JP7344486B2 - 心筋細胞成熟促進剤 - Google Patents
心筋細胞成熟促進剤 Download PDFInfo
- Publication number
- JP7344486B2 JP7344486B2 JP2020509308A JP2020509308A JP7344486B2 JP 7344486 B2 JP7344486 B2 JP 7344486B2 JP 2020509308 A JP2020509308 A JP 2020509308A JP 2020509308 A JP2020509308 A JP 2020509308A JP 7344486 B2 JP7344486 B2 JP 7344486B2
- Authority
- JP
- Japan
- Prior art keywords
- cells
- cardiomyocytes
- medium
- stem cells
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0657—Cardiomyocytes; Heart cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/34—Muscles; Smooth muscle cells; Heart; Cardiac stem cells; Myoblasts; Myocytes; Cardiomyocytes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/02—Atmosphere, e.g. low oxygen conditions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/05—Inorganic components
- C12N2500/10—Metals; Metal chelators
- C12N2500/20—Transition metals
- C12N2500/24—Iron; Fe chelators; Transferrin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/115—Basic fibroblast growth factor (bFGF, FGF-2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/155—Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/16—Activin; Inhibin; Mullerian inhibiting substance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/70—Enzymes
- C12N2501/72—Transferases [EC 2.]
- C12N2501/727—Kinases (EC 2.7.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/999—Small molecules not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2506/00—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
- C12N2506/45—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/90—Substrates of biological origin, e.g. extracellular matrix, decellularised tissue
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Cardiology (AREA)
- Molecular Biology (AREA)
- Rheumatology (AREA)
- Developmental Biology & Embryology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Virology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Vascular Medicine (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Materials For Medical Uses (AREA)
Description
心臓疾患は世界の死因1位であり、重症心不全患者においては心移植が現在唯一の治療法であるが、心移植はドナー不足という問題を抱えている。心移植に代わる治療法として、多能性幹細胞(例、iPS細胞(人工多能性幹細胞)、ES細胞(胚性幹細胞)等)由来の心筋細胞移植が有望視されており、早急な実現化が望まれている。 また、薬剤の毒性試験や心疾患モデル研究細胞としても多能性幹細胞(例、iPS細胞、ES細胞等)由来の心筋細胞が必要とされている。
iPS細胞由来の成熟心筋細胞を再生医療に応用するためには、効率性と安全性向上が必須である。効率性については、成熟を誘導できる心筋細胞の数が少ないことや、培養液中の増殖因子などのタンパク質が非常に高価でコスト効率が悪いという問題がある。安全性については、心筋細胞の純度が低く、心筋以外の増殖性細胞が混入するため癌化リスクがあることが問題となる。
また心筋細胞を用いた薬剤の毒性試験や心疾患モデル研究を行うためには、生体内の心筋細胞を十分に模倣した成熟心筋細胞を大量に集める必要がある。心筋細胞は、出生と同時にその分裂能を喪失し、その再生が極めて困難であるという性質を有するため、大量の心筋細胞を得るために、多能性幹細胞から心筋細胞を分化誘導する研究が多数行われてきた(特許文献1、特許文献2、非特許文献1、非特許文献2および非特許文献3)。
しかし、ヒト多能性幹細胞由来心筋細胞は一般的に胎児性心筋細胞に類似した未成熟な段階に留まり、成人心筋細胞と比べてイオンチャネル機能が不十分であると言われており、イオンチャンネルに関する薬物毒性や治療薬をスクリーニングするためには、成熟した心筋細胞を用いて行う必要がある。
従って、心筋細胞移植および薬物毒性や治療薬のスクリーニングに用いる細胞として成熟した心筋細胞およびその製造方法が求められている。
(1) 特許文献3
したがって、現在、安価で短期間に効率よく高純度の成熟した心筋細胞を得ることができる心筋細胞成熟促進剤の開発が望まれている。
[1] 2-メトキシ-5-((Z)-2-(3,4,5-トリメトキシフェニル)ビニル)フェノール、
(1-エチル-1H-ベンゾトリアゾール-5-イル)メチル (2-(2-メトキシ-4-メチルフェニル)-4-メチル-1,3-チアゾール-5-イル)カルバマート、
(2'beta)-22-オキソビンカロイコブラスチン、
2-(2-(4-クロロフェニル)エチル)-6-(2-フリル)-3H-イミダゾ[4,5-b]ピリジン、
4,5-アンヒドロ-1,2-ジデオキシ-4-メチル-2-((N-(モルホリン-4-イルアセチル)-L-アラニル-O-メチル-L-チロシル)アミノ)-1-フェニル-L-threo-ペント-3-ウロース、
3-(3-メトキシフェニル)-N7,N7-ジメチルイソキノリン-1,7-ジアミン、
メチル 4-(2-ベンジルベンゾイル)-2,5-ジメチル-1H-ピロール-3-カルボキシラート、
2'-(4-アミノフェニル)-1H,1'H-2,5'-ビベンゾイミダゾール-5-アミン、
およびそれらの塩から選ばれる1以上の化合物を含有してなる、心筋細胞成熟促進剤。
[2] 未成熟心筋細胞を上記[1]に記載の心筋細胞成熟促進剤の存在下で培養する工程を含む、成熟心筋細胞の製造方法。
[3] 上記[2]に記載の方法で得られた成熟心筋細胞。
本発明の心筋細胞成熟促進剤は、以下の化合物:
2-メトキシ-5-((Z)-2-(3,4,5-トリメトキシフェニル)ビニル)フェノール(実施例番号1)
(1-エチル-1H-ベンゾトリアゾール-5-イル)メチル (2-(2-メトキシ-4-メチルフェニル)-4-メチル-1,3-チアゾール-5-イル)カルバマート(実施例番号2)
(2'beta)-22-オキソビンカロイコブラスチン(実施例番号3)
2-(2-(4-クロロフェニル)エチル)-6-(2-フリル)-3H-イミダゾ[4,5-b]ピリジン(実施例番号4)
4,5-アンヒドロ-1,2-ジデオキシ-4-メチル-2-((N-(モルホリン-4-イルアセチル)-L-アラニル-O-メチル-L-チロシル)アミノ)-1-フェニル-L-threo-ペント-3-ウロース(実施例番号5)
3-(3-メトキシフェニル)-N7,N7-ジメチルイソキノリン-1,7-ジアミン(実施例番号6)
メチル 4-(2-ベンジルベンゾイル)-2,5-ジメチル-1H-ピロール-3-カルボキシラート(実施例番号7)
2'-(4-アミノフェニル)-1H,1'H-2,5'-ビベンゾイミダゾール-5-アミン(実施例番号8)
およびそれらの塩から選ばれる1以上の化合物を含有してなる。
無機塩基との塩の好適な例としては、ナトリウム塩、カリウム塩等のアルカリ金属塩;カルシウム塩、マグネシウム塩等のアルカリ土類金属塩;アルミニウム塩;アンモニウム塩等が挙げられる。
有機塩基との塩の好適な例としては、トリメチルアミン、トリエチルアミン、ピリジン、ピコリン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、トロメタミン[トリス(ヒドロキシメチル)メチルアミン]、tert-ブチルアミン、シクロヘキシルアミン、ベンジルアミン、ジシクロヘキシルアミン、N,N-ジベンジルエチレンジアミン等との塩が挙げられる。
無機酸との塩の好適な例としては、塩酸、臭化水素酸、硝酸、硫酸、リン酸等との塩が挙げられる。
有機酸との塩の好適な例としては、ギ酸、酢酸、トリフルオロ酢酸、フタル酸、フマル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等との塩が挙げられる。
塩基性アミノ酸との塩の好適な例としては、アルギニン、リジン、オルニチン等との塩が挙げられる。
酸性アミノ酸との塩の好適な例としては、アスパラギン酸、グルタミン酸等との塩が挙げられる。
上記化合物またはその塩は、自体公知の方法、例えば、特許文献3~9および非特許文献4に記載の方法または類似の方法に従って、それぞれ製造することができる。
また、上記化合物は、同位元素(例、2H、3H、11C、14C、18F、35S、125Iなど)などで標識または置換された化合物であってもよい。
1Hを2H(D)に変換した重水素変換体も、上記化合物に包含される。
互変異性体も、上記化合物に包含される。
上記化合物は、薬学的に許容され得る共結晶または共結晶塩であってもよい。ここで、共結晶または共結晶塩とは、各々が異なる物理的特性(例えば、構造、融点、融解熱、吸湿性、溶解性および安定性等)を持つ、室温で二種またはそれ以上の独特な固体から構成される結晶性物質を意味する。共結晶または共結晶塩は、自体公知の共結晶化法に従い製造することができる。
本発明の心筋細胞成熟促進剤により成熟促進可能な心筋細胞はまた、多能性幹細胞から分化誘導された細胞であってもよい。あるいは、生体から分離された未熟な心筋細胞(例えば、マウスやラットの胎仔もしくは新生仔由来の心筋細胞)であってもよい。
ES細胞は、ヒトやマウスなどの哺乳動物の初期胚(例えば胚盤胞)の内部細胞塊から樹立された、多能性と自己複製による増殖能を有する幹細胞である。
ES細胞は、受精卵の8細胞期、桑実胚後の胚である胚盤胞の内部細胞塊に由来する胚由来の幹細胞であり、成体を構成するあらゆる細胞に分化する能力、いわゆる分化多能性と、自己複製による増殖能とを有している。ES細胞は、マウスで1981年に発見され(M.J. Evans and M.H. Kaufman (1981), Nature 292:154-156)、その後、ヒト、サルなどの霊長類でもES細胞株が樹立された (J.A. Thomson et al. (1998), Science 282:1145-1147; J.A. Thomson et al. (1995), Proc. Natl. Acad. Sci. USA, 92:7844-7848;J.A. Thomson et al. (1996), Biol. Reprod., 55:254-259; J.A. Thomson and V.S. Marshall (1998), Curr. Top. Dev. Biol., 38:133-165)。
ES細胞は、対象動物の受精卵の胚盤胞から内部細胞塊を取出し、内部細胞塊を線維芽細胞のフィーダー上で培養することによって樹立することができる。また、継代培養による細胞の維持は、白血病抑制因子(leukemia inhibitory factor (LIF))、塩基性線維芽細胞成長因子(basic fibroblast growth factor (bFGF))などの物質を添加した培養液を用いて行うことができる。ヒトおよびサルのES細胞の樹立と維持の方法については、例えばUSP5,843,780; Thomson JA, et al. (1995), Proc Natl. Acad. Sci. U S A. 92:7844-7848; Thomson JA, et al. (1998), Science. 282:1145-1147; H. Suemori et al. (2006), Biochem. Biophys. Res. Commun., 345:926-932; M. Ueno et al. (2006), Proc. Natl. Acad. Sci. USA, 103:9554-9559; H. Suemori et al. (2001), Dev. Dyn., 222:273-279;H. Kawasaki et al. (2002), Proc. Natl. Acad. Sci. USA, 99:1580-1585;Klimanskaya I, et al. (2006), Nature. 444:481-485などに記載されている。
ES細胞作製のための培養液として、例えば0.1mM 2-メルカプトエタノール、0.1mM 非必須アミノ酸、2mM L-グルタミン酸、20% KSR及び4ng/ml bFGFを補充したDMEM/F-12培養液を使用し、37℃、2% CO2/98% 空気の湿潤雰囲気下でヒトES細胞を維持することができる(O. Fumitaka et al. (2008), Nat. Biotechnol., 26:215-224)。また、ES細胞は、3~4日おきに継代する必要があり、このとき、継代は、例えば1mM CaCl2及び20% KSRを含有するPBS中の0.25% トリプシン及び0.1mg/mlコラゲナーゼIVを用いて行うことができる。
ES細胞の選択は、一般に、アルカリホスファターゼ、Oct-3/4、Nanogなどの遺伝子マーカーの発現を指標にしてReal-Time PCR法で行うことができる。特に、ヒトES細胞の選択では、OCT-3/4、NANOG、ECADなどの遺伝子マーカーの発現を指標とすることができる(E. Kroon et al. (2008), Nat. Biotechnol., 26:443-452)。
ES細胞としては、マウスES細胞であれば、inGenious targeting laboratory社、理研(理化学研究所)等が樹立した各種マウスES細胞株が利用可能であり、ヒトES細胞であれば、NIH、理研、京都大学、Cellartis社が樹立した各種ヒトES細胞株が利用可能である。たとえば、ヒトES細胞株としては、NIHのCHB-1~CHB-12株、RUES1株、RUES2株、HUES1~HUES28株等、WisCell ResearchのH1株、H9株、理研のKhES-1株、KhES-2株、KhES-3株、KhES-4株、KhES-5株、SSES1株、SSES2株、SSES3株等を利用することができる。あるいは、臨床グレードの細胞株並びにそれらの細胞株を用いて作製された研究用および臨床用の細胞株等を用いてもよい。
精子幹細胞は、精巣由来の多能性幹細胞であり、精子形成のための起源となる細胞である。この細胞は、ES細胞と同様に、種々の系列の細胞に分化誘導可能であり、例えばマウス胚盤胞に移植するとキメラマウスを作出できるなどの性質をもつ(M. Kanatsu-Shinohara et al. (2003) Biol. Reprod., 69:612-616; K. Shinohara et al. (2004), Cell, 119:1001-1012)。神経膠細胞系由来神経栄養因子(glial cell line-derived neurotrophic factor (GDNF))を含む培養液で自己複製可能であるし、またES細胞と同様の培養条件下で継代を繰り返すことによって、精子幹細胞を得ることができる(竹林正則ら(2008),実験医学,26巻,5号(増刊),41~46頁,羊土社(東京、日本))。
胚性生殖細胞は、胎生期の始原生殖細胞から樹立される、ES細胞と同様な多能性をもつ細胞であり、LIF、bFGF、幹細胞因子(stem cell factor)などの物質の存在下で始原生殖細胞を培養することによって樹立しうる(Y. Matsui et al. (1992), Cell, 70:841-847; J.L. Resnick et al. (1992), Nature, 359:550-551)。
「人工多能性幹細胞(iPSC)」とは、哺乳動物体細胞又は未分化幹細胞に、特定の因子(核初期化因子)を導入して再プログラミングすることにより得られる細胞を指す。現在、「人工多能性幹細胞」にはさまざまなものがあり、山中らにより、マウス線維芽細胞にOct3/4・Sox2・Klf4・c-Mycの4因子を導入することにより、樹立されたiPSC(Takahashi K, Yamanaka S., Cell, (2006) 126: 663-676)のほか、同様の4因子をヒト線維芽細胞に導入して樹立されたヒト細胞由来のiPSC(Takahashi K, Yamanaka S., et al. Cell, (2007) 131: 861-872.)、上記4因子導入後、Nanogの発現を指標として選別し、樹立したNanog-iPS細胞(Okita, K., Ichisaka, T., and Yamanaka, S. (2007). Nature 448, 313-317.)、c-Mycを含まない方法で作製されたiPS細胞(Nakagawa M, Yamanaka S., et al. Nature Biotechnology, (2008) 26, 101 - 106)、ウイルスフリー法で6因子を導入して樹立されたiPS細胞(Okita K et al. Nat. Methods 2011 May;8(5):409-12, Okita K et al. Stem Cells. 31(3):458-66.)も用いることができる。また、Thomsonらにより作製されたOCT3/4・SOX2・NANOG・LIN28の4因子を導入して樹立された人工多能性幹細胞(Yu J., Thomson JA. et al., Science (2007) 318: 1917-1920.)、Daleyらにより作製された人工多能性幹細胞(Park IH, Daley GQ. et al., Nature (2007) 451: 141-146)、桜田らにより作製された人工多能性幹細胞(特開2008-307007号)等も用いることができる。
このほか、公開されているすべての論文(例えば、Shi Y., Ding S., et al., Cell Stem Cell, (2008) Vol3, Issue 5,568-574;、Kim JB., Scholer HR., et al., Nature, (2008) 454, 646-650;Huangfu D., Melton, DA., et al., Nature Biotechnology, (2008) 26, No 7, 795-797)、あるいは特許(例えば、特開2008-307007号、特開2008-283972号、US2008-2336610、US2009-047263、WO2007-069666、WO2008-118220、WO2008-124133、WO2008-151058、WO2009-006930、WO2009-006997、WO2009-007852)に記載されている当該分野で公知の人工多能性幹細胞のいずれも用いることができる。
人工多能性細胞株としては、NIH、理研、京都大学等が樹立した各種iPSC株が利用可能である。例えば、ヒトiPSC株であれば、理研のHiPS-RIKEN-1A株、HiPS-RIKEN-2A株、HiPS-RIKEN-12A株、Nips-B2株、京都大学の253G1株、201B7株、409B2株、454E2株、606A1株、610B1株、648A1株等が挙げられる。あるいは、京都大学やCellular Dynamics International等から提供される臨床グレードの細胞株並びにそれらの細胞株を用いて作製された研究用および臨床用の細胞株等を用いてもよい。
本発明において、体細胞を採取する由来となる哺乳動物個体は特に制限されないが、好ましくはヒトである。得られるiPS細胞がヒトの再生医療用途に使用される場合には、拒絶反応が起こらないという観点から、患者本人またはHuman leukocyte antigen (HLA)の型が同一もしくは実質的に同一である他人から体細胞を採取することが特に好ましい。ここでHLAの型が「実質的に同一」とは、免疫抑制剤などの使用により、該体細胞由来のiPS細胞から分化誘導することにより得られた細胞を患者に移植した場合に移植細胞が生着可能な程度にHLAの型が一致していることをいう。例えば主たるHLA(例えばHLA-A、HLA-BおよびHLA-DRの3遺伝子座)が同一である場合などが挙げられる(以下同じ)。一方、ヒトに投与(移植)しない場合、例えば、候補薬剤の心筋細胞への毒性を試験する方法においては、iPS細胞のソースとなる体細胞の由来は特に制限されない。患者の薬剤感受性や副作用の有無を評価するためのスクリーニング用の細胞のソースとしてiPS細胞を使用する場合には、患者本人または薬剤感受性や副作用と相関する遺伝子多型が同一である他人から体細胞を採取することが望ましい。
nt ES細胞は、核移植技術によって作製されたクローン胚由来のES細胞であり、受精卵由来のES細胞とほぼ同じ特性を有している(T. Wakayama et al. (2001), Science, 292:740-743; S. Wakayama et al. (2005), Biol. Reprod., 72:932-936; J. Byrne et al. (2007), Nature, 450:497-502)。すなわち、未受精卵の核を体細胞の核と置換することによって得られたクローン胚由来の胚盤胞の内部細胞塊から樹立されたES細胞がnt ES(nuclear transfer ES)細胞である。nt ES細胞の作製のためには、核移植技術(J.B. Cibelli et al. (1998), Nature Biotechnol., 16:642-646)とES細胞作製技術(上記)との組み合わせが利用される(若山清香ら(2008),実験医学,26巻,5号(増刊), 47~52頁)。核移植においては、哺乳動物の除核した未受精卵に、体細胞の核を注入し、数時間培養することで初期化することができる。
心筋細胞は成熟化するにつれてトロポニンI1(TNNI1)の発現が減少し、トロポニンI3(TNNI3)の発現が上昇するアイソフォームスイッチが起こることが知られている(Fikru B. Bedada,(2014) 3(4): 594-605.)。本明細書において、心筋が成熟化した(している)とは、少なくともTNNI3の発現が上昇していることを意味する。
この他にも特に特定されないが、例えば、人工多能性幹細胞を浮遊培養により細胞塊(胚様体)を形成させて心筋細胞を製造する方法、Bone Morphogenic Protein (BMP)シグナル伝達を抑制する物質の存在下で心筋細胞を製造する方法(WO2005/033298)、Activin AとBMPを順に添加させて心筋細胞を製造する方法(WO2007/002136)、カノニカルWntシグナル経路の活性化を促す物質の存在下で心筋細胞を製造する方法(WO2007/126077)および人工多能性幹細胞からFLk/KDR陽性細胞を単離し、シクロスポリンAの存在下で心筋細胞を製造する方法(WO2009/118928)などが例示される。
また、胚様体形成法でサイトカインを用いて心筋細胞を分化誘導する方法(Yang L, et al.、 Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population.、 Nature.、 2008 May 22;453(7194):524-8)、接着培養でサイトカインを使わずに心筋細胞を分化誘導する方法(Lian X, et al.、 Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling.、 Proc Natl Acad Sci U S A.、 2012 July 3;109(27):E1848-57)、接着培養と、浮遊培養とを併用し、サイトカインを使わずに心筋細胞を分化誘導する方法(Minami I, et al.、 A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions.、 Cell Rep.、 2012 Nov 29;2(5):1448-60)なども提案されている。
これらの培地には、細胞や培養条件毎に、自体公知の添加物を添加することができる。例えば、培地は、血清が含有されていてもよいし、あるいは無血清でもよい。さらに必要に応じて、培地は、例えば、アルブミン、トランスフェリン、Knockout Serum Replacement(KSR)(ES細胞培養時のFBSの血清代替物)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、1-チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、Glutamax(Invitrogen)、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類などの1つ以上の物質を含んでいてもよい。これらの中でも好ましい培地は、トランスフェリン、1-チオールグリセロール、L-グルタミン、アスコルビン酸をそれぞれ含有するStemPro34またはStemFit AK02からC液を除いた培地、もしくはB27サプリメントを含有するRPMI1640である。
アクチビンA、BMP4およびbFGFの組み合わせの場合、これらの添加物の使用濃度は、好ましくは、アクチビンAが1ng/ml~100ng/ml、BMP4が1ng/ml~100ng/ml、bFGFが1ng/ml~100ng/mlであり、より好ましくは、アクチビンAが6ng/ml、BMP4が10ng/ml、bFGFが5ng/mlである。
CHIR99021の場合、その使用濃度は、好ましくは100nM~100μMであり、より好ましくは4~6μMである。
使用するVEGFの濃度は、好ましくは1~100ng/mlであり、より好ましくは10ng/mlである。
Wnt阻害剤としては、DKK1タンパク質(例えば、ヒトの場合、NCBIのアクセッション番号:NM_012242)、スクレロスチン(例えば、ヒトの場合、NCBIのアクセッション番号:NM_025237)、IWR-1(Merck Millipore)、IWP-2(Sigma-Aldrich)、IWP-3(Sigma-Aldrich)、IWP-4(Sigma-Aldrich)、PNU-74654(Sigma-Aldrich)、XAV939(Sigma-Aldrich)およびこれらの誘導体などが例示され、中でも、IWP-3、IWP-4、IWR-1が好ましく用いられる。
使用するWnt阻害剤の濃度、Wntを阻害する濃度であれば特に限定されないが1nM~50μMが好ましく、特に好ましくは1~2μMである。
例えば、心筋成熟化マーカーの発現レベルは、マーカー遺伝子の発現量をPCRを用いて測定する;マーカータンパク質の発現量をウエスタンブロット等により解析する;または蛍光標識により顕微鏡もしくはフローサイトメーターにより解析することができる。電位生理学的な成熟度の指標は、パッチクランプにより静止膜電位の深さ等を用いることができる。サルコメアの微細構造やミトコンドリアの指標は、電子顕微鏡により観察するか;蛍光標識により顕微鏡もしくはフローサイトメーターにより解析するか;またはextracellular flux analyzerなどにより機能解析することができる。
別の実施形態では、本発明の心筋細胞成熟促進剤を用いて得られた心筋細胞は均一に成熟しており、心疾患の治療のための薬剤スクーニングや薬剤の心毒性評価に利用することもできる。例えば、本発明の方法で得られた心筋細胞に試験薬剤を投与し、心筋細胞の応答を調べることにより、試験薬剤の効果や毒性の評価を行うことができる。
別の実施形態では、本発明の心筋細胞成熟促進剤を用いて得られた自動能が低下した心筋細胞は心臓の再生医療に用いることができる。
心筋細胞の成熟化を検出するため、TNNI1の遺伝子座にEmGFP(配列番号1)、TNNI3の遺伝子座にmCherry(配列番号2)のレポータータンパク質の配列を挿入したダブルノックインのヒトiPS細胞株を作製した(ヒトiPS細胞はCTL社より購入したPBMC (LP_167, Sample ID:20130318)を用いてエピソーマルベクター(搭載遺伝子;OCT3/4, KLF4, SOX2, L-MYC, LIN28, mouse p53DD)により作製された(参考文献;Okita K, et al. Stem Cells. 2012 Nov 29. doi: 10.1002/stem.1293)。
上記レポーターiPS細胞株の維持培養は従来法で行った(Okita K, et al. Stem Cells. 2012 Nov 29. doi: 10.1002/stem.1293)。
翌日(1日目)、10μg/mLのアクチビンAを9μL(最終濃度3 ng/mL)、10μg/mLのbFGFを15μL(最終濃度5 ng/mL)および10μg/mLのBMP4を24μL(最終濃度10 ng/mL)をバイオリアクター中へ添加し、37℃、5%酸素条件にてさらに2日間培養した。
続いて(3日目)、得られた胚様体を50 mL遠沈管に回収して遠心分離に供した(200 g、1 min)後、培地を除去し、StemFit AK02からC液を除いた培地(AJINOMOTO AK02のA液400mLおよびB液100mLの計500mL)に1%L-グルタミン、トランスフェリン150μg/mL、アスコルビン酸50μg/mL(sigma)、モノチオグリセロール4×10-4 M、10 ng/mL VEGF、1μM IWP-3、0.6 μM Dorsomorphinおよび5.4 μM SB431542を添加した培地中で、37℃、5%酸素条件下(55rpm、浮遊撹拌培養法)で、3日間培養した。
続いて(6日目)、バイオリアクターを静置して胚様体を沈降させ、培地の80~90%除去した後、1%L-グルタミン、トランスフェリン150μg/mL、アスコルビン酸50μg/mL(sigma)、モノチオグリセロール4×10-4 Mおよび5 ng/mL VEGFを添加したStemFit AK02からC液を除いた培地(AJINOMOTO AK02、A液400mLおよびB液100mLの計500mL)をtotal 30mLになるよう添加し、8日間、37℃、5%酸素条件下で培養した(55rpm、浮遊撹拌培養法)。この間、2~3日に1度同じ条件の培地に交換した。
評価化合物(以下の表1に示す実施例番号1~8の化合物)を、1ウェルあたり1化合物(1μM)を50μL、培養3日目および6日目に添加した。培養8日目に、パラホルムアルデヒド(和光純薬、163-20145)で固定し、1次抗体としてラット抗mCherry(インビトロジェン、M11217)、2次抗体としてヤギ抗ラットIgGアレクサ647(インビトロジェン、A-21247)を用いた免疫染色をした。HCS(high contents screening)システム(パーキンエルマー/OperaPhenix ハイコンテンツイメージングシステム)を用いて撮影モードNon-Confocal、対物レンズ10×air NA0.3でアレクサ647の発現量を測定した。
蛍光強度から化合物を添加していないコントロールウェルの平均蛍光強度(n=60の平均値)は797だった。結果を表2に示す(n=3の平均値)。
心筋細胞の成熟化を検出するため、TNNI1の遺伝子座にEmGFP(配列番号1)、TNNI3の遺伝子座にmCherry(配列番号2)のレポータータンパク質の配列を挿入したダブルノックインのヒトiPS細胞株を作製した(ヒトiPS細胞はCTL社より購入したPBMC (LP_167, Sample ID:20130318)を用いてエピソーマルベクター(搭載遺伝子;OCT3/4, KLF4, SOX2, L-MYC, LIN28, mouse p53DD)により作製された(参考文献;Okita K, et al. Stem Cells. 2012 Nov 29. doi: 10.1002/stem.1293)。
上記レポーターiPS細胞株の維持培養は従来法で行った(Okita K, et al. Stem Cells. 2012 Nov 29. doi: 10.1002/stem.1293)。
翌日(1日目)、胚様体の入った6 well plate 1 wellに、1.5 mLのStemPro-34 SFM (ThermoFisher)に1%L-グルタミン、トランスフェリン150μg/mL、アスコルビン酸50μg/mL(sigma)、モノチオグリセロール4×10-4 M、10μg/mLのアクチビンAを1.8μL(濃度12 ng/mL)、10μg/mLのbFGFを15μL(濃度10 ng/mL)および10μg/mLのBMP4を2.7μL(濃度18 ng/mL)を添加し、0日目の培地と合わせて最終3 mL(アクチビンA: 6ng/ml, bFGF: 5ng/ml, BMP4: 10ng/ml)として、37℃、5%酸素条件にてさらに2日間培養した。
続いて(3日目)、胚様体の入った6 well plateを傾け、胚様体をwellの端に沈降するまで1~2分静置し、胚様体を吸わないように上清をアスピレートした。その後IMDM (ThermoFisher)培地を添加し、上記と同様に傾けて1~2分静置し、胚様体を吸わないように上清をアスピレートした後、6 well plate 1 wellに、3 mLのStemPro-34 SFM (ThermoFisher)に1%L-グルタミン、トランスフェリン150μg/mL、アスコルビン酸50μg/mL(sigma)、モノチオグリセロール4×10-4 M、10 ng/mL VEGF、1μM IWP-3、0.6 μM Dorsomorphinおよび5.4 μM SB431542を添加した培地を加え、37℃、5%酸素条件下で、3日間培養した。
続いて(6日目)、胚様体の入った6 well plateを傾け、胚様体をwellの端に沈降するまで1~2分静置し、胚様体を吸わないように上清をアスピレートした後、6 well plate 1 wellに、2 mLのStemPro-34 SFM (ThermoFisher)に1%L-グルタミン、トランスフェリン150μg/mL、アスコルビン酸50μg/mL(sigma)、モノチオグリセロール4×10-4 M、5 ng/mL VEGFを添加した培地を加え、4日間、37℃、5%酸素条件下で培養した。8日目に同様の培地で培地交換を行った。
続いて(10日目)、胚様体の入った6 well plateを傾け、胚様体をwellの端に沈降するまで1~2分静置し、胚様体を吸わないように上清をアスピレートした後、6 well plate 1 wellに、2 mLのStemPro-34 SFM (ThermoFisher)に、(1) 1%L-グルタミン、トランスフェリン150μg/mL、アスコルビン酸50μg/mL(sigma)、モノチオグリセロール4×10-4 Mおよび5 ng/mL VEGF、並びに(2) 40 nMの実施例番号2の化合物またはDMSO (培地容積に対して0.1%添加)を、それぞれ添加した培地を加え、37℃、常酸素条件下で、6日間培養した。13日目に同じ条件の培地で培地交換を行った。
Claims (2)
- 2-メトキシ-5-((Z)-2-(3,4,5-トリメトキシフェニル)ビニル)フェノール、
(1-エチル-1H-ベンゾトリアゾール-5-イル)メチル (2-(2-メトキシ-4-メチルフェニル)-4-メチル-1,3-チアゾール-5-イル)カルバマート、
(2'beta)-22-オキソビンカロイコブラスチン、
2-(2-(4-クロロフェニル)エチル)-6-(2-フリル)-3H-イミダゾ[4,5-b]ピリジン、
4,5-アンヒドロ-1,2-ジデオキシ-4-メチル-2-((N-(モルホリン-4-イルアセチル)-L-アラニル-O-メチル-L-チロシル)アミノ)-1-フェニル-L-threo-ペント-3-ウロース、
3-(3-メトキシフェニル)-N7,N7-ジメチルイソキノリン-1,7-ジアミン、
メチル 4-(2-ベンジルベンゾイル)-2,5-ジメチル-1H-ピロール-3-カルボキシラート、
2'-(4-アミノフェニル)-1H,1'H-2,5'-ビベンゾイミダゾール-5-アミン、
およびそれらの塩から選ばれる1以上の化合物を含有してなる、心筋細胞成熟促進剤。 - 未成熟心筋細胞を請求項1に記載の心筋細胞成熟促進剤の存在下で培養する工程を含む、成熟心筋細胞の製造方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018069871 | 2018-03-30 | ||
JP2018069871 | 2018-03-30 | ||
PCT/JP2019/013530 WO2019189554A1 (ja) | 2018-03-30 | 2019-03-28 | 心筋細胞成熟促進剤 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2019189554A1 JPWO2019189554A1 (ja) | 2021-03-25 |
JP7344486B2 true JP7344486B2 (ja) | 2023-09-14 |
Family
ID=68060118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020509308A Active JP7344486B2 (ja) | 2018-03-30 | 2019-03-28 | 心筋細胞成熟促進剤 |
Country Status (5)
Country | Link |
---|---|
US (1) | US12018281B2 (ja) |
EP (1) | EP3778869A4 (ja) |
JP (1) | JP7344486B2 (ja) |
CN (1) | CN111918961B (ja) |
WO (1) | WO2019189554A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7648190B2 (ja) | 2020-02-28 | 2025-03-18 | 国立大学法人京都大学 | 成熟心筋細胞の製造法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016521571A (ja) | 2013-06-11 | 2016-07-25 | プルーリオミクス・ベー・フェー | 多能性哺乳動物幹細胞に由来する心筋細胞を成熟させるための培地組成物 |
JP2017060422A (ja) | 2015-09-24 | 2017-03-30 | 国立大学法人 東京大学 | 成熟した心筋細胞を分化誘導させる方法 |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9106177D0 (en) * | 1991-03-22 | 1991-05-08 | Aston Molecules Ltd | Substituted diphenylethylenes and analogues or derivatives thereof |
US5843780A (en) | 1995-01-20 | 1998-12-01 | Wisconsin Alumni Research Foundation | Primate embryonic stem cells |
JP2005500988A (ja) | 2001-03-23 | 2005-01-13 | ルイトポルド・ファーマシューティカルズ・インコーポレーテッド | 脂肪族アミン薬物複合体 |
EP1460067A4 (en) | 2001-11-26 | 2005-12-07 | Takeda Pharmaceutical | BICYCLIC DERIVATIVES, PROCESS FOR THEIR PREPARATION AND THEIR USE |
CA2540135C (en) | 2003-10-03 | 2012-12-04 | Keiichi Fukuda | Method of inducing the differentiation of stem cells into cardiomyocytes |
RU2006139594A (ru) | 2004-04-10 | 2008-05-20 | Хенкель Коммандитгезелльшафт Ауф Акциен (DE) | Устройство для завивки волос |
WO2006094235A1 (en) * | 2005-03-03 | 2006-09-08 | Sirtris Pharmaceuticals, Inc. | Fused heterocyclic compounds and their use as sirtuin modulators |
KR101529317B1 (ko) | 2005-06-22 | 2015-06-16 | 아스테리아스 바이오세라퓨틱스, 인크. | 영장류 다능성 줄기 세포의 심근세포 계통 세포로의 분화 |
US8278104B2 (en) | 2005-12-13 | 2012-10-02 | Kyoto University | Induced pluripotent stem cells produced with Oct3/4, Klf4 and Sox2 |
BRPI0619794B8 (pt) | 2005-12-13 | 2022-06-14 | Univ Kyoto | Uso de um fator de reprogramação, agente para a preparação de uma célula-tronco pluripotente induzida a partir de uma célula somática e métodos para preparar uma célula- tronco pluripotente induzida método e para preparar uma célula somática e uso de células-tronco pluripotentes induzidas |
US8293529B2 (en) | 2006-04-28 | 2012-10-23 | Daiichi Sankyo Company, Limited | Method for inducing differentiation of pluripotent stem cells into cardiomyocytes |
JP5226679B2 (ja) | 2006-06-19 | 2013-07-03 | プロテオリックス, インコーポレイテッド | 酵素阻害のための化合物 |
US8034829B2 (en) | 2006-11-17 | 2011-10-11 | Rexahn Pharmaceuticals, Inc. | 5, 6, or 7-substituted-3-(hetero)arylisoquinolinamine derivatives and therapeutic use thereof |
US7661738B2 (en) | 2006-11-28 | 2010-02-16 | Veritainer Corporation | Radiation detection unit for mounting a radiation sensor to a container crane |
US9382515B2 (en) | 2007-04-07 | 2016-07-05 | Whitehead Institute For Biomedical Research | Reprogramming of somatic cells |
CA2688539A1 (en) | 2007-05-30 | 2008-12-11 | The General Hospital Corporation | Methods of generating pluripotent cells from somatic cells |
JP2008307007A (ja) | 2007-06-15 | 2008-12-25 | Bayer Schering Pharma Ag | 出生後のヒト組織由来未分化幹細胞から誘導したヒト多能性幹細胞 |
CN101254191B (zh) * | 2008-03-25 | 2010-09-08 | 浙江大学 | 喹唑啉咪唑化合物的用途 |
US8765465B2 (en) | 2008-03-26 | 2014-07-01 | Kyoto University | Efficient production and use of highly cardiogenic progenitors and cardiomyocytes from embryonic and induced pluripotent stem cells |
KR101844615B1 (ko) | 2010-07-02 | 2018-05-14 | 아스카 세이야쿠 가부시키가이샤 | 복소 고리 화합물 및 p27Kip1 분해 저해제 |
JP5840855B2 (ja) | 2011-03-30 | 2016-01-06 | 学校法人東京女子医科大学 | 胚性幹細胞から心筋シートを製造する方法 |
US9764063B2 (en) | 2012-03-15 | 2017-09-19 | Iheart Japan Corporation | Method for producing mixed cell population of cardiomyocytes and vascular cells from induced pluripotent stem cell |
WO2014192909A1 (ja) | 2013-05-31 | 2014-12-04 | iHeart Japan株式会社 | ハイドロゲルを組み込んだ積層化細胞シート |
US10888588B2 (en) * | 2013-10-18 | 2021-01-12 | Icahn School Of Medicine At Mount Sinai | Directed cardiomyocyte differentiation and ventricular specification of stem cells |
US10844354B2 (en) * | 2014-06-06 | 2020-11-24 | Ncardia B.V. | Cardiomyocyte maturation |
EP3219790B1 (en) | 2014-11-12 | 2021-08-04 | Terumo Kabushiki Kaisha | Myocardial cell sheet |
AU2017314870B2 (en) * | 2016-08-26 | 2023-11-30 | The Council Of The Queensland Institute Of Medical Research | Cardiomyocyte maturation |
JP6848343B2 (ja) | 2016-10-27 | 2021-03-24 | スズキ株式会社 | 電動車両 |
-
2019
- 2019-03-28 US US17/042,635 patent/US12018281B2/en active Active
- 2019-03-28 CN CN201980023340.7A patent/CN111918961B/zh active Active
- 2019-03-28 JP JP2020509308A patent/JP7344486B2/ja active Active
- 2019-03-28 WO PCT/JP2019/013530 patent/WO2019189554A1/ja active Application Filing
- 2019-03-28 EP EP19776645.4A patent/EP3778869A4/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016521571A (ja) | 2013-06-11 | 2016-07-25 | プルーリオミクス・ベー・フェー | 多能性哺乳動物幹細胞に由来する心筋細胞を成熟させるための培地組成物 |
JP2017060422A (ja) | 2015-09-24 | 2017-03-30 | 国立大学法人 東京大学 | 成熟した心筋細胞を分化誘導させる方法 |
Non-Patent Citations (1)
Title |
---|
Frontiers in Cell and Developmental Biology, 2017, Vol. 5, Article 19, pp. 1-8 |
Also Published As
Publication number | Publication date |
---|---|
US12018281B2 (en) | 2024-06-25 |
EP3778869A4 (en) | 2021-12-08 |
US20210009956A1 (en) | 2021-01-14 |
EP3778869A1 (en) | 2021-02-17 |
CN111918961A (zh) | 2020-11-10 |
JPWO2019189554A1 (ja) | 2021-03-25 |
CN111918961B (zh) | 2023-10-24 |
WO2019189554A1 (ja) | 2019-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7356658B2 (ja) | ドーパミン産生神経前駆細胞の製造方法 | |
US10947506B2 (en) | Human cardiovascular progenitor cells | |
JP6738572B2 (ja) | 肺胞上皮細胞の分化誘導法 | |
JP6461787B2 (ja) | 肺胞上皮前駆細胞の誘導方法 | |
US8507275B2 (en) | Method of inducing differentiation of embryonic stem cells into hemangioblast | |
JP6429280B2 (ja) | 効率的な心筋細胞の誘導方法 | |
JP6694215B2 (ja) | 新規軟骨細胞誘導方法 | |
JPWO2019017492A1 (ja) | 連続的な上皮を含む網膜組織の成熟化方法 | |
JP7357369B2 (ja) | 新規腎前駆細胞マーカーおよびそれを利用した腎前駆細胞の濃縮方法 | |
WO2016108288A1 (ja) | 骨格筋前駆細胞の製造方法 | |
WO2021187601A1 (ja) | 心筋細胞の精製方法 | |
JP6780197B2 (ja) | 新規成熟心筋細胞マーカー | |
US20250092359A1 (en) | Neural crest cell culturing method and production method | |
WO2019177118A1 (ja) | 多能性幹細胞から各種細胞への段階的製造方法 | |
JP2017108705A (ja) | 心筋細胞の製造方法 | |
JP7344486B2 (ja) | 心筋細胞成熟促進剤 | |
WO2021187602A1 (ja) | 心筋細胞の精製方法 | |
JP7429294B2 (ja) | 骨格筋前駆細胞及びその精製方法、筋原性疾患を治療するための組成物、並びに骨格筋前駆細胞を含む細胞群の製造方法 | |
JP2020115771A (ja) | 多能性幹細胞から軟骨組織を製造する方法 | |
US20240309327A1 (en) | Cardiomyocyte production method | |
JP2022528737A (ja) | Abcg2陽性角膜輪部幹細胞を得る又は維持する方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220314 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230322 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230519 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230808 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230823 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7344486 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |