KR101420740B1 - 핵초기화 인자 - Google Patents

핵초기화 인자 Download PDF

Info

Publication number
KR101420740B1
KR101420740B1 KR1020087017015A KR20087017015A KR101420740B1 KR 101420740 B1 KR101420740 B1 KR 101420740B1 KR 1020087017015 A KR1020087017015 A KR 1020087017015A KR 20087017015 A KR20087017015 A KR 20087017015A KR 101420740 B1 KR101420740 B1 KR 101420740B1
Authority
KR
South Korea
Prior art keywords
gene
cells
factor
cell
gene product
Prior art date
Application number
KR1020087017015A
Other languages
English (en)
Other versions
KR20080095852A (ko
Inventor
쉬냐 야마나카
Original Assignee
교또 다이가꾸
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38162968&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR101420740(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 교또 다이가꾸 filed Critical 교또 다이가꾸
Publication of KR20080095852A publication Critical patent/KR20080095852A/ko
Application granted granted Critical
Publication of KR101420740B1 publication Critical patent/KR101420740B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/604Klf-4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/605Nanog
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/021Uses of viruses as vector for the expression of a heterologous nucleic acid
    • C12N2799/027Uses of viruses as vector for the expression of a heterologous nucleic acid where the vector is derived from a retrovirus

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Neurosurgery (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Neurology (AREA)
  • Cardiology (AREA)
  • Diabetes (AREA)
  • Cell Biology (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Developmental Biology & Embryology (AREA)
  • Vascular Medicine (AREA)
  • Hematology (AREA)
  • Endocrinology (AREA)
  • Hospice & Palliative Care (AREA)

Abstract

배아 또는 ES세포를 이용하지 않고 분화된 세포의 초기화를 유도하여, ES세포와 유사한 다능성 또는 증식능을 가지는 유도다능성 줄기세포를 간편하고도 재현성이 좋게 수립하기 위한 수단으로서, 하기 3종의 유전자: Oct 패밀리 유전자, Klf 패밀리 유전자, 및 Myc 패밀리 유전자의 각 유전자 산물을 포함하는 체세포의 핵초기화 인자가 제공된다.
배아, ES세포, 세포의 초기화 유도, 유도다능성 줄기세포, Oct 패밀리 유전자, Klf 패밀리 유전자, Myc 패밀리 유전자, 체세포의 핵초기화 인자

Description

핵초기화 인자{Nuclear Reprogramming Factor}
본 발명은 분화된 체세포(somatic cell)를 초기화하여 유도다능성 줄기세포(induced pluripotent stem cell)를 유도하는 작용을 가지는 핵초기화 인자(nuclear reprogramming factor)에 관한 것이다.
배아성 줄기세포(embryonic stem cell, ES세포)는 사람이나 마우스의 초기 배아로부터 수립(樹立)된 줄기세포로, 생체에 존재하는 모든 세포로 분화할 수 있는 다능성을 유지한 채 장기간에 걸쳐 배양할 수 있다는 특징을 가지고 있다. 이러한 성질을 이용하여, 사람 ES세포는 파킨슨병, 소아 당뇨병, 백혈병 등 많은 질환에 대한 세포이식요법(cell transplantation therapy)의 자원으로서 기대되고 있다. 그러나, ES세포의 이식은 장기이식과 마찬가지로, 거절반응을 야기시킨다는 문제가 있다. 또한, 사람배아를 파괴하여 수립되는 ES세포의 이용에 대해서는, 윤리적 견지에서 반대 의견도 많다. 환자 자신의 분화된 체세포를 이용하여 탈분화(dedifferentiation)를 유도하여, ES세포에 가까운 다능성(pluripotency)이나 증식능(growth ability)을 가지는 세포(본 명세서에서는, 이 세포를 "유도다능성 줄 기세포"(iPS세포)라 하였으나, "배아성 줄기세포양 세포(embryonic stem cell-like cell)" 또는 "ES양 세포(ES-like cell)"라고 불리기도 한다)를 수립할 수 있다면, 거절반응이나 윤리적 문제가 없는 이상적인 다능성 세포로서 이용할 수 있는 것으로 기대된다.
체세포핵을 초기화하는 방법으로서, 예를 들어, 체세포의 핵을 난자에 이식하여 작제한 클론배아로부터 ES세포를 수립하는 기술이 보고되어 있다(W.S. Hwang et al., Science, 303, pp. 1669~74, 2004: W.S. Hwang et al., Science, 308, pp.1777-83, 2005: 이들 논문은 둘 다 날조된 것임이 판명되어, 훗날 취하되었다). 그러나, 이러한 기술은 ES세포를 수립할 목적만으로 클론배아(cloned embryo)를 작제하므로, 불임치료에서 생기는 잉여배아(surplus embryo)를 이용하는 통상의 ES세포에 비해 윤리적 문제가 오히려 크다. 또한, 체세포와 ES세포를 융합시킴으로써, 체세포핵을 초기화하는 기술이 보고되어 있다(M. Tada et al., Curr. Biol., 11, pp.1553-1558, 2001; C.A. Cowan et al., Science, 309, pp. 1369-73, 2005). 그러나, 이러한 방법에 있어서도 결국 사람 ES세포를 이용하게 되어, 윤리적 문제가 해결되지 않는다는 문제가 있다. 그리고, 사람에게 발생한 생식세포종양 유래 세포주의 추출액과 분화된 세포를 반응시킴으로써, 세포핵을 초기화하는 기술이 보고되어 있다(C.K. Taranger et al., Mol. Biol. Cell, 16, pp.5719-35, 2005). 이러한 방법은 추출액 중의 어느 성분이 초기화를 유도하고 있는지 전혀 불명료하여, 기술의 확실성이나 안전성에 문제가 있다.
한편, 분화된 체세포를 초기화하여 유도다능성 줄기세포를 유도하는 작용을 가지는 핵초기화 인자를 스크리닝하는 방법이 제안되어 있다(국제공개 WO2005/80598). 이 방법은 ECAT 유전자(ES세포에서 특이적으로 발현되는 유전자군: ES cell associated transcript)의 발현조절영역에 의해 발현조절을 받는 위치에 마커 유전자가 존재하는 유전자를 함유하는 체세포와 피검물질을 접촉시키고, 마커 유전자 발현세포의 출현 유무를 조사하여, 이 세포를 출현시킨 피검물질을 체세포의 핵초기화 인자의 후보로서 선택하는 공정을 포함하고 있다. 또한, 이 간행물의 실시예 6 등에는 체세포를 초기화하는 방법이 제시되어 있다. 그러나, 상기 간행물에는 핵초기화 인자를 실제로 동정했다는 보고는 없다.
특허간행물 1 국제공개 WO 2005/80598
도 1은 Fbx15유전자에 β geo를 넉인(knockin)한 마우스의 태아섬유아세포(mouse embryonic fibroblast, MEF)를 이용한 초기화인자의 스크리닝방법을 나타낸 그림이다.
도 2는 표 4에 나타낸 24개의 유전자의 도입에 의해 얻어지는 iPS세포의 형태를 나타낸 사진이다. 대조로서 분화된 세포(MEF) 및 정상의 배아성 줄기세포(ES)의 형태도 나타내었다.
도 3은 iPS세포에 있어서의 마커 유전자의 발현을 나타낸 그림이다. iPS세포, ES세포, 및 MEF세포로부터 추출한 총세포 RNA를 주형으로 하여 RT-PCR을 행한 결과를 나타내었다.
도 4는 iPS세포에 있어서의 DNA 메틸화상태를 나타낸 그림이다. iPS세포, ES세포 및 MEF세포로부터 추출한 지놈 DNA를 바이설파이트처리하여, 목적 DNA를 PCR증폭 후 플라스미드에 삽입하였다. 각 유전자마다 10클론의 플라스미드를 단리하여 서열을 결정하였다. 메틸화 CpG는 검은 원으로, 비메틸화 CpG는 하얀 원으로 나타내었다.
도 5는 24개의 유전자군, 및 24개의 유전자군으로부터 1유전자씩 제외한 23개 유전자군의 도입에 의해 얻어진 G418세포의 콜로니수를 나타낸 그림이다. 그래프 하측은 G418 선택후 1주간에 얻어진 콜로니수를 나타내며, 그래프 상측은 3주간에 얻어진 클론수를 나타낸다. 4각으로 에워싼 유전자(유전자의 번호는 표 1에 나타낸 것과 동일하다)를 제외한 경우, 콜로니는 전혀 얻어지지 않거나 3주간 후에 소수만 관찰되었다.
도 6은 10개의 유전자군 및 10개의 유전자군으로부터 1유전자씩 제외한 9개의 유전자군의 도입에 의해 수득한 G418세포의 콜로니수를 나타낸 그림이다. #14, #15, 또는 #20의 각 유전자를 제외한 경우에는, 콜로니는 하나도 얻어지지 않았다. #22의 유전자를 제외한 경우에는, 소수의 G418 내성 콜로니가 얻어졌으나, 세포는 분화된 형태를 나타내고 있어, 명백하게 iPS세포와는 달라 있었다.
도 7은 10개의 유전자군, 4개의 유전자군, 3개의 유전자군 또는 2개의 유전자군에 의한 G418 내성 콜로니(초기화콜로니)의 출현수를 나타낸 그림이다. 각 콜로니의 대표적인 형태 및 크기를 나타낸다.
도 8은 MEF유래의 iPS세포를 누드마우스의 피하로 이식하여 형성된 종양을 헤마톡실린-에오신(hematoxylin-eosin, H&E) 염색한 결과를 나타낸 사진이다. 삼배엽계(triploblastic system)의 각종 조직으로의 분화가 관찰되었다.
도 9는 성체피부 섬유아세포로부터 유래하는 iPS세포를 마우스 배반포(blastocyst)에 이식하고, 가상임신 마우스(pseudopregnant mouse)의 자궁에 이식함으로써 작제한 태아를 나타낸 사진이다. 위 그림 좌측의 태아에 있어서, iPS세포로부터 유래된 세포(녹색형광을 발한다)가 전신에 분포되어 있음을 알 수 있다. 아래 그림에서는, 상기 태아의 심장, 간장, 척수의 거의 대부분의 세포가 GFP양성이며, iPS세포로부터 유래함을 알 수 있다.
도 10은 ES세포 마커 유전자의 발현을 RT-PCR로 확인한 결과를 나타낸 사진이다. 그림 중 Sox2 minus는 MEF에 3개의 유전자를 도입하여 수립된 iPS세포를, 4ECAT는 MEF에 4개의 유전자를 도입하여 수립한 iPS세포를, 10ECAT는 MEF에 10개의 유전자를 도입하여 수립한 iPS세포를, 10ECAT Skin fibroblast는 피부 섬유아세포에 10개의 유전자를 도입하여 수립한 iPS세포를, ES세포는 마우스 ES세포를, 그리고 MEF는 유전자가 도입되지 않은 MEF세포를 나타낸다. 그 아래 번호는 클론번호를 나타낸다.
도 11은 MEF로부터의 iPS세포수립에 있어서의 bFGF의 효과를 나타낸 그림이다. 통상의 피더세포(feeder cell, STO세포)(좌) 및 bFGF 발현벡터를 도입한 STO세포(우) 상에서 배양한 Fbx15β geo/β geo 마우스유래의 MEF에, 4개의 인자(상단) 또는 c-Myc 이외의 3개의 인자(하단)를 레트로바이러스로 도입하였다. 2주간 G418에 의 한 선택을 행하고 크리스탈블루(crystal blue)로 염색 후, 사진 촬영하였다. 숫자는 콜로니수를 나타낸다.
도 12는 Nanog-EGFP-IRES-Puro 마우스를 이용한 실험에 대해 설명한 그림이다. A. 마우스 Nanog 유전자를 중앙에 포함하는 대장균 인공염색체(BAC)를 단리하고, Nanog의 암호화영역의 상류에 EGFP-IRES-Puro 카세트를 유전자재조합기술(recombineering)에 의해 삽입하였다. B. 개변 BAC로부터 유전자전이 마우스를 작제하였다. GFP의 발현은 배반포의 내부세포 덩어리(inner cell mass)나 생식선(gonad)에 국한하여 관찰되었다.
도 13은 Nanog-EGFP-IRES-Puro 마우스를 이용한 실험에 대해서 설명한 그림이다. Nanog-EGFP-IRES-Puro 마우스를 태아(수정후 13.5일)로부터 두부, 내장 및 생식선을 제거하여 MEF를 수립하였다. 세포분류기(cell sorter)에 의한 해석결과, Nanog-EGFP-IRES-Puro 마우스 유래의 MEF(Nanog)에 있어서도 Fbx15β geo/β geo 마우스 유래의 MEF(Fbx15)나 야생형 마우스 유래의 MEF(Wild)와 마찬가지로 GFP 양성세포는 거의 존재하지 않았다.
도 14는 Nanog-EGFP-IRES-Puro 마우스 MEF(좌) 및 Fbx15β geo/β geo 마우스 MEF(우)로부터 수립한 iPS세포의 사진이다. 각각 퓨로마이신 및 G418로 선별하였다.
도 15는 iPS세포의 증식 결과를 나타낸 그림이다. ES세포, Nanog-EGFP-IRES-Puro 마우스 MEF(좌) 유래의 iPS 세포(Nanog iPS) 및 Fbx15β geo/β geo 마우스 MEF 유래의 iPS세포(Fbx iPS)를 각각 10만개씩 24웰 플레이트에 접종하고, 3일마다 계대하여 세포수를 측정한 결과를 나타내었다. 숫자는 배가시간(doubling time)의 평균을 나타낸다.
도 16은 iPS세포의 유전자발현을 나타낸 그림이다. MEF, ES세포, Nanog-EGFP-IRES-Puro 마우스 MEF(좌) 유래의 iPS 세포(Nanog iPS) 및 Fbx15β geo/β geo 마우스 MEF 유래의 iPS세포(Fbx iPS)에 있어서의 마커 유전자의 발현을 RT-PCR로 해석하였다. 아래 숫자는 계대수(number of passage)를 나타낸다.
도 17은 Nanog iPS세포로부터의 기형종 형성(teratoma formation)을 나타낸 그림이다. 100만개의 ES세포 또는 Nanog iPS세포를 누드마우스의 등부분에 피하 주사하여, 3주간 후에 생긴 종양의 외관(좌) 및 조직상(우, H&E염색)을 나타낸다.
도 18은 Nanog iPS세포로부터의 키메라 마우스의 작제를 나타낸 그림이다. Nanog iPS세포(클론 NPMF4EK-24, 계대수 6)를 배반포에 이식하여 탄생한 키메라 마우스. 90개의 이식배아(transplanted embryo)로부터 4마리의 키메라 마우스가 탄생하였다.
도 19는 Nanog iPS세포로부터의 생식선 전이(germline transmission)를 나타낸 그림이다. 도 18에 나타낸 키메라 마우스와 C57BL/6마우스의 교배에 의해 탄생한 마우스를 지놈 DNA를 PCR로 해석한 바, 모든 마우스에 있어서 Oct3/4와 Klf4의 전이유전자(transgene)가 존재하였므로, 생식선 전이가 확인되었다.
도 20은 iPS세포로부터의 신경세포 분화유도를 나타낸 그림이다. 피부섬유 아세포유래의 iPS세포로부터 실험실 조건(in vitro)에서 분화시킨 신경세포(상, βIII 튜블린 양성), 올리고덴드로사이트(oligodendrocyte, 좌, 04양성), 아스트로사이트(astrocyte, 우, GFAP양성)를 나타낸다.
도 21은 약제에 의한 선별을 이용하지 않는 iPS세포의 수립에 대해 설명한 그림이다. MEF를 10cm 디쉬당 1만 내지 10만개를 도말하여, 4개의 인자를 레트로바이러스로 도입하였다. 대조군(Mock)에서는 콜로니는 생기지 않았으나(좌), 4개의 인자를 도입한 디쉬에서는 편평한(flat) 형질전환 콜로니뿐만 아니라, 팽윤된(swelling) iPS세포와 유사한 콜로니가 얻어졌다(중앙). 이들을 계대배양하면, iPS세포와 유사한 세포가 얻어졌다(우).
도 22는 약제에 의한 선별없이 수립한 세포의 유전자발현을 나타낸 그림이다. 도 21에 도시한 수립된 세포로부터 RNA를 추출하여, ES세포 마커 유전자의 발현을 RT-PCR로 해석하였다.
도 23은 사람 섬유아세포 유래의 iPS세포양 세포를 나타낸 그림이다. 사람태아유래 섬유아세포에 4개의 인자의 사람 상동유전자(homologous gene)를 레트로바이러스로 도입하여 얻어진 콜로니(좌), 및 2회 계대 후의 세포(우)를 나타낸다.
도 24는 사람성체피부(human adult dermal) 섬유아세포로부터의 iPS세포 수립을 나타낸 그림이다. 마우스 레트로바이러스 수용체를 렌티바이러스로 감염시킨 사람성체피부 섬유아세포에, 좌단에 나타낸 인자를 레트로바이러스로 도입하였다. 사진은 바이러스 감염 후 8일째의 위상차상(phase contrast image, 대물x10)을 나타낸다.
발명의 개시
본 발명의 과제는 핵초기화 인자를 제공하는 것에 있다. 보다 구체적으로, 본 발명의 과제는 난자, 배아나 ES세포를 이용하지 않고 분화된 세포의 초기화를 유도하여, ES세포와 유사한 다능성이나 증식능을 가지는 유도다능성 줄기세포를 간편하면서도 재현성 좋게 수립하기 위한 수단을 제공하는 것에 있다.
본 발명자들은 상기 과제를 해결하기 위해 예의 연구를 행하여, 국제공개 WO 2005/80598에 기재된 핵초기화 인자의 스크리닝방법을 이용하여 핵초기화 인자의 동정을 시도하였다. 그 결과, 핵초기화에 관련하는 유전자로서 24개의 후보유전자를 찾아내어, 그들 중 3개의 유전자가 핵초기화에 필수적인 유전자임을 확인하였다. 본 발명은 상기 지견을 바탕으로 하여 완성된 것이다.
즉, 본 발명에 의해 체세포의 핵초기화 인자로서, 하기 3종의 유전자: Oct패밀리 유전자, Klf패밀리 유전자, 및 Myc패밀리 유전자의 각 유전자 산물을 포함하는 인자가 제공된다. 본 발명의 바람직한 태양에 따르면, 하기 3종의 유전자 Oct3/4, Klf4, 및 c-Myc의 각 유전자 산물을 포함하는 상기 인자가 제공된다.
또한, 다른 바람직한 태양에 의하면, 하기 유전자: Sox패밀리 유전자의 유전자 산물을 추가로 포함하는 상기 인자도 제공되며, 보다 바람직한 태양으로서 Sox2의 유전자 산물을 포함하는 상기 인자가 제공된다.
또 다른 바람직한 태양에 따르면, Myc패밀리 유전자의 유전자 산물과 함께, 또는 Myc패밀리 유전자의 유전자 산물 대신에, 사이토카인을 포함하는 상기 인자가 제공되며, 보다 바람직한 태양으로서 사이토카인이 염기성 섬유아세포 성장인자(basic fibroblast growth factor, bFGF) 및/또는 줄기세포인자(stem cell factor, SCF)인 상기 인자가 제공된다.
특히 바람직한 태양에 따르면, Oct패밀리 유전자, Klf패밀리 유전자, Myc패밀리 유전자, 및 Sox패밀리 유전자의 각 유전자 산물에 더하여, TERT 유전자의 유전자 산물을 포함하는 체세포의 핵초기화 인자, 및 Oct패밀리 유전자, Klf패밀리 유전자, Myc패밀리 유전자, Sox패밀리 유전자, 및 TERT 유전자의 각 유전자 산물에 더하여, 하기 유전자: SV40 Large T antigen, HPV16 E6, HPV16 E7 및 Bmil로 이루어진 군으로부터 선택되는 1종 이상의 유전자의 유전자 산물을 포함하는 인자가 제공된다.
이들 인자에 더하여, 하기 군: Fbx15, Nanog, ERas, ECAT15-2, Tcl1, 및 β-catenin으로 이루어진 군으로부터 선택되는 1종 이상의 유전자의 유전자 산물을 추가로 포함하는 상기 인자가 제공된다.
또한, 상기 발명의 다른 바람직한 태양에 따르면, 하기의 군: ECAT1, Esg1, Dnmt3L, ECAT8, Gdf3, Sox15, ECAT15-1, Fthl17. Sall4, Rex1, UTF1, Stella, Stat3, 및 Grb2로 이루어진 군으로부터 선택되는 1종 이상의 유전자의 유전자 산물을 추가로 포함하는 상기 인자도 제공된다.
다른 관점에서는, 본 발명에 의해 체세포의 핵초기화에 의해 유도다능성 줄기세포를 제조하는 방법으로서, 체세포에 상기 핵초기화 인자를 접촉시키는 공정을 포함하는 방법이 제공된다.
본 발명의 바람직한 태양에 따르면, 체세포의 배양물 중에 상기 핵초기화 인자를 첨가하는 공정을 포함하는 상기 방법; 체세포에 상기 핵초기화 인자를 암호화하는 유전자를 도입하는 공정을 포함하는 상기 방법; 상기 핵초기화 인자를 암호화하는 유전자를 적어도 1종 이상 포함하는 재조합벡터를 이용하여 체세포에 이 유전자를 도입하는 공정을 포함하는 상기 방법; 및, 체세포로서 환자로부터 채취한 체세포를 이용하는 상기 방법이 제공된다.
또 다른 관점으로부터는, 본 발명에 의해 상기 방법에 의해 얻어진 유도다능성 줄기세포가 제공된다. 또한, 상기 유도다능성 줄기세포로부터 분화 유도된 체세포도 본 발명에 의해 제공된다.
그리고, 본 발명에 따라, 줄기세포요법으로서, 환자로부터 분리 채취한 체세포를 이용하여 상기 방법에 의해 얻어진 유도다능성 줄기세포를 분화 유도하여 얻어지는 체세포를 이 환자에게 이식하는 공정을 포함하는 요법이 제공된다.
아울러, 본 발명에 따라, 상기 방법에 의해 얻어진 유도다능성 줄기세포를 분화 유도하여 얻어진 각종 세포를 이용하여, 화합물(compound), 약제(medicament), 독물(poison) 등의 생리작용이나 독성을 평가하는 방법이 제공된다.
또한, 본 발명에 따라, 세포의 분화능 및/또는 증식능을 개선하는 방법으로서, 세포에 대해서 상기 핵초기화 인자를 접촉시키는 공정을 포함하는 방법, 및 상기 방법에 의해 얻어지는 세포 및 상기 방법에 의해 얻어지는 세포로부터 분화 유도된 체세포가 제공된다.
본 발명에 의해 제공되는 핵초기화 인자를 이용함으로써, 배아나 ES세포를 이용하지 않고 간편하면서도 재현성 좋게 분화된 세포핵의 초기화를 유도할 수 있으며, ES세포와 유사한 분화 및 다능성이나 증식능을 가지는 미분화된 세포인 유도다능성 줄기세포를 수립할 수 있다. 예를 들어, 본 발명의 핵초기화 인자를 이용하여 환자 자신의 체세포로부터 높은 증식능 및 분화다능성을 가지는 유도다능성 줄기세포를 작제할 수 있으며, 이 세포를 분화시킴으로써 얻어지는 세포(예를 들어, 심근세포, 인슐린 생산세포, 또는 신경세포 등)는 심부전, 인슐린의존성 당뇨병, 파킨슨병이나 척수손상 등 다양한 질환에 대한 줄기세포 이식요법에 이용할 수 있으며, 사람배아를 이용하는 윤리적 문제나 이식 후의 거절반응을 회피할 수 있으므로 극히 유용하다. 또한, 유도다능성 줄기세포를 분화시켜서 생기는 각종 세포(예를 들어, 심근세포, 간세포 등)는 화합물, 약제, 독물 등의 약효나 독성을 평가하기 위한 시스템으로서 극히 유용하다.
발명을 실시하기 위한 최량의 형태
본 발명의 핵초기화 인자는 하기 3종의 유전자: Oct패밀리 유전자, Klf패밀리 유전자, 및 Myc패밀리 유전자의 각 유전자 산물을 포함하는 것을 특징으로 하고, 바람직한 태양에서는 상기 3종의 유전자에 더하여 Sox패밀리 유전자의 유전자 산물을 포함하는 것을 특징으로 한다.
본 발명의 핵초기화 인자를 확인하는 수단으로서는. 예를 들어, 국제공개 WO2005/80598에 기재된 핵초기화 인자의 스크리닝방법을 이용할 수 있다. 상기 간행물의 모든 개시를 참조로서 본 명세서의 개시에 포함시켰다. 당업자는 상기 간행물을 참조함으로써, 핵초기화 인자를 스크리닝하여 본 발명의 초기화인자의 존재 및 작용을 확인할 수 있다.
예를 들어, 초기화 현상을 용이하게 관찰하는 실험계(experimental system)로서 Fbx15 유전자좌에 βgeo(베타갈락토시다제와 네오마이신 내성유전자의 융합유전자)를 넉인(knockin)한 마우스를 이용할 수 있다. 그 상세한 설명을 본 명세서의 실시예에 나타내었다. 마우스 Fbx15 유전자는 ES세포나 초기배아(early embryo) 등의 분화다능성 세포(differentiation pluripotent cell)에 있어서 특이적으로 발현하는 유전자이다. 마우스 Fbx15유전자에 βgeo를 넉인하여 Fbx15의 기능을 결실(缺失)한 호모변이 마우스(homomutant mouse)에서는, 통상 분화다능성이나 발생을 포함하는 비정상적인 표현형은 관찰되지 않는다. 이 마우스에 있어서는 βgeo가 Fbx15유전자의 인핸서나 프로모터에 의해 발현 제어되며, 분화된 체세포에서는 βgeo는 발현되지 않고 G418에 감수성을 나타내었다. 한편, βgeo를 넉인한 호모변이 ES세포는 극히 고농도(12mg/ml 또는 그 이상)의 G418에 내성을 나타낸다. 이 현상을 이용하여 체세포의 초기화를 가시화하는 실험계를 구축할 수 있다.
상기 실험계를 이용하여, 우선 βgeo를 넉인한 호모변이 마우스의 태아(수정후 13.5일)로부터 섬유아세포(Fbx15β geo/β geo의 MEF)를 단리할 수 있다. MEF는 Fbx15 유전자를 발현하지 않으므로 βgeo도 발현되지 않고, G418에 감수성을 나타낸다. 그러나, 이 MEF와 유전자조작을 하지 않은 ES세포(역시 G418에 감수성을 나타낸다)를 융합시키면, MEF의 핵이 초기화되는 결과 βgeo가 발현하여 G418 내성이 된다. 따라서, 이 실험계를 이용함으로써 초기화 현상을 G418 내성으로 가시화할 수 있다.
상기 실험계를 이용하여 핵초기화 인자를 선별할 수 있다. 핵초기화 인자에 관련된 유전자의 후보로서, ES세포에서 특이적인 발현을 나타내는 유전자 및 ES세포의 분화유도다능성(differentiation pluripotency) 유지에 있어서의 중요한 역할이 시사되는 유전자를 복수 선택하고, 이들 후보유전자가 단독으로, 혹은 적절히 조합함으로써 핵초기를 야기시키는지 여부를 확인할 수 있다. 예를 들어, 선별된 1차 후보유전자를 모두 조합함으로써 분화된 세포를 ES세포에 가까운 상태로 초기화 유도할 수 있음을 확인한 후, 그 조합 중에서 1개씩의 유전자를 제외한 조합을 만들어 동일한 작용을 확인하여, 그 유전자가 존재하지 않을 경우에 초기화 유도능이 약해지고, 혹은 초기화 유도능이 상실되는 2차 후보유전자를 선택할 수 있다. 이와 같이 하여 선별된 2차 후보유전자에 대해서 마찬가지 단계를 반복함으로써, 필수의 핵초기화 유전자의 조합을 선택할 수 있고, Oct패밀리 유전자, Klf패밀리 유전자, 및 Myc패밀리 유전자의 3개의 유전자의 유전자 산물의 조합이 핵초기화 인자로서 작용하는 것을 확인할 수 있으며, 또한, 이들 3개의 유전자의 유전자 산물에 더하여 Sox패밀리 유전자의 유전자 산물을 조합이 핵초기화 인자로서 극히 우수한 성질을 가짐을 확인할 수 있다. 핵초기화 인자의 선별방법의 구체적인 예는 본 명세서의 실시예에 구체적으로 개시되어 있으며, 당업자는 상기 일반적 설명 및 실시예의 구체적 설명을 참조함으로써 이들 3종의 유전자의 조합이 체세포의 초기화를 유도하는 것, 및 이들 3종의 유전자 산물의 조합이 핵초기화에 필수임을 용이하게 확인할 수 있다.
본 발명에 의해 제공되는 핵초기화 인자는 적어도 Oct패밀리 유전자, Klf패밀리 유전자, 및 Myc패밀리 유전자의 유전자 산물의 조합을 포함하며, 예를 들어, Oct3/4, Klf4, 및 c-Myc의 3종의 유전자의 유전자 산물의 조합을 포함한다. Oct패밀리 유전자로서는, 예를 들어, Oct3/4, Oct1A, 및 Oct6 등을 들 수 있다. Oct 3/4는 POU패밀리에 속하는 전사인자이며, 미분화 마커로서 보고되어 있다(K. Okamoto et al., Cell, 60, pp461-72, 1990). 또한, Oct 3/4는 다능성 유지에 관여하고 있다는 보고도 있다(J. Nichols et al., Cell, 95, pp379-91, 1998). Klf패밀리 유전자로서는 Klf1, Klf2, Klf4 및 Klf5 등을 들 수 있다. Klf4(Kruppel like factor-4)는 종양억제인자로서 보고되어 있다(A.M. Ghaleb et al., Cell Res., 15, pp92-6, 2005). Myc패밀리 유전자로서는 c-Myc, N-Myc, 및 L-Myc 등을 들 수 있다. C-Myc는 세포의 분화 및 증식에 관여하는 전사제어인자이며(S. Adhikary, M. Eilers, Nat. Rev. Mol. Cell Biol., 6, pp635-45, 2005), 다능성 유지에 관여하고 있다는 보고가 있다(P. Cartwright et al., Development, 132, pp885-96, 2005). Oct 3/4, Klf4, 및 c-Myc 이외의 각 패밀리 유전자의 NCBI 등록번호는 아래와 같다.
마우스 사 람
Klf1 Kruppel-like factor 1 (erythroid) NM_010635 NM_006563
Klf2 Kruppel-like factor 2 (lung) NM_008452 NM_016270
Klf5 Kruppel-like factor 5 NM_009769 NM_001730
c-Myc myelocytomatosis oncogene NM_010849 NM_002467
N-Myc v-Myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian) NM_008709 NM_005378
L-Myc v-Myc myelocytomatosis viral oncogene homolog 1, lung carcinoma derived (avian) NM_008506 NM_005376
Oct1A POU domain, class 2, transcription factor 1 NM_198934 NM_002697
Oct6 POU domain, class 3, transcription factor 1 NM_011141 NM_002699
이들 유전자는 어느 것이나 사람을 포함하는 포유류 동물에 있어서 공통적으로 존재하는 유전자이며, 본 발명에 있어서 상기 유전자 산물을 이용하기 위해서는 임의의 포유류 동물유래(예를 들어, 마우스, 랫트, 소, 양, 말, 원숭이 및 이와 유사한 동물 등의 포유류 동물유래)의 유전자를 이용하는 것이 가능하다. 또한, 야생형의 유전자 산물 이외에 수개(예를 들어, 1-10개, 바람직하기로는 1-6개, 보다 바람직하기로는 1-4개, 보다 더 바람직하기로는 1-3개, 특히 바람직하기로는 1 또는 2개)의 아미노산이 치환, 삽입 및/또는 결실된 변이유전자 산물로서, 야생형의 유전자 산물과 유사한 기능을 가지는 유전자 산물도 이용가능하다. 예를 들어, c-Myc의 유전자 산물로서는 야생형 이외에 안정형(T58A) 등을 이용해도 좋다. 다른 유전자 산물에 대해서도 마찬가지이다.
본 발명의 핵초기화 인자는 상기 3종의 유전자 산물 이외에 다른 유전자 산물을 포함할 수 있다. 이러한 유전자 산물로서는, Sox패밀리 유전자의 유전자 산물을 들 수 있다. Sox패밀리 유전자로서는 예를 들어, Sox1, Sox3, Sox7, Sox15, Sox17 및 Sox18, 바람직하기로는 Sox2를 들 수 있다. 적어도 Oct패밀리 유전자(예를 들어, Oct3/4), Klf패밀리 유전자(예를 들어, Klf4), Myc패밀리 유전자(예들 들어, c-Myc), 및 Sox패밀리 유전자(예를 들어, Sox2)의 4개의 유전자의 유전자 산물의 조합을 포함하는 핵초기화 인자는 초기화의 효율의 관점에서 본 발명의 바람직한 태양이며, 특히 만능성(pluripotency)의 획득을 위해 Sox패밀리 유전자의 유전자 산물을 조합하는 것이 바람직한 경우가 있다. Sox2는 초기발생 과정에서 발현되며, 전사인자를 암호화하는 유전자이다(A.A. Avilion et al., Genes Dev., 17, pp126-40, 2003). Sox2이외의 Sox패밀리 유전자의 NCBI 등록번호는 이하와 같다.
마우스 사 람
Sox1 SRY-box containing gene 1 NM_009233 NM_005986
Sox3 SRY-box containing gene 3 NM_009237 NM_005634
Sox7 SRY-box containing gene 7 NM_011446 NM_031439
Sox15 SRY-box containing gene 15 NM_009235 NM_006942
Sox17 SRY-box containing gene 17 NM_011441 NM_022454
Sox18 SRY-box containing gene 18 NM_009236 NM_018419
또한, Myc패밀리 유전자의 유전자 산물은 사이토카인(cytokine)으로 치환할 수 있다. 사이토카인으로는 예를 들어, SCF 또는 bFGF 등이 바람직하나, 이들에 한정되는 것은 아니다.
보다 바람직한 태양으로서, 상기 3개의 유전자 산물, 바람직하기로는 상기 4개의 유전자 산물이외에도, 세포의 불사화(不死化, immortalization)를 유도하는 인자를 포함한다. 예를 들어, TERT 유전자의 유전자 산물을 포함하는 인자와, 하기의 유전자: SV40 Large T antigen, HPV16 E6, HPV16 E7, 및 Bmil로 이루어진 군으로부터 선택되는 1종 이상의 유전자의 유전자 산물을 포함하는 인자를 조합하는 것을 들 수 있다. TERT는 DNA 복제시에 있어서의 염색체 말단 텔로미어(telomere) 구조 유지를 위해 필수적이며, 사람에서는 줄기세포나 종양 세포에서는 발현되지만, 많은 체세포에 있어서는 발현되지 않는다(I. Horikawa, et al., Proc Natl Acad Sci USA. 102, pp18437-442, 2005). SV40 Large T antigen, HPV16 E6, HPV16 E7, 또는 Bmil은 Large T antigen과 조합함으로써, 사람 체세포의 불사화를 유도함이 보고되어 있다(S. Akimov et al., Stem Cells, 23, pp1423-1433, 2005; P. Salmon et al., Mol. Ther., 2, pp404-414, 2000). 이들 인자는 특히 사람의 세포로부터 iPS세포를 유도하는 경우에 있어서 극히 유용하다. TERT 및 Bmil 유전자의 NCBI 등록번호는 아래와 같다.
마우스 사 람
TERT telomerase reverse transcriptase NM_009354 NM_198253
Bmil B lymphoma Mo-MLV insertion region 1 NM_007552 NM_ 005180
그리고, 하기의 군: Fbx15, Nanog, ERas, ECAT15-2, Tcl1, 및 β-catenin으로 이루어진 군으로부터 선택되는 유전자 중 1종 또는 2종 이상을 유전자 산물을 조합해도 좋다. 초기화의 효율 관점에서 특히 바람직한 태양으로서는, Fbx15, Nanog, ERas, ECAT15-2, Tcl1, 및 β-catenin의 유전자 산물을 상기 4개의 유전자 산물과 조합한 합계 10개의 유전자 산물을 포함하는 핵초기화 인자를 들 수 있다. Fbx15(Y. Tokuzawa et al., Mol Cell Biol., 23, pp2699-708, 2003), Nanog(K. Mitsui et al., Cell, 113, pp631-42, 2003), ERas(K. Takahashi, K. Mitsui, S. Yamanaka, Nature, 423, pp541-5, 2003), 및 ECAT15-2(A. Bortvin et al., Development, 130, pp1673-80, 2003)은 ES세포 특이적 발현 유전자이고, Tcl1은 Akt의 활성화에 관여하고 있으며(A. Bortvin et al., Development, 130, pp1673-80, 2003), β-catenin은 Wnt신호 전달경로의 중요한 구성인자이며, 다능성 유지에 관여하고 있다는 보고도 있다(N. Sato et al, Nat. Med., 10, pp55-63, 2004).
또한, 본 발명의 핵초기화 인자는, 예를 들어, 하기의 군: ECAT1, Esg1, Dnmt3L, ECAT8, Gdf3, Sox15, ECAT15-1, Fthl17, Sall4, Rex1, UTF1, Stella, Stat 3, 및 Grb2로 이루어진 군으로부터 선택되는 1종 이상의 유전자의 유전자 산물을 포함하여도 좋다. ECAT1, Esg1, ECAT8, Gdf3, 및 ECAT15-1은 ES세포 특이적 발현유전자이고(K. Mitsui et al., Cell, 113, pp631-42, 2003), Dnmt3L은 DNA 메틸화효소관련인자이며, Sox15는 초기발생과정에서 발현하여 전사인자를 암호화하는 1군의 유전자이다(M. Maruyama et al., J Biol Chem. 280, pp24371-9, 2005). Fthl17은 Ferritin heavy polypeptide-like 17을 암호화하고(A. colLoriot, T. Boon, C. De Smet, Int J Cancer, 105, pp371-6, 2003), Sall4는 배아성 줄기세포에서 고발현하는 Zn 핑거단백질을 암호화하며(J. Kohlhase et al., Cytogenet Genome Res., 98, pp274-7, 2002), Rex1은 Oct3/4의 하류에 있는 전사인자를 암호화하고(E.Ben-Shushan, J.R. Thompson, L.J. Gudas, Y. Bergman, Mol Cell Biol., 18, pp1866-78, 1998). UTF1은 Oct3/4의 하류에 위치하는 전사보조인자이며, 이를 억제하면 ES세포의 증식을 억제한다는 보고가 있다(A. Okuda et al., EMBO J., 17, pp2019-32, 1998). Stat3은 세포증식·분화의 신호인자이며, Stat3의 활성화에 의해 LIF가 작용하며, 다능성 유지에 중요한 역할을 하고 있다(H. Niwa, T, Burdon, I. Chambers, A. Smith, Genes Dev., 12, pp2048-60, 1998). Grb2는 세포막에 존재하는 각종 성장인자 수용체와 Ras/MAPK 캐스케이드 사이를 중개하는 단백질을 암호화하고 있다(A.M. Cheng et al., Cell, 95, pp793-803, 1998).
그러나, 본 발명의 핵초기화 인자에 포함할 수 있는 유전자 산물은 위에서 구체적으로 설명한 유전자의 유전자 산물에 한정되지 않는다. 본 발명의 핵초기화 인자에는 핵초기화 인자로서 기능할 수 있는 다른 유전자 산물이외에 분화, 발생, 또는 증식 등에 관계하는 인자 혹은 기타 생리활성을 가지는 인자를 1 또는 2이상 포함할 수 있으며, 이러한 태양도 본 발명의 범위에 포함되는 것은 말할 필요도 없다. 핵초기화 인자로서 기능할 수 있는 다른 유전자 산물은 예를 들어, Oct3/4, Klf4, 및 c-Myc의 3종의 유전자 중 1종 또는 2종 만을 발현시킨 체세포를 이용하여, 이 세포에 대해서 핵초기화를 유도할 수 있는 유전자 산물을 스크리닝함으로써 특정할 수 있다. 본 발명에 의해 새로운 핵초기화 인자의 스크리닝방법으로서 상기 스크리닝방법도 제공된다.
또한, 본 발명의 핵초기화 인자에 포함되는 유전자 산물은 예를 들어, 상기 유전자로부터 생산되는 단백질 자체 이외에, 이 단백질과 기타 단백질 또는 펩티드 등과의 융합유전자 산물의 형태라도 무방하다. 예를 들어, 녹색형광단백질(GFP)과의 융합단백질이나 히스티딘 태그 등의 펩티드와의 융합유전자 산물을 이용할 수도 있다. 또한, HIV바이러스로부터 유래하는 TAT 펩티드와의 융합단백질을 제조하여 이용함으로써, 세포막으로부터의 핵초기화 인자의 세포내 도입(intracellular uptake)을 촉진시킬 수 있으며, 유전자도입(gene transduction) 등의 복잡한 조작을 회피하여 융합단백질을 배지에 첨가하는 것만으로 초기화를 유도하는 것이 가능해진다. 이러한 융합유전자 산물의 제조방법은 당업자에게 잘 알려져 있으므로, 당업자는 목적하는 바에 따라 적절한 융합유전자 산물을 용이하게 설계하여 제조하는 것이 가능하다.
본 발명의 핵초기화 인자를 이용하여 체세포의 핵을 초기화하여 유도다능성 줄기세포를 얻을 수 있다. 본 명세서에 있어서 "유도다능성 줄기세포(induced pluripotent stem cell)"란 ES세포에 가까운 성질을 가지는 세포로서, 보다 구체적으로는 미분화된 세포로서 다능성 및 증식능을 가지는 세포를 포함하는데, 이 용어는 어떤 의미로도 한정적으로 해석해서는 안되며, 가장 넓은 의미로 해석하여야 한다. 핵초기화 인자를 이용하여 유도다능성 줄기세포를 제조하는 방법에 대해서는, 국제공개 WO2005/80598에 기술되어 있으며(상기 공보에 있어서는, ES양 세포(ES cell-like cell)라는 용어가 이용되고 있다). 유도다능성 줄기세포의 분리수단에 대해서도 구체적으로 설명되어 있다. 따라서, 당업자는 상기 간행물을 참조함으로써, 본 발명의 핵초기화 인자를 이용하여 유도다능성 줄기세포를 용이하게 제조할 수 있다.
본 발명의 핵초기화 인자를 이용하여 체세포로부터 유도다능성 세포를 제조하는 방법은 특별히 한정되지 않고, 체세포 및 유도다능성 줄기세포가 증식가능한 환경에서 핵초기화 인자가 체세포와 접촉가능하다면, 어떤 방법을 채용해도 좋다. 예를 들어, 본 발명의 핵초기화 인자에 포함하는 유전자 산물을 배지 중에 첨가해도 좋으며, 혹은 본 발명의 핵초기화 인자를 발현 가능한 유전자를 포함하는 벡터를 이용하여 이 유전자를 체세포에 도입하는 등의 수단을 채용해도 좋다. 이러한 벡터를 이용하는 경우에는, 벡터에 2종류 이상의 유전자를 집어넣어 각각의 유전자 산물을 체세포에서 동시에 발현시켜도 좋다. 초기화될 체세포에 있어서, 본 발명의 핵초기화 인자에 포함되는 유전자 산물의 1종 또는 2종 이상이 이미 발현되어 있을 경우에는, 본 발명의 핵초기화 인자로부터 이 유전자 산물을 제외하는 것도 가능하며, 이러한 태양도 본 발명의 범위에 포함되는 것은 말할 필요도 없다.
본 발명의 핵초기화 인자를 이용하여 유도다능성 줄기세포를 제조함에 있어서, 초기화될 체세포의 종류는 특별히 한정되지 않으며, 임의의 체세포를 이용할 수 있다. 예를 들어, 태아기(embryonic period)의 체세포 이외에 성숙한(matured) 체세포를 이용해도 된다. 유도다능성 줄기세포를 질병의 치료에 이용하는 경우에는 환자로부터 분리된 체세포를 이용하는 것이 바람직하며, 예를 들어, 질병에 관여하는 체세포나 질병치료에 관여하는 체세포 등을 이용할 수 있다. 본 발명의 방법에 의해 배지 중에 출현한 유도다능성 줄기세포를 선택하는 방법도 특별히 한정되지 않으며, 예를 들어, 마커 유전자로서 약제내성 유전자 등을 이용하여 약제내성을 지표로 하여 유도다능성 줄기세포를 분리하는 등의 주지의 수단을 적절히 채용할 수 있다. ES세포의 미분화성 및 다능성을 유지할 수 있는 배지 또는 그 성질을 유지할 수 없는 배지는 당업계에 각종이 알려져 있으며, 적절한 배지를 조합하여 이용함으로써 유도다능성 줄기세포를 효율적으로 분리할 수 있다. 분리된 유도다능성 줄기세포의 분화능 및 증식능은 ES세포에 대해서 범용되어 있는 확인수단을 이용함으로써, 당업자가 용이하게 확인가능하다.
본 발명의 방법에 의해 제조된 유도다능성 줄기세포의 용도는 특별히 한정되지 않으며, ES세포를 이용하여 행해지고 있는 각종 시험·연구나 ES세포를 이용한 질병의 치료 등에 이용할 수 있다. 예를 들어, 본 발명의 방법에 의해 얻어진 유도다능성 줄기세포를 레티노인산(retinoic acid), EGF 등의 증식인자, 또는 글루코코르티코이드(glucocorticoid) 등으로 처리함으로써 원하는 분화된 세포(예를 들어, 신경세포, 심근세포, 혈구세포 등)를 유도할 수 있으며, 그와 같이 하여 얻어진 분화된 세포를 환자에게 되돌림으로써 자가세포이식(cellular auto-transplantation)에 의한 줄기세포 요법을 달성할 수 있다. 그러나, 본 발명의 유도다능성 줄기세포의 용도는 상기 특정 태양에 한정되는 것은 아니다.
이하에서는 실시예에 의해 본 발명을 더 구체적으로 설명하겠으나, 본 발명의 범위가 이하의 실시예에 한정되는 것은 아니다.
실시예 1: 초기화인자의 선별
초기화인자를 동정하기 위해서는, 초기화현상을 용이하게 관찰하기 위한 실험계가 필요하다. 실험계로서 Fbx15 유전자좌에 βgeo(베타갈락토시다제와 네오마이신 내성 유전자의 융합유전자)를 넉인(knockin)한 마우스를 이용하였다. 마우스 Fbx15 유전자는 ES세포나 초기배아 등의 분화다능성 세포에서 특이적으로 발현하는 유전자이다. 그러나, 마우스 Fbx15 유전자에 βgeo를 넉인하고 Fbx15의 기능을 결실한 호모변이 마우스에 있어서는, 분화다능성이나 발생을 포함하는 비정상적인 표현형은 관찰되지 않았다. 이 마우스에서는 βgeo가 Fbx15 유전자의 인핸서나 프로모터에 의해 발현 제어된다. 즉, 분화된 체세포에서는 βgeo는 발현되지 않고, G418에 감수성을 나타낸다. 한편, βgeo를 넉인한 호모변이 ES세포는 극히 고농도(12mg/ml 또는 그 이상)의 G418에 내성을 나타낸다. 이 현상을 이용하여 체세포의 초기화를 가시화하는 실험계를 구축하였다.
상기 실험계에서, βgeo를 넉인한 호모변이 마우스(homomutant mouse)의 태아(embryo)(수정후 13.5일)로부터 우선 섬유아세포(Fbx15β geo/β geo의 MEF)를 단리하였다. MEF는 Fbx15 유전자를 발현하지 않으므로, βgeo도 발현하지 않고 G418에 감수성을 나타낸다. 한편, 이 MEF와 유전자조작을 가하지 않은 ES세포(역시 G418에 감수성을 나타낸다)를 융합시키면, MEF의 핵이 초기화되는 결과, βgeo가 발현하여 G418 내성이 된다. 즉, 이 실험계에 의해 초기화현상을 G418 내성으로 가시화할 수 있다(국제공개 WO2005/80598). 상기 실험계를 이용하여 초기화인자의 탐색을 행하여(도 1), 초기화인자의 후보로서 ES세포에서 특이적인 발현을 나타내는 유전자, 및 ES세포의 분화다능성 유지에 있어서의 중요한 역할이 시사되는 합계 24개의 유전자를 선별하였다. 이들 유전자를 하기 표 4 및 표 5에 나타낸다. 그리고, #21의 β-catenin 및 #22의 c-Myc에 관해서는 활성형의 변이체(catenin: S33Y, c-Myc:T58A)를 이용하였다.
번호 유전자명 유전자의 설명
1 ECAT1 ES cell associated trasnsript 1 (ECAT1)
2 ECAT2 developmental pluripotency associated 5 (DPPA5), ES cell specific gene 1 (ESG1)
3 ECAT3 F-box protein 15 (Fbx15),
4 ECAT4 homeobox transcription factor Nanog
5 ECAT5 ES cell expressed Ras (ERas),
6 ECAT7 DNA (cytosine-5-)-methyltransferase 3-like (Dnmt3l), valiant 1
7 ECAT8 ES cell associated transcript 8 (ECAT8)
8 ECAT9 growth differentiation factor 3 (Gdf3),
9 ECAT10 SRY-box containing gene 15 (Sox15),
10 ECAT15-1 developmental pluripotency associated 4 (Dppa4), variant 1
11 ECAT15-2 developmental pluripotency associated 2 (Dppa2),
12 Fthl17 ferritin, heavy polypeptide-like 17 (Fthl17),
13 Sall4 sal-like 4 (Drosophila) (Sall4), transcript variant a
14 Oct3/4 POU domain, class 5, transcription factor 1 (Pou5f1),
15 Sox2 SRY-box containing gene 2 (Sox2),
16 Rex1 zinc finger protein 42 (Zfp42),
17 Utf1 undifferentiated embryonic cell transcription factor 1 (Utf1)
18 Tcl1 T-cell lymphoma breakpoint 1 (Tcl1),
19 Stella developmental pluripotency-associated 3 (Dppa3),
20 Klf4 Kruppel-like factor 4 (gut) (Klf4),
21 β-catenin catenin (cadherin associated protein), beta 1, 88kDa (Ctnnb1)
22 c-Myc myelocytomatosis oncogene (Myc),
23 Stat3 signal transducer and activator of transcription 3 (Stat3), transcript variant 1
24 Grb2 growth factor receptor bound protein 2 (Grb2),
NCBI 등록번호
번호 유전자명 특 징 마우스 사 람
1 ECAT1 ES세포 특이적 발현 유전자 AB211060 AB211062
2 ECAT2 ES세포 특이적 발현 유전자 NM_025274 NM_001025290
3 ECAT3 ES세포 특이적 발현 유전자 NM_015798 NM_152676
4 ECAT4 호메오도메인(homeodomain)을 가지는
전사인자, 분화다능성 유지 필수인자
AB093574 NM_024865
5 ECAT5 Ras패밀리 단백질, ES세포의 증식촉진인자 NM_181548 NM_181532
6 ECAT7 DNA메틸화효소 관련인자, 각인에 필수 NM_019448 NM_013369
7 ECAT8 ES세포 특이적 발현 유전자,
Tudor도메인을 가진다
AB211061 AB211063
8 ECAT9 ES세포 특이적 발현 유전자,
TGF β패밀리에 속한다
NM_008108 NM_020634
9 ECAT10 ES세포 특이적 발현 유전자,
SRY패밀리 전사인자
NM_009235 NM_006942
10 ECAT15-1 ES세포 특이적 발현 유전자 NM_028610 NM_018189
11 ECAT15-2 ES세포 특이적 발현 유전자 NM_028615 NM_138815
12 Fthl17 ES세포 특이적 발현 유전자,
페리틴 중쇄와 유사하다
NM_031261 NM_031894
13 Sall4 ES세포 특이적 발현 유전자,
Zn핑거단백질
NM_175303 NM_020436
14 Oct3/4 POU패밀리 전사인자, 다능성 유지에 필수 NM_013633 NM_002701
15 Sox2 SRY패밀리 전사인자, 다능성 유지에 필수 NM_011443 NM_003106
16 Rex1 ES세포 특이적 발현 유전자,
Zn핑거단백질
NM_009556 NM_174900
17 Utf1 ES세포에서 고발현하는 전사조절인자,
ES세포의 증식을 촉진한다.
NM_009482 NM_003577
18 Tcl1 AKT를 활성화하는 암유전자.
ES세포에서 고발현된다.
NM_009337 NM_021966
19 Stella ES세포 특이적 발현 유전자 NM_139218 NM_199286
20 Klf4 ES세포에서 고발현된다. 암억제유전자 및 암유전자의 양쪽 작용이 보고되어 있다 NM_010637 NM_004235
21 β-catenin Wnt신호로 활성화되는 전사인자
다능성 유지에의 관여가 보고되어 있다
NM_007614 NM_001904
22 c-Myc 세포의 증식, 분화에 관여하는 전사제어
인자 및 암유전자
다능성 유지에 관여함이 보고되어 있다
NM_010849 NM_002467
23 Stat3 LIF신호로 활성화되는 전사인자
마우스 ES세포의 다능성 유지에 필수
NM_213659 NM_139276
24 Grb2 성장인자 수용체와 Ras/MAPK 캐스케이드
를 중개하는 어댑터단백질
NM_008163 NM_002086
이들 유전자의 cDNA를 레트로바이러스 벡터 pMX-gw에 Gateway 기법에 의해 삽입하였다. 우선, 24개의 유전자를 하나씩 Fbx15β geo/β geo의 MEF에 감염시키고, 그 후 ES세포 배양조건에서 G418선별을 행하였다. 그러나, G418 내성 콜로니(G418-resistant colony)는 하나도 얻어지지 않았다. 다음에 총 24개의 유전자의 레트로바이러스를 동시에 Fbx15β geo/β geo의 MEF에 감염시켰다. ES세포 배양조건에서 G418선별을 행하였는 바, 복수의 약제내성 콜로니가 얻어졌다. 이들 콜로니를 단리하여 배양을 계속하였다. 이들 세포는 장기간에 걸쳐 배양이 가능하며, 또한, ES세포와 유사한 형태를 나타냄을 알 수 있었다(도 2). 도 2에서, iPS세포는 유도다능성 줄기세포(ES양 세포, ES-like세포, ESL세포라고도 한다), ES는 배아성 줄기세포를 나타내며, MEF는 분화된 세포(태아섬유아세포)를 나타낸다.
마커 유전자의 발현을 RT-PCR에 의해 검토하였으나, Nanog, Oct3/4 등의 미분화 마커가 발현되었다(도 3). Nanog의 발현은 ES세포와 유사하였으나, Oct3/4의 발현은 ES세포보다 낮음을 알 수 있었다. 또한, DNA 메틸화상태를 바이설파이트시퀀스법(bisulfite sequencing method)으로 확인한 결과, Nanog유전자나 Fbx15유전자는 MEF에 있어서 고메틸화되었으나(highly methylated), iPS세포에 있어서는 탈메틸화되었음(demethylated)을 알 수 있었다(도 4). 각인 유전자(imprinting gene)인 IGF2유전자는 MEF와 iPS세포의 양자에서 약 50%가 메틸화되어 있었다. Fbx15β geo/β geo의 MEF를 채취한 수정 후 13.5일째의 원시생식세포(primordial germ cell)에서는 각인 기억(imprinting memory)이 소거되어 IGF2유전자가 거의 완전히 탈메틸화되는 것이 알려져 있으므로, iPS세포가 Fbx15β geo/β geo의 MEF에 혼입되어 있는 원시생식세포로부터 유래하는 것은 아니라고 결론지었다. 이상의 결과로부터, 24개의 인자의 조합에 의해, 분화된 세포(MEF)를 ES세포에 가까운 상태로 초기화 유도할 수 있음이 나타났다.
다음으로, 24개의 유전자의 전부가 초기화를 위해 필요한지 여부를 검토하였다. 1개의 유전자씩을 제외한 23개의 유전자를 Fbx15β geo/β geo의 MEF에 감염시켰다. 그 결과, 10개의 유전자에 대해서는, 그것을 제외하였을 때, 콜로니의 형성이 저해됨을 알 수 있었다(도 5: 유전자의 번호는 표 4에 나타낸 유전자의 번호에 대응되며, #3, #4, #5, #11, #14, #15, #18, #20, #21 및 #22의 10개의 유전자이다). 이들 10개의 유전자를 동시에 Fbx15β geo/β geo의 MEF에 감염시켰는 바, 24개의 유전자를 동시에 감염시킨 경우에 비하여 의미있고 효율적으로 G418 내성 콜로니가 얻어졌다.
그리고, 이 10개의 유전자로부터 1유전자씩을 제외한 9개의 유전자를 Fbx15βgeo/β geo의 MEF에 감염시켰다. 그 결과, 4개의 유전자(#14, #15, #20 및 #22)를 각각 제외한 경우에는, G418 내성의 iPS세포 콜로니가 형성되지 않음을 알 수 있었다(도 6). 따라서, 10개의 유전자 중 이들 4종의 유전자가 초기화 유도에 있어 특히 중요한 역할을 하는 것이 시사되었다.
실시예 2: 4개의 유전자군의 조합에 의한 초기화유도
10개의 유전자군 중에서 특히 중요성이 시사된 4개의 유전자에 의해 체세포의 초기화의 유도가 가능한지 여부를 검토하였다. Fbx15유전자에 βgeo를 넉인한 MEF세포에 상기 10개의 유전자의 조합, 상기 4개의 유전자의 조합, 상기 4개 중 3개만의 유전자의 조합, 및 상기 4개 중 2개만의 유전자의 조합을 이용하여, 이들 유전자군을 레트로바이러스에 의해 체세포로 도입하였다. 그 결과, 4개의 유전자를 도입한 경우에는, 160개의 G418 내성 콜로니가 얻어졌다. 이 결과는 10개의 유전자를 도입한 경우의 결과(179콜로니)와 거의 동일 수였으나, 4개의 유전자도입의 경우에는 10개의 유전자도입의 경우에 비해 콜로니가 작았다. 또한, 이들 콜로니를 계대배양한 경우, iPS세포의 형태를 나타낸 콜로니는 10개의 유전자도입의 경우에 12클론 중 9클론이었음에 반하여, 4개의 유전자도입의 경우에는 12클론 중 7클론으로 약간 적은 경향이 있었다. 4개의 유전자로서는 마우스 유래의 것, 사람 유래의 것, 어느 쪽이나 거의 동일 수의 iPS세포가 얻어졌다.
상기 4개의 유전자 중에서 선택된 3개의 유전자를 도입한 경우, 어느 조합(#14, #15 및 #20)에서는 36개의 편평한 콜로니(flat colony)가 얻어졌으나, 계대배양하더라도 iPS세포는 관찰되지 않았다. 다른 조합(#14, #20 및 #22)에서는 54개의 작은 콜로니가 얻어졌다. 이들 중 비교적 큰 6개의 콜로니를 계대배양하였는 바, 6클론의 모두에서 ES세포와 유사한 세포가 얻어졌다. 그러나, ES세포에 비하면, 이들 세포끼리나 배양접시로의 접착(adhesion)이 약하다고 여겨졌다. 또한, 세포 증식의 속도도 4개의 유전자를 도입한 경우에 비해 늦었다. 또한, 4개의 유전자 중 3개의 유전자의 다른 2가지 조합의 각각에서는 1개씩 콜로니가 형성되었으나, 계대배양하더라도 세포의 증식은 관찰되지 않았다. 4개의 유전자 중에서 선별된 2개의 유전자의 조합(6가지)에서는, 어느 경우에도 G418 내성 콜로니가 하나도 형성되지 않았다. 이상의 결과를 도 7에 나타내었다.
또한, 도 10에는 ES세포 마커 유전자의 발현을 RT-PCR로 확인한 결과를 나타내었다. 방법의 상세는 이하와 같다. Fbx15β geo/β geo의 MEF에 3개의 유전자(Oct3/4, Klf4 및 c-Myc, Sox2 minus라고 표기), 4개의 유전자(3개의 유전자에 Sox2를 부가한 것, 4ECAT라고 표기), 10개의 유전자(4개의 유전자에 표 1의 #3, #4, #5, #11, #18, #21를 부가한 것, 10ECAT라 표기)를 도입하여 수립한 iPS세포, Fbx15 유전자에 βgeo를 넉인한 성체마우스의 꼬리부분 피부로부터 수립한 섬유아세포에 10개의 유전자를 도입하여 수립한 iPS세포(10ECAT Skin fibroblast라고 표기), 마우스 ES세포 및 유전자 도입하지 않은 MEF세포로부터 총세포 RNA를 정제하고, DNaseI 을 처리하여 지놈 DNA의 혼입을 막았다. 역전사반응에 의해 1차 가닥(first strand) cDNA를 작제하고, PCR에 의해 ES세포 마커 유전자의 발현을 관찰하였다. 그리고, Oct3/4, Nanog, ERas의 경우에는, 도입된 레트로바이러스(transduced retrovirus)로부터가 아닌, 내재성 유전자(endogenous gene)로부터의 전사산물만을 증폭하는 프라이머를 이용하여, PCR을 행하였다. 프라이머 서열을 표 6에 나타낸다.
ECAT1 ECAT1-RT-S TGT GGG GCC CTG AAA GGC GAG CTG AGA T
  ECAT1-RT-AS ATG GGC CGC CAT ACG ACG ACG CTC AAC T
Esg1 pH34-U38 GAA GTC TGG TTC CTT GGC AGG ATG
  pH34-L394 ACT CGA TAC ACT GGC CTA GC
Nanog 6047-S1 CAG GTG TTT GAG GGT AGC TC
  6047-AS1 CGG TTC ATC ATG GTA CAG TC
ERas 45328-S118 ACT GCC CCT CAT CAG ACT GCT ACT
  ERas-AS304 CAC TGC CTT GTA CTC GGG TAG CTG
Gdf3 Gdf3-U253 GTT CCA ACC TGT GCC TCG CGT CTT
  GDF3 L16914 AGC GAG GCA TGG AGA GAG CGG AGC AG
Fgf4 Fgf4-RT-S CGT GGT GAG CAT CTT CGG AGT GG
  Fgf4-RT-AS CCT TCT TGG TCC GCC CGT TCT TA
Cripto Cripto-S ATG GAC GCA ACT GTG AAC ATG ATG TTC GCA
  Cripto-AS CTT TGA GGT CCT GGT CCA TCA CGT GAC CAT
Zfp296 Zfp296-S67 CCA TTA GGG GCC ATC ATC GCT TTC
  Zfp296-AS350 CAC TGC TCA CTG GAG GGG GCT TGC
Dax1 Dax1-S1096 TGC TGC GGT CCA GGC CAT CAA GAG
  Dax1-AS1305 GGG CAC TGT TCA GTT CAG CGG ATC
Oct3/4 Oct3/4-S9 TCT TTC CAC CAG GCC CCC GGC TC
  Oct3/4-AS210 TGC GGG CGG ACA TGG GGA GAT CC
NAT1 NAT1 U283 ATT CTT CGT TGT CAA GCC GCC AAA GTG GAG
  NAT1 L476 AGT TGT TTG CTG CGG AGT TGT CAT CTC GTC
상기 도면에 나타낸 결과로부터, 3개의 유전자를 도입한 경우, ERas나 Fgf4는 효율적으로 발현 유도되는데, 다능성 유지에 필수인자인 Oct3/4와 Nanog의 유도는 일어나지 않거나, 일어나더라도 대단히 약함을 알 수 있었다. 한편, 4개의 유전자를 도입한 경우, Oct3/4와 Nanog가 비교적 강하게 유도된 클론이 조사한 4클론 중에서 1클론(#7)이 존재하였다. 그리고, 10개의 유전자를 도입한 경우에는, 조사한 5클론 중 3클론에 있어서 Oct3/4와 Nanog의 강한 유도가 관찰되었다.
이들 결과로부터, 초기화를 위해서는 적어도 3개의 유전자 조합(#14, #20, 및 #22)이 필수적이며, 그들 3종의 유전자를 포함하는 4유전자군(4-gene group) 및 10유전자군(10-gene group)에서는, 유전자의 수를 증가시킴에 따라 초기화 효율이 상승되는 것이 밝혀졌다.
실시예 3: 초기화된 세포의 다분화능의 해석
수립한 iPS세포의 분화다능성을 평가하기 위하여, 24개의 인자, 10개의 인자, 및 4개의 인자로 수립된 iPS세포를 누드마우스의 피하에 이식하였다. 그 결과, ES세포와 유사한 크기의 종양이 모든 예에서 형성되었다. 조직학적으로 보면, 종양은 여러 종류의 세포로 구성되어 있으며, 연골(cartilage) 조직, 신경(nerve) 조직, 근육(muscle) 조직, 지방(fat) 조직 및 장관양(intestinal tract-like) 조직(도 8)이 관찰되어, iPS세포의 다능성이 증명되었다. 한편, 3개의 인자로 수립한 세포를 누드마우스에 이식하면 종양은 형성되었으나, 조직학적으로는 미분화된 세포로만 형성되어 있었다. 따라서, 분화다능성의 유도를 위해서는 Sox패밀리가 필수임을 알 수 있었다.
실시예 4: 성체마우스의 꼬리로부터 유래하는 섬유아세포의 초기화
마우스 태아 섬유아세포(MEF)로 동정된 4개의 인자를 Fbx15유전자에 βgeo를 넉인하고, 전신에서 녹색형광단백질(GFP)을 발현하는 성체마우스의 꼬리로부터 유래한 섬유아세포로 도입하였다. 그 후, 피더세포(feeder cell) 상에서 ES세포 배양조건과 동일한 조건으로 배양하여, G418에 의한 선별을 행하였다. 약제선택 개시 후 약 2주간에 복수의 iPS세포 콜로니가 얻어졌다. 이들 세포를 누드마우스의 피하로 이식하면, 삼배엽계의 각종 조직으로 이루어진 기형종을 형성하였다. 또한, 성체피부 섬유아세포로부터 유래하는 iPS세포를 배반포에 이식하여 가상임신마우스의 자궁에 이식하였는 바, 수정 후 13.5일째의 배아에 있어서 전신에서 GFP양성 세포가 분포되어 있는 것이 관찰되었다(도 9). 이는, iPS세포가 다능성을 가지고 있으며, 마우스 배아 발생에 기여할 수 있음을 나타내고 있다. 이 결과는 동정한 인자의 군이 태아기의 체세포만이 아니라, 성숙된 마우스의 체세포에 대해서도 초기화를 유도하는 능력이 있음을 나타내고 있다. 성체피부 유래의 세포에서 초기화를 유도할 수 있다는 것은 실용상 극히 중요하다.
실시예 5
iPS세포 수립에 있어서의 사이토카인의 영향을 검토하였다. 피더세포(STO세포)에 염기성 섬유아세포 증식인자(bFGF) 또는 줄기세포인자(SCF)의 발현벡터(pMX 레트로바이러스 벡터)를 도입하고, 이들 사이토카인을 항시적으로(permanently) 발현하는 세포를 수립하였다. Fbx15β geo geo 마우스 유래 MEF(50만개/100mm 디쉬)를 이들 STO세포 상에서 배양하고, 4개의 인자를 도입한 후 G418에 의해 선별하였는 바, 통상의 STO세포 상에서 배양하였을 경우와 비교하여 콜로니 형성수가 bFGF(도 11), SCF(데이타 미도시)를 생산하는 STO세포 상에서는 20배 이상 상승하였다. 또한, c-Myc이외의 3개의 인자를 도입하더라도 통상적인 STO세포 상에서는 iPS세포 콜로니는 형성되지 않았으나, bFGF(도 11), SCF(데이타 미도시)를 생산하는 STO세포 상에서는 콜로니의 형성이 관찰되었다. 이들 결과로부터, 사이토카인의 자극에 의해 MEF로부터의 iPS세포의 수립효율이 상승되는 것, 및 c-Myc 대신에 사이토카인을 이용함으로써 핵초기화가 가능해지는 것이 밝혀졌다.
실시예 6
Oct3/4, Klf4, c-Myc 및 Sox2유전자에는 모두 패밀리 유전자(표 1 및 2)가 존재한다. 따라서, 4개의 유전자 대신에 패밀리 유전자에 의해서도 iPS세포가 수립가능한지를 검토하였다. 표 7에 2회의 실험 결과를 합한 것을 나타낸다. Sox패밀리의 경우에는, Sox1은 G418 내성 콜로니수 및 iPS세포의 수립효율 모두 Sox2와 동일한 수준이었다. Sox3은 G418 내성 콜로니수는 Sox2의 10분의 1정도였으나. 선택된 콜로니로부터의 iPS세포 수립효율은 Sox2보다 오히려 높았다. Sox15는 G418 내성 콜로니수 및 iPS세포의 수립효율 모두 Sox2보다 낮았다. Sox17은 G418 내성 콜로니는 Sox2와 동일 정도였으나, iPS세포 수립효율은 낮았다. Klf패밀리에 대해서는, Klf2는 Klf4보다 적은 G418 내성 콜로니가 생겼으나, iPS세포의 수립효율은 동일한 수준이었다. Myc패밀리에 대해서는, 우선 야생형의 c-Myc가 T58A 변이체와 G418 내성 콜로니수, iPS세포 수립효율의 양자에 있어서 동일한 수준임을 확인하였다. 또한, N-Myc 및 L-Myc(모두 야생형)은 모두 c-Myc와 G418 내성 콜로니수, iPS세포 수립효율의 양자에 있어서 동일한 수준이었다.
도입된 유전자 형성된
콜로니수
선택된
콜로니수
수립된
iPS세포주수
iPS세포
수립효율(%)
4개의 인자(cMycT58A) 85 12 5 42
Sox1 84 12 7 58
Sox3 8 8 7 92
Sox15 11 11 1 8
Sox17 78 12 2 17
Klf2 11 10 5 50
c-MycWT 53 11 8 72
N-MycWT 40 12 7 58
L-MycWT 50 12 11 92
3개의 인자(-Sox2) 6 6 2 17
실시예 7
Fbx15-βgeo이외의 리포터로 iPS세포가 수립가능한지를 검토하였다. 우선, Nanog 유전자를 중앙부에 포함하는 대장균 인공염색체(E. coli artificial chromosome, BAC)를 단리하고, 대장균 내의 재조합에 의해 GFP유전자 및 퓨로마이신 내성유전자를 넉인하였다(도 12A). 이어서, 상기 개변 BAC(modified BAC)를 ES세포로 도입하고, 미분화상태 특이적(undifferentiated state specific)으로 GFP양성이 되는 것을 확인하였다(데이타 미도시). 이어서, 상기 ES세포의 마우스 배반포에 이식함으로써, 키메라 마우스를 거쳐 유전자전이 마우스를 작제하였다. 이 마우스에서, GFP양성 세포는 배반포의 내부 세포덩어리나 수정 후 13.5일째 배아의 생식선에서 특이적으로 관찰되었다(도 12B). 수정후 13.5일째의 배아(DBA, 129 및 7BL/6마우스의 잡종)로부터 생식선을 제거하고 MEF를 단리하였다. 흐름세포측정(flow cytometry)에 의해 단리된 MEF는 GFP음성임을 확인하였다(도 13). 이 MEF에 4개의 인자를 레트로바이러스로 도입하고 퓨로마이신에 의하여 선택하였는 바, 복수의 내성 콜로니가 얻어졌다. 그 중의 약 10-20%만이 GFP양성이었다. GFP양성 콜로니를 계대배양하면, ES세포와 유사한 형태(도 14)나 증식(도 15)을 나타내었다. 또한, 유전자발현을 보면, Fbx15β geo/β geo의 MEF로부터 G418선별에 의해 단리된 iPS세포보다 ES세포에 더 유사한 패턴임을 알 수 있었다(도 16). 이 세포를 누드마우스에 이식하면, 기형종이 형성된 것으로부터 iPS세포인 것이 확인되었다(도 17). 그리고, Nanog-GFP선택에 의한 iPS세포를 C57BL/6마우스의 배반포에 이식함으로써, 키메라 마우스가 탄생하였다(도 18). 그리고, 이 키메라 마우스끼리 교배시킴으로써 생식선전이가 확인되었다(도 19). 이 Nanog-GFP선별에 의해 수립되어 보다 ES세포에 가까운 iPS세포에서는, 레트로바이러스로부터의 4개의 인자는 거의 완전히 발현되지 않으며(almost completely silenced), 내재성의 Oct3/4나 Sox2에 의해 자기복제(self-replication)가 유지되고 있음이 시사되었다.
실시예 8
10cm 융합성(confluent) iPS세포를 트립신 처리하여, ES세포용 배지에 현탁하였다(STO세포는 현탁후 10~20분 젤라틴 코팅한 디쉬에 접착시킴으로써 제거하였다). 2×106의 세포를 HEMA(2-hydroxyethyl methacrylate)로 코팅한 대장균 배양용 디쉬에서 4일간 부유배양하여, 배아유사체(embryoid body, EB)를 형성시켰다(day 1-4). EB형성 4일째(day 4)에 EB를 전량 10cm 조직배양용 디쉬로 옮겨 ES세포용 배지에 24시간 배양하여 접착시켰다. 24시간 후(day 5)에 ITS/피브로넥틴 함유 배지로 교환하였다. 7일간 배양하여(2일마다 배지교환을 행한다). 네스틴(nestin) 양성 세포를 선별하였다(무혈청하에서 배양하면, 다른 계보(pedigree)의 세포가 어느 정도 죽어간다)(day 5-12). 다음으로, A2B5양성 세포의 유도를 행하였다. 7일후(day 12), 트립신 처리하여 세포를 흩트려서(separated), 잔존하는 EB를 제거하였다. 1×105개의 세포를 폴리-L-오르니틴/피브로넥틴이 코팅된 24웰 플레이트에 접종하고, N2/bFGF함유 배지로 4일간 배양하였다(2일마다 배지교환(day 12-16). 4일후(day 16)에 N2/bFGF/EGF함유 배지로 교환하여, 4일간 배양하였다(2일마다 배지교환)(day 16-20). 4일후(day 20)에 N2/bFGF/PDGF함유 배지로 교환하여, 4일간 배양하였다(2일마다 배지교환)(day 20-24). 이 기간(day 12-24)에 세포가 과도하게 증식되어 융합상태(confluent)가 된 경우에는, 수시 계대하여 1~2×105개의 세포를 접종하였다(계대시기에 따라 수는 변경된다). 4일후(day 24)에 N2/T3배지로 교환하여 7일간 배양하고(day 24-31), 2일마다 배지교환을 행하였다. Day 31째에 고정하고, 면역염색하였다. 그 결과, iPS세포로부터 ΒIII 튜블린 양성의 신경세포, 04양성의 올리고덴드로사이트(oligodendrocyte), GFAP양성의 아스트로사이트 (astrocyte)로의 분화가 확인되었다(도 20).
실시예 9
Fbx15-βgeo 넉인 마우스 이외의 임의의 마우스 체세포로부터 iPS세포를 수립하기 위하여, 약제에 의한 선별을 이용하지 않는 수립방법을 개발하였다. 10cm 디쉬(STO 피더세포상)에 마우스 태아 섬유아세포(MEF)를 지금까지보다 소수(1만, 5만 또는 10만개) 배양하고, 레트로바이러스에 의해 대조군 DNA 또는 4개의 인자를 도입하였다. ES세포배지에 2주간 배양(G418 선별없이)을 행한 바, 대조군 DNA를 도입한 디쉬에서는 콜로니 형성이 관찰되지 않았으나, 4개의 인자를 도입한 디쉬에 서는 형질전환되었을 것으로 여겨지는 편평한 콜로니뿐만 아니라, 복수의 컴팩트한 콜로니가 형성되었다(도 21). 이들로부터 24개의 콜로니를 선택하여 배양을 계속하였는 바, ES세포와 유사한 형태가 관찰되었다. 이 유전자발현을 RT-PCR로 검토하였는 바, 7개의 클론에서 ES세포 마커인 Esg1의 발현이 관찰되었다. 또한, 클론 4에서는 Nanog, ERas, GDF3, Oct3/4, Sox2 등의 많은 ES세포 마커의 유도가 관찰되어, 이로부터 iPS세포라고 생각되었다(도 22). 이상의 결과로부터, iPS세포 수립에는 Fbx15-βgeo넉인 등을 이용한 약제선별(drug selection)은 필수가 아니며, 임의의 마우스유래 체세포로부터 iPS세포를 수립할 수 있음이 입증되었다. 본 기술에 의해 질환모델 마우스의 체세포로부터도 iPS세포가 수립할 수 있는 가능성이 제시되었다.
실시예 10
iPS세포를 유도하는 세포로서 섬유아세포 이외의 세포인 간세포(hepatocyte) 및 위점막세포(gastric mucous cell)를 검토하였다. Fbx15β geo/β geo 마우스의 간으로부터 간세포를 환류(perfusion)에 의해 단리하였다. 이 간세포에 4개의 인자를 레트로바이러스로 투여하여 G418에 의해 선별하였는 바, 복수의 iPS세포 콜로니가 얻어졌다. DNA 마이크로어레이에 의한 유전자발현 패턴 해석의 결과, 간유래의 iPS세포는 피부 섬유아세포나 태아 섬유아세포 유래의 iPS세포보다 ES세포에 더 유사함이 밝혀졌다. 위점막세포로부터도 간세포로부터와 마찬가지로 iPS세포가 얻어졌다.
실시예 11
PD98059는 MAP 키나제의 저해제로서, 많은 분화된 세포에 있어서는 증식을 억제하지만, ES세포에서는 미분화상태의 유지와 증식을 촉진하는 것이 알려져 있다. 따라서, iPS세포 수립에 있어서의 PD98059의 효과를 검토하였다. Nanog-EGFP-IRES-Puro의 선별마커를 가지는 마우스로부터 수립한 MEF에 4개의 인자를 레트로바이러스로 투여하고, 퓨로마이신에 의한 선별을 행하였다. PD98059를 투여하지 않은 경우, 얻어진 iPS세포 콜로니 중에서 GFP양성의 비율은 8%였다. 한편, PD98059(최종농도 25μΜ)를 레트로바이러스 감염의 다음날로부터 지속적으로 투여한 군에서는, 얻어진 콜로니의 45%가 GFP양성이었다. 이는 PD98059가 GFP양성의, 보다 ES세포에 가까운 iPS세포의 증식을 촉진하지만, GFP음성의 iPS세포나 분화된 세포의 증식은 억제하기 때문이라 생각되었다. 이로부터, PD98059는, 보다 ES세포에 가까운 iPS세포의 수립이나 약제선별을 하지 않은 iPS세포의 수립에 이용할 수 있음이 나타났다.
실시예 12
태아유래의(embryonic) 사람피부 섬유아세포(human dermal fibroblast, HDF)에 마우스 이코트로픽 바이러스(ecotropic virus) 수용체인 solute carrier family 7(Slc7a1, NCBI 등록번호 NM_007513)을 렌티바이러스로 발현시킨 세포에, 마우스 Oct3/4유전자 프로모터 하류에 적색형광 단백질 유전자를, PGK프로모터 하류에 하이그로마이신(hygromycin) 내성 유전자를 각각 도입한 플라스미드를 핵전이방법(nucleofection)으로 도입하였다. 하이그로마이신에 의한 선별을 행하여, 안정하게 발현하는 세포주를 수립하였다. 800,000개의 세포를 마이토마이신(mitomycin) 처리한 STO세포 위에 접종하고, 다음날 레트로바이러스에 의해 Oct3/4, Sox2, Klf4, c-Myc(어느 것이나 사람유래)를 도입하였다. 3주간 후에 얻어진 콜로니(도 23의 좌)를 24개 선택하여, STO세포를 접종한 24-웰 플레이트에 옮겨 배양하였다. 2주간 후에 늘어난 1클론을 STO세포를 접종한 6-웰 플레이트에 계대하여 배양한 결과, ES세포와 유사한 형태의 세포가 얻어져(도 23의 우), iPS세포임이 시사되었다. 배지는 언제나 마우스 ES세포용 배지를 이용하였다.
실시예 13
사람성체피부 섬유아세포(adult HDF)에 렌티바이러스로 Slc7a1(마우스 레트로바이러스 수용체)를 도입한 세포를 800,000개의 피더세포(마이토마이신처리 STO세포)상에 접종하고, 이하의 조합으로 레트로바이러스에 의해 유전자를 도입하였다.
1. Oct3/4, Sox2, Klf4, c-Myc, TERT, SV40 Large T antigen
2. Oct3/4, Sox2, Klf4, c-Myc, TERT, HPV16 E6
3. Oct3/4, Sox2, Klf4, c-Myc, TERT, HPV16 E7
4. Oct3/4, Sox2, Klf4, c-Myc, TERT, HPV16 E6, HPV16 E7
5. Oct3/4, Sox2, Klf4, c-Myc, TERT, Bmil
(Oct3/4, Sox2, Klf4, c-Myc, TERT는 사람유래, Bmil은 마우스유래)
마우스 ES세포의 배양조건하에서 약제선별없이 배양을 계속하였는 바, 상기 1의 조합으로 인자를 도입한 디쉬에서 바이러스감염 8일 후에 iPS세포라고 생각되는 콜로니가 출현하였다(도 24). 다른 조합(2 내지 5)에 있어서도, 1의 조합의 경우만큼은 명료하지 않지만, iPS세포와 같은 콜로니가 출현하였다. 4개의 인자만을 도입해도 전혀 콜로니는 출현하지 않았다.
본 발명에 의해 제공된 핵초기화 인자를 이용함으로써 배아나 ES세포를 이용하지 않고 간편하면서도 재현성 좋게 분화된 세포핵의 초기화를 유도할 수 있으며, ES세포와 동일한 분화 및 다능성이나 증식능을 가지는 미분화된 세포인 유도다능성 줄기세포를 수립할 수 있다.
<110> Kyoto University <120> Nuclear Reprogramming Factor <160> 25 <170> KopatentIn 1.71 <210> 1 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> artificial <400> 1 tgtggggccc tgaaaggcga gctgagat 28 <210> 2 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> artificial <400> 2 atgggccgcc atacgacgac gctcaact 28 <210> 3 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> artificial <400> 3 gaagtctggt tccttggcag gatg 24 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> artificial <400> 4 actcgataca ctggcctagc 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> artificial <400> 5 caggtgtttg agggtagctc 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> artificial <400> 6 cggttcatca tggtacagtc 20 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> artificial <400> 7 actgcccctc atcagactgc tact 24 <210> 8 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> artificial <400> 8 cactgccttg tactcgggta gctg 24 <210> 9 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> artificial <400> 9 gttccaacct gtgcctcgcg tctt 24 <210> 10 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> artificial <400> 10 agcgaggcat ggagagagcg gagcag 26 <210> 11 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> artificial <400> 11 cgtggtgagc atcttcggag tgg 23 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> artificial <400> 12 ccttcttggt ccgcccgttc tta 23 <210> 13 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> artificial <400> 13 atggacgcaa ctgtgaacat gatgttcgca 30 <210> 14 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> artificial <400> 14 ctttgaggtc ctggtccatc acgtgaccat 30 <210> 15 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> artificial <400> 15 ccattagggg ccatcatcgc tttc 24 <210> 16 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> artificial <400> 16 cactgctcac tggagggggc ttgc 24 <210> 17 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> artificial <400> 17 tgctgcggtc caggccatca agag 24 <210> 18 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> artificial <400> 18 gggcactgtt cagttcagcg gatc 24 <210> 19 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> artificial <400> 19 tctttccacc aggcccccgg ctc 23 <210> 20 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> artificial <400> 20 tgcgggcgga catggggaga tcc 23 <210> 21 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> artificial <400> 21 attcttcgtt gtcaagccgc caaagtggag 30 <210> 22 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> artificial <400> 22 agttgtttgc tgcggagttg tcatctcgtc 30 <210> 23 <211> 2127 <212> DNA <213> virus SV40 LT (SV40 gp6) <400> 23 atggataaag ttttaaacag agaggaatct ttgcagctaa tggaccttct aggtcttgaa 60 aggagtgcct gggggaatat tcctctgatg agaaaggcat atttaaaaaa atgcaaggag 120 tttcatcctg ataaaggagg agatgaagaa aaaatgaaga aaatgaatac tctgtacaag 180 aaaatggaag atggagtaaa atatgctcat caacctgact ttggaggctt ctgggatgca 240 actgagattc caacctatgg aactgatgaa tgggagcagt ggtggaatgc ctttaatgag 300 gaaaacctgt tttgctcaga agaaatgcca tctagtgatg atgaggctac tgctgactct 360 caacattcta ctcctccaaa aaagaagaga aaggtagaag accccaagga ctttccttca 420 gaattgctaa gttttttgag tcatgctgtg tttagtaata gaactcttgc ttgctttgct 480 atttacacca caaaggaaaa agctgcactg ctatacaaga aaattatgga aaaatattct 540 gtaaccttta taagtaggca taacagttat aatcataaca tactgttttt tcttactcca 600 cacaggcata gagtgtctgc tattaataac tatgctcaaa aattgtgtac ctttagcttt 660 ttaatttgta aaggggttaa taaggaatat ttgatgtata gtgccttgac tagagatcca 720 ttttctgtta ttgaggaaag tttgccaggt gggttaaagg agcatgattt taatccagaa 780 gaagcagagg aaactaaaca agtgtcctgg aagcttgtaa cagagtatgc aatggaaaca 840 aaatgtgatg atgtgttgtt attgcttggg atgtacttgg aatttcagta cagttttgaa 900 atgtgtttaa aatgtattaa aaaagaacag cccagccact ataagtacca tgaaaagcat 960 tatgcaaatg ctgctatatt tgctgacagc aaaaaccaaa aaaccatatg ccaacaggct 1020 gttgatactg ttttagctaa aaagcgggtt gatagcctac aattaactag agaacaaatg 1080 ttaacaaaca gatttaatga tcttttggat aggatggata taatgtttgg ttctacaggc 1140 tctgctgaca tagaagaatg gatggctgga gttgcttggc tacactgttt gttgcccaaa 1200 atggattcag tggtgtatga ctttttaaaa tgcatggtgt acaacattcc taaaaaaaga 1260 tactggctgt ttaaaggacc aattgatagt ggtaaaacta cattagcagc tgctttgctt 1320 gaattatgtg gggggaaagc tttaaatgtt aatttgccct tggacaggct gaactttgag 1380 ctaggagtag ctattgacca gtttttagta gtttttgagg atgtaaaggg cactggaggg 1440 gagtccagag atttgccttc aggtcaggga attaataacc tggacaattt aagggattat 1500 ttggatggca gtgttaaggt aaacttagaa aagaaacacc taaataaaag aactcaaata 1560 tttccccctg gaatagtcac catgaatgag tacagtgtgc ctaaaacact gcaggccaga 1620 tttgtaaaac aaatagattt taggcccaaa gattatttaa agcattgcct ggaacgcagt 1680 gagtttttgt tagaaaagag aataattcaa agtggcattg ctttgcttct tatgttaatt 1740 tggtacagac ctgtggctga gtttgctcaa agtattcaga gcagaattgt ggagtggaaa 1800 gagagattgg acaaagagtt tagtttgtca gtgtatcaaa aaatgaagtt taatgtggct 1860 atgggaattg gagttttaga ttggctaaga aacagtgatg atgatgatga agacagccag 1920 gaaaatgctg ataaaaatga agatggtggg gagaagaaca tggaagactc agggcatgaa 1980 acaggcattg attcacagtc ccaaggctca tttcaggccc ctcagtcctc acagtctgtt 2040 catgatcata atcagccata ccacatttgt agaggtttta cttgctttaa aaaacctccc 2100 acacctcccc ctgaacctga aacataa 2127 <210> 24 <211> 456 <212> DNA <213> virus HPV16 E6 <400> 24 atgtttcagg acccacagga gcgacccaga aagttaccac agttatgcac agagctgcaa 60 acaactatac atgatataat attagaatgt gtgtactgca agcaacagtt actgcgacgt 120 gaggtatatg actttgcttt tcgggattta tgcatagtat atagagatgg gaatccatat 180 gctgtatgtg ataaatgttt aaagttttat tctaaaatta gtgagtatag acattattgt 240 tatagtttgt atggaacaac attagaacag caatacaaca aaccgttgtg tgatttgtta 300 attaggtgta ttaactgtca aaagccactg tgtcctgaag aaaagcaaag acatctggac 360 aaaaagcaaa gattccataa tataaggggt cggtggaccg gtcgatgtat gtcttgttgc 420 agatcatcaa gaacacgtag agaaacccag ctgtaa 456 <210> 25 <211> 297 <212> DNA <213> virus HPV16 E7 <400> 25 atgcatggag atacacctac attgcatgaa tatatgttag atttgcaacc agagacaact 60 gatctctact gttatgagca attaaatgac agctcagagg aggaggatga aatagatggt 120 ccagctggac aagcagaacc ggacagagcc cattacaata ttgtaacctt ttgttgcaag 180 tgtgactcta cgcttcggtt gtgcgtacaa agcacacacg tagacattcg tactttggaa 240 gacctgttaa tgggcacact aggaattgtg tgccccatct gttctcagaa accataa 297

Claims (18)

  1. a) Oct3/4 유전자 또는 그의 유전자 산물;
    b) Klf 패밀리 유전자 또는 그의 유전자 산물; 및,
    c) Myc 패밀리 유전자 또는 그의 유전자 산물, 또는 Sox 패밀리 유전자 또는 그의 유전자 산물, 또는 Myc 패밀리 유전자 또는 그의 유전자 산물 및 Sox 패밀리 유전자 또는 그의 유전자 산물을 포함하되,
    상기 Klf 패밀리 유전자 또는 그의 유전자 산물은 Klf2 및 Klf4로 구성되는 그룹으로부터 선택되는 유전자 또는 그의 유전자 산물이며,
    상기 Myc 패밀리 유전자 또는 그의 유전자 산물은 c-Myc, L-Myc 및 N-Myc로 구성되는 그룹으로부터 선택되는 유전자 또는 그의 유전자 산물이고,
    상기 Sox 패밀리 유전자 또는 그의 유전자 산물은 Sox1, Sox2, Sox3, Sox15 및 Sox17로 구성되는 그룹으로부터 선택되는 유전자 또는 그의 유전자 산물이며,
    초기화되는 체세포가 상기 유전자 산물들 중 하나 또는 그 이상을 발현하고 있는 경우 상기 유전자 또는 그의 유전자 산물이 선택적으로 배제되는 것을 특징으로 하는 체세포의 핵초기화 인자.
  2. 제1항에 있어서,
    사이토카인을 추가로 포함하는 것을 특징으로 하는
    인자.
  3. 제2항에 있어서,
    사이토카인은 염기성 섬유아세포 증식인자(bFGF), 줄기세포인자(SCF), 또는 염기성 섬유아세포 증식인자(bFGF) 및 줄기세포인자(SCF)인 것을 특징으로 하는
    인자.
  4. 제3항에 있어서,
    Oct3/4, Klf4 및 Sox2의 3종류의 유전자 또는 그의 유전자 산물, 및 염기성 섬유아세포 증식인자(bFGF)인 사이토카인 각각을 포함하는 것을 특징으로 하는
    인자.
  5. 제1항에 있어서,
    Oct3/4, Klf4, Sox2, 및 c-Myc의 4종류의 유전자 또는 그의 유전자 산물 각각을 포함하는 것을 특징으로 하는
    인자.
  6. 제1항에 있어서,
    Oct3/4, Klf4, Sox2, 및 L-Myc의 4종류의 유전자 또는 그의 유전자 산물 각각을 포함하는 것을 특징으로 하는
    인자.
  7. 제1항에 있어서,
    TERT, SV40 Large T antigen, HPV16 E6, HPV16 E7, Bmil, Fbx15, Nanog, ERas, ECAT15-2, Tcl1, beta-catenin, ECAT1, Esg1, Dnmt3L, ECAT8, Gdf3, Sox15, ECAT15-1, Fthl17, Sall4, Rex1, UTF1, Stella, Stat3 및 Grb2로 구성된 그룹으로부터 선택되는 하나 또는 그 이상의 유전자 또는 그의 유전자 산물을 추가로 포함하는 것을 특징으로 하는
    인자.
  8. 체세포와 제1항 내지 제7항의 어느 한 항에 개시된 핵초기화 인자를 접촉시키는 공정을 포함하는 유도다능성 줄기세포를 제조하는 방법.
  9. 제8항에 있어서,
    체세포는 사람의 체세포인 것을 특징으로 하는
    방법.
  10. 체세포와 제1항 내지 제7항의 어느 한 항에 개시된 핵초기화 인자를 접촉시켜 수득한 유도다능성 줄기세포의 분화를 유도하는 공정을 포함하는, 분화-유도된 체세포의 제조방법.
  11. (1) 체세포와 제1항 내지 제7항의 어느 한 항에 개시된 핵초기화 인자를 접촉시켜 유도다능성 줄기세포를 수득하는 공정; 및,
    (2) 상기 (1) 공정에서 수득한 유도다능성 줄기세포의 분화를 유도하여 분화-유도된 체세포를 수득하는 공정을 포함하는, 분화-유도된 체세포의 제조방법.
  12. 제11항에 있어서,
    체세포는 사람의 체세포인 것을 특징으로 하는
    방법.
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
KR1020087017015A 2005-12-13 2006-12-06 핵초기화 인자 KR101420740B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2005-00359537 2005-12-13
JP2005359537 2005-12-13
PCT/JP2006/324881 WO2007069666A1 (ja) 2005-12-13 2006-12-06 核初期化因子

Publications (2)

Publication Number Publication Date
KR20080095852A KR20080095852A (ko) 2008-10-29
KR101420740B1 true KR101420740B1 (ko) 2014-07-17

Family

ID=38162968

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087017015A KR101420740B1 (ko) 2005-12-13 2006-12-06 핵초기화 인자

Country Status (18)

Country Link
US (1) US8048999B2 (ko)
EP (6) EP3418297B1 (ko)
JP (8) JP5098028B2 (ko)
KR (1) KR101420740B1 (ko)
CN (4) CN103773804A (ko)
AU (1) AU2006325975B2 (ko)
BR (1) BRPI0619794B8 (ko)
CA (1) CA2632142C (ko)
DK (1) DK1970446T3 (ko)
EA (2) EA014166B1 (ko)
ES (1) ES2367525T3 (ko)
HK (2) HK1125131A1 (ko)
IL (1) IL191903A (ko)
MX (2) MX2008007654A (ko)
NZ (1) NZ569530A (ko)
PT (1) PT1970446E (ko)
WO (1) WO2007069666A1 (ko)
ZA (1) ZA200804673B (ko)

Families Citing this family (568)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20030376A1 (it) 2003-07-31 2005-02-01 Univ Roma Procedimento per l'isolamento e l'espansione di cellule staminali cardiache da biopsia.
US7682828B2 (en) 2003-11-26 2010-03-23 Whitehead Institute For Biomedical Research Methods for reprogramming somatic cells
JP5074921B2 (ja) 2004-04-07 2012-11-14 アキシオジェネシス エージー 非侵襲性生体外機能組織検定システム
ES2354997T3 (es) 2004-05-11 2011-03-21 Axiogenesis Ag Ensayo para el descubrimiento de fármacos basado en células diferenciadas in vitro.
US11660317B2 (en) 2004-11-08 2023-05-30 The Johns Hopkins University Compositions comprising cardiosphere-derived cells for use in cell therapy
EP1984487B1 (en) * 2005-08-03 2022-10-12 Astellas Institute for Regenerative Medicine Improved methods of reprogramming animal somatic cells
US9012219B2 (en) * 2005-08-23 2015-04-21 The Trustees Of The University Of Pennsylvania RNA preparations comprising purified modified RNA for reprogramming cells
US9157066B2 (en) 2005-12-13 2015-10-13 The Trustees Of The University Of Pennsylvania Transcriptome transfer produces cellular phenotype conversion
US8278104B2 (en) 2005-12-13 2012-10-02 Kyoto University Induced pluripotent stem cells produced with Oct3/4, Klf4 and Sox2
US20090227032A1 (en) * 2005-12-13 2009-09-10 Kyoto University Nuclear reprogramming factor and induced pluripotent stem cells
AU2006325975B2 (en) 2005-12-13 2011-12-08 Kyoto University Nuclear reprogramming factor
US10647960B2 (en) 2005-12-13 2020-05-12 The Trustees Of The University Of Pennsylvania Transcriptome transfer produces cellular phenotype conversion
US8129187B2 (en) * 2005-12-13 2012-03-06 Kyoto University Somatic cell reprogramming by retroviral vectors encoding Oct3/4. Klf4, c-Myc and Sox2
US10646590B2 (en) 2005-12-13 2020-05-12 The Trustees Of The University Of Pennsylvania Methods for phototransfecting nucleic acids into live cells
WO2007102787A1 (en) 2006-03-06 2007-09-13 Agency For Science, Technology & Research Human embryonic stem cell methods and podxl expression
CN101679950A (zh) * 2007-02-22 2010-03-24 国立大学法人东京大学 利用胚泡互补的器官再生法
KR101516833B1 (ko) 2007-03-23 2015-05-07 위스콘신 얼럼나이 리서어치 화운데이션 체세포 재프로그래밍
EP2626416A3 (en) * 2007-04-07 2013-12-18 The Whitehead Institute for Biomedical Research Reprogramming of somatic cells
AU2016216711B2 (en) * 2007-04-07 2018-01-25 Whitehead Institute For Biomedical Research Reprogramming of somatic cells
EP3128015A3 (en) * 2007-05-29 2017-05-03 Christopher B. Reid A method for providing a desired cell population capable of further differentiation in vivo
JP2008307007A (ja) * 2007-06-15 2008-12-25 Bayer Schering Pharma Ag 出生後のヒト組織由来未分化幹細胞から誘導したヒト多能性幹細胞
US9213999B2 (en) 2007-06-15 2015-12-15 Kyoto University Providing iPSCs to a customer
US9080145B2 (en) 2007-07-01 2015-07-14 Lifescan Corporation Single pluripotent stem cell culture
CN101952415B (zh) 2007-07-31 2017-06-27 生命扫描有限公司 人胚胎干细胞的分化
WO2009032456A2 (en) * 2007-08-01 2009-03-12 Primegen Biotech Llc Non-viral delivery of transcription factors that reprogram human somatic cells into a stem cell-like state
EP3078738B1 (en) 2007-08-31 2020-05-20 Whitehead Institute for Biomedical Research Wnt pathway stimulation in reprogramming somatic cells
WO2009057831A1 (ja) * 2007-10-31 2009-05-07 Kyoto University 核初期化方法
CN107574142B (zh) 2007-11-27 2021-07-06 生命扫描有限公司 人胚胎干细胞的分化
EP2227540A4 (en) * 2007-11-29 2011-11-02 Children S Hospital Of Orange County DIFFERENTIATION OF HUMAN CELLS
AU2008286249B2 (en) * 2007-12-10 2013-10-10 Kyoto University Efficient method for nuclear reprogramming
US9683232B2 (en) 2007-12-10 2017-06-20 Kyoto University Efficient method for nuclear reprogramming
JP5626619B2 (ja) * 2008-12-08 2014-11-19 国立大学法人京都大学 効率的な核初期化方法
EP2235161A1 (en) 2007-12-11 2010-10-06 Research Development Foundation Small molecules for neuronal differentiation of embryonic stem cells
EP2072618A1 (en) * 2007-12-14 2009-06-24 Johannes Gutenberg-Universität Mainz Use of RNA for reprogramming somatic cells
KR101481164B1 (ko) * 2008-01-30 2015-01-09 주식회사 미래셀바이오 체세포 유래 다능성 줄기세포의 제조 방법
WO2009096049A1 (ja) * 2008-02-01 2009-08-06 Kyoto University 人工多能性幹細胞由来分化細胞
CN105886459A (zh) 2008-02-21 2016-08-24 詹森生物科技公司 用于细胞粘附、培养和分离的方法、表面改性培养板和组合物
WO2009104794A1 (ja) * 2008-02-22 2009-08-27 国立大学法人 東京大学 遺伝子改変による致死性表現型を持つ動物の繁殖用ファウンダー動物作製法
JP2009215191A (ja) 2008-03-07 2009-09-24 Keio Gijuku 神経損傷治療剤及び神経損傷治療方法
EP2100954A1 (en) * 2008-03-10 2009-09-16 Assistance Publique - Hopitaux de Paris Method for generating primate cardiac progenitor cells for clinical use from primate embryonic stem cells, and their applications
AU2009225665B9 (en) * 2008-03-17 2015-01-15 The Scripps Research Institute Combined chemical and genetic approaches for generation of induced pluripotent stem cells
AU2015201026B2 (en) * 2008-03-17 2017-03-16 The Scripps Research Institute Combined chemical and genetic approaches for generation of induced pluripotent stem cells
WO2009114949A1 (en) * 2008-03-20 2009-09-24 UNIVERSITé LAVAL Methods for deprogramming somatic cells and uses thereof
US8765465B2 (en) 2008-03-26 2014-07-01 Kyoto University Efficient production and use of highly cardiogenic progenitors and cardiomyocytes from embryonic and induced pluripotent stem cells
JPWO2009119105A1 (ja) * 2008-03-28 2011-07-21 国立大学法人 東京大学 GPIbα+GPV+GPVI+血小板のインビトロ調製法
JP5464443B2 (ja) 2008-03-31 2014-04-09 オリエンタル酵母工業株式会社 多能性幹細胞を増殖させる方法
JP5617631B2 (ja) * 2008-04-01 2014-11-05 国立大学法人東京大学 iPS細胞からの血小板の調製方法
WO2009146098A2 (en) * 2008-04-02 2009-12-03 President And Fellows Of Harvard College Stem cells and uses thereof
US20100021437A1 (en) * 2008-04-07 2010-01-28 The McLean Hospital Corporation Whitehead Institute for Biomedical Research Neural stem cells derived from induced pluripotent stem cells
AU2009233845A1 (en) * 2008-04-07 2009-10-15 Nupotential, Inc. Reprogramming a cell by inducing a pluripotent gene through use of a small molecule modulator
US8623648B2 (en) * 2008-04-24 2014-01-07 Janssen Biotech, Inc. Treatment of pluripotent cells
WO2009131262A1 (en) * 2008-04-25 2009-10-29 Mirae Biotech Co., Ltd. Method of manufacturing induced pluripotent stem cell originated from human somatic cell
KR101661940B1 (ko) 2008-05-02 2016-10-04 고쿠리츠 다이가쿠 호진 교토 다이가쿠 핵 초기화 방법
WO2009136867A1 (en) * 2008-05-06 2009-11-12 Agency For Science, Technology And Research Method of effecting de-differentiation of a cell
WO2009137844A2 (en) * 2008-05-09 2009-11-12 Vistagen Therapeutics, Inc. Pancreatic endocrine progenitor cells derived from pluripotent stem cells
WO2009142717A2 (en) * 2008-05-19 2009-11-26 President And Fellows Of Harvard College Methods and products for dedifferentiation of cells
EP2128245A1 (en) 2008-05-27 2009-12-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Generation of induced pluripotent stem (iPS) cells
JP2011160661A (ja) * 2008-06-02 2011-08-25 Kyowa Hakko Kirin Co Ltd 血球細胞の初期化法
DK2297307T3 (en) * 2008-06-04 2016-07-25 Cellular Dynamics Int Inc PROCEDURES FOR THE MANUFACTURE OF IPS CELLS USING NON-VIRAL METHODS
US9497943B2 (en) * 2008-06-13 2016-11-22 Whitehead Institute For Biomedical Research Nucleic acid constructs encoding reprogramming factors linked by self-cleaving peptides
AU2015202237B2 (en) * 2008-06-13 2017-09-28 Whitehead Institute For Biomedical Research Programming and reprogramming of cells
US8669048B2 (en) 2008-06-24 2014-03-11 Parkinson's Institute Pluripotent cell lines and methods of use thereof
WO2009157610A1 (en) * 2008-06-26 2009-12-30 Pusan National University Industry-University Cooperation Foundation Selenium dedifferentiated cell, preparation method and usage thereof
JP2011525794A (ja) * 2008-06-26 2011-09-29 国立大学法人大阪大学 iPS細胞の製造方法および製造キット
CA2695590C (en) 2008-06-27 2018-01-09 Kyoto University Method of efficiently establishing induced pluripotent stem cells
CA2729121C (en) 2008-06-30 2019-04-09 Centocor Ortho Biotech Inc. Differentiation of pluripotent stem cells
CA2731007A1 (en) 2008-07-16 2010-01-21 Dnavec Corporation Method for production of reprogrammed cell using chromosomally unintegrated virus vector
KR101685209B1 (ko) * 2008-07-30 2016-12-09 고쿠리츠 다이가쿠 호진 교토 다이가쿠 유도된 다능성 줄기 세포의 효율적인 확립 방법
AU2008360135A1 (en) * 2008-07-31 2010-02-04 Gifu University Efficient method for establishing induced pluripotent stem cells
US20110183350A1 (en) * 2008-08-05 2011-07-28 Kyoto University Method for selecting secondary neurosphere derived from differentiated cell-derived pluripotent stem cell, clone selected by the method and use of the clone
US10047346B2 (en) * 2008-08-08 2018-08-14 Mayo Foundation For Medical Education And Research Method of treating heart tissue using induced pluripotent stem cells
CA2734128A1 (en) * 2008-08-12 2010-02-18 Cellular Dynamics International, Inc. Methods for the production of ips cells
AU2009282822A1 (en) * 2008-08-21 2010-02-25 Richter Gedeon Nyrt. Methods for treating CNS disorders
US20110258715A1 (en) * 2008-08-22 2011-10-20 The University Of Tokyo ORGAN REGENERATION METHOD UTILIZING iPS CELL AND BLASTOCYST COMPLEMENTATION
SG10201807935SA (en) * 2008-09-04 2018-10-30 Abt Holding Co Use of stem cells to prevent neuronal dieback
US20110231944A1 (en) 2008-09-04 2011-09-22 Riken B cell-derived ips cells and application thereof
JP5652783B2 (ja) * 2008-09-08 2015-01-14 独立行政法人理化学研究所 NKT細胞由来iPS細胞およびそれ由来のNKT細胞
US20110165680A1 (en) * 2008-09-12 2011-07-07 Scarab Genomics, Llc Clean genome bactofection
CN101492676B (zh) * 2008-09-16 2011-02-16 中国科学院广州生物医药与健康研究院 用脑膜细胞生成诱导的多能性干细胞的方法及其用途
SG160248A1 (en) * 2008-09-18 2010-04-29 Agency Science Tech & Res Use of novel monoclonal antibodies targeting human embryonic stem cells to characterize and kill induced pluripotent stem cells
WO2010033991A2 (en) * 2008-09-22 2010-03-25 Children's Medical Center Corporation Detection of human somatic cell reprogramming
US20110207215A1 (en) * 2008-10-24 2011-08-25 Kuraray Co., Ltd. Cell storage method and cell transport method
WO2010050626A1 (en) * 2008-10-30 2010-05-06 Kyoto University Method for producing induced pluripotent stem cells
AU2009308967C1 (en) 2008-10-31 2017-04-20 Janssen Biotech, Inc. Differentiation of human embryonic stem cells to the pancreatic endocrine lineage
JP2012507289A (ja) 2008-10-31 2012-03-29 ヤンセン バイオテツク,インコーポレーテツド ヒト胚性幹細胞の膵内分泌系への分化
JP5608645B2 (ja) 2008-11-05 2014-10-15 学校法人慶應義塾 神経幹細胞製造方法
CN102257132B (zh) 2008-11-20 2014-09-03 森托科尔奥索生物科技公司 用于在平面基底上进行细胞附着和培养的方法和组合物
MX2011005288A (es) 2008-11-20 2011-06-01 Centocor Ortho Biotech Inc Celulas madre pluripotentes en microportadores.
EP2192174B1 (en) * 2008-11-21 2015-11-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Reprogramming cells toward a pluripotent state
US20100150889A1 (en) 2008-12-17 2010-06-17 The Uab Research Foundation Polycistronic Vector For Human Induced Pluripotent Stem Cell Production
EP3312269A1 (en) * 2008-12-17 2018-04-25 The Scripps Research Institute Generation and maintenance of stem cells
WO2010071210A1 (ja) 2008-12-18 2010-06-24 財団法人新産業創造研究機構 軟骨細胞様細胞、及びその製造方法
US10328103B2 (en) 2009-01-03 2019-06-25 Ray C. Wasielewski Medical treatment composition comprising mammalian dental pulp stem cells
US8470308B2 (en) * 2009-01-03 2013-06-25 Ray C. Wasielewski Enhanced medical implant comprising disrupted tooth pulp and tooth particles
JP6099867B2 (ja) 2009-02-03 2017-03-22 学校法人慶應義塾 ヒト分化細胞由来多能性幹細胞に由来する胚様体及び/又は神経幹細胞の培養方法
US20100209404A1 (en) * 2009-02-10 2010-08-19 University Of Dayton Enhanced method for producing stem-like cells from somatic cells
CA2753845C (en) * 2009-02-27 2019-10-29 Kyoto University Nuclear reprogramming substance comprising glis1
CA2755870C (en) * 2009-03-20 2019-04-09 Angioblast Systems, Inc. Production of reprogrammed pluripotent cells
JP5637354B2 (ja) * 2009-03-30 2014-12-10 独立行政法人産業技術総合研究所 精製転写因子の調製法と細胞導入技術
WO2010119819A1 (ja) 2009-04-17 2010-10-21 国立大学法人東北大学 ヒト肺組織幹細胞の調製方法及びヒト肺胞上皮細胞への分化誘導方法
CN101613717B (zh) * 2009-04-17 2012-01-11 中国科学院广州生物医药与健康研究院 用猪成纤维细胞生成诱导的多能性干细胞的方法
CN101580816B (zh) * 2009-04-23 2012-02-29 中国科学院广州生物医药与健康研究院 诱导多能性干细胞快速高效产生的新型无血清培养基以及使用其的方法
JP2010268789A (ja) 2009-04-24 2010-12-02 Kumamoto Univ 細胞医薬の製造方法
EP2253700A1 (en) 2009-05-13 2010-11-24 Helmholtz-Zentrum für Infektionsforschung GmbH A method for producing test systems from donors suffering from adverse effects of medicaments and /or medical treatments, and uses of said systems
CA2762369C (en) * 2009-05-18 2021-12-28 Joseph Collard Treatment of reprogramming factor related diseases by inhibition of natural antisense transcript to a reprogramming factor
JP5777113B2 (ja) 2009-05-29 2015-09-09 学校法人慶應義塾 人工多能性幹細胞のクローンの選択方法
JP5765714B2 (ja) 2009-05-29 2015-08-19 国立大学法人京都大学 人工多能性幹細胞の製造方法および培養方法
US9365866B2 (en) 2009-06-03 2016-06-14 National Institute Of Advanced Industrial Science And Technology Vectors for generating pluripotent stem cells and methods of producing pluripotent stem cells using the same
WO2010144696A1 (en) 2009-06-11 2010-12-16 Burnham Institute For Medical Research Directed differentiation of stem cells
US9399758B2 (en) 2009-07-15 2016-07-26 Mari Dezawa SSEA3(+) pluripotent stem cell that can be isolated from body tissue
US9550975B2 (en) * 2009-07-15 2017-01-24 Mari Dezawa SSEA-3 pluripotent stem cell isolated from body tissue
JP6219568B2 (ja) 2009-07-20 2017-10-25 ヤンセン バイオテツク,インコーポレーテツド ヒト胚性幹細胞の分化
JP5659158B2 (ja) 2009-07-21 2015-01-28 国立大学法人京都大学 画像処理装置、培養観察装置、及び画像処理方法
JP5751548B2 (ja) 2009-08-07 2015-07-22 国立大学法人京都大学 イヌiPS細胞及びその製造方法
CN102625837B (zh) * 2009-08-07 2015-01-14 国立大学法人京都大学 有效建立诱导的多能干细胞的方法
CN101993495B (zh) 2009-08-12 2013-07-24 上海近岸科技有限公司 一种蛋白质混合物及其制备方法
KR101755214B1 (ko) 2009-08-12 2017-07-07 고쿠리츠 다이가쿠 호진 교토 다이가쿠 만능줄기세포의 신경전구세포로의 분화 유도 방법
JP5709015B2 (ja) 2009-08-19 2015-04-30 国立大学法人大阪大学 角膜移植用シート
ES2399711T3 (es) 2009-08-22 2013-04-02 The Board Of Trustees Of The University Of The Leland Stanford Junior University Obtención de imágenes y evaluación de embriones, ovocitos y células madre
US20110052549A1 (en) * 2009-08-27 2011-03-03 The Regents Of The University Of California Cell culture device to differentiate stem cells in a specific orientation
US8748179B2 (en) 2009-08-31 2014-06-10 Osaka University Method for efficient production of induced pluripotent stem cells utilizing cells derived from oral mucosa
EP2473598B1 (en) 2009-09-04 2017-03-22 The U.S.A. As Represented By The Secretary, Department Of Health And Human Services Methods for enhancing genome stability and telomere elongation in embryonic stem cells
GB0915523D0 (en) 2009-09-07 2009-10-07 Genome Res Ltd Cells and methods for obtaining them
JP5804280B2 (ja) 2009-09-08 2015-11-04 国立大学法人京都大学 多能性幹細胞からの肥満細胞の製造方法
WO2011032025A2 (en) * 2009-09-10 2011-03-17 The Salk Institute For Biological Studies Adipose-derived induced pluripotent stem cells
KR101667834B1 (ko) * 2009-09-15 2016-10-20 고쿠리츠다이가쿠호우진 도쿄다이가쿠 분화 세포의 신규 제조법
AU2014240253B2 (en) * 2009-09-15 2017-08-03 The University Of Tokyo Novel Method for Producing Differentiated Cells
EP2480657B1 (en) 2009-09-24 2018-01-17 Kyoto University Method of efficiently establishing induced pluripotent stem cells
SG10201406139RA (en) 2009-09-30 2014-11-27 Agency Science Tech & Res A nuclear receptor and mutant thereof and the use of the same in the reprogramming of cells
EP3235901B1 (en) * 2009-10-16 2022-12-21 The Scripps Research Institute Induction of pluripotent cells
JP2013507974A (ja) * 2009-10-29 2013-03-07 マックマスター ユニバーシティー 線維芽細胞からの誘導多能性幹細胞および前駆細胞の作製法
GB0919773D0 (en) 2009-11-12 2009-12-30 Univ Nottingham Induced pluripotent stem cell
EP4166652A1 (en) 2009-11-12 2023-04-19 Technion Research & Development Foundation Ltd. Culture media, cell cultures and methods of culturing pluripotent stem cells in an undifferentiated state
WO2011058064A1 (en) 2009-11-13 2011-05-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Reprogrammation of eukaryotic cells with engineered microvesicles
JP5939985B2 (ja) 2009-11-19 2016-06-29 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ 多能性の増強方法
CN102648274B (zh) 2009-12-09 2013-07-31 国立大学法人京都大学 包含双呋脒腙的促进多能干细胞分化成心肌细胞的组合物
US20130115622A1 (en) 2009-12-14 2013-05-09 Kyoto University Pharmaceutical composition for prevention and treatment of amyotrophic lateral sclerosis
BR112012017761A2 (pt) 2009-12-23 2015-09-15 Centocor Ortho Biotech Inc diferenciação das células-tronco embrionárias humanas
JP2011135864A (ja) * 2009-12-30 2011-07-14 Korea Univ Research & Business Foundation Oct4及びBmi1、またはその上位調節子を用いて体細胞から胚幹細胞類似細胞への逆分化を誘導する組成物及びこれを用いた胚幹細胞類似細胞の製造方法
US8940533B2 (en) 2010-01-06 2015-01-27 National University Corporation Tottori University Mouse artificial chromosome vector
WO2011090221A1 (en) 2010-01-22 2011-07-28 Kyoto University Method for improving induced pluripotent stem cell generation efficiency
CA2794473A1 (en) 2010-02-03 2011-08-11 National Cancer Center Induced hepatic stem cell and process for production thereof, and applications of the cell
JP5765746B2 (ja) 2010-02-16 2015-08-19 国立大学法人京都大学 効率的な人工多能性幹細胞の樹立方法
EP2537930A4 (en) 2010-02-18 2013-10-02 Univ Osaka METHOD FOR MANUFACTURING INDUCED PLURIPOTENT STRAIN CELL
US9969981B2 (en) 2010-03-01 2018-05-15 Janssen Biotech, Inc. Methods for purifying cells derived from pluripotent stem cells
EP2542249A4 (en) 2010-03-05 2013-08-07 Tissue Genesis Inc METHOD AND COMPOSITIONS FOR SUPPORTING TISSUE INTEGRATION AND INOCULATION OF TRANSPLANTED TISSUE AND TRANSPLANTED TREATED PENIS FABRIC WITH FAT FABRIC ACETIC COSTS
EP2545163A4 (en) * 2010-03-10 2013-11-06 Univ Kyoto METHOD FOR SELECTION OF INDUCED PLURIPOTENTAL STEM CELLS
JP5909482B2 (ja) 2010-03-31 2016-04-26 ザ スクリプス リサーチ インスティテュート 細胞の再プログラム
CN103097521A (zh) 2010-04-16 2013-05-08 学校法人庆应义塾 人工多能性干细胞的制造方法
US8815592B2 (en) 2010-04-21 2014-08-26 Research Development Foundation Methods and compositions related to dopaminergic neuronal cells
US9845457B2 (en) 2010-04-30 2017-12-19 Cedars-Sinai Medical Center Maintenance of genomic stability in cultured stem cells
US9249392B2 (en) 2010-04-30 2016-02-02 Cedars-Sinai Medical Center Methods and compositions for maintaining genomic stability in cultured stem cells
CN102242146B (zh) * 2010-05-10 2015-11-25 高丽大学校产学协力团 组合物和用其产生诱导全能干细胞的方法
MX351515B (es) 2010-05-12 2017-10-17 Janssen Biotech Inc Diferenciacion de celulas madre embrionarias humanas.
US20130198876A1 (en) 2010-05-25 2013-08-01 National Cancer Center Induced malignant stem cells or pre-induction cancer stem cells capable of selfreplication outside of an organism, production method for same, and practical application for same
EP2580320B1 (en) 2010-06-14 2018-08-01 The Scripps Research Institute Reprogramming of cells to a new fate
JP5936134B2 (ja) 2010-06-15 2016-06-15 国立大学法人京都大学 ヒト人工多能性幹細胞の選択方法
AU2011268056B2 (en) * 2010-06-18 2014-04-24 Cellular Dynamics International, Inc. Cardiomyocyte medium with dialyzed serum
JP5099570B2 (ja) 2010-07-12 2012-12-19 国立大学法人鳥取大学 siRNA導入による新規hiPSC作製法
JP5896360B2 (ja) 2010-07-21 2016-04-13 国立大学法人京都大学 ヒト多能性幹細胞から中間中胚葉細胞への分化誘導方法
EP2600901B1 (en) 2010-08-06 2019-03-27 ModernaTX, Inc. A pharmaceutical formulation comprising engineered nucleic acids and medical use thereof
WO2012020687A1 (en) 2010-08-13 2012-02-16 Kyoto University Method of inducing differentiation from pluripotent stem cells to germ cells
US9057734B2 (en) 2010-08-23 2015-06-16 President And Fellows Of Harvard College Optogenetic probes for measuring membrane potential
WO2012026491A1 (ja) 2010-08-26 2012-03-01 国立大学法人京都大学 多能性幹細胞の心筋分化促進剤
US9499790B2 (en) 2010-08-26 2016-11-22 Kyoto University Method for promoting differentiation of pluripotent stem cells into cardiac muscle cells
EP2612911B1 (en) 2010-08-30 2018-01-17 ID Pharma Co., Ltd. Composition for inducing pluripotent stem cell, and use thereof
BR112013004616A2 (pt) 2010-08-31 2016-07-05 Janssen Biotech Inc diferenciação das células tronco embrionárias humanas
ES2658146T3 (es) 2010-08-31 2018-03-08 Janssen Biotech, Inc. Diferenciación de células madre embrionarias humanas
RU2599420C2 (ru) 2010-08-31 2016-10-10 Янссен Байотек, Инк. Дифференцирование плюрипотентных стволовых клеток
JP5835729B2 (ja) 2010-09-02 2015-12-24 国立大学法人京都大学 筋萎縮性側索硬化症の予防および治療用医薬組成物
WO2012036299A1 (en) 2010-09-14 2012-03-22 Kyoto University Method of efficiently establishing induced pluripotent stem cells
JP2013545439A (ja) 2010-09-17 2013-12-26 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 多能性幹細胞の有用性および安全性の特徴決定を行うための機能的ゲノミクスアッセイ
CN104531671A (zh) 2010-10-01 2015-04-22 现代治疗公司 设计核酸及其使用方法
US20130295064A1 (en) * 2010-10-14 2013-11-07 University Of Central Florida Research Foundation, Inc. Cardiac induced pluripotent stem cells and methods of use in repair and regeneration of myocardium
EP2630232A4 (en) 2010-10-22 2014-04-02 Biotime Inc METHOD FOR MODIFYING TRANSCRIPTIONAL REGULATORY NETWORKS IN STEM CELLS
WO2012057052A1 (ja) * 2010-10-25 2012-05-03 公立大学法人横浜市立大学 幹細胞の安定的維持、複製を制御するためのペプチジルプロリルイソメラーゼPin1の利用
US9376665B2 (en) 2010-11-02 2016-06-28 National University Corporation Kumamoto University Method for producing intestinal cells
US9637732B2 (en) 2010-11-04 2017-05-02 Kyoto University Method of efficiently establishing induced pluripotent stem cells
US20130225443A1 (en) 2010-11-05 2013-08-29 Kyoto University Method of examining polycystic kidney disease and method of screening for therapeutic agent of the disease
JP5963309B2 (ja) * 2010-11-09 2016-08-03 国立研究開発法人産業技術総合研究所 末梢血単球由来多能性幹細胞作製方法
JP6090855B2 (ja) 2010-11-17 2017-03-08 国立大学法人京都大学 心筋細胞および/または心筋前駆細胞増殖剤ならびに心筋細胞および/または心筋前駆細胞の増殖方法
WO2012074116A1 (ja) 2010-12-02 2012-06-07 独立行政法人理化学研究所 アロNKT細胞を用いた免疫療法およびそのためのT細胞抗原受容体(TCR)遺伝子のα鎖領域が均一なVα-Jαに再構成されている細胞および該細胞由来NKT細胞のバンキング
WO2012074106A1 (ja) 2010-12-03 2012-06-07 国立大学法人京都大学 多能性幹細胞からの好酸球の製造方法
WO2012074117A1 (ja) 2010-12-03 2012-06-07 国立大学法人京都大学 効率的な人工多能性幹細胞の樹立方法
JP5888852B2 (ja) * 2010-12-08 2016-03-22 学校法人近畿大学 免疫不全動物を用いた細胞の製法
AU2011349446C1 (en) 2010-12-22 2016-01-21 Fate Therapauetics, Inc. Cell culture platform for single cell sorting and enhanced reprogramming of iPSCs
US9850466B2 (en) 2011-01-19 2017-12-26 The Regents Of The University Of California Somatic cells with innate potential for pluripotency
WO2012098260A1 (en) 2011-01-21 2012-07-26 Axiogenesis Ag A non-viral system for the generation of induced pluripotent stem (ips) cells
WO2012112458A2 (en) * 2011-02-14 2012-08-23 The Regents Of The University Of California Compositions and methods for increasing reprogramming efficiency
ES2657927T3 (es) 2011-02-23 2018-03-07 The Board Of Trustees Of The Leland Stanford Junior University Métodos de detección de aneuploidía en embriones humanos
EP2678425B1 (en) 2011-02-23 2017-08-23 Kyoto University Method for producing dendritic cells from pluripotent stem cells
GB201103600D0 (en) 2011-03-01 2011-04-13 Isis Innovation Dendritic cells
ES2855577T3 (es) 2011-03-30 2021-09-23 Transine Therapeutics Ltd Molécula de ácido nucleico funcional y uso de la misma
CA2831613A1 (en) 2011-03-31 2012-10-04 Moderna Therapeutics, Inc. Delivery and formulation of engineered nucleic acids
EP2692860A4 (en) 2011-03-31 2015-05-20 Riken ANAPLASTIC STATE REGULATOR AND CORRESPONDING APPLICATIONS
JP6025067B2 (ja) 2011-03-31 2016-11-16 iHeart Japan株式会社 新規心筋細胞マーカー
ES2695550T3 (es) 2011-04-08 2019-01-09 Inst Nat Sante Rech Med Método para rejuvenecer células
JP5761826B2 (ja) 2011-04-08 2015-08-12 国立大学法人大阪大学 改変ラミニンおよびその利用
WO2012141181A1 (ja) * 2011-04-11 2012-10-18 国立大学法人京都大学 核初期化物質
CN103492555A (zh) 2011-04-20 2014-01-01 国立大学法人大阪大学 角膜上皮分化取向性iPS细胞
CA2835825C (en) 2011-05-13 2021-03-23 Minoru S.H. Ko Use of zscan4 and zscan4-dependent genes for direct reprogramming of somatic cells
WO2012168434A1 (en) 2011-06-08 2012-12-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Partial reprogramming of somatic cells to induced tissue stem (its) cells
GB201110331D0 (en) 2011-06-16 2011-08-03 Isis Innovation Method of cryopreserving pluripotent stem cells
WO2013010045A1 (en) 2011-07-12 2013-01-17 Biotime Inc. Novel methods and formulations for orthopedic cell therapy
WO2013014057A1 (en) 2011-07-22 2013-01-31 Centre National De La Recherche Scientifique Use of cellular extracts for obtaining pluripotent stem cells
US20130029416A1 (en) 2011-07-22 2013-01-31 Tayaramma Thatava Differentiating induced pluripotent stem cells into glucose-responsive, insulin-secreting progeny
EP2737064B1 (en) 2011-07-25 2017-12-06 Kyoto University Method for screening induced pluripotent stem cells
WO2013031826A1 (ja) * 2011-08-29 2013-03-07 国立大学法人京都大学 核初期化物質
US9145547B2 (en) 2011-08-30 2015-09-29 Riken Nuclear reprogrammed cells generated by introduction of a histone H2aa or TH2A gene, a histone H2ba or TH2B gene, or a phosphorylation-mimic of histone chaperon Npm2 gene, an Oct family gene and a klf family gene into a mammalian somatic cell
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
WO2013039087A1 (ja) 2011-09-12 2013-03-21 国立大学法人 熊本大学 物質のスクリーニング方法
US9480695B2 (en) 2011-09-29 2016-11-01 The University Of Tokyo Methods for inducing orexin neurons and agent for treating narcolepsy or eating disorder
WO2013047773A1 (ja) 2011-09-29 2013-04-04 国立大学法人 東京大学 オレキシンニューロンの誘導法
EP3682905B1 (en) 2011-10-03 2021-12-01 ModernaTX, Inc. Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
WO2013058403A1 (ja) 2011-10-21 2013-04-25 国立大学法人京都大学 層流による多能性維持単一分散細胞培養法
GB2496375A (en) 2011-10-28 2013-05-15 Kymab Ltd A non-human assay vertebrate comprising human antibody loci and human epitope knock-in, and uses thereof
US8945876B2 (en) 2011-11-23 2015-02-03 University Of Hawaii Auto-processing domains for polypeptide expression
US20140329317A1 (en) 2011-11-25 2014-11-06 Kyoto University Method for culturing pluripotent stem cell
CN104080907A (zh) 2011-11-30 2014-10-01 日本国立癌症研究中心 诱导恶性干细胞
GB201122047D0 (en) 2011-12-21 2012-02-01 Kymab Ltd Transgenic animals
US8497124B2 (en) 2011-12-05 2013-07-30 Factor Bioscience Inc. Methods and products for reprogramming cells to a less differentiated state
KR20210134808A (ko) * 2011-12-05 2021-11-10 팩터 바이오사이언스 인크. 세포를 형질감염시키는 방법들 및 생성물들
ES2923757T3 (es) 2011-12-16 2022-09-30 Modernatx Inc Composiciones de ARNm modificado
WO2013094771A1 (en) 2011-12-19 2013-06-27 Kyoto University Method for inducing differentiation of human pluripotent stem cells into intermediate mesoderm cells
KR102090751B1 (ko) 2011-12-22 2020-03-19 얀센 바이오테크 인코포레이티드 인간 배아 줄기 세포의 단일 인슐린 호르몬 양성 세포로의 분화
WO2013100080A1 (ja) 2011-12-27 2013-07-04 国立大学法人大阪大学 iPS細胞の腫瘍化を抑制することが可能な分化誘導方法
EP2804944A1 (en) 2012-01-15 2014-11-26 Yeda Research and Development Co. Ltd. Induction of dedifferentiation of mesenchymal stromal cells
JP6274510B2 (ja) 2012-01-27 2018-02-07 国立大学法人京都大学 多能性幹細胞の心筋分化誘導法
WO2013134378A1 (en) 2012-03-07 2013-09-12 Janssen Biotech, Inc. Defined media for expansion and maintenance of pluripotent stem cells
EP2826855B1 (en) 2012-03-15 2018-08-29 iHeart Japan Corporation Myocardial sheet
EP2828381A1 (en) 2012-03-21 2015-01-28 Rheinische Friedrich-Wilhelms-Universität Bonn Induced neural stem cells
WO2013140927A1 (ja) 2012-03-21 2013-09-26 国立大学法人京都大学 アルツハイマー病の治療薬および/または予防薬のスクリーニング方法
AU2013243953A1 (en) 2012-04-02 2014-10-30 Modernatx, Inc. Modified polynucleotides for the production of nuclear proteins
US9303079B2 (en) 2012-04-02 2016-04-05 Moderna Therapeutics, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
WO2013151186A1 (ja) 2012-04-06 2013-10-10 国立大学法人京都大学 エリスロポエチン産生細胞の誘導方法
US10195229B2 (en) * 2012-04-19 2019-02-05 Elsa R. Flores Generation of human induced pluripotent stem cells using nucleic acid sequences that inhibit Δ-NP63 and DGCR8
JP6381442B2 (ja) 2012-05-23 2018-08-29 国立大学法人京都大学 効率的な人工多能性幹細胞の樹立方法
PE20150336A1 (es) 2012-05-25 2015-03-25 Univ California Metodos y composiciones para la modificacion de adn objetivo dirigida por arn y para la modulacion de la transcripcion dirigida por arn
US20130337487A1 (en) 2012-05-31 2013-12-19 Auxogyn, Inc. In vitro embryo blastocyst prediction methods
US9884076B2 (en) 2012-06-05 2018-02-06 Capricor, Inc. Optimized methods for generation of cardiac stem cells from cardiac tissue and their use in cardiac therapy
DK3450542T3 (da) 2012-06-08 2021-11-01 Janssen Biotech Inc Differentiering af humane embryonale stamceller til endokrine pancreatiske celler
CN114652816A (zh) 2012-07-11 2022-06-24 组织技术公司 含有hc-ha/ptx3复合物的组合物及其使用方法
JP6373253B2 (ja) 2012-07-17 2018-08-15 国立大学法人京都大学 新規心筋細胞マーカー
EP3483178B1 (en) 2012-07-31 2020-10-28 AgeX Therapeutics, Inc. Methods to produce hla-g-modified cells
US9828603B2 (en) 2012-08-13 2017-11-28 Cedars Sinai Medical Center Exosomes and micro-ribonucleic acids for tissue regeneration
WO2014027474A1 (ja) 2012-08-17 2014-02-20 株式会社Clio 心筋梗塞の修復再生を誘導する多能性幹細胞
US20150267174A1 (en) 2012-10-09 2015-09-24 Nakanobu Hayashi Reprogramming peptide and use thereof
JP2014082956A (ja) 2012-10-19 2014-05-12 Somar Corp 細胞培養基材、およびそれを用いた細胞培養方法並びに多能性幹細胞の分化誘導方法
WO2014065435A1 (en) * 2012-10-23 2014-05-01 Kyoto University Method of efficiently establishing induced pluripotent stem cells
US20150353889A1 (en) 2012-10-30 2015-12-10 Daiichi Sankyo Company, Limited Mait-like Cells and Method for Manufacturing Same
KR102121086B1 (ko) 2012-11-01 2020-06-09 팩터 바이오사이언스 인크. 세포에서 단백질을 발현시키는 방법들과 생성물들
DK2922554T3 (en) 2012-11-26 2022-05-23 Modernatx Inc Terminalt modificeret rna
GB201222693D0 (en) * 2012-12-17 2013-01-30 Babraham Inst Novel method
CN104884632B (zh) 2012-12-27 2018-01-02 索尼公司 细胞分析系统及细胞分析方法
EP2940127B1 (en) 2012-12-28 2018-07-25 Kyoto University Method for producing induced pluripotent stem cells, cardiomyocytes or precursor cells thereof
SG11201505112SA (en) 2012-12-31 2015-07-30 Janssen Biotech Inc Differentiation of human embryonic stem cells into pancreatic endocrine cells using hb9 regulators
US10370644B2 (en) 2012-12-31 2019-08-06 Janssen Biotech, Inc. Method for making human pluripotent suspension cultures and cells derived therefrom
RU2018116647A (ru) 2012-12-31 2018-10-24 Янссен Байотек, Инк. Культивация эмбриональных стволовых клеток человека в воздушно-жидкостной зоне взаимодействия с целью их дифференцировки в панкреатические эндокринные клетки
CN105705634A (zh) 2012-12-31 2016-06-22 詹森生物科技公司 用于分化成胰腺内分泌细胞的人多能细胞的悬浮和群集
WO2014112655A1 (ja) 2013-01-16 2014-07-24 ユニバーサル・バイオ・リサーチ株式会社 細胞の識別方法
WO2014121200A1 (en) 2013-02-01 2014-08-07 Auxogyn, Inc. Abnormal syngamy phenotypes observed with time lapse imaging for early identification of embryos with lower developmental potential
CA2899865C (en) 2013-02-01 2023-10-10 Kapil BHARTI Method for generating retinal pigment epithelium (rpe) cells from induced pluripotent stem cells (ipscs)
US10450546B2 (en) 2013-02-06 2019-10-22 University Of Rochester Induced pluripotent cell-derived oligodendrocyte progenitor cells for the treatment of myelin disorders
US20160002599A1 (en) 2013-02-08 2016-01-07 Kyoto University Production methods for megakaryocytes and platelets
JP6494903B2 (ja) 2013-02-14 2019-04-03 ソニー株式会社 分析システム、分析プログラム及び分析方法
SG11201506845XA (en) 2013-03-01 2015-09-29 Clio Inc Pharmaceutical composition including migratory factor for guiding pluripotent stem cells to damage
JP6292415B2 (ja) 2013-03-06 2018-03-14 国立大学法人京都大学 多能性幹細胞の培養システム及び多能性幹細胞の継代方法
US10196609B2 (en) 2013-03-08 2019-02-05 Kyoto University Composition for promoting cardiac differentiation of pluripotent stem cell comprising EGFR inhibitor
CA3143449A1 (en) 2013-03-14 2014-09-25 The Regents Of The University Of California In vitro production of medial ganglionic eminence precursor cells
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
JP6473077B2 (ja) 2013-03-21 2019-02-20 国立大学法人京都大学 神経分化誘導用の多能性幹細胞
US10072242B2 (en) 2013-03-25 2018-09-11 Foundation For Biomedical Research And Innovation At Kobe Cell sorting method
GB201306589D0 (en) 2013-04-11 2013-05-29 Abeterno Ltd Live cell imaging
CA2909230C (en) 2013-04-12 2021-06-15 Kyoto University Method for inducing alveolar epithelial progenitor cells
WO2014185358A1 (ja) 2013-05-14 2014-11-20 国立大学法人京都大学 効率的な心筋細胞の誘導方法
WO2014192909A1 (ja) 2013-05-31 2014-12-04 iHeart Japan株式会社 ハイドロゲルを組み込んだ積層化細胞シート
WO2014200905A2 (en) 2013-06-10 2014-12-18 President And Fellows Of Harvard College Early developmental genomic assay for characterizing pluripotent stem cell utility and safety
BR112015030918A2 (pt) 2013-06-11 2017-12-05 Astellas Pharma Inc método para produção de células progenitoras renais, e fármacos contendo células progenitoras renais
WO2014200030A1 (ja) 2013-06-12 2014-12-18 国立大学法人京都大学 人工多能性幹細胞の選別方法および血球への分化誘導方法
US9796962B2 (en) 2013-08-07 2017-10-24 Kyoto University Method for generating pancreatic hormone-producing cells
SG11201602289WA (en) 2013-08-23 2016-05-30 Riken Polypeptide exhibiting fluorescent properties, and utilization of same
JP6617231B2 (ja) 2013-08-28 2019-12-11 国立大学法人岐阜大学 人工多能性幹細胞の作製方法
WO2015030149A1 (ja) 2013-08-29 2015-03-05 国立大学法人鳥取大学 細胞のアンチエイジングに関連する生体分子群
EP3042951B1 (en) 2013-09-05 2019-02-20 Kyoto University New method for inducing dopamine-producing neural precursor cells
EP3674326A1 (en) 2013-09-05 2020-07-01 Tempo Bioscience Inc. Genetically encoded calcium sensors
JP6611170B2 (ja) 2013-09-12 2019-11-27 株式会社カネカ 人工多能性幹細胞の分化誘導方法及び選別方法
JP6333830B2 (ja) 2013-09-13 2018-05-30 国立大学法人京都大学 多能性幹細胞の心筋分化を促進する化合物
CN105916980A (zh) 2013-09-24 2016-08-31 株式会社爱迪药业 用于改进诱导多能干细胞的效率的方法
WO2015048744A2 (en) 2013-09-30 2015-04-02 Moderna Therapeutics, Inc. Polynucleotides encoding immune modulating polypeptides
WO2015051214A1 (en) 2013-10-03 2015-04-09 Moderna Therapeutics, Inc. Polynucleotides encoding low density lipoprotein receptor
US20160304840A1 (en) 2013-11-01 2016-10-20 New England Biolabs, Inc. Method for Producing Induced Pluripotent Stem Cells
US10100283B2 (en) 2013-11-01 2018-10-16 Kyoto University Efficient chondrocyte induction method
EP3037514B1 (en) 2013-11-08 2018-12-26 Sony Corporation Cell analysis system, cell analysis program, and cell analysis method
WO2015069736A1 (en) 2013-11-08 2015-05-14 The Mclean Hospital Corporation METHODS FOR EFFICIENT GENERATION OF GABAergic INTERNEURONS FROM PLURIPOTENT STEM CELLS
CN104630136B (zh) * 2013-11-15 2019-10-01 中国科学院广州生物医药与健康研究院 一种制备诱导多能性干细胞的方法以及该方法中所使用的组合物及其应用
US9932607B2 (en) 2013-11-15 2018-04-03 The Board Of Trustees Of The Leland Stanford Junior University Site-specific integration of transgenes into human cells
CA2930877A1 (en) 2013-11-18 2015-05-21 Crispr Therapeutics Ag Crispr-cas system materials and methods
JP6536871B2 (ja) 2013-12-02 2019-07-03 国立大学法人京都大学 Fgfr3病の予防および治療剤ならびにそのスクリーニング方法
KR102070967B1 (ko) * 2013-12-10 2020-01-29 한국한의학연구원 사군자탕을 유효성분으로 포함하는, 세포의 유도만능줄기세포로의 리프로그래밍 촉진용 조성물 및 이를 이용한 유도만능줄기세포의 제조방법
CA2933083A1 (en) 2013-12-11 2015-06-18 Pfizer Limited Method for producing retinal pigment epithelial cells
US9994831B2 (en) 2013-12-12 2018-06-12 The Regents Of The University Of California Methods and compositions for modifying a single stranded target nucleic acid
US10100284B2 (en) 2013-12-25 2018-10-16 Toagosei Co. Ltd. Method for inducing differentiation of pluripotent stem cells into endodermal cells
EP2896688A1 (en) 2014-01-20 2015-07-22 Centre National de la Recherche Scientifique (CNRS) A method of producing beta pancreatic cells from progenitor cells through the use of hydrogen peroxide
US9770489B2 (en) 2014-01-31 2017-09-26 Factor Bioscience Inc. Methods and products for nucleic acid production and delivery
EP3805369A1 (en) 2014-03-04 2021-04-14 Fate Therapeutics, Inc. Improved reprogramming methods and cell culture platforms
US11066649B2 (en) 2014-03-19 2021-07-20 Institut National De La Sante Et De La Recherche Medicale (Inserm) Method for inducing human cholangiocyte differentiation
ES2837840T3 (es) 2014-03-20 2021-07-01 Ares Trading Sa Medida cuantitativa de la cinética de desarrollo de la morfología de mórula y blastocisto humanos
US10538740B2 (en) 2014-03-20 2020-01-21 Kyoto University Method for sorting cardiomyocytes
CA2944393C (en) * 2014-03-31 2019-02-05 Ajinomoto Co., Inc. Medium for stem cell use
RU2694311C2 (ru) 2014-05-16 2019-07-11 Янссен Байотек, Инк. Применение малых молекул для увеличения экспрессии mafa в панкреатических эндокринных клетках
CN106536718B (zh) 2014-05-21 2021-04-27 国立大学法人京都大学 胰芽细胞的制造方法及含有胰芽细胞的胰疾病治疗剂
JP6651218B2 (ja) 2014-05-30 2020-02-19 国立大学法人京都大学 低分子化合物を用いた多能性幹細胞の心筋分化誘導法
WO2015195769A2 (en) 2014-06-18 2015-12-23 President And Fellows Of Harvard College Optogenetic probes for measuring membrane potential
EP3159354B1 (en) 2014-06-23 2020-09-09 Toagosei Co., Ltd. Novel synthetic peptide and use thereof
EP3170901B1 (en) 2014-07-14 2021-06-02 Chugai Seiyaku Kabushiki Kaisha Method for producing dendritic cells from stem cells
WO2016036754A1 (en) 2014-09-02 2016-03-10 The Regents Of The University Of California Methods and compositions for rna-directed target dna modification
JP6452107B2 (ja) 2014-09-05 2019-01-16 国立大学法人 東京大学 糖尿病性皮膚潰瘍治療のための多能性幹細胞
AU2015327812B2 (en) 2014-10-03 2021-04-15 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of muscular dystrophy
JP6598185B2 (ja) 2014-11-07 2019-10-30 国立大学法人京都大学 軟骨過形成疾患の予防および治療剤ならびにそのスクリーニング方法
AU2015353853B2 (en) 2014-11-25 2020-10-15 President And Fellows Of Harvard College Methods for generation of podocytes from pluripotent stem cells and cells produced by the same
DK3233129T3 (da) 2014-12-17 2020-04-06 Fundacion Para La Investig Medica Aplicada Nukleinsyrekonstrukter og genterapivektorer til anvendelse i behandlingen af wilsons sygdom og andre lidelser
MX2017007965A (es) 2014-12-17 2018-01-18 Fundacion Para La Investig Medica Aplicada Construcciones de acido nucleico y vectores de terapia de genes para uso en el tratamiento de enfermedad de wilson.
JP7253692B2 (ja) 2014-12-26 2023-04-07 国立大学法人京都大学 肝細胞誘導方法
US10077463B2 (en) 2015-01-15 2018-09-18 President And Fellows Of Harvard College Optical selection of cells
CN107109400B (zh) 2015-01-16 2021-06-08 国立研究开发法人产业技术综合研究所 使用具有隐身性的rna的基因表达系统以及包含该rna的基因导入、表达载体
US11241505B2 (en) 2015-02-13 2022-02-08 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
EP3259348A4 (en) 2015-02-17 2018-07-18 University Health Network Methods for making and using sinoatrial node-like pacemaker cardiomyocytes and ventricular-like cardiomyocytes
HUE041518T2 (hu) 2015-02-20 2019-05-28 Inst Nat Sante Rech Med Laminin alkalmazása pluripotens sejtek hepatocita sejtvonalhoz tartozó sejtekké történõ differenciálódásához
CA2978870A1 (en) 2015-03-06 2016-09-15 Kyoto University Method for inducing differentiation of alveolar epithelial cells
US10738280B2 (en) 2015-03-18 2020-08-11 Ono Pharmaceutical Co., Ltd. Method for producing naïve pluripotent stem cells
EP3283510B1 (en) 2015-04-14 2020-08-05 UAB Ferentis Collagen mimetic peptide
US20180051260A1 (en) * 2015-04-14 2018-02-22 Kyoto University Method for Producing Stem Cell Clones Suitable for Induction of Differentiation into Somatic Cells
JP2016202172A (ja) 2015-04-16 2016-12-08 国立大学法人京都大学 疑似膵島の製造方法
US11359180B2 (en) 2015-04-28 2022-06-14 Toagosei Co., Ltd. Method for producing myocardial cells using synthetic peptide
US9724432B2 (en) 2015-04-30 2017-08-08 University Of Rochester Non-human mammal model of human degenerative disorder, uses thereof, and method of treating human degenerative disorder
FR3037338B1 (fr) 2015-06-12 2020-02-28 Philippe Nirde Procede de greffe de cellule cardiaque sur la membrane choriallantoide d'œuf feconde
WO2017002300A1 (en) 2015-06-30 2017-01-05 Sony Corporation Information processing apparatus, information processing system, and information processing method
JP6746945B2 (ja) 2015-06-30 2020-08-26 ソニー株式会社 情報処理装置、情報処理システム及び情報処理方法
BR112018000168A2 (pt) * 2015-07-10 2018-09-04 Heartseed Inc. método para produção de células ips de alta qualidade
JP6531335B2 (ja) 2015-07-17 2019-06-19 国立大学法人京都大学 血管内皮細胞の誘導方法
US11286454B2 (en) 2015-08-31 2022-03-29 I Peace, Inc. Pluripotent stem cell manufacturing system and method for producing induced pluripotent stem cells
DK3344758T3 (da) 2015-09-01 2021-11-01 Ncardia B V Fremgangsmåde in vitro til differentiering af en human pluripotent stamcellepopulation i en kardiomyocytcellepopulation
CN114807035B (zh) 2015-09-08 2024-02-02 (由卫生与公众服务部部长代表的)美利坚合众国 临床级别视网膜色素上皮细胞的可再现的分化方法
WO2017044488A1 (en) 2015-09-08 2017-03-16 Cellular Dynamics International, Inc. Macs-based purification of stem cell-derived retinal pigment epithelium
JP6830893B2 (ja) 2015-09-11 2021-02-17 アステラス製薬株式会社 腎前駆細胞を製造する方法
EP3353297A1 (en) 2015-09-24 2018-08-01 Crispr Therapeutics AG Novel family of rna-programmable endonucleases and their uses in genome editing and other applications
JP6691756B2 (ja) 2015-09-29 2020-05-13 東亞合成株式会社 合成ペプチドを用いた神経幹細胞の生産方法
EP3356520B1 (en) 2015-10-02 2022-03-23 The U.S.A. as represented by the Secretary, Department of Health and Human Services Lentiviral protein delivery system for rna-guided genome editing
CN108601801A (zh) 2015-10-05 2018-09-28 欧瑞3恩公司 基于鉴别和改善肝功能障碍来诊断和治疗帕金森病
AU2016338680B2 (en) 2015-10-16 2022-11-17 Fate Therapeutics, Inc. Platform for the induction and maintenance of ground state pluripotency
AU2016342183B2 (en) 2015-10-20 2022-03-03 FUJIFILM Cellular Dynamics, Inc. Methods for directed differentiation of pluripotent stem cells to immune cells
JP2016011317A (ja) * 2015-10-21 2016-01-21 加治佐 功 ゲノム編集用クリスパーキャス9による老化遺伝子切り取り若返り経口不老不死薬7
BR112018010006A2 (pt) 2015-11-18 2019-02-05 Orbis Health Solutions Llc sistema de expressão de gene, vetor, método para produção de uma célula-tronco pluripotente induzida e para tratamento de câncer, vacina, e, composição terapêutica.
WO2017123662A1 (en) 2016-01-11 2017-07-20 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of heart failure with preserved ejection fraction
GB201601503D0 (en) 2016-01-27 2016-03-09 Isis Innovation Dendritic cells
EP3417061B1 (en) 2016-02-18 2022-10-26 The Regents of the University of California Methods and compositions for gene editing in stem cells
EP3431584B1 (en) 2016-03-18 2023-06-28 Kyoto University Methods for freezing an aggregate of pluripotent stem cell-derived cardiomyocytes
WO2017164746A1 (en) 2016-03-25 2017-09-28 Pluriomics B.V. In vivo method for differentiating human pluripotent stem cells into atrial cardiomyocytes
MA45479A (fr) 2016-04-14 2019-02-20 Janssen Biotech Inc Différenciation de cellules souches pluripotentes en cellules de l'endoderme de l'intestin moyen
PT3444334T (pt) 2016-04-15 2021-09-08 Univ Kyoto Método para induzir células t cd8 positivas específicas de antigénio
EP3447130A4 (en) 2016-04-22 2019-11-13 Kyoto University METHOD FOR PRODUCING DOPAMINE-PROPERING NEURAL PRESERVATOR CELLS
KR20200127039A (ko) 2016-05-16 2020-11-09 고쿠리츠 다이가쿠 호우징 도우카이 고쿠리츠 다이가쿠 기코우 다능성 간세포에 의한 주산기 뇌장애의 개선 및 치료
WO2017210652A1 (en) 2016-06-03 2017-12-07 Cedars-Sinai Medical Center Cdc-derived exosomes for treatment of ventricular tachyarrythmias
US20190330603A1 (en) 2016-06-17 2019-10-31 Genesis Technologies Limited Crispr-cas system, materials and methods
AU2017290805B2 (en) 2016-07-01 2023-11-16 Research Development Foundation Elimination of proliferating cells from stem cell-derived grafts
WO2018026723A1 (en) 2016-08-01 2018-02-08 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Human induced pluripotent stem cells for high efficiency genetic engineering
CN109689074A (zh) 2016-08-03 2019-04-26 株式会社生命科学研究院 采用多能干细胞的缺血再灌注肺损伤的减轻及治疗
SG11201900983TA (en) 2016-08-03 2019-03-28 Univ Nagoya Nat Univ Corp Amelioration and treatment of chronic lung disease using pluripotent stem cells
US10354218B2 (en) 2016-08-04 2019-07-16 Fanuc Corporation System and method for iPS cell bank using internet technology
US11259520B2 (en) 2016-08-04 2022-03-01 Fanuc Corporation Stem cell manufacturing system, stem cell information management system, cell transport apparatus, and stem cell frozen storage apparatus
US10373109B2 (en) 2016-08-04 2019-08-06 Fanuc Corporation System and method for iPS cell bank using media
JP2019528284A (ja) 2016-08-17 2019-10-10 ファクター バイオサイエンス インコーポレイテッド 核酸産物およびその投与方法
EP3508569B1 (en) 2016-09-02 2023-04-19 Takara Bio Inc. Method for obtaining microglia from pluripotent stem cells
US11541078B2 (en) 2016-09-20 2023-01-03 Cedars-Sinai Medical Center Cardiosphere-derived cells and their extracellular vesicles to retard or reverse aging and age-related disorders
US10961505B2 (en) 2016-10-05 2021-03-30 FUJIFILM Cellular Dynamics, Inc. Generating mature lineages from induced pluripotent stem cells with MECP2 disruption
US20190254264A1 (en) 2016-10-31 2019-08-22 National University Corporation Tottori University Human antibody-producing non-human animal and method for preparing human antibodies using same
CA3043194A1 (en) 2016-11-09 2018-05-17 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services 3d vascularized human ocular tissue for cell therapy and drug discovery
WO2018124118A1 (ja) 2016-12-27 2018-07-05 住友化学株式会社 人工多能性幹細胞の評価方法及び選抜方法、並びに人工多能性幹細胞の製造方法
EP4053268A3 (en) 2017-01-20 2022-12-07 Kyoto University Method for producing cd8alpha+beta+cytotoxic t cells
EP3575392A4 (en) 2017-01-26 2020-08-26 Osaka University MEDIUM FOR INDUCING THE DIFFERENTIATION OF STEM CELLS INTO MESODERMAL CELLS AND METHOD FOR PRODUCING MESODERMAL CELLS
EP3587560A4 (en) 2017-01-27 2020-12-16 Kaneka Corporation ENDODERMAL CELL MASS, AND PROCESS FOR PRODUCING ANY CELL MASS AMONG THREE PRIMARY EMBRYONIC SHEET CELL MASSES FROM PLURIPOTENT CELLS
EP3578650A4 (en) 2017-02-06 2021-03-24 National Cancer Center Japan NEW T-LYMPHOCYTE RECEPTOR
US11530388B2 (en) 2017-02-14 2022-12-20 University of Pittsburgh—of the Commonwealth System of Higher Education Methods of engineering human induced pluripotent stem cells to produce liver tissue
US10828330B2 (en) 2017-02-22 2020-11-10 IO Bioscience, Inc. Nucleic acid constructs comprising gene editing multi-sites and uses thereof
WO2018155607A1 (ja) 2017-02-24 2018-08-30 剛士 田邊 細胞処理装置、浮遊培養器、及び幹細胞の誘導方法
CN110392733B (zh) 2017-02-27 2021-02-26 田边刚士 体细胞制造系统
US20200239823A1 (en) 2017-02-27 2020-07-30 Koji Tanabe Cell processing system and cell processing device
US20190390169A1 (en) 2017-03-03 2019-12-26 Kyoto University Pancreatic progenitor cell production method
US11559548B2 (en) 2017-03-14 2023-01-24 Kyoto University Method for producing helper T cells from pluripotent stem cells
JP7181534B2 (ja) 2017-03-28 2022-12-01 味の素株式会社 未分化維持培地添加剤
AU2018254442B2 (en) 2017-04-18 2024-03-28 FUJIFILM Cellular Dynamics, Inc. Antigen-specific immune effector cells
CA3059910A1 (en) 2017-04-19 2018-10-25 Cedars-Sinai Medical Center Methods and compositions for treating skeletal muscular dystrophy
KR20200021446A (ko) * 2017-04-26 2020-02-28 주식회사 툴젠 sRAGE를 분비하는 줄기세포를 포함하는 알츠하이머병의 예방 또는 치료용 약학 조성물
US20200147146A1 (en) 2017-05-02 2020-05-14 Koji Tanabe Pharmaceutical composition and cosmetic composition
CA3064830A1 (en) 2017-05-25 2018-11-29 Kyoto University Method for inducing differentiation of intermediate mesodermal cell to renal progenitor cell, and method for inducing differentiation of pluripotent stem cell to renal progenitor cell
EP3406712A1 (en) 2017-05-26 2018-11-28 Fundación Centro Nacional De Investigaciones Oncológicas Carlos III Method for expanding stemness and differentiation potential of pluripotent cells
EP3640318A4 (en) 2017-06-14 2021-03-17 Takeda Pharmaceutical Company Limited CELL SEALING DEVICE
CN111164209A (zh) 2017-06-19 2020-05-15 公益财团法人神户医疗产业都市推进机构 多能干细胞的分化能力的预测方法和用于该预测方法的试剂
JP6758631B2 (ja) 2017-06-19 2020-09-23 国立大学法人大阪大学 角膜内皮細胞マーカー及びその利用
JP7255805B2 (ja) 2017-06-20 2023-04-11 国立大学法人東海国立大学機構 多能性幹細胞による胎児発育不全に伴う脳障害の改善及び治療
US10660523B2 (en) 2017-07-07 2020-05-26 Hideo Ando Light-source unit, measurement apparatus, near-infrared microscopic apparatus, optical detection method, imaging method, calculation method, functional bio-related substance, state management method, and manufacturing method
JP7489016B2 (ja) 2017-10-17 2024-05-23 国立大学法人東北大学 骨軟骨修復を誘導する多能性幹細胞
JP7140400B2 (ja) 2017-10-17 2022-09-21 国立大学法人京都大学 多能性幹細胞から人工神経筋接合部を得る方法
US20200332315A1 (en) 2017-11-02 2020-10-22 National University Corporation Tottori University Method for high production of protein using mammalian artificial chromosome vector
WO2019092507A2 (en) 2017-11-09 2019-05-16 Crispr Therapeutics Ag Crispr/cas systems for treatment of dmd
WO2019099725A1 (en) 2017-11-15 2019-05-23 Semma Therapeutics, Inc. Islet cell manufacturing compositions and methods of use
TW201940693A (zh) 2017-11-30 2019-10-16 國立大學法人京都大學 細胞之培養方法
CA3084825A1 (en) 2017-12-14 2019-06-20 Crispr Therapeutics Ag Novel rna-programmable endonuclease systems and their use in genome editing and other applications
US11660355B2 (en) 2017-12-20 2023-05-30 Cedars-Sinai Medical Center Engineered extracellular vesicles for enhanced tissue delivery
CN111868224A (zh) 2017-12-22 2020-10-30 国立大学法人京都大学 细胞培养装置,培养液抽吸器及细胞培养方法
JP6775224B2 (ja) 2018-03-16 2020-10-28 国立大学法人鳥取大学 マウス人工染色体ベクター及びその使用
WO2019183150A1 (en) 2018-03-19 2019-09-26 Casebia Therapeutics Limited Liability Partnership Novel rna-programmable endonuclease systems and uses thereof
US20210060210A1 (en) 2018-03-19 2021-03-04 Kyoto University Hydrogel capsule
US20210010030A1 (en) 2018-03-22 2021-01-14 Nserm (Institut National De La Santé Et De La Recherche Médicale) Method for reprogramming somatic cells
EP3789488A4 (en) 2018-03-30 2021-12-29 Ajinomoto Co., Inc. Composition that contains polylysine analog and promotes cell growth
WO2019189553A1 (ja) 2018-03-30 2019-10-03 国立大学法人京都大学 複素環化合物
US20210009956A1 (en) 2018-03-30 2021-01-14 Kyoto University Cardiomyocyte maturation promoter
US20210054406A1 (en) 2018-03-30 2021-02-25 Kyoto University Cell production method
US11268070B2 (en) 2018-04-16 2022-03-08 Cellular Engineering Technologies, Inc. Methods for creating integration-free, virus-free, exogenous oncogene-free IPS cells and compositions for use in such methods
CN112204134A (zh) 2018-04-20 2021-01-08 富士胶片细胞动力公司 眼细胞的分化方法及其用途
CN112313327B (zh) 2018-04-23 2024-04-19 千纸鹤治疗公司 增殖抑制剂
JP7311116B2 (ja) 2018-04-27 2023-07-19 株式会社カネカ 膵臓β細胞の製造方法
US20210254006A1 (en) 2018-06-06 2021-08-19 Ideaya Biosciences, Inc. Methods of culturing and/or expanding stem cells and/or lineage committed progenitor cells using lactam compounds
EP3806861A1 (en) 2018-06-18 2021-04-21 University of Rochester Methods of treating schizophrenia and other neuropsychiatric disorders
CA3103675A1 (en) 2018-06-21 2019-12-26 University Of Rochester Methods of treating or inhibiting onset of huntington's disease
EP3822342A4 (en) 2018-07-13 2022-08-03 Kyoto University PROCESS FOR PRODUCTION OF GAMMA DELTA T LYMPHOCYTES
US20210299331A1 (en) 2018-07-19 2021-09-30 Kyoto University Pluripotent stem cell-derived plate-shaped cartilage and method for producing the same
WO2020022261A1 (ja) 2018-07-23 2020-01-30 国立大学法人京都大学 新規腎前駆細胞マーカーおよびそれを利用した腎前駆細胞の濃縮方法
EP3831931A4 (en) 2018-08-03 2022-05-18 Kyoto University CELL PRODUCTION PROCESS
CN112639111B (zh) 2018-08-10 2023-07-21 国立大学法人京都大学 使用阳离子性脂质的转染心肌细胞的方法
AU2019320072A1 (en) 2018-08-10 2021-02-25 Vertex Pharmaceuticals Incorporated Stem cell derived islet differentiation
CN112567025A (zh) 2018-08-10 2021-03-26 国立大学法人京都大学 Cd3阳性细胞的制造方法
CN112839667A (zh) 2018-08-14 2021-05-25 国立研究开发法人国立国际医疗研究中心 褐色脂肪细胞上清、其制备法及使用
CN112567016A (zh) 2018-08-20 2021-03-26 爱平世股份有限公司 细胞培养器
JPWO2020040135A1 (ja) 2018-08-20 2021-08-10 剛士 田邊 細胞の培養又は誘導方法
CN112585262B (zh) 2018-08-22 2023-10-20 国立大学法人京都大学 肠神经前体细胞的制造方法
EA202190624A1 (ru) 2018-08-31 2021-06-09 Нойл-Иммьюн Байотек, Инк. Car-экспрессирующие т-клетки и car-экспрессирующий вектор
TW202026420A (zh) 2018-09-19 2020-07-16 日商武田藥品工業股份有限公司 胰島素產生細胞
JP7010442B2 (ja) 2018-10-10 2022-01-26 国立大学法人鳥取大学 微小核細胞融合法による目的dnaを含む動物細胞の作製方法
US20210123027A1 (en) 2018-10-10 2021-04-29 National University Corporation Tottori University Method for producing human induced pluripotent stem cells containing exogenous chromosome
CA3116098A1 (en) 2018-10-12 2020-04-16 Vivet Therapeutics Codon-optimized transgene for the treatment of progressive familiar intrahepatic cholestasis type 3 (pfic3)
EP3868869A4 (en) 2018-10-15 2022-08-03 Public University Corporation Yokohama City University NUTRITIONAL COMPOSITION
EP3875578A4 (en) 2018-10-31 2022-08-10 Kyoto University METHOD FOR GENERATING PLURIPOTENT STEM CELLS WITH RELEASED DIFFERENTIATION RESISTANCE TO MESENDODERM
AU2019375450A1 (en) 2018-11-07 2021-06-17 Vivet Therapeutics Codon-optimized ABCB11 transgene for the treatment of progressive familial intrahepatic cholestasis type 2 (PFIC2)
US20210369870A1 (en) 2018-11-16 2021-12-02 Encoded Therapeutics, Inc. Compositions and methods for treating wilson's disease
CN113226387B (zh) 2018-11-19 2024-02-23 美国政府(由卫生和人类服务部的部长所代表) 可生物降解的组织置换植入物及其用途
JP2022513652A (ja) 2018-11-28 2022-02-09 ボード オブ リージェンツ,ザ ユニバーシティ オブ テキサス システム 機能および抑制性環境に対する抵抗性を増強するための免疫細胞のマルチプレックスゲノム編集
WO2020116606A1 (ja) 2018-12-06 2020-06-11 キリンホールディングス株式会社 T細胞又はnk細胞の製造方法、t細胞又はnk細胞の培養用培地、t細胞又はnk細胞の培養方法、未分化t細胞の未分化状態を維持する方法及びt細胞又はnk細胞の増殖促進剤
CN113728103A (zh) 2018-12-11 2021-11-30 罗切斯特大学 治疗精神分裂症和其他神经精神病症的方法
EP3900787A4 (en) 2018-12-21 2022-02-23 Kyoto University CARTILAGE-LIKE TISSUE WITH LOCALIZED LUBRICINE, METHOD FOR THE PRODUCTION THEREOF, AND COMPOSITION COMPRISING IT FOR THE TREATMENT OF ARTICULAR CARTILAGE LESIONS
US20220062341A1 (en) 2018-12-26 2022-03-03 Kirin Holdings Kabushiki Kaisha Modified tcr and production method therefor
TW202039543A (zh) 2018-12-27 2020-11-01 國立大學法人京都大學 T細胞受體的變體
WO2020158914A1 (ja) 2019-02-01 2020-08-06 国立大学法人京都大学 細胞の検出方法
US20230057355A1 (en) 2019-02-13 2023-02-23 University Of Rochester Gene networks that mediate remyelination of the human brain
US20220145255A1 (en) 2019-02-26 2022-05-12 Tohoku University Method for producing osteoblast cluster using ips cells
JP2020141588A (ja) 2019-03-05 2020-09-10 ファナック株式会社 細胞製造システム
AU2020231380A1 (en) 2019-03-07 2021-09-23 The Regents Of The University Of California CRISPR-Cas effector polypeptides and methods of use thereof
WO2020209959A1 (en) 2019-03-08 2020-10-15 Crispr Therapeutics Ag Nucleobase-editing fusion protein systems, compositions, and uses thereof
US20220145274A1 (en) 2019-03-12 2022-05-12 Crispr Therapeutics Ag Novel high fidelity rna-programmable endonuclease systems and uses thereof
JP7489377B2 (ja) 2019-03-29 2024-05-23 株式会社カネカ 多能性幹細胞を含む細胞集団及びその製造方法
EP3950953A4 (en) 2019-03-29 2023-04-19 Public University Corporation Yokohama City University SCREENING PROCEDURES AND TOXICITY ASSESSMENT PROCEDURES
CA3136401A1 (en) 2019-04-10 2020-10-15 Orizuru Therapeutics, Inc. Method for producing biological tissue-like structure
CN113692442A (zh) 2019-04-17 2021-11-23 学校法人庆应义塾 诱导多能干细胞的制造方法以及试剂盒
US20210047649A1 (en) 2019-05-08 2021-02-18 Vertex Pharmaceuticals Incorporated Crispr/cas all-in-two vector systems for treatment of dmd
CA3140384A1 (en) 2019-05-15 2020-11-19 Ajinomoto Co., Inc. Method for purifying neural crest cells or corneal epithelial cells
WO2020235319A1 (ja) 2019-05-20 2020-11-26 味の素株式会社 軟骨又は骨の前駆細胞の拡大培養方法
US20220306981A1 (en) 2019-06-10 2022-09-29 I Peace, Inc. Erythrocyte removal device, mononuclear cell collector, cell culture device, cell culture system, cell culture method, and method for collecting mononuclear cells
CN113785049A (zh) 2019-06-10 2021-12-10 爱平世股份有限公司 红细胞除去装置、单核细胞回收器、细胞培养装置、细胞培养系统、细胞培养方法及单核细胞的回收方法
EP3985104A4 (en) 2019-06-11 2023-04-12 Kyoto University PROCEDURE FOR GENERATING A KIDNEY INTERSTITIAL CELL
EP3990624A1 (en) 2019-06-25 2022-05-04 Vertex Pharmaceuticals Incorporated Enhanced differentiation of beta cells
EP3992274A4 (en) 2019-06-28 2023-08-09 I Peace, Inc. CELL GROUPS DIVIDER, METHOD FOR MAKING CELL GROUPS DIVIDER AND METHOD FOR DIVIDING CELL GROUPS
US20220251492A1 (en) 2019-06-28 2022-08-11 I Peace, Inc. Cell culture vessel and cell culture device
EP4001425A4 (en) 2019-07-19 2023-04-19 Tokyo Electron Limited METHODS OF EVALUATION OF THE STATUS OF CELL DIFFERENTIATION
US10501404B1 (en) 2019-07-30 2019-12-10 Factor Bioscience Inc. Cationic lipids and transfection methods
WO2021030424A1 (en) 2019-08-13 2021-02-18 Semma Therapeutics, Inc. Pancreatic differentiation
CA3151819A1 (en) 2019-08-20 2021-02-25 Orizuru Therapeutics, Inc. Method for enriching cardiac myocytes
CN114341337A (zh) 2019-08-29 2022-04-12 发那科株式会社 细胞制造装置
JP7391339B2 (ja) 2019-08-29 2023-12-05 ファナック株式会社 細胞製造装置及びその製造方法
WO2021038998A1 (ja) 2019-08-29 2021-03-04 ファナック株式会社 細胞製造装置及びそのシステム
EP4043553A4 (en) 2019-10-01 2023-11-22 Kyoto University METHOD FOR ISOLATING URETERAL NODLE CELLS
JPWO2021079874A1 (ko) 2019-10-21 2021-04-29
JPWO2021085639A1 (ko) 2019-10-31 2021-05-06
CN114729318A (zh) 2019-11-01 2022-07-08 国立大学法人京都大学 T细胞的制备方法
WO2021090767A1 (ja) 2019-11-06 2021-05-14 アイ ピース, インコーポレイテッド 細胞培養装置
EP4060023A4 (en) 2019-11-12 2023-12-13 Juntendo Educational Foundation METHOD FOR DIRECT TRANSDIFFERENTIATION OF A SOMATIC CELL
US20230000915A1 (en) 2019-11-25 2023-01-05 Kyoto University T-cell master cell bank
CN115023233A (zh) 2019-12-12 2022-09-06 国立大学法人千叶大学 包含巨核细胞和血小板的冷冻干燥制剂
FR3105260A1 (fr) 2019-12-20 2021-06-25 Centre National De La Recherche Scientifique (Cnrs) Modèle organoïde cardiaque vascularisé apres incorporation de cardiomyocytes dérivés de cellules souches pluripotentes induites humaines
JP2023516632A (ja) 2020-02-28 2023-04-20 武田薬品工業株式会社 多能性幹細胞からナチュラルキラー細胞を産生するための方法
JP2023516484A (ja) 2020-03-11 2023-04-19 ビット バイオ リミテッド 肝細胞作製方法
EP4118187A1 (en) 2020-03-13 2023-01-18 Goliver Therapeutics Hepatic stem-like cells for the treatment and/or the prevention of fulminant liver disorders
US20230010002A1 (en) 2020-03-18 2023-01-12 Fanuc Corporation Microscope observation system
CN115885035A (zh) 2020-03-19 2023-03-31 千纸鹤治疗公司 心肌细胞的精制方法
JPWO2021187602A1 (ko) 2020-03-19 2021-09-23
EP4130239A4 (en) 2020-03-24 2024-05-15 Kaneka Corp METHODS FOR INDUCING DIFFERENTIATION IN PANCREAS ALPHA CELLS
WO2021201170A1 (ja) 2020-03-31 2021-10-07 スカイファーマ株式会社 医薬有効成分のスクリーニング方法、製造方法及び設計方法
EP4130253A4 (en) 2020-03-31 2024-05-29 Univ Kyoto METHOD FOR PRODUCING T-CELL PRECURSORS
US20230203445A1 (en) 2020-05-26 2023-06-29 Healios K.K. Hypoimmunogenic cells
EP4159838A1 (en) 2020-05-28 2023-04-05 Orizuru Therapeutics, Inc. Mass production method of uniform size cell aggregate
WO2021243203A1 (en) 2020-05-29 2021-12-02 FUJIFILM Cellular Dynamics, Inc. Bilayer of retinal pigmented epithelium and photoreceptors and use thereof
CN116033912A (zh) 2020-05-29 2023-04-28 富士胶片细胞动力公司 视网膜色素上皮和感光器双细胞聚集物及其使用方法
WO2021250058A2 (en) 2020-06-12 2021-12-16 Bayer Aktiengesellschaft CRISPR-Cas12a DIRECTED RANDOM MUTAGENESIS AGENTS AND METHODS
EP4170020A1 (en) 2020-06-17 2023-04-26 Kyoto University Chimeric antigen receptor-expressing immunocompetent cells
JP7429294B2 (ja) 2020-07-13 2024-02-07 国立大学法人京都大学 骨格筋前駆細胞及びその精製方法、筋原性疾患を治療するための組成物、並びに骨格筋前駆細胞を含む細胞群の製造方法
JPWO2022019152A1 (ko) 2020-07-20 2022-01-27
US20230265456A1 (en) 2020-08-10 2023-08-24 Fundacion Para La Investigacion Medica Aplicada Gene therapy vector expressing cyp27a1 for the treatment of cerebrotendinous xanthomatosis
EP4202041A1 (en) 2020-08-18 2023-06-28 Kyoto University Method for maintaining and amplifying human primordial germ cells / human primordial germ cell-like cells
US20230220025A1 (en) 2020-09-04 2023-07-13 Heartseed Inc. Quality Improving Agent for IPS Cells, Method of Producing IPS Cells, IPS Cells, and Composition for Producing IPS Cells
CA3200563A1 (en) 2020-09-29 2022-04-07 Genethon Enhancing utrophin expression in cell by inducing mutations within utrophin regulatory elements and therapeutic use thereof
WO2022104109A1 (en) 2020-11-13 2022-05-19 Catamaran Bio, Inc. Genetically modified natural killer cells and methods of use thereof
CN116391028A (zh) 2020-11-20 2023-07-04 千纸鹤治疗公司 促熟剂
WO2022115611A1 (en) 2020-11-25 2022-06-02 Catamaran Bio, Inc. Cellular therapeutics engineered with signal modulators and methods of use thereof
JP2023553701A (ja) 2020-12-16 2023-12-25 ウニベルシタット ポンペウ ファブラ 先天性筋ジストロフィーの処置のための治療用lama2ペイロード
JP2022099262A (ja) 2020-12-22 2022-07-04 アイ ピース,インコーポレイテッド 細胞の培養器及び細胞の培養方法
WO2022136616A1 (en) 2020-12-23 2022-06-30 Vivet Therapeutics Minimal bile acid inducible promoters for gene therapy
KR20230079442A (ko) 2020-12-23 2023-06-07 미쓰이 가가쿠 가부시키가이샤 배양 부재 및 그 용도
EP4269571A1 (en) 2020-12-25 2023-11-01 Kyoto University Method for producing naive human ips cells from somatic cells
WO2022163466A1 (ja) * 2021-01-26 2022-08-04 アイ ピース, インコーポレイテッド オリゴデンドロサイトの作製方法
KR20230145101A (ko) 2021-02-09 2023-10-17 오리즈루 세라퓨틱스 가부시키가이샤 성숙화제
JPWO2022191171A1 (ko) 2021-03-09 2022-09-15
JPWO2022196714A1 (ko) 2021-03-17 2022-09-22
EP4134086A1 (en) 2021-08-12 2023-02-15 Technische Universität Dresden Human macrophages resistant to tumor-induced repolarization
EP4060026A1 (en) 2021-03-19 2022-09-21 Technische Universität Dresden Ex-vivo proliferation of human phagocytic cells
WO2022194930A1 (en) 2021-03-19 2022-09-22 Technische Universität Dresden Human macrophages resistant to tumor-induced repolarization
EP4314246A1 (en) 2021-04-01 2024-02-07 INSERM (Institut National de la Santé et de la Recherche Médicale) Liver organoid manufacturing methods, liver organoids obtained with the same, and uses thereof
TW202305121A (zh) 2021-04-08 2023-02-01 日商武田藥品工業股份有限公司 T細胞活化方法
JPWO2022230919A1 (ko) 2021-04-28 2022-11-03
AU2022266430A1 (en) 2021-04-30 2023-12-14 Riken Cord-like aggregates of retinal pigment epithelial cells, device and production method for producing same, and therapeutic agent comprising said cord-like aggregates
WO2022236187A1 (en) 2021-05-07 2022-11-10 Children's Hospital Los Angeles Methods for making stem cell-derived enteric neural crest cells and their use in enteric neuropathy treatment
EP4347796A1 (en) 2021-05-26 2024-04-10 Fujifilm Cellular Dynamics, Inc. Methods to prevent rapid silencing of genes in pluripotent stem cells
WO2022251477A1 (en) 2021-05-28 2022-12-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Biodegradable tissue scaffold with secondary matrix to host weakly adherent cells
WO2022251499A1 (en) 2021-05-28 2022-12-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods to generate macular, central and peripheral retinal pigment epithelial cells
WO2022258511A1 (en) 2021-06-07 2022-12-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for generating highly functional hepatocytes by differentiating hepatoblasts
CA3222761A1 (en) 2021-06-10 2022-12-15 Ajinomoto Co., Inc. Method for producing mesenchymal stem cells
EP4101928A1 (en) 2021-06-11 2022-12-14 Bayer AG Type v rna programmable endonuclease systems
IL308896A (en) 2021-06-11 2024-01-01 Bayer Ag Programmable type V RNA endoclase systems
EP4355861A1 (en) 2021-06-15 2024-04-24 Takeda Pharmaceutical Company Limited Method for producing natural killer cells from pluripotent stem cells
CN117561328A (zh) 2021-06-29 2024-02-13 国立大学法人佐贺大学 iPS细胞来源的软骨细胞结构体的制造方法
EP4372079A1 (en) 2021-07-15 2024-05-22 Astellas Pharma Inc. Pericyte-like cells expressing vascular endothelial growth factor (vegf) at high level
JPWO2023286834A1 (ko) 2021-07-15 2023-01-19
WO2023003025A1 (ja) 2021-07-21 2023-01-26 国立大学法人京都大学 網膜組織の製造方法
WO2023017848A1 (ja) 2021-08-11 2023-02-16 国立大学法人京都大学 腎間質前駆細胞の製造方法並びにエリスロポエチン産生細胞、およびレニン産生細胞の製造方法
EP4144841A1 (en) 2021-09-07 2023-03-08 Bayer AG Novel small rna programmable endonuclease systems with impoved pam specificity and uses thereof
WO2023039588A1 (en) 2021-09-13 2023-03-16 FUJIFILM Cellular Dynamics, Inc. Methods for the production of committed cardiac progenitor cells
WO2023048275A1 (ja) 2021-09-27 2023-03-30 国立大学法人京都大学 T細胞の製造方法
WO2023053220A1 (ja) 2021-09-28 2023-04-06 公益財団法人京都大学iPS細胞研究財団 多能性幹細胞の製造方法
US20230241118A1 (en) 2021-10-20 2023-08-03 University Of Rochester Rejuvenation treatment of age-related white matter loss
CA3234404A1 (en) 2021-10-20 2023-04-27 Steven A. Goldman Treatment with genetically modified cells, and genetically modified cells per se, with increased competitive advantage and/or decreased competitive disadvantage
WO2023069843A1 (en) 2021-10-20 2023-04-27 University Of Rochester Humanized chimeras for the prospective assessment of cell addition and replacement therapies
IL311786A (en) 2021-10-21 2024-05-01 Vertex Pharma hypoimmune cells
IL311636A (en) 2021-11-01 2024-05-01 Vertex Pharma Differentiation of stem cell-derived pancreatic islets
US20230270818A1 (en) 2021-11-02 2023-08-31 University Of Rochester Tcf7l2 mediated remyelination in the brain
JPWO2023085433A1 (ko) 2021-11-15 2023-05-19
WO2023090361A1 (ja) 2021-11-16 2023-05-25 国立大学法人鳥取大学 改変d領域を含むヒト免疫グロブリン重鎖遺伝子座を有する哺乳動物人工染色体ベクター、及びそのベクターを保持する細胞又は非ヒト動物
WO2023090372A1 (ja) 2021-11-16 2023-05-25 学校法人東京薬科大学 プロモーター活性化配列、そのプロモーター活性化配列を含む発現ベクター、及びその発現ベクターを含む哺乳動物細胞
WO2023118068A1 (en) 2021-12-23 2023-06-29 Bayer Aktiengesellschaft Novel small type v rna programmable endonuclease systems
WO2023150557A1 (en) 2022-02-01 2023-08-10 University Of Rochester Methods of generating a population of neurons from human glial progenitor cells and genetic constructs for carrying out such methods
WO2023167986A1 (en) 2022-03-02 2023-09-07 Lineage Cell Therapeutics, Inc. Methods and compositions for treating hearing loss
WO2023172514A1 (en) 2022-03-07 2023-09-14 Catamaran Bio, Inc. Engineered immune cell therapeutics targeted to her2 and methods of use thereof
WO2023211857A1 (en) 2022-04-25 2023-11-02 Lineage Cell Therapeutics, Inc. Methods and compositions for treating vision loss
WO2023215455A1 (en) 2022-05-05 2023-11-09 University Of Rochester Dual macroglial-microglial approach towards therapeutic cell replacement in neurodegenerative and neuropsychiatric disease
WO2023237587A1 (en) 2022-06-10 2023-12-14 Bayer Aktiengesellschaft Novel small type v rna programmable endonuclease systems
WO2023247532A1 (en) 2022-06-21 2023-12-28 Institut National de la Santé et de la Recherche Médicale A method for producing a bioengineered mammal induced pluripotent stem cell-derived cardiac organoid
WO2024006911A1 (en) 2022-06-29 2024-01-04 FUJIFILM Holdings America Corporation Ipsc-derived astrocytes and methods of use thereof
EP4338745A1 (en) 2022-09-14 2024-03-20 Technische Universität Dresden Allogeneic human macrophages for cell therapy
WO2024073776A1 (en) 2022-09-30 2024-04-04 FUJIFILM Cellular Dynamics, Inc. Methods for the production of cardiac fibroblasts

Family Cites Families (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US70292A (en) * 1867-10-29 Petess
US4650761A (en) * 1981-11-27 1987-03-17 Eli Lilly And Company Method for stabilizing and selecting recombinant DNA containing host cell
US4650764A (en) 1983-04-12 1987-03-17 Wisconsin Alumni Research Foundation Helper cell
US4861719A (en) 1986-04-25 1989-08-29 Fred Hutchinson Cancer Research Center DNA constructs for retrovirus packaging cell lines
US4937190A (en) 1987-10-15 1990-06-26 Wisconsin Alumni Research Foundation Translation enhancer
US5192553A (en) 1987-11-12 1993-03-09 Biocyte Corporation Isolation and preservation of fetal and neonatal hematopoietic stem and progenitor cells of the blood and methods of therapeutic use
US6140111A (en) 1987-12-11 2000-10-31 Whitehead Institute For Biomedical Research Retroviral gene therapy vectors and therapeutic methods based thereon
US5591624A (en) 1988-03-21 1997-01-07 Chiron Viagene, Inc. Retroviral packaging cell lines
US7070994B2 (en) 1988-03-21 2006-07-04 Oxford Biomedica (Uk) Ltd. Packaging cells
JP2886547B2 (ja) 1988-07-26 1999-04-26 協和醗酵工業株式会社 ノイラミニダーゼの製造法
JP3082204B2 (ja) 1988-09-01 2000-08-28 ホワイトヘッド・インスティチュート・フォー・バイオメディカル・リサーチ 両栄養性および環境栄養性宿主域を持つ組換え体レトロウイルス
US5266491A (en) 1989-03-14 1993-11-30 Mochida Pharmaceutical Co., Ltd. DNA fragment and expression plasmid containing the DNA fragment
JP3051411B2 (ja) 1989-03-14 2000-06-12 持田製薬株式会社 新規dnaならびにそれを含有する発現プラスミド
JP2897295B2 (ja) 1989-12-14 1999-05-31 味の素株式会社 レトロウィルス高生産用dna構築物及びレトロウィルス高生産用細胞株
US5674980A (en) 1989-12-21 1997-10-07 Biogen Inc Fusion protein comprising tat-derived transport moiety
US5817491A (en) 1990-09-21 1998-10-06 The Regents Of The University Of California VSV G pseusdotyped retroviral vectors
US5288514A (en) 1992-09-14 1994-02-22 The Regents Of The University Of California Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support
US5834256A (en) 1993-06-11 1998-11-10 Cell Genesys, Inc. Method for production of high titer virus and high efficiency retroviral mediated transduction of mammalian cells
FR2707091B1 (fr) 1993-06-30 1997-04-04 Cohen Haguenauer Odile Vecteur rétroviral pour le transfert et l'expression de gènes dans des cellules eucaryotes.
US5534423A (en) 1993-10-08 1996-07-09 Regents Of The University Of Michigan Methods of increasing rates of infection by directing motion of vectors
US5519134A (en) 1994-01-11 1996-05-21 Isis Pharmaceuticals, Inc. Pyrrolidine-containing monomers and oligomers
US6013517A (en) 1994-05-09 2000-01-11 Chiron Corporation Crossless retroviral vectors
US5525735A (en) 1994-06-22 1996-06-11 Affymax Technologies Nv Methods for synthesizing diverse collections of pyrrolidine compounds
US5549974A (en) 1994-06-23 1996-08-27 Affymax Technologies Nv Methods for the solid phase synthesis of thiazolidinones, metathiazanones, and derivatives thereof
DE69534166T2 (de) 1994-10-28 2006-03-09 Trustees Of The University Of Pennsylvania Rekombinanter adenovirus und methoden zu dessen verwendung
US5843780A (en) 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US5637456A (en) 1995-02-17 1997-06-10 The University Of Texas, Board Of Regents Rapid test for determining the amount of functionally inactive gene in a gene therapy vector preparation
US5707618A (en) 1995-03-24 1998-01-13 Genzyme Corporation Adenovirus vectors for gene therapy
US5830725A (en) 1995-04-28 1998-11-03 The Board Of Trustees For The Leland Stanford Junior University Rapid, stable high-titre production of recombing retrovirus
US5744320A (en) 1995-06-07 1998-04-28 Promega Corporation Quenching reagents and assays for enzyme-mediated luminescence
BR9610058A (pt) 1995-07-28 1999-07-27 Marie Curie Cancer Care Uso de vp22 ou uma porção ativa fragmento ou homólogo do mesmo proteína de transporte ácido nucleíco vetor de expressão célula hospedeira de mamíferos ou microbiana e processos para transportar uma proteína ou peptídeo desejado para uma população de marcaç o de células e para transportar uma molécula desejada em uma população de células
WO1997011083A1 (en) 1995-09-22 1997-03-27 Medical Research Council Improvements in or relating to mutagenesis of nucleic acids
US5910434A (en) 1995-12-15 1999-06-08 Systemix, Inc. Method for obtaining retroviral packaging cell lines producing high transducing efficiency retroviral supernatant
FR2751345B1 (fr) 1996-07-16 1998-09-18 Univ Paris Curie Lignees d'encapsidation hautement productrices
US6025192A (en) 1996-09-20 2000-02-15 Cold Spring Harbor Laboratory Modified retroviral vectors
US6255071B1 (en) 1996-09-20 2001-07-03 Cold Spring Harbor Laboratory Mammalian viral vectors and their uses
US6017735A (en) 1997-01-23 2000-01-25 Marie Curie Cancer Care Materials and methods for intracellular transport and their uses
US6416959B1 (en) 1997-02-27 2002-07-09 Kenneth Giuliano System for cell-based screening
WO1999010536A1 (en) 1997-08-22 1999-03-04 Yale University A process to study changes in gene expression in granulocytic cells
JPH11115328A (ja) * 1997-10-16 1999-04-27 Dainippon Printing Co Ltd 熱転写受像シート及びその製造方法
US6835567B1 (en) * 1998-04-14 2004-12-28 Signal Pharmaceuticals, Inc. PNS cell lines and methods of use therefor
US20020174013A1 (en) 1998-04-17 2002-11-21 Viztec Inc., A Florida Corporation Chip card advertising method and system
EP1080218A1 (en) 1998-05-27 2001-03-07 University of Florida Method of preparing recombinant adeno-associated virus compositions by using an iodixanol gradient
KR20000006334A (ko) 1998-06-26 2000-01-25 이선경 바이러스코딩염기서열이전혀없는고효율레트로바이러스벡터
US6485959B1 (en) 1998-10-07 2002-11-26 Cedars Sinai Medical Center Cell preconditioning and cryopresevation medium
CA2346152A1 (en) 1998-10-16 2000-04-27 Novartis Ag Promotion of self-renewal and improved gene transduction of hematopoietic stem cells by histone deacetylase inhibitors
US6667176B1 (en) 2000-01-11 2003-12-23 Geron Corporation cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells
CA2349415A1 (en) 1998-11-09 2000-05-18 Monash University Embryonic stem cells
US6376246B1 (en) 1999-02-05 2002-04-23 Maxygen, Inc. Oligonucleotide mediated nucleic acid recombination
US6153432A (en) 1999-01-29 2000-11-28 Zen-Bio, Inc Methods for the differentiation of human preadipocytes into adipocytes
US6312949B1 (en) 1999-03-26 2001-11-06 The Salk Institute For Biological Studies Regulation of tyrosine hydroxylase expression
US6773920B1 (en) 1999-03-31 2004-08-10 Invitrogen Corporation Delivery of functional protein sequences by translocating polypeptides
WO2000073423A1 (fr) 1999-06-01 2000-12-07 Chugai Seiyaku Kabushiki Kaisha Cellule de conditionnement
US7015037B1 (en) 1999-08-05 2006-03-21 Regents Of The University Of Minnesota Multiponent adult stem cells and methods for isolation
EP1210362A2 (en) 1999-09-01 2002-06-05 University Of Pittsburgh Of The Commonwealth System Of Higher Education Identification of peptides that facilitate uptake and cytoplasmic and/or nuclear transport of proteins, dna and viruses
AU7611500A (en) 1999-09-24 2001-04-24 Abt Holding Company Pluripotent embryonic-like stem cells, compositions, methods and uses thereof
US20030161817A1 (en) 2001-03-28 2003-08-28 Young Henry E. Pluripotent embryonic-like stem cells, compositions, methods and uses thereof
US6280718B1 (en) 1999-11-08 2001-08-28 Wisconsin Alumni Reasearch Foundation Hematopoietic differentiation of human pluripotent embryonic stem cells
US7544509B2 (en) 2000-01-24 2009-06-09 Mcgill University Method for preparing stem cell preparations
US6395546B1 (en) 2000-02-01 2002-05-28 Neurogeneration, Inc. Generation of dopaminergic neurons from human nervous system stem cells
US7439064B2 (en) 2000-03-09 2008-10-21 Wicell Research Institute, Inc. Cultivation of human embryonic stem cells in the absence of feeder cells or without conditioned medium
US6458589B1 (en) 2000-04-27 2002-10-01 Geron Corporation Hepatocyte lineage cells derived from pluripotent stem cells
GB2379447B (en) 2000-05-17 2004-12-29 Geron Corp Neural progenitor cell populations
US20020090722A1 (en) 2000-06-15 2002-07-11 Tanja Dominko Pluripotent mammalian cells
DE10031179A1 (de) 2000-06-27 2002-01-31 Amaxa Gmbh Verfahren zur Einbringung von Nukleinsäuren und anderen biologisch aktiven Molekülen in den Kern höherer eukaryontischer Zellen mit Hilfe elektrischen Stroms
CA2417454A1 (en) 2000-07-31 2002-02-07 Active Motif Peptide-mediated delivery of molecules into cells
JP2002065261A (ja) 2000-08-30 2002-03-05 Mitsubishi Kasei Institute Of Life Sciences 生殖細胞の取得方法
AU2001289852A1 (en) 2000-08-31 2002-03-13 Edwin Lundgren Control device for a steering kite on a boat
CA2430653A1 (en) 2000-11-27 2002-08-08 Yissum Research Development Company Of The Hebrew University In Jerusalem Transfection of human embryonic stem cells
US20080268054A1 (en) 2000-12-04 2008-10-30 Eugene Bell Dermal derived human stem cells and compositions and methods thereof
NZ526888A (en) 2001-01-02 2008-07-31 Stemron Inc Isolated homozygous stem (HS) cells and the discovery that these cells may be selected for immunotype and genotype, therefore being useful for diagnosis, transplantation and/or treatment
US20040077079A1 (en) * 2001-01-31 2004-04-22 Peter Storgaard Improved in vitro method of culturing mammalian cells for autologous cell implantation/transplantation methods
JP2003009854A (ja) 2001-04-09 2003-01-14 Kyowa Hakko Kogyo Co Ltd エンブリオイドボディ形成方法及びその用途
DE10119901A1 (de) 2001-04-23 2002-10-24 Amaxa Gmbh Schaltungsanordnung zur Einbringung von Nukleinsäuren und anderen biologisch aktiven Molekülen in den Kern höherer eukaryontischer Zellen mit Hilfe elektrischen Stroms
MXPA03009622A (es) 2001-04-23 2005-03-07 Amaxa Gmbh Solucion amortiguadora para electroporacion y metodo que comprende el uso de la misma.
WO2002097090A1 (en) * 2001-05-31 2002-12-05 Sumitomo Pharmaceuticals Co., Ltd. Genes with es cell-specific expression
WO2003018780A1 (en) 2001-08-27 2003-03-06 Advanced Cell Technology, Inc. De-differentiation and re-differentiation of somatic cells and production of cells for cell therapies
US20050079606A1 (en) 2001-09-20 2005-04-14 Kyowa Hakko Kogyo Co., Ltd. Pluripotent stem cells originating in skeletal muscle intestinal tissue
JP2004248505A (ja) * 2001-09-21 2004-09-09 Norio Nakatsuji 移植抗原の一部または全てを欠除したes細胞由来の未分化な体細胞融合細胞およびその製造
WO2003027277A1 (fr) 2001-09-21 2003-04-03 Japan Science And Technology Corporation Procede de criblage de facteur de reprogrammation, facteur de reprogrammation crible au moyen de ce procede, procede d'utilisation du facteur de reprogrammation, procede de differenciation de cellules fusionnees non differenciees et procede de construction de cellules, de tissus et d'organes
US7588937B2 (en) 2001-10-03 2009-09-15 Wisconsin Alumni Research Foundation Method of in vitro differentiation of neural stem cells, motor neurons and dopamine neurons from primate embryonic stem cells
DE10162080A1 (de) 2001-12-10 2003-06-26 Albrecht Mueller Verfahren zur Herstellung von Stammzellen mit erhöhtem Entwicklungspotential
WO2003055989A2 (en) * 2001-12-21 2003-07-10 Mount Sinai Hospital Cellular compositions and methods of making and using them
JP4223961B2 (ja) 2002-01-31 2009-02-12 Agcテクノグラス株式会社 霊長類胚性幹細胞の凍結保存方法
EP1482787A4 (en) * 2002-02-13 2006-02-15 Anthrogenesis Corp EMBRYONIC TYPE DERIVED STEM CELLS DERIVED FROM MAMMALIAN POST-PARTUM PLACENTA, USES THEREOF, AND METHODS OF TREATMENT BASED ON CELLS OF THIS TYPE
ES2198216B1 (es) * 2002-07-02 2005-04-16 Juan Carlos Instituto Cientifico Y Tecnologico De Navarra, S.A.(67%). Medio de cultivo de celulas madre-progenitoras autologas humanas y sus aplicaciones.
US7422736B2 (en) 2002-07-26 2008-09-09 Food Industry Research And Development Institute Somatic pluripotent cells
US20040048297A1 (en) 2002-07-30 2004-03-11 Gene Logic, Inc. Nucleic acid detection assay control genes
JP3736517B2 (ja) * 2002-11-13 2006-01-18 学校法人近畿大学 体細胞核初期化因子
AU2003901099A0 (en) 2003-03-11 2003-03-27 Es Cell International Pte Ltd. Methods of inducing differentiation of stem cells
EP1619242A4 (en) * 2003-03-25 2006-09-06 Japan Science & Tech Agency CONTROL OF INDUCTION OF DIFFERENTIATION OF STEM CELLS AND DIFFERENTIATION CAPACITY
CN1536076A (zh) * 2003-04-09 2004-10-13 中国人民解放军军事医学科学院野战输 成年人骨髓间充质干细胞体外扩增和定向诱导分化为心肌样细胞的方法
US9567591B2 (en) 2003-05-15 2017-02-14 Mello Biotechnology, Inc. Generation of human embryonic stem-like cells using intronic RNA
US20070053884A1 (en) 2003-05-16 2007-03-08 Kyowa Hakko Kogyo Co., Ltd Novel adult tissue-derived stem cell and use thereof
WO2005010524A1 (en) 2003-06-04 2005-02-03 Curis, Inc. Stem cell-based methods for identifying and characterizing agents
FR2859219B1 (fr) * 2003-09-02 2005-10-14 Alain Privat Procede de production de neurones a partir de cellules d'une lignee cellulaire
JP2005095027A (ja) 2003-09-22 2005-04-14 Reprocell Inc 細胞の未分化状態マーカープロモーターおよびその利用
JPWO2005035741A1 (ja) 2003-10-09 2006-12-21 協和醗酵工業株式会社 ゲノムが改変された細胞
EP1682150B1 (en) 2003-11-10 2012-12-26 The Scripps Research Institute Compositions and methods for inducing cell dedifferentiation
US7682828B2 (en) 2003-11-26 2010-03-23 Whitehead Institute For Biomedical Research Methods for reprogramming somatic cells
AU2004294835B2 (en) 2003-12-01 2010-04-29 Technion Research & Development Foundation Ltd. Methods of generating stem cells and embryonic bodies carrying disease-causing mutations and methods of using same for studying genetic disorders
WO2005065354A2 (en) * 2003-12-31 2005-07-21 The Burnham Institute Defined media for pluripotent stem cell culture
WO2005080598A1 (ja) * 2004-02-19 2005-09-01 Dainippon Sumitomo Pharma Co., Ltd. 体細胞核初期化物質のスクリーニング方法
WO2005090557A1 (ja) 2004-03-23 2005-09-29 Daiichi Asubio Pharma Co., Ltd. 多能性幹細胞の増殖方法
JP4314372B2 (ja) * 2004-03-30 2009-08-12 国立大学法人京都大学 精巣細胞由来多能性幹細胞の製造方法
US8012747B2 (en) 2004-06-01 2011-09-06 San Diego State University Foundation Expression system
EP1788079A4 (en) 2004-07-08 2008-08-06 Japan Science & Tech Agency ANIMAL TISSUE - PLURIPOTENT STRAIN CELL LOCATED ORGINALLY AND SELECTIVELY PROLIFERATING IN A LOW SERUM SUPPORT
WO2006084229A2 (en) 2004-07-15 2006-08-10 Primegen Biotech, Llc Use of nuclear material to therapeutically reprogram differentiated cells
WO2006017476A2 (en) 2004-08-02 2006-02-16 The Research Foundation Of State University Of New York Amino functionalized ormosil nanoparticles as delivery vehicles
US7803920B2 (en) 2004-09-29 2010-09-28 Shinya Yamanaka ECAT16 gene expressed specifically in ES cells and utilization of the same
US20060095319A1 (en) 2004-10-29 2006-05-04 Cardwell Carlzo B Marketing and compensation method
US20060182724A1 (en) 2005-02-15 2006-08-17 Riordan Neil H Method for expansion of stem cells
JPWO2006093172A1 (ja) 2005-02-28 2008-08-07 財団法人先端医療振興財団 成体幹細胞の体外増幅方法
US20070033061A1 (en) 2005-04-05 2007-02-08 Achaogen, Inc. Business methods for commercializing antimicrobial and cytotoxic compounds
WO2007026255A2 (en) 2005-06-22 2007-03-08 Universitetet I Oslo Dedifferentiated cells and methods of making and using dedifferentiated cells
US7601699B2 (en) * 2005-08-01 2009-10-13 Nupotential, Inc. Production of reprogrammed cells with restored potential
TW200730623A (en) 2005-11-11 2007-08-16 Univ Edinburgh Reprogramming and genetic modification of cells
AU2006325975B2 (en) 2005-12-13 2011-12-08 Kyoto University Nuclear reprogramming factor
US8129187B2 (en) 2005-12-13 2012-03-06 Kyoto University Somatic cell reprogramming by retroviral vectors encoding Oct3/4. Klf4, c-Myc and Sox2
US8278104B2 (en) 2005-12-13 2012-10-02 Kyoto University Induced pluripotent stem cells produced with Oct3/4, Klf4 and Sox2
US20090227032A1 (en) 2005-12-13 2009-09-10 Kyoto University Nuclear reprogramming factor and induced pluripotent stem cells
JP2009528050A (ja) 2006-02-27 2009-08-06 イムジェン カンパニー リミテッド Bmi−1を用いた星状細胞の神経幹細胞への脱分化
WO2008038148A2 (en) 2006-05-11 2008-04-03 Andrew Craig Boquest Stem cells and methods of making and using stem cells
US20090028835A1 (en) 2006-09-08 2009-01-29 Michigan State University Human transcriptome corresponding to human oocytes and use of said genes or the corresponding polypeptides to trans-differentiate somatic cells
JP2008099662A (ja) 2006-09-22 2008-05-01 Institute Of Physical & Chemical Research 幹細胞の培養方法
US20080132803A1 (en) 2006-11-30 2008-06-05 Hyman Friedlander Method and system for doing business by mining the placental-chord complex
US7892830B2 (en) 2007-01-17 2011-02-22 Wisconsin Alumni Research Foundation Clonal culture of human pluripotent stem cells
WO2008105566A1 (en) 2007-02-27 2008-09-04 Korea Stem Cell Bank System for providing stem cell services using internet and method thereof
EP2132225A4 (en) 2007-02-27 2010-06-09 Procell Therapeutics Inc COMBINED USE OF NANOG AND OCT4 PERMEABLE TO CELLS TO INCREASE SELF-RENEWAL AND DELETE DIFFERENTIATION OF STEM CELLS
KR101516833B1 (ko) 2007-03-23 2015-05-07 위스콘신 얼럼나이 리서어치 화운데이션 체세포 재프로그래밍
EP2626416A3 (en) 2007-04-07 2013-12-18 The Whitehead Institute for Biomedical Research Reprogramming of somatic cells
EP3128015A3 (en) 2007-05-29 2017-05-03 Christopher B. Reid A method for providing a desired cell population capable of further differentiation in vivo
EP2164951A2 (en) 2007-05-30 2010-03-24 The General Hospital Corporation Methods of generating pluripotent cells from somatic cells
US9213999B2 (en) 2007-06-15 2015-12-15 Kyoto University Providing iPSCs to a customer
JP2008307007A (ja) 2007-06-15 2008-12-25 Bayer Schering Pharma Ag 出生後のヒト組織由来未分化幹細胞から誘導したヒト多能性幹細胞
WO2009032456A2 (en) 2007-08-01 2009-03-12 Primegen Biotech Llc Non-viral delivery of transcription factors that reprogram human somatic cells into a stem cell-like state
EP2190976A4 (en) 2007-08-10 2010-10-20 Univ Dayton METHOD FOR PRODUCING PLURIPOTENTAL STEM CELL LENGTH CELLS
EP3078738B1 (en) 2007-08-31 2020-05-20 Whitehead Institute for Biomedical Research Wnt pathway stimulation in reprogramming somatic cells
WO2009057831A1 (ja) 2007-10-31 2009-05-07 Kyoto University 核初期化方法
US20110151447A1 (en) 2007-11-06 2011-06-23 Children's Medical Center Corporation Method to produce induced pluripotent stem (ips) cells from non-embryonic human cells
US9005966B2 (en) 2007-11-19 2015-04-14 The Regents Of The University Of California Generation of pluripotent cells from fibroblasts
AU2008286249B2 (en) 2007-12-10 2013-10-10 Kyoto University Efficient method for nuclear reprogramming
US9683232B2 (en) 2007-12-10 2017-06-20 Kyoto University Efficient method for nuclear reprogramming
US20090191171A1 (en) 2008-01-18 2009-07-30 Yupo Ma Reprogramming of Differentiated Progenitor or Somatic Cells Using Homologous Recombination
KR101481164B1 (ko) 2008-01-30 2015-01-09 주식회사 미래셀바이오 체세포 유래 다능성 줄기세포의 제조 방법
US20110014164A1 (en) 2008-02-15 2011-01-20 President And Fellows Of Harvard College Efficient induction of pluripotent stem cells using small molecule compounds
AU2009225665B9 (en) 2008-03-17 2015-01-15 The Scripps Research Institute Combined chemical and genetic approaches for generation of induced pluripotent stem cells
EP2268796A1 (en) 2008-03-17 2011-01-05 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Vectors and methods for generating vector-free induced pluripotent stem (ips) cells using site-specific recombination
CN101250502A (zh) 2008-04-01 2008-08-27 中国科学院上海生命科学研究院 一种诱导的多潜能干细胞的制备方法
CN101550406B (zh) 2008-04-03 2016-02-10 北京大学 制备多潜能干细胞的方法,试剂盒及用途
US20100021437A1 (en) 2008-04-07 2010-01-28 The McLean Hospital Corporation Whitehead Institute for Biomedical Research Neural stem cells derived from induced pluripotent stem cells
KR101661940B1 (ko) 2008-05-02 2016-10-04 고쿠리츠 다이가쿠 호진 교토 다이가쿠 핵 초기화 방법
EP2128245A1 (en) 2008-05-27 2009-12-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Generation of induced pluripotent stem (iPS) cells
DK2297307T3 (en) 2008-06-04 2016-07-25 Cellular Dynamics Int Inc PROCEDURES FOR THE MANUFACTURE OF IPS CELLS USING NON-VIRAL METHODS
AU2008360135A1 (en) 2008-07-31 2010-02-04 Gifu University Efficient method for establishing induced pluripotent stem cells
US20100062534A1 (en) 2008-09-09 2010-03-11 The General Hospital Corporation Inducible lentiviral vectors for reprogramming somatic cells
ES2959327T3 (es) 2008-10-24 2024-02-23 Wisconsin Alumni Res Found Células madre pluripotentes obtenidas mediante reprogramación no vírica

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. Tada et al., Curr. Biol., 11, pp.1553-1558, 2001 *

Also Published As

Publication number Publication date
BRPI0619794A2 (pt) 2011-10-18
EP2208786B1 (en) 2018-08-01
JP5943324B2 (ja) 2016-07-05
AU2006325975A1 (en) 2007-06-21
EP4223769A2 (en) 2023-08-09
HK1125967A1 (en) 2009-08-21
IL191903A (en) 2011-11-30
JP4411363B2 (ja) 2010-02-10
EP2208786A1 (en) 2010-07-21
EP1970446A1 (en) 2008-09-17
CN103113463A (zh) 2013-05-22
JP2014000083A (ja) 2014-01-09
JP5248371B2 (ja) 2013-07-31
EA201000858A1 (ru) 2011-02-28
JP2009165479A (ja) 2009-07-30
EP2206778B1 (en) 2018-08-01
EP1970446B1 (en) 2011-08-03
CN101864392A (zh) 2010-10-20
BRPI0619794B8 (pt) 2022-06-14
EA200870046A1 (ru) 2009-12-30
EP1970446A4 (en) 2009-04-08
WO2007069666A1 (ja) 2007-06-21
JP2009165480A (ja) 2009-07-30
EP3418297B1 (en) 2023-04-05
JP2009165478A (ja) 2009-07-30
JP4411362B2 (ja) 2010-02-10
EP2206778A1 (en) 2010-07-14
PT1970446E (pt) 2011-09-01
HK1125131A1 (en) 2009-07-31
EA014166B1 (ru) 2010-10-29
ES2367525T3 (es) 2011-11-04
US20090068742A1 (en) 2009-03-12
JP2009165481A (ja) 2009-07-30
BRPI0619794B1 (pt) 2020-09-15
CN101356270A (zh) 2009-01-28
IL191903A0 (en) 2008-12-29
US8048999B2 (en) 2011-11-01
JP5098028B2 (ja) 2012-12-12
JPWO2007069666A1 (ja) 2009-05-21
JP2008283972A (ja) 2008-11-27
ZA200804673B (en) 2009-11-25
EP3418297A1 (en) 2018-12-26
CN101864392B (zh) 2016-03-23
CA2632142A1 (en) 2007-06-21
KR20080095852A (ko) 2008-10-29
EP4223769A3 (en) 2023-11-01
MX352337B (es) 2017-11-21
EP2206724A1 (en) 2010-07-14
MX2008007654A (es) 2008-09-26
EA018039B1 (ru) 2013-05-30
CN101356270B (zh) 2014-02-12
CN103773804A (zh) 2014-05-07
JP5467223B2 (ja) 2014-04-09
JP4183742B1 (ja) 2008-11-19
CA2632142C (en) 2013-08-06
NZ569530A (en) 2011-07-29
JP2011188860A (ja) 2011-09-29
DK1970446T3 (da) 2011-10-24
AU2006325975B2 (en) 2011-12-08
JP5603282B2 (ja) 2014-10-08
CN103113463B (zh) 2015-02-18

Similar Documents

Publication Publication Date Title
KR101420740B1 (ko) 핵초기화 인자
US20220048963A1 (en) Nuclear reprogramming factor and induced pluripotent stem cells
US8058065B2 (en) Oct3/4, Klf4, c-Myc and Sox2 produce induced pluripotent stem cells
US8129187B2 (en) Somatic cell reprogramming by retroviral vectors encoding Oct3/4. Klf4, c-Myc and Sox2
US20150218585A1 (en) GENERATION OF INDUCED PLURIPOTENT STEM (iPS) CELLS

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170523

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180525

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190523

Year of fee payment: 6