes in lysosomal disease |
| EP4223877A1 (en) * | 2022-02-08 | 2023-08-09 | Eberhard Karls Universität Tübingen Medizinische Fakultät | System and method for editing genomic dna to modulate splicing |
| WO2023152029A1 (en) * | 2022-02-08 | 2023-08-17 | Eberhard Karls Universitaet Tuebingen Medizinische Fakultaet | System and method for editing genomic dna to modulate splicing |
| WO2023154861A1 (en) | 2022-02-11 | 2023-08-17 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for screening 4r tau targeting agents |
| WO2023152351A1 (en) | 2022-02-14 | 2023-08-17 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Treatment of liver cancers by disrupting the beta-catenin/tcf-4 binding site located upstream of meg3 in the dlk1/dio3 locus |
| WO2023164636A1 (en) | 2022-02-25 | 2023-08-31 | Vor Biopharma Inc. | Compositions and methods for homology-directed repair gene modification |
| US12037616B2 (en) | 2022-03-01 | 2024-07-16 | Crispr Therapeutics Ag | Methods and compositions for treating angiopoietin-like 3 (ANGPTL3) related conditions |
| WO2023192872A1 (en) | 2022-03-28 | 2023-10-05 | Massachusetts Institute Of Technology | Rna scaffolded wireframe origami and methods thereof |
| WO2023196816A1 (en) | 2022-04-04 | 2023-10-12 | Vor Biopharma Inc. | Compositions and methods for mediating epitope engineering |
| WO2023212677A2 (en) | 2022-04-29 | 2023-11-02 | Regeneron Pharmaceuticals, Inc. | Identification of tissue-specific extragenic safe harbors for gene therapy approaches |
| WO2023213831A1 (en) | 2022-05-02 | 2023-11-09 | Fondazione Telethon Ets | Homology independent targeted integration for gene editing |
| WO2023220603A1 (en) | 2022-05-09 | 2023-11-16 | Regeneron Pharmaceuticals, Inc. | Vectors and methods for in vivo antibody production |
| WO2023217888A1 (en) | 2022-05-10 | 2023-11-16 | Institut National de la Santé et de la Recherche Médicale | Base editing approaches for correcting the cd39 (cag>tag) mutation in patients suffering from βeta-thalassemia |
| WO2023225665A1 (en) | 2022-05-19 | 2023-11-23 | Lyell Immunopharma, Inc. | Polynucleotides targeting nr4a3 and uses thereof |
| WO2023235726A2 (en) | 2022-05-31 | 2023-12-07 | Regeneron Pharmaceuticals, Inc. | Crispr interference therapeutics for c9orf72 repeat expansion disease |
| WO2023235725A2 (en) | 2022-05-31 | 2023-12-07 | Regeneron Pharmaceuticals, Inc. | Crispr-based therapeutics for c9orf72 repeat expansion disease |
| WO2023235677A1 (en) | 2022-05-31 | 2023-12-07 | Regeneron Pharmaceuticals, Inc. | Animal model of tdp-43 proteinopathy |
| WO2023250511A2 (en) | 2022-06-24 | 2023-12-28 | Tune Therapeutics, Inc. | Compositions, systems, and methods for reducing low-density lipoprotein through targeted gene repression |
| US12098399B2 (en) | 2022-06-24 | 2024-09-24 | Tune Therapeutics, Inc. | Compositions, systems, and methods for epigenetic regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9) gene expression |
| WO2024006955A1 (en) | 2022-06-29 | 2024-01-04 | Intellia Therapeutics, Inc. | Engineered t cells |
| US12076375B2 (en) | 2022-06-29 | 2024-09-03 | Snipr Biome Aps | Treating and preventing E coli infections |
| KR20250029023A (ko) | 2022-06-30 | 2025-03-04 | 리저널 피쉬 가부시키가이샤 | tracrRNA 유닛, 및 게놈 편집 방법 |
| WO2024005186A1 (ja) | 2022-06-30 | 2024-01-04 | リージョナルフィッシュ株式会社 | tracrRNAユニット、及びゲノム編集方法 |
| WO2024003579A1 (en) | 2022-06-30 | 2024-01-04 | University Of Newcastle Upon Tyne | Preventing disease recurrence in mitochondrial replacement therapy |
| WO2024015881A2 (en) | 2022-07-12 | 2024-01-18 | Tune Therapeutics, Inc. | Compositions, systems, and methods for targeted transcriptional activation |
| WO2024015925A2 (en) | 2022-07-13 | 2024-01-18 | Vor Biopharma Inc. | Compositions and methods for artificial protospacer adjacent motif (pam) generation |
| WO2024018056A1 (en) | 2022-07-22 | 2024-01-25 | Institut National de la Santé et de la Recherche Médicale | Base editing approaches for correcting the ivs2-1 (g>a) mutation in patients suffering from βeta-thalassemia |
| WO2024020597A1 (en) | 2022-07-22 | 2024-01-25 | The Johns Hopkins University | Dendrimer-enabled targeted intracellular crispr/cas system delivery and gene editing |
| WO2024026313A1 (en) | 2022-07-25 | 2024-02-01 | The Regents Of The University Of California | Methods of producing and using avian embryonic stem cells and avian telencephalic organoids |
| WO2024023734A1 (en) | 2022-07-26 | 2024-02-01 | Bit Bio Limited | MULTI-gRNA GENOME EDITING |
| WO2024026474A1 (en) | 2022-07-29 | 2024-02-01 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for transferrin receptor (tfr)-mediated delivery to the brain and muscle |
| WO2024026488A2 (en) | 2022-07-29 | 2024-02-01 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a modified transferrin receptor locus |
| WO2024031053A1 (en) | 2022-08-05 | 2024-02-08 | Regeneron Pharmaceuticals, Inc. | Aggregation-resistant variants of tdp-43 |
| WO2024040254A2 (en) | 2022-08-19 | 2024-02-22 | Tune Therapeutics, Inc. | Compositions, systems, and methods for regulation of hepatitis b virus through targeted gene repression |
| US12252692B2 (en) | 2022-08-19 | 2025-03-18 | Tune Therapeutics, Inc. | Compositions, systems, and methods for regulation of hepatitis B virus through targeted gene repression |
| US12221608B2 (en) | 2022-08-19 | 2025-02-11 | Tune Therapeutics, Inc. | Compositions, systems, and methods for regulation of hepatitis b virus through targeted gene repression |
| US12325858B1 (en) | 2022-08-19 | 2025-06-10 | Tune Therapeutics, Inc. | Compositions, systems, and methods for regulation of Hepatitis B virus through targeted gene repression |
| US12398394B2 (en) | 2022-08-19 | 2025-08-26 | Tune Therapeutics, Inc. | Compositions, systems, and methods for regulation of Hepatitis B virus through targeted gene repression |
| US12325857B2 (en) | 2022-08-19 | 2025-06-10 | Tune Therapeutics, Inc. | Compositions, systems, and methods for regulation of Hepatitis b virus through targeted gene repression |
| WO2024047247A1 (en) | 2022-09-02 | 2024-03-07 | Institut National de la Santé et de la Recherche Médicale | Base editing approaches for the treatment of amyotrophic lateral sclerosis |
| WO2024064642A2 (en) | 2022-09-19 | 2024-03-28 | Tune Therapeutics, Inc. | Compositions, systems, and methods for modulating t cell function |
| WO2024064824A2 (en) | 2022-09-21 | 2024-03-28 | Yale University | Compositions and methods for identification of membrane targets for enhancement of nk cell therapy |
| WO2024064952A1 (en) | 2022-09-23 | 2024-03-28 | Lyell Immunopharma, Inc. | Methods for culturing nr4a-deficient cells overexpressing c-jun |
| WO2024064958A1 (en) | 2022-09-23 | 2024-03-28 | Lyell Immunopharma, Inc. | Methods for culturing nr4a-deficient cells |
| WO2024073606A1 (en) | 2022-09-28 | 2024-04-04 | Regeneron Pharmaceuticals, Inc. | Antibody resistant modified receptors to enhance cell-based therapies |
| WO2024073679A1 (en) | 2022-09-29 | 2024-04-04 | Regeneron Pharmaceuticals, Inc. | Correction of hepatosteatosis in humanized liver animals through restoration of il6/il6r/gp130 signaling in human hepatocytes |
| WO2024073751A1 (en) | 2022-09-29 | 2024-04-04 | Vor Biopharma Inc. | Methods and compositions for gene modification and enrichment |
| WO2024077174A1 (en) | 2022-10-05 | 2024-04-11 | Lyell Immunopharma, Inc. | Methods for culturing nr4a-deficient cells |
| WO2024081736A2 (en) | 2022-10-11 | 2024-04-18 | Yale University | Compositions and methods of using cell-penetrating antibodies |
| WO2024080067A1 (ja) | 2022-10-14 | 2024-04-18 | 株式会社インプランタイノベーションズ | ゲノム編集方法およびゲノム編集用組成物 |
| WO2024083579A1 (en) | 2022-10-20 | 2024-04-25 | Basf Se | Regulatory nucleic acid molecules for enhancing gene expression in plants |
| WO2024098002A1 (en) | 2022-11-04 | 2024-05-10 | Regeneron Pharmaceuticals, Inc. | Calcium voltage-gated channel auxiliary subunit gamma 1 (cacng1) binding proteins and cacng1-mediated delivery to skeletal muscle |
| WO2024107765A2 (en) | 2022-11-14 | 2024-05-23 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for fibroblast growth factor receptor 3-mediated delivery to astrocytes |
| WO2024107670A1 (en) | 2022-11-16 | 2024-05-23 | Regeneron Pharmaceuticals, Inc. | Chimeric proteins comprising membrane bound il-12 with protease cleavable linkers |
| WO2024118882A1 (en) | 2022-12-01 | 2024-06-06 | Genencor International Bv | Iterative multiplex genome engineering in microbial cells using a selection marker swapping system |
| WO2024118876A1 (en) | 2022-12-01 | 2024-06-06 | Genencor International Bv | Iterative multiplex genome engineering in microbial cells using a recombinant self-excisable selection marker system |
| WO2024118881A1 (en) | 2022-12-01 | 2024-06-06 | Genencor International Bv | Iterative muliplex genome engineering in microbial cells using a bidirectional selection marker system |
| WO2024119101A1 (en) | 2022-12-01 | 2024-06-06 | Yale University | Stimuli-responsive traceless engineering platform for intracellular payload delivery |
| WO2024123789A1 (en) | 2022-12-07 | 2024-06-13 | Sanofi | Predicting indel frequencies |
| WO2024133851A1 (en) | 2022-12-22 | 2024-06-27 | Keygene N.V. | Regeneration by protoplast callus grafting |
| WO2024138189A2 (en) | 2022-12-22 | 2024-06-27 | Intellia Therapeutics, Inc. | Methods for analyzing nucleic acid cargos of lipid nucleic acid assemblies |
| WO2024159071A1 (en) | 2023-01-27 | 2024-08-02 | Regeneron Pharmaceuticals, Inc. | Modified rhabdovirus glycoproteins and uses thereof |
| WO2024163678A2 (en) | 2023-02-01 | 2024-08-08 | Tune Therapeutics, Inc. | Fusion proteins and systems for targeted activation of frataxin (fxn) and related methods |
| WO2024163683A2 (en) | 2023-02-01 | 2024-08-08 | Tune Therapeutics, Inc. | Systems, compositions, and methods for modulating expression of methyl-cpg binding protein 2 (mecp2) and x-inactive specific transcript (xist) |
| WO2024163650A1 (en) | 2023-02-01 | 2024-08-08 | Regeneron Pharmaceuticals, Inc. | Animals comprising a modified klhdc7b locus |
| WO2024163615A1 (en) | 2023-02-02 | 2024-08-08 | University Of Florida Research Foundation, Incorporated | Brain-derived neurotrophic factor-nano luciferase transgenic rodents and methods of use thereof |
| WO2024165484A1 (en) | 2023-02-06 | 2024-08-15 | Institut National de la Santé et de la Recherche Médicale | Enrichment of genetically modified hematopoietic stem cells through multiplex base editing |
| WO2024168312A1 (en) | 2023-02-09 | 2024-08-15 | Vor Biopharma Inc. | Methods for treating hematopoietic malignancy |
| WO2024173645A1 (en) | 2023-02-15 | 2024-08-22 | Arbor Biotechnologies, Inc. | Gene editing method for inhibiting aberrant splicing in stathmin 2 (stmn2) transcript |
| IT202300004443A1 (it) | 2023-03-09 | 2024-09-09 | Int Centre For Genetic Engineering And Biotechnology Icgeb | Sequenza codificante per alfa galattosidasi a umana per il trattamento della malattia di fabry |
| WO2024184376A1 (en) | 2023-03-09 | 2024-09-12 | International Centre For Genetic Engineering And Biotechnology - Icgeb | Human alpha galactosidase a coding sequence for the treatment of fabry disease |
| WO2024206911A2 (en) | 2023-03-30 | 2024-10-03 | Children's Hospital Medical Center | Clinical-grade organoids |
| WO2024211887A1 (en) * | 2023-04-07 | 2024-10-10 | Genentech, Inc. | Modified guide rnas |
| WO2024218394A1 (en) | 2023-04-21 | 2024-10-24 | Fondazione Telethon Ets | Genome editing methods and constructs |
| IT202300007968A1 (it) | 2023-04-21 | 2024-10-21 | Fond Telethon Ets | Metodi di editing genomico e costrutti |
| WO2024233894A1 (en) * | 2023-05-11 | 2024-11-14 | University Of Massachusetts | Compositions and methods for improved genome editing with nme2cas9 and nme2-smucas9 variants |
| US12390538B2 (en) | 2023-05-15 | 2025-08-19 | Nchroma Bio, Inc. | Compositions and methods for epigenetic regulation of HBV gene expression |
| WO2024238977A2 (en) | 2023-05-18 | 2024-11-21 | Children's Hospital Medical Center | Liver organoids with intrahepatic sympathetic nerves, and methods of use thereof |
| WO2024174016A2 (pt) | 2023-05-30 | 2024-08-29 | Hapiseeds Pesquisa E Desenvolvimento Ltda. | Plantas com características agronômicas aprimoradas mediante supressâo de genes da rede regulatória aip10/abap1 |
| WO2024254376A1 (en) | 2023-06-08 | 2024-12-12 | Regeneron Pharmaceuticals, Inc. | Animal model with rapid onset of alzheimer's amyloid beta plaque pathology |
| WO2024259135A1 (en) | 2023-06-13 | 2024-12-19 | Intellia Therapeutics, Inc. | Assays for analysis of ribonucleic acid (rna) molecules |
| WO2024259309A1 (en) | 2023-06-15 | 2024-12-19 | Regeneron Pharmaceuticals, Inc. | Gene therapy for hearing disorders |
| WO2024261323A1 (en) | 2023-06-23 | 2024-12-26 | Astrazeneca Ab | Molecular switches |
| WO2024263961A2 (en) | 2023-06-23 | 2024-12-26 | Children's Hospital Medical Center | Methods of matrix-free suspension culture |
| WO2025006963A1 (en) | 2023-06-30 | 2025-01-02 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for increasing homology-directed repair |
| WO2025017030A1 (en) | 2023-07-17 | 2025-01-23 | Institut National de la Santé et de la Recherche Médicale | Prime editing of the -200 region in the hbg1 and/or hbg2 promoter for increasing fetal hemoglobin content in a eukaryotic cell |
| WO2025017033A1 (en) | 2023-07-17 | 2025-01-23 | Institut National de la Santé et de la Recherche Médicale | Prime editing of the -115 region in the hbg1 and/or hbg2 promoter for increasing fetal hemoglobin content in a eukaryotic cell |
| WO2025029654A2 (en) | 2023-07-28 | 2025-02-06 | Regeneron Pharmaceuticals, Inc. | Use of bgh-sv40l tandem polya to enhance transgene expression during unidirectional gene insertion |
| WO2025029657A2 (en) | 2023-07-28 | 2025-02-06 | Regeneron Pharmaceuticals, Inc. | Anti-tfr:gaa and anti-cd63:gaa insertion for treatment of pompe disease |
| WO2025029662A1 (en) | 2023-07-28 | 2025-02-06 | Regeneron Pharmaceuticals, Inc. | Anti-tfr: acid sphingomyelinase for treatment of acid sphingomyelinase deficiency |
| WO2025029835A1 (en) | 2023-07-31 | 2025-02-06 | Tune Therapeutics, Inc. | Compositions and methods for modulating il-2 gene expression |
| WO2025029840A1 (en) | 2023-07-31 | 2025-02-06 | Tune Therapeutics, Inc. | Compositions and methods for multiplexed activation and repression of t cell gene expression |
| WO2025030010A1 (en) | 2023-08-01 | 2025-02-06 | Vor Biopharma Inc. | Compositions comprising genetically engineered hematopoietic stem cells and methods of use thereof |
| WO2025027166A1 (en) | 2023-08-01 | 2025-02-06 | Basf Plant Science Company Gmbh | Increased resistance by expression of msbp1 protein |
| WO2025027165A1 (en) | 2023-08-01 | 2025-02-06 | Basf Plant Science Company Gmbh | Increased resistance by expression of an ics protein |
| WO2025038494A1 (en) | 2023-08-11 | 2025-02-20 | Tune Therapeutics, Inc. | Compositions, systems, and methods for lymphoid cell differentiation using targeted gene activation |
| WO2025038750A2 (en) | 2023-08-14 | 2025-02-20 | President And Fellows Of Harvard College | Methods and compositions for treating cancer |
| EP4512403A1 (en) | 2023-08-22 | 2025-02-26 | Friedrich-Schiller-Universität Jena | Neuropeptide b and w-receptor as a target for treating mood disorders and/or chronic stress |
| WO2025040649A1 (en) | 2023-08-22 | 2025-02-27 | Friedrich-Schiller-Universität Jena | Neuropeptide b and w-receptor as a target for treating mood disorders and/or chronic stress |
| WO2025049524A1 (en) | 2023-08-28 | 2025-03-06 | Regeneron Pharmaceuticals, Inc. | Cxcr4 antibody-resistant modified receptors |
| WO2025059073A1 (en) | 2023-09-11 | 2025-03-20 | Tune Therapeutics, Inc. | Epigenetic editing methods and systems for differentiating stem cells |
| WO2025059215A1 (en) | 2023-09-12 | 2025-03-20 | Aadigen, Llc | Methods and compositions for treating or preventing cancer |
| WO2025062150A1 (en) | 2023-09-22 | 2025-03-27 | The University Of Manchester | Methods of producing homoplasmic modified plants or parts thereof |
| WO2025072803A1 (en) | 2023-09-29 | 2025-04-03 | Children's Hospital Medical Center | Ntrk2 signaling-mediated alveolar capillary injury and repair |
| WO2025090427A1 (en) | 2023-10-23 | 2025-05-01 | University Of Rochester | Glial-targeted relief of hyperexcitability in neurodegenerative diseases |
| WO2025096638A2 (en) | 2023-10-30 | 2025-05-08 | Turnstone Biologics Corp. | Genetically modified tumor infilitrating lymphocytes and methods of producing and using the same |
| WO2025122754A1 (en) | 2023-12-07 | 2025-06-12 | Regeneron Pharmaceuticals, Inc. | Gaa knockout non-human animals |
| WO2025137439A2 (en) | 2023-12-20 | 2025-06-26 | Intellia Therapeutics, Inc. | Engineered t cells |
| WO2025158400A1 (en) | 2024-01-24 | 2025-07-31 | Yale University | Compositions and methods of natural killer cell hyperboosts for enhancement of nk cell therapy |
| WO2025160324A2 (en) | 2024-01-26 | 2025-07-31 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for using plasma cell depleting agents and/or b cell depleting agents to suppress host anti-aav antibody response and enable aav transduction and re-dosing |
| WO2025160340A2 (en) | 2024-01-26 | 2025-07-31 | Regeneron Pharmaceuticals, Inc. | Combination immunosuppression for inhibiting an immune response and enabling immunogen administration and re-administration |
| WO2025162985A1 (en) | 2024-01-30 | 2025-08-07 | Basf Plant Science Company Gmbh | Increased plant disease resistance by expression of a glycine-rich protein |
| WO2025171210A1 (en) | 2024-02-09 | 2025-08-14 | Arbor Biotechnologies, Inc. | Compositions and methods for gene editing via homology-mediated end joining |
| WO2025184603A2 (en) | 2024-03-01 | 2025-09-04 | Regeneron Pharmaceuticals, Inc. | The use of cd40 inhibitors for inhibiting an immune response and enabling immunogen administration and re-administration |
| WO2025184567A1 (en) | 2024-03-01 | 2025-09-04 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for re-dosing aav using anti-cd40 antagonistic antibody to suppress host anti-aav antibody response |
| WO2025202473A1 (en) | 2024-03-28 | 2025-10-02 | Revvity Discovery Limited | A nucleic acid deaminase, a base editor and uses thereof |
| WO2025212920A1 (en) | 2024-04-03 | 2025-10-09 | Children's Hospital Medical Center | Multi-zonal liver organoids |
| WO2025217202A1 (en) | 2024-04-08 | 2025-10-16 | Children's Hospital Medical Center | Bile duct organoid |
| WO2025217398A1 (en) | 2024-04-10 | 2025-10-16 | Lyell Immunopharma, Inc. | Methods for culturing cells with improved culture medium |
| WO2025224715A1 (en) | 2024-04-26 | 2025-10-30 | King Abdullah Univeristy Of Science And Technology | Methods for improving precise genome modification and reducing unwanted mutations by crispr-cas editing |
| WO2025235388A1 (en) | 2024-05-06 | 2025-11-13 | Regeneron Pharmaceuticals, Inc. | Transgene genomic identification by nuclease-mediated long read sequencing |
| WO2025250495A1 (en) | 2024-05-28 | 2025-12-04 | Regeneron Pharmaceuticals, Inc. | Acceleration of human hepatocyte engraftment in humanized liver animals by supplementing paracrine ligands or agonists that activate human liver regeneration signals |
| WO2025250454A1 (en) | 2024-05-28 | 2025-12-04 | University Of Rochester | Adeno-associated viruses evolved to specifically target human glial progenitor cells in vivo |
| WO2025250457A1 (en) | 2024-05-28 | 2025-12-04 | University Of Rochester | Enhanced brain transduction by gene therapeutics |
| WO2025259669A1 (en) | 2024-06-10 | 2025-12-18 | Regeneron Pharmaceuticals, Inc. | Methods and systems for characterizing modified oligonucleotides |
| WO2025257212A1 (en) | 2024-06-11 | 2025-12-18 | Keygene N.V. | Screening and regeneration of protoplast callus |
| WO2025260068A1 (en) | 2024-06-14 | 2025-12-18 | Tune Therapeutics, Inc. | Lipid nanoparticle formulation for delivery of nucleic acids to cells |
| WO2025265017A1 (en) | 2024-06-20 | 2025-12-26 | Regeneron Pharmaceuticals, Inc. | Ass1 gene insertion for the treatment of citrullinemia type i |
| WO2026006542A2 (en) | 2024-06-26 | 2026-01-02 | Yale University | Compositions and methods for crispr/cas9 based reactivation of human angelman syndrome |
| WO2026006832A1 (en) | 2024-06-28 | 2026-01-02 | University Of Connecticut | Gene modulation for treating cancer |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11549127B2 (en) | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription | |
| HK40071464A (en) | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription | |
| HK40012638A (en) | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription | |
| HK1230233A (en) | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription | |
| HK1230233A1 (en) | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13793997 Country of ref document: EP Kind code of ref document: A1 |
|
| REEP | Request for entry into the european phase |
Ref document number: 2013793997 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2013793997 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2872241 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 235461 Country of ref document: IL |
|
| ENP | Entry into the national phase |
Ref document number: 1420270 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20130315 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1420270.9 Country of ref document: GB |
|
| ENP | Entry into the national phase |
Ref document number: 2013266968 Country of ref document: AU Date of ref document: 20130315 Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 2015514015 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: CR2014-000538 Country of ref document: CR |
|
| ENP | Entry into the national phase |
Ref document number: 2014/2178 Country of ref document: KE |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2014003208 Country of ref document: CL Ref document number: P1296/2014 Country of ref document: AE Ref document number: 14259531 Country of ref document: CO Ref document number: 002211-2014 Country of ref document: PE Ref document number: MX/A/2014/014477 Country of ref document: MX |
|
| WWE | Wipo information: entry into national phase |
Ref document number: DZP2014000780 Country of ref document: DZ |
|
| ENP | Entry into the national phase |
Ref document number: 20147036096 Country of ref document: KR Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 201401319 Country of ref document: EA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 13674/1 Country of ref document: GE |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014029441 Country of ref document: BR |
|
| ENP | Entry into the national phase |
Ref document number: 112014029441 Country of ref document: BR Kind code of ref document: A2 Effective date: 20141125 |