TWI839337B - 用於基因組編輯之多核苷酸、組合物及方法 - Google Patents

用於基因組編輯之多核苷酸、組合物及方法 Download PDF

Info

Publication number
TWI839337B
TWI839337B TW107134334A TW107134334A TWI839337B TW I839337 B TWI839337 B TW I839337B TW 107134334 A TW107134334 A TW 107134334A TW 107134334 A TW107134334 A TW 107134334A TW I839337 B TWI839337 B TW I839337B
Authority
TW
Taiwan
Prior art keywords
seq
mrna
orf
rna
sequence
Prior art date
Application number
TW107134334A
Other languages
English (en)
Other versions
TW201923077A (zh
Inventor
克莉絲汀 東博思基
強納生 道格拉斯 芬
艾美 麥德生 羅登 史密斯
賽斯 亞歷山大
Original Assignee
美商英特利亞醫療公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商英特利亞醫療公司 filed Critical 美商英特利亞醫療公司
Publication of TW201923077A publication Critical patent/TW201923077A/zh
Application granted granted Critical
Publication of TWI839337B publication Critical patent/TWI839337B/zh

Links

Abstract

本發明提供用於基因編輯之組合物及方法。在一些實施例中,提供一種編碼Cas9之多核苷酸,其可提供改良之編輯效率、降低之免疫原性或其他益處中之一或多者。

Description

用於基因組編輯之多核苷酸、組合物及方法
本發明係關於用於基因組編輯的多核苷酸、組合物及方法,該基因組編輯涉及RNA引導之DNA結合劑,諸如CRISPR-Cas系統及其次單位。
RNA引導之DNA結合劑,諸如CRISPR-Cas系統可用於進行靶基因組編輯,包括在真核細胞中及活體內。已顯示此類編輯能夠不活化某些有害等位基因或校正某些有害點突變。該結合劑可藉由提供編碼其之mRNA來原位表現。然而,現有方法提供之編輯效率可能要比所需編輯效率低或可能具有非所期望之免疫原性,例如可能會引起細胞介素含量之升高為非所期望的。
因此,需要經改良之用於基因組編輯的多核苷酸、組合物及方法。本發明旨在提供用於基因組編輯之組合物及方法,其提供一或多種益處,諸如經改良之編輯效率或經降低之免疫原性(例如投與後經降低的細胞介素之升高量)中之至少一者;或至少為公眾提供一種有用選擇。在一些實施例中,提供一種編碼RNA引導之DNA結合劑的多核苷酸,其中其密碼子使用、非編碼序列(例如UTR)、異源域(例如NLS)及/或核苷酸含量中之一或多者以本文所揭示之方式與現有多核苷酸不同。已發現此類特徵可提供諸如上文所述之益處。在一些實施例中,經改良之編輯效率出現在哺乳動物之器官或細胞型,諸如肝臟或肝細胞中或對其具有特異性。
實施例1為一種包含編碼RNA引導之DNA結合劑的開放閱讀框架的mRNA,其中該開放閱讀框架之尿苷含量在其最小尿苷含量至最小尿苷含量之150%範圍內。
實施例2為一種包含編碼RNA引導之DNA結合劑的開放閱讀框架的mRNA,其中該開放閱讀框架之尿苷二核苷酸含量在其最小尿苷二核苷酸含量至最小尿苷二核苷酸含量之150%範圍內。
實施例3為一種包含編碼RNA引導之DNA結合劑的開放閱讀框架的mRNA,其中該開放閱讀框架之腺嘌呤含量在其最小腺嘌呤含量至最小腺嘌呤含量之150%範圍內。
實施例4為一種包含編碼RNA引導之DNA結合劑的開放閱讀框架的mRNA,其中該開放閱讀框架之腺嘌呤二核苷酸含量在其最小腺嘌呤二核苷酸含量至最小腺嘌呤二核苷酸含量之150%範圍內。
實施例5為一種包含與以下任一者具有至少90%之一致性的序列的mRNA:SEQ ID NO: 1、SEQ ID NO: 4、SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175,其中該mRNA包含編碼RNA引導之DNA結合劑的開放閱讀框架。
實施例6為一種包含編碼RNA引導之DNA結合劑的開放閱讀框架的mRNA,其中該開放閱讀框架與以下任一者在至少其前30、50、70、100、150、200、250或300個核苷酸上具有至少90%之一致性:SEQ ID NO: 1、SEQ ID NO: 4、SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
實施例7為如前述技術方案中任一項之mRNA,其中開放閱讀框架由一組密碼子組成,其中至少75%之密碼子為(i)表1、表2或表3中所列之密碼子或(ii)一組表4中所列之密碼子。
實施例8為一種編碼RNA引導之DNA結合劑之mRNA,其包含編碼RNA引導之DNA結合劑的開放閱讀框架,其中開放閱讀框架由一組密碼子組成,其中至少75%之密碼子為表1、表2、表3中所列之密碼子或(ii)一組表4中所列之密碼子。
實施例9為如技術方案7或8之mRNA,其中開放閱讀框架由一組密碼子組成,其中至少75%之密碼子為表4中低U 1組之密碼子。
實施例10為如技術方案7或8之mRNA,其中開放閱讀框架由一組密碼子組成,其中至少75%之密碼子為表4中低A組之密碼子。
實施例11為如技術方案7或8之mRNA,其中開放閱讀框架由一組密碼子組成,其中至少75%之密碼子為表4中低A/U組之密碼子。
實施例12為如技術方案7或8之mRNA,其中開放閱讀框架由一組密碼子組成,其中至少75%之密碼子為表4中長半衰期組之密碼子。
實施例13為如技術方案7至12中任一項之mRNA,其中至少80%、85%、90%、95%、98%、99%或100%之密碼子為(i)表1、表2或表3中所列之密碼子或(ii)一組表4中所列之密碼子。
實施例14為如技術方案1至5或7至13中任一項之mRNA,其中開放閱讀框架與以下任一者在至少其前30、50、70、100、150、200、250或300個核苷酸上具有至少90%之一致性:SEQ ID NO: 1、SEQ ID NO: 4、SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
實施例15為如前述技術方案中任一項之mRNA,其中開放閱讀框架與以下任一者在至少其序列之前10%、12%、15%、20%、25%、30%或35%上具有至少90%之一致性:SEQ ID NO: 1、SEQ ID NO: 4、SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
實施例16為如技術方案1至4或6至15中任一項之mRNA,其中該mRNA包含與以下任一者有至少90%之一致性的序列:SEQ ID NO: 1、SEQ ID NO: 4、SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65或SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
實施例17為如前述技術方案中任一項之mRNA,其中開放閱讀框架之尿苷二核苷酸含量在其最小尿苷二核苷酸含量至最小尿苷二核苷酸含量之101%、102%、103%、105%、110%、115%、120%、125%、130%、135%、140%、145%或150%範圍內。
實施例18為如前述技術方案中任一項之mRNA,其中開放閱讀框架之尿苷含量在其最小尿苷含量至最小尿苷含量之101%、102%、103%、105%、110%、115%、120%、125%、130%、135%、140%、145%或150%範圍內。
實施例19為如前述技術方案中任一項之mRNA,其中開放閱讀框架之腺嘌呤含量在其最小腺嘌呤含量至最小腺嘌呤含量之101%、102%、103%、105%、110%、115%、120%、125%、130%、135%、140%、145%或150%範圍內。
實施例20為如前述技術方案中任一項之mRNA,其中開放閱讀框架之腺嘌呤二核苷酸含量在其最小腺嘌呤二核苷酸含量至最小腺嘌呤二核苷酸含量之101%、102%、103%、105%、110%、115%、120%、125%、130%、135%、140%、145%或150%範圍內。
實施例21為如前述技術方案中任一項之mRNA,其包含與SEQ ID NO: 32、SEQ ID NO: 34、SEQ ID NO: 36、SEQ ID NO: 38、SEQ ID NO: 41或SEQ ID NO: 75至SEQ ID NO: 77中之任一者有至少90%之一致性的5' UTR。
實施例22為如前述技術方案中任一項之mRNA,其包含與SEQ ID NO: 33、SEQ ID NO: 35、SEQ ID NO: 37、SEQ ID NO: 39或SEQ ID NO: 40中之任一者有至少90%之一致性的3' UTR。
實施例23為如技術方案21或22之mRNA,其中mRNA包含來自同一來源之5' UTR及3' UTR。
實施例24為如前述技術方案中任一項之mRNA,其包含選自Cap0、Cap1及Cap2之5'帽結構。
實施例25為如前述技術方案中任一項之mRNA,其中開放閱讀框架具有提高哺乳動物中之mRNA轉譯之密碼子。
實施例26為如技術方案25之mRNA,其中開放閱讀框架具有提高哺乳動物之特定器官中的mRNA轉譯之密碼子。
實施例27為如技術方案26之mRNA,其中器官為肝臟。
實施例28為如技術方案25至27中任一項之mRNA,其中哺乳動物為人類。
實施例29為如技術方案25至28中任一項之mRNA,其中相對於包含具有由SEQ ID NO: 5組成之序列的ORF的mRNA之轉譯,密碼子提高哺乳動物中之mRNA的轉譯。
實施例30為如前述技術方案中任一項之mRNA,其中當以醫藥組合物形式向哺乳動物投與該mRNA時,哺乳動物展現出比投與包含具有大於150%最小尿苷含量的編碼Cas9核酸酶之ORF的mRNA的哺乳動物低至少5倍的細胞介素反應。
實施例31為如技術方案30之mRNA,其中包含具有大於150%最小尿苷含量的編碼Cas9核酸酶之ORF的mRNA具有由SEQ ID NO: 5組成之序列。
實施例32為如前述技術方案中任一項之mRNA,其中RNA引導之DNA結合劑具有雙股核酸內切酶活性。
實施例33為如技術方案32之mRNA,其中RNA引導之DNA結合劑包含Cas裂解酶。
實施例34為如前述技術方案中任一項之mRNA,其中RNA引導之DNA結合劑具有切口酶活性。
實施例35為如技術方案34之mRNA,其中RNA引導之DNA結合劑包含Cas切口酶。
實施例36為如技術方案1至31中任一項之mRNA,其中RNA引導之DNA結合劑包含dCas DNA結合域。
實施例37為如技術方案33或35至36中任一項之mRNA,其中Cas裂解酶、Cas切口酶或dCas DNA結合域為Cas9裂解酶、Cas9切口酶、或dCas9 DNA結合域。
實施例38為如前述技術方案中任一項之mRNA,其中經編碼的RNA引導之DNA結合劑包含核定位信號(NLS)。
實施例39為如技術方案38之mRNA,其中NLS連接於RNA引導之DNA結合劑的C端。
實施例40為如技術方案38之mRNA,其中NLS連接於RNA引導之DNA結合劑的N端。
實施例41為如技術方案38至40中任一項之mRNA,其中NLS包含與SEQ ID NO: 78至SEQ ID NO: 91中之任一者具有至少80%、85%、90%或95%之一致性的序列。
實施例42為如技術方案38至40中任一項之mRNA,其中NLS包含SEQ ID NO: 78至SEQ ID NO: 91中之任一者之序列。
實施例43為如技術方案38至42中任一項之mRNA,其中NLS由與SEQ ID NO: 92至SEQ ID NO: 104中之任一者之序列具有至少80%、85%、90%、95%、98%或100%之一致性的序列編碼。
實施例44為如技術方案37至43中任一項之mRNA,其中該mRNA包含與SEQ ID NO: 4、SEQ ID NO: 7或SEQ ID NO: 9有至少90%之一致性的序列。
實施例45為如技術方案37至43中任一項之mRNA,其中該mRNA包含與SEQ ID NO: 4、SEQ ID NO: 7或SEQ ID NO: 9有至少95%之一致性的序列。
實施例46為如技術方案37至43中任一項之mRNA,其中該mRNA包含與SEQ ID NO: 4、SEQ ID NO: 7或SEQ ID NO: 9有至少98%之一致性的序列。
實施例47為如技術方案37至43中任一項之mRNA,其中該mRNA包含與SEQ ID NO: 4、SEQ ID NO: 7或SEQ ID NO: 9有100%一致性的序列。
實施例48為如技術方案37至43中任一項之mRNA,其中該mRNA包含與SEQ ID NO: 111、SEQ ID NO: 114或SEQ ID NO: 117有至少90%之一致性的序列。
實施例49為如技術方案37至43中任一項之mRNA,其中該mRNA包含與SEQ ID NO: 111、SEQ ID NO: 114或SEQ ID NO: 117有至少95%之一致性的序列。
實施例50為如技術方案37至43中任一項之mRNA,其中該mRNA包含與SEQ ID NO: 111、SEQ ID NO: 114或SEQ ID NO: 117有至少98%之一致性的序列。
實施例51為如技術方案37至43中任一項之mRNA,其中該mRNA包含與SEQ ID NO: 112、SEQ ID NO: 122或SEQ ID NO: 125有100%一致性的序列。
實施例52為如技術方案37至43中任一項之mRNA,其中該mRNA包含與SEQ ID NO: 112、SEQ ID NO: 122或SEQ ID NO: 125有至少90%之一致性的序列。
實施例53為如技術方案37至43中任一項之mRNA,其中該mRNA包含與SEQ ID NO: 112、SEQ ID NO: 122或SEQ ID NO: 125有至少95%之一致性的序列。
實施例54為如技術方案37至43中任一項之mRNA,其中該mRNA包含與以下有至少90%之一致性的序列:SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
實施例55為如技術方案37至43中任一項之mRNA,其中該mRNA包含與以下有至少95%之一致性的序列:SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
實施例56為如技術方案37至43中任一項之mRNA,其中該mRNA包含與以下有至少98%之一致性的序列:SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
實施例57為如技術方案37至43中任一項之mRNA,其中該mRNA包含與以下有100%一致性的序列:SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
實施例58為如技術方案37至57中任一項之mRNA,其中該mRNA編碼包含SEQ ID NO: 3、SEQ ID NO: 6、SEQ ID NO: 8或SEQ ID NO: 186至SEQ ID NO: 196之胺基酸序列的多肽。
實施例59為如前述技術方案中任一項之mRNA,其中RNA引導之DNA結合劑進一步包含異源功能域。
實施例60為如技術方案59之mRNA,其中異源功能域為FokI核酸酶。
實施例61為如技術方案59之mRNA,其中異源功能域為轉錄調節域。
實施例62為如前述技術方案中任一項之mRNA,其中當以包含脂質奈米粒子之醫藥組合物形式向哺乳動物投與有效量之mRNA以及靶向哺乳動物之TTR基因的引導RNA時,在得自哺乳動物肝細胞的至少50%基因體DNA中之TTR基因座處形成插入缺失標記(indel)。
實施例63為如前述技術方案中任一項之mRNA,其中當以包含脂質奈米粒子之醫藥組合物形式向哺乳動物投與有效量之mRNA以及靶向哺乳動物之TTR基因的引導RNA時,哺乳動物之血清中的TTR之濃度降低至少50%。
實施例64為如前述技術方案中任一項之mRNA,其中至少10%之尿苷被經修飾之尿苷取代。
實施例65為如技術方案64之mRNA,其中經修飾之尿苷為N1-甲基-假尿苷、假尿苷、5-甲氧基尿苷或5-碘尿苷中之一或多者。
實施例66為如技術方案64之mRNA,其中經修飾之尿苷為N1-甲基-假尿苷或5-甲氧基尿苷中之一或兩者。
實施例67為如技術方案64之mRNA,其中經修飾之尿苷為N1-甲基-假尿苷。
實施例68為如技術方案64之mRNA,其中經修飾之尿苷為5-甲氧基尿苷。
實施例69為如技術方案64至68中任一項之mRNA,其中15%至45%之尿苷被經修飾之尿苷取代。
實施例70為如技術方案64至68中任一項之mRNA,其中至少20%或至少30%之尿苷被經修飾之尿苷取代。
實施例71為如技術方案70之mRNA,其中至少80%或至少90%之尿苷被經修飾之尿苷取代。
實施例72為如技術方案70之mRNA,其中100%之尿苷被經修飾之尿苷取代。
實施例73為如技術方案64至72中任一項之mRNA,其中當以包含脂質奈米粒子之醫藥組合物形式向哺乳動物投與有效量之mRNA以及靶向哺乳動物之TTR基因的引導RNA時,在得自哺乳動物肝細胞的至少70%或至少90%基因體DNA中之TTR基因座處形成插入缺失標記(indel)。
實施例74為如技術方案64至73中任一項之mRNA,其中當以包含脂質奈米粒子之醫藥組合物形式向哺乳動物投與mRNA以及靶向哺乳動物之TTR基因的引導RNA時,哺乳動物之血清中的TTR之濃度降低至少70%或至少90%。
實施例75為如技術方案62、63、71或72之mRNA,其中動物為小鼠且引導RNA具有由SEQ ID NO: 42組成之序列。
實施例76為如技術方案62、63、71或72之mRNA,其中動物為大鼠且引導RNA具有由SEQ ID NO: 69組成之序列。
實施例77為如前述技術方案中任一項之mRNA,其中該mRNA包含與SEQ ID NO: 43、SEQ ID NO: 44、SEQ ID NO: 51、SEQ ID NO: 53、SEQ ID NO: 55至SEQ ID NO: 61或SEQ ID NO: 176至SEQ ID NO: 185中之任一者有至少90%之一致性的序列。
實施例78為如前述技術方案中任一項之mRNA,其中該mRNA包含與SEQ ID NO: 43、SEQ ID NO: 44、SEQ ID NO: 51、SEQ ID NO: 53、SEQ ID NO: 55至SEQ ID NO: 61或SEQ ID NO: 176至SEQ ID NO: 185中之任一者有至少95%之一致性的序列。
實施例79為如前述技術方案中任一項之mRNA,其中該mRNA包含與SEQ ID NO: 43、SEQ ID NO: 44、SEQ ID NO: 51、SEQ ID NO: 53、SEQ ID NO: 55至SEQ ID NO: 61或SEQ ID NO: 176至SEQ ID NO: 185中之任一者有至少98%之一致性的序列。
實施例80為如前述技術方案中任一項之mRNA,其中該mRNA包含與SEQ ID NO: 43、SEQ ID NO: 44、SEQ ID NO: 51、SEQ ID NO: 53、SEQ ID NO: 55至SEQ ID NO: 61或SEQ ID NO: 176至SEQ ID NO: 185中之任一者有至少99%之一致性的序列。
實施例81為如前述技術方案中任一項之mRNA,其中該mRNA包含與SEQ ID NO: 43、SEQ ID NO: 44、SEQ ID NO: 51、SEQ ID NO: 53、SEQ ID NO: 55至SEQ ID NO: 61或SEQ ID NO: 176至SEQ ID NO: 185中之任一者有100%一致性的序列。
實施例82為一種表現構築體,其包含以可操作方式連接編碼如前述技術方案中任一項之mRNA的序列的啟動子。
實施例83為一種包含如技術方案82之表現構築體的質體。
實施例84為一種包含如技術方案82之表現構築體或如技術方案83之質體的宿主細胞。
實施例85為一種製備mRNA之方法,該方法包含使如技術方案82之表現構築體或如技術方案83之質體與核糖核酸聚合酶在容許進行mRNA之轉錄的條件下接觸。
實施例86為如技術方案85之方法,其中活體外進行接觸步驟。
實施例87為一種組合物,其包含如技術方案1至81中任一項之mRNA及至少一種引導RNA。
實施例88為一種脂質奈米粒子,其包含如技術方案1至81中任一項之mRNA。
實施例89為一種醫藥組合物,其包含如技術方案1至81中任一項之mRNA及醫藥學上可接受之載劑。
實施例90為如技術方案88之脂質奈米粒子或如技術方案89之醫藥組合物,其進一步包含至少一種引導RNA。
實施例91為如技術方案87至90中任一項之組合物或脂質奈米粒子,其中至少一種引導RNA靶向TTR。
實施例92為一種基因組編輯或修飾靶基因之方法,其包含使細胞與如技術方案1至83或87至91中任一項之mRNA、表現構築體、組合物或脂質奈米粒子接觸。
實施例93為如技術方案1至83或87至91中任一項之mRNA、表現構築體、組合物或脂質奈米粒子之用途,其用於基因組編輯或修飾靶基因。
實施例94為如技術方案1至83或87至91中任一項之mRNA、表現構築體、組合物或脂質奈米粒子之用途,其用於製造用於基因組編輯或修飾靶基因之藥劑。
實施例95為如技術方案92至94中任一項之方法或用途,其中基因組編輯或修飾靶基因在肝臟細胞中進行。
實施例96為如技術方案95之方法或用途,其中肝臟細胞為肝細胞。
實施例97為如技術方案92至96中任一項之方法或用途,其中基因組編輯或修飾靶基因在活體內進行。
實施例98為如技術方案92至97中任一項之方法或用途,其中基因組編輯或修飾靶基因在經分離或經培養之細胞中進行。 所揭示之序列的簡要說明 對於序列本身,參見下文序列表。轉錄物序列一般包括GGG作為供與ARCA一起使用的前三個核苷酸,或包括AGG作為供與CleanCapTM 一起使用的前三個核苷酸。因此,可對前三個核苷酸進行修飾以供與其他加帽結構方法,諸如牛痘加帽結構酶一起使用。啟動子及聚-A序列不包括於轉錄物序列中。啟動子,諸如T7啟動子(SEQ ID NO: 31)及聚-A序列,諸如SEQ ID NO: 62或SEQ ID NO: 63可在5'及3'端處分別附接於所揭示之轉錄物序列。大多數核苷酸序列以DNA形式提供,但可藉由將Ts變成Us而容易轉化成RNA。
現將詳細參考本發明之某些實施例,其實例在附圖中加以說明。儘管本發明將結合所說明之實施例描述,但應理解其並不意欲將本發明限於彼等實施例。相反,本發明意欲涵蓋所有替代方案、修改及等效物,其可如所附申請專利範圍所限定包括在本發明內。
在詳細描述本發明教示內容之前,應理解,本發明不限於特定組合物或方法步驟,因而可加以改變。應注意,除非上下文另外明確規定,否則如本說明書及所附申請專利範圍中所用,單數形式「一(a/an)」及「該(the)」包括複數個所指物。因此,舉例而言,提及「結合物(a conjugate)」包括複數個結合物且提及「細胞(a cell)」包括複數個細胞及其類似者。
數值範圍包括界定該範圍之數字。考慮到有效數位及與量測相關之誤差,所量測及可量測值應理解為大致的。此外,「包含(comprise/comprises/comprising)」、「含有(contain/contains/containing)」及「包括(include/includes/including)」之使用並不意欲為限制性的。應理解,前述一般描述及詳細描述僅為例示性及解釋性的且並不限制教示內容。
術語「約」或「大約」意謂如由一般熟習此項技術者所測定之特定值的可接受之誤差,其在某種程度上視如何量測或測定該值、或變化程度不會實質上影響所述標的物之特性(例如在10%、5%、2%或1%內)而定。因此,除非有相反指示,否則以下說明書及所附申請專利範圍中所闡述之數值參數為可視設法獲得之所需特性而變化的近似值。至少,且不試圖將均等論之應用限於申請專利範圍之範疇,各數值參數至少應根據所報導之有效數位的數目且藉由應用普通捨位技術來解釋。
除非以上說明書中具體指出,否則本說明書中敍述「包含」各種組分之實施例亦設想為「由所述組分組成」或「基本上由所述組分組成」;本說明書中敍述「由各種組分組成」之實施例亦設想為「包含」所述組分或「基本上由所述組分組成」;且本說明書中敍述「基本上由各種組分組成」之實施例亦設想為「由所述組分組成」或「包含」所述組分(此互換性並不適用於此等術語在申請專利範圍中之使用)。
本文所用之章節標題僅出於組織目的而不應解釋為以任何方式限制所需標的物。在以引用之方式併入之任何文獻與本說明書之表述內容(包括(但不限於)定義)相矛盾之情況下,以本說明書之表述內容為準。雖然本教示內容係與多個實施例結合描述,但並不意欲將本教示內容限制於該等實施例。相反,如熟習此項技術者將瞭解,本教示內容涵蓋各種替代方案、修改及等效物。 A. 定義
除非另外說明,否則如本文所用之以下術語及片語意欲具有以下含義:
如本文所用,術語「或其組合」係指在該術語前面所列項之所有排列及組合。舉例而言,「A、B、C或其組合」意欲包括以下中之至少一者:A、B、C、AB、AC、BC或ABC,且若在特定情況下順序為重要的,則亦包括BA、CA、CB、ACB、CBA、BCA、BAC或CAB。繼續此實例,明確地包括含有一或多個項或條項之重複的組合,諸如BB、AAA、AAB、BBC、AAABCCCC、CBBAAA、CABABB等。熟習此項技術者應理解,除非另外自上下文顯而易知,否則通常不存在對任何組合中之項目或術語數目的限制。
如本文所用,術語「套組」係指相關組分,諸如一或多種多核苷酸或組合物及一或多種相關材料,諸如遞送裝置(例如注射器)、溶劑、溶液、緩衝劑、說明書或乾燥劑之封裝組。
除非本文另有規定,否則「或」係依包括性意義使用,亦即,等效於「及/或」。
「多核苷酸」及「核酸」在本文中用於指代包含核苷或具有沿主鏈連接在一起的含氮雜環鹼基或鹼基類似物之核苷類似物的多聚化合物,其包括習知RNA、DNA、混合RNA-DNA及為其類似物之聚合物。核酸「主鏈」可由多個鍵組成,其包括糖-磷酸二酯鍵、肽-核酸鍵(「肽核酸」或PNA;PCT第WO 95/32305號)、硫代磷酸酯鍵、膦酸甲酯鍵或其組合中之一或多者。核酸之糖部分可為核糖、去氧核糖或具有取代,例如2'甲氧基或2'鹵基取代之類似化合物。含氮鹼基可為習知鹼基(A、G、C、T、U);其類似物(例如經修飾之尿苷,諸如5-甲氧基尿苷、假尿苷或N1-甲基假尿苷或其他);肌核苷;嘌呤或嘧啶之衍生物(例如N4 -甲基脫氧鳥苷、脫氮或氮雜嘌呤、脫氮或氮雜嘧啶、在5或6位處具有取代基之嘧啶鹼基(例如5-甲基胞嘧啶)、在2、6或8位處具有取代基之嘌呤鹼基、2-胺基-6-甲胺基嘌呤、O6 -甲基鳥嘌呤、4-硫基-嘧啶、4-胺基-嘧啶、4-二甲基肼-嘧啶及O4 -烷基-嘧啶;美國專利第5,378,825號及PCT第WO 93/13121號)。對於一般論述,參見The Biochemistry of the Nucleic Acids 5-36, Adams等人編, 第11版, 1992。核酸可包括一或多個「無鹼基」殘基,其中主鏈不包括針對聚合物位置之含氮鹼基(美國專利第5,585,481號)。核酸可僅包含習知RNA或DNA糖、鹼基及鍵,或可包括習知組分及取代兩者(例如具有2'甲氧基鍵之習知鹼基或含有習知鹼基及一或多個鹼基類似物兩者的聚合物)。核酸包括「鎖核酸」(LNA),一種含有一或多種LNA核苷酸單體之類似物,該等單體具有模擬糖構形之鎖定於RNA中的雙環呋喃醣單元,其會增強對互補RNA及DNA序列之雜交親和性(Vester及Wengel, 2004,Biochemistry 43(42):13233-41)。RNA及DNA具有不同糖部分且可藉由在RNA中存在尿嘧啶或其類似物及在DNA中存在胸腺嘧啶或其類似物而有所不同。
「經修飾之尿苷」在本文中用於指代除胸苷外的具有與尿苷相同之氫鍵受體且與尿苷存在一或多種結構性差異的核苷。在一些實施例中,經修飾之尿苷為經取代之尿苷,亦即其中一或多個非質子取代(例如烷氧基,諸如甲氧基)代替質子之尿苷。在一些實施例中,經修飾之尿苷為假尿苷。在一些實施例中,經修飾之尿苷為經取代之假尿苷,亦即其中一或多個非質子取代(例如烷基,諸如甲基)代替質子之假尿苷。在一些實施例中,經修飾之尿苷為經取代之尿苷、假尿苷或經取代之假尿苷中之任一者。
如本文所用,「尿苷位置」係指多核苷酸中由尿苷或經修飾之尿苷佔據之位置。因此,舉例而言,其中「100%之尿苷位置為經修飾之尿苷」之多核苷酸在相同序列之習知RNA (其中所有鹼基均為標準A、U、C或G鹼基)中應為尿苷的每個位置處均含有經修飾之尿苷。除非另外指明,否則本發明中或附隨本發明的序列表(sequence table/sequence listing)之多核苷酸序列中之U可為尿苷或經修飾之尿苷。
如本文所用,若第一序列與第二序列之比對顯示整個第二序列之X%或大於X%之位置與第一序列相匹配,則該第一序列視為「包含與第二序列具有至少X%一致性的序列」。舉例而言,序列AAGA包含與序列AAG具有100%一致性之序列,因為與第二序列之全部三個位置均出現匹配,所以比對結果為100%一致性。RNA與DNA之間的差異(通常而言,尿苷更換為胸苷或反之亦然)及核苷類似物(諸如經修飾之尿苷)的存在不會造成多核苷酸之間一致性或互補性的差異,只要相關核苷酸(諸如胸苷、尿苷或經修飾之尿苷)具有相同互補序列(例如針對胸苷、尿苷或經修飾之尿苷均為腺苷;另一實例為胞嘧啶及5-甲基胞嘧啶,這兩者均以鳥苷作為互補序列)即可。因此,舉例而言,序列5'-AXG (其中X為任何經修飾之尿苷,諸如假尿苷、N1-甲基假尿苷或5-甲氧基尿苷)視為與AUG具有100%一致性,因為兩者與同一序列(5'-CAU)完全互補。比對演算法實例為Smith-Waterman及Needleman-Wunsch演算法,其係此項技術中熟知者。熟習此項技術者應理解選擇何種演算法及參數設置才適合於所要比對之一對指定序列;對於具有一般類似長度及預期胺基酸有>50%一致性或核苷酸有>75%一致性的序列而言,由EBI於www.ebi.ac.uk網站伺服器提供的Needleman-Wunsch演算法介面之具有默認設置的Needleman-Wunsch演算法通常為合適的。
「mRNA」在本文中用於指代非DNA且包含可轉譯成多肽之開放閱讀框架的多核苷酸(亦即可作為由核糖體及胺基醯化tRNA進行轉譯之受質)。mRNA可包含包括核糖殘基或其類似物,例如2'-甲氧基核糖殘基之磷酸酯-糖主鏈。在一些實施例中,mRNA磷酸酯-糖主鏈之糖基本上由核糖殘基、2'-甲氧基核糖殘基或其組合組成。通常而言,mRNA不含大量胸苷殘基(例如0個殘基或小於30、20、10、5、4、3或2個胸苷殘基;或小於10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、0.5%、0.2%或0.1%的胸苷含量)。mRNA可在其一些或全部尿苷位置處含有經修飾之尿苷。
如本文所用,「RNA引導之DNA結合劑」意謂具有RNA及DNA結合活性之多肽或多肽複合物,或此類複合物之DNA結合次單位,其中DNA結合活性具有序列特異性且視RNA之序列而定。例示性RNA引導之DNA結合劑包括Cas裂解酶/切口酶及其不活化形式(「dCas DNA結合劑」)。如本文所用,「Cas核酸酶」亦稱作「Cas蛋白質」,其涵蓋Cas裂解酶、Cas切口酶及dCas DNA結合劑。Cas裂解酶/切口酶及dCas DNA結合劑包括III型CRISPR系統之Csm或Cmr複合物、其Cas10、Csm1或Cmr2次單位、I型CRISPR系統之級聯複合物、其Cas3次單位及2類Cas核酸酶。如本文所用,「2類Cas核酸酶」為具有經RNA引導之DNA結合活性的單鏈多肽,諸如Cas9核酸酶或Cpf1核酸酶。2類Cas核酸酶包括2類Cas裂解酶及2類Cas切口酶(例如H840A、D10A或N863A變異體),其進一步具有經RNA引導之DNA裂解酶或切口酶活性,及2類dCas DNA結合劑,其中裂解酶/切口酶活性未活化。2類Cas核酸酶包括例如Cas9、Cpf1、C2c1、C2c2、C2c3、HF Cas9 (例如N497A、R661A、Q695A、Q926A變異體)、HypaCas9 (例如N692A、M694A、Q695A、H698A變異體)、eSPCas9(1.0) (例如K810A、K1003A、R1060A變異體)及eSPCas9(1.1) (例如K848A、K1003A、R1060A變異體)蛋白質及其變體。Cpf1蛋白質(Zetsche等人,Cell , 163: 1-13 (2015))與Cas9同源且含有類RuvC核酸酶域。Zetsche之Cpf1序列以全文引用之方式併入。參見例如Zetsche,表S1及表S3。「Cas9」涵蓋Spy Cas9、本文中所列的Cas9之變異體及其等效物。參見例如,Makarova等人,Nat Rev Microbiol , 13(11): 722-36 (2015);Shmakov等人,Molecular Cell , 60:385-397 (2015)。
如本文所用,給定開放閱讀框架(ORF)之「最小尿苷含量」為以下之ORF的尿苷含量:(a)每個位置處使用最小尿苷密碼子及(b)編碼與給定ORF相同的胺基酸序列。給定胺基酸之最小尿苷密碼子為具有最少尿苷之密碼子(通常0或1個,除了苯丙胺酸之密碼子外,其中最小尿苷密碼子具有2個尿苷)。出於評估最小尿苷含量之目的,經修飾之尿苷殘基視為等效於尿苷。
如本文所用,給定開放閱讀框架(ORF)之「最小尿苷二核苷酸含量」為以下之ORF的最低可能的尿苷二核苷酸(UU)含量:(a)在每個位置處使用最小尿苷密碼子(如上文所論述)及(b)編碼與給定ORF相同的胺基酸序列。尿苷二核苷酸(UU)含量在絕對意義上可表示為ORF中之UU二核苷酸之計數或基於比率,表示為尿苷二核苷酸之尿苷所佔據的位置之百分比(例如,AUUAU之尿苷二核苷酸含量為40%,因為尿苷二核苷酸之尿苷佔據了5個位置中之2個)。出於評估最小尿苷二核苷酸含量之目的,經修飾之尿苷殘基視為等效於尿苷。
如本文所用,給定開放閱讀框架(ORF)之「最小腺嘌呤含量」為以下之ORF的腺嘌呤含量:(a)每個位置處使用最小腺嘌呤密碼子及(b)編碼與給定ORF相同的胺基酸序列。給定胺基酸之最小腺嘌呤密碼子為具有最少腺嘌呤之密碼子(通常0或1個,除了離胺酸及天冬醯胺之密碼子外,其中最小腺嘌呤密碼子具有2個腺嘌呤)。出於評估最小腺嘌呤含量之目的,經修飾之腺嘌呤殘基視為等效於腺嘌呤。
如本文所用,給定開放閱讀框架(ORF)之「最小腺嘌呤二核苷酸含量」為以下之ORF的最低可能的腺嘌呤二核苷酸(AA)含量:(a)在每個位置處使用最小腺嘌呤密碼子(如上文所論述)及(b)編碼與給定ORF相同的胺基酸序列。腺嘌呤二核苷酸(AA)含量在絕對意義上可表示為ORF中之AA二核苷酸之計數或基於比率,表示為腺嘌呤二核苷酸之腺嘌呤所佔據的位置之百分比(例如,UAAUA之腺嘌呤二核苷酸含量為40%,因為腺嘌呤二核苷酸之腺嘌呤佔據了5個位置中之2個)。出於評估最小腺嘌呤二核苷酸含量之目的,經修飾之腺嘌呤殘基視為等效於腺嘌呤。
「引導RNA」、「gRNA」及「引導物」在本文中互換使用來指代crRNA (亦稱為CRISPR RNA)或crRNA與trRNA (亦稱為tracrRNA)之組合任一者。crRNA及trRNA可以單一RNA分子(單引導RNA,sgRNA)或以兩個獨立RNA分子(雙引導RNA,dgRNA)形式締合。「引導RNA」或「gRNA」係指各類型。trRNA可為天然存在之序列或與天然存在之序列相比具有修飾或變化之trRNA序列。
如本文所用,「引導序列」係指引導RNA中與靶序列互補且用以藉由RNA引導之DNA結合劑將引導RNA導引至靶序列以供結合或修飾(例如裂解)的序列。「引導序列」亦可稱為「靶序列」或「間隔序列」。引導序列之長度可為20個鹼基對,例如在釀膿鏈球菌(Streptococcus pyogenes ) (亦即Spy Cas9)及相關Cas9同源物/直系同源物之情況下。較短或較長序列亦可用作引導物,例如長度為15、16、17、18、19、21、22、23、24或25個核苷酸。在一些實施例中,靶序列處於例如基因中或染色體上,且與引導序列互補。在一些實施例中,引導序列與其相應靶序列之間的互補性或一致性之程度可為約75%、80%、85%、90%、95%、96%、97%、98%、99%或100%。在一些實施例中,引導序列與標靶區可為100%互補或一致的。在其他實施例中,引導序列與標靶區可含有至少一個錯配。舉例而言,引導序列及靶序列可含有1、2、3或4個錯配,其中靶序列之總長度為至少17、18、19、20或大於20個鹼基對。在一些實施例中,引導序列及標靶區可含有1至4個錯配,其中引導序列包含至少17、18、19、20或大於20個核苷酸。在一些實施例中,引導序列及標靶區可含有1、2、3或4個錯配,其中引導序列包含20個核苷酸。
針對Cas蛋白質之靶序列包括基因體DNA之正股及負股兩者(亦即給定序列及該序列之反向互補序列),因為Cas蛋白質之核酸受質為雙股核酸。因此,在論述引導序列「與靶序列互補」之情況下,應理解,引導序列可導引引導RNA結合至靶序列之反向互補序列。因此,在一些實施例中,在引導序列結合靶序列之反向互補序列之情況下,引導序列與靶序列(例如不包括PAM之靶序列)之某些核苷酸相同,不同之處在於引導序列中U取代T。
如本文所用,「 插入缺失標記(indel)」係指由多個核苷酸組成之插入/缺失突變,該等核苷酸在核酸中之雙股斷裂(DSB)位點處進行插入或缺失。
如本文所用,「基因減弱(knockdown)」係指特定基因產物(例如蛋白質、mRNA或兩者)之表現降低。可藉由偵測由組織或細胞群(例如在血清或細胞培養基中)分泌之蛋白質或藉由偵測來自相關組織或細胞群的蛋白質之總細胞量來量測蛋白質之基因減弱。用於量測mRNA之基因減弱的方法為已知的,且包括對自相關組織或細胞群分離之mRNA進行定序。在一些實施例中,「基因減弱」可指代特定基因產物表現有一些損失,例如經轉錄之mRNA的量下降或由細胞群(包括活體內細胞群,諸如彼等出現在組織中者)表現或分泌的蛋白質之量下降。
如本文所用,「基因剔除」係指喪失細胞中特定蛋白質之表現。可藉由偵測由組織或細胞群(例如在血清或細胞培養基中)分泌的蛋白質之量或藉由偵測組織或細胞群中蛋白質之總細胞量來量測基因剔除。在一些實施例中,本發明方法在一或多種細胞(例如在細胞群,包括活體內細胞群,諸如彼等出現在組織中者)「基因剔除」靶蛋白。在一些實施例中,基因剔除並非例如藉由插入缺失標記(indel)導致形成突變靶蛋白,而是細胞中完全喪失靶蛋白之表現。
如本文所用,「核糖核蛋白」(RNP)或「RNP複合物」係指引導RNA以及RNA引導之DNA結合劑,諸如Cas裂解酶、切口酶或dCas DNA結合劑(例如Cas9)。在一些實施例中,引導RNA將RNA引導之DNA結合劑,諸如Cas9導引至靶序列,且該引導RNA與靶序列雜交且該結合劑結合於靶序列;在結合劑為裂解酶或切口酶之情況下,結合之後進行裂解或切口。
如本文所用,「靶序列」係指靶基因中與gRNA之引導序列互補的核酸序列。靶序列與引導序列之相互作用導引RNA引導之DNA結合劑結合,且在靶序列中潛在地鏈裂或裂解(視試劑活性而定)。
如本文所用,「治療」係指用於個體之疾病或病症的治療劑的任何投與或施用,且包括抑制疾病、遏制其發展、緩解疾病之一或多種症狀、治癒疾病或預防疾病之一或多種症狀的復發。B. 例示性多核苷酸及組合物 1. 具有低尿苷含量之mRNA及ORF
在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷含量在其最小尿苷含量至其最小尿苷含量之約150%範圍內。在一些實施例中,ORF之尿苷含量小於或等於其最小尿苷含量之約145%、140%、135%、130%、125%、120%、115%、110%、105%、104%、103%、102%或101%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷含量等於其最小尿苷含量。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷含量小於或等於其最小尿苷含量之約150%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷含量小於或等於其最小尿苷含量之約145%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷含量小於或等於其最小尿苷含量之約140%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷含量小於或等於其最小尿苷含量之約135%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷含量小於或等於其最小尿苷含量之約130%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷含量小於或等於其最小尿苷含量之約125%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷含量小於或等於其最小尿苷含量之約120%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷含量小於或等於其最小尿苷含量之約115%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷含量小於或等於其最小尿苷含量之約110%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷含量小於或等於其最小尿苷含量之約105%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷含量小於或等於其最小尿苷含量之約104%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷含量小於或等於其最小尿苷含量之約103%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷含量小於或等於其最小尿苷含量之約102%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷含量小於或等於其最小尿苷含量之約101%。
在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量在其最小尿苷二核苷酸含量至其最小尿苷二核苷酸含量之200%範圍內。在一些實施例中,ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約195%、190%、185%、180%、175%、170%、165%、160%、155%、150%、145%、140%、135%、130%、125%、120%、115%、110%、105%、104%、103%、102%或101%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量等於其最小尿苷二核苷酸含量。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約200%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約195%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約190%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約185%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約180%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約175%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約170%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約165%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約160%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約155%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量等於其最小尿苷二核苷酸含量。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約150%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約145%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約140%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約135%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約130%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約125%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約120%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約115%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約110%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約105%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約104%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約103%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約102%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量小於或等於其最小尿苷二核苷酸含量之約101%。
在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷二核苷酸含量在其最小尿苷二核苷酸含量至呈編碼與相關mRNA相同之蛋白質的參考序列之最大尿苷二核苷酸含量的90%或低於90%的尿苷二核苷酸含量範圍內。在一些實施例中,ORF之尿苷二核苷酸含量小於或等於編碼與相關mRNA相同之蛋白質的參考序列之最大尿苷二核苷酸含量之約85%、80%、75%、70%、65%、60%、55%、50%、45%、40%、35%、30%、25%、20%、15%、10%或5%。
在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷三核苷酸含量在0個尿苷三核苷酸至1、2、3、4、5、6、7、8、9、10、20、30、40或50個尿苷三核苷酸範圍內(其中一連串較長的尿苷計為其內特有三尿苷區段之數目,例如尿苷四核苷酸含有兩個尿苷三核苷酸,尿苷五核苷酸含有三個尿苷三核苷酸等)。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷三核苷酸含量在0%尿苷三核苷酸至0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%或2%尿苷三核苷酸範圍內,其中尿苷三核苷酸之百分比含量計算為序列中由形成尿苷三核苷酸之一部分(或一連串較長尿苷),以使得序列UUUAAA及UUUUAAAA將各具有50%之尿苷三核苷酸含量的尿苷所佔據的位置之百分比。舉例而言,在一些實施例中,ORF之尿苷三核苷酸含量小於或等於2%。舉例而言,在一些實施例中,ORF之尿苷三核苷酸含量小於或等於1.5%。在一些實施例中,ORF之尿苷三核苷酸含量小於或等於1%。在一些實施例中,ORF之尿苷三核苷酸含量小於或等於0.9%。在一些實施例中,ORF之尿苷三核苷酸含量小於或等於0.8%。在一些實施例中,ORF之尿苷三核苷酸含量小於或等於0.7%。在一些實施例中,ORF之尿苷三核苷酸含量小於或等於0.6%。在一些實施例中,ORF之尿苷三核苷酸含量小於或等於0.5%。在一些實施例中,ORF之尿苷三核苷酸含量小於或等於0.4%。在一些實施例中,ORF之尿苷三核苷酸含量小於或等於0.3%。在一些實施例中,ORF之尿苷三核苷酸含量小於或等於0.2%。在一些實施例中,ORF之尿苷三核苷酸含量小於或等於0.1%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF不含尿苷三核苷酸。
在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷三核苷酸含量在其最小尿苷三核苷酸含量至呈編碼與相關mRNA相同之蛋白質的參考序列之最大尿苷三核苷酸含量的90%或低於90%的尿苷三核苷酸含量範圍內。在一些實施例中,ORF之尿苷三核苷酸含量小於或等於編碼與相關mRNA相同之蛋白質的參考序列之最大尿苷三核苷酸含量的約85%、80%、75%、70%、65%、60%、55%、50%、45%、40%、35%、30%、25%、20%、15%、10%或5%。
在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF具有極少核苷酸均聚物,例如重複的相同核苷酸之串。舉例而言,在一些實施例中,當自表1中所列之密碼子選擇最小尿苷密碼子時,藉由選擇降低核苷酸均聚物之數量及長度的最小尿苷密碼子(例如,對於丙胺酸,選擇GCA代替GCC;或對於甘胺酸,選擇GGA代替GGG;或對於離胺酸,選擇AAG代替AAA)來構築mRNA。
可例如藉由在ORF之足夠多的一部分中使用最小尿苷密碼子來降低給定ORF之尿苷含量或尿苷二核苷酸含量或尿苷三核苷酸含量。舉例而言,可藉由將胺基酸轉化成密碼子而將RNA引導之DNA結合劑的胺基酸序列轉譯回ORF序列,其中ORF中之一些或全部使用以下所示的例示性最小尿苷密碼子。在一些實施例中,ORF中至少約50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、98%、99%或100%之密碼子為表1中所列之密碼子。 1. 例示性 最小尿苷密碼子
在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF由其中至少約75%、80%、85%、90%、95%、98%、99%或100%之密碼子為表1中所列之密碼子的一組密碼子組成。 2. 具有低腺嘌呤含量之mRNA及ORF
在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤含量在其最小腺嘌呤含量至其最小腺嘌呤含量之約150%範圍內。在一些實施例中,ORF之腺嘌呤含量小於或等於其最小腺嘌呤含量之約145%、140%、135%、130%、125%、120%、115%、110%、105%、104%、103%、102%或101%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤含量等於其最小腺嘌呤含量。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤含量小於或等於其最小腺嘌呤含量之約150%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤含量小於或等於其最小腺嘌呤含量之約145%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤含量小於或等於其最小腺嘌呤含量之約140%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤含量小於或等於其最小腺嘌呤含量之約135%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤含量小於或等於其最小腺嘌呤含量之約130%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤含量小於或等於其最小腺嘌呤含量之約125%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤含量小於或等於其最小腺嘌呤含量之約120%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤含量小於或等於其最小腺嘌呤含量之約115%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤含量小於或等於其最小腺嘌呤含量之約110%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤含量小於或等於其最小腺嘌呤含量之約105%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤含量小於或等於其最小腺嘌呤含量之約104%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤含量小於或等於其最小腺嘌呤含量之約103%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤含量小於或等於其最小腺嘌呤含量之約102%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤含量小於或等於其最小腺嘌呤含量之約101%。
在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量在其最小腺嘌呤二核苷酸含量至其最小腺嘌呤二核苷酸含量之200%範圍內。在一些實施例中,ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約195%、190%、185%、180%、175%、170%、165%、160%、155%、150%、145%、140%、135%、130%、125%、120%、115%、110%、105%、104%、103%、102%或101%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量等於最小腺嘌呤二核苷酸含量。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約200%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約195%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約190%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約185%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約180%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約175%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約170%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約165%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約160%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約155%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量等於最小腺嘌呤二核苷酸含量。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約150%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約145%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約140%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約135%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約130%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約125%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約120%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約115%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約110%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約105%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約104%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約103%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約102%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量小於或等於其最小腺嘌呤二核苷酸含量之約101%。
在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤二核苷酸含量在其最小腺嘌呤二核苷酸含量至呈編碼與相關mRNA相同之蛋白質的參考序列之最大腺嘌呤二核苷酸含量的90%或低於90%的腺嘌呤二核苷酸含量範圍內。在一些實施例中,ORF之腺嘌呤二核苷酸含量小於或等於編碼與相關mRNA相同之蛋白質的參考序列之最大腺嘌呤二核苷酸含量約85%、80%、75%、70%、65%、60%、55%、50%、45%、40%、35%、30%、25%、20%、15%、10%或5%。
在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤三核苷酸含量在0個腺嘌呤三核苷酸至1、2、3、4、5、6、7、8、9、10、20、30、40或50個腺嘌呤三核苷酸範圍內(其中一連串較長的腺嘌呤計為其內特有三腺嘌呤區段之數目,例如腺嘌呤四核苷酸含有兩個腺嘌呤三核苷酸,腺嘌呤五核苷酸含有三個腺嘌呤三核苷酸等)。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤三核苷酸含量在0%腺嘌呤三核苷酸至0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%或2%腺嘌呤三核苷酸範圍內,其中腺嘌呤三核苷酸之百分比含量計算為序列中由形成腺嘌呤三核苷酸之一部分(或一連串較長腺嘌呤),以使得序列UUUAAA及UUUUAAAA將各具有50%之腺嘌呤三核苷酸含量的腺嘌呤所佔據的位置之百分比。舉例而言,在一些實施例中,ORF之腺嘌呤三核苷酸含量小於或等於2%。舉例而言,在一些實施例中,ORF之腺嘌呤三核苷酸含量小於或等於1.5%。在一些實施例中,ORF之腺嘌呤三核苷酸含量小於或等於1%。在一些實施例中,ORF之腺嘌呤三核苷酸含量小於或等於0.9%。在一些實施例中,ORF之腺嘌呤三核苷酸含量小於或等於0.8%。在一些實施例中,ORF之腺嘌呤三核苷酸含量小於或等於0.7%。在一些實施例中,ORF之腺嘌呤三核苷酸含量小於或等於0.6%。在一些實施例中,ORF之腺嘌呤三核苷酸含量小於或等於0.5%。在一些實施例中,ORF之腺嘌呤三核苷酸含量小於或等於0.4%。在一些實施例中,ORF之腺嘌呤三核苷酸含量小於或等於0.3%。在一些實施例中,ORF之腺嘌呤三核苷酸含量小於或等於0.2%。在一些實施例中,ORF之腺嘌呤三核苷酸含量小於或等於0.1%。在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF不含腺嘌呤三核苷酸。
在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF具有極少核苷酸均聚物,例如重複的相同核苷酸之串。舉例而言,在一些實施例中,當自表1中所列之密碼子選擇最小腺嘌呤密碼子時,藉由選擇降低核苷酸均聚物之數量及長度的最小腺嘌呤密碼子(例如,對於丙胺酸,選擇GCA代替GCC;或對於甘胺酸,選擇GGA代替GGG;或對於離胺酸,選擇AAG代替AAA)來構築mRNA。
在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之腺嘌呤三核苷酸含量在其最小腺嘌呤三核苷酸含量至呈編碼與相關mRNA相同之蛋白質的參考序列之最大腺嘌呤三核苷酸含量的90%或低於90%的腺嘌呤三核苷酸含量範圍內。在一些實施例中,ORF之腺嘌呤三核苷酸含量小於或等於編碼與相關mRNA相同之蛋白質的參考序列之最大腺嘌呤三核苷酸含量的約85%、80%、75%、70%、65%、60%、55%、50%、45%、40%、35%、30%、25%、20%、15%、10%或5%。
可例如藉由在ORF之足夠多的一部分中使用最小腺嘌呤密碼子來降低給定ORF之腺嘌呤含量或腺嘌呤二核苷酸含量或腺嘌呤三核苷酸含量。舉例而言,可藉由將胺基酸轉化成密碼子而將RNA引導之DNA結合劑的胺基酸序列轉譯回ORF序列,其中ORF中之一些或全部使用以下所示的例示性最小腺嘌呤密碼子。在一些實施例中,ORF中至少約50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、98%、99%或100%之密碼子為表2中所列之密碼子。 2. 例示性最小腺嘌呤密碼子
在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF由其中至少約75%、80%、85%、90%、95%、98%、99%或100%之密碼子為表2中所列之密碼子的一組密碼子組成。 3. 具有低腺嘌呤及低尿苷含量之mRNA及ORF
就可行性而言,上文關於低腺嘌呤含量所述之特徵中之任一者可與上文關於低尿苷含量所述之特徵中之任一者組合。舉例而言,可提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF之尿苷含量在其最小尿苷含量至其最小尿苷含量之約150%範圍內(例如ORF之尿苷含量小於或等於其最小尿苷含量之約145%、140%、135%、130%、125%、120%、115%、110%、105%、104%、103%、102%或101%),且該ORF之腺嘌呤含量在其最小腺嘌呤含量至其最小腺嘌呤含量之約150%範圍內(例如小於或等於其最小腺嘌呤含量之約145%、140%、135%、130%、125%、120%、115%、110%、105%、104%、103%、102%或101%)。對於尿苷及腺嘌呤二核苷酸亦如此。同樣,ORF中之尿苷核苷酸及腺嘌呤二核苷酸之含量可如上文所闡述。同樣,ORF中之尿苷二核苷酸及腺嘌呤核苷酸之含量可如上文所闡述。
可例如藉由在ORF之足夠多的一部分中使用最小尿苷及腺嘌呤密碼子來降低給定ORF之尿苷及腺嘌呤核苷酸及/或二核苷酸含量。舉例而言,可藉由將胺基酸轉化成密碼子而將RNA引導之DNA結合劑的胺基酸序列轉譯回ORF序列,其中ORF中之一些或全部使用以下所示的例示性最小尿苷及腺嘌呤密碼子。在一些實施例中,ORF中至少約50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、98%、99%或100%之密碼子為表3中所列之密碼子。 3 . 例示性最小尿苷及腺嘌呤密碼子
在一些實施例中,提供一種編碼包含開放閱讀框架(ORF)的RNA引導之DNA結合劑之mRNA,該ORF由其中至少約75%、80%、85%、90%、95%、98%、99%或100%之密碼子為表3中所列之密碼子的一組密碼子組成。如表3中可看出,三個所列絲胺酸密碼子中之每一者含有一個A或一個U任一者。在一些實施例中,對於絲胺酸,藉由使用AGC密碼子來優先化進行尿苷最小化。在一些實施例中,對於絲胺酸,藉由使用UCC及/或UCG密碼子優先化進行腺嘌呤最小化。 4. 提高轉譯及/或對應於高度表現之tRNA的密碼子;例示性密碼子組
在一些實施例中,mRNA包含具有增加哺乳動物,諸如人類中之轉譯的密碼子的ORF。在其他實施例中,mRNA包含具有增加哺乳動物,例如人類之器官,諸如肝臟中之轉譯的密碼子的ORF。在其他實施例中,mRNA包含具有增加哺乳動物,例如人類之細胞型,諸如肝細胞中之轉譯的密碼子的ORF。哺乳動物中;哺乳動物(人類)之細胞型、器官中;人類器官等中的轉譯之提高可相對於ORF之野生型序列轉譯程度或相對於以下ORF進行測定:該ORF具有與ORF所源自之生物體或在一定胺基酸含量下含有最類似ORF之生物體,諸如釀膿鏈球菌、金黃色葡萄球菌(S . aureus )或另一原核生物(當情況可能為來源於原核生物之Cas核酸酶,諸如來自下文所述之其他原核生物的Cas核酸酶時)之密碼子分佈相匹配的密碼子分佈。可替代地,在一些實施例中,哺乳動物中;哺乳動物(人類)之細胞型、器官中;人類器官等中的Cas9序列轉譯之提高係相對於具有SEQ ID NO: 5,同時在所有其他方面(包括任何適用點突變、異源域及其類似者)相同之序列的ORF之轉譯進行測定。適用於提高人類,包括人類肝臟及人類肝細胞中之表現的密碼子可為對應於人類肝臟/肝細胞中高度表現之tRNA的密碼子,其論述於Dittmar KA,PLos Genetics 2(12): e221 (2006)中。在一些實施例中,ORF中至少約75%、80%、85%、90%、95%、96%、97%、98%、99%或100%之密碼子為對應於哺乳動物,諸如人類中的高度表現之tRNA (例如針對各胺基酸之表現最高之tRNA)的密碼子。在一些實施例中,ORF中至少75%、80%、85%、90%、95%、96%、97%、98%、99%或100%之密碼子為對應於哺乳動物器官,諸如人類器官中的高度表現之tRNA (例如針對各胺基酸之表現最高之tRNA)的密碼子。在一些實施例中,ORF中至少75%、80%、85%、90%、95%、96%、97%、98%、99%或100%之密碼子為對應於哺乳動物肝臟,諸如人類肝臟中的高度表現之tRNA (例如針對各胺基酸之表現最高之tRNA)的密碼子。在一些實施例中,ORF中至少75%、80%、85%、90%、95%、96%、97%、98%、99%或100%之密碼子為對應於哺乳動物肝細胞,諸如人類肝細胞中的高度表現之tRNA (例如針對各胺基酸之表現最高之tRNA)的密碼子。
可替代地,通常可使用對應於生物體(例如人類)中的高度表現之tRNA的密碼子。
前述密碼子選擇方法中之任一者與上文所示之最小尿苷及/或腺嘌呤密碼子可例如藉由以下進行組合:以表1、表2或表3之密碼子開始,且隨後在可利用多於一種選擇之情況下,使用對應於一般生物體(例如人類)中,或相關器官或細胞型,諸如肝臟或肝細胞(例如人類肝臟或人類肝細胞)中的較高度表現之tRNA的密碼子。
在一些實施例中,ORF中至少75%、80%、85%、90%、95%、96%、97%、98%、99%或100%之密碼子為來自表4中所示的密碼子組(例如低U 1、低A或低A/U密碼子組)的密碼子。低U 1、低G、低C、低A及低A/U組中之密碼子使用將所指定之核苷酸減至最小之密碼子,同時在可利用多於一種選擇之情況下,亦使用對應於高度表現之tRNA的密碼子。在一些實施例中,ORF中至少75%、80%、85%、90%、95%、96%、97%、98%、99%或100%之密碼子為來自表4中所示的低U 1密碼子組的密碼子。在一些實施例中,ORF中至少75%、80%、85%、90%、95%、96%、97%、98%、99%或100%之密碼子為來自表4中所示的低A密碼子組的密碼子。在一些實施例中,ORF中至少75%、80%、85%、90%、95%、96%、97%、98%、99%或100%之密碼子為來自表4中所示的低A/U密碼子組的密碼子。 表4. 例示性密碼子組. 5. 經編碼的RNA引導之DNA結合劑
在一些實施例中,RNA引導之DNA結合劑為2類Cas核酸酶。在一些實施例中,RNA引導之DNA結合劑具有裂解酶活性,其亦可稱作雙股核酸內切酶活性。在一些實施例中,RNA引導之DNA結合劑包含Cas核酸酶,諸如2類Cas核酸酶(其可為例如第II型、第V型或第VI型Cas核酸酶)。2類Cas核酸酶包括例如Cas9、Cpf1、C2c1、C2c2及C2c3蛋白質及其修飾形式。Cas9核酸酶之實例包括釀膿鏈球菌、金黃色葡萄球菌及其他原核生物(參見例如下一段落中之清單)之II型CRISPR系統之彼等者及其經修飾(例如經工程改造或突變型)形式。參見例如,US2016/0312198 A1;US 2016/0312199 A1。Cas核酸酶之其他實例包括III型CRISPR系統之Csm或Cmr複合物或其Cas10、Csm1或Cmr2次單位;及I型CRISPR系統之級聯複合物或其Cas3次單位。在一些實施例中,Cas核酸酶可來自第IIA型、第IIB型或第IIC型系統。對於不同CRISPR系統及Cas核酸酶之論述,參見例如Makarova等人 NAT. REV. MICROBIOL. 9:467-477 (2011);Makarova等人, NAT. REV. MICROBIOL, 13: 722-36 (2015);Shmakov等人, MOLECULAR CELL, 60:385-397 (2015)。
可衍生出Cas核酸酶之非限制性例示性物種包括釀膿鏈球菌、嗜熱鏈球菌(Streptococcus thermophilus )、鏈球菌屬(Streptococcus sp . )、金黃色葡萄球菌(Staphylococcus aureus )、無害李氏菌(Listeria innocua )、加氏乳桿菌(Lactobacillus gasseri )、新兇手弗朗西斯氏菌(Francisella novicida )、產琥珀酸沃廉菌(Wolinella succinogenes )、華德薩特菌(Sutterella wadsworthensis )、γ-變形菌(Gammaproteobacterium )、腦膜炎雙球菌(Neisseria meningitidis )、空腸彎曲桿菌(Campylobacter jejuni )、多殺性巴氏桿菌(Pasteurella multocida )、產琥珀酸絲狀桿菌(Fibrobacter succinogene )、深紅紅螺菌(Rhodospirillum rubrum )、達松維爾擬諾卡氏菌(Nocardiopsis dassonvillei )、始旋鏈黴菌(Streptomyces pristinaespiralis )、產綠色鏈黴菌(Streptomyces viridochromogenes )、玫瑰鏈孢囊菌(Streptosporangium roseum )、酸熱脂環桿菌(Alicyclobacillus acidocaldarius )、假蕈狀芽孢桿菌(Bacillus pseudomycoides )、砷還原芽孢桿菌(Bacillus selenitireducens )、西伯利亞微小桿菌(Exiguobacterium sibiricum )、戴白氏乳桿菌(Lactobacillus delbrueckii )、唾液乳桿菌(Lactobacillus salivarius )、布氏乳桿菌(Lactobacillus buchneri )、齒垢密螺旋體(Treponema denticola )、海洋微顫菌(Microscilla marina )、伯克霍爾德氏細菌(Burkholderiales bacterium )、食萘極單胞菌(Polaromonas naphthalenivorans )、極單胞菌屬(Polaromonas sp . )、瓦氏鱷球藻(Crocosphaera watsonii )、藍絲菌屬(Cyanothece sp . )、綠膿微囊藻(Microcystis aeruginosa )、聚球藻屬(Synechococcus sp . )、阿拉伯糖醋桿菌(Acetohalobium arabaticum )、丹氏製氨菌(Ammonifex degensii )、熱解纖維素菌(Caldicelulosiruptor becscii )、金礦菌候選種(Candidatus Desulforudis )、肉毒梭菌(Clostridium botulinum )、艱難梭菌(Clostridium difficile )、大芬戈爾德菌(Finegoldia magna )、嗜熱鹽鹼厭氧菌(Natranaerobius thermophilus )、熱丙酸鹽暗色厭氧香腸狀菌(Pelotomaculum thermopropionicum )、喜溫嗜酸硫桿菌(Acidithiobacillus caldus )、氧化亞鐵嗜酸硫桿菌(Acidithiobacillus ferrooxidans )、酒色異著色菌(Allochromatium vinosum )、海桿菌屬(Marinobacter sp . )、嗜鹽亞硝化球菌(Nitrosococcus halophilus )、瓦氏亞硝化球菌(Nitrosococcus watsoni )、遊海假交替單胞菌(Pseudoalteromonas haloplanktis )、消旋纖線桿菌(Ktedonobacter racemifer )、調查甲烷鹽菌(Methanohalobium evestigatum )、多變念珠藻(Anabaena variabilis )、泡沫節球藻(Nodularia spumigena )、念珠藻屬(Nostoc sp . )、極大節旋藻(Arthrospira maxima )、鈍頂節旋藻(Arthrospira platensis )、節旋藻屬(Arthrospira sp . )、鞘絲藻屬(Lyngbya sp . )、原型微鞘藻(Microcoleus chthonoplastes )、顫藻屬(Oscillatoria sp . )、運動石袍菌(Petrotoga mobilis )、非洲高熱桿菌(Thermosipho africanus )、巴氏鏈球菌(Streptococcus pasteurianus )、灰色奈瑟菌(Neisseria cinerea )、紅嘴鷗曲桿菌(Campylobacter lari )、食清潔劑細小棒菌(Parvibaculum lavamentivorans )、白喉棒狀桿菌(Corynebacterium diphtheria )、胺基酸球菌屬(Acidaminococcus sp . )、毛螺科菌 ND2006 (Lachnospiraceae bacterium ND2006)及海洋藻青菌(Acaryochloris marina )。
在一些實施例中,Cas核酸酶為來自釀膿鏈球菌之Cas9核酸酶。在一些實施例中,Cas核酸酶為來自嗜熱鏈球菌之Cas9核酸酶。在一些實施例中,Cas核酸酶為來自腦膜炎雙球菌之Cas9核酸酶。在一些實施例中,Cas核酸酶為來自金黃色葡萄球菌之Cas9核酸酶。在一些實施例中,Cas核酸酶為來自新兇手弗朗西斯氏菌之Cpf1核酸酶。在一些實施例中,Cas核酸酶為來自胺基酸球菌屬之Cpf1核酸酶。在一些實施例中,Cas核酸酶為來自毛螺科菌ND2006之Cpf1核酸酶。在其他實施例中,Cas核酸酶為來自以下之Cpf1核酸酶:土拉文氏桿菌(Francisella tularensis )、毛螺科菌、瘤胃溶纖維丁酸弧菌(Butyrivibrio proteoclasticus )、佩氏細菌(Peregrinibacteria bacterium )、帕庫氏菌(Parcubacteria bacterium )、史密斯氏菌(Smithella )、胺基酸球菌屬、白蟻甲烷支原體菌候選種(Candidatus Methanoplasma termitum )、挑剔真桿菌(Eubacterium eligens )、牛眼莫拉菌(Moraxella bovoculi )、稻田鉤端螺旋體(Leptospira inadai )、狗口腔卟啉單胞菌(Porphyromonas crevioricanis )、解糖腖普雷沃菌(Prevotella disiens )或獼猴卟啉單胞菌(Porphyromonas macacae )。在某些實施例中,Cas核酸酶為來自胺基酸球菌或毛螺科菌之Cpf1核酸酶。
野生型Cas9具有兩個核酸酶域:RuvC及HNH。RuvC域裂解非靶DNA股,且HNH域裂解靶DNA股。在一些實施例中,Cas9核酸酶包含多於一個RuvC域及/或多於一個HNH域。在一些實施例中,Cas9核酸酶為野生型Cas9。在一些實施例中,Cas9能夠誘導靶DNA中之雙股斷裂。在某些實施例中,Cas核酸酶可裂解dsDNA,其可裂解dsDNA之一個股,或其可不具有DNA裂解酶或切口酶活性。一個例示性Cas9胺基酸序列提供呈SEQ ID NO: 3形式。一個包括起始及終止密碼子之例示性Cas9 mRNA ORF序列提供呈SEQ ID NO: 4形式。一個適於包括在融合蛋白質中之例示性Cas9 mRNA編碼序列提供呈SEQ ID NO: 10形式。
在一些實施例中,使用嵌合Cas核酸酶,其中該蛋白質之一個域或區經不同蛋白質之一部分置換。在一些實施例中,Cas核酸酶域可經來自諸如Fok1之不同核酸酶的域置換。在一些實施例中,Cas核酸酶可為經修飾之核酸酶。
在其他實施例中,Cas核酸酶可來自I型CRISPR/Cas系統。在一些實施例中,Cas核酸酶可為I型CRISPR/Cas系統之級聯複合物之組分。在一些實施例中,Cas核酸酶可為Cas3蛋白質。在一些實施例中,Cas核酸酶可來自III型CRISPR/Cas系統。在一些實施例中,Cas核酸酶可具有RNA裂解活性。
在一些實施例中,RNA引導之DNA結合劑具有單股切口酶活性,亦即,可切割一個DNA股以產生單股斷裂,亦稱為「切口(nick)」。在一些實施例中,RNA引導之DNA結合劑包含Cas切口酶。切口酶為引起dsDNA中出現切口,亦即,切割一個股但不切割DNA雙螺旋之另一股的酶。在一些實施例中,Cas切口酶為其中例如藉由催化域之一或多種變化(例如點突變),使核酸內切酶活性位點不活化的Cas核酸酶之形式(例如上文所論述之Cas核酸酶)。參見例如關於Cas切口酶及例示性催化域變化之論述的美國專利第8,889,356號。在一些實施例中,Cas切口酶,諸如Cas9切口酶具有不活化之RuvC或HNH域。一個例示性Cas9切口酶胺基酸序列提供呈SEQ ID NO: 6形式。一個包括起始及終止密碼子之例示性Cas9切口酶mRNA ORF序列提供呈SEQ ID NO: 7形式。一個適於包括在融合蛋白質中之例示性Cas9切口酶mRNA編碼序列提供呈SEQ ID NO: 11形式。
在一些實施例中,RNA引導之DNA結合劑經修飾而僅含有一個功能核酸酶域。舉例而言,該結合劑蛋白質可經修飾以使得核酸酶域中之一者經突變或完全或部分缺失以降低其核酸裂解活性。在一些實施例中,使用具有活性降低之RuvC域之切口酶。在一些實施例中,使用具有非活性RuvC域之切口酶。在一些實施例中,使用具有活性降低之HNH域之切口酶。在一些實施例中,使用具有非活性HNH域之切口酶。
在一些實施例中,Cas蛋白質核酸酶域中之保守胺基酸經取代以降低或改變核酸酶活性。在一些實施例中,Cas核酸酶可在RuvC或類RuvC核酸酶域中包含胺基酸取代。RuvC或類RuvC核酸酶域中之例示性胺基酸取代包括D10A (基於釀膿鏈球菌Cas9蛋白質)。參見例如,Zetsche等人 (2015)Cell Oct 22:163(3): 759-771。在一些實施例中,Cas核酸酶可在HNH或類HNH核酸酶域中包含胺基酸取代。HNH或類HNH核酸酶域中之例示性胺基酸取代包括E762A、H840A、N863A、H983A及D986A(基於釀膿鏈球菌Cas9蛋白質)。參見例如, Zetsche等人 (2015)。其他例示性胺基酸取代包括D917A、E1006A及D1255A (基於新兇手弗朗西斯氏菌U112 Cpf1 (FnCpf1)序列(UniProtKB - A0Q7Q2 (CPF1_FRATN))。
在一些實施例中,將與一對分別與靶序列之有義股及反義股互補之引導RNA組合提供編碼切口酶之mRNA。在此實施例中,引導RNA將切口酶導引至靶序列且藉由在靶序列之相對股上產生切口而引入DSB(亦即雙切口)。在一些實施例中,使用雙重切口可提高特異性及減少脫靶效應。在一些實施例中,連同靶向DNA之相對股之兩個獨立引導RNA使用切口酶以在靶DNA中產生雙重切口。在一些實施例中,連同經選擇以非常接近之兩個獨立引導RNA使用切口酶以在靶DNA中產生雙重切口。
在一些實施例中,RNA引導之DNA結合劑缺乏裂解酶及切口酶活性。在一些實施例中,RNA引導之DNA結合劑包含dCas DNA結合多肽。dCas多肽具有DNA結合活性,而基本上缺乏催化(裂解酶/切口酶)活性。在一些實施例中,dCas多肽為dCas9多肽。在一些實施例中,缺乏裂解酶及切口酶活性的RNA引導之DNA結合劑或dCas DNA結合多肽為其中例如藉由催化域之一或多種變化(例如點突變),使核酸內切酶活性位點不活化的Cas核酸酶之形式(例如上文所論述之Cas核酸酶)。參見例如US 2014/0186958 A1;US 2015/0166980 A1。例示性dCas9胺基酸序列提供呈SEQ ID NO: 8形式。一個包括起始及終止密碼子之例示性dCas9 mRNA ORF序列提供呈SEQ ID NO: 9形式。一個適於包括在融合蛋白質中之例示性dCas9 mRNA編碼序列提供呈SEQ ID NO: 12形式。 6. 異源功能域;核定位信號
在一些實施例中,RNA引導之DNA結合劑包含一或多個異源功能域(例如為或包含融合多肽)。
在一些實施例中,異源功能域可促進將RNA引導之DNA結合劑輸送至細胞核中。舉例而言,異源功能域可為核定位信號(NLS)。在一些實施例中,RNA引導之DNA結合劑可與1至10個NLS融合。在一些實施例中,RNA引導之DNA結合劑可與1至5個NLS融合。在一些實施例中,RNA引導之DNA結合劑可與一個NLS融合。在使用一個NLS之情況下,NLS可連接在RNA引導之DNA結合劑序列之N端或C端處。在一些實施例中,RNA引導之DNA結合劑可C端融合至至少一個NLS。NLS亦可插入RNA引導之DNA結合劑序列內。在其他實施例中,RNA引導之DNA結合劑可與多於一個NLS融合。在一些實施例中,RNA引導之DNA結合劑可與2、3、4或5個NLS融合。在一些實施例中,RNA引導之DNA結合劑可與兩個NLS融合。在某些情況下,兩個NLS可相同(例如兩個SV40 NLS)或不同。在一些實施例中,RNA引導之DNA結合劑與連接在羧基末端處之兩個SV40 NLS序列融合。在一些實施例中,RNA引導之DNA結合劑可與兩個NLS融合,一個NLS連接在N端處且一個連接在C端處。在一些實施例中,RNA引導之DNA結合劑可與3個NLS融合。在一些實施例中,RNA引導之DNA結合劑可不與NLS融合。在一些實施例中,NLS可為單聯(monopartite)序列,諸如SV40 NLS、PKKKRKV (SEQ ID NO: 78)或PKKKRRV (SEQ ID NO: 90)。在一些實施例中,NLS可為雙聯序列,諸如核質蛋白之NLS、KRPAATKKAGQAKKKK (SEQ ID NO: 91)。在一些實施例中,NLS序列可包含LAAKRSRTT (SEQ ID NO: 79)、QAAKRSRTT (SEQ ID NO: 80)、PAPAKRERTT (SEQ ID NO: 81)、QAAKRPRTT (SEQ ID NO: 82)、RAAKRPRTT (SEQ ID NO: 83)、AAAKRSWSMAA (SEQ ID NO: 84)、AAAKRVWSMAF (SEQ ID NO: 85)、AAAKRSWSMAF (SEQ ID NO: 86)、AAAKRKYFAA (SEQ ID NO: 87)、RAAKRKAFAA (SEQ ID NO: 88)或RAAKRKYFAV (SEQ ID NO: 89)。在一具體實施例中,單一PKKKRKV (SEQ ID NO: 78) NLS可連接在RNA引導之DNA結合劑之C端處。一或多個連接子視情況包括在融合位點處。在一些實施例中,根據前述實施例中任一者之一或多個NLS與一或多個額外異源功能域,諸如下文所述的異源功能域中之任一者組合存在於RNA引導之DNA結合劑中。
在一些實施例中,異源功能域可能夠調整RNA引導之DNA結合劑的胞內半衰期。在一些實施例中,RNA引導之DNA結合劑之半衰期可得到提高。在一些實施例中,RNA引導之DNA結合劑之半衰期可得到降低。在一些實施例中,異源功能域可能夠增加RNA引導之DNA結合劑的穩定性。在一些實施例中,異源功能域可能夠降低RNA引導之DNA結合劑的穩定性。在一些實施例中,異源功能域可作為蛋白質降解之信號肽。在一些實施例中,蛋白質降解可由蛋白水解酶,諸如蛋白酶體、溶酶體蛋白酶或鈣蛋白酶蛋白酶介導。在一些實施例中,異源功能域可包含PEST序列。在一些實施例中,RNA引導之DNA結合劑可藉由添加泛素或多泛素鏈來修飾。在一些實施例中,泛素可為類泛素蛋白質(UBL)。類泛素蛋白質之非限制性實例包括小類泛素修飾因子(SUMO)、泛素交叉反應蛋白(UCRP,亦稱為干擾素刺激基因-15 (ISG15))、泛素相關修飾因子-1 (URM1)、神經元-前驅體-細胞表現之發育下調蛋白-8(NEDD8,在釀酒酵母(S . cerevisiae )中亦稱作Rub1)、人類白血球抗原F相關(FAT10)、自噬-8 (ATG8)及自噬-12 (ATG12)、Fau類泛素蛋白(FUB1)、膜錨定UBL (MUB)、泛素摺疊修飾因子-1 (UFM1)及類泛素蛋白-5 (UBL5)。
在一些實施例中,異源功能域可為標記域。標記域之非限制性實例包括螢光蛋白質、純化標籤、抗原決定基標籤及報導基因序列。在一些實施例中,標記域可為螢光蛋白質。適合螢光蛋白質之非限制實例包括綠色螢光蛋白質(例如,GFP、GFP-2、tagGFP、turboGFP、sfGFP、EGFP、祖母綠(Emerald)、Azami綠(Azami Green)、單體Azami綠(Monomeric Azami Green)、CopGFP、AceGFP、ZsGreen1)、黃色螢光蛋白質(例如,YFP、EYFP、Citrine、Venus、YPet、PhiYFP、ZsYellow1)、藍色螢光蛋白質(例如,EBFP、EBFP2、Azurite、mKalamal、GFPuv、藍寶石色(Sapphire)、T-藍寶石色(T-sapphire))、強化型藍螢光蛋白質(例如,ECFP、Cerulean、CyPet、AmCyan1、Midoriishi強化型藍(Midoriishi-Cyan))、紅色螢光蛋白質(mKate、mKate2、mPlum、DsRed單體、mCherry、mRFP1、DsRed-Express、DsRed2、DsRed-單體、HcRed串色(HcRed-Tandem)、HcRed1、AsRed2、eqFP611、mRasberry、mStrawberry、Jred)及橙色螢光蛋白質(mOrange、mKO、Kusabira橙色(Kusabira-Orange)、單體Kusabira橙色(Monomeric Kusabira-Orange)、mTangerine、tdTomato)或任何其他適合螢光蛋白質。在其他實施例中,標記域可為純化標籤及/或抗原決定基標籤。非限制性之例示性標籤包括麩胱甘肽-S-轉移酶(glutathione-S-transferase,GST)、殼質結合蛋白(CBP)、麥芽糖結合蛋白(MBP)、硫氧還蛋白(thioredoxin,TRX)、聚(NANP)、串聯親和純化(tandem affinity purification,TAP)標籤、myc、AcV5、AU1、AU5、E、ECS、E2、FLAG、HA、nus、Softag 1、Softag 3、Strep、SBP、Glu-Glu、HSV、KT3、S、S1、T7、V5、VSV-G、6×His、8×His、生物素羧基載體蛋白質(BCCP)、聚His及調鈣蛋白。非限制性之例示性報導基因包括麩胱甘肽-S-轉移酶(GST)、辣根過氧化酶(HRP)、氯黴素乙醯基轉移酶(CAT)、β-半乳糖苷酶、β-葡糖苷酸酶、螢光素酶或螢光蛋白質。
在其他實施例中,異源功能域可將RNA引導之DNA結合劑靶向至特定細胞器、細胞型、組織或器官。在一些實施例中,異源功能域可將RNA引導之DNA結合劑靶向至粒線體。
在其他實施例中,異源功能域可為效應子域。當RNA引導之DNA結合劑導引至其靶序列時,例如當Cas核酸酶藉由gRNA導引至靶序列時,效應子域可修飾或影響靶序列。在一些實施例中,效應子域可選自核酸結合域、核酸酶域(例如非Cas核酸酶域)、表觀遺傳修飾域、轉錄活化域或轉錄抑制子域。在一些實施例中,異源功能域為核酸酶,諸如FokI核酸酶。參見例如美國專利第9,023,649號。在一些實施例中,異源功能域為轉錄活化因子或抑制子。參加例如Qi等人, 「Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression」,Cell 152:1173-83 (2013);Perez-Pinera等人, 「RNA-guided gene activation by CRISPR-Cas9-based transcription factors」,Nat. Methods 10:973-6 (2013);Mali等人, 「CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering」,Nat. Biotechnol. 31:833-8 (2013);Gilbert等人, 「CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes」,Cell 154:442-51 (2013)。因此,RNA引導之DNA結合劑基本上變成可使用引導RNA導引以結合所需靶序列之轉錄因子。在某些實施例中,DNA修飾域為甲基化域,諸如去甲基化或甲基轉移酶域。在某些實施例中,效應子域為DNA修飾域,諸如鹼基編輯域。在特定實施例中,DNA修飾域為將特異性修飾引入DNA中之核酸編輯域,諸如脫胺酶域。參見例如WO 2015/089406;US 2016/0304846。WO 2015/089406及US 2016/0304846中所述之核酸編輯域、脫胺酶域及Cas9變異體係以引用之方式併入本文中。 7. UTR;Kozak序列
在一些實施例中,mRNA包含至少一個來自羥基類固醇17-β脫氫酶4 (HSD17B4或HSD)之UTR,例如來自HSD之5' UTR。在一些實施例中,mRNA包含至少一個來自血球蛋白mRNA,例如人類α血球蛋白(HBA) mRNA、人類β血球蛋白(HBB) mRNA或有爪蟾蜍β血球蛋白(XBG) mRNA之UTR。在一些實施例中,mRNA包含來自血球蛋白mRNA,諸如HBA、HBB或XBG之5' UTR、3' UTR、或5'與3'UTR。在一些實施例中,mRNA包含來自牛生長激素、細胞巨大病毒(CMV)、小鼠Hba-a1、HSD、白蛋白基因、HBA、HBB或XBG之5' UTR。在一些實施例中,mRNA包含來自牛生長激素、細胞巨大病毒(CMV)、小鼠Hba-a1、HSD、白蛋白基因、HBA、HBB或XBG之3' UTR。在一些實施例中,mRNA包含來自牛生長激素、細胞巨大病毒、小鼠Hba-a1、HSD、白蛋白基因、HBA、HBB、XBG、熱休克蛋白90 (Hsp90)、甘油醛3-磷酸脫氫酶(GAPDH)、β-肌動蛋白、α-微管蛋白、腫瘤蛋白質(p53)或表皮生長因子受體(EGFR) 之5’與3' UTR。
在一些實施例中,mRNA包含來自同一來源(例如組成性表現之mRNA,諸如肌動蛋白、白蛋白或血球蛋白(HBA、HBB或XBG))的5'及3' UTR。
在一些實施例中,本文所揭示之mRNA包含與SEQ ID NO: 32、SEQ ID NO: 34、SEQ ID NO: 36、SEQ ID NO: 38或SEQ ID NO: 41中之任一者有至少90%之一致性的5' UTR。在一些實施例中,本文所揭示之mRNA包含與SEQ ID NO: 33、SEQ ID NO: 35、SEQ ID NO: 37、SEQ ID NO: 39或SEQ ID NO: 40中之任一者有至少90%之一致性的3' UTR。在一些實施例中,前述一致性程度中之任一者為至少95%、至少98%、至少99%或100%。在一些實施例中,本文所揭示之mRNA包含具有SEQ ID NO: 32、SEQ ID NO: 34、SEQ ID NO: 36、SEQ ID NO: 38或SEQ ID NO: 41中之任一者的序列的5' UTR。在一些實施例中,本文所揭示之mRNA包含具有SEQ ID NO: 33、SEQ ID NO: 35、SEQ ID NO: 37、SEQ ID NO: 39或SEQ ID NO: 40中之任一者的序列的3' UTR。
在一些實施例中,mRNA不包含5' UTR,例如在5'帽結構與起始密碼子之間不存在額外核苷酸。在一些實施例中,mRNA在5'帽結構與起始密碼子之間包含Kozak序列(下文所述),但不具有任何額外5' UTR。在一些實施例中,mRNA不包含3' UTR,例如在終止密碼子與聚-A尾之間不存在額外核苷酸。
在一些實施例中,mRNA包含Kozak序列。Kozak序列可影響轉譯起始及由mRNA轉譯之多肽的總產量。Kozak序列包括可作為起始密碼子之甲硫胺酸密碼子。最小Kozak序列為NNNRUGN,其中以下至少一項成立:第一個N為A或G且第二個N為G。在核苷酸序列中,R意指嘌呤(A或G)。在一些實施例中,Kozak序列為RNNRUGN、NNNRUGG、RNNRUGG、RNNAUGN、NNNAUGG或RNNAUGG。在一些實施例中,Kozak序列為具有零錯配或呈小寫字母形式之位置有至多一或兩個錯配之rccRUGg。在一些實施例中,Kozak序列為具有零錯配或呈小寫字母形式之位置有至多一或兩個錯配之rccAUGg。在一些實施例中,Kozak序列為具有零錯配或呈小寫字母形式之位置有至多一個、兩個或三個錯配之gccRccAUGG (SEQ ID NO: 105之第4核苷酸至第13核苷酸)。在一些實施例中,Kozak序列為具有零錯配或呈小寫字母形式之位置有至多一個、二個、三個或四個錯配之gccAccAUG。在一些實施例中,Kozak序列為GCCACCAUG。在一些實施例中,Kozak序列為具有零錯配或呈小寫字母形式之位置有至多一個、二個、三個或四個錯配之gccgccRccAUGG (SEQ ID NO: 105)。 8. 例示性序列
在一些實施例中,mRNA包含編碼RNA引導之DNA結合劑的ORF,其中該ORF包含與以下任一者有至少90%之一致性的序列:SEQ ID NO: 1、SEQ ID NO: 4、SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。在一些實施例中,mRNA包含編碼RNA引導之DNA結合劑的ORF,其中該RNA引導之DNA結合劑包含與以下任一者有至少90%之一致性的胺基酸序列:SEQ ID NO: 3、SEQ ID NO: 6、SEQ ID NO: 8、SEQ ID NO: 13、SEQ ID NO: 16、SEQ ID NO: 19、SEQ ID NO: 22、SEQ ID NO: 25、SEQ ID NO: 28、SEQ ID NO: 68或SEQ ID NO: 186至SEQ ID NO: 196,其中ORF之尿苷含量在其最小尿苷含量至最小尿苷含量之150%範圍內,及/或其尿苷二核苷酸含量在其最小尿苷二核苷酸含量至最小尿苷二核苷酸含量之150%範圍內。在一些實施例中,mRNA包含編碼RNA引導之DNA結合劑的ORF,其中該RNA引導之DNA結合劑包含與以下任一者有至少90%之一致性的胺基酸序列:SEQ ID NO: 3、SEQ ID NO: 6、SEQ ID NO: 8、SEQ ID NO: 13、SEQ ID NO: 16、SEQ ID NO: 19、SEQ ID NO: 22、SEQ ID NO: 25、SEQ ID NO: 28、SEQ ID NO: 68或SEQ ID NO: 186至SEQ ID NO: 196,其中ORF之腺嘌呤含量在其最小腺嘌呤含量至最小腺嘌呤含量之150%範圍內,及/或其腺嘌呤二核苷酸含量在其最小腺嘌呤二核苷酸含量至最小腺嘌呤二核苷酸含量之150%範圍內。在一些此類實施例中,腺嘌呤含量及尿苷核苷酸含量兩者均小於或等於其相應最小值之150%。在一些實施例中,腺嘌呤含量及尿苷二核苷酸含量兩者均小於或等於其相應最小值之150%。在一些實施例中,mRNA包含與SEQ ID NO: 43、SEQ ID NO: 44、SEQ ID NO: 51、SEQ ID NO: 53、SEQ ID NO: 55至SEQ ID NO: 61或SEQ ID NO: 67中之任一者有至少90%之一致性的序列,其中該序列包含編碼RNA引導之DNA結合劑的ORF。在一些實施例中,mRNA包含與SEQ ID NO: 43、SEQ ID NO: 44、SEQ ID NO: 51、SEQ ID NO: 53、SEQ ID NO: 55至SEQ ID NO: 61或SEQ ID NO: 67中之任一者有至少90%之一致性的序列,其中該序列包含編碼RNA引導之DNA結合劑的ORF,其中省去SEQ ID NO: 43、SEQ ID NO: 44、SEQ ID NO: 51、SEQ ID NO: 53、SEQ ID NO: 55至SEQ ID NO: 61或SEQ ID NO: 67之前三個核苷酸。在一些實施例中,前述一致性程度中之任一者為至少95%、至少98%、至少99%或100%。
在一些實施例中,mRNA包含編碼RNA引導之DNA結合劑的ORF,其中該ORF與以下任一者在至少其前30、50、70、100、150、200、250或300個核苷酸上有至少90%之一致性:SEQ ID NO: 1、SEQ ID NO: 4、SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。前30、50、70、100、150、200、250或300個核苷酸係自起始密碼子(典型地,ATG)之第一個核苷酸開始量測,以使得A為第1核苷酸,T為第2核苷酸等。在一些實施例中,開放閱讀框架與以下任一者在至少其序列之前10%、12%、15%、20%、25%、30%或35%上具有至少90%之一致性:SEQ ID NO: 1、SEQ ID NO: 4、SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。ORF之序列之長度為自起始密碼子開始至終止密碼子結束的核苷酸之數目,且其序列之前10%、12%、15%、20%、25%、30%或35%對應於自起始密碼子之第一個核苷酸開始,構成總序列之長度的指定百分比的核苷酸之數目。
在一些實施例中,包含編碼RNA引導之DNA結合劑的ORF之mRNA包含與SEQ ID NO: 43具有至少90%之一致性的序列,視情況地,其中SEQ ID NO: 43之ORF (亦即SEQ ID NO: 4)經以下任一者的替代ORF取代:SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
在一些實施例中,包含編碼RNA引導之DNA結合劑的ORF之mRNA包含與SEQ ID NO: 44具有至少90%之一致性的序列,視情況地,其中SEQ ID NO: 44之ORF (亦即SEQ ID NO: 4)經以下任一者的替代ORF取代:SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
在一些實施例中,包含編碼RNA引導之DNA結合劑的ORF之mRNA包含與SEQ ID NO: 56具有至少90%之一致性的序列,視情況地,其中SEQ ID NO: 56之ORF (亦即SEQ ID NO: 4)經以下任一者的替代ORF取代:SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
在一些實施例中,包含編碼RNA引導之DNA結合劑的ORF之mRNA包含與SEQ ID NO: 57具有至少90%之一致性的序列,視情況地,其中SEQ ID NO: 57之ORF (亦即SEQ ID NO: 4)經以下任一者的替代ORF取代:SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
在一些實施例中,包含編碼RNA引導之DNA結合劑的ORF之mRNA包含與SEQ ID NO: 58具有至少90%之一致性的序列,視情況地,其中SEQ ID NO: 58之ORF (亦即SEQ ID NO: 4)經以下任一者的替代ORF取代:SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
在一些實施例中,包含編碼RNA引導之DNA結合劑的ORF之mRNA包含與SEQ ID NO: 59具有至少90%之一致性的序列,視情況地,其中SEQ ID NO: 59之ORF (亦即SEQ ID NO: 4)經以下任一者的替代ORF取代:SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
在一些實施例中,包含編碼RNA引導之DNA結合劑的ORF之mRNA包含與SEQ ID NO: 60具有至少90%之一致性的序列,視情況地,其中SEQ ID NO: 60之ORF (亦即SEQ ID NO: 4)經以下任一者的替代ORF取代:SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
在一些實施例中,包含編碼RNA引導之DNA結合劑的ORF之mRNA包含與SEQ ID NO: 61具有至少90%之一致性的序列,視情況地,其中SEQ ID NO: 61之ORF (亦即SEQ ID NO: 4)經以下任一者的替代ORF取代:SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
在一些實施例中,包含編碼RNA引導之DNA結合劑的ORF之mRNA包含與SEQ ID NO: 176具有至少90%之一致性的序列,視情況地,其中SEQ ID NO: 176之ORF經以下任一者的替代ORF取代:SEQ ID NO: 4、SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
在一些實施例中,包含編碼RNA引導之DNA結合劑的ORF之mRNA包含與SEQ ID NO: 177具有至少90%之一致性的序列,視情況地,其中SEQ ID NO: 177之ORF經以下任一者的替代ORF取代:SEQ ID NO: 4、SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
在一些實施例中,包含編碼RNA引導之DNA結合劑的ORF之mRNA包含與SEQ ID NO: 178具有至少90%之一致性的序列,視情況地,其中SEQ ID NO: 178之ORF經以下任一者的替代ORF取代:SEQ ID NO: 4、SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
在一些實施例中,包含編碼RNA引導之DNA結合劑的ORF之mRNA包含與SEQ ID NO: 179具有至少90%之一致性的序列,視情況地,其中SEQ ID NO: 179之ORF經以下任一者的替代ORF取代:SEQ ID NO: 4、SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
在一些實施例中,包含編碼RNA引導之DNA結合劑的ORF之mRNA包含與SEQ ID NO: 180具有至少90%之一致性的序列,視情況地,其中SEQ ID NO: 180之ORF經以下任一者的替代ORF取代:SEQ ID NO: 4、SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
在一些實施例中,包含編碼RNA引導之DNA結合劑的ORF之mRNA包含與SEQ ID NO: 181具有至少90%之一致性的序列,視情況地,其中SEQ ID NO: 181之ORF經以下任一者的替代ORF取代:SEQ ID NO: 4、SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
在一些實施例中,包含編碼RNA引導之DNA結合劑的ORF之mRNA包含與SEQ ID NO: 182具有至少90%之一致性的序列,視情況地,其中SEQ ID NO: 182之ORF經以下任一者的替代ORF取代:SEQ ID NO: 4、SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
在一些實施例中,包含編碼RNA引導之DNA結合劑的ORF之mRNA包含與SEQ ID NO: 183具有至少90%之一致性的序列,視情況地,其中SEQ ID NO: 183之ORF經以下任一者的替代ORF取代:SEQ ID NO: 4、SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
在一些實施例中,包含編碼RNA引導之DNA結合劑的ORF之mRNA包含與SEQ ID NO: 184具有至少90%之一致性的序列,視情況地,其中SEQ ID NO: 184之ORF經以下任一者的替代ORF取代:SEQ ID NO: 4、SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
在一些實施例中,包含編碼RNA引導之DNA結合劑的ORF之mRNA包含與SEQ ID NO: 185具有至少90%之一致性的序列,視情況地,其中SEQ ID NO: 185之ORF經以下任一者的替代ORF取代:SEQ ID NO: 4、SEQ ID NO: 7、SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 12、SEQ ID NO: 14、SEQ ID NO: 15、SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 20、SEQ ID NO: 21、SEQ ID NO: 23、SEQ ID NO: 24、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 50、SEQ ID NO: 52、SEQ ID NO: 54、SEQ ID NO: 65、SEQ ID NO: 66或SEQ ID NO: 107至SEQ ID NO: 175。
在一些實施例中,與SEQ ID NO 43、SEQ ID NO 44、SEQ ID NO 56至SEQ ID NO 61或SEQ ID NO 176至SEQ ID NO 185的任選地經取代之序列的一致性程度為至少95%。在一些實施例中,與SEQ ID NO 43、SEQ ID NO 44、SEQ ID NO 56至SEQ ID NO 61或SEQ ID NO 176至SEQ ID NO 185的任選地經取代之序列的一致性程度為至少98%。在一些實施例中,與SEQ ID NO 43、SEQ ID NO 44、SEQ ID NO 56至SEQ ID NO 61或SEQ ID NO 176至SEQ ID NO 185的任選地經取代之序列的一致性程度為至少99%。在一些實施例中,與SEQ ID NO 43、SEQ ID NO 44、SEQ ID NO 56至SEQ ID NO 61或SEQ ID NO 176至SEQ ID NO 185的任選地經取代之序列的一致性程度為100%。 9. 聚-A尾
在一些實施例中,mRNA進一步包含聚-A尾。在一些情況下,聚-A尾在聚-A尾中之一或多個位置處經一或多個非腺嘌呤核苷酸「錨」中斷。聚-A尾可包含至少8個連續腺嘌呤核苷酸,且亦包含一或多個非腺嘌呤核苷酸。如本文所用,「非腺嘌呤核苷酸」係指不包含腺嘌呤的任何天然或非天然核苷酸。鳥嘌呤、胸腺嘧啶及胞嘧啶核苷酸為例示性非腺嘌呤核苷酸。因此,本文所述之mRNA上的聚-A尾可包含位於3'至編碼RNA引導之DNA結合劑或相關序列的核苷酸的連續腺嘌呤核苷酸。在一些情況下,mRNA上的聚-A尾包含位於3'至編碼RNA引導之DNA結合劑或相關序列的核苷酸的非連續腺嘌呤核苷酸,其中非腺嘌呤核苷酸以規則或不規則間隔中斷腺嘌呤核苷酸。
在一些實施例中,聚-A尾編碼於用於活體外轉錄mRNA之質體中且變成轉錄物之一部分。編碼於質體中之聚-A序列,亦即聚-A序列中之連續腺嘌呤核苷酸之數目可能並不精確,例如質體中之100 聚-A序列可能不會在經轉錄之mRNA中產生恰好100 聚-A序列。在一些實施例中,聚-A尾未編碼於質體中,且藉由PCR加尾或酶加尾,例如使用大腸桿菌聚(A)聚合酶來添加。
在一些實施例中,一或多個非腺嘌呤核苷酸定位成中斷連續腺嘌呤核苷酸,以使得聚(A)結合蛋白可結合於連續腺嘌呤核苷酸之一段。在一些實施例中,一或多個非腺嘌呤核苷酸位於至少8、9、10、11或12個連續腺嘌呤核苷酸之後。在一些實施例中,一或多個非腺嘌呤核苷酸位於至少8至50個連續腺嘌呤核苷酸之後。在一些實施例中,一或多個非腺嘌呤核苷酸位於至少8至100個連續腺嘌呤核苷酸之後。在一些實施例中,非腺嘌呤核苷酸在一個、兩個、三個、四個、五個、六個或七個腺嘌呤核苷酸之後且之後為至少8個連續腺嘌呤核苷酸。
本發明之聚-A尾可包含一個以下順序:連續腺嘌呤核苷酸,繼之以一或多個非腺嘌呤核苷酸,視情況繼之以額外腺嘌呤核苷酸。
在一些實施例中,聚-A尾包含或含有一個非腺嘌呤核苷酸或2至10個非腺嘌呤核苷酸之一個連續段。在一些實施例中,非腺嘌呤核苷酸位於至少8、9、10、11或12個連續腺嘌呤核苷酸之後。在一些情況下,一或多個非腺嘌呤核苷酸位於至少8至50個連續腺嘌呤核苷酸之後。在一些實施例中,一或多個非腺嘌呤核苷酸位於至少8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49或50個連續腺嘌呤核苷酸之後。
在一些實施例中,非腺嘌呤核苷酸為鳥嘌呤、胞嘧啶或胸腺嘧啶。在一些情況下,非腺嘌呤核苷酸為鳥嘌呤核苷酸。在一些實施例中,非腺嘌呤核苷酸為胞嘧啶核苷酸。在一些實施例中,非腺嘌呤核苷酸為胸腺嘧啶核苷酸。在其中存在多於一個非腺嘌呤核苷酸之一些情況下,非腺嘌呤核苷酸可選自:a)鳥嘌呤及胸腺嘧啶核苷酸;b)鳥嘌呤及胞嘧啶核苷酸;c)胸腺嘧啶及胞嘧啶核苷酸;或d)鳥嘌呤、胸腺嘧啶及胞嘧啶核苷酸。包含非腺嘌呤核苷酸之例示性聚-A尾提供呈SEQ ID NO: 62形式。 10. 經修飾之核苷酸
在一些實施例中,mRNA在一些或所有尿苷位置處包含經修飾之尿苷。在一些實施例中,經修飾之尿苷為在5位處,例如用鹵素或C1-C3烷氧基修飾之尿苷。在一些實施例中,經修飾之尿苷為在1位處,例如用C1-C3烷基修飾之假尿苷。經修飾之尿苷可為,例如假尿苷、N1-甲基-假尿苷、5-甲氧基尿苷、5-碘尿苷或其組合。在一些實施例中,經修飾之尿苷為5-甲氧基尿苷。在一些實施例中,經修飾之尿苷為5-碘尿苷。在一些實施例中,經修飾之尿苷為假尿苷。在一些實施例中,經修飾之尿苷為N1-甲基-假尿苷。在一些實施例中,經修飾之尿苷為假尿苷及N1-甲基-假尿苷之組合。在一些實施例中,經修飾之尿苷為假尿苷及5-甲氧基尿苷之組合。在一些實施例中,經修飾之尿苷為N1-甲基假尿苷及5-甲氧基尿苷之組合。在一些實施例中,經修飾之尿苷為5-碘尿苷及N1-甲基-假尿苷之組合。在一些實施例中,經修飾之尿苷為假尿苷及5-碘尿苷之組合。在一些實施例中,經修飾之尿苷為5-碘尿苷及5-甲氧基尿苷之組合。
在一些實施例中,根據本發明之mRNA中至少10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、98%、99%或100%之尿苷位置為經修飾之尿苷。在一些實施例中,根據本發明之mRNA中10%至25%、15%至25%、25%至35%、35%至45%、45%至55%、55%至65%、65%至75%、75%至85%、85%至95%或90%至100%之尿苷位置為經修飾之尿苷,例如5-甲氧基尿苷、5-碘尿苷、N1-甲基假尿苷、假尿苷或其組合。在一些實施例中,根據本發明之mRNA中10%至25%、15%至25%、25%至35%、35%至45%、45%至55%、55%至65%、65%至75%、75%至85%、85%至95%或90%至100%之尿苷位置為5-甲氧基尿苷。在一些實施例中,根據本發明之mRNA中10%至25%、15%至25%、25%至35%、35%至45%、45%至55%、55%至65%、65%至75%、75%至85%、85%至95%或90%至100%之尿苷位置為假尿苷。在一些實施例中,根據本發明之mRNA中10%至25%、15%至25%、25%至35%、35%至45%、45%至55%、55%至65%、65%至75%、75%至85%、85%至95%或90%至100%之尿苷位置為N1-甲基假尿苷。在一些實施例中,根據本發明之mRNA中10%至25%、15%至25%、25%至35%、35%至45%、45%至55%、55%至65%、65%至75%、75%至85%、85%至95%或90%至100%之尿苷位置為5-碘尿苷。在一些實施例中,根據本發明之mRNA中10%至25%、15%至25%、25%至35%、35%至45%、45%至55%、55%至65%、65%至75%、75%至85%、85%至95%或90%至100%之尿苷位置為5-甲氧基尿苷,且其餘者為N1-甲基假尿苷。在一些實施例中,根據本發明之mRNA中10%至25%、15%至25%、25%至35%、35%至45%、45%至55%、55%至65%、65%至75%、75%至85%、85%至95%或90%至100%之尿苷位置為5-碘尿苷,且其餘者為N1-甲基假尿苷。 11. 5'帽結構
在一些實施例中,本文所揭示之mRNA包含5'帽結構,諸如Cap0、Cap1或Cap2。5'帽結構通常為經由5'-三磷酸連接至mRNA之5'至3'鏈的第一個核苷酸,亦即第一個帽結構近端核苷酸之5'位的7-甲基鳥嘌呤核糖核苷酸(其可經進一步修飾,如下文例如關於ARCA所論述)。在Cap0中,mRNA之第一及第二帽結構近端核苷酸之核糖兩者均包含2'-羥基。在Cap1中,mRNA之第一及第二轉錄核苷酸之核糖分別包含2'-甲氧基及2'-羥基。在Cap2中,mRNA之第一及第二帽結構近端核苷酸之核糖兩者均包含2'-甲氧基。參見例如Katibah等人 (2014)Proc Natl Acad Sci USA 111(33):12025-30;Abbas等人 (2017)Proc Natl Acad Sci USA 114(11):E2106-E2115。大多數內源高等真核生物mRNA,包括哺乳動物mRNA(諸如人類mRNA)包含Cap1或Cap2。歸因於藉由先天免疫系統之組分,諸如IFIT-1及IFIT-5識別為「非自體(non-self)」,Cap0及與Cap1及Cap2不同的其他帽結構在哺乳動物,諸如人類中可呈免疫原性,其可導致細胞介素,包括I型干擾素含量升高。先天免疫系統之組分,諸如IFIT-1及IFIT-5亦可與eIF4E競爭結合具有除Cap1或Cap2外之帽結構的mRNA,此可能會抑制mRNA之轉譯。
帽結構可以共轉錄方式包括在內。舉例而言,ARCA (抗反向帽結構類似物;Thermo Fisher Scientific目錄號AM8045)為包含連接至鳥嘌呤核糖核苷酸之5'位的7-甲基鳥嘌呤3'-甲氧基-5'-三磷酸的帽結構類似物,其可在一開始時活體外併入轉錄物中。ARCA產生Cap0帽結構,其中第一個帽結構近端核苷酸之2'位為羥基。參見例如,Stepinski等人 (2001) 「Synthesis and properties of mRNAs containing the novel 『anti-reverse』 cap analogs 7-methyl(3'-O-methyl)GpppG and 7-methyl(3'deoxy)GpppG」,RNA 7: 1486-1495。ARCA結構顯示如下。
CleanCapTM AG (m7G(5')ppp(5')(2'OMeA)pG;TriLink Biotechnologies目錄號N-7113)或CleanCapTM GG (m7G(5')ppp(5')(2'OMeG)pG;TriLink Biotechnologies目錄號N-7133)可用於以共轉錄方式提供Cap1結構。CleanCapTM AG及CleanCapTM GG之3'-O-甲基化形式亦可分別以目錄號N-7413及N-7433購自TriLink Biotechnologies。CleanCapTM AG結構顯示如下。CleanCapTM 結構在本文中有時會使用上文所列的目錄號之最後三個數位來指代(例如對於TriLink Biotechnologies目錄號N-7113,使用「CleanCapTM 113」指代)。
可替代地,可以轉錄後方式將帽結構添加至RNA。舉例而言,牛痘加帽結構酶可在市面上購得(New England Biolabs目錄號M2080S),且具有由其D1次單位提供之RNA三磷酸酶及鳥苷醯基轉移酶活性及由其D12次單位提供之鳥嘌呤甲基轉移酶活性。因此,在S-腺苷甲硫胺酸及GTP存在下,可將7-甲基鳥嘌呤添加至RNA,以產生Cap0。參見例如Guo, P.及Moss, B. (1990)Proc. Natl. Acad. Sci .USA 87, 4023-4027;Mao, X.及Shuman, S. (1994)J. Biol. Chem . 269, 24472-24479。對於帽結構及加帽結構方法之其他論述,參見例如WO2017/053297及Ishikawa等人,Nucl. Acids. Symp. Ser . (2009) 第53期, 129-130。 12. 引導RNA
在一些實施例中,與本文所揭示之mRNA組合來提供至少一個引導RNA。在一些實施例中,引導RNA提供呈與mRNA分離之分子。在一些實施例中,引導RNA提供呈本文所揭示之mRNA的一部分,諸如UTR之一部分。在一些實施例中,至少一個引導RNA靶向TTR。
在一些實施例中,引導RNA包含經修飾之sgRNA。在一些實施例中,sgRNA包含SEQ ID NO: 74中所示出的修飾型樣,其中N為任何天然或非天然核苷酸,且其中全部N'均包含引導序列。舉例而言,SEQ ID NO: 74涵蓋在本文中,其中N'經本文所揭示之引導序列中之任一者置換。儘管N'經引導物之核苷酸取代,但修飾仍如SEQ ID NO: 74中所示。亦即,儘管引導之核苷酸置換「N'」,但前三個核苷酸仍為經2'OMe修飾的,且在第一核苷酸與第二核苷酸、第二核苷酸與第三核苷酸及第三核苷酸與第四核苷酸之間存在硫代磷酸酯鍵。 13. 脂質;調配物;遞送
在一些實施例中,將本文所述的單獨或伴有一或多個引導RNA之mRNA調配於脂質奈米粒子中或經由該脂質奈米粒子投與;參見例如2017年3月30日申請的主張2016年3月30日申請的U.S.S.N. 62/315,602之優先權,且標題為「CRISPR/CAS組分之脂質奈米粒子調配物(LIPID NANOPARTICLE FORMULATIONS FOR CRISPR/CAS COMPONENTS)」的PCT/US2017/024973,該文獻之內容以全文引用之方式併入本文中。可利用熟習此項技術者已知的能夠將核苷酸遞送至個體之任何脂質奈米粒子(LNP)來投與本文所述之RNA,在一些實施例中,該等RNA伴有一或多個引導RNA。在一些實施例中,將本文所述的單獨或伴有一或多個引導RNA之mRNA調配於脂質體、奈米粒子、胞外體或微囊泡中或經由脂質體、奈米粒子、胞外體或微囊泡投與。乳液、微胞及懸浮液可為用於局部及/或表面遞送之適合組合物。
本文揭示RNA之LNP調配物,包括CRISPR/Cas載荷(CRISPR/Cas cargo)之多個實施例。此類LNP調配物可包括(i) CCD脂質,諸如胺脂質、(ii)中性脂質、(iii)輔助脂質及(iv)隱形脂質,諸如PEG脂質。LNP調配物之一些實施例包括「胺脂質」以及輔助脂質、中性脂質及隱形脂質,諸如PEG脂質。「脂質奈米粒子」意謂包含藉由分子間力彼此物理締合的複數個(亦即多於一個)脂質分子之粒子。CCD 脂質
用於將CRISPR/Cas mRNA及引導RNA組分遞送至肝臟細胞之脂質組合物包含CCD脂質。
在一些實施例中,CCD脂質為脂質A,其為十八-9,12-二烯酸(9Z,12Z)-3-((4,4-雙(辛氧基)丁醯基)氧基)-2-((((3-(二乙胺基)丙氧基)羰基)氧基)甲基)丙酯,亦稱作(9Z,12Z)-十八-9,12-二烯酸3-((4,4-雙(辛氧基)丁醯基)氧基)-2-((((3-(二乙胺基)丙氧基)羰基)氧基)甲基)丙酯。脂質A可描繪為:
可根據WO2015/095340 (例如第84-86頁)合成脂質A。
在一些實施例中,CCD脂質為脂質B,其為((5-((二甲胺基)甲基)-1,3-伸苯基)雙(氧基))雙(辛烷-8,1-二基)雙(癸酸酯),亦稱作((5-((二甲胺基)甲基)-1,3-伸苯基)雙(氧基))雙(辛烷-8,1-二基) 雙(癸酸酯)。脂質B可描繪為:
可根據WO2014/136086 (例如第107-109頁)合成脂質B。
在一些實施例中,CCD脂質為脂質C,其為2-((4-(((3-(二甲胺基)丙氧基)羰基)氧基)十六醯基)氧基)丙烷-1,3-二基(9Z,9'Z,12Z,12'Z)-雙(十八-9,12-二烯酸酯)。
脂質C可描繪為:
在一些實施例中,CCD脂質為脂質D,其為3-辛基十一烷酸3-(((3-(二甲胺基)丙氧基)羰基)氧基)-13-(辛醯氧基)十三酯。
脂質D可描繪為:
可根據WO2015/095340合成脂質C及脂質D。
CCD脂質亦可為脂質A、脂質B、脂質C或脂質D之等效物。在某些實施例中,CCD脂質為脂質A之等效物、脂質B之等效物、脂質C之等效物或脂質D之等效物。
胺脂質
在一些實施例中,用於生物活性劑之遞送的LNP組合物包含「胺脂質」,其定義為脂質A或其等效物,包括脂質A之縮醛類似物。
在一些實施例中,胺脂質為脂質A,其為十八-9,12-二烯酸(9Z,12Z)-3-((4,4-雙(辛氧基)丁醯基)氧基)-2-((((3-(二乙胺基)丙氧基)羰基)氧基)甲基)丙酯,亦稱作(9Z,12Z)-十八-9,12-二烯酸3-((4,4-雙(辛氧基)丁醯基)氧基)-2-((((3-(二乙胺基)丙氧基)羰基)氧基)甲基)丙酯。脂質A可描繪為:
可根據WO2015/095340 (例如第84-86頁)合成脂質A。在某些實施例中,胺脂質為脂質A之等效物。
在某些實施例中,胺脂質為脂質A之類似物。在某些實施例中,脂質A類似物為脂質A之縮醛類似物。在特定LNP組合物中,縮醛類似物為C4-C12縮醛類似物。在一些實施例中,縮醛類似物為C5-C12縮醛類似物。在其他實施例中,縮醛類似物為C5-C10縮醛類似物。在其他實施例中,縮醛類似物係選自C4、C5、C6、C7、C9、C10、C11及C12縮醛類似物。
適用於本文所述之LNP中的胺脂質可活體內生物降解。胺脂質具有低毒性(例如以大於或等於10 mg/kg之量在動物模型中得到耐受而不具有不良作用)。在某些實施例中,包含胺脂質之LNP包括其中會在8、10、12、24或48小時或3、4、5、6、7或10天內自血漿清除至少75%之胺脂質的LNP。在某些實施例中,包含胺脂質之LNP包括其中會在8、10、12、24或48小時或3、4、5、6、7或10天內自血漿清除至少50%之mRNA或gRNA的LNP。在某些實施例中,包含胺脂質之LNP包括其中例如藉由量測脂質(例如,胺脂質)、RNA(例如mRNA)或其他組分,會在8、10、12、24或48小時或3、4、5、6、7或10天內自血漿清除至少50%之LNP的LNP。在某些實施例中,量測LNP之經脂質囊封組分對游離脂質組分、RNA組分或核酸組分。
脂質清除率可如文獻中所述來量測。參見Maier, M.A.等人 Biodegradable Lipids Enabling Rapidly Eliminated Lipid Nanoparticles for Systemic Delivery of RNAi Therapeutics. Mol. Ther. 2013, 21(8), 1570-78 (「Maier」)。舉例而言,在Maier中,以0.3 mg/kg藉由靜脈內快速注射經由外側尾部靜脈向六至八週齡雄性C57BL/6小鼠投與含有靶向螢光素酶之siRNA的LNP-siRNA系統。在給藥後0.083、0.25、0.5、1、2、4、8、24、48、96及168小時收集血液、肝臟及脾臟樣本。在收集組織之前向小鼠灌注生理鹽水且處理血液樣本以獲得血漿。處理且藉由LC-MS分析所有樣本。此外,Maier描述了一種用於評定投與LNP-siRNA調配物之後的毒性的程序。舉例而言,以0、1、3、5及10 mg/kg (5隻動物/組)經由單一靜脈內快速注射以5 mL/kg之劑量體積向雄性史泊格-多利大鼠(Sprague-Dawley rat)投與靶向螢光素酶之siRNA。在24小時之後,由清醒的動物之頸靜脈獲得約1 mL血液且分離血清。在給藥後72小時,將所有動物安樂死以用於屍體剖檢。進行臨床症狀、體重、血清化學、器官重量及組織病理學之評定。儘管Maier描述了用於評定siRNA-LNP調配物之方法,但此等方法亦可適用於評定本發明之LNP組合物之投藥的清除率、藥物動力學及毒性。
胺脂質引起增加之清除速率。在一些實施例中,清除速率為脂質清除速率,例如自血液、血清或血漿清除胺脂質之速率。在一些實施例中,清除速率為RNA清除速率,例如自血液、血清或血漿清除mRNA或gRNA之速率。在一些實施例中,清除速率為自血液、血清或血漿清除LNP之速率。在一些實施例中,清除速率為自組織,諸如肝臟組織或脾臟組織清除LNP之速率。在某些實施例中,清除速率之高速率會產生不具有顯著不良作用之安全分佈。胺脂質減少循環中及組織中之LNP積聚。在一些實施例中,循環中及組織中之LNP積聚減少會產生不具有顯著不良作用之安全分佈。
可視本發明之胺脂質所處的培養基之pH而定,對該等胺脂質進行電離。舉例而言,在弱酸性培養基中,胺脂質可經質子化且因此帶有正電荷。相反地,在弱鹼性培養基中,諸如其中pH為大約7.35之血液中,胺脂質可不經質子化且因此不帶電荷。在一些實施例中,可在至少約9之pH下對本發明之胺脂質進行質子化。在一些實施例中,可在至少約10之pH下對本發明之胺脂質進行質子化。
胺脂質帶有電荷之能力與其固有pKa有關。舉例而言,本發明之胺脂質可各自獨立地具有在約5.8至約6.2範圍內之pKa。舉例而言,本發明之胺脂質可各自獨立地具有在約5.8至約6.5範圍內之pKa。當已發現,pKa在約5.1至約7.4範圍內之陽離子型脂質對將載荷活體內遞送至例如肝臟為有效的時,此可為有利的。此外,已發現,pKa在約5.3至約6.4範圍內之陽離子型脂質對活體內遞送至例如腫瘤為有效的。參見例如WO2014/136086。其他脂質
適用於本發明之脂質組合物中的「中性脂質」包括例如多種中性、不帶電荷或兩性離子型脂質。適用於本發明中的中性磷脂之實例包括(但不限於) 5-十七基苯-1,3-二醇(間苯二酚)、二軟脂醯基磷脂醯膽鹼(DPPC)、二硬脂醯基磷脂醯膽鹼(DSPC)、磷酸膽鹼(DOPC)、二肉豆蔻醯基磷脂醯膽鹼(DMPC)、磷脂醯膽鹼(PLPC)、1,2-二硬脂醯基-sn-甘油-3-磷酸膽鹼(DAPC)、磷脂醯乙醇胺(PE)、卵磷脂醯膽鹼(EPC)、二月桂醯基磷脂醯膽鹼(DLPC)、1-肉豆蔻醯基-2-軟脂醯基磷脂醯膽鹼(MPPC)、1-軟脂醯基-2-肉豆蔻醯基磷脂醯膽鹼(PMPC)、1-軟脂醯基-2-硬脂醯基磷脂醯膽鹼(PSPC)、1,2-二花生醯基-sn-甘油-3-磷酸膽鹼(DBPC)、1-硬脂醯基-2-軟脂醯基磷脂醯膽鹼(SPPC)、1,2-二十碳烯醯基-sn-甘油-3-磷酸膽鹼(DEPC)、軟脂醯油醯基磷脂醯膽鹼(POPC)、溶血磷脂醯基膽鹼、二油醯基磷脂醯乙醇胺(DOPE)、二亞油醯基磷脂醯膽鹼二硬脂醯基磷脂醯乙醇胺(DSPE)、二肉豆蔻醯基磷脂醯乙醇胺(DMPE)、二軟脂醯基磷脂醯乙醇胺(DPPE)、軟脂醯油醯基磷脂醯乙醇胺(POPE)、溶血磷脂醯乙醇胺及其組合。在一個實施例中,中性磷脂可選自由以下組成之群:二硬脂醯基磷脂醯膽鹼(DSPC)及二肉豆蔻醯基磷脂醯乙醇胺(DMPE)。在另一實施例中,中性磷脂可為二硬脂醯基磷脂醯膽鹼(DSPC)。
「輔助脂質」包括類固醇、固醇及烷基間苯二酚。適用於本發明中之輔助脂質包括(但不限於)膽固醇、5-十七基間苯二酚及膽固醇半丁二酸酯。在一個實施例中,輔助脂質可為膽固醇。在一個實施例中,輔助脂質可為膽固醇半丁二酸酯。
「隱形脂質」為改變奈米粒子可在活體內(例如血液中)存在之時長的脂質。隱形脂質可藉由例如減少粒子聚集且控制粒度輔助調配過程。本文中所用之隱形脂質可調節LNP之藥物動力學特性。適用於本發明中之隱形脂質包括(但不限於)具有連接至脂質部分之親水性頭基的隱形脂質。適用於本發明脂質組合物之隱形脂質及關於此類脂質之生物化學的資訊可見於Romberg等人, Pharmaceutical Research, 第25卷, 第1期, 2008, 第55-71頁及Hoekstra等人, Biochimica et Biophysica Acta 1660 (2004) 41-52。額外適合PEG脂質揭示於例如WO 2006/007712中。
在一個實施例中,隱形脂質之親水性頭基包含選自基於PEG之聚合物的聚合物部分。隱形脂質可包含脂質部分。在一些實施例中,隱形脂質為PEG脂質。
在一個實施例中,隱形脂質包含選自基於以下之聚合物的聚合物部分:PEG (有時稱作聚(環氧乙烷))、聚(噁唑啉)、聚(乙烯醇)、聚(甘油)、聚(N-乙烯基吡咯啶酮)、聚胺基酸及聚[N-(2-羥丙基)甲基丙烯醯胺]。
在一個實施例中,PEG脂質包含基於PEG(有時稱作聚(環氧乙烷))之聚合物部分。
PEG脂質進一步包含脂質部分。在一些實施例中,脂質部分可源自二醯基甘油或二醯基甘油醯胺(diacylglycamide),包括包含二烷基甘油基或二烷基甘油醯胺基的彼等者,該基團具有獨立地包含約C4至約C40飽和或不飽和碳原子之烷基鏈長,其中該鏈可包含一或多個官能基,諸如醯胺基或酯基。在一些實施例中,烷基鏈長度包含約C10至C20。二烷基甘油或二烷基甘油醯胺基可進一步包含一或多個經取代之烷基。鏈長可為對稱或不對稱的。
除非另外指明,否則如本文所用,術語「PEG」意謂任何聚乙二醇或其他聚伸烷醚聚合物。在一個實施例中,PEG為乙二醇或環氧乙烷的視情況經取代之直鏈或分支鏈聚合物。在一個實施例中,PEG為未經取代的。在一個實施例中,PEG經例如一或多個烷基、烷氧基、醯基、羥基、或芳基取代。在一個實施例中,該術語包括PEG共聚物,諸如PEG-聚胺基甲酸酯或PEG-聚丙烯(參見例如J. Milton Harris, Poly(ethylene glycol) chemistry: biotechnical and biomedical applications (1992));在另一實施例中,該術語不包括PEG共聚物。在一個實施例中,PEG之分子量為約130至約50,000,在一子實施例中,約150至約30,000,在一子實施例中,約150至約20,000,在一子實施例中,約150至約15,000,在一子實施例中,約150至約10,000,在一子實施例中,約150至約6,000,在一子實施例中,約150至約5,000,在一子實施例中,約150至約4,000,在一子實施例中,約150至約3,000,在一子實施例中,約300至約3,000,在一子實施例中,約1,000至約3,000且在一子實施例中,約1,500至約2,500。
在某些實施例中,PEG (例如與脂質部分或脂質,諸如隱形脂質結合)、為「PEG-2K」,亦稱為「PEG2000」,其具有約2,000道爾頓之平均分子量。PEG-2K在本文中由下式(I)表示,其中n為45,意謂經數量平均化之聚合度包含約45個次單位。然而,亦可使用此項技術中已知的其他PEG實施例,包括例如其中經數量平均化之聚合度包含約23個次單位(n=23)及/或68個次單位(n=68)的彼等者。在一些實施例中,n可在約30至約60範圍內。在一些實施例中,n可在約35至約55範圍內。在一些實施例中,n可在約40至約50範圍內。在一些實施例中,n可在約42至約48範圍內。在一些實施例中,n可為45。在一些實施例中,R可選自H、經取代之烷基及未經取代之烷基。在一些實施例中,R可為未經取代之烷基。在一些實施例中,R可為甲基。
在本文中描述之任一實施例中,PEG脂質可選自PEG-二月桂醯甘油、PEG-二肉豆蔻醯甘油(PEG-DMG) (目錄號GM-020,來自日本東京之NOF)、PEG-二軟脂醯甘油、PEG-二硬脂醯甘油(PEG-DSPE) (目錄號DSPE-020CN,日本東京之NOF)、PEG-二月桂醯甘油醯胺、PEG-二肉豆蔻醯甘油醯胺、PEG-二軟脂醯甘油醯胺、及PEG-二硬脂醯甘油醯胺、PEG-膽固醇(1-[8'-(膽甾-5-烯-3[β]-氧基)甲醯胺基-3',6'-二氧雜辛烷]胺甲醯基-[ω]-甲基-聚(乙二醇)、PEG-DMB (3,4-雙十四氧基苯甲基-[ω]-甲基-聚(乙二醇)醚)、1,2-二肉豆蔻醯基-sn-甘油-3-磷酸乙醇胺-N-[甲氧基(聚乙二醇)-2000] (PEG2k-DMG) (目錄號880150P,來自美國亞拉巴馬州阿拉巴斯特(Alabaster, Alabama, USA)之Avanti Polar Lipids)、1,2-二硬脂醯基-sn-甘油-3-磷酸乙醇胺-N-[甲氧基(聚乙二醇)-2000] (PEG2k-DSPE) (目錄號880120C,來自美國亞拉巴馬州阿拉巴斯特之Avanti Polar Lipids)、1,2-二硬脂醯基-sn-甘油,甲氧基聚乙二醇(PEG2k-DSG;GS-020,日本東京之NOF)、聚(乙二醇)-2000-二甲基丙烯酸酯(PEG2k-DMA)、及1,2-二硬脂氧基丙基-3-胺-N-[甲氧基(聚乙二醇)-2000] (PEG2k-DSA)。在一個實施例中,PEG脂質可為PEG2k-DMG。在一些實施例中,PEG脂質可為PEG2k-DSG。在一個實施例中,PEG脂質可為PEG2k-DSPE。在一個實施例中,PEG脂質可為PEG2k-DMA。在一個實施例中,PEG脂質可為PEG2k-C-DMA。在一個實施例中,PEG脂質可為化合物S027,其揭示於WO2016/010840 (第[00240]至[00244]段)中。在一個實施例中,PEG脂質可為PEG2k-DSA。在一個實施例中,PEG脂質可為PEG2k-C11。在一些實施例中,PEG脂質可為PEG2k-C14。在一些實施例中,PEG脂質可為PEG2k-C16。在一些實施例中,PEG脂質可為PEG2k-C18。
LNP可含有(i)用於囊封及用於核內體逃逸(endosomal escape)之胺脂質、(ii)用於穩定之中性脂質、(iii)亦用於穩定之輔助脂質及(iv)隱形脂質,諸如PEG脂質。
在一些實施例中,LNP組合物可包含RNA組分,其包括以下中之一或多者:RNA引導之DNA結合劑、Cas核酸酶mRNA、2類Cas核酸酶mRNA、Cas9 mRNA及gRNA。在一些實施例中,LNP組合物可包括2類Cas核酸酶及gRNA作為RNA組分。在某些實施例中,LNP組合物可包含RNA組分、胺脂質、輔助脂質、中性脂質及隱形脂質。在某些LNP組合物中,輔助脂質為膽固醇。在其他組合物中,中性脂質為DSPC。在其他實施例中,隱形脂質為PEG2k-DMG或PEG2k-C11。在某些實施例中,LNP組合物包含脂質A或脂質A之等效物;輔助脂質;中性脂質;隱形脂質;及引導RNA。在某些組合物中,胺脂質為脂質A。在某些組合物中,胺脂質為脂質A或其縮醛類似物;輔助脂質為膽固醇;中性脂質為DSPC;且隱形脂質為PEG2k-DMG。
在某些實施例中,根據調配物中脂質組分之相應莫耳比描述脂質組合物。本發明之實施例提供根據調配物中脂質組分之相應莫耳比描述的脂質組合物。在一個實施例中,胺脂質之mol%可為約30 mol%至約60 mol%。在一個實施例中,胺脂質之mol%可為約40 mol%至約 60 mol%。在一個實施例中,胺脂質之mol%可為約45 mol%至約 60 mol%。在一個實施例中,胺脂質之mol%可為約50 mol%至約 60 mol%。在一個實施例中,胺脂質之mol%可為約55 mol%至約 60 mol%。在一個實施例中,胺脂質之mol%可為約50 mol%至約 55 mol%。在一個實施例中,胺脂質之mol%可為約50 mol%。在一個實施例中,胺脂質之mol%可為約55 mol%。在一些實施例中,LNP批料之胺脂質mol%將為目標mol%之±30%、±25%、±20%、±15%、±10%、±5%或±2.5%。在一些實施例中,LNP批料之胺脂質mol%將為目標mol%之±4 mol%、±3 mol%、±2 mol%、±1.5 mol%、±1 mol%、±0.5 mol%或±0.25 mol%。所有mol%數均以LNP組合物之脂質組分的一定分率給定。在某些實施例中,胺脂質mol%之LNP批次間變化率將低於15%、低於10%或小於5%。
在一個實施例中,中性脂質之mol%可為約5 mol%至約15 mol%。在一個實施例中,中性脂質之mol%可為約7 mol%至約12 mol%。在一個實施例中,中性脂質之mol%可為約9 mol%。在一些實施例中,LNP批料之中性脂質mol%將為目標中性脂質mol%之±30%、±25%、±20%、±15%、±10%、±5%或±2.5%。在某些實施例中,LNP批次間變化率將低於15%、低於10%或小於5%。
在一個實施例中,輔助脂質之mol%可為約20 mol%至約60 mol%。在一個實施例中,輔助脂質之mol%可為約25 mol%至約55 mol%。在一個實施例中,輔助脂質之mol%可為約25 mol%至約50 mol%。在一個實施例中,輔助脂質之mol%可為約25 mol%至約40 mol%。在一個實施例中,輔助脂質之mol%可為約30 mol%至約50 mol%。在一個實施例中,輔助脂質之mol%可為約30 mol%至約40 mol%。在一個實施例中,基於胺脂質、中性脂質及PEG脂質濃度而調整輔助脂質之mol%以使脂質組分達100 mol%。在一些實施例中,LNP批料之輔助脂質mol%將為目標mol%之±30%、±25%、±20%、±15%、±10%、±5%或±2.5%。在某些實施例中,LNP批次間變化率將低於15%、低於10%或小於5%。
在一個實施例中,PEG脂質之mol%可為約1 mol%至約10 mol%。在一個實施例中,PEG脂質之mol%可為約2 mol%至約10 mol%。在一個實施例中,PEG脂質之mol%可為約2 mol%至約8 mol%。在一個實施例中,PEG脂質之mol%可為約2 mol%至約4 mol%。在一個實施例中,PEG脂質之mol%可為約2.5 mol%至約4 mol%。在一個實施例中,PEG脂質之mol%可為約3 mol%。在一個實施例中,PEG脂質之mol%可為約2.5 mol%。在一些實施例中,LNP批料之PEG脂質mol%將為目標PEG脂質mol%之±30%、±25%、±20%、±15%、±10%、±5%或±2.5%。在某些實施例中,LNP批次間變化率將低於15%、低於10%或小於5%。
在某些實施例中,載荷包括編碼RNA引導之DNA結合劑(例如Cas核酸酶、2類Cas核酸酶或Cas9)之mRNA,及gRNA或編碼gRNA之核酸,或mRNA及gRNA之組合。在一個實施例中,LNP組合物可包含脂質A或其等效物。在一些態樣中,胺脂質為脂質A。在一些態樣中,胺脂質為脂質A等效物,例如脂質A之類似物。在某些態樣中,胺脂質為脂質A之縮醛類似物。在各種實施例中,LNP組合物包含胺脂質、中性脂質、輔助脂質及PEG脂質。在某些實施例中,輔助脂質為膽固醇。在某些實施例中,中性脂質為DSPC。在特定實施例中,PEG脂質為PEG2k-DMG。在一些實施例中,LNP組合物可包含脂質A、輔助脂質、中性脂質及PEG脂質。在一些實施例中,LNP組合物包含胺脂質、DSPC、膽固醇及PEG脂質。在一些實施例中,LNP組合物包含PEG脂質,該脂質包含DMG。在某些實施例中,胺脂質選自脂質A,及脂質A之等效物,包括脂質A之縮醛類似物。在其他實施例中,LNP組合物包含脂質A、膽固醇、DSPC及PEG2k-DMG。
本發明之實施例亦提供根據待囊封之核酸之胺脂質的帶正電胺基(N)與帶負電磷酸基團(P)之間的莫耳比描述之脂質組合物。此可由方程式N/P數學表示。在一些實施例中,LNP組合物可包含脂質組分,其包含胺脂質、輔助脂質、中性脂質及隱形脂質;及核酸組分,其中N/P比為約3至10。在一些實施例中,LNP組合物可包含脂質組分,其包含胺脂質、輔助脂質、中性脂質及隱形脂質;及RNA組分,其中N/P比為約3至10。在一個實施例中,N/P比可為約5至7。在一個實施例中,N/P比可為約4.5至8。在一個實施例中,N/P比可為約6。在一個實施例中,N/P比可為6 ± 1。在一個實施例中,N/P比可為6 ± 0.5。在一些實施例中,N/P比將為目標N/P比之±30%、±25%、±20%、±15%、±10%、±5%或±2.5%。在某些實施例中,LNP批次間變化率將低於15%、低於10%或小於5%。
在一些實施例中,RNA組分可包含mRNA,諸如本文所揭示之mRNA,例如編碼Cas核酸酶之mRNA。在一個實施例中,RNA組分可包含Cas9 mRNA。在一些包含編碼Cas核酸酶之mRNA的組合物中,LNP進一步包含gRNA核酸,諸如gRNA。在一些實施例中,RNA組分包含Cas核酸酶mRNA及gRNA。在一些實施例中,RNA組分包含2類Cas核酸酶mRNA及gRNA。
在某些實施例中,LNP組合物可包含編碼Cas核酸酶(諸如2類Cas核酸酶)之mRNA、胺脂質、輔助脂質、中性脂質及PEG脂質。在某些包含編碼Cas核酸酶(諸如2類Cas核酸酶)之mRNA的LNP組合物中,輔助脂質為膽固醇。在其他包含編碼Cas核酸酶(諸如2類Cas核酸酶)之mRNA的組合物中,中性脂質為DSPC。在其他包含編碼Cas核酸酶(諸如2類Cas核酸酶)之mRNA的實施例中,PEG脂質為PEG2k-DMG或PEG2k-C11。在包含編碼Cas核酸酶(諸如2類Cas核酸酶)之mRNA的特定組合物中,胺脂質選自脂質A及其等效物,諸如脂質A之縮醛類似物。
在一些實施例中,LNP組合物可包含gRNA。在某些實施例中,LNP組合物可包含胺脂質、gRNA、輔助脂質、中性脂質及PEG脂質。在某些包含gRNA之LNP組合物中,輔助脂質為膽固醇。在一些包含gRNA之組合物中,中性脂質為DSPC。在其他包含gRNA之實施例中,PEG脂質為PEG2k-DMG或PEG2k-C11。在某些實施例中,胺脂質選自脂質A及其等效物,諸如脂質A之縮醛類似物。
在一個實施例中,LNP組合物可包含sgRNA。在一個實施例中,LNP組合物可包含Cas9 sgRNA。在一個實施例中,LNP組合物可包含Cpf1 sgRNA。在一些包含sgRNA之組合物中,LNP包括胺脂質、輔助脂質、中性脂質及PEG脂質。在某些包含sgRNA之組合物中,輔助脂質為膽固醇。在其他包含sgRNA之組合物中,中性脂質為DSPC。在其他包含sgRNA之實施例中,PEG脂質為PEG2k-DMG或PEG2k-C11。在某些實施例中,胺脂質選自脂質A及其等效物,諸如脂質A之縮醛類似物。
在某些實施例中,LNP組合物包含本文所揭示之mRNA,例如編碼Cas核酸酶之mRNA,及gRNA,其可為sgRNA。在一個實施例中,LNP組合物可包含胺脂質、編碼Cas核酸酶之mRNA、gRNA、輔助脂質、中性脂質及PEG脂質。在某些包含編碼Cas核酸酶之mRNA及gRNA之組合物中,輔助脂質為膽固醇。在一些包含編碼Cas核酸酶之mRNA及gRNA之組合物中,中性脂質為DSPC。在其他包含編碼Cas核酸酶之mRNA及gRNA之實施例中,PEG脂質為PEG2k-DMG或PEG2k-C11。在某些實施例中,胺脂質選自脂質A及其等效物,諸如脂質A之縮醛類似物。
在某些實施例中,LNP組合物包括Cas核酸酶mRNA,諸如2類Cas mRNA,及至少一個gRNA。在某些實施例中,LNP組合物包括比率為約25:1至約1:25之gRNA與Cas核酸酶mRNA,諸如2類Cas核酸酶mRNA。在某些實施例中,LNP調配物包括比率為約10:1至約1:10之gRNA與Cas核酸酶mRNA,諸如2類Cas核酸酶mRNA。在某些實施例中,LNP調配物包括比率為約8:1至約1:8之gRNA與Cas核酸酶mRNA,諸如2類Cas核酸酶mRNA。如本文中所量測,比率係以重量計。在一些實施例中,LNP調配物包括比率為約5:1至約1:5之gRNA與Cas核酸酶mRNA,諸如2類Cas mRNA。在一些實施例中,比率範圍為約3:1至1:3、約2:1至1:2、約5:1至1:2、約5:1至1:1、約3:1至1:2、約3:1至1:1、約3:1、約2:1至1:1。在一些實施例中,gRNA與mRNA之比為約3:1或約2:1。在一些實施例中,gRNA與Cas核酸酶mRNA,諸如2類Cas核酸酶之比為約1:1。比率可為約25:1、10:1、5:1、3:1、1:1、1:3、1:5、1:10或1:25。
本文中所揭示之LNP組合物可包括模板核酸。模板核酸可經編碼Cas核酸酶之mRNA,諸如2類Cas核酸酶 mRNA共調配。在一些實施例中,模板核酸可經引導RNA共調配。在一些實施例中,模板核酸可經編碼Cas核酸酶之mRNA及引導RNA兩者共調配。在一些實施例中,模板核酸可經編碼Cas核酸酶之mRNA及引導RNA分開調配。模板核酸可與LNP組合物一起或與其分開遞送。在一些實施例中,模板核酸可為單股或雙股的,其視所需修復機制而定。模板可具有與靶DNA或與鄰近於靶DNA之序列同源的區域。
本文所述之LNP及LNP調配物中之任一者適用於遞送單獨或與一或多個引導RNA一起的編碼RNA引導之DNA結合劑,諸如Cas核酸酶的mRNA。在一些實施例中,涵蓋一種包含以下之LNP組合物:RNA組分及脂質組分,其中脂質組分包含胺脂質、中性脂質、輔助脂質及隱形脂質;且其中N/P比為約1至10。
在一些情況下,脂質組分包含脂質A或其縮醛類似物、膽固醇、DSPC及PEG-DMG;且其中N/P比為約1至10。在一些實施例中,脂質組分包含:約40至60 mol%胺脂質;約5至15 mol%中性脂質;及約1.5%至10 mol% PEG脂質,其中脂質組分之其餘部分為輔助脂質,且其中LNP組合物之N/P比為約3至10。在一些實施例中,脂質組分包含:約50至60 mol%胺脂質;約8至10 mol%中性脂質;及約2.5%至4 mol% PEG脂質,其中脂質組分之其餘部分為輔助脂質,且其中LNP組合物之N/P比為約3至8。在一些情況下,脂質組分包含:約50至60 mol%胺脂質;約5至15 mol% DSPC;及約2.5%至4 mol% PEG脂質,其中脂質組分之其餘部分為膽固醇,且其中LNP組合物之N/P比為約3至8。在一些情況下,脂質組分包含:48至53 mol%脂質A;約8至10 mol% DSPC;及約1.5%至10 mol% PEG脂質,其中脂質組分之其餘部分為膽固醇,且其中LNP組合物之N/P比為3至8 ±0.2。
在一些實施例中,LNP係藉由混合RNA水溶液與有機溶劑基脂質溶液,例如100%乙醇而形成。適合溶液或溶劑包括或可含有:水、PBS、Tris緩衝液、NaCl、檸檬酸鹽緩衝液、乙醇、氯仿、二乙醚、環己烷、四氫呋喃、甲醇、異丙醇。可將醫藥學上可接受之緩衝液用於例如LNP之活體內投藥。在某些實施例中,緩衝液用於將包含LNP之組合物的pH維持處於或高於pH 6.5。在某些實施例中,緩衝液用於將包含LNP之組合物的pH維持處於或高於pH 7.0。在某些實施例中,組合物之pH在約7.2至約7.7範圍內。在其他實施例中,組合物之pH在約7.3至約7.7範圍內或約7.4至約7.6範圍內。在其他實施例中,組合物之pH為約7.2、7.3、7.4、7.5、7.6或7.7。組合物之pH可用微型pH探針進行量測。在某些實施例中,組合物中包括低溫保護劑。低溫保護劑之非限制性實例包括蔗糖、海藻糖、甘油、DMSO及乙二醇。例示性組合物可包括至多10%低溫保護劑,諸如蔗糖。在某些實施例中,LNP組合物可包括約1%、2%、3%、4%、5%、6%、7%、8%、9%或10%低溫保護劑。在某些實施例中,LNP組合物可包括約1%、2%、3%、4%、5%、6%、7%、8%、9%或10%蔗糖。在一些實施例中,LNP組合物可包括緩衝液。在一些實施例中,緩衝液可包含磷酸酯緩衝液(PBS)、Tris緩衝液、檸檬酸鹽緩衝液及其混合物。在某些例示性實施例中,緩衝液包含NaCl。在某些實施例中,省去NaCl。NaCl之例示性量可在約20 mM至約45 mM範圍內。NaCl之例示性量可在約40 mM至約50 mM範圍內。在一些實施例中,NaCl之量為約45 mM。在一些實施例中,緩衝液為Tris緩衝液。Tris之例示性量可在約20 mM至約60 mM範圍內。Tris之例示性量可在約40 mM至約60 mM範圍內。在一些實施例中,Tris之量為約50 mM。在一些實施例中,緩衝液包含NaCl及Tris。LNP組合物之某些例示性實施例含有5%蔗糖及45 mM NaCl之Tris緩衝液。在其他例示性實施例中,組合物含有呈約5% w/v之量的蔗糖、約45 mM NaCl及pH 7.5下之約50 mM Tris。鹽、緩衝液及低溫保護劑量可有所變化以使總體調配物之重量莫耳滲透濃度得到維持。舉例而言,最終重量莫耳滲透濃度可維持低於450 mOsm/L。在其他實施例中,重量莫耳滲透濃度在350與250 mOsm/L之間。某些實施例之最終重量莫耳滲透濃度為300 +/- 20 mOsm/L。
在一些實施例中,使用微流混合、T型混合或交錯混合。在某些態樣中,流動速率、接頭大小、接頭幾何結構、接頭形狀、管徑、溶液及/或RNA及脂質濃度可有所變化。LNP或LNP組合物可例如經由滲析、切向流過濾或層析得到濃縮或純化。LNP可以例如懸浮液、乳液或凍乾粉末形式儲存。在一些實施例中,LNP組合物儲存於2至8℃下,在某些態樣中,LNP組合物儲存於室溫下。在其他實施例中,冷凍儲存,例如在-20°℃或-80℃下儲存LNP組合物。在其他實施例中,將LNP組合物儲存於約0℃至約-80℃範圍內之溫度下。可在使用之前例如在冰上,在4℃下、在室溫下或在25℃下融化冷凍LNP組合物。可將冷凍LNP組合物維持在不同溫度下,例如在冰上,在4℃下、在室溫下、在25℃下或在37℃下。
在一些實施例中,LNP組合物具有大於約80%之囊封率。在一些實施例中,LNP組合物之粒度小於約120 nm。在一些實施例中,LNP組合物之pdi小於約0.2。在一些實施例中,存在此等特徵中之至少兩者。在一些實施例中,存在此等三個特徵中之每一者。用於測定此等參數之分析方法論述於下文通用試劑及方法章節中。
在一些實施例中,與本文所揭示之mRNA締合的LNP供用於製備藥劑。
電致孔為遞送載荷之熟知手段,且任何電致孔方法可用於遞送本文所揭示之gRNA中之任一者。在一些實施例中,電致孔可用於遞送本文所揭示之mRNA及一或多個引導RNA。
在一些實施例中,提供一種用於將本文所揭示之mRNA遞送至離體細胞的方法,其中mRNA與LNP締合或不與LNP締合。在一些實施例中,mRNA/LNP或mRNA亦與一或多個引導RNA締合。
在一些實施例中,當以醫藥組合物形式向哺乳動物投與本文所揭示之mRNA時,該哺乳動物展現出比投與最小尿苷含量大於150%的編碼Cas9核酸酶之mRNA的哺乳動物要低至少1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、7、7.5、8、8.5、9、9.5或10倍的細胞介素反應。可如實例中所述測定細胞介素反應。細胞介素反應之間的差異可以一組細胞介素,諸如以下細胞介素中之至少一種、兩種、三種或四種之平均變化的形式來量測:IFN α、IL-6、TNF α及MCP-1。在一些實施例中,當以醫藥組合物形式向哺乳動物投與本文所揭示之mRNA時,該哺乳動物展現出比投與具有編碼Cas9核酸酶之ORF的mRNA的哺乳動物要低至少1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、7、7.5、8、8.5、9、9.5或10倍的細胞介素反應,其中ORF之序列由SEQ ID NO: 5組成。在一些實施例中,具有由SEQ ID NO: 5組成之序列的ORF中之尿苷為未經修飾的。據通常理解,除mRNA外的比較組合物之特徵應保持恆定,包括劑量,且劑量應處於適當範圍,諸如0.1至5 mpk或本文所述之其他範圍內(例如,如mRNA功效之測定章節所論述)。
在一些實施例中,編碼引導RNA之核苷酸序列可位於相同載體、轉錄物或包含編碼RNA引導之DNA結合劑的核苷酸序列之mRNA上。在一些實施例中,引導RNA之表現及RNA引導之DNA結合劑之表現可藉由其自身對應啟動子來驅動。在一些實施例中,引導RNA之表現可由驅動RNA引導之DNA結合劑的表現的相同啟動子來驅動。在一些實施例中,引導RNA及編碼RNA引導之DNA結合劑的ORF可包含於單一轉錄物中。舉例而言,引導RNA可處於RNA引導之DNA結合劑轉錄物的非轉譯區(UTR)中。在一些實施例中,引導RNA可處於RNA引導之DNA結合劑轉錄物的5' UTR中。在一些實施例中,引導RNA可處於RNA引導之DNA結合劑轉錄物的3' UTR中。在一些實施例中,RNA引導之DNA結合劑轉錄物的胞內半衰期可藉由將引導RNA包含在該轉錄物之3' UTR中且藉此縮短其3' UTR之長度而減小。在其他實施例中,引導RNA可處於RNA引導之DNA結合劑轉錄物之內含子中。在一些實施例中,可在引導RNA所處之內含子處添加適合剪接位點以使得自轉錄物恰當地剪接掉引導RNA。在一些實施例中,相同載體上緊鄰的RNA引導之DNA結合劑及引導RNA之表現可促進較高效形成RNA引導之DNA結合劑與引導RNA的核糖核蛋白複合物。
在一些實施例中,提供一種包含本發明之mRNA的醫藥調配物。在一些實施例中,提供一種包含至少一種脂質,例如包含本發明之mRNA的LNP的醫藥調配物。可使用適用於遞送RNA之任何LNP,諸如上文所述之LNP;其他例示性LNP描述於3月30,2017日申請的PCT/US2017/024973中。醫藥調配物可進一步包含醫藥學上可接受之載劑,例如水或緩衝液。醫藥調配物可進一步包含一或多種醫藥學上可接受之賦形劑,諸如穩定劑、防腐劑、膨化劑或其類似者。醫藥調配物可進一步包含一或多種醫藥學上可接受之鹽,諸如氯化鈉。在一些實施例中,醫藥調配物經調配以用於靜脈內投與。在一些實施例中,醫藥調配物經調配以用於遞送至肝循環中。 C. mRNA功效之測定
在一些實施例中,當與RNP之其他組分,例如至少一個gRNA,諸如靶向TTR之gRNA一起表現時,測定mRNA之功效。
具有裂解酶活性的RNA引導之DNA結合劑可引起DNA中發生雙股斷裂。非同源末端連接(NHEJ)為一種以下方法,藉由該方法,DNA中之雙股斷裂(DSB)經由重新連接斷裂末端而得到修補,其可能會產生呈插入/缺失(插入缺失標記(indel))突變形式之錯誤。在重新連接末端之前,DSB之DNA末端常常會經歷酶處理,其引起在一或兩個股處添加或移除核苷酸。重新連接之前的此等添加或移除引起DNA序列中NHEJ修復位點處存在插入或缺失(插入缺失標記(indel))突變。歸因於插入缺失標記(indel)之多種突變會改變閱讀框架或過早地引入終止密碼子,且因此產生非功能性蛋白質。
在一些實施例中,基於活體外模型而測定編碼核酸酶之mRNA的功效。在一些實施例中,活體外模型為HEK293細胞。在一些實施例中,活體外模型為HUH7人類肝癌細胞。在一些實施例中,活體外模型為初級肝細胞,諸如初級人類或小鼠肝細胞。
在一些實施例中,藉由TTR 之編輯百分比量測RNA之功效。用於測定編輯百分比之例示性程序在以下實例中給出。在一些實施例中,將TTR 之編輯百分比與當mRNA包含具有未經修飾之尿苷的SEQ ID NO: 5之ORF且所有其他者為相同的時所獲得之編輯百分比進行比較。
在一些實施例中,使用投與包含mRNA及靶向TTR之gRNA,例如SEQ ID NO: 42的LNP後的小鼠中之血清TTR濃度來測定mRNA之功效。在一些實施例中,使用投與包含mRNA及靶向TTR之gRNA,例如SEQ ID NO: 69的LNP後的大鼠中之血清TTR濃度來測定mRNA之功效。血清TTR濃度可以絕對術語或以相對於假處理對照之基因減弱%來表示。在一些實施例中,使用投與包含mRNA及靶向TTR之gRNA,例如SEQ ID NO: 42的LNP後的小鼠中之肝臟中的編輯百分比來測定mRNA之功效。在一些實施例中,有效量能夠達成血清TTR之至少50之編輯%或50之基因減弱%。例示性有效量在0.1至10 mg/kg (mpk),例如0.1至0.3 mpk、0.3至0.5 mpk、0.5至1 mpk、1至2 mpk、2至3 mpk、3至5 mpk、5至10 mpk範圍內,或為0.1、0.2、0.3、0.5、1、2、3、5、或10 mpk。
在一些實施例中,偵測基因編輯事件,諸如靶DNA中的插入/缺失(「插入缺失標記(indel)」)突變之形成及同源定向修復(HDR)事件會利用伴隨加標籤之引子且分離加標籤之擴增產物的線性擴增(後文稱為「LAM-PCR」或「線性擴增(LA)」法)。
在一些實施例中,該方法包含自已經誘導而具有雙股斷裂(DSB)且視情況地,已具有HDR模板以修復DSB的細胞分離細胞DNA;用加標籤之引子進行至少一輪DNA之線性擴增;分離包含標籤之線性擴增產物,藉此捨棄用非加標籤之引子擴增之任何擴增產物;視情況進一步擴增分離產物;且分析線性擴增產物或經進一步擴增之產物以測定靶DNA中是否存在編輯事件,諸如雙股斷裂、插入、缺失或HDR模板序列。在一些情況下,編輯事件可經定量。如本文所用(包括在HDR及非HDR編輯事件,諸如插入缺失標記(indel)的情形下),定量及其類似者包括偵測總體中編輯事件之次數及/或類型。
在一些實施例中,僅進行一輪線性擴增。
在一些情況下,加標籤之引子包含分子條形碼。在一些實施例中,加標籤之引子包含分子條形碼,且僅進行一輪線性擴增。
在一些實施例中,分析步驟包含對線性擴增產物或經進一步擴增之產物進行定序。定序可包含熟習此項技術者已知的任何方法,包括次世代定序(next generation sequencing)及將線性擴增產物或經進一步擴增之產物選殖於質體中且對質體或質體之一部分進行定序。在其他態樣中,分析步驟包含對線性擴增產物或經進一步擴增之產物進行數位PCR (dPCR)或液滴式數位PCR(ddPCR)。在其他情況下,分析步驟包含使線性擴增產物或經進一步擴增之產物與經設計以鑑別包含HDR模板序列之DNA的核酸探針接觸,且偵測已結合至線性擴增產物或經進一步擴增之產物的探針。在一些實施例中,該方法進一步包含測定靶DNA中HDR模板之位置。
在某些實施例中,該方法進一步包含測定靶DNA中插入位點之序列,其中插入位點為HDR模板併入靶DNA中所處之位置,且其中插入位點可包括部分靶DNA序列及部分HDR模板序列。
在一些實施例中,使用加標籤之引子的靶DNA之線性擴增進行1至50輪、1至60輪、1至70輪、1至80輪、1至90輪或1至100輪。
在一些實施例中,使用加標籤之引子的靶DNA之線性擴增包含分離DNA雙螺旋體之變性步驟、使引子結合之黏接步驟及延伸步驟。在一些實施例中,線性擴增為等溫的(不需要溫度變化)。在一些實施例中,等溫線性擴增為環介導等溫擴增(LAMP)、股置換擴增(SDA)、解螺旋酶依賴性擴增或切口酶擴增反應。
在一些實施例中,加標籤之引子黏接至與期望編輯事件位置,例如插入、缺失或模板插入位點相距至少50、至少60、至少70、至少80、至少90、至少100、至少110、至少120、至少130、至少140、至少150、至少160、至少170、至少180、至少190、至少200、至少210、至少220、至少230、至少240、至少250、至少260、至少270、至少280、至少290、至少300、至少1,000、至少5,000或至少10,000個核苷酸之靶DNA。
在一些實施例中,加標籤之引子包含分子條形碼。在一些實施例中,分子條形碼包含與靶DNA不互補之序列。在一些實施例中,分子條形碼包含6、8、10或12個核苷酸。
在一些實施例中,引子上之標籤為生物素、抗生蛋白鏈菌素、地高辛(digoxigenin)、DNA序列或螢光異硫氰酸鹽(FITC)。
在一些實施例中,使用對引子上之標籤具有特異性之捕捉試劑分離線性擴增產物。在一些實施例中,捕捉試劑處於珠粒、固體載體、基質或管柱上。在一些實施例中,分離步驟包含使線性擴增產物與對引子上之標籤具有特異性之捕捉試劑接觸。在一些實施例中,捕捉試劑為生物素、抗生蛋白鏈菌素、地高辛、DNA序列或螢光異硫氰酸鹽(FITC)。
在一些實施例中,標籤為生物素且捕捉試劑為抗生蛋白鏈菌素。在一些實施例中,標籤為抗生蛋白鏈菌素且捕捉試劑為生物素。在一些實施例中,標籤處於引子之5'端、引子之3'端上或處於引子內部。在一些實施例中,在分離步驟之後移除標籤及/或捕捉試劑。在一些實施例中,不移除標籤及/或捕捉試劑,且在標籤及/或捕捉試劑存在下進行進一步擴增及分析步驟。
在一些實施例中,進一步擴增為非線性的。在一些實施例中,進一步擴增為數位PCR、qPCR或RT-PCR。在一些實施例中,定序為次世代定序(NGS)。
在一些實施例中,靶DNA為基因體或線粒體。在一些實施例中,靶DNA為原核或真核細胞之基因體DNA。在一些實施例中,靶DNA為哺乳動物DNA。靶DNA可來自非分裂細胞或分裂細胞。在一些實施例中,靶DNA可來自初級細胞。在一些實施例中,靶DNA來自複製細胞。
在一些情況下,在線性擴增之前剪切細胞DNA。在一些實施例中,經剪切之DNA的平均尺寸在0.5 kb與20 kb之間。在一些情況下,細胞DNA經剪切而呈0.5、0.75、1.0、1.25、1.5、1.75、2.0、2.25、2.5、2.75、3.0、3.25、3.5、3.75、4.0、4.25、4.5、4.75、5.0、5.25、5.5、5.75、6.0、6.25、6.5、6.75、7.0、7.25、7.5、7.75、8.0、8.25、8.5、8.75、9.0、9.25、9.5、9.75、10.0、10.25、10.5、10.75、11.0、11.25、11.5、11.75、12.0、12.25、12.5、12.75、13.0、13.25、13.5、13.75、14.0、14.25、14.5、14.75、15.0、15.25、15.5、15.75、16.0、16.25、16.5、16.75、17.0、17.25、17.5、17.75、18.0、18.25、18.5、18.75、19.0、19.25、19.5、19.75或20.0 kb之平均尺寸。在一些情況下,細胞DNA經剪切而呈約1.5 kb之平均尺寸。 D. 例示性用途、方法及治療
在一些實施例中,mRNA、LNP或醫藥組合物供用於基因組編輯,例如編輯靶基因中。在一些實施例中,mRNA、LNP或醫藥組合物供用於修飾靶基因,例如改變其序列或後生狀態(epigenetic status)中。在一些實施例中,mRNA、LNP或醫藥組合物供用於在靶基因中誘導雙股斷裂(DSB)中。在一些實施例中,mRNA、LNP或醫藥組合物供用於在靶基因中誘導插入缺失標記(indel)中。在一些實施例中,提供本文所揭示之mRNA、LNP或醫藥組合物之用途,其用於製備用於基因組編輯,例如編輯靶基因之藥劑。在一些實施例中,提供本文所揭示之mRNA、LNP或醫藥組合物之用途,其用於製備用於修飾靶基因,例如改變其序列或後生狀態之藥劑。在一些實施例中,提供本文所揭示之mRNA、LNP或醫藥組合物之用途,其用於製備用於在靶基因中誘導雙股斷裂(DSB)之藥劑。在一些實施例中,提供本文所揭示之mRNA、LNP或醫藥組合物之用途,其用於製備用於在靶基因中誘導插入缺失標記(indel)之藥劑。在一些實施例中,靶基因處於個體,諸如哺乳動物,諸如人類中。在一些實施例中,靶基因處於器官,諸如肝臟,諸如哺乳動物肝臟,諸如人類肝臟中。在一些實施例中,靶基因處於肝臟細胞,諸如哺乳動物肝臟細胞,諸如人類肝臟細胞中。在一些實施例中,靶基因處於肝細胞,諸如哺乳動物肝細胞,諸如人類肝細胞中。在一些實施例中,肝臟細胞或肝細胞處於原位。在一些實施例中,肝臟細胞或肝細胞分離於例如培養物中,諸如原代培養物中。亦提供對應於本文所揭示之用途的方法,其包含向個體投與本文所揭示之mRNA、LNP或醫藥組合物或使細胞,諸如上文所述之細胞與本文所揭示之mRNA、LNP或醫藥組合物接觸。
在一些實施例中,mRNA、LNP或醫藥組合物供用於療法中或治療疾病,例如與TTR相關之澱粉樣變性(ATTR)中。在一些實施例中,提供本文所揭示之mRNA (例如以本文所提供之組合物形式)之用途,其用於製備例如用於治療患有與TTR相關之澱粉樣變性(ATTR)的個體之藥劑。
在一些實施例中,出於上文關於生物體、器官或原位細胞所論述的用途中之任一者靜脈內投與mRNA、LNP或醫藥組合物。在一些實施例中,以在0.01至10 mg/kg (mpk),例如0.01至0.1 mpk、0.1至0.3 mpk、0.3至0.5 mpk、0.5至1 mpk、1至2 mpk、2至3 mpk、3至5 mpk、5至10 mpk範圍內或0.1、0.2、0.3、0.5、1、2、3、5或10 mpk之劑量投與mRNA、LNP或醫藥組合物。
在涉及個體的前述實施例中之任一者中,個體可為哺乳動物。在涉及個體的前述實施例中之任一者中,個體可為人類。在涉及個體的前述實施例中之任一者中,個體可為牛、豬、猴、綿羊、狗、貓、魚或家禽。
在一些實施例中,靜脈內投與本文所揭示之mRNA、LNP或醫藥組合物或將其用於靜脈內投藥。在一些實施例中,將引導RNA、組合物及調配物投與至肝循環中或用於肝循環中之投藥。
在一些實施例中,單次投與本文所揭示之mRNA、LNP或醫藥組合物足以使靶基因產物之表現發生基因減弱。在一些實施例中,單次投與本文所揭示之mRNA、LNP或醫藥組合物足以使靶基因產物之表現發生基因剔除。在其他實施例中,不止一次投與本文所揭示之mRNA、LNP或醫藥組合物對於使編輯、修飾、插入缺失標記(indel)形成、DSB形成或其類似者經由累積效應達至最大可為有益的。
在一些實施例中,會在遞送之後1年、2年、3年、4年、5年或10年看到本文所揭示之mRNA、LNP或醫藥組合物的治療功效。
在一些實施例中,治療會減緩或中斷疾病進展。
在一些實施例中,治療會引起器官功能或器官,諸如肝臟之疾病的症狀得到改善、穩定或減緩其變化。
在一些實施例中,藉由增加個體之存活時間來量測治療功效。 E. 例示性DNA分子、載體、表現構築體、宿主細胞及製造方法
在某些實施例中,本發明提供一種DNA分子,其包含編碼mRNA中之任一者的序列,該等mRNA編碼本文所述之RNA引導之DNA結合劑。在一些實施例中,除了RNA引導之DNA結合劑序列之外,DNA分子進一步包含不編碼RNA引導之DNA結合劑的核酸。不編碼RNA引導之DNA結合劑的核酸包括(但不限於)啟動子、強化子、調節序列及編碼引導RNA之核酸。
在一些實施例中,DNA分子進一步包含編碼crRNA、trRNA或crRNA及trRNA之核苷酸序列。在一些實施例中,編碼crRNA、trRNA或crRNA及trRNA之核苷酸序列包含或由以下組成:藉由來自天然存在之CRISPR/Cas系統的重複序列之全部或一部分側接的引導序列。包含或由crRNA、trRNA或crRNA及trRNA組成的核酸可進一步構成載體序列,其中該載體序列包含或由以下組成:不會與crRNA、trRNA或crRNA及trRNA一起經天然發現的核酸。在一些實施例中,crRNA及trRNA由一個載體中之非連續核酸編碼。在其他實施例中,crRNA及trRNA可由連續核酸編碼。在一些實施例中,crRNA及trRNA由單一核酸之相對股編碼。在其他實施例中,crRNA及trRNA由單一核酸之相同股編碼。
在一些實施例中,DNA分子進一步包含以可操作方式連接編碼mRNA中之任一者的序列之啟動子,該等mRNA編碼本文所述之RNA引導之DNA結合劑。在一些實施例中,DNA分子為適用於在哺乳動物細胞,例如人類細胞或小鼠細胞,諸如人類肝細胞或嚙齒動物(例如小鼠)肝細胞中表現之表現構築體。在一些實施例中,DNA分子為適用於在哺乳動物器官,例如人類肝臟或嚙齒動物(例如小鼠)肝臟之細胞中表現之表現構築體。在一些實施例中,DNA分子為質體或游離基因體。在一些實施例中,DNA分子包含於宿主細胞,諸如細菌或經培養之真核細胞中。例示性細菌包括變形菌門,諸如大腸桿菌。例示性經培養之真核細胞包括初級肝細胞,包括嚙齒動物(例如小鼠)或人源之肝細胞;肝細胞細胞株,包括嚙齒動物(例如小鼠)或人源之肝細胞;人類細胞株;嚙齒動物(例如小鼠)細胞株;CHO細胞;微生物真菌,諸如裂殖或出芽酵母,例如酵母菌,諸如釀酒酵母;及昆蟲細胞。
在一些實施例中,提供一種製造本文所揭示之mRNA的方法。在一些實施例中,此類方法包含使本文所述之DNA分子與核糖核酸聚合酶在容許轉錄之條件下接觸。在一些實施例中,活體外,例如在無細胞系統中進行接觸。在一些實施例中,核糖核酸聚合酶為噬菌體源之核糖核酸聚合酶,諸如T7核糖核酸聚合酶。在一些實施例中,提供包括至少一種如上文所論述的經修飾之核苷酸的NTP。在一些實施例中,NTP包括至少一種如上文所論述的經修飾之核苷酸且不包含UTP。
在一些實施例中,單獨或與一或多個引導RNA一起的本文所揭示之mRNA可包含在一或多個載體之載體系統中或藉由其遞送。在一些實施例中,載體中之一或多者或所有載體可為DNA載體。在一些實施例中,載體中之一或多者或所有載體可為RNA載體。在一些實施例中,載體中之一或多者或所有載體可為環狀的。在一些實施例中,載體中之一或多者或所有載體可為線性的。在一些實施例中,載體中之一或多者或所有載體可包封在脂質奈米粒子、脂質體非脂質奈米粒子或病毒衣殼中。非限制性例示性載體包括質體、噬質體、黏質體、人工染色體、袖珍染色體、轉座子、病毒載體及表現載體。
非限制性例示性病毒載體包括腺相關病毒(AAV)載體、慢病毒載體、腺病毒載體、輔助依賴型腺病毒載體(HDAd)、單純疱疹病毒(HSV-1)載體、噬菌體T4、桿狀病毒載體及反轉錄病毒載體。在一些實施例中,病毒載體可為AAV載體。在其他實施例中,病毒載體可為慢病毒載體。在一些實施例中,慢病毒可為非整合性的。在一些實施例中,病毒載體可為腺病毒載體。在一些實施例中,腺病毒可為高選殖容量或「無腸(gutless)」腺病毒,其中除5'及3'倒轉末端重複序列(ITR)及包裝信號(『I』)之外的所有病毒編碼區自病毒中刪除以增加其包裝容量。在又其他實施例中,病毒載體可為HSV-1載體。在一些實施例中,HSV-1類載體為輔助依賴型,且在其他實施例中,其為非輔助依賴型。舉例而言,僅保留包裝序列之擴增子載體需要具有結構性組分之輔助病毒用於包裝,而移除非必需病毒功能的缺失30kb之HSV-1載體不需要輔助病毒。在其他實施例中,病毒載體可為噬菌體T4。在一些實施例中,當清空病毒頭時,噬菌體T4可能夠包裝任何線性或環狀DNA或RNA分子。在其他實施例中,病毒載體可為桿狀病毒載體。在又其他實施例中,病毒載體可為反轉錄病毒載體。在使用具有較小選殖容量之AAV或慢病毒載體之實施例中,可能需要使用多於一個載體以遞送如本文所揭示之載體系統的全部組分。舉例而言,一個AAV載體可含有編碼Cas蛋白之序列,而第二AAV載體可含有一或多個引導序列。
在一些實施例中,載體可能夠驅動細胞中一或多個編碼序列,諸如本文所揭示之mRNA之編碼序列的表現。在一些實施例中,細胞可為原核細胞,諸如細菌細胞。在一些實施例中,細胞可為真核細胞,諸如酵母、植物、昆蟲或哺乳動物細胞。在一些實施例中,真核細胞可為哺乳動物細胞。在一些實施例中,真核細胞可為嚙齒動物細胞。在一些實施例中,真核細胞可為人類細胞。驅動不同類型細胞中之表現的適合啟動子為此項技術中已知的。在一些實施例中,啟動子可為野生型。在其他實施例中,啟動子可經修飾以供較高效或較有效表現。在又其他實施例中,啟動子可經截短但仍保留其功能。舉例而言,啟動子可具有正常尺寸或適用於將載體適當包裝於病毒中的減小之尺寸。
在一些實施例中,載體系統可包含一個編碼RNA引導之DNA結合劑的核苷酸序列之複本。在其他實施例中,載體系統可包含多於一個編碼RNA引導之DNA結合劑的核苷酸序列之複本。在一些實施例中,編碼RNA引導之DNA結合劑的核苷酸序列可以可操作方式連接至少一個轉錄或轉譯控制序列。在一些實施例中,編碼核酸酶之核苷酸序列可以可操作方式連接至少一個啟動子。
在一些實施例中,啟動子可為組成性、誘導性或組織特異性的。在一些實施例中,啟動子可為組成性啟動子。非限制性例示性的組成性啟動子包括細胞巨大病毒即刻早期啟動子(CMV)、猴病毒(SV40)啟動子、腺病毒主要晚期啟動子(MLP)、勞斯肉瘤病毒(RSV)啟動子、小鼠乳腺腫瘤病毒(MMTV)啟動子、磷酸甘油酸激酶(PGK)啟動子、延長因子-α (EF1a)啟動子、泛素啟動子、肌動蛋白啟動子、微管蛋白啟動子、免疫球蛋白啟動子、其功能性片段或前述中之任一者之組合。在一些實施例中,啟動子可為CMV啟動子。在一些實施例中,啟動子可為經截短之CMV啟動子。在其他實施例中,啟動子可為EF1a啟動子。在一些實施例中,啟動子可為誘導性啟動子。非限制性例示性的誘導性啟動子包括可藉由熱休克、光、化學物質、肽、金屬、類固醇、抗生素或醇誘導之誘導性啟動子。在一些實施例中,誘導性啟動子可為具有低基礎(非經誘導)表現程度之誘導性啟動子,諸如Tet-On® 啟動子(Clontech)。
在一些實施例中,啟動子可為組織特異性啟動子,例如對肝臟中之表現具有特異性的啟動子。
載體可進一步包含編碼至少一個引導RNA之核苷酸序列。在一些實施例中,載體包含一個引導RNA之複本。在其他實施例中,載體包含多於一個引導RNA之複本。在具有多於一個引導RNA之實施例中,引導RNA可不同以使得其靶向不同靶序列,或可相同以便其靶向相同靶序列。在其中載體包含多於一個引導RNA之一些實施例中,各引導RNA可具有其他不同特性,諸如在與RNA引導之DNA結合劑的核糖核蛋白複合物中的活性或穩定性。在一些實施例中,編碼引導RNA之核苷酸序列可以可操作方式連接至少一個轉錄或轉譯控制序列,諸如啟動子、3' UTR或5' UTR。在一個實施例中,啟動子可為tRNA啟動子,例如tRNALys3 ,或tRNA嵌合體。參見Mefferd等人,RNA . 2015 21:1683-9;Scherer等人,Nucleic Acids Res . 2007 35: 2620-2628。在一些實施例中,啟動子可藉由RNA聚合酶III (Pol III)識別。Pol III啟動子之非限制性實例包括U6及H1啟動子。在一些實施例中,編碼引導RNA之核苷酸序列可以可操作方式連接小鼠或人類U6啟動子。在其他實施例中,編碼引導RNA之核苷酸序列可以可操作方式連接小鼠或人類H1啟動子。在具有多於一個引導RNA之實施例中,用於驅動表現之啟動子可相同或不同。在一些實施例中,編碼引導RNA之crRNA的核苷酸及編碼引導RNA之trRNA的核苷酸可提供於相同載體上。在一些實施例中,編碼crRNA之核苷酸及編碼trRNA之核苷酸可藉由同一啟動子驅動。在一些實施例中,crRNA及trRNA可轉錄為單一轉錄物。舉例而言,crRNA及trRNA可由單一轉錄物進行處理以形成雙分子引導RNA。或者,crRNA及trRNA可轉錄為單分子引導RNA。在其他實施例中,crRNA及trRNA可藉由其處於相同載體上之相應啟動子來驅動。在又其他實施例中,crRNA及trRNA可藉由不同載體編碼。
在一些實施例中,組合物包含載體系統,其中該系統包含多於一個載體。在一些實施例中,載體系統可包含一個單一載體。在其他實施例中,載體系統可包含兩個載體。在其他實施例中,載體系統可包含三個載體。當將不同引導RNA用於多工(multiplexing)時或當使用引導RNA之多個複本時,載體系統可包含多於三個載體。
在一些實施例中,載體系統可包含誘導性啟動子以僅在其遞送至靶細胞之後開始表現。非限制性例示性的誘導性啟動子包括可藉由熱休克、光、化學物質、肽、金屬、類固醇、抗生素或醇誘導之誘導性啟動子。在一些實施例中,誘導性啟動子可為具有低基礎(非經誘導)表現程度之誘導性啟動子,諸如Tet-On® 啟動子(Clontech)。
在其他實施例中,載體系統可包含組織特異性啟動子以僅在其遞送至特定組織中之後開始表現。 實例
提供以下實例以說明某些所揭示之實施例且不應理解為以任何方式限制本發明之範疇。
通用試劑及方法 . 除非另外指明,否則藉由活體外轉錄(IVT)使用線性化質體DNA模板及T7核糖核酸聚合酶來合成mRNA。轉錄通常由以下來進行:包含T7啟動子之構築體;本文所揭示之轉錄物序列,諸如SEQ ID NO: 43 (其包含SEQ ID NO: 1且編碼SEQ ID NO: 4之RNA ORF)或SEQ ID NO: 48 (其包含SEQ ID NO: 2且編碼SEQ ID NO: 5之RNA ORF)及編碼於質體中之聚-A尾(SEQ ID NO: 63)。其中測試多個UTR之實驗使用相似構築體,不同之處在於使用轉錄物序列,諸如SEQ ID NO: 58及SEQ ID NO: 59。藉由與XbaI利用以下條件在37℃下培育2小時來線性化含有T7啟動子及100 nt 聚(A/T)區之質體DNA:200 ng/µL質體、2 U/µL XbaI (NEB)及1×反應緩衝液。藉由在65℃下加熱反應20分鐘來滅活XbaI。使用二氧化矽最大自旋管柱(Epoch Life Sciences)自酶及緩衝鹽純化線性化質體且藉由瓊脂糖凝膠加以分析以證實線性化。用於產生經Cas9修飾之mRNA的IVT反應物在37℃下在以下條件下培育4小時:50 ng/µL線性化質體;2 mM之GTP、ATP、CTP及UTP (或若指示,代替CTP或UTP的經修飾之三磷酸核苷酸(例如N1-甲基假UTP (Trilink))中之每一者;10 mM ARCA (Trilink);5 U/µL T7 RNA聚合酶(NEB);1 U/µL鼠類RNA酶抑制劑(NEB);0.004 U/µL無機大腸桿菌焦磷酸酶(NEB);及1×反應緩衝液。在4小時培育之後,添加TURBO去氧核糖核酸酶(ThermoFisher)至0.01 U/μL之最終濃度,且再培育反應物30分鐘以移除DNA模板。使用MegaClear轉錄清除套組根據製造商方案(ThermoFisher)自酶及核苷酸純化Cas9 mRNA。經由沈澱方案(在一些情況下,其繼之以基於HPLC之純化)來純化mRNA。簡言之,在DNA酶消化之後,藉由添加0.21×體積之7.5 M LiCl溶液且加以混合來沈澱mRNA,且藉由離心來集結經沈澱之mRNA。移除上清液後,將mRNA復水。使用乙酸銨及乙醇再次沈澱mRNA。將5M乙酸銨連同2×體積之100% EtOH一起添加至mRNA溶液中,使最終濃度為2M。混合溶液且在-20℃下將其培育15分鐘。再次藉由離心集結經沈澱之mRNA,移除上清液且將mRNA復水。使用乙酸鈉及乙醇沈澱mRNA作為最終步驟。將1/10體積之3 M乙酸鈉(pH 5.5)連同2×體積之100% EtOH一起添加至溶液中。混合溶液且在-20℃下將其培育15分鐘。再次藉由離心集結經沈澱之mRNA,移除上清液,用70%低溫乙醇洗滌集結粒且使其風乾。將mRNA復水。對於經HPLC純化之mRNA,在LiCl沈澱及復水之後,藉由RP-IP HPLC純化mRNA (參見例如Kariko等人Nucleic Acids Research , 2011, 第39卷, 第21期 e142)。合併選擇用於彙集之溶離份且藉由如上文所述之乙酸鈉/乙醇沈澱來去鹽。
對於所有方法,藉由量測260 nm處之吸光度(Nanodrop)測定轉錄物濃度,且藉由利用Bioanlayzer (Agilent)進行毛細電泳法來分析轉錄物。
除非另外指明,否則用來自Charles River Laboratories之CD-1雌性小鼠及史泊格-多利大鼠進行活體內編輯實驗。除非另外指明,否則小鼠中之血清TTR含量的分析如下進行。收集血液且如所指示地分離血清。
在適用實例中指明的情況下,亦量測經處理之小鼠中的細胞介素誘導。對於此分析,藉由尾靜脈切口收集大約50至100 μL血液用於血清細胞介素量測。使血液在室溫下凝結持續大約2小時,且隨後在1000×g下離心10分鐘,隨後收集血清。量測IL-6、TNF-α、IFN-α及MCP-1之基於Luminex之磁珠多工分析(Affymetrix ProcartaPlus,目錄號Exp040-00000-801)用於收集樣本中之細胞介素分析。如製造商方案中所指導地製備套組試劑及標準品。使用所提供的樣本稀釋劑對小鼠血清進行4倍稀釋,且將50 μL添加至含有經50 μL稀釋抗體塗佈之磁珠的孔中。將板在室溫下培育2小時且隨後加以洗滌。稀釋生物素抗體(50 μL)添加至珠粒且在室溫下培育1小時。再次洗滌珠粒,之後將50 μL稀釋抗生蛋白鏈菌素-PE添加至各孔中,接著培育30分鐘。再次洗滌珠粒且隨後懸浮於100 μL洗滌緩衝液中且在Bio-Plex 200儀器(Bio-Rad)上讀取。使用Bioplex Manager 6.1版分析程式套,藉由使用五參數邏輯曲線擬合脫離標準曲線計算之細胞介素濃度分析資料。
除非另外指明,否則使用未經修飾之ATP、GTP、CTP及UTP。除非另外指明,否則所有mRNA均編碼有一個核定位信號。
藉由使用Precision Nanosystems NanoAssemblrTM Benchtop儀器,根據製造商方案,將脂質及RNA溶液微流混合或錯流混合而形成LNP,如下文所述。除非另外指明,否則LNP含有45%脂質A、9% DSPC、44%膽固醇及2% PEG2k-DMG及4.5之N:P比。 LNP調配-NanoAssemblr
通常,以不同脂質組分莫耳比將脂質奈米粒子組分溶解於100%乙醇中。將RNA載荷溶解於25 mM檸檬酸鹽、100 mM NaCl (pH 5.0)中,產生大約0.45 mg/mL之RNA載荷濃度。用約4.5或約6之脂質胺與RNA磷酸(N:P)莫耳比,及以重量計呈1:1之mRNA與gRNA之比調配LNP。
藉由使用Precision Nanosystems NanoAssemblrTM Benchtop儀器,根據製造商之方案,將脂質及RNA溶液微流混合而形成LNP。使用差分流動速率在混合期間維持水相與有機溶劑之2:1比率。混合之後,收集LNP,在水中稀釋(大約1:1 v/v),在室溫下保持1小時,且進一步用水稀釋(大約1:1 v/v),之後進行最終緩衝液更換。用PD-10去鹽管柱(GE)來完成將最終緩衝液更換為50 mM Tris、45 mM NaCl、5% (w/v)蔗糖,pH 7.5 (TSS)。必要時,用Amicon 100 kDa離心過濾器(Millipore)藉由離心濃縮調配物。所得混合物隨後使用0.2 μm無菌過濾器過濾。在進一步使用之前,將最終LNP儲存於-80℃下。LNP 調配 - 錯流
對於使用錯流技術製備之LNP,藉由脂質之乙醇溶液與兩個體積之RNA溶液及一個體積之水進行撞擊噴流混合來形成LNP。經由混合十字管使脂質之乙醇溶液與兩個體積之RNA溶液混合。經由沿線T形管將第四水流與十字管之引出流混合(參見WO2016010840圖2.)。將LNP在室溫下保持1小時且進一步用水稀釋(大約1:1 v/v)。使用切向流過濾在平板濾筒(Sartorius,100kD MWCO)上濃縮經稀釋之LNP,且隨後藉由透濾,將其緩衝液更換為50 mM Tris、45 mM NaCl、5% (w/v)蔗糖,pH 7.5 (TSS)。可替代地,用PD-10去鹽管柱(GE)來完成將最終緩衝液更換為TSS。必要時,用Amicon 100 kDa離心過濾器(Millipore)藉由離心濃縮調配物。所得混合物隨後使用0.2 μm無菌過濾器過濾。在進一步使用之前,將最終LNP儲存於4℃或-80℃下。調配物分析
使用動態光散射(「DLS」)表徵本發明之LNP的多分散性指數(「pdi」)及尺寸。DLS量測由將樣本置於光源下而產生的光之散射。如根據DLS量測所測定,PDI表示總體中(平均粒度周圍)粒度之分佈,其中完全均一總體之PDI為零。平均粒徑及多分散性係藉由動態光散射(DLS)使用Malvern Zetasizer儀器來量測。在藉由DLS量測之前,在PBS中將LNP樣本稀釋30×。連同數目平均直徑及pdi一起報導Z-平均直徑,其為平均粒徑的基於強度之量度。Malvern Zetasizer儀器亦用於量測LNP之ζ電位。量測之前,將樣本在0.1× PBS,pH 7.4中以1:17(50 μL於800μL中)稀釋。
使用基於螢光之分析(Ribogreen®,ThermoFisher Scientific)來測定總RNA濃度及游離RNA。囊封效率計算為(總RNA-游離RNA)/總RNA。用含有0.2% Triton-X 100之1× TE緩衝液以適當方式稀釋LNP樣本以測定總RNA或用1× TE緩衝液稀釋以測定游離RNA。藉由利用用於製得調配物之起始RNA溶液製備標準曲線,且稀釋於1× TE緩衝液+/- 0.2%Triton-X 100中。隨後將經稀釋之RiboGreen®染料(根據製造商之說明書)添加至標準品及樣本中之每一者中,且使其在不存在光下在室溫下培育大約10分鐘。使用SpectraMax M5微定量盤式讀取器(Molecular Devices),伴隨分別設定成488 nm、515 nm及525 nm之激發、自動截止及發射波長來讀取樣本。根據合適標準曲線測定總RNA及游離RNA。
囊封效率計算為(總RNA-游離RNA)/總RNA。可使用相同程序測定基於DNA之載荷組分之囊封效率。對於單股DNA,可使用Oligreen染料,且對於雙股DNA,可使用Picogreen染料。
典型地,當製備LNP時,囊封效率> 80%,粒度<120 nm且pdi為<0.2。LNP 活體內遞送
除非另外指出,否則各研究中使用在6至10週齡範圍內之CD-1雌性小鼠。對動物稱重且根據體重分組以基於組平均體重製備投配溶液。經由側尾靜脈以每隻動物0.2 mL(每公斤體重大約10 mL)之體積投配LNP。在給藥後大約6小時觀測動物副作用。在投藥後二十四小時量測體重,且動物藉由在異氟烷麻醉下經由心臟穿刺放血而在各個時間點安樂死。將血液收集至血清分離管中或含有用於如本文所述之血漿之緩衝檸檬酸鈉的管中。對於涉及活體內編輯之研究,自來自各動物之中葉或三個獨立葉片(例如右中、左中及左外側葉片)收集肝臟組織用於DNA提取及分析。
針對肝臟編輯藉由次世代定序(NGS)及血清TTR含量 (資料未示)量測小鼠群組。甲狀腺素轉運蛋白 ( TTR ) ELISA 分析
收集血液且如所指示地分離血清。使用小鼠前白蛋白(甲狀腺素轉運蛋白) ELISA套組(Aviva Systems Biology,目錄號OKIA00111)測定總小鼠TTR血清含量。根據製造商方案,使用大鼠特異性ELISA套組(Aviva Systems Biology目錄號OKIA00159)來量測大鼠TTR血清含量。簡言之,用套組樣本稀釋劑將血清連續稀釋至最終稀釋度為10,000倍。隨後將此稀釋樣本添加至ELISA板且隨後根據指示進行分析。NGS 定序
簡言之,為了定量地測定基因組中靶位置處之編輯效率,分離基因體DNA且利用深度定序鑑別存在藉由基因編輯造成之插入及缺失。
在靶位點(例如TTR)周圍設計PCR引子,且擴增相關基因體區。引子序列提供於下文中。根據製造商之方案(Illumina)進行額外PCR以對於定序添加所需化學性質。在Illumina MiSeq儀器上對擴增子定序。在消除具有低品質評分之讀段之後,將讀段與人類參考基因組(例如hg38)進行比對。將含有讀段之所得檔案映射至參考基因組(BAM檔案),其中選擇與相關目標區重疊之讀段且計算野生型讀段的數目相對於含有插入、取代或缺失之讀段的數目。
編輯百分比(例如「編輯效率」或「編輯%」)定義為具有插入或缺失之序列讀段的總數相比於包括野生型之序列讀段之總數。 1. 具有經修飾之核苷酸的Cas9 mRNA之活體內表徵
用不同的如下表5中所示的經修飾之核苷酸內含物製備包含如SEQ ID NO: 5中所闡述之ORF的mRNA。將mRNA與靶向甲狀腺素轉運蛋白基因(TTR)之引導RNA(G282;SEQ ID NO: 42)合併且併入至LNP中。未經修飾之胞苷用於所有LNP中,除了LNP420。 5. 用於活體內研究之 LNP417 LNP421
以0.5 mg/kg (mpk)或1 mpk劑量向小鼠投與LNP417至LNP421。給藥後4小時(hpd)量測細胞介素(IFN α、IL-6、TNF α及MCP-1)誘導。結果示於 1A 1D 中。
在投藥之後7天進行屍體剖檢時,收集血清及肝臟分別用於血清TTR量測及編輯功效之分析。結果示於 2A 2B 中。
觀測到,使用假尿苷及5-甲基CTP幾乎完全消除細胞介素誘導。使用呈60% (LNP421)或100% (LNP417)之N1-甲基假尿苷亦會引起比未經修飾之Cas9 mRNA要少之細胞介素誘導,且60% N1-甲基假尿苷下之減少程度與100%類似。
所有經修飾之Cas9構築體在降低血清TTR方面有相似效應,且可能歸因於增加之穩定性,其比未經修飾之構築體更有效。根據肝臟編輯資料,使用假尿苷及N1-甲基假尿苷之構築體同樣有效。具有假尿苷及5-甲基胞苷之構築體的效應明顯要比用單獨假尿苷之構築體低。具有60% N1-甲基假尿苷之構築體的效應可能要比具有100% N1-甲基假尿苷之構築體略低。 2. 編碼Cas9的經修飾之mRNA的研發及活體外表徵
Cas9序列(SEQ ID NO: 1)經設計以改善肝臟表現且將尿苷減至最少。基於具有最少可能的尿苷含量及肝臟中對應tRNA之最大表現來選擇密碼子。對於肝臟tRNA表現,參見Dittmar KA,PLos Genetics 2(12): e221 (2006)。降低Cas9 mRNA之尿苷含量意欲降低對mRNA之先天性免疫反應及/或提供其他益處。 6 顯示基於tRNA含量之最佳肝臟密碼子及具有最少可能數目之尿苷的密碼子。最小尿苷密碼子與最佳肝臟密碼子不同的情況呈 粗斜體 形式。表格亦顯示釀膿鏈球菌Cas9之胺基酸序列(SEQ ID NO: 3)中之各胺基酸的數目。 6 :密碼子最佳化參數
在天冬胺酸及絲胺酸之情況下,對應於表現最高之tRNA的肝臟密碼子包含胸苷,其將在對應mRNA中轉錄為尿苷。針對天冬胺酸及絲胺酸選擇最小尿苷密碼子(分別為GAC及AGC)。Cas9 ORF序列呈4140 nt長,含有528個U (12.8%尿苷含量),且在ORF中避免具有3個或多於3個連續尿苷之任何連接。序列中存在63種UU二核苷酸之情況(126/4140=3%尿苷二核苷酸含量)。SEQ ID NO: 2提供含有19.6%尿苷作為RNA ORF之替代Cas9序列。
SEQ ID NO: 3提供由SEQ ID NO: 1及SEQ ID NO: 2兩者編碼的Cas9之胺基酸序列作為未改變經編碼之胺基酸序列的Cas9 ORF之新型設計。SEQ ID NO: 4為SEQ ID NO: 1之ORF的RNA形式。SEQ ID NO: 5為SEQ ID NO: 2之ORF的RNA形式。
亦評估經修飾之核苷酸的作用。用於轉錄Cas9轉錄的經修飾之UTP包括N1-甲基-假UTP及5-甲氧基-UTP。
N1-甲基-假UTP之結構為:
5-甲氧基-UTP之結構為:
針對包含SEQ ID NO: 4及SEQ ID NO: 5之ORF的mRNA,測定活體外轉錄(IVT)產量。兩者均編碼核定位信號(NLS)。在未經修飾之UTP或N1-甲基-假UTP任一者存在下,轉錄包含SEQ ID NO: 5之序列。在未經修飾之UTP存在下,轉錄包含SEQ ID NO: 4之序列。亦在漸增之5-甲氧基-UTP百分比下進行IVT,如 3 之X軸上所示,其顯示以分光光度法測定的此等構築體中之每一者的產量。
此等結果顯示,當mRNA之5-甲氧基尿苷含量增加時,產量略微降低,但mRNA產量在所有條件下為可接受的。因此,可針對兩個Cas9序列,經由所測試之條件產生具有可接受產量之Cas9 mRNA。
使用曲線下面積(AUC)分析法,依利用Agilent Bioanalyzer 2100獲得之mRNA毛細電泳法(CE)跡線,計算活體外轉錄之mRNA的純度( 4 )。使用未經修飾之UTP所生成SEQ ID NO: 5 Cas9 mRNA之純度通常會隨5-甲氧基-UTP取代增加而提高,而用N1-甲基-假UTP製得的相同構築體則受增加之5-甲氧基-UTP取代的影響較小。
用未經修飾之UTP製得的SEQ ID NO: 4 Cas9似乎相對不受5-甲氧基-UTP取代之影響,在0%與20%之間的5-甲氧基-UTP取代度下,略微提高純度。
不同mRNA之免疫原性之評估法係採用墨點分析法,使用抗dsRNA抗體作為雙股(ds) mRNA特徵之量度,其係潛在免疫原性之指標( 5A 5D )。 5B 5D 使用包含SEQ ID NO: 5之Cas9 mRNA序列且 5C 使用包含SEQ ID NO: 4之Cas9 mRNA序列。對於使用未經修飾之UTP所生成的構築體( 5B 5C ),隨著5-甲氧基-UTP含量增加,雙股型通常會明顯降低。使用N1-甲基-假UTP所生成的mRNA( 5D )顯示與抗dsRNA抗體之結合性下降,但與抗體之結合性亦呈現隨5-甲氧基-UTP含量增加而降低。
隨後由mRNA與靶向甲狀腺素轉運蛋白(TTR )之引導序列(G209;SEQ ID NO: 64)一起轉染至Neuro 2A細胞中,且量測編輯百分比,於活體外評估編輯效率。
如圖6A 中所示,評估由包含具有N1-甲基-假UTP及2個核定位序列及HA標籤的SEQ ID NO: 2的構築體轉錄的Cas9 mRNA (由最左邊括號指示之群組)、由包含具有UTP及2個核定位序列及HA標籤轉錄之SEQ ID NO: 2的構築體轉錄的Cas9 mRNA(藉由中間括號指示之組)及由包含具有UTP之SEQ ID NO: 1的構築體轉錄之Cas9 mRNA (由最右邊括號指示之群組)。對於各組,針對呈如X軸上所指示的0%至100%的增加量之5-甲氧基-UTP之轉錄來評定0.1 ng至100 ng的mRNA之不同濃度。未處理細胞未顯示可量測之編輯。 6B 顯示表示為EC50值(ng)之編輯效率資料。
轉錄期間增加之5-甲氧基-UTP含量呈現對兩個SEQ ID NO: 5條件下之編輯效率具有不利作用,亦含有N1-甲基-假UTP的轉錄物要比含UTP之轉錄物穩健(例如在60%及80% 5-甲氧基-UTP下)。相比之下,包含SEQ ID NO: 4之Cas9 mRNA序列的編輯效率對增加之5-甲氧基-UTP含量顯示很小(若存在)效應。因此,根據此系統,包含SEQ ID NO: 4 mRNA之Cas9 mRNA序列可伴隨至多100% 5-甲氧基-尿苷提供與含有未經修飾之尿苷的形式類似的編輯效率。 3. 編碼Cas9之mRNA的活體內表徵
評估包含SEQ ID NO: 4之Cas9 mRNA序列對包含SEQ ID NO: 5之Cas9 mRNA序列之活體內功效及在未經修飾之UTP、N1-甲基-假UTP、40% 5-甲氧基-UTP+60%未經修飾之UTP或100% 5-甲氧基-UTP存在下包含SEQ ID NO: 4之Cas9 mRNA序列的轉錄之效應。表7提供關於此等活體內研究組之資訊。以脂質奈米粒子(LNP)調配物形式投與各mRNA。 7. 用於活體內研究之 LNP720 LNP724
活體內研究設計如下。CD-1雌性小鼠係來自Charles River(每組n=5)。以每公斤1 mg (mpk)或0.5 mpk連同針對甲狀腺素轉運蛋白(TTR)之單一引導RNA(SEQ ID NO: 42)一起對動物進行靜脈內(i.v.)投配。在給藥後4小時(hpd) 針對MCP-1、IL-6、IFN-α及TNF-α之細胞介素分析對接受1 mpk劑量之動物進行抽血。24 hpd時針對總體健康對動物加以評定。在給藥後7天進行屍體剖檢,同時針對血清TTR分析收集血液,且針對次世代定序(NGS)編輯分析收集肝臟。
4 hpd時收集來自以1 mpk投配之動物的血清,且製備血清且根據製造商說明書運作ProcartaPlex®小鼠4叢分析(Thermo Fisher)。針對MCP-1、IL-6、IFN-α及TNF-α之血清含量的結果展現於 7A 7D 中。此等結果表明,用經修飾之UTP製備的包含SEQ ID NO: 4之Cas9 mRNA序列(LNP721、LNP723或LNP724)顯示相對較低含量的細胞介素產量。
亦在給藥後7天評定血清中之TTR含量,如 8A 8 中所示。TSS (亦即5%蔗糖、45 mM NaCl、50 mM Tris (pH 7.5))樣本指示未進行LNP處理的TTR含量。所有LNP調配物均描述於表7中。 8 :投配 LNP720 LNP724 之後的血清 TTR 含量之結果
9 8B 提供關於如由次世代定序(NGS)量測的肝臟中TTR之編輯百分比的結果。
9 :呈投配 LNP720 LNP724 之後的肝臟中 TTR 之編輯百分比的結果
與TSS對照樣本相比,包含Cas9之所有LNP均顯示血清TTR含量降低及高於基線之編輯。在比較均用N1-甲基-假UTP轉錄的標準Cas9 mRNA (SEQ ID NO: 5,LNP720)與包含SEQ ID NO: 4 mRNA之Cas9 mRNA序列(SEQ ID NO: 4,LNP721)時,包含SEQ ID NO: 4之Cas9 mRNA序列顯示經改良之活性(較低TTR及較高編輯%)。對於包含SEQ ID NO: 4之Cas9 mRNA序列,活性在N1-甲基-假UTP情況下為最高的,且伴隨40% 5-甲氧基-UTP+60%未經修飾之UTP的轉錄(LNP723)產生的活性要比100% 5-甲氧基-UTP (LNP724)高。
作為脫靶效應之量度,亦量測用1 mpk上文所述之LNP調配物投配的動物之脾臟中之編輯,如 7 10 中所示。對於所有LNP調配物,無論在Cas9或經最佳化之Cas9下,均在肝臟中看到大於20倍的較高編輯( 6A )。 10 關於投配 1 mpk 包含 sgRNA 及不同 Cas9 LNP 之後的脾臟中之 TTR 編輯百分比之結果 4. 編碼Cas9之mRNA在初級小鼠肝細胞中之功效的表徵
活體外評估不同LNP在初級小鼠肝細胞(PMH)中之功效。
在100 ng下,表5中所述之所有LNP均支持TTR之編輯,如 10 中所示。如所預期,未處理之細胞未顯示可量測的TTR之編輯。
表11顯示基於圖10中展現之資料計算的各LNP之EC50值。 11 針對 PMH TTR 之基因編輯的經估算之 EC50 ( ng ) 5. 含Cas9 mRNA之LNP在大鼠中的活體內表徵
在大鼠中評估包含SEQ ID NO: 4之Cas9 mRNA序列對包含SEQ ID NO: 5之Cas9 mRNA序列的活體內功效。表12提供關於此等活體內研究組之資訊。標準Cas9 mRNA係指SEQ ID NO: 5,而缺乏U (U-dep)之mRNA係指SEQ ID NO: 4。各mRNA係以脂質奈米粒子(LNP)調配物形式投與。
LNP716 (標準Cas9)及LNP738 (缺乏U) LNP調配物之詳情顯示於 12 中。 12 LNP 調配物表徵 PDI =多分散性指數 N:P = N:P比,如上文所述
如先前所述量測血清TTR。
在大鼠中在2 mpk及5 mpk之劑量下將具有SEQ ID NO: 5之ORF的Cas9 mRNA與具有SEQ ID NO : 4之ORF的Cas9 mRNA( 11A 11B )進行比較,如 11A 13 中所示。此等資料表明,在2 mpk及5 mpk兩者下,與SEQ ID NO: 5之Cas9 ORF相比,SEQ ID NO: 4之Cas9 ORF引起血清TTR較顯著降低。 11B 13 展示呈相對於經TSS處理之對照的值的百分比形式的此等結果。5 mpk劑量之U-dep Cas9 LNP引起血清TTR含量降低大於90%。 13 LNP716 LNP738 Cas9 調配物投配之後的血清 TTR 含量 KD% = 與TSS樣本之平均血清濃度相比的基因減弱%
10 14 顯示用LNP716 (標準)及LNP738 (U-dep)調配物以2 mpk及5 mpk投配之後的TTR 之肝臟編輯。儘管TSS顯示可忽略之編輯,但LNP716及LNP738調配物兩者均引起TTR之肝臟編輯。在比較調配物中,包含U缺乏之LNP738調配物引起的編輯為包含標準Cas9之LNP716調配物的兩倍。 14 用缺乏 U 及標準 Cas9 調配物投配之後的 TTR 之肝臟編輯
此等資料表明,缺乏U之Cas9 mRNA顯著地改良肝臟中TTR 之編輯程度。 6. 具有不同UTR之mRNA的表徵
將如 15 中所指示的具有UTR及+/-血球凝集素(HA)標籤的編碼Cas9之mRNA與靶向TTR之引導RNA (G282;SEQ ID NO: 42)調配為LNP。使用Nano AssemblrTM 組配LNP,其含有45%脂質A、9% DSPC、44%膽固醇及2% PEG2k-DMG,且使用Amicon PD10過濾器純化,且以0.5 mg/ml之濃度(LNP濃度)使用。以0.5或1.0 mpk靜脈內投配CD-1雌性小鼠(每組n=5)。在給藥後7天,將動物處死,收集血液及肝臟,且量測血清TTR及肝臟編輯。 15 . LNP662 LNP669 mRNA 描述及血清 TTR 及肝臟編輯分析之結果 除非另外指明,否則mRNA中之UTR為HSD/Alb。HBA:人類α血球蛋白;HBB:人類β血球蛋白(HBB);XBG:爪蟾β血球蛋白(XBG)。除非另外指明,否則mRNA含有100% N1-甲基假尿苷代替尿苷。
13A 13E 顯示血清TTR(在 13A 中顯示為µg/ml,且在 13B 中顯示為TSS之%);所有LNP662至LNP669之肝臟編輯( 13C );其中僅UTR變化之LNP663至LNP666的肝臟編輯( 13D );及其中僅mRNA序列及UTP修飾變化之LNP662及LNP667至LNP669的肝臟編輯( 13E )。
人類白蛋白、人類α血球蛋白、人類β血球蛋白及爪蟾β血球蛋白UTR大致同樣有效;人類α血球蛋白之值可略微較低但並不明確差值是否明顯。
含有較少尿苷的SEQ ID NO: 4之ORF增加肝臟中之編輯之量。用N1-甲基假尿苷製得之Cas9 mRNA要比用未經修飾之尿苷製得的Cas9 mRNA有效。 7. 使用不同引導物:Cas9比的活體外及活體內編輯
將包含根據SEQ ID NO: 4或SEQ ID NO: 5之ORF的mRNA與靶向TTR之引導RNA以如 16 中所示的不同引導物:Cas9 mRNA重量比調配為LNP。藉由如上文所指示之IVT合成用代替尿苷三磷酸的N1-甲基假尿苷三磷酸、HSD 5' UTR、人類白蛋白3' UTR及聚-A尾製得Cas9 mRNA。 16 . 用於活體外及活體內研究之 LNP815 LNP824
將初級小鼠肝細胞(PMH)塗鋪於補充有3%食蟹獼猴血清之培養基中持續24小時,且隨後用 16 中所示的0.3、1、3或10 ng LNP處理。48小時之後裂解細胞,且藉由NGS測定編輯%。結果顯示在 14 17 中。 17. PMH 中之活體外編輯
對於活體內表徵,以0.2、0.5或1 mpk向小鼠投與LNP (每組n=5)。在給藥後8天,將動物處死,收集血液及肝臟以及脾臟,且量測血清TTR、肝臟編輯及脾臟編輯。血清TTR結果顯示在 15A 15B 18 中。肝臟編輯結果顯示在 16A 16B 19 中。脾臟編輯結果顯示在 17A 17B 20 中。用媒劑(轉化及儲存溶液;「TSS」)投配陰性對照小鼠。使用LNP815至LNP819之實驗及使用LNP820至LNP824之實驗運作獨立對照。 18 . LNP815 LNP824 投配之後的血清 TTR 含量 KD%提供相對於TSS對照的TTR含量的基因減弱%。 19 . LNP815 LNP824 投配之後的肝臟編輯
LNP820至LNP824通常產生大於或約等於相同比率下的其LNP815至LNP819對應物的肝臟編輯結果。LNP820至LNP824在0.5及1 mpk下測試的比率範圍內及0.2 mpk下2:1至1:4之比率下顯示恆定效能。 20 . LNP815 LNP824 投配之後的脾臟編輯
用各調配物以3 mpk投配額外小鼠組(n=2),且在6 hpd處死以用於測定肝臟中之蛋白質表現。來自用3 mpk 1:1及1:4比率調配物(LNP816、LNP818、LNP821及LNP823)處理之小鼠的肝臟蛋白質之西方墨點法展示在 18 中。針對西方墨點法之初級Ab為呈1:5,000的ImmunopreciseTM 兔抗Cas9,且二級Ab為呈1:12,500的DylightTM 山羊抗兔。Cas9蛋白質表現在使用具有SEQ ID NO: 4之ORF的mRNA的LNP中明顯較高。 8. 經修飾之核苷酸的影響之表徵
將編碼Cas9且含有如 21 中所指示的經修飾之核苷酸的mRNA與靶向TTR之引導RNA (G282;SEQ ID NO: 42)調配為LNP。LNP1034含有自Trilink Biotechnologies有限責任公司市售獲得的Cas9 mRNA且包括CleanCapTM (其中7-甲基鳥嘌呤帽結構之後的第一核苷酸經2'-O-甲基化的Cap1結構)。LNP1027至LNP1033含有包含根據SEQ ID NO: 4之ORF的mRNA及ARCA (抗反向帽結構類似物) Cap0。使用Nano AssemblrTM 組配LNP,其含有45%脂質A、9% DSPC、44%膽固醇及2% PEG2k-DMG,使用Amicon PD10過濾器純化,且懸浮於TSS緩衝液中。LNP中之N:P (氮與磷酸)比為4.5且調配物之RNA濃度為0.4 mg/ml。以0.1或0.3 mpk靜脈內投配CD-1雌性小鼠(每組n=5)。在給藥後7天,將動物處死,收集血液及肝臟,且量測血清TTR及肝臟編輯。 21. 用於活體內研究之 LNP1027 LNP1034 對於其中列出經修飾之尿苷及/或胞苷核苷酸呈25%或50%的LNP,尿苷及/或胞苷之剩餘部分分別為未經修飾的。
血清TTR結果展示於 19A 19B (血清TTR結果分別以µg/mL及TSS對照之%表示); 20 (肝臟編輯);及 22 中。 22. LNP1027 LNP1034 血清 TTR 及肝臟編輯結果
LNP1027之含N1-甲基假尿苷之mRNA具有比LNP1032之含假尿苷之mRNA略微較高之編輯效率。含有假尿苷及5-甲基胞嘧啶核苷兩者之mRNA (LNP1033)的效能顯著降低。含有25% 5-碘尿苷之mRNA顯示與含N1-甲基假尿苷之mRNA相等的編輯效率。在50% 5-碘尿苷下,效能有所降低。來自Trilink之5-甲氧基尿苷mRNA顯示較低活性。 9. 大鼠中具有不同UTR之mRNA的影響之表徵
此研究評估經ARCA加帽結構的具有HBB (人類β-血球蛋白) 5'及3' UTR;XBG (爪蟾β-血球蛋白) 5'及3' UTR;或具有人類HSD17B4 (HSD) 5' UTR及白蛋白(ALB) 3' UTR之Cas9 mRNA在大鼠中之活體內功效。
使用上文所述之錯流方法製備含有在LNP中呈1:1莫耳比的靶向大鼠TTR基因之引導RNA (G534;SEQ ID NO: 72)及Cas9 mRNA的調配物且將其在VivaFlowTM 50膜上過濾。LNP含有呈45:9:43:3莫耳比之陽離子型脂質(脂質A)、膽固醇、DSPC及PEG2k-DMG且具有6.0之N:P比。以1 mpk及0.3 mpk投配調配物。所有大鼠均為來自Charles River之史泊格多利雌性,每組n=5。屍體剖檢(給藥後7天)時,針對TTR分析收集血清且針對編輯分析收集肝臟。在LNP1058中,mRNA含有HBB UTR。在LNP1059中,mRNA含有XBG UTR。在LNP1060中,mRNA分別含有HSD及ALB 5'及3' UTR。在所有情況下,mRNA編碼序列係根據SEQ ID NO: 4。
肝臟編輯及血清TTR結果展示於 21A 21C 23 中。 23 . 大鼠中使用LNP1058至LNP1060的肝臟編輯及血清TTR結果.
結果表明,LNP1058至LNP1060中所有經測試之mRNA均能夠支持編輯。伴隨LNP1059中含有XBG UTR之mRNA看到最高編輯程度及血清TTR之最顯著降低。 10. RNA載荷:mRNA及gRNA共調配
此研究評估不同gRNA與mRNA比在小鼠中之活體內功效。藉由如實例1中所指示之IVT合成用代替尿苷三磷酸之N1-甲基假尿苷三磷酸來製得經CleanCap™加帽結構的具有SEQ ID NO: 4之ORF、HSD 5' UTR、人類白蛋白3'UTR、Kozak序列及聚-A尾的Cas9 mRNA。
由所述mRNA及如實例2中所述之sg282 (SEQ ID NO: 42;G282)與脂質A、膽固醇、DSPC及PEG2k-DMG以55:33:9:3莫耳比且以6之N:P比製備LNP調配物。調配物之gRNA:Cas9 mRNA重量比如表24中所示。 24. LNP1110 LNP1116 之表徵 .
對於活體內表徵,以每公斤0.1 mg 總RNA (引導RNA毫克數+mRNA毫克數)向小鼠投與以上LNP (每組n=5)。在給藥後7至9天,將動物處死,收集血液及肝臟,且如上文所述量測血清TTR及肝臟編輯。血清TTR及肝臟編輯結果展示於 22A 22B 中。用TSS媒劑投配陰性對照小鼠。
此外,以每公斤0.05 mg mRNA之恆定mRNA劑量,同時將gRNA劑量自0.06 mg/kg變為0.4 mg/kg來向小鼠投與以上LNP (每組n=5)。在給藥後7至9天,將動物處死,收集血液及肝臟,且量測血清TTR及肝臟編輯。血清TTR及肝臟編輯結果展示於 22C 22D 中。用TSS媒劑投配陰性對照小鼠。 11. 密碼子方案之表徵
設計使用不同密碼子方案之Cas9序列以針對經改良之蛋白質表現進行測試。各序列經設計以使用獨特密碼子組編碼SEQ ID No: 3之Cas9胺基酸。在各開放閱讀框架序列中,使用單一密碼子編碼各胺基酸。基於密碼子在基於NCBI-GenBank Flat File Release 160.0 (Nakamura等人 (2000)Nucl . Acids Res . 28, 292;Benson等人 (2006)Nucleic Acids Res . 34(資料庫期), D16-20)之智人中之整個蛋白質編碼基因中之出現頻率及特定核苷酸在密碼子中之豐度來改變序列。基於Table 4中所示的密碼子方案,構築編碼SEQ ID NO: 3之Cas9蛋白質的七個不同Cas9開放閱讀框架(SEQ ID NO: 52、SEQ ID NO: 54及SEQ ID NO: 108至SEQ ID NO: 112)。將此等併入至亦含有HSD 5' UTR (SEQ ID NO: 41)、白蛋白3' UTR、T7啟動子及聚A尾之構築體中。含有白蛋白3'UTR及聚A尾之例示性序列為SEQ ID NO: 53,其中3' UTR及聚A尾在HSD 5' UTR及SEQ ID NO: 52之ORF之後。使用如由Presnyak及同事(2015)所述的基於用於改良之mRNA半衰期的最佳密碼子的密碼子流程編碼SEQ ID NO: 3之Cas9蛋白質的以類似方式構成之構築體(SEQ ID NO: 107,使用表4之長半衰期密碼子組)亦包括於此等評估中。
藉由IVT產生各構築體之信使RNA。用800 ng各Cas9 mRNA使用Lipofectamine™ MessengerMAX™ 轉染劑(ThermoFisher)轉染HepG2細胞。轉染後六小時,藉由凍融裂解細胞且藉由離心清除。藉由ELISA分析測定Cas9蛋白質含量。簡言之,藉由雙金雞納酸分析測定總蛋白質濃度。根據製造商方案使用Cas9小鼠抗體(Origene,目錄號CF811179)作為捕捉抗體且使用Cas9 (7A9-3A3)小鼠mAb (Cell Signaling Technology,目錄號14697)作為偵測抗體來製備MSD GOLD 96孔抗生蛋白鏈菌素SECTOR板(Meso Scale Diagnostics,目錄號L15SA-1)。在具有無EDTA的1× Halt™蛋白酶抑制劑混合液(ThermoFisher,目錄號78437)的稀釋劑39中之呈0、0.12、0.49、1.95、7.81、31.25、125及500 ng/mL的Cas9蛋白質用作校正標準。使用Meso Quickplex SQ120儀器(Meso Scale Discovery)讀取ELISA板且用Discovery Workbench 4.0套裝軟體(Meso Scale Discovery)分析資料。
藉由將mRNA以及靶向甲狀腺素轉運蛋白(TTR )之引導物(G502;SEQ ID NO: 70)轉染於HepG2細胞中且量測編輯百分比來活體外評定編輯效率。在3 ng至100 ng之mRNA濃度下評定包含表25中所指示的SEQ ID No之Cas9 mRNA。未處理細胞未顯示可量測之編輯。圖23至圖24及表25顯示不同密碼子組對Cas9蛋白質表現及活體外編輯之影響。 表25. 具有不同密碼子組的ORF之活體外編輯及表現.
為了測定密碼子方案之活體內有效性,當使用表4中所述之密碼子方案自編碼Cas9之mRNA活體內表現時,量測Cas9蛋白質表現。將如表26中所指示之信使RNA與靶向TTR之引導RNA (G282;SEQ ID NO: 42)調配為LNP。使用錯流程序組配LNP,且其含有分別呈50:38:9:3莫耳比之50%脂質A、9% DSPC、38%膽固醇及3% PEG2k-DMG,且具有6.0之N:P比。使用Amicon PD-10過濾器(GE Healthcare)純化LNP,且以0.32 mg/ml之濃度(LNP濃度)使用。以1 mpk靜脈內投配CD-1雌性小鼠(每組n=5)。在給藥後3小時,將動物處死,收集肝臟且量測肝臟中之Cas9表現。使用上文所述之Meso Scale Discovery ELISA分析量測肝臟中之Cas9蛋白質表現。藉由珠粒研磨機在具有1× Complete蛋白酶抑制劑錠劑(Roche,目錄號11836170001)之RIPA緩衝液(Boston Bioproducts BP-115)中將大約40 mg肝臟組織均質化。圖25及表26顯示肝臟中之Cas9表現結果。低A及low A/U密碼子方案(SEQ ID NO: 111及SEQ ID NO: 112之ORF)的mRNA顯示所測試之ORF的最高Cas9表現。陰性對照及SEQ ID NO: 54之ORF的Cas9蛋白質表現小於定量下限(LLOQ)。 表26
為了測定密碼子方案之活體內有效性,自使用不同密碼子方案的編碼Cas9之mRNA活體內量測基因組編輯。將如表27中所指示之信使RNA與靶向TTR之引導RNA (G282;SEQ ID NO: 42)調配為LNP。使用錯流程序組配LNP,且其含有分別呈50:38:9:3莫耳比之50%脂質A、9% DSPC、38%膽固醇及3% PEG2k-DMG,且具有6.0之N:P比。使用Amicon PD-10過濾器(GE Healthcare)純化LNP,且以0.05 mg/ml之濃度(LNP濃度)使用。以0.1 mpk靜脈內投配CD-1雌性小鼠(每組n=5,不同之處在於用SEQ ID NO: 52處理之組,n=4)。在給藥後6天,將動物處死,收集血液及肝臟,且量測血清TTR及肝臟編輯。表27及圖26顯示活體內編輯結果。表27及圖27A至圖27B顯示血清TTR含量。 表27
為了測定不同mRNA濃度下的密碼子方案之功效,進行活體內劑量反應實驗。將如表28中所指示之信使RNA與靶向TTR之引導RNA (G282;SEQ ID NO: 42)調配為LNP。使用錯流方法組配LNP且其含有50%脂質A、9% DSPC、38%膽固醇及3% PEG2k-DMG。使用Amicon PD-10過濾器(GE Healthcare)純化LNP,且以0.7 mg/ml之濃度(LNP濃度)使用。以0.03、0.1或0.3 mpk靜脈內投配CD-1雌性小鼠(每組n=5)。在給藥後7天,將動物處死,收集血液及肝臟,且量測血清TTR及肝臟編輯。表28及圖28顯示活體內編輯結果。表28及圖29A至圖29B顯示血清TTR含量。 表28
為了測定具有不同UTR的密碼子方案之有效性,在投與編碼Cas9之mRNA後活體內量測基因組編輯。將如表29中所指示之信使RNA與靶向TTR之引導RNA (G282;SEQ ID NO: 42)調配為LNP。使用錯流程序組配LNP,且其含有分別呈50:38:9:3莫耳比之50%脂質A、9% DSPC、38%膽固醇及3% PEG2k-DMG,且具有6.0之N:P比。使用Amicon PD-10過濾器(GE Healthcare)純化LNP,且以0.05 mg/ml之濃度(LNP濃度)使用。以0.1 mpk靜脈內投配CD-1雌性小鼠(每組n=5;針對SEQ ID NO: 43編輯,n=4)。在給藥後6天,將動物處死,收集血液及肝臟,且量測血清TTR及肝臟編輯。表29及圖30A至圖30B顯示活體內編輯(B)及血清TTR結果(A)。 表29 12. 加帽結構之影響的表徵
將編碼Cas9且含有如表30中所指示之帽結構、UTR及聚A尾的mRNA與靶向TTR之引導RNA (G282;SEQ ID NO: 42)調配為LNP。使用錯流程序組配LNP,其含有分別呈50:38:9:3莫耳比之50%脂質A、9% DSPC、38%膽固醇及3% PEG2k-DMG,且具有6.0之N:P比。使用Amicon PD-10過濾器(GE Healthcare)純化LNP,且以0.06 mg/ml之濃度(LNP濃度)使用。以0.1或0.3 mpk靜脈內投配CD-1雌性小鼠(每組n=5)。在給藥後7天,將動物處死,收集血液及肝臟,且量測血清TTR及肝臟編輯。 圖31及表30顯示0.1 mpk劑量下,具有Cap 1之mRNA具有比具有Cap 0之mRNA高約10%的平均編輯。在0.3 mpk劑量下,具有XBG UTR之mRNA具有比具有HSD UTR之mRNA略微較高的平均編輯,除酶cap 0外。血清TTR結果顯示於 32 (血清TTR結果分別以µg/mL及TSS對照之%表示); 31 (肝臟編輯);及表30中。 30. 針對活體內加帽結構研究的血清 TTR 及肝臟編輯結果 13. 核定位信號之表徵
設計且測試使用若干核定位信號(NLS)之Cas9序列以測定功效。十一種不同強度之非典型NLS係選自由Kosugi等人(2009)Journal of Biological Chemistry , 284(1), 478-485所鑑別之NLS,如表31中所示。將此等胺基酸序列添加至Cas9胺基酸序列(SEQ ID NO: 13)之羧基端。對照序列編碼SEQ ID No. 4。 表31
將具有如表31中所指示之NLS的編碼Cas9之mRNA與與靶向TTR之引導RNA (G282;SEQ ID NO: 42)調配為LNP。使用錯流程序組配LNP,且其含有分別呈50:38:9:3莫耳比之50%脂質A、9% DSPC、38%膽固醇及3% PEG2k-DMG,且具有6.0之N:P比。使用Amicon PD-10過濾器(GE Healthcare)純化LNP,且以0.07 mg/ml之濃度(LNP濃度)使用。以0.1 mpk靜脈內投配CD-1雌性小鼠(每組n=5)。在給藥後7天,將動物處死,收集血液及肝臟,且量測血清TTR及肝臟編輯。結果展示在表32及圖33中。對於對應於表32中列出之NLS的SEQ ID NO,參見表31。 表32 - 伴隨不同核定位信號之肝臟編輯
NLS5顯示相比於SV40 NLS之統計學上顯著之增加(單向ANOVA,p=0.006)。NLS4及NLS8各展現與SV40 NLS相比編輯增加的可能趨勢,但在此實驗中差距在統計學上並不顯著。圖34A至圖34B顯示投與核定位信號變異體後的血清TTR含量。Kosugi等人(2009) (見上文),針對核定位程度之NLS的評級活性(表32中之「NLS強度」),其中10為完全在核內,且1為彌漫在整個細胞中。如此文獻中評級之NLS活性與編輯效率正相關,如圖35中所示。 14. UTR之影響之活體外表徵
表33及圖36顯示來自具有不同5' UTR之轉錄物的Cas9表現。所有構築體均使用3'人類白蛋白UTR。藉由IVT產生各構築體之信使RNA。使用線性化質體產生SEQ ID No: 179之信使RNA,且使用PCR產物作為模板生成所有其他者。用100 ng各Cas9 mRNA及25 nM最終濃度之靶向甲狀腺素轉運蛋白(TTR )之引導物(G502;SEQ ID NO: 70)使用Lipofectamine™ MessengerMAX™轉染劑(ThermoFisher)轉染HepG2細胞。轉染後六小時藉由Nano-Glo® HiBiT裂解分析(Promega)裂解細胞。藉由使用Nano-Glo® Nano-Glo HiBiT胞外偵測系統(Promega,目錄號N2420)測定Cas9蛋白質含量。表33及圖36顯示來自具有不同5' UTR之轉錄物的Cas9表現。 表33:Cas9表現 15. 至非人類靈長類動物之LNP遞送
用如上文所述使用X-flow/TFF方法製備之LNP調配物進行三項研究。特定莫耳量及載荷提供於 34 至表 36 中。含有Cas9 mRNA及引導RNA (gRNA)之各調配物具有以重量計1:1之mRNA:gRNA比。在表格中指示LNP之劑量(以mg/kg為單位,總RNA含量)、給藥途徑及動物是否接受地塞米松之預處理。對於接受地塞米松(Dex)預處理之動物,在投與LNP或媒劑之前1小時藉由IV快速注射以2 mg/kg投與Dex。
對於血液化學分析,針對所量測之各因素在如表格中所指示之時間對動物進行抽血。在處理前及處理後之NHP中量測細胞介素誘導。自受約束的清醒動物之外周靜脈將最少0.5 mL之全血收集於4 ml血清分離管中。在室溫下使血液結塊最少30分鐘,之後以2000×g離心15分鐘。將血清等分於2個120 μL聚丙烯微管中,且在分析之前各儲存於-60℃至-86℃下。使用來自Meso Scale Discovery (MSD)之非人類靈長類動物U-Plex細胞介素定製套組來加以分析。分析中包括以下參數:INF-g、IL-1b、IL-2、IL-4、IL-6、IL-8、IL-10、IL-12p40、MCP-1及TNF-α,其中聚焦於IL-6及MCP-1。如製造商方案中所指導地製備套組試劑及標準品。以純形式使用NHP血清。將板運作於MSD Sector成像儀6000,伴隨用MSD Discovery work bench軟體版本4012進行分析。
在處理前及處理後動物中藉由酶免疫分析量測補體含量。自受約束的清醒動物之外周靜脈將0.5 mL體積之全血收集於0.5 mL k2 EDTA管中。以2000×g離心血液15分鐘。將血漿等分於2個120 μL聚丙烯微管中,且在分析之前各儲存於-60℃至-86℃下。使用Quidel MicroVue Complement Plus EIA套組(C3a-Cat號A031)或(Bb-Cat號A027)來加以分析。如製造商方案中所指導地製備套組試劑及標準品。將板運作於450 nm下之光密度下的MSD Sector成像儀6000上。使用4參數曲線擬合分析結果。
細胞介素誘導及補體活化之資料提供於下表中。「BLQ」意謂小於定量限值。 34 ,研究1 35 ,研究2 36 ,研究3 37 . 根據研究1之IL-6量測 38 . 根據研究1之MCP-1量測 39 . 根據研究1之補體C3a量測 40 . 根據研究1之補體bb量測 41 . 根據研究2之IL-6量測 42 . 根據研究2之MCP-1量測 43 . 根據研究2之補體C3a量測 44 . 根據研究2之補體bb量測 45 . 根據研究3之IL-6量測 46 . 根據研究2之MCP-1量測 47 . 根據研究3之補體C3a量測 48 . 根據研究3之補體bb量測 16. 小鼠肝臟中不同mRNA之Cas9表現的比較
在投與編碼Cas9之不同mRNA後活體內量測Cas9表現。將如表49中所指示之信使RNA與靶向小鼠TTR 基因之小鼠sgRNA (1:2之sgRNA:mRNA重量比)調配為LNP。使用錯流程序組配具有50%脂質A、9% DSPC、38%膽固醇及3% PEG2k-DMG及6.0之N:P比的LNP。使用Sartocon Slice 200 (Sartorius)純化LNP,且以1.53 mg/ml之濃度(RNA濃度)使用。針對如上文所述之RNA的平均粒徑、多分散性(pdi)、總RNA含量及囊封效率分析LNP調配物(資料未示)。
以0.3 mpk靜脈內投配CD-1雌性小鼠(每組n=5)。在給藥後1小時、3小時及6小時,將動物處死,收集肝臟組織,且如實例11中所述藉由MSD ELISA量測Cas9蛋白質含量。表49顯示Cas9蛋白質含量。在各時間點,在用SEQ ID NO: 177處理之動物中偵測到比用SEQ ID NO: 43處理之動物要多的Cas9蛋白質。 49 17. 不同mRNA之劑量反應之比較
比較編碼Cas9之不同mRNA的活體內劑量反應曲線。用SEQ ID No. 43及SEQ ID No. 177之mRNA及sg502 (SEQ ID NO: 70;G502)製備LNP調配物,如實例16中所述進行調配。將脂質奈米粒子組分溶解於100%乙醇中,其中脂質組分莫耳比為50/9/38/3 (LP01/DSPC/膽固醇/PEG-DMG)。以約6之脂質胺與RNA磷酸(N:P)莫耳比及以重量計1:2之gRNA與mRNA比調配LNP。針對如上文所述之RNA的平均粒徑、多分散性(pdi)、總RNA含量及囊封效率分析LNP調配物(資料未示)。
對於活體內表徵,以每公斤(每組n=5) 0.03、0.1或0.3 mg 總RNA (引導RNA毫克數+mRNA毫克數)靜脈內投配CD-1雌性小鼠(每組n=5)。在給藥後七天,將動物處死,收集血液及肝臟,且如實例1中所述量測血清TTR及肝臟編輯。用TSS媒劑投配陰性對照動物。編輯資料提供於下表50中。對於SEQ ID NO: 43,提供平均8項活體內實驗,各伴隨5隻動物。對於SEQ ID NO: 177,提供活體內實驗之平均值,各劑量下伴隨5隻動物。在各劑量下,用SEQ ID NO: 177處理之動物中之編輯%要高於用SEQ ID NO: 43處理之動物。 50 序列表
以下序列表提供本文所揭示之序列之清單。應理解,若關於RNA提及DNA序列(包含Ts),則Ts應由Us替代(其可視情況而為經修飾或未經修飾的),且反之亦然。 * = PS 鍵; 'm' = 2'-O-Me 核苷酸
圖1A至圖1D顯示以0.5或1 mg/kg (mpk)投與PBS或脂質奈米粒子(LNP)調配物LNP417至LNP421後的IFN α、IL-6、TNF α及MCP-1之含量。
圖2A至圖2B顯示以0.5或1 mpk投與PBS或LNP調配物LNP417至LNP421後的血清TTR含量及肝臟編輯百分比。
圖3顯示由Cas9 DNA構築體進行之轉錄的活體外轉錄(IVT)產量。用未經修飾之尿苷-5'-三磷酸(UTP)或單獨的(橫軸上,0)、用與指定比例之5-甲氧基UTP混合(橫軸上,20至80)的或與100% 5-甲氧基UTP混合(100)的N1-甲基-假UTP進行轉錄。對於各組之三個條形圖,左側條形圖使用N1-甲基-假UTP及/或5-甲氧基UTP及SEQ ID NO: 2;中間的條形圖使用未經修飾之UTP及/或5-甲氧基UTP及SEQ ID NO: 2;且右側條形圖使用未經修飾之UTP及/或5-甲氧基UTP及SEQ ID NO: 1。
圖4顯示根據Cas9 (SEQ ID NO: 2)及經最佳化之Cas9 (SEQ ID NO: 1) DNA構築體之活體外轉錄(IVT)結果的mRNA之純度。由SEQ ID NO: 2之Cas9序列用未經修飾之尿苷-5'-三磷酸(UTP) (正方形)或用單獨(0)的或與指定比例之5-甲氧基UTP混合(20至80)的或與100% 5-甲氧基UTP混合(100)的N1-甲基-假UTP(黑色圓形)進行轉錄。由SEQ ID NO: 1之Cas9序列(淺色圓形)用未經修飾之UTP (0)或與指定比例之5-甲氧基UTP混合(20至80)或與100% 5-甲氧基UTP混合(100)的未經修飾之UTP進行轉錄。各編碼序列包括一個核定位信號。
圖5A至圖5D顯示抗dsRNA抗體墨點分析法結果。結果係伴隨雙股RNA對照(A)、在UTP及/或5-甲氧基UTP存在下轉錄之Cas9 (B)、在UTP及/或5-甲氧基UTP存在下轉錄的包含SEQ ID NO: 4之Cas9 mRNA序列(C)及在N1-甲基-假UTP及/或5-甲氧基UTP存在下轉錄之Cas9 (D)而產生。圖(B)至圖(D)係用含有0%至100% 5-甲氧基UTP及100%至0% UTP或N1-甲基UTP進行。
圖6A及圖6B顯示用Cas9 mRNA處理之神經母細胞瘤2A細胞(Neuro 2A cell)中的mRNA之活體外編輯效率,其呈現為編輯百分比(A)或編輯EC50 (B)。評定增加Cas9 mRNA中5-甲氧基-UTP之濃度的影響。由SEQ ID NO: 2之Cas9序列用N1-甲基-假UTP (A中之左組;B中之深色圓形)或用單獨(0)的或與指定比例之5-甲氧基UTP混合(20至80)或與100% 5-甲氧基UTP混合(100)的未經修飾之尿苷-5'-三磷酸(UTP) (A中之中間組;B中之正方形)進行轉錄。由SEQ ID NO: 1之Cas9序列(A中之右組;B中之淺色圓形)用未經修飾之UTP (0)或與指定比例之5-甲氧基UTP混合(20至80)或與100% 5-甲氧基UTP混合(100)的未經修飾之UTP進行轉錄。各編碼序列包括一個核定位信號。
圖7A至圖7D展示LNP調配物LNP720至LNP724給藥後4小時時的血清細胞介素含量。圖7A中之星號指示至少一個獨立量測小於偵測極限。
圖8A及圖8B展示用LNP調配物LNP720至LNP724給藥後7天時的血清TTR含量(A)及肝臟中之TTR 編輯百分比(B)。圖8A中之星號指示至少一個獨立量測小於偵測極限。
圖9顯示以1 mpk用LNP調配物LNP720至LNP724給藥後7天時的脾臟中之TTR 編輯百分比。
圖10顯示使用LNP調配物LNP720至LNP724及LNP685的初級小鼠肝細胞(PMH)中之TTR 編輯百分比。
圖11A及圖11B顯示投配包含Cas9 mRNA之調配物之後的血清TTR含量,在該等Cas9 mRNA中,ORF具有SEQ ID NO: 5或SEQ ID NO: 4之序列。TTR資料呈現為血清含量(A)或相對於經TSS處理之動物中之TTR含量的百分比(B)。
圖12顯示以5 mpk或2 mpk投配包含Cas9 mRNA之調配物之後的肝臟中之TTR 編輯百分比,在該Cas9 mRNA中,ORF具有SEQ ID NO: 5或SEQ ID NO: 4之序列。
圖13A至圖13E顯示投配指定LNP調配物之後的血清TTR含量及肝臟中之TTR 編輯百分比。
圖14顯示用0.3、1、3或10 ng LNP815至LNP821、LNP 823或LNP 824處理之初級小鼠肝細胞(PMH)中的TTR 編輯百分比。
圖15A至圖15B顯示以指定引導物:Cas9比率及量投配含有Cas9 mRNA之LNP調配物之後的血清TTR含量,在該Cas9 mRNA中,ORF具有SEQ ID NO: 5或SEQ ID NO: 4之序列。
圖16A至圖16B顯示以指定引導物:Cas9比率及量投配含有Cas9 mRNA之LNP調配物之後的肝臟中之TTR 編輯百分比,在該Cas9 mRNA中,ORF具有SEQ ID NO: 5或SEQ ID NO: 4之序列。
圖17A至圖17B顯示以指定引導物:Cas9比率及量投配含有Cas9 mRNA之LNP調配物之後的脾臟中之TTR 編輯百分比,在該Cas9 mRNA中,ORF具有SEQ ID NO: 5或SEQ ID NO: 4之序列。
圖18顯示針對以指定引導物:Cas9比率投配含有Cas9 mRNA之LNP調配物之後的肝臟中之Cas9表現的西方墨點法,在該Cas9 mRNA中,ORF具有SEQ ID NO: 5或SEQ ID NO: 4之序列。
圖19A至圖19B顯示以指定量投配指定LNP調配物之後的血清TTR含量。
圖20顯示以指定量投配指定LNP調配物之後的肝臟中之TTR 編輯百分比。
圖21A至圖21C顯示以指定量投配指定LNP調配物之後的肝臟編輯含量(A)及血清TTR (B以µg/ml為單位;C呈TSS對照之百分比形式)。
圖22A至22D顯示以指定比率及量投配LNP調配物之後的血清TTR及編輯結果。
圖23顯示用Cas9 mRNA處理之後的Hep2G細胞中之Cas9蛋白質表現,在該Cas9 mRNA中,ORF具有指定SEQ ID NO之序列。
圖24顯示以指定濃度用Cas9 mRNA處理之後的Hep2G細胞中之編輯百分比,在該Cas9 mRNA中,ORF具有指定SEQ ID NO之序列。
圖25顯示投配具有Cas9 mRNA之LNP調配物之後的肝臟中之Cas9表現,在該Cas9 mRNA中,ORF具有指定SEQ ID NO之序列。
圖26顯示投配具有Cas9 mRNA之LNP調配物之後的TTR基因座處的活體內編輯結果,在該Cas9 mRNA中,ORF具有指定SEQ ID NO之序列。
圖27A至圖27B顯示投配具有Cas9 mRNA之LNP調配物之後的血清TTR (A)及血清TTR (TSS%) (B),在該Cas9 mRNA中,ORF具有指定SEQ ID NO之序列。
圖28顯示以指定量投配具有Cas9 mRNA之LNP調配物之後的活體內肝臟編輯,在該Cas9 mRNA中,ORF具有指定SEQ ID NO之序列。
圖29A至圖29B顯示以指定量投配具有Cas9 mRNA之LNP調配物之後的血清TTR含量(A)及血清TTR (TSS%) (B),在該Cas9 mRNA中,ORF具有指定SEQ ID NO之序列。
圖30A至圖30B顯示投配具有Cas9 mRNA之LNP調配物之後的血清TTR含量(A)及肝臟中之編輯% (B),在該Cas9 mRNA中,轉錄物具有指定SEQ ID NO之序列。
圖31顯示以指定劑量投配經mRNA調配之LNP之後的肝臟中之TTR編輯百分比,該等mRNA具有指定帽結構及轉錄物序列。
圖32顯示以指定劑量投配經mRNA調配之LNP之後的血清TTR含量,該等mRNA具有指定帽結構及轉錄物序列。
圖33顯示投配經編碼Cas9之mRNA調配之LNP之後的肝臟中之TTR編輯百分比,在該等mRNA中,ORF具有指定SEQ ID NO之序列,包括如所指示之NLS。
圖34A至圖34B顯示投配經編碼Cas9之mRNA調配之LNP之後的血清TTR含量(A)及血清TTR (TSS%) (B),在該等mRNA中,ORF具有指定SEQ ID NO之序列,包括如所指示之NLS。
圖35顯示投配經編碼Cas9且包括不同類別及活性含量之NLS序列的mRNA調配之LNP之後的NLS活性與編輯效率之相關性。
圖36顯示HepG2細胞中來自具有指定序列及如所指示之5' UTR的mRNA轉錄物的Cas9蛋白質之表現含量。
Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0005
Figure 12_A0101_SEQ_0006
Figure 12_A0101_SEQ_0007
Figure 12_A0101_SEQ_0008
Figure 12_A0101_SEQ_0009
Figure 12_A0101_SEQ_0010
Figure 12_A0101_SEQ_0011
Figure 12_A0101_SEQ_0012
Figure 12_A0101_SEQ_0013
Figure 12_A0101_SEQ_0014
Figure 12_A0101_SEQ_0015
Figure 12_A0101_SEQ_0016
Figure 12_A0101_SEQ_0017
Figure 12_A0101_SEQ_0018
Figure 12_A0101_SEQ_0019
Figure 12_A0101_SEQ_0020
Figure 12_A0101_SEQ_0021
Figure 12_A0101_SEQ_0022
Figure 12_A0101_SEQ_0023
Figure 12_A0101_SEQ_0024
Figure 12_A0101_SEQ_0025
Figure 12_A0101_SEQ_0026
Figure 12_A0101_SEQ_0027
Figure 12_A0101_SEQ_0028
Figure 12_A0101_SEQ_0029
Figure 12_A0101_SEQ_0030
Figure 12_A0101_SEQ_0031
Figure 12_A0101_SEQ_0032
Figure 12_A0101_SEQ_0033
Figure 12_A0101_SEQ_0034
Figure 12_A0101_SEQ_0035
Figure 12_A0101_SEQ_0036
Figure 12_A0101_SEQ_0037
Figure 12_A0101_SEQ_0038
Figure 12_A0101_SEQ_0039
Figure 12_A0101_SEQ_0040
Figure 12_A0101_SEQ_0041
Figure 12_A0101_SEQ_0042
Figure 12_A0101_SEQ_0043
Figure 12_A0101_SEQ_0044
Figure 12_A0101_SEQ_0045
Figure 12_A0101_SEQ_0046
Figure 12_A0101_SEQ_0047
Figure 12_A0101_SEQ_0048
Figure 12_A0101_SEQ_0049
Figure 12_A0101_SEQ_0050
Figure 12_A0101_SEQ_0051
Figure 12_A0101_SEQ_0052
Figure 12_A0101_SEQ_0053
Figure 12_A0101_SEQ_0054
Figure 12_A0101_SEQ_0055
Figure 12_A0101_SEQ_0056
Figure 12_A0101_SEQ_0057
Figure 12_A0101_SEQ_0058
Figure 12_A0101_SEQ_0059
Figure 12_A0101_SEQ_0060
Figure 12_A0101_SEQ_0061
Figure 12_A0101_SEQ_0062
Figure 12_A0101_SEQ_0063
Figure 12_A0101_SEQ_0064
Figure 12_A0101_SEQ_0065
Figure 12_A0101_SEQ_0066
Figure 12_A0101_SEQ_0067
Figure 12_A0101_SEQ_0068
Figure 12_A0101_SEQ_0069
Figure 12_A0101_SEQ_0070
Figure 12_A0101_SEQ_0071
Figure 12_A0101_SEQ_0072
Figure 12_A0101_SEQ_0073
Figure 12_A0101_SEQ_0074
Figure 12_A0101_SEQ_0075
Figure 12_A0101_SEQ_0076
Figure 12_A0101_SEQ_0077
Figure 12_A0101_SEQ_0078
Figure 12_A0101_SEQ_0079
Figure 12_A0101_SEQ_0080
Figure 12_A0101_SEQ_0081
Figure 12_A0101_SEQ_0082
Figure 12_A0101_SEQ_0083
Figure 12_A0101_SEQ_0084
Figure 12_A0101_SEQ_0085
Figure 12_A0101_SEQ_0086
Figure 12_A0101_SEQ_0087
Figure 12_A0101_SEQ_0088
Figure 12_A0101_SEQ_0089
Figure 12_A0101_SEQ_0090
Figure 12_A0101_SEQ_0091
Figure 12_A0101_SEQ_0092
Figure 12_A0101_SEQ_0093
Figure 12_A0101_SEQ_0094
Figure 12_A0101_SEQ_0095
Figure 12_A0101_SEQ_0096
Figure 12_A0101_SEQ_0097
Figure 12_A0101_SEQ_0098
Figure 12_A0101_SEQ_0099
Figure 12_A0101_SEQ_0100
Figure 12_A0101_SEQ_0101
Figure 12_A0101_SEQ_0102
Figure 12_A0101_SEQ_0103
Figure 12_A0101_SEQ_0104
Figure 12_A0101_SEQ_0105
Figure 12_A0101_SEQ_0106
Figure 12_A0101_SEQ_0107
Figure 12_A0101_SEQ_0108
Figure 12_A0101_SEQ_0109
Figure 12_A0101_SEQ_0110
Figure 12_A0101_SEQ_0111
Figure 12_A0101_SEQ_0112
Figure 12_A0101_SEQ_0113
Figure 12_A0101_SEQ_0114
Figure 12_A0101_SEQ_0115
Figure 12_A0101_SEQ_0116
Figure 12_A0101_SEQ_0117
Figure 12_A0101_SEQ_0118
Figure 12_A0101_SEQ_0119
Figure 12_A0101_SEQ_0120
Figure 12_A0101_SEQ_0121
Figure 12_A0101_SEQ_0122
Figure 12_A0101_SEQ_0123
Figure 12_A0101_SEQ_0124
Figure 12_A0101_SEQ_0125
Figure 12_A0101_SEQ_0126
Figure 12_A0101_SEQ_0127
Figure 12_A0101_SEQ_0128
Figure 12_A0101_SEQ_0129
Figure 12_A0101_SEQ_0130
Figure 12_A0101_SEQ_0131
Figure 12_A0101_SEQ_0132
Figure 12_A0101_SEQ_0133
Figure 12_A0101_SEQ_0134
Figure 12_A0101_SEQ_0135
Figure 12_A0101_SEQ_0136
Figure 12_A0101_SEQ_0137
Figure 12_A0101_SEQ_0138
Figure 12_A0101_SEQ_0139
Figure 12_A0101_SEQ_0140
Figure 12_A0101_SEQ_0141
Figure 12_A0101_SEQ_0142
Figure 12_A0101_SEQ_0143
Figure 12_A0101_SEQ_0144
Figure 12_A0101_SEQ_0145
Figure 12_A0101_SEQ_0146
Figure 12_A0101_SEQ_0147
Figure 12_A0101_SEQ_0148
Figure 12_A0101_SEQ_0149
Figure 12_A0101_SEQ_0150
Figure 12_A0101_SEQ_0151
Figure 12_A0101_SEQ_0152
Figure 12_A0101_SEQ_0153
Figure 12_A0101_SEQ_0154
Figure 12_A0101_SEQ_0155
Figure 12_A0101_SEQ_0156
Figure 12_A0101_SEQ_0157
Figure 12_A0101_SEQ_0158
Figure 12_A0101_SEQ_0159
Figure 12_A0101_SEQ_0160
Figure 12_A0101_SEQ_0161
Figure 12_A0101_SEQ_0162
Figure 12_A0101_SEQ_0163
Figure 12_A0101_SEQ_0164
Figure 12_A0101_SEQ_0165
Figure 12_A0101_SEQ_0166
Figure 12_A0101_SEQ_0167
Figure 12_A0101_SEQ_0168
Figure 12_A0101_SEQ_0169
Figure 12_A0101_SEQ_0170
Figure 12_A0101_SEQ_0171
Figure 12_A0101_SEQ_0172
Figure 12_A0101_SEQ_0173
Figure 12_A0101_SEQ_0174
Figure 12_A0101_SEQ_0175
Figure 12_A0101_SEQ_0176
Figure 12_A0101_SEQ_0177
Figure 12_A0101_SEQ_0178
Figure 12_A0101_SEQ_0179
Figure 12_A0101_SEQ_0180
Figure 12_A0101_SEQ_0181
Figure 12_A0101_SEQ_0182
Figure 12_A0101_SEQ_0183
Figure 12_A0101_SEQ_0184
Figure 12_A0101_SEQ_0185
Figure 12_A0101_SEQ_0186
Figure 12_A0101_SEQ_0187
Figure 12_A0101_SEQ_0188
Figure 12_A0101_SEQ_0189
Figure 12_A0101_SEQ_0190
Figure 12_A0101_SEQ_0191
Figure 12_A0101_SEQ_0192
Figure 12_A0101_SEQ_0193
Figure 12_A0101_SEQ_0194
Figure 12_A0101_SEQ_0195
Figure 12_A0101_SEQ_0196
Figure 12_A0101_SEQ_0197
Figure 12_A0101_SEQ_0198
Figure 12_A0101_SEQ_0199
Figure 12_A0101_SEQ_0200
Figure 12_A0101_SEQ_0201
Figure 12_A0101_SEQ_0202
Figure 12_A0101_SEQ_0203
Figure 12_A0101_SEQ_0204
Figure 12_A0101_SEQ_0205
Figure 12_A0101_SEQ_0206
Figure 12_A0101_SEQ_0207
Figure 12_A0101_SEQ_0208
Figure 12_A0101_SEQ_0209
Figure 12_A0101_SEQ_0210
Figure 12_A0101_SEQ_0211
Figure 12_A0101_SEQ_0212
Figure 12_A0101_SEQ_0213
Figure 12_A0101_SEQ_0214
Figure 12_A0101_SEQ_0215
Figure 12_A0101_SEQ_0216
Figure 12_A0101_SEQ_0217
Figure 12_A0101_SEQ_0218
Figure 12_A0101_SEQ_0219
Figure 12_A0101_SEQ_0220
Figure 12_A0101_SEQ_0221
Figure 12_A0101_SEQ_0222
Figure 12_A0101_SEQ_0223
Figure 12_A0101_SEQ_0224
Figure 12_A0101_SEQ_0225
Figure 12_A0101_SEQ_0226
Figure 12_A0101_SEQ_0227
Figure 12_A0101_SEQ_0228
Figure 12_A0101_SEQ_0229
Figure 12_A0101_SEQ_0230
Figure 12_A0101_SEQ_0231
Figure 12_A0101_SEQ_0232
Figure 12_A0101_SEQ_0233
Figure 12_A0101_SEQ_0234
Figure 12_A0101_SEQ_0235
Figure 12_A0101_SEQ_0236
Figure 12_A0101_SEQ_0237
Figure 12_A0101_SEQ_0238
Figure 12_A0101_SEQ_0239
Figure 12_A0101_SEQ_0240
Figure 12_A0101_SEQ_0241
Figure 12_A0101_SEQ_0242
Figure 12_A0101_SEQ_0243
Figure 12_A0101_SEQ_0244
Figure 12_A0101_SEQ_0245
Figure 12_A0101_SEQ_0246
Figure 12_A0101_SEQ_0247
Figure 12_A0101_SEQ_0248
Figure 12_A0101_SEQ_0249
Figure 12_A0101_SEQ_0250
Figure 12_A0101_SEQ_0251
Figure 12_A0101_SEQ_0252
Figure 12_A0101_SEQ_0253
Figure 12_A0101_SEQ_0254
Figure 12_A0101_SEQ_0255
Figure 12_A0101_SEQ_0256
Figure 12_A0101_SEQ_0257
Figure 12_A0101_SEQ_0258
Figure 12_A0101_SEQ_0259
Figure 12_A0101_SEQ_0260
Figure 12_A0101_SEQ_0261
Figure 12_A0101_SEQ_0262
Figure 12_A0101_SEQ_0263
Figure 12_A0101_SEQ_0264
Figure 12_A0101_SEQ_0265
Figure 12_A0101_SEQ_0266
Figure 12_A0101_SEQ_0267
Figure 12_A0101_SEQ_0268
Figure 12_A0101_SEQ_0269
Figure 12_A0101_SEQ_0270
Figure 12_A0101_SEQ_0271
Figure 12_A0101_SEQ_0272
Figure 12_A0101_SEQ_0273
Figure 12_A0101_SEQ_0274
Figure 12_A0101_SEQ_0275
Figure 12_A0101_SEQ_0276
Figure 12_A0101_SEQ_0277
Figure 12_A0101_SEQ_0278
Figure 12_A0101_SEQ_0279
Figure 12_A0101_SEQ_0280
Figure 12_A0101_SEQ_0281
Figure 12_A0101_SEQ_0282
Figure 12_A0101_SEQ_0283
Figure 12_A0101_SEQ_0284
Figure 12_A0101_SEQ_0285
Figure 12_A0101_SEQ_0286
Figure 12_A0101_SEQ_0287
Figure 12_A0101_SEQ_0288
Figure 12_A0101_SEQ_0289
Figure 12_A0101_SEQ_0290
Figure 12_A0101_SEQ_0291
Figure 12_A0101_SEQ_0292
Figure 12_A0101_SEQ_0293
Figure 12_A0101_SEQ_0294
Figure 12_A0101_SEQ_0295
Figure 12_A0101_SEQ_0296
Figure 12_A0101_SEQ_0297
Figure 12_A0101_SEQ_0298
Figure 12_A0101_SEQ_0299
Figure 12_A0101_SEQ_0300
Figure 12_A0101_SEQ_0301
Figure 12_A0101_SEQ_0302
Figure 12_A0101_SEQ_0303
Figure 12_A0101_SEQ_0304
Figure 12_A0101_SEQ_0305
Figure 12_A0101_SEQ_0306
Figure 12_A0101_SEQ_0307
Figure 12_A0101_SEQ_0308
Figure 12_A0101_SEQ_0309
Figure 12_A0101_SEQ_0310
Figure 12_A0101_SEQ_0311
Figure 12_A0101_SEQ_0312
Figure 12_A0101_SEQ_0313
Figure 12_A0101_SEQ_0314
Figure 12_A0101_SEQ_0315
Figure 12_A0101_SEQ_0316
Figure 12_A0101_SEQ_0317
Figure 12_A0101_SEQ_0318
Figure 12_A0101_SEQ_0319
Figure 12_A0101_SEQ_0320
Figure 12_A0101_SEQ_0321
Figure 12_A0101_SEQ_0322
Figure 12_A0101_SEQ_0323
Figure 12_A0101_SEQ_0324
Figure 12_A0101_SEQ_0325
Figure 12_A0101_SEQ_0326
Figure 12_A0101_SEQ_0327
Figure 12_A0101_SEQ_0328
Figure 12_A0101_SEQ_0329
Figure 12_A0101_SEQ_0330
Figure 12_A0101_SEQ_0331
Figure 12_A0101_SEQ_0332
Figure 12_A0101_SEQ_0333
Figure 12_A0101_SEQ_0334
Figure 12_A0101_SEQ_0335
Figure 12_A0101_SEQ_0336
Figure 12_A0101_SEQ_0337
Figure 12_A0101_SEQ_0338
Figure 12_A0101_SEQ_0339
Figure 12_A0101_SEQ_0340
Figure 12_A0101_SEQ_0341
Figure 12_A0101_SEQ_0342
Figure 12_A0101_SEQ_0343
Figure 12_A0101_SEQ_0344
Figure 12_A0101_SEQ_0345
Figure 12_A0101_SEQ_0346
Figure 12_A0101_SEQ_0347
Figure 12_A0101_SEQ_0348
Figure 12_A0101_SEQ_0349
Figure 12_A0101_SEQ_0350
Figure 12_A0101_SEQ_0351
Figure 12_A0101_SEQ_0352
Figure 12_A0101_SEQ_0353
Figure 12_A0101_SEQ_0354
Figure 12_A0101_SEQ_0355
Figure 12_A0101_SEQ_0356
Figure 12_A0101_SEQ_0357
Figure 12_A0101_SEQ_0358
Figure 12_A0101_SEQ_0359
Figure 12_A0101_SEQ_0360
Figure 12_A0101_SEQ_0361
Figure 12_A0101_SEQ_0362
Figure 12_A0101_SEQ_0363
Figure 12_A0101_SEQ_0364
Figure 12_A0101_SEQ_0365
Figure 12_A0101_SEQ_0366
Figure 12_A0101_SEQ_0367
Figure 12_A0101_SEQ_0368
Figure 12_A0101_SEQ_0369
Figure 12_A0101_SEQ_0370
Figure 12_A0101_SEQ_0371
Figure 12_A0101_SEQ_0372
Figure 12_A0101_SEQ_0373
Figure 12_A0101_SEQ_0374
Figure 12_A0101_SEQ_0375
Figure 12_A0101_SEQ_0376
Figure 12_A0101_SEQ_0377
Figure 12_A0101_SEQ_0378
Figure 12_A0101_SEQ_0379
Figure 12_A0101_SEQ_0380
Figure 12_A0101_SEQ_0381
Figure 12_A0101_SEQ_0382
Figure 12_A0101_SEQ_0383
Figure 12_A0101_SEQ_0384
Figure 12_A0101_SEQ_0385
Figure 12_A0101_SEQ_0386
Figure 12_A0101_SEQ_0387
Figure 12_A0101_SEQ_0388
Figure 12_A0101_SEQ_0389
Figure 12_A0101_SEQ_0390
Figure 12_A0101_SEQ_0391
Figure 12_A0101_SEQ_0392
Figure 12_A0101_SEQ_0393
Figure 12_A0101_SEQ_0394
Figure 12_A0101_SEQ_0395
Figure 12_A0101_SEQ_0396
Figure 12_A0101_SEQ_0397
Figure 12_A0101_SEQ_0398
Figure 12_A0101_SEQ_0399
Figure 12_A0101_SEQ_0400
Figure 12_A0101_SEQ_0401
Figure 12_A0101_SEQ_0402
Figure 12_A0101_SEQ_0403
Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0005
Figure 12_A0101_SEQ_0006
Figure 12_A0101_SEQ_0007
Figure 12_A0101_SEQ_0008
Figure 12_A0101_SEQ_0009
Figure 12_A0101_SEQ_0010
Figure 12_A0101_SEQ_0011
Figure 12_A0101_SEQ_0012
Figure 12_A0101_SEQ_0013
Figure 12_A0101_SEQ_0014
Figure 12_A0101_SEQ_0015
Figure 12_A0101_SEQ_0016
Figure 12_A0101_SEQ_0017
Figure 12_A0101_SEQ_0018
Figure 12_A0101_SEQ_0019
Figure 12_A0101_SEQ_0020
Figure 12_A0101_SEQ_0021
Figure 12_A0101_SEQ_0022
Figure 12_A0101_SEQ_0023
Figure 12_A0101_SEQ_0024
Figure 12_A0101_SEQ_0025
Figure 12_A0101_SEQ_0026
Figure 12_A0101_SEQ_0027
Figure 12_A0101_SEQ_0028
Figure 12_A0101_SEQ_0029
Figure 12_A0101_SEQ_0030
Figure 12_A0101_SEQ_0031
Figure 12_A0101_SEQ_0032
Figure 12_A0101_SEQ_0033
Figure 12_A0101_SEQ_0034
Figure 12_A0101_SEQ_0035
Figure 12_A0101_SEQ_0036
Figure 12_A0101_SEQ_0037
Figure 12_A0101_SEQ_0038
Figure 12_A0101_SEQ_0039
Figure 12_A0101_SEQ_0040
Figure 12_A0101_SEQ_0041
Figure 12_A0101_SEQ_0042
Figure 12_A0101_SEQ_0043
Figure 12_A0101_SEQ_0044
Figure 12_A0101_SEQ_0045
Figure 12_A0101_SEQ_0046
Figure 12_A0101_SEQ_0047
Figure 12_A0101_SEQ_0048
Figure 12_A0101_SEQ_0049
Figure 12_A0101_SEQ_0050
Figure 12_A0101_SEQ_0051
Figure 12_A0101_SEQ_0052
Figure 12_A0101_SEQ_0053
Figure 12_A0101_SEQ_0054
Figure 12_A0101_SEQ_0055
Figure 12_A0101_SEQ_0056
Figure 12_A0101_SEQ_0057
Figure 12_A0101_SEQ_0058
Figure 12_A0101_SEQ_0059
Figure 12_A0101_SEQ_0060
Figure 12_A0101_SEQ_0061
Figure 12_A0101_SEQ_0062
Figure 12_A0101_SEQ_0063
Figure 12_A0101_SEQ_0064
Figure 12_A0101_SEQ_0065
Figure 12_A0101_SEQ_0066
Figure 12_A0101_SEQ_0067
Figure 12_A0101_SEQ_0068
Figure 12_A0101_SEQ_0069
Figure 12_A0101_SEQ_0070
Figure 12_A0101_SEQ_0071
Figure 12_A0101_SEQ_0072
Figure 12_A0101_SEQ_0073
Figure 12_A0101_SEQ_0074
Figure 12_A0101_SEQ_0075
Figure 12_A0101_SEQ_0076
Figure 12_A0101_SEQ_0077
Figure 12_A0101_SEQ_0078
Figure 12_A0101_SEQ_0079
Figure 12_A0101_SEQ_0080
Figure 12_A0101_SEQ_0081
Figure 12_A0101_SEQ_0082
Figure 12_A0101_SEQ_0083
Figure 12_A0101_SEQ_0084
Figure 12_A0101_SEQ_0085
Figure 12_A0101_SEQ_0086
Figure 12_A0101_SEQ_0087
Figure 12_A0101_SEQ_0088
Figure 12_A0101_SEQ_0089
Figure 12_A0101_SEQ_0090
Figure 12_A0101_SEQ_0091
Figure 12_A0101_SEQ_0092
Figure 12_A0101_SEQ_0093
Figure 12_A0101_SEQ_0094
Figure 12_A0101_SEQ_0095
Figure 12_A0101_SEQ_0096
Figure 12_A0101_SEQ_0097
Figure 12_A0101_SEQ_0098
Figure 12_A0101_SEQ_0099
Figure 12_A0101_SEQ_0100
Figure 12_A0101_SEQ_0101
Figure 12_A0101_SEQ_0102
Figure 12_A0101_SEQ_0103
Figure 12_A0101_SEQ_0104
Figure 12_A0101_SEQ_0105
Figure 12_A0101_SEQ_0106
Figure 12_A0101_SEQ_0107
Figure 12_A0101_SEQ_0108
Figure 12_A0101_SEQ_0109
Figure 12_A0101_SEQ_0110
Figure 12_A0101_SEQ_0111
Figure 12_A0101_SEQ_0112
Figure 12_A0101_SEQ_0113
Figure 12_A0101_SEQ_0114
Figure 12_A0101_SEQ_0115
Figure 12_A0101_SEQ_0116
Figure 12_A0101_SEQ_0117
Figure 12_A0101_SEQ_0118
Figure 12_A0101_SEQ_0119
Figure 12_A0101_SEQ_0120
Figure 12_A0101_SEQ_0121
Figure 12_A0101_SEQ_0122
Figure 12_A0101_SEQ_0123
Figure 12_A0101_SEQ_0124
Figure 12_A0101_SEQ_0125
Figure 12_A0101_SEQ_0126
Figure 12_A0101_SEQ_0127
Figure 12_A0101_SEQ_0128
Figure 12_A0101_SEQ_0129
Figure 12_A0101_SEQ_0130
Figure 12_A0101_SEQ_0131
Figure 12_A0101_SEQ_0132
Figure 12_A0101_SEQ_0133
Figure 12_A0101_SEQ_0134
Figure 12_A0101_SEQ_0135
Figure 12_A0101_SEQ_0136
Figure 12_A0101_SEQ_0137
Figure 12_A0101_SEQ_0138
Figure 12_A0101_SEQ_0139
Figure 12_A0101_SEQ_0140
Figure 12_A0101_SEQ_0141
Figure 12_A0101_SEQ_0142
Figure 12_A0101_SEQ_0143
Figure 12_A0101_SEQ_0144
Figure 12_A0101_SEQ_0145
Figure 12_A0101_SEQ_0146
Figure 12_A0101_SEQ_0147
Figure 12_A0101_SEQ_0148
Figure 12_A0101_SEQ_0149
Figure 12_A0101_SEQ_0150
Figure 12_A0101_SEQ_0151
Figure 12_A0101_SEQ_0152
Figure 12_A0101_SEQ_0153
Figure 12_A0101_SEQ_0154
Figure 12_A0101_SEQ_0155
Figure 12_A0101_SEQ_0156
Figure 12_A0101_SEQ_0157
Figure 12_A0101_SEQ_0158
Figure 12_A0101_SEQ_0159
Figure 12_A0101_SEQ_0160
Figure 12_A0101_SEQ_0161
Figure 12_A0101_SEQ_0162
Figure 12_A0101_SEQ_0163
Figure 12_A0101_SEQ_0164
Figure 12_A0101_SEQ_0165
Figure 12_A0101_SEQ_0166
Figure 12_A0101_SEQ_0167
Figure 12_A0101_SEQ_0168
Figure 12_A0101_SEQ_0169
Figure 12_A0101_SEQ_0170
Figure 12_A0101_SEQ_0171
Figure 12_A0101_SEQ_0172
Figure 12_A0101_SEQ_0173
Figure 12_A0101_SEQ_0174
Figure 12_A0101_SEQ_0175
Figure 12_A0101_SEQ_0176
Figure 12_A0101_SEQ_0177
Figure 12_A0101_SEQ_0178
Figure 12_A0101_SEQ_0179
Figure 12_A0101_SEQ_0180
Figure 12_A0101_SEQ_0181
Figure 12_A0101_SEQ_0182
Figure 12_A0101_SEQ_0183
Figure 12_A0101_SEQ_0184
Figure 12_A0101_SEQ_0185
Figure 12_A0101_SEQ_0186
Figure 12_A0101_SEQ_0187
Figure 12_A0101_SEQ_0188
Figure 12_A0101_SEQ_0189
Figure 12_A0101_SEQ_0190
Figure 12_A0101_SEQ_0191
Figure 12_A0101_SEQ_0192
Figure 12_A0101_SEQ_0193
Figure 12_A0101_SEQ_0194
Figure 12_A0101_SEQ_0195
Figure 12_A0101_SEQ_0196
Figure 12_A0101_SEQ_0197
Figure 12_A0101_SEQ_0198
Figure 12_A0101_SEQ_0199
Figure 12_A0101_SEQ_0200
Figure 12_A0101_SEQ_0201
Figure 12_A0101_SEQ_0202
Figure 12_A0101_SEQ_0203
Figure 12_A0101_SEQ_0204
Figure 12_A0101_SEQ_0205
Figure 12_A0101_SEQ_0206
Figure 12_A0101_SEQ_0207
Figure 12_A0101_SEQ_0208
Figure 12_A0101_SEQ_0209
Figure 12_A0101_SEQ_0210
Figure 12_A0101_SEQ_0211
Figure 12_A0101_SEQ_0212
Figure 12_A0101_SEQ_0213
Figure 12_A0101_SEQ_0214
Figure 12_A0101_SEQ_0215
Figure 12_A0101_SEQ_0216
Figure 12_A0101_SEQ_0217
Figure 12_A0101_SEQ_0218
Figure 12_A0101_SEQ_0219
Figure 12_A0101_SEQ_0220
Figure 12_A0101_SEQ_0221
Figure 12_A0101_SEQ_0222
Figure 12_A0101_SEQ_0223
Figure 12_A0101_SEQ_0224
Figure 12_A0101_SEQ_0225
Figure 12_A0101_SEQ_0226
Figure 12_A0101_SEQ_0227
Figure 12_A0101_SEQ_0228
Figure 12_A0101_SEQ_0229
Figure 12_A0101_SEQ_0230
Figure 12_A0101_SEQ_0231
Figure 12_A0101_SEQ_0232
Figure 12_A0101_SEQ_0233
Figure 12_A0101_SEQ_0234
Figure 12_A0101_SEQ_0235
Figure 12_A0101_SEQ_0236
Figure 12_A0101_SEQ_0237
Figure 12_A0101_SEQ_0238
Figure 12_A0101_SEQ_0239
Figure 12_A0101_SEQ_0240
Figure 12_A0101_SEQ_0241
Figure 12_A0101_SEQ_0242
Figure 12_A0101_SEQ_0243
Figure 12_A0101_SEQ_0244
Figure 12_A0101_SEQ_0245
Figure 12_A0101_SEQ_0246
Figure 12_A0101_SEQ_0247
Figure 12_A0101_SEQ_0248
Figure 12_A0101_SEQ_0249
Figure 12_A0101_SEQ_0250
Figure 12_A0101_SEQ_0251
Figure 12_A0101_SEQ_0252
Figure 12_A0101_SEQ_0253
Figure 12_A0101_SEQ_0254
Figure 12_A0101_SEQ_0255
Figure 12_A0101_SEQ_0256
Figure 12_A0101_SEQ_0257
Figure 12_A0101_SEQ_0258
Figure 12_A0101_SEQ_0259
Figure 12_A0101_SEQ_0260
Figure 12_A0101_SEQ_0261
Figure 12_A0101_SEQ_0262
Figure 12_A0101_SEQ_0263
Figure 12_A0101_SEQ_0264
Figure 12_A0101_SEQ_0265
Figure 12_A0101_SEQ_0266
Figure 12_A0101_SEQ_0267
Figure 12_A0101_SEQ_0268
Figure 12_A0101_SEQ_0269
Figure 12_A0101_SEQ_0270
Figure 12_A0101_SEQ_0271
Figure 12_A0101_SEQ_0272
Figure 12_A0101_SEQ_0273
Figure 12_A0101_SEQ_0274
Figure 12_A0101_SEQ_0275
Figure 12_A0101_SEQ_0276
Figure 12_A0101_SEQ_0277
Figure 12_A0101_SEQ_0278
Figure 12_A0101_SEQ_0279
Figure 12_A0101_SEQ_0280
Figure 12_A0101_SEQ_0281
Figure 12_A0101_SEQ_0282
Figure 12_A0101_SEQ_0283
Figure 12_A0101_SEQ_0284
Figure 12_A0101_SEQ_0285
Figure 12_A0101_SEQ_0286
Figure 12_A0101_SEQ_0287
Figure 12_A0101_SEQ_0288
Figure 12_A0101_SEQ_0289
Figure 12_A0101_SEQ_0290
Figure 12_A0101_SEQ_0291
Figure 12_A0101_SEQ_0292
Figure 12_A0101_SEQ_0293
Figure 12_A0101_SEQ_0294
Figure 12_A0101_SEQ_0295
Figure 12_A0101_SEQ_0296
Figure 12_A0101_SEQ_0297
Figure 12_A0101_SEQ_0298
Figure 12_A0101_SEQ_0299
Figure 12_A0101_SEQ_0300
Figure 12_A0101_SEQ_0301
Figure 12_A0101_SEQ_0302
Figure 12_A0101_SEQ_0303
Figure 12_A0101_SEQ_0304
Figure 12_A0101_SEQ_0305
Figure 12_A0101_SEQ_0306
Figure 12_A0101_SEQ_0307
Figure 12_A0101_SEQ_0308
Figure 12_A0101_SEQ_0309
Figure 12_A0101_SEQ_0310
Figure 12_A0101_SEQ_0311
Figure 12_A0101_SEQ_0312
Figure 12_A0101_SEQ_0313
Figure 12_A0101_SEQ_0314
Figure 12_A0101_SEQ_0315
Figure 12_A0101_SEQ_0316
Figure 12_A0101_SEQ_0317
Figure 12_A0101_SEQ_0318
Figure 12_A0101_SEQ_0319
Figure 12_A0101_SEQ_0320
Figure 12_A0101_SEQ_0321
Figure 12_A0101_SEQ_0322
Figure 12_A0101_SEQ_0323
Figure 12_A0101_SEQ_0324
Figure 12_A0101_SEQ_0325
Figure 12_A0101_SEQ_0326
Figure 12_A0101_SEQ_0327
Figure 12_A0101_SEQ_0328
Figure 12_A0101_SEQ_0329
Figure 12_A0101_SEQ_0330
Figure 12_A0101_SEQ_0331
Figure 12_A0101_SEQ_0332
Figure 12_A0101_SEQ_0333
Figure 12_A0101_SEQ_0334
Figure 12_A0101_SEQ_0335
Figure 12_A0101_SEQ_0336
Figure 12_A0101_SEQ_0337
Figure 12_A0101_SEQ_0338
Figure 12_A0101_SEQ_0339
Figure 12_A0101_SEQ_0340
Figure 12_A0101_SEQ_0341
Figure 12_A0101_SEQ_0342
Figure 12_A0101_SEQ_0343
Figure 12_A0101_SEQ_0344
Figure 12_A0101_SEQ_0345
Figure 12_A0101_SEQ_0346
Figure 12_A0101_SEQ_0347
Figure 12_A0101_SEQ_0348
Figure 12_A0101_SEQ_0349
Figure 12_A0101_SEQ_0350
Figure 12_A0101_SEQ_0351
Figure 12_A0101_SEQ_0352
Figure 12_A0101_SEQ_0353
Figure 12_A0101_SEQ_0354
Figure 12_A0101_SEQ_0355
Figure 12_A0101_SEQ_0356
Figure 12_A0101_SEQ_0357
Figure 12_A0101_SEQ_0358
Figure 12_A0101_SEQ_0359
Figure 12_A0101_SEQ_0360
Figure 12_A0101_SEQ_0361
Figure 12_A0101_SEQ_0362
Figure 12_A0101_SEQ_0363
Figure 12_A0101_SEQ_0364
Figure 12_A0101_SEQ_0365
Figure 12_A0101_SEQ_0366
Figure 12_A0101_SEQ_0367
Figure 12_A0101_SEQ_0368
Figure 12_A0101_SEQ_0369
Figure 12_A0101_SEQ_0370
Figure 12_A0101_SEQ_0371
Figure 12_A0101_SEQ_0372
Figure 12_A0101_SEQ_0373
Figure 12_A0101_SEQ_0374
Figure 12_A0101_SEQ_0375
Figure 12_A0101_SEQ_0376
Figure 12_A0101_SEQ_0377
Figure 12_A0101_SEQ_0378
Figure 12_A0101_SEQ_0379
Figure 12_A0101_SEQ_0380
Figure 12_A0101_SEQ_0381
Figure 12_A0101_SEQ_0382
Figure 12_A0101_SEQ_0383
Figure 12_A0101_SEQ_0384
Figure 12_A0101_SEQ_0385
Figure 12_A0101_SEQ_0386
Figure 12_A0101_SEQ_0387
Figure 12_A0101_SEQ_0388
Figure 12_A0101_SEQ_0389
Figure 12_A0101_SEQ_0390
Figure 12_A0101_SEQ_0391
Figure 12_A0101_SEQ_0392
Figure 12_A0101_SEQ_0393
Figure 12_A0101_SEQ_0394
Figure 12_A0101_SEQ_0395
Figure 12_A0101_SEQ_0396
Figure 12_A0101_SEQ_0397
Figure 12_A0101_SEQ_0398
Figure 12_A0101_SEQ_0399
Figure 12_A0101_SEQ_0400
Figure 12_A0101_SEQ_0401
Figure 12_A0101_SEQ_0402
Figure 12_A0101_SEQ_0403

Claims (28)

  1. 一種mRNA,其包含編碼Cas9之開放閱讀框架,其中該mRNA包含與SEQ ID NO:111、114或117中任一者有至少98%之一致性的序列;以及其中該開放閱讀框架之腺嘌呤含量在其最小腺嘌呤含量至最小腺嘌呤含量之105%範圍內。
  2. 如請求項1之mRNA,其中該mRNA包含SEQ ID NO:111、114或117中任一者之序列。
  3. 如請求項1之mRNA,其中該mRNA包含與SEQ ID NO:111有至少99%之一致性的序列。
  4. 如請求項1之mRNA,其中該mRNA包含SEQ ID NO:111之序列。
  5. 如請求項1之mRNA,其中該mRNA包含SEQ ID NO:114之序列。
  6. 如請求項1之mRNA,其中該mRNA包含SEQ ID NO:117之序列。
  7. 如請求項1之mRNA,其中該開放閱讀框架具有腺嘌呤含量在其最小腺嘌呤含量至該最小腺嘌呤含量之101%、102%、103%或104%範圍內。
  8. 如請求項1之mRNA,其包含與SEQ ID NO:32、SEQ ID NO:34、SEQ ID NO:36、SEQ ID NO:38、SEQ ID NO:41或SEQ ID NO:75至SEQ ID NO:77中之任一者有至少90%之一致性的5' UTR。
  9. 如請求項1之mRNA,其包含與SEQ ID NO:33、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39或SEQ ID NO:40中之任一者有至少90%之一致性的3' UTR。
  10. 如請求項1之mRNA,其包含選自Cap0、Cap1及Cap2之5'帽結構。
  11. 如請求項1之mRNA,其中該Cas9具有雙股核酸內切酶活性。
  12. 如請求項1之mRNA,其中該Cas9具有切口酶活性。
  13. 如請求項1之mRNA,其中該Cas9包含dCas DNA結合域。
  14. 如請求項1之mRNA,其中該Cas9為Cas9裂解酶、Cas9切口酶、或dCas9 DNA結合域。
  15. 如請求項1之mRNA,其中該Cas9進一步包含異源功能域。
  16. 如請求項15之mRNA,其中該異源功能域為FokI核酸酶或轉錄調節域。
  17. 如請求項1之mRNA,其中至少10%之該尿苷被經修飾之尿苷取代。
  18. 如請求項17之mRNA,其中該經修飾之尿苷為N1-甲基-假尿苷、假尿苷、5-甲氧基尿苷或5-碘尿苷中之一或多者。
  19. 如請求項1之mRNA,其中該mRNA包含與SEQ ID NO:177有至少99%之一致性的序列。
  20. 如請求項1之mRNA,其中該mRNA包含SEQ ID NO:177之序列。
  21. 一種組合物,其包含如請求項1至20中任一項之mRNA及至少一種引導RNA。
  22. 一種脂質奈米粒子,其包含如請求項1至20中任一項之mRNA。
  23. 如請求項22之脂質奈米粒子,其進一步包含至少一種引導RNA。
  24. 一種醫藥組合物,其包含如請求項1至20中任一項之mRNA及醫藥學上可接受之載劑。
  25. 如請求項24之醫藥組合物,其進一步包含至少一種引導RNA。
  26. 一種如請求項1至20中任一項之mRNA、如請求項21之組合物、如請求項22或23之脂質奈米粒子或如請求項24或25之醫藥組合物之用途,其用於製造用於基因組編輯或修飾靶基因之藥劑。
  27. 如請求項26之用途,其中該靶基因之基因組編輯或修飾係在肝臟細胞(liver cell)中進行。
  28. 如請求項27之用途,其中該肝臟細胞為肝細胞(hepatocyte)。
TW107134334A 2017-09-29 2018-09-28 用於基因組編輯之多核苷酸、組合物及方法 TWI839337B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762566144P 2017-09-29 2017-09-29
US62/566,144 2017-09-29

Publications (2)

Publication Number Publication Date
TW201923077A TW201923077A (zh) 2019-06-16
TWI839337B true TWI839337B (zh) 2024-04-21

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017036889A1 (en) 2015-08-28 2017-03-09 Biontech Rna Pharmaceuticals Gmbh Method for reducing immunogenicity of rna

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017036889A1 (en) 2015-08-28 2017-03-09 Biontech Rna Pharmaceuticals Gmbh Method for reducing immunogenicity of rna

Similar Documents

Publication Publication Date Title
US11697806B2 (en) Polynucleotides, compositions, and methods for genome editing
US11965165B2 (en) Compositions and methods for TTR gene editing and treating ATTR amyloidosis
US20230203480A1 (en) Lipid nanoparticle formulations for crispr/cas components
US20240124897A1 (en) Compositions and Methods Comprising a TTR Guide RNA and a Polynucleotide Encoding an RNA-Guided DNA Binding Agent
US20230212575A1 (en) Compositions and Methods for Treating Alpha-1 Antitrypsin Deficiency
US20230012687A1 (en) Polynucleotides, Compositions, and Methods for Polypeptide Expression
TWI839337B (zh) 用於基因組編輯之多核苷酸、組合物及方法
TW202325848A (zh) 用於基因體編輯之多核苷酸、組合物及方法
TW201924724A (zh) 調配物