WO2015064754A1 - 新規軟骨細胞誘導方法 - Google Patents

新規軟骨細胞誘導方法 Download PDF

Info

Publication number
WO2015064754A1
WO2015064754A1 PCT/JP2014/079117 JP2014079117W WO2015064754A1 WO 2015064754 A1 WO2015064754 A1 WO 2015064754A1 JP 2014079117 W JP2014079117 W JP 2014079117W WO 2015064754 A1 WO2015064754 A1 WO 2015064754A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
culture
medium
chondrocytes
cell
Prior art date
Application number
PCT/JP2014/079117
Other languages
English (en)
French (fr)
Inventor
範行 妻木
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2015545332A priority Critical patent/JP6635505B2/ja
Priority to KR1020167014549A priority patent/KR102219743B1/ko
Priority to EP14857348.8A priority patent/EP3064577B1/en
Priority to US15/032,705 priority patent/US10100283B2/en
Publication of WO2015064754A1 publication Critical patent/WO2015064754A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0655Chondrocytes; Cartilage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/32Bones; Osteocytes; Osteoblasts; Tendons; Tenocytes; Teeth; Odontoblasts; Cartilage; Chondrocytes; Synovial membrane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • C12N2500/20Transition metals
    • C12N2500/24Iron; Fe chelators; Transferrin
    • C12N2500/25Insulin-transferrin; Insulin-transferrin-selenium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/38Vitamins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/16Activin; Inhibin; Mullerian inhibiting substance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/19Growth and differentiation factors [GDF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/415Wnt; Frizzeled
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin

Definitions

  • the present invention relates to a method for inducing differentiation of chondrocytes from pluripotent stem cells.
  • the present invention also relates to a therapeutic agent comprising the chondrocytes thus obtained.
  • the nose, ears and joints are formed from cartilage tissue, which is composed of chondrocytes and a specific extracellular matrix that does not contain type I collagen but contains type II collagen, type IX collagen, type XI collagen and proteoglycan. Is formed.
  • Cartilage tissue lost due to joint damage or the like does not heal spontaneously, and will deteriorate unless repair treatment such as transplantation is performed.
  • repair treatment such as transplantation is performed.
  • it is necessary to obtain cartilage tissue for transplantation to the damaged site and the size of the damaged site is limited in order to use the cartilage of another site of the patient himself. For this reason, when chondrocytes extracted in vitro are expanded, the cells become fibrotic and are not suitable for transplantation (Non-patent Document 1).
  • Non-patent Document 2 discloses methods for administering mesenchymal stem cells, but since mesenchymal stem cells differentiate into many types of cells, they express fibrous tissue that expresses type I collagen and type X collagen. To enlarge the enlarged tissue (Non-patent Document 2).
  • Non-patent documents 3 to 7 methods have been proposed in which pluripotent stem cells such as iPS cells and ES cells are induced into chondrocytes and used.
  • pluripotent stem cells such as iPS cells and ES cells are induced into chondrocytes and used.
  • problems such as the formation of fibrocartilage and the formation of teratomas have been raised. Therefore, there is a need for a method for producing high-quality cartilage tissue from these pluripotent stem cells without forming cancer in vivo.
  • An object of the present invention is to provide a method for inducing differentiation of chondrocytes from pluripotent stem cells. More specifically, chondrocytes comprising a step of inducing mesoderm cells from pluripotent stem cells and further differentiating by combining adhesion culture and suspension culture in a culture solution containing ascorbic acid, BMP2, TGF ⁇ and GDF5. It is to provide a method for inducing differentiation.
  • the present inventors include a step of inducing mesoderm cells to increase the induction efficiency of chondrocytes, and ascorbic acid, BMP2, TGF ⁇ and GDF5 It has been found for the first time that the quality of chondrocytes can be induced to differentiate from pluripotent stem cells by combining the adhesion culture and the suspension culture in a culture medium containing. Furthermore, it discovered that it could be made to engraft by transplanting the chondrocyte obtained in this way to an animal model. The present invention has been completed based on such knowledge.
  • a method for producing chondrocytes from pluripotent stem cells comprising the following steps: (I) a step of inducing mesoderm cells by adhesion culture of pluripotent stem cells, (Ii) adhesion-culturing the cells obtained in the step (i) in a culture medium containing one or more substances selected from the group consisting of BMP2, TGF ⁇ and GDF5; and (iii) the step (ii) A step of subjecting the cells obtained in step 1 to suspension culture in a culture medium containing one or more substances selected from the group consisting of BMP2, TGF ⁇ and GDF5.
  • [2] The method according to [1], further comprising a step of culturing the cells obtained in the step (iii) in a culture medium containing serum.
  • [3] The method according to [1] or [2], wherein the culture solution used in the steps (i), (ii) and (iii) is a culture solution further containing 1% FBS.
  • the step (iii) is a step of performing suspension culture of the cells obtained in the step (ii) without using a separation solution. the method of.
  • step (i) The method according to any one of [1] to [4], wherein the step of inducing mesoderm cells in the step (i) is a step of culturing in a culture solution containing Wnt3a and activin A. .
  • step (i) The method according to any one of [1] to [5], wherein the step (i) is 5 days or less.
  • step (ii) The method according to any one of [1] to [6], wherein the step (ii) is 15 days or less.
  • step (iii) is 10 days or more and 30 days or less.
  • step (i) is 3 days.
  • induced chondrocytes derived from pluripotent stem cells, (1) The chondrocyte has a COL2A1 gene expression level that is at least 100 times that of the corresponding gene expression level in pluripotent stem cells; (2) The chondrocyte has an expression level of SOX9 gene at least 250 times that of the corresponding gene in pluripotent stem cells, and (3) the chondrocyte is introduced with a foreign gene None of the induced chondrocytes (except for the genes used for the production of iPS cells).
  • a cartilage-like tissue having a three-dimensional structure The cartilage-like tissue is composed of an outer membrane and contents contained in the outer membrane, The outer membrane contains COL1 fibers, but does not contain COL2 fibers, The thickness of the outer membrane is 10 ⁇ m or more and 50 ⁇ m or less, 16.
  • the cartilage-like tissue, wherein the content comprises Col11 fiber, Col2 fiber, proteoglycan and the cell according to claim 15.
  • the present invention has made it possible for the first time to efficiently induce pluripotent stem cells (for example, iPS cells) to high-quality chondrocytes.
  • pluripotent stem cells for example, iPS cells
  • Chondrocytes produced by the method of the present invention can be used for cartilage regenerative medicine.
  • FIG. 1 is a schematic diagram of a Col11a2-EGFP-IRES-Puro construct that expresses EGFP by the promoter activity of Col11A2.
  • FIG. 2 shows a tissue staining image of teratoma obtained when Col11a2 gene reporter iPS cells in which Col11a2-EGFP-IRES-Puro is incorporated into an iPS cell line are injected subcutaneously into SCID mice.
  • FIG. 3 shows a schematic diagram of a protocol for inducing chondrocytes from pluripotent stem cells.
  • FIG. 4a shows a phase contrast microscopic image (upper diagram) and a fluorescence microscopic image (lower diagram) of day 14 in which Col11a2 gene reporter iPS cells and wild-type iPS cells were induced using each condition (A, ABT and ABTG).
  • FIG. 4 b shows the results of measuring the expression levels of SOX9, AGGRECAN, COL2A1 and COL11A2 by RT-PCR on day 28 when Col11a2 gene reporter iPS cells were induced using each condition (A, ABT and ABTG).
  • Chondrocyte shows the result of human chondrocytes (402RD-R10f) purchased from Cell Applications, Inc as a positive control.
  • FIG. 4a shows a phase contrast microscopic image (upper diagram) and a fluorescence microscopic image (lower diagram) of day 14 in which Col11a2 gene reporter iPS cells and wild-type iPS cells were induced using each condition (A, ABT and ABTG).
  • FIG. 4c shows HE stained and safranin O stained images on day 42 induced using each condition (A, ABT and ABTG).
  • FIG. 5 shows RT-PCR results for SOX9, AGGRECAN, COL2A1 and COL11A2 in day 28 cells induced according to the conventional method (Micromass) and the protocol of the present invention.
  • FIG. 6a shows HE-stained and safranin O-stained images of day 28 particles derived according to the protocol of the present invention.
  • FIG. 6b shows HE staining, safranin O staining, type II collagen staining and type I collagen staining image of day 42 particles induced according to the protocol of the present invention.
  • FIG. 6c shows HE staining, safranin O staining, type II collagen staining, and type I collagen staining image of day 70 particles induced according to the protocol of the present invention (exchanged with serum-containing medium from day 42).
  • FIG. 6d shows SOX9 stained images of day56 and day70 particles induced according to the protocol of the present invention (exchanged with serum-containing medium from day42).
  • FIG. 6e shows a GFP fluorescence microscopic image of day 56 particles induced according to the protocol of the present invention (exchanged with serum-containing medium from day 42).
  • FIG. 6 f shows the results of measuring the content ratio of the number of SOX9 positive cells over the total number of cells when induced according to the protocol of the present invention (exchanged with serum-containing medium from day 42) over time.
  • FIG. 7 a shows HE staining, safranin O staining, type II collagen staining, and type I collagen staining image of day 70 particles induced according to the protocol of the present invention, which was changed from day 42 to the culture using the cartilage medium.
  • FIG. 7b shows HE staining, safranin O staining, type II collagen staining, and type I collagen staining image of day 140 particles induced according to the protocol of the present invention, which was changed to culture in day 42 from the cartilage medium.
  • FIG. 7 a shows HE staining, safranin O staining, type II collagen staining, and type I collagen staining image of day 140 particles induced according to the protocol of the present invention, which was changed to culture in day 42 from
  • FIG. 8 shows HE-stained and safranin O-stained images of the particles of day 42 induced according to the modified protocol in which the adhesion culture was performed from day 14 to day 42 in the protocol of the present invention.
  • FIG. 9a shows a phase contrast microscopic image (left diagram) and a fluorescence microscopic image (right diagram) of the cells adhered to the bottom of the culture dish on day 42.
  • FIG. 9b shows RT-PCR results for SOX9, AGGRECAN, COL2A1 and COL11A2 in particles induced according to the protocol of the present invention on day 42 and cells attached to the bottom of the culture dish.
  • FIG. 10a shows RT-PCR results of each gene in chondrocytes induced according to the protocol of the present invention (day 0 to day 70), human chondrocytes (Cartilage), and chondrocytes induced according to the conventional method (differ 2W or HDF or Bone). Indicates.
  • the results were normalized by the expression level of beta-activin (ACTB), and the values of HDF, cells at 2 weeks of differentiation, normal articular chondrocytes, or normal bone cells were calculated as controls.
  • FIG. 10b shows a graph of the number of living cells (diamonds) and cell viability (circles) at each time (day 0 to day 70) induced according to the protocol of the present invention.
  • FIG. 11a shows HE staining, safranin O staining, type II collagen staining, and type I collagen staining image after 12 weeks when the particles of day 42 induced according to the protocol of the present invention were subcutaneously administered to SCID mice.
  • FIG. 11b shows a SOX9 stained image of particles 12 weeks after the day 42 particles induced according to the protocol of the present invention were subcutaneously administered to SCID mice.
  • FIG. 11a shows HE staining, safranin O staining, type II collagen staining, and type I collagen staining image after 12 weeks when the particles of day 42 induced according to the protocol of the present invention were subcutaneously administered to SCID mice.
  • FIG. 11b shows a SOX9 stained image of particles 12 weeks after the day 42 particles induced according
  • FIG. 11 c shows human VIMENTIN and DAPI stained images and phase contrast microscopic images of particles 12 weeks after the day 42 particles induced according to the protocol of the present invention were subcutaneously administered to SCID mice.
  • FIG. 11d shows the expression of human beta-activin ACT (ACTB) and mouse beta-activin (Actb) in each tissue 4 and 12 weeks after subcutaneous administration of day 42 particles induced according to the protocol of the present invention to SCID mice. The results are shown by the amount measured by RT-PCR.
  • FIG. 12 shows the results of HE staining (upper figure), safranin O staining (middle figure), and immunostaining with type X collagen antibody (lower figure) in tissues after subcutaneous implantation of iPS cell-derived cells.
  • FIG. 13a shows HE staining and human VIMENTIN immunostaining and toluidine blue staining at 1 week (left) and 4 weeks (right) after day 28 particles induced according to the protocol of the present invention were administered to the joints of SCID rats. And immunostained images of type II collagen.
  • FIG. 13b shows HE stained and type II collagen immunostained images at 1 week (left) and 4 weeks (right) after day28 particles induced according to the protocol of the present invention were administered to the joints of SCID rats. .
  • FIG. 13a shows HE staining and human VIMENTIN immunostaining and toluidine blue staining at 1 week (left) and 4 weeks (right) after day 28 particles induced according to the protocol of the present invention were administered to the joints of SCID rats.
  • FIG. 13b shows HE stained and type II collagen immunostained images at 1 week (left) and 4 weeks (right) after day28 particles induced according to the protocol of the present invention were administered to the joints of SCID rats. .
  • 13c shows the expression of human beta-activin (ACTB) and rat beta-activin (Actb) in each tissue 4 and 12 weeks after administration of day 28 particles induced according to the protocol of the present invention to the joints of SCID rats. The result of measuring the amount by RT-PCR is shown.
  • ACTB human beta-activin
  • Actb rat beta-activin
  • the present invention provides a method for producing chondrocytes from pluripotent stem cells comprising the following steps; (I) a step of inducing mesoderm cells by adhesion culture of pluripotent stem cells, (Ii) adhesion-culturing the cells obtained in the step (i) in a culture medium containing one or more substances selected from the group consisting of BMP2, TGF ⁇ and GDF5; and (iii) the step (ii) A step of subjecting the cells obtained in step 1 to suspension culture in a culture medium containing one or more substances selected from the group consisting of BMP2, TGF ⁇ and GDF5.
  • the pluripotent stem cell that can be used in the present invention is a stem cell that has pluripotency that can be differentiated into all cells existing in a living body and also has proliferative ability, and is not particularly limited.
  • embryonic stem (ES) cells embryonic stem (ntES) cells derived from cloned embryos obtained by nuclear transfer
  • GS cells sperm stem cells
  • EG cells embryonic germ cells
  • artificial pluripotency Examples include sex stem (iPS) cells, cultured fibroblasts, and pluripotent cells derived from bone marrow stem cells (Muse cells).
  • Preferred pluripotent stem cells are ES cells, ntES cells, and iPS cells.
  • ES cells are stem cells established from the inner cell mass of early embryos (for example, blastocysts) of mammals such as humans and mice, and having pluripotency and proliferation ability by self-replication.
  • ES cells are embryonic stem cells derived from the inner cell mass of the blastocyst, the embryo after the morula, in the 8-cell stage of a fertilized egg, and have the ability to differentiate into any cell that constitutes an adult, so-called differentiation. And ability to proliferate by self-replication.
  • ES cells were discovered in mice in 1981 (MJ Evans and MH Kaufman (1981), Nature 292: 154-156), and then ES cell lines were also established in primates such as humans and monkeys (JA Thomson et al.
  • ES cells can be established by taking an inner cell mass from a blastocyst of a fertilized egg of a target animal and culturing the inner cell mass on a fibroblast feeder. In addition, maintenance of cells by subculture is performed using a culture solution to which substances such as leukemia inhibitory factor (LIF) and basic fibroblast growth factor (basic fibroblast growth factor (bFGF)) are added. It can be carried out.
  • LIF leukemia inhibitory factor
  • bFGF basic fibroblast growth factor
  • DMEM / F-12 culture medium supplemented with 0.1 mM 2-mercaptoethanol, 0.1 mM non-essential amino acid, 2 mM L-glutamic acid, 20% KSR and 4 ng / ml bFGF is used as the culture medium for ES cell production.
  • Human ES cells can be maintained in a humid atmosphere of 37 ° C., 2% CO 2 /98% air (O. Fumitaka et al. (2008), Nat. Biotechnol., 26: 215-224).
  • ES cells also need to be passaged every 3-4 days, where passage is eg 0.25% trypsin and 0.1 mg / ml collagenase IV in PBS containing 1 mM CaCl 2 and 20% KSR. Can be used.
  • ES cells can be generally selected by Real-Time PCR using the expression of gene markers such as alkaline phosphatase, Oct-3 / 4, Nanog as an index.
  • gene markers such as alkaline phosphatase, Oct-3 / 4, Nanog
  • OCT-3 / 4, NANOG, and ECAD can be used as an index (E. Kroon et al. (2008), Nat. Biotechnol., 26: 443). -452).
  • Human ES cell lines for example, WA01 (H1) and WA09 (H9) are obtained from WiCell Research Institute, and KhES-1, KhES-2 and KhES-3 are obtained from Institute for Regenerative Medicine, Kyoto University (Kyoto, Japan) Is possible.
  • sperm stem cells are testis-derived pluripotent stem cells that are the origin of spermatogenesis. Like ES cells, these cells can be induced to differentiate into various types of cells, and have characteristics such as the ability to create chimeric mice when transplanted into mouse blastocysts (M. Kanatsu-Shinohara et al. ( 2003) Biol. Reprod., 69: 612-616; K. Shinohara et al. (2004), Cell, 119: 1001-1012).
  • GDNF glial cell line-derived neurotrophic factor
  • Embryonic germ cells are cells that are established from embryonic primordial germ cells and have the same pluripotency as ES cells, such as LIF, bFGF, stem cell factor, etc. It can be established by culturing primordial germ cells in the presence of these substances (Y. Matsui et al. (1992), Cell, 70: 841-847; JL Resnick et al. (1992), Nature, 359: 550 -551).
  • iPS Artificial pluripotent stem cells
  • somatic cells in the form of DNA or protein, which is almost equivalent to ES cells
  • It is an artificial stem cell derived from a somatic cell having the characteristics of, for example, differentiation pluripotency and proliferation ability by self-replication (K. Takahashi and S. Yamanaka (2006) Cell, 126: 663-676; K. Takahashi et al (2007), Cell, 131: 861-872; J. Yu et al. (2007), Science, 318: 1917-1920; Nakagawa, M. et al., Nat. Biotechnol.
  • the reprogramming factor is a gene specifically expressed in ES cells, its gene product or non-cording RNA, a gene that plays an important role in maintaining undifferentiation of ES cells, its gene product or non-cording RNA, or It may be constituted by a low molecular compound.
  • genes included in the reprogramming factor include Oct3 / 4, Sox2, Sox1, Sox3, Sox15, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, ERas, ECAT15 -2, Tcl1, beta-catenin, Lin28b, Sall1, Sall4, Esrrb, Nr5a2, Tbx3 or Glis1 etc. are exemplified, and these reprogramming factors may be used alone or in combination.
  • the reprogramming factors include histone deacetylase (HDAC) inhibitors [for example, small molecule inhibitors such as valproate (VPA), trichostatin A, sodium butyrate, MC 1293, M344, siRNA and shRNA against HDAC (eg Nucleic acid expression inhibitors such as HDAC1 siRNA Smartpool (Millipore), HuSH 29mer shRNA Constructs against HDAC1 (OriGene) etc.], MEK inhibitors (eg PD184352, PD98059, U0126, SL327 and PD0325901), Glycogen synthase-kinase 3 inhibitors (eg, Bio and CHIR99021), DNA methyltransferase inhibitors (eg, 5-azacytidine), histone methyltransferase inhibitors (eg, small molecule inhibitors such as BIX-01294, Suv39hl, Suv39h2, SetDBl and G9a nucleic acid expression inhibitors such as siRNA and
  • the reprogramming factor may be introduced into a somatic cell by a technique such as lipofection, fusion with a cell membrane-permeable peptide (for example, HIV-derived TAT and polyarginine), or microinjection.
  • a cell membrane-permeable peptide for example, HIV-derived TAT and polyarginine
  • Virus vectors include retrovirus vectors, lentivirus vectors (cell, 126, pp.663-676, 2006; Cell, 131, pp.861-872, 2007; Science, 318, pp.1917-1920, 2007 ), Adenovirus vectors (Science, 322, 945-949, 2008), adeno-associated virus vectors, Sendai virus vectors (WO 2010/008054) and the like.
  • artificial chromosome vectors examples include human artificial chromosomes (HAC), yeast artificial chromosomes (YAC), and bacterial artificial chromosomes (BAC, PAC).
  • HAC human artificial chromosomes
  • YAC yeast artificial chromosomes
  • BAC bacterial artificial chromosomes
  • a plasmid a plasmid for mammalian cells can be used (Science, 322: 949-953, 2008).
  • the vector can contain regulatory sequences such as a promoter, enhancer, ribosome binding sequence, terminator, polyadenylation site, etc. so that a nuclear reprogramming substance can be expressed.
  • Selective marker sequences such as kanamycin resistance gene, ampicillin resistance gene, puromycin resistance gene, thymidine kinase gene, diphtheria toxin gene, reporter gene sequences such as green fluorescent protein (GFP), ⁇ -glucuronidase (GUS), FLAG, etc.
  • GFP green fluorescent protein
  • GUS ⁇ -glucuronidase
  • FLAG FLAG
  • the above vector has a LoxP sequence before and after the introduction of the gene into a somatic cell in order to excise the gene or promoter encoding the reprogramming factor and the gene encoding the reprogramming factor that binds to it. May be.
  • RNA it may be introduced into somatic cells by techniques such as lipofection and microinjection, and in order to suppress degradation, RNA incorporating 5-methylcytidine and pseudouridine® (TriLink® Biotechnologies) is used. Yes (Warren L, (2010) Cell Stem Cell. 7: 618-630).
  • Examples of the culture medium for inducing iPS cells include DMEM, DMEM / F12 or DME culture medium containing 10 to 15% FBS (these culture media include LIF, penicillin / streptomycin, puromycin, L-glutamine). , Non-essential amino acids, ⁇ -mercaptoethanol, etc.) or commercially available culture media (eg, culture media for mouse ES cell culture (TX-WES culture solution, Thrombo X), primate ES cells) Culture medium for culture (primate ES / iPS cell culture medium, Reprocell), serum-free medium (mTeSR, Stemcell Technology).
  • DMEM DMEM / F12 or DME culture medium containing 10 to 15% FBS
  • these culture media include LIF, penicillin / streptomycin, puromycin, L-glutamine). , Non-essential amino acids, ⁇ -mercaptoethanol, etc.
  • commercially available culture media eg, culture media for mouse ES cell culture (TX
  • the somatic cell and the reprogramming factor are brought into contact with DMEM or DMEM / F12 containing 10% FBS for about 4 to 7 days. Thereafter, the cells are re-seeded on feeder cells (for example, mitomycin C-treated STO cells, SNL cells, etc.), and about 10 days after the contact of the somatic cells with the reprogramming factor, the culture solution for primate ES cell culture containing bFGF is used. Culturing and generating iPS-like colonies about 30 to about 45 days or more after the contact.
  • feeder cells for example, mitomycin C-treated STO cells, SNL cells, etc.
  • 10% FBS-containing DMEM medium including LIF, penicillin / streptomycin, etc.
  • feeder cells eg, mitomycin C-treated STO cells, SNL cells, etc.
  • 5% CO 2 at 37 ° C. can be suitably included with puromycin, L-glutamine, non-essential amino acids, ⁇ -mercaptoethanol, etc.
  • ES-like colonies after about 25 to about 30 days or more .
  • somatic cells to be reprogrammed themselves are used (Takahashi K, et al. (2009), PLoS One. 4: e8067 or WO2010 / 137746), or extracellular matrix (eg, Laminin- 5 (WO2009 / 123349) and Matrigel (BD)) are exemplified.
  • iPS cells may be established under hypoxic conditions (oxygen concentration of 0.1% or more and 15% or less) (Yoshida Y, et al. (2009), Cell Stem Cell. 5: 237 -241 or WO2010 / 013845).
  • the culture medium is exchanged with a fresh culture medium once a day from the second day onward.
  • the number of somatic cells used for nuclear reprogramming is not limited, but ranges from about 5 ⁇ 10 3 to about 5 ⁇ 10 6 cells per 100 cm 2 of culture dish.
  • IPS cells can be selected according to the shape of the formed colonies.
  • a drug resistance gene that is expressed in conjunction with a gene that is expressed when somatic cells are initialized for example, Oct3 / 4, Nanog
  • a culture solution containing the corresponding drug selection The established iPS cells can be selected by culturing with the culture medium.
  • the marker gene is a fluorescent protein gene
  • iPS cells are selected by observing with a fluorescence microscope, in the case of a luminescent enzyme gene, by adding a luminescent substrate, and in the case of a chromogenic enzyme gene, by adding a chromogenic substrate can do.
  • the term “somatic cell” refers to any animal cell (preferably, a mammalian cell including a human) except a germ line cell such as an egg, oocyte, ES cell, or totipotent cell.
  • Somatic cells include, but are not limited to, fetal (pup) somatic cells, neonatal (pup) somatic cells, and mature healthy or diseased somatic cells. , Passage cells, and established cell lines.
  • somatic cells include, for example, (1) neural stem cells, hematopoietic stem cells, mesenchymal stem cells, tissue stem cells such as dental pulp stem cells (somatic stem cells), (2) tissue progenitor cells, (3) lymphocytes, epithelium Cells, endothelial cells, muscle cells, fibroblasts (skin cells, etc.), hair cells, hepatocytes, gastric mucosal cells, enterocytes, spleen cells, pancreatic cells (exocrine pancreas cells, etc.), brain cells, lung cells, kidney cells Examples thereof include differentiated cells such as fat cells.
  • somatic cells having the same or substantially the same HLA genotype as the transplant destination individual from the viewpoint that rejection does not occur.
  • substantially the same means that the HLA genotype matches the transplanted cells to such an extent that an immune response can be suppressed by an immunosuppressive agent.
  • HLA-A, HLA-B And somatic cells having an HLA type in which 3 loci of HLA-DR or 4 loci plus HLA-C are matched.
  • E Cloned embryo-derived ES cells obtained by nuclear transfer ntES cells are cloned embryo-derived ES cells prepared by nuclear transfer technology and have almost the same characteristics as ES cells derived from fertilized eggs (T. Wakayama et al. (2001), Science, 292: 740-743; S. Wakayama et al. (2005), Biol. Reprod., 72: 932-936; J. Byrne et al. (2007), Nature, 450: 497-502).
  • an ES cell established from an inner cell mass of a blastocyst derived from a cloned embryo obtained by replacing the nucleus of an unfertilized egg with a somatic cell nucleus is an ntES (nuclear transfer ES) cell.
  • ntES nuclear transfer ES
  • nuclear transfer technology JB Cibelli et al. (1998), Nature Biotechnol., 16: 642-646) and ES cell production technology (above) is used (Kiyaka Wakayama). (2008), Experimental Medicine, 26, 5 (extra number), 47-52).
  • Nuclear transfer can be initialized by injecting a somatic cell nucleus into a mammal's enucleated unfertilized egg and culturing for several hours.
  • Muse cells are pluripotent stem cells produced by the method described in WO2011 / 007900. Specifically, fibroblasts or bone marrow stromal cells are treated with trypsin for a long time, preferably 8 or 16 hours. It is a pluripotent cell obtained by suspension culture after treatment, and is positive for SSEA-3 and CD105.
  • a chondrocyte means a cell that produces an extracellular matrix that constitutes cartilage such as collagen, or a precursor cell that becomes such a cell.
  • Such chondrocytes may be cells that express a chondrocyte marker, and examples of chondrocyte markers include type II collagen (COL2A1) or SOX9.
  • COL2A1 contains, as NCBI accession numbers, a gene having a nucleotide sequence described in NM_001844 or NM_033150 for humans, NM_001113515 or NM_031163 for humans, and a protein encoded by the gene, and these Naturally occurring variants having the following functions are included.
  • SOX9 has the NCBI accession number, NM_000346 for humans, NM_011448 for mice, NM_011448, the protein encoded by the gene, and these functions. Naturally occurring variants are included.
  • mesoderm cells are cells generated between the endoderm and the outer lung lobe in the gastrulation stage of the animal. And preferably means a cell that is positive for BRACHYURY.
  • BRACHYURY includes NCBI accession numbers as follows. Naturally occurring variants having are included.
  • a method for inducing mesoderm cells from pluripotent stem cells is not particularly limited, but a method of culturing in a culture solution containing ActivinActivA and a GSK-3 ⁇ inhibitor is exemplified.
  • pluripotent stem cells are adherently cultured under conditions that do not contain feeder cells, and when they reach an appropriate size (a cell mass containing 1 to 2 ⁇ 10 5 cells) , Culturing by exchanging with a culture solution containing Activin A and a GSK-3 ⁇ inhibitor.
  • adhesion culture can be performed by culturing using a culture vessel coated with an extracellular matrix.
  • the coating treatment can be performed by placing a solution containing an extracellular matrix in a culture container and then removing the solution as appropriate.
  • the extracellular matrix is a supramolecular structure that exists outside the cell, and may be naturally derived or artificial (recombinant). Examples thereof include substances such as collagen, proteoglycan, fibronectin, hyaluronic acid, tenascin, entactin, elastin, fibrillin, laminin or fragments thereof. These extracellular substrates may be used in combination, and may be prepared from cells such as BD-Matrigel (TM). Examples of the artifact include laminin fragments. In the present invention, laminin is a protein having a heterotrimeric structure having one ⁇ chain, one ⁇ chain, and one ⁇ chain, and is not particularly limited.
  • the ⁇ chain includes ⁇ 1, ⁇ 2, ⁇ 3, It is ⁇ 4 or ⁇ 5, the ⁇ chain is ⁇ 1, ⁇ 2 or ⁇ 3, and the ⁇ chain is exemplified by ⁇ 1, ⁇ 2 or ⁇ 3.
  • the laminin fragment is not particularly limited as long as it is a laminin fragment having integrin-binding activity, and examples thereof include an E8 fragment which is a fragment obtained by digestion with elastase.
  • the culture solution used in this step (i) can be prepared by adding Activin A and a GSK-3 ⁇ inhibitor to a basal medium used for culturing animal cells.
  • basal medium include IMDM medium, Medium ⁇ 199 medium, Eagle's MinimummEssential Medium (EMEM) medium, ⁇ MEM medium, Dulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI 1640 medium, and Fischer's medium.
  • Examples include a medium.
  • the medium may contain serum (for example, FBS) or may be serum-free.
  • albumin, transferrin, KnockOut Serum Replacement (KSR) serum substitute for FBS during ES cell culture
  • N2 supplement Invitrogen
  • B27 supplement Invitrogen
  • fatty acids insulin
  • It may contain one or more serum substitutes such as sodium selenate, collagen precursor, trace elements, 2-mercaptoethanol, 3'-thiolglycerol, lipids, amino acids, L-glutamine, GlutaMAX (Invitrogen), non It may also contain one or more substances such as essential amino acids (NEAA), vitamins, growth factors, low molecular weight compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts and the like.
  • the basal medium is DMEM / F12 containing insulin, transferrin, sodium selenite, and 1% serum.
  • Activin A includes Activin A derived from humans and other animals, and functional variants thereof.
  • the concentration of Activin A used in this step is 0.1 ng / ml to 1000 ng / ml, preferably 1 ng / ml to 100 ng / ml, more preferably 5 ng / ml to 50 ng / ml, 10 ng / ml. ml.
  • the GSK-3 ⁇ inhibitor is not particularly limited as long as it can directly or indirectly inhibit GSK-3 ⁇ function, for example, kinase activity.
  • Wnt3a BIO which is an indirubin derivative (Also known as GSK-3 ⁇ inhibitor IX; 6-bromoindirubin 3′-oxime), a maleimide derivative SB216763 (3- (2,4-dichlorophenyl) -4- (1-methyl-1H-indole-3- Yl) -1H-pyrrole-2,5-dione), GSK-3 ⁇ inhibitor VII (4-dibromoacetophenone) which is a phenyl ⁇ bromomethyl ketone compound, L803-mts (also known as a cell membrane permeation type phosphorylated peptide) GSK-3 ⁇ peptide inhibitors; Myr-N-GKEAPPAPPQSpP-NH 2 ) and CHIR99021 with high selectivity (Nature (2008) 453: 5
  • a preferred GSK-3 ⁇ inhibitor used in this step includes Wnt3a.
  • Wnt3a includes Wnt3a derived from humans and other animals, and functional variants thereof.
  • commercially available products such as R & D systems can be used.
  • the concentration of the GSK-3 ⁇ inhibitor used in this step can be appropriately selected by those skilled in the art depending on the GSK-3 ⁇ inhibitor to be used.
  • Wnt3a when Wnt3a is used as the GSK-3 ⁇ inhibitor, 0.1 ng / ml To 1000 ng / ml, preferably 1 ng / ml to 100 ng / ml, more preferably 5 ng / ml to 50 ng / ml, 10 ng / ml.
  • the culture temperature is not particularly limited, but is about 30 to 40 ° C., preferably about 37 ° C., and the culture is performed in an atmosphere of CO 2 -containing air.
  • the CO 2 concentration is about 2-5%, preferably about 5%.
  • the culture time in this step is, for example, culture for 5 days or less, and preferably 3 days.
  • step (Ii) A step of adhesion-culturing the cells obtained in the step (i) in a culture solution containing one or more substances selected from the group consisting of BMP2, TGF ⁇ and GDF5.
  • the step (ii) The culture broth of the cell culture obtained in i) can be removed, and a culture broth containing one or more substances selected from the group consisting of BMP2, TGF ⁇ and GDF5 can be added. Therefore, since the cell culture is adhered to the culture dish in the step (i), this step (ii) can be performed by adhesion culture.
  • the culture solution used in this step (ii) can be prepared by adding one or more substances selected from the group consisting of BMP2, TGF ⁇ and GDF5 to the basal medium used for culturing animal cells.
  • a culture solution containing at least TGF ⁇ a culture solution containing BMP2 and TGF ⁇ , a culture solution containing ascorbic acid, BMP2 and TGF ⁇ , a culture solution containing GDF5, BMP2 and TGF ⁇ , or an ascorbic acid, BMP2, TGF ⁇ and GDF5
  • the culture solution contains bFGF, ascorbic acid, BMP2, TGF ⁇ , and GDF5.
  • basal medium examples include IMDM medium, Medium ⁇ 199 medium, Eagle's MinimummEssential Medium (EMEM) medium, ⁇ MEM medium, Dulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI 1640 medium, and Fischer's medium.
  • EMEM Eagle's MinimummEssential Medium
  • DMEM Dulbecco's modified Eagle's Medium
  • Ham's F12 medium examples include a Fischer's medium.
  • Fischer's medium examples include a medium.
  • the medium may contain serum (for example, FBS) or may be serum-free.
  • albumin transferrin, KnockOut Serum Replacement (KSR) (serum substitute for FBS during ES cell culture) (Invitrogen), N2 supplement (Invitrogen), B27 supplement (Invitrogen), fatty acid, insulin, collagen It may contain one or more serum replacements such as precursors, trace elements, 2-mercaptoethanol, 3'-thiolglycerol, lipids, amino acids, L-glutamine, GlutaMAX (Invitrogen), non-essential amino acids (NEAA) It may also contain one or more substances such as vitamins, growth factors, low molecular weight compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts and the like.
  • the basal medium is DMEM containing insulin, transferrin, sodium selenite, and 1% serum.
  • bFGF includes human and other animal-derived bFGF and functional variants thereof, and for example, commercially available products such as WAKO can be used.
  • concentration of bFGF used in this step is 0.1 ng / ml to 1000 ng / ml, preferably 1 ng / ml to 100 ng / ml, more preferably 5 ng / ml to 50 ng / ml, 10 ng / ml. It is.
  • ascorbic acid may be a commercially available product such as Nakarai.
  • concentration of ascorbic acid used in this step is 5 to 500 ⁇ g / ml, preferably 10 to 100 ⁇ g / ml, more preferably 50 to ⁇ g / ml.
  • BMP2 includes BMP2 derived from humans and other animals, and functional variants thereof, and for example, commercially available products such as Osteopharma can be used.
  • concentration of BMP2 used in this step is 0.1 ng / ml to 1000 ng / ml, preferably 1 ng / ml to 100 ng / ml, more preferably 5 ng / ml to 50 ng / ml, 10 ng / ml. It is.
  • BMP2 may be replaced with BMP4.
  • TGF ⁇ includes TGF ⁇ derived from humans and other animals, and functional variants thereof.
  • concentration of TGF ⁇ used in this step is 0.1 ng / ml to 1000 ng / ml, preferably 1 ng / ml to 100 ng / ml, more preferably 5 ng / ml to 50 ng / ml, 10 ng / ml. It is.
  • GDF5 includes GDF5 derived from humans and other animals, and functional modifications thereof.
  • GDF5 derived from humans and other animals, and functional modifications thereof.
  • commercially available products such as PeproTech can be used.
  • the concentration of GDF5 used in this step is 0.1 ng / ml to 1000 ng / ml, preferably 1 ng / ml to 100 ng / ml, more preferably 5 ng / ml to 50 ng / ml, 10 ng / ml. It is.
  • the culture temperature is not particularly limited, but is about 30 to 40 ° C., preferably about 37 ° C., and the culture is performed in an atmosphere of CO 2 -containing air.
  • the CO 2 concentration is about 2-5%, preferably about 5%.
  • the culture time in this step is, for example, 15 days or less, preferably 11 days.
  • the step (iii) The cell culture obtained in ii) can be detached from the culture vessel and suspended in culture.
  • the method of detaching the cell culture is preferably performed by a mechanical separation method (such as pipetting), and a separation solution having protease activity and / or collagenase activity (for example, containing trypsin and collagenase)
  • TM Accutase
  • TM Accumax
  • the suspension culture used in the method of the present invention is culturing cells in a non-adherent state on a culture dish, and is not particularly limited, but is artificially treated for the purpose of improving adhesion with cells ( For example, using a culture vessel that has not been coated with an extracellular matrix or the like, or a culture vessel that has been artificially inhibited from adhesion (eg, coated with polyhydroxyethylmethacrylate (poly-HEMA)) Preferably it is done.
  • the culture solution used in this step (iii) can be prepared by adding one or more substances selected from the group consisting of BMP2, TGF ⁇ and GDF5 to the basal medium used for culturing animal cells.
  • a culture solution containing at least TGF ⁇ a culture solution containing BMP2 and TGF ⁇ , a culture solution containing ascorbic acid, BMP2 and TGF ⁇ , a culture solution containing GDF5, BMP2 and TGF ⁇ , or an ascorbic acid, BMP2, TGF ⁇ and GDF5
  • the culture solution contains ascorbic acid, BMP2, TGF ⁇ , and GDF5.
  • basal medium examples include IMDM medium, Medium ⁇ 199 medium, Eagle's MinimummEssential Medium (EMEM) medium, ⁇ MEM medium, Dulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI 1640 medium, and Fischer's medium.
  • EMEM Eagle's MinimummEssential Medium
  • DMEM Dulbecco's modified Eagle's Medium
  • Ham's F12 medium examples include a Fischer's medium.
  • Fischer's medium examples include a medium.
  • the medium may contain serum (for example, FBS) or may be serum-free.
  • albumin transferrin, KnockOut Serum Replacement (KSR) (serum substitute for FBS during ES cell culture) (Invitrogen), N2 supplement (Invitrogen), B27 supplement (Invitrogen), fatty acid, insulin, collagen It may contain one or more serum replacements such as precursors, trace elements, 2-mercaptoethanol, 3'-thiolglycerol, lipids, amino acids, L-glutamine, GlutaMAX (Invitrogen), non-essential amino acids (NEAA) It may also contain one or more substances such as vitamins, growth factors, low molecular weight compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts and the like.
  • the basal medium is DMEM containing insulin, transferrin, sodium selenite, and 1% serum.
  • ascorbic acid may be a commercially available product such as Nakarai.
  • concentration of ascorbic acid used in this step is 5 to 500 ⁇ g / ml, preferably 10 to 100 ⁇ g / ml, more preferably 50 to ⁇ g / ml.
  • BMP2 includes BMP2 derived from humans and other animals, and functional variants thereof, and for example, commercially available products such as Osteopharma can be used.
  • the concentration of BMP2 used in this step is 0.1 ng / ml to 1000 ng / ml, preferably 1 ng / ml to 100 ng / ml, more preferably 5 ng / ml to 50 ng / ml, 10 ng / ml. It is.
  • TGF ⁇ includes TGF ⁇ derived from humans and other animals, and functional variants thereof.
  • concentration of TGF ⁇ used in this step is 0.1 ng / ml to 1000 ng / ml, preferably 1 ng / ml to 100 ng / ml, more preferably 5 ng / ml to 50 ng / ml, 10 ng / ml. It is.
  • GDF5 includes GDF5 derived from humans and other animals, and functional modifications thereof.
  • GDF5 derived from humans and other animals, and functional modifications thereof.
  • commercially available products such as PeproTech can be used.
  • the concentration of GDF5 used in this step is 0.1 ng / ml to 1000 ng / ml, preferably 1 ng / ml to 100 ng / ml, more preferably 5 ng / ml to 50 ng / ml, 10 ng / ml. It is.
  • the culture temperature is not particularly limited, but is about 30 to 40 ° C., preferably about 37 ° C., and the culture is performed in an atmosphere of CO 2 -containing air.
  • the CO 2 concentration is about 2-5%, preferably about 5%.
  • the culture time in this step is, for example, 10 days or more and 30 days or less, preferably 14 days or more and 28 days or less.
  • Step of further culturing cells obtained in the step (iii) in suspension culture The chondrocytes can be produced by the step (iii), but in order to obtain a more mature chondrocyte, the step The cell culture obtained in (iii) may be further subjected to suspension culture.
  • the culture solution used in this step (iv) is a basal medium used for animal cell culture.
  • the basal medium include IMDM medium, Medium ⁇ 199 medium, Eagle's MinimummEssential Medium (EMEM) medium, ⁇ MEM medium, Dulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI 1640 medium, and Fischer's medium.
  • EMEM Eagle's MinimummEssential Medium
  • DMEM Dulbecco's modified Eagle's Medium
  • Ham's F12 medium RPMI 1640 medium
  • Fischer's medium examples include a medium.
  • the medium may contain serum (for example, FBS) or may be serum-free.
  • albumin transferrin, KnockOut Serum Replacement (KSR) (serum substitute for FBS during ES cell culture) (Invitrogen), N2 supplement (Invitrogen), B27 supplement (Invitrogen), fatty acid, insulin, collagen It may contain one or more serum replacements such as precursors, trace elements, 2-mercaptoethanol, 3'-thiolglycerol, lipids, amino acids, L-glutamine, GlutaMAX (Invitrogen), non-essential amino acids (NEAA) It may also contain one or more substances such as vitamins, growth factors, low molecular weight compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts and the like. In one embodiment of this step, the basal medium is DMEM with 10% serum.
  • the culture temperature is not particularly limited, but is about 30 to 40 ° C., preferably about 37 ° C., and the culture is performed in an atmosphere of CO 2 -containing air.
  • the CO 2 concentration is about 2-5%, preferably about 5%. Since the culture time of this step is not particularly long and causes no problems in the production of chondrocytes, for example, a culture period of 20 days or longer is exemplified, and preferably 28 days or longer.
  • the present invention provides induced chondrocytes derived from pluripotent stem cells as described above.
  • the induced chondrocytes are cells having the following characteristics (1) to (3); (1)
  • the chondrocyte has a COL2A1 gene expression level that is at least 100 times that of the corresponding gene expression level in pluripotent stem cells; (2)
  • the chondrocyte has an expression level of SOX9 gene at least 250 times that of the corresponding gene in pluripotent stem cells, and (3) the chondrocyte is introduced with a foreign gene Not (except for foreign genes used for iPS cell production).
  • the expression level of the COL2A1 gene and the expression level of the SOX9 gene can be measured by methods well known to those skilled in the art as the amount of mRNA per unit cell. Examples of the measurement method include RT-PCR method and Northern blot method, and the PCR method will be described in detail in the examples described later.
  • the expression level of the COL2A1 gene in the induced chondrocytes provided by the present invention is at least 50 times, 100 times or more, 150 times or more, 200 times or more, 250 times the expression level of the gene of the pluripotent stem cell Above, 260 times or more, 270 times or more, 280 times or more, 290 times or more, 300 times or more, 400 times or more, 500 times or more, 600 times or more, 700 times or more, 800 times or more, 900 times or more, or 1000 times
  • the above is preferable. More preferably, it is 280 times or more.
  • the expression level of the SOX9 gene in the induced chondrocytes provided by the present invention is at least 50 times, 100 times, 150 times, 200 times, 250 times, compared to the expression level of the gene of pluripotent stem cells Above, 260 times or more, 270 times or more, 280 times or more, 290 times or more, 300 times or more, 400 times or more, 500 times or more, 600 times or more, 700 times or more, 800 times or more, 900 times or more, or 1000 times
  • the above is preferable. More preferably, it is 500 times or more.
  • the induced chondrocytes provided by the present invention can be cultured in the culture solution used in the step (iv).
  • the culture temperature and other conditions are also the same as in step (iv).
  • the present invention provides a cartilage-like tissue having a three-dimensional structure obtained by culturing the above-described induced chondrocytes.
  • the cartilage-like tissue is composed of an outer membrane and contents contained in the outer membrane, and the outer membrane contains COL1 fibers but does not contain COL2 fibers, and the thickness of the outer membrane is 10 ⁇ m.
  • the content is 50 ⁇ m or less, and the content includes Col11 fiber, Col2 fiber, proteoglycan and the induced chondrocytes.
  • the cartilage-like tissue provided by the present invention is a spherical substance having a diameter of 0.5 mm or more and 5 mm or less. Since the spherical substance can be fused, the major axis is at least 0.5 mm or more. There is no particular limitation.
  • the thickness of the outer membrane is such that the cartilage-like tissue has a mechanical strength that can be tolerated by the joint in the living body, and can be fused with the tissue of the transplanted part when transplanted into the living body.
  • the thickness is not particularly limited, and examples thereof include 10 ⁇ m to 50 ⁇ m, 15 ⁇ m to 40 ⁇ m, and 20 ⁇ m to 30 ⁇ m.
  • the thickness of the outer membrane can be measured from a microscopic image of the stained portion after preparing a slice of cartilage-like tissue and staining with an antibody against COL1.
  • the section used for the measurement is preferably a section cut so that the area of the cartilage-like tissue is maximized.
  • the COL1 fiber is a fiber in which a protein encoded by the COL1 gene forms a triple helical structure.
  • the COL2 fiber is a fiber in which a protein encoded by the COL2 gene forms a triple helical structure.
  • the COL11 fiber is a fiber in which a protein encoded by the COL11 gene forms a triple helical structure.
  • a proteoglycan is a compound in which serine, which is an amino acid of a core protein, and a saccharide (xylose, galactose, glucuronic acid) are combined, and a polysaccharide that is continuous in two saccharide units such as chondroitin sulfate.
  • a pharmaceutical comprising chondrocytes obtained by the above-described method.
  • a method for administering a pharmaceutical product to a patient for example, a culture (particle) composed of chondrocytes obtained by the above-described method and a produced extracellular matrix is solidified with fibrin glue, and has a size suitable for the administration site.
  • a culture composed of chondrocytes and produced extracellular matrix there is a method of administering to a cartilage defect site of a patient.
  • Other examples include a method in which particles are mixed with gelatin gel and / or collagen gel and / or hyaluronic acid gel and administered to the affected area, and a method in which particles are administered to the trunk and fixed with periosteum or the like.
  • diseases to be treated with the present pharmaceutical include defects of facial cartilage such as nasal cartilage and auricular cartilage and articular cartilage, and preferably articular cartilage damage.
  • the number of particles contained in the pharmaceutical product is not particularly limited as long as the graft can be engrafted after administration, and may be prepared by appropriately increasing or decreasing according to the size of the affected area or the size of the body.
  • the 409B2 strain (Nat Methods. 8, 409-412 (2011)) and the 604B1 strain (Stem Cells. 31, 458-466 (2013)) were received from the Institute for iPS Cell Research, Kyoto University.
  • the established iPS cells were replated on feeder cells (SNL cells treated with mitomycin C), and maintenance culture was performed after adding human ES cell maintenance medium.
  • Human ES cell maintenance medium is DMEM / F12 (Sigma), 20% KSR (Invitrogen), 2 mM L-glutamine (Invitrogen), 1 ⁇ 10 ⁇ 4 M non-essential amino acid (Invitrogen), 1 ⁇ 10 ⁇ 4 M 2 ⁇ It was prepared by mixing mercaptoethanol (Invitrogen), 50 units / ml penicillin (Invitrogen), 50 mg / ml streptomycin (Invitrogen), 4 ng / ml bFGF (WAKO).
  • iPS cells were seeded on a matrigel (Invitrogen) coated dish, and a medium supplemented with 50 units / ml penicillin and 50 mg / ml streptomycin was added to Essential 8 medium (Life Technologies), and maintenance culture was performed in a feeder-free environment. . On day 10 to 15 after the start of feeder-free maintenance culture, differentiation induction into chondrocytes described in detail below was performed using a colony consisting of 1 to 2 ⁇ 10 5 cells.
  • RNA isolation and quantitative real-time RT-PCR RNA for performing RT-PCR was recovered from the desired cells using the RNeasy Mini Kit (Qiagen) according to the manufacturer's protocol under conditions of digestion with DNae I in the column.
  • the RNA was recovered after homogenization by mortar treatment.
  • 500 ng of total RNA was converted to cDNA using ReverTra Ace (TOYOBO).
  • Real-time PCR was performed in Step One system (ABI) using KAPA SYBR FAST qPCR kit Master Mix ABI prism (KAPA BIOSYSTEMS). The primers used for PCR are shown below.
  • iPS cells that express GFP specifically in chondrocytes Transgene construct (Col11a2-EGFP-IRES-Puro, see Fig. 1) bound to the promoter / enhancer of chondrocyte-specific Col11a2 gene (type XI collagen ⁇ 2 chain gene) ) was introduced into human iPS cells.
  • a reporter iPS cell line expressing green fluorescent protein (GFP) specifically for the Col11a2 gene was selected. Integration of the reporter gene into the selected iPS cell line was confirmed by RT-PCR.
  • a teratoma formed by injecting the selected Col11a2 gene reporter iPS cells subcutaneously into SCID mice was collected and stained, and formation of cartilage, intestinal tract and nerve tissue was confirmed. It was also confirmed to show specific expression (FIG. 2).
  • each composition shown in (1) to (3) below was added to the prepared solution in which DMEM / F12 was mixed with 1% insulin-transferrin-sodium selenite, 1% FBS, 50units / ml penicillin, 50mg / ml streptomycin.
  • the cartilage induction additive was added and cultured from the start of differentiation induction to the 14th day (day 14).
  • the 14-day culture process was performed by the adhesion culture method.
  • 10 ng / ml bFGF was added to promote growth from day 3 to day 14.
  • A 50 ⁇ g / ml ascorbic acid (Nakarai)
  • ABT 50 ⁇ g / ml ascorbic acid, 10 ng / ml BMP2 (Osteopharma) and 10 ng / ml TGF ⁇ (Pepro Tech) mixed solution
  • ABTG 50 ⁇ g / ml ascorbic acid, 10 ng / ml BMP2 (Osteopharma), 10 ng / ml TGF ⁇ (Pepro Tech) and 10ng / ml GDF5 mixed solution
  • day0”, “day3”, “day10”, “day14”, “day15”, “day21”, “day28”, “day42” used to indicate the culture period in the differentiation induction step.
  • “Day52 ”,“ day56 ”,“ day70 ”,“ day140 ” are“ the start date of differentiation induction ”,“ the third day from the start of differentiation induction ”, and“ the tenth day from the start of differentiation induction ”, respectively.
  • the cell nodule on the dish was detached by pipetting, transferred to a Petri dish, and suspended in the same medium.
  • the cell nodule could be easily detached due to a decrease in adhesion ability due to the action of the cartilage extracellular matrix (ECM).
  • ECM cartilage extracellular matrix
  • the medium was changed every 2 to 7 days.
  • RNA of the obtained particles was extracted, and the expression level of the chondrocyte marker gene was measured using real-time PCR (FIG. 4b).
  • chondrocyte induction method (Sci Rep. 3, 1978 (2013)) in the suspension culture process (Micromass formation) and the mesoderm induction process (Wnt3A and activin A) were added.
  • chondrocyte marker genes were compared by RT-PCR for chondrocytes obtained by the method of the protocol of the present invention including the step of adhesion culture in a medium)
  • the protocol including the mesoderm induction step significantly The expression level of the marker gene was high (FIG. 5). From this result, it was shown that the induction process from iPS cells to mesoderm is useful for chondrocyte induction.
  • the particles on day 42 were strongly dyed by safranin O, indicating that the ECM was in a mature state. However, both type I collagen and type II collagen were contained in the ECM.
  • the culture was continued using the cartilage medium used until day 42, expression of type I collagen was maintained on day 70 or day 140 (FIGS. 7a and b).
  • the expression of type I collagen decreased and the expression of type II collagen increased on day 70 (FIGS. 6b and c).
  • the expression of type X collagen was below the detection limit.
  • increase in the expression level of type I collagen was confirmed in the surface layer portion of the particles.
  • the number of living cells was measured and the change with time was measured (FIG. 10b). Viable cells were counted by trypan blue staining. As a result, from day 0 to day 3, the number of cells does not increase and the number of viable cells is decreased despite the start of cell division by culture. Was suggested to have died and enriched for mesoderm cells. Thereafter, the number of cells continued to increase until the 14th. On day 14, the culture was changed from adhesion culture to suspension culture. In this example, since the number of floating particles was measured, a decrease in the number of cells was observed on day 14. The number of viable cells after completion of the whole culture process was about 7 times the number of human iPS cells on day 0.
  • the average cell number of human iPS cells in day0 is 1.6 ⁇ 0.1 ⁇ 10 5 / 35mm dish, the average number of viable cells in the day14 was 9.0 ⁇ 0.72 ⁇ 10 5 / 35mm dish. Among them, the average number of cells that led to the formation of particles was 4.06 ⁇ 0.04 ⁇ 10 5 . The number of cells reached 10.4 ⁇ 0.2 ⁇ 10 5 on day 42.
  • the average number of particles per dish was 14.6 ⁇ 3.96.
  • the average diameter of the particles was 0.69 ⁇ 0.2 mm on day 21, 0.8 ⁇ 0.16 mm on day 28, 1.13 ⁇ 0.18 mm on day 42, and 1.4 ⁇ 0.47 mm on day 70.
  • the amount of FBS used in this protocol is the amount that supplies the minimum amount of growth factor for chondrocytes to remain alive. Under these conditions, non-chondrocytes are killed and non-cartilage killed from particles. It is thought that the cells have detached. In addition, since non-chondrocytes accumulate on the bottom surface of the culture dish, if only floating particles are extracted, chondrocytes can be obtained with high purity without separate sorting.
  • chondrocytes when moving from adhesion culture to suspension culture, chondrocytes are lubricious and can be easily detached, whereas non-chondrocytes have a high degree of adhesion to the bottom of the culture dish, Even in this step, chondrocytes can be selected with high purity based on the difference in adhesion between chondrocytes and non-chondrocytes.
  • chondrocytes at day 42 were injected subcutaneously into SCID mice. Histochemical analysis was performed 12 weeks after the injection, and formation of cartilage tissue was confirmed in four of the six injection sites (FIG. 11a). Of this cartilage tissue, 96.4 ⁇ 0.84% were SOX9 positive cells (FIG. 11b). In addition, in the cartilage tissue in which the formation of hyaline cartilage was confirmed by the expression of SOX9, the formation of the surface layer was recognized by the expression of type I collagen. Furthermore, immunostaining was performed using a non-human-derived vimentin antibody.
  • the hyaline cartilage site in the subcutaneously formed tissue was derived from human iPS cells and the surrounding membrane layer was derived from a mouse (FIG. 11c).
  • the chondrocytes were transplanted, no tumor formation was confirmed, and no tissue change that could be a sign of tumor formation was observed. From these results, it was found that chondrocytes derived from human iPS cells can form hyaline cartilage in an in vivo environment and can maintain the same morphology for at least 12 weeks.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Rheumatology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Materials For Medical Uses (AREA)

Abstract

 次の工程を含む多能性幹細胞から軟骨細胞を製造する方法:(i)多能性幹細胞を接着培養することにより中胚葉細胞を誘導する工程、(ii)前記工程(i)で得られた細胞をBMP2、TGFβおよびGDF5から成る群より選択される1以上の物質を含む培養液中で接着培養する工程、および(iii)前記工程(ii)で得られた細胞をBMP2、TGFβおよびGDF5から成る群より選択される1以上の物質を含む培養液中で浮遊培養する工程。さらに、この方法で得られた軟骨細胞を含む医薬品を提供する。

Description

新規軟骨細胞誘導方法
 本発明は、多能性幹細胞から軟骨細胞を分化誘導する方法に関する。本発明はまた、そのようにして得られた軟骨細胞を含む治療剤に関する。
 鼻、耳および関節は軟骨組織から形成されており、軟骨組織は、軟骨細胞とI型コラーゲンを含まず、II型コラーゲン、IX型コラーゲン、XI型コラーゲンおよびプロテオグリカンを含む特定の細胞外マトリックスとで形成されている。関節損傷などで失われた軟骨組織は自然治癒することはないため、移植等の修復治療を行わなければ悪化してしまう。しかし、損傷部位へ移植するための軟骨組織の入手が必要であり、患者自身の別の部位の軟骨を用いるにはその損傷部位の大きさが限られる。このため、in vitroで取り出した軟骨細胞の拡大培養を行うと細胞が繊維化してしまい、移植には適さない(非特許文献1)。この他にも、間葉系幹細胞を投与する方法が提案されているが、間葉系幹細胞は多数の種類の細胞へと分化するため、I型コラーゲンを発現する線維組織やX型コラーゲンを発現する肥大化組織を移植することになってしまう(非特許文献2)。
 そこで、近年、iPS細胞やES細胞といった多能性幹細胞から軟骨細胞へと誘導し、これを用いる方法が提案されている(非特許文献3~7)。しかし、繊維軟骨の形成やテラトーマの形成など問題が提起されている。従って、これら多能性幹細胞からin vivoで癌を形成せず、上質の軟骨組織を製造する方法が必要となる。
Roberts, S., et al. Knee 16, 398-404 (2009). Mithoefer, K., et al. Am. J. Sports Med. 37, 2053-2063 (2009). Koyama, N. et al. Stem cells and development 22, 102-113 (2013). Hwang, N.S., et al. PLoS ONE 3, e2498 (2008). Oldershaw, R.A. et al. Nat. Biotechnol. 28, 1187-1194 (2010). Bai, H.Y., et al. Journal of biomedical materials research. Part A 94, 539-546 (2010). Yamashita, A. et al. Scientific Reports 3 (2013).
 本発明の課題は、多能性幹細胞から軟骨細胞を分化誘導する方法を提供することにある。より具体的には、多能性幹細胞から中胚葉細胞を誘導し、さらにアスコルビン酸、BMP2、TGFβおよびGDF5を含む培養液中で接着培養と浮遊培養を組み合わせて分化する工程を含む、軟骨細胞を分化誘導する方法を提供することにある。
 本発明者らは上記の課題を解決すべく鋭意検討を行った結果、中胚葉細胞を誘導する工程を含むことで、軟骨細胞の誘導効率が高まること、および、アスコルビン酸、BMP2、TGFβおよびGDF5を含む培養液中で接着培養と浮遊培養を組み合わせることで、軟骨細胞の純度が高まることを見出し、多能性幹細胞から良質の軟骨細胞を分化誘導できることを初めて見出した。さらに、このように得られた軟骨細胞を動物モデルへ移植することで生着させることができることを見出した。本発明はそのような知見を基にして完成されたものである。
 すなわち、本発明は以下の特徴を有する:
[1]次の工程を含む多能性幹細胞から軟骨細胞を製造する方法:
(i)多能性幹細胞を接着培養することにより中胚葉細胞を誘導する工程、
(ii)前記工程(i)で得られた細胞をBMP2、TGFβおよびGDF5から成る群より選択される1以上の物質を含む培養液中で接着培養する工程、および
(iii)前記工程(ii)で得られた細胞をBMP2、TGFβおよびGDF5をから成る群より選択される1以上の物質含む培養液中で浮遊培養する工程。
[2]前記工程(iii)で得られた細胞を血清を含有する培養液中で培養する工程をさらに含む、[1]に記載の方法。
[3]前記工程(i)、(ii)および(iii)の工程で用いる培養液が、さらに1%FBSを含む培養液である、[1]または[2]に記載の方法。
[4]前記工程(iii)が、前記工程(ii)で得られた細胞を分離溶液を用いずに、浮遊培養を行う工程である、[1]から[3]のいずれか1項に記載の方法。
[5]前記工程(i)の中胚葉細胞を誘導する工程が、Wnt3aおよびアクチビンAを含む培養液中で培養する工程である、[1]から[4]のいずれか1項に記載の方法。
[6]前記工程(i)が、5日以下である、[1]から[5]のいずれか1項に記載の方法。
[7]前記工程(ii)が、15日以下である、[1]から[6]のいずれか1項に記載の方法。
[8]前記工程(iii)が、10日以上30日以下である、[1]から[7]のいずれか1項に記載の方法。
[9]前記工程(i)が、3日である、[6]に記載の方法。
[10]前記工程(ii)が、11日である、[7]に記載の方法。
[11]前記工程(iii)が、14日以上28日以下である、[8]に記載の方法。
[12][1]から[11]に記載の方法で製造された軟骨細胞を含む、医薬品。
[13]前記軟骨細胞が、軟骨細胞と細胞外マトリックスを含む塊である、[12]に記載の医薬品。
[14]関節軟骨損傷治療用である、[12]または[13]に記載の医薬品。
[15]多能性幹細胞から誘導された誘導軟骨細胞であって、
(1)当該軟骨細胞は、COL2A1遺伝子の発現量が、多能性幹細胞における対応する遺伝子の発現量と比較して、少なくとも100倍であり、
(2)当該軟骨細胞は、 SOX9遺伝子の発現量が、多能性幹細胞における対応する遺伝子の発現量と比較して、少なくとも250倍であり、および
(3)当該軟骨細胞は、外来遺伝子が導入されていない(ただし、iPS細胞の製造に用いた遺伝子は除く)、前記誘導軟骨細胞。
[16]立体構造を有する軟骨様組織であって、
当該軟骨様組織は、外膜および当該外膜に内包された内容物から構成されており、
当該外膜は、COL1線維を含むが、COL2線維を含まず、
当該外膜の厚さが、10μm以上50μm以下であり、
当該内容物が、Col11線維、Col2線維、プロテオグリカンおよび請求項15に記載された細胞を含む、前記軟骨様組織。
 本発明によって多能性幹細胞(例えば、iPS細胞)から良質な軟骨細胞へ効率よく誘導することが初めて可能となった。本発明の方法で製造された軟骨細胞は、軟骨の再生医療に使用され得る。
図1は、Col11A2のプロモーター活性によりEGFPを発現させるCol11a2-EGFP-IRES-Puroのコンストラクトの模式図を示す。 図2は、iPS細胞株へCol11a2-EGFP-IRES-Puroを組み込んだCol11a2遺伝子レポーターiPS細胞をSCIDマウスの皮下に注入した際に得られたテラトーマの組織染色像を示す。 図3は、多能性幹細胞から軟骨細胞を誘導するプロトコールの模式図を示す。 図4aは、Col11a2遺伝子レポーターiPS細胞および野生型iPS細胞を各条件(A、ABTおよびABTG)を用いて誘導したday14の位相差顕微鏡像(上図)および蛍光顕微鏡像(下図)を示す。図4bは、Col11a2遺伝子レポーターiPS細胞を各条件(A、ABTおよびABTG)を用いて誘導したday28における細胞のSOX9、AGGRECAN、COL2A1およびCOL11A2の発現量をRT-PCRで計測した結果を示す。図中Chondrocyteは陽性対照としてCell Applications, Incより購入したヒト軟骨細胞(402RD-R10f)の結果を示す。図4cは、各条件(A、ABTおよびABTG)を用いて誘導したday42におけるHE染色およびサフラニンO染色像を示す。 図5は、従来法(Micromass)および本発明のプロトコールに従って誘導したday28の細胞におけるSOX9、AGGRECAN、COL2A1およびCOL11A2に対するRT-PCRの結果を示す。 図6aは、本発明のプロトコールに従って誘導したday28のパーティクルのHE染色およびサフラニンO染色像を示す。図6bは、本発明のプロトコールに従って誘導したday42のパーティクルのHE染色、サフラニンO染色、II型コラーゲンの染色およびI型コラーゲンの染色像を示す。図6cは、本発明のプロトコール(day42より血清含有培地に交換)に従って誘導したday70のパーティクルのHE染色、サフラニンO染色、II型コラーゲンの染色およびI型コラーゲンの染色像を示す。図6dは、本発明のプロトコール(day42より血清含有培地に交換)に従って誘導したday56およびday70のパーティクルのSOX9の染色像を示す。図6eは、本発明のプロトコール(day42より血清含有培地に交換)に従って誘導したday56のパーティクルのGFPの蛍光顕微鏡像を示す。図6fは、本発明のプロトコール(day42より血清含有培地に交換)に従って誘導した場合の全細胞数に対するSOX9陽性細胞数の含有率を継時的に測定した結果を示す。 図7aは、本発明のプロトコールのうちday42より軟骨培地のまま培養に変更したプロトコールに従って誘導したday70のパーティクルのHE染色、サフラニンO染色、II型コラーゲンの染色およびI型コラーゲンの染色像を示す。図7bは、本発明のプロトコールのうちday42より軟骨培地のまま培養に変更したプロトコールに従って誘導したday140のパーティクルのHE染色、サフラニンO染色、II型コラーゲンの染色およびI型コラーゲンの染色像を示す。 図8は、本発明のプロトコールのうちday14からday42においても接着培養した変更プロトコールに従って誘導したday42のパーティクルのHE染色、サフラニンO染色像を示す。 図9aは、day42における培養皿の底面に接着した細胞の位相差顕微鏡像(左図)および蛍光顕微鏡像(右図)を示す。図9bは、day42における本発明のプロトコールに従って誘導したパーティクルおよび培養皿の底面に接着した細胞におけるSOX9、AGGRECAN、COL2A1およびCOL11A2に対するRT-PCRの結果を示す。各遺伝子の発現量は、beta-アクチビン(ACTB)の発現量により標準化し、再分化した軟骨細胞(Chondrocyte)または繊維芽細胞(Fibroblast)の値を対照として算出した。 図10aは、本発明のプロトコールに従って誘導した軟骨細胞(day0からday70)、ヒト軟骨細胞(Cartilage)および従来法に従って誘導した軟骨細胞(differ 2WまたはHDFまたはBone)における各遺伝子のRT-PCRの結果を示す。結果は、beta-アクチビン(ACTB)の発現量により標準化し、HDF、分化2週目の細胞、正常関節軟骨細胞、または正常骨細胞の値を対照として算出した。値は、n=3の平均値を示す。図10bは、本発明のプロトコールに従って誘導した各時期(day0からday70)における生細胞数(菱形)および細胞生存率(丸)のグラフを示す。 図11aは、本発明のプロトコールに従って誘導したday42のパーティクルをSCIDマウスの皮下へ投与した12週後のパーティクルのHE染色、サフラニンO染色、II型コラーゲンの染色およびI型コラーゲンの染色像を示す。図11bは、本発明のプロトコールに従って誘導したday42のパーティクルをSCIDマウスの皮下へ投与した12週後のパーティクルのSOX9の染色像を示す。図11cは、本発明のプロトコールに従って誘導したday42のパーティクルをSCIDマウスの皮下へ投与した12週後のパーティクルのヒトVIMENTINおよびDAPIの染色像ならびに位相差顕微鏡像を示す。図11dは、本発明のプロトコールに従って誘導したday42のパーティクルをSCIDマウスの皮下へ投与した4週後および12週後の各組織におけるヒトbeta-アクチビン (ACTB) およびマウスbeta-アクチビン(Actb)の発現量をRT-PCRで測定した結果示す。 図12は、iPS細胞由来の細胞を皮下移植した後の組織における、HE染色(上図)、サフラニンO染色(中央図)およびX型コラーゲン抗体での免疫染色(下図)の結果を示す。右図は、左図の枠内の拡大図であり、スケールバーは、左図では、500mm、中央図および右図では、50mmを示す。 図13aは、本発明のプロトコールに従って誘導したday28のパーティクルをSCIDラットの関節に投与した1週後(左図)および4週後(右図)のHE染色およびヒトVIMENTIN免疫染色像ならびにトルイジンブルー染色およびII型コラーゲンの免疫染色像を示す。図13bは、本発明のプロトコールに従って誘導したday28のパーティクルをSCIDラットの関節に投与した1週後(左図)および4週後(右図)のHE染色およびII型コラーゲンの免疫染色像を示す。図13cは、本発明のプロトコールに従って誘導したday28のパーティクルをSCIDラットの関節に投与した4週後および12週後の各組織におけるヒトbeta-アクチビン (ACTB) およびラットbeta-アクチビン(Actb)の発現量をRT-PCRで測定した結果を示す。
 本発明を以下に詳細に説明する。
 本発明は、次の工程を含む多能性幹細胞から軟骨細胞を製造する方法を提供する;
(i)多能性幹細胞を接着培養することにより中胚葉細胞を誘導する工程、
(ii)前記工程(i)で得られた細胞をBMP2、TGFβおよびGDF5から成る群より選択される1以上の物質を含む培養液中で接着培養する工程、および
(iii)前記工程(ii)で得られた細胞をBMP2、TGFβおよびGDF5から成る群より選択される1以上の物質を含む培養液中で浮遊培養する工程。
 本発明で使用可能な多能性幹細胞は、生体に存在するすべての細胞に分化可能である多能性を有し、かつ、増殖能をも併せもつ幹細胞であり、それには、特に限定されないが、例えば胚性幹(ES)細胞、核移植により得られるクローン胚由来の胚性幹(ntES)細胞、精子幹細胞(「GS細胞」)、胚性生殖細胞(「EG細胞」)、人工多能性幹(iPS)細胞、培養線維芽細胞や骨髄幹細胞由来の多能性細胞(Muse細胞)などが含まれる。好ましい多能性幹細胞は、ES細胞、ntES細胞、およびiPS細胞である。
(A) 胚性幹細胞
 ES細胞は、ヒトやマウスなどの哺乳動物の初期胚(例えば胚盤胞)の内部細胞塊から樹立された、多能性と自己複製による増殖能を有する幹細胞である。
 ES細胞は、受精卵の8細胞期、桑実胚後の胚である胚盤胞の内部細胞塊に由来する胚由来の幹細胞であり、成体を構成するあらゆる細胞に分化する能力、いわゆる分化多能性と、自己複製による増殖能とを有している。ES細胞は、マウスで1981年に発見され (M.J. Evans and M.H. Kaufman (1981), Nature 292:154-156)、その後、ヒト、サルなどの霊長類でもES細胞株が樹立された (J.A. Thomson et al. (1998), Science 282:1145-1147; J.A. Thomson et al. (1995), Proc. Natl. Acad. Sci. USA, 92:7844-7848;J.A. Thomson et al. (1996), Biol. Reprod., 55:254-259; J.A. Thomson and V.S. Marshall (1998), Curr. Top. Dev. Biol., 38:133-165)。
 ES細胞は、対象動物の受精卵の胚盤胞から内部細胞塊を取出し、内部細胞塊を線維芽細胞のフィーダー上で培養することによって樹立することができる。また、継代培養による細胞の維持は、白血病抑制因子(leukemia inhibitory factor (LIF))、塩基性線維芽細胞成長因子(basic fibroblast growth factor (bFGF))などの物質を添加した培養液を用いて行うことができる。ヒトおよびサルのES細胞の樹立と維持の方法については、例えばUSP5,843,780; Thomson JA, et al. (1995), Proc Natl. Acad. Sci. U S A. 92:7844-7848; Thomson JA, et al. (1998), Science. 282:1145-1147; H. Suemori et al. (2006), Biochem. Biophys. Res. Commun., 345:926-932; M. Ueno et al. (2006), Proc. Natl. Acad. Sci. USA, 103:9554-9559; H. Suemori et al. (2001), Dev. Dyn., 222:273-279;H. Kawasaki et al. (2002), Proc. Natl. Acad. Sci. USA, 99:1580-1585;Klimanskaya I, et al. (2006), Nature. 444:481-485などに記載されている。
 ES細胞作製のための培養液として、例えば0.1mM 2-メルカプトエタノール、0.1mM 非必須アミノ酸、2mM L-グルタミン酸、20% KSRおよび4ng/ml bFGFを補充したDMEM/F-12培養液を使用し、37℃、2% CO2/98% 空気の湿潤雰囲気下でヒトES細胞を維持することができる(O. Fumitaka et al. (2008), Nat. Biotechnol., 26:215-224)。また、ES細胞は、3~4日おきに継代する必要があり、このとき、継代は、例えば1mM CaCl2および20% KSRを含有するPBS中の0.25% トリプシンおよび0.1mg/mlコラゲナーゼIVを用いて行うことができる。
 ES細胞の選択は、一般に、アルカリホスファターゼ、Oct-3/4、Nanogなどの遺伝子マーカーの発現を指標にしてReal-Time PCR法で行うことができる。特に、ヒトES細胞の選択では、OCT-3/4、NANOG、ECADなどの遺伝子マーカーの発現を指標とすることができる(E. Kroon et al. (2008), Nat. Biotechnol., 26:443-452)。
 ヒトES細胞株は、例えばWA01(H1)およびWA09(H9)は、WiCell Research Instituteから、KhES-1、KhES-2およびKhES-3は、京都大学再生医科学研究所(京都、日本)から入手可能である。
(B) 精子幹細胞
 精子幹細胞は、精巣由来の多能性幹細胞であり、精子形成のための起源となる細胞である。この細胞は、ES細胞と同様に、種々の系列の細胞に分化誘導可能であり、例えばマウス胚盤胞に移植するとキメラマウスを作出できるなどの性質をもつ(M. Kanatsu-Shinohara et al. (2003) Biol. Reprod., 69:612-616; K. Shinohara et al. (2004), Cell, 119:1001-1012)。神経膠細胞系由来神経栄養因子(glial cell line-derived neurotrophic factor (GDNF))を含む培養液で自己複製可能であるし、またES細胞と同様の培養条件下で継代を繰り返すことによって、精子幹細胞を得ることができる(竹林正則ら(2008),実験医学,26巻,5号(増刊),41~46頁,羊土社(東京、日本))。
(C) 胚性生殖細胞
 胚性生殖細胞は、胎生期の始原生殖細胞から樹立される、ES細胞と同様な多能性をもつ細胞であり、LIF、bFGF、幹細胞因子(stem cell factor)などの物質の存在下で始原生殖細胞を培養することによって樹立しうる(Y. Matsui et al. (1992), Cell, 70:841-847; J.L. Resnick et al. (1992), Nature, 359:550-551)。
(D) 人工多能性幹細胞
 人工多能性幹(iPS)細胞は、特定の初期化因子を、DNA又はタンパク質の形態で体細胞に導入することによって作製することができる、ES細胞とほぼ同等の特性、例えば分化多能性と自己複製による増殖能、を有する体細胞由来の人工の幹細胞である(K. Takahashi and S. Yamanaka (2006) Cell, 126:663-676; K. Takahashi et al. (2007), Cell, 131:861-872; J. Yu et al. (2007), Science, 318:1917-1920; Nakagawa, M.ら,Nat. Biotechnol. 26:101-106 (2008);国際公開WO 2007/069666)。初期化因子は、ES細胞に特異的に発現している遺伝子、その遺伝子産物もしくはnon-cording RNAまたはES細胞の未分化維持に重要な役割を果たす遺伝子、その遺伝子産物もしくはnon-cording RNA、あるいは低分子化合物によって構成されてもよい。初期化因子に含まれる遺伝子として、例えば、Oct3/4、Sox2、Sox1、Sox3、Sox15、Sox17、Klf4、Klf2、c-Myc、N-Myc、L-Myc、Nanog、Lin28、Fbx15、ERas、ECAT15-2、Tcl1、beta-catenin、Lin28b、Sall1、Sall4、Esrrb、Nr5a2、Tbx3またはGlis1等が例示され、これらの初期化因子は、単独で用いても良く、組み合わせて用いても良い。初期化因子の組み合わせとしては、WO2007/069666、WO2008/118820、WO2009/007852、WO2009/032194、WO2009/058413、WO2009/057831、WO2009/075119、WO2009/079007、WO2009/091659、WO2009/101084、WO2009/101407、WO2009/102983、WO2009/114949、WO2009/117439、WO2009/126250、WO2009/126251、WO2009/126655、WO2009/157593、WO2010/009015、WO2010/033906、WO2010/033920、WO2010/042800、WO2010/050626、WO 2010/056831、WO2010/068955、WO2010/098419、WO2010/102267、WO 2010/111409、WO 2010/111422、WO2010/115050、WO2010/124290、WO2010/147395、WO2010/147612、Huangfu D, et al. (2008), Nat. Biotechnol., 26: 795-797、Shi Y, et al. (2008), Cell Stem Cell, 2: 525-528、Eminli S, et al. (2008), Stem Cells. 26:2467-2474、Huangfu D, et al. (2008), Nat Biotechnol. 26:1269-1275、Shi Y, et al. (2008), Cell Stem Cell, 3, 568-574、Zhao Y, et al. (2008), Cell Stem Cell, 3:475-479、Marson A, (2008), Cell Stem Cell, 3, 132-135、Feng B, et al. (2009), Nat Cell Biol. 11:197-203、R.L. Judson et al., (2009), Nat. Biotech., 27:459-461、Lyssiotis CA, et al. (2009), Proc Natl Acad Sci U S A. 106:8912-8917、Kim JB, et al. (2009), Nature. 461:649-643、Ichida JK, et al. (2009), Cell Stem Cell. 5:491-503、Heng JC, et al. (2010), Cell Stem Cell. 6:167-74、Han J, et al. (2010), Nature. 463:1096-100、Mali P, et al. (2010), Stem Cells. 28:713-720、Maekawa M, et al. (2011), Nature. 474:225-9.に記載の組み合わせが例示される。
 上記初期化因子には、ヒストンデアセチラーゼ(HDAC)阻害剤[例えば、バルプロ酸 (VPA)、トリコスタチンA、酪酸ナトリウム、MC 1293、M344等の低分子阻害剤、HDACに対するsiRNAおよびshRNA(例、HDAC1 siRNA Smartpool (Millipore)、HuSH 29mer shRNA Constructs against HDAC1 (OriGene)等)等の核酸性発現阻害剤など]、MEK阻害剤(例えば、PD184352、PD98059、U0126、SL327およびPD0325901)、Glycogen synthase kinase-3阻害剤(例えば、BioおよびCHIR99021)、DNAメチルトランスフェラーゼ阻害剤(例えば、5-azacytidine)、ヒストンメチルトランスフェラーゼ阻害剤(例えば、BIX-01294 等の低分子阻害剤、Suv39hl、Suv39h2、SetDBlおよびG9aに対するsiRNAおよびshRNA等の核酸性発現阻害剤など)、L-channel calcium agonist (例えばBayk8644)、酪酸、TGFβ阻害剤またはALK5阻害剤(例えば、LY364947、SB431542、616453およびA-83-01)、p53阻害剤(例えばp53に対するsiRNAおよびshRNA)、ARID3A阻害剤(例えば、ARID3Aに対するsiRNAおよびshRNA)、miR-291-3p、miR-294、miR-295およびmir-302などのmiRNA、Wnt Signaling(例えばsoluble Wnt3a)、神経ペプチドY、プロスタグランジン類(例えば、プロスタグランジンE2およびプロスタグランジンJ2)、hTERT、SV40LT、UTF1、IRX6、GLISl、PITX2、DMRTBl等の樹立効率を高めることを目的として用いられる因子も含まれており、本明細書においては、これらの樹立効率の改善目的にて用いられた因子についても初期化因子と別段の区別をしないものとする。
 初期化因子は、タンパク質の形態の場合、例えばリポフェクション、細胞膜透過性ペプチド(例えば、HIV由来のTATおよびポリアルギニン)との融合、マイクロインジェクションなどの手法によって体細胞内に導入してもよい。
 一方、DNAの形態の場合、例えば、ウイルス、プラスミド、人工染色体などのベクター、リポフェクション、リポソーム、マイクロインジェクションなどの手法によって体細胞内に導入することができる。ウイルスベクターとしては、レトロウイルスベクター、レンチウイルスベクター(以上、Cell, 126, pp.663-676, 2006; Cell, 131, pp.861-872, 2007; Science, 318, pp.1917-1920, 2007)、アデノウイルスベクター(Science, 322, 945-949, 2008)、アデノ随伴ウイルスベクター、センダイウイルスベクター(WO 2010/008054)などが例示される。また、人工染色体ベクターとしては、例えばヒト人工染色体(HAC)、酵母人工染色体(YAC)、細菌人工染色体(BAC、PAC)などが含まれる。プラスミドとしては、哺乳動物細胞用プラスミドを使用しうる(Science, 322:949-953, 2008)。ベクターには、核初期化物質が発現可能なように、プロモーター、エンハンサー、リボゾーム結合配列、ターミネーター、ポリアデニル化サイトなどの制御配列を含むことができるし、さらに、必要に応じて、薬剤耐性遺伝子(例えばカナマイシン耐性遺伝子、アンピシリン耐性遺伝子、ピューロマイシン耐性遺伝子など)、チミジンキナーゼ遺伝子、ジフテリアトキシン遺伝子などの選択マーカー配列、緑色蛍光タンパク質(GFP)、βグルクロニダーゼ(GUS)、FLAGなどのレポーター遺伝子配列などを含むことができる。また、上記ベクターには、体細胞への導入後、初期化因子をコードする遺伝子もしくはプロモーターとそれに結合する初期化因子をコードする遺伝子を共に切除するために、それらの前後にLoxP配列を有してもよい。
 また、RNAの形態の場合、例えばリポフェクション、マイクロインジェクションなどの手法によって体細胞内に導入しても良く、分解を抑制するため、5-メチルシチジンおよびpseudouridine (TriLink Biotechnologies)を取り込ませたRNAを用いても良い(Warren L, (2010) Cell Stem Cell. 7:618-630)。
 iPS細胞誘導のための培養液としては、例えば、10~15%FBSを含有するDMEM、DMEM/F12又はDME培養液(これらの培養液にはさらに、LIF、penicillin/streptomycin、puromycin、L-グルタミン、非必須アミノ酸類、β-メルカプトエタノールなどを適宜含むことができる。)または市販の培養液[例えば、マウスES細胞培養用培養液(TX-WES培養液、トロンボX社)、霊長類ES細胞培養用培養液(霊長類ES/iPS細胞用培養液、リプロセル社)、無血清培地(mTeSR、Stemcell Technology社)]などが含まれる。
 培養法の例としては、例えば、37℃、5%CO2存在下にて、10%FBS含有DMEM又はDMEM/F12培養液上で体細胞と初期化因子とを接触させ約4~7日間培養し、その後、細胞をフィーダー細胞(たとえば、マイトマイシンC処理STO細胞、SNL細胞等)上に播きなおし、体細胞と初期化因子の接触から約10日後からbFGF含有霊長類ES細胞培養用培養液で培養し、該接触から約30~約45日又はそれ以上ののちにiPS様コロニーを生じさせることができる。
 あるいは、37℃、5% CO2存在下にて、フィーダー細胞(たとえば、マイトマイシンC処理STO細胞、SNL細胞等)上で10%FBS含有DMEM培養液(これにはさらに、LIF、ペニシリン/ストレプトマイシン、ピューロマイシン、L-グルタミン、非必須アミノ酸類、β-メルカプトエタノールなどを適宜含むことができる。)で培養し、約25~約30日又はそれ以上ののちにES様コロニーを生じさせることができる。望ましくは、フィーダー細胞の代わりに、初期化される体細胞そのものを用いる(Takahashi K, et al. (2009), PLoS One. 4:e8067またはWO2010/137746)、もしくは細胞外基質(例えば、Laminin-5(WO2009/123349)およびマトリゲル(BD社))を用いる方法が例示される。
 この他にも、血清を含有しない培地を用いて培養する方法も例示される(Sun N, et al. (2009), Proc Natl Acad Sci U S A. 106:15720-15725)。さらに、樹立効率を上げるため、低酸素条件(0.1%以上、15%以下の酸素濃度)によりiPS細胞を樹立しても良い(Yoshida Y, et al. (2009), Cell Stem Cell. 5:237-241またはWO2010/013845)。
 上記培養の間には、培養開始2日目以降から毎日1回新鮮な培養液と培養液交換を行う。また、核初期化に使用する体細胞の細胞数は、限定されないが、培養ディッシュ100cm2あたり約5×103~約5×106細胞の範囲である。
 iPS細胞は、形成したコロニーの形状により選択することが可能である。一方、体細胞が初期化された場合に発現する遺伝子(例えば、Oct3/4、Nanog)と連動して発現する薬剤耐性遺伝子をマーカー遺伝子として導入した場合は、対応する薬剤を含む培養液(選択培養液)で培養を行うことにより樹立したiPS細胞を選択することができる。また、マーカー遺伝子が蛍光タンパク質遺伝子の場合は蛍光顕微鏡で観察することによって、発光酵素遺伝子の場合は発光基質を加えることによって、また発色酵素遺伝子の場合は発色基質を加えることによって、iPS細胞を選択することができる。
 本明細書中で使用する「体細胞」なる用語は、卵子、卵母細胞、ES細胞などの生殖系列細胞または分化全能性細胞を除くあらゆる動物細胞(好ましくは、ヒトを含む哺乳動物細胞)をいう。体細胞には、非限定的に、胎児(仔)の体細胞、新生児(仔)の体細胞、および成熟した健全なもしくは疾患性の体細胞のいずれも包含されるし、また、初代培養細胞、継代細胞、および株化細胞のいずれも包含される。具体的には、体細胞は、例えば(1)神経幹細胞、造血幹細胞、間葉系幹細胞、歯髄幹細胞等の組織幹細胞(体性幹細胞)、(2)組織前駆細胞、(3)リンパ球、上皮細胞、内皮細胞、筋肉細胞、線維芽細胞(皮膚細胞等)、毛細胞、肝細胞、胃粘膜細胞、腸細胞、脾細胞、膵細胞(膵外分泌細胞等)、脳細胞、肺細胞、腎細胞および脂肪細胞等の分化した細胞などが例示される。
 また、iPS細胞を移植用細胞の材料として用いる場合、拒絶反応が起こらないという観点から、移植先の個体のHLA遺伝子型が同一もしくは実質的に同一である体細胞を用いることが望ましい。ここで、「実質的に同一」とは、移植した細胞に対して免疫抑制剤により免疫反応が抑制できる程度にHLA遺伝子型が一致していることであり、例えば、HLA-A、HLA-BおよびHLA-DRの3遺伝子座あるいはHLA-Cを加えた4遺伝子座が一致するHLA型を有する体細胞である。
(E) 核移植により得られたクローン胚由来のES細胞
 ntES細胞は、核移植技術によって作製されたクローン胚由来のES細胞であり、受精卵由来のES細胞とほぼ同じ特性を有している(T. Wakayama et al. (2001), Science, 292:740-743; S. Wakayama et al. (2005), Biol. Reprod., 72:932-936; J. Byrne et al. (2007), Nature, 450:497-502)。すなわち、未受精卵の核を体細胞の核と置換することによって得られたクローン胚由来の胚盤胞の内部細胞塊から樹立されたES細胞がntES(nuclear transfer ES)細胞である。ntES細胞の作製のためには、核移植技術(J.B. Cibelli et al. (1998), Nature Biotechnol., 16:642-646)とES細胞作製技術(上記)との組み合わせが利用される(若山清香ら(2008),実験医学,26巻,5号(増刊), 47~52頁)。核移植においては、哺乳動物の除核した未受精卵に、体細胞の核を注入し、数時間培養することで初期化することができる。
(F) Multilineage-differentiating Stress Enduring cells(Muse細胞)
 Muse細胞は、WO2011/007900に記載された方法にて製造された多能性幹細胞であり、詳細には、線維芽細胞または骨髄間質細胞を長時間トリプシン処理、好ましくは8時間または16時間トリプシン処理した後、浮遊培養することで得られる多能性を有した細胞であり、SSEA-3およびCD105が陽性である。
 本発明において、軟骨細胞とは、コラーゲンなど軟骨を構成する細胞外マトリックスを産生する細胞、または、このような細胞となる前駆細胞を意味する。また、このような軟骨細胞は、軟骨細胞マーカーを発現する細胞であってもよく、軟骨細胞マーカーとしてII型コラーゲン(COL2A1)またはSOX9が例示される。本発明において、COL2A1には、NCBIのアクセッション番号として、ヒトの場合、NM_001844またはNM_033150、マウスの場合、NM_001113515またはNM_031163に記載されたヌクレオチド配列を有する遺伝子並びに当該遺伝子にコードされるタンパク質、ならびにこれらの機能を有する天然に存在する変異体が包含される。本発明において、SOX9には、NCBIのアクセッション番号として、ヒトの場合、NM_000346、マウスの場合、NM_011448に記載されたヌクレオチド配列を有する遺伝子並びに当該遺伝子にコードされるタンパク質、ならびにこれらの機能を有する天然に存在する変異体が包含される。
(i)多能性幹細胞を接着培養により中胚葉細胞を誘導する工程
 本発明において、中胚葉細胞とは、動物の発生期の原腸胚期において、内胚葉と外肺葉の間に発生する細胞を意味し、好ましくは、BRACHYURYが陽性である細胞を意味する。本発明において、BRACHYURYには、NCBIのアクセッション番号として、ヒトの場合、NM_001270484またはNM_003181、マウスの場合、NM_009309に記載されたヌクレオチド配列を有する遺伝子並びに当該遺伝子にコードされるタンパク質、ならびにこれらの機能を有する天然に存在する変異体が包含される。
 本発明において、多能性幹細胞から中胚葉細胞を誘導する方法は、特に限定されないが、Activin AおよびGSK-3β阻害剤を含有する培養液で培養する方法が例示される。
 本工程(i)では、好ましくは、多能性幹細胞をフィーダー細胞を含まない条件下で接着培養し、適度な大きさ(1から2×105細胞を含有する細胞塊)になった時点で、Activin AおよびGSK-3β阻害剤を含有する培養液へ交換し培養する方法である。
 本発明において、接着培養とは、細胞外基質によりコーティング処理された培養容器を用いて培養することによって行い得る。コーティング処理は、細胞外基質を含有する溶液を培養容器に入れた後、当該溶液を適宜除くことによって行い得る。
 本発明において、細胞外基質とは、細胞の外に存在する超分子構造体であり、天然由来であっても、人工物(組換え体)であってもよい。例えば、コラーゲン、プロテオグリカン、フィブロネクチン、ヒアルロン酸、テネイシン、エンタクチン、エラスチン、フィブリリン、ラミニンといった物質またはこれらの断片が挙げられる。これらの細胞外基質は、組み合わせて用いられてもよく、例えば、BD Matrigel(TM)などの細胞からの調製物であってもよい。人工物としては、ラミニンの断片が例示される。本発明において、ラミニンとは、α鎖、β鎖、γ鎖をそれぞれ1本ずつ持つヘテロ三量体構造を有するタンパク質であり、特に限定されないが、例えば、α鎖は、α1、α2、α3、α4またはα5であり、β鎖は、β1、β2またはβ3であり、ならびにγ鎖は、γ1、γ2またはγ3が例示される。本発明において、ラミニンの断片とは、インテグリン結合活性を有しているラミニンの断片であれば、特に限定されないが、例えば、エラスターゼにて消化して得られる断片であるE8フラグメントが例示される。
 本工程(i)において使用される培養液は、動物細胞の培養に用いられる基礎培地へActivin AおよびGSK-3β阻害剤を添加して調製することができる。基礎培地としては、例えば、IMDM培地、Medium 199培地、Eagle’s Minimum Essential Medium(EMEM)培地、αMEM培地、Dulbecco’s modified Eagle’s Medium(DMEM)培地、Ham’s F12培地、RPMI 1640培地、Fischer’s培地、およびこれらの混合培地などが挙げられる。培地には、血清(例えば、FBS)が含有されていてもよいし、または無血清でもよい。必要に応じて、例えば、アルブミン、トランスフェリン、KnockOut Serum Replacement(KSR)(ES細胞培養時のFBSの血清代替物)(Invitrogen)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、亜セレン酸ナトリウム、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3’-チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、GlutaMAX(Invitrogen)、非必須アミノ酸(NEAA)、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類などの1つ以上の物質も含有しうる。本工程の1つの実施形態において、基礎培地は、インスリン、トランスフェリン、亜セレン酸ナトリウム、および1%血清を含むDMEM/F12である。
 本工程(i)において、Activin Aには、ヒトおよび他の動物由来のActivin A、ならびにこれらの機能的改変体が包含され、例えば、R&D systems社等の市販されているものを使用することができる。本工程で用いるActivin Aの濃度は、0.1 ng/mlから1000 ng/ml、好ましくは、1 ng/mlから100 ng/ml、より好ましくは、5 ng/mlから50 ng/ml、10 ng/mlである。
 本工程(i)において、GSK-3β阻害剤は、GSK-3βの機能、例えば、キナーゼ活性を直接または間接的に阻害できるものである限り特に限定されず、例えば、Wnt3a、インジルビン誘導体であるBIO(別名、GSK-3β阻害剤IX;6-ブロモインジルビン3'-オキシム)、マレイミド誘導体であるSB216763(3-(2,4-ジクロロフェニル)-4-(1-メチル-1H-インドール-3-イル)-1H-ピロール-2,5-ジオン)、フェニルαブロモメチルケトン化合物であるGSK-3β阻害剤VII(4-ジブロモアセトフェノン)、細胞膜透過型のリン酸化ペプチドであるL803-mts(別名、GSK-3βペプチド阻害剤;Myr-N-GKEAPPAPPQSpP-NH2)および高い選択性を有するCHIR99021(Nature (2008) 453: 519-523)が挙げられる。これらの化合物は、例えば、Stemgent、CalbiochemやBiomol社等から入手可能であり、また自ら作製してもよい。本工程で用いる好ましいGSK-3β阻害剤としては、Wnt3aが挙げられる。Wnt3aには、ヒトおよび他の動物由来のWnt3a、ならびにこれらの機能的改変体が包含され、例えば、R&D systems社等の市販されているものを使用することができる。本工程で用いるGSK-3β阻害剤の濃度は、使用するGSK-3β阻害剤に応じて当業者に適宜選択可能であるが、例えば、GSK-3β阻害剤としてWnt3aを用いる場合、0.1 ng/mlから1000 ng/ml、好ましくは、1 ng/mlから100 ng/ml、より好ましくは、5 ng/mlから50 ng/ml、10 ng/mlである。
 本工程(i)において、培養温度は特に限定されないが、約30~40℃、好ましくは約37℃であり、CO2含有空気の雰囲気下で培養が行われる。CO2濃度は、約2~5%、好ましくは約5%である。本工程の培養時間は、例えば5日以下の培養であり、好ましくは3日である。
(ii)前記工程(i)で得られた細胞をBMP2、TGFβおよびGDF5から成る群から選択される1以上の物質を含む培養液中で接着培養する工程
 本工程(ii)では、前記工程(i)で得られた細胞培養物の培養液を除去し、BMP2、TGFβおよびGDF5から成る群から選択される1以上の物質を含有する培養液を添加して行い得る。従って、前記工程(i)において細胞培養物は、培養皿へ接着していることから、本工程(ii)は接着培養によって行い得る。
 本工程(ii)において使用される培養液は、動物細胞の培養に用いられる基礎培地へBMP2、TGFβおよびGDF5から成る群から選択される1以上の物質を添加して調製することができる。好ましくは、少なくともTGFβを含む培養液、BMP2およびTGFβを含む培養液、アスコルビン酸、BMP2およびTGFβを含む培養液、GDF5、BMP2およびTGFβを含む培養液、または、アスコルビン酸、BMP2、TGFβおよびGDF5を含む培養液であり、より好ましくは、bFGF、アスコルビン酸、BMP2、TGFβおよびGDF5を含む培養液である。基礎培地としては、例えば、IMDM培地、Medium 199培地、Eagle’s Minimum Essential Medium(EMEM)培地、αMEM培地、Dulbecco’s modified Eagle’s Medium(DMEM)培地、Ham’s F12培地、RPMI 1640培地、Fischer’s培地、およびこれらの混合培地などが挙げられる。培地には、血清(例えば、FBS)が含有されていてもよいし、または無血清でもよい。必要に応じて、例えば、アルブミン、トランスフェリン、KnockOut Serum Replacement(KSR)(ES細胞培養時のFBSの血清代替物)(Invitrogen)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3’-チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、GlutaMAX(Invitrogen)、非必須アミノ酸(NEAA)、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類などの1つ以上の物質も含有しうる。本工程の1つの実施形態において、基礎培地は、インスリン、トランスフェリン、亜セレン酸ナトリウム、および1%血清を含むDMEMである。
 本工程(ii)において、bFGFには、ヒトおよび他の動物由来のbFGF、ならびにこれらの機能的改変体が包含され、例えば、WAKO社等の市販されているものを使用することができる。本工程で用いるbFGFの濃度は、0.1 ng/mlから1000 ng/ml、好ましくは、1 ng/mlから100 ng/ml、より好ましくは、5 ng/mlから50 ng/ml、10 ng/mlである。
 本工程(ii)において、アスコルビン酸は、例えば、Nakarai社等の市販されているものを使用することができる。本工程で用いるアスコルビン酸の濃度は、5 μg/mlから500 μg/ml、好ましくは、10 μg/mlから100 μg/ml、より好ましくは、50 μg/mlである。
 本工程(ii)において、BMP2には、ヒトおよび他の動物由来のBMP2、ならびにこれらの機能的改変体が包含され、例えば、Osteopharma社等の市販されているものを使用することができる。本工程で用いるBMP2の濃度は、0.1 ng/mlから1000 ng/ml、好ましくは、1 ng/mlから100 ng/ml、より好ましくは、5 ng/mlから50 ng/ml、10 ng/mlである。本発明において、BMP2は、BMP4に置き換えてもよい。
 本工程(ii)において、TGFβには、ヒトおよび他の動物由来のTGFβ、ならびにこれらの機能的改変体が包含され、例えば、PeproTech社等の市販されているものを使用することができる。本工程で用いるTGFβの濃度は、0.1 ng/mlから1000 ng/ml、好ましくは、1 ng/mlから100 ng/ml、より好ましくは、5 ng/mlから50 ng/ml、10 ng/mlである。
 本工程(ii)において、GDF5には、ヒトおよび他の動物由来のGDF5、ならびにこれらの機能的改変体が包含され、例えば、PeproTech社等の市販されているものを使用することができる。本工程で用いるGDF5の濃度は、0.1 ng/mlから1000 ng/ml、好ましくは、1 ng/mlから100 ng/ml、より好ましくは、5 ng/mlから50 ng/ml、10 ng/mlである。
 本工程(ii)において、培養温度は、特に限定されないが、約30~40℃、好ましくは約37℃であり、CO2含有空気の雰囲気下で培養が行われる。CO2濃度は、約2~5%、好ましくは約5%である。本工程の培養時間は、例えば15日以下の培養であり、好ましくは11日である。
(iii)前記工程(ii)で得られた細胞をBMP2、TGFβおよびGDF5から成る群から選択される1以上の物質を含む培養液中で浮遊培養する工程
 本工程(iii)では、前記工程(ii)で得られた細胞培養物を培養容器より剥離させ、浮遊培養することで行い得る。本工程(iii)において、細胞培養物を剥離させる方法は、力学的分離方法(ピペッティング等)により行うことが好ましく、プロテアーゼ活性および/またはコラゲナーゼ活性を有する分離溶液(例えば、トリプシンとコラゲナーゼの含有溶液Accutase(TM)およびAccumax(TM)(Innovative Cell Technologies, Inc)が挙げられる)を用いない方法が好ましい。
 本発明の方法において使用される浮遊培養とは、細胞を培養皿へ非接着の状態で培養することであり、特に限定はされないが、細胞との接着性を向上させる目的で人工的に処理(例えば、細胞外マトリックス等によるコーティング処理)されていない培養容器、または、人工的に接着を抑制する処理(例えば、ポリヒドロキシエチルメタクリル酸(poly-HEMA)によるコーティング処理)した培養容器を使用して行うことが好ましい。
 本工程(iii)において使用される培養液は、動物細胞の培養に用いられる基礎培地へBMP2、TGFβおよびGDF5から成る群から選択される1以上の物質を添加して調製することができる。好ましくは、少なくともTGFβを含む培養液、BMP2およびTGFβを含む培養液、アスコルビン酸、BMP2およびTGFβを含む培養液、GDF5、BMP2およびTGFβを含む培養液、または、アスコルビン酸、BMP2、TGFβおよびGDF5を含む培養液であり、より好ましくは、アスコルビン酸、BMP2、TGFβおよびGDF5を含む培養液である。基礎培地としては、例えば、IMDM培地、Medium 199培地、Eagle’s Minimum Essential Medium(EMEM)培地、αMEM培地、Dulbecco’s modified Eagle’s Medium(DMEM)培地、Ham’s F12培地、RPMI 1640培地、Fischer’s培地、およびこれらの混合培地などが挙げられる。培地には、血清(例えば、FBS)が含有されていてもよいし、または無血清でもよい。必要に応じて、例えば、アルブミン、トランスフェリン、KnockOut Serum Replacement(KSR)(ES細胞培養時のFBSの血清代替物)(Invitrogen)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3’-チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、GlutaMAX(Invitrogen)、非必須アミノ酸(NEAA)、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類などの1つ以上の物質も含有しうる。本工程の1つの実施形態において、基礎培地は、インスリン、トランスフェリン、亜セレン酸ナトリウム、および1%血清を含むDMEMである。
 本工程(iii)において、アスコルビン酸は、例えば、Nakarai社等の市販されているものを使用することができる。本工程で用いるアスコルビン酸の濃度は、5 μg/mlから500 μg/ml、好ましくは、10 μg/mlから100 μg/ml、より好ましくは、50 μg/mlである。
 本工程(iii)において、BMP2には、ヒトおよび他の動物由来のBMP2、ならびにこれらの機能的改変体が包含され、例えば、Osteopharma社等の市販されているものを使用することができる。本工程で用いるBMP2の濃度は、0.1 ng/mlから1000 ng/ml、好ましくは、1 ng/mlから100 ng/ml、より好ましくは、5 ng/mlから50 ng/ml、10 ng/mlである。
 本工程(iii)において、TGFβには、ヒトおよび他の動物由来のTGFβ、ならびにこれらの機能的改変体が包含され、例えば、PeproTech社等の市販されているものを使用することができる。本工程で用いるTGFβの濃度は、0.1 ng/mlから1000 ng/ml、好ましくは、1 ng/mlから100 ng/ml、より好ましくは、5 ng/mlから50 ng/ml、10 ng/mlである。
 本工程(iii)において、GDF5には、ヒトおよび他の動物由来のGDF5、ならびにこれらの機能的改変体が包含され、例えば、PeproTech社等の市販されているものを使用することができる。本工程で用いるGDF5の濃度は、0.1 ng/mlから1000 ng/ml、好ましくは、1 ng/mlから100 ng/ml、より好ましくは、5 ng/mlから50 ng/ml、10 ng/mlである。
 本工程(iii)において、培養温度は、特に限定されないが、約30~40℃、好ましくは約37℃であり、CO2含有空気の雰囲気下で培養が行われる。CO2濃度は、約2~5%、好ましくは約5%である。本工程の培養時間は、例えば10日以上30日以下の培養であり、好ましくは14日以上28日以下である。
(iv)前記工程(iii)で得られた細胞をさらに浮遊培養する工程
 前記工程(iii)により、軟骨細胞を製造することが可能であるが、より成熟した軟骨細胞を得るために、前記工程(iii)で得られた細胞培養物をさらに、浮遊培養してもよい。
 本工程(iv)において使用される培養液は、動物細胞の培養に用いられる基礎培地である。基礎培地としては、例えば、IMDM培地、Medium 199培地、Eagle’s Minimum Essential Medium(EMEM)培地、αMEM培地、Dulbecco’s modified Eagle’s Medium(DMEM)培地、Ham’s F12培地、RPMI 1640培地、Fischer’s培地、およびこれらの混合培地などが挙げられる。培地には、血清(例えば、FBS)が含有されていてもよいし、または無血清でもよい。必要に応じて、例えば、アルブミン、トランスフェリン、KnockOut Serum Replacement(KSR)(ES細胞培養時のFBSの血清代替物)(Invitrogen)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3’-チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、GlutaMAX(Invitrogen)、非必須アミノ酸(NEAA)、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類などの1つ以上の物質も含有しうる。本工程の1つの実施形態において、基礎培地は、10%血清を含むDMEMである。
 本工程(iv)において、培養温度は、特に限定されないが、約30~40℃、好ましくは約37℃であり、CO2含有空気の雰囲気下で培養が行われる。CO2濃度は、約2~5%、好ましくは約5%である。本工程の培養時間は、特に長期にわたることにより軟骨細胞の製造に問題を生じないことから、例えば20日以上の培養期間が例示され、好ましくは28日以上である。
 本発明は、上述のとおり多能性幹細胞から誘導された誘導軟骨細胞を提供する。当該誘導軟骨細胞は、以下の(1)から(3)の特徴を有する細胞である;
(1)当該軟骨細胞は、COL2A1遺伝子の発現量が、多能性幹細胞における対応する遺伝子の発現量と比較して、少なくとも100倍であり、
(2)当該軟骨細胞は、 SOX9遺伝子の発現量が、多能性幹細胞における対応する遺伝子の発現量と比較して、少なくとも250倍であり、および
(3)当該軟骨細胞は、外来遺伝子が導入されていない(ただし、iPS細胞の製造に用いた外来遺伝子は除く)。
 本発明において、COL2A1遺伝子の発現量およびSOX9遺伝子の発現量は、単位細胞あたりのmRNAの量として、当業者に周知の方法によって測定され得る。測定方法としては、RT-PCR法、ノーザンブロット法などが例示され、PCR法は、後述する実施例にて詳細を示す。
 本発明の提供する誘導軟骨細胞におけるCOL2A1遺伝子の発現量は、多能性幹細胞の当該遺伝子の発現量と比較して、少なくとも50倍以上、100倍以上、150倍以上、200倍以上、250倍以上、260倍以上、270倍以上、280倍以上、290倍以上、300倍以上、400倍以上、500倍以上、600倍以上、700倍以上、800倍以上、900倍以上、または、1000倍以上でありことが好ましい。より好ましくは、280倍以上である。
 本発明の提供する誘導軟骨細胞におけるSOX9遺伝子の発現量は、多能性幹細胞の当該遺伝子の発現量と比較して、少なくとも50倍以上、100倍以上、150倍以上、200倍以上、250倍以上、260倍以上、270倍以上、280倍以上、290倍以上、300倍以上、400倍以上、500倍以上、600倍以上、700倍以上、800倍以上、900倍以上、または、1000倍以上でありことが好ましい。より好ましくは、500倍以上である。
 本発明の提供する誘導軟骨細胞は、前記工程(iv)で用いる培養液で培養することができる。培養温度その他条件もまた、前記工程(iv)と同様である。
 本発明は、上記の誘導軟骨細胞を培養することによって得られる立体構造を有する軟骨様組織を提供する。当該軟骨様組織は、外膜および当該外膜に内包された内容物から構成されており、当該外膜は、COL1線維を含むが、COL2線維を含まず、当該外膜の厚さが、10μm以上50μm以下であり、当該内容物が、Col11線維、Col2線維、プロテオグリカンおよび前記誘導軟骨細胞を含む。
 本発明が提供する軟骨様組織は、直径が0.5mm以上、5mm以下の球状の物質であるが、当該球状の物質を融合することが可能であることから、長径が少なくとも0.5mm以上であれば、特に限定されない。
 本発明において、外膜の厚さは、軟骨様組織が生体内の関節にて許容できる力学的強度を有しており、生体内へ移植した際に、当該移植部の組織と癒合ができる限り特に厚さは限定されないが、例えば、10μm以上50μm以下、15μm以上40μm以下、20μm以上30μm以下が挙げられる。外膜の厚さは、軟骨様組織の切片を用意し、COL1に対する抗体で染色したのち、当該染色部分の顕微鏡像より測定することができる。測定に用いる切片は、好ましくは、当該軟骨様組織の面積が最大になるよう切断された切片である。外膜の厚さは、一つの軟骨様組織の切片において均一ではない場合、当該切片における最大値を外膜の厚さとすることができる。
 本発明において、COL1線維とは、COL1遺伝子によってコードされるタンパク質が3重らせん構造を形成している線維である。
 本発明において、COL2線維とは、COL2遺伝子によってコードされるタンパク質が3重らせん構造を形成している線維である。
 本発明において、COL11線維とは、COL11遺伝子によってコードされるタンパク質が3重らせん構造を形成している線維である。
 本発明において、プロテオグリカンとは、コアタンパク質のアミノ酸であるセリンと糖質(キシロース、ガラクトース、グルクロン酸)が結合し、コンドロイチン硫酸などの2糖単位で連続する多糖体が結合した化合物である。
 本発明では、上述した方法により得られた軟骨細胞を含む医薬品を提供する。患者への医薬品の投与方法としては、例えば、上述の方法により得られた軟骨細胞と産生された細胞外マトリックスから成る培養物(パーティクル)をフィブリン糊で固めて、投与部位に適した大きさの軟骨細胞と産生された細胞外マトリックスから成る培養物として、患者の軟骨欠損部位に投与する方法がある。この他にも、パーティクルをゼラチンゲルおよび/またはコラーゲンゲルおよび/またはヒアルロン酸ゲル等と混合し、患部へ投与する方法、パーティクルを幹部に投与し、骨膜等で固定する方法などが例示される。
 本医薬品により治療される疾患として、鼻軟骨・耳介軟骨などの顔面軟骨および関節軟骨の欠損が例示され、好ましくは、関節軟骨損傷である。
 本発明において、本医薬品に含まれるパーティクルの数は、移植片が投与後に生着できれば特に限定されなく、患部の大きさや体躯の大きさに合わせて適宜増減して調製されてもよい。
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明がこれらに限定されないことは言うまでもない。
ヒトiPS細胞
 Nature Methods 8, 409-412 (2011)に記載のエピソーマルベクターによる初期化因子導入法を用いてヒト皮膚線維芽細胞から樹立した409B2株、HDF-11株、KF4009-1株、および、ヒト末梢血から樹立した604B1株の合計4株のヒトiPS細胞を以降の実験に用いた。なお、409B2株(Nat Methods. 8, 409-412(2011))および604B1株(Stem Cells. 31, 458-466(2013))は、京都大学iPS細胞研究所より受領した。樹立したiPS細胞は、フィーダー細胞(マイトマイシンC処理を行ったSNL細胞)上に播き直し、ヒトES細胞維持培地を添加した上で維持培養を行った。ヒトES細胞維持培地は、DMEM/F12 (Sigma), 20% KSR(Invitrogen), 2mM L-グルタミン(Invitrogen), 1×10-4M 非必須アミノ酸(Invitrogen), 1×10-4M 2-メルカプトエタノール(Invitrogen), 50units/ml ペニシリン(Invitrogen), 50mg/ml ストレプトマイシン(Invitrogen), 4ng/ml bFGF(WAKO)を混合することにより調製した。その後、iPS細胞をマトリゲル(Invitrogen)コートディッシュ上に播種し、Essential 8培地(Life Technologies)に50units/ml ペニシリンおよび50mg/ml ストレプトマイシンを添加した培地を加え、フィーダーフリー環境下で維持培養を行った。フィーダーフリー維持培養を開始して10~15日目に、1~2×105細胞から成るコロニーを用いて以下に詳述する軟骨細胞への分化誘導を行った。
RNAの単離と定量リアルタイムRT-PCR
 RT-PCRを実施するためのRNAは、所望の細胞からRNeasy Mini Kit (Qiagen)を用いて、カラム内でDNae Iでの消化する条件下で製造業者のプロトコールに従って回収された。パーティクル内の細胞からRNAを回収する場合、モルタル処理によりホモジナイズした後に回収した。テンプレートとして用いるため、全RNAのうち500 ngをReverTra Ace (TOYOBO)を用いてcDNAへ変換した。リアルタイムPCRは、KAPA SYBR FAST qPCR kit Master Mix ABI prism (KAPA BIOSYSTEMS)を用いてStep One system (ABI)にて行われた。PCRに用いたプライマーを、以下に示す。
プライマー名   配列
ACTB F      TGGCACCACACCTTCTACAATGAGC(配列番号:1)
ACTB R      GCACAGCTTCTCCTTAATGTCACGC(配列番号:2)
OCT3/4      FGACAACAATGAGAACCTTCA(配列番号:3)
OCT3/4 R     TTCTGGCGCCGGTTACAGAA(配列番号:4)
NANOG F      CAAAGGCAAACAACCCACTT(配列番号:5)
NANOG R      CTGGATGTTCTGGGTCTGGT(配列番号:6)
BRACHYURY F    TATGAGCCTCGAATCCACATAGT(配列番号:7)
BRACHYURY R    CCTCGTTCTGATAAGCAGTCAC(配列番号:8)
KDR F       GGCCCAATAATCAGAGTGGCA(配列番号:9)
KDR R       CCAGTGTCATTTCCGATCACTTT(配列番号:10)
SOX5 F      CAGCCAGAGTTAGCACAATAGG(配列番号:11)
SOX5 R      CTGTTGTTCCCGTCGGAGTT(配列番号:12)
SOX6 F      GGATGCAATGACCCAGGATTT(配列番号:13)
SOX6 R      TGAATGGTACTGACAAGTGTTGG(配列番号:14)
SOX9 F      AGACCTTTGGGCTGCCTTAT(配列番号:15)
SOX9 R      TAGCCTCCCTCACTCCAAGA(配列番号:16)
AGGRECAN F    TGAGGAGGGCTGGAACAAGTACC(配列番号:17)
AGGRECAN R    GGAGGTGGTAATTGCAGGGAACA(配列番号:18)
COL2A1 F     TTTCCCAGGTCAAGATGGTC(配列番号:19)
COL2A1 R     CTTCAGCACCTGTCTCACCA(配列番号:20)
COL11A2 F     TGTGATGACTACGGGGACAA(配列番号:21)
COL11A2 R     CCATATTCCTCTGCCTGGAA(配列番号:22)
LUBRICIN F    AAAGTCAGCACATCTCCCAAG(配列番号:23)
LUBRICIN R    GTGTCTCTTTAGCGGAAGTAGTC(配列番号:24)
IHH F       AACTCGCTGGCTATCTCGGT(配列番号:25)
IHH R       GCCCTCATAATGCAGGGACT(配列番号:26)
COL10A1 F     ATGCTGCCACAAATACCCTTT(配列番号:27)
COL10A1 R     GGTAGTGGGCCTTTTATGCCT(配列番号:28)
COL1A1 F     GTCGAGGGCCAAGACGAAG(配列番号:29)
COL1A1 R     CAGATCACGTCATCGCACAAC(配列番号:30)
COL1A2 F     AATTGGAGCTGTTGGTAACGC(配列番号:31)
COL1A2 R     CACCAGTAAGGCCGTTTGC(配列番号:32)
OSTEOCALCIN F   CACTCCTCGCCCTATTGGC(配列番号:33)
OSTEOCALCIN R   CCCTCCTGCTTGGACACAAAG(配列番号:34)
Taqman human ACTB  Hs01060665-gl
Taqman mouse Actb  Mn00607939-sl
Taqman rat Actb   Rn00667869-ml
eGFP COL11A2 F  CATACAATGGGGTACCTTCTGG(配列番号:35)
eGFP COL11A2 R  GCATGGACGAGCTGTACAAGTAA(配列番号:36)
軟骨細胞特異的にGFP発現を行うiPS細胞の作製
 軟骨細胞特異的Col11a2遺伝子(XI型コラーゲンα2鎖遺伝子)のプロモーター/エンハンサーに結合したトランスジーンのコンストラクト(Col11a2-EGFP-IRES-Puro、図1参照)を含むpiggyBacベクターをヒトiPS細胞に導入した。導入から10日後に、Col11a2遺伝子特異的に緑色蛍光タンパク質(GFP)を発現するレポーターiPS細胞株を選別した。選別されたiPS細胞株へのレポーター遺伝子の組み込みは、RT-PCRにより確認した。選別されたCol11a2遺伝子レポーターiPS細胞をSCIDマウスの皮下に注入することで形成されたテラトーマを採取して組織染色を行ったところ、軟骨、腸管、神経組織の形成が確認されたが、特に軟骨細胞特異的な発現を示すこともあわせて確認された(図2)。
軟骨細胞への分化誘導の最適化
 上述したフィーダーフリー維持培養を開始して10~15日目のCol11a2遺伝子レポーターiPS細胞の培地を中胚葉培地(DMEM/F12に対し10ng/ml Wnt3A(R&D), 10ng/ml アクチビンA(R&D), 1% インスリン-トランスフェリン-亜セレン酸ナトリウム(Invitrogen), 1% 牛胎児血清, 50units/ml ペニシリン, 50mg/ml ストレプトマイシンを混合して調製)に交換して3日間培養を行った(day3)。その後、DMEM/F12に対し1% インスリン-トランスフェリン-亜セレン酸ナトリウム, 1% FBS, 50units/ml ペニシリン, 50mg/ml ストレプトマイシンを混合した調製溶液へ以下(1)~(3)に示した各組成の軟骨誘導用添加剤を加え、分化誘導開始から14日目(day14)まで培養を行った。なお、この14日間の培養工程は、全て接着培養法によって行った。また、day3~day14に増殖を促すために10ng/ml bFGFを加えた。
(1)A: 50μg/mlアスコルビン酸(Nakarai)
(2)ABT: 50μg/mlアスコルビン酸、10ng/ml BMP2(Osteopharma)および10ng/ml TGFβ(Pepro Tech)の混合溶液
(3)ABTG: 50μg/mlアスコルビン酸、10ng/ml BMP2(Osteopharma)、10ng/ml TGFβ(Pepro Tech)および10ng/ml GDF5の混合溶液
 day14において、位相差顕微鏡により観察したところ(図4a)、添加剤ABTおよび添加剤ABTGを加えた細胞分化培養の場合には細胞が積層した構造を呈する細胞小塊の形成が認められたが、(1)の条件であるアスコルビン酸のみを加えた場合には小塊の形成は認められなかった。
 なお、本明細書において、分化誘導工程において培養期間を示すために使用される「day0」、「day3」、「day10」、「day14」、「day15」、「day21」、「day28」、「day42」、「day52」、「day56」、「day70」、「day140」は、それぞれ、「分化誘導の開始日」、「分化誘導の開始から3日目」、「分化誘導の開始から10日目」、「分化誘導の開始から14日目」、「分化誘導の開始から15日目」、「分化誘導の開始から21日目」、「分化誘導の開始から28日目」、「分化誘導の開始から42日目」、「分化誘導の開始から52日目」、「分化誘導の開始から56日目」、「分化誘導の開始から70日目」、「分化誘導の開始から140日目」を意味する。
 分化誘導開始から14日目(day14)に、ディッシュ上の細胞小塊をピペッティングにより剥離し、ペトリ皿上に移し、同じ培地で浮遊培養を行った。細胞小塊は、軟骨細胞外基質(ECM)の作用による接着能低下により安易に剥離が可能であった。このとき培地交換は2~7日間隔で行った。分化誘導開始から28日目(day28)に、得られたパーティクルのRNAを抽出し、リアルタイムPCRを用いて軟骨細胞マーカー遺伝子の発現量を計測した(図4b)。その結果、軟骨細胞マーカー遺伝子が有意に上昇していたことから、ABTGを添加した軟骨培地を用いることが軟骨細胞誘導に有効であることが示された。分化誘導開始から42日目(day42)に得られたパーティクルを軟骨基質を染色するサフラニンOによって染色し、光学顕微鏡で観察した(図4c)。その結果、ABTG添加培地を用いて培養を行った細胞パーティクルが最も強くサフラニンOにより染色された。
 これらの結果から、day3~day14における接着培養工程、および、day14~day42における浮遊培養工程において、ABTGを添加剤として用いた培養液が軟骨細胞を得る上で最も効率的であることが判明したため、以降の実験においてABTGを添加剤として用いることにした。
 他のヒトiPS細胞株(409B2株、HDF-11株、KF4009-1株、および、604B1株)においても同様のプロトコールにより軟骨細胞の誘導ができることを確認した(day42)。
 さらに、従来技術である浮遊培養工程(Micromass形成)で軟骨細胞を誘導する方法(Sci Rep. 3, 1978(2013))と培養day0からday3の中胚葉の誘導工程(Wnt3AおよびアクチビンAを添加した培地で接着培養する工程)を含む本発明のプロトコールの方法により得られた軟骨細胞をRT-PCRにて軟骨細胞マーカー遺伝子を比較したところ、中胚葉誘導工程を含むプロトコールの方が有意にこれらのマーカー遺伝子の発現量が高かった(図5)。この結果から、iPS細胞から中胚葉への誘導工程は、軟骨細胞誘導に有用であることが示された。
パーティクルの評価
 図3に記載の細胞分化培養プロトコールにより、iPS細胞を誘導し、day28、day42、day 70およびday140で得られたパーティクルを組織染色により評価した(図6)。なお、day3~day42に用いた軟骨培地には、DMEM/F12に対し1% インスリン-トランスフェリン-亜セレン酸ナトリウム, 1% 牛胎児血清, 50units/ml ペニシリン, 50mg/ml ストレプトマイシンおよびABTGを添加した調製溶液を用いた。その結果、day28のパーティクルは、サフラニンOでわずかに染色されるECMで包まれていることが確認された(図6a)。day42におけるパーティクルは、サフラニンOにより強く染まったことから、ECMも成熟状態にあることが分かった。ただし、I型コラーゲンとII型コラーゲンのいずれもがECMに含有されていた。一方、day42まで用いた軟骨培地を用いて培養を継続したところ、day70またはday140においては、I型コラーゲンの発現が維持されていたが(図7aおよびb)、day42以降において、軟骨培地をDMEMおよび10% 牛胎児血清のみから組成される通常培地に交換して、培養を続けたところ、day70においてI型コラーゲンの発現が低下し、II型コラーゲンの発現が増大した(図6bおよびc)。ただし、X型コラーゲンの発現は検出限界以下であった。また、パーティクルの表層部は、I型コラーゲンの発現量の増大が確認された。このような変化は、軟骨培地で培養を継続した際には見られなかった。これは、表層部により、パーティクルの内部での硝子軟骨への成熟に寄与するためと考えられる。軟骨細胞に特異的に発現するSOX9を指標としてday56およびday70における、表層部を除くパーティクル内のSOX9陽性の細胞数を調べたところ(図6d)、パーティクル内の軟骨細胞密度はそれぞれ91.8%±0.91%および99.7%±0.2%と時間経過とともに増加することが確認された(図6f)。また、day56でのCOLIIA2-EGFPはほぼ全ての細胞で陽性であることが確認された(図6e)。これらの結果から、パーティクルの三次元構造は、軟骨培地での継続培養を必要としない硝子軟骨の成熟化に重要で効果的であることが示唆された。
浮遊培養による効果
 本発明のプロトコールにおいて、day14以降は浮遊培養により行われたが、day14以降においても接着培養を続けたところ、day42においてもほとんど軟骨形成が確認されなかった(図8)。この結果より、浮遊培養は軟骨の成熟化を促進させることが示唆された。ところで、day14において浮遊培養するために細胞を培養皿へ移し培養を継続すると、培養皿の底面は接着した細胞でおおわれる。この培養皿底面の細胞は、紡錘状の形状をしており、COL11A2-EGFPは陰性であった(図9a)。これらの細胞をRT-PCRで測定したところ、軟骨細胞マーカー遺伝子の発現はほとんど確認できなかった(図9b)。従って、所望の軟骨細胞以外の細胞が培養皿へ接着することにより、浮遊培養により軟骨細胞が濃縮されると考えられる。
軟骨細胞の分化誘導工程における経時的観測
 本プロトコールは、細胞分化培養の当初から軟骨培地を用いず、生体内での中胚葉から軟骨細胞への発生系を模倣するため、day0~day3においては軟骨培地ではなく中胚葉培地を用いる点を特長とした。そこで、培地の交換と共に、分化培養中のヒトiPS細胞にどのような変化が見られるのか、多能性マーカー、中胚葉マーカーおよび軟骨細胞マーカーを用いて、分化誘導開始から特定日数毎の細胞の経時的観測を行った。観測結果を図10aに示す。
 day0における観測後、中胚葉培地としてWnt3aおよびアクチビンAを加えたところ、day3の細胞において多能性マーカーの発現量が減少し、初期段階の中胚葉状態に固有のマーカーであるBRACHYURYの発現量が一過的に増加した。続いて、day3に中胚葉培地を軟骨培地に切り替えたところ、day7~day14にかけてさらに多能性マーカーの発現量が減少し、中胚葉に固有のマーカーであるKDRの発現量がday7において一過的に増加した。さらに培養を継続したパーティクルでは、軟骨細胞または細胞外マトリクスに特異的な指標であるAGGRECAN、COL2A1、LUBRICINなどの発現量が、ポジティブコントロールとして用いた関節軟骨の発現量を上回る現象が見られた。一方、軟骨肥大に係る指標であるIHHおよびCOL10A1の発現は、ポジティブコントロールとして用いた関節軟骨とは異なり殆ど観測されなかった。
 一方、各時期において、生細胞数を測定し、経時的な変化を計測した(図10b)。生細胞は、トリパンブルー染色によって計測した。その結果、day0~day3までの間、培養により細胞分裂が開始しているにも拘らず、細胞数が増加せず、生細胞の減少が確認されることから、この条件では、非中胚葉細胞は死滅して、中胚葉細胞が濃縮されると示唆された。その後細胞数は14日まで増加を続けた。day14において、接着培養から浮遊培養へと変更をするが、本実施例においては、浮遊しているパーティクルの細胞数を計測したため、day14にて細胞数の減少が見られた。全培養工程終了後の生細胞数は、day0におけるヒトiPS細胞の細胞数の約7倍であった。day0におけるヒトiPS細胞の平均細胞数は1.6±0.1×105/35mmディッシュ、day14における平均生存細胞数は9.0±0.72×105/35mmディッシュであった。その内、パーティクルを構成するに至った平均細胞数は4.06±0.04×105であった。この細胞数はday42には10.4±0.2×105に達した。
 1ディッシュあたりの平均パーティクル数は14.6±3.96であった。また、パーティクルの平均直径は、day21において0.69±0.2mm、day28において0.8±0.16mm、day42において1.13±0.18mm、day70において1.4±0.47mmであった。
 なお、本プロトコールにおいて用いたFBS量は、軟骨細胞が生存維持するための最低量の成長因子を供給する量であるため、本条件下においては非軟骨細胞が死滅し、パーティクルから死滅した非軟骨細胞が離脱したものと考えられる。また、非軟骨細胞は培養皿の底面に蓄積するため、浮遊しているパーティクルのみを抽出すれば、別途ソートを行うことなく純度良く軟骨細胞が得られることとなる。また、接着培養から浮遊培養へと移行する際にも、軟骨細胞は潤滑性があり容易に剥離させることが可能であるのに対し、非軟骨細胞は培養皿底面への接着度が高いため、同工程においても軟骨細胞と非軟骨細胞の接着力の違いに基づき純度良く軟骨細胞が選別することが可能となる。
マウスにおける腫瘍形成の確認
 上記により得られたヒトiPS細胞由来の軟骨細胞のin vivo環境下における機能解析のため、SCIDマウスの皮下にday42における軟骨細胞を注入した。注入から12週後に組織化学分析を行ったところ、全6箇所の注入箇所の内4箇所において、軟骨組織の形成が確認された(図11a)。この軟骨組織の内、96.4±0.84%がSOX9陽性細胞であった(図11b)。また、SOX9発現により硝子軟骨の形成が確認された軟骨組織は、I型コラーゲンの発現により表層の形成が認められるものであった。さらに、非ヒト由来のビメンチン抗体を用いて免疫染色を行ったところ、皮下形成組織のうち硝子軟骨部位についてはヒトiPS細胞由来、周囲の膜層についてはマウス由来であることが分かった(図11c)。軟骨細胞を移植したいずれの部位においても、腫瘍の形成は確認されず、また腫瘍形成の兆候となるような組織変化も見られなかった。これらの結果から、ヒトiPS細胞由来の軟骨細胞は、in vivo環境において硝子軟骨を組織形成し、少なくとも12週間は同組織形態を保ち得ることが分かった。
 また、SCIDマウスの頸部、腹腔、腋窩リンパ節、鼠径部リンパ節を含む各組織およびリンパ節においてヒトβアクチンmRNAは検出されなかったため、組織転移の可能性も否定された(図11d)。従って、day42におけるヒトiPS細胞由来の軟骨細胞は移植用途に適した細胞であることが示唆された。
in vivoでの長期評価
 上述と同様にSCIDマウスの皮下にday42における軟骨細胞を注入し、12ヶ月後に移植部位を取り出し、組織化学分析を行った。その結果、6例全てにおいて、X型コラーゲンの発現により、軟骨の一部が肥大化していることが確認された(図12)。5例において、軟骨の大部分は骨端軟骨様の形態を保ちながら、軟骨の一部が骨様組織に置き換わっていることが確認された。これらの結果により、本方法で得られたヒトiPS細胞由来の細胞は、ゆっくりではあるが、肥大化していることが示唆された。このことは、関節軟骨欠損に移植した場合に、軟骨内骨化に寄与する可能性が想定される。また、移植部位には、12か月後であってもテラトーマやその他腫瘍形成は見られなかった。
ヒトiPS細胞由来軟骨細胞の移植
 SCIDラットの関節軟骨に予め浅い欠損部位を形成しておき、day42におけるヒトiPS細胞由来の軟骨細胞を当該欠損部位に移植した。ラットの関節軟骨に設けられた浅い欠損部位に移植するには、day42における潤滑性を呈する成熟した軟骨細胞パーティクルは適していなかったため、day28における軟骨細胞パーティクルを用いた。その結果、移植を行った全4箇所の膝部位関節の内3箇所において、4週間後も移植細胞が死滅することなく保持されていたことが組織染色により確認できた(図13a)。また、移植先の関節軟骨と移植細胞とが相互に馴染み強く結合していることも確認された(図13b)。さらに、移植から4週間後および12週間後の時点において、全4箇所の移植箇所全てにおいて腫瘍形成が認められず、また、転移の形跡が見られないことを確認した(図13c)。このことから、day28におけるヒトiPS細胞由来の軟骨細胞は移植に適した細胞であることが示唆された。一方、欠損が深い場合は、成熟したday42を用いることが可能であると考えられる。

Claims (16)

  1.  次の工程を含む多能性幹細胞から軟骨細胞を製造する方法:
    (i)多能性幹細胞を接着培養することにより中胚葉細胞を誘導する工程、
    (ii)前記工程(i)で得られた細胞をBMP2、TGFβおよびGDF5から成る群より選択される1以上の物質を含む培養液中で接着培養する工程、および
    (iii)前記工程(ii)で得られた細胞をBMP2、TGFβおよびGDF5から成る群より選択される1以上の物質を含む培養液中で浮遊培養する工程。
  2.  前記工程(iii)で得られた細胞を血清を含有する培養液中で培養する工程をさらに含む、請求項1に記載の方法。
  3.  前記工程(i)、(ii)および(iii)の工程で用いる培養液が、さらに1%FBSを含む培養液である、請求項1または2に記載の方法。
  4.  前記工程(iii)が、前記工程(ii)で得られた細胞を分離溶液を用いずに、浮遊培養を行う工程である、請求項1から3のいずれか1項に記載の方法。
  5.  前記工程(i)の中胚葉細胞を誘導する工程が、Wnt3aおよびアクチビンAを含む培養液中で培養する工程である、請求項1から4のいずれか1項に記載の方法。
  6.  前記工程(i)が、5日以下である、請求項1から5のいずれか1項に記載の方法。
  7.  前記工程(ii)が、15日以下である、請求項1から6のいずれか1項に記載の方法。
  8.  前記工程(iii)が、10日以上30日以下である、請求項1から7のいずれか1項に記載の方法。
  9.  前記工程(i)が、3日である、請求項6に記載の方法。
  10.  前記工程(ii)が、11日である、請求項7に記載の方法。
  11.  前記工程(iii)が、14日以上28日以下である、請求項8に記載の方法。
  12.  請求項1から11に記載の方法で製造された軟骨細胞を含む、医薬品。
  13.  前記軟骨細胞が、軟骨細胞と細胞外マトリックスを含む塊である、請求項12に記載の医薬品。
  14.  関節軟骨損傷治療用である、請求項12または13に記載の医薬品。
  15.  多能性幹細胞から誘導された誘導軟骨細胞であって、
    (1)当該軟骨細胞は、COL2A1遺伝子の発現量が、多能性幹細胞における対応する遺伝子の発現量と比較して、少なくとも100倍であり、
    (2)当該軟骨細胞は、 SOX9遺伝子の発現量が、多能性幹細胞における対応する遺伝子の発現量と比較して、少なくとも250倍であり、および
    (3)当該軟骨細胞は、外来遺伝子が導入されていない(ただし、iPS細胞の製造に用いた外来遺伝子は除く)、前記誘導軟骨細胞。
  16.  立体構造を有する軟骨様組織であって、
    当該軟骨様組織は、外膜および当該外膜に内包された内容物から構成されており、
    当該外膜は、COL1線維を含むが、COL2線維を含まず、
    当該外膜の厚さが、10μm以上50μm以下であり、
    当該内容物が、Col11線維、Col2線維、プロテオグリカンおよび請求項15に記載された細胞を含む、前記軟骨様組織。
PCT/JP2014/079117 2013-11-01 2014-10-31 新規軟骨細胞誘導方法 WO2015064754A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015545332A JP6635505B2 (ja) 2013-11-01 2014-10-31 新規軟骨細胞誘導方法
KR1020167014549A KR102219743B1 (ko) 2013-11-01 2014-10-31 신규 연골 세포 유도 방법
EP14857348.8A EP3064577B1 (en) 2013-11-01 2014-10-31 Novel chondrocyte induction method
US15/032,705 US10100283B2 (en) 2013-11-01 2014-10-31 Efficient chondrocyte induction method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013228822 2013-11-01
JP2013-228822 2013-11-01
JP2014104162 2014-05-20
JP2014-104162 2014-05-20

Publications (1)

Publication Number Publication Date
WO2015064754A1 true WO2015064754A1 (ja) 2015-05-07

Family

ID=53004349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079117 WO2015064754A1 (ja) 2013-11-01 2014-10-31 新規軟骨細胞誘導方法

Country Status (5)

Country Link
US (1) US10100283B2 (ja)
EP (1) EP3064577B1 (ja)
JP (2) JP6635505B2 (ja)
KR (1) KR102219743B1 (ja)
WO (1) WO2015064754A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105039247A (zh) * 2015-07-13 2015-11-11 暨南大学 一种用于诱导干细胞向成软骨分化的制剂及制备方法与应用
WO2016133208A1 (ja) * 2015-02-19 2016-08-25 国立大学法人京都大学 新規軟骨細胞誘導方法
WO2020017575A1 (ja) 2018-07-19 2020-01-23 国立大学法人京都大学 多能性幹細胞由来の板状軟骨およびその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6635505B2 (ja) * 2013-11-01 2020-01-29 国立大学法人京都大学 新規軟骨細胞誘導方法
GB201621594D0 (en) * 2016-12-19 2017-02-01 Univ Leuven Kath Novel cell based methods for healing of bone, cartilage and joint disorders
WO2019078262A1 (ja) * 2017-10-17 2019-04-25 国立大学法人広島大学 骨軟骨修復を誘導する多能性幹細胞
WO2020004893A1 (ko) 2018-06-25 2020-01-02 가톨릭대학교산학협력단 인간 유도 만능 줄기세포로부터 연골세포의 펠렛을 제조하는 방법 및 이의 용도
WO2020130147A1 (ja) * 2018-12-21 2020-06-25 国立大学法人京都大学 ルブリシン局在軟骨様組織、その製造方法及びそれを含む関節軟骨損傷治療用組成物
WO2020161502A1 (en) * 2019-02-08 2020-08-13 University Of Southampton Cartilage tissue
JPWO2020235319A1 (ja) * 2019-05-20 2020-11-26
EP3872168A1 (en) 2020-02-28 2021-09-01 Cline Scientific AB Chondrocyte differentiation

Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843780A (en) 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
WO2007069666A1 (ja) 2005-12-13 2007-06-21 Kyoto University 核初期化因子
WO2008118820A2 (en) 2007-03-23 2008-10-02 Wisconsin Alumni Research Foundation Somatic cell reprogramming
WO2009007852A2 (en) 2007-06-15 2009-01-15 Izumi Bio, Inc Multipotent/pluripotent cells and methods
WO2009032194A1 (en) 2007-08-31 2009-03-12 Whitehead Institute For Biomedical Research Wnt pathway stimulation in reprogramming somatic cells
WO2009058413A1 (en) 2007-10-29 2009-05-07 Shi-Lung Lin Generation of human embryonic stem-like cells using intronic rna
WO2009057831A1 (ja) 2007-10-31 2009-05-07 Kyoto University 核初期化方法
WO2009075119A1 (ja) 2007-12-10 2009-06-18 Kyoto University 効率的な核初期化方法
WO2009079007A1 (en) 2007-12-17 2009-06-25 Gliamed, Inc. Stem-like cells and method for reprogramming adult mammalian somatic cells
WO2009091659A2 (en) 2008-01-16 2009-07-23 Shi-Lung Lin Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant rna agents
WO2009101407A2 (en) 2008-02-11 2009-08-20 Cambridge Enterprise Limited Improved reprogramming of mammalian cells, and the cells obtained
WO2009102983A2 (en) 2008-02-15 2009-08-20 President And Fellows Of Harvard College Efficient induction of pluripotent stem cells using small molecule compounds
WO2009101084A1 (en) 2008-02-13 2009-08-20 Fondazione Telethon Method for reprogramming differentiated cells
WO2009114949A1 (en) 2008-03-20 2009-09-24 UNIVERSITé LAVAL Methods for deprogramming somatic cells and uses thereof
WO2009117439A2 (en) 2008-03-17 2009-09-24 The Scripps Research Institute Combined chemical and genetic approaches for generation of induced pluripotent stem cells
WO2009123349A1 (ja) 2008-03-31 2009-10-08 オリエンタル酵母工業株式会社 多能性幹細胞を増殖させる方法
WO2009126251A2 (en) 2008-04-07 2009-10-15 Nupotential, Inc. Reprogramming a cell by inducing a pluripotent gene through use of an hdac modulator
WO2009157593A1 (en) 2008-06-27 2009-12-30 Kyoto University Method of efficiently establishing induced pluripotent stem cells
WO2010009015A2 (en) 2008-07-14 2010-01-21 Oklahoma Medical Research Foundation Production of pluripotent cells through inhibition of bright/arid3a function
WO2010008054A1 (ja) 2008-07-16 2010-01-21 ディナベック株式会社 染色体非組み込み型ウイルスベクターを用いてリプログラムされた細胞を製造する方法
WO2010013845A1 (en) 2008-07-30 2010-02-04 Kyoto University Method of efficiently establishing induced pluripotent stem cells
WO2010033906A2 (en) 2008-09-19 2010-03-25 President And Fellows Of Harvard College Efficient induction of pluripotent stem cells using small molecule compounds
WO2010033920A2 (en) 2008-09-19 2010-03-25 Whitehead Institute For Biomedical Research Compositions and methods for enhancing cell reprogramming
WO2010042800A1 (en) 2008-10-10 2010-04-15 Nevada Cancer Institute Methods of reprogramming somatic cells and methods of use for such cells
WO2010050626A1 (en) 2008-10-30 2010-05-06 Kyoto University Method for producing induced pluripotent stem cells
WO2010056831A2 (en) 2008-11-12 2010-05-20 Nupotential, Inc. Reprogramming a cell by inducing a pluripotent gene through use of an hdac modulator
WO2010068955A2 (en) 2008-12-13 2010-06-17 Dna Microarray MICROENVIRONMENT NICHE ASSAY FOR CiPS SCREENING
WO2010098419A1 (en) 2009-02-27 2010-09-02 Kyoto University Novel nuclear reprogramming substance
WO2010102267A2 (en) 2009-03-06 2010-09-10 Ipierian, Inc. Tgf-beta pathway inhibitors for enhancement of cellular reprogramming of human cells
WO2010111409A2 (en) 2009-03-25 2010-09-30 The Salk Institute For Biological Studies Pluripotent stem cells
WO2010111422A2 (en) 2009-03-25 2010-09-30 The Salk Institute For Biological Studies Induced pluripotent stem cell generation using two factors and p53 inactivation
WO2010115050A2 (en) 2009-04-01 2010-10-07 The Regents Of The University Of California Embryonic stem cell specific micrornas promote induced pluripotency
WO2010124290A2 (en) 2009-04-24 2010-10-28 Whitehead Institute For Biomedical Research Compositions and methods for deriving or culturing pluripotent cells
WO2010137746A1 (en) 2009-05-29 2010-12-02 Kyoto University Method for producing induced pluripotent stem cells and method for culturing the same
WO2010147395A2 (en) 2009-06-16 2010-12-23 Korea Research Institute Of Bioscience And Biotechnology Medium composition comprising neuropeptide y for the generation, maintenance, prologned undifferentiated growth of pluripotent stem cells and method of culturing pluripotent stem cell using the same
WO2010147612A1 (en) 2009-06-18 2010-12-23 Lixte Biotechnology, Inc. Methods of modulating cell regulation by inhibiting p53
WO2011007900A1 (ja) 2009-07-15 2011-01-20 Dezawa Mari 生体組織から単離できる多能性幹細胞
JP2011041472A (ja) * 2009-08-19 2011-03-03 Tokai Univ 細胞混合物からなる細胞移植治療用スフェロイド及びその作製方法
JP2012533571A (ja) * 2009-07-16 2012-12-27 バイオタイム インク. 試験管内及び生体内での軟骨形成のための方法及び組成物
JP2013511987A (ja) * 2009-11-24 2013-04-11 ユニバーシティ オブ コネチカット ヒト胚性および人工多能性幹細胞の分化

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL147990A0 (en) 1999-08-05 2002-09-12 Mcl Llc Multipotent adult stem cells and methods for isolation
EP1463800A4 (en) * 2001-12-07 2006-04-26 Geron Corp CHONDROCYTE PRE-CREATOR CELLS DERIVED FROM HUMAN EMBRYONIC STEM CELLS
US20080070303A1 (en) 2005-11-21 2008-03-20 West Michael D Methods to accelerate the isolation of novel cell strains from pluripotent stem cells and cells obtained thereby
NZ595854A (en) 2006-10-23 2013-04-26 Anthrogenesis Corp Methods and compositions for treatment of bone defects with placental cell populations (ELOVL2, ST3GAL6, STGALNAC5, SLC12A8)
US20140178994A1 (en) 2006-11-21 2014-06-26 Biotime, Inc. Methods and Compositions for In Vitro and In Vivo Chondrogenesis
US20100184033A1 (en) 2008-07-16 2010-07-22 West Michael D Methods to accelerate the isolation of novel cell strains from pluripotent stem cells and cells obtained thereby
US20130115673A1 (en) 2008-07-16 2013-05-09 Biotime, Inc. Methods of Screening Embryonic Progenitor Cell Lines
CN103068969A (zh) * 2010-06-17 2013-04-24 思迪公司 化学成分确定的无血清细胞培养基
US20130122589A1 (en) 2010-07-26 2013-05-16 The University Of Manchester Targeted differentiation of stem cells
JP6635505B2 (ja) * 2013-11-01 2020-01-29 国立大学法人京都大学 新規軟骨細胞誘導方法

Patent Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843780A (en) 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
WO2007069666A1 (ja) 2005-12-13 2007-06-21 Kyoto University 核初期化因子
WO2008118820A2 (en) 2007-03-23 2008-10-02 Wisconsin Alumni Research Foundation Somatic cell reprogramming
WO2009007852A2 (en) 2007-06-15 2009-01-15 Izumi Bio, Inc Multipotent/pluripotent cells and methods
WO2009032194A1 (en) 2007-08-31 2009-03-12 Whitehead Institute For Biomedical Research Wnt pathway stimulation in reprogramming somatic cells
WO2009058413A1 (en) 2007-10-29 2009-05-07 Shi-Lung Lin Generation of human embryonic stem-like cells using intronic rna
WO2009057831A1 (ja) 2007-10-31 2009-05-07 Kyoto University 核初期化方法
WO2009075119A1 (ja) 2007-12-10 2009-06-18 Kyoto University 効率的な核初期化方法
WO2009079007A1 (en) 2007-12-17 2009-06-25 Gliamed, Inc. Stem-like cells and method for reprogramming adult mammalian somatic cells
WO2009091659A2 (en) 2008-01-16 2009-07-23 Shi-Lung Lin Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant rna agents
WO2009101407A2 (en) 2008-02-11 2009-08-20 Cambridge Enterprise Limited Improved reprogramming of mammalian cells, and the cells obtained
WO2009101084A1 (en) 2008-02-13 2009-08-20 Fondazione Telethon Method for reprogramming differentiated cells
WO2009102983A2 (en) 2008-02-15 2009-08-20 President And Fellows Of Harvard College Efficient induction of pluripotent stem cells using small molecule compounds
WO2009117439A2 (en) 2008-03-17 2009-09-24 The Scripps Research Institute Combined chemical and genetic approaches for generation of induced pluripotent stem cells
WO2009114949A1 (en) 2008-03-20 2009-09-24 UNIVERSITé LAVAL Methods for deprogramming somatic cells and uses thereof
WO2009123349A1 (ja) 2008-03-31 2009-10-08 オリエンタル酵母工業株式会社 多能性幹細胞を増殖させる方法
WO2009126251A2 (en) 2008-04-07 2009-10-15 Nupotential, Inc. Reprogramming a cell by inducing a pluripotent gene through use of an hdac modulator
WO2009126250A2 (en) 2008-04-07 2009-10-15 Nupotential, Inc. Reprogramming a cell by inducing a pluripotent gene through rna interference
WO2009126655A2 (en) 2008-04-07 2009-10-15 Nupotential, Inc. Reprogramming a cell by inducing a pluripotent gene through use of a small molecule modulator
WO2009157593A1 (en) 2008-06-27 2009-12-30 Kyoto University Method of efficiently establishing induced pluripotent stem cells
WO2010009015A2 (en) 2008-07-14 2010-01-21 Oklahoma Medical Research Foundation Production of pluripotent cells through inhibition of bright/arid3a function
WO2010008054A1 (ja) 2008-07-16 2010-01-21 ディナベック株式会社 染色体非組み込み型ウイルスベクターを用いてリプログラムされた細胞を製造する方法
WO2010013845A1 (en) 2008-07-30 2010-02-04 Kyoto University Method of efficiently establishing induced pluripotent stem cells
WO2010033906A2 (en) 2008-09-19 2010-03-25 President And Fellows Of Harvard College Efficient induction of pluripotent stem cells using small molecule compounds
WO2010033920A2 (en) 2008-09-19 2010-03-25 Whitehead Institute For Biomedical Research Compositions and methods for enhancing cell reprogramming
WO2010042800A1 (en) 2008-10-10 2010-04-15 Nevada Cancer Institute Methods of reprogramming somatic cells and methods of use for such cells
WO2010050626A1 (en) 2008-10-30 2010-05-06 Kyoto University Method for producing induced pluripotent stem cells
WO2010056831A2 (en) 2008-11-12 2010-05-20 Nupotential, Inc. Reprogramming a cell by inducing a pluripotent gene through use of an hdac modulator
WO2010068955A2 (en) 2008-12-13 2010-06-17 Dna Microarray MICROENVIRONMENT NICHE ASSAY FOR CiPS SCREENING
WO2010098419A1 (en) 2009-02-27 2010-09-02 Kyoto University Novel nuclear reprogramming substance
WO2010102267A2 (en) 2009-03-06 2010-09-10 Ipierian, Inc. Tgf-beta pathway inhibitors for enhancement of cellular reprogramming of human cells
WO2010111409A2 (en) 2009-03-25 2010-09-30 The Salk Institute For Biological Studies Pluripotent stem cells
WO2010111422A2 (en) 2009-03-25 2010-09-30 The Salk Institute For Biological Studies Induced pluripotent stem cell generation using two factors and p53 inactivation
WO2010115050A2 (en) 2009-04-01 2010-10-07 The Regents Of The University Of California Embryonic stem cell specific micrornas promote induced pluripotency
WO2010124290A2 (en) 2009-04-24 2010-10-28 Whitehead Institute For Biomedical Research Compositions and methods for deriving or culturing pluripotent cells
WO2010137746A1 (en) 2009-05-29 2010-12-02 Kyoto University Method for producing induced pluripotent stem cells and method for culturing the same
WO2010147395A2 (en) 2009-06-16 2010-12-23 Korea Research Institute Of Bioscience And Biotechnology Medium composition comprising neuropeptide y for the generation, maintenance, prologned undifferentiated growth of pluripotent stem cells and method of culturing pluripotent stem cell using the same
WO2010147612A1 (en) 2009-06-18 2010-12-23 Lixte Biotechnology, Inc. Methods of modulating cell regulation by inhibiting p53
WO2011007900A1 (ja) 2009-07-15 2011-01-20 Dezawa Mari 生体組織から単離できる多能性幹細胞
JP2012533571A (ja) * 2009-07-16 2012-12-27 バイオタイム インク. 試験管内及び生体内での軟骨形成のための方法及び組成物
JP2011041472A (ja) * 2009-08-19 2011-03-03 Tokai Univ 細胞混合物からなる細胞移植治療用スフェロイド及びその作製方法
JP2013511987A (ja) * 2009-11-24 2013-04-11 ユニバーシティ オブ コネチカット ヒト胚性および人工多能性幹細胞の分化

Non-Patent Citations (70)

* Cited by examiner, † Cited by third party
Title
BAI, H. Y. ET AL., JOURNAL OF BIOMEDICAL MATERIALS RESEARCH. PART A, vol. 94, 2010, pages 539 - 546
CELL, vol. 126, 2006, pages 663 - 676
CELL, vol. 131, 2007, pages 861 - 872
E. KROON ET AL., NAT. BIOTECHNOL., vol. 26, 2008, pages 443 - 452
EMINLI S ET AL., STEM CELLS, vol. 26, 2008, pages 2467 - 2474
FENG B ET AL., NAT CELL BIOL., vol. 11, 2009, pages 197 - 203
H. KAWASAKI ET AL., PROC. NATL. ACAD. SCI. USA, vol. 99, 2002, pages 1580 - 1585
H. SUEMORI ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 345, 2006, pages 926 - 932
H. SUEMORI ET AL., DEV. DYN., vol. 222, 2001, pages 273 - 279
HAN J ET AL., NATURE, vol. 463, 2010, pages 1096 - 100
HENG JC ET AL., CELL STEM CELL., vol. 6, 2010, pages 167 - 74
HUANGFU D ET AL., NAT BIOTECHNOL., vol. 26, 2008, pages 1269 - 1275
HUANGFU D ET AL., NAT. BIOTECHNOL., vol. 26, 2008, pages 795 - 797
HWANG, N. S. ET AL., PLOS ONE, vol. 3, 2008, pages E2498
ICHIDA JK ET AL., CELL STEM CELL., vol. 5, 2009, pages 491 - 503
J. A. THOMSON ET AL., BIOL. REPROD., vol. 55, 1996, pages 254 - 259
J. A. THOMSON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 92, 1995, pages 7844 - 7848
J. A. THOMSON ET AL., SCIENCE, vol. 282, 1998, pages 1145 - 1147
J. A. THOMSON; V.S. MARSHALL, CURR. TOP. DEV. BIOL., vol. 38, 1998, pages 133 - 165
J. B. CIBELLI ET AL., NATURE BIOTECHNOL., vol. 16, 1998, pages 642 - 646
J. BYRNE ET AL., NATURE, vol. 450, 2007, pages 497 - 502
J. L. RESNICK ET AL., NATURE, vol. 359, 1992, pages 550 - 551
J. YU ET AL., SCIENCE, vol. 318, 2007, pages 1917 - 1920
JAYMI T. TAIANI: "REDUCED DIFFERENTIATION EFFICIENCY OF MURINE EMBRYONIC STEM", STEM CELLS DEV., vol. 19, no. 7, CE, 2010, pages 989 - 998, XP055337171, DOI: LLS IN STIRRED SUSPENSION BIOREACTORS *
K. SHINOHARA ET AL., CELL, vol. 119, 2004, pages 1001 - 1012
K. TAKAHASHI ET AL., CELL, vol. 131, 2007, pages 861 - 872
K. TAKAHASHI; S. YAMANAKA, CELL, vol. 126, 2006, pages 663 - 676
KIM JB ET AL., NATURE., vol. 461, 2009, pages 649 - 643
KIYOKA WAKAYAMA ET AL., EXPERIMENTAL MEDICINE, vol. 26, no. 5, 2008, pages 47 - 52
KLIMANSKAYA I ET AL., NATURE, vol. 444, 2006, pages 481 - 485
KOYAMA, N. ET AL., STEM CELLS AND DEVELOPMENT, vol. 22, 2013, pages 102 - 113
LYSSIOTIS CA ET AL., PROC NATL ACAD SCI U S A., vol. 106, 2009, pages 8912 - 8917
M. J. EVANS; M. H. KAUFMAN, NATURE, vol. 292, 1981, pages 154 - 156
M. KANATSU-SHINOHARA ET AL., BIOL. REPROD., vol. 69, 2003, pages 612 - 616
M. UENO ET AL., PROC. NATL. ACAD. SCI. USA, vol. 103, 2006, pages 9554 - 9559
MAEKAWA M ET AL., NATURE, vol. 474, 2011, pages 225 - 9
MALI P ET AL., STEM CELLS., vol. 28, 2010, pages 713 - 720
MARSON A, CELL STEM CELL, vol. 3, 2008, pages 132 - 135
MASANORI TAKEBAYASHI ET AL., EXPERIMENTAL MEDICINE, vol. 26, no. 5, 2008, pages 41 - 46
MITHOEFER, K. ET AL., AM. J. SPORTS MED., vol. 37, 2009, pages 2053 - 2063
NAKAGAWA, M. ET AL., NAT. BIOTECHNOL., vol. 26, 2008, pages 101 - 106
NAT METHODS, vol. 8, 2011, pages 409 - 412
NATURE METHODS, vol. 8, 2011, pages 409 - 412
NATURE, vol. 453, 2008, pages 519 - 523
NORIAKI KOYAMA: "HUMAN INDUCED PLURIPOTENT STEM CELLS DIFFERENTIATED", STEM CELLS DEV., vol. 22, no. 1, IN, January 2013 (2013-01-01), pages 102 - 113, XP055337173, DOI: TO CHONDROGENIC LINEAGE VIA GENERATION *
O. FUMITAKA ET AL., NAT. BIOTECHNOL., vol. 26, 2008, pages 215 - 224
OLDERSHAW, R. A. ET AL., NAT. BIOTECHNOL., vol. 28, 2010, pages 1187 - 1194
OLDERSHAW: "DIRECTED DIFFERENTIATION OF HUMAN EMBRYONIC STEM CELLS TOWARD", NAT.BIOTECHNOL., vol. 28, no. 11, CH, 2010, pages 1187 - 1194, XP009153843, DOI: ONDROCYTES *
PHARMA MEDICA, vol. 31, no. 4, 2013, pages 29 - 32, XP008183551 *
R. L. JUDSON ET AL., NAT. BIOTECH., vol. 27, 2009, pages 459 - 461
ROBERTS, S. ET AL., KNEE, vol. 16, 2009, pages 398 - 404
S. WAKAYAMA ET AL., BIOL. REPROD., vol. 72, 2005, pages 932 - 936
SCI REP., vol. 3, 2013, pages 1978
SCIENCE, vol. 318, 2007, pages 1917 - 1920
SCIENCE, vol. 322, 2008, pages 945 - 949
SCIENCE, vol. 322, 2008, pages 949 - 953
See also references of EP3064577A4
SHI Y ET AL., CELL STEM CELL, vol. 2, 2008, pages 525 - 528
SHI Y ET AL., CELL STEM CELL, vol. 3, 2008, pages 568 - 574
STEM CELLS, vol. 31, 2013, pages 458 - 466
SUN N ET AL., PROC NATL ACAD SCI USA, vol. 106, 2009, pages 15720 - 15725
T. WAKAYAMA ET AL., SCIENCE, vol. 292, 2001, pages 740 - 743
TAKAHASHI K ET AL., PLOS ONE, vol. 4, 2009, pages E8067
THOMSON JA ET AL., PROC NATL. ACAD. SCI. U S A., vol. 92, 1995, pages 7844 - 7848
THOMSON JA ET AL., SCIENCE, vol. 282, 1998, pages 1145 - 1147
WARREN L, CELL STEM CELL, vol. 7, 2010, pages 618 - 630
Y. MATSUI ET AL., CELL, vol. 70, 1992, pages 841 - 847
YAMASHITA, A. ET AL., SCIENTIFIC REPORTS 3, 2013
YOSHIDA Y ET AL., CELL STEM CELL., vol. 5, 2009, pages 237 - 241
ZHAO Y ET AL., CELL STEM CELL, vol. 3, 2008, pages 475 - 479

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016133208A1 (ja) * 2015-02-19 2016-08-25 国立大学法人京都大学 新規軟骨細胞誘導方法
JPWO2016133208A1 (ja) * 2015-02-19 2017-11-30 国立大学法人京都大学 新規軟骨細胞誘導方法
US10557121B2 (en) 2015-02-19 2020-02-11 Kyoto University Method for chondrogenic induction
CN105039247A (zh) * 2015-07-13 2015-11-11 暨南大学 一种用于诱导干细胞向成软骨分化的制剂及制备方法与应用
CN105039247B (zh) * 2015-07-13 2018-07-20 暨南大学 一种用于诱导干细胞向成软骨分化的制剂及制备方法与应用
WO2020017575A1 (ja) 2018-07-19 2020-01-23 国立大学法人京都大学 多能性幹細胞由来の板状軟骨およびその製造方法

Also Published As

Publication number Publication date
EP3064577A4 (en) 2017-04-12
JP2020036622A (ja) 2020-03-12
KR20160068982A (ko) 2016-06-15
EP3064577A1 (en) 2016-09-07
KR102219743B1 (ko) 2021-02-23
EP3064577B1 (en) 2020-09-09
JP6635505B2 (ja) 2020-01-29
US20160251623A1 (en) 2016-09-01
JP7166631B2 (ja) 2022-11-08
JPWO2015064754A1 (ja) 2017-03-09
US10100283B2 (en) 2018-10-16

Similar Documents

Publication Publication Date Title
JP7166631B2 (ja) 新規軟骨細胞誘導方法
JP7356658B2 (ja) ドーパミン産生神経前駆細胞の製造方法
JP6429280B2 (ja) 効率的な心筋細胞の誘導方法
JP5896421B2 (ja) 多能性幹細胞から骨格筋または骨格筋前駆細胞への分化誘導法
JP6694215B2 (ja) 新規軟骨細胞誘導方法
JP2015500630A (ja) ヒト多能性幹細胞から中間中胚葉細胞への分化誘導方法
JP5995247B2 (ja) 多能性幹細胞から樹状細胞を製造する方法
JP6646311B2 (ja) 多能性幹細胞から中胚葉前駆細胞および血液血管前駆細胞への分化誘導法
WO2020022261A1 (ja) 新規腎前駆細胞マーカーおよびそれを利用した腎前駆細胞の濃縮方法
JP6730709B2 (ja) 気道上皮細胞の分化誘導法
JP5842289B2 (ja) 効率的な内皮細胞の誘導方法
JP7269620B2 (ja) 多能性幹細胞から軟骨組織を製造する方法
WO2017073794A1 (ja) 多能性幹細胞から3次元の心筋組織を製造する方法
JP7072756B2 (ja) 多能性幹細胞から中胚葉前駆細胞および血液血管前駆細胞への分化誘導法
WO2022102742A1 (ja) 骨格筋系譜細胞および骨格筋幹細胞の高効率純化用細胞表面マーカーおよびその利用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857348

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015545332

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15032705

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014857348

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014857348

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167014549

Country of ref document: KR

Kind code of ref document: A