JP2016505256A - 配列操作のためのCRISPR−Cas成分系、方法および組成物 - Google Patents

配列操作のためのCRISPR−Cas成分系、方法および組成物 Download PDF

Info

Publication number
JP2016505256A
JP2016505256A JP2015547530A JP2015547530A JP2016505256A JP 2016505256 A JP2016505256 A JP 2016505256A JP 2015547530 A JP2015547530 A JP 2015547530A JP 2015547530 A JP2015547530 A JP 2015547530A JP 2016505256 A JP2016505256 A JP 2016505256A
Authority
JP
Japan
Prior art keywords
sequence
crispr
target
tracr
cas9
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015547530A
Other languages
English (en)
Other versions
JP2016505256A5 (ja
Inventor
フェン・ジャン
デイヴィッド・オリヴァー・バイカード
レ・コン
デイヴィッド・ベンジャミン・タリツ・コックス
パトリック・シュウ
ウェンヤン・ジャン
シュアイリャン・リン
ルシアーノ・マラフィニ
ランダル・ジェフリー・プラット
フェイ・ラン
ネヴィル・エスピ・サンジャナ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harvard College
Original Assignee
Harvard College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49881125&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2016505256(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Harvard College filed Critical Harvard College
Publication of JP2016505256A publication Critical patent/JP2016505256A/ja
Publication of JP2016505256A5 publication Critical patent/JP2016505256A5/ja
Priority to JP2019080952A priority Critical patent/JP6896786B2/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/746Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for lactic acid bacteria (Streptococcus; Lactococcus; Lactobacillus; Pediococcus; Enterococcus; Leuconostoc; Propionibacterium; Bifidobacterium; Sporolactobacillus)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/20Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/30Detection of binding sites or motifs
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/50Mutagenesis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • G16B30/10Sequence alignment; Homology search
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1082Preparation or screening gene libraries by chromosomal integration of polynucleotide sequences, HR-, site-specific-recombination, transposons, viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3519Fusion with another nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • C12N2310/531Stem-loop; Hairpin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/10Applications; Uses in screening processes
    • C12N2320/11Applications; Uses in screening processes for the determination of target sites, i.e. of active nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/101Plasmid DNA for bacteria
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Veterinary Medicine (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Virology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明は、配列および/または標的配列の活性の操作のための系、方法、および組成物を提供する。一部がCRISPR複合体の1つ以上の成分をコードするベクターおよびベクター系、ならびにそのようなベクターを設計および使用する方法が提供される。真核細胞中のCRISPR複合体形成を指向する方法およびCRISPR/Cas系を利用して正確な突然変異を導入することにより規定の細胞を選択する方法も提供される。

Description

関連出願および参照による組み込み
本出願は、それぞれBroad参照番号BI−2011/008/WSGR整理番号44063−701.101、BI−2011/008/WSGR整理番号44063−701.102、Broad参照番号BI−2011/008/VP整理番号44790.01.2003、BI−2011/008/VP整理番号44790.02.2003およびBI−2011/008/VP整理番号44790.03.2003を有する米国仮特許出願第61/736,527号明細書、同第61/748,427号明細書、同第61/768,959号明細書、同第61/791,409号明細書および同第61/835,931号明細書の優先権を主張し、これらは全て標題SYSTEMS METHODS AND COMPOSITIONS FOR SEQUENCE MANIPULATIONであり、それぞれ2012年12月12日、2013年1月2日、2013年2月25日、2013年3月15日および2013年6月17日に出願されたものである。
米国仮特許出願第61/758,468号明細書;同第61/769,046号明細書;同第61/802,174号明細書;同第61/806,375号明細書;同第61/814,263号明細書;同第61/819,803号明細書および同第61/828,130号明細書が参照され、それぞれ、標題ENGINEERING AND OPTIMIZATION OF SYSTEMS,METHODS AND COMPOSITIONS FOR SEQUENCE MANIPULATIONであり、それぞれ、2013年1月30日;2013年2月25日;2013年3月15日;2013年3月28日;2013年4月20日;2013年5月6日および2013年5月28日に出願されたものである。それぞれ2013年6月17日に出願された米国仮特許出願第61/835,936号明細書、同第61/836,127号明細書、同第61/836,101号明細書、同第61/836,080号明細書、同第61/836,123号明細書および同第61/835,973号明細書も参照される。それぞれBroad参照番号BI−2011/008Aを有する米国仮特許出願第61/842,322号明細書および米国特許出願第14/054,414号明細書も参照され、標題CRISPR−CAS SYSTEMS AND METHODS FOR ALTERING EXPRESSION OF GENE PRODUCTSを有し、それぞれ2013年7月2日および2013年10月15日に出願されたものである。
上記の出願、ならびにそれらの出願においてまたはそれらの審査中に引用される全ての文献(「出願引用文献」)およびその出願引用文献において引用または参照される全ての文献、ならびに本明細書において引用または参照される全ての文献(「本明細書引用文献」)、および本明細書引用文献において引用または参照される全ての文献は、本明細書においてまたは本明細書に参照により組み込まれる任意の文献において挙げられる任意の製品に関する任意の製造業者の指示書、説明書、製品仕様書、および製品シートと一緒に、参照により本明細書に組み込まれ、本発明の実施において用いることができる。より具体的には、全ての参照文献は、それぞれの個々の文献が個別具体的に参照により組み込まれることが示されるような程度で参照により組み込まれる。
本発明は、一般に、クラスター化等間隔短鎖回分リピート(Clustered Regularly Interspaced Short Palindromic Repeat)(CRISPR)およびその成分に関するベクター系を使用し得る配列ターゲティング、例えば、ゲノム摂動または遺伝子編集を含む遺伝子発現の制御に使用される系、方法および組成物に関する。
連邦政府により資金提供された研究に関する記述
本発明は、米国国立衛生研究所(National Institutes of Health)により助成されたNIHパイオニアアワードDP1MH100706のもと政府支援によりなされた。米国政府は本発明において一定の権利を有する。
ゲノムシーケンシング技術および分析法の近年の進歩により、多様な範囲の生物学的機能および疾患に関連する遺伝因子を分類およびマッピングする技能が顕著に加速されている。正確なゲノムターゲティング技術は、個々の遺伝子エレメントの選択的摂動を可能とすることにより因果的遺伝子変異の体系的なリバースエンジニアリングを可能とするため、ならびに合成生物学、バイオテクノロジーおよび医薬用途を進歩させるために必要とされる。ゲノム編集技術、例えば、デザイナー亜鉛フィンガー、転写アクチベーター様エフェクター(TALE)、またはホーミングメガヌクレアーゼがターゲティングされるゲノム摂動の産生に利用可能であるが、安価で、設定が容易で、スケーラブルで、真核ゲノム内の複数位置をターゲティングしやすい新たなゲノムエンジニアリング技術が依然として必要とされている。
米国特許第4,873,316号明細書
多彩な用途の配列ターゲティングのための代替的で堅牢な系および技術が差し迫って必要とされている。本発明は、この必要性に対処し、関連する利点を提供する。CRISPR/CasまたはCRISPR−Cas系(両方の用語は、本出願全体にわたり互換的に使用される)は特異的配列をターゲティングするためにカスタム化タンパク質の生成を要求しないが、単一Cas酵素を短鎖RNA分子によりプログラミングして特異的DNA標的を認識させることができ、換言すると、Cas酵素は、前記短鎖RNA分子を使用して特異的DNA標的にリクルートすることができる。ゲノムシーケンシング技術および分析法のレパートリーへのCRISPR−Cas系の付加により方法論が顕著に簡易化され、多様な範囲の生物学的機能および疾患に関連する遺伝因子を分類およびマッピングする技能が加速される。有害効果を有さずにゲノム編集にCRISPR−Cas系を有効に利用するため、特許請求される本発明の態様であるそれらのゲノムエンジニアリングツールのエンジニアリングおよび最適化の態様を理解することが重要である。
一態様において、本発明は、1つ以上のベクターを含むベクター系を提供する。一部の実施形態において、系は、(a)tracrメイト配列および1つ以上のガイド配列をtracrメイト配列の上流に挿入するための1つ以上の挿入部位に作動可能に結合している第1の調節エレメント(ガイド配列は、発現された場合、真核細胞中の標的配列へのCRISPR複合体の配列特異的結合を指向し、CRISPR複合体は、(1)標的配列にハイブリダイズされるガイド配列、および(2)tracr配列にハイブリダイズされるtracrメイト配列と複合体形成しているCRISPR酵素を含む);ならびに(b)核局在化配列を含む前記CRISPR酵素をコードする酵素コード配列に作動可能に結合している第2の調節エレメントを含み;成分(a)および(b)は、系の同一または異なるベクター上にある。一部の実施形態において、成分(a)は、第1の調節エレメントの制御下でtracrメイト配列の下流のtracr配列をさらに含む。一部の実施形態において、成分(a)は、第1の調節エレメントに作動可能に結合している2つ以上のガイド配列をさらに含み、2つ以上のガイド配列のそれぞれは、発現された場合、真核細胞中の異なる標的配列へのCRISPR複合体の配列特異的結合を指向する。一部の実施形態において、系は、第3の調節エレメント、例えば、ポリメラーゼIIIプロモーターの制御下でtracr配列を含む。一部の実施形態において、tracr配列は、最適にアラインされた場合にtracrメイト配列の長さに沿って少なくとも50%、60%、70%、80%、90%、95%、または99%の配列相補性を示す。最適アラインメントの決定は、当業者の技能の範囲内である。例えば、公開および市販のアラインメントアルゴリズムおよびプログラム、例えば、限定されるものではないが、ClustalW、matlabにおけるSmith−Waterman、Bowtie、Geneious、BiopythonおよびSeqManが存在する。一部の実施形態において、CRISPR複合体は、真核細胞の核中の検出可能な量の前記CRISPR複合体の蓄積をドライブするために十分な強度の1つ以上の核局在化配列を含む。理論により拘束されるものではないが、核局在化配列は、真核生物中のCRISPR複合体活性に必要でないが、そのような配列を含めることにより、特に核中の核酸分子のターゲティングに関して系の活性が向上すると考えられる。一部の実施形態において、CRISPR酵素は、II型CRISPR系酵素である。一部の実施形態において、CRISPR酵素は、Cas9酵素である。一部の実施形態において、Cas9酵素は、肺炎連鎖球菌(S.pneumoniae)、化膿性連鎖球菌(S.pyogenes)、またはS.サーモフィラス(S.thermophilus)Cas9であり、それらの生物に由来する突然変異Cas9を含み得る。酵素は、Cas9ホモログまたはオルソログであり得る。一部の実施形態において、CRISPR酵素は、真核細胞中の発現のためにコドン最適化されている。一部の実施形態において、CRISPR酵素は、標的配列の局在における1つまたは2つの鎖の開裂を指向する。一部の実施形態において、CRISPR酵素は、DNA鎖開裂活性を欠く。一部の実施形態において、第1の調節エレメントは、ポリメラーゼIIIプロモーターである。一部の実施形態において、第2の調節エレメントは、ポリメラーゼIIプロモーターである。一部の実施形態において、ガイド配列は、少なくとも15、16、17、18、19、20、25ヌクレオチド、または10〜30、もしくは15〜25、もしくは15〜20ヌクレオチド長である。一般に、および本明細書全体で、用語「ベクター」は、それが結合した別の核酸を輸送し得る核酸分子を指す。ベクターとしては、限定されるものではないが、一本鎖、二本鎖、または部分二本鎖の核酸分子;1つ以上の自由末端を含み、自由末端を含まない(例えば、環状)核酸分子;DNA、RNA、またはその両方を含む核酸分子;および当技術分野において公知の他の種々のポリヌクレオチドが挙げられる。あるタイプのベクターは、「プラスミド」であり、それは、付加DNAセグメントを例えば標準分子クローニング技術により挿入することができる環状二本鎖DNAループを指す。別のタイプのベクターは、ウイルスベクターであり、それにおいてウイルス由来DNAまたはRNA配列がウイルス(例えば、レトロウイルス、複製欠損レトロウイルス、アデノウイルス、複製欠損アデノウイルス、およびアデノ随伴ウイルス)中へのパッケージングのためにベクター中に存在する。ウイルスベクターとしては、宿主細胞中への形質移入のためにウイルスにより担持されるポリヌクレオチドも挙げられる。あるベクターは、それが導入された宿主細胞中で自己複製し得る(例えば、細菌複製起点を有する細菌ベクターおよびエピソーマル哺乳動物ベクター)。他のベクター(例えば、非エピソーマル哺乳動物ベクター)は、宿主細胞中への導入時に宿主細胞のゲノム中にインテグレートされ、それにより宿主ゲノムとともに複製される。さらに、あるベクターは、それが作動的に結合している遺伝子の発現を指向し得る。このようなベクターは、本明細書において「発現ベクター」と称される。組換えDNA技術において有用な一般的な発現ベクターは、プラスミドの形態であることが多い。
組換え発現ベクターは、宿主細胞中の核酸の発現に好適な形態の本発明の核酸を含み得、そのことは、組換え発現ベクターが、発現に使用すべき宿主細胞に基づき選択することができ、発現させるべき核酸配列に作動的に結合している1つ以上の調節エレメントを含むことを意味する。組換え発現ベクターのうち、「作動可能に結合している」は、目的ヌクレオチド配列が調節エレメントに、そのヌクレオチド配列の発現(例えば、インビトロ転写/翻訳系またはベクターが宿主細胞中に導入された場合、宿主細胞中で)を可能とするように結合していることを意味するものとする。
用語「調節エレメント」は、プロモーター、エンハンサー、内部リボソーム進入部位(IRES)、および他の発現制御エレメント(例えば、転写終結シグナル、例えば、ポリアデニル化シグナルおよびポリU配列)を含むものとする。このような調節エレメントは、例えば、Goeddel,GENE EXPRESSION TECHNOLOGY:METHODS IN ENZYMOLOGY 185,Academic Press,San Diego,Calif.(1990)に記載されている。調節エレメントとしては、多くのタイプの宿主細胞中のヌクレオチド配列の構成的発現を指向するものおよびある宿主細胞中でのみヌクレオチド配列の発現を指向するもの(例えば、組織特異的調節配列)が挙げられる。組織特異的プロモーターは、主として所望の目的組織、例えば、筋肉、神経細胞、骨、皮膚、血液、特異的臓器(例えば、肝臓、膵臓)、または特定の細胞タイプ(例えば、リンパ球)中で発現を指向し得る。調節エレメントは、時間依存的様式、例えば、細胞周期依存的または発生段階依存的様式の発現も指向し得、それは、組織または細胞タイプ特異的であってもなくてもよい。一部の実施形態において、ベクターは、1つ以上のpolIIIプロモーター(例えば、1、2、3、4、5つ、またはそれよりも多いpolIIIプロモーター)、1つ以上のpolIIプロモーター(例えば、1、2、3、4、5つ、またはそれよりも多いpolIIプロモーター)、1つ以上のpolIプロモーター(例えば、1、2、3、4、5つ、またはそれよりも多いpolIプロモーター)、またはそれらの組合せを含む。polIIIプロモーターの例としては、限定されるものではないが、U6およびH1プロモーターが挙げられる。polIIプロモーターの例としては、限定されるものではないが、レトロウイルスのラウス肉腫ウイルス(RSV)LTRプロモーター(場合により、RSVエンハンサーを有する)、サイトメガロウイルス(CMV)プロモーター(場合により、CMVエンハンサーを有する)[例えば、Boshart et al,Cell,41:521−530(1985)参照]、SV40プロモーター、ジヒドロ葉酸レダクターゼプロモーター、β−アクチンプロモーター、ホスホグリセロールキナーゼ(PGK)プロモーター、およびEF1αプロモーターが挙げられる。用語「調節エレメント」により、エンハンサーエレメント、例えば、WPRE;CMVエンハンサー;HTLV−IのLTR中のR−U5’セグメント(Mol.Cell.Biol.,Vol.8(1),p.466−472,1988);SV40エンハンサー;およびウサギβ−グロビンのエキソン2と3との間のイントロン配列(Proc.Natl.Acad.Sci.USA.,Vol.78(3),p.1527−31,1981)も包含される。発現ベクターの設計は、形質転換すべき宿主細胞の選択、所望の発現レベルなどのような因子に依存し得ることが当業者により認識される。ベクターを宿主細胞中に導入し、それにより本明細書に記載の核酸によりコードされる転写物、融合タンパク質またはペプチドを含むタンパク質、またはペプチド(例えば、クラスター化等間隔短鎖回分リピート(CRISPR)転写物、タンパク質、酵素、それらの突然変異体、それらの融合タンパク質など)を産生することができる。
有利なベクターとしては、レンチウイルスおよびアデノ随伴ウイルスが挙げられ、そのようなベクターのタイプは、特定のタイプの細胞のターゲティングのために選択することもできる。
一態様において、本発明は、1つ以上の核局在化配列を含むCRISPR酵素をコードする酵素コード配列に作動可能に結合している調節エレメントを含むベクターを提供する。一部の実施形態において、前記調節エレメントは真核細胞中のCRISPR酵素の転写を、前記CRISPR酵素が真核細胞の核中で検出可能な量で蓄積するようにドライブする。一部の実施形態において、調節エレメントは、ポリメラーゼIIプロモーターである。一部の実施形態において、CRISPR酵素は、II型CRISPR系酵素である。一部の実施形態において、CRISPR酵素は、Cas9酵素である。一部の実施形態において、Cas9酵素は、肺炎連鎖球菌(S.pneumoniae)、化膿性連鎖球菌(S.pyogenes)またはS.サーモフィラス(S.thermophilus)Cas9であり、それらの生物に由来する突然変異Cas9を含み得る。一部の実施形態において、CRISPR酵素は、真核細胞中の発現のためにコドン最適化されている。一部の実施形態において、CRISPR酵素は、標的配列の局在における1つまたは2つの鎖の開裂を指向する。一部の実施形態において、CRISPR酵素は、DNA鎖開裂活性を欠く。
一態様において、本発明は、真核細胞の核中の検出可能な量の前記CRISPR酵素の蓄積をドライブするために十分な強度の1つ以上の核局在化配列を含むCRISPR酵素を提供する。一部の実施形態において、CRISPR酵素は、II型CRISPR系酵素である。一部の実施形態において、CRISPR酵素は、Cas9酵素である。一部の実施形態において、Cas9酵素は、肺炎連鎖球菌(S.pneumoniae)、化膿性連鎖球菌(S.pyogenes)またはS.サーモフィラス(S.thermophilus)Cas9であり、それらの生物に由来する突然変異Cas9を含み得る。酵素は、Cas9ホモログまたはオルソログであり得る。一部の実施形態において、CRISPR酵素は、それが結合する標的配列の1つ以上の鎖を開裂する能力を欠く。
一態様において、本発明は、(a)tracrメイト配列および1つ以上のガイド配列をtracrメイト配列の上流に挿入するための1つ以上の挿入部位に作動可能に結合している第1の調節エレメント(ガイド配列は、発現された場合、真核細胞中の標的配列へのCRISPR複合体の配列特異的結合を指向し、CRISPR複合体は、(1)標的配列にハイブリダイズされるガイド配列、および(2)tracr配列にハイブリダイズされるtracrメイト配列と複合体形成しているCRISPR酵素を含む);ならびに/または(b)核局在化配列を含む前記CRISPR酵素をコードする酵素コード配列に作動可能に結合している第2の調節エレメントを含む真核宿主細胞を提供する。一部の実施形態において、宿主細胞は、成分(a)および(b)を含む。一部の実施形態において、成分(a)、成分(b)、または成分(a)および(b)は、宿主真核細胞のゲノム中に安定的にインテグレートされている。一部の実施形態において、成分(a)は、第1の調節エレメントの制御下でtracrメイト配列の下流のtracr配列をさらに含む。一部の実施形態において、成分(a)は、第1の調節エレメントに作動可能に結合している2つ以上のガイド配列をさらに含み、2つ以上のガイド配列のそれぞれは、発現された場合、真核細胞中の異なる標的配列へのCRISPR複合体の配列特異的結合を指向する。一部の実施形態において、真核宿主細胞は、前記tracr配列に作動可能に結合している第3の調節エレメント、例えば、ポリメラーゼIIIプロモーターをさらに含む。一部の実施形態において、tracr配列は、最適にアラインされた場合にtracrメイト配列の長さに沿って少なくとも50%、60%、70%、80%、90%、95%、または99%の配列相補性を示す。一部の実施形態において、CRISPR酵素は、真核細胞の核中の検出可能な量の前記CRISPR酵素の蓄積をドライブするために十分な強度の1つ以上の核局在化配列を含む。一部の実施形態において、CRISPR酵素は、II型CRISPR系酵素である。一部の実施形態において、CRISPR酵素は、Cas9酵素である。一部の実施形態において、Cas9酵素は、肺炎連鎖球菌(S.pneumoniae)、化膿性連鎖球菌(S.pyogenes)またはS.サーモフィラス(S.thermophilus)Cas9であり、それらの生物に由来する突然変異Cas9を含み得る。酵素は、Cas9ホモログまたはオルソログであり得る。一部の実施形態において、CRISPR酵素は、真核細胞中の発現のためにコドン最適化されている。一部の実施形態において、CRISPR酵素は、標的配列の局在における1つまたは2つの鎖の開裂を指向する。一部の実施形態において、CRISPR酵素は、DNA鎖開裂活性を欠く。一部の実施形態において、第1の調節エレメントは、ポリメラーゼIIIプロモーターである。一部の実施形態において、第2の調節エレメントは、ポリメラーゼIIプロモーターである。一部の実施形態において、ガイド配列は、少なくとも15、16、17、18、19、20、25ヌクレオチド、または10〜30、もしくは15〜25、もしくは15〜20ヌクレオチド長である。一態様において、本発明は、記載の実施形態のいずれかによる真核宿主細胞を含む非ヒト真核生物;好ましくは、多細胞真核生物を提供する。他の態様において、本発明は、記載の実施形態のいずれかによる真核宿主細胞を含む真核生物;好ましくは、多細胞真核生物を提供する。これらの態様の一部の実施形態における生物は、動物;例えば、哺乳動物であり得る。また、生物は、節足動物、例えば、昆虫であり得る。生物は、植物でもあり得る。さらに、生物は、真菌であり得る。
一態様において、本発明は、本明細書に記載の成分の1つ以上を含むキットを提供する。一部の実施形態において、キットは、ベクター系およびキットの使用指示書を含む。一部の実施形態において、ベクター系は、(a)tracrメイト配列および1つ以上のガイド配列をtracrメイト配列の上流に挿入するための1つ以上の挿入部位に作動可能に結合している第1の調節エレメント(ガイド配列は、発現された場合、真核細胞中の標的配列へのCRISPR複合体の配列特異的結合を指向し、CRISPR複合体は、(1)標的配列にハイブリダイズされるガイド配列、および(2)tracr配列にハイブリダイズされるtracrメイト配列と複合体形成しているCRISPR酵素を含む);ならびに/または(b)核局在化配列を含む前記CRISPR酵素をコードする酵素コード配列に作動可能に結合している第2の調節エレメントを含む。一部の実施形態において、キットは、系の同一または異なるベクター上にある成分(a)および(b)を含む。一部の実施形態において、成分(a)は、第1の調節エレメントの制御下でtracrメイト配列の下流のtracr配列をさらに含む。一部の実施形態において、成分(a)は、第1の調節エレメントに作動可能に結合している2つ以上のガイド配列をさらに含み、2つ以上のガイド配列のそれぞれは、発現された場合、真核細胞中の異なる標的配列へのCRISPR複合体の配列特異的結合を指向する。一部の実施形態において、系は、前記tracr配列に作動可能に結合している第3の調節エレメント、例えば、ポリメラーゼIIIプロモーターをさらに含む。一部の実施形態において、tracr配列は、最適にアラインされた場合にtracrメイト配列の長さに沿って少なくとも50%、60%、70%、80%、90%、95%、または99%の配列相補性を示す。一部の実施形態において、CRISPR酵素は、真核細胞の核中の検出可能な量の前記CRISPR酵素の蓄積をドライブするために十分な強度の1つ以上の核局在化配列を含む。一部の実施形態において、CRISPR酵素は、II型CRISPR系酵素である。一部の実施形態において、CRISPR酵素は、Cas9酵素である。一部の実施形態において、Cas9酵素は、肺炎連鎖球菌(S.pneumoniae)、化膿性連鎖球菌(S.pyogenes)またはS.サーモフィラス(S.thermophilus)Cas9であり、それらの生物に由来する突然変異Cas9を含み得る。酵素は、Cas9ホモログまたはオルソログであり得る。一部の実施形態において、CRISPR酵素は、真核細胞中の発現のためにコドン最適化されている。一部の実施形態において、CRISPR酵素は、標的配列の局在における1つまたは2つの鎖の開裂を指向する。一部の実施形態において、CRISPR酵素は、DNA鎖開裂活性を欠く。一部の実施形態において、第1の調節エレメントは、ポリメラーゼIIIプロモーターである。一部の実施形態において、第2の調節エレメントは、ポリメラーゼIIプロモーターである。一部の実施形態において、ガイド配列は、少なくとも15、16、17、18、19、20、25ヌクレオチド、または10〜30、もしくは15〜25、もしくは15〜20ヌクレオチド長である。
一態様において、本発明は、真核細胞中の標的ポリヌクレオチドを改変する方法を提供する。一部の実施形態において、方法は、CRISPR複合体を標的ポリヌクレオチドに結合させて前記標的ポリヌクレオチドの開裂を生じさせ、それにより標的ポリヌクレオチドを改変することを含み、CRISPR複合体は、前記標的ポリヌクレオチド内の標的配列にハイブリダイズされるガイド配列と複合体形成しているCRISPR酵素を含み、前記ガイド配列は、次いでtracr配列にハイブリダイズするtracrメイト配列に結合している。一部の実施形態において、前記開裂は、前記CRISPR酵素により標的配列の局在における1つまたは2つの鎖を開裂することを含む。一部の実施形態において、前記開裂は、標的遺伝子の転写の減少をもたらす。一部の実施形態において、方法は、外因性テンプレートポリヌクレオチドとの相同組換えにより前記開裂標的ポリヌクレオチドを修復することをさらに含み、前記修復は、前記標的ポリヌクレオチドの1つ以上のヌクレオチドの挿入、欠失、または置換を含む突然変異をもたらす。一部の実施形態において、前記突然変異は、標的配列を含む遺伝子から発現されるタンパク質中の1つ以上のアミノ酸変化をもたらす。一部の実施形態において、方法は、1つ以上のベクターを前記真核細胞に送達することをさらに含み、1つ以上のベクターは、CRISPR酵素、tracrメイト配列に結合しているガイド配列、およびtracr配列の1つ以上の発現をドライブする。一部の実施形態において、前記ベクターを対象中の真核細胞中に送達する。一部の実施形態において、前記改変を、細胞培養物中の前記真核細胞中で行う。一部の実施形態において、方法は、前記改変前に前記真核細胞を対象から単離することをさらに含む。一部の実施形態において、方法は、前記真核細胞および/またはそれに由来する細胞を前記対象に戻すことをさらに含む。
一態様において、本発明は、真核細胞中のポリヌクレオチドの発現を改変する方法を提供する。一部の実施形態において、方法は、CRISPR複合体をポリヌクレオチドに結合させ、その結果、前記結合が前記ポリヌクレオチドの発現の増加または減少をもたらすことを含み;CRISPR複合体は、前記ポリヌクレオチド内の標的配列にハイブリダイズされるガイド配列と複合体形成しているCRISPR酵素を含み、前記ガイド配列は、次いでtracr配列にハイブリダイズするtracrメイト配列に結合している。一部の実施形態において、方法は、1つ以上のベクターを前記真核細胞に送達することをさらに含み、1つ以上のベクターは、CRISPR酵素、tracrメイト配列に結合しているガイド配列、およびtracr配列の1つ以上の発現をドライブする。
一態様において、本発明は、突然変異疾患遺伝子を含むモデル真核細胞を生成する方法を提供する。一部の実施形態において、疾患遺伝子は、疾患を有し、または発症するリスクの増加に関連する任意の遺伝子である。一部の実施形態において、方法は、(a)1つ以上のベクターを真核細胞に導入すること(1つ以上のベクターは、CRISPR酵素、tracrメイト配列に結合しているガイド配列、およびtracr配列の1つ以上の発現をドライブする)および(b)CRISPR複合体を標的ポリヌクレオチドに結合させて前記疾患遺伝子内の標的ポリヌクレオチドの開裂を生じさせ(CRISPR複合体は、(1)標的ポリヌクレオチド内の標的配列にハイブリダイズされるガイド配列、および(2)tracr配列にハイブリダイズされるtracrメイト配列と複合体形成しているCRISPR酵素を含む)、それにより、突然変異疾患遺伝子を含むモデル真核細胞を生成することを含む。一部の実施形態において、前記開裂は、前記CRISPR酵素により標的配列の局在における1つまたは2つの鎖を開裂することを含む。一部の実施形態において、前記開裂は、標的遺伝子の転写の減少をもたらす。一部の実施形態において、方法は、外因性テンプレートポリヌクレオチドとの相同組換えにより前記開裂標的ポリヌクレオチドを修復することをさらに含み、前記修復は、前記標的ポリヌクレオチドの1つ以上のヌクレオチドの挿入、欠失、または置換を含む突然変異をもたらす。一部の実施形態において、前記突然変異は、標的配列を含む遺伝子から発現されるタンパク質中の1つ以上のアミノ酸変化をもたらす。
一態様において、本発明は、疾患遺伝子に関連する細胞シグナリングイベントをモジュレートする生物活性剤を開発する方法を提供する。一部の実施形態において、疾患遺伝子は、疾患を有し、または発症するリスクの増加に関連する任意の遺伝子である。一部の実施形態において、方法は、(a)試験化合物を、記載の実施形態のいずれか1つのモデル細胞と接触させること;および(b)前記疾患遺伝子中の前記突然変異に関連する細胞シグナリングイベントの低減または増大を示すリードアウトの変化を検出し、それにより、前記疾患遺伝子に関連する前記細胞シグナリングイベントをモジュレートする前記生物活性剤を開発することを含む。
一態様において、本発明は、tracrメイト配列の上流のガイド配列を含む組換えポリヌクレオチドであって、ガイド配列は、発現された場合、真核細胞中に存在する対応する標的配列へのCRISPR複合体の配列特異的結合を指向する組換えポリヌクレオチドを提供する。一部の実施形態において、標的配列は、真核細胞中に存在するウイルス配列である。一部の実施形態において、標的配列は、原癌遺伝子または癌遺伝子である。
一態様において、本発明は、1つ以上の原核細胞中の遺伝子中の1つ以上の突然変異を導入することにより1つ以上の原核細胞を選択する方法であって、1つ以上のベクターを原核細胞中に導入すること(1つ以上のベクターは、CRISPR酵素、tracrメイト配列に結合しているガイド配列、tracr配列、および編集テンプレートの1つ以上の発現をドライブし;編集テンプレートは、CRISPR酵素開裂を停止させる1つ以上の突然変異を含む);編集テンプレートと、選択すべき細胞中の標的ポリヌクレオチドとを相同組換えさせること;CRISPR複合体を標的ポリヌクレオチドに結合させて前記遺伝子内の標的ポリヌクレオチドの開裂を生じさせ(CRISPR複合体は、(1)標的ポリヌクレオチド内の標的配列にハイブリダイズされるガイド配列、および(2)tracr配列にハイブリダイズされるtracrメイト配列と複合体形成しているCRISPR酵素を含み、標的ポリヌクレオチドへのCRISPR複合体の結合は、細胞死を誘導する)、それにより、1つ以上の突然変異が導入された1つ以上の原核細胞の選択を可能とすることを含む方法を提供する。好ましい実施形態において、CRISPR酵素は、Cas9である。本発明の別の態様において、選択すべき細胞は、真核細胞であり得る。本発明の態様により、選択マーカーもカウンターセレクション系を含み得る2ステッププロセスも要求しない規定の細胞の選択が可能となる。
したがって、本発明の目的は、任意の既に公知の生成物、その生成物の作製方法、またはその生成物の使用方法を本発明に包含することではなく、したがって、本出願人らは、その権利を保有し、任意の既に公知の生成物、作製方法、または使用方法の放棄を本明細書に開示する。本発明は、USPTO(米国特許法第112条、第1段落)またはEPO(欧州特許条約第83条)の記載要件および実施可能要件を満たさない任意の生成物、方法、または生成物の作製または生成物の使用方法を、本発明の範囲に包含しないものとし、したがって、本出願人らは、その権利を保有し、任意の既に記載の生成物、その生成物の作製方法、またはその生成物の使用方法の放棄を本明細書に開示することがさらに留意される。
本開示および特に特許請求の範囲および/または段落において、「含む(comprises)」、「含んだ(comprised)」、「含む(comprising)」などのような用語は、米国特許法に帰属する意味を有し得;例えば、それらは、「含む(includes)」、「含んだ(included)」、「含む(including)」などを意味し得;「本質的に〜からなる(consisting essentially of)」および「本質的に〜からなる(consists essentially of)」のような用語は、米国特許法に帰属する意味を有し、例えば、それらは、明示的に記述されない構成要素を許容するが、先行技術に見出され、または本発明の基本もしくは新規特徴に影響する構成要素を排除することが留意される。これらのおよび他の実施形態は、以下の詳細な説明により開示され、またはそれから明らかであり、それにより包含される。
本発明の新規特徴を、特に添付の特許請求の範囲を用いて記載する。本発明の特徴および利点のより良好な理解は、本発明の原理が利用される説明的な実施形態を記載する以下の詳細な説明、および付属の図面を参照することにより得られる。
CRISPR系の模式的モデルを示す。化膿性連鎖球菌(Streptococcus pyogenes)からのCas9ヌクレアーゼ(黄色)を、20ntガイド配列(青色)および足場(赤色)からなる合成ガイドRNA(sgRNA)によりゲノムDNAにターゲティングする。必要な5’−NGGプロトスペーサー隣接モチーフ(PAM;マゼンタ)のすぐ上流のDNA標的(青色)とのガイド配列塩基対、およびCas9は、PAMの約3bp上流の二本鎖切断(DSB)(赤色三角)を媒介する。 例示的CRISPR系、考えられる作用機序、真核細胞中の発現の例示的適応、ならびに核局在化およびCRISPR活性を評価する試験の結果を示す。 例示的CRISPR系、考えられる作用機序、真核細胞中の発現の例示的適応、ならびに核局在化およびCRISPR活性を評価する試験の結果を示す。 例示的CRISPR系、考えられる作用機序、真核細胞中の発現の例示的適応、ならびに核局在化およびCRISPR活性を評価する試験の結果を示す。 例示的CRISPR系、考えられる作用機序、真核細胞中の発現の例示的適応、ならびに核局在化およびCRISPR活性を評価する試験の結果を示す。 例示的CRISPR系、考えられる作用機序、真核細胞中の発現の例示的適応、ならびに核局在化およびCRISPR活性を評価する試験の結果を示す。 例示的CRISPR系、考えられる作用機序、真核細胞中の発現の例示的適応、ならびに核局在化およびCRISPR活性を評価する試験の結果を示す。 真核細胞中のCRISPR系エレメントの発現のための例示的発現カセット、例示的ガイド配列の予測構造、ならびに真核および原核細胞中で計測されたCRISPR系活性を示す。 例示的標的についてのSpCas9特異性の評価の結果を示す。 例示的標的についてのSpCas9特異性の評価の結果を示す。 例示的標的についてのSpCas9特異性の評価の結果を示す。 例示的標的についてのSpCas9特異性の評価の結果を示す。 例示的ベクター系および真核細胞中の相同組換えの指向におけるその使用についての結果を示す。 例示的ベクター系および真核細胞中の相同組換えの指向におけるその使用についての結果を示す。 例示的ベクター系および真核細胞中の相同組換えの指向におけるその使用についての結果を示す。 例示的ベクター系および真核細胞中の相同組換えの指向におけるその使用についての結果を示す。 例示的ベクター系および真核細胞中の相同組換えの指向におけるその使用についての結果を示す。 例示的ベクター系および真核細胞中の相同組換えの指向におけるその使用についての結果を示す。 例示的ベクター系および真核細胞中の相同組換えの指向におけるその使用についての結果を示す。 プロトスペーサー配列の表を提供し、ヒトおよびマウスゲノム中の遺伝子座に対して例示的化膿性連鎖球菌(S.pyogenes)およびS.サーモフィラス(S.thermophilus)CRISPR系に基づき設計されたプロトスペーサー標的と対応するPAMについての改変効率結果をまとめる。細胞をCas9およびプレcrRNA/tracrRNAまたはキメラRNAのいずれかにより形質移入し、形質移入から72時間後に分析した。インデルパーセントは、示された細胞系からのSurveyorアッセイ結果に基づき算出した(全てのプロトスペーサー標的についてN=3、誤差は、標準誤差(S.E.M.)であり、N.D.は、Surveyorアッセイを使用して検出可能でないことを示し、N.T.は、本試験において試験しなかったことを示す)。 Cas9媒介遺伝子ターゲティングについての異なるtracrRNA転写物の比較を示す。 Cas9媒介遺伝子ターゲティングについての異なるtracrRNA転写物の比較を示す。 Cas9媒介遺伝子ターゲティングについての異なるtracrRNA転写物の比較を示す。 二本鎖切断により誘導された微小挿入および欠失の検出のためのsurveyorヌクレアーゼアッセイの模式図を示す。 真核細胞中のCRISPR系エレメントの発現のための例示的バイシストロニック発現ベクターを示す。 細菌プラスミド形質転換干渉アッセイ、それに使用された発現カセットおよびプラスミド、ならびにそれに使用された細胞の形質転換効率を示す。 ヒトゲノム中の隣接する化膿性連鎖球菌(S.pyogenes)SF370遺伝子座1PAM(NGG)(図10A)と、S.サーモフィラス(S.thermophilus)LMD9遺伝子座2PAM(NNAGAAW)(図10B)との間の距離のヒストグラム;ならびに染色体(Chr)単位のそれぞれのPAMについての距離(図10C)を示す。 例示的CRISPR系、真核細胞中の発現のための例示的適応、およびCRISPR活性を評価する試験の結果を示す。 哺乳動物細胞中のゲノム遺伝子座のターゲティングのためのCRISPR系の例示的操作を示す。 哺乳動物細胞中のcrRNAプロセシングのノザンブロット分析の結果を示す。 ヒトPVALBおよびマウスTh遺伝子座中のプロトスペーサーの例示的選択を示す。 ヒトEMX1遺伝子座中のS.サーモフィラス(S.thermophilus)CRISPR系の例示的プロトスペーサーおよび対応するPAM配列標的を示す。 Surveyor、RFLP、ゲノムシーケンシング、およびノザンブロットアッセイに使用されたプライマーおよびプローブについての配列の表を提供する。 キメラRNAを有するCRISPR系の例示的操作および真核細胞中の系活性についてのSURVEYORアッセイの結果を示す。 キメラRNAを有するCRISPR系の例示的操作および真核細胞中の系活性についてのSURVEYORアッセイの結果を示す。 キメラRNAを有するCRISPR系の例示的操作および真核細胞中の系活性についてのSURVEYORアッセイの結果を示す。 真核細胞中のCRISPR系活性についてのSURVEYORアッセイの結果のグラフ表示を示す。 UCSCゲノムブラウザを使用するヒトゲノム中のいくつかの化膿性連鎖球菌(S.pyogenes)Cas9標的部位の例示的可視化を示す。 ガイド配列、tracrメイト配列、およびtracr配列を含む例示的キメラRNAについての予測二次構造を示す。 真核細胞中のCRISPR系エレメントの発現のための例示的バイシストロニック発現ベクターを示す。 内因性標的に対するCas9ヌクレアーゼ活性を、ゲノム編集に活用することができることを示す。(a)CRISPR系を使用するゲノム編集の概念。CRISPRターゲティング構築物は、染色体遺伝子座の開裂を指向し、標的と組み換わる編集テンプレートと同時形質転換して開裂を妨害した。CRISPRアタックから生存したカナマイシン耐性形質転換体は、編集テンプレートにより誘導された改変、tracr、トランス活性化CRISPR RNA;aphA−3、カナマイシン耐性遺伝子を含有した。(b)編集テンプレートなし、R6野生型srtAまたはR6370.1編集テンプレートを用いるR68232.5細胞中のcrR6M DNAの形質転換。R6srtAまたはR6370.1のいずれかの組換えは、Cas9による開裂を妨害した。形質転換効率は、crR6M DNA1μg当たりのコロニー形成単位(cfu)として算出し;少なくとも3つの独立実験からの標準偏差とともに平均値を示す。PCR分析は、それぞれの形質転換において8つのクローンに対して実施した。「Un.」は、株R68232.5の非編集srtA遺伝子座を示し;「Ed.」は、編集テンプレートを示す。R68232.5およびR6370.1標的は、EaeIによる制限により区別する。 Cas9開裂を排除するPAMおよびシード配列の分析を示す。(a)ランダム化されたPAM配列またはランダム化されたシード配列を有するPCR産物を、crR6細胞中に形質転換した。これらの細胞は、R6ゲノムに不存在のR68232.5細胞の染色体領域(桃色で強調)をターゲティングするcrRNAがロードされているCas9を発現した。不活性PAMまたはシード配列を担持する2×105個を超えるクロラムフェニコール耐性形質転換体を、標的領域の増幅およびディープシーケンシングのために合わせた。(b)crR6細胞中のランダムPAM構築物の形質転換後のリード数の相対比率(R6形質転換体におけるリード数と比較)。それぞれの3−ヌクレオチドPAM配列についての相対存在量を示す。極度に過少の配列(NGG)を赤色で示し;部分的に過少のものを橙色で示す(NAG)。(c)crR6細胞中のランダムシード配列構築物の形質転換後のリード数の相対比率(R6形質転換体におけるリード数と比較)。プロトスペーサー配列の最初の20ヌクレオチドのそれぞれの位置についてのそれぞれのヌクレオチドの相対存在量を示す。高い存在量は、Cas9による開裂の欠如、すなわち、CRISPR不活性突然変異を示す。灰色線は、WT配列のレベルを示す。点線は、突然変異が開裂を有意に破壊するレベルを表す(実施例5のセクション「ディープシーケンシングデータの分析」参照)。 肺炎連鎖球菌(S.pneumoniae)におけるCRISPR系を使用する単一および複数突然変異の導入を示す。(a)野生型および編集された(緑色ヌクレオチド;下線付きアミノ酸残基)bgaAのヌクレオチドおよびアミノ酸配列。プロトスペーサー、PAMおよび制限部位を示す。(b)編集テンプレートまたは対照の存在下でターゲティング構築物により形質転換された細胞の形質転換効率。(c)それぞれの編集実験と、それに続くBtgZI(R→A)およびTseI(NE→AA)による消化の8つの形質転換体についてのPCR分析。bgaAの欠失は、より小さいPCR産物として明らかになった。(d)WTおよび編集された株のβ−ガラクトシダーゼ活性を計測するためのMillerアッセイ。(e)単一ステップの二重欠失のため、ターゲティング構築物は2つのスペーサー(この場合、マッチングsrtAおよびbgaA)を含有し、2つの異なる編集テンプレートにより同時形質転換した。(f)srtAおよびbgaA遺伝子座の欠失を検出するための8つの形質転換体についてのPCR分析。8つ中6つの形質転換体が両方の遺伝子を欠失した。 CRISPR系を使用する編集を基礎とする機序を提供する。(a)終止コドンをエリスロマイシン耐性遺伝子ermAM中に導入して株JEN53を生成した。CRISPR::ermAM(終止)構築物により終止コドンをターゲティングし、ermAM野生型配列を編集テンプレートとして使用することにより野生型配列を復帰させることができる。(b)突然変異体および野生型ermAM配列。(c)総またはカナマイシン耐性(kan)cfuから算出されたエリスロマイシン耐性(erm)cfuの率。(d)CRISPR構築物および編集テンプレートの両方を獲得する総細胞数の率。CRISPRターゲティング構築物の同時形質転換は、より多くの形質転換体を産生した(t検定、p=0.011)。全ての場合において、値は3つの独立実験についての平均±標準偏差を示す。 大腸菌(E.coli)中のCRISPR系によるゲノム編集を説明する。(a)遺伝子をターゲティングして編集するCRISPRアレイを担持するカナマイシン耐性プラスミド(pCRISPR)は、cas9およびtracrを保有するクロラムフェニコール耐性プラスミド(pCas9)を含有するHME63リコンビニアリング株中に、突然変異を規定するオリゴヌクレオチドと一緒に形質転換することができる。(b)ストレプトマイシン耐性を付与するK42T突然変異をrpsL遺伝子中に導入した。(c)総またはカナマイシン耐性(kan)cfuから算出されたストレプトマイシン耐性(strep)cfuの率。(d)pCRISPRプラスミドおよび編集オリゴヌクレオチドの両方を獲得する総細胞数の率。pCRISPRターゲティングプラスミドの同時形質転換は、より多くの形質転換体を産生した(t検定、p=0.004)。全ての場合において、値は3つの独立実験についての平均±標準偏差を示した。 crR6ゲノムDNAの形質転換がターゲティングされる遺伝子座の編集をもたらすことを説明する。(a)肺炎連鎖球菌(S.pneumoniae)R6のIS1167エレメントを、化膿性連鎖球菌(S.pyogenes)SF370のCRISPR01遺伝子座により置き換えてcrR6株を生成した。この遺伝子座はCas9ヌクレアーゼ、6つのスペーサーを有するCRISPRアレイ、crRNAバイオジェネシスに要求されるtracrRNA、ならびにターゲティングに必要でないタンパク質Cas1、Cas2およびCsn2をコードする。株crR6Mは、cas1、cas2およびcsn2を有さない最小機能的CRISPR系を含有する。aphA−3遺伝子は、カナマイシン耐性をコードする。連鎖球菌バクテリオファージφ8232.5およびφ370.1からのプロトスペーサーをクロラムフェニコール耐性遺伝子(cat)に融合し、株R6のsrtA遺伝子中にインテグレートして株R68232.5およびR6370.1を生成した。(b)左側パネル:R68232.5およびR6370.1中のcrR6およびcrR6MゲノムDNAの形質転換。細胞コンピテンスの対照として、ストレプトマイシン耐性遺伝子も形質転換した。右側パネル:crR6ゲノムDNAを有する8つのR68232.5形質転換体のPCR分析。srtA遺伝子座を増幅するプライマーをPCRに使用した。8つ中7つのゲノタイピングされたコロニーが、R68232.5srtA遺伝子座をcrR6ゲノムDNAからのWT遺伝子座により置き換えた。 本試験において得られた編集された細胞のDNA配列のクロマトグラムを提供する。全ての場合において、野生型および突然変異体プロトスペーサーおよびPAM配列(またはそれらの逆相補鎖)を示す。関連する場合、プロトスペーサーによりコードされるアミノ酸配列を提供する。それぞれの編集実験について、PCRおよび制限分析が所望の改変の導入を裏付けた全ての株をシーケンシングした。代表的なクロマトグラムを示す。(a)R68232.5標的中へのPAM突然変異の導入についてのクロマトグラム(図23d)。(b)β−ガラクトシダーゼ(bgaA)中へのR>AおよびNE>AA突然変異の導入についてのクロマトグラム(図25c)。(c)bgaA ORF内の6664bp欠失の導入についてのクロマトグラム(図25cおよび25f)。点線は、欠失の限界を示す。(d)srtA ORF内の729bp欠失の導入についてのクロマトグラム(図25f)。点線は、欠失の限界を示す。(e)ermAM内の早期終止コドンの生成についてのクロマトグラム(図33)。(f)大腸菌(E.coli)中のrpsL編集(図27)。 異なるPAMを含有するランダム肺炎連鎖球菌(S.pneumoniae)標的に対するCRISPR免疫性を説明する。(a)肺炎連鎖球菌(S.pneumoniae)R6ゲノム上の10個のランダム標的の位置。選択された標的は異なるPAMを有し、両方の鎖上に存在する。(b)標的に対応するスペーサーを、プラスミドpLZ12上の最小CRISPRアレイ中でクローニングし、プロセシングおよびターゲティング機構をトランスで供給する株crR6Rc中に形質転換した。(c)株R6およびcrR6Rc中の異なるプラスミドの形質転換効率。crR6Rc中のpDB99〜108(T1〜T10)の形質転換についてコロニーは回収されなかった。点線は、アッセイの検出限界を表す。 ターゲティングされるゲノム編集の一般スキームを提供する。ターゲティングされるゲノム編集を促進するため、crR6MをtracrRNA、Cas9およびCRISPRアレイの1つのみのリピートと、それに続くカナマイシン耐性マーカー(aphA−3)を含有するようにさらにエンジニアリングし、株crR6Rkを生成した。この株からのDNAを、新たなスペーサー(Nにより示される緑色の枠)を導入するように設計されたプライマーとともにPCRのためのテンプレートとして使用する。左側および右側PCRは、ギブソン(Gibson)法を使用してアセンブリしてターゲティング構築物を創成する。次いで、ターゲティングおよび編集構築物の両方を、crR6Rkと同等の株であるが、カナマイシン耐性マーカーがクロラムフェニコール耐性マーカー(cat)により置き換えられた株crR6Rc中に形質転換する。カナマイシン耐性形質転換体の約90%が所望の突然変異を含有する。 PAM間の距離の分布を説明する。有効なPAMであるとみなされるNGGおよびCCN。肺炎連鎖球菌(S.pneumoniae)R6ゲノムならびに同一長および同一GC含有率(39.7%)を有するランダム配列についてのデータを示す。点線は、R6ゲノム中のPAM間の平均距離(12)を表す。 ゲノムDNAをターゲティング構築物として使用するermAM遺伝子座のCRISPR媒介編集を説明する。ゲノムDNAをターゲティング構築物として使用するため、CRISPR自己免疫性を回避することが必要であり、したがって、染色体中に存在しない配列に対するスペーサーを使用しなければならない(この場合、ermAMエリスロマイシン耐性遺伝子)。(a)野生型および突然変異(赤色文字)ermAM遺伝子のヌクレオチドおよびアミノ酸配列。プロトスペーサーおよびPAM配列を示す。(b)ゲノムDNAを使用するermAM遺伝子座のCRISPR媒介編集の模式図。ermAMターゲティングスペーサー(青色の欄)を担持する構築物をPCRおよびギブソン・アセンブリ(Gibson assembly)により作製し、株crR6Rc中に形質転換し、株JEN37を生成した。次いで、JEN37のゲノムDNAをターゲティング構築物として使用し、srtA遺伝子がermAMの野生型コピーにより置き換えられた株であるJEN38中に編集テンプレートとともに同時形質転換した。カナマイシン耐性形質転換体は、編集されたゲノタイプを含有する(JEN43)。(c)ターゲティングおよび編集または対照テンプレートの同時形質転換後に得られたカナマイシン耐性細胞の数。対照テンプレートの存在下で5.4×10cfu/mlが得られ、編集テンプレートを使用した場合は4.3×10cfu/mlが得られた。この差は、約99%[(4.3×10−5.4×10)/4.3×10]の編集効率を示す。(d)編集された細胞の存在を確認するため、7つのカナマイシン耐性クローンおよびJEN38を、エリスロマイシンを有し(erm+)、または有さない(erm−)寒天プレート上でストリークした。陽性対照のみ、エリスロマイシンに対する耐性を示した。これらの形質転換体の1つのermAMmutゲノタイプは、DNAシーケンシングによっても確認した(図29e)。 CRISPR媒介ゲノム編集による突然変異の逐次導入を説明する。(a)CRISPR媒介ゲノム編集による突然変異の逐次導入についての模式図。第1に、R6は、crR6Rkを生成するようにエンジニアリングする。crR6Rkは、編集された細胞のクロラムフェニコール選択のためのcatに融合しているsrtAターゲティング構築物により、ΔsrtAインフレーム欠失のための編集構築物とともに同時形質転換する。株crR6ΔsrtAは、クロラムフェニコールに基づく選択により生成する。続いて、ΔsrtA株は、編集された細胞のカナマイシン選択のためのaphA−3に融合しているbgaAターゲティング構築物、およびΔbgaAインフレーム欠失を含有する編集構築物により同時形質転換する。最後に、エンジニアリングされたCRISPR遺伝子座は、最初に野生型IS1167遺伝子座を含有するR6DNAおよびbgaAプロトスペーサーを担持するプラスミド(pDB97)を同時形質転換し、スペクチノマイシンに基づき選択することにより染色体から消去することができる。(b)srtA遺伝子座の欠失を検出するための8つのクロラムフェニコール(Cam)耐性形質転換体についてのPCR分析。(c)Millerアッセイにより計測されたβ−ガラクトシダーゼ活性。肺炎連鎖球菌(S.pneumoniae)において、この酵素はソルターゼAにより細胞壁に固定される。srtA遺伝子の欠失は、上清中へのβ−ガラクトシダーゼの放出をもたらす。ΔbgaA突然変異体は活性を示さない。(d)CRISPR遺伝子座の野生型IS1167による置き換えを検出するための8つのスペクチノマイシン(Spec)耐性形質転換体についてのPCR分析。 肺炎連鎖球菌(S.pneumoniae)におけるCRISPRのバックグラウンド突然変異頻度を説明する。(a)ermAM編集テンプレートを用い、または用いないJEN53中のCRISPR::φまたはCRISPR::erm(終止)ターゲティング構築物の形質転換。CRISPR::φとCRISPR::erm(終止)との間のkanCFUの差は、Cas9開裂が非編集細胞を殺傷することを示す。編集テンプレートの不存在下でCRISPR干渉をエスケープする突然変異体は、3×10−3の頻度において観察される。(b)エスケーパーのCRISPR遺伝子座のPCR分析は、8つ中7つがスペーサー欠失を有することを示す。(c)エスケーパー#2は、cas9中の点突然変異を担持する。 化膿性連鎖球菌(S.pyogenes)CRISPR遺伝子座1の不可欠なエレメントが、pCas9を使用して大腸菌(E.coli)中で再構成されることを説明する。プラスミドは、tracrRNA、Cas9、およびcrRNAアレイをドライブするリーダー配列を含有した。pCRISPRプラスミドは、リーダーおよびアレイのみを含有した。スペーサーは、アニールされたオリゴヌクレオチドを使用してBsaI部位間のcrRNAアレイ中に挿入することができる。オリゴヌクレオチド設計を下方に示す。pCas9は、クロラムフェニコール耐性(CmR)を担持し、低コピーpACYC184プラスミド骨格をベースとする。pCRISPRは、高コピー数pZE21プラスミドをベースとする。2つのプラスミドが要求された。それというのも、大腸菌(E.coli)染色体をターゲティングするスペーサーを含有するpCRISPRプラスミドは、Cas9も存在する場合にこの生物をクローニング宿主として使用して構築することができない(それが宿主を殺傷する)ためである。 大腸菌(E.coli)MG1655中のCRISPR指向編集を説明する。ストレプトマイシン耐性を付与し、CRISPR免疫性を停止させる点突然変異を担持するオリゴヌクレオチド(W542)を、rpsLをターゲティングするプラスミド(pCRISPR::rpsL)または対照プラスミド(pCRISPR::φ)と一緒に、pCas9を含有する野生型大腸菌(E.coli)株MG1655中に同時形質転換した。形質転換体は、ストレプトマイシンまたはカナマイシンのいずれかを含有する培地上で選択した。点線は形質転換アッセイの検出限界を示す。 大腸菌(E.coli)HME63中のCRISPRのバックグラウンド突然変異頻度を説明する。(a)HME63コンピテント細胞中へのpCRISPR::φまたはpCRISPR::rpsLプラスミドの形質転換。CRISPR干渉をエスケープする突然変異体は、2.6×10−4の頻度において観察された。(b)エスケーパーのCRISPRアレイの増幅は、8つ中8つがスペーサーを欠失したことを示した。 大型Cas9(約1400アミノ酸)の3つの群および小型Cas9(約1100アミノ酸)の2つの群を含むCas9の5つの科を明らかにする系統発生分析の円形表示を示す。 大型Cas9(約1400アミノ酸)の3つの群および小型Cas9(約1100アミノ酸)の2つの群を含むCas9の5つの科を明らかにする系統発生分析の円形表示を示す。 大型Cas9(約1400アミノ酸)の3つの群および小型Cas9(約1100アミノ酸)の2つの群を含むCas9の5つの科を明らかにする系統発生分析の円形表示を示す。 大型Cas9(約1400アミノ酸)の3つの群および小型Cas9(約1100アミノ酸)の2つの群を含むCas9の5つの科を明らかにする系統発生分析の円形表示を示す。 大型Cas9(約1400アミノ酸)の3つの群および小型Cas9(約1100アミノ酸)の2つの群を含むCas9の5つの科を明らかにする系統発生分析の線形表示を示す。 大型Cas9(約1400アミノ酸)の3つの群および小型Cas9(約1100アミノ酸)の2つの群を含むCas9の5つの科を明らかにする系統発生分析の線形表示を示す。 大型Cas9(約1400アミノ酸)の3つの群および小型Cas9(約1100アミノ酸)の2つの群を含むCas9の5つの科を明らかにする系統発生分析の線形表示を示す。 大型Cas9(約1400アミノ酸)の3つの群および小型Cas9(約1100アミノ酸)の2つの群を含むCas9の5つの科を明らかにする系統発生分析の線形表示を示す。 大型Cas9(約1400アミノ酸)の3つの群および小型Cas9(約1100アミノ酸)の2つの群を含むCas9の5つの科を明らかにする系統発生分析の線形表示を示す。 大型Cas9(約1400アミノ酸)の3つの群および小型Cas9(約1100アミノ酸)の2つの群を含むCas9の5つの科を明らかにする系統発生分析の線形表示を示す。 突然変異点がSpCas9遺伝子内に局在している配列を示す。 突然変異点がSpCas9遺伝子内に局在している配列を示す。 突然変異点がSpCas9遺伝子内に局在している配列を示す。 突然変異点がSpCas9遺伝子内に局在している配列を示す。 突然変異点がSpCas9遺伝子内に局在している配列を示す。 突然変異点がSpCas9遺伝子内に局在している配列を示す。 突然変異点がSpCas9遺伝子内に局在している配列を示す。 突然変異点がSpCas9遺伝子内に局在している配列を示す。 突然変異点がSpCas9遺伝子内に局在している配列を示す。 突然変異点がSpCas9遺伝子内に局在している配列を示す。 突然変異点がSpCas9遺伝子内に局在している配列を示す。 突然変異点がSpCas9遺伝子内に局在している配列を示す。 突然変異点がSpCas9遺伝子内に局在している配列を示す。 触媒ドメイン中の2つの突然変異(D10およびH840)を有するCas9に転写活性化ドメイン(VP64)が融合している模式的構築物を示す。 相同組換えを介するゲノム編集を示す。(a)RuvC I触媒ドメイン中のD10A突然変異を有するSpCas9ニッカーゼの模式図。(b)センスまたはアンチセンス一本鎖オリゴヌクレオチドのいずれかを修復テンプレートとして使用するヒトEMX1遺伝子座における相同組換え(HR)を表す模式図。上方の赤色矢印は、sgRNA開裂部位を示し;ゲノタイピングのためのPCRプライマー(表JおよびK)を右側パネルに矢印として示す。(c)HRにより改変された領域の配列。d、EMX標的1遺伝子座における野生型(wt)およびニッカーゼ(D10A)SpCas9媒介インデルについてのSURVEYORアッセイ(n=3)。矢印は、予測断片サイズの位置を示す。 相同組換えを介するゲノム編集を示す。(a)RuvC I触媒ドメイン中のD10A突然変異を有するSpCas9ニッカーゼの模式図。(b)センスまたはアンチセンス一本鎖オリゴヌクレオチドのいずれかを修復テンプレートとして使用するヒトEMX1遺伝子座における相同組換え(HR)を表す模式図。上方の赤色矢印は、sgRNA開裂部位を示し;ゲノタイピングのためのPCRプライマー(表JおよびK)を右側パネルに矢印として示す。(c)HRにより改変された領域の配列。d、EMX標的1遺伝子座における野生型(wt)およびニッカーゼ(D10A)SpCas9媒介インデルについてのSURVEYORアッセイ(n=3)。矢印は、予測断片サイズの位置を示す。 相同組換えを介するゲノム編集を示す。(a)RuvC I触媒ドメイン中のD10A突然変異を有するSpCas9ニッカーゼの模式図。(b)センスまたはアンチセンス一本鎖オリゴヌクレオチドのいずれかを修復テンプレートとして使用するヒトEMX1遺伝子座における相同組換え(HR)を表す模式図。上方の赤色矢印は、sgRNA開裂部位を示し;ゲノタイピングのためのPCRプライマー(表JおよびK)を右側パネルに矢印として示す。(c)HRにより改変された領域の配列。d、EMX標的1遺伝子座における野生型(wt)およびニッカーゼ(D10A)SpCas9媒介インデルについてのSURVEYORアッセイ(n=3)。矢印は、予測断片サイズの位置を示す。 相同組換えを介するゲノム編集を示す。(a)RuvC I触媒ドメイン中のD10A突然変異を有するSpCas9ニッカーゼの模式図。(b)センスまたはアンチセンス一本鎖オリゴヌクレオチドのいずれかを修復テンプレートとして使用するヒトEMX1遺伝子座における相同組換え(HR)を表す模式図。上方の赤色矢印は、sgRNA開裂部位を示し;ゲノタイピングのためのPCRプライマー(表JおよびK)を右側パネルに矢印として示す。(c)HRにより改変された領域の配列。d、EMX標的1遺伝子座における野生型(wt)およびニッカーゼ(D10A)SpCas9媒介インデルについてのSURVEYORアッセイ(n=3)。矢印は、予測断片サイズの位置を示す。 SpCas9のための単一ベクター設計を示す。 SpCas9のための単一ベクター設計を示す。 NLS−Csn1構築物NLS−Csn1、Csn1、Csn1−NLS、NLS−Csn1−NLS、NLS−Csn1−GFP−NLSおよびUnTFN開裂の定量を示す。 NLS−Cas9、Cas9、Cas9−NLSおよびNLS−Cas9−NLSの指数頻度を示す。 ニッカーゼ突然変異を有するSpCas9が二本鎖切断を(個々に)誘導しないことを実証するゲルを示す。 本実験において相同組換え(HR)テンプレートとして使用されたオリゴDNAの設計ならびにCas9タンパク質およびHRテンプレートの異なる組合せにより誘導されたHR効率の比較を示す。 コンディショナルCas9、Rosa26ターゲティングベクターマップを示す。 構成的Cas9、Rosa26ターゲティングベクターマップを示す。 図49A〜Bのベクターマップ中に存在するそれぞれのエレメントの配列を示す。 図49A〜Bのベクターマップ中に存在するそれぞれのエレメントの配列を示す。 図49A〜Bのベクターマップ中に存在するそれぞれのエレメントの配列を示す。 図49A〜Bのベクターマップ中に存在するそれぞれのエレメントの配列を示す。 図49A〜Bのベクターマップ中に存在するそれぞれのエレメントの配列を示す。 図49A〜Bのベクターマップ中に存在するそれぞれのエレメントの配列を示す。 図49A〜Bのベクターマップ中に存在するそれぞれのエレメントの配列を示す。 図49A〜Bのベクターマップ中に存在するそれぞれのエレメントの配列を示す。 構成的およびコンディショナルCas9構築物中の重要なエレメントの模式図を示す。 構成的およびコンディショナルCas9構築物の発現の機能的検証を示す。 SurveyorによるCas9ヌクレアーゼ活性の検証を示す。 Cas9ヌクレアーゼ活性の定量を示す。 構築物設計および相同組換え(HR)方針を示す。 2つの異なるゲル曝露時間(上列について3分間および下列について1分間)における構成的(右側)およびコンディショナル(左側)構築物についてのゲノムPCRゲノタイピング結果を示す。 mESC中のCas9活性化を示す。 2つのガイドRNAとともにCas9のニッカーゼバージョンを使用するNHEJを介する遺伝子ノックアウトを媒介するために使用された方針の模式図を示す。 DNA二本鎖切断(DSB)修復が遺伝子編集をいかに促進するかを示す。エラープローン非相同末端結合(NHEJ)経路において、DSBの末端は内因性DNA修復機構によりプロセシングされ、一緒に再結合し、このことは接合部位におけるランダム挿入/欠失(インデル)突然変異をもたらし得る。遺伝子のコード領域内で生じるインデル突然変異は、フレームシフトおよび早期終止コドンをもたらし得、遺伝子ノックアウトをもたらす。あるいは、プラスミドまたは一本鎖オリゴデオキシヌクレオチド(ssODN)の形態の修復テンプレートを供給して高いフィデリティおよび正確な編集を可能とする相同性組換え修復(HDR)経路を活用することができる。 実験の時系列および概要を示す。試薬設計、構築、検証、および細胞系増殖のステップ。それぞれの標的についてのカスタムsgRNA(淡青色バー)、およびゲノタイピングプライマーを、本出願人らのオンライン設計ツール(ウェブサイトgenome−engineering.org/toolsにおいて入手可能)を介してインシリコで設計する。次いで、sgRNA発現ベクターを、Cas9を含有するプラスミド(PX330)中にクローニングし、DNAシーケンシングを介して検証する。次いで、完成プラスミド(pCRISPR)、および相同組換え修復を促進するための任意選択の修復テンプレートを細胞中に形質移入し、ターゲティングされる開裂を媒介する能力についてアッセイする。最後に、形質移入された細胞をクローン増殖させて規定の突然変異を有するアイソジェニック細胞系を得ることができる。 標的選択および試薬調製を示す。(a)化膿性連鎖球菌(S.pyogenes)Cas9について、20bp標的(青色で強調)に、ゲノムDNAのいずれかの鎖上で生じ得る5’−NGGが続かなければならない。本出願人らは、標的選択の支援にあたり本プロトコルに記載のオンラインツールの使用を推奨する(www.genome−engineering.org/tools)。(b)Cas9発現プラスミド(PX165)およびPCR増幅されたU6によりドライブされるsgRNA発現カセットの同時形質移入についての模式図。U6プロモーター含有PCRテンプレートおよび固定フォワードプライマー(U6Fwd)を使用して、sgRNAコードDNAをU6リバースプライマー(U6Rev)上に付加し、伸長DNAオリゴ(IDTからのUltramerオリゴ)として合成することができる。U6Rev中のガイド配列(青色のN)は、5’−NGGフランキング標的配列の逆相補鎖であることに留意されたい。(c)Cas9およびsgRNA足場を含有するプラスミド(PX330)中へのガイド配列オリゴのスカーレスクローニングについての模式図。ガイドオリゴ(青色のN)は、PS330上のBbsI部位のペア中へのライゲーションのためのオーバーハングを含有し、トップおよびボトム鎖配向はゲノム標的のものにマッチする(すなわち、トップオリゴは、ゲノムDNA中の5’−NGGに先行する20bp配列である)。BbsIによるPX330の消化は、アニールされたオリゴの直接挿入によるIIs型制限部位(青色の枠)の置き換えを可能とする。追加のGをガイド配列の最初の塩基前に配置したことに十分留意されたい。本出願人らは、ガイド配列前の追加のGがターゲティング効率に悪影響を与えないことを見出した。最適な20ntガイド配列がグアニンから開始しない場合、追加のグアニンは、sgRNAが転写物の最初の塩基中のグアニンを優先するU6プロモーターにより効率的に転写されることを確保する。 多重NHEJについての予測結果を示す。(a)インデルの割合を決定するために使用されたSURVEYORアッセイの模式図。第1に、Cas9にターゲティングされた細胞の異種集団からのゲノムDNAを、PCRにより増幅する。次いで、アンプリコンをゆっくりとリアニールさせてヘテロ二本鎖を生成する。リアニールされたヘテロ二本鎖をSURVEYORヌクレアーゼにより開裂させる一方、ホモ二本鎖をインタクトのままとする。Cas9媒介開裂効率(%インデル)を、ゲルバンドの統合強度により決定された開裂DNAの率に基づき算出する。(b)2つのsgRNA(橙色および青色バー)を、ヒトGRIN2BおよびDYRK1A遺伝子座をターゲティングするように設計する。SURVEYORゲルは、形質移入された細胞中の両方の遺伝子座における改変を示す。着色矢印は、それぞれの遺伝子座についての予測断片サイズを示した。(c)sgRNAのペア(淡青色および緑色バー)を、ヒトEMX1遺伝子座中のエキソン(暗青色)を切り出すように設計する。標的配列およびPAM(赤色)をそれぞれの色で示し、開裂部位を赤色三角により示す。予測接合部を下方に示す。sgRNA3、4またはその両方により形質移入された細胞集団から単離された個々のクローンを、PCR(OUT Fwd、OUT Rev)によりアッセイし、約270bpの欠失を反映する。改変なし(12/23)、単アレル(10/23)、および両アレル(1/23)改変を有する代表的なクローンを示す。IN FwdおよびIN Revプライマーを使用して逆位イベントをスクリーニングする(図6d)。(d)EMX1エキソンを欠失するクローン系統の定量。sgRNAの2つのペア(3.1、3.2左側フランキングsgRNA;4.1、4.2、右側フランキングsgRNA)を使用して1つのEMX1エキソン周囲の可変サイズの欠失を媒介する。形質移入された細胞をクローン単離し、欠失および逆位イベントについてのゲノタイピング分析のために増殖させた。105個のクローンのうち、それぞれヘテロ接合およびホモ接合欠失を担持する51個(49%)および11個(10%)がスクリーニングされる。接合は可変であり得るため、推定欠失サイズを挙げる。 HEK293FTおよびHUES9細胞中のCas9の野生型およびニッカーゼ突然変異体の両方を用いるHRを媒介するためのssODNおよびターゲティングベクターの適用を示し、効率は1.0〜27%の範囲である。 哺乳動物細胞中の迅速で効率的なCRISPRターゲティングのためのPCRベースの方法の模式図を示す。ヒトRNAポリメラーゼIIIプロモーターU6を含有するプラスミドを、U6特異的フォワードプライマーおよびU6プロモーターの一部の逆相補鎖を担持するリバースプライマー、ガイド配列を有するsgRNA(+85)足場、および転写終結のための7つのTヌクレオチドを使用してPCR増幅する。得られたPCR産物を精製し、CBhプロモーターによりドライブされるCas9を担持するプラスミドとともに同時送達する。 それぞれのgRNAおよびそれぞれの対照についてのTransgenomicsからのSURVEYOR Mutation Detection Kit結果を示す。陽性SURVEYOR結果は、ゲノムPCRに対応する1つの大きいバンドおよび突然変異部位における二本鎖切断を作製するSURVEYORヌクレアーゼの産物である2つのより小さいバンドである。それぞれのgRNAをマウス細胞系Neuro−N2a中で、hSpCas9とのリポソーム一過的同時形質移入により検証した。形質移入から72時間後、EpicentreからのQuickExtract DNAを使用してゲノムDNAを精製した。PCRを実施して目的の遺伝子座を増幅した。 38匹の生存仔(レーン1〜38)、1匹の死亡仔(レーン39)および比較用の1匹の野生型仔(レーン40)についてのSurveyor結果を示す。仔1〜19にgRNA Chd8.2をインジェクトし、仔20〜38にgRNA Chd8.3をインジェクトした。38匹の生存仔のうち、13匹は突然変異について陽性であった。1匹の死亡仔も突然変異を有した。野生型試料において突然変異は検出されなかった。ゲノムPCRシーケンシングは、SURVEYORアッセイの知見と一致した。 異なるCas9NLS構築物の設計を示す。全てのCas9は、SpCas9のヒトコドン最適化バージョンであった。NLS配列をcas9遺伝子にN末端またはC末端のいずれかにおいて結合させる。異なるNLS設計を有する全てのCas9バリアントを、それがEF1aプロモーターによりドライブされるように含有する骨格ベクター中にクローニングした。同一ベクター上に、U6プロモーターによりドライブされるヒトEMX1遺伝子座をターゲティングするキメラRNAが存在し、2成分系を一緒に形成する。 異なるNLS設計を担持するCas9バリアントにより誘導されたゲノム開裂の効率を示す。割合は、それぞれの構築物により開裂されたヒトEMX1ゲノムDNAの一部を示す。全ての実験は、3つの生物学的複製物からのものであり、n=3であり、誤差は標準誤差(S.E.M.)を示す。 転写活性化活性を有するCRISPR−TF(転写因子)設計を示す。キメラRNAをU6プロモーターにより発現させる一方、3つのNLSおよびVP64機能ドメインに作動可能に結合しているCas9タンパク質のヒトコドン最適化二重突然変異体バージョン(hSpCas9m)をEF1aプロモーターにより発現させる。二重突然変異D10AおよびH840Aにより、cas9タンパク質がいかなる開裂も導入し得なくなるが、キメラRNAによりガイドされた場合に標的DNAに結合するその能力は維持された。 CRISPR−TF系(キメラRNAおよびCas9−NLS−VP64融合タンパク質)によるヒトSOX2遺伝子の転写活性化を示す。293FT細胞を、2つの成分を担持するプラスミドにより形質移入した:(1)ヒトSOX2ゲノム遺伝子座内またはその周囲の20bp配列をターゲティングするU6によりドライブされる異なるキメラRNA、および(2)EF1aによりドライブされるhSpCas9m(二重突然変異体)−NLS−VP64融合タンパク質。形質移入から96時間後、293FT細胞を回収し、qRT−PCRアッセイを使用してmRNA発現の誘導により活性化のレベルを計測する。全ての発現レベルを、キメラRNAを有さないCRISPR−TF骨格プラスミドにより形質移入された細胞からの結果を表す対照群(灰色バー)に対して正規化する。SOX2mRNAの検出に使用されたqRT−PCRプローブは、Taqman Human Gene Expression Assay(Life Technologies)である。全ての実験は、3つの生物学的複製物からのデータを表し、n=3であり、エラーバーは標準誤差(s.e.m.)を示す。 SpCas9のためのNLSアーキテクチャー最適化を示す。 NGGNN配列についてのQQプロットを示す。 フィットされた正規分布(黒色線)および.99分位点(点線)とともにデータ密度のヒストグラムを示す。 dgRNA::cas9**によるbgaA発現のRNAによりガイドされた抑制を示す。a.Cas9タンパク質は、tracrRNAおよび前駆体CRISPR RNAに結合し、それがRNアーゼIIIによりプロセシングされてcrRNAを形成する。crRNAは、bgaAプロモーターへのCas9の結合を指向し、転写を抑制する。b.Cas9**をbgaAプロモーターに指向するために使用された標的を表す。推定−35、−10およびbgaAスタートコドンを太字で示す。c.ターゲティングの不存在下および4つの異なる標的についてMillerアッセイにより計測されたベータガラクトシダーゼ活性。 Cas9**媒介抑制の特性決定を示す。a.gfpmut2遺伝子およびそのプロモーターを、−35および−10シグナルも含め、本試験において使用された異なる標的部位の位置と一緒に表す。b.コード鎖のターゲティング時の相対蛍光。c.非コード鎖のターゲティング時の相対蛍光。d.T5、T10、B10または標的を有さない対照株から抽出されたRNAに対するプローブB477およびB478を用いるノザンブロット。e.B1、T5およびB10のcrRNAの5’末端における増加数の突然変異の効果。
本明細書における図面は、説明目的のためのものにすぎず、必ずしも一定の縮尺で描画されるものではない。
用語「ポリヌクレオチド」、「ヌクレオチド」、「ヌクレオチド配列」、「核酸」および「オリゴヌクレオチド」は、互換的に使用される。これらは、任意の長さのヌクレオチド、デオキシリボヌクレオチドもしくはリボヌクレオチドのいずれか、またはそれらのアナログのポリマー形態を指す。ポリヌクレオチドは、任意の三次元構造を有し得、既知または未知の任意の機能を遂行し得る。以下のものは、ポリヌクレオチドの非限定的な例である:遺伝子または遺伝子断片のコードまたは非コード領域、連鎖分析から定義される遺伝子座(遺伝子座)、エキソン、イントロン、メッセンジャーRNA(mRNA)、トランスファーRNA、リボソームRNA、短鎖干渉RNA(siRNA)、短鎖ヘアピンRNA(shRNA)、マイクロRNA(miRNA)、リボザイム、cDNA、組換えポリヌクレオチド、分枝鎖ポリヌクレオチド、プラスミド、ベクター、任意配列の単離DNA、任意配列の単離RNA、核酸プローブ、およびプライマー。ポリヌクレオチドは、1つ以上の改変ヌクレオチド、例えば、メチル化ヌクレオチドまたはヌクレオチドアナログを含み得る。ヌクレオチド構造の改変は、存在する場合、ポリマーの集合前または後に与えることができる。ヌクレオチドの配列は、非ヌクレオチド成分により中断することができる。ポリヌクレオチドは、重合後に例えば標識成分とのコンジュゲーションによりさらに改変することができる。
本発明の態様において、用語「キメラRNA」、「キメラガイドRNA」、「ガイドRNA」、「単一ガイドRNA」および「合成ガイドRNA」は、互換的に使用され、ガイド配列、tracr配列およびtracrメイト配列を含むポリヌクレオチド配列を指す。用語「ガイド配列」は、標的部位を規定するガイドRNA内の約20bp配列を指し、用語「ガイド」または「スペーサー」と互換的に使用することができる。用語「tracrメイト配列」も、用語「ダイレクトリピート」と互換的に使用することができる。
本明細書において使用される用語「野生型」は、当業者により理解される当技術分野の用語であり、突然変異体またはバリアント形態から区別される天然状態で生じるままの生物、株、遺伝子または特徴の典型的な形態を意味する。
本明細書において使用される用語「バリアント」は、天然状態で生じるものから逸脱するパターンを有する品質の提示を意味すると解釈すべきである。
用語「天然に存在しない」または「エンジニアリングされた」は、互換的に使用され、人工の関与を示す。この用語は、核酸分子またはポリペプチドを指す場合、核酸分子またはポリペプチドが、それらが天然状態で天然に会合し、または天然状態で見出される少なくとも1つの他の成分を少なくとも実質的に含まないことを意味する。
「相補性」は、古典的ワトソン−クリック塩基対形成または他の非古典的タイプのいずれかによる別の核酸配列との水素結合を形成する核酸の能力を指す。相補性パーセントは、第2の核酸配列との水素結合(例えば、ワトソン−クリック塩基対形成)を形成し得る核酸分子中の残基の割合を示す(例えば、10のうち5、6、7、8、9、10は、50%、60%、70%、80%、90%、および100%の相補性である)。「完全に相補的」は、核酸配列の全ての連続残基が第2の核酸配列中の同一数の連続残基と水素結合することを意味する。本明細書において使用される「実質的に相補的」は、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、30、35、40、45、50、またはそれよりも多いヌクレオチドの領域に対して少なくとも60%、65%、70%、75%、80%、85%、90%、95%、97%、98%、99%、もしくは100%である相補性の程度を指し、またはストリンジェントな条件下でハイブリダイズする2つの核酸を指す。
本明細書において使用されるハイブリダイゼーションのための「ストリンジェントな条件」は、標的配列に対する相補性を有する核酸が、標的配列と優位にハイブリダイズし、非標的配列と実質的にハイブリダイズしない条件を指す。ストリンジェントな条件は、一般に、配列依存的であり、多数の因子に応じて変動する。一般に、配列が長ければ、配列がその標的配列と特異的にハイブリダイズする温度が高い。ストリンジェントな条件の非限定的な例は、Tijssen(1993),Laboratory Techniques In Biochemistry And Molecular Biology−Hybridization With Nucleic Acid Probes Part I,Second Chapter“Overview of principles of hybridization and the strategy of nucleic acid probe assay”,Elsevier,N.Y.に詳述されている。
「ハイブリダイゼーション」は、1つ以上のポリヌクレオチドが反応してヌクレオチド残基の塩基間の水素結合を介して安定化される複合体を形成する反応を指す。水素結合は、ワトソン・クリック塩基対形成、フーグスティーン結合により、または任意の他の配列特異的様式で生じ得る。複合体は、二本鎖構造を形成する2つの鎖、多重鎖複合体を形成する3つ以上の鎖、単一の自己ハイブリダイズする鎖、またはそれらの任意の組合せを含み得る。ハイブリダイゼーション反応は、より広範なプロセス、例えば、PCRの開始、または酵素によるポリヌクレオチドの開裂におけるステップを構成し得る。所与の配列とハイブリダイズし得る配列は、所与の配列の「相補鎖」と称される。
本明細書において使用される「発現」は、ポリヌクレオチドがDNAテンプレートから(例えば、mRNAまたは他のRNA転写物に)転写されるプロセスおよび/または転写されたmRNAが続いてペプチド、ポリペプチド、またはタンパク質に翻訳されるプロセスを指す。転写物およびコードされるポリペプチドは、集合的に「遺伝子産物」と称することができる。ポリヌクレオチドがゲノムDNAに由来する場合、発現は、真核細胞中のmRNAのスプライシングを含み得る。
用語「ポリペプチド」、「ペプチド」および「タンパク質」は、本明細書において、任意の長さのアミノ酸のポリマーを指すために互換的に使用される。ポリマーは、直鎖または分枝鎖であり得、それは、改変アミノ酸を含み得、それは、非アミノ酸により中断されていてよい。この用語は、改変、例えば、ジスルフィド結合形成、グリコシル化、脂質化、アセチル化、リン酸化、または任意の他の操作、例えば、標識成分とのコンジュゲーションを受けたアミノ酸ポリマーも包含する。本明細書において使用される用語「アミノ酸」は、グリシンおよびDまたはL光学異性体の両方を含む天然および/または非天然または合成アミノ酸、ならびにアミノ酸アナログおよびペプチド模倣体を含む。
用語「対象」、「個体」、および「患者」は、本明細書において脊椎動物、好ましくは、哺乳動物、より好ましくは、ヒトを指すために互換的に使用される。哺乳動物としては、限定されるものではないが、ネズミ、サル、ヒト、家畜、競技動物、および愛玩動物が挙げられる。インビボで得られ、またはインビトロで培養される生物学的実体の組織、細胞およびそれらの子孫も包含される。
用語「治療剤(therapeutic agent)」、「治療可能薬剤」または「治療剤(treatment agent)」は、互換的に使用され、対象への投与時にいくつかの利益効果を付与する分子または化合物を指す。利益効果としては、診断測定の使用可能性;疾患、症状、障害、または病的状態の改善;疾患、症状、障害または病態の軽減またはその発症の予防;および一般には疾患、症状、障害または病的状態の中和が挙げられる。
本明細書において使用される「治療」もしくは「治療する」または「緩和する」または「改善する」は、互換的に使用される。これらの用語は、利益または所望の結果、例として、限定されるものではないが、治療利益および/または予防利益を得るためのアプローチを指す。治療利益は、治療中の1つ以上の疾患、病態、または症状の任意の治療関連改善またはそれらに対する効果を意味する。予防利益については、疾患も、病態も、症状もこれまで顕在化し得なかった場合であっても、組成物を特定の疾患、病態、もしくは症状の発症リスクのある対象に、または疾患の生理学的症状の1つ以上を報告する対象に投与することができる。
用語「有効量」または「治療有効量」は、利益または所望の結果を生じさせるために十分な薬剤の量を指す。治療有効量は、治療される対象および病状、対象の体重および年齢、病状の重症度、投与様式などの1つ以上に応じて変動し得、それらは当業者が容易に決定することができる。この用語は、本明細書に記載のイメージング法のいずれか1つによる検出のための画像を提供する用量にも当てはまる。規定の用量は、選択される特定の薬剤、遵守すべき投与レジメン、他の化合物との組合せで投与するか否か、投与のタイミング、イメージングすべき組織、およびそれが担持される物理的送達系の1つ以上に応じて変動し得る。
本発明の実施は、特に記載のない限り、当業者の技能の範囲内である免疫学、生化学、化学、分子生物学、微生物学、細胞生物学、ゲノミクスおよび組換えDNAの慣用の技術を用いる。Sambrook,Fritsch and Maniatis,MOLECULAR CLONING:A LABORATORY MANUAL,2nd edition(1989);CURRENT PROTOCOLS IN MOLECULAR BIOLOGY(F.M.Ausubel,et al.eds.,(1987));シリーズMETHODS IN ENZYMOLOGY(Academic Press,Inc.):PCR 2:A PRACTICAL APPROACH(M.J.MacPherson,B.D.Hames and G.R.Taylor eds.(1995))、Harlow and Lane,eds.(1988)ANTIBODIES,A LABORATORY MANUAL、およびANIMAL CELL CULTURE(R.I.Freshney,ed.(1987))参照。
本発明のいくつかの態様は、1つ以上のベクターを含むベクター系、またはベクター自体に関する。ベクターは、原核または真核細胞中のCRISPR転写物(例えば、核酸転写物、タンパク質、または酵素)の発現のために設計することができる。例えば、CRISPR転写物は、細菌細胞、例えば、大腸菌(Escherichia coli)、昆虫細胞(バキュロウイルス発現ベクターを使用)、酵母細胞、または哺乳動物細胞中で発現させることができる。好適な宿主細胞は、Goeddel,GENE EXPRESSION TECHNOLOGY:METHODS IN ENZYMOLOGY 185,Academic Press,San Diego,Calif.(1990)にさらに考察されている。あるいは、組換え発現ベクターをインビトロで、例えばT7プロモーター調節配列およびT7ポリメラーゼを使用して転写および翻訳させることができる。
ベクターは、原核生物中に導入し、その中で増殖させることができる。一部の実施形態において、原核生物を使用して真核細胞中に導入すべきベクターのコピーを増幅し、または真核細胞中に導入すべきベクターの産生における中間ベクターとして使用される(例えば、ウイルスベクターパッケージング系の一部としてプラスミドを増幅)。一部の実施形態において、原核生物を使用してベクターのコピーを増幅し、1つ以上の核酸を発現させ、例えば、宿主細胞または宿主生物への送達のための1つ以上のタンパク質の資源を提供する。原核生物中のタンパク質の発現は、大腸菌(Escherichia coli)中で、融合または非融合タンパク質のいずれかの発現を指向する構成的または誘導的プロモーターを含有するベクターを用いて実施されることが最も多い。融合ベクターは、多数のアミノ酸をそれにコードされるタンパク質に、例えば、組換えタンパク質のアミノ末端に付加する。このような融合ベクターは、1つ以上の目的、例えば、(i)組換えタンパク質の発現の増加;(ii)組換えタンパク質の溶解度の増加;および(iii)親和性精製におけるリガンドとして作用することによる組換えタンパク質の精製の支援を果たし得る。融合発現ベクターにおいて、タンパク質分解開裂部位を融合部分および組換えタンパク質の接合部に導入して融合タンパク質の精製後に融合部分からの組換えタンパク質の分離を可能とすることが多い。このような酵素、およびそのコグネート認識配列としては、Xa因子、トロンビンおよびエンテロキナーゼが挙げられる。例示的融合発現ベクターとしては、pGEX(Pharmacia Biotech Inc;Smith and Johnson,1988.Gene 67:31−40)、pMAL(New England Biolabs,Beverly,Mass.)およびpRIT5(Pharmacia,Piscataway,N.J.)が挙げられ、それぞれ、グルタチオンS−トランスフェラーゼ(GST)、マルトースE結合タンパク質、またはプロテインAを標的組換えタンパク質に融合する。
好適な誘導的非融合大腸菌(E.coli)発現ベクターの例としては、pTrc(Amrann et al.,(1988)Gene 69:301−315)およびpET 11d(Studier et al.,GENE EXPRESSION TECHNOLOGY:METHODS IN ENZYMOLOGY 185,Academic Press,San Diego,Calif.(1990)60−89)が挙げられる。
一部の実施形態において、ベクターは、酵母発現ベクターである。酵母の出芽酵母(Saccharomyces cerivisae)中の発現のためのベクターの例としては、pYepSec1(Baldari,et al.,1987.EMBO J.6:229−234)、pMFa(Kuijan and Herskowitz,1982.Cell 30:933−943)、pJRY88(Schultz et al.,1987.Gene 54:113−123)、pYES2(Invitrogen Corporation,San Diego,Calif.)、およびpicZ(InVitrogen Corp,San Diego,Calif.)が挙げられる。
一部の実施形態において、ベクターは、バキュロウイルス発現ベクターを使用して昆虫細胞中のタンパク質発現をドライブする。培養昆虫細胞(例えば、SF9細胞)中のタンパク質の発現に利用可能なバキュロウイルスベクターとしては、pAcシリーズ(Smith,et al.,1983.Mol.Cell.Biol.3:2156−2165)およびpVLシリーズ(Lucklow and Summers,1989.Virology 170:31−39)が挙げられる。
一部の実施形態において、ベクターは、哺乳動物発現ベクターを使用して哺乳動物細胞中の1つ以上の配列の発現をドライブし得る。哺乳動物発現ベクターの例としては、pCDM8(Seed,1987.Nature 329:840)およびpMT2PC(Kaufman,et al.,1987.EMBO J.6:187−195)が挙げられる。哺乳動物細胞中で使用される場合、発現ベクター制御機能は、典型的には、1つ以上の調節エレメントにより提供される。例えば、一般に使用されるプロモーターは、ポリオーマ、アデノウイルス2型、サイトメガロウイルス、シミアンウイルス40、ならびに本明細書に開示の他のものおよび当技術分野において公知のものに由来する。原核および真核細胞の両方のために他の好適な発現系については、例えば、Chapters 16 and 17 of Sambrook,et al.,MOLECULAR CLONING:A LABORATORY MANUAL.2nd ed.,Cold Spring Harbor Laboratory,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.,1989参照。
一部の実施形態において、組換え哺乳動物発現ベクターは、特定の細胞タイプ中の核酸の発現を優先的に指向し得る(例えば、組織特異的調節エレメントを使用して核酸を発現させる)。組織特異的調節エレメントは、当技術分野において公知である。好適な組織特異的プロモーターの非限定的な例としては、アルブミンプロモーター(肝臓特異的;Pinkert,et al.,1987.Genes Dev.1:268−277)、リンパ系特異的プロモーター(Calame and Eaton,1988.Adv.Immunol.43:235−275)、特にT細胞受容体のプロモーター(Winoto and Baltimore,1989.EMBO J.8:729−733)および免疫グロブリン(Baneiji,et al.,1983.Cell 33:729−740;Queen and Baltimore,1983.Cell 33:741−748)、神経細胞特異的プロモーター(例えば、ニューロフィラメントプロモーター;Byrne and Ruddle,1989.Proc.Natl.Acad.Sci.USA 86:5473−5477)、膵臓特異的プロモーター(Edlund,et al.,1985.Science 230:912−916)、および乳腺特異的プロモーター(例えば、乳清プロモーター;米国特許第4,873,316号明細書および欧州特許出願公開第264,166号明細書)が挙げられる。発生制御プロモーター、例えば、ネズミhoxプロモーター(Kessel and Gruss,1990.Science 249:374−379)およびα−フェトタンパク質プロモーター(Campes and Tilghman,1989.Genes Dev.3:537−546)も包含される。
一部の実施形態において、調節エレメントは、CRISPR系の1つ以上のエレメントの発現をドライブするようにCRISPR系の1つ以上のエレメントに作動可能に結合している。一般に、CRISPR(クラスター化等間隔短鎖回分リピート)は、SPIDR(スペーサー散在型ダイレクトリピート(SPacer Interspersed Direct Repeat))としても公知であり、通常、特定の細菌種に特異的であるDNA遺伝子座のファミリーを構成する。CRISPR遺伝子座は、大腸菌(E.coli)中で認識された区別されるクラスの散在型短鎖配列リピート(SSR)(Ishino et al.,J.Bacteriol.,169:5429−5433[1987];およびNakata et al.,J.Bacteriol.,171:3553−3556[1989])および関連遺伝子を含む。類似の散在型SSRが、ハロフェラックス・メディテラネイ(Haloferax mediterranei)、化膿性連鎖球菌(Streptococcus pyogenes)、アナベナ属(Anabaena)、および結核菌(Mycobacterium tuberculosis)中で同定されている(Groenen et al.,Mol.Microbiol.,10:1057−1065[1993];Hoe et al.,Emerg.Infect.Dis.,5:254−263[1999];Masepohl et al.,Biochim.Biophys.Acta 1307:26−30[1996];およびMojica et al.,Mol.Microbiol.,17:85−93[1995]参照)。CRISPR遺伝子座は、典型的には他のSSRとリピートの構造が異なり、それは短鎖等間隔リピート(SRSR)と称されている(Janssen et al.,OMICS J.Integ.Biol.,6:23−33[2002];およびMojica et al.,Mol.Microbiol.,36:244−246[2000])。一般に、リピートは、実質的に一定の長さを有するユニーク介入配列により等間隔とされているクラスターで生じる短いエレメントである(Mojica et al.,[2000]、前掲)。リピート配列は株間で高度に保存されているが、散在型リピートの数およびスペーサー領域の配列は、典型的には、株ごとに異なる(van Embden et al.,J.Bacteriol.,182:2393−2401[2000])。CRISPR遺伝子座は、40を超える原核生物中で同定されており(例えば、Jansen et al.,Mol.Microbiol.,43:1565−1575[2002];およびMojica et al.,[2005]参照)、例として、限定されるものではないが、アエロパイラム属(Aeropyrum)、パイロバキュラム属(Pyrobaculum)、スルフォロバス属(Sulfolobus)、アーケオグロバス属(Archaeoglobus)、ハロカーキュラ属(Halocarcula)、メタノバクテリウム属(Methanobacterium)、メタノコッカス属(Methanococcus)、メタノサルシナ属(Methanosarcina)、メタノパイラス属(Methanopyrus)、パイロコッカス属(Pyrococcus)、ピクロフィラス属(Picrophilus)、サーモプラズマ属(Thermoplasma)、コリネバクテリウム属(Corynebacterium)、マイコバクテリウム属(Mycobacterium)、ストレプトマイセス属(Streptomyces)、アキフェックス属(Aquifex)、ポーフィロモナス属(Porphyromonas)、クロロビウム属(Chlorobium)、サーマス属(Thermus)、バシラス属(Bacillus)、リステリア属(Listeria)、スタフィロコッカス属(Staphylococcus)、クロストリジウム属(Clostridium)、サーモアナエロバクター属(Thermoanaerobacter)、マイコプラズマ属(Mycoplasma)、フソバクテリウム属(Fusobacterium)、アザーカス属(Azarcus)、クロモバクテリウム属(Chromobacterium)、ネイセリア属(Neisseria)、ニトロソモナス属(Nitrosomonas)、デスルフォビブリオ属(Desulfovibrio)、ジオバクター属(Geobacter)、ミクソコッカス属(Myxococcus)、カンピロバクター属(Campylobacter)、ウォリネラ属(Wolinella)、アシネトバクター属(Acinetobacter)、エルウィニア属(Erwinia)、エシェリキア属(Escherichia)、レジオネラ属(Legionella)、メチロコッカス属(Methylococcus)、パスツレラ属(Pasteurella)、フォトバクテリウム属(Photobacterium)、サルモネラ属(Salmonella)、キサントモナス属(Xanthomonas)、エルシニア属(Yersinia)、トレポネーマ属(Treponema)、およびサーモトガ属(Thermotoga)である。
一般に、「CRISPR系」は、集合的に、CRISPR関連(「Cas」)遺伝子の発現またはその活性の指向に関与する転写物および他のエレメント、例として、Cas遺伝子をコードする配列、tracr(トランス活性化CRISPR)配列(例えば、tracrRNAまたは活性部分tracrRNA)、tracrメイト配列(内因性CRISPR系に関して「ダイレクトリピート」およびtracrRNAによりプロセシングされる部分ダイレクトリピートを包含)、ガイド配列(内因性CRISPR系に関して「スペーサー」とも称される)、またはCRISPR遺伝子座からの他の配列および転写物を指す。一部の実施形態において、CRISPR系の1つ以上のエレメントは、I型、II型、またはIII型CRISPR系に由来する。一部の実施形態において、CRISPR系の1つ以上のエレメントは、内因性CRISPR系を含む特定の生物、例えば、化膿性連鎖球菌(Streptococcus pyogenes)に由来する。一般に、CRISPR系は、標的配列(内因性CRISPR系に関してプロトスペーサーとも称される)におけるCRISPR複合体の形成を促進するエレメントを特徴とする。CRISPR複合体の形成に関して、「標的配列」は、ガイド配列が相補性を有するように設計される配列を指し、標的配列とガイド配列との間のハイブリダイゼーションがCRISPR複合体の形成を促進する。完全相補性は必ずしも要求されず、但し、ハイブリダイゼーションを引き起こし、CRISPR複合体の形成を促進するために十分な相補性が存在することを条件とする。標的配列は、任意のポリヌクレオチド、例えば、DNAまたはRNAポリヌクレオチドを含み得る。一部の実施形態において、標的配列は、細胞の核または細胞質中に局在している。一部の実施形態において、標的配列は、真核細胞のオルガネラ、例えば、ミトコンドリアまたはクロロプラスト内に存在し得る。標的配列を含むターゲティングされる遺伝子座中への組換えに使用することができる配列またはテンプレートは、「編集テンプレート」または「編集ポリヌクレオチド」または「編集配列」と称される。本発明の態様において、外因性テンプレートポリヌクレオチドを編集テンプレートと称することができる。本発明の一態様において、組換えは、相同組換えである。
典型的には、内因性CRISPR系に関して、CRISPR複合体の形成(標的配列にハイブリダイズされ、1つ以上のCasタンパク質と複合体形成しているガイド配列を含む)は、標的配列中または付近(例えば、それから1、2、3、4、5、6、7、8、9、10、20、50、またはそれよりも多い塩基対内)の一方または両方の鎖の開裂をもたらす。理論により拘束されるものではないが、tracr配列は、野生型tracr配列の全部または一部(例えば、野生型tracr配列の約または約20、26、32、45、48、54、63、67、85、またはそれよりも多い数を超えるヌクレオチド)を含み得、またはそれからなっていてよく、例えば、ガイド配列に作動可能に結合しているtracrメイト配列の全部または一部とのtracr配列の少なくとも一部に沿うハイブリダイゼーションによりCRISPR複合体の一部も形成し得る。一部の実施形態において、tracr配列は、ハイブリダイズし、CRISPR複合体の形成に関与するためにtracrメイト配列に対する十分な相補性を有する。標的配列と同様に、完全相補性は必要とされず、但し、機能的であるために十分な相補性が存在することを条件とすることが考えられる。一部の実施形態において、tracr配列は、最適にアラインされた場合、tracrメイト配列の長さに沿って少なくとも50%、60%、70%、80%、90%、95%または99%の配列相補性を有する。一部の実施形態において、CRISPR系の1つ以上のエレメントの発現をドライブする1つ以上のベクターを宿主細胞中に導入し、その結果、CRISPR系のエレメントの発現が1つ以上の標的部位におけるCRISPR複合体の形成を指向する。例えば、Cas酵素、tracrメイト配列に結合しているガイド配列、およびtracr配列は、それぞれ別個のベクター上の別個の調節エレメントに作動可能に結合させることができる。あるいは、同一または異なる調節エレメントから発現されるエレメントの2つ以上を単一ベクター中で合わせることができ、CRISPR系の任意の成分を提供する1つ以上の追加のベクターは第1のベクター中に含まれない。単一ベクター中で合わせるCRISPR系エレメントは、任意の好適な配向で配置することができ、例えば、あるエレメントを第2のエレメントに対して5’側(の上流)にまたは3’側(の下流)に局在化することができる。あるエレメントのコード配列は、第2のエレメントのコード配列の同一または逆鎖上で局在化し、同一または逆向きで配向させることができる。一部の実施形態において、単一のプロモーターは、CRISPR酵素をコードする転写物、ならびに1つ以上のイントロン配列内に埋め込まれているガイド配列、tracrメイト配列(場合により、ガイド配列に作動可能に結合している)、およびtracr配列(例えば、それぞれが異なるイントロン中に、2つ以上が少なくとも1つのイントロン中に、または全部が単一のイントロン中に存在する)の1つ以上の発現をドライブする。一部の実施形態において、CRISPR酵素、ガイド配列、tracrメイト配列、およびtracr配列は、同一のプロモーターに作動可能に結合しており、それから発現される。
一部の実施形態において、ベクターは、1つ以上の挿入部位、例えば、制限エンドヌクレアーゼ認識配列(「クローニング部位」とも称される)を含む。一部の実施形態において、1つ以上の挿入部位(例えば、約または約1、2、3、4、5、6、7、8、9、10、またはそれよりも多い数を超える挿入部位)は、1つ以上のベクターの1つ以上の配列エレメントの上流および/または下流に局在している。一部の実施形態において、ベクターは、tracrメイト配列の上流、および場合によりtracrメイト配列に作動可能に結合している調節エレメントの下流の挿入部位を含み、その結果、挿入部位中へのガイド配列の挿入後および発現時にガイド配列が真核細胞中の標的配列へのCRISPR複合体の配列特異的結合を指向する。一部の実施形態において、ベクターは、2つ以上の挿入部位を含み、それぞれの挿入部位は、それぞれの部位におけるガイド配列の挿入を可能とするために2つのtracrメイト配列間に局在している。このような配置において、2つ以上のガイド配列は、単一ガイド配列の2つ以上のコピー、2つ以上の異なるガイド配列、またはそれらの組合せを含み得る。複数の異なるガイド配列を使用する場合、単一発現構築物を使用して細胞内の複数の異なる対応する標的配列に対するCRISPR活性をターゲティングすることができる。例えば、単一ベクターは、約または約1、2、3、4、5、6、7、8、9、10、15、20、またはそれよりも多い数を超えるガイド配列を含み得る。一部の実施形態において、約または約1、2、3、4、5、6、7、8、9、10、またはそれよりも多い数を超えるそのようなガイド配列含有ベクターを提供し、場合により細胞に送達することができる。
一部の実施形態において、ベクターは、CRISPR酵素、例えば、Casタンパク質をコードする酵素コード配列に作動可能に結合している調節エレメントを含む。Casタンパク質の非限定的な例としては、Cas1、Cas1B、Cas2、Cas3、Cas4、Cas5、Cas6、Cas7、Cas8、Cas9(Csn1およびCsx12としても公知)、Cas10、Csy1、Csy2、Csy3、Cse1、Cse2、Csc1、Csc2、Csa5、Csn2、Csm2、Csm3、Csm4、Csm5、Csm6、Cmr1、Cmr3、Cmr4、Cmr5、Cmr6、Csb1、Csb2、Csb3、Csx17、Csx14、Csx10、Csx16、CsaX、Csx3、Csx1、Csx15、Csf1、Csf2、Csf3、Csf4、それらのホモログ、またはそれらの改変バージョンが挙げられる。これらの酵素は公知であり;例えば、化膿性連鎖球菌(S.pyogenes)Cas9タンパク質のアミノ酸配列は、SwissProtデータベース中にアクセッション番号Q99ZW2のもと見出すことができる。一部の実施形態において、非改変CRISPR酵素は、DNA開裂活性を有し、例えば、Cas9である。一部の実施形態において、CRISPR酵素は、Cas9であり、化膿性連鎖球菌(S.pyogenes)または肺炎連鎖球菌(S.pneumoniae)からのCas9であり得る。一部の実施形態において、CRISPR酵素は、標的配列の局在における、例えば、標的配列内および/または標的配列の相補鎖内の一方または両方の鎖の開裂を指向する。一部の実施形態において、CRISPR酵素は、標的配列の最初または最後のヌクレオチドからの約1、2、3、4、5、6、7、8、9、10、15、20、25、50、100、200、500、またはそれよりも多い塩基対内の一方または両方の鎖の開裂を指向する。一部の実施形態において、ベクターは、対応する野生型酵素に対して突然変異しているCRISPR酵素をコードし、その結果、突然変異CRISPR酵素は、標的配列を含有する標的ポリヌクレオチドの一方または両方の鎖を開裂する能力を欠く。例えば、化膿性連鎖球菌(S.pyogenes)からのCas9のRuvC I触媒ドメイン中のアスパラギン酸からアラニンへの置換(D10A)は、Cas9を両方の鎖を開裂するヌクレアーゼからニッカーゼ(一本鎖を開裂する)に変換する。Cas9をニッカーゼに変える突然変異の他の例としては、限定されるものではないが、H840A、N854A、およびN863Aが挙げられる。一部の実施形態において、Cas9ニッカーゼは、ガイド配列、例えば、DNA標的のセンスおよびアンチセンス鎖をそれぞれターゲティングする2つのガイド配列との組合せで使用することができる。この組合せにより、両方の鎖をニック形成し、それを使用してNHEJを誘導することが可能となる。本出願人らは、突然変異原性NHEJの誘導における2つのニッカーゼ標的(すなわち、同一局在であるがDNAの異なる鎖にターゲティングされるsgRNA)の効力を実証した(データ示さず)。単一ニッカーゼ(単一sgRNAを有するCas9−D10A)は、NHEJを誘導し、インデルを創成し得ないが、本出願人らは、二重ニッカーゼ(同一局在における異なる鎖にターゲティングされるCas9−D10Aおよび2つのsgRNA)がヒト胚性幹細胞(hESC)中でそれを行い得ることを示した。効率は、hESC中でヌクレアーゼ(すなわち、D10突然変異を有さない通常のCas9)の約50%である。
さらなる例として、Cas9の2つ以上の触媒ドメイン(RuvC I、RuvC II、およびRuvC III)を突然変異させて全てのDNA開裂活性を実質的に欠く突然変異Cas9を産生することができる。一部の実施形態において、D10A突然変異を、H840A、N854A、またはN863A突然変異の1つ以上と組み合わせて全てのDNA開裂活性を実質的に欠くCas9酵素を産生する。一部の実施形態において、CRISPR酵素は、突然変異酵素のDNA開裂活性がその非突然変異形態に対して約25%、10%、5%、1%、0.1%、0.01%、またはそれよりも小さい数未満である場合、全てのDNA開裂活性を実質的に欠くとみなす。他の突然変異は有用であり得;Cas9または他のCRISPR酵素は、化膿性連鎖球菌(S.pyogenes)以外の種からのものである場合、対応するアミノ酸の突然変異は、類似効果を達成するように作製することができる。
一部の実施形態において、CRISPR酵素をコードする酵素コード配列は、特定の細胞、例えば、真核細胞中の発現のためにコドン最適化されている。真核細胞は、特定の生物、例えば、哺乳動物、例として、限定されるものではないが、ヒト、マウス、ラット、ウサギ、イヌ、または非ヒト霊長類のものまたはそれに由来し得る。一般に、コドン最適化は、天然配列の少なくとも1つのコドン(例えば、約または約1、2、3、4、5、10、15、20、25、50、またはそれよりも多い数を超えるコドン)を、その宿主細胞の遺伝子中で使用されるより高頻度または最も高頻度のコドンにより置き換える一方、天然アミノ酸配列を維持することにより目的宿主細胞中の発現の向上のために核酸配列を改変するプロセスを指す。種々の種は、特定のアミノ酸のあるコドンについて特定のバイアスを示す。コドンバイアス(生物間のコドン使用頻度の差)は、メッセンジャーRNA(mRNA)の翻訳の効率と相関することが多く、このことは、次いで、とりわけ、翻訳されるコドンの特性および特定のトランスファーRNA(tRNA)分子の利用可能性に依存的であると考えられる。細胞中で選択されるtRNAの優位性は、一般に、ペプチド合成において最も高頻度で使用されるコドンの反映である。したがって、遺伝子は、コドン最適化に基づき所与の生物中の最適な遺伝子発現のために調整することができる。コドン使用頻度表は、例えば、「コドン使用頻度データベース」において容易に入手可能であり、これらの表は、多数の手法で適応させることができる。Nakamura,Y.,et al.“Codon usage tabulated from the international DNA sequence databases:status for the year 2000”Nucl.Acids Res.28:292(2000)参照。特定の宿主細胞中の発現のために特定の配列をコドン最適化するためのコンピュータアルゴリズムも入手可能であり、例えば、Gene Forge(Aptagen;Jacobus,PA)も入手可能である。一部の実施形態において、CRISPR酵素をコードする配列中の1つ以上のコドン(例えば、1、2、3、4、5、10、15、20、25、50、またはそれよりも多い、または全てのコドン)は、特定のアミノ酸について最も高頻度で使用されるコドンに対応する。
一部の実施形態において、ベクターは、1つ以上の核局在化配列(NLS)、例えば、約また約1、2、3、4、5、6、7、8、9、10、またはそれよりも多い数を超えるNLSを含むCRISPR酵素をコードする。一部の実施形態において、CRISPR酵素は、アミノ末端またはその付近における約または約1、2、3、4、5、6、7、8、9、10、またはそれよりも多い数を超えるNLS、カルボキシ末端またはその付近における約または約1、2、3、4、5、6、7、8、9、10、またはそれよりも多い数を超えるNLS、またはそれらの組合せ(例えば、アミノ末端における1つ以上のNLSおよびカルボキシ末端における1つ以上のNLS)を含む。2つ以上のNLSが存在する場合、それぞれは、単一のNLSが2つ以上のコピーで存在し得るように他のものから独立して、および/または1つ以上のコピーで存在する1つ以上の他のNLSとの組合せで選択することができる。本発明の好ましい実施形態において、CRISPR酵素は、多くとも6つのNLSを含む。一部の実施形態において、NLSは、NLSの最近傍アミノ酸が、NまたはC末端からポリペプチド鎖に沿って約1、2、3、4、5、10、15、20、25、30、40、50、またはそれよりも多いアミノ酸内である場合、NまたはC末端付近に存在するとみなす。典型的には、NLSは、タンパク質表面上で露出される正荷電リジンまたはアルギニンの1つ以上の短い配列からなるが、他のタイプのNLSが公知である。NLSの非限定的な例としては、アミノ酸配列PKKKRKVを有するSV40ウイルスラージT抗原のNLS;ヌクレオプラスミンからのNLS(例えば、配列KRPAATKKAGQAKKKKを有するヌクレオプラスミン二分(bipartite)NLS);アミノ酸配列PAAKRVKLDまたはRQRRNELKRSPを有するc−mycNLS;配列NQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGYを有するhRNPA1 M9 NLS;インポーチンアルファからのIBBドメインの配列RMRIZFKNKGKDTAELRRRRVEVSVELRKAKKDEQILKRRNV;筋腫Tタンパク質の配列VSRKRPRPおよびPPKKARED;ヒトp53の配列POPKKKPL;マウスc−abl IVの配列SALIKKKKKMAP;インフルエンザウイルスNS1の配列DRLRRおよびPKQKKRK;肝炎ウイルスデルタ抗原の配列RKLKKKIKKL;マウスMx1タンパク質の配列REKKKFLKRR;ヒトポリ(ADP−リボース)ポリメラーゼの配列KRKGDEVDGVDEVAKKKSKK;ならびにステロイドホルモン受容体(ヒト)グルココルチコイドの配列RKCLQAGMNLEARKTKKに由来するNLS配列が挙げられる。
一般に、1つ以上のNLSは、真核細胞の核中の検出可能な量のCRISPR酵素の蓄積をドライブするために十分な強度である。一般に、核局在化活性の強度は、CRISPR酵素中のNLSの数、使用される特定のNLS、またはそれらの因子の組合せに由来し得る。核中の蓄積の検出は、任意の好適な技術により実施することができる。例えば、検出可能なマーカーをCRISPR酵素に融合させることができ、その結果、細胞内の局在を、例えば、核の局在を検出する手段(例えば、核に特異的な染色、例えば、DAPI)との組合せで可視化することができる。検出可能なマーカーの例としては、蛍光タンパク質(例えば、緑色蛍光タンパク質、またはGFP;RFP;CFP)、およびエピトープタグ(HAタグ、flagタグ、SNAPタグ)が挙げられる。細胞核を細胞から単離することもでき、次いでその含有物を、タンパク質を検出する任意の好適なプロセス、例えば、免疫組織学的分析、ウエスタンブロット、または酵素活性アッセイにより分析することができる。核中の蓄積は、例えば、CRISPR複合体形成の効果についてのアッセイ(例えば、標的配列におけるDNA開裂もしくは突然変異についてのアッセイ、またはCRISPR複合体形成および/もしくはCRISPR酵素活性により影響される遺伝子発現活性の変化についてのアッセイ)により、CRISPR酵素にも複合体にも曝露されず、または1つ以上のNLSを欠くCRISPR酵素に曝露される対照と比較して間接的に測定することもできる。
一般に、ガイド配列は、標的配列とハイブリダイズし、標的配列へのCRISPR複合体の配列特異的結合を指向するために標的ポリヌクレオチド配列との十分な相補性を有する任意のポリヌクレオチド配列である。一部の実施形態において、ガイド配列とその対応する標的配列との間の相補性の程度は、好適なアラインメントアルゴリズムを使用して最適にアラインされた場合、約または約50%、60%、75%、80%、85%、90%、95%、97.5%、99%、またはそれよりも大きい数を超える。最適なアラインメントは、配列をアラインするための任意の好適なアルゴリズムを使用して決定することができ、その非限定的な例としては、Smith−Watermanアルゴリズム、Needleman−Wunschアルゴリズム、Burrows−Wheeler Transformをベースとするアルゴリズム(例えば、Burrows Wheeler Aligner)、ClustalW、Clustal X、BLAT、Novoalign(Novocraft Technologies,ELAND(Illumina,San Diego,CA)、SOAP(soap.genomics.org.cnにおいて入手可能)、およびMaq(maq.sourceforge.netにおいて入手可能)が挙げられる。一部の実施形態において、ガイド配列は、約または約5、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、35、40、45、50、75、またはそれよりも大きい数を超えるヌクレオチド長である。一部の実施形態において、ガイド配列は、約75、50、45、40、35、30、25、20、15、12、またはそれよりも小さい数未満のヌクレオチド長である。標的配列へのCRISPR複合体の配列特異的結合を指向するガイド配列の能力は、任意の好適なアッセイにより評価することができる。例えば、CRISPR複合体を形成するために十分なCRISPR系の成分、例として、試験すべきガイド配列は、対応する標的配列を有する宿主細胞に、例えば、CRISPR配列の成分をコードするベクターによる形質移入により提供することができ、次いで標的配列内の優先的開裂を例えば本明細書に記載のSurveyorアッセイにより評価する。同様に、標的ポリヌクレオチド配列の開裂は、試験管中で標的配列、CRISPR複合体の成分、例として、試験すべきガイド配列および試験ガイド配列とは異なる対照ガイド配列を提供し、試験および対照ガイド配列反応間の標的配列における結合または開裂の比率を比較することにより評価することができる。他のアッセイが考えられ、当業者はそれを認識する。
ガイド配列は、任意の標的配列をターゲティングするように選択することができる。一部の実施形態において、標的配列は、細胞のゲノム内の配列である。例示的な標的配列としては、標的ゲノム中でユニークなものが挙げられる。例えば、化膿性連鎖球菌(S.pyogenes)Cas9について、ゲノム中のユニーク標的配列としては、フォームMMMMMMMMNNNNNNNNNNNNXGGのCas9標的部位を挙げることができ、NNNNNNNNNNNNXGG(Nは、A、G、T、またはCであり;Xは、いずれでもよい)は、ゲノム中の単一発生を有する。ゲノム中のユニーク標的配列としては、フォームMMMMMMMMMNNNNNNNNNNNXGGの化膿性連鎖球菌(S.pyogenes)Cas9標的部位を挙げることができ、NNNNNNNNNNNXGG(Nは、A、G、T、またはCであり;Xは、いずれであってもよい)は、ゲノム中の単一発生を有する。S.サーモフィラス(S.thermophilus)CRISPR1Cas9について、ゲノム中のユニーク標的配列としては、フォームMMMMMMMMNNNNNNNNNNNNXXAGAAWのCas9標的部位を挙げることができ、NNNNNNNNNNNNXXAGAAW(Nは、A、G、T、またはCであり;Xは、いずれであってもよく;Wは、AまたはTである)は、ゲノム中の単一発生を有する。ゲノム中のユニーク標的配列としては、フォームMMMMMMMMMNNNNNNNNNNNXXAGAAWのS.サーモフィラス(S.thermophilus)CRISPR1Cas9標的部位を挙げることができ、NNNNNNNNNNNXXAGAAW(Nは、A、G、T、またはCであり;Xは、いずれであってもよく;Wは、AまたはTである)は、ゲノム中の単一発生を有する。化膿性連鎖球菌(S.pyogenes)Cas9について、ゲノム中のユニーク標的配列としては、フォームMMMMMMMMNNNNNNNNNNNNXGGXGのCas9標的部位を挙げることができ、NNNNNNNNNNNNXGGXG(Nは、A、G、T、またはCであり;Xは、いずれであってもよい)は、ゲノム中の単一発生を有する。ゲノム中のユニーク標的配列としては、フォームMMMMMMMMMNNNNNNNNNNNXGGXGの化膿性連鎖球菌(S.pyogenes)Cas9標的部位を挙げることができ、NNNNNNNNNNNXGGXG(Nは、A、G、T、またはCであり;Xは、いずれであってもよい)は、ゲノム中の単一発生を有する。これらの配列のそれぞれにおいて、「M」は、A、G、T、またはCであり得、配列をユニークと同定するにあたり考慮する必要はない。
一部の実施形態において、ガイド配列は、ガイド配列内の二次構造の程度を低減させるように選択される。二次構造は、任意の好適なポリヌクレオチドフォールディングアルゴリズムにより決定することができる。一部のプログラムは、最小ギブス自由エネルギーの算出をベースとする。1つのこのようなアルゴリズムの例は、mFoldであり、Zuker and Stiegler(Nucleic Acids Res.9(1981),133−148)により記載されている。別の例示的フォールディングアルゴリズムは、セントロイド構造予測アルゴリズムを使用するInstitute for Theoretical Chemistry at the University of Viennaにより開発されたオンラインウェブサーバーRNAfoldである(例えばA.R.Gruber et al.,2008,Cell 106(1):23−24;およびPA Carr and GM Church,2009,Nature Biotechnology 27(12):1151−62参照)。さらなるアルゴリズムは、参照により本明細書に組み込まれる米国特許出願番号TBA(代理人整理番号44790.11.2022;Broad参照番号BI−2013/004A)に見出すことができる。
一般に、tracrメイト配列は、(1)対応するtracr配列を含有する細胞中でtracrメイト配列によりフランキングされているガイド配列の切り出し;および(2)標的配列におけるCRISPR複合体の形成(CRISPR複合体は、tracr配列にハイブリダイズされるtracrメイト配列を含む)の1つ以上を促進するためにtracr配列との十分な相補性を有する任意の配列を含む。一般に、相補性の程度は、2つの配列の短い方の長さに沿うtracrメイト配列およびtracr配列の最適なアラインメントに準拠する。最適なアラインメントは、任意の好適なアラインメントアルゴリズムにより決定することができ、二次構造、例えばtracr配列またはtracrメイト配列内の自己相補性をさらに説明し得る。一部の実施形態において、2つの短い方の長さに沿ったtracr配列とtracrメイト配列との間の相補性の程度は、最適にアラインされた場合、約または約25%、30%、40%、50%、60%、70%、80%、90%、95%、97.5%、99%、またはそれよりも大きい数を超える。tracr配列とtracrメイト配列との間の最適なアラインメントの例示的説明を図12Bおよび13Bに提供する。一部の実施形態において、tracr配列は、約または約5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、40、50、またはそれよりも大きい数を超えるヌクレオチド長である。一部の実施形態において、tracr配列およびtractメイト配列は、単一転写物内に含有され、その結果、2つの間のハイブリダイゼーションが二次構造、例えば、ヘアピンを有する転写物を産生する。ヘアピン構造において使用される好ましいループ形成配列は、4ヌクレオチド長であり、最も好ましくは、配列GAAAを有する。しかしながら、代替配列であり得るようにより長いまたは短いループ配列を使用することができる。配列は、好ましくは、ヌクレオチドトリプレット(例えば、AAA)、および追加のヌクレオチド(例えば、CまたはG)を含む。ループ形成配列の例としては、CAAAおよびAAAGが挙げられる。本発明の一実施形態において、転写物または転写されるポリヌクレオチド配列は、少なくとも2つ以上のヘアピンを有する。好ましい実施形態において、転写物は、2、3、4または5つのヘアピンを有する。本発明の別のさらなる実施形態において、転写物は、多くとも5つのヘアピンを有する。一部の実施形態において、単一転写物は、転写終結配列をさらに含み;好ましくは、これはポリT配列、例えば、6つのTヌクレオチドである。このようなヘアピン構造の例示的説明を、図13Bの下方位置に提供し、最後の「N」およびループの上流の5’側の配列の部分は、tracrメイト配列に対応し、ループの3’側の配列の部分は、tracr配列に対応する。ガイド配列、tracrメイト配列、およびtracr配列を含む単一ポリヌクレオチドのさらなる非限定的な例は、以下のとおりであり(5’から3’に列記)、「N」は、ガイド配列の塩基を表し、第1の小文字のブロックは、tracrメイト配列を表し、第2の小文字のブロックは、tracr配列を表し、最後のポリT配列は、転写ターミネーターを表す:
Figure 2016505256
一部の実施形態において、配列(1)から(3)は、S.サーモフィラス(S.thermophilus)CRISPR1からのCas9との組合せで使用される。一部の実施形態において、配列(4)から(6)は、化膿性連鎖球菌(S.pyogenes)からのCas9との組合せで使用される。一部の実施形態において、tracr配列は、tracrメイト配列を含む転写物と別個の転写物である(例えば、図13Bの上図に説明されるもの)。
一部の実施形態において、組換えテンプレートも提供される。組換えテンプレートは、本明細書に記載の別のベクターの成分であり、別個のベクター中で含有させ、または別個のポリヌクレオチドとして提供することができる。一部の実施形態において、組換えテンプレートは、例えば、CRISPR複合体の一部としてのCRISPR酵素によりニック形成または開裂される標的配列内またはその付近での相同組換えにおけるテンプレートとして機能するように設計される。テンプレートポリヌクレオチドは、任意の好適な長さ、例えば、約または約10、15、20、25、50、75、100、150、200、500、1000、またはそれよりも大きい数を超えるヌクレオチド長であり得る。一部の実施形態において、テンプレートポリヌクレオチドは、標的配列を含むポリヌクレオチドの一部に相補的である。最適にアラインされた場合、テンプレートポリヌクレオチドは、標的配列の1つ以上のヌクレオチド(例えば、約または約1、5、10、15、20、25、30、35、40、45、50、60、70、80、90、100、またはそれよりも多い数を超えるヌクレオチド)と重複し得る。一部の実施形態において、テンプレート配列および標的配列を含むポリヌクレオチドが最適にアラインされた場合、テンプレートポリヌクレオチドの最近傍ヌクレオチドは、標的配列から約1、5、10、15、20、25、50、75、100、200、300、400、500、1000、5000、10000、またはそれよりも多いヌクレオチド内に存在する。
一部の実施形態において、CRISPR酵素は、1つ以上の異種タンパク質ドメイン(例えば、CRISPR酵素の他の約または約1、2、3、4、5、6、7、8、9、10、またはそれよりも多い数を超えるドメイン)を含む融合タンパク質の一部である。CRISPR酵素融合タンパク質は、任意の追加のタンパク質配列、および場合により任意の2つのドメイン間のリンカー配列を含み得る。CRISPR酵素に融合させることができるタンパク質ドメインの例としては、限定されるものではないが、エピトープタグ、レポーター遺伝子配列、ならびに以下の活性:メチラーゼ活性、デメチラーゼ活性、転写活性化活性、転写抑制活性、転写放出因子活性、ヒストン修飾活性、RNA開裂活性および核酸結合活性の1つ以上を有するタンパク質ドメインが挙げられる。エピトープタグの非限定的な例としては、ヒスチジン(His)タグ、V5タグ、FLAGタグ、インフルエンザヘマグルチニン(HA)タグ、Mycタグ、VSV−Gタグ、およびチオレドキシン(Trx)タグが挙げられる。レポーター遺伝子の例としては、限定されるものではないが、グルタチオン−S−トランスフェラーゼ(GST)、セイヨウワサビペルオキシダーゼ(HRP)、クロラムフェニコールアセチルトランスフェラーゼ(CAT)ベータ−ガラクトシダーゼ、ベータ−グルクロニダーゼ、ルシフェラーゼ、緑色蛍光タンパク質(GFP)、HcRed、DsRed、シアン蛍光タンパク質(CFP)、黄色蛍光タンパク質(YFP)、および自己蛍光タンパク質、例として、青色蛍光タンパク質(BFP)が挙げられる。CRISPR酵素は、DNA分子に結合し、または他の細胞分子に結合するタンパク質またはタンパク質の断片、例として、限定されるものではないが、マルトース結合タンパク質(MBP)、S−タグ、Lex A DNA結合ドメイン(DBD)融合物、GAL4DNA結合ドメイン融合物、および単純ヘルペスウイルス(HSV)BP16タンパク質融合物をコードする遺伝子配列に融合させることができる。CRISPR酵素を含む融合タンパク質の一部を形成し得る追加のドメインは、参照により本明細書に組み込まれる米国特許出願公開第20110059502号明細書に記載されている。一部の実施形態において、タグ化CRISPR酵素を使用して標的配列の局在を同定する。
一部の態様において、本発明は、1つ以上のポリヌクレオチド、例えば、または本明細書に記載の1つ以上のベクター、1つ以上のその転写物、および/またはそれから転写された1つまたはタンパク質を宿主細胞に送達することを含む方法を提供する。一部の態様において、本発明は、そのような細胞により産生された細胞、およびそのような細胞を含み、またはそれから産生された生物(例えば、動物、植物、または真菌)をさらに提供する。一部の実施形態において、ガイド配列との組合せの(および場合によりそれと複合体形成している)CRISPR酵素を細胞に送達する。慣用のウイルスおよび非ウイルスベース遺伝子移入法を使用して核酸を哺乳動物細胞または標的組織中に導入することができる。このような方法を使用してCRISPR系の成分をコードする核酸を培養物中の細胞に、または宿主生物中に投与することができる。非ウイルスベクター送達系としては、DNAプラスミド、RNA(例えば、本明細書に記載のベクターの転写物)、ネイキッド核酸、および送達ビヒクル、例えば、リポソームと複合体形成している核酸が挙げられる。ウイルスベクター送達系としては、細胞への送達後にエピソーム性またはインテグレートされるゲノムを有するDNAおよびRNAウイルスが挙げられる。遺伝子療法手順の概要については、Anderson,Science 256:808−813(1992);Nabel&Felgner,TIBTECH 11:211−217(1993);Mitani&Caskey,TIBTECH 11:162−166(1993);Dillon,TIBTECH 11:167−175(1993);Miller,Nature 357:455−460(1992);Van Brunt,Biotechnology 6(10):1149−1154(1988);Vigne,Restorative Neurology and Neuroscience 8:35−36(1995);Kremer&Perricaudet,British Medical Bulletin 51(1):31−44(1995);Haddada et al.,in Current Topics in Microbiology and Immunology,Doerfler and Boehm(eds)(1995);およびYu et al.,Gene Therapy 1:13−26(1994)参照。
核酸の非ウイルス送達の方法としては、リポフェクション、ヌクレオフェクション、マイクロインジェクション、遺伝子銃、ビロソーム、リポソーム、イムノリポソーム、ポリカチオンまたは脂質:核酸コンジュゲート、ネイキッドDNA、人工ビリオン、および薬剤により向上されるDNAの取り込みが挙げられる。リポフェクションは、例えば、米国特許第5,049,386号明細書、同第4,946,787号明細書;および同第4,897,355号明細書)に記載されており、リポフェクション試薬は、市販されている(例えば、Transfectam(商標)およびLipofectin(商標))。ポリヌクレオチドの効率的な受容体認識リポフェクションに好適なカチオンおよび中性脂質としては、Felgner、国際公開第91/17424号パンフレット;国際公開第91/16024号パンフレットのものが挙げられる。送達は、細胞(例えば、インビトロまたはエクスビボ投与)または標的組織(例えば、インビボ投与)に対するものであり得る。
脂質:核酸複合体、例として、ターゲティングされるリポソーム、例えば、免疫脂質複合体の調製は、当業者に周知である(例えば、Crystal,Science 270:404−410(1995);Blaese et al.,Cancer Gene Ther.2:291−297(1995);Behr et al.,Bioconjugate Chem.5:382−389(1994);Remy et al.,Bioconjugate Chem.5:647−654(1994);Gao et al.,Gene Therapy 2:710−722(1995);Ahmad et al.,Cancer Res.52:4817−4820(1992);米国特許第4,186,183号明細書、同第4,217,344号明細書、同第4,235,871号明細書、同第4,261,975号明細書、同第4,485,054号明細書、同第4,501,728号明細書、同第4,774,085号明細書、同第4,837,028号明細書、および同第4,946,787号明細書参照)。
核酸の送達のためのRNAまたはDNAウイルスベース系の使用は、ウイルスを体内の規定の細胞にターゲティングし、ウイルスペイロードを核に輸送する高度に進化したプロセスを利用する。ウイルスベクターは、患者に直接投与することができ(インビボ)、またはそれらを使用してインビトロで細胞を治療することができ、場合により、改変された細胞を患者に投与することができる(エクスビボ)。慣用のウイルスベース系としては、遺伝子移入のためのレトロウイルス、レンチウイルス、アデノウイルス、アデノ随伴および単純ヘルペスウイルスベクターを挙げることができる。宿主ゲノム中のインテグレーションは、レトロウイルス、レンチウイルス、およびアデノ随伴ウイルス遺伝子移入法について考えられ、挿入されたトランス遺伝子の長期発現をもたらすことが多い。さらに、高い形質導入効率が多くの異なる細胞タイプおよび標的組織において観察されている。
レトロウイルスの向性は、外来エンベロープタンパク質を取り込むことにより変え、標的細胞の潜在的な標的集団を拡大することができる。レンチウイルスベクターは、非分裂細胞に形質導入または感染し、典型的には、高ウイルス力価を産生し得るレトロウイルスベクターである。したがって、レトロウイルス遺伝子移入系の選択は、標的組織に依存する。レトロウイルスベクターは、6〜10kbまでの外来配列のためのパッケージング能を有するシス作用長鎖末端リピートを含む。最小シス作用LTRは、ベクターの複製およびパッケージングに十分であり、次いでそれを使用して治療遺伝子を標的細胞中にインテグレートして恒久的なトランス遺伝子発現を提供する。広く使用されるレトロウイルスベクターとしては、ネズミ白血病ウイルス(MuLV)、テナガザル白血病ウイルス(GaLV)、サル免疫不全ウイルス(SIV)、ヒト免疫不全ウイルス(HIV)をベースとするもの、またはそれらの組合せが挙げられる(例えば、Buchscher et al.,J.Virol.66:2731−2739(1992);Johann et al.,J.Virol.66:1635−1640(1992);Sommnerfelt et al.,Virol.176:58−59(1990);Wilson et al.,J.Virol.63:2374−2378(1989);Miller et al.,J.Virol.65:2220−2224(1991);PCT/US94/05700号明細書参照)。一過的発現が好ましい用途においては、アデノウイルスベース系を使用することができる。アデノウイルスベースベクターは、多くの細胞タイプにおいて極めて高い形質導入効率を示し得、細胞分裂を要求しない。このようなベクターについて、高い力価および発現のレベルが得られている。このベクターは、比較的単純な系で大量に産生することができる。例えば、核酸およびペプチドのインビトロ産生において、ならびにインビボおよびエクスビボ遺伝子療法手順のためにアデノ随伴ウイルス(「AAV」)ベクターを使用して細胞に標的核酸を形質導入することもできる(例えば、West et al.,Virology 160:38−47(1987);米国特許第4,797,368号明細書;国際公開第93/24641号パンフレット;Kotin,Human Gene Therapy 5:793−801(1994);Muzyczka,J.Clin.Invest.94:1351(1994)参照。組換えAAVベクターの構築は、多数の刊行物、例として、米国特許第5,173,414号明細書;Tratschin et al.,Mol.Cell.Biol.5:3251−3260(1985);Tratschin,et al.,Mol.Cell.Biol.4:2072−2081(1984);Hermonat&Muzyczka,PNAS 81:6466−6470(1984);およびSamulski et al.,J.Virol.63:03822−3828(1989)に記載されている。
典型的には、パッケージング細胞を使用して宿主細胞に感染し得るウイルス粒子を形成する。このような細胞としては、アデノウイルスをパッケージングする293細胞、およびレトロウイルスをパッケージングするψ2細胞またはPA317細胞が挙げられる。遺伝子療法において使用されるウイルスベクターは、通常、核酸ベクターをウイルス粒子中にパッケージングする細胞系を産生することにより生成する。ベクターは、典型的には、パッケージングおよび後続の宿主中へのインテグレーションに要求される最小ウイルス配列を含有し、他のウイルス配列は、発現させるべきポリヌクレオチドのための発現カセットにより置き換えられている。欠損ウイルス機能は、典型的には、パッケージング細胞系によりトランスで供給する。例えば、遺伝子療法において使用されるAAVベクターは、典型的には、宿主ゲノム中へのパッケージングおよびインテグレーションに要求されるAAVゲノムからのITR配列のみを有する。ウイルスDNAは、他のAAV遺伝子、すなわち、repおよびcapをコードするが、ITR配列を欠くヘルパープラスミドを含有する細胞系中にパッケージングされる。細胞系は、ヘルパーとしてのアデノウイルスにより感染させることもできる。ヘルパーウイルスは、AAVベクターの複製およびヘルパープラスミドからのAAV遺伝子の発現を促進する。ヘルパープラスミドは、ITR配列の欠如に起因して顕著な量でパッケージングされない。アデノウイルスによる汚染は、例えば、アデノウイルスがAAVよりも感受性である熱処理により低減させることができる。核酸を細胞に送達する追加の方法は、当業者に公知である。例えば、参照により本明細書に組み込まれる米国特許出願公開第20030087817号明細書参照。
一部の実施形態において、宿主細胞を、本明細書に記載の1つ以上のベクターにより一過的にまたは非一過的に形質移入する。一部の実施形態において、細胞を、それが対象中で天然に生じるままで形質移入する。一部の実施形態において、形質移入される細胞を対象から採取する。一部の実施形態において、細胞は、対象から採取された細胞、例えば、細胞系に由来する。組織培養のための広範な細胞系は、当技術分野において公知である。細胞系の例としては、限定されるものではないが、C8161、CCRF−CEM、MOLT、mIMCD−3、NHDF、HeLa−S3、Huh1、Huh4、Huh7、HUVEC、HASMC、HEKn、HEKa、MiaPaCell、Panc1、PC−3、TF1、CTLL−2、C1R、Rat6、CV1、RPTE、A10、T24、J82、A375、ARH−77、Calu1、SW480、SW620、SKOV3、SK−UT、CaCo2、P388D1、SEM−K2、WEHI−231、HB56、TIB55、Jurkat、J45.01、LRMB、Bcl−1、BC−3、IC21、DLD2、Raw264.7、NRK、NRK−52E、MRC5、MEF、Hep G2、HeLa B、HeLa T4、COS、COS−1、COS−6、COS−M6A、BS−C−1サル腎臓上皮、BALB/3T3マウス胚線維芽細胞、3T3Swiss、3T3−L1、132−d5ヒト胎児線維芽細胞;10.1マウス線維芽細胞、293−T、3T3、721、9L、A2780、A2780ADR、A2780cis、A172、A20、A253、A431、A−549、ALC、B16、B35、BCP−1細胞、BEAS−2B、bEnd.3、BHK−21、BR293、BxPC3、C3H−10T1/2、C6/36、Cal−27、CHO、CHO−7、CHO−IR、CHO−K1、CHO−K2、CHO−T、CHO Dhfr−/−、COR−L23、COR−L23/CPR、COR−L23/5010、COR−L23/R23、COS−7、COV−434、CML T1、CMT、CT26、D17、DH82、DU145、DuCaP、EL4、EM2、EM3、EMT6/AR1、EMT6/AR10.0、FM3、H1299、H69、HB54、HB55、HCA2、HEK−293、HeLa、Hepa1c1c7、HL−60、HMEC、HT−29、Jurkat、JY細胞、K562細胞、Ku812、KCL22、KG1、KYO1、LNCap、Ma−Mel1−48、MC−38、MCF−7、MCF−10A、MDA−MB−231、MDA−MB−468、MDA−MB−435、MDCK II、MDCK II、MOR/0.2R、MONO−MAC6、MTD−1A、MyEnd、NCI−H69/CPR、NCI−H69/LX10、NCI−H69/LX20、NCI−H69/LX4、NIH−3T3、NALM−1、NW−145、OPCN/OPCT細胞系、Peer、PNT−1A/PNT2、RenCa、RIN−5F、RMA/RMAS、Saos−2細胞、Sf−9、SkBr3、T2、T−47D、T84、THP1細胞系、U373、U87、U937、VCaP、Vero細胞、WM39、WT−49、X63、YAC−1、YAR、およびそれらのトランスジェニック変種が挙げられる。細胞系は、当業者に公知の種々の資源から入手可能である(例えば、American Type Culture Collection(ATCC)(Manassus,Va.)参照)。一部の実施形態において、本明細書に記載の1つ以上のベクターにより形質移入された細胞を使用して1つ以上のベクター由来配列を含む新たな細胞系を樹立する。一部の実施形態において、本明細書に記載のCRISPR系の成分により一過的に形質移入され(例えば、1つ以上のベクターの一過的形質移入、またはRNAによる形質移入により)、CRISPR複合体の活性を通して改変された細胞を使用して改変を含有するがあらゆる他の外因性配列を欠く細胞を含む新たな細胞系を樹立する。一部の実施形態において、本明細書に記載の1つ以上のベクターにより一過的にまたは非一過的に形質移入された細胞、またはそのような細胞に由来する細胞系を、1つ以上の試験化合物の評価において使用する。
一部の実施形態において、本明細書に記載の1つ以上のベクターを使用して非ヒトトランスジェニック動物またはトランスジェニック植物を産生する。一部の実施形態において、トランスジェニック動物は、哺乳動物、例えば、マウス、ラット、またはウサギである。ある実施形態において、生物または対象は、植物である。ある実施形態において、生物または対象または植物は、藻類である。トランスジェニック植物および動物を産生する方法は、当技術分野において公知であり、一般に、例えば、本明細書に記載の細胞形質移入の方法から出発する。
一態様において、本発明は、真核細胞中の標的ポリヌクレオチドを改変する方法を提供する。一部の実施形態において、方法は、CRISPR複合体を標的ポリヌクレオチドに結合させて前記標的ポリヌクレオチドの開裂を生じさせ、それにより、標的ポリヌクレオチドを改変することを含み、CRISPR複合体は、前記標的ポリヌクレオチド内の標的配列にハイブリダイズされるガイド配列と複合体形成しているCRISPR酵素を含み、前記ガイド配列は、次いでtracr配列にハイブリダイズするtracrメイト配列に結合している。
一態様において、本発明は、真核細胞中のポリヌクレオチドの発現を改変する方法を提供する。一部の実施形態において、方法は、CRISPR複合体をポリヌクレオチドに結合させ、その結果、前記結合が前記ポリヌクレオチドの発現の増加または減少をもたらすことを含み;CRISPR複合体は、前記標的ポリヌクレオチド内の標的配列にハイブリダイズされるガイド配列と複合体形成しているCRISPR酵素を含み、前記ガイド配列は、次いでtracr配列にハイブリダイズするtracrメイト配列に結合している。
作物ゲノミクスの近年の進歩とともに、CRISPR−Cas系を使用して効率的でコスト効率の良い遺伝子編集および操作を実施する技能により、産生の改善および形質の向上のためにそのようなゲノムを形質転換するための単一および多重化遺伝子操作の迅速な選択および比較が可能となる。これに関して、米国特許および刊行物:米国特許第6,603,061号明細書−Agrobacterium−Mediated Plant Transformation Method;米国特許第7,868,149号明細書−Plant Genome Sequences and Uses Thereofおよび米国特許出願公開第2009/0100536号明細書−Transgenic Plants with Enhanced Agronomic Traitsが参照され、これらのそれぞれの全ての内容および開示は、参照により全体として本明細書に組み込まれる。本発明の実施において、Morrell et al“Crop genomics:advances and applications”Nat Rev Genet.2011 Dec 29;13(2):85−96の内容および開示も参照により全体として本明細書に組み込まれる。本発明の有利な実施形態において、CRISPR/Cas9系を使用して微細藻類をエンジニアリングする(実施例15)。したがって、本明細書における動物細胞への言及は、必要な変更を加え、特に明らかでない限り植物細胞にも当てはまり得る。
一態様において、本発明は、インビボ、エクスビボまたはインビトロであり得る真核細胞中の標的ポリヌクレオチドを改変する方法を提供する。一部の実施形態において、方法は、ヒトまたは非ヒト動物または植物(微細藻類を含む)から細胞または細胞の集団をサンプリングし、1つまたは複数の細胞を改変することを含む。培養は、任意の段階においてエクスビボで行うことができる。1つまたは複数の細胞は、非ヒト動物または植物(微細藻類を含む)中に再導入することもできる。
植物において、病原体は宿主特異的であることが多い。例えば、トマト萎凋病菌(Fusarium oxysporum f.sp.lycopersici)は、トマト萎凋病を引き起こすが、トマトのみを攻撃し、カーネーション萎凋病菌(F.oxysporum f.dianthii)コムギ黒さび病菌(Puccinia graminis f.sp.tritici)はコムギのみを攻撃する。植物は、ほとんどの病原体に抵抗するための既存および誘導的防御を有する。植物生成にわたる突然変異および組換えイベントは、特に病原体が植物よりも高頻度で繁殖する場合に感受性を生じさせる遺伝子変異をもたらす。植物において、非宿主耐性が存在し得、例えば、宿主および病原体は不適合性である。水平耐性、例えば、典型的には、多くの遺伝子により制御される病原体の全ての種に対する部分耐性および垂直耐性、例えば、典型的には、少数の遺伝子により制御される病原体の一部の種に対するが他の種に対するものでない完全耐性も存在し得る。遺伝子対遺伝子レベルにおいて、植物および病原体は、一緒に進化し、あるものの遺伝子変化は他の変化と均衡を保つ。したがって、自然変動を使用して、育種者は、収穫高、品質、均一性、耐寒性、耐性に最も有用な遺伝子を組み合わせる。耐性遺伝子の資源としては、天然または外来種、在来種、野生植物類縁種、および誘導突然変異、例えば、植物材料を突然変異誘発剤により処理することが挙げられる。本発明を使用して、植物育種者に、突然変異を誘導するための新たなツールを提供する。したがって、当業者は、耐性遺伝子の資源のゲノムを分析し、所望の特徴または形質を有する品種において本発明を用いて耐性遺伝子の出現を従来の突然変異誘発剤よりも正確に誘導し、したがって、植物育種プログラムを加速および改善することができる。
一態様において、本発明は、上記方法および組成物に開示のエレメントのいずれか1つ以上を含有するキットを提供する。一部の実施形態において、キットは、ベクター系およびキットの使用指示書を含む。一部の実施形態において、ベクター系は、(a)tracrメイト配列およびガイド配列をtracrメイト配列の上流に挿入するための1つ以上の挿入部位に作動可能に結合している第1の調節エレメント(ガイド配列は、発現された場合、真核細胞中の標的配列へのCRISPR複合体の配列特異的結合を指向し、CRISPR複合体は、(1)標的配列にハイブリダイズされるガイド配列、および(2)tracr配列にハイブリダイズされるtracrメイト配列と複合体形成しているCRISPR酵素を含む);ならびに/または(b)核局在化配列を含む前記CRISPR酵素をコードする酵素コード配列に作動可能に結合している第2の調節エレメントを含む。エレメントは、個々にまたは組合せで提供することができ、任意の好適な容器、例えば、バイアル、ボトル、またはチューブ中で提供することができる。一部の実施形態において、キットは、1つ以上の言語の、例えば、2つ以上の言語の指示書を含む。
一部の実施形態において、キットは、本明細書に記載のエレメントの1つ以上を利用するプロセスにおいて使用される1つ以上の試薬を含む。試薬は、任意の好適な容器中で提供することができる。例えば、キットは、1つ以上の反応または貯蔵緩衝液を提供し得る。試薬は、特定のアッセイにおいて使用可能な形態で、または使用前に1つ以上の他の成分の添加を要求する形態(例えば、濃縮物または凍結乾燥形態)で提供することができる。緩衝液は、任意の緩衝液、例として、限定されるものではないが、炭酸ナトリウム緩衝液、重炭酸ナトリウム緩衝液、ホウ酸緩衝液、Tris緩衝液、MOPS緩衝液、HEPES緩衝液、およびそれらの組合せであり得る。一部の実施形態において、緩衝液はアルカリ性である。一部の実施形態において、緩衝液は、約7から約10のpHを有する。一部の実施形態において、キットは、ガイド配列および調節エレメントを作動可能に結合させるためのベクター中への挿入のためのガイド配列に対応する1つ以上のオリゴヌクレオチドを含む。一部の実施形態において、キットは、相同組換えテンプレートポリヌクレオチドを含む。
一態様において、本発明は、CRISPR系の1つ以上のエレメントを使用する方法を提供する。本発明のCRISPR複合体は、標的ポリヌクレオチドを改変する有効な手段を提供する。本発明のCRISPR複合体は、広範な有用性、例として、非常に多数の細胞タイプ中の標的ポリヌクレオチドの改変(例えば、欠失、挿入、転座、不活性化、活性化)を有する。したがって、本発明のCRISPR複合体は、例えば、遺伝子療法、薬物スクリーニング、疾患診断、および予後における幅広い用途範囲を有する。例示的CRISPR複合体は、標的ポリヌクレオチド内の標的配列にハイブリダイズされるガイド配列と複合体形成しているCRISPR酵素を含む。ガイド配列は、次いでtract配列にハイブリダイズするtracrメイト配列に結合している。
CRISPR複合体の標的ポリヌクレオチドは、真核細胞に対して内因性または外因性である任意のポリヌクレオチドであり得る。例えば、標的ポリヌクレオチドは、真核細胞の核中に残留するポリヌクレオチドであり得る。標的ポリヌクレオチドは、遺伝子産物(例えば、タンパク質)をコードする配列または非コード配列(例えば、調節ポリヌクレオチドまたはジャンクDNA)であり得る。理論により拘束されるものではないが、標的配列がPAM(プロトスペーサー隣接モチーフ);すなわち、CRISPR複合体により認識される短い配列と会合するはずであることが考えられる。PAMについての正確な配列および長さの条件は、使用されるCRISPR酵素に応じて異なるが、PAMは、典型的には、プロトスペーサー(すなわち、標的配列)に隣接する2〜5塩基対配列である。PAM配列の例を以下の実施例セクションに挙げ、当業者は、所与のCRISPR酵素について使用されるさらなるPAM配列を同定することができる。
CRISPR複合体の標的ポリヌクレオチドとしては、それぞれBroad参照番号BI−2011/008/WSGR整理番号44063−701.101およびBI−2011/008/WSGR整理番号44063−701.102を有する米国仮特許出願第61/736,527号明細書および同第61/748,427号明細書(両方とも、標題SYSTEMS METHODS AND COMPOSITIONS FOR SEQUENCE MANIPULATION、それぞれ2012年12月12日および2013年1月2日に出願、これらの全ての内容は参照により全体として本明細書に組み込まれる)に列記の多数の疾患関連遺伝子およびポリヌクレオチドならびにシグナリング生化学経路関連遺伝子およびポリヌクレオチドを挙げることができる。
標的ポリヌクレオチドの例としては、シグナリング生化学経路に関連する配列、例えば、シグナリング生化学経路関連遺伝子またはポリヌクレオチドが挙げられる。標的ポリヌクレオチドの例としては、疾患関連遺伝子またはポリヌクレオチドが挙げられる。「疾患関連」遺伝子またはポリヌクレオチドは、非疾患対照の組織または細胞と比較して患部組織に由来する細胞中で異常なレベルにおいてまたは異常な形態で転写または翻訳産物を生じさせている任意の遺伝子またはポリヌクレオチドを指す。これは、異常に高いレベルにおいて発現されるようになる遺伝子であり得;これは、異常に低いレベルにおいて発現されるようになる遺伝子であり得、発現の変化は、疾患の発生および/または進行と相関する。疾患関連遺伝子は、疾患の病因を直接担い、または疾患の病因を担う遺伝子と連鎖不平衡をなす突然変異または遺伝子変異を有する遺伝子も指す。転写または翻訳される産物は、既知または未知のものであり得、正常または異常レベルにおけるものであり得る。
疾患関連遺伝子およびポリヌクレオチドの例は、McKusick−Nathans Institute of Genetic Medicine,Johns Hopkins University(Baltimore, Md.)およびNational Center for Biotechnology Information,National Library of Medicine(Bethesda,Md.)から入手可能であり、ワールドワイドウェブから入手可能である。
疾患関連遺伝子およびポリヌクレオチドの例を表AおよびBに列記する。疾患特異的情報は、McKusick−Nathans Institute of Genetic Medicine,Johns Hopkins University (Baltimore,Md.)およびNational Center for Biotechnology Information,National Library of Medicine(Bethesda,Md.)から入手可能であり、ワールドワイドウェブから入手可能である。シグナリング生化学経路関連遺伝子およびポリヌクレオチドの例を表Cに列記する。
これらの遺伝子および経路中の突然変異は、不適切なタンパク質の産生または機能に影響する不適切な量のタンパク質をもたらし得る。遺伝子、疾患およびタンパク質のさらなる例は、2012年12月12日に出願された米国仮特許出願第61/736,527号明細書および2013年2月2日に出願された同第61/748,427号明細書から参照により本明細書に組み込まれる。このような遺伝子、タンパク質および経路は、CRISPR複合体の標的ポリヌクレオチドであり得る。
Figure 2016505256
Figure 2016505256
Figure 2016505256
Figure 2016505256
Figure 2016505256
Figure 2016505256
Figure 2016505256
Figure 2016505256
Figure 2016505256
Figure 2016505256
Figure 2016505256
Figure 2016505256
Figure 2016505256
Figure 2016505256
Figure 2016505256
Figure 2016505256
Figure 2016505256
本発明の実施形態は、遺伝子のノックアウト、遺伝子の増幅ならびにDNAリピート不安定性および神経学的疾患に関連する特定の突然変異の修復に関連する方法および組成物にも関する(Robert D.Wells,Tetsuo Ashizawa,Genetic Instabilities and Neurological Diseases,Second Edition,Academic Press,Oct 13,2011−Medical)。規定の態様のタンデムリピート配列が20を超えるヒト疾患を担うことが見出されている(New insights into repeat instability:role of RNA・DNA hybrids.McIvor EI,Polak U,Napierala M.RNA Biol.2010 Sep−Oct;7(5):551−8)。CRISPR−Cas系を利用してゲノム不安定性のこれらの異常を補正することができる。
本発明のさらなる態様は、ラフォラ病に関連することが同定されているEMP2AおよびEMP2B遺伝子の異常の補正のためのCRISPR−Cas系の利用に関する。ラフォラ病は、青年期において癲癇性発作として始まり得る進行性ミオクローヌス癲癇を特徴とする常染色体劣性病態である。この疾患の数例は、未だ同定されていない遺伝子の突然変異により引き起こされ得る。この疾患は、発作、筋痙攣、歩行困難、認知症、および最終的に死亡を引き起こす。現在、疾患進行に対して有効であることが証明されている治療は存在しない。癲癇に関連する他の遺伝子異常を、CRISPR−Cas系によりターゲティングすることもでき、基礎となる遺伝学は、Genetics of Epilepsy and Genetic Epilepsies,Giuliano Avanzini,Jeffrey L.Noebelsにより編集,Mariani Foundation Paediatric Neurology:20;2009)にさらに記載されている。
本発明のさらに別の態様において、CRISPR−Cas系を使用し、Genetic Diseases of the Eye,Second Edition,Elias I.Traboulsiにより編集,Oxford University Press,2012にさらに記載されているいくつかの遺伝子突然変異から生じる眼の異常を補正することができる。
本発明のいくつかのさらなる態様は、米国国立衛生研究所のウェブサイト(health.nih.gov/topic/GeneticDisordersにおけるウェブサイト)上にトピックサブセクションGenetic Disordersのもとでさらに記載されている広範な遺伝子疾患に関連する異常の補正に関する。遺伝子脳疾患としては、限定されるものではないが、副腎白質ジストロフィー、脳梁欠損症、アイカルディ症候群、アルパース病、アルツハイマー病、バース症候群、バッテン病、CADASIL、小脳変性症、ファブリー病、ゲルストマン−ストロイスラー−シャインカー病、ハンチントン病および他のトリプレットリピート病、リー病、レッシュ−ナイハン症候群、メンケス病、ミトコンドリアミオパチーならびにNINDSコルポセファリーが挙げられる。これらの疾患は、米国国立衛生研究所のウェブサイト上にサブセクションGenetic Brain Disordersのもとでさらに記載されている。
一部の実施形態において、病態は、新形成である。病態が新形成であり得る一部の実施形態において、ターゲティングすべき遺伝子は、表Aに列記のもののいずれかであり得る(この場合、PTENなど)。一部の実施形態において、病態は、加齢黄斑変性症であり得る。一部の実施形態において、病態は、統合失調症であり得る。一部の実施形態において、病態は、トリヌクレオチドリピート障害であり得る。一部の実施形態において、病態は、脆弱性X症候群であり得る。一部の実施形態において、病態は、セクレターゼ関連障害であり得る。一部の実施形態において、病態は、プリオン関連障害であり得る。一部の実施形態において、病態は、ALSであり得る。一部の実施形態において、病態は、薬物嗜好であり得る。一部の実施形態において、病態は、自閉症であり得る。一部の実施形態において、病態は、アルツハイマー病であり得る。一部の実施形態において、病態は、炎症であり得る。一部の実施形態において、病態は、パーキンソン病であり得る。
パーキンソン病に関連するタンパク質の例としては、限定されるものではないが、α−シヌクレイン、DJ−1、LRRK2、PINK1、パーキン、UCHL1、シンフィリン−1、およびNURR1が挙げられる。
嗜好関連タンパク質の例としては、例えば、ABATを挙げることができる。
炎症関連タンパク質の例としては、例えば、Ccr2遺伝子によりコードされる単球走化性タンパク質−1(MCP1)、Ccr5遺伝子によりコードされるC−Cケモカイン受容体5型(CCR5)、Fcgr2b遺伝子によりコードされるIgG受容体IIB(FCGR2b、CD32とも称される)、またはFcer1g遺伝子によりコードされるFcイプシロンR1g(FCER1g)タンパク質を挙げることができる。
心血管疾患関連タンパク質の例としては、例えば、IL1B(インターロイキン1、ベータ)、XDH(キサンチンデヒドロゲナーゼ)、TP53(腫瘍タンパク質p53)、PTGIS(プロスタグランジンI2(プロスタサイクリン)シンターゼ)、MB(ミオグロビン)、IL4(インターロイキン4)、ANGPT1(アンジオポエチン1)、ABCG8(ATP結合カセット、サブファミリーG(WHITE)、メンバー8)、またはCTSK(カテプシンK)を挙げることができる。
アルツハイマー病関連タンパク質の例としては、例えば、VLDLR遺伝子によりコードされる超低密度リポタンパク質受容体タンパク質(VLDLR)、UBA1遺伝子によりコードされるユビキチン様修飾因子活性化酵素1(UBA1)、またはUBA3遺伝子によりコードされるNEDD8活性化酵素E1触媒サブユニットタンパク質(UBE1C)を挙げることができる。
自閉症スペクトラム障害に関連するタンパク質の例としては、例えば、BZRAP1遺伝子によりコードされるベンゾジアゼピン受容体(末梢性)関連タンパク質1(BZRAP1)、AFF2遺伝子(MFR2とも称される)によりコードされるAF4/FMR2ファミリーメンバー2タンパク質(AFF2)、FXR1遺伝子によりコードされる脆弱性X精神遅滞常染色体ホモログ1タンパク質(FXR1)、またはFXR2遺伝子によりコードされる脆弱性X精神遅滞常染色体ホモログ2タンパク質(FXR2)を挙げることができる。
黄斑変性症に関連するタンパク質の例としては、例えば、ABCR遺伝子によりコードされるATP結合カセットサブファミリーA(ABC1)メンバー4タンパク質(ABCA4)、APOE遺伝子によりコードされるアポリポタンパク質Eタンパク質(APOE)、またはCCL2遺伝子によりコードされるケモカイン(C−Cモチーフ)リガンド2タンパク質(CCL2)を挙げることができる。
統合失調症に関連するタンパク質の例としては、NRG1、ErbB4、CPLX1、TPH1、TPH2、NRXN1、GSK3A、BDNF、DISC1、GSK3B、およびそれらの組合せを挙げることができる。
腫瘍抑制に関与するタンパク質の例としては、例えば、ATM(毛細血管拡張性運動失調症変異)、ATR(毛細血管拡張性運動失調症およびRad3関連)、EGFR(上皮成長因子受容体)、ERBB2(v−erb−b2赤芽球性白血病ウイルス癌遺伝子ホモログ2)、ERBB3(v−erb−b2赤芽球性白血病ウイルス癌遺伝子ホモログ3)、ERBB4(v−erb−b2赤芽球性白血病ウイルス癌遺伝子ホモログ4)、Notch1、Notch2、Notch3、またはNotch4を挙げることができる。
セクレターゼ障害に関連するタンパク質の例としては、例えば、PSENEN(プレセニリンエンハンサー2ホモログ(線虫(C.elegans)))、CTSB(カテプシンB)、PSEN1(プレセニリン1)、APP(アミロイドベータ(A4)前駆体タンパク質)、APH1B(咽頭前部欠損1ホモログB(線虫(C.elegans)))、PSEN2(プレセニリン2(アルツハイマー病4))、またはBACE1(ベータ部位APP開裂酵素1)を挙げることができる。
筋萎縮性側索硬化症に関連するタンパク質の例としては、SOD1(スーパーオキシドジスムターゼ1)、ALS2(筋萎縮性側索硬化症2)、FUS(fused in sarcoma)、TARDBP(TAR DNA結合タンパク質)、VAGFA(血管内皮成長因子A)、VAGFB(血管内皮成長因子B)、およびVAGFC(血管内皮成長因子C)、およびそれらの任意の組合せを挙げることができる。
プリオン疾患に関連するタンパク質の例としては、SOD1(スーパーオキシドジスムターゼ1)、ALS2(筋萎縮性側索硬化症2)、FUS(fused in sarcoma)、TARDBP(TAR DNA結合タンパク質)、VAGFA(血管内皮成長因子A)、VAGFB(血管内皮成長因子B)、およびVAGFC(血管内皮成長因子C)、およびそれらの任意の組合せを挙げることができる。
プリオン障害における神経変性病態に関連するタンパク質の例としては、例えば、A2M(アルファ−2−マクログロブリン)、AATF(アポトーシス拮抗転写因子)、ACPP(前立腺酸性ホスファターゼ)、ACTA2(大動脈平滑筋アクチンアルファ2)、ADAM22(ADAMメタロペプチダーゼドメイン)、ADORA3(アデノシンA3受容体)、またはADRA1D(アルファ−1Dアドレナリン受容体についてのアルファ−1Dアドレナリン作動性受容体)を挙げることができる。
免疫不全症に関連するタンパク質の例としては、例えば、A2M[アルファ−2−マクログロブリン];AANAT[アリールアルキルアミンN−アセチルトランスフェラーゼ];ABCA1[ATP結合カセットサブファミリーA(ABC1)、メンバー1];ABCA2[ATP結合カセットサブファミリーA(ABC1)、メンバー2];またはABCA3[ATP結合カセットサブファミリーA(ABC1)、メンバー3]を挙げることができる。
トリヌクレオチドリピート障害に関連するタンパク質の例としては、例えば、AR(アンドロゲン受容体)、FMR1(脆弱性X精神遅滞1)、HTT(ハンチントン)、またはDMPK(筋緊張性異栄養症タンパク質キナーゼ)、FXN(フラタキシン)、ATXN2(アタキシン2)が挙げられる。
神経伝達障害に関連するタンパク質の例としては、例えば、SST(ソマトスタチン)、NOS1(一酸化窒素シンターゼ1(神経型))、ADRA2A(アドレナリン作動性アルファ−2A受容体)、ADRA2C(アドレナリン作動性アルファ−2C受容体)、TACR1(タキキニン受容体1)、またはHTR2c(5−ヒドロキシトリプタミン(セロトニン)受容体2C)が挙げられる。
神経発達関連配列の例としては、例えば、A2BP1[アタキシン2結合タンパク質1]、AADAT[アミノアジピン酸アミノトランスフェラーゼ]、AANAT[アリールアルキルアミンN−アセチルトランスフェラーゼ]、ABAT[4−アミノ酪酸アミノトランスフェラーゼ]、ABCA1[ATP結合カセットサブファミリーA(ABC1)メンバー1]、またはABCA13[ATP結合カセットサブファミリーA(ABC1)メンバー13]が挙げられる。
本発明の系により治療可能な好ましい病態のさらなる例は、以下のものから選択することができる:アルカルディ−グティエール症候群;アレキサンダー病;アラン−ハーンドン−ダッドリー症候群;POLG関連障害;アルファ−マンノシドーシス(IIおよびIII型);アルストレム症候群;アンジェルマン症候群;毛細血管拡張性運動失調症;神経セロイドリポフスチン症;ベータ−セラサミア;両側性視神経委縮症および(幼児型)視神経委縮症1型;網膜芽腫(両側性);カナバン病;脳・眼・顔・骨格症候群1[COFS1];脳腱黄色腫症;コルネリア・デ・ラング症候群;MAPT関連障害;遺伝性プリオン病;ドラベ症候群;早期発症型家族性アルツハイマー病;フリードライヒ運動失調症[FRDA];フリンス症候群;フコシドーシス;福山型先天性筋ジストロフィー;ガラクトシアリドーシス;ゴーシェ病;有機酸血症;血球貪食性リンパ組織球症;ハッチンソン−ギルフォード早老症候群;ムコリピドーシスII型;幼児遊離シアル酸蓄積症;PLA2G6関連神経変性症;ジャーベル・ランゲ−ニールセン症候群;接合型表皮水疱症;ハンチントン病;クラッベ病(幼児型);ミトコンドリアDNA関連リー症候群およびNARP;レッシュ−ナイハン症候群;LIS1関連滑脳症;ロウ症候群;メープルシロップ尿症;MECP2重複症候群;ATP7A関連銅輸送障害;LAMA2関連筋ジストロフィー;アリールスルファターゼA欠損症;ムコ多糖症I、IIまたはIII型;ペルオキシソーム形成異常症、ツェルウェーガー症候群スペクトラム;脳の鉄蓄積症を伴う神経変性症;酸性スフィンゴミエリナーゼ欠損症;ニーマン−ピック病C型;グリシン脳症;ARX関連障害;尿素サイクル異常症;COL1A1/2関連骨形成不全症;ミトコンドリアDNA欠失症候群;PLP1関連障害;ペリー症候群;フェラン−マクダーモット症候群;グリコーゲン蓄積症II型(ポンペ病)(幼児型);MAPT関連障害;MECP2関連障害;肢根型点状軟骨異形成症1型;ロバーツ症候群;サンドホフ病;シンドラー病1型;アデノシンデアミナーゼ欠損症;スミス−レムリ−オピッツ症候群;脊髄性筋萎縮症;幼児期発症型脊髄小脳失調症;ヘキソサミニダーゼA欠損症;致死性異形成1型;コラーゲンVI型関連障害;アッシャー症候群I型;先天性筋ジストロフィー;ウォルフ−ヒルシュホーン症候群;リソソーム酸リパーゼ欠損症;ならびに色素性乾皮症。
明らかなとおり、本発明の系を使用して任意の目的ポリヌクレオチド配列をターゲティングすることができることが想定される。本発明の系を使用して有用に治療することができる病態または疾患の一部の例を上記表に含め、それらの病態に現在関連する遺伝子の例もその表に提供する。しかしながら、例示される遺伝子は排他的なものではない。
以下の実施例を、本発明の種々の実施形態を説明する目的のために挙げ、それらは本発明をいかなる様式にも限定することを意味しない。本実施例は、本明細書に記載の方法とともに、目下好ましい実施形態の代表例であり、例示であり、本発明の範囲に対する限定を意図するものではない。特許請求の範囲の範囲により定義される本発明の趣旨に包含されるその変更および他の使用は、当業者が行う。
実施例1:真核細胞の核中のCRISPR複合体活性
例示的なII型CRISPR系は、4つの遺伝子Cas9、Cas1、Cas2、およびCsn1のクラスター、ならびに2つの非コードRNAエレメント、tracrRNAおよび非反復配列の短いストレッチ(スペーサー、それぞれ約30bp)により間隔が空いている反復配列の特徴的アレイ(ダイレクトリピート)を含有する化膿性連鎖球菌(Streptococcus pyogenes)SF370からのII型CRISPR遺伝子座である。この系において、ターゲティングされるDNA二本鎖切断(DSB)を4つの連続ステップにおいて生成する(図2A)。第1に、2つの非コードRNA、プレcrRNAアレイおよびtracrRNAがCRISPR遺伝子座から転写される。第2に、tracrRNAがプレcrRNAのダイレクトリピートにハイブリダイズし、次いでそれが個々のスペーサー配列を含有する成熟crRNAにプロセシングされる。第3に、成熟crRNA:tracrRNA複合体がCas9を、crRNAのスペーサー領域とプロトスペーサーDNAとの間のヘテロ二本鎖形成を介してプロトスペーサーおよび対応するPAMからなるDNA標的に指向する。最後に、Cas9は、PAMの上流の標的DNAの開裂を媒介してプロトスペーサー内でDSBを創成する(図2A)。この例は、このRNAプログラマブルヌクレアーゼ系を適応させて真核細胞の核中のCRISPR複合体活性を指向する例示プロセスを記載する。
細胞培養および形質移入
ヒト胚腎臓(HEK)細胞系HEK293FT(Life Technologies)を、10%のウシ胎仔血清(HyClone)、2mMのGlutaMAX(Life Technologies)、100U/mLのペニシリン、および100μg/mLのストレプトマイシンが補給されたダルベッコ改変イーグル培地(DMEM)中で37℃において5%のCOインキュベーションで維持した。マウスneuro2A(N2A)細胞系(ATCC)を、5%のウシ胎仔血清(HyClone)、2mMのGlutaMAX(Life Technologies)、100U/mLのペニシリン、および100μg/mLのストレプトマイシンが補給されたDMEMにより、37℃、5%のCOで維持した。
HEK293FTまたはN2A細胞を24ウェルプレート(Corning)中に、形質移入1日前に1ウェル当たり200,000個の細胞の密度において播種した。Lipofectamine2000(Life Technologies)を製造業者の推奨プロトコルに従って使用して細胞を形質移入した。24ウェルプレートのそれぞれのウェルについて、合計800ngのプラスミドを使用した。
ゲノム改変についてのSurveyorアッセイおよびシーケンシング分析
HEK293FTまたはN2A細胞を、上記プラスミドDNAにより形質移入した。形質移入後、細胞を37℃において72時間インキュベートしてからゲノムDNAを抽出した。ゲノムDNAは、QuickExtractDNA抽出キット(Epicentre)を製造業者のプロトコルに従って使用して抽出した。手短に述べると、細胞をQuickExtract溶液中で再懸濁させ、65℃において15分間および98℃において10分間インキュベートした。抽出されたゲノムDNAを直ちに処理または−20℃において貯蔵した。
それぞれの遺伝子についてのCRISPR標的部位周囲のゲノム領域をPCR増幅し、QiaQuick Spin Column(Qiagen)を製造業者のプロトコルに従って使用して産物を精製した。合計400ngの精製PCR産物を2μlの10×TaqポリメラーゼPCR緩衝液(Enzymatics)と混合し、超純水で20μlの最終容量とし、リアニーリングプロセスに供してヘテロ二本鎖形成を可能とした:95℃において10分間、−2℃/秒における傾斜で95℃から85℃、−0.25℃/秒における85℃から25℃、および25℃において1分間維持。リアニーリング後、産物をSurveyorヌクレアーゼおよびSurveyorエンハンサーS(Transgenomics)により製造業者の推奨プロトコルに従って処理し、4〜20%のNovex TBEポリアクリルアミドゲル(Life Technologies)上で分析した。ゲルをSYBR Gold DNA染色(Life Technologies)により30分間染色し、Gel Docゲルイメージングシステム(Bio−rad)によりイメージングした。定量は、開裂したDNAの率の尺度としての相対バンド強度に基づくものであった。図8は、このSurveyorアッセイの模式的説明を提供する。
相同組換えの検出のための制限断片長多型アッセイ
HEK293FTおよびN2A細胞を、プラスミドDNAにより形質移入し、37℃において72時間インキュベートしてから上記のとおりゲノムDNAを抽出した。相同組換え(HR)テンプレートのホモロジーアーム外側のプライマーを使用して標的ゲノム領域をPCR増幅した。PCR産物を1%のアガロースゲル上で分離し、MinElute GelExtraction Kit(Qiagen)により抽出した。精製産物をHindIII(Fermentas)により消化し、6%のNovex TBEポリアクリルアミドゲル(Life Technologies)上で分析した。
RNA二次構造予測および分析
RNA二次構造予測は、Institute for Theoretical Chemistry at the University of Viennaにおいて開発されたオンラインウェブサーバーRNAfoldを使用し、セントロイド構造予測アルゴリズムを使用して実施した(例えば、A.R.Gruber et al.,2008,Cell 106(1):23−24;およびPA Carr and GM Church,2009,Nature Biotechnology 27(12):1151−62参照)。
細菌プラスミド形質転換干渉アッセイ
CRISPR活性に十分な化膿性連鎖球菌(S.pyogenes)CRISPR遺伝子座1のエレメントを、pCRISPRプラスミドを使用して大腸菌(E.coli)中で再構成した(図10Aに模式的に説明する)。pCRISPRは、tracrRNA、SpCas9、およびcrRNAアレイをドライブするリーダー配列を含有した。スペーサー(「ガイド配列」とも称される)を、説明のとおりアニールされたオリゴヌクレオチドを使用してcrRNAアレイ中にBsaI部位間で挿入した。干渉アッセイにおいて使用されるチャレンジプラスミドは、プロトスペーサー(「標的配列」とも称される)配列を、隣接CRISPRモチーフ配列(PAM)とともにpUC19中に挿入することにより構築した(図10B参照)。チャレンジプラスミドは、アンピシリン耐性を含有した。図10Cは、干渉アッセイの模式的表示を提供する。既にpCRISPRおよび適切なスペーサーを担持する化学コンピテント大腸菌(E.coli)株を、対応するプロトスペーサー−PAM配列を含有するチャレンジプラスミドにより形質転換した。pUC19を使用してそれぞれのpCRISPR担持コンピテント株の形質転換効率を評価した。CRISPR活性は、プロトスペーサーを担持するpPSPプラスミドの開裂をもたらし、そうでなければプロトスペーサーを欠くpUC19により付与されるアンピシリン耐性を除外した。図10Dは、図4Cに説明されるアッセイにおいて使用されたそれぞれのpCRISPR担持大腸菌(E.coli)株のコンピテンスを説明する。
RNA精製
HEK293FT細胞を上記のとおり維持および形質移入した。細胞をトリプシン処理により回収し、次いでリン酸緩衝生理食塩水(PBS)中で洗浄した。トータル細胞RNAをTRI試薬(Sigma)により製造業者のプロトコルに従って抽出した。抽出されたトータルRNAをNaonodrop(Thermo Scientific)を使用して定量し、同一濃度に正規化した。
哺乳動物細胞中のcrRNAおよびtracrRNA発現のノザンブロット分析
RNAを等容量の2×ローディング緩衝液(Ambion)と混合し、95℃に5分間加熱し、氷上で1分間冷蔵し、次いで8%の変性ポリアクリルアミドゲル(SequaGel,National Diagnostics)上に、少なくとも30分間のゲルのプレラン後にロードした。試料を40W限界において1.5時間電気泳動した。その後、RNAをHybond N+メンブレン(GE Healthcare)に300mAにおいてセミドライ転写装置(Bio−rad)中で室温において1.5時間転写した。Stratagene UV CrosslinkerのStratalinker(Stratagene)上のオートクロスリンクボタンを使用してRNAをメンブレンに架橋させた。メンブレンをULTRAhyb−オリゴハイブリダイゼーション緩衝液(Ambion)中で回転させながら42℃において30分間プレハイブリダイズさせ、次いでプローブを添加し、一晩ハイブリダイズさせた。プローブはIDTに発注し、T4ポリヌクレオチドキナーゼ(New England Biolabs)を用いて[ガンマ−32P]ATP(Perkin Elmer)により標識した。メンブレンを予備加温(42℃)された2×SSC、0.5%のSDSにより1分間1回洗浄し、次いで42℃において30分間2回洗浄した。メンブレンを蛍光スクリーンに室温において1時間または一晩曝露させ、次いでphosphorimager(Typhoon)によりスキャンした。
細菌CRISPR系構築および評価
tracrRNA、Cas9、およびリーダーを含むCRISPR遺伝子座エレメントを、化膿性連鎖球菌(Streptococcus pyogenes)SF370ゲノムDNAから、ギブソン・アセンブリ(Gibson Assembly)のためのフランキングホモロジーアームを用いてPCR増幅した。2つのBsaI IIS型部位を2つのダイレクトリピート間に導入してスペーサーの容易な挿入を促進した(図9)。Gibson Assembly Master Mix(NEB)を使用してPCR産物をEcoRV消化pACYC184中にtetプロモーターの下流でクローニングした。Csn2の最後の50bpは除き、他の内因性CRISPR系エレメントは除外した。相補的オーバーハングを有するスペーサーをコードするオリゴ(Integrated DNA Technology)をBsaI消化ベクターpDC000(NEB)中にクローニングし、次いでT7リガーゼ(Enzymatics)によりライゲートしてpCRISPRプラスミドを生成した。PAM配列(本明細書において「CRISPRモチーフ配列」とも称される)を有するスペーサーを含有するチャレンジプラスミドを、同等のオーバーハングを担持するハイブリダイズされたオリゴ(Integrated DNA Technology)をBamHI消化pUC19中にライゲートすることにより創成した。全ての構築物のためのクローニングは、大腸菌(E.coli)株JM109(Zymo Research)中で実施した。
Z−Competent E.coli Transformation Kit and Buffer Set(Zymo Research,T3001)を製造業者の指示書に従って使用して、pCRISPR担持細胞をコンピテントとした。形質転換アッセイにおいて、pCRISPRを担持するコンピテント細胞の50uLのアリコートを氷上で解凍し、1ngのスペーサープラスミドまたはpUC19により氷上で30分間形質転換し、次いで42℃において45秒間熱ショックし、氷上で2分間維持した。続いて、250ulのSOC(Invitrogen)を添加し、次いで振とうさせながら37℃において1時間インキュベートし、100uLのSOC後前培養物を二重選択プレート(12.5ug/mlのクロラムフェニコール、100ug/mlのアンピシリン)上にプレーティングした。cfu/DNA1ngを得るため、総コロニー数に3を乗じた。
哺乳動物細胞中のCRISPR成分の発現を改善するため、化膿性連鎖球菌(Streptococcus pyogenes(S.pyogenes))SF370遺伝子座1からの2つの遺伝子Cas9(SpCas9)およびRNアーゼIII(SpRNアーゼIII)をコドン最適化した。核局在化を促進するため、核局在化シグナル(NLS)をSpCas9およびSpRNアーゼIIIの両方のアミノ(N)またはカルボキシル(C)末端に含めた(図2B)。タンパク質発現の可視化を促進するため、蛍光タンパク質マーカーも両方のタンパク質のNまたはC末端に含めた(図2B)。NおよびC末端の両方に付着しているNLSを有するSpCas9のバージョン(2×NLS−SpCas9)も生成した。NLS融合SpCas9およびSpRNアーゼIIIを含有する構築物を293FTヒト胚腎臓(HEK)細胞中に形質移入し、SpCas9およびSpRNアーゼIIIに対するNLSの相対的位置決めが、それらの核局在化効率に影響することが見出された。C末端NLSは標的SpRNアーゼIIIを核にターゲティングするために十分であった一方、SpCas9のNまたはC末端のいずれかへのこれらの特定のNLSの単一コピーの付着は、この系中の適切な核局在化を達成し得なかった。この例において、C末端NLSは、ヌクレオプラスミンのもの(KRPAATKKAGQAKKKK)であり、C末端NLSは、SV40ラージT抗原のもの(PKKKRKV)であった。試験されたSpCas9のバージョンのうち、2×NLS−SpCas9のみが核局在化を示した(図2B)。
化膿性連鎖球菌(S.pyogenes)SF370のCRISPR遺伝子座からのtracrRNAは、2つの転写開始部位を有し、89ヌクレオチド(nt)および171ntの2つの転写物を生じさせ、それは続いて同一の75nt成熟tracrRNAにプロセシングされる。より短い89ntのtracrRNAを哺乳動物細胞中の発現のために選択した(図7Aに説明される発現構築物、図7Bに示されるSurveyorアッセイの結果により決定された機能性を有する)。転写開始部位を+1として標識し、転写ターミネーターおよびノザンブロットによりプロ―ビングされる配列も示す。プロセシングされたtracrRNAの発現もノザンブロットにより確認した。図7Cは、長鎖または短鎖tracrRNA、ならびにSpCas9およびDR−EMX1(1)−DRを担持するU6発現構築物により形質移入された293FT細胞から抽出されたトータルRNAのノザンブロット分析の結果を示す。左および右側のパネルは、それぞれSpRNアーゼIIIを用いず、または用いて形質移入された293FT細胞からのものである。U6は、ヒトU6snRNAをターゲティングするプローブによりブロットされたローディング対照を示す。短鎖tracrRNA発現構築物の形質移入は、十分なレベルのプロセシング形態のtracrRNA(約75bp)をもたらした。極めて少量の長鎖tracrRNAがノザンブロット上で検出される。
正確な転写開始を促進するため、RNAポリメラーゼIIIベースU6プロモーターを選択してtracrRNAの発現をドライブした(図2C)。同様に、U6プロモーターベース構築物を開発して2つのダイレクトリピート(DR、用語「tracrメイト配列」にも包含される;図2C)によりフランキングされている単一スペーサーからなるプレcrRNAアレイを発現させた。最初のスペーサーは、大脳皮質の発達におけるキー遺伝子であるヒトEMX1遺伝子座中の33塩基対(bp)標的部位(30bpのプロトスペーサーと、Cas9のNGG認識モチーフを満たす3bpのCRISPRモチーフ(PAM)配列)をターゲティングするように設計した(図2C)。
哺乳動物細胞中のCRISPR系(SpCas9、SpRNアーゼIII、tracrRNA、およびプレcrRNA)の異種発現がターゲティングされる哺乳動物染色体の開裂を達成し得るか否かを試験するため、HEK293FT細胞をCRISPR成分の組合せにより形質移入した。哺乳動物核中のDSBは部分的には、インデルの形成をもたらす非相同末端結合(NHEJ)経路により修復されるため、Surveyorアッセイを使用して標的EMX1遺伝子座における潜在的な開裂活性を検出した(図8)(例えば、Guschin et al.,2010,Methods Mol Biol 649:247参照)。4つ全てのCRISPR成分の同時形質移入は、プロトスペーサーの最大5.0%の開裂を誘導し得た(図2D参照)。SpRNアーゼIIIを除く全てのCRISPR成分の同時形質移入も、プロトスペーサーの最大4.7%のインデルを誘導し、このことはcrRNA成熟を支援し得る内因性哺乳動物RNアーゼ、例えば、関連DicerおよびDrosha酵素などが存在し得ることを示唆した。残り3つの成分のいずれかを除去すると、CRISPR系のゲノム開裂活性は停止する(図2D)。標的遺伝子座を含有するアンプリコンのサンガーシーケンシングにより開裂活性を確認し;43個のシーケンシングされたクローンのうち5つの突然変異アレル(11.6%)が見出された。種々のガイド配列を使用する同様の実験は、29%と高いインデル割合を生じさせた(図4〜7、12、および13参照)。これらの結果は、哺乳動物細胞中の効率的なCRISPR媒介ゲノム改変のための3成分系を定義する。開裂効率を最適化するため、本出願人らは、tracrRNAの異なるアイソフォームが開裂効率に影響するか否かも試験し、この例示的系において、短鎖(89bp)転写物形態のみがヒトEMX1ゲノム遺伝子座の開裂を媒介し得ることを見出した(図7B)。
図14は、哺乳動物細胞中のcrRNAプロセシングの追加のノザンブロット分析を提供する。図14Aは、2つのダイレクトリピートによりフランキングされている単一スペーサー(DR−EMX1(1)−DR)についての発現ベクターを示す模式図を説明する。ヒトEMX1遺伝子座プロトスペーサー1をターゲティングする30bpのスペーサー(図6参照)およびダイレクトリピート配列を、図14Aの下方の配列中に示す。線は、逆相補配列を使用してEMX1(1)crRNA検出のためのノザンブロットプローブを生成する領域を示す。図14Bは、DR−EMX1(1)−DRを担持するU6発現構築物により形質移入された293FT細胞から抽出されたトータルRNAのノザンブロット分析を示す。左および右側のパネルは、それぞれSpRNアーゼIIIを用いず、または用いて形質移入された293FT細胞からのものである。DR−EMX1(1)−DRは、SpCas9が存在する場合のみ成熟crRNAにプロセシングされ、短鎖tracrRNAはSpRNアーゼIIIの存在に依存的でなかった。形質移入293FTトータルRNAから検出された成熟crRNAは、約33bpであり、化膿性連鎖球菌(S.pyogenes)からの39〜42bpの成熟crRNAよりも短かった。これらの結果は、CRISPR系を真核細胞中に移植し、リプログラミングして内因性哺乳動物標的ポリヌクレオチドの開裂を促進することができることを実証する。
図2は、本実施例に記載の細菌CRISPR系を説明する。図2Aは、化膿性連鎖球菌(Streptococcus pyogenes)SF370からのCRISPR遺伝子座1およびこの系によるCRISPR媒介DNA開裂の提案される機序を示す模式図を説明する。ダイレクトリピート−スペーサーアレイからプロセシングされた成熟crRNAは、Cas9を、相補的プロトスペーサーおよびプロトスペーサー隣接モチーフ(PAM)からなるゲノム標的に指向する。標的−スペーサー塩基対形成時、Cas9は標的DNA中の二本鎖切断を媒介する。図2Bは、化膿性連鎖球菌(S.pyogenes)Cas9(SpCas9)およびRNアーゼIII(SpRNアーゼIII)の、哺乳動物核中への輸送を可能とするための核局在化シグナル(NLS)によるエンジニアリングを説明する。図2Cは、構成的EF1aプロモーターによりドライブされるSpCas9およびSpRNアーゼIIIならびに正確な転写開始および終結を促進するためのRNAPol3プロモーターU6によりドライブされるtracrRNAおよびプレcrRNAアレイ(DR−スペーサー−DR)の哺乳動物発現を説明する。十分なPAM配列を有するヒトEMX1遺伝子座からのプロトスペーサーを、プレcrRNAアレイ中のスペーサーとして使用する。図2Dは、SpCas9媒介少数挿入および欠失についてのsurveyorヌクレアーゼアッセイを説明する。SpCas9を、SpRNアーゼIII、tracrRNA、およびEMX1標的スペーサーを担持するプレcrRNAアレイを用いてまたは用いずに発現させた。図2Eは、標的遺伝子座とEMX1ターゲティングcrRNAとの間の塩基対形成の模式的表示、ならびにSpCas9開裂部位に隣接する微小欠失を示す例示的クロマトグラムを説明する。図2Fは、種々の微小挿入および欠失を示す43個のクローンアンプリコンのシーケンシング分析から同定された突然変異アレルを説明する。点線は、欠失塩基を示し、アラインされず、またはミスマッチの塩基は挿入または突然変異を示す。スケールバー=10μm。
3成分系をさらに簡略化するため、ステム−ループを介して成熟crRNA(ガイド配列を含む)を部分tracrRNAに融合させて天然crRNA:tracrRNA二本鎖を模倣するキメラcrRNA−tracrRNAハイブリッド設計を適応させた(図3A)。同時送達効率を増加させるため、形質移入細胞中のキメラRNAおよびSpCas9の同時発現をドライブするバイシストロニック発現ベクターを創成した(図3Aおよび8)。並行して、バイシストロニックベクターを使用してプレcrRNA(DR−ガイド配列−DR)をSpCas9とともに発現させてcrRNAへのプロセシングを誘導し、tracrRNAを別個に発現させた(図13Bの上図および下図を比較)。図9は、hSpCas9を有するプレcrRNAアレイ(図9A)またはキメラcrRNA(図9B中のガイド配列挿入部位の下流およびEF1αプロモーターの上流の短い線により表わされる)のためのバイシストロニック発現ベクターの模式的説明を提供し、種々のエレメントの局在およびガイド配列挿入の場所を示す。図9B中のガイド配列挿入部位の局在周囲の拡大された配列は、部分DR配列(GTTTAGAGCTA)および部分tracrRNA配列(TAGCAAGTTAAAATAAGGCTAGTCCGTTTTT)も示す。ガイド配列は、アニールされたオリゴヌクレオチドを使用してBbsI部位間に挿入することができる。オリゴヌクレオチドについての配列設計を図9の模式的説明の下方に示し、適切なライゲーションアダプターを示す。WPREは、ウッドチャック肝炎ウイルス転写後調節エレメントを表す。キメラRNA媒介開裂の効率を、上記の同一のEMX1遺伝子座をターゲティングすることにより試験した。Surveyorアッセイおよびアンプリコンのサンガーシーケンシングの両方を使用して、本出願人らは、キメラRNA設計がヒトEMX1遺伝子座の開裂を約4.7%の改変比率で促進することを確認した(図4)。
真核細胞中のCRISPR媒介開裂の一般化可能性を、ヒトEMX1およびPVALB、ならびにマウスTh遺伝子座中の複数部位をターゲティングするキメラRNAを設計することによりヒトおよびマウス細胞の両方において追加のゲノム遺伝子座をターゲティングすることにより試験した。図15は、いくつかの追加のターゲティングされるヒトPVALB(図15A)およびマウスTh(図15B)遺伝子座中のプロトスペーサーの選択を説明する。遺伝子座およびそれぞれの最後のエキソン内の3つのプロトスペーサーの局在の模式図を提供する。下線付き配列は、30bpのプロトスペーサー配列およびPAM配列に対応する3’末端における3bpを含む。センスおよびアンチセンス鎖上のプロトスペーサーを、それぞれDNA配列の上方および下方に示す。ヒトPVALBおよびマウスTh遺伝子座についてそれぞれ6.3%および0.75%の改変比率が達成され、このことは複数の生物にわたる異なる遺伝子座の改変におけるCRISPR系の幅広い適用可能性を実証した(図3Bおよび6)。開裂はキメラ構築物を使用してそれぞれの遺伝子座について3つのスペーサーのうち1つについてのみ検出された一方、同時発現されるプレcrRNA配置を使用した場合、全ての標的配列が27%に達するインデル生成の効率で開裂された(図6)。
図13は、SpCas9をリプログラミングして哺乳動物細胞中の複数のゲノム遺伝子座をターゲティングすることができることのさらなる説明を提供する。図13Aは、下線付き配列により示される5つのプロトスペーサーの局在を示すヒトEMX1遺伝子座の模式図を提供する。図13Bは、プレcrRNAおよびtracrRNAのダイレクトリピート領域間のハイブリダイゼーションを示すプレcrRNA/trcrRNA複合体の模式図(上図)および20bpのガイド配列、ならびにヘアピン構造にハイブリダイズしている部分ダイレクトリピートおよびtracrRNA配列からなるtracrメイトおよびtracr配列を含むキメラRNA設計の模式図(下図)を提供する。ヒトEMX1遺伝子座中の5つのプロトスペーサーにおけるCas9媒介開裂の効力を比較するSurveyorアッセイの結果を、図13Cに説明する。プロセシングされたプレcrRNA/tracrRNA複合体(crRNA)またはキメラRNA(chiRNA)のいずれかを使用してそれぞれのプロトスペーサーをターゲティングする。
RNAの二次構造は分子間相互作用に重要であり得るため、最小自由エネルギーおよびボルツマン加重構造アンサンブルに基づく構造予測アルゴリズムを使用して本出願人らのゲノムターゲティング実験に使用される全てのガイド配列の推定二次構造を比較した(図3B)(例えば、Gruber et al.,2008,Nucleic Acids Research,36:W70参照)。分析により、ほとんどの場合、キメラcrRNAコンテクスト中の有効なガイド配列は二次構造モチーフを実質的に含まない一方、無効なガイド配列は標的プロトスペーサーDNAとの塩基対形成を妨害し得る内部二次構造を形成する可能性がより高いことが明らかになった。したがって、スペーサー二次構造の変動性は、キメラcrRNAを使用する場合にCRISPR媒介干渉の効率に影響し得ることが考えられる。
図3は、例示的発現ベクターを説明する。図3Aは、合成crRNA−tracrRNAキメラ(キメラRNA)およびSpCas9の発現をドライブするためのバイシストロニックベクターの模式図を提供する。キメラガイドRNAは、ゲノム標的部位中のプロトスペーサーに対応する20bpのガイド配列を含有する。図3Bは、ヒトEMX1、PVALB、およびマウスTh遺伝子座をターゲティングするガイド配列、ならびにそれらの予測二次構造を示す模式図を提供する。それぞれの標的部位における改変効率をRNA二次構造図の下方に示す(EMX1、n=216アンプリコンシーケンシングリード;PVALB、n=224リード;Th、n=265リード)。フォールディングアルゴリズムは、図3Bにグレースケールで再現されるレインボースケールにより示されるとおり、それぞれの塩基が予測二次構造を仮定するその確率に従って着色されたアウトプットを生じさせた。SpCas9のためのさらなるベクター設計を図44に示し、それはガイドオリゴのための挿入部位に結合しているU6プロモーター、およびSpCas9コード配列に結合しているCbhプロモーターを取り込む単一発現ベクターを説明する。図44bに示されるベクターは、H1プロモーターに結合しているtracrRNAコード配列を含む。
CRISPRが天然に作動する原核細胞中で二次構造を含有するスペーサーが機能し得るか否かを試験するため、プロトスペーサー担持プラスミドの形質転換干渉を、化膿性連鎖球菌(S.pyogenes)SF370CRISPR遺伝子座1を異種発現する大腸菌(E.coli)株中で試験した(図10)。CRISPR遺伝子座を低コピー大腸菌(E.coli)発現ベクター中にクローニングし、crRNAアレイをDRのペアによりフランキングされている単一スペーサーにより置き換えた(pCRISPR)。異なるpCRISPRプラスミドを保有する大腸菌(E.coli)株を、対応するプロトスペーサーおよびPAM配列を含有するチャレンジプラスミドにより形質転換した(図10C)。細菌アッセイにおいて、全てのスペーサーが効率的なCRISPR干渉を促進した(図4C)。これらの結果は、哺乳動物細胞中のCRISPR活性の効率に影響する追加の因子が存在し得ることを示唆する。
CRISPR媒介開裂の特異性を調査するため、哺乳動物ゲノム中のプロトスペーサー開裂に対するガイド配列中の単一ヌクレオチド突然変異の効果を、単一点突然変異を有する一連のEMX1ターゲティングキメラcrRNAを使用して分析した(図4A)。図4Bは、異なる突然変異体キメラRNAと対形成した場合のCas9の開裂効率を比較するSurveyorヌクレアーゼアッセイの結果を説明する。PAMの5’側の最大12bpの単一塩基ミスマッチは、SpCas9によるゲノム開裂を実質的に停止させた一方、さらなる上流位置に突然変異を有するスペーサーは元のプロトスペーサー標的に対する活性を保持した(図4B)。PAMの他、SpCas9は、スペーサーの最後の12bp内の単一塩基特異性を有する。さらに、CRISPRは、同一EMX1プロトスペーサーをターゲティングするTALEヌクレアーゼ(TALEN)のペアと同程度に効率的にゲノム開裂を媒介し得る。図4Cは、EMX1をターゲティングするTALENの設計を示す模式図を提供し、図4Dは、TALENおよびCas9の効率を比較するSurveyorゲルを示す(n=3)。
エラープローンNHEJ機序を通した哺乳動物細胞中のCRISPR媒介遺伝子編集を達成するための成分のセットを樹立したため、相同組換え(HR)、ゲノム中の正確な編集を作製するための高フィデリティ遺伝子修復経路を刺激するCRISPRの能力を試験した。野生型SpCas9は、NHEJおよびHRの両方を通して修復され得る部位特異的DSBを媒介し得る。さらに、SpCas9のRuvC I触媒ドメイン中のアスパラギン酸からアラニンへの置換(D10A)をエンジニアリングしてヌクレアーゼをニッカーゼに変換し(SpCas9n;図5Aに説明)(例えば、Sapranauskas et al.,2011,Nucleic Acids Research,39:9275;Gasiunas et al.,2012,Proc.Natl.Acad.Sci.USA,109:E2579参照)、その結果、ニック形成されたゲノムDNAが高フィデリティ相同性組換え修復(HDR)を受ける。Surveyorアッセイにより、SpCas9nはEMX1プロトスペーサー標的におけるインデルを生成しないことを確認した。図5Bに説明されるとおり、EMX1ターゲティングキメラcrRNAとSpCas9との同時発現は標的部位中のインデルを生じさせた一方、SpCas9nとの同時発現は生じさせなかった(n=3)。さらに、327個のアンプリコンのシーケンシングは、SpCas9nにより誘導されるいかなるインデルも検出しなかった。同一の遺伝子座を選択し、HEK293FT細胞をEMX1をターゲティングするキメラRNA、hSpCas9またはhSpCas9n、およびプロトスペーサー付近に制限部位のペア(HindIIIおよびNheI)を導入するためのHRテンプレートにより同時形質移入することによりCRISPR媒介HRを試験した。図5Cは、HR方針の模式的説明を、組換え場所の相対局在およびプライマーアニーリング配列(矢印)とともに提供する。SpCas9およびSpCas9nは、実際、EMX1遺伝子中へのHRテンプレートのインテグレーションを触媒した。標的領域のPCR増幅とそれに続くHindIIIによる制限消化により、予測断片サイズ(図5Dに示される制限断片長多型ゲル分析中の矢印)に対応する開裂産物が明らかになり、SpCas9およびSpCas9nは類似レベルのHR効率を媒介した。本出願人らは、ゲノムアンプリコンのサンガーシーケンシングを使用してHRをさらに確認した(図5E)。これらの結果は、哺乳動物ゲノム中のターゲティングされる遺伝子挿入を促進するためのCRISPRの有用性を実証する。野生型SpCas9の14bp(スペーサーからの12bpおよびPAMからの2bp)の標的特異性を考慮すると、ニッカーゼの利用可能性は、一本鎖分解物がエラープローンNHEJ経路のための基質でないため、オフターゲット改変の可能性を顕著に低減させ得る。
アレイスペーサーを有するCRISPR遺伝子座の天然アーキテクチャーを模倣する発現構築物(図2A)を構築して多重化配列ターゲティングの可能性を試験した。EMX1およびPVALBターゲティングスペーサーのペアをコードする単一のCRISPRアレイを使用して、両方の遺伝子座における効率的な開裂が検出された(図4F、crRNAアレイの模式的設計および開裂の効率的な媒介を示すSurveyorブロットの両方を示す)。119bpにより間隔が空いているEMX1内の2つの標的に対するスペーサーを使用する同時DSBを通したより大きいゲノム領域のターゲティングされる欠失も試験し、1.6%の欠失効力(182個のアンプリコンのうち3つ;図4G)が検出された。このことは、CRISPR系が単一ゲノム内の多重化編集を媒介し得ることを実証する。
実施例2:CRISPR系改変および代替例
配列特異的DNA開裂をプログラミングするためにRNAを使用する技能は、種々の研究および産業用途のための新たなクラスのゲノムエンジニアリングツールを定義する。CRISPR系のいくつかの態様は、CRISPRターゲティングの効率および多用途性を増加させるようにさらに改善することができる。最適なCas9活性は、哺乳動物核中に存在するものよりも高いレベルにおけるフリーMg2+の利用可能性に依存し得(例えば、Jinek et al.,2012,Science,337:816参照)、プロトスペーサーのすぐ下流のNGGモチーフについての優先性は、ヒトゲノム中で平均12bpごとでターゲティング能を制限する(図11、ヒト染色体配列のプラスおよびマイナス鎖の両方を評価)。これらの拘束の一部は、微生物メタゲノムにわたるCRISPR遺伝子座の多様性を利用することにより克服することができる(例えば、Makarova et al.,2011,Nat Rev Microbiol,9:467参照)。他のCRISPR遺伝子座を、実施例1に記載のものと同様の方法により哺乳動物細胞環境中に移植することができる。例えば、図12は、CRISPR媒介ゲノム編集を達成するための哺乳動物細胞中の異種発現のためのストレプトコッカス・サーモフィラス(Streptococcus thermophilus)LMD−9のCRISPR1からのII型CRISPR系の適応を説明する。図12Aは、S.サーモフィラス(S.thermophilus)LMD−9のCRISPR1の模式的説明を提供する。図12Bは、S.サーモフィラス(S.thermophilus)CRISPR系のための発現系の設計を説明する。ヒトコドン最適化hStCas9を、構成的EF1αプロモーターを使用して発現させる。tracrRNAおよびcrRNAの成熟バージョンを、U6プロモーターを使用して発現させて正確な転写開始を促進する。成熟crRNAおよびtracrRNAからの配列を説明する。crRNA配列中の小文字「a」により示される単一塩基を使用してRNApolIII転写ターミネーターとして機能するポリU配列を除去する。図12Cは、ヒトEMX1遺伝子座ターゲティングするガイド配列を示す模式図およびそれらの予測二次構造を提供する。それぞれの標的部位における改変効率を、RNA二次構造の下方に示す。この構造を生成するアルゴリズムは、それぞれの塩基を予測二次構造を仮定するその確率に従って着色し、これを図12Cにグレースケールで再現されるレインボースケールにより示す。図12Dは、Surveyorアッセイを使用する標的遺伝子座中のhStCas9媒介開裂の結果を示す。RNAガイドスペーサー1および2は、それぞれ14%および6.4%を誘導した。これらの2つのプロトスペーサー部位における生物学的複製物にわたる開裂活性の統計分析も図6に提供する。図16は、ヒトEMX1遺伝子座中のS.サーモフィラス(S.thermophilus)CRISPR系の追加のプロトスペーサーおよび対応するPAM配列標的の模式図を提供する。2つのプロトスペーサー配列を強調し、NNAGAAWモチーフを満たすそれらの対応するPAM配列を対応する強調配列に対して3’側で下線を付けることにより示す。両方のプロトスペーサーは、アンチセンス鎖をターゲティングする。
実施例3:試料標的配列選択アルゴリズム
規定のCRISPR酵素についての所望のガイド配列長およびCRISPRモチーフ配列(PAM)に基づきインプットDNA配列の両方の鎖上の候補CRISPR標的配列を同定するためのソフトウェアプログラムを設計する。例えば、化膿性連鎖球菌(S.pyogenes)からのCas9についての標的部位は、PAM配列NGGを用いて、インプット配列およびインプットの逆相補鎖の両方の上の5’−N−NGG−3’を探索することにより同定することができる。同様に、S.サーモフィラス(S.thermophilus)CRISPR1のCas9についての標的部位は、PAM配列NNAGAAWを用いて、インプット配列およびインプットの逆相補鎖の両方の上の5’−N−NNAGAAW−3’を探索することにより同定することができる。同様に、S.サーモフィラス(S.thermophilus)CRISPR3のCas9についての標的部位は、PAM配列NGGNGを用いて、インプット配列およびインプットの逆相補鎖の両方の上の5’−N−NGGNG−3’を探索することにより同定することができる。N中の値「x」は、プログラムにより固定し、または使用者により規定することができ、例えば、20である。
DNA標的部位のゲノム中の複数の発生は、非特異的ゲノム編集をもたらし得るため、全ての潜在的な部位を同定した後、プログラムは配列が関連参照ゲノム中で出現する回数に基づき配列をフィルタリング除去する。配列特異性が「シード」配列、例えば、PAM配列自体を含め、PAM配列から5’側の11〜12bpにより決定されるそれらのCRISPR酵素について、フィルタリングステップはシード配列に基づき得る。したがって、追加のゲノム遺伝子座における編集を回避するため、結果を関連ゲノム中のシード:PAM配列の発生数に基づきフィルタリングする。使用者に、シード配列の長さを選択させることができる。使用者に、フィルタ通過の目的のためにゲノム中のシード:PAM配列の発生数を規定させることもできる。デフォルトは、ユニーク配列をスクリーニングすることである。フィルトレーションレベルは、シード配列の長さおよびゲノム中の配列の発生数の両方を変えることにより変更する。プログラムは、さらにまたは代替的に、同定された標的配列の逆相補鎖を提供することにより、報告された標的配列に相補的なガイド配列の配列を提供し得る。
配列選択を最適化する方法およびアルゴリズムのさらなる詳細は、参照により本明細書に組み込まれる米国特許出願第61/836,080号明細書(代理人整理番号44790.11.2022)に見出すことができる。
実施例4:複数のキメラcrRNA−tracrRNAハイブリッドの評価
本実施例は、異なる長さの野生型tracrRNA配列を取り込むtracr配列を有するキメラRNA(chiRNA;ガイド配列、tracrメイト配列、およびtracr配列を単一転写物中で含む)について得られた結果を記載する。図18aは、キメラRNAおよびCas9のためのバイシストロニック発現ベクターの模式図を説明する。Cas9はCBhプロモーターによりドライブされ、キメラRNAはU6プロモーターによりドライブされる。キメラガイドRNAは、からなる。示される種々の位置においてトランケートされたtracr配列(下方の鎖の最初の「U」から転写物の末端に及ぶ)に結合している20bpのガイド配列(N)からなる。ガイドおよびtracr配列は、tracrメイト配列GUUUUAGAGCUAと、それに続くループ配列GAAAにより離隔している。ヒト遺伝子座EMX1およびPVALB遺伝子座におけるCas9媒介インデルについてのSURVEYORアッセイの結果を、それぞれ図18bおよび18cに説明する。矢印は、予測SURVEYOR断片を示す。chiRNAをそれらの「+n」表記により示し、crRNAは、ガイドおよびtracr配列が別個の転写物として発現されるハイブリッドRNAを指す。トリプリケートで実施されたこれらの結果の定量を、図19aおよび19bにヒストグラムにより示し、それぞれ図18bおよび18cに対応する(「N.D.」は、インデルが検出されなかったことを示す)。プロトスペーサーIDおよびそれらの対応するゲノム標的、プロトスペーサー配列、PAM配列、および鎖局在を表Dに提供する。ガイド配列は、ハイブリッド系における別個の転写物の場合、プロトスペーサー配列全体に相補的であるように、またはキメラRNAの場合、下線部にのみ相補的であるように設計した。
Figure 2016505256
細胞培養および形質移入
ヒト胚腎臓(HEK)細胞系293FT(Life Technologies)を、10%のウシ胎仔血清(HyClone)、2mMのGlutaMAX(Life Technologies)、100U/mLのペニシリン、および100μg/mLのストレプトマイシンが補給されたダルベッコ改変イーグル培地(DMEM)中で37℃において5%のCOインキュベーションで維持した。293FT細胞を24ウェルプレート(Corning)上に、形質移入24時間前に1ウェル当たり150,000個の細胞の密度において播種した。Lipofectamine2000(Life Technologies)を製造業者の推奨プロトコルに従って使用して細胞を形質移入した。24ウェルプレートのそれぞれのウェルについて、合計500ngのプラスミドを使用した。
ゲノム改変についてのSURVEYORアッセイ
293FT細胞を上記プラスミドDNAにより形質移入した。細胞を37℃において形質移入後72時間インキュベートしてからゲノムDNAを抽出した。ゲノムDNAは、QuickExtract DNA Extraction Solution(Epicentre)を製造業者のプロトコルに従って使用して抽出した。手短に述べると、ペレット化細胞をQuickExtract溶液中で再懸濁させ、65℃において15分間および98℃において10分間インキュベートした。それぞれの遺伝子についてのCRISPR標的部位をフランキングするゲノム領域を、PCR増幅し(表Eに列記のプライマー)、QiaQuick Spin Column(Qiagen)を製造業者のプロトコルに従って使用して産物を精製した。合計400ngの精製PCR産物を2μlの10×Taq DNA Polymerase PCR緩衝液(Enzymatics)と混合し、超純水で20μlの最終容量とし、リアニーリングプロセスに供してヘテロ二本鎖形成を可能とした:95℃において10分間、−2℃/秒における傾斜で95℃から85℃、−0.25℃/秒における85℃から25℃、および25℃において1分間維持。リアニーリング後、産物をSURVEYORヌクレアーゼおよびSURVEYORエンハンサーS(Transgenomics)により製造業者の推奨プロトコルに従って処理し、4〜20%のNovex TBEポリアクリルアミドゲル(Life Technologies)上で分析した。ゲルをSYBR Gold DNA染色(Life Technologies)により30分間染色し、Gel Docゲルイメージングシステム(Bio−rad)によりイメージングした。定量は、相対バンド強度に基づくものであった。
Figure 2016505256
ユニークCRISPR標的部位のコンピュータによる同定
ヒト、マウス、ラット、ゼブラフィッシュ、ミバエ、および線虫(C.elegans)ゲノム中の化膿性連鎖球菌(S.pyogenes)SF370Cas9(SpCas9)酵素についてのユニーク標的部位を同定するため、本出願人らは、DNA配列の両方の鎖をスキャンし、考えられる全てのSpCas9標的部位を同定するためのソフトウェアパッケージを開発した。この実施例について、それぞれのSpCas9標的部位を20bp配列と、それに続くNGGプロトスペーサー隣接モチーフ(PAM)配列として操作上定義し、本出願人らは、全ての染色体上のこの5’−N20−NGG−3’定義を満たす全ての配列を同定した。非特異的ゲノム編集を防止するため、全ての潜在的な部位を同定した後、全ての標的部位をそれらが関連参照ゲノム中で出現する回数に基づきフィルタリングした。例えば、PAM配列から5’側の約11〜12bp配列であり得る「シード」配列により付与されるCas9活性の配列特異性を利用するため、5’−NNNNNNNNNN−NGG−3’配列を関連ゲノム中でユニークであると選択した。全てのゲノム配列をUCSCゲノムブラウザからダウンロードした(ヒトゲノムhg19、マウスゲノムmm9、ラットゲノムrn5、ゼブラフィッシュゲノムdanRer7、キイロショウジョウバエ(D.melanogaster)ゲノムdm4および線虫(C.elegans)ゲノムce10)。全探索結果は、UCSCゲノムブラウザ情報を使用して閲覧利用可能である。ヒトゲノム中の一部の標的部位の例示的可視化を図21に提供する。
最初に、ヒトHEK293FT細胞中のEMX1遺伝子座内の3つの部位をターゲティングした。それぞれのchiRNAのゲノム改変効率は、DNA二本鎖切断(DSB)および非相同末端結合(NHEJ)DNA損傷修復経路によるその後続の修復から生じる突然変異を検出するSURVEYORヌクレアーゼアッセイを使用して評価した。chiRNA(+n)と表記される構築物は、野生型tracrRNAの最大+n個のヌクレオチドがキメラRNA構築物中に含まれることを示し、nについては48、54、67、および85の値が使用される。野生型tracrRNAのより長い断片を含有するキメラRNA(chiRNA(+67)およびchiRNA(+85))は、3つ全てのEMX1標的部位におけるDNA開裂を媒介し、特にchiRNA(+85)は、ガイドおよびtracr配列を別個の転写物中で発現する対応するcrRNA/tracrRNAハイブリッドよりも顕著に高いレベルのDNA開裂を実証した(図18bおよび19a)。ハイブリッド系(別個の転写物として発現されるガイド配列およびtracr配列)を検出可能な開裂を生じなかったPVALB遺伝子座中の2つの部位も、chiRNAを使用してターゲティングした。chiRNA(+67)およびchiRNA(+85)は、2つのPVALBプロトスペーサーにおける顕著な開裂を媒介し得た(図18cおよび19b)。
EMX1およびPVALB遺伝子座中の5つ全ての標的について、tracr配列長さの増加に伴うゲノム改変効率の一貫した増加が観察された。いかなる理論によっても拘束されるものではないが、tracrRNAの3’末端により形成される二次構造は、CRISPR複合体形成の比率の向上における役割を担い得る。本実施例において使用されるキメラRNAのそれぞれについての予測二次構造の説明を、図21に提供する。二次構造は、最小自由エネルギーおよび分配関数アルゴリズムを使用するRNAfold(http://rna.tbi.univie.ac.at/cgi−bin/RNAfold.cgi)を使用して予測した。それぞれの塩基についての疑似カラー(グレースケールで再現)は、対形成の確率を示す。より長いtracr配列を有するchiRNAは、天然CRISPRcrRNA/tracrRNAハイブリッドにより開裂されない標的を開裂し得たため、キメラRNAをCas9上にその天然ハイブリッド相当物よりも効率的にロードすることができることが考えられる。真核細胞および生物中の部位特異的ゲノム編集のためのCas9の適用を促進するため、化膿性連鎖球菌(S.pyogenes)Cas9について予測される全てのユニーク標的部位をヒト、マウス、ラット、ゼブラフィッシュ、線虫(C.elegans)、およびキイロショウジョウバエ(D.melanogaster)ゲノムにおいてコンピュータにより同定した。キメラRNAは、他の微生物からのCas9酵素について設計してCRISPR RNAプログラマブルヌクレアーゼの標的スペースを拡大することができる。
図22は、最大+85ヌクレオチドの野生型tracrRNA配列、および核局在化配列を有するSpCas9を含むキメラRNAの発現のための例示的なバイシストロニック発現ベクターを説明する。SpCas9は、CBhプロモーターから発現され、bGHポリAシグナル(bGHpA)により終結される。模式図の直下に説明される拡大配列は、ガイド配列挿入部位を包囲する領域に対応し、5’から3’でU6プロモーターの3’部分(最初の陰影領域)、BbsI開裂部位(矢印)、部分ダイレクトリピート(tracrメイト配列GTTTTAGAGCTA、下線付き)、ループ配列GAAA、および+85tracr配列(ループ配列後の下線付き配列)を含む。例示的なガイド配列インサートを、ガイド配列挿入部位の下方に説明し、選択される標的についてのガイド配列のヌクレオチドを「N」により表す。
上記実施例に記載の配列は、以下のとおりである(ポリヌクレオチド配列は、5’から3’である):
U6−短鎖tracrRNA(化膿連鎖球菌(Streptococcus pyogenes)SF370):
Figure 2016505256
U6−長鎖tracrRNA(化膿連鎖球菌(Streptococcus pyogenes)SF370):
Figure 2016505256
U6−DR−BbsI骨格−DR(化膿連鎖球菌(Streptococcus pyogenes)SF370):
Figure 2016505256
U6−キメラRNA−BbsI骨格(化膿連鎖球菌(Streptococcus pyogenes)SF370)
Figure 2016505256
NLS−SpCas9−EGFP:
Figure 2016505256
SpCas9−EGFP−NLS:
Figure 2016505256
NLS−SpCas9−EGFP−NLS:
Figure 2016505256
NLS−SpCas9−NLS:
Figure 2016505256
NLS−mCherry−SpRNアーゼ3:
Figure 2016505256
SpRNアーゼ3−mCherry−NLS:
Figure 2016505256
NLS−SpCas9n−NLS(D10Aニッカーゼ突然変異は小文字である):
Figure 2016505256
hEMX1−HRテンプレート−HindII−NheI:
Figure 2016505256
Figure 2016505256
NLS−StCsn1−NLS:
Figure 2016505256
U6−St_tracrRNA(7−97):
Figure 2016505256
U6−DR−スペーサー−DR(化膿連鎖球菌(S.pyogenes)SF370)
Figure 2016505256
+48tracrRNAを含有するキメラRNA(化膿連鎖球菌(S.pyogenes)SF370)
Figure 2016505256
+54tracrRNAを含有するキメラRNA(化膿連鎖球菌(S.pyogenes)SF370)
Figure 2016505256
+67tracrRNAを含有するキメラRNA(化膿連鎖球菌(S.pyogenes)SF370)
Figure 2016505256
+85tracrRNAを含有するキメラRNA(化膿性連鎖球菌(S.pyogenes)SF370)
Figure 2016505256
CBh−NLS−SpCas9−NLS
Figure 2016505256
Figure 2016505256
Figure 2016505256
S.サーモフィラス(S.thermophilus)LMD−9CRISPR1Cas9のための例示的キメラRNA(NNAGAAWのPAMの場合)
Figure 2016505256
S.サーモフィラス(S.thermophilus)LMD−9CRISPR1Cas9のための例示的キメラRNA(NNAGAAWのPAMの場合)
Figure 2016505256
S.サーモフィラス(S.thermophilus)LMD−9CRISPR1Cas9のための例示的キメラRNA(NNAGAAWのPAMの場合)
Figure 2016505256
S.サーモフィラス(S.thermophilus)LMD−9CRISPR1Cas9のための例示的キメラRNA(NNAGAAWのPAMの場合)
Figure 2016505256
S.サーモフィラス(S.thermophilus)LMD−9CRISPR1Cas9のための例示的キメラRNA(NNAGAAWのPAMの場合)
Figure 2016505256
S.サーモフィラス(S.thermophilus)LMD−9CRISPR1Cas9のための例示的キメラRNA(NNAGAAWのPAMの場合)
Figure 2016505256
S.サーモフィラス(S.thermophilus)LMD−9CRISPR1Cas9のための例示的キメラRNA(NNAGAAWのPAMの場合)
Figure 2016505256
S.サーモフィラス(S.thermophilus)LMD−9CRISPR1Cas9のための例示的キメラRNA(NNAGAAWのPAMの場合)
Figure 2016505256
S.サーモフィラス(S.thermophilus)LMD−9CRISPR1Cas9のための例示的キメラRNA(NNAGAAWのPAMの場合)
Figure 2016505256
S.サーモフィラス(S.thermophilus)LMD−9CRISPR3Cas9のための例示的キメラRNA(NGGNGのPAMの場合)
Figure 2016505256
S.サーモフィラス(S.thermophilus)LMD−9CRISPR3遺伝子座からのCas9のコドン最適化バージョン(5’および3’末端の両方においてNLSを有する)
Figure 2016505256
Figure 2016505256
Figure 2016505256
Figure 2016505256
実施例5:CRISPR−Cas系を使用する細菌ゲノムのRNAによりガイドされる編集
本出願人らは、CRISPR関連エンドヌクレアーゼCas9を使用して肺炎連鎖球菌(Streptococcus pneumoniae)および大腸菌(Escherichia coli)のゲノム中に正確な突然変異を導入した。このアプローチは、非突然変異細胞を殺傷するためのターゲティングされる部位におけるCas9指向開裂に依存し、選択可能なマーカーまたはカウンターセレクション系の必要性を回避した。Cas9特異性は、編集テンプレート上で担持される単一および多ヌクレオチド変化を作製するように短鎖CRISPR RNA(crRNA)配列を変化させることによりリプログラミングした。2つのcrRNAの同時使用により、複数の突然変異導入が可能になった。肺炎連鎖球菌(S.pneumoniae)において、Cas9開裂から生存した細胞のほぼ100%が、所望の突然変異を含有し、大腸菌(E.coli)におけるリコンビニアリングとの組合せで使用された場合は65%が所望の突然変異を含有した。本出願人らは、もっぱら、ターゲティング可能な配列の範囲を定義するためのCas9標的要件を徹底的に分析し、それらの要件に合致しない編集部位のための方針を示し、このことは、細菌ゲノムエンジニアリングのためのこの技術の多用途性を示唆した。
遺伝子機能の理解は、制御様式での細胞内のDNA配列の変化の可能性に依存する。真核生物中の部位特異的突然変異導入は、目的突然変異を含有するテンプレートDNAの相同組換えを促進する配列特異的ヌクレアーゼの使用により達成される。亜鉛フィンガーヌクレアーゼ(ZFN)、転写アクチベーター様エフェクターヌクレアーゼ(TALEN)およびホーミングメガヌクレアーゼを、規定の局在のゲノムを開裂するようにプログラミングすることができるが、それらのアプローチは、それぞれの標的配列のための新たな酵素のエンジニアリングを要求する。原核生物において、突然変異導入法は、編集される遺伝子座中に選択マーカーを導入し、またはカウンターセレクション系を含む2ステッププロセスを要求する。近年、直鎖DNAまたはオリゴヌクレオチドの相同組換えを促進する技術であるファージ組換えタンパク質がリコンビニアリングに使用されている。しかしながら、突然変異の選択が存在しないため、リコンビニアリング効率は比較的低いことがあり(より大きい改変について10−5〜10−6に至る点突然変異について0.1〜10%)、多くの場合、多数のコロニーのスクリーニングを要求する。したがって、安価で、使用が容易であり、効率的な新たな技術が真核および原核生物の両方の遺伝子エンジニアリングに依然として必要とされている。
原核生物のCRISPR(クラスター化等間隔短鎖回分リピート)適応免疫系に関する近年の研究は、配列特異性が小分子RNAによりプログラミングされるヌクレアーゼの同定をもたらしている。CRISPR遺伝子座は、バクテリオファージおよび他の可動遺伝子エレメントのゲノムにマッチする「スペーサー」配列により離隔している一連のリピートから構成される。リピート−スペーサーアレイは、長い前駆体として転写され、リピート配列内でプロセシングされてCRISPR系により開裂される標的配列(プロトスペーサーとしても公知)を規定する小分子crRNAを生成する。プロトスペーサー隣接モチーフ(PAM)としての公知の標的領域のすぐ下流の配列モチーフの存在は、開裂に不可欠である。CRISPR関連(cas)遺伝子は、通常、リピート−スペーサーアレイをフランキングし、crRNAバイオジェネシスおよびターゲティングを担う酵素機構をコードする。Cas9は、crRNAガイドを使用して開裂の部位を規定するdsDNAエンドヌクレアーゼである。Cas9上へのcrRNAガイドのローディングは、crRNA前駆体のプロセシングの間に生じ、前駆体に対する小分子RNAアンチセンス、tracrRNA、およびRNアーゼIIIを要求する。ZFNまたはTALENによるゲノム編集とは対照的に、Cas9標的特異性の変化は、タンパク質エンジニアリングを要求するのではなく、短鎖crRNAガイドの設計のみを要求する。
本出願人らは、近年、肺炎連鎖球菌(S.pneumoniae)において染色体遺伝子座をターゲティングするCRISPR系の導入が、形質転換細胞の殺傷をもたらすことを示した。偶発的生存物が標的領域中の突然変異を含有することが観察され、このことは、内因性標的に対するCas9dsDNAエンドヌクレアーゼ活性をゲノム編集に使用することができることを示唆した。本出願人らは、ゲノム中で組換わり、Cas9標的認識を排除するテンプレートDNA断片の形質転換を通してマーカーレス突然変異を導入することができることを示した。いくつかの異なるcrRNAによるCas9の特異性の指向により、複数の突然変異の同時導入が可能となる。本出願人らは、Cas9ターゲティングのための配列要件も詳細に特性決定し、このアプローチを大腸菌(E.coli)中のゲノム編集のためのリコンビニアリングと組み合わせることができることを示す。
結果:染色体標的のCas9開裂によるゲノム編集
肺炎連鎖球菌(S.pneumoniae)株crR6は、バクテリオファージφ8232.5中に存在する標的配列を開裂するCas9ベースCRISPR系を含有する。この標的を第2の株R68232.5のsrtA染色体遺伝子座中にインテグレートした。PAM領域中の突然変異を含有する変化標的配列を第3の株R6370.1のsrtA遺伝子座中にインテグレートし、この株をCRISPR開裂に対して「免疫性」とした(図28a)。本出願人らは、R68232.5およびR6370.1細胞をcrR6細胞からのゲノムDNAにより形質転換し、R68232.5細胞の良好な形質転換が標的遺伝子座の開裂および細胞死をもたらすはずであることを予測した。この予測とは逆に、本出願人らは、R6370.1形質転換体よりも約10倍小さい効率にもかかわらず、R68232.5形質転換体を単離した(図28b)。8つのR68232.5形質転換体の遺伝子分析(図28)により、大多数は、φ8232.5標的をCas9認識に要求されるプロトスペーサーを含有しないcrR6ゲノム野生型srtA遺伝子座により置き換えることによりCas9ターゲティングの毒性を排除する二重組換えイベントの産物であることが明らかになった。これらの結果は、ゲノム遺伝子座をターゲティングするCRISPR系(ターゲティング構築物)の、ターゲティングされる遺伝子座中への組換えのためのテンプレート(編集テンプレート)と一緒の同時導入はターゲティングされるゲノム編集をもたらす証明であった(図23a)。
簡略化されたゲノム編集のための系を創成するため、本出願人らは、CRISPRターゲティングに非必須であることが示されているcas1、cas2およびcsn2遺伝子を欠失させることにより株crR6中のCRISPR遺伝子座を改変し、株crR6Mを生じさせた(図28a)。この株は、crR6の同一の特性を保持した(図28b)。Cas9ベース編集の効率を増加させ、最適なDNAのテンプレートを使用して導入される突然変異を制御することができることを実証するため、本出願人らは、R68232.5細胞を、いずれかがCas9による開裂に対して耐性であるはずの野生型srtA遺伝子または突然変異体R6370.1標的のPCR産物により同時形質転換した。このことは、ゲノムcrR6DNA単独と比較して形質転換頻度の5から10倍増加をもたらした(図23b)。編集の効率も実質的に増加し、試験された8つのうち8つの形質転換体が野生型srtAコピーを含有し、8つのうち7つがR6370.1標的中に存在するPAM突然変異を含有した(図23bおよび図29a)。まとめると、これらの結果は、Cas9により支援されるゲノム編集の潜在性を示した。
Cas9標的要件の分析:ゲノム中の規定の変化を導入するため、Cas9媒介開裂を停止させ、それにより細胞死を妨害する突然変異を担持する編集テンプレートを使用しなければならない。このことは、標的の欠失または別の配列によるその置換(遺伝子挿入)が求められる場合に達成することが容易である。目的が遺伝子融合物を産生することまたは単一ヌクレオチド突然変異を生成することである場合、Cas9ヌクレアーゼ活性の停止は、PAMまたはプロトスペーサー配列のいずれかを変える編集テンプレート中の突然変異を導入することによってのみ可能である。CRISPR媒介編集の拘束を決定するため、本出願人らは、CRISPRターゲティングを停止させるPAMおよびプロトスペーサー突然変異の徹底的分析を実施した。
従来の研究は、化膿性連鎖球菌(S.pyogenes)Cas9がプロトスペーサーのすぐ下流のNGG PAMを要求することを提案した。しかしながら、極めて限定された数のPAM不活性化突然変異がこれまで記載されているにすぎないため、本出願人らは、体系的分析を実施してCRISPR開裂を排除するプロトスペーサー後の全ての5ヌクレオチド配列を見出した。本出願人らは、ランダム化オリゴヌクレオチドを使用してcrR6またはR6細胞中に形質転換される異種PCR産物中の考えられる全ての1,024個のPAM配列を生成した。機能的PAMを担持する構築物は、R6細胞ではなくcrR6細胞中でCas9により認識および破壊されることが予測された(図24a)。2×10個を超えるコロニーを一緒にプールして全ての標的の同時増幅のためのテンプレートとして使用されるDNAを抽出した。PCR産物をディープシーケンシングし、全1,024個の配列を含有することを見出し、カバレッジは5から42,472リードの範囲であった(セクション「ディープシーケンシングデータの分析」参照)。それぞれのPAMの機能性は、R6試料に対するcrR6試料中のそのリードの相対比率により推定した。PAMの最初の3塩基の分析により、2つの最後の塩基を平均化し、NGGパターンがcrR6形質転換体中で過少であることが明確に示された(図24b)。さらに、次の2つの塩基は、NGG PAMに対する検出可能な効果を有さず(セクション「ディープシーケンシングデータの分析」参照)、このことは、NGGNN配列がCas9活性を許容するために十分であることを実証した。部分ターゲティングは、NAG PAM配列について観察された(図24b)。また、NNGGNパターンは、CRISPRターゲティングを部分的に不活性化し(表G)、このことは、NGGモチーフが1bpだけシフトされた場合に低減された効率でCas9により依然として認識され得ることを示した。これらのデータにより、Cas9標的認識の分子機序が浮き彫りになり、NGG(または相補鎖上のCCN)配列がCas9ターゲティングに十分であることおよび編集テンプレート中のNGGからNAGまたはNNGGNへの突然変異を回避すべきことが明らかになった。これらのトリヌクレオチド配列の高頻度(8bpごとに1回)に起因して、このことは、ゲノムのほぼいずれの位置でも編集することができることを意味する。実際、本出願人らは、ランダムに選択された、種々のPAMを担持する10個の標的を試験し、全てが機能的であることが見出された(図30)。
Cas9媒介開裂を破壊する別の手法は、編集テンプレートのプロトスペーサー領域中の突然変異を導入することである。「シード配列」(PAMに直接隣接する8から10個のプロトスペーサーヌクレオチド)内の点突然変異が、CRISPRヌクレアーゼによる開裂を停止させ得ることが公知である。しかしながら、この領域の正確な長さは不明であり、シード中のどのヌクレオチドの突然変異がCas9標的認識を破壊し得るかが不明確である。本出願人らは、上記の同一のディープシーケンシングアプローチに従ってcrRNAとの塩基対接触に関与するプロトスペーサー配列全体をランダム化し、ターゲティングを破壊する全ての配列を決定した。R68232.5細胞中に存在するspc1標的中の20個のマッチングヌクレオチド(14)(図23a)のそれぞれの位置をランダム化し、crR6およびR6細胞中に形質転換した(図24a)。シード配列の存在と一致して、PAMのすぐ上流の12ヌクレオチドの突然変異のみが、Cas9による開裂を停止させた(図24c)。しかしながら、異なる突然変異は、著しく異なる効果を示した。シードの(PAMから)遠位位置(12から7位)は、ほとんどの突然変異を許容し、1つの特定の塩基置換のみターゲティングを停止させた。対照的に、近位位置(6から1位、3位を除く)における任意のヌクレオチドの突然変異は、それぞれの特定の置換について異なるレベルにおいてであるが、Cas9活性を排除した。3位においては、2つの置換のみがCRISPR活性に影響し、強度が異なった。本出願人らは、シード配列突然変異がCRISPRターゲティングを妨害し得るが、シードのそれぞれの位置において作製することができるヌクレオチド変化に関して制限が存在することを結論付けた。さらに、これらの制限は、異なるスペーサー配列によって変動する可能性が最も高いことがある。したがって、本出願人らは、PAM配列中の突然変異が、可能であれば、好ましい編集方針であるはずであると考える。あるいは、シード配列中の複数の突然変異を導入してCas9ヌクレアーゼ活性を妨害することができる。
肺炎連鎖球菌(S.pneumonia)中のCas9媒介ゲノム編集:ターゲティングされるゲノム編集の迅速で効率的な方法を開発するため、本出願人らは、スペーサーをPCRにより容易に導入することができる株である株crR6Rkをエンジニアリングした(図33)。本出願人らは、活性を容易に計測することができる肺炎連鎖球菌(S.pneumonia)のβ−ガラクトシダーゼ(bgaA)遺伝子を編集することを決定した。本出願人らは、この酵素の活性部位中のアミノ酸のアラニン置換を導入した:R481A(R→A)およびN563A、E564A(NE→AA)突然変異。異なる編集方針を説明するため、本出願人らは、PAM配列およびプロトスペーサーシードの両方の突然変異を設計した。両方の場合、TGG PAM配列(相補鎖中のCCA、図26)に隣接するβ−ガラクトシダーゼ遺伝子の領域に相補的なcrRNAを有する同一のターゲティング構築物を使用した。R→A編集テンプレートは、プロトスペーサーシード配列上の3ヌクレオチドミスマッチを創成した(CGTからGCA、BtgZI制限部位も導入)。NE→AA編集テンプレートにおいて、本出願人らは、不活性PAMを創成する同義的突然変異(TGGからTTG)を、プロトスペーサー領域の218nt下流の突然変異(AAT GAAからGCT GCA、TseI制限部位も生成)とともに同時に導入した。この最後の編集方針は、遠いPAMを使用して適切な標的を選択することが困難であり得る場所に突然変異を作製する可能性を実証した。例えば、肺炎連鎖球菌(S.pneumoniae)R6ゲノムは、39.7%のGC含有率を有し、12bpごとに平均1つのPAMモチーフを含有するが、一部のPAMモチーフは、最大194bpだけ離隔している(図33)。さらに、本出願人らは、6,664bpのΔbgaAインフレーム欠失を設計した。3つ全ての場合、ターゲティングおよび編集テンプレートの同時形質転換は、野生型bgaA配列を含有する対照編集テンプレートによる同時形質転換よりも10倍カナマイシン耐性の細胞を産生した(図25b)。本出願人らは、24個の形質転換体(それぞれの編集実験について8つ)をゲノタイピングし、1つを除き全てが所望の変化を取り込むことを見出した(図25c)。DNAシーケンシングによっても、導入された突然変異の存在だけでなく、標的領域中の二次突然変異の不存在を確認した(図29b、c)。最後に、本出願人らは、β−ガラクトシダーゼ活性を計測して全ての編集細胞が予測表現型を示すことを確認した(図25d)。
Cas9媒介編集を使用して生物学的経路の研究のために複数の突然変異を生成することもできる。本出願人らは、表面タンパク質をグラム陽性細菌のエンベロープに固定するソルターゼ依存性経路についてそれを説明することを決定した。本出願人らは、クロラムフェニコール耐性ターゲティング構築物およびΔsrtA編集テンプレートの同時形質転換(図33a、b)と、それに続くΔbgaAを置き換えるカナマイシン耐性ターゲティング構築物を使用するΔbgaA欠失によりソルターゼ欠失を導入した。肺炎連鎖球菌(S.pneumoniae)において、β−ガラクトシダーゼは、ソルターゼにより細胞壁に共有結合している。したがって、srtAの欠失は、上清中への表面タンパク質の放出をもたらす一方、二重欠失は、検出可能なβ−ガラクトシダーゼ活性を有さない(図34c)。このような逐次選択を必要な回数繰り返して複数の突然変異を生成することができる。
これらの2つの突然変異は、同時に導入することもできる。本出願人らは、2つのスペーサー、1つのマッチングsrtAおよび他のマッチングbgaAを含有するターゲティング構築物を設計し、それを両方の編集テンプレートとともに同時に同時形質転換した(図25e)。形質転換体の遺伝子分析により、編集が8つのケースのうち6つに生じることが示された(図25f)。特に、残りの2つのクローンは、それぞれΔsrtAおよびΔbgaA欠失のいずれかを含有し、このことは、Cas9を使用するコンビナトリアル突然変異導入を実施する可能性を示唆した。最後に、CRISPR配列を排除するため、本出願人らは、bgaA標的およびスペクチノマイシン耐性遺伝子を野生型株R6からのゲノムDNAとともに含有するプラスミドを導入した。プラスミドを保持するスペクチノマイシン耐性形質転換体は、CRISPR配列を排除した(図34a、d)。
編集の機序および効率:Cas9によるゲノム編集の基礎をなす機序を理解するため、本出願人らは、編集効率をCas9開裂とは独立して計測する実験を設計した。本出願人らは、ermAMエリスロマイシン耐性遺伝子をsrtA遺伝子座中にインテグレートし、Cas9媒介編集を使用して早期終止コドンを導入した(図33)。得られた株(JEN53)は、ermAM(終止)アレルを含有し、エリスロマイシンに対して感受性である。この株を使用してCas9開裂を使用してまたは使用せずに抗生物質耐性を復帰させる細胞の率を計測することによりermAM遺伝子が修復される効率を評価することができる。JEN53を、野生型アレルを復帰させる編集テンプレートにより、ermAM(終止)アレルをターゲティングするカナマイシン耐性CRISPR構築物(CRISPR::ermAM(終止))またはスペーサーを有さない対照構築物(CRISPR::φ)のいずれかと一緒に形質転換した(図26a、b)。カナマイシン選択の不存在下、編集されたコロニーの率は、10-2(エリスロマイシン耐性cfu/総cfu)(図26c)のオーダーであり、これは、非編集細胞に対するCas9媒介選択を有さない組換えのベースライン頻度を表した。しかしながら、カナマイシン選択を適用し、対照CRISPR構築物を同時形質転換した場合、編集されたコロニーの率は、約10−1(カナマイシンおよびエリスロマイシン耐性cfu/カナマイシン耐性cfu)(図26c)に増加した。この結果は、CRISPR遺伝子座の組換えの選択が、ゲノムのCas9開裂とは独立してermAM遺伝子座の組換えを同時選択したことを示し、このことは、細胞の部分集団が形質転換および/または組換えを受ける傾向があることを示唆する。CRISPR::ermAM(終止)構築物の形質転換とそれに続くカナマイシン選択は、エリスロマイシン耐性の編集細胞の率の99%への増加をもたらした(図26c)。この増加が非編集細胞の殺傷により引き起こされるか否かを決定するため、本出願人らは、JEN53細胞のCRISPR::ermAM(終止)またはCRISPR::φ構築物による同時形質転換後に得られたカナマイシン耐性コロニー形成単位(cfu)を比較した。
本出願人らは、ermAM(終止)構築物(2.5×10/4.7×10、図35a)の形質転換後に5.3倍少ないカナマイシン耐性コロニーを計数し、Cas9による染色体遺伝子座のターゲティングが実際に非編集細胞の殺傷をもたらすことを示唆する結果であった。最後に、細菌染色体中のdsDNA分解の導入は、損傷DNAの組換えの比率を増加させる修復機序をトリガーすることが公知であるため、本出願人らは、Cas9による開裂が編集テンプレートの組換えを誘導するか否かを調査した。本出願人らは、CRISPR::erm(終止)構築物による同時形質転換後にCRISPR::φ構築物よりも2.2倍多いコロニーを計数し(図26d)、このことは、適度な組換えの誘導が存在することを示した。まとめると、これらの結果は、形質転換可能な細胞の同時選択、Cas9媒介開裂による組換えの誘導および非編集細胞に対する選択は、それぞれ、肺炎連鎖球菌(S.pneumoniae)中の高い効率のゲノム編集に寄与することを示した。
Cas9によるゲノムの開裂が非編集細胞を殺傷するため、編集テンプレートを受容しなかったものを除きカナマイシン耐性含有Cas9カセットを受容したいかなる細胞も回収されないことが予測される。しかしながら、編集テンプレートの不存在下、本出願人らは、CRISPR::ermAM(終止)構築物の形質転換後に多くのカナマイシン耐性コロニーを回収した(図35a)。CRISPR誘導死から「エスケープ」するこれらの細胞は、本方法の限界を決定するバックグラウンドを産生した。このバックグラウンド頻度は、CRISPR::ermAM(終止)/CRISPR::φcfuの比として算出することができ、この実験においては2.6×10−3(7.1×10/2.7×10)であり、これは、編集テンプレートの組換え頻度がこの値未満である場合、CRISPR選択がバックグラウンドを上回って所望の突然変異体を効率的に回収し得ないことを意味する。これらの細胞の起源を理解するため、本出願人らは、8つのバックグラウンドコロニーをゲノタイピングし、7つがターゲティングスペーサーを欠失し(図35b)、1つがCas9中の推定不活性化突然変異を保有することを見出した(図35c)。
大腸菌(E.coli)中のCas9によるゲノム編集:CRISPR−Cas系の染色体インテグレーションを通すCas9ターゲティングの活性化は、高度に組換え性の生物中でのみ可能である。他の微生物に適用可能なより一般的な方法を開発するため、本出願人らは、プラスミドベースCRISPR−Cas系を使用して大腸菌(E.coli)中のゲノム編集を実施することを決定した。2つのプラスミドを構築した:tracrRNA、Cas9およびクロラムフェニコール耐性カセットを担持するpCas9プラスミド(図36)、およびCRISPRスペーサーのアレイを担持するpCRISPRカナマイシン耐性プラスミド。CRISPR選択とは独立した編集の効率を計測するため、本出願人らは、ストレプトマイシン耐性を付与するrpsL遺伝子中のAからCへのトランスバージョンを導入することを求めた。本出願人らは、野生型rpsLアレルのCas9開裂をガイドするが、突然変異体rpsLアレルのCas9開裂をガイドしないスペーサーを保有するpCRISPR::rpsLプラスミドを構築した(図27b)。pCas9プラスミドを最初に大腸菌(E.coli)MG1655中に導入し、得られた株をpCRISPR::rpsLプラスミドおよびAからCへの突然変異を含有する編集オリゴヌクレオチドW542により同時形質転換した。pCRISPR::rpsLプラスミドの形質転換後にストレプトマイシン耐性コロニーのみが回収され、このことは、Cas9開裂がオリゴヌクレオチドの組換えを誘導することを示唆した(図37)。しかしながら、ストレプトマイシン耐性コロニーの数は、推定上Cas9による開裂からエスケープする細胞であるカナマイシン耐性コロニーの数よりも2桁低かった。したがって、これらの条件において、Cas9による開裂は、突然変異の導入を促進したが、効率は、「エスケーパー」のバックグラウンドを上回って突然変異体細胞を選択するために十分でなかった。
大腸菌(E.coli)中のゲノム編集の効率を改善するため、本出願人らは、Cas9誘導細胞死を使用するリコンビニアリングにより本発明のCRISPR系を適用して所望の突然変異を選択した。pCas9プラスミドを、□−redファージのGam、ExoおよびBeta機能を含有するリコンビニアリング株HME63(31)中に導入した。得られた株を、pCRISPR::rpsLプラスミド(またはpCRISPR::φ対照)およびW542オリゴヌクレオチドにより同時形質転換した(図27a)。リコンビニアリング効率は、対照プラスミドを使用した場合にストレプトマイシン耐性になる総細胞数の率として算出して5.3×10−5であった(図27c)。対照的に、pCRISPR::rpsLプラスミドによる形質転換は、突然変異体細胞の割合を65±14%に増加させた(図27cおよび29f)。本出願人らは、cfuの数がpCRISPR::rpsLプラスミドの形質転換後に対照プラスミドよりも約3桁だけ低減することを観察し(4.8×10/5.3×10、図38a)、このことは、選択が非編集細胞のCRISPR誘導死から生じることを示唆した。本出願人らの方法の重要なパラメータであるCas9開裂が不活性化される比率を計測するため、本出願人らは、細胞をpCRISPR::rpsLまたは対照プラスミドのいずれかによりW542編集オリゴヌクレオチドを用いずに形質転換した(図38a)。CRISPR「エスケーパー」のこのバックグラウンドは、pCRISPR::rpsL/pCRISPR::φcfuの比として計測して、2.5×10-4(1.2×10/4.8×10)であった。これらのエスケーパーの8つのゲノタイピングにより、全ての場合、ターゲティングスペーサーの欠失が存在することが明らかになった(図38b)。このバックグラウンドは、rpsL突然変異のリコンビニアリング効率5.3×10−5よりも高く、このことは、65%の編集細胞を得るためにCas9開裂はオリゴヌクレオチド組換えを誘導しなければならないことを示唆した。これを確認するため、本出願人らは、pCRISPR::rpsLまたはpCRISPR::φの形質転換後のカナマイシンおよびストレプトマイシン耐性cfuの数を比較した(図27d)。肺炎連鎖球菌(S.pneumoniae)の場合と同様に、本出願人らは、約6.7倍(2.0×10-4/3.0×10-5)の適度な組換えの誘導を観察した。まとめると、これらの結果は、CRISPR系がリコンビニアリングにより導入された突然変異を選択する方法を提供することを示した。
本出願人らは、CRISPR−Cas系を、野生型細胞を殺傷するターゲティング構築物およびCRISPR開裂を排除し、所望の突然変異を誘導する編集テンプレートの同時形質転換により細菌中のターゲティングされるゲノム編集に使用することができることを示した。異なるタイプの突然変異(挿入、欠失またはスカーレス単一ヌクレオチド置換)を生成することができる。複数の突然変異を同時に導入することができる。CRISPR系を使用する編集の特異性および多用途性は、Cas9エンドヌクレアーゼのいくつかのユニークな特性に依存した:(i)その標的特異性は、酵素エンジニアリングを必要とせずに小分子RNAによりプログラミングすることができ、(ii)標的特異性は、20bpのRNA−DNA相互作用により決定して極めて高く、非標的認識の可能性は低く、(iii)ほぼいずれの配列もターゲティングすることができ、要件は、隣接NGG配列の存在のみであり、(iv)NGG配列中のほぼいずれの突然変異も、およびプロトスペーサーのシード配列中の突然変異は、ターゲティングを排除する。
本出願人らは、CRISPR系を使用するゲノムエンジニアリングが、高度に組換え性の細菌、例えば、肺炎連鎖球菌(S.pneumoniae)中だけでなく、大腸菌(E.coli)中でも機能することを示した。大腸菌(E.coli)中の結果は、本方法がプラスミドを導入することができる他の微生物に適用可能であり得ることを示唆した。大腸菌(E.coli)において、このアプローチは、突然変異原性オリゴヌクレオチドのリコンビニアリングを補完する。リコンビニアリングが可能でない微生物中でこの方法論を使用するため、プラスミド上の編集テンプレートを提供することにより宿主相同組換え機構を使用することができる。さらに、蓄積した証拠は、染色体のCRISPR媒介開裂が、多くの細菌および古細菌の細胞死をもたらすことを示すため、編集目的のための内因性CRISPR−Cas系の使用を想定することが可能である。
肺炎連鎖球菌(S.pneumoniae)および大腸菌(E.coli)の両方において、本出願人らは、編集が形質転換可能な細胞の同時選択およびCas9開裂による標的部位における組換えの小さい誘導により促進されるが、編集に大部分寄与する機序が非編集細胞に対する選択であることを観察した。したがって、本方法の主な限定は、CRISPR誘導細胞死からエスケープし、所望の突然変異を欠く細胞のバックグラウンドの存在であった。本出願人らは、これらの「エスケーパー」が、推定上、ターゲティングスペーサーをフランキングするリピート配列の組換え後に主としてターゲティングスペーサーの欠失を通して生じることを示した。さらなる改善は、機能的crRNAのバイオジェネシスを依然として支持し得るが、組換えを排除するために互いに十分に異なるフランキング配列のエンジニアリングにフォーカスし得る。あるいは、キメラcrRNAのダイレクト形質転換を調査することができる。大腸菌(E.coli)の特定の場合、CRISPR−Cas系の構築は、この生物をクローニング宿主としても使用した場合に可能でなかった。本出願人らは、この問題をCas9およびtracrRNAをCRISPRアレイとは異なるプラスミド上に配置することにより解決した。誘導系のエンジニアリングもこの限定を回避し得る。
新たなDNA合成技術が高スループットで任意の配列をコスト効率良く創成する技能を提供するが、合成DNAを生細胞中にインテグレートして機能的ゲノムを創成する困難性が残る。近年、同時選択MAGE方針が、所与の遺伝子座またはその周囲における組換えを達成する可能性が増加した細胞の部分集団を選択することによりリコンビニアリングの突然変異効率を改善するために示された。この方法において、選択可能な突然変異の導入を使用して近くの選択不可能な突然変異を生成する機会を増加させる。この方針により提供される間接的選択とは対照的に、CRISPR系の使用により、所望の突然変異を直接選択し、それを高い効率で回収することが可能となる。これらの技術は、遺伝子エンジニアのツールボックスを増大し、DNA合成と一緒に、それらは遺伝子機能を解読し、バイオテクノロジー目的のために生物を操作する技能を実質的に進歩させ得る。2つの他の試験も、哺乳動物ゲノムのCRISPR支援エンジニアリングに関する。これらのcrRNA指向ゲノム編集技術は、基礎および医科学において幅広く有用であり得ることが予測される。
株および培養条件。肺炎連鎖球菌(S.pneumoniae)株R6は、Alexander Tomasz博士により提供された。株crR6は上記試験において生成した。肺炎連鎖球菌(S.pneumoniae)の液体培養物をTHYE培地(30g/lのTodd−Hewitt寒天、5g/lの酵母エキス)中で増殖させた。細胞を、5%の脱線維素ヒツジ血液が補給されたトリプシンダイズ寒天(TSA)上でプレーティングした。適宜、抗生物質を以下のとおり添加した:カナマイシン(400μg/ml)、クロラムフェニコール(5μg/ml)、エリスロマイシン(1μg/ml)ストレプトマイシン(100μg/ml)またはスペクチノマイシン(100μg/ml)。β−ガラクトシダーゼ活性の計測は、上記のとおりMillerアッセイを使用して行った。
大腸菌(E.coli)株MG1655およびHME63(MG1655に由来、Δ(argF−lac)U169λcI857Δcro−bioA galK tyr145UAG mutS<>amp)(31)は、それぞれJeff RobertsおよびDonald Courtにより提供された。大腸菌(E.coli)の液体培養物をLB培地(Difco)中で増殖させた。適宜、抗生物質を以下のとおり添加した:クロラムフェニコール(25μg/ml)、カナマイシン(25μg/ml)およびストレプトマイシン(50μg/ml)。
肺炎連鎖球菌(S.pneumoniae)形質転換。コンピテント細胞を上記のとおり調製した(23)。全てのゲノム編集形質転換のため、細胞を穏やかに氷上で解凍し、100ng/mlのコンピテンス刺激ペプチドCSP1(40)が補給された10容量のM2培地中で再懸濁させ、次いで編集構築物を添加した(編集構築物は、0.7ng/μlから2.5μg/ulの最終濃度において細胞に添加した)。細胞を37℃において20分間インキュベートしてから、2μlのターゲティング構築物を添加し、次いで37℃において40分間インキュベートした。細胞の段階希釈物を適切な培地上でプレーティングしてコロニー形成単位(cfu)計数値を測定した。
大腸菌(E.coli)ラムダ−redリコンビニアリング。株HME63を全てのリコンビニアリング実験に使用した。リコンビニアリング細胞を調製し、既に公開されているプロトコルに従って取り扱った(6)。手短に述べると、プレートから得られた単一コロニーから接種された2mlの一晩培養物(LB培地)を、30℃において増殖させた。一晩培養物を100倍希釈し、振とう(200rpm)させながら30℃においてOD600が0.4〜0.5になるまで(約3時間)増殖させた。ラムダred誘導のため、培養物を42℃の水浴に移して200rpmにおいて15分間振とうさせた。誘導直後、培養物を氷水スラリー中で回転させ、氷上で5〜10分間冷蔵した。次いで、細胞をプロトコルに従って洗浄およびアリコート処理した。電気的形質転換のため、50μlの細胞を1mMの塩不含オリゴ(IDT)または100〜150ngのプラスミドDNA(QIAprep Spin Miniprep Kit,Qiagenにより調製)と混合した。1mmのGene Pulserキュベット(Bio−rad)を1.8kVにおいて使用して細胞をエレクトロポレートし、1mlの室温LB培地中で直ちに再懸濁させた。細胞を30℃において1〜2時間回収してから適切な抗生物質耐性を有するLB寒天上でプレーティングし、32℃において一晩インキュベートした。
肺炎連鎖球菌(S.pneumoniae)ゲノムDNAの調製。形質転換目的のため、Wizard Genomic DNA Purification Kitを製造業者(Promega)により提供された指示書に従って使用して肺炎連鎖球菌(S.pneumoniae)ゲノムDNAを抽出した。ゲノタイピング目的のため、700ulの一晩肺炎連鎖球菌(S.pneumoniae)培養物をペレット化し、60ulのリゾチーム溶液(2mg/ml)中で再懸濁させ、37℃において30分間インキュベートした。QIAprep Spin Miniprep Kit(Qiagen)を使用してゲノムDNAを抽出した。
株構築。本試験において使用された全てのプライマーを表Gに提供する。肺炎連鎖球菌(S.pneumoniae)crR6Mを生成するため、中間株LAM226を作製した。この株において、肺炎連鎖球菌(S.pneumoniae)crR6株のCRISPRアレイに隣接するaphA−3遺伝子(カナマイシン耐性を提供)を、cat遺伝子(クロラムフェニコール耐性を提供)により置き換えた。手短に述べると、プライマーL448/L444およびL447/L481をそれぞれ使用してcrR6ゲノムDNAを増幅した。cat遺伝子をプラスミドpC194からプライマーL445/L446を使用して増幅した。それぞれのPCR産物をゲル精製し、3つ全てをプライマーL448/L481を用いてSOEing PCRにより融合させた。得られたPCR産物をコンピテント肺炎連鎖球菌(S.pneumoniae)crR6細胞中に形質転換し、クロラムフェニコール耐性形質転換体を選択した。肺炎連鎖球菌(S.pneumoniae)crR6Mを生成するため、プライマーL409/L488およびL448/L481をそれぞれ使用して肺炎連鎖球菌(S.pneumoniae)crR6ゲノムDNAをPCRにより増幅した。それぞれのPCR産物をゲル精製し、それらをプライマーL409/L481を用いてSOEing PCRにより融合させた。得られたPCR産物をコンピテント肺炎連鎖球菌(S.pneumoniae)LAM226細胞に形質転換し、カナマイシン耐性形質転換体を選択した。
肺炎連鎖球菌(S.pneumoniae)crR6Rcを生成するため、プライマーL430/W286を使用して肺炎連鎖球菌(S.pneumoniae)crR6MゲノムDNAをPCRにより増幅し、プライマーW288/L481を使用して肺炎連鎖球菌(S.pneumoniae)LAM226ゲノムDNAをPCRにより増幅した。それぞれのPCR産物をゲル精製し、プライマーL430/L481を用いてそれらをSOEing PCRにより融合させた。得られたPCR産物をコンピテント肺炎連鎖球菌(S.pneumoniae)crR6M細胞中に形質転換し、クロラムフェニコール耐性形質転換体を選択した。
肺炎連鎖球菌(S.pneumoniae)crR6Rkを生成するため、プライマーL430/W286およびW287/L481をそれぞれ使用して肺炎連鎖球菌(S.pneumoniae)crR6MゲノムDNAをPCRにより増幅した。それぞれのPCR産物をゲル精製し、プライマーL430/L481を用いてそれらをSOEing PCRにより融合させた。得られたPCR産物をコンピテント肺炎連鎖球菌(S.pneumoniae)crR6Rc細胞中に形質転換し、カナマイシン耐性形質転換体を選択した。
JEN37を生成するため、プライマーL430/W356およびW357/L481をそれぞれ使用して肺炎連鎖球菌(S.pneumoniae)crR6RkゲノムDNAをPCRにより増幅した。それぞれのPCR産物をゲル精製し、プライマーL430/L481を用いてそれらをSOEing PCRにより融合させた。得られたPCR産物をコンピテント肺炎連鎖球菌(S.pneumoniae)crR6Rc細胞中に形質転換し、カナマイシン耐性形質転換体を選択した。
JEN38を生成するため、プライマーL422/L461およびL459/L426をそれぞれ使用してR6ゲノムDNAを増幅した。プライマーL457/L458を使用してプラスミドpFW1543からermAM遺伝子(エリスロマイシン耐性を規定)を増幅した。それぞれのPCR産物をゲル精製し、プライマーL422/L426を用いて3つ全てをSOEing PCRにより融合させた。得られたPCR産物をコンピテント肺炎連鎖球菌(S.pneumoniae)crR6Rc細胞中に形質転換し、エリスロマイシン耐性形質転換体を選択した。
肺炎連鎖球菌(S.pneumoniae)JEN53は2ステップで生成した。最初に、JEN43を図33に説明されるとおり構築した。JEN53は、JEN25のゲノムDNAをコンピテントJEN43細胞中に形質転換し、クロラムフェニコールおよびエリスロマイシンの両方に基づき選択することにより生成した。
肺炎連鎖球菌(S.pneumoniae)JEN62を生成するため、プライマーW256/W365およびW366/L403をそれぞれ使用して肺炎連鎖球菌(S.pneumoniae)crR6RkゲノムDNAをPCRにより増幅した。それぞれのPCR産物を精製し、ギブソン・アセンブリによりライゲートした。アセンブリ産物をコンピテント肺炎連鎖球菌(S.pneumoniae)crR6Rc細胞中に形質転換し、カナマイシン耐性形質転換体を選択した。
プラスミド構築。pDB97は、オリゴヌクレオチドB296/B297のリン酸化およびアニーリングと、それに続くEcoRI/BamHIにより消化されたpLZ12spec中へのライゲーションを通して構築した。本出願人らは、pLZ12specを完全にシーケンシングし、その配列をgenebankに寄託した(アクセッション番号:KC112384)。
pDB98は、CRISPRリーダー配列をリピート−スペーサー−リピート単位と一緒にpLZ12spec中にクローニングした後に得た。このことは、プライマーB298/B320およびB299/B321を用いるcrR6RcDNAの増幅と、それに続く両方の産物のSOEing PCRおよび制限部位BamHI/EcoRIを有するpLZ12spec中のクローニングを通して達成した。このように、pDB98中のスペーサー配列を、新たなスペーサーのスカーレスクローニングを可能とする反対方向の2つのBsaI制限部位を含有するようにエンジニアリングした。
pDB99からpDB108は、オリゴヌクレオチドB300/B301(pDB99)、B302/B303(pDB100)、B304/B305(pDB101)、B306/B307(pDB102)、B308/B309(pDB103)、B310/B311(pDB104)、B312/B313(pDB105)、B314/B315(pDB106)、B315/B317(pDB107)、B318/B319(pDB108)のアリーリングと、それに続くBsaIにより切断されたpDB98中のライゲーションにより構築した。
pCas9プラスミドは、以下のとおり構築した。不可欠なCRISPRエレメントを、ギブソン・アセンブリのためのフランキングホモロジーアームを用いて化膿性連鎖球菌(Streptococcos pyogenes)SF370ゲノムDNAから増幅した。tracrRNAおよびCas9は、オリゴHC008およびHC010を用いて増幅した。リーダーおよびCRISPR配列は、スペーサーの容易な挿入を促進するために2つのBsaI IIS型部位が2つのダイレクトリピート間に導入されるようにHC011/HC014およびHC015/HC009を用いて増幅した。
pCRISPRは、オリゴB298+B299を用いる増幅ならびにEcoRIおよびBamHIを用いる制限を通してpCas9CRISPRアレイをpZE21−MCS1中でサブクローニングすることにより構築した。オリゴB352+B353をアリーリングし、BsaI切断pCRISPR中にクローニングすることによりrpsLターゲティングスペーサーをクローニングし、pCRISPR::rpsLを得た。
ターゲティングおよび編集構築物の生成。ゲノム編集に使用されるターゲティング構築物は、左側PCRおよび右側PCRのギブソン・アセンブリにより作製した(表G)。編集構築物は、適用可能な場合、PCR産物A(PCR A)、PCR産物B(PCR B)およびPCR産物C(PCR C)を融合するSOEing PCRにより作製した(表G)。CRISPR::φおよびCRISPR::ermAM(終止)ターゲティング構築物は、JEN62およびcrR6ゲノムDNAぞれぞれのオリゴL409およびL481を用いるPCR増幅により生成した。
ランダム化PAMまたはプロトスペーサー配列を用いる標的の生成。スペーサー1標的後の5ヌクレオチドを、プライマーW377/L426を用いるR68232.5ゲノムDNAの増幅を通してランダム化した。次いで、このPCR産物を、プライマーL422/W376を用いて同一テンプレートから増幅されたcat遺伝子およびsrtA上流領域とアセンブルした。80ngのアセンブルされたDNAを使用して株R6およびcrR6を形質転換した。ランダム化試料のための試料は、以下のプライマーを使用して調製した:標的の塩基1〜10をランダム化するためのB280〜B290/L426および塩基10〜20をランダム化するためのB269〜B278/L426。プライマーL422/B268およびL422/B279を使用してそれぞれ最初および最後の10個のPCR産物とアセンブルすべきcat遺伝子およびsrtA上流領域を増幅した。アセンブルされた構築物を一緒にプールし、R6およびcrR6中で30ngを形質転換した。形質転換後、細胞をクロラムフェニコール選択に基づきプレーティングした。それぞれの試料について、2×10個を超える細胞を1mlのTHYE中で一緒にプールし、ゲノムDNAをPromega Wizardキットにより抽出した。プライマーB250/B251を使用して標的領域を増幅した。PCR産物をタグ化し、1つのIllumina MiSeqペアエンドレーン上で300サイクルを使用して流した。
ディープシーケンシングデータの分析
ランダム化PAM:ランダム化PAM実験について、crR6について3,429,406リード、R6について3,253,998リードが得られた。これらの半数のみがPAM標的に対応する一方、他の半数がPCR産物の他の末端をシーケンシングすることが予測される。crR6リードの1,623,008およびR6リードの1,537,131は、エラーのない標的配列を担持した。これらのリードの中のそれぞれの考えられるPAMの発生率を補足ファイルに示す。PAMの機能性を推定するため、R6試料に対するcrR6試料中のその相対比率を計算し、rijklm(式中、I、j、k、l、mは、4つの考えられる塩基の1つである)で示す。以下の統計モデルを構築した:
log(rijklm)=μ+b2+b3+b4+b2b3i,j+b3b4j,k+εijklm
(式中、εは、残差であり、b2は、PAMの第2の塩基の効果であり、b3は、第3の塩基の効果であり、b4は、第4の塩基の効果であり、b2b3は、第2の塩基と第3の塩基との間の相互作用であり、b3b4は、第3の塩基と第4の塩基との間の相互作用である)。分散分析を実施した。
Figure 2016505256
このモデルに付加する場合、b1またはb5は、有意でないと考えられ、含められるものを除き他の相互作用を廃棄することもできる。モデル選択を、R.テューキーのHSD検定(R.Tukey’s honest significance test)におけるanova法の使用を使用して事実上完全なモデルの継時比較を通して行って効果間のペアワイズ差が有意であるか否かを決定した。
NGGNNパターンは、全ての他のパターンと有意に異なり、最も強い効果を有する(以下の表参照)。
1、4または5位がNGGNNパターンに影響しないことを示すため、本出願人らは、これらの配列のみを考察した。これらの効果は、正規分布されると考えられ(図71中のQQプロット参照)、Rにおけるanova法を使用するモデル比較は、ヌルモデルが最良のものであること、すなわち、b1、b4およびb5の有意な役割が存在しないことを示す。
Figure 2016505256
NAGNNおよびNNGGNパターンの部分干渉
NAGNNパターンは、全ての他のパターンと有意に異なるが、NGGNNよりもかなり少ない効果を有する(以下のテューキーのHSD検定参照)。
最後に、NTGGNおよびNCGGNパターンも同様であり、ボンフェローニ調整ペアワイズスチューデント検定により示されるとおり、NTGHNおよびNCGHNパターン(Hは、A、TまたはCである)よりも大きいCRISPR干渉を有意に示す。
Figure 2016505256
まとめると、これらの結果により、NNGGNパターンが一般にNGGGNの場合に完全干渉を、またはNAGGN、NTGGNもしくはNCGGNの場合に部分干渉を生じさせることを結論付けることが可能となる。
Figure 2016505256
ランダム化標的
ランダム化標的実験について、crR6について540,726リードが、R6について753,570リードが得られた。上記のとおり、リードの半数のみがPCR産物の目的末端をシーケンシングすることが予測される。エラーフリーまたは単一の点突然変異を有する標的を担持するリードをフィルタリングした後、crR6およびR6についてそれぞれ217,656および353,141リードが残存した。R6試料に対するcrR6試料におけるそれぞれの突然変異体の相対比率を計算した(図24c)。シード配列の外側(PAMから13〜20塩基離れている)の全ての突然変異は、完全干渉を示す。これらの配列を参照として使用してシード配列の内側の他の突然変異が干渉を有意に破壊し得ると考えられるか否かを決定した。MASS Rパッケージのfitdistr関数を使用して正規分布をこれらの配列にフィットさせた。フィットされた分布の0.99分位点を図24cに点線として示す。図72は、フィットされた正規分布(黒線)および0.99分位点(点線)を有するデータ密度のヒストグラムを示す。
Figure 2016505256
Figure 2016505256
Figure 2016505256
Figure 2016505256
Figure 2016505256
実施例6:化膿性連鎖球菌(Streptococcus pyogenes)Cas9(SpCas9と称される)についてのガイドRNAの最適化
本出願人らは、tracrRNAおよびダイレクトリピート配列を突然変異させ、またはキメラガイドRNAを突然変異させて細胞中のRNAを向上させた。
最適化は、pol3プロモーターによる早期転写終結をもたらし得るtracrRNAおよびガイドRNA中にチミンのストレッチ(T)が存在した観察に基づく。したがって、本出願人らは、以下の最適化配列を生成した。最適化tracrRNAおよび対応する最適化ダイレクトリピートをペアで表す。
最適化tracrRNA1(下線は突然変異):
Figure 2016505256
最適化ダイレクトリピート1(下線は突然変異):
Figure 2016505256
最適化tracrRNA2(下線は突然変異):
Figure 2016505256
最適化ダイレクトリピート2(下線は突然変異):
Figure 2016505256
本出願人らは、真核細胞中の最適な活性のためにキメラガイドRNAも最適化した。
元のガイドRNA:
Figure 2016505256
最適化キメラガイドRNA配列1:
Figure 2016505256
最適化キメラガイドRNA配列2:
Figure 2016505256
最適化キメラガイドRNA配列3:
Figure 2016505256
本出願人らは、最適化キメラガイドRNAが図3に示されるとおり、より良好に機能することを示した。本実験は、293FT細胞をCas9およびU6ガイドRNA DNAカセットにより同時形質移入して上記4つのRNA形態の1つを発現させることにより実施した。ガイドRNAの標的は、ヒトEmx1遺伝子座:「GTCACCTCCAATGACTAGGG」中の同一標的部位である。
実施例7:ストレプトコッカス・サーモフィラス(Streptococcus thermophiles)LMD−9 CRISPR1 Cas9(St1Cas9と称される)の最適化
本出願人らは、図4に示されるガイドキメラRNAを設計した。
St1Cas9ガイドRNAは、ポリチミンのストレッチ(T)を分解することによりSpCas9ガイドRNAに関して同一タイプの最適化を受け得る。
実施例8:Cas9多様性および突然変異
CRISPR−Cas系は、細菌から古細菌にわたる多様な種により用いられる侵入外因性DNAに対する適応免疫機序である。II型CRISPR−Cas9系は、CRISPR遺伝子座中への外来DNAの「獲得」を担うタンパク質をコードする遺伝子のセット、およびDNA開裂機序の「実行」をコードする遺伝子のセットからなり;これらは、DNAヌクレアーゼ(Cas9)、非コードトランス活性化crRNA(tracrRNA)、およびダイレクトリピートによりフランキングされている外来DNA由来スペーサーのアレイ(crRNA)を含む。Cas9による成熟時、tracRNAおよびcrRNA二本鎖は、Cas9ヌクレアーゼをスペーサーガイド配列により規定される標的DNA配列にガイドし、開裂に要求され、それぞれのCRISPR−Cas系に特異的な標的DNA中の短鎖配列モチーフ付近のDNAの二本鎖切断を媒介する。II型CRISPR−Cas系は、細菌界全体にわたり見出されており、Cas9タンパク質配列およびサイズ、tracrRNAおよびcrRNAダイレクトリピート配列、それらのエレメントのゲノム構成、および標的開裂のためのモチーフ要件は高度に多様である。ある種は、複数の区別されるCRISPR−Cas系を有し得る。
本出願人らは、公知のCas9との配列相同性および公知のサブドメイン、例として、HNHエンドヌクレアーゼドメインおよびRuvCエンドヌクレアーゼドメイン[Eugene KooninおよびKira Makarovaからの情報]とオルソロガスな構造に基づき同定された細菌種から207個の推定Cas9を評価した。このセットのタンパク質配列保存に基づく系統発生分析により、大型Cas9(約1400アミノ酸)の3つの群および小型Cas9(約1100アミノ酸)の2つの群を含むCas9の5つのファミリーが明らかになった(図39および40A〜F)。
本実施例において、本出願人らは、以下の突然変異がSpCas9をニック形成酵素に変換し得ることを示す:D10A、E762A、H840A、N854A、N863A、D986A。
本出願人らは、突然変異点がSpCas9遺伝子内のどこに局在するかを示す配列を提供する(図41)。本出願人らは、ニッカーゼが相同組換えを依然として媒介し得ることも示す(図2に示されるアッセイ)。さらに、本出願人らは、これらの突然変異を有するSpCas9が(個々に)二本鎖切断を誘導しないことを示す(図47)。
実施例9:RNAによりガイドされるCas9ヌクレアーゼのDNA標的特異性に関する補足
細胞培養および形質移入
ヒト胚腎臓(HEK)細胞系293FT(Life Technologies)を、10%のウシ胎仔血清(HyClone)、2mMのGlutaMAX(Life Technologies)、100U/mLのペニシリン、および100μg/mLのストレプトマイシンが補給されたダルベッコ改変イーグル培地(DMEM)中で37℃において5%のCO2インキュベーションで維持した。
293FT細胞を6ウェルプレート、24ウェルプレート、または96ウェルプレート(Corning)上に、形質移入24時間前に播種した。Lipofectamine2000(Life Technologies)を製造業者の推奨プロトコルに従って使用して細胞を80〜90%のコンフルエンスにおいて形質移入した。6ウェルプレートのそれぞれのウェルについて、合計1ugのCas9+sgRNAプラスミドを使用した。特に記載のない限り、24ウェルプレートのそれぞれのウェルについて、合計500ngのCas9+sgRNAプラスミドを使用した。96ウェルプレートのそれぞれのウェルについて、65ngのCas9プラスミドをU6−sgRNA PCR産物との1:1のモル比において使用した。
ヒト胚性幹細胞系HUES9(Harvard Stem Cell Institute core)を、100ug/mlのNormocin(InvivoGen)が補給されたmTesR培地(Stemcell Technologies)中のGelTrex(Life Technologies)上でフィーダーフリー条件において維持した。HUES9細胞をAmaxa P3 Primary Cell 4−D Nucleofector Kit(Lonza)により製造業者のプロトコルに従って形質移入した。
ゲノム改変についてのSURVEYORヌクレアーゼアッセイ
293FT細胞を上記のとおりプラスミドDNAにより形質移入した。細胞を37℃において形質移入後72時間インキュベートしてからゲノムDNAを抽出した。ゲノムDNAは、QuickExtract DNA Extraction Solution(Epicentre)を製造業者のプロトコルに従って使用して抽出した。手短に述べると、ペレット化細胞をQuickExtract溶液中で懸濁させ、65℃において15分間および98℃において10分間インキュベートした。
それぞれの遺伝子についてのCRISPR標的部位をフランキングするゲノム領域をPCR増幅(表JおよびKに列記のプライマー)し、QiaQuick Spin Column(Qiagen)を製造業者のプロトコルに従って使用して産物を精製した。合計400ngの精製PCR産物を、2μlの10×Taq DNA Polymerase PCR緩衝液(Enzymatics)と混合し、超純水で20μlの最終容量とし、リアニーリングプロセスに供してヘテロ二本鎖形成を可能とした:95℃において10分間、−2℃/秒における傾斜で95℃から85℃、−0.25℃/秒における85℃から25℃、および25℃において1分間維持。リアニーリング後、産物をSURVEYORヌクレアーゼおよびSURVEYORエンハンサーS(Transgenomics)により製造業者の推奨プロトコルに従って処理し、4〜20%のNovex TBEポリアクリルアミドゲル(Life Technologies)上で分析した。ゲルをSYBR Gold DNA染色(Life Technologies)により30分間染色し、Gel Docゲルイメージングシステム(Bio−rad)によりイメージングした。定量は、相対バンド強度に基づくものであった。
ヒト細胞中のtracrRNA発現のノザンブロット分析
ノザンブロットを、上記のとおり実施した。手短に述べると、RNAを95℃に5分間加熱してから8%の変性ポリアクリルアミドゲル(SequaGel,National Diagnostics)上にロードした。その後、RNAを事前にハイブリダイズさせたHybond N+メンブレン(GE Healthcare)に転写し、Stratagene UV Crosslinker(Stratagene)により架橋した。プローブをT4ポリヌクレオチドキナーゼ(New England Biolabs)を用いて[ガンマ−32P]ATP(Perkin Elmer)により標識した。洗浄後、メンブレンを蛍光スクリーンに1時間曝露し、phosphorimager(Typhoon)によりスキャンした。
DNAメチル化状態を評価するためのバイサルファイトシーケンシング
HEK293FT細胞を、上記のとおりCas9により形質移入した。ゲノムDNAをDNeasy Blood&Tissue Kit(Qiagen)により単離し、バイサルファイトをEZ DNA Methylation−Lightning Kit(Zymo Research)により変換した。バイサルファイトPCRは、Bisulfite Primer Seekerを使用して設計されたプライマー(Zymo Research、表JおよびK)を用いてKAPA2G Robust HotStart DNA Polymerase(KAPA Biosystems)を使用して実施した。得られたPCRアンプリコンをゲル精製し、EcoRIおよびHindIIIにより消化し、形質転換前にpUC19骨格中にライゲートした。次いで、個々のクローンをサンガーシーケンシングしてDNAメチル化状態を評価した。
インビトロ転写および開裂アッセイ
HEK293FT細胞を上記のとおりCas9により形質移入した。次いで、ホールセル溶解物を、Protease Inhibitor Cocktail(Roche)が補給された溶解緩衝液(20mMのHEPES、100mMのKCl、5mMのMgCl2、1mMのDTT、5%のグリセロール、0.1%のTriton X−100)を用いて調製した。カスタムオリゴ(実施例10)およびHiScribe T7 In Vitro Transcription Kit(NEB)を製造業者の推奨プロトコルに従って使用してT7によりドライブされるsgRNAをインビトロで転写させた。メチル化標的部位を調製するため、pUC19プラスミドをM.SssIによりメチル化し、次いでNheIにより線形化した。インビトロ開裂アッセイを以下のとおり実施した:20uLの開裂反応物について、10uLの細胞溶解物を2uLの開裂緩衝液(100mMのHEPES、500mMのKCl、25mMのMgCl2、5mMのDTT、25%のグリセロール)、インビトロ転写されたRNA、300ngのpUC19プラスミドDNAとともにインキュベートした。
ターゲティング特異性を評価するためのディープシーケンシング
96ウェルプレート中でプレーティングされたHEK293FT細胞を、Cas9プラスミドDNAおよび単一ガイドRNA(sgRNA)PCRカセットにより72時間形質移入してからゲノムDNAを抽出した(図72)。それぞれの遺伝子についてのCRISPR標的部位をフランキングするゲノム領域を、融合PCR法により増幅してIllumina P5アダプターおよびユニークな試料特異的バーコードを標的アンプリコン(図73に記載の模式図)に付着させた(図74、図80(実施例10)。PCR産物は、EconoSpin96ウェルFilter Plates(Epoch Life Sciences)を製造業者の推奨プロトコルに従って使用して精製した。
バーコード化および精製DNA試料を、Quant−iT PicoGreen dsDNA Assay KitまたはQubit 2.0 Fluorometer(Life Technologies)により定量し、等モル比でプールした。次いで、シーケンシングライブラリーをIllumina MiSeq Personal Sequencer(Life Technologies)によりディープシーケンシングした。
シーケンシングデータ分析およびインデル検出
MiSeqリードは、少なくとも23の平均Phredクオリティ(Qスコア)ならびにバーコードおよびアンプリコンフォワードプライマーとの完全配列マッチを要求することによりフィルタリングした。オンおよびオフターゲット遺伝子座からのリードは、標的部位の上流および下流の50ヌクレオチド(合計120bp)を含むアンプリコン配列に対してSmith−Watermanアラインメントを最初に実施することにより分析した。その一方、アラインメントを標的部位の上流の5ヌクレオチドから下流の5ヌクレオチド(合計30bp)のインデルについて分析した。これらのアラインメントの一部がMiSeqリード自体の外側に収まる場合、またはマッチした塩基対がそれらの全長の85%未満を含む場合に分析された標的領域を廃棄した。
それぞれの試料についての陰性対照は、推定切断イベントとしてのインデルの包含または排除のための測定基準を提供した。それぞれの試料について、インデルをその品質スコアがμ−σ(μは、その試料に対応する陰性対照の平均品質スコアを意味し、σはその標準偏差である)を超過する場合のみカウントした。このことは、陰性対照およびそれらの対応試料の両方についての全標的領域インデル比率を生じさせた。陰性対照の標的領域ごとのリードごとのエラー比率q、試料の観察されたインデルカウントn、およびそのリードカウントRを使用して、真のインデルを有する標的領域を有するリードの率についての最尤推定量pを以下のとおり2項エラーモデルを適用することにより得た。
少なくとも1つのインデルを有するとして不正確にカウントされた標的領域を有する試料中の(不明)数のリードをEとして、
Figure 2016505256
を記載することができ(真のインデル数についていかなる仮定もしない)、R(1−p)は、真のインデルを有さない標的領域を有するリードの数である。その一方、インデルを有すると観察されたリードの数はnであるため、n=E+Rpであり、すなわち、エラーを有するが真インデルを有さない標的領域を有するリードの数と、標的領域がインデルを正確に有するリードの数である。次いで、上式を書き換えることができる。
Figure 2016505256
真のインデルpを有する標的領域の頻度の全ての値が推測的に同等に起こり得るとみなす場合、Prob(n|p)∝Prob(p|n)である。したがって、真のインデルを有する標的領域の頻度についての最尤推定量(MLE)を、Prob(n|p)を最大化するpの値として設定した。これを数値評価した。
エラーバウンドをシーケンシングライブラリー自体の中の真のインデルリード頻度に配置するため、Wilsonスコア間隔(2)をそれぞれの試料について算出し、真のインデル標的領域Rpおよびリードの数RについてのMLE推定量を得た。明確には、下限lおよび上限μを下式
Figure 2016505256
のとおり算出し、zは、分散1の正規分布において要求される信頼についての標準スコアであり、95%の信頼を意味する1.96に設定した。それぞれの生物学的複製物についての最大上限および最小下限を図80〜83に列記する。
相対Cas9およびsgRNA発現のqRT−PCR分析
24ウェルプレート中でプレーティングされた293FT細胞を、上記のとおり形質移入した。形質移入72時間後、トータルRNAをmiRNeasy Micro Kit(Qiagen)により回収した。sgRNAについての逆鎖合成は、qScript Flex cDNAキット(VWR)およびカスタム第1鎖合成プライマー(表JおよびK)を用いて実施した。qPCR分析は、GAPDHを内因性対照として使用してFast SYBR Green Master Mix(Life Technologies)およびカスタムプライマー(表JおよびK)を用いて実施した。相対定量をΔΔCT法により算出した。
表I|標的部位配列。化膿性連鎖球菌(S.pyogenes)II型CRISPR系についての試験標的部位と必要なPAM。細胞をCas9およびそれぞれの標的についてのcrRNA−tracrRNAまたはキメラsgRNAのいずれかにより形質移入した。
Figure 2016505256
Figure 2016505256
Figure 2016505256
Figure 2016505256
表K|sgRNAアーキテクチャーを試験するためのプライマーについての配列。プライマーは、特に記載のない限り、U6プロモーターの逆鎖にハイブリダイズする。U6プライミング部位をイタリックで、ガイド配列をNのストレッチとして示し、ダイレクトリピート配列を太字で強調し、tracrRNA配列に下線を付す。それぞれのsgRNAアーキテクチャーの二次構造を図43に示す。
Figure 2016505256
表L|Cas9のPAM特異性を試験するための標的部位と代替PAM。PAM特異性試験のための全ての標的部位が、ヒトEMX1遺伝子座内に見出される。
Figure 2016505256
実施例10:補足配列
全ての配列は、5’から3’方向である。U6転写のため、下線付きのTのストリングが転写ターミネーターとして機能する。
>U6−短鎖tracrRNA(化膿性連鎖球菌(Streptococcus pyogenes)SF370)
Figure 2016505256
>U6−DR−ガイド配列−DR(化膿性連鎖球菌(Streptococcus pyogenes)SF370)
Figure 2016505256
>+48tracrRNAを含有するsgRNA(化膿性連鎖球菌(Streptococcus pyogenes)SF370)
Figure 2016505256
>+54tracrRNAを含有するsgRNA(化膿性連鎖球菌(Streptococcus pyogenes)SF370)
Figure 2016505256
>+67tracrRNAを含有するsgRNA(化膿性連鎖球菌(Streptococcus pyogenes)SF370)
Figure 2016505256
>+85tracrRNAを含有するsgRNA(化膿性連鎖球菌(Streptococcus pyogenes)SF370)
Figure 2016505256
>CBh−NLS−SpCas9−NLS
Figure 2016505256
Figure 2016505256
Figure 2016505256
Figure 2016505256
>EMX1ガイド1.1、1.14、1.17のためのアンプリコンのシーケンシング
Figure 2016505256
>EMX1ガイド1.2、1.16のためのアンプリコンのシーケンシング
Figure 2016505256
>EMX1ガイド1.3、1.13、1.15のためのアンプリコンのシーケンシング
Figure 2016505256
>EMX1ガイド1.6のためのアンプリコンのシーケンシング
Figure 2016505256
>EMX1ガイド1.10のためのアンプリコンのシーケンシング
Figure 2016505256
>EMX1ガイド1.11、1.12のためのアンプリコンのシーケンシング
Figure 2016505256
>EMX1ガイド1.18、1.19のためのアンプリコンのシーケンシング
Figure 2016505256
>EMX1ガイド1.20のためのアンプリコンのシーケンシング
Figure 2016505256
>標的鎖とのアニーリングのためのT7プロモーターFプライマー
Figure 2016505256
>メチル化のためのpUC19標的部位1を含有するオリゴ(T7リバース)
Figure 2016505256
>メチル化のためのpUC19標的部位2を含有するオリゴ(T7リバース)
Figure 2016505256
実施例11:オリゴ媒介Cas9誘導相同組換え
オリゴ相同組換え試験は、異なるCas9バリアントおよび異なるHRテンプレート(オリゴ対プラスミド)にわたる効率の比較である。
293FT細胞を使用した。SpCas9=野生型Cas9であり、SpCas9n=ニッカーゼCas9(D10A)である。キメラRNA標的は、実施例5、9および10と同一のEMX1プロトスペーサー標的1であり、オリゴはPAGE精製を使用してIDTにより合成されたものである。
図44は、本実験における相同組換え(HR)テンプレートとして使用されるオリゴDNAの設計を示す。長鎖オリゴは、EMX1遺伝子座およびHindIII制限部位と100bpの相同性を含有する。293FT細胞を、第1に、ヒトEMX1遺伝子座をターゲティングするキメラRNAおよび野生型cas9タンパク質を含有するプラスミド、ならびに第2に、HRテンプレートとしてのオリゴDNAにより同時形質移入した。試料は、Lipofectamine2000による形質移入から96時間後に回収された293FT細胞からのものである。全ての産物を、EMX1HRプライマーを用いて増幅し、ゲル精製し、次いでHindIIIにより消化してヒトゲノム中へのHRテンプレートのインテグレーションの効率を検出した。
図45および46は、Cas9タンパク質およびHRテンプレートの異なる組合せにより誘導されたHR効率の比較を示す。使用されるCas9構築物は、野生型Cas9またはCas9のニッカーゼバージョン(Cas9n)のいずれかであった。使用されるHRテンプレートは、アンチセンスオリゴDNA(上図のアンチセンスオリゴ)またはセンスオリゴDNA(上図のセンスオリゴ)、またはプラスミドHRテンプレート(上図のHRテンプレート)であった。センス/アンチセンス定義は、転写されるmRNAに対応する配列を有する活性的に転写される鎖が、ゲノムのセンス鎖として定義されることである。HR効率は、全てのゲノムPCR増幅産物に対するHindIII消化バンドの割合として示す(下方の数字)。
実施例12:自閉症マウス
近年の大規模シーケンシング構想は、疾患に関連する多数の遺伝子を生じさせた。遺伝子の発見は、その遺伝子が何であるか、およびいかにそれが疾患表現型をもたらすのかの理解の始まりにすぎない。候補遺伝子を研究するための現在の技術およびアプローチは、緩慢で煩雑である。代表的な基準である遺伝子ターゲティングおよび遺伝子ノックアウトは、金銭および研究人材の両方の観点から時間および資源のかなりの投資を要求する。本出願人らは、hSpCas9ヌクレアーゼを利用して多くの標的遺伝子をターゲティングし、任意の他の技術と比較して高い効率および低いターンアラウンドでそれを行うように設定した。hSpCas9の高い効率のため、本出願人らは、RNAインジェクションをマウス接合子中に行い、mESCにおけるいかなる予備遺伝子ターゲティングを行うことも必要とせずにゲノム改変動物を直ちに得ることができる。
クロモドメインヘリカーゼDNA結合タンパク質8(CHD8)は、早期脊椎動物発生および形態形成に関与する極めて重要な遺伝子である。CHD8を欠くマウスは、胚発生の間に死亡する。CHD8遺伝子の突然変異は、ヒトにおける自閉症スペクトラム障害に関連している。この関連は、Natureに同時に公開された3つの異なる論文においてなされた。同一の3つの研究は、自閉症スペクトラム障害に関連する大量の遺伝子を同定した。本出願人らの目的は、全ての論文に見出された4つの遺伝子Chd8、Katnal2、Kctd13、およびScn2aについてのノックアウトマウスを創成することであった。さらに、本出願人らは、自閉症スペクトラム障害、統合失調症、およびADHDに関連する2つの他の遺伝子GIT1、CACNA1C、およびCACNB2を選択した。最後に、陽性対照として本出願人らは、MeCP2をターゲティングすることを決定した。
それぞれの遺伝子について、本出願人らは、遺伝子をノックアウトする可能性が高い3つのgRNAを設計した。ノックアウトは、hSpCas9ヌクレアーゼが二本鎖切断、およびエラープローンDNA修復経路、非相同末端結合を作製し、切断を補正し、突然変異を創成した後に生じる。最も可能性が高い結果は、遺伝子をノックアウトするフレームシフト突然変異である。ターゲティング方針は、PAM配列NGGを有し、ゲノム中でユニークな遺伝子のエキソン中のプロトスペーサーを見出すことを含んだ。遺伝子に最も有害である第1のエキソン中のプロトスペーサーを優先した。
それぞれのgRNAは、マウス細胞系Neuro−N2a中でhSpCas9とのリポソーム一過的同時形質移入により検証した。形質移入から72時間後、EpicentreからのQuickExtract DNAを使用してゲノムDNAを精製した。PCRを実施して目的遺伝子座を増幅した。続いて、TransgenomicsからのSURVEYOR Mutation Detection Kitを用いた。それぞれのgRNAについてのSURVEYOR結果およびそれぞれの対照を図A1に示す。陽性SURVEYOR結果は、ゲノムPCRに対応する1つの大きいバンドであり、突然変異の部位における二本鎖切断を作製するSURVEYORヌクレアーゼの産物である2つのより小さいバンドである。それぞれのgRNAの平均切断効率も、それぞれのgRNAについて測定した。インジェクションのために選択されたgRNAは、ゲノム内の最もユニークな最大効率のgRNAであった。
RNA(hSpCas9+gRNA RNA)を接合子の前核中にインジェクトし、その後に代理母に移植した。代理母を妊娠満期にさせ、出産10日後に仔をテールスニップ(tail snip)によりサンプリングした。DNAを抽出し、PCRのためのテンプレートとして使用し、次いでそれをSURVEYORにより処理した。さらに、PCR産物をシーケンシングのために送った。SURVEYORアッセイまたはPCRシーケンシングのいずれかにおいて陽性として検出された動物は、pUC19ベクター中にクローニングされ、シーケンシングされてそれぞれのアレルからの推定突然変異を決定されたそれらのゲノムPCR産物を有する。
これまで、Chd8ターゲティング実験からの仔マウスは、アレルシーケンシングの時点まで完全に処理されている。38匹の生存仔(レーン1〜38)、1匹の死亡仔(レーン39)および比較用の1匹の野生型の仔(レーン40)についてのSurveyor結果を図A2に示す。仔1〜19にgRNA Chd8.2をインジェクトし、仔20〜38にgRNA Chd8.3をインジェクトした。38匹の生存仔のうち、13匹は突然変異について陽性であった。1匹の死亡仔も突然変異を有した。野生型試料において突然変異は検出されなかった。ゲノムPCRシーケンシングは、SURVEYORアッセイの知見と一致した。
実施例13:CRISPR/Cas媒介転写モジュレーション
図67は、転写活性化活性を有するCRISPR−TF(転写因子)の設計を示す。キメラRNAをU6プロモーターにより発現させる一方、3つのNLSおよびVP64機能ドメインに作動可能に結合しているCas9タンパク質のヒトコドン最適化二重突然変異体バージョン(hSpCas9m)をEF1aプロモーターにより発現させる。二重突然変異D10AおよびH840Aにより、cas9タンパク質がいかなる開裂も導入し得なくなるが、キメラRNAによりガイドされた場合に標的DNAに結合するその能力は維持された。
図68は、CRISPR−TF系(キメラRNAおよびCas9−NLS−VP64融合タンパク質)によるヒトSOX2遺伝子の転写活性化を示す。293FT細胞を2つの成分を担持するプラスミドにより形質移入した:(1)ヒトSOX2ゲノム遺伝子座内またはその周囲の20bp配列をターゲティングするU6によりドライブされる異なるキメラRNA、および(2)EF1aによりドライブされるhSpCas9m(二重突然変異体)−NLS−VP64融合タンパク質。形質移入から96時間後、293FT細胞を回収し、qRT−PCRアッセイを使用してmRNA発現の導入により活性化のレベルを計測する。全ての発現レベルを、キメラRNAを有さないCRISPR−TF骨格プラスミドにより形質移入された細胞からの結果を表す対照群(灰色バー)に対して正規化する。SOX2mRNAを検出するために使用されるqRT−PCRプローブは、Taqman Human Gene Expression Assay(Life Technologies)である。全ての実験は、3つの生物学的複製物からのデータを表し、n=3であり、エラーバーは標準誤差(s.e.m.)を示す。
実施例14:NLS:Cas9NLS
293FT細胞を、2つの成分を含有するプラスミドにより形質移入した:(1)異なるNLS設計を有するCas9(野生型ヒトコドン最適化SpCas9)の発現をドライブするEF1aプロモーター(2)ヒトEMX1遺伝子座をターゲティングする同一キメラRNAをドライブするU6プロモーター。
細胞を形質移入後72時間の時点において回収し、次いで50μlのQuickExtractゲノムDNA抽出溶液により製造業者のプロトコルに従って抽出した。標的EMX1ゲノムDNAをPCR増幅し、次いで1%のアガロースゲルによりゲル精製した。ゲノムPCR産物をリアニーリングし、Surveyorアッセイに製造業者のプロトコルに従って供した。異なる構築物のゲノム開裂効率を4〜12%のTBE−PAGEゲル(Life Technologies)上のSDS−PAGEを使用して計測し、ImageLab(Bio−rad)ソフトウェアにより分析および定量し、全て製造業者のプロトコルに従った。
図69は、異なるCas9NLS構築物の設計を示す。全てのCas9は、SpCas9のヒトコドン最適化バージョンであった。NLS配列をcas9遺伝子にN末端またはC末端のいずれかにおいて結合させた。異なるNLS設計を有する全てのCas9バリアントを、それがEF1aプロモーターによりドライブされるように含有する骨格ベクター中にクローニングした。同一ベクター上に、U6プロモーターによりドライブされるヒトEMX1遺伝子座をターゲティングするキメラRNAが存在し、2成分系を一緒に形成する。
表M.Cas9 NLS設計試験結果。surveyorアッセイによる異なるcas9−nls構築物のゲノム開裂の定量。
Figure 2016505256
図70は、異なるNLS設計を担持するCas9バリアントにより誘導されたゲノム開裂の効率を示す。割合は、それぞれの構築物により開裂されたヒトEMX1ゲノムDNAの一部を示す。全ての実験は、3つの生物学的複製物からのデータを表し、n=3であり、エラーバーは標準誤差(S.E.M.)を示す。
実施例15:Cas9を使用する微細藻類のエンジニアリング
Cas9を送達する方法
方法1:本出願人らは、構成的プロモーター、例えば、Hsp70A−Rbc S2またはベータ2−チューブリンの制御下でCas9を発現するベクターを使用してCas9およびガイドRNAを送達する。
方法2:本出願人らは、構成的プロモーター、例えば、Hsp70A−Rbc S2またはベータ2−チューブリンの制御下でCas9およびT7ポリメラーゼを発現するベクターを使用してCas9およびT7ポリメラーゼを送達する。ガイドRNAは、ガイドRNAをドライブするT7プロモーターを含有するベクターを使用して送達する。
方法3:本出願人らは、Cas9mRNAおよびインビトロで転写されたガイドRNAを藻類細胞に送達する。RNAは、インビトロで転写させることができる。Cas9mRNAは、Cas9についてのコード領域およびCas9mRNAの安定化を確保するためのCop1からの3’UTRからなる。
相同組換えのため、本出願人らは、追加の相同組換え修復テンプレートを提供する。
ベータ−2チューブリンプロモーターの制御下でCas9の発現をドライブするカセットと、それに続くCop1の3’UTRについての配列。
Figure 2016505256
Figure 2016505256
Figure 2016505256
Figure 2016505256
ベータ−2チューブリンプロモーターの制御下でT7ポリメラーゼの発現をドライブするカセットと、それに続くCop1の3’UTRについての配列:
Figure 2016505256
Figure 2016505256
T7プロモーターによりドライブされるガイドRNAの配列(T7プロモーター、Nは、ターゲティング配列を表す):
Figure 2016505256
遺伝子送達:
Chlamydomonas Resource Centerからのコナミドリムシ(Chlamydomonas reinhardtii)株CC−124およびCC−125を、エレクトロポレーションに使用する。エレクトロポレーションプロトコルは、GeneArt Chlamydomonas Engineeringキットからの標準的な推奨プロトコルに従う。
また、本出願人らは、Cas9を構成的に発現するコナミドリムシ(Chlamydomonas reinhardtii)の系統を生成する。このことは、pChlamy1(PvuIを使用して線形化)を使用し、ハイグロマイシン耐性コロニーを選択することにより行うことができる。Cas9を含有するpChlamy1についての配列を以下に示す。遺伝子ノックアウトを達成するためのこの手法において、ガイドRNAのためのRNAを送達することが必要なだけである。相同組換えのため、本出願人らは、ガイドRNAおよび線形化相同組換えテンプレートを送達する。
pChlamy1−Cas9:
Figure 2016505256
Figure 2016505256
Figure 2016505256
Figure 2016505256
Figure 2016505256
Figure 2016505256
全ての改変コナミドリムシ(Chlamydomonas reinhardtii)細胞について、本出願人らは、PCR、SURVEYORヌクレアーゼアッセイ、およびDNAシーケンシングを使用して良好な改変を確認した。
実施例16:細菌中の転写リプレッサーとしてのCas9の使用
転写を人工的に制御する技能は、遺伝子機能の研究および所望の特性を有する合成遺伝子ネットワークの構築の両方に不可欠である。本出願人らは、本明細書において、プログラマブル転写リプレッサーとしてのRNAによりガイドされるCas9タンパク質の使用を記載する。
本出願人らは、化膿性連鎖球菌(Streptococcus pyogenes)SF370のCas9タンパク質をいかに使用して肺炎連鎖球菌(Streptococcus pneumoniae)中のゲノム編集を指向することができるかを既に実証している。この研究において、本出願人らは、cas9、tracrRNAおよびリピートからなる最小のCRISPR系を含有するcrR6Rk株をエンジニアリングした。D10A−H840突然変異をこの株中のcas9中に導入し、株crR6Rk**を得た。bgaAβ−ガラクトシダーゼ遺伝子プロモーターの異なる位置をターゲティングする4つのスペーサーを、既に記載されたpDB98プラスミドにより担持されるCRISPRアレイ中でクローニングした。本出願人らは、ターゲティングされる位置に応じてβ−ガラクトシダーゼ活性のXからY倍の低減を観察し、このことは、プログラマブルリプレッサーとしてのCas9の潜在性を実証した(図73)。
大腸菌(Escherichia coli)中のCas9**抑制を達成するため、緑色蛍光タンパク質(GFP)レポータープラスミド(pDB127)を構築して構成的プロモーターからgfpmut2遺伝子を発現させた。プロモーターは、両方の鎖上のいくつかのNPP PAMを担持するように設計して種々の位置におけるCas9**結合の効果を計測した。本出願人らは、D10A−H840突然変異を、tracrRNA、cas9および新たなスペーサーの容易なクローニングのために設計された最小のCRISPRアレイを担持する記載のプラスミドのpCas9中に導入した。22個の異なるスペーサーを、gfpmut2プロモーターおよびオープンリーディングフレームの異なる領域をターゲティングするよう設計した。−35および−10プロモーターエレメントならびにシャインダルガノ配列に重複または隣接する領域のターゲティング時に蛍光の約20倍の低減が観察された。両方の鎖上の標的は、類似の抑制レベルを示した。これらの結果は、プロモーター領域の任意の位置へのCas9**の結合が、推定上RNAP結合の立体阻害を通して転写開始を妨害することを示唆する。
Cas9**が転写伸長を妨害し得るか否かを決定するため、本出願人らは、それをgpfmut2のリーディングフレームに指向した。ターゲティングされたコードおよび非コード鎖の両方の場合に蛍光の低減が観察され、このことは、Cas9結合が作動するRNAPに対する障害を表すほど実際に強力であることを示唆した。しかしながら、コード鎖をターゲティングした場合には発現の40%の低減が観察された一方、非コード鎖の場合には20倍の低減が観察された(図21b、T9、T10およびT11とB9、B10およびB11とを比較)。転写に対するCas9**結合の効果を直接決定するため、本出願人らは、T5、T10、B10またはpDB127をターゲティングしない対照構築物のいずれかを担持する株からRNAを抽出し、それを、B10およびT10標的部位の前(B477)または後(B510)に結合するプローブのいずれかを使用するノザンブロット分析に供した。本出願人らの蛍光法と一致して、Cas9**をプロモーター領域(T5標的)に指向した場合にgfpmut2転写は検出されず、T10領域のターゲティング後に転写が観察された。興味深いことに、B477プローブについてより小さい転写物が観察された。このバンドは、Cas9**により中断される転写物の予測サイズに対応し、コード鎖へのdgRNA::Cas9**結合により引き起こされる転写終結の直接的な指標である。驚くべきことに、本出願人らは、非コード鎖をターゲティングした場合(B10)に転写物を検出しなかった。B10領域へのCas9**結合が転写開始を干渉する可能性が低いため、この結果は、mRNAが分解されたことを示唆する。DgRNA::Cas9は、インビトロでssRNAに結合することが示された。本出願人らは、結合が宿主ヌクレアーゼによるmRNAの分解をトリガーし得ることを推測する。実際、リボソーム停滞は、大腸菌(E.coli)中の翻訳されるmRNAに対する開裂を誘導し得る。
一部の用途は、遺伝子発現の完全な抑制よりも遺伝子発現の正確な調整を要求する。本出願人らは、crRNA/標的相互作用を弱めるミスマッチの導入を通して中間的な抑制レベルを達成することを求めた。本出願人らは、crRNAの5’末端中の突然変異の増加数を有するB1、T5およびB10構築物に基づき一連のスペーサーを創成した。B1およびT5中の最大8つの突然変異が抑制レベルに影響せず、蛍光の漸増が追加の突然変異について観察された。
crRNAとその標的との間の8ntマッチについてのみ観察された抑制により、転写調節因子としてのCas9**の使用のオフターゲティング効果の問題が生じる。良好なPAM(NGG)もCas9結合に要求されるため、同一レベルの呼吸を得るためにマッチするヌクレオチドの数は10である。10ntマッチは、約1Mbpごとに1回ランダムに生じ、したがってそのような部位は小さい細菌ゲノム中でも見出される可能性が高い。しかしながら、転写を有効に抑制するため、そのような部位は遺伝子のプロモーター領域中に存在することが必要であり、これによりオフターゲティングの可能性がかなり低くなる。本出願人らは、遺伝子の非コード鎖がターゲティングされる場合に遺伝子発現が影響され得ることも示した。これを起こすため、ランダム標的は右方向で存在しなければならないが、そのようなイベントは起こる可能性が比較的高い。実際のところ、本試験の過程の間、本出願人らは、pCas9**上で設計されたスペーサーの1つを構築することができなかった。本出願人らは後に、このスペーサーが不可欠なmurC遺伝子中の良好なPAMに隣接する12bpマッチを示すことを見出した。このようなオフターゲティングは、設計されるスペーサーの体系的なblastにより容易に回避することができる。
本発明の態様を、以下の番号付与された段落にさらに記載する:
1.1つ以上のベクターを含むベクター系であって、
a.traerメイト配列およびガイド配列をtraerメイト配列の上流に挿入するための1つ以上の挿入部位に作動可能に結合している第1の調節エレメント(ガイド配列は、発現された場合、真核細胞中の標的配列へのCRISPR複合体の配列特異的結合を指向し、CRISPR複合体は、(1)標的配列にハイブリダイズされるガイド配列、および(2)traer配列にハイブリダイズされるtraerメイト配列と複合体形成しているCRISPR酵素を含む);ならびに
b.核局在化配列を含む前記CRISPR酵素をコードする酵素コード配列に作動可能に結合している第2の調節エレメント
を含み;
成分(a)および(b)は、系の同一または異なるベクター上にある
ベクター系。
2.成分(a)が、第1の調節エレメントの制御下でtraerメイト配列の下流のtraer配列をさらに含む、段落1に記載のベクター系。
3.成分(a)が、第1の調節エレメントに作動可能に結合している2つ以上のガイド配列をさらに含み、2つ以上のガイド配列のそれぞれは、発現された場合、真核細胞中の異なる標的配列へのCRISPR複合体の配列特異的結合を指向する、段落1に記載のベクター系。
4.第3の調節エレメントの制御下でtraer配列を含む、段落1に記載のベクター系。
5.traer配列が、最適にアラインされた場合にtraerメイト配列の長さに沿って少なくとも50%の配列相補性を示す、段落1に記載のベクター系。
6.CRISPR酵素が、真核細胞の核中の検出可能な量の前記CRISPR酵素の蓄積をドライブするために十分な強度の1つ以上の核局在化配列を含む、段落1に記載のベクター系。
7.CRISPR酵素が、II型CRISPR系酵素である、段落1に記載のベクター系。
8.CRISPR酵素が、Cas9酵素である、段落1に記載のベクター系。
9.CRISPR酵素が、真核細胞中の発現のためにコドン最適化されている、段落1に記載のベクター系。
10.CRISPR酵素が、標的配列の局在における1つまたは2つの鎖の開裂を指向する、段落1に記載のベクター系。
11.CRISPR酵素が、DNA鎖開裂活性を欠く、段落1に記載のベクター系。
12.第1の調節エレメントが、ポリメラーゼIIIプロモーターである、段落1に記載のベクター系。
13.第2の調節エレメントが、ポリメラーゼIIプロモーターである、段落1に記載のベクター系。
14.第3の調節エレメントが、ポリメラーゼIIIプロモーターである、段落4に記載のベクター系。
15.ガイド配列が、少なくとも15ヌクレオチド長である、段落1に記載のベクター系。
16.ガイド配列のヌクレオチドの50%未満が、最適にフォールディングされた場合に自己相補的塩基対形成に関与する、段落1に記載のベクター系。
17.1つ以上の核局在化配列を含むCRISPR酵素をコードする酵素コード配列に作動可能に結合している調節エレメントを含むベクターであって、前記調節エレメントは、真核細胞中のCRISPR酵素の転写を、前記CRISPR酵素が真核細胞の核中で検出可能な量で蓄積するようにドライブするベクター。
18.前記調節エレメントが、ポリメラーゼIIプロモーターである、段落17に記載のベクター系。
19.前記CRISPR酵素が、II型CRISPR系酵素である、段落17に記載のベクター系。
20.前記CRISPR酵素が、Cas9酵素である、段落17に記載のベクター系。
21.前記CRISPR酵素が、それが結合する標的配列の1つ以上の鎖を開裂する能力を欠く、段落17に記載のベクター系。
22.真核細胞の核中の検出可能な量のCRISPR酵素の蓄積をドライブするために十分な強度の1つ以上の核局在化配列を含むCRISPR酵素。
23.II型CRISPR系酵素である、段落22に記載のCRISPR酵素。
24.Cas9酵素である、段落22に記載のCRISPR酵素。
25.結合する標的配列の1つ以上の鎖を開裂する能力を欠く、段落22に記載のCRISPR酵素。
26.a.traerメイト配列およびガイド配列をtraerメイト配列の上流に挿入するための1つ以上の挿入部位に作動可能に結合している第1の調節エレメント(ガイド配列は、発現された場合、真核細胞中の標的配列へのCRISPR複合体の配列特異的結合を指向し、CRISPR複合体は、(1)標的配列にハイブリダイズされるガイド配列、および(2)traer配列にハイブリダイズされるtraerメイト配列と複合体形成しているCRISPR酵素を含む);ならびに/または
b.核局在化配列を含む前記CRISPR酵素をコードする酵素コード配列に作動可能に結合している第2の調節エレメント
を含む真核宿主細胞。
27.成分(a)および(b)を含む、段落26に記載の真核宿主細胞。
28.成分(a)、成分(b)、または成分(a)および(b)が、宿主真核細胞のゲノム中に安定的にインテグレートされている、段落26に記載の真核宿主細胞。
29.成分(a)が、第1の調節エレメントの制御下でtraerメイト配列の下流のtraer配列をさらに含む、段落26に記載の真核宿主細胞。
30.成分(a)が、第1の調節エレメントに作動可能に結合している2つ以上のガイド配列をさらに含み、2つ以上のガイド配列のそれぞれは、発現された場合、真核細胞中の異なる標的配列へのCRISPR複合体の配列特異的結合を指向する、段落26に記載の真核宿主細胞。
31.前記traer配列に作動可能に結合している第3の調節エレメントをさらに含む、段落26に記載の真核宿主細胞。
32.traer配列が、最適にアラインされた場合にtraerメイト配列の長さに沿って少なくとも50%の配列相補性を示す、段落26に記載の真核宿主細胞。
33.CRISPR酵素が、真核細胞の核中の検出可能な量の前記CRISPR酵素の蓄積をドライブするために十分な強度の1つ以上の核局在化配列を含む、段落26に記載の真核宿主細胞。
34.CRISPR酵素が、II型CRISPR系酵素である、段落26に記載の真核宿主細胞。
35.CRISPR酵素が、Cas9酵素である、段落26に記載の真核宿主細胞。
36.CRISPR酵素が、真核細胞中の発現のためにコドン最適化されている、段落26に記載の真核宿主細胞。
37.CRISPR酵素が、標的配列の局在における1つまたは2つの鎖の開裂を指向する、段落26に記載の真核宿主細胞。
38.CRISPR酵素が、DNA鎖開裂活性を欠く、段落26に記載の真核宿主細胞。
39.第1の調節エレメントが、ポリメラーゼIIIプロモーターである、段落26に記載の真核宿主細胞。
40.第2の調節エレメントが、ポリメラーゼIIプロモーターである、段落26に記載の真核宿主細胞。
41.第3の調節エレメントが、ポリメラーゼIIIプロモーターである、段落31に記載の真核宿主細胞。
42.ガイド配列が、少なくとも15ヌクレオチド長である、段落26に記載の真核宿主細胞。
43.ガイド配列のヌクレオチドの50%未満が、最適にフォールディングされた場合に自己相補的塩基対形成に関与する、段落26に記載の真核宿主細胞。
44.段落26〜43のいずれか1つに記載の真核宿主細胞を含む非ヒト動物。
45.ベクター系およびキットの使用指示書を含むキットであって、ベクター系は、
a.traerメイト配列およびガイド配列をtraerメイト配列の上流に挿入するための1つ以上の挿入部位に作動可能に結合している第1の調節エレメント(ガイド配列は、発現された場合、真核細胞中の標的配列へのCRISPR複合体の配列特異的結合を指向し、CRISPR複合体は、(1)標的配列にハイブリダイズされるガイド配列、および(2)traer配列にハイブリダイズされるtraerメイト配列と複合体形成しているCRISPR酵素を含む);ならびに/または
b.核局在化配列を含む前記CRISPR酵素をコードする酵素コード配列に作動可能に結合している第2の調節エレメント
を含むキット。
46.系の同一または異なるベクター上にある成分(a)および(b)を含む、段落45に記載のキット。
47.成分(a)が、第1の調節エレメントの制御下でtraerメイト配列の下流のtraer配列をさらに含む、段落45に記載のキット。
48.成分(a)が、第1の調節エレメントに作動可能に結合している2つ以上のガイド配列をさらに含み、2つ以上のガイド配列のそれぞれは、発現された場合、真核細胞中の異なる標的配列へのCRISPR複合体の配列特異的結合を指向する、段落45に記載のキット。
49.系が、第3の調節エレメントの制御下でtraer配列を含む、段落45に記載のキット。
50.traer配列が、最適にアラインされた場合にtraerメイト配列の長さに沿って少なくとも50%の配列相補性を示す、段落45に記載のキット。
51.CRISPR酵素が、真核細胞の核中の検出可能な量の前記CRISPR酵素の蓄積をドライブするために十分な強度の1つ以上の核局在化配列を含む、段落45に記載のキット。
52.CRISPR酵素が、II型CRISPR系酵素である、段落45に記載のキット。
53.CRISPR酵素が、Cas9酵素である、段落45に記載のキット。
54.CRISPR酵素が、真核細胞中の発現のためにコドン最適化されている、段落45に記載のキット。
55.CRISPR酵素が、標的配列の局在における1つまたは2つの鎖の開裂を指向する、段落45に記載のキット。
56.CRISPR酵素が、DNA鎖開裂活性を欠く、段落45に記載のキット。
57.第1の調節エレメントが、ポリメラーゼIIIプロモーターである、段落45に記載のキット。
58.第2の調節エレメントが、ポリメラーゼIIプロモーターである、段落45に記載のキット。
59.第3の調節エレメントが、ポリメラーゼIIIプロモーターである、段落49に記載のキット。
60.ガイド配列が、少なくとも15ヌクレオチド長である、段落45に記載のキット。
61.ガイド配列のヌクレオチドの50%未満が、最適にフォールディングされた場合に自己相補的塩基対形成に関与する、段落45に記載のキット。
62.CRISPR複合体によるターゲティングのための真核細胞中の核酸配列内の候補標的配列を選択するコンピュータシステムであって、
a.前記核酸配列を受容および/または保存するように構成された記憶装置;および
b.(i)前記核酸配列内のCRISPRモチーフ配列を局在化し、(ii)前記局在化されたCRISPRモチーフ配列に隣接する配列を、CRISPR複合体が結合する候補標的配列として選択するようにプログラミングされた単独または組合せにおける1つ以上のプロセッサ
を含むシステム。
63.前記局在化ステップが、前記標的配列から約500ヌクレオチド未満離れて局在しているCRISPRモチーフ配列を同定することを含む、段落62に記載のコンピュータシステム。
64.候補標的配列が、少なくとも10ヌクレオチド長である、段落62に記載のコンピュータシステム。
65.候補標的配列の3’末端におけるヌクレオチドが、CRISPRモチーフ配列の上流の約10ヌクレオチド以下に局在している、段落62に記載のコンピュータシステム。
66.真核細胞中の核酸配列が、真核ゲノムに対して内因性である、段落62に記載のコンピュータシステム。
67.真核細胞中の核酸配列が、真核ゲノムに対して外因性である、請求項62に記載のコンピュータシステム。
68.1つ以上のプロセッサによる実行時、CRISPR複合体によるターゲティングのための真核細胞中の核酸配列内の候補標的配列を選択する方法を実装するコードを含むコンピュータ可読媒体であって、前記方法が、(a)前記核酸配列内のCRISPRモチーフ配列を局在化し、(b)前記局在化されたCRISPRモチーフ配列に隣接する配列をCRISPR複合体が結合する候補標的配列として選択することを含むコンピュータ可読媒体。
69.前記局在化ステップが、前記標的配列から約500ヌクレオチド未満離れているCRISPRモチーフ配列を局在化することを含む、段落68に記載のコンピュータ可読媒体。
70.前記候補標的配列が、少なくとも10ヌクレオチド長である、段落68に記載のコンピュータ可読媒体。
71.候補標的配列の3’末端におけるヌクレオチドが、CRISPRモチーフ配列の上流の約10ヌクレオチド以下に局在している、段落68に記載のコンピュータ可読媒体。
72.真核細胞中の核酸配列が、真核ゲノムに対して内因性である、段落68に記載のコンピュータ可読媒体。
73.真核細胞中の核酸配列が、真核ゲノムに対して外因性である、段落68に記載のコンピュータ可読媒体。
74.真核生物中の標的ポリヌクレオチドを改変する方法であって、CRISPR複合体を標的ポリヌクレオチドに結合させて前記標的ポリヌクレオチドの開裂を生じさせ、それにより標的ポリヌクレオチドを改変することを含み、CRISPR複合体は、前記標的ポリヌクレオチド内の標的配列にハイブリダイズされるガイド配列と複合体形成しているCRISPR酵素を含み、前記ガイド配列は、次いでtraer配列にハイブリダイズするtraerメイト配列に結合している方法。
75.前記開裂は、前記CRISPR酵素により標的配列の局在における1つまたは2つの鎖を開裂することを含む、段落74に記載の方法。
76.前記開裂が、標的遺伝子の転写の減少をもたらす、段落74に記載の方法。
77.外因性テンプレートポリヌクレオチドとの相同組換えにより前記開裂標的ポリヌクレオチドを修復することをさらに含み、前記修復は、前記標的ポリヌクレオチドの1つ以上のヌクレオチドの挿入、欠失、または置換を含む突然変異をもたらす、段落74に記載の方法。
78.前記突然変異は、標的配列を含む遺伝子から発現されるタンパク質中の1つ以上のアミノ酸変化をもたらす、段落77に記載の方法。
79.1つ以上のベクターを前記真核細胞に送達することをさらに含み、1つ以上のベクターは、CRISPR酵素、traerメイト配列に結合しているガイド配列、およびtraer配列の1つ以上の発現をドライブする、段落74に記載の方法。
80.前記ベクターを対象中の真核細胞中に送達する、段落79に記載の方法。
81.前記改変を、細胞培養物中の前記真核細胞中で行う、段落74に記載の方法。
82.前記改変前に前記真核細胞を対象から単離することをさらに含む、段落74に記載の方法。
83.前記真核細胞および/またはそれに由来する細胞を前記対象に戻すことをさらに含む、段落82に記載の方法。
84.真核細胞中のポリヌクレオチドの発現を改変する方法であって、CRISPR複合体をポリヌクレオチドに結合させ、その結果、前記結合が前記ポリヌクレオチドの発現の増加または減少をもたらすことを含み;CRISPR複合体は、前記標的ポリヌクレオチド内の標的配列にハイブリダイズされるガイド配列と複合体形成しているCRISPR酵素を含み、前記ガイド配列は、次いでtraer配列にハイブリダイズするtraerメイト配列に結合している方法。
85.1つ以上のベクターを前記真核細胞に送達することをさらに含み、1つ以上のベクターは、CRISPR酵素、traerメイト配列に結合しているガイド配列、およびtraer配列の1つ以上の発現をドライブする、段落74に記載の方法。
86.突然変異疾患遺伝子を含むモデル真核細胞を生成する方法であって、
a.1つ以上のベクターを真核細胞に導入すること(1つ以上のベクターは、CRISPR酵素、traerメイト配列に結合しているガイド配列、およびtraer配列の1つ以上の発現をドライブする);および
b.CRISPR複合体を標的ポリヌクレオチドに結合させて前記疾患遺伝子内の標的ポリヌクレオチドの開裂を生じさせ(CRISPR複合体は、(1)標的ポリヌクレオチド内の標的配列にハイブリダイズされるガイド配列、および(2)traer配列にハイブリダイズされるtraerメイト配列と複合体形成しているCRISPR酵素を含む)、それにより、突然変異疾患遺伝子を含むモデル真核細胞を生成することを含む方法。
87.前記開裂が、前記CRISPR酵素により標的配列の局在における1つまたは2つの鎖を開裂することを含む、段落86に記載の方法。
88.前記開裂が、標的遺伝子の転写の減少をもたらす、段落86に記載の方法。
89.外因性テンプレートポリヌクレオチドとの相同組換えにより前記開裂標的ポリヌクレオチドを修復することをさらに含み、前記修復は、前記標的ポリヌクレオチドの1つ以上のヌクレオチドの挿入、欠失、または置換を含む突然変異をもたらす、段落86に記載の方法。
90.前記突然変異は、標的配列を含む遺伝子から発現されるタンパク質中の1つ以上のアミノ酸変化をもたらす、段落89に記載の方法。
91.疾患遺伝子に関連する細胞シグナリングイベントをモジュレートする生物活性剤を開発する方法であって、
a.試験化合物を、段落86〜90のいずれか1つに記載のモデル細胞と接触させること;および
b.前記疾患遺伝子中の前記突然変異に関連する細胞シグナリングイベントの低減または増大を示すリードアウトの変化を検出し、それにより、前記疾患遺伝子に関連する前記細胞シグナリングイベントをモジュレートする前記生物活性剤を開発することを含む方法。
92.traerメイト配列の上流のガイド配列を含む組換えポリヌクレオチドであって、ガイド配列は、発現された場合、真核細胞中に存在する対応する標的配列へのCRISPR複合体の配列特異的結合を指向する組換えポリヌクレオチド。
93.標的配列が、真核細胞中に存在するウイルス配列である、段落89に記載の組換えポリヌクレオチド。
94.標的配列が、原癌遺伝子または癌遺伝子である、段落89に記載の組換えポリヌクレオチド。
本発明の好ましい実施形態を本明細書において示し、記載したが、そのような実施形態が例として提供されるにすぎないことは当業者に明らかである。当業者は目下、多数のバリエーション、変更、および置換を本発明から逸脱せずに行う。本明細書に記載の本発明の実施形態の種々の代替例を本発明の実施において用いることができることを理解されるべきである。以下の特許請求の範囲は、本発明の範囲を定義し、それらの特許請求の範囲の範囲内の方法および構造ならびにそれらの均等物は、特許請求の範囲により包含されるものとする。
参考文献:
1.Urnov,F.D.,Rebar,E.J.,Holmes,M.C.,Zhang,H.S.&Gregory,P.D.Genome editing with engineered zinc finger nucleases.Nat.Rev.Genet.11,636−646(2010).
2.Bogdanove,A.J.&Voytas,D.F.TAL effectors:customizable proteins for DNA targeting.Science 333,1843−1846(2011).
3.Stoddard,B.L.Homing endonuclease structure and function.Q.Rev.Biophys.38,49−95(2005).
4.Bae,T.&Schneewind,O.Allelic replacement in Staphylococcus aureus with inducible counter−selection.Plasmid 55,58−63(2006).
5.Sung,C.K.,Li,H.,Claverys,J.P.&Morrison,D.A.An rpsL cassette,janus,for gene replacement through negative selection in Streptococcus pneumoniae.Appl.Environ.Microbiol.67,5190−5196(2001).
6.Sharan,S.K.,Thomason,L.C.,Kuznetsov,S.G.&Court,D.L.Recombineering:a homologous recombination−based method of genetic engineering.Nat.Protoc.4,206−223(2009).
7.Jinek,M.et al.A programmable dual−RNA−guided DNA endonuclease in adaptive bacterial immunity.Science 337,816−821(2012).
8.Deveau,H.,Garneau,J.E.&Moineau,S.CRISPR/Cas system and its role in phage−bacteria interactions.Annu.Rev.Microbiol.64,475−493(2010).
9.Horvath,P.&Barrangou,R.CRISPR/Cas,the immune system of bacteria and archaea.Science 327,167−170(2010).
10.Terns,M.P.&Terns,R.M.CRISPR−based adaptive immune systems.Curr.Opin.Microbiol.14,321−327(2011).
11.van der Oost,J.,Jore,M.M.,Westra,E.R.,Lundgren,M.&Brouns,S.J.CRISPR−based adaptive and heritable immunity in prokaryotes.Trends.Biochem.Sci.34,401−407(2009).
12.Brouns,S.J.et al.Small CRISPR RNAs guide antiviral defense in prokaryotes.Science 321,960−964(2008).
13.Carte,J.,Wang,R.,Li,H.,Terns,R.M.&Terns,M.P.Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes.Genes Dev.22,3489−3496(2008).
14.Deltcheva,E.et al.CRISPR RNA maturation by trans−encoded small RNA and host factor RNase III.Nature 471,602−607 (2011).
15.Hatoum−Aslan,A.,Maniv,I.&Marraffini,L.A.Mature clustered,regularly interspaced,short palindromic repeats RNA(crRNA)length is measured by a ruler mechanism anchored at the precursor processing site.Proc.Natl.Acad.Sci.U.S.A.108,21218−21222(2011).
16.Haurwitz,R.E.,Jinek,M.,Wiedenheft,B.,Zhou,K.&Doudna,J.A.Sequence−and structure−specific RNA processing by a CRISPR endonuclease.Science 329,1355−1358(2010).
17.Deveau,H.et al.Phage response to CRISPR−encoded resistance in Streptococcus thermophilus.J.Bacteriol.190,1390−1400(2008).
18.Gasiunas,G.,Barrangou,R.,Horvath,P.&Siksnys,V.Cas9−crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria.Proc.Natl.Acad.Sci.U.S.A.(2012).
19.Makarova,K.S.,Aravind,L.,Wolf,Y.I.&Koonin,E.V.Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR−Cas systems.Biol.Direct.6,38(2011).
20.Barrangou,R.RNA−mediated programmable DNA cleavage.Nat.Biotechnol.30,836−838(2012).
21.Brouns,S.J.Molecular biology.A Swiss army knife of immunity.Science 337,808−809(2012).
22.Carroll,D.A CRISPR Approach to Gene Targeting.Mol.Ther.20,1658−1660(2012).
23.Bikard,D.,Hatoum−Aslan,A.,Mucida,D.&Marraffini,L.A.CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection.Cell Host Microbe 12,177−186(2012).
24.Sapranauskas,R.et al.The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli.Nucleic Acids Res.(2011).
25.Semenova,E.et al.Interference by clustered regularly interspaced short palindromic repeat(CRISPR)RNA is governed by a seed sequence.Proc.Natl.Acad.Sci.U.S.A.(2011).
26.Wiedenheft,B.et al.RNA−guided complex from a bacterial immune system enhances target recognition through seed sequence interactions.Proc.Natl.Acad.Sci.U.S.A.(2011).
27.Zahner,D.&Hakenbeck,R.The Streptococcus pneumoniae beta−galactosidase is a surface protein.J.Bacteriol.182,5919−5921(2000).
28.Marraffini,L.A.,Dedent,A.C.&Schneewind,O.Sortases and the art of anchoring proteins to the envelopes of gram−positive bacteria.Microbiol.Mol.Biol.Rev.70,192−221(2006).
29.Motamedi,M.R.,Szigety,S.K.&Rosenberg,S.M.Double−strand−break repair recombination in Escherichia coli:physical evidence for a DNA replication mechanism in vivo.Genes Dev.13,2889−2903(1999).
30.Hosaka,T.et al.The novel mutation K87E in ribosomal protein S12 enhances protein synthesis activity during the late growth phase in Escherichia coli.Mol.Genet.Genomics 271,317−324(2004).
31.Costantino,N.&Court,D.L.Enhanced levels of lambda Red−mediated recombinants in mismatch repair mutants.Proc.Natl.Acad.Sci.U.S.A.100,15748−15753(2003).
32.Edgar,R.&Qimron,U.The Escherichia coli CRISPR system protects from lambda lysogenization,lysogens,and prophage induction.J.Bacteriol.192,6291−6294(2010).
33.Marraffini,L.A.&Sontheimer,E.J.Self versus non−self discrimination during CRISPR RNA−directed immunity.Nature 463,568−571(2010).
34.Fischer,S.et al.An archaeal immune system can detect multiple Protospacer Adjacent Motifs(PAMs)to target invader DNA.J.Biol.Chem.287,33351−33363(2012).
35.Gudbergsdottir,S.et al.Dynamic properties of the Sulfolobus CRISPR/Cas and CRISPR/Cmr systems when challenged with vector−borne viral and plasmid genes and protospacers.Mol.Microbiol.79,35−49(2011).
36.Wang,H.H.et al.Genome−scale promoter engineering by coselection MAGE.Nat Methods 9,591−593(2012).
37.Cong,L.et al.Multiplex Genome Engineering Using CRISPR/Cas Systems.Science In press(2013).
38.Mali,P.et al.RNA−Guided Human Genome Engineering via Cas9.Science In press(2013).
39.Hoskins,J.et al.Genome of the bacterium Streptococcus pneumoniae strain R6.J.Bacteriol.183,5709−5717(2001).
40.Havarstein,L.S.,Coomaraswamy,G.&Morrison,D.A.An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae.Proc.Natl.Acad.Sci.U.S.A.92,11140−11144(1995).
41.Horinouchi,S.&Weisblum,B.Nucleotide sequence and functional map of pC194,a plasmid that specifies inducible chloramphenicol resistance.J.Bacteriol.150,815−825(1982).
42.Horton,R.M.In Vitro Recombination and Mutagenesis of DNA:SOEing Together Tailor−Made Genes.Methods Mol.Biol.15,251−261(1993).
43.Podbielski,A.,Spellerberg,B.,Woischnik,M.,Pohl,B.&Lutticken,R.Novel series of plasmid vectors for gene inactivation and expression analysis in group A streptococci(GAS).Gene 177,137−147(1996).
44.Husmann,L.K.,Scott,J.R.,Lindahl,G.&Stenberg,L.Expression of the Arp protein,a member of the M protein family,is not sufficient to inhibit phagocytosis of Streptococcus pyogenes.Infection and immunity 63,345−348(1995).
45.Gibson,D.G.et al.Enzymatic assembly of DNA molecules up to several hundred kilobases.Nat Methods 6,343−345(2009).

Claims (34)

  1. 天然に存在しないまたはエンジニアリングされた組成物であって、
    I.CRISPR−Cas系キメラRNA(chiRNA)ポリヌクレオチド配列に作動可能に結合している第1の調節エレメントであって、前記ポリヌクレオチド配列は、
    (a)真核細胞中の標的配列にハイブリダイズし得るガイド配列、
    (b)tracrメイト配列、および
    (c)tracr配列
    を含む、第1の調節エレメント、および
    II.CRISPR酵素の末端に近接する少なくとも1つ以上の核局在化配列(NLS)を含むCRISPR酵素をコードする酵素コード配列に作動可能に結合している第2の調節エレメント
    を含む1つ以上のベクターを含むベクター系を含み、
    (a)、(b)および(c)は、5’から3’配向で配置されており、
    成分IおよびIIは、前記系の同一または異なるベクター上にあり、
    前記tracrメイト配列は、転写された場合、前記tracr配列にハイブリダイズし、前記ガイド配列は、前記標的配列へのCRISPR複合体の配列特異的結合を指向し、
    前記CRISPR複合体は、(1)前記標的配列にハイブリダイズされる前記ガイド配列、および(2)前記tracr配列にハイブリダイズされる前記tracrメイト配列と複合体形成している前記CRISPR酵素を含み、
    前記キメラRNAポリヌクレオチド配列は、2つ以上のヘアピンを含む
    天然に存在しないまたはエンジニアリングされた組成物。
  2. 複数のchiRNAポリヌクレオチド配列が使用されて多重化系が提供される、請求項1に記載の組成物。
  3. 多重化CRISPR酵素系であって、
    I.CRISPR−Cas系キメラRNA(chiRNA)ポリヌクレオチド配列に作動可能に結合している第1の調節エレメントであって、前記ポリヌクレオチド配列は、
    (a)真核細胞中の標的配列にハイブリダイズし得るガイド配列、
    (b)tracrメイト配列、および
    (c)tracr配列
    を含む、第1の調節エレメント、および
    II.CRISPR酵素の末端に近接する少なくとも1つ以上の核局在化配列(NLS)を含むCRISPR酵素をコードする酵素コード配列に作動可能に結合している第2の調節エレメント
    を含む1つ以上のベクターを含むベクター系を含み、
    (a)、(b)および(c)は、5’から3’配向で配置されており、
    成分IおよびIIは、前記系の同一または異なるベクター上にあり、
    前記tracrメイト配列は、転写された場合、前記tracr配列にハイブリダイズし、前記ガイド配列は、前記標的配列へのCRISPR複合体の配列特異的結合を指向し、
    前記CRISPR複合体は、(1)前記標的配列にハイブリダイズされる前記ガイド配列、および(2)前記tracr配列にハイブリダイズされる前記tracrメイト配列と複合体形成している前記CRISPR酵素を含み、
    前記chiRNAポリヌクレオチド配列は、2つ以上のヘアピンを含み、
    前記多重化系において複数のchiRNAポリヌクレオチド配列が使用される
    多重化CRISPR酵素系。
  4. 前記第1の調節エレメントが、ポリメラーゼIIIプロモーターである、請求項1〜3のいずれか一項に記載の組成物または系。
  5. 前記第2の調節エレメントが、ポリメラーゼIIプロモーターである、請求項1〜4のいずれか一項に記載の組成物または系。
  6. 前記CRISPR酵素が、真核細胞の核中の検出可能な量の前記CRISPR酵素の蓄積をドライブするために十分な強度の1つ以上のNLSを含む、請求項1〜5のいずれか一項に記載の組成物または系。
  7. 前記tracr配列が、最適にアラインされた場合に前記tracrメイト配列の長さに沿って少なくとも50%の配列相補性を示す、請求項1〜6のいずれか一項に記載の組成物または系。
  8. 前記CRISPR酵素が、II型CRISPR系酵素である、請求項1〜7のいずれか一項に記載の組成物または系。
  9. 前記CRISPR酵素が、Cas9酵素である、請求項1〜8のいずれか一項に記載の組成物または系。
  10. 前記CRISPR酵素が、真核細胞中の発現のためにコドン最適化されている、請求項1〜9のいずれか一項に記載の組成物または系。
  11. 前記ガイド配列が、少なくとも15ヌクレオチド長である、請求項1〜10のいずれか一項に記載の組成物または系。
  12. 前記キメラRNAポリヌクレオチド配列が、2、3、4または5つのヘアピンを含む、請求項1〜11のいずれか一項に記載の組成物または系。
  13. 天然に存在しないまたはエンジニアリングされた組成物であって、
    I.第1の調節エレメントであって、
    (a)真核細胞中の標的配列にハイブリダイズし得るガイド配列、および
    (b)tracrメイト配列
    に作動可能に結合している第1の調節エレメント、
    II.CRISPR酵素の末端に近接する少なくとも1つ以上の核局在化配列(NLS)を含むCRISPR酵素をコードする酵素コード配列に作動可能に結合している第2の調節エレメント、ならびに
    III.tracr配列に作動可能に結合している第3の調節エレメント
    を含む1つ以上のベクターを含むベクター系を含み、
    成分I、IIおよびIIIは、前記系の同一または異なるベクター上にあり、
    前記tracrメイト配列は、転写された場合、前記tracr配列にハイブリダイズし、前記ガイド配列は、前記標的配列へのCRISPR複合体の配列特異的結合を指向し、
    前記CRISPR複合体は、(1)前記標的配列にハイブリダイズされる前記ガイド配列、および(2)前記tracr配列にハイブリダイズされる前記tracrメイト配列と複合体形成している前記CRISPR酵素を含む
    天然に存在しないまたはエンジニアリングされた組成物。
  14. 複数のガイド配列および単一tracr配列が使用されて多重化系が提供される、請求項13に記載の組成物。
  15. 多重化CRISPR酵素系であって、
    I.第1の調節エレメントであって、
    (a)真核細胞中の標的配列にハイブリダイズし得るガイド配列、および
    (b)tracrメイト配列
    に作動可能に結合している第1の調節エレメント、
    II.CRISPR酵素の末端に近接する少なくとも1つ以上の核局在化配列(NLS)を含むCRISPR酵素をコードする酵素コード配列に作動可能に結合している第2の調節エレメント、ならびに
    III.tracr配列に作動可能に結合している第3の調節エレメント
    を含む1つ以上のベクターを含むベクター系を含み、
    成分I、IIおよびIIIは、前記系の同一または異なるベクター上にあり、
    前記tracrメイト配列は、転写された場合、前記tracr配列にハイブリダイズし、前記ガイド配列は、前記標的配列へのCRISPR複合体の配列特異的結合を指向し、
    前記CRISPR複合体は、(1)前記標的配列にハイブリダイズされる前記ガイド配列、および(2)前記tracr配列にハイブリダイズされる前記tracrメイト配列と複合体形成している前記CRISPR酵素を含み、
    前記多重化系において複数のガイド配列および単一tracr配列が使用される
    多重化CRISPR酵素系。
  16. 前記第1の調節エレメントが、ポリメラーゼIIIプロモーターである、請求項13〜15のいずれか一項に記載の組成物または系。
  17. 前記第2の調節エレメントが、ポリメラーゼIIプロモーターである、請求項13〜16のいずれか一項に記載の組成物または系。
  18. 前記第3の調節エレメントが、ポリメラーゼIIIプロモーターである、請求項13〜17のいずれか一項に記載の組成物または系。
  19. 前記CRISPR酵素が、真核細胞の核中の検出可能な量の前記CRISPR酵素の蓄積をドライブするために十分な強度の1つ以上のNLSを含む、請求項13〜18のいずれか一項に記載の組成物または系。
  20. 前記tracr配列が、最適にアラインされた場合に前記tracrメイト配列の長さに沿って少なくとも50%の配列相補性を示す、請求項13〜19のいずれか一項に記載の組成物または系。
  21. 前記CRISPR酵素が、II型CRISPR系酵素である、請求項13〜20のいずれか一項に記載の組成物または系。
  22. 前記CRISPR酵素が、Cas9酵素である、請求項13〜21のいずれか一項に記載の組成物または系。
  23. 前記CRISPR酵素が、真核細胞中の発現のためにコドン最適化されている、請求項13〜22のいずれか一項に記載の組成物または系。
  24. 前記ガイド配列が、少なくとも15ヌクレオチド長である、請求項13〜23のいずれか一項に記載の組成物または系。
  25. 請求項1〜24のいずれか一項に記載の組成物または系を含む真核宿主細胞。
  26. 請求項25に記載の真核宿主細胞を含む生物。
  27. 請求項25に記載の真核宿主細胞を含む非ヒト生物。
  28. 請求項1〜24のいずれか一項に記載の組成物およびキットの使用指示書を含むキット。
  29. 真核細胞中の目的ゲノム遺伝子座の発現を変化させる方法であって、
    前記ゲノム遺伝子座を請求項1〜24のいずれか一項に記載の組成物と接触させること、および
    前記ゲノム遺伝子座の発現が変化したか否かを決定すること
    含む方法。
  30. 前記ガイド配列が、CRISPRモチーフ配列の存在に基づき前記標的配列への前記CRISPR複合体の配列特異的結合を指向する、請求項29に記載の方法。
  31. 前記CRISPRモチーフ配列が、NAGである、請求項30に記載の方法。
  32. 1つ以上の原核細胞中の遺伝子中の1つ以上の突然変異を導入することにより1つ以上の原核細胞を選択する方法であって、
    1つ以上のベクターを前記原核細胞中に導入することであって、前記1つ以上のベクターは、CRISPR酵素、tracrメイト配列に結合しているガイド配列、tracr配列、および編集テンプレートの1つ以上の発現をドライブし;
    前記編集テンプレートは、CRISPR酵素開裂を停止させる前記1つ以上の突然変異を含むこと;
    前記編集テンプレートと、選択すべき前記細胞中の標的ポリヌクレオチドとを相同組換えさせること;
    CRISPR複合体を標的ポリヌクレオチドに結合させて前記遺伝子内の前記標的ポリヌクレオチドの開裂を生じさせることであって、前記CRISPR複合体は、(1)前記標的ポリヌクレオチド内の前記標的配列にハイブリダイズされる前記ガイド配列、および(2)前記tracr配列にハイブリダイズされる前記tracrメイト配列と複合体形成している前記CRISPR酵素を含み、
    前記標的ポリヌクレオチドへの前記CRISPR複合体の結合は、細胞死を誘導し、
    それにより、1つ以上の突然変異が導入された1つ以上の原核細胞の選択を可能とすること
    を含む方法。
  33. 前記CRISPR酵素が、II型CRISPR系酵素である、請求項32に記載の方法。
  34. 前記CRISPR酵素が、Cas9である、請求項33に記載の方法。
JP2015547530A 2012-12-12 2013-12-12 配列操作のためのCRISPR−Cas成分系、方法および組成物 Pending JP2016505256A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019080952A JP6896786B2 (ja) 2012-12-12 2019-04-22 配列操作のためのCRISPR−Cas成分系、方法および組成物

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US201261736527P 2012-12-12 2012-12-12
US61/736,527 2012-12-12
US201361748427P 2013-01-02 2013-01-02
US61/748,427 2013-01-02
US201361768959P 2013-02-25 2013-02-25
US61/768,959 2013-02-25
US201361791409P 2013-03-15 2013-03-15
US61/791,409 2013-03-15
US201361835931P 2013-06-17 2013-06-17
US61/835,931 2013-06-17
PCT/US2013/074611 WO2014093595A1 (en) 2012-12-12 2013-12-12 Crispr-cas component systems, methods and compositions for sequence manipulation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019080952A Division JP6896786B2 (ja) 2012-12-12 2019-04-22 配列操作のためのCRISPR−Cas成分系、方法および組成物

Publications (2)

Publication Number Publication Date
JP2016505256A true JP2016505256A (ja) 2016-02-25
JP2016505256A5 JP2016505256A5 (ja) 2017-02-16

Family

ID=49881125

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2015547530A Pending JP2016505256A (ja) 2012-12-12 2013-12-12 配列操作のためのCRISPR−Cas成分系、方法および組成物
JP2019080952A Active JP6896786B2 (ja) 2012-12-12 2019-04-22 配列操作のためのCRISPR−Cas成分系、方法および組成物
JP2021096264A Active JP7269990B2 (ja) 2012-12-12 2021-06-09 配列操作のためのCRISPR-Cas成分系、方法および組成物
JP2023070572A Pending JP2023093658A (ja) 2012-12-12 2023-04-24 配列操作のためのCRISPR-Cas成分系、方法および組成物

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2019080952A Active JP6896786B2 (ja) 2012-12-12 2019-04-22 配列操作のためのCRISPR−Cas成分系、方法および組成物
JP2021096264A Active JP7269990B2 (ja) 2012-12-12 2021-06-09 配列操作のためのCRISPR-Cas成分系、方法および組成物
JP2023070572A Pending JP2023093658A (ja) 2012-12-12 2023-04-24 配列操作のためのCRISPR-Cas成分系、方法および組成物

Country Status (11)

Country Link
US (23) US20140189896A1 (ja)
EP (8) EP4234696A3 (ja)
JP (4) JP2016505256A (ja)
KR (1) KR20150105635A (ja)
CN (3) CN105658796B (ja)
AU (3) AU2013359262C1 (ja)
BR (2) BR122021008308B1 (ja)
CA (1) CA2894668A1 (ja)
DK (1) DK3252160T3 (ja)
HK (2) HK1206388A1 (ja)
WO (1) WO2014093595A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019162113A (ja) * 2012-12-12 2019-09-26 ザ・ブロード・インスティテュート・インコーポレイテッ 配列操作のためのCRISPR−Cas成分系、方法および組成物
US11008588B2 (en) 2013-06-17 2021-05-18 The Broad Institute, Inc. Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation
US11041173B2 (en) 2012-12-12 2021-06-22 The Broad Institute, Inc. Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications
US11155795B2 (en) 2013-12-12 2021-10-26 The Broad Institute, Inc. CRISPR-Cas systems, crystal structure and uses thereof
US11407985B2 (en) 2013-12-12 2022-08-09 The Broad Institute, Inc. Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for genome editing
US11578312B2 (en) 2015-06-18 2023-02-14 The Broad Institute Inc. Engineering and optimization of systems, methods, enzymes and guide scaffolds of CAS9 orthologs and variants for sequence manipulation
US11591581B2 (en) 2013-12-12 2023-02-28 The Broad Institute, Inc. Compositions and methods of use of CRISPR-Cas systems in nucleotide repeat disorders
US11597919B2 (en) 2013-12-12 2023-03-07 The Broad Institute Inc. Systems, methods and compositions for sequence manipulation with optimized functional CRISPR-Cas systems
US11597949B2 (en) 2013-06-17 2023-03-07 The Broad Institute, Inc. Optimized CRISPR-Cas double nickase systems, methods and compositions for sequence manipulation
US11624078B2 (en) 2014-12-12 2023-04-11 The Broad Institute, Inc. Protected guide RNAS (pgRNAS)

Families Citing this family (711)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9314005B2 (en) 2009-07-01 2016-04-19 Transposagen Biopharmaceuticals, Inc. Genetically modified rat models for severe combined immunodeficiency (SCID)
US10920242B2 (en) 2011-02-25 2021-02-16 Recombinetics, Inc. Non-meiotic allele introgression
US9528124B2 (en) 2013-08-27 2016-12-27 Recombinetics, Inc. Efficient non-meiotic allele introgression
EP2734621B1 (en) 2011-07-22 2019-09-04 President and Fellows of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11021737B2 (en) 2011-12-22 2021-06-01 President And Fellows Of Harvard College Compositions and methods for analyte detection
GB201122458D0 (en) 2011-12-30 2012-02-08 Univ Wageningen Modified cascade ribonucleoproteins and uses thereof
WO2013119602A1 (en) 2012-02-06 2013-08-15 President And Fellows Of Harvard College Arrdc1-mediated microvesicles (armms) and uses thereof
US9637739B2 (en) 2012-03-20 2017-05-02 Vilnius University RNA-directed DNA cleavage by the Cas9-crRNA complex
PL2847335T3 (pl) 2012-04-25 2019-01-31 Regeneron Pharmaceuticals, Inc. Celowanie dużymi wektorami do celowania wspomagane nukleazą
WO2013163628A2 (en) 2012-04-27 2013-10-31 Duke University Genetic correction of mutated genes
DE202013012242U1 (de) 2012-05-25 2016-02-02 Emmanuelle Charpentier Zusammensetzungen für die durch RNA gesteuerte Modifikation einer Ziel-DNA und für die durch RNA gesteuerte Modulation der Transkription
CA2877290A1 (en) 2012-06-19 2013-12-27 Daniel F. Voytas Gene targeting in plants using dna viruses
US10648001B2 (en) 2012-07-11 2020-05-12 Sangamo Therapeutics, Inc. Method of treating mucopolysaccharidosis type I or II
WO2014011237A1 (en) 2012-07-11 2014-01-16 Sangamo Biosciences, Inc. Methods and compositions for the treatment of lysosomal storage diseases
CN105188767A (zh) * 2012-07-25 2015-12-23 布罗德研究所有限公司 可诱导的dna结合蛋白和基因组干扰工具及其应用
DE202013012597U1 (de) 2012-10-23 2017-11-21 Toolgen, Inc. Zusammensetzung zum Spalten einer Ziel-DNA, umfassend eine für die Ziel-DNA spezifische guide-RNA und eine Cas-Protein-codierende Nukleinsäure oder ein Cas-Protein, sowie deren Verwendung
WO2014071182A1 (en) 2012-11-01 2014-05-08 Massachusetts Institute Of Technology Directed evolution of synthetic gene cluster
PL3138910T3 (pl) 2012-12-06 2018-01-31 Sigma Aldrich Co Llc Oparta na CRISPR modyfikacja i regulacja genomu
EP3434776A1 (en) 2012-12-12 2019-01-30 The Broad Institute, Inc. Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof
US20140186843A1 (en) 2012-12-12 2014-07-03 Massachusetts Institute Of Technology Methods, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof
PL2931898T3 (pl) 2012-12-12 2016-09-30 Le Cong Projektowanie i optymalizacja systemów, sposoby i kompozycje do manipulacji sekwencją z domenami funkcjonalnymi
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
JP6552965B2 (ja) 2012-12-12 2019-07-31 ザ・ブロード・インスティテュート・インコーポレイテッド 配列操作のための改善された系、方法および酵素組成物のエンジニアリングおよび最適化
WO2014099744A1 (en) * 2012-12-17 2014-06-26 President And Fellows Of Harvard College Rna-guided human genome engineering
EP3919505B1 (en) 2013-01-16 2023-08-30 Emory University Uses of cas9-nucleic acid complexes
US10660943B2 (en) * 2013-02-07 2020-05-26 The Rockefeller University Sequence specific antimicrobials
US11135273B2 (en) 2013-02-07 2021-10-05 The Rockefeller University Sequence specific antimicrobials
US10138509B2 (en) 2013-03-12 2018-11-27 President And Fellows Of Harvard College Method for generating a three-dimensional nucleic acid containing matrix
WO2014150624A1 (en) 2013-03-14 2014-09-25 Caribou Biosciences, Inc. Compositions and methods of nucleic acid-targeting nucleic acids
KR102210319B1 (ko) 2013-03-15 2021-02-01 더 제너럴 하스피탈 코포레이션 특정 게놈 좌위에 대한 유전적 및 후성적 조절 단백질의 rna-안내 표적화
US20140364333A1 (en) * 2013-03-15 2014-12-11 President And Fellows Of Harvard College Methods for Live Imaging of Cells
WO2014204578A1 (en) 2013-06-21 2014-12-24 The General Hospital Corporation Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
US10760064B2 (en) 2013-03-15 2020-09-01 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US9234213B2 (en) 2013-03-15 2016-01-12 System Biosciences, Llc Compositions and methods directed to CRISPR/Cas genomic engineering systems
WO2014165825A2 (en) 2013-04-04 2014-10-09 President And Fellows Of Harvard College Therapeutic uses of genome editing with crispr/cas systems
HUE040575T2 (hu) 2013-04-16 2019-03-28 Regeneron Pharma A patkány genom célzott módosítása
JP7065564B2 (ja) * 2013-05-29 2022-05-12 セレクティス Cas9ニッカーゼ活性を用いて正確なdna切断をもたらすための方法
US9873907B2 (en) 2013-05-29 2018-01-23 Agilent Technologies, Inc. Method for fragmenting genomic DNA using CAS9
US20140356956A1 (en) 2013-06-04 2014-12-04 President And Fellows Of Harvard College RNA-Guided Transcriptional Regulation
WO2014197568A2 (en) 2013-06-04 2014-12-11 President And Fellows Of Harvard College Rna-guideded transcriptional regulation
EP3539573B1 (en) * 2013-06-05 2024-02-14 Duke University Rna-guided gene editing and gene regulation
EP3008181B1 (en) 2013-06-11 2019-11-06 The Regents of The University of California Methods and compositions for target dna modification
RU2716421C2 (ru) 2013-06-17 2020-03-11 Те Брод Инститьют Инк. Доставка, применение и применения в терапии систем crispr-cas и композиций для целенаправленного воздействия на нарушения и заболевания с использованием вирусных компонентов
BR112015031608A2 (pt) 2013-06-17 2017-08-22 Massachusetts Inst Technology Aplicação e uso dos sistemas crispr-cas, vetores e composições para direcionamento e terapia hepáticos
WO2014204727A1 (en) 2013-06-17 2014-12-24 The Broad Institute Inc. Functional genomics using crispr-cas systems, compositions methods, screens and applications thereof
JP2016528890A (ja) 2013-07-09 2016-09-23 プレジデント アンド フェローズ オブ ハーバード カレッジ CRISPR/Cas系を用いるゲノム編集の治療用の使用
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
EP3611268A1 (en) 2013-08-22 2020-02-19 E. I. du Pont de Nemours and Company Plant genome modification using guide rna/cas endonuclease systems and methods of use
EP3041498B1 (en) * 2013-09-05 2022-02-16 Massachusetts Institute of Technology Tuning microbial populations with programmable nucleases
US9340799B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College MRNA-sensing switchable gRNAs
US9388430B2 (en) 2013-09-06 2016-07-12 President And Fellows Of Harvard College Cas9-recombinase fusion proteins and uses thereof
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
DE202014010413U1 (de) * 2013-09-18 2015-12-08 Kymab Limited Zellen und Organismen
WO2015054507A1 (en) 2013-10-10 2015-04-16 Pronutria, Inc. Nutritive polypeptide production systems, and methods of manufacture and use thereof
WO2015065964A1 (en) 2013-10-28 2015-05-07 The Broad Institute Inc. Functional genomics using crispr-cas systems, compositions, methods, screens and applications thereof
DK3066201T3 (en) 2013-11-07 2018-06-06 Editas Medicine Inc CRISPR-RELATED PROCEDURES AND COMPOSITIONS WITH LEADING GRADES
WO2015070062A1 (en) 2013-11-07 2015-05-14 Massachusetts Institute Of Technology Cell-based genomic recorded accumulative memory
MX2016007654A (es) 2013-12-11 2017-08-15 Regeneron Pharma Metodos y composiciones para la modificacion dirigida de un genoma.
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
EP3080266B1 (en) 2013-12-12 2021-02-03 The Regents of The University of California Methods and compositions for modifying a single stranded target nucleic acid
SG10201804975PA (en) 2013-12-12 2018-07-30 Broad Inst Inc Delivery, Use and Therapeutic Applications of the Crispr-Cas Systems and Compositions for HBV and Viral Diseases and Disorders
EP3079726B1 (en) 2013-12-12 2018-12-05 The Broad Institute, Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components
EP3080259B1 (en) 2013-12-12 2023-02-01 The Broad Institute, Inc. Engineering of systems, methods and optimized guide compositions with new architectures for sequence manipulation
ES2918501T3 (es) 2013-12-19 2022-07-18 Novartis Ag Receptores de antígenos quiméricos de mesotelina humana y usos de los mismos
US9963689B2 (en) 2013-12-31 2018-05-08 The Regents Of The University Of California Cas9 crystals and methods of use thereof
PL3105328T3 (pl) 2014-02-11 2020-10-19 The Regents Of The University Of Colorado, A Body Corporate Umożliwiana przez CRISPR multipleksowa modyfikacja genomu
JP2017506893A (ja) 2014-02-18 2017-03-16 デューク ユニバーシティ ウイルス複製不活化組成物並びにその製造方法及び使用
CA2940653A1 (en) 2014-02-27 2015-09-03 Vijay Kuchroo T cell balance gene expression, compositions of matters and methods of use thereof
CA3194412A1 (en) 2014-02-27 2015-09-03 Monsanto Technology Llc Compositions and methods for site directed genomic modification
EP3613854A1 (en) 2014-03-05 2020-02-26 National University Corporation Kobe University Genomic sequence modification method for specifically converting nucleic acid bases of targeted dna sequence, and molecular complex for use in same
WO2015134812A1 (en) 2014-03-05 2015-09-11 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating usher syndrome and retinitis pigmentosa
US9938521B2 (en) 2014-03-10 2018-04-10 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating leber's congenital amaurosis 10 (LCA10)
US11339437B2 (en) 2014-03-10 2022-05-24 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
US11141493B2 (en) 2014-03-10 2021-10-12 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
WO2015142675A2 (en) 2014-03-15 2015-09-24 Novartis Ag Treatment of cancer using chimeric antigen receptor
US10349639B2 (en) 2014-03-26 2019-07-16 University Of Maryland, College Park Targeted genome editing in zygotes of domestic large animals
US11242525B2 (en) 2014-03-26 2022-02-08 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating sickle cell disease
US20170029850A1 (en) * 2014-04-02 2017-02-02 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating primary open angle glaucoma
DK3129470T3 (da) 2014-04-07 2021-07-05 Novartis Ag Behandling af cancer ved anvendelse af anti-CD19-kimær antigenreceptor
HUE051354T2 (hu) * 2014-04-14 2021-03-01 Nemesis Bioscience Ltd Terapeutikum
GB201406968D0 (en) 2014-04-17 2014-06-04 Green Biologics Ltd Deletion mutants
GB201406970D0 (en) * 2014-04-17 2014-06-04 Green Biologics Ltd Targeted mutations
EP3140403A4 (en) * 2014-05-09 2017-12-20 Université Laval Prevention and treatment of alzheimer's disease by genome editing using the crispr/cas system
EP3145934B1 (en) 2014-05-19 2020-11-11 Pfizer Inc Substituted-6,8-dioxabicyclo[3.2.1]octane-2,3-diol compounds as targeting agents of asgpr
WO2015192020A1 (en) 2014-06-13 2015-12-17 Children's Medical Center Corporation Products and methods to isolate mitochondria
ES2888976T3 (es) 2014-06-23 2022-01-10 Massachusetts Gen Hospital Identificación no sesgada pangenómica de DSBs evaluada por secuenciación (GUIDE-Seq.)
CA2954686A1 (en) * 2014-07-11 2016-01-14 Pioneer Hi-Bred International, Inc. Agronomic trait modification using guide rna/cas endonuclease systems and methods of use
US10676754B2 (en) 2014-07-11 2020-06-09 E I Du Pont De Nemours And Company Compositions and methods for producing plants resistant to glyphosate herbicide
EP3169310A1 (en) 2014-07-15 2017-05-24 Life Technologies Corporation Compositions with lipid aggregates and methods for efficient delivery of molecules to cells
US11542488B2 (en) 2014-07-21 2023-01-03 Novartis Ag Sortase synthesized chimeric antigen receptors
JP2017528433A (ja) 2014-07-21 2017-09-28 ノバルティス アーゲー 低い免疫増強用量のmTOR阻害剤とCARの組み合わせ
KR102612313B1 (ko) 2014-07-21 2023-12-12 노파르티스 아게 인간화 항-bcma 키메라 항원 수용체를 사용한 암의 치료
KR102594343B1 (ko) 2014-07-21 2023-10-26 노파르티스 아게 Cd33 키메라 항원 수용체를 사용한 암의 치료
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
EP4205749A1 (en) 2014-07-31 2023-07-05 Novartis AG Subset-optimized chimeric antigen receptor-containing cells
US10513711B2 (en) 2014-08-13 2019-12-24 Dupont Us Holding, Llc Genetic targeting in non-conventional yeast using an RNA-guided endonuclease
EP3180359A1 (en) 2014-08-14 2017-06-21 Novartis AG Treatment of cancer using gfr alpha-4 chimeric antigen receptor
EP3686279B1 (en) 2014-08-17 2023-01-04 The Broad Institute, Inc. Genome editing using cas9 nickases
SG11201700770PA (en) 2014-08-19 2017-03-30 Novartis Ag Anti-cd123 chimeric antigen receptor (car) for use in cancer treatment
SG11201701245QA (en) * 2014-08-27 2017-03-30 Caribou Biosciences Inc Methods for increasing cas9-mediated engineering efficiency
WO2016033298A1 (en) 2014-08-28 2016-03-03 North Carolina State University Novel cas9 proteins and guiding features for dna targeting and genome editing
US10570418B2 (en) * 2014-09-02 2020-02-25 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification
RU2017112324A (ru) 2014-09-12 2018-10-15 Пайонир Хай-Бред Интернэшнл, Инк. Создание сайтов сайт-специфической интеграции для сложных локусов признаков в кукурузе и сое, а также способы применения
AU2015317608B2 (en) 2014-09-17 2021-03-11 Novartis Ag Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
US9616114B1 (en) 2014-09-18 2017-04-11 David Gordon Bermudes Modified bacteria having improved pharmacokinetics and tumor colonization enhancing antitumor activity
EA201790675A1 (ru) 2014-09-23 2017-08-31 Эгдженетикс, Инк. Материалы и способы для выведения животных с короткой шерстью
WO2016049024A2 (en) 2014-09-24 2016-03-31 The Broad Institute Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling competition of multiple cancer mutations in vivo
WO2016049163A2 (en) 2014-09-24 2016-03-31 The Broad Institute Inc. Use and production of chd8+/- transgenic animals with behavioral phenotypes characteristic of autism spectrum disorder
WO2016049251A1 (en) 2014-09-24 2016-03-31 The Broad Institute Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling mutations in leukocytes
US10040048B1 (en) 2014-09-25 2018-08-07 Synthego Corporation Automated modular system and method for production of biopolymers
WO2016049258A2 (en) 2014-09-25 2016-03-31 The Broad Institute Inc. Functional screening with optimized functional crispr-cas systems
WO2016061073A1 (en) * 2014-10-14 2016-04-21 Memorial Sloan-Kettering Cancer Center Composition and method for in vivo engineering of chromosomal rearrangements
CN105602935B (zh) * 2014-10-20 2020-11-13 聂凌云 一种新型线粒体基因组编辑工具
US20170247762A1 (en) 2014-10-27 2017-08-31 The Board Institute Inc. Compositions, methods and use of synthetic lethal screening
US9816080B2 (en) 2014-10-31 2017-11-14 President And Fellows Of Harvard College Delivery of CAS9 via ARRDC1-mediated microvesicles (ARMMs)
CN107406838A (zh) 2014-11-06 2017-11-28 纳幕尔杜邦公司 Rna引导的内切核酸酶向细胞中的肽介导的递送
EP3215617B1 (en) 2014-11-07 2024-05-08 Editas Medicine, Inc. Systems for improving crispr/cas-mediated genome-editing
LT3221457T (lt) 2014-11-21 2019-06-10 Regeneron Pharmaceuticals, Inc. Nukreipiančios genetinės modifikacijos būdai ir kompozicijos, naudojant suporuotas kreipiančiąsias rnr sekas
EP3224381B1 (en) 2014-11-25 2019-09-04 The Brigham and Women's Hospital, Inc. Method of identifying a person having a predisposition to or afflicted with a cardiometabolic disease
EP3224362A4 (en) 2014-11-26 2018-06-06 The Regents of The University of California Therapeutic compositions comprising transcription factors and methods of making and using the same
WO2016082135A1 (zh) * 2014-11-27 2016-06-02 中国农业科学院北京畜牧兽医研究所 一种利用定点切割系统对猪h11位点定点插入的方法
GB201421096D0 (en) 2014-11-27 2015-01-14 Imp Innovations Ltd Genome editing methods
JP7068821B2 (ja) 2014-12-03 2022-05-17 アジレント・テクノロジーズ・インク 化学修飾を有するガイドrna
WO2016094679A1 (en) 2014-12-10 2016-06-16 Regents Of The University Of Minnesota Genetically modified cells, tissues, and organs for treating disease
EP3230452A1 (en) 2014-12-12 2017-10-18 The Broad Institute Inc. Dead guides for crispr transcription factors
WO2016094880A1 (en) 2014-12-12 2016-06-16 The Broad Institute Inc. Delivery, use and therapeutic applications of crispr systems and compositions for genome editing as to hematopoietic stem cells (hscs)
WO2016094874A1 (en) 2014-12-12 2016-06-16 The Broad Institute Inc. Escorted and functionalized guides for crispr-cas systems
WO2016100333A1 (en) 2014-12-15 2016-06-23 Syngenta Participations Ag Pesticidal microrna carriers and use thereof
EP3234150A1 (en) * 2014-12-16 2017-10-25 Danisco US Inc. Fungal genome modification systems and methods of use
CA2971391C (en) * 2014-12-17 2023-05-09 E. I. Du Pont De Nemours And Company Compositions and methods for efficient gene editing in e. coli using guide rna/cas endonuclease systems in combination with circular polynucleotide modification templates.
WO2016100974A1 (en) 2014-12-19 2016-06-23 The Broad Institute Inc. Unbiased identification of double-strand breaks and genomic rearrangement by genome-wide insert capture sequencing
US20190054117A1 (en) 2014-12-19 2019-02-21 Novartis Ag Dimerization switches and uses thereof
US10190106B2 (en) 2014-12-22 2019-01-29 Univesity Of Massachusetts Cas9-DNA targeting unit chimeras
WO2016106236A1 (en) 2014-12-23 2016-06-30 The Broad Institute Inc. Rna-targeting system
CA2969151A1 (en) 2014-12-23 2016-06-30 Syngenta Participations Ag Methods and compositions for identifying and enriching for cells comprising site specific genomic modifications
EP3702456A1 (en) 2014-12-24 2020-09-02 The Broad Institute, Inc. Crispr having or associated with destabilization domains
WO2016108926A1 (en) 2014-12-30 2016-07-07 The Broad Institute Inc. Crispr mediated in vivo modeling and genetic screening of tumor growth and metastasis
WO2016109840A2 (en) 2014-12-31 2016-07-07 Synthetic Genomics, Inc. Compositions and methods for high efficiency in vivo genome editing
US11208638B2 (en) 2015-01-12 2021-12-28 The Regents Of The University Of California Heterodimeric Cas9 and methods of use thereof
EP3250689B1 (en) 2015-01-28 2020-11-04 The Regents of The University of California Methods and compositions for labeling a single-stranded target nucleic acid
LT3250691T (lt) 2015-01-28 2023-09-11 Caribou Biosciences, Inc. Crispr hibridiniai dnr/rnr polinukleotidai ir naudojimo būdai
WO2016130600A2 (en) 2015-02-09 2016-08-18 Duke University Compositions and methods for epigenome editing
WO2016138488A2 (en) 2015-02-26 2016-09-01 The Broad Institute Inc. T cell balance gene expression, compositions of matters and methods of use thereof
JP6871169B2 (ja) 2015-03-02 2021-05-12 シナイ ヘルス システム 相同組換え因子
EP3858990A1 (en) 2015-03-03 2021-08-04 The General Hospital Corporation Engineered crispr-cas9 nucleases with altered pam specificity
CN104673816A (zh) * 2015-03-05 2015-06-03 广东医学院 一种pCr-NHEJ载体及其构建方法及其用于细菌基因定点敲除的应用
US10450576B2 (en) 2015-03-27 2019-10-22 E I Du Pont De Nemours And Company Soybean U6 small nuclear RNA gene promoters and their use in constitutive expression of small RNA genes in plants
CN107787367B (zh) 2015-04-06 2021-10-26 里兰斯坦福初级大学理事会 用于crispr/cas介导的基因调控的化学修饰的引导rna
WO2016168594A1 (en) * 2015-04-16 2016-10-20 President And Fellows Of Harvard College Sensor systems for target ligands and uses thereof
GB201506509D0 (en) 2015-04-16 2015-06-03 Univ Wageningen Nuclease-mediated genome editing
EP3286211A1 (en) 2015-04-23 2018-02-28 Novartis AG Treatment of cancer using chimeric antigen receptor and protein kinase a blocker
JP2018522249A (ja) 2015-04-24 2018-08-09 エディタス・メディシン、インコーポレイテッド Cas9分子/ガイドrna分子複合体の評価
WO2016176617A2 (en) 2015-04-29 2016-11-03 New York University Method for treating high-grade gliomas
CN106191040B (zh) * 2015-04-30 2021-09-14 杭州菁因康生物科技有限公司 基因打靶方法
IL310108A (en) 2015-05-06 2024-03-01 Snipr Tech Ltd Changing bacterial populations and microbiota adaptation
WO2016182893A1 (en) 2015-05-08 2016-11-17 Teh Broad Institute Inc. Functional genomics using crispr-cas systems for saturating mutagenesis of non-coding elements, compositions, methods, libraries and applications thereof
WO2016182959A1 (en) 2015-05-11 2016-11-17 Editas Medicine, Inc. Optimized crispr/cas9 systems and methods for gene editing in stem cells
US20180291372A1 (en) * 2015-05-14 2018-10-11 Massachusetts Institute Of Technology Self-targeting genome editing system
US11371050B2 (en) 2015-05-15 2022-06-28 Pioneer Hi-Bred International, Inc. Rapid characterization of Cas endonuclease systems, PAM sequences and guide RNA elements
WO2016187904A1 (zh) * 2015-05-22 2016-12-01 深圳市第二人民医院 CRISPR-Cas9特异性敲除猪CMAH基因的方法及用于特异性靶向CMAH基因的sgRNA
WO2016191684A1 (en) * 2015-05-28 2016-12-01 Finer Mitchell H Genome editing vectors
EA201792663A1 (ru) * 2015-05-29 2018-04-30 Норт Каролина Стейт Юниверсити Способы скрининга бактерий, архей, водорослей и дрожжей с использованием нуклеиновых кислот crispr
EP3303585A4 (en) 2015-06-03 2018-10-31 Board of Regents of the University of Nebraska Dna editing using single-stranded dna
EP3303634B1 (en) 2015-06-03 2023-08-30 The Regents of The University of California Cas9 variants and methods of use thereof
EP3302525A2 (en) 2015-06-05 2018-04-11 Novartis AG Methods and compositions for diagnosing, treating, and monitoring treatment of shank3 deficiency associated disorders
EP3307887A1 (en) 2015-06-09 2018-04-18 Editas Medicine, Inc. Crispr/cas-related methods and compositions for improving transplantation
MX2017015962A (es) 2015-06-10 2018-07-06 Univ Texas Uso de exosomas para el tratamiento de enfermedades.
WO2016198500A1 (en) * 2015-06-10 2016-12-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for rna-guided treatment of human cytomegalovirus (hcmv) infection
WO2016200263A1 (en) * 2015-06-12 2016-12-15 Erasmus University Medical Center Rotterdam New crispr assays
EP3310932B1 (en) 2015-06-17 2023-08-30 The UAB Research Foundation Crispr/cas9 complex for genomic editing
US11555207B2 (en) 2015-06-17 2023-01-17 The Uab Research Foundation CRISPR/Cas9 complex for introducing a functional polypeptide into cells of blood cell lineage
WO2016205728A1 (en) 2015-06-17 2016-12-22 Massachusetts Institute Of Technology Crispr mediated recording of cellular events
EP3436575A1 (en) 2015-06-18 2019-02-06 The Broad Institute Inc. Novel crispr enzymes and systems
CA2989830A1 (en) 2015-06-18 2016-12-22 The Broad Institute, Inc. Crispr enzyme mutations reducing off-target effects
AU2016279077A1 (en) 2015-06-18 2019-03-28 Omar O. Abudayyeh Novel CRISPR enzymes and systems
US9790490B2 (en) 2015-06-18 2017-10-17 The Broad Institute Inc. CRISPR enzymes and systems
US10648020B2 (en) 2015-06-18 2020-05-12 The Broad Institute, Inc. CRISPR enzymes and systems
WO2016205745A2 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Cell sorting
AU2016285724A1 (en) 2015-06-29 2017-11-16 Ionis Pharmaceuticals, Inc. Modified CRISPR RNA and modified single CRISPR RNA and uses thereof
KR102461443B1 (ko) 2015-07-13 2022-10-31 피벗 바이오, 인크. 식물 형질 개선을 위한 방법 및 조성물
US11479793B2 (en) 2015-07-15 2022-10-25 Rutgers, The State University Of New Jersey Nuclease-independent targeted gene editing platform and uses thereof
WO2017015637A1 (en) 2015-07-22 2017-01-26 Duke University High-throughput screening of regulatory element function with epigenome editing technologies
CA2993431A1 (en) 2015-07-31 2017-02-09 Regents Of The University Of Minnesota Nuclease based knockouts of immunological checkpoint genes in immune cells
US9580727B1 (en) 2015-08-07 2017-02-28 Caribou Biosciences, Inc. Compositions and methods of engineered CRISPR-Cas9 systems using split-nexus Cas9-associated polynucleotides
EP3331913A1 (en) 2015-08-07 2018-06-13 Novartis AG Treatment of cancer using chimeric cd3 receptor proteins
AU2016309948B2 (en) 2015-08-14 2021-05-20 The University Of Sydney Connexin 45 inhibition for therapy
EP3337908A4 (en) 2015-08-18 2019-01-23 The Broad Institute, Inc. METHOD AND COMPOSITIONS FOR CHANGING THE FUNCTION AND STRUCTURE OF CHROMATIN GRINDING AND / OR DOMAINS
MX2018002339A (es) 2015-08-25 2018-12-19 Univ Duke Composiciones y metodos de mejora de la especificidad en ingenieria genomica usando endonucleasas guiadas por arn.
US9512446B1 (en) 2015-08-28 2016-12-06 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US9926546B2 (en) 2015-08-28 2018-03-27 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
WO2017040348A1 (en) 2015-08-28 2017-03-09 The General Hospital Corporation Engineered crispr-cas9 nucleases
WO2017043656A1 (ja) 2015-09-09 2017-03-16 国立大学法人神戸大学 標的化したdna配列の核酸塩基を特異的に変換する、グラム陽性菌のゲノム配列の変換方法、及びそれに用いる分子複合体
IL241462A0 (en) 2015-09-10 2015-11-30 Yeda Res & Dev Heterologous engineering of betalain pigments in plants
JP2018530536A (ja) 2015-09-11 2018-10-18 ザ ジェネラル ホスピタル コーポレイション ヌクレアーゼDSBの完全照合およびシーケンシング(FIND−seq)
WO2017053879A1 (en) 2015-09-24 2017-03-30 Editas Medicine, Inc. Use of exonucleases to improve crispr/cas-mediated genome editing
EP3356526B1 (en) 2015-09-30 2021-08-25 The General Hospital Corporation Comprehensive in vitro reporting of cleavage events by sequencing (circle-seq)
US11479516B2 (en) 2015-10-05 2022-10-25 Massachusetts Institute Of Technology Nitrogen fixation using refactored NIF clusters
US20190255107A1 (en) 2015-10-09 2019-08-22 The Brigham And Women's Hospital, Inc. Modulation of novel immune checkpoint targets
AU2016338785B2 (en) 2015-10-12 2022-07-14 E. I. Du Pont De Nemours And Company Protected DNA templates for gene modification and increased homologous recombination in cells and methods of use
EP4089175A1 (en) 2015-10-13 2022-11-16 Duke University Genome engineering with type i crispr systems in eukaryotic cells
WO2017064566A2 (en) * 2015-10-16 2017-04-20 Astrazeneca Ab Inducible modification of a cell genome
JP2018531024A (ja) 2015-10-20 2018-10-25 パイオニア ハイ−ブレッド インターナショナル, イン マーカーフリーゲノム改変のための方法および組成物
JP7059179B2 (ja) 2015-10-20 2022-04-25 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル 遺伝子操作のための方法及び製品
EP3365441A1 (en) 2015-10-22 2018-08-29 The Broad Institute Inc. Type vi-b crispr enzymes and systems
IL310721A (en) 2015-10-23 2024-04-01 Harvard College Nucleobase editors and their uses
ES2699848T3 (es) 2015-10-23 2019-02-13 Caribou Biosciences Inc Acido nucleico CRISPR clase 2 de tipo cruzado modificado que se dirige a ácidos nucleicos
EP3368687B1 (en) 2015-10-27 2021-09-29 The Broad Institute, Inc. Compositions and methods for targeting cancer-specific sequence variations
WO2017075294A1 (en) 2015-10-28 2017-05-04 The Board Institute Inc. Assays for massively combinatorial perturbation profiling and cellular circuit reconstruction
WO2017075465A1 (en) 2015-10-28 2017-05-04 The Broad Institute Inc. Compositions and methods for evaluating and modulating immune responses by detecting and targeting gata3
WO2017075265A1 (en) 2015-10-28 2017-05-04 The Broad Institute, Inc. Multiplex analysis of single cell constituents
WO2017075451A1 (en) 2015-10-28 2017-05-04 The Broad Institute Inc. Compositions and methods for evaluating and modulating immune responses by detecting and targeting pou2af1
WO2017075478A2 (en) 2015-10-28 2017-05-04 The Broad Institute Inc. Compositions and methods for evaluating and modulating immune responses by use of immune cell gene signatures
CN108474022A (zh) 2015-11-03 2018-08-31 哈佛学院董事及会员团体 用于包含三维核酸的基质容积成像的设备和方法
AU2016349738A1 (en) * 2015-11-06 2018-05-24 The Jackson Laboratory Large genomic DNA knock-in and uses thereof
JP2018537448A (ja) 2015-11-12 2018-12-20 ファイザー・インコーポレイテッド CRISPR−Cas9を用いた組織特異的ゲノム操作
WO2017083766A1 (en) * 2015-11-13 2017-05-18 Massachusetts Institute Of Technology High-throughput crispr-based library screening
CN108699542A (zh) 2015-11-13 2018-10-23 阿维利诺美国实验室股份有限公司 用于治疗角膜营养不良的方法
KR20180081600A (ko) 2015-11-16 2018-07-16 리서치 인스티튜트 앳 네이션와이드 칠드런스 하스피탈 티틴-기반 근증 및 다른 티틴성병증의 치료를 위한 물질 및 방법
WO2017087708A1 (en) 2015-11-19 2017-05-26 The Brigham And Women's Hospital, Inc. Lymphocyte antigen cd5-like (cd5l)-interleukin 12b (p40) heterodimers in immunity
CN108495932B (zh) * 2015-11-27 2022-08-09 国立大学法人神户大学 用于特异性转换靶向dna序列的核酸碱基的单子叶植物的基因组序列的转换方法、及其使用的分子复合体
WO2017095944A1 (en) 2015-11-30 2017-06-08 Flagship Pioneering, Inc. Methods and compositions relating to chondrisomes from blood products
CN105296518A (zh) * 2015-12-01 2016-02-03 中国农业大学 一种用于CRISPR/Cas9技术的同源臂载体构建方法
CA3004757C (en) 2015-12-04 2020-07-21 Caribou Biosciences, Inc. Engineered nucleic-acid targeting nucleic acids
US11208649B2 (en) 2015-12-07 2021-12-28 Zymergen Inc. HTP genomic engineering platform
CA3007635A1 (en) 2015-12-07 2017-06-15 Zymergen Inc. Promoters from corynebacterium glutamicum
US9988624B2 (en) 2015-12-07 2018-06-05 Zymergen Inc. Microbial strain improvement by a HTP genomic engineering platform
US20180362961A1 (en) 2015-12-11 2018-12-20 Danisco Us Inc. Methods and compositions for enhanced nuclease-mediated genome modification and reduced off-target site effects
WO2017105991A1 (en) 2015-12-18 2017-06-22 Danisco Us Inc. Methods and compositions for t-rna based guide rna expression
US11542466B2 (en) 2015-12-22 2023-01-03 North Carolina State University Methods and compositions for delivery of CRISPR based antimicrobials
WO2017114497A1 (en) 2015-12-30 2017-07-06 Novartis Ag Immune effector cell therapies with enhanced efficacy
IL304088A (en) 2016-01-11 2023-08-01 Univ Leland Stanford Junior Systems containing chimeric proteins and their uses for controlling gene expression
JP7012645B2 (ja) 2016-01-11 2022-01-28 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー キメラタンパク質および免疫治療の方法
WO2017132239A1 (en) 2016-01-26 2017-08-03 Pioneer Hi-Bred International, Inc. Waxy corn
WO2017139309A1 (en) 2016-02-12 2017-08-17 Ceres, Inc. Methods and materials for high throughput testing of mutagenized allele combinations
EP3881857A1 (en) 2016-02-18 2021-09-22 The Penn State Research Foundation Generating gabaergic neurons in brains
US20190249172A1 (en) 2016-02-18 2019-08-15 The Regents Of The University Of California Methods and compositions for gene editing in stem cells
WO2017147196A1 (en) 2016-02-22 2017-08-31 Massachusetts Institute Of Technology Methods for identifying and modulating immune phenotypes
US10538750B2 (en) 2016-02-29 2020-01-21 Agilent Technologies, Inc. Methods and compositions for blocking off-target nucleic acids from cleavage by CRISPR proteins
WO2017155714A1 (en) 2016-03-11 2017-09-14 Pioneer Hi-Bred International, Inc. Novel cas9 systems and methods of use
WO2017155715A1 (en) 2016-03-11 2017-09-14 Pioneer Hi-Bred International, Inc. Novel cas9 systems and methods of use
EP3426778A1 (en) 2016-03-11 2019-01-16 Pioneer Hi-Bred International, Inc. Novel cas9 systems and methods of use
WO2017161043A1 (en) 2016-03-16 2017-09-21 The J. David Gladstone Institutes Methods and compositions for treating obesity and/or diabetes and for identifying candidate treatment agents
WO2017161325A1 (en) 2016-03-17 2017-09-21 Massachusetts Institute Of Technology Methods for identifying and modulating co-occurant cellular phenotypes
EP3219799A1 (en) 2016-03-17 2017-09-20 IMBA-Institut für Molekulare Biotechnologie GmbH Conditional crispr sgrna expression
AU2017238512B2 (en) 2016-03-23 2022-12-08 Dana-Farber Cancer Institute, Inc. Methods for enhancing the efficiency of gene editing
EP3433363A1 (en) 2016-03-25 2019-01-30 Editas Medicine, Inc. Genome editing systems comprising repair-modulating enzyme molecules and methods of their use
EP3433364A1 (en) 2016-03-25 2019-01-30 Editas Medicine, Inc. Systems and methods for treating alpha 1-antitrypsin (a1at) deficiency
WO2017180694A1 (en) 2016-04-13 2017-10-19 Editas Medicine, Inc. Cas9 fusion molecules gene editing systems, and methods of use thereof
KR20220133318A (ko) 2016-04-15 2022-10-04 노파르티스 아게 선택적 단백질 발현을 위한 조성물 및 방법
WO2017184786A1 (en) 2016-04-19 2017-10-26 The Broad Institute Inc. Cpf1 complexes with reduced indel activity
CN105861485B (zh) * 2016-04-20 2021-08-17 上海伊丽萨生物科技有限公司 一种提高基因置换效率的方法
US11286501B2 (en) * 2016-04-20 2022-03-29 Centro De Investigaciones Energeticas, Medioambientales Y Tecnologicas O.A, M.P. Methods of treating or preventing pyruvate kinase deficiency
CA3022290A1 (en) 2016-04-25 2017-11-02 President And Fellows Of Harvard College Hybridization chain reaction methods for in situ molecular detection
US20190203207A1 (en) * 2016-05-20 2019-07-04 The Trustees Of Columbia University In The City Of New York Anabolic Enhancers for Ameliorating Neurodegeneration
CA3025171A1 (en) 2016-05-24 2017-11-30 Indiana University Research And Technology Corporation Ku inhibitors and their use for gene editing
GB201609811D0 (en) 2016-06-05 2016-07-20 Snipr Technologies Ltd Methods, cells, systems, arrays, RNA and kits
US10767175B2 (en) 2016-06-08 2020-09-08 Agilent Technologies, Inc. High specificity genome editing using chemically modified guide RNAs
JP7267013B2 (ja) 2016-06-17 2023-05-01 ザ・ブロード・インスティテュート・インコーポレイテッド Vi型crisprオルソログ及び系
US11202840B2 (en) 2016-06-21 2021-12-21 The Curators Of The University Of Missouri Modified dystrophin proteins
LT3474669T (lt) 2016-06-24 2022-06-10 The Regents Of The University Of Colorado, A Body Corporate Barkodu pažymėtų kombinatorinių bibliotekų generavimo būdai
US11471462B2 (en) 2016-06-27 2022-10-18 The Broad Institute, Inc. Compositions and methods for detecting and treating diabetes
KR102345898B1 (ko) 2016-06-30 2022-01-03 지머젠 인코포레이티드 글루코오스 투과 효소 라이브러리를 생성하는 방법 및 이의 용도
US10544390B2 (en) 2016-06-30 2020-01-28 Zymergen Inc. Methods for generating a bacterial hemoglobin library and uses thereof
US11359234B2 (en) * 2016-07-01 2022-06-14 Microsoft Technology Licensing, Llc Barcoding sequences for identification of gene expression
US20180004537A1 (en) 2016-07-01 2018-01-04 Microsoft Technology Licensing, Llc Molecular State Machines
EP3484870B1 (en) 2016-07-13 2022-11-16 Vertex Pharmaceuticals Incorporated Methods, compositions and kits for increasing genome editing efficiency
CA3030837A1 (en) 2016-07-15 2018-01-18 Novartis Ag Treatment and prevention of cytokine release syndrome using a chimeric antigen receptor in combination with a kinase inhibitor
EP3494220A1 (en) 2016-08-02 2019-06-12 Editas Medicine, Inc. Compositions and methods for treating cep290 associated disease
US11078481B1 (en) 2016-08-03 2021-08-03 KSQ Therapeutics, Inc. Methods for screening for cancer targets
CA3032699A1 (en) 2016-08-03 2018-02-08 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
AU2017308889B2 (en) 2016-08-09 2023-11-09 President And Fellows Of Harvard College Programmable Cas9-recombinase fusion proteins and uses thereof
WO2018030874A1 (ko) * 2016-08-12 2018-02-15 주식회사 툴젠 조작된 면역조절요소 및 이에 의해 변형된 면역 활성
JP7215808B2 (ja) * 2016-08-12 2023-01-31 ツールゲン インコーポレイテッド 操作された免疫調節エレメントおよび変更された免疫
US11352647B2 (en) 2016-08-17 2022-06-07 The Broad Institute, Inc. Crispr enzymes and systems
WO2018035364A1 (en) 2016-08-17 2018-02-22 The Broad Institute Inc. Product and methods useful for modulating and evaluating immune responses
EP3500967A1 (en) 2016-08-17 2019-06-26 The Broad Institute, Inc. Methods for identifying class 2 crispr-cas systems
CN109963945A (zh) 2016-08-20 2019-07-02 阿维利诺美国实验室股份有限公司 单一向导rna、crispr/cas9系统及其使用方法
WO2020225754A1 (en) 2019-05-06 2020-11-12 Mcmullen Tara Crispr gene editing for autosomal dominant diseases
WO2018039438A1 (en) 2016-08-24 2018-03-01 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11078483B1 (en) 2016-09-02 2021-08-03 KSQ Therapeutics, Inc. Methods for measuring and improving CRISPR reagent function
JP7256739B2 (ja) 2016-09-07 2023-04-12 サンガモ セラピューティクス, インコーポレイテッド 肝臓遺伝子のモジュレーション
WO2018049025A2 (en) 2016-09-07 2018-03-15 The Broad Institute Inc. Compositions and methods for evaluating and modulating immune responses
IL247752A0 (en) 2016-09-11 2016-11-30 Yeda Res & Dev Compositions and methods for modulating gene expression for site-directed mutagenesis
US20190225974A1 (en) 2016-09-23 2019-07-25 BASF Agricultural Solutions Seed US LLC Targeted genome optimization in plants
EP3519577A1 (en) 2016-09-28 2019-08-07 Novartis AG Porous membrane-based macromolecule delivery system
EP3523426A4 (en) 2016-09-30 2020-01-22 The Regents of The University of California RNA GUIDED NUCLEIC ACID MODIFYING ENZYMES AND METHOD FOR USE THEREOF
WO2018067546A1 (en) 2016-10-03 2018-04-12 President And Fellows Of Harvard College Delivery of therapeutic rnas via arrdc1-mediated microvesicles
US10669539B2 (en) 2016-10-06 2020-06-02 Pioneer Biolabs, Llc Methods and compositions for generating CRISPR guide RNA libraries
US20200016202A1 (en) 2016-10-07 2020-01-16 The Brigham And Women's Hospital, Inc. Modulation of novel immune checkpoint targets
CA3037560A1 (en) 2016-10-13 2018-04-19 Pioneer Hi-Bred International, Inc. Generating northern leaf blight resistant maize
CN110214180A (zh) 2016-10-14 2019-09-06 哈佛大学的校长及成员们 核碱基编辑器的aav递送
GB201617559D0 (en) 2016-10-17 2016-11-30 University Court Of The University Of Edinburgh The Swine comprising modified cd163 and associated methods
EP3529359B1 (en) 2016-10-18 2023-12-13 Regents of the University of Minnesota Tumor infiltrating lymphocytes for use in therapy
US11427824B2 (en) * 2016-10-28 2022-08-30 Genethon Compositions and methods for the treatment of myotonic dystrophy
WO2018081531A2 (en) 2016-10-28 2018-05-03 Ariad Pharmaceuticals, Inc. Methods for human t-cell activation
WO2018076335A1 (en) 2016-10-31 2018-05-03 Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences Compositions and methods for enhancing abiotic stress tolerance
EP3535396A1 (en) 2016-11-01 2019-09-11 Novartis AG Methods and compositions for enhancing gene editing
EP4256951A3 (en) 2016-11-04 2023-12-06 Flagship Pioneering Innovations V. Inc. Novel plant cells, plants, and seeds
US20180135080A1 (en) 2016-11-15 2018-05-17 Genomic Vision Sa Method for the monitoring of modified nucleases induced-gene editing events by molecular combing
CN110199031A (zh) 2016-11-29 2019-09-03 基因组影像公司 设计用于分析感兴趣的遗传区域中的特定事件的一组多核苷酸序列的方法
US9816093B1 (en) 2016-12-06 2017-11-14 Caribou Biosciences, Inc. Engineered nucleic acid-targeting nucleic acids
US11180535B1 (en) 2016-12-07 2021-11-23 David Gordon Bermudes Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria
JP7317706B2 (ja) 2016-12-14 2023-07-31 リガンダル インコーポレイテッド 核酸およびタンパク質ペイロード送達のための方法および組成物
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
CN110520163A (zh) 2017-01-05 2019-11-29 新泽西鲁特格斯州立大学 独立于dna双链断裂的靶向基因编辑平台及其用途
WO2018127585A1 (en) 2017-01-06 2018-07-12 Txcell Monospecific regulatory t cell population with cytotoxicity for b cells
EP3346001A1 (en) 2017-01-06 2018-07-11 TXCell Monospecific regulatory t cell population with cytotoxicity for b cells
WO2018129440A1 (en) 2017-01-09 2018-07-12 University Of Massachusetts Complexes for gene deletion and editing
CA3049258A1 (en) 2017-01-12 2018-07-19 Pivot Bio, Inc. Methods and compositions for improving plant traits
EP3574005B1 (en) 2017-01-26 2021-12-15 Novartis AG Cd28 compositions and methods for chimeric antigen receptor therapy
US11624071B2 (en) 2017-01-28 2023-04-11 Inari Agriculture Technology, Inc. Method of creating a plurality of targeted insertions in a plant cell
US20190375815A1 (en) 2017-01-31 2019-12-12 Novartis Ag Treatment of cancer using chimeric t cell receptor proteins having multiple specificities
TW201839136A (zh) 2017-02-06 2018-11-01 瑞士商諾華公司 治療血色素異常症之組合物及方法
WO2018148511A1 (en) 2017-02-10 2018-08-16 Zymergen Inc. A modular universal plasmid design strategy for the assembly and editing of multiple dna constructs for multiple hosts
US20190381192A1 (en) * 2017-02-22 2019-12-19 Io Biosciences, Inc. Nucleic acid constructs comprising gene editing multi-sites and uses thereof
US10828330B2 (en) 2017-02-22 2020-11-10 IO Bioscience, Inc. Nucleic acid constructs comprising gene editing multi-sites and uses thereof
WO2018160731A1 (en) 2017-02-28 2018-09-07 Novartis Ag Shp inhibitor compositions and uses for chimeric antigen receptor therapy
EP3592853A1 (en) 2017-03-09 2020-01-15 President and Fellows of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
EP3596217A1 (en) 2017-03-14 2020-01-22 Editas Medicine, Inc. Systems and methods for the treatment of hemoglobinopathies
WO2018170333A1 (en) 2017-03-15 2018-09-20 The Broad Institute, Inc. Novel cas13b orthologues crispr enzymes and systems
WO2018170436A1 (en) 2017-03-16 2018-09-20 Jacobs Farm Del Cabo Basil with high tolerance to downy mildew
WO2018170515A1 (en) 2017-03-17 2018-09-20 The Broad Institute, Inc. Methods for identifying and modulating co-occurant cellular phenotypes
CN110914426A (zh) 2017-03-23 2020-03-24 哈佛大学的校长及成员们 包含核酸可编程dna结合蛋白的核碱基编辑器
WO2018183908A1 (en) 2017-03-31 2018-10-04 Dana-Farber Cancer Institute, Inc. Compositions and methods for treating ovarian tumors
AU2018243654A1 (en) 2017-03-31 2019-10-17 Pioneer Hi-Bred International, Inc. Expression modulating elements and use thereof
WO2018183921A1 (en) 2017-04-01 2018-10-04 The Broad Institute, Inc. Methods and compositions for detecting and modulating an immunotherapy resistance gene signature in cancer
EP3610009A1 (en) 2017-04-12 2020-02-19 The Broad Institute, Inc. Novel type vi crispr orthologs and systems
US20210115407A1 (en) 2017-04-12 2021-04-22 The Broad Institute, Inc. Respiratory and sweat gland ionocytes
EP3610266A4 (en) 2017-04-12 2021-04-21 Massachusetts Eye and Ear Infirmary TUMOR SIGNATURE OF METASTASIS, COMPOSITIONS OF SUBSTANCES AND USES THEREOF
WO2018191750A2 (en) 2017-04-14 2018-10-18 The Broad Institute Inc. Novel delivery of large payloads
EP3612629A1 (en) 2017-04-18 2020-02-26 The Broad Institute, Inc. Compositions for detecting secretion and methods of use
US11834670B2 (en) 2017-04-19 2023-12-05 Global Life Sciences Solutions Usa Llc Site-specific DNA modification using a donor DNA repair template having tandem repeat sequences
EP3612232A1 (en) 2017-04-21 2020-02-26 The Broad Institute, Inc. Targeted delivery to beta cells
CA3059956A1 (en) 2017-04-21 2018-10-25 The General Hospital Corporation Variants of cpf1 (cas12a) with altered pam specificity
EP3615068A1 (en) 2017-04-28 2020-03-04 Novartis AG Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor
US11499151B2 (en) 2017-04-28 2022-11-15 Editas Medicine, Inc. Methods and systems for analyzing guide RNA molecules
EP3615055A1 (en) 2017-04-28 2020-03-04 Novartis AG Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor
WO2018204777A2 (en) 2017-05-05 2018-11-08 The Broad Institute, Inc. Methods for identification and modification of lncrna associated with target genotypes and phenotypes
WO2018209158A2 (en) 2017-05-10 2018-11-15 Editas Medicine, Inc. Crispr/rna-guided nuclease systems and methods
WO2018209320A1 (en) 2017-05-12 2018-11-15 President And Fellows Of Harvard College Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation
KR20200026804A (ko) 2017-05-18 2020-03-11 더 브로드 인스티튜트, 인코퍼레이티드 표적화된 핵산 편집을 위한 시스템, 방법 및 조성물
WO2018218166A1 (en) 2017-05-25 2018-11-29 The General Hospital Corporation Using split deaminases to limit unwanted off-target base editor deamination
EP3409104A1 (en) 2017-05-31 2018-12-05 Vilmorin et Cie Tomato plant resistant to tomato yellow leaf curl virus, powdery mildew, and nematodes
WO2020249996A1 (en) 2019-06-14 2020-12-17 Vilmorin & Cie Resistance in plants of solanum lycopersicum to the tobamovirus tomato brown rugose fruit virus
EP3409106A1 (en) 2017-06-01 2018-12-05 Vilmorin et Cie Tolerance in plants of solanum lycopersicum to the tobamovirus tomato brown rugose fruit virus (tbrfv)
JP7196104B2 (ja) 2017-06-05 2022-12-26 リサーチ インスティチュート アット ネイションワイド チルドレンズ ホスピタル 増強された改変ウイルスカプシドタンパク質
EP3635113A4 (en) 2017-06-05 2021-03-17 Fred Hutchinson Cancer Research Center GENOMIC SAFE HARBORS FOR GENETIC THERAPIES IN HUMAN STEM CELLS AND MANIPULATED NANOPARTICLES TO DELIVER TARGETED GENETIC THERAPIES
CA3061984A1 (en) 2017-06-06 2018-12-13 Zymergen Inc. A htp genomic engineering platform for improving fungal strains
US20200370058A1 (en) 2017-06-06 2020-11-26 Zymergen Inc. A htp genomic engineering platform for improving escherichia coli
PT3636753T (pt) 2017-06-08 2024-04-23 Univ Osaka Método de fabrico de uma célula eucariótica editada por um adn
WO2018226972A2 (en) 2017-06-09 2018-12-13 Vilmorin & Cie Compositions and methods for genome editing
WO2018227114A1 (en) 2017-06-09 2018-12-13 Editas Medicine, Inc. Engineered cas9 nucleases
JP2020524993A (ja) 2017-06-13 2020-08-27 フラッグシップ パイオニアリング イノベーションズ ブイ, インコーポレイテッド クロンを含む組成物及びその使用
EP3638218A4 (en) 2017-06-14 2021-06-09 The Broad Institute, Inc. COMPOSITIONS AND METHOD OF TARGETING COMPLEMENTING COMPONENT 3 FOR INHIBITION OF TUMOR GROWTH
CA3067382A1 (en) 2017-06-15 2018-12-20 The Regents Of The University Of California Targeted non-viral dna insertions
US9982279B1 (en) 2017-06-23 2018-05-29 Inscripta, Inc. Nucleic acid-guided nucleases
US10011849B1 (en) 2017-06-23 2018-07-03 Inscripta, Inc. Nucleic acid-guided nucleases
JP7454494B2 (ja) 2017-06-26 2024-03-22 ザ・ブロード・インスティテュート・インコーポレイテッド 標的化された核酸編集のためのcrispr/cas-アデニンデアミナーゼ系の組成物、系及び方法
US10392616B2 (en) 2017-06-30 2019-08-27 Arbor Biotechnologies, Inc. CRISPR RNA targeting enzymes and systems and uses thereof
EP3645021A4 (en) 2017-06-30 2021-04-21 Intima Bioscience, Inc. ADENO-ASSOCIATED VIRAL VECTORS FOR GENE THERAPY
EP3645721A1 (en) 2017-06-30 2020-05-06 Novartis AG Methods for the treatment of disease with gene editing systems
US11866726B2 (en) 2017-07-14 2024-01-09 Editas Medicine, Inc. Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites
CA3067124A1 (en) * 2017-07-18 2019-01-24 Genovie Ab A two-component vector library system for rapid assembly and diversification of full-length t-cell receptor open reading frames
US10510743B2 (en) * 2017-07-18 2019-12-17 Hong Kong Applied Science and Technology Research Institute Company, Limited Step fin field-effect-transistor (FinFET) with slim top of fin and thick bottom of fin for electro-static-discharge (ESD) or electrical over-stress (EOS) protection
WO2019023291A2 (en) 2017-07-25 2019-01-31 Dana-Farber Cancer Institute, Inc. COMPOSITIONS AND METHODS FOR PRODUCTION AND DECODING OF GUIDE RNA LIBRARIES AND USES THEREOF
CN111801345A (zh) 2017-07-28 2020-10-20 哈佛大学的校长及成员们 使用噬菌体辅助连续进化(pace)的进化碱基编辑器的方法和组合物
WO2019030306A1 (en) 2017-08-08 2019-02-14 Depixus ISOLATION AND IN VITRO ENRICHMENT OF NUCLEIC ACIDS USING SITE-SPECIFIC NUCLEASES
US10476825B2 (en) 2017-08-22 2019-11-12 Salk Institue for Biological Studies RNA targeting methods and compositions
US11970720B2 (en) 2017-08-22 2024-04-30 Salk Institute For Biological Studies RNA targeting methods and compositions
US11286468B2 (en) 2017-08-23 2022-03-29 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
MX2020001790A (es) 2017-08-25 2020-07-22 Codiak Biosciences Inc Preparacion de exosomas terapeuticos mediante el uso de proteinas de membrana.
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
AR113064A1 (es) 2017-09-15 2020-01-22 Covercress Inc Composición que comprende harina de carraspique con bajo contenido de fibras y métodos para su elaboración
CN109517820B (zh) 2017-09-20 2021-09-24 北京宇繁生物科技有限公司 一种靶向HPK1的gRNA以及HPK1基因编辑方法
KR20200090151A (ko) 2017-09-20 2020-07-28 더 유니버시티 오브 브리티쉬 콜롬비아 신규한 항-hla-a2 항체 및 이의 용도
US11917978B2 (en) 2017-09-21 2024-03-05 The Conard Pyle Company Miniature rose plant named ‘meibenbino’
US11252928B2 (en) 2017-09-21 2022-02-22 The Condard-Pyle Company Miniature rose plant named ‘Meibenbino’
EP3684389A4 (en) 2017-09-21 2021-06-16 Dana Farber Cancer Institute, Inc. INSULATION, PRESERVATION, COMPOSITIONS AND USES OF EXTRACTS FROM JUSTICIA PLANTS
CN111511388A (zh) 2017-09-21 2020-08-07 博德研究所 用于靶向核酸编辑的系统、方法和组合物
US20200255828A1 (en) 2017-10-04 2020-08-13 The Broad Institute, Inc. Methods and compositions for altering function and structure of chromatin loops and/or domains
WO2019075197A1 (en) 2017-10-11 2019-04-18 The General Hospital Corporation METHODS OF DETECTION OF INDIVIDUAL SITE-SPECIFIC PARASITE GENOMIC DEAMINATION BY BASE EDITING TECHNOLOGIES
US11680296B2 (en) 2017-10-16 2023-06-20 Massachusetts Institute Of Technology Mycobacterium tuberculosis host-pathogen interaction
CA3076253A1 (en) 2017-10-16 2019-04-25 Centro De Investigaciones Energeticas, Medioambientales Y Tecnologicaso.A., M.P. Lentiviral vectors for delivery of pklr to treat pyruvate kinase deficiency
AU2018352592A1 (en) 2017-10-16 2020-06-04 Beam Therapeutics, Inc. Uses of adenosine base editors
BR112020007823A2 (pt) 2017-10-20 2020-10-27 Fred Hutchinson Cancer Research Center sistemas e métodos para produzir células b geneticamente modificadas para expressar anticorpos selecionados
EP3701040A4 (en) 2017-10-25 2021-08-25 Pivot Bio, Inc. METHODS AND COMPOSITIONS FOR IMPROVING GENETICALLY MODIFIED MICROBES THAT BIND NITROGEN
BR112020008201A2 (pt) 2017-10-27 2020-10-06 The Regents Of The University Of California substituição-alvo de receptores de células t endógenos
US20210179709A1 (en) 2017-10-31 2021-06-17 Novartis Ag Anti-car compositions and methods
WO2019089803A1 (en) 2017-10-31 2019-05-09 The Broad Institute, Inc. Methods and compositions for studying cell evolution
AU2018358051A1 (en) 2017-11-01 2020-05-14 The Regents Of The University Of California CasZ compositions and methods of use
US20210180053A1 (en) 2017-11-01 2021-06-17 Novartis Ag Synthetic rnas and methods of use
AU2018360068A1 (en) 2017-11-02 2020-05-14 Arbor Biotechnologies, Inc. Novel CRISPR-associated transposon systems and components
US20210363260A1 (en) 2017-11-13 2021-11-25 The Broad Institute, Inc. Methods and compositions for treating cancer by targeting the clec2d-klrb1 pathway
AU2018368786A1 (en) 2017-11-17 2020-06-18 Iovance Biotherapeutics, Inc. TIL expansion from fine needle aspirates and small biopsies
CA3083118A1 (en) 2017-11-22 2019-05-31 Iovance Biotherapeutics, Inc. Expansion of peripheral blood lymphocytes (pbls) from peripheral blood
US11098328B2 (en) 2017-12-05 2021-08-24 Synthetic Genomics, Inc. Algal lipid productivity via genetic modification of a signaling protein
US11332736B2 (en) 2017-12-07 2022-05-17 The Broad Institute, Inc. Methods and compositions for multiplexing single cell and single nuclei sequencing
US11124798B2 (en) 2017-12-08 2021-09-21 Synthetic Genomics, Inc. Algal lipid productivity via genetic modification of a TPR domain containing protein
AU2018386002A1 (en) 2017-12-15 2020-05-28 Danisco Us Inc CAS9 variants and methods of use
JP2021506814A (ja) 2017-12-15 2021-02-22 デイナ ファーバー キャンサー インスティチュート,インコーポレイテッド 安定化ペプチドによって介在される標的タンパク質の分解
US10723782B2 (en) 2017-12-28 2020-07-28 Codiak Biosciences, Inc. Exosomes for immuno-oncology and anti-inflammatory therapy
US20190201548A1 (en) 2017-12-29 2019-07-04 Rubius Therapeutics, Inc. Gene editing and targeted transcriptional modulation for engineering erythroid cells
US11994512B2 (en) 2018-01-04 2024-05-28 Massachusetts Institute Of Technology Single-cell genomic methods to generate ex vivo cell systems that recapitulate in vivo biology with improved fidelity
CA3086620A1 (en) 2018-01-12 2019-07-18 Basf Se Gene underlying the number of spikelets per spike qtl in wheat on chromosome 7a
CN111757876B (zh) 2018-01-17 2024-03-22 沃泰克斯药物股份有限公司 Dna-pk抑制剂
EA202091707A1 (ru) 2018-01-17 2020-12-02 Вертекс Фармасьютикалз Инкорпорейтед Хиноксалиноновые соединения, композиции, способы и наборы для повышения эффективности редактирования генома
EP3740479A1 (en) 2018-01-17 2020-11-25 Vertex Pharmaceuticals Incorporated Dna-pk inhibitors
US20190233816A1 (en) 2018-01-26 2019-08-01 Massachusetts Institute Of Technology Structure-guided chemical modification of guide rna and its applications
US11926835B1 (en) 2018-01-29 2024-03-12 Inari Agriculture Technology, Inc. Methods for efficient tomato genome editing
KR102136132B1 (ko) * 2018-01-31 2020-07-22 서울대학교 산학협력단 CRISPR/Cas9 시스템을 통한 닭 백혈병 바이러스(Avian Leukosis Virus, ALV) 저항성 조류의 제조방법
JP2021512617A (ja) 2018-02-08 2021-05-20 ザイマージェン インコーポレイテッド CorynebacteriumにおいてCRISPRを使用するゲノム編集
WO2019173125A1 (en) 2018-03-09 2019-09-12 Pioneer Hi-Bred International, Inc. Compositions and methods for modification of fatty acids in soybean
DK3765615T3 (da) 2018-03-14 2023-08-21 Arbor Biotechnologies Inc Nye enzymer og systemer til målretning af crispr dna
ES2953541T3 (es) 2018-03-14 2023-11-14 Arbor Biotechnologies Inc Sistemas y enzimas novedosos de direccionamiento a ADN y ARN de CRISPR
US10760075B2 (en) 2018-04-30 2020-09-01 Snipr Biome Aps Treating and preventing microbial infections
AU2019247490A1 (en) 2018-04-06 2020-10-22 Children's Medical Center Corporation Compositions and methods for somatic cell reprogramming and modulating imprinting
WO2019197678A1 (en) 2018-04-13 2019-10-17 Sangamo Therapeutics France Chimeric antigen receptor specific for interleukin-23 receptor
CN112313241A (zh) 2018-04-17 2021-02-02 总医院公司 核酸结合、修饰、和切割试剂的底物偏好和位点的灵敏体外试验
GB2587970B (en) 2018-04-19 2023-02-08 Univ California Compositions and methods for gene editing
WO2019204585A1 (en) 2018-04-19 2019-10-24 Massachusetts Institute Of Technology Single-stranded break detection in double-stranded dna
SI3560330T1 (sl) 2018-04-24 2022-08-31 KWS SAAT SE & Co. KGaA Rastline z izboljšano prebavljivostjo in markerskimi haplotipi
US11957695B2 (en) 2018-04-26 2024-04-16 The Broad Institute, Inc. Methods and compositions targeting glucocorticoid signaling for modulating immune responses
WO2019210153A1 (en) 2018-04-27 2019-10-31 Novartis Ag Car t cell therapies with enhanced efficacy
CN112368003A (zh) 2018-04-27 2021-02-12 艾欧凡斯生物治疗公司 肿瘤浸润淋巴细胞的基因编辑及其在免疫治疗中的用途
CA3098127A1 (en) 2018-04-27 2019-10-31 Genedit Inc. Cationic polymer and use for biomolecule delivery
US20210147831A1 (en) 2018-04-27 2021-05-20 The Broad Institute, Inc. Sequencing-based proteomics
US20210386829A1 (en) 2018-05-04 2021-12-16 The Broad Institute, Inc. Compositions and methods for modulating cgrp signaling to regulate innate lymphoid cell inflammatory responses
KR20210045360A (ko) 2018-05-16 2021-04-26 신테고 코포레이션 가이드 rna 설계 및 사용을 위한 방법 및 시스템
WO2019222555A1 (en) 2018-05-16 2019-11-21 Arbor Biotechnologies, Inc. Novel crispr-associated systems and components
CN112204156A (zh) 2018-05-25 2021-01-08 先锋国际良种公司 用于通过调节重组率来改善育种的系统和方法
CN108707628B (zh) * 2018-05-28 2021-11-23 上海海洋大学 斑马鱼notch2基因突变体的制备方法
WO2019232542A2 (en) 2018-06-01 2019-12-05 Massachusetts Institute Of Technology Methods and compositions for detecting and modulating microenvironment gene signatures from the csf of metastasis patients
US11866719B1 (en) 2018-06-04 2024-01-09 Inari Agriculture Technology, Inc. Heterologous integration of regulatory elements to alter gene expression in wheat cells and wheat plants
EP3578658A1 (en) * 2018-06-08 2019-12-11 Johann Wolfgang Goethe-Universität Frankfurt Method for generating a gene editing vector with fixed guide rna pairs
US20220403001A1 (en) 2018-06-12 2022-12-22 Obsidian Therapeutics, Inc. Pde5 derived regulatory constructs and methods of use in immunotherapy
BR112020025048A2 (pt) 2018-06-13 2021-04-06 Novartis Ag Receptores de antígeno quimérico de bcma e usos dos mesmos
CA3102264A1 (en) * 2018-06-19 2019-12-26 Lunella Biotech, Inc. "energetic" cancer stem cells (e-cscs): a new hyper-metabolic and proliferative tumor cell phenotype, driven by mitochondrial energy
KR20210024009A (ko) 2018-06-26 2021-03-04 더 브로드 인스티튜트, 인코퍼레이티드 Crispr/cas 및 트랜스포사제 기반 증폭 조성물, 시스템 및 방법
CN112543812A (zh) 2018-06-26 2021-03-23 麻省理工学院 基于crispr效应系统的扩增方法、系统和诊断
EP3814302A4 (en) 2018-06-27 2022-06-29 Pivot Bio, Inc. Agricultural compositions comprising remodeled nitrogen fixing microbes
WO2020002579A1 (en) 2018-06-29 2020-01-02 Stichting Het Nederlands Kanker Instituut - Antoni Van Leeuwenhoek Ziekenhuis Tweak-receptor agonists for use in combination with immunotherapy of a cancer
CN112513270A (zh) 2018-07-13 2021-03-16 加利福尼亚大学董事会 基于逆转录转座子的递送媒介物及其使用方法
WO2020018142A1 (en) 2018-07-16 2020-01-23 Arbor Biotechnologies, Inc. Novel crispr dna targeting enzymes and systems
WO2020028555A2 (en) 2018-07-31 2020-02-06 The Broad Institute, Inc. Novel crispr enzymes and systems
WO2020028729A1 (en) 2018-08-01 2020-02-06 Mammoth Biosciences, Inc. Programmable nuclease compositions and methods of use thereof
CA3106035A1 (en) 2018-08-07 2020-02-13 The Broad Institute, Inc. Cas12b enzymes and systems
US20210292389A1 (en) 2018-08-10 2021-09-23 Sangamo Therapeutics France New car constructs comprising tnfr2 domains
EP3607819A1 (en) 2018-08-10 2020-02-12 Vilmorin et Cie Resistance to xanthomonas campestris pv. campestris (xcc) in cauliflower
KR20210044795A (ko) 2018-08-15 2021-04-23 지머젠 인코포레이티드 고 처리량 대사 공학에서 CRISPRi의 응용
WO2020041380A1 (en) 2018-08-20 2020-02-27 The Broad Institute, Inc. Methods and compositions for optochemical control of crispr-cas9
US20210324357A1 (en) 2018-08-20 2021-10-21 The Brigham And Women's Hospital, Inc. Degradation domain modifications for spatio-temporal control of rna-guided nucleases
KR20210049124A (ko) 2018-08-23 2021-05-04 상가모 테라퓨틱스, 인코포레이티드 조작된 표적 특이적 염기 편집기
US11459551B1 (en) 2018-08-31 2022-10-04 Inari Agriculture Technology, Inc. Compositions, systems, and methods for genome editing
WO2020051507A1 (en) 2018-09-06 2020-03-12 The Broad Institute, Inc. Nucleic acid assemblies for use in targeted delivery
US20220098613A1 (en) 2018-09-12 2022-03-31 Fred Hutchinson Cancer Research Center Reducing cd33 expression to selectively protect therapeutic cells
WO2020061229A2 (en) 2018-09-18 2020-03-26 Vnv Newco Inc. Arc-based capsids and uses thereof
CN109265562B (zh) * 2018-09-26 2021-03-30 北京市农林科学院 一种切刻酶及其在基因组碱基替换中的应用
GB201815820D0 (en) 2018-09-28 2018-11-14 Univ Wageningen Off-target activity inhibitors for guided endonucleases
EP3861120A4 (en) 2018-10-01 2023-08-16 North Carolina State University RECOMBINANT TYPE I CRISPR-CAS SYSTEM
WO2020077236A1 (en) 2018-10-12 2020-04-16 The Broad Institute, Inc. Method for extracting nuclei or whole cells from formalin-fixed paraffin-embedded tissues
US11851663B2 (en) 2018-10-14 2023-12-26 Snipr Biome Aps Single-vector type I vectors
WO2020081730A2 (en) 2018-10-16 2020-04-23 Massachusetts Institute Of Technology Methods and compositions for modulating microenvironment
WO2020086910A1 (en) 2018-10-24 2020-04-30 Genedit Inc. Cationic polymer with alkyl side chains and use for biomolecule delivery
WO2020086742A1 (en) 2018-10-24 2020-04-30 Obsidian Therapeutics, Inc. Er tunable protein regulation
US11407995B1 (en) 2018-10-26 2022-08-09 Inari Agriculture Technology, Inc. RNA-guided nucleases and DNA binding proteins
EP3875469A4 (en) * 2018-10-29 2022-08-17 China Agricultural University NEW CRISPR/CAS12F ENZYME AND SYSTEM
MX2021005028A (es) 2018-10-31 2021-08-24 Zymergen Inc Ensamble determinista multiplexado de genotecas de adn.
JP2022505671A (ja) 2018-10-31 2022-01-14 パイオニア ハイ-ブレッド インターナショナル, インコーポレイテッド オクロバクトラム媒介遺伝子編集のための組成物及び方法
WO2020093025A1 (en) * 2018-11-01 2020-05-07 Synthego Corporation Methods for knock-out of a target sequence through introduction of a premature stop codon
US11434477B1 (en) 2018-11-02 2022-09-06 Inari Agriculture Technology, Inc. RNA-guided nucleases and DNA binding proteins
AU2019377422A1 (en) 2018-11-05 2021-05-27 Iovance Biotherapeutics, Inc. Treatment of NSCLC patients refractory for anti-PD-1 antibody
TW202039830A (zh) 2018-11-05 2020-11-01 美商艾歐凡斯生物治療公司 用於製造腫瘤浸潤性淋巴細胞之方法及其在免疫療法中之用途
US20230039976A1 (en) 2018-11-05 2023-02-09 Iovance Biotherapeutics, Inc. Selection of improved tumor reactive t-cells
US20220033775A1 (en) 2018-11-05 2022-02-03 Iovance Biotherapeutics, Inc. Expansion of tils utilizing akt pathways inhibitors
US20220282275A1 (en) 2018-11-15 2022-09-08 The Broad Institute, Inc. G-to-t base editors and uses thereof
US11166996B2 (en) 2018-12-12 2021-11-09 Flagship Pioneering Innovations V, Inc. Anellovirus compositions and methods of use
KR20210104068A (ko) 2018-12-14 2021-08-24 파이어니어 하이 부렛드 인터내쇼날 인코포레이팃드 게놈 편집을 위한 신규한 crispr-cas 시스템
US20220062394A1 (en) 2018-12-17 2022-03-03 The Broad Institute, Inc. Methods for identifying neoantigens
EP3898958A1 (en) 2018-12-17 2021-10-27 The Broad Institute, Inc. Crispr-associated transposase systems and methods of use thereof
EP3877525A2 (en) 2018-12-18 2021-09-15 Braskem S.A. Co-production pathway for 3-hp and acetyl-coa derivatives from malonate semialdehyde
WO2020131547A1 (en) 2018-12-19 2020-06-25 Iovance Biotherapeutics, Inc. Methods of expanding tumor infiltrating lymphocytes using engineered cytokine receptor pairs and uses thereof
AU2019401485A1 (en) 2018-12-21 2021-06-24 Pivot Bio, Inc. Methods, compositions, and media for improving plant traits
BR112021012231A2 (pt) 2018-12-28 2021-09-28 Braskem S.A. Modulação do fluxo de carbono através das vias de meg e c3 para a produção melhorada de monoetileno glicol e compostos c3
JP2022517324A (ja) 2019-01-03 2022-03-08 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル 癌を患っている被験者における、cd8陽性t細胞依存性免疫応答を増強させるための方法及び医薬組成物
WO2020142754A2 (en) 2019-01-04 2020-07-09 Mammoth Biosciences, Inc. Programmable nuclease improvements and compositions and methods for nucleic acid amplification and detection
US11739156B2 (en) 2019-01-06 2023-08-29 The Broad Institute, Inc. Massachusetts Institute of Technology Methods and compositions for overcoming immunosuppression
WO2020148206A1 (en) 2019-01-14 2020-07-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and kits for generating and selecting a variant of a binding protein with increased binding affinity and/or specificity
WO2020163396A1 (en) 2019-02-04 2020-08-13 The General Hospital Corporation Adenine dna base editor variants with reduced off-target rna editing
EP3921416A1 (en) 2019-02-06 2021-12-15 Fred Hutchinson Cancer Research Center Minicircle producing bacteria engineered to differentially methylate nucleic acid molecules therein
WO2020163856A1 (en) 2019-02-10 2020-08-13 The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone Modified mitochondrion and methods of use thereof
MX2021010288A (es) 2019-03-01 2021-09-23 Iovance Biotherapeutics Inc Expansion de linfocitos infiltrantes de tumores a partir de tumores liquidos y usos terapeuticos de los mismos.
EP3921435A1 (en) 2019-03-01 2021-12-15 Braskem S.A. Method for the in vivo synthesis of 4-hydroxymethylfurfural and derivatives thereof
CN110177061B (zh) * 2019-03-01 2023-04-07 致讯科技(天津)有限公司 一种异构网络中信号干扰的协调方法
WO2020181195A1 (en) 2019-03-06 2020-09-10 The Broad Institute, Inc. T:a to a:t base editing through adenine excision
WO2020181202A1 (en) 2019-03-06 2020-09-10 The Broad Institute, Inc. A:t to t:a base editing through adenine deamination and oxidation
WO2020181193A1 (en) 2019-03-06 2020-09-10 The Broad Institute, Inc. T:a to a:t base editing through adenosine methylation
WO2020181180A1 (en) 2019-03-06 2020-09-10 The Broad Institute, Inc. A:t to c:g base editors and uses thereof
WO2020181178A1 (en) 2019-03-06 2020-09-10 The Broad Institute, Inc. T:a to a:t base editing through thymine alkylation
DE212020000516U1 (de) 2019-03-07 2022-01-17 The Regents of the University of California CRISPR-CAS-Effektorpolypeptide
AU2020235865A1 (en) 2019-03-08 2021-09-23 Obsidian Therapeutics, Inc. Human carbonic anhydrase 2 compositions and methods for tunable regulation
US11053515B2 (en) 2019-03-08 2021-07-06 Zymergen Inc. Pooled genome editing in microbes
CN113728106A (zh) 2019-03-08 2021-11-30 齐默尔根公司 微生物中的迭代基因组编辑
JP7461368B2 (ja) 2019-03-18 2024-04-03 リジェネロン・ファーマシューティカルズ・インコーポレイテッド タウの播種または凝集の遺伝的修飾因子を同定するためのcrispr/casスクリーニングプラットフォーム
JP7389135B2 (ja) 2019-03-18 2023-11-29 リジェネロン・ファーマシューティカルズ・インコーポレイテッド タウ凝集に関連する遺伝的脆弱性を明らかにするためのcrispr/casドロップアウトスクリーニングプラットフォーム
AU2020242032A1 (en) 2019-03-19 2021-10-07 Massachusetts Institute Of Technology Methods and compositions for editing nucleotide sequences
WO2020206036A1 (en) 2019-04-01 2020-10-08 The Broad Institute, Inc. Novel nucleic acid modifier
RU2710731C1 (ru) * 2019-04-02 2020-01-10 Общество с ограниченной ответственностью "Зеленые линии" Система редактирования генома дрожжей debaryomyces hansenii на основе crispr/cas9
CN114008197A (zh) 2019-04-04 2022-02-01 布拉斯科公司 用于同时消耗木糖和葡萄糖以从第二代糖产生化学物质的代谢工程
EP3956349A1 (en) 2019-04-17 2022-02-23 The Broad Institute, Inc. Adenine base editors with reduced off-target effects
KR20220005019A (ko) 2019-04-23 2022-01-12 진에딧 인코포레이티드 알킬 곁사슬을 갖는 양이온성 폴리머
JP2022529531A (ja) 2019-04-24 2022-06-22 ピボット バイオ, インコーポレイテッド 植物形質を改善するために窒素固定を標的とする遺伝子標的
EP3959320A1 (en) 2019-04-24 2022-03-02 Novartis AG Compositions and methods for selective protein degradation
US20220220495A1 (en) 2019-05-10 2022-07-14 Basf Se Regulatory nucleic acid molecules for enhancing gene expression in plants
EP3969607A1 (en) 2019-05-13 2022-03-23 KWS SAAT SE & Co. KGaA Drought tolerance in corn
US20220249559A1 (en) 2019-05-13 2022-08-11 Iovance Biotherapeutics, Inc. Methods and compositions for selecting tumor infiltrating lymphocytes and uses of the same in immunotherapy
WO2020236972A2 (en) 2019-05-20 2020-11-26 The Broad Institute, Inc. Non-class i multi-component nucleic acid targeting systems
WO2020236967A1 (en) 2019-05-20 2020-11-26 The Broad Institute, Inc. Random crispr-cas deletion mutant
EP3973054A1 (en) 2019-05-20 2022-03-30 The Broad Institute Inc. Aav delivery of nucleobase editors
AR118995A1 (es) 2019-05-25 2021-11-17 Kws Saat Se & Co Kgaa Mejorador de la inducción de haploides
JP2022534245A (ja) 2019-05-28 2022-07-28 ジーンエディット インコーポレイテッド 生体分子送達のための複数の機能化側鎖を含むポリマー
US20220243178A1 (en) 2019-05-31 2022-08-04 The Broad Institute, Inc. Methods for treating metabolic disorders by targeting adcy5
EP3976073A4 (en) * 2019-06-01 2023-08-02 Sivec Biotechnologies, LLC BACTERIAL PLATFORM FOR DELIVERING GENE EDITING SYSTEMS TO EUKARYOT CELLS
WO2020244759A1 (en) 2019-06-05 2020-12-10 Klemm & Sohn Gmbh & Co. Kg New plants having a white foliage phenotype
AU2020290509A1 (en) 2019-06-14 2021-11-11 Regeneron Pharmaceuticals, Inc. Models of tauopathy
WO2020254850A1 (en) 2019-06-21 2020-12-24 Vilmorin & Cie Improvement of quality and permanence of green color of peppers at maturity and over-maturity
WO2020263825A1 (en) 2019-06-24 2020-12-30 Promega Corporation Modified polyamine polymers for delivery of biomolecules into cells
CA3138663A1 (en) 2019-06-25 2020-12-30 Inari Agriculture Technology, Inc. Improved homology dependent repair genome editing
JP2022539248A (ja) 2019-07-02 2022-09-07 フレッド ハッチンソン キャンサー リサーチ センター 組換えad35ベクター及び関連遺伝子治療改善
GB201909597D0 (en) 2019-07-03 2019-08-14 Univ Wageningen Crispr type v-u1 system from mycobacterium mucogenicum and uses thereof
CA3145385A1 (en) 2019-07-08 2021-01-14 Steven D. Goodman Antibody compositions for disrupting biofilms
CN110387405A (zh) * 2019-07-17 2019-10-29 浙江善测禾骑士生物科技有限公司 一种快速检测核酸的(rt)raa-crispr系统
CN110452966A (zh) * 2019-07-17 2019-11-15 浙江善测禾骑士生物科技有限公司 一种利用raa-crispr蛋白酶系统快速检测方法
WO2021009299A1 (en) 2019-07-17 2021-01-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Bcl-xl:fkbp12 fusion proteins suitable for screening agents capable of slowing down the aging process
WO2021019272A1 (en) 2019-07-31 2021-02-04 Vilmorin & Cie Tolerance to tolcndv in cucumber
EP3772542A1 (en) 2019-08-07 2021-02-10 KWS SAAT SE & Co. KGaA Modifying genetic variation in crops by modulating the pachytene checkpoint protein 2
WO2021028359A1 (en) 2019-08-09 2021-02-18 Sangamo Therapeutics France Controlled expression of chimeric antigen receptors in t cells
EP4013859A4 (en) * 2019-08-15 2023-10-11 The Rockefeller University CRISPR-BASED GENOME EDITING WITH CELL SURFACE DISPLAY TO PRODUCE HOMOZYGOTICLY ENGINEERED EUKARYOTIC CELLS
WO2021030666A1 (en) 2019-08-15 2021-02-18 The Broad Institute, Inc. Base editing by transglycosylation
WO2021041922A1 (en) 2019-08-30 2021-03-04 The Broad Institute, Inc. Crispr-associated mu transposase systems
US20220348937A1 (en) 2019-09-06 2022-11-03 Obsidian Therapeutics, Inc. Compositions and methods for dhfr tunable protein regulation
CA3150334A1 (en) 2019-09-12 2021-03-18 Frank Meulewaeter REGULATORY NUCLEIC ACID MOLECULES TO ENHANCE GENE EXPRESSION IN PLANTS
CN110541001A (zh) * 2019-09-20 2019-12-06 福建上源生物科学技术有限公司 精确大片段基因删除结合终止密码子插入的基因敲除法
AU2020348879A1 (en) 2019-09-20 2022-04-14 Massachusetts Institute Of Technology Novel type VI CRISPR enzymes and systems
CN114391040A (zh) 2019-09-23 2022-04-22 欧米茄治疗公司 用于调节载脂蛋白b(apob)基因表达的组合物和方法
US11987791B2 (en) 2019-09-23 2024-05-21 Omega Therapeutics, Inc. Compositions and methods for modulating hepatocyte nuclear factor 4-alpha (HNF4α) gene expression
US11981922B2 (en) 2019-10-03 2024-05-14 Dana-Farber Cancer Institute, Inc. Methods and compositions for the modulation of cell interactions and signaling in the tumor microenvironment
WO2021069387A1 (en) 2019-10-07 2021-04-15 Basf Se Regulatory nucleic acid molecules for enhancing gene expression in plants
EP3808766A1 (en) 2019-10-15 2021-04-21 Sangamo Therapeutics France Chimeric antigen receptor specific for interleukin-23 receptor
US20230357788A1 (en) 2019-10-17 2023-11-09 KWS SAAT SE & Co. KGaA Enhanced disease resistance of crops by downregulation of repressor genes
EP4048295A1 (en) 2019-10-25 2022-08-31 Iovance Biotherapeutics, Inc. Gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2021094805A1 (en) 2019-11-14 2021-05-20 Vilmorin & Cie Resistance to acidovorax valerianellae in corn salad
CN114980864A (zh) 2019-11-22 2022-08-30 哈佛大学校长及研究员协会 用于药物递送的离子液体
WO2021108717A2 (en) 2019-11-26 2021-06-03 The Broad Institute, Inc Systems and methods for evaluating cas9-independent off-target editing of nucleic acids
US20230002455A1 (en) 2019-11-29 2023-01-05 Basf Se Increasing resistance against fungal infections in plants
AU2020394910A1 (en) * 2019-12-02 2022-06-23 Council Of Scientific & Industrial Research Method and kit for detection of polynucleotide
AU2020396138A1 (en) 2019-12-03 2022-06-16 Basf Se Regulatory nucleic acid molecules for enhancing gene expression in plants
WO2021118990A1 (en) 2019-12-11 2021-06-17 Iovance Biotherapeutics, Inc. Processes for the production of tumor infiltrating lymphocytes (tils) and methods of using the same
EP4074821A4 (en) 2019-12-13 2024-01-17 Chugai Pharmaceutical Co Ltd SYSTEM FOR DETECTING EXTRACELLULAR PURINERGIC RECEPTOR LIGANDS AND NON-HUMAN ANIMAL INTO WHICH SUCH LIGAND WAS TRANSFERRED
WO2021122687A1 (en) 2019-12-19 2021-06-24 Basf Se Increasing space-time-yield, carbon-conversion-efficiency and carbon substrate flexibility in the production of fine chemicals
JP2023508871A (ja) 2019-12-20 2023-03-06 ビーエーエスエフ ソシエタス・ヨーロピア テルペンの毒性の低減および微生物中での生成可能性の増大
JP2023510872A (ja) 2020-01-13 2023-03-15 サナ バイオテクノロジー,インコーポレイテッド 血液型抗原の修飾
WO2021221690A1 (en) 2020-05-01 2021-11-04 Pivot Bio, Inc. Modified bacterial strains for improved fixation of nitrogen
IL294715A (en) 2020-01-23 2022-09-01 Childrens Medical Ct Corp Inducible t-cell differentiation from human pluripotent stem cells
US20230235309A1 (en) 2020-02-05 2023-07-27 The Broad Institute, Inc. Adenine base editors and uses thereof
EP3872190A1 (en) 2020-02-26 2021-09-01 Antibodies-Online GmbH A method of using cut&run or cut&tag to validate crispr-cas targeting
JP2023517326A (ja) 2020-03-11 2023-04-25 オメガ セラピューティクス, インコーポレイテッド フォークヘッドボックスp3(foxp3)遺伝子発現をモジュレートするための組成物および方法
WO2021186056A1 (en) 2020-03-20 2021-09-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Chimeric antigen receptor specific for human cd45rc and uses thereof
US20210319851A1 (en) 2020-04-03 2021-10-14 Creyon Bio, Inc. Oligonucleotide-based machine learning
WO2021216622A1 (en) 2020-04-21 2021-10-28 Aspen Neuroscience, Inc. Gene editing of gba1 in stem cells and method of use of cells differentiated therefrom
WO2021216623A1 (en) 2020-04-21 2021-10-28 Aspen Neuroscience, Inc. Gene editing of lrrk2 in stem cells and method of use of cells differentiated therefrom
CA3172322A1 (en) 2020-05-01 2021-11-04 Karsten TEMME Modified bacterial strains for improved fixation of nitrogen
BR112022021723A2 (pt) 2020-05-01 2022-12-06 Pivot Bio Inc Sistema para cultivo de plantas, métodos para detectar a incorporação de nitrogênio em uma planta e para identificação de uma cepa bacteriana fixadora de nitrogênio, bactéria geneticamente modificada, e, composição
WO2021226061A1 (en) 2020-05-04 2021-11-11 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of the same in immunotherapy
US20230193212A1 (en) 2020-05-06 2023-06-22 Orchard Therapeutics (Europe) Limited Treatment for neurodegenerative diseases
CA3177481A1 (en) 2020-05-08 2021-11-11 David R. Liu Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CA3172323A1 (en) 2020-05-13 2021-11-18 Pivot Bio, Inc. De-repression of nitrogen fixation in gram-positive microorganisms
GB202007943D0 (en) 2020-05-27 2020-07-08 Snipr Biome Aps Products & methods
PE20230080A1 (es) 2020-05-29 2023-01-11 Kws Saat Se And Co Kgaa Induccion de haploides en plantas
WO2021245435A1 (en) 2020-06-03 2021-12-09 Vilmorin & Cie Melon plants resistant to scab disease, aphids and powdery mildew
EP4161552A1 (en) 2020-06-05 2023-04-12 The Broad Institute, Inc. Compositions and methods for treating neoplasia
CN115867129A (zh) 2020-06-05 2023-03-28 维尔莫林公司 番茄植物对ToBRFV的抗性
CN116096862A (zh) 2020-06-11 2023-05-09 诺华股份有限公司 Zbtb32抑制剂及其用途
US20230235315A1 (en) 2020-07-10 2023-07-27 Horizon Discovery Limited Method for producing genetically modified cells
US20230323299A1 (en) 2020-08-03 2023-10-12 Inserm (Institut National De La Santé Et De La Recherch Médicale) Population of treg cells functionally committed to exert a regulatory activity and their use for adoptive therapy
CN116096378A (zh) 2020-08-10 2023-05-09 诺华股份有限公司 视网膜变性疾病的治疗
CA3186862A1 (en) 2020-08-18 2022-02-24 Pioneer Hi-Bred International, Inc. Multiple disease resistance genes and genomic stacks thereof
WO2022040454A1 (en) 2020-08-20 2022-02-24 A2 Biotherapeutics, Inc. Compositions and methods for treating mesothelin positive cancers
JP2023538116A (ja) 2020-08-20 2023-09-06 エー2 バイオセラピューティクス, インコーポレイテッド Egfr陽性がんを治療するための組成物及び方法
IL300497A (en) 2020-08-20 2023-04-01 A2 Biotherapeutics Inc Compositions and methods for treating CEACAM-positive cancer
CN112080587A (zh) * 2020-08-31 2020-12-15 上海海关动植物与食品检验检疫技术中心 用于高效检测新型冠状病毒的raa-crispr扩增引物组、试剂盒及方法
KR102424351B1 (ko) * 2020-09-21 2022-08-05 한국과학기술원 파브알부민 유전자 발현 억제용 CRISPR/Cas9 시스템 및 이의 용도
US11944063B2 (en) 2020-09-30 2024-04-02 Spring Meadow Nursery, Inc. Hydrangea ‘SMNHPH’
WO2022188039A1 (en) 2021-03-09 2022-09-15 Huigene Therapeutics Co., Ltd. Engineered crispr/cas13 system and uses thereof
WO2022068912A1 (en) 2020-09-30 2022-04-07 Huigene Therapeutics Co., Ltd. Engineered crispr/cas13 system and uses thereof
IL301846A (en) 2020-10-02 2023-06-01 Vilmorin & Cie A hotel with an extended shelf life
CA3195019A1 (en) 2020-10-06 2022-04-14 Maria Fardis Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
WO2022076606A1 (en) 2020-10-06 2022-04-14 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
EP4321015A3 (en) 2020-10-16 2024-04-17 Klemm & Sohn GmbH & Co. KG Double-flowering dwarf calibrachoa
US11155884B1 (en) 2020-10-16 2021-10-26 Klemm & Sohn Gmbh & Co. Kg Double-flowering dwarf Calibrachoa
US20230147779A1 (en) 2020-10-28 2023-05-11 GeneEdit, Inc. Polymer with cationic and hydrophobic side chains
US11530419B2 (en) 2020-10-30 2022-12-20 Fortiphyte, Inc. Pathogen resistance in plants
IL302700A (en) 2020-11-13 2023-07-01 Novartis Ag Combined treatments with cells expressing chimeric antigens (vehicle)
EP4001429A1 (en) 2020-11-16 2022-05-25 Antibodies-Online GmbH Analysis of crispr-cas binding and cleavage sites followed by high-throughput sequencing (abc-seq)
US20240049668A1 (en) 2020-12-03 2024-02-15 Vilmorin & Cie Tomato plants resistant to tobrfv, tmv, tomv and tommv and corresponding resistance genes
US20240123067A1 (en) 2020-12-17 2024-04-18 Iovance Biotherapeutics, Inc. Treatment of cancers with tumor infiltrating lymphocyte therapies
WO2022133140A1 (en) 2020-12-17 2022-06-23 Iovance Biotherapeutics, Inc. Treatment with tumor infiltrating lymphocyte therapies in combination with ctla-4 and pd-1 inhibitors
IL303892A (en) 2020-12-23 2023-08-01 Flagship Pioneering Innovations V Inc In vitro assembly of RNA-encapsulating enalavirus capsids
CA3207144A1 (en) 2021-01-05 2022-07-14 Horizon Discovery Limited Method for producing genetically modified cells
WO2022150776A1 (en) * 2021-01-11 2022-07-14 Vedere Bio Ii, Inc. OPTOGENETIC COMPOSITIONS COMPRISING A CBh PROMOTER SEQUENCE AND METHODS FOR USE
EP4277989A2 (en) 2021-01-12 2023-11-22 March Therapeutics, Inc. Context-dependent, double-stranded dna-specific deaminases and uses thereof
JP2024506557A (ja) 2021-01-29 2024-02-14 アイオバンス バイオセラピューティクス,インコーポレイテッド 修飾された腫瘍浸潤リンパ球を作製する方法及び養子細胞療法におけるそれらの使用
AU2022221606A1 (en) 2021-02-16 2023-08-24 A2 Biotherapeutics, Inc. Compositions and methods for treating her2 positive cancers
WO2022188797A1 (en) 2021-03-09 2022-09-15 Huigene Therapeutics Co., Ltd. Engineered crispr/cas13 system and uses thereof
CA3212439A1 (en) 2021-03-19 2022-09-22 Michelle SIMPSON-ABELSON Methods for tumor infiltrating lymphocyte (til) expansion related to cd39/cd69 selection and gene knockout in tils
WO2022213118A1 (en) 2021-03-31 2022-10-06 Entrada Therapeutics, Inc. Cyclic cell penetrating peptides
WO2022208489A1 (en) 2021-04-02 2022-10-06 Vilmorin & Cie Semi-determinate or determinate growth habit trait in cucurbita
KR20240007651A (ko) 2021-04-16 2024-01-16 빔 테라퓨틱스, 인크. 간세포의 유전적 변형
WO2022225981A2 (en) 2021-04-19 2022-10-27 Iovance Biotherapeutics, Inc. Chimeric costimulatory receptors, chemokine receptors, and the use of same in cellular immunotherapies
WO2022235929A1 (en) 2021-05-05 2022-11-10 Radius Pharmaceuticals, Inc. Animal model having homologous recombination of mouse pth1 receptor
EP4337263A1 (en) 2021-05-10 2024-03-20 Entrada Therapeutics, Inc. Compositions and methods for modulating interferon regulatory factor-5 (irf-5) activity
JP2024518476A (ja) 2021-05-10 2024-05-01 エントラーダ セラピューティクス,インコーポレイティド mRNAスプライシングを調節するための組成物及び方法
EP4337264A1 (en) 2021-05-10 2024-03-20 Entrada Therapeutics, Inc. Compositions and methods for modulating tissue distribution of intracellular therapeutics
WO2022240824A1 (en) 2021-05-13 2022-11-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Compositions and methods for treating sickle cell diseases
EP4340850A1 (en) 2021-05-17 2024-03-27 Iovance Biotherapeutics, Inc. Pd-1 gene-edited tumor infiltrating lymphocytes and uses of same in immunotherapy
US20240102007A1 (en) 2021-06-01 2024-03-28 Arbor Biotechnologies, Inc. Gene editing systems comprising a crispr nuclease and uses thereof
WO2022261509A1 (en) 2021-06-11 2022-12-15 The Broad Institute, Inc. Improved cytosine to guanine base editors
WO2022261561A1 (en) 2021-06-11 2022-12-15 Genedit Inc. Biodegradable polymer comprising side chains with polyamine and polyalkylene oxide groups
WO2022266105A1 (en) * 2021-06-14 2022-12-22 The University Of Chicago Characterization and treatment of asthma
KR20240038967A (ko) 2021-06-23 2024-03-26 엔트라다 테라퓨틱스, 인크. Cug 반복을 표적화하기 위한 안티센스 화합물 및 방법
CA3218556A1 (en) 2021-07-02 2023-01-05 Pivot Bio, Inc. Genetically-engineered bacterial strains for improved fixation of nitrogen
EP4367242A2 (en) 2021-07-07 2024-05-15 Omega Therapeutics, Inc. Compositions and methods for modulating secreted frizzled receptor protein 1 (sfrp1) gene expression
CA3226111A1 (en) 2021-07-22 2023-01-26 Iovance Biotherapeutics, Inc. Method for cryopreservation of solid tumor fragments
EP4377446A1 (en) 2021-07-28 2024-06-05 Iovance Biotherapeutics, Inc. Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with kras inhibitors
EP4376596A1 (en) 2021-07-30 2024-06-05 KWS SAAT SE & Co. KGaA Plants with improved digestibility and marker haplotypes
EP4175968A1 (en) 2021-07-30 2023-05-10 Helaina, Inc. Methods and compositions for protein synthesis and secretion
WO2023012325A1 (en) 2021-08-06 2023-02-09 Vilmorin & Cie Resistance to leveillula taurica in pepper
WO2023031885A1 (en) 2021-09-02 2023-03-09 SESVanderHave NV Methods and compositions for ppo herbicide tolerance
WO2023039586A1 (en) 2021-09-10 2023-03-16 Agilent Technologies, Inc. Guide rnas with chemical modification for prime editing
AU2022358523A1 (en) 2021-09-30 2024-03-14 The Board Of Regents Of The Universityof Texas System Slc13a5 gene therapy vectors and uses thereof
AU2022359915A1 (en) 2021-10-08 2024-05-02 President And Fellows Of Harvard College Ionic liquids for drug delivery
WO2023077015A2 (en) 2021-10-27 2023-05-04 Iovance Biotherapeutics, Inc. Systems and methods for coordinating manufacturing of cells for patient-specific immunotherapy
WO2023077148A1 (en) 2021-11-01 2023-05-04 Tome Biosciences, Inc. Single construct platform for simultaneous delivery of gene editing machinery and nucleic acid cargo
CA3237482A1 (en) 2021-11-03 2023-05-11 The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone Precise genome editing using retrons
AU2022381188A1 (en) * 2021-11-03 2024-05-23 Salk Institute For Biological Studies Serine recombinases
CA3237410A1 (en) 2021-11-10 2023-05-19 Friedrich Graf Finck VON FINCKENSTEIN Methods of expansion treatment utilizing cd8 tumor infiltrating lymphocytes
WO2023092153A2 (en) * 2021-11-22 2023-05-25 The Texas A&M University System Methods and compositions targeting nucleus accumbens-associated protein-1 for treatment of autoimmune disorders and cancers
WO2023096996A2 (en) 2021-11-24 2023-06-01 Research Institute At Nationwide Children's Hospital Chimeric hsv expressing hil21 to boost anti-tumor immune activity
WO2023093862A1 (en) 2021-11-26 2023-06-01 Epigenic Therapeutics Inc. Method of modulating pcsk9 and uses thereof
WO2023102406A1 (en) 2021-12-01 2023-06-08 The Board Of Regents Of The Univesity Of Texas System Vector genome design to express optimized cln7 transgene
WO2023102518A1 (en) 2021-12-03 2023-06-08 The Board Of Regents Of The University Of Texas System Gnao1 gene therapy vectors and uses thereof
GB202118058D0 (en) 2021-12-14 2022-01-26 Univ Warwick Methods to increase yields in crops
US20230279442A1 (en) 2021-12-15 2023-09-07 Versitech Limited Engineered cas9-nucleases and method of use thereof
WO2023115041A1 (en) 2021-12-17 2023-06-22 Sana Biotechnology, Inc. Modified paramyxoviridae attachment glycoproteins
TW202342498A (zh) 2021-12-17 2023-11-01 美商薩那生物科技公司 經修飾副黏液病毒科融合醣蛋白
WO2023122805A1 (en) 2021-12-20 2023-06-29 Vestaron Corporation Sorbitol driven selection pressure method
WO2023122764A1 (en) 2021-12-22 2023-06-29 Tome Biosciences, Inc. Co-delivery of a gene editor construct and a donor template
WO2023122800A1 (en) 2021-12-23 2023-06-29 University Of Massachusetts Therapeutic treatment for fragile x-associated disorder
WO2023133595A2 (en) 2022-01-10 2023-07-13 Sana Biotechnology, Inc. Methods of ex vivo dosing and administration of lipid particles or viral vectors and related systems and uses
WO2023141602A2 (en) 2022-01-21 2023-07-27 Renagade Therapeutics Management Inc. Engineered retrons and methods of use
WO2023147476A1 (en) 2022-01-28 2023-08-03 The Board Of Regents Of The University Of Texas System Transgene casette designed to express the human codon-optimized gene fmr1
WO2023147488A1 (en) 2022-01-28 2023-08-03 Iovance Biotherapeutics, Inc. Cytokine associated tumor infiltrating lymphocytes compositions and methods
WO2023150518A1 (en) 2022-02-01 2023-08-10 Sana Biotechnology, Inc. Cd3-targeted lentiviral vectors and uses thereof
WO2023150647A1 (en) 2022-02-02 2023-08-10 Sana Biotechnology, Inc. Methods of repeat dosing and administration of lipid particles or viral vectors and related systems and uses
WO2023156587A1 (en) 2022-02-18 2023-08-24 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of tcr-deficient car-tregs in combination with anti-tcr complex monoclonal antibodies for inducing durable tolerance
WO2023196802A1 (en) 2022-04-04 2023-10-12 The Broad Institute, Inc. Cas9 variants having non-canonical pam specificities and uses thereof
WO2023196877A1 (en) 2022-04-06 2023-10-12 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
EP4256950A1 (en) 2022-04-06 2023-10-11 Vilmorin et Cie Tolerance to cgmmv in cucumber
WO2023201369A1 (en) 2022-04-15 2023-10-19 Iovance Biotherapeutics, Inc. Til expansion processes using specific cytokine combinations and/or akti treatment
WO2023205744A1 (en) 2022-04-20 2023-10-26 Tome Biosciences, Inc. Programmable gene insertion compositions
WO2023212715A1 (en) 2022-04-28 2023-11-02 The Broad Institute, Inc. Aav vectors encoding base editors and uses thereof
WO2023215831A1 (en) 2022-05-04 2023-11-09 Tome Biosciences, Inc. Guide rna compositions for programmable gene insertion
WO2023220043A1 (en) 2022-05-09 2023-11-16 Synteny Therapeutics, Inc. Erythroparvovirus with a modified genome for gene therapy
WO2023220040A1 (en) 2022-05-09 2023-11-16 Synteny Therapeutics, Inc. Erythroparvovirus with a modified capsid for gene therapy
WO2023219933A1 (en) 2022-05-09 2023-11-16 Entrada Therapeutics, Inc. Compositions and methods for delivery of nucleic acid therapeutics
WO2023220035A1 (en) 2022-05-09 2023-11-16 Synteny Therapeutics, Inc. Erythroparvovirus compositions and methods for gene therapy
WO2023220608A1 (en) 2022-05-10 2023-11-16 Iovance Biotherapeutics, Inc. Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with an il-15r agonist
WO2023225670A2 (en) 2022-05-20 2023-11-23 Tome Biosciences, Inc. Ex vivo programmable gene insertion
WO2023230570A2 (en) 2022-05-25 2023-11-30 Flagship Pioneering Innovations Vii, Llc Compositions and methods for modulating genetic drivers
WO2023230573A2 (en) 2022-05-25 2023-11-30 Flagship Pioneering Innovations Vii, Llc Compositions and methods for modulation of immune responses
WO2023230578A2 (en) 2022-05-25 2023-11-30 Flagship Pioneering Innovations Vii, Llc Compositions and methods for modulating circulating factors
WO2023230549A2 (en) 2022-05-25 2023-11-30 Flagship Pioneering Innovations Vii, Llc Compositions and methods for modulation of tumor suppressors and oncogenes
WO2023230566A2 (en) 2022-05-25 2023-11-30 Flagship Pioneering Innovations Vii, Llc Compositions and methods for modulating cytokines
EP4299739A1 (en) 2022-06-30 2024-01-03 Inari Agriculture Technology, Inc. Compositions, systems, and methods for genome editing
EP4299733A1 (en) 2022-06-30 2024-01-03 Inari Agriculture Technology, Inc. Compositions, systems, and methods for genome editing
WO2024005864A1 (en) 2022-06-30 2024-01-04 Inari Agriculture Technology, Inc. Compositions, systems, and methods for genome editing
WO2024005863A1 (en) 2022-06-30 2024-01-04 Inari Agriculture Technology, Inc. Compositions, systems, and methods for genome editing
WO2024006802A1 (en) 2022-06-30 2024-01-04 Pioneer Hi-Bred International, Inc. Artificial intelligence-mediated methods and systems for genome editing
GB2621813A (en) 2022-06-30 2024-02-28 Univ Newcastle Preventing disease recurrence in Mitochondrial replacement therapy
WO2024020346A2 (en) 2022-07-18 2024-01-25 Renagade Therapeutics Management Inc. Gene editing components, systems, and methods of use
WO2024020587A2 (en) 2022-07-22 2024-01-25 Tome Biosciences, Inc. Pleiopluripotent stem cell programmable gene insertion
WO2024023578A1 (en) 2022-07-28 2024-02-01 Institut Pasteur Hsc70-4 in host-induced and spray-induced gene silencing
WO2024026406A2 (en) 2022-07-29 2024-02-01 Vestaron Corporation Next Generation ACTX Peptides
WO2024036190A2 (en) 2022-08-09 2024-02-15 Pioneer Hi-Bred International, Inc. Guide polynucleotide multiplexing
WO2024040083A1 (en) 2022-08-16 2024-02-22 The Broad Institute, Inc. Evolved cytosine deaminases and methods of editing dna using same
WO2024040222A1 (en) 2022-08-19 2024-02-22 Generation Bio Co. Cleavable closed-ended dna (cedna) and methods of use thereof
WO2024044655A1 (en) 2022-08-24 2024-02-29 Sana Biotechnology, Inc. Delivery of heterologous proteins
WO2024044723A1 (en) 2022-08-25 2024-02-29 Renagade Therapeutics Management Inc. Engineered retrons and methods of use
WO2024042199A1 (en) 2022-08-26 2024-02-29 KWS SAAT SE & Co. KGaA Use of paired genes in hybrid breeding
WO2024047605A1 (en) 2022-09-01 2024-03-07 SESVanderHave NV Methods and compositions for ppo herbicide tolerance
WO2024050544A2 (en) 2022-09-01 2024-03-07 J.R. Simplot Company Enhanced targeted knock-in frequency in host genomes through crispr exonuclease processing
WO2024052318A1 (en) 2022-09-06 2024-03-14 Institut National de la Santé et de la Recherche Médicale Novel dual split car-t cells for the treatment of cd38-positive hematological malignancies
WO2024064824A2 (en) 2022-09-21 2024-03-28 Yale University Compositions and methods for identification of membrane targets for enhancement of nk cell therapy
WO2024064838A1 (en) 2022-09-21 2024-03-28 Sana Biotechnology, Inc. Lipid particles comprising variant paramyxovirus attachment glycoproteins and uses thereof
WO2024081820A1 (en) 2022-10-13 2024-04-18 Sana Biotechnology, Inc. Viral particles targeting hematopoietic stem cells
WO2024083579A1 (en) 2022-10-20 2024-04-25 Basf Se Regulatory nucleic acid molecules for enhancing gene expression in plants
WO2024098027A1 (en) 2022-11-04 2024-05-10 Iovance Biotherapeutics, Inc. Methods for tumor infiltrating lymphocyte (til) expansion related to cd39/cd103 selection
WO2024098024A1 (en) 2022-11-04 2024-05-10 Iovance Biotherapeutics, Inc. Expansion of tumor infiltrating lymphocytes from liquid tumors and therapeutic uses thereof
WO2024102434A1 (en) 2022-11-10 2024-05-16 Senda Biosciences, Inc. Rna compositions comprising lipid nanoparticles or lipid reconstructed natural messenger packs

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012149470A1 (en) * 2011-04-27 2012-11-01 Amyris, Inc. Methods for genomic modification
WO2013176772A1 (en) * 2012-05-25 2013-11-28 The Regents Of The University Of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US44790A (en) 1864-10-25 Improvement in force-pumps
US2011A (en) 1841-03-18 Appabatxts for piling saws
US2011008A (en) 1929-04-15 1935-08-13 Rca Corp Electric discharge tube
US4217344A (en) 1976-06-23 1980-08-12 L'oreal Compositions containing aqueous dispersions of lipid spheres
US4235871A (en) 1978-02-24 1980-11-25 Papahadjopoulos Demetrios P Method of encapsulating biologically active materials in lipid vesicles
US4186183A (en) 1978-03-29 1980-01-29 The United States Of America As Represented By The Secretary Of The Army Liposome carriers in chemotherapy of leishmaniasis
US4261975A (en) 1979-09-19 1981-04-14 Merck & Co., Inc. Viral liposome particle
US4485054A (en) 1982-10-04 1984-11-27 Lipoderm Pharmaceuticals Limited Method of encapsulating biologically active materials in multilamellar lipid vesicles (MLV)
US4501728A (en) 1983-01-06 1985-02-26 Technology Unlimited, Inc. Masking of liposomes from RES recognition
US4946787A (en) 1985-01-07 1990-08-07 Syntex (U.S.A.) Inc. N-(ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US5049386A (en) 1985-01-07 1991-09-17 Syntex (U.S.A.) Inc. N-ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)Alk-1-YL-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US4897355A (en) 1985-01-07 1990-01-30 Syntex (U.S.A.) Inc. N[ω,(ω-1)-dialkyloxy]- and N-[ω,(ω-1)-dialkenyloxy]-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US4797368A (en) 1985-03-15 1989-01-10 The United States Of America As Represented By The Department Of Health And Human Services Adeno-associated virus as eukaryotic expression vector
US4774085A (en) 1985-07-09 1988-09-27 501 Board of Regents, Univ. of Texas Pharmaceutical administration systems containing a mixture of immunomodulators
DE122007000007I1 (de) 1986-04-09 2007-05-16 Genzyme Corp Genetisch transformierte Tiere, die ein gewünschtes Protein in Milch absondern
US4837028A (en) 1986-12-24 1989-06-06 Liposome Technology, Inc. Liposomes with enhanced circulation time
US4873316A (en) 1987-06-23 1989-10-10 Biogen, Inc. Isolation of exogenous recombinant proteins from the milk of transgenic mammals
US5264618A (en) 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
AU7979491A (en) 1990-05-03 1991-11-27 Vical, Inc. Intracellular delivery of biologically active substances by means of self-assembling lipid complexes
US5173414A (en) 1990-10-30 1992-12-22 Applied Immune Sciences, Inc. Production of recombinant adeno-associated virus vectors
US7150982B2 (en) 1991-09-09 2006-12-19 Third Wave Technologies, Inc. RNA detection assays
US5587308A (en) 1992-06-02 1996-12-24 The United States Of America As Represented By The Department Of Health & Human Services Modified adeno-associated virus vector capable of expression from a novel promoter
US6534261B1 (en) 1999-01-12 2003-03-18 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US7868149B2 (en) 1999-07-20 2011-01-11 Monsanto Technology Llc Plant genome sequence and uses thereof
US6603061B1 (en) 1999-07-29 2003-08-05 Monsanto Company Agrobacterium-mediated plant transformation method
US20090100536A1 (en) 2001-12-04 2009-04-16 Monsanto Company Transgenic plants with enhanced agronomic traits
AU2003224897A1 (en) 2002-04-09 2003-10-27 Kenneth L. Beattie Oligonucleotide probes for genosensor chips
US8053232B2 (en) 2004-01-23 2011-11-08 Virxsys Corporation Correction of alpha-1-antitrypsin genetic defects using spliceosome mediated RNA trans splicing
US20050220796A1 (en) 2004-03-31 2005-10-06 Dynan William S Compositions and methods for modulating DNA repair
AU2006239169A1 (en) 2005-04-28 2006-11-02 Benitec, Limited. Multiple-RNAi expression cassettes for simultaneous delivery of RNAi agents related to heterozygotic expression patterns
US7892224B2 (en) 2005-06-01 2011-02-22 Brainlab Ag Inverse catheter planning
CN101273141B (zh) 2005-07-26 2013-03-27 桑格摩生物科学股份有限公司 外源核酸序列的靶向整合和表达
WO2007106690A2 (en) 2006-03-15 2007-09-20 Siemens Healthcare Diagnostics Inc. Degenerate nucleobase analogs
WO2008093152A1 (en) * 2007-02-01 2008-08-07 Cellectis Obligate heterodimer meganucleases and uses thereof
ES2719789T3 (es) 2007-03-02 2019-07-16 Dupont Nutrition Biosci Aps Cultivos con resistencia mejorada a fagos
WO2010011961A2 (en) 2008-07-25 2010-01-28 University Of Georgia Research Foundation, Inc. Prokaryotic rnai-like system and methods of use
US20100076057A1 (en) * 2008-09-23 2010-03-25 Northwestern University TARGET DNA INTERFERENCE WITH crRNA
US9404098B2 (en) 2008-11-06 2016-08-02 University Of Georgia Research Foundation, Inc. Method for cleaving a target RNA using a Cas6 polypeptide
US20110016540A1 (en) 2008-12-04 2011-01-20 Sigma-Aldrich Co. Genome editing of genes associated with trinucleotide repeat expansion disorders in animals
CA2745031C (en) 2008-12-04 2018-08-14 Sangamo Biosciences, Inc. Genome editing in rats using zinc-finger nucleases
WO2010075424A2 (en) * 2008-12-22 2010-07-01 The Regents Of University Of California Compositions and methods for downregulating prokaryotic genes
US20110239315A1 (en) 2009-01-12 2011-09-29 Ulla Bonas Modular dna-binding domains and methods of use
US8889394B2 (en) 2009-09-07 2014-11-18 Empire Technology Development Llc Multiple domain proteins
CN102725412B (zh) 2009-11-27 2017-09-22 巴斯夫植物科学有限公司 优化的内切核酸酶及其用途
US10087431B2 (en) 2010-03-10 2018-10-02 The Regents Of The University Of California Methods of generating nucleic acid fragments
MX2012013037A (es) 2010-05-10 2013-07-29 Univ California Composiciones de endorribonucleasa y metodos de uso de las mismas.
WO2011146121A1 (en) 2010-05-17 2011-11-24 Sangamo Biosciences, Inc. Novel dna-binding proteins and uses thereof
KR101613612B1 (ko) 2010-07-29 2016-04-20 다카라 바이오 가부시키가이샤 표적 염기를 검출하기 위한 rna를 함유한 프로브를 제조하기 위한 방법
US9081737B2 (en) 2010-08-02 2015-07-14 Integrated Dna Technologies, Inc. Methods for predicting stability and melting temperatures of nucleic acid duplexes
US9405700B2 (en) 2010-11-04 2016-08-02 Sonics, Inc. Methods and apparatus for virtualization in an integrated circuit
WO2012164565A1 (en) 2011-06-01 2012-12-06 Yeda Research And Development Co. Ltd. Compositions and methods for downregulating prokaryotic genes
US8555733B2 (en) 2011-09-23 2013-10-15 Airgas, Inc. System and method for analyzing a refrigerant sample
EP2591770B1 (en) 2011-11-14 2016-03-16 Silenseed Ltd Compositions for siRNA delivery and methods of manufacturing and using same
US8450107B1 (en) 2011-11-30 2013-05-28 The Broad Institute Inc. Nucleotide-specific recognition sequences for designer TAL effectors
GB201122458D0 (en) 2011-12-30 2012-02-08 Univ Wageningen Modified cascade ribonucleoproteins and uses thereof
BR112014021104B1 (pt) 2012-02-29 2023-03-28 Sangamo Biosciences, Inc Proteína de fusão de ocorrência não natural compreendendo um domínio de ligação de dna de dedo de zinco manipulado que se liga a um gene htt, seu uso, método in vitro de modificação da expressão de um gene htt em uma célula, e método de geração de um sistema modelo para o estudo da doença de huntington
WO2013141680A1 (en) * 2012-03-20 2013-09-26 Vilnius University RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
US9637739B2 (en) * 2012-03-20 2017-05-02 Vilnius University RNA-directed DNA cleavage by the Cas9-crRNA complex
DE202013012597U1 (de) * 2012-10-23 2017-11-21 Toolgen, Inc. Zusammensetzung zum Spalten einer Ziel-DNA, umfassend eine für die Ziel-DNA spezifische guide-RNA und eine Cas-Protein-codierende Nukleinsäure oder ein Cas-Protein, sowie deren Verwendung
PL3138910T3 (pl) 2012-12-06 2018-01-31 Sigma Aldrich Co Llc Oparta na CRISPR modyfikacja i regulacja genomu
WO2014093479A1 (en) 2012-12-11 2014-06-19 Montana State University Crispr (clustered regularly interspaced short palindromic repeats) rna-guided control of gene regulation
US20140186843A1 (en) 2012-12-12 2014-07-03 Massachusetts Institute Of Technology Methods, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof
WO2014093701A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof
WO2014093694A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes
JP6552965B2 (ja) 2012-12-12 2019-07-31 ザ・ブロード・インスティテュート・インコーポレイテッド 配列操作のための改善された系、方法および酵素組成物のエンジニアリングおよび最適化
EP3434776A1 (en) 2012-12-12 2019-01-30 The Broad Institute, Inc. Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof
US20140189896A1 (en) * 2012-12-12 2014-07-03 Feng Zhang Crispr-cas component systems, methods and compositions for sequence manipulation
SG10201707569YA (en) 2012-12-12 2017-10-30 Broad Inst Inc Delivery, Engineering and Optimization of Systems, Methods and Compositions for Sequence Manipulation and Therapeutic Applications
PL2931898T3 (pl) 2012-12-12 2016-09-30 Le Cong Projektowanie i optymalizacja systemów, sposoby i kompozycje do manipulacji sekwencją z domenami funkcjonalnymi
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
MX2015007549A (es) 2012-12-12 2017-01-20 Broad Inst Inc Modificaciones de sistemas, métodos y composiciones guía optimizadas para la manipulación de secuencias.
WO2014099744A1 (en) 2012-12-17 2014-06-26 President And Fellows Of Harvard College Rna-guided human genome engineering
US10660943B2 (en) * 2013-02-07 2020-05-26 The Rockefeller University Sequence specific antimicrobials
WO2014165825A2 (en) * 2013-04-04 2014-10-09 President And Fellows Of Harvard College Therapeutic uses of genome editing with crispr/cas systems
RU2716421C2 (ru) 2013-06-17 2020-03-11 Те Брод Инститьют Инк. Доставка, применение и применения в терапии систем crispr-cas и композиций для целенаправленного воздействия на нарушения и заболевания с использованием вирусных компонентов
KR20160034901A (ko) 2013-06-17 2016-03-30 더 브로드 인스티튜트, 인코퍼레이티드 서열 조작에 최적화된 crispr-cas 이중 닉카아제 시스템, 방법 및 조성물
AU2014281026B2 (en) 2013-06-17 2020-05-28 Massachusetts Institute Of Technology Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation
EP3079726B1 (en) 2013-12-12 2018-12-05 The Broad Institute, Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components
US20180141992A1 (en) * 2014-11-06 2018-05-24 President And Fellows Of Harvard College Cells lacking b2m surface expression and methods for allogeneic administration of such cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012149470A1 (en) * 2011-04-27 2012-11-01 Amyris, Inc. Methods for genomic modification
WO2013176772A1 (en) * 2012-05-25 2013-11-28 The Regents Of The University Of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CELL HOST MICROBE. (AUG 2012) VOL.12, ISSUE 2, P.177-186, SUPPLEMENTAL INFORMATION, JPN6018000047, ISSN: 0003715518 *
NAT. BIOTECHNOL. (EPUB 2013-01-29) VOL.31, NO.3, P.233-239, SUPPLEMENTARY INFORMATION, JPN6018000044, ISSN: 0003944431 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019162113A (ja) * 2012-12-12 2019-09-26 ザ・ブロード・インスティテュート・インコーポレイテッ 配列操作のためのCRISPR−Cas成分系、方法および組成物
US11041173B2 (en) 2012-12-12 2021-06-22 The Broad Institute, Inc. Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications
JP2021166513A (ja) * 2012-12-12 2021-10-21 ザ・ブロード・インスティテュート・インコーポレイテッド 配列操作のためのCRISPR−Cas成分系、方法および組成物
JP7269990B2 (ja) 2012-12-12 2023-05-09 ザ・ブロード・インスティテュート・インコーポレイテッド 配列操作のためのCRISPR-Cas成分系、方法および組成物
US11008588B2 (en) 2013-06-17 2021-05-18 The Broad Institute, Inc. Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation
US11597949B2 (en) 2013-06-17 2023-03-07 The Broad Institute, Inc. Optimized CRISPR-Cas double nickase systems, methods and compositions for sequence manipulation
US11155795B2 (en) 2013-12-12 2021-10-26 The Broad Institute, Inc. CRISPR-Cas systems, crystal structure and uses thereof
US11407985B2 (en) 2013-12-12 2022-08-09 The Broad Institute, Inc. Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for genome editing
US11591581B2 (en) 2013-12-12 2023-02-28 The Broad Institute, Inc. Compositions and methods of use of CRISPR-Cas systems in nucleotide repeat disorders
US11597919B2 (en) 2013-12-12 2023-03-07 The Broad Institute Inc. Systems, methods and compositions for sequence manipulation with optimized functional CRISPR-Cas systems
US11624078B2 (en) 2014-12-12 2023-04-11 The Broad Institute, Inc. Protected guide RNAS (pgRNAS)
US11578312B2 (en) 2015-06-18 2023-02-14 The Broad Institute Inc. Engineering and optimization of systems, methods, enzymes and guide scaffolds of CAS9 orthologs and variants for sequence manipulation

Also Published As

Publication number Publication date
HK1206388A1 (en) 2016-01-08
AU2019280394B2 (en) 2022-06-09
BR112015013786A2 (pt) 2017-07-11
JP2019162113A (ja) 2019-09-26
EP4286404A2 (en) 2023-12-06
EP4286402A2 (en) 2023-12-06
EP4286402A3 (en) 2024-02-14
US20140273231A1 (en) 2014-09-18
EP2840140A1 (en) 2015-02-25
US20180179547A1 (en) 2018-06-28
EP3825401A1 (en) 2021-05-26
JP6896786B2 (ja) 2021-06-30
EP2825654B1 (en) 2017-04-26
US20190017058A1 (en) 2019-01-17
WO2014093595A1 (en) 2014-06-19
CA2894668A1 (en) 2014-06-19
US20140179006A1 (en) 2014-06-26
CN114634950A (zh) 2022-06-17
US20140189896A1 (en) 2014-07-03
KR20150105635A (ko) 2015-09-17
EP4286403A3 (en) 2024-02-14
JP2021166513A (ja) 2021-10-21
EP2840140B2 (en) 2023-02-22
US8871445B2 (en) 2014-10-28
US9840713B2 (en) 2017-12-12
EP2825654A1 (en) 2015-01-21
US20200080094A1 (en) 2020-03-12
AU2022203763A1 (en) 2022-06-16
CN105658796A (zh) 2016-06-08
JP7269990B2 (ja) 2023-05-09
US20150079681A1 (en) 2015-03-19
EP3252160A1 (en) 2017-12-06
CN110982844A (zh) 2020-04-10
US20220135985A1 (en) 2022-05-05
US20150031134A1 (en) 2015-01-29
US20160115488A1 (en) 2016-04-28
CN105658796B (zh) 2021-10-26
EP4286403A2 (en) 2023-12-06
US20230374527A1 (en) 2023-11-23
BR112015013786B1 (pt) 2022-03-15
US20230340505A1 (en) 2023-10-26
WO2014093595A9 (en) 2015-08-06
US20190040399A1 (en) 2019-02-07
US20180327756A1 (en) 2018-11-15
JP2023093658A (ja) 2023-07-04
US20200063147A1 (en) 2020-02-27
EP2840140B1 (en) 2016-11-16
US20180305704A1 (en) 2018-10-25
US20240117365A1 (en) 2024-04-11
AU2013359262C1 (en) 2021-05-13
EP3252160B1 (en) 2020-10-28
BR122021008308B1 (pt) 2022-12-27
DK3252160T3 (da) 2021-02-01
US20160115489A1 (en) 2016-04-28
HK1208056A1 (en) 2016-02-19
AU2013359262A1 (en) 2015-07-30
US8795965B2 (en) 2014-08-05
EP4234696A2 (en) 2023-08-30
US9822372B2 (en) 2017-11-21
US20210079407A1 (en) 2021-03-18
US20200318123A1 (en) 2020-10-08
US20200032277A1 (en) 2020-01-30
EP4234696A3 (en) 2023-09-06
US20200032278A1 (en) 2020-01-30
US20190292550A1 (en) 2019-09-26
EP4286404A3 (en) 2024-02-14
AU2019280394A1 (en) 2020-01-16
AU2013359262B2 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
JP7269990B2 (ja) 配列操作のためのCRISPR-Cas成分系、方法および組成物
JP7463436B2 (ja) 遺伝子産物の発現を変更するためのCRISPR-Cas系および方法
JP7198328B2 (ja) 配列操作のための系、方法および最適化ガイド組成物のエンジニアリング
JP7383062B2 (ja) 配列操作のための最適化されたCRISPR-Cas二重ニッカーゼ系、方法および組成物
RU2701662C2 (ru) Компоненты системы crispr-cas, способы и композиции для манипуляции с последовательностями
KR102649341B1 (ko) H1 프로모터를 사용하여 crispr 가이드 rna를 발현시키기 위한 조성물 및 방법
DK2921557T3 (en) Design of systems, methods and optimized sequence manipulation guide compositions

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180115

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181221