TW201924724A - 調配物 - Google Patents

調配物 Download PDF

Info

Publication number
TW201924724A
TW201924724A TW107134481A TW107134481A TW201924724A TW 201924724 A TW201924724 A TW 201924724A TW 107134481 A TW107134481 A TW 107134481A TW 107134481 A TW107134481 A TW 107134481A TW 201924724 A TW201924724 A TW 201924724A
Authority
TW
Taiwan
Prior art keywords
composition
lipid
mol
lnp
rna
Prior art date
Application number
TW107134481A
Other languages
English (en)
Other versions
TWI833708B (zh
Inventor
克莉絲蒂 M 伍德
挪亞 保羅 高德奈
露奇 羅德拉帕薩德 夏哈
史戴分 S 史考利
藍西 馬兆
Original Assignee
美商英特利亞醫療公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商英特利亞醫療公司 filed Critical 美商英特利亞醫療公司
Publication of TW201924724A publication Critical patent/TW201924724A/zh
Application granted granted Critical
Publication of TWI833708B publication Critical patent/TWI833708B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/346Spatial arrangement of the modifications having a combination of backbone and sugar modifications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/352Nature of the modification linked to the nucleic acid via a carbon atom
    • C12N2310/3521Methyl
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites

Abstract

本發明提供具有用於遞送生物活性劑之經改良特性之基於脂質奈米粒子之組合物、工程改造細胞及遞送該生物活性劑之方法。

Description

調配物
本文提供具有用於遞送生物活性劑,尤其RNA、mRNA及引導RNA之經改良特性的脂質奈米粒子(「LNP」)組合物。LNP組合物促進跨細胞膜遞送RNA試劑,且在特定實施例中,其將用於基因編輯之組分及組合物引入至活細胞中。
尤其難以遞送至細胞之生物活性劑包括蛋白質、基於核酸之藥物及其衍生物。將有前景的基因編輯技術遞送至細胞中,諸如用於遞送CRISPR/Cas9系統組分之組合物為特別感興趣的。
現存在活體內編輯細胞中之基因的數個組件及系統,為治療疾病提供了極大潛力。CRISPR/Cas基因編輯系統有效地作為細胞中之核糖核蛋白複合物。RNA定向核酸酶結合至細胞中之DNA序列且導引該序列之裂解。此位點特異性核酸酶活性促進經由細胞自身之自然過程進行基因編輯。舉例而言,細胞對藉由稱為非同源末端連接(「NHEJ」)之易錯修復過程之雙股DNA斷裂(DSB)起反應。在NHEJ期間,核苷酸可藉由細胞添加至DNA末端或自其移除,產生改變自裂解序列之序列。在其他情況下,細胞藉由同源定向修復(「HDR」)或同源重組(「HR」)機制修復DSB,其中內源性或外源性模板可用於直接修復斷裂。此等編輯技術中之若干者利用細胞機制來修復單股斷裂(SSB)或DSB。
需要將CRISPR/Cas之蛋白質及核酸組分遞送至細胞,諸如患者之細胞的組合物。特定言之,對遞送編碼CRISPR蛋白質組分之mRNA,及遞送CRISPR引導RNA之組合物特別感興趣。具有可穩定及遞送RNA組分的適用於活體外及中活體內遞送之特性的組合物亦備受關注。
吾人在本文中提供基於脂質奈米粒子之組合物,其具有尤其適用於遞送CRISPR/Cas基因編輯組分之特性。
在某些實施例中,LNP組合物包含:RNA組分;及脂質組分,其中脂質組分包含:(1)約50至60 mol%胺脂質;(2)約8至10 mol%中性脂質;且(3)約2.5至4 mol% PEG脂質,其中脂質組分之剩餘部分為輔助脂質,且其中LNP組合物之N/P比為約6。在額外實施例中,LNP組合物包含(1)RNA組分;(2)約50至60 mol%胺脂質;(3)約27至39.5 mol%輔助脂質;(4)約8至10 mol%中性脂質;及(5)約2.5至4 mol%PEG脂質,其中LNP組合物之N/P比為約5至7。
在其他實施例中,LNP組合物包含RNA組分及脂質組分,其中脂質組分包含:(1)約50至60 mol%胺脂質;(2)約5至15 mol%中性脂質;及(3)約2.5至4 mol% PEG脂質,其中脂質組分之剩餘部分為輔助脂質,且其中LNP組合物之N/P比為約3至10。在額外實施例中,LNP組合物包含脂質組分,其包括(1)約40至60 mol%胺脂質;(2)約5至15 mol%中性脂質;及(3)約2.5至4 mol% PEG脂質,其中脂質組分之剩餘部分為輔助脂質,且其中LNP組合物之N/P比為約6。在另一實施例中,LNP組合物包含脂質組分,其包括(1)約50至60 mol%胺脂質;(2)約5至15 mol%中性脂質;及(3)約1.5至10 mol% PEG脂質,其中脂質組分之剩餘部分為輔助脂質,且其中LNP組合物之N/P比為約6。
在一些實施例中,LNP組合物包含RNA組分及脂質組分,其中脂質組分包含:(1)約40至60 mol%胺脂質;(2)約0至5 mol%中性脂質,例如磷脂;及(3)約1.5至10 mol% PEG脂質,其中脂質組分之剩餘部分為輔助脂質,且其中LNP組合物之N/P比為約3至10。在一些實施例中,LNP組合物包含RNA組分及脂質組分,其中脂質組分包含:(1)約40至60 mol%胺脂質;(2)小於約1 mol%中性脂質,例如磷脂;及(3)約1.5至10 mol% PEG脂質,其中脂質組分之剩餘部分為輔助脂質,且其中LNP組合物之N/P比為約3至10。在某些實施例中,LNP組合物基本上不含中性脂質。在一些實施例中,LNP組合物包含RNA組分及脂質組分,其中脂質組分包含:(1)約40至60 mol%胺脂質;及(2)約1.5至10 mol% PEG脂質,其中脂質組分之剩餘部分為輔助脂質,其中LNP組合物之N/P比為約3至10,且其中LNP組合物不含中性脂質,例如磷脂。在某些實施例中,LNP組合物基本上不含或不含中性磷脂。在某些實施例中,LNP組合物基本上不含或不含中性脂質,例如磷脂。
在某些實施例中,RNA組分包含mRNA,諸如經RNA引導之DNA結合劑(例如Cas核酸酶或第2類Cas核酸酶)。在某些實施例中,RNA組分包含gRNA。
本申請案主張2017年9月29日申請之美國臨時專利申請案第62/566,240號之優先權,其內容以全文引用之方式併入本文中。
本發明提供遞送至細胞之RNA,包括CRISPR/Cas組分RNA (「負荷」)之脂質奈米粒子(LNP)組合物及其使用方法之實施例。LNP組合物可展現相比於先前遞送技術改良之特性。LNP組合物可含有如本文中所定義之RNA組分及脂質組分。在某些實施例中,RNA組分包括Cas核酸酶,諸如第2類Cas核酸酶。在某些實施例中,負荷或RNA組分包括編碼第2類Cas核酸酶之mRNA及引導RNA或編碼引導RNA之核酸。亦提供基因編輯方法及製備工程改造細胞之方法。
CRISPR / Cas 負荷
經由LNP調配物遞送之CRISPR/Cas負荷可包括編碼所關注蛋白質之mRNA分子。舉例而言,包括用於表現諸如綠色螢光蛋白(GFP)之蛋白質的mRNA,及經RNA引導之DNA結合劑,或Cas核酸酶。提供LNP組合物,其包括Cas核酸酶mRNA,例如允許在Cas9蛋白質之細胞中表現之第2類Cas核酸酶mRNA。另外,負荷可含有一或多種引導RNA或編碼引導RNA之核酸。例如用於修復或重組之模板核酸亦可包括於該組合物中或模板核酸可用於本文所描述之方法中。
「mRNA」係指包含可轉譯成多肽(亦即可充當藉由核糖體及胺基醯化tRNA進行轉譯之基質)之開放閱讀框架的聚核苷酸。mRNA可包含包括核糖殘基或其類似物,例如2'-甲氧基核糖殘基之磷酸酯-糖主鏈。在一些實施例中,mRNA磷酸酯-糖主鏈之糖基本上由核糖殘基、2'-甲氧基核糖殘基或其組合組成。通常而言,mRNA不含大量胸苷殘基(例如0個殘基或小於30、20、10、5、4、3或2個胸苷殘基;或小於10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、0.5%、0.2%或0.1%的胸苷含量)。mRNA可在其一些或全部尿苷位置處含有經修飾之尿苷。
CRISPR / Cas 核酸酶 系統
所揭示之調配物之一種組分為編碼經RNA引導之DNA結合劑(諸如Cas核酸酶)之mRNA。
如本文所用,「經RNA引導之DNA結合劑」意謂具有RNA及DNA結合活性之多肽或多肽複合物,或此類複合物之DNA結合次單位,其中DNA結合活性具有序列特異性且視RNA之序列而定。例示性經RNA引導之DNA結合劑包括Cas裂解酶/切口酶及其不活化形式(「dCas DNA結合劑」)。如本文所用,「Cas核酸酶」涵蓋Cas裂解酶、Cas切口酶及dCas DNA結合劑。Cas裂解酶/切口酶及dCas DNA結合劑包括第III型CRISPR系統之Csm或Cmr複合物、其Cas10、Csm1或Cmr2次單位、第I型CRISPR系統之級聯複合物、其Cas3次單位及2類Cas核酸酶。如本文所用,「第2類Cas核酸酶」為具有經RNA引導之DNA結合活性的單鏈多肽。第2類Cas核酸酶包括第2類Cas裂解酶/切口酶(例如H840A、D10A或N863A變異體),其進一步具有經RNA引導之DNA裂解酶或切口酶活性,及第2類dCas DNA結合劑,其中裂解酶/切口酶活性未活化。第2類Cas核酸酶包括例如Cas9、Cpf1、C2c1、C2c2、C2c3、HF Cas9 (例如N497A、R661A、Q695A、Q926A變異體)、HypaCas9 (例如N692A、M694A、Q695A、H698A變異體)、eSPCas9(1.0) (例如K810A、K1003A、R1060A變異體)及eSPCas9(1.1) (例如K848A、K1003A、R1060A變異體)蛋白質及其修飾形式。Cpf1蛋白質(Zetsche等人, Cell, 163: 1-13 (2015))與Cas9同源且含有RuvC樣核酸酶域。Zetsche之Cpf1序列以全文引用之方式併入。參見例如Zetsche,表S1及表S3。參見例如Makarova等人, Nat Rev Microbiol, 13(11): 722-36 (2015);Shmakov等人, Molecular Cell, 60:385-397 (2015)。
在一些實施例中,經RNA引導之DNA結合劑為第2類Cas核酸酶。在一些實施例中,經RNA引導之DNA結合劑具有裂解酶活性,其亦可稱作雙股核酸內切酶活性。在一些實施例中,經RNA引導之DNA結合劑包含Cas核酸酶,諸如第2類Cas核酸酶(其可為例如第II型、第V型或第VI型Cas核酸酶)。第2類Cas核酸酶包括例如Cas9、Cpf1、C2c1、C2c2及C2c3蛋白及其修飾形式。Cas9核酸酶之實例包括釀膿鏈球菌、金黃色葡萄球菌及其他原核生物(參見例如下一段落中之清單)之第II型CRISPR系統之彼等者及其經修飾(例如經工程改造或突變型)形式。參見例如U.S. 2016/0312198 A1;U.S. 2016/0312199 A1。Cas核酸酶之其他實例包括第III型CRISPR系統之Csm或Cmr複合物或其Cas10、Csm1或Cmr2次單位;及第I型CRISPR系統之級聯複合物或其Cas3次單位。在一些實施例中,Cas核酸酶可來自第IIA型、第IIB型或第IIC型系統。關於各種CRISPR系統及Cas核酸酶之論述,參見例如Makarova等人, Nat. Rev. Microbiol. 9:467-477 (2011);Makarova等人, Nat. Rev. Microbiol, 13: 722-36 (2015);Shmakov等人, Molecular Cell, 60:385-397 (2015)。
可衍生Cas核酸酶之非限制性例示性物種包括釀膿鏈球菌(Streptococcus pyogenes)、嗜熱鏈球菌(Streptococcus thermophilus)、鏈球菌屬、金黃色葡萄球菌(Staphylococcus aureus)、無害李氏菌(Listeria innocua)、加氏乳桿菌(Lactobacillus gasseri)、新兇手弗朗西斯氏菌(Francisella novicida)、產琥珀酸沃廉菌(Wolinella succinogenes)、華德薩特菌(Sutterella wadsworthensis)、伽馬變形菌(Gammaproteobacterium)、奈瑟氏腦膜炎菌(Neisseria meningitidis)、空腸彎曲桿菌(Campylobacter jejuni)、多殺巴斯德菌(Pasteurella multocida)、產琥珀酸纖維桿菌(Fibrobacter succinogene)、深紅紅螺菌(Rhodospirillum rubrum)、達松維爾擬諾卡氏菌(Nocardiopsis dassonvillei)、始旋鏈黴菌(Streptomyces pristinaespiralis)、產綠色鏈黴菌(Streptomyces viridochromogenes)、產綠色鏈黴菌、粉紅鏈孢囊菌(Streptosporangium roseum)、粉紅鏈孢囊菌、嗜酸熱脂環桿菌(Alicyclobacillus acidocaldarius)、假蕈狀芽孢桿菌(Bacillus pseudomycoides)、砷還原芽孢桿菌(Bacillus selenitireducens)、西伯利亞微小桿菌(Exiguobacterium sibiricum)、戴白氏乳桿菌(Lactobacillus delbrueckii)、唾液乳桿菌(Lactobacillus salivarius)、布氏乳桿菌(Lactobacillus buchneri)、齒垢密螺旋體(Treponema denticola)、海洋微顫菌(Microscilla marina)、伯克霍爾德氏細菌(Burkholderiales bacterium)、Polaromonas naphthalenivorans、單胞菌屬(Polaromonas sp.)、瓦氏鱷球藻(Crocosphaera watsonii)、鱷球藻屬、銅綠微囊藻(Microcystis aeruginosa)、聚球藻屬(Synechococcus sp.)、阿拉伯糖醋桿菌(Acetohalobium arabaticum)、根製氨菌(Ammonifex degensii)、熱解纖維素菌(Caldicelulosiruptor becscii)、脫硫菌候選種(Candidatus Desulforudis)、肉毒梭菌(Clostridium botulinum)、艱難梭菌(Clostridium difficile)、大芬戈爾德菌(Finegoldia magna)、嗜熱鹽鹼厭氧菌(Natranaerobius thermophilus)、Pelotomaculum thermopropionicum、嗜酸性喜溫硫桿菌(Acidithiobacillus caldus)、嗜酸氧化亞鐵硫桿菌(Acidithiobacillus ferrooxidans)、酒色異著色菌(Allochromatium vinosum)、海桿菌屬、嗜鹽亞硝化球菌(Nitrosococcus halophilus)、瓦氏亞硝化球菌(Nitrosococcus watsoni)、遊海假交替單胞菌(Pseudoalteromonas haloplanktis)、Ktedonobacter racemifer、evestigatum甲烷鹽菌(Methanohalobium evestigatum)、變異念珠藻(Anabaena variabilis)、泡沫節球藻(Nodularia spumigena)、念珠藻屬(Nostoc sp.)、極大節旋藻(Arthrospira maxima)、鈍頂節旋藻(Arthrospira platensis)、節旋藻屬、螺旋藻屬(Lyngbya sp.)、原型微鞘藻(Microcoleus chthonoplastes)、顫藻屬(Oscillatoria sp.)、運動石袍菌(Petrotoga mobilis)、非洲高熱桿菌(Thermosipho africanus)、巴氏鏈球菌(Streptococcus pasteurianus)、灰色奈瑟球菌(Neisseria cinerea)、紅嘴鷗彎曲桿菌(Campylobacter lari)、食清潔劑細小棒菌(Parvibaculum lavamentivorans)、白喉棒狀桿菌(Corynebacterium diphtheria)、胺基酸球菌屬(Acidaminococcus sp.)、毛螺科菌(Lachnospiraceae bacterium) ND2006及海洋無核氯菌(Acaryochloris marina)。
在一些實施例中,Cas核酸酶為來自釀膿鏈球菌之Cas9核酸酶。在一些實施例中,Cas核酸酶為來自嗜熱鏈球菌之Cas9核酸酶。在一些實施例中,Cas核酸酶為來自腦膜炎雙球菌之Cas9核酸酶。在一些實施例中,Cas核酸酶為來自金黃色葡萄球菌之Cas9核酸酶。在一些實施例中,Cas核酸酶為來自新兇手弗朗西斯氏菌之Cpf1核酸酶。在一些實施例中,Cas核酸酶為來自胺基酸球菌屬之Cpf1核酸酶。在一些實施例中,Cas核酸酶為來自毛螺科菌ND2006之Cpf1核酸酶。在其他實施例中,Cas核酸酶為來自以下之Cpf1核酸酶:土拉文氏桿菌(Francisella tularensis )、毛螺科菌、瘤胃溶纖維丁酸弧菌(Butyrivibrio proteoclasticus )、佩氏細菌(Peregrinibacteria bacterium )、帕庫氏菌(Parcubacteria bacterium )、史密斯氏菌(Smithella )、胺基酸球菌屬、白蟻甲烷支原體菌候選種(Candidatus Methanoplasma termitum )、挑剔真桿菌(Eubacterium eligens )、牛眼莫拉菌(Moraxella bovoculi )、稻田鉤端螺旋體(Leptospira inadai )、狗口腔卟啉單胞菌(Porphyromonas crevioricanis )、解糖腖普雷沃菌(Prevotella disiens )或獼猴卟啉單胞菌(Porphyromonas macacae )。在某些實施例中,Cas核酸酶為來自胺基酸球菌屬或毛螺菌科之Cpf1核酸酶。
野生型Cas9具有兩個核酸酶域:RuvC及HNH。RuvC域裂解非靶DNA股,且HNH域裂解靶DNA股。在一些實施例中,Cas9核酸酶包含多於一個RuvC域及/或多於一個HNH域。在一些實施例中,Cas9核酸酶為野生型Cas9。在一些實施例中,Cas9能夠誘導靶DNA中之雙股斷裂。在某些實施例中,Cas核酸酶可裂解dsDNA,其可裂解dsDNA之一個股,或其可不具有DNA裂解酶或切口酶活性。一個例示性Cas9胺基酸序列提供為SEQ ID NO: 3形式。一個包括起始及終止密碼子之例示性Cas9 mRNA ORF序列提供為SEQ ID NO: 4形式。一個適於包括在融合蛋白質中之例示性Cas9 mRNA寫碼序列提供為SEQ ID NO: 10形式。
在一些實施例中,使用嵌合Cas核酸酶,其中蛋白質之一個域或區經不同蛋白質之一部分置換。在一些實施例中,Cas核酸酶域可經來自諸如Fok1之不同核酸酶的域替代。在一些實施例中,Cas核酸酶可為經修飾之核酸酶。
在其他實施例中,Cas核酸酶可來自第I型CRISPR/Cas系統。在一些實施例中,Cas核酸酶可為第I型CRISPR/Cas系統之級聯複合物之組分。在一些實施例中,Cas核酸酶可為Cas3蛋白質。在一些實施例中,Cas核酸酶可來自第III型CRISPR/Cas系統。在一些實施例中,Cas核酸酶可具有RNA裂解活性。
在一些實施例中,經RNA引導之DNA結合劑具有單股切口酶活性,亦即可切割一個DNA股以產生單股斷裂,亦稱為「切口」。在一些實施例中,經RNA引導之DNA結合劑包含Cas切口酶。切口酶為在dsDNA中產生切口,亦即切割一個股但不切割DNA雙螺旋之另一股的酶。在一些實施例中,Cas切口酶為其中例如藉由催化區之一或多種變化(例如點突變),使核酸內切酶活性位點不活化的Cas核酸酶之形式(例如上文所論述之Cas核酸酶)。關於Cas切口酶及例示性催化域變化之論述,參見例如美國專利第8,889,356號。在一些實施例中,Cas切口酶,諸如Cas9切口酶具有不活化之RuvC或HNH域。一個例示性Cas9切口酶胺基酸序列提供為SEQ ID NO: 6形式。一個包括起始及終止密碼子之例示性Cas9切口酶mRNA ORF序列提供為SEQ ID NO: 7形式。一個適於包括在融合蛋白質中之例示性Cas9切口酶mRNA編碼序列提供為SEQ ID NO: 11形式。
在一些實施例中,經RNA引導之DNA結合劑經修飾而僅含有一個功能核酸酶域。舉例而言,試劑蛋白質可經修飾以使得核酸酶域中之一者經突變或完全或部分缺失以降低其核酸裂解活性。在一些實施例中,使用具有活性降低之RuvC域之切口酶。在一些實施例中,使用具有非活性RuvC域之切口酶。在一些實施例中,使用具有活性降低之HNH域之切口酶。在一些實施例中,使用具有非活性HNH域之切口酶。
在一些實施例中,Cas蛋白質核酸酶域中之保守胺基酸經取代以降低或改變核酸酶活性。在一些實施例中,Cas核酸酶可包含RuvC或RuvC樣核酸酶域中之胺基酸取代。RuvC或RuvC樣核酸酶域中之例示性胺基酸取代包括D10A(基於化膿性鏈球菌Cas9蛋白質)。參見例如Zetsche等人 (2015)Cell 10月 22:163(3): 759-771。在一些實施例中,Cas核酸酶可包含HNH或HNH樣核酸酶域中之胺基酸取代。HNH或HNH樣核酸酶域中之例示性胺基酸取代包括E762A、H840A、N863A、H983A及D986A(基於化膿性鏈球菌Cas9蛋白質)。參見例如Zetsche等人 (2015)。其他例示性胺基酸取代包括D917A、E1006A及D1255A (基於新兇手弗朗西斯氏菌U112 Cpf1 (FnCpf1)序列(UniProtKB - A0Q7Q2 (CPF1_FRATN))。
在一些實施例中,將與分別與靶序列之有義股及反義股互補之一對引導RNA組合提供編碼切口酶之mRNA。在此實施例中,引導RNA將切口酶導引至靶序列且藉由在靶序列之相對股上產生切口而引入DSB(亦即雙重切口)。在一些實施例中,使用雙重切口可提高特異性及減少脫靶效應。在一些實施例中,連同靶向DNA之相對股之兩個獨立引導RNA使用切口酶以在目標DNA中產生雙重切口。在一些實施例中,連同經選擇以非常接近之兩個獨立引導RNA使用切口酶以在靶DNA中產生雙鏈裂。
在一些實施例中,經RNA引導之DNA結合劑缺乏裂解酶及切口酶活性。在一些實施例中,經RNA引導之DNA結合劑包含dCas DNA結合多肽。dCas多肽具有DNA結合活性,而基本上缺乏催化(裂解酶/切口酶)活性。在一些實施例中,dCas多肽為dCas9多肽。在一些實施例中,缺乏裂解酶及切口酶活性的經RNA引導之DNA結合劑或dCas DNA結合多肽為其中例如藉由催化域之一或多種變化(例如點突變),使核酸內切酶活性位點不活化的Cas核酸酶之形式(例如上文所論述之Cas核酸酶)。參見例如U.S. 2014/0186958 A1;U.S. 2015/0166980 A1。例示性dCas9胺基酸序列提供為SEQ ID NO: 8形式。一個包括起始及終止密碼子之例示性Cas9 mRNA ORF序列提供為SEQ ID NO: 9形式。一個適於包括在融合蛋白質中之例示性Cas9 mRNA寫碼序列提供為SEQ ID NO: 12形式。
在一些實施例中,經RNA引導之DNA結合劑包含一或多個異源功能域(例如為或包含融合多肽)。
在一些實施例中,異源功能域可促進將經RNA引導之DNA結合劑輸送至細胞核中。舉例而言,異源功能域可為核定位信號(NLS)。在一些實施例中,經RNA引導之DNA結合劑可與1至10個NLS融合。在一些實施例中,經RNA引導之DNA結合劑可與1至5個NLS融合。在一些實施例中,經RNA引導之DNA結合劑可與一個NLS融合。在使用一個NLS之情況下,NLS可連接在經RNA引導之DNA結合劑序列之N端或C端處。其亦可插入經RNA引導之DNA結合劑序列內。在其他實施例中,經RNA引導之DNA結合劑可與多於一個NLS融合。在一些實施例中,經RNA引導之DNA結合劑可與2、3、4或5個NLS融合。在一些實施例中,經RNA引導之DNA結合劑可與兩個NLS融合。在某些情況下,兩個NLS可相同(例如兩個SV40 NLS)或不同。在一些實施例中,經RNA引導之DNA結合劑與連接在羧基末端處之兩個SV40 NLS序列融合。在一些實施例中,經RNA引導之DNA結合劑可與兩個NLS融合,一個NLS連接在N端處且一個連接在C端處。在一些實施例中,經RNA引導之DNA結合劑可與3個NLS融合。在一些實施例中,經RNA引導之DNA結合劑可不與NLS融合。在一些實施例中,NLS可為單份序列,諸如SV40 NLS、PKKKRKV或PKKKRRV。在一些實施例中,NLS可為二分序列,諸如核質蛋白之NLS,KRPAATKKAGQAKKKK。在一特定實施例中,單一PKKKRKV NLS可連接於經RNA引導之DNA結合劑的C端。一或多個連接子視情況包括在融合位點處。
在一些實施例中,異源功能域可能能夠修改經RNA引導之DNA結合劑的胞內半衰期。在一些實施例中,經RNA引導之DNA結合劑之半衰期可提高。在一些實施例中,經RNA引導之DNA結合劑之半衰期可降低。在一些實施例中,異源功能域可能能夠增加經RNA引導之DNA結合劑的穩定性。在一些實施例中,異源功能域可能能夠降低經RNA引導之DNA結合劑的穩定性。在一些實施例中,異源功能域可充當蛋白質降解之信號肽。在一些實施例中,蛋白質降解可由蛋白水解酶,諸如蛋白酶體、溶酶體蛋白酶或鈣蛋白酶蛋白酶介導。在一些實施例中,異源功能域可包含PEST序列。在一些實施例中,經RNA引導之DNA結合劑可藉由添加泛素或多泛素鏈來修飾。在一些實施例中,泛素可為類泛素蛋白質(UBL)。類泛素蛋白質之非限制性實例包括小類泛素修飾因子(SUMO)、泛素交叉反應蛋白(UCRP,亦稱為干擾素刺激基因-15 (ISG15))、泛素相關修飾因子-1 (URM1)、神經元-前驅體-細胞表現之發育下調蛋白-8(NEDD8,在釀酒酵母(S . cerevisiae )中亦稱作Rub1)、人類白血球抗原F相關(FAT10)、自噬-8 (ATG8)及自噬-12 (ATG12)、Fau類泛素蛋白(FUB1)、膜錨定UBL (MUB)、泛素摺疊修飾因子-1 (UFM1)及類泛素蛋白-5 (UBL5)。
在一些實施例中,異源功能域可為標記域。標記域之非限制性實例包括螢光蛋白、純化標記、抗原決定基標記及報導基因序列。在一些實施例中,標記域可為螢光蛋白。適合螢光蛋白之非限制實例包括綠色螢光蛋白(例如,GFP、GFP-2、tagGFP、turboGFP、sfGFP、EGFP、翡翠色(Emerald)、Azami綠(Azami Green)、單Azami綠(Monomeric Azami Green)、CopGFP、AceGFP、ZsGreen1)、黃色螢光蛋白(例如,YFP、EYFP、Citrine、Venus、YPet、PhiYFP、ZsYellow1)、藍色螢光蛋白(例如,EBFP、EBFP2、Azurite、mKalamal、GFPuv、藍寶石色(Sapphire)、T-藍寶石色(T-sapphire))、強化型藍螢光蛋白(例如,ECFP、Cerulean、CyPet、AmCyan1、Midoriishi強化型藍(Midoriishi-Cyan))、紅色螢光蛋白(mKate、mKate2、mPlum、DsRed單色、mCherry、mRFP1、DsRed-Express、DsRed2、DsRed單色、HcRed串色、HcRed1、AsRed2、eqFP611、mRasberry、mStrawberry、Jred)及橙色螢光蛋白(mOrange、mKO、Kusabira橙色(Kusabira-Orange)、單Kusabira橙色(Monomeric Kusabira-Orange)、mTangerine、tdTomato)或任何其他適合之螢光蛋白。在其他實施例中,標記域可為純化標籤及/或抗原決定基標籤。非限制性之例示性標籤包括麩胱甘肽-S-轉移酶(glutathione-S-transferase,GST)、殼質結合蛋白(CBP)、麥芽糖結合蛋白(MBP)、硫氧還蛋白(thioredoxin,TRX)、聚(NANP)、串聯親和純化(tandem affinity purification,TAP)標籤、myc、AcV5、AU1、AU5、E、ECS、E2、FLAG、HA、nus、Softag 1、Softag 3、鏈黴素、SBP、Glu-Glu、HSV、KT3、S、S1、T7、V5、VSV-G、6×His、8×His、生物素羧基載體蛋白質(BCCP)、聚His及調鈣蛋白。非限制性之例示性報導基因包括麩胱甘肽-S-轉移酶(GST)、辣根過氧化酶(HRP)、氯黴素乙醯基轉移酶(CAT)、β-半乳糖苷酶、β-葡糖苷酸酶、螢光素酶或螢光蛋白。
在其他實施例中,異源功能域可將經RNA引導之DNA結合劑靶向至特定細胞器、細胞型、組織或器官。在一些實施例中,異源功能域可將經RNA引導之DNA結合劑靶向至粒線體。
在其他實施例中,異源功能域可為效應子域。當經RNA引導之DNA結合劑導引至其靶序列時,例如當Cas核酸酶藉由gRNA導引至靶序列時,效應子域可修飾或影響靶序列。在一些實施例中,效應子域可選自核酸結合域、核酸酶域(例如非Cas核酸酶域)、表觀遺傳修飾域、轉錄活化域或轉錄抑制子域。在一些實施例中,異源功能域為核酸酶,諸如FokI核酸酶。參見例如美國專利第9,023,649號。在一些實施例中,異源功能域為轉錄活化因子或抑制子。參見例如Qi等人, 「Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression」,Cell 152:1173-83 (2013);Perez-Pinera等人, 「RNA-guided gene activation by CRISPR-Cas9-based transcription factors」,Nat. Methods 10:973-6 (2013);Mali等人, 「CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering」,Nat. Biotechnol. 31:833-8 (2013);Gilbert等人, 「CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes」,Cell 154:442-51 (2013)。因此,經RNA引導之DNA結合劑基本上變成可使用引導RNA導引以結合所需靶序列之轉錄因子。在某些實施例中,DNA修飾域為甲基化域,諸如去甲基化或甲基轉移酶域。在某些實施例中,效應子域為DNA修飾域,諸如鹼基編輯域。在特定實施例中,DNA修飾域為將特異性修飾引入DNA中之核酸編輯域,諸如脫胺酶域。參見例如WO 2015/089406;U.S. 2016/0304846。WO 2015/089406及U.S. 2016/0304846中所述之核酸編輯域、脫胺酶域及Cas9變異體係以引用之方式併入本文中。
核酸酶可包含至少一個與引導RNA(「gRNA」)相互作用之域。另外,核酸酶可藉由gRNA導引至靶序列。在第2類Cas核酸酶系統中,gRNA與核酸酶以及靶序列相互作用,使其導引與靶序列之結合。在一些實施例中,gRNA為靶向裂解提供特異性,且核酸酶可通用且與不同gRNA配對以裂解不同靶序列。第2類Cas核酸酶可與以上列出之類型、直系同源物及例示性物種之gRNA骨架結構配對。
引導 RNA ( gRNA )
在本發明之一些實施例中,LNP調配物之負荷包括至少一個gRNA。gRNA可將Cas核酸酶或第2類Cas核酸酶導引至靶核酸分子上之靶序列。在一些實施例中,gRNA與第2類Cas核酸酶結合且藉由其提供裂解特異性。在一些實施例中,gRNA及Cas核酸酶可形成核糖核蛋白(RNP),例如CRISPR/Cas複合物,諸如CRISPR/Cas9複合物,其可藉由LNP組合物遞送。在一些實施例中,CRISPR/Cas複合物可為第II型CRISPR/Cas9複合物。在一些實施例中,CRISPR/Cas複合物可為第V型CRISPR/Cas複合物,諸如Cpf1/引導RNA複合物。Cas核酸酶及同源gRNA可配對。與各第2類Cas核酸酶配對之gRNA骨架結構隨特定CRISPR/Cas系統變化。
「引導RNA」、「gRNA」及簡稱「引導物」在本文中互換使用來指代crRNA (亦稱為CRISPR RNA)或crRNA與trRNA (亦稱為tracrRNA)之組合任一者。crRNA及trRNA可以單一RNA分子(單引導RNA,sgRNA)或以兩個獨立RNA分子(雙引導RNA,dgRNA)形式締合。「引導RNA」或「gRNA」係指各類型。trRNA可為天然存在之序列或與天然存在之序列相比具有修飾或變化之trRNA序列。
如本文所用,「引導序列」係指引導RNA中與靶序列互補且用以藉由經RNA引導之DNA結合劑將引導RNA導引至靶序列以供結合或修飾(例如裂解)的序列。「引導序列」亦可稱為「靶序列」或「間隔序列」。引導序列之長度可為20個鹼基對,例如在釀膿鏈球菌(Streptococcus pyogenes ) (亦即Spy Cas9)及相關Cas9同源物/直系同源物之情況下。較短或較長序列亦可用作引導物,例如長度為15、16、17、18、19、21、22、23、24或25個核苷酸。在一些實施例中,靶序列處於例如基因中或染色體上,且與引導序列互補。在一些實施例中,引導序列與其相應靶序列之間的互補性或一致性之程度可為約75%、80%、85%、90%、95%、96%、97%、98%、99%或100%。在一些實施例中,引導序列與標靶區可為100%互補或一致的。在其他實施例中,引導序列與標靶區可含有至少一個錯配。舉例而言,引導序列及靶序列可含有1、2、3或4個錯配,其中靶序列之總長度為至少17、18、19、20或大於20個鹼基對。在一些實施例中,引導序列及標靶區可含有1至4個錯配,其中引導序列包含至少17、18、19、20或大於20個核苷酸。在一些實施例中,引導序列及標靶區可含有1、2、3或4個錯配,其中引導序列包含20個核苷酸。
針對Cas蛋白質之靶序列包括基因組DNA之正鏈及負鏈兩者(亦即給定序列及該序列之反向互補序列),因為Cas蛋白質之核酸受質為雙股核酸。因此,在論述引導序列「與靶序列互補」之情況下,應理解,引導序列可導引引導RNA結合至靶序列之反向互補序列。因此,在一些實施例中,在引導序列結合靶序列之反向互補序列之情況下,引導序列與靶序列(例如不包括PAM之靶序列)之某些核苷酸相同,不同之處在於引導序列中U取代T。
靶向序列之長度可取決於使用之CRISPR/Cas系統及組分。舉例而言,來自不同細菌物種之不同第2類Cas核酸酶具有改變之最佳靶向序列長度。因此,靶向序列之長度可包含5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、35、40、45、50或大於50個核苷酸。在一些實施例中,靶向序列長度比天然存在之CRISPR/Cas系統之引導序列長或短0、1、2、3、4或5個核苷酸。在某些實施例中,Cas核酸酶及gRNA骨架將衍生自相同CRISPR/Cas系統。在一些實施例中,靶向序列可包含或由18至24個核苷酸組成。在一些實施例中,靶向序列可包含或由19至21個核苷酸組成。在一些實施例中,靶向序列可包含或由20個核苷酸組成。
在一些實施例中,sgRNA為能夠藉由Cas9蛋白介導經RNA引導之DNA裂解的「Cas9 sgRNA」。在一些實施例中,sgRNA為能夠藉由Cpf1蛋白質介導經RNA引導之DNA裂解的「Cpf1 sgRNA」。在某些實施例中,gRNA包含足以與Cas9蛋白形成活性複合物且介導經RNA引導之DNA裂解的crRNA及tracr RNA。在某些實施例中,gRNA包含足以與Cpf1蛋白質形成活性複合物且介導經RNA引導之DNA裂解的crRNA。參見Zetsche 2015。
本發明之某些實施例亦提供編碼本文所述之gRNA的核酸,例如表現卡匣。「引導RNA核酸」在本文中用於指引導RNA (例如sgRNA或dgRNA)及引導RNA表現卡匣,其為編碼一或多個引導RNA之核酸。
在一些實施例中,核酸可為DNA分子。在一些實施例中,核酸可包含編碼crRNA之核苷酸序列。在一些實施例中,編碼crRNA之核苷酸序列包含由來自天然存在之CRISPR/Cas系統之重複序列之全部或一部分側接的靶向序列。在一些實施例中,核酸可包含編碼tracr RNA之核苷酸序列。在一些實施例中,crRNA及tracr RNA可由兩個分離核酸編碼。在其他實施例中,crRNA及tracr RNA可由單一核酸編碼。在一些實施例中,crRNA及tracr RNA可由單一核酸之相對股編碼。在其他實施例中,crRNA及tracr RNA可由單一核酸之相同股編碼。在一些實施例中,gRNA核酸編碼sgRNA。在一些實施例中,gRNA核酸編碼Cas9核酸酶sgRNA。在一些實施例中,gRNA核酸編碼Cpf1核酸酶sgRNA。
編碼引導RNA之核苷酸序列能夠可操作地連接於至少一個轉錄或調節控制序列,諸如啟動子、3' UTR或5' UTR。在一個實例中,啟動子可為tRNA啟動子,例如tRNALys3 ,或tRNA嵌合體。參見Mefferd等人,RNA . 2015 21:1683-9;Scherer等人,Nucleic Acids Res . 2007 35: 2620-2628。在某些實施例中,啟動子可藉由RNA聚合酶III (Pol III)識別。Pol III啟動子之非限制性實例亦包括U6及H1啟動子。在一些實施例中,編碼引導RNA之核苷酸序列可與小鼠或人類U6啟動子可操作地連接。在一些實施例中,gRNA核酸為經修飾之核酸。在某些實施例中,gRNA核酸包括經修飾之核苷或核苷酸。在一些實施例中,gRNA核酸包括5'端修飾,例如經修飾之核苷或核苷酸以穩定及阻止核酸整合。在一些實施例中,gRNA核酸包含雙股DNA,其在各股上具有5'端修飾。在某些實施例中,gRNA核酸包括反向雙脫氧-T或反向無鹼基核苷或核苷酸作為5'端修飾。在一些實施例中,gRNA核酸包括標記,諸如生物素、脫硫生物素-TEG、地高辛及螢光標記物,包括例如FAM、ROX、TAMRA及AlexaFluor。
在某些實施例中,超過一個gRNA核酸,諸如gRNA可用於CRISPR/Cas核酸酶系統。各gRNA核酸可含有不同靶向序列,使得CRISPR/Cas系統裂解超過一個靶序列。在一些實施例中,一或多個gRNA可在CRISPR/Cas複合物內具有相同或不同特性,諸如活性或穩定性。在使用超過一個gRNA之情況下,各gRNA可編碼於相同或不同gRNA核酸上。用於驅動超過一個gRNA之表現的啟動子可相同或不同。
經修飾之 RNA
在某些實施例中,LNP組合物包含經修飾之RNA。
經修飾之核苷或核苷酸可存在於RNA,例如gRNA或mRNA中。包含一或多個經修飾之核苷或核苷酸之gRNA或mRNA例如稱作「經修飾之」RNA,用於描述替代或外加典型A、G、C及U殘基使用之一或多種非天然及/或天然存在之組分或組態之存在。在一些實施例中,經修飾之RNA係藉由非典型核苷或核苷酸合成,此處稱作「經修飾」。
經修飾之核苷及核苷酸可包括以下各者中之一或多者:(i)磷酸二酯主鏈鍵聯中之非鍵聯磷酸氧中之一者或兩者及/或鍵聯磷酸氧中之一或多者之變化,例如置換(例示性主鏈修飾);(ii)核糖成分,例如核糖上之2'羥基之變化,例如置換(例示性糖修飾);(iii)用「脫磷酸」連接子批量置換磷酸酯部分(例示性主鏈修飾);(iv)天然存在之核鹼基之修飾或置換,包括用非典型核鹼基(例示性鹼基修飾);(v)核糖-磷酸酯主鏈之置換或修飾(例示性主鏈修飾);(vi)寡核苷酸之3'端或5'端之修飾,例如末端磷酸酯基團之移除、修飾或置換或部分、帽或連接子之結合(此類3'或5'帽修飾可包含糖及/或主鏈修飾);及(vii)糖之修飾或置換(例示性糖修飾)。某些實施例包含mRNA、gRNA或核酸之5'端修飾。某些實施例包含mRNA、gRNA或核酸之3'端修飾。經修飾之RNA可含有5'端及3'端修飾。經修飾之RNA可在非末端位置含有一或多個經修飾之殘基。在某些實施例中,gRNA包括至少一個經修飾之殘基。在某些實施例中,mRNA包括至少一個經修飾之殘基。
如本文所用,若第一序列與第二序列之比對顯示全部第二序列之X%或大於X%之位置與第一序列相匹配,則第一序列視為「包含與第二序列具有至少X%一致性的序列」。舉例而言,序列AAGA包含與序列AAG具有100%一致性之序列,因為由於對第二序列之全部三個位置均存在匹配,所以比對將產生100%一致性。RNA與DNA之間的差異(通常而言,尿苷更換為胸苷或反之亦然)及核苷類似物,諸如經修飾之尿苷的存在不會造成聚核苷酸之間一致性或互補性的差異,只要相關核苷酸(諸如胸苷、尿苷或經修飾之尿苷)具有相同互補序列(例如針對全部胸苷、尿苷或經修飾之尿苷的腺苷;另一實例為胞嘧啶及5-甲基胞嘧啶,兩者具有鳥苷或經修飾之鳥苷作為互補序列)即可。因此,舉例而言,序列5'-AXG (其中X為任何經修飾之尿苷,諸如假尿苷、N1-甲基假尿苷或5-甲氧基尿苷)視為與AUG具有100%一致性,因為兩者與同一序列(5'-CAU)完全互補。例示性比對演算法為Smith-Waterman及Needleman-Wunsch演算法,其在此項技術中是熟知的。熟習此項技術者應理解何種演算法選擇及參數設置適合於待對準之給定序列對;對於具有一般類似長度及針對胺基酸之>50%預期一致性或針對核苷酸之>75%預期一致性的序列而言,由EBI於www.ebi.ac.uk網站伺服器提供的Needleman-Wunsch演算法介面之具有默認設置的Needleman-Wunsch演算法通常為適合的。
mRNA
在一些實施例中,本文揭示之組合物或調配物包含mRNA,其包含編碼經RNA引導之DNA結合劑,諸如Cas核酸酶,或如本文所述之第2類Cas核酸酶之開放閱讀框架(ORF)。在一些實施例中,提供、使用或投與mRNA,其包含編碼經RNA引導之DNA結合劑,諸如Cas核酸酶或第2類Cas核酸酶之ORF。在一些實施例中,編碼經RNA引導之DNA結合劑之ORF為「經修飾之經RNA引導之DNA結合劑ORF」或簡稱為「經修飾之ORF」,其作為簡寫使用以指示ORF以如下方式中之一或多者經修飾:(1)經修飾之ORF之尿苷含量介於其最小尿苷含量至最小尿苷含量之150%範圍內;(2)經修飾之ORF之尿苷二核苷酸含量介於其最小尿苷二核苷酸含量至最小尿苷二核苷酸含量之150%範圍內;(3)經修飾之ORF與SEQ ID NO: 1、4、7、9、10、11、12、14、15、17、18、20、21、23、24、26、27、29、30、50、52、54、65或66中之任一者至少90%一致性;(4)經修飾之ORF由一組密碼子組成,其中至少75%之密碼子為給定胺基酸之最小尿苷密碼子,例如具有最少尿苷(除了苯丙胺酸之密碼子(其中最小尿苷密碼子具有2個尿苷)之外通常為0或1)之密碼子;或(5)經修飾之ORF包含至少一個經修飾之尿苷。在一些實施例中,經修飾之ORF以至少兩種、三種或四種前述方式經修飾。在一些實施例中,經修飾之ORF包含至少一個經修飾之尿苷且以上述(1)至(4)中之至少一者、兩者、三者或全部進行修飾。
「經修飾之尿苷」在本文中用於指代除胸苷外的與尿苷具有相同氫鍵受體且與尿苷存在一或多種結構差異的核苷。在一些實施例中,經修飾之尿苷為經取代之尿苷,亦即其中一或多個非質子取代基(例如烷氧基,諸如甲氧基)替代質子之尿苷。在一些實施例中,經修飾之尿苷為假尿苷。在一些實施例中,經修飾之尿苷為經取代之假尿苷,亦即其中一或多個非質子取代基(例如烷基,諸如甲基)替代質子之假尿苷。在一些實施例中,經修飾之尿苷為經取代之尿苷、假尿苷或經取代之假尿苷中之任一者。
如本文所用,「尿苷位置」係指多核苷酸中由尿苷或經修飾之尿苷佔據之位置。因此,舉例而言,其中「100%之尿苷位置為經修飾之尿苷」之聚核苷酸在將為相同序列之習知RNA (其中所有鹼基均為標準A、U、C或G鹼基)中之尿苷的每個位置處均含有經修飾之尿苷。除非另外指明,否則本發明中或附隨本發明之序列表(sequence table/sequence listing)之聚核苷酸序列中之U可為尿苷或經修飾之尿苷。
表1.最小尿苷密碼子
在以上實施例中之任一者中,經修飾之ORF可由一組密碼子組成,其中至少75%、80%、85%、90%、95%、98%、99%或100%之密碼子為最小尿苷密碼子之表中所列之密碼子。在以上實施例中之任一者中,經修飾之ORF可包含與SEQ ID NO: 1、4、7、9、10、11、12、14、15、17、18、20、21、23、24、26、27、29、30、50、52、54、65或66中之任一者具有至少90%、95%、98%、99%或100%一致性之序列。
在以上實施例中之任一者中,經修飾之ORF可包含與SEQ ID NO: 1、4、7、9、10、11、12、14、15、17、18、20、21、23、24、26、27、29、30、50、52、54、65或66中之任一者具有至少90%、95%、98%、99%或100%一致性之序列。
在以上實施例中之任一者中,經修飾之ORF之尿苷含量可介於其最小尿苷含量至最小尿苷含量之150%、145%、140%、135%、130%、125%、120%、115%、110%、105%、104%、103%、102%或101%範圍內。
在以上實施例中之任一者中,經修飾之ORF之尿苷二核苷酸含量可介於其最小尿苷二核苷酸含量至最小尿苷二核苷酸含量之150%、145%、140%、135%、130%、125%、120%、115%、110%、105%、104%、103%、102%或101%範圍內。
在以上實施例中之任一者中,經修飾之ORF可至少在一個、複數個或所有尿苷位置包含經修飾之尿苷。在一些實施例中,經修飾之尿苷為在5位處,例如用鹵素、甲基或乙基修飾之尿苷。在一些實施例中,經修飾之尿苷為在1位處,例如用鹵素、甲基或乙基修飾之假尿苷。經修飾之尿苷可為例如假尿苷、N1-甲基假尿苷、5-甲氧基尿苷、5-碘尿苷或其組合。在一些實施例中,經修飾之尿苷為5-甲氧基尿苷。在一些實施例中,經修飾之尿苷為5-碘尿苷。在一些實施例中,經修飾之尿苷為假尿苷。在一些實施例中,經修飾之尿苷為N1-甲基假尿苷。在一些實施例中,經修飾之尿苷為假尿苷及N1-甲基假尿苷之組合。在一些實施例中,經修飾之尿苷為假尿苷及5-甲氧基尿苷之組合。在一些實施例中,經修飾之尿苷為N1-甲基假尿苷及5-甲氧基尿苷之組合。在一些實施例中,經修飾之尿苷為5-碘尿苷及N1-甲基假尿苷之組合。在一些實施例中,經修飾之尿苷為假尿苷及5-碘尿苷之組合。在一些實施例中,經修飾之尿苷為5-碘尿苷及5-甲氧基尿苷之組合。
在一些實施例中,根據本發明之mRNA中至少10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、98%、99%或100%之尿苷位置為經修飾之尿苷。在一些實施例中,根據本發明之mRNA中10%至25%、15至25%、25至35%、35至45%、45至55%、55至65%、65至75%、75至85%、85至95%或90至100%之尿苷位置為經修飾之尿苷,例如5-甲氧基尿苷、5-碘尿苷、N1-甲基假尿苷、假尿苷或其組合。在一些實施例中,根據本發明之mRNA中10%至25%、15至25%、25至35%、35至45%、45至55%、55至65%、65至75%、75至85%、85至95%或90至100%之尿苷位置為5-甲氧基尿苷。在一些實施例中,根據本發明之mRNA中10%至25%、15至25%、25至35%、35至45%、45至55%、55至65%、65至75%、75至85%、85至95%或90至100%之尿苷位置為假尿苷。在一些實施例中,根據本發明之mRNA中10%至25%、15至25%、25至35%、35至45%、45至55%、55至65%、65至75%、75至85%、85至95%或90至100%之尿苷位置為N1-甲基假尿苷。在一些實施例中,根據本發明之mRNA中10%至25%、15至25%、25至35%、35至45%、45至55%、55至65%、65至75%、75至85%、85至95%或90至100%之尿苷位置為5-碘尿苷。在一些實施例中,根據本發明之mRNA中10%至25%、15%至25%、25%至35%、35%至45%、45%至55%、55%至65%、65%至75%、75%至85%、85%至95%或90%至100%之尿苷位置為5-甲氧基尿苷,且剩餘部分為N1-甲基假尿苷。在一些實施例中,根據本發明之mRNA中10%至25%、15%至25%、25%至35%、35%至45%、45%至55%、55%至65%、65%至75%、75%至85%、85%至95%或90%至100%之尿苷位置為5-碘尿苷,且剩餘部分為N1-甲基假尿苷。
在以上實施例中之任一者中,經修飾之ORF可包含降低之尿苷二核苷酸含量,諸如最低可能的尿苷二核苷酸(UU)含量,例如(a)在每個位置處使用最小尿苷密碼子(如上文所論述)及(b)編碼與給定ORF相同的胺基酸序列之ORF。尿苷二核苷酸(UU)含量可以絕對術語表示為ORF中之UU二核苷酸之計數或基於比率,表示為尿苷二核苷酸之尿苷所佔據的位置之百分比(例如,AUUAU之尿苷二核苷酸含量將為40%,因為尿苷二核苷酸之尿苷佔據了5個位置中之2個)。出於評估最小尿苷二核苷酸含量之目的,經修飾之尿苷殘基視為等效於尿苷。
在一些實施例中,mRNA包含至少一個來自表現之哺乳動物mRNA,諸如組成性表現之mRNA的UTR。若mRNA在健康成年哺乳動物之至少一個組織中連續轉錄,則將其視為在哺乳動物中組成性表現。在一些實施例中,mRNA包含來自表現之哺乳動物RNA,諸如組成性表現之哺乳動物mRNA之5' UTR、3' UTR或5'及3' UTR。肌動蛋白mRNA為組成性表現之mRNA的實例。
在一些實施例中,mRNA包含至少一個來自羥基類固醇17-β脫氫酶4 (HSD17B4或HSD)之UTR,例如來自HSD之5' UTR。在一些實施例中,mRNA包含至少一個來自血球蛋白mRNA,例如人類α血球蛋白(HBA) mRNA、人類β血球蛋白(HBB) mRNA或有爪蟾蜍β血球蛋白(XBG ) mRNA之UTR。在一些實施例中,mRNA包含來自血球蛋白mRNA,諸如HBA、HBB或XBG之5' UTR、3' UTR或5'及3' UTR。在一些實施例中,mRNA包含來自牛生長激素、細胞巨大病毒(CMV)、小鼠Hba-a1、HSD、白蛋白基因、HBA、HBB或XBG之5' UTR。在一些實施例中,mRNA包含來自牛生長激素、細胞巨大病毒(CMV)、小鼠Hba-a1、HSD、白蛋白基因、HBA、HBB或XBG之3' UTR。在一些實施例中,mRNA包含來自牛生長激素、細胞巨大病毒、小鼠Hba-a1、HSD、白蛋白基因、HBA、HBB、XBG、熱休克蛋白90 (Hsp90)、甘油醛3-磷酸脫氫酶(GAPDH)、β-肌動蛋白、α-微管蛋白、腫瘤蛋白質(p53)或表皮生長因子受體(EGFR)之5'及3' UTR。
在一些實施例中,mRNA包含來自同一來源,例如組成性表現之mRNA,諸如肌動蛋白、白蛋白或血球蛋白(HBA、HBB或XBG)之5'及3' UTR。
在一些實施例中,mRNA不包含5' UTR,例如在5'帽與起始密碼子之間不存在額外核苷酸。在一些實施例中,mRNA在5'帽與起始密碼子之間包含Kozak序列(下文所述),但不具有任何額外5' UTR。在一些實施例中,mRNA不包含3' UTR,例如在終止密碼子與聚腺苷酸尾之間不存在額外核苷酸。
在一些實施例中,mRNA包含Kozak序列。Kozak序列可影響轉譯起始及由mRNA轉譯之多肽的總產量。Kozak序列包括可充當起始密碼子之甲硫胺酸密碼子。最小Kozak序列為NNNRUGN,其中以下中之至少一者為成立的:第一個N為A或G且第二個N為G。在核苷酸序列之情形下,R意謂嘌呤(A或G)。在一些實施例中,Kozak序列為RNNRUGN、NNNRUGG、RNNRUGG、RNNAUGN、NNNAUGG或RNNAUGG。在一些實施例中,Kozak序列為具有零錯配或在呈小寫字母形式之位置具有至多一或兩個錯配之rccRUGg。在一些實施例中,Kozak序列為具有零錯配或在呈小寫字母形式之位置具有至多一或兩個錯配之rccAUGg。在一些實施例中,Kozak序列為具有零錯配或在呈小寫字母形式之位置具有至多一個、兩個或三個錯配之gccRccAUGG。在一些實施例中,Kozak序列為具有零錯配或在呈小寫字母形式之位置具有至多一個、兩個、三個或四個錯配之gccAccAUG。在一些實施例中,Kozak序列為GCCACCAUG。在一些實施例中,Kozak序列為具有零錯配或在呈小寫字母形式之位置具有至多一個、兩個、三個或四個錯配之gccgccRccAUGG。
在一些實施例中,包含編碼經RNA引導之DNA結合劑之ORF的mRNA包含與SEQ ID NO: 43具有至少90%一致性之序列,視情況其中SEQ ID NO: 43之ORF (亦即SEQ ID NO: 4)經SEQ ID NO: 7、9、10、11、12、14、15、17、18、20、21、23、24、26、27、29、30、50、52、54、65或66中之任一者之替代ORF取代。
在一些實施例中,包含編碼經RNA引導之DNA結合劑之ORF的mRNA包含與SEQ ID NO: 44具有至少90%一致性之序列,視情況其中SEQ ID NO: 44之ORF (亦即SEQ ID NO: 4)經SEQ ID NO: 7、9、10、11、12、14、15、17、18、20、21、23、24、26、27、29、30、50、52、54、65或66中之任一者之替代ORF取代。
在一些實施例中,包含編碼經RNA引導之DNA結合劑之ORF的mRNA包含與SEQ ID NO: 56具有至少90%一致性之序列,視情況其中SEQ ID NO: 56之ORF (亦即SEQ ID NO: 4)經SEQ ID NO: 7、9、10、11、12、14、15、17、18、20、21、23、24、26、27、29、30、50、52、54、65或66中之任一者之替代ORF取代。
在一些實施例中,包含編碼經RNA引導之DNA結合劑之ORF的mRNA包含與SEQ ID NO: 57具有至少90%一致性之序列,視情況其中SEQ ID NO: 57之ORF (亦即SEQ ID NO: 4)經SEQ ID NO: 7、9、10、11、12、14、15、17、18、20、21、23、24、26、27、29、30、50、52、54、65或66中之任一者之替代ORF取代。
在一些實施例中,包含編碼經RNA引導之DNA結合劑之ORF的mRNA包含與SEQ ID NO: 58具有至少90%一致性之序列,視情況其中SEQ ID NO: 58之ORF (亦即SEQ ID NO: 4)經SEQ ID NO: 7、9、10、11、12、14、15、17、18、20、21、23、24、26、27、29、30、50、52、54、65或66中之任一者之替代ORF取代。
在一些實施例中,包含編碼經RNA引導之DNA結合劑之ORF的mRNA包含與SEQ ID NO: 59具有至少90%一致性之序列,視情況其中SEQ ID NO: 59之ORF (亦即SEQ ID NO: 4)經SEQ ID NO: 7、9、10、11、12、14、15、17、18、20、21、23、24、26、27、29、30、50、52、54、65或66中之任一者之替代ORF取代。
在一些實施例中,包含編碼經RNA引導之DNA結合劑之ORF的mRNA包含與SEQ ID NO: 60具有至少90%一致性之序列,視情況其中SEQ ID NO: 60之ORF (亦即SEQ ID NO: 4)經SEQ ID NO: 7、9、10、11、12、14、15、17、18、20、21、23、24、26、27、29、30、50、52、54、65或66中之任一者之替代ORF取代。
在一些實施例中,包含編碼經RNA引導之DNA結合劑之ORF的mRNA包含與SEQ ID NO: 61具有至少90%一致性之序列,視情況其中SEQ ID NO: 61之ORF (亦即SEQ ID NO: 4)經SEQ ID NO: 7、9、10、11、12、14、15、17、18、20、21、23、24、26、27、29、30、50、52、54、65或66中之任一者之替代ORF取代。
在一些實施例中,mRNA包含SEQ ID NO: 7、9、10、11、12、14、15、17、18、20、21、23、24、26、27、29、30、50、52、54、65或66中之任一者之替代ORF。
在一些實施例中,與SEQ ID NO 43、44或56至61之視情況經取代之序列的一致性程度為95%。在一些實施例中,與SEQ ID NO 43、44或56至61之視情況經取代之序列的一致性程度為98%。在一些實施例中,與SEQ ID NO 43、44或56至61之視情況經取代之序列的一致性程度為99%。在一些實施例中,與SEQ ID NO 43、44或56至61之視情況經取代之序列的一致性程度為100%。
在一些實施例中,本文所揭示之mRNA包含5'帽,諸如Cap0、Cap1或Cap2。5'帽通常為經由5'-三磷酸連接至mRNA之5'至3'鏈的第一個核苷酸,亦即第一個帽近端核苷酸之5'位的7-甲基鳥嘌呤核糖核苷酸(其可經進一步修飾,如下文例如關於ARCA所論述)。在Cap0中,mRNA之第一及第二帽近端核苷酸之核糖均包含2'-羥基。在Cap1中,mRNA之第一及第二轉錄核苷酸之核糖分別包含2'-甲氧基及2'-羥基。在Cap2中,mRNA之第一及第二帽近端核苷酸之核糖均包含2'-甲氧基。參見例如Katibah等人 (2014)Proc Natl Acad Sci USA 111(33):12025-30;Abbas等人 (2017)Proc Natl Acad Sci USA 114(11):E2106-E2115。大多數內源高等真核生物mRNA,包括哺乳動物mRNA(諸如人類mRNA)包含Cap1或Cap2。歸因於藉由先天免疫系統之組分,諸如IFIT-1及IFIT-5識別為「非自體(non-self)」,Cap0以及與Cap1及Cap2不同的其他帽結構在哺乳動物,諸如人類中可呈免疫原性,其可導致細胞介素,包括I型干擾素含量升高。先天免疫系統之組分,諸如IFIT-1及IFIT-5亦可與eIF4E競爭結合具有除Cap1或Cap2外之帽的mRNA,從而潛在地抑制mRNA轉譯。
帽可以共轉錄方式包括在內。舉例而言,ARCA (抗反向帽類似物;Thermo Fisher Scientific目錄號AM8045)為包含連接至鳥嘌呤核糖核苷酸之5'位的7-甲基鳥嘌呤3'-甲氧基-5'-三磷酸的帽類似物,其可在起始時活體外併入轉錄物中。ARCA產生Cap0帽,其中第一個帽近端核苷酸之2'位為羥基。參見例如Stepinski等人, (2001) 「Synthesis and properties of mRNAs containing the novel 『anti-reverse』 cap analogs 7-methyl(3'-O-methyl)GpppG and 7-methyl(3'deoxy)GpppG」,RNA 7: 1486-1495。ARCA結構顯示如下。
CleanCapTM AG (m7G(5')ppp(5')(2'OMeA)pG;TriLink Biotechnologies目錄號N-7113)或CleanCapTM GG (m7G(5')ppp(5')(2'OMeG)pG;TriLink Biotechnologies目錄號N-7133) 可用於以共轉錄方式提供Cap1結構。CleanCapTM AG及CleanCapTM GG之3'-O-甲基化形式亦可分別以目錄號N-7413及N-7433購自TriLink Biotechnologies。CleanCapTM AG結構顯示如下。
或者,可以轉錄後方式將帽添加至RNA。舉例而言,牛痘加帽酶可在市面上購得(New England Biolabs目錄號M2080S),且具有由其D1次單位提供之RNA三磷酸酶及鳥苷酸轉移酶活性,及由其D12次單位提供之鳥嘌呤甲基轉移酶。因此,在S-腺苷甲硫胺酸及GTP存在下,可將7-甲基鳥嘌呤添加至RNA,以產生Cap0。參見例如Guo, P.及Moss, B. (1990)Proc. Natl. Acad. Sci .USA 87, 4023-4027;Mao, X.及Shuman, S. (1994)J. Biol. Chem . 269, 24472-24479。
在一些實施例中,mRNA進一步包含聚腺苷酸化(poly-A)尾。在一些實施例中,poly-A尾包含至少20、30、40、50、60、70、80、90或100個腺嘌呤,視情況至多300個腺嘌呤。在一些實施例中,poly-A尾包含95、96、97、98、99或100個腺嘌呤核苷酸。在一些情況下,poly-A尾在poly-A尾中之一或多個位置處經一或多個非腺嘌呤核苷酸「錨」「中斷」。poly-A尾可包含至少8個連續腺嘌呤核苷酸,但亦包含一或多個非腺嘌呤核苷酸。如本文所用,「非腺嘌呤核苷酸」係指不包含腺嘌呤的任何天然或非天然核苷酸。鳥嘌呤、胸腺嘧啶及胞嘧啶核苷酸為例示性非腺嘌呤核苷酸。因此,本文所述之mRNA上的poly-A尾可包含位於編碼經RNA引導之DNA結合劑或相關序列之核苷酸之3'的連續腺嘌呤核苷酸。在一些情況下,mRNA上的poly-A尾包含位於編碼經RNA引導之DNA結合劑或相關序列之核苷酸之3'的非連續腺嘌呤核苷酸,其中非腺嘌呤核苷酸以規則或不規則間隔中斷腺嘌呤核苷酸。
在一些實施例中,mRNA進一步包含聚腺苷酸化(poly-A)尾。在一些實施例中,poly-A尾包含至少20、30、40、50、60、70、80、90或100個腺嘌呤,視情況至多300個腺嘌呤。在一些實施例中,poly-A尾包含95、96、97、98、99或100個腺嘌呤核苷酸。在一些情況下,poly-A尾在poly-A尾中之一或多個位置處經一或多個非腺嘌呤核苷酸「錨」「中斷」。poly-A尾可包含至少8個連續腺嘌呤核苷酸,但亦包含一或多個非腺嘌呤核苷酸。如本文所用,「非腺嘌呤核苷酸」係指不包含腺嘌呤的任何天然或非天然核苷酸。鳥嘌呤、胸腺嘧啶及胞嘧啶核苷酸為例示性非腺嘌呤核苷酸。因此,本文所述之mRNA上的poly-A尾可包含位於編碼經RNA引導之DNA結合劑或相關序列之核苷酸之3'的連續腺嘌呤核苷酸。在一些情況下,mRNA上的poly-A尾包含位於編碼經RNA引導之DNA結合劑或相關序列之核苷酸之3'的非連續腺嘌呤核苷酸,其中非腺嘌呤核苷酸以規則或不規則間隔中斷腺嘌呤核苷酸。
在一些實施例中,一或多個非腺嘌呤核苷酸定位成中斷連續腺嘌呤核苷酸,以使得poly(A)結合蛋白可結合至一段連續腺嘌呤核苷酸。在一些實施例中,一或多個非腺嘌呤核苷酸位於至少8、9、10、11或12個連續腺嘌呤核苷酸之後。在一些實施例中,一或多個非腺嘌呤核苷酸位於至少8至50個連續腺嘌呤核苷酸之後。在一些實施例中,一或多個非腺嘌呤核苷酸位於至少8至100個連續腺嘌呤核苷酸之後。在一些實施例中,非腺嘌呤核苷酸在一個、兩個、三個、四個、五個、六個或七個腺嘌呤核苷酸之後且之後為至少8個連續腺嘌呤核苷酸。
poly-A尾可包含一個連續腺嘌呤核苷酸序列,之後為一或多個非腺嘌呤核苷酸,視情況繼之以額外腺嘌呤核苷酸。
在一些實施例中,poly-A尾包含或含有一個非腺嘌呤核苷酸或2至10個非腺嘌呤核苷酸之一個連續段。在一些實施例中,非腺嘌呤核苷酸位於至少8、9、10、11或12個連續腺嘌呤核苷酸之後。在一些情況下,一或多個非腺嘌呤核苷酸位於至少8至50個連續腺嘌呤核苷酸之後。在一些實施例中,一或多個非腺嘌呤核苷酸位於至少8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49或50個連續腺嘌呤核苷酸之後。
在一些實施例中,非腺嘌呤核苷酸為鳥嘌呤、胞嘧啶或胸腺嘧啶。在一些情況下,非腺嘌呤核苷酸為鳥嘌呤核苷酸。在一些實施例中,非腺嘌呤核苷酸為胞嘧啶核苷酸。在一些實施例中,非腺嘌呤核苷酸為胸腺嘧啶核苷酸。在其中存在多於一個非腺嘌呤核苷酸之一些情況下,非腺嘌呤核苷酸可選自:a)鳥嘌呤及胸腺嘧啶核苷酸;b)鳥嘌呤及胞嘧啶核苷酸;c)胸腺嘧啶及胞嘧啶核苷酸;或d)鳥嘌呤、胸腺嘧啶及胞嘧啶核苷酸。包含非腺嘌呤核苷酸之例示性poly-A尾提供為SEQ ID NO: 62形式。
在一些實施例中,mRNA經純化。在一些實施例中,mRNA係使用沈澱法(例如LiCl沈澱、酒精沈澱或等效方法,例如如本文所述)純化。在一些實施例中,mRNA係使用基於層析之方法,諸如基於HPLC之方法或等效方法(例如如本文所述)純化。在一些實施例中,mRNA係使用沈澱法(例如LiCl沈澱)及基於HPLC之方法兩者純化。
在一些實施例中,與本文揭示之mRNA組合提供至少一種gRNA。在一些實施例中,gRNA提供為與mRNA分離之分子。在一些實施例中,gRNA提供為本文揭示之mRNA之一部分,諸如UTR之一部分。
經化學修飾之gRNA
在一些實施例中,gRNA經化學修飾。包含一或多個經修飾核苷或核苷酸之gRNA稱作「經修飾之」gRNA或「經化學修飾之」gRNA,用於描述替代或外加典型A、G、C及U殘基使用之一或多種非天然及/或天然存在之組分或組態之存在。在一些實施例中,經修飾之gRNA係藉由非典型核苷或核苷酸合成,此處稱作「經修飾」。經修飾之核苷及核苷酸可包括以下各者中之一或多者:(i)磷酸二酯主鏈鍵聯中之非鍵聯磷酸氧中之一者或兩者及/或鍵聯磷酸氧中之一或多者之變化,例如置換(例示性主鏈修飾);(ii)核糖成分,例如核糖上之2'羥基之變化,例如置換(例示性糖修飾);(iii)用「脫磷酸」連接子批量置換磷酸酯部分(例示性主鏈修飾);(iv)天然存在之核鹼基之修飾或置換,包括用非典型核鹼基(例示性鹼基修飾);(v)核糖-磷酸酯主鏈之置換或修飾(例示性主鏈修飾);(vi)寡核苷酸之3'端或5'端之修飾,例如末端磷酸酯基團之移除、修飾或置換或部分、帽或連接子之結合(此類3'或5'帽修飾可包含糖及/或主鏈修飾);及(vii)糖之修飾或置換(例示性糖修飾)。
在一些實施例中,gRNA在一些或所有尿苷位置處包含經修飾之尿苷。在一些實施例中,經修飾之尿苷為在5位處,例如用鹵素或C1-C6烷氧基修飾之尿苷。在一些實施例中,經修飾之尿苷為在1位處,例如用C1-C6烷基修飾之假尿苷。經修飾之尿苷可為例如假尿苷、N1-甲基假尿苷、5-甲氧基尿苷、5-碘尿苷或其組合。在一些實施例中,經修飾之尿苷為5-甲氧基尿苷。在一些實施例中,經修飾之尿苷為5-碘尿苷。在一些實施例中,經修飾之尿苷為假尿苷。在一些實施例中,經修飾之尿苷為N1-甲基假尿苷。在一些實施例中,經修飾之尿苷為假尿苷及N1-甲基假尿苷之組合。在一些實施例中,經修飾之尿苷為假尿苷及5-甲氧基尿苷之組合。在一些實施例中,經修飾之尿苷為N1-甲基假尿苷及5-甲氧基尿苷之組合。在一些實施例中,經修飾之尿苷為5-碘尿苷及N1-甲基假尿苷之組合。在一些實施例中,經修飾之尿苷為假尿苷及5-碘尿苷之組合。在一些實施例中,經修飾之尿苷為5-碘尿苷及5-甲氧基尿苷之組合。
在一些實施例中,根據本發明之gRNA中至少10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、98%、99%或100%之尿苷位置為經修飾之尿苷。在一些實施例中,根據本發明之gRNA中10%至25%、15至25%、25至35%、35至45%、45至55%、55至65%、65至75%、75至85%、85至95%或90至100%之尿苷位置為經修飾之尿苷,例如5-甲氧基尿苷、5-碘尿苷、N1-甲基假尿苷、假尿苷或其組合。在一些實施例中,根據本發明之gRNA中10至25%、15至25%、25至35%、35至45%、45至55%、55至65%、65至75%、75至85%、85至95%或90至100%之尿苷位置為5-甲氧基尿苷。在一些實施例中,根據本發明之gRNA中10%至25%、15至25%、25至35%、35至45%、45至55%、55至65%、65至75%、75至85%、85至95%或90至100%之尿苷位置為假尿苷。在一些實施例中,根據本發明之gRNA中10%至25%、15至25%、25至35%、35至45%、45至55%、55至65%、65至75%、75至85%、85至95%或90至100%之尿苷位置為N1-甲基假尿苷。在一些實施例中,根據本發明之gRNA中10%至25%、15至25%、25至35%、35至45%、45至55%、55至65%、65至75%、75至85%、85至95%或90至100%之尿苷位置為5-碘尿苷。在一些實施例中,根據本發明之gRNA中10%至25%、15%至25%、25%至35%、35%至45%、45%至55%、55%至65%、65%至75%、75%至85%、85%至95%或90%至100%之尿苷位置為5-甲氧基尿苷,且剩餘部分為N1-甲基假尿苷。在一些實施例中,根據本發明之gRNA中10%至25%、15%至25%、25%至35%、35%至45%、45%至55%、55%至65%、65%至75%、75%至85%、85%至95%或90%至100%之尿苷位置為5-碘尿苷,且剩餘部分為N1-甲基假尿苷。
化學修飾(諸如以上列出之彼等)可經組合以得到經修飾之gRNA,其包含可具有兩個、三個、四個或更多個修飾之核苷及核苷酸(統稱為「殘基」)。舉例而言,經修飾之殘基可具有經修飾之糖及經修飾之核鹼基。在一些實施例中,gRNA之各鹼基經修飾,例如所有鹼基具有經修飾之磷酸酯基團,諸如硫代磷酸酯基團。在某些實施例中,gRNA分子之所有或基本上所有磷酸酯基團經硫代磷酸酯基團置換。在一些實施例中,經修飾之gRNA在RNA之5'端處或附近包含至少一個經修飾之殘基。在一些實施例中,經修飾之gRNA在RNA之3'端處或附近包含至少一個經修飾之殘基。
在一些實施例中,gRNA包含一個、兩個、三個或更多個經修飾之殘基。在一些實施例中,經修飾之gRNA中至少5% (例如至少5%、至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%或100%)之位置為經修飾之核苷或核苷酸。
未經修飾之核酸可易於藉由例如細胞內核酸酶或血清中發現之彼等核酸酶降解。舉例而言,核酸酶可水解核酸磷酸二酯鍵。因此,在一態樣中,本文所述之gRNA可含有一或多種經修飾之核苷或核苷酸,例如以引入朝向細胞內核酸酶或基於血清之核酸酶的穩定性。在一些實施例中,本文所述之經修飾之gRNA分子可在活體內及離體引入至細胞群體中時展現減少之先天性免疫反應。術語「先天性免疫反應」包括對外源性核酸,包括單股核酸之細胞反應,其涉及誘導細胞介素表現及釋放,特定言之干擾素,及細胞死亡。
在主鏈修飾之一些實施例中,經修飾之殘基之磷酸酯基團可藉由用不同取代基置換一或多個氧而經修飾。另外,經修飾之殘基,例如存在於經修飾之核酸中之經修飾之殘基可包括用如本文所述之經修飾之磷酸酯基團批量置換未經修飾之磷酸酯部分。在一些實施例中,磷酸酯主鏈之主鏈修飾可包括產生不帶電連接子或具有不對稱電荷分佈之帶電連接子的變化。
經修飾之磷酸酯基團之實例包括硫代磷酸酯、硒代磷酸酯、硼烷磷酸酯、硼烷磷酸酯、氫膦酸酯、胺基磷酸酯、烷基或芳基膦酸酯及磷酸三酯。未經修飾之磷酸酯基團中之磷原子為非對掌性的。然而,用以上原子或原子組中之一者置換非橋連氧中之一者可使得磷原子為對掌性的。立體對稱磷原子可具有「R」構形(本文中為Rp)或「S」構形(本文中為Sp)。主鏈亦可藉由用氮(橋連胺基磷酸酯)、硫(橋連硫代磷酸酯)及碳(橋連亞甲基膦酸酯)置換橋連氧(亦即連接磷酸酯與核苷之氧)來加以修飾。置換可發生在任一連接氧或兩個連接氧處。
磷酸酯基團可在某些主鏈修飾中經不含磷之連接基團置換。在一些實施例中,帶電磷酸酯基團可經中性部分置換。可置換磷酸酯基團之部分之實例可包括但不限於例如膦酸甲酯、羥胺基、矽氧烷、碳酸酯、羧甲基、胺基甲酸酯、醯胺、硫醚、環氧乙烷連接子、磺酸酯、磺醯胺、硫代甲縮醛、甲縮醛、肟、亞甲基亞胺基、亞甲基甲基亞胺基、亞甲基肼、亞甲基二甲基肼及亞甲氧基甲基亞胺基。
模板核酸
本文揭示之組合物及方法可包括模板核酸。模板可用於在Cas核酸酶之目標位點處或附近改變或插入核酸序列。在一些實施例中,方法包含將模板引入至細胞。在一些實施例中,可提供單一模板。在其他實施例中,可提供兩種或多於兩種模板以使得編輯可發生於兩個或多於兩個靶位點。舉例而言,可提供不同模板以編輯細胞中之單一基因,或細胞中之兩種不同基因。
在一些實施例中,模板可用於同源重組中。在一些實施例中,同源重組可導致模板序列或模板序列之一部分整合至靶核酸分子中。在其他實施例中,模板可用於同源定向修復,其涉及核酸中裂解位點處之DNA股侵襲。在一些實施例中,同源定向修復可導致經編輯之靶核酸分子中包括模板序列。在其他實施例中,模板可用於由非同源末端連接介導之基因編輯。在一些實施例中,模板序列與裂解位點附近之核酸序列不具有類似性。在一些實施例中,併入模板或模板序列之一部分。在一些實施例中,模板包括側接反向末端重複(ITR)序列。
在一些實施例中,模板可包含第一同源臂及第二同源臂(亦稱作第一及第二核苷酸序列),其分別與位於裂解位點上游及下游之序列互補。當模板含有兩個同源臂時,各臂可為相同長度或不同長度,且同源臂之間的序列可基本上類似於或等同於同源臂之間的靶序列,或其可完全無關。在一些實施例中,模板上之第一核苷酸序列與裂解位點上游之序列之間,及模板上之第二核苷酸序列與裂解位點下游之序列之間的互補性程度或百分比一致性可准許模板與靶核酸分子之間的同源重組,諸如高保真同源重組。在一些實施例中,互補性程度可為約50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、97%、98%、99%或100%。在一些實施例中,互補性程度可為約95%、97%、98%、99%或100%。在一些實施例中,互補性程度可為至少98%、99%或100%。在一些實施例中,互補性程度可為100%。在一些實施例中,百分比一致性可為約50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、97%、98%、99%或100%。在一些實施例中,百分比一致性可為約95%、97%、98%、99%或100%。在一些實施例中,百分比一致性可為至少98%、99%或100%。在一些實施例中,百分比一致性可為100%。
在一些實施例中,模板序列可對應於、包含或由靶細胞之內源序列組成。其可另外或替代地對應於、包含或由靶細胞之外源序列組成。如本文所用,術語「內源序列」係指原生於細胞之序列。術語「外源序列」係指非原生於細胞之序列,或在細胞之基因組中之原生位置處於不同位置之序列。在一些實施例中,內源序列可為細胞之基因組序列。在一些實施例中,內源序列可為染色體或染色體外序列。在一些實施例中,內源序列可為細胞之質體序列。在一些實施例中,模板序列可與裂解位點處或附近之細胞中之內源序列的一部分大體上相同,但包含至少一個核苷酸變化。在一些實施例中,用模板編輯裂解靶核酸分子可導致包含靶核酸分子之一或多個核苷酸之插入、缺失或取代的突變。在一些實施例中,突變可導致由包含靶序列之基因表現之蛋白質中之一或多個胺基酸變化。在一些實施例中,突變可導致由靶基因表現之RNA中之一或多個核苷酸變化。在一些實施例中,突變可改變靶基因之表現量。在一些實施例中,突變可導致靶基因增加或減少之表現。在一些實施例中,突變可導致基因敲低。在一些實施例中,突變可導致基因敲除。在一些實施例中,突變可導致恢復基因功能。在一些實施例中,用模板編輯裂解靶核酸分子可導致靶核酸分子(諸如DNA)之外顯子序列、內含子序列、調節序列、轉錄控制序列、轉譯控制序列、剪接位點或非編碼序列之變化。
在其他實施例中,模板序列可包含外源序列。在一些實施例中,外源序列可包含蛋白質或RNA編碼序列,其可操作地連接於外源啟動子序列,使得當外源序列整合至靶核酸分子中時,細胞能夠表現由整合序列編碼之蛋白質或RNA。在其他實施例中,當將外源序列整合至靶核酸分子中時,可藉由內源性啟動子序列調節整合序列之表現。在一些實施例中,外源序列可提供編碼蛋白質或蛋白質之一部分的cDNA序列。在其他實施例中,外源序列可包含或由外顯子序列、內含子序列、調節序列、轉錄控制序列、轉譯控制序列、剪接位點或非編碼序列組成。在一些實施例中,外源序列之整合可導致恢復基因功能。在一些實施例中,外源序列之整合可導致基因敲入。在一些實施例中,外源序列之整合可導致基因敲除。
模板可具有任何適合之長度。在一些實施例中,模板之長度可包含10、15、20、25、50、75、100、150、200、500、1000、1500、2000、2500、3000、3500、4000、4500、5000、5500、6000或更多個核苷酸。模板可為單股核酸。模板可為雙股或部分雙股核酸。在某些實施例中,單股模板之長度為20、30、40、50、75、100、125、150、175或200個核苷酸。在一些實施例中,模板可包含與包含靶序列之靶核酸分子之一部分互補的核苷酸序列(亦即「同源臂」)。在一些實施例中,模板可包含與位於靶核酸分子上之裂解位點上游或下游之序列互補的同源臂。
在一些實施例中,模板含有ssDNA或dsDNA,其含有側接反轉重複(ITR)序列。在一些實施例中,模板提供為載體、質體、小環、奈米環或PCR產物。
核酸之純化
在一些實施例中,核酸經純化。在一些實施例中,核酸係使用沈澱法(例如LiCl沈澱、酒精沈澱或等效方法,例如如本文所述)純化。在一些實施例中,核酸係使用基於層析之方法,諸如基於HPLC之方法或等效方法(例如如本文所述)純化。在一些實施例中,核酸係使用沈澱法(例如LiCl沈澱)及基於HPLC之方法兩者純化。
靶序列
在一些實施例中,本發明之CRISPR/Cas系統可涉及及裂解靶核酸分子上之靶序列。舉例而言,靶序列可藉由Cas核酸酶識別及裂解。在某些實施例中,Cas核酸酶之靶序列位於核酸酶之同源PAM序列附近。在一些實施例中,第2類Cas核酸酶可藉由gRNA導引至靶核酸分子之靶序列,其中gRNA與靶序列雜交且第2類Cas蛋白質裂解靶序列。在一些實施例中,引導RNA與靶序列雜交且第2類Cas核酸酶裂解靶序列,該靶序列鄰近於或包含其同源PAM。在一些實施例中,靶序列可與引導RNA之靶向序列互補。在一些實施例中,引導RNA之靶向序列與雜交至引導RNA之對應靶序列部分之間的互補性程度可為約50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、97%、98%、99%或100%。在一些實施例中,引導RNA之靶向序列與雜交至引導RNA之對應靶序列部分之間的百分比一致性可為約50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、97%、98%、99%或100%。在一些實施例中,標靶之同源區鄰近於同源PAM序列。在一些實施例中,靶序列可包含與引導RNA之靶向序列100%互補之序列。在其他實施例中,相比於引導RNA之靶向序列,靶序列可包含至少一個錯配、缺失或插入。
靶序列長度可取決於使用之核酸酶系統。舉例而言,CRISPR/Cas系統之引導RNA之靶向序列的長度可包含5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、35、40、45、50或大於50個核苷酸且靶序列為對應長度,視情況鄰近於PAM序列。在一些實施例中,靶序列之長度可包含15至24個核苷酸。在一些實施例中,靶序列之長度可包含17至21個核苷酸。在一些實施例中,靶序列之長度可包含20個核苷酸。當使用切口酶時,靶序列可包含一對靶序列,其藉由裂解DNA分子之相對股的一對切口酶識別。在一些實施例中,靶序列可包含一對靶序列,其藉由裂解DNA分子之相同股的一對切口酶識別。在一些實施例中,靶序列可包含藉由一或多種Cas核酸酶識別之靶序列部分。
靶核酸分子可為任何相對於細胞為內源或外源之DNA或RNA分子。在一些實施例中,靶核酸分子可為來自細胞或在細胞中之游離型DNA、質體、基因組DNA、病毒基因組、線粒體DNA或染色體DNA。在一些實施例中,靶核酸分子之靶序列可為來自細胞(包括人類細胞)或在細胞中之基因組序列。
在其他實施例中,靶序列可為病毒序列。在其他實施例中,靶序列可為病原體序列。在其他實施例中,靶序列可為合成序列。在其他實施例中,靶序列可為染色體序列。在某些實施例中,靶序列可包含易位接面,例如與癌症相關之易位。在一些實施例中,靶序列可在真核染色體,諸如人類染色體上。在某些實施例中,靶序列為肝特異性序列,因為其表現於肝臟細胞中。
在一些實施例中,靶序列可位於基因之編碼序列、基因之內含子序列、調節序列、基因之轉錄控制序列、基因之轉譯控制序列、剪接位點或基因之間的非編碼序列中。在一些實施例中,基因可為蛋白質編碼基因。在其他實施例中,基因可為非編碼RNA基因。在一些實施例中,靶序列可包含疾病相關基因之全部或一部分。在一些實施例中,靶序列可位於基因組之非基因功能位點,例如控制染色體組織態樣之位點,諸如骨架位點或基因座控制區中。
在涉及Cas核酸酶,諸如第2類Cas核酸酶之實施例中,靶序列可鄰近於前間隔序列鄰近基序(「PAM」)。在一些實施例中,PAM可鄰近於或在靶序列之3'端之1、2、3或4個核苷酸內。PAM之長度及序列可取決於使用之Cas蛋白質。舉例而言,PAM可選自特定Cas9蛋白質或Cas9直系同源物之共同序列或特定PAM序列,包括Ran等人,Nature , 520: 186-191 (2015)之圖1,及Zetsche 2015之圖S5中揭示之彼等,該等文獻之相關揭示內容各自以引用的方式併入本文中。在一些實施例中,PAM之長度可為2、3、4、5、6、7、8、9或10個核苷酸。非限制性之例示性PAM序列包括NGG、NGGNG、NG、NAAAAN、NNAAAAW、NNNNACA、GNNNCNNA、TTN及NNNNGATT (其中N定義為任何核苷酸,且W定義為A或T)。在一些實施例中,PAM序列可為NGG。在一些實施例中,PAM序列可為NGGNG。在一些實施例中,PAM序列可為TTN。在一些實施例中,PAM序列可為NNAAAAW。
脂質調配物
本文揭示RNA之LNP調配物,包括CRISPR/Cas負荷之多個實施例。此類LNP調配物包括「胺脂質」,連同輔助脂質、中性脂質及PEG脂質。在一些實施例中,此類LNP調配物包括「胺脂質」,連同輔助脂質及PEG脂質。在一些實施例中,LNP調配物包括小於1%中性磷脂。在一些實施例中,LNP調配物包括小於0.5%中性磷脂。「脂質奈米粒子」意謂包含藉由分子間力彼此物理締合的複數個(亦即多於一個)脂質分子之粒子。
胺脂質
用於遞送生物活性劑之LNP組合物包含「胺脂質」,其定義為脂質A或其等效物,包括脂質A之縮醛類似物。
在一些實施例中,胺脂質為脂質A,其為十八-9,12-二烯酸(9Z,12Z)-3-((4,4-雙(辛氧基)丁醯基)氧基)-2-((((3-(二乙胺基)丙氧基)羰基)氧基)甲基)丙酯,亦稱作(9Z,12Z)-十八-9,12-二烯酸3-((4,4-雙(辛氧基)丁醯基)氧基)-2-((((3-(二乙胺基)丙氧基)羰基)氧基)甲基)丙酯。脂質A可描繪為:
可根據WO2015/095340 ((例如第84頁至第86頁)合成脂質A。在某些實施例中,胺脂質為脂質A之等效物。
在某些實施例中,胺脂質為脂質A之類似物。在某些實施例中,脂質A類似物為脂質A之縮醛類似物。在特定LNP組合物中,縮醛類似物為C4-C12縮醛類似物。在一些實施例中,縮醛類似物為C5-C12縮醛類似物。在其他實施例中,縮醛類似物為C5-C10縮醛類似物。在其他實施例中,縮醛類似物係選自C4、C5、C6、C7、C9、C10、C11及C12縮醛類似物。
適用於本文所述之LNP的胺脂質為活體內可生物降解的且適合於將生物活性劑,諸如RNA遞送至細胞。胺脂質具有低毒性(例如在動物模型中容許而無大於或等於10 mg/kg之量的RNA負荷下之不良影響)。在某些實施例中,包含胺脂質之LNP包括其中在8、10、12、24或48小時或3、4、5、6、7或10天內自血漿清除至少75%之胺脂質的LNP。在某些實施例中,包含胺脂質之LNP包括其中在8、10、12、24或48小時或3、4、5、6、7或10天內自血漿清除至少50%之mRNA或gRNA的LNP。在某些實施例中,包含胺脂質之LNP包括其中例如藉由量測脂質(例如,胺脂質)、RNA(例如mRNA)或另一組分,在8、10、12、24或48小時或3、4、5、6、7或10天內自血漿清除至少50%之LNP的LNP。在某些實施例中,量測LNP之經脂質囊封相對於游離脂質、RNA或核酸組分。
脂質清除率可如文獻中所述來量測。參見Maier, M.A.等人Biodegradable Lipids Enabling Rapidly Eliminated Lipid Nanoparticles for Systemic Delivery of RNAi Therapeutics .Mol . Ther . 2013, 21(8), 1570-78 (「Maier 」)。舉例而言,在Maier中,以0.3 mg/kg藉由靜脈內快速注射經由外側尾部靜脈向六至八週齡雄性C57BL/6小鼠投與含有靶向螢光素酶之siRNA的LNP-siRNA系統。在給藥後0.083、0.25、0.5、1、2、4、8、24、48、96及168小時收集血液、肝臟及脾臟樣品。在收集組織之前向小鼠灌注生理鹽水且處理血液樣品以獲得血漿。處理且藉由LC-MS分析所有樣品。此外,Maier 描述了一種用於評定投與LNP-siRNA調配物之後的毒性之程序。舉例而言,以0、1、3、5及10 mg/kg (5隻動物/組)經由單一靜脈內快速注射以5 mL/kg之劑量體積向雄性史泊格-多利大鼠(Sprague-Dawley rat)投與靶向螢光素酶之siRNA。24小時之後,自清醒的動物之頸靜脈獲得約1 mL血液且分離血清。在給藥後72小時,將所有動物安樂死以用於屍體剖檢。進行臨床症狀、體重、血清化學、器官重量及組織病理學之評定。儘管Maier 描述了用於評定siRNA-LNP調配物之方法,但此等方法亦可適用於評定本發明之LNP組合物之投藥的清除率、藥物動力學及毒性。
胺脂質可導致增加之清除率。在一些實施例中,清除率為脂質清除率,例如自血液、血清或血漿清除脂質之速率。在一些實施例中,清除率為RNA清除率,例如自血液、血清或血漿清除mRNA或gRNA之速率。在一些實施例中,清除率為自血液、血清或血漿清除LNP之速率。在一些實施例中,清除率為自組織,諸如肝臟組織或脾臟組織清除LNP之速率。在某些實施例中,高清除率產生不具有顯著副作用之安全概況。胺脂質可減少循環中及組織中之LNP積聚。在一些實施例中,循環中及組織中之LNP積聚減少產生不具有顯著副作用之安全概況。
取決於本發明之胺脂質所處之介質的pH,其為可電離的(例如可形成鹽)。舉例而言,在弱酸性介質中,胺脂質可經質子化且因此帶有正電荷。相反地,在弱鹼性介質,諸如pH為大約7.35之血液中,胺脂質可不經質子化且因此不帶電荷。在一些實施例中,可在至少約9之pH下對本發明之胺脂質進行質子化。在一些實施例中,可在至少約9之pH下對本發明之胺脂質進行質子化。在一些實施例中,可在至少約10之pH下對本發明之胺脂質進行質子化。
胺脂質經主要質子化之pH與其內在pKa相關。在一些實施例中,本發明之胺脂質可各自獨立地具有在約5.1至約7.4範圍內之pKa。在一些實施例中,本發明之胺脂質可各自獨立地具有在約5.5至約6.6範圍內之pKa。在一些實施例中,本發明之胺脂質可各自獨立地具有在約5.6至約6.4範圍內之pKa。在一些實施例中,本發明之胺脂質可各自獨立地具有在約5.8至約6.2範圍內之pKa。舉例而言,本發明之胺脂質可各自獨立地具有在約5.8至約6.5範圍內之pKa。胺脂質之pKa可為調配LNP之重要考慮因素,因為已發現pKa介於約5.1至約7.4範圍內之陽離子型脂質對活體內遞送負荷(例如遞送至肝臟)有效。此外,已發現,pKa介於約5.3至約6.4範圍內之陽離子型脂質對活體內遞送(例如遞送至腫瘤)有效。參見例如WO 2014/136086。
其他脂質
適用於本發明之脂質組合物中的「中性脂質」包括例如多種中性、不帶電荷或兩性離子型脂質。適用於本發明之中性磷脂之實例包括但不限於5-十七基苯-1,3-二醇(間苯二酚)、二軟脂醯基磷脂醯膽鹼(DPPC)、二硬脂醯基磷脂醯膽鹼(DSPC)、磷酸膽鹼(DOPC)、二肉豆蔻醯基磷脂醯膽鹼(DMPC)、磷脂醯膽鹼(PLPC)、1,2-二硬脂醯基-sn-甘油-3-磷酸膽鹼(DAPC)、磷脂醯乙醇胺(PE)、卵磷脂醯膽鹼(EPC)、二月桂醯基磷脂醯膽鹼(DLPC)、二肉豆蔻醯基磷脂醯膽鹼(DMPC)、1-肉豆蔻醯基-2-軟脂醯基磷脂醯膽鹼(MPPC)、1-軟脂醯基-2-肉豆蔻醯基磷脂醯膽鹼(PMPC)、1-軟脂醯基-2-硬脂醯基磷脂醯膽鹼(PSPC)、1,2-二花生醯基-sn-甘油-3-磷酸膽鹼(DBPC)、1-硬脂醯基-2-軟脂醯基磷脂醯膽鹼(SPPC)、1,2-二十碳烯醯基-sn-甘油-3-磷酸膽鹼(DEPC)、棕櫚醯油醯基磷脂醯膽鹼(POPC)、溶血磷脂醯基膽鹼、二油醯基磷脂醯乙醇胺(DOPE)、二亞油醯基磷脂醯膽鹼二硬脂醯基磷脂醯乙醇胺(DSPE)、二肉豆蔻醯基磷脂醯乙醇胺(DMPE)、二軟脂醯基磷脂醯乙醇胺(DPPE)、軟脂醯油醯基磷脂醯乙醇胺(POPE)、溶血磷脂醯乙醇胺及其組合。在一個實施例中,中性磷脂可選自由以下組成之群:二硬脂醯基磷脂醯膽鹼(DSPC)及二肉豆蔻醯基磷脂醯乙醇胺(DMPE)。在另一實施例中,中性磷脂可為二硬脂醯基磷脂醯膽鹼(DSPC)。在另一實施例中,中性磷脂可為二棕櫚醯基磷脂醯膽鹼(DPPC)。
「輔助脂質」包括類固醇、固醇及烷基間苯二酚。適用於本發明之輔助脂質包括但不限於膽固醇、5-十七基間苯二酚及膽固醇半丁二酸酯。在一個實施例中,輔助脂質可為膽固醇。在一個實施例中,輔助脂質可為膽固醇半丁二酸酯。
PEG脂質為改變奈米粒子可在活體內(例如血液中)存在之時長的隱形脂質。PEG脂質可藉由例如減少粒子聚集且控制粒度來輔助調配方法。本文中所用之PEG脂質可調節LNP之藥物動力學特性。通常,PEG脂質包含脂質部分及聚合物部分(基於PEG)。
在一些實施例中,脂質部分可源自二醯基甘油或二醯基甘油醯胺(diacylglycamide)、包括包含具有獨立地包含約C4至約C40飽和或不飽和碳原子之烷基鏈長度的二烷基甘油或二烷基甘油醯胺基之彼等者,其中該鏈可包含一或多個官能基,諸如醯胺或酯。在一些實施例中,烷基鏈長度包含約C10至C20。二烷基甘油或二烷基甘油醯胺基可進一步包含一或多個經取代之烷基。鏈長可為對稱或不對稱的。
除非另外指明,否則如本文所用,術語「PEG」意謂任何聚乙二醇或其他聚伸烷醚聚合物。在一個實施例中,PEG部分為乙二醇或環氧乙烷之視情況經取代之直鏈或分支鏈聚合物。在某些實施例中,PEG部分為未經取代。或者,PEG部分可經取代,例如藉由一或多個烷基、烷氧基、醯基、羥基或芳基。在一個實施例中,PEG部分包括PEG共聚物,諸如PEG-聚胺基甲酸酯或PEG-聚丙烯(參見例如J. Milton Harris, Poly(ethylene glycol) chemistry: biotechnical and biomedical applications (1992));或者,PEG部分不包括PEG共聚物,例如其可為PEG單聚物。在一個實施例中,PEG之分子量為約130至約50,000,在子實施例中,約150至約30,000,在子實施例中,約150至約20,000,在子實施例中,約150至約15,000,在子實施例中,約150至約10,000,在子實施例中,約150至約6,000,在子實施例中,約150至約5,000,在子實施例中,約150至約4,000,在子實施例中,約150至約3,000,在子實施例中,約300至約3,000,在子實施例中,約1,000至約3,000,及在子實施例中,約1,500至約2,500。
在某些實施例中,PEG (例如與脂質部分或脂質,諸如隱形脂質結合)為「PEG-2K」,亦稱為「PEG 2000」,其平均分子量為約2,000道爾頓。PEG-2K在本文中由下式(I)表示,其中n為45,意謂經數目平均化之聚合度包含約45個次單位。然而,可使用此項技術中已知之其他PEG實施例,包括例如其中數目平均化聚合度包含約23個次單位(n=23)及/或68個次單位(n=68)之彼等。在一些實施例中,n可在約30至約60範圍內。在一些實施例中,n可在約35至約55範圍內。在一些實施例中,n可在約40至約50範圍內。在一些實施例中,n可在約42至約48範圍內。在一些實施例中,n可為45。在一些實施例中,R可選自H、經取代之烷基及未經取代之烷基。在一些實施例中,R可為未經取代之烷基。在一些實施例中,R可為甲基。
在本文描述之任一實施例中,PEG脂質可選自PEG-二月桂醯甘油、PEG-二肉豆蔻醯甘油(PEG-DMG)(目錄號GM-020,獲自NOF, Tokyo, Japan)、PEG-二棕櫚醯甘油、PEG-二硬脂醯甘油(PEG-DSPE)(目錄號DSPE-020CN,NOF, Tokyo, Japan)、PEG-二月桂基甘油醯胺、PEG-二肉豆蔻基甘油醯胺、PEG-二棕櫚醯甘油醯胺及PEG-二硬脂醯甘油醯胺、PEG-膽固醇(1-[8'-(膽甾-5-烯-3[β]-氧基)甲醯胺基-3',6'-二氧雜辛基]胺甲醯基-[ω]-甲基-聚(乙二醇)、PEG-DMB (3,4-二-十四氧基苯甲基-[ω]-甲基-聚(乙二醇)醚)、1,2-二肉豆蔻醯基-sn-丙三氧基-3-磷酸乙醇胺-N-[甲氧基(聚乙二醇)-2000] (PEG2k-DMG)(目錄號880150P,獲自Avanti Polar Lipids, Alabaster, Alabama, USA)、1,2-二硬脂醯基-sn-丙三氧基-3-磷酸乙醇胺-N-[甲氧基(聚乙二醇)-2000] (PEG2k-DSPE)(目錄號880120C,獲自Avanti Polar Lipids, Alabaster, Alabama, USA)、1,2-二硬脂醯基-sn-甘油, 甲氧基聚乙二醇(PEG2k-DSG;GS-020,NOF Tokyo, Japan)、聚(乙二醇)-2000-二甲基丙烯酸酯(PEG2k-DMA)及1,2-二硬脂醯氧基丙基-3-胺-N-[甲氧基(聚乙二醇)-2000] (PEG2k-DSA)。在一個實施例中,PEG脂質可為PEG2k-DMG。在一些實施例中,PEG脂質可為PEG2k-DSG。在一個實施例中,PEG脂質可為PEG2k-DSPE。在一個實施例中,PEG脂質可為PEG2k-DMA。在一個實施例中,PEG脂質可為PEG2k-C-DMA。在一個實施例中,PEG脂質可為化合物S027,其揭示於WO2016/010840之第[00240]段至第[00244]段中。在一個實施例中,PEG脂質可為PEG2k-DSA。在一個實施例中,PEG脂質可為PEG2k-C11。在一些實施例中,PEG脂質可為PEG2k-C14。在一些實施例中,PEG脂質可為PEG2k-C16。在一些實施例中,PEG脂質可為PEG2k-C18。
LNP 調配物
本發明之實施例提供根據調配物中脂質組分之各別莫耳比描述的脂質組合物。在一個實施例中,胺脂質之mol%可為約30 mol%至約60 mol%。在一個實施例中,胺脂質之mol%可為約40 mol%至約60 mol%。在一個實施例中,胺脂質之mol%可為約45 mol%至約60 mol%。在一個實施例中,胺脂質之mol%可為約50 mol%至約60 mol%。在一個實施例中,胺脂質之mol%可為約55 mol%至約60 mol%。在一個實施例中,胺脂質之mol%可為約50 mol%至約55 mol%。在一個實施例中,胺脂質之mol%可為約50 mol%。在一個實施例中,胺脂質之mol%可為約55 mol%。在一些實施例中,LNP批料之胺脂質mol%將為目標mol%之±30%、±25%、±20%、±15%、±10%、±5%或±2.5%。在一些實施例中,LNP批料之胺脂質mol%將為目標mol%之±4 mol%、±3 mol%、±2 mol%、±1.5 mol%、±1 mol%、±0.5 mol%或±0.25 mol%。所有mol%數均以LNP組合物之脂質組分的分率給定。在某些實施例中,胺脂質mol%之LNP批次間變化率將小於15%、小於10%或小於5%。
在一個實施例中,中性脂質,例如中性磷脂之mol%可為約5 mol%至約15 mol%。在一個實施例中,中性脂質,例如中性磷脂之mol%可為約7 mol%至約12 mol%。在一個實施例中,中性脂質,例如中性磷脂之mol%可為約0 mol%至約5 mol%。在一個實施例中,中性脂質,例如中性磷脂之mol%可為約0 mol%至約10 mol%。在一個實施例中,中性脂質,例如中性磷脂之mol%可為約5 mol%至約10 mol%。在一個實施例中,中性脂質,例如中性磷脂之mol%可為約8 mol%至約10 mol%。
在一個實施例中,中性脂質,例如中性磷脂之mol%可為約5 mol%、約6 mol%、約7 mol%、約8 mol%、約9 mol%、約10 mol%、約11 mol%、約12 mol%、約13 mol%、約14 mol%或約15 mol%。在一個實施例中,中性脂質,例如中性磷脂之mol%可為約9 mol%。
在一個實施例中,中性脂質,例如中性磷脂之mol%可為約1 mol%至約5 mol%。在一個實施例中,中性脂質之mol%可為約0.1 mol%至約1 mol%。在一個實施例中,中性脂質,諸如中性磷脂之mol%可為約0.1 mol%、約0.2 mol%、約0.5 mol%、1 mol%、約1.5 mol%、約2 mol%、約2.5 mol%、約3 mol%、約3.5 mol%、約4 mol%、約4.5 mol%或約5 mol%。
在一個實施例中,中性脂質,例如中性磷脂之mol%可小於約1 mol%。在一個實施例中,中性脂質,例如中性磷脂之mol%可小於約0.5 mol%。在一個實施例中,中性脂質,例如中性磷脂之mol%可為約0 mol%、約0.1 mol%、約0.2 mol%、約0.3 mol%、約0.4 mol%、約0.5 mol%、約0.6 mol%、約0.7 mol%、約0.8 mol%、約0.9 mol%或約1 mol%。在一些實施例中,本文揭示之調配物不含中性脂質(亦即0 mol%中性脂質)。在一些實施例中,本文揭示之調配物基本上不含中性脂質(亦即約0 mol%中性脂質)。在一些實施例中,本文揭示之調配物不含中性磷脂(亦即0 mol%中性磷脂)。在一些實施例中,本文揭示之調配物基本上不含中性磷脂(亦即約0 mol%中性磷脂)。
在一些實施例中,LNP批料之中性脂質mol%將為目標中性脂質mol%之±30%、±25%、±20%、±15%、±10%、±5%或±2.5%。在某些實施例中,LNP批次間變化將小於15%、小於10%或小於5%。
在一個實施例中,輔助脂質之mol%可為約20 mol%至約60 mol%。在一個實施例中,輔助脂質之mol%可為約25 mol%至約55 mol%。在一個實施例中,輔助脂質之mol%可為約25 mol%至約50 mol%。在一個實施例中,輔助脂質之mol%可為約25 mol%至約40 mol%。在一個實施例中,輔助脂質之mol%可為約30 mol%至約50 mol%。在一個實施例中,輔助脂質之mol%可為約30 mol%至約40 mol%。在一個實施例中,基於胺脂質、中性脂質及PEG脂質濃度而調整輔助脂質之mol%以使脂質組分達到100 mol%。在一個實施例中,基於胺脂質及PEG脂質濃度而調整輔助脂質之mol%以使脂質組分達到100 mol%。在一個實施例中,基於胺脂質及PEG脂質濃度而調整輔助脂質之mol%以使脂質組分達到至少99 mol%。在一些實施例中,LNP批料之輔助脂質mol%將為目標mol%之±30%、±25%、±20%、±15%、±10%、±5%或±2.5%。在某些實施例中,LNP批次間變化將小於15%、小於10%或小於5%。
在一個實施例中,PEG脂質之mol%可為約1 mol%至約10 mol%。在一個實施例中,PEG脂質之mol%可為約2 mol%至約10 mol%。在一個實施例中,PEG脂質之mol%可為約2 mol%至約8 mol%。在一個實施例中,PEG脂質之mol%可為約2 mol%至約4 mol%。在一個實施例中,PEG脂質之mol%可為約2.5 mol%至約4 mol%。在一個實施例中,PEG脂質之mol%可為約3 mol%。在一個實施例中,PEG脂質之mol%可為約2.5 mol%。在一些實施例中,LNP批料之PEG脂質mol%將為目標PEG脂質mol%之±30%、±25%、±20%、±15%、±10%、±5%或±2.5%。在某些實施例中,LNP批次間變化將小於15%、小於10%或小於5%。
在某些實施例中,負荷包括編碼經RNA引導之DNA結合劑(例如Cas核酸酶、第2類Cas核酸酶或Cas9)之mRNA,及gRNA或編碼gRNA之核酸,或mRNA及gRNA之組合。在一個實施例中,LNP組合物可包含脂質A或其等效物。在一些態樣中,胺脂質為脂質A。在一些態樣中,胺脂質為脂質A等效物,例如脂質A之類似物。在某些態樣中,胺脂質為脂質A之縮醛類似物。在各種實施例中,LNP組合物包含胺脂質、中性脂質、輔助脂質及PEG脂質。在某些實施例中,輔助脂質為膽固醇。在某些實施例中,中性脂質為DSPC。在特定實施例中,PEG脂質為PEG2k-DMG。在一些實施例中,LNP組合物可包含脂質A、輔助脂質、中性脂質及PEG脂質。在一些實施例中,LNP組合物包含胺脂質、DSPC、膽固醇及PEG脂質。在一些實施例中,LNP組合物包含PEG脂質,該脂質包含DMG。在某些實施例中,胺脂質選自脂質A,及脂質A之等效物,包括脂質A之縮醛類似物。在額外實施例中,LNP組合物包含脂質A、膽固醇、DSPC及PEG2k-DMG。
在各種實施例中,LNP組合物包含胺脂質、輔助脂質、中性脂質及PEG脂質。在各種實施例中,LNP組合物包含胺脂質、輔助脂質、中性磷脂及PEG脂質。在各種實施例中,LNP組合物包含脂質組分,其由胺脂質、輔助脂質、中性脂質及PEG脂質組成。在各種實施例中,LNP組合物包含胺脂質、輔助脂質及PEG脂質。在某些實施例中,LNP組合物不包含中性脂質,諸如中性磷脂。在各種實施例中,LNP組合物包含脂質組分,其由胺脂質、輔助脂質及PEG脂質組成。在某些實施例中,中性脂質係選自DSPC、DPPC、DAPC、DMPC、DOPC、DOPE及DSPE中之一或多者。在某些實施例中,中性脂質為DSPC。在某些實施例中,中性脂質為DPPC。在某些實施例中,中性脂質為DAPC。在某些實施例中,中性脂質為DMPC。在某些實施例中,中性脂質為DOPC。在某些實施例中,中性脂質為DOPE。在某些實施例中,中性脂質為DSPE。在某些實施例中,輔助脂質為膽固醇。在特定實施例中,PEG脂質為PEG2k-DMG。在一些實施例中,LNP組合物可包含脂質A、輔助脂質及PEG脂質。在一些實施例中,LNP組合物可包含脂質組分,其由脂質A、輔助脂質及PEG脂質組成。在一些實施例中,LNP組合物包含胺脂質、膽固醇及PEG脂質。在一些實施例中,LNP組合物包含脂質組分,其由胺脂質、膽固醇及PEG脂質組成。在一些實施例中,LNP組合物包含PEG脂質,該脂質包含DMG。在某些實施例中,胺脂質選自脂質A及脂質A之等效物,包括脂質A之縮醛類似物。在某些實施例中,胺脂質為脂質A之C5-C12或C4-C12縮醛類似物。在額外實施例中,LNP組合物包含脂質A、膽固醇及PEG2k-DMG。
本發明之實施例亦提供根據待囊封之核酸之胺脂質的帶正電胺基(N)與帶負電磷酸酯基團(P)之間的莫耳比描述之脂質組合物。此可由方程式N/P數學表示。在一些實施例中,LNP組合物可包含脂質組分,其包含胺脂質、輔助脂質、中性脂質及PEG脂質;及核酸組分,其中N/P比為約3至10。在一些實施例中,LNP組合物可包含脂質組分,其包含胺脂質、輔助脂質及PEG脂質;及核酸組分,其中N/P比為約3至10。在一些實施例中,LNP組合物可包含脂質組分,其包含胺脂質、輔助脂質、中性脂質及輔助脂質;及RNA組分,其中N/P比為約3至10。在一些實施例中,LNP組合物可包含脂質組分,其包含胺脂質、輔助脂質及PEG脂質;及RNA組分,其中N/P比為約3至10。在一個實施例中,N/P比可為約5至7。在一個實施例中,N/P比可為約3至7。在一個實施例中,N/P比可為約4.5至8。在一個實施例中,N/P比可為約6。在一個實施例中,N/P比可為6±1。在一個實施例中,N/P比可為6±0.5。在一些實施例中,N/P比將為目標N/P比之±30%、±25%、±20%、±15%、±10%、±5%或±2.5%。在某些實施例中,LNP批次間變化將小於15%、小於10%或小於5%。
在一些實施例中,核酸組分,例如RNA組分可包含mRNA,諸如編碼Cas核酸酶之mRNA。RNA組分包括RNA,視情況伴以額外核酸及/或蛋白質,例如RNP負荷。在一個實施例中,RNA包含Cas9 mRNA。在一些包含編碼Cas核酸酶之mRNA的組合物中,LNP進一步包含gRNA核酸,諸如gRNA。在一些實施例中,RNA組分包含Cas核酸酶mRNA及gRNA。在一些實施例中,RNA組分包含第2類Cas核酸酶mRNA及gRNA。
在某些實施例中,LNP組合物可包含編碼Cas核酸酶(諸如第2類Cas核酸酶)之mRNA、胺脂質、輔助脂質、中性脂質及PEG脂質。在某些實施例中,LNP組合物可包含編碼Cas核酸酶(諸如第2類Cas核酸酶)之mRNA、胺脂質、輔助脂質及PEG脂質。在某些包含編碼Cas核酸酶(諸如第2類Cas核酸酶)之mRNA的LNP組合物中,輔助脂質為膽固醇。在其他包含編碼Cas核酸酶(諸如第2類Cas核酸酶)之mRNA的組合物中,中性脂質為DSPC。在其他包含編碼Cas核酸酶(諸如第2類Cas核酸酶)之mRNA的實施例中,PEG脂質為PEG2k-DMG或PEG2k-C11。在包含編碼Cas核酸酶(諸如第2類Cas核酸酶)之mRNA的特定組合物中,胺脂質選自脂質A及其等效物,諸如脂質A之縮醛類似物。
在一些實施例中,LNP組合物可包含gRNA。在某些實施例中,LNP組合物可包含胺脂質、gRNA、輔助脂質、中性脂質及PEG脂質。在某些實施例中,LNP組合物可包含胺脂質、gRNA、輔助脂質及PEG脂質。在某些包含gRNA之LNP組合物中,輔助脂質為膽固醇。在一些包含gRNA之組合物中,中性脂質為DSPC。在其他包含gRNA之實施例中,PEG脂質為PEG2k-DMG或PEG2k-C11。在某些實施例中,胺脂質選自脂質A及其等效物。諸如脂質A之縮醛類似物。
在一個實施例中,LNP組合物可包含sgRNA。在一個實施例中,LNP組合物可包含Cas9 sgRNA。在一個實施例中,LNP組合物可包含Cpf1 sgRNA。在一些包含sgRNA之組合物中,LNP包括胺脂質、輔助脂質、中性脂質及PEG脂質。在一些包含sgRNA之組合物中,LNP包括胺脂質、輔助脂質及PEG脂質。在某些包含sgRNA之組合物中,輔助脂質為膽固醇。在其他包含sgRNA之組合物中,中性脂質為DSPC。在其他包含sgRNA之實施例中,PEG脂質為PEG2k-DMG或PEG2k-C11。在某些實施例中,胺脂質選自脂質A及其等效物,諸如脂質A之縮醛類似物。
在某些實施例中,LNP組合物包含編碼Cas核酸酶之mRNA及gRNA,其可為sgRNA。在一個實施例中,LNP組合物可包含胺脂質、編碼Cas核酸酶之mRNA、gRNA、輔助脂質、中性脂質及PEG脂質。在一個實施例中,LNP組合物可包含由胺脂質、輔助脂質、中性脂質及PEG脂質組成之脂質組分;及由編碼Cas核酸酶之mRNA及gRNA組成之核酸組分。在一個實施例中,LNP組合物可包含由胺脂質、輔助脂質及PEG脂質組成之脂質組分;及由編碼Cas核酸酶之mRNA及gRNA組成之核酸組分。在某些包含編碼Cas核酸酶之mRNA及gRNA之組合物中,輔助脂質為膽固醇。在一些包含編碼Cas核酸酶之mRNA及gRNA之組合物中,中性脂質為DSPC。某些包含編碼Cas核酸酶之mRNA及gRNA之組合物包含小於約1 mol%中性脂質,例如中性磷脂。某些包含編碼Cas核酸酶之mRNA及gRNA之組合物包含小於約0.5 mol%中性脂質,例如中性磷脂。在某些組合物中,LNP不包含中性脂質,例如中性磷脂。在其他包含編碼Cas核酸酶之mRNA及gRNA之實施例中,PEG脂質為PEG2k-DMG或PEG2k-C11。在某些實施例中,胺脂質選自脂質A及其等效物,諸如脂質A之縮醛類似物。
在某些實施例中,LNP組合物包括Cas核酸酶mRNA,諸如第2類Cas mRNA及至少一種gRNA。在某些實施例中,LNP組合物包括比率為約25:1至約1:25之gRNA與Cas核酸酶mRNA,諸如第2類Cas核酸酶mRNA。在某些實施例中,LNP調配物包括比率為約10:1至約1:10之gRNA與Cas核酸酶mRNA,諸如第2類Cas核酸酶mRNA。在某些實施例中,LNP調配物包括比率為約8:1至約1:8之gRNA與Cas核酸酶mRNA,諸如第2類Cas核酸酶mRNA。如本文中所量測,比率係按重量計。在一些實施例中,LNP調配物包括比率為約5:1至約1:5之gRNA與Cas核酸酶mRNA,諸如第2類Cas mRNA。在一些實施例中,比率範圍為約3:1至1:3、約2:1至1:2、約5:1至1:2、約5:1至1:1、約3:1至1:2、約3:1至1:1、約3:1、約2:1至1:1。在一些實施例中,gRNA與mRNA之比為約3:1或約2:1。在一些實施例中,gRNA與Cas核酸酶mRNA,諸如第2類Cas核酸酶之比為約1:1。比率可為約25:1、10:1、5:1、3:1、1:1、1:3、1:5、1:10或1:25。
本文中所揭示之LNP組合物可包括模板核酸。模板核酸可經編碼Cas核酸酶之mRNA,諸如第2類Cas核酸酶mRNA共調配。在一些實施例中,模板核酸可經引導RNA共調配。在一些實施例中,模板核酸可經編碼Cas核酸酶之mRNA及引導RNA兩者共調配。在一些實施例中,模板核酸可經編碼Cas核酸酶之mRNA及引導RNA分開調配。模板核酸可與LNP組合物一起或與其分開遞送。在一些實施例中,模板核酸可為單股或雙股的,其視所需修復機制而定。模板可具有與靶DNA或與鄰近於靶DNA之序列同源的區域。
在一些實施例中,LNP係藉由混合RNA水溶液與有機溶劑類脂質溶液,例如100%乙醇而形成。適合溶液或溶劑包括或可含有:水、PBS、Tris緩衝液、NaCl、檸檬酸鹽緩衝液、乙醇、氯仿、二乙醚、環己烷、四氫呋喃、甲醇、異丙醇。可將醫藥學上可接受之緩衝劑用於例如LNP之活體內投藥。在某些實施例中,緩衝液用於將包含LNP之組合物的pH維持處於或高於pH 6.5。在某些實施例中,緩衝液用於將包含LNP之組合物的pH維持處於或高於pH 7.0。在某些實施例中,組合物之pH在約7.2至約7.7範圍內。在其他實施例中,組合物之pH在約7.3至約7.7範圍內或約7.4至約7.6範圍內。在其他實施例中,組合物之pH為約7.2、7.3、7.4、7.5、7.6或7.7。組合物之pH可用微型pH探針量測。在某些實施例中,組合物中包括低溫保護劑。低溫保護劑之非限制性實例包括蔗糖、海藻糖、甘油、DMSO及乙二醇。例示性組合物可包括至多10%低溫保護劑,諸如蔗糖。在某些實施例中,LNP組合物可包括約1、2、3、4、5、6、7、8、9或10%低溫保護劑。在某些實施例中,LNP組合物可包括約1、2、3、4、5、6、7、8、9或10%蔗糖。在一些實施例中,LNP組合物可包括緩衝液。在一些實施例中,緩衝液可包含磷酸鹽緩衝液(PBS)、Tris緩衝液、檸檬酸鹽緩衝液或其混合物。在某些例示性實施例中,緩衝液包含NaCl。在某些實施例中,省去NaCl。NaCl之例示性量可在約20 mM至約45 mM範圍內。NaCl之例示性量可在約40 mM至約50 mM範圍內。在一些實施例中,NaCl之量為約45 mM。在一些實施例中,緩衝液為Tris緩衝液。Tris之例示性量可在約20 mM至約60 mM範圍內。Tris之例示性量可在約40 mM至約60 mM範圍內。在一些實施例中,Tris之量為約50 mM。在一些實施例中,緩衝液包含NaCl及Tris。LNP組合物之某些例示性實施例含有5%蔗糖及含45 mM NaCl之Tris緩衝液。在其他例示性實施例中,組合物含有呈約5% w/v之量的蔗糖、約45 mM NaCl及約50 mM Tris (pH 7.5)。鹽、緩衝液及低溫保護劑量可有所變化以使總調配物之重量莫耳滲透濃度得以維持。舉例而言,最終重量莫耳滲透濃度可維持在小於450 mOsm/L。在其他實施例中,重量莫耳滲透濃度在350與250 mOsm/L之間。某些實施例之最終重量莫耳滲透濃度為300 +/- 20 mOsm/L。
在一些實施例中,使用微流混合、T型混合或交叉混合。在某些態樣中,流動速率、接頭大小、接頭幾何結構、接頭形狀、管徑、溶液及/或RNA及脂質濃度可有所變化。LNPs或LNP組合物可例如經由滲析、切向流過濾或層析得到濃縮或純化。LNP可以例如懸浮液、乳液或凍乾粉末形式儲存。在一些實施例中,LNP組合物儲存於2至8℃下,在某些態樣中,LNP組合物儲存於室溫下。在其他實施例中,冷凍儲存,例如在-20℃或-80℃下儲存LNP組合物。在其他實施例中,將LNP組合物儲存於約0℃至約-80℃範圍內之溫度下。冷凍LNP組合物可在使用之前,例如在冰上、在室溫下或在25℃下解凍。
LNP可例如為微球體(包括單層及多層囊泡,例如「脂質體」-在一些實施例中為大體上球形之層狀相脂質雙層-且在更特定實施例中可包含水性核心,例如包含大部分RNA分子)、乳液中之分散相、膠束或懸浮液中之內相。
此外,LNP組合物可生物降解,因為其不在治療有效劑量下活體內積聚至細胞毒性水準。在一些實施例中,LNP組合物不在治療劑量水準下引起導致重大副作用之先天性免疫反應。在一些實施例中,本文提供之LNP組合物不在治療劑量水準下引起毒性。
在一些實施例中,pdi可在約0.005至約0.75範圍內。在一些實施例中,pdi可在約0.01至約0.5範圍內。在一些實施例中,pdi可在約零至約0.4範圍內。在一些實施例中,pdi可在約零至約0.35範圍內。在一些實施例中,pdi可在約零至約0.35範圍內。在一些實施例中,pdi可在約零至約0.3範圍內。在一些實施例中,pdi可在約零至約0.25範圍內。在一些實施例中,pdi可在約零至約0.2範圍內。在一些實施例中,pdi可為小於約0.08、0.1、0.15、0.2或0.4。
本文揭示之LNP的尺寸(例如Z-平均直徑)為約1至約250 nm。在一些實施例中,LNP之尺寸為約10至約200 nm。在其他實施例中,LNP之尺寸為約20至約150 nm。在一些實施例中,LNP之尺寸為約50至約150 nm。在一些實施例中,LNP之尺寸為約50至約100 nm。在一些實施例中,LNP之尺寸為約50至約120 nm。在一些實施例中,LNP之尺寸為約60至約100 nm。在一些實施例中,LNP之尺寸為約75至約150 nm。在一些實施例中,LNP之尺寸為約75至約120 nm。在一些實施例中,LNP之尺寸為約75至約100 nm。除非另外指明,否則本文所提及之所有尺寸為完全成形奈米粒子之平均尺寸(直徑),如藉由Malvern Zetasizer上之動態光散射所量測。奈米粒子樣品稀釋於磷酸鹽緩衝鹽水(PBS)中,以使得計數率為大致200-400 kcps。資料呈現為強度量度之加權平均值(Z-平均直徑)。
在一些實施例中,LNP經形成而具有介於約50%至約100%範圍內的平均囊封效率。在一些實施例中,LNP經形成而具有介於約50%至約70%範圍內的平均囊封效率。在一些實施例中,LNP經形成而具有介於約70%至約90%範圍內的平均囊封效率。在一些實施例中,LNP經形成而具有介於約90%至約100%範圍內的平均囊封效率。在一些實施例中,LNP經形成而具有介於約75%至約95%範圍內的平均囊封效率。
在一些實施例中,LNP經形成而具有介於約1.00E+05 g/mol至約1.00E+10 g/mol範圍內的平均分子量。在一些實施例中,LNP經形成而具有介於約5.00E+05 g/mol至約7.00E+07 g/mol範圍內的平均分子量。在一些實施例中,LNP經形成而具有介於約1.00E+06 g/mol至約1.00E+10 g/mol範圍內的平均分子量。在一些實施例中,LNP經形成而具有介於約1.00E+07 g/mol至約1.00E+09 g/mol範圍內的平均分子量。在一些實施例中,LNP經形成而具有介於約5.00E+06 g/mol至約5.00E+09 g/mol範圍內的平均分子量。
在一些實施例中,多分散性(Mw/Mn;重均莫耳質量(Mw)與數均莫耳質量(Mn)之比)可在約1.000至約2.000範圍內。在一些實施例中,Mw/Mn可在約1.00至約1.500範圍內。在一些實施例中,Mw/Mn可在約1.020至約1.400範圍內。在一些實施例中,Mw/Mn可在約1.010至約1.100範圍內。在一些實施例中,Mw/Mn可在約1.100至約1.350範圍內。
工程改造細胞之方法;經工程改造之細胞
本文中所揭示之LNP組合物可用於在活體內及活體外經由基因編輯工程改造細胞之方法中。在一些實施例中,方法涉及使細胞與本文所述之LNP組合物接觸。
在一些實施例中,方法涉及接觸受試者,諸如哺乳動物,諸如人類之細胞。在一些實施例中,細胞處於器官,諸如肝臟,諸如哺乳動物肝臟,諸如人類肝臟中。在一些實施例中,細胞為肝臟細胞,諸如哺乳動物肝臟細胞,諸如人類肝臟細胞。在一些實施例中,細胞為肝細胞,諸如哺乳動物肝細胞,諸如人類肝細胞。在一些實施例中,肝臟細胞為幹細胞。在一些實施例中,人類肝臟細胞可為肝竇內皮細胞(LSEC)。在一些實施例中,人類肝臟細胞可為庫普弗細胞(Kupffer cell)。在一些實施例中,人類肝臟細胞可為肝星形細胞。在一些實施例中,人類肝臟細胞可為腫瘤細胞。在一些實施例中,人類肝臟細胞可為肝幹細胞。在額外實施例中,細胞包含ApoE結合受體。在一些實施例中,肝臟細胞,諸如肝細胞處於原位。在一些實施例中,肝臟細胞,諸如肝細胞分離於例如培養物中,諸如原代培養物中。亦提供對應於本文揭示之用途之方法,其包含向受試者投與本文中所揭示之LNP組合物或使細胞(諸如上文所述之彼等細胞)與本文中所揭示之LNP組合物接觸。
在一些實施例中,提供工程改造細胞,例如源自前述段落之細胞類型中之任一者的工程改造細胞。此類工程改造細胞係根據本文中所描述之方法製備。在一些實施例中,工程改造細胞駐存於組織或器官,例如受試者之肝臟內。
在本文所述之一些方法及細胞中,細胞包含修飾,例如靶序列中之核苷酸的插入或缺失(「in sertion ordel etion (indel)」)或取代。在一些實施例中,修飾包含靶序列中1、2、3、4或5個或更多個核苷酸之插入。在一些實施例中,修飾包含靶序列中1或2個核苷酸之插入。在其他實施例中,修飾包含靶序列中1、2、3、4、5、6、7、8、9、10、15、20或25個或更多個核苷酸之缺失。在一些實施例中,修飾包含靶序列中1或2個核苷酸之缺失。在一些實施例中,修飾包含導致靶序列中之移碼突變的插入或缺失。在一些實施例中,修飾包含靶序列中1、2、3、4、5、6、7、8、9、10、15、20或25個或更多個核苷酸之取代。在一些實施例中,修飾包含靶序列中1或2個核苷酸之取代。在一些實施例中,修飾包含產生於併入模板核酸,例如本文所述之模板核酸中之任一者的一或多個核苷酸插入、缺失或取代。
在一些實施例中,提供包含工程改造細胞之細胞群體,例如包含根據本文所描述之方法工程改造之細胞的細胞群體。在一些實施例中,群體包含活體外培養之工程改造細胞。在一些實施例中,群體駐存於組織或器官,例如受試者之肝臟內。在一些實施例中,群體內之至少5%、至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%或至少95%或更多細胞經工程改造。在某些實施例中,本文揭示之方法導致至少5%、至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%或至少95%編輯效率(或「編輯百分比」),其由偵測之插入或缺失定義。在其他實施例中,本文揭示之方法導致至少5%、至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%或至少95%DNA修飾效率,其由偵測序列變化(藉由插入、缺失、取代或以其他方式)定義。在某些實施例中,本文揭示之方法導致細胞群體中約5%至約100%、約10%至約50%、約20至約100%、約20至約80%、約40至約100%或約40至約80%之間的編輯效率水準或DNA修飾效率水準。
在本文所述之一些方法及細胞中,群體內之細胞包含靶序列處之修飾,例如插入或缺失或取代。在一些實施例中,修飾包含靶序列中1、2、3、4或5個或更多個核苷酸之插入。在一些實施例中,修飾包含靶序列中1或2個核苷酸之插入。在其他實施例中,修飾包含靶序列中1、2、3、4、5、6、7、8、9、10、15、20或25個或更多個核苷酸之缺失。在一些實施例中,修飾包含靶序列中1或2個核苷酸之缺失。在一些實施例中,修飾導致靶序列中之移碼突變。在一些實施例中,修飾包含導致靶序列中之移碼突變的插入或缺失。在一些實施例中,群體中至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%或至少99%或更多經工程改造之細胞包含移碼突變。在一些實施例中,修飾包含靶序列中1、2、3、4、5、6、7、8、9、10、15、20或25個或更多個核苷酸之取代。在一些實施例中,修飾包含靶序列中1或2個核苷酸之取代。在一些實施例中,修飾包含產生於併入模板核酸,例如本文所述之模板核酸中之任一者的一或多個核苷酸插入、缺失或取代。
基因編輯方法
本文中所揭示之LNP組合物可用於活體內及活體外基因編輯。在一個實施例中,可向有需要之個體投與一或多種本文中所描述之LNP組合物。在一個實施例中,一或多種本文中所描述之LNP組合物可與細胞接觸。在一個實施例中,治療有效量之本文所述之組合物可與有需要之個體之細胞接觸。在一個實施例中,基因工程改造細胞可由使細胞與本文所述之LNP組合物接觸而產生。在各種實施例中,方法包含將模板核酸引入至細胞或受試者,如上文所闡述。
在一些實施例中,方法涉及將LNP組合物投與至與肝部病症相關之細胞。在一些實施例中,方法涉及治療肝部病症。在某些實施例中,方法涉及使肝臟細胞與LNP組合物接觸。在某些實施例中,方法涉及使肝細胞與LNP組合物接觸。在一些實施例中,方法涉及使ApoE結合細胞與LNP組合物接觸。
在一個實施例中,包含編碼第2類Cas核酸酶之mRNA及gRNA之LNP組合物可投與至細胞,諸如ApoE結合細胞。在其他實施例中,模板核酸亦引入至細胞。在某些情況下,包含第2類Cas核酸酶及sgRNA之LNP組合物可投與至細胞,諸如ApoE結合細胞。在一個實施例中,包含編碼第2類Cas核酸酶之mRNA、gRNA及模板之LNP組合物可投與至細胞。在某些情況下,包含Cas核酸酶及sgRNA之LNP組合物可投與至肝臟細胞。在一些情況下,肝臟細胞在受試者中。
在某些實施例中,受試者可接受單次劑量之LNP組合物。在其他實例中,受試者可接受多次劑量之LNP組合物。在一些實施例中,投與LNP組合物2至5次。在投與超過一個劑量時,可相隔約1、2、3、4、5、6、7、14、21或28天;相隔約2、3、4、5或6個月;或相隔約1、2、3、4或5年投與該等劑量。在某些實施例中,編輯在再投與LNP組合物後改良。
在一個實施例中,包含編碼Cas核酸酶(諸如第2類Cas核酸酶)之mRNA的LNP組合物可與投與包含gRNA之組合物分開投與至細胞。在一個實施例中,包含編碼Cas核酸酶(諸如第2類Cas核酸酶)之mRNA及gRNA的LNP組合物可與將模板核酸投與至細胞分開投與至細胞。在一個實施例中,包含編碼Cas核酸酶(諸如第2類Cas核酸酶)之mRNA的LNP組合物可投與至細胞,接著將包含gRNA之LNP組合物及模板依序投與至細胞。在包含編碼Cas核酸酶之mRNA之LNP組合物在包含gRNA之LNP組合物之前投與的實施例中,投與可相隔約4、6、8、12或24小時;或2、3、4、5、6或7天。
在一個實施例中,LNP組合物可用於編輯基因,導致基因敲除。在一實施例中,LNP組合物可用於編輯基因,導致細胞群體中之基因敲落。在另一實施例中,LNP組合物可用於編輯基因,導致基因校正。在另一實施例中,LNP組合物可用於編輯細胞,導致基因插入。
在一個實施例中,投與LNP組合物可導致基因編輯,其導致持續反應。舉例而言,投與可導致一天、一個月、一年或更長的反應持續時間。如本文所用,「反應持續時間」意謂在細胞已使用本文揭示之LNP組合物編輯之後,所得修飾在投與LNP組合物之後仍存在某一時段。修飾可藉由量測靶蛋白水準來偵測。修飾可藉由偵測靶DNA來偵測。在一些實施例中,反應持續時間可為至少1週。在其他實施例中,反應持續時間可為至少2週。在一個實施例中,反應持續時間可為至少1個月。在一些實施例中,反應持續時間可為至少2個月。在一個實施例中,反應持續時間可為至少4個月。在一個實施例中,反應持續時間可為至少6個月。在某些實施例中,反應持續時間可為約26週。在一些實施例中,反應持續時間可為至少1年。在一些實施例中,反應持續時間可為至少5年。在一些實施例中,反應持續時間可為至少10年。在一些實施例中,藉由量測靶蛋白水準或藉由偵測靶DNA,持續反應在至少0.5、1、2、3、4、5、6、7、8、9、10、11、12、15、18、21或24個月之後可偵測。在一些實施例中,藉由量測靶蛋白水準或藉由偵測靶DNA,持續反應在至少1、2、3、4、5、6、7、8、9、10、12、14、16、18或20年之後可偵測。
LNP組合物可非經腸投與。LNP組合物可直接投與至血流、組織、肌肉或內部器官中。投與可為全身性的,例如針對注射或輸注。投與可為局部的。適合之投與方法包括靜脈內、動脈內、鞘內、室內、尿道內、胸骨內、顱內、視網膜下、玻璃體內、前房內、肌肉內、滑膜內、皮內及皮下。適用於投藥之裝置包括針(包括微針)注射器、無針注射器、滲透泵及輸注技術。
LNP組合物將一般(但未必)以與一或多種醫藥學上可接受之賦形劑結合之調配物形式投與。術語「賦形劑」包括除本發明之化合物、其他脂質組分及生物活性劑以外的任何成分。賦形劑可賦予調配物功能(例如藥物釋放速率控制)及/或非功能(例如加工助劑或稀釋劑)特徵。賦形劑之選擇在很大程度上將視諸如特定投藥模式、賦形劑對溶解性及穩定性之影響及劑型性質的因素而定。
非經腸調配物通常為水性或油性溶液或懸浮液。當調配物為水性時,可使用諸如糖(包括但不限於葡萄糖、甘露醇、山梨醇等)、鹽、碳水化合物及緩衝劑(較佳為3至9之pH)之賦形劑。但對於一些應用,其可更適當地調配為無菌非水性溶液或乾燥形式以與適合之媒劑,諸如無菌、無熱原質水(WFI)結合使用。
雖然本發明結合所說明之實施例描述,但應理解其不欲將本發明限於彼等實施例。相反,本發明意欲涵蓋所有替代方案、修改及等效物,包括特定特徵之等效物,其可包括於如藉由所附申請專利範圍所定義之本發明內。
前述一般描述及詳細描述,以及下述實例均僅為例示性及解釋性的且不限制教示內容。本文所用之章節標題僅出於組織目的而不應解釋為以任何方式限制所需標的物。在以引用的方式併入之任何文獻與本說明書中定義之任何術語矛盾的情況下,以本說明書為準。除非另外陳述,否則本申請案中給出之所有範圍涵蓋端點。
應注意,除非上下文另外明確指示,否則如本申請案中所使用,單數形式「一(a/an)」及「該」包括複數個參考物。因此,舉例而言,提及之「組合物(a composition)」包括複數個組合物且提及之「細胞(a cell)」包括複數個細胞及其類似者。除非另外說明,否則使用之「或」為包括性的且意謂「及/或」。
數值範圍包括界定該範圍之數字。考慮到有效數位及與量測相關之誤差,所量測及可量測值應理解為大致的。術語「約」或「大致」意謂如由一般熟習此項技術者所測定之特定值之可接受誤差,其部分取決於如何量測或測定該值。在範圍之前或在值之清單之前使用諸如「約」之修飾語修飾範圍之各端點或清單中之各值。「約」亦包括值或端點。舉例而言,「約50至55」涵蓋「約50至約55」。另外,使用「包含(comprise)」、「包含(comprises)」、「包含(comprising)」、「含有(contain)」、「含有(contains)」、「含有(containing)」、「包括(include)」、「包括(includes)」及「包括(including)」不具限制性。
除非在上述說明書中明確指出,否則本說明書中陳述「包含」各種組分之實施例亦考慮為「由」所述組分「組成」或「基本上由」所述組分「組成」;本說明書中陳述「由」各種組分「組成」亦考慮為「包含」所述組分或「基本上由」所述組分「組成」;本說明書中陳述「約」各種組分之實施例亦考慮為「處於」所述組分;且本說明書中陳述「基本上由」各種組分「組成」亦考慮為「由」所述組分「組成」或「包含」所述組分(此互換性不適用於在申請專利範圍中使用此等術語)。
實例
實例 1 - 用於在小鼠中進行活體內編輯之LNP組合物
製備各種LNP組合物之小規模製劑以調查其特性。在關於小鼠之肝臟編輯%的分析中,靶向小鼠TTR序列之Cas9 mRNA及經化學修飾之sgRNA以如下表2中所述之改變PEG mol%、脂質A mol%及N:P比在LNP中調配。
表2. LNP組合物。
在圖1中,LNP調配物基於其脂質A mol%及N:P比鑑別於X軸上,標註為「% CL;N:P」。如圖1之圖例中所指示,2、2.5、3、4或5 mol%之PEG-2k-DMG濃度係用以下各者調配:(1) 45 mol%脂質A;4.5 N:P (「45; 4.5」);(2) 45 mol%脂質A;6 N:P (「45; 6」);(3) 50 mol%脂質A;4.5 N:P (「50; 4.5」);(4) 50 mol%脂質A;6 N:P (「50; 6」);(5) 55 mol%脂質A;4.5 N:P (「55; 4.5」);及(6) 55 mol%脂質A;6 N:P (「55; 6」)。DSPC mol%保持恆定於9 mol%且添加膽固醇mol%以使各調配物脂質組分之其餘部分達到100 mol%。如下所述地調配30種調配物中之每一者,且以總RNA之1 mg/kg或0.5 mg/kg劑量的單次劑量形式投與(分別為圖1A及圖1B)。
LNP調配物-NanoAssemblr
脂質奈米粒子組分以上述脂質組分莫耳比溶解於100%乙醇中。將RNA負荷溶解於25 mM檸檬酸鹽、100 mM NaCl,pH 5.0中,產生大約0.45 mg/mL之RNA負荷濃度。LNP以約4.5或約6的脂質胺與RNA磷酸酯(N:P)莫耳比調配,其中按重量計之mRNA與gRNA之比為1:1。
LNP係藉由根據製造商之方案,使用Precision Nanosystems NanoAssemblrTM 台式儀器將脂質及RNA溶液微流體混合而形成。使用差分流動速率在混合期間維持水相與有機溶劑之2:1比率。混合之後,收集LNP,在水中稀釋(大約1:1 v/v),在室溫下保持1小時,且進一步用水稀釋(大約1:1 v/v),之後進行最終緩衝液更換。用PD-10去鹽管柱(GE)來完成將最終緩衝液更換為50 mM Tris、45 mM NaCl、5% (w/v)蔗糖,pH 7.5 (TSS)。必要時,用Amicon 100 kDa離心過濾器(Millipore)藉由離心濃縮調配物。所得混合物接著使用0.2 μm無菌過濾器過濾。將最終LNP儲存於-80℃下直至進一步使用。
調配物分析
使用動態光散射(「DLS」)表徵本發明之LNP的多分散性指數(「pdi」)及尺寸。DLS量測由將樣品置於光源下而產生的光之散射。如根據DLS量測所測定,PDI表示群體中粒度之分佈(平均粒度周圍),其中完全均一群體之PDI為零。
電泳光散射用於表徵指定pH下之LNP的表面電荷。表面電荷,或ζ電位為LNP懸浮液中之粒子之間的靜電斥力/引力之量值的量度。
不對稱流場流分離-多角度光散射(AF4-MALS)用於根據流體動力學半徑分離調配物中之粒子且接著量測經分離粒子之分子量、流體動力學半徑及均方根半徑。此允許評估分子量及尺寸分佈以及二級特徵,諸如Burchard-Stockmeyer曲線圖(表明粒子之內部核心密度的隨時間推移之均方根(「rms」)半徑與流體動力學半徑之比)及rms構造圖(rms半徑之對數相對於分子量之對數,其中所得線性擬合之斜率給出相對於伸長率之緊密度)之能力。
奈米粒子追蹤分析(NTA, Malvern Nanosight)可用於測定調配物粒度分佈以及粒子濃度。LNP樣品經恰當稀釋且注射至顯微鏡載玻片上。相機在粒子緩慢輸注通過視場時記錄散射光。在捕獲影片之後,奈米粒子追蹤分析藉由追蹤像素及計算擴散係數來處理影片。此擴散係數可轉譯成粒子之流體動力學半徑。儀器亦對分析中計數之個別粒子的數目計數以得到粒子濃度。
低溫電子顯微法(「cryo-EM」)可用於測定LNP之粒度、形態及結構特徵。
LNP之脂質組成分析可測定自液體層析繼之以帶電式氣溶膠偵測(LC-CAD)。此分析可提供實際脂質含量相對於理論脂質含量之比較。
分析LNP調配物之平均粒度、多分散性指數(pdi)、總RNA含量、RNA囊封效率及ζ電位。LNP調配物可另外藉由脂質分析、AF4-MALS、NTA及/或cryo-EM表徵。平均粒度及多分散性係藉由動態光散射(DLS)使用Malvern Zetasizer儀器來量測。在藉由DLS量測之前,在PBS中將LNP樣品稀釋30×。連同數目平均直徑及pdi一起報導Z-平均直徑,其為平均粒度的基於強度之量度。Malvern Zetasizer儀器亦用於量測LNP之ζ電位。在量測之前,將樣品在0.1× PBS,pH 7.4中以1:17 (50 μL於800 μL中)稀釋。
使用基於螢光之分析(Ribogreen®, ThermoFisher Scientific)來測定總RNA濃度及游離RNA。囊封效率計算為(總RNA-游離RNA)/總RNA。用含有0.2% Triton-X 100之1× TE緩衝液以適當方式稀釋LNP樣品以測定總RNA或用1× TE緩衝液稀釋以測定游離RNA。藉由利用用於製造調配物且在1× TE緩衝液+/- 0.2% Triton-X 100中稀釋之起始RNA溶液製備標準曲線。隨後將經稀釋之RiboGreen®染料(根據製造商之說明書)添加至標準品及樣品中之每一者中,且使其在不存在光下在室溫下培育大致10分鐘。使用SpectraMax M5微定量盤式讀取器(Molecular Devices),以分別設定成488 nm、515 nm及525 nm之激發、自動截止及發射波長來讀取樣品。根據適當標準曲線測定總RNA及游離RNA。
囊封效率計算為(總RNA-游離RNA)/總RNA。相同程序可用於測定基於DNA或含核酸之負荷組分的囊封效率。對於單股DNA,可使用Oligreen染料,且對於雙股DNA,可使用Picogreen染料。
AF4-MALS用於自彼等計算結果查看分子量及尺寸分佈以及二次統計資料。LNP按需要稀釋且使用HPLC自動進樣器注射至AF4分離通道中,LNP在該自動進樣器中集中且接著跨越通道在交叉流中以指數梯度溶離。所有流體藉由HPLC泵及Wyatt Eclipse儀器驅動。自AF4通道溶離之粒子流經UV偵測器、多角度光散射偵測器、準彈性光散射偵測器及差示折射率偵測器。原始資料係藉由使用Debeye模型處理以自偵測器信號測定分子量及rms半徑。
LNP中之脂質組分係藉由耦接至帶電式氣溶膠偵測器(CAD)之HPLC定量分析。4種脂質組分之層析分離係藉由逆相HPLC來達成。CAD為破壞性的基於質量之偵測器,其偵測所有非揮發性化合物且不管分析物結構,信號均為一致的。
Cas9 mRNA及gRNA負荷
Cas9 mRNA負荷係藉由活體外轉錄製備。包含1× NLS(SEQ ID NO: 48)之封端及聚腺苷酸化Cas9 mRNA係藉由使用線性化質體DNA模板及T7 RNA聚合酶之活體外轉錄產生。藉由在以下條件下與XbaI一起在37℃下培育2小時來線性化含有T7啟動子及100 nt 聚(A/T)區之質體DNA:200 ng/µL質體、2 U/µL XbaI (NEB)及1×反應緩衝液。藉由在65℃下加熱反應物20分鐘來使XbaI滅活。使用二氧化矽最大自旋管柱(Epoch Life Sciences)自酶及緩衝鹽純化線性化質體且藉由瓊脂糖凝膠加以分析以證實線性化。用於產生Cas9修飾之mRNA的IVT反應物在37℃下在以下條件下培育4小時:50 ng/µL線性化質體;2 mM之GTP、ATP、CTP及N1-甲基假-UTP (Trilink)中之每一者;10 mM ARCA (Trilink);5 U/µL T7 RNA聚合酶(NEB);1 U/µL鼠類RNA酶抑制劑(NEB);0.004 U/µL無機大腸桿菌焦磷酸酶(NEB);及1×反應緩衝液。在4小時培育之後,添加TURBO脫氧核糖核酸酶(ThermoFisher)至0.01 U/μL之最終濃度,且再培育反應物30分鐘以移除DNA模板。使用MegaClear轉錄清除套組根據製造商之方案(ThermoFisher)自酶及核苷酸純化Cas9 mRNA。或者,用LiCl沈澱法純化Cas9 mRNA。
此實例中之sgRNA係化學合成及源自商業供應商。sg282序列提供於下文,其中2'-O-甲基修飾及硫代磷酸酯鍵如下所示(m=2'-OMe;*=硫代磷酸酯):
mU*mU*mA*CAGCCACGUCUACAGCAGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU. (SEQ ID NO:42)。
LNP
最終LNP根據上文提供之分析方法表徵以測定囊封效率、多分散性指數及平均粒度。
將LNP投配至小鼠(1 mg/kg或0.5 mg/kg之單次劑量)且基因組DNA經分離以用於如下所述之NGS分析。
活體內 LNP 遞送
在6至10週齡範圍內之CD-1雌性小鼠用於各研究。對動物稱重且根據體重分組以基於組平均體重製備投配溶液。經由側尾靜脈以每隻動物0.2 mL(每公斤體重大致10 mL)之體積投配LNP。在給藥後大致6小時處對動物觀測副作用。在投藥後二十四小時處量測體重,且動物藉由在異氟醚麻醉下經由心臟穿刺放血而在各個時間點安樂死。將血液收集至血清分離管中或含有用於如本文所述之血漿之緩衝檸檬酸鈉的管中。對於涉及活體內編輯之研究,自來自各動物之中葉或三個獨立葉片(例如右中、左中及左外側葉片)收集肝臟組織用於DNA提取及分析。
藉由次世代定序(NGS)及血清TTR水準 (資料未示)量測小鼠群體之肝臟編輯。
甲狀腺素轉運蛋白(TTR)ELISA分析
收集血液且如所指示地分離血清。使用小鼠前白蛋白(甲狀腺素轉運蛋白)ELISA套組(Aviva Systems Biology,目錄號OKIA00111)測定小鼠總TTR血清含量。根據製造商之方案,使用大鼠特異性ELISA套組(Aviva Systems Biology目錄號OKIA00159)來量測大鼠TTR血清含量。簡言之,用套組樣品稀釋劑將血清連續稀釋至最終稀釋度為10,000倍。隨後將此稀釋樣品添加至ELISA盤且隨後根據指示進行分析。
NGS定序
簡言之,為了定量地測定基因組中靶位置處之編輯效率,分離基因組DNA且利用深度定序鑑別由基因編輯引入之插入及缺失之存在。
在目標位點(例如TTR)周圍設計PCR引物,且擴增所關注的基因組區域。引物序列提供於下文中。根據製造商之方案(Illumina)進行額外PCR以添加定序所需之化學性質。在Illumina MiSeq儀器上對擴增子定序。在消除具有低品質評分之讀段之後,將讀段與人類參考基因組(例如hg38)比對。將含有讀段之所得檔案映射至參考基因組(BAM檔案),其中選擇與相關目標區重疊之讀段且計算野生型讀段的數目相對於含有插入、取代或缺失之讀段的數目。
編輯百分比(例如「編輯效率」或「編輯%」)定義為具有插入或缺失之序列讀段的總數相比於包括野生型之序列讀段之總數。
圖1顯示如藉由NGS所量測之小鼠肝臟中之編輯百分比。如圖1A中所示,當投配1 mg/kg RNA時,活體內編輯百分比在約20%至超過60%肝臟編輯範圍內。在0.5 mg/kg劑量下,圖1B,觀測到約10%至60%肝臟編輯。在此小鼠活體內測試中,所有組合物有效地將Cas9 mRNA及gRNA遞送至肝細胞,證據為藉由針對各LNP組合物之NGS量測的目標位點處之活躍CRISPR/Cas核酸酶活性。含有5%PEG脂質之LNP具有較低囊封(資料未示出),及略微降低之效能。
實例 2 - LNP組合物分析
LNP之分析表徵顯示經增加量之脂質A及PEG-脂質調配之LNP中改良之物理化學參數。包含2 mol%或3 mol% PEG脂質(PEG2k-DMG)之組合物提供於下表3中。
表3.
LNP調配物-交叉流
LNP係由衝擊射流混合含脂質之乙醇與兩個體積之RNA溶液及一個體積之水而形成。經由混合十字管使含脂質之乙醇與兩個體積之RNA溶液混合。經由沿線T形管將第四水流與十字管之出口流混合。(參見WO2016010840之圖2)。LNP維持在室溫下1小時,且接著另外用水(大致1:1 v/v)稀釋。使用切向流過濾在平板濾筒(Sartorius,100kD MWCO)上濃縮經稀釋之LNP,且隨後藉由透濾,將其緩衝液更換為50 mM Tris、45 mM NaCl、5% (w/v)蔗糖,pH 7.5 (TSS)。或者,用PD-10去鹽管柱(GE)來完成將最終緩衝液更換為TSS。必要時,用Amicon 100 kDa離心過濾器(Millipore)藉由離心濃縮調配物。所得混合物接著使用0.2 μm無菌過濾器過濾。將最終LNP儲存於4℃或-80℃下直至進一步使用。
如同實例1製備Cas9 mRNA及sgRNA,除了封端及聚腺苷酸化Cas9 U耗盡(Cas9 Udep)之mRNA包含SEQ ID N: 43。Sg282描述於實例1中,且sg534之序列(「G534」)提供於下:
mA*mC*mG*CAAAUAUCAGUCCAGCGGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU (SEQ ID NO:72)
如實例1中所述地分析LNP調配物之平均粒度、多分散性(pdi)、總RNA含量及RNA囊封效率。
對平均粒度、多分散性(PDI)、總RNA含量及RNA囊封效率之分析顯示於表4中。除LNP組合物之理論脂質濃度以外,脂質分析亦展示實際mol%脂質水準,如下表5中所指示。
表4:
表5:
為了進一步分析物理化學特性,對LNP897、LNP898、LNP966及LNP969進行不對稱流場流分離-多角度光散射(AF4-MALS)分析。AF4-MALS儀器量測粒度及分子量分佈,且提供關於粒子構形及密度的資訊。
LNP使用HPLC自動進樣器注射至AF4分離通道中,LNP在該自動進樣器中集中且接著跨越通道在交叉流中以指數梯度溶離。所有流體藉由HPLC泵及Wyatt Eclipse儀器驅動。自AF4通道溶離之粒子流經UV偵測器、Wyatt Heleos II多角度光散射偵測器、準彈性光散射偵測器及Wyatt Optilab T-rEX差示折射率偵測器。原始資料係藉由使用Debeye模型在Wyatt Astra 7軟體中處理以自偵測器信號測定分子量及rms半徑。
LNP之對數差分莫耳質量曲線提供為圖2A。簡言之,X軸指示莫耳質量(g/mol),且Y軸指示差分數分率。對數差分莫耳質量曲線顯示針對特定調配物量測之不同分子量的分佈。此給出關於調配物內之分子量以及總體分子量分佈模式之資料,其給出比平均分子量更好的粒子異質性圖像。
不同LNP調配物之異質性係藉由量測不同莫耳質量矩及計算重均莫耳質量(Mw)與數均莫耳質量(Mn)之比以得到Mw/Mn之多分散性來測定。此等不同調配物之多分散性的圖示將提供於圖2B中。
資料指示在N/P 6.0下,在3 mol% PEG以及50及55 mol%脂質A下之更緊密粒子分佈,如圖2A中所示。此反映於如圖2B中所示之緊密多分散性中。
實例 3 - AF4 MALS 資料 - 其他 調配物
LNP之分析表徵顯示經增加量之脂質A調配之LNP中改良之物理化學參數。包含45 mol%、50 mol%或55 mol%脂質A與兩種不同gRNA之組合物提供於下表6中。
表6.
如實例2中所述地形成LNP。
如上文所述地製備Cas9 mRNA及sgRNA。
LNP組合物如實例1中所述地表徵以測定囊封效率、多分散性指數及平均粒度。
對平均粒度、多分散性(PDI)、總RNA含量及RNA囊封效率之分析顯示於表7中。除LNP組合物之理論脂質濃度以外,脂質分析亦展示實際mol%脂質水準,如下表8中所指示。
表7.
表8:
為了進一步分析物理化學特性,對LNP1021、LNP1022、LNP1023、LNP1024及LNP1025進行不對稱流場流分離-多角度光散射(AF4-MALS)分析。AF4-MALS儀器量測粒度及分子量分佈,且提供關於粒子構形及密度的資訊。
如實例1中所述地在AF4-MALS上運行LNP。
LNP之對數差分莫耳質量曲線提供為圖3A。簡言之,X軸指示莫耳質量(g/mol),且Y軸指示差分數分率。對數差分莫耳質量曲線顯示針對特定調配物計算之不同分子量的分佈。此給出關於調配物內之分子量以及總體分子量分佈模式之資料,其給出比平均分子量更好的粒子異質性圖像。
平均分子量標繪於圖3B中。平均分子量為總體分佈之平均值,但未給出關於分佈形狀之資訊。LNP1022及LNP1025具有相同平均分子量,但LNP1022具有略微較寬之分佈。
不同LNP調配物之異質性係藉由查看不同莫耳質量矩及計算重均莫耳質量(Mw)與數均莫耳質量(Mn)之比以得到Mw/Mn之多分散性來計算。此等不同調配物之多分散性的圖示將提供於圖4A中。
另外,LNP調配物之Burchard-Stockmeyer曲線圖提供為圖4B。Burchard-Stockmeyer曲線圖顯示跨越自AF4通道溶離之調配物的rms半徑相對於流體動力學半徑之比。此給出關於脂質奈米粒子之內部密度之資訊。圖4B顯示LNP1021、LNP1022及LNP1023在此量測中具有不同輪廓。
實例 4 - 增加之PEG脂質維持效能伴以減少之細胞介素反應
在另一研究中,在包含2 mol%或3 mol% PEG脂質之LNP調配物中比較PEG DMG脂質。包含2 mol%或3 mol% PEG DMG之組合物提供於下表9中。
表9.
LNP係由實例2中所述之方法形成。
如同實例1製備Cas9 mRNA及sgRNA,其中sg390之序列(「G390」)提供於下:
mG*mC*mC*GAGUCUGGAGAGCUGCAGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU (SEQ ID NO:69)。
如實例1中所述地分析LNP調配物之平均粒度、多分散性(pdi)、總RNA含量及RNA囊封效率。
對平均粒度、多分散性(PDI)、總RNA含量及RNA囊封效率之分析顯示於表10中。除LNP組合物之理論脂質濃度以外,脂質分析展示實際mol%脂質水準,如下表11中所指示。
表10.
表11.
使用分析MCP-1、IL-6、TNF-α及IFN-γ之Luminex磁珠多重分析(Milliplex MAP磁珠分析,來自Millipore Sigma,目錄號RECYTMAG-65K)來評估大鼠血清細胞介素。在BioRad BioPlex-200上讀取分析珠粒且以BioPlex Manager軟體版本6.1使用4參數邏輯擬合自標準曲線計算細胞介素濃度。資料在圖5中圖示。參見圖5A (血清TTR)、圖5B (肝臟編輯)及圖5C (細胞介素-MCP1)。
根據製造商之方案,使用大鼠特異性ELISA套組(Aviva Systems Biology目錄號OKIA00159)來量測大鼠TTR血清含量。簡言之,用套組樣品稀釋劑將血清連續稀釋至最終稀釋度為10,000倍。隨後將此稀釋樣品添加至ELISA盤且隨後根據指示進行分析。
基因組DNA分離自大致10 mg肝組織且如上文所述地使用NGS分析。用於擴增之PCR引物序列描述於下文。
圖5A及圖5B顯示血清TTR基因敲落及肝臟編輯在2 mol%及3 mol% PEG調配物中足夠。圖5C顯示MCP-1反應在使用3 mol% PEG調配物時降低。
實例 5 - 非人類靈長類動物之 LNP 遞送
用如實例1中所描述製備之LNP調配物進行三個研究。特定莫耳量及負荷提供於表12-26中。含有Cas9 mRNA及引導RNA (gRNA)之各調配物具有按重量計1:1之mRNA:gRNA比。在表格中指示LNP之劑量(以mg/kg為單位,總RNA含量)、投與途徑及動物是否接受地塞米松預處理。對於接受地塞米松(Dex)預處理之動物,在投與LNP或媒劑之前1小時藉由IV快速注射以2 mg/kg投與Dex。
對於血液化學分析,在如關於量測之各因素在下表中所指示之時間自動物抽取血液。在治療前及治療後NHP中量測細胞介素誘導。自受約束的清醒動物之外周靜脈將最少0.5 mL之全血收集至4 ml血清分離管中。在室溫下使血液結塊最少30分鐘,之後以2000 ×g離心15分鐘。將血清等分於2個各120 μL之聚丙烯微管中,且儲存於-60℃至-86℃下直至分析。使用來自Meso Scale Discovery (MSD)之非人類靈長類動物U-Plex細胞介素定製套組來進行分析。分析中包括以下參數:INF-g、IL-1b、IL-2、IL-4、IL-6、IL-8、IL-10、IL-12p40、MCP-1及TNF-a,其中聚焦於IL-6及MCP-1。如製造商之方案中所指導地製備套組試劑及標準品。以純形式使用NHP血清。將盤在MSD Sector Imager 6000上運行,且用MSD Discovery work bench軟體版本4012進行分析。
在治療前及治療後動物中藉由酶免疫分析量測補體含量。自受約束的清醒動物之外周靜脈將全血(0.5 mL)收集至含有0.5 mL k2 EDTA之管中。血液以2000 ×g離心15分鐘。將血漿等分於2個各120 μL之聚丙烯微管中,且儲存於-60℃至-86℃下直至分析。使用Quidel MicroVue Complement Plus EIA套組(C3a-目錄號A031)或(Bb-目錄號A027)來進行分析。如製造商之方案中所指導地製備套組試劑及標準品。將盤在450 nm之光密度下的MSD Sector Imager 6000上運行。使用4參數曲線擬合分析結果。
細胞介素誘導及補體活化之資料提供於下表中。「BLQ」意謂小於定量限值。
表12.研究1.
表13.研究2.
表14.研究3.
表15.來自研究1之IL-6量測結果。
表16.來自研究1之MCP-1量測結果。
表17.來自研究1之補體C3a量測結果。
表18.來自研究1之補體bb量測結果。
表19.來自研究2之IL-6量測結果。
表20.來自研究2之MCP-1量測結果。
表21.來自研究2之補體C3a量測結果。
表22.來自研究2之補體bb量測結果。
表23.來自研究3之IL-6量測結果。
表24.來自研究2之MCP-1量測結果。
表25.來自研究3之補體C3a量測結果。
表26.來自研究3之補體bb量測結果。
實例 6 - PEG 脂質篩選
在另一研究中,在包含2 mol%或3 mol% PEG脂質之LNP調配物中比較替代PEG脂質。
三種PEG脂質用於研究:脂質1 (DMG-PEG2k;Nof)描繪為:

脂質2,如Heyes等人,J . Controlled Release , 107 (2005), 第278-279頁 (參見「Synthesis of PEG2000-C-DMA」)中所述地合成,可描繪為:

及脂質3,揭示於WO2016/010840 (參見化合物S027,第[00240]段至第[00244]段)及WO2011/076807中,可描繪為:
脂質A經2 mol%及3 mol%之各PEG脂質調配。脂質奈米粒子組分以上述脂質組分莫耳比溶解於100%乙醇中。簡言之,在25 mM檸檬酸鹽、100 mM NaCl,pH 5.0中製備RNA負荷,產生大約0.45 mg/mL之RNA負荷濃度。以約4.5之脂質胺與RNA磷酸(N:P)莫耳比及按重量計1:1之mRNA與gRNA之比調配LNP。


27
如實例1中所述地製備Cas9 mRNA、sg282及LNP。
將具有脂質1、脂質2或脂質3之LNP組合物投與至雌性CD-1小鼠且如實例1中所述地在1 mg/kg及0.5 mg/kg體重下進行評估。根據實例1之方法藉由次世代定序(NGS)及血清TTR水準量測小鼠群體之肝臟編輯。
圖6A及圖6B比較PEG脂質調配物之間的血清TTR水準。圖6A以µg/mL為單位顯示血清TTR,且圖6B將資料顯示為基因敲落% (%TSS)。圖6C顯示在肝臟中達成之編輯百分比。資料指示具有測試PEG脂質中之每一者之LNP組合物在2 mol%及3 mol%下測試效能,其中脂質1始終比脂質2及脂質3表現略好。
實例 7 - 脂質 A 類似物
合成脂質A之多種結構類似物且在本文所述之LNP組合物中測試。
合成:如下製得脂質A:使4,4-雙(辛氧基)丁酸(WO2015/095340之實例13中之「中間物13b」)與十八-9,12-二烯酸(9Z,12Z)-3-羥基-2-(羥基甲基)丙酯(「中間物13c」)反應,隨後藉由使中間物13b及中間物13c之產物與3-二乙胺基-1-丙醇反應而添加頭基。(參見WO2015/095340之第84-86頁)。
來自WO2015/095340之中間物13b (4,4雙(辛氧基)丁酸)係如下地經由4,4-雙(辛氧基)丁腈合成:
中間物13a:4,4-雙(辛氧基)丁腈
在室溫下向4,4-二乙氧基丁腈(9.4 g,60 mmol)及辛-1-醇(23.1 g,178 mmol)之混合物中添加對甲苯磺酸吡錠(748 mg,3.0 mmol)。將混合物升溫至105℃且在反應容器空氣流通且未裝有回流冷凝器的情況下攪拌18小時。反應混合物接著冷卻至室溫且矽膠純化(0-5%梯度之乙酸乙酯於己烷中),得到10.1 g (31.0 mmol)呈透明油狀之中間物13a。1 H NMR (400 MHz, CDCl3 ) δ 4.55 (t,J = 5.3 Hz, 1H), 3.60 (dt,J = 9.2, 6.6 Hz, 2H), 3.43 (dt,J = 9.2, 6.6 Hz, 2H), 2.42 (t,J = 7.4 Hz, 2H), 1.94 (td,J = 7.4, 5.3 Hz, 2H), 1.63 - 1.50 (m, 4H), 1.38 - 1.19 (m, 20H), 0.93 - 0.82 (m, 6H) ppm。
隨後,在室溫下向中間物13a (8.42 g,31 mmol)於乙醇(30 mL)中之溶液中添加31 mL氫氧化鉀水溶液(2.5 M,30.9 mL,77.3 mmol)。在為容器裝備回流冷凝器後,將混合物加熱至110℃且攪拌24小時。混合物接著冷卻至室溫,用鹽酸水溶液(1 N)酸化至pH值5,且萃取至己烷中三次。合併之有機萃取物用水(兩次)及鹽水洗滌,經無水硫酸鎂乾燥,且在真空中濃縮,獲得8.15 g (23.6 mmol)呈透明油狀之中間物13b,其不經進一步純化即使用。1 H NMR (400 MHz, CDCl3 ) δ 4.50 (t,J = 5.5 Hz, 1H), 3.57 (dt,J = 9.4, 6.7 Hz, 2H), 3.41 (dt,J = 9.3, 6.7 Hz, 2H), 2.40 (t,J = 7.4 Hz, 2H), 1.92 (td,J = 7.4, 5.3 Hz, 2H), 1.56 (m, 4H), 1.37 - 1.21 (m, 20H), 0.92 - 0.83 (m, 6H) ppm (結構如下)。
中間物13b
使用上文所述之方法,使用適當烷-1-醇試劑製備C(5、6、7、9及10)-縮醛酸中間物,稱作中間物B3-F3且描繪於下文。
中間物B3 4,4-雙(戊氧基)丁酸

1 H NMR (400 MHz, CDCl3 ) δ 4.52 (t,J = 5.5 Hz, 1H), 3.58 (dt,J = 9.3, 6.6 Hz, 2H), 3.41 (dt,J = 9.3, 6.7 Hz, 2H), 2.45 (t,J = 7.4 Hz, 2H), 1.94 (m, 2H), 1.57 (m, 4H), 1.32 (m,J = 3.7 Hz, 8H), 0.95 - 0.83 (m, 6H) ppm。
中間物C3:4,4-雙(己氧基)丁酸

1 H NMR (400 MHz, CDCl3 ) δ 4.44 (t,J = 5.6 Hz, 1H), 3.49 (dt,J = 9.3, 6.9 Hz, 2H), 3.39 (dt,J = 9.3, 6.8 Hz, 2H), 2.12 (t,J = 7.6 Hz, 2H), 1.79 (q,J = 7.0 Hz, 2H), 1.54 (m, 4H), 1.29 (m, 12H), 0.94 - 0.82 (m, 6H) ppm。
中間物D3:4,4-雙(庚氧基)丁酸

1 H NMR (400 MHz, CDCl3 ) δ 8.85 (br s, 1H), 4.46 (t,J = 5.6 Hz, 1H), 3.52 (dt,J = 9.4, 6.8 Hz, 2H), 3.39 (dt,J = 9.3, 6.8 Hz, 2H), 2.26 (t,J = 7.6 Hz, 2H), 1.85 (q,J = 7.0 Hz, 2H), 1.53 (m, 4H), 1.29 (m, 16H), 0.94 - 0.80 (m, 6H) ppm。
中間物E3:4,4-雙(壬氧基)丁酸

1 H NMR (400 MHz, CDCl3 ) δ 5.32 (br s, 1H), 4.44 (t,J = 5.6 Hz, 1H), 3.49 (dt,J = 9.3, 6.9 Hz, 2H), 3.38 (dt,J = 9.4, 6.9 Hz, 2H), 2.10 (t,J = 7.6 Hz, 2H), 1.78 (q,J = 7.0 Hz, 2H), 1.53 (m, 4H), 1.27 (m, 24H), 0.88 (t,J = 6.6 Hz, 6H) ppm。
中間物F3:4,4-雙(癸氧基)丁酸:

1 H NMR (400 MHz, CDCl3 ) δ 4.48 (t,J = 5.5 Hz, 1H), 3.55 (m, 2H), 3.42 (m, 2H), 2.29 (dd,J = 10.8, 7.5 Hz, 2H), 1.90 - 1.82 (m, 2H), 1.55 (m, 4H), 1.27 (m, 28H), 0.88 (t,J = 6.7 Hz, 6H) ppm。
如下合成脂質A之縮醛類似物(C(8)):藉由使C(5、6、7、9或10)-縮醛酸中間物(B3-F3)與中間物13c反應,隨後使該步驟之產物與3-二乙胺基-1-丙醇反應。(參見WO2015/095340之第84-86頁)。合成各類似物且藉由1 H NMR (資料未示出)表徵。
在45 mol%脂質A類似物、2 mol% DMG-PEG2k、9 mol% DSPC及44 mol%膽固醇以及4.5之N:P比下調配C7、C9及C10類似物。亦在55 mol%脂質A類似物、2.5 mol% DMG-PEG2k、9 mol% DSPC及38.5 mol%膽固醇以及6之N:P比下調配各類似物。脂質奈米粒子組分以上述脂質組分莫耳比溶解於100%乙醇中。在25 mM檸檬酸鹽、100 mM NaCl,pH 5.0中製備RNA負荷,產生大約0.45 mg/mL之RNA負荷濃度。
RNA負荷包括如上文所述製備之包含SEQ ID NO: 43及sg282之Cas9 mRNA。如實例1中所述地形成LNP。
除先前組以外,亦測試擴展組之縮醛類似物,包括包含C(5)及C(6)脂質A類似物之LNP組合物。在55 mol%脂質A類似物、2.5 mol% DMG-PEG2k、9 mol% DSPC及33.5 mol%膽固醇以及6之N:P比下調配兩種新類似物,如上文所述。分析指示所有LNP之尺寸低於120 nm,PDI低於0.2且囊封RNA%高於80%。調配物之分析結果在下表28中。
表28.
使用溶解於水中之6-(對甲苯胺基)-6-萘磺酸(「TNS」)評估類似物之pKa。在此分析中,在介於4.5至10.5範圍內之不同pH值下製備0.1 M磷酸鹽緩衝液。在100%乙醇中單獨地製備各類似物。脂質及TNS接著添加於個別pH緩衝液中且轉移至盤以在SpectraMax盤讀取器上於321-488 nm波長下進行分析。值經標繪以產生pKa,logIC50 用作pKa。
雌性CD-1小鼠如實例1中所述地以0.3 mg/kg (圖7A-圖7E)或以0.1 mg/kg (圖7F-圖7G)給藥。簡言之,來自Charles River Laboratories之CD-1雌性小鼠(n=5/組)以改變劑量投與LNP組合物。屍體剖檢(給藥後7天)時,收集血清用於TTR分析且收集肝臟用於編輯分析。如實例1中所述地進行血清TTR及編輯百分比分析。來自圖7A-圖7E之血清TTR水準及肝臟編輯指示所有類似物在0.3毫克/公斤體重處之表現與脂質A同等。圖7F-圖7G指示儘管脂質A具有最高效能,但新合成之類似物全部具有適合之TTR基因敲落及肝臟編輯。
實例 8 - 劑量反應曲線-原代獼猴肝細胞
原代肝細胞 . 原代食蟹獼猴肝細胞(PCH)(Gibco)經解凍且再懸浮於具有補充劑之肝細胞解凍培養基(Gibco,目錄號CM7000)中,接著在80 g下離心4分鐘。丟棄上清液且粒化之細胞再懸浮於肝細胞平鋪培養基加上補充包(Invitrogen,目錄號A1217601及CM3000)中。對細胞進行計數且以50,000個細胞/孔之密度平鋪於經Bio-coat膠原蛋白I塗佈之96孔盤(ThermoFisher,目錄號877272)上。使平鋪之細胞在LNP投與之前在組織培養恆溫箱(37℃及5% CO2 氛圍)中靜置及黏附24小時。在培育之後,針對單層形式檢查細胞且用具有無血清補充包(Invitrogen,目錄號A1217601及CM4000)之肝細胞培養基替換培養基。
如上文所述地製備用於此研究之LNP調配物(LNP1021、LNP1022、LNP1023、LNP1024、LNP1025及LNP897)。
在原代獼猴肝細胞上測試各種劑量之含有經修飾之sgRNA的脂質奈米粒子調配物以產生劑量反應曲線。在平鋪及培養24小時之後,將LNP在含有6%獼猴血清之肝細胞維持培養基中在37℃下培育5分鐘。培育後,LNP在起始於100 ng mRNA之8點2倍劑量反應曲線中添加至原代獼猴肝細胞上。細胞在處理後72小時溶解用於NGS分析,如實例1中所述。針對各種LNP組合物測定編輯百分比且資料圖示於圖8A中。Cas9 mRNA (SEQ ID NO 48)及U耗盡Cas9 mRNA (SEQ ID NO: 43)之編輯%呈現於圖8B中。LNP組合物描述於表2 (LNP 897)及表5 (LNP 1021、1022、1023、1024及1025)中。
結果顯示用於比較效能評估之定量分析,表明mRNA及LNP組合物均影響效能。
實例 9 - RNA負荷:mRNA及gRNA共調配物
此研究評估不同gRNA與mRNA比在小鼠活體內之功效。藉由如實例1中所指示之IVT合成用替代尿苷三磷酸之N1-甲基假尿苷三磷酸來製得經CleanCap™加帽的具有SEQ ID NO: 4之ORF、HSD 5' UTR、人類白蛋白3' UTR、Kozak序列及poly-A尾之Cas9 mRNA。
由所述mRNA及如實例2中所述之sg282 (SEQ ID NO: 42;G282)與脂質A、膽固醇、DSPC及PEG2k-DMG以50:38:9:3莫耳比且以6之N:P比製備LNP調配物。調配物之gRNA:Cas9 mRNA重量比如表29中所示。
表29.
對於活體內表徵,以每公斤0.1 mg總RNA (引導RNA毫克數+mRNA毫克數)向小鼠投與以上LNP (每組n=5)。在給藥後7至9天,將動物處死,收集血液及肝臟,且如實例1中所述量測血清TTR及肝臟編輯。血清TTR及肝臟編輯結果展示於圖9A及9B中。向陰性對照小鼠投配TSS媒劑。
此外,以每公斤0.05 mg mRNA之恆定mRNA劑量(n=5/組),同時將gRNA劑量自0.06 mg/kg變為0.4 mg/kg來向小鼠投與以上LNP。在給藥後7至9天,將動物處死,收集血液及肝臟,且量測血清TTR及肝臟編輯。血清TTR及肝臟編輯結果展示於圖9C及圖9D中。向陰性對照小鼠投配TSS媒劑。
實例10-中性脂質
為了評估LNP之活體內功效,用實例2之mRNA及sg534 (SEQ ID NO: 72;G534)製備LNP調配物,如實例2中所述。將脂質奈米粒子組分以下文闡述之脂質組分莫耳比溶解於100%乙醇中。簡言之,在25 mM檸檬酸鹽及100 mM NaCl之緩衝液(pH 5.0)中製備RNA負荷,產生大致0.45 mg/mL之RNA負荷濃度。以約6之脂質胺與RNA磷酸(N:P)莫耳比及按重量計1:2之gRNA與mRNA之比調配LNP。
如實例1中所述地分析LNP調配物之平均粒度、多分散性(pdi)、總RNA含量及RNA囊封效率。對平均粒度、多分散性(PDI)、總RNA含量及RNA囊封效率之分析顯示於表30中。脂質之莫耳比提供為胺脂質(脂質A)/中性脂質/輔助脂質(膽固醇)/PEG脂質(PEG2k-DMG)。中性脂質為DSP、DPPC或不存在(如所指定)。
表30.LNP組合物及資料。(脂質之莫耳比提供為胺脂質(脂質A)/中性脂質/輔助脂質(膽固醇)/PEG脂質(PEG2k-DMG))。
對於活體內表徵,以上LNP以每kg體重0.3 mg 總RNA (引導RNA及mRNA)靜脈內投與至雌性史泊格多利大白鼠(Sprague Dawley rat)。每組存在五隻大鼠。在給藥後七天,將動物處死,收集血液及肝臟,且如實例1中所述地量測血清TTR及肝臟編輯。向陰性對照動物投配TSS媒劑。血清TTR及肝臟編輯結果顯示於圖10A及10B,以及表30 (以上)中。
所揭示序列之簡要描述 對於序列本身,參見下文序列表。轉錄物序列通常包括呈與ARCA一起使用之前三個核苷酸形式的GGG或呈與CleanCapTM 一起使用之前三個核苷酸形式的AGG。因此,前三個核苷酸可經修飾以與其他加帽方法,諸如牛痘加帽酶一起使用。啟動子及poly-A序列不包括於轉錄物序列中。啟動子,諸如T7啟動子(SEQ ID NO: 31)及poly-A序列,諸如SEQ ID NO: 62或SEQ ID NO: 63可在5'及3'端處分別附接於所揭示之轉錄物序列。大多數核苷酸序列以DNA形式提供,但可藉由將Ts變成Us而容易地轉化成RNA。
序列表 以下序列表提供本文揭示之序列的清單。應理解,若相對於RNA提及DNA序列(包含Ts),則Ts應經Us (取決於上下文,其可經修飾或未經修飾)置換,且反之亦然。
*= PS 鍵; ' m '= 2 '- O - Me 核苷酸
小鼠 G000282 NGS 引物序列
正向引物

反向引物:

大鼠 G000390 NGS 引物序列
正向引物

反向引物

GFP 序列

圖1顯示如以1 mpk (圖1A))或0.5 mpk (圖1B)之單次劑量所指示,在LNP組合物中遞送CRISPR/Cas基因編輯組分Cas9 mRNA及gRNA之後於小鼠肝臟中達成之TTR基因編輯的百分比。
圖2A-B顯示包含Cas9 mRNA及gRNA之LNP組合物的粒子分佈資料。
圖3描繪LNP組合物之物理化學特性,其比較該組合物之對數差分莫耳質量(圖3A)及平均分子量量測結果(圖3B)。
圖4在圖4A中顯示多分散性計算結果,且在圖4B中顯示分析圖3之LNP組合物的Burchard-Stockmeyer分析。
圖5提供實驗結果,該實驗評估具有增加之PEG脂質濃度的LNP組合物對在向大鼠投與單次劑量之後的血清TTR基因敲落、肝臟中之基因編輯及細胞介素MCP-1水準之影響。圖5A圖示血清TTR水準;圖5B圖示肝臟樣品中之編輯百分比;且圖5C提供以pg/mL為單位之MCP-1水準。
圖6顯示LNP組合物在各種PEG脂質(如藉由血清TTR水準所量測(圖6A及圖6B)及編輯百分比(圖6C)下維持基因編輯效能。
圖7A-G顯示脂質A類似物在LNP組合物中有效地遞送基因編輯負荷,如藉由在向小鼠投與單次劑量之後的肝臟編輯%所量測。
圖8A-B顯示在原代獼猴肝細胞中在各種LNP組合物之情況下之編輯百分比的劑量反應曲線。
圖9A及圖9B顯示當gRNA與mRNA之比變化時之血清TTR及編輯百分比結果,且圖9C及圖9D顯示在向小鼠投與單次劑量後Cas9 mRNA之量保持恆定且gRNA之量變化時,肝臟中之血清TTR及編輯百分比結果。
圖10A及圖10B顯示在投與具有及不具有中性脂質之LNP組合物之後的血清TTR及肝臟編輯結果。

Claims (75)

  1. 一種脂質奈米粒子(「LNP」)組合物,其包含: RNA組分;及 脂質組分,其中該脂質組分包含: 約50至60 mol%胺脂質; 約8至10 mol%中性脂質;及 約2.5至4 mol% PEG脂質, 其中該脂質組分之剩餘部分為輔助脂質,且 其中該LNP組合物之N/P比為約6。
  2. 一種LNP組合物,其包含: RNA組分; 約50至60 mol%胺脂質; 約27至39.5 mol%輔助脂質; 約8至10 mol%中性脂質;及 約2.5至4 mol% PEG脂質, 其中該LNP組合物之N/P比為約5至7。
  3. 如請求項2之LNP組合物,其中該N/P比為約6。
  4. 一種LNP組合物,其包含: RNA組分;及 脂質組分,其中該脂質組分包含 約50至60 mol%胺脂質; 約5至15 mol%中性脂質;及 約2.5至4 mol% PEG脂質, 其中該脂質組分之剩餘部分為輔助脂質,且 其中該LNP組合物之N/P比為約3至10。
  5. 一種LNP組合物,其包含: RNA組分;及 脂質組分,其中該脂質組分包含 約40至60 mol%胺脂質; 約5至15 mol%中性脂質;及 約2.5至4 mol% PEG脂質, 其中該脂質組分之剩餘部分為輔助脂質,且 其中該LNP組合物之N/P比為約6。
  6. 一種LNP組合物,其包含: RNA組分;及 脂質組分,其中該脂質組分包含 約50至60 mol%胺脂質; 約5至15 mol%中性脂質;及 約1.5至10 mol% PEG脂質, 其中該脂質組分之剩餘部分為輔助脂質,且 其中該LNP組合物之N/P比為約6。
  7. 一種LNP組合物,其包含: RNA組分;及 脂質組分,其中該脂質組分包含 約40至60 mol%胺脂質; 約0至10 mol%中性脂質;及 約1.5至10 mol% PEG脂質, 其中該脂質組分之剩餘部分為輔助脂質,且 其中該LNP組合物之N/P比為約3至10。
  8. 一種LNP組合物,其包含: RNA組分;及 脂質組分,其中該脂質組分包含: 約40至60 mol%胺脂質; 小於約1 mol%中性脂質;及 約1.5至10 mol% PEG脂質, 其中該脂質組分之剩餘部分為輔助脂質,且 其中該LNP組合物之N/P比為約3至10。
  9. 一種LNP組合物,其包含: RNA組分;及 脂質組分,其中該脂質組分包含: 約40至60 mol%胺脂質;及 約1.5至10 mol% PEG脂質, 其中該脂質組分之剩餘部分為輔助脂質, 其中該LNP組合物之N/P比為約3至10,且 其中該LNP組合物基本上不含或不含中性磷脂。
  10. 一種LNP組合物,其包含: RNA組分;及 脂質組分,其中該脂質組分包含: 約50至60 mol%胺脂質; 約8至10 mol%中性脂質;及 約2.5至4 mol% PEG脂質, 其中該脂質組分之剩餘部分為輔助脂質,且 其中該LNP組合物之N/P比為約3至7。
  11. 如前述請求項中任一項之組合物,其中該RNA組分包含mRNA。
  12. 如前述請求項中任一項之組合物,其中該RNA組分包含經RNA引導之DNA結合劑,諸如Cas核酸酶mRNA。
  13. 如前述請求項中任一項之組合物,其中該RNA組分包含第2類Cas核酸酶mRNA。
  14. 如前述請求項中任一項之組合物,其中該RNA組分包含Cas9核酸酶mRNA。
  15. 如請求項11至14中任一項之組合物,其中該mRNA為經修飾之mRNA。
  16. 如前述請求項中任一項之組合物,其中該RNA組分包含RNA,該RNA包含編碼經RNA引導之DNA結合劑之開放閱讀框架,其中該開放閱讀框架之尿苷含量介於其最小尿苷含量至該最小尿苷含量之150%範圍內。
  17. 如前述請求項中任一項之組合物,其中該RNA組分包含mRNA,該mRNA包含編碼經RNA引導之DNA結合劑之開放閱讀框架,其中該開放閱讀框架之尿苷二核苷酸含量介於其最小尿苷二核苷酸含量至該最小尿苷二核苷酸含量之150%範圍內。
  18. 如前述請求項中任一項之組合物,其中該RNA組分包含mRNA,該mRNA包含與SEQ ID NO: 1、4、10、14、15、17、18、20、21、23、24、26、27、29、30、50、52、54、65或66中之任一者具有至少90%一致性之序列,其中該mRNA包含編碼經RNA引導之DNA結合劑之開放閱讀框架。
  19. 如前述請求項中任一項之組合物,其中該RNA組分包含gRNA核酸。
  20. 如請求項19之組合物,其中該gRNA核酸為gRNA。
  21. 如前述請求項中任一項之組合物,其中該RNA組分包含第2類Cas核酸酶mRNA及gRNA。
  22. 如請求項19至21中任一項之組合物,其中該gRNA核酸為或編碼雙重引導RNA (dgRNA)。
  23. 如請求項19至21中任一項之組合物,其中該gRNA核酸為或編碼sgRNA。
  24. 如請求項19至23中任一項之組合物,其中該gRNA經修飾。
  25. 如請求項24之組合物,其中該gRNA包含選自以下之修飾:經2'-O-甲基(2'-O-Me)修飾之核苷酸、核苷酸之間的硫代磷酸酯(PS)鍵及經2'-氟基(2'-F)修飾之核苷酸。
  26. 如請求項24至25中任一項之組合物,其中該gRNA在5'端處包含前五個核苷酸中之一或多者處之修飾。
  27. 如請求項24至26中任一項之組合物,其中該gRNA在3'端處包含最後五個核苷酸中之一或多者處之修飾。
  28. 如請求項24至27中任一項之組合物,其中該gRNA在前四個核苷酸之間包含PS鍵。
  29. 如請求項24至28中任一項之組合物,其中該gRNA在最後四個核苷酸之間包含PS鍵。
  30. 如請求項24至29中任一項之組合物,其在5'端處進一步包含前三個核苷酸處之經2'-O-Me修飾之核苷酸。
  31. 如請求項24至30中任一項之組合物,其在3'端處進一步包含最後三個核苷酸處之經2'-O-Me修飾之核苷酸。
  32. 如請求項19至31中任一項之組合物,其中該gRNA及第2類Cas核酸酶mRNA係以按重量計介於約10:1至約1:10範圍內之比存在。
  33. 如請求項19至31中任一項之組合物,其中該gRNA及第2類Cas核酸酶mRNA係以按重量計介於約5:1至約1:5範圍內之比存在。
  34. 如請求項19至33中任一項之組合物,其中該gRNA及第2類Cas核酸酶mRNA係以按重量計介於約3:1至約1:1範圍內之比存在。
  35. 如請求項19至34中任一項之組合物,其中該gRNA及第2類Cas核酸酶mRNA係以按重量計介於約2:1至約1:1範圍內之比存在。
  36. 如請求項19至35中任一項之組合物,其中該gRNA及第2類Cas核酸酶mRNA係以按重量計約2:1之比存在。
  37. 如請求項19至35中任一項之組合物,其中該gRNA及第2類Cas核酸酶mRNA係以按重量計約1:1之比存在。
  38. 如前述請求項中任一項之組合物,其進一步包含至少一個模板。
  39. 如前述請求項中任一項之組合物,其中該PEG脂質mol%為約3。
  40. 如前述請求項中任一項之組合物,其中該胺脂質mol%為約50。
  41. 如前述請求項中任一項之組合物,其中該胺脂質mol%為約55。
  42. 如前述請求項中任一項之組合物,其中該胺脂質mol%為±3 mol%。
  43. 如前述請求項中任一項之組合物,其中該胺脂質mol%為±2 mol%。
  44. 如前述請求項中任一項之組合物,其中該胺脂質mol%為47至53 mol%。
  45. 如前述請求項中任一項之組合物,其中該胺脂質mol%為48至53 mol%。
  46. 如前述請求項中任一項之組合物,其中該胺脂質mol%為53至57 mol%。
  47. 如前述請求項中任一項之組合物,其中該N/P比為6±1。
  48. 如前述請求項中任一項之組合物,其中該N/P比為6±0.5。
  49. 如前述請求項中任一項之組合物,其中該胺脂質為脂質A。
  50. 如前述請求項中任一項之組合物,其中該胺脂質為脂質A之類似物。
  51. 如請求項50之組合物,其中該類似物為縮醛類似物。
  52. 如請求項51之組合物,其中該縮醛類似物為C4-C12縮醛類似物。
  53. 如請求項50之組合物,其中該縮醛類似物為C5-C12縮醛類似物。
  54. 如請求項50之組合物,其中該縮醛類似物為C5-C10縮醛類似物。
  55. 如請求項50之組合物,其中該縮醛類似物係選自C4、C5、C6、C7、C9、C10、C11及C12類似物。
  56. 如前述請求項中任一項之組合物,其中該輔助脂質為膽固醇。
  57. 如前述請求項中任一項之組合物,其中該中性脂質為DSPC。
  58. 如前述請求項中任一項之組合物,其中該中性脂質為DPPC。
  59. 如前述請求項中任一項之組合物,其中該PEG脂質包含二肉豆蔻醯甘油(DMG)。
  60. 如前述請求項中任一項之組合物,其中該PEG脂質包含PEG-2k。
  61. 如前述請求項中任一項之組合物,其中該PEG脂質為PEG-DMG。
  62. 如請求項61之組合物,其中該PEG-DMG為PEG2k-DMG。
  63. 如請求項9之組合物,其中該LNP組合物基本上不含中性脂質。
  64. 如請求項63之組合物,其中該中性脂質為磷脂。
  65. 一種基因編輯方法,其包含使細胞與如請求項12至64中任一項之LNP組合物接觸。
  66. 一種基因編輯方法,其包含將第2類Cas核酸酶mRNA及引導RNA核酸遞送至細胞,其中該第2類Cas mRNA及該引導RNA核酸係經調配為至少一種如請求項13至64中任一項之LNP組合物。
  67. 一種製造基因工程改造細胞之方法,其包含使細胞與至少一種如請求項12至64中任一項之LNP組合物接觸。
  68. 如請求項65至67中任一項之方法,其中該LNP組合物係投與至少兩次。
  69. 如請求項68之方法,其中該LNP組合物係投與2至5次。
  70. 如請求項68或69之方法,其中編輯在再投與後改良。
  71. 如請求項65至70中任一項之方法,其進一步包含將至少一種模板核酸引入至該細胞。
  72. 如請求項65至71中任一項之方法,其中該mRNA係經調配於第一LNP組合物中,且該引導RNA核酸係經調配於第二LNP組合物中。
  73. 如請求項72之方法,其中該等第一及第二LNP組合物係同時投與。
  74. 如請求項72之方法,其中該等第一及第二LNP組合物係依序投與。
  75. 如請求項65至73中任一項之方法,其中該mRNA及該引導RNA核酸係經調配於單一LNP組合物中。
TW107134481A 2017-09-29 2018-09-28 調配物 TWI833708B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762566240P 2017-09-29 2017-09-29
US62/566,240 2017-09-29

Publications (2)

Publication Number Publication Date
TW201924724A true TW201924724A (zh) 2019-07-01
TWI833708B TWI833708B (zh) 2024-03-01

Family

ID=

Also Published As

Publication number Publication date
KR20200079497A (ko) 2020-07-03
MX2020007148A (es) 2020-10-08
JP2023103421A (ja) 2023-07-26
EP3688162A1 (en) 2020-08-05
AU2018338915A1 (en) 2020-04-23
CA3077413A1 (en) 2019-04-04
EA202090868A1 (ru) 2020-09-16
BR112020006300A2 (pt) 2020-10-20
JP7284179B2 (ja) 2023-05-30
US20230140670A1 (en) 2023-05-04
AR113031A1 (es) 2020-01-15
CN111406108A (zh) 2020-07-10
WO2019067992A1 (en) 2019-04-04
SG11202002653UA (en) 2020-04-29
IL273541A (en) 2020-05-31
JP2020536125A (ja) 2020-12-10
EP3688162B1 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
JP7284179B2 (ja) 製剤
US20230203480A1 (en) Lipid nanoparticle formulations for crispr/cas components
CN111405912A (zh) 用于基因组编辑的多核苷酸、组合物及方法
US20240124897A1 (en) Compositions and Methods Comprising a TTR Guide RNA and a Polynucleotide Encoding an RNA-Guided DNA Binding Agent
US20200308603A1 (en) In vitro method of mrna delivery using lipid nanoparticles
US20230012687A1 (en) Polynucleotides, Compositions, and Methods for Polypeptide Expression
TW202020156A (zh) 用於治療原發性高草酸尿症第1型(ph1)之羥酸氧化酶1(hao1)基因編輯之組合物及方法
CA3205000A1 (en) Polynucleotides, compositions, and methods for genome editing involving deamination
TW202308597A (zh) 脂質奈米顆粒組合物
TWI833708B (zh) 調配物
CN117479926A (zh) 脂质纳米颗粒组合物
CN117835968A (zh) 脂质纳米颗粒组合物